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The possibility of observing pure nuclear resonant scattering of synchrotron radiation by a
multilayer structure containing th€°Tm isotope is analyzed theoretically. The main problem is

the need to suppress the enormous background of radiation scattered by electrons. Two
methods for the destructive interference of a synchrotron radiation beam in reflection at grazing
incidence by a layered system containing Tm nuclei in one of the layers are considered,

and their efficiency as applied to the conditions of third-generation synchrotron radiation sources,
such as in the European Synchrotron Radiation Fadiii$RB, is calculated. An electron

scattering suppression efficiency parameter is formulated as the ratio of the integrated nuclear
scattering intensitywith a time delay to the total prompt electron scattering intensity in

assigned ranges of angles and energies. In the first method thin films of a special type on a
substrate, viz., GIAR films, are used. In the second method a new effect, which is termed

the Bragg antipeak effect and involves the destructive interference of a wave that is Bragg-
diffracted in a multilayer superlattice and a wave reflected on the upper boundary of the

sample, is employed. The physical properties of the Bragg antipeak effect are considered, and it
is found that its efficiency is sufficient for practical use. 1®98 American Institute of
Physics[S1063-776198)00107-3

1. INTRODUCTION tered radiation has been used to suppress nonresonant radia-
tion under the conditions of the hyperfine splitting of nuclear
Since the first proposdtd to use synchrotron radiation |eye|s!l12
to excite IOW-Iying nuclear levels and the first clear-cut ob- The deve]opment of new sources of Synchrotron radia-
servation of nuclear resonant scattering of synchrotroRion permitted a sharp increase in the spectral density of syn-
radiation? a great deal of attention has been focused on thehrotron radiation. The third-generation sources of synchro-
problem of suppressing the nonresonant background of elegron radiation, such as ESR(France, APS (U.S.A), and
tron scattering. In principle, the pulsed temporal structure o6pring-8 (Japan, provide beams with intensities of order
synchrotron radiation permits the use of a “time window” to 10'3 photons/s/eV. All the advantages of nuclear hyperfine
separate the delayed nuclear resonant scattering and tBgectroscopy can be utilized only with ultrahigh monochro-
pulsed electron scattering. However, the extremely narrownatization, which is still not achievable with electron-
energy width of nuclear levels (10-10°eV) makes it reflection monochromators. Therefore, nuclear resonant scat-
possible to use a time window only after strong preliminarytering must be used in the monochromatization of the
monochromatization of the synchrotron radiation with theradiation. Although the use of pure nuclear Bragg diffraction
aim of effectively suppressing the nonresonant electron scajg very effective, it is applicable only to highly perfect,
tering. isotope-enriched single crystals. Therefore, a great deal of
Several approaches to solving the problem of enormougttention has been focused on the development of artificial,
nonresonant scattering have been successfully developed jjyrely nuclear reflecting elements, mainly on the basis of
recent years. The compact high-resolution monochromatofigyltilayer antireflection films and multilayer superlattices.
with an energy width of the order of several millielectron The operation of such elements is based on efficient nuclear
volts*™" and avalanche photodiode detectors develdped resonant scattering under conditions where electron scatter-
have permitted the performance of investigations in a morqang is Suppressed_ In the case of G|Kaazing_incidence
universal forward-scattering experimental seftip addition  antireflection films electron scattering is suppressed through
to the experimental setup in which pure nuclear Bragg difthe destructive interference of waves reflected from the upper
fraction is realize&. These advances prOVided the base forand lower faces of the ﬁ|r}ﬁ_16and in the case of mu|ti|ayer
the rapid development of nuclear hyperfine spectroscopy ussuperlattices it is achieved owing to the use of an electron-
ing synchrotron radiation. In the case of Bragg diffraction,forbidden diffraction reflection under conditions where the
the alternative technique of the polarization analysis of scatatomic and nuclear scattering parameters diffet?
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The study of nuclear resonant scattering using synchro- E'eikzz E o ik
tron radiation sources on both the theoretical and experimen-
tal levels has been confined hitherto to ffige isotope. The

only exception is the work described in Refs. 16 and 20, 8
where the''®Sn isotope was considered. The present paper e ————— s #4242 x
d b th r tl I n | I f ver | m th d f r VOISO IIIIIIIIIH S III IS IS S I IO

escribes a theoretical analysis of several methods for sup- S —

pressing electron scattering in the case of the nuclear transi- ILILIIIIIIIIIITIITIIIIIIIIIIIOIIIIIIIS 4
tion with energy 8.410 keV if®°Tm. The relatively large 2222227077227 7772777722222 77D
width of this nuclear transition (1410 7 eV) creates the R —————— e

diti for | | . f h 7T 777 77 72777777 "~ m — 1

conditions for intense nuclear scattering of synchrotron ra- e ———————

diation. On the other hand, the short natural lifeti(Be3 n9
makes high preliminary monochromatization especially NeCr|g 1. Geometry of the grazing-incidence reflection of a synchrotron ra-
essary. Crystals containing Tm atoms rarely have a suffidiation beam by a multilayer structure.
ciently perfect crystal lattice; therefore, the use of Bragg dif-
fraction has been demonstrated in only one pap8&uitable
monochromatization methods can be based on the employions for observing it are formulated. An analysis of the spe-
ment of conditions for near-grazing reflection by layeredcific examples of Tm, Mo) and(Ti, Tm) layered systems, as
samples containing Tm atoms in one of the layers. The techwell as(Tm, Fe multilayer superlattices, is presented in the
nology for fabricating multilayer structures has been develthird section. A discussion of the possibilities of the practical
oped to a fairly high level? We examined the possibilities implementation of the conditions found is given in the last
of using multilayer structures in which layers consisting ofsection.
Tm atoms alternate with layers of Mo, Ti, or Fe atoms.
Multilayer structures in which the layers just mentioned are
combined can easily be fabricated. 2. THEORY OF THE SUPPRESSION OF ELECTRONIC

Since the degree of disparity between the refractive inSCATTERING BY MULTILAYER STRUCTURES
dices in these combinations differs strongly from one to an- 1. General formulas
other, layered systems of different structure and different

techniques for suppressing the nonresonant scattering must 1 ne Simplest method for calculating the reflectivity of a
be used. In the Tm/Mo combination one layer of Tm on gmultilayer structure is based on the Parratt recurrence

Mo substrate or one layer of Tm with one layer of Mo on aformulz?® for the reflection amplitude from a boundary be-

glass substrate is sufficient. The thickness of the layers i&V€€n two neighboring layers. Let us consider the magnitude
found from the “damping-stabilized solution” in the theory of the electric field vector in theth layer, which we write in

of GIAR films.X A similar solution was found in the case of the form

a Ti film on a Tm substrate. In the case of Tm layers and Fe  E_(x,z,t)=E(X,t)[Eym eXp(iK,nZ) + Erm

layers we propose a new method of destructive interference, )

which combines two scattering channels: strong reflection by xXexp(—ikzn2) ], @

the surface of a sample with grazing incidence and Brag@vhereE(x,t) =exp(k,x—iwt), » is the angular frequency of
diffraction in a multilayer superlattice. The interference of the x radiation, andk=(k,,0k,) is the wave vector. For-
these two channels is totally different for nuclear resonannula (1) is applicable to each layer taken individually, and
scattering and electron nonresonant scattering. We founghe coordinatez is measured from the upper boundary of
conditions under which these two processes suppress orgch layer within the layer. The surface of the layers coin-
another in the case of electron scattering with the resultardides with thexy plane. To illustrate the idea behind the
suppression of reflection of the synchrotron radiation beangalculation, let us consider the simple case af-polarized

at the Bragg angle, i.e., the Bragg antipeak effect. On thejlane wave with an electric field directed along a normal to
other hand, in the case of nuclear scattering they can reirthe scattering planéi.e., along they axis). The geometric
force one another and produce an ordinary Bragg peak. parameters in th&z scattering plane are shown in Fig. 1. If

To characterize each method for suppressing electron reg is the angle between the direction of the incident plane
flection, we introduced a parameter which takes into accounfave and the surface of the multilayer, then

both the decrease in the electron reflection of the synchrotron i

radiation pulse and the level of nuclear resonant scattering k=71 cos0, k=X 1SI® 6+ xym, X=M/2m,
(which is delayed during the scattered radiatifollowing a @
short pulse of synchrotron radiation. This parameter is dewhere\ is the wavelength of the radiation ang,=¢,,— 1 is
fined with allowance for the possible angular width of thethe complex susceptibility of theith layer (&, is the dielec-
synchrotron radiation beam and the presently attainable levétic constank In the case of grazing incidence we can take
of premonochromatization. sin 6~ 6.

The next section presents the basic principles of the We introduce the complex reflection amplitude,
theory of reflection by layered structures, which are used in & E,,,/E;,, as the ratio of the amplitude of the reflected wave
quantitative analysis. In particular, the physical nature of theg,,, to the amplitude of the refracted watzg,,. The Parratt
suppression of reflection is considered, and simple condiformula is
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R.— FntRm-1 3) Cn= eXfXZikzmdm_Z(kzma')z)- 8
m m1+ FnRm-1’

2.2. Damping-stabilized solutions
where

We begin by considering the simple case of a multilayer
C=exp2ik,ndr), F :kzm_ Kzm-1 ) with one layer of Tm of thicknessl containing resonant
m zmEmie Mt Kome 1 nuclei on a substrate of some other material. We take Mo as
. . an example; therefore, the system under consideration can be
d,, is the thickness of theth layer. The layers are numbered described by the formula TrdjMo. In this case we have

frpm the lower to the upper bpqndary of the m.ult|la}yeee only two boundaries, and we must use the Parratt formula
Fig. D). Thg .complex susceplibility of 'the medium is accu- only twice. We introduce the amplitudes of the fi&d E,,
rately specified by the known expression andE,, in the air directly above the surface akg andE,
A2 in the Tm layer above the interface with the substrate. We
x=x tix"'=- TN[Z+Af’—iAf”] are interested in the total reflection amplitudg,=E;,/E,,
while the reflection amplitude from the internal boundary

p ) R;=E,{/E;1. In this case the Parratt formula leads to the
=—N°C L[Z+Af —iAf"], 4 relation

wherery,=e?/mc?, N is the number of atoms per unit vol- Rl 6)=Co(6) Ro(6) +R1(6)C4(6,d1)
ume of the materialAf’—iAf” is the complex dispersion ot P01+ Ry(0)Ry(0)C1(6,dy)
correction to the atomic x-ray scattering factor, which is sim- . . .
ply equal to the number of electrodsin the case of grazing where Ry(6) is the reflection amplitude from the sample
incidence,C=0.5402<10" %, p is the density in g/cth A is surface, andRo(6) andR,(6) equal
the atomic weight in atomic units, andis the wavelength in 60— 6, 6,—
angstroms. We recall that the susceptibility is twice the com-  Ro(6)= ==, Ru()=
plex refractive index. !
Fo_rmula(3) was written for a perfect multilayer struc- 0,=\0%+ x1, 0= \O?+ xo. (10)
ture with a smooth surface on each boundary between the
layers. A real surface is generally rough. In this study weHere x; is the susceptibility in the layer, ang is the sus-
assume that the roughness takes the form of uncorrelatéptibility of the substrate. The values 64 and C; were
upward or downward displacements of finite smooth portiongletermined in(8) for do=0.
of the Surfacdak)ng thez axis)' while the mearz coordinate As we know, the critical angle for total external reflec-
of the boundary in space remains unchanged. Such a type &@n is specified by the formulé,,=(25,)"% wheres,, is
roughness can be taken into account by introducing a varthe damping of the refractive index in layem, which is
able layer thickness/,=d,+ A, whereA is a random value. 'elated to the susceptibility by the expressigi?=—o
Assuming that the distribution of the values &fwith the ~ +iB. The substrate has a larger electron density than the
width D is Gaussian, we should average the phase factdayer; therefore, it has a larger value for the critical angle for

(€)

0>
0.+ 65’

Cm- As a result of this averaging;, is replaced byC W, total external reflectiorf,,> 6,,. We are interested in the
where range of angles near the second critical arfgle where the
magnitude of the reflection amplitude from the internal

2 % _ 4A? boundary,R;(6), is greater than the reflection amplitude
Wm:D\/; f_di exp 2ikzA — 5z from the surfaceRy(#). Our goal is to find the conditions
under which the total reflection amplitude from the sample

B 1, 5| 2 o equals zero. The solution of this problem was found for the
=exp — 7kznD” | =exp(— 2k ). ® first time in Ref. 13 and was termed the “damping-stabilized
solution.”
Here Such solutions correspond to a zero value for the nu-
4A2| D2 merator in(9). We write the complex reflection amplitudes,

_ - (7) explicitly distinguishing between the modulus and phase:
g

o?=(A%= 2 fw dAA? exp( -—
Dm J-= D . .
Ro=ag explipg), Ry=a; explie;). (11

The factorW,, can be called the Debye—Waller fact8ie- . " .
m y f pls enables us to formulate the necessary conditions in the

cause its dependence on the change in the value of the Iay%] ¢ X ft | . hich it th
thickness is similar to the dependence of the Debye—Walle rm of a system of two real equations, which specify the

factor on the displacement of atoms from their equilibriumconditio_ns for impedance matching and for destructive inter-
positions in a crystal lattice. This approach differs from theference.

one in Ref. 25, where a different model of roughness wag =a, exp(—2(o/X)%(62+ x}))exp — 2d 6}/ x),

considered. Below we shall take into account the Debye—

Waller factor directly inC,, and redefine€€ ,, in the following o= ¢;—2(0o/X)?x;+2d6;/Xx—mm, m==1,=3,....
manner: (12
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Each of these equations can be treated as an independemitical angles for total external reflection. As a result, the
equation for the layer thicknesk In addition, the solutions damping-stabilized solutions considered above are impos-
can be represented by analytical expressions, which give thable. On the other hand, the small susceptibility difference
angular dependence of thickness. We shall call the respectivapens up a new way to achieve destructive interference be-
thicknesses the impedance-matching thickné¢ssand the tween a wave reflected by the surface of a sample and a wave
destructive-interference thicknedg : that is Bragg-diffracted in a multilayer superlattice having a
In(ag/ay) + 2(a1X)2( 0%+ x1) periodic element in the form of a pair of Tm and Fe layers of

dim(6) = " , different thickness, which is repeatadimes. We again in-
2601/x troduce the amplitudes of the fielt E,, andE,, in the air
" bove the surface and,; and E,; in the top layer directly
— o+ + 2 a tt =1t ( _
dgi(6)= o= 1t mm+ 2(0/M) xa (13)  beneath the surface. We are interested in the total reflection

20,/x ' amplitudeR,=E, /Es, While the reflection amplitude from

The complete solution of the problem is obtained at thethe multilayer superlattice can be definedRyg=E /Ey; .
points where these curves cross the plot of the angular de- N this case the Parratt formula gives the relation
pendence. The coordinates of the crossing points specify Ro( )+ Riy( )
both the required angular orientation of the sample and the R, (8)=Cy( a)m,
layer thickness. Since only positive values of the layer thick- 0 ml
ness have physical meaning, the conditay<a; must be  where Ry(6) is the reflection amplitude from the surface,
satisfied for success. which is defined in(10), and y; is the susceptibility of the

It is also interesting to consider more complicated systop (Tm) layer of the multilayer. Near the critical angle for
tems with a large number of free parameters and to find theotal external reflection, this reflection channel is also signifi-

conditions for suppressing electron reflection in systems witlvant and leads to appreciable beam reflection for a material
some additional properties, for example, systems which ar@ith a large electron density.
stable toward variation of the layer thickness, which can be  The only possibility for making the amplitud®,,(6)
preferable from the standpoint of their fabrication technol-equal to zero for a multilayer superlattice arises in the case of
ogy. Let us consider a system in which a Mo layer of thick-the destructive interference of two channels, wh&g
nessd, is located under a Tm layer of thicknedg on a =—R,. This condition can be satisfied only jRy|<1.
glassy SiQ substrate, i.e., the Trd¢()Mo(d,)SiO, system. Therefore, the multilayer superlattice sought need not be
Using the Parratt formula three times, we can obtain the totadtrongly reflective, and we are interested in the case of a
reflection amplitude in this case in the following form: small reflection amplitude from one period of the multilayer
+ superlattice with a negative sign, which is oppositeRin
Ro(6) + Rl+( 6)C1(6.d1) , Just such a condition is realized in the case of(fhm, Fe
1+Ro(0)R; (6)Cy(6,dy) multilayer superlattice under consideration. An exact analyti-
Ry(6) + Ry(0)Cy( 6,d,) cal _formula descri_bing the reflectiqn amplitude from a
1+ RI(OR,(0)Cy(0.0y)" (14  multilayer superlatt!ce was obtamgd in Rgf. 26_. In the.gen—
1 2 2472 eral case of a multilayer superlattice havingeriods(unit
Here the function®y(8) andR,(6) are defined by formula cellg), it can be written in the following manner:
(10) except that the subscript 1 now refers to the Mo layer

(17)

Riot( 8) = Co( 0)

R{(6)=

and, in addition, RM(9) = I 17Aexing) _ TR B:Af;
g mi f, 1-Bexpiny)’ r—Rsf_’ .’
27 U3
Ry(0)=—-"—", 03=+6°+xs, 15 = _ .
L+ 03 L=1—-Vttexp£igl2), expxiyl2)=v+v-—1,
A= 74, b X3 @5 ¢ 12) 12)=vF o~ 1
where the subscript 3 refers to the substrate @, d,) is L4tt—rr

the transfer function of the wave for the Mo layer. The con-, = —
ditions for the suppression of electron reflection can be writ- 2\/t_t_
ten in the form(12). However, in this case the real functions
a and ¢ have somewhat different definitions:

(18

Here R, is the reflection amplitude directly above the first
periodic element of the multilayer. Below the multilayer su-
Ro(1+R;R,Cy) =24 expli¢g), perlattice under consideration there can be another superlat-
_ . tice or system of layers with different parameters. The pa-

RitRCo=ay explipy). 18 rametersr, r, t, andt are the reflection and transmission
Thus, all the parametee, a1, ¢o, ande, now depend on  amplitudes for one period in the forward and reverse direc-
the thicknessl, of the Mo layer. Therefore, solutions differ- tions. The explicit expressions for these quantities depend on
ing in the value ofd, can be found. the structure of a period in the multilayer superlattice. We
are interested in the simple case with two layers in a period.
We shall use the labels 1 and 2 to distinguish between the
parameters of the upper and lower layers and thus have no-

In the case of gTm, Fe multilayer the susceptibility tation similar to the case considered above. The correspond-
difference is small. This leads to a small difference in theing formulas can be written in the form

2.3. Bragg antipeak effect
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— tC> — — ty(C1C)Y2 wi is the absorption coefficient in layer anda is the abso-
F=rm|1=7— , 1=1Cy, t=t=——35 ' lute value of the structure factor of the multilayer superlat-
1-r,Co 1-r5Co

tice, which can have a value between 0 and 2. The estimate
6,— 6, 46,0, , obtained shows that appreciable reflection by a multilayer
fml=m- tm|=mz:1_rmlv (19 superlattice is confined to a finite range of angles, where
absorption, on the one hand, and roughness, on the other
whered; andC; are defined ir{8) and(10). We note that the hand, are not significant. In the case of a high level of rough-
results of a calculation using the analytical formulas are inness, this region can have zero dimensions, i.e., destructive
complete agreement with the approach based on the repeatiderference can occur.
used of the Parratt recurrence formula for each boundary, but The second condition is that the phase difference be-
the computer time is significantly less, especially for a larggween the complex quantitié,, andR, must be equal tar.
number of periods. In addition, in the case of a thickAs was shown above, the phaseRyfis approximately equal
multilayer superlattice, we obtain an analytical solution into zero. The phase ofy, is approximately equal tar if
the simpler formR,,=r/f, directly from(18), provided the absorption is neglected and in the case of equal layer thick-
function ¢ is defined with a positive imaginary part. nesses provided the upper layer has a smaller electron den-
The condition for Bragg diffraction in this approach re- sity. However, the absorption is significant, and therefore the
quires that the complex quantity_ have a phase 2n. At phase of , differs from #r in the general case. There are two
grazing incidence the component of the wave vector is possibilities to compensate for this difference. The first arises
small; therefore, the roughness of the boundary between tH& an angle shifted slightly from the Bragg angle. Since the
layers does not play a significant role. When the reflectioreflection phase varies very rapidly near the Bragg angle, the
amplitude from one boundany,, is small due to the small Nnecessary shift is small. For example, in the kinetic approxi-
difference between the susceptibilities of the layers, théhation and with the neglect of absorption, the reflection am-
transmission amplitudg,, is close to unitysee(19)]. There-  Plitude can be approximated by the expression

fore, in an approximation we obtain the Bragg condition for sin(N/2)

first-order diffraction in the form Ref6;+d,6,)=N/2, Rmi=r 7exp(i[N— 1]e/2),

whered,; andd, are the thicknesses of the upper and lower sin(¢/2)

layers of a single period in the multilayer superlattice. Aswe  ,—2 Rg 9,d, + 6,d,)/X. (20)

know, in the case of the electron scattering of hard x rays the
imaginary part of the susceptibility is much smaller than thelt is readily noted that near the Bragg maximum the phase of
real part. Therefore, for angles of incidence greater than ththe reflection amplitude from a multilayer superlattice varies
critical angle, the reflection amplitude from the surflRg approximatelyN times faster than does the phase for a single
= — x1/46% has an approximately real value. The reflectionperiod.
amplitude from the boundary between layers in a multilayer ~ The second possibility is to use a multilayer superlattice
superlattice has the approximate valug~ (x1— x»)/46°. with unequal layer thicknesses. In this case the phases of the
The small difference between the real parts of the complexnultipliers C,; andC, are not equal tar even at the Bragg
susceptibilities can be accompanied by a normal differencé@ngle, and the additional phase can cancel the deviation of
between the imaginary paiftihis is precisely what occurs in the phase of,,, from zero value. This case is preferable from
the case of 4Tm, Fe multilayer superlattick As a result the standpoint of the conception of the Bragg antipeak effect
is a complex quantity with an appreciable phase. Taking thi®ecause destructive interference takes place here precisely at
into account, we arrive at the conclusion that the optimunthe Bragg angle. This leads to a large value for the nuclear
structure for the repeating element in a multilayer superlattesonant reflectivity. On the other hand, in this case the
tice is a combination of layers of different thickness. width of the dip on the electron reflectivity curve is narrower
To observe the Bragg antipeak effect, i.e., suppression ghan in the former case owing to the property of Bragg dif-
the total electron reflectivity as a consequence of destructiviaction just mentioned, i.e., the rapid variation of the phase
interference between a surface reflection and a reflectioff the reflection amplitude.
from the multilayer superlattice near the Bragg angle, we
must first ensure the conditidR | ~|r m|F>|Ro|, whereF
is a fa_ctor Whic_h characterizes the _degree of incre_ase in the, Nuclear resonant scattering
reflection amplitude from the multilayer superlattice com-
pared with reflection on one boundary. For a small number ~ The susceptibility of a material is described by formula
of periodsN and equal thicknesses,=d, of layers with (5) only in the case of an electron channel for scattering a
smooth surfaces we obtain simpfy=2N. In the opposite synchrotron radiation beam. The absence of electron reflec-
case of a large number of layers, the valug=a restricted  tion creates conditions for pure nuclear scattering by Tm
by the absorption and roughness of the surface and is a@uclei in a layered system. When nuclear resonant scattering

proximately occurs, an additional contribution, which depends on the ra-
diation frequency and describes the resonant interaction of
F~al(1—|tt])~a/M, Tm nuclei with synchrotron radiation, must be included in

the susceptibility. In the simple case of a single unsplit line,
M = (uqd;+ u,od,)/ 0+8( 0o/ X)?, the additional term is described by the formula
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KNO'077f|_M fiw . 1 1
AXTm:_W1 Wzl_,—o, ‘VflllTw R(W,a):R(W,0)+R1(0)W+R2(9)W—z+ ,
(25)
3 ,2let1 1
(70—2777( 2|g+1m. (21) then
HereN is the number of Tm atoms per unit volumg, is the G(t,0) = R(0,0)8(1)—iR1(0)—Ry(0) tl +...
nuclear scattering cross section at resonandg the fraction t—0 0
of the resonant isotopd, , is the Lamb—Masbauer factor, . :
| andl4 are the valugs (L)’\1:I the nuclear spin in the excited and ~R(=.8)8(1)~IR(6)
ground states, respectively,is the gamma-electron conver- t{y .
sion coefficient, the frequenay is measured relative to the ><exp< "t 5 TIWo | [+..., (26)

resonance value, arld, is the natural resonance bandwidth.

The new term in the susceptibility of the Tm layer, where we have used the notati®ty/R;=wy—iy/2. The
which depends on frequency, causes the total reflection anfiuantity R(«) is simply the electron part of the reflection
plitude to also depend on frequency. In the case of stricth@mplitude, andR; specifies the nuclear part of the scattered
monochromatic radiation with a varying frequency, it be-radiation immediately after the pulse, whi®, assigns the
comes possible to measure the dependence of the reflectigi§cay rate of the excited state for short delay times. The
amplitude on frequency near resonance. On the other hanBarametery characterizes the decay acceleration effegt
when a short pulse of synchrotron radiation is scattered, & equal to unity if acceleration is not obserye&ormula
time-delayed component appears in the scattered radiatid®6) permits direct evaluation of the integrated intensity dur-
because of the resonant frequency dependence of the refldBg @ short time window immediately after a pulse of syn-
tion amplitude. To calculate the delayed part of the scattereghrotron radiation. Thereafter a short time window can be
radiation, it is convenient to introduce a response function ofaken into account in the integrated nuclear reflectivig)
the system to the instantaneous excitation of nuclei by a veryy simple subtraction.

short pulse. As we know, this function is defined by the The quantity of chargedhucleay radiation depends on
Fourier transform of the reflection amplitude: how strongly the near-resonant reflection amplitude differs
from the off-resonance value. In a simple system with one
dw iwt h surface the frequency dependence of the susceptibility causes
G(t,H)t0=f ZR(er)eXF{ _K>’ to=r—o- (22 the critical angle to also become dependent on frequency.

However, at small grazing angles< ;) and at large graz-
Heret, is the lifetime of the excited state of the nucleus. Theing angles ¢> 6.) the reflection amplitude depends weakly
simplest way to isolate the resonant scattering is to measu@ the critical angle and thus depends weakly on frequency.
only the delayed radiation after a time window of width ~ Therefore, it should be expected that the intensity of the
with the detector covered within the time window<®  delayed radiation integrated over time will have a maximum
<t,,. In this case the nuclear and electron resonant reflegorecisely in the range of angles near the critical arjgle
tivities can be defined by — 6, <6.. As was shown in Ref. 28, in first-order perturba-
tion theory with respect to the nuclear addition to the suscep-
'y o ) ) tibility (the kinematic approximation for nuclear scattejing
Pn(6,tw) 7 Jt dt|G(t,0)[%,  Pe(6)=|R(>,0)[% the time dependence of the delayed intensity for a nuclear
v (23) system mimics the time dependence for an isolated nucleus.
The angular dependence of the intensity is identical for all
Here and below we have omitted the subscript “tot” on thetimes following a pulsgor for all values of the frequency
total reflection amplitude. mismatch from resonangeThe corresponding coefficient
Below we shall confine ourselves to consideration of thecan be related to the effective number of nuclei participating
special case of a very short time windoiy,— 0. The inte- in coherent reflection of the delayed radiation. Therefore, the
grated reflectivity of the delayed synchrotron radiation carsuppression of electron scattering precisely in the range of
then be calculated without Fourier transformation by utiliz-angles near the critical angle, where nuclear reflection is
ing Parseval's theorem: strongest, is of greatest interest from the standpoint of ob-
taining pure nuclear scattering.

Lo_ [~ 2
T 2.5. Efficiency of pure nuclear scattering

d
2| SoRwo-RE= 0P (24

We assume that radiation which has passed through the
premonochromator system has a nonzero intensity within the
On the other hand, the response function for short delagngular range\d and the frequency rangew. We are inter-
times can be determined from the asymptotic expansion oésted in the integrated intensity of the scattered radiation in
the frequency dependence of the reflection amplitude, i.e., ithese ranges,
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TABLE |. Some parameters of the elements considered.

z A, au p, glen? Af’ Af" -x', 1076 X', 1078
Ti 22 47.88 453 0.269 1.68 24.728 1.866
Fe 26 55.85 7.86 —0.786 2.94 41.648 4.856
Mo 42 95.94 10.2 —0.087 2.54 52.300 3.169
Tm 69 168.93 9.29 —-9.94 3.90 38.120 2.517

di» anddg; for three values of the roughness parameter:
=0, 5, and 10 A. It is readily noted in the range of grazing

_ _ _ angles of incidence that roughness up A has a weak
whered' is the angular shift away from the vald#g, which jxfluence on the curves and that tthg curves corresponding
corresponds to the complete suppression of electron reflegy 5 phase difference of scarcely vary for the roughness
tion, and the frequency is measured relative the resonanceygjyes considered. We used the vaite 5 A in the ensuing
value for*®*Tm. In the case of the nonresond@ptomp) part  cajculations. On the other hand, regardless of the roughness
of the radiation, there is no frequency dependence; thereforgaye|, there are two solutions. There are no solutions with
other values of the phase differen@ar or more.

Figure 3 shows how the efficiency depends on the layer
thickness for the damping-stabilized solutions found, as well
In the case of the nuclear resonddelayed part of the ra- as the angular dependence of the electron and nuclear reflec-
diation, we can neglect the angular dependence in an apivities for the layer thickness corresponding to the maxi-
proximation and write mum efficiency value. As follows from the calculations, the

— solution at small thicknesses has a doubled peak efficiency,

Pa=20Pn(60) Lo /%, (29 but is more sensitive to variation of the thickndgsgs. 3a
whereP,(6) is defined by formulg24). The ability of dif- and 3¢. The angular dependence for the thicknesdes
ferent reflecting systems to produce pure nuclear scattering 97 A and 158 A is shown in Fig. 3b and 3d. The solution
can be estimated by the ratio between these two quantities. ith the larger thickness has a higher level of nuclear reflec-
the small range of angles near the electron reflectivity minitivity and therefore corresponds to an angle of incidence in
mum the angular dependence of the reflection amplitude hae range between the critical angles for Tmd, (
an approximately parabolic shape, and the integral is calcu=6.17 mrad) and Mo §.=7.23 mrad). At the same time,
lated analytically. As a result, we can introduce the effi-the dip on the electron reflectivity curve is narrower, and

3(00)=L0 de’ Lw dw P(w,0,+6'), (27)

Fe=Awf do' P60+ 6'). (28)
A6

ciency parameter of pure nuclear scattering in the form

=~

3l Pn(6o)
fihw Po(0p+A0I2)+2P( )

(30

when the angular divergence of the beg@wmen 12 mragis
taken into account, this also leads to a higher level of elec-
tron reflectivity. The practical choice of the appropriate vari-
ant is determined by the possibility of creating a layer with a

Pe
In the ensuing analysis of specific cases we shall use the
following particular values of the parameters appearing in
this formula for the conditions in ESRF7pAw~3
X102 eV, I'y=10" eV, A9=12 urad. The efficiency
parameter depends on the thickness of the layers of the sys-
tem; therefore, each individual method for isolating pure
nuclear scattering can also be characterized in terms of the
sensitivity toward variation of the layer thickness.

For numerical estimates of the efficiency of various lay-
ered systems we used susceptibility values calculated from
Egs. (5) and(21), which are presented in Table I. The con-
tribution of the nuclear resonant scattering of Tm to the sus-
ceptibility was calculated with the parameters

ANoo=2X105,

ﬂ:fLM:]., (31)

6.2 64 66 68 70 72 74 76
0, mrad

3. SPECIFIC EXAMPLES
FIG. 2. Graphical solutions of the equations of impedance matching and
destructive interference for determining the layer thickness and the beam

e angle of incidence in the case of a Ta)Mo layered structure for three
In the case of the Tr)Mo system the susceptibility values of the roughness parameter:0, 5, and 10 A. Thed;,,(#) curves

d_ifference is ffflirly Ia_rge; therefore, damping-stabilized solu-paye maxima which decrease with increasingnd thed,( 6) curves prac-
tions are possible. Figure 2 shows the angular dependence wfally coincide.

3.1. (Tm, Mo) layered system
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sufficient degree of control over the thickness or the power
of the source.

A more complicated system, which contains two layers
and can be described by the formula Tn(Mo(d,)SiO,,
has more free parameters. If the phase difference eqgtals

two solutions for the thickness; of the Tm layer exist for 0.;;-
each value of the thickness, of the Mo layer, which we
denote byd{® andd{? in order of increasing values. Calcu- g7

lations show that the solutiod(ll) for fairly large values of
d, scarcely depends on the thickness of the Mo layer, while 0.6
the value ofd{?) decreases with a simultaneous increase in

the efficiency agl, is diminished. Accordingly, the angle of %>

9

10 11
6, mrad

Kon et al.

FIG. 3. Dependence of the efficiency on
thickness(a and ¢ and angular depen-
dence (b, d, decimal logarithmsof the

electron and nucleafthick lineg reflec-

tivities in the two possible solutions for a
Tm(d)Mo
=97 A and 158 A.

layered structure with d

incidence of the synchrotron radiation beam is also in-

.

creased. When the thickness of the Mo layer is diminished 04

further, the values ofi{") and d{* approach one another. 5

There is a critical value ofl,, at which the two solutions

coincide, and then they vanish entirelydsis subsequently o2

|
/

diminished. Such behavior is specified by the strong influ-
ence of the additional reflectivity on the Mo/Si®oundary.
Figure 4 shows plots of the dependence of the efficiency on

=5

Nl

e
E@i

01

1 1 f i

d, for various values ofl, near the critical point. Attention

should be focused on the very high efficiency level: up to 0.4
for the left-hand peaks and up to 0.2 for the right-hand peaks.
However, destructive interference is very sensitivity to varia-FIG.

4.

Dependence of

40

50 60 70 80 90

d, A

r

the efficiency on thickness for a

tion of the thickness. Of course, there is similar sensitivityTm(di)Mo(d,)SiO, multilayer in the region of small values df, near the
critical point. For clearer viewing each curve has been shifted by 0.5 along

toward variation of the suscept|b|I|ty or rothneSS param_the vertical axis. The lowest curgvhich remains at zejocorresponds to

eters.

d,=21 A. The value ofi, for each successive curve1 A greater than for

Since the thicknesses of the layers are small, the angle afe preceding curve. The upper curve corresponds, to30 A.
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B.P, obtained within a region having the dimensionsd,;
1072 =20 A and Ad,=7A near the pointd;=220 A, d,
o =136 A.
10t 3.2. (Ti, Tm) layered system
The systems considered above contain a Tm layer as the
107 upper layer. This specifies a high level of nuclear reflectivity.
On the other hand, the susceptibility difference cannot ex-
1076 ceed a certain limit. In particular, it is impossible to find a
substance which would have a susceptibility twice as large as
107 that of Tm. Such a case is roughly realized if Tm nuclei are
10 found in a substrate coated from above by a Ti lajsme

VT TN TR Table )), i.e., in a system described by the formuladiitm.
6, mrad When the phase difference equats there are again two
FG. 5. Angular depend e elect  nucttsick ine) ref solutions on the plots of the angular dependencd;pfand
e e o s a7 1" dy for tis system. Figure 7 shows plots of the thickness
—o4 A dependence of the efficiency for these solutions. The effi-
ciency maximum is atl=78.5 and 211 A, respectively. The
solution with the larger thickness corresponds to the nuclear
incidence of the beam appreciably surpasses the criticakflectivity maximum on the angular dependence, which is
angle for total external reflection. As an example, Fig. 5slightly weakened by absorption in the upper Ti layer. This is
shows plots of the angular dependence of the electron anokecause the angle of incidence of the synchrotron radiation
nuclear reflectivities for a layered system widh=28.2 A beam in this case is smaller than the critical angle for Tm and
andd,=24 A. Itis easy to see that a high efficiency level is lies between the values of the critical angles for Tm and Ti
achieved owing to the very broad dip in electron reflectivity, (the critical angle for Tif.=4.97 mrad). However, the dip
while the level of nuclear reflectivity is quite small. A fairly in electron reflectivity is extremely narrow, leading to a low
powerful source of synchrotron radiation and a technologyevel of efficiency(0.002 and weak sensitivity toward varia-
for fabricating multilayer structures with high-precision lay- tion of the thickness.
ers are needed to utilize this case. It is noteworthy that there is a correlation between the
The system under consideration also has solutions with arientation of thed;,, anddg; curves at the crossing point on
phase difference of@in the range of values af, from0to  the angle-thickness plarjan example is given in Fig. 2 for
140 A. From the standpoint of the stability of the efficiency the Tm(d)Mo systenj and the width of the efficiency peak
parameter as the thickness is varied, there is interest in thes a function of thickness, on the one hand, as well as the
range of values ofl, near the maximum, where the two width of the dip in electron reflectivity as a function of the
solutions have similar values af,. Figure 6 shows the angle, on the other hand. A large angle betweendtheand
(d;,d,) dependence of the efficiency in this range. As fol-dy; curves in the direction of the angle axis specifies a narrow
lows from the figure, an efficiency greater than 0.01 can belip in electron reflectivity, while a small angle in the direc-

0.030}

0.025F

140

0.020
[ FIG. 6. Dependence of the efficiency on thickness for a
Tm(d;)Mo(d,)SiO, multilayer in the region of large thick-

0.015¢+ J nesses near the critical point.
[ dy A

0010}

" b - al s a1 PR Y
170 190 210 230 250 270
4, A
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E; E,
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o.10F FIG. 7. Dependence of the efficiency on
’ 1 thickness for the two possible solutiofgsand
b b) in the case of a Td)Tm layered structure.
X 0.001-
0.05+ r
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tion of the thickness axis leads to a broad peak on the plot gbossible. As was noted above, the possibility of destructive
the dependence on thickness. The large slope afheurve interference between the reflection amplitude from the sur-
at small angles is the cause of the narrow dip in electroace of a sample and the reflection amplitude from a
reflectivity in the case of large thicknesses. Thus, the anglemultilayer superlattice depends strongly on the roughness of
thickness diagrams clearly demonstrate why the case gfe interfaces between the layers independently of the rough-
small layer thicknesses leads both to an extremely high effiness of the surface. This is because roughness strongly de-
ciency (0.2) of pure nuclear reflection and to a high sensitiv- creases the reflection amplitude from a multilayer superlat-
ity toward variation of the thicknesd~ig. 7a. The level of  (ice regardiess of the number of periods. For a multilayer
nuclear reflectivity here is roughly the same as for largeg perlattice with ideal interfaces between the layers there is a
thicknesses, but the angular width of the dip in electron req,qqinjlity for destructive interference over a broad range of
flectivity is very large. Thus, this case can be preferable 'angles, including fairly large angles, at which high-order
there is a way to ensure a thin layer during fabrication of theBragg peaks appear. Nevertheless, only the smallest of the

sample. possible values of the angle of incidence of the synchrotron
_ _ radiation beam are of interest from the standpoint of obtain-
3.3. (Tm, Fe) multilayer superlattice ing a high level of nuclear reflectivity at the Bragg angle.

A totally different situation arises in the case of layered ~ For multilayer superlattices with a T{) Fe(d,) period
systems containing Tm and Fe. Because of the small differand rough interfaces between the layers, only the first-order
ence between their susceptibilities, the reflectivity of theBragg peak can provide a reflection amplitude comparable to
Tm-Fe interface cannot make up for the strong reflectivity ofreflection from the surface. Figure 8 shows the dependence
the Tme-air interface. As a result, damping-stabilized solu-of the efficiency on thickness for a superlattice containing 10
tions are impossible. Instead, a new Bragg antipeak effect iperiods with a roughness parameter3 A. The efficiency

E;
0.40

0.35

0.30

0.25

FIG. 8. Dependence of the efficiency on the layer thicknesses
d; andd, for a[ Tm(d,)Fe(d,)]* 10/SiO, superlattice.

0.20

0.15

0.10

0.05
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rises sharply on the closed line, along which the conditionariation of the layer thicknesses has been analyzed in detail,
for the complete suppression of electron reflection are satidut the sensitivity toward variation of the susceptibility or
fied. The side with large values af; corresponds to the surface roughness parameters can be of the same order.
suppression of electron reflection precisely at the center of From the standpoint of the stability of pure nuclear scat-
the Bragg peak, while on the left-hand si@enall values of tering with respect to variation of the parameters, cases with
d,) with higher and narrower peaks, suppression occurs omtermediate efficiency valug®.01-0.) can be preferable.
the large-angle slope of the Bragg maximum. The angulaBuch conditions have been found in a TpMo(d,)SiO,
position of the Bragg peak can be calculated approximatelynultilayer with relatively thick layers and in a
from the values ofl; andd, using the simple formula [Tm(d,)Fe(d,)]* n/SiO, multilayer superlattice with a low
(92— 05)1,2: N2(dy+dy), level of interfacial roughness.

where ¢, is the mean value of the critical angles of Tm and*g-mail: kohn@kurm.polyn.kiae.su
Fe (6,=6.45 mrad).
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An investigation is made of the spatial dispersion of the permittivity of achiral liquid crystals

with large-scale fluctuations. It is observed that for large correlation lengths the terms

with spatial dispersion are anomalously large. The specific form of these terms is obtained for
orientational fluctuations in a nematic and fluctuations of the deformations of the smectic

layers in a smectic-A in an orienting magnetic field. It is shown that these effects may be observed
optically by means of accurate measurements of the angular dependence of the refractive
indices of electromagnetic waves. €998 American Institute of Physics.
[S1063-776(198)01307-9

1. INTRODUCTION where the phase exists. In this case, it is typically found that
in the absence of external orienting factors, the correlation
Local coupling between the electrical induction and thelengths are formally infinitely large. In practice, however, the
field may be impaired in the presence of spatial fluctuationsurfaces, and the external electric and magnetic fields always
of the permittivity. The spatial dispersion obtained by allow-have a substantial orienting influence in liquid crystals,
ing for these fluctuations is naturally called the fluctuationwhich leads to finite correlation lengths, the latter becoming
dispersion. This fluctuation spatial dispersion has not beeoontrollable parameters of the liquid crystals.
analyzed previously, so that a material with these properties Since long-wavelength fluctuations in nematics and
is an interesting topic for discussion. smectic-A liquid crystals in fact induce local changes in the
It has been established that allowance for spatial dispemdirection of the principal optic axis, it is possible to study the
sion in nongyrotropic media for frequencies some distancdluctuational spatial dispersion in these by assuming that the
from the absorption line yields corrections of order thematerial is an inhomogeneous locally uniaxial medium. To
square of the ratio of the characteristic microscopic lengthllustrate the results, we use the well-known correlation func-
(such as the average electron displacement under the actitions of liquid crystals in a magnetic field.
of the field, the lattice constant, and so ¢m the wavelength Calculations of the electromagnetic wave spectra show
of the field? If a medium with large-scale fluctuations is that the fluctuations influence the angular dependences of the
considered, its characteristic length is the correlation lengthrefractive indices of the liquid crystals. A similar effect was
so that for a large correlation length the corrections arisingonsidered previously for ordinary waves in a nenfatic
from the spatial dispersion should be quite significant. Thisvhere numerical results were obtained for very large corre-
effect is analyzed subsequently in liquid crystals. The similatation lengths. An analysis in terms of the spatial dispersion
situation encountered near the critical point in liquids will beis clearly valid for correlation lengths shorter than the wave-
studied elsewhere. length of light, i.e., in well-oriented liquid crystals. In this
By their very nature liquid crystals are materials with approach the corrections to the spectra of the ordinary and
pronounced fluctuations. Calculations of the dielectric propextraordinary waves have a simple analytic form.
erties of liquid crystals, for example, using local field  The estimates made show these corrections caused by
theory? usually only take account of microscopic fluctua- fluctuational spatial dispersion can be observed by optical
tions of the position and orientation of the nearest-neighbomethods.
molecules. These fluctuations actually play a major role and
strongly influence the calculated principal values of the per-

mittivity tensor. It is clear, however, that the correspondingi'l_ ﬁ?ﬂT}:Iﬂg:\JS;EESTIgE IID'\:RAE gsgéDO%'Tg’\SITT:"{IgV[\'ITH
spatial dispersion should be relatively low.

Some types of fluctuations in liquid crystals have large  we shall analyze a locally uniaxial medium with the
macroscopic dimensions: their correlation Iengths are manjjyctuational directiom of the principa| optic axis:
times greater than the intermolecular distarfcés particu-
lar, near the phase transition point the correlation length of  &ii(7:@)= €a(®) &ij+ (se(w) —&o(@))Mi(r)n;(r). @)
the pretransition fluctuations depends strongly on temperaAssuming that the deviations of the vectofrom its average
ture, increasing as the transition point is approached. Thea, are small, we have
orientational fluctuations in a nematic or the fluctuations of
the smectic layer deformation in a smectic-A have macro-
scopic correlation lengths over the entire temperature rangdsing linear terms i, we rewrite formula(1) in the form

n=ny+4on, ng-n~0. 2
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&ij(r,m)=¢gjj(w)+ dgjj(r,w), ©) (8eij(p,w) Seiy(—p,w)) = e3[ &&4;i (P) + &€ gjk(p)
where +eje i (p) +eegi(p)],

gij(w)=go(w) 5ij T ea(w)eig;, (10

Ogij(r,w) = g4(w)(€on; + on;g;), where g,{p) is the Fourier transform of the correlation
and g,=n3(s.—&,) is the optical anisotropy of the liquid function

crystal averaged over the fluctuations. The unit veetis Oma 1) ={Ny(r')dng(r’ —r)). (11)
directed alongngy and thus defines the principal optic axis of
the liquid crystal as a whole.
The wave equation for the electric field components
wZ
V div E—AE=EZD (4)

In fact, formula(9) only takes into account the contribution

of two-photon scattering processes at fluctuations. Multipho-
ton scattering can justifiably be neglected because the pertur-
bation of the permittivity is proportional to the dielectric
anisotropy, so that the discarded terms contain the superflu-
ous factore2 which is almost always small. In addition, the
orientational elasticity of the liquid crystal also has the result
that the deviations of the director from the equilibrium direc-

after Fourier transforming and using E®) yields

2
w
29 0.0 —e.. ——E.
[q %~ aig; —e&ij(w) oz |Ej(d,0) tion are small, making the corrections to the permittivity
5 even smaller and the role of the multiphoton processes even
© -
- d3pse(p,w)E(q—p, o). 5 more negligible. o
c? f pde;;(P.w)E;(q=p.w) ® The wave vectorsp|<¢&~* make some contribution to

the integral in Eq(9), where¢ is the correlation length over
which g,{(r) decreases. Since the macroscopic description
is valid for wavelengths

Integrating Eq.(5), we can easily obtain

w2
[qztsij _Qiqj_sij(w)? Ej(g,w)
A>E, (12
4
= % f d3pf dsp'58ij(p,w)58k|(p',w) in EqQ. (9_) we can obviously assuntg<p, _(w/c)_<p, i.e., an
expansion in terms of smatf and (w/c) is valid.
The terms in this expansion which do not dependqgon
X|(q— p)zéjk— (a—p)j(d—p)« contribute to the permittivity without spatial dispersion. This
contribution is obviously small compared with the contribu-
211 tions of the short-wavelength correlatidrend thus we shall
—e(w) | E(a-p—p’ ). (6)  denote the entire wave-vector-independent component of the

_ . . o _ permittivity ase;j(w), assuming that this takes into account
Since the optical anisotropy of a liquid crystal is usually )| the fluctuation corrections and is actually observed ex-
neglected wherever it is not of fundamental importance. Inhe medium, and with it the correlation function, is assumed
particular, on the right-hand side of formul@ we can set  to have a center of inversion. The quadratic terms determine

w2]~1 the spatial dispersion of the permittivity so that
2
[(q—p) 5jk_(q_p)j(q_p)k_8jk(w)? L 1
_ 3
&ij(g,w)=¢gjj(w)+ — f d°p(deij(p,w) Sei(—p,w)) =
eo(®/C)25)k—(q—P)j(a—P)k Zo P

= oo(@l0) 7 (4= p)P—eo(wlC)] @)

2(9-p)

Averaging over the fluctuations assuming a homogeneity of %kt (Pt Py Q) p*
the averaged liquid crystal yields
g q ystal'y 42p2—4(q-p)2 .
(9eij(p,w)dek(p' w)) T PiPx p? ' (13
=(0eij(p,w) Sei(— P, )P (p+p’). (8 Since we haveSn.L e, only those components of the ten-

Substituting expression&) and (8) into formula (6) gives  SOT9ms(P) corresponding to directions perpendiculaetare

the wave equation which contains the following tensor as th&0nzero. Additionally, we can assume that its symmetry is
permittivity the same as that of an averaged liquid crystal, as is the case,

e.g., in an orienting external field. We can then write

1
si'(Q:w):Si'(w)+_fd3p<5€i'(p:w)58 (—p,w)) mPLs
: T e ’ “ ImeP) = (Sms— EmeIU(P; ,PL) + m—pzpiv(pu,m),
1

Xso(w/c)zﬁjk—(q—p)j(q—p)k © (14)

02— 2
(4=p)"~eo(w/C) wherep, andp, are the longitudinal and perpendicular com-
Using Eq.(3), we can easily obtain ponents of the vectqp relative to thee optic axis.
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Substituting Eq.(14) into Egs.(10) and (9) yields ex-
plicit forms of the terms with spatial dispersion

ei(w)

&ij(0,0)=¢gjj(w)+ ()%JkMth

Vi i =09%[ad; +bee ]+ qf[ds;+fee]

+ay(aie;+ea;))g+aiq;h,
and the frequency-independent constants

(15

a=-—u;+2u,+ 5V2

3

b:2U1_4U2+ V0+ Vl_EVZ,

2
1 5 5

d:6ul_6U2_U0_ §V0+ EV]__ E

Vo,

3
fIZUO_6U1+4U2_ §V1+ sz,

1
g: _3Ul+ 4U2+ 5VO_3V1+ 37/2,

h= Vop— Vq (16)

are expressed in terms of the integrals

[ 5 u(pypL) [Py
) P )

2a
va=f d3p —V(pg'zpi) (p—) . a=01,2.

o 7
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where the correlation length is=K/x,7 . Thus, v,
=0 and

,ksT 1 1
U= 272 —§ Up=3Uo, Ux=

The permittivity with allowance for the spatial dispersion has
the form

Ug. (20)

£alw)Ug 2
&ij(g,0)=¢gjj(w)+ 1580(w){q (6ij—2eg))
_Qf(35ij_1zeiej)—3qH(Qiej+eiqj')}- (21

EstimatingT~400 K, K~107% dyn, q~10* cm™, ¢,
~1, ande?~0.1, we have in order of magnitude
2

€
—Uo~10%(&q),

(o]

(22)

i.e., since €q)<1, the terms with spatial dispersion may
have values of 10°. Assuming thay,~ 10 ’, we also find
that inequality(12) which restricts the validity of the macro-
scopic analysis of the fluctuations to fairly well-oriented lig-
uid crystals, requires a strong orienting magnetic figid
>10* Oe.

4. ACHIRAL SMECTIC LIQUID CRYSTAL IN A MAGNETIC
FIELD

We shall analyze a single-domain smediioriented by
a magnetic field. Since the distortions of the position order in
the layer structure are only important for us because they
change the local direction of the optic axis, the question of
violations of the position order caused by instability of a

These have dimensions of the square of length. Their smalRne-dimensionally ordered structure can be left to one side.
ness Compared W|m2 is responsib'e for the smallness of the An important factor is that the orientational nematic order in

terms with spatial dispersion.

3. NEMATIC LIQUID CRYSTAL IN AN ORIENTING
MAGNETIC FIELD

An infinite nematic in an orienting magnetic field' has

finite correlation lengths of orientational fluctuations, and
these are proportional t&Z ~1. If the anisotropy of the mag-

smectics is fairly high.

The principal optic axis in a smectidis directed along
the normal to the surface of the smectic layers. Thus, if the
layers are deformed by long-wavelength fluctuations, we
have

Jd
n(r)y=ng— —w(r),

o (23

netic susceptibility isy,>0, the optic axis is oriented in the Wherew(r) is the deviation of the layer from the equilibrium
direction of the field and the correlation function is givert by smectic plane. The correlation function is then

kgT
u(py,p)= KlpJ_+K3pH+Xa 77
kgT
u(py,p)+v(py,p)= Kop? + Kap2t xa /2" (18

whereK , are the corresponding elastic moduli of the liquid

crystal.

Since these moduli usually have comparatively similar

Imd(P) =~ PumP. s{|W(P)[?), (24)
i.e., in a smectiA
u(p;.p.)=0, v(p;.p.)=—p(|W(p,.p)I?. (25
In an orienting magnetic field we have
kT
(Iw(py,p)|A)= ? (26)

BpZ+K(p!+xa72p?)’

values, we can assume for simplicity in the so-called singlewhereB is the bulk modulus of the smectic layérs.

constant approximation thak;=K,=K;=K. Then, we
haver=0 and

kT

U(pu-PL):U(P):W, (19

Introducing the correlation lengths perpendicular and
parallel to the optic axis,

K1 _2\/5
ﬁ— X_a%’ gl\_fi R'

(27)
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we can write As a result of substituting Eq15), this equation separates
K sz £ into two: the dispersion equation for the ordinary waves
B 1S
v(py,PL)= — : (28) 2 2
KGR R q2=(3> [so<w)+ %(aq%d(q-e)z) (34)
c golw

Since the smectic layers are usually weakly compressible,
the value ofB is such that the parametgK/B is small and and that for the extraordinary waves

has the order of the molecular lengths, i.e., 9*G(,0) + (w/C)2q2F (@, 8) = (w/C) ey @) e o),
(3

§>¢&, . (29
The integralsv,, are then where 6 is the angle between the vectarsand e and
2 2 262w
JKB L&) JKB '’ 2 ¢/ #olw)
(30 X cog 6+ f cod 6}, (36)

A comparison with Eq(19) shows that in a smectia-
the spatial dispersion i§, VB/K times lower than that in a
nematic. An estimate for B~10° erg/cn? and &, (w

F(w,0)=go(w)Si? 0+¢q(w)cos 6
? e3(w)

go(w)

~10"% cm gives the characteristic order10°. = {la+bleo(w)+[a+h]es(w)
The physical reasons for these differences between

smectics and nematics become clear if we take into account +[f+d+h+2g]es(w)cos 0

that the spatial dispersion is determined by the integrals over

correlated regions of the liquid crystals. In a smectic-A these +(d=h)se(w)cos’ 6}. (37)

regions are highly elongated in the direction of the principal  The terms attributable to the spatial dispersion are small.

optic axis, and since conditiqid2) should be satisfied for all It has been shown that these have the order’ &b that the

their characteristic dimensions, the integrated contributiorpproximate solutions of these equations are valid. For the

from the almost spherical regions in a nematic is obviouslyordinary waves, E¢(34) gives

substantially greater. In other words, the macroscopic de- w2

scription of the fluctuations in a smectic in terms of the spa-  g3=—

tial dispersion is valid when these effects are very weak. ¢
However, it is known that near the second-orderand for the extraordinary waves E@5) yields

smectic-A—nematic phase transition, the smectic layers be-

come smeared out so that the elastic modius reduced 2_

substantially. In this case, the shape of the correlated regions © €, Sin® 6+&, coS’ 0

approaches spherical. It is easy to see that at these tempera-

c

2
so+s§%(a+d cog a)], (39)

gote(w/C)?

w 282
+(—) —(a+b sir? 6

c| &,

tures the spatial dispersion is comparatively high. For ex- +d co2 9+ f cod 6 sir? 9)}_ (39)
ample forg=¢, = ¢, we have
kT 1 1 In the corrections caused by the spatial dispersion, we ne-
Vo= —2772?, vi=3%. V2= Yo (31 glected the optical anisotropy of the liquid crystals as before.
Thus, when the spatial dispersion is taken into account,
In this case, the permittivity15) is given by the ordinary wave spectrum becomes weakly anisotropic.
£X(w) g The angular dependence of the extraordinary wave spectrum
- =g a also changes.
Slj(qlw) 8|]((1))+ 1580((,0) g
X192 35 +8 2 55 +3
EEPRURR S I I PR 6. DISCUSSION OF RESULTS

3 5 32 Incoherent scattering at long-wavelength fluctuations is
+ Eq”(QieJ + &)~ 200 (32 considered to be the main reason for the poor transparency of
liquid crystals. The corresponding imaginary correction to

and the spatial dispersion has the same order of magnitude ﬁ’%e permittivity is given by the pole of the integral in E8).

In & nematic. Since the pole is positioned pt~&(w/c) 2< &2, the cor-
responding part of the integral is

5. SPECTRUM OF ELECTROMAGNETIC WAVES IN A \fd3pp~2g(p)

UNIAXIAL MEDIUM WITH SPATIAL DISPERSION - (40)

9(p—0)

times smaller than that corresponding to the spatial disper-
sion of the permittivity. Converting to coordinate-dependent
|08 — 0;d; — (w/c)2ei;(q,w)|=0. (33)  Fourier transforms, we have the ratio

The lightwave spectrum is given by the nulls of the de-
terminant
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esp ANSd% r1g(r) measurements of the cross sections for incoherent scattering
o Jdrg(n) (41)  at fluctuations can be used to determine the correlation

. o _ _ lengths and amplitudes of the fluctuations separately, open-
i.e., the imaginary part ia/¢ times smaller than the terms jng up new prospects for detailed studies of fluctuation pro-

with spatial dispersion. cesses in liquid crystals.
The factor allows us to make a preliminary estimate of _ _ . _
the spatial dispersion in terms of the transparency of the This work was partially supported financially by the
liquid crystals. For example, assuming that the characteristiblinistry of Science of the Russian Federatig?roject No.
distances over which light is scattered significantly are of thé6-7-3 and by the Russian Fund for Fundamental Research.
order of a few millimeters, we obtaie’~10 3-10"4, i.e.,
terms with spatial dispersion should have an order no l€Ssg_maji: ryazanov@theor.mephi.msk.su
than 10°3. For liquid crystals of lower transparency these
term.s will be even greater, provided of course that the Cor_1L. D. Landau and E. M. LifshitzElectrodynamics of Continuous Media
relation lengths ar? shorter than the Wavelgngths of “ght'. transl. of 1st Russ. edPergamon Press, Oxford, 196MRuss. original,
In nongyrotropic solid crystals the spatial dispersion is later ed., Nauka, Moscow, 1982
usually of the order 10°. Thus, this dispersion in liquid V. M. Agranovich and V. L. GinzburgSpatial Dispersion in Crystal

crystals with long-wavelength fluctuations can be described OPtics and the Theory of Excitori@iley, New York, 1967 [Russ origi-
nal, Nauka, Moscow, 1965

as anomalously high. 3E. M. Aver'yanov and M. A. Osipov, Usp. Fiz. Nauks0(5), 89 (1990
The anisotropy of the refractive index for the ordinary [Sov. Phys. Usp33, 365(1990].

waves, produced as a result of the Spatia' dispersion, and th“é_ D. Landau and E. M. LifShitZStatiSti‘Cal PhysicsPart. 1, 3rd. ed.

corrections to the angular dependence of the refractive indexf\ﬂpssrggxofg%ess' Oxford, 19§Russ. original, Part 1, 3rd. ed., Nauka,

of the extraordinary waves can obviously be measured exsp. G. de Gennes and J. Proshe Physics of Liquid Crystai€larendon

perimentally. That is to say, these effects can be used toPress, Oxford, 1993 )

study fluctuation processes in liquid crystals by optical mea-"N- B. Baranova, B. Ya. Zeldovich and V. S. Liberman, Ztksf. Teor.

surements of the angular dependences of the refractive indi-" 2 9 1504(199D [Sov. Phys. JETR2, 841 (1993,

ces. A combination of this method with the conventionalTranslated by R. M. Durham



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 1 JULY 1998

Reduction in the rate of phonon scattering by a spatially correlated system of iron ions
and low-temperature “anomaly” of the thermoelectric phenomena in HgSe:Fe
crystals
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A new effect of the reduction in the rate of phonon scattering by the spatially correlated system
of iron ions in HgSe:Fe crystals is detected experimentally and calculated theoretically.

The thermoelectric power is measured using HgSe:Fe samples with different iron content in the
temperature range 7.5—60 K. It is found that the dependence of the thermoelectric power

on iron content exhibits remarkable featureSat10 K: the quantityla(Ngg)| increases as the

iron concentration increases My.=5x 10'® cm™3, reaches a maximum &trg~(1-2)

x 10*° cm™3, but then monotonically decreases with further increaseécin It is shown that

the observed increase in the thermoelectric power is due to a reduction in the rate of

phonon scattering by the spatially correlated system 8f fens. This new effect is analyzed
theoretically, and the theoretical results are compared with the experimental data.

© 1998 American Institute of Physids$1063-776098)01407-3

1. INTRODUCTION the iron content increases. Experimental stiftfi¢mve cor-

o ) ] roborated this important theoretical finding.
There is interest in electron-transfer phenomena in HgSe Up to now, the focus has been on the properties of

systems doped with iron %(_?ause these gompc‘)‘unds exhiifyse:Fe crystals which are determined primarily by the re-
some remarkable properties. An extraordinary “anoma- |5y ation of electron momentum on the correlated system of
ly” is the substantial increase in electron mobility at liquid- 3+ jons the alloy potential, efc® Far less attention has

helium temperatures as the iron concentration increases frog), paid to effects associated with the influence of the pho-

—NI* — 8 —3 _ 9 —3
Nee=N*=4.6< 10" cm > t0 Nee=2x 10" cm > (Ref. 1. non system on electron transport in HgSe crystals with an

It has been shown® that the anomalous behavior of the . . . :
o . dmixture of mixed-valence iron. One such effect is phonon
dependence of the electron mobility and thermomagnetic ef-, . . . .
. . .~ drag, which plays an important role in the behavior of ther-
fects on iron content and temperature is due to the formatlorr1noelectric and thermomaanetic effects at low tempera
of a mixed-valence state of Feand Fé" ions at the Fermi 9 P

6,7,10 . R
level and the spatial ordering of positive charges on iron ion%ﬁrej In Te sre_sent_ p;}per we Ishto:/jv thatt thec%fr:;rease n
because of Coulomb repulsion. SinceNyz>N* the con- € degree of ordering In the correlated System ens

centration of conduction electrons and trivalent iron ions stayvIth increasing iron content in HgSe:Fe crystals leads not

bilizes, ne=N3 =N*, the concentratioMo=Nge— N of only to a reduction in the rate of electron scattering and a

lattice-neutral F&" ions, which serve as vacant positions for €12nge in the nature of thevs dependencBput also to a
the redistribution ofd holes, increases with increasing iron réduction in the rate of phonon scattering by the spatially

content. At the same time, the degree of spatial ordering of'dered system of Pé ions. We will see that at low tem-
Fe** ions increases, the rate of conduction-electron scatteReratures this effect leads to a substantial increase in the
ing decreases, and the mobility increases. A variant of th&1€rmoelectric power as the iron concentratig increases
short-range correlation model was proposed in Ref. 5. Thi# the range K 10'® cm™*<Nge<2x 10'° cm™>. Note that
model made it possible to quantitatively describe the deperthe electron mobility exhibits an anomalous increase within
dence of the thermoelectric and thermomagnetic effects of)e same iron-content range’ Below we show that this
iron content and temperatute® should be expected, since the physical reason for both
However, spatial ordering of Bé ions leads not only to  “anomalies” is the spatial ordering of the trivalent Feons
a reduction in the rate of electron scattering, but also tdn the mixed-valence system of iron ions. As far as we know,
changes in the nature of the dependence of the electron régduction in the rate of phonon scattering by a correlated
laxation timer on the energy. The analysis of the(e) in  System of charged centers has not been considered either in
Ref. 6, which was based on the short-range correlation modgiapless HgSe semiconductors doped with transition elements
developed in Ref. 5, showed that upon passage from ther in other mixed-valence systems.
weak-correlation regionNg/N; ; <1, whereNl+=N§§) to To observe this effect in experiments, we must ensure
the strong-correlation regionNg/N;,>1) the derivative that(a) the contribution of phonon drag to the thermoelectric
dr/de changes its sign from “plus” to “minus,” causing a power,|ayy, is larger than the diffusion contributioja|
change in the signs of the Nernst—Ettingshausen effects @nd that(b) Rayleigh scattering is the main mechanism of

1063-7761/98/87(7)/9/$15.00 106 © 1998 American Institute of Physics
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TABLE I. lod, pVIK
Sample Nee, Ne, “, N;,
No. 10°cm™2  10¥cm™2 10 cmV-s(4.2K  10¥cm® 30F
1 0.0 2.4 2.25 2.4 °
2 0.1 3.0 2.8 3
3 0.3 4.0 2.9 4.0
4 05 4.8 5.1 5.0 20
5 1.0 4.7 8.3 10.0
6 2.0 4.9 6.4 20.0
7 5.0 4.81 5.95 50.0
8 40.0 6.2 25 400.0

101

phonon momentum relaxation. Studies have sHowrat Ggmmaasadt™
HgSe:Fe crystals meet these requirements in the temperature ¢ 10 20 30 40 50 60 70 T, K
range 5-15 K. The thermoelectric power was measured in

. . . . . FIG. 1. Calculated(lines) and experimentalpointy temperature depen-
samples of HgSe.Fe with different iron content in the tem_dence of the absolute value of the thermoelectric power for HgSe:Fe crystals

perature range 10-45 K in Ref. 7. It was found that theyith ditferent iron content in samples(D), 2 (@), 3 (C), 4 (W), 7 (A), and
temperature dependence|af has a characteristic minimum 8 (A). The values o, and the phonon scattering parameters are listed in
at Tin=(20—30) K and that the phonon-drag contribution Tables I and II, respectively.

|aph, whose value is determined by the phonon-electron in-

teraction and the mechanism of phonon momentum ] ) .

relaxation, dominates &t<T,,,. It was also established that thermoelectric power is provided by phonon drag, and the
the Rayleigh mechanism of phonon scattering plays a@honon-drag thermoelectric power,(T)| is determined by

important role in phonon momentum relaxation. However,th€ phonon relaxation mechanism. As the iron content in-
only four samples with iron concentrationdl=0, creases, the minima ¢&(T)| are shifted toward lower tem-

Nee=0.1x 10 cm™3, Np=1X10°cm 3 and Ng=40 Peratures, anda(T)| decreases in the entire temperature
X 10'° cm 2 were studied in Ref. 7, precluding a detailed "ange for all samples except samples 5 antFig. 2), in
investigation and detection of the nonmonotonic behavior ofvhich |a(T)| increases with decreasing temperature much
|a(Ngo|. Below we report the results of measurements on d@ster than in sample 4. Hence®t:11 K the values of the
larger (than in Ref. 7 set of samples HgSe:Fe and a quanti_thermoelectrlc power for HgSe:Fe crystals with iron concen-

: . . : 9 3 9 -3
tative analysis of the dependence of the thermoelectric powdFations equal to X 10'° cm™* and 2x 10" cm ™ become
on temperature and iron content. larger than for crystals witNg=5x 10 cm™3, although it

would seem that the increase in iron content should lead to
an increase in the rate of the Rayleigh scattering of phonons
and that thermoelectric power at a fixed temperature should

We measured the thermoelectric powe{T) in eight decrease with increasing concentration of the scattering cen-
HgSe:Fe crystals with iron concentrations ranging from zerders, especially since such a dependence is actually observed
to 4x10°° cm3 in the temperature range 7.5-60 K. The
main sample characteristi¢gon contentNg., electron con-
centrationn,, and mobility ») are listed in Table I. The %WV/K
average sample dimensions were<3.0x0.8 mm. The
measured temperature difference did not exceed 10% of the
average sample temperature. Table | shows that in samples 216
and 3 with Ng<N*, where the Fermi level is below the
donor level of iron, the electron concentration exceeds the
iron concentration. This is related to the presence of charged 12[
intrinsic defects, whose concentratiNg in HgSe:Fe crystals
is usually (1—2)X 10*® cm™3. In this case the electron con-
centrationn, is equal to the total concentration of charged
centers, Nng=Ng4+N;,.=N;. When Ng>N*, the Fermi
level is pinned at the donor level of iron and the electron 4
concentration is independent Ni-..

Figures 1 and 2 depict the temperature dependence of o
the absolute value of the thermoelectric powet, Clearly, 0 10 20 30 20 50 60 T.K
the |a(T)| curves have minima. AT>T,,;, the thermoelec- _ _ _
ric power i determined primrly by the electron contrbu- 1°. 2 CAKtitedines and eermentapants tenpeiatre depe

Fion |ae(T)|, which monotonically d.ecreasels With decreas-s (a), and 6(®). The values oNg, and the phonon scattering parameters
ing temperature. AT<T,, the main contribution to the are listed in Tables | and II, respectively.

2. EXPERIMENTAL RESULTS
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lod, VK creasegwith increasingNgy) up to the point wheréNg.=5
x 10 cm2 and then increases, reaching its maximum at
Nee=(1-2)x10* cm™3. As the iron content increases still
further, the mobility and thermoelectric power monotonically
decrease. WheiNg<5%10"® cm™2, the concentrations of
trivalent iron ions and conduction electrons increase with
Nee. As a result, the mobility and thermoelectric power de-
crease for two reasons: because of the increase in the prob-
ability of the scattering of electrons and phonons byFe
ions, and because of a rise in the Fermi level and the nonpa-
rabolicity of the band structure of HgSe:Fe. Whidp.>2
x 10'° cm3, the concentration of lattice-neutral #eions
increases with iron content, leading to decreases in both
#(Ngd and|a(Ng)| due to an increase in the rate of scat-
tering by these ions. The increase in electron mobility in the

N, 10%cm™ range of iron concentrations fromx&10'8 to 2x 10'° cm™3

is due to the decrease in the probability of electron scattering

FIG. 3. Calculatedlines) and experimentalpointy dependence of the ab- by charged centers as the degree of spatial ordering in the

solute value of the thermoelectric power on iron content at7.5 K (H ; ; 6
’ correlated system of Bé ions increases® Hence we as-
curvel), 10 K (O, curve?2), 12 K (@, curve3), 15 K (V, curve4), and 50 y

K (x, curve5). The following average values of the phonon scattering SUME that the increase in thermoelectric power in this con-
parameters were usel;=0.75, ¢, =0.1, cy=2, Cr, =2, andcgy=0.15. centration range is due to a decrease in the probability of
phonon scattering by the correlated system of'Fens.

Below we shall analyze quantitatively the dependence of
for the other samples: Fig. 1 shows thatTat 7.5 K the the thermoelectric power on temperature and iron content
thermoelectric power decreases by a factor greater than 20 agth allowance for phonon drag. The calculation takes into
the iron concentration increases fromk10® cm™3 to 4  account the scattering of electrons by the correlated system
X 10%° cm™3, and atT=20 K this factor is greater than 25 of F€" ions, the alloy potential, and acoustic phonons, as
for the transition from sample 1 to sample 8. This implieswell as the main phonon scattering mechanisms. The phonon
that atT<20 K the Rayleigh mechanism of phonon scatter-scattering by a spatially ordered system ofFéons is
ing plays an important role in the relaxation of the momen-treated separately.
tum of the phonon system and determines the phonon-drag
contribution to the thermoelectric power to a large extent.

The unusual dependence of the thermoelectric pg#ler 3. piFFUSION COMPONENT OF THE THERMOELECTRIC
on iron content at different temperatures can be seen in FiggowER
3. The concentratiofV; for samples 1-3 is equal to the con-
centration of charged centers, while for samples 4-8 it is  As is well known;® the thermoelectric power observed
equal toNg,. Figure 3 shows that af<12 K the|a] vs N; in experiments at low temperatures is determined by the sum
dependence is nonmonotonic: Bs increases|a| first de-  of the diffusion component,(T) and the phonon-drag com-
creases to a valugam,|~10 uV/K at N;=5x10%cm™3  ponentayy(T):
and then increases, reaching 7its maxiqumma,J a(T)= ae(T) + ap(T). 1)
~12.5 uV/K at Npg~(1-2)%x 10*° cm™3. Thus, the increase _ _ _
in thermoelectric power in this concentration range amountd! calculating the thermoelectric power one must take into
to about 2uV/K, which is larger than the experimental error @ccount the nonparabolicity of the conduction band of HgSe
by a factor of four. A further increase in iron content leads toCrystals within the two-band Kane model with an energy
a monotonic decrease jr(N;)|, which, obviously, is due to £4=0.022 eV and an effectlve. electron mass at the band
the increase in the rate of Rayleigh scattering by latticeP0ttom m;=0.02mg, wherem, is the free-electron mass.
neutral F&" ions. The thing is that wheNgs>N*, the For adeg_enerate elec_tron géise cond|t|pns,:>kBT is sure
Fermi level is pinned at the iron donor level, and as the irorf® b€ met in the experimenthe electronic component of the
content increases, the concentration of Féons remains thermoelectric power can be written"as

30F

25

20

15

10

constant with only the concentration of#eons increasing. 72K3T (3
As the temperature rises, the maximum on|iaéN;)| curve ae(T)=— T 5ng+ D), 2
F

disappears, although characteristic discontinuities remain on
the curve up to 20 K. AT=50 K the value of the thermo- where
electric power is determined by the electron contribution, g (s

and|a(N;)| is a monotonically decreasing function. D:gF{ —In —’ , m(g)=m,

Note that qualitatively the dependence of the thermo- de " m(e) e=ep

electric power on iron content dt<10 K is similar to the
dependence of the electron mobility on N, (see Ref. B
Like w(Ngo, the thermoelectric powefa(Ngy)| first de-

2¢e
1+ —
&g

_8g+28F

for= .
gF sg+8,:
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The main mechanisms of electron momentum relaxatioracterized by the packing factap= 7d3N,,/6=V N, /8,
in HgSe:Fe crystals at low temperatures are scattering by th&hich is equal to the ratio of the volume occupied by the
correlated system of Bé ions, by the alloy potential, by hard spheres to the total volume of the system. The integral
acoustic phononsand by intrinsic defects, whose concen- equation for the pair correlation function of the system of
tration is about & 10'® cm 3. If all these mechanisms are hard spheres can be solved exactflgnd the structure factor
taken into account, the expression rcan be written as in (4) can be found without resorting to perturbation-theory
follows:"® techniques. The presence in the crystal of randomly posi-
tioned ions, i.e., intrinsic defects with a concentratldg,

D= ggt2er |KitKamKpn _4er reduces the correlation-sphere radiiFo determine the de-
2(egtep)|  Kpt+Kpn egtep’ pendence ofy on Ng., Tsidil’kovskii et all® derived the
Ny, [ Ny |22 I, Ng following equation:
Ka= M2 (N) L _1) N, A 7 Ny 7 Neo
y 7= €XY TP 1—-ex TN . (®
N, =Ng+Nj. , 3) 7L N1+ 7L Na+
" The valuep~0.2 was found by analyzing the experimental
koo N Ne o N (&) A No w(NeNg) curves, for HgSe:Fe and HgSe:Ga crystals in Ref.
BTN, BHT N, C N, [N, 0T 2N, 13. For concentrationdlgs>2X 10'° cm™2 and Ng—0 the
) 1n(Ngo curve becomes saturated with reaching a value
K. — SE1MekekgT 7n.=0.45, which corresponds to the state of a strongly cor-
P 4% 2eg(ep) psS?’ related Coulomb liquid.
In calculating the electron relaxation time in HgSe:Fe
K+=&( C_& ) + ﬁ( 3¢BH_% ) , crystals with intrinsic defects, one must take into account the
N ay y=1 N Iy y=1 mutual effect of the mechanisms of electron scattering by

g charged centers of two typésand the Coulomb correlations
Pey=In(1+by)—(1+bs ™) " betweend holes and intrinsic defects. Since intrinsic de-
Herey=k/kg ; E, is the deformation potential constaptis fects are immobile and holes can migrate between crystal-

the crystal densitys is the speed of soundy; . andN, are lattice sites occupied by E& ions, correlation spheres also
the concentrations of charged ¥eions and lattice-neutral form around the fractio@Ny of the intrinsic defects located

F&t ions; ®,o=1—b ! In(1+hy, where bg=(2kergy)? & distances Iarger_ tham . This fraction of intrinsic defects

(r. is the Thomas—Fermi screening radiuske is the Fermi ~ Scatters electrons in the same way as.tht.a correlated system of
momentum; eg(e) = m(eg)e*/2x42 is the Bohr energy, Fe*t ions qloes. The remaining intrinsic defects,=(1
where y the dielectric constant; and is the ratio between — ©)Na, which are located at distances smaller thanscat-

the electron—neutral-center and electron—charged—centé‘?r electrons just like a disordered collection of charged cen-
BRHT 13
coupling constants. According to the estimates in RefA 5, ters would. Tsidil’kovski et al*~ showed that the parameter

=0.1, and 6 can be expressed in terms of the packing factor as follows:
1 x35(2kex) F{ 7 Ng )
— S=exp —p— . 6
O (kp)=2 o (+b;1)? dx, 4) 7 Ny ©

where S(q) is the structure factor, which is the measure ofSUch an approach made it possible to explain the dependence
order in the donor system and is determined using the shorff the electron mobility on the content of iron and gallium in
range correlation model proposed in Ref. 5. This variant of\gSe:Fe and HgSe:Ga crystafs-ere it is used to calculate
the short-range correlation model is valid for arbitraiy ~ the diffusion components of thermoelectric power in
magnitude Fe**—Fé* correlations and is based on the fol- HgSe:Fe crystals with intrinsic defects.

lowing physical assumptions. WheNg>N*, a mixed- As the temperature rises, the migration dfoles be-
valence state forms at the Fermi level, and it becomes podWeen the F&" and Fé" ions increases, and the system of
sible for the positive charges on the iron iort ifoles to Fe** ions becomes increasingly chaotic, while the degree of

redistribute among the crystal-lattice sites occupied B/ Fe spatial ordering and the correlation-sphere raQius dec.rease.
ions. As was shown in Ref. 11, the maximum free-energyThe effect of temperature on the degree of spatial ordering of
gain from the ordering of Fé ions is attained when the j[he correlated system of %'*eior?s can be.taken into account
holes closest to each other move apart. Hence around eabhthe soft-sphere apprOX|mat|_8rAccord|n_g to Ref. 9, the
Fe* ion there forms a correlation sphere of radiyswithin ~ variation of the soft-sphere diameté(T) is given by the
which there are no other Beions. AsNincreases, so does following expression:

the number of vacant positions for redistributing thholes. Ar(T) Ar(T)
Consequently, the correlation-sphere radius and the degree d(T):do[l— d } d =B4V1+B8,T—1].
of spatial ordering in the correlated system of Féns in- 0 0 @
crease, too. This makes it possible to approximate the system
of FE¥" ions by a system of hard spheres of diameterr Hered, is the hard-sphere diameter Bt 0, andB, and 3,

(Ref. 11). The degree of ordering in such a system is charare parameters which depend in the general case on the con-
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centrationdN . andN,, the packing factor, and the screening An analysis of the experimental dgee Sec. Pshowed that

radius. These parameter were obtained in Ref. 9 for differerthis mechanism is important when one wishes to determine

values of N, by comparing theoretical and experimental the phonon component of the thermoelectric power in HgSe

u(T) curves, whereu is the electron mobility. crystals. As in Ref. 16, in studying phonon scattering by
Thus, Eqgs.(1)—(7) make it possible to analyze the de- randomly distributed neutral and charged centers we use the

pendence of the diffusive thermoelectric power on temperapoint-defect approximation. Then

ture and on iron content.

— 4 N
vphro= AroNoX",  Aro=AeS'd7, (12
4
vphrs = AreNiXt,  Agy=A,s%q7. (13
4. PHONON COMPONENT OF THE THERMOELECTRIC By point defects we usually mean substitutional impurities,
POWER isotopes, vacancies, and interstitial atoms, whose perturbing

effect is usually limited to a unit cell. In relation to long-
wavelength acoustic phonons, a point defect behaves like a
small region in the crystalsmall compared to the phonon
ks wavelength with a different density and different elastic
T) Apr(T). (8) properties. Obviously, replacing the substitutionafFan-
i , ... purity ions by point defects is a good approximation. Since

In HgSe crystals, electr_ons interact not only with I.Ong'tUd"we do not know how the force constants change in response
nal _phor_10ns, but also \_N'th transverse phonons. As in Ref. 16, ¢, substitutionA is a fitting parameter of the theory.

to smp_hfy matters we introduce the rr_ui:‘an speed of sound foéy comparing the calculated dependence of the thermal con-
acoustic phononss=(1/3)(16+2/s) ", wheres ands, ity of HgSe crystals with different donor impurity con-
are the speeds of the longitudinal and transverse phonoNngerations and the experimental data we arrive at the follow-
respectively. Then the phonon drdg,, can be written as ing estimate for the constar, : A, =12.1x 10~ crrf/s.

The contribution of phonon drag to the thermoelectric
power can be expressed as folloWs:

apy(T)=—

g
follows: According to Ref. 16, the values #f, for the different types
6m(e)s? W(q) ng of impurities may differ by a factor of 10 due to the differ-
Aph= K > o dT ence in the phonon scattering cross sections.
B K. TPh After performing some simple manipulations (8) and
K- ,) © (9), we get
Xl 1= —— 5(8 —& /)5/, y 9
k? ko TkI%K—ka ks at fXZkF x® exp(x)dx 14
where W(q) = 7E2q/ps, E, is the deformation potential O T 27T g TP [exp(X) —1]°vp(X)’
constantyp is the crystal densityy,, is the long-wavelength _
phonon relaxation frequency, andNg=[expfiwg/ksT) whereXpy-= 2K /g7, and
—1]"*is the Planck distribution function. Voh(X) = CL VgL + VopeX+ CuA X2
The form of the functionA ,T,Nge,N ) depends
o resls) dep +Crs (N4 +CroNo) Ags X*. (1439

on the electron-phonon coupling mechanism and the phonon
relaxation frequency,. The calculations in Refs. 7 and 16 In (149 we have explicitly specified the fitting parameters
show that the main contribution to the long-wavelength pho<c,,, cg., andcgy, which, as we shall shortly see, charac-
non momentum relaxation in HgSe:Fe crystals at low temterize the difference between the properties of a HgSe:Fe
peratures is provided by the Herring and Rayleigh mechagrystal and those of a HgSe crystal with intrinsic deféts.
nisms and the scattering of phonons by electrons and sampfer the values of the phonon scattering parameters obtained
boundaries: in Ref. 16 we havey=cg, =1, and the constamiz, shows

the extent to which the probability of phonon scattering by
neutral Fé" ions is lower than that of scattering by charged
Here vy, = Awx?, wherex=q/gr andA,=B,T3s?g? with  Fe** ions.

Vphz Vth+ Vth+ Vphe+ Vpht - (10)

gr=KkgT/fis the phonon thermal momentum ar}=(3 Thus, Egs(8)—(14) make it possible to analyze the de-
+0.8)x 10 % /K3, and pendence of the phonon component of the thermoelectric
. . 1 Eim(s) power for randomly distributed scattering centers.
Vphe= VpheXs Vphe =5~ TQT,
p 5. PHONON SCATTERING BY THE CORRELATED SYSTEM
Cis f OF Fe®* IONS
VoL T L) T2 Vet ML S T As in Ref. 16, we use the point-defect model to examine

the phonon scattering by the correlated system &t Fens

in HgSe:Fe crystals. We assume that the entire disturbance
created by an Fé ion replacing a H§" ion at a lattice site

is localized within a unit cell and amounts, as in the case of

Fe&" ions, to changes in elastic constants and mass. Al-

VphR= VphR+ T VphRo - (11)  though the values cAM/M for FE€e* and Fé" ions are the

wheref is the fraction of phonons scattered diffusively by
sample boundaries, ard,L, is the cross-sectional area of
the sample. For phonon scattering by chargetf Fens and
lattice-neutral F&" ions (the Rayleigh mechanisnwe have



JETP 87 (1), July 1998 Kuleev et al. 111

same, the constawt, characterizing the interaction between At low temperatures T~10 K), long-wavelength
a phonon and an Bé ion must differ from the constar, phonons ~qg;~6.71x10° cm™?1) provide the main contri-
characterizing the interaction between a phonon and a netution to «,,. Hence, to simplify the ensuing calculations,
tral center. The thing is that the potential of®Feons in  we expand the structure fact§ in a power series i up to
HgSe:Fe is screened at distancgs5x 10"/ cm, while the  fourth-order terms inclusively. Then,,r{(q) can be calcu-
average lsdistance between the charged centBs lated analytically:

~(N*)~ 13 is approximately & 10~ cm. Hence the distur- 16
ba(nce)introduczz by an ?—'*eyion (the changes in elastic con- Vpnre™ AR+ N XH{S(0) +281)(Urx)*+ $Si2)(Urx)*}
stants and local dens)tyencompass_es many unit pells be- = Ans N X¥S(x), (18)
causers~10a,, whereay is the lattice constant. Since the

Rayleigh scattering cross section is proportional to thevhere

square of the volume of the disturbed regfdithe probabil- (1- )
ity of a phonon being scattered by a®Fdon is higher than ur=dgr, S(0)= —5—,
the probability for scattering by a lattice-neutralPFéon. (1+27)

In calculating the phonon relaxation frequency on the By &
correlated system of Bé ions, we allow for spatial ordering S1)=5(0)4n 5t g) ,
of the FE" ions by employing the structure factor, as was
done in Ref. 6 in calculations of the electron relaxation time. 5 B vy 6\
Then for vyugre We obtain Si2=S (0)[5(0){4’7 5t67s

_ " n(B v, 6
VphRe 277N+3J0(1 cos 0) §(7+§+1_0)]7
X (q,0)S(q(1—cos d))sin 6d6. (15 (1+27)? 67(1+0.57)2

= : ., 6=0.578.
Here S(q) is the structure factor, and(q, ¢) is the cross (1-n* (1-n* e
section for the scattering of a phonon with a wave veqtor Figure 4a depicts the dependence 1@hre/ Vings « Where

by a Fé+ ion, which depends on the angl%between the V;;hRJr:ARJrN*X[l’ on the reduced wave vectarfor vari-
directions of the incident and scattered phonons in the gergus iron concentrations. We see that this ratio is weakly de-
eral case. After we average over the polarization vectors obendent on the wave vector whes X, and that the values
the phonons, the dependence @disappears in the scatter- ¢ Vonre are smaller forNFe=(1—2)><F1019 cm™2 than for

Ing cross ~ section 0(q,0) calculated in the Bom \__5% 10 cm 3. Note that the region of long wave vec-
approximation’>' Here o(q,6)=0(q), so that actually g (x>1) is cut off exponentially due to the phonon distri-
only S_scatterlng has been taken into account. In this CaSytion function[see Eq.(14)]. Hence, when the Rayleigh
according to Refs. 18-20, far(q) we have scattering of phonons provides the main contribution to pho-

V202 non momentum relaxationyy, increases with the degree of
o(q)= %9 FP=52+(S,+S;)? (16)  spatial ordering of the correlated system of F®ns as long
4ars* L '

as the scattering by neutral centers is relatively weak. Figure
whereV,, is the volume of the region in the crystal disturbed 4b depicts the dependencegf,r=(vpnr)/(Vpnr+) ON iron

by the defect, and,;, S,, andS; characterize the contribu- f:ontent atT=10 K, and the angle brackets denote averag-
tions of the changes in the unit-cell mass and the force con9:

stants and of the deformation of the lattice to the phonon

1 X
scattering cross sectioisee Refs. 18—20 for more details (Vphr) = . f 2kFvth(x)dx. (19
Since for HgSe:Fe crystals only the const&pis known, 2ke
_AM  Mee Mg Figure 4b shows that we should expect an increase in ther-

S, RREYIES IR moelectric power asNg, increases fromN* to Ng~1
Hg ™ Mse x 10" cm™3 and a decrease in thermoelectric power for
we write the expression far(q) as Nge>1x 10" cm™3, although the value gy, is somewhat
larger atNge~2x 10 cm3 than atNg~5X10'® cm™2,
wq 4 Thus, the expression for the relaxation frequency upon
o(q)=Cr+Ay Y 17 phonon scattering in HgSe:Fe crystals with allowance for
spatial ordering of the correlated system of F@ns can be
where A, is the value of the parameter for HgSe crystalswritten as follows:

with intrinsic defects found in Ref. 16, arg, is a param-

; vor(X)=c 12 + 10 X+ A X2
eter of the theory, whose value must be determined from the  “ph L¥phL " “phe HAAH
experimental data. As Eq$15—(17) imply, the latter pa- = 4
rameter indicates the extent to which the probability of pho- R+ (N4 S00 + CroNo) A g X" (20)
non scattering by Fé ions differs from that of scattering by Equations(14), (19), and(20) make it possible to calculate
intrinsic defects in HgSe crystal§. the dependence of the phonon component of the thermoelec-
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4 FIG. 4. (a) Dependence of the ratio
Voh RCIV;hR+ on the reduced wave vector
x at T=10 K for different values of the
iron concentrationNg,, 10%¥cm™3 5
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tric power on temperature and iron content for HgSe:Fe crysvaries from sample to sample, as well as to the approximate

tals containing a mixed-valence ¥e-Fe" impurity. allowance for the nonparabolicity of the band structure of
HgSe:Fe crystals within the two-band Kane model. Actually,
6. DISCUSSION the nonparabolicity of the band structure must be taken into

account not only through the dependence of the effective
electron massn(e) on the energy, but also through the
Bloch wave-function amplitudes characteristic of thg
band?!?2 Such calculations, however, are beyond the scope
of the present paper and require special studies.

Table Il lists the values of the parameters characterizing
phonon momentum relaxation. We see that for sample 1 with

In calculating the thermoelectric power we used the fol-
lowing values for the parametemse) =0.07m, (M, is the
free-electron mags s,=3%x10° cm/s, s,=1.65x 10° cm/s,
s=1.95x 10° cm/s, andy=25. The results of calculating
|a(T)| are depicted by solid curves in Figs(damples 1-4,

7, and 8 and 2(samples 4—6 Both figures show that the

calculated plots of«(T)| are in quantitative agreement with )

the experirr?ental rdz‘:t(ta?|AE<Tm:: where the g[?)honon com- NFe:O.the vglug of th? parametér, for_ Rayl.elgh phonon

ponent of the thermoelectric power is predominant i_e_scatterlng coincides with the one obtalnedlln Ref. £R,(

|a(T)|=|ap(T)|, our results fit the experimental data much _ 1). For HgSe:Fe crystals we haeg. =2, i.e., the cross
section for phonon scattering by Heions is larger by a

better. This indicates that we have correctly allowed for thefactor ofv3 than the cross section for bhonon scattering b
effect of spatial ordering in the correlated system of'Fe .©° . P . 9oy
intrinsic defects in HgSe crystat8.A comparison ofcg.

gnsFiaSEetg ((ajemf(lzl?s ngjcztl);tesdcatlirslﬁ(%(?zhag 51 K .'Ifr']% and cry shows that the phonon scattering by lattice-neutral
-9 b P P : Fe&" ions is weaker by a factor of nearly ten than the scat-

greatest reduction inr&tgg rate of phonon scattering by th‘?ering by Fé" ions. This is because the probability of Ray-
correlated system of Fe ions should be observed near the leigh phonon scattering is proportional to the square of the

peak in the phonon thermoelectric ppweﬁ'%x~5—6 K. AL golume of the disturbed region in the crystal lattice, which is
lower temperatures, phonon scattering by the sample bound- . . :
much larger for a charged impurity than for a neutral impu-

aries is predominant and the effect is much weaker. As the
temperature rises, fof>T.., the contribution of the
phonon-phonon relaxation mechanism increases greatl
leading to a further reduction in the rate of phonon scattering
by the correlated system of Feions. Note that whemNg, Sample  Ng., n N E,,

ABLE II.

>1x10' cm™3, the increase in the probability of Rayleigh No. 10*cm™2 108 em 10®em eV L C4 Cr Cro
phonon scattering with iron concentration leads to a drop in
[@(Tra)l, and forNe=5x10°cm ® no phonon peaks i~ o1 30 20 o073 02 2 2 -
the thermoelectric power are present. 3 0.3 4.0 1.0 073 02 2 2 -
At T>T,in, Wwhere the main contribution to the thermo- 4 05 4.8 0.7 068 015 25 2 015
electric power is provided by the diffusion component, the 2 10 4.7 07 07501 2 2 015
discrepancy between the calculatedT)| curves and the S g'g j'gl 2‘7 g'gg 8'; ; g g'ig
experimental data is much more evident. We believe this is g 40 6.2 1 062 09 2 2 015

due to the effect of intrinsic defects, whose concentration
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rity. The disturbing effect of a neutral impurity is usually lod, pV/K
localized within a unit cell, while the volume disturbed by a
charged impurity in semiconductors may encompass a large
number of unit cells. Oskot-skand Smirno?® also found
that neutral impurities in semiconductors with a large dielec-
tric constant scatter impurities with a much lower rate than
do electrically charged impurities. Note that the values of the 20
parametersg, andcgg obtained by fitting théa(T)| curves )
remain constant for all HgSe:Fe crystals, regardless of iron 15[\ *
content. The values of the deformation potential consignt
that we obtained for samples with different iron content dif- 10
fer by =10% from the valueE;~0.7 eV used in Ref. 16.
Note thatE, tends to decrease with increasing iron content. 3F:
This is to be expected, since iron impurities, which have
smaller radii than do Hg ions, stabilize the HgSe crystal
lattice2 which probably leads to changes in the elastic prop-
erties of HgSe:Fe crystals and, accordingly, to changes in the
phonon spectrum. We believe this is related to a change ”jIG;;, )5 Azsflltﬂle( Valueslofs)tfzﬁ ph0n<liﬂutr\_/esl’—3’), di]tfusi\t/_e (cur\]fe_s
"-3"), and total(curves 1— ermoelectric power as functions of iron
the Va_lue of the Con.Stam" as we go frog” HgSSe CrySta.lls to content affT=7.5 K (curvesl, 1’, and1”), 10 K‘()curvesz, 2', and?2"), and
HgSe:Fe crystals with lowNge<5X 10" cm ) and high 12 K (curves3, 3', and3"). The values of the phonon scattering parameters
(Nge=1x10cm™3) iron concentrations. The spread of are the same as in Fig. 3.
values of the parameter may be due to different degrees of
diffusivity of phonon scattering by the boundaries of the
samples investigated. Determining this parameter more prasent |a.(N;)| decreases, so that the total thermoelectric
cisely requires measuring the thermoelectric power at tempower atT=12 K is a decreasing function of iron content.

-

25

peratures below ., (see Fig. 2and calculating the thermo- We conclude this section by discussing of the approxi-
electric power with separation of the contributions of themations adopted in our calculations of the phonon-drag con-
transverse and longitudinal phonons. tribution. First, we used the approximation of the mean speed

The solid curves in Fig. 3 depicts the calculated depenef sound for acoustic phonons. Second, in discussing the
dence of|a| on Ng at fixed temperatures. We see that theRayleigh scattering of phonons by ¥eions we used the
results of the calculations dix(Ng)| for T<10 K are in  point-impurity approximation, although the stringent in-
good agreement with the experimental data. However, as thequalityrs/A <1, whereht is the wavelength of a thermal
temperature rises, the role of the diffusion component of thg@phonon, is not satisfied. It would have been more appropriate
thermoelectric power increases, and the deviation of the thde study the scattering of phonons by lattice deformations
oretical curves from the experimental data increases. Noteaused by the random distribution of the charged centers and
that the sharp drop in thermoelectric power for samples witlby the variation of the degree of lattice deformation as the
Ne<5Xx 10" cm 2 is due to an increase in the rate of Ray- F€** ions become spatially ordered. As shown in Ref. 20,
leigh scattering by randomly distributed charged centiys, when|(r;—rg)/ro|=0.1 (r; andr, are the ionic radii of the
=N;,+Ngy. The increase in thermoelectric power in the impurity and matrix atoms, respectivg¢lthe rate of phonon
range of iron concentrations from >510%¥cm™ to 1 scattering by lattice deformations is higher than the rate of
x10'° cm™3 at T=7.5 K amounts to about 20% &f|. Ac-  phonon scattering by local variations in mass and force con-
cording to our theoretical estimates, the maximum increasstants. Note that the ratio for Feand Hg" ions is about
in thermoelectric power can be observed at temperatures cod-3. Unfortunately, for semiconductors this aspect has yet to
responding to the phonon-peak temperafig~5-6 K and be developed theoreticallgee Refs. 19 and 20Hence for
may reach 40% ofa| at N..=5x 10" cm 3. The slow de- semiconductors this phonon scattering mechanism requires
crease in the value of the thermoelectric power with increasfurther study.

ing iron concentration neddg.=2x 10'° cm 3 is due to the Note that the reduction in the rate of phonon scattering
increase in the probability of the Rayleigh scattering ofby the correlated system of Feions due to an increase in
phonons by lattice-neutral Feions. the degree of spatial ordering in the system of trivalent iron

Figure 5 depicts calculated curves representing the ddgens may lead not only to an “anomalous” increase in the
pendence of the diffusion and phonon components of théhermoelectric powefa(Ngg)|, but also to a substantial in-
thermoelectric power oM, at different temperatures. At crease in the lattice thermal conductivity of HgSe:Fe crystals
Ne>N*, as the iron content increases and hence the degres low temperatures in the range of iron concentrations from
of spatial ordering in the correlated system of Féons in-  5x10® cm™3 to 1x10'° cm 3. Research into the thermal
creases, the value pi(N;)| decreases, whillxp,(N;)| var-  conductivity of HgSe:Fe crystals could yield additional in-
ies nhonmonotonically, and dt=12 K the reduction in the formation about the phonon scattering mechanism and about
rate of phonon scattering by the correlated system &t Fe the effect of the spatial ordering of charged centers on the
ions clearly manifests itself on th|exph(Ni)| curve. How- Rayleigh phonon scattering mechanism in mixed-valence
ever, |aph(Ni)| increases slower than the diffusion compo- systems.
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7. CONCLUSION 5I. G. Kuleev, 1. 1. Lyapilin, and 1. M. Tsidil’kovski, Zh. Eksp. Teor. Fiz.
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Equilibrium states of the system of self-assembled monolai@##s) of n-alkanethiol

molecules H8CH,),,_ 1(X) with polar group X chemiabsorbed on the @Ad1l) crystal surface are
considered. The couplings between the at¢@sH) of the n-alkanethiols are approximated

by the Lennard—Jones potential. The couplings betweem-tiikanethiols and the crystal surface

are approximated by the 12-3 potential. The interactions of polar groups and the self-images

with the metal substrate are taken into consideration. The phase-transition temperatures, the
structural order and equilibrium tilt, and the twist and azimuthal angles of the
macromolecules, which depend on the dipole moments, are foundl998 American Institute

of Physics[S1063-776(98)01507-§

1. INTRODUCTION for the packing patterns of alkyl chains with one or two
molecules per unit cell, give rise to an incorrect monolayer
The self-assembled monolaydSAMs) are a compara- structure, the tilt angle, and tilt direction for zero dipole mo-
tively new type of organic monolayets® which are formed ment.
by spontaneous chemisorption of long-chain molecules from  |n this paper we are considering the effect of incorporat-
a solution to many different solid substrat@sg., Au, Ag, ing the polar group into self-assembled alkanethiol monolay-
Cu, Al, GaAs, and Si The self-assembled monolayers areers on the phase transitions and the molecular structure of the
presently the focus of considerable attention for technologiphases. We use an all-atom model for hydrocarbon chain
cal and fundamental reasons. They have potential applicanteractions. In order to avoid gauche or kink defect in alkyl
tions in such areas as corrosion prevention, wear protectiohains we placed the polar group at the end of the chains.
sensing devices, and the formation of well-defined micro-
structures:*° They also present an excellent opportunity for
the study of two-dimensional, condensed, organic solids a
the microscopic level. Chemisorption of the thiol headgroup  The model describes thealkanethiol rigid chains that
to the surface results in long-range translational and orientaerminate the polar group. The SH headgroups of the al-
tional lattice structures. The stable monolayers have beekanethiols form a ¥3xv3)R30° triangular lattice to adjust
studied extensively by transmission electron spectros€opy, with (coordinaté Au(111) substrate. An all-atom model in-
optical ellipsometry®~*2infrared spectroscop¥:** electro-  cludes hydrogen which is connected by rigid-bond cou-
chemistry*>and helium diffractior”* These monolayers plings. This model is based mainly on the molecular model
form at a fixed surface density, which remains nearly conwhich was accepted by Hautman and Kféiff and Mar and
stant with changing temperature. This fact simplifies theKlein,?* except for the interactions between the chains. The
study of rotational and conformational states of SAMs. chain has a zig-zag form and consists of hydrocarbon groups
The most thoroughly studied and robust SAM system isSCH,, which begin with sulfur and end with a polar group
CHs(CH,),_1SH adsorbed on the Alll) crystal surface. which a dipole momendl directs along the chain axis. We
Theoretical investigations of its properties have provided im-assume that arbitrary dipole moment belongs to the molecu-
portant insight into the nature of the long-range orderingdar group CH. Hydrocarbon groups CHand CH; are rep-
of SAMs. To the extent possible, phenomenologicalresented by single interaction sites that include hydrogens.
methods->?° molecular dynami¢MD) simulations’l~?®and ~ We assume that the chain may freely rotate about the chain
models of the SAMs such as the two-dimensional Isingaxis as a whole with the twisting angle as the dihedral angle
modef”?® have explained the ground state structure andetween the plane consisting of the normal to the gold sur-
thermal-equilibrium orientational states of the SAM. One offace, and the chain axis and plane defined by trans segments
the objectives is to study SAMs with more complex molecu-of the zig-zag molecular chain. We also assume that the
lar chains, i.e., self-assembled monolayers of alkanethols thahain may rotate relative to the crystal surface in such a way
contain a polar group. Molecular dynamic simulations ofthat the sulfur does not take part in this rotation. This rota-
Langmuir—Blodgett monolayer with dipole group have al-tion is determined by two angles: the tilting anglend the
ready been consideréd3® However, these simulations, tilt direction ¢ (the precession angle of the long molecular
which are based on the so-called united atom model thaxis about the surface normal to the gold crystal suiface
treats CH groups as single interaction sites, and allowanceFig. 1).

. MOLECULAR MODEL

1063-7761/98/87(7)/8/$15.00 115 © 1998 American Institute of Physics
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4z andR;; is the vector between the dipole moments; the mag-
nitude of a dipole moment is measured in units @f%4.8
X108 CGSEcm.

The coordinates of th&th carbons in the local coordi-
nate system witl#=0, ¢ =0, andy=0 for the zig-zag chain

in Fig. 2 are
[ 0 T+ (k=1)1/2),  k=1,35,...
Rak=1(0, 0, Ig+(k-1)112),  k=2,46,., O

where the distances in the chain are shown in Fig. 2 yaisd
the twisting angle. The coordinates of the hydrogen are

(r+h cosa, hssina,
(—h cosa, hssina,

FIG. 1. @ is the tilt angle of the moleculey is the chain twist(rotation) Rcs= lo+(k—1)/1/2), k=1,3,5,..., ®
angle, andp characterizes the tilt direction along the surface plane. |0+ (k— 1)|/2) k=246.....

The coordinates of the dipole are the same as thosg, of C
Following Ref. 27, let us consider the Lennard—Jones | order to find the coordinates defining the carbon and
interactions between the atoms H, C, and S hydrogen atoms of the-thiol chain in the coordinate system
6 of the substrate, it is necessary to use the transformations of

12
g g

U(R)=4e (ﬁ) _(ﬁ (1)  rotations determined by the Euler matrix
The Lennard—Jone4.J) parameterg ando were chosen by cose —sing 0 cos¢ 0 sing
fitting the potentialg1) to the van der Waal&vdW) potential  T(¢,0,xy)=| Sine cose¢ O 0 1 0
exp(-r~9 .ir.1 such a way that the poter_ltialis would have.the 0 0 1 —singd O cosd
same position, depth, and second derivatives at the point of
minimum of the potentials. These parameters are listed in cosy —siny O
Tables_ I and Il. We uged the LJ potential since the vdw x| siny cosy 0
potential has a negative divergence for small distances,
which means that all chains have a tendency to collapse on 0 0 1
each other. This gives a transformation

Following Hautman and Kleif? the interaction of the
hydrocarbon groups CHand CH, with the Au substrate was R(e,0,x)=T(¢,0,x)R. (7)
modeled by the 12-3 potential Experimental daf®® show that the chain is tilted to the

Ci C, next nearest neighbdNNN) in the direction from the NNN
T 553 (2)  direction (p~10°). Below we consider the tilted phasé (
(z—2) (z—2p) A "

. ) 5 >0) only. The number and equilibrium angular positions of
where C1,=2.8x10" KA? C;=17100K A% and 2z,  the chains of the paraelectric phase depend on the symmetry
=0.86A. _ . _ . of the system. We see that the one-body potential of the

The dipole—dipole coupling of the dipoles andd; is chain-S(1) and the chain-Au2) is fourfold degenerate with
respect to the angular positions of a chdie,6,x), R

V(z)=

W(Rij)=aEB WiAdidf, (3 (—¢,0,—x), R(m+¢,0,x), R(m—¢,8,— x). If the contri-
’ bution of the potential of the chain from the straight chain of
where carbon atomgin (5) r=0] is taken into account, then the
Py chain-chain interactiongl) remove the mirror symmetry in
Wﬁ’ﬁ= £ L (4) theyz plane. Hence, the total one-body potential of a chain is
Rij Rij twofold degenerate with respect to the angular positions

TABLE 1. Parameters of the van der Waals potentiaxp(—Br)—C/r®.
A, 107K B, A~! C, K AS

Apn | Auc | Acc | Bun | Buc | Bec | Cuu | Cuc | Cec

0.33 1.4 6.0 408 | 4.08 | 3.08 25 6.3 16 31
1.50 1.5 1.5 5.00 § 413 | 342 2.2 7.0 21 32
1.10 1.1 1.1 464 | 394 | 342 2.7 7.2 17 33
0.92 1.1 L3 464 | 394 | 3.42 2.2 6.9 19 34
0.46 6.8 2.1 454 | 456 | 3.58 2.1 6.4 20 35

Refs.
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TABLE II. The Lennard—Jones coupling parameters.

€un, K enc, K ecc, K J0,HH » A J0,HC> A J0,CC» A Refs.
18 29 52 2.653 2.903 3.118 31
36 38 36 2.338 2.814 3418 32
30 30 30 2.498 2.939 3.387 33
24 29 34 2.500 2.939 3.387 34
33 30 920 2.316 2.941 1.842 35
R(¢,6,x) and R(—¢,0,—x). This degeneracy was shown a,=a(v3/2,1/2,0, a,=(0,1,0), (9)

quantitatively in Ref. 27. The equilibrium state of the chains
R(¢g,60,x0) and that of the mirror plan&z R(— ¢q, 69,

—Xo) is found from the minimum thermodynamic potential co
for T>T, and defined below. Rigk=Rj+ Ry gkt SiR. gk (10)

In order to consider the phase transition with spontane- , . . .
ous breakdown of the symmetry we follow Vakand write wherej runs over all sites of the triangular lattideruns over

the following expressions for the rotated coordinates of thv:Irhe atomic groups Cirl_and Ch along the chain, and runs
atoms: over the specific atomic groupg€ C, H;, and H,). Accord-

ingly, the dipole moment of thgth chain is
Rs=R(s¢,8,s
s=R(s¢,0,sx) d;=d,+s,d, , (12)

where the lattice constaat=4.97 A. Now let us specify the
ordinates of the atoms of théh chain on the surface:

1
:E[T(¢,9,X)R+T(—<p,0,—X)R] whered, lly, andd,d, =0.
Substituting expression@) and (10) into the potential

interactions(1) and(2), we obtain the following expression

1
ts3 [T(e,0,x)R—T(—¢,0,—x)R] for the LJ coupling chain-chain energy:
1
=R/+sR,, s==*1. (8) > % 2, %‘, Ugg (Rij+ Rogk— Rogrk
Obviously, sinceR,=(R,;+R_1)/2, R,=(R,;—R_)/2 Toegk
and|R.4|=|R_4], tSiR1gk—SjR1grkr), (12
RR, =0, whereR;;=R;—R;, and for the total chain-surface energy,

which includes a coupling of the-thiol atoms(C, H) with

andR, is directed along thg axis, as shown in Fig. 3. As fthe sulfur atoms,

the basis vectors of the two-dimensional triangular lattice o

sulfur atoms we chose the vectors
2 2 2 V(RS
Z
+i2j % > Ugs(Rij+RogktSiR1gw)- (13
: K.k’
C) In accordance with Eq1), we introduce the notation
, O
N
N 12
/ JAAY
4
AN !
1/
FARY
>
Iy ®
M o

O\J x

FIG. 2. Coordinates defining the model of the zig-zatiiol chain chemi-
sorbed to a gold substratdy=1.58 A, 1=2.506 A, r=0.878 A, h FIG. 3. Symmetrical positions of an atom of thehiol chains in the tilted

=1.04 A, anda=55°. phase.
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U

A A The linear tern;B;s; is absent in Eq(17) due to the sym-
so =45 || | (14 metry.

and the notatiorlJ ;s means the interaction of the chain’s

atoms with the sulfur. 3. MEAN-FIELD APPROXIMATION
A single dipole spaced apart from a metal feels an inter-

action with its self-image, so a dipole-dipole part of the  according to(17), the thermodynamic potential of the

chain-chain energy consists of dipole-dipole, dipole-imagesa is

and image-image interactions. Substituting expressi@hs

and (10) into (3), we obtain the energy of the dipole-dipole ~ F=Eo(6,@,x) =T In Trg,

coupling 1 ss.
xex;{z > Ji(6,0,%) %} (21)

2 [W(Rj+(si—)Ry ) !
g A mean-field approximation of Eq(21) is given by the

1 expressiofP
+= W(R +Z+(si— s])RLC) (15

1
whereZ,, is the vector between the real dipole and its self- Eol.0.x)F 3 % Ji(0:0.20(8)(s;)
image.
In order to simplify expressionél2), (13), and(15) we —TE In
introduce the projection operatoss =(1+s)/2. Then for
any functionf of the two operators; and s, there is an

(22

2COS?{E J,J(9¢X)< >) .

We see from Eq(22) that in the paraelectric phasés()

identity® _ o .
=0) the minimumEq(¢,0,x) with respect to the angles
f(xS;+YS)=(S; +57)(S; +5, ) (XS, +YS,) gives equilibriumeg, 0y,xo SAM’s chains. The order pa-
rameter(s;)#0 is defined as a solution of the equations of
=s;'s; f(x+y)+s7s; f(x—y) staté’
+s7S; f(—x+y)+s;s, f(—x—y).
15, f( y)+s;s; f( y) (s)= tan}‘{z 3 (8.0.%) (si q 23)
(16)
Using this identity, we can write the following expression for A substitution of solutions of this equation int@2) and
the total energy of the SAM: self-consistent minimization of the thermodynamic potential
1 over three angles give the complete equilibrium state of the
E=Eo——2 3,(0,0,%)s:S; 17) SAM. Next, acqordmg to Eq(23), the structurg ordered
phase is determined by the wave veatgr for which
In accordance with Eq.16), we obtain the expressions )
Jq=§j‘, Jij exp(igRyj) (24)

Eo= 4 2 2 (Uss’+Wlst’ 2 E V (18

takes on the maximum value, afig=J, .%’
The first item transform i19) under nearest-neighbor

1 . . . . . 7
chain-chain coupling is given by the expression

E sSUL,+7 > sswWl,,, (19 pling is g y p

U(q)=2J; cog27é;) +2J; cog2m(£1—&7)]
h
where +2J, cog2méy), (25)
SS,__ 2 > Ugg (Rij+ Ry gk where the wave vectog= ¢;b,+ &,b, is written about the
g9’ kk' basis reciprocal t@9)
—Ryg'k +SRL gk—S'Ry grkr) b,=4ma 1(1/3,0,0), b,=2ma (—1W3,1,0),

(26)

J; is the coupling constant along the vectotsy, *=(a,
1 —a;), and J, is the coupling constant along the vectors
+EW(Rij+212+(S_S’)RL,Cn)a *+a,.
One points to fact that at=0 expression24) reduces
. to (25), maximums which give the following structure or-
Vls:% > V(RE+SRE ) dered phase and the transition temperafire:

1) £&,=0, §&=0, T.,=4J,+23, (ferro);

WI L =W(Rj+(s—s")R, ¢)

+ Ugs(Rij + Ry it SR, g10- 20
2%% os(Rij R gict SR. g . 2) £=05 &=0, T,=—4J;+2J, (2X1);
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FIG. 4. Phase diagram of the Ising model on the triangular lattice.

0.4

0.2

0 .
d,D

3 0 T % 23, |21 (1c 8
= = — — < . n=
) gl '5§2| [} JZ 21 2J2 ( ) | 0
2 1 i
@7 0 0.4 0.8 0 0.4 0.8
The phase diagram, which corresponds to @), is shown 4.D d,D
in Fig. 4.
The dipole-dipole interaction transform ¢f9) is com- . —
puted by Ewald’s methdd by fitting to the D lattice. For- ] A
mally, the Fourier transfornd) can be found as follows: 0.6 n=12 , 1 0.6 ‘\
52 eld e :
WP = — (28
g:x X
XX T 1= 0.4} ; 0.4 1
T.. K Tilt direction f'
j 0.2 . 0.2+ .
_2°F . ;‘
600 0 J Ol h
L g 0 04 038 0 04 0.8
: 4D 4D
400 FIG. 6. The components of the wave vector of the ordered structure
-3 (solid) and ¢, (dashed for the coupling parameters from Ref. 32.
200 i wherel=1,a;+1,a,,l1,l, is an integer, an&; anda, are
defined by expressior9). According to Ewald, the series of
—4"0 o (28) for a plane lattice is presented by the sum of two series:
4D e'd erfaR|I-x|) = eXato
IR o3 S
Tilt Twist ||_X| | |I_X| SO g |g+q|
lg+d
) x| eZla+d =2 2
L , e erfc( 5R ZR
7 143° 4 + |
] a+g
/ + e 2atd L 7
e erfc( SR ZRH, (29
142° a where
folx) = f “evd
erfgx)=—= | e y.
141° 1 Jm Jx
Hereg=g,b;+9,b,,9:,9, is an integerp; andb, are de-
. fined by expression§26), S; is the unit cell areaz is the
- = 1400 o 0.8 component along the axis of the vectorx, and R is the
’ " 4D adjustable parameter of the velocity convergence of the se-
ries. Note that Eq(29) was obtained in Ref. 29 fay=0.
The results of self-consistent numerical minimization
procedure of22) are given in Figs. 5—8 and Table IIl. The

y
first feature of the temperature transition is high sensitivity to

FIG. 5. Curves of the temperature transitibpand the equilibrium angles
of the n-thiols, plotted as functions of the dipole moment, are described b
the solid f=8), dashed 1f=10), dot-dashed (=12), and dotted r{

=17) lines for the coupling parameters from Ref. 32.
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FIG. 8. The same as in Fig. 6 for Ref. 35.
FIG. 7. The same as in Fig. 5 for Ref. 35.

dipole moment has been found for the LJ's parameters from
the choice of the coupling constants listed in Table Il. ForRefs. 32 and 35. The transition temperature dependence is
the choice of the coupling constants defined in Refs. 32 anthat T, with d#0 can be reduced whaih=0. In particular,
35 there is ordered phase sequence from the ferroelectric tie lowest temperature of the phase transition is realized for
2Xx1 to the IC(Figs. 6 and 8 However, for the choice of the parameters taken from Refs. 32 and Bgis very sen-
coupling constants defined in Refs. 31, 33, and 34 there is IGitive to the coupling parameters which change many times.
phase(Table IIl), where the transition temperatufe. in- Moreover, it is necessary to take into consideration that all
creases with increasing dipole moment. coupling parameters listed in Table | are given for the case of
three-dimensional crystals in which the distances between
the atomic groups CHmay differ in comparison with the
4 DISCUSSION AND CONCLUSIONS case of the SAM. Therefore, the coupling constants listed in
An advantage of using the Ising variable is that a richTables | and Il should be considered carefully. As far as the
variety of the couplings between atoms of thhiols and  structure of the ordered phase for any set coupling param-
the couplings with the crystal surface is reduced to a feweters is concerned, with increasing dipole moment the in-
competing exchange parameters. Her0 they allow one to commensurate phase is described by the modulation vector
establish a simple phase diagram of the system shown in Figither nearg=(0.25,0.5) or neaé=(0.3,0.6).
4. The SAMs are described by the Ising model on the trian-  The phase transition leads to a freezing of the jumps of
gular lattice with exact solutioff. Ferroelectric, X1, and the chains between twofold degenerate states with equilib-
incommensurate phases are the only possible ordered statéism azimutal and twist angles,, andyq is given in Figs. 5
of the system of the-thiols which are self-assembled on the and 7 and Table IIl for various references. The values of
crystal surface A(L11). For d#0 competition a LJ interac- these angles agree with the experimental observations and
tion and a dipole-dipole coupling can give rise to varioustheoretical considerations except for the azimutal angle
combinations of the structures. which was determined experimentally to ke-10° for d
The most interesting behavior of the critical temperature=0 and 16<n<20 (Ref. 9.
and a sequence of ordered structures upon change in the The final feature of the phase transition to the twisted
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TABLE lll. The critical temperatures, the wave vector, and the equilibrium angles.

n T., K 3 & ) Xo o Refs.
d=05D
8 1249.6 0.259 - 0.517 -3.88 35.55 143.75 31
12 1701.6 0.259 0.525 -2.68 35.11 142.95 ”
16 2156.9 0.259 0.529 -2.05 34,90 142.50 »
8 688.5 0.259 0.520 -3.82 36.21 143.75 33
12 855.6 0.273 0.538 —2.64 35.80 143.00 ”
16 1028.7 0.273 0.549 —-2.02 35.61 142.58 ”
8 619.7 0.259 0.525 -3.81 36.68 143.37 34
12 745.3 0.273 0.546 —-2.63 36.23 142.69 ”
16 878.0 0.273 0.561 -2.01 36.01 142.30 »
d=10D
8 2857.1 0.252 0.510 -3.79 38.34 141.53 31
12 3224.2 0.259 0.519 -2.63 37.04 141.61 »
16 3642.2 0.259 0.524 -2.02 36.39 141.55 »
8 2227.0 0.253 0.512 -3.77 39.05 141.19 33
12 2311.7 0.267 0.524 —-2.60 37.72 141.44 »
16 2442.9 0.267 0.532 -1.99 37.08 141.46 ”
8 2154.5 0.267 0.516 -3.77 39.71 140.52 34
12 2200.6 0.267 0.528 —-2.60 38.29 140.91 »
16 2290.4 0.267 0.537 —-1.99 37.59 141.01 »

ordered phase is that it is a first-order transition. The reasofC. D. Bain, E. B. Troughton, Y.-T. Taet al, J. Am. Chem. Socl11, 321
is analogous to the effect of elastic media on the order of th%(1989- o o .
phase transitio®“° where the spontaneous ordering gives, G- M. Whitesides and P. E. Laibinis, Langméir 87 (1990.

12 5
rise to a distortion of the crystal, which in turn leads to a ii?l-(El\sl)er])s‘ E. Urankar, A. Ulman, and N. Ferris, J. Am. Chem. Sb§.

slight increase in the exchange integrals. Hence, the Curigg 5 NUzz0, L. H. Dubois, and D. L. Allara, J. Am. Chem. SbE2, 558
temperature from the paraelectric phase turns out to be lower1ggg.

than the Curie temperature from the ordered phase. SimiR. G. Nuzzo, E. M. Korenic, and L. H. Dubois, J. Chem. Pt§&.767
larly, in the system of then-thiol's chains a spontaneous (1990.

twist ordering of the chains give rise to a change in the tiIt.iZT- T.T. Li and M. J. Weaver, J. Am. Chem. Sd6 6107(1984.

This in turn leads to a change of the exchange integrals de-g"S'Sg'(lpg‘g%er’ T B. Bright, D. L. Allaraet al, .J. Am. Chem. Socl09

fined by Eq.(19). N. Camillone Ill, C. E. D. Chidsey, G. Liet al, J. Chem. Phy<4, 8493

. . . (199)).
| wish to thank A. F. Sadreev for valuable diSCussionsisy “camiione 111, C. E. b. Chidsey, G. Liet al, J. Chem. Phys98, 3503

and for stimulating interest. | also thank E. N. Bulgakov for (1993,
his assistance in setting up the calculations. This work wa&R. Nagarajan and E. Ruckenstein, Langnitji2934 (1991).
supported by the Krasnoyarsk Regional Science FoundatiofiVv. M. Kaganer, M. A. Osipov, and I. R. Peterson, J. Chem. PB§s3512

Grant 6F0031. (1993.
21C. M. Knobler and R. C. Desai, Annu. Rev. Phys. Chdf).207 (1992.

223, Hautman and M. L. Klein, J. Chem. Phgd, 4994(1989.

" , , , 233. Hautman and M. L. Klein, J. Chem. Phg@s8, 7483(1990.

E-mail: zeos@zeos. krascience.rssi.ru 24y, Mar and M. L. Klein, Langmuirl0, 188 (1994).

253, shin, N. Collazo, and S. A. Rice, J. Chem. P198;.3469(1993.
M. A. Moller, D. J. Tildesley, K. S. Kimet al,, J. Chem. Phys94, 8390

1J. D. Swalen, D. L. Allara, J. D. Andrad al., Langmuir3, 932(1987. (199)).

2L. H. Dubois and R. G. Nuzzo, Annu. Rev. Phys. Cherd,.437 (1992. 2TA . F. Sadreev and Y. V. Sukhinin, Phys. Rev58, 17966(1996.

°R. G. Nuzzo, F. A. Fusco, and D. L. Allara, J. Am. Chem. SK29, 2358 237 F_sadreev and Y. V. Sukhinin, J. Chem. Phy87, 2643(1997).

(1987. 2y V. Kislov, Y. A. Kriksi dILV. T Radiotekh. ElektroB8
4P. E. Laibinis and G. M. Whitesides, J. Am. Chem. Shit, 9022(1992). o OISOV, T A TSN, and L V. Taranoy, Radloteih. EISKioss

5 ' ~he ; 539 (1993.

(Al.glgimar, H. A. Biebuyck, and G. M. Whitesides, Langmu, 1498 30y, V. Kislov, Y. A. Kriksin, and I. V. Taranov, Radiotekh. Elektrodl,
6L. S. Strong and G. M. Whitesides, Langmdir546 (1989. 31241 (1996.

7C. E. D. Chidsey and D. N. Loiacono, Langmir682 (1990. L. S. Bartell, J. Chem. Phy82, 827(1960.

®P. Fenter, P. Eisenberger, and K. S. Liang, Phys. Rev. Z6[t2447  A. |. Kitaigorodsky, Tetrahedroa4, 230 (1963.

(1993. 33A. 1. Kitaigorodsky, Molecular Crystals and Molecules, Academic Press,

°P. Fenter, P. Eisenberger, K. S. Liang, and A. Eberhard, J. Chem. Phys.New York and London(1973, Chap. 2.
106, 1600(1997. 34A. |. Kitaigorodsky, Adv. Struct. Res. 3, 204970.



122 JETP 87 (1), July 1998 Y. V. Sukhinin

35T, Wasiutyrski and T. Luty, Acta Phys. Pol. A5, 551 (1974. 39R. J. BaxterExactly Solved Models in Statistical Mechaniés;ademic
36V, G. Vaks, Introduction to Microscopic Theory of Ferroelectriddauka, Press, New YorkK1982, Chap. 11.
Moscow (1973 (in Russiai. 400. K. Rice, J. Chem. Phy22, 1535(1954.

S7R. Blinc and B. 2ks Soft Modes in Ferroelectrics and Antiferroelectrics,
North-Holland Publ., Amsterdar{1974).

33, M. Ziman, Principles of the Theory of Solids, 2nd e€ambridge Published in English in the original Russian journal. Reproduced here with
(2972. stylistic changes by the Translation Editor.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 1 JULY 1998
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We study the dynamics of atoms confined to a quadrupole magnetic trap with an orbiting
potential. For typical values of the experimental parameters of the trap, the rotating magnetic field
is shown to produce high-frequency modulation of atomic momenta with an amplitude
comparable to the widths of the momentum distributions for the lowest oscillation states of atoms
in the time-averaged potential. We find the quantum-statistical momentum and position
distributions of atoms and show that at temperatures much higher than the effective vibrational
temperature of the atoms in the trap the quantum-statistical momentum and position
distributions are Gaussian. We also establish that at temperatures comparable to the effective
vibrational temperature of the atoms the quantum-statistical momentum distribution has

an annular structure in the trap’s symmetry plane, which is due to the deep modulation of the
atomic momenta caused by the rotating magnetic field.1998 American Institute of
Physics[S1063-776098)00207-9

1. INTRODUCTION In this paper we examine the dynamics of noninteracting
atoms in a TOP trap using a time-dependent Sdimger

Lately there has been an upsurge of interest in developequation that incorporates a magnetic potential oscillating in

ing experimental means for the trapping and deep cooling ofime.

atoms in magnetic traps with the aim of observing quantum-  An analysis of the dynamics of noninteracting atoms in a

statistical effects, including Bose-Einstein condensatidn. TOP trap shows that the rotating magnetic field generates

Among the various types of magnetic traps used in preparingscillations of the atomic momenta with the frequency of the

ultracold ensembles of atoms, one of the first and most imrotating field and an amplitude which, for typical values of

portant from the practical standpoint was the quadrupolérap parameters, is comparable to the widths of momentum

magnetic trap with an orbiting potenti@OP). In this type  distributions of atoms in a time-averaged harmonic potential.

of trap the magnetic field confining the atoms consists of twoWVhile the quantum-statistical distribution of the atomic co-

parts. A stationary quadrupole magnetic field generates a p@rdinates remains Gaussian, the momentum distribution at

tential. In the central part of the trap this potential localizeslow temperatures acquires an annular structure in the trap’s

atoms with a negative projection of the magnetic momensymmetry plane at all temperatures. The annular structure of

onto the local direction of the magnetic field vector. How-the momentum distribution becomes appreciable at atomic

ever, the potential well created by the quadrupole magnetiensemble temperatures of order of the effective vibrational

field is not perfect. Near its bottom the strength of the quadtemperature of the atoms in the time-averaged harmonic po-

rupole magnetic field is zero, and the atoms moving in thigential.

region can change the sign of the projection of the magnetic

moment onto the magnetic field vector as a result of nona-

d|abat|c_ Majorana transitions and leave the tfajo eI|m|_— 2 MAGNETIC DIPOLE POTENTIAL

nate this channel for the loss of atoms, another, uniform,

magnetic field is applied. This field rotates with a high fre- In the central region of a TOP trap the total magnetic

quency in the plane perpendicular to the symmetry axis ofield B, consists of two parts:

the quadrupole field. The presence of this rotating magnetic

field causes the potential well to rotate about the trap’s sym- B=b+B. (1)

metry axis and to create an orbiting potential. The time-Hereb is the stationary quadrupole field progér,

averaged value of the orbiting potential at the trap’s center is g

nonzero and thus suppresses the loss of atoms due to Majo- b=z a(xetye)+aze, 2

rana transitions. which is expressed i2) in terms of the gradiena of the
Up to now the motion of individual atoms in a TOP trap quadrupole field at point=y=z=0, thee are unit vectors

has been discussed in the literature using a time-averagedong axesi =X, Yy, z, and B is a uniform magnetic field

stationary harmonic potentidlThis approach, however, ig- rotating with a frequency? in the xy plane’®

nores the fastcompared to the natural oscillation frequen-

cies of the trap oscillations of atomic momenta associated

with the rotating magnetic field. whereB,, is the amplitude of the rotating field.

B=By(g cosQt+eg, sin Ot), 3)

1063-7761/98/87(7)/8/$15.00 12 © 1998 American Institute of Physics



JETP 87 (1), July 1998

In the field (1) an atom having a negative projectipn

of the magnetic momeni onto the direction of the field,

Minogin et al. 13

as=% JqT/Z\/l—e2 Sifé cog2s¢)dé
0

(13

mi=—u (u>0), possesses an additional potential energy

U=u(r,t):

U=—p B=uB;

=,u\/(BO cosOt— 3 ax)?+ (B, sin Ot— 1 ay)?+a?z2,
4

We see that the time-dependent magnetic-dipole interac-
tion potential rotates about theaxis in such a way that its
minimum moves in thexy plane along a circular orbit of

radiusro=2Bg/a.
To analyze the motion of atoms in the potentid), it is
convenient to introduce the cylindrical coordinates

=p COS¢p, Y=p Sing, and z and write the potential in a
form corresponding to the standard expression of the inte-

grand for elliptic integrals of the second kind:

U=UnVl—e?siné, (5)

(s=0,1,2,...) can bexpressed in terms of elliptic inte-
grals of the first and second kinK,(e) andE(e). The first
three Fourier coefficients are

4
ao:;E(e),

1=——[(2—€’)E(e)—2(1-e*)K(e)], (14)
3m7e

a,=— [(16—16e’+e*)E(e)

15me?
—8(2—3e?+e*)K(e)].

We now note that since the modulaesis bounded, ac-
cording to (10), for the Fourier coefficients we need only
expressions for moderate values of the modudss] . Using
the well-known expansions of the complete elliptic integrals

whereU, is the maximum value of the potential oscillating E(e) andK(e) in powers ofe? and keeping only term to the
in time, e determines the modulation depth of the oscillatingfourth order ine inclusively, we can write the following
potential and is known in the theory of elliptic integrals asapproximate expression for the potenti):

the modulus, and is the effective phase:

p 2 422
U,=U_ 1+r— +—2, (6)
2= 4p/l’o (7)
(1+plro)?+42%r2’
1
£=5(Qt-g-m), ®

In (6), U_= uBy is the energy of magnetic interaction at the
central point of the trapr(=0) and determines the Larmor

precession frequency

_MBO

U=Uy—U; cogQt—¢)—U, cos 20t—¢), (15
where
Uoziumaozum(l—lez— ie“),
2 4 64
ulzumalziume2 1+%e2), (16)

1 4
U2: —UmazzaUme .

The dependence &f,, U4, andU, on the coordinates and
Z is depicted in Fig. 1.

Below we use the magnetic-dipole interaction potential
in the form (15) to establish the equations of motion of an
atom in a TOP trap.

Note that the square of the modulus does not exceed unitg, GENERAL EQUATIONS OF MOTION

The maximum value of the square of the modulus,

2

(6%) s —————=<1 (10
R NPT
is attained for a givez on a circle of radiup=pp:
472
Pm=Tlo 1+ r_2 (11)

0

It is convenient to write the potentiéh) in the form of a
Fourier series:

1 o]
Uu=u, an+n§=:1 (=1)"a, cosn(Qt—o) |, (12

where the Fourier coefficients

The dynamics of an atom in the potentidl5) is de-
scribed by a Schuinger equation, which in the system of
coordinates we have adopted assumes the form

L h?
|ﬁW=—mA®+U0¢_[U1Coiﬂt_go)-i_uz
X cos 2O0t—¢)]P,
1
1 9\ 1 P P 47
pap\Papl " 02902 a2

We recall that the amplitudes,, U4, andU, of the harmon-
ics of the magnetic potential are functions of the coordinates
p andz.

In Eq. (17) the two parts of the magnetic potential play
different roles. The time-independent potentikl generates
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_" =P exr{%(ulsin(ﬂt—qw)%—%uz sin Z(Qt—(p)”.

T T T
[ g i

After (18) is plugged into(17), the equation of motion ac-
quires terms that correspond explicitly to the fast oscillations
of the momentum and position of the atom. There also
emerges an additiob .44 to the time-independent potential
Uy, which is related to the mean energy of the fast oscilla-
tions of the atom:

ﬁ2

0D
ii—=—=—AD+(Ug+ U9 ®—

at 2M 2MQ

Xla U\ U; &°U,
pap\P ap p? 972

SiN(Qt— @) d

ih U, U 2U,U U, U
19U, 2UiUz Uy U,

+ 2 2
AMQZ| dp dp p Jz 0z

XcogQt— )P

ih |1 9 dU,
AMQ | p dp p ap

4U2+(92U2 n 201 p)®
- sin - -
p? 9z ¥ 4MQ?

aU.\%2 U, (aul 2
(E) - —| |cos 2Qt— )

p?

if [aul ad U, 9P

0z

XP——
dp dp Jdz 9z

sin(Qt—¢)

R

AR

.\\“\\\\\\\\\\\
O

8y MQPZ (9‘10 Coi QD) ZMQ

N

sin 2Qt— o)

Uy, 90 U, 9P
X|——+——
dp dp 0z 0z

AU, od 20t—¢) 19
—— COS — ),
MQp? ¢ ¢

where the additional time-independent potential is

2 2
FIG. 1. The time-averaged valug, (a) and the amplitudes of the first two 1 ( 4y 1) 2 1( J 2) 2 U1+ U2

) S ) . Us——| | —= | —=
harmonicsU; (b) andU, (c), of the oscillating potentidl as functions of add_4M 02\ ap 4\ ap 2

the cylindrical coordinatep andz. p
U1\? 1[dU,\?

i 1 2
Jz 0z

7 (20

slow movements of the atom with characteristic timgg,,
=1/w, wherew specifies the characteristic natural oscillation
frequencies of the atom in the potentid). The presence of
the oscillating partdJ,; andU, in the potential leads to fast
oscillations of the momentum and position of the atom with  Let us use the equations of motion derived above to
a characteristic time scalg,s=1/C). study the dynamics of cold atoms, i.e., atoms near the bottom
To explicitly separate the fast movements of the atonof the potential wellU,+ U ,44. For cold atoms the coordi-
from the slow, it is convenient to pass to a representatiomatesp andz meet the conditiom, z<r,,.
similar to the standard interaction representation for time-  When the displacements of an atom from the trap’s cen-
independent potentials. For E@.7) the corresponding tran- ter are small, we can expatd}, U,, andU, in power series
sition is accomplished by the following replacement of thein the small coordinatep and z. Keeping all terms up to
wave function: second order ip andz, we get

4. EQUATION OF MOTION OF COLD ATOMS
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Uo=U_+ 3 k(p?+82%), U;=2krgp, U,=3kp% (21)

Minogin et al. 15

(17). Hence, we could exclude this term from Eg6) by a
repeated passage to the interaction representation, i.e., by a

The elastic constant for the harmonic part of the time-rgpjacement of typé18):

independent potential is

k= .
2r3

(22

According to(21), the potentiall, generates harmonic os-
cillations of the atom along th®, y, andz axes with the
frequencies

k
Ox= Wy=0,= \/%, wz=2\/§wp.

(23

At this point we note that according to the basic idea of a
magnetic trap with an orbiting potential, all of the three fun-

damental frequenciesy,, (), and w _, are assumed to be

related by the following inequalities
0,<0<w. (29

According to Eq.(19), the left-hand inequality in24) is
needed so that the action of the time-averaged potedgal

+ U ,qq Would be stronger than the action of the harmonics

with the amplitudedJ, andU,. The right-hand inequality in

d=> ex

. (27)

CKqr
—i
AMQ)

0 .
3P sint—o)

Actually, there is no need fof27), since exclusion of the
third term in (26) leads to corrections that are small com-
pared to the other terms am,(/Q)2<1. This follows di-
rectly from the fact that the ratio of the exponent(&v) to
the first term in the exponent if18) is

Krop Up _1fw,\*
AMQ3 A0 200 '

(28)

Thus, the third term on the right-hand side of Eg6) can
simply be dropped, since it is very small compared to the
other terms. If we now bear in mind that the amplitude of the
harmonic oscillations of an atom in the potentid} from
(21) is of the order of the amplitudg, of the zero-point
oscillations,

L
Po= Mw’

p

(29

(24) excludes the possibility of nonadiabatic Majorana tran-we see that the terms in E¢26) that oscillate with the

sitions due to rotation of the magnetic fieBl In a typical
experiment  ®,/27~10-100Hz, Q/27~10*Hz, and
w [27~10"Hz, so that w,/Q~10"2-10"° and Q/w,
~10 3 (Ref. 15.

Now we plug the expressions faf; andU, from (21)
into Egs.(19) and(20). In the case of cold atoms, the addi-
tional potential proves to be much smaller tHag:

2.2 2
2k I’0< 1+ p_) _
;

1
M Q2

U ade™ UL+ gko?

® 2
(6") <Uq.
(25)

Neglecting this small correction to the time-averaged potenif

tial Ug, from Eg.(19) we arrive at the following equation of
motion of cold atoms:

°_ hZACD Uo® o ®

R T VT2
y Q _2fikrg
cogQt— o) 'MQ

X

P 1 9®
%SIH(QI—(p)—;ECOQQI—(p)}
i hkp [
2MQ

IO 0
gst( t—o)

100
— ——CO0S ZQt—gp)}.

p de 28

Two facts are worth noting. The third term on the right-

doubled frequency Q are small compared to terms oscillat-
ing with the frequency in the ratio

w
P Po _ [ p <1.
2(.0|_

2ry 2rg

(30

At frequencies used in experiments the left-hand side of Eq.
(30) is of order 10°3. If we ignore the terms oscillating with
the frequency 2 in Eq. (26) and go back to the Cartesian
system of coordinates, y, andz, we arrive at a very simple
equation:

@-f-v @ sin Qt— @ coth”
at T\ oox ay
h? #? P 5P
=—mAd>+Uod>, A=§+O_}—y2+g, (31
where, as we can easily see, the quantity
2
O RV (32

expressed in terms of the zero-point oscillation velocity

fiw,
VM

(Po=VMtiw, is the momentum of the zero-point oscilla-
tions) specifies the velocity of the fast oscillations of the
atom due to fast oscillations of the potential. Here we stress
that since in Eq(31) we dropped the term that oscillates
with the doubled orbiting frequency of the potential, together

_Po_

v (33

Vo

hand side of Eq(26), which specifies the oscillating poten- with Eq. (31) we must use the complete wave functid®)
tial of the atom in the interaction representation, has thén which the phase oscillates only with a frequereyi.e.,
same structure as the third term on the right-hand side of Edhe function
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FIG. 2. The true coordinates of an atoxnandy, and the effective coordi-
natesX andY in the rotation plane of the potential. 5. QUASISTATIONARY STATES AND STATISTICAL
DISTRIBUTIONS

Equation (37) is the final equation of motion of cold
atoms. It contains no information about the shallow high-
frequency modulation of the wave function on the spatial
scalep, . At the same time, the expressi@¥) for the com-
plete wave function has retained the information about the
fast modulation of the velocitymomentum of the atom,
whose relative depth is of order unity. This fact, as we shall
see in Sec. 5, leads to an annular statistical velogitp-
menta distribution of cold atoms.

P, In the Cartesian coordinatesy, andz, Eq.(37) has the
VY=o exp{i 7P sin(Qt— QD)}- (349 well-known steady-state solutions:
. E
We now note that formally the left-hand side of Eg1) D=Py (r.1)= (X 7 exr{ il o + ﬂH
appears to be the totétonvective time derivative, which gl 8 =X (¥)xa(2) ok
allows for the variation of the wave functich in time and (39

due to oscillations of the atom with the velocitiessint  Here (&)= x«(X), x;(y) are the eigenfunctions of linear
and —v, cos(t along thex andy axes, respectively. Bear- oscillators along the axesé=x,y, and a=Kk, |
ing all this in mind, we can introduce the new coordinaXes =0, 1,2,... ,.e.,
andY and the new time variabl&é via the following rela-

tionships:

(&) ! l{ & )H :
Xl &)= e 5 |H.[ ]
X=x+p, cosQt, Y=y+p, sinQt, T=t, (35 2%l mpo 2pp Po

wherep, has the meaning of the amplitude of the fast varia-WhereH(#) is a Hermite polynomial, and the eigenfunc-
tions of the coordinate of the atoffig. 2), tions x4(2) of the linear oscillator along the axis are given
by (40) after the replacementsé—z and py—po,

Uy (&)2 w, 5 Lo, (36) =p0/\/2;]2. The energy eigenvalues of a three-dimensional
\/ 07

=g =2 q) To=rogy asymmetric oscillator are

(40)

In terms of the new variables, the equation of moti&i) Exig=f o, (k+1+3+22%,(q+3). (41)

reduces, after negzlect of the corrections to the potential Of\ccording to(34), the complete wave functions in the coor-
orderp,/po,(pr/p)“<1 on the right-hand side, to the equa- ginate representation have the meaning of quasistationary

tion of a three-dimensional asymmetric oscillator wave functions:
2
72 iU, @an YuarD=x0x(y)xq(2)
aT 2M : .
ip;(x sin Qt—y cost)
where the Laplacian is defined in terms of the coordinXtes X ex 7
Y, andz:
iE gt
PR P — o t— — (42)
A=—+—+— h
X2 9Y? gz .
In the momentum representation

Note that for the typical frequencies mentioned earlier, 0. r
the dimensionless parameter <I>(p,t)=(27rﬁ)*3’2f (I)(r,t)exp( _ 2 )d3r, (43)

S= /wL(jP (38)  the complete quasistationary wave functions are

Q .

, , _ , _ _ Dyiq(P,1) = xk(Px—Pr SIN Q) x
is of order unity. In view of this, the fast spatial modulation
of the wave function due to oscillations of the effective co- X(Py+ Py COS Q1) xq(P2)
ordinatesX andY has, according t435), a small relative iE ot
depth of ordep, /pp~ w,/Q2<1. If we ignore this very shal- X exp{ —iw t— 7 4 } (44
low modulation, we must assume that the effective coordi-

natesX andY coincide with the true coordinates of the atom where y,(p) are the eigenfunctions of the linear oscillators
x andy and, therefore, that the functi@h is specified by the along thex andy axes in the momentum representation.
equation(37) of a three-dimensional oscillator with a La- These functions directly reflect the high-frequency modula-
placian defined, as usual, with respect to the coordingtgs  tion of the momentum of the atom with a relative depth
andz. p,/p=1.
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Now we use(42) and (44) to study the quantum- w(p) T
statistical distributions of the position and momentum of an 0.4 /N 3
atom. At a given temperatufe the statistical distribution of / \
the position of an atom, 0.2

w(r)=w(x)w(y)w(z), (49 0 / \¥
is defined by the well-known Bloch formuld.The distribu- w(p) TET
tion of the position of an atom along the axgs x, y is*® 0.4 23

i +1/2
B
w({)= =
© r{ ho(a+ 1/2)} ( ‘;
exgq —————— w(p
a=0 kBT 0?:4 Tl TZ
1 £
= exp —— |, (46) 0.2
Vmag h " ~—— 1\
where 0 N
-6 -4 -2 0 2 4 6
fho, /R
ap=po"\/ coth (47
2kBT FIG. 3. Quantum-statistical distributions of a momentum component for a

. . L . I . single atom. The distributions correspond to the temperatufgs
is the half-width of the distribution. The distribution of the w2k, To=2hw, /Ky, andT,=25fw, /ky and the parametd—3.

coordinate of an atom along tlzeaxis is defined by the same

formulas (46) and (47) after the replacement§—z, pq

—po=po/\242, andw,—22w,. which is normalized to one atoffjust as the other distribu-
The quantum-statistical distribution of atomic momen-tions are:

tum is given by an expression containing additional averag-

ing over the high-frequency oscillations of the momentum: f w(py,py)dp,d py=2Wf w(p)pdp=1. (52)

W(p) =(W(px,t)W(py,t))W(p,). (“48) According to(45) and (46), the coordinate distribution has
Here, according to the Bloch formula, the partial distribu-an ordinary Gaussian shape in this case.
tions along thex, y, andz axes are The distributions of the momentum of an atom in the
1 (Py—p; sin Q)2 plane for three temperatures are depictgd in Fig. 3 Clearly,
W(p,,t)= exr{ _ax e at low temperatures, where the modulation depth is close to
\/;qo q? unity, the distribution acquires an annular structure inxje
plane.

W(p, )= 1 oxd — (py+p; cOsOt)? (49) According to(52), the annular structure of the momen-
ye \/;qo q? ' tum distribution emerges when, as the temperature decreases,
the dimensionless parameter
1 p
w(p,,t)= ex;{—— , P ho,
z \/;qOZ qu d= q_o =S\/2 tanhszT (53)
where (Sis another dimensionless paramgiacreases to values of
order unity. This becomes especially evident if we write the
ho, \/Ehwp statistical distribution as a power series in the momenta:
do=Po\/ coth5, 0o,=2v2p, \/ coth . p :
B
(50) 1 p?+p?
. . L . W(vapy)zw(p)z_z exp — 2

For the two-dimensional distribution of the momentum 7o do
in the xy plane with allowance for time averaging we have ) )
the following expression: Pr o, Pr 4

X 1+q4p +4q8p +--- (54)
W(Pyx,Py) =W(P)=(W(Px,W(Py 1)) 0 0
2 2
_ iexp[ _Ppotpr(l 6. ANHARMONIC OSCILLATION SPECTRUM
2 2
7o % 17 Up to this point the motion of atoms in a trap was con-

- op sidered in the harmonic approximati¢2l). Let us now ex-
><J cos)’( 2—2r sin 7) dr, (51) amine the spectrum of natural frequencies of an atom with
0 Yo allowance for anharmonicity.
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Retaining the terms up to the eighth orderdnn the
expression fotJ, in (16),

The foregoing relations imply that the anharmonicitylbf
becomes essential when the atomic displacements are much
larger than the amplitude of the zero-point oscillatiopg,

2
Ure U 1—1e2— ie“— 5 e6—7( 5 ) Bl (55 ~povow_l/w,, and that the energy spectrum ceases to be
0o~ m ’ . .
4 64 256 128 equidistant at large quantum numbers|m|,q~ o, /o,

=10°.

and expandindg55) in a power series up to the fourth order
in the small displacemenis/'r, andz/r,, we get
7. CONCLUSION

The theory developed in this paper shows that the mo-
tion of atoms in a magnetic trap with an orbiting potential
o ) consists of two parts: slow oscillatory motion in a time-
For the oscillating parts of the potenti&l; andU,, we can  ayeraged potential and fast oscillations with a frequency de-
keep the expressiori&1) for them. _ _ termined by the rotation frequency of the magnetic field. For

As can be seen from the previous section, allowing foryynical experimental values of the three fundamental fre-
the_ anharmonicity of the oscilla_tions of an atom only re'quenciesmp, Q, andw, , the amplitude of the fast oscilla-
quires solving Eq(37) with potential(56). As usual, we Use tjons of the coordinates of an atom is negligible compared to
standard perturbation theory for this purpose. Since the afne amplitude of the slow oscillations in the averaged poten-
harmonic term in56) depends only on the cylindrical coor- {ja|. On the other hand, the amplitude of the high-frequency
dinatesp andz, in the case at hand it is convenient to take gggillations of the momentum of an atom is, in general, com-

32°

1 k(1
U0=UL+§k(p2+822)+—2 — 4+p222—424). (56)
r

0

the solution of Eq.(37) in the cylindrical coordinatep, z,

and ¢ as the zeroth-approximation solution. Thus, instead o

the solutiong39) we write

(Dnmq(pa ®,2)= unm(P)eim(PXq(Z)

E
Xex;{—i(wLwL nﬁqu.

Here the radial wave function1&0, 1, 2, ... ; andn=0,
+1,+2,...) are

n! 1{p)\m
UnmP)= N s T %(%)
2 2

><exp< — p_z) LLml(p—z).
2pp Po

(57)

(58)

where theL'nm‘(n) are associated Laguerre polynomials and >

Farable to the width of the momentum distribution for the

undamental oscillation state of the atom in the trap poten-
tial. This deep modulation of atomic momenta becomes es-
pecially significant at low temperatures of the atoms, where
the average thermal energy becomes comparable to the os-
cillation energy of atoms in the averaged potential. Accord-
ingly, at low temperatures the momentum distribution of at-
oms generally acquires an annular structure in the trap’s
symmetry plane.
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We examine multiwell potentials that correspond to the displacements of off-center ions in
complexes with icosahedral symmetfgdodecahedrons, icosahedrons, fullerenes, etlong
symmetry directiongtoward vertices, midpoints of edges, and centers of jadas

expression is derived for an effective Hamiltonian, which describes the behavior of endohedral
complexes with off-center ions placed in external electric fields of arbitrary strength and
orientation. We find the eigenvalues of this Hamiltonian and calculate the intensities of the lines
of all possible transitions between tunneling levels. We also predict and analyze the spectra

of paraelectric resonances in the absence of an external static electrizéedefield resonancgs

and in the presence of such a field. Finally, we provide recommendations for detecting these
effects and discuss the specific features of the effects and the possibility of studying them.
© 1998 American Institute of Physids$$1063-776(98)01607-2

1. INTRODUCTION symmetry of the latter and is usually present when the
atomic radius of the particle is small compared to the radius

The discovery of fullerenes and the synthesis ofof the cavity in which the particle is implanted. These ideas
fullerene-based crystals, or fullerites, has led to new avenudsave been corroborated by calculations. For instance, Wang
of research being developed in different areas of sciénceet al® calculated the equilibrium positions ;) of a large
There has also been an upsurge of interest in symmetriagumber of ions of the periodic table implanted ig,@nd
whose elements include rotations through angles that are ifound that for many of these iomg,,#0, i.e., the atom is not
tegral multiples of 2r/5, in particular in the icosahedral at the center of symmetry ofgg. Joslinet al? pointed out,
group Yy, (Ref. 2. Not only the unique structure and sym- among other things, that in the case of'Lions ry,
metry of these new carbon formations, but also the unusuak1.4 A, while the calculations done by Cioslowski and
diverse properties of such substances have drawn much atieischmantt and Ballester and Dunlabfor the Na" ion
tention. For instance, it was found that the doping of fuller-yieldedr,,;,~0.7 A. In heavier alkali-metal ion.g., K';
ites with atoms of other elements can give rise to semiconRef. 15 and inert gase¥*8r ,=0.
ducting and metalli¢including superconductingroperties’ The fullerene G and a number of higher fullereneg,C

It has proved possible to implant atorfreolecule$ of (N=80, 180, 240, 540, and 9pOhave icosahedral
elements of different groups of the periodic tablg to lan-  symmetry*®?° Moreover, the calculations of Targg al?*-%?
thanides and even uranidnf) directly into fullerenes. Such showed that stable giant fullerene~10%) with icosahe-
structures became known as endohedral fullerenes and ageal symmetry are possible. Bearing all this in mind, we can
denoted by M@ ¢, where M is the implanted atofion) or  assume that the off-center effect manifests itself most vividly
group of atoms, andll is the number of carbon atoms in the and often in higher fullerenes. Clusters consisting of other
fullerene. Using endohedral fullerenes to produce condensestoms and having different symmetries, including the icosa-
materials opens new possibilities to solid-state physics. Imedral symmetry, have also been studied>Jinlonget al2®
particular, Cioslowski and Nanayakkafaund that implant-  studied the icosahedral cluster M@gpwhich consists of
ing polar molecules in fullerenes may serve as a base for th&2 cobalt atoms with an atom of various elemgius of the
production of a new class of ferroelectric crystals. Wangiron group, from Ti to Ni, inside it. They showed that all
et al® pointed to the possibility of the emergence of a newclusters except those with Ti, Mn, and Co atoms, which have
class of high¥, superconductors with specific electron- a closed electronic shell inside the cluster, allow a displace-
phonon coupling based on endohedral fullerefi@gontrast ment from the center of the icosahedron. It has also been
to the impurity fullerites already tested, where the impurity isfound that the clusterS;, (Ref. 27 andB,, (Ref. 28 have
intercalated between fullereres an icosahedral structure. Finally, we note that long before

The large diameter of the fullerene cage the case of fullerenes were discovered, Bersuletral 2° studied the con-
Ceo the diameter is roughly 7.1)%oints to the possibility of figurational instability of clusters with icosahedral symmetry
the appearance of the off-center effect which has been oldue to the Jahn—Teller effect.
served in crystals with local symmetry that is lower than  Off-center effects are accompanied by the presence of
icosahedral symmetry.!! This effect consists of a displace- several ) equivalent equilibrium positions. In the case of
ment of the potential-energy minimum for the interaction ofimpurity ions, these positions are displaced from the center
the guest particle and the fullerene cage from the center aff symmetry, while in the case of dipolar molecules there

1063-7761/98/87(7)/10/$15.00 123 © 1998 American Institute of Physics
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can be both displacements and dipole orientation along
equivalent directions. Since both the potential wells and the
wave functions of a particle moving in them overlap, inter-
well tunneling of the particle and splitting of thé-fold de-
generate state occur. The characteristic system of tunneling
energy levels emerging in the process produces various phe
nomena, including paraelectric resonar®R),*° which

can be used to study off-center effects directly.

Thus, the results of research point to the possibility of
off-center effects manifesting themselves in many endohe-1?
dral complexes with icosahedral symmetry. These effects
lead to multiwell potentials and a system of tunneling levels
between which quantum transitions can occur. In this paper
we study the energy structure of off-center ions in the intrac-
rystalline electric field generated by different configurations
of atoms, such as an icosahedron, a dodecahedron, a trur
cated dodecahedron, which has been termed a roklar, and
fullerene. We also investigate the effect of an external static

electric field and the transitions between tunneling levels in-

duced by an external variable electric field. FIG. 1. Roklar(truncated dodecahedrpr82 faces,(12 pentagons and 20
triangles, 30 vertices, and 60 edges. The equilibrium positioref off-

center ions(directions of dipolesin the case of a 30-well potential in

endohedral complexes with icosahedral symmetry. The poiate at ver-
2. ENERGY LEVELS: A GENERAL TREATMENT tices of the roklar.

Earlier studie3° of highly symmetric systemg&he Oy,
grﬁgeﬁavzifgg\%?];hgft :)hﬁé-lcg(%te[rﬁg])mosr :ael E'?plaeceidealongvhich points to the nature and number of tunneling levels.
y ry ' ! ype, 1.€., Let us examine the resonant transitions in the system of
toward faces, edges, and vertices. We shall thus study tr]e

o . X vels (1) in th n f an external ic electric fiel
symmetry directions of displacement with allowance for thee els (1) in the absence of an external static electric field

X . Ey, i.e., zero-fiel raelectric resonance. In h r
results of the calculations of,;, in Refs. 8, 12—18. We shall %’ €., zero-ie d parae ectric esonance. n such a process
C : . ) the transitions are initiated by a variable electric field, whose
examine in detail one of the most complicated multiwell po-.

. . . . : intensity vectore is transformed according to the,, irre-
tentials, viz., a 30-well potential, which simultaneously cor- | " : ) .
: . ducible representation. An analysis of the direct products of
responds to displacements of an off-center ion toward th

. S e irreducible representations of thg, group (Ref. 30
yert|ces of a roklar and the midpoints Of. the edges of MNeads to the allowed transitions depicted in Fig. 2a; here the
icosahedron, a dodecahedron, and a fullefenthe last case

the edges are those that connect two hexahejiransall ;ra;(itmns are initiated by a vecterarbitrarily oriented in
these cases the equilibrium positian®rm a roklar(Fig. 1). pace.

The corresponding reducible representatida. maps the When the fieldE, is switched on, the tunneling levels
P g b B P split, the number of the new levels depending on the orien-

centers of the potential wells into one another. On the ba5|§altion OfE,. To make the analysis of the spectra more con
0 -

of the character table of the irreducible representations of thSenient the field is usually oriented along the symmetry di-
Y, group (Ref. 30, we can write the ' y d y y

rections of the geometric figures, so that some symmetry

M3p=Ag+F1y+Fo+Gy+ Gy +2H +H,, 1) elements are conserved. For symmetry directions we select
I
BB
H(l) H eﬁ
9 "u 85’ Es
2l 3
21— e
G, £
(] 4 3
v 6 FIG. 2. Tunneling levels in the case of a 30-well potential
°ls 71 8l 9 corresponding to displacements of an off-center ion toward the
vertices of a roklar, the midpoints of the edges of an icosahe-
G, & dron and a dodecahedron, and the midpoints of the edges of a
3 9 fullerene that connect two hexahedrof@®. Possible resonant
@ 2 4 transitions in zero-field paraelectric resonaribg Relative line
Hg & ) intensitiesl g4/ .
4 6
1 &
u ) . 5' 7 8I
€
A, 1 "
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TABLE I. Point groups of geometric figures in the presence of an electric3, PERTURBATION MATRICES AND EFFECTIVE

field Eo. HAMILTONIAN
. Direction from center to . . . .
Geometric The method of deriving the generalized effective Hamil-
figure face vertex edge tonian for centers with a multiwell potential and arbitrary
Icosahedron Ca, Cs, Ca local symmetry has been described in Ref. 31. In our case the
Dodecahedron Cs, Cay Ca, Hamiltonian is a 3& 30 matrix M35, whose elements are
Roklar Cs, /C3, C,, Cs

defined in the basis set of the symmetrized functiazrfs
corresponding to the irreducible representatignsf the Y},
group. We write the initial perturbation operator &%
L , ) _ =Wg+Wg, where Wy, and W are the operators of the
the directions from the Inversion center to the vertices, C®Minteraction of an off-center ion with, respectively, the intrac-
ters of the faces, and midpoints of the edges of the various . - .
geometric figures. Table I lists the symmetry subgroups thartystalhqe e_lef:trlc fleld and an external_electrlc field. The op-
emerge for such directions of the field. The presence of tw&ratorW is invariant under all operations of th& group,
point groups in one cell in the case of fullerene is due to théindWg has the formWg= —d-E, whereE is the sum of the
two types of faces and edges. In each case the first grougxternal electric field&,+ e acting on the off-center ion in
refers to a pentagon and an edge connecting a pentagon aiit¢ general case. Using the perturbation-matrix methtid

a hexagon, while the second group refers to a hexagon arahd the matrices of the irreducible representations ofvthe
an edge connecting two hexagons. Similarly, for a roklar thegroup (Ref. 33, we find the nonzero perturbation matrices
first and second groups refer to a pentagon and a triangl@4(8x 8') of the operatoiV for all pairs of the irreducible
respectively. Table Il lists the data on the nature of levelrepresentationg. The results of the calculations are system-
splitting induced by the field&€,. Each number in Table Il  atized in Appendix A. The off-diagonal matriceg# 8’) in
shows how many times the irreducible representation listethppendix A do not contain the matrix elements of the op-

in the heading of the respective column under a Subgrou@ratorVA\/K, since it is invariant under all transformations of

notation is contained in the irreducible representation of the: . ,
. . : . he group. Its nonzero matrix elements are present only in
Y, group listed in the heading of the respective row. We see group P y

that to establish the selection rules in an arbitrary case, eachiare matrices of the typd (5> ), where they occupy

irreducible representation of any point subgroup must be exE),Os'tIonS along the prmqpal dlggonal and whgre all the ma-
amined only once or twice. The results of the calculations ardX €léments for each irreducible representation are equal.
depicted in Fig. 3, where the arrows denote allowed electric] "€ matricesM (5 8) do not contain the matrix elements

dipole transitions, and the labels (x,y) and|| (z) next to  of the operatoWe, sinced is an odd operator with respect
the arrows indicate the direction of the components.dthe  to inversion.

absence of labels means that a transition is possible for any The matrix Hamiltonian sought can be written in the
direction ofe. form of a combination of perturbation matrices:

Fullerene Cs, /C3, Cs Cs/Cy,

TABLE Il. Splitting of tunneling levels by a fiel&, applied along symmetry directions.

C5U C3U CZU CS
A, A, = E, A, A, E Ay A, Az A, A A,

Yh z X,y z X,y z y X X,y z
Aq 1 0 0 0 1 0 0 1 0 0 0 1 0
Fiu 1 0 1 0 1 0 1 1 1 0 1 2 1
Fou 1 0 0 1 1 0 1 1 1 0 1 2 1
Gy 0 0 1 1 1 1 1 1 1 1 1 2 2
G, 0 0 1 1 1 1 1 1 1 1 1 2 2
Hg 1 0 1 1 1 0 2 2 1 1 1 3 2
H, 0 1 1 1 0 1 2 1 1 2 1 2 3
Orders of

secular 5 1 6 6 7 3 10 10 7 6 7 17 13

equations

Note: A—one-dimensional irreducible representatioBs;-two-dimensional irreducible representations. The letterg, andz below the irreducible repre-
sentations indicate that the respective components of the polar vector belong to these representations.
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M(1x1) M(1x2) 0 0 0 0 0 0
M (2% 2) 0 0 0 M(2X6) M(2x7) 0
M(3x3) M(3x4) 0 M(3X6) M(3x7) 0

M(4x4) M(4X5) 0 0 M(4x8)

M(5X5) M(5X6) M(5x7) 0 ' 2

M(6X6) M(6X7) M(6X8)
c.C. M(7X7) M(7X8)
M (8% 8)

where c.c. stands for the complex conjugates, and a zerbOe3;, and (5/22, respectively, for the &2, 286,
indicates that all the matrix elements of the block are zeros2« 7, 36, 3«-7, 56, 57, 3«4, 45, 68, 738,
The rows and columns if2) have been numbered according and 4-8 transitions, wher@gg = agg € with e2:e)2(+e§
to the irreducible representations in the following ordgy; +e§.

Fiu, Fau, Gg, Gy, H{Y, H?) andH,,. In Eq.(2) there are
12 parametersa g5, describing the effect of the external field
E and 9 parameters g5 characterizing the intracrystalline
electric field.

It is impossible to find exact analytical expressions for
the eigenvalues of the operato(2) in a general form for an We use what is known as the well approximation, which
arbitrary value and orientation of the fiel,. Hence it is s the oscillatory analog of the MO-LCAO method in quan-
advisable to study approximate solutions by perturbativaum chemistry®® Let ¢;, i=1,2,..,30, be the well function
techniques in the presence of qegene"f‘éfnyr two possible  of the particle in théth quasiequilibrium statéFig. 1). The
cases, viz.Wy>Wg and Wg>W,y . For symmetry direc- functions ¢; obey the reducible representatibhy,, which
tions of the fieldE, the secular equation corresponding2p  specifies the transformation of these functions into one an-
splits into equations of lower order. The numbers in the lasbther under the operations of thg group. Now we expand
row of Table Il indicate the order of such equations, whichIlg, in the irreducible representatios® using the matrices
correspond to specific irreducible representations of the sutef the irreducible representatiofisAs a result we arrive at
group. In the case of two-dimensional representations thertne linearly independent, symmetrized functioﬂé which
are two identical equations. For instance, f&¢ oriented are normalized to unity:

4. SYMMETRIZED FUNCTIONS AND PARAMETERS OF THE
HAMILTONIAN

along thez axis, theY,, symmetry reduces t€s,, and the 30
secular equation splits into four sixth-order equatidteo wﬁ:DBE Ko . @)
for each of the irreducible representatidas andE,), one ! =

fifth-order equation for thé; irreducible representation, and
one first-order equation for th&, irreducible representation:

A :ele®—e?(E2,+ E3s+ E3,+ E5+ E5g+E3) T,
2 =2 2 2 =2 2
+E1oE5et E37) + E5/(ES6t+ E3e) TE
— 2E¢E7E3¢E371 =0, Y
A,:6=0, where Egp=azpEq,. 3) G N Tea, 4,
The third-order equations with respect4é for the E; n —1II_A
andE, irreducible representations are more complicated, and L : | x I
for the sake of brevity we shall not present them here. In
deriving Egs.(3), to simplify matters we set g5=0, which 1= T4, 174,
corresponds to the zeroth approximation for the case where L4,
We>Wy. R = R I"AI
When W, >W¢g, the zeroth approximation is deter- + y
mined by the values of 35 with 8#6, 7 and the expression
(Nest N77)/2= \/(Ngg— N 77) 14+ \5;. For this case, using the -—T'E‘ Tza,
data of Appendix A, we can calculate exactly the squares of  Group Group Group Group
the matrix elements of the transitions within the system of Cso Go Go G
levels depicted in Fig. 2a. We ha@zi (5/2)e36,_(5/2)e57, FIG. 3. Allowed transitions between tunneling levels in the presence of an

(5/3)e3s, (5/3)e3,, (5/2)e2s, (5/2)es,, 2€3,, 4e5s, 10855,  extemal constant electric field applied along symmetry directions.
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The coefﬁmentskﬁ andD?” for each of the 30 functions are
given in Appendlx B. Of the function$4) only wl and wl
are not mutually orthogonal:

W

where npg=—2, n;,=3p—1, nys=2, nze=—(3p+1),
andn;=4. For \g;#0, a linear combination of these func-
tions determines the reguldmutually orthogonal zeroth-
approximation wave functions of the terr” andH{) .
Plugging(4) into the expression fok 55, we obtain

whereVy_g=J ¢*Wyedr, withi=1, 2, 3, 7, 8, 14, 15, 23,
and 29 form=0, 1,...,8, respectively;
2zranzonr,nvm

VSS,

Similarly, for the integralsy g,/ = fcpJ
12
agg=—2DPDF X REF 4.
m=0

Ne7=
Z(p] "d7 we have

(5

Here REB' is a linear combination of pair products of the
coefﬂmentskﬁ, and u, are expressions of the type; |

~ i where,u”—fgo,* d,e;d7, and —j denotes a well
that is inversion-symmetric to theh well by inversion. The
matrix elements ofl, that are related to the ternhi;gl) and
ng) are specified by linear combinations of two expression
of type (5).

Let us estimate the overlap integrats, and the average
dipole momentgy,,,. For the well function we take an oscil-
latory function normalized to unity of the typg = (I/7)%*
xexp(-Ir42), where r2=(x—x,)%+(y—yi)?+(z—z)?

Xi, ¥;, andz are the coordinates of the center of tih
well, and | =mw/# with m denoting the mass of an off-
center ion andv denoting the frequency of oscillations in the
potential well. Assuming that rmin=1.4AA, m=1.2
X102 g, w=3x10rad/s (Ref. 37, andd=z, we ob-
tain, e.g., for the maximum values of,, and u,,,, the fol-
lowing estimateso;=0.37 andue=pu,,=0.85. For com-
parison we note thado=1 andu,= 15— w1 17— 0.033.
Next we consider the tunneling approxmatfbﬁ’where

all the off-diagonal matrix elements of the operatd and
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tunneling-level diagram in Fig. 2a. For the transition fre-
quenciesvss, Va1, Ves, Vs7, Vea, V72, Vas, Ves, Var, Ver,

and vg,, where v =e,—¢gy, wWe have, respectivelyin
units ofU), p—2,3—-p, 3—p, 1,1,p—1,2,3,p+1, 4, and

3+ p. These values have been plotted in Fig. 2b. Note that in
this approximation the levels ¢, andHél) coincide(acci-
dental degeneragynd there are two pairs of coincident fre-
quencies. Keeping only the local electric dipole momegpt

in (5) and using the relations for the squares of the transition
matrix elements in zero-field paraelectric resonance, we can
also obtain expressions for the line mtensm%@/ in the
tunneling approximation. These daia units of e? ,uo) are
depicted in Fig. 2b together with the corresponding
transition-frequency data. Finally, we note that these param-
eters also appear in the equations that determine the energy
structure of an off-center ion in the presence of an external
static electric fielde.g., Eq.(3)]. Hence they can also be
used to estimate the dependence of the position of the levels
on the magnitude and direction &f.

5. MICROWAVE SPECTROSCOPY OF OFF-CENTER IONS

The number of possible displacements of an off-center
ion in various clusters with icosahedral symmetry is limited
(countable. Here, irrespective of the nature of the clusters
(icosahedron, dodecahedron, roklar, or fulledemy virtue
of their symmetry alone, there is a finite number of sets of
potential wells that are the same for all types of clusters.
Hence solving the problem of the number and nature of the
possible tunneling levels, the allowed quantum transitions
between these levels, and the paraelectric resonance spec-
frum for any type of cluster amounts to examining only a few
cases, each of which relates to a certain (seimbej of
potential wells. Having a relatively small set of solutions in
the form of paraelectric resonance spectra and comparing
each solution belonging to this set with experimental data,
we can acquire knowledge about the nature of the off-center
effect and hence about the values of the parameters of the
energy structure and directions of displacement of the
ions 10

This approach is similar to the one used in electron para-
magnetic resonand&PR studies, where, in view of the fact
that the value of spirS is bounded(usually S<7/2), the
number of magnetic sublevels is finite, and the problem
amounts to findingS and the spin-Hamiltonian parameters
from a comparison of the experimental data with the theoret-
ical EPR spectra obtained as a result of diagonalizing a finite

the overlap integrals are assumed small and where the onljet of spin Hamiltonians. The similarity to EPR becomes
integrals that are retained are those corresponding to theven more striking if we introduce an effective siBg us-
nearest wells. We also assume that all the off-diagonal mang the well-known formula 84+1=n, wheren is the total

trix elements of\NE are equal to zero. In this approximation,

)\BB—V0+ C(BU and )\67— _[Vo+(3p 1)(V00’1/4
—V)/2]/2, whereU=V,0,—V; and ag=—4, —(p+1),
p—1,1,-1, (3p+1)/4, —1/2, and 2 forB=1,2...,8, re-

spectively. The energy levels; corresponding to the irre-
ducible representations that are containedlinonly once
are given by the following equality: ;=\ g5. For =6 and

multiplicity of the degeneracy of all the tunneling levels, i.e.,
the number of potential wells. In this case we can say that the
problem has been reduced to determinBag and the param-
eters of the spin Hamiltonia(2) from experimental data.

We see that to study off-center effects we must have
prior knowledge of the theoretical paraelectric resonance
spectrum corresponding to each set of potential wells from

7, solving the appropriate second-order equation, we findhe available finite collection. This was accomplished in the

that eg,=Vo*2U. This scale was used in building the

present work. In it we have studied the extremely compli-
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a b GuG

FIG. 4. Tunneling levels in the case of a 12-well potential corresponding to 3
displacements of an off-center ion toward the vertices of an icosahedron, th
centers of the faces of a dodecahedron, and the centers of the pentagor ¢ 5
faces of a roklar and a fullerene. The meanindgafand (b) is the same as
in Fig. 2.

cated case of a 30-well potential. The same method was use o |
to study two other cases that are relatively simple compare Ag
to the 30-well case: 12- and 20-well potentials. The former a b

corresponds to dISpIac,:ementS Of_ an off-center ion from th G. 5. Tunneling levels in the case of a 20-well potential corresponding to
center toward the vertices of an icosahedron, the centers Q*splacements of an off-center ion toward the vertices of a dodecahedron,
the faces of a dodecahedron, and the pentagonal faces ofir& trigonal faces of an icosahedron and a roklar, and the hexagonal faces of
roklar and a fullerene. The latter corresponds to displace fullerene. The meaning ¢8) and (b) is the same as in Fig. 2.

ments of an off-center ion toward the vertices of a dodeca-
hedron, the trigonal faces of an icosahedron and a roklar, anfj

the hexagonal faces of a fullerene. However. imespective o ases must be distinguished here. The first deals with orien-
xag u - FIOWEVET, Irrespectiv ationally disordered condensed substances, where the

the specific configuration of the cage atoms, the multiwell araelectric centers have random orientations. Here the axes

potential is an icosahedron in the former case and a pentag { the centers are distributed in space at random, and to

Pha(; ?ggjézree?ég?e?e;ﬁgt:gggrérzhe respective expansions Bescribe the parae_lgctric resonance spectrum we mus_t first
average the transition frequenciéthe resonant electric
I,=Ag+Fq+Fo+Hg, fields) over the angles characterizing the orientation of the
axes of the complexes relative to the coordinate system as-
Moo= AgtFautFaut Get Gyt Hg. ®  sociated with the external electric fields. Such averaging
A comparison of(1) and (6) shows that these two cases canleads to additional, inhomogeneous broadening of the
be considered special cases of the scheme studied in detail paraelectric resonance lines, as in E¥Rhe second corre-
this paper. For instance, the energy structure correspondirgponds to similar orientation of centers that are at equivalent
to (6) is contained in the diagram of Fig. 2a. The results ofor slightly inequivalent positions. This is possible in some
similar calculations for 12- and 20-well potentials are de-supercooled liquids or crystals of the fullerite type. In this
picted in Figs. 4 and 5, respectively. A comparison of Figs.case all the expressions considered above for the transition
2, 4, and 5 shows that the energy structures and the paraeldeequencies manifest themselves directly, and the broadening
tric resonance spectra corresponding to different multiwelbf lines is caused by other factors, among which the most
potentials differ substantially. On the basis(6f and Table important for paraelectric resonance is the defect structure of
Il we can easily obtain the analogs of Fig. 3 for 12- andthe condensed phase. Note, however, th&,at0 the zero-
20-well potentials. All these figures are also different. Thefield paraelectric resonance spectra in both cases coincide,
differences make it possible to identify the displacement disince the spectra are independent of the orientation of the
rections for the off-center ions in different clusters. This col-field e inducing the transitions. This fact broadens the class
lection of three sets of potential wells essentially exhaust®f substances that can be studied, adding the gaseous phase,
the possible cases of the displacement of an off-center ion igolutions, and powders.
any cluster and is sufficient for analyzing paraelectric reso- 2. If we compare our results with those obtained earlier
nance spectra. In other words, the theoretical results prdor different cluster configurations and their symmetfie’s,
sented above can be related to a specific direction of diswe will see that in the case of configurations with icosahe-
placement of an off-center ion in any cluster studied indral symmetry, new, previously undetected, features emerge
experiments using the data on its paraelectric resonands the energy structure, the resonant transitions between tun-
spectra. neling levels, and paraelectric resonance spectra. An impor-
tant feature of icosahedral symmetry even in comparison to
the O, group is the abundance of equivalent potential
minima along with the resultant diversity and large number
1. Since we intend to apply our results to the analysis obf tunneling levels and possible transitions between such lev-
the experimental data, we note the following. At least twoels for bothE;=0 andE,# 0. We also note that the multi-

6. DISCUSSION OF RESULTS. CONCLUSIONS
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well nature of the potential results, as Eiy) clearly shows, plexes when atoms and molecules are implanted in the re-
in a situation in which the energy structure incorporates sevspective cagessee, e.g., Refs. 8 and )18n particular, Son
eral identical irreducible representations, which from aand Sun$® showed that along with endohedral complexes
purely theoretical viewpoint leads to additional features andhere can be stable exohedral complexes, in which an atom
complications. Such situations have never been encounter€fbn) attaches itself to the cage on the outside and occupies
before. one of a group of equivalent symmetry positions. Tunneling
3. We stress that all possible realizations of paraelectrigransitions of such external atoms between these positions
resonance can be described on the basis of the generaliz@gth the resultant formation of a system of tunneling levels
Hamiltonian (2), which contains the maximum possible are possible. From symmetry considerations, the number of
number of theoretical parameters allowed by space symmesets of equivalent positions for external atoms coincides with
try and time-reversal symmetry. Here the relationships fothe number of such sets for atoms tunneling inside the clus-
the frequencies, intensities, and other characteristics of thgr. Hence our results can be applied to exohedral complexes
spectral lines become much simpler if one uses the tunnelings well. One of the features of impurity atoms is their ability
approximation, which is advisable when the first experimentsg stabilize the complé®?"**even when the empty cage in
are described. The Hamiltonia@) can serve as a basis for ypstable. This fact increases the number of endohedral com-

studying other properties of matter that are determined by thSIexes with the icosahedral symmetry considered in this
presence of off-center impurities in endohedral complexesyaper,

Among these, polarization effects should be mentioned first. ~ The fullerene G occupies a central place in studies of

4. If the off-center ions have magnetic properties, i.€..he possibility of off-center effects occurring in endohedral
their nuclei or electrons have nonzero spins, additional possomplexes with icosahedral symmetry. Here such effects can

sibilities of studying them emerge. In this case, in addition toy expected for the following implanted donor atofie9):
paraelectric resonance, one can use NMR or EPRi+ Na™ Mn2t c&t st Yp2t Y3 L3t cet

spectroscopy-** The off-center nature of the ions manifests pat Nt ppt Gl A THY and U+ among the
itself in such resonances in a decrease in local symmetry ag, ’ ' ’ ' ’ ’ ’

the t ¢ d d it i . it ceptor atomsions), F~ merits attention; and among the
€ lemperature drops and, as a resul, in an increase in g, gases, He and Ne should be mentioned. Among the

number of spin-Hamiltonian constants, in changes in the hy: . . . : :
. ' higher fullerenes we should mentiogdvith a La, impurit
perfine structure of the spectrum, and other effects. Thereg er fullerenes we should mention & Impurtty

. . molecule, which stabilizes the entire complex, impartin
have been reports about magnetic resonances in endohedra? P P 9

fullerenes. For instance. Shinohazaal®® and Katoet al % icCosahedral symmetry to its cage. In this case one should
used EPR. Spectroscopy’ 0 study La :.and Sc impuritieé in thexpect orientational tunneling, which was observed earlier in

fullerene G,. They believe that the impurity atoms are triply ﬁwei_gase Oftolglggr?'\r |mpL||r|ty mo'.fr?mes 'T] a(ljkall|-metal
positively charged and have a total angular momentum alide crystais: er complexes with icosahecral symme-

=1/2. A hyperfine structure consisting of eight lines try include By, Shp, C0y,, and GgHpo. Some of these have

emerges because of the interaction With.a and*®Sc nuclei 2 V€'Y Iarlge cgge g!arrrgteie.g., IQI S%Z It r?mounts to ap- ¢
(the spin of each is 7/2) and is clearly visible. IndependentlyProximately 5 A, which is favorable for the appearance o

Moro et al®! found that Gd and Eu atoms @ are in the off-center effects. For instance, estimates show that when V,

G and EG* states, which are characterized by a highcr’ Fe, or Ni atoms are implanted in the Gealuster, they
angular momentumJ=7/2). These data point to the possi- are displaced from the center of the icosahedron due to the

bility of detecting EPR on high-spin ions in fullerenes, in J2hn—Teller effect. _
particular, in G,. When the off-center ions become dis- Note, however, that these data, which were taken from

placed, the symmetry of their environments lower<ig , Qifferent sources, can be used oply as estimates.and some-
Cs,, C,,, OF C, depending on the direction of displace- times contgadlct_ each other. For instance, according to Son
ment. The spin Hamiltonians for these subgroups differ sig&nd Sund?’ the ions of He and Ne may move away from
nificantly from each other and from the spin Hamiltonians ofth€ir centrosymmetric positions, while according to Pang and
the Y, group3 making it possible, in addition, to establish Brissé’ and Bretonet al,'® the equilibrium positions of
the occurrence of a displacement and to determine the dighese ions are at the fullerene’s center. According to Wang
placement direction. Estimates stbthat a Gd* ion im- et al.’ on the one hand, and Jost al.*? and Ballester and
planted in G is displaced from its position of equilibrium Dunlap;* on the other, the displacements of Ldiffer by a
by 1.4 A, while the other high-spin ion, Elis located at the factor of seven. There are also discrepancies in the data con-
center of G,. High-spin ions are most suitable for detecting cerning the possibility of the displacement of the ‘Nian
EPR in highly symmetric systenid*2Using Gd* and EG"  from the center of & (see Refs. 8 and 34And although
for this purpose permits the study of both the position of ionssuch discrepancies do not occur very often, they are a direct
displaced from the center ofsgand their central position.  indication of the complexity of microcalculations of the

5. As for the choice of a specific system for studying thestructure and properties of endohedral complexes and of the
effects described in this paper, we note, first, that by 199seed for direct experiments to detect and study off-center
almost one-third of the elements of the periodic table haceffects. Paraelectric-resonance experiments are prime ex-
been used in the formation of endohedral compléxaed amples of such experiments.
the number constantly grows. At the same time, theoreticians This work was supported by the Ukrainian State Com-
considered the possibility of the existence of stable commission for Science and Technology.
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APPENDIX A _2E, Pp* 0 0 0
The matrices of the perturbation operawrare P —E, sP2 0 0
M(6X8)=ag O sP2 0O sP2 0 [,
M(1x2)= 22(P qE, —P*), O o sP2 E, P*
q O 0 0 P 2E
P E, —P*Is 0 0 and M(BXB)=N\ggl, wherel is the identity matrix,P

=E,+iEy, g=v2, t=v3, ands= 6. The presence of a

azet
=—=—10 P/ 2E,/It —P*/ 0
M(2x6) 2 g z q common factor in front of a matrix means that all matrix

0 0 Pis E P elements must be multiplied by it. Also,
E; P 0 0 P alzz_f ()" dyPdr
M(3x6)= " %% 0 —Plq tE, P*Iq 0 |,
o0 P -E o=~ f (Y2 dlPdr,
-3P* 0 0 2P -2F e
g _ s P 4E. sP* 0 0 a%:_f (92" dg?dr,
X6)=—>=
M(5x6) 0 0 -sP 4, P* |’
(5) (6)q
2E, 2P* 0 0 -3P @5e=— f(tﬁ ) d, v
P00 2R o= — f (WO dydr
M(3><4)=%1 0 gP g 0 |,
26, 0 —-P —P* g — f(¢<4) &ySdr
-E, 0 -P 0 .
o -E, 0 P aesZ——f(t/fs ) dyiPdr
|\/|(4><5)=a45 —P* 0 E 0 ’
z ~
0 p* 0 E, )\ﬁﬁ:f (‘ﬂi(ﬁ)) WK‘ﬂi('B)dT

TABLE lll. Coefficients for symmetrized functions of various irreducible representatidtis

q

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

29 30 26 27 28 24 25 21 22 23 16 17 18 19 20

IR j
Ag 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Fiu 1 —-c7 Co ag Cs —C7 —chy C12 I, —Cin Ty —c5 bs Ca1 C1g Clo

2 1 1 1 1 1 as as as as as 0 0 0 0 0
Fay 1 [ —Clo az —Cio Cg —Cpp Ci1 Ty —cP a 3, b, —Cp 3o C20

2 1 1 1 1 1 —ay —ay —ay —ay —ay 0 0 0 0 0
Gy 1 Cy —Cg 1 —Cg cy —Ccg cy Cy —Cg 1 cy 1 Cy —Cg —Cg

2 cs —Cy -1 —cy Co —cj Ce (o3 —Cy -1 Ce -1 cs —c; —Cy
G, 1 c} —cy —bg Cy —C3 Cs -c, cy —ct —b; —cy 1 —C4 —c3 C

2 —Cs -c3 b, Cc, ct —C3 -c cy c} —bg Cs 1 c§ c, —Cy
Hg1 1 ci7 —Clg ag —Cag C17 Ci6 —Ci5  —Cls Cl —8s —Cis & —Cls Ci6 Cl

2 Cl4 —C3 —a —Ch Ci4 —C% Cas C3s —Cxp —ag  —Cy aio —C3 C36 C26

3 1 1 1 1 1 —ay —ay —ay —ay —ay as as as as as
Hg2 1 —cls T —as Ci6 —Ci5  —Cyg C17 c17 —Clg ag —Ci5  —8  —Cjs Ci6 Cl

2 —C3 C26 aio C36 —Cyp  —Cl3 Cis Cl4 —Ciz  —& Cos —ay C3s —C3% —Cxo

3 as as as as as 1 1 1 1 1 —ay —ay —ay —ay —ay
Hy 1 —Cag Co4 —by —C34 Cg C37 —C33 C23 —Cy7 bs Ci3 —a CT3 Cia —CIy

2 —Cy  —Ch bs Ca3 C37 Cog C34 —Cy  —Ch b, —Ciy & —cly —Ciz C13

3 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1 -1

Note: The coefficients for=1-15 are listed. The coefficients for the numbers below these valieaicide in the case of even irreducible representations
and differ in sign in the case of odd irreducible representations.
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TABLE IV. Values of B® andn,,.

B B# No.g N7 N26 N35 Ny

1 30 1 4 4 4 4
2 50  +(p-1) +4  +2(p—1) *+2(3—p) 0
3 5p *(p+1) 4 *2(p+1) F2(3+p) 0
4 30 1 -1 -1 -1 4
5 —-30 +1 +1 *3 *1 0
6 10 4 —(3p+1) 3p-1 2 -8
7 10 4 2  —(3p+1) 3p-1 -8
8 -10 +1 2 0 *+2 0

The lower index of a function denotes its ordinal number
in the basis set of the corresponding irreducible representa-
tion, which is denoted by the upper index. Here and below,
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(7£p)/q+i\65+19p

4t '

4Xp+iy25+2p

2s ’

Cos5,26=

C21,22

Coro=—— t C29,30~

to make the notation convenient, we replace the standard

notation of irreducible representations in the formulas by

numbers:Ag—1, F1,—2, Fp,—3, Gg—4, G,—5, H{V
—6, Héz)—>7 andH ,—8. Also,dr is the volume element
The matrlce$/l(2><7), M(3X7),M(5X7),M(4%X8), and
M(7X8) coincide, respectively, with the matriced (2
X6), M(3x6), M(5X6), M(5X6), andM(6X8) if we
replace the multipliers in the latter by, respectively,;,

p=+5, N*=\5x2p,
R*=5*p, U*=25+11p.

*)E-mail: roitsin@roklar.semicond.kiev.ua
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similar to the respectivergz . The expression fok g4 also

incorporates two similar irreducible representations belong-;

ing, however, to different levels, vizg=6=H{" and g
=7= ng) here the index in \ g4 is any one of the indices
within the irreducible representatigh The parameters g,

aqp, g, @7, (36, A37, andasz, are real, and the param—
etersasg, as7, aus, dag, aeg, and asg, imaginary. The
choice of the coordinate system is shown in Fig. 1.

APPENDIX B
In addition,
__(k23*, I(|34 (k|21 ’
6 7,8_ (k6 7, 8)* ki6£,17,8: _ (k|6278)* ,

DB=(BBSB)*1’2, Sg==8_onfom, whereo,#0 are the
different possible overlap integralthey are presented below
in decreasing ordéro,_g= [¢7 ¢;d7, wherei=2, 3, 7, 8,
14, 15, 23, and 2%ere and in other places in the text, for
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An investigation of the processes on &18i0) surface interacting with oxygen near the solid-

oxide nucleation threshold using x-ray photoelectron spectroscopy and atomic-force

microscopy is described. The nucleation threshold is the boundary between the temperature and
oxygen pressure regions where a phase transition with the formation of a submonolayer

oxide and a roughening transition caused by oxygen adsorption occur. Near the nucleation
threshold, either a random rough relief or a quasiperiodic structure is formed on a surface coated
with chemisorbed oxygen. The formation of the rough relief due to oxygen adsorption has

been interpreted within the theory of phase transitions as a result of vacancy clustering. A model
that allows one to describe the dynamics of processes on the surface near the nucleation
threshold in qualitative and in some cases in quantitative terms has been suggest2b8 ©
American Institute of Physic§S1063-776(98)01707-7

1. INTRODUCTION Si surface as lattice atoms leave the surface within desorbed
SiO molecules. At T=300 K, however, the rate of SiO de-
Effects resulting from the interaction between oxygensorption is negligiblgthe activation energy for SiO desorp-
and a silicon surface have attracted a lot of attention recentljjon i E=3.5eV); therefore, the emergence of
since these processes are interesting from the viewpoint afacancie¥’'® at T=300 K cannot be attributed to this pro-
both fundamental researci and various technological cess. We previoust) suggested an alternative mechanism of
applications’ It has been knowit~*°that the formation of  vacancy generation. According to Ref. 20, the attraction be-
a submonolayer oxide on a Si surface proceeds like a firstween oxygen adatoms and vacancies leads to a decrease in
order phase transition. As the temperature increases near ttige energy of vacancy formatiorE{) by AE (AE<O0),
oxide nucleation threshold, formation of the solid oxide iswhich is proportional to the oxygen concentration
replaced by generation of the volatile oxide S$i&.The es-  (|AE|xd,). Therefore, E, decreases and may become
cape of oxygen from the surface with the volatile oxide leadscloser to the temperature when the surface is exposed to
to a lower chemisorbed-oxygen coveragig of the surface, oxygen andé, increases. The number of vacancies in this
and whend., is lower than the threshold valug,, the oxi-  case should increase spontaneously without overcoming an
dation phase transition is terminated. activation barrier(vacancy instability. The attractive inter-
Recent investigations indicated that the general schemaction between the vacancies in a crystal with a sufficient
of processes on a silicon surface interacting with oxygervacancy concentratidhcan lead to the formation of vacancy
near the nucleation threshold can be rather complicated. Falusters, which can be observedTat 300 K.1"*® The con-
example, observations using scanning tunneling microscopgentration of adsorbed oxygen, however, could not be mea-
indicated that, during a short exposure to oxygefy,( sured in previous investigations of surface morphology using
~10 2) at room temperature, defects resembling vacanciescanning tunneling microscopy and high-vacuum reflection
vacancy clusters, and adsorbed atoms from the crystal appeslectron microscopg31'~1°?2t was suggestéd?that sur-
on the Si surfacé/'® At high temperatures T=800— face roughness can result from vacancy clustering, and that
950 K) and low oxygen pressurep+10'—10 8 Torr), the relief amplitude is determined by the number of clustered
the surface of the terraces becomes rough on the atomimacancies in the near-surface layer at a given point on the
scale>®°|t is knowrf that only the desorbed volatile oxide surface.
SiO is generated on a silicon surface under these conditions. It follows from the above statements that there is still no
Therefore, it seems that a roughening transition occurs on thelear picture of the processes on a silicon surface interacting
surface in the region of high temperatures and low pressuresith oxygen. The nature of the solid-oxide nucleation thresh-
This raises the question of whether the nucleation thresholdld, the mechanism of oxide formation, the generation of
is only the boundary of thep(T) region where the solid vacancies, and surface roughening have also remained un-
oxide is produced or whether it is the boundary between thelear.
regions where the oxidation phase transition and the surface This paper presents the results of an experimental inves-
roughening transition take place. tigation of the dynamics of the formation of a submonolayer
It is generally accepted that vacancies are generated onaxide and a rough relief on a (@00 surface near the nucle-
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ation threshold. The rough relief was studied by atomic-forcehe measurements the sample was annealed in ultrahigh
microscopy. The surface morphology was also monitored byacuum in the spectrometer chamber (1T orr, 1300 K.
scanning electron microscopy. The oxygen concentration oAfter this processing, we had a($00 surface atomically
the surface was measured using a technique based on x-rajgan within the sensitivity of x-ray photoelectron spectros-
photoelectron spectroscopy. This technique allowed us teopy and Auger spectroscopy.
monitor the accumulation of chemisorbed oxygen and oxide  During the measurements in the temperature range 800—
production in real time during exposure of the surface t01200 K, the sample was heated by an electric current which
oxygen. was passed through a wafer of the silicon being tested with a
We found that sequential changes in the way in whichthickness of~300 um. The current stabilization system al-
oxygen interacts with silicon take place in a narrow temperatowed us to maintain the sample temperature constant to
ture range of widthAT~30 K as the temperature is in- within =1 K during the measurements. This accuracy of
creased in the [, T) region near the nucleation threshold temperature stabilization was confirmed by the reproducibil-
studied. The regime in which the solid oxide is produced isity of the measurements of the total oxygen line intensity
replaced by oxidation of the rough surface, and at highegersus exposure time performed at close temperatures differ-
temperatures the rough relief is formed in the absence of thig by AT=1 K.
oxide (Sec. 3. The position of the nucleation threshold in the The technique for studying the kinetics of the initial oxi-
(p,T) region studied was derived from measurements of thejation of the Si100) surface was based on measurements of
characteristic time4,) for formation of the solid oxide as a the amplitude of the O oxygen peak as a function of ex-
function of temperature. Near the nucleation threshold thgyosure time in oxygen in a real-time mode and has been
onset of formation of the solid oxide is delayed until the described in detail elsewhet&The relationship between the
oxygen exposure timé,. When the exposure time<ty,  measured amplitudes of the ©11) and Si D (lg) lines,
chemisorbed oxygen is accumulated on the surface, and thgéh the one hand, and the oxygen concentration on the
time ty, increases with temperature. We also found that asj(100) surface, on the other, i.e., the calibration curve, was
rough relief is formed in the presence of adsorbed oxygen ofetermined using the technique described in a previous
the surface. Our results are in disagreement with earliepublication’? Additional evidence in favor of the adequacy
prediction$®?*of a narrow roughness size distribution, sinceof our technique is provided by the agreement between our
the relief observed is characterized by the presence of sparggsults and the data by Luet al.,?®> some of which were
quasiperiodic deep pits against a background of small-scalgbtained under the same conditions as in our experiments.
fluctuations of the surface helght under certain conditions. The surface roughness due to exposure to oxygen was
The processes on a silicon surface interacting with oxytested using a Solver P4-SPM atomic-force microscope. The
gen near the oxide nucleation threshold are analyzed in Secspatial resolution attained in a normal direction was
4 and 5. The experimental data can be described in terms 0.3 nm, and the resolution in a plane wasl nm. The
a competition between the two phase transitions. These areamgle between the sample surface and(#@9) crystal sur-
first-order phase transition with growth of a submonolayefface was within 0.1°. This accuracy is confirmed by the
oxide and a phase transition with surface roughening induceﬁnage of the origina| surface using atomic-force microscopy
by oxygen adsorption. In analyzing the growth dynamics of(see Fig. 4a Note that the actual spatial resolution of 0.3 nm
the submonolayer oxide near the threshold and in determingttained in the normal direction did not allow us to detect
ing the threshold temperatufpressurg(Sec. 4, we use the  atomic steps on the surface and 2D oxide islands. In order to
Volmer—Weber—Zel'dovich theory, taking into account the study the relief formed, we transported samples processed in
diffusive interaction between oxide islands and the blockinghe ultrahigh-vacuum chamber of the electron spectrometer
of the surface by thertt:'® The dynamics of surface rough- to the P4-SPM microscope. In the process, the sample sur-
ening is analyzed in terms of the theory developedface was coated by an oxide film with thicknes@ nm. The
previously***as a result of vacancy clusterif8ec. 5. The  value 2 nm determined the possibility of studying short-
model of processes on the silicon surface near the oxid@avelength fluctuations of the surface height on the relief
nucleation threshold allows us to explain the switchover beformed. The surface morphology was also monitored using a
tween oxygen-silicon interaction regimes and the features 0bSM-960 scanning electron microscope.
the surface relief discovered. In order to identify oxygen and silicon states in the ini-
tial oxidation stage, we used high-resolution spectra of the
O1s and Sid lines. As in earlier experimentd;}*1425-28ye
found that silicon atoms near the surface exist in four oxida-
The experiments were performed on an XSAM-800 x-tion states: $i*, wheren=1,2,3,4(Fig. 1, curvesa andb).
ray photoelectron spectrometer. X-ray photoelectron spectrA comparison between the Sip2spectra of clean and ex-
were excited by thé&, line from a Mg sourc€1283.6 eV). posed surface@=ig. 1) shows that the latter contains a shoul-
The spectrometer resolution at the Afy4 line was 0.9 eV. der on the high-binding-energy side relative to the gilide
The energy scale was calibrated using the €lihe (E, of clean Si(99 eV). According to Ref. 14 and Fig. 1, this
=284.6 eV). The sample was-type S{100 and had di- shoulder is due to Si atoms in different oxidation states:
mensions of &8x0.3 mnt. The sample surface was Sit*, SP*, SP*, and St*. The dotted lines in Fig. 1 show
chemically cleaned by etching in a 5% HF solution immedi-the respective components of the $i 8pectrum* The oxy-
ately before setting it in the spectrometer chamber. Beforgen spectrum around the ®line peaking at 531.7 eV also

2. EXPERIMENTAL TECHNIQUES
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3. EXPERIMENTAL RESULTS
Si2p
Our experiments were performed in the regiorpodnd
T near the oxide nucleation threshold. The line of this thresh-
old was determined empirically. In earlier experiméhts
the solid-oxide nucleation threshold was detected at rela-
tively high temperaturesT>1100 K and pressure®
>10"° Torr. Lander and Morrisofi found that the LEED
pattern typical of a clean Si surface disappeared after the
passage across this threshold. Later experiments demon-
strated that volatile SiO is desorbed from the Si surface at
temperatures near the threshold and that its flux increases
_— with the temperatur. Therefore, the existence of this
s " w0 boundary is attributed to a decrease in the coverage of the
Binding energy, eV surface with chemisorbed oxyge#d ) to values below the
) o threshold 6y, since oxygen atoms leave the surface within
FIG. 1. X-ray photoelectron spectra of §p»n a S{100 surface in differ-

ent oxidation states Si (n=1-4, dotted curves, 2, 3, and4) after expo- SiO molecules. This suggestion is supported by the tempera-

sure to oxygen =100 s, p=10"° Torr, T=921 K) (curve a and clean  ture dependencpy(T)=po exp(=Eoy/T), wheré Eq=3.80
surface(curve . +0.2 eV is close to the activation energy for the desorption

of SiO, which equaf®?E=3.5+0.1 eV. Hereafter the Bolt-

zmann constank=1 in our formulas. Since the difference

6.~ 04, drops near the nucleation threshold, one can expect
has a shoulder on the high-binding-energy side Tat that, in accordance with the theory of first-order phase tran-
=300 K. Decomposition of this spectrum into two Gaussiansitions, the growth rate of the oxide phase should decrease,
lines reveals that the shoulder is due to a peak correspondirand the characteristic time,, for the formation of a mono-
to a binding energy of 533.5 eV with an amplitude four timeslayer of the solid oxide on the surface should increase con-
smaller than that of the main peak at 531.7 eV. According tcsiderably. The position of the nucleation threshold was not
the interpretation suggested by Hollingerral,?® these two  determined in the present work in the region of pressures and
peaks correspond to the oxide-like bridging oxygen andemperatures investigated T=850-950 K, p=(4-10)
atomic nonbridging oxygen. X 10" 7 Torr].

The Si 2p spectrum corresponding to the same exposure  Figure 2 shows measurements of the total oxygen cov-
to oxygen €=100L, where 1=10° Torr-s) at room eragef= 6.+ 0 in both the chemisorbed and oxide states
temperature is similar to the spectrum taken from a clean Son the Si surface at an oxygen pressure &fl® ' Torr as a
surface with a small contribution of Siand Sf* states. In  function of exposure time in a narrow temperature range of
other words, Si" states which correspond to pure $i@o  width AT~35 K. Itis clearly seen at the lowest temperature
not appear at room temperature after relatively small expoT =890 K of this range tha# achieves a limiting value after
sures. At higher temperatures, thespectrum is an almost a long exposure time. This temperature corresponds to the
symmetrical peak atE,=531.8 eV with a small wing formation of an oxide monolayer on the surfaceé=(6.,
(hump on the high-binding-energy side. At the same time,~1, 6,,~0), which is supported by observations of'Sand
Si?* and St states corresponding to a silicon oxide emergeSi®* states of oxidized silicon. Note that the sticking coeffi-
in the Si2p spectrum(Fig. 1). This is in agreement with the cient of oxygen molecules on a silicon oxide surface is three
data obtained by Hollingeet al?° The numbers of oxygen orders of magnitude lower than the value on a clean silicon
atoms in the oxide and chemisorbed states were determinexdirface; therefore, the total coverage observed after an expo-
using a technique described elsewh&r@he technique is sure timet=800 s atT=890 K is determined only by the
based on measurements of the intensity of thepSiRe,  oxide, i.e.,0~ 8,, and 6.,~0. At the maximum temperature
which falls off owing to the reaction between oxygen and theT =925 K of the range studied, no oxide is produced on the
silicon surface. At submonolayer values of the oxygen covsurface during an exposure time b£810 s, and the final
erage#, where the oxide film thickness is smaller than theoxygen coverage on the surface is within 0.85,&0.15).
mean free path of Sif2 photoelectrons, the intensity; de-  Therefore, the temperature range 919-925 K, in which the
creases linearly ag increases. Assuming that the intensitiestransition from the regime of solid oxide monolayer forma-
of the Sﬁg and Sig lines, which correspond to silicon oxide tion to the chemisorption regime with a small value &f,
states(Fig. 1), drop because they are blocked by oxygen inoccurs, is the region of the solid-oxide nucleation threshold
the oxide state {,,) and that the ég and Sﬁg lines are at p=6x10"' Torr. At higher pressures the threshold re-
diminished by oxygen in the chemisorbed stadg,(, we can  gion shifts toward higher temperatures. This shift corre-
easily determine the ratio between the oxygen atoms in bothponds to the temperature dependence of the nucleation
the chemisorbed and oxide states. Thus, simultaneous metweshold pressurpy,.
surements of the S and O3Xs lines allow us to determine The absence of the solid oxide on the surface at the
the fractions of oxygen in the oxide and chemisorbed statesnaximum temperaturd 5 in this experiment can be as-
as well as the number of silicon atoms in a silicon oxide. cribed either to the fact that,,,,> T, at this oxygen pressure
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FIG. 2. Oxygen coveragé= 6.+ 6,, of the S{100) surface as a
function of time near the oxide nucleation thresholg=(6
X 1077 Torr): (1) 890 K; (2) 906 K; (3) 910 K; (4) 912 K; (5) 915
K; (6) 925 K.

or to the insufficient measurement time in comparison withof the solid oxide (Si* and St*). For this reason, the oxy-
the characteristic timer,, for the formation of an oxide gen coveragd,, at which the accumulation rate jumps can
monolayer. Figure 3 shows the tims,, in which the total be considered to be the threshold coverage for the onset of
oxygen coverage achieves=0.7, plotted against tempera- the silicon-oxidation phase transition near the nucleation
ture. The graph clearly indicates thay, increases rapidly as threshold. Note that the oxygen accumulation rate at the on-
the temperature approach&g= 905 K. Therefore, the tem- set of oxide layer growtht=t,,, depends weakly on tem-
peratureT =905 K can be defined as the threshold temperaperature. As is shown by Fig. 2, increases with tempera-
ture for oxide nucleation at a pressyre-6x 10"’ Torr. ture.
As follows from measurements of $i2zand OIs spectra Atomic-force micrographs of the @i00) surface after
at temperatures 962T<920 K, the oxygen on the surface exposure to oxygen under the conditions of experiments near
exists in both the chemisorbed and oxidized states, and th@e nucleation threshold are shown in Fig. 4. For an initially
surface is rougfiFig. 4). In this region, oxidation in an oxy- smooth surface, the measured change in the surface height
gen atmosphere leads to irreversible changes in the surfagger a scanning length of 310° nm is 0.2—0.3 nm(Fig.
morphology. In repeated experiments with surface oxidationig), which is within the spatial resolution of the instrument
in the same regime after removing the submonolayer oxidén the normal direction. The characteristic feature of the sur-
by heating the sample to temperatufes 1200 K in vacuum  face relief after an 800-s exposure to oxygen pat6
atp=10"° Torr, the previously recordeé(t) curves shown %107 Torr and T=925 K is a periodic pattern of sparse
in Fig. 2 could not be reproduced. deep pits against a background of small-scale fluctuations of
Note that the temperatufle=902 K coincides within the  the surface height. The average pit depttnis30 nm, and
experimental error with the temperature at which the time othe distance between thetla=800 nm. The rough surface
oxide monolayer formation dramatically increased ( relief turns up after exposure to oxygen throughout the re-
=905 K in Fig. 3. Thus, there is a temperature range near
the threshold in which the solid oxide is produced concur- Tox» S
rently with the surface roughening. At lower temperatures 1000
only a solid oxide layer is formed on the surface, and at
higher temperatures only the rough relief is formed under
conditions for oxygen chemisorption. 8001
Now let us discuss the changes in the oxygen accumu-
lation dynamics on the surface as the temperature varies
from its maximum to the minimum in the range studied near
the nucleation threshold. Figure 2 clearly shows that at the
minimum and maximum temperatures the oxygen coverage 400F
0(t) is described by saturating curves. At the minimum tem-
perature thed(t) curves are characterized by the timg for
oxide monolayer formation, and at the maximum tempera- 200f
ture they are characterized by the timg, for the achieve-
ment of a steady density of chemisorbed oxygen. At inter-
mediate temperatures, th#(t) curves have an additional
characteristic timey,, after which the rate of oxygen accu-
mulation alters considerably. After exposure times longefk g, 3. oxide growth timer,, as a function of temperature &=6
thanty,, there are states on the silicon surface characteristig 107 Torr. The dashed curve was constructed using(Bg.
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gion of parameters tested near the nucleation thresiselel 4. GROWTH OF A SUBMONOLAYER OXIDE NEAR THE
Fig. 3. The characteristic relief amplitude over a plane withOXIDE NUCLEATION THRESHOLD

dimensions of &4 um is <30 nm, and the characteristic
linear dimension along the plane 250 nm. At higher
temperatures]>940 K, the surface remains smooth within
the experimental uncertainty after exposure to oxyg€g.
4).

The growth of a submonolayer oxide has been studied
previously?!® within the phenomenological Volmer—
Weber—Zel'dovich theory of first-order phase transitions.
According to the concepts based on this theory, a submono-

. . . . layer oxide grows in the form of 2D islands, and this process
Hence it follows that the regimes of interaction betweenhaS been observed in experimeHt&325:263233 he growth

oxyger_1 atoms ant_j a @i surface change sequentla_lly NeAr ot islands in the vertical direction can be neglected since the
the OXId.e nu'cleat|.0n threshgld a; thg temperature mcrease&).(ygen sticking coefficient on a SiGurface is three orders
The regime in which the solid oxide is produced on the Sur¢ magpnitude lower than on a clean(830) surface® Ad-

face is replaced by the regime of oxide formation on theg,heq oxygen atoms are brought to island perimeters owing
rough surface, and at higher temperatures only surfacg, gyrface diffusion. Oxygen atoms are trapped by oxide is-
roughening in the presence of chemisorbed oxygen takegngs, and silicon lattice atoms, which are abundant in the
place. Note also that, near the threshold, the oxide is nahaterial, are incorporated into the islands concurrently.
generated immediately when the surface is exposed to oxyFherefore, the island growth rate is determined by the degree
gen, but only after a certain deldy,. Until this moment, of supersaturation of the adsorbed oxygen.

oxygen is accumulated on the surface only in the chemi- The phase transition with formation of a submonolayer
sorbed state. oxide proceeds when oxygen is constantly supplied to the
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surface from the gaseous phase. Owing to the diffusive intion also describes experimental data obtained at lower tem-
teraction between islands mediated by the concentration fielderatures, far from the threshditl. The measurements of
of adsorbed oxygen and blocking of the surface by growingr.(T) (Fig. 3) and the theoretical curve given by E@) are
islands, the critical island dimension increases with the exin qualitative agreement. The measurement gf however,
posure time. The growth rate is limited by the capture ofis higher than the theoretical values estimated from (Bg.
oxygen atoms on the island boundaries. The oxygen coveifhe 6,,(t) curves forT>915 K are in disagreement with the
age 6, due to the islands on the surface as a function of thealculations. In this temperature range the onset of the oxi-
exposure timd near the nucleation threshold .= 6y, is  dation process is delayed. The oxide growth takes place only

given by the expressidfit® att=ty, and 6.,= 6,. Finally, one can see in Fig. 2 that the
oxidation ratek=d#,,/dt is almost constant with the tem-
Oox= ( 1- ﬁ]) tanf?i, (1) perature T— Ty, and 6.,— 6y,) near the nucleation thresh-

0 Tox old. This observation contradicts E®), from which follows

k= (0en— 6y) %2 and henc&k—0 asby— Oy .

A —1 _ It seems that these features of the oxidation process
Tox—™ r— (Tth_T) y 90— QST, (2) . ™ .
[N 6, should be attributed to silicon surface roughening at tem-

peraturesT>915 K. If we describe surface roughening in

where 7=(a+Qs0) "%, « is the oxygen escape rat, is  terms of vacancy clusterirfg2*we must analyze the dynam-
the oxygen adatom cross sectidhjs the surface density of jcs of the accumulation of vacancies in the process of oxygen
oxide islandsy is the rate of adsorbed oxygen capture on theadsorption in order to account for these anomalies. When the
island perimetersgy, and Ty, are the threshold coverage of exposure time<ty,, the adsorbed oxygen is accumulated on
the surface with oxygen adatoms and the threshold temperghe surface. It is known that vacancies are generated when
ture for oxide nucleation,r, is the characteristic oxide |attice atoms leave the surface within SiO molecdi@hese
growth time,Q=p/y27mT is the flux of oxygen from the molecules form as a result of the short-range interaction be-
gaseous phase on the surfases the sticking coefficient, tween oxygen and Si adatoms from the cry8tllicon ada-
andA is a constant independent ®f,—T. The nucleation toms from the crystal turn up when Si lattice atoms leave the
threshold temperature is given by the expression first atomic layer owing to thermal activation and occupy

_ positions of adsorbed atoms on terraces, while vacancies are

P=Po eXp(—Ea/Tu), © generated in the first atomic layer. Hence, as a result of SiO
whereE,, is the activation energy for oxygen escape fromdesorption, excess vacancies should be generated in the first
the surface. WithE,=3.8+0.2 eV Eq.(3) adequately de- atomic layer. Inclusion of the long-range interaction between
scribes the experimental data obtained by Smith andacancies and oxygen adatoms in the mean-field approxima-
Ghidini®! at higher temperatures and pressures than those #Pn leads to the following expression for the equilibrium
our experiments. densityn(vo) of vacancies due to oxygen adsorpt?(?n:

The parameters of our experimenis~10~° Torr and
T~900 K) satisfy the conditions under which the interaction
between oxide islands is significat~I (L= JDris the Eo=Eo— OunT eXp(Ua_, IT), )
characteristic diffusion length of oxygen adatoms over time . )

7. andl~N~2 is the distance between islandand island where.Ua,U is. the de.pth of the rectangular potential well
growth is limited by the time for the incorporation of oxygen Modeling the interaction between oxygen adatoms and va-
into the oxide,»L/D<1, and these conditions were used in €@ncies. The value df,_, is unknown. Below we shall use
deriving Eq.(2). In fact, whenL~I~10"6 cm (the island Ya-»~0.1-0.5€V in our calculations.

density is estimated following Refs. 1 and 3 to be _ I_n accordanc_e with Ed4), the equilibrium vacancy den-
~102cm?), the diffusion coefficient of adatom® sity increases withd,. When the oxygen coverage on the
~L2/7~10 2 cmls [a~10"ts ! (Ref. § and QsQ Surfaceis

~10 2 s 1], which corresponds to a reasonable value of the Eo p( Ua—v)

activation energy E~1.7 eV. The inequality v<D/L gh=?ex T

n'¥=n, exp(— E¢q/T),

)

~107° cm/s is also satisfied with an activation energy

=1.8 eV for oxygen capture by an island, which is associthe effective energy of vacancy formation is close to the

ated with the passage of a silicon atom from the lattice to théemperature, and the number of vacancies and adsorbed lat-

oxide, whose activation enerdy~1.83 eV. tice atoms can increase spontaneously without overcoming
It follows from Egs.(2) and(3) that the coverage of the an activation barriefvacancy instability.

SiO, layer on the surface tends to zero and the oxidation time  Thus, there are three species on the surface near the

increases rapidly £,,—) as the temperature approachesnucleation threshold and at small exposure tirhes;, be-

the nucleation thresholdl—Ty,). This is a general property fore the onset of oxidation, namely vacancies, oxygen ada-

of first-order phase transitions and should not depend on thms, and silicon adatoms from the crystal, whose densities,

assumptions made. n,, N, Ng, are different from their equilibrium values. The
Figure 2 clearly shows that the dotted curve defined bykinetic equations describing their accumulation on the sur-

Eqg. (1) is in satisfactory agreement with experimental dataface, which consists of plane terraces and stepsdy, can

on the boundary of the oxide nucleation region. This equabe written as follows:
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n,=yn'2n®—yn ns—wn,, (6) By solving Eq.(6) numerically, one can analyze the kinetics

ng=—enang+ y1n¥n¥ — yn, ne+G.

Heree, v, andy; are the SiO desorption rate and the rates o
vacancy/Si-adatom pair generation and annihilation, respe
tively, n{® andn{?) are the equilibrium densities of vacan-

cies and Si adatoms. The generation of SiO molecules incor

porated into the first line of EJ6) is due to the short-range
interactiof between oxygen and silicon adatomsngny).

The last term in the equation far, takes into account the
vacancies moving into the crystal bulky=D,/a? [D
«exp(—E,/T)]. The flux G of silicon atoms from steps to
terraces in the approximation of a small frequency of ato
migration from a position on a step to a position on a brea
in comparison with the frequency of atom migration to a
terrace is given by the expression

1
ak)\no
wherew, is the Debye frequency, ! is the number of steps
per unit length on the surface, * is the number of breaks
per unit length of a stepk, is the potential barrier on the
way from a step to a terrace, angd is the density of surface
atoms of the crystal.
When no oxygen is supplied to the surfad@=0, n,

=0), the system of equatior{§) yields the equilibrium so-
lution

=

G=g(ny”—ny), -

(@)

g=wo

of the densities of different species on the silicon surface
until the onset of formation of the solid oxidé<tty,). The

Pesorption of SiO molecules, generatigannihilation of

silicon-adatom/vacancy pairs, and penetration of vacancies

fito the bulk are activation processes. For the numerical so-

lution we took the following activation energies of these pro-
cesses:Es=3.6 eV, E,=E, =12 eV, andE,=15¢eV.
These values are within the spread of values quoted in dif-
ferent publication$:**%' The energyE, has been estimated
at 2.8 eV3®

The coverage of the surface with oxygen adatofqsg,

=n,/ng, as a function of exposure time is given in Fig. 2

mtdashed ling It is clear that measurements of the total oxy-

en coverage of the surfac@+ 6,4, are in satisfactory
agreement with calculations @éf{t) at times before the onset
of oxidation,t<t;,. Hence, there is a good reason to suppose
that att<ty, all oxygen is in the chemisorbed state. This
assumption is supported by the absence d&f %ind St*
states in the x-ray photoelectron spectra<aty,.

Calculations of the oxygen coverage and the concentra-
tions of vacancies and silicon adatoms as functions of expo-
sure time for temperatures of 920 and 930 K pt
=10"% Torr are given in Fig. 5. It is seen that the numbers
of vacancies and oxygen adatoms increase with the exposure
time at both temperatures near the oxide nucleation thresh-
old, whereas the number of silicon adatoms drops. This is
caused by the formation of volatile SiO molecules. The



140 JETP 87 (1), July 1998 Borman et al.

" S formulas with a=e(ng(ty)). Then the value off,, as a
function of pressure, temperature, oxygen coverage, and ex-
posure time in the threshold region is expressed by Eqs.
and (2), but oxidation starts at the timte=t,,(T,p), as was
observed in the experimentBig. 2. The experimental fact
that the oxidation ratk does not decrease near the threshold,
which contradicts the theoretical predictions, can be attrib-
uted to the closeness bf, andtg. For this reason, the two
phase transitions, namely oxidation and surface roughening,
are observed simultaneously, in agreement with the experi-
mentally established oxidation of a rough surface, which
should have excess vacancies. Since the solid oxide iISiO
80 910 930 T.K formed by the short-range interaction between a vacancy and
an oxygen atorf® the oxidation-limiting rate of incorpora-
FIG. 6. Temperature dependence of the tigen which the chemisorbed-  tjgn (v) of an oxygen atom into a vacancy on an island pe-

oxygen coverage achieves the threshold value at pressures of : e
X1077 Torr (1) and 10°® Torr (2). Points—experimental data for these ﬁphery should increase under these conditions.

pressures.

400

300

200

100,

5. Si(100) SURFACE ROUGHENING NEAR THE NUCLEATION

THRESHOLD DUE TO ADSORBED OXYGEN
curves also demonstrate that at lower temperat(@26 K)

near the threshold the tig, at which the threshold oxygen Let us analyze the conditions under which a rough relief
coverage is achieved (i) = O] is smaller thartg, when s generated and its geometrical parameters after exposure of
fcn attains the valuedy, specified by Eq(5). Under these the surface to oxygen. The rough relief is generated under a
conditions, the oxide grows on the surface at a low vacanc¥onstant flow of oxygen molecules incident on the surface,
density, and the surface may remain atomically smooth. Ajyhere the conditior(5) for the activationlesgspontaneoys
higher temperature930 K) the inverse condition is satis- generation of vacancies is satisfied. For this reason, a silicon
fied, t,>tg . In this case, spontaneous growth of the vacancysurface adsorbing oxygen is a source rather than a drain of
density starts earlier than oxidation, ang can achieve a vacancies, whereas a flow of vacancies into the bulk is al-
value sufficient for vacancy clustering, and a rough relief isways impeded by an activation barrier. The bulk density
formed on the surface. This process will be discussed in Se(ﬁu(tyz) of isolated vacancies in the near-surface |aye|’ as a
S. function of the distance from the surface Z=0) and the
Calculated plots of the time at which the nucleation-time t of exposure to oxygen before the onset of surface

threshold oxygen coverag, is achieved as a function of roughening is determined by the standard solifi@f the
temperature at two pressuresp<6x10 ' Torr and  diffusion equation

10" Torr) are shown in Fig. 6. It is seen that a higher tem-
perature corresponds to the sampet the higher pressure, in _n 2
agreement with experimental data plotted in the same figure.  Jt v 9z°

Note that the flux of SiO molecules as a function of exposurgyith the boundary conditiom,(t,0)=(n,),-o/a [where
time calculated at different temperatures are in qualitativetnv)zz0 is the time-dependent surface vacancy density,

?hgfeeme”; with efxtpifim?nia' détdt Ttht'ﬁ result Confﬁrms which satisfies Eq(6)] and the initial conditionn,(0.2)
€ correctness o1 taking INto accoun € maln surrace pro- (o 0) ; il f
9 Pro=n(©) " wheren(? is the equilibrium bulk vacancy density.

cesses included in E¢6). 3 o The surface vacancy density as a function of exposure
Let us discuss features of the silicon oxidation procesgme has been derived in Sec. 4 without taking into account
near the nucleation threshold. The slow variationdgf at  he interaction between vacancies. The conditions for their

<1y, leads us to a conclusion that the phase transition with;stering should be determined with allowance for this in-
the formation of Si@ has a quasistationary character near the[eraction. The interaction between vacancies4) in the

threshold. Therefore, in describing the conditions for the ony, ik was discussed in an earlier publicatfdrin a nonideal

set of oxidation, one can perform averaging in the first line ingrysta) which contains defects in the form of substitutional
Eq. (6), which describes the variation of,, by representing i rities, spatial correlations of vacancies give rise to an
ny(t) as a slowly descending linear function of time for e tive long-ranger(=>a) attraction between vacancies. At
~tn. As a result of this averaging, ghe concentratidit)  gistances ~a vacancies repel one another since one cannot
can be replaced b@”s(tth»:[r_‘g J+nd(tm) /2. The quasis- place two vacancies at one site. It is well known that near-
tationary solution of Eg(6) for n, allows us to determine the surface relaxation and reconstruction take place in silicon,
condition for the onset of oxidatioriy(ty,) = 6. Equation  and when oxygen is adsorbed B&900 K, dissolved oxy-

(2) for the oxide-phase coveragk, can be easily general- gen atoms are detected in a near-surface layer with a thick-
ized to the case o andn, weakly deviating from their ness<100 nm3’ We assume, therefore, that the interaction
equilibrium values in the region near the threshold by replachetween vacancies in the near-surface layer is similar to that
ing « in the first line of Eq.(6) for n, and in the subsequent in the bulk of a nonideal crystal. Note that observations of

an, a°n,




JETP 87 (1), July 1998 Borman et al. 141

vacancy clusters on the silicon surface using scanning turef atoms replaced by clustered vacancies in a near-surface
neling microscop$’8give evidence in favor of attraction layer of thicknessH, where the phase transition with va-
between vacancies. cancy clustering takes place. Since open pores are generated

Hereafter, as in earlier publicatiofi$?*we describe the (see beloy, the depthh of the rough relief at a given point
interaction between two vacancies using the model potentiain the surface is proportional to the density of clustered va-
cancies at this point:

OO! r<a-|
V(r)={ —&, asr=b, 9) h=&H/no. (12
0, r>b. Therefore, the order parameter is the amplitude of surface

. . roughness times an arbitrary multiplier.
In our estimates, we assufii¢hat the parametet in Eq. (9) The Landau theory considers a phenomenological ex-
is of the order of the interatomic distance, the attraction re-

ion is limited by th ditiob<10a. ande—~0.1 eV pansion of the free energy in terms of the order parameter
gion is limited by the conditiob=10a, ands~0.1 eV. near the transition point. The density-functional

Surface roughening due to the adsorption of 0Xygen aty, o ajign?3.24 developed by Devyatko and Trofthfor a
oms was descnb_ed as ab|:|)_has_e %?‘221“0” W'tg va_<|:a(;1cy C|u§§/stem of interacting classical Brownian particles in a me-
tering in our previous publicatiorfs: more detalled ac-  yj;m not far from equilibrium allows one to calculate the

count of the theqry deserves a separate pUb“Cat'on' In thigsefficients of this expansion. The equation of motion for the
section we only interpret our experimental data in terms OfFourier transformé,(t) of the order parameter reads as

conditions under which the silicon surface is roughened an llows:23:24
discuss a plausible mechanism of this process, features of the
rough relief detected in experiments, and causes of the c?_fk__D kza—Fk 13
switchover between oxygen-silicon interaction regimes near gt T
the solid-oxide nucleation threshold. L L L
The phase transition with vacancy clustering was de- _ 2 3 4
scribed earlier in terms of the Landau thedtyThe order Fi=g it 3Bt gl é (14

Barameterg is the dewg’uon&nv of the vacancy density The terms proportional t@ﬁ and §‘k‘ in Eq. (14) for F, are
n(t,r) due to the formation of vacancy clusters in the near-giapilizing” factors for the new state of the near-surface
surface layer from the average densityof isolated vacan-  |ayer of thickness [Eq. (12)] near the rough surface. The
cies: coefficients\, B, andI in Eq. (14) for F, are functions ok
£(t,r)= 5nv(t,r)=ﬁ,,(t,r)— n, . (10) andb, which are parameters of the model poteni@lof the

_ _interaction between vacancies:
The vacancies generated accumulate on the surface during

. N . . g n 1 2
the exposure timé~tg and diffuse llnto.the near-surface Ne=1——f(kb), B=—, I'=—y, (15)
layer of the crystal. The concentratiory is a function of n, n, (n,)
both the distance to the surfazeand the exposure timg where
and it is determined by the ratio between the rates of vacancy
accumulation(see Sec. ¥and diffusion. Let us first discuss 3 1 sin(kb) cogkb)
the phase transition with vacancy clustering in a _spatial_ly N i e T—1° f(kb)=3 (kb)® ~ (kb)2
homogeneous system, where the mean concentration of iso- (16)

lated vacancies is uniform but time-dependent: .
v 1es 1S unl utt P In accordance with Eq914)—(16), the free energy”

n,=n,(t,z)?=n,(t). =TF is a function of the concentratiam, of isolated vacan-

. L . cies and therefore depends on the oxygen pressure and tem-
This approximation allows us to account for the switchover . .
perature, as well as the exposure time. Using Et3—(16),

between the oxygen-silicon interaction reginfezidation to one can determine the conditions for the phase transition

roughening, the upper temperature at which a rough reliefis .- vacancy clustering. To this end, one should analyze
formed, and the features of the rough surface. As will be . .

o ..._solutions of the equations
shown below, the characteristic time of the phase transition
with vacancy clusteringsR") under the experimental condi- F (&0 =0, a7
tions is much shorter than the accumulation titpeof iso-

lated vacancies. Therefore, we also assume rihas con- IF i/ 9€=0. (18)
stant(or quasistationajyover the small characteristic time |n experiments at constant pressure and temperature, the con-
t~ 7R in which the fluctuationssn,(t,r) develop, and the centration of isolated vacancies on an initially smooth sur-
argumentt (t~tg>7"") in the functionn,(t) determines face increases with exposure time, whereaslecreasefsee
only the valuen, at the momentg of the onset of vacancy Eq.(15)]. Whenn, is sufficiently small and\.,>B?/4T", Eq.
clustering. Then (18) has only one root,=0, which corresponds, in accor-
~ dance with Eq(12), to the only stable state of the vacancy
&(t1)=an, (L) =n,(t,r) =, (tg). 1D subsystem, ngmely the smooth surfacexf B%/4I" a sec-
Under this definition of the order parameter, the quantityond minimum of the functiorF,(&,) appears, and it corre-
&/ng (whereng is the density of lattice atomss the fraction  sponds to a metastable state of the surface. At even smaller
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A=2B2/9I" the curve ofF(&,) touches thet, axis at two -
points, namelyé, ;=0 andé&,,=(2/3)B/T". This means that

the smooth £,=0) and rough &= &,=n:/3) states of the

surface have the same energy. These two states are separated

, 10

by a potential barrie@ to oxide nucleation equal to the peak 15}
value of F at
B n 10f 4
§3~ 6T~ 12"
o S
At \=2B?/9I" the barrier height is 5 i e
(n;)?Ta’ Ta® 1 SR S N\ O
= =Y 7 _102— ) 1 N3 4 5 kb, 1072
Equation(19) indicates that, in the case of the long-range =57
attraction between vacancies described by potei@afor I i
b~10a and e~0.1 eV at the temperaturéb<10® K, the _10}

guantityQ/T is much smaller than unity. Therefore, the tran-
sition from the smooth state of the surface wii+=0 to the
rough state withg,=2B/3I'=n;/3 can proceed without
overcoming a nucleation barrier. In this sense, surface rough-
ening is similar to the relaxation of unstable states upon spin-
odal decompositiofit

It follows from the foregoing that the phase transition
with vacancy clustering should start at an exposure tigle  FIG, 7. Characteristic development time of tkia mode of the order pa-
a temperaturd, and a pressurg at which the concentration rameter 7, = 7,(b?/D,) ! versuskb calculated from Eq(23) for »—1
of isolated vacancies, (t,T,p) satisfies, with allowance for =10*. The following points are marked on the abscissa ais:(kb) pin

Egs.(17) and(18), the relation B—(kb)o; C—(kb)s; D—(kb)minv3.
2B2 1 n,(tg, T,
e —Mf(kb). (20)
K For »=1, when\ <0, the quantityr, is negative and

The functionf (kb) takes a maximum value equal to unity at has the sense of the characteristic time for fluctuation growth
k=0 [Eq. (16)]. Therefore, the conditiori20) for surface (not decay (Fig. 7). In accordance with Eq23), this in-
roughening with a wave vectok close to zero[when crease takes place in modes with the wave vedtondich

f(kb)=1] s satisfied at the minimum vacancy concentrationsatisfy the inequalities
8 0<(kb)2<(kb)2=10(1—1/7). (24)
N, (tr, T,p)=gNS(T). (21) ’
These modes of the order parameter are unstable. The most
In the initial stage of the phase transition, where fluctuationg@pidly developing mode has the wave vector
in the va(_:ancy_concentratl_on are smgll, we can retain only (kb)rznin=5(1—1/7l), (25)
the term linear ing, on the right-hand side of E¢13). Then
the characteristic time, for the kth mode of the order pa- and its characteristic timer,| has the minimunm( ) min|:
rameter in the initial stage of the phase transition is given by 20b2 1 1
the expression (Tminl = = =— ———7— —.
M3 D, (Kb)min 7

me=(\D, k?) L. (22

(26)

_ _ _ In accordance with Eq23), when»=1 and\ <0, the
Taking Eq.(16) into account, we can transform this expres- gevelopment of unstable modes whh-k.,, should be ac-

sion forkb<1 into companied by the development of small-scale fluctuations of

1 (kb)? n the vacancy densityFig. 7) with characteristic relaxation
T =y (;— ) + 5 }kZDU . 7= n—z (23)  times 7 <|7 mn/, Whose wave vectdk satisfies the inequal-
v ity
It follows from Eq. (23) that for <1, where\, =0 for all (kb)?=3(kb)2, . (27)

small k, the quantityrk_1 is positive and thatrk‘l—>0 as
kb—0. For 0<\,=<1/9 this means that when the “energy” Thus, the resulting shape of the rough surfacerfpenS
condition (20) for the phase transition is satisfied, the va-(7»=1) should be determined by the development of un-
cancy system is in the fluctuation region and that criticalstable modes whose wave vectors belong to a narrow region
slowing takes place, i.e., the relaxation frequency tends toeark,,, and small-scale fluctuations with wave vectors sat-
zero as the size of the fluctuations increases. isfying Eq. (27).
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drops; therefore, in accordance with E¢®.and(7), the flux

of SiO molecules desorbed from the surface should grow. As
a result, the flux of SiO molecules desorbed from the rough
surface is considerably largémore than one order of mag-
nitude than the flux from the smooth surfaén the long

run, the concentration of adsorbed oxygen decreases as the
surface is roughened, and the oxide nucleation threshold can-
not be achieved.

The free parameters of the model are the parameters of
the a-v and v-v interaction potentials:U,_,=0.3 eV,
U,.,=0.1 eV, andb=10a. Variation of these parameters
leads to a shift of the temperatufig; with respect to the

sl

700

500

3001

100 threshold temperatur&,, but Ty, is still smaller thanTy,
since 74, (Ty— T) ~ Y2 Therefore, the switchover from the
ol0 920 930 940 regime of solid oxide formation to that of surface roughening
T.K should occur near the oxide nucleation threshold at a tem-

T iy perature lower than the oxidation threshold temperature at a
FIG. 8. Temperature dependence of the tirgen which the critical con- . . . .
centrationn? is obtained(curve2) and of the exposure tintg, for the onset given pressure. This is in agreement with our observations of
of oxidation (curve 1). the switchover between oxidation and surface roughening in
the region of temperatures and pressures aboveti&/T)
curve. AtU,_,=0, vacancies are generated in our model as
The activation energy for vacancy diffusion in silicon a result of SiO desorption due to violation of the balance
is*® E,~1.5 eV, and the diffusion coefficient &&=900 K is  between formation of vacancies and adatoms from the crys-
D,~10" 7 cn?/s. Therefore, it follows from our estimates tal. In this case, the vacancy density does not reach the
that, if a rough relief with a maximum characteristic ampli- critical valuen; needed for development of unstable modes
tudeL=5x%10? nm has been formed as a result of the phasat the kinetic parameters selected in our calculations.
transition with vacancy clusteringrig. 4), we have kb) min The plot of T4, versus pressure defines the boundary
~4X102, |7 minl=6's, andp—1~10"* for b=3 nm. between the regimes of planar surface oxidation and surface
Note that the vacancy accumulation titge- 10? s (Fig.  roughening induced by oxygen adsorption. In the region of
5). Thereforetg>| 7 minl Under the experimental conditions, temperatures and pressures under consideration, this bound-
and the densityn, of isolated vacancies can be treated asary replaces the threshold line for oxide formation specified
quasistationary in determining the clustering conditions, avy Eq. (3). Our model, however, does not yield the exact
was done in deriving Eq13). position of the new boundar¥, (p), since it does not apply
Let us discuss the switchover from the oxidation regimeto tg~t;,. Around Ty, , oxide islands and surface roughness
of the interaction between oxygen and silicon to surfaceshould develop simultaneously. This corresponds to the ob-
roughening. The relatiom,(tg)=n; (7=1), which deter- served oxidation of the rough surface. In this region of tem-
mines the condition for the formation of unstable developingperatures and pressures, interaction between two order pa-
modes due to vacancy clustering, yields, with consideratiomameters describing the phase transitions with oxidation and
of Eq. (6) for n,(t) and Eq.(16) for ni(T), the timetg as a  roughening should be taken into account.
function of oxygen pressure and temperature. The curve of Our model also yields an upper temperature at which the
tr(T) for p=1x10"° Torr corresponding to the condition surface roughness can develop. It is the temperalysen
n,(tg) =n; is plotted in Fig. 8. This figure also shows a plot Fig. 8. As the temperature rises, the rates of both SiO forma-
of the exposure timé,,(T) for the onset of oxidatiorithe tion and desorption increase, and, consequently, the resulting
time when the oxide nucleation threshold,,= 6y, is  oxygen concentration on the surface drops. At the same time,
achievegl The curves indicate that at low temperaturds ( the oxygen coveragéy,, at which the effective energy of
<Tg1) tr>ty, i.e., the oxidation process starts before thevacancy generatiok.4~T, also rises withT [see Eq.(6)].
vacancy concentration needed for the development of unFherefore, the conditiori6) for the spontaneous generation
stable modes according to E@3) is achieved. At low tem- and clustering of vacancies cannot be satisfied above the
peratures the rat& of the formation of adatoms from the temperatureTy,. Then the crystal surface should remain
crystal and the rate of SiO desorption are sthdlhe oxide  smooth, in agreement with our experimental ddty. 4d).
islands formed after the exposure timgare drains for ad- In this connection, some attention should be focused on the
sorbed oxygen atoms; therefore, their concentration deexperimental results reported by Wuret al.! who estab-
creases when the islands are formed, and the condifipn lished the temperaturé=950 K, below which terrace sur-
for the spontaneous generation of vacancies can no longer li@ces were roughened and above which only steps were af-
satisfied. fected, whereas the terrace surfaces remained smoofh, at
At T>Ty, we havetg<ty,, and the surface is roughened =5X 108 Torr. Our model does not describe the roughen-
before the solid-oxide nucleation threshold is attained. In thisng of steps, since they were taken into account only in the
case, the number of steps, which are sources of adatoms froaveraged sourc& of adatoms from the crystal in E7).
the crystal, increases, and the average distance between them Let us discuss the geometrical parameters of a rough
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surface(Fig. 4). Within our model the growth in the density L/L; should be higher tha#3, i.e., sparse deep pits should
of isolated vacancies should continue at timtesr, and emerge against a background of small-scale fluctuations of
when the condition for emergence of unstable modgs, the surface height. This corresponds to the surface shown by
=n¢, is satisfied owing to the high rate of the spontaneoud-ig. 4c.

generation of vacancies. Therefore, the formation of a rough The depth of the sparse pits can be estimated as the
surface with characteristic geometrical parameters continug®aximum depthH at which the vacancy concentratiory

as vacancies are accumulated on the surface and in the neaprresponding to the onset of unstable mode development is
surface layer. As was noted above, formation of the rouglachieved:

relief leads to a notable increase in the flux of evaporated
SiO by more than one ordeand hence, to a decrease in the

OXygen coverag@, on the surface. For this reason, the oxy-pere Dy, is the vacancy diffusion coefficient in the bulk.

- .
gen coverag@, can drop belowdy, at a certain momerty iy ca the rough surface with the maximuncorresponding

after the onset of vacancy clustering. Then the condition fonE0 the average distance between deep pits is formed during
spontaneous vacancy generation is violated, and the vacangy, timet, , then

concentration becomes smaller than the clustering threshold

ng. The flow of vacancies from the surface into the near-  t,~L?%/Dq, (29
surface layer, where they form clusters, also varies during

surface roughening_ In order to determine the tmajuring Whel’eDs iS the Vacancy diffusion CoeffiCient on the Surface.
which the relief is formed, and the distribution of roughnesslt follows from Egs.(28) and(29) that the ratio between the
amplitudes as a function of time, one should calculate agaiflepth of the sparse pits to the distance between them is
the densitieq,, ng, andn, over the time intervat; with
allowance for their dependence on the order paramé&ter
which is equival_ent to taking into account the'surface cuva- o silicon, the activation energies for diffusion g
ture. The experimental dgta needed for te;tlng solutions of 1 5 ay (Ref. 37 and E;=0.7 eV (Ref. 3§. Therefore,
this proble_m are not _avallable; theref_ore this problem and § ;4 <30 atT=900 K. This is in agreement with our obser-
more d_etalled analysis of the dynaml_cs of surface rogghervations of the relief formedFig. 40.

ing merit a separate study. Here we discuss only the simplest Thus, the proposed model of surface roughening due to

results deriving from our model, which allow us to under- o, qen adsorption, as a result of a phase transition vacancy
stand the mechanisms forming the relief shown in Fig. 4Dy stering allows us to account for the switchover between
The latter is characterized by sparse and almost periodif,e oxygen-silicon interaction regimes, the existence of an
deep pits against a background of small-scale surface fluGyner temperature limit at which surface roughening takes

tuations. place, and the reasons for the appearance of a relief with

It follows from the above statements that the rough sur—Sparse deep pits against a background of short-wavelength

face is shaped under nonstationary conditions, in which thg,,iace fluctuations. Note that, in order to account for these
time-dependent source of vacancies turns off at the moment oy res of the process, we needed neither calculations of the
t;. The presence of a developed rough relief indicates thafme ¢ in which the relief is formed nor consideration of the
ti>|mcmn| and the vacancy concentration on thec surfaC&jensity of isolated vacancigsr other particlesas a function
(n,)2-o reaches a value satisfying the conditiof=n, (7 of the order paramete; i.e., the dependence of the intensity
=1) for unstable mode development. If we assume, as Wagt sy rces/drains on the surface curvature. A tentative expla-
done previously, that the vacancy concentration in a certaiation of this fact is that the formation of the relief observed
layer is independent of the distanzéo the surface, then the ;105 the timet;=| 7 mads and the rangelk of unstable
rough surface is formed at timeg=| 7 min| as a result of the 1o e s Jittle affected by changes in the sources/drains of
development of unstable modes with wave vectois the \cancies due to surface roughening. This is the traditional
interval Ak around the pointKb)min [EQ. (25)] and the re- 5500500 to interpreting such features of the decay of un-
laxation of modes with wave vector&lf) ;<v3(kb)min. AS  giaple states which can be fully described by determining the

the ratio t;/| 7 min| increases, the intervalk widens and  .,ngitions for the onset of decomposition and revealing un-
(kb); drops. These conditions correspond to the relief Show%table, rapidly growing modes of the order parameter.
in Fig. 4c, but not Fig. 4b, since the ratio between the char-

acteristic distance between the deep pits and the character- The authors are indebted to A. V. Khmelev, V. N.
istic size L;=2w/k; of short-wavelength fluctuations is Ryabokon’, and R. V. Lapshin for their participation in ex-
L/Ls=4. periments, to V. V. Rossinskfor performing some calcula-

As a result of vacancy diffusion from the surface into thetions, to V. N. Tronin, O. V. Tapinskaya, and A. V.
bulk, the density at a depth from the surface isn,), Emel'yanov for discussions of theoretical aspects of this
<(n,),=0- If pits with depthh are formed, this means that at work. The authors acknowledge the financial support from
this depth @,)n=n; and t;~|7, m,|. Therefore, in accor- the Russian Scientific Cent&esearch Institute for Physical
dance with Eq.(22), modes withk close tok.,, become Problems This work was part of the Surface Atomic Struc-
unstable at a distance from the surface, andkp),, is  tures project within the programopical Problems in Phys-
smaller than on the surface singe- 1 is lower. Hence, open ics of Condensed Medisponsored by the Ministry of Sci-
vacancy pores should be seen, and the characteristic rat@mce and Technology of the Russian Federation.

H~(t;Dy) "2 (28)

H/L~D,/D%2.
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The field dependence of the magnetoelectric effect and longitudinal magnetostriction of
Ga_,Fe 05 single crystals is studied in magnetic fields up to 200 kOe in the temperature range
from 4.2 to 300 K. It is shown that the magnetoelectric effect in these materials is

determined mainly by the toroidal momentand is not related to magnetostriction, as was
previously theorized. A new method for determining the toroidal moment by measuring the electric
polarization in a strong magnetic field is proposed. The value of the toroidal moment of the

unit cell in Ga ;4 g5 is calculated:T=(T,,0,0), whereT,=24.155.5 A per unit cell.
Experimental data are analyzed using a theory of toroidal spin ordering, which gives good
agreement with experiment. @998 American Institute of Physid$$1063-776(98)01807-1

1. INTRODUCTION was measured using the method described in detail in Ref.
Since the early studies of the Fe—Ga oxides GEe,Os 10. The magnetic measurements in strong pulsed magnetic
fields were performed by an induction method, and the mea-

(Refs. 1-6, the interest in investigating them has been L ) R
largely due to their combination of ferromagnetic and piezo-SUrements in static magnetic fields up to 12 kOe were per-

electric properties. The crystal symmetry of these materialformed using a torsional anisometer with autocompensation.
is described by th€3, space grouf.It should be noted that AS is shown in Fig. 1, the values of the magnetic moment
Ga,_,Fe,0; was the first ferromagnet in which a linear mag- @nd the Nel temperature increase with increasing Fen
netoelectric effect was discoveretand that its magneto- concentration, in agreement with Ref. 3. Measurements of
electric susceptibility exceeded the values previously obthe magnetization and torque curves show that the easy mag-
served in antiferromagnets. An off-diagonal magnetoelectrigietization direction in the compounds investigated is ¢he
effect P,(H,) was observed in Ref. 7. It was theorized thataxis of the crystal with the strongest magnetic anisotropy in
the magnetoelectric effect in GaFe,O; may be caused by thebc plane. The relatively large value of the magnetization
the combined action of the piezoelectricity and magnetostricis apparently due to the uncompensated ferromagnetism, in
tion inherent to these materials. Testing this hypothesisagreement with the experimental results of neutron diffrac-
however, would require data on the magnetoelastic propetion investigations.

ties of Ga_,Fe O3, which are presently not available in the A linear nondiagonal magnetoelectric effectP(
literature. There are likewise no data from measurements of o\, ;H.) was previously®***?predicted on the basis of a
the magnetic properties of these crystals in strong magnetisymmetry analysis and discovered experimentally in
fields. The purpose of our work was to study the magneticGa, _,Fe,O; crystals. We measured not only tHg,(H,)
magnetoelastic, and magnetoelectric  properties  oturve, but also thé.(H,) curve in pulsed magnetic fields
Ga,_xFg0;3 in strong magnetic fieldgin 200 kO¢ and to  yp to 200 kOe for the purpose of discovering the difference
establish the existence of toroidal spin ordering inpetween them, since a difference between the off-diagonal
Ga _xF80; which is allowed by the symmetry of these components of the magnetoelectric susceptibility tensor is

crystals. critical for the existence of a toroidal moment. The investi-
gations were carried out for the composition;Gfe, 505,
2. EXPERIMENTAL RESULTS since there are neutron-diffraction data regarding the mag-

A combined investigation of the magnetiC, magnetoe|asnetic structure for jUSt this Compositiéﬁ.” The experimen-
tic, and magnetoelectric properties of GaFg O, (x=0.7,  tal results that we obtained are presented in Fig. 2. As can be
0.85, and 1.psingle crystals was performed in strong pulsedseen from Fig. 2, the values @,(H.) (Fig. 2a greatly
magnetic fields up to 200 kOe in the temperature range frongxceed the values d@.(H,) (Fig. 2 obtained at the same
4.2 to 300 K. The single crystals were grown in a melt of themagnetic fields. We note, however, that a comparison of the
(Fe,0;—Ga04)—(Bi,O;—PbR) system with slow cooling off-diagonal susceptibilities is insufficiently well posed in
from 1100 to 850 °C. The magnetostriction measurementsthe present experiment, since the magnetic states of the crys-
were performed using a quartz piezoelectric transducer gluel for Hiic andHllb differ. To compare the different compo-
onto the single-crystal sample. The magnetoelectric effeabents of the off-diagonal susceptibilities in the same mag-

1063-7761/98/87(7)/6/$15.00 146 © 1998 American Institute of Physics
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o, G-em®/g this compound. Measurements of the diagonal magnetoelec-
» tric effect in Ga 14~ =05 along theb andc axis revealed a
16+ ". quadratic dependence of the electric polarization on mag-
@, netic field, in accordance with the theoretical predictions.
ol og To establish a possible link between the linear off-
% ®e 3 diagonal magnetoelectric effect and the magnetoelastic inter-
% actions, magnetostriction measurements were also per-
formed. Figure 6 shows the field dependence of the
'S magnetostriction along tha, b, andc axes. According to
° Fig. 6, the componentd,, andU . of the longitudinal mag-
netostriction depend linearly on magnetic field, whilgy
i.. exhibits a nonlinear dependence. A linear field dependence
0 100 200 300 was also observed for the transverse componkntsand
T.K U, of the magnetostriction. A theoretical analysis of the

. ___experimental results obtained is given below.
FIG. 1. Temperature dependence of the spontaneous specific magnetization

of the Ga_,Fe O; system:1—x=0.7; 2—x=0.85; 3—x=1.

o0
1,,
@

®
~N

3. DISCUSSION OF RESULTS

netic state of the crystal, the electric polarizatiétsand P, 1. According to Refs. 13 and 14, a GaFg0; crystal
were measured with the magnetic field oriented along th@f'is aG, ferrimagnetic structure with four_ inequivalent coor-
diagonal in theoc plane. The dependence of the componentglinates for the Fel, Fe2, Gal, and Ga2 ions. As follows from
of the electric polarization tensor on magnetic field wasthe neutron-diffraction data in Ref. 14, the probabilities of

treated by the least-squares method under the assumption € @ccommodation of iron atoms in all four sites are non-

a power-law dependence of the polarization on field: zero and equal to
= {(1)=0.73, ((2)=0.87, ¢(3)=0.62, {(4)=0.08,
P=> diH". @)
n=0

A and the magnetic moment of iron equals
The coefficients,, for n=3 were found to be nearly equal to B
zero. Figure 3 shows plots d?,(H,.) and P.(H.) for a Hre=4-8ug 2
Ga _,Fe0; crystal with x=0.85 atT=10 K. The figure Such a structure creates difficulties when an attempt is
also shows the contributions to the magnetoelectric effectnade to examine the properties of a system with the aid of
which are linear and quadratic with respect to the field. Thahe antiferromagnetic vector. In this paper we describe the
linear contribution to the magnetoelectric effect was also obmagnetic structure of crystals using a multipole expansion of
served when thé?,(H,,) and P,(H,,) curves were mea- the spin density. However, the contributions of the toroidal
sured in fields sufficient for reorienting the magnetization ofmoments must now be taken into account in the multipole
the crystal from the axis to thea axis (Fig. 4). From Figs.  expansiort>~?° It is known that an infinite series of multi-
3 and 4 it can be seen that,;> a., and @,,>a,,. The  pole characteristics, viz., moments and the power functions
temperature dependence of the off-diagonal components a@ff the radii for them, appears in the multipole expansion of
the linear magnetoelectric coupling tensor obtained with althe current density or the spin density after averaging over a
lowance for the fact that the field is oriented along the diagphysically small volume. As a rule, knowledge of only the
onal in thebc plane is shown in Fig. 5. As will be shown lowest members of this series is important for a macroscopic
below, the strong difference between the valuesygf and  description of a crystal; therefore, we confine ourselves to a
a.p, Observed is due to the existence of a toroidal moment irdescription of a system on the basis of the multipole mo-

B.107% c/m?
1601 a 1
120+ 3 FIG. 2. Field dependence of the electric polariza-
-6 2 tions Py(H.) (@ and P, (Hp) (b) of a
4 Pc » 107% C/m Ga, & g0; Crystal at various temperatures: a
801 1—35-62 K;2—10 K; 3—102 K; 4—150 K; b
1—35 K; 2—10 K; 3—150 K.
401
Il 1 1 " 1

0 20 80 120 H,koe 0 40 80 120 H, Koe
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)

, 1078 om? )
120

FIG. 3. Dependence of the electric polariza-
tions Py(Hpe) (@, curvel) and P (Hy) (b,

80 curvel), as well as the lineafcurve 2) and
guadratic(curves3) contributions to the po-
larization derived from them, on the mag-
netic fieldH, for a Ga 14, 305 crystal at

40 f} 10 K.

2
0 1 " i 1
0 80 120 H,, kOe

ments up to the second power using magnetic and toroidal 2. It is known that the noncentrosymmetri@m crystal
moments and the corresponding second-rank tensostructure of a Ga FegO; crystal can be transformed into a
(magnetic-quadrupole moment§he magnetic and toroidal centrosymmetrionmm structure by means of fairly small
multipole moments are defined by the familiar formulase  displacements of the ions in the unit cell. In this case we can

Refs. 19 and 20 write
1 _,0_ .1
M= J rxj(rydo, (3 Fa=Tat T, ®
1 wherer? is the radius vector of ior in the centrosymmetric
T=_— f (r(r-j)—2r%)dv, (4) mmmstructure andi is the displacement of the respective
10c iron ion from its symmetry center in the idealm mstructure
wherej(r) is the current density, to its site in the ream2m structure. The most importait

) components of ! for the ensuing analysis equal
j(r)=cVx34(r), ©)
S(r) is the spin densityc is the speed of light, and the

integration is carried out over a unit cell.
Plugging(5) into formulas(3) and(4), we obtain expres-

re.=—0.0658-0.029 A, ri.=+0.23+0.058 A,

and Eq.(7) can be represented in the form

sions for the magnetic and toroidal moments of a unit cell of Le
a crystal*® T=> (2 (r0xs,)+rix %a) Sucatte
a a
M=2u52 S,, (6)
a X > Se(Fe |- ©)
a(Fe)
MB
T= 3 Zﬂ FaX Sy, () Substituting(6) and(7) in (9), we obtain
whereS, andr, are the spin moment and the radius vector 0. 1 4 1
of ion « in the unit cell of the crystal measured relative to the T=T"+ Z(r XMegat "X Mee), (10
center of the unit cell, and the summation is carried out over
all the ions in the unit cell. where
B, 1078 C/m?
0 3
-6 2
P,107° C/m , 5
IOT' a 40t b FIG. 4. Field dependence of the linear contribu-
tions to the electric polarizationB,(H,p,) (@
2 and Py(H,p,) (b) of a Ga ;& ¢0; crystal at
various temperatured—10 K; 2—150 K; 3—
5k -80r 194 K.
3 I
- "l ,

0 40 80 120 Hy, kOe 0 40 80 120 H,, kOe
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a, 10° u-10°
at 20
] 1
3-
0 2
2t 3
1" —20t
3
O-I\.\z._./r""
0 00 200 T.K —40 , . X .
0 100 200 H, kOe

FIG. 5. Temperature dependence of the magnetoelectric susceptibilities of a
Gay 1F & g0 Crystal: 1—ay. | 2—acp; 3—aiT,= (ape— acp)/2. FIG. 6. Field dependence of the longitudinal magnetostriction alondp the
’ ’ (1), ¢ (2), anda (3) axes for a Gp, &) 505 crystal at 78 K.

To=te r0xs,. (11)
2 “a centrosymmetrianmm structure, Whileaf}ﬁ is conserved®

An estimate of the ratio of the second term to the first term inf Nerefore, to lowest order in the small parameteintro-

Eq. (10) with consideration of the experimental data in Refs.duced above the tensaf] can be represented as

13 and 14 yields the small quantity a_ al (15)

. . aij = “ijkTO ,
e=[rM/T", 12 \WhereT® is defined in(11).
and this provides some assurance that it is the appropriate The symmetric tensoaisj can be represented to first or-
expansion parameter in perturbation theory. Using the exder inM andT as
perimental results in Refs. 13 and 14, which spe&fyand
r,, and taking into account tha#l=(0,0M.), where M. &ij

- - N o S
=3.84up per unit cell, we obtall T°=(T,,0,0), where \yhere oSt and a2 are polar and axial third-rank tensors,

= af Myt o Ty, (16)

. 1] 1]
Ta=24.155.5 A per unit cell, whences=0.03. _which are symmetric with respect to the indidgs The for-
3. The electric polarization vector can be represented ifyy|as for the magnetoelectric effect can be written with al-
the following form: lowance for(13)—(16) in the form(see also Table)?
1
Pi:PiS+ainj+§,3iijij’ (13 Pp={apccMc+(ai+aD)TafHe+{@paaMat (a3

a S 2 2
. N —ay) T H + PrH,+ HE+ H
wherePy is the spontaneous polarization vector, angand 2 TetHat 700oPeHb ¥ FoccH e+ Foaata

Bijk are the magnetoelectric tensors. The second terih3n + BpouH2, a7
describes the linear magnetoelectric effect. The tergpr . 4
can be separated into symmetric and antisymmetric parts: Pc={@cpcMct (@7 —a) TatHp+ BeepHcHy (18
ajj=afj+ajfj . The antisymmetric parkf; can be repre- b Mot (St o) T H 4 HoH 19
sented in a linear approximation with respecMoand T as a={@apaMa+t (az+ a3) TetHp+ BaapHaHo, (19)
_  al 2 initi
aﬂ - aia}kaJr a’ﬁkMkv (14) where, by definition,

Whereaf}i and af’}ﬁ are, respectively, axial and polar third- as_abca+ Qcha aa_abca_ Qcha
rank tensors. The antisymmetric tens;dﬁ vanishes for the 1 2 ' 1 2 '
TABLE I. Irreducible representations of th@, group.

2,040y M, H T P Upmn TXH MiH; HiH;
ry +1+1+1 Ty Py Uaa»Upp»Uee THa—TaH, M Ha ,MpHp M H, H2 ,HZ H2
r, +1-1-1 Uac 0 MH,,0M H, HaH,
Iy -1-1+1 T. P, Uap T.Hp—TpH, MyHqa,MH, ,0 HaHp
r, -1+1-1 Ta Pa Upe ToHe— TeHp OMHy MH, HyH,
r; +1+1+1
r +1-1-1 My, Hyp
r} -1-1+1 Mg, H,

r; —1+1-1 M., H,
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as_aabc+ Fpac  a_ @abc™ Xbac Ubb= vBpotPaHb T MpotMsH b+ ABupeH5 - (27)
2= 5 27T A5
2 2 The linear field dependence of the magnetostrictigg(H )

andB;j is a polar tensor, which is symmetric with respect to(Se€ Fig. §means that the componeris, and(or) T of the

the indicesij. magnetic and toroidal moments cannot be equal to zero when
4. In the following we assume, in accordance with theH is parallel to thea axis. It is interesting that if*—0 and

experimental conditions described aboffég. 3), that the If @pcc@ndacycin (17) and(18) andAg.q, andi3,acin (25

magnetic field vector is oriented in tie plane of the crys- and(26) tend to zero, then the linear magnetoelectric effect
tal: is determined only by the toroidal moment, and the longitu-

dinal magnetostriction is determined only by the magnetic

H=(0,Hy,Hc). (20) moment. Hence it follows that the main contribution to the
This choice of the orientation of the magnetic field enabledinear magnetoelectric effect is made by the toroidal moment
us to measure both polarizatio8, and P, in the same T and that the main contribution to the longitudinal magne-
magnetic structure. In addition, we assume that in a weakostriction is made by the magnetic effect. This means that

field there is no strict relationship between the linear magneto-
electric effect and the longitudinal magnetostriction in
M=(0,0M,) and T=(T,,0,0), 2)  Ga_,Fe0s.

in agreement with the experimental data in Ref. 11 and the
calculations presented above in Sec. 2. Only the componen#s CONCLUSION
pca AN acpa (apec= acpe DY definition are needed to de-

The field dependence of the magnetoelectric effect and
termineP, and P, [see(17) and (18)]. P g

ider th buti he electri lari longitudinal magnetostriction of Ga,FgO; single crystals
Let us consider the contribution to the electric polariza-p,¢peen investigated in magnetic fields up to 200 kOe in the

tion P(3H) that is linear with respect tq mggnetic field. 1t temperature range from 4.2 to 300 K. It has been shown that
follows® from (17) and(21) that the contribution to the elec- the magnetic order in Ga,Fe,O crystals allows interpret-

tric polarization that is linear with respect to magnetic flelding it as toroidal spin ordering. On the basis of an experi-

has the form mental finding, viz., significant asymmetry of the off-
| | Qpe— Acp diagonal components of the linear magnetoelectric
P,—Pc=2aiTH, or ajT,=——5—. (220 susceptibility tensor, it has been concluded that toroidal or-
dering exists. It has been shown that the linear magnetoelec-
Here it is assumed thati,=H.=H. It follows from (22)  tric effect in Ga_,Feg0; is caused by a toroidal moment,
that the differences observed in Figs. 3 and 5 betwghl)  rather than by magnetostriction, as was previously postu-
andP.(H), as well as the differences betweef, anda.y,, lated.
are directly related to the existence of the toroidal moment
T,. Figure 5 also shows the temperature dependence of We thank Yu. V. Kopaev for a useful discussion. This

3T, which is proportional to the toroidal moment. work was performed with financial support from the Russian
the crystal and 98-02-16848and INTAS (Grant No. 94-093p
H:(HaaHbvo) (23)

*)E-mail: popov@plms.phys.msu.su
. .. . . . . 1)
is sufficiently large, reorientation of the magnetization of the, Deceased.

tal f th is to th is tak | In thi JJust as in Refs. 13 and 14, the mean values of the magnetic moments of
crystal from thec axis to thea axis taxes place. In tis Case g+ jons in the four inequivalent sites calculated in accordance with the

the contribution to the electric polarization that is linear with propaiity distribution(1) were used in the calculation.
respect to magnetic field can be represented, according ftFor generality, we assume here that the vedfocan have a nonzero
(17)—(19), in the form componenfT. in a magnetic field of arbitrary orientation.
3As is observed experimentally, it is assumed that the magnitude of the
| | Apa— Aap projection of the magnetic field onto the axis is insufficient to cause
Pp,—P,= ZaSTCH, or agTC:T- (24 significant deviation of the spins from tleeaxis of the crystal.

Here_ it is_assumed thd_xtaz Hbz H. A conclpsion regarding 13 p Remeika, J. Appl. Phys. SupplL, 26 (1960.
the field-induced reorientation of the toroidal moment from 2p. L. white, Bull. Am. Phys. Soc5, 189 (1980.
thea axis to thec axis when the magnetization of the crystal °C. H. Nowlin and R. V. Jones, J. Appl. Phy34, 1962(1963.

; ; ; ; 4A. Pinto, J. Appl. Phys37, 4372(1966.
is reoriented from the axis to thea axis can be drawn from SE. A. Wood. Acta Crystallogrl3, 682 (1960.

Fig. 4 with consideration 00\‘2.4)- . o 8S. C. Abraham, J. M. Reddy, and J. L. Bernstein, J. Chem. Ri2y8957

6. Formulas for the longitudinal magnetostriction can be (1965.
written in precisely the same manner as for the electric p0_7G. T. Rado, inProceedings of the International Conference on Magne-

At tism, Nottingham 1964 Institute of Physics and Physical Society, London
larization (see Table)t (1965, p. 361,

8

_(ya p p 2 G. T. Rado, J. Appl. Phys7, 1403(1966.
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A solution is obtained for the Bean critical-state model in an inclined magnetic field which leads
to localization of the irreversible magnetic moment induced by the shielding currents. An
experimental investigation of YB&u;O, single crystals and epitaxial films, and also plates of
classical superconductors using vector magnetometry yields results fully consistent with

the model calculations. The established geometric effects have an important influence on
measurements of the angular dependence of the critical current and its anisotropy in a high-
temperature superconductor. 898 American Institute of Physid§1063-776(98)01907-4

1. INTRODUCTION Thus, we shall initially analyze the simplest case of the Bean

o ] _model for an infinite parallelepiped and then its generaliza-
A characteristic feature of single crystals of high- o

temperature superconductors is that they have the form of
thin plates. Various previous studigRefs. 1-3, for ex- 2.1Bean model for an infinite parallelepiped in an inclined
ample have reported the observation of strong angular anmagnetic field

isotropy of the irreversible magnetic moment, which was at-  The basic assumption of the Bean model is that the den-
tributed to the anisotropy or the two-dimensional nature Ofsjty j of the shielding currents inside a superconductor has a
the superconductivity in these materials. The importance ofonstant valug . and their direction is determined by the
the sample geometry for the angular dependence of the maghagnetic prehistory. The steady-state case of fixed vortices
netic moment was noted earlier in Refs. 4 and 5. Howeveryas studied in the original wofkThe real situation differs

no quantitative model which reflects this influence has beefom steady-state because of vortex motion accompanying
developed. In Sec. 2 we obtain a solution for the Beanpanges in the magnetic field or due to the thermally acti-
critical-state model for an infinite, thin, superconducting par-gted magnetic flux creep in the case of a fixed magnetic
allelepiped in_an _inclined magnetic field. We f';lls_o considekig|d. The changes in the magnetic flux accompanying the
some generalizations to the case of more realistic model d&;ortex motion induce an electric field which is responsible
scriptions. In Sec. 3 the results of the calculations will then, the generation of shielding currents. These currents can
be compared with experimental investigations of the Vectofg yescrined using local electrodynamics equatiohi ad-

.Of thg magnetic momen.t In hlgh-temperaturg superconducbition’ the influence of dynamic processes is frequently weak
ing smgle_crysta}s and in plates of_ conventional SUPErconz .4 in this case, the bean madiis a good approximation to
ductors. Finally, in Sec. 4 we examine the role of geometric < iibe the magnetic properties of superconductors. For-

L"’}CLO:S n thi behavior of o}het' mag.netllc chatralctensucs'ci ally, this corresponds to the solution of local electrodynam-
Igh-temperature superconducting single crystais, especiaty.; equations with a step-like current—voltage characteristic

in measurements of the critical current anisotropy and varix

A . 1=].E/E.
ous pinning mechanisms. As in the original modef,we shall assume that does

not depend on the magnitude and direction of the local mag-

netic inductionB in the sample. We shall also confine our
2 THEORY analysis to high values of the applied magnetic fieldso

that the influence of the self-field generated by the shielding

Key factors which complicate the analysis of the currentcurrents can be neglected. In this case, the approximation

distribution for the critical state in a superconducting plateB= woH is valid inside the superconductor, which corre-
are the three-dimensional nature of the problem, the loss cfponds to a uniform distribution of vortices parallel to the
symmetry when the magnetic field deviates from the princi-applied fieldH.
pal axes, and the shape of the current—voltage characteristic. Even with these approximations, a solution cannot be
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obtained for a finite parallelepiped because of the loss ofion as the currents parallel to the long side. Sec. 2.3 we
translational invariance. Thus, we shall consider an infiniteshall show that this statement is valid for an arbitrary direc-
parallelepiped(as the limiting case of a long plate whose tion of H. Thus, we have
lengthL is considerably greater than its width and thick-
ngss} which reduces _the three-dimensional p_roblem to two- my=Lf xj dS, mszf yj ds,
dimensional. The ratio of the widtiv to the heightt of the
cross section£=w/t), which we shall call the aspect ratio, \ypere the integration is performed over the cross section of
is a key parameter in the foIIow_mg gnalyss. . the samplez=const.

We .shall assume that the direction of the magnepc field From symmetry concepts, the regiGE ZFH where the
rotates in thexy transverse plane and forms the angleith plane shown by the lin&H corresponds to the ¢ direction

the normah to the principal plane of the parallelepip@dg. (rig 19 makes a zero contribution to the magnetic moment
1). For an infinite plate, all the cross sections are equivalen In consequence, the value of, can be calculated as
as a result of translational invariance. From symmetry cong, i ' Y

) . ) : wice the contribution of the trapezoidal regi&yG ZFD:
siderations, the vectdB is always located in the transverse
plane and a$i increases, vortices enter from the cornars ) Lt3 5
andC (Fig. 1b, move toward the center of the sample, and myzzLjAGZFD Xjcdx dy= 12 )3k —tarf ¢). (1)
meet on theEF plane? In this case, symmetry indicates that
the shielding currents should be directed parallel to zhe To calculate the momemh,, integration is performed over
axis. The Lorentz forces, like the vortex velocity, are parallelthe regionGEZFH:
to thexy plane but have opposite signs on different sides of L3
the EF plane. In the Bean model the density of t_he_shu_aldlng mx=2Lf yidx dy= —j. tan e. )
currents always has the same vajye Thus, the distribution GEZz 6
of the shielding currents is antisymmetric relative to Eie
plane. This conclusion, based on symmetry, will be con
firmed below by solving the appropriate Maxwell equations.
The angular function of the magnetic moment differs 2tane
depending on whether the angle of inclination of the mag- tana= 3 @t o
netic field is smaller or larger than the angle of the diagonal ¢
of the parallelepiped cross sectign=arctank. Thus, we  For ¢=0 we obtain the well-known resulmy=LthW2/4
shall consider these cases separately. and obviouslya=0. For angles satisfying tap<x, we have
a) ¢<=¢.. For our analysis we shall use a Cartesiantan a~(2/3«x?)tan¢. When the angle between the direction
coordinate system with they plane parallel to the plane of H and the normal reaches,, the magnetic moment is de-
rotation of the magnetic field, and thyeaxis parallel to the flected by the anglen.=arctank, where a.=m/2— ¢.
principal normain (Fig. 19. The magnetic momemn of the  Thus, for a typical high-temperature superconducting single
shielding currents can be calculated using the relation crystal withk~ 10 or more the irreversible magnetic moment
is almost locked to the principal normal of the parallelepiped
m=3 f rxjdVv. for the entire range of magnetic field directiopss ¢.. At
the boundary of this rangeg () =2my(0)/3 andm,(¢)
For H directed along the axes of symmetry of the parallel-=m,(¢.)/« and thus|m| will also not vary very substan-
epiped, the closure currents give exactly the same contributally.

The anglea between the direction of the magnetic moment
m and the principal normat to the plane is given by

)
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b) o= ¢.. In the angular range.< o< /2 (Fig. 10, it moment’~° In addition, there are undamped superconducting
is more convenient to measure the deviationdHoadnd m currents which do not depend on the directi®rand deter-
from the principal plane, using the anglés- w/2—¢ and mine the reversible magnetization. However, this contribu-
B=m/2— a, respectively. Then, this case is equivalent to thetion to the magnetization is usually small and these currents
previous one if we substitutea—y, ¢« 60, t—w, and will be neglected in the present study.
k< 1/k, and as a result we obtain As we have already noted, we shall analyze the case

Lwd (3 when H appreciably exceeds the self-field of the shielding
mXZZLJ yj.dx dy= —jc(—;—tarF o, (4 currents and thus their influence &can be neglected. In
AGZEB 12 K addition, as a result of the homogeneity®fin the bulk of

Lw the sample for this case, we can easily take into account the
my=2|_f Xjedx dy= ch tan 6, (59  dependence of the current—voltage characteristi&.on
EZH For an infinite parallelepiped, the power current—voltage
2,2 tan 6 characteristic can easily be included in the previous analysis.
tan 8= 3Tt o (6)  As will be shown in Sec. 2.3, the electric fiettlparallel to

the z axis has opposite signs on different sides of Hie
If H (and alsom) is parallel to the principal plane, the abso- plane in Fig. 1 and is given by
lute value of the magnetic moment|im| =L j wt?/4, which .
is k times smaller than that for the magnetic field parallel to E,= uoH(X cose—sin ¢). 9
the principal normal. It should be noted that even a very )
small angular deviation of the magnetic fightl induces a BY means of lengthy but elementary calculations §oF ¢
large deviation of the magnetic momentfrom the principal ~ (F19- 1d, we can obtain
plane: B~2«26/3. A convenient parameter to describe the

3 . . 1n 2
rotation of the magnetic moment is i Y M "~
my=2Ljo tan 0
) 2 2E, (2n+1)(n+1)
dg 2k
=46 3 @
6=0 X (a+1)2+1/n+(a_1)2+1/n_ 3n+1[(a+1)3+1/n

For the critical angled.= 7/2— ¢, the direction of the mag-
netic moment is determined by t#=«, which is equiva- _(a—1)3+1n (10)
lent to the result obtained in casa. (a=1) ]

From Egs.(4) and(5) in the lowest order of the expan-
sion in terms off, we can obtain the following expression and
for the absolute value of the magnetic moment . . n

X oL w)3 woHW sin 0) tan 6 n?
m, = =

m(6)~m(0) 1+§K492>_ (8) X lo| 3 2Eq k (2n+1)(n+1)
Thus|m| increases rapidly with increasing angle X1{(a+1)2* 4 (a—1)2t - m[(lJra*l)
2.2. Magnetic flux creep and anisotropy

. - . X(a+1)?" - (1-a ) (a—1)> "] . (11
The step-like current—voltage characteristic used in the

Bean model is not a good approximation for high-
temperature superconducting materials, since these typical
exhibit strong magnetic flux creep which leads to smoothing 2(2n+1)(n+1)ax

of the current—voltage characteristic. The power dependence tang= 5 ,
E/Eo=(j/jo)" better describes the behavior of the experi- 6n(n+1)a"=(2n+1)(n—-1)
mental current—voltage characteristics with typical values ofyherea= (« tang) 2.

n between 5 and 30 for high-temperature superconducting These complex expressions have two simple limiting
single crystals and above 20 for conventional superconduckases. Fon—c, i.e., for the Bean model they are identical

ors. In this case, the Bean model corresponds to the limify the expressions derived in Sec. 2.1.b. For an Ohmic

n—o. ) ) current—voltage characteristin€1) they are simplified
During magnetic measurements, changes in the magnetignsiderably:

field (which for simplicity we assume to take place at the

IV“? angleB betweenm and the principal plane is given by

(12

constant rateH =dH/dt) induce an electric fielE. If the _LW3.

magnetic field is fixed, the electric field is formed as a result my_TJZ< 0.3/tan . (13
of magnetic flux creep. The equations of local electrodynam-

ics and the current—voltage characteristics can be used to Lw? t

calculate the shielding current distribution. These currents "™~ g2 )z O’E)’ (14)

change direction as the directidh changes and determine
the behavior of the irreversible part of the magnetic  tanB=«? tan 6. (15
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These results are exactly identical to E¢®, (5), and The component of the magnetic momemh, parallel to
(6) if the critical currentj. in the Bean model is replaced by the x axis and generated by an elementary current tube may
the current density,(0,t/2) flowing at the center of the prin- be expressed on the basis of Efj6) in the form
cipal plane of the parallelepiped.

A solution for the angles< ¢, can easily be obtained sm,= fﬁ sdl(jy—jy2), (17)
by using the new notation for the parameters introduced
above. Fom—oo this naturally corresponds to the expres-wheres is the cross-section area of an elementary tdbés
sions of the Bean model. For an Ohmic current—voltagehe differential of the tube length, and integration is per-
characteristic these solutions are almost identical to B9s. formed over the contour defined by the current tube. If we
(2), and(3) if we use the current densify(w/2,0) flowing at  introduce the unit vectog in the direction of the elementary
the center of the lateral plane of the parallelepiped. current tube, we can write the following expressions:

Assuming a small difference between the Bean and=je,-e anddz=dle,- e which, assuming=s-j, gives
Ohmic limits, we can confirm that the angular dependence of 1
the magnetic moment is almost unaffected by the type ofsy, ——; 4; .av—a . = —i 3€ — )
current—voltage characteristic. Thus, we can predict that thgmx 2! Al ay—g-az) 2! dildz y-dy 2
results obtained earlier for the Bean model should accurately (18)
describe the experimental data. Taking into account that the area of the projection of the

We shall analyze the situation when the self-fields haveurrent tubeS,, is given by the equivalent expressions
little influence. In this case, the magnetic induct®may be  §ydz=—§zdy, both terms in Eq(18) make the same con-
considered to be constant inside the sample. The dependengiution to ém,, which corresponds to the definition of the
of j¢ (or j,) onB can then easily be taken into account by elementary magnetic momeéin,=iS,,, this proves the as-
using the value of . corresponding to the applied fielegyH sertion formulated above.
in the expressions obtained. This reflects the field depen- We shall now analyze the distribution of shielding cur-
dencej(B) and the pinning anisotropy determined by therents for a superconductor with an arbitrary current—voltage
direction ofB. Itis easily established that the direction of the characteristic. If the characteristic does not depend on the
vectorm (see Eqs(3), (6), (7), and (12)) remains almost magnetic field(as in the Bean modglthe changes in the
constant for any dependence jof on B. Thus, the pinning magnetic induction in the critical state are determined only
anisotropy has no influence on the geometric localizatiorby changes in the applied field. If the rate of change ofl
effect. However|m| (Egs. (1), (2), (4), (5), (10), and(11))  is constant, the distribution of the shielding currents is
does depend on the pinning anisotropy and may be used teady-state. This assumption is a good description of the
study the angular dependence of the critical current. experimental situation if the changes in the magnetic flux
caused by the self-field are negligitii@ this case, the self-
field need not necessarily be small

We shall initially postulate that no space charges occur
in the superconductor and their density is everywheted

We shall first show that the closure currents account fof|ater, we shall show that these space charges may occur in
exactly half the contribution to the magnetic moment. By certain cases The electric field distribution can then be de-

yz:

2.3. Finite length and closure currents

definition, this is given by termined from the Maxwell equations using local
1 1 electrodynamic§?®
mZE f rxjdV:E[ex(jzy_jyz)‘l'ey(sz_jzx) div E=0 (19)
+ejyx—jy)1dV, (16p and
. . H
wheree,, e, ande, are the unit vectors of the Cartesian curl E= _Mocjj_t (20)

coordinate system.

It can be seen from this equation that each component afith boundary conditions whereby the normal component of
the magnetic moment is determined by the sum of two the electric field is zero at the surface of the sample,
contributions. Previously, we only took into account the con-g_=0.
tribution of the current componep and we asserted that the It is known that these equations have a unique continu-
closure currents corresponding to the compongpndj,  ous solution'® For an infinite parallelepiped where the field
make exactly the same contribution. We shall prove thisH s parallel to they axis (Fig. 1), the electric field distribu-

statement. tion is given by
We shall consider a sample of arbitrary shape in which ,
the shielding current§ have a steady-state distribution. In E,=uoHyX, E,=E,=0. (21

this case, it follows from the charge conservation law thatyg 5 result of the linearity of Eq€19) and(20), it is easy to

divj=0 and in consequence, the field of the currens  fing 4 solution for an arbitrary direction of the magnetic field
solenoidal. Thus, the distribution of the shielding currentsy, the xy plane:

can be represented as closed, nonintersecting tubes which are .
not generally planar. E,=—uoH(y sinp—x cos¢), E,=E,=0. (22
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2 4,8 FIG. 2. Electric field in a semi-infinite super-
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ot 6 2,1 (6), 0.6(7), 0.7(8), 0.8(9), 0.9(10), 1.0 (11);
; 0.5¢ Eo=uoHyw/2. For E, curve 6_is almost the
-05F 0 same as curveS and7. The pairs of curveq,
10 - 11; 2, 10; 3, 9; 4, 8, and5, 7 are the same as a
_1.0k 11 o - " - — ) result of symmetry.
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For a sample of finite length, we can obtain an accu- corresponding to the law of charge conservation in the
rate solution in series form. When the figitlis parallel to  steady-state case, is violated. We assume that in this case, the
they axis, this solution is given by onset of magnetic field sweeping will be accompanied by the

formation of space charges which should satisfy condition

_ moHy - 0+q (26). This changes the distribution & which should obey
E(x,2)=—— ) qg_m (=P f(p+1a)—f(p.q) the condition divVE=p(r) rather than Eq(19). An analytic
’ solution of this nonlinear equation cannot be obtained. It
+9(p,q+1)—g(p.a)], (23 should be noted that for a Bean current—voltage characteris-
where tic with the magnetic field directed along the axes of sym-

metry, accurate solutions can be obtained and correspond to
[(q+1)w—x]%+(pL—2)2 Egs.(21) and(25). However, as a result of the nonlinearity
of the current—voltage characteristic, a solution cannot be
derived by linear superposition for an arbitrary angle of in-

f(pr):(pL_Z)ln (qW_X)2+(pL_Z)2 '

(p+1)L-z pL—z clination. _ N |
9(p.a)=2(qw—Xx)| arctan—_ - —— —arctan - — |. An Ohmic current—voltage characteristie= cE with
a d (24) isotropic conductivityo appreciably simplifies the situation.

In this case, a solution fgr can be obtained trivially from
For E, a solution can be obtained by making the substitu-Egs.(21) and(25), and Eq.(19) guarantees that dj=0. For
tions g<—p, l<w, andx«z in Egs. (23) and (24). The H parallel tox, we can obtain

results of the calculations for a semi-infinite strip<(@<<L

—c, p=0,—1) are plotted in Fig. 2. These demonstrate that ~ _ _ Lw?t (1_ v 27)
formula (21) accurately describes the behavior Bfat the x= THoTx 72,2 4L )’
distance~w.

For a qualitative analysis we shall consider an approxi&nd forH parallel toy, we have
mate solution which shows good agreement with WALt w
experiment! and satisfies Eqg19) and (20). In the central m ZUMOH - (1_ _
region the solution is given by Eq21) (H parallel toy). Y V12 4L
Near the ends of the parallelepipdd2>|z|>L/2—w/2
+ x|, the solution of the systerf19) and(20) will be given

by

. (28

In the limit of a long sample, these expressions reduce to
those obtained earlier for an infinite parallelepiped.

As a result of the linearity of the initial equations, the
magnetic moment for the Ohmic current—voltage character-
signz|, E,=E,=0. (25 istic is determined by the linear superposition of E(@)

w
2 halatuid Mkafiule:
and(28), and its direction is given by

: L
£~ ot Iz~ 5 +

As a result of the linearity of Eq$19) and(20), expressions

for E for an arbitrary direction of the magnetic figitlin the _ 2 1-w/aL
. . - tanB=«k“tan 0 ————.

Xy plane can be obtained from a linear combination of Egs. 1-t/aL

(21) and(25). Using the current—voltage characteristics from ] ) .
the Bean model,= j .E/E, and Eqs(22), we can obtain the 1he influence of the ends of the sample is clear from a direct

shielding current distribution shown in Fig. 1, which is con- comparison with Eq(15). As was to be expected, the ensu-
sistent with the result obtained from symmetry conceptsiNd correction is of the order ofv/L or t/L. For the more
However, if this current—voltage characteristic is applied to€alistic scenario of a current—voltage characteristic with
the distribution(25), which describes in the closing re- N>1, similar calculations cannot be made. However, as we
gions of a finite parallelepiped, for directions of the magneticShowed earlier for an infinite parallelepiped, the difference

field differing from the axes of symmetry, the conditon ~ Petween the magnetic moment for the Ohmic and Bean
(n—) current—voltage characteristics is very small. Con-

div j=0, (26) sequently, we suppose that the results obtained above on the

(29
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TABLE |. Parameters of samples studied.

Description Material Form LXwXt, mm Kk=w/t Comments

oz YBa,CU;0, Single crystal 1.9%1.15x0.065 17.7 With TB, plane of rotation TB
MK YBa,Cu;0, Single crystal 1.040.97x0.10 9.7 Detwinned

wz YBa,Cu;0, Single crystal 0.9%0.90x 0.04 22.5 Without TB, high purity

AH YBa,Cu;0, Single crystal 1.2680.57x0.025 22.8 Columnar defects

LF YBa,Cu;0, Epitaxial film 2.2x0.9x0.0003 3x*10°

SH PbMog Polycrystal 2.0K1.72x0.40 4.3

Sl PbMo$g Polycrystal 2.0X0.67x0.40 1.68 Cut from SH

VS V,;Si Polycrystal 6.06:0.90x 0.35 2.57

VI V3Si Polycrystal 6.060.90x0.27 3.33 Obtained by polishing from VS

Note TB—twin boundary.

influence of the finite length for a linear current—voltage Conventional polycrystalline superconductors are cer-
characteristic(Egs. (27)—(29)) can also be applied to the tainly preferable for a direct check of the calculated results.
Bean case. A sample of the Chevrel superconductor phase PhjMo®
High-temperature superconducting single crystals areshall subsequently call this $Was cut from an ingot with a

usually close to square with~w. In this case, the correc- diamond saw. After the first measurements, an additional cut
tion to the parameter, characterizing the ratio of the rota- was made to reduce its width and thus the aspect ratio. Fur-
tion rates of the magnetic momemt and the magnetic field ther measurements were then made. A sample;&8i WS)

H, when the direction oH is close to the plane, is small and was cut from an ingot with a diamond saw. After the first

does not exceed 25%. cycle of measurements, its thickness was reduced by polish-
ing with emery paper and a second cycle of measurements

3. EXPERIMENT carried out.

3.1. Vector magnetometry 3.3. Experimental results and discussion

In order to check the main results of Sec. 2, we need to  3.3.1. High-temperature superconducting single crystals.
obtain information on the magnitude and direction of thefrigure 3 shows typical behavior of the angle of inclinatien
magnetic momentn. For this purpose we used a vibrating- of the magnetic moment relative to the normal to tie
sample magnetometéOxford Instruments %) fitted with plane of a YBaCuO, single crystal having the form of a
two independent detector coils such that the components @hin plate. Over a large range of anglesof the magnetic
the magnetic moment parallein) and perpendiculami,)  field up to~87°, the direction of the magnetic momentis
to the applied fieldH could be measured simultaneously. jocked to the normah, so thata~0° holds(as a result of
Standard magnetometers only measure the compangnt  the inevitable precession when the sample is rotated through
During the measurements the sample could be rotated abogt|arge range of angles, some error, of the order-df°,
the third axis with an angular resolution of 0.01° and a re-arises in the determination @f. In a narrow range of angles
producibility better than 0.03°. where the direction oH passes near the plane of the plate,

All the results of the measurements given below werethe direction ofm is rapidly reversed almost by 180° as
obtained from the hysteresis loops of the magnetic momenjredicted theoretically. The results plotted in Fig. 3 do not

with the sample orientation fixed, when the magnetic fielddepend on the magnetic fieldf H is appreciably greater
was swept at a constant rate-efl0 mT s ! from a negative

field considerably exceeding the remagnetization field, to 5 T

and back to 0 T. Here we are only interested in the irrevers- 23&
ible component of the magnetic momentwhich reflects the

behavior of the shielding currents.

o 0.1T, 8K
100°F +10T,8K

3.2. Samples 2 40T,60K

We studied several YB&u;O, single crystals with dif-
ferent dominant pinning mechanisms. These were samples
with twin boundaries, detwinned samples, and samples with t
columnar radiation track¢see Table ). Their preparation
and detwinning was described earlier in Refs. 12 angd 13
The different pinning systems act differently on the anisot-FIG. 3. Angle« determining the deviation of the vector of the irreversible
ropy of the critical current. so that we could study the magnetic moment from the axis in a YBaCuO, single crystal(OZ
influence of changes in anisotropy on the angle of inclinatiorffem;l'f when the directiony of the applied magnetic field is rotated near

] . . . plane (=90°) for various temperatures and magnetic fields, The
a. An epitaxial YBgCuzO, film was used as a sample with @ sgjig curves corresponds to Eq$3) and (6) using the aspect ratio
very large aspect ratie=w/t (Ref. 14. x=17.7; the arrows indicate the position of the critical angle

80° 85° 90 )
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W p W

m(@)/m(90)

[

-50° 0’ 50° 1000 ¢

0 50° 100° FIG. 6. Angular dependence of the magnitude of the magnetic moment in an
@ PbMoS sample T=10 K, uoH=1.0 T) in the initial state(1, SH) and

o ] ] ] ) after reducing the transverse dimensi@ Sl). The solid curves give the

FIG. 4. Direction of the irreversible momefusing the same coordinates as 5|culations ofm|= \/erm;' using Egs(1), (2), (4), and(5) for the aspect

in Fig. 3 in an epitaxial YBaCu,O, film (LF, T=50 K, uoH=05T). The  |ati55c=4.3 and 1.68; the arrows indicate the critical angle
solid curve gives the results of calculations using Egs.and (6) for the

aspect ratioc=3x 10°; the arrows indicate the critical angle, .

This allows us to analyze directly the dependencenobn
the angleo.

than the penetration field ;) or temperature even though the In this case, the experimental data fefe) also show

critical current j. and its anisotropy change very o ; ; ;
. ood qualitative agreement with the theory without usin
substantially:>*® Moreover, all the YBgCu;O, samples 9 d g y g

. . . : . any fitting paramete(Fig. 5. The variation of the absolute
studied, f°f Wh.'Ch the magmtude and anisotropy of the CMMt-yalue of the magnetic moment as a function of the angle
cal currentj; differ substantially as a result of the predomi- (Fig. 6) demonstrates an important characteristic: a very nar-
nance of different pinning mechanisms, exhibited similar be—rOW sharp minimum ofm| when the magnetic field is di-

havior .Of a(¢) which may be described using .the rected near the plane of the plate. This dip is purely of geo-
calculations from Sec. 2 with the measured aspect ratio anfgetric origin and is unrelated to the anisotropy of the

without using any flttl_ng parameter. This COﬂfII’mS the dom"superconducting parameters.
nant role of geometric effects which determine the angular The results of the calculations presented in Sec. 2
?:cr;s)\;:or:eoafrt?r?ev:;:;rgll tcc))btsheervse:maslelocallzanon of its di- suggest that for angleg not very close tor/2, the value of

ple. Im| should be almost independent of the angle. The observed
slight increase in the absolute value whdndeviates from

The results of the investigations of an epitaxial
YBa,Cu,0, film (Fig. 4) reveal behavior exhibiting very the directiong=0 may be attributed to uncontrollable an-
isotropy of the sample, formed during the preparation pro-

strong geometric localization, when the direction of the mag

netic momentm is reversed Wlthlrj a 0.02° step. Th.ese '€ cess. or to the influence of its finite length,

sults demonstrate that even the high angular resolution of the 3.3.3. Angular rotation rate ratior. A very sensitive
magnetometer is insufficient to study the region of fast rota, |\ nerical parameter of the geometric model is the angular
rotation ratio rater which characterizes the rotation of the

tion.
magnetic momentn when the direction of the magnetic field

3.3.2. Conventional superconductoMeasurements us-
ing conventional superconductors can be used to check the rotates near the plane of the plate. According to &,
e value ofr should be a simple quadratic function ef

results under conditions where, unlike high-temperature SN
perconductors, the anisotropy of the critical current is Weakfl.he results of the measurements for high-temperature super-
conducting samples and conventional superconduc¢tgs

o
T+
150° 1 } T T
2 AH
100° 100 0Zy,.,
, | MK
507
. 10F u X SH
or ? VI
-50° 0 50° 1000 ¢ VS
1k S1
i — |
FIG. 5. Rotation of the irreversible magnetic moméumsing the same co- 1 10 X
ordinates as in Fig.)3n a PbMog sample T=10 K, uoH=1.0 T) in the
initial state(SH, curvel) and after reducing the aspect rat®l, curve2). FIG. 7. Angular rotation rate ratie of angular rotation of the magnetic
The solid curves give the results of the calculations using E3jsand (6) moment wherH is directed near the plane of the plate for samples with

for the aspect ratiog =4.3 and 1.68, respectively. The arrows indicate the different aspect ratio. The results of the calculations using E#) are
critical anglee, . given by the solid curve.
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m(@ym(90) observed for the detwinned single-crystal sam(pé). The

solid curves in Fig. 8 give thém(¢)| calculations using the

10°k ﬁ proposed model. The experimental results show good agree-
ment when the magnetic field is directed near dleplane.

+ . i
+ e, Over a large range of angles, the magnetic moment is almost

102.+ +3+ + 4 ., constant, as is to be expected for pinning at isotropic weak
+ disorder(point defects or their fluctuationsThe quantitative
] difference from the model calculations may be attributed to
. KR X o | two factors. First, near CuO planes, it may be produced by
intrinsic pinning which can reduce the value of the magnetic
1 1 momentm (¢ =90°) to which the experimental curves are
normalized. Second, this difference may be attributed to the
10°F finite length of the samplé~w, and also the influence of
—2Io° (} 2(')= 46n 60 8(')0 90 ! 0 currents flowing along thg axis.

Conversely, for the twinne@Z) crystal the dependence

FIG. 8. Angular dependence of the magnitude of the magnetic mojmént m(¢) and thusJ,, decay rapidly when the direction &

for YBa,Cu05 single crystalg1—MK and 22—02) for a fixed value of the  deviates by~ 20° from thec axis. This behavior reflects the
reduced fields ,uogH=0.5 T (calculated fod“=30) atT=88 K. The solid P : :

curves give the calculations | using Egs.(1), (2), (4), and(5) for the strong vortex pinning by twin boundaries. .
aspect ratiosc=9.7 and 17.7; the arrows indicate the critical angle A For both samples, and for all the other samples studied

larger scale is used near=90°. by us, J,, begins to depart from constant at=60°, i.e.,
long before the angle. is reached. We attribute this behav-
ior to a kinked vortex structure when tar=1I" is reached.

7) show fairly good agreement with this equatigro points Another manifestation of scaling at isotropic disorder is

corresponding to the epitaxial film can be identified on thisthe universal angular behavior of the magnetization peak es-

graph since the aspect ratio of the fika-10° corresponds tablished empirically by Kleiret al8 ¥

to 7~10°, which is far in excess of the experimental resolu-

tion). In addition, the slope of the dependend&?) is close

to 2/3, as is predicted by the proposed model. which is valid for angles of deviation ¢1 from thec axis up

to ~60°. For the crystal studied in these experiments the

aspect ratio wak~8 so that in the range of angles up to

60°, the direction ofn deviates negligibly from the axis.

Mg ¢,H/cos ¢) =mg(OH)cos ¢,

4. GEOMETRIC EFFECTS AND MAGNETIC PROPERTIES OF
HIGH-TEMPERATURE SUPERCONDUCTING SINGLE

CRYSTALS A conventional magnetometer with a single system of detec-
_ o tor coils used in Ref. 18, measures the compomepbf the
4.1. Angular scaling of the magnetization curves magnetic momenin parallel to the applied fieldH:

~ Aswe have noted, in high-temperature supercond.ucting mg=|m|cos ¢.
single crystals over a wide range of angles of deflection of . ) , .
the magnetic fieldd from thec axis, the magnetic moment Since in YBaCusO; the anisotropy id™>5, in the range of
m remains almost parallel to theaxis, which indicates that angles studied we find
shielding currentd,, flowing in theab plane predominate. e,B~B cosg.
The dependence df,;, on the direction of the applied field is . . .
determined by the nature of the pinning mechanism. In gen--rhe experimentally observed scalm_g law can easny be ob-
eral, this dependence is nontrivial although it is simplifiedtalned frc&m ;[)hesle two langulfarhrelgtlons. Ft;?ure 9 gives the
appreciably for pinning by weak isotropic disorder. In this M&asured abso ute vajue of the irreversible magnetic mo-

case, in an anisotropic superconductor the cudgptvill be M€t as a function of theo reduced magnetic field for
constant if the paramefgr various anglesp. Up to 60° this dependence shows almost

ideal agreement. Then the magnetic moment begins to de-
e,B=1cos p+I'?sir ¢ B, crease rapidly. Thus, the angular behavior of the curdgpt
_observed by us indicates that the fishtail effect is associated
with pinning at point defects or their clustéfSyhich induce
isotropic weak disorder. The curvdg,(B) also have other
peaks for which the scaling law examined above does not
apply. These peaks are probably related to other pinning cen-
ters, such as twin boundari&s.

is constant, wheré' corresponds to the effective mass an
isotropy (e, determines the angular variations of the intrin-
sic vortex energy, the second critical field, the melting point
of the vortex lattice, and the irreversibility fielB;, (Ref.
17). For an isotropic superconductor this condition corre-
sponds to constant magnetic induction.

Thus, if this scaling law is accurate, the value|mf ¢)|
measured for fixed ;H should vary very little with increas-
ing ¢ and should reach 2/3 of the initial value at the critical
anglee, (Sec. 2. Measurements for YB&u;O; single crys- As a result of their layered structure, high-temperature
tals (Fig. 8, using the valu€&?= 30 obtained from the depen- superconducting materials are strongly anisotropic. The cou-
dence ofBi}2 on sirf ¢) showed that this behavior is indeed pling between the CuO planes is fairly weak in Y,Ba,O,

4.2. Analysis of critical current anisotropy
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FIG. 9. Magnitude of the magnetic moment versus the reduced
magnetic field for various anglep for an MK sample at
T=82K.

,uoqu,. T

and very weak in BiSrCaCuO phases. The thermodynamiare nearly square witiwv~L, long and short samples are
anisotropyl” increases from-5 in YBa,Cu;O; to more than  defined according to whethearis greater or smaller thafl,
20 in BiSrCaCuO phases. respectively. The values @& in YBa,Cu;O; samples with a
Here we shall analyze the influence of these effects omigh oxygen content lie between 5 and (B@e Refs. 15 and
measurements of the anisotropy of the (nonequilibrium) 16) and are lower than the values for all the single crystals
shielding currents, which is determined by the ratio of theinvestigated herésee Table ). Thus, all these crystals are
critical currentsl,, andJ; flowing parallel and perpendicu- effectively long and shielding currents flowing in theb
lar to the CuO planes, respectively. This anisotropy naturallyplane predominate. Thus, there is no need to include current
depends on the thermodynamic anisotropy. In addition, it inisotropy in our analysis. The agreement between the data
also influenced by the anisotropy of the pinning centers andnd the geometric model, when the direction is close to
the sample geometry. theab plane(as can be seen from Fig), tonfirm this con-
Since high-temperature superconducting single crystalslusion.
are usually thin plates with the axis normal to the surface, However, samples witlk values less than-10 are re-
geometric effects cause the shielding currents to flow preguired to obtain information on the currents parallel to ¢he
dominantly parallel to th@b plane. An appreciable fraction axis in YBgCuO; single crystals. Such samples are fairly
of the currents flowing parallel to the normal to the plane ( rare. In addition, this sample should be oriented with a pre-
crystallographic axijsonly appears wherd is within the  cision better than one degré€gs.(4) and(5)) which is not
angle~ 1/« from the plane. To measure these currents it isusually achieved in SQUID measurements. Among the more
necessary but not sufficient to operate within this angulaanisotropic high-temperature superconductors, we can easily
range. find samples with the required aspect ratio. However, the
A solution of the anisotropic Bean model with the mag- constraints on the orientation precision increase substantially
netic field parallel to the plane of the plate was obtained inand rapidly exceed the characteristic growth misorientation
Refs. 21 and 22. In this case, the distribution of the magneti¢~0.1°) of high-temperature superconducting single crys-
induction is determined by the linear profiles. The gradientals. For these reasons magnetic measurements can only
of the magnetic inductioB is determined by the transverse yield the critical current anisotropy in these crystals for a
critical current. We shall analyze the case whers applied  fairly narrow range of) values.
in the x direction parallel to the plane of the plateee Fig.
1). Two typical scenarios for flux penetration exist. In short
samples /t<Q) the flux penetrates more rapidly in tlze
direction than in they direction and the magnetic moment A solution of the Bean model has been obtained for an
m, is predominantly determined by the short-circuit currentsinfinite thin plate in an inclined magnetic field. An analysis
parallel to thec axis. Only these samples are effective forwas made of the influence of anisotropy, the finite slope of
measurement of the current anisotrofy In long samples the current—voltage characteristics, and the closure currents
(L/t>Q) the flux penetrates more rapidly in tiyedirection.  in a finite samples and it was established that these factor
In this casem, is determined by the componedy, parallel  weakly influence the results. Over almost the entire range of
to the plane. Thus, in long samples the influence ofihe H directions, the magnetic momemtinduced by the shield-
component is not important. ing currents is bound to the normal of the plate and the
Since high-temperature superconducting single crystalsmagnitude ofm varies only negligibly. This localization of

5. CONCLUSIONS
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Inelastic thermal-neutron scattering is used to study the intermediate-valence systegsi¥.bCu

The magnetic scattering in two nonoverlapping ranges of transfer energies<2 meV

and 5<¢<<100 meV, is analyzed under the assumption that the regions influence each other only
weakly. As a result, two sets of phenomenological crystal-field parameters are established,

and their difference constitutes the experimental error in determining these parameters. A
comparison of the fourth-order crystal field with other compounds belonging to the

RCu,Si, series(R stands for a rare-earth elemesatiggests that in YbG8i, hybridization occurs
betweenf electrons and copper electrons, in contrast to the heavy-fermion systemSigeCu

for which it was established earlier that hybridization occurs betwkezlectrons and Sp
electrons. ©1998 American Institute of Physid$$1063-776(98)02007-1]

1. INTRODUCTION AND BRIEF REVIEW OF THE to a normal crystal field in the low-temperature Nd com-
LITERATURE pound and in the Ho and Er compounds. We believe that we
are on firm ground when we say that the normal, i.e., free

YbCW,Si, is an intermediate-valence compound. This isfrom the effect of hybridization, fourth-order multipole of

indicated by data on the x-ray absorption edge and on thge crystal field is formed primarily by copper ligands, while
electronic specific heat. The Sommerfeld constaamounts  he Sj sphere normally contributes almost nothing to this
to 135 mJ{Kz-qu) (Ref. 1, which is much larger than the ,ger of the crystal field. A conception of the shape of the
values characteristic of normal metais {) and smaller than - orma) crystal field in this series provides a reference point

the Va"%es Of?’ in.heavy-fermion §ystems. For instance, in in our search for the crystal field of the intermediate-valence
CeCuySi,, which is a heavy-fermion system,=1000 mJ/ system YbCySi,

2 . . .
(K. -n(;ofl). TTE valencebof thf delon n YbeS'ZZ’ de(;er— The Yb ion in the title compound is in an environment
mined from the x-ray absorption edge, is ZRefs. 2 and 3 with tetragonal point symmetry, i.e., the symmetry of a site

The problem of whether the crystal-field model can beyg ¢ jow. Five independent parameters are needed to de-

applied to |nFermed|ate-vaIence SV.S‘e”?S has yet to be fl‘.'" ermine the crystal field, and they can be reliably found only
resolved, which comes as no surprise since the many-particle .. . A . .
directly measuring the crystal field in an inelastic thermal-

nature of the states in intermediate-valence systems is high eutron scattering experiment. Here the problem of deter-

pronounced, and all attempts to describe such systems byrf’%tlnin the crystal field in an intermediate-valence system is
single-particle model should be fraught with many difficul- 9 Y y

ties. And yet there is proof that such a description is possibles.ure to be complex because of the extremely broad inelastic

Goremychkin and Osbofnvere the first to find experimental peaks and the difficulties associated with separating the mag-
proof that the crystal-field model can be used to describ etic scattering, which carries information about the crystal

heavy-fermion systems in the case of Cely If the crystal ield, from the phonon scattering..So far noquy has been
fields for intermediate-valence systems could also be foundP!€ t0 measure a purely magnetic response in neutron ex-
we would have proof of the existence of a specific form inPEriments involving YbCsBi, in the entire range of energy
which the many-particle nature of all rare-earth compounddransfers, and in interpreting a purely magnetic response
with a strong hybridization interaction manifests itself, andSeParated in some way it is questionable whether separating
we could perform a concrete analysis within the scope of thidhelastic scattering from quasielastic or inelastic Kondo scat-
specific form. tering is possible. Hence in our attempts to determine the
For us it is especially important to determine the crystalcrystal field we must use all the information available, in-
field in the title compound because its determination wouldeluding the results of macroscopic studies of this compound.
continue the study of crystal fields in the RSiy series(R According to the literature data, the inelastic scattering
stands for a rear-earth elemgnf performed for the purpose ©of thermal neutrons in YbGSi, has been measured three
of establishing the crystal-field anomalies associated witfiimes. Twice the measurements were performed by the same
hybridization. The main conclusion drawn in all these papergroup of researchefs.® One of the main conclusions drawn
is that regular variation of the crystal field can be observed iy these researchers was that the magnetic response cannot
the series of the isostructural compounds R&iy from an  be described by a single quasielastic Lorentzian. A noncon-
anomalous crystal field in the Ce system through an intermetradictory description of their data was possible only by as-
diate one in the Pr and Nd compoun@s high temperaturés suming that there are several inelastic lines in the magnetic

1063-7761/98/87(7)/13/$15.00 162 © 1998 American Institute of Physics
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response. This prompted them to suggest that there are idicts the results of neutron experiments with a single
elastic transitions associated with the crystal field in the in<rystall? In the absence of spin and charge fluctuations, the
elastic scattering of thermal neutrons. The energetic positionrystal field at low temperatures yields only one transition
of one of these transitions~(30 meV) on the energy- between the crystal-field levels with a nonzero matrix ele-
transfer scale was found, and the result was highly reliablenent. The transition energy amounted=+d.0 meV. Zwick-
Unfortunately, the sets of the crystal-field parameters founcdhaglet al!® calculated the magnetic response with allowance
in Ref. 10 do not correlate very strongly with the results offor the crystal field determined in Ref. 13 and strong spin
measuring the static magnetic susceptibility in a Y&  and charge fluctuations. Allowance for the anisotropy of the
single crystal! The calculated value of the anisotropy pf  fluctuations was found to lead to different energetic positions
obtained on the basis of the first variant of the crystal Held for the inelastic peak in the dynamic magnetic susceptibility
is much smaller than the experimental value. Another sein the directions along the axis and perpendicular to that
yields an anisotropy of inverted in relation to the measured direction. Thus, for all other directions the magnetic re-
anisotropy. sponse must have two peaks, while along¢hexis and the

In the last of these three experiments, Currat andlirection perpendicular to that axis the magnetic response
Murani?> measured the inelastic scattering of thermal neuhas only one peak. However, according to Currat and
trons in a YbCySi, single crystal. The range of energy trans- Murani!? at least two broad components are present in the
fers from 8 to 50 meV was investigated. They found that inmagnetic response in all directions.
all scattering directions the magnetic responsd at.3 K The conclusion that sums up this brief review of the
had at least two broad inelastic components. The maximuriiterature is that the problem of finding the crystal field in the
of the first was approximately at 12—16 meV and the maxi-ntermediate-valence system YbSi is yet to be solved.
mum of the second, at 30 meV. These researchers did not

seek the crystal-field parameters. 2 EXPERIMENT
On the basis of the data from the measuremenjg( ) . .
performed by Shimizet al,'* Zevin et al!® assumed that A polycrystalline sample of YbGi$i, was prepared by

the leading contribution to the crystal field of Yb@i, is ~ a@rc melting in a water-cooled copper hearth with no weight
provided by the quadrupole term. Indeed, deg loss during the melting process. Afte_r vacuum annea!lng at
=—0.56 meV and a purely axial crystal-field symmetry, the7_00 °C, x-ray crystallographic analysis and neutron dlffr_ac-
calculated susceptibility is close to the measured value in thiOn experiments showed that there are no other phases in the
entire temperature range. The agreement can be improved §{MPle. _ . .
introducing a negative paramagnetic Curie temperafyra The inelastic thermal—negtron scqttermg experiment was
characteristic feature of intermediate-valence systems. ThgPnducted on a KDSOG-M time-of-flight spectrometer with
agreement is best witt®=—30 K. In addition, Zevin inverse geometry attached to the IBR-2 pulsed readwmint
etal’® used the above crystal field to calculate theInstitute for Nuclear Research, Dubna, Russide inelastic
temperature-dependent compon@(T) of the quadrupole scattering of thermal neutrons was measured at three tem-
moment by a method based on the noncrossing-diagram apératures: 10 K, 80 K, and 300 K. The range of energy
proximation (see, e.g., Refs. 14—17The calculated depen- transfers investigated extended from 2 to 200 meV.
dence was fitted to the experimental data gathered from mea-
surements of the quadrupole moment of the Yb ion in3, ANALYSIS OF RESULTS
YbCu,Si, by Mossbauer spectroscopy The fitting process
involved varying the Kondo temperatufg and the effective
width I of the resonant layer of conduction electrons on the = We found that the greatest difficulty in analyzing the
Fermi surface. This yieldedx=200 K andI'=50 meV. results of inelastic thermal-neutron scattering measurements
The parametel was found to be the most sensitive in the was separating the phonon and magnetic scattering compo-
fitting process. nents. Nevertheless, even if we resort only to qualitative
Although being outwardly convincing, the results of the analysis, we are able to draw certain conclusions about the
calculations ofQ(T) and y(T) done by Zevinet all® pose  nature of magnetic scattering: it is concentrated in two dis-
several problems. First, why is it that with such a high valuetinct ranges of the energy transterlt is easy to assume that
of Tk the temperature dependence of the static magnetic suthe low-energy features(=3-5 meV), which is clearly vis-
ceptibility is determined by the crystal field down to 50—30 ible in the spectra and unmistakably lies in the Debye range
K, while with T~Tyx or less, y must become the of phonon scattering, is of a purely magnetic nature. This
temperature-independent Pauli susceptibility? Second, thassumption has been corroborated by the measurements of E.
negative paramagnetic Curie temperat@rshould coincide A. Goremychkin performed on the HET time-of-flight spec-
in order of magnitude witflx , while it actually differs by a trometer with direct geometry at the ISIS spallation neutron
factor of approximately seven. Calculations done by thesource(RAL, UK). In contrast to the KDSOG spectrometer,
present author withl'x=30K by the method proposed in the HET instrument makes it possible to substantially vary
Ref. 13 show that there is not a single valud'adt which the  the momentum transfer at a fixed energy transfer and, due to
calculatedQ(T) curves could be made to resemble the ex-this, to lower the phonon-to-magnetic component ratio sub-
perimental curves. stantially (the so-called angular suppression of phonon scat-
Moreover, the crystal field determined in Ref. 13 contra-tering). According to the HET data, this feature can be ob-

3.1. Qualitative analysis of spectra
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FIG. 1. Experimental scattering law obtained with the KDSOG-M spec- 150
trometer for YbCuySi, at T=10 K (curve 1), T=80 K (curve 2), and T
=300 K (curve 3).

served only at small scattering angf@&-he energy width of
this feature almost coincides with its position and suggests
that the possible high-energy “tail” is not a significant factor
in shaping the spectrum in the range of energy transfers
above 10 meV. Here the temperature dependence of the scat-
tering in the range 28<<100 meV is pronounced in the
KDSOG-M spectra(Fig. 1), is of the magnetic naturéan
increase in scattering intensity with decreasing tempergature
and suggests that in this rangesofhe magnetic component

is predominant. The range<7e <20 meV is the most diffi-
cult for analysis, since here phonon scattering is extremely
strong(its intensity increases with temperatuesnd is mixed

with strong magnetic scattering, whose tail extends up t0 FiG. 2. Time-of-flight spectra of inelastically scattered thermal neutrons in

=100 meV. antiferromagnetic compounds of the RSiy series recorded with the
KDSOG-M spectrometer. The range of energy transfers is the one in which
there is no magnetic scattering.
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3.2. “Primary” separation of the phonon component

Since the KDSOG-M spectrometer has an inverse geomKDSOG-M spectrometer at=80 K. The value of the total
etry, it scans a broad range of energy transfers. Howevesplitting of the ground-state multiplet in the crystal field for
with it one cannot substantially vary the momentum transfemll antiferromagnets coincided to within 0.5 meV and
for a fixed energy transfer, so that the only way to separatamounted to~11 meV (Ref. 7). The widths of the inelastic
the phonon and magnetic components is to measure the malijzes of the magnetic response do not exceed 1 meV. The
netic compound and a nonmagnetic analog, in which theange of energy transfers in Fig. 2 is chosen so as to show the
magnetically active ion is replaced, say, by La. After makingsections of the spectra that are free of magnetic scattering. A
an appropriate correction, the spectrum of the latter can beorrection related to the self-shielding of the sample was
considered the phonon component of the former. made for all spectra, i.e., they were all divided by a function

Figure 2 depicts the time-of-flight spectrum of LaSiy  F(g), which specifies the weakening of the scattered beam
(Fig. 2a, filled circle} together with the spectra of the anti- due to the finite thickness of the sample. In the spectrom-
ferromagnetic members of the series measured with theter's geometry, this function has the form

exp{ — u(Eq)d/sin(45°+ 0)} —exp{ — w(Ep+¢e)d/sin 45 9

sin 457 u(Eg+e)d/sin 45°— u(Eg)d/sin(45°+6)] @

F(e)=
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wherekE, is the final neutron energy,is the energy transfer, £, meV
w(E) is the energy-dependent linear beam-attenuation fac- 400
tor, which allows for all neutron scattering and absorption
mechanismsg is the scattering angle, ardlis the sample Fa
thickness.

In addition, all the spectra were normalized so that the 300
intensities of the phonon feature &t 20 meV would coin-
cide.

A comparison of Figs. 2a and 2b shows that for
>25 meV the phonon spectrum of Hogi, (the heavy
curve in Fig. 2b differs strongly from all the spectra de-
picted in Fig. 2a. The reason for this is unknown to us, since
an analysis of the tabulated data shows that there is not a
single scattering parameter for Ho that behaves abnormally. 100
It is more important at this point to know to what extent the
spectrum of LaCBi, can be used as the phonon component
of the spectrum of YbC®i,. In other words, we would like 0
to know to what extent the features in the phonon spectrum 250
of Ho that are not present in the spectra depicted in Fig. 2a
are retained in the phonon spectrum of Yb.

The light curve in Fig. 2b depicts the spectrum of 200
ErCuSi,. The extremely poor statistics of the spectrum are
due to the large absorption cross section for Er. The fact that
the high-energy part of the spectrum is located above the
low-energy part can be attributed to the insufficient self-
shielding correction introduced by the functi¢h). Never-
theless, it is obvious that the Er spectrum is much closer to g9
the Ho spectrum than it is to the spectra of lighter rarer-earth
ions. This was a sufficient argument in favor of not taking
the La spectrum as a base for imitating the phonon spectrum 50
of YbCu,Si,, but using, for lack of anything better, the spec-
trum of a much closer neighbor in the rare-earth series,
which was recorded with acceptable statistics, i.e., the spec- 0
trum of HoCuySi, (more precisely, the part free of magnetic 5
scattering. The part of the phonon spectrum below the mag-
netic scattering was imitated by the Debye law with a DebyeE'G- 3. -(a) Tin_1e-of-f|i_ght thermal-neutron inelastic sgattering spectrum of
temperature equal to 20 meV. This part was matched to th\ﬁ(]bcuzs'2 obtained with the KDSOG-M spectrometdight curve and a s

odel spectrum imitating the phonon component of the scattering and nor
remainder of the spectrum near the 160th time chanael (malized as indicated in the tetheavy curvié (b) Results of subtracting
=12 meV). model phon_on spectra from inelastic thermal-neutron scattering spectra re-

The model phonon spectrum constructed in the way w&°rded & different temperatures.
have just described fof =80 K was recalculated for other
temperaturesT=10 K and T=300 K. The normalization
constant of the model phonon spectrum was chosen so that

the intensities of the features near the 100th time Chann@xperimental spectra of YbG8i,. The marked dips on these
(e=55 meV) in the model spectrum and in the spectrum ofspectra appear because of the mismatch of the phonon fea-
YbCu,Si, would coincide atT=300 K (see Fig. 3a: the tures in the Ho and Yb spectra. If we mentally “smooth out”
heavy curve is the model spectrum and the light curve is thénese features and pay attention only to the general outline of
spectrum of YbCySi,, T=300 K). This choice of normal- the curve, the temperature dynamics of the magnetic re-
ization can easily be explained: the higher is the temperaturgponse in the time channels below the 200t>6 meV)
the smaller is the fraction of magnetic scattering at high val-appear to be as follows: @t=10 K we have a wide unstruc-
ues ofe and the closer is the phonon spectr(imom below  tured line covering the range of energy transfers from 5 to
to the total spectrum in this region. In this case we obtain thee00 meV, atT=300 K we have a structure consisting of
smallest possible value of the normalization constant for thehree narrower components, andTat 80 K we have an in-
phonon component. termediate picture.

Figure 3b depicts the time-of-flight spectra of the mag-  In what follows we call the magnetic-response spectra
netic response of YbG8i, at three temperatures obtained asobtained in this way the “preliminary” magnetic-response
a result of subtracting the model phonon spectra from thepectra.

100 5040 30 20 10 5 4 3 2

1, arb. units
[\
S

150

I, arb. units
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3.3. Grid analysis of “preliminary” magnetic-response the square of the matrix e|eme@1 jL|i> of the operator of
spectra the component of the total angular momentum of the para-
In decomposing the “preliminary” magnetic response magnetic ion perpendicular to the scattering vector. In the
into spectral components we assume that the following ascase of a polycrystalline scatterer, this matrix element can be
sumptions hold: expressed in terms of the matrix elements of the standard
1) the crystal-field levels are temperature-independent; angular-momentum operators:
U have the. o e o neiaste nes I e SPEC 1513, iy 2= 3145 3-1i)[2+ 4101 3. DI+ 8113407
3) the low-energy feature of the spectrumTat 10 K, Both the positions and the intensities of the transitions
which is of a magnetic nature, in the compound under conare uniquely determined by the crystal-field operator, which
sideration is the analog of the quasielastic component in théor rare-earth ions in the case of tetragonal point symmetry
case of a compound with a definite value of the total maghas five terms:
Peer::; moment(an antiferromagnet or a heavy-fermion sys flor=BIOY+ BAO0+ BAOY+ BI04+ BIO? 3
4) the width of this feature is approximately equal to its where O are the equivalent Stevens operafdrand {B™
position, i.e.,~3 meV; then the “quasielastic” component s the set of crystal-field parameters sought.
provides an insignificant contribution to the magnetic scat-  The search for the crystal-field parameters is carried out
tering at 5<£<100 meV, which is mostly due to inelastic py the standard method: the results of decomposition of the

transitions in the crystal field;, ~ spectra yield a set of discrete ddthe positions and inten-
5) the spectral function describing the shape of the in-ities of the peaks which can serve as a selection criterion
elastic line is Lorentzian. for examining different crystal-field variants. The uncertain-

The most “intriguing” part of the magnetic response is ties in the positions and intensities of the peaks act as a
the quasielastic component: its width is much smaller tha@;ateway, through which the set of crystal-field parameters
the width of inelastic lines, and its shape cannot be describegeing tested either passes or does not. It is thus clear that in
by a Lorentziar(we shall elaborate on this belgvHence in  he present case the gateway is fairly “wide.”
analyzing the crystal field we focused on the range of energy |n sorting the various crystal-field variants it is conve-
transfers in which the quasielastic component is assumed t§ient to use Walter's parametrizatiéhThe convenience of
play a small role, 5:£<<100 meV, i.e., in the 200th to the this parametrization lies in the fact that the range of variation
75th time channels. of each Walter parametet is boundedix;|<1. Moreover,

What complicates the problem of decomposing thegnly four of the five Walter parameters are varied. The fifth
“preliminary” magnetic-response spectra into spectral cCom-pnarameter is the scale factdt, which is defined by relating
ponents is, of course, the fact that the spectra are highle energetic position of a specific spectral component to a
undifferentiated, and the resolving power of the spectrometegefinite transition between crystal-field levels through the
has nothing to do with it. The spectra are resolved so poorlyinear equations =WA;;, whereA;; is the transition from
because of the large natural width of the spectral lines. Ofhe jth level to thejth level of the crystal-field Hamiltonian
the other hand, matters are simplified considerably by thgaken forw=1. In our case the energetic position of one of
fact that atT =10 K the inelastic scattering spectrum should gpectral components was=32 meV. The fact that other
contain no more than three lines, which correspond to tranpeytron studiegsee the Introductionalso detected a mag-
sitions from the ground-state doublet to three excited dounetic feature with a close energetic position suggests that this
blets (it is natural to take into account the splitting of only component is reliable and can be used to determine the scale
the ground-state multipletF,,,, since the next multiplet, factor W.

?Fsp2, is separated from the ground-state multiplet by a huge |n sorting the crystal-field variants the entire parameter
energy gap of 1251.5 meywhile at T=300 K the maxi-  space{x;} was scanned with a mesh width fey equal to
mum number of lines is six. 0.02. The crystal-field transitions were calculated at each

Each spectral component corresponds to the transitiofhesh point, and the results were compared with the param-
Aij from theith Crystal'ﬁeld level to th@th Ievel, i.e., to one eters of the Spectra| components of the “pre"minary”
of the terms in the dipole approximation of the law of scat-magnetic-response spectra. The uncertainties of the positions
tering of unpolarized neutrons by a paramagnetic ion in &ngd intensities of these components were sure to be much

crystal field™® larger than the errors in the calculated quantities due to the
finite size of the grid cells. As a result of scanning, roughly
S(e T elkT 2 1613, 1id2 two dozen unrelated regions of the spégg were selected,
(81 ) _ _ /k 4 pl|<J| L|I>| . .. .
1-exp(—elkT) 4 each corresponding to a definite region of the parameter
m
L-exp—A, kD) , space(By’}.
A, KT (&= 4j)). %)

3.4. Final isolation of the inelastic magnetic response

The energetic position of the component corresponds to a It goes without saying that the “preliminary” magnetic
peak in the spectral functida, and the transition intensity is spectra can serve only as a very rough approximation of the
determined by the thermal populatipn of theith level and  YbCu,Si, magnetic response. Moreover, the large number of
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£ meV
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2 _f, FIG. 4. Time-of-flight inelastic magnetic thermal-
50 50t neutron scattering spectra recorded at different tem-
peratures and corresponding to the first variant of
0 LN e Pt — the crystal field: points—magnetic spectrum iso-
75 100 125 150 175 N 100 125 150 175 N lated from the total experimental inelastic thermal-
neutron scattering spectrum by the method de-
scribed in the text; heavy curves—result of
calculations based on the first set of crystal-field
150 parameters; light curves—individual spectral com-
ponents of the calculated spectrum.
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regions in the crystal-field parameter space selected as resgitdure with respect to the region, i.e., if the region is not
of grid analysis requires an effective selection criterion forrandom but is near a true point, the procedure must converge
selecting among these “points.” The criterion that we usedin it.

consisted of the results of the least-squares fitting of the cal- Only one region was found to meet the stability crite-
culated inelastic £>5 meV) magnetic-response spectrumrion, and it also exhibited the lowest level pf as a result of
containing both the magnetic and phonon components to thitting. A characteristic feature of this region, which sets it
experimental spectra dt=80 K and 300 K. In this process apart from all the other regions, is the large absolute value of
the spectra for both temperatures were fitted simultaneouslyhe crystal-field paramet@3. Figure 4 depicts time-of-flight
The difference between the total experimental spectrum angpectra obtained as a result of least-squares fitting in this
the calculated magnetic spectrumTat 10 K, recalculated region. The heavy curves represent the total calculated mag-
to the respective temperature, was taken as the phonon cometic response, the light curves represent the individual spec-
ponent of the calculated spectrum. The paraméd®{4§, the  tral components, and the points represent the result of sub-
factor by which the magnetic response as a whole was mulracting the phonon component obtained by the method
tiplied, and the linewidths common to all inelastic transitionsdescribed earlier from the total experimental spectrum. The
in the crystal field at a given temperature were varied in thenumerical results of the fitting procedure are listed in Table I.
fitting procedure. The high-energy tail of the low-energy fea-The plus-or-minus sign in front of the crystal-field param-
ture was described as the tail of a normal quasielastic cometers B} and B reflects the fact that a neutron-scattering
ponents, but the width of this component was varied inde-

pendently of the width of the inelastic transitions.

The energy-transfer function _ , _ ,
TABLE |. Parameters of the calculated inelastic magnetic response used in
1— exr( — 8/kTO) describing the low-energy features of the spectruriiatlO K by a quasi-

f(e)= m, elastic Lorentziar(the first variant of the set of crystal-field parameters
X

by which we must multiply the phonon spectrum to recalcu- Variable parameters Final fit
late fromTy=10 K to T,, increases withl,. This causes BY —-0.21 meV
enhancement of the “noise” present in the difference spec- BS —0.21x107 meV
trum at 10 K and an increase in the spread of points in the B3 —0.10¢10 * meV
calculated spectra as the temperature is increased, which may B% +0.46x 10:; meV
lead to difficulties in minimizingy?. Nevertheless, we hoped Bs =017x10°" mev
that if the starting point in the fitting procedure is close to the  width of quasielastic line af=10 K 0.5 meVv

true set of crystal-field parameters, the procedure should con-  Width of inelastic line aff =10 K 9.54 meV
verge o tat st T e kb P A

_ _The least-squares fl_ts obtained by starting thg proce_dure Width of quasielastic line af =300 K 33 meV

in different selected regions were rated by two criteria: firSt,  \idth of inelastic line aff =300 K 4.50 meV

by the value ofy?, and, second, by the stability of the pro-
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S, arb. units eter for YbCySi, at T=10 K. The light curvel represents
g the Lorentzian of the quasielastic component of spectrum
depicted in Fig. 4. Even if we were to assume that there
exists a phonon background that shifts cutwgoward, there
is no way in which we can describe the characteristic peak at
e=3 meV. As the Lorentzian width increases, the extent to
which the Lorentzian does not coincide with the spectral
feature grows due to both shape and intensity, as is demon-
strated by curve2. This curve is a 2.25 meV wide elastic
Lorentzian of the same intensity as curtgbut has been
diminished threefold.
The fact that there is no way in which a Lorentzian can
0 describe the low-energy part of the spectrum of a mixed-
T T valence system should not come as a surprise, since it is
known'*~1"that at low temperatures and small energy trans-
FIG. 5. Low-energy part of the scattering law for YbSip at T=10 K: fers the scattering by a rare-earth ion with an unstalile 4
points—experimental spectrum obtained with the KDSOG-M spectrometerghe|l should contain an inelastic Kondo component, which is
1—quasielastic 0.5 meV wide Lorentzian corresponding to the quasielastic lated to the t it f th d stat f’
spectral component as shown in Fig. Zk—quasielastic 2.25 meV wide re a_e 0 the transi |_on_ rom the ground state of a many'
Lorentzian with an intensity equal to one-third of the intensity correspond-particle system consisting off4electrons and conduction
ing to curvel; heavy solid line—result of calculations using the Kondo electrons(a Kondo singletto excited states with a nonzero
formula in Ref. 27:Tx=26.5 K, the population of thé level is 0.85, the magnetic momerfd—26
degeneracy of the ground state of the rare-earth ion is eightfold; heavy K t d'M I Hart éﬁ d Ivtical
dashed line—same =35 K. uramoto and Muller—Hartmanproposed an analytical
formula that describes the low-energy part of the dynamic
magnetic susceptibility of a mixed-valence impurity Bt

experiment is insensitive to simultaneous changes in th& 0:
signs of both parameters.

Below we assume that the g&|"} we have obtained is
close to the true set.

150F\

100

50,

Im x(e) & sin «
C (kT2 WAWP+4si? a)

_ _ X1 sin a In[(1—u?)2+4u? sir? a]
3.5. Low-energy feature in the magnetic-response spectrum

at T=10K

T 1-u?
. . . I .
We recall that in decomposing the magnetic response u 5 61FCt<’:1H27u Sin ] (4)

into spectral components we assumed that the low-energy
feature in the spectrum is an analog of the quasielastic conwhereC=(g;ug)?J(J+ 1)/3 is the Curie constari, is the
ponent in compounds with a definite value of the magnetidKondo temperature; is the energy transfea=¢/kTy, n; is
moment and that the bulk of the intensity of “quasielastic” the population of thé shell,n is the degree of degeneracy of
scattering in YbCuSi, should lie in the range Qe the rare-earth ion, and= mr(n;/n).
<10 meV. The last assumption was based on a visual esti- Equation(4) was derived using the noncrossing-diagram
mate of the width of the feature. Table | shows that in con-approximation under the assumption that the environment of
trast to the spectra at 300 K and 80 K, the width of therare-earth ions is spherically symmetric, which plainly con-
quasielastic component of the spectrum recordedTat tradicts the real physical situation. Nevertheless, we expect
=10 K is approximately 20 times smaller than the width of that(4) gives a correct qualitative picture of the dependence
the inelastic lines. This fact merits an explanation. of scattering on energy transfer for lawandT in the case
The calculated intensity of the elastic componeniTat where the crystal-field splitting of the ground-state multiplet
=10 K in the response described by the set of parameterd-=kTy . Whenn;/n=0.25, Eq.(4) can be approximated
established earlier is related to the intensities of the elastiby a sum of quasielastic and inelastic Lorentzians. When Eq.
components as 1:0.75:0.53:0.19. The only possibility of pre{4) was used, we assumed thgt=0.85 andn=38 (degen-
serving the very high intensity of the elastic line in the spec-eracy of the ground-state multiplet without a crystal field
trum atT=10 K (Fig. 4) in the range below 10 meV was to knowingly avoiding this possibility. Here E¢4) was used to
select a narrow width for the Lorentzian describing this line.estimate the high-energy “tail” of the scattering related to
As the width increases, the intensity “spreads” because ofhe low-energy feature from below, since for smglin Eq.
the effect of the detailed-balance factore/KT)/[1 (4) implies that the scattering intensity rapidly diminishes as
—exp(—&/kT)] in the scattering law2). Thus, the unjustifi- & increases.
ably small width of the quasielastic component is the result  Note that in addition to Eq(4) being able to provide
of the attempt to describe this component by a Lorentziaronly a qualitative description of the spectrum, the situation
and to assign a high intensity to it. with magnetic scattering at<<5 meV is indeterminate also
The points in Fig. 5 represent the low-energy part of thedue to the special way in which the magnetic component of
total scattering law obtained with the KDSOG-M spectrom-the scattering is isolated: here we have a low-energy “tail”
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TABLE II. Parameters of the calculated inelastic magnetic response used in S, arb. units
describing the low-energy feature of the spectrunTatl0 K by Kondo 200+
scattering(the second variant of the set of crystal-field paramgters
Variable parameters Final fit g
S 150 &
Bs —0.22 meV ;
B3 —0.20<10™* meVv
B2 —0.21x10° meV
B: +0.45< 10" meV 100f
BE +0.48x10 % meV
Kondo temperature 3.9 meW¥5.3 K
Width of inelastic line aff=10 K 9.71 meV 50r
Width of quasielastic line af =80 K 1.5 meV
Width of inelastic line aff=80 K 6.0 meV
Width of quasielastic line af =300 K 3.3 meV 0 . . :
Width of inelastic line aff =300 K 4.50 meV 0 10 20 30 & meV

FIG. 6. Comparison of the Kondo component and inelastic-scattering inten-
sities: light line—Kondo componenfl=26.5 K (Fig. 5); heavy dashed

; : " ; : line—inelastic response calculated on the basis of the second variant of the
of inelastic transitions in the crystal field and a phonon backCrystal field atT—10 K: heavy solid line—sum of the two; points—

ground. B.Oth components of th_e spectrum, as is evident frorgxperimental scattering law obtained with the KDSOG-M spectrometer for
the description of the processing procedure, are determinethCu,Si, at T=10 K.

by magnetic scattering fitted in another range of energy
transfers £¢>5 meV). The only assumption that makes any
sense in this situation is that at low temperatures the Kondby assuming that one range of energy transfers has little ef-
component(4) is the leading scattering component in the fect on other ranges. As for fitting the magnetic spectrum
range of energy transfees<5 meV. over the entire range of energy transfers, we lack, first and

Figure 5 depicts the result of the least-squares fitting ofmost importantly, sufficient theoretical knowledge about the
the calculated scattering lathe heavy solid curyeto the  structure of the quasielastic component and, second, suffi-
experimental scattering law obtained with the KDSOG-Mcient exact knowledge about the phonon contribution in the
spectrometer af = 10 K (points. The fitting was carried out region of small energy transfers.
only in the range 2Ze<5 meV. For the calculated scatter- Nevertheless, to qualitatively compare the intensities of
ing law we took only the Kondo componet®) multiplied  the quasielastic and inelastic components of the magnetic
by the factor[1—exp(—&/kT)]"% In the fitting process we scattering, we fitted the intensity of the Kondo component
varied the Kondo temperature and the factor multiplying theshown in Fig. 5(heavy solid ling in the presence of the
calculated spectrum as a whole. As a result of the fitting, thénelastic magnetic response corresponding to théggt, to
value of kT was found to be equal to 2.25 meVl{  the experimental scattering law @t=10 K in the range 2
=26.5 K). We would like to believe that ignoring the other <e<5 meV. Only the common factor of the Kondo compo-
scattering components at these valueg afoes not lead to nent was varied during the fitting. The results are depicted in
serious errors in determining the Kondo temperatligg Fig. 6: points—the total experimental scattering law obtained
whose value is determined primarily by the position of thewith the KDSOG-M spectrometer dt=10 K; light line—
peak of the low-energy feature. The dashed curve in Fig. She Kondo component of the scattering calculated by(&Q.
represents the results of a calculation using @g.for Tx  at Tx=26.5 K; heavy dashed line—the sum of three inelas-
=35 K. tic lines similar to those represented in Fig.T4; 10 K; and

The result of the procedure for fitting the inelastic part ofheavy solid line—the sum of the calculated Kondo compo-
the spectrum described in the previous section depends arent and the calculated inelastic components.
the shape of the tail of the quasielastic component. The set The intensity of each was found by the formiila
{B["} listed in Table | was obtained under the assumption
that this component is described by a Lorentzian. If we sup-
pose that the quasielastic component is described by4Eg.
the fitting results(see Table ) change, but they remain in- x e
side the region of the crystal-field parameter space deter- X f WP
mined by grid analysis. We believe that the difference be- o
tween{B"}; (Table ) and{B|"}, (Table I)) characterizes the which is valid for broad spectral lines, from the ar@g,,
accuracy of determining the crystal-field parameters in theinder the respective curve in Fig. 6 in the range éfom 2
present paper. It is significant that the parameﬂ'and Bj meV to 100 meV, i.e., the largest energy transfer for which
are almost the same in both sets. traces of magnetic scattering are visible. In E5), x is the

Note that the crystal-field parameters and the Konddntensity sought, an®(e—A,T) is the spectral function cor-
scattering parameter@) were obtained from two different responding to a feature whose energetic positioA.is
least-squares fits in two nonoverlapping ranges of energy The ratio of the intensity of the Kondo component to the
transfers. We intentionally avoided the question of matchingverall intensity of the inelastic component was found to be

A, i
Xi(T)e mgmag(-r)

-1
(e—A;,T)de| , (5
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about 0.5, while the ratio of the intensity of the elastic line to 27 mol emu™
the total intensity of the inelastic lines f6B["},, which was 200

used to calculate the inelastic component in Fig. 6, amounts

to 0.91. If we assume that the compensation of the magnetic 150k

moment is reflected only in the intensity of the quasielastic
scattering, which is fully described by the Kondo component
just obtained, we can easily find that the reduction of the 100+
square of the total magnetic moment amounts to 21%.

The quasielastic scattering in spectra at higher tempera-

tures was described only by a Lorentzian, since @jcan o1
be used only at low temperatures. [ 26.5 H
0 |V SN W T T
0 50 100 150 200 250 300
4. DISCUSSION T.K

The compound studied here contains variable—valenc\@(fc- 78 D:t?ftmi”ing the hi?*:-ée?peratt#ret valencte ofdthe Zj(b ion fi?h

) . . . w,Si,. Points—experimental data on the temperature dependence of the
rare earth,'ons as elements of th_e CryStal matrix and is ?eciprocal static magnetic susceptibility of Yb@Si, (Ref. 11 (filled
Kondo |att|Ce-. HOWGVer,_the foregoing SUggeSt_S that WE Welircles—along the crystallographic axis, unfilled circles—in the perpen-
able to describe the main features of magnetic scattering bgicular direction; light solid line—Curie-Weiss law witl® = —26.5 K cor-

basing our reasoning exclusively on an incoherent or imputesponding to the effective magnetic moment of Yb in YE&ly dashed

: : : line—Curie law corresponding to the same effective magnetic moment of
ri roach. Below w ntin r analysi ) ) ponding 9
ty approac elo e continue our analysis along theYb in YbCu,Si,; heavy solid line—Curie law corresponding to the magnetic

same lines. moment of YB*.

4.1. Comparison with the results of measuring macroscopic
characteristics

Measurements of the static magnetic susceptibility offMentalx; *(T) curve toT=300 K. The dashed line repre-
intermediate-valence systems suggest that at high temperaents the Curie lavy; *(T)(uer) 2T with the same effec-
tures its temperature dependence obeys the Curie-Weiss lafiveé magnetic moment as in the Curie-Weiss law. The heavy

solid line represents the Curie law for the ¥bion (u
— 1 2 1 =4.54u). The ratio of the square of the effective magnetic
X(T) 3N/‘Lef‘f-|-+® ' (6) 2 2
moment (uer) =[1(T)—2]uy,3+ to the square of the mag-
whereN is the number of magnetic iong is the effective  netic moment of the Y& ion, x5, is equal to the recip-
magnetic moment of a single ion, afk<0 is the negative rocal ratio of the slopes of the dashed and solid heavy
paramagnetic Curie temperature. This experimental fact wastraight lines, which thus equalgT) — 2, wherey(T) is the
described theoretically by Kojimet al.®> who used the non- valence of Yb in the compound under consideratiorT at
crossing diagram approximation to calculate the static mag=300 K. Figure 7 shows that the high-temperature valence
netic susceptibility of a variable-valence impurity. of Yb determined in this way is 2(117.2/135.3¥ 2.87,

Shimizu et al!! used the results of measuringin a  which is very close to the experimental value of 2.9 deter-
single crystal (the experimental points on the plots of mined from the x-ray absorption ed§é.Thus, the value
x~X(T) are depicted in Fig. 7 by filled and unfilled circles ®,=—26.5 K and the assumption of Sales and WohlléBen
to determine® for the directions along the crystallograplsic that —®, is close toTy, on the basis of which this value
axis and perpendicular to that axi®;=—-75K and ® was obtained, do not contradict the experimental facts. Note
=—299 K. Actually, in determining® from the high- that the estimate of the magnetic-moment reduction at low
temperature part of g 1(T) curve there is a lot of arbitrari- temperature made at the end of Sec. 3 yields a low-
ness in drawing the straight line far *(T)(T+®) due to  temperature valence of Yb equal to 2.79, which appears to be
the experimental error “corridor” and, more importantly, to a highly plausible result.
the problem of correctly choosing the segment of ghé(T) Figure 8 shows plots of (T): experimental curves
curve where the linear law holds. taken from Ref. 11 (Xn’l(T)—fiIIed circles, and

Following the assumption of Sales and Wohlletfghat Xil(T)—unfiIIed circleg and calculated curvgbeavy solid
the absolute value of the negative paramagnetic temperatulise—based on the first set of crystal-field parameters, and
is close to the Kondo temperature, we equat®, with the  dashed line—based on the second set of crystal-field param-
value of T obtained from an analysis of the low-energy eters. The calculated curves have been corrected for the va-
feature of the magnetic scattering spectrig®e Sec. 3i.e., lence value obtained and have been shifted upward along the
0,=—26.5 K. Note that the assumption in Ref. 28 is basedvertical axis so that the calculated and experimegtal(T)
on a phenomenological model of interconfigurational fluc-curves would coincide af=300 K.
tuations and still requires rigorous mathematical substantia- We were unable to find the set of parametfB§'} for
tion. which the anisotropy of would be determined only by the

The light solid line in Fig. 7 represents the Curie-Weisscrystal field, although attempts to simultaneously fit the data
law for the direction along the axis obtained by connecting on the static susceptibility and neutron scattering with varia-
the point (—26.5, 0) with the extrapolation of the experi- tion of the crystal field were made. For this reason we as-
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200

546 Kim(Rj) =24 Kim(61,¢4),

1165.6

1473 where®, is the Stevens factor, arfgj, 6;, and ¢; are the
coordinates of théth ion in thejth coordination sphere.

A characteristic feature of the structure of compounds
belonging to the series under consideration is that the local
environment of the rare-earth ions comprises two coordina-
tion spheres, whose radii differ by less than 0.1 A: the
spheres of the Si and Cu ligands. The next coordination
sphere is 0.5 A away from them. As a result, for the fourth-
300 order crystal field we can set up the system of equations

150

100

50

0

FIG. 8. Anisotropy of®: Points—experimental data on the temperature 2= Kao(Si)A4(Si) + K4o(Cu)Ay(Cuy),

dependence of the reciprocal static magnetic susceptibility of YBigu ®4

(Ref. 11 (filled circles—along the crystallographic axis, unfilled 4 (8)
circles—in the perpendicular directipnheavy lines—calculated tempera- 4 — o~ = ~

ture dependence of the reciprocal static magnetic susceptibility obtained on ®_ =Kaa(SHA4(Si) + K4 Cu)A4(Cu).

the basis of the first variant of the crystal figkblid line) and the second 4

variant of the crystal fielddashed lingand shifted upward along the verti- In the particular case of Yb. this system becomes
cal axis of ordinates so that the calculated curve for the direction perpen- ’

dicular to thec axis would coincide with the experimental curve. BO
4 ~ i ~
W = O.64A4(SI) 2.17A4(CU),
sume that the anisotropy of the negative paramagnetic Curie Bj ©)

temperature provided an additional contributionytd-igure = —25.58,(Si)+5.1084(Cu).

17 21024
8 shows that® , = — 67 K. 17.3x10

The values oK, were calculated from the structural data of
Ref. 31 using the formulas on page 707 of Ref. 30.

By plugging the values oB[" found from experiments
into (9) and solving the system we can find the values of the

AS noted in the Introduction, finding the crystal field in internal parameterg4(si) and~A4(Cu)_ As noted in Sec. 3,
the title compound was a part of a systematic study of crystah neutron experiment does not makes it possible to determine

fields in the RCySi, series of compounds? In their theo-  the signs ofB% andB¢, since it is insensitive to their simul-
retical paper, Levy and Zhafijtook the anisotropic hybrid- taneous reversal.

ization interaction between thieelectrons of rare-earth ions If we choose the signs to be such tia}>0 and B

and conduction electrons into account by introducing an ef-~ g (++) the system vyields the following values of the
fective potential that contributed to the total crystal field. Thefourth-order internal parameters:

main goal of the systematic study of the crystal fields in the % (Si)=—0.061 meV, A,(Cu)=—5.49 meV for the
members of the series is to experimentally determine thi“ﬁrst sfat{B[”} and o

contribution to the crystal field of anomalous compounds by — ~ ..~ = _

comparing them with normal compounds which exhibit an-secg‘ﬁ‘éso_ 0.067 meV, Ay(Cu)=—5.41 meV for the

tiferromagnetic properties. . . .
X . . For the opposite choice of sigris —) we have
The comparative analysis was based on the superposi- -~~~ ~
A4(Si)=—2.019 meV, A4(Cu)=—-4.91 meV for the

tion model proposed by Newman and ffgin this model, m
the fourth and sixth orders of the crystal figice., B with ~ first Set{B/"} and -

| =4, 6) are determined only by the local environment of the ~ A4(Si)=—1.980 meV, A4(Cu)=—4.83 meV for the
rare-earth iongligands. Here the crystal-field potential is Second.

written as a superposition of the contributions of the different  An entirely independent search for the crystal-field pa-
coordination spheres, and the contribution of each sphere f@meters in YbCsBi, in the (++) case yielded a very small
represented as a product of the geometric coordination factaalue for A4(Si), which was characteristic of the normal
K,m, which depends on the position of the ligand ions in thecrystal field in the series of isostructural compounds FB&u
sphere, and what is known as the internal parameter of thesee Refs. 5, 7, and 8This simply cannot be a coincidence.
respective spherdy(R;), which is a measure of the partici- Therefore, the++) choice of signs is preferable.

pation of the respective coordination sphere in forming the 1€ most characteristic feature of the crystal field of
corresponding crystal-field multipole: anomalous compounds belonging to the series, which was

determined in previous studies, is the large absolute
B|m=®|; ZI(Rj)KIm(Gi ’@i):&; A(Rj)am(R,‘), valug and negativein sign contribution of the Si sphere to

4.2. Comparison of the crystal fields in YbCu  ,Si, and other
compounds in the series

the crystal field. Figure 9 shows a comparative diagram of
(7)  the crystal fields(the internal parameters of the ligand
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1r E, meV
32.89 === 0.2990[+3/2) + 0.9542|7/2)

30 0—=& 54
E‘_l | & ] 20.64 ===== 0.9542|+3/2) - 0.2990{%7/2)
.z)’:.:
-2 11.42===0.52331+7/2) + 0.8521|F1/2)
.
Ce Pr Nd Ho Er Yb 0= 0.8521}+7/2) - 0.5233|¥1/2)
ar FIG. 10. Structure of the wave functions of ¥bin the first variant of the
crystal field.
it @ @ % i ®
0 . .
> the values of the sixth-order internal parameters. One must
g-1f bear in mind, however, that the relative error in determining
g-2r B2 andBg, (i.e., the difference between the values in the first
5_3_ and second setss large. Table Il lists all the data on the
fourth- and sixth-order crystal fields for the first and second
—4r variants of the crystal field: the crystal-field parameters with
-5r the preferable signs oIBj,1 and Bé and the corresponding
-6 Ly § values of the internal parameters of the superposition model.
Ce Pr Nd Ho Er Yb Figure 10 depicts the structure of the wave functions for

FIG. 9. Values of the parameters in the superposition model of ligand coth€ first variant of the crystal field. In the case of the second

ordination spheres for various members of the Fuseries(in the case of  variant,{B|"},, the differences are insignificant.
R=Nd, an unfilled square corresponds to a low-energy value of a parameter

and a filled square, to a high-temperature value 4.3. The intermediate-valence system YbCu ,Si, and

anisotropic hybridization

spheresin the series under consideration and the place oc- Clearly, the assumption put forward in Sec. 4.1 that the
cupied by Yb in it. We see that in the latter case the anomalyiegative paramagnetic temperat@res anisotropic does not
shifts with conservation of the sign from the Si sphere to theallow the data on the static magnetic susceptibility of a
Cu sphere. Thus, as a result of our comparative analysis wangle crystal to serve as an absolute criterion for determin-
arrive at the following conclusions: ing whether the crystal field we found is the true one. Doubts
1) just as NdCySi,, PrCySi,, and especially the heavy- regarding the validity of the assumption titis anisotropic
fermion system CeG®i,, the intermediate-valence system automatically lead to doubts regarding the crystal field
YbCu,Si, demonstrates a large anomaly in the fourth-ordeffound, and vice versa.
crystal field, which can be related to the hybridization con-  On the other hand, there is no unique interpretation of
tribution to the crystal-field potential, the anisotropy of®. This phenomenon may be due to the
2) the situation characteristic of the rare earths at thecoherent mechanism of the interstitial interaction and is thus
beginning of the series, i.e., in the case of rare-earth ionan inherent feature of the Kondo lattice. It may also be due to
with a singlef electron in the 4 shell (Ce), differs from the  the features of hybridization at an individual rare-earth site,
situation at the end of the seri€gb has one hole in thé i.e., a mechanism of an incoherent or impurity nature. In the
shell instead of one electrarwhile in the former case there latter case the concept of anisotropic hybridizatiohe-
is strong hybridization of electrons with Sp electrons, in  comes logically complete, and within this framework the role
the latter case there is hybridization betwdeslectrons and of the hybridization contribution to the crystal field of an
copper electrons. intermediate-valence field becomes clear: using the assump-
A system similar to(8) and (9) can be set up for the tion made in Ref. 28 thalx and—© are close, we can link
sixth-order crystal field and, knowirg andB, we can find  the values— ®,=26.5 K and—©, =67 K to different char-

TABLE Ill. Fourth- and sixth-order crystal fields and parameters of the superposition model.

Parameters of

Variant of superposition Variant of
Parameters of crystal field model crystal field
crystal -
field 1 2 1 2
BY, meVv -0.21x10°? —0.20x10°* A4(Si), meV -0.61x10°? —0.67x10°*
B4, meV +0.46x10°1 +0.45x 10! A,(Cu), meV —5.49 —5.41
B2, meV —0.10x10°* —0.21xX10°° Aq(Si), meV 1.97 0.56

B2, meV +0.17x10°2 +0.48<10°3 Ag(Cu), meV 1.47 0.42
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acteristic hybridization energiesy,=2.25 eV in the direc- deviations from a purely crystal-field behavior in the mag-
tion of thec axis ande, =5.68 meV in theaa plane. netic responses of systems with strong hybridization are re-
It may also be that both the coherent and impuritylated to the “quasielastic” component. In addition to the fact
mechanisms participate in the shaping of the anisotropighat this component contains a clearly distinguishable
paramagnetic temperatu@ Only experiments can provide Kondo-scattering part and cannot be described by the relax-
the final answer to all the questions concerning the anisotation approximation, there is a high probability that the
ropy of ® and the parameters of the crystal field in magnetic-scattering “deficit” due to reduction of the effec-
YbCu,Si,. Two experiments are needed. First, we must meative magnetic moment of the variable-valence rare-earth ion,
sure the anisotropy of the static magnetic susceptibility noprimarily affects the component's intensity. Note that we
of the Kondo lattice but of the Kondo impurity. This requires Were successful in incorporating the crystal field of the
studying a single crystal in which Yb is partially replaced by Yb-Cu system into the general picture of the series by as-
a rare-earth element with zero magnetic moment, e.g., Lusuming that the inelastic scattering component follows the
Second, in a neutron scattering experiment involving artrystal-field models exactly, while ascribing the general de-
YbCu,Si, single crystal we must measure the dynamic magcrease in magnetic scattering to its “quasielastic” part alone
netic susceptibility in the direction of the axis and in the has led to a plausible low-temperature value of the valence of
perpendicular direction with energy transfers ranging fromthe Yb ion. Such a distinct status of the “quasielastic” com-
~1meV to 10 meV. Such measurements will make it posfonent was to be expected, since it is directly related to the
sible to directly observe the values ef corresponding to ground state of the Kondo system.
different crystallographic directions, while in experiments = One can easily see that the applicability of the crystal-

with a polycrystal these values may remain unresolved. field model to the analysis of the spectrum of the inelastic
incoherent magnetic scattering of neutrons in a Kondo sys-

tem depends on the ratio of the width of the “quasielastic”
scattering component or, which is the same, the position of

We have applied inelastic thermal-neutron scattering téhe Kondo scattering peak, i.e., the Kondo energy, to the
the intermediate-valence system YbSi. Measurements €nergy of the first excited level of the effective crystal field.
performed at different temperatures have made it possible th this ratio is equal to, or larger than, unity, the magnetic
separate the nonoverlapping ranges of energy transfers wheligsponse is a broad undifferentiated line. Conversely, if the
magnetic scattering takes place. The characteristic value ¢@tio is smaller than unity, at least two components can be
the Kondo temperature for this compound has been deteglistinguished in the spectrum, viz., a “quasielastic” and an
mined on the basis of an analysis of the scattering at lowinelastic component, and the latter can then be analyzed us-
energy transfers. An analysis of scattering in the high-energing the crystal-field model.

region has made it possible to establish the phenomenologi- The author is grateful to E. A. Goremychkin for stating

cal parameters of the crystal field, primarily of the fourth- : . !
) . . .the problem and for the help in conducting the experiment

order crystal field. The results of a comparison of these fields , . ) .
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with the crystal fields of other compounds belonging to theresults
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It is observed experimentally that in the low-frequency Raman light scattering spectrum of
amorphous porous silicon the boson peak situated in the acoustic range is more sensitive to the
structural order than the optical mode presently used to determine the degree of disorder.

It is shown that this is because, unlike the coefficient of interaction with optical vibrations, the
coefficient of interaction between light and acoustic vibrations contains an additional

factor, the square of the reciprocal correlation length of the vibrational excitations, i.e., the
intensity of light scattering by acoustic phonons has an additional dependence on the degree of
disorder. ©1998 American Institute of Physid$1063-776(98)02107-6

1. INTRODUCTION the light scattering. From this point of view, it is convenient
to use either amorphous microparticles or microporous me-
Problems are currently being encountered in determininglia. We chose amorphous microporous silicon. This material
the ratio of the volumes of the amorphous and crystallinehas been attracting interest following the observation of pho-
phases in solids using Raman scattering, which is highly sernteluminescence similar to the luminescence from crystalline
sitive to structural order. In the literature the ratio of the porous silicort;®i.e., it was found that crystallinity is not a
volumes of the amorphous and crystalline phases in thin silinecessary condition for the observation of high-intensity vis-
con films has been determined using the Raman spectra froible luminescence at room temperature for microporous sili-
the ratio of the integrated areas below the broad amorphouson. In another study of Raman scatteringpservations
like and narrow crystalline peaks of the transverse opticaith a microscope attachment revealed that the regions of
(TO) phonon®? However, this method is inaccurate becauseporous silicon contributing to the visible luminescence nec-
the annealing of amorphous silicon microparticles and filmsssarily always contain some amorphous phase, in addition
has a different influence on the Raman spectra in the opticdb the crystalline, i.e., the amorphous phase is evidently al-
range. In Ref. 3, for example, when small silicon particlesways present in microporous silicon. These facts provided an
were annealed to 800 °C, the Raman spectra revealed rasiditional stimulus for a more accurate determination of the
appreciable changes and continued to show only ongatio of the volumes of the amorphous and crystalline phases
amorphous-like TO peak although the films, judging by thein microstructures.
spectra, had become completely crystalline. In addition, the
spectra of Raman scattering by optical phonons obtained for
mlcrqpar_tlcles(<10 nm also always contain a very Iarge 2 SAMPLES AND EXPERIMENTAL SETUP
contribution of the amorphous component, although high-
resolution electron microscopy suggests that their structure is  Layers of porous silicon were obtained by anodizing
crystalline?=® We observed that light scattering by acoustic (100-orientedp ™ -type silicon substrates with a resistivity of
phonons is more sensitive to structural order than scattering.006 Q-cm in a hydrofluoric acid solution(42.4%
in the optical range and thus, the area below the acoustigF:H,0:C;H,OH in the ratio 2:1:2 at a current density of
peak corresponds more accurately to the volume of the amo-00 mA/cnf. This produced a Zm thick layer of silicon
phous phase. with 70% porosity. The samples were bombarded with 100
In order to ensure that the changes in the Raman specti@V °B* ions to produce an amorphous layer. As a result of
of amorphous solids are more noticeable as the degree dhis ion implantation, the amorphization dose of the porous
order increases, the sample must have dimensions compsiticon was 5< 10'® cm™2, which is an order of magnitude
rable with the correlation length of the vibrational excita- lower than the similar value for ordinary silicon. The Raman
tions. In this case, the changes in the volume of the amorspectra were recorded in a 90° scattering geometry using a
phous phase will be more abrupt than in unbounded sampleBFS-52 double monochromator with a spectral slit of 2°¢m
since a larger volume of the ordered phase will participate irwidth and\ =488 nm exciting radiation under conditions of

1063-7761/98/87(7)/4/$15.00 175 © 1998 American Institute of Physics
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FIG. 1. Variation of the Raman light scattering spectrum of
p*-type amorphous poroug0% porosity silicon as a result of
annealing in a nitrogen atmosphere for 30 mirmat500 °C. The
dashed and solid curves show the spectra before and after anneal-
ing, respectively.
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doubly parallel polarization, i.e., when the exciting and scatwhen crystal nuclei appear. It can be seen from Fig. 1 that
tered light beams were polarized in the scattering plane. the Raman spectrum only revealed an abrupt change in the
amplitude of the boson peak at the instant of nucleation,
3. RESULTS AND DISCUSSION while the amplitude and half-width of the amorphous-like
O peak remained almost unchanged, although its half-width
hould be reduced to approximately 30 cnas a result of
nnealing® In our case, the half-width of the TO peak is

It can be seen from Fig. 1 that the Raman spectrum o
amorphous porous silicon consists of a broad TO mode

480 cm ™~ and a broqdengql peak gt 150 hich IS ”‘?‘ 50 cmi , which suggests a high degree of structural disorder
observed for crystalline silicon. This type of peak in dlsor-in the layers near the interface.

dered materials is conventionally called a boson peak. In It is well known that stronger localization is observed

glasses it is usually observed at a frequency approximate%r optical vibrations, and thus when the structural order of
1/5 of the Debye freque_ncy and is _attrlbuted to nanomgterén amorphous medium changes, the intensities of the Raman
scale structural correlations, reflecting an excess density

ibrational i the low-f @(cattering by acoustic and optical vibrations may behave dif-
vibrationa st_ates in the low- requency range (20-80°84m ferently as a result of the different degree of violation of the
compared with the Debye density. In tetragonal amorphogﬁlave vector selection rule. In the amorphous phase, as a

semlconductgrs, the correlat_lon Iength IS shortgr than iogit of the absence of translational invariance and the con-
glas'ses aqd IS 'comparable with the |n'ter§1tom|c'd|stances. I§‘equent nonconservation of the wave vector, the light scat-
particular, in silicon the boson peak coincides with the trans=[ering spectrum reveals the complete density of the acoustic

verse acoustic T_A mode _and the densit_y of vibrations_nea& optical phonons with a weight proportional to the interac-
t_he boson peak is thus simply the density O_f the TA V'bra'tion constantC(w) between the light and these vibrations
tions, but the reasoning put forward below will also apply toARef 12:

cases when the boson peak does not coincide with the T
mode. Since the boson peak does not appear in the Raman |(®)=C(w)g(w)(n(w)+1)/w, (1)

spectra of crystals, its intensit§ike that of the broad TO wheren(w) is the Bose factor ang() is the density of the
mode may also serve as a measure of the amorphousness Loustic or optical vibrational states

the material. We shall first analyze the case of scattering by acoustic

Atter the porous silicon had been converted o the amoryiprations. Since the density of the acoustic vibrations varies

_phoug state, we commenced |sochror_10us stepwise anneal'ﬂggligibly during annealing® the observed decrease in the
in a nitrogen atmosphere to study the influence Qf an mcre_asgmpmude of the boson peak can only be attributed to a de-
in the degree of order on the Raman spectra in the Opt'caérease inC.{w) as a result of a change in the degree of

and hagogggcocranges. ”.Wh_en the _a.n.neacljlngh. tebmperatg'iﬁolation of the wave vector selection rule. We shall use a
reache » crystallization was Initiated, this being 0byaih6q of analyzing the violation of the selection rule which

served as a very small spike at 520 cipwhich corresponds is based on introducing a correlation length characterizing

to the transverse optical phonon frequency in crystalline siliy, o ¢hatia) elongation of the normal vibrational mode and we
gon, ar('jd rt]he Iambplltude of the Ib%sor) peak .unkexpectedlgha" show howC,{w) is related to the structural order.
ropped sharply, by approximately hafig. 1). It is known In general, the Raman light scattering intensity is deter-

that the size of the critical nucleus in bulk silicon is approxi- mined by the fluctuations of the permittivity tensdy.,4(r)
mately 3—4 nm and the average size of the structural ele(-RefS 14 and 16

ments of porous silicon with 70% porosity, such as that be-
ing studied, is approximately 4—5 nm. Thus, the volume of oo _
the amorphous phase should decrease sharply at the instant lagys(@w)e | dt drydr; expliot=iq-(r;=r2))



JETP 87 (1), July 1998 N. N. Ovsyuk and V. N. Novikov 177

X(SX ap(F1,1) 8X5,(12,0)), (2)  Gaussian damping, exp(?1?,). For example, for a
damped plane acoustic wave which describes long-

¥yh(e|re qh=?1—q2 IS thet d|ff_(|a_[]ence b.ett\./veen tr;e t'rr]"t'alt and wavelength acoustic vibrations in an amorphous solid, the
inal photon momenta. e variations o e tensor. ..iation function(s) is given by

Oxap(r,t) under the action of the acoustic phonons are pro-
portional to the deformation tensatu,/drz+duglar,, exp(iq-r—r/Iw)(1+r/Iw+r2/3Ii).

whereu,(r,t) is the displacement of the atoms induced by The oscillation factor naturally disappears from the bo-

the vibrations. Since the vibrations determining the boson ki local vibrati b fthe | .
peak lie in the acoustic range, it may be assumed that theﬁ/On peak for quastiocal vibralions because of the 1arge varia-

also interact with light by means of the deformation tensor, ons in thte form Of. thg tna;ural mclxdesllang thedW|d§ range .Of
Bearing in mind thaty<<l— !, whereq~2/\~10"2 nm is wave vectors required to form a localized mode. Bearing in

the momentum imparted by the lighk €500 nm) and is mind that for harmonic vibrations and the Stokes component

the characteristic length of the vibrations near the bosoﬁ)f the spectrum

peak, of the order of a nanometéwe can neglect the term (Ju,(0)|H=(n(w)+ 1) o,
g-(r,—r,) in the exponential function in Eq2) since this is
much less than unity. For the Raman scattering intensity w
then have Vu,~Uy/l, ac

gnd that

we have

Iaamocf dr(Vu, (r)-Vu,(0))gad ). 3
(IVUu,(0)|3)~1,24lu,(0) 2=l 2dn(w)+ 1)/ w.

Hereu,(r) is the amplitude of the vibrations at frequensy

and the angular brackets denote spatial and statistical ave'?‘-S a result, Eq(4) has the form

aging. The result of the averaging depends on how the vibra- (Vu;(r) -Vu,(0))el ;,ifw,ag(f)(n(wH 1)/ w. (6)

tional displacements correlate at different spatial points. The o ] } ]

correlation function of the gradients of the vibrational dis- Substituting Eq(6) into Eq.(3) and comparing with Eq(1),

placements at the frequenay is conveniently expressed in We obtain

terms of the normalized correlation functiét, ,{r): 5
Cac(w)xlw,acj dr F,adr). @

(Vug (r)-Vu,(0))=F, adr){|Vu,(0)[?). (4)
The form of the correlation function near the boson peak in _ Unlike formula(3), for optical vibrations, the light scat-
ring intensity is determined directly by the correlation

amorphous solids is not known exactly, since the nature of : S _ -
these vibrations is not sufficiently well understood: it is nor-function of the atomic vibrational displacements:
malized using the conditiof ,(r)—1 whenr—0. How-
ever, it is generally acknowledged that these are quasilocal Iopt(w)ocf dr(u (r)u,(0))Jopi ®). (8
vibrational excitations with a characteristic dimension of na-
nometer ordet*1°When averaged over an ensemble of thesdn this case, there is no need to impose the constraint that the
vibrations localized in regions of a disordered solid havingHamiltonian of the interaction between the vibrations and
different configurations, the corresponding correlation funclight be expressed in terms of derivatives of the displacement
tion should decrease as a function of distance with a certaifomponents with respect to the coordinates, since for optical
characteristic correlation length of nanometer order. In addivibrations the center of gravity of a unit cell remains con-
tion, an additional decay of the correlations may take placé&tant(see, for example, Ref. 16Here the correlation func-
inside the region of localization as a result of the specifiction of the vibrational displacements has the form

eometry of the vibrational modes which, as predicted, ma +
gave dir)rlmensions of less than three or fractlzll dimensionz. (Uo(NU(0))*F o op(M(N(@) + 1)/ ©
This geometric factor leads to the appearance of an addBubstituting Eq(9) into Eg.(8) and comparing with Eq(1),
tional factorr~* in the correlation function, where<3,  we obtain
which reflects the power decrease in the correlation. As a
result, the correlation function has the form Copt(w)ocf dr F,, op)- (10

Fo.adl)= @0, 20, ® It can be seen from a comparison of E¢B.and(10) that the
wherel, 5 is the correlation length of the acoustic vibra- interaction coefficient between light and optical phonons
tions, a is the interatomic distancé(r/l,, 59 is a decreasing does not contain the additional square of the correlation
function which reflects the decay of the correlations withlength in the denominator which appears as a result of the
distance as a result of localization of the vibrational modesgradients of the displacements for the acoustic phonons.
and the factor ~ ¢ is associated with the internal geometry of Thus, as the correlation length increases under annealing, the
the vibrations. The specific form of the functidé(r/l, ) is  acoustic part of the spectrum decays more rapidly than the
unimportant for the present study, as will become clear fronoptical part, i.e., is more sensitive to the degree of disorder.
the following analysis, although it may be postulated that We shall now explain the changes in the Raman spec-
this corresponds to exponential damping, exg(,.J), or  trum observed when amorphous porous silicon is annealed
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(Fig. 1). We shall first show how specific is the dependencemode currently used since this peak is more sensitive to the
of C,{w) on the correlation length. Using E¢p), it is easy  order because the intensity of light scattering by acoustic

to show that phonons has an additional dependence on the degree of dis-
order.
f dr Fwya&r)xb@*a, The authors thank S. I. Romanov for supplying the
samples and the Russian Fund for Fundamental Research
where (Project No. 95-02-05337for financially supporting this
work.
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The modulation of a longitudinal current in double quantum wells by a transverse voltage in the
terahertz frequency range is calculated. A quantum kinetic equation which allows for the
contributions of a pair of asymmetric tunnel-coupled levels to the resonant response is(fuved
difference in effective mass or the asymmetric scattering in the left- and right-hand quantum
wells is also taken into accoyniThese structural features lead to conversion of the modulating
voltage into a high-frequency longitudinal current. The calculated longitudinal-transverse
nonlinear susceptibility determines the conditions needed for creating an efficient field-effect
transistor circuit that would use pumping in the terahertz range instead of a transverse

control voltage. ©1998 American Institute of Physids$$1063-776(98)02207-(

1. INTRODUCTION erostructure that does change in response to the replacement
. o ) ~ z——1z. The calculations we are about to do take into ac-
The modulation of a longitudinal electric current in ¢t the asymmetry of the energy band diagram of a double
double quantum wells with asymmetric scattering by a statiq;,antum well and the difference in effective mass or the
transverse voltage has been widely studied during the 'ag}nequal scattering efficiency in the left) (and right-hand

decade(see Ref. 1 and the literature cited in Rej. Zhe 1y quantum wells. The asymmetry of the energy spectrum
possible applications of this effect, known as resistance resqs youble quantum wells, which is determined by the split-

nance, in creating a transistor structure, were demonstratefg1g between the energy levels in thandr quantum wells
2 3 . '
by Patelet al” and Ohnoeet al,” while the frequency disper- .55 he controlled by applying a transverse voltage to the

sion of resistance resonan@ee., the response to a variable g, ple-quantum-well structure. The dissimilar scattering in
alternating yoltage WI'Fh a frequency of order of the CO”'S'Ontunnel-coupIed quantum wells comes into effect when the
rat9 was discussed in Ref. 4. On the other hand, as thg,hing levels of the wells are differeftee Refs. 1-Bwhile
frequency grows, the response becomes dependent on rese gifference in effective mass is due to the nonparabolicity
nant transitions between tunnel-coupled levels. The resonagf ihe energy spectra of tHeandr quantum wells, the dif-
response of electrons in double quantum wells to terahertg, ot subbarrier penetration of these wells by the wave func-

radiation whose electric field is polarized transversely to thgjyns or by the difference in composition of the alloys form-
structure was studied by Heymat al,®> who measured the ing the | and r quantum wells(the energy spectrum of

transmission and the induced transverse voli@gge rectifi-  §5,pje quantum wells with theandr quantum wells obey-
cation effect. On the basis of the experiments described ining different dispersion laws was discussed in Ref. &

Ref. 1-3 and 5, we shall study the conditions for, and thjescription of the nonlinear response of structures is given
features of, the modulation of a longitudinal current in apaiow on the basis of a kinetic equation written in the two-

doped double quantum well by a resonantly pumped, altefgq| approximatior(a derivation of such an equation can be
nating electric field in the terahertz range, i.e., we shall study, ,nq in Ref. 7.

a double-quantum-well field-effect transistor that uses modu-  gaction 2 gives the basic formulas needed to describe the

lation by submillimeter resonant radiation instead of a statig, njinear response of double quantum wells with different

(or microwavg transverse control voltage. masses and asymmetric scattering. These formulas are based

Here we shall calculate the nonlinear response of elec the solution of the quantum kinetic equation. The results

trons in double quantum wells to a longitudinal constant field calculatingy,,, which specify the spectral relations and
F and a transverse high-frequency fielg, (Fig. 1), a re- o

g ) the dependence of the longitudinal-transverse conversion ef-
sponse determined by the induced current ficiency on the splitting between the energy levéihich
8j=wyx,FE,, (1)  can be controlled by applying a transverse field to the double

quantum well, are presented in Sec. 3. Finally, a discussion

where the component,, of the second-order nonlinear sus- of the various approximations and concluding remarks can
ceptibility tensor determines the coupling of the longitudinalpe found in Sec. 4.

and transverse responses in double quantum wells. Conver-
sion of a transverse voltage into a longitudinal current occurg- LONGITUDINAL-TRANSVERSE NONLINEAR RESPONSE

only for an asymmetric double quantum well, since the  The quantum kinetic equation for the high-frequency
rank-3 tensory,, vanishes for a symmetric well, i.e., a het- contribution to the X2 density matrix,&fpe*“"t, which

1063-7761/98/87(7)/7/$15.00 179 © 1998 American Institute of Physics
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o dje m t+m !
— ‘——;41 mi=———— M l=ml-m*. ()

.

If m=m,, then(5) can be expressed in terms oféfy,, and
applying the operator Tr to E@2) we get—i cué)‘fp=0, pro-
FIG. 1. Modulation of a longitudinal current by a transverse high-frequencyvIded we !gnore C_ollls_lon_s and the_ dyna_rTIC field Cor_1tr|but|0n
V0|tage in double quantum wells. tO (2) Th|S COﬂtHbUtIOﬂ IS Sma” |‘b Fw <p|: (pF IS the

Fermi momentum of the strongly degenerate eleciramst

the distributionfp contains a current contributiofwhich is

. . symmetric in th lane that determines the effect for
describes the response of the electrons in an asymmetr?’j}:—y — e plang

double auantum well to a transverse perturbatie— ' w7>1 (7 is the average relaxation timeThus, the fact that
can be \(/quitten as follows: P ' (5) is finite is due either to the difference in effective mass

(and x,, is small in the parameten/M) or to the allowance
R T for collisions(andx,, near resonance contains the small fac-
—lwdfy+ %[hp,5fp]+%[5h,fp] tor A/T7).
It is convenient to solve Ed2) and calculate the current
(5) by employing the basis set of wave functions of the ei-
genvalue problerﬁpljp>=sjp|jp>. Herej = = classifies the
o . ) tunnel-coupled levels, and, specify the dispersion laws of
Here we have used the approximation described in Ref. 4 ghe + states, which are separated by an energy 4ap
a pair of tunnel-coupled states in thandr quantum wells, - /AZ(2T)2 when p=0. If we neglect the off-diagonal
in which the Hamiltoniarh,, allowing for the difference be-  components of the steady-state distribut'rbn which are
:\r/;/fen the effective massesy(andm) is given by the ma- o) i1 the parametdi/A 7, we can rewrite Eq(2) for the
asymmetric contributiorsf;;,(p) to the high-frequency re-
- |p%2m+ AL T sponse as

hp= T p2/2m,—A/2’ &

Ee—ia)t

+eF pr—i st 2
eF 2o = sd 3t[p). )

i

_ - _ 7 (Eipmejp=hw) 8t (p)

whereA is the splitting between the levels in the absence of

tunneling, andr is the tunneling matrix element. The effect i

of the uniform longitudinal electric fieldF is taken into ac- + gf?hjjf(p)(ffs—f?rsp):'jj'(5f|p)- (7)
count in Eq.(1) through both the usual field contribution and

the current contributions to the steady-state distribufipn [N the Dbasis set of functions adoptedsh;;.(p)
and the collision integrali is written below for the case of =<(iP|h[j’p), fi]is the asymmetric part of the steady-state
scattering on static inhomogeneities, the scattering efficienc§istribution, and the collision integral for scattering by a
being different in thd andr quantum wellsthe respective Short-range static potential becomes

expressions are given in Refs. 7 and Fhe operator&ﬁ i dp;

describes intersubband transitions excited by the transverse Ijj’(5f|p): 7 E ka (Z—ﬁ)z
electric fieldE e~ ' and is given by the following expres- kb m

sion: 5fjjl(P) o
. e ~ N T . ijj/ Sjp_sjipl_ﬁw_i)\(le|Pk|]1pl>
5h=;vai, Uizgzo-ya 4 t ) )

X(j1p1|Puli’P)+(ip|Plj1p1)

where the off-diagonal matrix, has the meaning of the
interwell transition raté, o; are the Pauli matricesi (
=X,Y,2), andZ is the distance between the maxima of the
wave functions in thé andr quantum wells.

The longitudinal velocity operator is determined by thewhereP, is the matrix for projection onto thkth quantum
diagonal components'm, ., so that the high-frequency con- well, thew, are related to the momentum relaxation time

5fj1ji(p)

—hw—i\ - (8

><<11F31|F3k|jlp>8_, e
it Eip

tribution to the longitudinal current can be written as by the expressiom,=#3%mr,, and\— +0.
The diagonal components of the solution of E@),
5__2ej dp Tr| 1+ m - 5t 5 8f.,=65f::(p), are small in the parameterdit:
1= ) GarEP T v 9z) Ofp, ) jp=2Tj;(P), :

[ ~
where Tr stands for the trace in a discrete variable related to  6fj,= ;Ijj(ﬁflp), 9
the matrix nature of the Hamiltonia(2), and the average
effective massan and the effective-mass differend@ are  where the only term left on the right-hand side in the reso-
introduced as follows: nant approximation ¢=A+;/#) is the large off-diagonal
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component&?wE 6f . _(p). The induced current densit) as ©
is expressed in terms of these corrections to the high- fjp:a(F'p)T@(SF_sjp%
frequency response as follows:

. 2e d m R ~ =2 WGPl Y P0(eR—e ), (16
5= f (277;) p[; 5fjp+m<—|az|+>5fp} ) % P20 —p0)
(10) wheresF=p§/2m is the Fermi energy, and. is the mo-
o ) mentum relaxation time for the: tunnel-coupled states. The
To within flrst—or.der terms im/ .M we can 9aICUIatéfip and  se of the weakly anisotropic distributidié) presupposes
ofjp by neglecting the effectlve-mass~ difference. Here thgnateFr< P
resonant contribution to the distributidif;, can be obtained
from (7) in the form

A 3. SPECTRAL RELATIONS AND DEPENDENCE OF x, ON A
< (F|h|=)(F5,— %)
ofy= Ar—fw—7y d (11 According to(16), only the electrons on the Fermi sur-
P face contribute taj, so that the integration over the angle
where the collisional renormalization, of the interlevel and energy in(10) can easily be performed, and closed ex-

transition energy is introduced as pressions are obtained fgr,. Here it is convenient to sepa-
rate the contributions of the first and second term&lb) by
= > _dps writin as y'V+x2 " The contributiony'?, which is
Y= . Wy > ﬁ)z g Xo Xo Xo -+ Xw s
k=lrj== (2m specified by(15), becomes
(Z1PWIIPd =) (+IPi)iIP+) ez T\? h
X —+ —|. Dj = — — (PP, |+
|:8+p_8jp1_ﬁw_|)\ sjpl—s_p—ﬁw—l)\ Xo mo | A % 2T7‘k< |PW )Pl +)
(12 n_r_
The real contributions tq12) diverge logarithmically at X e tw—iv [0(ept+Ar—ej—ho)
large|p,|, and the integral must be truncated at momenta of TThe=ly-
order #i/l., wherel. is the characteristic size of short- n,7,
wavelength inhomogeneities. As a resultyReenormalizes +0(ej—ep—ho)]— = i —
the interlevel splitting, and the denominator(itil) acquires Ar—fho—iyy
the term
~ A(ﬁ h) A h X[ﬁ(sF—sj—ﬁwH0(81—8F+AT+ﬁw)]],
Ar=At——|——— , A=In—, 13
T T T\ 7 . AT |Cp ( )

17
wherep is the characteristic momentum, which determinesyhile the contributions proportional tw/M are given by the
the leading contribution t610) and is equal to the maximum  expression

value of pr:y2mA+ or \2mAw. The imaginary contribu-

2

tion to (11), iy,, becomes <2>:eg_z T 2_m
ﬁ © Mw AT M
Vo= 5 L= IPUi)?0(ep—2;—Tiw)
K 2Tk n_7_ n, 7, ( AT)
X = — T Z — 0 Eg— — .
Ar—ho—iy. Ai—ho—iy, 2

+(+[PU)I?O(ej— e p—hw)], (14)
(18
Equations(17) and (18) contain the electron concentrations
atthe=x levels,n. = p,p(ep*= A1/2) forn>p,pA4, while at
lower concentrationsn, =0 and n_=n. The relaxation
times 7. are given by(16), and the broadening energigs

so that the denominator ifll) can be rewritten as\t
—fhw—iy,. Similarly, the contribution ok l;; [found from
(8)] to the first term becomes

s = L e
jzi i (of[p) = _5fp§ (270 "= [Pl )i Pul+) are obtained by calculating4) with e . ,= e

J At frequencies close to resonance fpf-? we have

X[0(e,p—ejp—hw)+6(ej,—e_,—hw)].  Lorentzian spectral relationghere we sethw=At in the

(15) arguments of the functions in(17)], and the dependence of
X ON the splittingA can be calculated by using the matrix
Thus, the calculation of,, is reduced to finding the integral elements of the projection operators:
in (10) with (11) and (15) plugged intod [with allowance At A Aee A
for (14)]. Here the asymmetric correctidf to the distribu- (P [1) = T+ P 1) = L
tion can be written as T T
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. . T that in the approximations adopted, changes abruptly
(IPdiN==(IPliN=5- i#i" (19 wheneg is close to the limits of the rangd,/2 and 3\ /2.
T To obtain numerical estimates, it is convenient to isolate
We present explicit expressions for the resonant nonlineathe size factor
susceptibilities at low concentrations {<<A{/2, whenn_ o
=n and n,=0), intermediate concentrationsA{/2<eg e’Z nr
<3A+/2), and high concentrations:¢>3A+/2) when the e (26)
concentrations of the- electrons participating in interband Ty
transitions are equal. Farr close toA{/2 or 3A4/2 the in the formulas. This factor determines the maximum value
dependences of,, become more complicated, but they are of the nonlinear susceptibility after it is multiplied by a di-
realized only in narrow concentration rang@s in small  mensionless facto;/2T+ or m/M, and a numerical factor
ranges ofd), and we shall not discuss them further. (not exceeding 0.1 foA<2T and rapidly decreasing with
At high concentrations the peak broadening energies cdncreasingA). For GaAs/AlGaAs with a double-quantum-
incide, y.=y=(A/27) X[1—(T/A1)?>— u(A/A7)], and the  well structure and the standard parameters equalZ to
relaxation times are =100 A, n=2x10" cm 2, y=1 meV, Ar=15 meV, and

= r=10"1's (which correspond to an electron mobility of
(200  2.5X10° cn?/(V-s) and resonant pumping by radiation with
a wavelength of 10@m), the maximum value of,, is found
to be of order (1-5% 10 7 esu. This is in good agreement
with the resonant value of the second-order nonlinear suscep-
tibility found by Sherwinet al® in a double-quantum-well
— it T T structure from second-harmonic generation measurements
. (2D with similar values for the parameters. However, in our case
the x, vs A and x,, vs w curves differ significantly from
In this concentration rang@.. =n=p,pA1/2, and(17) and  those measured by Sherwit al? (although the spectra are
(18) become Lorentzian in both casgslt is convenient to study the de-

T=T 1 pATAY

where the average relaxation timend the scattering asym-
metry parametep are defined by the relations:

3 B 3 2 pendence ofy,, on bias voltaggwhich determines\) at a
wzﬂ Ny747N-7- ii_,u, T)_2m l) _ fixed pump frequency; below we limit our discussion to the
Mo ZT_ﬁw_ﬁ Tr \Ag M \Aq cases of low, intermediate, and high concentrations.

(22 For double quantum wells with thin barriers, the condi-
tion A{/2>¢ is also met at tunneling resonances=0, so
Mhat Eq.(24) can be used for all values af. For a 30 A
Ga Al /As barrier(this value of the barrier width, like the
values of the other parameters, is close to the one used in
Ref. 9 we find that Z'=15 meV, and the low-concentration
(23)  regime is observed wham<4.2x 10'* cm 2. The values of
the dimensionless factord/2T+ and 2n/M prove to be
are related by the close to 5<10 % and 2< 102, respectivelydue to the non-

so that the susceptibility is due either to the scattering asy
metry (u#0) or to the effective-mass differencen{M
#0). At low concentrationgwhenn<p,pAt) we have

T

T 1—2(TIAD) 2= uAIAT’

T_

and the resonance Widtﬁ_ and 7~!

equality y_=7#/27_ . The expression fox,, becomes parabolicity of the spectrum, the effective-mass difference
|m—m,|/m is estimated here, according to Ref. 10, as

e’z nr_ Arleq, wheregg is the band gap so that the contributions
Xo= m 1 and x? to the nonlinear susceptibility are of the same

order. As a result, Eq24) can be rewritten as

Z 2

Tr

T

Ar

T
Ar

2m
+_
M

X

3 A
Ay ©

h 2m
7 24 = — J—
24 Xo %Zﬁmm 9, (27)

and a nonzero effect is also present for double quantum welle real and imaginary parts of the functiohg(A) and

with symmetric scattering and coinciding effective massesg(A) being depicted in Fig. 2 with the above values of the
but with A#0. Since the general formuld?) for interme-  double-quantum-well parameters. Here we used the phenom-
diate concentrations is cumbersome, we give the expressianological value;:l meV, which agrees with the experi-
for x,, in the case of a double quantum well wiit=0 and  mental data of Refs. 5 and 9, but is significantly larger than

m=m;, where the effect is also presentAf#0: the value obtained from the relation betwegn and 7_
3 — 3 (probably, the inhomogeneous broadening of the resonant
Xo=—I E n,7 i (l) A (25) transition, which contributes nothing to mobility, is the main
© Mo ZT—hw—i;J, 2T \Ar/ Aq mechanism of spectrum broadenind-igures 2a and 2b

. show that the nature of thA dependence changes signifi-
In the region under considerationy,=(%/27)[1 cantly because of the asymmetry in scattering: the function
—2(T/A7)?]. Comparing(25) with (22) and (24), we see f,(A) is odd, while Ref;(A) has two resonance peaks for
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FIG. 3. Real and imaginary partsolid and dashed curves, respectiyvay
the functionh(A) at pump energied w equal to 17 meMcurvel) and 15
meV (curve2).

h
0.12

0.08 the dimensionless factdi/2Tr (since the concentration in-

creases and mobility decreasesSigure 3 shows thé vs A

curves determined by the formujg,/x= (#/2Tr)h(A) for

the same values of the double-quantum-well parameters and
the same pump energies as in Fig. 2. Here, as in the low-
concentration case, we have a peak onhRg when#w
>2T, while the Imh vs A curve passes through zero in the
vicinity of the peak[if w=0, the functionh(A) is even.
When# w<2T, the peak on R&(A) shifts to A=0, while

for larger values ofA the effect is suppressed.

The high-concentration case described (B9) is real-
9= ized in double quantum wells with wider barriers, where the
ook 2 \\ c resonant nonlinear-response regime can be realized under the
/’\1 conditions of strong tunnel couplingh<2T, in a spectral

\ range with a wavelength of about 3@dn. For a 45 A
o1l A 2 \ Al sGa 7As barrier we obtain Z=2.4 meV, and the condi-

3 3 tion n>3T/p,p is met when the concentration is higher than
S 2.7x10" cm 2 (at A=0; the concentration increases with
0 i it A). Let us rewrite (22) as (27): x./x=(#I12T7)v(A)
+(2m/M)w(A). Figure 4 depicts the functions(A) and
w(A) for an electron concentration of>610' cm™2 (the
—0.1F 1 other double-quantum-well parameters coincide with those
L used in Figs. 2 and)3Since the functions(A) andw(A)
0 5 10 15 20 rapidly decrease in weakly asymmetric scatterifg|&1),
A, meV thev vs A andw vs A curves are shown for the case of
FIG. 2. Real and imaginary partsolid and dashed curves, respectiyely scattering in the quantum wells f=1). Due to the small-
the functionf ,(A) with (&) x=0 and(b) =1 and theg vs A (c) atpump ~ Ness of the fractionr(_—n,)/n, the curves representing
energieshw equal to 17 meMcurve 1), 15 meV (curve2), and 13 meV  p(A) and w(A) are nearly asymmetric. The behavior of
(curve3). these curves is similar to that of the curves in Figs. 2 and 3,
but because of a decrease in splitting between the levels, the
) o ) resonance effect is rapidly suppressediascreases. How-
hw>2T. The functiong(A) in Fig. 2c is even, and reso- eyer, for highly asymmetric scattering, one of the relaxation

nance peaks also appear on ®#&) for 2w>2T. WhenA  {imes 7. in (20) diverges whenA>2T, and the function
>2T, the nonlinear response rapidly decreases in all casg§(a) approaches a finite value.

due to the suppression of tunnel coupling.

In the concentration range (438.4)x 10" cm 2 (for
double quantum wells with the above parameter values
A=0; asA increases, this range moves toward higher values  \We have examined the conversion of a transverse modu-
of n), the intermediate case described (&) comes into |ating voltage in the terahertz range into a longitudinal cur-
play. Here the value of increases and so does the value ofrent due to electron transitions between tunnel-coupled levels

0.04

a"t' CONCLUSION
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0.02 FIG. 4. The real and imaginary parisolid and

dashed curves, respectivelpf the functions
v(A) (@ andw(A) (b) at pump energieg w
equal to 7 meMcurvel), 5 meV (curve2), and
3 meV (curve 3).

-0.02

in double quantum wells with a constant current. We havegeneratiot? *°of radiation in the submillimeter range which
found that large values of the nonlinear susceptibility definedire being actively studied. Although the mechanism of mo-
in (1) are realizable in an asymmetric double quantum wellnopolar lasing® has been realized in several wayssuch
where the asymmetry is due to a difference in effective masdevices operate only in the mid-IR range. Hence the gain
or asymmetry in the scattering in theandr quantum wells mechanism considered in this paper may be of interest in
and/or asymmetry of the energy spectrum. Since the inducedeveloping a 2D electron source of radiation in the terahertz
high-frequency response is proportional to the constant curange. Moreover, the possibility of converting transverse
rent, gain can be achieved at high currents. To estimate theump radiation into a longitudinal response has never before
effectiveness of this gain mechanism, we need to know ndbeen studied in 2D systems; therefore, the experimental re-
only the characteristics of the nonlinear response, but alsalization of such a scheme, as well as the study of other
the geometry of the systefin the same way as the gain of mechanisms of such conversion for different heterostructures
an ordinary field-effect transistor depends on the circuit paand transition types, could be of great interest.
rameters o

Let us discuss the approximations used in our calculation '€ Work was supported by the Ukrainian Fund for Fun-
scheme. What is left out when double quantum wells arél@mental Research.
described as a pair of tunnel-coupled levels is the contribu-
tion of the excited states of theandr quantum wells and the
self-consistent transverse electric field; in our cAsend T «g_mail: zinovi@lab2.Kiev.ua
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First-principles calculations are performed relating to the stability of a series of perovskite
crystals with respect to transition to the ferroelectric and the antiferroelectric state. The calculations
employ the generalized Gordon—Kim method, in which the total charge density of an ionic
crystal is represented as a superposition of the densities of the individual ions. In the spirit of the
nonequilibrium thermodynamics of Leontovich the charge density of an individual ion is
calculated in the presence of external auxiliary fields which deform this density. Multipole
deformations up to quadrupole are taken into account. The actual magnitude of the

deformation is found by minimizing the total energy of the crystal in the Thomas—Fermi—Dirac
approximation. The calculated values of the ion shifts in the ferroelectric phase for BaTiO

and also the electron contribution to the dielectric constanaind the dynamic Born effective
chargesZ®™ are found to be in good agreement with the experimental data. The proposed
method allows one to obtain an analytical expressionefor Z¢", and the dynamic vibration

matrix. It is shown that these expressions formally coincide with the expressions arising

in the phenomenological models of the polarized and deformed ion. Analysis of the expressions
obtained confirms the validity of the classical theory of ferroelectrics of displacement type

for perovskite crystals. ©1998 American Institute of Physids$$1063-776(98)02307-3

1. INTRODUCTION dynamic consequence. In this instance, a spontaneous elec-
trical polarization arises in the crystal even in the absence of
Perovskite crystals with the general formula AB@  an external electric field and, correspondingly, the dielectric
high temperatures as a rule possess cubic structure. Atoms @hnstant diverges at the transition point. In this sense the
the metal A occupy sites at the vertices of a cube, whilaransition in SrTiQ at T=105 K does not differ in any im-
atoms of the metal B are found at the center of the cubeyortant way from the vast majority of other structural transi-
Atoms of the nonmetal O are found at the face centers of thg,ns There are other examples of structural transformations
cube and form an octahedron surrounding the B atom. Of, heroyskites. These include, for example, the transition at
greatest interest from the point of view of studying lattice +_ 450 k in BaBiQ,, in which successive compression and

instabilities are oxygen-contfiln!qg perovskites, where the Qiilation of the oxygen octahedra takes place about the central
atom actually is oxygen. A significant number of these COM-5i atom along thg111) axis?

pounds are ferroelectrlésThey often exhibit a sequence of The determination of the nature of the structural trans-

ferroelectric phases, transforming from the cubic phase to thF . . . . . )
) . ormations in perovskites and, in particular, the ferroelectric
tetragonal, then to orthorhombic, and finally, to rhombohe- L .
X . transition has been one of the most pressing problems of
dral. Roughly speaking, this sequence of phases can be con-,. : :
) . - o solid state theory for over 50 yearsever since the discov-
sidered as shifts of the central B ion in tfi0) direction in f the f lectric t ition in BaTiOA letel
the tetragonal phase, in tli£10) direction in the orthorhom- elry ot the er;oetﬁ_c ne rat\_nS| lon tlrlll | ak_gO comi)he e);] .
bic phase, and in thé€l1l) direction in the rhombohedral clear answer 1o this question IS still lacking even thougn, in

phase. The actual ion shifts form a much more complicate(‘j')ur opinion, the basic, under_lying p_hy_sical ideas_ about the
picture, involving elastic lattice deformations in a number ofhature about the ferroelectric instability in perovskite crystals
cases. can be regarded as well established. Even in the early works

Besides ferroelectric phase transitions, perovskite crysf Skanavt and Slatet attention was directed at the impor-

tals reveal the presence of a large number of other latticEnt role played in the ferroelectric instability in perovskite
instabilities and structural transformations. Some of them ar&ystals by local field and electron polarizability effects. The
associated with different kinds of rotations of the oxygenWorks of Ginzburd; Anderson and Cochrahestablished a
octahedron about one of the axes of the cube. The mo&§onnection between the ferroelectric transition and the dy-
thoroughly studied transition of this type occurs in the com-hamic lattice and introduced the concept of a soft mode,
pound SrTiQ at T=150 K (Ref. 1). This transition is often according to which the ferroelectric instability is due to van-
called antiferroelectric in analogy with magnetic transforma-ishing at the transition point of one of the optically active
tions. It may be noted that this analogy is quite arbitrary.transverse modes at the center of the Brillouin zone. Since
Thus, the ferroelectric transition, apart from the fact that it isthis mode possesses a dipole moment and is accompanied by
a structural lattice transformation, entails a nontrivial electro-an electric polarization wave, spontaneous polarization arises

1063-7761/98/87(7)/14/$15.00 186 © 1998 American Institute of Physics
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in the crystal at the phase transition point when this moddand calculations of the electronic spectrum and its contri-
“freezes.” bution to the total crystal energy within the framework of the
Using the polarizable ion model, Cochran shofvéat  density functional theoryDFT). These calculations have
binary ionic crystals that the frequency of the optically activeconfirmed that it is possible to achieve the accuracy needed
phonon mode afj=0 in the harmonic approximation can be for a valid description of the energetics of the structural dis-
written as tortions in perovskite crystals. In particular, the above asser-
> 2 tion thatw3 is almost an order of magnitude larger thafy,
@707 @sr™ Wddb @ follows from the values of the dynamic Born charges and the
where w?y is the contribution of the long-range dipole— quantitiesw?, obtained in Refs. 16 and 17. Unfortunately, it
dipole interaction: is difficult to obtain unambiguous answers to the above ques-
525 tions from these works. In particular, from these results it is
w2 .= 4meZ ) even difficult to say why the Born charges in perovskites at
44 pvg(eLt2)” the B ion and one of the oxygen atoms exceed the nominal
charges of these ions while the Born charges on the A ion
and the other oxygen ion are very close in most cases to their
nominal values. The explanations given in Refs. 16 and 17,
tied up with hybridization effects of electrahstates of the B
ion andp states of the oxygen ion, are unconvincing and, on
top of this, the connection between these explanations and

Heree,, is the electron contribution to the dielectric constant
of the ionic crystal, and is the dynamic Born effective
charge,u is the reduced mass, ang is the volume of the
unit cell. The total polarizability of the crystal under the
corresponding static ion shitt, is expressed in terms of this

charge as the results of phenomenological calculations of these charges
e - in the earlier work of Axé&® remains unclear. This earlier
P= o ; ZpUy. (3 work was based on a treatment of the model of polarizable

ions and did not include any hybridization effects, but nev-
The quantityw?,>0 is the repulsive contribution of the ertheless led to practically the same values of the Born
close-range forces to the frequency of the TO modecharges. Recently, very successful calculafiorsf some
Kvyatkovski® (see also the review in Ref. 10 for more de- other instabilities in perovskites have appeared, including the
tails) proved the validity of expressiori$) and(2) in a gen-  so-called antiferroelectric instability in SrTiO
eral model-independent approach for binary crystals within  In the present paper we carry out simple first-principles
the framework of a rigorous microscopic theory of lattice calculations based on a generalization of the Gordon—Kim
dynamics based on a description of the electron contributiomodel developed earlier by two of 82 The aim of these
employing the dielectric matrix(g+K,q+K’,0), whereK calculations is to facilitate a microscopic study of the ener-
and K’ are inverse lattice vectors. Later he protfethat  getics of perovskite crystals and the nature of different kinds
these formulas remain valid for more complicated crystalspf lattice distortions, including the ferroelectric phase. Ear-
including perovskites. In this cageis the Born charge of the lier this method was successfully applied to calculate the
corresponding soft mode. electron polarizability and lattice dynamics of a large num-
In ordinary ionic insulators the Born charges are close tdoer of ionic crystal$’=2* An even simpler variant of this
the values of the nominal ion charges or, more accuratelynethod was employed with success to examine the nature of
the Szigetti effective charg¥sdefining the ionicity of the the structural distortions in BaBiO
crystal. In ferroelectrics, however, the dynamic Born  The organization of this paper is as follows. Section 2
charges, as a rule, have substantially larger values. Thus, fgresents a brief exposition of the new version of our gener-
example, in ferroelectric IV-VI compounds the effective alized Gordon—Kim(GGK) approach, which is needed to
ionic charges satisfz <1, while the Born charges reach maintain the required accuracy of the calculations in perov-
valuesZ=10 (Ref. 10. skite crystals. Section 3 present results of numerical calcula-
Thus, expressiongl) and (2) reduce the problem of es- tions of the energetics of a series of perovskite crystals, tak-
tablishing the nature of the ferroelectric instability to aing account of distortions of their cubic structure, and also
search for answers to the following questions. Why are th&ontains a discussion of these results. In the last section we
Born charges in ferroelectrics substantially larger than thériefly discuss the outlook for future possible studies to-
Szigetti ionic charges? What is the situation with the shortgether with refinements of the proposed method needed to-
range repulsion forces? What in the series of analogous conward this end.
pounds, e.g., in BaTiQand SrTiQ, determines whether a
ferroelectric transition is present: the corresponding change
in w2, or w2,? Unfortunately, until recently there have been2- GENERALIZED GORDON-KIM METHOD
no direct calculations without the use of adjustable param- The essence of the Gordon—Kim metRo® for calcu-
eters which would provide answers to these questions. Thgting the static and dynamic properties of ionic crystals con-
problem is further complicated by the fact that the values oksts in the following. The crystal is treated as a set of iso-

2 2 . . .
wg; and wggq in ferroelectrics are almost an order of magni- jated jons and its total charge density is written in the form
tude larger than the resulting value @f,.

First-principles calculations of ferroelectric instability in ry= (r—R. 4
perovskite crystals have appeared recénify’ based on p(r) Z pil ), @
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where the sum is taken over all the ions in the crystal. Nextdensity can be taken with good accuracy to be spherically
in the spirit of the density functional theofDFT) the total symmetric, noticeable compression of the charge density of
crystal energy is written as a functional of the charge densitghe negative ion is observed. In general, static and dynamic
distortions of the ion charge density are possible, possessing
E( 2 pilr= Ri)] — 2 E{pi(r=R)}|+EV multipole symmetry of any order. In particular, an account of
: : dipole distortions is absolutely necessary to describe the
electron polarization of an ion.
+2 E{pi(r—R;)}. (5) Following the early works of Gordon and Kim, a large
! number of efforts were undertaken to improve the given
In this formula the sum of energies of the individual ions method(see the review in Ref. 29In particular, significant
is added and subtracted in accordance with the Gordon—Kirattention was given to monopole, i.e., spherically symmetric,
method. HereEN is the interaction energy of the nuclei, distortions of the charge density. With this aim, it was pro-

Ecr:

which has the form posed to calculate not the charge density of a free ion, but
1 ZNZN that of an ion located in a charged Watson sph@réhe
EN:E > ﬁ (6)  charge of the sphere was taken to be equal to the charge of
im0

i the corresponding ion, but of opposite charge. To determine
and z" is the nuclear charge of thigh ion. The quantity the radius of the sphere, a number of variational procedures

E{p(r)} is the charge density functional, which according tohave been proposed. Such a modification of the Gordon-
Hohenberg and Kol can be represented in the form Kim method is necessary for the following reasons. First, a
spherically symmetric distortion of the ion charge density is

E{p}:f drp(r)Ve(r) + 1 f dr dr’ p(r)p(,l”) observed experimenta_lly, and use of_ the Watson_ sphere in-
2 [r—r’] deed leads to spherically symmetric compression of the
charge density of the negative ion. Second, use of the Wat-
+J dr F{p(r)}. 7) son sphere makes it possible to describe crystals containing
ions that do not exist in the free state, such as the ion.
Here V®{(r) is the external potential, which in the case of Efforts were also undertaken to allow for dipole distortions

crystals is simply the Coulomb potential of the nuclei: of the charge density, but all of them were based on the use
ZN of phenomenological ion models of a different kind, of the
Vext(r)zz ﬁ (8) shell-model type(for more details, see the review in Ref.
TRy 29).

In these efforts to improve the Kim—Gordon model, an-

The quantityF{p(r)} is a universal functional describ- h bl hich . | ved. |
ing the contributions of the kinetic energy and the exchange—Ot er problem arose which was not consistently resolved, in

correlation energy to the total electron energy. In their origi-Ur OPinion, in previous treatments. This is the so-called ion
nal paper£52Gordon and Kim used a significant number of self-energy problem. The point here is that in the use in the

additional simplifications in their analysis of expressi@ Gordon—Kim model of ion charge densities calculated using

for the crystal energy. First, for the functior{p(r)} they the Watson sphere, the energy of each ion begins to depend

used a simple local approximation in the spirit of Thomas-°" the radius of the Watson sphere. This radius, in turn,

Fermi. Second, the first term in expressi@h neglects con- dePends on the properties of the entire crystal as a whole;
tributions from the overlap of more than two ions at a time:[herefore_the sum of energies of the individual ions should be
As a result, the problem reduces to a calculation of pairwisdcluded in the expression for the total energy and be taken
interactionsV;; between the ions, mtq account in the course of the m|n|m|;at|on def!nlng this
radius. On the question of the expression for this energy,
Vij= f [E{pi(r—R)+p;(r—R))}—E{pi(r—R))} gﬁfeerc\llalésé:‘;r unstable ions, the opinions of different authors
—E{pj(r=Ry)}]dr @ _ [Earlierwe developed a methdt which makes it pos-

! ] sible within the framework of the pairwise interaction ap-
and to subsequent calculation of the total crystal energy witlproximation to allow for distortions of the ion charge density
the corresponding pairwise interaction taken into accountof dipole type and introduce a self-consistent definition of
The charge density of an individual ign(r) was taken to be the self-energy of the ion. Using this approach, we success-
spherically symmetric and was calculated by the Hartree-fully calculated the electron polarization and lattice dynam-
Fock method for free ions. ics of many binary ionic crystals. The accuracy of this

In its original form the Gordon—Kim method has a quite method turned out, however, to be insufficient for calculating
limited region of applicability. This has to do, mainly, with the ferroelectric instability in perovskite crystals. This is due
the use of the spherically symmetric free ion density forboth to the necessity in perovskites of taking account of
pi(r). Their approach can be considered as a microscopichanges in the charge density due to higher multipoles and to
realization of the rigid ion model. In real crystals the chargethe necessity of departing from the framework of pairwise
density distribution of an ion is obviously not rigid. As fol- interactions. We recently developed a corresponding gener-
lows from the experimental dafd,even in the case of the alization of the Gordon—Kim method; a brief exposition of it
simplest ionic crystals of the NaCl type, where the chargas given in Ref. 22.
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The essence of our GGK method consists in the follow-  In the present paper we use an auxiliary monopole po-
ing. First, in line with ideas of nonequilibrium thermody- tential in the form of a smoothed Watson sphere:
namics developed by Leontoviéhthe nonequilibrium state
of an individual ion is prepared, with charge density distri-
bution possessing any multipole symmetry. Toward this end,

we solve the quantum-mechanical problem for the 'nd'v'dual/vherezi"” is the nominal charge of the ion. The paraméter

ion in the presence of external _auxiliary fields possessing thSnd the radiug,, of the Watson sphere are chosen from the
corresponding necessary ”_‘“'“po'e symmetry and Calcu'."ﬂgondition of smooth joining of the potential and its first de-
the charge density o_llstrlbutlon of the given-ion and also "Sivative atr= R, . The choice of a more smoothed potential
se!f-energy. After this, we place the ion in the cry_stal andthan the initial Watson sphere potential is motivated mainly
using formula(5) for the crystal energy we determine the

tual def i fthe ion f the mini f this f by the need to refine the procedure of the numerical calcula-
actuaf getormation ot tn€ 1on from the minimum oTtIS TUNC- ;0o g quantityk,, characterizing the depth of the po-
tional. The minimization is carried out for different values of

the volume of the unit cell and different crvstalline sir tential at the nucleus, is a variational parameter and is deter-
€ volume ot the unit cell a erent crystaline struc- \ined from the minimum of the total energy of the crystal.

tures. The state corresponding to the deepest minimum is tthe quantityV®{r,K,) for the higher multipoles is chosen
true ground state of the crystal. This approach also makes fﬁ the following for,m also smoothed:

possible with the help of the frozen phonon method to find

the frequencies of phonon vibrations for a series of wave  Vv®{r K,)=—r'K,P,(cos§)e A, (14

vectors. With this aim, we calculate the energy difference o ) o

between an ideal crystalline lattice and a lattice in which the  Here theZ axis is chosen in the direction of the external

ions are displaced just as is actually the case in a phonolifld; Pi(cos6) are the ordinary Legendre polynomials, and

mode. K, and B, are the corresponding variational parameters. It is
To solve the quantum-mechanical problem of one ioniMportant here that there is no need to solve @) exactly

we use the density functional theory. The corresponding” the presence of multiple potentials. It was sufficient to find

Kohn—Sham equatidh in the presence of auxiliary fields he changes in the charge density distribution and the ion
has the form energy from perturbation theory in the potentie®(r,K,).

The point here is that the amplitudes of the multipole distor-

V2 ZiN pi(r’) XC tions in the charge density distribution are determined, in the

(— >t erJ dr r—r] +V*(r) final analysis, by the crystal fields or their changes in re-
sponse to changes in the crystalline structure, but these fields

Ko+br2,
—Zen,

r<Ry,

V1=

(13

ox are always much smaller than the intra-atomic fields.
VLK) [ o) =&, ia(T) (10 For the calculations we have used perturbation theory in
the form suggested by Sternheimer. As is customary in per-
and turbation theory, the wave functios,(r) is represented in
the form
pi(1) =2 PN Pa(1), (1D B0 = 900 + 81 (1) (15
where the sum is taken over all filled states. Het&(r) is ~ 2nd
the exchange—correlation potential, defined as
8p(1) =2 ta(r) 8pa(r). (16)

SEXpi(r)}

V=500

12

For the exchange—correlation ener§® we use, as

usual, the local approximation. The quant?(r,K,) is

The unperturbed functiowg(r) satisfies the equation

V2
(—7+veﬁ<r>)¢2<r>=82¢2<r>, (17)

the potential of the auxiliary fields, which possesses multi-
pole symmetry. At this point we should mention the substanwhere

tial difference in the calculations when the auxiliary potential
has spherical symmetry, i.e., is a monopole, and when the
auxiliary potentials have any other multipole symmetry. For

a monopole external field we are forced to solve Eif)

exactly in the presence of this potential. This is due to th

O/ 1
pi(r’)
|rl_r/| V(1) + Vo1, Ko),

(18

zN ,
Verl(r) = m+ dr

€nd the variation of the wave functio®y,(r) is defined by

necessity, mentioned above, of calculating ions not existingy,o equation
in the free state. This means that for them a solution of Eq.
(10) that does not take the auxiliary monopole potential into v?

account simply does not exist. Moreover, in the local ap-

- 7+Veff(r)_8a) 5¢a(r)

proximation for the exchange—correlation energy the solu-

tion of Eq. (11) absent an auxiliary monopole potential is

lacking even for the majority of negative ions.

Sveff
Vext(r,K|)+m5p(r) Po(r). (19
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In the Sternheimgr method both equationSgt@(r) and solf_ Zp(r) 1 , p(Np(r’)
5,(r) are solved simultaneously with allowance for the Eion_J’ I +t3 J dr dr WH:{P(T)}-
self-consistency procedures fo¥gu(r,p) and Vex(r,p) (25)
=(6Vex(r)/ 6p) 5p. We used a numerical method to solve
these equations numerically. The wave functions were repre-  After this, expressioit5) for the total crystal energy can
sented as series in Chebyshev polynomials which matche rewritten in the form
smoothly at large distances with the corresponding
asymptotic limit for the functions{/‘;(r) and 8, (r). Eo=
Solving Eqs(17) and(19), we obtain the variation of the
wave function,s¢,(r), which depends implicitly on the pa-
rametersK, and 8, and depends linearly on the parameter +2 ESpi(r—R))}. (26)
K. :
The variation of the charge densidp'(r,Ky,3,) can be
represented in the form

E{E pi(r—Ro]—E EFpi(r—R)} | +EN

We point out here at the outset that in all the refinements
of the Gordon—Kim method the first term on the right-hand
8p'(r)=K,8p(r,Ko,3))P(cos 6). (200  side of Eq.(26) coincides exactly with our result. This means

_ o ) that from the electron energy, written as a function of all the
According to standard electrostatics it is possible to de'densities, the sum of energies of the individual ions was

termine the values of the multipole moments correspondinghiracted in a form corresponding exactly to our expression
to the charge distributiof20) (25). In this light the source of the differences in the previous
generalizations of this method in the form of the last term in
P|=f dr r'Py(cos 6) 5p'(r,Ko. ). (21)  Eq.(26) is not entirely clear to us. Nevertheless, we will not
use the last term of Eq26) in our calculations in the form of
If we take (20) into account, Eq.(21) gives a linear expression(25). The quantityEs®" as defined by expression
relationship between the parametéts and P, which al-  (25) contains very large contributions from the ion energy,
lows us to express the ion energy in terms of the multipoleyhich in fact do not depend on the crystalline environment,
moments and perform an additional variation of the totaland taking them into account can lead to large errors in the
crystal energy not in the parameters of the auxiliary potentiahumerical calculations. Toward this end, we will make use of

but in the multipole moments of the ions. ~ the well-known properties of the density functional and first
The expression for the total energy of an ion in DFT in calculate the necessary derivatives of the self-energy with
the presence of the auxiliary fields has the form respect to the variational parameté¢s. Toward this end,
' ite ES®f in the form
. Zp(r) 1 p(p(r') e
ion — _ '
E°Yp(r)} f dr ] + 5 f dr =g

= Eon | dr Veulr K)p(1) @
+ 3 [ ar Vit K1 BOp0)+FEp(O).

and, correspondingly,

(22 ﬁEiSoerlf_ 9Eion IV ext ap

Since we calculated the charge densities of the ions bygk, K, f dr K, p(l‘)—f dr Ved(r,Ky) (9_K|'
varying the external auxiliary potentials, expressi@®) is in (28)
fact a functional of the auxiliary potential,,(r). To deter-
mine the self-energyes®" of an ion with nonequilibrium

charge density distribution as a functional of the density it is

From the condition for the minimum of the functional
Eion We have

necessary agcording to the ideas of nonequilibrium I Vol 1,K)
thermodynamic¥ to proceed as follows. W:f r T p(r), (29
First, from the relation ! !
SEion which at once gives us
Ny P @9 g o
. _ =—J’ dr Ve (r,K)) ——. (30
it follows that we should expredé,,(r) in terms ofp(r) and K, K,

substitute them in the formula fd;,,. After this, it is nec-
essary to subtract from the enerfgy,, the workA associated
with the interaction with the external field, i.e., the quantity

Moreover, we can also easily calculate the variation of
the self-energy with variation of the parameters after inte-
grating expressioi30) with respect tK :

A= | dr V{(p(r r). 24

f (p(r)) (1) 2 AEiS;{E—f dKf dr Ve, K) o0 (3D)
All these procedures in DFT are actually trivial since the !
energy of the ion22) is always expressed as the correspond-  Taking into account the linear relationshipl) between
ing density functional, and def}f,{f we obtain the parameterk, and the multipole moments, we easily ob-
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tain a final expression for the self-energy of the ion for mul-interactions of the corresponding point multipoles and the
tipole distortions of the density with>0 by integrating in  short-range interactions of the extended multipoles.
(31) from zero toK;: The Coulomb part of the crystal ener@ can be rep-
resented in the form
EF()=K/2a, (32

where ¢ is the corresponding multipole polarizability. For EC=Z (ZiNV,-(Ri—R]-)+% f dr pi(r—Ry)
monopole distortions we cannot calculate for any value of ')
Ko, including Ky=0, for the reasons discussed above. To
determine the energy difference arising for small lattice dis- XVi(r=Rj)
tortions, it is sufficient to integrate with respectkq in (31)
over an interval including the quite small region of actualwhereV;(r) is the Coulomb potential created by the elec-
variations ofK. trons of the individual ion.

To wrap up this section, we briefly describe the transfor- ~ The expansion of the charge densply) into multipoles
mations of expressio(26) for the total energy of the crystal is written as follows:
to a form suitable for numerical analysis, following Ref. 34.

First we note that calculation of the self-energy does not  p(r)= 2 PN Qum Y (1), (37)
present any special difficulty in light of the results for it m.!
obtained above. The remaining terms in expreséifi are  whereQ,,,, are the multipole charges:
very large and should be grouped correspondingly. First let

Q(l)_l V ? Pz:

+Ey, (36)

us consider the contribution to the crystal energy associated QY= [477¢
with the kinetic and exchange-—correlation energy of the

electrons. It has the form
QY =:\/ (Px_n:y)
e|—fdr F[E pi(r— R)]

and p(r) are the multipole components of the charge den-
sity, normalized by the following condition:

2 fvdr F{pi(r—Rp}, (33 P
_ o _ mfo r' <p/(rydr=1. (38
where the integration is over all space. By virtue of the pe-
riodicity of the total charge density of the crystal, the first The multipole expansion of the Coulomb potential
integral in(33) can at once be represented as an integral ovey;(R) is written as follows:
one unit cell. In the second integral it is possible to transform

from an integration over all space to an integration over the V(R)=f P( ) 2 o f P1(1)Yim(1)
m

[th unit cell and a sum over unit cells. As a result we have Ir=R|

el—f dr F{Ei pi(r—Ri)] =2 QmViRIYin(R). (39

4 1 R
- — 142
iE,I (ldr F{pi(r—Ri)}. (39 V,(R)= S+ | ' fo r'*2p,(r)dr

With the help of the change of variablesr’ —r,, wherer, [ -
is the position vector of thith unit cell, it is easy to reduce +R JR pi(r)r=—dr|. (40)
the second integral to an integration over one unit cell. As a
result, we obtain From the last expression we can separate out the long-

range part after rewriting the potential in the following form:

e|—fdr {Z r—R)] E F{pi(r=RiD}|, 4
' 35 VIR =577
whereR; =R;+r,. | 1
Because of the exponential falloff of the charge density, +R fR pi(r)rdr
the summation over lattice sites is carried out quite simply.
The integration over a unit cell is performed numerically ~ Thus, the Coulomb potential is represented in the form
using the method of special points. Details of the calculatiorof a short-range parV(R) and the long-range potential
are contained in Ref. 35. VP(R) of point multipoles
The greatest difficulty in the calculation comes from the =
Coulomb part of the total crystal energy due to the presence V(R)=V(R)+VP(R). (42
of long-range forces. The main problem in the transforma-  Substituting the expansio@®2) into the expression for
tion of this contribution consists in separating the long-rangghe Coulomb energy36), we obtain

1 A 1+2
—ﬁmL rop(r)dr

1
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N N variational parameter,, Py 2y, B1,2)- Here we used the
Eczgj ZPVi(Ri—R)+Z{VP(R - R;) conditions for an energy minimum in the form
1 _ 1 JE/dP=0, (44)
* 2 f dr pi(r =R)Vj(r—=Rj)+ 2 f dr p; where byP we mean any of the above five parameters. We
examined the minimization over the cutoff parameters of the

multipole potentials3; in detail for the case of BaTip We
+Ey. (43
showed that the crystal energy possesses an extremely shal-
. . ~ low minimum with respect to these parameters, and the exact
By virtue of the exponential falloff of the potenti®l( R) éalues of ™ differ only slightly from one other for the

X (r=Rp)VP(r—R))

only the sum over nearest neighbors contributes to the firs ifferent phases and unit-cell volumes. In line with this, most

and third terms. These two terms together describe the short; .
range interaction of the extended multipoles. The sum of thénc our calculations for the parametey were based on the
' se of the constant valugg=0.15,..,8,=0.25. The effec-

three remaining terms, including the Coulomb interaction of . . r . _—
the nuclei, describes the interaction of the point muItipoIes:“Ve dlstance$eﬁ—1/\/E corresponding to the indicated val-

with each other and the interaction of the point mult|polesues O.fB' correqund roughly tq the interatomic distance for
: . . the dipole potential and are slightly less for the quadrupole
with the extended multipoles. The procedure for separatin otential
the point objects from the interactions while taking accoun ' ,
. . : Let us comment, first of all, on the results of our calcu-
of only monopole and dipole distortions of the charge den-

. : ) o . . lations for BaTiQ. Carrying out the minimization of the
sity is described in detail in our previous pagérgusing the . ) )
- . . . . total crystal energy in the cubic phase for different values of
standard description of dipoles in Cartesian coordinates. Th ; ; ) N
X . ) the lattice constant, we determined its equilibrium vaduét
account of the quadrupole distortions introduces an addi: . . :
. . : . turned out to be equal to 7.41 Bohr radii. This value is less
tional matrix, the quadrupole moment matrix, and working . S .
o . . . than the experimental value, which is equal to 7.58, but is
with it in Cartesian coordinates becomes extremely tiresome. . . .
. . . nly 0.5% less than the value obtained in previous
In the present paper we represent the multipole distortions 0

7 3-15 c .
the charge density in spherical coordinates. Using the transc-"’llm“""’ltloné based on the electron band description. We

. : : : . obtained exactly the same accuracy for the equilibrium pa-
formation formulas for spherical functions, this makes it : : :
. ) . rameters in the cubic phase for the other perovskite crystals.
quite simple to formulate the calculation of the Coulomb_" . . : :
. . : . Taking the quadrupole distortion of the charge density on the
interactions between point and extended multipoles. A

2_ . . . .
analogous technique is used in electron band tHé al- nO ions into account leads to a slight increase of about

. . .5% in the value of the lattice constant. As is well known
culate the structure constants. Details of the calculations . . 1315 L I
. : . rom theoretical calculationS1°the ferroelectric instability
expression43) are given in Ref. 35.

in perovskite crystals is very sensitive to the volume of the
unit cell. First-principles calculatioh$**have demonstrated
that this instability is either very weakly manifested or is
In our numerical calculations of the energy of perovskitegenerally absent for a volume corresponding to the theoreti-
crystals in distorted phases as well as in the cubic phase weal value of the lattice constant equal to 7.45. Hence all of
have taken into account multipole components of the iorthe foregoing calculations were performed for the experi-
charge density up to quadrupole. The necessity in perovskitmental value of the lattice constant. Our work is in this sense
crystals of allowing for quadrupole distortions of the chargenot an exception—we also performed all calculations of dis-
density of the @ ion even in the cubic phase follows di- torted phases for experimental valuesaof
rectly from the comparisons made abtt& of the charge As we already noted earlier, the actual ion shifts during
density distributions in the BaTiQcrystal obtained from the transition to the ferroelectric phase do not reduce to just
first-principles calculations and from a superposition ofa displacement of the central Ti ion from its equilibrium
spherically symmetric ion densities. The difference betweerposition. A complete study of the possible ion shifts and a
these densities clearly demonstrates the presence of a quatktermination of the dependence of the energy on these dis-
rupole distribution of the charge density on the oxygen ionplacements, as noted in Ref. 14, would be an extremely ar-
By virtue of the crystalline symmetry of the cubic phaseduous undertaking even using simple pairwise interatomic
dipole components of the density are forbidden on all ionspotentials. Such a complete study was not the goal of this
and quadrupole components are forbidden on all ions exceptork. In our study of the BaTi@instability, we employed
O?". In the distorted phases, on the other hand, corresponexperimental values of the eigenvectors of the soft ferroelec-
ing, for example, to the ferroelectric state of the crystal, it istric mode and performed calculations of the dependence of
necessary to allow for the existence of both these compahe energy on just the amplitude of this mode. The results are
nents on all ions. The importance of quadrupole componentshown in Fig. 1. As can be seen from the figure, the calcu-
of the ion density for stabilization of the low-symmetry lated values of the energy and the ferroelectric shift which do
phases of ionic crystals was noted in a recent paper by Wilnot allow for quadrupole distortions of the charge density
sonet al*® We have carried out calculations of the energiesoverestimate the shift by a factor of two and the resulting
of the cubic phases and distorted phases of BgTKNbO;, energy decrease by an order of magnitude. The calculated
CaTiO,;, and BaZrQ. For each value of the lattice param- values which take the quadrupole distortions into account, on
eters we minimized the total crystal energy over the fivethe other hand, agree quite well with the values obtained in

3. RESULTS AND DISCUSSION
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FIG. 1. Crystal energ¥,, versus amplitude of the ferroelectric shiftin
BaTiO; (zero energy corresponds to the equilibrium vaﬂi@ein the cubic

phaseg in the “rigid ion” model (X) and in the self-consistent calculation
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FIG. 2. Crystal energ¥,, versus amplitude of the ferroelectric shiftin
KNbO; (zero energy corresponds to theequilibrium valiﬂgin the cubic
phase: + corresponds to thE point, X corresponds to thi& point (longi-
tudinal mode, * corresponds to thX point (transverse mode

emphasize that the absence of a ferroelectric instability in
this approach has nothing to do with whether hybridization
of the electron states of the*fiand G~ ions is or is not
taken into account, as was supposed in Ref. 13, but is ex-
plained simply by the absence in this approach of an account
of the electron dipole polarization of the ions.

We also examined lattice instabilities for the KNHO
crystal. The results of these calculations are shown in Fig. 2.
In this case we calculated not the change in the energy cor-
responding to an actual ferroelectric ion shift in the unit cell
but the change in the energy due to a shift of the one central
Nb ion in the unit cell. As can be seen from this figure, the
lattice is unstable with respect to this shift. Moreover, this
mode is unstable not only at the center of the Brillouin zone,

ut also on its boundary. Thus, there exist branches of the

of the ions taken into account, b—only monopole and dipole distortionsOptical vibrations in perovskite crystals that are unstable in

taken into account.

the cubic phase over the entire Brillouin zone. This result is
in complete agreement with the results obtained recently
within the framework of first-principles calculations based

previous works31° Figure 1 also demonstrates that whenon the electron band structure metf8dSuch behavior of
the dipole distortions of the ions are neglected, i.e., in thehe phonon modes can have a substantial effect on many

rigid ion model, the cubic phase remains stable.
This result serves as explicit confirmation of the valid

of ideas going back to Slafeand Skanavion the impor-

characteristics of the cubic phase of perovskite crystals. Fig-
ity ure 3 plots the results of calculations of the so-called antifer-
roelectric instability for BaTiQ and CaTiQ. These results,

tance of the electron polarizability of the ions in the deter-in complete agreement with the available experimental data
mination of the ferroelectric instability. Earlier, the ferroelec- and the results of recent calculatidfisjemonstrate the ab-
tric instability in BaTiO; was examined in Ref. 39 within the sence of the corresponding instability in Bagi@nd its pres-
framework of the Gordon—Kim model without allowance for ence in CaTiQ. They also show that this instability is almost

the dipole polarization of the ions. As was shown in
work, the cubic phase is stable in this model. We can

thiscompletely determined by the Coulomb interaction of the
onhyspherically symmetric ions and by the close-range forces.
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E, TABLE I. Born effective charges.
007
lon Charge Zett e
Ba 2 271 2.9
- %=X
0.06 Ti 4 5.67 6.7
O, -2 —4.72 —4.8
O, -2 —-1.83 —-24
0.05 0, -2 ~1.83 —2.4
0.04
4
0.03 e,=1+—— > Ps. (48)
UoE S

Here the sum is taken over the limits of one unit cell agd
is its volume. The results of numerical calculations lead to
the following value of the dielectric constant:

0.02

0.01 £,=4.86.
It is also possible to determine the magnitudes of the
0 Born effective charges that describe the polarization of the
crystal arising upon an ion shift equal tQ
00— . . . . ., 1 ~ 1 Y 1
0 0.1 02 03 ¢ oP=— > 72&My=—"72 7+ — > P,. (49
Vo s Up s Uo s

FIG. 3. Crystal energ¥,, versus rotation angle of the oxygen octahedgon . i .
in BaTiO; and CaTiQ (zero energy corresponds to the equilibrium value The effective charge tenSOfSiﬁ in perovskite crystals

EJ in the cubic phase X corresponds to the “rigid ion” model+ corre-  for the A and B ions are isotropic and have two different
sponds to the self-consistent calculation. values for the & ion for nonequivalent direction&" in
the direction toward the B ion andS" perpendicular to it.
Performing four ion shiftfone each for the A and B ions
Electron polarizability effects have a very small effect onand two for the &~ ion) and calculating from the energy
this instability. Our calculations for BaZr@lemonstrate sta- Minimum the corresponding values of the electron polariz-
bility of the cubic lattice in complete agreement both with ability P,, we can determine all four values of the Born
previous calculatiorS and with the experimental data. effective charges. Results of the corresponding calculations
Our method allows one to calculate not only the energyfor BaTiO; are listed in Table I.
of the cubic phase and distorted phases, but also the total and We note first that the Born effective charges we calcu-
electron polarizations of the distorted phases. First of all, letated satisfy exactly the acoustic sum rule
us consider the behavior of a cubic crystal in an external _
electric fieldE,. Toward this end, we add a term to the 2 o=0. (50)
crystal energy allowing for the interaction of the electric di- S
poles with this external electric field: The dielectric constants,, and the Born effective
charges we obtained slightly underestimate the experimental
W=— 2 P.E, (45) data. This has to do, to a significant extent, with the substan-
n tial lowering of the polarizability of the individual ions due

—_B3r2 . . .
and restrict discussion to the case of a uniform figjg=E o the strong cutoff factoe™”"™ in the perturbing dipole
= const. Minimizing the total energy of the crystal for given Potential. Choice of_ smootht_ar cutoff functions can Ie_ad to
E, we can find, in the linear approximation, the value®pf better agreement with experiment. In any case, considering

as functions ofe: the complete absence of adjustable parameters in our calcu-
_ lations, the agreement obtained with the experimental data
Ph=anEy, (46)  can be considered to be quite good.

After our demonstration that the GGK method we have
developed leads to results for the cubic phase and distorted
phases of perovskite crystals, whose accuracy does not differ
very much from that of other methods, it would be desirable
to address the questions posed in the Introduction. The most

Ar important of these is the question, what is the nature of the

D=e.E=E+4aP=E+ > P (47)  ferroelectric instability and what sort of interaction forces are

0 s responsible for this instability. This problem, of course, was
or discussed at length in all earlier calculations. It should be

where the quantitiea,, are, of course, not equal to the quan-
tities «,, defined for the isolated ions. Next we can find the
electronic contributiore., to the dielectric constant of the
crystal from the relation
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noted at once, though, that they gave entirely different antion, was considered as the main reason for the ferroelectric
swers to these questions. In order to get to the bottom ohstability in the so-called vibronic modékee the recent
these differences, we use the standard expression for the totaview in Ref. 43.
crystal energy in the density functional theory The previously cited recent calculations of perovskite
E.—E(p(r)}+EN 51) crystal$®~cited as the reason for the ferroelectric instabil-
o™ Seltp ' ity a “delicate balance between the long-range Coulomb
whereE¢{p(r)} is the electron energy functional aid' is  forces and short-range repulsion forces.” In reality, this con-
the energy of the Coulomb interaction of the nudlei in-  clusion, which is, in our opinion, absolutely valid, in no way
teraction energy of the corresponding ions using the pseuddellows directly from the calculations performed in Refs.
potential method We write the functionaE.{p(r)} in the  13-15. In these calculations, no redistribution of contribu-
two equivalent forms most frequently used for calculationstions in the expression for the total crystal energy was at-

in the band description of the electrons: tempted which would have led to a separation of the short-
Z.p(1) range and long-range forces.
Eodp(N}=To{p(N}+>, f dr ——— This discussion can be shown to be completely academic
n Ir=Ry| as long as it concerns a clarification of the question, which of
1 o(H)p(r') the crystalline_structures has th_e lowest gner_gijao. The_
+ > f dr’ W'FEXC{[)(T)} (520  problem acquires a clear physical meaning in the consider-
ation of phase transitions in perovskites at temperatlires
and #0, and also in a discussion of the properties of the various
, phases at finite temperatures. As is well knowrierroelec-
1 , p(r)p(r’) . L : 3
Eel{p(r)}ZE P J dr’ —————+E,{p(n)} trics are usually divided into two classes, those of order
2 r=r'| disorder type and those of displacement type. In ferroelec-
trics of order—disorder type there are initially several
—J dr Vi {p(r)}p(r). (53  nonequivalent sites in the unit cell for one of the ions, i.e.,

there exists a so-called multiwell potential. In this case, the

In formulas (52) and (53) we have used the standard existence of an ion at any of these sites leads to the presence
notation:To{p(r)} is the kinetic energy of the noninteracting of a dipole moment in the unit cell. At high temperatures the
ions, E,{p(r)} is the exchange—correlation energy, anddipole moments are disordered either because of ion hops
V,p(r)} is the exchange—correlation potential in the corre-from one site to another or because of disorder in the ar-
sponding Kohn—Sham equation for the band electrons. Theangement of the various dipoles. At the phase transition
first term on the right-hand side of E(3J) is the sum of the point ordering of the dipole moments of the unit cells takes
single-particle electron energies described by the Kohn-place. Ferroelectrics of displacement type are characterized
Sham equation. by the absence of a multiwell potential for the ions at tem-

It would be desirable to turn our attention now to the peratures above the phase transition temperaigre
change of sign of the contribution of the Coulomb interelec-  The very concept of a multiwell potential arises only for
tron interaction in Eq(53) in comparison with Eq(52) and  T<T, due to the appearance of real disordered ion shifts
to the appearance of an additional teftime last termin Eq.  throughout the entire crystal. On this plane, the various con-
(53). Both of these changes arise as a result of double countlusions about the nature of ferroelectricity in perovskite
ing of the corresponding interactions in the sum of thecrystals reached via first-principles calculationsTat0 can
single-particle energies. A change in any of the tetinghe  lead to quite different conclusions about the nature of the
series of cases and even f&;.) in the expression for phase transition and the properties of the cubic phase. Thus,
Ec{p(r)} for a small distortion of the crystal structure is the vibronic model assumes the possible presence of a mul-
much larger than the resulting change in the total crystatilevel potential for the central B ion in each unit cell. The
energyE,,. polarizable ion model, naturally, leads to a ferroelectric tran-

In this sense, any of these changes leading to a decreasiion of displacement type. If the only reason for the ferro-
in the energy of the distorted phase in comparison with theslectric instability is the long-range dipole—dipole interac-
cubic phase can, if desired, be considered as the reason ftion, then no multiwell potential for the ions can exist until
the appearance of the distorted phase itself. Thus, Rabe aonddered dipoles exist throughout the entire crystal or in some
Jonnopouloél in the context of calculations of the ferroelec- large part of it. It is clear that such an ordering is absent in
tric instability in IV=VI semiconductors using the fort62)  the polarizable ion model fof>T., outside the region of
for E,, cited the interaction of the electrons and ions, i.e.,strong ferroelectric fluctuations. Perovskite crystals have
the second term on the right-hand side of E8R), as the usually been considered as classical examples of ferroelec-
reason for the ferroelectric instability. This term is generallytrics of displacement type®
absent in explicit form in formul@53). Hidaka? who used During the last 20 years a large number of experimental
formula (53) for Eg,, cited as the reason for the ferroelectric works have appearedsee Ref. 44 and the references
instability the sum of single-electron energies, which de-thereir), whose authors have interpreted their results as a
creases substantially during the transition to the ferroelectrimanifestation of order—disorder effects in perovskite crys-
phase. Precisely this reason, i.e., the decrease in the sumtafs. Theoretical works have also appe&fed which along
single-particle energies due to the electron—phonon interaawith a treatment of the soft ferroelectric mode due to the
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dipole—dipole interaction, additional phenomenologicalaction forcesE,{K} takes into account the renormalization
mechanisms are introduced leading to the existence of a mubf these forces resulting from elimination of the quadrupole
tiwell potential also forT>T.. As was shown in a recent moment. Second, the matrixS, ,, of the extended
paper by Hier,*> many of these phenomena, which are remi-spherically-symmetric ions also includes quadrupole renor-
niscent of order—disorder effects, can in reality be eXplaineq‘nanzaﬂon effects. The remaining terms in the linear ap-
within the framework of the standard quasiharmonic ap-proximation in the dipole and quadrupole distortions do not
proximation for the lattice dynamics of a perovskite crystal.differ from those obtained earlier. The quantity, is the

In particular, Hier showed that the strong anisotropy of the dipole polarizability of the ion, an@n o is the interaction
correlation of the B atom displacements due to this instabil ’

ity of entire branches of the optical vibrations in the cubic

phase makes the diffusive x-ray scattering highly aniso- B bap 3R.Rp.

tropic. This has often been linked with disordered static dis- PR =7z~ ’ (59)

placements of the B ion from its equilibrium position. An- R

other example, in our view confirming the validity of the the matrixI',, ,» describes the short-range interaction be-

polarizable ion model and its ability to explain many phe-tween the extended dipoles. The last term in expreg&dn

nomena similar to order—disorder effects, is the recent Monteepresents the interaction between the point dipoles and the

Carlo simulatiofi® of the phase transition in BaTifor a  electric field E,. The matriceSn . and fn . can be ob-

system of interacting dipoles. The parameters of the modehined from the numerical calculations described in the fore-

Hamiltonian were determined from first-principles calcula-going section. Using formulés4), it is possible to obtain an

tions of the energies of the cubic and ferroelectric phases &nalytical expression for the electronic contribution to the

T=0. static dielectric constant of the crystal, and the Born ef-
Now let us go on to a more detailed discussion of quesfective charge®" for perovskite crystals. Let us consider,

tions associated with factors leading to the ferroelectric infirst, the quantitye.., taking the electric field,, in formula

stability, and also with the problem of the anomalously large(s) to be external. Then, from the condition

values of the Born effective charges in perovskites. Toward

this end, we take advantage of the possibility of an analytical 9E/9Py=0 (56)

representation of the total crystal energy within the framesye pave

work of the GGK method. But first of all, we simplify this

expression guided by the results of the numerical calcula-

tions. First, we neglect the change in the quadrupole moment

of the ions at the transition from the cubic to the ferroelectric _ ) o

phase and, minimizing with respect to it, we exclude it from  The last term in expressiof67) can be eliminated by

further consideration. This procedure leads only to a correlNtroducing the nonlocal polarizability

sponding renormalization of the short-range interactions. -~  _ r —-1x

Next, we restrict the discussion to the approximation of pair- ™" = On Fanlnn) “an 8

wise interactions between the deformed ions. This approxi- We in fact are considering a uniform external fietg

mation, as was already noted, is insufficient in a number of=const, and the polarization of each unit cell is

cases to maintain the required accuracy for the numerical

calculations, but it does not lead to any qualitative changes in E Ps=const.

the calculated results. In final form the expression for the s

total crystal energy can be written in the form

‘matrix of the point dipoles:

F>n:‘)(nEn_a'nE CDn,n’Pn’_anE l_‘n,n’pn’- (57)
n’ n’

In this case, the dipole—dipole interaction matrix in cubic
crystals can be written &%°

- 1 zinzer p2
Ec= Esr{K0}+_ E ™ _p 1775 2 5 o 40 o
2 % Ro-Rol ' 2% 2ay L 59
1 . 1 . X
T3 > Pn®p P+ > > Pnl'nnPnr Herey, , is the matrix of internal field constants, character-
n,n’ n,n’

izing the departure of the external field factor from a Lorent-
- zian (equal to 47/3). The sum of products with the matrix
_r%, Pnsn]“’_g PnEn . (54) S/n,n, is taken only over nonequivalent sublattices. Expres-
sion (57) can now be rewritten in the form

In the form of this expression we have changed over A

from the representation of the dipole moment vecfysof Po=> annE+ 3 D ann P+ > ann Yo wPors
the ions in spherical coordinatéshich is convenient for the n’ n’ n’,n”
numerical calculationso the standard form in Cartesian co- (60)
ordinates. Formally, expressiof®4) completely coincides whereP is the total polarization of the crystal
with the expression we obtained earffeallowing only for
dipole distortions of the charge density. But in fact there is a _ _i

| : arg . P=2 P,=— 2 P.. (61)
difference. First, the contribution from the short-range inter- n Vo s
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It is easy to solve Eq60) completely and to obtain an  ability matrix e, , is also anisotropic due to the anisotropy
expression for the total polarizatidh Noting that for crys- of the matricesf“n . and 5/“ .. The nonlocal polarizability

tals with cubic symmetry., is a scalar, we have - . . .
ay, v Most strongly hinders, in particular, the appearance of
4P dipole moments on the oxygen ions in the Ti—O direction.
ex=1+ E °’ (62 Thus, in perovskites there arises a mutual compensation of
the effect of non-Lorentzian corrections to the local field and
Amag the effect of short-range repulsion forces of the dipoles.

ga=1+ 1-(47l3)a.’ (63 Formula(54) also allows one to obtain an analytical ex-
. . Z, ff .
Here a is the polarizability of the unit cell: pression for the Born effective .char.gfiﬁ defined by for-
mula (49). For the electron polarizability we have from for-
1 A A PPN mula (54)
Ae=— 2 (5s,n_as,n7n,n’) la’nr,nn. (64)

Vo gn,n n" N ~
The s summation in Eq(64) is over one unit cell, and Ps= asks™ asg (DS'“'P“'_QSE LonPor
over the remaining indices in accordance with the falloff
radiusAof the matriceézn,n, and a’n,n'- For binary crystals, +> M. ZnrUp: - (69)
where v, ,»=0 holds, we have in the point dipole approxi- n’
mationI', =0, and the polarizability of the unit cell re- Here we have introduced the nonlocal deformability of the
duces to the sum of the polarizabilities of the two ions: ion ﬁ‘n,nn writing the matrixASn,n, for small displacements

ac=a;ta,. (65) u, as
Formally, it is possible to introduce an effective polariz- ASn,n':rhn,n’Zn’un’ : (70
ability of each ionag, which in this case is no longer a o )
scalar, but a tensor in Cartesian coordinates: The electric fieldE; at a site has the form
&isk: 2 (i_&s,n:}’n,n’)il&n’,n"- (66) Es= _E q)n'nrzn’un’ (72)
n,n’,n"
d

The total polarizability of the unit cell is expressed, in an
accordance with Eq(64), by the sum of effective polariz- =

abilities. q)n,n’:q)n,n’_ 5n,n’§|: q)n,l . (72)
Let us first discuss the influence of non-Lorentzian inter-
nal field constantsy, ,, on the polarizability of the ions in Using the definition(58) for the nonlocal polarizability

perovskite crystals, neglecting for the time being, the matrixx, .., it is possible to rewrite formulé9) as
| -
PSZE an’ann— 2 an'nr®nr’nrrPnn

n!

n’,n”

=3 (1 ag¥sn) tay. (67)
n,n’

We consider by way of an example the effective polar- —%‘, Zn/Mp,prUns (73
izability of the oxygen atom in the direction corresponding to .
the position of the Ti atom. As is well knowh,the local  \where the quantity~nn o is equal to

field factors&n,n/ coupling different sublattices differ greatly
in magnitude. The constant; o is several times greater than Mo =2 an e Mr - (74)
all the other constants, and oo ’

Formally, the expression we have just obtained Rgr
; vo,1i=30. (68 coincides exactly with the expression derived for the general
type of phenomenological model of lattice dynamics, taking
This circumstance leads to a very large anisotropy of thgyonlocal polarizability and nonlocal deformability of the ion
effective polarizability of the oxygen atoms in a perovskiteinto account” Now, using formula(73), it is possible to
lattice. The polarization in the direction of the Ti ion is sev- express the electron dipole moment in terms of the ion shifts
eral times greater than its value in perpendicular directionsand, substituting it in formul&49) for the total dipole mo-
This has nothing to do with the properties of the oxygenment, to find an expression for the Born effective charge
atom itself, nor with hybridization of the electron states szgﬁ. As a result of Straightforward, but |engthy calculations

Ti*" and G, rather it is a specific, geometrical property of similar to those performed above in the derivatiorsof we
the perovskite lattice, due to the existence of parallel chaingptain

of Ti** and G ions. This circumstance, as was shown in
Ref. 40, leads to the appearance of an instability on entire Aeff:(A 1 4 )= €

-1 +2 .
branches of the TO vibrations. In turn, the nonlocal polariz- S = vy 3 aC) &(s 3 &) (75)
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sn repulsion forces.” First of all, as can be seen from formula
(79), e, increases the effective charges of all the ions of the
crystal. Further, as was already discussed in the calculation
X[1=my 1™ 2,0 (76)  of &x, Z" increases substantially becasue of the non-
' ] . ~ Lorentzian local field constanfﬁsf. This growth is strongest
The factor (9x_+2)/3 in the expression for the effective {5 the B and @ ions, which are bound by the largeh
charge charactgrlzes the yvell-kno‘Wg_rth_of the exte_rnal magnitud¢ constantyg o. The constantys, binding the A
dipole moment in a polarizable me(yum with dielectric con- 544 Q ions is also quite large.
stante... Formally, formula(76) for §(s) almost coincides This circumstance explains the correlation betw2&h
with the formula obtained earli€tin the polarizable point observed in the calculations precisely for these ions for a
ion model. The difference is that instead of a nonlocal SCEl|ararge number of perovskites. The corresponding growth of
polarizability of one iona, 8y o 6*#, formula(76) includes  ze in the polarizable point ion models is so large that to
the nonlocal polarization matrix, , . Also, expressioli76)  explain the magnitude of the total polarizability of the crystal
has an additional factdr—m characterizing the diminution it is necessary, following in the footsteps of Slateq radi-
of the nominal charge, more accurately the dipole momengally decrease the values of the nominal charges of the ions.
arising upon displacement of the ion due to its concomitanEXpressior(76) shows that this decrease arises automatically

deformation. Using formula&70) and(74) and the condition in real crystals due to the deformability of the ions as well as
of translational invariance fam, . the short-range dipole—dipole interaction. Both these factors

lead to a decrease in the electron dipole moment arising as a
S f =0 77 result of the ion displacements. Expressiaig) for ®2#
=~ 7T shows, in complete agreement with the polarizable ion mod-
els, that it is precisely the long-range dipole—dipole interac-
we can easily prove the acoustic sum rule for the Bornton [third term in expressioli78)] that is the reason for the
charges. ferroelectric instability. All the short-range forcése., the
Expanding the crystal enerd$4) in a series in ion dis- first and second terpfavor stabilization of the cubic phase.
placementsu, readily yields an expression in the harmonic The fourth term contributes only to the longitudinal optical
approximation for the matrix of force constants of the crystalmodes and leads to splitting of the LO and TO modes.
@28 which depends on the coordinates of the atoms in the
unit cell s and 7 and the wave vectay. For smallq we have

4. CONCLUSION

~ 4 ~ I~ ; ; ;
afB _naf aBiny T Seff eff Let us briefly sum up this work. First, we have presented
Csr (A1 5)=P5 (0)+Ce(0) Vo Zs €.t2 = a simple and clear scheme for calculating the static and dy-
Am o~ Qg ~ namic properties of ionic crystals. This approach is based on
+ oz '_12 adl (78)  the generalized Gordon—Kim model and allows one to take
Voes €0 account of the distortions of the ion charge density corre-

Expressior(78), like formulas(75) and(76) for the Born sponding to any m_ultipole _symmetry. In_ itself this approach,
effective charge, formally coincides completely both with 2@S€d on the density functional theory, is absolutely rigorous
the expressions obtained earlier in the polarizable iofft"d dO€S not contain any arbitrary approximations or adjust-

modef® and with the expressions arising in the exact theory'ible paramete_rs. Unfortunately, _in its most_ general form it
of lattice dynamics based on the electron dielectric matrixcannot be applied to real calculations. First, it is necessary to
e(q+K,q+K’,0) (Ref. 9. The first term in formuld78) is restrict the calculation to a finite number of multipole com-

the contribution to the matrix of force constants from thePONeNts of the charge density. Second, an exact expression

short-range repulsion forces of the spherically symmetri({(Or the energy as a functional of the densijp} is ?Ot,
ions [the first term in the expression for the total energy nown, and it is necessary to use an _approxmatlo_n or It
(54)]. The fourth and third terms, respectively, describe the S Was shown in this work, very simple approximations

contributions of the non-analytical and analytical parts of the©t elying on any adjustable parameters are able to describe

long-range dipole—dipole interaction in a polarizable me-very slight energy differences between the cubic phase and

dium with dielectric constant... €2#(0) is an additional o > types of distorted phases in perovskite crystals. For

I : - this it is sufficient to take into account multipole distortions
contribution to the short-range forces from the dipole—dipole ) :
) i - ] o ~ off up to quadrupole and use a simple local Thomas—Fermi—
interactions. The specific form of this matrix, like fdﬁﬁ Dirac approximation for the density functional.

and the entire matrid ¢, coincides formally with the form One of the merits of the proposed method consists in the
obtained earlier in the polarizable point ion modéBecause  possibiiity of representing the total crystal energy analyti-
of its length, we do not reproduce it here. cally as a function of the ion shifts and the electron dipole

Let us now briefly discuss the analytical results obtainedynoments. Formally, the expression obtained coincides ex-
for ZE" and®Zf . As can be seen from formuld®5), (76),  actly with the most general type of phenomenological model
and(78), not only the ferroelectric instability itself, but also of a polarizable and deformable ion. Moreover, this expres-
the Born effective chargégﬁ, is a result of a “delicate bal- sion demonstrates that all the short-range forces, including
ance between the long-range dipole forces and short-rangbose arising from the dipole—dipole interaction, stabilize the
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We study the Ulam problem for long timéseveral million collisions by numerical methods.

We show that in the diffusion regime, which is valid for moderate times, this problem is
mathematically equivalent to the problem of the diffusive ionization of atomic Rydberg states by
microwave radiation. It is concluded that the diffusion regime sets in only for a very small
number of initial conditiongfield phases It is theorized that the analogy between the two
problems can be extrapolated to times longer than the diffusion time. We show in the

Ulam problem that after the diffusional buildup of energy has finished, the quasistationary regime
does not continue indefinitely: after several million particle-wall collisions the energy

rapidly drops to zero. On the basis of this extrapolation we examine the possibility that an
electron which has reached the continuous spectrum will not fly off to infifotyization), but will
return to bound Rydberg states of the atafifishe field acts for a sufficiently long time

This can make the diffusive ionization probability much lower than the value given by the known
estimates. ©1998 American Institute of Physid$$1063-776(98)00307-2

1. INTRODUCTION tion functionf(n) in the excitation of the electron is of the
standard form
The ionization of atomic Rydberg stat@srimarily, of
the hydrogen atojrby microwave radiation has been studied ﬂ _ i
both experimentally and theoreticallgee the monograph by gt an
Delone and Krimov! and the reviews by Delonet al? and
Gasatiet al®). Deloneet al* showed for the first time, via

of
on|’

€y

D(n)

The nonlinear diffusion coefficient is given by the following

the semiclassical approximation, that when an electron in gquaﬂonl.

Rydberg state with the principal quantum numbeis sub- F2

jected to microwave radiation with a frequency of order of D(n)=0.27?,§n3. 3]
the Keplerian frequency of revolution of the electron about

the atomic core, it is diffusively transferred to orbits with In one-dimensional diffusion the variance of the princi-

ever increasing quantum numbers until its spectrum becomggal quantum number in the tim&t is proportional to this

continuous, i.e., until ionization occurs. The same procesime interval:

takes place in purely classical mechanics, but only when the

field strength exceeds a certain threshold vaie F, (Ref. (An)=2D((m)At. ©)

5) Thus, diffusive ionization is a threshold process in CIaS'Combining (2) and (3), we arrive at a law that governs the

sical mechanics, according to the Kolmogorov—Arnold—yariation of the mean quantum number:

Moser theorem. For instance, according to numerical

calculationg the threshold field strength for a linearly polar- _ i

ized field with a frequencyw=(1-4)h3 is Fy,=1/40n*. dt

(Here and below we use the atomic system of Qnithe

threshold value is small compared to the atomic fiElgd

=1/16n* (Ref. 7), in which the ionization of an atomic Ry-

dberg state by a low-frequency field takes place in the cours

of a single Keplerian period 2n°. The ionization of Ryd- w3

berg states of the hydrogen atom by microwave radiation  tion=g 5722, ®)

was observed in the experiments of Saeieal® The experi- ' 0

mental data on the threshold field strength agree with thgheren, is the principal quantum number of the initial Ry-

above theoretical estimate. dberg state of the atom. For field strengfhs 1/4n* and
The diffusion equation for the quantum-number distribu-frequenciesw~ 1/n%, we find that although analytically the

! =0.27 P = t 4

m =0. W—CO”S. ( )
This law yields the time it takes an electron to reach the
boundary of the continuous spectrum-¢«), i.e., the ion-
iéation time:

1063-7761/98/87(7)/5/$15.00 20 © 1998 American Institute of Physics
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definite, we have chosen it to be the right-hand watl is
this oscillatory motion that ensures the diffusive Fermi ac-
celeration of the particle.

Let | be the width of the box. The velocity of the
right-hand wall is assumed to vary according to a harmonic
law with a frequency ® and an amplitudeV,:V(t)
=V, sin(wt+¢). The box width is assumed to be large com-
pared to the amplituda=V,/w of oscillations of the right-
hand wall:l>a. We also assume that at all times the particle
velocity u is high compared to the oscillation velocity of the

l right-hand wall:u>V,. This allows us to exclude double
FIG. 1. Rectangular box with infinitely high walls that contains a classical COIliSions of the particle with the right-hand wall of the box
particle. The right-hand wall oscillates with a small amplitutiee Ulam  (such collisions would occur if the particle velocity is law
problem). The law of momentum conservation in timh elastic
collision of the particle with the oscillating wall is simple:

£

ionization time is of order of the Keplerian revolution period Ups1=Up+2Vg Sin(wt,+ @), (6)
of the electron, 2n°, numerically it is much longer than ] ] o )
this period. wheret,, is the time of thenth collision took placey,, is the

tween the classical ionization of atomic Rydberg states by &article velocity prior to the next,n(+ 1)th, collision(after
microwave field and the well-known Ulam problénthe the particle is reflected from the stationary left-hand wall of

details will follow). We shall see that the problem is that asthe bo3.

the principal quantum numberincreases, the conditions for The time of free particle motion between two successive
diffusive ionization deteriorate due to a decrease in the freParticle collisions with the oscillating wall is

guency of Keplerian revolution of the electron along the cor- ol

responding orbit as compared to the frequency of the micro- t ., —t,= . (7
wave field. Hence the electron may never reach the boundary Un+1

of the continuous spectrum or it may reach it and “bouncelntroducing the dimensionless phage=wt,+ ¢, the di-
back.” We study the dynamics of electron motion using anmensionless velocity ,=u,/2V,, and the dimensionless

analogy with the Ulam problem for short times, where theparameterMEIw/ZTrvo> 1, we arrive at the Ulam map in
diffusion equations for both problems are mathematicallygimensionless variable$or details see Ref. 10

similar, as we shall shortly see. Of course, extrapolation of

this analogy to long times is an hypothesis that our calcula- Up.;=U,+sin ¢,

tions in the case of atoms do not corroborate directly. In oM

view of the mathematical difficulties involved in solving the _ £mvt

problem in the case of atoms, we attempted to discern how Ynea=dnt Uni1 mod(2). ®
the diffusion process is terminated in the Ulam problem for__ . . . .
very long times. It would seem that a quasistationary regimérhIS IS a partlpular case of the Ppm_cemap.
should set in. However, numerical calculations produced Note that if the particle velocity is

quite unexpected results, which we believe are the most in- M
teresting aspect of the present investigation. Un:m’ 9)
2. THE ULAM MAP wherem is an integer, then, according to the first relation in

(8), the particle velocity begins to increase or decrease regu-

As noted earlier, from the mathematical viewpoint it is larly by the same amount sify, in each collision unti(9) is

convenient to reduce the problem of the diffusive ionization_. . : -~
. . . violated substantially. At other points the variation of the

of atoms by a microwave field to what is known as the Ulam__ . L L

. e . . article velocity is irregular. The points indicated are called
map in such a way that the diffusion equations in both cases . . .. ;

: eriodic points of mag8) (see Ref. 10
would have the same appearance, although they describe dii- . . .
: : - . The phase expansion modul(@cording to Chiriko%)

ferent physical processes. This map originated from Fermi S defined as follows:
idea (1949 that a cosmic particle collides more often with '

interstellar clouds that are moving toward it than with those (Yns1— ¥n)— (Pn— ¢n71)‘

moving away from it. For this reason, on the average the K= I ‘ (10
particle is diffusively accelerated after a large number of nohmt

collisions. Dynamic chaos, i.e., irregular variation of the particle veloc-

The Ulam problem examines the classical motion of aity with the passage of time, sets inK>1, i.e., when the
particle moving with a high velocity inside a one- phase difference changes not very strongly, but irregularly in
dimensional, infinitely high rectangular potential well, or box each collision. Introducing the average estimates,
(see Fig. L One of the walls oscillates with timéo be  —,_4|~7/2 and|sin ;| ~1, we see that8) and(10) yield
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2aM AM This corresponds to the condition where there is no overlap
K”W|Un+1—un|~Uz- (1) of neighboring resonances.
n n

After the particle velocity reaches its maximum value, it
The conditionK>1 means that in dynamic chaos we haveremains constant in the course of several thousand collisions,
M>Uq>1. varying only slightly. When the velocity value corresponds
to a periodic poinfsee Eq.(9)] with an index

3. DIFFUSIVE INCREASE IN VELOCITY M U,

U, 6.25

>1, (17)

According to(6), after each collision the particle veloc-
ity u, changes very little in comparison to the velocity itself. we have, in accordance with the ideas discussed in Sec. 2, a
A large change in velocity can occur only after a very largesmall upward or downward jump in velocity to a new value
number of collisions. Let us introduce the concepts of runthat only slightly differs from the oldby a fraction of a
ning velocity and mean velocitfover many collisions percen}, after which the velocity stabilizes at the new value
with very weak oscillations.

In our numerical calculations we give the results fér
Averaging the square of this difference in a single collision=10 oo, U,=25, so that, according t¢11), the initial

Upy1—Up=U—(u)=Au.

with allowance for(6) and (7), we get phase expansion modull& amounts to 64. According to
At (16), the maximum velocity idJ,,,=250. By varying the
(Au?)y=4V(sir? l/fn>=2VS=2V§m- (120 phasep of the oscillations of the right-hand wall of the box

we found that the diffusion regime described in Sec. 2 is
This relationship, which is valid for a single collision, can be actually achieved only for a negligibly small number of
generalized to the case of any number of collisions and thghases. In most cases the particle velocity varies irregularly,
corresponding time intervalt. According to the law of one- and the velocity exceeds the initial value of the particle ve-
dimensional diffusion, we hav@Au®)=2DAt. Hence, due locity only slightly. Here, in the course of only several thou-
to (12), the variable diffusion coefficient increases linearly sand collisions, instead of increasing diffusively, the particle

with velocity: velocity drops abruptly to zero. After this the count is termi-
V2 nated because double collisions of particle with the right-
D(u)z_ou_ (13 hand wall of the box become possible, in which case the
2l original simplified Ulam mafd8) becomes invalid.
Plugging this expression into the diffusion equati@n mul- By specially selecting the phasewe were able estab-

tiplying the result by the current velocity, and integrating lish the rare cases where the diffusion regime sets in. One is
the product over all velocities, we obtain, after integrating byillustrated in Fig. 2, which depicts the dependence of the
parts twice, dimensionless particle velocity, on the number of colli-
5 5 sionsn. Clearly, there is a diffusive increase in particle ve-
—(u)= & (uy=up+ &t. (14) locity with time, the velocity finally reaching a plateau that
dt 21’ 2| corresponds to the maximum velocity6), as predicted by
theory. The diffusion regime continues only for approxi-
mately 30 000 collisions, while the plateau extends to several
hundred thousand collisions and more. An analytic expres-
sion for the diffusion curve can be obtained directly from

This equation describes uniformly accelerated particle mo
tion in the Ulam problem.

Equation(14) has the same form as E@L) in the prob-
lem of the diffusive ionization of a Rydberg atom if we make

the following substitutions: (14):
1 1 Vi F2 du, 1 -
<U>Huo—w+n—0, o1 027 ap- (15 dn _4U,

Thus, we have found the Ulam m#&®§) with parameter¢l5)  The curve in Fig. 2 is reproduced K§¥8) fairly accurately.
for the problem of the diffusive ionization of a Rydberg
atom.

5. ELECTRON DIFFUSION AMONG THE RYDBERG ORBITS

OF AN ATOM
4. REGULAR MOTION

The first condition in(15) suggests the following. When
Sthe maximum velocity ., in the Ulam problem is reached,
8oes the corresponding value mof,, become infinite? If the
answer is yes, diffusive ionization has been achieved. Other-
wise, Nhax Ffemains finite and can be found by the formula

In the Ulam problem, the patrticle velocity increases only
to a certain limit. Dynamic chaos ceases when the pha
expansion moduluK is smaller than unity. EquatiofiL1)
then suggests that this occurs whe,,,=2\M. The nu-
merical calculations of Lieberman and Lichtenbérgielded

a somewhat more accurate estimate: 1 1

=——U 19
UmaXZZ-SN- (16 Nmax Ng o (19
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FIG. 2. Dependence of the dimensionless particle velocity in the UlamrIG. 3. Drop in particle velocity in the Ulam problem after a large number
problem on the number of collisions in the diffusion regime. of collisions.

(here we have neglected the initial velocity in comparison
to una- In this case diffusive excitation of the atom to a
certain level would occur instead of diffusive ionization.
From (15) and(16), for M we find that
F2
Umax=5.47M 3/2w—r73. (20)

x10° and 3.3<10° collisions the particle velocity drops
practically to zero! Such behavior is observed for all initial
conditions for which the diffusion process takes place and
the maximum velocity is attained. For an atom this means
that the electron may return to bound states from the con-
tinuous spectrunif the assumption that the analogy between
the two problems extends to times longer than diffusion
times is valid and that the particle velocity rapidly decreases
after a certain moment in time.

Plugging in the above valugdg =10 000, F=1/40n¢, and
w=2/n3, we find thatu,,=consthy, where const 10°. Ac-

cording to(19), this means that diffusive ionization is sure In conclusion we note that numerical solutions of the

occur in at such field strengths and frequencies. Ulam problem for long times suggest that two facts may

Another problem arises when the observation times arginger the classical diffusive ionization of a Rydberg atom:
long. The fact that an electron has reached the continuous 1) for most classical paths, there is no diffusion of a
spectrum does not necessarily mean ionization, since the M1y excited electron among Rydberg orbits, and only sto-
crowave field continues to act on the atom and may returpagiic variation of the electron energy near its initial value
the electron to bound states. A similar situation indeed 0Cgcyrs:

curs in the tunneling ionization of atoms by strong low- 5 gyen it diffusion occurs, during the long time that the
frequency laser light” An electron that has left an atom may system is subjected to microwave radiation the electron re-
return to the atom during a half-period of the field or even goyns 10 ts initial bound state, although intermediate values
bgck to its initial bound state after emitting a spontaneougy¢ the electron energy belong to the continuous spectrum:
high-frequency photon. ) o . actually, diffusive ionization takes place only if the pulse of
In the Ulam problem this scenario is formulated in the nicrowave radiation ends at the necessary point in fiofe

following way. The stationary value of the maximum veloc- the order given in(5)].

ity .Of a particle in a box with an oscillgting wall is eith?r We stress once again that outside the diffusion region
maintained indefinitely or changes radically after a fairly ihere is no rigorous justification for extrapolating the analogy
large number of collisions. But what actually happens? — payyeen the problem of hydrogen-atom ionization and the

In the above examplsee Fig. 2we established numeri- j;3m problem. We simply assume that such extrapolation is
cally that the maximum quasistationary value of particle ve 4iq.

locity obtainedU ,= 250 is maintained for as many as three
million collisions. However, after that the velocity’s behav- The authors are grateful to S. P. GoreslaysN. B.
ior changes radicall(Fig. 3). In the interval between 3 Delone, and M. V. Fedorov for valuable remarks on the con-
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The paper considers the effect of a magnetic fi2ldn the transport of neutral composite
particles, namely excitons, in weakly disordered two-dimensi¢2R) systems. In the case of
classical transportwhen the interference of different paths is neglegtéie magnetic

field suppresses exciton transport, and the static diffusion corB{@t monotonically drops
with B. When quantum-mechanical corrections due to weak localization are taken into
account,D(B) becomes a honmonotonic function Bf In weak magnetic fields, where the
magnetic length is much larger than the exciton Bohr raditss (c/eB)Y?>>ag=sh?/ue?, a
positive magnetodiffusion effect is predicted, i.e., the exciton mobility should increase
with B. © 1998 American Institute of Physid$$1063-776(98)02407-X]

1. INTRODUCTION magnetic fields when they travel along closed paths in oppo-
site directions? As a result, the fiel® breaks the construc-

In two-dimensional(2D) systems, all states are local- tive interference between time-reversed paths and thereby
ized, no matter how weak the disorder'id.This phenom-  suppresses the weak localization of electrons. If we take into
enon is universal for all processes of wave propagation and isccount the electron spin, four different channels for inter-
associated with the constructive interference of paths sulference between two electronic waves are possible: one of
jected to the time-reversal operation. For particles with nonthem is singlet $=0), and three are tripletS=1, S,
zero mass, this is a quantum-mechanical effect, which cannet =1,0). The interference in the triplésingle) channels
be described in terms of classical mechanics. The quantumives a positive (negative contribution to the
statistics of particles in this case does not play a crucial roleonductivity®!! Fast spin-flip processes can change the rela-
(see, for example, works on the weak localization oftion between the contributions of the singlet and triplet chan-
phononé and lighf). While localization has been thoroughly nels, thus resulting in either negative or positive magnetore-
investigated on the base of the one-particle approach, marsistance. Various mechanisms of spin-orbit coupling that are
guestions concerning the interplay between localization andnportant for electrons in quasi-two-dimensional semicon-
Coulomb effects remain unanswered. The variety of physicafluctor quantum wells and heterojunctions were taken into
situations requires the application of different techniquesaccount in Ref. 12. Note also that in systems with strongly
suitable for describing the respective class of phenomendocalized electron state@he hopping conductivity regime
For instance, it was predicted by the weak-localizationmagnetically induced changes in the phase relations between
theory that the electron-electron interaction should weakenlifferent transition amplitudes can lead to either negative or
the interference effects and lead to a higher conductivitypositive magnetoresistané&™
(see, e.g., the review by Lee and Ramakristihak numeri- An important question in the case of excitons, which are
cal calculation for two interacting electrons in a random po-composite and, as a whole, electrically neutral particles, is
tential has also predicted a correlated-propagation lengtvhether the time-reversal symmetry for earh pair is bro-
larger than the localization length of an isolated particle. ken by a magnetic fiel8. One may assume that the> —t
The issue discussed in this paper, namely the propagation symmetry for a pair should be broken by magnetic field since
an exciton, which consists of an electron and a hole interactt is broken for an electron or hole taken separately, and this
ing with one another, in a magnetic field and in a randomis true in a general case. There is, however, an exceptional
potential is also one of the aspects of the general problentase. Consider the Hamiltonian
The weak localization of excitons in the absence of a mag-

2 2
netic field was investigated previously. H= ! ( — AV + EAe + 1 ( —ihV,— EAh)
Introduction of a magnetic fiel generates new fea- 2me c 2m, c
tures in the physical picture of the weak localization of elec- U (o= )+ Ve(Fo) +Vi(rp), 1)

trons. Formally, a magnetic fiel breaks time-reversal

symmetry. The physical consequence is negative magnetoresich describes the motion of am—h pair in a uniform
sistance in electron systefi$.This effect is caused by the magnetic fieldB and externalrandom potentialsV, and
fact that charged particles acquire different phase shifts iV,. When the particle masses are equal=m,, and the

1063-7761/98/87(7)/10/$15.00 200 © 1998 American Institute of Physics
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scattering potentials are identicdl,=V,,, thee andh com- R
ponents transform into one another after time revetsi.
this case Hamiltoniaril) commutes with the time-reversal P r P
operator:
[H,T]=0. ) A

This means that the— —t symmetry is not broken, and 2D FIG. 1. Diagrammatic representation of E§): I is the irreducible vertex

excitons should remain localized even in the presence of &orresponding to scattering by a random potential; the lines labeled by
. L andR represent the advanced and retarded propag&bdmndGR of exci-
magnetic field.

tons averaged with respect to disorder in a magnetic field. The current ver-
In the general case, one should analyze how a magnetties in the diagram correspond to the exciton center-of-mass velsgity

field B suppresses the weak localization of excitons, which

are electroneutral as a whole, and how their internal structure

manifests itself. In a magnetic field, the center-of-mass molregularities on the interface§'surface roughnessj; and

tion and relative motion of aB—h pair are coupled. There- our attention will be mainly focused on this mechanism. In

fore, the scattering of an exciton as a whole is affected by théhe case of 2D excitons in a quantum well of widthn the

magnetic fieldB and the internaé—h interaction. presence of interface irregularities with a characteristic am-
Recently, the transport of quasi-two-dimensional exci-Plitude A and a correlation length (see Ref. 19 and refer-

tons in quantum wells under a magnetic field has attracted @nces therein there is a characteristic exciton momentum

lot of attention on the part of experimentalistsee Refs. defined as follows’

16-18 and references thergirButov et all” reported in- 1({AAa
triguing low-temperature anomalies in exciton magnetotrans-  p_..~ _( —38> . /g>ag. (4)
port. In particular, they found that the exciton diffusion con- ag\ d

stant D is a nonmonotonic function oB and increases gq, long-wavelength excitons with momenge< p,,i, We
considerably in the range of intermediate fiels 6 T. This  paye y,>¢, and such excitons are strongly localized. An
fact was interpreted as evidence in favor of Bose—Einsteinaysis of the strong localization of composite particles in a
condensation and a manifestation of the superfluidity of &Xmagnetic field is beyond the scope of this paper. However, if
citons. It seems interesting to check whether the localizatiog,e parameteA Aag /d3<1 is sufficiently small, the range
effects of excitons can give rise to such features ofiB)  of strong localization of excitons is narrow compared with
curve in the normal phase. In this paper we investigate thegne characteristic momentuagl in our problem Kgl in

retically the magnetotransport of 2D excitons in the Presenceigh magnetic fields and the theory developed in this paper
of weak disorder in the limiting case when the magneticy 5 5 region of applicability.

length is much larger than the Bohr radius of the exciton, |t is essential that the scattering of two-partideh
/g=(hcleB) > ag=eh? ue’. Fields that satisfy this con- gates can be described diagrammatically in terms of effec-
d|F|on will be dubbed weak. Taking these results togethet;e one-particle(exciton) scattering(this approach is justi-
with thog(;l.for the cases of !classrjé’aland quantum - fieq jn Appendix A. This approximation allows us to treat
transport “"in the opposite limit/'s<ag, we shall suggest eycitons at low densities as Bose-particles. Their internal
an approximate form of the diffusion constadtas a func-  gyrycture manifests itself in changes in the effective scatter-
tion of B at all fields, including the intermediate range, ing potentialV, , and the dispersion law(p) due to the
where/g~ag. A b_rief account of some results of this paper magnetic fieldB (see Sec. 2)2 The potentialsVy(r) and
was reported previousf. V,(r) may be uncorrelated, for example, when the partieles
andh are spatially separatédor fully correlated, e.g., when
2. EXCITON TRANSPORT IN A MAGNETIC FIELD B both particles are in the same spatial domain. We assume
that the distribution of random fields is Gaussian and use
standard diagram techniq@swith two-particle [retarded

In the weak-localization regime, the interaction with an(R) and advancedK)] excitonic propagators in a magnetic
isolated defect does not give rise to a bound state, and locafield averaged with respect to disorde®*™(p)=[w

ization is possible only at large distances due to the interfer- ¢(p) +iy,(p)]~* (see, e.g., Ref. 20
ence of scattered waves. This localization regime takes place For the case of elastic scattering, one can introduce a

in the case of weak scattering, in which diffusion constanD(w, €) for excitons with a given energy
yo(p)<e(p), (3) e at a frequencyw, which can be derived from the expres-

) ) . ] sion for the generalized “conductivity’(Fig. 1) o(w,e€)
where vy, is the damping coefficientthe reciprocal of the =D(w,e)./ (€):

momentum relaxation timeof an exciton with energg(p).

The scatterers in this case are the random potentigls)

and Vi(r) in Eq. (1), which act on the electron and hole
separately. They can be, e.g., potentials generated by charged , ,
impurities, effective potentials due to irregularities on XGA(p' P, e)Vu(P')), ®
guantum-well interfaces, etc. At low temperatures, the domiwhereV(p) is the velocity of the exciton’s center of mass,
nant scattering mechanism in quantum wells is that due to/(€) is the exciton density of states, af@. . .)) denotes

2.1. Problem statement

1
o(w,e)=5f dpf dp’ ((V«(p)GR(p,p’ e+ w)
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averaging with respect to disorder. Note that the diffusionimit, /z>ag, the problem can be treated analyticalyVe

constantD(w, €) is a parameter included in the “diffusion”
pole of the exciton “density-density” correlation function

calculate the ground-state wave functidn(r) in a mag-
netic field using perturbation theory with respect to terms

and, therefore, determines the propagation characteristics gbntaining the magnetic field in the Hamiltoni&f) of the

particles with a given energy in the long-wavelength limit.
The localization of quantum states with enekgyneans that
the diffusion constant as a function of frequen®(w),
tends to zero in the static limity— 0. If inelastic scattering
it taken into accountDP(w) turns out to be finitgsee, for
example, the review by Lee and Ramakrishhafihe static
limit D(e)=D(€,w=0) is determined by the time, of the
loss of phase cohereng¢dephasing The total static diffu-
sion constanD=D(T) corresponding to fluctuations in the

density of excitons with all allowed energies can be obtained

from the microscopic values d(e) using the generalized
Einstein relation:
_ JdeJ(e)[—aflde]D(e)
~ [deJ(e)[—afloe]

wheref="f(uy,T) is the distribution function angy is the
chemical potential of the excitons.

(6)

2.2. Effective scattering potential

The HamiltonianH, of relative motion of are—h pair
with center-of-mass momenturp (wherep is the wave
vectol in a perpendicular magnetic fieBl has the forri*%°

’ n*_, iheB(1 1 v ’B? |
YA T ey (rxXVy),+ '
+ oh B-(rx ¢ 7

wherer=r.—r, is the relativee—h coordinate, andu !
=m;*+m; . In writing this expression, we have utilized

the existence of an exact integral of motion, namely the mag-

netic center-of-mass momentéfthuefined by the operator
- e
hp=—ihVg— EA(r),

where R=(mgr.+myry,)/M is the center-of-mass coordi-

nate,M =m,+m,, and the vector potential is taken in the

symmetrical gaugé =BXr/2. The exciton wave function in
a magnetic fielB has the form

)

i e
\pr(R,r)=exp[|R p+ EA(r) ]Cbp(r).

An important point is that the wave functich, of relative

relative motion of are—h pair, and then we obtain the scat-
tering matrix element¥, ,,. They can be expressed as

Voo =Ft o Ve(Ap)+F]  Vi(Ap), (10)
Wherer(p) are two-dimensional Fourier transforms of the
potentials Vj(r) (j=e,h), Ap=p’—p is the momentum
transfer,

.m
Fgfg?zf drcb;(r)cbp,(r)exp{i|$(p'—p)r]
(11

are the form factors related to the wave function of the in-
ternal motion of the exciton. In the weak-field limit, we must
calculate the wave functions up to the second ordd& and
then substitute them into Eqéll) and (10) (see Appendix
B). Note that the exponential function in E¢L1) can be
expanded in powers of its argument whgan p’<a§1, and
only terms of the lowest orders need be included. The limi-
tation on the momenta is essential if we do not take into
consideration transitions to excited states. Indeedp,if
p’~agl, the exciton kinetic energy is sufficient for transi-
tions to excited states of internal motion, which are excluded
from our analysis.

Taking the essential terms of up to the second ord& in
and the lowest orders ipag of interest to us, we obtain

V2 2.2( 3B ¢ : 17 A2
Vp,p’:Ve(Ap) 1+ B.(Ap)“ag /_B —lapp’las
ag)\?] — ag)?
X 7a +Vh(Ap)| 1+ Br(Ap)?ad /—B>
. f 2 aB 2
+ian[pp’].ag Za | (12

HereV;(Ap)=Vi(Ap)F, , (B=0),

1My (p—p')ag
1+ E{T

2] —3/2

is the form factor corresponding to the ground-state wave
function of the 2D-exciton aB=0.

An important point is that time-reversal symmetry is
broken for this effective scattering potential:

eh) n_n)—
Fp’p,(B—O)—

Vo #V_

D.p (13

S

motion of ane—h pair depends on the center-of-mass mo-

mentump,?* i.e., the relative motion and the center-of-mass
motion are coupled. The scattering matrix elements betwe

the exciton states with the center-of-mass momeraadp’

in an external potential/=V,(ro)+Vy(r,) have the form
(see Appendix A

Voo =(W,[V[T,). (9)

In this work we use an approximation that ignores transitions

to excited states of internal motidh?° In the weak-field

the only exception being the case ¥{=V, and m,=m;

ehe,ee Eq(2)]. Equation(12) contains the dimensionless con-

stants
Burmm p? Rt (0l
oM ptal T (o en)?
2
Mhe) %7 S [(O[r?[n)|? (14
8M2 pad @ € €o
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FIG. 2. Sum of maximally crossed diagrans, ,(p,p’,q). The upper
(lower) line corresponds to the retardéativance propagatoiGR of an
exciton averaged with respect to disorder.

FIG. 3. (a) Simplest impurity verteXV(p,p’,q) [Eqg. (19)]; (b) diagram of
lowest order for the self-energy part of the excitonic propagator. The dashed
line correspond to the correlation functid¥(p,p’,0).

and The damping coefficient for an exciton with a momen-
) tum p is determined by the imaginary part of the self-energy
_ 2Mg A2 |<0|X|”>| part (Fig. 3b:
ae(h)_ - K K= (15)
M Mag “n €0~ €n

_ dp’ W(p,p',0) 18
Heren denotes the exciton excited states. Exact calculations  Yo(P) =~ 2 i " (18)
; ) : (2m)° e—e(p’) +ivyo(p’)
of the dimensionless constantsand 8 for a 2D Wannier— . _ _ _
Mott exciton are given in Appendix B. Note th@,, B, Heree(p) is the dispersion law16), andW(p,p;,q) is the
>0 are positive; therefore, exciton scattering increases witl§orrelation function of the scattering potenti&ig. 3a:
B when/g>ag. W( )=V Vo —goa))- (19
Using perturbation theory, one can also obtain the exci- PPy =( PP 7PL74P @)
ton density of states in a magnetic field. The exciton spec- In the weak-field limit discussed in this paper, it has the

trum is given by the formula form*)
O PO 8 aal 16 0)=BedAp)| 1+ )(2 (Ap)2ad+
ep)=—e1-| 2] |+ yrl1-x[ 2] | 18 WP .0=Bedlp Be(Ap)°aG+ e
where the parametdp=3ag/8 determines the diamagnetic o4 ag\?
shift. The 2D-exciton density of states derives from the sec- X(pXp')Zag) | +Bny(Ap)| 1+ 7a
ond term on the right-hand side of E{.6):
e 2M/4? an X(2Bn(Ap)*ag+ap(pXp')zag) |+ Ber(Ap)
SN €e) = ——————.

1_ K(aB///B)4

The exciton mass and, hence, the density of statds),
increase with the magnetic fieBl. As will be shown below,

it is this tendency that generally determines the change in the
classical diffusion constant in weak magnetic fields. X (pxp’)zag

X1+

% ) ((Be+ Br) (AP)2aZ— aecry
ag\|?
”(73)

X((Bet Brn)(Ap)2a— acan(pxp’)Zag)|,

+ Bhe(Ap)

2.3. Cooperon: weak-field limit

The approximation in which the complete vertiexFig. (20)
1) is replaced by a sum of ladder diagrafasdiffusorn cor-  \where Bij(p)= ((V (p)V (—p))). As usual, if yp<e, we
responds to the description of transport based on the Bolt1ave
mann equatiorisee, e.g., Refs. 23 and 2@ his approxima-
tion yields the “classical” diffusion constant, which does » d
not take into account the interference of different paths. If Yo(p) =/ (6)f
the random potential is weak, all other diagrams with crossed
impurity lines have smallne¥sf order y/e<1. The only

0), (21

Where|p,| lies on the mass surfacgp,)=e€, so that only
exception is the class of maximally crossed diagrams in the gveraging over angles remains in Egi§). The effect of the
P y 9 magnet|c fieldB on the damping coefficienyy(p) can be

electron-hole channél,which determines quantum weak-
L . e approximately estimated as followse assume that all cor-
localization corrections to the diffusion constant. The com- :
relators of random fieldB;; are comparable

plete sum of such diagrangthe cooperohis shown in Fig.
2. The exceptional role of these diagrams is due to the fol- 1+4(Be+ Br)(pag)*(ag/ /)"

lowing fact: when the total momentup+p’—q=0, the Yo(P)= 7o = : (22)
Green'’s function&sR andG* for the maximally crossed dia- 1-«(ag/7g)

grams are always grouped in pairs with close poles by virtuevherevy, is the damping coefficient in a zero magnetic field.
of momentum conservation. As a result, they provide aThe numerator on the right-hand side of E2R) contains the
“resonant” contribution after integration. additional small parametempgg)?<1 in comparison with
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the denominator. This means that the main effect of the mag-
netic fieldB is due to the growing exciton density of states

(increase in exciton mapsvith increasingB [see Eq.(16)],

P. I. Arseev and A. B. Dzyubenko

- deby, _
o) =71 () | 52 Wp.ps0). 28

whereas the changes in the scattering matrix elements playlg however, yg<< 7y, the isotropic part ofJ still makes the

minor role.

principal contribution. A solution of Eq23) in the region of

In the weak-field limit, as in the case of strong magneticlow frequencies» and small momentK, which is discussed
fields2 the diffusion pole in the cooperon is absent owing toin the paper, can be obtained using an expansion in terms of
the broken time-reversal symmetry for the effective potentiabngular momenta, and was described in detail in Refs2@

(12). Let us prove this statement. As usual, it is convenient talso Ref. 27. Ultimately, the expression for the cooperon

write the equation for the cooperdhin variablesp, p’, and
K=p+p’'—q, whereK is the total(conservedd momentum,

and g is the momentum corresponding to density fluctua- u(
tions. ForU we obtain the Bethe—Salpeter equation in the

usual manner:

U.o(p,p’ K)=U2 (p,p’,K)

dp: o R A
+ W(p,p..K)G; G,
f(h)2 (p.p1.K)GE(py)

X(K_pl)ue,w(plvp,7K)a (23)
where
0 ' dp; - R A
Ue,m(pip vK): 2 W(pvpllK)Ge(pl)Ge—m
(2m)
X(K—=py)W(py,p’.K) (24)
and we have introduced the correlation function:
W(pvpl1K)E<<Vp,p1VK7p,K7pl>>' (25)

has the form

250Yo! N1
K.o)= 70_70 /) (€) . 29
DCK2_|(H+2’}/B’)’0/’}/0
Here
D°=pZ4M %Yy, Yu= Yo~ ¥1=0, (30)
~ dg, [9%p, . .
71—2fgj' o (PKYW(p,p1,0)(p;K), (31)

wherep=p/|p|. The special feature of this solution is that it
contains a finite dephasing timg * for a neutral composite
particle in a magnetic fiel®&, and this dephasing time elimi-
nates a singularity, namely the diffusion pole. Formally, this
case is similar to that of electron scattering by magnetic
impurities®911:12

In weak magnetic fieldsyg can be estimated using ex-
plicit expressions folW andW:
(32

4
ye(pP)=(pag)* Yo(p).

ap
76

The emergence of the characteristic dephasing tirge

In contrast to the conventional theory, the system is charac=#/yg estimated by Eq(32) can be interpreted in qualita-

terized by two correlation functiong/ [Eq. (20)] and W.%

tive terms as follows. An exciton acquires a random phase in

The difference between the correlation functions is caused b§ magnetic field only as a result of impurity scattering. When
the broken time-reversal symmetry for the effective scatteran exciton with momenturp is scattered by an impurity, its
ing potential (13). As a result, the terms with the vector kinetic energyEy,=7%2p?/2M can be treated as a perturba-

product P p,), in W(p,p;,K=0) have signs opposite to tion to the internal electron-hole motion with an energy

those of the terms iW(p,p;,q=0).

In the limit of weak disorder, we hav@RG”~ §(e(p)
—€), so that the integration in E¢23) is reduced to aver-
aging over angles. In the usual case the isotrdpiith re-
spect top,p’) part of U, ,(p,p;1,K) diverges aK,w—0.
This happens because the following relation holds:

dp; R A
f(zﬂ)zw(p.pl,O)Gs(pl)Ge( py)=1. (26)

Then it follows from Egs.(23) and (26) (if W=W) that

fd¢pfd¢plusiw(p,p1,0)—>oo. In the case under consider-

ation, however, the isotropic part &f is finite in the limit
K,w—0. In fact, using the identiyW=W+ (W—-W), we
obtain

dpl ~ R A _ _E
f (277_)2 W(p!pl!O)Ge(pl)Ge( pl)_l 70, (27)

where yg(p) = ¥o(P) — 70(p)=0,

Eoxc= €0 This results in fluctuations in the mean square dis-
tance betweer andh: ((Ar?))~ (Eyn/Eeyxdas . This addi-
tional separation between the electron and hole orbits due to
a scattering act leads to an increase in the magnetic flux
passing “through” the excitor®~({Ar?2))B, which cor-
responds to &andon) phase shift\ ¢~ ((Ar2))B/d, in the
wave function, whered, is the magnetic flux quantum.
Therefore, the random phase shift in a single scattering act,
which takes place during the time interval=#/y, is
~(AD/Dy)=(pag)?(ag//g)2<1. Since the phase shifts of
the wave function are random, the total phase shift becomes
comparable to unity and coherence is lost only after
(do/AD)? scattering acts. The corresponding characteristic
time g~ (®o/AP) 27~ r(pag) ~*(/g/ag)* which is con-
sistent with Eq.(32).

2.4. Diffusion constant

In order to obtain quantum corrections to the diffusion
constant, one should include E¢R9 for the cooperon
U(K,w) together with the first-order impurity vertex
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r = I + I r
1 = + /U
FIG. 4. Diagrammatic representation of the approximation for the vditex B

including quantum corrections to the diffusion constant.

FIG. 5. Static diffusion constard of excitons as a function of the fie®
classical transportupper curvg with consideration of quantum corrections

W(p,p',K) in the ladder diagram(;Figs. 1 and % for the (lower curve, and with weak inelastic scatterifgiddle curve.

effective conductivity’ In the ladder approximation, we have

a transport coefficieny,, instead ofy for a random field with

a finite correlation length. Technical details of the diagram-density-density” correlation function, it is physically clear
treatment for 2D excitons are given in Appendix C. Thethat it is the diffusion constard that should appear ifr,
diffusion constant for an eXCiton Of energ’ytakes the form and the ConstanDO in the Cooperon Shou'd Consequenﬂy

~ 2z V-1 also be replaced bip. The mathematical basis of this ap-
Yo DKoo ; ; ; B
D(e)=Dy(€)| 1+ In proach was discussed in detail by Sustov.
472y, ) (€)DC | 2¥8Y0 In the specific case under consideration, time-reversal

(33 symmetry is broken, and, strictly speaking, there is no dual-
where Ko=y(p)/V(p) is the cut-off momentum andd, ity between the diffuson and cooperon. We can use, how-
=p?/4M?y, is the conventional“classical”) diffusion con-  ever, the self-consistent approximation in order to obtain the
stant for an exciton®?! leading terms in thé3 expansion of the total diffusion con-

Before discussing the quantum correctid$), let us  Stant. The point is thaD, and D® behave similarly in the
derive the classical diffusion consteby as a function of the leading orders irB. Therefore, the diffusion constabt® in
magnetic fieldB. Using general expressiori82) and (16),  the cooperon can be replaced by the total diffusion constant

we obtain D so thatD(B) could be calculated in a self-consistent man-
ner using Eq(33). In the caseD (B) <D, the magnetic-field
3" B\? dependence is given b
Do(€,B)=Dy(€)| 1—3« 7 =Dyl 1— B_ , epenaence Is given by
” B 0

(34

where the characteristic magnetic fiddg is determined by
the expressioBqa3=®, andD, is the diffusion constant at where Bya3=®, [see Eq.(34)]. Thus, the static diffusion
B=0.1° The diffusion constanb, monotonically decreases constantaB=0 is zero and increases proportionallygdat
as the magnetic field increases in accordance with(&4). small B. This behavior ofD corresponds to the suppression
The inclusion of quantum corrections drastically change®f the weak localization of excitons in a magnetic field.
the dependence dd on B. Indeed,yg tends to zero a8 In the strong-field limit,/g<ag, the exciton diffusion
—0, andD vanishes as a resulsee Eq.(33)]; this is the  constantD drops asB~2.2° Thus, it is clear that, if weak-
weak localization of excitons in the absenceBofexcitons, localization effects are taken into accoubt,is a nonmono-
like ordinary 2D particles, are localized in a random tonic function of the magnetic field. Note that the classical
potential). A self-consistent approach may be used in thisdiffusion constanD, decreases monotonically with the mag-
situation?’ In fact, the approximation for the complete vertex netic field in both the strong-field limit/s<ag, and in the
I' including only ladder diagrams foFy and maximally = weak-field limit, /g>ag. These results are illustrated by
crossed diagrams fou applies only to the case of weak Fig. 5. Weak inelastic processes characterized by the dephas-
scattering, where the resulting diffusion constant is largeing time 74,=7%/v, can be included in our scheme phenom-
When the complete vertex corresponds to strong scatteringnologically. If 7, is finite, the diffusion constant is finite
and the diffusion constard is small, one cannot, strictly even atB=0. The valueD(B=0) is controlled byy,,
speaking, select a preferential class of diagrams. The undewhich should be added tgg in Eq. (33). The appearance of
lying idea of the self-consistent appro&tiis the existence v4 affectsD, and D differently. If the conditiony <<y,
of a relation betweed’, and U in the presence of time- holds, this addition has little effect db,. But, sinceDqy /"
reversal symmetrymaximally crossed diagrams in the  >1 in the weak-scattering limit, the relatiddy. /"y ,= v,
—h channel are ladder diagrams in the-e channel. One  can hold even wheny,<v,. In this case, the weak-
consequence of this relation is that the diffusion pole, whicHocalization corrections are small, and we haiB)
exists in the diffuson at small momentum transfers, is=Dy(B).
“transmitted” to the cooperoriwhere it exists at small total Analytical calculations are impossible in intermediate
momentaK). Since the verteX is directly related to the fields, where/g~ag. It is quite natural to assume that in

D(e,B)=(pag)*

B 2
B_o> Do(e)exd./ (€)Do(€)], (39
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this range the magnetic field dependence of the diffusiorent spin states may be important for excitons.
constant(either the classical constard,;, or the constant Our theoretical prediction of an increase in exciton mo-
which takes into account the quantum correctidmshas the  bility with increasingB in the weak-localization regime can
form shown by the dashed lines in Fig. 5. The increase in be tested experimentally at low temperatuigbere inelastic
with the magnetic field (a positive magnetodiffusion effgct scattering is suppressed and the dephasing tipis large

is due to the suppression of the weak localization of excitonin magnetic fields for which’z=ag. Such experiments re-
in magnetic fields. This effect is similar to the negative mag-quire quantum wells with a weak random potential, for ex-
netoresistance in 2D electron systeins. ample, wide quantum wells with smooth interfaces.

We are indebted to G. E. W. Bauer, L. V. Butov, E. L.
Ivchenko, Yu. V. Nazarov, and S. G. Tikhodeev for useful
discussions. This work was supported by Volkswagen Stif-

We have shown that a magnetic fi@deliminates diver-  tung(Grant VW 1/69 361, the Nederlandse Organisatie voor
gence of the maximally crossed diagrams in the “exciton-Wetenschappelijk Onderzodketherlands Organization for
antiexciton” channelthe exciton analogue of the coopejon Scientific Researgh(Grant NWO 047-003-018 INTAS-
Unlike charged particles, an exciton acquires a phase in theBRF (Grant 95-673, and the Russian Fund for Fundamen-
field B not during free motion, but only upon scattering by tal Research.
defects. As a result, the diffusion constant of 2D excitons in
magnetic fields remains finite as—0 (under the assump-
tion that the ra_mdom poten_tial is We_)aIZI'he _static diffusion  AppENDIX A: DIAGRAMMATIC REPRESENTATION OF
constantD (B) is a decreasing function @& in strong mag- gxciToON SCATTERING
netic fields,/g<ag, whereas in weak magnetic fieldsg
>ag (and, probably, in intermediate fieldgg~ag) D(B) To the best of our knowledge, no approximation which
increases with the magnetic field, i.e., a positive magnetodreduces the scattering of excitons to an effectively one-
iffusion effect takes place for excitons. The self-consistenparticle process has been rigorously developed using dia-
approximation yield$ «B? in weak magnetic fields, which gram techniques. An approach similar to that developed in
indicates that weak localization is suppressed in a magnetidis Appendix can be applied to other problems, such as
field B. Quantum corrections are also important in theinvestigations of the role of transitions to excited states, the
strong-field limit, /g<ag, and lead to a faster power-law effects of a finite exciton density, and strong localization in
decrease in the diffusion constant with the magnetic fieldterms of the effective exciton scattering.

DxB~2,2%in comparison to the classical diffusion constant, In the electron-hole representation, a Wannier—Mott ex-
DoxB 112! This is because the characteristic internalciton is described in terms of a sum of ladder diagrams,
length scale of the magnetoexcitefy<ag decreases with which include thee—h Coulomb interaction. The corre-
increasingB as /=B~ Y2 and its internal structure has a sponding two-particle Green’s function can be expanded in
lesser impact on the scattering process, so that the magn&rms of the exciton eigenfunctions, (re,ry):

toexciton becomes similar to a structureless neutral boson.

Thus, for neutrale—h systems, crossover to the exciton G,(ry,r,,t;r5,r,,t")

weak-localization regime takes place in the strong-field limit

3. CONCLUSIONS

(unlike electron systems, which contain delocalized states in = —i<T\i’e(r1,t)\ifh(r2,t)\i’ﬁ(u,t’)\ifl(rg,,t’))
the quantum Hall effect regime - v
Although the calculated functiob(B) is a honmono- _ A (F1,12)Wy(ra,rs) ERT=TTY,
. . . . dEX exd —iE(t—t")],
tonic function ofB, it does not reproduce all the details of X E-e
the experimental findings fdb(B).}” For instance, the ob- (A1)

served suppression of exciton magnetotransport in the range

of relatively low field$ is in agreement with the theoretical - -
predictions for the behavior of thelassical diffusion con- whereWe(r,t) and Wp(r,t) are the electron and hole cre-

stant (Fig. 5. Our calculations, however, demonstrate that?tion operators in the Heisenberg representation. For sim-
the increase iD(B) in the rangeB>6 T observed in Ref. PliCity, we consider the case of zero magnetic fiedds 0,
17 cannot be interpreted in terms of the suppression of weafNere €, are the ordinary eigenvalues of the exciton ener-

localization of excitons in a magnetic field. Note that the9i€S: &x=€(P)+ €, €, is the energy(in either the discrete
localization regime in double quantum wells used in©' continuous spectrumof relative motion, (p) is the

experiment$~18is closer to the strong-localization regime CeNter-of-mass kinetic energyl/,(ra,r2)=exp(pR)®(r)

of excitonst® Also, we have not considered the effects of the@'® the exciton wave function&=(mer; +myrz)/M, and
Bose—Einstein condensation of excitons. The investigatioh =1~ T2 Our aim is to replace the two-particle-h

of the effects of a magnetic field on the strong localization ofr€€n’s function by an effective “one-particle” Green's
excitons and of Bose—Einstein condensation on the transpofnction of an exciton defined by the formula

of neutral composite particlggxcitons is a very interesting

problem, which has not yet been solved. Note also that, asin  G(R,L;R',t)=—i(TB(R,t)B(R’,t")), (A2)
the case of electrons in quasi-two-dimensional semiconduc-

tor structures? the effects of fast transitions between differ- where the exciton creation operator is defined as
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a Using Eqg.(A5), we can replace the functio®,U by a dif-
e R gr ferential operator acting 06, andG,,. Given that
e Za) VZ
(IE‘F m)Ge(h)(r—l’ A=t)=6(t—t")o(r—r"),

we obtain the following expression for functigA6):

h ] éz(ZY,):f dl’ldrzdl’3dl’4dt dt,Gz(Z I’l,l’z,t)
Kt It
b XVe(r1)Ge(ri—rz,t—t")Gp(rp—ry,t—t")
R Ro’o R _
N T XU(rg—ry)Gy(rs,r ,t’;X’)+J drodr,dr
/) @ /) 37 14)G2all3,1y odr,ar;

X drgdt dtyGo(X;ry,r5,t)Ge(r1—rg,t—t
FIG. 6. (a) Impurity vertex in the electron line of the two-particie-h 3 b 2( 1r2,t) e( 1o 0)
propagator. The wavy lines cqrre_spond to the Coul@mh interaction.(b) X Ve(fo)Ge(ro— rs.to— t)u (rg— rz)
Impurity vertex(10) in the excitonic propagator.

X Gy(r3,r,t:X"). (A7)

Note that the second term contains the prod@i(t)
X Gg(—t), which contributes a factorng,(1—n,) and can,
therefore, be neglected in the low-density limit. Thus only
the first term remains on the right-hand side of E&j/). Let
R— %r t)\lf*(R r). (A3) us also take into account that the expansion@grbegins
M)A with a term of zero order iB,G}, [corresponding t@ func-
The functionG, satisfies the following Bethe—Salpeter equa-tions on the right-hand side of EGAS)] and add it to Egs.
tion: (A6) and (A7). Then we can see that the first term of the
right-hand side of Eq(A7) contains the Coulomb ladder
Ga(ry,ra,tr3,rg,t") diagrams on both sides of the impurity vert&(r;). In
_ ¢ 4 addition, the temporal and spatial coordinates coincide in
= Celr, Mg t=t)Gn(ra My, t ) such a manner that, using representatig®) and(A5), we
can represent expressi@A3) in the form of a diagram cor-
responding to scattering of an exciton as a wh@lig. 6b).
After adding the analogous term for scattering of the hole,

R+ h
+Vr,t

B{(R,t)=f dri}

X!

+f drgdr,dt;Ge(rq,r3,t—t1)Gp(ra,ry,t—ty)

XU(rg=ryGa(rz,ry,ty;ra,ra,t’). (A4) e can see that the effective scattering potential in the exci-
Applying the operatofA4) tonic representation is indeed determined by EH&s.and
. (10
Vi V3

J
_1:-— —
[Ge(rlvt)Gh(r27t)] I (9t+ 2me 2mh

to both sides, we obtain the Schinger-like equation: APPENDIX B: CALCULATION OF PERTURBATION SERIES
9 V2 2 . . . . .
TS SR I U(ry— 1) | Gp(r i rortiraurat’) In a perturbative analysis of systems with 2D excitons in

at  2mg  2my a magnetic field, sums like those in E¢t4) and(15) appear
, frequently. Therefore, it seems useful to calculate these sums
=311 rg) 8(rp=ra) (t—t'). (AS) exactly for the case of a two-dimensional hydrogenic exci-
Now let us consider a diagram with only one impurity vertexton. If the operator approathis applied, the explicit form of
corresponding to the external potent&lin the electron line  the ground-state wave function is sufficient. In the interme-
(Fig. 63. diate calculations we sek=7%=1 and return to dimensional
The set of external coordinates.(ry,,t) will be sym-  quantities in the final expressions. Let us start with the con-
bolically denoted byX,X’. The analytical expression for Stantx inA Eg. (19). If we can find the explicit form of the
G,(X,X") in the case of the diagram in Fig. 6a has the formoperatorb that satisfies the quantum equation of motion
uoblat=iu[Hq,b]=x, whereH, is the Hamiltonian of a
éZ(X,x’):f drodrdr,drgdr,dtdtydt’ Go(X;rq,r5,1) 2D hydrogen aton(7) in the absence of a fiel®, for the
matrix elements we have
XU(ri—ry)Ge(ri—ro,t—tg)Ve(r A
XG((l ? te( ;)G‘)( o et( (’t),) (€= €n)(0]B|n)=(0|x|n), (B1)
ro—ra,to— Fo—rg,t—
ere e " 2_ ¢ [where e,=€o/(n+1/2)? and e;=— ue*/2s?4?], and the
XU(rg—r )Go(rs,rq,t';X"). (AB) sum in Eq.(15) is reduced to the diagonal matrix element
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Py ﬁ; <o|x|n><n|6|o>=i%<o|xt3|o>, (B2)

where the prime means that state O is not included in the

P. I. Arseev and A. B. Dzyubenko

i :I.3 32 3 3
bz(r)=—§ §r +§r +§I’+3—2

with an undetermined constanj. One feature of calcula-

Inr+c, (B10)

summation. We have used the completeness condition for tHéoNns of sums likel; is that, using the completeness condi-

statesZ,|n)(n|=1 and the equalitf0|x|0)=0. In the co-
ordinate representation, we introduce the notatiey(r)
=h(r) ¢o(r), where ¢o(r)=8/7 exp(—2r) is the ground-

state wave function. Using the explicit form of the Hamil-

tonian, we obtain a differential equation fofr):

1
E[Vzb(f)]d)o(f)Jr(Vb(r)‘V¢o(r))=—iX¢o(r). (B3)

whence it follows thab(r) = —ib(r)cos¢, and the unknown
functionb(r) is given by the equation

1 b(r)
b”(r)+b’(r) F_4 ——2—2r=0. (B4)
r
Solving Eq.(B4), we obtain
b(r)y=—i L 2+ 3 B5
(ry=—i LT Cos ¢. (B5)

Finally, the matrix element in E{B2) is expressed as
Iu’ 0 2w 8
K= Mfo dr( J'o dep— cos’-¢)
21 p

X 4 (l 2+ 3 ) B6
exp(—4r) 2" T _§M’ (B6)
and the coefficientr in Eqg. (15) is given by the expression

Eme(h)ﬂ
168 M2

Qe(h) =

The same operatd} can be used in calculating the first
sum in Eq.(14):

PG,
1— - .
n (€~ en)z
Using Eq.(B1), we can also reduck to a diagonal matrix
element:1 ;= «2(0|bb|0). In combination with the explicit
expression(B5) for b(r), this equation yields

(B7)

0 159
|1=M2f0 dr|b(r)|2¢3(r)= F“Z' (B8)
In order to calculate the second sum in Et4),
, [{0lr?|n)[?
R era 9

we must find an operatd}z such thati M[HO,62]=r2. We
setb,do(r) =by(r) ¢o(r). Then

1
bg(r)+b§(r)(F—4) —2ir?=0.

The solution is the function

tion for the intermediate states, we should eliminate the ma-
trix element of the ground state=0, which does not
automatically equal zero, unlike the coordinate matrix ele-
ment(0|x|0)=0. Therefore, we havgef. Eq. (B2)]

1,=iu({0]b,r?0)—(0|b,|0)(0|r2|0)).

We see that, as a result of subtraction, the final expression
does not include the constant introduced in Eq.(B10).

This allows us to obtain the exact expresslgr: 105u/2°,

and for 8 we have

(B11)

159
= 105m2,, — —— u?|.
46M2 e(h) 2

Be(h (B12

Note that the coefficientg.,)>0 are always positive
[since w=memy/(m.+my)<mg,m,], but numerically
small: 8<0.02.

APPENDIX C: CALCULATION OF THE DIFFUSION
CONSTANT D

This section gives details of the calculation of the diffu-
sion constanD. The calculation oD (€) should include, in
addition to the diagrams of Fig. 4, the zero-order diagram
GRGA. Therefore, the diffusion constaii(€) is given by
the expression

1 ,pp’ ,
D(e)=mfdpf dp WIGR(D)IZ[é(p—p)

+T(p,p")|GR(P"I?]. (CD

If the cooperon is included in the irreducible part, the com-
plete verted” satisfies the Bethe—Salpeter equation shown in
Fig. 4. Note that the cooperdas a function of the variables

p andp’ atg=0) can be expressed approximately as

dK
(2m)?
=Ud(p+p’). (C2

This approximation can be used because there are essentially
different momentum scales in the problem. Indeed, in inte-
grals like

Ue,w(p,p’;p’,p)=f U(K,w)do(p+p’)

f dpJ dp’|GR(p)|?GR(p")|?U. . (P.p";p’.P)

=fdpf dK|GR(p)|?|GR(K—p)[?U . ,(p.K—p;K)

(C3

only small K are important owing to the presence of the
diffusion pole inU. In this case, we can assume in an ap-
proximation thatk — p=—p and perform integration over
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andK independently. This yields E4C2) for the cooperon.

Then the equation for the vertdx(p,p’) shown in Fig. 4
takes the form

['(p,p")=W(p,p",0)+Uds(p+p’)

dp;
+ f (ZW)Z[W(p,pl,O)JrU&

X (p+p)]GR(p)GA(p)T(p1,p').  (CH

The quantity needed for the calculation®{e) has the form
[see Eq(C1)]

_ dd)p d¢p’ o) ’
rl_fﬁf? p-p")I'(p,p’),

where the integration is performed on the mass surfac
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effective potential with a finite correlation length comparable to the exci-
ton radius.
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This paper discusses the symmetry of the wave field that lies to the right and left of a two-sided
accelerated mirror in £1 space and satisfies a single condition on it. The symmetry is
embodied in the Bogolyubov matrix coefficientsand 8 that connect the two complete sets of
solutions of the wave equations. The amplitudes of the quantum processes in the right

and left half-spaces are expressed in term& aind 8 and are related to each other by the
transformation(12). The coefficientﬁfu,w plays the role of the source amplitude of a pair of
oppositely directed particles with frequenciesand o’ of which one is in the left half-

space and the other is in the right half-space because one of them has undergone reflection. Such
an interpretation makeﬁj;,w observable and explains why, as shown by @&g.and found

earlier by Nikishov and RitugZh. Eksp. Teor. Fiz108 1121(1995; transl. JETP81, 615(1995]

and by RitugZh. Eksp. Teor. Fiz110, 526 (1996); transl. JETP83, 282 (1996, the

emission spectra of a mirror in11 space coincide with those of charges it B space. The

reason is that the angular momentum of the pair emitted by the mirror coincides with

the angular momentum of the single particle emitted by the chargel9@8 American Institute

of Physics[S1063-776098)00407-1

1. INTRODUCTION nentsk, andk_ of the wave vector of the quantufas a
| found in Refs. 1 and 2 that th b consequence of the azimuthal symmetry of the radiation,
twas found In Refs. 1 and 2 that the spectra of bosong,g e ig ng dependence on the third independent vajiable

and fermions emitted by an accelerated mirror il space .the latter have a more complicated interpretation. Actually,

coincide With. the spectra of photons. and scalar quanta emlE'hey will be the spectra of the mean number of quanta emit-
ted by electric and scalar charggs & space when th_e ted by the mirror to the right only after integration over
latter move along the same trajectory as does the m'rrorfrequencyw’ (Ref. 3

Namely, the Bogolyubov coefficienBi’,Fw that describe the
spectra of the Bose and Fermi radiations of an accelerated _ dw (* do’ 5

mirror and the Fourier transforms of the density of the 4- d”wzﬂ o 27 |Bor ol ()
currentj (k, ,k_) and the scalar charge denspyk, ,k_)

that describe the spectra of the photons and scalar quanta |f the mirror is two-sided and infinitely thin, then, be-

emitted by electric and scalar charges are connected by thgdes the quanta emitted to the right with the spectrum given
relationships by Eq.(3), it will (as we can séalso emit quanta to the left
. 1 with the spectrum
|Bw'w|2=_2 |ja(k+ vk7)|21
e o _dw' *» dw ) 4
. , 1 , nw’_zﬂ_ 0 20 Bw’u)l' ()
1Bl :gz|P(k+,k7)| : )
The question naturally arises whether it is not possible to
It is assumed here that the componekits=k°=k* of the  regard the quantity

wave 4-vectok® of the quantum emitted by the charge are

identified with the doubled frequencies and w’ of the , do do’
quanta emitted by the mirror: |Borol 2n? (5
2w=k;, 20 =k_, 2

as the mean number of pairs of quanta, one of which, with
ande is the electrical or scalar charge in Heaviside units. frequencyw in the intervaldw, is emitted by the mirror to
However, there is a substantial physical difference bethe right, while the other, with frequenay’ in the interval
tween the right-hand and left-hand quantities in Eds.i.e., do’, is emitted to the left. In this case, two frequencies
between the emission spectra of the charges and of the miand »’ would be observable, characterizing one event: the
ror. Whereas the former are the distribution of the meammirror emits a pair of quanta, in the same way as two com-
number of radiated quanta over the two independent compgonentsk, and k_ also characterize the emission of one

1063-7761/98/87(7)/10/$15.00 25 © 1998 American Institute of Physics



26 JETP 87 (1), July 1998 V. I. Ritus

guantum by a charge. As we can see, with certain nontriviabf a boson pair equaling 1, while that of the fermion pair
complications, such a treatment is actually valid. In any casegquals O.
the mirror emits quanta in pairs. In the last section, Sec. 5, a similar method is used to
Clearly, this circumstance helps to understand anothetreat the emission by an accelerated mirror of pairs the par-
difference between the coincident spectra of a charge andtigle and antiparticle of which are not identical.
mirror. While the bosons and fermions emitted by a mirror A system of units in whichi=c=1 is used in this ar-
have spins of 0 and 1/2, the photons and scalar quanta emticle. To simplify the formulas in Secs. 4 and 5, the frequen-
ted by electrical and scalar charges have spins of 1 and @ies are considered discrete, integration oder2m is re-
Even though the quanta have different spin, the emissioflaced by summation ovew, and the delta function
spectra of the charges coincide with the boson and fermioB7d(w— ") is replaced by the Kronecker symbd), .
spectra of the mirror.
This coincidence is explained by the fact that, unlike
charges, the mirror emits particles in pairs, and a pair 0f syMMETRY OF THE BOGOLYUBOV COEFFICIENTS AND

spinless bosons can have a total angular momentum of RADIATION FROM AN ACCELERATED TWO-SIDED

while a pair of fermions can have a total angular momentunMIRROR

of 0. Then the angular momentum of the pair emitted by the _ _ o

mirror coincides with the spin of the particle emitted by the L&t us consider the connection between emission spectra

charge. The fact that, upon reflectiqﬁi,w behaves like a anq othgr quantities in two problem; in which the_m|rror
SOF . trajectories x=¢&;(t) and x=¢&,(t) differ by reflection:

pseudoscalar whilg_, ~behaves like a scalar can serve asg ()= — £,(1). Then, if the first trajectory is described on

an indirect confirmation of thissee Secs. 2 and 4 ! 2 !

It is shown in Sec. 2 that the system of Bogolyubovthe plane of the variables=t—x, v=t+x by the function
' =v,=f(u), the second trajectory will be described by the
coefficients obtained for a right-sided mirrére., for the v=v1=F(u) J y y

function inverse to itv =v,=g(u), g(f(u))=u.
field to the right of a mirror with a boundary condition o it The Bogolyubov coel;fziciegrfts), dgﬁin(eg)as in Refs. 1 and 2

because of the properties of mirror symmetry, also describeg,. ihe field to the right of the mirrofsee also Eq<33) and
the processes in the field to the left of a mirror with the sam 34)]

boundary condition. In other words, the same system o

Bogolyubov coefficients characterizes the behavior of the g Bxk _ /ﬂ * . .,
field in all of space—both to the right and to the left of a @yl 118y [T1== ' _wdu expFloutiorf(u)

two-sided mirror. (6)
Section 3 treats the connection between the integral ;

guantities that characterize the radiation of a two-sided mir- _ \/E fw dv explio’v Fiog(v)),

ror, their behavior under certain space—time transformations, ® J-w

and the symmetryor asymmetry of the space—time regions (7)

where they are formed. being functionals of the trajectory, whéfu) is replaced by

The symmetry of the BOgO|yUbOV coefficients reflectsg(u) and Consequenﬂg(v) is rep|aced byf(v), transform
the symmetry of two inequivalent total systems of solutionstg

of the wave equation, definite and smooth in all of 1 B Bx B B

space, satisfying inside it—on the trajectory of the miror—a %ol 91=@u [Tl B4 ,[9]= =B, [T]- ®)
single condition and characterized by propagation of asjmilarly, the Bogolyubov coefficients for a fermion field
monochromatic component of each solution toward the right . Fa

in one system and toward the left in the other. When the field*, o[ f1.8,7,[f]

is quantized and when the usual comparison of monochro-

matic plane waves to particles is made, these two systems of = f
solutions form ingoing and outgoing systems for the field to -
the right of the trajectory and outgoing and ingoing systems o
for the field to the left of it. Therefore, the quantum pro- —j dvvg'(v) expio'vFiwg(v)) (10
cesses in the field to the right and to the left of the mirror are -

independent, even though they are described by a single sy#hen the trajectory is replaced by its mirror reflection, trans-
tem of Bogolyubov coefficients. In particular, the particle- form to

production amplitudes to the right and to the left of the mir- E Fa F E

ror, the single-particle scattering amplitudes, etc. are Yool81= o [Tl Bo [9]1=8,, L] (1D
associated with the transformati¢h?). These amplitudes, The matrix notations for the Bogolyubov coefficients make it
certain frequency distributions, and also the distribution ofpossible to write the transformations of Ed8) and (11),
pair-production probabilities over the number of pairs, whichi..e, the transition from trajectorf{u) to g(u), in the form

is invariant under the transformatidfi2), are computed in . ~
Section 4. It is shown thas”,  plays the role of the source a—a’, BoFp, (12)
amplitude of a pair of particles potentially emitted to the where the upper and lower signs here and subsequently cor-
right and to the left with frequencies andw’, with the spin  respond to Bose and Fermi fields.

©

duyf’(u) exp Fiou+ie' f(u)) (9)
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At the same time, according to the expansions given bymitted to the right.
Egs.(33) and(34), «,,, andg,,, are the amplitudes of the The equality of the mean numbers of particles emitted
waves with frequencie®’ and — ' contained in the inci- by a two-sided accelerated mirror to the right and to the left
dent part of the outgoing wave with frequenaywhile az,w suggests that the particles are generated in pairs and fly off in
and=¥ 3, are the amplitudes of the waves with frequenciesopposite directions. The quantif$) is usually considered
w and —w contained in the reflected part of the ingoing the mean number of actual quanta with frequeacin the
wave with frequencyw’. Therefore, amplitudesu’;,w[g] interval dw, emitted to the right when a quantum with fre-
and =+ B,/ 9] describe the generation by a right-sided mir-duencyw’ in the intervaldw’ is absorbed from the vacuum
ror on trajectoryg(u) of waves escaping to the right with from the right. The question arises whether it is not possible
frequenciess and — w when waves with frequency’ inci-  to regard the same quantity as the mean number of pairs of
dent from right to left are absorbed. From purely geometricafuanta emitted to the right and to the left with frequenaies
considerations, they must coincide with the amplitudes fo@nd’ in the intervalsdw andde’, respectively. In other
the mirror-symmetric process—the generation by a left-sideavords, isN~*3,,,,|* the two-dimensional probability distri-
mirror on trajectoryf (u) of waves escaping to the left with bution of frequencies andw’ of two quanta escaping to the
frequenciesw and —w when a wave incident from left to ght and to the left with angular momenéand — o’?
right with frequencyw’ is absorbed. Then, according to Eqs. ~ Such an interpretation of the frequency distribution of
(8) and (11), these last are also equal @, [f] and bosons(fermiong emitted by a mirror in 1 space would
Bo..'[f] or equal toe,, [f] and B, [f] if the frequencies Make the coincidence of this distribution with the emission
of the monochromatic waves propagating to the right and t&Pectrum of an electriéscalay charge in 3-1 space de-
the left are denoted a® and w’, as was assumed for the tected in Refs. 1 and 2 less formal. In the case of mirror
field to the right of the trajectory. emission, the frequenciesandw’ of the bosongfermiong

Thus, for the field to the left of a mirror moving along €scaping in different directions are random quantities,
trajectoryf(u), @, ,[f] andB, [f] are the amplitudes of Whereas in the case of charge emission, the compoients
waves with frequencies’ and —w’ contained in the re- andk_ of the wave vector of the vectgscalay quanta emit-
flected part of the ingoing wave with frequeney while ~ ted to the right and to the left, corresponding to the
o, [] and ¥ B,,[f] are the amplitudes of waves with —K-=0, are random quantities. _
frequenciesw and — w contained in the incident part of the Let us give two more evidences of left-right symmetry
outgoing wave with frequency’. Therefore, the matrix that of the wave field of an qc_celerated mirror that are reflected
connects the ingoing and outgoing waves of the field to th&Y the Bogolyubov coefficients.

left of the mirror differs from the analogous matrix for the _ First, Es.(6) and(7) or (9) and(10), obtained for the
field to the right of it by the transformatiofi2). field to the right of the mirror for the Bogolyubov coeffi-

The transition from the trajector§(u) to the mirror- cients, represeng,, ,|* by a double integral over the entire
symmetricg(u) is thus equivalent to considering the field in uv plane, as shown by Ref. 2. Thus
the part of the Minkowski plane not to the right but to the left
of the trajectoryf(u) with the previous boundary condition
on the mirror. 182, |>=—Re jfdu dv

The mean number of particles formed by a two-sided
infinitely thin mirror on the left part of the Minkowski plane
is the same as on the right, since the integral Xexfgioutio f(u)—io'v—iwg(v)], (16)

oo

—o0

while |87, |2 differs from Eq.(16) by an additional factor of

szf M)z—, 1Burol? (13) —+/f’(u)g’'(v) under the integral. Similarly, in the double
(2m) @ integral for the mean number of particles emitted to the right,
0

1 o
does not change whe8,,, is replaced by~ 8, . At the NB,F:F f du KBF(u),
same time, the energy (U
o o dv 1 f'(u)
KB =i — ’ 1
- do do’ W=/ 3=FW gt —u v—fW (7
bﬂ:ff (277)2 (U’|:8a)’w|21 (14)
0 = d Va'(v)  VE(u)

3

KF(u)=— \/f’(u)f_w v—f(u) g(v)—u N v—"f(u)

emitted by the mirror to the left, general speaking, is not (18)

equal to the energy
the integration is carried out over the entire plane, i.e.,
* over all of Minkowski space, and not over the part of it lying
/(ZJJ' do do' ol Borul? 15 © the right of the trajectory. The wave fields to the right and
; (2m)? el to the left of the trajectory that satisfy the same condition on
0 it are described by a single analytical function and therefore
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are not independent. Therefore, the frequencies of the quanta

emitted the right and to the left are also not independent.
Second, the mean energigsand#’ emitted to the right

and to the left, according to Ref. 2, can be represented as

integrals over the proper timeof the mirror:

1 0
gB:E f_w[drasz—’—d(an—’)], (19

1 (= a’ a
Z’B:EJ dr —+d| —| |. (20)

VI

Herea is the acceleration of the mirror in its proper system.

The first terms under the integral in Eq49) and (20)

represent the energy irreversibly emitted by the mirror re-

spectively to the right and to the left of the sectin of the

V. |. Ritus

Eii:—f fdu do ' (u)g’ (v)A~(u,v), (23

whereS andA.. are singular functions ofe(, 6— + 0):
1
(v—"Ff(u)—ie)(g(v)—u—id)

_ 1 1
AU = g O f W —T8)(g(0) —u—19)

1
S(u,v)=ﬁ +c.c|, (29

5 —C.C.[,
(25)

1

A-(Uv)=gra

1

trajectory. In the mirror's proper system, these portions of X — S—
the energy are identical and equafid /127, whereas the (v=f(u)=ie)(g(v)—u=id)
portions of irreversibly emitted momentum equal (26)
+a?d7/127. In the laboratory system, these portions of the
energy, because they are moving oppositely relative to th
velocity B of the source, acquire Doppler factog’ and

3 1+ B)I(1-B). e
é/\/;—tt Vt\/e recall (tjhat‘{;— . El+ﬁl)/('1 Eﬁ)g_;)l’he sdecggd, components of a vector. Therefod® are Lorentz invari-
chott terms under the integrals in Eq49) and (20 oo whileZ®F are the= components of a vector.

“?mﬁa:" tfhe trﬁgl;)n whtt_are trﬁhr adladt!o? devﬂﬁps, asa retf]ult 2. Mirror symmetry. When the trajectory is replaced by a
ot which, for the formafion ot the radiation ot the energy, emirror—symmetric trajectoryf(u)—g(u), g(v)—f(v), the

intervals A7 on which the irreversibly emitted energy ex- . ;
ceeds the change of the Schott energy are important; i.e., integralsN[f] and #.[ f] transform, respectively, to

C.C.|.

o 1. Lorentz transformations. The quantitie€(u,v),
vf’'(u)g’(u), anddu dv are scalars with respect to the Lor-
entz transformations, whilé\. (u,v) transform as thex

N[g]=N[f], ~Z.[g]=7=[f], (27)
Ara?\f'>]af'|, Ara%\f'>|al\f'], (22) _
since, for such a replacement,
or A7>a"!; the proper time interval must be greater than
S(U,U)—>S(U,u), Ai(uvv)_)AI(vru)y

the inverse proper acceleration. The proper acceleration de-
termines the charactgrlstlc frequency of the radiation in the VWG (0)— Vg (W (v),
proper system and its scattep~Aw~a. Therefore, the
condition A7a>1 is equivalent to the uncertainty relation after which the transformed integrais and .. differ from
ATAw>1. the untransformedN and #- only in the designation of the
variables of integration. Thus, the mean numbers of particles
emitted from the same trajectory to the right and to the left
are identical and do not change when the trajectory is re-
placed by the mirror-symmetric one, while the mean energies
emitted to the right and to the left are different and transform
The following representations for the mean numiesf ~ into each other when such replacement is made.
emitted particles and the mean emitted ener¢ies?, and 3. Synchromirror transformation. This discrete transfor-
#'=7_ are convenient for explaining their properties with mation consists of replacing coordinatesand v with the
respect to certain space—time transformations: coordinates

. u=g(v),

NBzf fdu dv S(u,v), _ - _
Points (1,v) and (u,v), which are related by the transforma-
—o tion (28), lie on the Minkowski plane on different sides of
the trajectory of the mirror on the intersection of the light
cones whose vertices are found on the trajectory at points
A(u,f(u)) andB(g(v),v). The points of any compact region
lying to the right of the trajectory are mapped one-to-one
into the points of a compact region lying to the left of the
* trajectory.
B _ FunctionsS(u,v) andA. (u,v) are form-invariant with
éi_f f dud As(u), respect to the transformatici28); i.e., their functional de-
- pendences on the new and old variables are identical:

3. SYMMETRY AND THE RELATIONS OF CERTAIN
INTEGRAL QUANTITIES

v=f(u), so thatu=g(v), v=f(u).

(28)

NF=—f fdu dv ' (u)g' (v)S(u,v), (22)
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S(u,v)=S(g(v),f(0))=S(U,v), S -, 1+
- 5=D ' Blw, »'=D(Bw’, D(B)=\1—4
A.(u,0)=A.(0,7). (29) B

(32)
Since the area elemedudv f'(u)g’(v) appearing in the . ,
Fermi integralsNF and #% is also form-invariant with re- WhereD(p) is the Doppler factor. Thusy and " possess

spect to the transformatiG(QS); ie. oppc_Jsite covariance.i Below, frequencies that transform _Iike
o _ o will be labelled with an even number of primes, while
du dvVf'(u)g’(v)=du dvVf'(u)g'(v), (30)  those that transform like’ will have an odd number. Then

the contributions to the Fermi intervals from any two regionstN€ Subscript in or out, in addition to the frequency, will
on theuv plane related by the symmetry transformati@s) simply |n_d|ca_1te the _S|de of the Minkowski plane on which
are identical. In particular, the contributions from the entireth® solution is considered.

region to the right and the entire region to the left of the W€ have written the expansion of the solutions of the
trajectory are identical. first set in the solutions of the second set and the inverse

In the Bose integral&\® and #® , the contributions of ~€xPansior(in the right-hand half-planen the form

the right-hand and left-hand regions related by the transfor- 0 b B 33
mation (28) are, generally speaking, different, since the area Pouto=¥orwbin ot BoroPin o (33
elementdudv that appears in these integrals, unlike the ot 8, 34
functionsS andA.. being integrated, is mapped by the trans- Pinor = o b BorwPaute: 349
formation (28) into the unequal elemerntudy : or, if matrix notation is used,
du dv=dUdsf' (T)g' (@), (%ut):( @ B )(¢in>
duds =du dvf’(u)g'(v). (31) o\ BT at)\ b/
Therefore, the contributions to the Bose integrals from these _ * gy
. . L ¢|n _ @ + ¢0ut
two elementary areas are proportional to their areas; i.e., e * |- (35
¢in -+ ,8 o ¢out

their ratio equals the Jacobian of the transformation.

The transformatiori28) of the variables of integration of As a consequence of the orthogonality and normalization of
course does not change the values of the integiaiand  the solutions in both sets, the matrices that appear in Egs.
Z . Its meaning is that the local contributionsNoand .. (35) are mutually inverse. This means that the Bogolyubov

from any pair of right-hand and left-hand regions associate¢oefficients satisfy four independent matrix relations:
by the transformation(28) have a definite symmetry or

asymmetry. Namely, for Fermi integrals, this symmetry con- @' a+B7"B=1, B a*Fa'g*=0,
sists of the equality of such contributions, whereas, for Bose P e~
integrals, there is left—right asymmetry of the contributions,  ¢¢ +p*B=1, ap +pa=0. (36)

determined by the Jacobian of the transformation. On the left-hand half-plane, Eq€33)—(35) are conserved,
but a new physical meaning requires the interchange of the
subscripts imr=out in the functions, which is equivalent to the

4. RADIATION OF A TWO-SIDED MIRROR, QUANTUM transformation(12).

APPROACH For a quantized field in the right half-plane, the connec-

dtion of the in and out creation operatai and absorption

For a consistent description of the quantum wave fiel bperatora is given by the Bogolyubov transformations

lying both to the right and to the left of the mirror and sat-

isfying a single condition at the mirror, it is convenient to aj, a B*\[ag

use the two complete sets{doyw,Pouiot and at|™ B a* al,)’

{éin o b5 .} Of solutions of the wave equation, given in " o

Refs. 1 and 2. Possessing in the right-hand Minkowski plane Aout at FB* aj,

the physical meaning of the out and in sets and satisfying the + = _~ ~ + (37
Qout + ﬂ [e4 Qin

boundary condition at the mirror, these solutions can be
smoothly extended into the left half-plane with no change ofror a field in the left-hand half-plane, an interchange of the
their functional form. However, in the left half-plane, these subscripts ir=out is required on operatoesanda™* in trans-
sets acquire the physical meaning of the in and out set§ormations(37). This again is equivalent to the transforma-
respectively, and they must be designated &g ,,.%5, .} tion (12).
and{ dout ' + Dy o} - Following the work of DeWitt and its notation, we rep-
Each such solution is actually unambiguously characterresent the vector of the vacuum state of the field in the dis-
ized by the frequencw or w’ of its monochromatic compo- tant past in the form of an expansion in the vectors of the
nent travelling to the right or to the left and by the condition n-particle states of the field in the distant future:
at the mirror. For a Lorentzian transformation with velocity
. . , . © in/2
B along thex axis, the frequencie® andw’ transform into |in)=eiW2 m 2
o n! g

~ ~, . . ) Viliz...i |i1i2...inOUt>. (38)
o andw’ according to the mutually inverse laws [ n

*iadpedn
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In our case, the quantum numbéss,...i, of the out states 1
of the individual particles stand for frequencies that trans- 1=, = 2 |{outiqiy...iinY|?
form like w or like »’ if one is dealing with the field, re- n=0 M isi5- iy
spectively, to the right or to the left of the mirror. >
Using the equatiom;,|in)=0, transformation37), and =g 2ImWy — > Vi i 2 (42)
the expansion given by E¢39), it is easy to show” that the n=0 M iz iy 1270

relative production amplitude¥; ; _; of n particles equal The sum of the relative probabilities
zero for oddn, whereas, for even, they are expressed in 1
terms of the production amplitude of a pair of particles: q”:n_l E |Vi1i2...in|2 (43)
s iqig.ip
of the production of particles(or of n/2 pairg on the right-
Visiyoin =2 0pVisi,Vigie Vi, i (39  hand side of Eq(42) we shall call the sum over states. It can
P be shown that, in the case considered here, in which pairs of
identical particles and antiparticles are formed, the sum over
Here X, denotes summation ovan!/2"(n/2)! different  states equals
pairings of subscripts,i,...i,, while §,=1 for bosons and - 1
6p=*1 for fermions when the permutation leading to the — 2 \
given pairing is, respectively, even or odd. The productiom=0 N! i;i57.i,
amplitudes of a pair of particles with frequenci®$ and w 1
in the right-hand region and frequencie$ and o’ in the :exp( F=Tr In(lIM)), (449
left-hand region equal 2

|2=de(1+M)*12

Iqlp.ily

whereM =VV™ is a Hermitian positive-semidefinite matrix

Voro=i(a 85 ey Vumwar=—i(Ba Y, . (40) formed from the matrices in Eq&0). In particular, the first

ol three terms of the sum over states, determined by the relative
amplitudes
Thgy are related.to each other_ by the transforma(rm), D Vi ViV =V VAV VL (45)
which is symmetric for a Bose field and antisymmetric for a 12 12 34 13 24 14723
Fermi field, as follows from Eq<36). and by Eq.(43), are equal, respectively, to
The indicated number of terms in the amplitude of Eq.

; - T v 1 1 1
(39) appears in connection with its symmetrizati@mtisym- Q=1 Q==TrM, gs== (Tr M)2== Tr M2,
metrizatior) and equals the numbet of permutations of its 2 8 4
subscripts, reduced by a factor df2because of the already (46)

existing symmetryantisymmetry of the two-particle ampli-  The absolute probabilities of forming pairs are equal to

tudes and by a factor oin(2)! because the permutations of p, =p,q,,, wherep, is the vacuum-conservation probabil-
these amplitudes are negligible. ity:

Particle production in pairs is explained by the linearity
of the Bogolyubov transformations in the operatarsand
a*. The operatog;,, when it acts on the-particle out state,
transform; it into a superposmon.aﬂ—l-partlclg and Since the relative probabilities,,(M) of producingn pairs
n+ 1-particle out states. Therefore, in the expansion of th%re homogeneous functions of degre® Gon(AM)

n

null v_e_ctoram||n> in the n-particle out states_, the expansion =\"g,,(M), it is convenient to compute the mean number
coefficients equal to zero represent the linear relation be

: . ) of pairs from
tween the amplitudes of the+ 1-particle andh— 1-particle
creations. Sincen=0, the amplitude of the single-particle R 0 < N
productionV; is equal to zero, and, along with it, all the ”:nzo NP2n=Pok —= nZO A"Q2n(M)
formation amplitudes of an odd number of particles.

—a-2ImW :—E -
po=¢€ , 2ImW +2Trln(1+M). (47)

A=1

The absolute amplitudes of timeparticle production are d 1
determined and are related to the relative amplitudes by =A N 21m W(AM) rlzﬁ Tr 1M ° (48)
L . The matricesM are different for the right-hand and left-hand
<OUt|1'2---|n||n>E<OUt|aoutin---aoutizaoutil||n> regions;
=ei"v (41 M=VV+=['B+E(li'B+§)1' (49
B*B(LEp*B) (50)

The vacuum-conservation amplitugeufiny=eV is de-  but are related to each other by the transformaiib®).
termined to within a phase factor by the fact that the totaHowever, the positive-definite quantities ", n=1,2...,
probability of the transition from the initial vacuum state is are invariants of this transformation. Therefore, the total
equal to unity: probabilities given above for conservation of the vacuum,
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Po, and of the production of pairs, p,,, and the mean it possible to regar@”, = as the amplitude of the source of a
number of pairsn, are identical for the right-hand and left- pair of particles potentially emitted to the right and to the left
hand regions. In particular, the quantities with frequenciesw and w’, respectively. In this case, if a
1 particle with frequencyw actually escaped to the right, a
Po=e 2MW 2 ImW===Trin(1x8*B), (51  particle with frequencyw’ does not escape to the left, but
2 experiences an internal reflection and is actually emitted to
1 the right with altered frequency”. Conversely, if a particle
p,=e 2MW > Tr B B(1+=B B2, (520  with frequencyw’ actually escaped to the left, a particle with
frequencyw cannot escape to the right, but, after internal
reflection, is actually emitted to the left with another fre-
Tr 8" B (53  quencyw”.
] . For fermions, the amplitudﬁz,w is diagonal in the pro-
do ”Cit change under the transformatioh2) or B"8  jection of the spin of the ingoing and outgoing wavese
—BB" o Ref. 2. But one of the waves forming’, has a negative
Nevertheless, the frequency distributions of the prOb'frequency and therefore describes an antiparticle with fre-

?b"i“es and of the mean number Qf particles possess no le_ftﬁuency and spin projection opposite in sign to the frequency
right symmetry. Thus, the production probability of one pair, o spin projection of this wavsee §26 in Ref. 5 or §9 of

one particle of which has a definite frequency while the otherChap 2 in Ref. B Thus, the spin of a pair of generated
has any frequency, equals ' ' ’

fermions equals zero. This is confirmed by the scalar nature

n=

N| =

Coimw BB of the identically equal integrals in Eg$9) and (10), in
P2, =€ 1558 (54 whichduyf'(u) anddv g’ (v) are elements of proper time
o d7, and by their coincidence,
for the right-hand region and equals .
Dour = —2ImW( BB* ) (55) Bszzg p(ky ko), (61
2w 1iﬁﬁ+ o

) o with the Fourier component of the scalar-charge density in
for the left-hand region. The frequency distributions of the3+1 space.

mean number of particles emitted by the mirror to the right

4 to the left Iso functionally diff tf h other: The amplitudeﬂi’fw of the source of a boson pair, ac-
andto he lett are aiso functionally ditferent from each er'cording to Egs(6) and(7), is linearly expressed in terms of

No=8"Bww: Nuo=(BB" w0 - (56) the Fourier componentg. (k) of the current density of an

Along with the amplitudes given by E¢41) for particle electric charge in 31 space:

production from vacuum by the mirror, it is necessary to k. j_ k_j.
consider the amplitudes of single-particle scattering by the ﬁi’,‘wz “Vic e~ Vi & (62
mirror - ¢ + ©
r — + H — jw _—1 0 |
(out w|w’iny=(out |agy, ,a;, . [iNy=€"a, .., (57 j_=ef du eXF{E (K u+k_f(u)|,

(out ’|w iny=(oulagy, a; iny=eWa ¥ (58

wo'

B . . oo i
for the right-hand and left-hand regions, respectively. These j+=ef7 do EXF{E (k_v+k,g(v)) (63)

amplitudes differ only in their phases. Of course, they are

related to each other by the transformati@g), but we shall o
be interested in their relation to the corresponding pairlS€€ @IS0 Eqel) and(2) in this paper and Eq$43) and(44)
production amplitudes: in Ref. 1]. The last equality in Eq:62) is none other than the

current-transverseness conditiok, j_+k_j,=0. It can

(out " wlin)=—e"(a"1B*)yn, also be seen from E@62) that8°, _ is a pseudoscalar, since,
with the reflectiork. —k- , j~— ]+, andB8® changes sign.
=—> (outw"|e'in)B%, (59  Vectorj,(k) is spacelike and, in a system whére=k_ (or
o' w=w'), has only a spatial component, precisely equal to
(out w’w”’lin):e‘W(ﬁa‘l)fu,w,,, eﬁz,w. In covariant form,

eB>r =e, sk Pk k.

Thus, the source of a boson pair is the conserved current
Since the pair-production amplitudes and the singlevector given by Eqs63), and this means that its spin equals
particle scattering amplitudes are quantities that can in pring.’
ciple be experimentally measured from the corresponding The fact that the spin of a boson pair equals 1 while that
probabilities, Eqs(59) and (60) make it possible to experi- of a fermion pair equals 0 is essential for understanding the
mentally measurez,w. Moreover, these relationships make coincidence of the spectra of a mirror and of a charge.

=> B¥, (oute”|w in). (60)
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If Bz,w is small, i.e., if the mean number of emitted We are less interested in the case in which interference ef-
quanta is small, then, as is easy to obtain from Egsand fects can be neglected. In this case,

9, Tr Mk<Tr M,1; k=2, (72)
~ o~ -1 ~ _ =~ . o
Ayro=2m8(0' ~0), a,,~278(w-0"), 64 and the probability distribution over the number of generated
where® and®’ are related tas and »’ by transformation ~ P&rs coincides with the Poisson distribution:
(32), in which g is the effective velocity of the mirror on the (" 1 N
emission section. In this approximation, the emission ampli- P2n=¢€ " nl =3 Tr B B. (73

tudes given by Eq959) and (60) for pairs of particles with
frequenciesy and w” to the right and pairs of particles with

. \ ” ; 5. EMISSION OF PAIRS CONSISTING OF NONIDENTICAL
frequencies o’ and ™ to the left equal, respectively,

PARTICLES AND ANTIPARTICLES

" i)~ — alWp—1 * r—_p—2 n
{out " wfin) e"D (PAh,,, «'=D (B)(Z)Gé) In the case of pair production of nonidentical particles
and antiparticlesdb pairg, the direct and inverse Bogoly-
(out 0’ @"|in)~e"D(B)B* w=D?B)w". (66)  ubov transformation$37) are replaced by

w'w’
These formulas, including the connection between the fre- | a;, @aa  Bab| [ Aou
guencies of the waves incident on the mirror and reflected b = Boa oy b’
from it, confirm the interpretation qﬁ’;,w given above.
We now turn our attention to interference effects in the Aot at,  FPBia ain
production of Bose and Fermi particles. They become most |/ |=| .5 5 b | (74)
substantial when the matricéd for bosons and fermions ab bb
satisfy the conditions These transformations contain not two but four matrices
1 1 Qaas App, ,Bap, and ﬂ_ba, which satisfy not the four Egs.
75 Trin(1=M)=% In( 155 TrM ) , (36) but the six equations
ie. a;aaaalﬁgaﬂbazlv a;babbiﬁ;rbﬂabzlv
1 1 n Boa@ip* XaaBap=0, @aa@aa* BapBan=1,
ETrM=(§TrM , n=23,.... (67) R e~
apb@pp+ BoaBba=1,  @aaBpa™ Bapdpb=0. (795

Then the sum over states given by E44) for Bose and

) - . However, these relationships can be written in the form of
Fermi particles reduces, respectively, to

Eqgs.(36) if @ and stand for the X 2 matrices consisting of

1 1 the indicated quartets:
— > and 1+ TrM. 68
1-(1/2Tr M 2 (68) g O 0 B
This means that the probabilities of producingpairs of ““lo app) A= Boa 0] (78

bosons form the geometrical progression . . .
9 prog As can be seen from Eq$74), the interchange mrout is
B.Bn

B B 1 g 1 now equivalent to the interchange
P2n=Pod2 - p0=1—§TrM, QZZETer (69) . . -
_ o o ) Qaa— Qaar  App—Apps Bab— F Boas
while the probabilities of emitting two or more pairs of fer- -
mions disappear; i.e., only the production of one fermion  Bba— + Bab: (77

pair is possible: which can be represented in the form of the transformation

. -1 . (12) if @ and B stand for the matrices of Eq676).
Po=|1+35Tr M) + P2=Po5 Tr M, Using for the in vacuum state an expansion of the type
of Eg. (38) and the equationg;,|in)=b;,|in)=0, it can be
pgnzo, n=2. (70 shown that all the emission amplitudes of an odd number of

In other words, the conditions given by Eq87) denote the particles equal zero, while the production amphtude_s of an
even number of particles are products of the production am-

most constructive interference of bosons and the most de=. !
s : 61pl|tudes ofab pairs:
structive interference of fermions. In these cases, the medn

number of boson pairs is always greater than 1, while that of Vi"w:i(a;;[g;b)w”w! Vzﬁ,w, =—j (/gabagbl)zww, ,
the fermion pairs is less than 1: (79
L<TB_ (1/2)Tr M o respectively for the right-hand and the left-hand regions. As
: T 1-(1/2Tr M ’ follows from Eqgs.(75), the amplitudes given by Eq$78)

(12T M possess intrinsic Bose symmetry or Fermi antisymmetry:
r

nf=——-~ b b . —
=N =1ramTwm ~* (71 VaD ==V = i(apd Bra) v
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ab _ ba _ —: —1\* o
Vwmw/—in/wm—+I(,8baaaa)w/wm. (79) 2 ; |VI | i |2
- I |~ ~n
Thus, the formation amplitude of ab pair can be denoted Ao (I2)H(I2)L iy iy 22
via Vi ;,, where the subscrip characterizes the state of the =de(1F¥ M) l=expgFTr In(1F¥ M)). (85)
particle and , that of the antiparticle. The production of two . _ - -
ab pairs is described by the amplitude Here, as in Eq.(44), M=VV" is a Hermitian positive-
semidefinite matrix. It is given by Eq$49) and (50), in
Visigigia= Visi,Vigi,® Vigi,Vigiy (80)  which by 8 is meant, respectivelydy, and B, -

) ) ) ) Just as above, the absolute probabilities of the formation
symmetric(antisymmetri¢ separately with respect to states of nn pairs of nonidentical particles and antiparticles equal

i, andi; of the particles and separately with respect to stateg, —p,q.,,, wherep, is the vacuum-conservation probabil-
i, andi, of the antiparticles. We also write the production ity:

amplitude of three pairs:
po=e 2mMW  2ImW==TrIn(1¥M). (86)

Visip.ig= Vigi,Vigi,Visig ™ Vigi,Visi, Vi
. The mean number of pairs, computed according to the rule
+Vigi,VigiyVisie™ Vigi,Vigi,Vigie given in Eq.(48), equals
T Vigi,Visi,Vigie* Vi, Vigi Vi (81) — M .
n=rism: (87)

In the general case, the production amplitude/@f pairs has

the form It can be seen that these formulas differ from the correspond-

ing Egs.(47) and (48) for pair production of identical par-
i (82 ticles by replacing (1/2)Tr by Tr in the latter equations. Be-
cause of thea=b symmetry in the matrices, under the Tr

where the sum is taken over al/@)! terms that differ by a  Sign, 8 can stand for botBy,, and B,p -
permutation of the odd Subscriﬁm' what is the same th|ng, It is easy to see that this rule connects all the formulas
by a permutation of the even subscriptsith 5,= +1 in the for the integral characteristics of pair production of identical
case of fermions for an even or odd permutation, respedParticles with the formulas of the corresponding characteris-
tively, while 3,=1 in the case of bosons. Then amplitude tics of ab-pair production. Thus, in order to obtain fr_om Egs.
Vii,..i. Will be symmetric(antisymmetri¢ both over par- (51)~(53) and (67)—(73) the analogous expressions for
ticle statesiqis...i,_; and over antiparticle statési,...i,. ab-pair productlon, it is sufficient to replace (1/2)Tr in these
The relative probability formulas with Tr and by3 to undersFam;Bba or Bap-
As far as the spectral characteristics shown, for example,

) in Egs. (54)—(56) are concerned, they undergo no changes

|Vi1i2...in| (83 when the transition is made to the case under consideration,
if B represeniB,, (Bap) for the spectrum of particle&@nti-

of producingn/2 pairs consisting of nonidentical particles particle3 emitted to the right an@,, (Bpa) for the spectrum
and antiparticles contains the factor i/Z)!(n/2)!, which, of particles(antiparticle$ emitted to the left.
along with the symmetry(antisymmetry of amplitude In fact, for the differential probability,, shown in Eqg.
Viji,..i, separately for even and separately for odd sub{54), the original integral

scripts, makes it possible to sum over the particle and anti- o

particle states, considering the ranges of variation of_ the w:f el |{out ww"in)|2 (89)
guantum numbers of these states to be independent. Without 0o 2m

this factor, the sum oveyi,...i,, would have had to contain

only physically different states. In our case, for example, it'€Presents it as the sum of the probabilities of physically
would be unambiguous that the frequencies of the particleg'ffere”t events regardless of whether the particles are iden-
must satisfy the conditions;=ws=>...=w,_;, while the tical or not. However, the total pair-formation probabiljty

frequencies of the antiparticles must satisfy the conditiorS @ sum of probabilities of physically different events for

Viliz...inzzp SpVisi,Vigi,--Vi

1
N =2 (2 2

'li2---in

0= W= = w,. identical particles is represented by the integral

It is easy to construct the first four terms of the sum over - d o do”
states in terms of the relative amplitudes shown above: pzzf haed f hakedl |{out ww”|in)|2

0 2 0 2
1 2 1 2
Jo=1, Q,=Tr M, q4=§(Tr M) tETrM , 1 J'oo dow
=2 |, 27 P2 (89)
1 s 1 2, 1 3
Ge=5 (Tr M) Tr M Tr M7+ 2 Tr M*. (84)  since the states in this case differ only by the values of the

large frequencyw and the small frequency” of two iden-
For the sum over states as a whole, we get tical particles. At the same time, for @b pair,
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An analytic expression is derived for calculating the intensities of individual spin—rovibronic

lines in the fully resolved gas phase electronic spectrum of a polyatomic molecule, in

which one of the zero-order electronic states is a triplet state. The expression is employed to
calculate the effect of fine structure splitting on the singlet—triplet absorption spectrum of pyrazine
using the parameters available from experiment. A transition from Hund’s coupling(&ase

to Case(b) on going from lowJ to high J rotational levels is predicted to occur at a moderate
resolution of a few hundred MHz. The effect is more pronounced in pyratjread the
pyrazine—argon van der Waals complex owing to their larger mass19@8 American Institute

of Physics[S1063-776098)00507-1

1. INTRODUCTION mined to be 107 and 3x10 8, respectively*® which is
typical of a spin-forbidden transition. In supersonic jets, the

The pyrazine molecule continues to attract much attenT, — S, transition was first detected using the multiphoton
tion due to its unique photophysical properties. Owing to @onization(MPI) method® and then by phosphorescence ex-
moderateS; — T; energy gag4056 cni'b), the density off;  citation method€%-2"in some cases using SEELE(gurface
vibrational levels at the5, origin is relatively low, which electron ejection by laser excited metastapldstection.
puts pyrazine in the class of so-called intermediate-casgaluable information about the vibrationally excit®gl state
polyatomic molecule with respect toS;— T, intersystem has also been obtained with the pulse-field-ionization
crossing(ISC). In intermediate-case molecules, the couplingtechnique®
between theS; and T, states results in the formation of As can be seen from Fig. 1 and Table I, figand T,
mixed singlet—triplet levels. These mixed levels have beemublevels in the solid host are nearly degenerate and have
revealed in ultrahigh-resolution spectra and are believed tgimilar lifetimes, whereas thd@, sublevel is set apart by
be responsible for observed nonexponential fluorescence dabout 10 GHz and has a much shorter lifetime. While this
cay behavio?~’ While the singlet states that participate in phenomenon is well established in the condensed phase, no
this mixing are well characterized, little is known about theconclusive evidence for its manifestation in the gas phase
zero-order triplet states. The important point, in particular, ismolecule is available. Theoretically, it was explained in
that the effect of the fine structure splitting on the triplet stateterms of the properties of spin—orbit coupling in aromatics
energy level structure of the gas-phase molecule is not welind heteroaromatics, with their characteristieelectronic
understood, even at thi, origin. structure and planar geomefiy7.3*Since the planarity of the

In solid matrices at liquid helium temperatures, the en-two participating states has been shown to survive in the gas
ergy of the lowest triplet state is split into three spin sublev-phase?® this phenomenon can be expected to occur in the gas
elsT,, T, and T, with very different phosphorescence life- phase, to6>*°However, previous studies were performed at
timesr,, 7,, andr,. The separations and lifetimes of these relatively low resolution(~2 GH2),>*® not high enough to
sublevels in pyrazine have been measured by the microwaveddress the question definitively.
induced delayed phosphorescen@dIDP) technique®~*? Two additional factors complicate the interpretation of a
Figure 1 shows the sublevel ordering and microwave transigas phase experiment. The first is the lack of a condensed
tions observedin a benzene crystal at 1.2 K together with phase environment. i, , 7,, and 7, are assumed to be the
the appropriate choice of molecular axes. The lifetimes measame in the solid and gas phases, then a mean lifetjne
sured in various media are listed in Table I. arising from rotational mixing of the spin sublevels would be

In the MIDP experiments, th&, state is prepared in an observed in jets, which at least would not be shorter than the
indirect way viaS;— S, excitation followed byS;—T; ISC.  shortest lifetime in solids, i.e., 6.3 mg! The measured gas-
The directT,+ S, electronic transition in pyrazine has also phase phosphorescence lifetime at Theorigin in a super-
been observed in the absorption spectra of sbiiddand  sonic expansion is only 1.45 ms, with an upper limit of 2.5
vaporst®~® The measured oscillator strengths were determs’’ having been established in a separate experiment.

1063-7761/98/87(7)/16/$15.00 35 © 1998 American Institute of Physics
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y.a TABLE II. Rotational and fine structure splitting constants of pyrazine in
cm™! (values in parentheses are for pyrazihg-
N Sy T, Ref.
A 0.21285 0.212 26 and 44
(0.18389 44
x, b B 0.19767 0.196 26 and 44
(0.17502 44
C 0.10249 0.101 26 and 44
N (0.08967% 44
D 0.3455 9 and 44
E —0.00705 8 and 43

3

seems to be the case for glyoxal, where they change from 0.6
424 MHz and 2.2 GHz to 1.1 and 2.4 GHz between the solid and gas
phases, respectivéfy, then the nature of the spectrum will
be quite different at low and high rotational quantum num-
bers.
For high values of the rotational angular momentiim
10141.5 MHz Hund’'s Caseb) should apply, in which case the spectrum
should consist of rotational bands corresponding to transi-
tions between states with definite values of the asymmetric
top quantum numberd, K, ; andK_,, each of which, ex-
7, 4t cept for N=0, is split into states with different values of
FG. 1. Order J evel i e | ¢ tiolet stat J=N, N=1, whereJ=N+Siis the total angular momentum
e e o e e and S is the Spin angular momentum. This is the analog of
est moment of inertia in the gas phase is about the N—N(tea axis in the rotational structure in the states of diatomic molecules,
both theS, and T, states. The largest moment of inertia is about the axiswhich typically belong to Caséb) because of a weak spin-
perpendicular to the molecular plane, thé) axis of the top. axis interactiorr®3” However, for low values of, the ob-
served bands will be shifted away from the purely rotational
band positions, since they are now spin—rotational bands.
ain an analogy comes from diatomics, whds$eA, etc.

<

Clearly, then, the environment plays a role. With the

uantum yield of phosphorescence emission as large as 0. ; .
d y Phosp 9 states usually belong to Caéa, apart from some light di-

in a solid solution at 77 K® this implies that acceleration of ) I .

radiative and nonradiative transitions to the ground stat@t.?rr]n.'cs' Thg trar}1[5|tt.|0n Ifrom I:unds CS Se) to ﬁa;e(p)

might both be responsible for the lifetime shortening in theVIth INCTEasIng rotational quantum nUMDEr s cafled spin un-
coupling, of which several examples are given by

jet. If, further, we accept the absolute values of The— S, 5
. ; . - Herzberg®
oscillator strengths cited above, which tell us that the oscil- . . o
A general approach to calculating band intensities in

lator strength is a factor of three lower in the gas phase thar}1 . . )
the singlet—triplet spectra of polyatomic molecules was

in a solid, then it is the nonradiative transition rate that isd lobed by H % Creutzb d Houads. and
responsible for the lifetime shortenif§The reasons for this  GSVE'OPER: Dy HOUgET, Lreulzberg and Houger, an
di Lauro:™ Energies and wavefunctions of spin—rotational

behavior are completely unknown. levels of a triplet stat derived f frective Hamil
The second factor complicating the interpretation of acvels ol alripiet state were derved Trom an etfective Hamil-

gas phase spectrum are rotations, which produce extensi\%n'an given by Van Vieck and Raynes” The intensities of

mixing of the three spin sublevels of the triplet state. In thetransmons in nearly symmetric tops were represented in the

ground state, as well as in the lowest excited singlet an ij of fHotuggr: Enld tdl(]II;auro faclt'orgather thanTI;]IDI;'
triplet states, the pyrazine molecule is a nearly symmetric to on font aggor abulatec torfsome:_'lm(lj!ngccases. | N | ou-
with rotational constants of about 3 and 6 GPitsee Table 9€N factors  aré appropriaté for a Hund's agy molecule

II). If in the gas phase the spin splittings are assumed to be ﬁ'th no ";u“t'ﬁlet Spt“tt'zg (;ntthhe triplet ste;]tet. Creutzberg antd_
the same order of magnitude, 10 GHz, as in soligkich ougen lurther extende IS approach 1o near-symmetric
top molecules of symmetrZ,,, D,, andD,,, defining a

new “limiting” Case (ab), which was further subdivided

TABLE I. Triplet spin sublevel lifetimes of the lowest triplet state of pyra- into types I, Il, and Ill. Their Caséab) corresponds to a
zine. situation, not unlike that of pyrazine in its lowest triplet state,
. - - Ref. in which two of the spin components of the nonrotgting mol-
ecule are separated by a small energy, and the third is sepa-
Senzz_”e hOStthytSta' a: T-2t*i 6 §-53 jgg Zlgg 151 rated by a large energy, compared to the rotational interval.
ara-dioxane nost crystal at 1. . H H H .
Sunereons o Y o= L45 (upper mit 2.3 27 (In this respectT; pyrazine is a Cas@b), type Il molecule;

thus we are actually dealing with a Casd)—Case(b) tran-
Note. All values in msec. sition here). The di Lauro factors are appropriate for all types
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of Hund’s Casdgab) molecules; they account for the muItip- TABLE Ill. K andA for irreducible representations of ti®, group.
let splittings by using Raynes’ effective Hamiltonfarfor

asymmetric tops, which includes contributions from various T » K

magnetic interactions. A +1 even
Here we take a new approach to this problem, one that B, -1 even

relies on the derivation of a closed-form analytic expression gz Ii ggg

for the intensities, assuming arbitrary relations between rota-
tional intervals, asymmetry, and fine structure splittings. This
approach is motivated by the likely success of future high-
resolution experiments on the singlet—triplet transitions of a for K=0 and r==x1, 3)
wide variety of molecules, requiring a more general methoqNhere

for their interpretation. In the present instance, we make two

simplifying assumptions in order to make the problem fy=1 for K>0 and fy=2""2 for K=0. (4)
tractable. Only the spin—spin interaction is taken into
account®** and only one spin sublevel of the nonrotating
molecule is assumed to be radiatively actteéd more gen- A=r(—1)N==1, ®)

eral expression for the intensities is also obtained and comyre defined for the characterization of the symmetrized basis
pared with the Hougen factor8 We test our approach by fynctions. The reason for using is that this is a “good
computing theT, — S, spectra of pyrazine, pyrazirr, and  gyantum number” for the rotational, spin—spin, and spin—

the pyrazine—Ar van der Waals complex, for comparisongrpit Hamiltonians(see below The relations betweefr,
with existing and future experimental spectra. The approacBq) for differentK are shown in Table Il

described here can be extended to other molecules, thereby gince the asymmetric top Hamiltonigh) has no matrix

anticipating new experiments in high-resolution spectrosgjements between the basis sta@sdiffering in eitherT’,

copy. \, or 7, its eigenfunctions expanded in this basis can also be
characterized by, , A, and 7 (in addition toN andK),

In Eq. (3), two additional “quantum numbers,* and

2. THEORY ~ (FT A oNi) ~
. _ sl AT
2.1. Rotational states in S, |FSFr)\TNIK> ; CK |Fr)\7'NKK>, ©
Pyrazine hasD,, symmetry in its ground %, lA]_g) wherei labels the eigenvalues #f, for a givenl', , A, 7, and
and first excited triplet Ty, °B;,) states. The smallest mo- N. Here K runs from O toN over all odd or even values
ment of inertia is about the axis passing through the twalepending od”, (see Table I). The asymmetric top func-
nitrogen atom$>#4Therefore, the rotational Hamiltonian for tions are labeled witH's because, unlike the case of the
both S, and T, is of the form symmetric top, they are dependent on the rotational constants
H,= BN§+AN§+CN§, (1) Qf .the gnégnr (}?ITeN%tromc state. Thg elgenyelllues'and the coef-
_ ficientsCy S ' are found by diagonalizingl, in the ba-
whereA>B>C are the rotational constantsearly the same  gjg (3). The Hamiltonian(1) conserves all qguantum numbers
in the two states; see Table BndN, , , are the projections except forK. Using the notation

of the rotational angular momentum vector on the axes of the - -
molecular coordinate framgMCF), the inertial axes. For a (T ATNKK[H T ATNK'K)=(K|H,|K"),
symmetric top fA=B) without spin, the operato?, N, e optain the following nonvanishing matrix elements:
andNs, i.e., the rotational angular momentum squared and
its projections on the axis of the MCF and on the axis of
the laboratory coordinate fram&CF), respectively, consti-
tute a complete set of commuting operators.

The electronic—vibrational—rotationdEVR) wavefunc-
tions can be written as

|Ts;NKK)=|T'9)|NKK), )

wherel's (=A,q for the vibrationlessS, state is the sym- +C+ 1 7(B—AN(N+1) 7.2
metry species (IR, irreducible representatipnof the 4

electronic—vibrational wavefunctidi's), N is the  rotational ¢ k=1

angular momentum quantum number, 80&ndK are the '

eigenvalues oN, andNs, respectively. As a basis set foran  (K|H([K+2)=(K+2[H|K)

asymmetric top without spin, we use the symmetrized rota-

(K|H,|K>=%(A+B)[N(N+1)—K2]+CK2 (7.0
for K#1,

(1|H,|1)y= % (A+B)[N(N+1)—1]

1
tional wavefunctions that transforifunder rotations by an =2 (B—A)[(N—=K)(N—-K-1)
angle 7 about the MCF axgsaccording to the IR'T",=A,
B;, B,, B; of the D, group, X (N+K+1)(N+K+2)]¥2 (7.3

IT ATNKK) = 2~ Y INKK) + 7N, — K, K)] for K+0, and
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(0[H,[2)=(2|H,|0)=2"%4B~A) ISINKP = (—1)S3*K\2N+1

X[N(N=1)(N+1)(N+2)]"2 (7.4 s s J N) ~
X JPP)6|So), (13
for K=0 andr=1. Po \lo P —K | )0|Sa)
They obey the selection rules whered is the time-reversal operatdf,
AN=N—-N"=0, Ar7=AN=0, AK=0,x2. (8) 6|So)=(—1)5"7|S,— o). (14)

With the use of Eq(14) the expansion in Eq13) can be
recast as

|ISINKP=2N+1 > (—1)"*P
Po

2.2. Spin—rotational states in T,

For a symmetric top with spin, three sets of commuting
operators can be forme@ee Appendix in Ref. 1 for com-
mutation relations involving all relevant momenta and their
projections on the MCF and LCF axes J s _

The first set is obtained by addi®j andS; to the above X N) |JPP;So),
rotational angular momenta. The EVR wavefunctions —P o K
IT+;NKK) (I'+=By, for the T, state vibrationless wave- where(...) denotes a Wigner 3J-symbol.
function |T't)) are multiplied by the spin functionsSo), We use the symmetrized spin—rotational wavefunctions
whereSis the total spin quantum number ands an eigen-  in the form of Eq.(10) as the basis set for an asymmetric top
value of S;. We call this Representation |, the uncoupled-with spin—spin coupling. Again, the rotational Hamiltonian
spin representation in the LCF. (1) conserves all quantum numbers excKplts nonvanish-

The second set comprises the opera®tsJ?, J,, J;,  ing matrix elements in the symmetrized badi6) calculated
andS,. The rotational part of their common eigenfunctions with the use of expansiofl2) are
is [JPP) and the spin part i$So’). Here,J is the total an- (T ATSINKRH, [T A 7SINK BY=(K[H |K"),
gular momentum quantum number aRdP, and o are ei-
genvalues ofl,, J;, andS,, respectively. This is Represen- Where(K|H,[K") is given by(7). The selection rules are the
tation 11, the uncoupled-spin representation in the MCF. ~ same as in Eq8), plusAJ=0.

The third set of commuting operators$$, J%, N2, N,,
andJ;, and the corresponding mixed spin—rotational wave- ] ) ] )
functions are|SJNKF}. This is Representation ll, the 2.3. Fine structure of the spin—rotational states in T,
coupled-spin representation. This notation also will be used The Hamiltonian of the spin—spin interaction in the trip-

(15

for the singlet-state rotational wavefunction, in which caséet state has the forfi

one has

|SINKP = 8985085k INKK). ©)

Then the symmetrized functiof3) is denoted
IT A7SINKP =2 Y4 |SINKP + 7/SIN —K,P)]
(10

for K=0 andr= =1, and the expansio(6) for the ground
state takes the form

|FSI‘;!)\UTHSHJNNNi HEH>

_ z C(FSF;’)\”T”S”J”N"V’)

) |F;I)\//T//SIIJ//N//KII~Pll>’ (11)

K//

where the ground state quantities are double-primed.

— 2 1 2 2 2
HSS—D(SX—§S)+E(SZ—SY), (16)
whereS, | , are projections of the spin angular momentum
operator on the MCF axes, abdandE are the fine structure
splitting constants given in Table Il. In a nonrotating mol-
eculeHgg has three eigenfunctions,

HsdTxy2 = Txyd Txy.2) 17
where
Tz:—zD, T=}D+E, TZED—E. (18
3 Y3 3
The eigenfunctions obey the relationships
Sx|Tx>: Sley>:Sz|Tz>:0- (19

The spin—rotational functions can be expanded in termshese functions transform as the y, z components of a
of products of the pure rotational and spin functions using,ector under theD, group rotations of the electronic spin
both uncoupled Representations | and Il. According to thgariables according t&', =B, B,, and B;, respectively.
momentum-addition rul&’ which for Representations | and sjnce these rotations change only the sigBafS,, andS,,

Il can be writtenJ=N+S and N=(—S)+J, respectively,
the expansions have the fotfi?

ISINKP =(—-1)N-S*P\23+1

N S
“2 % 5

J -
_E)|NKK;SE), (12)

the Hamiltonian(16) is invariant, and hence has no off-
diagonal matrix elements. Similarly, the products in E)
transform by ', XT',=A, and hence identically vanish.
Thus, Eqgs(18) and(19) are consequences of the symmetry
properties of the system.

The above wavefunctions can also be expressed in terms
of the spin function$Sc) with a definite spin projection,*®
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To=-i2"Y4|1)~1,-1)),
Ty =2"Y41D)+|1,-1)),

|T,)=~i[10). (20
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(SolTE)ISo")y=(-1)% 7
S 2 S
0_/

-0

X

)(SIIT(Z)IIS% (25)

where the reduced matrix element is

Let us define Cartesian components of two traceless tensors,

2

1 1
Tij:§(351+3j3)—§525ij, Qij=Qiidj, Qu=3Db,

1 1
Qy=—3D-E Qu=-3D+E, (22)

and the corresponding spherical tens'ﬁifg and Q(Vk) of the
second rank= 23" by

3 .
TBZ): - \/; T2, T(iziz i(szi |Tyz)v

1
8=

5 (T Ty = 20Ty,

Qy¥'=6""AD-3E), Q¥=0,

Q§%=—%(D+E), (22

with all projections in Eqs(21) and(22) being taken on the

MCF axes. Then Eq.16) takes the form

k
Hes Ek (—DkQTH (23)

which enables us to invoke the Wigner—Eckart theorem to

(S| T?|S)= 1 [(2S—1)2S(2S+1)(25+2)(2S+3)]*?
2.6
(26)

(=5 for S=1). Substituting Eqs(25) and (26) into Eq.
(24) and summing, we obtain fds=1

(NK[HsdN'K")=(N"K'[HsdNK)

=(—1)Y"X{5(2N+1)(2N’+1)
2 N’ N)
K'-K —-K' K

N N 2
(2)
>< ry
[1 1 J]QK‘K

where{...} stands for a Wigner 63 symbol. The following
selection rules stem from Eq&2) and(27):

AS=AJ=0, AN=0,x1,+2, AK=0,t2.

X

27

(28)
Matrix elementg27) also obey the relation

(N,=K[HsdN',=K")=(=1)N*N(NK|HsdN'K"),
(29)

which is easy to deduce from the symmetry properties of the

3-J symbol®’

The matrix elements in the symmetrized badif) are

calculate the relevant matrix elements for a rotating mol-off-diagonal in7, N, andK. Introducing the notation

ecule.

Consider first the matrix elements Kk gin the nonsym-
metrized basi$SINKP,. SinceHgscommutes withs?, J2,
andJ;, and does not commute with? andN,, it is diago-
nal in S J, and P, but not in N and K. Introducing the
notation

(SINKRHsdS'J'N'K'P’)
= 555933 Opp (NKIHsdN'K")

and inserting expansiofl5), we obtain

(NK|HsdN'K")=(N'K'|HsdNK)=\(2N+1)(2N’ +1)

J S
x X (—1)2”Q(f)( KN)

vPoo' -P o

J

X
-P o' K’

(So|T?)|Sa"y. (24)

The advantage of using5) rather thar(12) is that bothQ{?)

and (Sa|T?)|Sc"’) are independent of the Euler angles, so{ TNK|Hsd7'N'K")=(NK|HsdN'K"),

that the rotational factor is merel§,; Spp: Opp: . The re-

maining pure spin matrix element in EQ4) is calculated by

applying the Wigner—Eckart theoreth,

(T A7SINKHHJI, A/ 7'S'I'N'K'P’)
= 8\, Oss By B (TNK|Hsd 7/N'K’) (30
and applying(29), we find
(7NK|Hsd 7' N'K"y=fyf [(NK|HgdN'K")
+7(N,—K|HgdN'K")].

It is easy to verify that théd g matrix is symmetric in this
basis, as well as in the original bassee Eq.(24)). As is
evident from Eq.(30), the following selection rule, in addi-
tion to (28), applies to spin—spin coupling:
AN=A—-\'=0. (3D

Explicitly, the nonvanishing matrix elements bifsg in
terms of the matrix element27) are

(INO|Hsd 7'N’2)=v2(NO|HsdN'2),
(7N1|Hsd 7' N’1)=(N1|HgdN'1)+ 7(N,— 1|HsdN'1),

K+K'#2. (32
The total Hamiltonian for the triplet state can be written
HT=Hr+8HSS! (33)
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wheree is a parameter to be used in drawing a correlationTABLE IV. Symmetry species’; andI'; of the rotational sublevels of the

diagram. SincéH; has no matrix elements between Symme_wbrat‘lonk‘essB1u andB,, states, resp_ectlvely| that will mix via an arbitrary

trized basis state€l0) differing in eitherT, or X, its eigen- coupling independent of nuclear spin. The symmetry species of the corre-
. 9 . r ! g sponding nuclear spin wavefunctiods,s, are also given.

functions can also be characterizedIbyand\ (in addition

to the conserved quantum numbé&sl, andP). Puttinga T Iy Tns
prime on all quantities relating to the triplet state, we obtain, B, B,
the following representation for the wavefunctions: B, B, A
(T-T'\'S' i) B2 By Ba
! P _ T !
ITT/N'S'J'i'P )= NEK C.uL Bs A B,
T

XTI 7S INKPY, (39

i . . '

W’her?l’ labels the eigenvalues &iy for a givenl', , A, These permutations involve spinless carbon nuclei, spin-one
S', J'. For any givenJ?, T'; runs over the IR's of thd;  pitrogen nuclei, and an even numigawo or foun of protons
group, and, for eachi’;, the A" assumes a definite value \yhose total spin is again an integer. Then, according to the

from Table I1I. The,sun)m%tion on,the right-hand si/de of EQ.payli principle, the total wavefunction must be invariant un-
(34) is taken oveN'=J", J'+1; K’ runs from O toN' over  ger the feasible permutations of the nuclei, i.e.,

even or odd values for a givel, , according to Table IlI,
and the sum over’ involves only a single term, since is I'=I"=A, (36)

uniquely fixed by’ and N’ according to the definition in whereA is the totally symmetric representation Bf.

Eq. (5. Now, the interaction Hamiltoniai;,; of interest is in-
dependent of nuclear spin. This means thiat= ¢, and
I's=T . Combining this with Eqs(35) and(36) yields the
final relation
The triplet state is assumed to be mixed, via spin—orbit e
coupling, with an excited singlet sta, havingI's =By, Lel',I' =Tl I'p =T, (37
symmetry;®** giving it radiative characte(We do not con-  For the mixing of the vibrationlesS, and T, states one has
sider a mixing of the ground state with an excited triplet statep =g, , I'.=B,,, and I',=T,=A,. Then Eq.(37) re-
Tn, which may be of importance in pyraziffy. The inten-  guces toB,I',=B,I'/ =I'ys, where theD, group IR's are
sities in theT;— Sy absorption spectra depend on the degregsed instead ob,,. Table IV shows the symmetry species
of this mixing. We first consider general constraints, due toyf the rotational levels that are allowed to mix according to
the Pauli principle, on the symmetry species of levels thathis result.
can mix with one another. These restrictions are independent  Next, we derive an expression for matrix elements of the
of the form of the particular mixing operator. spin—orbit HamiltoniarH g, which couplesT; to the singlet
Let ¢ and ¢’ stand for the total wavefunctions of the manifold S,. In the Hartree—Fock self-consistent field ap-

Hin.. They are represented as products of the electronic, Vipperators, each acting on the coordinates of a single
brational, rotational, and nuclear-spin wavefunctions, electront3*

b= ey b s, S wé‘ﬂ; ‘pr, wr,w’

whose symmetry properties depend on their behavior with
respect to the feasible permutatibhef the nuclei. Every
such permutatio® can be performed by a rotatidRe D, .

This is done in three steps. First, the MCF is rotated wit q h | disol i th !
respect to the LCF, which results in the transformation?"d ©N the nuclear displacements, apds the spin operator

. —T ., whereT, is an IR ofD,. Second, the electronic of the ath electron. Equatiort38) can be further simplified

coordinates and nuclear displacements must be returned p(;oviding that the electronic states of interest are the ground
their initial values by the inverse rotatidR™%; in D, it is state and only one-electron excited states. For instance, the

the same a. This leads toi,— (Tothe) (T, 14,), Where 1I_BZU and®B,, states of pyr_azine are formed _by promoting a
I'e andI’, are again IR’'s oD,. Third, the permutatio® is ;lngle electron from th? f'”fdgfgnd n. orbitals, respec-
applied to the nuclear spin variables, resulting dn. tively, to the empty orbitakr} .°*"° Then the summation in

— T hsthns- Since the set of three feasible permutations pluéq' (38) can be taken over two electrons,
the identity(no rotation operator constitute a group isomor- He=b;-s;+b,-s,. (39

phic toD,, I',sis an IR of D, as well. _
The symmetry species of the total wavefunction with The equivalence of Eq¢38) and (39) can be proved by a

respect to the feasible permutations is therefore the produéfraightforward calculation, e.g., using the method of second

(i 37
of the symmetry species of each of the components, quantizatior?’ o _
In order to calculate th&,— T, vibronic matrix element

[=Tl, I\ Fhs, /=Tl T (39 of Hg, Eq.(39), we note that the spatial part of the elec-

2.4. Singlet contamination of the triplet state

Hsozé Da-Sa, (38

where b, is a body-fixed vector whose components in the
hMCF depend on the Cartesian coordinates ofatieelectron
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tronic wavefunction is symmetric under electron permuta+ions (see Eq(9)). Inserting Eq(41) and the spin—rotational
tions for the singlet state and antisymmetric for the tripletfunctions in the form of expansiofil5), we obtain after

state. Then, the vector simple algebra
c=(I's |bs|T'1)=—(T'g |[b,|') (40) (K[Hgd I'N'K" Y =pf —1)Y "X+ 1 2N" +1
can be defined for each participating singlet state, and the ) J 1 N’
desired matrix element takes the form X §+1 N _w o k| @D

where use was made of Eq&l3) and (45). These matrix
elements have the obvious property

(Tg |HdT1y=cG= > (-1 cVc, (41
n o=0,x1
whereG=s,—s,. The components of the first-rank spherical (= K|HgJ'N’,—K’)=(—1)N*"N(K|HJI'N'K"),
tensors are defined Hs (48)
cP=ic,, cW= Ii2‘1’2(cxiicy), (42) Whe_reNzJ’ according to Eq(46). The matrix elements of
- H¢, in the symmetrized basid0),
and similarly forG("). The matrix elements d&(" over the
spin functions So) are easily calculated to give

(00(— 1) GM 16"y =—i6,, . (43)

(TATSINKRHT/N 7S’ I'N'K'P)
=81 O3n033 e (TK|Hed 7/ I/ N'K ), (49)
In the particular case of pyrazine, the spatial parts of thec an be expressed in terms @):
electronic wave functions can be written in terms of one-  (7K|Hgd7'I'N'K")=f fi ., [(K|HsdI'N'K")
electron orbitals as P (KIHG N =K Y], (50
ITs) =27 Y4 my(ry) mi (ro) + ma(ra) wi (ry)], where use was made of E@8). The selection rules for the
|FT>=271’2[n+(r1)1-rZ(r2)— n.(r)mh (rp)], matrix elementg49) are

i AN=0, AS==*x1, AJ=0,
wherer , are the coordinates of the two electrons. Then,
AN=0,x1, AK==1. (51

1
C:§<7Tz|b|n+>- We see thatH, conservesh and changeX by one.
According to Table Ill, this means that,, mixes the states
Since , and n, transform asB; and A, respectively, the of the following rotational symmetrie§’,: B;—B, and

vectorc has only one nonvanishing component, Bs;—A. In other words,H,, satisfies the general require-
1 ments for a mixing operator as displayed in Table IV. Sub-
=5 (mybyln.)=ve2, c¢,=c,=0, (44)  stituting Eq.(47) into (50), we obtain
(TK|Hd 7' I'N'K Y=o i (=17 K TL2N +1

where the spin—orbit coupling parametewig,.

Using Eq.(44), we recast Eq42) as JJ 1 N
X E UI _ K ! K/
Cf,l)=—ia'vso. (45) o'=*1 o
From Egs.(20), (43), and (45 we deduce that only th&, T Jo1 N ) (52)
triplet sublevel is contaminated with I8 singlet via spin— -K o —K'J|

orbit coupling (41). This result is a consequence of Penneret al?® introduced the conjecture of a so-called

oo St e hoth s G of he s copin,assuming it o
P P a manifold of triplet states with gived’, a single state

and nuclear displacements. Hence, a vibrationless mplﬁ%ith M ;=0 borrows oscillator strength from an excited sin-

level [I';T",;) can be mixed with a vibrationless smg|étsn> glet. This is shown to be incorrect by our E§2). It is easy
only whenl'yXI',=I'g . ForI'y=B, andI's =B,, it fol- 5 verify that for everyd’ =1, all 3(2)' + 1) triplet sublevels
lows that only theT, level with I',=B3; mixes with the  borrow oscillator strength frors, .

singlet. The next step is to calculate the singlet-contaminated
Next, we calculate the spin—rotational matrix elementsriplet wave function,
of Eq. (41),

. - DTN 7' S INK'PY)
(SINKRHJS' I'N'K'P’)

= 53nS5 5 (K|Hed I'N'K), (46) -

whereS=0 andS'=1. NowH, denotegI's [Hs{I'r), and
standard notation is used for the singlet and triplet wavefunc-

(TATSINKRHJT/N'7'S'I'N'K'P’)
Er—Es,

X|Ts ;T ATSINKP, (53)
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where the unperturbed triplet function is omitted and the sumr-_ TN 7S IN'K P’ )
is taken over all quantum numbers of tBg state. The en-
ergy denominator depends on the quantum numbers of the

participating states, and in general E§3) depends on the Uso fK/2 V22N’ +1 2 (1))
rotational constants of the contaminating singlet state. How- Pr=-J'

ever, in pyrazine thes, state is assumed to lie at a much J’ 1 N’

higher energy than th&, state, in which case the purely X o’ (—P’ o K’)

electronic energy gapE betweenS,, and T, can be substi- ol=%1

tuted for the energy denominator in E&3). We also note J’ 1 N’ ~

that, strictly speaking, the linear combinatiof84) found +7 P g —K’) IT's ;3"P'P’;00). (57)

after diagonalizing the total triplet-state Hamiltoni&B?3)
rather than the basis functior§$0) should be corrected for Here, the singlet wavefunction must also be symmetrized.
the contamination witl$, . However, after making the above We rename the summation variablés,—K and o’ — o,
approximation to the energy denominator, we obtain theand recast the sum ov&ras

same result by calculatinghd) and inserting it into(34). it

: : ) 1 N’
Finally, the symmetric top wavefunctions for tBg state are 2 P21V o )
used in Eq(53), thus neglecting th&, asymmetry effect. As = o==1 o

a result, the mixing of the triplet state is independent of the
rotational constants of the contaminating singlet state.

+ 7 I's:J'KP’;00
Inserting Eqs(49) and(52) into (53) yields 7 ”l Sh )
~ J’ ! !
|FT;F;)\,T,S,J,N,K,P'> + 2 fﬁ(_l)J'—K o (J 1 N,
K=0 o=+ K o K
1
~AE > S BNy Sopr J 1 N -
+ 7' 1 1Ts;d,—K,P’;00). (58
~ K o —K n
X{1K|Hgd 7' I'N'K") s ;T A7SINKP _
n In the second term of Eq58) we change the sign of the
v J summation variableg— — . Using the symmetry proper-
ASI; >t (—1)Y P L 2N+ 1 ties of the 3J symbol$’ and the identity ¢')?=1, we re-
P'=0 write Eq. (58) in the form
J' 1 N’ J' ' ’
J 1 N
X 2 o’ ( , , ,) 20133 +K
o1 -P" ¢ K KZO fk(=1) Uz_,lo-(—K o K')
J’ 1 N’ ~ , /
! . ! / ! ! ! J 1 N ~
+7 Y Y _K,>}|an,rr)\ 7SJJ'P'P >, + 7 K o _K/>:|[|‘J’KP’>
54 ~
64 197~ KB |Ts 00, (59

where we changed the notati¢hto P’ following the con-  whereris given by Eq(55). By definitions(3)—(5), (9), and
vention thatk is a projection olN andP is a projection of]. (10), the total wavefunction in Eq59) can be written
In the singlet function,r is fixed by the condition that

-1 . D
A=\, which yields(see the definition o in Eq. (5)) 212 g ;TN 7SI I'KP’;00) (60)
o with A=7(—1)"=7(—=1)N'=\’. Then inserting Egs.
r=1'(-1)7 "N, (55  (58)—(60) into (57) again leads to Eq54).

Equation(54) can be derived in a different way. First, 2.5. Intensities of individual singlet—triplet transitions
we calculate the contaminated triplet spin wavefunction ne-

) . . Contamination of the triplet state with the singlet state
glecting rotations and using Eq&ll), (43), and(45),

S, results in a nonzero transition mome(t g u|T'1T,,),
which is proportional tqT"s|u|I's ), wherep is the electric
/ , dipole moment operator. The only nonvanishing component
Tr;S'o >_) £ (s 00Hdl'7iS'0")I's, ;00 ofpthe transition raoment in the I\)IICF fd?S:Alggand an
=By, is (I'duy|T's) since the symmetry species pf, is
=—20 '|T's ;00). (56)  B,,. The corresponding Hougen intensity parameter
w(Bag)® can be introduced by the relationship

Then, we insert this into expansio$0) and (15) for the

symmetrized spin—rotational function, #(Bag) = VI iE AE <FS|'U“V|FS> AE (62)
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whereu, now stands for the matrix element and the notatiorwhich is similar to Eq(41), except that projections are taken
1 (Bgg) reflects the fact that the triplet sublevigl borrowing  in the LCF rather than MCF. The LCF projections can be
the B,,«+A;4 oscillator strength belongs to the symmetry expressed in terms of the MCF projectidhs
specied” ;=B34

The intensity of an individual transition is given by

) _ (1), (1)
I(TrI{AS'Y'i" T s\ 7'S"I"N"i") Ho g=§o;i1 Pootta (9

— . ! ! ! !'!~I . nm\ n_ngQnn N'N~N 2

—32:, (T N'S' 0P| pueeTg TN 7S I'N"I"P")%, |5 Eqgs.(64) and(65), w'D ande'™ are invariant with respect
PP _ _ . o .(62_ to rotations, whereas the Wigner functioD%lg depend on

wheree is a unit vector in the direction of the electric field. the Eyler angles. We substitute E¢64), (65) and expan-

Defining the first-rank spherical tensor componentg@nd  gions(11) and(34) into Eq. (62), obtaining
e both in the LCF and MCF by the relations given in Eg.

(42), e.q., ) ” _
. |(FTF;)\/S’J/|,<—F5Fr)\"T”S"J"N”I”)
et=ie;, el=7Fi2 Vezxiey), (63) ,
- I =3> | > cli).ciom, , 66
and similarly foru where a tilde indicates the LCF axes, we R | e T NTKTEKE 1
have i
pe= 2 (— 1)1‘7’,u(~1)e(1l ’ (64 where we omitted some indices of the coefficients of expan-
=01 7o sions(11) and(34), and
My=(I'r; TN 7 SIN'K'P| Y (—1) "D ulPel™|Ms; /N 7'S"I"N"K"P"). (67)

oo

The triplet function is approximated by Ep4), J’ 1 N’
v T pr o —k ) |M2 (68)
Mle—EE fofi(—1)Y P 12N +1
P/
J’ 1 N
X ! where
(r’gila- (_P, o’ K,)
|
M,=(I's ;T\ 7SI PP (1) "D uPe I T7N"7'S"I'N"K"P") (69)

go

and 7 is given by Eq.(55). The electronic factor in Eq69) in terms of the integral of a product of three Wigner
is functions®” With the use of Eqs(9), (10), and(55) the ro-
tational factor becomes
(Ts |uPTs)=|olmy V2. (70

We will choose the LCF axig along the electric field, e )1 amsn =
since the result is independent of the field direction. TherMs=fp:firdys —yn| (I KP|0=§‘11 D LI3"K"P")
from Eq. (63 we havee?()l)=i, e=0, and Eq.(69) be-

*z

ComeSMZZ_iMyMgl\/Z, where +7’”<J’KE’| E D(EO)|JH,_KH,’E)H>:|
o=*+1 o
— ! 1 DD (3!-_) N I R LINLIA LY, r T
My=(T',\'7SJJ'P'P |U:E¢1 D S|T/N"7"S"J"N"K"P") o frndy an(— 1P P 2T+ D27+ 1)
(71) J' 1 JH
X
is the rotational factor. This matrix element can be expressed 0:2:1 [( -P" o K”)
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” B0 P

After inserting Eqs(67)—(72) into Eq.(66), the last factor in
Eqg. (72) squared can be summed to give unity. Thus, we
arrive at the final expression for the intensity of an individual
transition:

I(FTF;)\IS,J,| ,Hrsl_‘:,,)\”’rﬂsﬁ\]”NHi l/)

J/
_P’

1

(o

J”

7
—K"

Sy x| m(Bsg) 223" +1)(23"+1)

4
J'+1
x| > \2N'+1
N'=]3"-1]
N’ )
X E fK’C§\I|/2<'

K=

(only eve7n or ody
J!
i” 2
fClr > 2,
P'=0

J"

>

"=0

(only even or odg

X

2
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FIG. 2. Correlation diagram for the lowest spin—rotational levels ofTthe
state of pyrazine in the gas phase.

rather than between the states represented by the functions in
Egs. (2) and (15). Consequently, the Boltzmann averaging
necessitated by a given experimental arrangement does not
involve any additional complications associated with using

the signed angular momentum projectidfidnstead, each

X > 0'Fprgrg| (73
oglo==1
where
J’ 1 N J’ 1 N’
FP“’"’:{ b kTl —K’”
J 1 Jo 1
% - P’ K" s -P' o —K””’
(74)
and, according to E(5),
=N (DN, =a(-1)7 (79

For givenI'; andI'; the evenness or oddnesskof andK”,
as well as the values of’ and\”, are found from Table IlI.

The following selection rules are evident from the properties

of the Wigner 3J symbols in Eq(74):
AJ=0,£1, AN=0,x1,=2, AK=0,%x2. (76)

For instanceP’ differs from bothK’ andK” by one, there-
fore K’ andK” differ by 0 or 2. Since th&’s are both even
or odd, and since tha&’s are opposite in sign, the allowed
transitions(see Table I} are A—B; andB,« Bj.
Equation(73) is the main result of the present paper. It

intensity calculated from Eq73) need only be multiplied by

g exp(—E/KkT), whereg is the nuclear spin statistical weight.
The singlet—triplet spectrum of a polyatomic molecule is

a very complicated matter, even for a symmetric top without

multiplet splitting. Therefore, our focus in this paper is to

develop a general approach accompanied by a detailed deri-

vation for a specific molecule, which can easily be extended

to any other one. A more general formula is given in the
Appendix.

3. RESULTS AND DISCUSSION
3.1. Correlation diagram

A correlation diagram for the spin—rotational levels of
the Hamiltonian(33) is shown in Fig. 2. Foe=0 (no fine
structure(FS) splitting) the levels of an asymmetric top are
shown as horizontal bars on the left-hand side of the dia-
gram. The level labeling iBlx i, ,, where the asymmetric-
top quantum numbeK, ; reduces to the projection of the
angular momenturil on the top axig, K, in the limit of an
oblate symmetric topA=B). The asymmetry splitting for a
nearly oblate symmetric top is first-order in the small asym-

can be applied to molecules for which only the spin—spinmetry parameteA—B for K, ;=1, and second-order for
interaction is important, and in which only one spin sublevelK +1>1. Therefore, the splitting of the;2and 2, levels is

of the nonrotating molecule is radiatively active, as in thenot seen at the energy scale of the figure. The symmetry
T,—$S, absorption spectrum of pyrazine. A more generalspecies of the levels are shown in brackets.

formula, valid for other molecules, is derived in the Appen-
dix.
In Eq. (73), the intensities are given for transitions be-

Turning on the FS interactions(>0) produces a split-
ting of all levels other tharMKflKH:OOO, as shown in Fig.

2. Typically, three components are observed, corresponding

tween the true molecular eigenstates, represented by the three possible values d&=N+S. In general, the separa-

symmetrized rotational wavefunctions in Eq8) and (10),

tion of the three components decreases with increabing
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FIG. 3. The calculated singlet—triplet

spectrum of pyrazinéy at two different
Resolution 0.02 ¢cm -1 resolutions. The rotational temperature is
N Tio= 10K, Jpa=12.
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(andJ). The J=3 components of the ;2 and 2, levels re- 6J+ 3, being defined by the usual momentum addition rule.
main nearly degenerate, since their coupling is to theaBd
3,5 levels, which lie at significantly higher energy. Each set
of FS components belongs to the same symmetry species
the levels from which they are derived &£ 0. We next used Eq(73) to calculate the singlet—triplet

The spin levels of the nonrotating molecule and theirabsorption spectrum of thegoband of pyrazindy,. The
correlation with the spin—rotational levels are shown on thespectrum was calculated by Boltzmann averaging the inten-
right-hand side of the figure. The energy separations of thsities of the individual transitions using a rotational tempera-
Tx,y,. are arbitrary. A full correlation diagram would be two- ture of 7 cm! (10 K). The summation over the transitions
dimensional, depending upon two parameters of the FS inwas truncated at a maximum value of the total angular mo-
teraction HamiltonianD and E (see Eq.(16)). Instead, we mentumJ,,=12, at which point the level populations were
show a one-dimensional section of the diagram, in wiikch less than one percent of the total population. Nuclear spin
and E are both proportional te, while their ratio, E/D, statistical weightsg(B,) =g(B3)=9, g(B,) =13, andg(A)
remains constanfsee Eq.(33)). In this case the correspon- =17, were also taken into account. Each line was dressed
dence between the symmetry species of the spin—rotationalith a Lorentzian whose full width at half maximum repre-
levels and the pure spin levels is not uniquely defined, beingents the resolution of the calculated spectra.
dependent upon the value d&/D. Indeed, each spin— The spectra calculated with the parameters of Table I
rotational wavefunction involves contributions from all three (ande =1 in Eq.(33)) are shown in Fig. 3. The top spectrum
spin levelsT, , ,, as can be seen from the expans{ah) in has the same resolutidr-2 GHz) as the published experi-
the limit of e =0. Whene >0, the same is true for the wave- mental spectrd>?® The spectrum consists of a strong central
functions(34), where the relative contributions df, , , de-  Q branch due to thdaN=0 (AN=N’—N") transitions, an
pend one. In the limit of largee, one of them dominates, but R-form branch involvingR(AN=1) andS(AN=2) transi-
which one cannot be predicted without calculations, sincdions on the high-frequency side of tii¢ branch, and &-
this depends on thE/D ratio. form branch due toO(AN=-2) and P(AN=-1)

As an example, let us consider the=1 components of transition€>?® on the low-frequency side. At this level of
250, 202, and @y, which correlate withT,, T,, andT,, resolution, most of the individual bands in tReandP-form
respectively. If we change the sign of the FS consErthe  branches of the calculated spectrum are structureless. Yet
ordering of the leveld, and T, is reversedsee Eq.(18)). some splittings are seen, similar to those observed in the
However, because of the non-crossing rule for terms of thexperimental spectr&:?® For example, theP(1) member
same symmetryA in the present cagethe previous corre- has a shoulder on its red side, wher@4®) is structureless.

g.sz. Singlet—triplet spectrum of pyrazine- h,

lation is not preserved. Instead, the 1 components of 2, R(0) andR(2) are weaker thai(1) and exhibit more ob-
202, and Q@ now correlate withT,, T,, andT,, respec- vious splitting.
tively. The FS splitting becomes more pronounced in the spec-

The number of levels with a givehin Fig. 2 is equal to  trum calculated with a higher resolution of about 600 MHz
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(bottom panel in Fig. B The line splittings are more exten- molecule. Recently, a pure Ca&) spectrum was reported
sive in theR-form branch than in th®-form branch because in H,CSe*°
transitions in thér-form branch access high&walues in the Figure 5 shows th&-form branch on an expanded scale
triplet state. at higher resolutior{150 MH2), to illustrate the relative im-
The effect of the FS interaction on the spectrum is madegortance of the asymmetry and FS splittings in pyrazine. The
clearer in Fig. 4 by the comparison of two spectra, one withasymmetry splitting is more important for transitions termi-
£=0 and the other witle = 1. With £ =0, theR-form branch  nating inJ<4, whereas the FS splitting is more important at
is stronger than th®-form branch. Introducing the FS split- higherJ. Note, in Fig. 5b, that the asymmetry split bands still
ting reduces the overall intensity of each branch, but thgreserve their identity as rotational bands since the splittings
effect on theR-form branch is greater, since the degeneracyare smaller than the band separations. In contrast, the FS
of the triplet levels folR and S transitions is higher than that splitting in Panel c is large enough to fill the gaps between
for P andO transitions. Hence, thB- and Stype transitions the low J bands. Thus, these bands are actually spin—
are split into a larger number of components sharing the totalotational rather than rotational in nature. Clearly, a high
intensity of a given transition. As a result, the intensities ofresolution of about 100 MHz will be required to observe this
the P- and R-form branches become more similar, and thebehavior. Even higher resolutiof~10 MHz) will be re-
spectrum acquires a sort of mirror-image symmetry with re-quired to observe the true molecular eigenstates.
spect to theQ branch. Such uniformity of highi-and low-
parts of the spectrum is expected from the fact that the rota- _ _ _
tional spacing is proportional toJ2and the rotational level 3-3: Singlet-triplet spectra of pyrazine-  d, and the
degeneracy to 2+ 1, so the density of states is essentially PY'aZine—Ar van der Waals complex
independent ofl. We also used Eq(73) to calculate the singlet—triplet
Figure 4 also clearly demonstrates the transition fromspectra of pyrazine, and the pyrazine—Ar van der Waals
Case(a) to Case(b) behavior. In bothP-form andR-form  complex. Our objective was to compare these spectra with
branches, the low bands are split significantly, the splitting those of pyrazindy,, thereby exploring the effects of vary-
being of the order of the rotational band spacing. This coring the magnitudes of the rotational constants on the Case
responds to Hunds’s Cage) coupling (or, more precisely, (a)—Case(b) transition. In the calculation on pyrazimg-
Case(ab), as noted earligr With J increasing, the splitting we used the known rotational constants of Syestate(see
decreases and ultimately disappears in the Higtends, Table I) and assumed, for th€,; state, that the rotational
characteristic of Cas@). Thus, we predict that Hund’'s Case constants are reduced upon deuteration in the same propor-
(a)—Case(b) transition can be observed in as large a poly-tion as in theS; state. The smallest moment of inertia in both
atomic molecule as pyrazine under quite moderate resolutiostates is now the moment about thexis** Thus, the rota-
conditions. The effect will also be observable in larger mol-tional constantsA and B are exchanged in the Hamiltonian
ecules, at higher resolution. Apart from the diatomic mol-(1). The nuclear spin statistical weights agéB;) =g(B3)
ecules mentioned in the Introduction, there have been ne6, g(B,)=7, andg(A)=8 in this case.
previous observations of this phenomenon in a polyatomic  Taking these changes into account, we obtain the spectra
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FIG. 5. Evolution of theR-form branch from a sym-
metric top with no fine structure splittinga,

7] £=0) to an asymmetric top with no fine structure
splitting (b, e=0) to an asymmetric top with fine
structure splitting(c, e=1). The starred band in
panel a involves degenerak(2) andS(1) lines;
these are split in panel b due to asymmetry and
further split in panel ¢ due to the spin—spin interac-
tion. Resolution 0.005 ct.

Intensity, arb. units

Frequency, cm ™!

shown in Fig. 6, with and without FS splitting. Comparing rotation decouples the spin from the molecular frame and
the two spectra, we again see that turning on the FS splittindistributes the oscillator strength more uniformly, as noted in
reduces the intensity of thB-form branch relative to the Sec. 3.2.

P-form branch. We also note that numerous lines appear in  The singlet—triplet spectrum of the pyrazine—Ar van der
the gaps between the rotational bands atJpoand that these Waals complex has been observed in a supersonic jet, using
lines disappear at high This behavior is again a manifes- the MPI techniqu¥ at low resolution. No rotationally re-
tation of the Casda)—Case(b) transition; turning on the solved spectra have been reported to date. To model such a

20
4 e=1
10 H
3 -
‘S
=
£
8 04 . .
= FIG. 6. The calculated singlet—triplet spectrum of
Z 20 pyrazined,. Top panel, with fine structure split-
§ ting; bottom panel, without fine structure splitting.
= £=0 Resolution 0.01 cm?, T,,=10 K.
10—
0
-6 -4 -2 0 2 4 6

Frequency, cm !
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S FIG. 7. The calculated singlet—triplet spectrum of
g the pyrazine—Ar van der Waals complex. Top
.°..=’ T panel, with fine structure splitting; bottom panel,
— =0 without fine structure splitting. Resolution 0.005
cm L, T,=1.5K.
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spectrum, we assumed that the Ar atom lies onztexis  tops. With this expression, we have calculated the spectra of
perpendicular to the ring plane, at a distance of 3.5 A, asitishree species: pyrazire;, pyrazined,, and the
in benzene—AF and s-tetrazine—Ar* With this model, the  pyrazine—Ar van der Waals complex, using the available ex-
C rotational constant remains unchanged, wherea&thed  perimental values of the gas-phase rotational and solid-state
B constants are reduced by a factor of 4.8 in both states. Thighe structure parameters of pyrazing-and model param-
nuclear spin statistical weights agf{A)=g(B;)=13 and eters for the remaining molecules. Comparison of the predic-
9(B2)=9(B3)=11. The spectra calculated using thesetions of the theory with the available data for pyrazme-
modified parameters are shown in Fig. 7. shows good agreement with experiment. The remaining mol-
Comparing the spectra for these speciégs. 3, 6, and  ecules have yet to be examined at high resolution.
7), we see above all that the singlet—triplet spectrum of The computed spectra exhibit a number of interesting
pyrazine—Ar is considerably more congested than that of thggperties, the most notable being the transition from Case
bare molecule, owing to the significant decreas@andB. () 15 Case(b) with increasingd and/or increasing molecular
Still, the complex exhibits well-defined branches in its SpeCjze |nclusion of the fine structure interaction in the zero-

trum in the absence of the FS interaction. However, tuming, qer riplet state results in a decrease in the intensity of the
on this interaction has a dramatic effect on the spectrum. Thg_ o4 s transitions compared t®- and O-transitions
low-J rotational transitions, within=1 cm* of the Q branch, branches. and a mo're symmetric spectrum. This effect has

are extensively mixed by the spin—spin coupling. Still, a de-been observed in moderate resolution experim@sAd-

fined level structure exists, although extremely high resolu-;. . ; : . .
. . - S ditionally, spin—rotational transitions appear in the gaps be-
tion (~1 MHz) will be required to expose the individual Y, Sp PP gap

. s ! ween “pure” rotational transition low, fragmenting th
eigenstates. The long lifetime of the triplet state should perE een “pure” rotational transitions at low; fragmenting the

mit such experiments in the near future, raising the intriguin spectrum, but disappear at highThis effect is more pro-

e ) . . . qwounced in pyrazine and the pyrazine—Ar van der Waals
possibility of seeing still more underlying structure, includ- complex, owing to their smaller rotational constants. All of
ing that due to hyperfine interaction and/or couplings toth P df ted t? havi hould be ob ble i o i
nearly isoenergetic ground-state levels. The possibility of ob- € predicted behavior should be observable In experiments

serving such effects is enhanced at higfef. Fig. 7), where performed With_ a resoluti_on os{sl_OO MHz. .
the structure withe#0 is even simpler than that with The analytic expression derived here can be used to in-

=0, the transition to pure Cagb) being “complete.” terpret the singlet—triplet spectrum of any polyatomic mol-
ecule with arbitrarily large(or smal) rotational and fine

4. CONCLUSIONS structure constants.

A closed-form analytic expression has been derived for ~ This work was made possible in part by the US NAS/
calculating the intensities of individual spin—rovibronic lines NRC CAST program, by Grants No. SDQO00 and NJ6000
in the singlet—triplet absorption spectrum of a polyatomicfrom the International Science Foundation, Grant No.
molecule. This expression takes into account both the intraNJ6300 from the International Science Foundation and the
manifold spin—spin coupling within the triplet state and theGovernment of the Russian Federation. It was also supported
intermanifold spin—orbit coupling of the triplet to an excited by the Russian Fund for Fundamental Rese@Rbject No.
singlet state. It also includes asymmetry splittings, and there35-03-08130r and the U.S. National Science Foundation
fore can be applied to asymmetric tops as well as symmetricCHE-9617208
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APPENDIX

General formula for the intensities and its relation to the
Hougen factors

A general formula for the intensities can be derived from

Eq. (62) if we represent the triplet function in the most gen-
eral form, Eqs.(10) and (15), not invoking Eq.(53). Intro-
ducing the notation

a' o <FT o |/’L(1)|FS>' (Al)
we obtain
I(FTF;)\’S,J,i,HFsF{,’)\”T”S”J”NHi”)
1
=Z(2J’+1)(2J”+1)
J'+1
x| > 2N'+1
N'=]3"-1]
NI
X > fr CUL,
K'=
(only even or odd
JH -
x > firC,)
(only eKve=n or ody
2
X E > QuoFprg,| , (A2)

P'=-J" ¢'0=0,=1

whereFp/,/, is given by Eq.(74). The selection rules are
the same as in Eq75), plusAK=*1. The rulex’=—\"
does not apply anymore.
A general expression fofl ., found from Egs.(41),
(43), and(56) is
i

1 1
QU’UZE ECET’)*’LL( )

o

: (A3)
where the star denotes the complex conjugatbl,) now
stands forI's [{"|T's), and the summation is over all con-
tributing smglet statess,. The following identity can be
easily derived either by applying the time reversal operator
(14) or from the definition of the spherical tensors in Eq.
(42):

Q_ gy =(—1)7 Fot10*, (Ad)

For pyrazine, retaining a single term of the s@AB) and
inserting Eqs(45), (61), and(70), we find

1
QO”U:_E O-I|O-|M(B3g)' (A5)
In this case Eq(A4) reduces to
Q_o.r‘_o.:_Qo./o.. (AG)

Denoting the last sum in EqA2) by A(P’) and using Eq.
(A6) and the properties of 3-symbols in Eq.74), we ob-
tain
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A(—P")=—=N"N"A(P’"). (A7)

Inserting this into the identity
2 AP)= 2, fRLA(P)+A(=P)] (A8)

following from Eg. (4), we immediately obtain the selection
rule A\'=—\". Now, it is easy to verify that EqA2) re-
duces to Eq(73) in the particular case of pyrazine.

The intensities of individual rotational lines in the
singlet—triplet spectrum of a symmetric top molecule without
fine structure splitting were given by Houg&rin tabular
form for the Dy, point symmetry group, together with direc-
tions for the use of these tables for other groups. Our general
formula (A2) enables us to derive a comprehensive expres-
sion embracing all cases considered by Hougen. In(&2),
one must put

cl

N’ K’ and C

:5i’,N’K' 8”,KH,

"<

and then convert it to yield the intensities for transitions
between nonsymmetrized statesth K’ andK” taking both
positive and negative valuesThis is performed by a simple
transformation of the transition amplitude from ba&3$ to
basis(2). The result reads

I(I1d'N'K' T g)"K")=(2N' +1)(2J' +1)(23"+1)

J’ 1 N
p;r'(rﬂo.,o(_P, K/)
J’ 1 J" 2
< o K,,) , (A9)

where the actual summation is performed only owgsince
P'=0c+K’' and ¢'=0+AK (AK=K'—K"). The 3xX3
matrix (Al) can be expressed in terms of nine real intensity
parametersQ);., i,k=x,y,z, in the same manner as each
member of the sum of E§A3) can be expressed in terms of
cim /AE using the definition(42). For instance,
) 1
Q00:|szv Q+l 1_

(= |Qxx+ iny_ Qxy_ ny)v

(A10)
etc. For theD,;, group, our intensity parameters can be re-
lated to the Hougen parameteys(B,g), wn(B,g), and

1(B3zg) as shown in the following examples.
For AK=AN=AJ=0, Eq.(A9) yields

2J+1 i )
w (Qxx+ny)[K J(J+1)]
1 2
+iQ,K2— 5 (Qy=0y0K| (A11)
whereK=K"” andJ=J". Thus, in general, five intensity pa-

rameters govern this particular transition. In case of the
3A <—1Alg transition in theD,,, group, the possible contami-
nating singlets having nonzero transition momepts, ,
from the ground state artB,,, B,,, andB,,, respec-
tively. The corresponding triplet sublevels acquiring the os-
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cillator strength via the spin—orbit coupling parametgys ,
are T, .. Since the transformation rules f&2;, are the
same as foc;uy, we obtain the following three nonvanish-
ing parameters, assigning them Hougen'’s notations:

Iu’(Blg):QZZ! M(BZg):_ny. M(ng):QXX.
(A12)

These definitions apply to all transitions withyXT't=A,, .
Equations (A9) and (A12) entirely reproduce Hougen's
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Radiation from a charged particle moving in a system of randomly spaced plates is considered. It
is shown that the dominant radiation mechanism is diffusion. The total intensity of radiation

is investigated, and its quadratic dependence on particle energy is noted in the optical region. A
comparison with Cherenkov radiation is carried out. 1898 American Institute of
Physics[S1063-776198)00607-9

1. INTRODUCTION whereey(w) andb(w) are the permittivity of the homoge-
neous medium and the plate, respectively, #x) is the

More than 50 years ago, Ginzburg and Fraskowed  poayiside step function. It is convenient to represent the per-
that radiation is produced when a charged, uniformly moVingnitiivity as a sum of average and varying parts:
particle passes through the interface between two media with

different dielectric constants. Since then, much research has &(z,w)=g+&,(z,w), (&/(z,w))=0, 2
been done on this problelffor a review, see for example _ . .

. . wheree =(e(z,w)), and averaging over random coordinates
Ginzburg and Tsytovich. It turns out that the dependence of : ! X

. . o . . . of plates is defined as follows:
total intensity of radiation at an isolated interface on particle
energy is logarithmic in the optical region. To be able to use dz
transition radiation to detect relativistic charged particles, it (f(Z,w)>:f H T [(zz,0), (©)
is desirable to have a stronger energy dependence. In this ‘
context, the x-ray region turns out to be more promisingwherel, is the system size in thedirection.
because in this region the energy dependence of the radiation In the Fourier representation, Maxwell's equations for
intensity is linear’ However, the number of photons emitted the vector potentiaA of the electromagnetic field has the
at the interface is small. To increase this number, systems dbrm
many plates are used. Earlier, when investigating radiation in 2
a stack of plates,_ mainly the x-ray reg_ion was Cons_ideced V2A+ “’_2 e(r,w)A(r,0)=j(r, o), (4)
for example Garibian and Yafy In this region the interac- c
tion of the electromagnetic field with each plate is weak, SQuhere
multiple scattering effects can be neglected.
The objective of our paper is to take these effects into | ev .
. . . . j(r a))=——— 5(x)5(y)e""z’“

account when charged particles radiate while traversing a ' c v
random stack of plates. Having considered three-dimensional . _ _ .
random medid,we know that multiple scattering effects in iS the current of a charged particle moving uniformly in the
the electromagnetic field play a crucial role in the radiationz-direction with velocityv. The electric fielcE is related to
of a charged particle. Below we show that in the one-the potentials by
dimensional case, these effects play an even more important

iw
role, particularly in the optical region. E(r,w)= = A(r,o)—Vo(r,w). (5)
Finally we write the condition relating the vector and
2. FORMULATION OF THE PROBLEM scalar potentials of the electromagnetic field:
The system which we want to study i§ a stack of plates vy . a_ lw (r, ) o(r,w)=0. (6)
randomly spaced in a homogeneous medium. Let us assume Y

that the plates fill the regiorng—a/2<z<z+a/2 (wherea
is the plate thickness anz] are random coordinatesThe
permittivity of the system can be represented in the form

One needs the relatiori4)—(6) to calculate the intensity
of radiation. It follows from the symmetry of the problem
that the vector potentiah points in thez-direction, SoA;

=5ziA(r,a)).
8(Z,w)=80(w)+2i [b(w)—eo(w)] We separate the electric field into two parB=E,
+E,, to determine the radiation intensity. Hekg is the
X[|6(z—z—al2)— 0(z—z+al2)|], (1) electric field of a charge moving in a homogeneous medium

1063-7761/98/87(7)/5/$15.00 51 © 1998 American Institute of Physics
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with dielectric constant, andE, is the radiation field asso- approximation, we obtain the Dyson equation for the average
ciated with fluctuations of the dielectric constant. The radia-Green’s function:

tion tensor is P
1§ (R) =En(RIEF(R), % -/ N
whereR is the radius vector of the observation point, which q q q-p q
is far from the systemR>L). (15)
The vector potential can be split in a similar manner,
A=Aq,+A,, whereA, andA, satisfy the equations The dashed line denotes the Fourier componBiip)
5 =(2m)28(p,)B(|p,]) of the correlation function of the one-
w . . .
V2Ap+ — Ap=j(r, o), dimensional random field
c
) w*
) w? w? w? B(|z—2'|)= =z (e:(2)&((2')), (16)
VA+ 28A+ 28A _?Ser. c

wherep,, is the transverse component jpf The solution of
The first equation is easily solved, and for the backgroungq (15) can be represented in the form

field Ay one has

8 6(q,— o/ G(g)= - ,
Ze (E;_;}zv) (9) (q) k2_q2+| Im E(q)

) . . ) in which the imaginary part of the self-energy is given by
It is convenient to express the radiation ten$or in  \yarq's identity:
terms of the radiation potentidl, . Using(5)—(7), we obtain
w2
(Iij(R))= r 8,16, (A (R, w)AY (R, w))

17

Ao(q)=—

dp
Im E(QFJ (2n)7 B(p) Im Go(q—p)

1
O e = = [B(la,~k¥—q}))
+?<Ar(R,w) iRz Af (R, w) 4m z P
2 +B(|g,+ Vk2—ag?))1, <k. (18
<A*(R o) o AR, w)> |0, a,D1, [l
The dephasing length of a pseudophoton in the
Cz 52 52 direction is determined by the imaginary part of the self-
* .
<(9R &ZA (R,w) R (9ZA (R, w)> energy:
(19 (@)= (19

We express the radiation potentig! in terms of the Green'’s Im 2(q)”
function of the second equation (8) for averaging in(10):  As expected, the dephasing length depends on the direction

w2 of the pseudophoton momentum. When the momentum is
A(R)=~— e f g (r)Ay(r)G(R,r)dr, (11)  directed along, one obtains fron{18) and (19
2
where the Green'’s function satisfies (9=0)= L (20)
, B(0)+B(2k)
w
V2+k2+ = e(2)|G(r,r")=8(r—r"), (12 From this point on, we call this quantity the pseudophoton
mean free path.
andk=w\/e/c. Using (1)—(3) and (16), one can find the correlation
function
3. GREEN'S FUNCTION 4(b—e)?n sirt(q,a/2) o*
The bare ¢£,=0) Green's function can easily be ob-  B(d)= e p (21
z

tained from(12):
Heren=N/L, is the density of plates in the system. Using

Go(q)= 7. (13) (22), it is easy to see thaB(2k)/B(0)~1/(ka)’<1 when
ke=g°+io ka>1. Therefore, the photon mean free path is
In the coordinate representation one has fi@3) 4K2/B(0), ka>1
I=1(9=0)~ (22
1 2 <1.
Go(r)=—ﬂe'kr (14) 2k“/B(0), ka<1l

The foregoing only holds in the weak scattering regime,
To perform the averaging, we use the impurity-diagramfor which Im3(q)/(k?>— a; 2)<1. Substituting(18) into this
method® Summing the diagrams in the independent-scatterecondition, we obtain
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B(0)+B(2k|cos §|) - D(R)— k? fd AE B — VATV A% (17
2Kk cos 92 (23) ij(R)=1g-2gz; | dr dr'B(r—=r")Ao(nAg(r’)
It follows from (23) that atd~ /2, the weak-scattering con- xf drydrodradry exd —ikn(ry—ry)]
dition is not satisfied. This is natural, because in this case the
pseudophoton moves parallel to the plates. Takingm/2 XP(rq,rs,r3,rg)G(ra,r)G*(r,ry)

— & and using(22) and(23), one hass> (1/kl)3, )
X[ 6163+ ninjny — dznin,— &z nin],  (27)

itz

whereP(rq,r»,rs,r,) is the diffusion propagator:

4, RADIATION INTENSITY ] I3
We now turn to a close examination of radiation inten- P(r, 5, 1) = Z
sity. First we consider the single-scattering approximation. In ~ T
. . . . . . 2 4
this approximation, the Green’s function {d1) is simply (28)

replaced by the bare one. Substitutiffyl) into (10) and

using the relations We find the diffusion propagator as in the three-

dimensional case.As follows from (28), P can be repre-
sented in the form

Gq(R ~ 1 ik(R—n-r)
of ,I’)~—47TRe ' P(ry,ra,r3,rg) =B(ri—ry)B(rz—ry)
XP(R,!rl_r21r3_r4)! (29)
2 2
I"Go(R.r) _Knin, ok(R-n1)  Rsy (24) WhereR'=(1/2)(r3+r4—r;—r) andP satisfies the equa-
IR 9z 47R ' tion
and (14), after simple transformations we obtain the follow- J ia [1_f d_q3 f(q,K)B(p—0) |P(K,p,q")
ing expression for the single-scattering contribution to radia- (27) (2m)
tion intensityl (n) = (c/2)R?l;;(R): — (g’ K) (30)
oy 7€ < o Blko—kn)n o , where
(N=-¢-40 [KPn2—k2? c? @9 f(9,K)=G(q+K/2)G*(q—K/2). (31)

. ) ) o As will be seen, one has to knowwhenK—0. In this
Heren=R/Ris the unit vector in the direction of the obser- |it, the diffusion propagator has the fofm

vation pointR andky,= w/v; the &type singularity of(25)
results from the infinite path of the charged particle in the P(K—0p.q)— Im G(p)Im G(q)
medium. If one takes into account the finite size of the sys- bl Im X(q)

tem, 8(0) must be replaced bly,/27. To analyze the angular
dependence 0f25), it is convenient to represent it in the

f . 2 -1
orm A(K)=[f (q-K)*Im G(q) dq

Im*3(q) (2m)°
1°06) ¢* LB(ko—k cosd])sin § o (26)  Substituting(17) and(18) into (33), choosingK |z, and cal
== o — 3, ubstituting an into , choosingK |z, and cal-
2¢ [y P+ (K¥/kg)sin 91° koe culating the integral, we obtain

A(K), (32

where

(33

where y=(1—sv?/c?) 2 is the Lorentz factor of the par- 1 20m (34

ticle in the mediumn,=cos 9, andn,=sin 9. AK)={ ka2
Note the key features of the single-scattering contribu-
tion 1°. It follows from (26) and the form(21) of the corre-
lation function B that at relativistic energies &1,
ko— k), the maximum of radiation lies in the range of angles
9~y 1 in the forward direction. Integrating21) over the

When we know the form of the diffusion propagator, we
can calculate the diffusion contribution to the radiation in-
tensity. Transforming variables {27) and going to the Fou-
rier representation, we obtain

angles, it is easy to see that the dependence of total intensity k?c dg,dg,dgsda,
. . . . D — 2
on particle energy is logarithmit%= In . As Bx=n, the de- 17(n)= 32726 (1-n; j —(277)12
pendence of radiation intensity on the number of plates is
linear. All of these results are consistent with previous X |Ag(d1)|?B(02)B(q3)B(g4) P(K—0,
results®*
— 03— kn, a1+ 02+ 0s)|G(ay + ) 2. (35)

We now consider the diffusion contribution to the radia-
tion intensity. Using(10), (11) and (22), one can represent Substituting(9) into (35) and integrating using Ward’s
the diffusion contribution to the radiation tensor in the form identity (18), we have
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e? the intrinsic field of charged particle separates from the ra-
1P(n)=— (1—n§)A(K)k2 diation field. In other words, it is the length at which the
2ce interference term becomes small. The interference term con-
a, 1 sists of expressions likE~ A} (R,w)<A,(R,w). Using(9)
X1lm E(kn)LZf 3 >3 and going to the coordinate representation, one obtains the
(2m) (q,+ko—k?) following expression for the background field:
B(|ko+\/k2 q21) +B(|ko— Vk?~q2)) . 2e Kop
. (36) As(R)=—_e Koz ( i (39

B(0)+B(2Vk?®— qp

The singularity of the radiation intensity results from the
diffusion pole. When one takes into account the finite size 01R ef. 7.
the system, the diffusion paths of the photon are cut off at the Using (11), we obtain the averaged radiation potential
system size, and thereforeK¥/ can be replaced by§ as @2
K—0 (we assume thdt,<L,,L,). It follows from (36) that (AH(R))=— = f drAq(r){e(r)G(R,r)). (40)
for particle energie&y,—k, y>1, the main contribution to
the integral oveq,, comes frong,— 0. The correlation func- Using the impurity diagramél5), one can represent the av-
tion B in (36) varies slowly WhenquO provided that erage in(40) in the form
y?>ak, (we discuss this condition in more detail in the next
section; therefore, takingq,~0 (under the condition (sr(r)G(R,r))zf dr,Go(R,r1)B(r;—r)G(r,—r).
y>ak) and substituting34) and (16) into (36), we obtain

whereK is the modified Bessel functiofsee for example

(41
2 3 o
1w, )= 5 &%y ( sir? & _ (37 Using the approximation&4) for an observation point
2 sc \l(w)] cosd| R far from the systemR>r,, we finally obtain

Note the main features of the diffusion contributi@?). explikR—iky2) K
Comparing(37) with the single-scattering contributiai26), (R~ —————2" K ( Op) f dr dryAq(r)
we see that®/I°~L%/I1?>1. This means that in the wave- 4mR
length rangex<I(\)<<L,, the dominant radiation mecha- XB(r;—1)G(r,—r)exp(—ikn-ry). (42)

nism is diffusion. Note the strong dependence of spectral

intensity on the particle energy, which also holds for the totalFor our purposes, it suffices to consider only the oscillating

intensity(integrated over frequencies and angl&ecall that  part of (42),

this dependence in conventional transition radiation is loga- . .

rithmic in the optical region. Wheh ,~N, then from(37) P(R)=exp(ikR=ikoR cos 9). 43

the radiation intensity has a strong dependence on the nurifhe interference term will be small when the oscillations are

ber of plates) o« N3, strong, R(k—kq cosé)>2m.1 In this case any integration
We now discuss a reason for the strong dependence afill make the interference contribution negligible. Conse-

radiation intensity on particle energy. It is convenient to rep-quently, the coherence length in our case has the form

resent the background field in the form 5
o

()=
q&(jzkz k(i)z (38) C( ) |k_ kO cos 19|
p

(44)
Aol =
Now consider some special cases. For relativistic ener-
It follows from (38) that at relativistic energie$>l most g|es kO*)k and small ang|eg}~0 tak|ng into account the
pseudophotons have momentum with transverse componeggfinition ofk andk,, one finds from(44)
q,—0. It is easy to see froni38) that the total number of )
pseudophotoansocfAO(q)dq is proportional toy?. Each l.=1(0)~ Ay (45
pseudophoton must be scattered to be converted into areal ¢ € ko
photon. The probability of large-angle scattering of
pseudophotons is low in single scattering. Therefore, only
small contigent of pseudophotons is converted into photons. 2m

This picture changes dramatically in multiple scattering, ~ le(m)~3 -~ (46)
for which almost all pseudophotons are converted into pho- 0
tons via multiple scattering by the plates. As the total number As expected, the coherence length in the direction of
of pseudophotons is proportional &, the radiation inten-  particle motion (#=0) is much greater than in the backward
sity (total number of photonss also proportional toy?. direction (3~ ), where it is of the order of the wavelength.

Now the meaning of the conditiop?>ak,, which we
used in the previous section, becomes clearer. It means that
many plates must be placed at the coherence lehgtha,

It is known (see for example Ref.)Xhat the coherence in order for multiple scattering effects of the pseudophoton
length (or radiation formation zones the distance at which to play an important role.

gor anglesf~ mr, the coherence length has the form

5. COHERENCE LENGTH
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6. CONCLUSIONS I%(w) 2 [L,\2
. e - R~ T (—) : (49
We have considered the diffusion contribution to the ra-  1""(w) kI | |

diation intensity of a relativistic particle traversing a stack of \; 1o that the Cherenkov intensity is greater than the single-
randomly spaced plates. It was shown that for a large numbesrcattering contribution,%/1 "~ 1/k1< 1.5 From (49), the dif-

of plates N>},%’ in the wavelength range<l, for angles  ¢qjon radiation, in contrast, can be stronger than the Cher-
|[cosd|>(1/kl)*> and coherence length much greater than, . ov radiation.

the plate thicknessl{>a), the diffusion contribution is
dominant. Note that the backward and forward intensities of | thank V. Arakelyan for useful comments. The research
relativistic charged particle radiation intensity are equaldescribed in this paper was made possible in part by Grant
whereas in a regular stack, a relativistic particle radiateRY2000 from the International Science Foundation.
mainly in the forward direction.
Note that we did not take photon absorption into ac-
count. This is correct provided thé&l;,, wherel,, is the
photon inelastic mean free path in the medium. In the theory
of diffusive propagation of waves, weak absorptidr&(;,) *)E-mail: ananikia@uniphi.yerphi.am
is taken into account in the following wéyf the absorption
is so weak that.,<\/l;,, then the expressiof87) remains
unchanged. When,>\/l;,,, one must replace? with Il;,

in (37):
2 2 . V. L. Ginzburg and I. M. Frank, Zh. Eksp. Teor. Fi26, 15 (1946.
D _ 5 ey Llin(w) sir? & 2V. L. Ginzburg and V. N. TsytovichTransition Radiation and Transition
M (w,9)= 2 sC |2(w) |COS 1<}|- (47) Scattering[in Russia, Nauka, Moscow(1984; M. L. Ter-Mikaelyan,

High-Energy Electromagnetic Processes in Condensed Médigey,
It follows from (47) that in this case the dependence of ra- New York (1972.

diation intensity on the number of plates is weakerN. ffzh’éigea&']b'an’ Zh. Eksp. Teor. Fia7, 527(1960 [Sov. Phys. JETRO,

Note that absorption changes the frequency dependences. m. Garibian and C. Yangx-Ray Transition Radiatiofin Russiad,
of the spectral intensity. Yerevan(1983; X. Artru, G. Yodh, and G. Menassier, Phys. ReviR

Now compare the radiation considered above with Cher—séﬁ%s(l?g& o Phvs. Lot A62 167 (1992 Radiofizika 36, 36
enkov radiation for the corresponding values of particle en- g > Ze/ordan TS ett. A62 187 (1992; Radiofizika 36,
ergy, which, however, are on opposite sides of the criticalsa. a. Abrikosov, L. P. Gorkov, and I. E. DzyloshinskiiMethods of

value c/ \/E The intensity of Cherenkov radiation has the Quantum Field Theory in Statistical PhysidBrentice-Hall, Englewood
71. S. Gradshtein and I. M. Ryzhikiable of Integrals, Series, and Prod-

e’wd c? ucts Academic Press, New Yord965.
1SN w)= — | 1= —], (48 8p. W. Anderson, Philos. Mag. B2, 505 (1985.
c v-e L. D. Landau and E. M. LifshitzElectrodynamics of Continuous Media

whered is the path of the charged particle, which traverses a ~e/93mon. New York1984.

medium with dielectric constan¢. Comparing(48) with Published in English in the original Russian journal. Reproduced here with
(37), we have stylistic changes by the Translation Editor.
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Processes involving a change of orbital angular momentamd the dissociation of Rydberg
molecules when they collide with inert-gas atoms are considered, using a method based

on analyzing the terms of the interacting systems. The proposed method makes it possible to
take into account the perturbations in a large group of Rydberg states that weakly

penetrate into the ion core and to go beyond the limits of the two-level approximaRoris
Stebbings and F. B. Dunning, edRydberg States of Atoms and Molecul€ambridge

University Press, Cambridge, 1983; Mir, Moscow, 188bidely used in the theory df mixing

with the participation of Rydberg atoms. Using the*Nénd) + Xe reaction as an example,

it is demonstrated that this method gives good results in a wide range of variation of the principal
quantum numben of the Rydberg electronn=10-40). Features of themixing and

dissociation of Rydberg molecules are studied for & HXe system. It is shown that collisional
dissociation occurs by the formation of an intermediate Rydberg state of the molecules,
followed by self-decay into a dissociative continuum. 1®98 American Institute of Physics.
[S1063-776(198)00707-0

1. INTRODUCTION concerning local transitions. It takes into account the distor-
) , , ) tion of the level system of the Rydberg states, created by the
Elementary processes in which highly excit@ydberd  fie|q of perturbing atom A, which is completely ignored in
atoms and molecules participate play an important role i, existing theory.
_atmospheric and astrophysical_phenomena, and are also of Dynamical models used to describe processes with the
interest for a number of applied areas of physit®v-  aricipation of Rydberg atoms are covered in detail in the
temperature plasma, MHD generators, gas-laser systemgy ey article by Hickman, Olson, and Pastale shall not
etc). These processes are extremely diverse and are chargfiscss all possible theoretical approaches here and shall in-
terized, as a rule, by large cross sections and largely detefcate only those that are currently most often and most ef-
mine the properties of the upper atmospHeTey include, fectively used. These include the Born or the momentum
most importantly, inelastic vibronic interactions, io”ization’approximatiorF which are essentially a generalization of
and charge exchange, which, with relative velocities of thg-grmj's pseudopotential modiThe approximations are in-
colliding particles satisfying troduced on the basis of information concerning the scatter-
u.<1/n (1) ing lengtha and the static polarizabilityg of the atom in the

form in which it is reproduced in the expression for the
(n is the principal quantum number of the Rydberg state, ang-_a scattering amplitudé,

h=me=e=1), are characterized by local transition
regions>™*

However, the most efficient processes are those in which
the angular momenturinof the Rydberg electron changds (
mixing), induced by slow collisions with a perturbing neutral
particle. In the region in which the principal quantum num-
ber varies,n~10-40, the total-mixing cross section sub-
stantially exceeds the gas-kinetic cross section, attaining val-  XY** (n,1<I* A, v)+A—=XY** (n',I'=1* v’)+A
ues of e~10 *-10"* cn?.! These processes correspond (€)
to a small energy transfer into tran;lgtional _degrees Qf freéand of collisional dissociation
dom and have no pronounced transition regions. Their treat-
ment requires more complex dynamic modélg compari- XY**(n,I=1",0) + A=X+Y +A, 4
son with those used in Refs. 2)-4 o %

This paper is devoted to the solution of this problem. XY (I<ITA0) F A-XFY HA, ®)
The proposed approach is based on a study of the features where A is the absolute magnitude of the projection of the
the potential energy surfaces of the interacting system andlectronic angular momentum onto the axis of the molecule,
makes it possible to go beyond the framework of conceptandv is the vibrational quantum number. The effective value

T
foe=a+ 3 Bk, 2
wherek is the momentum of the incident electron.

We shall apply the method developed below to the study
of the processes df mixing

1063-7761/98/87(7)/8/$15.00 56 © 1998 American Institute of Physics



JETP 87 (1), July 1998 Golubkov et al. 57

Iytical form and to study the dynamics of the processes con-
sidered here, using a formal scheme to calculate the distor-
tion of the Rydberg terms. The subsequent analysis is carried
i1 ! out in the adiabatic approximatidwith respect to rotation
in which the orientation of the molecule during collision is
A considered fixed. In this case, the potential-energy surfaces
Xy*

<!
are constructed by using a vibronic basis, in which the vibra-
tional quantum numbers are given instead of the interatomic
R =2 distances in the X¥* molecule. Such a basis is convenient
(9 ol when the dynamic behavior of the X¥ +A system is being

studied and most clearly reflects the specifics of the problem
under consideration.
The general concepts concerning the terms or concern-
ing the potential-energy surfaces of the**X-A and
FIG. 1. Schematic image of classical trajectories of an electron and of ator%(Y** +A systems, in which atom A is considered a struc-
A relative to ion XY*. RadiusR,=2n2 denotes the classically resolved tureless particléas a rule, atoms of the inert gases possess
region of motion of the electron. this property are discussed in Sec. 2. The dynamics of the
I-mixing process are investigated in Sec. 3. Collisional dis-
sociation of diatomic Rydberg molecules X¥ is consid-

I* of the orbital angular momentum makes it possible toered in Sec. 4. The last section, Sec. 5, presents the main

divide the Rydberg configurations into two inequivalentconclusions and analyzes ways of further developing the

groups of states, strongly and weakly interacting with the iortheory.

core? The states of the first group are characterized by small

values of the orbital angular momentum of the electron "

(I<1*) and in classical language correspond to convex el2- POTENTIAL-ENERGY SURFACES OF THE XY™ +A

_ ) . : : . SYSTEM

liptical trajectories adjacent to the ion core. As is well

known, they possess quantum defects that determine how We now pass to a consideration of the potential-energy

much their levels deviate from the Coulomb levels. Thesurfaces of the combined system XY+ A corresponding to

states of the second groupX1*) correspond to trajectories states of the Rydberg electron that strongly<(*) and

far from the ion core and virtually coincide with the Cou- weakly (=1*) penetrate into the ion core.

lomb states; i.e., they are characterized by high degeneracy Information on the behavior of these terms in the field of

multiplicity. The number of these statpg~n? is rather high  a perturbing neutral particle can be obtained by analyzing the

(in particular, the angular momentuifi separating the two equations for the level-shift operatar The form in which

indicated groups of states equéfs=3 for Na* and H*).  these equations are written depends on the basis of the states
Since states with large=1* are energetically unresolv- that is used for the unperturbed X¥ molecule and the

able, it is impossible to treat them separately. They interachumber of|LM) states for the scattering of the free electron

with the entire set. The involvement of large groups of stateg™ at particle A that are taken into accouindicesL andM

in the interaction process is a specific property of Rydberchere denote the angular momentum of the electron relative to

systems. To explain the role of these states in the dynamiake scattering center and its projection in the direction of the

of an elementary interaction event, it is necessary to studyectorR). Below we shall restrict ourselves Sscattering in

the potential-energy surface of the combined*X¥-A sys-  thee™ —A system, assuming that the angular moment of the

tem. When this is done, two goals are achieved simultaelectron isL=0. Including states withL+#0, as can be

neously: The distortion of the levels that occurs when neutrashown, does not substantially change the results obtained for

atom A falls into the sphere of influence of Rydberg mol-the energy region under consideratiore(10).

ecule XY** is found, and the mixing of states that results  In choosing the basis of the states of the *Ymol-

from the transition from certain trajectories to others is takerecules, one should be guided by the two limiting cases, cor-

into account. The direction of the classical momentum of thaesponding to two different relationships between the rota-

electron is altered by the elastic scattering at perturbing atortional periodr,,~ 1/B (whereB is the rotational constant of

A. A schematic diagram of this physical situation is shown inthe XY™ ion) of the molecules and the time.~n?/u, for

Fig. 1. particles A with relative velocityl; to pass through the char-
The position of the Rydberg levels depends on the disacteristic region~n?. For slow rotation,r,, 7., when

tanceR between the XY* and A particles. The character of

their perturbation for sufficiently larg® is determined by

the features of the interaction of a free electron with atom Athe orientation of the XY¥* molecules remains unchanged

Since the cross sections of procesé®s-(5) are large, the during collision, and the potential-energy surface must be

main contribution comes from the region of large distancesgetermined for the given position of the axis of the molecular

where the asymptotic method can be used to solve the prolien XY *. It is this case that is studied in the present paper.

lem. This makes it possible to construct the potential-energy  Slow vibrational motion of the ion with frequenay, is

surface of the combined quantum system*X¥A in ana-  characterized by the similar relationship> w,n?, which,

u.>Bn?,
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under the conditions considered hemgs€1/n, is equivalent 1
to the requirementr,<1/n. This relationship is not satis- Enin=E,— 20— ) 9
v v

fied for the majority of diatomic moleculg®f the type H,
N,, O, CO, OH, etg. Therefore, in constructing the terms, WhereEg, is the energy of the vibrational perturbation of the
it is necessary to fix the vibrational states of theXign and XY " ion, andu,,, is the quantum defect of the,| A level.
to go from the adiabatic to the vibronic potential surfaces of ~As a consequence of stromd mixing, the states with
the system. In the classically resolved region of motion of dargel=1* form covalent terms split off from the Coulomb
Rydberg electron, these terms for the most important cas@Vvels (u;,=0) and characterized by the type of scattering
L=0 are determined by analogy with Ref. 2 from the fol- of the Rydberg electron at particle A. These terms, denoted
lowing equation: below by subscript_, in the case under consideration of
L=0, are described by the transcendental equation
Vi (Rp) W hiau(R,p")
T=27 Z K T

NET E—Enirv Un L (R)=E,~

20N, — oy (R (19

+E k,(R)K cot 7v,x,(p)x,(p') 7, (6) The quantityuq, has the meaning of the quantum -defect
v of the level induced by the™ —A interaction and equals

where ¥, (R,p) is the wave function for the Rydberg

1
nlAv state at poinR (which in general is a superposition of Mop(R)=— p arctarik, K, (R)). 11
states with different vibrational wave functiong, of the
XY * ion, dependent on the interatomic coordinajek, is It is important to point out that, with large values of

the classical momentum of the Rydberg electigp, ,, is |=1*, the electron density close to the ion core is small

the energy of the vibronic level, amzlv=[2(Ev—E§]‘1’2. because of the presence of the orbital barrier. Therefore, the

The elements of th& scattering matrixwhich are diagonal strong field of the core, like its orientation in the XY+A

with respect to the vibrational quantum number, system, has no appreciable effect on these states and can be
neglected in first approximation.

Ky =Kyyyr ) Equation(6) completely determines the potential-energy
are determined in Eq6) when the energy isvzkflz. ForS  surfaces that describe the groups of states indicated above
scattering and taking into account the first two leading termsand also makes it possible to calculate the interaction be-
they coincide to within the sign with the expression for thetween them. Actually, using E@6) as a basis for setting up
e —A scattering amplitude, Eq2). Since we are studying the characteristi¢seculay equation for the eigenvalues of
the process df mixing in pure form, the terms in E@6) that ~ the electron energy, it is easy to obtain
correspond to nonadiabatic vibronic coupling are left out. 2 _ 2 2
This n?akes it possible to use the ordingrygrepresentation = 2T P A (R Py (R (12

Vi (Rp)=P A (R) x,(p) and to omit an analysis of the Birook,K2 co@ mv,

narrow regions of pseudo-crossing of terms corresponding to /2 Ao 00 = 5 ) (13
different values of vibrational quantum numbery i.e., to ’ Y ™Yy

eliminate vibronic transitions from consideratid¢for defi- Equations(12) and (13) describe, respectively, the interac-
niteness, we restrict ourselves to the case0). tions between the states within the|* group and between

It is also assumed in writing Ed6) that| in isolated  the |<|* and I=1* groups. Moreover, the former corre-

Rydberg states is & “good” quantum number. The sum ovegpongs to the case of two interacting parallel terms:
I in the first term of Eq(6) corresponds to the contribution

of the strongly penetrating orbitals <1*). The second Un 1a=En ia+27K,[ @ (1 (R)[?,
term, containing cotrv, (whose poles reconstruct the posi-
tion of the Coulomb leve)sdescribes the contribution of the

weakly penetrating orbitals. The choice of critical valdés g |ater corresponds to the interaction of two intersedting
determined by the smallness of the characteristic MasseY,q| terms. The quantit, ,, characterizes the probability

UnvI’A’:EnvI’A’+277Ku|q)nvl’A’(R)|2- (14)

parameter of finding a Rydberg electron close to the perturbing atom A
AE, 1,n? and equals
—<1 8
e ®  Byg=2m0, (R (15

with the value ofAEnUm that characterizes the deviation of When S scattering in thee”—A system is taken into
the position of the Rydberg,IA level from the Coulomb account, the group with=1* is represented, essentially, by
level. one state, which is the consequence of intddsenixing. It
States withl<I*, as is well known, are weakly per- should also be pointed out that, in the case of atom®" (X
turbed by particle A. Therefore, the positions of the Rydbergnstead of XY* ), when the electron energy is independent
vibronic terms virtually coincide with the levels of the iso- of A, the sum overA in Eq. (6) for the stated <I* is cut
lated moleculé. Their energies, measured from the groundshort. As a result, a term appears that is independent of the
state of the XY ion, are defined as direction of the vectoR; i.e. we essentially operate with one
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U in m and inl. The interaction of the indicated groups of
~0.0049¢ L
states is given by
V2l+1 K
L=~ = Sin O (R)cos v, (16)
vy R
-0.0050¢ I 10L which is independent of the direction of the vediobecause
10d i
of the strong mixing of them components of thal level.
The argument of the sine &,(R) in Eqg. (16) is formed
from the radial part of the wave functio®,,-q(R) de-
scribed in the quasi-classical representation=(n— w, is
-0.0051 . . . . . . A
o 0 100 150 200 R the effective principal quantum number

We can use the approximation of straight-line trajecto-
FIG. 2. Diabatic terms of the N&(nd)+Xe system. The dashed curve ries to compute the transition amplituds, , restricting

shows the Rydberg 0term, and the solid curve shows the covalent o rselves to first-order perturbation theory in the interaction
10(L=0) term. Vo -9
niL -

state(instead of 2+ 1 for the given index). This means
that complete mixing of th& components of thal orbitals
of the Rydberg electron occurs at a preliminary stage of the
collision process.

The interaction between such states in tHe& XA sys-
tem is written similarly to Eqs(12) and(13), with @, (R)

o ) t
Ani(b)= ijnIL(R(t))eXF{l jome(R(t'))dt’}dt,

oL (R)=E;—Un(R), R(t)= \/b2+U§t2- (17

The condition for perturbation theory to be applicable,
|AniL|?<1, breaks down in the region of small impact pa-

T~ L rametersb, which have an insignificant effect on the cross
replaced by the functiofby (R), which is independent of the section of the process. Short-range interaction of atom A

direction of the vectoR and which can be formally obtained iy the jon core is neglected in this case. According to Egs.

by using functiondp,,(R), where the quantization axis is (10, and(11), it is also necessary to introduce an additional
directed along the vectd®. The use of such functions sub- limitation into the relative velocity, of the colliding X**

stantially simplifies the study of the dynamic behavior of theand A atoms. i.e

system.
1/2

1+ 2M|

U.>| ———
c Mcn3

(18

3. DYNAMICS OF THE MIXING
] o ] which means that the kinetic energy of the particles exceeds

The investigation of the terms of the"X+A systemisa  he barrier height formed by the covalentterm, and that
necessary stage of the study of the dynamics of elementagjere are no branch points of the trajectori,(is the re-
processes. This stage is completely ignored in existing theqq,ced mass of the interacting atomBor the given velocity
retical approaches. Thus, the approximation of two undisy_ (or the temperatur&, of the colliding atomy the condi-
torted states with an interaction of the type of Efi2) is  tjon given by inequality(18) is, in essence, a lower bound on
ordinarily used to describemixing, even though it is actu-  the region of variation of principal quantum numierTak-
ally necessary to take into accourtt Rydberg states. ing into account the limitations given here, the transition

A theory based on term concepts gives an effectiveampmude of Eqs(17) takes the following form:
method of solving this complex quantum problem. The prin-

cipal novelty that it introduces into the theory of collisions

with the participation of highly excited atoms is associatedA

with taking into account the distortion of the levels of the
Rydberg electron and the mixing of large groups of degen
erate states when*X and A particles interact.

Using the experimentally and theoretic&llyell-studied
system N&* (nd)+ Xe as an examplésee Fig. 2, we can

see that the relative position of the terms substantially de-

pends on the distand® between the colliding particles. In

COsS Ty
TV Uc

aL(b)=v2(21+1)

2y
d!
0
1

Qni(zb)= =

c

dz

R(z)

Ko(2)sin O (z)cosQy (z,b),

z(b)
fo wniL(R(2"))dZ’, (19

order to check the validity of the method proposed below foith the limits of integration

calculating thd -mixing cross section in Rydberg molecules,

zo=2n%, z(b)=+z5—b?

we have carried out a preliminary analysis of this system. In
terms of an approach using complete information concerning  Wwe write the cross section of tHemixing process a8
the terms of the X* +A system, the process bfmixing can
be regarded as a dynamic transition from a group of states
mixed with regard to projections but with a fixed value of
| (with | <I*) to a group of states with=1*, strongly mixed

O'nIL:ngbg|AnlL(bO)|2+Zngfb b db|A, (b))%,
0
(20)
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o A2 B=27.061° In the calculations here and below, we have
105t used the long-wavelength expansion of the elements dfthe
4 matrix, written in the form

k2, (21)

w8 4
Ko=a+ — k+ 3 aBInk+y

3
where the parameter for the Xe atonyis —210. The filled
circles on the right-hand wing of the curve correspond to
i room temperature].=300 K.2* On the left-hand wing of
I the curve, the open circles show the results obtained in Ref.
14 at a temperature daf;=430 K. The theoretical estimate
agrees well with the features of the experimental depen-
dence. The presence of a dip on the left-hand wing is evi-
FIG. 3. Comparison of the theoretical and experimehiaixing cross sec-  dently associated with the fact that the region of transitions
tions of thend levels of N&* when it collides with Xe atoms. The solid that makes the main contribution to the cross section of the
curve shows the calculation from Eq4.9) and(20_) for u;=2x10*, the process comes at a node of the radial wave function, whose
dashed curve shows the results of the calculation of Re@® 8hows ex- "
perimental values from Ref. 13, aqdlshows experimental values from Ref. position depends on the_quantum defect of the level. The
14, dashed curves on same figure show the dependence obtained
in the momentum approximaticdh.

However, it should be pointed out that, for large
n>(Mcu§)‘1’3, along with quasi-elastic processes, inelastic
processes accompanied by a change of the principal quantum
numbern must also occur. A group of Rydberg states will
; i ) J LY participate here, from which it follows that the cross section
pling) region and the outen> by, (weak couplingregion is, ¢ the process must be calculated from the corresponding
generally speaking, arbitrary. Actually, in the inner region, s mmation. As a result, thedependence at the periphery of
where perturbation theory is not applicable, the expressiona1e right-hand wing is<1/n;% i.e., the total cross section
W=|A?g; strongly oscillates as a function &f and can pare myst significantly exceed that calculated from Et@).
apprgmab_ly exceed_ unity at individual _pomts. _Hovv_ever,and (20). For example, for a relative velocity af, corre-
starting with a certain valub,, the probabilityW strictly is sponding to the thermal temperature, this will occur starting
less than 1W(b>b,) <1 in the outer region of variation of n~40, as is clearly demonstrated in Fig. 3.

b, which is a necessary criterion for choosing paramieger Rydberg molecules X¥* are a more complicated quan-

A detalled discussion of this question can be found, for exy,m gpiect of study. Actually, the strong field of diatomic
ample, in Ref. 11. Below, to estimate the cross sections ofygjecyles, unlike that of % atoms, is not spherically sym-
processes(3)—(5), we restrict ourselves to the condition \neqic and possesses only axial symmetry. Complete mixing
W(bo)=1. of the m components of the electronic angular momenium

Equation(19) makes it possible to analyze how the cross q goes not occur, since states with different projections of
section given by Eq(20) depends on principal quantum 4 ontg the axis of the molecule are energetically different.
numbern. For smalln, the cross section must increase be- It can be shown that, for strongly penetrating orbitals

cause of the increase of the scale factow, proportional to (I<I*), the angular dependence of the wave functions of a

the square of the geometrical size of the Rydberg particlerygherg electron is rather weak and does not substantially
For largen, wpbecomes small and depends weaklyRin  a¢ect the dynamics of the process. The main physical factors
It can be shown that, in the limib, =0, Eq. (20) trans-  pore are the interaction modulations created by quasi-
forms to the well-known resuft classical oscillations of the radial wave functions and the
) energy transferred into the translational degrees of freedom
o =277 a (i.e., the quantum defects of the states combined in the col-
nit nsus’ lisional transitiong Therefore, it is sufficient to use the
simple equation$l9) and(20) to analyze the structure of the
which is closely obeyed in the momentum and Bornl-mixing cross sections in Rydberg molecules.
approximations. Consequently, then dependence of the As a specific application, let us consider the process
gross secnoq given by Eq20) mus_t have a characteristic HE* (NpA,0=0)+Xe—H3* (n,|=3p=0)+ Xe, (22
ell shape with a pronounced maximum.
The above remarks are illustrated in Fig. 3, which showsvhereA takes the values 0 and(torresponding to the and
the results of a calculation of tHemixing cross section in 7 states, the adiabatic quantum defects of which are equal,
the system N& (nd)+ Xe, using Egs(19) and (20) with  andu,=0.191 andw.= —0.078, Ref. 18 The opticainpA
L=0, and gives a comparison with experiméht? The cal-  series of the B* molecule are not predissociated and pos-
culation is carried out for a relative velocity of the colliding sess radiative lifetimes,,¢=10"° sec, much greater than the
particles ofu,=2x 10 * (corresponding to a temperature of characteristic collision times of.~10 ! sec. Figure 4
T.~300 K), with parametergiq=0.015'° a=—6.0, and shows the dependence of the cross section of prg2&ssn

0 10 20 30 n‘

where g,=1/(21 +2) is the statistical weight of the initial
state. The choice of the impact paramdtgrthat separates
the region of integration into the innéb=<b, (strong cou-
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o, A same group. The collisional dissociation cross section can be
10%¢ calculated here from Eq12) with a transition amplitude
AnvIA,nUIBAB(b):Zfo dt Vi ian,i 0 (R(E)COS @14 1 0 1),
(24)
10°F
w|Av,|BABU:(/'L|AU_/'L|BABU)nU_3! (25)
in which the interactiorV of two parallel terms, taking into
2 account the remarks in Sec. 3 relating to the angular depen-
1 . 4 . . ;
0 T 20 30 . dence of the wave functions, has the form
FIG. 4. Cross section of the31(npA, v=0)+Xe—H3* (n,1=3,0=0) Vo A nlA
+ Xe process, calculated from Eq49) and(20) for u;=9x10* (@—pr v
state, O—po statg. . .
[(21+1) (21 g+1) Ky SIN O 1A (R)SINO, ) 4 (R)
2 I(uRz(7TVnUIAVnUIBAB)3/2 .
the principal quantum number, calculated for a relative (26)
velocity of u;~9x 10" 4. The resulting curves have the typi-
cal shape characteristic of atomic systems. The distortion of thenl terms can be neglecte@s in the

theoretical approaches used by Ref).11
If a Rydberg electron is formed with large orbital mo-
partial cross section of the reaction, but the latter equation

We now turn to a consideration of the collisional disso- . '
must be supplemented with the additional factor

ciation of XY** molecules in highly excited states that are

not predissociated in the absence of atom A. They include

two types of excitation, i.e., states with a small orbital angu- — i
i . gi(n,)=—.

lar momenturr <I* and states with=1* that weakly inter- n,

act with the ion core, correlating with covalentconfigura-

tions. The former, as a rule, are popu|ated during resonanc-EhiS is because the given process involves a transition to the

photoabsorption and are characterized by radiative lifetimeBredissociatedhl ;A gv state from a group of states strongly

Trad- They decay because bfrn|x|ng between states corre- mixed in terms of andm, in which each Separatesegment

sponding to strongly penetrating orbitals<(|*). The latter IS represented with statistical weighy(n,). As a result, the

are formed during threshold excitation by electron impactcross section is reduced, even though it remains substantially

and do not predissociate, since they are restrained by a higlieater than the gas-kinetic cross section. To find the total

orbital barrier (=1*). Here predissociation occurs by re- cross section, Eq(20) must be summed over all possible

verseL — | transitions. In both cases, collisional dissociationpredissociated Rydbeig, configurations.

occurs by a two-stage ‘“‘state-to-state” mechanism For threshold excitation of molecules by electron impact,
it is impossible to fix states with a definite valuelgfsince
XY** (nlAv)+A o ; ;
o SXYRR (N1 A 0" )+ A—XE Y +A this involves forming a group of states with a rather smooth
XY** (nLv)+A PP distribution function whose maximum comeslatn®/2.1920

(23 The total cross section must therefore be the corresponding
where the first stage is induced by interaction with atom Aconvolution.
and is accompanied by a transition to the predissocigted Turning to the hydrogen molecule, we briefly recall the
state. The subsequent decay occurs in a time that substamost characteristic features of the behavior of its terms close
tially exceedsr., when the colliding particles no longer ac- to the bottom of the ion potential. TheH molecule, as is
tually interact. Moreover, the first stage can occur either as avell known, possesses one low-lying doubly excited elec-
result of a transition with no change of the initial vibrational tronic statelﬁg(Zpau)z, whose potential curvésee Fig. 3
statev or with excitation of the ion core. Note that for intersects the ionic ternJ;(£) in the neighborhood of the
n~10-40 the quasi-elastic transition cross sections are gtoint £=2.65 a.u., located close to the right-hand classical
least an order of magnitude larger than the inelastic crostrning point of the first excited vibrational leve=1. The
sections. Since predissociation at the second stage of the privo Rydbergnso and ndo series withn=4 are liable to
cess occurs with a probability equal to unity, the quasi-decay in this energy region because of configuration mixing
elastic transitionsy=v') must dominate in this region of with the dissociative continuuft.Thus, of the nine possible
variation ofn. (s, p, andd) dynamically active states, only two are predis-

For optically excited X¥* molecules, dissociation re- sociated.

sults from a direct transition from a stable state of the group  Figure 6 shows then dependence of the partial cross
(I<I*) into a predissociated|zA gv state belonging to the sections of collisional dissociation of the first type:
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o, A’
10
+
> -H(ls) + H 103:
> 3
> H(1s) + HQ3D)
= - k)
5 10%k
m -
~H(ls) + HQD 1ok
1 . . . \
0 10 20 30 n

1 2 3 4 Ria
0 FIG. 7. Partial cross sections of reacti@8®), calculated from Eqq19) and

FIG. 5. Potential curves of the2H molecule?” (20) for u;=9x10* (@—intermediatedo state, O—so state.

5. CONCLUSION
),v =O]

ns,
HZ*(npwv=0>+XeﬂH5*:( d, .
na, In conclusion, we present some results of the study that

+Xe—H*(21)+ H(1s) + Xe, 27) has been carried out. Most importantly, we shquld .point out
that, unlike the momentum and Born approximations, the

corresponding to transitions to the intermediate Rydbexg ~ Proposed method is based on an analysis of the behavior of
the potential energy surfaces of the combined system and

andndo states. The calculation was carried out using Egs. - g - 7
(24)—(26) with quantum defectsue,=—0.12 and ug, makes it possible to descridemixing, procesq3), over a

=0.02222 for a relative velocity of the colliding particles of "ather wide region of variation ai. The latter is especially
u.=9x10"%. Figure 7 also shows the corresponding curvedmportant for smalln, where the indicated approximations

for a reaction of the second type: are not appliqable.
The next important advantage of the approach developed

here is that it can be used to describe collisional processes

ns
H>* (nL,v=0)+ Xe—H3* [(ndg) ) =0} with the participation of Rydberg molecules, whémmixing
7 can be accompanied by dissociation of the molecules.
+Xe—H*(2)+H(1s)+ Xe, (29 Concerning further development of the theory, it is nec-

essary to distinguish the following avenues of research. They
in which the hydrogen molecules are excited by electron iminclude, first, the study of effects caused by the presence of
pact. It can be seen that, in the region of variationnof strong nonadiabatic coupling with rotation, which is espe-
considered here, the partial cross sections of rea¢®dnare  Cially substantial for hydrogen-containing molecules. When
an order of magnitude less than those of react2®); i.e., u.><Bn?, this can result in a sharp irregular dependence of
the decay process off molecules formed during electron the reaction cross section on the initial excitation energy of
impact is preferred. In both cases, the channel involving forthe XY** molecule(or on the principal quantum numbey,

mation of an intermediatado configuration predominates. the physical cause of which is associated with the specific
behavior of the corresponding quantum defees).?® The

inclusion of nonadiabatic coupling with rotation in the for-

mal scheme requires that the theory be generalized, with the
o, A introduction of rovibronic potential-energy surfaces of the
combined system, which have not been discussed in the lit-
erature. The appearance of a stroboscopic effect, for ex-
2| ample, can be expected héfeMoreover, a more detailed
3 analysis of the behavior of the cross sections for lange
taking into account all possible channels of the motion, is
10F necessary for a deep understanding of the natuleroking.
i Second, along with neutral perturbing atoms A, it is expedi-
ent to consider molecules that possess positive electron af-
finity and are capable of forming ionic configurations on the
potential-energy surface of the combined sysfem.

-1

10 L s 4 "
0 10 20 30 n This work was carried out with the financial support of
FIG. 6. Partial cross sections of reacti#v), calculated from Eqs(24)— the Russian Fund for Fundamental Resed(@tant No. 97-

(26) for u;=9x10"* (@—intermediated o state, O—so stats. 03-32600a
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The photoexcitation of iodine molecules on surfaces of s@glimhporoug and nanoporous quartz

by resonant laser radiation in the visible region has been studied. We have detected and
studied the high-energy photodesorption of iodine molecules with a translational energy of 1.4 to
1.8 eV from nanoporous quartz surfaces at an exciting photon energy ranging between 1.9

and 2.3 eV, as well as the nonequilibrium surface dissociation of molecules. Unlike the
photoprocesses, which are observed only on the surface of nanoporous quartz, the thermal
desorption of § molecules with a considerably lower kinetic energy has also been detected on the
surface of solid quartz. We have suggested a physical mechanism of photodesorption, under
which electronic excitation of an iodine molecule in the confined volume of a nanopore is
accompanied by a Franck—Condon electronic transition of a molecule-surface complex to a
state with a higher potential energy and subsequent release of this energy in the form of kinetic
energy. It has been concluded that photoprocesses on a nanostructured surface are radically
different from ordinary surface photoprocesses. 1@98 American Institute of Physics.
[S1063-776(198)00807-3

1. INTRODUCTION (A=532 nm) and a pulse duration of 10 ns. Radiation with

The current interest in photoprocesses on surfaces df=232 nm was used to pump a tunable solid-state dye laser
condensed materials under laser radiation has stimulated i¥4th & tuning range 565-640 nm and a pulse energy of 50
tense research in photophysical processes and nonlinear djJ. The power density on the sample was varied in the range
tical effects, including those in nanostructured materials o 0-5—15)x 10° W/cn?. The sample was placed in a vacuum
developed surfaces with small characteristic dimensidns. chamber on a stage cooled by liquid nitrogen. The working
Most experiments on photoprocesses in nanoporous matefi¥essure in the chamber during experiments was® Torr,
als have dealt with either the photoluminescence of suclnd the base pressure was 20 ° Torr. Given a time-of-
material$ or the diffusion and sorption of molecules driven flight basel =31 cm, we could record time-of-flight spectra,
by laser radiationRef. 4, p. 5. However, the small pore i.e., the amplitudes of mass peaks as functions of the time for
sizes(20-100 A, well-developed surfaces, and other fea-the direct flight of the products to the ion source of the mass
tures of nanomaterials can be manifested in elementary phapectrometer. A specific feature of our technique is that time-
tophysical and photochemical processes on their surfacesf-flight spectra are recorded not in the conventional mode,
such as photodesorption, photodissociation, light-inducegvhere the arrival of particles of a single mass at the detector
surface diffusion, etc. is recorded as a function of time, but the full mass spectrum

In the present work, we have used time-of-flight massis recorded as a function of the delay with respect to the laser
spectroscopy, laser-induced luminescence, and absorptigjuise and then processed on a computer. This technique was
spectroscopyto study the effect of nanosecond resonant |a'employed because the maximum operating frequency of the
ser pulses in the 532—-640 nm wavelength range on subinass spectrometer was 10 kHz, and time-of-flight spectra of
monolayer coatings of molecular iodine submonolayershigh_energy particles with durations of 50—106 could not
formed on surfaces of nanoporous and sdlnporous  pe recorded in the mode of time-resolved detection of a

quartz. single mass.
The quartz @-quartzoid samples had pore sizes of 20—
2. EXPERIMENTAL APPARATUS AND TECHNIQUES 100 A and a porosity parametMpore/Vbulk SiOZZ 0.24. Be-

The experimental techniques included measurements d@re experiments, the samples were outgassed in vacuum for
laser-induced luminescence, absorption spectroscopy, ar@dlong time, and the process was monitored using the mass
laser-driven time-of-flight mass spectroscopy. The massspectrometer. In order to measure the content of impurities
spectroscopic system consisted of a dynamic time-of-flighaind sorbed molecules, samples cooled to 77 K were exposed
mass spectrometer and a powerful YAG3Ndaser operat- to radiation from an optical parametric oscillator2.82,
ing in a single-mode regime with a pulse energy of 120 m2.65, and 3.2um) in the absorption band of pure quartz,

1063-7761/98/87(7)/6/$15.00 64 © 1998 American Institute of Physics
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. FIG. 2. Absorption spectréin rel. unit9 of chemisorbed iodine molecules
R, A in nanoporous quartzl), physisorbed iodine molecules in nanoporous
quartz(2), gaseous iodin€3), and a molecular crystal of iodind).

FIG. 1. Potential-energy curves of a free iodine molecule.

which was powerful enough to cause ablation of the mate-<499 nm. If the photon energy 1s below .the _<j|ssoc;|at|on
rial. The mass and time-of-flight spectra recorded did noltlhreshold, a slower predissociation mechanism involving the
show the presence of impurities and residual gas moleculed!1, State may be activated. ) ) o
at the level of the absolute detection limit of the mass-  Ihe spectral and photophysical properties of iodine mol-
spectrometric system (610% cm™3). ecules adsorbed in pores are notably different. Figure 2
lodine submonolayers were produced on the quartz suShows the absorption spectra of physi- and chemisorbed mol-
face inside the vacuum chamber using a high-vacuum inje@cules in nanoporous quartz, gaseous iodine, and a molecular
tion valve. The iodine coverage of the surface was less thaffystal of iodine. .
0.5 of a monolayer and was monitored using both the laser- It is remarkable that the peak of the absorption spectrum
driven thermal desorption technique and measurements &f the chemisorbed molecules has undergone a shift toward
the absorption coefficient of samples of nanoporous quartghorter wavelengths relative to the spectrum of free mol-
(30 cmY). ecules, which is not typical of the changes in the state of
Our measurements indicate that iodine molecules sorbeddgregation from free molecules to an adsorbate and then to

in nanopores are of two types, name|y chemisorbed mol@ CryStal. This shift can be due to the increase in the inter-
ecules, which are tightly bound to the surface, and physhuclear distance in the molecule when a charge-transfer com-

isorbed ones, which readily leave the sample. plex is formed and the molecule-surface binding is tightened.
The adsorption energy of physisorbed iodine molecule\n important point is that the FWHM's in the absorption
was estimated from the desorption rate, assuming that it is a$Pectrum of both chemi- and physisorbed iodine molecules

Arrhenius function of temperature: are larger than the widths not only for the free molecule, but
also for the molecular crystal of iodine. In addition, accord-

d_N ~No exp( _ Eads) ing to the line shapes, there is a good reason to suppose that

dt kT )’ in the case of physisorbed molecules, which absorb at shorter

wavelengths, as well as in the case of chemisorbed mol-
vibrational frequency of a molecule on the surface ecules, the binding to the surface is stronger and the internu-
It follows from our measurements that the adsorptiondear distance is larger. An analysis of absorption spectra of

energy of physisorbed iodine molecules on a nanoporouBhYsisorbed 4 molecules in the long-wavelength range in
quartz surface can be up to 0.7 eV, which means that theffomparison with the spectra of gaseous iodine indicates that
the most probable cause of this broadening for some of the

binding to the surface is fairly tight. The adsorption energy ) , :
of chemisorbed molecules is even higher. molecules is a decrease in the gap betyveen the higher .and
lower terms along the energy scale owing to the negative
correction to the energy levels characteristic of the Stark
3. OPTICAL SPECTRA OF IODINE MOLECULES ADSORBED broadening due to a higher state of aggregation of the mate-
ON NANOPOROUS QUARTZ SAMPLES rial. In this case, one should expect a shift of the dissociation
Figure 1 shows the potential-energy curves of a free io€dge of the3Ho: term toward longer wavelengths by more
dine molecule. Transitions between them are responsible fahan 30 nm, which should lead to an onset of direct photoly-
the absorption in the visible spectral ran@eg. V-21 on p.  sis atA =530 nm(instead of 499 nm for gaseous |
228 in Ref. 6. The main photophysical process in free iodine  An estimate of the radiationless energy relaxation fime
molecules(Ref. 6, p. 225 is dissociation, which has a direct based on our measurements of absorption and fluorescence
mechanism(direct photolysig with a characteristic time of spectra and the fluorescence quantum efficienBy=(5
5x10 2 s if a molecule is excited to th@TOJ state atn X 10 °) for samples of nanoporous quartz coated with io-

whereN is the number of adsorbed molecules amds the
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FIG. 3. Time-of-flight spectra under laser action with=532 nm andq
=1.5x 10" W/cn?: 1) — iodine molecules from a nanoporous quartz sur-
face; 2) — iodine atoms from a nanoporous quartz surfa®e;— iodine
molecules from a solidnonporous quartz surface. The curves are only
visual guides.

FIG. 4. Positions of the firstfilled circles and secondunfilled circles
peaks in the time-of-flight spectra of iodine molecules desorbed from a
nanoporous quartz surface as functions of the laser power density at
=532 nm.

dine yieldedr,~10*2s, which is comparable to the direct =127) iodine species were generated. In this case, the time-
photolysis time ¢4<=5X 10 12s) and notably shorter than of-flight spectrum of § is radically different from the case of
the predissociation time. solid quartz and contains two peaks at 270 and »&)
Thus, our spectral and photophysical measurements invhereas no iodine was detected in the time interval of from
dicate that the states of iodine molecules adsorbed in nas10 t0 430us.
oporous quartz are qualitatively divergphysisorbed and It is remarkable that the translational energy of iodine
chemisorbed states and charge-transfer complexes that Molecules desorbed from a nanoporous quartz surface is
the radiationless relaxation for adsorbed iodine molecules ifdirly high. The most probable energy in a bunch of high-
very fast, significantly hampering the initiation of nonequi- €nergy particles is 1.8 eV when the energy of the pumping
librium photoprocesses. The only channel that can competdhotons is 2.3 eV.
with the radiationless relaxation is direct photolysis, whichis ~ Even a preliminary analysis of the results indicates that
possible under the conditions of our experiments onlyPhotoprocesses on the nanoporous quartz surface are radi-
through the excitation of physisorbed molecules at a wavetally different from those on surfaces of solidonporous

length of 532 nm. materials.

Figure 4 shows the positions of the first and second
4. INVESTIGATION OF PROCESSES INDUCED BY peaks in the time-of-flight spectra of iodine molecules as
RESONANT LASER RADIATION IN MOLECULAR IODINE functions of the laser power density at a wavelength
SUBMONOLAYERS ADSORBED ON NANOPOROUS =532 nm. The dependence on the power dengifpr the
QUARTZ iodine molecules of lower energy attests to their thermal na-

ture. The absence of such a dependence for the bunch of

high-energy molecules, along with their higher kinetic en-
The experiments were performed using dynamic timeergy, indicates that their desorption is nontherifpdiotode-

of-flight mass spectroscopy. In this case, more informatiorsorption.

can be obtained in the collisionless particle propagation re-

gime, where the velocity distributions of §pecies produced o1 5 Nonthermal one-photon photodesorption

the surface can be measured. The collisionless character of

the particle propagation in our experiments was confirmed  Efficient populating of the3H0u+ state in nanoporous

by numerical calculations of the rates of collisions betweemuartz is impossible under conditions of radiationless relax-

different molecules, which were performed for the three-ation with a characteristic time of 16%s at power densities

dimensional case, unlike those reported by Harrispal® of (0.5—15)x 10° W/cn? and a molecular iodine absorption
Figure 3 shows curves of the number of particles arriv-cross section of 10'cn?; therefore, the photoprocess ob-

ing at the ion source of the mass spectrometer as functions served in experiments cannot be attributed to a multistage

time (time-of-flight spectra obtained by exposing iodine excitation mechanism.

submonolayers physisorbed on surfaces of solid and nanopo- The conclusion that this photoprocess has a one-photon

rous quartz ton=532 nm radiation at a power density = mechanism is also supported by the linear dependence of the

=1.5x 10" W/cnm?. When iodine was adsorbed on the sur-number of } molecules in the high-energy peak of the time-

face of solid quartz, only molecular iodinen(e=254) with  of-flight spectrum on the energypumber of photonsin the

a time-of-flight distribution peaking at 55@s were detected. laser pulse ak =532 nm(Fig. 5).

In experiments with the samples of nanoporous quartz coated When the laser wavelength is switched from 532 to 575

with iodine, both molecularrfi/e=254) and atomicp/e  nm and then to 640 nm, the time-of-flight spectrum of the

4.1. General features
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Ep’ mJ FIG. 7. Schematic potential-energy curves of the iodine-molecule/
) ) ) o nanoporous-quartz-surface system. Cu2veorresponds to the molecule in
FIG. 5. Relative yield of high-energy iodine molecules desorbed from athe excited electronic state, and cuiveorresponds to the ground electronic
nanoporous quartz surface by laser pulses with532 nm versus pulse state of the iodine molecule.

energy.

desorbed iodine molecules shiftBig. 6) from 265—-300us In our experiments no high-energy component was de-

to 295-325us. As can be seen in Fig. 6, the time-of-flight tected in the time-of-flight spectra of molecules desorbed

spectra for pump wavelengths of 575 nm and 640 nm arérom nonporous quartz surfacéBig. 3). Therefore, we as-

identical within the experimental error and have a more comsume that the high-energy photodesorption is due to the

plex shape than the spectrum recorded &t532 nm. nanostructure of the substrate and suggest the following in-
Thus, the experimentally detected nonthermal photodegerpretation.

orption of high-energy iodine molecules from the surface of ~ Thel3,+ ground electronic state of the iodine molecule

. 9
hanoporous quartz has a one-photon character and iS ORas the electronic configuratiarf 7wy . As a result of the
served under the action of laser radiation of wavelengths {ransition from thelS,+ state to the’lly+ state, the elec-

=532, 575, and 640 nm over a wide range of pump powe 27747_;2; to o2mtmdol
densitiesq=5x 10°—1.5x 10" W/cn?. ) 9"u"g g"utgu
. L i.e., one of them, electrons moves into the, orbital,

In most publications photodesorption is treated as a

Franck—Condon transition to either a bound state of ar\]/vhereas the effective radius of the orbital is considerably

adsorbate-ion/surface compléAntonievich’s mechanisin larger than that of ther orbital. For comparison, we note
. . P that the electronic radii of Cs and | are 2.62 A and 1.36 A,
or a dissociated state of an adsorbate/adsorbent complex

(Menzel—Gomer—Readhead mechanidfn Antonievich’s respectively(cesium was chosen because it is the first ele-

Lo ; L . ment after iodine in the periodic table in which the sixth
mechanism is characterized by small kinetic energies for the ; .
. . D : électronic level is populated
desorbed particles, in contradiction to our experimental data: . I .
Figure 1 shows that when a free iodine molecule is ex-

_Photodesorpﬂon by Men_zel S r_nechz_;mlsm 'S also.'mpOSSIbl%ited to the®Il,+ state, the equilibrium internuclear distance
in our case because excited diatomic molecules in pores are u

typically in stable states of adsorbate/adsorbent complexdgcreases from 2.66 A_to 3.0 A. The absorption spectra of
(Ref. 4, p. 8. iodine molecules physisorbed on a surface of nanoporous

quartz (Fig. 2 indicate that some of the physisorbed mol-
ecules(the short-wavelength portion of the spectjuhave

. . . g
tronic configuration changes from

A, , rel. units, an even larger internuclear distance in the excited state than
30l in the free molecule. It is estimated to be up to 3.5 A. Thus,
) the effective diameter of an excited iodine molecule in a pore
250 with allowance for the increases in both the internuclear dis-
tance and the effective radius of electronic states is 7—10 A.
2.0r The possible dependence of the potential energy of an
sk iodine molecule on its distance from the quartz surface is
' schematically depicted by cundein Fig. 7, whereRy is the
1of equilibrium distance between the surface and molecule and
the potential well depth specifies the adsorption energy.
0.5p When the electronic system of the iodine molecule is ex-
. ¢ coca s cited, the effective diameter of the electronic state increases,
285 290 295 300 305 310 315 320 325 330 hence the equilibrium distance from the surface to the mol-
fdelay HS ecule also rises. Since the nanopore volume is limited, this is

FIG. 6. Time-of-flight spectrum of high-energy iodine molecules desorbedequlvalIent to a considerable increase in the potentlal energy

from a nanoporous quartz surface. Laser radiation with75 nm(1) and f)f the Surface‘m()lecu_le interaction. In Fig. 7 this Cha_nge is
A=640 nm(2); q=1.5X 10’ W/cn?. The curves are visual guides. illustrated by the verticalFranck—Condona—b transition
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to potential-energy curv@ with an equilibrium distanc&®, A, , el units
>Ry. Then the molecule is capable of desorbing with a high
kinetic energyE, . 10}

Since the actual structure of pores is fairly complex,
there can be several equilibrium positions of an excited mol-
ecules in a pore characterized by different potential-energy 6t
curves.

As was noted above, the positions of the time-of-flight ar
spectra of desorbed particles at the pump wavelength
=532 nm, on the one hand, andhat 575 and 640 nm, on
the other, are different. In terms of energy, this difference is . . . . .

0.26 eV and can be ascribed to different vibrational states of 250 300350 400 ‘:50 500

the molecules. That the time-of-flight spectra of desorbed delay’ H°

iodine molecules ak =575 and 640 nm are identical means i g. Time-of-flight spectrum of atomic iodine generated in the photodis-
that desorption occurs at the same vibronic energy of theociation of  molecules. Laser radiation with=532nm andq=1.5
adsorbate/adsorbent system in both cases, and this is possibi&0” Wien?. The curve is a visual guide.

only if the molecule undergoes preliminary vibrational relax-
ation to the zero-point level within the excited electronic

(=]

quartz, no iodine atoms were detected among the species
term. Then we should assume thatiat 532 nm, where mitted. This fact can easily be interpreted on the basis of the

n:gle?l:rl]esaﬁre ?xcne((jj to ste?es near th; @s;cl)uattl)on thres‘gbectra in Fig. 2. Only laser radiation wik=532 nm ex-
old of the=llo; term, desorption proceeds in the abSence Oliias jodine molecules on a sample of nanoporous quartz

equilibrium with respect to the vibrational states. In this casenear the dissociation threshold and can bring about direct

the characteristic time of the process is comparable to thﬁhotolysis of a molecule with a characteristic time of 5

vibrational relaxation time (10''-10""?s). x 10" *2s. Conversely, radiation with wavelengths of 575
An analysis of experimental data also leads to a concluand 640 nm has photon energies below the dissociation

sion that the total number of high-energy particles is nothreshold of thé’Il,+ term and can lead only to the predis-

greater than 4% of the desorbed molecules. This percentage iation of iodine runolecules via tHél, state with a char-

is so small because, owing to the large pore §02-100 A, L tu .

-acteristic time much longer than 1&s; therefore, predisso-

only a small part of the sorbed molecules exist under condi-’, i ¢ te with either direct bhotolvéi
tions that lead to the size effect in excitation in a confined*'2!1o" cannot compete with eriner direct pno oly&ithen

: - ; =532 nm) or radiationless relaxation.
volume followed by desorption by the mechanism descrlbea‘ / o
above. y P y Thus, it should be concluded that excitation of the

13 0+ =3I+ transition in b submonolayers on the surface
g u

of nanoporous quartz driven by radiation ®&=532 nm

o _ leads to the surface photodissociation of iodine molecules,
Another significant difference between the photopro-which proceeds only via the direct channel. No predissocia-

cesses on the surface of nanoporous quartz and the procesggs of molecules excited to predissociation states below the

on the surface of solithonporous quartz under laser radia- photolysis threshold of théll,+ term (\ =575, 640 nmwas

tion with A=532 nm is the presence of atomic iodine detected !

among the species (_amitted frpm _the surface. The time-of- The photolysis of iodine molecules on the surface of

flight spectrumA,l(t) is shown in Fig. 3. The spectrum has nanoporous quartz and its absence on the surface of solid

two peaks. This curve does not adequately represent th@artz can be attributed to the strong effect of the nanostruc-
number of iodine atoms generated by the interaction ang{;red surface on physisorbed iodine molecules, which broad-
arriving at the ions source of the spectrometer since it doegps their absorption spectrum. Some of the molecules are
not take into account the fragmentation of molecular iodine gycited at\ =532 nm to states near the photolysis threshold
After an analysis based on the fragmentation relations, wWgg the 3[1,+ term (the peak of the absorption spectruend
found that the part of thA'l(t) distribution peaking at 270 dissociateuvia the direct channel. lodine molecules on solid

ps is due entirely to the fragmentation of high-energy desy art; surfaces do not experience such a strong effect of the
orbed iodine molecules in the spectrometer ion source.

II%urface, and the action of radiation with=532 nm excites

addition, we could derive the time-of-flight spectrum of \he to states below the photolysis threshold on g+
atomic iodine formed as a result of the photodissociation of u

I, molecules. This curve is shown in Fig. 8. The absence O}ern;_(Just_a? n thﬁ_ grj]aseous ph?:smd C;n re_sul_t Of?_'Y mt .
atomic iodine among the species emitted when laser radid) cdissociation, which, as was shown above, IS Inethicient in

tion acts on iodine molecules sorbed on solid quartz aII0W§he present case.

us to conclude that the photolysis of physisorbed iodine mol- on via the th | ch |

ecules occurs not in the gaseous phase, but on the nanostrﬁ1 - Desorption via the thermal channe

tured quartz surface. As was noted in Sec. 4.(Fig. 3), the second bunch of
Under laser radiation withh =575 nm and 640 nm fo- molecules desorbed from a nanoporous quartz surface with

cused on iodine molecules on the surface of nanoporou®wer energies is due to the thermal effect of laser radiation.

4.3. Surface photodissociation of iodine molecules
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An estimate of the maximum temperature increase in the We express our sincerest thanks to L. K. Denisov for
case of uniform heating of the entire exposed area yieldsupplying the unique solid-state tunable dye laser for our
AT~4 K. At the same time, one can see in the time-of-flightexperiments.
spectra that the translational energy of the slowest desorbed The support of this work by the Russian Fund for Fun-

iodine molecules is=10°K. damental ReseardiGrant No. 96-2-1957is gratefully ac-
Among the plausible mechanisms that can account fognowledged.

these results, we single out the mechanism of local heating

and the mechanism due to the vibrational and rotational re-

excitation of molecules in the upper electronic statin the

latter case, the kinetic energy of the particles should not vary

with the number of photons in the laser pulse, in Contradic'lA. Belogorokhov, V. KaravanskiA. Obraztsowet al., JETP Lett60, 274
tion to the experimental resulsig. 4). Thus, the more prob- (1994,

able mechanism of the desorption of iodine molecules with?V. Dneprovski, V. Karavanski, V. Klimov et al. [JETP Lett.57, 406

lower energies is local heating. (1993. _ _
3A. Belogorokhov, V. Karavanskiand L. Belogorokhova, Fiz. Tekh. Po-

luprovodn.30, 1177(1996 [Semiconductor80, 621 (1996)].
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We formulate the problem of the stationary point of the operator of radiative relaxation of an
atom: the initial distribution among the sublevels of the excited state, whose nonzero
eigenvaluegpopulation$ coincide with the populations of the final distributiGafter spontaneous
decay among the sublevels of the ground state. We show that these distributions can be
expressed in terms of spherical functions of the complex direction. The results are then used to
develop a compact analytical representation of the stationary density matrix of atoms
interacting with an elliptically polarized monochromatic field. 198 American Institute of
Physics[S1063-776(98)00907-X]

1. INTRODUCTION tion with elliptically polarized monochromatic radiation. Ob-
viously, the stationary¥nonequilibrium distribution of the
It is widely known that relaxation processes play a majoratoms among the sublevels of the grougdl &nd excited €)
role in the interaction of atoms with resonant radiation. Astates is determined not on|y by the parameters of the exter-
common reason for relaxation in an atomic system is thega| field (polarization, intensity, and frequengyput also by
interaction (usually weak of the system and the ambient, the properties of the radiative relaxation operator. One of the
which drives the atoms toward an equilibrium state angmain results of Refs. 5 and 6 is that the problem of the
causes the atomic levels to have a finite lifetime. In a low-gtationary density matrix can be reduced to the problem of
density ensemble of atoms, where the interatomic interactiO\qnding the stationary point of the radiative relaxation opera-
can be completely ignored, the main relaxation mechanism ig,. |n Ref. 5 we found that the stationary point for thg
radiative(the spontaneous emission of radiajioiccording  _ F—F,=F transitions corresponds to an isotropic distribu-
to modern conceptjoﬂsthe_radigtive relaxation of atoms IS ion among the sublevels of the excited state, which made it
determined by the interaction with the vacuum modes of the, <6 10 write a compact analytical expression for the sta-

electromagnetic field and can be considered a QED effec ionary density matrix. In Ref. 6 the solution for the station-

Th_e properties of the relaxa't|or.1 operator reflect certain prOpéry point was found for théy=F— F.=F+1 transitions
erties of the vacuum, e.g., its isotropy.

If relaxation is ignored, the interaction of an atom with with F=0,1/2,..,5 in theform of polynomials in the opera-

. . ) - . ) : tor of the resonant interaction with the field. However, we
light is described by a Schdinger equation with a time- : . :
were unable to derive a closed analytical expression for the

dependent Hamiltonian. This description, however, can bex ansion coefficients that would be valid for all values of
used only at extremely short times that are shorter than th pans :
. Besides, the method used in Ref. 6 was based on a theo-

reciprocal spontaneous relaxation rate'~10 8 s. When h lidity in th | caset5) h t1o b
t>9"1, the wave function of the atom becomes a rapidlyrfem whose validity in the general casex5) has yet to be
rigorously proved.

fluctuating quantity, and the density-matrix formalism be- . .
comes more appropriate for analytical description. The den- !N the present paper the problem of the stationary point
sity matrix satisfies the corresponding quantum kinetic equa®f the radiative relaxation operator of an atom is formulated
tion, and the form of the radiative relaxation operator in the€XPlicitly, i.e., the stationary point refers to the initial distri-
quantum kinetic equation for the atomic density matrix in thePution among the sublevels of the excited state whose non-
dipole approximation without allowance for strong-field Zero eigenvaluegopulations coincide with the populations
effects is well known(see, e.g., Ref.)4However, its tensor  Of the final distribution(after spontaneous degagmong the
properties and its effect on the formation of multipole mo- Sublevels of the ground state. We find a particular solution of
ments in the system of Zeeman sublevels have to be studidhis problem in the form of convolutions of Wigner tensor
in greater detail. operators and spherical functions of complex direction. The

In Refs. 5 and 6 we studied the problem of the redistri-results are then used to develop a compact analytical repre-
bution of atoms among the sublevels of the ground and exsentation of the stationary density matrix of atoms interact-
cited states as a result of the cloggd., in which the total ing with an elliptically polarized monochromatic field. We
population is conservedptical transitions-;=F—F.=F also prove the theorem of Ref. 6 in general form for all
(F is a half-integer and Fy=F—F.=F+1 upon interac- values ofF.

1063-7761/98/87(7)/6/$15.00 70 © 1998 American Institute of Physics
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2. STATEMENT OF THE PROBLEM We have thus completed the statement of the problem of the

We consider an atom with two degenerate energy Ievelstaﬂonalry point of the relaxation operafor

coupled by a dipole transition: a ground stagg (ith angu-
lar momentun¥ 4 and an excited statee) with angular mo-
mentumF.. In the quantum kinetic equation describing the ~ We found a particular solution of this problem. The so-
evolution of the atomic density matfixve can single out the lution, however, has important applications. To formulate
terms that describe evolution as a consequence of radiativaur result we need to introduce spherical functions of com-
relaxation alone: plex direction,Y v (@), which can be defined invariantly via
a multiple tensor product® For instance, for an arbitrary

— Pp=— %(ﬁe;’+;)ﬂe) complex vectom=a’ +ia" we have

rel (2L+1)
. Yiu(a@)= 4L

ty, 2 QueQp &y

3. SPHERICAL FUNCTIONS OF COMPLEX DIRECTION

ap
ot

X{-{{a®a},®alsz -@af v, (4)

wherevy is the radiative relaxation rate. The first term on thewhere a= \a-a (not to be confused witHa=\a* xa).
right-hand side describes the damping of the excited-statgpherical functions generalized in this way depend only on
density matrixp®® and of the off-diagonal element$9 and  the direction in three-dimensional complex spide., the
,‘Jge’ and the operator functions remain unchanged in response to the transforma-
tion a—va, wherev is an arbitrary complex number. For
real vectors &' =0), the definition(4) leads to standard
He:ﬂe; Fe [Fepe)(Fe el 2 spherical funf’uon%?lf the quantization axig is orthogonal
to a’ anda’, the definition(4) yields

Fe

projects onto the excited stat€,, ue) being the wave func-
tions of the magnetic sublevels. The second term on the Y, (a)=eM \/(2L+l)(L—M)!
right-hand side of Eq(1) describes the spontaneous passage Lw(8)= 4ar(L+M)!

of the atoms from the excited state to the ground state. The hereP (x) are associated Legendre functions, and the pa-

’
raising ope.ratOIQB and the lowering operato; can be rametery can be expressed in terms of the cyclic compo-
expressed in terms of thgi® symbols as follows: nents ofa as follows:eX=—v2a.,/a ande X=v2a_,/a,

. . since —2a,,a_,;=a? in the respective basis set. Formula
Qp= 2 [Fe. ) V2Fet1(—1)Fe ke (5) can be regarded as a suitable analytic continuation of the

PY(0), (5)

Feta standard definition of the spherical functioi y (6, )
Fe 1 Fy (Ref. 7 to complex values of the angte What is important
X —we B o (Fg.uql- (3 here is that the functior4) satisfies the same basic group
e g

relationships as ordinary spherical functions. In particular,
In view of the orthogonality of the vector addition the Clebsch—Gordan expansion of the product of two spheri-

coefficienté we have=Q QB . and hence -|{[r{p} 0, cal functions of the same argument holds, i.e.,
which means that the totat populatlon is con.s.erveld. o (21, +1)(2,+1)
We now assume that in some way an initial distribution Y, m (@Y m,(8)= Z
M2 4m(2L+1)
peis created at the excited level and that the off-diagonal
Yim(a) (6)

elementspt? and the ground-state density matpf? are ><CIlOI Mo
cM ., ,m, are the Clebsch—Gordan coefﬁcie)nas does the
1 1

then equal to zero. Like any nonnegative definite Hermitian
matrix, pIn is given in a correspondlng basis set by aseto
of different arguments

1Mylomy

ter this initial dlstr|but|on has been created, the atomic den-

sity matrix evolves according to Eql). After a long time a-b
t>y~1 has elapsed, all the atoms find themselves in the YL(@YiL(b)=— U b/ @
i — - eg —
ground state due to spontaneous relaxz.:1t|po§ﬁt “Pout 0 whereP, (x) are Legendre polynomials.
and pout EQﬁpmeQB The corresponding eigenvalues
€
{pd,... ,p2F +1}out differ from the initial ones{p;}, in the 4. ALGEBRA OF THE OPERATORS V ,(a)
general case. Among the possible dlstnbutlgaﬁ,% we look W define th luti
for those in which the nonzero populations belonging to the e now define the operator convolutions
sets{p/}in and{p?},.: coincide. Note that this leads, among A a4 A
other things, to equality between the entropies of the atomic V(&)= 57 MZ_L (—DMTERY L —m(a) (8

subsystem in the initial and final states:
. . of spherical functions and Wigner tensor operators of rank
Tr{p, In (pm%} Tr{PgSt In( pout)} L:
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. - ={Y1(b)®Ye,1(a)}2rq, Which holds since the number

o= 2 [Fa.ma)2L+1(—1)Fa #a (2F+1)+1—2F=2 is even. Equatioril4) can be proved
Ha ko in a similar way.

F. L Fy

—Ma M pup

X

(Fo ., pp- ©)

. ) .. 5. STATIONARY POINT OF THE RELAXATION OPERATOR
Employing the algebra of Wigner operators, we can write

general expressions for products\6foperators of different We shall seek the solution for the stationary point of the
ranks: operatorl’ in the form
~ . -1 K+q+Fe*Fg4ﬂ_aLb*J Aee:'\ >t
Vi(@Vi)y=> ) pin=VL(@V[(a). (15)
K.q

V(2L + + . . o
(2L+1)(2+1) The above algebraic relationships imply tiat for Fy=F

K L J —F.=F—1 transitions no such solution exists and ttiat
X for Fy=F—F.=F transitions the matrix15) is the solution

Fg Fe Fe .
for the lowest possible rank=0.
><{YL(a)®YJ(b*)}K_qA§3, _ Inciden_tally, these two statements are obvious cqrollar-
(10) ies of the isotropy of the relaxation operator. The thing is
fb e (—1)K+atFg=Fegmg*Lp? that since forF,=F4—1 the number of filled sublevels of
VL(a)VJ(b)zKE IRECATSY the excited state cannot exceeB 2-1, at least two more
a sublevels of the ground state are filled as a result of sponta-
K L J neous decay, and for this reason alone there can be no sta-
% . : _ )
Fe Fg Fg tionary point. WhenF.=Fg, the number of sublevels in

both states is identical, and the isotropic initial distribution
X{YL(a*)®YJ(b)}K,q'T'%%, will simply become the isotropic final distribution, i.e., a
stationary point exists and corresponds to a uniform

where we have used the standard notation for the 6(distribution®

symbols’ Hence, in particular, we have the following com-  we can also prove that a third statement is also true: for
mutation relations. Fy=F—F¢=F+1 transitions the matrix15) is the solution

1) For the arbitrary rank& andJ and all dipole transi-  for highest possible rank=2F + 1. This is a nontrivial fact.
tions of the typeF.=F—F,=F,F=1 we have Indeed, in this case the angular momentum of the excited

state exceeds the angular momentum of the ground state by

unity, and for a stationary point to exist two sublevels of the
I VU (11D excited state must be unoccupied. Clearly, no matter how we
Vi(@Vy(a) =Vi@Vvi(a), choose these two sublevels, the uniform distribution among

since expansion of the right- and left-hand sides in the tensdf® rémaining £4+1 sublevels of the excited state corre-
operators‘?ﬁ%('?’ﬂ%) leads to identities of the typéY, (a) sponds to some anisotropy, and spontaneous decay to the

QY (Al =1V (Y, (a _which in turn follow from gtourtd state produces an anisotropic, i.e., honuniform, dis-
the JC(:IE)JEJ};(::hEGJéréan éipﬁggiﬁj for spherical functions. _ ioution among the sublevels of the ground state. Thus, the

2) Depending on the type of transition, for the arbitrary nalk\/ﬁ generdaltlﬁatlfon of :r:ﬁ res?ltf fdfe:':gl does not
vectorsa andb we have: work here, and the form of the solution is unclear.

a) for Fy=F—F,=F transitions Now let us go back to the proof of the thltd stgtement. In
(13) we setb=eg, wheree, are the cyclic basis unit vectors.

Vi(@Via)=V,@V(a),

Vi(@)V1(b)=VI(b*)Vo(a*); (12)  Then, bearing in mind thad ;= \2F .+ 1V,(e,), we obtain
b) for F,=F—F.,=F+1 transitions - A - ~
’ ) p88t=§ QiVar 1(AVie 1 (8)Qp=Vie , 1 (%)
Vie 1 (@Vi(b) =Vi(b*) Ve y(a%); (13)
¢) for Fy=F—F,=F—1 transitions x> QﬁQ};)VZF+1(a*)=\A/ZF+1(a*)\A/2F+1(a*).
B

Var _1(a)Vi(b)=Vy(b*) Vi _y(a). (14 (16)

The proptfrt)(12) is obvious if we recall that in this case the Note that the matrix Vors1(8)V3e, (@) has a two-
operator Vo is proportional to the identity matrix and dimensional null subspad@ subspace of vectors with zero
VI(b*)=V,(b). To prove the validity 0{13) it is sufficient  eigenvaluel which coincides with the null subspace of the
to expand both sides @13) in the operatord §3 and allow  matrix V,(a)Vi(a). This becomes evident in the system of
for the fact that all ranks except=2F are forbidden by the coordinates in which the complex vectaiis a linear com-
selection rules contained in thé 8ymbols in(10). Equation  bination of one linear and one circular componrénte.g.,
(13) then reduces to the identithY ¢ 1(a*)®Y1(b)}2rq a=a’g+a’le,;). Settingb=a in (13) and employing
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(11), we find that the matriced/,,1(a)Vie.,(a) and

Ve, 1(8*)Vye . 1(a*) satisfy the following commutation re-
lation:

\A/2F+1(a)\7;|=+1(a)\71(a) = \A/l(a)\A/;FJrl(a* )02F+1(a* ) -( 2
1

Multiplying (17) on the right(left) by VI(a) and finding the

Hermitian conjugate of the product, we obtain the important

commutation relations
[Vars1(@Vie (), Vi(a)Vi(a)]=0,

[Vie . 1(a* Wop 1 (a%),Vi(@)Vy(a)]=0.

From operator algebra we know théjr . ;(a) V3., ;(a) and
Ve, 1(@*)Vye,1(a%) are diagonal in basis sets of the Her-
mitian operators/,(a)V1(a) andV}(a)V,(a), respectively.
Calculating the matrix elements ¢617) using the eigenvec-
tors of the operatorsV,(a)Vi(a) and Vi(a)V,(a), we
conclude that pS*=V,c (a)Vic,,(ad) and p3%%
=V}e . 1(a*)Voe.1(a*) have coinciding nonzero eigenval-
ues, which is what we set out to prove.

(18)

6. STATIONARY ATOMIC DENSITY MATRIX

We can show that the above solution for the stationary
point of the relaxation operator corresponds to a stationary
distribution of atoms among the sublevels of the excited state
in an external field. Actually, this fact was used in Ref. 5 for

Fy=F—F¢=F transitions, E is a half-integex. Similarly,
the nontr|V|aI solution fong—F—>F =F+1 transitions
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_ YT 1y -1
¥ arasa, (ViE@Wi@] '+
X\A/;F+1(e*)\72|:+1(e*),
(21)
$=(p%) "= Vi(e)

(6+iv/2)(ag+2Say)

X[VI(OV1(8)] Ve, 1(€)Var1a(e¥),

where S=|Q|?/(y?/4+ %) is the transition saturation pa-
rameter. The validity of this solution becomes evident if we
plug (21) into (19) (or into the equations for the stationary
density matncesp andpgtg, whose expanded form is given

in Ref. 6 and allow for Eqs.(16)—(18) and if we bear in
mind that the projection of the matriX,r . 1(€)Vie. 1(6)
onto the null subspace of the operatbf(e)VI(e) is zero.
The uniqueness of the stationary solution for the present type
of optical transition was proved earlier in Ref. 6. We stress
that the distribution among the sublevels of the excited state
coincides, to within a normalization constant, with the sta-
tionary point of the relaxation operator for the particular
valuea=e. The normalization constantg depend only on
the ellipticity £ of the field (cos 2=e-€) and can be found
explicitly for all values ofF. The addition theoren(7) for
spherical functions implies that

= Tr{vzm 1(9)\A/;F+ 1(e)}
(COS %)2F+ 1
4F+3

1

cos %/’ (22)

P2F+l(

Calculating the matrix elemenisee the Appendjxin the
coordinate system used in Refs. 5 and 6, where

produces a compact analytical representation for the atomie €vc0s 2 +v2e,; sine, we find that

density matrix.

Briefly, the statement of the problem is as follows. The
guantum kinetic equation for atoms interacting with an ellip-
tically polarized monochromatic field is obtained by adding

the following Hamiltonian part tq1):

dp

i
r —%[H,p]—F{p}, (19
where
A=—%68lla+#(QV,(e)+Q*Vi(e) (20)

is the atomic Hamiltonian in the rotating-wave approxima-

tion, 6= w— wq is the detuning of the field frequeneyfrom
the transition frequencw,, and(} is the Rabi frequency.
We see that the operators introduced@nfor L=1 coincide

with the tensor factor in the resonant dipole interaction op-

erator. The unit complex vectar of elliptic polarization of
the field satisfies the conditiors-e=1 and Img-€)=0.

The exact stationary solutiop, of Eq. (19) for Fo=F

—Fe=F+1 transitions can be expressed in terms of the

operators\/L as follows:

pgte 0+ZSC¥1 \’\/2F+1(e)\’\/£F+1(e)a

ap= Tr{[V (e) Vl(e)] 1V2F+1(e*)V2F+1(e*)}

(F+1)(2F+1)1(2F +3)!
- (4F +3)! (cos

%)ZF

al Sir? €
XE@ (cos 2;) (23
F—n
(F+m+n)!(F—m—n)!
A”_mZZ_F (F+rm)I(F—m)!
" (2F+ 1+ p)! 2
x ,;0(_ N FTid g (Fr 1= p—m)!
The commutation relationd8) immediately yield
[pSE Va(e)Vi(9)]=0, [p Vi(eVi(e)]=0.  (24)

Thus, we have proved the main theorem of Ref. 6 in general
form.

Note that the solutiorf21) coincides with the result of
Ref. 6 whenF=0,1/2...,5. To verify this it is enough

to represent the operators\A/ZFH(e)\A/;H1(e) and
\:/JZFFHA(e*)\A/z,:H(e*) by power series irf/l(e)\A/J{(e) and
VI(e)Vl(e), respectively. Here the normalization factors cal-
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culated in Ref. we denote them by; anday) differ from e=gy\/cos Z+V2e,, Sine. (A1)
(22) and(23) by a conversion factct, i.e.,a;=Ca;j, Where 14 hare things more compact, we introduce the notation
co (4F+3)(2F+1)1? V&)=V, Ve, 1(€)=W, and V. 1(e*)=W and rewrite
[(F+1)(2F+1)(2F+3)]%F 1" the solution(21) as follows:

In Ref. 6 we presented concrete calculatigokthe absorp- ~ e S P

tion goefficient and the radiative forcesing the stationary Pst =—ao+ 2Sa, ’

solution for several values of angular momentuim,

=0,1/2...,5.Here we shall not consider applications of the ~g9_ 1 SOt L RtG

results, since this constitutes a separate problem. Pst™ ot ZSal(XX +SWW), (A2)
The solution(21) has an invariant form, which makes it

possible to find the values of the elements of the stationary peg:(;)ge)T: Q

density matrix in both the ordinary=( «) representatiofsee st stV (8+i1y12)(ap+ 2Say)

the Appendix and in the atomic-polarization-moments rep- O ARy . . .

resentation[the (K,q) representatiop In particular, from \iv.heAr@S—L{anh U the psel_Jdomverse. mati‘&rel_atlve_to

(21) and(10) it follows that the polarization moments of the V: VUV=V. For the generalized spherical functio@ in

excited state can be expressed in terms of tensor products Bte basis setAl) we have

Arx T

spherical functions: Y _m(e)=(—1)M
2F+1
pee_Tr(fecnen _ _ATHNCOSBIT e QLID(LIM) 1 | sine
Kag KaPst (010+23a1)(4|:+3) X M1

4’7T(L_M)| M! \COS &

K 2F+1 2F+1 (A3)
+ +

PR+l Pl for M=0 andY _y(e)=0 for M<0. Plugging(A3) into the
X{Y2r4+1(€)® Yo 4 1(€) bkq- (25  definition (8), we obtain F4=F, F.=F+1, andL=2F

)

Note that the distribution among the sublevels of the excitedﬁL 1

statep¢ in the form (21) for the particular case of linear (2F+1+pu—m)!

Wum:(il)':im

polarization of the field was first obtained by Macek and (p—m)!
9
Hertel. \/ (2F12)1(2F)]
- CONCLUSION (4F+3)1 (F+1+ ) (F+1— ) (F+m)(F—m)!
B pm—m
The present work is a continuation of a series of % (cos %)FH/Z(ﬁ (Ad)
papers®>® devoted to the fundamental problem of the sta- Vcos 2

tionary density matrix of atoms interacting with an ellipti-

cally polarized resonant field. The exact solutions obtained in

a compact analytical form have an extremely broad range ovhereu=—-F-1-F,...F+1, m=—-F,—-F+1,...F, and
applications, among which the most important are laser cooly, — m=0. The matrix?W can be obtained frontA4) using

ing and the trapping of atoms in nonuniformly polarized iha time-reversal operatiol/,,,=(—1)**™W_, .. The
M —pome

fields, the resonance fluorescence of atoms captured by a , - . .
. . - nonzero matrix elements of are given by the following
magneto-optical trap, and nonlinear polarization spectros;

copy without Doppler broadening. On the other hand, in thisformulas.

paper we have developed a new approach for studying the (F+1-w)(F+1+uw)

tensor properties of the radiative relaxation operator, and the ~ Vuu™= (F+1)(2F+1)(2F +3) V€03 Z,

results may also prove useful in analyzing the temporal evo- (A5)

lution of atoms subjected to an external elliptically polarized B \/ (Fru)(F+1+puw) )
electromagnetic field and a vacuum electromagnetic field. wi=1= N ErD)(2F+ 1)(2F+3) -1 &

This work was made possible by a grant from the Rus-As the matrix pseudoinverse Yowe take the matrix with the
sian Fund for Fundamental Resear@Brant No. 98-02- glements

17794.
U (F+1)(2F+1)(2F+3)
APPENDIX: CALCULATING THE MATRIX ELEMENTS m (F+1+u)(F+1—pu)cos 2
The simplest way to calculate the matrix elements of the sing |\™ & M F+v
stationary atomic density matri21) is to employ the system X ( - m) V:I;:IH \ [ (A6)

of coordinates used in Refs. 5 and 6, where the field polar-
ization vector is a linear combination of one linear and onefor u=—F,—F+1,...F, supplemented by the zero col-
circular component: umnsU,,_r_1=0 andUr,;=0. Here we sell_ . ,f,
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The purely thermal visible and infrared radiation emitted by a dense resonant medidiam

vapop heated nonuniformly to temperatures of 600-1200 K was investigated

experimentally for the first time under conditions where the photon mean free path is comparable
with the emission wavelength. The profile of the recorded spectra and the absolute
luminescence intensities in the different spectral ranges show good agreement with the results of
a numerical simulation using a previously developed theory of resonance radiation transport
which assumes a Boltzmann spectral distribution of the resonant level population proportional to
exp(—hwlT). The self-reversed resonant sodium line exhibited strong asymmetry and it was
shown that under certain conditions, the luminescence spectrum of the medium may exhibit an
additional broad peak on the far “red” limb of the resonance line. Calculations and
measurements demonstrated that the intensity of the thermal emission of sodium vapor at this red
peak is several orders of magnitude higher than that obtained from the standard theory of
resonance radiation transport. This effect is arbitrarily termed an infrared “catastrophe.” It is noted
that in a solar corona plasma and in gas-discharge lamps, the far red limbs of the resonant

lines may make a substantial contribution to the total luminescence intensity and in some cases,
considerably exceed the intensity of the photorecombination and bremsstrahlung continuum.

© 1998 American Institute of Physids$1063-776(98)01007-3

1. INTRODUCTION sity of the equilibrium radiationJ,, within the line profile
may substantially exceed the Planck value. It was also
The formation of luminescence spectra and resonancgbserved’ that under certain conditions, the resonant line
radiation transport processes in dense gases and plasmas Rasfile may exhibit a second broad peak shifted in the low-
recently attracted increasing interéstThis is mainly attrib- frequency direction relative te,, where the emission inten-
utable tq the developm_ent of research to study radiation PrGsity in this red limb may be many orders of magnitude higher
cesses in dense, multiply charged, ion plasmas created Byap, the intensity of its near-resonant component. This phe-

IgseL rad|at&on or by (\j/arlouks typehs Cg d|s|chargEsa(r}d X nomenon was described in Ref. 12 as an infrared catastrophe.
pinches and so grand work on the development of x-ray These effects may show up to a considerable extent in

t_abllshed congepts in the standard theory o_f_resonan_ce radlghd 11 can be checked experimentally. Since the highly
tion transpoft® developed for low gas densities, and in par-

ticular, has shown that some of the approximations used iHme-dependent, highly inhomogeneous plasma of a laser

this theory must be abandoned. This particularly applies t(§parI§, meh?S’ etc., is afairlly inconvenient.object to stu.dy, It
the well-known Biberman criteridne ' — 1< 1 for the valig-  Was interesting to check this theory experimentally using a

ity of the standard theorye( is the real part of the permit- simple model medium such as thermally heated d-ense alkali
tivity e=¢’+ie” of the medium and the narrow-line ap- metal vapor. The present paper reports the experlmeptal ob-
proximation Aw= w— wy<w,, Wherew, is the frequency Servation of the effects predicted in Refs. 10 and 11 using the
of the resonant transition andlis the frequency of the emit- thermal radiation from dense sodium vapor heated to tem-
ted photon. Taking account of this observation, the author§eratures of 600-1200 K under steady-state conditioss

of Refs. 10 and 11 developed for the first time a generalizegults were briefly reported in Refs. 12 and).1Bhe experi-
theory of resonance radiation transport free from these cormental data are also compared with the results of a numerical
straints. The approach developed in these studies predictéimulation. The structure of the luminescence spectrum of
the existence of fundamentally new effects in radiation transthe sodium resonance doubleP33S was studied experi-
port processes in dense media. In particular, it was shown imentally. We particularly note that purely thermal radiation
Ref. 11 that in a dense strongly absorbing medium the intenwas recorded from the vapor in the absence of any excitation

1063-7761/98/87(7)/11/$15.00 76 © 1998 American Institute of Physics
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by an electric field or an external radiation source. Under n(w)=(expfw/T)—1) L. ®)

these conditions, the electron density is negligible and the

intensity of the bremsstrahlung and photorecombination con-  Substituting Eq(2) into Eq. (1) and integrating, assum-

tinua is also low. The relatively low temperatures eliminateing thate(w,k) depends weakly on the wave numigetich

the appearance of any other lines in the thermal radiatiofs valid in dense media since the collisional widthunder

spectrum. these conditions is much greater than the Doppler vjdtie
This study is constructed as follows. Section 2 gives aobtain for an equilibrium highly absorbing medium

qualitative analysis of the effects and Sec. 3 reports the re- 3

sults of a numerical simulation of the radiation processes in, __ ho’n(w) &’ ( 2 &' 48”| ( I ))

1+ — arctan—; + —In| ——
iy € € wvtlc

dense media under different conditions. Section 4 gives com-® 47> 2
parative estimates of the ratio of the radiation intensity on

i intensi ina. =Jow(w)s’ (4)
the resonant lines and the intensity of the photorecombina- ® '

tion and bremsstrahlung continua under plasma cond|t|on§Nherer| is the Planck intensity for black body radiation in

Section 5 contains descriptions of the experimental apparatt{;acuum and1 is the thermal atomic velocity. Since at high

and diagnostic techniques. Section 6 presents results of MegensitiesN the widthT is determined by resonant collisions

surements of the thermal radiation emitted by dense sodiurg ' - \/1asov—Fursov mechanidh(T'=N), as a result of

vapor in various spectral ranges, discusses these experimen- L A .
: . e presence of a logarithmic contribution in which
tal results and compares them with the calculations. The P 9 H9)

main conclusions are put forward in the concludin Section?ncreases WIthN, the equilibrium intensity in an absorbing
P 9 medium may be almost an order of magnitude higher than

the radiation intensity in a transparent medium determined
2. QUALITATIVE ANALYSIS by the Clausius formuld”'s’ within the spectral line profile

It has already been noted in the Introduction that at higﬁor detunin'gAwsF. Note tha}t the numerical calculations of
pressures, the standard theory of resonance radiatioh, for sodium vapor assuming thatdepends ofw andk
transport® developed for low gas densities is no longer ShoW that the approximatio) is quite accurate:
valid, since the condition for a small deviation effrom  These effects may be observed to a considerable extent
unity ceases to be satisfied and the photon mean free path!ly observations of the thermal radiation emitted by a dense
comparable with the emission wavelength. It is easy to shownedium. Calculations of the intensity of this radiation should
that in a dense medium, a photon is a “poor” quasiparticle,2/S0 be made using the functidfiw,k,{,r) introduced ear-
for which the dispersion relatio’s’ w=ck is not satisfied, Ilgr. In the stea_ld)_/—state case, the generah;ed spectral inten-
wherec is the velocity of light anck is the wave vector. In  Sity of the radiationJ(w,k,Q,r) should satisfy two equa-
this case, the problem of resonance radiation transport can $€NS §|m.ultaneously. One of these has the form of the kinetic
solved using an equation for the Fourier components of th&duation:
correlation functions of the electromagnetic field which can ~
be formulated in terms of kinetic Green’s functiorisThis (Q,V)I=—k, Ite(wkQ,r), ®)
allows us to introduce the generalized spectral “intensity” . . . -~
J(w,k) of the radiation, where the frequenayand the wave yvherekw is th.e absprpuon coefficient ardis the ge_neral—
vectork) are independent variables. In general the functio?€d spectral intensity of the bulk spontaneous emisSion:

J(w,k is not positive and several of its moments, i.e., inte- _a)zs"(w,k) g, (d7w)?

grals overk with different weighing functions, are physically k,= 5 =_2 >—a(w,k)
meaningful. Thus, the spectral radiation intensifyusually ck 301 heck
encountered in the measurements and standard transport g~
theory is related td(w,k) by X| Ny — ” N, exp(—ﬁ(w—wo)/T)), (6)
2
-2 [kt ok &
owl22)=— ®,K) 755, -~ 4d*w’he w?e” ~
o Jo (2m) P (27)3*N,a(w,k)

. . . . . 3 #hc’k |w28—C2k2|2
where ) is the unit vector in thé direction.

This approach can predict fundamentally new effects in h(w— wg)
resonance radiation transport processes in dense media. For ><exp< - T)
instance, under conditions of thermodynamic equilibrium in
an unbounded medium the functidfw,k) can be deter- In Egs.(6) and(7), a(w,k) is the generalized line pro-
mined from the fluctuation—dissipation theorem for the specfile, g, , are the statistical weights of the ground and excited

tral density of the fluctuations of the transverse electromagstatesN, , are their effective populationsee belowwhich

)

netic field strength: satisfy the Boltzmann relations in equilibrium and may be
8rhw'n(w)s” obtained from the kinetic equations given in Ref. 10 in the
J(w,k)= m (2 absence of equilibrium. Integrating E) over k, neglect-

ing the spatial dispersiofwhere a(w,k)=a(w)), we can
where? is Planck’s constant, and(w) are the equilibrium obtain a clear expression for the spectral intensity of the
photon occupation humbers given by the Planck formula: spontaneous emission in a highly absorbing medium:
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1 w3 - The exponential factor exp{i(w—wg)/T) appears in
Sy fiwAg w—J Re(e"?)N,a(w) Egs.(6)—(10) (the need to introduce this was noted in Refs.
15-17% as a result of generalizing the standard radiation
fi(w—wg) transport theo3° to the case of broad lines characteristic of
Xex[{ N f) ®  a dense medium and was was justified in Ref. 10 in terms of

_ _ the Keldysh theory using kinetic Green’s functidfis?* We
It follows from Eq. (5) that in general there is no closed gha|| now consider the case of an equilibrium medium of

equation for the spectral intensiy, defined in Eq(1) and  5.jevel atoms emitting thermal radiation which, for sim-
in addition to the first-order partial differential equatic®), plicity, we shall describe as Planck.

the functionJ(w,k,€2,r) should also satisfy an inhomoge- The equilibrium condition implies that the rates of radia-
neous wave equation, which has the following form in theyye decay of the spectral density of excited atoms and pho-
steady-state case toabsorption from the ground state are equal. We write this
2 8 wte” condition in terms of the photon and atomic occupation hum-
— _A+2(02k2_a,28’))3= S — bers taking into account the recoil momenta of the photons
2 |w®e — c?k?| and the kinetic motion of the atoms, and also quantum sta-

2(c2K2— w2e') tistics effects(see Ref. 11
X——— . 9
((N1/N2)(g2/gp)exp(—fi(w—wo)/T)—1)

In the homogeneous case, Ef) yields the same result
(2) as the kinetic equatiofb). In the general case, Eq®)

Nz(p)az(g)f dodQo(1+n)[1—Ny(p—#k)]

X ay(&— w— wo+ E(p)/i—E(p—#K)/%)

and (9) must be solved jointly. _ 5 ~
In order to close the system of equatiof® and (9), :[1—N2(p)]a2(s)f dodQeingN;(p—7ik)
they must be supplemented by the equations for the popula-
tionsN;. In the limit N,<N;=N we can obtain the follow- Xay(e— ot wot E(p)/A—E(p—fik)h). (13
ing equation forN, (assuming that complete frequency re- Here we have writtem, = c|k|, n, is the photon occupation
distribution occurs in a dense medium number:
2d%?g, [ de dQk?dk ~ nL= -1
c- 22 X277 k= (expfiwy/T)—1)", (14
3 hZ gl f (277_)3 J(w,k,ﬂ,r)a(w,k)Nl

N;(p) are the generalized occupation numbers of itie
atomic statdto be specific we assume Fermi statistics for the

8d2f dw k?dk w*"(w,k)

-5 a(w,k
3 7 |o’e—ck?? (k) atomic states E(p) =p?/2m is the overall kinetic energy of
B (0— ) g the atom, an@,;(¢) is the spectral densitiprofile) of theith
T 01
vil2ar
h (e)= "
xex”(‘%))“" ao  HOTIGR 19

where v; is the width of this state. The following notation

The first term in Eq.(10) corresponds to the photoab- pears in Eq(15)

sorption of radiation, the second corresponds to the spontg—p
neous decay of excited atoms, and the third corresponds t0 7 c=fw—fiw,—E(p)+ u, (16)
collisional exchange between states 1 and 2 with the prob-

ability W. The boundary conditions satisfied by the intensityEi=%iw; is the energy of theth state,u is the chemical
at the interface may be derived from an analysis of the emispotential, wo=w,—w,, i.e., ¢ is the frequency detuning
sion from a heated medium into vacuum. In particular, forfrom resonance in staiewhich is determined by the energy
the radiation intensity®(Q) from a heated medium having f;+E(p)—u.

the temperaturely, the reflection coefficienR=R,, the Condition (13) is identically satisfied ifN;(p) has the
permittivity e =&, and the functiony= i, at the boundary form (see Ref. 1D

(see Eq(4)), we obtain

~ 1
I, Ni(p)= : —
&go(®) o(w) 1
whereJ{") is the intensity of the radiation emitted from the = exphw/T)+1" (17)

medium to the interface. Note that in a uniform half-space, _ _
relation (11) generalizes the Kirchhoff law for the radiation We shall consider the case where the ground state (

intensity emitted by an equilibrium medium: =1) is unbroadened, i.ea;(e)= d(¢). Then, allowing for
Eq.(17), it follows from Eq.(13) that the rate of photon drift

=31 -R). (12 in the Q direction will be proportional tdR, :
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1 The appearance of this exponential factor can be ex-
Rl:exp((ﬁs+hw2+ E(p)— )/ T) + 732(e)(1+ny) plained qualitatively as follows. In the narrow-line approxi-
mation, Aw<wg and in a low-density medium the spectral
1o 1 intensity of the bulk emission from a resonant medium is
expl(fie+hw,+E(P) —fiogt+hawg)/T)+1] described b (compare with expressiof8))
(18 e,=(U4m)h wANy(w), (25
Here wy ande, being the detuning from the position of level yhereN,(w) is the spectral population density of the reso-
2, are related bysee Eq(16)) nant level, i.e., the density of atoms capable of emitting a
fhe=hw—hwo—E(p)+E(p—#k). (19 photon at the frequer_my (in the approximation of complete _
_ frequency redistribution of absorbed and emitted photons, it
Introducing the auxiliary populatioN;, defined as is assumed thatl,(w) = N,a(w), whereN, is the total reso-
~ 3 nant level population It is known that in the standard theory
Ni=exp(—fiw; /T)[exp(u/T)/A7] (20 of resonance radiation transpbttie absorption coefficient is

(where for simplicity the statistical weights were assumed diven by the following expression:

to be unity, and\ is the thermal de Broglie wavelength of K = Am2(c2) w2 N, — N 2
the atom, and neglecting degeneracy, the rate of radiative © ' (€70(92/91)a() (N1~ (91/G2)N). (26)
decay of an atom in state 2 with the momentpnand de- Assuming that in  equilibrium N,=(g,/g;)N;

tuning & will have the form X exp(—hwy/T) (Ref. 8, we obtain the following expression
~ 3 for the ratioe , /k,,:
R;=No\T expg(—E(p)/T—helT)(1+nay(e). (21
g,/Kk,=(hw’l4m3c?) (exphwy/T)—1) 1, (27

Similarly, the rate of photoexcitation of an atom from state
i=1 with the momentunp—#k, using the same notation, At equilibrium however, the ratie ,/k, should be equal and

will have the form identical to the Planck intensity”', which in turn is deter-
~ . g mined by an expression similar t@7) but whose exponen-
R;=N\1 exp(—E(p—#:k)/T)n@z(e). (220 {al function contains the instantaneous frequeacyather
Equating expression€1) and (22), we obtain(taking ac- than the resonance frequeney:
count of Eqs.(19) and(20)) lez (hw34m3c?) (exphwlT)—1) L. (28)
_l’_
1+ =eXF< @) In addition to this anomaly, there is also another. It is easy to
Nk T see that the total radiation intensity integrated over all fre-
fe+hwo+E(p)—E(p—#ik) quencies using expressi¢pd) is infinite. Even if the depen-
EGXF{ T : (23)  dence of the spontaneous emission probability«ois ne-

glected QA=Aq(w/wy)3, where A, is the classical
Relation (19) for the photon frequencw, implies that for  probability of spontaneous emission in vacuum, see Refs. 10
the broadened atomic state 2, a photon emitted from the linand 13, and for example, for purely radiative broadening,
limb (¢#0) possesses an energy which is determined nahe integral ofe, diverges logarithmically at high frequen-
only by the transition frequencyw, and the atomic recoil cies wherea(w)xw 2.
energyE(p) —E(p—#k) but also by the detuning. In order to obtain an accurate formula tﬁjﬂ and ensure

If the rate of spontaneous decay is integrated over theonvergence of the appropriate integral, the expression for
momenta of the emitting atoms, after the term contaimpg N,(w) must be modified by introducing the correction factor
is dropped Eq(21) gives _ _

- Na(w)=Nza(w)exp(—7i(w—wy)/T), (29

(Ru)s= Nz exp ﬁ(w_k wO)/T)_(P(wk _wO)' (24? where, as was shown in Ref. 10, expressi@g) will not
where ¢(w—wo) =¢(A) is the Voigt profile of the emis-  ¢contain the true populations but the effectivauxiliary)
sion line, which m_general IS a c_onvoluuon of the_ profites populationsN,. In equilibrium we obtain the Boltzmann
and a;. Expression(24) contains the correction factor spectral distribution,

exp(—A/T) omitted in the standard theory of resonance ra-
diation transport, which is usually close to unity near the line  ,(w)=N,a(w)exp —%w/T) (30)
center,A<<T but is essential to describe the radiation at the

far limbs of the line A=T). In the resonance approxima- (in the absence of equilibrium the effective populations
tion, the quantitye/T in the expression for the spectral popu- N;(w) are obtained from the kinetic equations given in Ref.
lations (see Eqgs(17), (21) and(23)) is negligible compared 10). In this case, the true total population of excited atoms is
with unity and the factor exp{A/T) automatically becomes determined by the integral of E¢30) over frequency and for
unity. Note that in the derivation of these relations the spepure radiative broadening may be written in the form

cific homogeneous broadening mechanism is unimportant 5 31
sincey, can be determined even by a purely radiative broad- N22N1[ exp{ _ ﬂ) = ﬁ
ening mechanism. T 2T wg

T
hwo

4
} . (31
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Interestingly, a similar sum of exponential and powercollision between emitting and buffer atoms accompanied by
contributions was obtained for the particle momentumvirtual excitation and subsequent emission of a photon at
distribution?? In Refs. 15 and 16, where an expression simi-frequencyw far from the resonance frequeney, (an analog
lar to (29) was used, it was assumed when integrating ovepf polarizing radiatio?™?3. It is easy to see that the intensity
frequency that the total population is determined by the firsbf the spontaneous emission of photons in these collisions
Boltzmann term in expressigB1l), which may lead to major will be proportional to exp{ »/T). However, if heavy par-
errors. It follows from expressiof81) that, strictly speaking, ticles collide, as a result of the Massey criteriaw/v>1
even in equilibrium the true populatioN, will not satisfy  (wherea is the characteristic scale of the particle interaction
the Boltzmann relation and will only be the sameNasfor a  radius andv is their relative velocity, the probability of
narrow lineAI'<T. However, a detailed analy&fsshows this process will be exponentially low and proportional to

that Egs.(6)—(10) actually containN, and thus we define €XP(-aw/v). o o
this as the effective population. We shall analyze another radiation-collisional process,

The introduction of the factor expffi(w— wg)/T negligi- emissiqn of a p.hoton at theT far qugsistatic Iimb of the line of
bly influences the nuclear line profitw=I" (although fora an ex_(:lted particle whose interaction potential with a buffer
fairly broad line it increasingly enhances the asymmetry ofil0m is denoted by,(R). For atoms in the ground state the
the absorption and emission lines in a dense mephunfor ~ iNteraction potential is denoted byy(R). Using the
T<w, may result in the appearance of a second peak on thranck—Condon principle, we can then write the following
far red limb of the line profile(where w<wy) if the gas condition for the frequency of the emitted photon:
temperature is fairly low. Under these conditions we have fiw=fhw(R)=E,—E;+U,(R)—Uy(R). (32)

£, 0aw)exg —fi(w—wy)/T) . At the far limb of the line, we can n_eglect the Doppler
shift and we can consider the line profé#g(s) caused by

(see Eq(8)), and provided that the profile does not decreasdnteraction between quasistatic particles to be proportional to
too rapidly(power law in the range of low-frequency detun- & Ssfunction. In this approximation, we obtain for the bulk
ing, the high value of the exponential factor ensures that aftensity of the spontaneous emissi@ee Refs. 15 and 16
additional peak appears. We postulate that the resonant line ¢ «N,(R)N, exd —#w(R)/T]|R2dR/dw|. (33
broadening is created by the gas itgelfid for large detuning

the quasistatic profilea(w)<A~2) or by a buffer gas Here

(a(w)xA~33, Ref. 14. It is then easy to show that the N (R) = exg u/T)exg — (E;+U;(R))/T]

frequencyw,, corresponding to this maximum is determined , . . .
in both cases by the temperature of the medium and is ad§ the density of ground-state atoms interacting with buffer

proximately 4T/#. This additional peak will occur in the par.ticles(having the densit)N,?) Ipcated at the distance,
temperature rang&=# wo/11, and its intensity will be pro- which corresponds to the emission of a photon of frequency

portional toT#. The intensity of the low-frequency peak will (R). The derivati\_/exj R./dw Is obtained from reIatior(132)._ .
clearly differ appreciably in these two cases. It can be seen that in this model example at the far quasistatic

Under these conditions, detailed calculatiosse below limb of the line, the emission probability is pro'porti.onr?ll to
show that the intensity of the far limb of the spectral Iinethe 'Boltzmanr} factor exp{fw/T) and the quasistatic line
may appreciably exceed the intensity calculated by standar‘ar()f'Ie determined by the last cofactor in HG3).
theory’ and most of the energy emitted on the line may be
assigned to its nonresonant req limb rather than to the qentfal NUMERICAL SIMULATION OF RESONANCE RADIATION
near—reson.ant component. T.hIS phenomenon was arbitrari R ANSPORT PROCESSES IN DENSE SODIUM VAPOR
described in Ref. 13 as an infrared catastrophe. Moreover,
even in the absence of a peak at relatively high temperatures, A numerical solution of the system of equatiaigs, (9),
the emission intensity at the far limb will still be substan- and (10) with the boundary conditioif11) was used to cal-
tially higher than the intensity calculated by standard theoryculate the radiation intensity, of the resonant sodium lines
Note that although the introduction of an exponential factor(w,=3.2x 10*° s™1) both inside and at the exit of a nonuni-
is not directly related to effects caused by the density of théormly heated planar layer of sodium vapor of lengtin the
medium, in reality its influence on the radiation intensity in presence of an argon buffer gas at a presgusel atm. In
various spectral ranges and on the ratio between them withe calculations it was assumed that near resonance the
nevertheless be determined by the concentration of interacbroadening is determined by a collisional mechanism with
ing particles, since we hawe, « a(w) and the line profile resonant collisions predominating at high temperatures. The
in the impact and quasistatic cases is proportional to thigollisional widths for theD; andD, sodium lines are given
concentration at a given radiation frequency. in Ref. 25 and are

The thermodynamic relations do not indicate the specific
mechanism for tr}:e establishment of the Boltzmann diZtribu- Ip,=2mx4.68<10 ®N's™* and
tion (30). However, it is easy to show that this distribution [ =27X7.62<10 8N 571
can be formed in various elementary events, in interaction 2
between the atomic system and equilibrium radiation and it the line limb it was assumed that the profidw) is
collisions. In this last case, for example, we can consider théormed by quasistatic argon broadening for which
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FIG. 1. Frequency dependence of the spectral
10714] radiation intensity at the center of a planar
layer of sodium vapofa) and of the radiation
intensity leaving this layetb); T,=1000 K,
107!8 L=15 cm; 1—calculations using the theory
put forward in Refs. 10 and 112—
1 0_22 calculations using standard radiation thefry,
and 3—Planck intensity.
10726 X . . . . .
0 1 2 3 4 5 6 7
w, 1015 rad/s w, 1015 rad/s
a(w)=(477/6)(C6)1’2NbAw‘1'5 makes a relatively small contribution. Note that, as the cal-

(see Ref. 2 whereN, is the buffer gas density. The van der culati(?ns ha\{e shown, the optical Iaygr thicknesi;!s the red
Waals interaction constar€g=1.9x10 %! cnf/s was ob- peak 153 relatlv‘e‘:ly s”mal(for the conditions described above
tained from data on the argon collisional broadening of the” 10 ) and “soft” photons can escape from the bounded
sodiumD lines?’ medium. _ _
The results of the calculations are plotted in Figs. 1-3.  Figure 1b shows the spectral dependence of the intensity
Figure la gives the frequency dependence of the radiatiofif the thermal radiation from the cell under these conditions.
intensity at the center of a layer of thickndss 15 cm when It can be seen from a comparison of the curves that far from
the temperature at the centerTis= 1000 K. In this case, the resonance the output radiation still shows the same depen-
temperature profile in the layer corresponds to the experidence. For small detuning, however, the peak at the resonant
mental conditiongsee below and the Na atomic densities frequency is replaced by a dip as a result of self-reversal
were assumed to correspond to the saturated vapor pressutiehough the calculations show that the intensity at the line
at the given temperatufé Curve1 was calculated using the center is still several orders of magnitude higher than that
theory put forward above, curnv2was calculated using the calculated by the standard theory.
standard thepry of_ spectral line radiatiband curve3 gives Figure 2 gives a family of curves showing the change in
the Planck intensity. The graph clearly shows that at thene structure of the emission spectra at the center of a layer
center of the line, curvé exhibits a narrow peak of intensity ¢ yicknessl = 15 cm and at the exit from this layer as a

exceedir)g the. Planck intensi'ty, \.NhiCh Is attributgd to thefunction of the temperatur€, (T, was taken to be 950 K in
strong dispersion and absorption in the dense sodium Vapory, cases For the calculations the pressure of the sodium
discussed in detail above. In the infraréhere w= w4y

~5x10 571 the calculations reveal a broad peak of inten-VaPor and argon in the layer were assumed to be constant at

sity several orders of magnitude higher than that obtained if Na~ 0-1 atm andP,=1atm. The temperature profile in

the standard theory at the same frequency. On the blue limt€ layer was assumed to be parabolic. It can clearly be seen

the opposite situation arises and, what is particularly importhat as the temperature increases, the red peak gradually be-
tant, the frequency integral of the intensity calculated using?omes smoothed and disappears whign 2000 K, although

the standard theory diverges at high frequencies. The resul@$ high temperatures the contribution of the red limbs of the
show that in this theory the integrated intensity of the radiafesonance line is still much greater than that calculated by
tion spectrum at the given temperature is mainly determinethe standard theory. To illustrate this, Fig. 3 gives the tem-
by the red peak and the near-resonance component of the liperature dependence of the integrated luminescence intensity

Jy, ergls-cm?-s7sr Je ergls-cm?-s7l-sr
107 1077 3 b
" FIG. 2. Frequency dependence of the spectral
10 intensities of the radiation at the center of a
10710 planar layer of sodium vap@a) and radiation
intensity leaving this layefb), at various tem-
10712 peraturesT.; 1-3—calculations using the
o theory put forward in Refs. 10 and 14-6—
1 using standard radiation transport theoty;
10716 =15cm, Ty=950 K, P\,=0.1 atm, Pj
10718 [ =1atm, T.,=1000 (1,4), 2000 (2,5, and

4000 K (3,6).

, 1015 rad/s
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FIG. 3. Dependence of the integrated intensity of the emission from a layer

of sodium vapor in the visiblg1,2), 0.4<\<0.7 um and infrared(3,4), FIG. 4. Spectral emissivity of a hydrogen plasrbh@—emission orL, line,
A>0.7um as a function of the temperature at the center of the layer;3—atomic bremsstrahlungi—ion bremsstrahlung,—photorecombination
1,3—generalized radiation transport thedfy! and 2,4—standard theory: ~ radiation:1—calculations using the theory put forward in Refs. 10 and 11,
L=15 cm, T;=950 K, Py,=0.1 atm,P,=0.1 atm. and2—using standard theory.

of the layer in the visible (0.4X<0.7 um) and infrared the far red limb begins to exceed the intensity of the con-

(A>0.7 pm). tinuum for »>0.6x 10'° rad/s. However, calculations using
standard transport theory show that the line limb is only

4. PLASMA RADIATION: COMPARATIVE ESTIMATES OF greater than the continuum fas>1.7x 10'° rad/s, and at

THE RATIO OF THE RADIATION INTENSITY OF this frequency the intensities of the line wing calculated us-

RESONANCE LINES AND THE INTENSITY OF THE
PHOTORECOMBINATION AND BREMSSTRAHLUNG
CONTINUA

ing the standard and generalized theories differ by an order
of magnitude.

As a second example, we shall consider the emission on

In the previous section we examined the structure of thehe L, line for a plasma containing hydrogen atoms or
spectra of pure thermal radiation from a resonant medium itnydrogen-like ions and we shall compare the bulk emissivity
the absence of ionization for the case of sodium vapor. In &, at the line limb with the continuum intensity. For multi-
plasma the luminescence intensity at the far limbs, althougply charged ions we also took into account the bremsstrah-
appreciable, will compete with the radiation intensity deter-lung and recombination radiatiofalso in the Kramers
mined by other mechanisms, especially bremsstrahlung arapproximatio”® and the calculations were made for a
photorecombination. The question therefore arises as to th@asma containing mainly bare nuclei, and hydrogen-like and
ratio between these mechanisms and whether the radiatidrelium-like ions(the ion composition was calculated using
intensity at the limb of the resonant line can make a substarthe Saha formula Electron bremsstrahlung at atoms was
tial contribution to the total plasma radiation. To solve thisalso taken into account for hydrogen. The line profile for
problem, we shall give fairly rough estimates of the contri-large detuning from resonance was calculated as the sum of
bution of the various mechanisms of plasma luminous excithe Stark and dispersion limbs.
tance for specific examples. The results of some of the calculations are plotted in Fig.

As a first example we shall analyze a planar layer of4 which gives the emissivitg,, of a hydrogen atom in an
equilibrium arc plasma in a sodium—mercury mixture with aequilibrium isothermal plasma attributable to different
characteristic length =0.8 cm having the following param- mechanisms of emission at an electron density=6.4
eters. We shall assume that the gas temperature decrease$0'® cm 3 and temperature 0.55 eV. These parameters
parabolically from a maximum at the center of the layercorrespond to the conditions achieved in the photosphere at
T.(z=0)=4000 K to To(z=*L/2)=1500 K at the bound- the edge of the solar disk where the plasma is composed
ary and the electron temperature is everywhere equal to th@ainly of hydrogen(Harvard—Smithsonian standard model
temperature of the heavy particles. The sodim atm) and  of the Sun’s atmospher&. On this graph, the, curve cor-
mercury (1 atm) vapor pressure is constant throughout andresponding to emission on the line does not exceed the con-
their atomic concentrations are determined by the gas tentinuum at its maximum. However, at energiés>%w,
perature.(These parameters approximate to the conditions=0.412 Ry \;=221.3 nm) the intensity of thie, line limb
achieved in a high-pressure gas-discharge sodium)lddip  may appreciably exceed the continuum intensity. Note that at
der these conditions the spectral intensity of the continuouthis point, the profile calculated by the standard theory gives
spectrum comprising the sum of the photorecombination andn emissivity almost two orders of magnitude lower than that
bremsstrahlung continua, which was calculated using thealculated using formulé). However, even when the emis-
Kramers formulag®? is constant for w<wy=3.2 sivity in the standard theory is comparable with the con-
x10%rad/s and is approximately BL0 erg/ tinuum (for Zw,=0.588 Ry,\,=155.1 nm), the difference
s-cn?-s L.sr. Calculations using the generalized theorycompared with formuld8) is still a factor of 20. Thus, even
showed that for the resonant sodiubnline the intensity of  when the effects being discussed weakly influence the radia-
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detector, 6—amplifier, 7—synchronous detector,8—
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I tor to measure absolute integrated intensity in visible and
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tion spectrum in the visible and infrared ranges, in the ultra-  The radiation in the axial zone of the tube, extracted via
violet beyond the Balmer decremehtv>Ry/4, allowance a sapphire window, was passed through a mechanical chop-
for these effects can substantially alter the radiation balancger which modulated the input light beam at a frequency of
which may influence the output parameters of the semi~1000 Hz and was recorded directly by two detectors: an
empirical model of the solar atmosphere. FEU-84 photomultiplier in the visible rangén the 0.5-0.6
Calculations for multiply charged hydrogen ions for um band cut out by a set of light filterand a photodetector
plasma parameterdNg=10° cm 2 and T=150 eV) typical comprising a PbS photoresistor with a germanium window in
of the solar corona containing potassiud~20) show that the infrared(in the 2—3 um band. The photoresistor was
under these conditions the intensity in the red limb is muctcalibrated in terms of absolute intensity using radiation from
higher than the intensity calculated by the standard theorg Globar heated to a known temperature, and the photomul-
and the continuum intensity. tiplier was calibrated using radiation from an SI-8-200 stan-
Thus, in many cases the mechanism for the formation oflard tungsten lamp. In both cases, the calibration accuracy
the spectral line limb examined in Sec. 2 can compete withwas ~50%. Note that the luminescence intensity integrated
the intensity determined by other radiation mechanismsver these spectral ranges will subsequently be denotég as
(bremsstrahlung and photorecombinatiofhis may prove andJ, .
to be an extremely important factor in calculations and inter-  The |luminescence spectra of the vapor in the 2458
pretation of the luminescence measurements for variougange were obtained by directing the radiation to the entrance
plasma objects. In addition, the appearance of a highsiit of an infrared monochromator with an MG-30 pyroelec-
intensity red limb may strongly influence the processes ofric detector positioned at the exit. For the spectral measure-
radiative filling of other levels and alter the plasma kinetics.ments in the visible and near infrardth the wavelength
rangex<1.2 um) we used another monochromator with an-
other photomultiplie(FEU-83 or FEJ-84) positioned at the
exit, which was also calibrated over the spectrum using a
tungsten lamp. The detector signals were amplified by
Measurements of the spectra of pure thermal radiatiomarrow-band amplifiers and then passed to synchronous de-
made to check the theory developed above were carried otgctors from which the dc voltage was supplied to high-
using a setugsee Fig. 5 consisting of a cylindrical “thermal precision analog-digital converters connected to a computer.
tube” cell filled with sodium vapor and a highly sensitive The spectral resolution in the experiments was generally
recording apparatus. Prior to the experiment the ¢telbe 15 cmi ' in the visible and near infrared and300 cni* in
inner diameter 2.5 cincontaining metallic sodium was the 2-5um range.
evacuated to a pressure 6f10"° Torr, filled with rare gas In the experiments, particular attention was paid to pre-
(argon or heliun at a pressure of 0.2—1 atm, and was thenventing direct radiation from the heated cell walls from en-
heated to the required temperature which was measured ukering the detector apertures. This was achieved by placing
ing various thermocouples positioned over the surface of théwo aperture diaphragms between the detectors and the cell
tube. For the experiments we used two cells with active(see Fig. %, their centers coinciding with the axis of the cell.
zones(the section between the hydrogen-cooled flapgés These diaphragms, having aperture diamedgrs1—16 and
lengthL=15 and 30 cm where the temperature distributiond,=5 mm and separated by a distance of 43 cm, limited the
over the length was approximately parabolic. Note that asolid angle of the radiation incident on the detectors. Mea-
T.~900 K and above, yellow Na vapor luminescence issurements of the vapor luminescence intensity in the visible
clearly visible through the exit window at the end of the cell. (J,) and infrared §;) showed that whed; was increased to

5. EXPERIMENTAL SETUP AND METHOD OF MEASURING
THE SODIUM VAPOR LUMINESCENCE
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1 FIG. 7. Temperature dependence of the integrated luminescence intensities
10 of sodium vapor in the infrared.,3,9 and visible(2,4,6 at the center of the
thermal tube:1,2—experiment, 3,4—standard theory5,6—theory from
1 Refs. 10 and 11t =30 cm.
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FIG. 6. Experimentally measuréi) and theoretically calculate@) spectra
of the luminescence of dense sodium vapor from a thermal tube in the ranggansitions of molecular sodium Bawhich is present in
0.5-1.1pm; L=15 cm, T,=1140. fairly large quantities in the bulk of the celbn the order of
a few percent of the atomic sodium dengity

The most important factor observed theoretically and ex-
10 mm, the values o, andJ; are proportional talf to a  perimentally is the strong asymmetry of the thermal radiation
high degree of accuracy. In addition, in the absence of sospectrum of a resonant medium, which cannot be obtained in
dium in the cell, and regardless of whether buffer gas wastandard transport theory. Another predicted effect—an ap-
present and its pressure, over the same range of variation pfeciable increase in the output intensity at the center of the
the diameter of the first diaphragm no signal was observefine compared with that obtained from the standard
from the detectoréit was below the sensitivity of the record- theory—is difficult to check quantitatively using this experi-
ing apparatuseven at maximum heating temperatures. Thusmental setup because of the inadequate sensitivity of the re-
in all the experiments the value df was set below 6 mm. cording apparatus, since the radiation flux leaving the reso-
nant medium at the center of the self-reversed dip, calculated
using Egs(5), (9), and(10) remains extremely low.

Far from resonance, the effects associated with an excess
of the radiation intensity above the Planck intensity become
unimportant and the optical vapor density is much less than

Figure 6 shows the characteristic self-reversed spectrumnity. However, for Aw>I" the exponential factor
of thermal radiation from sodium vapor in the 0.5-ufin  exp(—%(w—wg)/T) begins to play an important role in the
range obtained using this apparatus. Also plotted is the thaadiation intensity in the infraretsee Sec. R The results of
oretical curve calculated using EdS), (9), and(10). Forthe  measurements of the absolute intensity of the thermal radia-
numerical simulation it was assumed, as was noted abové¢ipn of dense sodium vapor in the infrared and visible are
that the distribution of the sodium atomic density over theplotted in Fig. 7 and the radiation in the 2+8n range for
cell length is determined by the temperature distribution invariousT, is shown in Fig. 8. Note that the radiation in such
accordance with the saturated vapor pressure curve, which &far infrared limb of the spectral line has not been studied
valid at least up to-900 K (Ref. 30. On account of the high before (the measurements are usually confined to detuning
vapor and buffer gas density, and also the large ratio of cek<1000 cm *—see Ref. 31—and in particular, no measure-
length to diameter{ 10), this approximation is completely ments have been made of the pure thermal radiatidhe
accurate at higher temperatures. In the experimental meaesults plotted in Figs. 7 and 8 show that the intensity of the
surements of the luminescence spectrum the relative luminfrared radiation is several orders of magnitude higher than
nescence intensity was recorded and thus, to permit comparhat near resonance and the infrared part of the spectrum
son with the experimental data, the theoretical curve in Fig. @xhibits a clearly defined peak which qualitatively confirms
was normalized in terms of luminescence intensity to thehe theoretical reasoning. Figure 7 gives the integrated emis-
short-wavelength peak of the measured spectrum. A consion intensity calculated using the proposed theory in the
parison of the experimental data and the calculated resulspectral ranges investigated experimentally. It can be seen
shows that the theoretical curve accurately describes the efdat the theoretical curve for the range 0.5—@® shows
perimental data near resonance and quite satisfactorily, @ood agreement with the experiment. For the infrared the
long wavelengths. The appreciable discrepancy between thexperimental and calculated data agree within an order of
theoretical and experimental curves for €6<0.8 um is  magnitude. Some discrepancy may be attributed to the im-
evidently attributable to the calculations neglecting the influ-perfection of the theory, which describes the formation of the
ence of emission and absorption on electronic—vibrationastatic limb extremely qualitatively at such large detuning.

6. RESULTS OF MEASUREMENTS AND COMPARISON
BETWEEN EXPERIMENTAL DATA AND CALCULATED
RESULTS
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J,y, arb. units theory differ markedly from those observéske Fig. 7, be-

2000 ing several times higher in the visible range and almost six
orders of magnitude lower in the infrared. Thus, the experi-

1500F mental data fully agree with the theory developed in Refs. 10
and 11 in which the Boltzmann distribution of the spectral

— population of the resonant level is proportional to
exp(—fw/T) and confirms the existence of an infrared catas-
trophe in the radiation from a resonant medium.

500¢
7. CONCLUSIONS

8’2 04 06 08 10 12 A theory of the formation of the luminescence spectra of

o, 10 rad/s dense resonant media developed edfli€thas been used for
a numerical simulation of these effects and experimental data
FIG_. 8. Spectrum of th_ermal radiation from sodium vapor in the infrared athave been obtained on the structure of the spectra and the
tem : ; ; o

(3. and 53003 K. The vertical segments indicate the heoretial postions 20SOIUIE intensity of the thermal radiation from dense so-
of the peaksL =30 cm. dium vapor in various spectral ranges. These data show
fairly good qualitative agreement and in some cases, quanti-

tative agreement with the results of the numerical calcula-

i tions. The main results may be considered to be the experi-

Unfortunately, data on the potential curves of an Na—Ar sySi oo ghservation of a well-defined peak on the far red limb
tem for interparticle distances corresponding to deturing ¢ the resonance sodium line, whose intensity is several or-

— 5 . . . . . . _ X X ; . ;
,2X101 rad/s are not sufﬂuently reliable, and it IS IMPOS- yarg of magnitude higher than the luminescence intensity
sible to use more accurate data in the nearest-neighbor @Rz, resonance. and also the observation that the self-
proximation. In addition to a knowledge of the potential o\ er5ed jine is asymmetric. These data show that density
curves f_;lt short distances, a quantltanve d_escrlpnon qf _thgffects play an important role in the energy balance of the
line profile for such large detuning also requires generallzmgamitting atomic and molecular systems and appreciably

t_he broadening theory to the case_ofamult_iparticle pert“rbar'nodify the established concepts adopted in the standard
tion of the energy levels of the emitting particle by the buffertheory of resonance radiation transfadeveloped for low

gas anorl] |ts|edlf. Iso b d that si h issivity of gas densities using the narrow line approximation.

It shou da} so be noted that Ismceht el_emlssn;.llty Oh'@ " The universal form of the spectral Boltzmann distribu-
resonant medium s proportional to the line profile,,( tion, strictly substantiated theoretically in Refs. 10 and 11
*a(w)), thg radiation intensity in the infrared should dependand confirmed experimentally in the present paper, without
on th. SPecies of buffer gas and its pressure because at tQﬁaiming to provide a detailed description of the line profile
quasistatic limb we f'ndi(,‘”)x‘/c_ﬁ Np. The measurements (o arge detuning from resonance, may show up as an im-
showed thal); is approximately proportional to the buffer portant factor in a wide range of different processes. For this

gas pressure and in the presence of helium at the same pre8ason the results obtained here may prove important for
sure, the radiation intensity in the infrared is an order of

. various practical applications. For instance, we note that al-
magnitude lower than that for argon. However, the value o

| i ! 2 fthough the ratio of the integrated intensities in the visible and
VC for helium is only 2.8 times lower than that for argén i rared changes with increasing temperature, at high tem-

which differs substantially from the experimentally mea- horatres the contribution of the red limbs of the resonant
sured ratioJi(Ar)/ Ji(He)=8. Note that within measure- |ine gijll remains much higher than that calculated by the
ment error the purity of the gawhich varied experimentally - gtanqard theory, as was noted earlier. Estimates made here
beIV\{een 98 and 'gg_gg)%nd 'not mflggnce the. EMISSION IN- - ghoy that this may be an important factor in calculations and
tensity of the §qd|um vaporin the V',S'bl_e and mfrgred. M_Ore'measurements of the luminescence of various plasma forma-
over, the addition of air to the heliurtin the ratio He:air  yjong (including gas-discharge light sourge# interpreting
= 10:1) had little influence on the measured radiation iNteNthe results of measurements in the solar spectrum, and so on,
sity. . ) since the luminescence intensity in the far red limbs may
The far limbs of the Namolecular lines also make some .,mpete with the intensity determined by other radiation
contribution to the infrared emission of the vapor althoughmechanism$such as bremsstrahlundvioreover, under cer-
these impurities are only present in small quantities, as hagj, conditions the high-intensity radiation in the red limb
been noted above. Note that the limbs of the resonant trang,y sypstantially increase the radiative filling of other levels

sitions in the argon atoms make a negligible contributionyq thereby appreciably influence the kinetics of the plasma
because of their high excitation potential, which is conflrmedgrocesses_

by the disappearance of the luminescence signals in the ab-

sence of Na vapor. Another source of discrepancy between The authors are deeply grateful to Academician A. M.

the experimental data and the calculated curves may be tHaykhne, P. D. Gasparyan, Yu. K. Kochuband A. A. Pan-

inadequate accuracy in the calculations of the vapor densitieleev for their interest in this work and stimulating discus-

distribution over the cell length. sions, to Academician V. D. Shafranov and participants at
The integrated intensities obtained from the standardhe seminar led by him, and also to J. Cooper, A. Gallagher,
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Experiments have been carried out using the Iskra-5 facility in order to study the behavior of x-
ray targets in response to a highly symmetric x-ray field. Results are presented of

experiments using targets in the form of a spherical copper hohlraum coated with gold on the
inside, with six laser entrance holes and a glass microtarget filled with DT gas located

at the center. In some experiments the central capsule was coated with a plastic ablator layer of
varying thickness. An analysis of the experimental results showed that on the whole, they

are satisfactorily described by spherically symmetric gasdynamic calculation4998 American
Institute of Physicg.S1063-776(98)01107-X

1. INTRODUCTION the fusion target, we could vary the fuel compression ratio
and thereby check the influence of the asymmetry of the
Achieving highly symmetric irradiation of a fusion tar- x-ray field on the neutron generation.
get is a key problem in the inertial-confinement fusion pro-  The results of these investigations are reported here. In
gram. The difficulties which have been encountered in atSec. 2 we estimate the energy characteristics and the degree
tempts to achieve uniform direct laser irradiation of targetsof symmetry of the x-ray radiation inside the hohlraum. Sec-
have now caused many researchers to pin their hopes ¢ibn 3 is devoted to the experimental setup and a brief de-
achieving the required degree of symmetry on the conversioacription of the diagnostic complex. Section 4 contains the
of laser radiation into x-rays? In this type of indirect-drive  experimental results which are discussed in detail and com-
system, a DT-filled target is compressed by its interactiorpared with the one-dimensional spherically symmetric calcu-
with an x-ray field generated inside an almost closed cavityations which are used as the basis to estimate the level of
or hohlraum. symmetry attained.
Indirect drive has been used in experiments on the larg-
est laser facilities—NovaJSA),® GEKKO-XII (Japan,* and
Phebus(France.® A particularly comprehensive research
program has been carried out at the Lawrence Livermorg o, c ~ pROPERTIES OF THE X-RAY FIELD INSIDE
National Laboratorywhere laser energy was converted into 5 spHERICAL HOHLRAUM
x-rays in a cylindrical hohlraum. For this type of hohlraum
however, an acceptable level of irradiation symmetry carf-1 Energy balance
only be achieved as an average over time. Numerous experi- We shall consider a spherical hohlraum w1 laser
ments and a wide range of precision diagnostics are requireghtrance holes, distributed on average uniformly over the
to analyze the beam input regime inside the hohlraum and teurface of the sphere.
select the final coupling-in system. For the wavelengtih;, =1.315um and laser radiation
A more natural method of generating a symmetric x-rayintensitiesl | =10**— 10> W/cn? the light absorption coeffi-
field involves using a spherical hohlraum. A spherical hohl-cient k, is appreciably less than unitjk{=0.2—0.5). The
raum is particularly convenient when the elements focusingiccompanying multiple reflection of light from the inner
the beam on the target chamber are not assembled in twealls of the hohlraum leads to symmetrization of the laser
clusters as in Nova but are distributed more uniformly overfield inside the cavity which means that averageder the
the surface of the sphere, as in IskrdFRef. 6. Using this  surface of the spherevalues of the intensity can be used to
characteristic feature of the twelve-beam Iskra-5 facility, wecalculate the laser energy balance in the hohlraum.
carried out experimental investigations of the compression  If |,=E, /4wR37_is the average intensity of the primary
and heating of fusion targets by x-ray radiation generatedaser radiation injected through the holds (and 7, are the
inside a spherical hohlraum. The total laser radiation energgnergy and duration of the laser pul$®, is the hohlraum
(A=1.315um) fed into the cavity was 10 kJ with a pulse internal radiug the intensity acting on the walls of the hohl-
length of 0.3-0.4 ns. By varying the thickness of the shell ofraum allowing for multiple reflection is

1063-7761/98/87(7)/8/$15.00 87 © 1998 American Institute of Physics



88 JETP 87 (1), July 1998 Abzaev et al.

lo try of the primary x-ray fluxQ,/2 generated by the laser

9T 1 (1-ky)(1-B)’ ) corona and propagatlng away frqm the hohlraumlwalls. An-

. ) other important factor is the spatial scale of the inhomoge-
where g is the relative area of the laser entrance holes. Ifygjties and their distribution over the surface of the sphere.
Ka<<1 andB<1, thenl g>1,. For these experiments we used These determine the amplitudes of the spherical harmonics
ELZ%I‘J’ 71.=03ns, Ro=1mm, and 10=2.4 p  ofthe asymmetric x-ray field propagating from the hohi-
X 10 wicn. Since the intensity satisfield>1o, and the 5\ walls toward the capsule. An expansion in harmonis
average angle of incidence of the laser radiation on the Sufs, he sed to calculate the degree of smoothing of the x-ray
face for the conditions obtaining in Iskra-5 is 30-40°, thefield as it propagates from the surface of the hohlraum sphere

absorption coefficient should lie in the rangg=0.2—0.3 : L
‘ to the central capsufeThe smoothing coefficient§,(r/R)
(Ref. 7) where most of the energy~(30-50%) is absorbed depend on the number of the spherical harmdnand the

by a resonance mechanism. The total energy absorbed by trr]élatio of the radii of the target, and the hohlraunk,. In our

hohlraum is case, this ratio is initiallyro/Ry=0.14. The coefficients of
_ (1-PB)k, smoothing of harmonics with=1,2,3,4,5,6 are 0.73, 0.37,
Ea=E A ky(1-p) (@ 0,099, 0.023, 0.018, and 0.008, respectively.

The harmonic spectrum of the radiation field is deter-
mined by the configuration and diameter of the entrance
haveE,/E, =0.66. ForE, =9 kJ the hohlraum walls absorb : . L

holes and the primary laser illumination spots. Imbalance of

an energyE,=6 kJ. . . .
The release of energy results in the formation of a IOW_the beam energfpowen and also targeting misses relative to

. - the nominal positions of the spots impair the symmetry of
density fig~ng=10%* cm3), hot (T,=2-5 keV) laser co- \ . .
rona at the walls, which is a source of primary, compara—th.e field. The centers of symmetry of the six holes are .dls'
. — tributed over the surface of the hohlraum near the positions
tively hard hv=1-2 keV) x-rays.

If the fraction of energy dissipated in the formation of corresponding t_o the vertices of a cu_be i_nscribed in the hohl-
fast ions by resonant absorptionkig and the coefficient of raum. The maximum angular deflection is 13°. Loss of sym-

primary conversion of laser energy into x-raysks, the metry is caused by the desire to avoid coupling of parasitic
energy of the primary x-rays is generation between different amplifier channels. The penalty

for this is the appearance of second and third harmonics in

Under our conditions fog=0.13,k,=0.3 (I4/1,=2.6), we

E,=Ea(1-ks)k,. (3 the spectrum of the radiation field, in addition to the fourth
Under our conditiong;;~0.3 andk.,~0.5 (Ref. 8, so that harmonic characteristic of the symmetry of the cube.
E,=2.1kJ. 7 The primary illumination spots on the inner surface of

The primary x-rays, being absorbed by the dense layerffie hohlraum are positioned so that they also contribute to

of the Wa”sy form a Comparative|y densp:éo_5 g/cn?), the second, third, and fourth harmonics, in phase with the
cold (Te~T;=0.15-0.2keV) x-ray corona which is a contribution from the laser entrance holes. On the one hand,

source of almost equilibriumhp=0.5 keV) x-rays. this increases the asymmetry and on the other, ensures that
If the albedo of the x-rays at the hohlraum, averagedhe inhomogeneity pattern varies negligibly with time.
over the entire spectrum, isand the intensity of the primary ~ In addition, the level of asymmetry obtained is matched
x-rays isQ,= E7/47TR37'|_, the intensity of the x-rays from With the level caused by the energy imbalance in the beams.
the hohlraum walls will be For typical conditions, the energy imbalance in the beams
exceeds the level of inhomogeneity by no more than a factor
9,~0 (1-82)«a @ of 2.
' "1-(1-p)a’ A quantitative estimate of the degree of inhomogeneity

For «=0.6-0.7, 3=0.13, andE,=2.1kJ we haveQ, Was made using the following simple model. The absorbed
~(0.66—0.94) 10" W/cn?. This flux corresponds to equi- €nergy distribution over the inner surface of the hohlraum
librium radiation at the temperatufie,=160—175 eV. was calculated by the Monte Carlo method. It was assumed
that the critical surface is spherically symmetféxcept for
the entrance holgésand that the reflected radiation has both
2.2 Symmetry of the x-ray field specular and diffuse components; the dependence of the ab-
The symmetry of the x-ray field acting on the fusion sorption coefficient on the angle of incidence was also taken
target results from the geometric facteach surface element into account.
of the central capsule is exposed to radiation from almost The intensity of the primarynonequilibrium radiation
half the surface of the hohlraymand also as a result of |, of the laser corona was assumed to be proportional to the
multiple reflections of photons and multiple rescattering ofintensity of the absorbed laser radiatibpwith the coeffi-
x-ray quanta. As a result of this last process, the temperatuigientk,=0.5. The quantityl ;k,/2 determined the intensity
T, of the quasiequilibrium radiation emitted by the hohlraumof the primary x-ray flux propagating from the walls to the
walls may be considered, to a first approximation, to be the&apsule. The intensity of the quasiequilibrium radiation from
same over all sections of the inner surface. the x-ray corona was determined using form(#a For the
Asymmetry of the x-ray field is caused first, by the pres-calculations it was assumed that=0.5 anda = 0.65.
ence of the laser entrance holes and second, by the asymme- Table | gives various quantities characterizing the non-
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TABLE |. Estimate of the nonuniformity of the capsule x-ray irradiation.

smaxr smax! srmsv J—
% % % yi(i=1,....6)

Same laser radiation

energy in channels 35 35 2.0 X004 1.4x1072 1.2x10°2 6.0x10°3 1.1x10°8 6.3x10°4
Spread over channels 6.0 6.6 2.8 BE 3 2.3x1072 1.2x10°2 6.1x10°3 1.2x10°2 6.4x10™%
£mme~20%

Spread over channels 7.2 6.2 2.8 R102 2.2x107? 1.2x10°2 6.1x10°° 1.2x10°8 5.9x10°*
£rme~20%

uniformity of the x-ray irradiation of a DT target: the maxi- Scattering at small-scale plasma inhomogeneii¢she or-

mum nonuniformities der of the laser wavelengthresembling diffuse reflection
_ from the surface, results in unavoidable illumination of the
_lmaxmin , maxl—I| capsule in the diametéfl,. However, calculationgsee be-
Emax™ o1 0 Tmax T low) show that even when the energies of the x-ray and laser

o radiation incident on the target are the same, this process has

(wherel is the average radiation intensity over the surface ofittle influence.
the sphergand the rms nonuniformitg,,s, and also the Another method of supplying energy is achieved by
amplitudesy; of the expansion of the normalized distribution movement of the gold plasma toward the center. Since the
1(6,¢) in terms of spherical harmonics for equal energies invelocity of the material {=10"-10 cm/s) is substantially
the channels and for the spread over the channels recorded!fver than the speed of light, there is a time interval
two experiments. The calculations are made for a ratio of*Jpof2V=1ns (where Jye,=~2 mm) during which the
capsule radius to hohlraum radius of 0.14 and a relative areghell is not subjected to the action of the material flux from
of laser entrance holes of 0.13. the hohlraum walls. For a laser pulse duratie.3 ns and a

It can be seen from Table | that in the balanced case, theonvergence time of0.5 ns the action of the material flux
rms nonuniformity is 2%, and when the real energy imbal-can be neglected. However, the comparatively long wave-
ance in the beams is taken into account this increases fgngth of iodine laser radiation\1.315um) with laser
~=3%. Significantly, these figure vary little with time. For radiation intensitiesl, =3x10'* W/cn? gives rise to hot
example, for calculations with a reduced absorption coeffi€lectrons with temperaturé,~20-50 keV, which acceler-
cient such that the fraction of the laser radiation energy los@te some of the Au ions to velocities/=(3-5)
through the holes increased from 0.34 to 0.6 and the albeds 10° cm/s. Thus, the time is reduced to=0.3 ns so that
was reduced from 0.65 to 0.35, which simulates the initiaffor shells with a comparatively long convergence time (
situation, the nonuniformity was almost the same,( =0.5 ns) the possibility of an additional energy input to the
=1.9%) as in the nominal calculations. The reason for this idarget shell as a result of energy transfer by fast ions must be
that the lower degree of x-ray symmetrization is balanced byaken into account.
a higher degree of equalization of the laser intensity.

Calculated distributions of the absorbed laser radiation a& AIM OF THE EXPERIMENTS AND EXPERIMENTAL SETUP
the inner wall of the hohlraum for equal energies in the chan-
nels are plotted in Fig. 1a. The corresponding pattern for the AS was shown in the previous section, an x-ray flux
x-ray radiation incident on the central capsule is shown irecting on a central DT-filled capsule is not ideally symmetri-
Fig. 1b. The shades of gray show the drop in intensity fromfal. Estimates indicate that the asymmetry is large-sthée
maximum (white) to minimum (black. It can be seen that spherical harmonics in its spectral expansion have numbers
unlike the absorbed laser intensity, the x-ray distribution orl <1—4). The characteristic level of asymmetry is 3%. The
the capsule exhibits no higher harmonics. Allowance for thedSymmetry of the x-ray field causes asymmetry of the accel-
energy spread over the channels results in a loss of symmetfating pressures and shell implosion velocitiesv/V
between the front and back of the targttte appearance of <Al/l. As a result of compression, the deviation of the con-

=1 harmonic tact boundary from spherical is
6R  6Vry
2.3. Laser illumination and fast ions R = KV r_f'

X-rays are not the only carrier of laser radiation energy,yherer  is the initial radius of the DT-filled capsule ang
to the DT capsule. A characteristic feature of specular reflecy the radius of the DT gas at the instant of maximum com-
tion from an internal, ideally spherical, critical surface is thatpression. If we impose the constraint that this deviation does

an inner spherical portion, of diametéfy, is in shadow ot exceed 1/3, we find that this asymmetry should not be
(under our conditionsJsp/Jpo,=1/5, Wheren,=2Rg IS oticeable up to compressions
the diameter of the hohlraumlLarge-scale perturbations of

the critical surface caused by the presence of entrance holes Mo _ 1 |_le
and irradiation nonuniformity reduce the shadow volume. r; 3 Al '
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The influence of the residual asymmetry may be detected
via the dependence of the neutron yield on the compression
ratio when a certain critical compressidy, is attained. A
catastrophic reduction in the neutron yield may be predicted
when 6> 6.,. Thus, experiments should be carried out with
the compression ratio increasing from one experiment to the
next. Since the compression is mainly determined by the
ratio of the shell masM to the massn of the DT gas, the
compression ratio may be varied by varying the thickness of
the shell or the initial pressure of the DT gas. The shell
diameter may also be varied, although an increase in the
diameter results in the shell moving out of the shadow region
(i.e., direct contact between the laser beams and the) shell
while a reduction in the diameter impedes the diagnostics of
the plasma parameters.

The targets in the Iskra-5 facilityare irradiated by
twelve laser beams with an energy of up #dl kJ at the
channel exit, which corresponds to a total laser energy of
=9 kJ deposited inside the target chamber. The laser pulse
duration is=0.35*=0.05 ns which corresponds to a radiation
power up to=30 TW incident on the target. The pulse pro-
file is close to Gaussian. The divergence of the radiation is
stable at=(0.6—0.8)x 10" rad. The contrast of the laser
pulse is sufficiently high K>10°) that the interior of the
hohlraum did not fill up with plasma prior to the time of
arrival of the main pulse. The precision of the transverse
focusing on the target i 30 um and the precision of the
longitudinal matching of the foci of the aligning and power
radiation is= 100 um. The diameter of the laser beam con-
strictions is<100 um.

The target(hohlraum) consists of a thin-walled copper
spherical enclosurésimilar to an inverted-corona tar§et
with six laser entrance holes. The inner surface is coated
with a 1 um thick layer of gold and the outer surface is
coated with a layer of bismuth 0.1-0m thick. A glass
microsphere filled with a gaseous equimolar mixture of deu-
terium and tritium at a pressurBpr=5-20 atm is posi-
tioned at the center. The diameter of the encloqir8—4
mm), the diameter of the laser entrance hd@#—0.7 mm,
and the parameters of the glass microshell were all varied
experimentally. In order to increase the thickness of the shell
o _ above 7um, a layer of polyparaxylylene up to 4@m thick
FIG. 1. Ca_lculated laser illumination of th(=T inner surface of the hohlraumWas deposited on the surface. The optimum design had an
(a) (the white spots correspond to the position of the laser entrance) holes . . .
and x-ray illumination of the central capsulb) for typical experimental  €nclosure diameter of 2 mm, six holes of diameter 0.6 mm, a
conditions. shell diameter of 28Qum, a glass shell thickness of &m,

and Ppy=10 atm.
The diagnostic apparatus of the Iskra-5 system was de-
which corresponds to volume compressions=df0®. scribed in Refs. 6 and 9. It incorporates an energy balance

This estimate is extremely approximate. In fact, the evoSystem, an interference schlieren method for optical record-
lution of perturbations as a result of Richtmyer—Meshkoving of the laser radiation contrast and the dynamics of the
and Rayleigh—Taylor instabilities leads to a greater increaselasma expansion, a system for time-resolved, spatially re-
in the amplitude of the perturbations than that obtained fronfolved, and spectrally resolved recording of the x-ray emis-
the above estimate. However, for those shells so thin th&tion, and neutron measurement facilities. The main experi-
they can be completely heated under the action of the x-raygnental results are reported below. Where necessary,
the symmetry of the energy release may be better than 3o0gdditional features of the measuring methods are noted.
For this scenario the heating pattern of the shells may be
represented by a unilateral flux of such intensity that it carf- EXPERIMENTAL RESULTS AND DISCUSSION
heat (in the supersonic regimehe entire shell during the Results of seventeen experiments carried out using 2 mm
pulse. diameter targets coated with gold on the inside are presented

b
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FIG. 2. Neutron pulse recorded using a time-

2 0.6 20.6f of-flight method(solid curvé and calculated signal
> P at a given ion temperatur€, (dashed curye a—
g 04 g04 flight length 12.5 mT,=2.5 keV; b—flight length

02/ N 0.2} 16.7 m,T,=2.9 keV.

ol PARN \\—N . ol . N
240 244 248 252 256 325 330 335 340
t, ns t, ns

below. The diameters of the entrance holes wgfg, Pression and heating of the shell containing the DT fuel. The
=0.6 mm except for three experiments witl,,. Shell convergence time,,, determined as the time between
=0.4-0.45mm. The average shell diameter wag, the points of intersection of lines linearly approximating the
=280 um with limiting values of 271 and 29:m. The leading edges of the appropriate pulses with the time axis,
thickness of the glass shellsvithout coating$ varied be- varies between 0.25-0.73 ns and increases with increasing
tween 3 and 7um. The thickness of the sheltk, on which  thickness(strictly speaking this is only valid for thicknesses
coatings were applied was 1.248n. The coatings were =7 um). The convergence time can be used to determine
either plastic, magnesium, or SiOThe maximum thickness the shell flight velocity and to estimate the energy input to
of the plastic layer wagc;=41 um (in this case the thick- the shell. A convergence time,,~0.35 ns corresponds to
ness of the glass was 44m). The pressure of the DT gas the velocity
was varied between 5 and 16 atm, except for one experiment Ro— R
in which the pressure was around 1 atm. The laser pulse V=-———=3x10" cm/s.
energyE, was varied between 7.4 and 9.6 kJ, except for one Tyy
experiment where the energy was 3.9 kJ. The neutron yield Figure 4 shows an example of an x-ray image of the
varied between 6:810° (for E, =9 kJ, Ppr=13 atm, Jy,  central capsule obtained through a laser entrance hole using a
=280 um, dg=4.8 um) and 7x10° (E =8.2kJ, Ppr  pinhole camera. The initial position of the outer boundary
=5atm, Jgy=277 um, dg;=4.7 um, anddcy=41 um). and the spherically compressed core can be seen. A spheri-
The interference schlieren method indicates that in theseally compressed imagapart from distortions caused by the
experiments the single pulse contrast was fairly high and thgraininess of the photographic fijiis observed in all experi-
target plasma only formed at the instant of arrival of thements in which this image was obtained. In experiments us-
single pulse. ing thick-walled targets no compressed core can be observed.
A typical oscilloscope trace, which can be used to deter- In these experiments the neutron yield varied by two
mine the time of arrival of the neutron pulse at the scintilla-orders of magnitude: between &80’ for a shell thickness
tion detector relative to the time of generation of the hardof 5 um and 7<10° when a layer of polyparaxylylene 41
(hv=0.1 MeV) x-ray pulse inside the hohlraum, was given um thick was deposited on the shell. The neutron yield data
in Ref. 2. The delay of the neutron pulse relative to the x-rayare described by the simple scaling lésee Fig. %

pulse corresponds to 14.1 MeV neutrons. 203 413
The temperature of the ion component of the DT plasma, N~mTM™H(E, /M), ®)
obtained using a time-of-flight method, varied in the range
T;=1.5-3 keV. Figure 2 shows the profiles of the neutron
pulses recorded at 12.5 and 16.7 m. The dashed curves shc Lo

the calculated neutron pulses for the given ion temperaturt
T; taking into account the instrumental function of the ap-
propriate recording channel. The temperatures at which the 0.8
calculated and experimental neutron pulses showed thg
smallest differences are given in the caption to Fig. 2.50.6-
The accuracy of the ion temperature measurements was
approximately 1.7 keV at 12.5 m and approximately 0.3 keV
at 16.7 m.

The convergence time of the shells was recorded using
slit time scan of the x-ray image of the microtarget in the
photon energy rangbv=4 keV using an x-ray streak cam-
era with =50 ps time resolution. An example of such a re- %% 0.5 Ll_j(l s 2.0 25
cording is shown in Fig. 3. Two emission peaks can be ob- Tyy— f, ns
served. The first corresponds to the maximum emissio - . ,
. . . . IG. 3. X-ray emission from central target recorded using a spatially resolv-
intensity of the plasma expanding from the inner surface 0%19 x-ray streak cameral—emission of laser corona of hohlraurg,—
the hohlraum and the second occurs as a result of the comemission of central capsule.
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FIG. 5. Normalized neutron vyield versus specific x-ray energy input to
central capsulgarbitrary unit3: circles—experimental values, squares—
calculations using SNDP program.
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a Here 6,,=pl/py is the volume compression.

The compression ratio is determined to a considerable
extent by the ratid/m: 6y~ (M/m)“. In the simplest ex-
ploding shell models we hawe=1-2 (Refs. 10 and 1jland
for adiabatic compressio]i:TO&f/s. In these experiments,
the losses of heat as a result of electron heat conduction are
0.8} substantial and thus the effective adiabatic exponent.ds
<5/3 so that

log{, arb. units
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FIG. 4. Pinhole photograph of central targef and its densitogram in one . .
cross sectiorgb). For n=4 andy.s=1.2 we obtain the scaling la¥b).

It can be seen from Fig. 5 that on the whole the scaling
law reasonably accurately describes the experimental neutron
yield (except for three experimentdn this case, as a result

wherem andM are the mass of the gas and the shell, Bpd ¢ 5 change in the technology used to fill the glass capsule
is the x-ray energy in the hohlraum. We shall give a brief, iy pT gas(a hole was drilled in the shell to admit argon
substantiation of formul&5). The neutron yield is given by 414 \was then sealgdor two experiments there is reason to
believe that the DT pressure at the time of the experiment
N=f dtf dVnpn{aN)pr, was appreciably less than the initial pressure. It was impos-
sible to monitor the pressure after depositing a layer of poly-
wherenp and Nt are the concentrations of deuterium andparaxylylene on the shell. We are unaware of any major
tritium nuclei, and(oV)pr is the rate constant of the ther- reasons for failure of the third experiment in the series. How-
monuclear reaction. We can write approximately ever, the emission pattern of the target obtained using a pin-
hole camera clearly reveals emission from the edges of the
2 r light entrance holes. In this experiment, there was probably
N~p V<UV>DT\/f_mprf(T)’ ® an alignment error for these channels, resulting in loss of
laser input energy.
wherep andr are the density and radius of the compressed Figure 5 shows two sections of curve with different
DT, andf(T)=(oV)prT 2 Using the conservation of the gjgpes. ForE,/M>1.5 (arbitrary unit$ the neutron yield
DT mass during compression, we can wiite~m**p?*so  goes not depend OB,/M, whereas forlE,,/M<1.5 it de-
that creases rapidly with decreasifig,/M. The following treat-
N~m*3 p23¢(T). @ ment of this behavior seems justified. FIEI_;/M>1.5 the
target operates as a completely heg@gloding shell. The
Approximating the rate constant of the DT reaction by theinterface at E, =8 kJ corresponds to a shell mad4
power functionf(T) o (T/Ty)"Tg, we have =3.5 ug. The thickness of a 28pm diameter glass shell
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FIG. 6. Ratio of experimental and calculated neutron yields as a function ofFIG. 7. Comparison between experimental pinhole tfdeshed curveand
the calculated degree of radial convergence of the central capsule at thRat calculated using the SNDP progrésolid curve.
instant of neutron generation: circles—shell without coating; filled
squares—shell with polyparaxylylene coating, open squares—calculations
allowing for turbulent mixing.
made calculations using the SND-TUR progranm which
the Nikiforov modet* is used to take into account the evo-
with this mass is~7 um. The fact that the normalized yield lution of a turbulent mixing zone at the shell-fuel interface.
of neutrons is independent dt,/M where E,/M=1.5 |t can be seen that fag/ry <6 (8,<200), turbulent mixing
holds, indicates that the shell is completely heated to théas little influence on the neutron yield, whereas rfgir
same temperature. E,/M<1.5 holds, the stored thermal =14 this mixing halved the neutron yield according to the
energy is not sufficient for complete heating and ablatiorcalculations(see arrow in Fig. 6 This decrease is mainly
results. caused by a drop in the fuel temperature as a result of the

We shall consider for a momei,, which we deter- heat lost to heating the cold shell material entering the mix-
mined with empirical allowance for the losses of energy ab4ing zone. Thus, it seems justifiable to conclude that the sym-
sorbed by fast ions. It was assumed that the fraction of abmetry of the x-ray irradiation of the target has little effect in
sorbed energy that goes into accelerating them is this range of compressions. For clarification, we note that the

=X(3.5+%) "1, x=1lg/l,—1, |, =2x 104 Wicn? accuracy of the calcullat(_ad .modeling of the ne_utron yield

does not exceee 2, as is indicated by the two points corre-
(for the definition ofl ; see Eq.(1)). sponding to the lowest values of/ry in Fig. 6.

Figure 5 also gives the results of calculations of the neu- A close correspondence between the experimental and
tron yield using the SNDP nonequilibrium radiative gasdy-calculated data is also observed for other quantities. Figure 7
namics program? In this case, the calculated value®f/M  gives a comparison between the experimental and calculated
was used as a marker in the appropriate experiment. It can Bgatial emission patterns of the central capsule obtained us-
seen that to withinr=1.5 the calculations reproduce the ex- ing a pinhole camera. Good agreement is observed in the
perimental data in the exploding shell regime. In the ablatiorzentral part of the core. The difference at the wings of the
regime the difference is-2-3. distribution is caused by the inadequate gasdynamic descrip-

The calculations were made using a spherically symmettion of the collision process of the glass and gold plasmas
ric formulation with effective allowance for the losses of which forms the emission profile at the wings in the calcu-
laser light and x-rays through the laser entrance holes. Aligtions.
lowance was only made for bremsstrahlung absorption with  Figure 8 compares the dynamics of the experimental

an average angle of incidence of the laser radiation on thevbtained using an x-ray streak cameaad calculated emis-
inner surface of the hohlraum. The energy losses to the fast

ions were neglected. The equations of state and the spectral
ranges were calculated using the average ion approximation
while the radiation transport was calculated using the multi-
group diffusion approximation. The chemical composition
of the glass shell corresponded to pure silicon oxide,SiO
The chemical composition of the plastic layer corresponded
to CH.

It is interesting to compare the experimental and calcu-
lated neutron yieldsiNe,, andN¢y, as a function of the cal-
culated degree of radial convergenggr,, wherery is the
inner radius of the shell at the instant when the highest rate 0 Y 038 12
of neutron generation is observéelg. 6). As in the previous s

figure, it can be seen that as the compression ratjo _ _ _
— (rO/rN)3 increases, the ratiNeX /Ncal decreases, reaching FI_G. 8. Comparison between e>_<per|mer{tb)| and calculated?) Iumlnou_s
p exitance of the central capsule in the range of x-ray quantum energies 3—4

~1/3 forl’o/r_N: 12. Is this a consequence of _the asyr_m‘ne'[rykev; 3—calculatedR—t diagram of the motion of the gas—glass interface;
of the x-ray field? In order to partly answer this question, we4—laser pulse.
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We have studied the behavior of a helical homogeneous small-scale MHD turbulent flow under
the influence of a weak inhomogeneous large-scale disturbance. We have shown that

turbulent energy redistribution in the presence of nonzero helicity occurs mainly over large

scales. Helicity increases correlation time, leading to the weakening of a direct cascade and to the
formation of steep spectra over small scales, with simultaneous turbulent energy growth

over large scales. Furthermore, an expression for the effective viscosity of the mean flow is
derived. It is shown that the magnetic field, in addition to the helicity, reduces the

effective viscosity of the medium. This may be important in the study of MHD flow around
obstacles in the presence of an external magnetic field19@8 American Institute of Physics.
[S1063-776(98)01207-4

1. INTRODUCTION the most important feature of a turbulent flow. Helicity, be-
ing the second invariant of Euler's equation, just like
The problem of self-organization of a turbulent MHD energy? exerts a significant influence on the evolution and
flow with magnetic Reynolds number Re&1 in an external stability of turbulent and laminar flowsHelicity is probably
homogeneous magnetic field has long been under discussi@me of the main sources of magnetic field generation and
(see, for instance, Refs. 1-4, with references thgr@bvi-  maintenance in astrophysical objetidn the absence of a
ously, an external magnetic field causes a rearrangement afagnetic field, helical turbulence is unstable against large-
the topological structure of a turbulent flow. Specifically, if scale disturbances.This leads to energy redistribution be-
the original turbulencdin absence of a magnetic figlis  tween large-scale and small-scale fluctuations. On the other
isotropic, it becomes anisotropic in the presence of a maghand, helicity leads to an efficient viscosity decrease in the
netic field. Furthermore, in presence of a magnetic field, thenean flow, i.e., to a decrease in Reynolds stre¥ses.
spectral and dynamical properties of turbulence can change. The present paper deals with the behavior of small-scale
As demonstrated by numerous experimefgse, e.g., helical turbulence in an external homogeneous magnetic field
Refs. 4—6, the turbulence spectrum varies with the magneticand under a weak large-scale disturbance. We also examine
field. It should be emphasized, however, that turbulence eghe effect of a magnetic field on the viscosity of such turbu-
sentially always remains three-dimensional, although theréence.
exists a tendency to quasi-two-dimensionality. Over small
scales, the spectral dependence of the turbulent eligrggy 2. PRINCIPAL EQUATIONS
wave numbek is of the formE,~k™ ¢, where the exponent
a varies with increasing magnetic field fromb/3 (at B=0)
to between—2 and—7/3 (at low B values.}* With growing
magnetic field,« ranges from—11/3 to —4, and the turbu- Ju 1 N
lence becomes highly intermitteht. 5 T Vju=—-VP+ R—eV2U+ Re, (VXB)XB+F,
It is noteworthy that such magnetic field-dependent be- (1)
havior of the turbulence spectrum is observed only in those
experiments where turbulent flow is generated either by §=VX(UXB)+LVZB @)
drawing a grid through the medidnor in the presence of a at Re, '
honeycomts'. V. U_V.B=0
For the entire subsequent analysis, it is important to note U=V-B=0,
that turbulence becomes helical in an external magnetic fieldvhere F is an external non-electromagnetic force dnds
This means that the one-point correlation functionpressure. The problem is characterized by three dimension-
H=(v-(VXV))#0, wherev is the flow velocity. On the less numbers: the Reynolds number=RéL/v, the mag-
other hand, purely helical turbulence is characterized by thaetic Reynolds number Re and the magnetic interaction
quantity = — 7/3,” which is in agreement with experimental parameteN=oB?L/pU (herep,v are fluid density and vis-
results In the general case, helicity, along with energy, iscosity, U andL are characteristic velocity and dimension

Let us write the system of MHD equations in dimension-
less form for an incompressible fluid:

1063-7761/98/87(7)/6/$15.00 95 © 1998 American Institute of Physics
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We represent all fields as a sum of averaged and fluctu- J 1 100

ating values: P R—eV2+N cos 6|Qjy

L B=Berh PR FEEEE 11,V QI+ QU - Q- QiR =0.

Bo>h, (u’)=(h)=(P")=(F')=0, )

where(...) Qenoftes averaging over an ensemble. . To complete the system of EqS) and (4), we use the
Assuming first thafu)=0 and Rg<1, one can easily ogjts of Ref. 12, where the finiteness of the correlation time

derive an equation fon’ up to second order ih: is taken into account via the two-scale analog of the Orszag
au’ 1 eddy-damped quasinormal MarkovidEDQNM) approxi-
——+(U - V)u'—((u"-V)u")=-VP'+ @VZU' mation®® This approximation consists in the replacement of

the fourth-order moment cumulant in the equation for the
third moment by an effective damping term proportional to
the square-law combination of pair moments. This approach
is analogous to other traditional turbulent second-order

Let us examine thg stgbility.of a small-scale turbulentc|osures1_4 The EDQNM approximation for strong MHD tur-
flow under the magnetic field with respect to weak Iarge—bu|ence was considered in detail in Ref. 15.

scale nonuniform disturbances. In this case, we represent the In this approximation, we obtain from E¢4)
turbulent field as a sum of the initial turbulent fial? and ’

N
+ Ren (VXM)XBo+F.

its disturbances): Q= =1V Qe
u' =u@+ud, where the three-point correlator
whereu”>u(. Qi tXLE T E )= Qi X, DQPNE— ¢/, 7= 7')

We introduce the correlation functions

+Qpm (X, €, )Qp (5', ")
QY& 7) = (U UL (x+ £,t+ 7)), i ’

+Q(XLE,TIQR(E, 1) ()
Q% £,t, 1) =(uM (x,Hul® (x+ £,t+ 7)), ’ ’

and
and, in the same manner, correlators of higher order. 1 _1
Assuming that the external for¢€ maintains the initial ;:(_*+N co 0) ,
small-scale helical turbulence, we can derive an equation for
00_ ~00 .
ij = Qij (&,7): and the correlation time* =L, /EL? (Ly, and E,, being
00 the characteristic scale and average energy of turbulent flow,
- — +V, Q0= -V, (P(O)u(°)>+ VZQ respectively.
To substitute the expressiaid) for the third moment
00 w2 into Eq. (3), we pass to the limig’' — ¢, T’—)T Here (see
V2 (ViV3Q3)— V3Q5) +(F{u® Appendiy we take into account thadd;=QJ%(0,0) and
. _ _ _ Cs,lp—aQﬂo(g 7)19&p| ., .0 depend orB (or N) i.e., on the
where the magnetic term is obtained from E8) with al- magnetic field. This results in
lowance for the above assumptions, &dis directed along L
the third coordinate. J ~ ~ 1410
— —|==+A7|A+N cog 6 x,t,&,7)—TCH?
In a similar way, we can write an equation fo;v (6’7‘ Re 7 )Q (xt,8,7) = 7CH;
Qi(x.&t,7):
aQij 1 210 100, ~10 B { Q (x,t,O O)Q (g’T)
s R_eV Qij + Vi(Qigj +Qkij0) ;
oo, N o et + o QX t.0.0 Vi&QiA€,7)
=—Vi(PPu?)+ vz (ViVaQg—V3Qj). °
Eliminating the pressure from this equation, we obtain the +Qip(x,1,0,0V, Qi £,7) |, (6)
final equation forQ;’: .
o where A=A(N,0,0) andC=C(N,0,0) are scalar functions
Qi 1 of N, andH;; =&,V Qi-x,t,£,7).
&7I-J _ V2Q10+H|mVK(Q%nO|?j+Q&%Oj) ij = €ikl kQIJ( &)
=—N cog GQ” , ©)
o o 3. INSTABILITY OF THE SECOND MOMENTS
wherell;,=(8in—ViV/V?) is a projection operator, and
the operator cdsf=V%/V2. To study the stability of the systeri), we apply the

Similarly to Eq.(3), we obtain an equation for the third operatore,,;V,,, and write the resulting system in homoge-
momentsQ;¥’=Q{\(x,£,& t,7,7'): neous form:
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It follows from (11) and(12) that at scales

1 4N\ Y2
0<k<; (ko— ( k32— V_H) )

1 - ~
(VT— 2e V2~ TAVZN cos .9) Qi’—~7CH{’=0,

1 - ~
(VT— 2o VZ—TAVZEN cog ¢ Hi’+7CV2Q{\’=0.

1 4 1/2
7) > (k0+(k§— V—H) ><k<ko, (13

An equation forQ?° follows from (7): . . .
q Qi @ modes withk B, are unstable against large-scale distur-

((V,—vyVZ+N cog 0)2+77C?V?)Q’=0, (8)  bances, whereas those wkhB, are attenuated.

Thus, the energy of a large-scale disturbance is redistrib-
uted among the scales, so that modes transverse to the mag-
netic field predominantly grow.

where the effective viscosity,=1/Re+7A. Passing into
k-space in(8), we derive an expression for the decay factor

y=—lw:

y=—vuk?—N cog 6+7|CK|, 9
where 6 denotes the angle betwekrandBy. 4. TURBULENT VISCOSITY

It follows from the form of Eq(9) that helicity increases ) o ] )
relaxation time. In other words, helicity prolongs vortex life- 10 Study the influence of the magnetic field on viscosity,

time. However, the helicity is essentially imperceptible in W& €xamine the variations in hydrodynamic viscogitythe
case ofvyk2+N co 6>7CK. Hence, at sufficiently weak absence of a magnetic figldn an external homogeneous

magnetic fields the helicity effect is most important overmagnetic field.

large scales, i.e., at low values. Under the conditiory We consider the cager) #0 and(u)<u(®. In this case,
>0, we obtain from Eq(9) the instability condition the equation foxu),
12 a(u)
N P P L =+ (U(V-(U) — (U V)u') = = V(p)
2 kOVH
1 4N co@ )2 T N
ckerkf 1+ 1_k3—vH> ) 10 + e VAU + g (V-B)XB)+(F), (14)

involves Reynolds stress¢éu’-V)u’) that depend only on
Qﬁo for homogeneous turbulence, as shown in Refs. 12 and
17. On the other hand, additional terms appear on the right-
hand side of Eq(6) for Q{(£,7.x,1):

wherek,=7|C|/vy.

We study two limiting cases. Let c@s=0, i.e., consider
modes for whichk L By. In this case(10) acquires the form
of the purely hydrodynamic limit!

d 1 - ~

0<k<Kg. (11 { - T Red TAVZ+N cod 0) Si— TCsiHVk}Q,ljo(é,T,X,t)

Here 5 Ay
u
__Tlc =~ (U VoQi— 5 () QG- o EVeQ
° URetAr’ ~_ [0Qxt00 . JQi(x.1,0,0) o

and the dependence of the schjgon the magnetic field is TV T ke Qi T g VEQi
contained only in the coefficients andC. As a rule,A7*
>1/Re, which results itky=C/A. Consequently, thk, de- +0N(x,t,0 O)VkQ-O-O} (15)
pendence on the magnetic field is determined by the ratio of KR il
helicity to turbulence intensity.

On the other hand, at c&&=1, i.e., in modes for which
kiiBy, we obtain the conditio10) in the form whereu,=up(x,t) and Q’= Qi £, 7.N).

1 AN\ 12 1 AN\ 12 Taking into account thgtis a dummy index in Eq(15),

- (ko_ ( kZ— _) )<k<— Ko+ | K&~ _) ) which allows us to write this equation in the vector form

2 VH 2 VH ’

AYZ
. 12 a_i_leinj+fiy
where
7IC| ~* its formal solution being of the form

0= =, T= -
1/Re+ A7 1+N7 t e
o o o yi(t):Yij(t)Yi(o)+f Yie(Yi it f5(t)dt’,
It is evident from(12) that atB,=0, this interval coincides 0
Wlth trlat of the modgs withk L By . W|th growmg.mag'netlc with the matrixY;; satisfying the homogeneous equation
field, 7 decreases, i.e., the effective correlation time de-
creases. Simultaneously, the instability interval is reduced  9Yij

and vanishes in fields described b/, =k2. e AV (16)



98 JETP 87 (1), July 1998 Golbraikh et al.

The solution of Eq(14) has the form

4
Yi (7)=exp( — (vk?+N cog Ck
ij(7)=exp(—(vy cos 0))| cosCkr) ‘;,k;/“ / cos8 = 0
kikj\  kikj o ke o~ ka:M—N
X (5”_? +F+|8ik]‘ ?S”’]k(CkT) , (17) .
whereC=7C. cosf = 1 I
In this case, the expression fQr}° takes the form 0 &2 | \k
0 [ ) 27 47k? ~ -N
Qii = 0 exp(— (vyk“+N cos® 67)) - Ao FIG. 1. Dependence ofy on k for two limiting values, co®=0 and
cosf=1.
47k3 aAo) ek )+47-rk4 aC HEkr)
- —— | CO0S T — SIn T
15 ok 15 ok ~
8mk?* 9Co(k,7) &k ldk d 20
Hup) | Kup)| Am o 15 ok onnCknjdkdr 20
X g + P —Er(k Ay cosiCkr)
X X It follows from (20) that in MHD flows with Rg,<1, the
_ _ turbulent viscosity decreases with increasing magnetic field.
—k3Cq sinh(Ck7))(Q{*+ Q)  dk dr+Z;;,
5. DISCUSSION
(18)

R As demonstrated above, a magnetic field alters the prop-
where Qi‘}o(k,r)=Q{j (see Appendix Z;; are terms unre- erties of homogeneous turbulence in a most significant man-

lated to the viscosity, and ner. The existence of nonzero mean helicity results in insta-
bility of turbulent MHD flow against weak large-scale
~ Ao disturbances. However, the instability of helical MHD turbu-
Ao= lence has distinctive features in comparison with the insta-

2 ’
14N 2k*Re cos’ 9+N cos' ¢ bility of helical turbulent hydrodynamic flow in the absence

k*Re 2+ w? of a magnetic field.
Figure 1 schematically shows the behavior of the damp-
_ Co ing factor y for two limiting values of co$6. The regions |,
Co= : (199 11, and Ill correspond to the conditior{$0) and(13), respec-
2k’Recog 6+N cog' ¢ tively.
1+N K'Re 2+ w? Let us examine the behavior of the components of the

correlation tensor in these regions. The incompressibility
For the sake of clarity, we have applied the mean-value theczondition ink-space,
rem when integrating ovef, resulting in the appearance of kQL=0 21)
cog 0. As N—0, the expressiofil8) passes to the hydrody- telp
namic limit}? In this case, noting that Reynolds stress ap-eads to the following relation between the components:
pears in the equation fdu) in the form Ks Q,

__2_,
k| Q3

where for the sake of simplicity and without any loss of
generality, we have assumed thaQ;’= k,Q3’=k, Q, . On
the other hand,

(22

J
10, A1
(Qij +Qji)s

IX;

we obtain the expression for the viscosit] in a magnetic

field:
- ki ki = k2. (23)
8 o ~ ~
=1+ % (k*Aq(k, 7)cosi Ck7) —k>Cy(k,7) Multiplying (23) by Q, and assuming thaD;~Q,, we
0 find with the help of(22) that
~ - -1 10_
X sinh(Ck7))exp( — (vyk?7+N cos 6)7)dk dr Qz=v2 tan-Q, . (24)
Taking into consideration the fact that the energy density at
o ) 2 fixed k is
X exp— (vyk“7+N cos 6
fo P (ke 7 E(k)=2Q, +Qs, (25
k2 8k® Ag(K,7) 5 whereQ;=Q33, we finally obtain
x Aolk,m)+ 5 = )COS“CkT) E(K)cos 6= (2 cos0+v2 sin 6)Q, . (26)
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@ Qs pated. The joint action of these two processes results in en-

1.0 ergy growth at large scales, and in an efficient “erosion” of

0.8 2 smaller scales that are weakly supplied with energy “from
above” due to the presence of nonzero one-point helicity in

0.6 the system. Since helicity grows with magnetic figldt the

0.4 same time, the connection between large and small scales is
disturbed more strongly. Experimentafiythis leads to the

0.2 1 energy spectrum steepening over the small-scale range, up to

0= R YRY: o510 a=11/3-16/3 with increasing magnetic field. Thus, the en-
’ ‘ ’ T cos@ ergy of a weak large-scale disturbance is redistributed among
N modes with differing co9, the cascade along the spectrum
FIG. 2. Angle dependence @, (1) and Qs (2) (normalized byE) for being weak.
Nt=1. In contrast, region | decreases with growing magnetic
field, and fluctuation growth at-0k<k, is mainly associ-

Thus, cosf is a measure of energy distribution among com-ated with a rise in the energy qf Iongitudinal fluctuations.
ponents along and across the magnetic field at spedified €ré, however, one must bear in mind that turbulence re-
At cos #=0 we obtainQ, =0, and all the energy of the Mains three-dimensional, but energy transfer from one com-
given mode is concentrated in the component parallel to th@onent to another at a given fixddresults from rapidly
magnetic field, i.e.E(k)=Qs. Herek?=2k?, i.e., in this OCccurmng processeinstabilities. This leads to a quasi-two-
mode fluctuations are normal to the magnetic field. dimensional fluctuation patter(symmetric about the mag-

At cos6=1 we observe the opposite situation: all the N€tic field.

energy of these modes wik?=k3 is concentrated in fluc- It should be noted that in the intermediate range
tuations normal to the field, i.eE(k)=2Q, , which oscil- 0<cos6<1, fluctuations exist along all three components;

late along the magnetic field. for instance, at0='1-r/{1 thg intensity of modes along and
If we take into account the form cE(k)zQﬁo(k) and  &cross _the magnetic field is th_e same, an_d thgy have the same
instability growth rate. In the vicinity of this point, namely at
~ 0= /4, energy exchange between components with gkven
E(k,t)=E(k,t)exp — Nt cos 6), is probably absent.
The authors are deeply grateful to Dr. A. Eidelman for
useful comments on the results of the present paper.

(8) for larger scales,

we obtain at some fixed time

cosd
2 cosf+v2 sin g’

Q, =E exp(—Nt co2 6)

. APPENDIX
v2 sin 0

=E expg — Nt cof ¢ )
Qs d ) 2 cosf+v2 sin

(27) The influence of an external uniform magnetic field on
B _ correlations in a turbulent medium has been studied in Ref.

Figure 2 represents the behavior@f /E andQ3/E for 2. In a magnetic field, the second moment of the velocity
Nt=1 as a function of angle. One can easily see that modeféeld acquires the form
with the samek behave differently, depending on cés

Returning to the instability of the second moments, we @i'j(k,w)
have the following. In regions Il and Ill, corresponding to Q;;(k,w)=
the conditions(13), modes with co®=1 are attenuated, Qit 1+(k'BO)2 2vk* =207+ (k-Bo)*/ pp
whereas modes with cas=0 grow. Hence, energy must be mp (7°k*+ %) (vk*+ )
transferred from modes with c@=0 to modes with
cos#=1. In region |, energy growth is observed in all mOdeSwhereQi’j(k,w) is the correlation function in the absence of
(but at different growth ratesin this case energy transfer the magnetic field, and,»,p are magnetic and hydrodynamic
between modes at fixel probably proceeds such that at viscosities and fluid density, respectively. Here we retain, for
0<l4, energy is transferred fro@; to Q,, and con-  convenience, the notation of Ref. 2. Assuming that turbu-
versely ato>w/4, fromQ, to Q3. However, in these cases |ence is helical and isotropic in the absence of the magnetic
the fluctuation amplitude will grow in a different manner. field, we can Writeéfl(k,w) as follows (whether or not
This is related to Joule dissipation, which is greatest aHO(O,t):O): Y
cosf=1, and vanishes at cas=0.

The role of helicity reduces to the following. By increas- A Kok
ing vortex lifetime at large scales, helicity slows down a Qi'j(k,w)IAo(k,w)<5ij—%
direct Obukhov cascade from larger to smaller scales. Thus,
it leads to incoming energy redistribution over large scales,

i.e., an increase in vortex lifetime increases the probability of .
vortex mergers. On the other hand, at lakyéelicity plays ~ Passing tox-space, QﬂO:fQij(k,w)d3kda) in the limit
essentially no role, and at these scales turbulence is dissf=x—x'—0, r=t—t'—0.

., (A1)

+iCo(k,®)ejsKs.
(A2)
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When Rg,<1 we obtain from(Al)
Q/j(k,0)

Qi(k,0)= L, (B 25K (B g
T T AR o)
~ Q/j(k,w)
B 1+ k? cog GB(Z) 27nv+cos 6 B(Z)/,U,pkz'
wpnt kA + w?
or in dimensionless form
. Q/j(k,w)
Qij(k, @)= 2k’Re co€ 6+N cof ¢° (A3)
k*Re 2+ »?
Consequently,
1 5ijéi,j(kaw) 3
AN0.0)=7 f 2k?Re cod 6+ N cod ¢ 9 K de.
k'Re 2+ 02
i
C(N,0,0): - § Sijk
keQ/ (K, )
X 3 .
f 2k’Re cod 6+N cos 4 dk do
KRe 2+’
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