
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 1 JULY 1998
Pure nuclear resonant scattering of synchrotron radiation by a multilayer structure:
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The possibility of observing pure nuclear resonant scattering of synchrotron radiation by a
multilayer structure containing the169Tm isotope is analyzed theoretically. The main problem is
the need to suppress the enormous background of radiation scattered by electrons. Two
methods for the destructive interference of a synchrotron radiation beam in reflection at grazing
incidence by a layered system containing Tm nuclei in one of the layers are considered,
and their efficiency as applied to the conditions of third-generation synchrotron radiation sources,
such as in the European Synchrotron Radiation Facility~ESRF!, is calculated. An electron
scattering suppression efficiency parameter is formulated as the ratio of the integrated nuclear
scattering intensity~with a time delay! to the total prompt electron scattering intensity in
assigned ranges of angles and energies. In the first method thin films of a special type on a
substrate, viz., GIAR films, are used. In the second method a new effect, which is termed
the Bragg antipeak effect and involves the destructive interference of a wave that is Bragg-
diffracted in a multilayer superlattice and a wave reflected on the upper boundary of the
sample, is employed. The physical properties of the Bragg antipeak effect are considered, and it
is found that its efficiency is sufficient for practical use. ©1998 American Institute of
Physics.@S1063-7761~98!00107-3#
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1. INTRODUCTION

Since the first proposals1,2 to use synchrotron radiatio
to excite low-lying nuclear levels and the first clear-cut o
servation of nuclear resonant scattering of synchrot
radiation,3 a great deal of attention has been focused on
problem of suppressing the nonresonant background of e
tron scattering. In principle, the pulsed temporal structure
synchrotron radiation permits the use of a ‘‘time window’’
separate the delayed nuclear resonant scattering and
pulsed electron scattering. However, the extremely nar
energy width of nuclear levels (1027– 10210 eV) makes it
possible to use a time window only after strong prelimina
monochromatization of the synchrotron radiation with t
aim of effectively suppressing the nonresonant electron s
tering.

Several approaches to solving the problem of enorm
nonresonant scattering have been successfully develope
recent years. The compact high-resolution monochroma
with an energy width of the order of several millielectro
volts4–7 and avalanche photodiode detectors develope8,9

have permitted the performance of investigations in a m
universal forward-scattering experimental setup10 in addition
to the experimental setup in which pure nuclear Bragg
fraction is realized.3 These advances provided the base
the rapid development of nuclear hyperfine spectroscopy
ing synchrotron radiation. In the case of Bragg diffractio
the alternative technique of the polarization analysis of s
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tered radiation has been used to suppress nonresonant r
tion under the conditions of the hyperfine splitting of nucle
levels.11,12

The development of new sources of synchrotron rad
tion permitted a sharp increase in the spectral density of s
chrotron radiation. The third-generation sources of synch
tron radiation, such as ESRF~France!, APS ~U.S.A.!, and
SPring-8 ~Japan!, provide beams with intensities of orde
1013 photons/s/eV. All the advantages of nuclear hyperfi
spectroscopy can be utilized only with ultrahigh monoch
matization, which is still not achievable with electron
reflection monochromators. Therefore, nuclear resonant s
tering must be used in the monochromatization of
radiation. Although the use of pure nuclear Bragg diffracti
is very effective, it is applicable only to highly perfec
isotope-enriched single crystals. Therefore, a great dea
attention has been focused on the development of artific
purely nuclear reflecting elements, mainly on the basis
multilayer antireflection films and multilayer superlattice
The operation of such elements is based on efficient nuc
resonant scattering under conditions where electron sca
ing is suppressed. In the case of GIAR~grazing-incidence
antireflection! films electron scattering is suppressed throu
the destructive interference of waves reflected from the up
and lower faces of the film,13–16and in the case of multilaye
superlattices it is achieved owing to the use of an electr
forbidden diffraction reflection under conditions where t
atomic and nuclear scattering parameters differ.17–19
© 1998 American Institute of Physics
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2 JETP 87 (1), July 1998 Kon et al.
The study of nuclear resonant scattering using synch
tron radiation sources on both the theoretical and experim
tal levels has been confined hitherto to the57Fe isotope. The
only exception is the work described in Refs. 16 and
where the119Sn isotope was considered. The present pa
describes a theoretical analysis of several methods for
pressing electron scattering in the case of the nuclear tra
tion with energy 8.410 keV in169Tm. The relatively large
width of this nuclear transition (1.131027 eV) creates the
conditions for intense nuclear scattering of synchrotron
diation. On the other hand, the short natural lifetime~5.8 ns!
makes high preliminary monochromatization especially n
essary. Crystals containing Tm atoms rarely have a su
ciently perfect crystal lattice; therefore, the use of Bragg d
fraction has been demonstrated in only one paper.21 Suitable
monochromatization methods can be based on the emp
ment of conditions for near-grazing reflection by layer
samples containing Tm atoms in one of the layers. The te
nology for fabricating multilayer structures has been dev
oped to a fairly high level.22 We examined the possibilitie
of using multilayer structures in which layers consisting
Tm atoms alternate with layers of Mo, Ti, or Fe atom
Multilayer structures in which the layers just mentioned a
combined can easily be fabricated.

Since the degree of disparity between the refractive
dices in these combinations differs strongly from one to
other, layered systems of different structure and differ
techniques for suppressing the nonresonant scattering
be used. In the Tm/Mo combination one layer of Tm on
Mo substrate or one layer of Tm with one layer of Mo on
glass substrate is sufficient. The thickness of the layer
found from the ‘‘damping-stabilized solution’’ in the theor
of GIAR films.13 A similar solution was found in the case o
a Ti film on a Tm substrate. In the case of Tm layers and
layers we propose a new method of destructive interfere
which combines two scattering channels: strong reflection
the surface of a sample with grazing incidence and Br
diffraction in a multilayer superlattice. The interference
these two channels is totally different for nuclear reson
scattering and electron nonresonant scattering. We fo
conditions under which these two processes suppress
another in the case of electron scattering with the resul
suppression of reflection of the synchrotron radiation be
at the Bragg angle, i.e., the Bragg antipeak effect. On
other hand, in the case of nuclear scattering they can r
force one another and produce an ordinary Bragg peak.

To characterize each method for suppressing electron
flection, we introduced a parameter which takes into acco
both the decrease in the electron reflection of the synchro
radiation pulse and the level of nuclear resonant scatte
~which is delayed during the scattered radiation! following a
short pulse of synchrotron radiation. This parameter is
fined with allowance for the possible angular width of t
synchrotron radiation beam and the presently attainable l
of premonochromatization.

The next section presents the basic principles of
theory of reflection by layered structures, which are used
quantitative analysis. In particular, the physical nature of
suppression of reflection is considered, and simple co
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tions for observing it are formulated. An analysis of the sp
cific examples of~Tm, Mo! and~Ti, Tm! layered systems, a
well as~Tm, Fe! multilayer superlattices, is presented in th
third section. A discussion of the possibilities of the practic
implementation of the conditions found is given in the la
section.

2. THEORY OF THE SUPPRESSION OF ELECTRONIC
SCATTERING BY MULTILAYER STRUCTURES

2.1. General formulas

The simplest method for calculating the reflectivity of
multilayer structure is based on the Parratt recurre
formula23 for the reflection amplitude from a boundary b
tween two neighboring layers. Let us consider the magnit
of the electric field vector in themth layer, which we write in
the form

Em~x,z,t !5E~x,t !@Etm exp~ ikzmz!1Erm

3exp~2 ikzmz!#, ~1!

whereE(x,t)5exp(ikxx2ivt), v is the angular frequency o
the x radiation, andk5(kx ,0,kz) is the wave vector. For-
mula ~1! is applicable to each layer taken individually, an
the coordinatez is measured from the upper boundary
each layer within the layer. The surface of the layers co
cides with thexy plane. To illustrate the idea behind th
calculation, let us consider the simple case of as-polarized
plane wave with an electric field directed along a normal
the scattering plane~i.e., along they axis!. The geometric
parameters in thexz scattering plane are shown in Fig. 1.
u is the angle between the direction of the incident pla
wave and the surface of the multilayer, then

kx5|21 cosu, kzm5|21Asin2 u1xm, |5l/2p,
~2!

wherel is the wavelength of the radiation andxm5«m21 is
the complex susceptibility of themth layer («m is the dielec-
tric constant!. In the case of grazing incidence we can ta
sinu'u.

We introduce the complex reflection amplitudeRm

5Erm /Etm as the ratio of the amplitude of the reflected wa
Erm to the amplitude of the refracted waveEtm . The Parratt
formula is

FIG. 1. Geometry of the grazing-incidence reflection of a synchrotron
diation beam by a multilayer structure.
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3JETP 87 (1), July 1998 Kon et al.
Rm5Cm

Fm1Rm21

11FmRm21
, ~3!

where

Cm5exp~2ikzmdm!, Fm5
kzm2kzm21

kzm1kzm21
, ~4!

dm is the thickness of themth layer. The layers are numbere
from the lower to the upper boundary of the multilayer~see
Fig. 1!. The complex susceptibility of the medium is acc
rately specified by the known expression

x5x81 ix952
l2r 0

p
N@Z1D f 82 iD f 9#

52l2C
r

A
@Z1D f 82 iD f 9#, ~5!

wherer 05e2/mc2, N is the number of atoms per unit vo
ume of the material,D f 82 iD f 9 is the complex dispersion
correction to the atomic x-ray scattering factor, which is si
ply equal to the number of electronsZ in the case of grazing
incidence,C50.540231025, r is the density in g/cm3, A is
the atomic weight in atomic units, andl is the wavelength in
angstroms. We recall that the susceptibility is twice the co
plex refractive index.

Formula ~3! was written for a perfect multilayer struc
ture with a smooth surface on each boundary between
layers. A real surface is generally rough. In this study
assume that the roughness takes the form of uncorrel
upward or downward displacements of finite smooth portio
of the surface~along thez axis!, while the meanz coordinate
of the boundary in space remains unchanged. Such a typ
roughness can be taken into account by introducing a v
able layer thicknessdm8 5dm1D, whereD is a random value.
Assuming that the distribution of the values ofD with the
width D is Gaussian, we should average the phase fa
Cm . As a result of this averaging,Cm is replaced byCmWm ,
where

Wm5
2

DAp
E

2`

`

dD expS 2ikzmD2
4D2

D2 D
5expS 2

1

4
kzm

2 D2D5exp~22kzm
2 s2!. ~6!

Here

s25^D2&5
2

DAp
E

2`

`

dDD2 expS 2
4D2

D2 D5
D2

8
. ~7!

The factorWm can be called the Debye–Waller factor,24 be-
cause its dependence on the change in the value of the
thickness is similar to the dependence of the Debye–Wa
factor on the displacement of atoms from their equilibriu
positions in a crystal lattice. This approach differs from t
one in Ref. 25, where a different model of roughness w
considered. Below we shall take into account the Deby
Waller factor directly inCm and redefineCm in the following
manner:
-
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Cm5exp~2ikzmdm22~kzms!2!. ~8!

2.2. Damping-stabilized solutions

We begin by considering the simple case of a multilay
with one layer of Tm of thicknessd containing resonan
nuclei on a substrate of some other material. We take Mo
an example; therefore, the system under consideration ca
described by the formula Tm(d)Mo. In this case we have
only two boundaries, and we must use the Parratt form
only twice. We introduce the amplitudes of the fieldE: Eta

andEra in the air directly above the surface andEtl andErl

in the Tm layer above the interface with the substrate.
are interested in the total reflection amplitudeRtot5Era /Eta ,
while the reflection amplitude from the internal bounda
R15Er1 /Et1 . In this case the Parratt formula leads to t
relation

Rtot~u!5C0~u!
R0~u!1R1~u!C1~u,d1!

11R0~u!R1~u!C1~u,d1!
, ~9!

where R0(u) is the reflection amplitude from the samp
surface, andR0(u) andR1(u) equal

R0~u!5
u2u1

u1u1
, R1~u!5

u12u2

u11u2
,

u15Au21x1, u25Au21x2. ~10!

Herex1 is the susceptibility in the layer, andx2 is the sus-
ceptibility of the substrate. The values ofC0 and C1 were
determined in~8! for d050.

As we know, the critical angle for total external refle
tion is specified by the formulaucm5(2dm)1/2, wheredm is
the damping of the refractive index in layerm, which is
related to the susceptibility by the expressionx/252d
1 ib. The substrate has a larger electron density than
layer; therefore, it has a larger value for the critical angle
total external reflectionuc2.uc1 . We are interested in the
range of angles near the second critical angleuc2 , where the
magnitude of the reflection amplitude from the intern
boundary,R1(u), is greater than the reflection amplitud
from the surface,R0(u). Our goal is to find the conditions
under which the total reflection amplitude from the sam
equals zero. The solution of this problem was found for
first time in Ref. 13 and was termed the ‘‘damping-stabiliz
solution.’’

Such solutions correspond to a zero value for the
merator in~9!. We write the complex reflection amplitude
explicitly distinguishing between the modulus and phase

R05a0 exp~ iw0!, R15a1 exp~ iw1!. ~11!

This enables us to formulate the necessary conditions in
form of a system of two real equations, which specify t
conditions for impedance matching and for destructive int
ference:

a05a1 exp~22~s/|!2~u21x18!!exp~22du19/|!,

w05w122~s/|!2x1912du18/|2mp, m561,63,... .
~12!
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Each of these equations can be treated as an indepen
equation for the layer thicknessd. In addition, the solutions
can be represented by analytical expressions, which give
angular dependence of thickness. We shall call the respe
thicknesses the impedance-matching thicknessdim and the
destructive-interference thicknessddi :

dim~u!52
ln~a0 /a1!12~s/|!2~u21x18!

2u19/|
,

ddi~u!5
w02w11mp12~s/|!2x19

2u18/|
. ~13!

The complete solution of the problem is obtained at
points where these curves cross the plot of the angular
pendence. The coordinates of the crossing points spe
both the required angular orientation of the sample and
layer thickness. Since only positive values of the layer thi
ness have physical meaning, the conditiona0,a1 must be
satisfied for success.

It is also interesting to consider more complicated s
tems with a large number of free parameters and to find
conditions for suppressing electron reflection in systems w
some additional properties, for example, systems which
stable toward variation of the layer thickness, which can
preferable from the standpoint of their fabrication techn
ogy. Let us consider a system in which a Mo layer of thic
nessd2 is located under a Tm layer of thicknessd1 on a
glassy SiO2 substrate, i.e., the Tm(d1)Mo(d2)SiO2 system.
Using the Parratt formula three times, we can obtain the t
reflection amplitude in this case in the following form:

Rtot~u!5C0~u!
R0~u!1R1

1~u!C1~u,d1!

11R0~u!R1
1~u!C1~u,d1!

,

R1
1~u!5

R1~u!1R2~u!C2~u,d2!

11R1~u!R2~u!C2~u,d2!
. ~14!

Here the functionsR0(u) andR1(u) are defined by formula
~10! except that the subscript 1 now refers to the Mo la
and, in addition,

R2~u!5
u22u3

u21u3
, u35Au21x3, ~15!

where the subscript 3 refers to the substrate andC2(u,d2) is
the transfer function of the wave for the Mo layer. The co
ditions for the suppression of electron reflection can be w
ten in the form~12!. However, in this case the real function
a andw have somewhat different definitions:

R0~11R1R2C2!5a0 exp~ iw0!,

R11R2C25a1 exp~ iw1!. ~16!

Thus, all the parametersa0 , a1 , w0 , andw1 now depend on
the thicknessd2 of the Mo layer. Therefore, solutions differ
ing in the value ofd2 can be found.

2.3. Bragg antipeak effect

In the case of a~Tm, Fe! multilayer the susceptibility
difference is small. This leads to a small difference in t
ent
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critical angles for total external reflection. As a result, t
damping-stabilized solutions considered above are imp
sible. On the other hand, the small susceptibility differen
opens up a new way to achieve destructive interference
tween a wave reflected by the surface of a sample and a w
that is Bragg-diffracted in a multilayer superlattice having
periodic element in the form of a pair of Tm and Fe layers
different thickness, which is repeatedn times. We again in-
troduce the amplitudes of the fieldE: Eta andEra in the air
above the surface andEtt and Ert in the top layer directly
beneath the surface. We are interested in the total reflec
amplitudeRtot5Era /Eta , while the reflection amplitude from
the multilayer superlattice can be defined asRml5Ert /Ett .

In this case the Parratt formula gives the relation

Rtot~u!5C0~u!
R0~u!1Rml~u!

11R0~u!Rml~u!
, ~17!

where R0(u) is the reflection amplitude from the surfac
which is defined in~10!, andx1 is the susceptibility of the
top ~Tm! layer of the multilayer. Near the critical angle fo
total external reflection, this reflection channel is also sign
cant and leads to appreciable beam reflection for a mate
with a large electron density.

The only possibility for making the amplitudeRtot(u)
equal to zero for a multilayer superlattice arises in the cas
the destructive interference of two channels, whereRml

52R0 . This condition can be satisfied only ifuR0u,1.
Therefore, the multilayer superlattice sought need not
strongly reflective, and we are interested in the case o
small reflection amplitude from one period of the multilay
superlattice with a negative sign, which is opposite toR0 .
Just such a condition is realized in the case of the~Tm, Fe!
multilayer superlattice under consideration. An exact anal
cal formula describing the reflection amplitude from
multilayer superlattice was obtained in Ref. 26. In the ge
eral case of a multilayer superlattice havingn periods~unit
cells!, it can be written in the following manner:

Rml
~n!~u!5

r

f 1

12A exp~ inc!

12B exp~ inc!
, A5

r 2Rsf 1

r 2Rsf 2
, B5A

f 2

f 1
,

f 6512At t̄ exp~6 ic/2!, exp~6 ic/2!5v7Av221,

v5
11t t̄ 2r r̄

2At t̄
. ~18!

Here Rs is the reflection amplitude directly above the fir
periodic element of the multilayer. Below the multilayer s
perlattice under consideration there can be another supe
tice or system of layers with different parameters. The
rametersr , r̄ , t, and t̄ are the reflection and transmissio
amplitudes for one period in the forward and reverse dir
tions. The explicit expressions for these quantities depend
the structure of a period in the multilayer superlattice. W
are interested in the simple case with two layers in a per
We shall use the labels 1 and 2 to distinguish between
parameters of the upper and lower layers and thus have
tation similar to the case considered above. The correspo
ing formulas can be written in the form



i
a

, b
rg
ck
in

e-

s
t

io
l
th

fo

e
w
th

th
th

on
ye

le
nc

th
um
la

n
tiv
tio
w

t
m
be

a

at-
ate

yer
ere
ther

gh-
tive

be-

l

ick-
den-
the
o

ses
the
the
xi-
m-

of
ies
gle

ice
f the

n of
m
fect
ly at

lear
the
er
if-
se

la
g a
ec-

Tm
ring
ra-
of

in
e,

5JETP 87 (1), July 1998 Kon et al.
r̄ 5r mlF12
tmlC2

12r ml
2 C2

G , r 5 r̄ C1 , t5 t̄ 5
tml~C1C2!1/2

12r ml
2 C2

,

r ml5
u12u2

u11u2
, tml5

4u1u2

~u11u2!2 512r ml
2 , ~19!

whereu j andCj are defined in~8! and~10!. We note that the
results of a calculation using the analytical formulas are
complete agreement with the approach based on the repe
used of the Parratt recurrence formula for each boundary
the computer time is significantly less, especially for a la
number of periods. In addition, in the case of a thi
multilayer superlattice, we obtain an analytical solution
the simpler formRml5r / f 1 directly from ~18!, provided the
function c is defined with a positive imaginary part.

The condition for Bragg diffraction in this approach r
quires that the complex quantityt t̄ have a phase 2pn. At
grazing incidence thez component of the wave vector i
small; therefore, the roughness of the boundary between
layers does not play a significant role. When the reflect
amplitude from one boundaryr ml is small due to the smal
difference between the susceptibilities of the layers,
transmission amplitudetml is close to unity@see~19!#. There-
fore, in an approximation we obtain the Bragg condition
first-order diffraction in the form Re(d1u11d2u2)5l/2,
whered1 andd2 are the thicknesses of the upper and low
layers of a single period in the multilayer superlattice. As
know, in the case of the electron scattering of hard x rays
imaginary part of the susceptibility is much smaller than
real part. Therefore, for angles of incidence greater than
critical angle, the reflection amplitude from the surfaceR0

52x1/4u2 has an approximately real value. The reflecti
amplitude from the boundary between layers in a multila
superlattice has the approximate valuer ml'(x12x2)/4u2.
The small difference between the real parts of the comp
susceptibilities can be accompanied by a normal differe
between the imaginary parts@this is precisely what occurs in
the case of a~Tm, Fe! multilayer superlattice#. As a resultr ml

is a complex quantity with an appreciable phase. Taking
into account, we arrive at the conclusion that the optim
structure for the repeating element in a multilayer super
tice is a combination of layers of different thickness.

To observe the Bragg antipeak effect, i.e., suppressio
the total electron reflectivity as a consequence of destruc
interference between a surface reflection and a reflec
from the multilayer superlattice near the Bragg angle,
must first ensure the conditionuRmlu'ur mluF.uR0u, whereF
is a factor which characterizes the degree of increase in
reflection amplitude from the multilayer superlattice co
pared with reflection on one boundary. For a small num
of periodsN and equal thicknessesd15d2 of layers with
smooth surfaces we obtain simplyF52N. In the opposite
case of a large number of layers, the value ofF is restricted
by the absorption and roughness of the surface and is
proximately

F'a/~12ut t̄ u!'a/M ,

M5~m1d11m2d2!/u18~us/|!2,
n
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m i is the absorption coefficient in layeri , anda is the abso-
lute value of the structure factor of the multilayer superl
tice, which can have a value between 0 and 2. The estim
obtained shows that appreciable reflection by a multila
superlattice is confined to a finite range of angles, wh
absorption, on the one hand, and roughness, on the o
hand, are not significant. In the case of a high level of rou
ness, this region can have zero dimensions, i.e., destruc
interference can occur.

The second condition is that the phase difference
tween the complex quantitiesRml andR0 must be equal top.
As was shown above, the phase ofR0 is approximately equa
to zero. The phase ofr ml is approximately equal top if
absorption is neglected and in the case of equal layer th
nesses provided the upper layer has a smaller electron
sity. However, the absorption is significant, and therefore
phase ofr ml differs fromp in the general case. There are tw
possibilities to compensate for this difference. The first ari
at an angle shifted slightly from the Bragg angle. Since
reflection phase varies very rapidly near the Bragg angle,
necessary shift is small. For example, in the kinetic appro
mation and with the neglect of absorption, the reflection a
plitude can be approximated by the expression

Rml5r
sin~Nw/2!

sin~w/2!
exp~ i @N21#w/2!,

w52 Re~u1d11u2d2!/|. ~20!

It is readily noted that near the Bragg maximum the phase
the reflection amplitude from a multilayer superlattice var
approximatelyN times faster than does the phase for a sin
period.

The second possibility is to use a multilayer superlatt
with unequal layer thicknesses. In this case the phases o
multipliers C1 andC2 are not equal top even at the Bragg
angle, and the additional phase can cancel the deviatio
the phase ofr ml from zero value. This case is preferable fro
the standpoint of the conception of the Bragg antipeak ef
because destructive interference takes place here precise
the Bragg angle. This leads to a large value for the nuc
resonant reflectivity. On the other hand, in this case
width of the dip on the electron reflectivity curve is narrow
than in the former case owing to the property of Bragg d
fraction just mentioned, i.e., the rapid variation of the pha
of the reflection amplitude.

2.4. Nuclear resonant scattering

The susceptibility of a material is described by formu
~5! only in the case of an electron channel for scatterin
synchrotron radiation beam. The absence of electron refl
tion creates conditions for pure nuclear scattering by
nuclei in a layered system. When nuclear resonant scatte
occurs, an additional contribution, which depends on the
diation frequency and describes the resonant interaction
Tm nuclei with synchrotron radiation, must be included
the susceptibility. In the simple case of a single unsplit lin
the additional term is described by the formula
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DxTm52
|Ns0h f LM

2w1 i
, w5

\v

G0
,

s052p|2
2I e11

2I g11

1

a11
. ~21!

HereN is the number of Tm atoms per unit volume,s0 is the
nuclear scattering cross section at resonance,h is the fraction
of the resonant isotope,f LM is the Lamb–Mo¨ssbauer factor,
I e andI g are the values of the nuclear spin in the excited a
ground states, respectively,a is the gamma-electron conve
sion coefficient, the frequencyv is measured relative to th
resonance value, andG0 is the natural resonance bandwidt

The new term in the susceptibility of the Tm laye
which depends on frequency, causes the total reflection
plitude to also depend on frequency. In the case of stri
monochromatic radiation with a varying frequency, it b
comes possible to measure the dependence of the refle
amplitude on frequency near resonance. On the other h
when a short pulse of synchrotron radiation is scattere
time-delayed component appears in the scattered radia
because of the resonant frequency dependence of the re
tion amplitude. To calculate the delayed part of the scatte
radiation, it is convenient to introduce a response function
the system to the instantaneous excitation of nuclei by a v
short pulse. As we know,27 this function is defined by the
Fourier transform of the reflection amplitude:

G~ t,u!t05E dw

2p
R~w,u!expS 2

iwt

t0
D , t05

\

G0
. ~22!

Heret0 is the lifetime of the excited state of the nucleus. T
simplest way to isolate the resonant scattering is to mea
only the delayed radiation after a time window of widthtw

with the detector covered within the time window 0,t
,tw . In this case the nuclear and electron resonant refl
tivities can be defined by

Pn~u,tw!
G0

\
5E

tw

`

dtuG~ t,u!u2, Pe~u!5uR~`,u!u2.

~23!

Here and below we have omitted the subscript ‘‘tot’’ on t
total reflection amplitude.

Below we shall confine ourselves to consideration of
special case of a very short time window,tw→0. The inte-
grated reflectivity of the delayed synchrotron radiation c
then be calculated without Fourier transformation by util
ing Parseval’s theorem:

Pn~u!
G0

\
5E

10

`

dtuG~ t,u!u2

5
G0

\ E dw

2p
uR~w,u!2R~`,u!u2. ~24!

On the other hand, the response function for short de
times can be determined from the asymptotic expansion
the frequency dependence of the reflection amplitude, i.e
d
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lim
uwu→`

R~w,u!5R~`,u!1R1~u!
1

w
1R2~u!

1

w2 1... ,

~25!

then

G~ t,u! 5
t→0

R~`,u!d~ t !2 iR1~u!2R2~u!
t

t0
1...

'R~`,u!d~ t !2 iR1~u!

3expS 2
t

t0
S g

2
1 iw0D D1... , ~26!

where we have used the notationR2 /R15w02 ig/2. The
quantity R(`) is simply the electron part of the reflectio
amplitude, andR1 specifies the nuclear part of the scatter
radiation immediately after the pulse, whileR2 assigns the
decay rate of the excited state for short delay times. T
parameterg characterizes the decay acceleration effect27 ~it
is equal to unity if acceleration is not observed!. Formula
~26! permits direct evaluation of the integrated intensity d
ing a short time window immediately after a pulse of sy
chrotron radiation. Thereafter a short time window can
taken into account in the integrated nuclear reflectivity~24!
by simple subtraction.

The quantity of charged~nuclear! radiation depends on
how strongly the near-resonant reflection amplitude diff
from the off-resonance value. In a simple system with o
surface the frequency dependence of the susceptibility ca
the critical angle to also become dependent on frequen
However, at small grazing angles (u!uc) and at large graz-
ing angles (u@uc) the reflection amplitude depends weak
on the critical angle and thus depends weakly on frequen
Therefore, it should be expected that the intensity of
delayed radiation integrated over time will have a maximu
precisely in the range of angles near the critical angleuu
2ucu!uc . As was shown in Ref. 28, in first-order perturb
tion theory with respect to the nuclear addition to the susc
tibility ~the kinematic approximation for nuclear scatterin!
the time dependence of the delayed intensity for a nuc
system mimics the time dependence for an isolated nucl
The angular dependence of the intensity is identical for
times following a pulse~or for all values of the frequency
mismatch from resonance!. The corresponding coefficien
can be related to the effective number of nuclei participat
in coherent reflection of the delayed radiation. Therefore,
suppression of electron scattering precisely in the range
angles near the critical angle, where nuclear reflection
strongest, is of greatest interest from the standpoint of
taining pure nuclear scattering.

2.5. Efficiency of pure nuclear scattering

We assume that radiation which has passed through
premonochromator system has a nonzero intensity within
angular rangeDu and the frequency rangeDv. We are inter-
ested in the integrated intensity of the scattered radiation
these ranges,
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TABLE I. Some parameters of the elements considered.

Z A, au r, g/cm3 D f 8 D f 9 2x8, 1026 x9, 1026

Ti 22 47.88 4.53 0.269 1.68 24.728 1.866
Fe 26 55.85 7.86 20.786 2.94 41.648 4.856
Mo 42 95.94 10.2 20.087 2.54 52.300 3.169
Tm 69 168.93 9.29 29.94 3.90 38.120 2.517
fle
ce

fo

a

ri
s.
in
h
lc
ffi

t
i

s
re
t

y
ro
n-
us

lu
ce

:
ng

s

ness
ith

yer
ell
flec-
xi-
e

ncy,

on
ec-

in

,
nd

ec-
ri-
a

and
eam
P̄~u0!5E
Du

du8E
Dv

dv P~v,u01u8!, ~27!

whereu8 is the angular shift away from the valueu0 , which
corresponds to the complete suppression of electron re
tion, and the frequencyv is measured relative the resonan
value for169Tm. In the case of the nonresonant~prompt! part
of the radiation, there is no frequency dependence; there

P̄e5DvE
Du

du8Pe~u01u8!. ~28!

In the case of the nuclear resonant~delayed! part of the ra-
diation, we can neglect the angular dependence in an
proximation and write

P̄n5DuPn~u0!G0 /\, ~29!

wherePn(u) is defined by formula~24!. The ability of dif-
ferent reflecting systems to produce pure nuclear scatte
can be estimated by the ratio between these two quantitie
the small range of angles near the electron reflectivity m
mum the angular dependence of the reflection amplitude
an approximately parabolic shape, and the integral is ca
lated analytically. As a result, we can introduce the e
ciency parameter of pure nuclear scattering in the form

Es5
P̄n

P̄e

'
3G0

\Dv

Pn~u0!

Pe~u01Du/2!12Pe~u0!
. ~30!

In the ensuing analysis of specific cases we shall use
following particular values of the parameters appearing
this formula for the conditions in ESRF:hDv'3
31022 eV, G051027 eV, Du512 mrad. The efficiency
parameter depends on the thickness of the layers of the
tem; therefore, each individual method for isolating pu
nuclear scattering can also be characterized in terms of
sensitivity toward variation of the layer thickness.

For numerical estimates of the efficiency of various la
ered systems we used susceptibility values calculated f
Eqs. ~5! and ~21!, which are presented in Table I. The co
tribution of the nuclear resonant scattering of Tm to the s
ceptibility was calculated with the parameters

h5 f LM51, |Ns05231025. ~31!

3. SPECIFIC EXAMPLES

3.1. „Tm, Mo … layered system

In the case of the Tm(d)Mo system the susceptibility
difference is fairly large; therefore, damping-stabilized so
tions are possible. Figure 2 shows the angular dependen
c-
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dim and ddi for three values of the roughness parameters
50, 5, and 10 Å. It is readily noted in the range of grazi
angles of incidence that roughness up to 5 Å has a weak
influence on the curves and that theddi curves corresponding
to a phase difference ofp scarcely vary for the roughnes
values considered. We used the values55 Å in the ensuing
calculations. On the other hand, regardless of the rough
level, there are two solutions. There are no solutions w
other values of the phase difference~3p or more!.

Figure 3 shows how the efficiency depends on the la
thickness for the damping-stabilized solutions found, as w
as the angular dependence of the electron and nuclear re
tivities for the layer thickness corresponding to the ma
mum efficiency value. As follows from the calculations, th
solution at small thicknesses has a doubled peak efficie
but is more sensitive to variation of the thickness~Figs. 3a
and 3c!. The angular dependence for the thicknessesd
597 Å and 158 Å is shown in Fig. 3b and 3d. The soluti
with the larger thickness has a higher level of nuclear refl
tivity and therefore corresponds to an angle of incidence
the range between the critical angles for Tm (uc

56.17 mrad) and Mo (uc57.23 mrad). At the same time
the dip on the electron reflectivity curve is narrower, a
when the angular divergence of the beam~even 12 mrad! is
taken into account, this also leads to a higher level of el
tron reflectivity. The practical choice of the appropriate va
ant is determined by the possibility of creating a layer with

FIG. 2. Graphical solutions of the equations of impedance matching
destructive interference for determining the layer thickness and the b
angle of incidence in the case of a Tm(d)Mo layered structure for three
values of the roughness parameter:s50, 5, and 10 Å. Thedim(u) curves
have maxima which decrease with increasings and theddi(u) curves prac-
tically coincide.
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FIG. 3. Dependence of the efficiency o
thickness~a and c! and angular depen-
dence ~b, d, decimal logarithms! of the
electron and nuclear~thick lines! reflec-
tivities in the two possible solutions for a
Tm(d)Mo layered structure with d
597 Å and 158 Å.
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sufficient degree of control over the thickness or the pow
of the source.

A more complicated system, which contains two laye
and can be described by the formula Tm(d1)Mo(d2)SiO2,
has more free parameters. If the phase difference equap,
two solutions for the thicknessd1 of the Tm layer exist for
each value of the thicknessd2 of the Mo layer, which we
denote byd1

(1) andd1
(2) in order of increasing values. Calcu

lations show that the solutiond1
(1) for fairly large values of

d2 scarcely depends on the thickness of the Mo layer, w
the value ofd1

(2) decreases with a simultaneous increase
the efficiency asd2 is diminished. Accordingly, the angle o
incidence of the synchrotron radiation beam is also
creased. When the thickness of the Mo layer is diminish
further, the values ofd1

(1) and d1
(2) approach one anothe

There is a critical value ofd2 , at which the two solutions
coincide, and then they vanish entirely asd2 is subsequently
diminished. Such behavior is specified by the strong in
ence of the additional reflectivity on the Mo/SiO2 boundary.
Figure 4 shows plots of the dependence of the efficiency
d1 for various values ofd2 near the critical point. Attention
should be focused on the very high efficiency level: up to
for the left-hand peaks and up to 0.2 for the right-hand pea
However, destructive interference is very sensitivity to var
tion of the thickness. Of course, there is similar sensitiv
toward variation of the susceptibility or roughness para
eters.

Since the thicknesses of the layers are small, the ang
r
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FIG. 4. Dependence of the efficiency on thickness for
Tm(d1)Mo(d2)SiO2 multilayer in the region of small values ofd2 near the
critical point. For clearer viewing each curve has been shifted by 0.5 al
the vertical axis. The lowest curve~which remains at zero! corresponds to
d2521 Å. The value ofd2 for each successive curve is 1 Å greater than for
the preceding curve. The upper curve corresponds tod2530 Å.
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incidence of the beam appreciably surpasses the cri
angle for total external reflection. As an example, Fig.
shows plots of the angular dependence of the electron
nuclear reflectivities for a layered system withd1528.2 Å
andd2524 Å. It is easy to see that a high efficiency level
achieved owing to the very broad dip in electron reflectivi
while the level of nuclear reflectivity is quite small. A fairl
powerful source of synchrotron radiation and a technolo
for fabricating multilayer structures with high-precision la
ers are needed to utilize this case.

The system under consideration also has solutions wi
phase difference of 3p in the range of values ofd2 from 0 to
140 Å. From the standpoint of the stability of the efficien
parameter as the thickness is varied, there is interest in
range of values ofd2 near the maximum, where the tw
solutions have similar values ofd1 . Figure 6 shows the
(d1 ,d2) dependence of the efficiency in this range. As f
lows from the figure, an efficiency greater than 0.01 can

FIG. 5. Angular dependence of the electron and nuclear~thick line! reflec-
tivities for a Tm(d1)Mo(d2)SiO2 multilayer with d1528.2 Å and d2

524 Å.
al
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y
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e

obtained within a region having the dimensionsDd1

520 Å and Dd257 Å near the point d15220 Å, d2

5136 Å.

3.2. „Ti, Tm … layered system

The systems considered above contain a Tm layer as
upper layer. This specifies a high level of nuclear reflectiv
On the other hand, the susceptibility difference cannot
ceed a certain limit. In particular, it is impossible to find
substance which would have a susceptibility twice as large
that of Tm. Such a case is roughly realized if Tm nuclei a
found in a substrate coated from above by a Ti layer~see
Table I!, i.e., in a system described by the formula Ti(d)Tm.
When the phase difference equalsp, there are again two
solutions on the plots of the angular dependence ofdim and
ddi for this system. Figure 7 shows plots of the thickne
dependence of the efficiency for these solutions. The e
ciency maximum is atd578.5 and 211 Å, respectively. Th
solution with the larger thickness corresponds to the nuc
reflectivity maximum on the angular dependence, which
slightly weakened by absorption in the upper Ti layer. This
because the angle of incidence of the synchrotron radia
beam in this case is smaller than the critical angle for Tm a
lies between the values of the critical angles for Tm and
~the critical angle for Tiuc54.97 mrad). However, the dip
in electron reflectivity is extremely narrow, leading to a lo
level of efficiency~0.002! and weak sensitivity toward varia
tion of the thickness.

It is noteworthy that there is a correlation between t
orientation of thedim andddi curves at the crossing point o
the angle-thickness plane@an example is given in Fig. 2 fo
the Tm(d)Mo system# and the width of the efficiency pea
as a function of thickness, on the one hand, as well as
width of the dip in electron reflectivity as a function of th
angle, on the other hand. A large angle between thedim and
ddi curves in the direction of the angle axis specifies a narr
dip in electron reflectivity, while a small angle in the dire
a
FIG. 6. Dependence of the efficiency on thickness for
Tm(d1)Mo(d2)SiO2 multilayer in the region of large thick-
nesses near the critical point.
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FIG. 7. Dependence of the efficiency o
thickness for the two possible solutions~a and
b! in the case of a Ti~d!Tm layered structure.
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tion of the thickness axis leads to a broad peak on the plo
the dependence on thickness. The large slope of theddi curve
at small angles is the cause of the narrow dip in elect
reflectivity in the case of large thicknesses. Thus, the an
thickness diagrams clearly demonstrate why the case
small layer thicknesses leads both to an extremely high
ciency~0.2! of pure nuclear reflection and to a high sensit
ity toward variation of the thickness~Fig. 7a!. The level of
nuclear reflectivity here is roughly the same as for la
thicknesses, but the angular width of the dip in electron
flectivity is very large. Thus, this case can be preferable
there is a way to ensure a thin layer during fabrication of
sample.

3.3. „Tm, Fe… multilayer superlattice

A totally different situation arises in the case of layer
systems containing Tm and Fe. Because of the small dif
ence between their susceptibilities, the reflectivity of t
Tm-Fe interface cannot make up for the strong reflectivity
the Tm-air interface. As a result, damping-stabilized so
tions are impossible. Instead, a new Bragg antipeak effe
of

n
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e
-

if
e
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possible. As was noted above, the possibility of destruc
interference between the reflection amplitude from the s
face of a sample and the reflection amplitude from
multilayer superlattice depends strongly on the roughnes
the interfaces between the layers independently of the rou
ness of the surface. This is because roughness strongly
creases the reflection amplitude from a multilayer super
tice regardless of the number of periods. For a multila
superlattice with ideal interfaces between the layers there
possibility for destructive interference over a broad range
angles, including fairly large angles, at which high-ord
Bragg peaks appear. Nevertheless, only the smallest of
possible values of the angle of incidence of the synchrot
radiation beam are of interest from the standpoint of obta
ing a high level of nuclear reflectivity at the Bragg angle.

For multilayer superlattices with a Tm(d1)Fe(d2) period
and rough interfaces between the layers, only the first-or
Bragg peak can provide a reflection amplitude comparabl
reflection from the surface. Figure 8 shows the depende
of the efficiency on thickness for a superlattice containing
periods with a roughness parameters53 Å. The efficiency
ses
FIG. 8. Dependence of the efficiency on the layer thicknes
d1 andd2 for a @Tm(d1)Fe(d2)#* 10/SiO2 superlattice.
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rises sharply on the closed line, along which the conditio
for the complete suppression of electron reflection are sa
fied. The side with large values ofd1 corresponds to the
suppression of electron reflection precisely at the cente
the Bragg peak, while on the left-hand side~small values of
d1) with higher and narrower peaks, suppression occurs
the large-angle slope of the Bragg maximum. The angu
position of the Bragg peak can be calculated approxima
from the values ofd1 andd2 using the simple formula

~u22uc
2!1/25l/2~d11d2!,

whereuc is the mean value of the critical angles of Tm a
Fe (uc56.45 mrad).

For all values of the layer thicknesses within the clos
line, the electron reflectivity curve has a dip on the angu
dependence, but it is too small to provide a high level
efficiency, since the minimum value is above zero. As
calculations show, the size of the region within the clos
line depends strongly on the number of periods in
multilayer superlattice up to a certain limiting number, whi
is governed by absorption, as well as on the level of rou
ness. For example, the conditions for destructive interfere
vanish entirely for the value of the roughness parametes
55 Å. However, when the Bragg antipeak effect occurs,
efficiency of pure nuclear reflection is fairly high and stab
toward variation of the thickness. Thus, this case can als
utilized to obtain pure nuclear scattering of synchrotron
diation.

4. CONCLUSION

The purpose of the present work was to find and anal
conditions under which electron reflection by a multilay
structure can be suppressed to a considerable extent w
there is a high level of nuclear resonant reflection for169Tm.
This is needed to set off the very narrow energy ran
(1027 eV) corresponding to the nuclear resonant scatte
of a synchrotron radiation beam by Tm nuclei. To evalu
the effect, we have introduced an efficiency parameter as
ratio of the intensity of the radiation scattered by nuclei~with
a delay! to the electron scattering intensity~the prompt scat-
tering! in energy and angular ranges that are attainable
third-generation synchrotron radiation sources. In princip
an efficiency greater than 0.0001 is sufficient for measu
ments without a time window.

The method used in the theoretical analysis is based
the Fresnel formulas for reflection on an interface betw
two homogeneous media. This method was developed
Parratt for smooth boundaries and extended here to the
of rough boundaries. A set of possible layered structures
pable of providing the required efficiency level has be
found. Cases where a Tm layer is accompanied by a la
with a considerably larger electron density~Mo! or with a
considerably smaller electron density~Ti!, as well as with a
similar electron density~Fe!, can be utilized. In the last cas
a new method for suppressing electron scattering, viz.,
Bragg antipeak effect, has been found. As a rule, a h
efficiency level is accompanied by strong sensitivity towa
variation of the parameters. Only the sensitivity towa
s
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variation of the layer thicknesses has been analyzed in de
but the sensitivity toward variation of the susceptibility
surface roughness parameters can be of the same order

From the standpoint of the stability of pure nuclear sc
tering with respect to variation of the parameters, cases w
intermediate efficiency values~0.01–0.1! can be preferable
Such conditions have been found in a Tm(d1)Mo(d2)SiO2

multilayer with relatively thick layers and in a
@Tm(d1)Fe(d2)#* n/SiO2 multilayer superlattice with a low
level of interfacial roughness.

* !E-mail: kohn@kurm.polyn.kiae.su
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Fluctuational spatial dispersion in achiral liquid crystals
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Zh. Éksp. Teor. Fiz.114, 182–190~July 1998!

An investigation is made of the spatial dispersion of the permittivity of achiral liquid crystals
with large-scale fluctuations. It is observed that for large correlation lengths the terms
with spatial dispersion are anomalously large. The specific form of these terms is obtained for
orientational fluctuations in a nematic and fluctuations of the deformations of the smectic
layers in a smectic-A in an orienting magnetic field. It is shown that these effects may be observed
optically by means of accurate measurements of the angular dependence of the refractive
indices of electromagnetic waves. ©1998 American Institute of Physics.
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1. INTRODUCTION

Local coupling between the electrical induction and t
field may be impaired in the presence of spatial fluctuati
of the permittivity. The spatial dispersion obtained by allo
ing for these fluctuations is naturally called the fluctuati
dispersion. This fluctuation spatial dispersion has not b
analyzed previously, so that a material with these proper
is an interesting topic for discussion.

It has been established that allowance for spatial dis
sion in nongyrotropic media for frequencies some dista
from the absorption line yields corrections of order t
square of the ratio of the characteristic microscopic len
~such as the average electron displacement under the a
of the field, the lattice constant, and so on! to the wavelength
of the field.1,2 If a medium with large-scale fluctuations
considered, its characteristic length is the correlation len
so that for a large correlation length the corrections aris
from the spatial dispersion should be quite significant. T
effect is analyzed subsequently in liquid crystals. The sim
situation encountered near the critical point in liquids will
studied elsewhere.

By their very nature liquid crystals are materials wi
pronounced fluctuations. Calculations of the dielectric pr
erties of liquid crystals, for example, using local fie
theory,3 usually only take account of microscopic fluctu
tions of the position and orientation of the nearest-neigh
molecules. These fluctuations actually play a major role
strongly influence the calculated principal values of the p
mittivity tensor. It is clear, however, that the correspondi
spatial dispersion should be relatively low.

Some types of fluctuations in liquid crystals have lar
macroscopic dimensions: their correlation lengths are m
times greater than the intermolecular distances.4 In particu-
lar, near the phase transition point the correlation length
the pretransition fluctuations depends strongly on temp
ture, increasing as the transition point is approached.
orientational fluctuations in a nematic or the fluctuations
the smectic layer deformation in a smectic-A have mac
scopic correlation lengths over the entire temperature ra
1011063-7761/98/87(7)/5/$15.00
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where the phase exists. In this case, it is typically found t
in the absence of external orienting factors, the correlat
lengths are formally infinitely large. In practice, however, t
surfaces, and the external electric and magnetic fields alw
have a substantial orienting influence in liquid crysta
which leads to finite correlation lengths, the latter becom
controllable parameters of the liquid crystals.5

Since long-wavelength fluctuations in nematics a
smectic-A liquid crystals in fact induce local changes in t
direction of the principal optic axis, it is possible to study t
fluctuational spatial dispersion in these by assuming that
material is an inhomogeneous locally uniaxial medium.
illustrate the results, we use the well-known correlation fun
tions of liquid crystals in a magnetic field.

Calculations of the electromagnetic wave spectra sh
that the fluctuations influence the angular dependences o
refractive indices of the liquid crystals. A similar effect wa
considered previously for ordinary waves in a nemat6

where numerical results were obtained for very large co
lation lengths. An analysis in terms of the spatial dispers
is clearly valid for correlation lengths shorter than the wav
length of light, i.e., in well-oriented liquid crystals. In thi
approach the corrections to the spectra of the ordinary
extraordinary waves have a simple analytic form.

The estimates made show these corrections cause
fluctuational spatial dispersion can be observed by opt
methods.

2. SPATIAL DISPERSION IN A LIQUID CRYSTAL WITH
FLUCTUATIONS OF THE DIRECTOR ORIENTATION

We shall analyze a locally uniaxial medium with th
fluctuational directionn of the principal optic axis:

« i j ~r ,v!5«a~v!d i j 1~«e~v!2«o~v!!ni~r !nj~r !. ~1!

Assuming that the deviations of the vectorn from its average
n0 are small, we have

n5n01dn, n0•dn'0. ~2!

Using linear terms indn, we rewrite formula~1! in the form
© 1998 American Institute of Physics
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« i j ~r ,v!5« i j ~v!1d« i j ~r ,v!, ~3!

where

« i j ~v!5«o~v!d i j 1«a~v!eiej ,

d« i j ~r ,v!5«a~v!~eidnj 1dniej !,

and «a5n0
2(«e2«o) is the optical anisotropy of the liquid

crystal averaged over the fluctuations. The unit vectore is
directed alongn0 and thus defines the principal optic axis
the liquid crystal as a whole.

The wave equation for the electric field components

¹ div E2DE5
v2

c2 D ~4!

after Fourier transforming and using Eq.~3! yields

Fq2d i j 2qiqj2« i j ~v!
v2

c2 GEj~q,v!

5
v2

c2 E d3pd« i j ~p,v!Ej~q2p,v!. ~5!

Integrating Eq.~5!, we can easily obtain

Fq2d i j 2qiqj2« i j ~v!
v2

c2 GEj~q,v!

5
v4

c4 E d3pE d3p8d« i j ~p,v!d«kl~p8,v!

3F ~q2p!2d jk2~q2p! j~q2p!k

2« jk~v!
v2

c2 G21

El~q2p2p8,v!. ~6!

Since the optical anisotropy of a liquid crystal is usua
weak, in calculations of the fluctuation corrections it can
neglected wherever it is not of fundamental importance.
particular, on the right-hand side of formula~6! we can set

F ~q2p!2d jk2~q2p! j~q2p!k2« jk~v!
v2

c2 G21

.
«o~v/c!2d jk2~q2p! j~q2p!k

«o~v/c!2@~q2p!22«o~v/c!2#
. ~7!

Averaging over the fluctuations assuming a homogeneity
the averaged liquid crystal yields

^d« i j ~p,v!d«kl~p8v!&

5^d« i j ~p,v!d«kl~2p,v!&d~3!~p1p8!. ~8!

Substituting expressions~7! and ~8! into formula ~6! gives
the wave equation which contains the following tensor as
permittivity

« i j ~q,v!5« i j ~v!1
1

«o
E d3p^d« i j ~p,v!d«kl~2p,v!&

3
«o~v/c!2d jk2~q2p! j~q2p!k

~q2p!22«o~v/c!2 . ~9!

Using Eq.~3!, we can easily obtain
e
n

f

e

^d« i j ~p,v!d«kl~2p,v!&5«a
2@eiekgjl ~p!1eielgjk~p!

1ejekgil ~p!1ejelgik~p!#,

~10!

where gms(p) is the Fourier transform of the correlatio
function

gms~r !5^dnm~r 8!dns~r 82r !&. ~11!

In fact, formula~9! only takes into account the contributio
of two-photon scattering processes at fluctuations. Multip
ton scattering can justifiably be neglected because the pe
bation of the permittivity is proportional to the dielectr
anisotropy, so that the discarded terms contain the supe
ous factor«a

2 which is almost always small. In addition, th
orientational elasticity of the liquid crystal also has the res
that the deviations of the director from the equilibrium dire
tion are small, making the corrections to the permittiv
even smaller and the role of the multiphoton processes e
more negligible.

The wave vectorsupu&j21 make some contribution to
the integral in Eq.~9!, wherej is the correlation length ove
which gms(r ) decreases. Since the macroscopic descrip
is valid for wavelengths

l@j, ~12!

in Eq. ~9! we can obviously assumeq!p, (v/c)!p, i.e., an
expansion in terms of smallq and (v/c) is valid.

The terms in this expansion which do not depend onq
contribute to the permittivity without spatial dispersion. Th
contribution is obviously small compared with the contrib
tions of the short-wavelength correlations3 and thus we shall
denote the entire wave-vector-independent component o
permittivity as« i j (v), assuming that this takes into accou
all the fluctuation corrections and is actually observed
perimentally. Integration of terms linear inq gives zero since
the medium, and with it the correlation function, is assum
to have a center of inversion. The quadratic terms determ
the spatial dispersion of the permittivity so that

« i j ~q,v!5« i j ~v!1
1

«o
E d3p^d« i j ~p,v!d«kl~2p,v!&

1

p2

3F2qjqk1~qj pk1pjqk!
2~q•p!

p2

1pj pk

q2p224~q•p!2

p4 G . ~13!

Since we havedn'e, only those components of the ten
sorgms(p) corresponding to directions perpendicular toe are
nonzero. Additionally, we can assume that its symmetry
the same as that of an averaged liquid crystal, as is the c
e.g., in an orienting external field. We can then write

gms~p!5~dms2emes!u~pi ,p'!1
p'mp's

p'
2 n~pi ,p'!,

~14!

wherepi andp' are the longitudinal and perpendicular com
ponents of the vectorp relative to thee optic axis.
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Substituting Eq.~14! into Eqs. ~10! and ~9! yields ex-
plicit forms of the terms with spatial dispersion

« i j ~q,v!5« i j ~v!1
«a

2~v!

«o~v!
g i jkl qkql ,

g i jkl qkql5q2@ad i j 1beiej #1qi
2@dd i j 1 f eiej #

1qi~qiej1eiqj !g1qiqjh, ~15!

and the frequency-independent constants

a52u112u21
1

2
n2 ,

b52u124u21
1

2
n01n12

3

2
n2 ,

d56u126u22u02
1

2
n01

5

2
n12

5

2
n2 ,

f 52u026u114u22
3

2
n11

3

2
n2 ,

g523u114u21
1

2
n023n113n2 ,

h5n22n1 ~16!

are expressed in terms of the integrals

ua5E d3p
u~pi ,p'!

p2 S pi

p D 2a

,

na5E d3p
n~pi ,p'!

p2 S pi

p D 2a

, a50,1,2. ~17!

These have dimensions of the square of length. Their sm
ness compared withl2 is responsible for the smallness of th
terms with spatial dispersion.

3. NEMATIC LIQUID CRYSTAL IN AN ORIENTING
MAGNETIC FIELD

An infinite nematic in an orienting magnetic fieldH has
finite correlation lengths of orientational fluctuations, a
these are proportional toH 21. If the anisotropy of the mag
netic susceptibility isxa.0, the optic axis is oriented in th
direction of the field and the correlation function is given b5

u~pi ,p'!5
kBT

K1p'
2 1K3pi

21xaH 2 ,

u~pi ,p'!1n~pi ,p'!5
kBT

K2p'
2 1K3pi

21xaH 2 , ~18!

whereKa are the corresponding elastic moduli of the liqu
crystal.

Since these moduli usually have comparatively sim
values, we can assume for simplicity in the so-called sing
constant approximation thatK15K25K35K. Then, we
haven50 and

u~pi ,p'!5u~p!5
kBT

K~p21j22!
, ~19!
ll-

r
-

where the correlation length isj5AK/xaH 21. Thus, na

50 and

u052p2
kBT

K
j, u15

1

3
u0 , u25

1

5
u0 . ~20!

The permittivity with allowance for the spatial dispersion h
the form

« i j ~q,v!5« i j ~v!1
«a

2~v!u0

15«o~v!
$q2~d i j 22eiej !

2qi
2~3d i j 212eiej !23qi~qiej1eiqj !%. ~21!

EstimatingT;400 K, K;1026 dyn, q;104 cm21, «o

;1, and«a
2;0.1, we have in order of magnitude

«a
2

«o
u0;1023~jq!, ~22!

i.e., since (jq),1, the terms with spatial dispersion ma
have values of 1023. Assuming thatxa;1027, we also find
that inequality~12! which restricts the validity of the macro
scopic analysis of the fluctuations to fairly well-oriented li
uid crystals, requires a strong orienting magnetic fieldH

.104 Oe.

4. ACHIRAL SMECTIC LIQUID CRYSTAL IN A MAGNETIC
FIELD

We shall analyze a single-domain smectic-A oriented by
a magnetic field. Since the distortions of the position orde
the layer structure are only important for us because t
change the local direction of the optic axis, the question
violations of the position order caused by instability of
one-dimensionally ordered structure can be left to one s
An important factor is that the orientational nematic order
smectics is fairly high.

The principal optic axis in a smectic-A is directed along
the normal to the surface of the smectic layers. Thus, if
layers are deformed by long-wavelength fluctuations,
have

n~r !5n02
]

]r'

w~r !, ~23!

wherew(r ) is the deviation of the layer from the equilibrium
smectic plane. The correlation function is then

gms~p!52p'mp's^uw~p!u2&, ~24!

i.e., in a smectic-A

u~pi ,p'!50, n~pi ,p'!52p'
2 ^uw~pi ,p'!u2&. ~25!

In an orienting magnetic field we have

^uw~pi ,p'!u2&5
kBT

Bpi
21K~p'

4 1xaH 2p'
2 !

, ~26!

whereB is the bulk modulus of the smectic layers.5

Introducing the correlation lengths perpendicular a
parallel to the optic axis,

j'5AK

xa

1

H
, j i5j'

2AB

K
, ~27!
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we can write

n~pi ,p'!5 2
kBTp'

2 j'
4

K~pi
2j i

21p'
2 j'

2 1p'
4 j'

4 !
. ~28!

Since the smectic layers are usually weakly compressi
the value ofB is such that the parameterAK/B is small and
has the order of the molecular lengths, i.e.,

j i@j' . ~29!

The integralsna are then

n052
2p2kBT

AKB
lnS 2j i

j'
D , n152

p2kBT

AKB
, n25

1

2
n1 .

~30!

A comparison with Eq.~19! shows that in a smectic-A
the spatial dispersion isj'AB/K times lower than that in a
nematic. An estimate for B;108 erg/cm3 and j'

;1025 cm gives the characteristic order;1025.
The physical reasons for these differences betw

smectics and nematics become clear if we take into acc
that the spatial dispersion is determined by the integrals o
correlated regions of the liquid crystals. In a smectic-A the
regions are highly elongated in the direction of the princi
optic axis, and since condition~12! should be satisfied for al
their characteristic dimensions, the integrated contribut
from the almost spherical regions in a nematic is obviou
substantially greater. In other words, the macroscopic
scription of the fluctuations in a smectic in terms of the s
tial dispersion is valid when these effects are very weak.

However, it is known that near the second-ord
smectic-A–nematic phase transition, the smectic layers
come smeared out so that the elastic modulusB is reduced
substantially. In this case, the shape of the correlated reg
approaches spherical. It is easy to see that at these tem
tures the spatial dispersion is comparatively high. For
ample forj i5j'5j, we have

n0522p2
kBT

K
, n15

1

3
n0 , n25

1

5
n0 . ~31!

In this case, the permittivity~15! is given by

« i j ~q,v!5« i j ~v!1
«a

2~v!n0

15«o~v!

3H q2S 3

2
d i j 18eiej D2qi

2S 5

2
d i j 13eiej D

1
3

2
qi~qiej1eiqj !22qiqj J , ~32!

and the spatial dispersion has the same order of magnitud
in a nematic.

5. SPECTRUM OF ELECTROMAGNETIC WAVES IN A
UNIAXIAL MEDIUM WITH SPATIAL DISPERSION

The lightwave spectrum is given by the nulls of the d
terminant

uq2d i j 2qiqj2~v/c!2« i j ~q,v!u50. ~33!
e,

n
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As a result of substituting Eq.~15!, this equation separate
into two: the dispersion equation for the ordinary waves

q25S v

c D 2H «o~v!1
«a

2~v!

«o~v!
~aq21d~q•e!2!J ~34!

and that for the extraordinary waves

q4G~v,u!1~v/c!2q2F~v,u!5~v/c!4«o~v!«e~v!,
~35!

whereu is the angle between the vectorsq ande and

G~v,u!5S v

c D 2 «a
2~v!

«o~v!
$a1h1~b1d12g!

3cos2 u1 f cos4 u%, ~36!

F~v,u!5«o~v!sin2 u1«e~v!cos2 u

2S v

c D 2 «a
2~v!

«o~v!
$@a1b#«o~v!1@a1h#«e~v!

1@ f 1d1h12g#«o~v!cos2 u

1~d2h!«e~v!cos2 u%. ~37!

The terms attributable to the spatial dispersion are sm
It has been shown that these have the order 1023 so that the
approximate solutions of these equations are valid. For
ordinary waves, Eq.~34! gives

q0
25

v2

c2 H «o1«a
2 v2

c2 ~a1d cos2 u!J , ~38!

and for the extraordinary waves Eq.~35! yields

qe
25

«o«e~v/c!2

«o sin2 u1«e cos2 u F11S v

c D 2 «a
2

«o
~a1b sin2 u

1d cos2 u1 f cos2 u sin2 u!G . ~39!

In the corrections caused by the spatial dispersion, we
glected the optical anisotropy of the liquid crystals as befo

Thus, when the spatial dispersion is taken into accou
the ordinary wave spectrum becomes weakly anisotro
The angular dependence of the extraordinary wave spec
also changes.

6. DISCUSSION OF RESULTS

Incoherent scattering at long-wavelength fluctuations
considered to be the main reason for the poor transparenc
liquid crystals. The corresponding imaginary correction
the permittivity is given by the pole of the integral in Eq.~9!.
Since the pole is positioned atp2;«(v/c)22!j22, the cor-
responding part of the integral is

l*d3pp22g~p!

g~p→0!
~40!

times smaller than that corresponding to the spatial disp
sion of the permittivity. Converting to coordinate-depende
Fourier transforms, we have the ratio
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«SD

«9
;

l*d3r r 21g~r !

*d3r g~r !
, ~41!

i.e., the imaginary part isl/j times smaller than the term
with spatial dispersion.

The factor allows us to make a preliminary estimate
the spatial dispersion in terms of the transparency of
liquid crystals. For example, assuming that the character
distances over which light is scattered significantly are of
order of a few millimeters, we obtain«9;1023– 1024, i.e.,
terms with spatial dispersion should have an order no
than 1023. For liquid crystals of lower transparency the
terms will be even greater, provided of course that the c
relation lengths are shorter than the wavelengths of light

In nongyrotropic solid crystals the spatial dispersion
usually of the order 1026. Thus, this dispersion in liquid
crystals with long-wavelength fluctuations can be descri
as anomalously high.

The anisotropy of the refractive index for the ordina
waves, produced as a result of the spatial dispersion, and
corrections to the angular dependence of the refractive in
of the extraordinary waves can obviously be measured
perimentally. That is to say, these effects can be used
study fluctuation processes in liquid crystals by optical m
surements of the angular dependences of the refractive
ces. A combination of this method with the convention
f
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di-
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measurements of the cross sections for incoherent scatte
at fluctuations can be used to determine the correla
lengths and amplitudes of the fluctuations separately, op
ing up new prospects for detailed studies of fluctuation p
cesses in liquid crystals.
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Reduction in the rate of phonon scattering by a spatially correlated system of iron ions
and low-temperature ‘‘anomaly’’ of the thermoelectric phenomena in HgSe:Fe
crystals

I. G. Kuleev,* ) A. T. Lonchakov, I. Yu. Arapova, and G. I. Kuleev

Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 620219 Ekaterinburg, Russia
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A new effect of the reduction in the rate of phonon scattering by the spatially correlated system
of iron ions in HgSe:Fe crystals is detected experimentally and calculated theoretically.
The thermoelectric power is measured using HgSe:Fe samples with different iron content in the
temperature range 7.5–60 K. It is found that the dependence of the thermoelectric power
on iron content exhibits remarkable features atT,10 K: the quantityua(NFe)u increases as the
iron concentration increases toNFe5531018 cm23, reaches a maximum atNFe'(1 – 2)
31019 cm23, but then monotonically decreases with further increases inNFe. It is shown that
the observed increase in the thermoelectric power is due to a reduction in the rate of
phonon scattering by the spatially correlated system of Fe31 ions. This new effect is analyzed
theoretically, and the theoretical results are compared with the experimental data.
© 1998 American Institute of Physics.@S1063-7761~98!01407-3#
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1. INTRODUCTION

There is interest in electron-transfer phenomena in H
systems doped with iron because these compounds ex
some remarkable properties.1–9 An extraordinary ‘‘anoma-
ly’’ is the substantial increase in electron mobility at liqui
helium temperatures as the iron concentration increases
NFe5N* 54.531018 cm23 to NFe5231019 cm23 ~Ref. 1!.
It has been shown5–9 that the anomalous behavior of th
dependence of the electron mobility and thermomagnetic
fects on iron content and temperature is due to the forma
of a mixed-valence state of Fe21 and Fe31 ions at the Fermi
level and the spatial ordering of positive charges on iron i
because of Coulomb repulsion. Since atNFe.N* the con-
centration of conduction electrons and trivalent iron ions s
bilizes, ne5NFe

315N* , the concentrationN05NFe2NFe
31 of

lattice-neutral Fe21 ions, which serve as vacant positions f
the redistribution ofd holes, increases with increasing iro
content. At the same time, the degree of spatial ordering
Fe31 ions increases, the rate of conduction-electron sca
ing decreases, and the mobility increases. A variant of
short-range correlation model was proposed in Ref. 5. T
model made it possible to quantitatively describe the dep
dence of the thermoelectric and thermomagnetic effects
iron content and temperature.5–9

However, spatial ordering of Fe31 ions leads not only to
a reduction in the rate of electron scattering, but also
changes in the nature of the dependence of the electron
laxation timet on the energy«. The analysis of thet~«! in
Ref. 6, which was based on the short-range correlation m
developed in Ref. 5, showed that upon passage from
weak-correlation region (N0 /N11!1, whereN115NFe

31) to
the strong-correlation region (N0 /N11.1) the derivative
dt/d« changes its sign from ‘‘plus’’ to ‘‘minus,’’ causing a
change in the signs of the Nernst–Ettingshausen effect
1061063-7761/98/87(7)/9/$15.00
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the iron content increases. Experimental studies6,7 have cor-
roborated this important theoretical finding.

Up to now, the focus has been on the properties
HgSe:Fe crystals which are determined primarily by the
laxation of electron momentum on the correlated system
Fe31 ions, the alloy potential, etc.1–9 Far less attention ha
been paid to effects associated with the influence of the p
non system on electron transport in HgSe crystals with
admixture of mixed-valence iron. One such effect is phon
drag, which plays an important role in the behavior of th
moelectric and thermomagnetic effects at low tempe
tures.6,7,10 In the present paper we show that the increase
the degree of ordering in the correlated system of Fe31 ions
with increasing iron content in HgSe:Fe crystals leads
only to a reduction in the rate of electron scattering an
change in the nature of thet vs « dependence,6 but also to a
reduction in the rate of phonon scattering by the spatia
ordered system of Fe31 ions. We will see that at low tem
peratures this effect leads to a substantial increase in
thermoelectric power as the iron concentrationNFe increases
in the range 531018 cm23,NFe,231019 cm23. Note that
the electron mobility exhibits an anomalous increase wit
the same iron-content range.1–3 Below we show that this
should be expected, since the physical reason for b
‘‘anomalies’’ is the spatial ordering of the trivalent Fe31 ions
in the mixed-valence system of iron ions. As far as we kno
reduction in the rate of phonon scattering by a correla
system of charged centers has not been considered eith
gapless HgSe semiconductors doped with transition elem
or in other mixed-valence systems.

To observe this effect in experiments, we must ens
that ~a! the contribution of phonon drag to the thermoelect
power, uaphu, is larger than the diffusion contributionuaeu
and that~b! Rayleigh scattering is the main mechanism
© 1998 American Institute of Physics
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phonon momentum relaxation. Studies have shown7 that
HgSe:Fe crystals meet these requirements in the temper
range 5–15 K. The thermoelectric power was measure
samples of HgSe:Fe with different iron content in the te
perature range 10–45 K in Ref. 7. It was found that
temperature dependence ofuau has a characteristic minimum
at Tmin5(20– 30) K and that the phonon-drag contributi
uaphu, whose value is determined by the phonon-electron
teraction and the mechanism of phonon moment
relaxation, dominates atT,Tmin . It was also established tha
the Rayleigh mechanism of phonon scattering plays
important role in phonon momentum relaxation. Howev
only four samples with iron concentrationsNFe50,
NFe50.131019 cm23, NFe5131019 cm23, and NFe540
31019 cm23 were studied in Ref. 7, precluding a detaile
investigation and detection of the nonmonotonic behavio
ua(NFe)u. Below we report the results of measurements o
larger~than in Ref. 7! set of samples HgSe:Fe and a quan
tative analysis of the dependence of the thermoelectric po
on temperature and iron content.

2. EXPERIMENTAL RESULTS

We measured the thermoelectric powera(T) in eight
HgSe:Fe crystals with iron concentrations ranging from z
to 431020 cm23 in the temperature range 7.5–60 K. Th
main sample characteristics~iron contentNFe, electron con-
centrationne , and mobility m! are listed in Table I. The
average sample dimensions were 832.030.8 mm. The
measured temperature difference did not exceed 10% o
average sample temperature. Table I shows that in samp
and 3 with NFe,N* , where the Fermi level is below th
donor level of iron, the electron concentration exceeds
iron concentration. This is related to the presence of char
intrinsic defects, whose concentrationNd in HgSe:Fe crystals
is usually (1 – 2)31018 cm23. In this case the electron con
centrationne is equal to the total concentration of charg
centers, ne5Nd1N115Ni . When NFe.N* , the Fermi
level is pinned at the donor level of iron and the electr
concentration is independent ofNFe.

Figures 1 and 2 depict the temperature dependenc
the absolute value of the thermoelectric power,uau. Clearly,
the ua(T)u curves have minima. AtT.Tmin the thermoelec-
tric power is determined primarily by the electron contrib
tion uae(T)u, which monotonically decreases with decrea
ing temperature. AtT,Tmin the main contribution to the

TABLE I.

Sample
No.

NFe,
1019 cm23

ne ,
1018 cm23

m,
104 cm2/V•s ~4.2 K!

Ni ,
1018 cm23

1 0.0 2.4 2.25 2.4
2 0.1 3.0 2.8 3
3 0.3 4.0 2.9 4.0
4 0.5 4.8 5.1 5.0
5 1.0 4.7 8.3 10.0
6 2.0 4.9 6.4 20.0
7 5.0 4.81 5.95 50.0
8 40.0 6.2 2.5 400.0
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thermoelectric power is provided by phonon drag, and
phonon-drag thermoelectric poweruaph(T)u is determined by
the phonon relaxation mechanism. As the iron content
creases, the minima ofua(T)u are shifted toward lower tem
peratures, andua(T)u decreases in the entire temperatu
range for all samples except samples 5 and 6~Fig. 2!, in
which ua(T)u increases with decreasing temperature mu
faster than in sample 4. Hence atT,11 K the values of the
thermoelectric power for HgSe:Fe crystals with iron conce
trations equal to 131019 cm23 and 231019 cm23 become
larger than for crystals withNFe5531018 cm23, although it
would seem that the increase in iron content should lead
an increase in the rate of the Rayleigh scattering of phon
and that thermoelectric power at a fixed temperature sho
decrease with increasing concentration of the scattering
ters, especially since such a dependence is actually obse

FIG. 1. Calculated~lines! and experimental~points! temperature depen-
dence of the absolute value of the thermoelectric power for HgSe:Fe cry
with different iron content in samples 1~s!, 2 ~d!, 3 ~h!, 4 ~j!, 7 ~n!, and
8 ~m!. The values ofNFe and the phonon scattering parameters are listed
Tables I and II, respectively.

FIG. 2. Calculated~lines! and experimental~points! temperature depen-
dence of the absolute value of the thermoelectric power for samples 4~j!,
5 ~n!, and 6~d!. The values ofNFe and the phonon scattering paramete
are listed in Tables I and II, respectively.
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for the other samples: Fig. 1 shows that atT57.5 K the
thermoelectric power decreases by a factor greater than 2
the iron concentration increases from 131018 cm23 to 4
31020 cm23, and atT520 K this factor is greater than 2
for the transition from sample 1 to sample 8. This impli
that atT,20 K the Rayleigh mechanism of phonon scatt
ing plays an important role in the relaxation of the mome
tum of the phonon system and determines the phonon-
contribution to the thermoelectric power to a large exten

The unusual dependence of the thermoelectric poweuau
on iron content at different temperatures can be seen in
3. The concentrationNi for samples 1–3 is equal to the co
centration of charged centers, while for samples 4–8 i
equal toNFe. Figure 3 shows that atT,12 K the uau vs Ni

dependence is nonmonotonic: asNi increases,uau first de-
creases to a valueuaminu;10 mV/K at Ni5531018 cm23

and then increases, reaching its maximumuamaxu
'12.5mV/K at NFe'(1 – 2)31019 cm23. Thus, the increase
in thermoelectric power in this concentration range amou
to about 2mV/K, which is larger than the experimental erro
by a factor of four. A further increase in iron content leads
a monotonic decrease inua(Ni)u, which, obviously, is due to
the increase in the rate of Rayleigh scattering by latti
neutral Fe21 ions. The thing is that whenNFe.N* , the
Fermi level is pinned at the iron donor level, and as the i
content increases, the concentration of Fe31 ions remains
constant with only the concentration of Fe21 ions increasing.
As the temperature rises, the maximum on theua(Ni)u curve
disappears, although characteristic discontinuities remain
the curve up to 20 K. AtT550 K the value of the thermo
electric power is determined by the electron contributio
and ua(Ni)u is a monotonically decreasing function.

Note that qualitatively the dependence of the therm
electric power on iron content atT,10 K is similar to the
dependence of the electron mobilitym on NFe ~see Ref. 3!.
Like m(NFe), the thermoelectric powerua(NFe)u first de-

FIG. 3. Calculated~lines! and experimental~points! dependence of the ab
solute value of the thermoelectric power on iron content atT57.5 K ~j,
curve1!, 10 K ~h, curve2!, 12 K ~d, curve3!, 15 K ~,, curve4!, and 50
K ~3, curve 5!. The following average values of the phonon scatter
parameters were used:E150.75, cL50.1, cH52, cR152, andcR050.15.
as

-
-
ag

ig.

is

ts

-

n

on

,

-

creases~with increasingNFe) up to the point whereNFe55
31018 cm23 and then increases, reaching its maximum
NFe5(1 – 2)31019 cm23. As the iron content increases sti
further, the mobility and thermoelectric power monotonica
decrease. WhenNFe,531018 cm23, the concentrations o
trivalent iron ions and conduction electrons increase w
NFe. As a result, the mobility and thermoelectric power d
crease for two reasons: because of the increase in the p
ability of the scattering of electrons and phonons by Fe31

ions, and because of a rise in the Fermi level and the non
rabolicity of the band structure of HgSe:Fe. WhenNFe.2
31019 cm23, the concentration of lattice-neutral Fe21 ions
increases with iron content, leading to decreases in b
m(NFe) and ua(NFe)u due to an increase in the rate of sca
tering by these ions. The increase in electron mobility in
range of iron concentrations from 531018 to 231019 cm23

is due to the decrease in the probability of electron scatte
by charged centers as the degree of spatial ordering in
correlated system of Fe31 ions increases.5,6 Hence we as-
sume that the increase in thermoelectric power in this c
centration range is due to a decrease in the probability
phonon scattering by the correlated system of Fe31 ions.

Below we shall analyze quantitatively the dependence
the thermoelectric power on temperature and iron con
with allowance for phonon drag. The calculation takes in
account the scattering of electrons by the correlated sys
of Fe31 ions, the alloy potential, and acoustic phonons,
well as the main phonon scattering mechanisms. The pho
scattering by a spatially ordered system of Fe31 ions is
treated separately.

3. DIFFUSION COMPONENT OF THE THERMOELECTRIC
POWER

As is well known,10 the thermoelectric power observe
in experiments at low temperatures is determined by the s
of the diffusion componentae(T) and the phonon-drag com
ponentaph(T):

a~T!5ae~T!1aph~T!. ~1!

In calculating the thermoelectric power one must take i
account the nonparabolicity of the conduction band of Hg
crystals within the two-band Kane model with an ener
«g50.022 eV and an effective electron mass at the ba
bottom mn50.02m0 , where m0 is the free-electron mass
For a degenerate electron gas~the condition«F@kBT is sure
to be met in the experiment!, the electronic component of th
thermoelectric power can be written as1!

ae~T!52
p2kB

2T

3e«F
S 3

2
f gF1D D , ~2!

where

D5«FH ]

]«
ln

t~«!

m~«! J
«5«F

, m~«!5mnS 11
2«

«g
D ,

f gF5
«g12«F

«g1«F
.
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The main mechanisms of electron momentum relaxa
in HgSe:Fe crystals at low temperatures are scattering by
correlated system of Fe31 ions, by the alloy potential, by
acoustic phonons,5 and by intrinsic defects, whose conce
tration is about 131018 cm23. If all these mechanisms ar
taken into account, the expression forD can be written as
follows:7,8

D5
«g12«F

2~«g1«F! FK11Ka2Kph

Kb1Kph
G2

4«F

«g1«F
,

Ka5LF2
N11

N1
S N0

N1
D 1/2S F102

]F10

]y U
y51

D 2
N0

2N1
LG ,

N15Nd1N11 , ~3!

Kb5
Nr

N1
FBH1

Nc

N1
Fc1LF2

N11

N1
S N0

N1
D 1/2

F101
L

2

N0

N1
G ,

Kph5
3E1

2mFkFkBT

4\2«B~«F!rs2 ,

K15
Nc

N1
S 3Fc2

]Fc

]y U
y51

D 1
Nr

N1
S 3FBH2

]FBH

]y U
y51

D ,

FBH5 ln~11bs!2~11bs
21!21 .

Herey5k/kF ; E1 is the deformation potential constant;r is
the crystal density;s is the speed of sound;N11 andN0 are
the concentrations of charged Fe31 ions and lattice-neutra
Fe21 ions; F10512bs

21 ln(11bs), where bs5(2kFr sy)2

(r s is the Thomas–Fermi screening radius!; \kF is the Fermi
momentum; «B(«F)5m(«F)e4/2x\2 is the Bohr energy,
wherex the dielectric constant; andL is the ratio between
the electron–neutral-center and electron–charged-ce
coupling constants. According to the estimates in Ref. 5L
50.1, and

Fc~kF!52E
0

1 x3S~2kFx!

~x21bs
21!2 dx, ~4!

whereS(q) is the structure factor, which is the measure
order in the donor system and is determined using the sh
range correlation model proposed in Ref. 5. This variant
the short-range correlation model is valid for arbitrary~in
magnitude! Fe31–Fe31 correlations and is based on the fo
lowing physical assumptions. WhenNFe.N* , a mixed-
valence state forms at the Fermi level, and it becomes p
sible for the positive charges on the iron ions (d holes! to
redistribute among the crystal-lattice sites occupied by F21

ions. As was shown in Ref. 11, the maximum free-ene
gain from the ordering of Fe31 ions is attained when thed
holes closest to each other move apart. Hence around
Fe31 ion there forms a correlation sphere of radiusr c , within
which there are no other Fe31 ions. AsNFe increases, so doe
the number of vacant positions for redistributing thed holes.
Consequently, the correlation-sphere radius and the de
of spatial ordering in the correlated system of Fe31 ions in-
crease, too. This makes it possible to approximate the sys
of Fe31 ions by a system of hard spheres of diameterd5r c

~Ref. 11!. The degree of ordering in such a system is ch
n
he

ter

f
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f
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acterized by the packing factorh5pd3N11/65VcN11/8,
which is equal to the ratio of the volume occupied by t
hard spheres to the total volume of the system. The inte
equation for the pair correlation function of the system
hard spheres can be solved exactly,12 and the structure facto
in ~4! can be found without resorting to perturbation-theo
techniques. The presence in the crystal of randomly p
tioned ions, i.e., intrinsic defects with a concentrationNd ,
reduces the correlation-sphere radius.13 To determine the de-
pendence ofh on NFe, Tsidil’kovski� et al.13 derived the
following equation:

h5hL expS 2p
h

hL

Nd

N11
D F12expS 2

h

hL

NFe

N11
D G . ~5!

The valuep'0.2 was found by analyzing the experiment
m(NFeNd) curves, for HgSe:Fe and HgSe:Ga crystals in R
13. For concentrationsNFe.231019 cm23 and Nd→0 the
h(NFe) curve becomes saturated withh reaching a value
hL50.45, which corresponds to the state of a strongly c
related Coulomb liquid.5

In calculating the electron relaxation time in HgSe:
crystals with intrinsic defects, one must take into account
mutual effect of the mechanisms of electron scattering
charged centers of two types14 and the Coulomb correlation
betweend holes and intrinsic defects.13 Since intrinsic de-
fects are immobile andd holes can migrate between crysta
lattice sites occupied by Fe21 ions, correlation spheres als
form around the fractiondNd of the intrinsic defects located
at distances larger thanr c . This fraction of intrinsic defects
scatters electrons in the same way as the correlated syste
Fe31 ions does. The remaining intrinsic defects,Nr5(1
2d)Nd , which are located at distances smaller thanr c , scat-
ter electrons just like a disordered collection of charged c
ters would. Tsidil’kovski� et al.13 showed that the paramete
d can be expressed in terms of the packing factor as follo

d5expS 2p
h

hL

Nd

N11
D . ~6!

Such an approach made it possible to explain the depend
of the electron mobility on the content of iron and gallium
HgSe:Fe and HgSe:Ga crystals.13 Here it is used to calculate
the diffusion components of thermoelectric power
HgSe:Fe crystals with intrinsic defects.

As the temperature rises, the migration ofd holes be-
tween the Fe21 and Fe31 ions increases, and the system
Fe31 ions becomes increasingly chaotic, while the degree
spatial ordering and the correlation-sphere radius decre
The effect of temperature on the degree of spatial orderin
the correlated system of Fe31 ions can be taken into accoun
in the soft-sphere approximation.9 According to Ref. 9, the
variation of the soft-sphere diameterd(T) is given by the
following expression:

d~T!5d0F12
Dr ~T!

d0
G , Dr ~T!

d0
5b1@A11b2T21#.

~7!

Hered0 is the hard-sphere diameter atT50, andb1 andb2

are parameters which depend in the general case on the
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centrationsN1 andN0 , the packing factor, and the screenin
radius. These parameter were obtained in Ref. 9 for diffe
values of NFe by comparing theoretical and experimen
m(T) curves, wherem is the electron mobility.

Thus, Eqs.~1!–~7! make it possible to analyze the d
pendence of the diffusive thermoelectric power on tempe
ture and on iron content.

4. PHONON COMPONENT OF THE THERMOELECTRIC
POWER

The contribution of phonon drag to the thermoelect
power can be expressed as follows:7,15

aph~T!52S kB

T DAph~T!. ~8!

In HgSe crystals, electrons interact not only with longitu
nal phonons, but also with transverse phonons. As in Ref.
to simplify matters we introduce the mean speed of sound
acoustic phonons,s5(1/3)(1/sl12/st)

21, where sl and st

are the speeds of the longitudinal and transverse phon
respectively. Then the phonon dragAph can be written as
follows:7

Aph5
6m~«!s2

kB
(
k8,q

W~q!

nph

dNq
0

dT

3S 12
k–k8

k2 D d~«k2«k8!dk82k,q , ~9!

where W(q)5pE1
2q/rs, E1 is the deformation potentia

constant,r is the crystal density,nph is the long-wavelength
phonon relaxation frequency, andNq

05@exp(\vq /kBT)
21#21 is the Planck distribution function.

The form of the functionAph(«F ,T,NFe,N1) depends
on the electron-phonon coupling mechanism and the pho
relaxation frequencynph. The calculations in Refs. 7 and 1
show that the main contribution to the long-wavelength p
non momentum relaxation in HgSe:Fe crystals at low te
peratures is provided by the Herring and Rayleigh mec
nisms and the scattering of phonons by electrons and sa
boundaries:

nph5nphH1nphR1nphe1nphL . ~10!

HerenphH5LHx2, wherex5q/qT andLH5B2T3s2qT
2 with

qT5kBT/\s the phonon thermal momentum andB25(3
60.8)310222 s/K3, and

nphe5nphe
0 x, nphe

0 5
1

2p

E1
2m~«!

r\3 qT ,

nphL5
cLs

~L1L2!1/25nphL
0 cL , cL5

f

22 f
,

where f is the fraction of phonons scattered diffusively b
sample boundaries, andL1L2 is the cross-sectional area o
the sample. For phonon scattering by charged Fe31 ions and
lattice-neutral Fe21 ions ~the Rayleigh mechanism! we have

nphR5nphR11nphR0 . ~11!
nt
l
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-
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An analysis of the experimental data~see Sec. 2! showed that
this mechanism is important when one wishes to determ
the phonon component of the thermoelectric power in Hg
crystals. As in Ref. 16, in studying phonon scattering
randomly distributed neutral and charged centers we use
point-defect approximation. Then

nphR05LR0N0x4, LR05A0s4qT
4 , ~12!

nphR15LR1N1x4, LR15A1s4qT
4 . ~13!

By point defects we usually mean substitutional impuritie
isotopes, vacancies, and interstitial atoms, whose pertur
effect is usually limited to a unit cell. In relation to long
wavelength acoustic phonons, a point defect behaves lik
small region in the crystal~small compared to the phono
wavelength! with a different density and different elasti
properties. Obviously, replacing the substitutional Fe21 im-
purity ions by point defects is a good approximation. Sin
we do not know how the force constants change in respo
to such substitution,A0 is a fitting parameter of the theory
By comparing the calculated dependence of the thermal c
ductivity of HgSe crystals with different donor impurity con
centrations and the experimental data we arrive at the foll
ing estimate for the constantA1 : A1512.1310240 cm4/s.
According to Ref. 16, the values ofA1 for the different types
of impurities may differ by a factor of 10 due to the diffe
ence in the phonon scattering cross sections.

After performing some simple manipulations on~8! and
~9!, we get

aph52
kB

2p2T

qT
3

ne
nphe

0 E
0

x2kF x5 exp~x!dx

@exp~x!21#2nph~x!
, ~14!

wherexphF52kF /qT , and

nph~x!5cLnphL
0 1nphe

0 x1cHLHx2

1cR1~N11cR0N0!LR1x4. ~14a!

In ~14a! we have explicitly specified the fitting paramete
cH , cR1 , andcR0 , which, as we shall shortly see, chara
terize the difference between the properties of a HgSe
crystal and those of a HgSe crystal with intrinsic defects16

For the values of the phonon scattering parameters obta
in Ref. 16 we havecH5cR151, and the constantcR0 shows
the extent to which the probability of phonon scattering
neutral Fe21 ions is lower than that of scattering by charg
Fe31 ions.

Thus, Eqs.~8!–~14! make it possible to analyze the de
pendence of the phonon component of the thermoelec
power for randomly distributed scattering centers.

5. PHONON SCATTERING BY THE CORRELATED SYSTEM
OF Fe31 IONS

As in Ref. 16, we use the point-defect model to exam
the phonon scattering by the correlated system of Fe31 ions
in HgSe:Fe crystals. We assume that the entire disturba
created by an Fe31 ion replacing a Hg21 ion at a lattice site
is localized within a unit cell and amounts, as in the case
Fe21 ions, to changes in elastic constants and mass.
though the values ofDM /M for Fe31 and Fe21 ions are the
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same, the constantA1 characterizing the interaction betwee
a phonon and an Fe31 ion must differ from the constantA0

characterizing the interaction between a phonon and a
tral center. The thing is that the potential of Fe31 ions in
HgSe:Fe is screened at distancesr s'531027 cm, while the
average distance between the charged centersR1

;(N* )21/3 is approximately 631027 cm. Hence the distur-
bance introduced by an Fe31 ion ~the changes in elastic con
stants and local density! encompasses many unit cells b
causer s;10a0 , wherea0 is the lattice constant. Since th
Rayleigh scattering cross section is proportional to
square of the volume of the disturbed region,17 the probabil-
ity of a phonon being scattered by a Fe31 ion is higher than
the probability for scattering by a lattice-neutral Fe21 ion.

In calculating the phonon relaxation frequency on t
correlated system of Fe31 ions, we allow for spatial ordering
of the Fe31 ions by employing the structure factor, as w
done in Ref. 6 in calculations of the electron relaxation tim
Then fornphRc we obtain

nphRc52pN1sE
0

p

~12cosu!

3s~q,u!S~q~12cosu!!sin u du. ~15!

Here S(q) is the structure factor, ands(q,u) is the cross
section for the scattering of a phonon with a wave vectoq
by a Fe31 ion, which depends on the angleu between the
directions of the incident and scattered phonons in the g
eral case. After we average over the polarization vector
the phonons, the dependence onu disappears in the scatte
ing cross section s(q,u) calculated in the Born
approximation.18,19 Here s(q,u)5s(q), so that actually
only S scattering has been taken into account. In this ca
according to Refs. 18–20, fors(q) we have

s~q!5
V0

2vq
4

4ps4 S2, S25S1
21~S21S3!2, ~16!

whereV0 is the volume of the region in the crystal disturb
by the defect, andS1 , S2 , andS3 characterize the contribu
tions of the changes in the unit-cell mass and the force c
stants and of the deformation of the lattice to the phon
scattering cross section~see Refs. 18–20 for more details!.
Since for HgSe:Fe crystals only the constantSj is known,

S15
DM

M
5

MFe2MHg

MHg1MSe
,

we write the expression fors(q) as

s~q!5cR1A1S vq

s D 4

, ~17!

where A1 is the value of the parameter for HgSe cryst
with intrinsic defects found in Ref. 16, andcR1 is a param-
eter of the theory, whose value must be determined from
experimental data. As Eqs.~15!–~17! imply, the latter pa-
rameter indicates the extent to which the probability of ph
non scattering by Fe31 ions differs from that of scattering b
intrinsic defects in HgSe crystals.16
u-

e

.

n-
of

e,

n-
n

e

-

At low temperatures (T;10 K), long-wavelength
phonons (q;qT'6.713106 cm21) provide the main contri-
bution to aph. Hence, to simplify the ensuing calculation
we expand the structure factorSq in a power series inq up to
fourth-order terms inclusively. ThennphRc(q) can be calcu-
lated analytically:

nphRc'LR1N1x4$S~0!12S~1!~uTx!21 16
3 S~2!~uTx!4%

[LR1N1x4S̃~x!, ~18!

where

uT5dqT , S~0!5
~12h!4

~112h!2 ,

S~1!5S2~0!4hS b

5
1

g

6
1

d

8D ,

S~2!5S2~0!H S~0!F4hS b

5
1

g

6
1

d

8D G2

2
h

5 S b

7
1

g

8
1

d

10D J ,

b5
~112h!2

~12h!4 , g52
6h~110.5h!2

~12h!4 , d50.5hb.

Figure 4a depicts the dependence ofnphRc /nphR1* , where
nphR1* 5LR1N* x4, on the reduced wave vectorx for vari-
ous iron concentrations. We see that this ratio is weakly
pendent on the wave vector whenx<x2kF

and that the values
of nphRc are smaller forNFe5(1 – 2)31019 cm23 than for
NFe5531018 cm23. Note that the region of long wave vec
tors (x.1) is cut off exponentially due to the phonon distr
bution function @see Eq.~14!#. Hence, when the Rayleigh
scattering of phonons provides the main contribution to p
non momentum relaxation,aph increases with the degree o
spatial ordering of the correlated system of Fe31 ions as long
as the scattering by neutral centers is relatively weak. Fig
4b depicts the dependence ofñphR5^nphR&/^nphR1* & on iron
content atT510 K, and the angle brackets denote avera
ing:

^nphR&5
1

x2kF

E
0

x2kF
nphR~x!dx. ~19!

Figure 4b shows that we should expect an increase in t
moelectric power asNFe increases fromN* to NFe.1
31019 cm23 and a decrease in thermoelectric power
NFe.131019 cm23, although the value ofuaphu is somewhat
larger atNFe'231019 cm23 than atNFe'531018 cm23.

Thus, the expression for the relaxation frequency up
phonon scattering in HgSe:Fe crystals with allowance
spatial ordering of the correlated system of Fe31 ions can be
written as follows:

nph~x!5cLnphL
0 1nphe

0 x1cHLHx2

1cR1~N1S̃~x!1cR0N0!LR1x4. ~20!

Equations~14!, ~19!, and ~20! make it possible to calculate
the dependence of the phonon component of the thermoe
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FIG. 4. ~a! Dependence of the ratio
nph Rc /nph R1* on the reduced wave vecto
x at T510 K for different values of the
iron concentration NFe, 1018 cm23: 5
~curve1!, 10 ~curve2!, 20 ~curve3!, and
50 ~curve4!. ~b! Dependence of the ratio

ñph R on iron content atT510 K. The val-
ues of the parameters arecR152 and
cR050.15.
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tric power on temperature and iron content for HgSe:Fe c
tals containing a mixed-valence Fe21–Fe31 impurity.

6. DISCUSSION

In calculating the thermoelectric power we used the f
lowing values for the parameters:m(«F)50.07m0 (m0 is the
free-electron mass!, sl533105 cm/s, st51.653105 cm/s,
s51.953105 cm/s, andx525. The results of calculating
ua(T)u are depicted by solid curves in Figs. 1~samples 1–4,
7, and 8! and 2 ~samples 4–6!. Both figures show that the
calculated plots ofua(T)u are in quantitative agreement wit
the experimental data. AtT,Tmin , where the phonon com
ponent of the thermoelectric power is predominant, i
ua(T)u'uaph(T)u, our results fit the experimental data mu
better. This indicates that we have correctly allowed for
effect of spatial ordering in the correlated system of Fe31

ions and the main phonon scattering mechanisms~see Fig.
2!. Figure 2 depicts calculated plots ofua(T)u up to 1 K. The
greatest reduction in the rate of phonon scattering by
correlated system of Fe31 ions should be observed near th
peak in the phonon thermoelectric power atTmax'5–6 K. At
lower temperatures, phonon scattering by the sample bo
aries is predominant and the effect is much weaker. As
temperature rises, forT.Tmax, the contribution of the
phonon-phonon relaxation mechanism increases gre
leading to a further reduction in the rate of phonon scatter
by the correlated system of Fe31 ions. Note that whenNFe

.131019 cm23, the increase in the probability of Rayleig
phonon scattering with iron concentration leads to a drop
ua(Tmax)u, and for NFe>531019 cm23 no phonon peaks in
the thermoelectric power are present.

At T.Tmin , where the main contribution to the therm
electric power is provided by the diffusion component, t
discrepancy between the calculatedua(T)u curves and the
experimental data is much more evident. We believe thi
due to the effect of intrinsic defects, whose concentrat
s-

-

.,

e

e
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e

ly,
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n

varies from sample to sample, as well as to the approxim
allowance for the nonparabolicity of the band structure
HgSe:Fe crystals within the two-band Kane model. Actua
the nonparabolicity of the band structure must be taken
account not only through the dependence of the effec
electron massm(«) on the energy«, but also through the
Bloch wave-function amplitudes characteristic of theG8

band.21,22 Such calculations, however, are beyond the sc
of the present paper and require special studies.

Table II lists the values of the parameters characteriz
phonon momentum relaxation. We see that for sample 1 w
NFe50 the value of the parameterA1 for Rayleigh phonon
scattering coincides with the one obtained in Ref. 16 (cR1

51). For HgSe:Fe crystals we havecR152, i.e., the cross
section for phonon scattering by Fe31 ions is larger by a
factor of& than the cross section for phonon scattering
intrinsic defects in HgSe crystals.16 A comparison ofcR1

and cR0 shows that the phonon scattering by lattice-neu
Fe21 ions is weaker by a factor of nearly ten than the sc
tering by Fe31 ions. This is because the probability of Ra
leigh phonon scattering is proportional to the square of
volume of the disturbed region in the crystal lattice, which
much larger for a charged impurity than for a neutral imp

TABLE II.

Sample
No.

NFe,
1019 cm23

ne ,
1018 cm23

Nd ,
1018 cm23

E1 ,
eV cL cH cR cR0

1 0.0 2.4 2.4 0.8 0.5 0.5 1 –
2 0.1 3.0 2.0 0.73 0.2 2 2 –
3 0.3 4.0 1.0 0.73 0.2 2 2 –
4 0.5 4.8 0.7 0.68 0.15 2.5 2 0.1
5 1.0 4.7 0.7 0.75 0.1 2 2 0.15
6 2.0 4.9 0.7 0.76 0.1 2 2 0.15
7 5.0 4.81 1 0.62 0.9 2 2 0.15
8 40 6.2 1 0.62 0.9 2 2 0.15
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rity. The disturbing effect of a neutral impurity is usual
localized within a unit cell, while the volume disturbed by
charged impurity in semiconductors may encompass a la
number of unit cells. Oskot-ski� and Smirnov23 also found
that neutral impurities in semiconductors with a large diel
tric constant scatter impurities with a much lower rate th
do electrically charged impurities. Note that the values of
parameterscR1 andcR0 obtained by fitting theua(T)u curves
remain constant for all HgSe:Fe crystals, regardless of
content. The values of the deformation potential constantE1

that we obtained for samples with different iron content d
fer by 610% from the valueE1'0.7 eV used in Ref. 16
Note thatE1 tends to decrease with increasing iron conte
This is to be expected, since iron impurities, which ha
smaller radii than do Hg21 ions, stabilize the HgSe crysta
lattice,3 which probably leads to changes in the elastic pr
erties of HgSe:Fe crystals and, accordingly, to changes in
phonon spectrum. We believe this is related to a chang
the value of the constantcH as we go from HgSe crystals t
HgSe:Fe crystals with low (NFe<531018 cm23) and high
(NFe>131019 cm23) iron concentrations. The spread
values of the parametercL may be due to different degrees
diffusivity of phonon scattering by the boundaries of t
samples investigated. Determining this parameter more
cisely requires measuring the thermoelectric power at t
peratures belowTmax ~see Fig. 2! and calculating the thermo
electric power with separation of the contributions of t
transverse and longitudinal phonons.

The solid curves in Fig. 3 depicts the calculated dep
dence ofuau on NFe at fixed temperatures. We see that t
results of the calculations ofua(NFe)u for T<10 K are in
good agreement with the experimental data. However, as
temperature rises, the role of the diffusion component of
thermoelectric power increases, and the deviation of the
oretical curves from the experimental data increases. N
that the sharp drop in thermoelectric power for samples w
NFe,531018 cm23 is due to an increase in the rate of Ra
leigh scattering by randomly distributed charged centersNi

5N111Nd . The increase in thermoelectric power in th
range of iron concentrations from 531018 cm23 to 1
31019 cm23 at T57.5 K amounts to about 20% ofuau. Ac-
cording to our theoretical estimates, the maximum incre
in thermoelectric power can be observed at temperatures
responding to the phonon-peak temperatureTmax'5–6 K and
may reach 40% ofuau at NFe5531018 cm23. The slow de-
crease in the value of the thermoelectric power with incre
ing iron concentration nearNFe5231019 cm23 is due to the
increase in the probability of the Rayleigh scattering
phonons by lattice-neutral Fe21 ions.

Figure 5 depicts calculated curves representing the
pendence of the diffusion and phonon components of
thermoelectric power onNFe at different temperatures. A
NFe.N* , as the iron content increases and hence the de
of spatial ordering in the correlated system of Fe31 ions in-
creases, the value ofuae(Ni)u decreases, whileuaph(Ni)u var-
ies nonmonotonically, and atT512 K the reduction in the
rate of phonon scattering by the correlated system of F31

ions clearly manifests itself on theuaph(Ni)u curve. How-
ever, uaph(Ni)u increases slower than the diffusion comp
ge
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nent uae(Ni)u decreases, so that the total thermoelec
power atT>12 K is a decreasing function of iron content

We conclude this section by discussing of the appro
mations adopted in our calculations of the phonon-drag c
tribution. First, we used the approximation of the mean sp
of sound for acoustic phonons. Second, in discussing
Rayleigh scattering of phonons by Fe31 ions we used the
point-impurity approximation, although the stringent i
equality r s /l!1, wherelT is the wavelength of a therma
phonon, is not satisfied. It would have been more appropr
to study the scattering of phonons by lattice deformatio
caused by the random distribution of the charged centers
by the variation of the degree of lattice deformation as
Fe31 ions become spatially ordered. As shown in Ref. 2
when u(r i2r 0)/r 0u>0.1 (r i and r 0 are the ionic radii of the
impurity and matrix atoms, respectively!, the rate of phonon
scattering by lattice deformations is higher than the rate
phonon scattering by local variations in mass and force c
stants. Note that the ratio for Fe21 and Hg21 ions is about
0.3. Unfortunately, for semiconductors this aspect has ye
be developed theoretically~see Refs. 19 and 20!. Hence for
semiconductors this phonon scattering mechanism requ
further study.

Note that the reduction in the rate of phonon scatter
by the correlated system of Fe31 ions due to an increase i
the degree of spatial ordering in the system of trivalent ir
ions may lead not only to an ‘‘anomalous’’ increase in t
thermoelectric powerua(NFe)u, but also to a substantial in
crease in the lattice thermal conductivity of HgSe:Fe crys
at low temperatures in the range of iron concentrations fr
531018 cm23 to 131019 cm23. Research into the therma
conductivity of HgSe:Fe crystals could yield additional i
formation about the phonon scattering mechanism and a
the effect of the spatial ordering of charged centers on
Rayleigh phonon scattering mechanism in mixed-vale
systems.

FIG. 5. Absolute values of the phonon~curves18–38!, diffusive ~curves
19–39!, and total~curves1–3! thermoelectric power as functions of iro
content atT57.5 K ~curves1, 18, and19!, 10 K ~curves2, 28, and29!, and
12 K ~curves3, 38, and39!. The values of the phonon scattering paramet
are the same as in Fig. 3.
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7. CONCLUSION

We have interpreted the experimentally established,
usual dependence of the thermoelectric power on iron c
tent and temperature in HgSe:Fe crystals at low temp
tures. We have shown that the nonmonotonic nature of
dependence of thermoelectric power on iron content, i.e.,
increase in thermoelectric power in the range of iron conc
trations from 531018 cm23 to (1 – 2)31019 cm23, is due to
a new effect, a reduction in the rate of phonon scattering
the spatially correlated system of Fe31 ions. The good agree
ment between the curves representing the dependence o
thermoelectric power on iron content and temperature
the experimental data suggests that we have correctly ta
into account the effect of the spatial ordering of the trivale
iron ions on the scattering of phonons and electrons, as
as the main mechanisms of momentum relaxation in
electron-phonon system.

This work was made possible by a Grant from an INTA
program~Grant 93-3657 EXT!.
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ously omitted in Eq.~4! for ae(T) in Ref. 7.
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Phase transitions in self-assembled monolayers of alkanethiols containing
the polar group
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Equilibrium states of the system of self-assembled monolayers~SAMs! of n-alkanethiol
molecules HS~CH2!n21(X) with polar group X chemiabsorbed on the Au~111! crystal surface are
considered. The couplings between the atoms~C, H! of the n-alkanethiols are approximated
by the Lennard–Jones potential. The couplings between then-alkanethiols and the crystal surface
are approximated by the 12-3 potential. The interactions of polar groups and the self-images
with the metal substrate are taken into consideration. The phase-transition temperatures, the
structural order and equilibrium tilt, and the twist and azimuthal angles of the
macromolecules, which depend on the dipole moments, are found. ©1998 American Institute
of Physics.@S1063-7761~98!01507-8#
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1. INTRODUCTION

The self-assembled monolayers~SAMs! are a compara-
tively new type of organic monolayers,1–3 which are formed
by spontaneous chemisorption of long-chain molecules fr
a solution to many different solid substrates~e.g., Au, Ag,
Cu, Al, GaAs, and Si!. The self-assembled monolayers a
presently the focus of considerable attention for technolo
cal and fundamental reasons. They have potential app
tions in such areas as corrosion prevention, wear protec
sensing devices, and the formation of well-defined mic
structures.1,4,5 They also present an excellent opportunity f
the study of two-dimensional, condensed, organic solids
the microscopic level. Chemisorption of the thiol headgro
to the surface results in long-range translational and orie
tional lattice structures. The stable monolayers have b
studied extensively by transmission electron spectroscopy6–9

optical ellipsometry,10–12 infrared spectroscopy,13,14 electro-
chemistry,15,16 and helium diffraction.17,18 These monolayers
form at a fixed surface density, which remains nearly c
stant with changing temperature. This fact simplifies
study of rotational and conformational states of SAMs.

The most thoroughly studied and robust SAM system
CH3~CH2!n21SH adsorbed on the Au~111! crystal surface.
Theoretical investigations of its properties have provided
portant insight into the nature of the long-range orderin
of SAMs. To the extent possible, phenomenologi
methods,19,20 molecular dynamic~MD! simulations,21–26and
models of the SAMs such as the two-dimensional Is
model27,28 have explained the ground state structure a
thermal-equilibrium orientational states of the SAM. One
the objectives is to study SAMs with more complex molec
lar chains, i.e., self-assembled monolayers of alkanethols
contain a polar group. Molecular dynamic simulations
Langmuir–Blodgett monolayer with dipole group have
ready been considered.29,30 However, these simulations
which are based on the so-called united atom model
treats CH2 groups as single interaction sites, and allowan
1151063-7761/98/87(7)/8/$15.00
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for the packing patterns of alkyl chains with one or tw
molecules per unit cell, give rise to an incorrect monolay
structure, the tilt angle, and tilt direction for zero dipole m
ment.

In this paper we are considering the effect of incorpor
ing the polar group into self-assembled alkanethiol monol
ers on the phase transitions and the molecular structure o
phases. We use an all-atom model for hydrocarbon ch
interactions. In order to avoid gauche or kink defect in alk
chains we placed the polar group at the end of the chain

2. MOLECULAR MODEL

The model describes then-alkanethiol rigid chains tha
terminate the polar group. The SH headgroups of the
kanethiols form a ()3))R30° triangular lattice to adjus
with ~coordinate! Au~111! substrate. An all-atom model in
cludes hydrogen which is connected by rigid-bond co
plings. This model is based mainly on the molecular mo
which was accepted by Hautman and Klein22,23and Mar and
Klein,24 except for the interactions between the chains. T
chain has a zig-zag form and consists of hydrocarbon gro
CH2, which begin with sulfur and end with a polar grou
which a dipole momentd directs along the chain axis. W
assume that arbitrary dipole moment belongs to the mole
lar group CH3. Hydrocarbon groups CH2 and CH3 are rep-
resented by single interaction sites that include hydroge
We assume that the chain may freely rotate about the c
axis as a whole with the twisting angle as the dihedral an
between the plane consisting of the normal to the gold s
face, and the chain axis and plane defined by trans segm
of the zig-zag molecular chain. We also assume that
chain may rotate relative to the crystal surface in such a w
that the sulfur does not take part in this rotation. This ro
tion is determined by two angles: the tilting angleu and the
tilt direction w ~the precession angle of the long molecu
axis about the surface normal to the gold crystal surfa!
~Fig. 1!.
© 1998 American Institute of Physics
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Following Ref. 27, let us consider the Lennard–Jon
interactions between the atoms H, C, and S

U~R!54eF S s

RD 12

2S s

RD 6G . ~1!

The Lennard–Jones~LJ! parameterse ands were chosen by
fitting the potentials~1! to the van der Waals~vdW! potential
exp(2r26) in such a way that the potentials would have t
same position, depth, and second derivatives at the poin
minimum of the potentials. These parameters are listed
Tables I and II. We used the LJ potential since the vd
potential has a negative divergence for small distanc
which means that all chains have a tendency to collapse
each other.

Following Hautman and Klein,22 the interaction of the
hydrocarbon groups CH2 and CH3 with the Au substrate was
modeled by the 12-3 potential

V~z!5
C12

~z2z0!122
C3

~z2z0!3 , ~2!

where C1252.83107 K Å 2, C3517100 K Å3, and z0

50.86 Å.
The dipole–dipole coupling of the dipolesdi anddj is

W~Ri j !5(
a,b

Wi j
a,bdi

adj
b , ~3!

where

Wi j
a,b5

da,b

Ri j
3 2

3Ri j
a Ri j

b

Ri j
5 , ~4!

FIG. 1. u is the tilt angle of the molecule,x is the chain twist~rotation!
angle, andw characterizes the tilt direction along the surface plane.
s

of
in

s,
on

andRi j is the vector between the dipole moments; the m
nitude of a dipole moment is measured in units of 1D54.8
310218 CGSE•cm.

The coordinates of thekth carbons in the local coordi
nate system withu50, w50, andx50 for the zig-zag chain
in Fig. 2 are

RCk5 H ~r , 0, l 01~k21!l /2!,
~0, 0, l 01~k21!l /2!,

k51,3,5,... .
k52,4,6,..., ~5!

where the distances in the chain are shown in Fig. 2, andx is
the twisting angle. The coordinates of the hydrogen are

RHks5H ~r 1h cosa, hs sin a,
~2h cosa, hs sin a,
l 01~k21!/ l /2), k51,3,5,...,
l 01~k21!l /2), k52,4,6,... .

~6!

The coordinates of the dipole are the same as those of Cn .
In order to find the coordinates defining the carbon a

hydrogen atoms of then-thiol chain in the coordinate system
of the substrate, it is necessary to use the transformation
rotations determined by the Euler matrix

T~w,u,x!5S cosw 2sin w 0

sin w cosw 0

0 0 1
D S cosu 0 sin u

0 1 0

2sin u 0 cosu
D

3S cosx 2sin x 0

sin x cosx 0

0 0 1
D .

This gives a transformation

R~w,u,x!5T~w,u,x!R. ~7!

Experimental data8,9 show that the chain is tilted to th
next nearest neighbor~NNN! in the direction from the NNN
direction (w;10°). Below we consider the tilted phase (u
.0) only. The number and equilibrium angular positions
the chains of the paraelectric phase depend on the symm
of the system. We see that the one-body potential of
chain-S~1! and the chain-Au~2! is fourfold degenerate with
respect to the angular positions of a chainR~w,u,x!, R
(2w,u,2x), R(p1w,u,x), R(p2w,u,2x). If the contri-
bution of the potential of the chain from the straight chain
carbon atoms@in ~5! r 50# is taken into account, then th
chain-chain interactions~1! remove the mirror symmetry in
theyz plane. Hence, the total one-body potential of a chain
twofold degenerate with respect to the angular positio
TABLE 1. Parameters of the van der Waals potentialA exp(2Br)2C/r 6.
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TABLE II. The Lennard–Jones coupling parameters.
n
ins

al

ne

th

o

y,
R~w,u,x! and R(2w,u,2x). This degeneracy was show
quantitatively in Ref. 27. The equilibrium state of the cha
R(w0 ,u0 ,x0) and that of the mirror planexz R(2w0 ,u0 ,
2x0) is found from the minimum thermodynamic potenti
for T.Tc and defined below.

In order to consider the phase transition with sponta
ous breakdown of the symmetry we follow Vaks36 and write
the following expressions for the rotated coordinates of
atoms:

Rs5R~sw,u,sx!

5
1

2
@T~w,u,x!R1T~2w,u,2x!R#

1s
1

2
@T~w,u,x!R2T~2w,u,2x!R#

5Ri1sR' , s561. ~8!

Obviously, sinceRi5(R111R21)/2, R'5(R112R21)/2
and uR11u5uR21u,

RiR'50,

andR' is directed along they axis, as shown in Fig. 3. As
the basis vectors of the two-dimensional triangular lattice
sulfur atoms we chose the vectors

FIG. 2. Coordinates defining the model of the zig-zagn-thiol chain chemi-
sorbed to a gold substrate;l 051.58 Å, l 52.506 Å, r 50.878 Å, h
51.04 Å, anda555°.
-

e

f

a15a~)/2,1/2,0!, a25~0,1,0!, ~9!

where the lattice constanta54.97 Å. Now let us specify the
coordinates of the atoms of thej th chain on the surface:

Rjgk5Rj1Ri ,gk1sjR',gk , ~10!

wherej runs over all sites of the triangular lattice,k runs over
the atomic groups CH2 and CH3 along the chain, andg runs
over the specific atomic groups (g5C, H1, and H2). Accord-
ingly, the dipole moment of thej th chain is

dj5di1sjd' , ~11!

whered'iy, anddid'50.
Substituting expressions~8! and ~10! into the potential

interactions~1! and ~2!, we obtain the following expression
for the LJ coupling chain-chain energy:

1

2 (
i , j

(
g,g8

(
k,k8

Ugg8~Ri j 1R0,gk2R0,g8k8

1siR1,gk2sjR1,g8k8!, ~12!

whereRi j 5Ri2Rj , and for the total chain-surface energ
which includes a coupling of then-thiol atoms~C, H! with
the sulfur atoms,

(
i

(
g

(
k

V~R0,k
z 1siR1,k

z !

1(
i , j

(
g

(
k,k8

UgS~Ri j 1R0,gk1siR1,gk!. ~13!

In accordance with Eq.~1!, we introduce the notation

FIG. 3. Symmetrical positions of an atom of then-thiol chains in the tilted
phase.
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Ug,g854eg,g8F S sg,g8
R D 12

2S sg,g8
R D 6G , ~14!

and the notationUgS means the interaction of the chain
atoms with the sulfur.

A single dipole spaced apart from a metal feels an in
action with its self-image, so a dipole-dipole part of t
chain-chain energy consists of dipole-dipole, dipole-ima
and image-image interactions. Substituting expressions~9!
and ~10! into ~3!, we obtain the energy of the dipole-dipo
coupling

(
i , j

FW~Ri j 1~si2sj !R',Cn
!

1
1

2
W~Ri j 1Z121~si2sj !R',Cn

!G , ~15!

whereZ12 is the vector between the real dipole and its se
image.

In order to simplify expressions~12!, ~13!, and~15! we
introduce the projection operatorss65(16s)/2. Then for
any function f of the two operatorss1 and s2 there is an
identity36

f ~xs11ys2!5~s1
11s1

2!~s2
11s2

2! f ~xs11ys2!

5s1
1s2

1 f ~x1y!1s1
1s2

2 f ~x2y!

1s1
2s2

1 f ~2x1y!1s1
2s2

2 f ~2x2y!.

~16!

Using this identity, we can write the following expression f
the total energy of the SAM:

E5E02
1

2 (
i j

Ji j ~u,w,x!sisj . ~17!

In accordance with Eq.~16!, we obtain the expressions

E05
1

4 (
i j

(
s,s8

~Us,s8
i j

1Ws,s8
i j

!1
1

2 (
i

(
s

Vs
i , ~18!

Ji j 5
1

4 (
s,s8

ss8Us,s8
i j

1
1

4 (
s,s8

ss8Ws,s8
i j , ~19!

where

Us,s8
i j

5
1

2 (
gg8

(
kk8

Ugg8~Ri j 1Ri ,gk

2Ri ,g8k81sR',gk2s8R',g8k8!,

Ws,s8
i j

5W~Ri j 1~s2s8!R',Cn
!

1
1

2
W~Ri j 1Z121~s2s8!R',Cn

!,

Vs
i 5(

g
(

k
V~Ri ,k

z 1sR',k
z !

1(
j

(
g

(
k

UgS~Ri j 1Ri ,gk1sR',gk!. ~20!
r-

e

-

The linear term( iBisi is absent in Eq.~17! due to the sym-
metry.

3. MEAN-FIELD APPROXIMATION

According to ~17!, the thermodynamic potential of th
SAM is

F5E0~u,w,x!2T ln Tr$si %

3expF1

2 (
i j

Ji j ~u,w,x!
sisj

T G . ~21!

A mean-field approximation of Eq.~21! is given by the
expression36

F5E0~u,w,x!1
1

2 (
i j

Ji j ~u,w,x!^si&^sj&

2T(
i

lnF2 coshS (
j

Ji j ~u,w,x!
^sj&
T D G . ~22!

We see from Eq.~22! that in the paraelectric phase (^si&
50) the minimumE0(w,u,x) with respect to the angle
gives equilibriumw0 ,u0 ,x0 SAM’s chains. The order pa
rameter^si&Þ0 is defined as a solution of the equations
state37

^si&5tanhF(
j

Ji j ~u,w,x!
^sj&
T G . ~23!

A substitution of solutions of this equation into~22! and
self-consistent minimization of the thermodynamic poten
over three angles give the complete equilibrium state of
SAM. Next, according to Eq.~23!, the structure ordered
phase is determined by the wave vectorq0 , for which

Jq5(
j

Ji j exp~ iqRi j ! ~24!

takes on the maximum value, andTc5Jq0
.37

The first item transform in~19! under nearest-neighbo
chain-chain coupling is given by the expression27

U~q!52J1 cos~2pj1!12J1 cos@2p~j12j2!#

12J2 cos~2pj2!, ~25!

where the wave vectorq5j1b11j2b2 is written about the
basis reciprocal to~9!

b154pa21~1/),0,0!, b252pa21~21/),1,0!,
~26!

J1 is the coupling constant along the vectors6a1 , 6(a2

2a1), and J2 is the coupling constant along the vecto
6a2 .

One points to fact that atd50 expression~24! reduces
to ~25!, maximums which give the following structure o
dered phase and the transition temperature:27

1) j150, j250, Tc54J112J2 ~ ferro!;

2) j150.5 j250, Tc524J112J2 ~231!;
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3) j150.5j2 , Tc52
J1

2

J2
22J2, U J1

2J2
U<1 ~ IC!.

~27!

The phase diagram, which corresponds to Eq.~27!, is shown
in Fig. 4.

The dipole-dipole interaction transform of~19! is com-
puted by Ewald’s method38 by fitting to the 2D lattice. For-
mally, the Fourier transform~4! can be found as follows:

Wq,x
a,b52

]2

]xa]xb
(

l

eiql

u l2xu
, ~28!

FIG. 5. Curves of the temperature transitionTc and the equilibrium angles
of the n-thiols, plotted as functions of the dipole moment, are described
the solid (n58), dashed (n510), dot-dashed (n512), and dotted (n
517) lines for the coupling parameters from Ref. 32.

FIG. 4. Phase diagram of the Ising model on the triangular lattice.
where l5 l 1a11 l 2a2 ,l 1 ,l 2 is an integer, anda1 and a2 are
defined by expressions~9!. According to Ewald, the series o
~28! for a plane lattice is presented by the sum of two ser

(
l

eiql

u l2xu
5(

l

erfc~Ru l2xu!
u l2xu

1
p

S0
(

g

eix~q1g!

ug1qu

3Fezuq1guerfcS uq1gu
2R

1zRD
1e2zuq1gu erfcS q1gu

2R
2zRD G , ~29!

where

erfc~x!5
2

Ap
E

x

`

e2y2
dy.

Hereg5g1b11g2b2 ,g1 ,g2 is an integer,b1 andb2 are de-
fined by expressions~26!, S0 is the unit cell area,z is the
component along thez axis of the vectorx, and R is the
adjustable parameter of the velocity convergence of the
ries. Note that Eq.~29! was obtained in Ref. 29 forq50.

The results of self-consistent numerical minimizati
procedure of~22! are given in Figs. 5–8 and Table III. Th
first feature of the temperature transition is high sensitivity

y

FIG. 6. The components of the wave vector of the ordered structurej1

~solid! andj2 ~dashed! for the coupling parameters from Ref. 32.
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the choice of the coupling constants listed in Table II. F
the choice of the coupling constants defined in Refs. 32
35 there is ordered phase sequence from the ferroelectr
231 to the IC~Figs. 6 and 8!. However, for the choice o
coupling constants defined in Refs. 31, 33, and 34 there i
phase~Table III!, where the transition temperatureTc in-
creases with increasing dipole moment.

4. DISCUSSION AND CONCLUSIONS

An advantage of using the Ising variable is that a r
variety of the couplings between atoms of then-thiols and
the couplings with the crystal surface is reduced to a f
competing exchange parameters. Ford50 they allow one to
establish a simple phase diagram of the system shown in
4. The SAMs are described by the Ising model on the tri
gular lattice with exact solution.39 Ferroelectric, 231, and
incommensurate phases are the only possible ordered s
of the system of then-thiols which are self-assembled on th
crystal surface Au~111!. For dÞ0 competition a LJ interac
tion and a dipole-dipole coupling can give rise to vario
combinations of the structures.

The most interesting behavior of the critical temperat
and a sequence of ordered structures upon change in

FIG. 7. The same as in Fig. 5 for Ref. 35.
r
d
or

IC

ig.
-

tes

e
the

dipole moment has been found for the LJ’s parameters fr
Refs. 32 and 35. The transition temperature dependenc
that Tc with dÞ0 can be reduced whend50. In particular,
the lowest temperature of the phase transition is realized
the parameters taken from Refs. 32 and 34.Tc is very sen-
sitive to the coupling parameters which change many tim
Moreover, it is necessary to take into consideration that
coupling parameters listed in Table I are given for the case
three-dimensional crystals in which the distances betw
the atomic groups CH2 may differ in comparison with the
case of the SAM. Therefore, the coupling constants listed
Tables I and II should be considered carefully. As far as
structure of the ordered phase for any set coupling par
eters is concerned, with increasing dipole moment the
commensurate phase is described by the modulation ve
either nearj5(0.25,0.5) or nearj5(0.3,0.6).

The phase transition leads to a freezing of the jumps
the chains between twofold degenerate states with equ
rium azimutal and twist anglesw0 , andx0 is given in Figs. 5
and 7 and Table III for various references. The values
these angles agree with the experimental observations
theoretical considerations except for the azimutal an
which was determined experimentally to bew;10° for d
50 and 10,n,20 ~Ref. 9!.

The final feature of the phase transition to the twist

FIG. 8. The same as in Fig. 6 for Ref. 35.
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TABLE III. The critical temperatures, the wave vector, and the equilibrium angles.
so
th
es
a

ur
w
im
s
tilt
d

n
or
a

ti

h
ss,
ordered phase is that it is a first-order transition. The rea
is analogous to the effect of elastic media on the order of
phase transition,36,40 where the spontaneous ordering giv
rise to a distortion of the crystal, which in turn leads to
slight increase in the exchange integrals. Hence, the C
temperature from the paraelectric phase turns out to be lo
than the Curie temperature from the ordered phase. S
larly, in the system of then-thiol’s chains a spontaneou
twist ordering of the chains give rise to a change in the
This in turn leads to a change of the exchange integrals
fined by Eq.~19!.
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Dynamics of cold atoms in a quadrupole magnetic trap with an orbiting potential
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We study the dynamics of atoms confined to a quadrupole magnetic trap with an orbiting
potential. For typical values of the experimental parameters of the trap, the rotating magnetic field
is shown to produce high-frequency modulation of atomic momenta with an amplitude
comparable to the widths of the momentum distributions for the lowest oscillation states of atoms
in the time-averaged potential. We find the quantum-statistical momentum and position
distributions of atoms and show that at temperatures much higher than the effective vibrational
temperature of the atoms in the trap the quantum-statistical momentum and position
distributions are Gaussian. We also establish that at temperatures comparable to the effective
vibrational temperature of the atoms the quantum-statistical momentum distribution has
an annular structure in the trap’s symmetry plane, which is due to the deep modulation of the
atomic momenta caused by the rotating magnetic field. ©1998 American Institute of
Physics.@S1063-7761~98!00207-8#
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1. INTRODUCTION

Lately there has been an upsurge of interest in deve
ing experimental means for the trapping and deep coolin
atoms in magnetic traps with the aim of observing quantu
statistical effects, including Bose-Einstein condensation.1–15

Among the various types of magnetic traps used in prepa
ultracold ensembles of atoms, one of the first and most
portant from the practical standpoint was the quadrup
magnetic trap with an orbiting potential~TOP!. In this type
of trap the magnetic field confining the atoms consists of t
parts. A stationary quadrupole magnetic field generates a
tential. In the central part of the trap this potential localiz
atoms with a negative projection of the magnetic mom
onto the local direction of the magnetic field vector. Ho
ever, the potential well created by the quadrupole magn
field is not perfect. Near its bottom the strength of the qu
rupole magnetic field is zero, and the atoms moving in t
region can change the sign of the projection of the magn
moment onto the magnetic field vector as a result of no
diabatic Majorana transitions and leave the trap.16 To elimi-
nate this channel for the loss of atoms, another, unifo
magnetic field is applied. This field rotates with a high fr
quency in the plane perpendicular to the symmetry axis
the quadrupole field. The presence of this rotating magn
field causes the potential well to rotate about the trap’s s
metry axis and to create an orbiting potential. The tim
averaged value of the orbiting potential at the trap’s cente
nonzero and thus suppresses the loss of atoms due to M
rana transitions.9

Up to now the motion of individual atoms in a TOP tra
has been discussed in the literature using a time-avera
stationary harmonic potential.9 This approach, however, ig
nores the fast~compared to the natural oscillation freque
cies of the trap! oscillations of atomic momenta associat
with the rotating magnetic field.
121063-7761/98/87(7)/8/$15.00
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In this paper we examine the dynamics of noninteract
atoms in a TOP trap using a time-dependent Schro¨dinger
equation that incorporates a magnetic potential oscillating
time.

An analysis of the dynamics of noninteracting atoms in
TOP trap shows that the rotating magnetic field genera
oscillations of the atomic momenta with the frequency of t
rotating field and an amplitude which, for typical values
trap parameters, is comparable to the widths of momen
distributions of atoms in a time-averaged harmonic potent
While the quantum-statistical distribution of the atomic c
ordinates remains Gaussian, the momentum distribution
low temperatures acquires an annular structure in the tr
symmetry plane at all temperatures. The annular structur
the momentum distribution becomes appreciable at ato
ensemble temperatures of order of the effective vibratio
temperature of the atoms in the time-averaged harmonic
tential.

2. MAGNETIC DIPOLE POTENTIAL

In the central region of a TOP trap the total magne
field Bt consists of two parts:

Bt5b1B. ~1!

Hereb is the stationary quadrupole field proper,16

b52 1
2 a~xex1yey!1azez , ~2!

which is expressed in~2! in terms of the gradienta of the
quadrupole field at pointx5y5z50, theei are unit vectors
along axesi 5x, y, z, and B is a uniform magnetic field
rotating with a frequencyV in the xy plane:16

B5B0~ex cosVt1ey sin Vt !, ~3!

whereB0 is the amplitude of the rotating field.
© 1998 American Institute of Physics
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In the field ~1! an atom having a negative projectionm t

of the magnetic momentm onto the direction of the field
m t52m (m.0), possesses an additional potential ene
U5U(r ,t):

U52m•Bt5mBt

5mA~B0 cosVt2 1
2 ax!21~B0 sin Vt2 1

2 ay!21a2z2.

~4!

We see that the time-dependent magnetic-dipole inte
tion potential rotates about thez axis in such a way that its
minimum moves in thexy plane along a circular orbit o
radiusr 052B0 /a.

To analyze the motion of atoms in the potential~4!, it is
convenient to introduce the cylindrical coordinatesx
5r cosw, y5r sinw, and z and write the potential in a
form corresponding to the standard expression of the i
grand for elliptic integrals of the second kind:

U5UmA12e2 sin j, ~5!

whereUm is the maximum value of the potential oscillatin
in time, e determines the modulation depth of the oscillati
potential and is known in the theory of elliptic integrals
the modulus, andj is the effective phase:

Um5ULAS 11
r

r 0
D 2

1
4z2

r 0
2

, ~6!

e25
4r/r 0

~11r/r 0!214z2/r 0
2

, ~7!

j5
1

2
~Vt2w2p!. ~8!

In ~6!, UL5mB0 is the energy of magnetic interaction at th
central point of the trap (r50) and determines the Larmo
precession frequency

vL5
mB0

\
. ~9!

Note that the square of the modulus does not exceed u
The maximum value of the square of the modulus,

~e2!max5
2

11A114z2/r 0
2
<1 ~10!

is attained for a givenz on a circle of radiusr5rm :

rm5r 0A11
4z2

r 0
2

. ~11!

It is convenient to write the potential~5! in the form of a
Fourier series:

U5UmF1

2
a01 (

n51

`

~21!nan cosn~Vt2w!G , ~12!

where the Fourier coefficients
y

c-

e-

ty.

as5
4

p E
0

p/2
A12e2 sin2j cos~2sj!dj ~13!

(s50, 1, 2, . . . ) can beexpressed in terms of elliptic inte
grals of the first and second kind,K(e) andE(e). The first
three Fourier coefficients are

a05
4

p
E~e!,

a15
4

3pe2
@~22e2!E~e!22~12e2!K~e!#, ~14!

a252
4

15pe4
@~16216e21e4!E~e!

28~223e21e4!K~e!#.

We now note that since the moduluse is bounded, ac-
cording to ~10!, for the Fourier coefficients we need on
expressions for moderate values of the modulus,e<1. Using
the well-known expansions of the complete elliptic integr
E(e) andK(e) in powers ofe2 and keeping only term to the
fourth order in e inclusively, we can write the following
approximate expression for the potential~5!:

U5U02U1 cos~Vt2w!2U2 cos 2~Vt2w!, ~15!

where

U05
1

2
Uma05UmS 12

1

4
e22

3

64
e4D ,

U15Uma15
1

4
Ume2S 11

1

4
e2D , ~16!

U252Uma25
1

64
Ume4.

The dependence ofU0, U1, andU2 on the coordinatesr and
z is depicted in Fig. 1.

Below we use the magnetic-dipole interaction poten
in the form ~15! to establish the equations of motion of a
atom in a TOP trap.

3. GENERAL EQUATIONS OF MOTION

The dynamics of an atom in the potential~15! is de-
scribed by a Schro¨dinger equation, which in the system o
coordinates we have adopted assumes the form

i\
]F

]t
52

\2

2M
DF1U0F2@U1 cos~Vt2w!1U2

3cos 2~Vt2w!#F,
~17!

D5
1

r

]

]r S r
]

]r D1
1

r2

]2

]w2
1

]2

]z2
.

We recall that the amplitudesU0, U1, andU2 of the harmon-
ics of the magnetic potential are functions of the coordina
r andz.

In Eq. ~17! the two parts of the magnetic potential pla
different roles. The time-independent potentialU0 generates
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slow movements of the atom with characteristic timestslow

.1/v, wherev specifies the characteristic natural oscillati
frequencies of the atom in the potentialU0. The presence o
the oscillating partsU1 andU2 in the potential leads to fas
oscillations of the momentum and position of the atom w
a characteristic time scalet fast.1/V.

To explicitly separate the fast movements of the at
from the slow, it is convenient to pass to a representa
similar to the standard interaction representation for tim
independent potentials. For Eq.~17! the corresponding tran
sition is accomplished by the following replacement of t
wave function:

FIG. 1. The time-averaged valueU0 ~a! and the amplitudes of the first two
harmonics,U1 ~b! andU2 ~c!, of the oscillating potentialU as functions of
the cylindrical coordinatesr andz.
n
-

F5F expF i

\VS U1 sin~Vt2w!1
1

2
U2 sin 2~Vt2w! D G .

~18!

After ~18! is plugged into~17!, the equation of motion ac
quires terms that correspond explicitly to the fast oscillatio
of the momentum and position of the atom. There a
emerges an additionUadd to the time-independent potentia
U0, which is related to the mean energy of the fast osci
tions of the atom:

i\
]F

]t
52

\2

2M
DF1~U01Uadd!F2

i\

2MV

3F1

r

]

]r S r
]U1

]r D 2
U1

r2
1

]2U1

]z2 Gsin~Vt2w!F

1
i\

4MV2 F ]U1

]r

]U2

]r
1

2U1U2

r2
1

U1

]z

]U2

]z G
3cos~Vt2w!F2

i\

4MV F1

r

]

]r S r
]U2

]r D
2

4U2

r2
1

]2U2

]z2 Gsin 2~Vt2w!F2
1

4MV2

3F S ]U1

]r D 2

2
U1

r2
1S ]U1

]z D 2Gcos 2~Vt2w!

3F2
i\

MV F]U1

]r

]F

]r
1

]U1

]z

]F

]z Gsin~Vt2w!

1
i\U1

MVr2

]F

]w
cos~Vt2w!2

i\

2MV

3F]U2

]r

]F

]r
1

]U2

]z

]F

]z Gsin 2~Vt2w!

1
i\U2

MVr2

]F

]w
cos 2~Vt2w!, ~19!

where the additional time-independent potential is

Uadd5
1

4MV2F S ]U1

]r D 2

1
1

4S ]U2

]r D 2

1
U1

21U2
2

r2

1S ]U1

]z D 2

1
1

4S ]U2

]z D 2G . ~20!

4. EQUATION OF MOTION OF COLD ATOMS

Let us use the equations of motion derived above
study the dynamics of cold atoms, i.e., atoms near the bot
of the potential wellU01Uadd. For cold atoms the coordi
natesr andz meet the conditionr, z!r 0.

When the displacements of an atom from the trap’s c
ter are small, we can expandU0, U1, andU2 in power series
in the small coordinatesr and z. Keeping all terms up to
second order inr andz, we get
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U05UL1 1
2 k~r218z2!, U152kr0r, U25 1

2 kr2. ~21!

The elastic constant for the harmonic part of the tim
independent potential is

k5
UL

2r 0
2

. ~22!

According to~21!, the potentialU0 generates harmonic os
cillations of the atom along thex, y, and z axes with the
frequencies

vx5vy5vr5A k

M
, vz52A2vr . ~23!

At this point we note that according to the basic idea o
magnetic trap with an orbiting potential, all of the three fu
damental frequencies,vr , V, and vL , are assumed to b
related by the following inequalities

vr!V!vL . ~24!

According to Eq.~19!, the left-hand inequality in~24! is
needed so that the action of the time-averaged potentiaU0

1Uadd would be stronger than the action of the harmon
with the amplitudesU1 andU2. The right-hand inequality in
~24! excludes the possibility of nonadiabatic Majorana tra
sitions due to rotation of the magnetic fieldB. In a typical
experiment vr/2p;10–100 Hz, V/2p;104 Hz, and
vL/2p;107 Hz, so that vr /V;1022–1023 and V/vL

;1023 ~Ref. 15!.
Now we plug the expressions forU1 andU2 from ~21!

into Eqs.~19! and ~20!. In the case of cold atoms, the add
tional potential proves to be much smaller thanU0:

Uadd5
2k2r 0

2

MV2 S 11
r2

r 0
2 D 5S UL1

1

8
kr2D S vr

V D 2

!U0 .

~25!

Neglecting this small correction to the time-averaged pot
tial U0, from Eq.~19! we arrive at the following equation o
motion of cold atoms:

i\
]F

]t
52

\2

2M
DF1U0F1

k2r 0

MV2
rF

3cos~Vt2w!2 i
2\kr0

MV

3F]F

]r
sin~Vt2w!2

1

r

]F

]w
cos~Vt2w!G

2 i
\kr

2MV F]F

]r
sin 2~Vt2w!

2
1

r

]F

]w
cos 2~Vt2w!G . ~26!

Two facts are worth noting. The third term on the righ
hand side of Eq.~26!, which specifies the oscillating poten
tial of the atom in the interaction representation, has
same structure as the third term on the right-hand side of
-

a
-

s

-

-

e
q.

~17!. Hence, we could exclude this term from Eq.~26! by a
repeated passage to the interaction representation, i.e.,
replacement of type~18!:

F5F̃ expF2 i
k2r 0

\MV3
r sin~Vt2w!G . ~27!

Actually, there is no need for~27!, since exclusion of the
third term in ~26! leads to corrections that are small com
pared to the other terms as (vr /V)2!1. This follows di-
rectly from the fact that the ratio of the exponent in~27! to
the first term in the exponent in~18! is

k2r 0r

\MV3

U1

\V
5

1

2S vr

V D 2

!1. ~28!

Thus, the third term on the right-hand side of Eq.~26! can
simply be dropped, since it is very small compared to
other terms. If we now bear in mind that the amplitude of t
harmonic oscillations of an atom in the potentialU0 from
~21! is of the order of the amplituder0 of the zero-point
oscillations,

r05A \

Mvr
, ~29!

we see that the terms in Eq.~26! that oscillate with the
doubled frequency 2V are small compared to terms oscilla
ing with the frequencyV in the ratio

r

2r 0
.

r0

2r 0
5A vr

2vL
!1. ~30!

At frequencies used in experiments the left-hand side of
~30! is of order 1023. If we ignore the terms oscillating with
the frequency 2V in Eq. ~26! and go back to the Cartesia
system of coordinatesx, y, andz, we arrive at a very simple
equation:

i\F]F

]t
1v r S ]F

]x
sin Vt2

]F

]y
cosVt D G

52
\2

2M
DF1U0F, D5

]2

]x2
1

]2

]y2
1

]2

]z2
, ~31!

where, as we can easily see, the quantity

v r5
pr

M
5

2vr
2r 0

V
5A2

vLvr

V2
v0, ~32!

expressed in terms of the zero-point oscillation velocity

v05
p0

M
5A\vr

M
~33!

(p05AM\vr is the momentum of the zero-point oscilla
tions! specifies the velocity of the fast oscillations of th
atom due to fast oscillations of the potential. Here we str
that since in Eq.~31! we dropped the term that oscillate
with the doubled orbiting frequency of the potential, togeth
with Eq. ~31! we must use the complete wave function~18!
in which the phase oscillates only with a frequencyV, i.e.,
the function
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C5F expF i
pr

\
r sin~Vt2w!G . ~34!

We now note that formally the left-hand side of Eq.~31!
appears to be the total~convective! time derivative, which
allows for the variation of the wave functionF in time and
due to oscillations of the atom with the velocitiesv r sinVt
and2v r cosVt along thex andy axes, respectively. Bear
ing all this in mind, we can introduce the new coordinatesX
and Y and the new time variableT via the following rela-
tionships:

X5x1r r cosVt, Y5y1r r sin Vt, T5t, ~35!

wherer r has the meaning of the amplitude of the fast var
tions of the coordinate of the atom~Fig. 2!,

r r5
v r

V
52S vr

V D 2

r 05r0

vr

V
A2

vLvr

V2
. ~36!

In terms of the new variables, the equation of motion~31!
reduces, after neglect of the corrections to the potentia
orderr r /r0 ,(r r /r)2!1 on the right-hand side, to the equ
tion of a three-dimensional asymmetric oscillator

i\
]F

]T
52

\2

2M
DF1U0F, ~37!

where the Laplacian is defined in terms of the coordinatesX,
Y, andz:

D5
]2

]X2
1

]2

]Y2
1

]2

]z2

Note that for the typical frequencies mentioned earli
the dimensionless parameter

S5AvLvr

V2
~38!

is of order unity. In view of this, the fast spatial modulatio
of the wave function due to oscillations of the effective c
ordinatesX and Y has, according to~35!, a small relative
depth of orderr r /r0;vr /V!1. If we ignore this very shal-
low modulation, we must assume that the effective coo
natesX andY coincide with the true coordinates of the ato
x andy and, therefore, that the functionF is specified by the
equation~37! of a three-dimensional oscillator with a La
placian defined, as usual, with respect to the coordinatesx, y,
andz.

FIG. 2. The true coordinates of an atom,x andy, and the effective coordi-
natesX andY in the rotation plane of the potential.
-

of

,

-

i-

Equation ~37! is the final equation of motion of cold
atoms. It contains no information about the shallow hig
frequency modulation of the wave function on the spa
scaler r . At the same time, the expression~34! for the com-
plete wave function has retained the information about
fast modulation of the velocity~momentum! of the atom,
whose relative depth is of order unity. This fact, as we sh
see in Sec. 5, leads to an annular statistical velocity~mo-
menta! distribution of cold atoms.

5. QUASISTATIONARY STATES AND STATISTICAL
DISTRIBUTIONS

In the Cartesian coordinatesx, y, andz, Eq. ~37! has the
well-known steady-state solutions:

F5Fklq~r ,t !5xk~x!x l~y!xq~z!expF2 i S vL1
Eklq

\ D t G .
~39!

Here xa(j)5xk(x), x l(y) are the eigenfunctions of linea
oscillators along the axes j5x, y, and a5k, l
50, 1, 2, . . . ,i.e.,

xa~j!5
1

A2aa!Apr0

expS 2
j2

2r0
2D HaS j

r0
D , ~40!

whereHa(h) is a Hermite polynomial, and the eigenfun
tionsxq(z) of the linear oscillator along thez axis are given
by ~40! after the replacementsj→z and r0→r0z

5r0 /A2A2. The energy eigenvalues of a three-dimensio
asymmetric oscillator are

Eklq5\vr~k1 l 1 1
2!12A2\r~q1 1

2!. ~41!

According to~34!, the complete wave functions in the coo
dinate representation have the meaning of quasistatio
wave functions:

Cklq~r ,t !5xk~x!x l~y!xq~z!

3expF ipr~x sin Vt2y cosVt !

\

2 ivLt2
iEklqt

\ G . ~42!

In the momentum representation

F~p,t !5~2p\!23/2E F~r ,t !expS 2
ip•r

\ Dd3r , ~43!

the complete quasistationary wave functions are

Fklq~p,t !5xk~px2pr sin Vt !x l

3~py1pr cosVt !xq~pz!

3expF2 ivLt2
iEklqt

\ G , ~44!

wherexa(p) are the eigenfunctions of the linear oscillato
along thex and y axes in the momentum representatio
These functions directly reflect the high-frequency modu
tion of the momentum of the atom with a relative dep
pr /p.1.
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Now we use ~42! and ~44! to study the quantum
statistical distributions of the position and momentum of
atom. At a given temperatureT the statistical distribution of
the position of an atom,

w~r !5w~x!w~y!w~z!, ~45!

is defined by the well-known Bloch formula.17 The distribu-
tion of the position of an atom along the axesz5x, y is18

w~z!5

(a50
` expF2

\vr~a11/2!

kBT Gxa
2~z!

(
a50

`

expF2
\vr~a11/2!

kBT G
5

1

Apa0

expS 2
z2

a0
2D , ~46!

where

a05r0Acoth
\vr

2kBT
~47!

is the half-width of the distribution. The distribution of th
coordinate of an atom along thez axis is defined by the sam
formulas ~46! and ~47! after the replacementsj→z, r0

→r0z5r0 /A2A2, andvr→2A2vr .
The quantum-statistical distribution of atomic mome

tum is given by an expression containing additional aver
ing over the high-frequency oscillations of the momentum

w~p!5^w~px ,t !w~py ,t !& tw~pz!. ~48!

Here, according to the Bloch formula, the partial distrib
tions along thex, y, andz axes are

w~px ,t !5
1

Apq0

expF2
~px2pr sin Vt !2

q2 G ,

w~py ,t !5
1

Apq0

expF2
~py1pr cosVt !2

q2 G , ~49!

w~pz ,t !5
1

Apq0z

expF2
pz

2

q0z
2 G ,

where

q05p0Acoth
\vr

2kBT
, q0z52A2p0Acoth

A2\vr

2kBT
.

~50!

For the two-dimensional distribution of the momentu
in the xy plane with allowance for time averaging we ha
the following expression:

w~px ,py!5w~p!5^w~px ,t !w~py ,t !& t

5
1

pq0
2

expF2
p21pr

2

q0
2 G 1

p

3E
0

p

coshS 2
ppr

q0
2

sin t D dt, ~51!
n

-
-

-

which is normalized to one atom~just as the other distribu
tions are!:

E w~px ,py!dpxdpy52pE w~p!pdp51. ~52!

According to ~45! and ~46!, the coordinate distribution ha
an ordinary Gaussian shape in this case.

The distributions of the momentum of an atom in thexy
plane for three temperatures are depicted in Fig. 3. Clea
at low temperatures, where the modulation depth is clos
unity, the distribution acquires an annular structure in thexy
plane.

According to~52!, the annular structure of the momen
tum distribution emerges when, as the temperature decre
the dimensionless parameter

d5
pr

q0
5SA2 tanh

\vr

2kBT
~53!

(S is another dimensionless parameter! increases to values o
order unity. This becomes especially evident if we write t
statistical distribution as a power series in the momenta:

w~px ,py!5w~p!5
1

pq0
2

expS 2
p21pr

2

q0
2 D

3S 11
pr

2

q0
4

p21
pr

2

4q0
8

p41••• D . ~54!

6. ANHARMONIC OSCILLATION SPECTRUM

Up to this point the motion of atoms in a trap was co
sidered in the harmonic approximation~21!. Let us now ex-
amine the spectrum of natural frequencies of an atom w
allowance for anharmonicity.

FIG. 3. Quantum-statistical distributions of a momentum component fo
single atom. The distributions correspond to the temperaturesT1

5\vr/2kB , T252\vr /kB , andT3525\vr /kB and the parameterS53.
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Retaining the terms up to the eighth order ine in the
expression forU0 in ~16!,

U05UmF12
1

4
e22

3

64
e42

5

256
e627S 5

128D
2

e8G , ~55!

and expanding~55! in a power series up to the fourth ord
in the small displacementsr/r 0 andz/r 0, we get

U05UL1
1

2
k~r218z2!1

k

r 0
2S 1

32
r41r2z224z4D . ~56!

For the oscillating parts of the potential,U1 andU2, we can
keep the expressions~21! for them.

As can be seen from the previous section, allowing
the anharmonicity of the oscillations of an atom only r
quires solving Eq.~37! with potential~56!. As usual, we use
standard perturbation theory for this purpose. Since the
harmonic term in~56! depends only on the cylindrical coo
dinatesr andz, in the case at hand it is convenient to ta
the solution of Eq.~37! in the cylindrical coordinatesr, z,
andw as the zeroth-approximation solution. Thus, instead
the solutions~39! we write

Fnmq~r,w,z!5unm~r!eimwxq~z!

3expF2 i S vL1
Enmq

\ D t G . ~57!

Here the radial wave functions (n50, 1, 2, . . . ; andm50,
61,62, . . . ) are

unm~r!5A n!

p~n1umu!!
1

r0
S r

r0
D umu

3expS 2
r2

2r0
2D Ln

umuS r2

r0
2D , ~58!

where theLn
umu(h) are associated Laguerre polynomials a

r0 defined in~29!. The energy eigenvalues for the solutio
~57! are

Enmq5\vr~2n1umu11!12A2\vr~q1 1
2!. ~59!

Using the known expressions for the diagonal mat
elements of the second and fourth powers of the coordin
r andz, we arrive at the following expression for the firs
order correction to the energy eigenvalues~59! due to anhar-
monicity:

DEnmq5
k

r 0
2^nmqu

1

32
r41r2z224z4unmq&

52\vrS vr

vL
D H 1

32
@~n11!~n12!1~n1umu!

3~5n1umu13!#1
1

2A2
~2n1umu11!

3S q1
1D2

3 S q21q1
1D J . ~60!
2 4 2
r
-

n-

f

es

The foregoing relations imply that the anharmonicity ofU0

becomes essential when the atomic displacements are m
larger than the amplitude of the zero-point oscillations,r,z
;r0AvL /vr, and that the energy spectrum ceases to
equidistant at large quantum numbers,n,umu,q;AvL /vr

.103.

7. CONCLUSION

The theory developed in this paper shows that the m
tion of atoms in a magnetic trap with an orbiting potent
consists of two parts: slow oscillatory motion in a tim
averaged potential and fast oscillations with a frequency
termined by the rotation frequency of the magnetic field. F
typical experimental values of the three fundamental f
quencies,vr , V, andvL , the amplitude of the fast oscilla
tions of the coordinates of an atom is negligible compared
the amplitude of the slow oscillations in the averaged pot
tial. On the other hand, the amplitude of the high-frequen
oscillations of the momentum of an atom is, in general, co
parable to the width of the momentum distribution for t
fundamental oscillation state of the atom in the trap pot
tial. This deep modulation of atomic momenta becomes
pecially significant at low temperatures of the atoms, wh
the average thermal energy becomes comparable to the
cillation energy of atoms in the averaged potential. Acco
ingly, at low temperatures the momentum distribution of
oms generally acquires an annular structure in the tra
symmetry plane.

This work was made possible by a grant from the R
sian Fund for Fundamental Research~Grant No. 97-02-
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Multiwell potentials of endohedral complexes of icosahedral symmetry
A. B. Ro tsin,* ) A. A. Klimov, and L. V. Artamonov
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We examine multiwell potentials that correspond to the displacements of off-center ions in
complexes with icosahedral symmetry~dodecahedrons, icosahedrons, fullerenes, etc.! along
symmetry directions~toward vertices, midpoints of edges, and centers of faces!. An
expression is derived for an effective Hamiltonian, which describes the behavior of endohedral
complexes with off-center ions placed in external electric fields of arbitrary strength and
orientation. We find the eigenvalues of this Hamiltonian and calculate the intensities of the lines
of all possible transitions between tunneling levels. We also predict and analyze the spectra
of paraelectric resonances in the absence of an external static electric field~zero-field resonances!
and in the presence of such a field. Finally, we provide recommendations for detecting these
effects and discuss the specific features of the effects and the possibility of studying them.
© 1998 American Institute of Physics.@S1063-7761~98!01607-2#
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1. INTRODUCTION

The discovery of fullerenes and the synthesis
fullerene-based crystals, or fullerites, has led to new aven
of research being developed in different areas of scien1

There has also been an upsurge of interest in symme
whose elements include rotations through angles that are
tegral multiples of 2p/5, in particular in the icosahedra
group Yh ~Ref. 2!. Not only the unique structure and sym
metry of these new carbon formations, but also the unus
diverse properties of such substances have drawn muc
tention. For instance, it was found that the doping of full
ites with atoms of other elements can give rise to semic
ducting and metallic~including superconducting! properties.3

It has proved possible to implant atoms~molecules! of
elements of different groups of the periodic table~up to lan-
thanides and even uranium4–6! directly into fullerenes. Such
structures became known as endohedral fullerenes and
denoted by M@CN , where M is the implanted atom~ion! or
group of atoms, andN is the number of carbon atoms in th
fullerene. Using endohedral fullerenes to produce conden
materials opens new possibilities to solid-state physics
particular, Cioslowski and Nanayakkara7 found that implant-
ing polar molecules in fullerenes may serve as a base for
production of a new class of ferroelectric crystals. Wa
et al.8 pointed to the possibility of the emergence of a n
class of high-Tc superconductors with specific electro
phonon coupling based on endohedral fullerenes~in contrast
to the impurity fullerites already tested, where the impurity
intercalated between fullerenes3!.

The large diameter of the fullerene cage~in the case of
C60 the diameter is roughly 7.1 Å! points to the possibility of
the appearance of the off-center effect which has been
served in crystals with local symmetry that is lower th
icosahedral symmetry.9–11 This effect consists of a displace
ment of the potential-energy minimum for the interaction
the guest particle and the fullerene cage from the cente
1231063-7761/98/87(7)/10/$15.00
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symmetry of the latter and is usually present when
atomic radius of the particle is small compared to the rad
of the cavity in which the particle is implanted. These ide
have been corroborated by calculations. For instance, W
et al.8 calculated the equilibrium positions (r min) of a large
number of ions of the periodic table implanted in C60 and
found that for many of these ionsr minÞ0, i.e., the atom is not
at the center of symmetry of C60. Joslinet al.12 pointed out,
among other things, that in the case of Li1 ions r min

'1.4 Å, while the calculations done by Cioslowski an
Fleischmann13 and Ballester and Dunlap14 for the Na1 ion
yielded r min'0.7 Å. In heavier alkali-metal ions~e.g., K1;
Ref. 15! and inert gases,16–18 r min50.

The fullerene C60 and a number of higher fullerenes CN

(N580, 180, 240, 540, and 960! have icosahedra
symmetry.19,20 Moreover, the calculations of Tanget al.20–22

showed that stable giant fullerenes (N'104) with icosahe-
dral symmetry are possible. Bearing all this in mind, we c
assume that the off-center effect manifests itself most vivi
and often in higher fullerenes. Clusters consisting of ot
atoms and having different symmetries, including the ico
hedral symmetry, have also been studied.23–25Jinlonget al.26

studied the icosahedral cluster M@Co12, which consists of
12 cobalt atoms with an atom of various elements~M! of the
iron group, from Ti to Ni, inside it. They showed that a
clusters except those with Ti, Mn, and Co atoms, which ha
a closed electronic shell inside the cluster, allow a displa
ment from the center of the icosahedron. It has also b
found that the clustersS12 ~Ref. 27! andB12 ~Ref. 28! have
an icosahedral structure. Finally, we note that long bef
fullerenes were discovered, Bersukeret al.29 studied the con-
figurational instability of clusters with icosahedral symme
due to the Jahn–Teller effect.

Off-center effects are accompanied by the presence
several (N) equivalent equilibrium positions. In the case
impurity ions, these positions are displaced from the cen
of symmetry, while in the case of dipolar molecules the
© 1998 American Institute of Physics



on
th
r

li
ph

o
h
c

el
p
ac
n
tr
n
at
in

on

t
he
l
o
r
th
a

as
th

s.
of

ld
ess
se

of

the

s
en-
n-
di-
try
lect

124 JETP 87 (1), July 1998 Ro tsin et al.
can be both displacements and dipole orientation al
equivalent directions. Since both the potential wells and
wave functions of a particle moving in them overlap, inte
well tunneling of the particle and splitting of theN-fold de-
generate state occur. The characteristic system of tunne
energy levels emerging in the process produces various
nomena, including paraelectric resonance~PER!,9,10 which
can be used to study off-center effects directly.

Thus, the results of research point to the possibility
off-center effects manifesting themselves in many endo
dral complexes with icosahedral symmetry. These effe
lead to multiwell potentials and a system of tunneling lev
between which quantum transitions can occur. In this pa
we study the energy structure of off-center ions in the intr
rystalline electric field generated by different configuratio
of atoms, such as an icosahedron, a dodecahedron, a
cated dodecahedron, which has been termed a roklar, a
fullerene. We also investigate the effect of an external st
electric field and the transitions between tunneling levels
duced by an external variable electric field.

2. ENERGY LEVELS: A GENERAL TREATMENT

Earlier studies9,10 of highly symmetric systems~the Oh

group! have shown that off-center atoms are displaced al
symmetry directions of the@100#, @110#, or @111# type, i.e.,
toward faces, edges, and vertices. We shall thus study
symmetry directions of displacement with allowance for t
results of the calculations ofr min in Refs. 8, 12–18. We shal
examine in detail one of the most complicated multiwell p
tentials, viz., a 30-well potential, which simultaneously co
responds to displacements of an off-center ion toward
vertices of a roklar and the midpoints of the edges of
icosahedron, a dodecahedron, and a fullerene~in the last case
the edges are those that connect two hexahedrons!. In all
these cases the equilibrium positionsi form a roklar~Fig. 1!.
The corresponding reducible representationP30 maps the
centers of the potential wells into one another. On the b
of the character table of the irreducible representations of
Yh group ~Ref. 30!, we can write the

P305Ag1F1u1F2u1Gg1Gu12Hg1Hu , ~1!
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which points to the nature and number of tunneling level
Let us examine the resonant transitions in the system

levels ~1! in the absence of an external static electric fie
E0 , i.e., zero-field paraelectric resonance. In such a proc
the transitions are initiated by a variable electric field, who
intensity vectore is transformed according to theF1u irre-
ducible representation. An analysis of the direct products
the irreducible representations of theYh group ~Ref. 30!
leads to the allowed transitions depicted in Fig. 2a; here
transitions are initiated by a vectore arbitrarily oriented in
space.

When the fieldE0 is switched on, the tunneling level
split, the number of the new levels depending on the ori
tation of E0 . To make the analysis of the spectra more co
venient, the field is usually oriented along the symmetry
rections of the geometric figures, so that some symme
elements are conserved. For symmetry directions we se

FIG. 1. Roklar~truncated dodecahedron!: 32 faces,~12 pentagons and 20
triangles!, 30 vertices, and 60 edges. The equilibrium positionsi of off-
center ions~directions of dipoles! in the case of a 30-well potential in
endohedral complexes with icosahedral symmetry. The pointsi are at ver-
tices of the roklar.
ial
the
he-
of a
FIG. 2. Tunneling levels in the case of a 30-well potent
corresponding to displacements of an off-center ion toward
vertices of a roklar, the midpoints of the edges of an icosa
dron and a dodecahedron, and the midpoints of the edges
fullerene that connect two hexahedrons.~a! Possible resonant
transitions in zero-field paraelectric resonance.~b! Relative line
intensitiesI bb8 .
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the directions from the inversion center to the vertices, c
ters of the faces, and midpoints of the edges of the vari
geometric figures. Table I lists the symmetry subgroups
emerge for such directions of the field. The presence of
point groups in one cell in the case of fullerene is due to
two types of faces and edges. In each case the first g
refers to a pentagon and an edge connecting a pentagon
a hexagon, while the second group refers to a hexagon
an edge connecting two hexagons. Similarly, for a roklar
first and second groups refer to a pentagon and a trian
respectively. Table II lists the data on the nature of le
splitting induced by the fieldE0 . Each number in Table II
shows how many times the irreducible representation lis
in the heading of the respective column under a subgr
notation is contained in the irreducible representation of
Yh group listed in the heading of the respective row. We
that to establish the selection rules in an arbitrary case, e
irreducible representation of any point subgroup must be
amined only once or twice. The results of the calculations
depicted in Fig. 3, where the arrows denote allowed elect
dipole transitions, and the labels' (x,y) and i (z) next to
the arrows indicate the direction of the components ofe. The
absence of labels means that a transition is possible for
direction ofe.

TABLE I. Point groups of geometric figures in the presence of an elec
field E0 .

Geometric
figure

Direction from center to

face vertex edge

Icosahedron C3v C5v C2v

Dodecahedron C5v C3v C2v

Roklar C5v /C3v C2v Cs

Fullerene C5v /C3v Cs Cs /C2v
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3. PERTURBATION MATRICES AND EFFECTIVE
HAMILTONIAN

The method of deriving the generalized effective Ham
tonian for centers with a multiwell potential and arbitra
local symmetry has been described in Ref. 31. In our case
Hamiltonian is a 30330 matrix M30, whose elements are
defined in the basis set of the symmetrized functionsc j

b

corresponding to the irreducible representationsb of the Yh

group. We write the initial perturbation operator asŴ
5ŴK1ŴE , where ŴK and ŴE are the operators of the
interaction of an off-center ion with, respectively, the intra
rystalline electric field and an external electric field. The o
eratorŴK is invariant under all operations of theYh group,
andŴE has the formŴE52d̂•E, whereE is the sum of the
external electric fieldsE01e acting on the off-center ion in
the general case. Using the perturbation-matrix method31,32

and the matrices of the irreducible representations of theYh

group ~Ref. 33!, we find the nonzero perturbation matrice
M (b3b8) of the operatorŴ for all pairs of the irreducible
representationsb. The results of the calculations are syste
atized in Appendix A. The off-diagonal matrices (bÞb8) in
Appendix A do not contain the matrix elements of the o
eratorŴK , since it is invariant under all transformations
the group. Its nonzero matrix elements are present only
square matrices of the typeM (b3b), where they occupy
positions along the principal diagonal and where all the m
trix elements for each irreducible representation are eq
The matricesM (b3b) do not contain the matrix element
of the operatorŴE , sinced̂ is an odd operator with respec
to inversion.

The matrix Hamiltonian sought can be written in th
form of a combination of perturbation matrices:

c

TABLE II. Splitting of tunneling levels by a fieldE0 applied along symmetry directions.

Yh

C5v C3v C2v Cs

A1

z
A2 E1

x,y
E2 A1

z
A2 E

x,y
A1

z
A2

y
A3 A4

x
A1

x,y
A2

z

Ag 1 0 0 0 1 0 0 1 0 0 0 1 0
F1u 1 0 1 0 1 0 1 1 1 0 1 2 1
F2u 1 0 0 1 1 0 1 1 1 0 1 2 1
Gg 0 0 1 1 1 1 1 1 1 1 1 2 2
Gu 0 0 1 1 1 1 1 1 1 1 1 2 2
Hg 1 0 1 1 1 0 2 2 1 1 1 3 2
Hu 0 1 1 1 0 1 2 1 1 2 1 2 3
Orders of

secular 5 1 6 6 7 3 10 10 7 6 7 17 13
equations

Note: A—one-dimensional irreducible representations,E—two-dimensional irreducible representations. The lettersx, y, andz below the irreducible repre-
sentations indicate that the respective components of the polar vector belong to these representations.
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M3051
M ~131! M ~132! 0 0 0 0 0 0

M ~232! 0 0 0 M ~236! M ~237! 0

M ~333! M ~334! 0 M ~336! M ~337! 0

M ~434! M ~435! 0 0 M ~438!

M ~535! M ~536! M ~537! 0

M ~636! M ~637! M ~638!

c.c. M ~737! M ~738!

M ~838!

2 , ~2!
ze
ro
g

ld
e

fo

tiv

as
ch
u
e

d
:

an
I

e

r-
n
e
s

o

ch
n-

an-

f an
where c.c. stands for the complex conjugates, and a
indicates that all the matrix elements of the block are ze
The rows and columns in~2! have been numbered accordin
to the irreducible representations in the following order:Ag ,
F1u , F2u , Gg , Gu , Hg

(1) , Hg
(2) , andHu . In Eq.~2! there are

12 parametersabb8 describing the effect of the external fie
E and 9 parameterslbb characterizing the intracrystallin
electric field.

It is impossible to find exact analytical expressions
the eigenvalues« of the operator~2! in a general form for an
arbitrary value and orientation of the fieldE0 . Hence it is
advisable to study approximate solutions by perturba
techniques in the presence of degeneracy34 for two possible
cases, viz.,ŴK@ŴE and ŴE@ŴK . For symmetry direc-
tions of the fieldE0 the secular equation corresponding to~2!
splits into equations of lower order. The numbers in the l
row of Table II indicate the order of such equations, whi
correspond to specific irreducible representations of the s
group. In the case of two-dimensional representations th
are two identical equations. For instance, forE0 oriented
along thez axis, theYh symmetry reduces toC5v , and the
secular equation splits into four sixth-order equations~two
for each of the irreducible representationsE1 and E2), one
fifth-order equation for theA1 irreducible representation, an
one first-order equation for theA2 irreducible representation

A1 :«$«42«2~E12
2 1E26

2 1E27
2 1E27

2 1E36
2 1E37

2 !

1E12
2 ~E36

2 1E37
2 !1E37

2 ~E26
2 1E36

2 !

22E26E27E36E37%50,

A2 :«50, where Ebb85abb8E0z . ~3!

The third-order equations with respect to«2 for the E1

andE2 irreducible representations are more complicated,
for the sake of brevity we shall not present them here.
deriving Eqs.~3!, to simplify matters we setlbb50, which
corresponds to the zeroth approximation for the case wh
ŴE@ŴK .

When ŴK@ŴE , the zeroth approximation is dete
mined by the values oflbb with bÞ6, 7 and the expressio
(l661l77)/26A(l662l77)

2/41l67
2 . For this case, using th

data of Appendix A, we can calculate exactly the square
the matrix elements of the transitions within the system
levels depicted in Fig. 2a. We havee12

2 , (5/2)e26
2 , (5/2)e27

2 ,
(5/3)e36

2 , (5/3)e37
2 , (5/2)e56

2 , (5/2)e57
2 , 2e34

2 , 4e45
2 , 10e68

2 ,
ro
s.

r
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t

b-
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10e78
2 , and (5/2)e48

2 , respectively, for the 1↔2, 2↔6,
2↔7, 3↔6, 3↔7, 5↔6, 5↔7, 3↔4, 4↔5, 6↔8, 7↔8,
and 4↔8 transitions, whereebb85abb8e with e25ex

21ey
2

1ez
2 .

4. SYMMETRIZED FUNCTIONS AND PARAMETERS OF THE
HAMILTONIAN

We use what is known as the well approximation, whi
is the oscillatory analog of the MO-LCAO method in qua
tum chemistry.35 Let w i , i 51,2,...,30, be the well function
of the particle in thei th quasiequilibrium state~Fig. 1!. The
functionsw i obey the reducible representationP30, which
specifies the transformation of these functions into one
other under the operations of theYh group. Now we expand
P30 in the irreducible representations32,36 using the matrices
of the irreducible representations.33 As a result we arrive at
the linearly independent, symmetrized functionsc j

b which
are normalized to unity:

c j
b5Db(

i 51

30

ki j
b w i . ~4!

FIG. 3. Allowed transitions between tunneling levels in the presence o
external constant electric field applied along symmetry directions.
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The coefficientski j
b andDb for each of the 30 functions ar

given in Appendix B. Of the functions~4! only c j
6 and c j

7

are not mutually orthogonal:

E ~w j
6!* w j

7dt5
(m50

8 nm8 sm

AS6S7

,

where n0,88 522, n1,78 53p21, n2,58 52, n3,68 52(3p11),
and n4854. For l67Þ0, a linear combination of these func
tions determines the regular~mutually orthogonal! zeroth-
approximation wave functions of the termsHg

(1) andHg
(2) .

Plugging~4! into the expression forlbb , we obtain

lbb5
(m50

8 nm
b Vm

Sb
,

whereV0285*w1* ŴKw idt, with i 51, 2, 3, 7, 8, 14, 15, 23
and 29 form50, 1,...,8, respectively;

l675
(m50

8 nm8 Vm

AS6S7

.

Similarly, for the integralsabb85*w j
b* d̂zw j

b8dt we have

abb8522DbDb8 (
m50

12

Rm
bb8mm . ~5!

Here Rm
bb8 is a linear combination of pair products of th

coefficientski j
b , and mm are expressions of the typem i , j

2m i ,2 j , where m i j 5*w i* d̂zw jdt, and 2 j denotes a well
that is inversion-symmetric to thej th well by inversion. The
matrix elements ofd̂z that are related to the termsHg

(1) and
Hg

(2) are specified by linear combinations of two expressio
of type ~5!.

Let us estimate the overlap integralssm and the average
dipole momentsmm . For the well function we take an osci
latory function normalized to unity of the typew i5( l /p)3/4

3exp(2lr i
2/2), where r i

25(x2xi)
21(y2yi)

21(z2zi)
2,

xi , yi , and zi are the coordinates of the center of thei th
well, and l 5mv/\ with m denoting the mass of an off
center ion andv denoting the frequency of oscillations in th
potential well. Assuming that r min51.4 Å, m51.2
310223 g, v5331012 rad/s ~Ref. 37!, and d̂5z, we ob-
tain, e.g., for the maximum values ofsm and mm , the fol-
lowing estimates:s150.37 andm05m1,150.85. For com-
parison we note thats051 andm125m1,122m1,1750.033.

Next we consider the tunneling approximation,9,10 where
all the off-diagonal matrix elements of the operatorŴK and
the overlap integrals are assumed small and where the
integrals that are retained are those corresponding to
nearest wells. We also assume that all the off-diagonal
trix elements ofŴE are equal to zero. In this approximatio
lbb5V01abU and l6752@V01(3p21)(V0s1/4
2V1)/2#/2, whereU5V0s12V1 and ab524, 2(p11),
p21, 1, 21, (3p11)/4, 21/2, and 2 forb51,2,...,8, re-
spectively. The energy levels«b corresponding to the irre
ducible representations that are contained in~1! only once
are given by the following equality:«b5lbb . Forb56 and
7, solving the appropriate second-order equation, we
that «6,75V062U. This scale was used in building th
s

ly
he
a-

d

tunneling-level diagram in Fig. 2a. For the transition fr
quenciesn34, n21, n63, n57, n84, n72, n45, n65, n37, n87,
and n62, where nkk85«k2«k8 , we have, respectively~in
units ofU), p22, 32p, 32p, 1, 1,p21, 2, 3,p11, 4, and
31p. These values have been plotted in Fig. 2b. Note tha
this approximation the levels ofHu andHg

(1) coincide~acci-
dental degeneracy! and there are two pairs of coincident fre
quencies. Keeping only the local electric dipole momentm0

in ~5! and using the relations for the squares of the transit
matrix elements in zero-field paraelectric resonance, we
also obtain expressions for the line intensitiesI bb8 in the
tunneling approximation. These data~in units of e2m0

2) are
depicted in Fig. 2b together with the correspondi
transition-frequency data. Finally, we note that these par
eters also appear in the equations that determine the en
structure of an off-center ion in the presence of an exter
static electric field@e.g., Eq.~3!#. Hence they can also b
used to estimate the dependence of the position of the le
on the magnitude and direction ofE0 .

5. MICROWAVE SPECTROSCOPY OF OFF-CENTER IONS

The number of possible displacements of an off-cen
ion in various clusters with icosahedral symmetry is limit
~countable!. Here, irrespective of the nature of the cluste
~icosahedron, dodecahedron, roklar, or fullerene!, by virtue
of their symmetry alone, there is a finite number of sets
potential wells that are the same for all types of cluste
Hence solving the problem of the number and nature of
possible tunneling levels, the allowed quantum transitio
between these levels, and the paraelectric resonance s
trum for any type of cluster amounts to examining only a fe
cases, each of which relates to a certain set~number! of
potential wells. Having a relatively small set of solutions
the form of paraelectric resonance spectra and compa
each solution belonging to this set with experimental da
we can acquire knowledge about the nature of the off-ce
effect and hence about the values of the parameters of
energy structure and directions of displacement of
ions.9,10

This approach is similar to the one used in electron pa
magnetic resonance~EPR! studies, where, in view of the fac
that the value of spinS is bounded~usually S<7/2), the
number of magnetic sublevels is finite, and the probl
amounts to findingS and the spin-Hamiltonian paramete
from a comparison of the experimental data with the theo
ical EPR spectra obtained as a result of diagonalizing a fi
set of spin Hamiltonians. The similarity to EPR becom
even more striking if we introduce an effective spinSeff us-
ing the well-known formula 2Seff115n, wheren is the total
multiplicity of the degeneracy of all the tunneling levels, i.e
the number of potential wells. In this case we can say that
problem has been reduced to determiningSeff and the param-
eters of the spin Hamiltonian~2! from experimental data.

We see that to study off-center effects we must ha
prior knowledge of the theoretical paraelectric resona
spectrum corresponding to each set of potential wells fr
the available finite collection. This was accomplished in t
present work. In it we have studied the extremely comp
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cated case of a 30-well potential. The same method was
to study two other cases that are relatively simple compa
to the 30-well case: 12- and 20-well potentials. The form
corresponds to displacements of an off-center ion from
center toward the vertices of an icosahedron, the center
the faces of a dodecahedron, and the pentagonal faces
roklar and a fullerene. The latter corresponds to displa
ments of an off-center ion toward the vertices of a dode
hedron, the trigonal faces of an icosahedron and a roklar,
the hexagonal faces of a fullerene. However, irrespective
the specific configuration of the cage atoms, the multiw
potential is an icosahedron in the former case and a pent
nal dodecahedron in the latter. The respective expansion
the reducible representations are

P125Ag1F1u1F2u1Hg ,

P205Ag1F1u1F2u1Gg1Gu1Hg . ~6!

A comparison of~1! and~6! shows that these two cases c
be considered special cases of the scheme studied in det
this paper. For instance, the energy structure correspon
to ~6! is contained in the diagram of Fig. 2a. The results
similar calculations for 12- and 20-well potentials are d
picted in Figs. 4 and 5, respectively. A comparison of Fi
2, 4, and 5 shows that the energy structures and the para
tric resonance spectra corresponding to different multiw
potentials differ substantially. On the basis of~6! and Table
II we can easily obtain the analogs of Fig. 3 for 12- a
20-well potentials. All these figures are also different. T
differences make it possible to identify the displacement
rections for the off-center ions in different clusters. This c
lection of three sets of potential wells essentially exhau
the possible cases of the displacement of an off-center io
any cluster and is sufficient for analyzing paraelectric re
nance spectra. In other words, the theoretical results
sented above can be related to a specific direction of
placement of an off-center ion in any cluster studied
experiments using the data on its paraelectric resona
spectra.

6. DISCUSSION OF RESULTS. CONCLUSIONS

1. Since we intend to apply our results to the analysis
the experimental data, we note the following. At least t

FIG. 4. Tunneling levels in the case of a 12-well potential correspondin
displacements of an off-center ion toward the vertices of an icosahedron
centers of the faces of a dodecahedron, and the centers of the penta
faces of a roklar and a fullerene. The meaning of~a! and~b! is the same as
in Fig. 2.
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cases must be distinguished here. The first deals with or
tationally disordered condensed substances, where
paraelectric centers have random orientations. Here the
of the centers are distributed in space at random, and
describe the paraelectric resonance spectrum we must
average the transition frequencies~the resonant electric
fields! over the angles characterizing the orientation of
axes of the complexes relative to the coordinate system
sociated with the external electric fields. Such averag
leads to additional, inhomogeneous broadening of
paraelectric resonance lines, as in EPR.38 The second corre-
sponds to similar orientation of centers that are at equiva
or slightly inequivalent positions. This is possible in som
supercooled liquids or crystals of the fullerite type. In th
case all the expressions considered above for the trans
frequencies manifest themselves directly, and the broade
of lines is caused by other factors, among which the m
important for paraelectric resonance is the defect structur
the condensed phase. Note, however, that atE050 the zero-
field paraelectric resonance spectra in both cases coinc
since the spectra are independent of the orientation of
field e inducing the transitions. This fact broadens the cla
of substances that can be studied, adding the gaseous p
solutions, and powders.

2. If we compare our results with those obtained ear
for different cluster configurations and their symmetries,9–11

we will see that in the case of configurations with icosah
dral symmetry, new, previously undetected, features eme
in the energy structure, the resonant transitions between
neling levels, and paraelectric resonance spectra. An im
tant feature of icosahedral symmetry even in comparison
the Oh group is the abundance of equivalent potent
minima along with the resultant diversity and large numb
of tunneling levels and possible transitions between such
els for bothE050 andE0Þ0. We also note that the multi

o
he
nal

FIG. 5. Tunneling levels in the case of a 20-well potential correspondin
displacements of an off-center ion toward the vertices of a dodecahed
the trigonal faces of an icosahedron and a roklar, and the hexagonal fac
a fullerene. The meaning of~a! and ~b! is the same as in Fig. 2.
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well nature of the potential results, as Eq.~1! clearly shows,
in a situation in which the energy structure incorporates s
eral identical irreducible representations, which from
purely theoretical viewpoint leads to additional features a
complications. Such situations have never been encount
before.

3. We stress that all possible realizations of paraelec
resonance can be described on the basis of the genera
Hamiltonian ~2!, which contains the maximum possib
number of theoretical parameters allowed by space sym
try and time-reversal symmetry. Here the relationships
the frequencies, intensities, and other characteristics of
spectral lines become much simpler if one uses the tunne
approximation, which is advisable when the first experime
are described. The Hamiltonian~2! can serve as a basis fo
studying other properties of matter that are determined by
presence of off-center impurities in endohedral complex
Among these, polarization effects should be mentioned fi

4. If the off-center ions have magnetic properties, i.
their nuclei or electrons have nonzero spins, additional p
sibilities of studying them emerge. In this case, in addition
paraelectric resonance, one can use NMR or E
spectroscopy.9–11 The off-center nature of the ions manifes
itself in such resonances in a decrease in local symmetr
the temperature drops and, as a result, in an increase in
number of spin-Hamiltonian constants, in changes in the
perfine structure of the spectrum, and other effects. Th
have been reports about magnetic resonances in endoh
fullerenes. For instance, Shinoharaet al.39 and Katoet al.40

used EPR spectroscopy to study La and Sc impurities in
fullerene C82. They believe that the impurity atoms are trip
positively charged and have a total angular momentumJ
51/2. A hyperfine structure consisting of eight line
emerges because of the interaction with139La and45Sc nuclei
~the spin of each is 7/2) and is clearly visible. Independen
Moro et al.41 found that Gd and Eu atoms inC60 are in the
Gd31 and Eu21 states, which are characterized by a hi
angular momentum (J57/2). These data point to the poss
bility of detecting EPR on high-spin ions in fullerenes,
particular, in C60. When the off-center ions become di
placed, the symmetry of their environments lowers toC5v ,
C3v , C2v , or Cs , depending on the direction of displac
ment. The spin Hamiltonians for these subgroups differ s
nificantly from each other and from the spin Hamiltonians
the Yh group,33 making it possible, in addition, to establis
the occurrence of a displacement and to determine the
placement direction. Estimates show8 that a Gd31 ion im-
planted in C60 is displaced from its position of equilibrium
by 1.4 Å, while the other high-spin ion, Eu21 is located at the
center of C60. High-spin ions are most suitable for detectin
EPR in highly symmetric systems.33,42Using Gd31 and Eu21

for this purpose permits the study of both the position of io
displaced from the center of C60 and their central position.

5. As for the choice of a specific system for studying t
effects described in this paper, we note, first, that by 19
almost one-third of the elements of the periodic table h
been used in the formation of endohedral complexes,1 and
the number constantly grows. At the same time, theoretic
considered the possibility of the existence of stable co
v-
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plexes when atoms and molecules are implanted in the
spective cages~see, e.g., Refs. 8 and 18!. In particular, Son
and Sung43 showed that along with endohedral complex
there can be stable exohedral complexes, in which an a
~ion! attaches itself to the cage on the outside and occu
one of a group of equivalent symmetry positions. Tunnel
transitions of such external atoms between these posit
with the resultant formation of a system of tunneling leve
are possible. From symmetry considerations, the numbe
sets of equivalent positions for external atoms coincides w
the number of such sets for atoms tunneling inside the c
ter. Hence our results can be applied to exohedral comple
as well. One of the features of impurity atoms is their abil
to stabilize the complex13,27,44even when the empty cage i
unstable. This fact increases the number of endohedral c
plexes with the icosahedral symmetry considered in t
paper.

The fullerene C60 occupies a central place in studies
the possibility of off-center effects occurring in endohed
complexes with icosahedral symmetry. Here such effects
be expected for the following implanted donor atoms~ions!:
Li1, Na1, Mn21, Ca21, Sr21, Yb21, Y31, La31, Ce31,
Pr31, Nd31, Pm31, Gd31, Ac31, Th31, and U31; among the
acceptor atoms~ions!, F2 merits attention; and among th
inert gases, He and Ne should be mentioned. Among
higher fullerenes we should mention C80 with a La2 impurity
molecule, which stabilizes the entire complex, imparti
icosahedral symmetry to its cage. In this case one sho
expect orientational tunneling, which was observed earlie
the case of OH2 and CN2 impurity molecules in alkali-meta
halide crystals.9,10Other complexes with icosahedral symm
try include B12, Si12, Co12, and C20H20. Some of these have
a very large cage diameter~e.g., in Si12 it amounts to ap-
proximately 5 Å!, which is favorable for the appearance
off-center effects. For instance, estimates show that when
Cr, Fe, or Ni atoms are implanted in the Co12 cluster, they
are displaced from the center of the icosahedron due to
Jahn–Teller effect.

Note, however, that these data, which were taken fr
different sources, can be used only as estimates and so
times contradict each other. For instance, according to
and Sung,43 the ions of He and Ne may move away fro
their centrosymmetric positions, while according to Pang a
Brisse17 and Bretonet al.,18 the equilibrium positions of
these ions are at the fullerene’s center. According to Wa
et al.,8 on the one hand, and Joslinet al.12 and Ballester and
Dunlap,14 on the other, the displacements of Li1 differ by a
factor of seven. There are also discrepancies in the data
cerning the possibility of the displacement of the Na1 ion
from the center of C60 ~see Refs. 8 and 14!. And although
such discrepancies do not occur very often, they are a di
indication of the complexity of microcalculations of th
structure and properties of endohedral complexes and of
need for direct experiments to detect and study off-cen
effects. Paraelectric-resonance experiments are prime
amples of such experiments.

This work was supported by the Ukrainian State Co
mission for Science and Technology.
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APPENDIX A

The matrices of the perturbation operatorŴ are

M ~132!5
a12

q
~P qEz 2P* !,

M ~236!5
a26t

2 S P Ez 2P* /s 0 0

0 P/q 2Ez /t 2P* /q 0

0 0 P/s Ez 2P*
D ,

M ~336!5
a36

2t S Ez P* 0 0 P

0 2P/q tEz P* /q 0

2P* 0 0 P 2Ez

D ,

M ~536!5
a56

4 S 23P* 0 0 2P 22Ez

2P 4Ez sP* 0 0

0 0 2sP 4Ez P*

2Ez 2P* 0 0 23P

D ,

M ~334!5
a34

4 S P P* 0 22Ez

0 qP qP* 0

2Ez 0 2P 2P*
D ,

M ~435!5a45S 2Ez 0 2P 0

0 2Ez 0 P

2P* 0 Ez 0

0 P* 0 Ez

D ,
M ~638!5a68S 22Ez P* 0 0 0

P 2Ez sP* /2 0 0

0 sP/2 0 sP* /2 0

0 0 sP/2 Ez P*

0 0 0 P 2Ez

D ,

and M (b3b)5lbbI , where I is the identity matrix,P
5Ex1 iEy , q5&, t5), and s5A6. The presence of a
common factor in front of a matrix means that all matr
elements must be multiplied by it. Also,

a1252E ~c1
~1!!* d̂zc2

~2!dt,

a2652E ~c2
~2!!* d̂zc3

~6!dt,

a3652E ~c2
~3!!* d̂zc3

~6!dt,

a5652E ~c2
~5!!* d̂zc2

~6!dt,

a3452E ~c3
~3!!* d̂zc1

~4!dt,

a4552E ~c4
~4!!* d̂zc4

~5!dt,

a6852
1

2 E ~c5
~6!!* d̂zc5

~8!dt,

lbb5E ~c i
~b!!* ŴKc i

~b!dt.
ns
TABLE III. Coefficients for symmetrized functions of various irreducible representations~IR!.

ki j
b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
29 30 26 27 28 24 25 21 22 23 16 17 18 19 20

IR j

Ag 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F1u 1 2c7* c9 a6 c9* 2c7 2c11* c12 c12* 2c11 2a1 2c21* b3 c21 c19 c19*
2 1 1 1 1 1 a3 a3 a3 a3 a3 0 0 0 0 0

F2u 1 c8* 2c10* a7 2c10 c8 2c12 c11 c11* 2c12* a1 c22* b2 2c22 c20* c20

2 1 1 1 1 1 2a4 2a4 2a4 2a4 2a4 0 0 0 0 0
Gg 1 c4 2c6 1 2c6* c4* 2c6* c4* c4 2c6 1 c4* 1 c4 2c6* 2c6

2 c6* 2c4 21 2c4* c6 2c4* c6 c6* 2c4 21 c6 21 c6* 2c4* 2c4

Gu 1 c3* 2c1* 2b6 c1 2c3 c5 2c2 c2* 2c5* 2b1 2c4* 1 2c4 2c6* c6

2 2c5 2c2* b1 c2 c5* 2c3 2c1* c1 c3* 2b6 c6 1 c6* c4* 2c4

Hg1 1 c17* 2c18* a8 2c18 c17 c16 2c15 2c15* c16* 2a5 2c15 2a5 2c15* c16 c16*
2 c14* 2c13 2a2 2c13* c14 2c30* c25 c25* 2c30 2a9 2c29 a10 2c29* c26* c26

3 1 1 1 1 1 2a4 2a4 2a4 2a4 2a4 a3 a3 a3 a3 a3

Hg2 1 2c15* c16* 2a5 c16 2c15 2c18 c17 c17* 2c18* a8 2c15 2a5 2c15* c16 c16*
2 2c29* c26 a10 c26* 2c29 2c13* c14 c14* 2c13 2a2 c25 2a9 c25* 2c30* 2c30

3 a3 a3 a3 a3 a3 1 1 1 1 1 2a4 2a4 2a4 2a4 2a4

Hu 1 2c28 c24 2b4 2c24* c28* c27* 2c23* c23 2c27 b5 c13 2a2 c13* c14 2c14*
2 2c27 2c23* b5 c23 c27* c28 c24* 2c24 2c28* b4 2c14 2a2 2c14* 2c13* c13

3 0 0 0 0 0 0 0 0 0 0 21 1 21 1 21

Note:The coefficients fori 51 – 15 are listed. The coefficients for the numbers below these values ofi coincide in the case of even irreducible representatio
and differ in sign in the case of odd irreducible representations.
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The lower index of a function denotes its ordinal numb
in the basis set of the corresponding irreducible represe
tion, which is denoted by the upper index. Here and belo
to make the notation convenient, we replace the stand
notation of irreducible representations in the formulas
numbers:Ag→1, F1u→2, F2u→3, Gg→4, Gu→5, Hg

(1)

→6, Hg
(2)→7, andHu→8. Also, dt is the volume element

The matricesM (237), M (337), M (537), M (438), and
M (738) coincide, respectively, with the matricesM (2
36), M (336), M (536), M (536), andM (638) if we
replace the multipliers in the latter by, respectively,a27,
a37, a57, a48, and a78, whose explicit expressions ar
similar to the respectiveabb8 . The expression forlbb also
incorporates two similar irreducible representations belo
ing, however, to different levels, viz.,b565Hg

(1) and b
575Hg

(2) ; here the indexi in lbb is any one of the indices
within the irreducible representationb. The parameterslbb ,
a12, a26, a27, a36, a37, anda34 are real, and the param
etersa56, a57, a45, a48, a68, and a78, imaginary. The
choice of the coordinate system is shown in Fig. 1.

APPENDIX B

In addition,

ki3
2,352~ki1

2,3!* , ki3,4
4,5 5~ki2,1

4,5 !* ,

ki5
6,7,85~ki1

6,7,8!* , ki4
6,7,852~ki2

6,7,8!* ,

Db5(BbSb)21/2, Sb5(m50
8 nm

b sm , where smÞ0 are the
different possible overlap integrals~they are presented below
in decreasing order!: s1285*w1* w idt, wherei 52, 3, 7, 8,
14, 15, 23, and 29~here and in other places in the text, fori
we have given several ‘‘representative’’ wells for the resp
tive sm) for m51,2,...,8, respectively;s051.

a15
1

q
, a25

1

s
, a3,45

~p71!

2
, a552a2 ,

a6,75
a3,4

q
, a854a2 , a9,105

~3p71!

~2s!
,

b1,65
i

N7 , b2,35
iR6

2
, b4,55

b2,3

t
;

c1,25
1

36p
1

i

qR6 , c3,55
1

~p61!
1

i

qU6 ,

TABLE IV. Values of Bb andnm .

b Bb n0.8 n1,7 n2,6 n3,5 n4

1 30 1 4 4 4 4
2 5p 6(p21) 64 62(p21) 62(32p) 0
3 5p 6(p11) 74 62(p11) 72(31p) 0
4 30 1 21 21 21 4
5 230 61 61 73 71 0
6 10 4 2(3p11) 3p21 2 28
7 10 4 2 2(3p11) 3p21 28
8 210 61 72 0 62 0
r
ta-
,
rd
y

-

-

c4,65
1

p61
1

iR6

2q
, c7,8511

iN7

2q
,

c9,105
1

q~36p!
1

iR7

4
, c11,125

c4,6

q
,

c13,145
c4,6

s
, c15,165

2c4,6

s
, c17,185

4c4,6

s
,

c19,205
~p1 iN7!

2q
, c21,225

p

q~p61!
1

iR6

4
,

c23,245
c19,20

t
, c25,265

~76p!/q1 iA65719p

4t
,

c27,285
c21,22

t
, c29,305

46p1 iA2572p

2s
;

p5A5, N65A562p,

R65A56p, U65A25611p.
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Roughening of a Si „100… surface induced by the adsorption of oxygen near the solid-
oxide nucleation threshold

V. D. Borman,* ) Yu. Yu. Lebedinski , and V. I. Troyan

Moscow Institute of Engineering Physics, 115409 Moscow, Russia
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Zh. Éksp. Teor. Fiz.114, 239–262~July 1998!

An investigation of the processes on a Si~100! surface interacting with oxygen near the solid-
oxide nucleation threshold using x-ray photoelectron spectroscopy and atomic-force
microscopy is described. The nucleation threshold is the boundary between the temperature and
oxygen pressure regions where a phase transition with the formation of a submonolayer
oxide and a roughening transition caused by oxygen adsorption occur. Near the nucleation
threshold, either a random rough relief or a quasiperiodic structure is formed on a surface coated
with chemisorbed oxygen. The formation of the rough relief due to oxygen adsorption has
been interpreted within the theory of phase transitions as a result of vacancy clustering. A model
that allows one to describe the dynamics of processes on the surface near the nucleation
threshold in qualitative and in some cases in quantitative terms has been suggested. ©1998
American Institute of Physics.@S1063-7761~98!01707-7#
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1. INTRODUCTION

Effects resulting from the interaction between oxyg
and a silicon surface have attracted a lot of attention rece
since these processes are interesting from the viewpoin
both fundamental research1–6 and various technologica
applications.7–10 It has been known11–16that the formation of
a submonolayer oxide on a Si surface proceeds like a fi
order phase transition. As the temperature increases nea
oxide nucleation threshold, formation of the solid oxide
replaced by generation of the volatile oxide SiO.6,15 The es-
cape of oxygen from the surface with the volatile oxide lea
to a lower chemisorbed-oxygen coverageuch of the surface,
and whenuch is lower than the threshold valueu th , the oxi-
dation phase transition is terminated.

Recent investigations indicated that the general sch
of processes on a silicon surface interacting with oxyg
near the nucleation threshold can be rather complicated.
example, observations using scanning tunneling microsc
indicated that, during a short exposure to oxygen (uch

'1022) at room temperature, defects resembling vacanc
vacancy clusters, and adsorbed atoms from the crystal ap
on the Si surface.17,18 At high temperatures (T5800–
950 K) and low oxygen pressures (p51027– 1028 Torr),
the surface of the terraces becomes rough on the ato
scale.1,3,19 It is known6 that only the desorbed volatile oxid
SiO is generated on a silicon surface under these conditi
Therefore, it seems that a roughening transition occurs on
surface in the region of high temperatures and low pressu
This raises the question of whether the nucleation thresh
is only the boundary of the (p,T) region where the solid
oxide is produced or whether it is the boundary between
regions where the oxidation phase transition and the sur
roughening transition take place.

It is generally accepted that vacancies are generated
1331063-7761/98/87(7)/13/$15.00
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Si surface as lattice atoms leave the surface within deso
SiO molecules.1 At T5300 K, however, the rate of SiO de
sorption is negligible~the activation energy for SiO desorp
tion is6 E53.5 eV); therefore, the emergence
vacancies17,18 at T5300 K cannot be attributed to this pro
cess. We previously20 suggested an alternative mechanism
vacancy generation. According to Ref. 20, the attraction
tween oxygen adatoms and vacancies leads to a decrea
the energy of vacancy formation (Ev) by DE (DE,0),
which is proportional to the oxygen concentratio
(uDEu}uch). Therefore, Ev decreases and may becom
closer to the temperature when the surface is expose
oxygen anduch increases. The number of vacancies in th
case should increase spontaneously without overcoming
activation barrier~vacancy instability!. The attractive inter-
action between the vacancies in a crystal with a suffici
vacancy concentration21 can lead to the formation of vacanc
clusters, which can be observed atT5300 K.17,18 The con-
centration of adsorbed oxygen, however, could not be m
sured in previous investigations of surface morphology us
scanning tunneling microscopy and high-vacuum reflect
electron microscopy.2,3,17–19,22It was suggested23,24 that sur-
face roughness can result from vacancy clustering, and
the relief amplitude is determined by the number of cluste
vacancies in the near-surface layer at a given point on
surface.

It follows from the above statements that there is still
clear picture of the processes on a silicon surface interac
with oxygen. The nature of the solid-oxide nucleation thre
old, the mechanism of oxide formation, the generation
vacancies, and surface roughening have also remained
clear.

This paper presents the results of an experimental inv
tigation of the dynamics of the formation of a submonolay
oxide and a rough relief on a Si~100! surface near the nucle
© 1998 American Institute of Physics
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ation threshold. The rough relief was studied by atomic-fo
microscopy. The surface morphology was also monitored
scanning electron microscopy. The oxygen concentration
the surface was measured using a technique based on
photoelectron spectroscopy. This technique allowed us
monitor the accumulation of chemisorbed oxygen and ox
production in real time during exposure of the surface
oxygen.

We found that sequential changes in the way in wh
oxygen interacts with silicon take place in a narrow tempe
ture range of widthDT;30 K as the temperature is in
creased in the (p,T) region near the nucleation thresho
studied. The regime in which the solid oxide is produced
replaced by oxidation of the rough surface, and at hig
temperatures the rough relief is formed in the absence of
oxide~Sec. 3!. The position of the nucleation threshold in th
(p,T) region studied was derived from measurements of
characteristic time (tox) for formation of the solid oxide as a
function of temperature. Near the nucleation threshold
onset of formation of the solid oxide is delayed until t
oxygen exposure timet th . When the exposure timet,t th ,
chemisorbed oxygen is accumulated on the surface, and
time t th increases with temperature. We also found tha
rough relief is formed in the presence of adsorbed oxygen
the surface. Our results are in disagreement with ea
predictions23,24of a narrow roughness size distribution, sin
the relief observed is characterized by the presence of sp
quasiperiodic deep pits against a background of small-s
fluctuations of the surface height under certain condition

The processes on a silicon surface interacting with o
gen near the oxide nucleation threshold are analyzed in S
4 and 5. The experimental data can be described in term
a competition between the two phase transitions. These a
first-order phase transition with growth of a submonola
oxide and a phase transition with surface roughening indu
by oxygen adsorption. In analyzing the growth dynamics
the submonolayer oxide near the threshold and in determ
ing the threshold temperature~pressure! ~Sec. 4!, we use the
Volmer–Weber–Zel’dovich theory, taking into account t
diffusive interaction between oxide islands and the block
of the surface by them.12,16 The dynamics of surface rough
ening is analyzed in terms of the theory develop
previously23,24as a result of vacancy clustering~Sec. 5!. The
model of processes on the silicon surface near the o
nucleation threshold allows us to explain the switchover
tween oxygen-silicon interaction regimes and the feature
the surface relief discovered.

2. EXPERIMENTAL TECHNIQUES

The experiments were performed on an XSAM-800
ray photoelectron spectrometer. X-ray photoelectron spe
were excited by theKa line from a Mg source~1283.6 eV!.
The spectrometer resolution at the Au 4f 1/2 line was 0.9 eV.
The energy scale was calibrated using the C 1s line (Eb

5284.6 eV). The sample wasn-type Si~100! and had di-
mensions of 43830.3 mm3. The sample surface wa
chemically cleaned by etching in a 5% HF solution imme
ately before setting it in the spectrometer chamber. Bef
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the measurements the sample was annealed in ultra
vacuum in the spectrometer chamber (1029 Torr, 1300 K!.
After this processing, we had a Si~100! surface atomically
clean within the sensitivity of x-ray photoelectron spectro
copy and Auger spectroscopy.

During the measurements in the temperature range 8
1200 K, the sample was heated by an electric current wh
was passed through a wafer of the silicon being tested wi
thickness of'300 mm. The current stabilization system a
lowed us to maintain the sample temperature constan
within 61 K during the measurements. This accuracy
temperature stabilization was confirmed by the reproduci
ity of the measurements of the total oxygen line intens
versus exposure time performed at close temperatures di
ing by DT51 K.

The technique for studying the kinetics of the initial ox
dation of the Si~100! surface was based on measurements
the amplitude of the O1s oxygen peak as a function of ex
posure time in oxygen in a real-time mode and has b
described in detail elsewhere.12 The relationship between th
measured amplitudes of the O1s (I O) and Si 2p (I Si) lines,
on the one hand, and the oxygen concentration on
Si~100! surface, on the other, i.e., the calibration curve, w
determined using the technique described in a previ
publication.12 Additional evidence in favor of the adequac
of our technique is provided by the agreement between
results and the data by Lutzet al.,25 some of which were
obtained under the same conditions as in our experimen

The surface roughness due to exposure to oxygen
tested using a Solver P4-SPM atomic-force microscope.
spatial resolution attained in a normal direction w
60.3 nm, and the resolution in a plane was61 nm. The
angle between the sample surface and the~100! crystal sur-
face was within 0.1°. This accuracy is confirmed by t
image of the original surface using atomic-force microsco
~see Fig. 4a!. Note that the actual spatial resolution of 0.3 n
attained in the normal direction did not allow us to dete
atomic steps on the surface and 2D oxide islands. In orde
study the relief formed, we transported samples processe
the ultrahigh-vacuum chamber of the electron spectrom
to the P4-SPM microscope. In the process, the sample
face was coated by an oxide film with thickness,2 nm. The
value 2 nm determined the possibility of studying sho
wavelength fluctuations of the surface height on the re
formed. The surface morphology was also monitored usin
DSM-960 scanning electron microscope.

In order to identify oxygen and silicon states in the in
tial oxidation stage, we used high-resolution spectra of
O1s and Si2p lines. As in earlier experiments,11,13,14,25–28we
found that silicon atoms near the surface exist in four oxi
tion states: Sin1, wheren51,2,3,4~Fig. 1, curvesa andb).
A comparison between the Si 2p spectra of clean and ex
posed surfaces~Fig. 1! shows that the latter contains a shou
der on the high-binding-energy side relative to the Si 2p line
of clean Si~99 eV!. According to Ref. 14 and Fig. 1, thi
shoulder is due to Si atoms in different oxidation stat
Si11, Si21, Si31, and Si41. The dotted lines in Fig. 1 show
the respective components of the Si 2p spectrum.14 The oxy-
gen spectrum around the O1s line peaking at 531.7 eV also
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has a shoulder on the high-binding-energy side atT
5300 K. Decomposition of this spectrum into two Gauss
lines reveals that the shoulder is due to a peak correspon
to a binding energy of 533.5 eV with an amplitude four tim
smaller than that of the main peak at 531.7 eV. According
the interpretation suggested by Hollingeret al.,29 these two
peaks correspond to the oxide-like bridging oxygen a
atomic nonbridging oxygen.

The Si 2p spectrum corresponding to the same expos
to oxygen («5100 L, where 1 L51026 Torr•s) at room
temperature is similar to the spectrum taken from a clean
surface with a small contribution of Si11 and Si21 states. In
other words, Si41 states which correspond to pure SiO2, do
not appear at room temperature after relatively small ex
sures. At higher temperatures, the O1s spectrum is an almos
symmetrical peak atEb5531.8 eV with a small wing
~hump! on the high-binding-energy side. At the same tim
Si31 and Si41 states corresponding to a silicon oxide eme
in the Si2p spectrum~Fig. 1!. This is in agreement with the
data obtained by Hollingeret al.29 The numbers of oxygen
atoms in the oxide and chemisorbed states were determ
using a technique described elsewhere.12 The technique is
based on measurements of the intensity of the Si2p line,
which falls off owing to the reaction between oxygen and
silicon surface. At submonolayer values of the oxygen c
erageu, where the oxide film thickness is smaller than t
mean free path of Si 2p photoelectrons, the intensityI Si de-
creases linearly asu increases. Assuming that the intensiti
of the Si2p

31 and Si2p
41 lines, which correspond to silicon oxid

states~Fig. 1!, drop because they are blocked by oxygen
the oxide state (uox) and that the Si2p

11 and Si2p
21 lines are

diminished by oxygen in the chemisorbed state (uch), we can
easily determine the ratio between the oxygen atoms in b
the chemisorbed and oxide states. Thus, simultaneous
surements of the Si2p and O1s lines allow us to determine
the fractions of oxygen in the oxide and chemisorbed sta
as well as the number of silicon atoms in a silicon oxide

FIG. 1. X-ray photoelectron spectra of Si 2p on a Si~100! surface in differ-
ent oxidation states Sin1 (n51 – 4, dotted curves1, 2, 3, and4! after expo-
sure to oxygen (t5100 s, p51026 Torr, T5921 K) ~curve a! and clean
surface~curve b!.
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3. EXPERIMENTAL RESULTS

Our experiments were performed in the region ofp and
T near the oxide nucleation threshold. The line of this thre
old was determined empirically. In earlier experiments30,31

the solid-oxide nucleation threshold was detected at r
tively high temperaturesT.1100 K and pressuresp
.1025 Torr. Lander and Morrison30 found that the LEED
pattern typical of a clean Si surface disappeared after
passage across this threshold. Later experiments dem
strated that volatile SiO is desorbed from the Si surface
temperatures near the threshold and that its flux increa
with the temperature.6 Therefore, the existence of thi
boundary is attributed to a decrease in the coverage of
surface with chemisorbed oxygen (uch) to values below the
thresholdu th since oxygen atoms leave the surface with
SiO molecules. This suggestion is supported by the temp
ture dependencepth(T)5p0 exp(2E0 /T), where31 E053.80
60.2 eV is close to the activation energy for the desorpt
of SiO, which equals6,32 E53.560.1 eV. Hereafter the Bolt-
zmann constantk51 in our formulas. Since the differenc
uch2u th drops near the nucleation threshold, one can exp
that, in accordance with the theory of first-order phase tr
sitions, the growth rate of the oxide phase should decre
and the characteristic timetox for the formation of a mono-
layer of the solid oxide on the surface should increase c
siderably. The position of the nucleation threshold was
determined in the present work in the region of pressures
temperatures investigated@T5850– 950 K, p5(4 – 10)
31027 Torr#.

Figure 2 shows measurements of the total oxygen c
erageu5uch1uox in both the chemisorbed and oxide stat
on the Si surface at an oxygen pressure of 631027 Torr as a
function of exposure time in a narrow temperature range
width DT'35 K. It is clearly seen at the lowest temperatu
T5890 K of this range thatu achieves a limiting value afte
a long exposure time. This temperature corresponds to
formation of an oxide monolayer on the surface (u5uox

'1, uch'0), which is supported by observations of Si41 and
Si31 states of oxidized silicon. Note that the sticking coef
cient of oxygen molecules on a silicon oxide surface is th
orders of magnitude lower than the value on a clean silic
surface; therefore, the total coverage observed after an e
sure timet5800 s atT5890 K is determined only by the
oxide, i.e.,u'uox anduch'0. At the maximum temperature
T5925 K of the range studied, no oxide is produced on
surface during an exposure time oft5810 s, and the final
oxygen coverage on the surface is within 0.15 (uox<0.15).
Therefore, the temperature range 919–925 K, in which
transition from the regime of solid oxide monolayer form
tion to the chemisorption regime with a small value ofuch

occurs, is the region of the solid-oxide nucleation thresh
at p5631027 Torr. At higher pressures the threshold r
gion shifts toward higher temperatures. This shift cor
sponds to the temperature dependence of the nuclea
threshold pressurepth .

The absence of the solid oxide on the surface at
maximum temperatureTmax in this experiment can be as
cribed either to the fact thatTmax.Tth at this oxygen pressure
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FIG. 2. Oxygen coverageu5uch1uox of the Si~100! surface as a
function of time near the oxide nucleation threshold (p56
31027 Torr): ~1! 890 K; ~2! 906 K; ~3! 910 K; ~4! 912 K; ~5! 915
K; ~6! 925 K.
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or to the insufficient measurement time in comparison w
the characteristic timetox for the formation of an oxide
monolayer. Figure 3 shows the timetox , in which the total
oxygen coverage achievesu50.7, plotted against tempera
ture. The graph clearly indicates thattox increases rapidly as
the temperature approachesTth5905 K. Therefore, the tem
peratureTth5905 K can be defined as the threshold tempe
ture for oxide nucleation at a pressurep5631027 Torr.

As follows from measurements of Si2p and O1s spectra
at temperatures 902,T,920 K, the oxygen on the surfac
exists in both the chemisorbed and oxidized states, and
surface is rough~Fig. 4!. In this region, oxidation in an oxy
gen atmosphere leads to irreversible changes in the su
morphology. In repeated experiments with surface oxidat
in the same regime after removing the submonolayer ox
by heating the sample to temperaturesT.1200 K in vacuum
at p51029 Torr, the previously recordedu(t) curves shown
in Fig. 2 could not be reproduced.

Note that the temperatureT5902 K coincides within the
experimental error with the temperature at which the time
oxide monolayer formation dramatically increasesT
5905 K in Fig. 3!. Thus, there is a temperature range n
the threshold in which the solid oxide is produced conc
rently with the surface roughening. At lower temperatu
only a solid oxide layer is formed on the surface, and
higher temperatures only the rough relief is formed un
conditions for oxygen chemisorption.

Now let us discuss the changes in the oxygen accu
lation dynamics on the surface as the temperature va
from its maximum to the minimum in the range studied ne
the nucleation threshold. Figure 2 clearly shows that at
minimum and maximum temperatures the oxygen cover
u(t) is described by saturating curves. At the minimum te
perature theu(t) curves are characterized by the timetox for
oxide monolayer formation, and at the maximum tempe
ture they are characterized by the timetch for the achieve-
ment of a steady density of chemisorbed oxygen. At int
mediate temperatures, theu(t) curves have an additiona
characteristic timet th , after which the rate of oxygen accu
mulation alters considerably. After exposure times lon
than t th , there are states on the silicon surface character
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of the solid oxide (Si31 and Si41). For this reason, the oxy
gen coverageuch at which the accumulation rate jumps ca
be considered to be the threshold coverage for the onse
the silicon-oxidation phase transition near the nucleat
threshold. Note that the oxygen accumulation rate at the
set of oxide layer growth,t>t th , depends weakly on tem
perature. As is shown by Fig. 2,t th increases with tempera
ture.

Atomic-force micrographs of the Si~100! surface after
exposure to oxygen under the conditions of experiments n
the nucleation threshold are shown in Fig. 4. For an initia
smooth surface, the measured change in the surface h
over a scanning length of 33103 nm is 0.2–0.3 nm~Fig.
4a!, which is within the spatial resolution of the instrume
in the normal direction. The characteristic feature of the s
face relief after an 800-s exposure to oxygen atp56
31027 Torr and T5925 K is a periodic pattern of spars
deep pits against a background of small-scale fluctuation
the surface height. The average pit depth ish'30 nm, and
the distance between theml'800 nm. The rough surface
relief turns up after exposure to oxygen throughout the

FIG. 3. Oxide growth timetox as a function of temperature atp56
31027 Torr. The dashed curve was constructed using Eq.~3!.
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FIG. 4. Image obtained using an
atomic-force microscope and profile
of rough Si~100! surfaces at an oxy-
gen pressurep5631027 Torr: ~a!
initial surface;~b–d! after heating in
oxygen at 915 K~b!, 925 K ~c!, and
945 K ~d!.
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gion of parameters tested near the nucleation threshold~see
Fig. 3!. The characteristic relief amplitude over a plane w
dimensions of 434 mm is ,30 nm, and the characteristi
linear dimension along the plane is,250 nm. At higher
temperatures,T.940 K, the surface remains smooth with
the experimental uncertainty after exposure to oxygen~Fig.
4!.

Hence it follows that the regimes of interaction betwe
oxygen atoms and a Si~100! surface change sequentially ne
the oxide nucleation threshold as the temperature increa
The regime in which the solid oxide is produced on the s
face is replaced by the regime of oxide formation on
rough surface, and at higher temperatures only surf
roughening in the presence of chemisorbed oxygen ta
place. Note also that, near the threshold, the oxide is
generated immediately when the surface is exposed to
gen, but only after a certain delayt th . Until this moment,
oxygen is accumulated on the surface only in the che
sorbed state.
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4. GROWTH OF A SUBMONOLAYER OXIDE NEAR THE
OXIDE NUCLEATION THRESHOLD

The growth of a submonolayer oxide has been stud
previously12,16 within the phenomenological Volmer–
Weber–Zel’dovich theory of first-order phase transition
According to the concepts based on this theory, a submo
layer oxide grows in the form of 2D islands, and this proce
has been observed in experiments.14,18,25,26,32,33The growth
of islands in the vertical direction can be neglected since
oxygen sticking coefficient on a SiO2 surface is three order
of magnitude lower than on a clean Si~100! surface.34 Ad-
sorbed oxygen atoms are brought to island perimeters ow
to surface diffusion. Oxygen atoms are trapped by oxide
lands, and silicon lattice atoms, which are abundant in
material, are incorporated into the islands concurren
Therefore, the island growth rate is determined by the deg
of supersaturation of the adsorbed oxygen.

The phase transition with formation of a submonolay
oxide proceeds when oxygen is constantly supplied to
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surface from the gaseous phase. Owing to the diffusive
teraction between islands mediated by the concentration
of adsorbed oxygen and blocking of the surface by grow
islands, the critical island dimension increases with the
posure time. The growth rate is limited by the capture
oxygen atoms on the island boundaries. The oxygen co
ageuox due to the islands on the surface as a function of
exposure timet near the nucleation threshold atuch>u th is
given by the expression12,16

uox5S 12
u th

u0
D tanh2

t

tox
, ~1!

tox5
A

ApNu0n

~Tth2T!21/2, u05Qst, ~2!

wheret5(a1QsV)21, a is the oxygen escape rate,V is
the oxygen adatom cross section,N is the surface density o
oxide islands,n is the rate of adsorbed oxygen capture on
island perimeters,u th and Tth are the threshold coverage o
the surface with oxygen adatoms and the threshold temp
ture for oxide nucleation,tox is the characteristic oxide
growth time,Q5p/A2pmT is the flux of oxygen from the
gaseous phase on the surface,s is the sticking coefficient,
and A is a constant independent ofTth2T. The nucleation
threshold temperature is given by the expression

p5p0 exp~2Ea /Tth!, ~3!

whereEa is the activation energy for oxygen escape fro
the surface. WithEa53.860.2 eV Eq. ~3! adequately de-
scribes the experimental data obtained by Smith
Ghidini31 at higher temperatures and pressures than thos
our experiments.

The parameters of our experiments (p'1026 Torr and
T'900 K) satisfy the conditions under which the interacti
between oxide islands is significant,L' l (L5ADt is the
characteristic diffusion length of oxygen adatoms over ti
t, and l'N21/2 is the distance between islands! and island
growth is limited by the time for the incorporation of oxyge
into the oxide,nL/D!1, and these conditions were used
deriving Eq. ~2!. In fact, whenL' l'1026 cm ~the island
density is estimated following Refs. 1 and 3 to beN
'1012 cm22), the diffusion coefficient of adatomsD
'L2/t'10211 cm2/s @a'1021 s21 ~Ref. 6! and VsQ
'1022 s21#, which corresponds to a reasonable value of
activation energy E'1.7 eV. The inequality n!D/L
'1025 cm/s is also satisfied with an activation energyE
51.8 eV for oxygen capture by an island, which is asso
ated with the passage of a silicon atom from the lattice to
oxide, whose activation energyE'1.83 eV.

It follows from Eqs.~2! and~3! that the coverage of the
SiO2 layer on the surface tends to zero and the oxidation t
increases rapidly (tox→`) as the temperature approach
the nucleation threshold (T→Tth). This is a general property
of first-order phase transitions and should not depend on
assumptions made.

Figure 2 clearly shows that the dotted curve defined
Eq. ~1! is in satisfactory agreement with experimental d
on the boundary of the oxide nucleation region. This eq
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tion also describes experimental data obtained at lower t
peratures, far from the threshold.12 The measurements o
tox(T) ~Fig. 3! and the theoretical curve given by Eq.~2! are
in qualitative agreement. The measurement ofTth , however,
is higher than the theoretical values estimated from Eq.~3!.
Theuox(t) curves forT.915 K are in disagreement with th
calculations. In this temperature range the onset of the
dation process is delayed. The oxide growth takes place o
at t>t th anduch>u th . Finally, one can see in Fig. 2 that th
oxidation ratek5duox /dt is almost constant with the tem
perature (T→Tth and uch→u th) near the nucleation thresh
old. This observation contradicts Eq.~2!, from which follows
k5(uch2u th)

23/2, and hencek→0 asuch→u th .
It seems that these features of the oxidation proc

should be attributed to silicon surface roughening at te
peraturesT.915 K. If we describe surface roughening
terms of vacancy clustering,23,24we must analyze the dynam
ics of the accumulation of vacancies in the process of oxy
adsorption in order to account for these anomalies. When
exposure timet,t th , the adsorbed oxygen is accumulated
the surface. It is known that vacancies are generated w
lattice atoms leave the surface within SiO molecules.1 These
molecules form as a result of the short-range interaction
tween oxygen and Si adatoms from the crystal.6 Silicon ada-
toms from the crystal turn up when Si lattice atoms leave
first atomic layer owing to thermal activation and occu
positions of adsorbed atoms on terraces, while vacancies
generated in the first atomic layer. Hence, as a result of
desorption, excess vacancies should be generated in the
atomic layer. Inclusion of the long-range interaction betwe
vacancies and oxygen adatoms in the mean-field approx
tion leads to the following expression for the equilibriu
densitynv

(0) of vacancies due to oxygen adsorption:20

nv
~0!5n0 exp~2Eeff /T!,

~4!
Eeff5E02uchT exp~Ua2v /T!,

where Ua2v is the depth of the rectangular potential we
modeling the interaction between oxygen adatoms and
cancies. The value ofUa2v is unknown. Below we shall use
Ua2v'0.1– 0.5 eV in our calculations.

In accordance with Eq.~4!, the equilibrium vacancy den
sity increases withuch. When the oxygen coverage on th
surface is

u ch
v 5

E0

T
expS 2

Ua2v

T D , ~5!

the effective energy of vacancy formation is close to t
temperature, and the number of vacancies and adsorbed
tice atoms can increase spontaneously without overcom
an activation barrier~vacancy instability!.

Thus, there are three species on the surface near
nucleation threshold and at small exposure timest,t th be-
fore the onset of oxidation, namely vacancies, oxygen a
toms, and silicon adatoms from the crystal, whose densit
nv, na, ns, are different from their equilibrium values. Th
kinetic equations describing their accumulation on the s
face, which consists of plane terraces and steps, fort,t th can
be written as follows:



e

139JETP 87 (1), July 1998 Borman et al.
FIG. 5. ~a! Chemisorbed-oxygen coverag
u, ~b! surface densitynv of vacancies, and
~c! surface densityns of adsorbed atoms as
functions of exposure time atp51026 Torr
and temperatures of 920 K and 930 K;t th is
the exposure time at which condition~5! is
satisfied.
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ṅa5Qs~12uch!2«nans ,

ṅv5g1nv
~0!ns

~0!2gnvns2vnv , ~6!

ṅs52«nans1g1nv
~0!ns

~0!2gnvns1G.

Here«, g, andg1 are the SiO desorption rate and the rates
vacancy/Si-adatom pair generation and annihilation, resp
tively, nv

(0) and ns
(0) are the equilibrium densities of vacan

cies and Si adatoms. The generation of SiO molecules in
porated into the first line of Eq.~6! is due to the short-rang
interaction6 between oxygen and silicon adatoms («nans).
The last term in the equation forṅv takes into account the
vacancies moving into the crystal bulk,v5Dv /a2 @D
} exp(2Eb /T)#. The flux G of silicon atoms from steps to
terraces in the approximation of a small frequency of at
migration from a position on a step to a position on a bre
in comparison with the frequency of atom migration to
terrace is given by the expression35

G5g~ns
~0!2ns!, g5v0

1

akln0
expS 2

Eg

T D , ~7!

wherev0 is the Debye frequency,l21 is the number of steps
per unit length on the surface,ak

21 is the number of breaks
per unit length of a step,Eg is the potential barrier on the
way from a step to a terrace, andn0 is the density of surface
atoms of the crystal.

When no oxygen is supplied to the surface (Q50, na

50), the system of equations~6! yields the equilibrium so-
lution
f
c-

r-

k

ns5ns
~0! , nv5nv

~0! . ~8!

By solving Eq.~6! numerically, one can analyze the kinetic
of the densities of different species on the silicon surfa
until the onset of formation of the solid oxide (t<t th). The
desorption of SiO molecules, generation~annihilation! of
silicon-adatom/vacancy pairs, and penetration of vacan
into the bulk are activation processes. For the numerical
lution we took the following activation energies of these pr
cesses:Es53.6 eV, Eg5Eg1

51.2 eV, and Eb51.5 eV.
These values are within the spread of values quoted in
ferent publications.6,36,37 The energyEg has been estimate
at 2.8 eV.36

The coverage of the surface with oxygen adatoms,uch

5na /n0 , as a function of exposure time is given in Fig.
~dashed line!. It is clear that measurements of the total ox
gen coverage of the surface,u1uox , are in satisfactory
agreement with calculations ofu(t) at times before the onse
of oxidation,t<t th . Hence, there is a good reason to suppo
that at t<t th all oxygen is in the chemisorbed state. Th
assumption is supported by the absence of Si31 and Si41

states in the x-ray photoelectron spectra att,t th .
Calculations of the oxygen coverage and the concen

tions of vacancies and silicon adatoms as functions of ex
sure time for temperatures of 920 and 930 K atp
51026 Torr are given in Fig. 5. It is seen that the numbe
of vacancies and oxygen adatoms increase with the expo
time at both temperatures near the oxide nucleation thre
old, whereas the number of silicon adatoms drops. This
caused by the formation of volatile SiO molecules. T
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curves also demonstrate that at lower temperatures~920 K!
near the threshold the timet th at which the threshold oxyge
coverage is achieved@uch(t th)5u th# is smaller thantR , when
uch attains the valueuch

v specified by Eq.~5!. Under these
conditions, the oxide grows on the surface at a low vaca
density, and the surface may remain atomically smooth.
higher temperatures~930 K! the inverse condition is satis
fied, t th.tR . In this case, spontaneous growth of the vaca
density starts earlier than oxidation, andnv can achieve a
value sufficient for vacancy clustering, and a rough relie
formed on the surface. This process will be discussed in S
5.

Calculated plots of the time at which the nucleatio
threshold oxygen coverageu th is achieved as a function o
temperature at two pressures (p5631027 Torr and
1026 Torr) are shown in Fig. 6. It is seen that a higher te
perature corresponds to the samet th at the higher pressure, i
agreement with experimental data plotted in the same fig
Note that the flux of SiO molecules as a function of expos
time calculated at different temperatures are in qualita
agreement with experimental data.6,32 This result confirms
the correctness of taking into account the main surface
cesses included in Eq.~6!.

Let us discuss features of the silicon oxidation proc
near the nucleation threshold. The slow variation ofuch at
t<t th leads us to a conclusion that the phase transition w
the formation of SiO2 has a quasistationary character near
threshold. Therefore, in describing the conditions for the
set of oxidation, one can perform averaging in the first line
Eq. ~6!, which describes the variation ofna , by representing
ns(t) as a slowly descending linear function of time fort
;t th . As a result of this averaging, the concentrationns(t)
can be replaced bŷns(t th)&5@ns

(0)1ns
th(t th)#/2. The quasis-

tationary solution of Eq.~6! for ṅa allows us to determine the
condition for the onset of oxidation:uch(t th)5u th . Equation
~2! for the oxide-phase coverageuox can be easily general
ized to the case ofns and nv weakly deviating from their
equilibrium values in the region near the threshold by repl
ing a in the first line of Eq.~6! for ṅa and in the subsequen

FIG. 6. Temperature dependence of the timet th in which the chemisorbed-
oxygen coverage achieves the threshold value at pressures o
31027 Torr ~1! and 1026 Torr ~2!. Points—experimental data for thes
pressures.
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formulas with a5«^ns(t th)&. Then the value ofuox as a
function of pressure, temperature, oxygen coverage, and
posure time in the threshold region is expressed by Eqs.~1!
and ~2!, but oxidation starts at the timet5t th(T,p), as was
observed in the experiments~Fig. 2!. The experimental fact
that the oxidation ratek does not decrease near the thresho
which contradicts the theoretical predictions, can be att
uted to the closeness oft th and tR . For this reason, the two
phase transitions, namely oxidation and surface roughen
are observed simultaneously, in agreement with the exp
mentally established oxidation of a rough surface, wh
should have excess vacancies. Since the solid oxide SiO2 is
formed by the short-range interaction between a vacancy
an oxygen atom,20 the oxidation-limiting rate of incorpora
tion ~n! of an oxygen atom into a vacancy on an island p
riphery should increase under these conditions.

5. Si„100… SURFACE ROUGHENING NEAR THE NUCLEATION
THRESHOLD DUE TO ADSORBED OXYGEN

Let us analyze the conditions under which a rough re
is generated and its geometrical parameters after exposu
the surface to oxygen. The rough relief is generated und
constant flow of oxygen molecules incident on the surfa
where the condition~5! for the activationless~spontaneous!
generation of vacancies is satisfied. For this reason, a sil
surface adsorbing oxygen is a source rather than a drai
vacancies, whereas a flow of vacancies into the bulk is
ways impeded by an activation barrier. The bulk dens
nv(t,z) of isolated vacancies in the near-surface layer a
function of the distancez from the surface (z50) and the
time t of exposure to oxygen before the onset of surfa
roughening is determined by the standard solution38 of the
diffusion equation

]nv

]t
5Dv

]2nv

]z2

with the boundary conditionnv(t,0)5(nv)z50 /a @where
(nv)z50 is the time-dependent surface vacancy dens
which satisfies Eq.~6!# and the initial conditionnv(0,z)
5nv

(0) , wherenv
(0) is the equilibrium bulk vacancy density

The surface vacancy density as a function of expos
time has been derived in Sec. 4 without taking into acco
the interaction between vacancies. The conditions for th
clustering should be determined with allowance for this
teraction. The interaction between vacancies (v –v) in the
bulk was discussed in an earlier publication.21 In a nonideal
crystal, which contains defects in the form of substitution
impurities, spatial correlations of vacancies give rise to
effective long-range (r @a) attraction between vacancies. A
distancesr;a vacancies repel one another since one can
place two vacancies at one site. It is well known that ne
surface relaxation and reconstruction take place in silic
and when oxygen is adsorbed atT>900 K, dissolved oxy-
gen atoms are detected in a near-surface layer with a th
ness<100 nm.37 We assume, therefore, that the interacti
between vacancies in the near-surface layer is similar to
in the bulk of a nonideal crystal. Note that observations

6
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vacancy clusters on the silicon surface using scanning
neling microscopy2,17,18 give evidence in favor of attraction
between vacancies.

Hereafter, as in earlier publications,23,24 we describe the
interaction between two vacancies using the model poten

V~r !5H `, r ,a,

2«, a<r<b,

0, r .b.

~9!

In our estimates, we assume21 that the parametera in Eq. ~9!
is of the order of the interatomic distance, the attraction
gion is limited by the conditionb<10a, and«;0.1 eV.

Surface roughening due to the adsorption of oxygen
oms was described as a phase transition with vacancy c
tering in our previous publications.23,24 A more detailed ac-
count of the theory deserves a separate publication. In
section we only interpret our experimental data in terms
conditions under which the silicon surface is roughened
discuss a plausible mechanism of this process, features o
rough relief detected in experiments, and causes of
switchover between oxygen-silicon interaction regimes n
the solid-oxide nucleation threshold.

The phase transition with vacancy clustering was
scribed earlier in terms of the Landau theory.24 The order
parameterj is the deviationdnv of the vacancy density
ñ(t,r ) due to the formation of vacancy clusters in the ne
surface layer from the average densitynv of isolated vacan-
cies:

j~ t,r ![dnv~ t,r !5ñv~ t,r !2nv . ~10!

The vacancies generated accumulate on the surface d
the exposure timet;tR and diffuse into the near-surfac
layer of the crystal. The concentrationnv is a function of
both the distance to the surfacez and the exposure timet,
and it is determined by the ratio between the rates of vaca
accumulation~see Sec. 4! and diffusion. Let us first discus
the phase transition with vacancy clustering in a spatia
homogeneous system, where the mean concentration of
lated vacancies is uniform but time-dependent:

nv5nv~ t,z!z5nv~ t !.

This approximation allows us to account for the switchov
between the oxygen-silicon interaction regimes~oxidation to
roughening!, the upper temperature at which a rough relief
formed, and the features of the rough surface. As will
shown below, the characteristic time of the phase transi
with vacancy clustering (tRT) under the experimental cond
tions is much shorter than the accumulation timetR of iso-
lated vacancies. Therefore, we also assume thatnv is con-
stant ~or quasistationary! over the small characteristic tim
t;tRT in which the fluctuationsdnv(t,r ) develop, and the
argumentt (t;tR@tRT) in the functionnv(t) determines
only the valuenv at the momenttR of the onset of vacancy
clustering. Then

j~ t,r !5dnv~ t,r !5ñv~ t,r !2nv~ tR!. ~11!

Under this definition of the order parameter, the quan
j/n0 ~wheren0 is the density of lattice atoms! is the fraction
n-

ial
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of atoms replaced by clustered vacancies in a near-sur
layer of thicknessH, where the phase transition with va
cancy clustering takes place. Since open pores are gene
~see below!, the depthh of the rough relief at a given poin
on the surface is proportional to the density of clustered
cancies at this point:

h5jH/n0 . ~12!

Therefore, the order parameter is the amplitude of surf
roughness times an arbitrary multiplier.

The Landau theory39 considers a phenomenological e
pansion of the free energy in terms of the order param
near the transition point. The density-function
formalism23,24 developed by Devyatko and Tronin40 for a
system of interacting classical Brownian particles in a m
dium not far from equilibrium allows one to calculate th
coefficients of this expansion. The equation of motion for t
Fourier transformjk(t) of the order parameter reads a
follows:23,24

]jk

]t
52Dvk2

]Fk

]jk
, ~13!

Fk5
1

2
lkjk

21
1

3
Bjk

31
1

4
Gjk

4 . ~14!

The terms proportional tojk
3 and jk

4 in Eq. ~14! for Fk are
‘‘stabilizing’’ factors for the new state of the near-surfac
layer of thicknessH @Eq. ~12!# near the rough surface. Th
coefficientsl, B, andG in Eq. ~14! for Fk are functions of«
andb, which are parameters of the model potential~9! of the
interaction between vacancies:

lk512
nv

nv
c f ~kb!, B5

1

nv
c , G5

2

~nv
c!2 , ~15!

where

nv
c5

3

4pb3

1

e«/T21
, f ~kb!53Fsin~kb!

~kb!3 2
cos~kb!

~kb!2 G .
~16!

In accordance with Eqs.~14!–~16!, the free energyF
5TF is a function of the concentrationnv of isolated vacan-
cies and therefore depends on the oxygen pressure and
perature, as well as the exposure time. Using Eqs.~13!–~16!,
one can determine the conditions for the phase transi
with vacancy clustering. To this end, one should analy
solutions of the equations

Fk~jk!50, ~17!

]Fk /]jk50. ~18!

In experiments at constant pressure and temperature, the
centration of isolated vacancies on an initially smooth s
face increases with exposure time, whereaslk decreases@see
Eq. ~15!#. Whennv is sufficiently small andlk.B2/4G, Eq.
~18! has only one rootjk50, which corresponds, in accor
dance with Eq.~12!, to the only stable state of the vacanc
subsystem, namely the smooth surface. Atlk5B2/4G a sec-
ond minimum of the functionFk(jk) appears, and it corre
sponds to a metastable state of the surface. At even sm
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lk52B2/9G the curve ofF(jk) touches thejk axis at two
points, namelyjk150 andjk25(2/3)B/G. This means that
the smooth (jk50) and rough (jk5jk25nv

c/3) states of the
surface have the same energy. These two states are sep
by a potential barrierQ to oxide nucleation equal to the pea
value ofF at

jk35
B

6G
5

nv
c

12
.

At lk52B2/9G the barrier height is

Q5TF~jk2!5
~nv

c!2Ta6

18•64
.1022

Ta6

b6

1

e«/T21
. ~19!

Equation~19! indicates that, in the case of the long-ran
attraction between vacancies described by potential~9! for
b;10a and «;0.1 eV at the temperaturesT<103 K, the
quantityQ/T is much smaller than unity. Therefore, the tra
sition from the smooth state of the surface withjk50 to the
rough state withjk52B/3G5nv

c/3 can proceed withou
overcoming a nucleation barrier. In this sense, surface rou
ening is similar to the relaxation of unstable states upon s
odal decomposition.41

It follows from the foregoing that the phase transitio
with vacancy clustering should start at an exposure timetR ,
a temperatureT, and a pressurep at which the concentration
of isolated vacanciesnv(t,T,p) satisfies, with allowance fo
Eqs.~17! and ~18!, the relation

lk5
2B2

9G
5

1

9
512

nv~ tR ,T,p!

nv
c f ~kb!. ~20!

The functionf (kb) takes a maximum value equal to unity
k50 @Eq. ~16!#. Therefore, the condition~20! for surface
roughening with a wave vectork close to zero@when
f (kb)51# is satisfied at the minimum vacancy concentrat

nv~ tR ,T,p!5
8

9
nv

c~T!. ~21!

In the initial stage of the phase transition, where fluctuatio
in the vacancy concentration are small, we can retain o
the term linear injk on the right-hand side of Eq.~13!. Then
the characteristic timetk for the kth mode of the order pa
rameter in the initial stage of the phase transition is given
the expression

tk5~lkDvk2!21. ~22!

Taking Eq.~16! into account, we can transform this expre
sion for kb!1 into

tk
21'hF S 1

h
21D1

~kb!2

10 Gk2Dv , h5
nv

nv
c . ~23!

It follows from Eq. ~23! that for h<1, wherelk>0 for all
small k, the quantitytk

21 is positive and thattk
21→0 as

kb→0. For 0,lk<1/9 this means that when the ‘‘energy
condition ~20! for the phase transition is satisfied, the v
cancy system is in the fluctuation region and that criti
slowing takes place, i.e., the relaxation frequency tends
zero as the size of the fluctuations increases.
ated

h-
n-

s
ly

y

-

-
l
to

For h>1, whenlk,0, the quantitytk is negative and
has the sense of the characteristic time for fluctuation gro
~not decay! ~Fig. 7!. In accordance with Eq.~23!, this in-
crease takes place in modes with the wave vectorsk which
satisfy the inequalities

0,~kb!2,~kb!0
2510~121/h!. ~24!

These modes of the order parameter are unstable. The
rapidly developing mode has the wave vector

~kb!min
2 55~121/h!, ~25!

and its characteristic timeutku has the minimumu(tk)minu:

u~tk!minu5
20

3

b2

Dv

1

~kb!min
4

1

h
. ~26!

In accordance with Eq.~23!, whenh>1 andlk,0, the
development of unstable modes withk'kmin should be ac-
companied by the development of small-scale fluctuation
the vacancy density~Fig. 7! with characteristic relaxation
timestk<utk minu, whose wave vectork satisfies the inequal
ity

~kb!2>3~kb!min
2 . ~27!

Thus, the resulting shape of the rough surface fornv>nv
c

(h>1) should be determined by the development of u
stable modes whose wave vectors belong to a narrow re
nearkmin and small-scale fluctuations with wave vectors s
isfying Eq. ~27!.

FIG. 7. Characteristic development time of thekth mode of the order pa-

rameter t̄k5tk(b
2/Dv)21 versuskb calculated from Eq.~23! for h21

51024. The following points are marked on the abscissa axis:A—(kb)min ;
B—(kb)0 ; C—(kb) f ; D—(kb)min).
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The activation energy for vacancy diffusion in silico
is36 Eb'1.5 eV, and the diffusion coefficient atT5900 K is
Dv'1027 cm2/s. Therefore, it follows from our estimate
that, if a rough relief with a maximum characteristic amp
tudeL553102 nm has been formed as a result of the ph
transition with vacancy clustering~Fig. 4!, we have (kb)min

'431022, utk minu'6 s, andh21'1024 for b53 nm.
Note that the vacancy accumulation timetR;102 s ~Fig.

5!. Therefore,tR@utk minu under the experimental condition
and the densitynv of isolated vacancies can be treated
quasistationary in determining the clustering conditions,
was done in deriving Eq.~13!.

Let us discuss the switchover from the oxidation regi
of the interaction between oxygen and silicon to surfa
roughening. The relationnv(tR)5nv

c (h51), which deter-
mines the condition for the formation of unstable develop
modes due to vacancy clustering, yields, with considera
of Eq. ~6! for nv(t) and Eq.~16! for nv

c(T), the timetR as a
function of oxygen pressure and temperature. The curve
tR(T) for p5131026 Torr corresponding to the conditio
nv(tR)5nv

c is plotted in Fig. 8. This figure also shows a pl
of the exposure timet th(T) for the onset of oxidation~the
time when the oxide nucleation threshold,uch5u th , is
achieved!. The curves indicate that at low temperaturesT
,Tg1) tR.t th , i.e., the oxidation process starts before t
vacancy concentration needed for the development of
stable modes according to Eq.~23! is achieved. At low tem-
peratures the rateG of the formation of adatoms from th
crystal and the rate of SiO desorption are small.6 The oxide
islands formed after the exposure timet th are drains for ad-
sorbed oxygen atoms; therefore, their concentration
creases when the islands are formed, and the condition~5!
for the spontaneous generation of vacancies can no longe
satisfied.

At T.Tg1 we havetR,t th , and the surface is roughene
before the solid-oxide nucleation threshold is attained. In
case, the number of steps, which are sources of adatoms
the crystal, increases, and the average distance between

FIG. 8. Temperature dependence of the timetR in which the critical con-
centrationnv

c is obtained~curve2! and of the exposure timet th for the onset
of oxidation ~curve1!.
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drops; therefore, in accordance with Eqs.~6! and~7!, the flux
of SiO molecules desorbed from the surface should grow.
a result, the flux of SiO molecules desorbed from the rou
surface is considerably larger~more than one order of mag
nitude! than the flux from the smooth surface.6 In the long
run, the concentration of adsorbed oxygen decreases a
surface is roughened, and the oxide nucleation threshold
not be achieved.

The free parameters of the model are the parameter
the a-v and v-v interaction potentials:Ua2v50.3 eV,
Uv-v50.1 eV, andb510a. Variation of these parameter
leads to a shift of the temperatureTg1 with respect to the
threshold temperatureTth , but Tg1 is still smaller thanTth

sincetox}(Tth2T)21/2. Therefore, the switchover from th
regime of solid oxide formation to that of surface rougheni
should occur near the oxide nucleation threshold at a t
perature lower than the oxidation threshold temperature
given pressure. This is in agreement with our observation
the switchover between oxidation and surface roughenin
the region of temperatures and pressures above thepth(1/T)
curve. AtUa2v50, vacancies are generated in our model
a result of SiO desorption due to violation of the balan
between formation of vacancies and adatoms from the c
tal. In this case, the vacancy densitynv does not reach the
critical valuenv

c needed for development of unstable mod
at the kinetic parameters selected in our calculations.

The plot of Tg1 versus pressure defines the bounda
between the regimes of planar surface oxidation and sur
roughening induced by oxygen adsorption. In the region
temperatures and pressures under consideration, this bo
ary replaces the threshold line for oxide formation specifi
by Eq. ~3!. Our model, however, does not yield the exa
position of the new boundaryTg1(p), since it does not apply
to tR;t th . AroundTg1 , oxide islands and surface roughne
should develop simultaneously. This corresponds to the
served oxidation of the rough surface. In this region of te
peratures and pressures, interaction between two order
rameters describing the phase transitions with oxidation
roughening should be taken into account.

Our model also yields an upper temperature at which
surface roughness can develop. It is the temperatureTg2 in
Fig. 8. As the temperature rises, the rates of both SiO form
tion and desorption increase, and, consequently, the resu
oxygen concentration on the surface drops. At the same t
the oxygen coverageuch

v , at which the effective energy o
vacancy generationEeff;T, also rises withT @see Eq.~6!#.
Therefore, the condition~6! for the spontaneous generatio
and clustering of vacancies cannot be satisfied above
temperatureTg2 . Then the crystal surface should rema
smooth, in agreement with our experimental data~Fig. 4d!.
In this connection, some attention should be focused on
experimental results reported by Wurmet al.,1 who estab-
lished the temperatureT5950 K, below which terrace sur
faces were roughened and above which only steps were
fected, whereas the terrace surfaces remained smooth,p
5531028 Torr. Our model does not describe the roughe
ing of steps, since they were taken into account only in
averaged sourceG of adatoms from the crystal in Eq.~7!.

Let us discuss the geometrical parameters of a ro



y

u
ug
u
ne
g
te
he
y-

fo
an
ho
ar
rin

s
a

r
va
s
d
e
le
r-

4b
od
flu

ur
th
e

th
c

w
ta

w
a
er
s

he

t

ra

ld
s of
n by

the

nt is

.

ring

e.

r-

to
ncy
en
an

kes
with
ngth
ese
f the
e

ty
pla-
ed

s of
nal
un-
the

un-

.
x-
-
.
his
om
l
c-

-

144 JETP 87 (1), July 1998 Borman et al.
surface~Fig. 4!. Within our model the growth in the densit
of isolated vacancies should continue at timest;tk and
when the condition for emergence of unstable modes,nv
5nv

c , is satisfied owing to the high rate of the spontaneo
generation of vacancies. Therefore, the formation of a ro
surface with characteristic geometrical parameters contin
as vacancies are accumulated on the surface and in the
surface layer. As was noted above, formation of the rou
relief leads to a notable increase in the flux of evapora
SiO by more than one order6 and hence, to a decrease in t
oxygen coverageuch on the surface. For this reason, the ox
gen coverageuch can drop belowuch

v at a certain momentt f

after the onset of vacancy clustering. Then the condition
spontaneous vacancy generation is violated, and the vac
concentration becomes smaller than the clustering thres
nv

c . The flow of vacancies from the surface into the ne
surface layer, where they form clusters, also varies du
surface roughening. In order to determine the timet f , during
which the relief is formed, and the distribution of roughne
amplitudes as a function of time, one should calculate ag
the densitiesna , ns , andnv over the time intervalt f with
allowance for their dependence on the order parametej,
which is equivalent to taking into account the surface cur
ture. The experimental data needed for testing solution
this problem are not available; therefore this problem an
more detailed analysis of the dynamics of surface rough
ing merit a separate study. Here we discuss only the simp
results deriving from our model, which allow us to unde
stand the mechanisms forming the relief shown in Fig.
The latter is characterized by sparse and almost peri
deep pits against a background of small-scale surface
tuations.

It follows from the above statements that the rough s
face is shaped under nonstationary conditions, in which
time-dependent source of vacancies turns off at the mom
t f . The presence of a developed rough relief indicates
t f.utk minu and the vacancy concentration on the surfa
(nv)z50 reaches a value satisfying the conditionnv>nv

c (h
>1) for unstable mode development. If we assume, as
done previously, that the vacancy concentration in a cer
layer is independent of the distancez to the surface, then the
rough surface is formed at timest f>utk minu as a result of the
development of unstable modes with wave vectorsk in the
interval Dk around the point (kb)min @Eq. ~25!# and the re-
laxation of modes with wave vectors (kb) f<)(kb)min . As
the ratio t f /utk minu increases, the intervalDk widens and
(kb) f drops. These conditions correspond to the relief sho
in Fig. 4c, but not Fig. 4b, since the ratio between the ch
acteristic distanceL between the deep pits and the charact
istic size L f52p/kf of short-wavelength fluctuations i
L/L f>4.

As a result of vacancy diffusion from the surface into t
bulk, the density at a depthh from the surface is (nv)h

,(nv)z50 . If pits with depthh are formed, this means that a
this depth (nv)h>nv

c and t f'utk minu. Therefore, in accor-
dance with Eq.~22!, modes withk close to kmin become
unstable at a distanceh from the surface, and (kb)min is
smaller than on the surface sinceh21 is lower. Hence, open
vacancy pores should be seen, and the characteristic
s
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L/L f should be higher than), i.e., sparse deep pits shou
emerge against a background of small-scale fluctuation
the surface height. This corresponds to the surface show
Fig. 4c.

The depth of the sparse pits can be estimated as
maximum depthH at which the vacancy concentrationnv

c

corresponding to the onset of unstable mode developme
achieved:

H;~ t fDb!1/2, ~28!

where Db is the vacancy diffusion coefficient in the bulk
Since the rough surface with the maximumL corresponding
to the average distance between deep pits is formed du
the timet f , then

t f;L2/Ds , ~29!

whereDs is the vacancy diffusion coefficient on the surfac
It follows from Eqs.~28! and~29! that the ratio between the
depth of the sparse pits to the distance between them is

H/L;Db /Ds
1/2.

For silicon, the activation energies for diffusion areEb

'1.5 eV ~Ref. 37! and Es50.7 eV ~Ref. 36!. Therefore,
L/H'30 atT5900 K. This is in agreement with our obse
vations of the relief formed~Fig. 4c!.

Thus, the proposed model of surface roughening due
oxygen adsorption, as a result of a phase transition vaca
clustering allows us to account for the switchover betwe
the oxygen-silicon interaction regimes, the existence of
upper temperature limit at which surface roughening ta
place, and the reasons for the appearance of a relief
sparse deep pits against a background of short-wavele
surface fluctuations. Note that, in order to account for th
features of the process, we needed neither calculations o
time t f in which the relief is formed nor consideration of th
density of isolated vacancies~or other particles! as a function
of the order parameterj, i.e., the dependence of the intensi
of sources/drains on the surface curvature. A tentative ex
nation of this fact is that the formation of the relief observ
takes the timet f>utk maxu, and the rangeDk of unstable
modes is little affected by changes in the sources/drain
vacancies due to surface roughening. This is the traditio
approach to interpreting such features of the decay of
stable states which can be fully described by determining
conditions for the onset of decomposition and revealing
stable, rapidly growing modes of the order parameter.

The authors are indebted to A. V. Khmelev, V. N
Ryabokon’, and R. V. Lapshin for their participation in e
periments, to V. V. Rossinski� for performing some calcula
tions, to V. N. Tronin, O. V. Tapinskaya, and A. V
Emel’yanov for discussions of theoretical aspects of t
work. The authors acknowledge the financial support fr
the Russian Scientific CenterResearch Institute for Physica
Problems. This work was part of the Surface Atomic Stru
tures project within the programTopical Problems in Phys-
ics of Condensed Mediasponsored by the Ministry of Sci
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Magnetoelectric effect and toroidal ordering in Ga 22xFexO3
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The field dependence of the magnetoelectric effect and longitudinal magnetostriction of
Ga22xFexO3 single crystals is studied in magnetic fields up to 200 kOe in the temperature range
from 4.2 to 300 K. It is shown that the magnetoelectric effect in these materials is
determined mainly by the toroidal momentT and is not related to magnetostriction, as was
previously theorized. A new method for determining the toroidal moment by measuring the electric
polarization in a strong magnetic field is proposed. The value of the toroidal moment of the
unit cell in Ga1.15Fe0.85O3 is calculated:T5(Ta ,0,0), whereTa524.155mB Å per unit cell.
Experimental data are analyzed using a theory of toroidal spin ordering, which gives good
agreement with experiment. ©1998 American Institute of Physics.@S1063-7761~98!01807-1#
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1. INTRODUCTION

Since the early studies of the Fe–Ga oxides Ga22xFexO3

~Refs. 1–6!, the interest in investigating them has be
largely due to their combination of ferromagnetic and pie
electric properties. The crystal symmetry of these mater
is described by theC2v

9 space group.5 It should be noted tha
Ga22xFexO3 was the first ferromagnet in which a linear ma
netoelectric effect was discovered7,8 and that its magneto
electric susceptibility exceeded the values previously
served in antiferromagnets. An off-diagonal magnetoelec
effect Pb(Hc) was observed in Ref. 7. It was theorized th
the magnetoelectric effect in Ga22xFexO3 may be caused by
the combined action of the piezoelectricity and magnetost
tion inherent to these materials. Testing this hypothe
however, would require data on the magnetoelastic pro
ties of Ga22xFexO3, which are presently not available in th
literature. There are likewise no data from measurement
the magnetic properties of these crystals in strong magn
fields. The purpose of our work was to study the magne
magnetoelastic, and magnetoelectric properties
Ga22xFexO3 in strong magnetic fields~in 200 kOe! and to
establish the existence of toroidal spin ordering
Ga22xFexO3 which is allowed by the symmetry of thes
crystals.

2. EXPERIMENTAL RESULTS

A combined investigation of the magnetic, magnetoel
tic, and magnetoelectric properties of Ga22xFexO3 (x50.7,
0.85, and 1.0! single crystals was performed in strong puls
magnetic fields up to 200 kOe in the temperature range f
4.2 to 300 K. The single crystals were grown in a melt of t
~Fe2O3–Ga2O3!–~Bi2O3–PbF2! system with slow cooling
from 1100 to 850 °C.9 The magnetostriction measuremen
were performed using a quartz piezoelectric transducer g
onto the single-crystal sample. The magnetoelectric ef
1461063-7761/98/87(7)/6/$15.00
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was measured using the method described in detail in R
10. The magnetic measurements in strong pulsed magn
fields were performed by an induction method, and the m
surements in static magnetic fields up to 12 kOe were p
formed using a torsional anisometer with autocompensat
As is shown in Fig. 1, the values of the magnetic mom
and the Ne´el temperature increase with increasing Fe31 ion
concentration, in agreement with Ref. 3. Measurements
the magnetization and torque curves show that the easy m
netization direction in the compounds investigated is thec
axis of the crystal with the strongest magnetic anisotropy
thebc plane. The relatively large value of the magnetizati
is apparently due to the uncompensated ferromagnetism
agreement with the experimental results of neutron diffr
tion investigations.

A linear nondiagonal magnetoelectric effect (Pb

5abcHc) was previously7,8,11,12predicted on the basis of
symmetry analysis and discovered experimentally
Ga22xFexO3 crystals. We measured not only thePb(Hc)
curve, but also thePc(Hb) curve in pulsed magnetic field
up to 200 kOe for the purpose of discovering the differen
between them, since a difference between the off-diago
components of the magnetoelectric susceptibility tenso
critical for the existence of a toroidal moment. The inves
gations were carried out for the composition Ga1.15Fe0.85O3,
since there are neutron-diffraction data regarding the m
netic structure for just this composition.13,14 The experimen-
tal results that we obtained are presented in Fig. 2. As ca
seen from Fig. 2, the values ofPb(Hc) ~Fig. 2a! greatly
exceed the values ofPc(Hb) ~Fig. 2b! obtained at the same
magnetic fields. We note, however, that a comparison of
off-diagonal susceptibilities is insufficiently well posed
the present experiment, since the magnetic states of the c
tal for Hic andHib differ. To compare the different compo
nents of the off-diagonal susceptibilities in the same m
© 1998 American Institute of Physics
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147JETP 87 (1), July 1998 Popov et al.
netic state of the crystal, the electric polarizationsPb andPc

were measured with the magnetic field oriented along
diagonal in thebc plane. The dependence of the compone
of the electric polarization tensor on magnetic field w
treated by the least-squares method under the assumpti
a power-law dependence of the polarization on field:

Pi5 (
n50

`

dn
i Hn .

The coefficientsdn
i for n>3 were found to be nearly equal t

zero. Figure 3 shows plots ofPb(Hbc) and Pc(Hbc) for a
Ga22xFexO3 crystal with x50.85 at T510 K. The figure
also shows the contributions to the magnetoelectric ef
which are linear and quadratic with respect to the field. T
linear contribution to the magnetoelectric effect was also
served when thePa(Hab) and Pb(Hab) curves were mea
sured in fields sufficient for reorienting the magnetization
the crystal from thec axis to thea axis ~Fig. 4!. From Figs.
3 and 4 it can be seen thatabc@acb and aba@aab . The
temperature dependence of the off-diagonal component
the linear magnetoelectric coupling tensor obtained with
lowance for the fact that the field is oriented along the di
onal in thebc plane is shown in Fig. 5. As will be show
below, the strong difference between the values ofabc and
acb observed is due to the existence of a toroidal momen

FIG. 1. Temperature dependence of the spontaneous specific magneti
of the Ga22xFexO3 system:1—x50.7; 2—x50.85; 3—x51.
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this compound. Measurements of the diagonal magnetoe
tric effect in Ga1.15Fe0.85O3 along theb andc axis revealed a
quadratic dependence of the electric polarization on m
netic field, in accordance with the theoretical predictions.

To establish a possible link between the linear o
diagonal magnetoelectric effect and the magnetoelastic in
actions, magnetostriction measurements were also
formed. Figure 6 shows the field dependence of
magnetostriction along thea, b, and c axes. According to
Fig. 6, the componentsUaa andUcc of the longitudinal mag-
netostriction depend linearly on magnetic field, whileUbb

exhibits a nonlinear dependence. A linear field depende
was also observed for the transverse componentsUbc and
Ucb of the magnetostriction. A theoretical analysis of t
experimental results obtained is given below.

3. DISCUSSION OF RESULTS

1. According to Refs. 13 and 14, a Ga22xFexO3 crystal
has aGx ferrimagnetic structure with four inequivalent coo
dinates for the Fe1, Fe2, Ga1, and Ga2 ions. As follows fr
the neutron-diffraction data in Ref. 14, the probabilities
the accommodation of iron atoms in all four sites are no
zero and equal to

z~1!50.73, z~2!50.87, z~3!50.62, z~4!50.08,
~1!

and the magnetic moment of iron equals

mFe54.8mB . ~2!

Such a structure creates difficulties when an attemp
made to examine the properties of a system with the aid
the antiferromagnetic vector. In this paper we describe
magnetic structure of crystals using a multipole expansion
the spin density. However, the contributions of the toroid
moments must now be taken into account in the multip
expansion.15–20 It is known that an infinite series of multi
pole characteristics, viz., moments and the power functi
of the radii for them, appears in the multipole expansion
the current density or the spin density after averaging ove
physically small volume. As a rule, knowledge of only th
lowest members of this series is important for a macrosco
description of a crystal; therefore, we confine ourselves t
description of a system on the basis of the multipole m

tion
a-
FIG. 2. Field dependence of the electric polariz
tions Pb(Hc) ~a! and Pc(Hb) ~b! of a
Ga1.15Fe0.85O3 crystal at various temperatures: a!
1—35–62 K;2—10 K; 3—102 K; 4—150 K; b!
1—35 K; 2—10 K; 3—150 K.
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FIG. 3. Dependence of the electric polariza
tions Pb(Hbc) ~a, curve1! and Pc(Hbc) ~b,
curve1!, as well as the linear~curve2! and
quadratic~curves3! contributions to the po-
larization derived from them, on the mag
netic fieldHbc for a Ga1.15Fe0.85O3 crystal at
10 K.
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ments up to the second power using magnetic and toro
moments and the corresponding second-rank ten
~magnetic-quadrupole moments!. The magnetic and toroida
multipole moments are defined by the familiar formulas~see
Refs. 19 and 20!

M5
1

2c E r3 j ~r !dv, ~3!

T5
1

10c E ~r ~r• j !22r 2j !dv, ~4!

wherej ~r ! is the current density,

j ~r !5c¹3S~r !, ~5!

S~r ! is the spin density,c is the speed of light, and th
integration is carried out over a unit cell.

Plugging~5! into formulas~3! and~4!, we obtain expres-
sions for the magnetic and toroidal moments of a unit cel
a crystal:19

M52mB(
a

Sa , ~6!

T5
mB

2 (
a

ra3Sa , ~7!

whereSa and ra are the spin moment and the radius vec
of ion a in the unit cell of the crystal measured relative to t
center of the unit cell, and the summation is carried out o
all the ions in the unit cell.
al
rs

f

r

r

2. It is known that the noncentrosymmetricm2m crystal
structure of a Ga22xFexO3 crystal can be transformed into
centrosymmetricmmm structure by means of fairly sma
displacements of the ions in the unit cell. In this case we
write

ra5ra
01ra

1 , ~8!

wherera
0 is the radius vector of iona in the centrosymmetric

mmmstructure andra
1 is the displacement of the respectiv

iron ion from its symmetry center in the idealmmmstructure
to its site in the realm2m structure. The most importantb
components ofra

1 for the ensuing analysis equal

r Ga
1 520.065860.029 Å, r Fe

1 510.2360.058 Å,

and Eq.~7! can be represented in the form

T5
mB

2 S (
a

~ra
03Sa!1rGa

1 3 (
a~Ga!

Sa~Ga!1rFe
1

3 (
a~Fe!

Sa~Fe!D . ~9!

Substituting~6! and ~7! in ~9!, we obtain

T5T01
1

4
~r13MGa1r13MFe!, ~10!

where
u-
FIG. 4. Field dependence of the linear contrib
tions to the electric polarizationsPa(Hab) ~a!
and Pb(Hab) ~b! of a Ga1.15Fe0.85O3 crystal at
various temperatures:1—10 K; 2—150 K; 3—
194 K.
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T05
mB

2 (
a

ra
03Sa . ~11!

An estimate of the ratio of the second term to the first term
Eq. ~10! with consideration of the experimental data in Re
13 and 14 yields the small quantity

e5ur 1uM /T0, ~12!

and this provides some assurance that it is the approp
expansion parameter in perturbation theory. Using the
perimental results in Refs. 13 and 14, which specifySa and
r a , and taking into account thatM5(0,0,Mc), whereMc

53.84mB per unit cell, we obtain1! T05(Ta ,0,0), where
Ta524.155mB Å per unit cell, whencee.0.03.

3. The electric polarization vector can be represented
the following form:

Pi5Pi
s1a i j H j1

1

2
b i jkH jHk , ~13!

wherePi
s is the spontaneous polarization vector, anda i j and

b i jk are the magnetoelectric tensors. The second term in~13!
describes the linear magnetoelectric effect. The tensora i j

can be separated into symmetric and antisymmetric pa
a i j 5a i j

a 1a i j
s . The antisymmetric parta i j

a can be repre-
sented in a linear approximation with respect toM andT as

a i j
a 5a i jk

a1 Tk1a i jk
a2 Mk , ~14!

wherea i jk
a1 and ai jk

a2 are, respectively, axial and polar third
rank tensors. The antisymmetric tensora i jk

a2 vanishes for the

FIG. 5. Temperature dependence of the magnetoelectric susceptibilities
Ga1.15Fe0.85O3 crystal:1—abc ; 2—acb ; 3—a1

aTa5(abc2acb)/2.
n
.

te
x-

in

ts:

centrosymmetricmmmstructure, whilea i jk
a1 is conserved.21

Therefore, to lowest order in the small parametere intro-
duced above the tensora i j

a can be represented as

a i j
a 5a i jk

a1 Tk
0 , ~15!

whereT0 is defined in~11!.
The symmetric tensora i j

s can be represented to first o
der in M andT as

a i j
s 5a i jk

s1 Mk1a i jk
s2 Tk , ~16!

wherea i jk
s1 and a i jk

s2 are polar and axial third-rank tensor
which are symmetric with respect to the indicesi j . The for-
mulas for the magnetoelectric effect can be written with
lowance for~13!–~16! in the form ~see also Table I!2!

Pb5$abccMc1~a1
s1a1

a!Ta%Hc1$abaaMa1~a2
s

2a2
a!Tc%Ha1hbbbPb

sHb1bbccHc
21bbaaHa

2

1bbbbHb
2 , ~17!

Pc5$acbcMc1~a1
s2a1

a!Ta%Hb1bccbHcHb , ~18!

Pa5$aabaMa1~a2
s1a2

a!Tc%Hb1baabHaHb , ~19!

where, by definition,

a1
s5

abca1acba

2
, a1

a5
abca2acba

2
,

FIG. 6. Field dependence of the longitudinal magnetostriction along thb
~1!, c ~2!, anda ~3! axes for a Ga1.15Fe0.85O3 crystal at 78 K.

f a
TABLE I. Irreducible representations of theC2v
9 group.

2zsxsy M , H T P Umn T3H MiH j HiH j

G1 111111 Tb Pb Uaa ,Ubb ,Ucc TcHa2TaHc MaHa ,MbHb ,McHc Ha
2 ,Hb

2 ,Hc
2

G2 112121 Uac 0 McHa ,0,MaHc HaHc

G3 212111 Tc Pc Uab TaHb2TbHa MbHa ,MaHb ,0 HaHb

G4 211121 Ta Pa Ubc TbHc2TcHb 0,McHb ,MbHc HbHc

G18 111111
G28 112121 Mb , Hb

G38 212111 Ma , Ha

G48 211121 Mc , Hc
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a2
s5

aabc1abac

2
, a2

a5
aabc2abac

2
,

andb i jk is a polar tensor, which is symmetric with respect
the indicesi j .

4. In the following we assume, in accordance with t
experimental conditions described above~Fig. 3!, that the
magnetic field vector is oriented in thebc plane of the crys-
tal:

H5~0,Hb ,Hc!. ~20!

This choice of the orientation of the magnetic field enab
us to measure both polarizations,Pb and Pc , in the same
magnetic structure. In addition, we assume that in a w
field

M5~0,0,Mc! and T5~Ta ,0,0!, ~21!

in agreement with the experimental data in Ref. 11 and
calculations presented above in Sec. 2. Only the compon
abca andacba (abcc5acbc by definition! are needed to de
terminePb andPc @see~17! and ~18!#.

Let us consider the contribution to the electric polariz
tion P(H) that is linear with respect to magnetic field.
follows3! from ~17! and~21! that the contribution to the elec
tric polarization that is linear with respect to magnetic fie
has the form

Pb
l 2Pc

l 52a1
aTaH, or a1

aTa5
abc2acb

2
. ~22!

Here it is assumed thatHb5Hc5H. It follows from ~22!
that the differences observed in Figs. 3 and 5 betweenPb(H)
andPc(H), as well as the differences betweenabc andacb ,
are directly related to the existence of the toroidal mom
Ta . Figure 5 also shows the temperature dependenc
a1

aTa , which is proportional to the toroidal moment.
5. When the magnetic field oriented in theba plane of

the crystal

H5~Ha ,Hb ,0! ~23!

is sufficiently large, reorientation of the magnetization of t
crystal from thec axis to thea axis takes place. In this cas
the contribution to the electric polarization that is linear w
respect to magnetic field can be represented, accordin
~17!–~19!, in the form

Pb
l 2Pa

l 52a2
aTcH, or a2

aTc5
aba2aab

2
. ~24!

Here it is assumed thatHa5Hb5H. A conclusion regarding
the field-induced reorientation of the toroidal moment fro
thea axis to thec axis when the magnetization of the cryst
is reoriented from thec axis to thea axis can be drawn from
Fig. 4 with consideration of~24!.

6. Formulas for the longitudinal magnetostriction can
written in precisely the same manner as for the electric
larization ~see Table I!:

Ucc5~lccac
a Ta1lcccc

p Mc!Hc1qcccc
p Hc

2 , ~25!

Uaa5~laaac
a Tc1laaaa

p Ma!Ha1qaaaa
p Ha

2 , ~26!
s

k

e
ts

-

t
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to

-

Ubb5nbbbb
p Pb

sHb1lbbbb
p MbHb1qbbbb

p Hb
2 . ~27!

The linear field dependence of the magnetostrictionUaa(Ha)
~see Fig. 6! means that the componentsMa and~or! Tc of the
magnetic and toroidal moments cannot be equal to zero w
H is parallel to thea axis. It is interesting that ifr1→0 and
if abcc andacbc in ~17! and~18! andlccca

a andlaaac
a in ~25!

and ~26! tend to zero, then the linear magnetoelectric eff
is determined only by the toroidal moment, and the longi
dinal magnetostriction is determined only by the magne
moment. Hence it follows that the main contribution to t
linear magnetoelectric effect is made by the toroidal mom
T and that the main contribution to the longitudinal magn
tostriction is made by the magnetic effect. This means t
there is no strict relationship between the linear magne
electric effect and the longitudinal magnetostriction
Ga22xFexO3.

4. CONCLUSION

The field dependence of the magnetoelectric effect
longitudinal magnetostriction of Ga22xFexO3 single crystals
has been investigated in magnetic fields up to 200 kOe in
temperature range from 4.2 to 300 K. It has been shown
the magnetic order in Ga22xFexO3 crystals allows interpret-
ing it as toroidal spin ordering. On the basis of an expe
mental finding, viz., significant asymmetry of the of
diagonal components of the linear magnetoelec
susceptibility tensor, it has been concluded that toroidal
dering exists. It has been shown that the linear magnetoe
tric effect in Ga22xFexO3 is caused by a toroidal momen
rather than by magnetostriction, as was previously pos
lated.
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Critical state of a thin superconducting plate in an inclined magnetic field
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A solution is obtained for the Bean critical-state model in an inclined magnetic field which leads
to localization of the irreversible magnetic moment induced by the shielding currents. An
experimental investigation of YBa2Cu3Oy single crystals and epitaxial films, and also plates of
classical superconductors using vector magnetometry yields results fully consistent with
the model calculations. The established geometric effects have an important influence on
measurements of the angular dependence of the critical current and its anisotropy in a high-
temperature superconductor. ©1998 American Institute of Physics.@S1063-7761~98!01907-6#
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1. INTRODUCTION

A characteristic feature of single crystals of hig
temperature superconductors is that they have the form
thin plates. Various previous studies~Refs. 1–3, for ex-
ample! have reported the observation of strong angular
isotropy of the irreversible magnetic moment, which was
tributed to the anisotropy or the two-dimensional nature
the superconductivity in these materials. The importance
the sample geometry for the angular dependence of the m
netic moment was noted earlier in Refs. 4 and 5. Howev
no quantitative model which reflects this influence has b
developed. In Sec. 2 we obtain a solution for the Be
critical-state model for an infinite, thin, superconducting p
allelepiped in an inclined magnetic field. We also consid
some generalizations to the case of more realistic model
scriptions. In Sec. 3 the results of the calculations will th
be compared with experimental investigations of the vec
of the magnetic moment in high-temperature supercond
ing single crystals and in plates of conventional superc
ductors. Finally, in Sec. 4 we examine the role of geome
factors in the behavior of the magnetic characteristics
high-temperature superconducting single crystals, espec
in measurements of the critical current anisotropy and v
ous pinning mechanisms.

2. THEORY

Key factors which complicate the analysis of the curre
distribution for the critical state in a superconducting pla
are the three-dimensional nature of the problem, the los
symmetry when the magnetic field deviates from the prin
pal axes, and the shape of the current–voltage character
1521063-7761/98/87(7)/10/$15.00
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Thus, we shall initially analyze the simplest case of the Be
model for an infinite parallelepiped and then its generali
tion.

2.1 Bean model for an infinite parallelepiped in an inclined
magnetic field

The basic assumption of the Bean model is that the d
sity j of the shielding currents inside a superconductor ha
constant valuej c and their direction is determined by th
magnetic prehistory. The steady-state case of fixed vort
was studied in the original work.6 The real situation differs
from steady-state because of vortex motion accompany
changes in the magnetic field or due to the thermally a
vated magnetic flux creep in the case of a fixed magn
field. The changes in the magnetic flux accompanying
vortex motion induce an electric fieldE which is responsible
for the generation of shielding currents. These currents
be described using local electrodynamics equations.7–9 In ad-
dition, the influence of dynamic processes is frequently we
and in this case, the bean model6 is a good approximation to
describe the magnetic properties of superconductors.
mally, this corresponds to the solution of local electrodyna
ics equations with a step-like current–voltage characteri
j5 j cE/E.

As in the original model,6 we shall assume thatj c does
not depend on the magnitude and direction of the local m
netic inductionB in the sample. We shall also confine o
analysis to high values of the applied magnetic fieldH so
that the influence of the self-field generated by the shield
currents can be neglected. In this case, the approxima
B5m0H is valid inside the superconductor, which corr
sponds to a uniform distribution of vortices parallel to t
applied fieldH.

Even with these approximations, a solution cannot
© 1998 American Institute of Physics
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FIG. 1. a! Diagram of sample; b! directions of shielding cur-
rents~( and ^! and Lorentz force~arrows! acting on the vor-
tices ~bold lines!; c! distribution of shielding currents for
w,wc ; d! distribution of shielding currents forw.wc .
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obtained for a finite parallelepiped because of the loss
translational invariance. Thus, we shall consider an infin
parallelepiped~as the limiting case of a long plate whos
lengthL is considerably greater than its widthw and thick-
ness! which reduces the three-dimensional problem to tw
dimensional. The ratio of the widthw to the heightt of the
cross section (k5w/t), which we shall call the aspect ratio
is a key parameter in the following analysis.

We shall assume that the direction of the magnetic fi
rotates in thexy transverse plane and forms the anglew with
the normaln to the principal plane of the parallelepiped~Fig.
1!. For an infinite plate, all the cross sections are equiva
as a result of translational invariance. From symmetry c
siderations, the vectorB is always located in the transvers
plane and asH increases, vortices enter from the cornersA
andC ~Fig. 1b!, move toward the center of the sample, a
meet on theEF plane.4 In this case, symmetry indicates th
the shielding currents should be directed parallel to thz
axis. The Lorentz forces, like the vortex velocity, are para
to thexy plane but have opposite signs on different sides
theEF plane. In the Bean model the density of the shield
currents always has the same valuej c . Thus, the distribution
of the shielding currents is antisymmetric relative to theEF
plane. This conclusion, based on symmetry, will be co
firmed below by solving the appropriate Maxwell equation

The angular function of the magnetic moment diffe
depending on whether the angle of inclination of the m
netic field is smaller or larger than the angle of the diago
of the parallelepiped cross sectionwc5arctank. Thus, we
shall consider these cases separately.

a! w<wc . For our analysis we shall use a Cartesi
coordinate system with thexy plane parallel to the plane o
rotation of the magnetic field, and they axis parallel to the
principal normaln ~Fig. 1c!. The magnetic momentm of the
shielding currents can be calculated using the relation

m5
1

2 E r3 jdV.

For H directed along the axes of symmetry of the parall
epiped, the closure currents give exactly the same contr
of
e

-

d

nt
-

l
f

g

-
.

-
l

-
u-

tion as the currents parallel to the long side.7 In Sec. 2.3 we
shall show that this statement is valid for an arbitrary dire
tion of H. Thus, we have

my5LE x j dS, mx5LE y j dS,

where the integration is performed over the cross section
the samplez5const.

From symmetry concepts, the regionGEZFH where the
plane shown by the lineGH corresponds to the2w direction
~Fig. 1c! makes a zero contribution to the magnetic mom
my . In consequence, the value ofmy can be calculated a
twice the contribution of the trapezoidal regionAGZFD:

my52LE
AGZFD

x jcdx dy5
Lt3

12
j c~3k22tan2 w!. ~1!

To calculate the momentmx , integration is performed ove
the regionGEZFH:

mx52LE
GEZ

y jcdx dy5
Lt3

6
j c tan w. ~2!

The anglea between the direction of the magnetic mome
m and the principal normaln to the plane is given by

tan a5
2 tanw

3k22tan2 w
. ~3!

For w50 we obtain the well-known result:my5L j ctw
2/4

and obviouslya50. For angles satisfying tanw!k, we have
tana'(2/3k2)tanw. When the angle between the directio
H and the normal reacheswc , the magnetic moment is de
flected by the angleac5arctank, where ac5p/22wc .
Thus, for a typical high-temperature superconducting sin
crystal withk;10 or more the irreversible magnetic mome
is almost locked to the principal normal of the parallelepip
for the entire range of magnetic field directionsw<wc . At
the boundary of this range,my(wc)52my(0)/3 andmx(wc)
5my(wc)/k and thusumu will also not vary very substan
tially.
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b! w>wc . In the angular rangewc<w<p/2 ~Fig. 1d!, it
is more convenient to measure the deviations ofH and m
from the principal plane, using the anglesu5p/22w and
b5p/22a, respectively. Then, this case is equivalent to
previous one if we substitutex↔y, w↔u, t↔w, and
k↔1/k, and as a result we obtain

mx52LE
AGZEB

y jcdx dy5
Lw3

12
j cS 3

k2 2tan2 u D , ~4!

my52LE
EZH

x jcdx dy5
Lw3

6
j c tan u, ~5!

tan b5
2k2 tan u

32k2 tan2 u
. ~6!

If H ~and alsom! is parallel to the principal plane, the abs
lute value of the magnetic moment isumu5L j cwt2/4, which
is k times smaller than that for the magnetic field parallel
the principal normal. It should be noted that even a v
small angular deviation of the magnetic fieldH induces a
large deviation of the magnetic momentm from the principal
plane:b'2k2u/3. A convenient parameter to describe t
rotation of the magnetic moment is

t5
db

du U
u50

5
2k2

3
. ~7!

For the critical angleuc5p/22wc , the direction of the mag-
netic moment is determined by tanbc5k, which is equiva-
lent to the result obtained in case~a!.

From Eqs.~4! and ~5! in the lowest order of the expan
sion in terms ofu, we can obtain the following expressio
for the absolute value of the magnetic moment

m~u!'m~0!S 11
2

9
k4u2D . ~8!

Thus umu increases rapidly with increasing angleu.

2.2. Magnetic flux creep and anisotropy

The step-like current–voltage characteristic used in
Bean model is not a good approximation for hig
temperature superconducting materials, since these typic
exhibit strong magnetic flux creep which leads to smooth
of the current–voltage characteristic. The power depende
E/E05( j / j 0)n better describes the behavior of the expe
mental current–voltage characteristics with typical values
n between 5 and 30 for high-temperature superconduc
single crystals and above 20 for conventional supercond
ors. In this case, the Bean model corresponds to the l
n→`.

During magnetic measurements, changes in the magn
field ~which for simplicity we assume to take place at t
constant rateḢ5dH/dt) induce an electric fieldE. If the
magnetic field is fixed, the electric field is formed as a res
of magnetic flux creep. The equations of local electrodyna
ics and the current–voltage characteristics can be use
calculate the shielding current distribution. These curre
change direction as the directionE changes and determin
the behavior of the irreversible part of the magne
e
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moment.7–9 In addition, there are undamped superconduct
currents which do not depend on the directionE and deter-
mine the reversible magnetization. However, this contrib
tion to the magnetization is usually small and these curre
will be neglected in the present study.

As we have already noted, we shall analyze the c
when H appreciably exceeds the self-field of the shieldi
currents and thus their influence onE can be neglected. In
addition, as a result of the homogeneity ofB in the bulk of
the sample for this case, we can easily take into account
dependence of the current–voltage characteristic onB.

For an infinite parallelepiped, the power current–volta
characteristic can easily be included in the previous analy
As will be shown in Sec. 2.3, the electric fieldE parallel to
the z axis has opposite signs on different sides of theEF
plane in Fig. 1 and is given by

Ez5m0Ḣ~x cosw2sin w!. ~9!

By means of lengthy but elementary calculations forw.wc

~Fig. 1d!, we can obtain

my52L j 0S w

2 D 3S m0Ḣw sin u

2E0
D 1/n

tan u
n2

~2n11!~n11!

3H ~a11!211/n1~a21!211/n2
n

3n11
@~a11!311/n

2~a21!311/n#J ~10!

and

mx52L j 0S w

2 D 3S m0Ḣw sin u

2E0
D 1/n

tan u

k

n2

~2n11!~n11!

3H ~a11!211/n1~a21!211/n2
n

3n11
@~11a21!

3~a11!211/n2~12a21!~a21!211/n#J . ~11!

The angleb betweenm and the principal plane is given by

tan b5
2~2n11!~n11!ak

6n~n11!a22~2n11!~n21!
, ~12!

wherea5(k tanu)21.
These complex expressions have two simple limiti

cases. Forn→`, i.e., for the Bean model they are identic
to the expressions derived in Sec. 2.1.b. For an Oh
current–voltage characteristic (n51) they are simplified
considerably:

my5
Lw3

6
j zS 0,

t

2D tan u, ~13!

mx5
Lw3

6k2 j zS 0,
t

2D , ~14!

tan b5k2 tan u. ~15!



y
-

ce
s-
g

n
e

o
th
te

v

e
by

e
he
e

io

d

fo
By

n

t
o
n
e

hi

ic
In
ha

nt
h

ay

r-
we
y

he
s

-
e

r-
ge
the

nly

is
the
ux

cur

ur in
e-
al

of
le,

nu-
ld

ld

155JETP 87 (1), July 1998 Zhukov et al.
These results are exactly identical to Eqs.~4!, ~5!, and
~6! if the critical currentj c in the Bean model is replaced b
the current densityj z(0,t/2) flowing at the center of the prin
cipal plane of the parallelepiped.

A solution for the anglesw,wc can easily be obtained
by using the new notation for the parameters introdu
above. Forn→` this naturally corresponds to the expre
sions of the Bean model. For an Ohmic current–volta
characteristic these solutions are almost identical to Eqs.~1!,
~2!, and~3! if we use the current densityj z(w/2,0) flowing at
the center of the lateral plane of the parallelepiped.

Assuming a small difference between the Bean a
Ohmic limits, we can confirm that the angular dependenc
the magnetic moment is almost unaffected by the type
current–voltage characteristic. Thus, we can predict that
results obtained earlier for the Bean model should accura
describe the experimental data.

We shall analyze the situation when the self-fields ha
little influence. In this case, the magnetic inductionB may be
considered to be constant inside the sample. The depend
of j c ~or j z) on B can then easily be taken into account
using the value ofj c corresponding to the applied fieldm0H
in the expressions obtained. This reflects the field dep
dence j c(B) and the pinning anisotropy determined by t
direction ofB. It is easily established that the direction of th
vector m ~see Eqs.~3!, ~6!, ~7!, and ~12!! remains almost
constant for any dependence ofj c on B. Thus, the pinning
anisotropy has no influence on the geometric localizat
effect. However,umu ~Eqs. ~1!, ~2!, ~4!, ~5!, ~10!, and ~11!!
does depend on the pinning anisotropy and may be use
study the angular dependence of the critical current.

2.3. Finite length and closure currents

We shall first show that the closure currents account
exactly half the contribution to the magnetic moment.
definition, this is given by

m5
1

2 E r3 jdV5
1

2
@ex~ j zy2 j yz!1ey~ j xz2 j zx!

1ez~ j yx2 j xy!#dV, ~16!

where ex , ey , and ez are the unit vectors of the Cartesia
coordinate system.

It can be seen from this equation that each componen
the magnetic momentm is determined by the sum of tw
contributions. Previously, we only took into account the co
tribution of the current componentj z and we asserted that th
closure currents corresponding to the componentsj x and j y

make exactly the same contribution. We shall prove t
statement.

We shall consider a sample of arbitrary shape in wh
the shielding currentsj have a steady-state distribution.
this case, it follows from the charge conservation law t
div j50 and in consequence, the field of the currentj is
solenoidal. Thus, the distribution of the shielding curre
can be represented as closed, nonintersecting tubes whic
not generally planar.
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The component of the magnetic momentdmx parallel to
the x axis and generated by an elementary current tube m
be expressed on the basis of Eq.~16! in the form

dmx5 R sdl~ j zy2 j yz!, ~17!

wheres is the cross-section area of an elementary tube,dl is
the differential of the tube length, and integration is pe
formed over the contour defined by the current tube. If
introduce the unit vectoret in the direction of the elementar
current tube, we can write the following expressions:j z

5 j ez•et anddz5dlez•et which, assumingi 5s• j , gives

dmx5
1

2
i R dl~ez•ety2ey•etz!5

1

2
i R dl~dz y2dy z!.

~18!

Taking into account that the area of the projection of t
current tubeSyz is given by the equivalent expression
rydz[2rzdy, both terms in Eq.~18! make the same con
tribution to dmz , which corresponds to the definition of th
elementary magnetic momentdmx5 iSyz , this proves the as-
sertion formulated above.

We shall now analyze the distribution of shielding cu
rents for a superconductor with an arbitrary current–volta
characteristic. If the characteristic does not depend on
magnetic field~as in the Bean model!, the changes in the
magnetic induction in the critical state are determined o
by changes in the applied fieldH. If the rate of change ofH
is constant, the distribution of the shielding currents
steady-state. This assumption is a good description of
experimental situation if the changes in the magnetic fl
caused by the self-field are negligible~in this case, the self-
field need not necessarily be small!.

We shall initially postulate that no space charges oc
in the superconductor and their density is everywherer50
~later, we shall show that these space charges may occ
certain cases!. The electric field distribution can then be d
termined from the Maxwell equations using loc
electrodynamics:8,9

div E50 ~19!

and

curl E52m0

dH

dt
~20!

with boundary conditions whereby the normal component
the electric field is zero at the surface of the samp
En50.

It is known that these equations have a unique conti
ous solution.10 For an infinite parallelepiped where the fie
H is parallel to they axis ~Fig. 1!, the electric field distribu-
tion is given by

Ez5m0Ḣyx, Ex5Ey50. ~21!

As a result of the linearity of Eqs.~19! and~20!, it is easy to
find a solution for an arbitrary direction of the magnetic fie
in the xy plane:

Ez52m0Ḣ~y sin w2x cosw!, Ex5Ey50. ~22!
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FIG. 2. Electric field in a semi-infinite super
conducting strip. The curves corresponds
x/z50 ~1!, 0.1 ~2!, 0.2 ~3!, 0.3 ~4!, 0.4 ~5!, 0.5
~6!, 0.6 ~7!, 0.7 ~8!, 0.8 ~9!, 0.9 ~10!, 1.0 ~11!;
E05m0Ḣyw/2. For Ex curve 6 is almost the
same as curves5 and7. The pairs of curves1,
11; 2, 10; 3, 9; 4, 8, and5, 7 are the same as a
result of symmetry.
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For a sample of finite lengthL, we can obtain an accu
rate solution in series form. When the fieldH is parallel to
the y axis, this solution is given by

Ez~x,z!5
m0Ḣy

4p (
p,q52`

`

~21!p1q@ f ~p11,q!2 f ~p,q!

1g~p,q11!2g~p,q!#, ~23!

where

f ~p,q!5~pL2z!ln
@~q11!w2x#21~pL2z!2

~qw2x!21~pL2z!2 ,

g~p,q!52~qw2x!Farctan
~p11!L2z

qw2x
2arctan

pL2z

qw2xG .
~24!

For Ex a solution can be obtained by making the subst
tions q↔p, l↔w, and x↔z in Eqs. ~23! and ~24!. The
results of the calculations for a semi-infinite strip (0,z,L
→`, p50,21) are plotted in Fig. 2. These demonstrate t
formula ~21! accurately describes the behavior ofE at the
distance;w.

For a qualitative analysis we shall consider an appro
mate solution which shows good agreement w
experiment11 and satisfies Eqs.~19! and ~20!. In the central
region the solution is given by Eq.~21! ~H parallel toy).
Near the ends of the parallelepipedL/2.uzu.L/22w/2
1uxu, the solution of the system~19! and~20! will be given
by

Ex52m0ḢyS uzu2
L

2
1

w

2 D signuzu, Ez5Ey50. ~25!

As a result of the linearity of Eqs.~19! and~20!, expressions
for E for an arbitrary direction of the magnetic fieldH in the
xy plane can be obtained from a linear combination of E
~21! and~25!. Using the current–voltage characteristics fro
the Bean model,j5 j cE/E, and Eqs.~22!, we can obtain the
shielding current distribution shown in Fig. 1, which is co
sistent with the result obtained from symmetry concep
However, if this current–voltage characteristic is applied
the distribution~25!, which describesE in the closing re-
gions of a finite parallelepiped, for directions of the magne
field differing from the axes of symmetry, the condition

div j50, ~26!
-

t

i-

.

.
o

c

corresponding to the law of charge conservation in
steady-state case, is violated. We assume that in this case
onset of magnetic field sweeping will be accompanied by
formation of space charges which should satisfy condit
~26!. This changes the distribution ofE which should obey
the condition divE5r(r ) rather than Eq.~19!. An analytic
solution of this nonlinear equation cannot be obtained
should be noted that for a Bean current–voltage characte
tic with the magnetic field directed along the axes of sy
metry, accurate solutions can be obtained and correspon
Eqs. ~21! and ~25!. However, as a result of the nonlineari
of the current–voltage characteristic, a solution cannot
derived by linear superposition for an arbitrary angle of
clination.

An Ohmic current–voltage characteristicj5sE with
isotropic conductivitys appreciably simplifies the situation
In this case, a solution forj can be obtained trivially from
Eqs.~21! and~25!, and Eq.~19! guarantees that divj50. For
H parallel tox, we can obtain

mx5sm0Ḣx

Lw3t

12k2 S 12
t

4L D , ~27!

and forH parallel toy, we have

my5sm0Ḣy

w3Lt

12 S 12
w

4L D . ~28!

In the limit of a long sample, these expressions reduce
those obtained earlier for an infinite parallelepiped.

As a result of the linearity of the initial equations, th
magnetic moment for the Ohmic current–voltage charac
istic is determined by the linear superposition of Eqs.~27!
and ~28!, and its direction is given by

tan b5k2 tan u
12w/4L

12t/4L
. ~29!

The influence of the ends of the sample is clear from a dir
comparison with Eq.~15!. As was to be expected, the ens
ing correction is of the order ofw/L or t/L. For the more
realistic scenario of a current–voltage characteristic w
n.1, similar calculations cannot be made. However, as
showed earlier for an infinite parallelepiped, the differen
between the magnetic momentm for the Ohmic and Bean
(n→`) current–voltage characteristics is very small. Co
sequently, we suppose that the results obtained above o
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TABLE I. Parameters of samples studied.

Description Material Form L3w3t, mm k5w/t Comments

OZ YBa2CU3Oy Single crystal 1.9531.1530.065 17.7 With TB, plane of rotation' TB
MK YBa2Cu3Oy Single crystal 1.0430.9730.10 9.7 Detwinned
WZ YBa2Cu3Oy Single crystal 0.9630.9030.04 22.5 Without TB, high purity
AH YBa2Cu3Oy Single crystal 1.2630.5730.025 22.8 Columnar defects
LF YBa2Cu3Oy Epitaxial film 2.230.930.0003 33103

SH PbMoS6 Polycrystal 2.0131.7230.40 4.3
Sl PbMoS6 Polycrystal 2.0130.6730.40 1.68 Cut from SH
VS V3Si Polycrystal 6.0030.9030.35 2.57
VI V 3Si Polycrystal 6.0030.9030.27 3.33 Obtained by polishing from VS

Note: TB—twin boundary.
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influence of the finite length for a linear current–volta
characteristic~Eqs. ~27!–~29!! can also be applied to th
Bean case.

High-temperature superconducting single crystals
usually close to square withL;w. In this case, the correc
tion to the parametert, characterizing the ratio of the rota
tion rates of the magnetic momentm and the magnetic field
H, when the direction ofH is close to the plane, is small an
does not exceed 25%.

3. EXPERIMENT

3.1. Vector magnetometry

In order to check the main results of Sec. 2, we need
obtain information on the magnitude and direction of t
magnetic momentm. For this purpose we used a vibratin
sample magnetometer~Oxford Instruments 5H) fitted with
two independent detector coils such that the component
the magnetic moment parallel (mst) and perpendicular (mort)
to the applied fieldH could be measured simultaneous
Standard magnetometers only measure the componentmst.
During the measurements the sample could be rotated a
the third axis with an angular resolution of 0.01° and a
producibility better than 0.03°.

All the results of the measurements given below w
obtained from the hysteresis loops of the magnetic mom
with the sample orientation fixed, when the magnetic fi
was swept at a constant rate of;10 mT s21 from a negative
field considerably exceeding the remagnetization field, to
and back to 0 T. Here we are only interested in the irreve
ible component of the magnetic momentm which reflects the
behavior of the shielding currents.

3.2. Samples

We studied several YBa2Cu3Oy single crystals with dif-
ferent dominant pinning mechanisms. These were sam
with twin boundaries, detwinned samples, and samples w
columnar radiation tracks~see Table I!. Their preparation
and detwinning was described earlier in Refs. 12 and 1!.
The different pinning systems act differently on the anis
ropy of the critical currentj c so that we could study the
influence of changes in anisotropy on the angle of inclinat
a. An epitaxial YBa2Cu3Oy film was used as a sample with
very large aspect ratiok5w/t ~Ref. 14!.
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Conventional polycrystalline superconductors are c
tainly preferable for a direct check of the calculated resu
A sample of the Chevrel superconductor phase PbMoS6 ~we
shall subsequently call this SV! was cut from an ingot with a
diamond saw. After the first measurements, an additional
was made to reduce its width and thus the aspect ratio.
ther measurements were then made. A sample of V3Si ~VS!
was cut from an ingot with a diamond saw. After the fir
cycle of measurements, its thickness was reduced by po
ing with emery paper and a second cycle of measurem
carried out.

3.3. Experimental results and discussion

3.3.1. High-temperature superconducting single crysta
Figure 3 shows typical behavior of the angle of inclinationa
of the magnetic moment relative to the normal to theab
plane of a YBa2Cu3Oy single crystal having the form of a
thin plate. Over a large range of anglesw of the magnetic
field up to;87°, the direction of the magnetic momentm is
locked to the normaln, so thata'0° holds~as a result of
the inevitable precession when the sample is rotated thro
a large range of angles, some error, of the order of61°,
arises in the determination ofa!. In a narrow range of angle
where the direction ofH passes near the plane of the pla
the direction ofm is rapidly reversed almost by 180° a
predicted theoretically. The results plotted in Fig. 3 do n
depend on the magnetic field~if H is appreciably greate

FIG. 3. Anglea determining the deviation of the vector of the irreversib
magnetic moment from thec axis in a YBa2Cu3O7 single crystal~OZ
sample! when the directionw of the applied magnetic field is rotated nea
the ab plane (w590°) for various temperatures and magnetic fields, T
solid curves corresponds to Eqs.~3! and ~6! using the aspect ratio
k517.7; the arrows indicate the position of the critical anglewc .
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than the penetration fieldHp) or temperature even though th
critical current j c and its anisotropy change ver
substantially.15,16 Moreover, all the YBa2Cu3Oy samples
studied, for which the magnitude and anisotropy of the cr
cal currentj c differ substantially as a result of the predom
nance of different pinning mechanisms, exhibited similar
havior of a~w! which may be described using th
calculations from Sec. 2 with the measured aspect ratio
without using any fitting parameter. This confirms the dom
nant role of geometric effects which determine the angu
behavior of the vectorm, observed as localization of its d
rection near the normal to the sample.

The results of the investigations of an epitax
YBa2Cu3Oy film ~Fig. 4! reveal behavior exhibiting very
strong geometric localization, when the direction of the m
netic momentm is reversed within a 0.02° step. These r
sults demonstrate that even the high angular resolution o
magnetometer is insufficient to study the region of fast ro
tion.

3.3.2. Conventional superconductors.Measurements us
ing conventional superconductors can be used to check t
results under conditions where, unlike high-temperature
perconductors, the anisotropy of the critical current is we

FIG. 5. Rotation of the irreversible magnetic moment~using the same co-
ordinates as in Fig. 3! in a PbMoS6 sample (T510 K, m0H51.0 T) in the
initial state~SH, curve1! and after reducing the aspect ratio~SI, curve2!.
The solid curves give the results of the calculations using Eqs.~3! and ~6!
for the aspect ratiosk54.3 and 1.68, respectively. The arrows indicate t
critical anglewc .

FIG. 4. Direction of the irreversible moment~using the same coordinates a
in Fig. 3! in an epitaxial YBa2Cu3O7 film ~LF, T550 K, m0H50.5 T). The
solid curve gives the results of calculations using Eqs.~3! and ~6! for the
aspect ratiok533103; the arrows indicate the critical anglewc .
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This allows us to analyze directly the dependence ofm on
the anglew.

In this case, the experimental data fora~w! also show
good qualitative agreement with the theory without usi
any fitting parameter~Fig. 5!. The variation of the absolute
value of the magnetic momentm as a function of the anglew
~Fig. 6! demonstrates an important characteristic: a very n
row, sharp minimum ofumu when the magnetic field is di
rected near the plane of the plate. This dip is purely of g
metric origin and is unrelated to the anisotropy of t
superconducting parameters.

The results of the calculations presented in Sec
suggest that for anglesw not very close top/2, the value of
umu should be almost independent of the angle. The obser
slight increase in the absolute value whenH deviates from
the directionw50 may be attributed to uncontrollable an
isotropy of the sample, formed during the preparation p
cess, or to the influence of its finite length.

3.3.3. Angular rotation rate ratiot. A very sensitive
numerical parameter of the geometric model is the ang
rotation ratio ratet which characterizes the rotation of th
magnetic momentm when the direction of the magnetic fiel
H rotates near the plane of the plate. According to Eq.~7!,
the value oft should be a simple quadratic function ofk.
The results of the measurements for high-temperature su
conducting samples and conventional superconductors~Fig.

FIG. 6. Angular dependence of the magnitude of the magnetic moment i
PbMoS6 sample (T510 K, m0H51.0 T) in the initial state~1, SH! and
after reducing the transverse dimension~2, SI!. The solid curves give the
calculations ofumu5Amx

21my
2 using Eqs.~1!, ~2!, ~4!, and~5! for the aspect

ratiosk54.3 and 1.68; the arrows indicate the critical anglewc .

FIG. 7. Angular rotation rate ratiot of angular rotation of the magnetic
moment whenH is directed near the plane of the plate for samples w
different aspect ratiosk. The results of the calculations using Eq.~7! are
given by the solid curve.
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7! show fairly good agreement with this equation~no points
corresponding to the epitaxial film can be identified on t
graph since the aspect ratio of the filmk;103 corresponds
to t;106, which is far in excess of the experimental reso
tion!. In addition, the slope of the dependencet(k2) is close
to 2/3, as is predicted by the proposed model.

4. GEOMETRIC EFFECTS AND MAGNETIC PROPERTIES OF
HIGH-TEMPERATURE SUPERCONDUCTING SINGLE
CRYSTALS

4.1. Angular scaling of the magnetization curves

As we have noted, in high-temperature superconduc
single crystals over a wide range of angles of deflection
the magnetic fieldH from thec axis, the magnetic momen
m remains almost parallel to thec axis, which indicates tha
shielding currentsJab flowing in theab plane predominate
The dependence ofJab on the direction of the applied field i
determined by the nature of the pinning mechanism. In g
eral, this dependence is nontrivial although it is simplifi
appreciably for pinning by weak isotropic disorder. In th
case, in an anisotropic superconductor the currentJab will be
constant if the parameter17

«wB5Acos2 w1G2 sin2 w B,

is constant, whereG corresponds to the effective mass a
isotropy («w determines the angular variations of the intri
sic vortex energy, the second critical field, the melting po
of the vortex lattice, and the irreversibility fieldBirr ~Ref.
17!. For an isotropic superconductor this condition cor
sponds to constant magnetic induction.

Thus, if this scaling law is accurate, the value ofum~w!u
measured for fixed«wH should vary very little with increas
ing w and should reach 2/3 of the initial value at the critic
anglewc ~Sec. 2!. Measurements for YBa2Cu3O7 single crys-
tals~Fig. 8, using the valueG2530 obtained from the depen
dence ofBirr

22 on sin2 w) showed that this behavior is indee

FIG. 8. Angular dependence of the magnitude of the magnetic momenumu
for YBa2Cu3O7 single crystals~1—MK and 2—OZ! for a fixed value of the
reduced field«wm0H50.5 T ~calculated forG2530) atT588 K. The solid
curves give the calculations ofumu using Eqs.~1!, ~2!, ~4!, and ~5! for the
aspect ratiosk59.7 and 17.7; the arrows indicate the critical anglewc . A
larger scale is used nearw590°.
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observed for the detwinned single-crystal sample~MK !. The
solid curves in Fig. 8 give theum~w!u calculations using the
proposed model. The experimental results show good ag
ment when the magnetic field is directed near theab plane.
Over a large range of angles, the magnetic moment is alm
constant, as is to be expected for pinning at isotropic w
disorder~point defects or their fluctuations!. The quantitative
difference from the model calculations may be attributed
two factors. First, near CuO planes, it may be produced
intrinsic pinning which can reduce the value of the magne
momentm (w590°) to which the experimental curves a
normalized. Second, this difference may be attributed to
finite length of the sampleL'w, and also the influence o
currents flowing along thec axis.

Conversely, for the twinned~OZ! crystal the dependenc
m(w) and thusJab decay rapidly when the direction ofH
deviates by;20° from thec axis. This behavior reflects th
strong vortex pinning by twin boundaries.

For both samples, and for all the other samples stud
by us, Jab begins to depart from constant atw'60°, i.e.,
long before the anglewc is reached. We attribute this beha
ior to a kinked vortex structure when tanw5G is reached.

Another manifestation of scaling at isotropic disorder
the universal angular behavior of the magnetization peak
tablished empirically by Kleinet al.18 1!

mst~w,H/cosw!5mst~0,H !cosw,

which is valid for angles of deviation ofH from thec axis up
to ;60°. For the crystal studied in these experiments
aspect ratio wask;8 so that in the range of angles up
60°, the direction ofm deviates negligibly from thec axis.
A conventional magnetometer with a single system of det
tor coils used in Ref. 18, measures the componentmst of the
magnetic momentm parallel to the applied fieldH:

mst5umucosw.

Since in YBa2Cu3O7 the anisotropy isG.5, in the range of
angles studied we find

«wB;B cosw.

The experimentally observed scaling law can easily be
tained from these two angular relations. Figure 9 gives
measured absolute value of the irreversible magnetic
ment as a function of the reduced magnetic field«wB for
various anglesw. Up to 60° this dependence shows almo
ideal agreement. Then the magnetic moment begins to
crease rapidly. Thus, the angular behavior of the currentJab

observed by us indicates that the fishtail effect is associa
with pinning at point defects or their clusters,20 which induce
isotropic weak disorder. The curvesJab(B) also have other
peaks for which the scaling law examined above does
apply. These peaks are probably related to other pinning c
ters, such as twin boundaries.19

4.2. Analysis of critical current anisotropy

As a result of their layered structure, high-temperatu
superconducting materials are strongly anisotropic. The c
pling between the CuO planes is fairly weak in YBa2Cu3O7
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FIG. 9. Magnitude of the magnetic moment versus the redu
magnetic field for various anglesw for an MK sample at
T582 K.
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and very weak in BiSrCaCuO phases. The thermodyna
anisotropyG increases from;5 in YBa2Cu3O7 to more than
20 in BiSrCaCuO phases.

Here we shall analyze the influence of these effects
measurements of the anisotropyV of the ~nonequilibrium!
shielding currents, which is determined by the ratio of t
critical currentsJab andJc flowing parallel and perpendicu
lar to the CuO planes, respectively. This anisotropy natur
depends on the thermodynamic anisotropy. In addition,
also influenced by the anisotropy of the pinning centers
the sample geometry.

Since high-temperature superconducting single crys
are usually thin plates with thec axis normal to the surface
geometric effects cause the shielding currents to flow p
dominantly parallel to theab plane. An appreciable fraction
of the currents flowing parallel to the normal to the planec
crystallographic axis! only appears whenH is within the
angle;1/k from the plane. To measure these currents i
necessary but not sufficient to operate within this angu
range.

A solution of the anisotropic Bean model with the ma
netic field parallel to the plane of the plate was obtained
Refs. 21 and 22. In this case, the distribution of the magn
induction is determined by the linear profiles. The gradi
of the magnetic inductionB is determined by the transvers
critical current. We shall analyze the case whenH is applied
in the x direction parallel to the plane of the plate~see Fig.
1!. Two typical scenarios for flux penetration exist. In sh
samples (L/t,V) the flux penetrates more rapidly in thez
direction than in they direction and the magnetic mome
mx is predominantly determined by the short-circuit curre
parallel to thec axis. Only these samples are effective f
measurement of the current anisotropyV. In long samples
(L/t.V) the flux penetrates more rapidly in they direction.
In this case,mx is determined by the componentJab parallel
to the plane. Thus, in long samples the influence of theJc

component is not important.
Since high-temperature superconducting single crys
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are nearly square withw;L, long and short samples ar
defined according to whetherk is greater or smaller thanV,
respectively. The values ofV in YBa2Cu3O7 samples with a
high oxygen content lie between 5 and 10~see Refs. 15 and
16! and are lower than thek values for all the single crystal
investigated here~see Table I!. Thus, all these crystals ar
effectively long and shielding currents flowing in theab
plane predominate. Thus, there is no need to include cur
anisotropy in our analysis. The agreement between the
and the geometric model, when theH direction is close to
the ab plane~as can be seen from Fig. 7!, confirm this con-
clusion.

However, samples withk values less than;10 are re-
quired to obtain information on the currents parallel to thec
axis in YBa2Cu3O7 single crystals. Such samples are fair
rare. In addition, this sample should be oriented with a p
cision better than one degree~Eqs.~4! and~5!! which is not
usually achieved in SQUID measurements. Among the m
anisotropic high-temperature superconductors, we can ea
find samples with the required aspect ratio. However,
constraints on the orientation precision increase substant
and rapidly exceed the characteristic growth misorientat
(;0.1°) of high-temperature superconducting single cr
tals. For these reasons magnetic measurements can
yield the critical current anisotropy in these crystals for
fairly narrow range ofV values.

5. CONCLUSIONS

A solution of the Bean model has been obtained for
infinite thin plate in an inclined magnetic field. An analys
was made of the influence of anisotropy, the finite slope
the current–voltage characteristics, and the closure curr
in a finite samples and it was established that these fa
weakly influence the results. Over almost the entire range
H directions, the magnetic momentm induced by the shield-
ing currents is bound to the normal of the plate and
magnitude ofm varies only negligibly. This localization o
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the magnetic moment is of purely geometric origin and is
no way related to the anisotropy of the superconduct
parameters of the sample. However, when the direction oH
approaches the plane of the plate,m begins to vary rapidly in
direction and magnitude.

The validity of the geometric model was investigat
using vector magnetometry for various high-temperature
perconducting samples and conventional superconduc
The results reveal very good agreement with the model
culations of the direction ofm. However,umu shows appre-
ciable deviations from the calculations evidently because
the critical current anisotropy in the samples and the assu
tions made in the model.
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Inelastic thermal-neutron scattering is used to study the intermediate-valence system YbCu2Si2.
The magnetic scattering in two nonoverlapping ranges of transfer energies, 2,«,5 meV
and 5,«,100 meV, is analyzed under the assumption that the regions influence each other only
weakly. As a result, two sets of phenomenological crystal-field parameters are established,
and their difference constitutes the experimental error in determining these parameters. A
comparison of the fourth-order crystal field with other compounds belonging to the
RCu2Si2 series~R stands for a rare-earth element! suggests that in YbCu2Si2 hybridization occurs
betweenf electrons and copper electrons, in contrast to the heavy-fermion system CeCu2Si2,
for which it was established earlier that hybridization occurs betweenf electrons and Sip
electrons. ©1998 American Institute of Physics.@S1063-7761~98!02007-1#
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1. INTRODUCTION AND BRIEF REVIEW OF THE
LITERATURE

YbCu2Si2 is an intermediate-valence compound. This
indicated by data on the x-ray absorption edge and on
electronic specific heat. The Sommerfeld constantg amounts
to 135 mJ/~K2

•mol! ~Ref. 1!, which is much larger than the
values characteristic of normal metals (;1) and smaller than
the values ofg in heavy-fermion systems. For instance,
CeCu2Si2, which is a heavy-fermion system,g51000 mJ/
~K2

•mol!. The valence of the Yb ion in YbCu2Si2, deter-
mined from the x-ray absorption edge, is 2.9~Refs. 2 and 3!.

The problem of whether the crystal-field model can
applied to intermediate-valence systems has yet to be f
resolved, which comes as no surprise since the many-par
nature of the states in intermediate-valence systems is hi
pronounced, and all attempts to describe such systems
single-particle model should be fraught with many difficu
ties. And yet there is proof that such a description is possi
Goremychkin and Osborn4 were the first to find experimenta
proof that the crystal-field model can be used to desc
heavy-fermion systems in the case of CeCu2Si2. If the crystal
fields for intermediate-valence systems could also be fou
we would have proof of the existence of a specific form
which the many-particle nature of all rare-earth compou
with a strong hybridization interaction manifests itself, a
we could perform a concrete analysis within the scope of
specific form.

For us it is especially important to determine the crys
field in the title compound because its determination wo
continue the study of crystal fields in the RCu2Si2 series~R
stands for a rear-earth element!5–8 performed for the purpose
of establishing the crystal-field anomalies associated w
hybridization. The main conclusion drawn in all these pap
is that regular variation of the crystal field can be observed
the series of the isostructural compounds RCu2Si2: from an
anomalous crystal field in the Ce system through an inter
diate one in the Pr and Nd compounds~at high temperatures!
1621063-7761/98/87(7)/13/$15.00
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to a normal crystal field in the low-temperature Nd com
pound and in the Ho and Er compounds. We believe that
are on firm ground when we say that the normal, i.e., f
from the effect of hybridization, fourth-order multipole o
the crystal field is formed primarily by copper ligands, whi
the Si sphere normally contributes almost nothing to t
order of the crystal field. A conception of the shape of t
normal crystal field in this series provides a reference po
in our search for the crystal field of the intermediate-valen
system YbCu2Si2.

The Yb ion in the title compound is in an environme
with tetragonal point symmetry, i.e., the symmetry of a s
is fairly low. Five independent parameters are needed to
termine the crystal field, and they can be reliably found o
by directly measuring the crystal field in an inelastic therm
neutron scattering experiment. Here the problem of de
mining the crystal field in an intermediate-valence system
sure to be complex because of the extremely broad inela
peaks and the difficulties associated with separating the m
netic scattering, which carries information about the crys
field, from the phonon scattering. So far nobody has b
able to measure a purely magnetic response in neutron
periments involving YbCu2Si2 in the entire range of energ
transfers, and in interpreting a purely magnetic respo
separated in some way it is questionable whether separa
inelastic scattering from quasielastic or inelastic Kondo sc
tering is possible. Hence in our attempts to determine
crystal field we must use all the information available, i
cluding the results of macroscopic studies of this compou

According to the literature data, the inelastic scatter
of thermal neutrons in YbCu2Si2 has been measured thre
times. Twice the measurements were performed by the s
group of researchers.9,10 One of the main conclusions draw
by these researchers was that the magnetic response c
be described by a single quasielastic Lorentzian. A nonc
tradictory description of their data was possible only by
suming that there are several inelastic lines in the magn
© 1998 American Institute of Physics



e
in
tio
-
bl
n
o

d
s
d

n
eu
s-
in

u
x
n

t

he
th
d

T

he

a
-
e
in

th

e

e

lu
su
30

t

th
n

x

ra

gle
the
on
le-

ce
in

the
ns

lity
t
e-

nse
nd
the

he
he

ht
at

c-
the

as
ith

tem-
gy

e
ents
po-

ive
the
is-
t

nge
his
of E.
c-
on
r,

ary
e to
ub-
at-
b-

163JETP 87 (1), July 1998 A. Yu. Muzychka
response. This prompted them to suggest that there ar
elastic transitions associated with the crystal field in the
elastic scattering of thermal neutrons. The energetic posi
of one of these transitions ('30 meV) on the energy
transfer scale was found, and the result was highly relia
Unfortunately, the sets of the crystal-field parameters fou
in Ref. 10 do not correlate very strongly with the results
measuring the static magnetic susceptibility in a YbCu2Si2
single crystal.11 The calculated value of the anisotropy ofx
obtained on the basis of the first variant of the crystal fiel10

is much smaller than the experimental value. Another
yields an anisotropy ofx inverted in relation to the measure
anisotropy.

In the last of these three experiments, Currat a
Murani12 measured the inelastic scattering of thermal n
trons in a YbCu2Si2 single crystal. The range of energy tran
fers from 8 to 50 meV was investigated. They found that
all scattering directions the magnetic response atT54.3 K
had at least two broad inelastic components. The maxim
of the first was approximately at 12–16 meV and the ma
mum of the second, at 30 meV. These researchers did
seek the crystal-field parameters.

On the basis of the data from the measurements ofx(T)
performed by Shimizuet al.,11 Zevin et al.13 assumed tha
the leading contribution to the crystal field of YbCu2Si2 is
provided by the quadrupole term. Indeed, forB2

0

520.56 meV and a purely axial crystal-field symmetry, t
calculated susceptibility is close to the measured value in
entire temperature range. The agreement can be improve
introducing a negative paramagnetic Curie temperatureQ, a
characteristic feature of intermediate-valence systems.
agreement is best withQ.230 K. In addition, Zevin
et al.13 used the above crystal field to calculate t
temperature-dependent componentQ(T) of the quadrupole
moment by a method based on the noncrossing-diagram
proximation~see, e.g., Refs. 14–17!. The calculated depen
dence was fitted to the experimental data gathered from m
surements of the quadrupole moment of the Yb ion
YbCu2Si2 by Mössbauer spectroscopy.18 The fitting process
involved varying the Kondo temperatureTK and the effective
width G of the resonant layer of conduction electrons on
Fermi surface. This yieldedTK5200 K and G.50 meV.
The parameterTK was found to be the most sensitive in th
fitting process.

Although being outwardly convincing, the results of th
calculations ofQ(T) and x(T) done by Zevinet al.13 pose
several problems. First, why is it that with such a high va
of TK the temperature dependence of the static magnetic
ceptibility is determined by the crystal field down to 50–
K, while with T;TK or less, x must become the
temperature-independent Pauli susceptibility? Second,
negative paramagnetic Curie temperatureQ should coincide
in order of magnitude withTK , while it actually differs by a
factor of approximately seven. Calculations done by
present author withTK530 K by the method proposed i
Ref. 13 show that there is not a single value ofG at which the
calculatedQ(T) curves could be made to resemble the e
perimental curves.

Moreover, the crystal field determined in Ref. 13 cont
in-
-
n

e.
d
f

et

d
-

m
i-
ot

e
by

he

p-

a-

e

e
s-

he

e

-

-

dicts the results of neutron experiments with a sin
crystal.12 In the absence of spin and charge fluctuations,
crystal field at low temperatures yields only one transiti
between the crystal-field levels with a nonzero matrix e
ment. The transition energy amounted to.10 meV. Zwick-
naglet al.19 calculated the magnetic response with allowan
for the crystal field determined in Ref. 13 and strong sp
and charge fluctuations. Allowance for the anisotropy of
fluctuations was found to lead to different energetic positio
for the inelastic peak in the dynamic magnetic susceptibi
in the directions along thec axis and perpendicular to tha
direction. Thus, for all other directions the magnetic r
sponse must have two peaks, while along thec axis and the
direction perpendicular to that axis the magnetic respo
has only one peak. However, according to Currat a
Murani,12 at least two broad components are present in
magnetic response in all directions.

The conclusion that sums up this brief review of t
literature is that the problem of finding the crystal field in t
intermediate-valence system YbCu2Si2 is yet to be solved.

2. EXPERIMENT

A polycrystalline sample of YbCu2Si2 was prepared by
arc melting in a water-cooled copper hearth with no weig
loss during the melting process. After vacuum annealing
700 °C, x-ray crystallographic analysis and neutron diffra
tion experiments showed that there are no other phases in
sample.

The inelastic thermal-neutron scattering experiment w
conducted on a KDSOG-M time-of-flight spectrometer w
inverse geometry attached to the IBR-2 pulsed reactor~Joint
Institute for Nuclear Research, Dubna, Russia!. The inelastic
scattering of thermal neutrons was measured at three
peratures: 10 K, 80 K, and 300 K. The range of ener
transfers investigated extended from 2 to 200 meV.

3. ANALYSIS OF RESULTS

3.1. Qualitative analysis of spectra

We found that the greatest difficulty in analyzing th
results of inelastic thermal-neutron scattering measurem
was separating the phonon and magnetic scattering com
nents. Nevertheless, even if we resort only to qualitat
analysis, we are able to draw certain conclusions about
nature of magnetic scattering: it is concentrated in two d
tinct ranges of the energy transfer«. It is easy to assume tha
the low-energy feature («.3 – 5 meV), which is clearly vis-
ible in the spectra and unmistakably lies in the Debye ra
of phonon scattering, is of a purely magnetic nature. T
assumption has been corroborated by the measurements
A. Goremychkin performed on the HET time-of-flight spe
trometer with direct geometry at the ISIS spallation neutr
source~RAL, UK!. In contrast to the KDSOG spectromete
the HET instrument makes it possible to substantially v
the momentum transfer at a fixed energy transfer and, du
this, to lower the phonon-to-magnetic component ratio s
stantially ~the so-called angular suppression of phonon sc
tering!. According to the HET data, this feature can be o
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164 JETP 87 (1), July 1998 A. Yu. Muzychka
served only at small scattering angles.20 The energy width of
this feature almost coincides with its position and sugge
that the possible high-energy ‘‘tail’’ is not a significant fact
in shaping the spectrum in the range of energy trans
above 10 meV. Here the temperature dependence of the
tering in the range 20,«,100 meV is pronounced in th
KDSOG-M spectra~Fig. 1!, is of the magnetic nature~an
increase in scattering intensity with decreasing temperatu!,
and suggests that in this range of« the magnetic componen
is predominant. The range 7,«,20 meV is the most diffi-
cult for analysis, since here phonon scattering is extrem
strong~its intensity increases with temperature! and is mixed
with strong magnetic scattering, whose tail extends up t«
5100 meV.

3.2. ‘‘Primary’’ separation of the phonon component

Since the KDSOG-M spectrometer has an inverse ge
etry, it scans a broad range of energy transfers. Howe
with it one cannot substantially vary the momentum trans
for a fixed energy transfer, so that the only way to sepa
the phonon and magnetic components is to measure the
netic compound and a nonmagnetic analog, in which
magnetically active ion is replaced, say, by La. After maki
an appropriate correction, the spectrum of the latter can
considered the phonon component of the former.

Figure 2 depicts the time-of-flight spectrum of LaCu2Si2
~Fig. 2a, filled circles! together with the spectra of the ant
ferromagnetic members of the series measured with

FIG. 1. Experimental scattering law obtained with the KDSOG-M sp
trometer for YbCu2Si2 at T510 K ~curve 1!, T580 K ~curve 2!, and T
5300 K ~curve3!.
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KDSOG-M spectrometer atT580 K. The value of the total
splitting of the ground-state multiplet in the crystal field f
all antiferromagnets coincided to within 0.5 meV an
amounted to'11 meV ~Ref. 7!. The widths of the inelastic
lines of the magnetic response do not exceed 1 meV.
range of energy transfers in Fig. 2 is chosen so as to show
sections of the spectra that are free of magnetic scatterin
correction related to the self-shielding of the sample w
made for all spectra, i.e., they were all divided by a functi
F(«), which specifies the weakening of the scattered be
due to the finite thickness of the sample. In the spectro
eter’s geometry, this function has the form

-

FIG. 2. Time-of-flight spectra of inelastically scattered thermal neutrons
antiferromagnetic compounds of the RCu2Si2 series recorded with the
KDSOG-M spectrometer. The range of energy transfers is the one in w
there is no magnetic scattering.
F~«!5
exp$2m~E0!d/sin~45°1u!%2exp$2m~E01«!d/sin 45 °%

sin 45°@m~E01«!d/sin 45°2m~E0!d/sin~45°1u!#
, ~1!
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whereE0 is the final neutron energy,« is the energy transfer
m(E) is the energy-dependent linear beam-attenuation
tor, which allows for all neutron scattering and absorpti
mechanisms,u is the scattering angle, andd is the sample
thickness.

In addition, all the spectra were normalized so that
intensities of the phonon feature at«520 meV would coin-
cide.

A comparison of Figs. 2a and 2b shows that for«
.25 meV the phonon spectrum of HoCu2Si2 ~the heavy
curve in Fig. 2b! differs strongly from all the spectra de
picted in Fig. 2a. The reason for this is unknown to us, sin
an analysis of the tabulated data shows that there is n
single scattering parameter for Ho that behaves abnorm
It is more important at this point to know to what extent t
spectrum of LaCu2Si2 can be used as the phonon compon
of the spectrum of YbCu2Si2. In other words, we would like
to know to what extent the features in the phonon spect
of Ho that are not present in the spectra depicted in Fig
are retained in the phonon spectrum of Yb.

The light curve in Fig. 2b depicts the spectrum
ErCu2Si2. The extremely poor statistics of the spectrum a
due to the large absorption cross section for Er. The fact
the high-energy part of the spectrum is located above
low-energy part can be attributed to the insufficient se
shielding correction introduced by the function~1!. Never-
theless, it is obvious that the Er spectrum is much close
the Ho spectrum than it is to the spectra of lighter rarer-ea
ions. This was a sufficient argument in favor of not taki
the La spectrum as a base for imitating the phonon spect
of YbCu2Si2, but using, for lack of anything better, the spe
trum of a much closer neighbor in the rare-earth ser
which was recorded with acceptable statistics, i.e., the s
trum of HoCu2Si2 ~more precisely, the part free of magnet
scattering!. The part of the phonon spectrum below the ma
netic scattering was imitated by the Debye law with a Deb
temperature equal to 20 meV. This part was matched to
remainder of the spectrum near the 160th time channe«
512 meV).

The model phonon spectrum constructed in the way
have just described forT580 K was recalculated for othe
temperatures,T510 K and T5300 K. The normalization
constant of the model phonon spectrum was chosen so
the intensities of the features near the 100th time chan
(«555 meV) in the model spectrum and in the spectrum
YbCu2Si2 would coincide atT5300 K ~see Fig. 3a: the
heavy curve is the model spectrum and the light curve is
spectrum of YbCu2Si2, T5300 K). This choice of normal-
ization can easily be explained: the higher is the temperat
the smaller is the fraction of magnetic scattering at high v
ues of« and the closer is the phonon spectrum~from below!
to the total spectrum in this region. In this case we obtain
smallest possible value of the normalization constant for
phonon component.

Figure 3b depicts the time-of-flight spectra of the ma
netic response of YbCu2Si2 at three temperatures obtained
a result of subtracting the model phonon spectra from
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experimental spectra of YbCu2Si2. The marked dips on thes
spectra appear because of the mismatch of the phonon
tures in the Ho and Yb spectra. If we mentally ‘‘smooth ou
these features and pay attention only to the general outlin
the curve, the temperature dynamics of the magnetic
sponse in the time channels below the 200th («.5 meV)
appear to be as follows: atT510 K we have a wide unstruc
tured line covering the range of energy transfers from 5
100 meV, atT5300 K we have a structure consisting
three narrower components, and atT580 K we have an in-
termediate picture.

In what follows we call the magnetic-response spec
obtained in this way the ‘‘preliminary’’ magnetic-respons
spectra.

FIG. 3. ~a! Time-of-flight thermal-neutron inelastic scattering spectrum
YbCu2Si2 obtained with the KDSOG-M spectrometer~light curve! and a
model spectrum imitating the phonon component of the scattering and
malized as indicated in the text~heavy curve!. ~b! Results of subtracting
model phonon spectra from inelastic thermal-neutron scattering spectr
corded at different temperatures.
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3.3. Grid analysis of ‘‘preliminary’’ magnetic-response
spectra

In decomposing the ‘‘preliminary’’ magnetic respon
into spectral components we assume that the following
sumptions hold:

1! the crystal-field levels are temperature-independen
2! at a fixed temperature all inelastic lines in the sp

trum have the same width;
3! the low-energy feature of the spectrum atT510 K,

which is of a magnetic nature, in the compound under c
sideration is the analog of the quasielastic component in
case of a compound with a definite value of the total m
netic moment~an antiferromagnet or a heavy-fermion sy
tem!;

4! the width of this feature is approximately equal to
position, i.e.,'3 meV; then the ‘‘quasielastic’’ componen
provides an insignificant contribution to the magnetic sc
tering at 5,«,100 meV, which is mostly due to inelasti
transitions in the crystal field;

5! the spectral function describing the shape of the
elastic line is Lorentzian.

The most ‘‘intriguing’’ part of the magnetic response
the quasielastic component: its width is much smaller th
the width of inelastic lines, and its shape cannot be descr
by a Lorentzian~we shall elaborate on this below!. Hence in
analyzing the crystal field we focused on the range of ene
transfers in which the quasielastic component is assume
play a small role, 5,«,100 meV, i.e., in the 200th to th
75th time channels.

What complicates the problem of decomposing
‘‘preliminary’’ magnetic-response spectra into spectral co
ponents is, of course, the fact that the spectra are hig
undifferentiated, and the resolving power of the spectrom
has nothing to do with it. The spectra are resolved so po
because of the large natural width of the spectral lines.
the other hand, matters are simplified considerably by
fact that atT510 K the inelastic scattering spectrum shou
contain no more than three lines, which correspond to tr
sitions from the ground-state doublet to three excited d
blets ~it is natural to take into account the splitting of on
the ground-state multiplet2F7/2, since the next multiplet
2F5/2, is separated from the ground-state multiplet by a hu
energy gap of 1251.5 meV!, while at T5300 K the maxi-
mum number of lines is six.

Each spectral component corresponds to the trans
D i j from thei th crystal-field level to thej th level, i.e., to one
of the terms in the dipole approximation of the law of sc
tering of unpolarized neutrons by a paramagnetic ion i
crystal field:10

S~«,T!}
«/kT

12exp~2«/kT! (
i j

r i u^ j uĴ'u i &u2

3
12exp~2D i j /kT!

D i j /kT
P~«2D i j !. ~2!

The energetic position of the componentD i j corresponds to a
peak in the spectral functionP, and the transition intensity is
determined by the thermal populationr i of the i th level and
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the square of the matrix element^ j uĴ'u i & of the operator of
the component of the total angular momentum of the pa
magnetic ion perpendicular to the scattering vector. In
case of a polycrystalline scatterer, this matrix element can
expressed in terms of the matrix elements of the stand
angular-momentum operators:

u^ j uĴ'u i &u25 1
3 u^ j uĴ2u i &u21 1

3 u^ j uĴ1u i &u21 2
3 u^ j uĴzu i &u2.

Both the positions and the intensities of the transitio
are uniquely determined by the crystal-field operator, wh
for rare-earth ions in the case of tetragonal point symme
has five terms:

ĤCF5B2
0Ô2

01B4
0Ô4

01B6
0Ô6

01B4
4Ô4

41B6
4Ô6

4 , ~3!

whereÔl
m are the equivalent Stevens operators,21 and $Bl

m%
is the set of crystal-field parameters sought.

The search for the crystal-field parameters is carried
by the standard method: the results of decomposition of
spectra yield a set of discrete data~the positions and inten
sities of the peaks!, which can serve as a selection criterio
for examining different crystal-field variants. The uncerta
ties in the positions and intensities of the peaks act a
gateway, through which the set of crystal-field paramet
being tested either passes or does not. It is thus clear th
the present case the gateway is fairly ‘‘wide.’’

In sorting the various crystal-field variants it is conv
nient to use Walter’s parametrization.22 The convenience of
this parametrization lies in the fact that the range of variat
of each Walter parameterxi is bounded:uxi u<1. Moreover,
only four of the five Walter parameters are varied. The fi
parameter is the scale factorW, which is defined by relating
the energetic position« of a specific spectral component to
definite transition between crystal-field levels through t
linear equation«5WD i j , whereD i j is the transition from
the i th level to thej th level of the crystal-field Hamiltonian
taken forW51. In our case the energetic position of one
spectral components was«532 meV. The fact that othe
neutron studies~see the Introduction! also detected a mag
netic feature with a close energetic position suggests that
component is reliable and can be used to determine the s
factor W.

In sorting the crystal-field variants the entire parame
space$xi% was scanned with a mesh width forxi equal to
0.02. The crystal-field transitions were calculated at e
mesh point, and the results were compared with the par
eters of the spectral components of the ‘‘preliminary
magnetic-response spectra. The uncertainties of the posi
and intensities of these components were sure to be m
larger than the errors in the calculated quantities due to
finite size of the grid cells. As a result of scanning, rough
two dozen unrelated regions of the space$xi% were selected,
each corresponding to a definite region of the param
space$Bl

m%.

3.4. Final isolation of the inelastic magnetic response

It goes without saying that the ‘‘preliminary’’ magneti
spectra can serve only as a very rough approximation of
YbCu2Si2 magnetic response. Moreover, the large numbe
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FIG. 4. Time-of-flight inelastic magnetic thermal
neutron scattering spectra recorded at different te
peratures and corresponding to the first variant
the crystal field: points—magnetic spectrum is
lated from the total experimental inelastic therma
neutron scattering spectrum by the method d
scribed in the text; heavy curves—result o
calculations based on the first set of crystal-fie
parameters; light curves—individual spectral com
ponents of the calculated spectrum.
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regions in the crystal-field parameter space selected as r
of grid analysis requires an effective selection criterion
selecting among these ‘‘points.’’ The criterion that we us
consisted of the results of the least-squares fitting of the
culated inelastic («.5 meV) magnetic-response spectru
containing both the magnetic and phonon components to
experimental spectra atT580 K and 300 K. In this proces
the spectra for both temperatures were fitted simultaneou
The difference between the total experimental spectrum
the calculated magnetic spectrum atT510 K, recalculated
to the respective temperature, was taken as the phonon
ponent of the calculated spectrum. The parameters$Bl

m%, the
factor by which the magnetic response as a whole was m
tiplied, and the linewidths common to all inelastic transitio
in the crystal field at a given temperature were varied in
fitting procedure. The high-energy tail of the low-energy fe
ture was described as the tail of a normal quasielastic c
ponents, but the width of this component was varied in
pendently of the width of the inelastic transitions.

The energy-transfer function

f ~«!5
12exp~2«/kT0!

12exp~2«/kTx!
,

by which we must multiply the phonon spectrum to recalc
late from T0510 K to Tx , increases withTx . This causes
enhancement of the ‘‘noise’’ present in the difference sp
trum at 10 K and an increase in the spread of points in
calculated spectra as the temperature is increased, which
lead to difficulties in minimizingx2. Nevertheless, we hope
that if the starting point in the fitting procedure is close to t
true set of crystal-field parameters, the procedure should
verge to that set.

The least-squares fits obtained by starting the proced
in different selected regions were rated by two criteria: fir
by the value ofx2, and, second, by the stability of the pro
ult
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cedure with respect to the region, i.e., if the region is n
random but is near a true point, the procedure must conve
in it.

Only one region was found to meet the stability crit
rion, and it also exhibited the lowest level ofx2 as a result of
fitting. A characteristic feature of this region, which sets
apart from all the other regions, is the large absolute valu
the crystal-field parameterB4

0. Figure 4 depicts time-of-flight
spectra obtained as a result of least-squares fitting in
region. The heavy curves represent the total calculated m
netic response, the light curves represent the individual sp
tral components, and the points represent the result of s
tracting the phonon component obtained by the meth
described earlier from the total experimental spectrum. T
numerical results of the fitting procedure are listed in Tabl
The plus-or-minus sign in front of the crystal-field param
etersB4

4 and B6
4 reflects the fact that a neutron-scatteri

TABLE I. Parameters of the calculated inelastic magnetic response use
describing the low-energy features of the spectrum atT510 K by a quasi-
elastic Lorentzian~the first variant of the set of crystal-field parameters!.

Variable parameters Final fit

B2
0 20.21 meV

B4
0 20.2131021 meV

B6
0 20.1031024 meV

B4
4 60.4631021 meV

B6
4 60.1731022 meV

Width of quasielastic line atT510 K 0.5 meV
Width of inelastic line atT510 K 9.54 meV

Width of quasielastic line atT580 K 2.8 meV
Width of inelastic line atT580 K 5.65 meV

Width of quasielastic line atT5300 K 3.3 meV
Width of inelastic line atT5300 K 4.50 meV
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experiment is insensitive to simultaneous changes in
signs of both parameters.

Below we assume that the set$Bl
m% we have obtained is

close to the true set.

3.5. Low-energy feature in the magnetic-response spectrum
at T510 K

We recall that in decomposing the magnetic respo
into spectral components we assumed that the low-en
feature in the spectrum is an analog of the quasielastic c
ponent in compounds with a definite value of the magne
moment and that the bulk of the intensity of ‘‘quasielasti
scattering in YbCu2Si2 should lie in the range 0,«
,10 meV. The last assumption was based on a visual e
mate of the width of the feature. Table I shows that in co
trast to the spectra at 300 K and 80 K, the width of t
quasielastic component of the spectrum recorded aT
510 K is approximately 20 times smaller than the width
the inelastic lines. This fact merits an explanation.

The calculated intensity of the elastic component aT
510 K in the response described by the set of parame
established earlier is related to the intensities of the ela
components as 1:0.75:0.53:0.19. The only possibility of p
serving the very high intensity of the elastic line in the sp
trum atT510 K ~Fig. 4! in the range below 10 meV was t
select a narrow width for the Lorentzian describing this lin
As the width increases, the intensity ‘‘spreads’’ because
the effect of the detailed-balance factor («/kT)/@1
2exp(2«/kT)# in the scattering law~2!. Thus, the unjustifi-
ably small width of the quasielastic component is the res
of the attempt to describe this component by a Lorentz
and to assign a high intensity to it.

The points in Fig. 5 represent the low-energy part of
total scattering law obtained with the KDSOG-M spectro

FIG. 5. Low-energy part of the scattering law for YbCu2Si2 at T510 K:
points—experimental spectrum obtained with the KDSOG-M spectrome
1—quasielastic 0.5 meV wide Lorentzian corresponding to the quasiela
spectral component as shown in Fig. 4;2—quasielastic 2.25 meV wide
Lorentzian with an intensity equal to one-third of the intensity correspo
ing to curve1; heavy solid line—result of calculations using the Kond
formula in Ref. 27:TK526.5 K, the population of thef level is 0.85, the
degeneracy of the ground state of the rare-earth ion is eightfold; he
dashed line—same atTK535 K.
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eter for YbCu2Si2 at T510 K. The light curve1 represents
the Lorentzian of the quasielastic component of spectr
depicted in Fig. 4. Even if we were to assume that th
exists a phonon background that shifts curve1 upward, there
is no way in which we can describe the characteristic pea
«.3 meV. As the Lorentzian width increases, the extent
which the Lorentzian does not coincide with the spect
feature grows due to both shape and intensity, as is dem
strated by curve2. This curve is a 2.25 meV wide elasti
Lorentzian of the same intensity as curve1, but has been
diminished threefold.

The fact that there is no way in which a Lorentzian c
describe the low-energy part of the spectrum of a mix
valence system should not come as a surprise, since
known14–17 that at low temperatures and small energy tra
fers the scattering by a rare-earth ion with an unstablef
shell should contain an inelastic Kondo component, which
related to the transition from the ground state of a ma
particle system consisting of 4f electrons and conduction
electrons~a Kondo singlet! to excited states with a nonzer
magnetic moment.23–26

Kuramoto and Muller–Hartman27 proposed an analytica
formula that describes the low-energy part of the dynam
magnetic susceptibility of a mixed-valence impurity atT
50:

Im x~«!

C
5

«

~kTK!2 n
sin a

u2~u214 sin2 a!

3H sin a ln@~12u2!214u2 sin2 a#

1uFp2 2arctan
12u2

2u sin a G J , ~4!

whereC5(gJmB)2J(J11)/3 is the Curie constant,TK is the
Kondo temperature,« is the energy transfer,u5«/kTK , nf is
the population of thef shell,n is the degree of degeneracy o
the rare-earth ion, anda5p(nf /n).

Equation~4! was derived using the noncrossing-diagra
approximation under the assumption that the environmen
rare-earth ions is spherically symmetric, which plainly co
tradicts the real physical situation. Nevertheless, we exp
that ~4! gives a correct qualitative picture of the dependen
of scattering on energy transfer for low« andT in the case
where the crystal-field splitting of the ground-state multip
DCF>kTK . Whennf /n>0.25, Eq.~4! can be approximated
by a sum of quasielastic and inelastic Lorentzians. When
~4! was used, we assumed thatnf50.85 andn58 ~degen-
eracy of the ground-state multiplet without a crystal field!,
knowingly avoiding this possibility. Here Eq.~4! was used to
estimate the high-energy ‘‘tail’’ of the scattering related
the low-energy feature from below, since for smallnf /n Eq.
~4! implies that the scattering intensity rapidly diminishes
« increases.

Note that in addition to Eq.~4! being able to provide
only a qualitative description of the spectrum, the situat
with magnetic scattering at«,5 meV is indeterminate also
due to the special way in which the magnetic componen
the scattering is isolated: here we have a low-energy ‘‘ta
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of inelastic transitions in the crystal field and a phonon ba
ground. Both components of the spectrum, as is evident f
the description of the processing procedure, are determ
by magnetic scattering fitted in another range of ene
transfers («.5 meV). The only assumption that makes a
sense in this situation is that at low temperatures the Ko
component~4! is the leading scattering component in t
range of energy transfers«,5 meV.

Figure 5 depicts the result of the least-squares fitting
the calculated scattering law~the heavy solid curve! to the
experimental scattering law obtained with the KDSOG
spectrometer atT510 K ~points!. The fitting was carried ou
only in the range 2,«,5 meV. For the calculated scatte
ing law we took only the Kondo component~4! multiplied
by the factor@12exp(2«/kT)#21. In the fitting process we
varied the Kondo temperature and the factor multiplying
calculated spectrum as a whole. As a result of the fitting,
value of kTK was found to be equal to 2.25 meV (TK

526.5 K). We would like to believe that ignoring the oth
scattering components at these values of« does not lead to
serious errors in determining the Kondo temperatureTK ,
whose value is determined primarily by the position of t
peak of the low-energy feature. The dashed curve in Fig
represents the results of a calculation using Eq.~4! for TK

535 K.
The result of the procedure for fitting the inelastic part

the spectrum described in the previous section depend
the shape of the tail of the quasielastic component. The
$Bl

m% listed in Table I was obtained under the assumpt
that this component is described by a Lorentzian. If we s
pose that the quasielastic component is described by Eq~4!,
the fitting results~see Table II! change, but they remain in
side the region of the crystal-field parameter space de
mined by grid analysis. We believe that the difference
tween$Bl

m%1 ~Table I! and$Bl
m%2 ~Table II! characterizes the

accuracy of determining the crystal-field parameters in
present paper. It is significant that the parametersB4

0 andB4
4

are almost the same in both sets.
Note that the crystal-field parameters and the Kon

scattering parameters~4! were obtained from two differen
least-squares fits in two nonoverlapping ranges of ene
transfers. We intentionally avoided the question of match

TABLE II. Parameters of the calculated inelastic magnetic response us
describing the low-energy feature of the spectrum atT510 K by Kondo
scattering~the second variant of the set of crystal-field parameters!.

Variable parameters Final fit

B2
0 20.22 meV

B4
0 20.2031021 meV

B6
0 20.2131025 meV

B4
4 60.4531021 meV

B6
4 60.4831023 meV

Kondo temperature 3.9 meV~45.3 K!
Width of inelastic line atT510 K 9.71 meV

Width of quasielastic line atT580 K 1.5 meV
Width of inelastic line atT580 K 6.0 meV

Width of quasielastic line atT5300 K 3.3 meV
Width of inelastic line atT5300 K 4.50 meV
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by assuming that one range of energy transfers has little
fect on other ranges. As for fitting the magnetic spectr
over the entire range of energy transfers, we lack, first
most importantly, sufficient theoretical knowledge about t
structure of the quasielastic component and, second, s
cient exact knowledge about the phonon contribution in
region of small energy transfers.

Nevertheless, to qualitatively compare the intensities
the quasielastic and inelastic components of the magn
scattering, we fitted the intensity of the Kondo compone
shown in Fig. 5~heavy solid line! in the presence of the
inelastic magnetic response corresponding to the set$Bl

m%2 to
the experimental scattering law atT510 K in the range 2
,«,5 meV. Only the common factor of the Kondo comp
nent was varied during the fitting. The results are depicted
Fig. 6: points—the total experimental scattering law obtain
with the KDSOG-M spectrometer atT510 K; light line—
the Kondo component of the scattering calculated by Eq.~4!
at TK526.5 K; heavy dashed line—the sum of three inela
tic lines similar to those represented in Fig. 4,T510 K; and
heavy solid line—the sum of the calculated Kondo comp
nent and the calculated inelastic components.

The intensity of each was found by the formula10

x i~T!}
D i

12exp~2bD i !
smag

i ~T!

3F E
2`

` «

12exp~2b«!
P~«2D i ,T!d«G21

, ~5!

which is valid for broad spectral lines, from the areasmag

under the respective curve in Fig. 6 in the range of« from 2
meV to 100 meV, i.e., the largest energy transfer for wh
traces of magnetic scattering are visible. In Eq.~5!, x is the
intensity sought, andP(«2D,T) is the spectral function cor
responding to a feature whose energetic position isD.

The ratio of the intensity of the Kondo component to t
overall intensity of the inelastic component was found to

in

FIG. 6. Comparison of the Kondo component and inelastic-scattering in
sities: light line—Kondo component,TK526.5 K ~Fig. 5!; heavy dashed
line—inelastic response calculated on the basis of the second variant o
crystal field at T510 K; heavy solid line—sum of the two; points—
experimental scattering law obtained with the KDSOG-M spectrometer
YbCu2Si2 at T510 K.
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about 0.5, while the ratio of the intensity of the elastic line
the total intensity of the inelastic lines for$Bl

m%2 , which was
used to calculate the inelastic component in Fig. 6, amou
to 0.91. If we assume that the compensation of the magn
moment is reflected only in the intensity of the quasielas
scattering, which is fully described by the Kondo compon
just obtained, we can easily find that the reduction of
square of the total magnetic moment amounts to 21%.

The quasielastic scattering in spectra at higher temp
tures was described only by a Lorentzian, since Eq.~4! can
be used only at low temperatures.

4. DISCUSSION

The compound studied here contains variable-vale
rare-earth ions as elements of the crystal matrix and
Kondo lattice. However, the foregoing suggests that we w
able to describe the main features of magnetic scattering
basing our reasoning exclusively on an incoherent or im
rity approach. Below we continue our analysis along
same lines.

4.1. Comparison with the results of measuring macroscopic
characteristics

Measurements of the static magnetic susceptibility
intermediate-valence systems suggest that at high temp
tures its temperature dependence obeys the Curie-Weiss

x~T!5
1

3
Nmeff

2 1

T1Q
, ~6!

whereN is the number of magnetic ions,meff is the effective
magnetic moment of a single ion, andQ,0 is the negative
paramagnetic Curie temperature. This experimental fact
described theoretically by Kojimaet al.,15 who used the non-
crossing diagram approximation to calculate the static m
netic susceptibility of a variable-valence impurity.

Shimizu et al.11 used the results of measuringx in a
single crystal ~the experimental points on the plots
x21(T) are depicted in Fig. 7 by filled and unfilled circle!
to determineQ for the directions along the crystallographicc
axis and perpendicular to that axis:Q i5275 K and Q'

52299 K. Actually, in determiningQ from the high-
temperature part of ax21(T) curve there is a lot of arbitrari
ness in drawing the straight line forx21(T)}(T1Q) due to
the experimental error ‘‘corridor’’ and, more importantly,
the problem of correctly choosing the segment of thex21(T)
curve where the linear law holds.

Following the assumption of Sales and Wohlleben28 that
the absolute value of the negative paramagnetic tempera
is close to the Kondo temperature, we equate2Q i with the
value of TK obtained from an analysis of the low-energ
feature of the magnetic scattering spectrum~see Sec. 3!, i.e.,
Q i5226.5 K. Note that the assumption in Ref. 28 is bas
on a phenomenological model of interconfigurational flu
tuations and still requires rigorous mathematical substan
tion.

The light solid line in Fig. 7 represents the Curie-We
law for the direction along thec axis obtained by connectin
the point (226.5, 0) with the extrapolation of the exper
ts
tic
c
t
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mentalx i
21(T) curve toT5300 K. The dashed line repre

sents the Curie lawx i
21(T)}(meff)

22T with the same effec-
tive magnetic moment as in the Curie-Weiss law. The he
solid line represents the Curie law for the Yb31 ion (m
54.54mB). The ratio of the square of the effective magne
moment (meff)

25@n(T)22#mYb31
2 to the square of the mag

netic moment of the Yb31 ion, mYb31
2 , is equal to the recip-

rocal ratio of the slopes of the dashed and solid he
straight lines, which thus equalsn(T)22, wheren(T) is the
valence of Yb in the compound under consideration aT
5300 K. Figure 7 shows that the high-temperature vale
of Yb determined in this way is 21(117.2/135.3)52.87,
which is very close to the experimental value of 2.9 det
mined from the x-ray absorption edge.2,3 Thus, the value
Q i5226.5 K and the assumption of Sales and Wohllebe28

that 2Q i is close toTK , on the basis of which this value
was obtained, do not contradict the experimental facts. N
that the estimate of the magnetic-moment reduction at
temperature made at the end of Sec. 3 yields a lo
temperature valence of Yb equal to 2.79, which appears to
a highly plausible result.

Figure 8 shows plots ofx21(T): experimental curves
taken from Ref. 11 ~x i

21(T)—filled circles, and
x'

21(T)—unfilled circles! and calculated curves~heavy solid
line—based on the first set of crystal-field parameters,
dashed line—based on the second set of crystal-field par
eters!. The calculated curves have been corrected for the
lence value obtained and have been shifted upward along
vertical axis so that the calculated and experimentalx'

21(T)
curves would coincide atT5300 K.

We were unable to find the set of parameters$Bl
m% for

which the anisotropy ofx would be determined only by the
crystal field, although attempts to simultaneously fit the d
on the static susceptibility and neutron scattering with va
tion of the crystal field were made. For this reason we

FIG. 7. Determining the high-temperature valence of the Yb ion
YbCu2Si2. Points—experimental data on the temperature dependence o
reciprocal static magnetic susceptibility of YbCu2Si2 ~Ref. 11! ~filled
circles—along the crystallographicc axis, unfilled circles—in the perpen
dicular direction!; light solid line—Curie-Weiss law withQ5226.5 K cor-
responding to the effective magnetic moment of Yb in YbCu2Si2; dashed
line—Curie law corresponding to the same effective magnetic momen
Yb in YbCu2Si2; heavy solid line—Curie law corresponding to the magne
moment of Yb31.
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sume that the anisotropy of the negative paramagnetic C
temperature provided an additional contribution tox. Figure
8 shows thatQ'5267 K.

4.2. Comparison of the crystal fields in YbCu 2Si2 and other
compounds in the series

As noted in the Introduction, finding the crystal field
the title compound was a part of a systematic study of cry
fields in the RCu2Si2 series of compounds.4–8 In their theo-
retical paper, Levy and Zhang29 took the anisotropic hybrid-
ization interaction between thef electrons of rare-earth ion
and conduction electrons into account by introducing an
fective potential that contributed to the total crystal field. T
main goal of the systematic study of the crystal fields in
members of the series is to experimentally determine
contribution to the crystal field of anomalous compounds
comparing them with normal compounds which exhibit a
tiferromagnetic properties.

The comparative analysis was based on the superp
tion model proposed by Newman and Ng.30 In this model,
the fourth and sixth orders of the crystal field~i.e., Bl

m with
l 54, 6! are determined only by the local environment of t
rare-earth ions~ligands!. Here the crystal-field potential i
written as a superposition of the contributions of the differ
coordination spheres, and the contribution of each sphe
represented as a product of the geometric coordination fa
K̄ lm , which depends on the position of the ligand ions in t
sphere, and what is known as the internal parameter of
respective sphere,Ãl(Rj ), which is a measure of the partic
pation of the respective coordination sphere in forming
corresponding crystal-field multipole:

Bl
m5Q l(

i j
Ãl~Rj !Klm~u i ,w i !5Q l(

j
Ãl~Rj !K̄ lm~Rj !,

~7!

FIG. 8. Anisotropy ofQ: Points—experimental data on the temperatu
dependence of the reciprocal static magnetic susceptibility of YbCu2Si2
~Ref. 11! ~filled circles—along the crystallographicc axis, unfilled
circles—in the perpendicular direction!; heavy lines—calculated tempera
ture dependence of the reciprocal static magnetic susceptibility obtaine
the basis of the first variant of the crystal field~solid line! and the second
variant of the crystal field~dashed line! and shifted upward along the verti
cal axis of ordinates so that the calculated curve for the direction per
dicular to thec axis would coincide with the experimental curve.
rie
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K̄ lm~Rj !5(
i

Klm~u i ,w i !,

whereQ l is the Stevens factor, andRj , u i , andw i are the
coordinates of thei th ion in the j th coordination sphere.

A characteristic feature of the structure of compoun
belonging to the series under consideration is that the lo
environment of the rare-earth ions comprises two coordi
tion spheres, whose radii differ by less than 0.1 Å: t
spheres of the Si and Cu ligands. The next coordinat
sphere is 0.5 Å away from them. As a result, for the four
order crystal field we can set up the system of equations

B4
0

Q4
5K̄40~Si!Ã4~Si!1K̄40~Cu!Ã4~Cu!,

~8!
B4

4

Q4
5K̄44~Si!Ã4~Si!1K̄44~Cu!Ã4~Cu!.

In the particular case of Yb, this system becomes

B4
0

217.331024 520.64Ã4~Si!22.17Ã4~Cu!,

~9!
B4

4

217.331024 5225.5Ã4~Si!15.10Ã4~Cu!.

The values ofK̄ lm were calculated from the structural data
Ref. 31 using the formulas on page 707 of Ref. 30.

By plugging the values ofBl
m found from experiments

into ~9! and solving the system we can find the values of
internal parametersÃ4(Si) andÃ4(Cu). As noted in Sec. 3
a neutron experiment does not makes it possible to determ
the signs ofB4

4 andB6
4, since it is insensitive to their simul

taneous reversal.
If we choose the signs to be such thatB4

4.0 and B6
4

.0, ~11! the system yields the following values of th
fourth-order internal parameters:

Ã4(Si)520.061 meV, Ã4(Cu)525.49 meV for the
first set$Bl

m% and
Ã4(Si)520.067 meV, Ã4(Cu)525.41 meV for the

second.
For the opposite choice of signs~22! we have
Ã4(Si)522.019 meV, Ã4(Cu)524.91 meV for the

first set$Bl
m% and

Ã4(Si)521.980 meV, Ã4(Cu)524.83 meV for the
second.

An entirely independent search for the crystal-field p
rameters in YbCu2Si2 in the ~11! case yielded a very sma
value for Ã4(Si), which was characteristic of the norm
crystal field in the series of isostructural compounds RCu2Si2
~see Refs. 5, 7, and 8!. This simply cannot be a coincidenc
Therefore, the~11! choice of signs is preferable.

The most characteristic feature of the crystal field
anomalous compounds belonging to the series, which
determined in previous studies, is the large~in absolute
value! and negative~in sign! contribution of the Si sphere to
the crystal field. Figure 9 shows a comparative diagram
the crystal fields~the internal parameters of the ligan

on

n-



o
a
th

w

-
m
de
n

th
on

e

ust
ing
rst
e
nd
ith

del.
for
nd

the
t

a
in-

bts

ld

of
e

hus
to

ite,
the

le
n
mp-

c

e

172 JETP 87 (1), July 1998 A. Yu. Muzychka
spheres! in the series under consideration and the place
cupied by Yb in it. We see that in the latter case the anom
shifts with conservation of the sign from the Si sphere to
Cu sphere. Thus, as a result of our comparative analysis
arrive at the following conclusions:

1! just as NdCu2Si2, PrCu2Si2, and especially the heavy
fermion system CeCu2Si2, the intermediate-valence syste
YbCu2Si2 demonstrates a large anomaly in the fourth-or
crystal field, which can be related to the hybridization co
tribution to the crystal-field potential;

2! the situation characteristic of the rare earths at
beginning of the series, i.e., in the case of rare-earth i
with a singlef electron in the 4f shell ~Ce!, differs from the
situation at the end of the series~Yb has one hole in thef
shell instead of one electron!: while in the former case ther
is strong hybridization off electrons with Sip electrons, in
the latter case there is hybridization betweenf electrons and
copper electrons.

A system similar to~8! and ~9! can be set up for the
sixth-order crystal field and, knowingB6

0 andB6
4, we can find

FIG. 9. Values of the parameters in the superposition model of ligand
ordination spheres for various members of the RCu2Si2 series~in the case of
R5Nd, an unfilled square corresponds to a low-energy value of a param
and a filled square, to a high-temperature value!.
c-
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e
e
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the values of the sixth-order internal parameters. One m
bear in mind, however, that the relative error in determin
B6

0 andB6
4 ~i.e., the difference between the values in the fi

and second sets! is large. Table III lists all the data on th
fourth- and sixth-order crystal fields for the first and seco
variants of the crystal field: the crystal-field parameters w
the preferable signs ofB4

4 and B6
4 and the corresponding

values of the internal parameters of the superposition mo
Figure 10 depicts the structure of the wave functions

the first variant of the crystal field. In the case of the seco
variant,$Bl

m%2 , the differences are insignificant.

4.3. The intermediate-valence system YbCu 2Si2 and
anisotropic hybridization

Clearly, the assumption put forward in Sec. 4.1 that
negative paramagnetic temperatureQ is anisotropic does no
allow the data on the static magnetic susceptibility of
single crystal to serve as an absolute criterion for determ
ing whether the crystal field we found is the true one. Dou
regarding the validity of the assumption thatQ is anisotropic
automatically lead to doubts regarding the crystal fie
found, and vice versa.

On the other hand, there is no unique interpretation
the anisotropy ofQ. This phenomenon may be due to th
coherent mechanism of the interstitial interaction and is t
an inherent feature of the Kondo lattice. It may also be due
the features of hybridization at an individual rare-earth s
i.e., a mechanism of an incoherent or impurity nature. In
latter case the concept of anisotropic hybridization29 be-
comes logically complete, and within this framework the ro
of the hybridization contribution to the crystal field of a
intermediate-valence field becomes clear: using the assu
tion made in Ref. 28 thatTK and2Q are close, we can link
the values2Q i526.5 K and2Q'567 K to different char-

o-

ter

FIG. 10. Structure of the wave functions of Yb31 in the first variant of the
crystal field.
TABLE III. Fourth- and sixth-order crystal fields and parameters of the superposition model.

Parameters of
crystal
field

Variant of
crystal field

Parameters of
superposition

model
Variant of

crystal field

1 2 1 2

B4
0, meV 20.2131021 20.2031021

Ã4(Si), meV 20.6131021 20.6731021

B4
4, meV 10.4631021 10.4531021

Ã4(Cu), meV 25.49 25.41

B6
0, meV 20.1031024 20.2131025

Ã6(Si), meV 1.97 0.56

B6
4, meV 10.1731022 10.4831023

Ã6(Cu), meV 1.47 0.42
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acteristic hybridization energies:«Ki52.25 eV in the direc-
tion of thec axis and«K'55.68 meV in theaa plane.

It may also be that both the coherent and impur
mechanisms participate in the shaping of the anisotro
paramagnetic temperatureQ. Only experiments can provid
the final answer to all the questions concerning the ani
ropy of Q and the parameters of the crystal field
YbCu2Si2. Two experiments are needed. First, we must m
sure the anisotropy of the static magnetic susceptibility
of the Kondo lattice but of the Kondo impurity. This require
studying a single crystal in which Yb is partially replaced
a rare-earth element with zero magnetic moment, e.g.,
Second, in a neutron scattering experiment involving
YbCu2Si2 single crystal we must measure the dynamic m
netic susceptibility in the direction of thec axis and in the
perpendicular direction with energy transfers ranging fr
;1 meV to 10 meV. Such measurements will make it p
sible to directly observe the values of«K corresponding to
different crystallographic directions, while in experimen
with a polycrystal these values may remain unresolved.

5. CONCLUSION

We have applied inelastic thermal-neutron scattering
the intermediate-valence system YbCu2Si2 . Measurements
performed at different temperatures have made it possibl
separate the nonoverlapping ranges of energy transfers w
magnetic scattering takes place. The characteristic valu
the Kondo temperature for this compound has been de
mined on the basis of an analysis of the scattering at
energy transfers. An analysis of scattering in the high-ene
region has made it possible to establish the phenomeno
cal parameters of the crystal field, primarily of the fourt
order crystal field. The results of a comparison of these fie
with the crystal fields of other compounds belonging to
same series suggest that there is hybridization off electrons
and copper electrons. By comparing the crystal field found
this work and the results of measurements of the static m
netic susceptibility we conclude that the negative param
netic Curie temperature is anisotropic in the direction of
c axis and in the perpendicular plane.

As for the question of how hybridization and the crys
field are related, we have arrived at the following conclusi
the k2 f hybridization interaction does indeed fit into th
crystal-field model fairly well. As long as line broadenin
does not prevent us from separating the components in
scattering spectrum, the crystal-field model will provide
meaningful description of the behavior of a variable-valen
rare-earth ion. All possible renormalizations of the spectru
the drift of levels with temperature, etc. are nothing mo
than ‘‘ripples’’ that distort but do not entirely break th
‘‘backbone’’ of the phenomenological crystal-field Ham
tonian from which the varying properties of rare-earth io
from high to low temperatures ‘‘hang.’’ The presence of h
bridization directly leads to the formation of an entirely ne
crystal field, which differs dramatically from the crystal fie
of a rare-earth ion with a stablef shell.

According to the results of the treatment of data on
intermediate-valence system YbCu2Si2, the most significant
ic
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deviations from a purely crystal-field behavior in the ma
netic responses of systems with strong hybridization are
lated to the ‘‘quasielastic’’ component. In addition to the fa
that this component contains a clearly distinguisha
Kondo-scattering part and cannot be described by the re
ation approximation, there is a high probability that t
magnetic-scattering ‘‘deficit’’ due to reduction of the effe
tive magnetic moment of the variable-valence rare-earth
primarily affects the component’s intensity. Note that w
were successful in incorporating the crystal field of t
Yb-Cu system into the general picture of the series by
suming that the inelastic scattering component follows
crystal-field models exactly, while ascribing the general d
crease in magnetic scattering to its ‘‘quasielastic’’ part alo
has led to a plausible low-temperature value of the valenc
the Yb ion. Such a distinct status of the ‘‘quasielastic’’ com
ponent was to be expected, since it is directly related to
ground state of the Kondo system.

One can easily see that the applicability of the cryst
field model to the analysis of the spectrum of the inelas
incoherent magnetic scattering of neutrons in a Kondo s
tem depends on the ratio of the width of the ‘‘quasielasti
scattering component or, which is the same, the position
the Kondo scattering peak, i.e., the Kondo energy, to
energy of the first excited level of the effective crystal fie
If this ratio is equal to, or larger than, unity, the magne
response is a broad undifferentiated line. Conversely, if
ratio is smaller than unity, at least two components can
distinguished in the spectrum, viz., a ‘‘quasielastic’’ and
inelastic component, and the latter can then be analyzed
ing the crystal-field model.

The author is grateful to E. A. Goremychkin for statin
the problem and for the help in conducting the experim
and to E. S. Klement’ev for some fruitful discussions of t
results.
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Influence of the degree of disorder of amorphous solids on the intensity of light
scattering by acoustic phonons
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It is observed experimentally that in the low-frequency Raman light scattering spectrum of
amorphous porous silicon the boson peak situated in the acoustic range is more sensitive to the
structural order than the optical mode presently used to determine the degree of disorder.
It is shown that this is because, unlike the coefficient of interaction with optical vibrations, the
coefficient of interaction between light and acoustic vibrations contains an additional
factor, the square of the reciprocal correlation length of the vibrational excitations, i.e., the
intensity of light scattering by acoustic phonons has an additional dependence on the degree of
disorder. © 1998 American Institute of Physics.@S1063-7761~98!02107-6#
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1. INTRODUCTION

Problems are currently being encountered in determin
the ratio of the volumes of the amorphous and crystall
phases in solids using Raman scattering, which is highly s
sitive to structural order. In the literature the ratio of t
volumes of the amorphous and crystalline phases in thin
con films has been determined using the Raman spectra
the ratio of the integrated areas below the broad amorph
like and narrow crystalline peaks of the transverse opt
~TO! phonon.1,2 However, this method is inaccurate becau
the annealing of amorphous silicon microparticles and fil
has a different influence on the Raman spectra in the op
range. In Ref. 3, for example, when small silicon partic
were annealed to 800 °C, the Raman spectra revealed
appreciable changes and continued to show only
amorphous-like TO peak although the films, judging by t
spectra, had become completely crystalline. In addition,
spectra of Raman scattering by optical phonons obtained
microparticles~,10 nm! also always contain a very larg
contribution of the amorphous component, although hi
resolution electron microscopy suggests that their structu
crystalline.4–6 We observed that light scattering by acous
phonons is more sensitive to structural order than scatte
in the optical range and thus, the area below the acou
peak corresponds more accurately to the volume of the am
phous phase.

In order to ensure that the changes in the Raman spe
of amorphous solids are more noticeable as the degre
order increases, the sample must have dimensions com
rable with the correlation length of the vibrational excit
tions. In this case, the changes in the volume of the am
phous phase will be more abrupt than in unbounded sam
since a larger volume of the ordered phase will participate
1751063-7761/98/87(7)/4/$15.00
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the light scattering. From this point of view, it is convenie
to use either amorphous microparticles or microporous m
dia. We chose amorphous microporous silicon. This mate
has been attracting interest following the observation of p
toluminescence similar to the luminescence from crystall
porous silicon,7,8 i.e., it was found that crystallinity is not a
necessary condition for the observation of high-intensity v
ible luminescence at room temperature for microporous s
con. In another study of Raman scattering,9 observations
with a microscope attachment revealed that the regions
porous silicon contributing to the visible luminescence n
essarily always contain some amorphous phase, in add
to the crystalline, i.e., the amorphous phase is evidently
ways present in microporous silicon. These facts provided
additional stimulus for a more accurate determination of
ratio of the volumes of the amorphous and crystalline pha
in microstructures.

2. SAMPLES AND EXPERIMENTAL SETUP

Layers of porous silicon were obtained by anodizi
~100!-orientedp1-type silicon substrates with a resistivity o
0.006 V•cm in a hydrofluoric acid solution~42.4%
HF:H2O:C3H7OH in the ratio 2:1:2! at a current density of
100 mA/cm2. This produced a 2mm thick layer of silicon
with 70% porosity. The samples were bombarded with 1
keV 10B1 ions to produce an amorphous layer. As a result
this ion implantation, the amorphization dose of the poro
silicon was 531015 cm22, which is an order of magnitude
lower than the similar value for ordinary silicon. The Ram
spectra were recorded in a 90° scattering geometry usin
DFS-52 double monochromator with a spectral slit of 2 cm21

width andl5488 nm exciting radiation under conditions o
© 1998 American Institute of Physics
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FIG. 1. Variation of the Raman light scattering spectrum
p1-type amorphous porous~70% porosity! silicon as a result of
annealing in a nitrogen atmosphere for 30 min atT5500 °C. The
dashed and solid curves show the spectra before and after an
ing, respectively.
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doubly parallel polarization, i.e., when the exciting and sc
tered light beams were polarized in the scattering plane.

3. RESULTS AND DISCUSSION

It can be seen from Fig. 1 that the Raman spectrum
amorphous porous silicon consists of a broad TO mode
480 cm21 and a broadened peak at 150 cm21 which is not
observed for crystalline silicon. This type of peak in diso
dered materials is conventionally called a boson peak
glasses it is usually observed at a frequency approxima
1/5 of the Debye frequency and is attributed to nanome
scale structural correlations, reflecting an excess densit
vibrational states in the low-frequency range (20– 80 cm21)
compared with the Debye density. In tetragonal amorph
semiconductors, the correlation length is shorter than
glasses and is comparable with the interatomic distance
particular, in silicon the boson peak coincides with the tra
verse acoustic TA mode and the density of vibrations n
the boson peak is thus simply the density of the TA vib
tions, but the reasoning put forward below will also apply
cases when the boson peak does not coincide with the
mode. Since the boson peak does not appear in the Ra
spectra of crystals, its intensity~like that of the broad TO
mode! may also serve as a measure of the amorphousne
the material.

After the porous silicon had been converted to the am
phous state, we commenced isochronous stepwise anne
in a nitrogen atmosphere to study the influence of an incre
in the degree of order on the Raman spectra in the op
and acoustic ranges. When the annealing tempera
reached 500 °C, crystallization was initiated, this being
served as a very small spike at 520 cm21, which corresponds
to the transverse optical phonon frequency in crystalline s
con, and the amplitude of the boson peak unexpecte
dropped sharply, by approximately half~Fig. 1!. It is known
that the size of the critical nucleus in bulk silicon is appro
mately 3–4 nm and the average size of the structural
ments of porous silicon with 70% porosity, such as that
ing studied, is approximately 4–5 nm. Thus, the volume
the amorphous phase should decrease sharply at the in
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when crystal nuclei appear. It can be seen from Fig. 1 t
the Raman spectrum only revealed an abrupt change in
amplitude of the boson peak at the instant of nucleati
while the amplitude and half-width of the amorphous-li
TO peak remained almost unchanged, although its half-w
should be reduced to approximately 30 cm21 as a result of
annealing.10 In our case, the half-width of the TO peak
50 cm21, which suggests a high degree of structural disor
in the layers near the interface.

It is well known that stronger localization is observed11

for optical vibrations, and thus when the structural order
an amorphous medium changes, the intensities of the Ra
scattering by acoustic and optical vibrations may behave
ferently as a result of the different degree of violation of t
wave vector selection rule. In the amorphous phase, a
result of the absence of translational invariance and the c
sequent nonconservation of the wave vector, the light s
tering spectrum reveals the complete density of the acou
or optical phonons with a weight proportional to the intera
tion constantC(v) between the light and these vibration
~Ref. 12!:

I ~v!5C~v!g~v!~n~v!11!/v, ~1!

wheren(v) is the Bose factor andg(v) is the density of the
acoustic or optical vibrational states.

We shall first analyze the case of scattering by acou
vibrations. Since the density of the acoustic vibrations var
negligibly during annealing,13 the observed decrease in th
amplitude of the boson peak can only be attributed to a
crease inCac(v) as a result of a change in the degree
violation of the wave vector selection rule. We shall use
method of analyzing the violation of the selection rule whi
is based on introducing a correlation length characteriz
the spatial elongation of the normal vibrational mode and
shall show howCac(v) is related to the structural order.

In general, the Raman light scattering intensity is det
mined by the fluctuations of the permittivity tensordxab(r )
~Refs. 14 and 15!:

I abgd~q,v!}E dt dr1dr2 exp~ ivt2 iq•~r12r2!!
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3^dxab
1 ~r1 ,t !dxdg~r2,0!&, ~2!

where q5q12q2 is the difference between the initial an
final photon momenta. The variations of the tens
dxab(r ,t) under the action of the acoustic phonons are p
portional to the deformation tensor]ua /]r b1]ub /]r a ,
whereua(r ,t) is the displacement of the atoms induced
the vibrations. Since the vibrations determining the bos
peak lie in the acoustic range, it may be assumed that
also interact with light by means of the deformation tens
Bearing in mind thatq! l 21, whereq;2p/l;1022 nm is
the momentum imparted by the light (l5500 nm) andl is
the characteristic length of the vibrations near the bo
peak, of the order of a nanometer,15 we can neglect the term
q•(r12r2) in the exponential function in Eq.~2! since this is
much less than unity. For the Raman scattering intensity
then have

I ac~v!}E dr ^¹uv
1~r !•¹uv~0!&gac~v!. ~3!

Hereuv(r ) is the amplitude of the vibrations at frequencyv
and the angular brackets denote spatial and statistical a
aging. The result of the averaging depends on how the vi
tional displacements correlate at different spatial points. T
correlation function of the gradients of the vibrational d
placements at the frequencyv is conveniently expressed i
terms of the normalized correlation functionFv,ac(r ):

^¹uv
1~r !•¹uv~0!&5Fv,ac~r !^u¹uv~0!u2&. ~4!

The form of the correlation function near the boson peak
amorphous solids is not known exactly, since the nature
these vibrations is not sufficiently well understood: it is no
malized using the conditionFv(r )→1 when r→0. How-
ever, it is generally acknowledged that these are quasil
vibrational excitations with a characteristic dimension of n
nometer order.14,15When averaged over an ensemble of the
vibrations localized in regions of a disordered solid hav
different configurations, the corresponding correlation fu
tion should decrease as a function of distance with a cer
characteristic correlation length of nanometer order. In ad
tion, an additional decay of the correlations may take pl
inside the region of localization as a result of the spec
geometry of the vibrational modes which, as predicted, m
have dimensions of less than three or fractal dimensio
This geometric factor leads to the appearance of an a
tional factor r 2a in the correlation function, wherea,3,
which reflects the power decrease in the correlation. A
result, the correlation function has the form

Fv,ac~r !5~a/r !a f ~r / l v,ac!, ~5!

where l v,ac is the correlation length of the acoustic vibr
tions,a is the interatomic distance,f (r / l v,ac) is a decreasing
function which reflects the decay of the correlations w
distance as a result of localization of the vibrational mod
and the factorr 2a is associated with the internal geometry
the vibrations. The specific form of the functionf (r / l v,ac) is
unimportant for the present study, as will become clear fr
the following analysis, although it may be postulated th
this corresponds to exponential damping, exp(2r/lv,ac), or
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Gaussian damping, exp(2r2/lv,ac
2 ). For example, for a

damped plane acoustic wave which describes lo
wavelength acoustic vibrations in an amorphous solid,
correlation function~5! is given by

exp~ iq–r2r / l v!~11r / l v1r 2/3l v
2 !.

The oscillation factor naturally disappears from the b
son peak for quasilocal vibrations because of the large va
tions in the form of the natural modes and the wide range
wave vectors required to form a localized mode. Bearing
mind that for harmonic vibrations and the Stokes compon
of the spectrum

^uuv~0!u2&}~n~v!11!/v,

and that

¹uv;uv / l v,ac,

we have

^u¹uv~0!u2&; l v,ac
22 ^uuv~0!u2&} l v,ac

22 ~n~v!11!/v.

As a result, Eq.~4! has the form

^¹uv
1~r !•¹uv~0!&} l v,ac

22 Fv,ac~r !~n~v!11!/v. ~6!

Substituting Eq.~6! into Eq.~3! and comparing with Eq.~1!,
we obtain

Cac~v!} l v,ac
22 E dr Fv,ac~r !. ~7!

Unlike formula~3!, for optical vibrations, the light scat
tering intensity is determined directly by the correlatio
function of the atomic vibrational displacements:

I opt~v!}E dr ^uv
1~r !uv~0!&gopt~v!. ~8!

In this case, there is no need to impose the constraint tha
Hamiltonian of the interaction between the vibrations a
light be expressed in terms of derivatives of the displacem
components with respect to the coordinates, since for opt
vibrations the center of gravity of a unit cell remains co
stant~see, for example, Ref. 16!. Here the correlation func-
tion of the vibrational displacements has the form

^uv
1~r !uv~0!&}Fv,opt~r !~n~v!11!/v. ~9!

Substituting Eq.~9! into Eq.~8! and comparing with Eq.~1!,
we obtain

Copt~v!}E dr Fv,opt~r !. ~10!

It can be seen from a comparison of Eqs.~7! and~10! that the
interaction coefficient between light and optical phono
does not contain the additional square of the correlat
length in the denominator which appears as a result of
gradients of the displacements for the acoustic phono
Thus, as the correlation length increases under annealing
acoustic part of the spectrum decays more rapidly than
optical part, i.e., is more sensitive to the degree of disord

We shall now explain the changes in the Raman sp
trum observed when amorphous porous silicon is anne
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~Fig. 1!. We shall first show how specific is the dependen
of Cac(v) on the correlation length. Using Eq.~5!, it is easy
to show that

E dr Fv,ac~r !}blv
32a ,

where

b5E
0

`

x22a f ~x!dx

is a certain constant which depends on the specific form
the correlation function. It then follows from Eq.~7! that

Cac~v!} l v,ac
12a .

Since the vibrations near the boson peak are localized
satisfy the Ioffe–Regel criterion,17 l v,ac;l}v21, wherel
52pc/v is the wavelength of the acoustic excitation,c is
the velocity of light, and assuming that near the boson p
Cac(v)}v ~Ref. 18!, we find that

l v,ac
12a5 l v,ac

21 ,

i.e.,

Cac~v!} l v,ac
21 .

If crystallites of diameterD appear within the illuminated
region, the mean free path of an acoustic vibration in th
crystallites should be equal to their sizel v,ac;D. In this
case, the reciprocal correlation length averaged over
samplel v,ac

21 undergoes a jump since the upper limit of t
correlation length for amorphous silicon is 1.2–1.5 nm a
the size of a critical nucleus is 3–4 nm, and thus the inten
of the boson peak in Fig. 1 drops sharply, being appro
mately halved.

Thus, it can be concluded that when Raman scatterin
used to determine the volume ratio of the amorphous c
ponent in solids consisting of mixed phases, the boson p
should be used in preference to the amorphous-like op
e
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mode currently used since this peak is more sensitive to
order because the intensity of light scattering by acou
phonons has an additional dependence on the degree o
order.
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High-frequency modulation of current in tunnel-coupled quantum wells by transverse
radiation in the terahertz range
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The modulation of a longitudinal current in double quantum wells by a transverse voltage in the
terahertz frequency range is calculated. A quantum kinetic equation which allows for the
contributions of a pair of asymmetric tunnel-coupled levels to the resonant response is solved~the
difference in effective mass or the asymmetric scattering in the left- and right-hand quantum
wells is also taken into account!. These structural features lead to conversion of the modulating
voltage into a high-frequency longitudinal current. The calculated longitudinal-transverse
nonlinear susceptibility determines the conditions needed for creating an efficient field-effect
transistor circuit that would use pumping in the terahertz range instead of a transverse
control voltage. ©1998 American Institute of Physics.@S1063-7761~98!02207-0#
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1. INTRODUCTION

The modulation of a longitudinal electric current
double quantum wells with asymmetric scattering by a st
transverse voltage has been widely studied during the
decade~see Ref. 1 and the literature cited in Ref. 2!. The
possible applications of this effect, known as resistance re
nance, in creating a transistor structure, were demonstr
by Patelet al.2 and Ohnoet al.,3 while the frequency disper
sion of resistance resonance~i.e., the response to a variab
alternating voltage with a frequency of order of the collisi
rate! was discussed in Ref. 4. On the other hand, as
frequency grows, the response becomes dependent on
nant transitions between tunnel-coupled levels. The reso
response of electrons in double quantum wells to terah
radiation whose electric field is polarized transversely to
structure was studied by Heymanet al.,5 who measured the
transmission and the induced transverse voltage~the rectifi-
cation effect!. On the basis of the experiments described
Ref. 1–3 and 5, we shall study the conditions for, and
features of, the modulation of a longitudinal current in
doped double quantum well by a resonantly pumped, al
nating electric field in the terahertz range, i.e., we shall st
a double-quantum-well field-effect transistor that uses mo
lation by submillimeter resonant radiation instead of a sta
~or microwave! transverse control voltage.

Here we shall calculate the nonlinear response of e
trons in double quantum wells to a longitudinal constant fi
F and a transverse high-frequency fieldEv ~Fig. 1!, a re-
sponse determined by the induced current

d j5vxvFEv , ~1!

where the componentxv of the second-order nonlinear su
ceptibility tensor determines the coupling of the longitudin
and transverse responses in double quantum wells. Con
sion of a transverse voltage into a longitudinal current occ
only for an asymmetric double quantum well, since t
rank-3 tensorx̂v vanishes for a symmetric well, i.e., a he
1791063-7761/98/87(7)/7/$15.00
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erostructure that does change in response to the replace
z→2z. The calculations we are about to do take into a
count the asymmetry of the energy band diagram of a dou
quantum well and the difference in effective mass or
unequal scattering efficiency in the left- (l ) and right-hand
(r ) quantum wells. The asymmetry of the energy spectr
of double quantum wells, which is determined by the sp
ting between the energy levels in thel andr quantum wells,
can be controlled by applying a transverse voltage to
double-quantum-well structure. The dissimilar scattering
tunnel-coupled quantum wells comes into effect when
doping levels of the wells are different~see Refs. 1–3!, while
the difference in effective mass is due to the nonparaboli
of the energy spectra of thel and r quantum wells, the dif-
ferent subbarrier penetration of these wells by the wave fu
tions, or by the difference in composition of the alloys form
ing the l and r quantum wells~the energy spectrum o
double quantum wells with thel andr quantum wells obey-
ing different dispersion laws was discussed in Ref. 6!. A
description of the nonlinear response of structures is gi
below on the basis of a kinetic equation written in the tw
level approximation~a derivation of such an equation can b
found in Ref. 7!.

Section 2 gives the basic formulas needed to describe
nonlinear response of double quantum wells with differe
masses and asymmetric scattering. These formulas are b
on the solution of the quantum kinetic equation. The resu
of calculatingxv , which specify the spectral relations an
the dependence of the longitudinal-transverse conversion
ficiency on the splitting between the energy levels~which
can be controlled by applying a transverse field to the dou
quantum well!, are presented in Sec. 3. Finally, a discuss
of the various approximations and concluding remarks
be found in Sec. 4.

2. LONGITUDINAL-TRANSVERSE NONLINEAR RESPONSE

The quantum kinetic equation for the high-frequen
contribution to the 232 density matrix,d f̂ pe

2 ivt, which
© 1998 American Institute of Physics
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describes the response of the electrons in an asymm
double quantum well to a transverse perturbationdĥe2 ivt,
can be written as follows:

2 ivd f̂ p1
i

\
@ ĥp ,d f̂ p#1

i

\
@dĥ, f̂ p#

1eF•
]d f̂ p

]p
5 Î sc~d f̂ up!. ~2!

Here we have used the approximation described in Ref.
a pair of tunnel-coupled states in thel andr quantum wells,
in which the Hamiltonianĥp allowing for the difference be-
tween the effective masses (ml andmr) is given by the ma-
trix

ĥp5Up2/2ml1D/2 T

T p2/2mr2D/2
U, ~3!

whereD is the splitting between the levels in the absence
tunneling, andT is the tunneling matrix element. The effe
of the uniform longitudinal electric fieldF is taken into ac-
count in Eq.~1! through both the usual field contribution an
the current contributions to the steady-state distributionf̂ p ,
and the collision integralÎ sc is written below for the case o
scattering on static inhomogeneities, the scattering efficie
being different in thel and r quantum wells~the respective
expressions are given in Refs. 7 and 4!. The operatordĥ
describes intersubband transitions excited by the transv
electric fieldEve2 ivt and is given by the following expres
sion:

dĥ5
ie

v
Evv̂' , v̂'5

T

\
Zŝy , ~4!

where the off-diagonal matrixv̂' has the meaning of the
interwell transition rate,8 ŝ i are the Pauli matrices (i
5x,y,z), andZ is the distance between the maxima of t
wave functions in thel and r quantum wells.

The longitudinal velocity operator is determined by t
diagonal componentsp/ml ,r , so that the high-frequency con
tribution to the longitudinal current can be written as

d j5
2e

m E dp

~2p\!2 p TrS 11
m

2M
ŝzD d f̂ p , ~5!

where Tr stands for the trace in a discrete variable relate
the matrix nature of the Hamiltonian~2!, and the average
effective massm and the effective-mass differenceM are
introduced as follows:

FIG. 1. Modulation of a longitudinal current by a transverse high-freque
voltage in double quantum wells.
ric

of

f

cy

se

to

m215
ml

211mr
21

2
, M 215ml

212mr
21 . ~6!

If ml5mr , then~5! can be expressed in terms of Trd f p , and
applying the operator Tr to Eq.~2! we get2 ivd f̂ p50, pro-
vided we ignore collisions and the dynamic field contributi
to ~2!. This contribution is small ifeFv21!pF (pF is the
Fermi momentum of the strongly degenerate electrons!, but
the distributionf̂ p contains a current contribution~which is
asymmetric in thep plane! that determines the effect fo
vt̄@1 (t̄ is the average relaxation time!. Thus, the fact that
~5! is finite is due either to the difference in effective ma
~andxv is small in the parameterm/M ) or to the allowance
for collisions~andxv near resonance contains the small fa
tor \/Tt̄).

It is convenient to solve Eq.~2! and calculate the curren
~5! by employing the basis set of wave functions of the
genvalue problemĥpu jp&5« jpu jp&. Here j 56 classifies the
tunnel-coupled levels, and« jp specify the dispersion laws o
the 6 states, which are separated by an energy gapDT

5AD21(2T)2 when p50. If we neglect the off-diagona
components of the steady-state distributionf̂ p , which are
small in the parameter\/DTt̄, we can rewrite Eq.~2! for the
asymmetric contributiond f j j 8(p) to the high-frequency re-
sponse as

i

\
~« jp2« j 8p2\v!d f j j 8~p!

1
i

\
dhj j 8~p!~ f j p

as2 f j 8p
as

!5I j j 8~d f up!. ~7!

In the basis set of functions adopted,dhj j 8(p)
5^ jpudĥu j 8p&, f j p

as is the asymmetric part of the steady-sta
distribution, and the collision integral for scattering by
short-range static potential becomes

I j j 8~d f up!5
i

\ (
k5 l ,r

wkE dp1

~2p\!2

3(
j 1 j 18

F d f j j 1
~p!

« jp2« j
18p1

2\v2 il
^ j 1puP̂ku j 18p1&

3^ j 18p1uP̂ku j 8p&1^ jpuP̂ku j 18p1&

3^ j 18p1u p̂ku j 1p&
d f j 1 j

18
~p!

« j
18p1

2« j 8p2\v2 ilG . ~8!

whereP̂k is the matrix for projection onto thekth quantum
well, thewk are related to the momentum relaxation timetk

by the expressionwk5\3/mtk , andl→10.
The diagonal components of the solution of Eq.~7!,

d f j p[d f j j (p), are small in the parameter 1/vt̄:

d f j p.
i

v
I j j ~d f̃ up!, ~9!

where the only term left on the right-hand side in the re
nant approximation (v.DT /\) is the large off-diagonal

y
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componentd f̃ p[d f 12(p). The induced current density~5!
is expressed in terms of these corrections to the h
frequency response as follows:

d j.
2e

m E dp

~2p\!2 pF(
j

d f j p1
m

M
^2uŝzu1&d f̃ pG .

~10!

To within first-order terms inm/M we can calculated f j p and
d f̃ j p by neglecting the effective-mass difference. Here
resonant contribution to the distributiond f̃ j p can be obtained
from ~7! in the form

d f̃ p5
^1udĥu2&~ f 1p

as 2 f 2p
as !

DT2\v2gp
, ~11!

where the collisional renormalizationgp of the interlevel
transition energy is introduced as

gp5 (
k5 l , r j 56

wkE dp1

~2p\!2

3F ^2uP̂ku j &^ j uP̂ku2&
«1p2« jp1

2\v2 il
1

^1uP̂ku j &^ j uP̂ku1&
« jp1

2«2p2\v2 ilG .

~12!

The real contributions to~12! diverge logarithmically at
large up1u, and the integral must be truncated at momenta
order \/ l c , where l c is the characteristic size of shor
wavelength inhomogeneities. As a result Regp renormalizes
the interlevel splitting, and the denominator in~11! acquires
the term

D̃T.DT2
L

p S \

t l
2

\

t r
D D

DT
, L5 ln

\

l cp̄
, ~13!

where p̄ is the characteristic momentum, which determin
the leading contribution to~10! and is equal to the maximum
value of pF :A2mDT or A2m\v. The imaginary contribu-
tion to ~11!, i ḡp , becomes

ḡp5(
k j

\

2tk
@ u^2uP̂ku j &u2u~«1p2« j2\v!

1u^1uP̄ku j &u2u~« j2«2p2\v!#, ~14!

so that the denominator in~11! can be rewritten asD̃T

2\v2 i ḡp . Similarly, the contribution of( j I j j @found from
~8!# to the first term becomes

(
j 56

I j j ~d f̃ up!52d f̃ p(
k j8

~2tk!
21^2uP̂ku j &^ j uP̂ku1&

3@u~«1p2« j 82\v!1u~« j 82«2p2\v!#.

~15!

Thus, the calculation ofxv is reduced to finding the integra
in ~10! with ~11! and ~15! plugged intodj @with allowance
for ~14!#. Here the asymmetric correctionf j p

as to the distribu-
tion can be written as
-

e

f

s

f j p
as5

e

m
~F•p!t jd~«F2« jp!,

t j
215(

k j8
tk

21u^ j uP̂u j 8&u2u~«F2« j 8!, ~16!

where«F5pF
2/2m is the Fermi energy, andt6 is the mo-

mentum relaxation time for the6 tunnel-coupled states. Th
use of the weakly anisotropic distribution~16! presupposes
that eFt̄!pF .

3. SPECTRAL RELATIONS AND DEPENDENCE OF xv ON D

According to~16!, only the electrons on the Fermi su
face contribute todj , so that the integration over the ang
and energy in~10! can easily be performed, and closed e
pressions are obtained forxv . Here it is convenient to sepa
rate the contributions of the first and second terms in~10! by
writing xv as xv

(1)1xv
(2) . The contributionxv

(1) , which is
specified by~15!, becomes

xv
~1!. i

e3Z

mv
S T

DT
D 2

(
k j

\

2Ttk

^2uP̂ku j &^ j uP̂ku1&

3H n2t2

D̃T2\v2 i ḡ2

@u~«F1DT2« j2\v!

1u~« j2«F2\v!#2
n1t1

D̃T2\v2 i ḡ1

3@u~«F2« j2\v!1u~« j2«F1DT1\v!#J ,

~17!

while the contributions proportional tom/M are given by the
expression

xv
~2!.

e3Z

mv
S T

DT
D 2

2m

M

3F n2t2

D̃T2\v2 i ḡ2

2
n1t1

D̃T2\v2 i ḡ1

uS «F2
DT

2
D G .

~18!

Equations~17! and ~18! contain the electron concentration
at the6 levels,n65r2D(«F6DT/2) for n.r2DDT , while at
lower concentrationsn150 and n25n. The relaxation
timest6 are given by~16!, and the broadening energiesḡ6

are obtained by calculating~14! with «6p5«F .
At frequencies close to resonance forxv

(1,2) we have
Lorentzian spectral relations@here we set\v.DT in the
arguments of theu functions in~17!#, and the dependence o
xv on the splittingD can be calculated by using the matr
elements of the projection operators:

^ j uP̂l u j &5
DT1 j D

2DT
, ^ j uP̂r u j &5

DT2 j D

2DT
,
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^ j uP̂r u j 8&52^ j uP̂l u j 8&5
T

DT
, j Þ j 8. ~19!

We present explicit expressions for the resonant nonlin
susceptibilities at low concentrations («F,DT/2, whenn2

5n and n150), intermediate concentrations (DT/2,«F

,3DT/2), and high concentrations («F.3DT/2) when the
concentrations of the6 electrons participating in interban
transitions are equal. For«F close to DT/2 or 3DT/2 the
dependences ofxv become more complicated, but they a
realized only in narrow concentration ranges~or in small
ranges ofD!, and we shall not discuss them further.

At high concentrations the peak broadening energies
incide, ḡ6[ḡ5(\/2t)3@12(T/DT)22m(D/DT)#, and the
relaxation times are

t65
t̄

16mD/DT
, ~20!

where the average relaxation timet̄ and the scattering asym
metry parameterm are defined by the relations:

t̄215
t l

211t r
21

2
, m5

t r2t l

t r1t l
. ~21!

In this concentration range,n65n6r2DDT/2, and~17! and
~18! become

xv5
e3Z

mv

n1t12n2t2

D̃T2\v2 i ḡ
F i

\

Tt̄
mS T

DT
D 3

2
2m

M
S T

DT
D 2G ,

~22!

so that the susceptibility is due either to the scattering as
metry (mÞ0) or to the effective-mass difference (m/M
Þ0). At low concentrations~whenn,r2DDT) we have

t25
t̄

122~T/DT!22mD/DT
, ~23!

and the resonance widthḡ2 and t2
21 are related by the

equality ḡ25\/2t2 . The expression forxv becomes

xv5
e3Z

mv

nt2

D̃T2\v2 i ḡ2

3F i
\

Tt̄
S T

DT
D 3S D

DT

2m D 1
2m

M
S T

DT
D 2G , ~24!

and a nonzero effect is also present for double quantum w
with symmetric scattering and coinciding effective mass
but with DÞ0. Since the general formula~17! for interme-
diate concentrations is cumbersome, we give the expres
for xv in the case of a double quantum well withm50 and
ml5mr , where the effect is also present ifDÞ0:

xv52 i
e3Z

mv

n1t̄

D̃T2\v2 i ḡ1

\

2Tt̄
S T

DT
D 3

D

DT

. ~25!

In the region under considerationḡ15(\/2t)@1
22(T/DT)2#. Comparing~25! with ~22! and ~24!, we see
ar

o-

-

lls
s,

on

that in the approximations adoptedxv changes abruptly
when«F is close to the limits of the range,DT/2 and 3DT/2.

To obtain numerical estimates, it is convenient to isol
the size factor

e3Z

mD̃T /\

nt̄

ḡ
~26!

in the formulas. This factor determines the maximum va
of the nonlinear susceptibility after it is multiplied by a d
mensionless factor,\/2Tt̄ or m/M , and a numerical factor
~not exceeding 0.1 forD<2T and rapidly decreasing with
increasingD!. For GaAs/AlGaAs with a double-quantum
well structure and the standard parameters equal toZ

5100 Å, n5231011 cm22, ḡ51 meV, DT515 meV, and
t̄510211 s ~which correspond to an electron mobility o
2.53105 cm2/(V•s) and resonant pumping by radiation wi
a wavelength of 100mm!, the maximum value ofxv is found
to be of order (1 – 5)31027 esu. This is in good agreemen
with the resonant value of the second-order nonlinear sus
tibility found by Sherwinet al.9 in a double-quantum-wel
structure from second-harmonic generation measurem
with similar values for the parameters. However, in our ca
the xv vs D and xv vs v curves differ significantly from
those measured by Sherwinet al.9 ~although the spectra ar
Lorentzian in both cases!. It is convenient to study the de
pendence ofxv on bias voltage~which determinesD! at a
fixed pump frequency; below we limit our discussion to t
cases of low, intermediate, and high concentrations.

For double quantum wells with thin barriers, the cond
tion DT/2.«F is also met at tunneling resonance,D50, so
that Eq. ~24! can be used for all values ofD. For a 30 Å
Ga0.3Al0.7As barrier~this value of the barrier width, like the
values of the other parameters, is close to the one use
Ref. 9! we find that 2T.15 meV, and the low-concentratio
regime is observed whenn<4.231011 cm22. The values of
the dimensionless factors\/2Tt̄ and 2m/M prove to be
close to 531023 and 231022, respectively~due to the non-
parabolicity of the spectrum, the effective-mass differen
uml2mr u/m is estimated here, according to Ref. 10,
DT /«g , where«g is the band gap!, so that the contributions
xv

(1) andxv
(2) to the nonlinear susceptibility are of the sam

order. As a result, Eq.~24! can be rewritten as

xv5x̄F \

2Tt̄
f m~D!1

2m

M
g~D!G , ~27!

the real and imaginary parts of the functionsf m(D) and
g(D) being depicted in Fig. 2 with the above values of t
double-quantum-well parameters. Here we used the phen
enological valueḡ.1 meV, which agrees with the exper
mental data of Refs. 5 and 9, but is significantly larger th
the value obtained from the relation betweenḡ2 and t2

~probably, the inhomogeneous broadening of the reson
transition, which contributes nothing to mobility, is the ma
mechanism of spectrum broadening!. Figures 2a and 2b
show that the nature of theD dependence changes signi
cantly because of the asymmetry in scattering: the func
f 0(D) is odd, while Ref1(D) has two resonance peaks fo
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\v.2T. The functiong(D) in Fig. 2c is even, and reso
nance peaks also appear on Reg(D) for \v.2T. WhenD
.2T, the nonlinear response rapidly decreases in all ca
due to the suppression of tunnel coupling.

In the concentration range (4.228.4)31011 cm22 ~for
double quantum wells with the above parameter value
D50; asD increases, this range moves toward higher val
of n), the intermediate case described by~25! comes into
play. Here the value ofx̄ increases and so does the value

FIG. 2. Real and imaginary parts~solid and dashed curves, respectively! of
the functionf m(D) with ~a! m50 and~b! m51 and theg vs D ~c! at pump
energies\v equal to 17 meV~curve 1!, 15 meV ~curve 2!, and 13 meV
~curve3!.
es

at
s

f

the dimensionless factor\/2Tt̄ ~since the concentration in
creases and mobility decreases!. Figure 3 shows theh vs D

curves determined by the formulaxv /x̄5(\/2Tt̄)h(D) for
the same values of the double-quantum-well parameters
the same pump energies as in Fig. 2. Here, as in the l
concentration case, we have a peak on Reh(D) when \v
.2T, while the Imh vs D curve passes through zero in th
vicinity of the peak@if m50, the functionh(D) is even#.
When \v,2T, the peak on Reh(D) shifts to D50, while
for larger values ofD the effect is suppressed.

The high-concentration case described by~22! is real-
ized in double quantum wells with wider barriers, where t
resonant nonlinear-response regime can be realized unde
conditions of strong tunnel coupling,D<2T, in a spectral
range with a wavelength of about 300mm. For a 45 Å
Al0.3Ga0.7As barrier we obtain 2T52.4 meV, and the condi-
tion n.3T/r2D is met when the concentration is higher th
2.731011 cm22 ~at D50; the concentration increases wi
D!. Let us rewrite ~22! as ~27!: xv /x̄5(\/2Tt̄)v(D)
1(2m/M )w(D). Figure 4 depicts the functionsv(D) and
w(D) for an electron concentration of 631011 cm22 ~the
other double-quantum-well parameters coincide with th
used in Figs. 2 and 3!. Since the functionsv(D) andw(D)
rapidly decrease in weakly asymmetric scattering (umu!1),
the v vs D and w vs D curves are shown for the case
scattering in thel quantum wells (m51). Due to the small-
ness of the fraction (n22n1)/n, the curves representin
v(D) and w(D) are nearly asymmetric. The behavior
these curves is similar to that of the curves in Figs. 2 and
but because of a decrease in splitting between the levels
resonance effect is rapidly suppressed asD increases. How-
ever, for highly asymmetric scattering, one of the relaxat
times t6 in ~20! diverges whenD@2T, and the function
w(D) approaches a finite value.

4. CONCLUSION

We have examined the conversion of a transverse mo
lating voltage in the terahertz range into a longitudinal c
rent due to electron transitions between tunnel-coupled le

FIG. 3. Real and imaginary parts~solid and dashed curves, respectively! of
the functionh(D) at pump energies\v equal to 17 meV~curve1! and 15
meV ~curve2!.
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FIG. 4. The real and imaginary parts~solid and
dashed curves, respectively! of the functions
v(D) ~a! and w(D) ~b! at pump energies\v
equal to 7 meV~curve1!, 5 meV~curve2!, and
3 meV ~curve3!.
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in double quantum wells with a constant current. We ha
found that large values of the nonlinear susceptibility defin
in ~1! are realizable in an asymmetric double quantum w
where the asymmetry is due to a difference in effective m
or asymmetry in the scattering in thel andr quantum wells
and/or asymmetry of the energy spectrum. Since the indu
high-frequency response is proportional to the constant
rent, gain can be achieved at high currents. To estimate
effectiveness of this gain mechanism, we need to know
only the characteristics of the nonlinear response, but
the geometry of the system~in the same way as the gain o
an ordinary field-effect transistor depends on the circuit
rameters!.

Let us discuss the approximations used in our calcula
scheme. What is left out when double quantum wells
described as a pair of tunnel-coupled levels is the contr
tion of the excited states of thel andr quantum wells and the
self-consistent transverse electric field; in our caseD andT
were only approximately estimated for the model of rect
gular quantum wells and a barrier. Values of these par
eters that are more exact can be found in papers on lon
dinal transport1–4 or on interlevel transitions with pumping i
the terahertz range.5,9 The value ofm/M can be refined in
multiband calculations of double quantum wells, and the
gree of scattering asymmetrym ~which depends on the 2D
momentum for nonpointlike scatterers! can be considered
phenomenological parameter, whose value can be estim
using resistance-resonance data.1–3 Moreover, allowing
for the depolarization shift of an interlevel transition c
alter D̃T considerably already at a concentration of
31011 cm22 ~Ref. 9!. These parameters can be refined
comparing them with the experimental data at hand. T
approximation of a weakly anisotropic distribution of 2
electrons is also valid for heating electric fieldsF, so that the
high-current regime is described by the above formu
Thus, the approximations adopted do not alter the nonlin
response mechanism, the magnitude of this response, o
nature of the above relations; therefore, further refineme
are needed only for more detailed calculations.

The mechanism of longitudinal-transverse convers
and radiation amplification by an electron current in the te
hertz range in double quantum wells is related to the ap
cations of intersubband transitions to the detection11 and
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generation12–15of radiation in the submillimeter range whic
are being actively studied. Although the mechanism of m
nopolar lasing16 has been realized in several ways,17 such
devices operate only in the mid-IR range. Hence the g
mechanism considered in this paper may be of interes
developing a 2D electron source of radiation in the terahe
range. Moreover, the possibility of converting transve
pump radiation into a longitudinal response has never be
been studied in 2D systems; therefore, the experimenta
alization of such a scheme, as well as the study of ot
mechanisms of such conversion for different heterostructu
and transition types, could be of great interest.
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Microscopic calculations of ferroelectric instability in perovskite crystals
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P. N. Lebedev Physical Institute, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 22 October 1997!
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First-principles calculations are performed relating to the stability of a series of perovskite
crystals with respect to transition to the ferroelectric and the antiferroelectric state. The calculations
employ the generalized Gordon–Kim method, in which the total charge density of an ionic
crystal is represented as a superposition of the densities of the individual ions. In the spirit of the
nonequilibrium thermodynamics of Leontovich the charge density of an individual ion is
calculated in the presence of external auxiliary fields which deform this density. Multipole
deformations up to quadrupole are taken into account. The actual magnitude of the
deformation is found by minimizing the total energy of the crystal in the Thomas–Fermi–Dirac
approximation. The calculated values of the ion shifts in the ferroelectric phase for BaTiO3,
and also the electron contribution to the dielectric constant«` and the dynamic Born effective
chargesZeff are found to be in good agreement with the experimental data. The proposed
method allows one to obtain an analytical expression for«` , Zeff, and the dynamic vibration
matrix. It is shown that these expressions formally coincide with the expressions arising
in the phenomenological models of the polarized and deformed ion. Analysis of the expressions
obtained confirms the validity of the classical theory of ferroelectrics of displacement type
for perovskite crystals. ©1998 American Institute of Physics.@S1063-7761~98!02307-5#
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1. INTRODUCTION

Perovskite crystals with the general formula ABO3 at
high temperatures as a rule possess cubic structure. Atom
the metal A occupy sites at the vertices of a cube, wh
atoms of the metal B are found at the center of the cu
Atoms of the nonmetal O are found at the face centers of
cube and form an octahedron surrounding the B atom.
greatest interest from the point of view of studying latti
instabilities are oxygen-containing perovskites, where the
atom actually is oxygen. A significant number of these co
pounds are ferroelectrics.1 They often exhibit a sequence o
ferroelectric phases, transforming from the cubic phase to
tetragonal, then to orthorhombic, and finally, to rhomboh
dral. Roughly speaking, this sequence of phases can be
sidered as shifts of the central B ion in the~100! direction in
the tetragonal phase, in the~110! direction in the orthorhom-
bic phase, and in the~111! direction in the rhombohedra
phase. The actual ion shifts form a much more complica
picture, involving elastic lattice deformations in a number
cases.

Besides ferroelectric phase transitions, perovskite c
tals reveal the presence of a large number of other lat
instabilities and structural transformations. Some of them
associated with different kinds of rotations of the oxyg
octahedron about one of the axes of the cube. The m
thoroughly studied transition of this type occurs in the co
pound SrTiO3 at T5150 K ~Ref. 1!. This transition is often
called antiferroelectric in analogy with magnetic transform
tions. It may be noted that this analogy is quite arbitra
Thus, the ferroelectric transition, apart from the fact that i
a structural lattice transformation, entails a nontrivial elect
1861063-7761/98/87(7)/14/$15.00
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dynamic consequence. In this instance, a spontaneous
trical polarization arises in the crystal even in the absenc
an external electric field and, correspondingly, the dielec
constant diverges at the transition point. In this sense
transition in SrTiO3 at T5105 K does not differ in any im-
portant way from the vast majority of other structural tran
tions. There are other examples of structural transformati
in perovskites. These include, for example, the transition
T5400 K in BaBiO3, in which successive compression an
dilation of the oxygen octahedra takes place about the cen
Bi atom along the~111! axis.2

The determination of the nature of the structural tra
formations in perovskites and, in particular, the ferroelec
transition has been one of the most pressing problems
solid state theory for over 50 years1,3 ever since the discov
ery of the ferroelectric transition in BaTiO3. A completely
clear answer to this question is still lacking even though,
our opinion, the basic, underlying physical ideas about
nature about the ferroelectric instability in perovskite cryst
can be regarded as well established. Even in the early w
of Skanavi4 and Slater5 attention was directed at the impo
tant role played in the ferroelectric instability in perovski
crystals by local field and electron polarizability effects. T
works of Ginzburg,6 Anderson,7 and Cochran8 established a
connection between the ferroelectric transition and the
namic lattice and introduced the concept of a soft mo
according to which the ferroelectric instability is due to va
ishing at the transition point of one of the optically activ
transverse modes at the center of the Brillouin zone. Si
this mode possesses a dipole moment and is accompanie
an electric polarization wave, spontaneous polarization ar
© 1998 American Institute of Physics
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in the crystal at the phase transition point when this mo
‘‘freezes.’’

Using the polarizable ion model, Cochran showed8 for
binary ionic crystals that the frequency of the optically act
phonon mode atq50 in the harmonic approximation can b
written as

vTO
2 5vsr

2 2vdd
2 , ~1!

where vdd
2 is the contribution of the long-range dipole

dipole interaction:

vdd
2 5

4pe2Z̃2

mv0~«`12!
. ~2!

Here«` is the electron contribution to the dielectric consta
of the ionic crystal, andZ̃ is the dynamic Born effective
charge,m is the reduced mass, andv0 is the volume of the
unit cell. The total polarizability of the crystal under th
corresponding static ion shiftun is expressed in terms of thi
charge as

P5
e

v (
n

Z̃nun . ~3!

The quantityvsr
2 .0 is the repulsive contribution of th

close-range forces to the frequency of the TO mo
Kvyatkovski�9 ~see also the review in Ref. 10 for more d
tails! proved the validity of expressions~1! and~2! in a gen-
eral model-independent approach for binary crystals wit
the framework of a rigorous microscopic theory of latti
dynamics based on a description of the electron contribu
employing the dielectric matrix«(q1K ,q1K 8,0), whereK
and K 8 are inverse lattice vectors. Later he proved11 that
these formulas remain valid for more complicated crysta
including perovskites. In this caseZ̃ is the Born charge of the
corresponding soft mode.

In ordinary ionic insulators the Born charges are close
the values of the nominal ion charges or, more accurat
the Szigetti effective charges12 defining the ionicity of the
crystal. In ferroelectrics, however, the dynamic Bo
charges, as a rule, have substantially larger values. Thus
example, in ferroelectric IV–VI compounds the effectiv
ionic charges satisfyZs<1, while the Born charges reac
valuesZ>10 ~Ref. 10!.

Thus, expressions~1! and ~2! reduce the problem of es
tablishing the nature of the ferroelectric instability to
search for answers to the following questions. Why are
Born charges in ferroelectrics substantially larger than
Szigetti ionic charges? What is the situation with the sho
range repulsion forces? What in the series of analogous c
pounds, e.g., in BaTiO3 and SrTiO3, determines whether a
ferroelectric transition is present: the corresponding cha
in vsr

2 or vdd
2 ? Unfortunately, until recently there have be

no direct calculations without the use of adjustable para
eters which would provide answers to these questions.
problem is further complicated by the fact that the values
vsr

2 andvdd
2 in ferroelectrics are almost an order of magn

tude larger than the resulting value ofvTO
2 .

First-principles calculations of ferroelectric instability
perovskite crystals have appeared recently13–15 based on
e
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band calculations of the electronic spectrum and its con
bution to the total crystal energy within the framework of t
density functional theory~DFT!. These calculations hav
confirmed that it is possible to achieve the accuracy nee
for a valid description of the energetics of the structural d
tortions in perovskite crystals. In particular, the above ass
tion thatvdd

2 is almost an order of magnitude larger thanvTO
2

follows from the values of the dynamic Born charges and
quantitiesvTO

2 obtained in Refs. 16 and 17. Unfortunately,
is difficult to obtain unambiguous answers to the above qu
tions from these works. In particular, from these results i
even difficult to say why the Born charges in perovskites
the B ion and one of the oxygen atoms exceed the nom
charges of these ions while the Born charges on the A
and the other oxygen ion are very close in most cases to t
nominal values. The explanations given in Refs. 16 and
tied up with hybridization effects of electrond states of the B
ion andp states of the oxygen ion, are unconvincing and,
top of this, the connection between these explanations
the results of phenomenological calculations of these cha
in the earlier work of Axe18 remains unclear. This earlie
work was based on a treatment of the model of polariza
ions and did not include any hybridization effects, but ne
ertheless led to practically the same values of the B
charges. Recently, very successful calculations19 of some
other instabilities in perovskites have appeared, including
so-called antiferroelectric instability in SrTiO3.

In the present paper we carry out simple first-princip
calculations based on a generalization of the Gordon–K
model developed earlier by two of us.20–22 The aim of these
calculations is to facilitate a microscopic study of the en
getics of perovskite crystals and the nature of different kin
of lattice distortions, including the ferroelectric phase. E
lier this method was successfully applied to calculate
electron polarizability and lattice dynamics of a large nu
ber of ionic crystals.20–23 An even simpler variant of this
method was employed with success to examine the natur
the structural distortions in BaBiO3.

The organization of this paper is as follows. Section
presents a brief exposition of the new version of our gen
alized Gordon–Kim~GGK! approach, which is needed t
maintain the required accuracy of the calculations in per
skite crystals. Section 3 present results of numerical calc
tions of the energetics of a series of perovskite crystals,
ing account of distortions of their cubic structure, and a
contains a discussion of these results. In the last section
briefly discuss the outlook for future possible studies
gether with refinements of the proposed method needed
ward this end.

2. GENERALIZED GORDON–KIM METHOD

The essence of the Gordon–Kim method25,26 for calcu-
lating the static and dynamic properties of ionic crystals c
sists in the following. The crystal is treated as a set of i
lated ions and its total charge density is written in the for

r~r !5(
i

r i~r2Ri !, ~4!
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where the sum is taken over all the ions in the crystal. Ne
in the spirit of the density functional theory~DFT! the total
crystal energy is written as a functional of the charge den

Ecr5FEH(
i

r i~r2Ri !J 2(
i

E$r i~r2Ri !%G1EN

1(
i

E$r i~r2Ri !%. ~5!

In this formula the sum of energies of the individual io
is added and subtracted in accordance with the Gordon–
method. HereEN is the interaction energy of the nucle
which has the form

EN5
1

2 (
i , j

Zi
NZj

N

uRi2Rj u
, ~6!

and Zi
N is the nuclear charge of thei th ion. The quantity

E$r(r )% is the charge density functional, which according
Hohenberg and Kohn28 can be represented in the form

E$r%5E drr~r !Vext~r !1
1

2 E dr dr 8
r~r !r~r 8!

ur2r 8u

1E dr F$r~r !%. ~7!

Here Vext(r ) is the external potential, which in the case
crystals is simply the Coulomb potential of the nuclei:

Vext~r !5(
i

Zi
N

ur2Ri u
. ~8!

The quantityF$r(r )% is a universal functional describ
ing the contributions of the kinetic energy and the exchang
correlation energy to the total electron energy. In their ori
nal papers,25,26Gordon and Kim used a significant number
additional simplifications in their analysis of expression~5!
for the crystal energy. First, for the functionalF$r(r )% they
used a simple local approximation in the spirit of Thoma
Fermi. Second, the first term in expression~5! neglects con-
tributions from the overlap of more than two ions at a tim
As a result, the problem reduces to a calculation of pairw
interactionsVi j between the ions,

Vi j 5E @E$r i~r2Ri !1r j~r2Rj !%2E$r i~r2Ri !%

2E$r j~r2Rj !%#dr ~9!

and to subsequent calculation of the total crystal energy w
the corresponding pairwise interaction taken into accou
The charge density of an individual ionr i(r ) was taken to be
spherically symmetric and was calculated by the Hartre
Fock method for free ions.

In its original form the Gordon–Kim method has a qu
limited region of applicability. This has to do, mainly, wit
the use of the spherically symmetric free ion density
r i(r ). Their approach can be considered as a microsco
realization of the rigid ion model. In real crystals the char
density distribution of an ion is obviously not rigid. As fo
lows from the experimental data,27 even in the case of the
simplest ionic crystals of the NaCl type, where the cha
t,

ty
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e
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e

density can be taken with good accuracy to be spheric
symmetric, noticeable compression of the charge densit
the negative ion is observed. In general, static and dyna
distortions of the ion charge density are possible, posses
multipole symmetry of any order. In particular, an account
dipole distortions is absolutely necessary to describe
electron polarization of an ion.

Following the early works of Gordon and Kim, a larg
number of efforts were undertaken to improve the giv
method~see the review in Ref. 29!. In particular, significant
attention was given to monopole, i.e., spherically symmet
distortions of the charge density. With this aim, it was pr
posed to calculate not the charge density of a free ion,
that of an ion located in a charged Watson sphere.30 The
charge of the sphere was taken to be equal to the charg
the corresponding ion, but of opposite charge. To determ
the radius of the sphere, a number of variational procedu
have been proposed. Such a modification of the Gordo
Kim method is necessary for the following reasons. First
spherically symmetric distortion of the ion charge density
observed experimentally, and use of the Watson sphere
deed leads to spherically symmetric compression of
charge density of the negative ion. Second, use of the W
son sphere makes it possible to describe crystals contai
ions that do not exist in the free state, such as the O22 ion.
Efforts were also undertaken to allow for dipole distortio
of the charge density, but all of them were based on the
of phenomenological ion models of a different kind, of th
shell-model type~for more details, see the review in Re
29!.

In these efforts to improve the Kim–Gordon model, a
other problem arose which was not consistently resolved
our opinion, in previous treatments. This is the so-called
self-energy problem. The point here is that in the use in
Gordon–Kim model of ion charge densities calculated us
the Watson sphere, the energy of each ion begins to dep
on the radius of the Watson sphere. This radius, in tu
depends on the properties of the entire crystal as a wh
therefore the sum of energies of the individual ions should
included in the expression for the total energy and be ta
into account in the course of the minimization defining th
radius. On the question of the expression for this ener
especially for unstable ions, the opinions of different auth
differ widely.

Earlier we developed a method20,21 which makes it pos-
sible within the framework of the pairwise interaction a
proximation to allow for distortions of the ion charge dens
of dipole type and introduce a self-consistent definition
the self-energy of the ion. Using this approach, we succe
fully calculated the electron polarization and lattice dyna
ics of many binary ionic crystals. The accuracy of th
method turned out, however, to be insufficient for calculat
the ferroelectric instability in perovskite crystals. This is d
both to the necessity in perovskites of taking account
changes in the charge density due to higher multipoles an
the necessity of departing from the framework of pairw
interactions. We recently developed a corresponding ge
alization of the Gordon–Kim method; a brief exposition of
is given in Ref. 22.
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The essence of our GGK method consists in the follo
ing. First, in line with ideas of nonequilibrium thermody
namics developed by Leontovich,30 the nonequilibrium state
of an individual ion is prepared, with charge density dist
bution possessing any multipole symmetry. Toward this e
we solve the quantum-mechanical problem for the individ
ion in the presence of external auxiliary fields possessing
corresponding necessary multipole symmetry and calcu
the charge density distribution of the given ion and also
self-energy. After this, we place the ion in the crystal a
using formula~5! for the crystal energy we determine th
actual deformation of the ion from the minimum of this fun
tional. The minimization is carried out for different values
the volume of the unit cell and different crystalline stru
tures. The state corresponding to the deepest minimum is
true ground state of the crystal. This approach also make
possible with the help of the frozen phonon method to fi
the frequencies of phonon vibrations for a series of wa
vectors. With this aim, we calculate the energy differen
between an ideal crystalline lattice and a lattice in which
ions are displaced just as is actually the case in a pho
mode.

To solve the quantum-mechanical problem of one i
we use the density functional theory. The correspond
Kohn–Sham equation31 in the presence of auxiliary field
has the form

S 2
¹2

2
1

Zi
N

ur u
1E dr

r i~r 8!

ur2r 8u
1Vxc~r !

1Vext~r ,Kn! Dca~r !5«aca~r ! ~10!

and

r i~r !5(
a

ca* ~r !ca~r !, ~11!

where the sum is taken over all filled states. HereVxc(r ) is
the exchange–correlation potential, defined as

Vxc~r !5
dExc$r i~r !%

dr i~r !
. ~12!

For the exchange–correlation energyExc we use, as
usual, the local approximation. The quantityVext(r ,Kn) is
the potential of the auxiliary fields, which possesses mu
pole symmetry. At this point we should mention the subst
tial difference in the calculations when the auxiliary potent
has spherical symmetry, i.e., is a monopole, and when
auxiliary potentials have any other multipole symmetry. F
a monopole external field we are forced to solve Eq.~10!
exactly in the presence of this potential. This is due to
necessity, mentioned above, of calculating ions not exis
in the free state. This means that for them a solution of
~10! that does not take the auxiliary monopole potential in
account simply does not exist. Moreover, in the local a
proximation for the exchange–correlation energy the so
tion of Eq. ~11! absent an auxiliary monopole potential
lacking even for the majority of negative ions.
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In the present paper we use an auxiliary monopole
tential in the form of a smoothed Watson sphere:

Vext
0 5~r ,K0!5 H K01br2, r ,Rw ,

2Zi
ion/r , r .Rw

, ~13!

whereZi
ion is the nominal charge of the ion. The parameteb

and the radiusRw of the Watson sphere are chosen from t
condition of smooth joining of the potential and its first d
rivative atr 5Rw . The choice of a more smoothed potent
than the initial Watson sphere potential is motivated mai
by the need to refine the procedure of the numerical calc
tions. The quantityK0 , characterizing the depth of the po
tential at the nucleus, is a variational parameter and is de
mined from the minimum of the total energy of the cryst
The quantityVext(r ,Kl) for the higher multipoles is chose
in the following form, also smoothed:

Vext~r ,Kl !52r lKl Pl~cosu!e2b l r . ~14!

Here theZ axis is chosen in the direction of the extern
field, Pl(cosu) are the ordinary Legendre polynomials, an
Kl andb l are the corresponding variational parameters. I
important here that there is no need to solve Eq.~10! exactly
in the presence of multiple potentials. It was sufficient to fi
the changes in the charge density distribution and the
energy from perturbation theory in the potentialVext(r ,Kl).
The point here is that the amplitudes of the multipole dist
tions in the charge density distribution are determined, in
final analysis, by the crystal fields or their changes in
sponse to changes in the crystalline structure, but these fi
are always much smaller than the intra-atomic fields.

For the calculations we have used perturbation theory
the form suggested by Sternheimer. As is customary in p
turbation theory, the wave functionca(r ) is represented in
the form

ca~r !5ca
0~r !1dca~r ! ~15!

and

dr~r !5(
a

ca
0~r !dca~r !. ~16!

The unperturbed functionca
0(r ) satisfies the equation

S 2
¹2

2
1Veff~r ! Dca

0~r !5«a
0ca

0~r !, ~17!

where

Veff~r !5
Zi

N

ur u
1E dr 8

r i
0~r 8!

ur2r 8u
1Vxc~r !1Vext

0 ~r ,K0!,

~18!

and the variation of the wave functiondca(r ) is defined by
the equation

S 2
¹2

2
1Veff~r !2«aD dca~r !

52FVext~r ,Kl !1
dVeff

dr~r !
dr~r !Gc0~r !. ~19!
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In the Sternheimer method both equations forca
0(r ) and

dca(r ) are solved simultaneously with allowance for t
self-consistency procedures forVeff(r ,r) and dVeff(r ,r)
5(dVeff(r )/dr)dr. We used a numerical method to solv
these equations numerically. The wave functions were re
sented as series in Chebyshev polynomials which ma
smoothly at large distancesr with the corresponding
asymptotic limit for the functionsca

0(r ) anddca(r ).
Solving Eqs.~17! and~19!, we obtain the variation of the

wave function,dca(r ), which depends implicitly on the pa
rametersK0 and b l and depends linearly on the parame
Kl .

The variation of the charge densitydr l(r ,K0 ,b l) can be
represented in the form

dr l~r !5Kldr̃~r ,K0 ,b l !Pl~cosu!. ~20!

According to standard electrostatics it is possible to
termine the values of the multipole moments correspond
to the charge distribution~20!

Pl5E dr r l Pl~cosu!dr l~r ,K0 ,b l !. ~21!

If we take ~20! into account, Eq.~21! gives a linear
relationship between the parametersKl and Pl , which al-
lows us to express the ion energy in terms of the multip
moments and perform an additional variation of the to
crystal energy not in the parameters of the auxiliary poten
but in the multipole moments of the ions.

The expression for the total energy of an ion in DFT
the presence of the auxiliary fields has the form

Eion$r~r !%5E dr
Zr~r !

ur u
1

1

2 E dr 8
r~r !r~r 8!

ur2r 8u

1(
l
E dr Vext

l ~r ,Kl ,b l !r~r !1F$r~r !%.

~22!

Since we calculated the charge densities of the ions
varying the external auxiliary potentials, expression~22! is in
fact a functional of the auxiliary potentialVext

l (r ). To deter-
mine the self-energyEi

self of an ion with nonequilibrium
charge density distribution as a functional of the density i
necessary according to the ideas of nonequilibri
thermodynamics30 to proceed as follows.

First, from the relation

dEion

dVext~r !
5r~r ! ~23!

it follows that we should expressVext(r ) in terms ofr~r ! and
substitute them in the formula forEion . After this, it is nec-
essary to subtract from the energyEion the workA associated
with the interaction with the external field, i.e., the quant

A5E dr Vext~r~r !! r~r !. ~24!

All these procedures in DFT are actually trivial since t
energy of the ion~22! is always expressed as the correspo
ing density functional, and forEion

self we obtain
e-
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Eion
self5E Zr~r !

ur u
1

1

2 E dr dr 8
r~r !r~r 8!

ur2r 8u
1F$r~r !%.

~25!

After this, expression~5! for the total crystal energy can
be rewritten in the form

Ecr5FEH(
i

r i~r2Ri !J 2(
i

Ei
self$r i~r2Ri !%G1EN

1(
i

Ei
self$r i~r2Ri !%. ~26!

We point out here at the outset that in all the refineme
of the Gordon–Kim method the first term on the right-ha
side of Eq.~26! coincides exactly with our result. This mean
that from the electron energy, written as a function of all t
densities, the sum of energies of the individual ions w
subtracted in a form corresponding exactly to our express
~25!. In this light the source of the differences in the previo
generalizations of this method in the form of the last term
Eq. ~26! is not entirely clear to us. Nevertheless, we will n
use the last term of Eq.~26! in our calculations in the form of
expression~25!. The quantityEi

self as defined by expressio
~25! contains very large contributions from the ion energ
which in fact do not depend on the crystalline environme
and taking them into account can lead to large errors in
numerical calculations. Toward this end, we will make use
the well-known properties of the density functional and fi
calculate the necessary derivatives of the self-energy w
respect to the variational parametersKl . Toward this end,
we write Eself in the form

Eion
self5Eion2E dr Vext~r ,Kl !r~r ! ~27!

and, correspondingly,

]Eion
self

]Kl
5

]Eion

]Kl
2E dr

]Vext

]Kl
r~r !2E dr Vext~r ,Kl !

]r

]Kl
.

~28!

From the condition for the minimum of the functiona
Eion we have

]Eion

]Kl
5E dr

]Vext~r ,Kl !

]Kl
r~r !, ~29!

which at once gives us

]Eion
self

]Kl
52E dr Vext~r ,Kl !

]r

]Kl
. ~30!

Moreover, we can also easily calculate the variation
the self-energy with variation of the parameters after in
grating expression~30! with respect toKl :

DEion
self52E dKE dr Vext~r ,Kl !

]r

]Kl
. ~31!

Taking into account the linear relationship~21! between
the parametersKl and the multipole moments, we easily o
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tain a final expression for the self-energy of the ion for m
tipole distortions of the density withl .0 by integrating in
~31! from zero toKl :

El
self~ l !5Kl

2/2a l , ~32!

wherea l is the corresponding multipole polarizability. Fo
monopole distortions we cannot calculate for any value
K0 , including K050, for the reasons discussed above.
determine the energy difference arising for small lattice d
tortions, it is sufficient to integrate with respect toK0 in ~31!
over an interval including the quite small region of actu
variations ofK0 .

To wrap up this section, we briefly describe the transf
mations of expression~26! for the total energy of the crysta
to a form suitable for numerical analysis, following Ref. 3

First we note that calculation of the self-energy does
present any special difficulty in light of the results for
obtained above. The remaining terms in expression~26! are
very large and should be grouped correspondingly. First
us consider the contribution to the crystal energy associ
with the kinetic and exchange–correlation energy of
electrons. It has the form

Eel5E
V
dr FH(

i
r i~r2Ri !J

2(
i
E

V
dr F$r i~r2Ri !%, ~33!

where the integration is over all space. By virtue of the p
riodicity of the total charge density of the crystal, the fir
integral in~33! can at once be represented as an integral o
one unit cell. In the second integral it is possible to transfo
from an integration over all space to an integration over
l th unit cell and a sum over unit cells. As a result we ha

Eel5E
V

dr FH(
i

r i~r2Ri !J
2(

i ,l
E

V l

dr F$r i~r2Ri l !%. ~34!

With the help of the change of variablesr5r 82r l , wherer l

is the position vector of thel th unit cell, it is easy to reduce
the second integral to an integration over one unit cell. A
result, we obtain

Eel5E
V

dr FFH(
i

r i~r2Ri !J 2(
i ,l

F$r i~r2Ri l !%G ,
~35!

whereRi l 5Ri1r l .
Because of the exponential falloff of the charge dens

the summation over lattice sites is carried out quite simp
The integration over a unit cell is performed numerica
using the method of special points. Details of the calculat
are contained in Ref. 35.

The greatest difficulty in the calculation comes from t
Coulomb part of the total crystal energy due to the prese
of long-range forces. The main problem in the transform
tion of this contribution consists in separating the long-ran
-
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interactions of the corresponding point multipoles and
short-range interactions of the extended multipoles.

The Coulomb part of the crystal energyEc can be rep-
resented in the form

Ec5(
iÞ j

S Zi
NVj~Ri2Rj !1

1

2 E dr r i~r2Ri !

3Vj~r2Rj ! D1EN , ~36!

where Vi(r ) is the Coulomb potential created by the ele
trons of the individual ion.

The expansion of the charge densityr~r ! into multipoles
is written as follows:

r~r !5(
m,l

r l~r !QlmYlm* ~ r̂ !, ~37!

whereQlm are the multipole charges:

Q0
~0!5A4pZel, Q0

~1!5 iA4p

3
Pz ,

Q61
~1!57A2p

3
~Px6 iPy!...,

and r l(r ) are the multipole components of the charge de
sity, normalized by the following condition:

4p

2l 11 E
0

1`

r l 12r l~r !dr51. ~38!

The multipole expansion of the Coulomb potent
Vi(R) is written as follows:

V~R!5E dr
r~r !

ur2Ru
5(

l ,m
QlmE dr

r l~r !Ylm* ~ r̂ !

ur2Ru

5(
l ,m

QlmVl~R!Ylm* ~R̂!, ~39!

Vl~R!5
4p

2l 11 S 1

Rl 11 E
0

R

r l 12r l~r !dr

1RlE
R

1`

r l~r !r 12 ldr D . ~40!

From the last expression we can separate out the lo
range part after rewriting the potential in the following form

Vl~R!5
4p

2l 1 l S 2
1

Rl 11 E
R

1`

r l 12r l~r !dr

1RlE
R

1`

r l~r !r 12 ldr D 1
1

Rl 11 . ~41!

Thus, the Coulomb potential is represented in the fo
of a short-range partṼ(R) and the long-range potentia
Vp(R) of point multipoles

V~R!5Ṽ~R!1Vp~R!. ~42!

Substituting the expansion~42! into the expression for
the Coulomb energy~36!, we obtain
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Ec5(
iÞ j

S Zi
NṼj~Ri2Rj !1Zi

NVj
p~Ri2Rj !

1
1

2 E dr r i~r2Ri !Ṽj~r2Rj !1
1

2 E dr r i

3~r2Ri !Vj
p~r2Rj ! D1EN . ~43!

By virtue of the exponential falloff of the potentialṼ(R)
only the sum over nearest neighbors contributes to the
and third terms. These two terms together describe the sh
range interaction of the extended multipoles. The sum of
three remaining terms, including the Coulomb interaction
the nuclei, describes the interaction of the point multipo
with each other and the interaction of the point multipo
with the extended multipoles. The procedure for separa
the point objects from the interactions while taking acco
of only monopole and dipole distortions of the charge d
sity is described in detail in our previous papers21,22using the
standard description of dipoles in Cartesian coordinates.
account of the quadrupole distortions introduces an a
tional matrix, the quadrupole moment matrix, and worki
with it in Cartesian coordinates becomes extremely tireso
In the present paper we represent the multipole distortion
the charge density in spherical coordinates. Using the tra
formation formulas for spherical functions, this makes
quite simple to formulate the calculation of the Coulom
interactions between point and extended multipoles.
analogous technique is used in electron band theory36 to cal-
culate the structure constants. Details of the calculation
expression~43! are given in Ref. 35.

3. RESULTS AND DISCUSSION

In our numerical calculations of the energy of perovsk
crystals in distorted phases as well as in the cubic phase
have taken into account multipole components of the
charge density up to quadrupole. The necessity in perovs
crystals of allowing for quadrupole distortions of the char
density of the O22 ion even in the cubic phase follows d
rectly from the comparisons made above14,37 of the charge
density distributions in the BaTiO3 crystal obtained from
first-principles calculations and from a superposition
spherically symmetric ion densities. The difference betwe
these densities clearly demonstrates the presence of a q
rupole distribution of the charge density on the oxygen i
By virtue of the crystalline symmetry of the cubic pha
dipole components of the density are forbidden on all io
and quadrupole components are forbidden on all ions ex
O22. In the distorted phases, on the other hand, correspo
ing, for example, to the ferroelectric state of the crystal, i
necessary to allow for the existence of both these com
nents on all ions. The importance of quadrupole compone
of the ion density for stabilization of the low-symmet
phases of ionic crystals was noted in a recent paper by W
sonet al.38 We have carried out calculations of the energ
of the cubic phases and distorted phases of BaTiO3, KNbO3,
CaTiO3, and BaZrO3. For each value of the lattice param
eters we minimized the total crystal energy over the fi
st
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variational parametersK0 , P1,(2) , b1,(2) . Here we used the
conditions for an energy minimum in the form

]Ecr /]P50, ~44!

where byP we mean any of the above five parameters. W
examined the minimization over the cutoff parameters of
multipole potentialsb l in detail for the case of BaTiO3. We
showed that the crystal energy possesses an extremely
low minimum with respect to these parameters, and the e
values ofb l

min differ only slightly from one other for the
different phases and unit-cell volumes. In line with this, mo
of our calculations for the parametersb l were based on the
use of the constant valuesb l50.15,...,b250.25. The effec-
tive distancesr eff

l 51/Ab l corresponding to the indicated va
ues ofb l correspond roughly to the interatomic distance
the dipole potential and are slightly less for the quadrup
potential.

Let us comment, first of all, on the results of our calc
lations for BaTiO3. Carrying out the minimization of the
total crystal energy in the cubic phase for different values
the lattice constant, we determined its equilibrium valuea. It
turned out to be equal to 7.41 Bohr radii. This value is le
than the experimental value, which is equal to 7.58, bu
only 0.5% less than the value obtained in previo
calculations13–15 based on the electron band description. W
obtained exactly the same accuracy for the equilibrium
rameters in the cubic phase for the other perovskite crys
Taking the quadrupole distortion of the charge density on
O22 ions into account leads to a slight increase of ab
0.5% in the value of the lattice constant. As is well know
from theoretical calculations,13–15the ferroelectric instability
in perovskite crystals is very sensitive to the volume of t
unit cell. First-principles calculations13–15have demonstrated
that this instability is either very weakly manifested or
generally absent for a volume corresponding to the theor
cal value of the lattice constant equal to 7.45. Hence al
the foregoing calculations were performed for the expe
mental value of the lattice constant. Our work is in this sen
not an exception—we also performed all calculations of d
torted phases for experimental values ofa.

As we already noted earlier, the actual ion shifts duri
the transition to the ferroelectric phase do not reduce to
a displacement of the central Ti ion from its equilibriu
position. A complete study of the possible ion shifts and
determination of the dependence of the energy on these
placements, as noted in Ref. 14, would be an extremely
duous undertaking even using simple pairwise interato
potentials. Such a complete study was not the goal of
work. In our study of the BaTiO3 instability, we employed
experimental values of the eigenvectors of the soft ferroe
tric mode and performed calculations of the dependence
the energy on just the amplitude of this mode. The results
shown in Fig. 1. As can be seen from the figure, the cal
lated values of the energy and the ferroelectric shift which
not allow for quadrupole distortions of the charge dens
overestimate the shift by a factor of two and the result
energy decrease by an order of magnitude. The calcul
values which take the quadrupole distortions into account
the other hand, agree quite well with the values obtained
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previous works.13–15 Figure 1 also demonstrates that wh
the dipole distortions of the ions are neglected, i.e., in
rigid ion model, the cubic phase remains stable.

This result serves as explicit confirmation of the valid
of ideas going back to Slater5 and Skanavi4 on the impor-
tance of the electron polarizability of the ions in the det
mination of the ferroelectric instability. Earlier, the ferroele
tric instability in BaTiO3 was examined in Ref. 39 within th
framework of the Gordon–Kim model without allowance f
the dipole polarization of the ions. As was shown in th
work, the cubic phase is stable in this model. We can o

FIG. 1. Crystal energyEcr versus amplitude of the ferroelectric shiftu in
BaTiO3 ~zero energy corresponds to the equilibrium valueEcr

0 in the cubic
phase! in the ‘‘rigid ion’’ model ~3! and in the self-consistent calculatio
~1!; a—monopole, dipole, and quadrupole distortions of the charge den
of the ions taken into account, b—only monopole and dipole distorti
taken into account.
e

-

y

emphasize that the absence of a ferroelectric instability
this approach has nothing to do with whether hybridizat
of the electron states of the Ti41 and O22 ions is or is not
taken into account, as was supposed in Ref. 13, but is
plained simply by the absence in this approach of an acco
of the electron dipole polarization of the ions.

We also examined lattice instabilities for the KNbO3

crystal. The results of these calculations are shown in Fig
In this case we calculated not the change in the energy
responding to an actual ferroelectric ion shift in the unit c
but the change in the energy due to a shift of the one cen
Nb ion in the unit cell. As can be seen from this figure, t
lattice is unstable with respect to this shift. Moreover, th
mode is unstable not only at the center of the Brillouin zo
but also on its boundary. Thus, there exist branches of
optical vibrations in perovskite crystals that are unstable
the cubic phase over the entire Brillouin zone. This resul
in complete agreement with the results obtained rece
within the framework of first-principles calculations bas
on the electron band structure method.40 Such behavior of
the phonon modes can have a substantial effect on m
characteristics of the cubic phase of perovskite crystals. F
ure 3 plots the results of calculations of the so-called anti
roelectric instability for BaTiO3 and CaTiO3. These results,
in complete agreement with the available experimental d
and the results of recent calculations,16 demonstrate the ab
sence of the corresponding instability in BaTiO3 and its pres-
ence in CaTiO3. They also show that this instability is almo
completely determined by the Coulomb interaction of t
spherically symmetric ions and by the close-range forc

ity
s

FIG. 2. Crystal energyEcr versus amplitude of the ferroelectric shiftu in
KNbO3 ~zero energy corresponds to theequilibrium valueEcr

0 in the cubic
phase!: 1 corresponds to theG point, 3 corresponds to theX point ~longi-
tudinal mode!, * corresponds to theX point ~transverse mode!.
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Electron polarizability effects have a very small effect
this instability. Our calculations for BaZrO3 demonstrate sta
bility of the cubic lattice in complete agreement both w
previous calculations15 and with the experimental data.

Our method allows one to calculate not only the ene
of the cubic phase and distorted phases, but also the tota
electron polarizations of the distorted phases. First of all,
us consider the behavior of a cubic crystal in an exter
electric field En . Toward this end, we add a term to th
crystal energy allowing for the interaction of the electric d
poles with this external electric field:

W52(
n

PnEn ~45!

and restrict discussion to the case of a uniform fieldEn5E
5const. Minimizing the total energy of the crystal for give
E, we can find, in the linear approximation, the values ofPn

as functions ofE:

Pn5ãnEn , ~46!

where the quantitiesãn are, of course, not equal to the qua
tities an defined for the isolated ions. Next we can find t
electronic contribution«` to the dielectric constant of th
crystal from the relation

D5«`E5E14pP5E1
4p

v0
(

s
Ps ~47!

or

FIG. 3. Crystal energyEcr versus rotation angle of the oxygen octahedronf
in BaTiO3 and CaTiO3 ~zero energy corresponds to the equilibrium val
Ecr

0 in the cubic phase!: 3 corresponds to the ‘‘rigid ion’’ model,1 corre-
sponds to the self-consistent calculation.
y
nd
t
l

«`511
4p

v0E (
s

Ps . ~48!

Here the sum is taken over the limits of one unit cell andv0

is its volume. The results of numerical calculations lead
the following value of the dielectric constant:

«`54.86.

It is also possible to determine the magnitudes of
Born effective charges that describe the polarization of
crystal arising upon an ion shift equal tous

dP5
1

v0
(

s
Ẑs

effus5
1

v0
(

s
Ẑs

ionus1
1

v0
(

s
Ps . ~49!

The effective charge tensorsZab
eff in perovskite crystals

for the A and B ions are isotropic and have two differe
values for the O22 ion for nonequivalent directions:Z1

eff in
the direction toward the B ion andẐ2

eff perpendicular to it.
Performing four ion shifts~one each for the A and B ion
and two for the O22 ion! and calculating from the energ
minimum the corresponding values of the electron pola
ability Pn , we can determine all four values of the Bo
effective charges. Results of the corresponding calculati
for BaTiO3 are listed in Table I.

We note first that the Born effective charges we calc
lated satisfy exactly the acoustic sum rule

(
s

Z̃eff
s 50. ~50!

The dielectric constant«` and the Born effective
charges we obtained slightly underestimate the experime
data. This has to do, to a significant extent, with the subs
tial lowering of the polarizability of the individual ions du
to the strong cutoff factore2b l r

2
in the perturbing dipole

potential. Choice of smoother cutoff functions can lead
better agreement with experiment. In any case, conside
the complete absence of adjustable parameters in our ca
lations, the agreement obtained with the experimental d
can be considered to be quite good.

After our demonstration that the GGK method we ha
developed leads to results for the cubic phase and disto
phases of perovskite crystals, whose accuracy does not d
very much from that of other methods, it would be desira
to address the questions posed in the Introduction. The m
important of these is the question, what is the nature of
ferroelectric instability and what sort of interaction forces a
responsible for this instability. This problem, of course, w
discussed at length in all earlier calculations. It should

TABLE I. Born effective charges.

Ion Charge Z̃eff Z̃eff
exp

Ba 2 2.71 2.9
Ti 4 5.67 6.7
O1 22 24.72 24.8
O2 22 21.83 22.4
O2 22 21.83 22.4
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noted at once, though, that they gave entirely different
swers to these questions. In order to get to the bottom
these differences, we use the standard expression for the
crystal energy in the density functional theory

Ecr5Eel$r~r !%1EN, ~51!

whereEel$r(r )% is the electron energy functional andEN is
the energy of the Coulomb interaction of the nuclei~or in-
teraction energy of the corresponding ions using the pseu
potential method!. We write the functionalEel$r(r )% in the
two equivalent forms most frequently used for calculatio
in the band description of the electrons:

Eel$r~r !%5T0$r~r !%1(
n
E dr

Znr~r !

ur2Rnu

1
1

2 E dr 8
r~r !r~r 8!

ur2r 8u
1Exc$r~r !% ~52!

and

Eel$r~r !%5(
k,l

«k,l2
1

2 E dr 8
r~r !r~r 8!

ur2r 8u
1Exc$r~r !%

2E dr Vxc$r~r !%r~r !. ~53!

In formulas ~52! and ~53! we have used the standa
notation:T0$r(r )% is the kinetic energy of the noninteractin
ions, Exc$r(r )% is the exchange–correlation energy, a
Vxc$r(r )% is the exchange–correlation potential in the cor
sponding Kohn–Sham equation for the band electrons.
first term on the right-hand side of Eq.~53! is the sum of the
single-particle electron energies described by the Koh
Sham equation.

It would be desirable to turn our attention now to t
change of sign of the contribution of the Coulomb interele
tron interaction in Eq.~53! in comparison with Eq.~52! and
to the appearance of an additional term~the last term! in Eq.
~53!. Both of these changes arise as a result of double co
ing of the corresponding interactions in the sum of t
single-particle energies. A change in any of the terms~in the
series of cases and even forExc! in the expression for
Eel$r(r )% for a small distortion of the crystal structure
much larger than the resulting change in the total cry
energyEcr .

In this sense, any of these changes leading to a decr
in the energy of the distorted phase in comparison with
cubic phase can, if desired, be considered as the reaso
the appearance of the distorted phase itself. Thus, Rabe
Jonnopoulos,41 in the context of calculations of the ferroele
tric instability in IV–VI semiconductors using the form~52!
for Eel , cited the interaction of the electrons and ions, i.
the second term on the right-hand side of Eq.~52!, as the
reason for the ferroelectric instability. This term is genera
absent in explicit form in formula~53!. Hidaka,42 who used
formula ~53! for Eel , cited as the reason for the ferroelectr
instability the sum of single-electron energies, which d
creases substantially during the transition to the ferroelec
phase. Precisely this reason, i.e., the decrease in the su
single-particle energies due to the electron–phonon inte
-
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tion, was considered as the main reason for the ferroelec
instability in the so-called vibronic model~see the recen
review in Ref. 43!.

The previously cited recent calculations of perovsk
crystals13–15 cited as the reason for the ferroelectric instab
ity a ‘‘delicate balance between the long-range Coulo
forces and short-range repulsion forces.’’ In reality, this co
clusion, which is, in our opinion, absolutely valid, in no wa
follows directly from the calculations performed in Ref
13–15. In these calculations, no redistribution of contrib
tions in the expression for the total crystal energy was
tempted which would have led to a separation of the sh
range and long-range forces.

This discussion can be shown to be completely acade
as long as it concerns a clarification of the question, which
the crystalline structures has the lowest energy atT50. The
problem acquires a clear physical meaning in the consid
ation of phase transitions in perovskites at temperatureT
Þ0, and also in a discussion of the properties of the vari
phases at finite temperatures. As is well known,1,3 ferroelec-
trics are usually divided into two classes, those of orde
disorder type and those of displacement type. In ferroe
trics of order–disorder type there are initially seve
nonequivalent sites in the unit cell for one of the ions, i.
there exists a so-called multiwell potential. In this case,
existence of an ion at any of these sites leads to the pres
of a dipole moment in the unit cell. At high temperatures t
dipole moments are disordered either because of ion h
from one site to another or because of disorder in the
rangement of the various dipoles. At the phase transit
point ordering of the dipole moments of the unit cells tak
place. Ferroelectrics of displacement type are character
by the absence of a multiwell potential for the ions at te
peratures above the phase transition temperatureTc .

The very concept of a multiwell potential arises only f
T,Tc due to the appearance of real disordered ion sh
throughout the entire crystal. On this plane, the various c
clusions about the nature of ferroelectricity in perovsk
crystals reached via first-principles calculations atT50 can
lead to quite different conclusions about the nature of
phase transition and the properties of the cubic phase. T
the vibronic model assumes the possible presence of a
tilevel potential for the central B ion in each unit cell. Th
polarizable ion model, naturally, leads to a ferroelectric tra
sition of displacement type. If the only reason for the ferr
electric instability is the long-range dipole–dipole intera
tion, then no multiwell potential for the ions can exist un
ordered dipoles exist throughout the entire crystal or in so
large part of it. It is clear that such an ordering is absen
the polarizable ion model forT.Tc , outside the region of
strong ferroelectric fluctuations. Perovskite crystals ha
usually been considered as classical examples of ferroe
trics of displacement type.1,3

During the last 20 years a large number of experimen
works have appeared~see Ref. 44 and the reference
therein!, whose authors have interpreted their results a
manifestation of order–disorder effects in perovskite cr
tals. Theoretical works have also appeared44 in which along
with a treatment of the soft ferroelectric mode due to t
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dipole–dipole interaction, additional phenomenologic
mechanisms are introduced leading to the existence of a
tiwell potential also forT.Tc . As was shown in a recen
paper by Hu¨ler,45 many of these phenomena, which are rem
niscent of order–disorder effects, can in reality be explain
within the framework of the standard quasiharmonic a
proximation for the lattice dynamics of a perovskite cryst
In particular, Hüler showed that the strong anisotropy of t
correlation of the B atom displacements due to this insta
ity of entire branches of the optical vibrations in the cub
phase makes the diffusive x-ray scattering highly ani
tropic. This has often been linked with disordered static d
placements of the B ion from its equilibrium position. An
other example, in our view confirming the validity of th
polarizable ion model and its ability to explain many ph
nomena similar to order–disorder effects, is the recent Mo
Carlo simulation46 of the phase transition in BaTiO3 for a
system of interacting dipoles. The parameters of the mo
Hamiltonian were determined from first-principles calcu
tions of the energies of the cubic and ferroelectric phase
T50.

Now let us go on to a more detailed discussion of qu
tions associated with factors leading to the ferroelectric
stability, and also with the problem of the anomalously lar
values of the Born effective charges in perovskites. Tow
this end, we take advantage of the possibility of an analyt
representation of the total crystal energy within the fram
work of the GGK method. But first of all, we simplify thi
expression guided by the results of the numerical calc
tions. First, we neglect the change in the quadrupole mom
of the ions at the transition from the cubic to the ferroelec
phase and, minimizing with respect to it, we exclude it fro
further consideration. This procedure leads only to a co
sponding renormalization of the short-range interactio
Next, we restrict the discussion to the approximation of pa
wise interactions between the deformed ions. This appr
mation, as was already noted, is insufficient in a numbe
cases to maintain the required accuracy for the numer
calculations, but it does not lead to any qualitative change
the calculated results. In final form the expression for
total crystal energy can be written in the form

Ecr5Ẽsr$K0%1
1

2 (
n,n8

Zn
ionZn8

ion

uRn2Rn8u
1

1

2 (
n

Pn
2

2an

1
1

2 (
n,n8

PnF̂n,n8Pn81
1

2 (
n,n8

PnĜn,n8Pn8

2 (
n,n8

PnŜn,n82(
n

PnEn . ~54!

In the form of this expression we have changed o
from the representation of the dipole moment vectorsPn of
the ions in spherical coordinates~which is convenient for the
numerical calculations! to the standard form in Cartesian c
ordinates. Formally, expression~54! completely coincides
with the expression we obtained earlier21 allowing only for
dipole distortions of the charge density. But in fact there i
difference. First, the contribution from the short-range int
l
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action forcesẼsr$K0% takes into account the renormalizatio
of these forces resulting from elimination of the quadrup
moment. Second, the matrixŜn,n8 of the extended
spherically-symmetric ions also includes quadrupole ren
malization effects. The remaining terms in the linear a
proximation in the dipole and quadrupole distortions do n
differ from those obtained earlier. The quantityan is the

dipole polarizability of the ion, andF̂n,n8 is the interaction
matrix of the point dipoles:

Fab~R!5
dab

R3 2
3RaRb

R5 ; ~55!

the matrix Ĝn,n8 describes the short-range interaction b
tween the extended dipoles. The last term in expression~54!
represents the interaction between the point dipoles and

electric field En . The matricesŜn,n8 and Ĝn,n8 can be ob-
tained from the numerical calculations described in the fo
going section. Using formula~54!, it is possible to obtain an
analytical expression for the electronic contribution to t
static dielectric constant of the crystal«` and the Born ef-
fective chargesZn

eff for perovskite crystals. Let us conside
first, the quantity«` , taking the electric fieldEn in formula
~5! to be external. Then, from the condition

]E/]Pn50 ~56!

we have

Pn5anEn2an(
n8

F̂n,n8Pn82an(
n8

Ĝn,n8Pn8 . ~57!

The last term in expression~57! can be eliminated by
introducing the nonlocal polarizability

ân,n85~dn,n81anĜn,n8!
21ân8 . ~58!

We in fact are considering a uniform external fieldEn

5const, and the polarization of each unit cell is

(
s

Ps5const.

In this case, the dipole–dipole interaction matrix in cub
crystals can be written as9,10

Fn,n8
ab

52
4p

3
dab2gn,n8

ab . ~59!

Hereĝn,n8 is the matrix of internal field constants, characte
izing the departure of the external field factor from a Lore
zian ~equal to 4p/3!. The sum of products with the matri
ĝn,n8 is taken only over nonequivalent sublattices. Expr
sion ~57! can now be rewritten in the form

Pn5(
n8

ân,n8E1
4p

3 (
n8

ân,n8P1 (
n8,n9

ân,n8ĝn8,n9Pn9 ,

~60!

whereP is the total polarization of the crystal

P5(
n

Pn5
1

v0
(

s
Ps . ~61!
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It is easy to solve Eq.~60! completely and to obtain an
expression for the total polarizationP. Noting that for crys-
tals with cubic symmetry«` is a scalar, we have

«`511
4pP

E
, ~62!

«`511
4pac

12~4p/3!ac
. ~63!

Hereac is the polarizability of the unit cell:

ac5
1

v0
(

s,n,n8,n9
~ds,n2âs,nĝn,n8!

21ân8,n9 . ~64!

The s summation in Eq.~64! is over one unit cell, and
over the remaining indices in accordance with the fall
radius of the matricesân,n8 and ĝn,n8 . For binary crystals,
whereĝn,n850 holds, we have in the point dipole approx
mation Gn,n850, and the polarizability of the unit cell re
duces to the sum of the polarizabilities of the two ions:

ac5a11a2 . ~65!

Formally, it is possible to introduce an effective polari
ability of each ionas , which in this case is no longer
scalar, but a tensor in Cartesian coordinates:

âs
ik5 (

n,n8,n9
~ Î 2âs,nĝn,n8!

21ân8,n9 . ~66!

The total polarizability of the unit cell is expressed,
accordance with Eq.~64!, by the sum of effective polariz
abilities.

Let us first discuss the influence of non-Lorentzian int
nal field constantsgn,n8 on the polarizability of the ions in
perovskite crystals, neglecting for the time being, the ma

Ĝn,n8 :

as
ik5 (

n,n8
~ Î 2asĝs,n!21an . ~67!

We consider by way of an example the effective pol
izability of the oxygen atom in the direction corresponding
the position of the Ti atom. As is well known,11 the local
field factorsĝn,n8 coupling different sublattices differ greatl
in magnitude. The constantgTi,O is several times greater tha
all the other constants, and

(
Ti

gO,Ti.30. ~68!

This circumstance leads to a very large anisotropy of
effective polarizability of the oxygen atoms in a perovsk
lattice. The polarization in the direction of the Ti ion is se
eral times greater than its value in perpendicular directio
This has nothing to do with the properties of the oxyg
atom itself, nor with hybridization of the electron states
Ti41 and O22, rather it is a specific, geometrical property
the perovskite lattice, due to the existence of parallel cha
of Ti41 and O22 ions. This circumstance, as was shown
Ref. 40, leads to the appearance of an instability on en
branches of the TO vibrations. In turn, the nonlocal polar
f
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e
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ability matrix ân,n8 is also anisotropic due to the anisotrop

of the matricesĜn,n8 and ĝn,n8 . The nonlocal polarizability
ân,n8 most strongly hinders, in particular, the appearance
dipole moments on the oxygen ions in the Ti–O directio
Thus, in perovskites there arises a mutual compensatio
the effect of non-Lorentzian corrections to the local field a
the effect of short-range repulsion forces of the dipoles.

Formula~54! also allows one to obtain an analytical e
pression for the Born effective chargeẐn

eff defined by for-
mula ~49!. For the electron polarizability we have from fo
mula ~54!

Ps5asEs2as(
n8

F̂s,n8Pn82as(
n8

Ĝs,n8Pn8

1(
n8

m̂n,n8Zn8un8 . ~69!

Here we have introduced the nonlocal deformability of t
ion m̃n,n8 , writing the matrixŜn,n8 for small displacements
un as

Ŝn,n85m̂n,n8Zn8un8 . ~70!

The electric fieldEs at a site has the form

Es52( F̂̃n,n8Zn8un8 ~71!

and

F̂̃n,n85F̂n,n82dn,n8(
l

F̂n,l . ~72!

Using the definition~58! for the nonlocal polarizability
an,n8 , it is possible to rewrite formula~69! as

Ps5(
n8

an,n8En2 (
n8,n9

an,n8F̂n8,n9Pn9

2(
n8

Zn8m̂̃n,n8un8 , ~73!

where the quantitym̂̃n,n8 is equal to

m̂̃n,n85(
n9

an,n9 m̂n9,n8 . ~74!

Formally, the expression we have just obtained forPs

coincides exactly with the expression derived for the gene
type of phenomenological model of lattice dynamics, taki
nonlocal polarizability and nonlocal deformability of the io
into account.47 Now, using formula~73!, it is possible to
express the electron dipole moment in terms of the ion sh
and, substituting it in formula~49! for the total dipole mo-
ment, to find an expression for the Born effective char
Zs

eff . As a result of straightforward, but lengthy calculatio
similar to those performed above in the derivation of«` , we
obtain

Ẑs
eff5S Î 2

1

v0

4p

3
acD 21

ĵ~s!5
«`12

3
ĵ~s!, ~75!
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ĵ~s!5(
t

F Î 2
1

v0
âĝ G

ts

21F Î 2
1

v0
âĝ Gsn

3@ Î 2m̂̃n,n8#
n,n8Zn8 . ~76!

The factor («`12)/3 in the expression for the effectiv
charge characterizes the well-known48 growth of the external
dipole moment in a polarizable medium with dielectric co
stant«` . Formally, formula~76! for ĵ(s) almost coincides
with the formula obtained earlier10 in the polarizable point
ion model. The difference is that instead of a nonlocal sca
polarizability of one ion,andn,n8d

ab, formula ~76! includes
the nonlocal polarization matrixan,n8 . Also, expression~76!

has an additional factorÎ 2m̂̃ characterizing the diminution
of the nominal charge, more accurately the dipole mom
arising upon displacement of the ion due to its concomit
deformation. Using formulas~70! and~74! and the condition
of translational invariance form̂n,n8 ,

(
n

m̂̃n,n850, ~77!

we can easily prove the acoustic sum rule for the B
charges.

Expanding the crystal energy~54! in a series in ion dis-
placementsun readily yields an expression in the harmon
approximation for the matrix of force constants of the crys
Fst

ab which depends on the coordinates of the atoms in
unit cell s andt and the wave vectorq. For smallq we have

Fst
ab~q1b!5Fst

ab~0!1C̃st
ab~0!2

4p

V0
Z̃s

eff I

«`12
Z̃t

eff

1
4p

V0«`
Z̃s

eff qiqj

«`q2 Z̃t
eff . ~78!

Expression~78!, like formulas~75! and~76! for the Born
effective charge, formally coincides completely both w
the expressions obtained earlier in the polarizable
model10 and with the expressions arising in the exact the
of lattice dynamics based on the electron dielectric ma
«(q1K ,q1K 8,0) ~Ref. 9!. The first term in formula~78! is
the contribution to the matrix of force constants from t
short-range repulsion forces of the spherically symme
ions @the first term in the expression for the total ener
~54!#. The fourth and third terms, respectively, describe
contributions of the non-analytical and analytical parts of
long-range dipole–dipole interaction in a polarizable m
dium with dielectric constant«` . C̃st

ab(0) is an additional
contribution to the short-range forces from the dipole–dip
interactions. The specific form of this matrix, like forẐab

eff

and the entire matrixFst
ab , coincides formally with the form

obtained earlier in the polarizable point ion model.10 Because
of its length, we do not reproduce it here.

Let us now briefly discuss the analytical results obtain
for Ẑs

eff andFst
ab . As can be seen from formulas~75!, ~76!,

and ~78!, not only the ferroelectric instability itself, but als
the Born effective chargeẐs

eff , is a result of a ‘‘delicate bal-
ance between the long-range dipole forces and short-ra
-
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repulsion forces.’’ First of all, as can be seen from formu
~75!, «` increases the effective charges of all the ions of
crystal. Further, as was already discussed in the calcula
of «` , Ẑs

eff increases substantially becasue of the n
Lorentzian local field constantsĝst . This growth is stronges
for the B and OI ions, which are bound by the largest~in
magnitude! constantgB,O. The constantgst binding the A
and OII ions is also quite large.

This circumstance explains the correlation betweenZeff

observed in the calculations precisely for these ions fo
large number of perovskites. The corresponding growth
Zeff in the polarizable point ion models is so large that
explain the magnitude of the total polarizability of the crys
it is necessary, following in the footsteps of Slater,5 to radi-
cally decrease the values of the nominal charges of the i
Expression~76! shows that this decrease arises automatic
in real crystals due to the deformability of the ions as well
the short-range dipole–dipole interaction. Both these fac
lead to a decrease in the electron dipole moment arising
result of the ion displacements. Expression~78! for Fst

ab

shows, in complete agreement with the polarizable ion m
els, that it is precisely the long-range dipole–dipole inter
tion @third term in expression~78!# that is the reason for the
ferroelectric instability. All the short-range forces~i.e., the
first and second term! favor stabilization of the cubic phase
The fourth term contributes only to the longitudinal optic
modes and leads to splitting of the LO and TO modes.

4. CONCLUSION

Let us briefly sum up this work. First, we have presen
a simple and clear scheme for calculating the static and
namic properties of ionic crystals. This approach is based
the generalized Gordon–Kim model and allows one to ta
account of the distortions of the ion charge density cor
sponding to any multipole symmetry. In itself this approac
based on the density functional theory, is absolutely rigor
and does not contain any arbitrary approximations or adj
able parameters. Unfortunately, in its most general form
cannot be applied to real calculations. First, it is necessar
restrict the calculation to a finite number of multipole com
ponents of the charge density. Second, an exact expres
for the energy as a functional of the densityE$r% is not
known, and it is necessary to use an approximation for i

As was shown in this work, very simple approximatio
not relying on any adjustable parameters are able to desc
very slight energy differences between the cubic phase
various types of distorted phases in perovskite crystals.
this it is sufficient to take into account multipole distortion
up to quadrupole and use a simple local Thomas–Ferm
Dirac approximation for the density functional.

One of the merits of the proposed method consists in
possibility of representing the total crystal energy analy
cally as a function of the ion shifts and the electron dipo
moments. Formally, the expression obtained coincides
actly with the most general type of phenomenological mo
of a polarizable and deformable ion. Moreover, this expr
sion demonstrates that all the short-range forces, includ
those arising from the dipole–dipole interaction, stabilize
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cubic phase. The only contribution leading to a ferroelec
instability is the one associated with the analytical part of
long-range dipole–dipole interaction. This conclusion is
complete agreement with the classical theory of ferroe
trics of displacement type developed in the early works
Skanavi, Slater, Ginzburg, and Anderson. Our results a
indicate that no mechanisms for phenomena of ord
disorder type are present in perovskite crystals except
those that can arise within the framework of quasiharmo
or anharmonic dynamics.

In conclusion, we would like to express our gratitude
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The Ulam problem and the ionization of Rydberg atoms by microwave radiation
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We study the Ulam problem for long times~several million collisions! by numerical methods.
We show that in the diffusion regime, which is valid for moderate times, this problem is
mathematically equivalent to the problem of the diffusive ionization of atomic Rydberg states by
microwave radiation. It is concluded that the diffusion regime sets in only for a very small
number of initial conditions~field phases!. It is theorized that the analogy between the two
problems can be extrapolated to times longer than the diffusion time. We show in the
Ulam problem that after the diffusional buildup of energy has finished, the quasistationary regime
does not continue indefinitely: after several million particle-wall collisions the energy
rapidly drops to zero. On the basis of this extrapolation we examine the possibility that an
electron which has reached the continuous spectrum will not fly off to infinity~ionization!, but will
return to bound Rydberg states of the atoms~if the field acts for a sufficiently long time!.
This can make the diffusive ionization probability much lower than the value given by the known
estimates. ©1998 American Institute of Physics.@S1063-7761~98!00307-2#
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1. INTRODUCTION

The ionization of atomic Rydberg states~primarily, of
the hydrogen atom! by microwave radiation has been studi
both experimentally and theoretically~see the monograph b
Delone and Kra�nov1 and the reviews by Deloneet al.2 and
Gasatiet al.3!. Deloneet al.4 showed for the first time, via
the semiclassical approximation, that when an electron
Rydberg state with the principal quantum numbern is sub-
jected to microwave radiation with a frequency of order
the Keplerian frequency of revolution of the electron abo
the atomic core, it is diffusively transferred to orbits wi
ever increasing quantum numbers until its spectrum beco
continuous, i.e., until ionization occurs. The same proc
takes place in purely classical mechanics, but only when
field strength exceeds a certain threshold value,F.F th ~Ref.
5!. Thus, diffusive ionization is a threshold process in cl
sical mechanics, according to the Kolmogorov–Arnol
Moser theorem. For instance, according to numer
calculations,6 the threshold field strength for a linearly pola
ized field with a frequencyv5(1 – 4)/n3 is F th51/40n4.
~Here and below we use the atomic system of units!. The
threshold value is small compared to the atomic fieldFa

51/16n4 ~Ref. 7!, in which the ionization of an atomic Ry
dberg state by a low-frequency field takes place in the cou
of a single Keplerian period 2pn3. The ionization of Ryd-
berg states of the hydrogen atom by microwave radia
was observed in the experiments of Saueret al.8 The experi-
mental data on the threshold field strength agree with
above theoretical estimate.

The diffusion equation for the quantum-number distrib
201063-7761/98/87(7)/5/$15.00
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tion function f (n) in the excitation of the electron is of th
standard form

] f

]t
5

]

]n FD~n!
] f

]nG . ~1!

The nonlinear diffusion coefficient is given by the followin
equation:1

D~n!50.27
F2

v4/3n3. ~2!

In one-dimensional diffusion the variance of the princ
pal quantum number in the timeDt is proportional to this
time interval:

^Dn2&52D~^n&!Dt. ~3!

Combining~2! and ~3!, we arrive at a law that governs th
variation of the mean quantum number:

2
d

dt S 1

^n& D50.27
F2

v4/35const. ~4!

This law yields the time it takes an electron to reach
boundary of the continuous spectrum (n→`), i.e., the ion-
ization time:

t ion5
v4/3

0.27F2n0
, ~5!

wheren0 is the principal quantum number of the initial Ry
dberg state of the atom. For field strengthsF;1/40n4 and
frequenciesv;1/n3, we find that although analytically the
© 1998 American Institute of Physics
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ionization time is of order of the Keplerian revolution perio
of the electron, 2pn3, numerically it is much longer than
this period.

The aim of the present paper is to find an analogy
tween the classical ionization of atomic Rydberg states b
microwave field and the well-known Ulam problem9 ~the
details will follow!. We shall see that the problem is that
the principal quantum numbern increases, the conditions fo
diffusive ionization deteriorate due to a decrease in the
quency of Keplerian revolution of the electron along the c
responding orbit as compared to the frequency of the mic
wave field. Hence the electron may never reach the boun
of the continuous spectrum or it may reach it and ‘‘boun
back.’’ We study the dynamics of electron motion using
analogy with the Ulam problem for short times, where t
diffusion equations for both problems are mathematica
similar, as we shall shortly see. Of course, extrapolation
this analogy to long times is an hypothesis that our calcu
tions in the case of atoms do not corroborate directly.
view of the mathematical difficulties involved in solving th
problem in the case of atoms, we attempted to discern h
the diffusion process is terminated in the Ulam problem
very long times. It would seem that a quasistationary reg
should set in. However, numerical calculations produc
quite unexpected results, which we believe are the mos
teresting aspect of the present investigation.

2. THE ULAM MAP

As noted earlier, from the mathematical viewpoint it
convenient to reduce the problem of the diffusive ionizat
of atoms by a microwave field to what is known as the Ula
map9 in such a way that the diffusion equations in both ca
would have the same appearance, although they describe
ferent physical processes. This map originated from Ferm
idea ~1949! that a cosmic particle collides more often wi
interstellar clouds that are moving toward it than with tho
moving away from it. For this reason, on the average
particle is diffusively accelerated after a large number
collisions.

The Ulam problem examines the classical motion o
particle moving with a high velocity inside a one
dimensional, infinitely high rectangular potential well, or b
~see Fig. 1!. One of the walls oscillates with time~to be

FIG. 1. Rectangular box with infinitely high walls that contains a class
particle. The right-hand wall oscillates with a small amplitude~the Ulam
problem!.
-
a

-
-
-
ry

e

y
f
-

n

w
r
e
d
n-

n

s
if-

’s

e
e
f

a

definite, we have chosen it to be the right-hand wall!. It is
this oscillatory motion that ensures the diffusive Fermi a
celeration of the particle.

Let l be the width of the box. The velocityV of the
right-hand wall is assumed to vary according to a harmo
law with a frequency v and an amplitudeV0 :V(t)
5V0 sin(vt1w). The box width is assumed to be large com
pared to the amplitudea5V0 /v of oscillations of the right-
hand wall:l @a. We also assume that at all times the partic
velocity u is high compared to the oscillation velocity of th
right-hand wall:u@V0 . This allows us to exclude doubl
collisions of the particle with the right-hand wall of the bo
~such collisions would occur if the particle velocity is low!.

The law of momentum conservation in thenth elastic
collision of the particle with the oscillating wall is simple:

un115un12V0 sin~vtn1w!, ~6!

wheretn is the time of thenth collision took place,un is the
particle velocity just before thenth collision, andun11 is the
particle velocity prior to the next, (n11)th, collision ~after
the particle is reflected from the stationary left-hand wall
the box!.

The time of free particle motion between two success
particle collisions with the oscillating wall is

tn112tn5
2l

un11
. ~7!

Introducing the dimensionless phasecn[vtn1w, the di-
mensionless velocityUn[un/2V0 , and the dimensionles
parameterM[ lv/2pV0@1, we arrive at the Ulam map in
dimensionless variables~for details see Ref. 10!:

Un115Un1sin cn ,

cn115cn1
2pM

Un11
mod~2p!. ~8!

This is a particular case of the Poincare´ map.
Note that if the particle velocity is

Un5
M

m
, ~9!

wherem is an integer, then, according to the first relation
~8!, the particle velocity begins to increase or decrease re
larly by the same amount sincn in each collision until~9! is
violated substantially. At other points the variation of th
particle velocity is irregular. The points indicated are call
periodic points of map~8! ~see Ref. 10!.

The phase expansion modulus~according to Chirikov11!
is defined as follows:

K[U~cn112cn!2~cn2cn21!

cn2cn21
U. ~10!

Dynamic chaos, i.e., irregular variation of the particle velo
ity with the passage of time, sets in ifK.1, i.e., when the
phase difference changes not very strongly, but irregularly
each collision. Introducing the average estimatesucn

2cn21u;p/2 andusincnu;1, we see that~8! and~10! yield

l
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K'
2pM

~p/2!Un
2 uUn112Unu'

4M

Un
2 . ~11!

The conditionK.1 means that in dynamic chaos we ha
M@Un@1.

3. DIFFUSIVE INCREASE IN VELOCITY

According to~6!, after each collision the particle veloc
ity un changes very little in comparison to the velocity itse
A large change in velocity can occur only after a very lar
number of collisions. Let us introduce the concepts of ru
ning velocity and mean velocity~over many collisions!:

un112un5u2^u&5Du.

Averaging the square of this difference in a single collisi
with allowance for~6! and ~7!, we get

^Du2&54V0
2^sin2 cn&52V0

252V0
2 Dt

2l /u
. ~12!

This relationship, which is valid for a single collision, can
generalized to the case of any number of collisions and
corresponding time intervalDt. According to the law of one-
dimensional diffusion, we havêDu2&52DDt. Hence, due
to ~12!, the variable diffusion coefficient increases linea
with velocity:

D~u!5
V0

2

2l
u. ~13!

Plugging this expression into the diffusion equation~1!, mul-
tiplying the result by the current velocityu, and integrating
the product over all velocities, we obtain, after integrating
parts twice,

d

dt
^u&5

V0
2

2l
, ^u&5u01

V0
2

2l
t. ~14!

This equation describes uniformly accelerated particle m
tion in the Ulam problem.

Equation~14! has the same form as Eq.~4! in the prob-
lem of the diffusive ionization of a Rydberg atom if we ma
the following substitutions:

^u&→u02
1

^n&
1

1

n0
,

V0
2

2l
→0.27

F2

v4/3. ~15!

Thus, we have found the Ulam map~8! with parameters~15!
for the problem of the diffusive ionization of a Rydbe
atom.

4. REGULAR MOTION

In the Ulam problem, the particle velocity increases on
to a certain limit. Dynamic chaos ceases when the ph
expansion modulusK is smaller than unity. Equation~11!
then suggests that this occurs whenUmax52AM . The nu-
merical calculations of Lieberman and Lichtenberg12 yielded
a somewhat more accurate estimate:

Umax52.5AM . ~16!
-

e

y

-

se

This corresponds to the condition where there is no ove
of neighboring resonances.11

After the particle velocity reaches its maximum value,
remains constant in the course of several thousand collisi
varying only slightly. When the velocity value correspon
to a periodic point@see Eq.~9!# with an index

m5
M

Un
5

Un

6.25
@1, ~17!

we have, in accordance with the ideas discussed in Sec.
small upward or downward jump in velocity to a new valu
that only slightly differs from the old~by a fraction of a
percent!, after which the velocity stabilizes at the new valu
with very weak oscillations.

In our numerical calculations we give the results forM
510 000, U0525, so that, according to~11!, the initial
phase expansion modulusK0 amounts to 64. According to
~16!, the maximum velocity isUmax5250. By varying the
phasew of the oscillations of the right-hand wall of the bo
we found that the diffusion regime described in Sec. 2
actually achieved only for a negligibly small number
phases. In most cases the particle velocity varies irregula
and the velocity exceeds the initial value of the particle v
locity only slightly. Here, in the course of only several tho
sand collisions, instead of increasing diffusively, the parti
velocity drops abruptly to zero. After this the count is term
nated because double collisions of particle with the rig
hand wall of the box become possible, in which case
original simplified Ulam map~8! becomes invalid.

By specially selecting the phasew we were able estab
lish the rare cases where the diffusion regime sets in. On
illustrated in Fig. 2, which depicts the dependence of
dimensionless particle velocityUn on the number of colli-
sionsn. Clearly, there is a diffusive increase in particle v
locity with time, the velocity finally reaching a plateau th
corresponds to the maximum velocity~16!, as predicted by
theory. The diffusion regime continues only for approx
mately 30 000 collisions, while the plateau extends to sev
hundred thousand collisions and more. An analytic expr
sion for the diffusion curve can be obtained directly fro
~14!:

dUn

dn
5

1

4Un
. ~18!

The curve in Fig. 2 is reproduced by~18! fairly accurately.

5. ELECTRON DIFFUSION AMONG THE RYDBERG ORBITS
OF AN ATOM

The first condition in~15! suggests the following. When
the maximum velocityumax in the Ulam problem is reached
does the corresponding value ofnmax become infinite? If the
answer is yes, diffusive ionization has been achieved. Ot
wise,nmax remains finite and can be found by the formula

1

nmax
5

1

n0
2umax ~19!
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~here we have neglected the initial velocityu0 in comparison
to umax). In this case diffusive excitation of the atom to
certain level would occur instead of diffusive ionizatio
From ~15! and ~16!, for M we find that

umax55.4pM3/2
F2

v7/3. ~20!

Plugging in the above valuesM510 000, F51/40n0
4, and

v52/n0
3, we find thatumax5const/n0, where const;103. Ac-

cording to ~19!, this means that diffusive ionization is su
occur in at such field strengths and frequencies.

Another problem arises when the observation times
long. The fact that an electron has reached the continu
spectrum does not necessarily mean ionization, since the
crowave field continues to act on the atom and may ret
the electron to bound states. A similar situation indeed
curs in the tunneling ionization of atoms by strong lo
frequency laser light.13 An electron that has left an atom ma
return to the atom during a half-period of the field or even
back to its initial bound state after emitting a spontane
high-frequency photon.

In the Ulam problem this scenario is formulated in t
following way. The stationary value of the maximum velo
ity of a particle in a box with an oscillating wall is eithe
maintained indefinitely or changes radically after a fai
large number of collisions. But what actually happens?

In the above example~see Fig. 2! we established numeri
cally that the maximum quasistationary value of particle
locity obtainedUn5250 is maintained for as many as thr
million collisions. However, after that the velocity’s beha
ior changes radically~Fig. 3!. In the interval between 3

FIG. 2. Dependence of the dimensionless particle velocity in the U
problem on the number of collisions in the diffusion regime.
re
us
i-

n
-

o
s

-

3106 and 3.33106 collisions the particle velocity drops
practically to zero! Such behavior is observed for all init
conditions for which the diffusion process takes place a
the maximum velocity is attained. For an atom this mea
that the electron may return to bound states from the c
tinuous spectrum~if the assumption that the analogy betwe
the two problems extends to times longer than diffus
times is valid! and that the particle velocity rapidly decreas
after a certain moment in time.

In conclusion we note that numerical solutions of t
Ulam problem for long times suggest that two facts m
hinder the classical diffusive ionization of a Rydberg atom

1! for most classical paths, there is no diffusion of
highly excited electron among Rydberg orbits, and only s
chastic variation of the electron energy near its initial va
occurs;

2! even if diffusion occurs, during the long time that th
system is subjected to microwave radiation the electron
turns to its initial bound state, although intermediate valu
of the electron energy belong to the continuous spectr
actually, diffusive ionization takes place only if the pulse
microwave radiation ends at the necessary point in time@of
the order given in~5!#.

We stress once again that outside the diffusion reg
there is no rigorous justification for extrapolating the analo
between the problem of hydrogen-atom ionization and
Ulam problem. We simply assume that such extrapolatio
valid.

The authors are grateful to S. P. Goreslavski�, N. B.
Delone, and M. V. Fedorov for valuable remarks on the co

FIG. 3. Drop in particle velocity in the Ulam problem after a large numb
of collisions.
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Exciton magnetotransport in two-dimensional systems: weak-localization effects
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The paper considers the effect of a magnetic fieldB on the transport of neutral composite
particles, namely excitons, in weakly disordered two-dimensional~2D! systems. In the case of
classical transport~when the interference of different paths is neglected!, the magnetic
field suppresses exciton transport, and the static diffusion constantD(B) monotonically drops
with B. When quantum-mechanical corrections due to weak localization are taken into
account,D(B) becomes a nonmonotonic function ofB. In weak magnetic fields, where the
magnetic length is much larger than the exciton Bohr radius,l B5(\c/eB)1/2@aB5«\2/me2, a
positive magnetodiffusion effect is predicted, i.e., the exciton mobility should increase
with B. © 1998 American Institute of Physics.@S1063-7761~98!02407-X#
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1. INTRODUCTION

In two-dimensional~2D! systems, all states are loca
ized, no matter how weak the disorder is.1–3 This phenom-
enon is universal for all processes of wave propagation an
associated with the constructive interference of paths s
jected to the time-reversal operation. For particles with n
zero mass, this is a quantum-mechanical effect, which ca
be described in terms of classical mechanics. The quan
statistics of particles in this case does not play a crucial
~see, for example, works on the weak localization
phonons4 and light5!. While localization has been thorough
investigated on the base of the one-particle approach, m
questions concerning the interplay between localization
Coulomb effects remain unanswered. The variety of phys
situations requires the application of different techniqu
suitable for describing the respective class of phenome
For instance, it was predicted by the weak-localizat
theory that the electron-electron interaction should wea
the interference effects and lead to a higher conducti
~see, e.g., the review by Lee and Ramakrishnan3!. A numeri-
cal calculation for two interacting electrons in a random p
tential has also predicted a correlated-propagation len
larger than the localization length of an isolated particl6

The issue discussed in this paper, namely the propagatio
an exciton, which consists of an electron and a hole inter
ing with one another, in a magnetic field and in a rand
potential is also one of the aspects of the general probl
The weak localization of excitons in the absence of a m
netic field was investigated previously.7

Introduction of a magnetic fieldB generates new fea
tures in the physical picture of the weak localization of ele
trons. Formally, a magnetic fieldB breaks time-reversa
symmetry. The physical consequence is negative magne
sistance in electron systems.8,9 This effect is caused by th
fact that charged particles acquire different phase shifts
2001063-7761/98/87(7)/10/$15.00
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magnetic fields when they travel along closed paths in op
site directions.10 As a result, the fieldB breaks the construc
tive interference between time-reversed paths and the
suppresses the weak localization of electrons. If we take
account the electron spin, four different channels for int
ference between two electronic waves are possible: on
them is singlet (S50), and three are triplet (S51, Sz

561,0). The interference in the triplet~singlet! channels
gives a positive ~negative! contribution to the
conductivity.9,11 Fast spin-flip processes can change the re
tion between the contributions of the singlet and triplet ch
nels, thus resulting in either negative or positive magneto
sistance. Various mechanisms of spin-orbit coupling that
important for electrons in quasi-two-dimensional semico
ductor quantum wells and heterojunctions were taken i
account in Ref. 12. Note also that in systems with stron
localized electron states~the hopping conductivity regime!
magnetically induced changes in the phase relations betw
different transition amplitudes can lead to either negative
positive magnetoresistance.13,14

An important question in the case of excitons, which a
composite and, as a whole, electrically neutral particles
whether the time-reversal symmetry for ane–h pair is bro-
ken by a magnetic fieldB. One may assume that thet→– t
symmetry for a pair should be broken by magnetic field sin
it is broken for an electron or hole taken separately, and
is true in a general case. There is, however, an excepti
case. Consider the Hamiltonian

H5
1

2me
S 2 i\¹e1

e

c
AeD 2

1
1

2mh
S 2 i\¹h2

e

c
AhD 2

1Ueh~re2rh!1Ve~re!1Vh~rh!, ~1!

which describes the motion of ane–h pair in a uniform
magnetic fieldB and external~random! potentialsVe and
Vh . When the particle masses are equal,me5mh , and the
© 1998 American Institute of Physics
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scattering potentials are identical,Ve[Vh , thee andh com-
ponents transform into one another after time reversal.1! In
this case Hamiltonian~1! commutes with the time-reversa
operator:

@H,T̂#50. ~2!

This means that thet→2t symmetry is not broken, and 2D
excitons should remain localized even in the presence
magnetic field.

In the general case, one should analyze how a magn
field B suppresses the weak localization of excitons, wh
are electroneutral as a whole, and how their internal struc
manifests itself. In a magnetic field, the center-of-mass m
tion and relative motion of ane–h pair are coupled. There
fore, the scattering of an exciton as a whole is affected by
magnetic fieldB and the internale–h interaction.

Recently, the transport of quasi-two-dimensional ex
tons in quantum wells under a magnetic field has attracte
lot of attention on the part of experimentalists~see Refs.
16–18 and references therein!. Butov et al.17 reported in-
triguing low-temperature anomalies in exciton magnetotra
port. In particular, they found that the exciton diffusion co
stant D is a nonmonotonic function ofB and increases
considerably in the range of intermediate fieldsB.6 T. This
fact was interpreted as evidence in favor of Bose–Eins
condensation and a manifestation of the superfluidity of
citons. It seems interesting to check whether the localiza
effects of excitons can give rise to such features of theD(B)
curve in the normal phase. In this paper we investigate th
retically the magnetotransport of 2D excitons in the prese
of weak disorder in the limiting case when the magne
length is much larger than the Bohr radius of the excit
l B5(\c/eB)1/2@aB5«\2/me2. Fields that satisfy this con
dition will be dubbed weak. Taking these results toget
with those for the cases of classical19 and quantum
transport20,21 in the opposite limit,l B!aB , we shall sugges
an approximate form of the diffusion constantD as a func-
tion of B at all fields, including the intermediate rang
wherel B;aB . A brief account of some results of this pap
was reported previously.21

2. EXCITON TRANSPORT IN A MAGNETIC FIELD B

2.1. Problem statement

In the weak-localization regime, the interaction with
isolated defect does not give rise to a bound state, and lo
ization is possible only at large distances due to the inter
ence of scattered waves. This localization regime takes p
in the case of weak scattering, in which

g0~p!!e~p!, ~3!

where g0 is the damping coefficient~the reciprocal of the
momentum relaxation time! of an exciton with energye(p).
The scatterers in this case are the random potentialsVe(r )
and Vh(r ) in Eq. ~1!, which act on the electron and ho
separately. They can be, e.g., potentials generated by cha
impurities, effective potentials due to irregularities o
quantum-well interfaces, etc. At low temperatures, the do
nant scattering mechanism in quantum wells is that due
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irregularities on the interfaces~‘‘surface roughness’’!, and
our attention will be mainly focused on this mechanism.
the case of 2D excitons in a quantum well of widthd in the
presence of interface irregularities with a characteristic a
plitude D and a correlation lengthL ~see Ref. 19 and refer
ences therein!, there is a characteristic exciton momentu
defined as follows:2!

pmin;
1

aB
S DLaB

d3 D , l B@aB . ~4!

For long-wavelength excitons with momentap,pmin we
have g0>e, and such excitons are strongly localized. A
analysis of the strong localization of composite particles i
magnetic field is beyond the scope of this paper. Howeve
the parameterDLaB /d3!1 is sufficiently small, the range
of strong localization of excitons is narrow compared w
the characteristic momentumaB

21 in our problem (l B
21 in

high magnetic fields!, and the theory developed in this pap
has a region of applicability.

It is essential that the scattering of two-particlee–h
states can be described diagrammatically in terms of ef
tive one-particle~exciton! scattering~this approach is justi-
fied in Appendix A!. This approximation allows us to trea
excitons at low densities as Bose-particles. Their inter
structure manifests itself in changes in the effective scat
ing potentialVp,p8 and the dispersion lawe(p) due to the
magnetic fieldB ~see Sec. 2.2!. The potentialsVe(r ) and
Vh(r ) may be uncorrelated, for example, when the particlee
andh are spatially separated,19 or fully correlated, e.g., when
both particles are in the same spatial domain. We ass
that the distribution of random fields is Gaussian and
standard diagram techniques23 with two-particle @retarded
(R) and advanced (A)# excitonic propagators in a magnet
field averaged with respect to disorder:Gv

R(A)(p)5@v
2e(p)6 ig0(p)#21 ~see, e.g., Ref. 20!.

For the case of elastic scattering, one can introduc
diffusion constantD(v,e) for excitons with a given energy
e at a frequencyv, which can be derived from the expre
sion for the generalized ‘‘conductivity’’~Fig. 1! s(v,e)
5D(v,e)N (e):

s~v,e!5
1

2pE dpE dp8^^Vx~p!GR~p,p8,e1v!

3GA~p8,p,e!Vx~p8!&&, ~5!

whereV(p) is the velocity of the exciton’s center of mas
N (e) is the exciton density of states, and^^ . . . && denotes

FIG. 1. Diagrammatic representation of Eq.~5!: G is the irreducible vertex
corresponding to scattering by a random potential; the lines labeled bA
andR represent the advanced and retarded propagatorsGA andGR of exci-
tons averaged with respect to disorder in a magnetic field. The current
tices in the diagram correspond to the exciton center-of-mass velocityV(p).
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averaging with respect to disorder. Note that the diffus
constantD(v,e) is a parameter included in the ‘‘diffusion’
pole of the exciton ‘‘density-density’’ correlation functio
and, therefore, determines the propagation characteristic
particles with a given energye in the long-wavelength limit.
The localization of quantum states with energye means that
the diffusion constant as a function of frequency,D(v),
tends to zero in the static limit,v→0. If inelastic scattering
it taken into account,D(v) turns out to be finite~see, for
example, the review by Lee and Ramakrishnan3!. The static
limit D(e)5D(e,v50) is determined by the timetf of the
loss of phase coherence~dephasing!. The total static diffu-
sion constantD5D(T) corresponding to fluctuations in th
density of excitons with all allowed energies can be obtain
from the microscopic values ofD(e) using the generalized
Einstein relation:

D5
*deN ~e!@2] f /]e#D~e!

*deN ~e!@2] f /]e#
, ~6!

wheref 5 f (mX ,T) is the distribution function andmX is the
chemical potential of the excitons.

2.2. Effective scattering potential

The HamiltonianH0 of relative motion of ane–h pair
with center-of-mass momentum\p ~where p is the wave
vector! in a perpendicular magnetic fieldB has the form24,25

H052
\2

2m
¹ r

22
i\eB

2c S 1

mh
2

1

me
D ~r3¹ r !z1

e2B2

8mc2
r 2

1
e\

Mc
B•~r3p!2

e2

«ur u
, ~7!

where r5re2rh is the relativee–h coordinate, andm21

5me
211mh

21 . In writing this expression, we have utilize
the existence of an exact integral of motion, namely the m
netic center-of-mass momentum24 defined by the operator

\p̂52 i\“R2
e

c
A~r !,

where R5(mere1mhrh)/M is the center-of-mass coord
nate,M5me1mh , and the vector potential is taken in th
symmetrical gaugeA5B3r /2. The exciton wave function in
a magnetic fieldB has the form

Cp~R,r !5expH iRFp1
e

c
A~r !G J Fp~r !. ~8!

An important point is that the wave functionFp of relative
motion of ane–h pair depends on the center-of-mass m
mentump,24 i.e., the relative motion and the center-of-ma
motion are coupled. The scattering matrix elements betw
the exciton states with the center-of-mass momentap andp8

in an external potentialV̂5Ve(re)1Vh(rh) have the form
~see Appendix A!

Vp,p85^CpuV̂uCp8&. ~9!

In this work we use an approximation that ignores transitio
to excited states of internal motion.19,20 In the weak-field
n

of

d

g-

-
s
en

s

limit, l B@aB , the problem can be treated analytically.3! We
calculate the ground-state wave functionFp(r ) in a mag-
netic field using perturbation theory with respect to ter
containing the magnetic field in the Hamiltonian~7! of the
relative motion of ane–h pair, and then we obtain the sca
tering matrix elementsVp,p8 . They can be expressed as

Vp,p85Fp,p8
e Ṽe~Dp!1Fp,p8

h Ṽh~Dp!, ~10!

whereṼj (p) are two-dimensional Fourier transforms of th
potentials Vj (r ) ( j 5e,h), Dp5p82p is the momentum
transfer,

Fp,p8
e~h!

5E drFp* ~r !Fp8~r !expH 6 i
mh~e!

M
~p82p!r J

~11!

are the form factors related to the wave function of the
ternal motion of the exciton. In the weak-field limit, we mu
calculate the wave functions up to the second order inB and
then substitute them into Eqs.~11! and ~10! ~see Appendix
B!. Note that the exponential function in Eq.~11! can be
expanded in powers of its argument whenp, p8!aB

21 , and
only terms of the lowest orders need be included. The lim
tation on the momenta is essential if we do not take i
consideration transitions to excited states. Indeed, ifp,
p8;aB

21 , the exciton kinetic energy is sufficient for trans
tions to excited states of internal motion, which are exclud
from our analysis.

Taking the essential terms of up to the second order iB
and the lowest orders inpaB of interest to us, we obtain

Vp,p85V̄e~Dp!F11be~Dp!2aB
2 S aB

l B
D 4

2 iae@pp8#zaB
2

3S aB

l B
D 2G1V̄h~Dp!F11bh~Dp!2aB

2 S aB

l B
D 4

1 iah@pp8#zaB
2 S aB

l B
D 2G . ~12!

Here V̄i(Dp)5Ṽi(Dp)Fp,p8
i (B50),

Fp,p8
e~h!

~B50!5H 11
1

16Fmh~e!~p2p8!aB

M G2J 23/2

is the form factor corresponding to the ground-state wa
function of the 2D-exciton atB50.

An important point is that time-reversal symmetry
broken for this effective scattering potential:

Vp,p1
ÞV2p1 ,2p , ~13!

the only exception being the case ofVe5Vh and me5mh

@see Eq.~2!#. Equation~12! contains the dimensionless con
stants

be~h!52
m2

2M2

\4

m2aB
6 (

n
8

u^0uxun&u2

~e02en!2

1
mh~e!

2

8M2

\2

maB
6 (

n
8

u^0ur 2un&u2

en2e0
~14!
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and

ae~h!52
2me~h!

M
k, k5

\2

MaB
4 (

n
8

u^0uxun&u2

e02en
. ~15!

Heren denotes the exciton excited states. Exact calculati
of the dimensionless constantsa andb for a 2D Wannier–
Mott exciton are given in Appendix B. Note thatbe , bh

.0 are positive; therefore, exciton scattering increases w
B when l B@aB .

Using perturbation theory, one can also obtain the ex
ton density of states in a magnetic field. The exciton sp
trum is given by the formula

e~p!52e0F12S l 2

l B
D 4G1

\2p2

2M F12kS aB

l B
D 4G , ~16!

where the parameterl 253aB/8 determines the diamagnet
shift. The 2D-exciton density of states derives from the s
ond term on the right-hand side of Eq.~16!:

N ~e!5
2M /\2

12k~aB /l B!4
. ~17!

The exciton mass and, hence, the density of statesN (e),
increase with the magnetic fieldB. As will be shown below,
it is this tendency that generally determines the change in
classical diffusion constant in weak magnetic fields.

2.3. Cooperon: weak-field limit

The approximation in which the complete vertexG ~Fig.
1! is replaced by a sum of ladder diagrams~a diffuson! cor-
responds to the description of transport based on the Bo
mann equation~see, e.g., Refs. 23 and 26!. This approxima-
tion yields the ‘‘classical’’ diffusion constant, which doe
not take into account the interference of different paths
the random potential is weak, all other diagrams with cros
impurity lines have smallness3 of order g/e!1. The only
exception is the class of maximally crossed diagrams in
electron-hole channel,2 which determines quantum weak
localization corrections to the diffusion constant. The co
plete sum of such diagrams~the cooperon! is shown in Fig.
2. The exceptional role of these diagrams is due to the
lowing fact: when the total momentump1p82q.0, the
Green’s functionsGR andGA for the maximally crossed dia
grams are always grouped in pairs with close poles by vir
of momentum conservation. As a result, they provide
‘‘resonant’’ contribution after integration.

FIG. 2. Sum of maximally crossed diagramsUe,v(p,p8,q). The upper
~lower! line corresponds to the retarded~advanced! propagatorGR(A) of an
exciton averaged with respect to disorder.
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The damping coefficient for an exciton with a mome
tum p is determined by the imaginary part of the self-ener
part ~Fig. 3b!:

g0~p!52ImE dp8

~2p!2

W~p,p8,0!

e2e~p8!1 ig0~p8!
. ~18!

Heree(p) is the dispersion law~16!, andW(p,p1 ,q) is the
correlation function of the scattering potential~Fig. 3a!:

W~p,p1 ,q![^^Vp,p1
Vp12q,p2q&&. ~19!

In the weak-field limit discussed in this paper, it has t
form4!)

W~p,p8,0!5Bee~Dp!F11S aB

l B
D 4

~2be~Dp!2aB
21ae

2

3~p3p8!z
2aB

4 !G1Bhh~Dp!F11S aB

l B
D 4

3~2bh~Dp!2aB
21ah

2~p3p8!z
2aB

4 !G1Beh~Dp!

3F11S aB

l B
D 4

~~be1bh!~Dp!2aB
22aeah

3~p3p8!z
2aB

4 !G1Bhe~Dp!F11S aB

l B
D 4

3~~be1bh!~Dp!2aB
22aeah~p3p8!z

2aB
4 !G ,

~20!

where Bi j (p)5^^V̄i(p)V̄j (2p)&&. As usual, if g0!e, we
have

g0~p!5pN ~e!E dfp1

2p
W~p,p1,0!, ~21!

where up1u lies on the mass surfacee(p1)5e, so that only
averaging over angles remains in Eq.~18!. The effect of the
magnetic fieldB on the damping coefficientg0(p) can be
approximately estimated as follows~we assume that all cor
relators of random fieldsBi j are comparable!:

g0~p!'g0

114~be1bh!~paB!2~aB /l B!4

12k~aB /l B!4
, ~22!

whereg0 is the damping coefficient in a zero magnetic fie
The numerator on the right-hand side of Eq.~22! contains the
additional small parameter (paB)2!1 in comparison with

FIG. 3. ~a! Simplest impurity vertexW(p,p8,q) @Eq. ~19!#; ~b! diagram of
lowest order for the self-energy part of the excitonic propagator. The das
line correspond to the correlation functionW(p,p8,0).
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the denominator. This means that the main effect of the m
netic fieldB is due to the growing exciton density of stat
~increase in exciton mass! with increasingB @see Eq.~16!#,
whereas the changes in the scattering matrix elements p
minor role.

In the weak-field limit, as in the case of strong magne
fields,20 the diffusion pole in the cooperon is absent owing
the broken time-reversal symmetry for the effective poten
~12!. Let us prove this statement. As usual, it is convenien
write the equation for the cooperonU in variablesp, p8, and
K5p1p82q, whereK is the total~conserved! momentum,
and q is the momentum corresponding to density fluctu
tions. ForU we obtain the Bethe–Salpeter equation in t
usual manner:

Ue,v~p,p8,K !5Ue,v
0 ~p,p8,K !

1E dp1

~2p!2
W̃~p,p1 ,K !Ge

R~p1!Ge2v
A

3~K2p1!Ue,v~p1 ,p8,K !, ~23!

where

Ue,v
0 ~p,p8,K !5E dp1

~2p!2
W̃~p,p1 ,K !Ge

R~p1!Ge2v
A

3~K2p1!W̃~p1 ,p8,K ! ~24!

and we have introduced the correlation function:

W̃~p,p1 ,K ![^^Vp,p1
VK2p,K2p1

&&. ~25!

In contrast to the conventional theory, the system is cha
terized by two correlation functionsW @Eq. ~20!# and W̃.5!

The difference between the correlation functions is caused
the broken time-reversal symmetry for the effective scat
ing potential ~13!. As a result, the terms with the vecto
product (p3p1)z in W̃(p,p1 ,K50) have signs opposite t
those of the terms inW(p,p1 ,q50).

In the limit of weak disorder, we haveGRGA;d(e(p)
2e), so that the integration in Eq.~23! is reduced to aver-
aging over angles. In the usual case the isotropic~with re-
spect top,p8) part of Ue,v(p,p1 ,K ) diverges asK ,v→0.
This happens because the following relation holds:

E dp1

~2p!2
W~p,p1,0!Ge

R~p1!Ge
A~2p1!51. ~26!

Then it follows from Eqs.~23! and ~26! ~if W̃5W) that
*dfp*dfp1

Ue,v(p,p1 ,0)→`. In the case under conside
ation, however, the isotropic part ofU is finite in the limit
K ,v→0. In fact, using the identityW̃[W1(W̃2W), we
obtain

E dp1

~2p!2
W̃~p,p1,0!Ge

R~p1!Ge
A~2p1!512

gB

g0
, ~27!

wheregB(p)5g0(p)2g̃0(p)>0,
g-

y a

c

l
o

-

c-

by
r-

g̃0~p!5pN ~e!E dfp1

2p
W̃~p,p1,0!. ~28!

If, however,gB!g0, the isotropic part ofU still makes the
principal contribution. A solution of Eq.~23! in the region of
low frequenciesv and small momentaK , which is discussed
in the paper, can be obtained using an expansion in term
angular momenta, and was described in detail in Ref. 20~see
also Ref. 27!. Ultimately, the expression for the coopero
has the form

U~K ,v!5
2g̃0g0 /pN ~e!

DcK22 iv12gBg0 /g̃0

. ~29!

Here

Dc5p2/4M2g̃ tr , g̃ tr5g02g̃1>0, ~30!

g̃152 E dfp

2p E dfp1

2p
~ p̂K̂ !W̃~p,p1,0!~ p̂1K̂ !, ~31!

wherep̂5p/upu. The special feature of this solution is that
contains a finite dephasing timegB

21 for a neutral composite
particle in a magnetic fieldB, and this dephasing time elimi
nates a singularity, namely the diffusion pole. Formally, th
case is similar to that of electron scattering by magne
impurities.8,9,11,12

In weak magnetic fields,gB can be estimated using ex
plicit expressions forW andW̃:

gB~p!.~paB!4S aB

l B
D 4

g0~p!. ~32!

The emergence of the characteristic dephasing timetB

5\/gB estimated by Eq.~32! can be interpreted in qualita
tive terms as follows. An exciton acquires a random phas
a magnetic field only as a result of impurity scattering. Wh
an exciton with momentump is scattered by an impurity, its
kinetic energyEkin5\2p2/2M can be treated as a perturb
tion to the internal electron-hole motion with an ener
Eexc5e0. This results in fluctuations in the mean square d
tance betweene andh: ^^Dr 2&&;(Ekin /Eexc)aB

2 . This addi-
tional separation between the electron and hole orbits du
a scattering act leads to an increase in the magnetic
passing ‘‘through’’ the excitonDF;^^Dr 2&&B, which cor-
responds to a~random! phase shiftDf;^^Dr 2&&B/F0 in the
wave function, whereF0 is the magnetic flux quantum
Therefore, the random phase shift in a single scattering
which takes place during the time intervalt5\/g, is
;(DF/F0)5(paB)2(aB /l B)2!1. Since the phase shifts o
the wave function are random, the total phase shift beco
comparable to unity and coherence is lost only af
(F0 /DF)2 scattering acts. The corresponding characteri
time tB;(F0 /DF)2t;t(paB)24(l B /aB)4, which is con-
sistent with Eq.~32!.

2.4. Diffusion constant

In order to obtain quantum corrections to the diffusi
constant, one should include Eq.~29! for the cooperon
U(K ,v) together with the first-order impurity verte
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W(p,p8,K ) in the ladder diagrams~Figs. 1 and 4! for the
effective conductivity.3 In the ladder approximation, we hav
a transport coefficientg tr instead ofg for a random field with
a finite correlation length. Technical details of the diagra
treatment for 2D excitons are given in Appendix C. T
diffusion constant for an exciton of energye takes the form

D~e!5D0~e!F11
g̃0

4p2g trN ~e!Dc
lnS DcK0

2g̃0

2gBg0
D G21

,

~33!

where K0.g(p)/V(p) is the cut-off momentum andD0

5p2/4M2g tr is the conventional~‘‘classical’’! diffusion con-
stant for an exciton.19,21

Before discussing the quantum corrections~33!, let us
derive the classical diffusion constantD0 as a function of the
magnetic fieldB. Using general expressions~22! and ~16!,
we obtain

D0~e,B!.D0~e!F123kS aB

l B
D 4G[D0F12S B

B0
D 2G ,

~34!

where the characteristic magnetic fieldB0 is determined by
the expressionB0aB

2.F0 andD0 is the diffusion constant a
B50.19 The diffusion constantD0 monotonically decrease
as the magnetic field increases in accordance with Eq.~34!.

The inclusion of quantum corrections drastically chang
the dependence ofD on B. Indeed,gB tends to zero asB
→0, andD vanishes as a result@see Eq.~33!#; this is the
weak localization of excitons in the absence ofB ~excitons,
like ordinary 2D particles, are localized in a rando
potential7!. A self-consistent approach may be used in t
situation.27 In fact, the approximation for the complete verte
G including only ladder diagrams forG0 and maximally
crossed diagrams forU applies only to the case of wea
scattering, where the resulting diffusion constant is lar
When the complete vertex corresponds to strong scatte
and the diffusion constantD is small, one cannot, strictly
speaking, select a preferential class of diagrams. The un
lying idea of the self-consistent approach27 is the existence
of a relation betweenG0 and U in the presence of time
reversal symmetry~maximally crossed diagrams in thee
2h channel are ladder diagrams in thee2e channel!. One
consequence of this relation is that the diffusion pole, wh
exists in the diffuson at small momentum transfers,
‘‘transmitted’’ to the cooperon~where it exists at small tota
momentaK ). Since the vertexG is directly related to the

FIG. 4. Diagrammatic representation of the approximation for the verteG
including quantum corrections to the diffusion constant.
s

s

.
ng

er-

h
s

‘‘density-density’’ correlation function, it is physically clea
that it is the diffusion constantD that should appear inG,
and the constantD0 in the cooperon should consequent
also be replaced byD. The mathematical basis of this ap
proach was discussed in detail by Suslov.28

In the specific case under consideration, time-reve
symmetry is broken, and, strictly speaking, there is no du
ity between the diffuson and cooperon. We can use, h
ever, the self-consistent approximation in order to obtain
leading terms in theB expansion of the total diffusion con
stant. The point is thatD0 and Dc behave similarly in the
leading orders inB. Therefore, the diffusion constantDc in
the cooperon can be replaced by the total diffusion cons
D so thatD(B) could be calculated in a self-consistent ma
ner using Eq.~33!. In the caseD(B)!D0 the magnetic-field
dependence is given by

D~e,B!5~paB!4S B

B0
D 2

D0~e!exp@N ~e!D0~e!#, ~35!

where B0aB
2.F0 @see Eq.~34!#. Thus, the static diffusion

constant atB50 is zero and increases proportionally toB2 at
small B. This behavior ofD corresponds to the suppressio
of the weak localization of excitons in a magnetic field.

In the strong-field limit,l B!aB , the exciton diffusion
constantD drops asB22.20 Thus, it is clear that, if weak-
localization effects are taken into account,D is a nonmono-
tonic function of the magnetic field. Note that the classic
diffusion constantD0 decreases monotonically with the ma
netic field in both the strong-field limit,l B!aB , and in the
weak-field limit, l B@aB . These results are illustrated b
Fig. 5. Weak inelastic processes characterized by the dep
ing time tf5\/gf can be included in our scheme phenom
enologically. If tf is finite, the diffusion constant is finite
even atB50. The valueD(B50) is controlled bygf ,
which should be added togB in Eq. ~33!. The appearance o
gf affects D0 and D differently. If the conditiongf!g0

holds, this addition has little effect onD0. But, sinceD0N

@1 in the weak-scattering limit, the relationD0N gf>g0

can hold even whengf!g0. In this case, the weak
localization corrections are small, and we haveD(B)
.D0(B).

Analytical calculations are impossible in intermedia
fields, wherel B;aB . It is quite natural to assume that i

FIG. 5. Static diffusion constantD of excitons as a function of the fieldB
classical transport~upper curve!, with consideration of quantum correction
~lower curve!, and with weak inelastic scattering~middle curve!.
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this range the magnetic field dependence of the diffus
constant~either the classical constant,D0, or the constant
which takes into account the quantum corrections,D) has the
form shown by the dashed lines in Fig. 5. The increase inD
with the magnetic fieldB ~a positive magnetodiffusion effec!
is due to the suppression of the weak localization of excit
in magnetic fields. This effect is similar to the negative ma
netoresistance in 2D electron systems.8

3. CONCLUSIONS

We have shown that a magnetic fieldB eliminates diver-
gence of the maximally crossed diagrams in the ‘‘excito
antiexciton’’ channel~the exciton analogue of the cooperon!.
Unlike charged particles, an exciton acquires a phase in
field B not during free motion, but only upon scattering b
defects. As a result, the diffusion constant of 2D excitons
magnetic fields remains finite asv→0 ~under the assump
tion that the random potential is weak!. The static diffusion
constantD(B) is a decreasing function ofB in strong mag-
netic fields,l B!aB , whereas in weak magnetic fields,l B

@aB ~and, probably, in intermediate fields,l B;aB) D(B)
increases with the magnetic field, i.e., a positive magne
iffusion effect takes place for excitons. The self-consist
approximation yieldsD}B2 in weak magnetic fields, which
indicates that weak localization is suppressed in a magn
field B. Quantum corrections are also important in t
strong-field limit, l B!aB , and lead to a faster power-law
decrease in the diffusion constant with the magnetic fie
D}B22,20 in comparison to the classical diffusion consta
D0}B21.19,21 This is because the characteristic intern
length scale of the magnetoexcitonl B!aB decreases with
increasingB as l B}B21/2, and its internal structure has
lesser impact on the scattering process, so that the ma
toexciton becomes similar to a structureless neutral bo
Thus, for neutrale–h systems, crossover to the excito
weak-localization regime takes place in the strong-field lim
~unlike electron systems, which contain delocalized state
the quantum Hall effect regime!.

Although the calculated functionD(B) is a nonmono-
tonic function ofB, it does not reproduce all the details
the experimental findings forD(B).17 For instance, the ob
served suppression of exciton magnetotransport in the ra
of relatively low fields17 is in agreement with the theoretica
predictions for the behavior of theclassicaldiffusion con-
stant ~Fig. 5!. Our calculations, however, demonstrate th
the increase inD(B) in the rangeB.6 T observed in Ref.
17 cannot be interpreted in terms of the suppression of w
localization of excitons in a magnetic field. Note that t
localization regime in double quantum wells used
experiments16–18 is closer to the strong-localization regim
of excitons.19 Also, we have not considered the effects of t
Bose–Einstein condensation of excitons. The investiga
of the effects of a magnetic field on the strong localization
excitons and of Bose–Einstein condensation on the trans
of neutral composite particles~excitons! is a very interesting
problem, which has not yet been solved. Note also that, a
the case of electrons in quasi-two-dimensional semicond
tor structures,12 the effects of fast transitions between diffe
n
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ent spin states may be important for excitons.
Our theoretical prediction of an increase in exciton m

bility with increasingB in the weak-localization regime ca
be tested experimentally at low temperatures~where inelastic
scattering is suppressed and the dephasing timetf is large!
in magnetic fields for whichl B>aB . Such experiments re
quire quantum wells with a weak random potential, for e
ample, wide quantum wells with smooth interfaces.

We are indebted to G. E. W. Bauer, L. V. Butov, E.
Ivchenko, Yu. V. Nazarov, and S. G. Tikhodeev for use
discussions. This work was supported by Volkswagen S
tung ~Grant VW I/69 361!, the Nederlandse Organisatie vo
Wetenschappelijk Onderzoek~Netherlands Organization fo
Scientific Research! ~Grant NWO 047-003-018!, INTAS-
RBRF ~Grant 95-675!, and the Russian Fund for Fundame
tal Research.

APPENDIX A: DIAGRAMMATIC REPRESENTATION OF
EXCITON SCATTERING

To the best of our knowledge, no approximation whi
reduces the scattering of excitons to an effectively o
particle process has been rigorously developed using
gram techniques. An approach similar to that developed
this Appendix can be applied to other problems, such
investigations of the role of transitions to excited states,
effects of a finite exciton density, and strong localization
terms of the effective exciton scattering.

In the electron-hole representation, a Wannier–Mott
citon is described in terms of a sum of ladder diagram
which include thee–h Coulomb interaction. The corre
sponding two-particle Green’s function can be expanded
terms of the exciton eigenfunctionsCl(re ,rh):

G2~r1 ,r2 ,t;r3 ,r4 ,t8!

[2 i ^TĈe~r1 ,t !Ĉh~r2 ,t !Ĉh
†~r4 ,t8!Ĉe

†~r3 ,t8!&

5E dE(
l

Cl* ~r1 ,r2!Cl~r3 ,r4!

E2el
exp@2 iE~ t2t8!#,

~A1!

where Ĉe
†(r ,t) and Ĉh

†(r ,t) are the electron and hole cre
ation operators in the Heisenberg representation. For s
plicity, we consider the case of zero magnetic field,B50,
whereel are the ordinary eigenvalues of the exciton en
gies,el5e(p)1en , en is the energy~in either the discrete
or continuous spectrum! of relative motion, e(p) is the
center-of-mass kinetic energy,Cl(r1 ,r2)5exp(ipR)Fn(r )
are the exciton wave functions,R5(mer11mhr2)/M , and
r5r12r2. Our aim is to replace the two-particlee–h
Green’s function by an effective ‘‘one-particle’’ Green
function of an exciton defined by the formula

G~R,t;R8,t8!52 i ^TB~R,t !B†~R8,t8!&, ~A2!

where the exciton creation operator is defined as
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Bl
†~R,t !5E drĈe

†S R1
mh

M
r ,t D

3Ĉh
†S R2

me

M
r ,t DCl* ~R,r !. ~A3!

The functionG2 satisfies the following Bethe–Salpeter equ
tion:

G2~r1 ,r2 ,t;r3 ,r4 ,t8!

5Ge~r1 ,r3 ,t2t8!Gh~r2 ,r4 ,t2t8!

1E dr38dr48dt18Ge~r1 ,r38 ,t2t18!Gh~r2 ,r48 ,t2t18!

3U~r382r48!G2~r38 ,r48 ,t18 ;r3 ,r4 ,t8!. ~A4!

Applying the operator~A4!

@Ge~r1 ,t !Gh~r2 ,t !#215 i
]

]t
1

¹1
2

2me
1

¹2
2

2mh

to both sides, we obtain the Schro¨dinger-like equation:

F i
]

]t
1

¹1
2

2me
1

¹2
2

2mh
2U~r12r2!GG2~r1 ,r2 ,t;r3 ,r4 ,t8!

5d~r12r3!d~r22r4!d~ t2t8!. ~A5!

Now let us consider a diagram with only one impurity vert
corresponding to the external potentialVe in the electron line
~Fig. 6a!.

The set of external coordinates (re ,rh ,t) will be sym-
bolically denoted byX̄,X̄8. The analytical expression fo
Ḡ2(X̄,X̄8) in the case of the diagram in Fig. 6a has the fo

G̃2~X̄,X̄8!5E dr0dr1dr2dr3dr4dtdt0dt8G2~X̄;r1 ,r2 ,t !

3U~r12r2!Ge~r12r0 ,t2t0!Ve~r0!

3Ge~r02r3 ,t02t8!Gh~r22r4 ,t2t8!

3U~r32r4!G2~r3 ,r4 ,t8;X̄8!. ~A6!

FIG. 6. ~a! Impurity vertex in the electron line of the two-particlee–h
propagator. The wavy lines correspond to the Coulombe–h interaction.~b!
Impurity vertex~10! in the excitonic propagator.
-

Using Eq.~A5!, we can replace the functionG2U by a dif-
ferential operator acting onGe andGh . Given that

S i
]

]t
1

¹2

2me~h!
DGe~h!~r2r 8,t2t8!5d~ t2t8!d~r2r 8!,

we obtain the following expression for function~A6!:

G̃2~X̄,X̄8!5E dr1dr2dr3dr4dt dt8G2~X̄;r1 ,r2 ,t !

3Ve~r1!Ge~r12r3 ,t2t8!Gh~r22r4 ,t2t8!

3U~r32r4!G2~r3 ,r4 ,t8;X̄8!1E dr0dr1dr2

3dr3dt dt0G2~X̄;r1 ,r2 ,t !Ge~r12r0 ,t2t0!

3Ve~r0!Ge~r02r3 ,t02t !U~r32r2!

3G2~r3 ,r2 ,t;X̄8!. ~A7!

Note that the second term contains the productGe(t)
3Ge(2t), which contributes a factor;ne(12ne) and can,
therefore, be neglected in the low-density limit. Thus on
the first term remains on the right-hand side of Eq.~A7!. Let
us also take into account that the expansion forG2 begins
with a term of zero order inGeGh @corresponding tod func-
tions on the right-hand side of Eq.~A5!# and add it to Eqs.
~A6! and ~A7!. Then we can see that the first term of th
right-hand side of Eq.~A7! contains the Coulomb ladde
diagrams on both sides of the impurity vertexVe(r1). In
addition, the temporal and spatial coordinates coincide
such a manner that, using representations~A2! and~A5!, we
can represent expression~A3! in the form of a diagram cor-
responding to scattering of an exciton as a whole~Fig. 6b!.
After adding the analogous term for scattering of the ho
we can see that the effective scattering potential in the e
tonic representation is indeed determined by Eqs.~9! and
~10!.

APPENDIX B: CALCULATION OF PERTURBATION SERIES

In a perturbative analysis of systems with 2D excitons
a magnetic field, sums like those in Eqs.~14! and~15! appear
frequently. Therefore, it seems useful to calculate these s
exactly for the case of a two-dimensional hydrogenic ex
ton. If the operator approach29 is applied, the explicit form of
the ground-state wave function is sufficient. In the interm
diate calculations we setaB5\51 and return to dimensiona
quantities in the final expressions. Let us start with the c
stantk in Eq. ~15!. If we can find the explicit form of the
operator b̂ that satisfies the quantum equation of moti
m]b̂/]t5 im@H0 ,b̂#5x, whereH0 is the Hamiltonian of a
2D hydrogen atom~7! in the absence of a fieldB, for the
matrix elements we have

im~e02en!^0ub̂un&5^0uxun&, ~B1!

@where en5e0 /(n11/2)2 and e052me4/2«2\2#, and the
sum in Eq.~15! is reduced to the diagonal matrix element
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k5 i
m

M (
n

8 ^0uxun&^nub̂u0&5 i
m

M
^0uxb̂u0&, ~B2!

where the prime means that staten50 is not included in the
summation. We have used the completeness condition fo
states(nun&^nu51 and the equalitŷ 0uxu0&50. In the co-
ordinate representation, we introduce the notationb̂f0(r )
[b(r )f0(r ), wheref0(r )5A8/p exp(22r) is the ground-
state wave function. Using the explicit form of the Ham
tonian, we obtain a differential equation forb(r ):

1

2
@¹2b~r !#f0~r !1~¹b~r !•¹f0~r !!52 ixf0~r !, ~B3!

whence it follows thatb(r )52 ib(r )cosf, and the unknown
function b(r ) is given by the equation

b9~r !1b8~r !S 1

r
24D2

b~r !

r 2
22r 50. ~B4!

Solving Eq.~B4!, we obtain

b~r !52 i S 1

4
r 21

3

16
r D cosf. ~B5!

Finally, the matrix element in Eq.~B2! is expressed as

k5
m

ME
0

`

drS E
0

2p

df
8

p
cos2f D

3exp~24r !S 1

4
r 21

3

16
r D r 25

21

162

m

M
, ~B6!

and the coefficienta in Eq. ~15! is given by the expression

ae~h!52
21

162

me~h!m

M2
.

The same operatorb̂ can be used in calculating the fir
sum in Eq.~14!:

I 15(
n

8
u^0uxun&u2

~e02en!2
. ~B7!

Using Eq.~B1!, we can also reduceI 1 to a diagonal matrix
element:I 15m2^0ub̂b̂u0&. In combination with the explicit
expression~B5! for b(r ), this equation yields

I 15m2E
0

`

drub~r !u2f0
2~r !5

159

46
m2. ~B8!

In order to calculate the second sum in Eq.~14!,

I 25(
n

8
u^0ur 2un&u2

en2e0
, ~B9!

we must find an operatorb̂2 such thatim@H0 ,b̂2#5r 2. We

set b̂2f0(r )5b2(r )f0(r ). Then

b29~r !1b28~r !S 1

r
24D22ir 250.

The solution is the function
he

b2~r !52
i

2S 1

3
r 31

3

8
r 21

3

8
r 1

3

32
ln r 1c1D ~B10!

with an undetermined constantc1. One feature of calcula-
tions of sums likeI 2 is that, using the completeness cond
tion for the intermediate states, we should eliminate the m
trix element of the ground staten50, which does not
automatically equal zero, unlike the coordinate matrix e
ment ^0uxu0&50. Therefore, we have@cf. Eq. ~B2!#

I 25 im~^0ub̂2r 2u0&2^0ub̂2u0&^0ur 2u0&!. ~B11!

We see that, as a result of subtraction, the final expres
does not include the constantc1 introduced in Eq.~B10!.
This allows us to obtain the exact expressionI 25105m/29,
and forb we have

be~h!5
1

46M2S 105me~h!
2 2

159

2
m2D . ~B12!

Note that the coefficientsbe(h).0 are always positive
@since m5memh /(me1mh),me ,mh#, but numerically
small: b<0.02.

APPENDIX C: CALCULATION OF THE DIFFUSION
CONSTANT D

This section gives details of the calculation of the diff
sion constantD. The calculation ofD(e) should include, in
addition to the diagrams of Fig. 4, the zero-order diagr
GRGA. Therefore, the diffusion constantD(e) is given by
the expression

D~e!5
1

2pN ~e!
E dpE dp8

pp8

M2
uGR~p!u2@d~p2p8!

1G~p,p8!uGR~p8!u2#. ~C1!

If the cooperon is included in the irreducible part, the co
plete vertexG satisfies the Bethe–Salpeter equation shown
Fig. 4. Note that the cooperon~as a function of the variable
p andp8 at q50) can be expressed approximately as

Ue,v~p,p8;p8,p!.E dK

~2p!2
U~K ,v!d~p1p8!

[Ud~p1p8!. ~C2!

This approximation can be used because there are essen
different momentum scales in the problem. Indeed, in in
grals like

E dpE dp8uGR~p!u2uGR~p8!u2Ue,v~p,p8;p8,p!

5E dpE dK uGR~p!u2uGR~K2p!u2Ue,v~p,K2p;K !

~C3!

only small K are important owing to the presence of th
diffusion pole inU. In this case, we can assume in an a
proximation thatK2p.2p and perform integration overp
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andK independently. This yields Eq.~C2! for the cooperon.
Then the equation for the vertexG(p,p8) shown in Fig. 4
takes the form

G~p,p8!5W~p,p8,0!1Ud~p1p8!

1E dp1

~2p!2
@W~p,p1,0!1Ud

3~p1p1!#GR~p1!GA~p1!G~p1 ,p8!. ~C4!

The quantity needed for the calculation ofD(e) has the form
@see Eq.~C1!#

G15E dfp

2p E dfp8
2p

~ p̂•p̂8!G~p,p8!,

where the integration is performed on the mass surf
e(p)5e(p8)5e. For the term corresponding to the allow
ance for the first angular momentum inG1, Eq. ~C4! gives

G15
g1

pN e
2

U

2pN eg0
1

g1

g0
G12

U

2g0
2
G1 , ~C5!

where

g15E dfp

2p E dfp8
2p

~ p̂•p̂8!W~p,p8,0!.

The solution of Eq.~C5! is

G15
g0

pN e

g12U/2g0

g tr1U/2g0
, ~C6!

where, as usual,g tr5g02g1. Using Eq.~C6!, from Eq.~C1!
we obtain

D~e!5D0F11
U

2g trg0
G21

. ~C7!

This allows us to perform the last step of the calculation:
substituting the expressions~C2! and ~29! into Eq. ~C7!, we
obtain Eq.~33!.

* !E-mail: dzyub@gpi.ac.ru
1!Hereafter we assume that the valence band is nondegenerate and

have spin 1/2. We ignore the effects due to the different spin states o
exciton, which should be taken into account if the relaxation between t
is fast. In the case of III–V semiconductors, this analysis should t
account of the real valence band spectrum~see, e.g., Ref. 15!, which is
beyond the scope of the present study.

2!When excitons are scattered by charged impurities with a 2D densitynimp ,
we have19 g0 /e.n imp , wheren imp52paB

2nimp (n imp52pl B
2nimp) is the

dimensionless density of impurities for the limiting casel B@aB (l B

!aB). The smallness of parametern imp ensures the applicability of the
weak-scattering approximation to this scattering mechanism.

3!In a strong field,l B!aB , the term for the Coulomb interaction in Eq.~7!
is treated as a perturbation,19,20 and the wave functionsFp(r ) obtained in
this limit describe 2D magnetoexcitons.25

4!Equation~20! may include, in principle, terms linear in the magnetic fie
B @see Eq.~12!#. This is possible, however, only under the peculiar co
dition that there be a preferential direction in space in the system so
terms linear inB would not vanish in calculating the correlators ofVe(h) .
We do not consider such a possibility in this paper. Note that a prefere
direction can be assigned in a system, for example, by an applied ele
field.

5!Otherwise~as in the case of exciton localization in a zero magnetic field7!,
we would simply have the conventional weak-localization theory in
e

y

oles
he
m
e
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al
ric

effective potential with a finite correlation length comparable to the ex
ton radius.

1E. P. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. R
makrishnan, Phys. Rev. Lett.42, 673 ~1979!.

2L. P. Gor’kov, A. I. Larkin, and D. E. Khmel’nitskii, JETP Lett.30, 228
~1979!.

3P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys.57, 287 ~1985!.
4S. John and M. J. Stephen, Phys. Rev. B28, 6358~1983!.
5M. P. Van Albada and A. Langedijk, Phys. Rev. Lett.55, 2692~1985!; E.
L. Ivchenko, G. E. Pikus, B. S. Razbirin, and A. I. Starukhin, Zh. E´ ksp.
Teor. Fiz.72, 2230~1977! @Sov. Phys. JETP45, 1172~1977!#.

6D. L. Shepelyansky, Phys. Rev. Lett.73, 2607~1994!; Y. Imry, Europhys.
Lett. 30, 405 ~1995!.

7Zh. S. Gevorkyan and Yu. E. Lozovik, Fiz. Tverd. Tela27, 1800~1985!
@Sov. Phys. Solid State27, 1079~1985!#.

8B. L. Altshuler, D. E. Khmel’nitskii, A. I. Larkin, and P. A. Lee, Phys
Rev. B22, 5142~1980!.

9S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys.63, 707
~1980!.

10D. E. Khmel’nitskii, Physica B~Amsterdam! 126, 235 ~1984!.
11B. L. Al’tshuler, A. G. Aronov, A. I. Larkin, and D. E. Khmel’nitskii, Zh.
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Symmetries and causes of the coincidence of the emission spectra of mirrors and
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This paper discusses the symmetry of the wave field that lies to the right and left of a two-sided
accelerated mirror in 111 space and satisfies a single condition on it. The symmetry is
embodied in the Bogolyubov matrix coefficientsa andb that connect the two complete sets of
solutions of the wave equations. The amplitudes of the quantum processes in the right
and left half-spaces are expressed in terms ofa andb and are related to each other by the
transformation~12!. The coefficientbv8v

* plays the role of the source amplitude of a pair of
oppositely directed particles with frequenciesv andv8 of which one is in the left half-
space and the other is in the right half-space because one of them has undergone reflection. Such
an interpretation makesbv8v

* observable and explains why, as shown by Eq.~1! and found
earlier by Nikishov and Ritus@Zh. Éksp. Teor. Fiz.108, 1121~1995!; transl. JETP81, 615~1995!#
and by Ritus@Zh. Éksp. Teor. Fiz.110, 526 ~1996!; transl. JETP83, 282 ~1996!#, the
emission spectra of a mirror in 111 space coincide with those of charges in 311 space. The
reason is that the angular momentum of the pair emitted by the mirror coincides with
the angular momentum of the single particle emitted by the charge. ©1998 American Institute
of Physics.@S1063-7761~98!00407-7#
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1. INTRODUCTION

It was found in Refs. 1 and 2 that the spectra of bos
and fermions emitted by an accelerated mirror in 111 space
coincide with the spectra of photons and scalar quanta e
ted by electric and scalar charges in 311 space when the
latter move along the same trajectory as does the mir
Namely, the Bogolyubov coefficientsbv8v

B,F that describe the
spectra of the Bose and Fermi radiations of an acceler
mirror and the Fourier transforms of the density of the
current j a(k1 ,k2) and the scalar charge densityr(k1 ,k2)
that describe the spectra of the photons and scalar qu
emitted by electric and scalar charges are connected by
relationships

ubv8v
B u25

1

e2 u j a~k1 ,k2!u2,

ubv8v
F u25

1

e2 ur~k1 ,k2!u2. ~1!

It is assumed here that the componentsk65k06k1 of the
wave 4-vectorka of the quantum emitted by the charge a
identified with the doubled frequenciesv and v8 of the
quanta emitted by the mirror:

2v5k1 , 2v85k2 , ~2!

ande is the electrical or scalar charge in Heaviside units
However, there is a substantial physical difference

tween the right-hand and left-hand quantities in Eqs.~1!, i.e.,
between the emission spectra of the charges and of the
ror. Whereas the former are the distribution of the me
number of radiated quanta over the two independent com
251063-7761/98/87(7)/10/$15.00
s

it-

r.

ed
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nta
he
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ir-
n
o-

nentsk1 and k2 of the wave vector of the quantum~as a
consequence of the azimuthal symmetry of the radiati
there is no dependence on the third independent variab!,
the latter have a more complicated interpretation. Actua
they will be the spectra of the mean number of quanta em
ted by the mirror to the right only after integration ov
frequencyv8 ~Ref. 3!:

dn̄v5
dv

2p E
0

` dv8

2p
ubv8vu2. ~3!

If the mirror is two-sided and infinitely thin, then, be
sides the quanta emitted to the right with the spectrum gi
by Eq.~3!, it will ~as we can see! also emit quanta to the lef
with the spectrum

dn̄v85
dv8

2p E
0

` dv

2p
ubv8vu2. ~4!

The question naturally arises whether it is not possible
regard the quantity

ubv8vu2
dv dv8

~2p!2 ~5!

as the mean number of pairs of quanta, one of which, w
frequencyv in the intervaldv, is emitted by the mirror to
the right, while the other, with frequencyv8 in the interval
dv8, is emitted to the left. In this case, two frequenciesv
and v8 would be observable, characterizing one event:
mirror emits a pair of quanta, in the same way as two co
ponentsk1 and k2 also characterize the emission of on
© 1998 American Institute of Physics
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quantum by a charge. As we can see, with certain nontri
complications, such a treatment is actually valid. In any ca
the mirror emits quanta in pairs.

Clearly, this circumstance helps to understand ano
difference between the coincident spectra of a charge a
mirror. While the bosons and fermions emitted by a mir
have spins of 0 and 1/2, the photons and scalar quanta e
ted by electrical and scalar charges have spins of 1 an
Even though the quanta have different spin, the emiss
spectra of the charges coincide with the boson and ferm
spectra of the mirror.

This coincidence is explained by the fact that, unli
charges, the mirror emits particles in pairs, and a pair
spinless bosons can have a total angular momentum o
while a pair of fermions can have a total angular moment
of 0. Then the angular momentum of the pair emitted by
mirror coincides with the spin of the particle emitted by t
charge. The fact that, upon reflection,bv8v

B behaves like a
pseudoscalar whilebv8v

F behaves like a scalar can serve
an indirect confirmation of this~see Secs. 2 and 4!.

It is shown in Sec. 2 that the system of Bogolyub
coefficients obtained for a right-sided mirror~i.e., for the
field to the right of a mirror with a boundary condition on it!,
because of the properties of mirror symmetry, also descr
the processes in the field to the left of a mirror with the sa
boundary condition. In other words, the same system
Bogolyubov coefficients characterizes the behavior of
field in all of space—both to the right and to the left of
two-sided mirror.

Section 3 treats the connection between the inte
quantities that characterize the radiation of a two-sided m
ror, their behavior under certain space–time transformatio
and the symmetry~or asymmetry! of the space–time region
where they are formed.

The symmetry of the Bogolyubov coefficients reflec
the symmetry of two inequivalent total systems of solutio
of the wave equation, definite and smooth in all of 111
space, satisfying inside it—on the trajectory of the mirror—
single condition and characterized by propagation o
monochromatic component of each solution toward the ri
in one system and toward the left in the other. When the fi
is quantized and when the usual comparison of monoc
matic plane waves to particles is made, these two system
solutions form ingoing and outgoing systems for the field
the right of the trajectory and outgoing and ingoing syste
for the field to the left of it. Therefore, the quantum pr
cesses in the field to the right and to the left of the mirror
independent, even though they are described by a single
tem of Bogolyubov coefficients. In particular, the particl
production amplitudes to the right and to the left of the m
ror, the single-particle scattering amplitudes, etc.
associated with the transformation~12!. These amplitudes
certain frequency distributions, and also the distribution
pair-production probabilities over the number of pairs, wh
is invariant under the transformation~12!, are computed in
Section 4. It is shown thatbv8v

* plays the role of the sourc
amplitude of a pair of particles potentially emitted to t
right and to the left with frequenciesv andv8, with the spin
al
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of a boson pair equaling 1, while that of the fermion pa
equals 0.

In the last section, Sec. 5, a similar method is used
treat the emission by an accelerated mirror of pairs the p
ticle and antiparticle of which are not identical.

A system of units in which\5c51 is used in this ar-
ticle. To simplify the formulas in Secs. 4 and 5, the freque
cies are considered discrete, integration overdv/2p is re-
placed by summation overv, and the delta function
2pd(v2v9) is replaced by the Kronecker symboldvv9 .

2. SYMMETRY OF THE BOGOLYUBOV COEFFICIENTS AND
RADIATION FROM AN ACCELERATED TWO-SIDED
MIRROR

Let us consider the connection between emission spe
and other quantities in two problems in which the mirr
trajectories x5j1(t) and x5j2(t) differ by reflection:
j1(t)52j2(t). Then, if the first trajectory is described o
the plane of the variablesu5t2x, v5t1x by the function
v5v15 f (u), the second trajectory will be described by th
function inverse to it:v5v25g(u), g„f (u)…5u.

The Bogolyubov coefficients, defined as in Refs. 1 an
for the field to the right of the mirror@see also Eqs.~33! and
~34!#,

av8v
B

@ f #,bv8v
B* @ f #56A v

v8
E

2`

`

du exp~7 ivu1 iv8 f ~u!!

~6!

5Av8

v E
2`

`

dv exp~ iv8v7 ivg~v !!,

~7!

being functionals of the trajectory, whenf (u) is replaced by
g(u) and consequentlyg(v) is replaced byf (v), transform
to

av8v
B

@g#5avv8
B* @ f #, bv8v

B
@g#52bvv8

B
@ f #. ~8!

Similarly, the Bogolyubov coefficients for a fermion field

av8v
F

@ f #,bv8v
F* @ f #

5E
2`

`

duAf 8~u! exp~7 ivu1 iv8 f ~u!! ~9!

5E
2`

`

dvAg8~v ! exp~ iv8v7 ivg~v !! ~10!

when the trajectory is replaced by its mirror reflection, tran
form to

av8v
F

@g#5avv8
F* @ f #, bv8v

F
@g#5bvv8

F
@ f #. ~11!

The matrix notations for the Bogolyubov coefficients make
possible to write the transformations of Eqs.~8! and ~11!,
i..e, the transition from trajectoryf (u) to g(u), in the form

a→a1, b→7b̃, ~12!

where the upper and lower signs here and subsequently
respond to Bose and Fermi fields.
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At the same time, according to the expansions given
Eqs.~33! and~34!, av8v andbv8v are the amplitudes of the
waves with frequenciesv8 and 2v8 contained in the inci-
dent part of the outgoing wave with frequencyv, while av8v

*
and7bv8v are the amplitudes of the waves with frequenc
v and 2v contained in the reflected part of the ingoin
wave with frequencyv8. Therefore, amplitudesav8v

* @g#
and7bv8v@g# describe the generation by a right-sided m
ror on trajectoryg(u) of waves escaping to the right wit
frequenciesv and2v when waves with frequencyv8 inci-
dent from right to left are absorbed. From purely geometri
considerations, they must coincide with the amplitudes
the mirror-symmetric process—the generation by a left-si
mirror on trajectoryf (u) of waves escaping to the left wit
frequenciesv and 2v when a wave incident from left to
right with frequencyv8 is absorbed. Then, according to Eq
~8! and ~11!, these last are also equal toavv8@ f # and
bvv8@ f # or equal toav8v@ f # andbv8v@ f # if the frequencies
of the monochromatic waves propagating to the right and
the left are denoted asv and v8, as was assumed for th
field to the right of the trajectory.

Thus, for the field to the left of a mirror moving alon
trajectory f (u), av8v@ f # andbv8v@ f # are the amplitudes o
waves with frequenciesv8 and 2v8 contained in the re-
flected part of the ingoing wave with frequencyv, while
av8v

* @ f # and 7bv8v@ f # are the amplitudes of waves wit
frequenciesv and2v contained in the incident part of th
outgoing wave with frequencyv8. Therefore, the matrix tha
connects the ingoing and outgoing waves of the field to
left of the mirror differs from the analogous matrix for th
field to the right of it by the transformation~12!.

The transition from the trajectoryf (u) to the mirror-
symmetricg(u) is thus equivalent to considering the field
the part of the Minkowski plane not to the right but to the le
of the trajectoryf (u) with the previous boundary conditio
on the mirror.

The mean number of particles formed by a two-sid
infinitely thin mirror on the left part of the Minkowski plan
is the same as on the right, since the integral

N5E
0

`

E dv dv8

~2p!2 ubv8vu2 ~13!

does not change whenbv8v is replaced by7bv8v . At the
same time, the energy

E85E
0

`

E dv dv8

~2p!2 v8ubv8vu2, ~14!

emitted by the mirror to the left, general speaking, is n
equal to the energy

E5E
0

`

E dv dv8

~2p!2 vubv8vu2, ~15!
y
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emitted to the right.
The equality of the mean numbers of particles emit

by a two-sided accelerated mirror to the right and to the
suggests that the particles are generated in pairs and fly o
opposite directions. The quantity~5! is usually considered
the mean number of actual quanta with frequencyv in the
interval dv, emitted to the right when a quantum with fre
quencyv8 in the intervaldv8 is absorbed from the vacuum
from the right. The question arises whether it is not possi
to regard the same quantity as the mean number of pair
quanta emitted to the right and to the left with frequenciesv
and v8 in the intervalsdv and dv8, respectively. In other
words, isN21ubv8vu2 the two-dimensional probability distri
bution of frequenciesv andv8 of two quanta escaping to th
right and to the left with angular momentav and2v8?

Such an interpretation of the frequency distribution
bosons~fermions! emitted by a mirror in 111 space would
make the coincidence of this distribution with the emissi
spectrum of an electric~scalar! charge in 311 space de-
tected in Refs. 1 and 2 less formal. In the case of mir
emission, the frequenciesv andv8 of the bosons~fermions!
escaping in different directions are random quantiti
whereas in the case of charge emission, the componentk1

andk2 of the wave vector of the vector~scalar! quanta emit-
ted to the right and to the left, corresponding to thek1

2k2:0, are random quantities.
Let us give two more evidences of left–right symmet

of the wave field of an accelerated mirror that are reflec
by the Bogolyubov coefficients.

First, Eqs.~6! and ~7! or ~9! and ~10!, obtained for the
field to the right of the mirror for the Bogolyubov coeffi
cients, representubv8vu2 by a double integral over the entir
uv plane, as shown by Ref. 2. Thus

ubv8v
B u252Re E

2`

`

Edu dv

3exp@ ivu1 iv8 f ~u!2 iv8v2 ivg~v !#, ~16!

while ubv8v
F u2 differs from Eq.~16! by an additional factor of

2Af 8(u)g8(v) under the integral. Similarly, in the doubl
integral for the mean number of particles emitted to the rig

NB,F5
1

4p2 E
2`

`

du KB,F~u!,

KB~u!5
«

2`

` dv
v2 f ~u! F 1

g~v !2u
2

f 8~u!

v2 f ~u!G , ~17!

KF~u!52Af 8~u!E
2`

` dv
v2 f ~u!

F Ag8~v !

g~v !2u
2

Af 8~u!

v2 f ~u!
G ,

~18!

the integration is carried out over the entireuv plane, i.e.,
over all of Minkowski space, and not over the part of it lyin
to the right of the trajectory. The wave fields to the right a
to the left of the trajectory that satisfy the same condition
it are described by a single analytical function and theref
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are not independent. Therefore, the frequencies of the qu
emitted the right and to the left are also not independent

Second, the mean energiesE andE8 emitted to the right
and to the left, according to Ref. 2, can be represented
integrals over the proper timet of the mirror:

EB5
1

12p E
2`

`

@dt a2Af 82d~aAf 8!#, ~19!

E8B5
1

12p E
2`

` Fdt
a2

Af 8
1dS a

Af 8
D G . ~20!

Herea is the acceleration of the mirror in its proper syste
The first terms under the integral in Eqs.~19! and ~20!

represent the energy irreversibly emitted by the mirror
spectively to the right and to the left of the sectiondt of the
trajectory. In the mirror’s proper system, these portions
the energy are identical and equala2dt/12p, whereas the
portions of irreversibly emitted momentum equ
6a2dt/12p. In the laboratory system, these portions of t
energy, because they are moving oppositely relative to
velocity b of the source, acquire Doppler factorsAf 8 and
1/Af 8. We recall thatAf 85A(11b)/(12b). The second,
Schott terms under the integrals in Eqs.~19! and ~20!
‘‘smear’’ the region where the radiation develops, as a re
of which, for the formation of the radiation of the energy, t
intervals Dt on which the irreversibly emitted energy e
ceeds the change of the Schott energy are important; i.e

Dta2Af 8.uaAf 8u, Dta2/Af 8.ua/Af 8u, ~21!

or Dt.a21; the proper time interval must be greater th
the inverse proper acceleration. The proper acceleration
termines the characteristic frequency of the radiation in
proper system and its scatter,v;Dv;a. Therefore, the
condition Dta.1 is equivalent to the uncertainty relatio
DtDv.1.

3. SYMMETRY AND THE RELATIONS OF CERTAIN
INTEGRAL QUANTITIES

The following representations for the mean numberN of
emitted particles and the mean emitted energiesE5E1 and
E85E2 are convenient for explaining their properties wi
respect to certain space–time transformations:

NB5E
2`

`

E du dv S~u,v !,

NF52E
2`

`

E du dvAf 8~u!g8~v !S~u,v !, ~22!

E6
B 5E

2`

`

E du dv A6~u,v !,
ta

as

.

-

f

e

lt

e-
e

E6
F 52E

2`

`

E du dvAf 8~u!g8~v !A6~u,v !, ~23!

whereS andA6 are singular functions of («,d→10):

S~u,v !5
1

8p2 F 1

~v2 f ~u!2 i«!~g~v !2u2 id!
1c.c.G , ~24!

A1~u,v !5
1

8p2i F 1

~v2 f ~u!2 i«!~g~v !2u2 id!2 2c.c.G ,
~25!

A2~u,v !5
1

8p2i

3F 1

~v2 f ~u!2 i«!2~g~v !2u2 id!
2c.c.G .

~26!

1. Lorentz transformations. The quantitiesS(u,v),
Af 8(u)g8(u), anddu dv are scalars with respect to the Lo
entz transformations, whileA6(u,v) transform as the6
components of a vector. Therefore,NB,F are Lorentz invari-
ants, whileE 6

B,F are the6 components of a vector.
2. Mirror symmetry. When the trajectory is replaced by

mirror-symmetric trajectory,f (u)→g(u), g(v)→ f (v), the
integralsN@ f # andE6@ f # transform, respectively, to

N@g#5N@ f #, E6@g#5E7@ f #, ~27!

since, for such a replacement,

S~u,v !→S~v,u!, A6~u,v !→A7~v,u!,

Af 8~u!g8~v !→Ag8~u! f 8~v !,

after which the transformed integralsN andE6 differ from
the untransformedN and E7 only in the designation of the
variables of integration. Thus, the mean numbers of partic
emitted from the same trajectory to the right and to the
are identical and do not change when the trajectory is
placed by the mirror-symmetric one, while the mean energ
emitted to the right and to the left are different and transfo
into each other when such replacement is made.

3. Synchromirror transformation. This discrete transf
mation consists of replacing coordinatesu and v with the
coordinates

ũ5g~v !, ṽ5 f ~u!, so that u5g~ ṽ !, v5 f ~u!.
~28!

Points (u,v) and (ũ,ṽ), which are related by the transforma
tion ~28!, lie on the Minkowski plane on different sides o
the trajectory of the mirror on the intersection of the lig
cones whose vertices are found on the trajectory at po
A„u, f (u)… andB„g(v),v…. The points of any compact regio
lying to the right of the trajectory are mapped one-to-o
into the points of a compact region lying to the left of th
trajectory.

FunctionsS(u,v) andA6(u,v) are form-invariant with
respect to the transformation~28!; i.e., their functional de-
pendences on the new and old variables are identical:
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S~u,v ![S~g~ ṽ !, f ~ ũ!!5S~ ũ,ṽ !,

A6~u,v !5A6~ ũ,ṽ !. ~29!

Since the area elementdudvAf 8(u)g8(v) appearing in the
Fermi integralsNF and E 6

F is also form-invariant with re-
spect to the transformation~28!; i.e.,

du dvAf 8~u!g8~v !5dũ dṽAf 8~ ũ!g8~ ṽ !, ~30!

the contributions to the Fermi intervals from any two regio
on theuv plane related by the symmetry transformation~28!
are identical. In particular, the contributions from the ent
region to the right and the entire region to the left of t
trajectory are identical.

In the Bose integralsNB and E 6
B , the contributions of

the right-hand and left-hand regions related by the trans
mation~28! are, generally speaking, different, since the a
element dudv that appears in these integrals, unlike t
functionsS andA6 being integrated, is mapped by the tran
formation ~28! into the unequal elementdũdṽ:

du dv5dũdṽ f 8~ ũ!g8~ ṽ !,

dũdṽ5du dv f 8~u!g8~v !. ~31!

Therefore, the contributions to the Bose integrals from th
two elementary areas are proportional to their areas;
their ratio equals the Jacobian of the transformation.

The transformation~28! of the variables of integration o
course does not change the values of the integralsN and
E6 . Its meaning is that the local contributions toN andE6

from any pair of right-hand and left-hand regions associa
by the transformation~28! have a definite symmetry o
asymmetry. Namely, for Fermi integrals, this symmetry co
sists of the equality of such contributions, whereas, for B
integrals, there is left–right asymmetry of the contributio
determined by the Jacobian of the transformation.

4. RADIATION OF A TWO-SIDED MIRROR, QUANTUM
APPROACH

For a consistent description of the quantum wave fi
lying both to the right and to the left of the mirror and sa
isfying a single condition at the mirror, it is convenient
use the two complete sets$fout v ,fout v* % and
$f in v8 ,f in v8

* % of solutions of the wave equation, given
Refs. 1 and 2. Possessing in the right-hand Minkowski pl
the physical meaning of the out and in sets and satisfying
boundary condition at the mirror, these solutions can
smoothly extended into the left half-plane with no change
their functional form. However, in the left half-plane, the
sets acquire the physical meaning of the in and out s
respectively, and they must be designated as$f in v ,f in v* %
and$fout v8 ,fout v8

* %.
Each such solution is actually unambiguously charac

ized by the frequencyv or v8 of its monochromatic compo
nent travelling to the right or to the left and by the conditi
at the mirror. For a Lorentzian transformation with veloc
b along thex axis, the frequenciesv andv8 transform into
ṽ and ṽ8 according to the mutually inverse laws
s

r-
a

-

e
.,

d

-
e
,

d

e
e
e
f

ts,

r-

ṽ5D21~b!v, ṽ85D~b!v8, D~b!5A11b

12b
,

~32!

whereD(b) is the Doppler factor. Thus,v andv8 possess
opposite covariance. Below, frequencies that transform
v will be labelled with an even number of primes, whi
those that transform likev8 will have an odd number. Then
the subscript in or out, in addition to the frequency, w
simply indicate the side of the Minkowski plane on whic
the solution is considered.

We have written the expansion of the solutions of t
first set in the solutions of the second set and the inve
expansion~in the right-hand half-plane! in the form

fout v5av8vf in v81bv8vf in v8
* , ~33!

f in v85av8v
* fout v7bv8vfout v* , ~34!

or, if matrix notation is used,

S fout

fout* D5S ã b̃

b1 a1D S f in

f in*
D ,

S f in

f in*
D5S a* 7b

7b* a D S fout

fout* D . ~35!

As a consequence of the orthogonality and normalization
the solutions in both sets, the matrices that appear in E
~35! are mutually inverse. This means that the Bogolyub
coefficients satisfy four independent matrix relations:

a1a7b1b51, b1a* 7a1b* 50,

aa17b* b̃51, ab17b* ã50. ~36!

On the left-hand half-plane, Eqs.~33!–~35! are conserved,
but a new physical meaning requires the interchange of
subscripts in�out in the functions, which is equivalent to th
transformation~12!.

For a quantized field in the right half-plane, the conne
tion of the in and out creation operatora1 and absorption
operatora is given by the Bogolyubov transformations

S ain

ain
1D5S a b*

b a* D S aout

aout
1 D ,

S aout

aout
1 D5S a1 7b1

7b̃ ã D S ain

ain
1D . ~37!

For a field in the left-hand half-plane, an interchange of
subscripts in�out is required on operatorsa anda1 in trans-
formations~37!. This again is equivalent to the transform
tion ~12!.

Following the work of DeWitt3 and its notation, we rep-
resent the vector of the vacuum state of the field in the d
tant past in the form of an expansion in the vectors of
n-particle states of the field in the distant future:

u in&5eiW(
n50

`
i n/2

n! (
i 1i 2 ...i n

Vi 1i 2 ...i n
u i 1i 2 ...i nout&. ~38!
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In our case, the quantum numbersi 1i 2 ...i n of the out states
of the individual particles stand for frequencies that tra
form like v or like v8 if one is dealing with the field, re-
spectively, to the right or to the left of the mirror.

Using the equationainu in&50, transformations~37!, and
the expansion given by Eq.~38!, it is easy to show3,4 that the
relative production amplitudesVi 1i 2 ...i n

of n particles equal
zero for oddn, whereas, for evenn, they are expressed i
terms of the production amplitude of a pair of particles:

Vi 1i 2 ...i n
5(

p
dpVi 1i 2

Vi 3i 4
...Vi n21i n

. ~39!

Here (p denotes summation overn!/2n/2(n/2)! different
pairings of subscriptsi 1i 2 ...i n , while dp51 for bosons and
dp561 for fermions when the permutation leading to t
given pairing is, respectively, even or odd. The product
amplitudes of a pair of particles with frequenciesv9 andv
in the right-hand region and frequenciesv- and v8 in the
left-hand region equal

Vv9v5 i ~a21b* !v9v , Vv-v852 i ~ba21!v-v8
* . ~40!

They are related to each other by the transformation~12!,
which is symmetric for a Bose field and antisymmetric fo
Fermi field, as follows from Eqs.~36!.

The indicated number of terms in the amplitude of E
~39! appears in connection with its symmetrization~antisym-
metrization! and equals the numbern! of permutations of its
subscripts, reduced by a factor of 2n/2 because of the alread
existing symmetry~antisymmetry! of the two-particle ampli-
tudes and by a factor of (n/2)! because the permutations
these amplitudes are negligible.

Particle production in pairs is explained by the linear
of the Bogolyubov transformations in the operatorsa and
a1. The operatorain , when it acts on then-particle out state,
transforms it into a superposition ofn21-particle and
n11-particle out states. Therefore, in the expansion of
null vectorainu in& in the n-particle out states, the expansio
coefficients equal to zero represent the linear relation
tween the amplitudes of then11-particle andn21-particle
creations. Sincen>0, the amplitude of the single-particl
productionVi 1

is equal to zero, and, along with it, all th
formation amplitudes of an odd number of particles.

The absolute amplitudes of then-particle production are
determined and are related to the relative amplitudes by

^out i 1i 2 ...i nu in&[^outuaout i n
...aout i 2

aout i 1
u in&

5eiWi n/2Vi 1i 2 ...i n
. ~41!

The vacuum-conservation amplitude^outuin&5eiW is de-
termined to within a phase factor by the fact that the to
probability of the transition from the initial vacuum state
equal to unity:
-

n

.

e

e-

l

15 (
n50

`
1

n! (
i 1i 2 ...i n

u^out i 1i 2 ...i nu in&u2

5e22 Im W(
n50

`
1

n! (
i 1i 2 ...i n

uVi 1i 2 ...i n
u2. ~42!

The sum of the relative probabilities

qn5
1

n! (
i 1i 2 ...i n

uVi 1i 2 ...i n
u2 ~43!

of the production ofn particles~or of n/2 pairs! on the right-
hand side of Eq.~42! we shall call the sum over states. It ca
be shown that, in the case considered here, in which pair
identical particles and antiparticles are formed, the sum o
states equals

(
n50

`
1

n! (
i 1i 2 ...i n

uVi 1i 2 ...i n
u25det~17M !71/2

5expS 7
1

2
Tr ln~17M ! D , ~44!

whereM5VV1 is a Hermitian positive-semidefinite matri
formed from the matrices in Eqs.~40!. In particular, the first
three terms of the sum over states, determined by the rela
amplitudes

1, Vi 1i 2
, Vi 1i 2

Vi 3i 4
6Vi 1i 3

Vi 2i 4
1Vi 1i 4

Vi 2i 3
, ~45!

and by Eq.~43!, are equal, respectively, to

q051, q25
1

2
Tr M , q45

1

8
~Tr M !26

1

4
Tr M2.

~46!

The absolute probabilities of formingn pairs are equal to
p2n5p0q2n , wherep0 is the vacuum-conservation probab
ity:

p05e22 Im W, 2 Im W57
1

2
Tr ln~17M !. ~47!

Since the relative probabilitiesq2n(M ) of producingn pairs
are homogeneous functions of degreen, q2n(lM )
5lnq2n(M ), it is convenient to compute the mean numb
of pairs from

n̄5 (
n50

`

np2n5p0l
]

]l (
n50

`

lnq2n~M !U
l51

5l
]

]l
2 Im W~lM !U

l51

5
1

2
Tr

M

17M
. ~48!

The matricesM are different for the right-hand and left-han
regions:

M5VV15H b1b~16b1b!21,

b* b̃~16b* b̃ !21,
~49!

~50!

but are related to each other by the transformation~12!.
However, the positive-definite quantities TrMn, n51,2...,
are invariants of this transformation. Therefore, the to
probabilities given above for conservation of the vacuu
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p0 , and of the production ofn pairs, p2n , and the mean
number of pairs,n̄, are identical for the right-hand and lef
hand regions. In particular, the quantities

p05e22 Im W, 2 Im W56
1

2
Tr ln~16b1b!, ~51!

p25e22 Im W
1

2
Tr b1b~16b1b!21, ~52!

n̄5
1

2
Tr b1b ~53!

do not change under the transformation~12! or b1b
→bb1.

Nevertheless, the frequency distributions of the pro
abilities and of the mean number of particles possess no l
right symmetry. Thus, the production probability of one pa
one particle of which has a definite frequency while the ot
has any frequency, equals

p2v5e22 Im WS b1b

16b1b D
vv

~54!

for the right-hand region and equals

p2v85e22 Im WS bb1

16bb1D
v8v8

~55!

for the left-hand region. The frequency distributions of t
mean number of particles emitted by the mirror to the rig
and to the left are also functionally different from each oth

Nv5~b1b!vv , Nv85~bb1!v8v8 . ~56!

Along with the amplitudes given by Eq.~41! for particle
production from vacuum by the mirror, it is necessary
consider the amplitudes of single-particle scattering by
mirror

^out vuv8in&5^out uaout vain v8
1 u in&5eiWavv8

21 , ~57!

^out v8uv in&5^outuaout v8ain v
1 u in&5eiWavv8

21* ~58!

for the right-hand and left-hand regions, respectively. Th
amplitudes differ only in their phases. Of course, they
related to each other by the transformation~12!, but we shall
be interested in their relation to the corresponding p
production amplitudes:

^out v9vu in&52eiW~a21b* !v9v

52(
v8

^out v9uv8in&bv8v
* , ~59!

^out v8v-u in&5eiW~ba21!v8v-
*

5(
v

bv8v
* ^out v-uv in&. ~60!

Since the pair-production amplitudes and the sing
particle scattering amplitudes are quantities that can in p
ciple be experimentally measured from the correspond
probabilities, Eqs.~59! and ~60! make it possible to experi
mentally measurebv8v

* . Moreover, these relationships mak
-
t–
,
r

t
:

e

e
e

-

-
-
g

it possible to regardbv8v
* as the amplitude of the source of

pair of particles potentially emitted to the right and to the l
with frequenciesv and v8, respectively. In this case, if a
particle with frequencyv actually escaped to the right,
particle with frequencyv8 does not escape to the left, bu
experiences an internal reflection and is actually emitted
the right with altered frequencyv9. Conversely, if a particle
with frequencyv8 actually escaped to the left, a particle wi
frequencyv cannot escape to the right, but, after intern
reflection, is actually emitted to the left with another fr
quencyv-.

For fermions, the amplitudebv8v
F is diagonal in the pro-

jection of the spin of the ingoing and outgoing waves~see
Ref. 2!. But one of the waves formingbv8v

F has a negative
frequency and therefore describes an antiparticle with
quency and spin projection opposite in sign to the freque
and spin projection of this wave~see §26 in Ref. 5 or §9 o
chap. 2 in Ref. 6!. Thus, the spin of a pair of generate
fermions equals zero. This is confirmed by the scalar na
of the identically equal integrals in Eqs.~9! and ~10!, in
which duAf 8(u) anddvAg8(v) are elements of proper tim
dt, and by their coincidence,

bv8v
F* 5

1

e
r~k1 ,k2!, ~61!

with the Fourier component of the scalar-charge density
311 space.

The amplitudebv8v
B* of the source of a boson pair, ac

cording to Eqs.~6! and~7!, is linearly expressed in terms o
the Fourier componentsj 6(k) of the current density of an
electric charge in 311 space:

bv8v
B* 52Ak1

k2

j 2

e
5Ak2

k1

j 1

e
, ~62!

j 25eE
2`

`

du expF i

2
~k1u1k2 f ~u!!G ,

j 15eE
2`

`

dv expF i

2
~k2v1k1g~v !!G ~63!

@see also Eqs.~1! and~2! in this paper and Eqs.~43! and~44!
in Ref. 1#. The last equality in Eq.~62! is none other than the
current-transverseness condition,k1 j 21k2 j 150. It can
also be seen from Eq.~62! thatbv8v

B is a pseudoscalar, since
with the reflectionk6→k7 , j 6→ j 7 , andbB changes sign.
Vector j a(k) is spacelike and, in a system wherek15k2 ~or
v5v8), has only a spatial component, precisely equal
ebv8v

B . In covariant form,

ebv8v
B* 5«abka j b/Ak1k2.

Thus, the source of a boson pair is the conserved cur
vector given by Eqs.~63!, and this means that its spin equa
1.7

The fact that the spin of a boson pair equals 1 while t
of a fermion pair equals 0 is essential for understanding
coincidence of the spectra of a mirror and of a charge.
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If bv8v
* is small, i.e., if the mean number of emitte

quanta is small, then, as is easy to obtain from Eqs.~6! and
~9!,

av8v'2pd~ṽ82ṽ !, avv8
21 '2pd~ṽ2ṽ8!, ~64!

whereṽ and ṽ8 are related tov andv8 by transformation
~32!, in which b is the effective velocity of the mirror on th
emission section. In this approximation, the emission am
tudes given by Eqs.~59! and ~60! for pairs of particles with
frequenciesv andv9 to the right and pairs of particles wit
frequencies ofv8 andv- to the left equal, respectively,

^out v9vu in&'2eiWD21~b!bv8v
* , v85D22~b!v9,

~65!

^out v8v-u in&'eiWD~b!bv8v
* , v5D2~b!v-. ~66!

These formulas, including the connection between the
quencies of the waves incident on the mirror and reflec
from it, confirm the interpretation ofbv8v

* given above.
We now turn our attention to interference effects in t

production of Bose and Fermi particles. They become m
substantial when the matricesM for bosons and fermions
satisfy the conditions

7
1

2
Tr ln~17M !57 lnS 17

1

2
Tr M D ,

i.e.,

1

2
Tr Mn5S 1

2
Tr M D n

, n52,3,... . ~67!

Then the sum over states given by Eq.~44! for Bose and
Fermi particles reduces, respectively, to

1

12~1/2!Tr M
and 11

1

2
Tr M . ~68!

This means that the probabilities of producingn pairs of
bosons form the geometrical progression

p2n
B 5p0

Bq2
Bn , p0

B512
1

2
Tr M , q2

B5
1

2
Tr M , ~69!

while the probabilities of emitting two or more pairs of fe
mions disappear; i.e., only the production of one ferm
pair is possible:

p0
F5S 11

1

2
Tr M D 21

, p2
F5p0

1

2
Tr M ,

p2n
F 50, n>2. ~70!

In other words, the conditions given by Eqs.~67! denote the
most constructive interference of bosons and the most
structive interference of fermions. In these cases, the m
number of boson pairs is always greater than 1, while tha
the fermion pairs is less than 1:

1,n̄B5
~1/2!Tr M

12~1/2!Tr M
,`,

0<n̄F5
~1/2!Tr M

11~1/2!Tr M
,1. ~71!
i-

-
d

st

n

e-
an
of

We are less interested in the case in which interference
fects can be neglected. In this case,

Tr Mk!Tr M ,1; k>2, ~72!

and the probability distribution over the number of genera
pairs coincides with the Poisson distribution:

p2n5e2n̄
~ n̄!n

n!
, n̄5

1

2
Tr b1b. ~73!

5. EMISSION OF PAIRS CONSISTING OF NONIDENTICAL
PARTICLES AND ANTIPARTICLES

In the case of pair production of nonidentical particl
and antiparticles (ab pairs!, the direct and inverse Bogoly
ubov transformations~37! are replaced by

S ain

bin
1D5S aaa bab*

bba abb* D S aout

bout
1 D ,

S aout

bout
1 D5S aaa

1 7bba
1

7b̃ab ãbb
D S ain

bin
1D . ~74!

These transformations contain not two but four matric
aaa , abb , bab , and bba , which satisfy not the four Eqs
~36! but the six equations

aaa
1 aaa7bba

1 bba51, abb
1 abb7bab

1 bab51,

bba
1 abb* 7aaa

1 bab* 50, aaaaaa
1 7bab* b̃ab51,

abbabb
1 7bba* b̃ba51, aaabba

1 7bab* ãbb50. ~75!

However, these relationships can be written in the form
Eqs.~36! if a andb stand for the 232 matrices consisting o
the indicated quartets:

a5S aaa 0

0 abb
D , b5S 0 bab

bba 0 D . ~76!

As can be seen from Eqs.~74!, the interchange in�out is
now equivalent to the interchange

aaa→aaa
1 , abb→abb

1 , bab→7b̃ba ,

bba→7b̃ab , ~77!

which can be represented in the form of the transformat
~12! if a andb stand for the matrices of Eqs.~76!.

Using for the in vacuum state an expansion of the ty
of Eq. ~38! and the equationsainu in&5binu in&50, it can be
shown that all the emission amplitudes of an odd numbe
particles equal zero, while the production amplitudes of
even number of particles are products of the production a
plitudes ofab pairs:

Vv9v
ab

5 i ~aaa
21bab* !v9v , Vv-v8

ab
52 i ~bababb

21!v-v8
* ,

~78!

respectively for the right-hand and the left-hand regions.
follows from Eqs.~75!, the amplitudes given by Eqs.~78!
possess intrinsic Bose symmetry or Fermi antisymmetry:

Vv9v
ab

56Vvv9
ba [6 i ~abb

21bba* !vv9 ,
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Vv-v8
ab

56Vv8v-
ba [7 i ~bbaaaa

21!v8v-
* . ~79!

Thus, the formation amplitude of anab pair can be denoted
via Vi 1i 2

, where the subscripti 1 characterizes the state of th
particle andi 2 that of the antiparticle. The production of tw
ab pairs is described by the amplitude

Vi 1i 2i 3i 4
5Vi 1i 2

Vi 3i 4
6Vi 3i 2

Vi 1i 4
, ~80!

symmetric~antisymmetric! separately with respect to state
i 1 andi 3 of the particles and separately with respect to sta
i 2 and i 4 of the antiparticles. We also write the productio
amplitude of three pairs:

Vi 1i 2 ...i 6
5Vi 1i 2

Vi 3i 4
Vi 5i 6

6Vi 3i 2
Vi 1i 4

Vi 5i 6

1Vi 3i 2
Vi 5i 4

Vi 1i 6
6Vi 1i 2

Vi 5i 4
Vi 3i 6

1Vi 5i 2
Vi 1i 4

Vi 3i 6
6Vi 5i 2

Vi 3i 4
Vi 1i 6

. ~81!

In the general case, the production amplitude ofn/2 pairs has
the form

Vi 1i 2 ...i n
5(

p
dpVi 1i 2

Vi 3i 4
...Vi n21i n

, ~82!

where the sum is taken over all (n/2)! terms that differ by a
permutation of the odd subscripts~or, what is the same thing
by a permutation of the even subscripts!, with dp561 in the
case of fermions for an even or odd permutation, resp
tively, while dp51 in the case of bosons. Then amplitu
Vi 1i 2 ...i n

will be symmetric ~antisymmetric! both over par-
ticle statesi 1i 3 ...i n21 and over antiparticle statesi 2i 4 ...i n .

The relative probability

qn5
1

~n/2!! ~n/2!! (
i 1i 2 ...i n

uVi 1i 2 ...i n
u2 ~83!

of producingn/2 pairs consisting of nonidentical particle
and antiparticles contains the factor 1/(n/2)!(n/2)!, which,
along with the symmetry~antisymmetry! of amplitude
Vi 1i 2 ...i n

separately for even and separately for odd s
scripts, makes it possible to sum over the particle and a
particle states, considering the ranges of variation of
quantum numbers of these states to be independent. Wit
this factor, the sum overi 1i 2 ...i n would have had to contain
only physically different states. In our case, for example
would be unambiguous that the frequencies of the parti
must satisfy the conditionv1>v3>...>vn21 , while the
frequencies of the antiparticles must satisfy the condit
v2>v4>...>vn .

It is easy to construct the first four terms of the sum o
states in terms of the relative amplitudes shown above:

q051, q25Tr M , q45
1

2
~Tr M !26

1

2
Tr M2,

q65
1

6
~Tr M !36

1

2
Tr M Tr M21

1

3
Tr M3. ~84!

For the sum over states as a whole, we get
s

c-

-
ti-
e
ut

it
s

n

r

(
n50

`
1

~n/2!! ~n/2!! (
i 1i 2 ...i n

uVi 1i 2 ...i n
u2

5det~17M !715exp~7Tr ln~17M !!. ~85!

Here, as in Eq.~44!, M5VV1 is a Hermitian positive-
semidefinite matrix. It is given by Eqs.~49! and ~50!, in
which by b is meant, respectively,bba andbab .

Just as above, the absolute probabilities of the forma
of n pairs of nonidentical particles and antiparticles eq
p2n5p0q2n , wherep0 is the vacuum-conservation probab
ity:

p05e22 Im W, 2 Im W57Tr ln~17M !. ~86!

The mean number of pairs, computed according to the
given in Eq.~48!, equals

n̄5Tr
M

17M
. ~87!

It can be seen that these formulas differ from the correspo
ing Eqs.~47! and ~48! for pair production of identical par-
ticles by replacing (1/2)Tr by Tr in the latter equations. B
cause of thea�b symmetry in the matrices, under the T
sign,b can stand for bothbba andbab .

It is easy to see that this rule connects all the formu
for the integral characteristics of pair production of identic
particles with the formulas of the corresponding characte
tics of ab-pair production. Thus, in order to obtain from Eq
~51!–~53! and ~67!–~73! the analogous expressions fo
ab-pair production, it is sufficient to replace (1/2)Tr in the
formulas with Tr and byb to understandbba or bab .

As far as the spectral characteristics shown, for exam
in Eqs. ~54!–~56! are concerned, they undergo no chang
when the transition is made to the case under considera
if b representbba (bab) for the spectrum of particles~anti-
particles! emitted to the right andbab (bba) for the spectrum
of particles~antiparticles! emitted to the left.

In fact, for the differential probabilityp2v shown in Eq.
~54!, the original integral

p2v5E
0

` dv9

2p
u^out vv9in&u2 ~88!

represents it as the sum of the probabilities of physica
different events regardless of whether the particles are id
tical or not. However, the total pair-formation probabilityp2

as a sum of probabilities of physically different events f
identical particles is represented by the integral

p25E
0

` dv

2p E
0

v dv9

2p
u^out vv9u in&u2

5
1

2 E
0

` dv

2p
p2v , ~89!

since the states in this case differ only by the values of
large frequencyv and the small frequencyv9 of two iden-
tical particles. At the same time, for anab pair,
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p25E
0

` dv

2p E
0

` dv9

2p
u^out vv9u in&u25E

0

` dv

2p
p2v ,

~90!

since the states differ in the frequenciesv9 and v of the
particle and antiparticle independently of each other, wh
the particle and antiparticle differ in turn in that they intera
differently with the counters.

Turning to the amplitude ofab-pair production,

^outubout v9aout vu in&[^out vv9u in&

52eiW~aaa
21bab* !vv9

57eiW~abb
21bba* !v9v , ~91!

we note that it reduces to a product of the source amplit
bab* or bba* of oppositely directeda andb particles and the
backscattering amplitudeaaa

21 or abb
21 of one of them, as a

result of which both particles of the pair move in the sa
direction. The symmetry of Eqs.~79! makes it impossible to
establish which of the particles of theab pair experiences
backscattering.
e
t

e
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Hund’s Case „a…-case „b… transition in the singlet–triplet absorption spectrum
of pyrazine in a supersonic jet
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Russia

D. W. Pratt
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An analytic expression is derived for calculating the intensities of individual spin–rovibronic
lines in the fully resolved gas phase electronic spectrum of a polyatomic molecule, in
which one of the zero-order electronic states is a triplet state. The expression is employed to
calculate the effect of fine structure splitting on the singlet–triplet absorption spectrum of pyrazine
using the parameters available from experiment. A transition from Hund’s coupling Case~a!
to Case~b! on going from lowJ to high J rotational levels is predicted to occur at a moderate
resolution of a few hundred MHz. The effect is more pronounced in pyrazine-d4 and the
pyrazine–argon van der Waals complex owing to their larger mass. ©1998 American Institute
of Physics.@S1063-7761~98!00507-1#
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1. INTRODUCTION

The pyrazine molecule continues to attract much att
tion due to its unique photophysical properties. Owing to
moderateS12T1 energy gap~4056 cm21!, the density ofT1

vibrational levels at theS1 origin is relatively low, which
puts pyrazine in the class of so-called intermediate-c
polyatomic molecule1 with respect toS12T1 intersystem
crossing~ISC!. In intermediate-case molecules, the coupli
between theS1 and T1 states results in the formation o
mixed singlet–triplet levels. These mixed levels have be
revealed in ultrahigh-resolution spectra and are believe
be responsible for observed nonexponential fluorescence
cay behavior.2–7 While the singlet states that participate
this mixing are well characterized, little is known about t
zero-order triplet states. The important point, in particular
that the effect of the fine structure splitting on the triplet st
energy level structure of the gas-phase molecule is not
understood, even at theT1 origin.

In solid matrices at liquid helium temperatures, the e
ergy of the lowest triplet state is split into three spin suble
els Tx , Ty andTz with very different phosphorescence life
timestx , ty, andtz . The separations and lifetimes of the
sublevels in pyrazine have been measured by the microw
induced delayed phosphorescence~MIDP! technique.8–12

Figure 1 shows the sublevel ordering and microwave tra
tions observed9 in a benzene crystal at 1.2 K together wi
the appropriate choice of molecular axes. The lifetimes m
sured in various media are listed in Table I.

In the MIDP experiments, theT1 state is prepared in a
indirect way viaS1←S0 excitation followed byS1→T1 ISC.
The directT1←S0 electronic transition in pyrazine has als
been observed in the absorption spectra of solids13–15 and
vapors.16–18 The measured oscillator strengths were de
351063-7761/98/87(7)/16/$15.00
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mined to be 1027 and 331028, respectively,18 which is
typical of a spin-forbidden transition. In supersonic jets, t
T1←S0 transition was first detected using the multiphot
ionization~MPI! method19 and then by phosphorescence e
citation methods,20–27in some cases using SEELEM~surface
electron ejection by laser excited metastables! detection.
Valuable information about the vibrationally excitedT1 state
has also been obtained with the pulse-field-ionizat
technique.28

As can be seen from Fig. 1 and Table I, theTy andTz

sublevels in the solid host are nearly degenerate and h
similar lifetimes, whereas theTx sublevel is set apart by
about 10 GHz and has a much shorter lifetime. While t
phenomenon is well established in the condensed phase
conclusive evidence for its manifestation in the gas ph
molecule is available. Theoretically, it was explained
terms of the properties of spin–orbit coupling in aromat
and heteroaromatics, with their characteristicp-electronic
structure and planar geometry.29–34Since the planarity of the
two participating states has been shown to survive in the
phase,23 this phenomenon can be expected to occur in the
phase, too.25,26However, previous studies were performed
relatively low resolution~;2 GHz!,25,26 not high enough to
address the question definitively.

Two additional factors complicate the interpretation o
gas phase experiment. The first is the lack of a conden
phase environment. Iftx , ty, andtz are assumed to be th
same in the solid and gas phases, then a mean lifetimetph

arising from rotational mixing of the spin sublevels would
observed in jets, which at least would not be shorter than
shortest lifetime in solids, i.e., 6.3 ms.9,11 The measured gas
phase phosphorescence lifetime at theT1 origin in a super-
sonic expansion is only 1.45 ms, with an upper limit of 2
ms27 having been established in a separate experiment.
© 1998 American Institute of Physics
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Clearly, then, the environment plays a role. With t
quantum yield of phosphorescence emission as large as
in a solid solution at 77 K,35 this implies that acceleration o
radiative and nonradiative transitions to the ground s
might both be responsible for the lifetime shortening in t
jet. If, further, we accept the absolute values of theT1←S0

oscillator strengths cited above, which tell us that the os
lator strength is a factor of three lower in the gas phase t
in a solid, then it is the nonradiative transition rate that
responsible for the lifetime shortening.27 The reasons for this
behavior are completely unknown.

The second factor complicating the interpretation o
gas phase spectrum are rotations, which produce exten
mixing of the three spin sublevels of the triplet state. In t
ground state, as well as in the lowest excited singlet
triplet states, the pyrazine molecule is a nearly symmetric
with rotational constants of about 3 and 6 GHz26 ~see Table
II !. If in the gas phase the spin splittings are assumed to b
the same order of magnitude, 10 GHz, as in solids~which

FIG. 1. Ordering and energy level separations of the lowest triplet stat
pyrazine in the solid state, as obtained from MIDP experiments. The sm
est moment of inertia in the gas phase is about the N–N line~thea axis! in
both theS0 and T1 states. The largest moment of inertia is about the a
perpendicular to the molecular plane, thez ~c! axis of the top.

TABLE I. Triplet spin sublevel lifetimes of the lowest triplet state of pyr
zine.

tx ty tz Ref.

Benzene host crystal at 1.2 K 6.3 284 163 9
Para-dioxane host crystal at 1.6 K 6.5 400 200 11
Supersonic jet tph51.45 ~upper limit 2.5! 27

Note.All values in msec.
0.3
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seems to be the case for glyoxal, where they change from
and 2.2 GHz to 1.1 and 2.4 GHz between the solid and
phases, respectively22!, then the nature of the spectrum wi
be quite different at low and high rotational quantum nu
bers.

For high values of the rotational angular momentumN,
Hund’s Case~b! should apply, in which case the spectru
should consist of rotational bands corresponding to tra
tions between states with definite values of the asymme
top quantum numbersN, K11 andK21 , each of which, ex-
cept for N50, is split into states with different values o
J5N, N61, whereJ5N1S is the total angular momentum
and S is the spin angular momentum. This is the analog
the rotational structure in theS states of diatomic molecules
which typically belong to Case~b! because of a weak spin
axis interaction.36,37 However, for low values ofN, the ob-
served bands will be shifted away from the purely rotatio
band positions, since they are now spin–rotational ban
Again an analogy comes from diatomics, whoseP, D, etc.
states usually belong to Case~a!, apart from some light di-
atomics. The transition from Hund’s Case~a! to Case~b!
with increasing rotational quantum number is called spin
coupling, of which several examples are given
Herzberg.36

A general approach to calculating band intensities
the singlet–triplet spectra of polyatomic molecules w
developed by Hougen,38 Creutzberg and Hougen,39 and
di Lauro.40 Energies and wavefunctions of spin–rotation
levels of a triplet state were derived from an effective Ham
tonian given by Van Vleck41 and Raynes.42 The intensities of
transitions in nearly symmetric tops were represented in
form of Hougen and di Lauro factors~rather than Ho¨nl–
London factors!, tabulated for some limiting cases. The Ho
gen factors38 are appropriate for a Hund’s Case~b! molecule
with no multiplet splitting in the triplet state. Creutzberg an
Hougen further extended this approach to near-symme
top molecules of symmetryC2v , D2 , andD2h , defining a
new ‘‘limiting’’ Case ~ab!, which was further subdivided
into types I, II, and III. Their Case~ab! corresponds to a
situation, not unlike that of pyrazine in its lowest triplet sta
in which two of the spin components of the nonrotating m
ecule are separated by a small energy, and the third is s
rated by a large energy, compared to the rotational inter
~In this respect,T1 pyrazine is a Case~ab!, type II molecule;
thus we are actually dealing with a Case~ab!–Case~b! tran-
sition here.! The di Lauro factors are appropriate for all typ

of
ll-

s

TABLE II. Rotational and fine structure splitting constants of pyrazine
cm21 ~values in parentheses are for pyrazine-d4).

S0 T1 Ref.

A 0.21285 0.212 26 and 44
~0.18389! 44

B 0.19767 0.196 26 and 44
~0.17502! 44

C 0.10249 0.101 26 and 44
~0.08967! 44

D 0.3455 9 and 44
E 20.00705 8 and 43
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of Hund’s Case~ab! molecules; they account for the multip
let splittings by using Raynes’ effective Hamiltonian42 for
asymmetric tops, which includes contributions from vario
magnetic interactions.

Here we take a new approach to this problem, one
relies on the derivation of a closed-form analytic express
for the intensities, assuming arbitrary relations between r
tional intervals, asymmetry, and fine structure splittings. T
approach is motivated by the likely success of future hi
resolution experiments on the singlet–triplet transitions o
wide variety of molecules, requiring a more general meth
for their interpretation. In the present instance, we make
simplifying assumptions in order to make the proble
tractable. Only the spin–spin interaction is taken in
account,43,44 and only one spin sublevel of the nonrotatin
molecule is assumed to be radiatively active.31 A more gen-
eral expression for the intensities is also obtained and c
pared with the Hougen factors.38 We test our approach b
computing theT1←S0 spectra of pyrazine, pyrazine-d4 , and
the pyrazine–Ar van der Waals complex, for comparis
with existing and future experimental spectra. The appro
described here can be extended to other molecules, the
anticipating new experiments in high-resolution spectr
copy.

2. THEORY

2.1. Rotational states in S0

Pyrazine hasD2h symmetry in its ground (S0 , 1A1g)
and first excited triplet (T1 , 3B1u) states. The smallest mo
ment of inertia is about the axis passing through the t
nitrogen atoms.23,44Therefore, the rotational Hamiltonian fo
both S0 andT1 is of the form

Hr5BNx
21ANy

21CNz
2, ~1!

whereA.B.C are the rotational constants~nearly the same
in the two states; see Table II! andNx,y,z are the projections
of the rotational angular momentum vector on the axes of
molecular coordinate frame~MCF!, the inertial axes. For a
symmetric top (A5B) without spin, the operatorsN2, Nz ,
and Nz̃ , i.e., the rotational angular momentum squared a
its projections on thez axis of the MCF and on thez̃ axis of
the laboratory coordinate frame~LCF!, respectively, consti-
tute a complete set of commuting operators.

The electronic–vibrational–rotational~EVR! wavefunc-
tions can be written as

uGS ;NKK̃&[uGS&uNKK̃&, ~2!

whereGS (5A1g for the vibrationlessS0 state! is the sym-
metry species ~IR, irreducible representation! of the
electronic–vibrational wavefunctionuGS&, N is the rotational
angular momentum quantum number, andK and K̃ are the
eigenvalues ofNz andNz̃ , respectively. As a basis set for a
asymmetric top without spin, we use the symmetrized ro
tional wavefunctions that transform~under rotations by an
anglep about the MCF axes! according to the IR’sG r5A,
B1 , B2 , B3 of the D2 group,

uG rltNKK̃&5 f K221/2@ uNKK̃&1tuN,2K,K̃&]
s
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for K>0 and t561, ~3!

where

f K51 for K.0 and f K5221/2 for K50. ~4!

In Eq. ~3!, two additional ‘‘quantum numbers,’’t and

l5t~21!N561, ~5!

are defined for the characterization of the symmetrized b
functions. The reason for usingl is that this is a ‘‘good
quantum number’’ for the rotational, spin–spin, and spi
orbit Hamiltonians~see below!. The relations betweenG r

andl for different K are shown in Table III.
Since the asymmetric top Hamiltonian~1! has no matrix

elements between the basis states~3! differing in eitherG r ,
l, or t, its eigenfunctions expanded in this basis can also
characterized byG r , l, andt ~in addition toN and K̃),

uGSG rltNiK̃&5(
K

CK
~GSGrltNi !uG rltNKK̃&, ~6!

wherei labels the eigenvalues ofHr for a givenG r , l, t, and
N. Here K runs from 0 toN over all odd or even values
depending onG r ~see Table III!. The asymmetric top func-
tions are labeled withGS because, unlike the case of th
symmetric top, they are dependent on the rotational const
of the given electronic state. The eigenvalues and the c
ficientsCK

(GSGrltNi) are found by diagonalizingHr in the ba-
sis ~3!. The Hamiltonian~1! conserves all quantum numbe
except forK. Using the notation

^G rltNKK̃uHr uG rltNK8K̃&[^KuHr uK8&,

we obtain the following nonvanishing matrix elements:

^KuHr uK&5
1

2
~A1B!@N~N11!2K2#1CK2 ~7.1!

for KÞ1,

^1uHr u1&5
1

2
~A1B!@N~N11!21#

1C1
1

4
t~B2A!N~N11! ~7.2!

for K51,

^KuHr uK12&5^K12uHr uK&

5
1

4
~B2A!@~N2K !~N2K21!

3~N1K11!~N1K12!#1/2 ~7.3!

for KÞ0, and

TABLE III. K andl for irreducible representations of theD2 group.

G r l K

A 11 even
B1 21 even
B2 21 odd
B3 11 odd
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^0uHr u2&5^2uHr u0&5223/2~B2A!

3@N~N21!~N11!~N12!#1/2 ~7.4!

for K50 andt51.
They obey the selection rules

Dl[l2l850, Dt5DN50, DK50,62. ~8!

2.2. Spin–rotational states in T1

For a symmetric top with spin, three sets of commuti
operators can be formed~see Appendix in Ref. 1 for com
mutation relations involving all relevant momenta and th
projections on the MCF and LCF axes!.

The first set is obtained by addingS2 andSz̃ to the above
rotational angular momenta. The EVR wavefunctio
uGT ;NKK̃& (GT5B1u for the T1 state vibrationless wave
function uGT&) are multiplied by the spin functionsuSs̃&,
whereS is the total spin quantum number ands̃ is an eigen-
value of Sz̃ . We call this Representation I, the uncouple
spin representation in the LCF.

The second set comprises the operatorsS2, J2, Jz , Jz̃ ,
andSz . The rotational part of their common eigenfunctio
is uJPP̃& and the spin part isuSs&. Here,J is the total an-
gular momentum quantum number andP, P̃, ands are ei-
genvalues ofJz , Jz̃ , andSz , respectively. This is Represen
tation II, the uncoupled-spin representation in the MCF.

The third set of commuting operators isS2, J2, N2, Nz ,
andJz̃ , and the corresponding mixed spin–rotational wa
functions are uSJNKP&. This is Representation III, the
coupled-spin representation. This notation also will be u
for the singlet-state rotational wavefunction, in which ca
one has

uSJNKP̃&5dS0dJNd P̃K̃uNKK̃&. ~9!

Then the symmetrized function~3! is denoted

uG rltSJNKP̃&5 f K221/2@ uSJNKP̃&1tuSJN,2K,P̃&]
~10!

for K>0 andt561, and the expansion~6! for the ground
state takes the form

uGSG r9l9t9S9J9N9i 9P̃9&

5(
K9

C
K9

~GSGr9l9t9S9J9N9 i 9!
uG r9l9t9S9J9N9K9P̃9&, ~11!

where the ground state quantities are double-primed.
The spin–rotational functions can be expanded in te

of products of the pure rotational and spin functions us
both uncoupled Representations I and II. According to
momentum-addition rule,37 which for Representations I an
II can be writtenJ5N1S and N5(2S)1J, respectively,
the expansions have the form1,45

uSJNKP̃&5~21!N2S1 P̃A2J11

3(
K̃ s̃

S N S J

K̃ s̃ 2 P̃
D uNKK̃;Ss̃&, ~12!
r

s

-

-

d
e

s
g
e

uSJNKP̃&5~21!S2J1KA2N11

3(
Ps

S S J N

s P 2K D uJPP̃&uuSs&, ~13!

whereu is the time-reversal operator,37

uuSs&5~21!S2suS,2s&. ~14!

With the use of Eq.~14! the expansion in Eq.~13! can be
recast as

uSJNKP̃&5A2N11 (
Ps

~21!J1P

3S J S N

2P s K D uJPP̃;Ss&, ~15!

where~...! denotes a Wigner 3-J symbol.
We use the symmetrized spin–rotational wavefunctio

in the form of Eq.~10! as the basis set for an asymmetric t
with spin–spin coupling. Again, the rotational Hamiltonia
~1! conserves all quantum numbers exceptK. Its nonvanish-
ing matrix elements in the symmetrized basis~10! calculated
with the use of expansion~12! are

^G rltSJNKP̃uHr uG rltSJNK8P̃&[^KuHr uK8&,

where^KuHr uK8& is given by~7!. The selection rules are th
same as in Eq.~8!, plusDJ50.

2.3. Fine structure of the spin–rotational states in T1

The Hamiltonian of the spin–spin interaction in the tri
let state has the form43

HSS5DS Sx
22

1

3
S2D1E~Sz

22Sy
2!, ~16!

whereSx,y,z are projections of the spin angular momentu
operator on the MCF axes, andD andE are the fine structure
splitting constants given in Table II. In a nonrotating mo
eculeHSS has three eigenfunctions,

HSSuTx,y,z&5Tx,y,zuTx,y,z&, ~17!

where

Tz52
2

3
D, Ty5

1

3
D1E, Tz5

1

3
D2E. ~18!

The eigenfunctions obey the relationships

SxuTx&5SyuTy&5SzuTz&50. ~19!

These functions transform as thex, y, z components of a
vector under theD2 group rotations of the electronic spi
variables according toGs5B3 , B2 , and B1 , respectively.
Since these rotations change only the sign ofSx , Sy , andSz ,
the Hamiltonian~16! is invariant, and hence has no of
diagonal matrix elements. Similarly, the products in Eq.~19!
transform by Gs3Gs5A, and hence identically vanish
Thus, Eqs.~18! and ~19! are consequences of the symme
properties of the system.

The above wavefunctions can also be expressed in te
of the spin functionsuSs& with a definite spin projections,38
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uTx&52 i221/2~ u11&2u1,21&),

uTy&5221/2~ u11&1u1,21&),

uTz&52 i u10&. ~20!

Let us define Cartesian components of two traceless ten

Ti j 5
1

2
~SiSj1SjSi !2

1

3
S2d i j , Qi j 5Qii d i j , Qxx5

2

3
D,

Qyy52
1

3
D2E, Qzz52

1

3
D1E, ~21!

and the corresponding spherical tensorsTn
(k) andQn

(k) of the
second rankk5237 by

T0
~2!52A3

2
Tzz, T61

~2!56~Txz6 iTyz!,

T62
~2!52

1

2
~Txx2Tyy62iTxy!,

Q0
~2!5621/2~D23E!, Q61

~2!50,

Q62
~2!52

1

2
~D1E!, ~22!

with all projections in Eqs.~21! and~22! being taken on the
MCF axes. Then Eq.~16! takes the form

HSS5 (
n52k

k

~21!k2nQn
~k!T2n

~k! , ~23!

which enables us to invoke the Wigner–Eckart theorem
calculate the relevant matrix elements for a rotating m
ecule.

Consider first the matrix elements ofHSS in the nonsym-
metrized basisuSJNKP̃&. SinceHSS commutes withS2, J2,
andJz̃ , and does not commute withN2 andNz , it is diago-
nal in S, J, and P̃, but not in N and K. Introducing the
notation

^SJNKP̃uHSSuS8J8N8K8P̃8&

[dSSdJJ8d P̃P̃8^NKuHSSuN8K8&

and inserting expansion~15!, we obtain

^NKuHSSuN8K8&[^N8K8uHSSuNK&5A~2N11!~2N811!

3 (
nPss8

~21!22nQn
~2!S J S N

2P s K D
3S J S N8

2P s8 K8
D ^SsuT2n

~2! uSs8&. ~24!

The advantage of using~15! rather than~12! is that bothQn
(2)

and ^SsuT2n
(2)uSs8& are independent of the Euler angles,

that the rotational factor is merelydJJ8dPP8d P̃P̃8 . The re-
maining pure spin matrix element in Eq.~24! is calculated by
applying the Wigner–Eckart theorem,37
rs,

o
l-

^SsuT2n
~2! uSs8&5~21!S2s21

3S S 2 S

2s 2n s8
D ^SiT~2!iS&, ~25!

where the reduced matrix element is

^SiT~2!iS&5
1

2A6
@~2S21!2S~2S11!~2S12!~2S13!#1/2

~26!

(5A5 for S51). Substituting Eqs.~25! and ~26! into Eq.
~24! and summing, we obtain forS51

^NKuHSSuN8K8&[^N8K8uHSSuNK&

5~21!J2KA5~2N11!~2N811!

3S 2 N8 N

K82K 2K8 K D
3H N N8 2

1 1 JJ QK2K8
~2! , ~27!

where$...% stands for a Wigner 6 –J symbol. The following
selection rules stem from Eqs.~22! and ~27!:

DS5DJ50, DN50,61,62, DK50,62. ~28!

Matrix elements~27! also obey the relation

^N,2KuHSSuN8,2K8&[~21!N1N8^NKuHSSuN8K8&,
~29!

which is easy to deduce from the symmetry properties of
3 –J symbol.37

The matrix elements in the symmetrized basis~10! are
off-diagonal int, N, andK. Introducing the notation

^G rltSJNKP̃uHSSuG rl8t8S8J8N8K8P̃8&

[dll8dSS8dJJ8d P̃P̃8^tNKuHSSut8N8K8& ~30!

and applying~29!, we find

^tNKuHSSut8N8K8&5 f K f K8@^NKuHSSuN8K8&

1t^N,2KuHSSuN8K8&#.

It is easy to verify that theHSS matrix is symmetric in this
basis, as well as in the original basis~see Eq.~24!!. As is
evident from Eq.~30!, the following selection rule, in addi
tion to ~28!, applies to spin–spin coupling:

Dl[l2l850. ~31!

Explicitly, the nonvanishing matrix elements ofHSS in
terms of the matrix elements~27! are

^1N0uHSSut8N82&5&^N0uHSSuN82&,

^tN1uHSSut8N81&5^N1uHSSuN81&1t^N,21uHSSuN81&,

^tNKuHSSut8N8K8&5^NKuHSSuN8K8&, K1K8Þ2. ~32!

The total Hamiltonian for the triplet state can be writte

HT5Hr1«HSS, ~33!
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where« is a parameter to be used in drawing a correlat
diagram. SinceHT has no matrix elements between symm
trized basis states~10! differing in eitherG r or l, its eigen-
functions can also be characterized byG r andl ~in addition
to the conserved quantum numbersS, J, and P̃). Putting a
prime on all quantities relating to the triplet state, we obt
the following representation for the wavefunctions:

uGTG r8l8S8J8i 8P̃8&5 (
t8N8K8

C
t8N8K8

~GTGr8l8S8J8 i 8!

3uG r8l8t8S8J8N8K8P̃8&, ~34!

where i 8 labels the eigenvalues ofHT for a givenG r8 , l8,
S8, J8. For any givenJ8, G r8 runs over the IR’s of theD2

group, and, for eachG r8 , the l8 assumes a definite valu
from Table III. The summation on the right-hand side of E
~34! is taken overN85J8, J861; K8 runs from 0 toN8 over
even or odd values for a givenG r8 , according to Table III,
and the sum overt8 involves only a single term, sincet8 is
uniquely fixed byl8 and N8 according to the definition in
Eq. ~5!.

2.4. Singlet contamination of the triplet state

The triplet state is assumed to be mixed, via spin–o
coupling, with an excited singlet stateSn having GSn

5B2u

symmetry,26,31 giving it radiative character.~We do not con-
sider a mixing of the ground state with an excited triplet st
Tn , which may be of importance in pyrazine.46! The inten-
sities in theT1←S0 absorption spectra depend on the deg
of this mixing. We first consider general constraints, due
the Pauli principle, on the symmetry species of levels t
can mix with one another. These restrictions are indepen
of the form of the particular mixing operator.

Let c and c8 stand for the total wavefunctions of th
states that are coupled via some interaction Hamilton
H int . They are represented as products of the electronic
brational, rotational, and nuclear-spin wavefunctions,

c5cecvc rcns , c85ce8cv8c r8cns8 ,

whose symmetry properties depend on their behavior w
respect to the feasible permutations47 of the nuclei. Every
such permutationP can be performed by a rotationRPD2 .
This is done in three steps. First, the MCF is rotated w
respect to the LCF, which results in the transformat
c r→G rc r , whereG r is an IR ofD2 . Second, the electroni
coordinates and nuclear displacements must be returne
their initial values by the inverse rotationR21; in D2 , it is
the same asR. This leads tocecv→(Gece)(Gvcv), where
Ge andGv are again IR’s ofD2 . Third, the permutationP is
applied to the nuclear spin variables, resulting incns

→Gnscns . Since the set of three feasible permutations p
the identity~no rotation! operator constitute a group isomo
phic to D2 , Gns is an IR ofD2 as well.

The symmetry species of the total wavefunction w
respect to the feasible permutations is therefore the pro
of the symmetry species of each of the components,

G5GeGvG rGns , G85Ge8Gv8G r8Gns8 . ~35!
n
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These permutations involve spinless carbon nuclei, spin-
nitrogen nuclei, and an even number~two or four! of protons
whose total spin is again an integer. Then, according to
Pauli principle, the total wavefunction must be invariant u
der the feasible permutations of the nuclei, i.e.,

G5G85A, ~36!

whereA is the totally symmetric representation ofD2 .
Now, the interaction HamiltonianH int of interest is in-

dependent of nuclear spin. This means thatcns5cns8 and
Gns5Gns8 . Combining this with Eqs.~35! and~36! yields the
final relation

GeGvG r5Ge8Gv8G r85Gns . ~37!

For the mixing of the vibrationlessSn andT1 states one has
Ge5B2u , Ge85B1u , and Gv5Gv85Ag . Then Eq.~37! re-
duces toB2G r5B1G r85Gns , where theD2 group IR’s are
used instead ofD2h . Table IV shows the symmetry specie
of the rotational levels that are allowed to mix according
this result.

Next, we derive an expression for matrix elements of
spin–orbit HamiltonianHso, which couplesT1 to the singlet
manifold Sn . In the Hartree–Fock self-consistent field a
proximation, Hso is represented by a sum of one-electr
operators, each acting on the coordinates of a sin
electron,1,34

Hso5(
a

ba•sa , ~38!

where ba is a body-fixed vector whose components in t
MCF depend on the Cartesian coordinates of theath electron
and on the nuclear displacements, andsa is the spin operator
of the ath electron. Equation~38! can be further simplified
providing that the electronic states of interest are the gro
state and only one-electron excited states. For instance
1B2u and3B1u states of pyrazine are formed by promoting
single electron from the filledp2 and n1 orbitals, respec-
tively, to the empty orbitalp4* .31,48 Then the summation in
Eq. ~38! can be taken over two electrons,

Hso5b1•s11b2•s2 . ~39!

The equivalence of Eqs.~38! and ~39! can be proved by a
straightforward calculation, e.g., using the method of sec
quantization.37

In order to calculate theSn2T1 vibronic matrix element
of Hso, Eq. ~39!, we note that the spatial part of the ele

TABLE IV. Symmetry speciesG r andG r 8 of the rotational sublevels of the
vibrationlessB1u andB2u states, respectively, that will mix via an arbitrar
coupling independent of nuclear spin. The symmetry species of the co
sponding nuclear spin wavefunctions,Gns , are also given.

G r G r8 Gns

A B3 B1

B1 B2 A
B2 B1 B3

B3 A B2
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tronic wavefunction is symmetric under electron permu
tions for the singlet state and antisymmetric for the trip
state. Then, the vector

c[^GSn
ub1uGT&52^GSn

ub2uGT& ~40!

can be defined for each participating singlet state, and
desired matrix element takes the form

^GSn
uHsouGT&5cG5 (

s50,61
~21!12scs

~1!G2s
~1! , ~41!

whereG5s12s2 . The components of the first-rank spheric
tensors are defined as37

c0
~1!5 icz , c61

~1!57 i221/2~cx6 icy!, ~42!

and similarly forGs
(1) . The matrix elements ofGs

(1) over the
spin functionsuSs& are easily calculated to give

^00u~21!12sG2s
~1! u1s8&52 idss8 . ~43!

In the particular case of pyrazine, the spatial parts of
electronic wave functions can be written in terms of on
electron orbitals as

uGSn
&5221/2@p2~r1!p4* ~r2!1p2~r2!p4* ~r1!#,

uGT&5221/2@n1~r1!p4* ~r2!2n1~r2!p4* ~r1!#,

wherer1,2 are the coordinates of the two electrons. Then

c5
1

2
^p2ubun1&.

Sincep2 and n1 transform asB3 and A, respectively, the
vectorc has only one nonvanishing component,

cx5
1

2
^p2ubxun1&[vso&, cy5cz50, ~44!

where the spin–orbit coupling parameter isvso.
Using Eq.~44!, we recast Eq.~42! as

cs
~1!52 isvso. ~45!

From Eqs.~20!, ~43!, and ~45! we deduce that only theTx

triplet sublevel is contaminated with theSn singlet via spin–
orbit coupling ~41!. This result is a consequence
symmetry.38 Indeed,Hso is invariant under theD2 group
transformations of the electronic space and spin coordin
and nuclear displacements. Hence, a vibrationless tri
level uGTGs& can be mixed with a vibrationless singletuGSn

&
only whenGT3Gs5GSn

. For GT5B1 andGSn
5B2 , it fol-

lows that only theTx level with Gs5B3 mixes with the
singlet.

Next, we calculate the spin–rotational matrix eleme
of Eq. ~41!,

^SJNKP̃uHsouS8J8N8K8P̃8&

[dJNdJJ8d P̃P̃8^KuHsouJ8N8K8&, ~46!

whereS50 andS851. Now Hso denoteŝ GSn
uHsouGT&, and

standard notation is used for the singlet and triplet wavefu
-
t

e

l

e
-

es
et

s

c-

tions ~see Eq.~9!!. Inserting Eq.~41! and the spin–rotationa
functions in the form of expansion~15!, we obtain after
simple algebra1

^KuHsouJ8N8K8&5vso~21!J82K11A2N811

3 (
s8561

s8S J8 1 N8

2K s8 K8
D , ~47!

where use was made of Eqs.~43! and ~45!. These matrix
elements have the obvious property

^2KuHsouJ8N8,2K8&[~21!N1N8^KuHsouJ8N8K8&,
~48!

whereN5J8 according to Eq.~46!. The matrix elements of
Hso in the symmetrized basis~10!,

^G rltSJNKP̃uHsouG r8l8t8S8J8N8K8P̃8&

[dll8dJNdJJ8d P̃P̃8^tKuHsout8J8N8K8&, ~49!

can be expressed in terms of~47!:

^tKuHsout8J8N8K8&5 f K f K8@^KuHsouJ8N8K8&

1t8^KuHsouJ8N8,2K8&#, ~50!

where use was made of Eq.~48!. The selection rules for the
matrix elements~49! are

Dl50, DS561, DJ50,

DN50,61, DK561. ~51!

We see thatHso conservesl and changesK by one.
According to Table III, this means thatHso mixes the states
of the following rotational symmetriesG r : B1↔B2 and
B3↔A. In other words,Hso satisfies the general require
ments for a mixing operator as displayed in Table IV. Su
stituting Eq.~47! into ~50!, we obtain

^tKuHsout8J8N8K8&5vsof K f K8~21!J82K11A2N811

3 (
s8561

s8F S J8 1 N8

2K s8 K8
D

1t8S J8 1 N8

2K s8 2K8
D G . ~52!

Penneret al.25 introduced the conjecture of a so-calle
MJ8 selectivity of the spin–orbit coupling, assuming that, o
of a manifold of triplet states with givenJ8, a single state
with MJ850 borrows oscillator strength from an excited si
glet. This is shown to be incorrect by our Eq.~52!. It is easy
to verify that for everyJ8>1, all 3(2J811) triplet sublevels
borrow oscillator strength fromSn .

The next step is to calculate the singlet-contamina
triplet wave function,

uGT ;G r8l8t8S8J8N8K8P̃8&

→(
^G rltSJNKP̃uHsouG r8l8t8S8J8N8K8P̃8&

ET2ESn

3uGSn
;G rltSJNKP̃&, ~53!
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where the unperturbed triplet function is omitted and the s
is taken over all quantum numbers of theSn state. The en-
ergy denominator depends on the quantum numbers of
participating states, and in general Eq.~53! depends on the
rotational constants of the contaminating singlet state. H
ever, in pyrazine theSn state is assumed to lie at a muc
higher energy than theT1 state, in which case the purel
electronic energy gapDE betweenSn andT1 can be substi-
tuted for the energy denominator in Eq.~53!. We also note
that, strictly speaking, the linear combinations~34! found
after diagonalizing the total triplet-state Hamiltonian~33!
rather than the basis functions~10! should be corrected fo
the contamination withSn . However, after making the abov
approximation to the energy denominator, we obtain
same result by calculating~53! and inserting it into~34!.
Finally, the symmetric top wavefunctions for theSn state are
used in Eq.~53!, thus neglecting theSn asymmetry effect. As
a result, the mixing of the triplet state is independent of
rotational constants of the contaminating singlet state.

Inserting Eqs.~49! and ~52! into ~53! yields

uGT ;G r8l8t8S8J8N8K8P̃8&

→
1

DE ( dll8dJNdJJ8d P̃P̃8

3^tKuHsout8J8N8K8&uGSn
;G rltSJNKP̃&

5
vso

DE (
P850

J8

f P8 f K8~21!J82P811A2N811

3 (
s8561

s8F S J8 1 N8

2P8 s8 K8
D

1t8S J8 1 N8

2P8 s8 2K8
D G uGSn

;G rl8tSJ8J8P8P̃8&,

~54!

where we changed the notationK to P8 following the con-
vention thatK is a projection ofN andP is a projection ofJ.
In the singlet function,t is fixed by the condition tha
l5l8, which yields~see the definition ofl in Eq. ~5!!

t5t8~21!J81N8. ~55!

Equation~54! can be derived in a different way. Firs
we calculate the contaminated triplet spin wavefunction
glecting rotations and using Eqs.~41!, ~43!, and~45!,

uGT ;S8s8&→
1

DE
^GSn

;00uHsouGT ;S8s8&uGSn
;00&

52
vso

DE
s8uGSn

;00&. ~56!

Then, we insert this into expansions~10! and ~15! for the
symmetrized spin–rotational function,
m

he

-

e

e

-

uGT ;G r8l8t8S8J8N8K8P̃8&

→2
vso

DE
f K82

21/2A2N811 (
P852J8

J8

~21!J81P8

3 (
s8561

s8F S J8 1 N8

2P8 s8 K8
D

1t8S J8 1 N8

2P8 s8 2K8
D G uGSn

;J8P8P̃8;00&. ~57!

Here, the singlet wavefunction must also be symmetriz
We rename the summation variables,P8→K and s8→s,
and recast the sum overK as

(
K50

J8

f K
2 ~21!J81K (

s561
sF S J8 1 N8

2K s K8
D

1t8S J8 1 N8

2K s 2K8
D G uGSn

;J8KP̃8;00&

1 (
K50

J8

f K
2 ~21!J82K (

s561
sF S J8 1 N8

K s K8
D

1t8S J8 1 N8

K s 2K8
D G uGSn

;J8,2K,P̃8;00&. ~58!

In the second term of Eq.~58! we change the sign of the
summation variable,s→2s. Using the symmetry proper
ties of the 3-J symbols37 and the identity (t8)251, we re-
write Eq. ~58! in the form

(
K50

J8

f K
2 ~21!J81K (

s561
sF S J8 1 N8

2K s K8
D

1t8S J8 1 N8

2K s 2K8
D G @ uJ8KP̃8&

1tuJ8,2K,P̃8&] uGSn
;00&, ~59!

wheret is given by Eq.~55!. By definitions~3!–~5!, ~9!, and
~10!, the total wavefunction in Eq.~59! can be written

21/2f K
21uGSn

;G rltSJ8J8KP̃8;00& ~60!

with l[t(21)J85t8(21)N85l8. Then inserting Eqs.
~58!–~60! into ~57! again leads to Eq.~54!.

2.5. Intensities of individual singlet–triplet transitions

Contamination of the triplet state with the singlet sta
Sn results in a nonzero transition moment^GSumuGTGs&,
which is proportional tô GSumuGSn

&, wherem is the electric
dipole moment operator. The only nonvanishing compon
of the transition moment in the MCF forGS5A1g and GSn

5B2u is ^GSumyuGSn
& since the symmetry species ofmy is

B2u . The corresponding Hougen intensity parame
m(B3g)38 can be introduced by the relationship

m~B3g!5&
vso

DE
^GSumyuGSn

&[
cxmy

DE
, ~61!
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wheremy now stands for the matrix element and the notat
m(B3g) reflects the fact that the triplet sublevelTx borrowing
the B2u←A1g oscillator strength belongs to the symmet
speciesGs5B3g .

The intensity of an individual transition is given by

I ~GTG r8lS8J8i 8←GSG r9l9t9S9J9N9i 9!

53(
P̃8P̃9

u^GT;G r8l8S8J8i 8P̃8um–euGS;G r9l9t9S9J9N9i 9P̃9&u2,
~62!

wheree is a unit vector in the direction of the electric field
Defining the first-rank spherical tensor components ofm and
e both in the LCF and MCF by the relations given in E
~42!, e.g.,

e
0̃

~1!
5 iez̃ , e61̃

~1!
57 i221/2~ex̃6 ieỹ!, ~63!

and similarly form where a tilde indicates the LCF axes, w
have

m–e5 (
s̃50,61

~21!12s̃ms̃
~1!e2s̃

~1! , ~64!
e

se
nwhich is similar to Eq.~41!, except that projections are take
in the LCF rather than MCF. The LCF projections can
expressed in terms of the MCF projections37:

ms̃
~1!5 (

s50,61
Dss̃

~1!ms
~1! . ~65!

In Eqs.~64! and~65!, ms
(1) ande2s̃

(1) are invariant with respec
to rotations, whereas the Wigner functionsDss̃

(1) depend on
the Euler angles. We substitute Eqs.~64!, ~65! and expan-
sions~11! and ~34! into Eq. ~62!, obtaining

I ~GTG r8l8S8J8i 8←GSG r9l9t9S9J9N9i 9!

53 (
P̃8,P̃9

U (
N8K8K9

CN8K8
~ i 8! CK9

~ i 9!M1U2

, ~66!

where we omitted some indices of the coefficients of exp
sions~11! and ~34!, and
M15^GT ;G r8l8t8S8J8N8K8P̃8u(
ss̃

~21!12s̄Dss̃
~1!ms

~1!e2s̃
~1! uGS ;G r9l9t9S9J9N9K9P̃9&. ~67!
The triplet function is approximated by Eq.~54!,

M15
vso

DE (
P8

f P8 f K8~21!J82P811A2N811

3 (
s8561

s8F S J8 1 N8

2P8 s8 K8
D

1t8S J8 1 N8

2P8 s8 2K8
D GM2 , ~68!

where
M25^GSn
;G rl8tSJ8J8P8P̃8u(

ss̃
~21!12s̄Dss̃

~1!ms
~1!e2s̃

~1! uGS ;G r9l9t9S9J9N9K9P̃9& ~69!
er
andt is given by Eq.~55!. The electronic factor in Eq.~69!
is

^GSn
ums

~1!uGS&5usumy /&. ~70!

We will choose the LCF axisz̃ along the electric field,
since the result is independent of the field direction. Th
from Eq. ~63! we havee

0̃

(1)
5 i , e6 z̃

(1)50, and Eq.~69! be-
comesM252 imyM3 /&, where

M35^G rl8tSJ8J8P8P̃8u (
s561

D
s0̃

~1!uG r9l9t9S9J9N9K9P̃9&

~71!

is the rotational factor. This matrix element can be expres
n

d

in terms of the integral of a product of three Wign
functions.37 With the use of Eqs.~9!, ~10!, and ~55! the ro-
tational factor becomes

M35 f P8 f K9dl8,2l9F ^J8KP̃u (
s561

D
s0̃

~1!uJ9K9P̃9&

1t9^J8KP̃8u (
s561

D
s0̃

~1!uJ9,2K9,P̃9&G
5 f P8 f K9dl8,2l9~21!P82 P̃8A~2J811!~2J911!

3 (
s561

F S J8 1 J9

2P8 s K9
D
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1t9S J8 1 J9

2P8 s 2K9
D G S J8 1 J9

2 P̃8 0 P̃9
D .

After inserting Eqs.~67!–~72! into Eq.~66!, the last factor in
Eq. ~72! squared can be summed to give unity. Thus,
arrive at the final expression for the intensity of an individu
transition:

I ~GTG r8l8S8J8i 8←GSG r9l9t9S9J9N9i 9!

5
1

4
dl8,2l9um~B3g!u2~2J811!~2J911!

3U (
N85uJ821u

J811

A2N811

3 (
K850

~only even or odd!

N8

f K8CN8K8
~ i 8!

3 (
K950

~only even or odd!

J9

f K9CK9
~ i 9! (

P850

J8

f P8
2

3 (
s8s561

s8FP8s8sU2

, ~73!

where

FP8s8s5F S J8 1 N8

2P8 s8 K8
D 1t8S J8 1 N8

2P8 s8 2K8
D G

3F S J8 1 J9

2P8 s K9
D 1t9S J8 1 J9

2P8 s 2K9
D G ,

~74!

and, according to Eq.~5!,

t85l8~21!N8, t95l9~21!J9. ~75!

For givenG r8 andG r9 the evenness or oddness ofK8 andK9,
as well as the values ofl8 andl9, are found from Table III.
The following selection rules are evident from the propert
of the Wigner 3-J symbols in Eq.~74!:

DJ50,61, DN50,61,62, DK50,62. ~76!

For instance,P8 differs from bothK8 andK9 by one, there-
fore K8 andK9 differ by 0 or 2. Since theK’s are both even
or odd, and since thel’s are opposite in sign, the allowe
transitions~see Table III! areA↔B1 andB2↔B3 .

Equation~73! is the main result of the present paper.
can be applied to molecules for which only the spin–s
interaction is important, and in which only one spin suble
of the nonrotating molecule is radiatively active, as in t
T1←S0 absorption spectrum of pyrazine. A more gene
formula, valid for other molecules, is derived in the Appe
dix.

In Eq. ~73!, the intensities are given for transitions b
tween the true molecular eigenstates, represented by
symmetrized rotational wavefunctions in Eqs.~3! and ~10!,
e
l

s

n
l

l
-

he

rather than between the states represented by the functio
Eqs. ~2! and ~15!. Consequently, the Boltzmann averagin
necessitated by a given experimental arrangement does
involve any additional complications associated with us
the signed angular momentum projections.38 Instead, each
intensity calculated from Eq.~73! need only be multiplied by
g exp(2E/kT), whereg is the nuclear spin statistical weigh

The singlet–triplet spectrum of a polyatomic molecule
a very complicated matter, even for a symmetric top witho
multiplet splitting. Therefore, our focus in this paper is
develop a general approach accompanied by a detailed
vation for a specific molecule, which can easily be extend
to any other one. A more general formula is given in t
Appendix.

3. RESULTS AND DISCUSSION

3.1. Correlation diagram

A correlation diagram for the spin–rotational levels
the Hamiltonian~33! is shown in Fig. 2. For«50 ~no fine
structure~FS! splitting! the levels of an asymmetric top ar
shown as horizontal bars on the left-hand side of the d
gram. The level labeling isNK21K11

, where the asymmetric
top quantum numberK11 reduces to the projection of th
angular momentumN on the top axisc, Kc , in the limit of an
oblate symmetric top (A5B). The asymmetry splitting for a
nearly oblate symmetric top is first-order in the small asy
metry parameterA2B for K1151, and second-order fo
K11.1. Therefore, the splitting of the 212 and 202 levels is
not seen at the energy scale of the figure. The symm
species of the levels are shown in brackets.

Turning on the FS interaction («.0) produces a split-
ting of all levels other thanNK21K11

5000, as shown in Fig.
2. Typically, three components are observed, correspond
to three possible values ofJ5N1S. In general, the separa
tion of the three components decreases with increasinN

FIG. 2. Correlation diagram for the lowest spin–rotational levels of theT1

state of pyrazine in the gas phase.
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FIG. 3. The calculated singlet–triple
spectrum of pyrazine-h4 at two different
resolutions. The rotational temperature
Trot510 K, Jmax512.
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~andJ!. The J53 components of the 212 and 202 levels re-
main nearly degenerate, since their coupling is to the 312 and
322 levels, which lie at significantly higher energy. Each s
of FS components belongs to the same symmetry specie
the levels from which they are derived at«50.

The spin levels of the nonrotating molecule and th
correlation with the spin–rotational levels are shown on
right-hand side of the figure. The energy separations of
Tx,y,z are arbitrary. A full correlation diagram would be two
dimensional, depending upon two parameters of the FS
teraction Hamiltonian,D and E ~see Eq.~16!!. Instead, we
show a one-dimensional section of the diagram, in whichD
and E are both proportional to«, while their ratio,E/D,
remains constant~see Eq.~33!!. In this case the correspon
dence between the symmetry species of the spin–rotati
levels and the pure spin levels is not uniquely defined, be
dependent upon the value ofE/D. Indeed, each spin–
rotational wavefunction involves contributions from all thr
spin levelsTx,y,z, as can be seen from the expansion~15! in
the limit of «50. When«.0, the same is true for the wave
functions~34!, where the relative contributions ofTx,y,z de-
pend on«. In the limit of large«, one of them dominates, bu
which one cannot be predicted without calculations, sin
this depends on theE/D ratio.

As an example, let us consider theJ51 components of
220, 202, and 000, which correlate withTz , Ty , and Tx ,
respectively. If we change the sign of the FS constantE, the
ordering of the levelsTz and Ty is reversed~see Eq.~18!!.
However, because of the non-crossing rule for terms of
same symmetry~A in the present case!, the previous corre-
lation is not preserved. Instead, theJ51 components of 220,
202, and 000 now correlate withTy , Tz , and Tx , respec-
tively.

The number of levels with a givenJ in Fig. 2 is equal to
t
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6J13, being defined by the usual momentum addition ru

3.2. Singlet–triplet spectrum of pyrazine- h 4

We next used Eq.~73! to calculate the singlet–triple
absorption spectrum of the 00

0 band of pyrazine-h4 . The
spectrum was calculated by Boltzmann averaging the in
sities of the individual transitions using a rotational tempe
ture of 7 cm21 ~10 K!. The summation over the transition
was truncated at a maximum value of the total angular m
mentumJmax512, at which point the level populations wer
less than one percent of the total population. Nuclear s
statistical weights,g(B1)5g(B3)59, g(B2)513, andg(A)
517, were also taken into account. Each line was dres
with a Lorentzian whose full width at half maximum repr
sents the resolution of the calculated spectra.

The spectra calculated with the parameters of Table
~and«51 in Eq.~33!! are shown in Fig. 3. The top spectru
has the same resolution~;2 GHz! as the published experi
mental spectra.25,26The spectrum consists of a strong cent
Q branch due to theDN50 (DN[N82N9) transitions, an
R-form branch involvingR(DN51) andS(DN52) transi-
tions on the high-frequency side of theQ branch, and aP-
form branch due to O(DN522) and P(DN521)
transitions25,26 on the low-frequency side. At this level o
resolution, most of the individual bands in theR- andP-form
branches of the calculated spectrum are structureless.
some splittings are seen, similar to those observed in
experimental spectra.25,26 For example, theP(1) member
has a shoulder on its red side, whereasP(2) is structureless.
R(0) andR(2) are weaker thanP(1) and exhibit more ob-
vious splitting.

The FS splitting becomes more pronounced in the sp
trum calculated with a higher resolution of about 600 MH
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FIG. 4. Effect of fine structure splitting
on the singlet–triplet spectrum of pyra
zine. Resolution 0.02 cm21.
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~bottom panel in Fig. 3!. The line splittings are more exten
sive in theR-form branch than in theP-form branch because
transitions in theR-form branch access higherJ values in the
triplet state.

The effect of the FS interaction on the spectrum is ma
clearer in Fig. 4 by the comparison of two spectra, one w
«50 and the other with«51. With «50, theR-form branch
is stronger than theP-form branch. Introducing the FS split
ting reduces the overall intensity of each branch, but
effect on theR-form branch is greater, since the degenera
of the triplet levels forR andS transitions is higher than tha
for P andO transitions. Hence, theR- andS-type transitions
are split into a larger number of components sharing the t
intensity of a given transition. As a result, the intensities
the P- and R-form branches become more similar, and t
spectrum acquires a sort of mirror-image symmetry with
spect to theQ branch. Such uniformity of high-J and low-J
parts of the spectrum is expected from the fact that the r
tional spacing is proportional to 2J and the rotational leve
degeneracy to 2J11, so the density of states is essentia
independent ofJ.

Figure 4 also clearly demonstrates the transition fr
Case~a! to Case~b! behavior. In bothP-form andR-form
branches, the lowJ bands are split significantly, the splittin
being of the order of the rotational band spacing. This c
responds to Hunds’s Case~a! coupling ~or, more precisely,
Case~ab!, as noted earlier!. With J increasing, the splitting
decreases and ultimately disappears in the high-J bands,
characteristic of Case~b!. Thus, we predict that Hund’s Cas
~a!–Case~b! transition can be observed in as large a po
atomic molecule as pyrazine under quite moderate resolu
conditions. The effect will also be observable in larger m
ecules, at higher resolution. Apart from the diatomic m
ecules mentioned in the Introduction, there have been
previous observations of this phenomenon in a polyato
e
h

e
y

al
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r-

-
n

-
-
o

ic

molecule. Recently, a pure Case~ab! spectrum was reported
in H2CSe.49

Figure 5 shows theR-form branch on an expanded sca
at higher resolution~150 MHz!, to illustrate the relative im-
portance of the asymmetry and FS splittings in pyrazine. T
asymmetry splitting is more important for transitions term
nating inJ<4, whereas the FS splitting is more important
higherJ. Note, in Fig. 5b, that the asymmetry split bands s
preserve their identity as rotational bands since the splitti
are smaller than the band separations. In contrast, the
splitting in Panel c is large enough to fill the gaps betwe
the low J bands. Thus, these bands are actually sp
rotational rather than rotational in nature. Clearly, a hi
resolution of about 100 MHz will be required to observe th
behavior. Even higher resolution~;10 MHz! will be re-
quired to observe the true molecular eigenstates.

3.3. Singlet–triplet spectra of pyrazine- d 4 and the
pyrazine–Ar van der Waals complex

We also used Eq.~73! to calculate the singlet–triple
spectra of pyrazine-d4 and the pyrazine–Ar van der Waa
complex. Our objective was to compare these spectra w
those of pyrazine-h4 , thereby exploring the effects of vary
ing the magnitudes of the rotational constants on the C
~a!–Case~b! transition. In the calculation on pyrazine-d4 ,
we used the known rotational constants of theS0 state~see
Table II! and assumed, for theT1 state, that the rotationa
constants are reduced upon deuteration in the same pro
tion as in theS0 state. The smallest moment of inertia in bo
states is now the moment about thex axis.44 Thus, the rota-
tional constantsA and B are exchanged in the Hamiltonia
~1!. The nuclear spin statistical weights areg(B1)5g(B3)
56, g(B2)57, andg(A)58 in this case.

Taking these changes into account, we obtain the spe
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FIG. 5. Evolution of theR-form branch from a sym-
metric top with no fine structure splitting~a,
«50) to an asymmetric top with no fine structur
splitting ~b, «50) to an asymmetric top with fine
structure splitting~c, «51). The starred band in
panel a involves degenerateR(2) and S(1) lines;
these are split in panel b due to asymmetry a
further split in panel c due to the spin–spin intera
tion. Resolution 0.005 cm21.
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shown in Fig. 6, with and without FS splitting. Comparin
the two spectra, we again see that turning on the FS split
reduces the intensity of theR-form branch relative to the
P-form branch. We also note that numerous lines appea
the gaps between the rotational bands at lowJ, and that these
lines disappear at highJ. This behavior is again a manifes
tation of the Case~a!–Case~b! transition; turning on the
g

in

rotation decouples the spin from the molecular frame a
distributes the oscillator strength more uniformly, as noted
Sec. 3.2.

The singlet–triplet spectrum of the pyrazine–Ar van d
Waals complex has been observed in a supersonic jet, u
the MPI technique19 at low resolution. No rotationally re-
solved spectra have been reported to date. To model su
of

.

FIG. 6. The calculated singlet–triplet spectrum
pyrazine-d4 . Top panel, with fine structure split-
ting; bottom panel, without fine structure splitting
Resolution 0.01 cm21, Trot510 K.
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FIG. 7. The calculated singlet–triplet spectrum
the pyrazine–Ar van der Waals complex. To
panel, with fine structure splitting; bottom pane
without fine structure splitting. Resolution 0.00
cm21, Trot51.5 K.
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spectrum, we assumed that the Ar atom lies on thez axis
perpendicular to the ring plane, at a distance of 3.5 Å, as
in benzene–Ar50 ands-tetrazine–Ar.51 With this model, the
C rotational constant remains unchanged, whereas theA and
B constants are reduced by a factor of 4.8 in both states.
nuclear spin statistical weights areg(A)5g(B1)513 and
g(B2)5g(B3)511. The spectra calculated using the
modified parameters are shown in Fig. 7.

Comparing the spectra for these species~Figs. 3, 6, and
7!, we see above all that the singlet–triplet spectrum
pyrazine–Ar is considerably more congested than that of
bare molecule, owing to the significant decrease inA andB.
Still, the complex exhibits well-defined branches in its sp
trum in the absence of the FS interaction. However, turn
on this interaction has a dramatic effect on the spectrum.
low-J rotational transitions, within61 cm21 of theQ branch,
are extensively mixed by the spin–spin coupling. Still, a d
fined level structure exists, although extremely high reso
tion ~;1 MHz! will be required to expose the individua
eigenstates. The long lifetime of the triplet state should p
mit such experiments in the near future, raising the intrigu
possibility of seeing still more underlying structure, inclu
ing that due to hyperfine interaction and/or couplings
nearly isoenergetic ground-state levels. The possibility of
serving such effects is enhanced at highJ ~cf. Fig. 7!, where
the structure with«Þ0 is even simpler than that with
«50, the transition to pure Case~b! being ‘‘complete.’’

4. CONCLUSIONS

A closed-form analytic expression has been derived
calculating the intensities of individual spin–rovibronic lin
in the singlet–triplet absorption spectrum of a polyatom
molecule. This expression takes into account both the in
manifold spin–spin coupling within the triplet state and t
intermanifold spin–orbit coupling of the triplet to an excite
singlet state. It also includes asymmetry splittings, and th
fore can be applied to asymmetric tops as well as symme
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tops. With this expression, we have calculated the spectr
three species: pyrazine-h4 , pyrazine-d4 , and the
pyrazine–Ar van der Waals complex, using the available
perimental values of the gas-phase rotational and solid-s
fine structure parameters of pyrazine-h4 and model param-
eters for the remaining molecules. Comparison of the pre
tions of the theory with the available data for pyrazine-h4

shows good agreement with experiment. The remaining m
ecules have yet to be examined at high resolution.

The computed spectra exhibit a number of interest
properties, the most notable being the transition from C
~a! to Case~b! with increasingJ and/or increasing molecula
size. Inclusion of the fine structure interaction in the ze
order triplet state results in a decrease in the intensity of
R- and S-transitions, compared toP- and O-transitions
branches, and a more symmetric spectrum. This effect
been observed in moderate resolution experiments.25,26 Ad-
ditionally, spin–rotational transitions appear in the gaps
tween ‘‘pure’’ rotational transitions at lowJ, fragmenting the
spectrum, but disappear at highJ. This effect is more pro-
nounced in pyrazine-d4 and the pyrazine–Ar van der Waa
complex, owing to their smaller rotational constants. All
the predicted behavior should be observable in experim
performed with a resolution of<100 MHz.

The analytic expression derived here can be used to
terpret the singlet–triplet spectrum of any polyatomic m
ecule with arbitrarily large~or small! rotational and fine
structure constants.

This work was made possible in part by the US NA
NRC CAST program, by Grants No. SDQ000 and NJ60
from the International Science Foundation, Grant N
NJ6300 from the International Science Foundation and
Government of the Russian Federation. It was also suppo
by the Russian Fund for Fundamental Research~Project No.
95-03-08130a! and the U.S. National Science Foundati
~CHE-9617208!.
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APPENDIX

General formula for the intensities and its relation to the
Hougen factors

A general formula for the intensities can be derived fro
Eq. ~62! if we represent the triplet function in the most ge
eral form, Eqs.~10! and ~15!, not invoking Eq.~53!. Intro-
ducing the notation

Vs8s5^GT ;1s8ums
~1!uGS&, ~A1!

we obtain

I ~GTG r8l8S8J8i 8←GSG r9l9t9S9J9N9i 9!

5
1

4
~2J811!~2J911!

3U (
N85uJ821u

J811

A2N811

3 (
K850

~only even or odd!

N8

f K8CN8K8
~ i 8!

3 (
K950

~only even or odd!

J9

f K9CK9
~ i 9!

3 (
P852J8

J8

(
s8s50,61

Vs8sFP8s8sU2

, ~A2!

whereFP8s8s is given by Eq.~74!. The selection rules are
the same as in Eq.~75!, plus DK561. The rulel852l9
does not apply anymore.

A general expression forVs8s found from Eqs.~41!,
~43!, and~56! is

Vs8s5(
i

DE
cs8

~1!* ms
~1! , ~A3!

where the star denotes the complex conjugate,ms
(1) now

stands for̂ GSn
ums

(1)uGS&, and the summation is over all con
tributing singlet statesSn . The following identity can be
easily derived either by applying the time reversal opera
~14! or from the definition of the spherical tensors in E
~42!:

V2s8,2s5~21!s81s11Vs8s
* . ~A4!

For pyrazine, retaining a single term of the sum~A3! and
inserting Eqs.~45!, ~61!, and~70!, we find

Vs8s52
1

2
s8usum~B3g!. ~A5!

In this case Eq.~A4! reduces to

V2s8,2s52Vs8s . ~A6!

Denoting the last sum in Eq.~A2! by A(P8) and using Eq.
~A6! and the properties of 3-J symbols in Eq.~74!, we ob-
tain
r
.

A~2P8!52l8l9A~P8!. ~A7!

Inserting this into the identity

(
P

A~P![ (
P>0

f P
2 @A~P!1A~2P!# ~A8!

following from Eq. ~4!, we immediately obtain the selectio
rule l852l9. Now, it is easy to verify that Eq.~A2! re-
duces to Eq.~73! in the particular case of pyrazine.

The intensities of individual rotational lines in th
singlet–triplet spectrum of a symmetric top molecule witho
fine structure splitting were given by Hougen38 in tabular
form for theD2h point symmetry group, together with direc
tions for the use of these tables for other groups. Our gen
formula ~A2! enables us to derive a comprehensive expr
sion embracing all cases considered by Hougen. In Eq.~A2!,
one must put

CN8K8
i 8 5d i 8,N8K8 and CK9

i 9 5d i 9,K9 ,

and then convert it to yield the intensities for transitio
between nonsymmetrized states~with K8 andK9 taking both
positive and negative values!. This is performed by a simple
transformation of the transition amplitude from basis~3! to
basis~2!. The result reads

I ~GTJ8N8K8←GSJ9K9!5~2N811!~2J811!~2J911!

3U (
P8s8s

Vs8sS J8 1 N8

2P8 s K8
D

3S J8 1 J9

2P8 s8 K9
DU2

, ~A9!

where the actual summation is performed only overs, since
P85s1K8 and s85s1DK (DK[K82K9). The 333
matrix ~A1! can be expressed in terms of nine real intens
parameters,V ik , i ,k5x,y,z, in the same manner as eac
member of the sum of Eq.~A3! can be expressed in terms o
cimk /DE using the definition~42!. For instance,

V005 iVzz, V11,215
1

2
~2 iQxx1 iVyy2Vxy2Vyx!,

~A10!

etc. For theD2h group, our intensity parameters can be r
lated to the Hougen parametersm(B1g), m(B2g), and
m(B3g) as shown in the following examples.

For DK5DN5DJ50, Eq. ~A9! yields

I 5
2J11

J2~J11!2 U i

2
~Vxx1Vyy!@K22J~J11!#

1 iVzzK
22

1

2
~Vxy2Vyx!KU2

, ~A11!

whereK5K9 andJ5J9. Thus, in general, five intensity pa
rameters govern this particular transition. In case of
3Au←1A1g transition in theD2h group, the possible contami
nating singlets having nonzero transition momentsmx,y,z

from the ground state are1B3u , 1B2u , and 1B1u , respec-
tively. The corresponding triplet sublevels acquiring the o
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cillator strength via the spin–orbit coupling parameterscx,y,z

are Tx,y,z . Since the transformation rules forV ik are the
same as forcimk , we obtain the following three nonvanish
ing parameters, assigning them Hougen’s notations:

m~B1g!5Vzz, m~B2g!52Vyy , m~B3g!5Vxx .
~A12!

These definitions apply to all transitions withGS3GT5Au .
Equations ~A9! and ~A12! entirely reproduce Hougen’
Table I, apart from an insignificant phase factor of the tra
sition amplitude. Similarly, forGS3GT5B1u , two nonvan-
ishing parameters are

m~B2g!52Vyx , m~B3g!5Vxy . ~A13!

Equations~A9! and ~A13! reproduce Hougen’s Table II
Pyrazine belongs here, withm(B2g)50 ~cf. Eqs. ~A5!,
~A10!, and~A13!!. ForGS3GT5B2u or B3u , all five param-
eters vanish.

For DK5DN5DJ51 Eq. ~A9! yields

I 5
~J1K11!~J1K12!

4~J11!2~J12!
u~ iVxz2Vyz!~J2K11!

1~ iVzx2Vzy!~K11!u2. ~A14!

For GS3GT5B2u in theD2h group, the nonvanishing param
eters are

m~B1g!5Vzx , m~B3g!5Vxz . ~A15!

Equations~A9! and ~A15! reproduce Hougen’s Table III
Application of Eq.~A9! to any other point group is straigh
forward; one must calculate the intensity of a particularDK,
DN, DJ transition and then determine, by the usual rul
which of the intensity parameters vanish. For a molec
with no symmetry, all nine intensity parametersV ik are
present, but not all of them are relevant to a given transit
Thus, five parameters govern the intensity of theDK5DN
5DJ50 branch, Eq.~A11!, and the other four govern th
intensity of theDK5DN5DJ51 branch, Eq.~A14!.
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Radiation of a charged particle in a random stack of plates
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Radiation from a charged particle moving in a system of randomly spaced plates is considered. It
is shown that the dominant radiation mechanism is diffusion. The total intensity of radiation
is investigated, and its quadratic dependence on particle energy is noted in the optical region. A
comparison with Cherenkov radiation is carried out. ©1998 American Institute of
Physics.@S1063-7761~98!00607-6#
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1. INTRODUCTION

More than 50 years ago, Ginzburg and Frank1 showed
that radiation is produced when a charged, uniformly mov
particle passes through the interface between two media
different dielectric constants. Since then, much research
been done on this problem~for a review, see for example
Ginzburg and Tsytovich2!. It turns out that the dependence
total intensity of radiation at an isolated interface on parti
energy is logarithmic in the optical region. To be able to u
transition radiation to detect relativistic charged particles
is desirable to have a stronger energy dependence. In
context, the x-ray region turns out to be more promisi
because in this region the energy dependence of the radi
intensity is linear.3 However, the number of photons emitte
at the interface is small. To increase this number, system
many plates are used. Earlier, when investigating radiatio
a stack of plates, mainly the x-ray region was considered~see
for example Garibian and Yang4!. In this region the interac-
tion of the electromagnetic field with each plate is weak,
multiple scattering effects can be neglected.

The objective of our paper is to take these effects i
account when charged particles radiate while traversin
random stack of plates. Having considered three-dimensi
random media,5 we know that multiple scattering effects i
the electromagnetic field play a crucial role in the radiat
of a charged particle. Below we show that in the on
dimensional case, these effects play an even more impo
role, particularly in the optical region.

2. FORMULATION OF THE PROBLEM

The system which we want to study is a stack of pla
randomly spaced in a homogeneous medium. Let us ass
that the plates fill the regionszi2a/2,z,zi1a/2 ~wherea
is the plate thickness andzi are random coordinates!. The
permittivity of the system can be represented in the form

«~z,v!5«0~v!1(
i

@b~v!2«0~v!#

3@ uu~z2zi2a/2!2u~z2zi1a/2!u#, ~1!
511063-7761/98/87(7)/5/$15.00
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where«0(v) andb(v) are the permittivity of the homoge
neous medium and the plate, respectively, andu(x) is the
Heaviside step function. It is convenient to represent the p
mittivity as a sum of average and varying parts:

«~z,v!5«1« r~z,v!, ^« r~z,v!&50, ~2!

where«5^«(z,v)&, and averaging over random coordinat
of plates is defined as follows:

^ f ~z,v!&5E )
i

dzi

Lz
f ~z,zi ,v!, ~3!

whereLz is the system size in thez-direction.
In the Fourier representation, Maxwell’s equations f

the vector potentialA of the electromagnetic field has th
form

¹2A1
v2

c2 «~r ,v!A~r ,v!5 j ~r ,v!, ~4!

where

j ~r ,v!52
4pe

c

v

v
d~x!d~y!eivz/v

is the current of a charged particle moving uniformly in t
z-direction with velocityv. The electric fieldE is related to
the potentials by

E~r ,v!5
iv

c
A~r ,v!2¹w~r ,v!. ~5!

Finally we write the condition relating the vector an
scalar potentials of the electromagnetic field:

¹•A2
iv

c
«~r ,v!w~r ,v!50. ~6!

One needs the relations~4!–~6! to calculate the intensity
of radiation. It follows from the symmetry of the problem
that the vector potentialA points in thez-direction, soAi

5dziA(r ,v).
We separate the electric field into two parts,E5E0

1Er , to determine the radiation intensity. HereE0 is the
electric field of a charge moving in a homogeneous medi
© 1998 American Institute of Physics
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with dielectric constant«, andEr is the radiation field asso
ciated with fluctuations of the dielectric constant. The rad
tion tensor is

I i j ~R!5Eri ~R!Er j* ~R!, ~7!

whereR is the radius vector of the observation point, whi
is far from the system (R@L).

The vector potential can be split in a similar mann
A5A01Ar , whereA0 andAr satisfy the equations

¹2A01
v2

c2 «A05 j ~r ,v!,
~8!

¹2Ar1
v2

c2 «Ar1
v2

c2 « rAr52
v2

c2 « rA0 .

The first equation is easily solved, and for the backgrou
field A0 one has

A0~q!52
8p2e

c

d~qz2v/v !

k22q2 . ~9!

It is convenient to express the radiation tensor~7! in
terms of the radiation potentialAr . Using~5!–~7!, we obtain

^I i j ~R!&5
v2

c2 dzidz j^Ar~R,v!Ar* ~R,v!&

1
dzi

« K Ar~R,v!
]2

]Rj]z
Ar* ~R,v!L

1
dz j

« K Ar* ~R,v!
]2

]Ri]z
Ar~R,v!L

1
c2

v2«2 K ]2

]Ri]z
Ar~R,v!

]2

]Rj]z
Ar* ~R,v!L .

~10!

We express the radiation potentialAr in terms of the Green’s
function of the second equation in~8! for averaging in~10!:

Ar~R!52
v2

c2 E « r~r !A0~r !G~R,r !dr , ~11!

where the Green’s function satisfies

F¹21k21
v2

c2 « r~z!GG~r ,r 8!5d~r2r 8!, ~12!

andk5vA«/c.

3. GREEN’S FUNCTION

The bare (« r50) Green’s function can easily be ob
tained from~12!:

G0~q!5
1

k22q21 id
. ~13!

In the coordinate representation one has from~13!

G0~r !52
1

4pr
eikr . ~14!

To perform the averaging, we use the impurity-diagra
method.6 Summing the diagrams in the independent-scatte
-

,

d

er

approximation, we obtain the Dyson equation for the aver
Green’s function:

~15!

The dashed line denotes the Fourier componentB(p)
5(2p)2d(pr)B(upzu) of the correlation function of the one
dimensional random field

B~ uz2z8u!5
v4

c4 ^« r~z!« r~z8!&, ~16!

wherepr is the transverse component ofp. The solution of
Eq. ~15! can be represented in the form

G~q!5
1

k22q21 i Im S~q!
, ~17!

in which the imaginary part of the self-energy is given
Ward’s identity:

Im S~q!5E dp

~2p!3 B~p! Im G0~q2p!

5
1

4Ak22qr
2 @B~ uqz2Ak22qr

2u!

1B~ uqz1Ak22qr
2u!#, uqru,k. ~18!

The dephasing length of a pseudophoton in thez-
direction is determined by the imaginary part of the se
energy:

l ~q!5
Ak22qr

2

Im S~q!
. ~19!

As expected, the dephasing length depends on the direc
of the pseudophoton momentum. When the momentum
directed alongz, one obtains from~18! and ~19!

l ~q50!5
4k2

B~0!1B~2k!
. ~20!

From this point on, we call this quantity the pseudophot
mean free path.

Using ~1!–~3! and ~16!, one can find the correlation
function

B~qz!5
4~b2«!2n sin2~qza/2!

qz
2

v4

c4 . ~21!

Here n5N/Lz is the density of plates in the system. Usin
~21!, it is easy to see thatB(2k)/B(0);1/(ka)2!1 when
ka@1. Therefore, the photon mean free path is

l[ l ~q50!'H 4k2/B~0!, ka@1

2k2/B~0!, ka!1.
~22!

The foregoing only holds in the weak scattering regim
for which ImS(q)/(k22qr

2)!1. Substituting~18! into this
condition, we obtain
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B~0!1B~2kucosqu!
4k3ucosqu3 !1. ~23!

It follows from ~23! that atq'p/2, the weak-scattering con
dition is not satisfied. This is natural, because in this case
pseudophoton moves parallel to the plates. Takingq5p/2
2d and using~22! and ~23!, one hasd@(1/kl)1/3.

4. RADIATION INTENSITY

We now turn to a close examination of radiation inte
sity. First we consider the single-scattering approximation
this approximation, the Green’s function in~11! is simply
replaced by the bare one. Substituting~11! into ~10! and
using the relations

G0~R,r !'2
1

4pR
eik~R2n–r !,

]2G0~R,r !

]Ri]z
'

k2ninz

4pR
eik~R2n–r !, R@r ~24!

and ~14!, after simple transformations we obtain the follow
ing expression for the single-scattering contribution to rad
tion intensityI (n)5(c/2)R2I i i (R):

I 0~n!5
pe2

c
d~0!

B~ uk02knzu!nr
2

@k2nz
22k0

2#2

v2

c2 . ~25!

Heren5R/R is the unit vector in the direction of the obse
vation pointR and k05v/v; the d-type singularity of~25!
results from the infinite path of the charged particle in t
medium. If one takes into account the finite size of the s
tem,d~0! must be replaced byLz/2p. To analyze the angula
dependence of~25!, it is convenient to represent it in th
form

I 0~u!5
e2

2c

LzB~ uk02k cosqu!sin2 q

@g221~k2/k0
2!sin2 q#2

v2

k0
4c2 , ~26!

whereg5(12«v2/c2)21/2 is the Lorentz factor of the par
ticle in the medium,nz5cosq, andnr5sinq.

Note the key features of the single-scattering contri
tion I 0. It follows from ~26! and the form~21! of the corre-
lation function B that at relativistic energies (g@1,
k0→k), the maximum of radiation lies in the range of angl
q;g21 in the forward direction. Integrating~21! over the
angles, it is easy to see that the dependence of total inte
on particle energy is logarithmic,I 0} ln g. As B}n, the de-
pendence of radiation intensity on the number of plates
linear. All of these results are consistent with previo
results.2,4

We now consider the diffusion contribution to the rad
tion intensity. Using~10!, ~11! and ~22!, one can represen
the diffusion contribution to the radiation tensor in the for
e

-
n

-

-

-

ity

is
s

I i j
D~R!5

k2

16p2R2« E dr dr 8B~r2r 8!A0~r !A0* ~r 8!

3E dr1dr2dr3dr4 exp@2 ikn~r12r2!#

3P~r1 ,r2 ,r3 ,r4!G~r3 ,r !G* ~r ,r4!

3@dzid ẑj1ninjnz
22d ẑinjnz2d ẑjninz#, ~27!

whereP(r1 ,r2 ,r3 ,r4) is the diffusion propagator:

~28!

We find the diffusion propagator as in the thre
dimensional case.5 As follows from ~28!, P can be repre-
sented in the form

P~r1 ,r2 ,r3 ,r4!5B~r12r2!B~r32r4!

3P~R8,r12r2 ,r32r4!, ~29!

whereR85(1/2)(r31r42r12r2) and P satisfies the equa
tion

E dp

~2p!3 F12E dq

~2p!3 f ~q,K !B~p2q!GP~K ,p,q8!

5 f ~q8,K !, ~30!

where

f ~q,K !5G~q1K /2!G* ~q2K /2!. ~31!

As will be seen, one has to knowP whenK→0. In this
limit, the diffusion propagator has the form5

P~K→0,p,q!5
Im G~p!Im G~q!

Im S~q!
A~K !, ~32!

where

A~K !5F E ~q–K !2 Im G~q!

Im2 S~q!

dq

~2p!3G21

. ~33!

Substituting~17! and ~18! into ~33!, choosingK i ẑ, and cal-
culating the integral, we obtain

A~K !5
1

k

20p

K2l 2 . ~34!

When we know the form of the diffusion propagator, w
can calculate the diffusion contribution to the radiation
tensity. Transforming variables in~27! and going to the Fou-
rier representation, we obtain

I D~n!5
k2c

32p2«
~12nz

2!E dq1dq2dq3dq4

~2p!12

3uA0~q1!u2B~q2!B~q3!B~q4!P~K→0,

2q32kn,q11q21q4!uG~q11q2!u2. ~35!

Substituting~9! into ~35! and integrating using Ward’s
identity ~18!, we have
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I D~n!5
e2

2c«
~12nz

2!A~K !k2

3Im S~kn!LzE dqr

~2p!2

1

~qr
21k0

22k2!2

3
B~ uk01Ak22qr

2u!1B~ uk02Ak22qr
2u!

B~0!1B~2Ak22qr
2!

. ~36!

The singularity of the radiation intensity results from t
diffusion pole. When one takes into account the finite size
the system, the diffusion paths of the photon are cut off at
system size, and therefore 1/K2 can be replaced byLz

2 as
K→0 ~we assume thatLz,Lx ,Ly). It follows from ~36! that
for particle energiesk0→k, g@1, the main contribution to
the integral overqr comes fromqr→0. The correlation func-
tion B in ~36! varies slowly whenqr→0 provided that
g2@ak0 ~we discuss this condition in more detail in the ne
section!; therefore, taking qr'0 ~under the condition
g@ak) and substituting~34! and ~16! into ~36!, we obtain

I D~v,q!5
5

2

e2g2

«c S Lz

l ~v! D
3 sin2 q

ucosqu
. ~37!

Note the main features of the diffusion contribution~37!.
Comparing~37! with the single-scattering contribution~26!,
we see thatI D/I 0;Lz

2/ l 2@1. This means that in the wave
length rangel! l (l)!Lz , the dominant radiation mecha
nism is diffusion. Note the strong dependence of spec
intensity on the particle energy, which also holds for the to
intensity~integrated over frequencies and angles!. Recall that
this dependence in conventional transition radiation is lo
rithmic in the optical region. WhenLz;N, then from~37!
the radiation intensity has a strong dependence on the n
ber of plates,I}N3.

We now discuss a reason for the strong dependenc
radiation intensity on particle energy. It is convenient to re
resent the background field in the form

A0~q!}
d~qz2k0!

qr
21k0

2g22 . ~38!

It follows from ~38! that at relativistic energiesg@1, most
pseudophotons have momentum with transverse compo
qr→0. It is easy to see from~38! that the total number o
pseudophotonsNps}*A0

2(q)dq is proportional tog2. Each
pseudophoton must be scattered to be converted into a
photon. The probability of large-angle scattering
pseudophotons is low in single scattering. Therefore, on
small contigent of pseudophotons is converted into photo

This picture changes dramatically in multiple scatterin
for which almost all pseudophotons are converted into p
tons via multiple scattering by the plates. As the total num
of pseudophotons is proportional tog2, the radiation inten-
sity ~total number of photons! is also proportional tog2.

5. COHERENCE LENGTH

It is known ~see for example Ref. 1! that the coherence
length~or radiation formation zone! is the distance at which
f
e

t

al
l

-

m-

of
-

nt

eal
f
a
s.
,
-
r

the intrinsic field of charged particle separates from the
diation field. In other words, it is the length at which th
interference term becomes small. The interference term c
sists of expressions likeI i;A0* (R,v),Ar(R,v). Using ~9!
and going to the coordinate representation, one obtains
following expression for the background field:

A0* ~R!5
2e

p2c
e2 ik0zK0S k0r

g D , ~39!

whereK0 is the modified Bessel function~see for example
Ref. 7!.

Using ~11!, we obtain the averaged radiation potentia

^Ar~R!&52
v2

c2 E drA0~r !^« r~r !G~R,r !&. ~40!

Using the impurity diagrams~15!, one can represent the av
erage in~40! in the form

^« r~r !G~R,r !&5E dr1G0~R,r1!B~r12r !G~r12r !.

~41!

Using the approximations~24! for an observation point
R far from the system,R@r 1 , we finally obtain

I i~R!;
exp~ ikR2 ik0z!

4pR
K0S k0r

g D E dr dr1A0~r !

3B~r12r !G~r12r !exp~2 ikn–r1!. ~42!

For our purposes, it suffices to consider only the oscillat
part of ~42!,

I i~R!}exp~ ikR2 ik0R cosq!. ~43!

The interference term will be small when the oscillations a
strong, R(k2k0 cosu)@2p.1 In this case any integration
will make the interference contribution negligible. Cons
quently, the coherence length in our case has the form

l c~q!5
2p

uk2k0 cosqu
. ~44!

Now consider some special cases. For relativistic en
gies k0→k and small anglesq'0, taking into account the
definition of k andk0 , one finds from~44!

l c[ l c~0!'
4pg2

k0
. ~45!

For anglesu'p, the coherence length has the form

l c~p!'
2p

k1k0
. ~46!

As expected, the coherence length in the direction
particle motion (q'0) is much greater than in the backwa
direction (q'p), where it is of the order of the wavelength

Now the meaning of the conditiong2@ak0 , which we
used in the previous section, becomes clearer. It means
many plates must be placed at the coherence length,l c@a,
in order for multiple scattering effects of the pseudopho
to play an important role.
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6. CONCLUSIONS

We have considered the diffusion contribution to the
diation intensity of a relativistic particle traversing a stack
randomly spaced plates. It was shown that for a large num
of plates (N@1), in the wavelength rangel! l , for angles
ucosqu@(1/kl)1/3, and coherence length much greater th
the plate thickness (l c@a), the diffusion contribution is
dominant. Note that the backward and forward intensities
relativistic charged particle radiation intensity are equ
whereas in a regular stack, a relativistic particle radia
mainly in the forward direction.

Note that we did not take photon absorption into a
count. This is correct provided thatl ! l in , wherel in is the
photon inelastic mean free path in the medium. In the the
of diffusive propagation of waves, weak absorption (l ! l in)
is taken into account in the following way.8 If the absorption
is so weak thatLz,Al l in, then the expression~37! remains
unchanged. WhenLz.Al l in, one must replaceLz

2 with l l in

in ~37!:

I D~v,q!5
5

2

e2g2

«c

Lzl in~v!

l 2~v!

sin2 q

ucosqu
. ~47!

It follows from ~47! that in this case the dependence of
diation intensity on the number of plates is weaker,I}N.

Note that absorption changes the frequency depend
of the spectral intensity.

Now compare the radiation considered above with Ch
enkov radiation for the corresponding values of particle
ergy, which, however, are on opposite sides of the criti
value c/A«. The intensity of Cherenkov radiation has th
form8

I Ch~v!5
e2vd

c2 S 12
c2

v2« D , ~48!

whered is the path of the charged particle, which traverse
medium with dielectric constant«. Comparing ~48! with
~37!, we have
-
f
er

n

f
l,
s

-

ry

-

ce

r-
-
l

a

I D~v!

I Ch~v!
;

g2

kl S Lz

l D 2

. ~49!

Note that the Cherenkov intensity is greater than the sin
scattering contribution,I 0/I Ch;1/kl!1.9 From ~49!, the dif-
fusion radiation, in contrast, can be stronger than the Ch
enkov radiation.
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l mixing and dissociation of Rydberg molecules accompanying slow collisions
with inert-gas atoms
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Processes involving a change of orbital angular momentuml and the dissociation of Rydberg
molecules when they collide with inert-gas atoms are considered, using a method based
on analyzing the terms of the interacting systems. The proposed method makes it possible to
take into account the perturbations in a large group of Rydberg states that weakly
penetrate into the ion core and to go beyond the limits of the two-level approximations@R. F.
Stebbings and F. B. Dunning, eds.,Rydberg States of Atoms and Molecules~Cambridge
University Press, Cambridge, 1983; Mir, Moscow, 1985!# widely used in the theory ofl mixing
with the participation of Rydberg atoms. Using the Na** (nd)1Xe reaction as an example,
it is demonstrated that this method gives good results in a wide range of variation of the principal
quantum numbern of the Rydberg electron (n'10– 40). Features of thel mixing and
dissociation of Rydberg molecules are studied for the H2** 1Xe system. It is shown that collisional
dissociation occurs by the formation of an intermediate Rydberg state of the molecules,
followed by self-decay into a dissociative continuum. ©1998 American Institute of Physics.
@S1063-7761~98!00707-0#
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1. INTRODUCTION

Elementary processes in which highly excited~Rydberg!
atoms and molecules participate play an important role
atmospheric and astrophysical phenomena, and are als
interest for a number of applied areas of physics~low-
temperature plasma, MHD generators, gas-laser syst
etc.!. These processes are extremely diverse and are ch
terized, as a rule, by large cross sections and largely de
mine the properties of the upper atmosphere.1 They include,
most importantly, inelastic vibronic interactions, ionizatio
and charge exchange, which, with relative velocities of
colliding particles satisfying

uc!1/n ~1!

(n is the principal quantum number of the Rydberg state,
\5me5e51), are characterized by local transitio
regions.2–4

However, the most efficient processes are those in wh
the angular momentuml of the Rydberg electron changesl
mixing!, induced by slow collisions with a perturbing neutr
particle. In the region in which the principal quantum num
ber varies,n'10– 40, the totall -mixing cross section sub
stantially exceeds the gas-kinetic cross section, attaining
ues of s;10212– 10211 cm2.1 These processes correspo
to a small energy transfer into translational degrees of fr
dom and have no pronounced transition regions. Their tr
ment requires more complex dynamic models~by compari-
son with those used in Refs. 2–4!.

This paper is devoted to the solution of this proble
The proposed approach is based on a study of the featur
the potential energy surfaces of the interacting system
makes it possible to go beyond the framework of conce
561063-7761/98/87(7)/8/$15.00
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concerning local transitions. It takes into account the dist
tion of the level system of the Rydberg states, created by
field of perturbing atom A, which is completely ignored
the existing theory.

Dynamical models used to describe processes with
participation of Rydberg atoms are covered in detail in
review article by Hickman, Olson, and Pascal.1 We shall not
discuss all possible theoretical approaches here and sha
dicate only those that are currently most often and most
fectively used. These include the Born or the moment
approximation,5 which are essentially a generalization
Fermi’s pseudopotential model.6 The approximations are in
troduced on the basis of information concerning the scat
ing lengtha and the static polarizabilityb of the atom in the
form in which it is reproduced in the expression for th
e2 –A scattering amplitude,7

f e5a1
p

3
bk, ~2!

wherek is the momentum of the incident electron.
We shall apply the method developed below to the stu

of the processes ofl mixing

XY** ~n,l , l * ,L,v !1A→XY** ~n8,l 8> l * ,v8!1A
~3!

and of collisional dissociation

XY** ~n,l> l * ,v !1A→X1Y1A, ~4!

XY** ~n,l , l * ,L,v !1A→X1Y1A, ~5!

whereL is the absolute magnitude of the projection of t
electronic angular momentum onto the axis of the molecu
andv is the vibrational quantum number. The effective val
© 1998 American Institute of Physics
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l * of the orbital angular momentum makes it possible
divide the Rydberg configurations into two inequivale
groups of states, strongly and weakly interacting with the
core.2 The states of the first group are characterized by sm
values of the orbital angular momentum of the electr
( l , l * ) and in classical language correspond to convex
liptical trajectories adjacent to the ion core. As is w
known, they possess quantum defects that determine
much their levels deviate from the Coulomb levels. T
states of the second group (l> l * ) correspond to trajectorie
far from the ion core and virtually coincide with the Co
lomb states; i.e., they are characterized by high degene
multiplicity. The number of these statespn'n2 is rather high
~in particular, the angular momentuml * separating the two
indicated groups of states equalsl * 53 for Na** and H2** ).

Since states with largel> l * are energetically unresolv
able, it is impossible to treat them separately. They inte
with the entire set. The involvement of large groups of sta
in the interaction process is a specific property of Rydb
systems. To explain the role of these states in the dynam
of an elementary interaction event, it is necessary to st
the potential-energy surface of the combined XY** 1A sys-
tem. When this is done, two goals are achieved simu
neously: The distortion of the levels that occurs when neu
atom A falls into the sphere of influence of Rydberg m
ecule XY** is found, and the mixing of states that resu
from the transition from certain trajectories to others is tak
into account. The direction of the classical momentum of
electron is altered by the elastic scattering at perturbing a
A. A schematic diagram of this physical situation is shown
Fig. 1.

The position of the Rydberg levels depends on the d
tanceR between the XY** and A particles. The character o
their perturbation for sufficiently largeR is determined by
the features of the interaction of a free electron with atom
Since the cross sections of processes~3!–~5! are large, the
main contribution comes from the region of large distanc
where the asymptotic method can be used to solve the p
lem. This makes it possible to construct the potential-ene
surface of the combined quantum system XY** 1A in ana-

FIG. 1. Schematic image of classical trajectories of an electron and of a
A relative to ion XY1. RadiusRcl52n2 denotes the classically resolve
region of motion of the electron.
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lytical form and to study the dynamics of the processes c
sidered here, using a formal scheme to calculate the dis
tion of the Rydberg terms. The subsequent analysis is car
out in the adiabatic approximation~with respect to rotation!,
in which the orientation of the molecule during collision
considered fixed. In this case, the potential-energy surfa
are constructed by using a vibronic basis, in which the vib
tional quantum numbers are given instead of the interato
distances in the XY** molecule. Such a basis is convenie
when the dynamic behavior of the XY** 1A system is being
studied and most clearly reflects the specifics of the prob
under consideration.

The general concepts concerning the terms or conc
ing the potential-energy surfaces of the X** 1A and
XY** 1A systems, in which atom A is considered a stru
tureless particle~as a rule, atoms of the inert gases poss
this property! are discussed in Sec. 2. The dynamics of
l -mixing process are investigated in Sec. 3. Collisional d
sociation of diatomic Rydberg molecules XY** is consid-
ered in Sec. 4. The last section, Sec. 5, presents the m
conclusions and analyzes ways of further developing
theory.

2. POTENTIAL-ENERGY SURFACES OF THE XY ** 1A
SYSTEM

We now pass to a consideration of the potential-ene
surfaces of the combined system XY** 1A corresponding to
states of the Rydberg electron that strongly (l , l * ) and
weakly (l> l * ) penetrate into the ion core.

Information on the behavior of these terms in the field
a perturbing neutral particle can be obtained by analyzing
equations for the level-shift operatort. The form in which
these equations are written depends on the basis of the s
that is used for the unperturbed XY** molecule and the
number ofuLM & states for the scattering of the free electr
e2 at particle A that are taken into account~indicesL andM
here denote the angular momentum of the electron relativ
the scattering center and its projection in the direction of
vectorR!. Below we shall restrict ourselves toS scattering in
the e2 – A system, assuming that the angular moment of
electron is L50. Including states withLÞ0, as can be
shown, does not substantially change the results obtained
the energy region under consideration (n>10).

In choosing the basis of the states of the XY** mol-
ecules, one should be guided by the two limiting cases, c
responding to two different relationships between the ro
tional periodt rot;1/B ~whereB is the rotational constant o
the XY1 ion! of the molecules and the timetc;n2/uc for
particles A with relative velocityuc to pass through the char
acteristic region;n2. For slow rotation,t rot@tc , when

uc@Bn2,

the orientation of the XY** molecules remains unchange
during collision, and the potential-energy surface must
determined for the given position of the axis of the molecu
ion XY1. It is this case that is studied in the present pap

Slow vibrational motion of the ion with frequencyvv is
characterized by the similar relationshipuc@vvn2, which,

m
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under the conditions considered here,uc!1/n, is equivalent
to the requirementvv!1/n3. This relationship is not satis
fied for the majority of diatomic molecules~of the type H2,
N2, O2, CO, OH, etc.!. Therefore, in constructing the term
it is necessary to fix the vibrational states of the XY1 ion and
to go from the adiabatic to the vibronic potential surfaces
the system. In the classically resolved region of motion o
Rydberg electron, these terms for the most important c
L50 are determined by analogy with Ref. 2 from the fo
lowing equation:

t52p (
nl, l* ,L,v

K
CnlLv* ~R,r!CnlLv~R,r8!

E2Env lLv
t

1(
v

kv~R!K cot pnvxv~r!xv~r8!t, ~6!

where CnlLv(R,r) is the wave function for the Rydber
nlLv state at pointR ~which in general is a superposition o
states with different vibrational wave functionsxv of the
XY1 ion, dependent on the interatomic coordinater!, kv is
the classical momentum of the Rydberg electron,Env lLv is
the energy of the vibronic level, andnv5@2(Ev2E)#21/2.
The elements of theK scattering matrix2 which are diagonal
with respect to the vibrational quantum number,

Kv,v85Kvdvv8 , ~7!

are determined in Eq.~6! when the energy is«v5kv
2/2. ForS

scattering and taking into account the first two leading ter
they coincide to within the sign with the expression for t
e2–A scattering amplitude, Eq.~2!. Since we are studying
the process ofl mixing in pure form, the terms in Eq.~6! that
correspond to nonadiabatic vibronic coupling are left o
This makes it possible to use the ordinary representa
CnlLv(R,r)5FnlL(R)xv(r) and to omit an analysis of th
narrow regions of pseudo-crossing of terms correspondin
different values of vibrational quantum numberv, i.e., to
eliminate vibronic transitions from consideration~for defi-
niteness, we restrict ourselves to the casev50).

It is also assumed in writing Eq.~6! that l in isolated
Rydberg states is a ‘‘good’’ quantum number. The sum o
l in the first term of Eq.~6! corresponds to the contributio
of the strongly penetrating orbitals (l , l * ). The second
term, containing cotpnv ~whose poles reconstruct the pos
tion of the Coulomb levels! describes the contribution of th
weakly penetrating orbitals. The choice of critical valuel * is
determined by the smallness of the characteristic Mas
parameter

DEnv lLn2

uc
!1 ~8!

with the value ofDEnv lL that characterizes the deviation
the position of the RydbergnvlL level from the Coulomb
level.

States withl , l * , as is well known, are weakly per
turbed by particle A. Therefore, the positions of the Rydb
vibronic terms virtually coincide with the levels of the iso
lated molecule.2 Their energies, measured from the grou
state of the XY1 ion, are defined as
f
a
se

s,

t.
n

to

r

ey

g

Env lL5Ev2
1

2~nv2m lLv!2 , ~9!

whereEv is the energy of the vibrational perturbation of th
XY1 ion, andm lLv is the quantum defect of thenvlL level.

As a consequence of stronglL mixing, the states with
large l> l * form covalent terms split off from the Coulom
levels (m lLv50) and characterized by the type of scatteri
of the Rydberg electron at particle A. These terms, deno
below by subscriptL, in the case under consideration
L50, are described by the transcendental equation

UnvL~R!5Ev2
1

2@nv2m0v~R!#2 . ~10!

The quantitym0v has the meaning of the quantumLv-defect
of the level induced by thee2 – A interaction and equals

m0v~R!52
1

p
arctan~kvKv~R!!. ~11!

It is important to point out that, with large values o
l> l * , the electron density close to the ion core is sm
because of the presence of the orbital barrier. Therefore,
strong field of the core, like its orientation in the XY** 1A
system, has no appreciable effect on these states and ca
neglected in first approximation.

Equation~6! completely determines the potential-ener
surfaces that describe the groups of states indicated a
and also makes it possible to calculate the interaction
tween them. Actually, using Eq.~6! as a basis for setting up
the characteristic~secular! equation for the eigenvalues o
the electron energy, it is easy to obtain

Vnv lL,nv l 8L8
2

52pKv
2uFnv lL~R!Fnv l 8L8~R!u2, ~12!

Vnv lLv,nv0v
2 5

BlL0vkvKv
2 cos2 pnv

pnv
3 . ~13!

Equations~12! and ~13! describe, respectively, the intera
tions between the states within thel , l * group and between
the l , l * and l> l * groups. Moreover, the former corre
sponds to the case of two interacting parallel terms:

Unv lL5Env lL12pKvuFnv lL~R!u2,

Unv l 8L85Env l 8L812pKvuFnv l 8L8~R!u2. ~14!

The latter corresponds to the interaction of two intersectinl
andL terms. The quantityBlL0v characterizes the probabilit
of finding a Rydberg electron close to the perturbing atom
and equals

BlL0v52puFnv lL~R!u2. ~15!

When S scattering in thee2 – A system is taken into
account, the group withl> l * is represented, essentially, b
one state, which is the consequence of intenselL mixing. It
should also be pointed out that, in the case of atoms (X**
instead of XY** ), when the electron energy is independe
of L, the sum overL in Eq. ~6! for the statesl , l * is cut
short. As a result, a term appears that is independent of
direction of the vectorR; i.e. we essentially operate with on
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state~instead of 2l 11 for the given indexl ). This means
that complete mixing of theL components of thenl orbitals
of the Rydberg electron occurs at a preliminary stage of
collision process.

The interaction between such states in the X** 1A sys-
tem is written similarly to Eqs.~12! and~13!, with FnlL(R)

replaced by the functionF̃nl(R), which is independent of the
direction of the vectorR and which can be formally obtaine
by using functionFnlL(R), where the quantization axis i
directed along the vectorR. The use of such functions sub
stantially simplifies the study of the dynamic behavior of t
system.

3. DYNAMICS OF THE MIXING

The investigation of the terms of the X** 1A system is a
necessary stage of the study of the dynamics of elemen
processes. This stage is completely ignored in existing th
retical approaches. Thus, the approximation of two und
torted states with an interaction of the type of Eq.~12! is
ordinarily used to describel mixing, even though it is actu
ally necessary to take into accountn2 Rydberg states.

A theory based on term concepts gives an effect
method of solving this complex quantum problem. The pr
cipal novelty that it introduces into the theory of collision
with the participation of highly excited atoms is associa
with taking into account the distortion of the levels of th
Rydberg electron and the mixing of large groups of deg
erate states when X** and A particles interact.

Using the experimentally and theoretically8 well-studied
system Na** (nd)1Xe as an example~see Fig. 2!, we can
see that the relative position of the terms substantially
pends on the distanceR between the colliding particles. In
order to check the validity of the method proposed below
calculating thel -mixing cross section in Rydberg molecule
we have carried out a preliminary analysis of this system
terms of an approach using complete information concern
the terms of the X** 1A system, the process ofl mixing can
be regarded as a dynamic transition from a group of st
mixed with regard to projectionsm but with a fixed value of
l ~with l , l * ) to a group of states withl> l * , strongly mixed

FIG. 2. Diabatic terms of the Na** (nd)1Xe system. The dashed curv
shows the Rydberg 10d term, and the solid curve shows the covale
10(L50) term.
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in m and in l . The interaction of the indicated groups o
states is given by

VnlL5
A2l 11

pn l
3

K0

R
sin Qnl~R!cospn l , ~16!

which is independent of the direction of the vectorR because
of the strong mixing of them components of thenl level.
The argument of the sine ofQnl(R) in Eq. ~16! is formed
from the radial part of the wave functionFnlL50(R) de-
scribed in the quasi-classical representation (n l5n2m l is
the effective principal quantum number!.

We can use the approximation of straight-line trajec
ries to compute the transition amplitudeAnlL , restricting
ourselves to first-order perturbation theory in the interact
VnlL :9

AnlL~b!5E
2`

`

VnlL~R~ t !!expF i E
0

t

vnlL~R~ t8!!dt8Gdt,

vnlL~R!5Enl2UnL~R!, R~ t !5Ab21uc
2t2. ~17!

The condition for perturbation theory to be applicab
uAnlLu2!1, breaks down in the region of small impact p
rametersb, which have an insignificant effect on the cro
section of the process. Short-range interaction of atom
with the ion core is neglected in this case. According to E
~10! and ~11!, it is also necessary to introduce an addition
limitation into the relative velocityuc of the colliding X**
and A atoms, i.e.,

uc.S 112m l

Mcn
3 D 1/2

, ~18!

which means that the kinetic energy of the particles exce
the barrier height formed by the covalentL term, and that
there are no branch points of the trajectories (Mc is the re-
duced mass of the interacting atoms!. For the given velocity
uc ~or the temperatureTc of the colliding atoms!, the condi-
tion given by inequality~18! is, in essence, a lower bound o
the region of variation of principal quantum numbern. Tak-
ing into account the limitations given here, the transiti
amplitude of Eqs.~17! takes the following form:

AnlL~b!5A2~2l 11!
cospn l

pn l
3uc

3E
0

z0 dz

R~z!
K0~z!sin Qnl~z!cosVnlL~z,b!,

VnlL~z,b!5
1

uc
E

0

z~b!

vnlL~R~z8!!dz8, ~19!

with the limits of integration

z052n2, z~b!5Az0
22b2.

We write the cross section of thel -mixing process as10

snlL5pglb0
2uAnlL~b0!u212pglE

b0

`

b dbuAnlL~b!u2,

~20!
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where gl51/(2l 12) is the statistical weight of the initia
state. The choice of the impact parameterb0 that separates
the region of integration into the inner,b<b0 ~strong cou-
pling! region and the outerb.b0 ~weak coupling! region is,
generally speaking, arbitrary. Actually, in the inner regio
where perturbation theory is not applicable, the express
W5uAu2gl strongly oscillates as a function ofb and can
appreciably exceed unity at individual points. Howev
starting with a certain valueb0 , the probabilityW strictly is
less than 1;W(b.b0),1 in the outer region of variation o
b, which is a necessary criterion for choosing parameterb0 .
A detailed discussion of this question can be found, for
ample, in Ref. 11. Below, to estimate the cross sections
processes~3!–~5!, we restrict ourselves to the conditio
W(b0)51.

Equation~19! makes it possible to analyze how the cro
section given by Eq.~20! depends on principal quantum
numbern. For smalln, the cross section must increase b
cause of the increase of the scale factor}n4, proportional to
the square of the geometrical size of the Rydberg parti
For largen, vnlL becomes small and depends weakly onR.
It can be shown that, in the limitvnlL50, Eq. ~20! trans-
forms to the well-known result12

snlL52p
a2

n3uc
2 ,

which is closely obeyed in the momentum and Bo
approximations.1 Consequently, then dependence of the
cross section given by Eq.~20! must have a characteristi
bell shape with a pronounced maximum.

The above remarks are illustrated in Fig. 3, which sho
the results of a calculation of thel -mixing cross section in
the system Na** (nd)1Xe, using Eqs.~19! and ~20! with
L50, and gives a comparison with experiment.13,14 The cal-
culation is carried out for a relative velocity of the collidin
particles ofuc5231024 ~corresponding to a temperature
Tc'300 K), with parametersmd50.015,15 a526.0, and

FIG. 3. Comparison of the theoretical and experimentall -mixing cross sec-
tions of thend levels of Na** when it collides with Xe atoms. The solid
curve shows the calculation from Eqs.~19! and ~20! for uc5231024, the
dashed curve shows the results of the calculation of Ref. 8,d shows ex-
perimental values from Ref. 13, ands shows experimental values from Re
14.
,
n

,

-
of

-

e.

s

b527.06.16 In the calculations here and below, we ha
used the long-wavelength expansion of the elements of thK
matrix, written in the form3

K05a1
pb

3
k1S 4

3
ab ln k1g D k2, ~21!

where the parameter for the Xe atom isg52210. The filled
circles on the right-hand wing of the curve correspond
room temperature,Tc5300 K.13 On the left-hand wing of
the curve, the open circles show the results obtained in R
14 at a temperature ofTc5430 K. The theoretical estimat
agrees well with the features of the experimental dep
dence. The presence of a dip on the left-hand wing is e
dently associated with the fact that the region of transitio
that makes the main contribution to the cross section of
process comes at a node of the radial wave function, wh
position depends on the quantum defect of the level. T
dashed curves on same figure show the dependence obt
in the momentum approximation.8

However, it should be pointed out that, for larg
n@(Mcuc

2)21/3, along with quasi-elastic processes, inelas
processes accompanied by a change of the principal quan
numbern must also occur. A group of Rydberg states w
participate here, from which it follows that the cross secti
of the process must be calculated from the correspond
summation. As a result, then dependence at the periphery
the right-hand wing is}1/n;17 i.e., the total cross section
here must significantly exceed that calculated from Eqs.~19!
and ~20!. For example, for a relative velocity ofuc corre-
sponding to the thermal temperature, this will occur start
with n'40, as is clearly demonstrated in Fig. 3.

Rydberg molecules XY** are a more complicated quan
tum object of study. Actually, the strong field of diatom
molecules, unlike that of X** atoms, is not spherically sym
metric and possesses only axial symmetry. Complete mix
of the m components of the electronic angular momentuml
also does not occur, since states with different projection
L onto the axis of the molecule are energetically differen

It can be shown that, for strongly penetrating orbita
( l , l * ), the angular dependence of the wave functions o
Rydberg electron is rather weak and does not substant
affect the dynamics of the process. The main physical fac
here are the interaction modulations created by qu
classical oscillations of the radial wave functions and
energy transferred into the translational degrees of freed
~i.e., the quantum defects of the states combined in the
lisional transitions!. Therefore, it is sufficient to use th
simple equations~19! and~20! to analyze the structure of th
l -mixing cross sections in Rydberg molecules.

As a specific application, let us consider the process

H2** ~npL,v50!1Xe→H2** ~n,l>3,v50!1Xe, ~22!

whereL takes the values 0 and 1~corresponding to thes and
p states, the adiabatic quantum defects of which are eq
andms50.191 andmp520.078, Ref. 18!. The opticalnpL
series of the H2** molecule are not predissociated and po
sess radiative lifetimesr rad>1026 sec, much greater than th
characteristic collision times oftc;10211 sec. Figure 4
shows the dependence of the cross section of process~22! on
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the principal quantum numbern, calculated for a relative
velocity of uc'931024. The resulting curves have the typ
cal shape characteristic of atomic systems.

4. COLLISIONAL DISSOCIATION OF RYDBERG MOLECULES

We now turn to a consideration of the collisional diss
ciation of XY** molecules in highly excited states that a
not predissociated in the absence of atom A. They incl
two types of excitation, i.e., states with a small orbital ang
lar momentuml , l * and states withl> l * that weakly inter-
act with the ion core, correlating with covalentL configura-
tions. The former, as a rule, are populated during resona
photoabsorption and are characterized by radiative lifetim
t rad. They decay because ofl mixing between states corre
sponding to strongly penetrating orbitals (l , l * ). The latter
are formed during threshold excitation by electron imp
and do not predissociate, since they are restrained by a
orbital barrier (l> l * ). Here predissociation occurs by re
verseL→ l transitions. In both cases, collisional dissociati
occurs by a two-stage ‘‘state-to-state’’ mechanism

XY** ~nlLv !1A
XY** ~nLv !1A J→XY** ~n8l bLbv8!1A→X*1Y1A,

~23!

where the first stage is induced by interaction with atom
and is accompanied by a transition to the predissociateb
state. The subsequent decay occurs in a time that sub
tially exceedstc , when the colliding particles no longer ac
tually interact. Moreover, the first stage can occur either a
result of a transition with no change of the initial vibration
state v or with excitation of the ion core. Note that fo
n'10– 40 the quasi-elastic transition cross sections ar
least an order of magnitude larger than the inelastic cr
sections. Since predissociation at the second stage of the
cess occurs with a probability equal to unity, the qua
elastic transitions (v5v8) must dominate in this region o
variation ofn.

For optically excited XY** molecules, dissociation re
sults from a direct transition from a stable state of the gro
( l , l * ) into a predissociatednlbLbv state belonging to the

FIG. 4. Cross section of the H2** (npL, v50)1Xe→H2** (n,l>3, v50)
1Xe process, calculated from Eqs.~19! and~20! for uc5931024 ~d—pp
state,s—ps state!.
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same group. The collisional dissociation cross section can
calculated here from Eq.~12! with a transition amplitude

Anv lL,nv l bLb
~b!52E

0

`

dt Vnv lL,nv l bLb
~R~ t !!cos~v lL,l bLb

t !,

~24!

v lLv,l bLbv5~m lLv2m l bLbv!nv
23, ~25!

in which the interactionV of two parallel terms, taking into
account the remarks in Sec. 3 relating to the angular dep
dence of the wave functions, has the form

Vnv lL,nv l bLb

5A~2l 11!~2l b11!

2

Kv sin Qnv lL~R!sin Qnv l bLb
~R!

kvR2~pnnv lLnnv l bLb
!3/2 .

~26!

The distortion of thenl terms can be neglected~as in the
theoretical approaches used by Ref. 11!.

If a Rydberg electron is formed with large orbital mo
ments (l> l * ), Eqs.~19! and~20! can be used to estimate th
partial cross section of the reaction, but the latter equa
must be supplemented with the additional factor

gl~nv!5
1

nv
2 .

This is because the given process involves a transition to
predissociatednlbLbv state from a group of states strong
mixed in terms ofl andm, in which each separatel segment
is represented with statistical weightgl(nv). As a result, the
cross section is reduced, even though it remains substant
greater than the gas-kinetic cross section. To find the t
cross section, Eq.~20! must be summed over all possib
predissociated Rydbergl b configurations.

For threshold excitation of molecules by electron impa
it is impossible to fix states with a definite value ofl , since
this involves forming a group of states with a rather smo
distribution function whose maximum comes atl;n1/2.19,20

The total cross section must therefore be the correspon
convolution.

Turning to the hydrogen molecule, we briefly recall th
most characteristic features of the behavior of its terms cl
to the bottom of the ion potential. The H2** molecule, as is
well known, possesses one low-lying doubly excited el
tronic state1Sg

1(2psu)2, whose potential curve~see Fig. 5!
intersects the ionic termUi(j) in the neighborhood of the
point j52.65 a.u., located close to the right-hand classi
turning point of the first excited vibrational levelv51. The
two Rydbergnss and nds series withn>4 are liable to
decay in this energy region because of configuration mix
with the dissociative continuum.21 Thus, of the nine possible
(s, p, andd) dynamically active states, only two are predi
sociated.

Figure 6 shows then dependence of the partial cros
sections of collisional dissociation of the first type:
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H2** ~npp ,v50!1Xe→H2** H S nss

nds
D ,v50J

1Xe→H* ~2l !1H~1s!1Xe, ~27!

corresponding to transitions to the intermediate Rydbergnss
and nds states. The calculation was carried out using E
~24!–~26! with quantum defectsmss520.12 and mds

50.022,22 for a relative velocity of the colliding particles o
uc5931024. Figure 7 also shows the corresponding curv
for a reaction of the second type:

H2** ~nL,v50!1Xe→H2** H S nss

nds
D ,v50J

1Xe→H* ~2l !1H~1s!1Xe, ~28!

in which the hydrogen molecules are excited by electron
pact. It can be seen that, in the region of variation ofn
considered here, the partial cross sections of reaction~27! are
an order of magnitude less than those of reaction~28!; i.e.,
the decay process of H2** molecules formed during electro
impact is preferred. In both cases, the channel involving
mation of an intermediatends configuration predominates

FIG. 6. Partial cross sections of reaction~27!, calculated from Eqs.~24!–
~26! for uc5931024 ~d—intermediateds state,s—ss state!.

FIG. 5. Potential curves of the H2** molecule.21
.

s

-

r-

5. CONCLUSION

In conclusion, we present some results of the study t
has been carried out. Most importantly, we should point
that, unlike the momentum and Born approximations,
proposed method is based on an analysis of the behavio
the potential energy surfaces of the combined system
makes it possible to describel mixing, process~3!, over a
rather wide region of variation ofn. The latter is especially
important for smalln, where the indicated approximation
are not applicable.

The next important advantage of the approach develo
here is that it can be used to describe collisional proces
with the participation of Rydberg molecules, wherel mixing
can be accompanied by dissociation of the molecules.

Concerning further development of the theory, it is ne
essary to distinguish the following avenues of research. T
include, first, the study of effects caused by the presenc
strong nonadiabatic coupling with rotation, which is esp
cially substantial for hydrogen-containing molecules. Wh
uc}Bn2, this can result in a sharp irregular dependence
the reaction cross section on the initial excitation energy
the XY** molecule~or on the principal quantum numbern),
the physical cause of which is associated with the spec
behavior of the corresponding quantum defectsm(n).23 The
inclusion of nonadiabatic coupling with rotation in the fo
mal scheme requires that the theory be generalized, with
introduction of rovibronic potential-energy surfaces of t
combined system, which have not been discussed in the
erature. The appearance of a stroboscopic effect, for
ample, can be expected here.24 Moreover, a more detailed
analysis of the behavior of the cross sections for largen,
taking into account all possible channels of the motion,
necessary for a deep understanding of the nature ofl mixing.
Second, along with neutral perturbing atoms A, it is expe
ent to consider molecules that possess positive electron
finity and are capable of forming ionic configurations on t
potential-energy surface of the combined system.4

This work was carried out with the financial support
the Russian Fund for Fundamental Research~Grant No. 97-
03-32600a!.

FIG. 7. Partial cross sections of reaction~28!, calculated from Eqs.~19! and
~20! for uc5931024 ~d—intermediateds state,s—ss state!.
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Photoprocesses on a surface of nanoporous quartz under resonant laser radiation
Yu. A. Bykovski , G. E. Kotkovski , M. B. Kuznetsov, and A. A. Chistyakov
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The photoexcitation of iodine molecules on surfaces of solid~nonporous! and nanoporous quartz
by resonant laser radiation in the visible region has been studied. We have detected and
studied the high-energy photodesorption of iodine molecules with a translational energy of 1.4 to
1.8 eV from nanoporous quartz surfaces at an exciting photon energy ranging between 1.9
and 2.3 eV, as well as the nonequilibrium surface dissociation of molecules. Unlike the
photoprocesses, which are observed only on the surface of nanoporous quartz, the thermal
desorption of I2 molecules with a considerably lower kinetic energy has also been detected on the
surface of solid quartz. We have suggested a physical mechanism of photodesorption, under
which electronic excitation of an iodine molecule in the confined volume of a nanopore is
accompanied by a Franck–Condon electronic transition of a molecule-surface complex to a
state with a higher potential energy and subsequent release of this energy in the form of kinetic
energy. It has been concluded that photoprocesses on a nanostructured surface are radically
different from ordinary surface photoprocesses. ©1998 American Institute of Physics.
@S1063-7761~98!00807-5#
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1. INTRODUCTION

The current interest in photoprocesses on surface
condensed materials under laser radiation has stimulate
tense research in photophysical processes and nonlinea
tical effects, including those in nanostructured materials
developed surfaces with small characteristic dimension1,2

Most experiments on photoprocesses in nanoporous ma
als have dealt with either the photoluminescence of s
materials3 or the diffusion and sorption of molecules drive
by laser radiation~Ref. 4, p. 5!. However, the small pore
sizes ~20–100 Å!, well-developed surfaces, and other fe
tures of nanomaterials can be manifested in elementary
tophysical and photochemical processes on their surfa
such as photodesorption, photodissociation, light-indu
surface diffusion, etc.

In the present work, we have used time-of-flight ma
spectroscopy, laser-induced luminescence, and absor
spectroscopy5 to study the effect of nanosecond resonant
ser pulses in the 532–640 nm wavelength range on s
monolayer coatings of molecular iodine submonolay
formed on surfaces of nanoporous and solid~nonporous!
quartz.

2. EXPERIMENTAL APPARATUS AND TECHNIQUES

The experimental techniques included measurement
laser-induced luminescence, absorption spectroscopy,
laser-driven time-of-flight mass spectroscopy. The ma
spectroscopic system consisted of a dynamic time-of-fli
mass spectrometer and a powerful YAG:Nd31 laser operat-
ing in a single-mode regime with a pulse energy of 120
641063-7761/98/87(7)/6/$15.00
of
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(l5532 nm) and a pulse duration of 10 ns. Radiation w
l5532 nm was used to pump a tunable solid-state dye la
with a tuning range 565–640 nm and a pulse energy of
mJ. The power density on the sample was varied in the ra
(0.5– 15)3106 W/cm2. The sample was placed in a vacuu
chamber on a stage cooled by liquid nitrogen. The work
pressure in the chamber during experiments was 1028 Torr,
and the base pressure was 431029 Torr. Given a time-of-
flight basel 531 cm, we could record time-of-flight spectr
i.e., the amplitudes of mass peaks as functions of the time
the direct flight of the products to the ion source of the m
spectrometer. A specific feature of our technique is that tim
of-flight spectra are recorded not in the conventional mo
where the arrival of particles of a single mass at the dete
is recorded as a function of time, but the full mass spectr
is recorded as a function of the delay with respect to the la
pulse and then processed on a computer. This technique
employed because the maximum operating frequency of
mass spectrometer was 10 kHz, and time-of-flight spectr
high-energy particles with durations of 50–100ms could not
be recorded in the mode of time-resolved detection o
single mass.

The quartz (a-quartzoid! samples had pore sizes of 20
100 Å and a porosity parameterVpore/Vbulk SiO2

50.24. Be-

fore experiments, the samples were outgassed in vacuum
a long time, and the process was monitored using the m
spectrometer. In order to measure the content of impuri
and sorbed molecules, samples cooled to 77 K were expo
to radiation from an optical parametric oscillator (l52.82,
2.65, and 3.2mm! in the absorption band of pure quart
© 1998 American Institute of Physics
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which was powerful enough to cause ablation of the ma
rial. The mass and time-of-flight spectra recorded did
show the presence of impurities and residual gas molec
at the level of the absolute detection limit of the ma
spectrometric system (53104 cm23).

Iodine submonolayers were produced on the quartz
face inside the vacuum chamber using a high-vacuum in
tion valve. The iodine coverage of the surface was less t
0.5 of a monolayer and was monitored using both the la
driven thermal desorption technique and measurement
the absorption coefficient of samples of nanoporous qu
(30 cm21).

Our measurements indicate that iodine molecules sor
in nanopores are of two types, namely chemisorbed m
ecules, which are tightly bound to the surface, and ph
isorbed ones, which readily leave the sample.

The adsorption energy of physisorbed iodine molecu
was estimated from the desorption rate, assuming that it i
Arrhenius function of temperature:

dN

dt
5Nv expS 2

Eads

kT D ,

whereN is the number of adsorbed molecules andv is the
vibrational frequency of a molecule on the surface.

It follows from our measurements that the adsorpt
energy of physisorbed iodine molecules on a nanopor
quartz surface can be up to 0.7 eV, which means that t
binding to the surface is fairly tight. The adsorption ener
of chemisorbed molecules is even higher.

3. OPTICAL SPECTRA OF IODINE MOLECULES ADSORBED
ON NANOPOROUS QUARTZ SAMPLES

Figure 1 shows the potential-energy curves of a free
dine molecule. Transitions between them are responsible
the absorption in the visible spectral range~Fig. V-21 on p.
228 in Ref. 6!. The main photophysical process in free iodi
molecules~Ref. 6, p. 225! is dissociation, which has a direc
mechanism~direct photolysis! with a characteristic time o
5310212 s if a molecule is excited to the3P0

u
1 state atl

FIG. 1. Potential-energy curves of a free iodine molecule.
-
t
es
-

r-
c-
n
r-
of
tz

ed
l-
-

s
an

s
ir

y

-
or

,499 nm. If the photon energy is below the dissociati
threshold, a slower predissociation mechanism involving
1P1u

state may be activated.
The spectral and photophysical properties of iodine m

ecules adsorbed in pores are notably different. Figure
shows the absorption spectra of physi- and chemisorbed m
ecules in nanoporous quartz, gaseous iodine, and a mole
crystal of iodine.

It is remarkable that the peak of the absorption spectr
of the chemisorbed molecules has undergone a shift tow
shorter wavelengths relative to the spectrum of free m
ecules, which is not typical of the changes in the state
aggregation from free molecules to an adsorbate and the
a crystal. This shift can be due to the increase in the in
nuclear distance in the molecule when a charge-transfer c
plex is formed and the molecule-surface binding is tighten
An important point is that the FWHM’s in the absorptio
spectrum of both chemi- and physisorbed iodine molecu
are larger than the widths not only for the free molecule,
also for the molecular crystal of iodine. In addition, accor
ing to the line shapes, there is a good reason to suppose
in the case of physisorbed molecules, which absorb at sho
wavelengths, as well as in the case of chemisorbed m
ecules, the binding to the surface is stronger and the inte
clear distance is larger. An analysis of absorption spectra
physisorbed I2 molecules in the long-wavelength range
comparison with the spectra of gaseous iodine indicates
the most probable cause of this broadening for some of
molecules is a decrease in the gap between the higher
lower terms along the energy scale owing to the nega
correction to the energy levels characteristic of the St
broadening due to a higher state of aggregation of the m
rial. In this case, one should expect a shift of the dissocia
edge of the3P0

u
1 term toward longer wavelengths by mo

than 30 nm, which should lead to an onset of direct photo
sis atl5530 nm~instead of 499 nm for gaseous I2).

An estimate of the radiationless energy relaxation tim7

based on our measurements of absorption and fluoresc
spectra and the fluorescence quantum efficiency (Bfl55
31025) for samples of nanoporous quartz coated with

FIG. 2. Absorption spectra~in rel. units! of chemisorbed iodine molecule
in nanoporous quartz~1!, physisorbed iodine molecules in nanoporo
quartz~2!, gaseous iodine~3!, and a molecular crystal of iodine~4!.
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dine yieldedt r;10212s, which is comparable to the direc
photolysis time (tdis55310212s) and notably shorter tha
the predissociation time.

Thus, our spectral and photophysical measurements
dicate that the states of iodine molecules adsorbed in n
oporous quartz are qualitatively diverse~physisorbed and
chemisorbed states and charge-transfer complexes! and that
the radiationless relaxation for adsorbed iodine molecule
very fast, significantly hampering the initiation of nonequ
librium photoprocesses. The only channel that can comp
with the radiationless relaxation is direct photolysis, which
possible under the conditions of our experiments o
through the excitation of physisorbed molecules at a wa
length of 532 nm.

4. INVESTIGATION OF PROCESSES INDUCED BY
RESONANT LASER RADIATION IN MOLECULAR IODINE
SUBMONOLAYERS ADSORBED ON NANOPOROUS
QUARTZ

4.1. General features

The experiments were performed using dynamic tim
of-flight mass spectroscopy. In this case, more informat
can be obtained in the collisionless particle propagation
gime, where the velocity distributions of species produced
the surface can be measured. The collisionless charact
the particle propagation in our experiments was confirm
by numerical calculations of the rates of collisions betwe
different molecules, which were performed for the thre
dimensional case, unlike those reported by Harrisonet al.8

Figure 3 shows curves of the number of particles arr
ing at the ion source of the mass spectrometer as function
time ~time-of-flight spectra! obtained by exposing iodine
submonolayers physisorbed on surfaces of solid and nan
rous quartz tol5532 nm radiation at a power densityq
51.53107 W/cm2. When iodine was adsorbed on the su
face of solid quartz, only molecular iodine (m/e5254) with
a time-of-flight distribution peaking at 550ms were detected
In experiments with the samples of nanoporous quartz co
with iodine, both molecular (m/e5254) and atomic (m/e

FIG. 3. Time-of-flight spectra under laser action withl5532 nm andq
51.53107 W/cm2: 1! — iodine molecules from a nanoporous quartz s
face; 2! — iodine atoms from a nanoporous quartz surface;3! — iodine
molecules from a solid~nonporous! quartz surface. The curves are on
visual guides.
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5127) iodine species were generated. In this case, the t
of-flight spectrum of I2 is radically different from the case o
solid quartz and contains two peaks at 270 and 510ms,
whereas no iodine was detected in the time interval of fr
310 to 430ms.

It is remarkable that the translational energy of iodi
molecules desorbed from a nanoporous quartz surfac
fairly high. The most probable energy in a bunch of hig
energy particles is 1.8 eV when the energy of the pump
photons is 2.3 eV.

Even a preliminary analysis of the results indicates t
photoprocesses on the nanoporous quartz surface are
cally different from those on surfaces of solid~nonporous!
materials.

Figure 4 shows the positions of the first and seco
peaks in the time-of-flight spectra of iodine molecules
functions of the laser power density at a wavelengthl
5532 nm. The dependence on the power densityq for the
iodine molecules of lower energy attests to their thermal
ture. The absence of such a dependence for the bunc
high-energy molecules, along with their higher kinetic e
ergy, indicates that their desorption is nonthermal~photode-
sorption!.

4.2. Nonthermal one-photon photodesorption

Efficient populating of the3P0
u
1 state in nanoporous

quartz is impossible under conditions of radiationless rel
ation with a characteristic time of 10212s at power densities
of (0.5– 15)3106 W/cm2 and a molecular iodine absorptio
cross section of 10219cm2; therefore, the photoprocess ob
served in experiments cannot be attributed to a multist
excitation mechanism.

The conclusion that this photoprocess has a one-pho
mechanism is also supported by the linear dependence o
number of I2 molecules in the high-energy peak of the tim
of-flight spectrum on the energy~number of photons! in the
laser pulse atl5532 nm~Fig. 5!.

When the laser wavelength is switched from 532 to 5
nm and then to 640 nm, the time-of-flight spectrum of t

FIG. 4. Positions of the first~filled circles! and second~unfilled circles!
peaks in the time-of-flight spectra of iodine molecules desorbed from
nanoporous quartz surface as functions of the laser power densityl
5532 nm.
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desorbed iodine molecules shifts~Fig. 6! from 265–300ms
to 295–325ms. As can be seen in Fig. 6, the time-of-flig
spectra for pump wavelengths of 575 nm and 640 nm
identical within the experimental error and have a more co
plex shape than the spectrum recorded atl5532 nm.

Thus, the experimentally detected nonthermal photod
orption of high-energy iodine molecules from the surface
nanoporous quartz has a one-photon character and is
served under the action of laser radiation of wavelengthl
5532, 575, and 640 nm over a wide range of pump pow
densitiesq553105–1.53107 W/cm2.

In most publications photodesorption is treated as
Franck–Condon transition to either a bound state of
adsorbate-ion/surface complex~Antonievich’s mechanism!9

or a dissociated state of an adsorbate/adsorbent com
~Menzel–Gomer–Readhead mechanism!.10 Antonievich’s
mechanism is characterized by small kinetic energies for
desorbed particles, in contradiction to our experimental d
Photodesorption by Menzel’s mechanism is also imposs
in our case because excited diatomic molecules in pores
typically in stable states of adsorbate/adsorbent comple
~Ref. 4, p. 8!.

FIG. 5. Relative yield of high-energy iodine molecules desorbed from
nanoporous quartz surface by laser pulses withl5532 nm versus pulse
energy.

FIG. 6. Time-of-flight spectrum of high-energy iodine molecules desor
from a nanoporous quartz surface. Laser radiation withl5575 nm~1! and
l5640 nm~2!; q51.53107 W/cm2. The curves are visual guides.
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In our experiments no high-energy component was
tected in the time-of-flight spectra of I2 molecules desorbed
from nonporous quartz surfaces~Fig. 3!. Therefore, we as-
sume that the high-energy photodesorption is due to
nanostructure of the substrate and suggest the following
terpretation.

The 1S0
g
1 ground electronic state of the iodine molecu

has the electronic configurationsg
2pu

4pg
4 . As a result of the

transition from the1S0
g
1 state to the3P0

u
1 state, the elec-

tronic configuration changes fromsg
2pu

4pg
4 to sg

2pu
4pg

3su
1 ,

i.e., one of thepg electrons moves into thesu orbital,
whereas the effective radius of thesu orbital is considerably
larger than that of thepg orbital. For comparison, we not
that the electronic radii of Cs and I are 2.62 Å and 1.36
respectively~cesium was chosen because it is the first e
ment after iodine in the periodic table in which the six
electronic level is populated!.

Figure 1 shows that when a free iodine molecule is
cited to the3P0

u
1 state, the equilibrium internuclear distanc

increases from 2.66 Å to 3.0 Å. The absorption spectra
iodine molecules physisorbed on a surface of nanopor
quartz ~Fig. 2! indicate that some of the physisorbed mo
ecules~the short-wavelength portion of the spectrum! have
an even larger internuclear distance in the excited state
in the free molecule. It is estimated to be up to 3.5 Å. Th
the effective diameter of an excited iodine molecule in a p
with allowance for the increases in both the internuclear d
tance and the effective radius of electronic states is 7–10

The possible dependence of the potential energy of
iodine molecule on its distance from the quartz surface
schematically depicted by curve1 in Fig. 7, whereR0 is the
equilibrium distance between the surface and molecule
the potential well depth specifies the adsorption ener
When the electronic system of the iodine molecule is
cited, the effective diameter of the electronic state increa
hence the equilibrium distance from the surface to the m
ecule also rises. Since the nanopore volume is limited, th
equivalent to a considerable increase in the potential ene
of the surface-molecule interaction. In Fig. 7 this change
illustrated by the vertical~Franck–Condon! a–b transition

a

d

FIG. 7. Schematic potential-energy curves of the iodine-molecu
nanoporous-quartz-surface system. Curve2 corresponds to the molecule in
the excited electronic state, and curve1 corresponds to the ground electron
state of the iodine molecule.
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to potential-energy curve2 with an equilibrium distanceR1

.R0. Then the molecule is capable of desorbing with a h
kinetic energyEk .

Since the actual structure of pores is fairly comple
there can be several equilibrium positions of an excited m
ecules in a pore characterized by different potential-ene
curves.

As was noted above, the positions of the time-of-flig
spectra of desorbed particles at the pump wavelengtl
5532 nm, on the one hand, and atl5575 and 640 nm, on
the other, are different. In terms of energy, this difference
0.26 eV and can be ascribed to different vibrational state
the molecules. That the time-of-flight spectra of desorb
iodine molecules atl5575 and 640 nm are identical mea
that desorption occurs at the same vibronic energy of
adsorbate/adsorbent system in both cases, and this is pos
only if the molecule undergoes preliminary vibrational rela
ation to the zero-point level within the excited electron
term. Then we should assume that atl5532 nm, where
molecules are excited to states near the dissociation thr
old of the3P0

u
1 term, desorption proceeds in the absence

equilibrium with respect to the vibrational states. In this ca
the characteristic time of the process is comparable to
vibrational relaxation time (10211–10212 s!.

An analysis of experimental data also leads to a con
sion that the total number of high-energy particles is
greater than 4% of the desorbed molecules. This percen
is so small because, owing to the large pore size~20–100 Å!,
only a small part of the sorbed molecules exist under con
tions that lead to the size effect in excitation in a confin
volume followed by desorption by the mechanism describ
above.

4.3. Surface photodissociation of iodine molecules

Another significant difference between the photop
cesses on the surface of nanoporous quartz and the proc
on the surface of solid~nonporous! quartz under laser radia
tion with l5532 nm is the presence of atomic iodin
among the species emitted from the surface. The time
flight spectrumAI1

(t) is shown in Fig. 3. The spectrum ha
two peaks. This curve does not adequately represent
number of iodine atoms generated by the interaction
arriving at the ions source of the spectrometer since it d
not take into account the fragmentation of molecular iodi
After an analysis based on the fragmentation relations,
found that the part of theAI1

(t) distribution peaking at 270
ms is due entirely to the fragmentation of high-energy d
orbed iodine molecules in the spectrometer ion source
addition, we could derive the time-of-flight spectrum
atomic iodine formed as a result of the photodissociation
I2 molecules. This curve is shown in Fig. 8. The absence
atomic iodine among the species emitted when laser ra
tion acts on iodine molecules sorbed on solid quartz allo
us to conclude that the photolysis of physisorbed iodine m
ecules occurs not in the gaseous phase, but on the nanos
tured quartz surface.

Under laser radiation withl5575 nm and 640 nm fo-
cused on iodine molecules on the surface of nanopor
h
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quartz, no iodine atoms were detected among the spe
emitted. This fact can easily be interpreted on the basis of
spectra in Fig. 2. Only laser radiation withl5532 nm ex-
cites iodine molecules on a sample of nanoporous qu
near the dissociation threshold and can bring about di
photolysis of a molecule with a characteristic time of
310212s. Conversely, radiation with wavelengths of 57
and 640 nm has photon energies below the dissocia
threshold of the3P0

u
1 term and can lead only to the predi

sociation of iodine molecules via the1P1u
state with a char-

acteristic time much longer than 10212s; therefore, predisso
ciation cannot compete with either direct photolysis~when
l5532 nm) or radiationless relaxation.

Thus, it should be concluded that excitation of t
1S0

g
1→3P0

u
1 transition in I2 submonolayers on the surfac

of nanoporous quartz driven by radiation atl5532 nm
leads to the surface photodissociation of iodine molecu
which proceeds only via the direct channel. No predissoc
tion of molecules excited to predissociation states below
photolysis threshold of the3P0

u
1 term (l5575, 640 nm! was

detected.
The photolysis of iodine molecules on the surface

nanoporous quartz and its absence on the surface of s
quartz can be attributed to the strong effect of the nanost
tured surface on physisorbed iodine molecules, which bro
ens their absorption spectrum. Some of the molecules
excited atl5532 nm to states near the photolysis thresh
of the 3P0

u
1 term ~the peak of the absorption spectrum! and

dissociate via the direct channel. Iodine molecules on s
quartz surfaces do not experience such a strong effect o
surface, and the action of radiation withl5532 nm excites
them to states below the photolysis threshold on the3P0

u
1

term ~just as in the gaseous phase! and can result only in
predissociation, which, as was shown above, is inefficien
the present case.

4.4. Desorption via the thermal channel

As was noted in Sec. 4.1~Fig. 3!, the second bunch o
molecules desorbed from a nanoporous quartz surface
lower energies is due to the thermal effect of laser radiati

FIG. 8. Time-of-flight spectrum of atomic iodine generated in the photod
sociation of I2 molecules. Laser radiation withl5532 nm andq51.5
3107 W/cm2. The curve is a visual guide.
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An estimate of the maximum temperature increase in
case of uniform heating of the entire exposed area yie
DT'4 K. At the same time, one can see in the time-of-flig
spectra that the translational energy of the slowest deso
iodine molecules is>103 K.

Among the plausible mechanisms that can account
these results, we single out the mechanism of local hea
and the mechanism due to the vibrational and rotational
excitation of molecules in the upper electronic state.11 In the
latter case, the kinetic energy of the particles should not v
with the number of photons in the laser pulse, in contrad
tion to the experimental results~Fig. 4!. Thus, the more prob
able mechanism of the desorption of iodine molecules w
lower energies is local heating.

5. CONCLUSIONS

We have detected nonthermal one-photon desorptio
iodine molecules with large kinetic energies from submo
layers on surfaces of nanoporous quartz under resonant
radiation over a wide spectral range in the visible regi
alongside the thermal desorption and surface photolysis o2

molecules. The character and mechanisms of the proce
on nanostructured surfaces are essentially different f
those on surfaces of bulk condensed materials. This has
us to the conclusion that surface photoprocesses are
trolled by the specific properties of nanoporous materials
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Tensor structure of the stationary point of the radiative relaxation operator of an atom
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We formulate the problem of the stationary point of the operator of radiative relaxation of an
atom: the initial distribution among the sublevels of the excited state, whose nonzero
eigenvalues~populations! coincide with the populations of the final distribution~after spontaneous
decay! among the sublevels of the ground state. We show that these distributions can be
expressed in terms of spherical functions of the complex direction. The results are then used to
develop a compact analytical representation of the stationary density matrix of atoms
interacting with an elliptically polarized monochromatic field. ©1998 American Institute of
Physics.@S1063-7761~98!00907-X#
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1. INTRODUCTION

It is widely known that relaxation processes play a ma
role in the interaction of atoms with resonant radiation.
common reason for relaxation in an atomic system is
interaction ~usually weak! of the system and the ambien
which drives the atoms toward an equilibrium state a
causes the atomic levels to have a finite lifetime. In a lo
density ensemble of atoms, where the interatomic interac
can be completely ignored, the main relaxation mechanis
radiative~the spontaneous emission of radiation!. According
to modern conceptions,1 the radiative relaxation of atoms i
determined by the interaction with the vacuum modes of
electromagnetic field and can be considered a QED eff
The properties of the relaxation operator reflect certain pr
erties of the vacuum, e.g., its isotropy.

If relaxation is ignored, the interaction of an atom wi
light is described by a Schro¨dinger equation with a time
dependent Hamiltonian. This description, however, can
used only at extremely short times that are shorter than
reciprocal spontaneous relaxation rateg21;1028 s. When
t.g21, the wave function of the atom becomes a rapid
fluctuating quantity,2 and the density-matrix formalism be
comes more appropriate for analytical description. The d
sity matrix satisfies the corresponding quantum kinetic eq
tion, and the form of the radiative relaxation operator in t
quantum kinetic equation for the atomic density matrix in t
dipole approximation without allowance for strong-fie
effects3 is well known~see, e.g., Ref. 4!. However, its tensor
properties and its effect on the formation of multipole m
ments in the system of Zeeman sublevels have to be stu
in greater detail.

In Refs. 5 and 6 we studied the problem of the redis
bution of atoms among the sublevels of the ground and
cited states as a result of the closed~i.e., in which the total
population is conserved! optical transitionsFg5F→Fe5F
(F is a half-integer! and Fg5F→Fe5F11 upon interac-
701063-7761/98/87(7)/6/$15.00
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tion with elliptically polarized monochromatic radiation. Ob
viously, the stationary~nonequilibrium! distribution of the
atoms among the sublevels of the ground (g) and excited (e)
states is determined not only by the parameters of the ex
nal field ~polarization, intensity, and frequency!, but also by
the properties of the radiative relaxation operator. One of
main results of Refs. 5 and 6 is that the problem of t
stationary density matrix can be reduced to the problem
finding the stationary point of the radiative relaxation ope
tor. In Ref. 5 we found that the stationary point for theFg

5F→Fe5F transitions corresponds to an isotropic distrib
tion among the sublevels of the excited state, which mad
possible to write a compact analytical expression for the
tionary density matrix. In Ref. 6 the solution for the statio
ary point was found for theFg5F→Fe5F11 transitions
with F50,1/2,...,5 in theform of polynomials in the opera
tor of the resonant interaction with the field. However, w
were unable to derive a closed analytical expression for
expansion coefficients that would be valid for all values
F. Besides, the method used in Ref. 6 was based on a t
rem whose validity in the general case (F.5) has yet to be
rigorously proved.

In the present paper the problem of the stationary po
of the radiative relaxation operator of an atom is formula
explicitly, i.e., the stationary point refers to the initial distr
bution among the sublevels of the excited state whose n
zero eigenvalues~populations! coincide with the populations
of the final distribution~after spontaneous decay! among the
sublevels of the ground state. We find a particular solution
this problem in the form of convolutions of Wigner tens
operators and spherical functions of complex direction. T
results are then used to develop a compact analytical re
sentation of the stationary density matrix of atoms intera
ing with an elliptically polarized monochromatic field. W
also prove the theorem of Ref. 6 in general form for
values ofF.
© 1998 American Institute of Physics
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2. STATEMENT OF THE PROBLEM

We consider an atom with two degenerate energy lev
coupled by a dipole transition: a ground state (g) with angu-
lar momentumFg and an excited state (e) with angular mo-
mentumFe . In the quantum kinetic equation describing t
evolution of the atomic density matrix6 we can single out the
terms that describe evolution as a consequence of radia
relaxation alone:

F ]r̂

]t
G

rel

52Ĝ$r̂%52
g

2
~P̂er̂1 r̂P̂e!

1g (
b50,61

Q̂b
† r̂Q̂b , ~1!

whereg is the radiative relaxation rate. The first term on t
right-hand side describes the damping of the excited-s
density matrixr̂ee and of the off-diagonal elementsr̂eg and
r̂ge, and the operator

P̂e5 (
me52Fe

Fe

uFe ,me&^Fe ,meu ~2!

projects onto the excited state,uFe ,me& being the wave func-
tions of the magnetic sublevels. The second term on
right-hand side of Eq.~1! describes the spontaneous pass
of the atoms from the excited state to the ground state.
raising operatorQ̂b and the lowering operatorQ̂b

† can be
expressed in terms of the 3jm symbols as follows:

Q̂b5 (
me ,mg

uFe ,me&A2Fe11~21!Fe2me

3S Fe 1 Fg

2me b mg
D ^Fg ,mgu. ~3!

In view of the orthogonality of the vector additio

coefficients7 we have(Q̂bQ̂b
†5P̂e and hence Tr$Ĝ$r̂%50,

which means that the total population is conserved.
We now assume that in some way an initial distributi

r̂ in
ee is created at the excited level and that the off-diago

elementsr̂ in
eg and the ground-state density matrixr̂ in

gg are
then equal to zero. Like any nonnegative definite Hermit
matrix, r̂ in

ee is given in a corresponding basis set by a set
nonnegative numbers$p1

e ,...,p2Fe11
e % in , the populations. Af-

ter this initial distribution has been created, the atomic d
sity matrix evolves according to Eq.~1!. After a long time
t@g21 has elapsed, all the atoms find themselves in
ground state due to spontaneous relaxation:r̂out

ee5 r̂out
eg50

and r̂out
gg5(Q̂b

† r̂ in
eeQ̂b . The corresponding eigenvalue

$p1
g ,...,p2Fg11

g %out differ from the initial ones$pi
e% in in the

general case. Among the possible distributionsr̂ in
ee we look

for those in which the nonzero populations belonging to
sets$pi

e% in and $pi
g%out coincide. Note that this leads, amon

other things, to equality between the entropies of the ato
subsystem in the initial and final states:

Tr$r̂ in
ee ln ~ r̂ in

ee!%5Tr$r̂out
gg ln ~ r̂out

gg!%.
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We have thus completed the statement of the problem of
stationary point of the relaxation operatorĜ.

3. SPHERICAL FUNCTIONS OF COMPLEX DIRECTION

We found a particular solution of this problem. The s
lution, however, has important applications. To formula
our result we need to introduce spherical functions of co
plex direction,YLM(a), which can be defined invariantly via
a multiple tensor product.7,8 For instance, for an arbitrary
complex vectora5a81 ia9 we have

YLM~a!5
1

aL A~2L11!!!

4pL!

3$¯$$a^ a%2^ a%3¯^ a%LM , ~4!

where a5Aa•a ~not to be confused withuau5Aa* 3a).
Spherical functions generalized in this way depend only
the direction in three-dimensional complex space,8 i.e., the
functions remain unchanged in response to the transfor
tion a→na, wheren is an arbitrary complex number. Fo
real vectors (a950), the definition ~4! leads to standard
spherical functions.7 If the quantization axisz is orthogonal
to a8 anda9, the definition~4! yields

YLM~a!5exMA~2L11!~L2M !!

4p~L1M !!
PL

M~0!, ~5!

wherePL
M(x) are associated Legendre functions, and the

rameterx can be expressed in terms of the cyclic comp
nents ofa as follows:ex52&a11 /a ande2x5&a21 /a,
since 22a11a215a2 in the respective basis set. Formu
~5! can be regarded as a suitable analytic continuation of
standard definition of the spherical functionsYLM(u,f)
~Ref. 7! to complex values of the anglef. What is important
here is that the function~4! satisfies the same basic grou
relationships as ordinary spherical functions. In particu
the Clebsch–Gordan expansion of the product of two sph
cal functions of the same argument holds, i.e.,

Yl 1m1
~a!Yl 2m2

~a!5(
LM
A~2l 111!~2l 211!

4p~2L11!

3Cl 10 l 20
L0 Cl 1m1l 2m2

LM YLM~a! ~6!

(Cl 1m1l 2m2

LM are the Clebsch–Gordan coefficients!, as does the

addition theorem for the scalar product of spherical functio
of different arguments8

YL~a!YL~b!5
2L11

4p
PLS a•b

ab D , ~7!

wherePL(x) are Legendre polynomials.

4. ALGEBRA OF THE OPERATORS V̂ L„a…

We now define the operator convolutions

V̂L~a!5
aLA4p

2L11 (
M52L

L

~21!MT̂LM
eg YL2M~a! ~8!

of spherical functions and Wigner tensor operators of ra
L:
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T̂LM
ab 5 (

ma ,mb

uFa ,ma&A2L11~21!Fa2ma

3S Fa L Fb

2ma M mb
D ^Fb ,mbu. ~9!

Employing the algebra of Wigner operators, we can wr
general expressions for products ofV̂ operators of different
ranks:

V̂L~a!V̂J
†~b!5(

K,q

~21!K1q1Fe2Fg4paLb* J

A~2L11!~2J11!

3H K L J

Fg Fe Fe
J

3$YL~a! ^ YJ~b* !%K2qT̂Kq
ee ,

~10!

V̂L
†~a!V̂J~b!5(

K,q

~21!K1q1Fg2Fe4pa* LbJ

A~2L11!~2J11!

3H K L J

Fe Fg Fg
J

3$YL~a* ! ^ YJ~b!%K2qT̂Kq
gg ,

where we have used the standard notation for thej
symbols.7 Hence, in particular, we have the following com
mutation relations.

1! For the arbitrary ranksL andJ and all dipole transi-
tions of the typeFe5F→Fg5F,F61 we have

V̂L~a!V̂J
†~a* !5V̂J~a!V̂L

†~a* !,
~11!

V̂L
†~a!V̂J~a* !5V̂J

†~a!V̂L~a* !,

since expansion of the right- and left-hand sides in the ten
operatorsT̂Kq

ee(T̂Kq
gg) leads to identities of the type$YL(a)

^ YJ(a)%Kq[$YJ(a) ^ YL(a)%Kq , which in turn follow from
the Clebsch–Gordan expansion~6! for spherical functions.

2! Depending on the type of transition, for the arbitra
vectorsa andb we have:

a! for Fg5F→Fe5F transitions

V̂0
†~a!V̂1~b!5V̂1

†~b* !V̂0~a* !; ~12!

b! for Fg5F→Fe5F11 transitions

V̂2F11
† ~a!V̂1~b!5V̂1

†~b* !V̂2F11~a* !; ~13!

c! for Fg5F→Fe5F21 transitions

V̂2F21~a!V̂1
†~b!5V̂1~b* !V̂2F21

† ~a* !. ~14!

The property~12! is obvious if we recall that in this case th
operator V̂0 is proportional to the identity matrix an
V̂1

†(b* )5V̂1(b). To prove the validity of~13! it is sufficient
to expand both sides of~13! in the operatorsT̂Kq

gg and allow
for the fact that all ranks exceptK52F are forbidden by the
selection rules contained in the 6j symbols in~10!. Equation
~13! then reduces to the identity$Y2F11(a* ) ^ Y1(b)%2Fq
e

or

[$Y1(b) ^ Y2F11(a* )%2Fq , which holds since the numbe
(2F11)1122F52 is even. Equation~14! can be proved
in a similar way.

5. STATIONARY POINT OF THE RELAXATION OPERATOR

We shall seek the solution for the stationary point of t
operatorĜ in the form

r̂ in
ee5V̂L~a!V̂L

†~a!. ~15!

The above algebraic relationships imply that~a! for Fg5F
→Fe5F21 transitions no such solution exists and that~b!
for Fg5F→Fe5F transitions the matrix~15! is the solution
for the lowest possible rankL50.

Incidentally, these two statements are obvious corol
ies of the isotropy of the relaxation operator. The thing
that since forFe5Fg21 the number of filled sublevels o
the excited state cannot exceed 2Fg21, at least two more
sublevels of the ground state are filled as a result of spo
neous decay, and for this reason alone there can be no
tionary point. WhenFe5Fg , the number of sublevels in
both states is identical, and the isotropic initial distributi
will simply become the isotropic final distribution, i.e.,
stationary point exists and corresponds to a unifo
distribution.5

We can also prove that a third statement is also true:
Fg5F→Fe5F11 transitions the matrix~15! is the solution
for highest possible rankL52F11. This is a nontrivial fact.

Indeed, in this case the angular momentum of the exc
state exceeds the angular momentum of the ground stat
unity, and for a stationary point to exist two sublevels of t
excited state must be unoccupied. Clearly, no matter how
choose these two sublevels, the uniform distribution amo
the remaining 2Fg11 sublevels of the excited state corr
sponds to some anisotropy, and spontaneous decay to
ground state produces an anisotropic, i.e., nonuniform,
tribution among the sublevels of the ground state. Thus,
‘‘naı̈ve’’ generalization of the results forFe5Fg does not
work here, and the form of the solution is unclear.

Now let us go back to the proof of the third statement.
~13! we setb5eb , whereeb are the cyclic basis unit vectors
Then, bearing in mind thatQ̂b5A2Fe11V̂1(eb), we obtain

r̂out
gg5(

b
Q̂b

†V̂2F11~a!V̂2F11
† ~a!Q̂b5V̂2F11

† ~a* !

3S (
b

Q̂bQ̂b
† D V̂2F11~a* !5V̂2F11

† ~a* !V̂2F11~a* !.

~16!

Note that the matrix V̂2F11(a)V̂2F11
† (a) has a two-

dimensional null subspace~a subspace of vectors with zer
eigenvalues!, which coincides with the null subspace of th
matrix V̂1(a)V̂1

†(a). This becomes evident in the system
coordinates in which the complex vectora is a linear com-
bination of one linear and one circular component5,6 ~e.g.,
a5a0e01a11e11). Setting b5a in ~13! and employing



-

an

r-

-

l-

ar
a
ta
o

m

he
ip
ng

a

.

op

th

-
e

y
n

ype
ss

tate
ta-
ar

eral

al-

73JETP 87 (1), July 1998 Ta chenachev et al.
~11!, we find that the matricesV̂2F11(a)V̂2F11
† (a) and

V̂2F11
† (a* )V̂2F11(a* ) satisfy the following commutation re

lation:

V̂2F11~a!V̂2F11
† ~a!V̂1~a!5V̂1~a!V̂2F11

† ~a* !V̂2F11~a* !.
~17!

Multiplying ~17! on the right~left! by V̂1
†(a) and finding the

Hermitian conjugate of the product, we obtain the import
commutation relations

@V̂2F11~a!V̂2F11
† ~a!,V̂1~a!V̂1

†~a!#50,
~18!

@V̂2F11
† ~a* !V̂2F11~a* !,V̂1

†~a!V̂1~a!#50.

From operator algebra we know thatV̂2F11(a)V̂2F11
† (a) and

V̂2F11
† (a* )V̂2F11(a* ) are diagonal in basis sets of the He

mitian operatorsV̂1(a)V̂1
†(a) and V̂1

†(a)V̂1(a), respectively.
Calculating the matrix elements of~17! using the eigenvec
tors of the operatorsV̂1(a)V̂1

†(a) and V̂1
†(a)V̂1(a), we

conclude that r̂ in
ee5V̂2F11(a)V̂2F11

† (a) and r̂out
gg

5V̂2F11
† (a* )V̂2F11(a* ) have coinciding nonzero eigenva

ues, which is what we set out to prove.

6. STATIONARY ATOMIC DENSITY MATRIX

We can show that the above solution for the station
point of the relaxation operator corresponds to a station
distribution of atoms among the sublevels of the excited s
in an external field. Actually, this fact was used in Ref. 5 f
Fg5F→Fe5F transitions, (F is a half-integer!. Similarly,
the nontrivial solution forFg5F→Fe5F11 transitions
produces a compact analytical representation for the ato
density matrix.

Briefly, the statement of the problem is as follows. T
quantum kinetic equation for atoms interacting with an ell
tically polarized monochromatic field is obtained by addi
the following Hamiltonian part to~1!:

]r̂

]t
52

i

\
@Ĥ,r̂ #2Ĝ$r̂%, ~19!

where

Ĥ52\dP̂e1\~VV̂1~e!1V* V̂1
†~e!! ~20!

is the atomic Hamiltonian in the rotating-wave approxim
tion, d5v2v0 is the detuning of the field frequencyv from
the transition frequencyv0 , and V is the Rabi frequency
We see that the operators introduced in~8! for L51 coincide
with the tensor factor in the resonant dipole interaction
erator. The unit complex vectore of elliptic polarization of
the field satisfies the conditionse* •e51 and Im(e•e)50.
The exact stationary solutionr̂st of Eq. ~19! for Fg5F
→Fe5F11 transitions can be expressed in terms of
operatorsV̂L as follows:

r̂st
ee5

S

a012Sa1
V̂2F11~e!V̂2F11

† ~e!,
t

y
ry
te
r

ic

-

-

-

e

r̂st
gg5

1

a012Sa1
~@V̂1

†~e!V̂1~e!#211S!

3V̂2F11
† ~e* !V̂2F11~e* !,

~21!

r̂st
eg5~ r̂st

ge!†5
V

~d1 ig/2!~a012Sa1!
V̂1~e!

3@V̂1
†~e!V̂1~e!#21V̂2F11

† ~e* !V̂2F11~e* !,

where S5uVu2/(g2/41d2) is the transition saturation pa
rameter. The validity of this solution becomes evident if w
plug ~21! into ~19! ~or into the equations for the stationar
density matricesr̂st

ee andr̂st
gg , whose expanded form is give

in Ref. 6! and allow for Eqs.~16!–~18! and if we bear in
mind that the projection of the matrixV̂2F11(e)V̂2F11

† (e)
onto the null subspace of the operatorV̂1(e)V̂1

†(e) is zero.
The uniqueness of the stationary solution for the present t
of optical transition was proved earlier in Ref. 6. We stre
that the distribution among the sublevels of the excited s
coincides, to within a normalization constant, with the s
tionary point of the relaxation operator for the particul
valuea5e. The normalization constantsa i depend only on
the ellipticity « of the field (cos 2«5e•e) and can be found
explicitly for all values ofF. The addition theorem~7! for
spherical functions implies that

a15Tr$V̂2F11~e!V̂2F11
† ~e!%

5
~cos 2«!2F11

4F13
P2F11S 1

cos 2« D . ~22!

Calculating the matrix elements~see the Appendix! in the
coordinate system used in Refs. 5 and 6, wheree
5e0Acos 2«1&e11 sin«, we find that

a05Tr$@V̂1
†~e!V̂1~e!#21V̂2F11

† ~e* !V̂2F11~e* !%

5
~F11!~2F11!! ~2F13!!

~4F13!!
~cos 2«!2F

3 (
n50

2F

AnS sin2 «

cos 2« D n

, ~23!

An5 (
m52F

F2n
~F1m1n!! ~F2m2n!!

~F1m!! ~F2m!!

3F (
m50

n

~21!m
~2F111m!!

m! ~F111m1m!! ~F112m2m!! G2

.

The commutation relations~18! immediately yield

@ r̂st
ee,V̂1~e!V̂1

†~e!#50, @ r̂st
gg,V̂1

†~e!V̂1~e!#50. ~24!

Thus, we have proved the main theorem of Ref. 6 in gen
form.

Note that the solution~21! coincides with the result of
Ref. 6 when F50,1/2,...,5. To verify this it is enough
to represent the operatorsV̂2F11(e)V̂2F11

† (e) and
V̂2F11

† (e* )V̂2F11(e* ) by power series inV̂1(e)V̂1
†(e) and

V̂1
†(e)V̂1(e), respectively. Here the normalization factors c
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culated in Ref. 6~we denote them byã1 andã0) differ from
~22! and~23! by a conversion factorC, i.e., ã i5Ca i , where

C5
~4F13!~2F11!! 2

@~F11!~2F11!~2F13!#2F11 .

In Ref. 6 we presented concrete calculations~of the absorp-
tion coefficient and the radiative force! using the stationary
solution for several values of angular momentum,F
50,1/2,...,5.Here we shall not consider applications of t
results, since this constitutes a separate problem.

The solution~21! has an invariant form, which makes
possible to find the values of the elements of the station
density matrix in both the ordinary (F,m) representation~see
the Appendix! and in the atomic-polarization-moments re
resentation@the (K,q) representation#. In particular, from
~21! and~10! it follows that the polarization moments of th
excited state can be expressed in terms of tensor produc
spherical functions:

rKq
ee5Tr$T̂Kq

ee r̂st
ee%5

4pS~cos 2«!2F11

~a012Sa1!~4F13!
~21!K11

3H K 2F11 2F11

F F11 F11 J
3$Y2F11~e! ^ Y2F11~e* !%Kq . ~25!

Note that the distribution among the sublevels of the exc
state r̂st

ee in the form ~21! for the particular case of linea
polarization of the field was first obtained by Macek a
Hertel.9

7. CONCLUSION

The present work is a continuation of a series
papers10,5,6 devoted to the fundamental problem of the s
tionary density matrix of atoms interacting with an ellip
cally polarized resonant field. The exact solutions obtaine
a compact analytical form have an extremely broad rang
applications, among which the most important are laser c
ing and the trapping of atoms in nonuniformly polariz
fields, the resonance fluorescence of atoms captured
magneto-optical trap, and nonlinear polarization spectr
copy without Doppler broadening. On the other hand, in t
paper we have developed a new approach for studying
tensor properties of the radiative relaxation operator, and
results may also prove useful in analyzing the temporal e
lution of atoms subjected to an external elliptically polariz
electromagnetic field and a vacuum electromagnetic field

This work was made possible by a grant from the R
sian Fund for Fundamental Research~Grant No. 98-02-
17794!.

APPENDIX: CALCULATING THE MATRIX ELEMENTS

The simplest way to calculate the matrix elements of
stationary atomic density matrix~21! is to employ the system
of coordinates used in Refs. 5 and 6, where the field po
ization vector is a linear combination of one linear and o
circular component:
ry

of

d

f
-

in
of
l-

a
s-
s
he
e
-

-

e

r-
e

e5e0Acos 2«1&e11 sin «. ~A1!

To make things more compact, we introduce the notat

V̂1(e)5V̂, V̂2F11(e)5Ŵ, and V̂2F11(e* )5Ŵ̃ and rewrite
the solution~21! as follows:

r̂st
ee5

S

a012Sa1
ŴŴ†,

r̂st
gg5

1

a012Sa1
~X̂X̂†1SŴ̃†Ŵ̃!, ~A2!

r̂st
eg5~ r̂st

ge!†5
V

~d1 ig/2!~a012Sa1!
ŴX̂†,

whereX̂5ÛŴ with Û the pseudoinverse matrix11 relative to
V̂: V̂ÛV̂5V̂. For the generalized spherical functions~4! in
the basis set~A1! we have

YL2M~e!5~21!M

3A~2L11!~L1M !!

4p~L2M !!

1

M ! S sin «

Acos 2«
D M

~A3!

for M>0 andYL2M(e)50 for M,0. Plugging~A3! into the
definition ~8!, we obtain (Fg5F, Fe5F11, and L52F
11)

Wmm5~21!F2m
~2F111m2m!!

~m2m!!

3A ~2F12!! ~2F !!

~4F13!! ~F111m!! ~F112m!! ~F1m!! ~F2m!!

3~cos 2«!F11/2S sin «

Acos 2«
D m2m

, ~A4!

wherem52F21,2F,...,F11, m52F,2F11,...,F, and

m2m>0. The matrixŴ̃ can be obtained from~A4! using
the time-reversal operationW̃mm5(21)m1mW2m2m . The
nonzero matrix elements ofV̂ are given by the following
formulas:

Vm,m5A ~F112m!~F111m!

~F11!~2F11!~2F13!
Acos 2«,

~A5!

Vm,m215A ~F1m!~F111m!

~F11!~2F11!~2F13!
sin «.

As the matrix pseudoinverse toV̂ we take the matrix with the
elements

Umm5A ~F11!~2F11!~2F13!

~F111m!~F112m!cos 2«

3S 2
sin «

Acos 2«
D m2m

)
n5m11

m A F1n

F112n
~A6!

for m52F,2F11,...,F, supplemented by the zero co
umnsUm2F2150 andUmF1150. Here we setPn5m11

m f n
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[1 andPn5m11
m f n[0 for m.m. The matrix multiplication

of ~A6! by ~A4! yields the following result for the element
of X̂:

Xmm85A~F11!~2F11!! ~2F13!! ~F1m!! ~F2m!!

~4F13!! ~F1m8!! ~F2m8!!

3~cos 2«!FS 2
sin «

Acos 2«
D m2m8

3 (
m5m8

m
~21!F2m~2F111m2m8!!

~m2m8!! ~F111m!! ~F112m!!
. ~A7!
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Formation mechanisms and structure of the luminescence spectra of a dense resonant
medium
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The purely thermal visible and infrared radiation emitted by a dense resonant medium~sodium
vapor! heated nonuniformly to temperatures of 600–1200 K was investigated
experimentally for the first time under conditions where the photon mean free path is comparable
with the emission wavelength. The profile of the recorded spectra and the absolute
luminescence intensities in the different spectral ranges show good agreement with the results of
a numerical simulation using a previously developed theory of resonance radiation transport
which assumes a Boltzmann spectral distribution of the resonant level population proportional to
exp(2\v/T). The self-reversed resonant sodium line exhibited strong asymmetry and it was
shown that under certain conditions, the luminescence spectrum of the medium may exhibit an
additional broad peak on the far ‘‘red’’ limb of the resonance line. Calculations and
measurements demonstrated that the intensity of the thermal emission of sodium vapor at this red
peak is several orders of magnitude higher than that obtained from the standard theory of
resonance radiation transport. This effect is arbitrarily termed an infrared ‘‘catastrophe.’’ It is noted
that in a solar corona plasma and in gas-discharge lamps, the far red limbs of the resonant
lines may make a substantial contribution to the total luminescence intensity and in some cases,
considerably exceed the intensity of the photorecombination and bremsstrahlung continuum.
© 1998 American Institute of Physics.@S1063-7761~98!01007-5#
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1. INTRODUCTION

The formation of luminescence spectra and resona
radiation transport processes in dense gases and plasma
recently attracted increasing interest.1–7 This is mainly attrib-
utable to the development of research to study radiation
cesses in dense, multiply charged, ion plasmas create
laser radiation or by various types of discharges (Z and X
pinches and so on! and work on the development of x-ra
lasers. The considerable progress achieved in this field
revealed an urgent need to radically reexamine various
tablished concepts in the standard theory of resonance ra
tion transport8,9 developed for low gas densities, and in pa
ticular, has shown that some of the approximations use
this theory must be abandoned. This particularly applies
the well-known Biberman criterion8 «821!1 for the valid-
ity of the standard theory («8 is the real part of the permit
tivity «5«81 i«9 of the medium! and the narrow-line ap
proximationDv5v2v0!v0 , wherev0 is the frequency
of the resonant transition andv is the frequency of the emit
ted photon. Taking account of this observation, the auth
of Refs. 10 and 11 developed for the first time a generali
theory of resonance radiation transport free from these c
straints. The approach developed in these studies pred
the existence of fundamentally new effects in radiation tra
port processes in dense media. In particular, it was show
Ref. 11 that in a dense strongly absorbing medium the in
761063-7761/98/87(7)/11/$15.00
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sity of the equilibrium radiationJv within the line profile
may substantially exceed the Planck value. It was a
observed10 that under certain conditions, the resonant li
profile may exhibit a second broad peak shifted in the lo
frequency direction relative tov0 , where the emission inten
sity in this red limb may be many orders of magnitude high
than the intensity of its near-resonant component. This p
nomenon was described in Ref. 12 as an infrared catastro

These effects may show up to a considerable exten
observations of thermal radiation from a dense nonuniform
heated medium, so that the theory put forward in Refs.
and 11 can be checked experimentally. Since the hig
time-dependent, highly inhomogeneous plasma of a la
spark, pinches, etc., is a fairly inconvenient object to study
was interesting to check this theory experimentally usin
simple model medium such as thermally heated dense a
metal vapor. The present paper reports the experimental
servation of the effects predicted in Refs. 10 and 11 using
thermal radiation from dense sodium vapor heated to te
peratures of 600–1200 K under steady-state conditions~re-
sults were briefly reported in Refs. 12 and 13!. The experi-
mental data are also compared with the results of a nume
simulation. The structure of the luminescence spectrum
the sodium resonance doublet 3P– 3S was studied experi-
mentally. We particularly note that purely thermal radiati
was recorded from the vapor in the absence of any excita
© 1998 American Institute of Physics
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by an electric field or an external radiation source. Un
these conditions, the electron density is negligible and
intensity of the bremsstrahlung and photorecombination c
tinua is also low. The relatively low temperatures elimina
the appearance of any other lines in the thermal radia
spectrum.

This study is constructed as follows. Section 2 give
qualitative analysis of the effects and Sec. 3 reports the
sults of a numerical simulation of the radiation processe
dense media under different conditions. Section 4 gives c
parative estimates of the ratio of the radiation intensity
the resonant lines and the intensity of the photorecomb
tion and bremsstrahlung continua under plasma conditio
Section 5 contains descriptions of the experimental appar
and diagnostic techniques. Section 6 presents results of m
surements of the thermal radiation emitted by dense sod
vapor in various spectral ranges, discusses these experi
tal results and compares them with the calculations. T
main conclusions are put forward in the concluding secti

2. QUALITATIVE ANALYSIS

It has already been noted in the Introduction that at h
pressures, the standard theory of resonance radia
transport8,9 developed for low gas densities is no long
valid, since the condition for a small deviation of« from
unity ceases to be satisfied and the photon mean free pa
comparable with the emission wavelength. It is easy to sh
that in a dense medium, a photon is a ‘‘poor’’ quasipartic
for which the dispersion relationA«8v5ck is not satisfied,
wherec is the velocity of light andk is the wave vector. In
this case, the problem of resonance radiation transport ca
solved using an equation for the Fourier components of
correlation functions of the electromagnetic field which c
be formulated in terms of kinetic Green’s functions.11 This
allows us to introduce the generalized spectral ‘‘intensit
J(v,k) of the radiation, where the frequencyv and the wave
vector k! are independent variables. In general the funct
J(v,k is not positive and several of its moments, i.e., in
grals overk with different weighing functions, are physicall
meaningful. Thus, the spectral radiation intensityJv usually
encountered in the measurements and standard tran
theory is related toJ(v,k) by11

Jv~V!5
2c2

v E
0

`

kJ~v,k!
k2dk

~2p!5 , ~1!

whereV is the unit vector in thek direction.
This approach can predict fundamentally new effects

resonance radiation transport processes in dense media
instance, under conditions of thermodynamic equilibrium
an unbounded medium the functionJ(v,k) can be deter-
mined from the fluctuation–dissipation theorem for the sp
tral density of the fluctuations of the transverse electrom
netic field strength:

J~v,k!5
8p\v4n~v!«9

uv2«2c2k2u
, ~2!

where\ is Planck’s constant, andn(v) are the equilibrium
photon occupation numbers given by the Planck formula
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n~v!5~exp~\v/T!21!21. ~3!

Substituting Eq.~2! into Eq. ~1! and integrating, assum
ing that«~v,k! depends weakly on the wave number~which
is valid in dense media since the collisional widthG under
these conditions is much greater than the Doppler width!, we
obtain for an equilibrium highly absorbing medium

Jv.
\v3n~v!

4p3c2

«8

2 S 11
2

p
arctan

«8

«9
1

4«9

«8
lnS G

vvT /cD D
[Jv

Plc~v!«8, ~4!

whereJv
Pl is the Planck intensity for black body radiation

vacuum andvT is the thermal atomic velocity. Since at hig
densitiesN the widthG is determined by resonant collision
by the Vlasov–Fursov mechanism14 (G}N), as a result of
the presence of a logarithmic contribution in Eq.~4! which
increases withN, the equilibrium intensity in an absorbin
medium may be almost an order of magnitude higher th
the radiation intensity in a transparent medium determin
by the Clausius formulaJv

Pl«8 within the spectral line profile
for detuningDv&G. Note that the numerical calculations o
Jv for sodium vapor assuming that« depends onv and k
show that the approximation~4! is quite accurate.11

These effects may be observed to a considerable ex
in observations of the thermal radiation emitted by a de
medium. Calculations of the intensity of this radiation shou
also be made using the functionJ(v,k,V,r ) introduced ear-
lier. In the steady-state case, the generalized spectral in
sity of the radiationJ(v,k,V,r ) should satisfy two equa
tions simultaneously. One of these has the form of the kin
equation:

~V,¹!J52kv J1 «̃~v,k,V,r !, ~5!

wherekv is the absorption coefficient and«̃ is the general-
ized spectral intensity of the bulk spontaneous emission:11

kv5
v2«9~v,k!

c2k
5

4

3

g2

g1

~dpv!2

\c2k
a~v,k!

3S Ñ12
g1

g2
Ñ2 exp~2\~v2v0!/T! D , ~6!

«̃5
4

3

d2v3\v

\c2k

v2«9

uv2«2c2k2u2 ~2p!3Ñ2a~v,k!

3expS 2
\~v2v0!

T D . ~7!

In Eqs. ~6! and ~7!, a(v,k) is the generalized line pro
file, g1,2 are the statistical weights of the ground and exci
states,Ñ1,2 are their effective populations~see below! which
satisfy the Boltzmann relations in equilibrium and may
obtained from the kinetic equations given in Ref. 10 in t
absence of equilibrium. Integrating Eq.~7! over k, neglect-
ing the spatial dispersion~where a(v,k).a(v)), we can
obtain a clear expression for the spectral intensity of
spontaneous emission in a highly absorbing medium:
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«v5
1

4p
\vA0F v

v0
G3

Re~«1/2!Ñ2a~v!

3expS 2
\~v2v0!

T D . ~8!

It follows from Eq. ~5! that in general there is no close
equation for the spectral intensityJv defined in Eq.~1! and
in addition to the first-order partial differential equation~5!,
the functionJ(v,k,V,r ) should also satisfy an inhomoge
neous wave equation, which has the following form in t
steady-state case

S 2
c2

2
D12~c2k22v2«8!D J5

8p\v4«9

uv2«2c2k2u

3
2~c2k22v2«8!

~~Ñ1 /Ñ2!~g2 /g1!exp~2\~v2v0!/T!21!
. ~9!

In the homogeneous case, Eq.~9! yields the same resul
~2! as the kinetic equation~5!. In the general case, Eqs.~5!
and ~9! must be solved jointly.

In order to close the system of equations~5! and ~9!,
they must be supplemented by the equations for the pop
tions Ñi . In the limit Ñ2!Ñ1.N we can obtain the follow-
ing equation forÑ2 ~assuming that complete frequency r
distribution occurs in a dense medium!:

2

3

d2

\2

g2

g1
E dv dVk2dk

~2p!3 J~v,k,V,r !a~v,k!Ñ1

2
8

3

d2

\ E dv k2dk

p

v4«9~v,k!

uv2«2c2k2u2 a~v,k!

3expS 2
\~v2v0!

T D Ñ22WS Ñ22Ñ1

g2

g1

3expS 2
\v0

T D D50. ~10!

The first term in Eq.~10! corresponds to the photoab
sorption of radiation, the second corresponds to the spo
neous decay of excited atoms, and the third correspond
collisional exchange between states 1 and 2 with the p
ability W. The boundary conditions satisfied by the intens
at the interface may be derived from an analysis of the em
sion from a heated medium into vacuum. In particular,
the radiation intensityJv

ex(V) from a heated medium havin
the temperatureT0 , the reflection coefficientR5R0 , the
permittivity «5«0 , and the functionc5c0 at the boundary
~see Eq.~4!!, we obtain

Jv
ex~V!5

Jv
~2 !~V!uz50

«08~v!c0~v!
~12R0~v,V!!, ~11!

whereJv
(2) is the intensity of the radiation emitted from th

medium to the interface. Note that in a uniform half-spa
relation ~11! generalizes the Kirchhoff law for the radiatio
intensity emitted by an equilibrium medium:

Jv
ex5Jv

Pl~ I 2R!. ~12!
la-

ta-
to

b-

s-
r

,

The exponential factor exp(2\(v2v0)/T) appears in
Eqs.~6!–~10! ~the need to introduce this was noted in Re
15–17! as a result of generalizing the standard radiat
transport theory8,9 to the case of broad lines characteristic
a dense medium and was was justified in Ref. 10 in term
the Keldysh theory using kinetic Green’s functions.18–21 We
shall now consider the case of an equilibrium medium
two-level atoms emitting thermal radiation which, for sim
plicity, we shall describe as Planck.

The equilibrium condition implies that the rates of radi
tive decay of the spectral density of excited atoms and p
toabsorption from the ground state are equal. We write
condition in terms of the photon and atomic occupation nu
bers taking into account the recoil momenta of the phot
and the kinetic motion of the atoms, and also quantum
tistics effects~see Ref. 10!:

Ñ2~p!a2~«!E dvkdVvk
3~11nk!@12Ñ1~p2\k!#

3a1~«2vk2v01E~p!/\2E~p2\k!/\!

5@12Ñ2~p!#a2~«!E dvkdVvk
3nkÑ1~p2\k!

3a1~«2vk1v01E~p!/\2E~p2\k!\!. ~13!

Here we have writtenvk5cuku, nk is the photon occupation
number:

nk5~exp~\vk /T!21!21, ~14!

Ñi(p) are the generalized occupation numbers of thei th
atomic state~to be specific we assume Fermi statistics for t
atomic states!, E(p)5p2/2m is the overall kinetic energy o
the atom, andai(«) is the spectral density~profile! of the i th
state (i 51,2),

ai~«!5
g i /2p

«21~g i /2!2 , ~15!

whereg i is the width of this state. The following notatio
appears in Eq.~15!

\«5\v2\v i2E~p!1m, ~16!

Ei5\v i is the energy of thei th state,m is the chemical
potential, v05v22v1 , i.e., « is the frequency detuning
from resonance in statei which is determined by the energ
\v i1E(p)2m.

Condition ~13! is identically satisfied ifÑi(p) has the
form ~see Ref. 10!

Ñi~p!5
1

exp~~\«1\v i1E~p!2m!/T!11

[
1

exp~\v/T!11
. ~17!

We shall consider the case where the ground statei
51) is unbroadened, i.e.,a1(«)5d(«). Then, allowing for
Eq. ~17!, it follows from Eq.~13! that the rate of photon drift
in the V direction will be proportional toR↓ :
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R↓5
1

exp~~\«1\v21E~p!2m!/T!11
a2~«!~11nk!

3F12
1

exp~~\«1\v11E~p!2\vk1\v0!/T!11G .
~18!

Herevk and«, being the detuning from the position of lev
2, are related by~see Eq.~16!!

\«5\vk2\v02E~p!1E~p2\k!. ~19!

Introducing the auxiliary populationÑi , defined as

Ñi5exp~2\v i /T!@exp~m/T!/lT
3# ~20!

~where for simplicity the statistical weightsgi were assumed
to be unity, andlT is the thermal de Broglie wavelength o
the atom!, and neglecting degeneracy, the rate of radiat
decay of an atom in state 2 with the momentump and de-
tuning « will have the form

R↓.Ñ2lT
3 exp~2E~p!/T2\«/T!~11nk!a2~«!. ~21!

Similarly, the rate of photoexcitation of an atom from sta
i 51 with the momentump2\k, using the same notation
will have the form

R↑.Ñ1lT
3 exp~2E~p2\k!/T!nka2~«!. ~22!

Equating expressions~21! and ~22!, we obtain~taking ac-
count of Eqs.~19! and ~20!!

11nk

nk
5expS \vk

T D
[expF\«1\v01E~p!2E~p2\k!

T G . ~23!

Relation ~19! for the photon frequencyvk implies that for
the broadened atomic state 2, a photon emitted from the
limb («Þ0) possesses an energy which is determined
only by the transition frequencyv0 and the atomic recoi
energyE(p)2E(p2\k) but also by the detuning«.

If the rate of spontaneous decay is integrated over
momenta of the emitting atoms, after the term containingnk

is dropped Eq.~21! gives

^R↓&sp5Ñ2 exp~2\~vk2v0!/T!w~vk2v0!, ~24!

wherew(vk2v0)[w(D) is the Voigt profile of the emis-
sion line, which in general is a convolution of the profilesa2

and a1 . Expression ~24! contains the correction facto
exp(2D/T) omitted in the standard theory of resonance
diation transport, which is usually close to unity near the l
center,D!T but is essential to describe the radiation at
far limbs of the line (D>T). In the resonance approxima
tion, the quantity«/T in the expression for the spectral pop
lations ~see Eqs.~17!, ~21! and ~23!! is negligible compared
with unity and the factor exp(2D/T) automatically becomes
unity. Note that in the derivation of these relations the s
cific homogeneous broadening mechanism is unimpor
sinceg2 can be determined even by a purely radiative bro
ening mechanism.
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The appearance of this exponential factor can be
plained qualitatively as follows. In the narrow-line approx
mation,Dv!v0 and in a low-density medium the spectr
intensity of the bulk emission from a resonant medium
described by8 ~compare with expression~8!!

«v5~1/4p!\vAN2~v!, ~25!

whereN2(v) is the spectral population density of the res
nant level, i.e., the density of atoms capable of emitting
photon at the frequencyv ~in the approximation of complete
frequency redistribution of absorbed and emitted photons
is assumed thatN2(v)5N2a(v), whereN2 is the total reso-
nant level population!. It is known that in the standard theor
of resonance radiation transport8 the absorption coefficient is
given by the following expression:

kv5Ap2~c2/v2!~g2 /g1!a~v!~N12~g1 /g2!N2!. ~26!

Assuming that in equilibrium N25(g2 /g1)N1

3exp(2\v0 /T) ~Ref. 8!, we obtain the following expression
for the ratio«v /kv :

«v /kv5~\v3/4p3c2!~exp~\v0 /T!21!21. ~27!

At equilibrium however, the ratio«v /kv should be equal and
identical to the Planck intensityJv

Pl , which in turn is deter-
mined by an expression similar to~27! but whose exponen
tial function contains the instantaneous frequencyv rather
than the resonance frequencyv0 :

Jv
Pl5~\v3/4p3c2!~exp~\v/T!21!21. ~28!

In addition to this anomaly, there is also another. It is easy
see that the total radiation intensity integrated over all f
quencies using expression~25! is infinite. Even if the depen-
dence of the spontaneous emission probability onv is ne-
glected (A5A0(v/v0)3, where A0 is the classical
probability of spontaneous emission in vacuum, see Refs
and 11!, and for example, for purely radiative broadenin
the integral of«v diverges logarithmically at high frequen
cies wherea(v)}v22.

In order to obtain an accurate formula forJv
Pl and ensure

convergence of the appropriate integral, the expression
N2(v) must be modified by introducing the correction fact

Ñ2~v!5Ñ2a~v!exp~2\~v2v0!/T!, ~29!

where, as was shown in Ref. 10, expression~29! will not
contain the true populations but the effective~auxiliary!
populationsÑ2 . In equilibrium we obtain the Boltzmann
spectral distribution,

Ñ2~v!5Ñ1a~v!exp~2\v/T! ~30!

~in the absence of equilibrium the effective populatio
Ñi(v) are obtained from the kinetic equations given in R
10!. In this case, the true total population of excited atoms
determined by the integral of Eq.~30! over frequency and for
pure radiative broadening may be written in the form

N2.Ñ1H expS 2
\v0

T D1
3!

2p

A0

v0
F T

\v0
G4J . ~31!
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Interestingly, a similar sum of exponential and pow
contributions was obtained for the particle momentu
distribution.22 In Refs. 15 and 16, where an expression sim
lar to ~29! was used, it was assumed when integrating o
frequency that the total population is determined by the fi
Boltzmann term in expression~31!, which may lead to major
errors. It follows from expression~31! that, strictly speaking,
even in equilibrium the true populationN2 will not satisfy
the Boltzmann relation and will only be the same asÑ2 for a
narrow line \G!T. However, a detailed analysis10 shows
that Eqs.~6!–~10! actually containÑ2 and thus we define
this as the effective population.

The introduction of the factor exp(2\(v2v0)/T negligi-
bly influences the nuclear line profileDv}G ~although for a
fairly broad line it increasingly enhances the asymmetry
the absorption and emission lines in a dense medium! but for
T!v0 may result in the appearance of a second peak on
far red limb of the line profile~where v!v0) if the gas
temperature is fairly low. Under these conditions we hav

«v}v4a~v!exp~2\~v2v0!/T!

~see Eq.~8!!, and provided that the profile does not decrea
too rapidly~power law! in the range of low-frequency detun
ing, the high value of the exponential factor ensures tha
additional peak appears. We postulate that the resonant
broadening is created by the gas itself~and for large detuning
the quasistatic profilea(v)}D22) or by a buffer gas
(a(v)}D23/2), Ref. 14. It is then easy to show that th
frequencyvm corresponding to this maximum is determin
in both cases by the temperature of the medium and is
proximately 4T/\. This additional peak will occur in the
temperature rangeT&\v0/11, and its intensity will be pro-
portional toT4. The intensity of the low-frequency peak wi
clearly differ appreciably in these two cases.

Under these conditions, detailed calculations~see below!
show that the intensity of the far limb of the spectral li
may appreciably exceed the intensity calculated by stand
theory8 and most of the energy emitted on the line may
assigned to its nonresonant red limb rather than to the ce
near-resonant component. This phenomenon was arbitr
described in Ref. 13 as an infrared catastrophe. Moreo
even in the absence of a peak at relatively high temperatu
the emission intensity at the far limb will still be substa
tially higher than the intensity calculated by standard theo
Note that although the introduction of an exponential fac
is not directly related to effects caused by the density of
medium, in reality its influence on the radiation intensity
various spectral ranges and on the ratio between them
nevertheless be determined by the concentration of inter
ing particles, since we have«v } a(v) and the line profile
in the impact and quasistatic cases is proportional to
concentration at a given radiation frequency.

The thermodynamic relations do not indicate the spec
mechanism for the establishment of the Boltzmann distri
tion ~30!. However, it is easy to show that this distributio
can be formed in various elementary events, in interac
between the atomic system and equilibrium radiation and
collisions. In this last case, for example, we can consider
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collision between emitting and buffer atoms accompanied
virtual excitation and subsequent emission of a photon
frequencyv far from the resonance frequencyv0 ~an analog
of polarizing radiation23,24!. It is easy to see that the intensit
of the spontaneous emission of photons in these collisi
will be proportional to exp(2v/T). However, if heavy par-
ticles collide, as a result of the Massey criterionav/v@1
~wherea is the characteristic scale of the particle interacti
radius andv is their relative velocity!, the probability of
this process will be exponentially low and proportional
exp(2av/v).

We shall analyze another radiation-collisional proce
emission of a photon at the far quasistatic limb of the line
an excited particle whose interaction potential with a buf
atom is denoted byU2(R). For atoms in the ground state th
interaction potential is denoted byU1(R). Using the
Franck–Condon principle, we can then write the followin
condition for the frequency of the emitted photon:

\v5\v~R!5E22E11U2~R!2U1~R!. ~32!

At the far limb of the line, we can neglect the Doppl
shift and we can consider the line profilea2(«) caused by
interaction between quasistatic particles to be proportiona
a d-function. In this approximation, we obtain for the bu
intensity of the spontaneous emission~see Refs. 15 and 16!

«v}N1~R!Nb exp@2\v~R!/T#uR2dR/dvu. ~33!

Here

N1~R! } exp~m/T!exp@2~E11U1~R!!/T#

is the density of ground-state atoms interacting with buf
particles~having the densityNb) located at the distanceR,
which corresponds to the emission of a photon of freque
v(R). The derivativedR/dv is obtained from relation~32!.
It can be seen that in this model example at the far quasis
limb of the line, the emission probability is proportional
the Boltzmann factor exp(2\v/T) and the quasistatic line
profile determined by the last cofactor in Eq.~33!.

3. NUMERICAL SIMULATION OF RESONANCE RADIATION
TRANSPORT PROCESSES IN DENSE SODIUM VAPOR

A numerical solution of the system of equations~5!, ~9!,
and ~10! with the boundary condition~11! was used to cal-
culate the radiation intensityJv of the resonant sodium line
(v0.3.231015 s21) both inside and at the exit of a nonun
formly heated planar layer of sodium vapor of lengthL in the
presence of an argon buffer gas at a pressureP.1 atm. In
the calculations it was assumed that near resonance
broadening is determined by a collisional mechanism w
resonant collisions predominating at high temperatures.
collisional widths for theD1 andD2 sodium lines are given
in Ref. 25 and are

GD1
52p34.6831028N s21 and

GD2
52p37.6231028N s21

At the line limb it was assumed that the profilea(v) is
formed by quasistatic argon broadening for which
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FIG. 1. Frequency dependence of the spect
radiation intensity at the center of a plana
layer of sodium vapor~a! and of the radiation
intensity leaving this layer~b!; Tc51000 K,
L515 cm; 1—calculations using the theory
put forward in Refs. 10 and 11,2—
calculations using standard radiation theory8,
and3—Planck intensity.
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a~v!5~4p/6!~C6!1/2NbDv21.5

~see Ref. 26!, whereNb is the buffer gas density. The van d
Waals interaction constantC6.1.9310231 cm6/s was ob-
tained from data on the argon collisional broadening of
sodiumD lines.27

The results of the calculations are plotted in Figs. 1
Figure 1a gives the frequency dependence of the radia
intensity at the center of a layer of thicknessL515 cm when
the temperature at the center isTc51000 K. In this case, the
temperature profile in the layer corresponds to the exp
mental conditions~see below! and the Na atomic densitie
were assumed to correspond to the saturated vapor pre
at the given temperature.28 Curve1 was calculated using th
theory put forward above, curve2 was calculated using th
standard theory of spectral line radiation,8 and curve3 gives
the Planck intensity. The graph clearly shows that at
center of the line, curve1 exhibits a narrow peak of intensit
exceeding the Planck intensity, which is attributed to
strong dispersion and absorption in the dense sodium va
discussed in detail above. In the infrared~where v5vmax

;531014 s21) the calculations reveal a broad peak of inte
sity several orders of magnitude higher than that obtaine
the standard theory at the same frequency. On the blue
the opposite situation arises and, what is particularly imp
tant, the frequency integral of the intensity calculated us
the standard theory diverges at high frequencies. The re
show that in this theory the integrated intensity of the rad
tion spectrum at the given temperature is mainly determi
by the red peak and the near-resonance component of the
e
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makes a relatively small contribution. Note that, as the c
culations have shown, the optical layer thicknesst in the red
peak is relatively small~for the conditions described abov
t;1023) and ‘‘soft’’ photons can escape from the bound
medium.

Figure 1b shows the spectral dependence of the inten
of the thermal radiation from the cell under these conditio
It can be seen from a comparison of the curves that far fr
resonance the output radiation still shows the same de
dence. For small detuning, however, the peak at the reso
frequency is replaced by a dip as a result of self-reve
although the calculations show that the intensity at the l
center is still several orders of magnitude higher than t
calculated by the standard theory.

Figure 2 gives a family of curves showing the change
the structure of the emission spectra at the center of a la
of thicknessL515 cm and at the exit from this layer as
function of the temperatureTc (T0 was taken to be 950 K in
all cases!. For the calculations the pressure of the sodiu
vapor and argon in the layer were assumed to be consta
PNa50.1 atm andPAr51 atm. The temperature profile i
the layer was assumed to be parabolic. It can clearly be s
that as the temperature increases, the red peak graduall
comes smoothed and disappears whenTc.2000 K, although
at high temperatures the contribution of the red limbs of
resonance line is still much greater than that calculated
the standard theory. To illustrate this, Fig. 3 gives the te
perature dependence of the integrated luminescence inte
ral
a

FIG. 2. Frequency dependence of the spect
intensities of the radiation at the center of
planar layer of sodium vapor~a! and radiation
intensity leaving this layer~b!, at various tem-
peraturesTc ; 1–3—calculations using the
theory put forward in Refs. 10 and 11,4–6—
using standard radiation transport theory;L
515 cm, T05950 K, PNa50.1 atm, PAr

51 atm, Tc51000 ~1,4!, 2000 ~2,5!, and
4000 K ~3,6!.
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of the layer in the visible (0.4,l,0.7 mm) and infrared
(l.0.7 mm).

4. PLASMA RADIATION: COMPARATIVE ESTIMATES OF
THE RATIO OF THE RADIATION INTENSITY OF
RESONANCE LINES AND THE INTENSITY OF THE
PHOTORECOMBINATION AND BREMSSTRAHLUNG
CONTINUA

In the previous section we examined the structure of
spectra of pure thermal radiation from a resonant medium
the absence of ionization for the case of sodium vapor. I
plasma the luminescence intensity at the far limbs, altho
appreciable, will compete with the radiation intensity det
mined by other mechanisms, especially bremsstrahlung
photorecombination. The question therefore arises as to
ratio between these mechanisms and whether the radia
intensity at the limb of the resonant line can make a subs
tial contribution to the total plasma radiation. To solve th
problem, we shall give fairly rough estimates of the con
bution of the various mechanisms of plasma luminous e
tance for specific examples.

As a first example we shall analyze a planar layer
equilibrium arc plasma in a sodium–mercury mixture with
characteristic lengthL50.8 cm having the following param
eters. We shall assume that the gas temperature decr
parabolically from a maximum at the center of the lay
Tc(z50)54000 K to T0(z56L/2)51500 K at the bound-
ary and the electron temperature is everywhere equal to
temperature of the heavy particles. The sodium~0.1 atm! and
mercury ~1 atm! vapor pressure is constant throughout a
their atomic concentrations are determined by the gas t
perature.~These parameters approximate to the conditi
achieved in a high-pressure gas-discharge sodium lamp!. Un-
der these conditions the spectral intensity of the continu
spectrum comprising the sum of the photorecombination
bremsstrahlung continua, which was calculated using
Kramers formulas,29 is constant for v,v0.3.2
31015 rad/s and is approximately 1.5310210 erg/
s•cm2

•s21
•sr. Calculations using the generalized theo

showed that for the resonant sodiumD line the intensity of

FIG. 3. Dependence of the integrated intensity of the emission from a l
of sodium vapor in the visible~1,2!, 0.4,l,0.7 mm and infrared~3,4!,
l.0.7 mm as a function of the temperature at the center of the la
1,3—generalized radiation transport theory,10,11 and 2,4—standard theory:
L515 cm, T05950 K, PNa50.1 atm,PAr50.1 atm.
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the far red limb begins to exceed the intensity of the co
tinuum for v.0.631015 rad/s. However, calculations usin
standard transport theory show that the line limb is o
greater than the continuum forv.1.731015 rad/s, and at
this frequency the intensities of the line wing calculated
ing the standard and generalized theories differ by an o
of magnitude.

As a second example, we shall consider the emission
the La line for a plasma containing hydrogen atoms
hydrogen-like ions and we shall compare the bulk emissiv
«v at the line limb with the continuum intensity. For mult
ply charged ions we also took into account the bremsstr
lung and recombination radiation~also in the Kramers
approximation29! and the calculations were made for
plasma containing mainly bare nuclei, and hydrogen-like a
helium-like ions~the ion composition was calculated usin
the Saha formula!. Electron bremsstrahlung at atoms w
also taken into account for hydrogen. The line profile f
large detuning from resonance was calculated as the su
the Stark and dispersion limbs.

The results of some of the calculations are plotted in F
4 which gives the emissivity«v of a hydrogen atom in an
equilibrium isothermal plasma attributable to differe
mechanisms of emission at an electron densityNe56.4
31013 cm23 and temperature 0.55 eV. These paramet
correspond to the conditions achieved in the photospher
the edge of the solar disk where the plasma is compo
mainly of hydrogen~Harvard–Smithsonian standard mod
of the Sun’s atmosphere17!. On this graph, the«v curve cor-
responding to emission on the line does not exceed the
tinuum at its maximum. However, at energies\v.\v1

50.412 Ry (l15221.3 nm) the intensity of theLa line limb
may appreciably exceed the continuum intensity. Note tha
this point, the profile calculated by the standard theory gi
an emissivity almost two orders of magnitude lower than t
calculated using formula~8!. However, even when the emis
sivity in the standard theory is comparable with the co
tinuum ~for \v250.588 Ry,l25155.1 nm), the difference
compared with formula~8! is still a factor of 20. Thus, even
when the effects being discussed weakly influence the ra

er

r;
FIG. 4. Spectral emissivity of a hydrogen plasma:1,2—emission onLa line,
3—atomic bremsstrahlung,4—ion bremsstrahlung,5—photorecombination
radiation:1—calculations using the theory put forward in Refs. 10 and 1
and2—using standard theory.
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FIG. 5. Schematic of apparatus:1—thermal tube,2—water-
cooled rings,3—heater, 4—monochromator,5—radiation
detector, 6—amplifier, 7—synchronous detector,8—
analog–digital converter,9—computer,10—radiation detec-
tor to measure absolute integrated intensity in visible a
infrared, D1,2—aperture diaphragms, and M—modulator.
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tion spectrum in the visible and infrared ranges, in the ult
violet beyond the Balmer decrement\v.Ry/4, allowance
for these effects can substantially alter the radiation bala
which may influence the output parameters of the se
empirical model of the solar atmosphere.

Calculations for multiply charged hydrogen ions f
plasma parameters (Ne5108 cm23 and T5150 eV) typical
of the solar corona containing potassium (Z520) show that
under these conditions the intensity in the red limb is mu
higher than the intensity calculated by the standard the
and the continuum intensity.

Thus, in many cases the mechanism for the formation
the spectral line limb examined in Sec. 2 can compete w
the intensity determined by other radiation mechanis
~bremsstrahlung and photorecombination!. This may prove
to be an extremely important factor in calculations and int
pretation of the luminescence measurements for var
plasma objects. In addition, the appearance of a h
intensity red limb may strongly influence the processes
radiative filling of other levels and alter the plasma kineti

5. EXPERIMENTAL SETUP AND METHOD OF MEASURING
THE SODIUM VAPOR LUMINESCENCE

Measurements of the spectra of pure thermal radia
made to check the theory developed above were carried
using a setup~see Fig. 5! consisting of a cylindrical ‘‘thermal
tube’’ cell filled with sodium vapor and a highly sensitiv
recording apparatus. Prior to the experiment the cell~tube
inner diameter 2.5 cm! containing metallic sodium wa
evacuated to a pressure of;1025 Torr, filled with rare gas
~argon or helium! at a pressure of 0.2–1 atm, and was th
heated to the required temperature which was measured
ing various thermocouples positioned over the surface of
tube. For the experiments we used two cells with act
zones~the section between the hydrogen-cooled flanges! of
lengthL515 and 30 cm where the temperature distribut
over the length was approximately parabolic. Note that
Tc;900 K and above, yellow Na vapor luminescence
clearly visible through the exit window at the end of the ce
-
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The radiation in the axial zone of the tube, extracted
a sapphire window, was passed through a mechanical c
per which modulated the input light beam at a frequency
;1000 Hz and was recorded directly by two detectors:
FÉU-84 photomultiplier in the visible range~in the 0.5–0.6
mm band cut out by a set of light filters! and a photodetecto
comprising a PbS photoresistor with a germanium window
the infrared~in the 2–3mm band!. The photoresistor was
calibrated in terms of absolute intensity using radiation fro
a Globar heated to a known temperature, and the photom
tiplier was calibrated using radiation from an SI-8-200 sta
dard tungsten lamp. In both cases, the calibration accu
was;50%. Note that the luminescence intensity integra
over these spectral ranges will subsequently be denoted aJir

andJv .
The luminescence spectra of the vapor in the 2–5mm

range were obtained by directing the radiation to the entra
slit of an infrared monochromator with an MG-30 pyroele
tric detector positioned at the exit. For the spectral meas
ments in the visible and near infrared~in the wavelength
rangel<1.2 mm) we used another monochromator with a
other photomultiplier~FÉU-83 or FÉU-84! positioned at the
exit, which was also calibrated over the spectrum usin
tungsten lamp. The detector signals were amplified
narrow-band amplifiers and then passed to synchronous
tectors from which the dc voltage was supplied to hig
precision analog-digital converters connected to a compu
The spectral resolution in the experiments was gener
15 cm21 in the visible and near infrared and;300 cm21 in
the 2–5mm range.

In the experiments, particular attention was paid to p
venting direct radiation from the heated cell walls from e
tering the detector apertures. This was achieved by plac
two aperture diaphragms between the detectors and the
~see Fig. 5!, their centers coinciding with the axis of the ce
These diaphragms, having aperture diametersd151 – 16 and
d255 mm and separated by a distance of 43 cm, limited
solid angle of the radiation incident on the detectors. M
surements of the vapor luminescence intensity in the vis
(Jv) and infrared (Jir) showed that whend1 was increased to
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10 mm, the values ofJv andJir are proportional tod1
2 to a

high degree of accuracy. In addition, in the absence of
dium in the cell, and regardless of whether buffer gas w
present and its pressure, over the same range of variatio
the diameter of the first diaphragm no signal was obser
from the detectors~it was below the sensitivity of the record
ing apparatus! even at maximum heating temperatures. Th
in all the experiments the value ofd1 was set below 6 mm.

6. RESULTS OF MEASUREMENTS AND COMPARISON
BETWEEN EXPERIMENTAL DATA AND CALCULATED
RESULTS

Figure 6 shows the characteristic self-reversed spect
of thermal radiation from sodium vapor in the 0.5–1.1mm
range obtained using this apparatus. Also plotted is the
oretical curve calculated using Eqs.~5!, ~9!, and~10!. For the
numerical simulation it was assumed, as was noted ab
that the distribution of the sodium atomic density over t
cell length is determined by the temperature distribution
accordance with the saturated vapor pressure curve, whi
valid at least up to;900 K ~Ref. 30!. On account of the high
vapor and buffer gas density, and also the large ratio of
length to diameter (;10), this approximation is completel
accurate at higher temperatures. In the experimental m
surements of the luminescence spectrum the relative lu
nescence intensity was recorded and thus, to permit com
son with the experimental data, the theoretical curve in Fig
was normalized in terms of luminescence intensity to
short-wavelength peak of the measured spectrum. A c
parison of the experimental data and the calculated res
shows that the theoretical curve accurately describes the
perimental data near resonance and quite satisfactorily
long wavelengths. The appreciable discrepancy between
theoretical and experimental curves for 0.6,l,0.8 mm is
evidently attributable to the calculations neglecting the infl
ence of emission and absorption on electronic–vibratio

FIG. 6. Experimentally measured~1! and theoretically calculated~2! spectra
of the luminescence of dense sodium vapor from a thermal tube in the r
0.5–1.1mm; L515 cm, Tc51140.
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transitions of molecular sodium Na2, which is present in
fairly large quantities in the bulk of the cell~on the order of
a few percent of the atomic sodium density!.

The most important factor observed theoretically and
perimentally is the strong asymmetry of the thermal radiat
spectrum of a resonant medium, which cannot be obtaine
standard transport theory. Another predicted effect—an
preciable increase in the output intensity at the center of
line compared with that obtained from the standa
theory—is difficult to check quantitatively using this expe
mental setup because of the inadequate sensitivity of the
cording apparatus, since the radiation flux leaving the re
nant medium at the center of the self-reversed dip, calcula
using Eqs.~5!, ~9!, and~10! remains extremely low.

Far from resonance, the effects associated with an ex
of the radiation intensity above the Planck intensity beco
unimportant and the optical vapor density is much less t
unity. However, for Dv@G the exponential factor
exp(2\(v2v0)/T) begins to play an important role in th
radiation intensity in the infrared~see Sec. 2!. The results of
measurements of the absolute intensity of the thermal ra
tion of dense sodium vapor in the infrared and visible a
plotted in Fig. 7 and the radiation in the 2–5mm range for
variousTc is shown in Fig. 8. Note that the radiation in suc
a far infrared limb of the spectral line has not been stud
before ~the measurements are usually confined to detun
<1000 cm21—see Ref. 31—and in particular, no measu
ments have been made of the pure thermal radiation!. The
results plotted in Figs. 7 and 8 show that the intensity of
infrared radiation is several orders of magnitude higher th
that near resonance and the infrared part of the spect
exhibits a clearly defined peak which qualitatively confirm
the theoretical reasoning. Figure 7 gives the integrated em
sion intensity calculated using the proposed theory in
spectral ranges investigated experimentally. It can be s
that the theoretical curve for the range 0.5–0.6mm shows
good agreement with the experiment. For the infrared
experimental and calculated data agree within an orde
magnitude. Some discrepancy may be attributed to the
perfection of the theory, which describes the formation of
static limb extremely qualitatively at such large detunin

ge

FIG. 7. Temperature dependence of the integrated luminescence inten
of sodium vapor in the infrared~1,3,5! and visible~2,4,6! at the center of the
thermal tube:1,2—experiment,3,4—standard theory,5,6—theory from
Refs. 10 and 11;L530 cm.
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Unfortunately, data on the potential curves of an Na–Ar s
tem for interparticle distances corresponding to detuningD
;231015 rad/s are not sufficiently reliable, and it is impo
sible to use more accurate data in the nearest-neighbo
proximation. In addition to a knowledge of the potent
curves at short distances, a quantitative description of
line profile for such large detuning also requires generaliz
the broadening theory to the case of a multiparticle pertur
tion of the energy levels of the emitting particle by the buf
gas and itself.

It should also be noted that since the emissivity o
resonant medium is proportional to the line profile («v

}a(v)), the radiation intensity in the infrared should depe
on th species of buffer gas and its pressure because a
quasistatic limb we finda(v)}AC6 Nb . The measurement
showed thatJir is approximately proportional to the buffe
gas pressure and in the presence of helium at the same
sure, the radiation intensity in the infrared is an order
magnitude lower than that for argon. However, the value
AC6 for helium is only 2.8 times lower than that for argon32

which differs substantially from the experimentally me
sured ratioJir(Ar)/Jir(He).8. Note that within measure
ment error the purity of the gas~which varied experimentally
between 98 and 99.99%! did not influence the emission in
tensity of the sodium vapor in the visible and infrared. Mo
over, the addition of air to the helium~in the ratio He:air
510:1) had little influence on the measured radiation int
sity.

The far limbs of the Na2 molecular lines also make som
contribution to the infrared emission of the vapor althou
these impurities are only present in small quantities, as
been noted above. Note that the limbs of the resonant t
sitions in the argon atoms make a negligible contribut
because of their high excitation potential, which is confirm
by the disappearance of the luminescence signals in the
sence of Na vapor. Another source of discrepancy betw
the experimental data and the calculated curves may be
inadequate accuracy in the calculations of the vapor den
distribution over the cell length.

The integrated intensities obtained from the stand

FIG. 8. Spectrum of thermal radiation from sodium vapor in the infrared
various temperatures in the center of the thermal tube:Tc51080 ~1!, 950
~2!, and 830~3! K. The vertical segments indicate the theoretical positio
of the peaks,L530 cm.
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theory differ markedly from those observed~see Fig. 7!, be-
ing several times higher in the visible range and almost
orders of magnitude lower in the infrared. Thus, the expe
mental data fully agree with the theory developed in Refs.
and 11 in which the Boltzmann distribution of the spect
population of the resonant level is proportional
exp(2\v/T) and confirms the existence of an infrared cat
trophe in the radiation from a resonant medium.

7. CONCLUSIONS

A theory of the formation of the luminescence spectra
dense resonant media developed earlier10,11has been used fo
a numerical simulation of these effects and experimental d
have been obtained on the structure of the spectra and
absolute intensity of the thermal radiation from dense
dium vapor in various spectral ranges. These data sh
fairly good qualitative agreement and in some cases, qua
tative agreement with the results of the numerical calcu
tions. The main results may be considered to be the exp
mental observation of a well-defined peak on the far red li
of the resonance sodium line, whose intensity is several
ders of magnitude higher than the luminescence inten
near resonance, and also the observation that the
reversed line is asymmetric. These data show that den
effects play an important role in the energy balance of
emitting atomic and molecular systems and apprecia
modify the established concepts adopted in the stand
theory of resonance radiation transport8 developed for low
gas densities using the narrow line approximation.

The universal form of the spectral Boltzmann distrib
tion, strictly substantiated theoretically in Refs. 10 and
and confirmed experimentally in the present paper, with
claiming to provide a detailed description of the line profi
for large detuning from resonance, may show up as an
portant factor in a wide range of different processes. For
reason, the results obtained here may prove important
various practical applications. For instance, we note that
though the ratio of the integrated intensities in the visible a
infrared changes with increasing temperature, at high te
peratures the contribution of the red limbs of the reson
line still remains much higher than that calculated by t
standard theory, as was noted earlier. Estimates made
show that this may be an important factor in calculations a
measurements of the luminescence of various plasma for
tions ~including gas-discharge light sources!, in interpreting
the results of measurements in the solar spectrum, and s
since the luminescence intensity in the far red limbs m
compete with the intensity determined by other radiat
mechanisms~such as bremsstrahlung!. Moreover, under cer-
tain conditions the high-intensity radiation in the red lim
may substantially increase the radiative filling of other lev
and thereby appreciably influence the kinetics of the plas
processes.

The authors are deeply grateful to Academician A.
Dykhne, P. D. Gasparyan, Yu. K. Kochube�, and A. A. Pan-
teleev for their interest in this work and stimulating discu
sions, to Academician V. D. Shafranov and participants
the seminar led by him, and also to J. Cooper, A. Gallagh

t



au
p-
r

.

n

d

,

r

ol.

ol.

-

ci-
w

s,

86 JETP 87 (1), July 1998 Zemtsov et al.
H.-J. Kunze, R. More, A. Osterheld, A. Phelps, A. Sure
and A. Szo¨ke, for useful discussions. This work was su
ported by the Russian Fund for Fundamental Resea
~Grants Nos. 96-02-17390 and 97-02-17796! and by the In-
ternational Scientific-Technical Center~Project No. 076/95!.

* !E-mail: staran@fly.triniti.troitsk.ru
†!E-mail: chekhov@post.mipt.rssi.ru

1R. Stamm, B. Talin, E. L. Pollock, and C. A. Iglesias, Phys. Rev. A34,
4144 ~1986!.

2A. Calisti, F. Khelfaoui, R. Stamm, and B. Talin, inSpectral Line Shapes,
Vol. 6, edited by L. Frommhold and J. W. Kato~AIP Press, New York,
1990!, p. 3.

3F. Khelfaoui, A. Calisti, R. Stamm, and B. Talin,ibid, p. 102.
4A. Calisti, R. Stamm, and B. Talin, Europhys. Lett.4, 1003~1987!.
5A. V. Anufrienko, A. L. Godunov, A. V. Demuraet al., Zh. Éksp. Teor.
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108, 212 ~1995! @JETP81, 113 ~1995!#.

8L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov,Kinetics of Nonequi-
librium Low-Temperature Plasmas~Consultants Bureau, New York
1987! @Russ. original, Nauka, Moscow, 1982#.

9L. A. Apresyan and Yu. A. Kravtsov,Theory of Radiative Transfer@in
Russian#, Nauka, Moscow~1983!.

10Yu. K. Zemtsov and A. N. Starostin, Zh. E´ ksp. Teor. Fiz.103, 345~1993!
@JETP76, 186 ~1993!#.

11Yu. K. Zemtsov, A. Yu. Sechin, and A. N. Starostin, Zh. E´ ksp. Teor. Fiz.
110, 1654~1996! @JETP83, 909 ~1996!#.

12Yu. K. Zemtsov, A. Yu. Sechin, A. N. Starostinet al., JETP Lett.65, 13
~1997!.

13Yu. K. Zemtsov, A. Yu. Sechin, A. N. Starostinet al., JETP Lett.65, 839
~1997!.

14I. I. Sobelman,Introduction to the Theory of Atomic Spectra~Pergamon
Press, Oxford, 1973! @Russ. original, Fizmatgiz, Moscow, 1966#.

15A. V. Phelps,Tunable Gas Laser Utilizing Ground State Dissociatio,
JILA Report No. 110~University of Colorado, Boulder, CO, 1972!.

16G. York and A. Gallagher,Power Gas Laser on Alkali-Dimers A-X Ban
,

ch

Radiation, JILA Report No. 110~University of Colorado, Boulder, CO,
1974!.

17D. Mihalas,Stellar Atmospheres, 2nd ed.~Freeman, San Francisco, 1978!
@Russ. transl., Mir, Moscow, 1982#.
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Compression and heating of spherical fusion targets by indirect „x-ray … drive on the
Iskra-5 facility
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Experiments have been carried out using the Iskra-5 facility in order to study the behavior of x-
ray targets in response to a highly symmetric x-ray field. Results are presented of
experiments using targets in the form of a spherical copper hohlraum coated with gold on the
inside, with six laser entrance holes and a glass microtarget filled with DT gas located
at the center. In some experiments the central capsule was coated with a plastic ablator layer of
varying thickness. An analysis of the experimental results showed that on the whole, they
are satisfactorily described by spherically symmetric gasdynamic calculations. ©1998 American
Institute of Physics.@S1063-7761~98!01107-X#
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1. INTRODUCTION

Achieving highly symmetric irradiation of a fusion ta
get is a key problem in the inertial-confinement fusion p
gram. The difficulties which have been encountered in
tempts to achieve uniform direct laser irradiation of targ
have now caused many researchers to pin their hope
achieving the required degree of symmetry on the conver
of laser radiation into x-rays.1,2 In this type of indirect-drive
system, a DT-filled target is compressed by its interact
with an x-ray field generated inside an almost closed ca
or hohlraum.

Indirect drive has been used in experiments on the la
est laser facilities—Nova~USA!,3 GEKKO-XII ~Japan!,4 and
Phebus~France!.5 A particularly comprehensive researc
program has been carried out at the Lawrence Liverm
National Laboratory1 where laser energy was converted in
x-rays in a cylindrical hohlraum. For this type of hohlrau
however, an acceptable level of irradiation symmetry c
only be achieved as an average over time. Numerous ex
ments and a wide range of precision diagnostics are requ
to analyze the beam input regime inside the hohlraum an
select the final coupling-in system.

A more natural method of generating a symmetric x-r
field involves using a spherical hohlraum. A spherical ho
raum is particularly convenient when the elements focus
the beam on the target chamber are not assembled in
clusters as in Nova but are distributed more uniformly o
the surface of the sphere, as in Iskra-5~Ref. 6!. Using this
characteristic feature of the twelve-beam Iskra-5 facility,
carried out experimental investigations of the compress
and heating of fusion targets by x-ray radiation genera
inside a spherical hohlraum. The total laser radiation ene
(l51.315mm) fed into the cavity was 10 kJ with a puls
length of 0.3–0.4 ns. By varying the thickness of the shel
871063-7761/98/87(7)/8/$15.00
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the fusion target, we could vary the fuel compression ra
and thereby check the influence of the asymmetry of
x-ray field on the neutron generation.

The results of these investigations are reported here
Sec. 2 we estimate the energy characteristics and the de
of symmetry of the x-ray radiation inside the hohlraum. Se
tion 3 is devoted to the experimental setup and a brief
scription of the diagnostic complex. Section 4 contains
experimental results which are discussed in detail and c
pared with the one-dimensional spherically symmetric cal
lations which are used as the basis to estimate the leve
symmetry attained.

2. BASIC PROPERTIES OF THE X-RAY FIELD INSIDE
A SPHERICAL HOHLRAUM

2.1 Energy balance

We shall consider a spherical hohlraum withN@1 laser
entrance holes, distributed on average uniformly over
surface of the sphere.

For the wavelengthlL51.315mm and laser radiation
intensitiesI L>1014– 1015 W/cm2 the light absorption coeffi-
cient ka is appreciably less than unity (ka.0.2– 0.5). The
accompanying multiple reflection of light from the inne
walls of the hohlraum leads to symmetrization of the la
field inside the cavity which means that averaged~over the
surface of the sphere! values of the intensity can be used
calculate the laser energy balance in the hohlraum.

If I 05EL/4pR0
2tL is the average intensity of the primar

laser radiation injected through the holes (EL andtL are the
energy and duration of the laser pulse,R0 is the hohlraum
internal radius!, the intensity acting on the walls of the hoh
raum allowing for multiple reflection is
© 1998 American Institute of Physics
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I g5
I 0

12~12ka!~12b!
, ~1!

where b is the relative area of the laser entrance holes
ka!1 andb!1, thenI g@I 0 . For these experiments we use
EL.9 kJ, tL.0.3 ns, R051 mm, and I 052.4
31014 W/cm2. Since the intensity satisfiedI g.I 0 , and the
average angle of incidence of the laser radiation on the
face for the conditions obtaining in Iskra-5 is 30– 40°, t
absorption coefficient should lie in the rangeka.0.2– 0.3
~Ref. 7! where most of the energy (;30– 50%) is absorbed
by a resonance mechanism. The total energy absorbed b
hohlraum is

Ea5EL

~12b!ka

12~12ka!~12b!
. ~2!

Under our conditions forb50.13, ka.0.3 (I g /I 0.2.6), we
haveEa /EL.0.66. ForEL59 kJ the hohlraum walls absor
an energyEa.6 kJ.

The release of energy results in the formation of a lo
density (ne;ncr.1021 cm23), hot (Te.2 – 5 keV) laser co-
rona at the walls, which is a source of primary, compa
tively hard (hn.1 – 2 keV) x-rays.

If the fraction of energy dissipated in the formation
fast ions by resonant absorption iskf i and the coefficient of
primary conversion of laser energy into x-rays iskg , the
energy of the primary x-rays is

Eg5Ea~12kf i !kg . ~3!

Under our conditionskf i.0.3 andkg.0.5 ~Ref. 8!, so that
Eg.2.1 kJ.

The primary x-rays, being absorbed by the dense lay
of the walls, form a comparatively dense (r.0.5 g/cm2),
cold (Te'Ti.0.15– 0.2 keV) x-ray corona which is
source of almost equilibrium (hn.0.5 keV) x-rays.

If the albedo of the x-rays at the hohlraum, averag
over the entire spectrum, isa and the intensity of the primary
x-rays isQg5Eg/4pR0

2tL , the intensity of the x-rays from
the hohlraum walls will be

Qr.Qg

~12b/2!a

12~12b!a
. ~4!

For a.0.6– 0.7, b50.13, and Eg52.1 kJ we haveQg

.(0.66– 0.94)31014 W/cm2. This flux corresponds to equi
librium radiation at the temperatureTg.160– 175 eV.

2.2 Symmetry of the x-ray field

The symmetry of the x-ray field acting on the fusio
target results from the geometric factor~each surface elemen
of the central capsule is exposed to radiation from alm
half the surface of the hohlraum! and also as a result o
multiple reflections of photons and multiple rescattering
x-ray quanta. As a result of this last process, the tempera
Tg of the quasiequilibrium radiation emitted by the hohlrau
walls may be considered, to a first approximation, to be
same over all sections of the inner surface.

Asymmetry of the x-ray field is caused first, by the pre
ence of the laser entrance holes and second, by the asym
If
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try of the primary x-ray fluxQg/2 generated by the lase
corona and propagating away from the hohlraum walls. A
other important factor is the spatial scale of the inhomo
neities and their distribution over the surface of the sphe
These determine the amplitudes of the spherical harmo
Plm of the asymmetric x-ray field propagating from the hoh
raum walls toward the capsule. An expansion in harmo
can be used to calculate the degree of smoothing of the x
field as it propagates from the surface of the hohlraum sph
to the central capsule.1 The smoothing coefficientsCl(r /R)
depend on the number of the spherical harmonicl and the
ratio of the radii of the targetr 0 and the hohlraumR0 . In our
case, this ratio is initiallyr 0 /R0.0.14. The coefficients of
smoothing of harmonics withl 51,2,3,4,5,6 are 0.73, 0.37
0.099, 0.023, 0.018, and 0.008, respectively.

The harmonic spectrum of the radiation field is det
mined by the configuration and diameter of the entran
holes and the primary laser illumination spots. Imbalance
the beam energy~power! and also targeting misses relative
the nominal positions of the spots impair the symmetry
the field. The centers of symmetry of the six holes are d
tributed over the surface of the hohlraum near the positi
corresponding to the vertices of a cube inscribed in the ho
raum. The maximum angular deflection is 13°. Loss of sy
metry is caused by the desire to avoid coupling of paras
generation between different amplifier channels. The pen
for this is the appearance of second and third harmonic
the spectrum of the radiation field, in addition to the four
harmonic characteristic of the symmetry of the cube.

The primary illumination spots on the inner surface
the hohlraum are positioned so that they also contribute
the second, third, and fourth harmonics, in phase with
contribution from the laser entrance holes. On the one ha
this increases the asymmetry and on the other, ensures
the inhomogeneity pattern varies negligibly with time.

In addition, the level of asymmetry obtained is match
with the level caused by the energy imbalance in the bea
For typical conditions, the energy imbalance in the bea
exceeds the level of inhomogeneity by no more than a fa
of 2.

A quantitative estimate of the degree of inhomogene
was made using the following simple model. The absorb
energy distribution over the inner surface of the hohlra
was calculated by the Monte Carlo method. It was assum
that the critical surface is spherically symmetric~except for
the entrance holes! and that the reflected radiation has bo
specular and diffuse components; the dependence of the
sorption coefficient on the angle of incidence was also ta
into account.

The intensity of the primary~nonequilibrium! radiation
I g of the laser corona was assumed to be proportional to
intensity of the absorbed laser radiationI a with the coeffi-
cient kg50.5. The quantityI akg/2 determined the intensity
of the primary x-ray flux propagating from the walls to th
capsule. The intensity of the quasiequilibrium radiation fro
the x-ray corona was determined using formula~4!. For the
calculations it was assumed thatkg50.5 anda50.65.

Table I gives various quantities characterizing the no
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TABLE I. Estimate of the nonuniformity of the capsule x-ray irradiation.

«max,
%

«max
I ,
%

« rms,
% ḡ j ( j 51,...,6)

Same laser radiation
energy in channels 3.5 3.5 2.0 4.031024 1.431022 1.231022 6.031023 1.131023 6.331024

Spread over channels 6.0 6.6 2.8 8.831023 2.331022 1.231022 6.131023 1.231023 6.431024

« rms'20%
Spread over channels 7.2 6.2 2.8 1.131022 2.231022 1.231022 6.131023 1.231023 5.931024

« rms'20%
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uniformity of the x-ray irradiation of a DT target: the max
mum nonuniformities

«max5
I max2I min

2I
, «max

I 5
maxuI 2 Ī u

Ī

~whereĪ is the average radiation intensity over the surface
the sphere! and the rms nonuniformity« rms, and also the
amplitudesg̃ j of the expansion of the normalized distributio
I (u,w) in terms of spherical harmonics for equal energies
the channels and for the spread over the channels record
two experiments. The calculations are made for a ratio
capsule radius to hohlraum radius of 0.14 and a relative a
of laser entrance holes of 0.13.

It can be seen from Table I that in the balanced case,
rms nonuniformity is 2%, and when the real energy imb
ance in the beams is taken into account this increase
.3%. Significantly, these figure vary little with time. Fo
example, for calculations with a reduced absorption coe
cient such that the fraction of the laser radiation energy
through the holes increased from 0.34 to 0.6 and the alb
was reduced from 0.65 to 0.35, which simulates the ini
situation, the nonuniformity was almost the same (« rms

51.9%) as in the nominal calculations. The reason for thi
that the lower degree of x-ray symmetrization is balanced
a higher degree of equalization of the laser intensity.

Calculated distributions of the absorbed laser radiatio
the inner wall of the hohlraum for equal energies in the ch
nels are plotted in Fig. 1a. The corresponding pattern for
x-ray radiation incident on the central capsule is shown
Fig. 1b. The shades of gray show the drop in intensity fr
maximum ~white! to minimum ~black!. It can be seen tha
unlike the absorbed laser intensity, the x-ray distribution
the capsule exhibits no higher harmonics. Allowance for
energy spread over the channels results in a loss of symm
between the front and back of the target~the appearance o
l 51 harmonics!.

2.3. Laser illumination and fast ions

X-rays are not the only carrier of laser radiation ener
to the DT capsule. A characteristic feature of specular refl
tion from an internal, ideally spherical, critical surface is th
an inner spherical portion, of diameterBsh is in shadow
~under our conditionsBsh/Bbox.1/5, whereBbox52R0 is
the diameter of the hohlraum!. Large-scale perturbations o
the critical surface caused by the presence of entrance h
and irradiation nonuniformity reduce the shadow volum
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Scattering at small-scale plasma inhomogeneities~of the or-
der of the laser wavelength!, resembling diffuse reflection
from the surface, results in unavoidable illumination of t
capsule in the diameterBsh. However, calculations~see be-
low! show that even when the energies of the x-ray and la
radiation incident on the target are the same, this process
little influence.

Another method of supplying energy is achieved
movement of the gold plasma toward the center. Since
velocity of the material (V.107– 108 cm/s) is substantially
lower than the speed of light, there is a time intervalt2

'Bbox/2V.1 ns ~where Bbox.2 mm) during which the
shell is not subjected to the action of the material flux fro
the hohlraum walls. For a laser pulse duration.0.3 ns and a
convergence time of.0.5 ns the action of the material flu
can be neglected. However, the comparatively long wa
length of iodine laser radiation (l51.315mm) with laser
radiation intensitiesI L>331014 W/cm2 gives rise to hot
electrons with temperatureTh.20– 50 keV, which acceler-
ate some of the Au ions to velocitiesV>(3 – 5)
3108 cm/s. Thus, the timet2 is reduced to.0.3 ns so that
for shells with a comparatively long convergence time (t f

>0.5 ns) the possibility of an additional energy input to t
target shell as a result of energy transfer by fast ions mus
taken into account.

3. AIM OF THE EXPERIMENTS AND EXPERIMENTAL SETUP

As was shown in the previous section, an x-ray fl
acting on a central DT-filled capsule is not ideally symme
cal. Estimates indicate that the asymmetry is large-scale~the
spherical harmonics in its spectral expansion have num
l<1 – 4). The characteristic level of asymmetry is 3%. T
asymmetry of the x-ray field causes asymmetry of the ac
erating pressures and shell implosion velocities:DV/V
<DI /I . As a result of compression, the deviation of the co
tact boundary from spherical is

dR

R
.

dV

V

r 0

r f
,

wherer 0 is the initial radius of the DT-filled capsule andr f

is the radius of the DT gas at the instant of maximum co
pression. If we impose the constraint that this deviation d
not exceed 1/3, we find that this asymmetry should not
noticeable up to compressions

r 0

r f
<

1

3

I

DI
.11,
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which corresponds to volume compressions of.103.
This estimate is extremely approximate. In fact, the e

lution of perturbations as a result of Richtmyer–Meshk
and Rayleigh–Taylor instabilities leads to a greater incre
in the amplitude of the perturbations than that obtained fr
the above estimate. However, for those shells so thin
they can be completely heated under the action of the x-r
the symmetry of the energy release may be better than
For this scenario the heating pattern of the shells may
represented by a unilateral flux of such intensity that it c
heat ~in the supersonic regime! the entire shell during the
pulse.

FIG. 1. Calculated laser illumination of the inner surface of the hohlra
~a! ~the white spots correspond to the position of the laser entrance h!
and x-ray illumination of the central capsule~b! for typical experimental
conditions.
-

e

at
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The influence of the residual asymmetry may be detec
via the dependence of the neutron yield on the compres
ratio when a certain critical compressiondcr is attained. A
catastrophic reduction in the neutron yield may be predic
whend@dcr . Thus, experiments should be carried out w
the compression ratio increasing from one experiment to
next. Since the compression is mainly determined by
ratio of the shell massM to the massm of the DT gas, the
compression ratio may be varied by varying the thickness
the shell or the initial pressure of the DT gas. The sh
diameter may also be varied, although an increase in
diameter results in the shell moving out of the shadow reg
~i.e., direct contact between the laser beams and the s!
while a reduction in the diameter impedes the diagnostics
the plasma parameters.

The targets in the Iskra-5 facility6 are irradiated by
twelve laser beams with an energy of up to.1 kJ at the
channel exit, which corresponds to a total laser energy
.9 kJ deposited inside the target chamber. The laser p
duration is.0.3560.05 ns which corresponds to a radiatio
power up to.30 TW incident on the target. The pulse pr
file is close to Gaussian. The divergence of the radiation
stable at.(0.6– 0.8)31024 rad. The contrast of the lase
pulse is sufficiently high (K.106) that the interior of the
hohlraum did not fill up with plasma prior to the time o
arrival of the main pulse. The precision of the transve
focusing on the target is630 mm and the precision of the
longitudinal matching of the foci of the aligning and pow
radiation is6100 mm. The diameter of the laser beam co
strictions is<100 mm.

The target~hohlraum! consists of a thin-walled coppe
spherical enclosure~similar to an inverted-corona target6!
with six laser entrance holes. The inner surface is coa
with a 1 mm thick layer of gold and the outer surface
coated with a layer of bismuth 0.1–0.3mm thick. A glass
microsphere filled with a gaseous equimolar mixture of d
terium and tritium at a pressurePDT.5 – 20 atm is posi-
tioned at the center. The diameter of the enclosure~1.3–4
mm!, the diameter of the laser entrance holes~0.4–0.7 mm!,
and the parameters of the glass microshell were all va
experimentally. In order to increase the thickness of the s
above 7mm, a layer of polyparaxylylene up to 40mm thick
was deposited on the surface. The optimum design had
enclosure diameter of 2 mm, six holes of diameter 0.6 mm
shell diameter of 280mm, a glass shell thickness of 5mm,
andPDT.10 atm.

The diagnostic apparatus of the Iskra-5 system was
scribed in Refs. 6 and 9. It incorporates an energy bala
system, an interference schlieren method for optical reco
ing of the laser radiation contrast and the dynamics of
plasma expansion, a system for time-resolved, spatially
solved, and spectrally resolved recording of the x-ray em
sion, and neutron measurement facilities. The main exp
mental results are reported below. Where necess
additional features of the measuring methods are noted.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Results of seventeen experiments carried out using 2
diameter targets coated with gold on the inside are prese

s
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FIG. 2. Neutron pulse recorded using a tim
of-flight method~solid curve! and calculated signal
at a given ion temperatureTi ~dashed curve!: a—
flight length 12.5 m,Ti52.5 keV; b—flight length
16.7 m,Ti52.9 keV.
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below. The diameters of the entrance holes wereBhole

50.6 mm except for three experiments withBhole

50.4– 0.45 mm. The average shell diameter wasBsh

5280 mm with limiting values of 271 and 290mm. The
thickness of the glass shells~without coatings! varied be-
tween 3 and 7mm. The thickness of the shellsdsh on which
coatings were applied was 1.2–5mm. The coatings were
either plastic, magnesium, or SiO2. The maximum thickness
of the plastic layer wasdCH541 mm ~in this case the thick-
ness of the glass was 4.7mm!. The pressure of the DT ga
was varied between 5 and 16 atm, except for one experim
in which the pressure was around 1 atm. The laser p
energyEL was varied between 7.4 and 9.6 kJ, except for o
experiment where the energy was 3.9 kJ. The neutron y
varied between 6.53109 ~for EL59 kJ, PDT513 atm, Bsh

5280 mm, dsh54.8 mm) and 73107 (EL58.2 kJ, PDT

55 atm, Bsh5277 mm, dsh54.7 mm, anddCH541 mm).
The interference schlieren method indicates that in th

experiments the single pulse contrast was fairly high and
target plasma only formed at the instant of arrival of t
single pulse.

A typical oscilloscope trace, which can be used to de
mine the time of arrival of the neutron pulse at the scintil
tion detector relative to the time of generation of the ha
(hn.0.1 MeV) x-ray pulse inside the hohlraum, was giv
in Ref. 2. The delay of the neutron pulse relative to the x-
pulse corresponds to 14.1 MeV neutrons.

The temperature of the ion component of the DT plasm
obtained using a time-of-flight method, varied in the ran
Ti51.5– 3 keV. Figure 2 shows the profiles of the neutr
pulses recorded at 12.5 and 16.7 m. The dashed curves
the calculated neutron pulses for the given ion tempera
Ti taking into account the instrumental function of the a
propriate recording channel. The temperatures at which
calculated and experimental neutron pulses showed
smallest differences are given in the caption to Fig.
The accuracy of the ion temperature measurements
approximately 1.7 keV at 12.5 m and approximately 0.3 k
at 16.7 m.

The convergence time of the shells was recorded usin
slit time scan of the x-ray image of the microtarget in t
photon energy rangehn.4 keV using an x-ray streak cam
era with .50 ps time resolution. An example of such a r
cording is shown in Fig. 3. Two emission peaks can be
served. The first corresponds to the maximum emiss
intensity of the plasma expanding from the inner surface
the hohlraum and the second occurs as a result of the c
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pression and heating of the shell containing the DT fuel. T
shell convergence timetgg , determined as the time betwee
the points of intersection of lines linearly approximating t
leading edges of the appropriate pulses with the time a
varies between 0.25–0.73 ns and increases with increa
thickness~strictly speaking this is only valid for thicknesse
>7 mm). The convergence time can be used to determ
the shell flight velocity and to estimate the energy input
the shell. A convergence timetgg.0.35 ns corresponds to
the velocity

V.
R02Rmin

tgg
.33107 cm/s.

Figure 4 shows an example of an x-ray image of t
central capsule obtained through a laser entrance hole us
pinhole camera. The initial position of the outer bounda
and the spherically compressed core can be seen. A sp
cally compressed image~apart from distortions caused by th
graininess of the photographic film! is observed in all experi-
ments in which this image was obtained. In experiments
ing thick-walled targets no compressed core can be obser

In these experiments the neutron yield varied by t
orders of magnitude: between 6.53109 for a shell thickness
of 5 mm and 73107 when a layer of polyparaxylylene 4
mm thick was deposited on the shell. The neutron yield d
are described by the simple scaling law~see Fig. 5!

N;m2/3M4/3f ~Eg /M !, ~5!

FIG. 3. X-ray emission from central target recorded using a spatially res
ing x-ray streak camera:1—emission of laser corona of hohlraum,2—
emission of central capsule.
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wherem andM are the mass of the gas and the shell, andEg

is the x-ray energy in the hohlraum. We shall give a brie
substantiation of formula~5!. The neutron yield is given by

N5E dtE dVnDnT^sN&DT ,

where nD and NT are the concentrations of deuterium an
tritium nuclei, and^sV&DT is the rate constant of the ther-
monuclear reaction. We can write approximately

N;r2V^sV&DT

r

AT
.mrr f ~T!, ~6!

wherer and r are the density and radius of the compresse
DT, and f (T)5^sV&DTT21/2. Using the conservation of the
DT mass during compression, we can writerr;m1/3r2/3 so
that

N;m4/3/r2/3f ~T!. ~7!

Approximating the rate constant of the DT reaction by th
power functionf (T)}(T/T0)nT0

n , we have

FIG. 4. Pinhole photograph of central target~a! and its densitogram in one
cross section~b!.
f

d

N;m1/3r0
2/3dV

2/3S T

T0
D n

f ~T0!. ~8!

HeredV5r/r0 is the volume compression.
The compression ratio is determined to a considera

extent by the ratioM /m: dV;(M /m)a. In the simplest ex-
ploding shell models we havea.1 – 2 ~Refs. 10 and 11! and
for adiabatic compressionT5T0dV

2/3. In these experiments
the losses of heat as a result of electron heat conduction
substantial and thus the effective adiabatic exponent isgeff

,5/3 so that

T5T0dV
geff21.T0S M

mD geff21

,

and this implies that

N;m4/3
M2/3

R0
2 T0

n20.5S M

mD ~geff21!~n20.5!

.

For n.4 andgeff51.2 we obtain the scaling law~5!.
It can be seen from Fig. 5 that on the whole the scal

law reasonably accurately describes the experimental neu
yield ~except for three experiments!. In this case, as a resu
of a change in the technology used to fill the glass caps
with DT gas~a hole was drilled in the shell to admit argo
and was then sealed!, for two experiments there is reason
believe that the DT pressure at the time of the experim
was appreciably less than the initial pressure. It was imp
sible to monitor the pressure after depositing a layer of po
paraxylylene on the shell. We are unaware of any ma
reasons for failure of the third experiment in the series. Ho
ever, the emission pattern of the target obtained using a
hole camera clearly reveals emission from the edges of
light entrance holes. In this experiment, there was proba
an alignment error for these channels, resulting in loss
laser input energy.

Figure 5 shows two sections of curve with differe
slopes. ForEg /M.1.5 ~arbitrary units! the neutron yield
does not depend onEg /M , whereas forEg /M,1.5 it de-
creases rapidly with decreasingEg /M . The following treat-
ment of this behavior seems justified. ForEg /M.1.5 the
target operates as a completely heated~exploding! shell. The
interface at EL58 kJ corresponds to a shell massM
.3.5 mg. The thickness of a 280mm diameter glass shel

FIG. 5. Normalized neutron yield versus specific x-ray energy input
central capsule~arbitrary units!: circles—experimental values, squares—
calculations using SNDP program.
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with this mass is;7 mm. The fact that the normalized yiel
of neutrons is independent ofEg /M where Eg /M>1.5
holds, indicates that the shell is completely heated to
same temperature. IfEg /M<1.5 holds, the stored therma
energy is not sufficient for complete heating and ablat
results.

We shall consider for a momentEg , which we deter-
mined with empirical allowance for the losses of energy
sorbed by fast ions. It was assumed that the fraction of
sorbed energy that goes into accelerating them is

h5x~3.51x!21, x5I g /I 121, I 15231014 W/cm2

~for the definition ofI g see Eq.~1!!.
Figure 5 also gives the results of calculations of the n

tron yield using the SNDP nonequilibrium radiative gasd
namics program.12 In this case, the calculated value ofEg /M
was used as a marker in the appropriate experiment. It ca
seen that to within.1.5 the calculations reproduce the e
perimental data in the exploding shell regime. In the ablat
regime the difference is.2 – 3.

The calculations were made using a spherically symm
ric formulation with effective allowance for the losses
laser light and x-rays through the laser entrance holes.
lowance was only made for bremsstrahlung absorption w
an average angle of incidence of the laser radiation on
inner surface of the hohlraum. The energy losses to the
ions were neglected. The equations of state and the spe
ranges were calculated using the average ion approxima
while the radiation transport was calculated using the mu
group diffusion approximation. The chemical compositi
of the glass shell corresponded to pure silicon oxide Si2.
The chemical composition of the plastic layer correspon
to CH.

It is interesting to compare the experimental and cal
lated neutron yields,Nexp andNcal, as a function of the cal-
culated degree of radial convergencer 0 /r N , wherer N is the
inner radius of the shell at the instant when the highest
of neutron generation is observed~Fig. 6!. As in the previous
figure, it can be seen that as the compression ratiodV

5(r 0 /r N)3 increases, the ratioNexp/Ncal decreases, reachin
;1/3 for r 0 /r N512. Is this a consequence of the asymme
of the x-ray field? In order to partly answer this question,

FIG. 6. Ratio of experimental and calculated neutron yields as a functio
the calculated degree of radial convergence of the central capsule a
instant of neutron generation: circles—shell without coating; fill
squares—shell with polyparaxylylene coating, open squares—calcula
allowing for turbulent mixing.
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made calculations using the SND-TUR program13 in which
the Nikiforov model14 is used to take into account the ev
lution of a turbulent mixing zone at the shell–fuel interfac
It can be seen that forr 0 /r N<6 (dV<200), turbulent mixing
has little influence on the neutron yield, whereas forr 0 /r N

.14 this mixing halved the neutron yield according to t
calculations~see arrow in Fig. 6!. This decrease is mainly
caused by a drop in the fuel temperature as a result of
heat lost to heating the cold shell material entering the m
ing zone. Thus, it seems justifiable to conclude that the s
metry of the x-ray irradiation of the target has little effect
this range of compressions. For clarification, we note that
accuracy of the calculated modeling of the neutron yi
does not exceed.2, as is indicated by the two points corre
sponding to the lowest values ofr 0 /r N in Fig. 6.

A close correspondence between the experimental
calculated data is also observed for other quantities. Figu
gives a comparison between the experimental and calcul
spatial emission patterns of the central capsule obtained
ing a pinhole camera. Good agreement is observed in
central part of the core. The difference at the wings of
distribution is caused by the inadequate gasdynamic des
tion of the collision process of the glass and gold plasm
which forms the emission profile at the wings in the calc
lations.

Figure 8 compares the dynamics of the experimen
~obtained using an x-ray streak camera! and calculated emis

of
the

ns

FIG. 7. Comparison between experimental pinhole trace~dashed curve! and
that calculated using the SNDP program~solid curve!.

FIG. 8. Comparison between experimental~1! and calculated~2! luminous
exitance of the central capsule in the range of x-ray quantum energies
keV; 3—calculatedR– t diagram of the motion of the gas–glass interfac
4—laser pulse.
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sion patterns of the target in the 3–4 keV spectral ran
Figure 9 gives the experimental dependences of the colla
time on the parameterEg /M .

5. CONCLUSIONS

Experiments have been carried out on the Iskra-5 la
facility using composite x-ray targets comprising a spheri
hohlraum with six laser entrance holes and a centrally p
tioned DT-filled glass capsule coated with a layer of plas
~polyparaxylylene! between 10 and 40mm thick. This cap-
sule design was used to study the operation of targets
fuel compressions up todV<33103 at the instant of neutron
generation. The results showed that in this range of comp
sions the behavior of the targets closely corresponds to
one-dimensional spherically symmetric calculations, w
turbulent mixing halving the neutron yield at the upper lim
(dV'33103).

This behavior of the target indicates that the x-ray ir
diation of the glass microsphere is highly uniform. Calc
lated estimates of the upper limit of the x-ray field asymm
try at the target yield values around 3%.

FIG. 9. Convergence time of central capsule versus specific x-ray en
input ~arbitrary units!.
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We have studied the behavior of a helical homogeneous small-scale MHD turbulent flow under
the influence of a weak inhomogeneous large-scale disturbance. We have shown that
turbulent energy redistribution in the presence of nonzero helicity occurs mainly over large
scales. Helicity increases correlation time, leading to the weakening of a direct cascade and to the
formation of steep spectra over small scales, with simultaneous turbulent energy growth
over large scales. Furthermore, an expression for the effective viscosity of the mean flow is
derived. It is shown that the magnetic field, in addition to the helicity, reduces the
effective viscosity of the medium. This may be important in the study of MHD flow around
obstacles in the presence of an external magnetic field. ©1998 American Institute of Physics.
@S1063-7761~98!01207-4#
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1. INTRODUCTION

The problem of self-organization of a turbulent MH
flow with magnetic Reynolds number Rem!1 in an external
homogeneous magnetic field has long been under discus
~see, for instance, Refs. 1–4, with references therein!. Obvi-
ously, an external magnetic field causes a rearrangeme
the topological structure of a turbulent flow. Specifically,
the original turbulence~in absence of a magnetic field! is
isotropic, it becomes anisotropic in the presence of a m
netic field. Furthermore, in presence of a magnetic field,
spectral and dynamical properties of turbulence can cha

As demonstrated by numerous experiments~see, e.g.,
Refs. 4–6!, the turbulence spectrum varies with the magne
field. It should be emphasized, however, that turbulence
sentially always remains three-dimensional, although th
exists a tendency to quasi-two-dimensionality. Over sm
scales, the spectral dependence of the turbulent energyEt on
wave numberk is of the formEt;k2a, where the exponen
a varies with increasing magnetic field from25/3 ~at B50!
to between22 and27/3 ~at low B values!.1,4 With growing
magnetic field,a ranges from211/3 to 24, and the turbu-
lence becomes highly intermittent.4

It is noteworthy that such magnetic field-dependent
havior of the turbulence spectrum is observed only in th
experiments where turbulent flow is generated either
drawing a grid through the medium1 or in the presence of a
honeycomb.4

For the entire subsequent analysis, it is important to n
that turbulence becomes helical in an external magnetic fi
This means that the one-point correlation functi
H5^v•(¹3v)&Þ0, wherev is the flow velocity. On the
other hand, purely helical turbulence is characterized by
quantitya527/3,7 which is in agreement with experiment
results.1,4 In the general case, helicity, along with energy,
951063-7761/98/87(7)/6/$15.00
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the most important feature of a turbulent flow. Helicity, b
ing the second invariant of Euler’s equation, just lik
energy,8 exerts a significant influence on the evolution a
stability of turbulent and laminar flows.9 Helicity is probably
one of the main sources of magnetic field generation
maintenance in astrophysical objects.10 In the absence of a
magnetic field, helical turbulence is unstable against lar
scale disturbances.11 This leads to energy redistribution be
tween large-scale and small-scale fluctuations. On the o
hand, helicity leads to an efficient viscosity decrease in
mean flow, i.e., to a decrease in Reynolds stresses.12

The present paper deals with the behavior of small-sc
helical turbulence in an external homogeneous magnetic fi
and under a weak large-scale disturbance. We also exam
the effect of a magnetic field on the viscosity of such turb
lence.

2. PRINCIPAL EQUATIONS

Let us write the system of MHD equations in dimensio
less form for an incompressible fluid:

]u

]t
1~u•¹!u52¹P1

1

Re
¹2u1

N

Rem
~¹3B!3B1F,

~1!

]B

]t
5¹3~u3B!1

1

Rem
¹2B, ~2!

¹•u5¹•B50,

whereF is an external non-electromagnetic force andP is
pressure. The problem is characterized by three dimens
less numbers: the Reynolds number Re5UL/n, the mag-
netic Reynolds number Rem, and the magnetic interactio
parameterN5sB2L/rU ~herer,n are fluid density and vis-
cosity,U andL are characteristic velocity and dimension!.
© 1998 American Institute of Physics
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We represent all fields as a sum of averaged and flu
ating values:

u5^u&1u8, B5B01h, P5^P&1P8, F5^F&1F8,

B0@h, ^u8&5^h&5^P8&5^F8&50,

where^...& denotes averaging over an ensemble.
Assuming first that̂ u&50 and Rem!1, one can easily

derive an equation foru8 up to second order inh:

]u8

]t
1~u8•¹!u82^~u8•¹!u8&52¹P81

1

Re
¹2u8

1
N

Rem
~¹3h!3B01F8.

Let us examine the stability of a small-scale turbule
flow under the magnetic field with respect to weak larg
scale nonuniform disturbances. In this case, we represen
turbulent field as a sum of the initial turbulent fieldu(0) and
its disturbanceu(1):

u85u~0!1u~1!,

whereu(0)@u(1).
We introduce the correlation functions

Qi j
00~j,t!5^ui

~0!~x,t !uj
~0!~x1j,t1t!&,

Qi j
10~x,j,t,t!5^ui

~1!~x,t !uj
~0!~x1j,t1t!&,

and, in the same manner, correlators of higher order.
Assuming that the external forceF8 maintains the initial

small-scale helical turbulence, we can derive an equation
Qi j

005Qi j
00(j,t):

]Qi j
00

]t
1¹kQki j

00052¹ i^P~0!uj
~0!&1

1

Re
¹2Qi j

00

1
N

¹2 ~¹ i¹3Q3 j
002¹3

2Qi j
00!1^Fi8uj

~0!&,

where the magnetic term is obtained from Eq.~2! with al-
lowance for the above assumptions, andB0 is directed along
the third coordinate.

In a similar way, we can write an equation forQi j
10

5Qi j
10(x,j,t,t):

]Qi j
10

]t
2

1

Re
¹2Qi j

101¹k~Qik j
1001Qki j

100!

52¹ i^P~1!uj
~0!&1

N

¹2 ~¹ i¹3Q3 j
102¹3

2Qi j
10!.

Eliminating the pressure from this equation, we obtain
final equation forQi j

10:

]Qi j
10

]t
2

1

Re
¹2Qi j

101P im¹k~Qmk j
1001Qkm j

100!

52N cos2 uQi j
10, ~3!

whereP im5(d im2¹ i¹m /¹2) is a projection operator, an
the operator cos2 u5¹3

2/¹2.
Similarly to Eq.~3!, we obtain an equation for the thir

momentsQi jk
1005Qi j

10(x,j,j8,t,t,t8):
u-

t
-
he

or

e

S ]

]t
2

1

Re
¹21N cos2 u DQi jn

100

1P im¹k~Qmk jn
10001Qkm jn

10002Qmk
10 Qjn

002Qmk
10 Qjn

00!50.

~4!

To complete the system of Eqs.~3! and ~4!, we use the
results of Ref. 12, where the finiteness of the correlation ti
is taken into account via the two-scale analog of the Ors
eddy-damped quasinormal Markovian~EDQNM! approxi-
mation.13 This approximation consists in the replacement
the fourth-order moment cumulant in the equation for t
third moment by an effective damping term proportional
the square-law combination of pair moments. This appro
is analogous to other traditional turbulent second-or
closures.14 The EDQNM approximation for strong MHD tur
bulence was considered in detail in Ref. 15.

In this approximation, we obtain from Eq.~4!

Qip j
10052 t̃P im¹kQmkp j

1000 ,

where the three-point correlator

Qmkp j
1000~x,t,x,t,j,t,j8,t8!5Qmk

10 ~x,t,x,t !Qp j
00~j2j8,t2t8!

1Qmp
10 ~x,t,j,t!Qk j

00~j8,t8!

1Qm j
10~x,t,j8,t8!Qkp

00~j,t! ~5!

and

t̃5S 1

t*
1N cos2 u D 21

,

and the correlation timet* .L tur /Etur
1/2 (L tur and Etur being

the characteristic scale and average energy of turbulent fl
respectively!.

To substitute the expression~5! for the third moment
into Eq. ~3!, we pass to the limitj8→j, t8→t. Here ~see
Appendix! we take into account thatAd i j 5Qi j

00(0,0) and
C« i jp5]Qi j

00(j,t)/]jpuj,t→0 depend onB ~or N!, i.e., on the
magnetic field. This results in

S ]

]t
2S 1

Re
1At̃ DD1N cos2 u DQi j

10~x,t,j,t!2 t̃CHi j
10

5 t̃¹pF ]

]xk
Qip

10~x,t,0,0!Qk j
00~j,t!

1
]

]xs
Qkp

10~x,t,0,0!¹kjsQl j
00~j,t!

1Qkp
10~x,t,0,0!¹kQi j

00~j,t!G , ~6!

whereA5A(N,0,0) andC5C(N,0,0) are scalar functions
of N, andHi j 5« ikl¹kQl j

10(x,t,j,t).

3. INSTABILITY OF THE SECOND MOMENTS

To study the stability of the system~6!, we apply the
operator« lmi¹m , and write the resulting system in homog
neous form:
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S ¹t2
1

Re
¹22 t̃A¹21N cos2 u DQi j

102 t̃CHi j
1050,

S ¹t2
1

Re
¹22 t̃A¹21N cos2 u DHi j

101 t̃C¹2Qi j
1050.

~7!

An equation forQi j
10 follows from ~7!:

~~¹t2nH¹21N cos2 u!21 t̃2C2¹2!Qi j
1050, ~8!

where the effective viscositynH51/Re1 t̃A. Passing into
k-space in~8!, we derive an expression for the decay fac
g52 iv:

g52nHk22N cos2 u1 t̃uCku, ~9!

whereu denotes the angle betweenk andB0 .
It follows from the form of Eq.~9! that helicity increases

relaxation time. In other words, helicity prolongs vortex lif
time. However, the helicity is essentially imperceptible
case ofnHk21N cos2 u @t̃uCku. Hence, at sufficiently weak
magnetic fields the helicity effect is most important ov
large scales, i.e., at lowk values. Under the conditiong
.0, we obtain from Eq.~9! the instability condition

1

2
k0S 12S 12

4N cos2 u

k0
2nH

D 1/2D
,k,

1

2
k0S 11S 12

4N cos2 u

k0
2nH

D 1/2D , ~10!

wherek05 t̃uCu/nH .
We study two limiting cases. Let cosu50, i.e., consider

modes for whichk'B0 . In this case,~10! acquires the form
of the purely hydrodynamic limit:11

0,k,k0 . ~11!

Here

k05
t* uCu

1/Re1At*
,

and the dependence of the scalek0 on the magnetic field is
contained only in the coefficientsA and C. As a rule,At*
@1/Re, which results ink05C/A. Consequently, thek0 de-
pendence on the magnetic field is determined by the rati
helicity to turbulence intensity.

On the other hand, at cosu51, i.e., in modes for which
kiB0 , we obtain the condition~10! in the form

1

2 S k02S k0
22

4N

nH
D 1/2D,k,

1

2 S k01S k0
22

4N

nH
D 1/2D ,

~12!

where

k05
t̃uCu

1/Re1At̃
, t̃5

t*

11Nt*
.

It is evident from~12! that atB050, this interval coincides
with that of the modes withk'B0 . With growing magnetic
field, t̃ decreases, i.e., the effective correlation time
creases. Simultaneously, the instability interval is redu
and vanishes in fields described by 4N/nH5k0

2.
r

r

of

-
d

It follows from ~11! and ~12! that at scales

0,k,
1

2 S k02S k0
22

4N

nH
D 1/2D ,

1

2 S k01S k0
22

4N

nH
D 1/2D,k,k0 , ~13!

modes withk'B0 are unstable against large-scale dist
bances, whereas those withkiB0 are attenuated.

Thus, the energy of a large-scale disturbance is redist
uted among the scales, so that modes transverse to the
netic field predominantly grow.

4. TURBULENT VISCOSITY

To study the influence of the magnetic field on viscosi
we examine the variations in hydrodynamic viscosity~in the
absence of a magnetic field! in an external homogeneou
magnetic field.

We consider the casêu&Þ0 and^u&!u(0). In this case,
the equation for̂u&,

]^u&
]t

1^u&~¹•^u&!2^~u8•¹!u8&52¹^p&

1
1

Re
¹2^u&1

N

Rem
^~¹•B!3B&1^F&, ~14!

involves Reynolds stresses^(u8•¹)u8& that depend only on
Qi j

10 for homogeneous turbulence, as shown in Refs. 12
17. On the other hand, additional terms appear on the ri
hand side of Eq.~6! for Qi j

10(j,t,x,t):

F S ]

]t
2

1

Re
D2 t̃A¹21N cos2 u D d i l 2 t̃C« ikl¹kGQl j

10~j,t,x,t !

52^up&¹pQi j
002

]

]xp
^ui&Qp j

002
]^up&
]xs

js¹pQi j
00

1 t̃¹pF]Qip
10~x,t,0,0!

]xk
Qk j

001
]Qkp

10~x,t,0,0!

]xs
¹k~jsQi j

00!

1Qkp
10~x,t,0,0!¹kQi j

00G , ~15!

whereup5up(x,t) andQi j
005Qi j

00(j,t,N).
Taking into account thatj is a dummy index in Eq.~15!,

which allows us to write this equation in the vector form

]yi

]t
5Ai j yj1 f i ,

its formal solution being of the form

yi~ t !5Yi j ~ t !yi~0!1E
0

t

Yik~Yk j
21~ t8! f j~ t8!!dt8,

with the matrixYi j satisfying the homogeneous equation

]Yi j

]t
5AikYk j. ~16!
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The solution of Eq.~14! has the form

Yi j ~t!5exp~2~nHk21N cos2 u!!Fcosh~C̃kt!

3S d i j 2
kikj

k2 D1
kikj

k2 1 i« ik j

kk

k
sinh~C̃kt!G , ~17!

whereC̃5 t̃C.
In this case, the expression forQi j

10 takes the form

Qi j
105E

0

`

exp~2~nHk21N cos2 ut!!H F S 2
4pk2

3
Ã0

2
4pk3

15

]Ã0

]k D cosh~C̃kt!1
4pk4

15

]Ĉ

]k
sinh~C̃kt!G

3S ]^ui&
]xj

1
]^uj&
]xi

D2
4p

15
t̃~k2Ã0 cosh~C̃kt!

2k3C̃0 sinh~C̃kt!!~Qi j
101Qji

10!J dk dt1Zi j ,

~18!

where Qi j
00(k,t)5Q̂i j8 ~see Appendix!, Zi j are terms unre-

lated to the viscosity, and

Ã05
A0

11N
2k2Re cos2 u1N cos4 u

k4Re221v2

,

C̃05
C0

11N
2k2Re cos2 u1N cos4 u

k4Re221v2

. ~19!

For the sake of clarity, we have applied the mean-value th
rem when integrating overu, resulting in the appearance o
cos2 u. As N→0, the expression~18! passes to the hydrody
namic limit.12 In this case, noting that Reynolds stress a
pears in the equation for^u& in the form

2
]

]xj
~Qi j

101Qji
10!,

we obtain the expression for the viscosityn t
m in a magnetic

field:

n t
m5F11

8pt̃

15 E
0

`

~k4Ã0~k,t!cosh~C̃kt!2k5C̃0~k,t!

3sinh~C̃kt!!exp~2~nHk2t1N cos2 u!t!dk dtG21

3E
0

`

exp~2~nHk2t1N cos2 u!t!

3F S 8pk2

3
Ã0~k,t!1

8pk3

15

]Ã0~k,t!

]k D cosh~C̃kt!
o-

-

2
8pk4

15

]C̃0~k,t!

]k
sinh~C̃kt!Gdk dt. ~20!

It follows from ~20! that in MHD flows with Rem!1, the
turbulent viscosity decreases with increasing magnetic fi

5. DISCUSSION

As demonstrated above, a magnetic field alters the pr
erties of homogeneous turbulence in a most significant m
ner. The existence of nonzero mean helicity results in ins
bility of turbulent MHD flow against weak large-scal
disturbances. However, the instability of helical MHD turb
lence has distinctive features in comparison with the ins
bility of helical turbulent hydrodynamic flow in the absenc
of a magnetic field.

Figure 1 schematically shows the behavior of the dam
ing factorg for two limiting values of cos2 u. The regions I,
II, and III correspond to the conditions~10! and~13!, respec-
tively.

Let us examine the behavior of the components of
correlation tensor in these regions. The incompressibi
condition ink-space,

kiQi j
1050, ~21!

leads to the following relation between the components:

Uk3

k'
U52UQ'

Q3 j
10U, ~22!

where for the sake of simplicity and without any loss
generality, we have assumed thatk1Q1 j

105k2Q2 j
105k'Q' . On

the other hand,

kiki5k2. ~23!

Multiplying ~23! by Q' and assuming thatQ1'Q2 , we
find with the help of~22! that

Q3 j
105& tan u•Q' . ~24!

Taking into consideration the fact that the energy density
fixed k is

E~k!52Q'1Q3 , ~25!

whereQ35Q33
10, we finally obtain

E~k!cosu5~2 cosu1& sin u!Q' . ~26!

FIG. 1. Dependence ofg on k for two limiting values, cosu50 and
cosu51.
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Thus, cosu is a measure of energy distribution among co
ponents along and across the magnetic field at specifiedk.

At cosu50 we obtainQ'50, and all the energy of the
given mode is concentrated in the component parallel to
magnetic field, i.e.,E(k)5Q3 . Here k252k'

2 , i.e., in this
mode fluctuations are normal to the magnetic field.

At cosu51 we observe the opposite situation: all t
energy of these modes withk25k3

2 is concentrated in fluc-
tuations normal to the field, i.e.,E(k)52Q' , which oscil-
late along the magnetic field.

If we take into account the form ofE(k)5Qii
10(k) and

~8! for larger scales,

E~k,t !5Ẽ~k,t !exp~2Nt cos2 u!,

we obtain at some fixed timet

Q'5Ẽ exp~2Nt cos2 u!
cosu

2 cosu1& sin u
,

Q35Ẽ exp~2Nt cos2 u!
& sin u

2 cosu1& sin u
. ~27!

Figure 2 represents the behavior ofQ' /Ẽ andQ3 /Ẽ for
Nt51 as a function of angle. One can easily see that mo
with the samek behave differently, depending on cosu.

Returning to the instability of the second moments,
have the following. In regions II and III, corresponding
the conditions~13!, modes with cosu51 are attenuated
whereas modes with cosu50 grow. Hence, energy must b
transferred from modes with cosu50 to modes with
cosu51. In region I, energy growth is observed in all mod
~but at different growth rates!. In this case energy transfe
between modes at fixedk probably proceeds such that
u,p/4, energy is transferred fromQ3 to Q' , and con-
versely atu.p/4, from Q' to Q3 . However, in these case
the fluctuation amplitude will grow in a different manne
This is related to Joule dissipation, which is greatest
cosu51, and vanishes at cosu50.

The role of helicity reduces to the following. By increa
ing vortex lifetime at large scales, helicity slows down
direct Obukhov cascade from larger to smaller scales. T
it leads to incoming energy redistribution over large sca
i.e., an increase in vortex lifetime increases the probability
vortex mergers. On the other hand, at largek, helicity plays
essentially no role, and at these scales turbulence is d

FIG. 2. Angle dependence ofQ' ~1! and Q3 ~2! ~normalized byẼ) for
Nt51.
-

e

es

e

t

s,
s,
f

si-

pated. The joint action of these two processes results in
ergy growth at large scales, and in an efficient ‘‘erosion’’
smaller scales that are weakly supplied with energy ‘‘fro
above’’ due to the presence of nonzero one-point helicity
the system. Since helicity grows with magnetic field,18 at the
same time, the connection between large and small scal
disturbed more strongly. Experimentally,4 this leads to the
energy spectrum steepening over the small-scale range, u
a511/3– 16/3 with increasing magnetic field. Thus, the e
ergy of a weak large-scale disturbance is redistributed am
modes with differing cosu, the cascade along the spectru
being weak.

In contrast, region I decreases with growing magne
field, and fluctuation growth at 0,k,k0 is mainly associ-
ated with a rise in the energy of longitudinal fluctuation
Here, however, one must bear in mind that turbulence
mains three-dimensional, but energy transfer from one co
ponent to another at a given fixedk results from rapidly
occurring processes~instabilities!. This leads to a quasi-two
dimensional fluctuation pattern~symmetric about the mag
netic field!.

It should be noted that in the intermediate ran
0,cosu,1, fluctuations exist along all three componen
for instance, atu5p/4 the intensity of modes along an
across the magnetic field is the same, and they have the s
instability growth rate. In the vicinity of this point, namely a
u>p/4, energy exchange between components with givek
is probably absent.

The authors are deeply grateful to Dr. A. Eidelman f
useful comments on the results of the present paper.

APPENDIX

The influence of an external uniform magnetic field
correlations in a turbulent medium has been studied in R
2. In a magnetic field, the second moment of the veloc
field acquires the form

Q̂i j ~k,v!5
Q̂i8 j~k,v!

11
~k•B0!2

mr

2hnk422v21~k•B0!2/mr

~h2k41v2!~n2k41v2!

, ~A1!

whereQ̂i8 j (k,v) is the correlation function in the absence
the magnetic field, andh,n,r are magnetic and hydrodynam
viscosities and fluid density, respectively. Here we retain,
convenience, the notation of Ref. 2. Assuming that turb
lence is helical and isotropic in the absence of the magn

field, we can writeQ̂i8 j (k,v) as follows ~whether or not
H0(0,t)50):

Q̂i8 j~k,v!5Â0~k,v!S d i j 2
kikj

k2 D1 iĈ0~k,v!« i jsks .

~A2!

Passing tox-space, Qi j
005*Q̂i j

(k,v)d3kdv in the limit
j5x2x8→0, t5t2t8→0.
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When Rem!1 we obtain from~A1!

Q̂i j
~k,v!5

Q̂i8 j~k,v!

11
~k•B!2

mr

2hnk41~k•B!2/mr

h2k4~n2k41v2!

5
Q̂i8 j~k,v!

11
k2 cos2 uB0

2

mrh4

2hn1cos2 u B0
2/mrk2

n2k41v2

,

or in dimensionless form

Q̂i j ~k,v!5
Q̂i8 j~k,v!

11N
2k2Re cos2 u1N cos4 u

k4Re221v2

. ~A3!

Consequently,

A~N,0,0!5
1

2 E d i j Q̂i8 j~k,v!

11N
2k2Re cos2 u1N cos4 u

k4Re221v2

d3k dv,

C~N,0,0!52
i

3
« i jk

3E kkQ̂i8 j~k,v!

11N
2k2Re cos2 u1N cos4 u

k4Re221v2

d3k dv.

Clearly, bothA(N,0,0) andC(N,0,0) decrease with increas
ing N ~or magnetic field!.
* !E-mail: golbref@bgumail.bgu.ac.il
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