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Abstract—The results are presented that were obtained by investigating the production of pion—proton
pairs in the reaction 2C(~,7p). The experiment in question was performed in the second resonance
region of photon energy. The results of this measurement are analyzed on the basis of a model that takes
into account the processes of single and double quasiiree pion photoproduction. © 2003 MAIK “Nau-

ka/Interperiodica”.

1. INTRODUCTION

Pion photoproduction on nuclei in (v, 7N) reac-
tions accompanied by nucleon emission has attracted
the attention of researchers for quite a long time. The
first studies devoted to this subject were performed as
far back as the early 1970s[1, 2], and interest in these
reactions has only grown since that time. The latest
experimental results in these realms were obtained
at four research centers: at the Tomsk synchrotron
in Russia [3, 4], at the MIT-Bates accelerator in the
United States [5], at the MAMI electron microtron in
Germany [6, 7], and at the BNL-LEGS in the United
States by using a linearly polarized photon beam [8].
In all of the aforementioned studies, the measure-
ments were performed in a kinematical region that in-
cludes the quasifree-pion-production domain, which
is close in kinematics to that of two-particle (v, 7)
processes on free nucleons.

Keen interest in quasifree pion photoproduction on
nuclei at intermediate energies is motivated predom-
inantly by the fact that, with a high probability, all
nonstrange nucleon resonances decay into a pion and
a nucleon; therefore, reactions of the A(y,7N) type
provide a convenient tool for studying the properties
of nucleon resonances emerging in nuclei or existing
there prior to interaction.

Resonance nucleon states clearly manifest them-
selves in pion scattering on protons in the reac-
tion mp — wp. Eight resonance states of this type
are known in the mass region extending up to
1700 MeV. Three of these, A(1232) P33, N(1520)D;3,
and N (1680)F}s5, are observed as resolved peaks in
the energy dependence of the total cross section for
the hadronic absorption of photons on a proton [9].
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The production of nucleon resonances in a nu-
cleus via electromagnetic excitation offers a promis-
ing method for studying their properties. Experiments
were performed in which the total cross sections for
hadronic photoabsorption were measured in the reso-
nance region for a wide range of nuclei from extremely
light (H, D, He[10, 11]) through light (Be, C[12, 13])
to heavy (Pb, U [14—16]) ones. The observation that
the N(1520) D43 and N (1680)Fy5 resonances, whose
excitation is clearly seen in the interaction of photons
with free nucleons, do not manifest themselves in
the interaction of photons with nuclei is the most
surprising result of those experiments, which has not
yet been explained satisfactorily.

A direct way to solve the problem of the photoex-
citation of higher resonances in nuclei consists in
performing a detailed analysis of individual reactions
leading to photon absorption. At the photon-energy
value corresponding, in photoabsorption on a proton,
to the cross-section maximum associated with the
excitation of the N(1520) resonance, two processes
that have approximately identical cross sections are
dominant—these are single and double pion pro-
duction. It can be expected that processes of sin-
gle and double quasifree pion photoproduction will
be dominant in the interaction of photons with a
nucleus. It seems unlikely that the exclusive cross
sections for A(y,7N) reactions—and the more so
for A(y,mmN) reactions—will be measured in the
near future over the entire phase space. In all prob-
ability, it would be optimal to compare data on the
process of photoabsorption on nuclei with the results
obtained by measuring inclusive and semiexclusive
cross sections for pion production. In order to test
the assumption that the width of the N(1520) res-
onance changes in nuclei, the semi-inclusive cross
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sections for neutral-pion photoproduction on a num-
ber of nuclei were recently measured in the second
resonance region by using the TAPS detector at the
MAMI microtron [17]. With the aim of obtaining in-
formation about quasiiree pion production in the same
energy region, a semiexclusive experiment devoted to
studying the photoproduction of pion—proton pairs
on Li, C, and Al nuclei was performed at the Tomsk
synchrotron.

The present article reports on the results of an ex-
periment performed to study the production of pion—
proton pairs on carbon nuclei and the single and dou-
ble production of pions on hydrogen nuclei. The ensu-
ing exposition is organized as follows. An account of
the experimental facility and procedure used is given
in Section 2. The results obtained by measuring the
cross section for pion production on hydrogen are
reported in Section 3, and data for a carbon target
are presented in Section 4. The experimental results
are analyzed on the basis of a model that takes into
account processes of single and double pion photo-
production.

2. EXPERIMENTAL PROCEDURE

The experiment was performed in a beam of
bremsstrahlung photons from the Tomsk synchro-
tron. The layout of the experimental facility used
is depicted in Fig. 1. The bremsstrahlung photons
were produced as the result of moderating 900-MeV
electrons on an internal tantalum target T of the
accelerator, the target thickness being 0.07 radiation
units. The duration of radiation pulses was 20 ms.
The beam was formed by a collimator that ensured
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an angular divergence of 1 mrad, was purified from
charged particles by a dipole magnet, and was trans-
ported to the experimental hall to hit the target under
study arranged there. The total energy of the photon
beam was measured by a Gauss quantameter [18]
to a precision of 3%. Carbon of natural isotopic
composition in the form of a plate having a thickness
of nc = 4.3 x 10?2 nucl./cm? was used for a target.
The cross sections for pion production on a proton
were measured in experiments with a carbon and a
CHs, target.

The experimental facility used had three detection
channels. These were the proton channel and the
channels for recording neutral and charged pions.
The last two channels were arranged on the same
axis. A major part of the measuring equipment of
this facility was previously used in the experiment
reported in [19]. The proton channel was formed by
a scintillation time-of-flight spectrometer consisting
of three counters (.51, Sa, S3) that recorded charged
particles within a solid angle of 4.2 msr. The energy of
the detected particle was determined from the time of
flight over the base of 3.5 m between counters S} and
Ss3. The accuracy in measuring the proton kinetic en-
ergy (root-mean-square deviation) within the range
140—280 MeV was 13—40 MeV. The identification of
protons in this energy range was performed with the
aid of absorbers that removed the background from
low-energy electrons and pions.

Figures 2a and 2b show, respectively, an exam-
ple of the time-of-flight spectrum and the calculated
time-of-flight (¢) dependences of the pion and proton
energy losses in the scitillation counter S3 of the
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proton channel. The position of relativistic electrons
in the figure is indicated by the arrow. Data used to
estimate the cross sections in question were taken
from the range of proton times of flight that is bounded
in the figure by two vertical dotted straight lines.

The proton channel was arranged at an angle of
41° with respect to the photon-beam axis. The pre-
cision in measuring the polar and azimuthal angles
(6, and ¢,, respectively) depended on the detector
dimensions and on multiple Coulomb scattering in
the scintillators and absorbers used; for protons of
energy in the range 140—280 MeV, the respective un-
certainties are g, = 1.8°=1.5° and 0y, = 2.7°—=2.3°.

The pion channel was positioned at an angle of 61°
with respect to the photon-beam axis. Neutral pions
were recorded by one decay photon with the aid of
a total-absorption Cherenkov « spectrometer, which
consisted of a total-absorption Cherenkov counter C
based on a TF-1 crystal, a lead aperture collimator K
forming the solid angle of the ~ spectrometer, and
a thin scintillation counter S5 suppressing the de-
tection of charged particles. The solid angle of the ~
spectrometer was 30 msr. The spectrometer recorded
photons of energy in excess of about 80 MeV. In the
pion-energy range being studied, the angular distri-
bution of decay photons is sharply stretched in the
pion-momentum direction. Therefore, a high-energy
photon reproduces the spatial features of a neutral
pion to a satisfactory precision. For the pion kinetic
energies of T = 200, 400, and 600 MeV, Fig. 2¢c
shows the efficiency of neutral-pion detection as a
function of the polar emission angle 0. At these en-
ergy values, the uncertainties in determining the polar
angle of neutral-pion emission are og_ = 10°, 8°, and
6°, while those in determining the relevant azimuthal
angle are 04, = 12°,9° and 7°. Charged pions were
detected by two scintillation counters (Sy4, S5) in a
solid angle of 25 msr, the relevant uncertainties being
09, = 2.2° and Opp, = 2.4°.

The blocks of fast electronics that processed sig-
nals from the detectors of the facility selected events
according to the logical schemes

Sl/\SQ/\S3/\S5/\O and S7 A Sy AS3AS4NASs.

Events of the first logical scheme were identified as
those in which a proton was detected in coincidence
with a neutral pion (7 p events), while events of the
second scheme were identified as those in which a
charged pion was detected together with a proton
(m"p events). A charge state of the recorded charged
pion was not identified in this experiment. Here and
below in the article, the symbol 7" therefore stands for
the sum of 7= and 7T. From theoretical estimates, it
follows, however, that, in the kinematical region being

PHYSICS OF ATOMIC NUCLEI

Vol.66 No.5 2003

789

Number of events

e

80

40

€0, arb. units
03r

0.2

0.1

0
20

Fig. 2. (a) Time-of-flight spectrum of particles recorded
by the proton channel of the experimental facility in coin-
cidence with a pion. The spectral regions where relativis-
tic electrons, charged pions, and protons are concentrated
are labeled with e, 7, and p, respectively. The shaded
histogram represents the contribution of random coin-
cidences. (b) Time-of-flight (¢) dependences of the pion
and proton energy losses AFE in the scintillation counter
Ss of the proton channel. (¢) Efficiency of neutral-pion
detection, €0, as a function of the polar emission angle
0 at three kinetic-energy values of T = (dotted curve)
200 MeV, (dashed curve) 400 MeV, and (solid curve)
600 MeV.

considered, about 80% of the yield of 7<"p pairs is due
to the production of negative pions.

Random coincidences of events recorded by the
proton and pion channels are the main source of
background events in the present experiment. The
dependence of the intensity of random coincidences
on the time of flight ¢ reproduces, in the case at hand,
the shape of the time-of-flight spectrum measured
for the proton channel in an independent mode (the
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Fig. 3. Results of measurements with a hydrogen target:
(a) differential cross section for the reaction yp — pr°
as a function of the photon energy at 65 = 90° {(open
circles) data from the compilation of Menze et al. [20],
(closed circles) data of the present experiment, (dashed
curve) contribution of the double production of neutral
pions, and (solid curve) data from [22]}; (b) dependence of
the detection efficiency €_o for neutral pions from the re-

action yp — pr° on the azimuthal angle ¢., of the - spec-
trometer [(closed circles) results of the measurements
and (curve) calculated detection efficiency]; (¢) azimuthal
dependence of the quantity obtained by averaging the
differential cross section for the reaction yp — pr~ 7™ for
protons of energy in the range T}, = 140 £ 20 MeV over
the bremsstrahlung-photon spectrum characterized by
the mean energy of £, = 770 MeV and the root-mean-
square deviation of o, = 70 MeV {(closed circles) data
of the present experiment, (solid curve) theoretical cross
section calculated on the basis of the isobar model [24],
and (dashed curve) theoretical cross section calculated on
the basis of the approximation specified by Eq. (13)}.
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corresponding logical scheme is Sy A Sy A S3). The
level of random coincidences in the spectrum was
determined from the number of events recorded in the
unphysical time-of-flight region. The contribution of
random coincidences in the spectrum of 7"p events in
Fig. 2a is shown by a shaded histogram. In the time-
of-flight spectra of 7’p events, the level of background
events was severalfold lower.

The experiment resulted in determining the dif-
ferential cross sections for the photoproduction of
neutral and charged pions on 'H nuclei and the dif-
ferential yield for the production of 7 and 7*"p pairs
in photon interaction with 2C nuclei as a function
of the proton energy 7T, and the azimuthal pion-
emission angle ¢,. The polar angles of proton and
pion emission were 41° and 61°, respectively. The
azimuthal angle of proton emission was equal to a
constant values of w, while the azimuthal angle of pion

emission changed between 0 and 50° with a step of
10°.

3. PION PHOTOPRODUCTION
ON A PROTON

The present measurements with hydrogen target
nuclei pursued two goals.

(i) The first was to obtain experimental data on the
reaction

Yy+p—p+n’ (1)

in order to validate, via a comparison with currently
available cross sections, the calculation of various
corrections associated with the measuring equipment
that affect the detection efficiency in the experimental
facility used.

(i) The second was to deduce estimates of the
cross section for pion-pair photoproduction on a pro-
ton in the reaction

ytp—op+r +wt (2)

over the kinematical region of interest; these data will
be used in testing a model for reaction (2).

In the photon-energy range 760—900 MeV, quan-
tities that are measured in the present experiment are
sufficient for performing identification and a complete
kinematical reconstruction of events of reaction (1).
The experimental equipment used was deployed in
such a way that, in the c.m. frame, the emission
angle 67 of the pion produced in reaction (1) in the
N (1520)-resonance region was about 90°. The differ-
ential cross section do/dQ* measured in the present
experiment for reaction (1) is displayed in Fig. 3a,
along with the data borrowed from the compilation
of Menze et al. [20]. This cross section is related
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to the experimental event distribution d? N0 /d E,dS,,
by the equation
d?N o do 0 W. OE,
A 3
dE,dQ, — d 0 Emax A )8E nHEpep, (3)

where E, and E), are, respectively, the photon energy
and the total proton energy; W, is the total energy
of the photon beam; Ep.x is the endpoint energy of
bremsstrahlung; ny is the proton-target thickness
(in nucl./ecm? units); €0 and ¢, are, respectively,
the proton-detection and the neutral-pion-detection
efficiency; and f(F,) is the bremsstrahlung spec-
trum [21], which is normalized by the condition

Emax
/ F(Ey)E,dE, = Eray.
0

The efficiency €0 of neutral-pion detection by the ~
spectrometer was calculated by the formula

1 mQ&Y
Ao, TR,

Ex0 (pﬂ') =

where m.., Er, and p, are the pion mass, energy, and
momentum, respectively; p, is the photon momen-
tum; and e, is the photon-detection efficiency, which
was calculated with allowance for the spectrometric
features of the v spectrometer and for the probability
of pion absorption in the the target, absorber, and
scintillation counters of the pion channel. Integration
in (4) is performed over the solid angle of the  spec-
trometer.

At a photon energy below 760 MeV, the cross
section measured in the present experiment for reac-
tion (1) features a small contribution of events of the
reaction yp — pr’#’. In Fig. 3a, the estimate of this
contribution is represented by the dashed curve.

Figure 3b shows the calculated efficiency of the
detection of neutral pions produced in reaction (1),
.0, and the corresponding detection efficiency mea-
sured in the experiment, the latter being coincident
in shape with the dependence of the experimental
event distribution (3) on the azimuthal angle of the ~
spectrometer. The agreement of the measured cross
section for reaction (1) with experimental data ob-
tained previously and a faithful reproduction of the az-
imuthal dependence of the reaction yield indicate that
the experimental facility operates quite satisfactorily
and that the parameters of the measuring equipment
were estimated correctly.

In order to determine the exclusive differential
cross section for reaction (2), it is necessary to
measure six kinematical quantities that characterize
the state of the particles involved in this reaction.
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Only five quantities were measured in present ex-
periment; therefore, the result of this measurement
appears to be a cross section averaged over some
range of photon energies. For protons of energy in
the range T}, = 140 + 20 MeV, Fig. 3¢ displays the
azimuthal dependence of the quantity obtained by
averaging the sum d®c /d E,d$2,d2 of the differential
cross sections for the production of positive and
negative pions on a proton over the bremsstrahlung-
photon spectrum f(E,) characterized by the average
energy of E = 770 MeV and the root-mean-square
deviation of op, = 70 MeV.

The results of the present experiment will be ana-
lyzed within the distorted-wave impulse approxima-
tion (DWIA) by using the quasifree approximation,
according to which the squared modulus of the am-
plitude for pion production on a nucleus is expressed
in terms of the squared modulus of the amplitude for
pion production on free nucleons. The amplitudes for
the single and double production of pions on nucle-
ons, Myn—xp and My n_.zrp, are related to the cor-
responding differential cross sections for the reactions
N (~,m)p and N (v, mme)p in the laboratory frame by
the equations

o 1 PEE.
= Mon_pl%, (5
dQy  (2m)% |Exp2 — Eypr - pp!‘ w—ml®, (5)
3o (E,) _ 1 (6)

dE,dQ,dQy,  (27)
ppp?rlEpEﬂ'lEﬂ'Q ’M N ‘2
— T b
|E7r2p72r1 - Em Pr - p7r2| K v

where the bar over |M|? denotes averaging over the
initial states of interacting particles and summation
over their final states.

Presently, the experimental differential cross sec-
tions for the photoproduction of single pions on nu-
cleons are known to a high precision. We will make
use of the data given in the compilation of Genzel
et al. [22] and represented as expansions in powers
of cos@%. For the kinematical region being studied,
the energy dependence of the cross section for the
reaction yp — pn’ is represented by the solid curve
in Fig. 3a. The situation around double pion pro-
duction is totally different. The results obtained by
measuring the total cross sections and the distribu-
tions of events with respect to the invariant mass
of pion—nucleon pairs form the bulk of information
about double pion photoproduction on nucleons (see,
for example, [23]). In order to calculate the theoretical
cross sections for the production of a pion pair on
a nucleus, it is therefore necessary to have a model
that would describe, in the kinematical region being
studied, double pion production on free nucleons. A
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few simple models of the reaction YN — Nzr that
satisfactorily reproduce the single-particle differential
cross sections d?a /dpd<2 for pion production on pro-
tons were analyzed in [24].1) In Fig. 3c, the azimuthal
dependence of the sum d3 /d E,d,d} of the differ-
ential cross sections for the production of positive and
negative pions in the reaction yp — pr~n™ is given
according to calculations on the basis of the isobar
model [24], where pion-pair production on a nucleon
proceeds predominantly through the formation of an
intermediate A(1232) isobar. In just the same way
as the experimental cross section also given in this
figure, the calculated cross section was averaged over
the photon spectrum and proton energies. As can
be seen, the agreement between the calculated cross
section and the experimental data is quite good.

4. PRODUCTION OF PION—PROTON PAIRS
ON CARBON NUCLEI
The differential yield d®Y/dE,dS2,d2: of pion—
proton pairs is defined as
Y d3o

— = [ B, f(B)) . (7
dE,d,dS2, / T E) i a0, (7

The experimentally measured yield of 7"p pairs is
related to the number N, of detected events and the

parameters of the facility by the equation
d3Yﬂ-Ch . Nﬂ.chpEmaX
dE,dQ,dQ, — AE,AQAQncepe Wy’
where AE), is the range of averaging of the experi-
mental data over the proton energy; AQ, and AQ,
are the solid angles of, respectively, the proton and the

pion channel of the facility; and e e is the charged-
pion-detection efficiency.

In the case of neutral pions, the event distribution
d2N7r0 . NﬂopEmaX
dE,dQ,  AE,AQpnce,W,

is related to the differential cross section for neutral-
pion photoproduction by the equation

d2N_
~ — [ dE.f(E
dE,dS, / 7f(Er)

d3o_o
dQ, — 2 om0
% / dE,d0,d0

Ex0 (pﬂ')'

As can be seen from Fig. 2¢, the detection effi-
ciency €,0 (4), which reflects the spatial distribution
of decay photons, has a maximum at an angle of 61°

DThere is an error in Fig. 4 of [24] in the dimensionality of the
cross section: pub should be replaced by nb.
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in the y-spectrometer direction 1,; therefore, we can
write
d3o o
dp—T—— T
/ dE,d0, da, - Pr)

d3
I / dQre 0 (Pr)-

™

= dE,dQ,dQ,

f’ﬂzl“/
Considering that

/ Qe 0(pr) = 28,0,

we can represent the yield of neutral pions in the form
dgyﬂ.() o Nﬂ-ﬂpEmax
dE,dQpdQY, — 2AE,AQ,AQ ncEep,Ws,

The experimental results for d3Y, .« /dE,dQ,d;
and d*Y,0/dE,dQ,d), are given in Tables 1 and
2, respectively. The quoted experimental errors are
purely statistical. The systematic error in determining
the reaction yields, which includes errors in measur-
ing the total energy of the photon beam and the target
thickness, uncertainties in estimating the detection
efficiency for the proton and pion detection channels,
and uncertainties in the calibration of the time-of-
flight system, does not exceed 10%.

Models based on the impulse approximation are
used here to analyze data obtained in this experiment.
In the second resonance region of photon energies,
the production of 7"p and 7°p pairs on a 2C nucleus
may occur in the quasifree approximation via single
pion production in the reactions

PC(y, 7 p)"'C and PC(y,7p)"'B  (8)
and via double photoproduction in the three reactions
PC(y,natp)"B,  2C(y,7°7°p)''B, and (9)
12G(y, 7~ n"p)ILC.
The last reaction contributes both to the yield of 7<"p
pairs and to the yield of 7°p pairs.
The differential cross section for single pion pro-

duction in the reaction 2C(vy, 7p) in the laboratory
frame is given by

d30 _ p?rppEprEr ’MWP
dE,dQpdQ:  |Ep2 — Expr - py| (27)7

where E, and p, are, respectively, the energy and the
momentum of the residual nucleus.

The analogous expression for the exclusive cross
section describing double pion production in
A(ry,m1mep) B reactions in the laboratory frame has
the form

(10)

d°o(E,)
dE,d$ydEr, d<br, S0,

(11)
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_ pppmp?rngEmEﬂzEr | My |?
‘ETp72T2 - E7r2p7r1 : pT’ (27T)8 .
In the factorization approximation, the squared mod-
uli of the amplitudes for the production of one pion
and two pions on nuclei, |M;|? and |M,|?, respec-
tively, are related to the amplitudes M, n_.p, (5) and
M N—zrp (6) for pion production on a nucleon by the
equations

|]W7T|2 = (27T)3p(p’y — Pr— pp)|M'yNH7rp|27

|Mﬂ'7r|2 = (277)310(1)7 —Pry = Pmy — pp)|M’yN—>7'r7rp|2u

where p(p) is the distorted momentum distribution of
the nucleons of the 12C nucleus.

In order to perform a comparison with experi-
mental data, the differential cross sections in (10)
and (11) were averaged, according to (7), over the
bremsstrahlung photon spectrum f(E,), while the
cross section for the production of two pions in (11)
was additionally integrated with respect to the energy
and solid angle of the undetected pion. Over a major
part of the photon-energy range, the bremsstrahlung
spectrum f(FE,) (see Fig. 3a) can be approximated by
the expression 0.9/ E,, to a satisfactory precision.

The momentum distribution p(p) was calculated
on the basis of the harmonic-oscillator model. The
parameters of the proton wave functions were deter-
mined by using data on the '2C charge radius, which
was set to 2.45 fm [25]. The oscillator parameters of
neutrons bound in the nucleus were taken to be equal
to the corresponding proton parameters.

In the plane-wave approximation, the momentum
distribution p(p) was normalized to the number N;;
of nucleons in the corresponding charge state in the
lj state of the nucleus; that is,

/p(pr)dpr = Nlj7
where N,

s/ = 2 and Nps/2 = 4. Thus, we have used

the maximum possible values of the spectroscopic
factors for the s1 5 and ps , states of nucleons.

Final-state interaction was taken into account on
the basis of the optical model in the eikonal approxi-
mation; according to this model, a pion and a proton
propagate in a complex pion—nucleus and a complex
proton—nucleus optical potential. For the proton—
nucleus optical potential, use was made of that which
is presented in [26] and which is based on the phe-
nomenological analysis of proton—nucleus scatter-
ing. The application of this optical potential made
it possible to explain the effect of proton interaction
with a residual nucleus in the reaction 2C(v, 7 p)
in the A(1232)-resonance region [27]. The pion wave
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function was distorted by the pion—nucleus optical
potential derived in [28] according to [29]. The authors
of [28] were able to obtain a satisfactory description
of the inclusive spectra of charged pions produced on
carbon and copper nuclei in the kinematical region of
quasifree pion photoproduction [30, 31].

The calculated yields of 7’p and 7"p pairs are dis-
played in Fig. 4, along with relevant data. The dashed
curves represent the calculated yield of pion—proton
pairs that is due to the single production of (Fig. 4a)
neutral and (Fig. 4b) charged pions. The solid curves
correspond to the total yield from the single- and
double-pion-production reactions [(8) and (9), re-
spectively]. In the region of moderately small az-
imuthal angles, which, according to calculations, is
dominated by single-pion-production processes, the
calculated yields satisfactorily reproduce the energy
dependence of their experimental counterparts both in
absolute value and in shape.

In the region of large azimuthal angles, where
the contribution of double pion production is signif-
icant, the experimental yield of pion—proton pairs is
systematically in excess of the theoretical estimates.
The measured azimuthal dependence of the neutral-
pion yield for protons of energy T, in the range 140—
180 MeV is presented in Fig. 5; also shown there
is the reaction yield calculated (dotted curve) in the
plane-wave and (solid curve) in the distorted-wave
impulse approximation (PWIA and DWIA, respec-
tively). As can be seen, final-state interaction reduces
the reaction cross section considerably. In the region
of A(1232) photoexcitation, such an effect of final-
state interaction is described in the eikonal approxi-
mation to a satisfactory precision [27]. According to
the results of the present study, a significant suppres-
sion of the reaction cross section due to final-state in-
teraction within the model used here is of importance
for quantitatively explaining experimental data in the
second resonance region. The situation around the
description of the reaction cross section in the region
where it is minimal is different. In this case, varia-
tions do not reduce exclusively to the suppression of
the cross section because of particle absorption: the
reaction yield can change significantly—in particular,
increase—owing to particle scattering on a residual
nucleus. A systematic excess of the experimental re-
action yield over the theoretical results at large pion
emission angles may possibly be due to rescattering
effects induced by final-state interaction, which are
expected to be underestimated in the eikonal approx-
imation.

The in-medium modification of the rho-meson
features, which has been widely discussed in recent
years (see, for example, [32, 33]), is yet another
possible source of an enhanced yield of pion—proton
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Table 1. Differential yield d3Y, «n /dE,dS2,dQ [in 10732 cm?/(MeV sr)? units] of charged-pion photoproduction in the
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reaction 12C(v, 7p) versus the proton kinetic energy T, and the azimuthal pion-emission angle ¢

T,, MeV ¢n, deg
0 10 20 30 40 50
150 38.6 + 4.2 344437 28.4+ 3.8 15.0 + 3.6 11.6+ 2.5 9.0+2.3
170 26.7 + 3.2 27.7+3.5 18.6 4+ 3.1 18.74 3.9 77420 42417
190 28.2+ 2.7 33.3 +4.6 20.3 + 3.2 12.2 4+ 3.2 75+£1.9 62419
210 23.6 + 2.4 23.6 + 3.5 111424 13.74 3.3 14419 6.9+1.9
230 20.2 + 2.2 16.4 4+ 2.6 111423 6.5+ 2.4 46415 34414
250 15.8 + 2.2 174426 71419 21415 40415 5.9+1.8
270 14.5+2.1 8.9+2.4 6.5+ 1.8 46+2.0 25415 1.8+1.4

Table 2. Differential yield d®Y, o /dE,dQ,dQ, [in 1073 cm? /(MeV sr)? units] of neutral-pion photoproduction in the

reaction 12C(v, 7p) versus the proton kinetic energy 7T}, and the azimuthal pion-emission angle ¢

Ty, MeV On, deg
0 10 20 30 40 50
150 209+2.2 19.4£2.8 15.5£28 9.4+28 6.5+t1.8 5.0+t 1.6
170 23.4+24 18.7£2.7 13.1£2.6 7.5+£2.5 74+19 6.1£1.8
190 145+1.8 16.4£2.6 17.8+£3.0 9.5 +2.1 1.9+1.9 3.5+14
210 11.8+1.6 13.1+£2.5 11.0£2.3 42+19 6.0+1.7 3.0£1.3
230 9.8£1.5 10.8 £ 2.0 72+19 23+14 3.1£1.5 41+£1.5
250 9.5+1.6 72x£1.7 6.3+1.8 3.6x1.7 23%£1.5 1.6£1.5
270 7.0x£1.5 6.4+1.7 4.4+15 9.2£25 1.3£1.5 1.3£1.5

pairs in the N (1520)-resonance region. The N (1520)
resonance has three dominant decay modes:

N(1520) — N7, Ty« Nz ~ 0.55T y+;
— AT, Dyeoar ~0.25Ty+;  (12)
— Np, FN*—>Np ~ OQOFN*

The first mode of N(1520) decay leads to the pro-
duction of single pions, while the remaining two yield
predominantly two pions. The last decay mode is of
interest because this channel is energetically forbid-
den at the pole values of the particle masses. The
N(1520)-resonance decay N* — Np proceeds ow-
ing to a partial overlap of the tails of the resonance
and rho-meson spectral functions. If the decay of the
resonance occurs in a nuclear medium, changes in
the particle states due to interaction with the medium
with respect to their vacuum counterparts will be
different for different states, with the result that the re-
lationship between the branching ratios for the decay

modes of interest will also change; of course, this will
concern the branching ratios for the one- and two-
pion modes, if any. The above is valid for any nucleon
resonance, but, for N(1520), the effect may be sig-
nificant because of the specific properties of the rho-
meson mode [33]. Thus, we can conclude that, in the
second resonance region, a change in the relation-
ship between the branching ratios for the production
single- and two-pion final states in nuclear reactions
induced by pions or photons may be an indication
of in-medium modifications to the parameters of the
N(1520) resonance and of the rho meson.

According to the predictions obtained in [34] with-
in QCD, the expected decrease in the mass of the
rho meson in the carbon nucleus is about 80 MeV.
Provided that the mass distributions of the N(1520)
resonance and the rho meson are described by a
Breit—Wigner function and that all other conditions
remain unchanged, this decrease in the rho-meson
mass will lead to an increase in the phase space by

PHYSICS OF ATOMIC NUCLEI Vol.66 No.5 2003
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Fig. 4. Differential yield from the photoproduction of (a) neutral and () charged pions in the reaction *2C(~y, wp) versus the
proton kinetic energy 7}, at various values of the azimuthal angle ¢ of pion emission: (closed circles) data of the present study,
(dashed curves) quasifree photoproduction of single pions, and (solid curves) sum of the contributions from single and double

pion production.

a factor greater than 2. As a result, the probability of
the rho-meson mode of N(1520) decay will become
greater, which will lead to an increase in the cross
section for the production of two pions.

Let us estimate the effect of changes in the pa-

d*Y/dE,dQ,dQp, ub/(MeV sr?)
10°¢

1
0 15 30 45
@, deg

Fig. 5. Yield of neutral pions in the reaction 2C(v, 7'p)
as a function of the azimuthal angle ¢, of pion emis-
sion at T, = 140—180 MeV: (closed circles) data of the
present study, (dotted curve) theoretical yields computed
in the plane-wave impulse approximation, (solid curve)
theoretical yields computed in the distorted-wave impulse
approximation, and (dashed curve) results of the calcula-
tion on the basis of the extended isobar model [which is
specified by Egs. (13) and (14)].
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rameters of the rho meson in the '2C nucleus on the
yield of pion—proton pairs. For this, we will use a
somewhat extended version of the isobar model [24],
isolating, in the expression for the squared modulus
of the amplitude for the reaction YN — mmp, the term
corresponding to the decay of the NV (1520) resonance
into a final state involving a rho meson; that is,

— 27)5
YA R L) M 13
My 8E,Eyr, En, (13)
X (UtOt_UN *—pp Ba(Masp) | ON*—pp BP(mWﬂQ))
SA 2oy S, 2Myymy )

where oxn+_p, is the contribution to the total cross
section oy, for the photoproduction of two pions on a
nucleon from the reaction mechanism corresponding
to the decay scheme

v+ N — N(1520) — p + p;
L, T+ T2

Myp aNd Mg, 7, are the invariant masses of, respec-
tively, the mop system and the system of two pions;

1 Tr/2
7 (mp —m)? +T%/4

Bgr(m) =

is a Breit—Wigner function that describes the distri-
bution of an R resonance of mass mg and width I'p
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with respect to the mass m; and

2 9 Mo—Mny B ( )
T Alm
sa=o [ e Taelam,
Mpy+my
) mo—myp
2 B,(m)
S _ =7 * _kkk P d .
P my, / PpPr 2m m
2may

Here, m, is the invariant mass of the IV system; p}
and p;, are the momenta of, respectively, the first pion

and the proton in the yN c.m. frame; and p3; and p;**
are the momenta of the second pion in, respectively,
the mop c.m. frame and the c¢.m. frame of the two
pions. The contributions of the N(1520) resonance
to the cross section for the production of a single
pion and to the cross section for the production of
two pions were determined on the basis of the results

presented in [35].

The azimuthal dependence that was calculated for
the differential cross section for the reaction vp —
pr~wT on the basis of the model specified by Eq. (13)
and which is represented by the dashed curve in
Fig. 3c differs only slightly from the results of the
calculations within the isobar model used in [24].

The effect of a decrease in the mass of the rho
meson in the 2C nucleus can be evaluated under
the assumption that N(1520) decay into a final state
containing a rho meson will be a dominant mode
because of an increase in the corresponding phase
space; that is,

]-_‘N*HNp:FN*' (14)

In Fig. 5, the azimuthal dependences calculated
for the yields of 7’p pairs within the plane-wave im-
pulse approximation and within the distorted-wave
impulse approximation by using relations (12) for the
branching ratios of the modes of N(1520) decay in a
vacuum are represented by the dotted and the solid
curve, respectively. The dashed curve corresponds
to the theoretical results obtained with the aid of
relation (14). As can be seen, the assumption that
the branching ratio for the rho-meson decay mode
increases leads to an enhancement of the yield of 7°p
pairs at large azimuthal angles of pion emission. In
the region of small values of the angle ¢, a decrease
in the cross section for the production of single neutral
pions because of the enhancement of the two-pion
mode of N(1520) decay is almost completely com-
pensated by the increase in the cross section for the
production of two pions. For charged pions, the use
of the assumption specified by Eq. (14) improves the
quantitative agreement between the theoretical and
experimental results at large values of the angle ¢,
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but this impairs somewhat the agreement at small
values of this angle.

5. CONCLUSION

In the second resonance region of photon energies,
the differential yield from the production of pion—
proton pairs on 2C nuclei has been measured as a
function of the proton energy and the azimuthal angle
of pion emission. The experiment was performed in
a bremsstrahlung-photon beam, the endpoint energy
of the bremsstrahlung spectrum being 900 MeV. The
product protons were recorded in the energy range
150—270 MeV. The polar angles of pion and proton
emission were 41° and 61°, respectively. The az-
imuthal angle of proton emission was fixed at 7, while
that for pions was varied with a step of 10° over the
range 0°—50°. The results of the measurements have
been analyzed in the distorted-wave impulse approxi-
mation on the basis of a model that takes into account
processes leading to single and double pion produc-
tion. The calculated yields of pion—proton pairs sat-
isfactorily reproduce experimental data in the region
of moderately small azimuthal angles of pion emis-
sion, this region being dominated by the quasifree
production of single pions. At large azimuthal angles,
pion—proton pairs are predominantly produced via the
quasifree photoproduction of two pions. In this re-
gion, the experimental reaction yield exceeds system-
atically, both for neutral and for charged pions, that
which is calculated within the distorted-wave impulse
approximation. A slight enhancement of the yield of
proton—pion pairs at large azimuthal angles has been
obtained on the basis of a model that assumes an in-
crease in the branching ratio for the rho-meson mode
of N(1520)D;3-resonance decay because of the in-
medium modification to the rho-meson mass, but by
no means does this enhancement change the general
relationship between the theoretical and experimental
results.
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Abstract—The yields of fragments originating from 238U fission induced by 5-MeV neutrons are inves-
tigated. Accumulated statistics—2.5 x 105 events of binary fission—make it possible to study fission-
fragment yields at anomalously high values of the total kinetic energy. The spectra of the cold fragmentation
of 239U are obtained. Events characterized by the total kinetic energy that is equal to the total reaction
energy are found for some fragment masses. Methods of digital signal processing permit a highly reliable
identification of these rare events. An interpretation of this phenomenon on the basis of the liquid-drop
model of the fission process is proposed. © 2003 MAIK “Nauka/Interperiodica”.

INTRODUCTION

The phenomenon that is referred to as cold frag-
mentation has been studied over the past decades.
[t carries information about the earliest stages of the
evolution of a system undergoing fission. Investiga-
tion of cold fragmentation makes it possible to under-
stand the regularities of the formation of mass and en-
ergy distributions of fission fragments and, hence, to
explore in detail the structure of the potential-energy
surface in a fissile nucleus. The spectra of cold frag-
mentation were comprehensively studied for nearly
all of the nuclei whose cross sections for thermal-
neutron-induced fission are large. Experiments de-
voted to investigating cold fragmentation in nuclear
fission induced by fast neutrons have been performed
at the Institute of Physics and Power Engineering
(Obninsk, Russia) over the past decade. The range
of nuclei subjected to examination was supplemented
with 236U, 28"Np, and 2*2Th [1—3], which can under-
go fission only upon irradiation with fast neutrons. In
this article, we present results obtained by exploring
the cold fragmentation of 238U under the effect of
5-MeV neutrons.

DESCRIPTION OF THE EXPERIMENT

A double ionization chamber that was equipped
with Frisch grids and which was combined with a
device converting a pulse shape into a digital form
(wave-shape digitizer) served as a detector of fis-
sion fragments. The 238U target used had a diame-
ter of 3 cm and a thickness of 100 pug/cm?. It was

“e-mail: hva@ippe.obninsk.ru

manufactured by means of the vacuum sputtering of
uranium fluoride onto a thin substrate (50 pg/cm?)
made from Al,Os. For the target to have a nonzero
electric conductivity over the entire surface, it was
additionally coated with gold (50 ug/cm?). The layout
of the experimental facility is shown in Fig. 1. With
the aid of the wave-shape digitizer (LeCroy 2262),
anode signals from each chamber were transformed,
with a step of 12.5 ns, into a digital form and were
saved on the hard disk of a computer. Two arrays
of numbers, each having a length of 512 elements,
corresponded to each event. Via a subsequent anal-
ysis of digital oscillograms with the aid of methods
based on digital signal processing, a determination of
the kinetic energy, the mass, and the emission angle
[4] and an investigation of the behavior of specific
ionization losses [5] could be performed for each of
the complementary fragments simultaneously. The
energies of fragments were corrected for the ineffi-
ciency of the Frisch grid [6], for the energy loss in
the target [7], and for the amplitude defect [4]. In
addition, each signal was subjected to a thorough test
for the presence superpositions from alpha particles or
scattered protons.

The measurements were performed in a beam from
the KG-2.5 accelerator installed at the Institute of
Physics and Power Engineering (Obninsk, Russia).
The reaction T(p,n)>He was used to obtain 5-MeV
neutrons. The mean current at the target was 50 pA.
Over a month of measurements, we were able to ac-
cumulate and analyze 2.5 million digital oscillograms
corresponding to events of 238U fission. In order to
calibrate the detector used, we took data reported
in [8], where one can find mass and energy distribu-

1063-7788/03/6605-0798$24.00 © 2003 MAIK “Nauka/Interperiodica”
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Fig. 2. Two-dimensional spectrum of fragment yields from 23U fission induced by 5-MeV neutrons with respect to the
fragment mass and the available energy (Q* — TKE). The displayed yields are given on a logarithmic scale.

tions investigated, to a high precision, for 233U over
a wide range of excitation energies. Signals from the
detector were processed in two steps. At the first step,
the masses and energies were reconstructed with the
aid of a standard iterative procedure including correc-
tions for the amplitude defect and for the emission of
prompt neutrons from fission fragments. The proba-
bilities of neutron emission from fragments of different
masses were borrowed from [8]. The resulting energy,
mass, and angular distributions were found to be in
good agreement with data presented in [8]. At this
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stage, we were also able to reconstruct the gross
structure of the mass and energy distributions. The
value of the mean total kinetic energy (mean TKE)
was 169.8 MeV in the present study (170.05 MeV
in [8]). It should be noted that, within the approach
used here, the inclusion of neutron emission was
performed with allowance for the dependence on the
mass of nascent fragments and that the correction
is independent here of the released-energy fraction
expended in the excitation of fragments. This leads,
in particular, to a distortion in the hard section of
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Fig. 3. Mass spectra of fragments originating from 233U fission for various values of the available energy of a light fragment.

the spectrum of fragments, where neutron emission is
energetically forbidden. In order to study this region,
which is of greatest interest to us, it is necessary
to perform a reanalysis of data by using the energy
calibration obtained at the first step. The process-
ing algorithm is similar to that employed at the first
step, but the correction for neutron emission is ex-
cluded from the iterative process. Because of this,
information about masses and energies appears to
be distorted for the majority of the fragments, but

PHYSICS OF ATOMIC NUCLEI

there emerge correct values in the hard section of the
spectrum, where neutron emission is impossible.

ANALYSIS OF THE RESULTS

In Fig. 2, the two-dimensional spectrum of the
yields of fragments originating from 2**U fission in-
duced by 5-MeV neutrons is shown in terms of the
coordinates of the fragment mass and available en-
ergy. In order to determine the available energy for
each realizable mass splitting, we have calculated the

Vol.66 No.5 2003
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Fig. 4. Yields of (open boxes) 130- and (closed circles) 140-amu fission fragments versus the total kinetic energy. Arrows
indicate the values of the total kinetic energy that correspond to the mass defect for the nonexcited nucleus *°U (Q) and the
mass defect with allowance for the excitation introduced by a 5-MeV neutron (Q™).

total available energy @*,
Q*=Q+ B, +T,, (1)

where @ is the mass defect, B,, is the neutron binding
energy, and T, is the kinetic energy of the neutron
involved. The mass defect was calculated by using
the recommended values of nuclear masses [9]. For
each mass value, we chose an isobar that ensured
the maximum energy deposition. The available energy
was determined as the difference of the total available
energy @* and the total kinetic energy (TKE) of frag-
ments (the sum of the energies of a light and the com-
plementary heavy fragment). For various values of the
available energy of a light fragment, the mass dis-
tributions for 233U (sections of the two-dimensional
distribution in Fig. 2) are shown in Fig. 3. At small
values of the available energy, the mass spectrum has
a pronounced structure. Groups where the heavy-
fragment masses are 129, 134, 140, and 146 amu
stand out in the spectra. This behavior of the fragment
mass spectra is typical of the entire family of uranium
isotopes. Our attention was captured by the fact that
events in which the total kinetic energy is commen-
surate with the total available energy were observed
for a number of mass values. Figure 4 displays the
distributions of the total kinetic energy for fragments
of mass 130 and 140 amu. For higher values of the
total kinetic energy, the shape of the distribution dif-
fers significantly from a Gaussian shape and has a
clear-cut boundary. By way of example, we indicate
that, at the mass value of 140 amu, the maximum
energy is realized for the }{°Xe + 92Sr pair (Q =
185.69 MeV, Q* = 195.49 MeV), while, for the mass
value of 130 amu, it is realized for the 139Sn + 19?Mo
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pair (Q = 198.06 MeV, Q* = 207.86 MeV). In 232Th
fission induced by 5-MeV neutrons, a similar phe-
nomenon was observed at the mass value of 134 amu
[3]. The minimum available energy observed in the
present experiment is given in Fig. 5 for various values
of the mass splitting. It can be seen that the total
kinetic energy amounts to the total reaction energy
over the entire mass range between 134 and 140 amu
and within the range 127—131 amu. It is advisable to
address the question of whether the data that we ob-
tained are reliable. We note that, for various masses of
fragments whose yields reach limiting values, the to-
tal reaction energy changes within the range of width
15 MeV; therefore, the observed boundary cannot be
explained by mechanical and electronic limitations
arising in the spectrometer. The total kinetic energy
is measured more reliably than the kinetic energies
of fragments. In dealing with thick layers, the main
contribution to the error in determining energy comes
from the uncertainty in the distance that a fragment
must travel within the target prior to reaching the
sensitive volume of the chamber. Measurements of
the position of the peak corresponding to the light
group of fragments at different values of the emission
angle made it possible to determine the scatter of the
energy loss in the layer. For fragments emitted in the
orthogonal direction, it is 1.6 MeV. The errors in de-
termining the energies of complementary fragments
are not independent. The total distance traveled by
fragments in the fissile layer is a constant quantity
that is equal to the layer thickness divided by the co-
sine of the fragment emission angle. An underestima-
tion of the energy loss for one fragment automatically
leads to the corresponding overestimation of the en-
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Fig. 5. Minimum excitation energy and fragment defor-
mation (Q* — TKE .« ) versus the fragment mass. The
line at 3.34 MeV shows the level that is accessible in
the case where the excitation energy of the compound
nucleus at the saddle point is transferred to fission frag-
ments, while the line at 9.8 MeV corresponds to the level
that is accessible in the case where the entire excitation
energy of the compound nucleus is transferred to fission
fragments.

ergy loss for the complementary fragment. Therefore,
the total kinetic energy of fragments is independent
of the fragment-production depth in the layer. The
errors in determining the energy of each fragment
are canceled in computing the total kinetic energy.
Estimations revealed that the total kinetic energy is
determined to a precision of about 0.5 MeV. Although
the limiting values of the total kinetic energy appear
with a low probability, the digital method of recording
makes it possible to identify oscillograms that corre-
spond to fission events undistorted by outside factors.
Figure 6 shows anode signals that are associated with
one of the two events featuring the limiting kinetic
energy for the mass of 140 amu that are given in
Fig. 4. The signals depicted in the figure do not exhibit
superpositions or sizable contributions from noises.
The density of ionization losses (lower panel in Fig. 6)
corresponds to a light and the complementary heavy
fragment. The cosines of the emission angles (cos 6)
as determined independently for each fragment agree
to within 0.007. The method used to determine the
cosine of the emission angle is based on an analysis
of the shape of anode signals. Possible distortions
of signals because of superimposed signals (for ex-
ample, from a light third particle originating from
fission) would inevitably distort the shape of one of the
signals, with the result that the cosine values would
differ from each other sizably.

Our result indicates that the primary excitation
energy of the compound nucleus, 9.8 MeV, was con-
verted into the kinetic energy of fragments. The re-
sulting kinetic energy corresponds to the scission
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| TKE = 194.6 MeV
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Time, Us

Fig. 6. Example of anode signals corresponding to the
limiting values of the total kinetic energy in Fig. 4. The
solid (dashed) curve is associated with a light (heavy)
fragment. The upper panel shows signals upon the pas-
sage of the charge-sensitive preamplifier, while the lower
panel shows the same signals upon channel-by-channel
differentiation.

of the compound nucleus into two nonexcited frag-
ments featuring the ground-state deformation. At-
tempts at discovering a similar nuclear decay in 233U
and 23%U fission induced by thermal neutrons [10,
11] revealed that total-kinetic-energy values corre-
sponding to available energies of 2 to 3 MeV can be
obtained only at relative yields below 10~7. There then
arises a situation that is paradoxical at first glance: in
order to produce“cold” reaction products, it is neces-
sary that the initial fissile system be hot. In order to
explain the observed phenomenon qualitatively, one
can make use of the Thomas diagram [12], which
displays variations in the deformation, Coulomb, and
total potential energies versus the position of the
scission point (see Fig. 7). It can be seen from this
figure that, in the cases where the total available
energy is equal to the total reaction energy, there are
two thermodynamic limits at the scission point. The
limit at small deformations corresponds to the most

Vol.66 No.5 2003
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Fig. 7. Deformation energy, energy of Coulomb repulsion,
and total potential energy at the scission point versus the
deformation of the fissile system being considered [12].
Here, C'/A is the ratio of the major and the minor axis
of the ellipsoid that simulates the fragment shape.

compact scission configurations. If the fission process
is induced by thermal neutrons, the system being
considered does not have sufficient energy for forming
the surface of two separated fragments immediately
at the saddle point (the deformation parameter is
about 2). According to data obtained for the case
of thermal neutrons, the nucleus undergoing fission
must descend along the potential-energy surface by
2 to 3 MeV, and only after that will the required en-
ergy be reached owing to Coulomb repulsion. In this
case, however, fragments will not have the ground-
state deformation at the scission point. An increase
in the excitation energy of the compound nucleus
corresponds to ascending the level of available en-
ergy. Concurrently, the limit at small deformations
decreases, with the result that more compact scis-
sion configurations become accessible. In all prob-
ability, the additional excitation energy introduced
in the compound nucleus (3.4 MeV at the barrier)
is sufficient for the formation of the surface of two
separated fragments even in the vicinity of the saddle
point. Fragments originating from the decay of such
a system will feature ground-state deformations, and
their excitation energies will be low. It can be assumed
that the additional energy will make it possible to
overcome a different, higher, barrier that separates
the so-called fusion valley, which is well known in
heavy-ion physics. In the case of fission through the
classical fission barrier, the compound system has to
evolve over at least a minor stage of descent, with the
result that nascent fragments appear to be elongated
in relation to their ground-state deformation. In all
probability, the situation inverse to that prevalent in
the fusion of two heavy ions is realized in 233U fission
induced by 5-MeV neutrons.

PHYSICS OF ATOMIC NUCLEI

Vol.66 No.5 2003

That this phenomenon is not observed for all mass
values may suggest that the effect in question is
modulated by the yields of fragments (possibly, ac-
cumulated statistics are insufficient in the case of a
symmetric and in the case of a strongly asymmetric
mass splitting). Different penetrabilities of the barrier
separating the saddle point and the fusion valley for
different mass modes of fission may be another factor
responsible for this.

Answers to many questions are expected from ex-
periments where 233U fission is induced by neutrons
of different energies. The probability for the formation
of fragments having limiting values of the total ki-
netic energy probably depends on excitation energy.
Analysis of the yields will make it possible to obtain
more realistic values of the height and penetrability of
the barrier separating the saddle point and the fusion
valley.
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Abstract—The density ratio of s-wave neutron resonances z = p(J1)/p(J2) was analyzed on the basis of
the experimental data for 22 atomic nuclei and the Gilbert—Cameron formula for p(.J). Here, J; = I, — 1/2
and Jy = I, + 1/2, where I, denotes the spin of the target nucleus in the ground state. Our aim was
to verify whether the factor n(I,), as a multiplier, can be applied in the expression describing p(J1),
with the assumption that p(Jz2) values remain unchanged, or whether the factor 1/7(1,) can be applied,
as a multiplier with p(Jz), while the p(Jy) values remain unchanged. The final conclusions, e.g., the
confirmation or the negation of the fact that it may be necessary to apply the n(I,) factor, depend on the
values of “real” errors Az of the z variable, which can be calculated if the optimal values of Ap(.J;) and
Ap(Jo) are known. © 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The resonance levels originating as a result of in-
teractions of s-wave neutrons with target nuclei with
spin I, # 0 are characterized by angular momenta
Jy =1, —1/2and Jy = I, + 1/2. On the basis of ex-
perimental data available at present [1—7], it was pos-
sible to calculate the densities of neutron resonances
separately for J; and J, and take up an analysis of the
values p(J1) and p(J2).

The analysis made in the present paper was based
on the theoretical description given by formula (1)
from the paper by Gilbert and Cameron [8]. This
formula is widely known and commonly used when
describing the spin dependence of p:

2J +1
2 (D) iheor = YNGRV (1)
2
X exp —M exp (2\/aU> .
202

The main purpose of the present research was to
make an attempt to answer the question of whether
formula (1) gives the correct description of the depen-
dence of the resonance level density on spin.

Our papers on the resonance level density (see,
e.g., [9, 10]) were based on the assumption that
Eq. (1) is valid, and so were the papers of other
authors (see [11, 12]), where the correctness of
formula (1) was also taken for granted.

*This article was submitted by the author in English.
“e-mail: marykacz@uni . lodz.pl

2. THE SYSTEMATICS
OF THE EXPERIMENTAL VALUES
OF s-WAVE NEUTRON RESONANCES

Table 1 presents the experimental values of p(J7)
and p(Jz) calculated with the data taken from [1-7],
where the energies E of s-wave neutron resonances
were given for both values J; and Jz of spin. The
values of p(J1) and p(J2) for the resonances of the
nucleus were calculated to be equal to the respec-
tive gradients of the straight-line relation between
the serial number of the resonance and its energy.
The whole range of nuclei with 25 < A < 250 has
been analyzed in this way. The resonance energies E
together with J; and Jy values were found only for
77 nuclides. From all these available data, only those
resonance data were chosen for which the number of
s-wave resonances with fixed J was at least equal
to 20. Within this limitation, it turned out that the
intended analysis can be carried out for only 22 nu-
clides in the whole range of mass numbers A, with
the obvious exclusion of even—even target nuclei.
Among these 22 nuclides, there are two of them,
155Gd and 193Dy, for which the authors [6] give the
recommended values of p(J;) and p(Jz2) but there is
no information about the number of resonances n(.Jy)
and n(JQ)

In the preliminary investigations (see Subsec-
tion 4.1), the errors Ap(Jy) and Ap(Jy) were cal-
culated with the assumption that the Wigner distri-
bution gives a correct description of the neutron res-
onance level spacing distribution of the neighboring
resonances with fixed J values [13].

1063-7788/03/6605-0804$24.00 © 2003 MAIK “Nauka/Interperiodica”
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Table 1. The experimental values of neutron resonance level density p(J1 = I, — 1/2) and p(J2 = I, + 1/2) and number
of resonances n(Jy) and n(Jz) for excitation energy U = S,, — P(IN) — P(Z) [the numbers in parentheses (fourth and

sixth columns) are for the power of ten factor]

Nuclide | I | n(J1) | p(J1),MeV™! | n(Js) | p(J2), MeV~! | 2= p(J1)/p(J2) R References
43Sy 7/2 43 4.343(2) 20 3.824(2) 1.140 0.991 [1]
Sv,e | 7/2 | 24 1.149(2) 24 1.200(2) 0.957 0.992 (3]
SMnsg | 5/2 | 32 9.466(2) 23 2.125(2) 1.160 0.843 2]
% Coszy 7/2 36 4.367(2) 33 3.745(2) 1.170 0.952 [3]
63Cusy 3/2 52 3.704(2) 36 2.500(2) 1.480 0.661 [4]
5Cugs | 3/2 | 39 2.703(2) 29 2.000(2) 1.350 0.662 (4]
Zng | 5/2 | 197 1171(3) 52 1.259(3) 0.930 0.813 (1]
v, | 1/2 | 46 6.060(1) 90 1.600(2) 0.379 0.347 (5]
WSmes | 7/2 | 30 7.207(4) 29 6.988(4) 1.030 0.844 (1]
WS | 7/2 | 22 1.780(5) 40 2.436(5) 0.731 0.840 (1]
155Gdg, | 3/2 | - 2.012(5) - 3.236(5) 0.622 0.622 (6]
5TGdgs | 3/2 | 21 6.213(4) 32 9.208(4) 0.675 0.624 (1]
19Thy, | 3/2 | 28 9.578(4) 20 1.634(5) 0.586 0.623 (7]
163Dy | 5/2 | — 4.525(4) - 7.519(4) 0.602 0.756 (6]
165Hogs | 7/2 | 27 6.862(4) 27 1.275(5) 0.538 0.837 (1]
67Er | 7/2 | 25 8.705(4) 27 1.333(5) 0.653 0.836 (1]
"THies | 7/2 | 34 1.822(5) 23 2.292(5) 0.795 0.832 (1]
Hfe | 9/2 | 22 1.114(5) 20 9.263(4) 1.200 0.892 2]
WAL | 3/2 | 21 2.328(4) 62 3.527(4) 0.660 0.621 (1]
25U | 7/2 | 104 8.862(5) 108 1.089(6) 0.814 0.820 (1]
BTNpuy | 5/2 | 125 7.860(5) 141 9.367(5) 0.839 0.743 (1]
29y, | 1/2 | 29 1.309(5) 42 2.677(5) 0.489 0.338 (1]

Table 1 also gives the values of

z = (p(Jl)/P(J2))eva

which are the subject of analysis in this paper. The
errors Az were calculated with the use of the expres-
sion for the standard deviation of a random variable
as given in the Wigner distribution. The neighboring
resonance level spacings with fixed spin are consid-
ered as random variables described by the Wigner
distribution.

The way in which Az values were calculated is
modified in a further part of this elaboration (see Sub-

section 4.2).
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3. THE COMPARISON OF z = (p(J1)/p(J2))exp

WITH THE THEORETICALLY PREDICTED
VALUES OF THE R RATIO

Formula (1), as written for J; and Jy, makes it
possible to establish the theoretical value of the ratio

R = (P(Jl)/p(J2))theora

which leads to

I, o, +1
= . 2

Equation (2) (with an additional assumption that z =
R) was used in [11] as a basis for the calculation of
the experimental values of the parameter o2; it may
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Table 2. The set of the coefficient values of the polynomial (the numbers with signs in parentheses are for the power of

ten factor)

Degree of the polynomial ap al as as
3 944.569(—3) 904.142(—3) —520.667(—3) 75.601(-3)
2 155.987(—2) —231.319(—3) 243.819(—4) —
1 145.174(—2) —115.040(—3) — —
Constant function n(Iy) = 1.18505

be concluded then that the authors were convinced as
to the correctness of formula (1).

In the present paper, the following expression was
adopted for 02, according to [8]:

o? = 0.145A%3 (aU)*/? (3)

for U =S, — P(Z) — P(N), where S,, is neutron
separation energy for a composite nucleus, while
P(Z) and P(N) are the neutron and proton pairing
energies, respectively.

In the calculations of R values, which were made
according to Egs. (2) and (3), we applied the values of
the level density parameter a obtained with the use of
the method of fitting expression (1) to the experimen-
tal densities pot = p(J1) + p(J2). This means that
we made an assumption that parameter a does not
depend on the spins of neutron resonances and, what
is more, that o(J1) = o(J2).

Table 1 also presents the values of R that were
obtained according to (2) for the 22 investigated nu-
clides.

Z= (p(-]] )/p(']2))exp
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Fig. 1. The dependence of the experimental values of
the z = p(J1)/p(J2) ratio on the respective theoretical
values R. The line that links the open circles represents
the equation z = R. The errors of the points were cal-
culated under the assumption that the spacing between
the neighboring resonances is a variable as given in the
Wigner distribution.

In Fig. 1, a set of points, together with the marked
errors Ay, as calculated under the assumption (A)
that the neighboring resonances level spacings with
fixed J can be described by the Wigner distribution,
is presented in the plane with the coordinates z = R
and y = 2z.!) The x?2 variable was calculated for the
theoretical dependence z = R (open circles in Fig. 1)
and found to be equal to 81.8, whereas x2 ., (@ =
0.05,k = 19) = 30.144 (see the data set below in Ta-
ble 3).

The dependence z/R = f(A) (where A is a mass
number of a nucleus) is presented in Fig. 2 for the
investigated nuclei, while in Fig. 3 the dependence
z/R = f(I) is shown, where I, denotes the spin of
the target nucleus in the ground state.

Owing to the analysis of these graphs, it was pos-
sible to formulate the following conclusions:

(i) In the region of R values not greater than
0.62, there is a pretty good correlation between the
theoretical (R) and experimental (z) values of the
p(J1)/p(J2) ratio. However, for R > 0.62, the exper-
imental values p(J;) greater than p(J2) occur pre-
dominantly. With regard to the character of Fig. 1,
it can also be noted that the values p(J3)heor are
overestimated with regard to the values p(J1)theors
if only the experimental values p(Jy) and p(Jz) are
believed to be correct.

(ii) It can be seen from Fig. 2 that, for nuclei with
mass numbers 150 < A < 200, the valuesofn = z/R

PHYSICS OF ATOMIC NUCLEI

YIn Fig. 1, the errors of R are not marked. The calculations
of AR have been carried out for the case when the errors
of the density parameter a, Aa, were obtained using the
uncertainty Apot, which, in turn, was obtained on the basis
of the Wigner distribution dispersion for the resonances with
spin J1 and J2. These calculations showed that, in the set
of 22 analyzed points, the greatest relative error AR/ R was
not greater than 0.13%. In the case when the errors AR
were calculated with the use of the values of Apor (see
Subsection 4.2), which were obtained under the assumption
that the fluctuations of the number of resonances can be
described by the Poisson distribution, it can be observed that
the greatest relative error AR/ R does not exceed 0.25% for
the set of 22 analyzed points.

Vol.66 No.5 2003
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Fig. 2. The dependence of the coefficient n = z/R on
the mass number A. The errors of the points were cal-
culated under the assumption that the spacing between
the neighboring resonances is a variable as given in the
Wigner distribution.

spread around unity quite symmetrically in the inter-
val from about 0.6 up to slightly above 1.3.

(iii) Dispersion of the points in Fig. 3 is so signii-
icant that it makes it difficult to find an unmistakable
description of the i dependence on spin I,. It can be
noted, however, that most of the points in this figure
decidedly appear mainly in the region n > 1.

4. THE SPIN CORRECTION TERM
IN THE GILBERT-CAMERON FORMULA

4.1. Preliminary Description
of the Correction Factorn(I;)

The analysis presented in Section 3 indicates that
there is the need for introducing a correction factor in
formula (1) for p (J7). The aim is to make it possible
to describe the set of points in Fig. I with a straight
line (i.e., a line joining the open circles in Fig. 1),
which makes the situation quantitatively advanta-
geous. It can be easily shown that the correction
factor should have a character of the coefficient n =
z/R.

Then, the dependence of the factor n on A
(mass number), Z (atomic number), N (number of
neutrons), U (effective excitation energy), and I, was
examined. However, as was pointed out in the above
consideration, it was somewhat doubtiul whether
Eq. (1) represents the dependence of p on the spin
correctly. [t was proposed then to insert the correction
factor n into the function p(J1 )theor in Eq. (1)in aform
that is dependent on the target nucleus spin I, i.e.,

p*(J1) = p(J1)theor 1(Lz), (4)

with the unchanged theoretical description for p(Js)
according to (1) or the factor 1/n(I,) for p(J2)theor,
i.e.,

p*(JQ) = p(JQ)theor/n(Iév)7 (5>
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n=2zR
25F

Fig. 3. The dependence of the correction factor n(I) on
the spin I of the target nucleus. The errors of the points
were calculated under the assumption that the spacings
between neutron resonances are the variables as given in
the Wigner distribution.

with the unchanged description for p(.J;) according to
(1).

[t was suggested that such a functional descrip-
tion for n(I,) may be given in the form of a first,
second, and third degree polynomial, respectively, or
as a constant function. The expansion coefficients for
the respective solutions are given in Table 2.

In order to fulfill the requirements necessary for
carrying out the x? test, the errors An = Az/R were
calculated here with the use of Az values. Those
values were derived based on the expression that de-
scribes the dispersion of the Wigner distribution for
spacings of the neighboring resonances with a fixed J
value.

The x? test, performed for each of the four func-
tions, provided undesirable results. It is worth noting,
however, that, for the third degree polynomial, the
obtained value of the variable y? is the smallest of
all the values obtained in the x? test for the four
investigated functions.

4.2. The Reasons for Introducing the Proposed
Correction Functionn(Iy)

The results presented in Subsection 4.1, provided
that the aforementioned assumptions were made,
show that none of the investigated functions 7 (1)
(with coefficients from Table 2) can be approved of
and proposed as a correction factor to the Gilbert—
Cameron formula.

The contradictory results of the x? test for each of
the above functions n(I,) could have been obtained
as a consequence of the following reasons:

(i) The values of Anp = Az/R could have been
lowered while calculated under the assumption that
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n=2z/R

Fig. 4. The dependence of the correction factor n(I.)
on the spin I, of the target nucleus. The solid curve
represents the polynomial of the third order. The errors
of the points were calculated under assumption that the
number of resonances with a fixed spin J is treated as a
variable whose fluctuations are described by the Poisson
distribution.

the Wigner function correctly describes the spacing
distribution of the neighboring resonance levels with
a fixed J value.

(ii) Too small a number of nuclides were taken into
account in the analysis (22 points in the figures and
20 in x? test calculations).

(iii) Formula (3) was used for the description of o2,

Although the requirement that the number of neu-
tron resonances with a fixed J (for a definite nuclide)
should be not lower than 20, as was adopted in the
present paper, seems to be reasonable, then, with the
view to carrying out the x? test, the remark made in
point 2 is less significant than the remark in point 1.

[t was pointed out in [14] that the relative error
of the average value of the resonance level spacings
(A(D(J))y) with a fixed J is greater than the sta-
tistical error only, as expressed by the dispersion of
the Wigner distribution. On this ground, it should
be expected that also the relative error of the density
Ap(J)/p(J), as estimated from the Wigner distri-
bution, gives only a lower limit of the possible error
values.

As the values Ap(Jp) and Ap(Jz2) define both Az
and An, such a variant of calculations as described in
Subsection 4.1, which is based on the lowered error
values, could have led to the unsatisfactory results.

Another suggestion (B) as to the calculation of An
will then be made in the following part of the paper. It
will be suggested that the number of resonances with
a fixed J value should be treated as a variable whose
fluctuations are described by a Poisson distribution.
In order to examine the correctness of such a sugges-
tion, the following resonances, as the most numer-
ous, were chosen for the analysis: (i) 125 resonances
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Z= Sp(Jl)/p(JZ))exp
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Fig. 5. The influence of the correction factor (1) on the
z dependence on R. The line, which links the open circles,
represents the equation z = R* and was confirmed by the

x? test for the Az values, calculated under the assump-
tion that the fluctuations of the number of resonances
with fixed J are described by the Poisson distribution.

BTNp with spin J; = 2, (ii) 141 resonances #*"Np
with spin Jo = 3, and (iii) 197 resonances %"Zn with
spin J = 2. For two of those three distributions of the
resonance number [e.g., for events (i) and (iii)], an
agreement with the Poisson distribution was obtained
at the significance level « = 0.05. [t can be concluded
then that the adopted assumption may be considered
as a reasonable one and that it can become a basis for
the quantitative analysis, e.g., for the calculations of
the errors An and then calculations of the values of
the variable x2,, for the four functions 7(1,) with the
expansion coefficients from Table 2. It should also be
noted that the errors An calculated in such a way are
relatively greater than the respective values obtained
when calculated from the dispersion of the Wigner
distribution.

The results of the calculations show that, if the
errors An of the points (see Fig. 4) are calculated
under the assumption that the number of resonances
with a fixed spin J is treated as a variable whose
fluctuations are described by the Poisson distribution,
then the smallest value of x2, can be obtained for
such a function n(I,) given in the form of a polynomial
of the third degree (the curve in Fig. 4). The polyno-
mial coefficients are listed in Table 2. What is more, at
the significance level o = 0.05 and for the number of
degrees of freedom k = 16, there is X% < XZeors SO
it can be assumed that in this case the third degree
polynomial is a sought function and that it represents
a dependence of correction coefficient n in formula (1)
on the spin I, of the target nucleus as follows:

n(1:) = ao + a1l + asl; + asl}. (6)
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Table 3. The set of values of the x? variables that resulted from the testing of the linear relations z = R and z = R* for

two variants of the error Az calculations

Type of relation A B
z=R 81.8 (see Fig. 1) 23
z=R* 62.3 17.6 (see Fig. 5)

X%heor(a = 0057 k= 19) = 30.144

Note: A—Az is calculated according to Wigner dispersion; B—Az is calculated under assumption that the Poisson distribution

describes fluctuations of the resonance number.

The dependence z = f(R*), where R* = Rn(Il,)
is a corrected value of the ratio p*(J1)/p(J2), is pre-
sented in Fig. 5, p*(J1) being described by (4). This
figure, as compared with Fig. 1, allows for the con-
clusion that the agreement between z and R* values
becomes more advantageous in this case.

For the linear dependence z = R* presented in
Fig. 5 (the line linking the open circles), the variable
X2, is equal to x2, = 17.6 < x2,.., = 30.144, at the
significance level & = 0.05 and k = 19 (for a detailed
presentation, see Table 3). The calculation of the er-
rors Az in this case was carried out with the use of the
dispersion of the Poisson distribution for the number
of resonances.

5. FINAL CONCLUSIONS

The problem undertaken in this paper to examine
the correctness of the use of Eq. (1) from [8] in order
to describe the neutron resonance densities is still
receiving consideration at present. For example, the
authors of [ 15] have noted that the values p(J) derived
from the so-called Bethe formula are overestimated in
the range of large J values at fixed excitation energy.
In addition, the graphs presented in [15] also show
that, in the region of J < 10A, the line represent-
ing the function p(U, J) calculated according to the
Bethe formula lies slightly above the line which cor-
responds to the calculations of the authors of [ 15]. The
function p(J) as given by the Bethe formula depends
on the J in the same way as in the formula from [8].
The fact that, in the course of the calculation based
on the Bethe formula, the values of p(J) were over-
estimated, especially in the region of large J values,
was commented on by the authors of [15] by their
statement: “The Bethe formula is based on a spin
cutoff (or Gaussian) approximation which ignores the
effect of Pauli’s exclusion principle.” It is such a pity
that the research in [15] dealt merely with the excited
levels of one (19Sn) nucleus.
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The s-wave resonance data make it possible to
carry out an analysis in the region J = 0—5 (for the
nuclei from Table 1), whereas the research in [15]
comprised a much wider range of variability of J
for 110Sn. Yet, the theoretical description of p(J) as
given by Eq. (1) seems not to be fully correct when it
comes to neutron resonances, which is consequently
bespoken by Fig. 1.

Table 3 presents the values of x? for the linear
relations z = R and z = R* as obtained in the two
cases: (A) when Az were calculated with the use of
the expression that gives the dispersion of the Wigner
distribution for the spacings of neighboring reso-
nances, and (B) when Az values were calculated un-
der the assumption that fluctuations of the resonance
number are described by the Poisson distribution.

A detailed inspection of Table 3 has led us to
interpretation of the results in terms of considering
the possibility of describing both relations z = f(R)
and z = f(R*) with linear functions. In the calcu-
lation variant A, the x? test excludes such a pos-
sibility, while in variant B both dependences can be
considered as linear, even though the variable Xiﬂ
for the z = R* dependence is evidently lower than
the one representing the dependence z = R. So we
can say that, if the errors Az of the z variable are
calculated under the assumption B, then the x? test
makes it possible to decide that the following two
descriptions of the experimental values of the ratio
z = p(J1)/p(J2) are correct: that which is based on
the R expression resulting from the Gilbert—Cameron
formula and multiplied by the n(,,) function and that
which is based on the R formula but without that
n(I,) multiplier.

On the basis of the set of the data given in Table
3, it can be said that, if “real” values of the errors
Az fall within the interval limited by the two analyzed
values, which correspond to the extreme cases A and
B, then and only then does it seem to be reasonable
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to introduce a correction factor n(I,), as given by
formula (6), in Eq. (4) or a factor 1/n(I,) in Eq. (5).2)

6. SUMMARY

In the present paper, it has been pointed out that
there is a requirement for further experimental inves-
tigations on the estimation of spins of the neutron
resonance levels for nuclei in the whole range of mass
numbers A, so that the already existing data can be
enriched.

In the problem under consideration, it was also
expected, on a well-grounded basis, that another the-
oretical description of the ¢? parameter should be
found as a possible alternative on the way which leads
to corrected p*(Jy) or p*(J2) values being obtained.
In the present work, Eq. (3) from [8] was assumed in
the calculations of o2. However, it is not the only for-
mula describing o?. In[17], for example, the authors
presented the calculations of 2 according to micro-
scopic theory. However, their results were obtained
only for energy £ =7 MeV, while the values of the
effective excitation energies for neutron resonances
of the investigated nuclei (as given in Table 1) vary
quite a lot and fall within the interval 5.36—8.70 MeV.
The observed wide range of the effective excitation
energy values makes it impossible to apply the results
on o2 [17] to the analysis that was carried out in this
work. The author of [18] also suggests that there is
possibility of calculating ¢ on the basis of the mi-
croscopic variant of the MSFM model [19]. However,
the results on o2 obtained by the author of [18] were
not calculated for a wide range of mass numbers and
were presented only as a graph, which makes them
unsuitable for calculation in such a problem dealt with
in the present paper. On the other hand, the o2 values
[20] could not have been used in calculations in the

HThe conclusions resulting from the present paper [i.e., con-
firmation or negation of the fact that the correction factor
n(Iz) should be inserted into Eq. (1)] depend to a great
extent on the correctness of the estimation as to the values
of the errors Ap(J1) and Ap(Jz2) (in both cases A and B)
and on the type of their relation with the optimal values
of the errors Ap(J1) and Ap(Jz2). The computational data
Ap(J1), Ap(Jz2) (or the errors of average level spacings:
A(D(J1)) and A(D(Jz2))) are not available in the present
systematics of the neutron resonance parameters for a wide
range of nuclei. Even in [11], where the Gilbert and Cameron
formula [8] was used to define p(J) and the experimental
data on p(J1) and p(J2) were involved in the calculation of
o2, the values of p(J1) £ Ap(J1) and p(Jo) & Ap(J2) were
not published. The review of the systematics of the average
values of distances (D) £ A(D) for s-wave resonances, as
described in [16], demonstrates that those data are related to
the resonances without any differentiation due to spin J.
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present paper because they correspond to excitation
energies that were lower than the resonance energies.

To sum up, it can be said that the meaning of this
paper lies in the fact that we examine the legitimacy
of inserting the correction factor (1, ) into the Gilbert
and Cameron formula, for, e.g., the densities p(J;) of
s-wave neutron resonances. Moreover, this analysis
makes it possible to define the way of obtaining this
factor.

However, it seems that, as the set of data on res-
onances of many nuclei (by means of experimental
investigations) is extended and as the development of
theoretical models describing the o2 parameter for a
wide range of nuclei follows, the undertaken task will
require reconsideration in the future with precisely
specified calculations. At present, although attempts
were made to discuss the problem with the authors
of [17, 18] specific to this topic, they did not result
in extending the analysis, e.g., in the part concerning
the description of the variable R = (p(J1)/p(J2))theor
with other functions defining the o2 parameter.

[t should be mentioned here that it is the present
state of the experimental database on energy (E) and
spin (.J), available in the bibliography [1—7], which is
responsible for the fact that the author has not been
able to express final conclusions in a radical way in
disfavor of formula (1). The published values of E and
J of neutron resonances come from the experimental
research of different scientific groups, which means
that they were obtained with different resolution and
also with the use of different techniques and methods
of measurement.

At present, there are too few known resonances
whose spins are defined. That fact, together with
difficulties in evaluating the errors of experimental
data, makes estimation of the number of the so-called
“lost resonances” much less possible. The way of
prescribing the spin may alone, in some cases and
especially for weak resonances, raise doubts. Such a
situation leads to the fact that the results obtained in
the present paper cannot be fully trusted, particularly
those which concern the variable z = p(J1)/p(J2)
and consequently the relation between this variable
z and the R values as calculated from the Gilbert—
Cameron formula.

[t seems reasonable then to conclude that there
are no reasons, at present, to reject the dependence
of neutron resonance densities on spin as postulated
by formula (1).
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Abstract—A brief survey of experimental results on elastic deuteron—deuteron scattering is given. Data
from an experiment performed at the Institute for Nuclear Research (National Academy of Sciences of
Ukraine, Kiev) at E. . = 23.4 and 25.0 MeV and data from the literature at E. ;;,, = 11.6 MeV are used to
analyze the reaction involving the flip of the spins and isospins of two dinucleons into a singlet, d + d —
ds +ds or (pp)s + (nn)s. Two-dimensional coincidence spectra of protons from the reaction d +d —
p+ p+ n+ n are simulated with allowance for dominant quasibinary processes, including quasifree proton
scattering and final-state nucleon—nucleon interaction. It is concluded that this reaction is dominated by
the mechanism involving double spin—isospin flip. The differential cross sections do/dS for the reaction
2H(d,ds)ds at E., = 23.4 MeV and the reaction 2H(d, (pp)s)(nn)s at Ecm = 11.6 MeV are determined.
The elastic-scattering cross sections and the cross sections for spin-flip reactions leading to the formation
of a singlet ground state are compared with the results produced by the supermultiplet potential model
where the interaction between clusters A and B is described by a potential VI/I(R) ([f] is an orbital Young
diagram). The theory faithfully reproduces experimental results, but data on the flip of the spins and isospins
of two deuterons are scanty (it is desirable to supplement them). © 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The three- and the four-body breakup of extremely
light nuclei through the reactions

d+p—p+p+mn, (1)
d+t—p+n+t,n+n+h, (2)
d+d—p+p+n+n (3)

have been studied experimentally for a long time at
several laboratories worldwide {see [1] for references
concerning reactions (1) and (2) and [2—7] for ref-
erences concerning reaction (3)}. A wide series of
studies were performed at the Institute for Nuclear
Research (National Academy of Sciences of Ukraine,
Kiev, Ukraine) [8—12].

Even the first experimental studies devoted to re-
actions (1)—(3) revealed an interesting effect—the
reaction cross section receives a considerable con-
tribution from the mechanism involving the produc-
tion of a nucleon pair in the singlet state. While,
in reactions (1) and (2), this effect manifested itself

Dinstitute for Nuclear Research, National Academy of Sci-
ences of Ukraine, pr. Nauki 47, Kiev, 03680 Ukraine.

predominantly under specific kinematical conditions,
in reaction (3), it proved to be significant even in the
case where the geometry of an experiment was chosen
in such a way as to correspond to the quasifree-
scattering process.

Theoretical investigations into reactions (1)—(3)
were initiated by the well-known articles of Migdal
and Watson [13—15], who introduced final-state
nucleon—nucleon interaction, which is of crucial
importance here.

Later on, reaction (1) was used, along with elastic
pd scattering, as an important testing ground for
Faddeev—Yakubovsky equations [16, 17]. Issues be-
ing treated in this connection included off-shell inter-
actions [16] and three-body nuclear forces [16, 17].
At a microscopic level, no theoretical investigation
of reaction (3) has been performed so far, since this
would involve cumbersome calculations.

In the early 1990s, the permutation symmetry of
the system in orbital space, as symbolized by the
Young diagram [f], was introduced as a new ele-
ment in theoretical analyses of the processes in ques-
tion [18]. This symmetry enters into the supermulti-
plet potential model of cluster interaction [18], where
use is made of the quantum numbers [f]LSJT. By

1063-7788/03/6605-0812$24.00 © 2003 MAIK “Nauka/Interperiodica”
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way of example, we indicate that, for the d + t system,
this approach makes it possible to obtain a good
description of the totality of data on elastic scatter-
ing, the radiative-capture reactiond +t¢ — 3He + ,
and the scattering process involving the flip of the
deuteron spin and isospin into a singlet [18] (for an
analysis of the processes occurring in the ¢ + p sys-
tem, the interested reader is referred to [19]). Within
this model, elastic dd scattering in the S = 1 (odd L)
and S = 2 (even L) channels corresponds to the well-
known problem of potential scattering of the ¢t + h
type [20], since only one Young diagram is possible
in each case ([f] = [31] for S =1 and [f] = [22] for
S = 2). At the same time, two amplitudes, the [f] =
[4] and the [f] = [22] one, interfere in the S = 0 chan-
nel, the relevant potentials differing in strength by a
factor of 3 [18] Therefore, these channels of elastic
dd scattering are nonpotential and nonunitary. In this
case, the probabilities of the ds + ds and (nn)s + (pp)s
channels [here, ds is the singlet state of a deuteron,
while (nn), and (pp)s are the singlet states of, respec-
tively, a neutron—neutron and a proton—proton pair],
which involve double spin—isospin flip, significantly
increase. Here and below, we imply situations where
Eem > AEd(t — 8) ~ 2.2 MeV, with AEd(t — 8)
being the energy required for exciting a deuteron into
the singlet state.

The formulas that describe, within the supermulti-
plet potential model, the differential cross sections for
reactions involving the flip of the spin and isospin of a
deuteron or of two deuterons simultaneously [d + t —
ds +t((nn)s + h), d+d — ds+ds((nn)s + (pp)s),
etc.] possess a high predictive power and, at the
same time, are very convenient in what is concerned
with a numerical realization; moreover, they make
it possible to cover a wide range of experimental
results under various kinematical conditions quite
straightforwardly. In this respect, they are much more
profitable than fully microscopic approaches [16, 17].
Here, the basis is provided by polarization data on
elastic scattering, where amplitudes corresponding to
different values of the total spin S are separated. It is
precisely these data that make it possible to predict,
within the supermultiplet potential model, the cross
section for the reaction involving the flip of the spins
and isospins of deuterons.

In connection with these possibilities, which ap-
peared for the first time, there arises the natural ques-
tion of systematizing (summarizing) all experimental
results obtained worldwide for reactions (1)—(3) over
the relevant kinematical domain. The nontrivial prob-
lem of isolating, in a three-nucleon (four-nucleon)
continuum, the contribution of the aforementioned
singlet deuteron states on the basis of Migdal—
Watson theory is of prime importance here. Making
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use of rich experience accumulated for such problems
at the Kiev Institute for Nuclear Research, we were
able, in our previous article [1], to perform, along with
an analysis of elastic scattering, such a systemati-
zation for the reactions d +t — ds +t [(nn)s + h]
and d + h — ds + h, which result in transitions to a
singlet state, as well as for the analogous reactions
in the d + p system. A comparison of relevant experi-
mental data with the predictions of the supermultiplet
potential model made it possible to arrive at an
interesting conclusion that calls for a preliminary
explanation.

In both systems, d + ¢ and d + p, a transition to
a singlet state occurs in the S = 1/2 channels (this
value of the total spin is minimal under such condi-
tions), where two scattering amplitudes interfere, the
relevant Young diagrams being [f] = [41] and [f] =
[32] for the former and [f] = [3] and [f] = [21] for
the latter system. Within the supermultiplet potential
model, the cross section for deuteron transition to a
singlet state is determined by the phase-shift differ-

ences (5[Lfl] — (5[52]) [18]. These differences are small
for the d 4+ p system, and so is the cross section in

question, because the potentials VI3 and V2 differ
in strength only by 20% [18]. As a result, the model
describes experimental data only qualitatively since
the contributions of reaction mechanisms that are
disregarded in the supermultiplet potential model are
superimposed on the small calculated cross sections.

But for the d + ¢ system, the potential V[*!l| which
corresponds to the most symmetric Young diagram

[f] = [41], is stronger than the potential V32 by 50%,
with the result that the relevant cross section proves
to be much larger, in which case the supermultiplet
potential model is able to describe experimental data
even at a quantitative level [1, 18].

The present article reports on the next step, cov-
ering both elastic dd scattering and transitions of
two-nucleon systems to a singlet state through the
reactions dd — ds + ds and d +d — (nn)s + (pp)s-
Because of the aforementioned large distinction in
strength between the deuteron—deuteron potentials
for the Young diagrams [f] = [4] and [f] = [22]—
this distinction is explained below at the quantita-
tive level—the results produced by the supermultiplet
potential model are expected to be especially reliable
here. In order to verify its predictions, one needs
detailed measurements of the cross sections for the
transition of both deuterons into a singlet state, but
such data are very scanty. In this connection, an ex-
periment that was performed at the Kiev Institute for
Nuclear Research—its result are given in the present
article below—proved to be of paramount importance.

A feature peculiar to the reaction in which two
deuterons undergo a transition to a singlet state
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is that, at comparatively modest beam energies
(Eem. ~ 10—20 MeV), global soft rescattering oc-
curs in the final state (four-fermion continuum), in
which case it is necessary to pay special attention
to methodological issues in extracting the required
cross sections from experimental data. These issues
are also discussed below.

The ensuing exposition is organized as follows. A
survey of available experimental data on the reaction
d+d—p+p+n+n is given in Section 2. The
procedure used in the experiment at the Kiev Institute
for Nuclear Research is briefly described in Section 3.
A simulation of experimental spectra and a method
for isolating the cross section for double spin—isospin
flip into a singlet state are discussed in Sections 4
and 5, respectively. A brief account of the formalism
of the supermultiplet potential model is given in Sec-
tion 6. In the last section (Section 7), data obtained
previously for elastic dd scattering and supplemented
with those from the experiment described here, which
are required to be extended, however, are compared
with the relevant theoretical results based on the ap-
plication of the supermultiplet potential model, and
good agreement between these experimental and the-
oretical results is found. Thus, the use of supermul-
tiplet symmetry enables one to describe, within a
unified conceptual framework, a broad range of nu-
clear reactions occurring in the systems of extremely
light nuclei [such as the d+d, d+t, and p+ t(h)
systems]—these include elastic scattering, the flip
of the spin—isospin of a deuteron (two deuterons)
into a singlet state, the charge-exchange reaction
p+t(h) — n+ h, and photonuclear reactions—and
to make relevant predictions.

2. ANALYSIS OF AVAILABLE DATA
ON THE REACTION d+d — p+p-+n+n

The four-body reaction (3) is the simplest pro-
cess that can be used to study neutron scattering
on charged-particle beams. Quasibinary mecha-
nisms, such as final-state interaction and quasifree
nucleon scattering, are the most promising for a
program of this type. An attempt at implementing
the first possibility was described in [2]. The experi-
ment reported there measured the two-dimensional
proton-coincidence spectra N(Ep, Fy) at the lab-
oratory deuteron-beam energy of Eg = 23.15 MeV
(Eem. = 11.6 MeV). The particle emission angles
0, (62) were chosen to be 18° (36°) and 25° (43°)
in the ¢; =0 and 9 = 0 planes, respectively. This
geometry corresponds to the realization of the kine-
matical situation of final-state interaction both in
the proton—proton and in the neutron—neutron pair
simultaneously—that is, of the conditions of the
quasibinary reaction 2H(d, pp)nn.
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In the calculations performed in the Migdal—
Watson approximation [13, 15], the authors were able
to reproduce the shape of experimental distributions,
but the resulting values of the neutron scattering
length a,, proved to be different under different
geometric conditions [about —15 fm for angles of
01 = 18° and 6, = 36° and about —50 fm for 8; = 25°
and Ay = 43°]. The absolute values of the differential
cross sections d20/d9192 integrated with respect
to the particle energies from the detection threshold
of 3 MeV (or above) proved to be 0.84 £+ 0.04 and
0.63 & 0.03 mb/sr?, respectively.

In the presence of final-state neutron—proton in-
teraction in reaction (3), two versions of this reaction
are possible. The first proceeds via the formation of
two singlet deuterons that is followed by their decay:

d+d—ds+ds —p+n+p+n. (4)

The first experimental data suggesting a high
probability of the process in which the spins and
isospins of two deuterons are flipped into singlet
states were obtained in the late 1970s and the early
1980s [2—4]. Later on, this effect was corroborated on
the basis of the supermultiplet potential model [18],
where it is naturally explained as the result of action
of Majorana exchange forces. In reaction (4), the
final-state interaction in the neutron—proton pair was
observed, for example, in [8] at the deuteron-beam
energy of Eyg =150 MeV and in the kinematically
complete experiment reported in [5] and performed at
FEy = 15.7 MeV; however, the absolute cross-section
values were not obtained there. By and large, the
shape of the experimental spectra is consistent with
that of the distributions within the Migdal—Watson
model.

The second process is the formation of two triplet
neutron—proton pairs. It cannot be disregarded a pri-
ori, and the relationship between the branching frac-
tions of the two processes in question must be the
subject of a dedicated investigation.

It should be emphasized that the formation of
one singlet pair in the d+ d reaction is forbidden
by selection rules in isospin, provided that this is an
exact quantum number. Available experimental data
indicate that violations of these selection rules, if any,
are insignificant [9].

The quasiiree scattering of nucleons, where two
nucleons (one from the beam deuteron and the other
from the target deuteron) do not change their pri-
mary momenta, is yet another significant quasibinary
mechanism of reaction (3). Since effects associated
with the possible violations of the charge symmetry of
nuclear forces are quite small, it is natural to begin
studying the regularities of such a reaction by ex-
ploring the quasifree scattering of protons, which is
simpler for experimentalists.
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A reliable identification of the quasifree-scattering
mechanism is possible in a kinematically complete
experiment, where it is necessary to record the spectra
of coincidence of three products of reaction (3) in the
final state—that is, of the spectator neutron emitted
at zero angle and two scattered protons. In the cases
of recording only the spectra of double proton—proton
coincidences (kinematically incomplete experiment),
the interpretation of the results is complicated by the
competition of reactions featuring final-state interac-
tion, and it is rather difficult to distinguish between
these mechanisms.

A kinematically incomplete experiment at the
deuteron-beam energy of Ep=80 MeV [3] was
among the first measurements of this type. For the
reaction 2H(d, pp)nn, the spectra of proton—proton
coincidences were measured in symmetric coplanar
geometry for a few pairs of angles in the interval
34°—52°. Reasonably good agreement was attained
in an attempt at describing the experimental differen-
tial cross sections d*c(FEy, Ey)/dQ1dQedE1dEs on
the basis of calculations in the Born approximation
with plane waves.

In analyzing the data from [3], it was proposed
in [4] to take into account only final-state interac-
tion in the neutron—proton pair; that is; the possible
contribution from the quasifree scattering of protons
was disregarded in that treatment. In the Migdal—
Watson approximation for the triplet and singlet am-
plitudes, a reasonably good description of the spectra
was obtained for all angles with two free parameters
that determine the weights of these amplitudes. In the
spectra for angles of 36.5° and 43°, the contributions
of the singlet states were, respectively, 33 and 56%
of the total cross section, these values being much
greater than the statistical weight (10%) of the 1Sy
state in the mixture of all spin states.

The reaction 2H(d,pp)nn was also studied at
symmetric angles of § = 34.8° at a beam energy of
E; = 34.7 MeV in [6] (the experimental spectra were
not presented there). The results may be treated as a
piece of indirect evidence in favor of the occurrence of
effects that are associated with final-state interaction
in the neutron—proton pair under the kinematical
conditions being considered.

A comparison of the cross sections for the re-
actions 2H(d, pp)nn and 2H(d,pn)pn may provide
additional arguments in favor of one reaction mech-
anism or another. It is obvious that, in the processes
involving final-state interaction, the yield of events
of proton—proton coincidences must be identical to
that for proton—neutron coincidences, while the cross
sections for quasifree neutron—proton scattering may
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Fig. 1. Experimental two-dimensional spectrum of coin-
cidences of two protons from the reaction 2H(d, pp)nn at
an energy of Fo = 46.7 MeV. Indicated in the figure are
the proton-detection angles.

be larger than those for quasifree proton—proton scat-
tering because of the difference in spin statistics be-
tween the two cases, in just the same way as this
occurs for the analogous processes in the p + d re-
actions[21]. A comparison of this type was performed
in [7], where the spectra of proton—neutron coincides
were measured at angles that differed from the angles
of detection of proton—proton coincidences. In view
of this, it would be illegitimate to perform a direct
comparison there, but, by and large, the yield of the
former was somewhat greater (by a factor of 1.5 ac-
cording to the opinion of the authors of that study),
which may be treated as indirect evidence in favor of
the quasifree-scattering mechanism.

Sofar, only one attempt has been made to measure
the cross sections for quasifree proton scattering in
a kinematically complete experiment [10]. There, the
spectra of double proton—proton coincidences and
the spectra of triple proton—proton—neutron coinci-
dences were measured at a deuteron-beam energy
of 46.7 MeV, and this made it possible to identify
the mechanism of quasifree proton scattering in the
reaction 2H(d, pp)nn. In the present study, the ex-
perimental data obtained in [10] are analyzed with
allowance for both quasifree proton scattering and
final-state neutron—proton interaction. We were able
to simulate, to a fairly high degree of precision, the
experimental two-dimensional spectrum of proton—
proton coincidences and to determine the cross sec-
tion for each process individually—in particular, the
cross section for the reaction of double spin—isospin
flip. The cross section for this process is then com-
pared with the theoretical values computed on the
basis of the supermultiplet potential model [18].
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3. BRIEF DESCRIPTION
OF THE EXPERIMENT

The spectra of double proton—proton and triple
proton—proton—neutron coincidences were mea-
sured upon irradiating a deuterium—titanium target
with deuterons accelerated at the U240 cyclotron in-
stalled at the Kiev Institute for Nuclear Research, the
deuteron energy at the target center being 46.7 MeV.
The charged products of the nuclear reaction in
question were recorded by two telescopes formed by
AFE—F detectors and arranged symmetrically with
respect to the beam axes. The recorded-particle emis-
sion angles of 38.75° corresponded to the kinematics
of quasifree proton scattering in reaction (3). The
detector solid angles were determined by diaphragms
that had rectangular apertures of dimension 18 X
5 mm? and which were positioned immediately in
front of the AFE detectors at a distance of 80 mm
from the target. Neutrons emitted along the beam
axis (that is, at an angle of 0°) were recorded by a
plastic scintillator having the shape of a parallelepiped
of dimension 10 x 10 x 20 cm?. The distance from
the target to the front face of the detector was 1.3 m.

A general shape of the resulting experimental
two-dimensional spectrum of double proton—proton
coincidences is depicted in Fig. 1. Upon the sub-
traction of the background of random coincidences
and of events of the reaction 'H(d, pp)n occurring
on the admixture of light (ordinary) hydrogen in the
target, there remained more than 30 000 events in the
resulting spectrum (N,,). Concurrently, more than
100 triple-coincidence events (V) were recorded
in a kinematically complete experiment. The ex-
perimental yield ratio Np,,/Np, was found to be
0.0061 £ 0.0007. A more detailed account of the
experimental procedure used was given in [9, 10].

It is obvious that, in order to obtain the differential
cross section for the reaction 2H(d, d)ds, it is neces-
sary to perform a simulation of the resulting spectra
and to integrate the simulated spectra for the reaction
being considered. The corresponding procedure for
experimental-data processing is described in the next
two sections.

4. SIMULATION OF EXPERIMENTAL
SPECTRA

Let us write the energy- and momentum-conser-
vation laws for the four-body reaction (3) in the form

Ey+Q = Ey1 + Es + E3 + Ey, (5)

Po = P1 + P2 + P3 + P4, (6)

where Fy and pg are, respectively, the kinetic energy
and the momentum of a beam particle in the labora-
tory frame; Q = —4.449 MeV is the reaction energy;
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E; and E5 (p1 and p2) are the proton energies (mo-
menta); and E3 and Fy (p3 and py4) are the neutron
energies (momenta). The differential cross section do
for reaction (3) leading to the transition to the preset
phase-space region can then be represented as [14]

™ 4 4
) <p -y pz) (7)
4 Z714
=1 =1

where vy = (Eo/m)'/? is the relative velocity of the
particles in the entrance channel, m is the nucleon
mass, and |F|? is the matrix element for the transi-
tion being considered. Upon a subsequent integration
with respect to momenta that are not determined in
the experiment, the cross section for double proton—
proton or triple proton—proton—neutron coincidences
in the laboratory frame can be recast into the form

do (01, 01,02, 02, E1, B2) /d1dQedErdE,  (8)
(2m)*

= —/p[F]QSiné?dego.
Vo

do =

Here, 01, @1, 02, and 9 are the emission angles of the
detected protons; p is the phase-space factor [22]

P = m9/2(E1E2€Tm)1/2;

€mn =FEo+Q—E1 —Ey — |po— p1 — P2\2/(4m)%

and integration is performed with respect to the an-
gles 6 and ¢, which determine the orientation of
the relative momentum of the neutrons, q,, = (ps —
p4)/2. In calculating the double-coincidence spec-
trum Np,(E1, E2), the region of integration covers
all possible orientations of the vector q, (within a
solid angle of 47), while, for the triple-coincidence
spectrum Ny, (E1, E2), the analogous region is de-
termined by the solid angle of the neutron detector.
We will approximate the squared transition-matrix
element | F|? by the incoherent sum

|F|> = c1| For|? + col Fis? | Fas|” + 03!F1t\2\F2t!279

where ¢; are free constants; Fip is the amplitude of
quasifree proton scattering; Fy; and Fy are the am-
plitudes for final-state interaction in singlet neutron—
proton pairs emitted, respectively, to the left and to
the right of the beam axis; and Fj; and Fy; are the
analogous amplitudes for final-state interaction in
triplet neutron—proton pairs.

In order to simulate the quasifree-scattering spec-
tra, we use the version of the plane-wave impulse
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approximation in the form proposed in [6]. In this
case, we have

|Forl® = 19 (Ppp/2 — dun)[? (10)
X W (qpn — Pnn/2)‘2d0pp(qu)/dQv
where
A = (P1 — P2)/2, (11)

dnn = (P3 — P4)/2,
Ppp = P1 + P2,

Pnn = P0 — Ppp>

dnn = (menn)1/2 s

(q) = (2m)73/2 / U (r) exp(—iq - r)dr.

For the deuteron wave function, we choose the
Hulthén wave function [6]

U(r) = [af(a+ B)/27]/* (e — B)
X [exp(—ar) — exp(—0r)]/r

with a? = mE,, where E, =2.2245 MeV is the
deuteron binding energy, and (% =mkEjg, where
Eg =59.8 MeV. In the impulse approximation, we
then have

W (q)* = af(a+ B)°/[7*(a® + ¢*)* (8% + ¢*)?].

Thus, we see that, in expression (8), it only re-
mains to specify the quantity dop,(gpp)/d€2, which
appears in the transition amplitude F'. Considering
that values of the momentum gy, are sufficiently mod-
erate for retaining only the S-wave interaction of the
protons and for employing the effective-range ap-
proximation to be reasonable, but that they are, at
the same time, sufficiently high for disregarding of
Coulomb corrections to be legitimate, we can write
the cross section for elastic proton—proton scattering
in the form [23]

dO'pp(qpp)/dQ = [q}%p + (_ail + rqu)Q]ilv

where a is the scattering length, a = —7.813 fm, and
r is the effective range, r = 2.78 im [24].

(12)

The amplitudes of final-state neutron—proton in-
teraction were calculated in the Migdal—Watson ap-
proximation; that is,

Fig)(q13) (13a)
= [r(ats +17))/[2(=1/a +rqis/2 —iq3)],
Fog)(q24) (13b)

= [r(g3a + )|/ [2(=1/a +7634/2 — igaa)],
n=(1/r)[L + (1 - 2r/a)"/?],
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Fig. 2. Simulated spectrum of proton—proton coinci-
dences for the reaction 2H(d,pp)nn at an energy of
Eo = 46.7 MeV and proton-detection angles of 6; =
02 = 38.75°, 1 — 2 = 180°. Here, we have taken into
account quasifree proton—proton scattering and the am-
plitudes of final-state neutron—proton interaction.

where ¢13 and ¢o4 are the momenta of relative mo-
tion in the corresponding neutron—proton subsys-
tems. The np scattering length a and the effective
range r assume the values of, respectively, —23.748
and 2.75 fm for the singlet state of the neutron—
proton pair and of, respectively, 5.424 and 1.759 fm
for its triplet state [24]. Integration in expression (7)
was performed by the Monte Carlo method, the co-
ordinates of points in the target and detectors and the
angles 6 and ¢, which determine the orientation of the
momentum qu, of relative motion in the dineutron,
being taken here for random variables.

The use of the plane-wave approximation at beam
energies of about 50 MeV is open to criticism, since
multiple-scattering effects are expected to come into
play at such energies; however, the empirical fact
that the model nevertheless reproduces the relative
distributions of the cross sections with respect to mo-
mentum transfers to the spectator [6] (the normalized
theoretical curves are in satisfactory agreement with
the points of the experimental distributions) can be
employed in the case being considered. Therefore,
one can also have some degree of confidence in the
ratio of the numbers of triple and double coincidences,
Nppn/Npp, that was calculated in the plane-wave
approximation and then assess that fraction of Ny,
which can be associated with quasifree scattering.

The approximation specified by Eq. (9) can also
meet an objection in view of the disregard of the
interference between the amplitudes, but, with al-
lowance for the fact that the angular and energy dis-
tributions of neutrons are different in the quasifree-
scattering and final-state-interaction processes (in
quasifree scattering, one neutron is emitted with an
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d*0/(dQ,dQ,dE dE,), pb/(sr> MeV?)

Fig. 3. Section of the surfaces in Figs. | and 2 along the
diagonal F1 = Fs. Errors indicated on the experimental
points are purely statistical. The dash-dotted, the dashed,
and the dotted curve correspond to the calculations for,
respectively, quasifree proton—proton scattering, singlet
final-state neutron—proton interaction, and triplet final-
state neutron—proton interaction. The solid curve repre-
sents the sum of the contributions from these processes.

energy of about 24 MeV in a narrow cone around the
beam axis and the other travels at a low energy, while,
in the case of final-state interaction, the momenta of
both neutrons are close to the momenta of the corre-
sponding protons), its role appears to be negligible in
the phase space being considered.

[tis convenient to use the total number of events in
the experimental spectrum of triple proton—proton—
neutron coincidences to estimate the contribution of
the quasifree-scattering mechanism to the spectrum
of double proton—proton coincidences. For this pur-
pose, the spectra of double and triple coincidences
were simulated in the impulse approximation and
with allowance for only the first term in the sum on
the right-hand side of (9). Upon taking into account
the neutron-detection efficiency k, the calculation of
the ratio kNpp, /Ny, for quasifree scattering by using
these spectra yielded 0.026, which is approximately
four times as great as the corresponding experimental
value of 0.0061 &+ 0.0007. This result can be under-
stood under the assumption that the contribution of
quasifree proton scattering to the experimental spec-
trum of double proton—proton coincidences is only
one-fourth of the total number the events.

In the same approximation, we further simulated
(see Fig. 2) the spectrum with allowance for all three
terms in the sum on the right-hand side of (9). A
fit was constructed by using a data array formed by
2694 elements of the experimental matrix. The region
of fitting in the E1—FEs plane was bounded by the
thresholds F7, Fs = 7.8 MeV. The contributions of
individual terms in the sum on the right-hand side
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of (9) were in the proportion (0.20 + 0.04) : (0.65 £
0.07) : (0.15 4+ 0.03). Upon rescaling these results
over the entire kinematically allowed region, these
contributions appear to be in the ratio (0.24 4+ 0.04) :
(0.61 £0.05) : (0.15 £ 0.03). The calculated differ-
ential cross sections, along with experimental data
at Ey = Es are given in Fig. 3. The curves in this
figure represent the contributions of quasifree scat-
tering, the singlet final-state-interaction component,
and the triplet final-state-interaction component.

Thus, we see that an analysis of double-coinci-
dence spectra measured in a kinematically incom-
plete experiment also makes it possible to identify
reaction mechanisms, provided that the experimen-
tal data used are sufficiently accurate. The definitive
conclusion that the flip of the spins and isospins of
two deuterons is a dominant mechanism of reac-
tion (3) is the most important result of this analysis.
[ts contribution to the cross section for the reac-
tion 2H(d, pp)nn is about two-thirds even under the
kinematical conditions of quasifree proton scattering.
The quasiiree-scattering contribution (about 20%)
determined in fitting the two-dimensional spectrum
of proton—proton coincidences agrees with the re-
sults of a kinematically complete experiment.

5. INTEGRATION OF THE DIFFERENTIAL
CROSS SECTIONS FOR THE PROCESS
INVOLVING DOUBLE SPIN-ISOSPIN FLIP

In order to compare the experimental data with the
predictions of the supermultiplet potential model, it
is necessary to rescale the experimental differential
cross section for double spin—isospin flip to the c.m.
frame and represent it in the form of the cross section
do /dS for the binary reaction 2H(d, d)d;. It is more
convenient to do this upon recasting the conservation
laws (5) and (6) in the c.m. frame as

Er3+ e13 + Eoy + a4 = Epe + Q,
p13 + P24 = 0,

where FEpo = Ep/2 is the kinetic energy of the
deuterons in the entrance channel; F13 (Fo4) and p13
(p24) are, respectively, the energy and the momentum
of the center of mass of the np subsystem formed
by particles 1 and 3 (2 and 4); and ej3 (ea4) is the
kinetic energy of the relative motion of the nucleons
in the corresponding subsystem. Expression (7) for
the differential cross section in the c.m. frame takes
the form

do = [(27)* Jvo]dp13dpasdqizdgas| F|?
x d(Eoc + Q — Er3 — e13 — By — ex)
X 6(—p13 — P2),

(14)
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where
q13 = (me1z)V?, qog = (meay)/?,
|F|? = co| Fis(qu3)|?| Fas(gaa) [

The amplitudes Fy; and Fyg have the form (13),
and the factor ¢y was determined from a fit to the ex-
perimental two-dimensional spectrum of proton co-
incidences by using expressions (8) and (9). Further,
we integrate the cross section (14) with respect to all
variables, with the exception of the emission angles
of one of the singlet deuterons—for example, 13—
whereupon we obtain

do /ds = [(27)8 Jvg]m*/?

max max
€13 €24

x 21/2 /62|F13(Q13)|2613d613 /[624(E00+Q
0

0

(15)

— e13 — e24)] Y% Fas(g24) | *deas.

If we integrate with respect to all kinematically
allowed relative energies ej3 and egq, then ef§* =
E()C + Q and emax Eoc + Q — €13.

For the reaction ?H(d, d)ds at Eq = 46.7 MeV,
a numerical integration between these limits yielded
the differential-cross-section value of do(90°)/d$2 =
1.1 4+ 0.1 mb/sr. Here, only the statistical error is pre-
sented; it was determined in fitting the experimental
spectrum of double proton—proton coincidences. The
error in the scale of the differential cross sections
(about 25%) [10] must be added to the above sta-
tistical error. If the relative energies are bounded by
em, we obtain ef§* = min(Eoc + Q; ep,) and eff* =

min(Eoc + Q — e13;€m).

6. FORMALISM
OF THE SUPERMULTIPLET
POTENTIAL MODEL

The quantity obtained upon averaging, over the
initial orientations of the spins 04 and op, the cross
section for A 4+ B scattering accompanied by the flip
of the deuteron spin and isospin and summing the
result over final o/, and o5 (the scattering of unpo-
larized particles is considered here) has the form [18]

do 0) — 1
a0 = (254 +1)(2Sp + 1)
_ 1 (Sht1)ESp+])
2 HOF = s T ess 1)

(16)

o
OAOB,04,0p

Z(QL + 1)Pr(cos )
L

< {(Fa)Sata, [Fs)Sntsl )SH)

X (47, tpTpltT)?
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< ([FAlShths (el St 1156 T
+ ([falSata, [f5)SBts|[f2)St)

_ _ " 2
< {(Fa1Siatis, [Fa) St [Pl sty Ti™ |

)

where pg is the momentum of the relative motion
of particles A and B in the c.m. frame; S, ¢, and
[f] are, respectively, the spin, the isospin, and the
spin—isospin Young diagram of the A + B system; o
and 7 are the spin and isospin projections, respec-

tively; ([fa]Sata, [f5]Ssta|[f]St) are the isoscalar
factors of the Clebsch—Gordan coefficients of the
SU(4) group (spin—isospin fractional-parentage co-
efficients) [20, 25]; TLm are the partial-wave ampli-
tudes that are invariant under the transformations of
the SU(4) group; and [f] is the orbital Young diagram
for the A + B system (in the present case, it can take
two values, [f1] and [f2]).

For the d + d system, we have Sp =1, S =
t5=0, =1, [fs] = [fs] = @ Sa=1, 5, =0,
ta=0,ty =1, [fal =[f4] = 2], t=0, 7 =0, and
S =0. For the same system, 7y =7 =0 if the
deuteron spin and isospin are flipped without charge
exchange; in the case of charge exchange, 7y = 1 and
T = —1

Upon substituting into (16) the above quantum
numbers and the specific values of the spin—isospin
Clebsch—Gordan and fractional-parentage coeffi-
cients[20, 25], we obtain an expression that describes
the cross section for the scattering process involving

the flip of the spins and isospins of two deuterons and
which has the form

do 1
50 = T (17)
2
Z(2L+1)PL(c0s9)[ T TEQN .
L

In the case of the charge-exchange process d +
d — nn + pp, the expression for the cross section
fully coincides with (17), since different values of the
isospin projection 7j; for a deuteron, on one hand,
and a proton—proton and a neutron—neutron pair, on
the other hand, lead to identical (in absolute value)
Clebsch—Gordan coefficients (¢4 7/, t'57|t7T).

For elastic dd scattering, we accordingly obtain

d 1
9

m( ):4—])3 (18)

2
S (2L + 1) Py (cos ) ETF} + %TEQ]] '
L
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do/dQ, mb/sr
10°

E. . =12.65 MeV 25.0 MeV

10!

107!
103

10!

10!
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0 90 180 0 90 180
0,(c.m.), deg

Fig. 4. (o) Experimental angular dependences of the differential cross sections for elastic dd scattering and (curves)
their counterparts calculated within the supermultiplet potential model. The short-dashed, dotted, and long-dashed curves
correspond to the cross sections obtained for the cases where the total spin of the system is S = 0, 1, and 2, respectively. The
thin solid curve represents the sum of these three contributions. Also shown in this figure for the sake of comparison are (thick
solid curve) the calculated cross sections for the reaction *H(d, ds)ds producing neutron—proton pairs in the singlet state.
References to the respective experimental studies can be found in the main body of the text. The energies are given in the c.m.

frame.
2 1] , .
[31] tude T}'" is represented as the potential-scattering
+ ;(QL +1)Pr(cos )T} amplitude
2 (1] _ SUTy
+ 1Y 2L + 1) Py (cos )T} } Ti" = ew(ity) — 1 (19)
L where the phase shift 520} characterizes the potential

We note that the three sums in (18) correspond to Vﬂ;(R) describing interactions in the A + B system,
the values of S = 0, 1, and 2 for the total spin of the this potential being strongly dependent on the signa-
system. ture [ f].

In the supermultiplet potential model, the ampli- A method for reconstructing potentials that corre-

PHYSICS OF ATOMIC NUCLEI Vol.66 No.5 2003



ELASTIC DEUTERON-DEUTERON SCATTERING 821

spond to various allowed space permutation symme-
tries [f] was described in [18]. For the d + d system,
they are constructed in the standard Woods—Saxon
form on the basis of available data on phase shifts, the
known allowed and forbidden states of the system in
question being taken into account in this method. For
the symmetries in which we are interested, the follow-
ing values of the potential parameters were obtained
in[18]:

[f]1=1[22], W= —-41.5MeV, Ry=1.451Im,
a = 0.81 fm;

[f1=1[31], W=-31.8MeV, Ry=2.331m,
a = 0.76 fm;

[fl]=1[4], Vo= -70.0 eV, Ry=1.92fm,
a = 0.95 fm.

Estimating the potentials in strength as specified by
the quantity Vo R2, we can see that, for the [f] = [22]
and [f] = [4] space symmetries, they differ approxi-
mately by a factor of 3, which in turn leads to a signif-
icant distinction between the corresponding scatter-
ing amplitudes. Within the supermultiplet potential
model, the cross section for the reaction involving the
flip of the deuteron spins and isospins [see expres-
sion (17)] is determined precisely by the difference of

the amplitudes TL[4] and TFQ]; therefore, this model
predicts a large contribution of the formation of two
singlet deuterons in dd scattering. For the sake of
comparison, we recall that, in the case of dp scatter-
ing, the distinction between the strengths of the main
potential components corresponding to the [f] = [3]
and [f] = [21] symmetries was as small as 20% [18],
with the result that the description of experimental
data within the supermultiplet potential model was
only qualitative [1].

7. DISCUSSION OF THE RESULTS
OF THE CALCULATIONS BASED
ON THE SUPERMULTIPLET POTENTIAL
MODEL AND CONCLUSION

We begin discussing the results by considering
experimental data on elastic dd scattering. These
data are given in Fig. 4, along with the results of
the calculations on the basis of the supermultiplet
potential model [formula (18)]. The displayed exper-
imental points were borrowed from [26—29] (F..m, =
12.65 MeV [26], 17.45 and 19.9 MeV [27], 25.0 and
30.0 MeV [28], and 29.3 MeV [29]).

By and large, the experimental angular depen-
dences do(0)/d) are in fairly good agreement with
their experimental counterparts, albeit there are mod-
erate discrepancies in some angular regions. It is
noteworthy that the differential cross section allowing
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Fig. 5. Experimental angular distributions of singlet
dinucleons from (a) the reaction 2H(d,ds)ds at the
energy of Fcm = 23.35 MeV and (b) the reaction
2H(d, (pp)s)(nn)s at the energy of Ecm = 11.6 MeV
(points) along with their counterparts calculated within
the supermultiplet potential model (curves). References
to the respective experimental studies are given in the
main body of the text. Statistical errors are shown only
in the cases where they exceed the dimensions of the
points. The experimental points correspond to different
upper limits in the integration of the spectra: (o) e, =
el = Eoc + Q and (A) e, = 7 MeV.

for all possible values of S is determined primarily
by the S =0 and S =1 components in the region
of small angles and by the S = 2 component in the
region of medium angles. As a rule, the cross-section
part associated with the S =0 component is quite
large and deviates from the calculated total elastic-
scattering cross section (which receives contribu-
tions from the S =0, 1, and 2 components) by not
more than one order of magnitude. We would also
like to indicate that, with increasing energy E,, the
theoretical angular distributions of the S = 0 compo-
nent of the elastic-scattering cross section become
ever more similar in shape to the analogous angular
dependences for the reaction d + d — ds + ds.

We now proceed to compare the experimental and
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theoretical differential cross sections for the reaction
d+d — ds + ds[(nn)s + (pp)s], which leads to the
formation of two singlet dinucleons. In Fig. 5a, the
experimental point that we obtained above (6., =
90°, do/dQ2 = 1.1 mb) is supplemented, by means
of a relative normalization, with a point from [12]
at O.m. = 83.3°. In Fig. 5b, we employed the afore-
mentioned experimental data from [2] at E.n, =
11.6 MeV. We have compared the integrated cross
sections presented in that article (in mb/sr? units)
with those that were calculated according to the
procedure described in Sections 4 and 5 (Coulomb
corrections being additionally taken into account
here) and obtained the normalization factors required
for calculating the double-charge-exchange cross
sections in the c.m. frame. As a result, we found the
cross-section values of 0.57 and 1.01 mb/sr for the
angles of 6., = 62.5° and 79.7°, respectively.

On the whole, we can see that scanty data avail-
able from the literature were confirmed and supple-
mented by means of measurements whose results are
reported here. This makes it possible to determine, on
the basis of a comparison with the results produced by
the supermultiplet potential model, the phenomeno-
logical parameter e,,, which is the limiting value of
the relative energy ej3 in integrating the experimental
spectra with the aim of deriving the cross section
for the reaction d +d — ds + ds according to the
procedure outlined above. As can be seen from the
data in Figs. 5a and 5b, the value of the parameter
em proves to be approximately equal to 7 MeV (at
E.m = 11.6 MeV, e, =~ e§*; therefore, the points
in Fig. 5b coincide). It should be recalled that, for
the reaction d +t — dgs + ¢, itis | MeV [1]. So great
a distinction reflects, in all probability, a large effect
of “soft rescatterings” in the four-fermion contin-
uum and is an interesting subject of investigation in
terms of Faddeev—Yakubovsky equations (even with
separable nucleon—nucleon potentials). The method-
ological recipes used in the present study to single
out the cross section for the process d + d — ds + ds
are, at a large value of e, =27 MeV, only the first
step (the simplest one) toward solving the problem at
hand. Nonetheless, available experimental data fully
confirm the prediction of the supermultiplet potential
model that the mechanism of double spin—isopspin
flip makes a large contribution to the reaction being
studied.

In future investigations, it would be of importance
to explore in detail the angular dependence of the
cross sections in question in order to assess more ac-
curately the applicability limits of the supermultiplet
potential model, which is quite simple from the point
of view of numerical calculations. At the moment, this
model exhibits, by and large, a high efficiency not only
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in exploring the issues considered here but also in an-
alyzing the photonuclear reactions He + — t + p,
‘He +v — d+d, and d +t — SHe + v [18, 19] and
the charge-exchange reaction t +p — h +n [19]. It
may also prove to be very useful in studying three-
cluster systems whose binding energy is close to
their decay threshold [30]. In view of all of the afore-
said, it is advisable not only to employ the equations
of the resonating-group method in the supermul-
tiplet form [31] but also to develop the Faddeev—
Yakubovsky equations in the same form and to apply
them.

REFERENCES

1. V. M. Lebedev, V. G. Neudatchin, and B. G. Struzhko,
Yad. Fiz. 65, 489 (2002) [Phys. At. Nucl. 65, 462
(2002)).

2. R.E. Warner, S. B. Di Cenzo, G. G. Ball, et al., Nucl.
Phys. A 243, 189 (1975).

3. B. Th. Leeman, H. G. Pugh, N. S. Chant, and
C. C. Chang, Phys. Rev. C 17,410 (1978).

4. R. E. Warner, Phys. Rev. C 24,2759 (1981).

5. Ying-Ji Zhang, Jian-hua He, Jin-qing Yang, and
Jie Zhang, Phys. Rev. C 47, 468 (1993).

6. R.G. Allas, L. A. Beach, R. O. Bondelid, ef a/., Nucl.
Phys. A 304, 461 (1978).

7. N. Koori, T. Ohsawa, S. Seki, ef al., Phys. Rev. C 31,
246 (1985).

8. L. A. Golovach, V. V. Zerkin, B. G. Struzhko, et al.,
Izv. Akad. Nauk SSSR, Ser. Fiz. 51, 166 (1987).

9. V. I. Konfederatenko, B. G. Struzhko, G. Gurach,
et al., Ukr. Fiz. Zh. 42, 274 (1997).

10. V. 1. Konfederatenko, O. M. Povoroznik,
B. G. Struzhko, et al., Ukr. Fiz. Zh. 42, 1175
(1997).

11. B. Struzhko, J. Phys. Stud. 3,431 (1999); Acta Phys.
Pol. B 30, 1487 (1999).

12. B. G. Struzhko, Ukr. Fiz. Zh. 44, 305 (1999).

13. K. M. Watson, Phys. Rev. 88, 1163 (1952).

14. M. Goldberger and K. Watson, Collision Theory
(New York, 1964; Mir, Moscow, 1967).

15. A. B. Migdal, Zh. Eksp. Teor. Fiz. 28, 3 (1955) [Sov.
Phys. JETP 1, 2 (1955)].

16. W. Gléckle, H. Witala, H. Kamada, ef al., Nucl. Phys.
A 684, 184c¢ (2000).

17. W. Tornow, Nucl. Phys. A 684, 193¢ (2000);
R. Bieber, K. Bodek, K. Ermisch, ef al., Nucl. Phys. A
684, 536¢ (2000); J. L. Friar, Nucl. Phys. A 684, 200c
(2000); W. Tachikawa, C. Yagita, M. Kondo, et al.,
Nucl. Phys. A 684, 583c (2000).

18. V. G. Neudatchin, V. I. Kukulin, V. N. Pomerantsev,
and A. A. Sakharuk, Phys. Rev. C 45, 1512 (1992);
V. G. Neudachin, A. A. Sakharuk, and Yu. F. Smirnov,
Fiz. Elem. Chastits At. Yadra 23, 479 (1992) [Sov. J.
Part. Nucl. 23, 210 (1992)].

19. V. G. Neudatchin, A. A. Sakharuk, and
S. B. Dubovitchenko, Few-Body Syst. 18, 159
(1995).

Vol.66 No.5 2003



20.

21.
22
23.

24,
25.

ELASTIC DEUTERON-DEUTERON SCATTERING

V. I. Kukulin, V. G. Neudatchin, and Yu. F. Smirnov,
Nucl. Phys. A 245, 429 (1975); V. 1. Kukulin,
V. G. Neudatchin, and Yu. F. Smirnov, Fiz. Elem.
Chastits At. Yadra 10, 1236 (1979)[Sov. J. Part. Nucl.
10, 492 (1979)], O. F. Nemets, V. G. Neudatchin,
A. A. Rudchik, ef al., Nucleon Clustering in Nu-
clei and Multinucleon-Transfer Reactions (Nauko-
va Dumka, Kiev, 1988).

D. L. Durand, J. Arvieux, A. Fiore, et al., Phys. Rev.
C 6,393 (1972).

M. Furii and H. H. Forster, Nucl. Instrum. Methods
98, 301 (1972).

W. Kluge, Fortschr. Phys. 22, 691 (1974).

R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

V. G. Neudachin, I. T. Obukhovskii, and Yu. F. Smir-
nov, Fiz. Elem. Chastits At. Yadra 15, 1165 (1984)
[Sov. J. Part. Nucl. 15, 519 (1984)].

PHYSICS OF ATOMIC NUCLEI

Vol.66 No.5 2003

26

27.

28.

29.

30.

31.

823
. W. T. H. Van Oers, H. Arnold, and K. W. Brockman,
Jr., Nucl. Phys. 46,611 (1963).

F. S. Chwieroth, Y. C. Tang, and D. R. Thompson,
Nucl. Phys. A 189, 1 (1972).

C. Alderliesten, A. Djaloeis, J. Bojowald, ef al., Phys.
Rev. C 18,2001 (1978).

J.E.A.Lysand L. Lyons, Nucl. Phys. 74, 261 (1965).

V. M. Lebedev, V. G. Neudatchin, and A. A. Sakharuk,
Yad. Fiz. 63, 248 (2000) [Phys. At. Nucl. 63, 195
(2000)].

V. Iskra, A. I. Mazur, V. G. Neudachin, and
Yu. F. Smirnov, Yad. Fiz. 49, 672 (1989)[Sov. J. Nucl.
Phys. 49, 416 (1989)].

Translated by A. Isaakyan



Physics of Atomic Nuclei, Vol. 66, No. 5, 2003, pp. 824-827. Translated from Yadernaya Fizika, Vol. 66, No. 5, 2003, pp. 856-859.

Original Russian Text Copyright © 2003 by Pozdnyakov.

NUCLEI
Theory

Effective Probabilities in a New Approach to Analyzing Angular
Distributions in Elastic Heavy-lon Scattering

Yu. A. Pozdnyakov

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kiev, Ukraine
Received January 10, 2002; in final form, May 20, 2002

Abstract—A new approach proposed previously to analyze angular distributions in elastic heavy-ion
scattering is generalized to cases where total partial probabilities (that is, those that are summed over
all channels) of the enhancement of “fusion” (in general, complete and incomplete fusion, quasifission,
and deep-inelastic collisions) are commensurate with the total partial probabilities of the suppression of
“fusion.” This could be done with the aid of effective total partial probabilities, each of these being defined
as a linear combination of actual total partial probabilities. It is shown that the probabilities introduced in
this way have a specific physical meaning. Indeed, the effective total partial probabilities make it possible
to calculate the cross section for “fusion” through the entrance channel and some reference total cross
sections for peripheral processes, and a conclusion on whether fusion and peripheral reactions are enhanced
or suppressed can be drawn from a comparison of the calculated or measured results for, respectively, the
fusion cross section and the total cross section for peripheral reactions with the above two cross sections.
[t is also found that the enhancement of fusion is accompanied by the suppression of peripheral reactions,

and vice versa. © 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

A new approach to analyzing angular distributions
in the elastic scattering of heavy ions was recently
proposed in [1—=3]. This approach made it possible
to extend considerably the range of calculable quan-
tities. For example, the method in question makes
it possible to calculate not only quantities that are
determined within the traditional optical model but
also the “fusion” cross section (in general, the sum of
the cross sections for complete and incomplete fusion,
quasifission, and deep-inelastic collisions) o and the
total cross section op for peripheral (or quasielastic)
reactions, the corresponding distributions in partial
waves, and quantitative features of the enhancement
or suppression of fusion and peripheral reactions.

Two approximations were considered in [1—3].
Within one of these, which corresponds to collisions
of strongly bound ions, it is assumed that, in the
corresponding partial waves, the total partial-wave
probabilities (that is, those that are summed over all
channels) for the enhancement of fusion are much
greater than their counterparts for the suppression
of fusion. Within the second approximation, it is
assumed, on the contrary, that the total partial-wave
probabilities for the suppression of fusion are much
greater than those for the enhancement of fusion, this
corresponding to collisions where at least one of the
ions involved is weakly bound.

These approximations are valid in many cases.
However, there are situations where this is not so.

For example, it may be expected that, in the elastic
scattering of loosely bound ions by heavy nuclei at
near-barrier energies, the total partial-wave probabil-
ities for the enhancement and suppression of “fusion”
are commensurate. Let us dwell on this point at some
length. On one hand, the Coulomb breakup of the
projectile ion is not the only possible disintegration
process in such a system: there will also occur a
breakup process caused by nuclear forces, which is
accompanied by virtual excitations—that is, by the
return of particles to the entrance channel owing to
recombination (see, for example, [4]). As was shown
in [1—=3], virtual excitations lead to the suppression
of “fusion.” On the other hand, the breakup process
(both nuclear and Coulomb breakup) initiates incom-
plete fusion, in which case one or a few breakup frag-
ments merge with the target nucleus. Such processes
lead to the enhancement of “fusion.” An additional
mechanism of the enhancement of “fusion” for loosely
bound ions is associated with the Coulomb polariz-
ability. The aforesaid is confirmed experimentally. For
example, an analysis of the angular distributions for
the elastic scattering of “Be by 2%9Bi at near-barrier
energies [5] revealed that, at the strong-absorption
radius, the optical potential obtained by means of
fitting is equal to or exceeds the double-folding-model
potential [6]. At the same time, it is well known (see,
for example, [6]) that the double-folding-model po-
tential must be weakened in order to describe angu-
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lar distributions for the elastic scattering of loosely
bound particles.

[t is obvious that the method proposed in [1-3]
to analyze angular distributions for elastic heavy-ion
scattering must be modified in such a way as to render
it applicable to situations where the total partial-wave
probability for the enhancement of “fusion” is com-
mensurate with its counterpart for the suppression of
“fusion.” The present study is devoted to constructing
a modification of precisely this type.

2. SOME DEFINITIONS
AND CONVENTIONS

Below, we will discuss the probabilities and cross
sections for various processes induced by collisions of
heavy ions. Therefore, it is necessary to characterize
these processes briefly. In [1—3], all reaction channels
other than the elastic-scattering channel were broken
down into two groups. The first (group D) includes
all peripheral reactions, while the second (group F')
contains all reactions that are excited under the con-
ditions of a large overlap of the densities of colliding
nuclei (to denote reactions of this group, the term
“fusion” has been introduced above for the sake of
brevity). The total partial-wave probabilities for these
reactions are denoted by, respectively, P, p and P, p (I
is the orbital angular momentum), while the respec-
tive cross sections are denoted by op and op. The
probability P, p involves two terms. The first, P, gp,
is the total partial-wave probability for the excitation
of reactions belonging to the group F' through the
entrance channel, while the second, P} pr, is the total
partial-wave probability for the multistep excitation of
reactions belonging to this group. If, in the system,
there is a Coulomb polarizability of the projectile ion,
it also contributes to P pr. The corresponding cross
sections are denoted by o g and opp. In the case of
loosely bound ions, the virtual breakup of the projec-
tile particle due to nuclear forces results in the sup-
pression of reactions belonging to the group F', this
suppression being characterized by the total partial-
wave probability P, i . The corresponding reduction
of the cross section o is denoted by o g .

In addition to the total partial-wave probabilities
for peripheral reactions, P, p, the partial wave prob-
abilities for peripheral processes, P, gp, are also in-
troduced, the latter differing from the former in that
some reactions excited in the peripheral region end
up, at the second stage, either in the return to the
entrance channel (virtual excitations—in particular,
virtual breakup) or in the excitation of reactions be-
longing to the group F' (multistep reactions of the
group F—in particular, multistep fusion).

The above probabilities are expressed in terms of

the elastic-scattering S-matrix elements .Sj, S'l(o), and
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Sl(o). All of them were calculated on the basis of
the incoming-wave-boundary-condition model [7—
10]; the matrix elements S; were obtained from a fit
of the theoretical differential cross section for elastic

scattering to its experimental counterpart, while S’Z(O)

and Sl(o) were computed with the identically vanish-
ing imaginary part of the optical potential by using,
respectively, a renormalized and a nonrenormalized
double-folding-model potential. Thus, the angular
distributions for elastic scattering are necessary for

deriving the S-matrix elements S; and Sl(o). No ex-
perimental data, other than those that are necessary

for calculating the double-folding-model potential,
are required for determining the S-matrix elements

Ch

3. EFFECTIVE PROBABILITIES

The method proposed in [1—3] to analyze angular
distributions for elastic heavy-ion scattering features
six total partial-wave probabilities, which must be
found. These are P ¢, P.p, P.gr, Pi,pr, P, rF, and
P, gp. Two of these, P,  and P} p, can be determined
independently of the remaining ones. They are given

by
5|2 ~(0)|2
By = [(g')Q(l— 5 ) (1)
5]
Eik

s

The remaining probabilities satisfy the set of equa-
tions

Pp=1 (2)

P gr+ P .pr = B F,
2
P rr= (1 — ‘Sl(o)‘ (1- P Ep), 3)
0|2
57
Popr—Pgr=|1- s | (1—PFip).
5i”)

As can be seen, there are in all three equations for de-
termining four total partial-wave probabilities, P, g,
P, pr, P uF, and P, gp. Therefore, the method de-
veloped in [1—3] gives no way to determine the prob-
abilities P pr and P, gr simultaneously. However,
this problem can be sidestepped by introducing effec-
tive total partial-wave probabilities, which, as will be
shown below, have a specific physical meaning.

Thus, we assume that, in some system, the
enhancement of reactions belonging to the group



826

F (that is, “fusion” reactions) is more significant
than suppression. We then introduce an effective
total partial-wave probability for the enhancement of
fusion as

50 ‘2

T

Pipr = P pr — PLur = — 1-

In the opposite case, we introduce an effective total
partial-wave probability for the suppression of fusion
as

I

sOf

2
151 ‘
o

P.ur = P ur — Ppr =

The right-hand sides of Eqgs. (4) and (5) are obtained
by substituting expression (2) for the probability P, p
into the third equation in the set of Egs. (3). The
physical meaning of the probabilities P, pr and P, gr
is quite clear. They are the observed total partial-
wave probabilities for, respectively, the enhancement
and the suppression of “fusion”; that is, it is precisely
these probabilities that are responsible for the dis-
tinction between the measured “fusion” cross sec-
tions and the cross sections for “fusion” through the
entrance channel that are calculated by one method
or another (for example, on the basis of the barrier-
penetration model [11, 12]). It should be noted that
one cannot rule out the situation where “fusion” reac-
tions are enhanced in one group of waves, but they are
suppressed in the other group. In calculations, this
can be revealed, however, only if use is made of an [-
dependent optical potential.

On the left-hand side of the first equation in the set
of Egs. (3), we now add and subtract the probability
P, gp. If the enhancement of “fusion” is more sig-
nificant than its suppression, the resulting equation
assumes the form

PiLer +Pipr = PF. (6)

[f, on the contrary, the suppression of “fusion” is
more significant than its enhancement, we obtain the
equation

PrLer — PLar = PF. (7)

The probability P, gr appearing in Egs. (6) and (7)
is the effective total partial-wave probability for the
excitation of reactions of the group F' through the
entrance channel. [t is given by

Prer = PLer + PLur = S?(l):‘g <1 - ‘Sl(o)f) )

(8)
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The right-hand side of Eq. (8) can be obtained either
from (6) or from (7) by using expressions (1) and (4)
or (5) for P r and Py pr or Py g, respectively.

According to (8), the probability P, pr exceeds
the actual probability of fusion through the entrance
channel, P, g, by the quantity P, gr. However, a
comparison of Egs. (1) and (8) reveals that the prob-
abilities P, g coincide with the total partial-wave
probabilities for “fusion” in the case where there is
no enhancement or suppression in the system (from
the analysis performed in [1=3], it follows that, in
such a situation, it is not required to renormalize
the folding-model potential in describing the angular

distributions for elastic scattering; therefore, Sl(o) =

Sl(o) ). Hence, the result obtained by calculating, with
the probabilities P, g, the cross section

T o
OEF = 13 > (@24 1)Per, (9)
1=0

where k is the wave number in the elastic-scattering
channel, is precisely the cross section with which one
must compare the actual “fusion” cross section o in
order to establish the presence of the enhancement or
suppression of reactions of the group F'in the system.
From Eq. (8), it also follows that the suppression
of “fusion” is caused by the reduction of the actual
total partial-wave probabilities for “fusion” through
the entrance channel, P, g, as was indicated in [1—-3]
in discussing the approximation P, pr = 0.

In order to introduce the effective partial-wave
probability for peripheral processes, P, gp, we add the
probability P, i to both sides of the second equation
in the set of Egs. (3). After some simple algebra, we
then obtain the relation

_ OIF
PrLer = 1—‘51 ‘ (1-"PieD), (10)
where
e Sy
PZ,EDEPLED—%Z - |((l)|)2~ (1)
-t ]S

The right-hand side of Eq. (11) can be evaluated by
substituting expression (8) for P, gr into Eq. (10).
From Eq. (11), it follows that the probability P, gp
is less than the actual total partial-wave probabil-
ity for peripheral processes, P gp, by the quantity

2
P ur/ (1— ‘Sl(o)‘ ) However, a comparison of

Eqgs. (2) and (11) reveals that the probabilities P; gp
are the total partial-wave probabilities for peripheral
reactions if there is no enhancement or suppression
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of “fusion” in the system being considered. Therefore,
the cross section

T o0
ol Z (2l+1)P1ED
=0

OED = (12)

o

calculated with the probabilities P, gp is precisely
the cross section with which one must compare the
total cross section for peripheral reactions, op, in
order to answer the question of whether there is the
enhancement or suppression of peripheral reactions
in the system. Since the right-hand side of Eq. (11)
is fixed for each value of [, it can be deduced from
this equation that the greater P gp, the greater P, g
and, hence, the higher the degree to which “fusion”
is suppressed. Thus, the suppression of “fusion” is
caused by enhanced values of the actual total partial-
wave probabilities of peripheral processes, P gp, for
loosely bound ions. In[1—3], the same conclusion was
drawn in the approximation P, pr = 0.

On the basis of the formulas derived above, it can
easily be proven that the enhancement of “fusion”
[relation (6) holds in this case] is accompanied by
the suppression of peripheral reactions to the same
degree; that is,

(13)

At the same time, the suppression of “fusion” [relation
(7)holds in this case]is accompanied by the enhance-
ment of peripheral reactions to the same degree; that
is,

PiLep —Pi.pr = Pip.

PiLep +PrLur = B p. (14)

Since the probabilities P, r and P, p satisfy the
unitarity relation [1—3], it can be shown, by using
Egs. (6) and (13) or (7) and (14), that the unitarity
relation holds for the effective total partial-wave
probabilities P; g and P pp as well; that is,

Prpr+Piep =1— 157 (15)

Thus, the effective total partial-wave probabilities for
various processes induced by collisions of two nuclei
were introduced here in such a way that these proba-
bilities have a specific physical meaning. All of them
are expressed in terms of elastic-scattering S-matrix

elements Sj, S’Z(O), and Sl(o), which can be obtained
from an analysis of the corresponding angular dis-
tributions for elastic scattering. Having the effective
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total partial-wave probabilities at our disposal, we can
calculate all the required cross sections by formulas
similar to those in (9) and (12).

To conclude this section, we note that, if P, pr =
0 or P gr = 0 at all values of [, the above formulas
reduce to the formulas obtained in [1-3].

4. CONCLUSION

A new approach to analyzing angular distributions
for elastic heavy-ion scattering [1—3] has been gener-
alized to the cases where total partial-wave probabili-
ties for the enhancement of “fusion” (in general, com-
plete and incomplete fusion, quasifission, and deep-
inelastic collisions) are commensurate with those for
its suppression. This has been done with the aid of
effective total partial-wave probabilities, which have a
specific physical meaning. Cross sections calculated
with these probabilities make it possible to find out
whether there occurs enhancement or suppression of
“fusion” and peripheral reactions in the system.
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Abstract—The experimental spectrum of the K¢ KK, system from the reaction7=C — KgKgKy +Y
at amomentum of 40 GeV was obtained experimentally with the aim of studying resonance states featuring
open strangeness and occurring in the high-mass region. The experiment was performed at the 6-m
spectrometer installed at the Institute for High Energy Physics (IHEP, Protvino). The spectrum displays,
along with well-known resonances [K1(1640), K5(1770), K2(1820), K2(1980)], which fit in the quark—
antiquark classification, the exotic resonances K5(2280) and K4(2500). The K3(2280) resonance exhibits
the properties of a hybrid and has an exotic decay mode producing a triplet of known resonance states related
to each other by quark—gluon mixing. The mechanism of the formation of the observed hybrid K2(2280)
is dominated by the exchange of a natural spin—parity in the ¢ channel of the reaction. The mode of decay
into fo(980) K and the mode of decay into f2(1270) Ky, are observed for the K5(1770) and the K>(1980)

resonance, respectively. © 2003 MAIK “Nauka/Interperiodica”.

In the literature, there are virtually no data on the
KsKgKi, system because recording this system in-
volves serious difficulties. At the same time, great in-
terest in studying the KgK g K, system is motivated
by the desire to advance into the region of high-mass
resonances featuring open strangeness. Investigation
of the KgKgK|, system is advantageous in that the
KsKgs and KgKj combinations have different sets
of quantum numbers (even and odd series), and this
facilitates the identification of the quantum numbers
of the entire system considerably.

The experimental data subjected to the present
analysis were obtained in one of the runs that em-
ployed the 6-m spectrometer developed at the Insti-
tute of Theoretical and Experimental Physics (ITEP,
Moscow), equipped with a gamma and a hadronic
calorimeter, and installed in a beam from the U-70
accelerator of the Institute for High Energy Physics
(IHEP, Protvino). A detailed description of the spec-
trometer was given elsewhere [1]. A feature peculiar
to the run being discussed was that a gamma and
a hadronic calorimeter [2] placed one after the other
were arranged downstream of the tracking spectrom-
eter at distances of, respectively, 11.2 and 12.0 m from
the carbon target used, their thicknesses being 21X
and 0.6 for the gamma calorimeter and 4.5\ for the
hadronic calorimeter (here, Xy is the radiation length,
while A is the interaction range). The number of beam

“e-mail: Gena. Tikhomirov@itep.ru

particles that traversed the spectrometer was 3.5 x
10'°. The composition of the beam was the following:
97% 7~ mesons, 2% K~ mesons, 0.5% p~ mesons,
and 0.3% antiprotons. Beam K~ and 7~ mesons
were recorded by a differential Cherenkov counter and
a threshold Cherenkov counter, respectively. Since a
multitrigger mode was chosen for a neutral trigger,
the separation of the KgKgK|, system studied here
was soft at the trigger level.

The system formed by Kg, Kg, and Ky, particles
was studied on the basis of a data sample consisting
of vee events recorded in the spectrometer and unam-
biguously identified as K'g mesons, the corresponding
signal from these events in the hadronic calorimeter
also being required. Events featuring the pair pro-
duction of Kg mesons were selected according to
the procedure used at the 6-m spectrometer [3, 4]
Upon fitting vee tracks to each of the v, K, A, and
A hypotheses and selecting a pair of Kg mesons ac-
cording to the x? criterion, it was additionally required
for selected events that both Kg mesons originate
from the interaction vertex in the carbon target. The
precision to which the effective mass of the 77~ pair
from Kg-meson decay is measured in the spectrom-
eter (Fig. la)is 20 = 18 MeV, where ¢ is a standard
deviation. In all, we have found 11208 events of the
inclusive reaction

7w C— KsgKg+ X. (1)
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Fig. 1. Distribution of events with respect to (a) the
effective mass of two pions from Kg-meson decay that
are recorded by the spectrometer in the inclusive reaction
7~ C — KsKgs + X and (b) the sum of the longitudinal
components of the momenta (3 Px) of two Ks mesons.

The distribution of these events with respect to the
sum of the longitudinal components of the momenta
(> Px) of two Kg mesons is shown in Fig. 1b. The
cross section for the production of Kg-meson pairs
on a carbon target in the quasielastic reaction (1)
was determined previously in [5]. The result was
2.0+ 0.12 pb/nucleus, the systematic uncertainty
being 20%. The quasielastic events of reaction (1)
were rejected by discarding events where  Px >
38 GeV, and the remaining events were tested for the
presence of a signal in the hadronic calorimeter. The
coordinates of a hadron were measured to a compar-
atively high precision, while the shower energy was
determined to within 35%.

The quasielastic reaction
7 C— KsKsK, +Y (2)

was selected on the basis of the dependence Fj 4, =
f(O_ Px) in Fig. 2 (here, Ej,q; is the shower energy
in the hadronic calorimeter), which displays all events
of reaction (1), with the exception of those that fall
within the region of the quasielastic production of a
Kg-meson pair [Y Px < (37.5 GeV + Ey,q4;)]. For
reaction (2), the total longitudinal momentum of three
K mesons must be close to the momentum of the
incident negative pion; that is, the events in question
must be concentrated, on the graph, around the line
specified by the condition > Px 4+ FEpaqr = 40 GeV.
However, the points on the graph exhibit a large scat-
ter because of an insufficiently high precision in deter-
mining the shower energy in the hadronic calorimeter.
Under the selection conditions Ejaq > (5.7 GeV —
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Fig. 2. Two-dimensional distribution of events with re-
spect to Y Px and Ehar.

0.15) " Px)and ) Px < (26 GeV + 4Ej,q;), the en-
suing analysis included almost all events generating
a response in the hadronic calorimeter with FE},q >
2.5 GeV, the boundary here lying well above the
noises of the calorimeter. The subsequent selection of
events characterized by |Psx — 36 GeV| < 10 GeV
removed the wings of the distribution constructed on
the basis of the total energy deposition in reaction (2),
Pg = ZPX + Ehadr-

For the selected region of reaction (2), the level
of random coincidences of two correctly identified
Kg mesons generating a response in the hadronic
calorimeter can be estimated by taking events of the
quasielastic production of a Kg-meson pair. In the
band 38 < ) Px < 42 GeV, the ratio of the number
of events where Ej,q > 2.5 GeV to the total number
of events is 0.07, while, for the selected region, this
ratio does not exceed 0.01.

The contribution of the background reaction

7T_C—>K5KSKL7TO+X (3)

can be determined from the data on the neutral pion
reconstructed in the electromagnetic calorimeter. Es-
timations reveal that the contribution of reaction (3),
as well as that of the reaction 7= C — KgKsK 1 Ky +
X, is about 5 to 10%.

In order to improve the resolution in the mass
spectrum of the KgKg K7, system, we have used the
conservation of the longitudinal component of the
total momentum.

Figure 3 displays the distribution of events of re-
action (2) with respect to the effective mass of the
KsKg Ky, system; this distribution is fitted in terms of
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Fig. 3. Distribution of events with respect to the effective
mass of the K¢ Ks K1, system (here and below, the values
of M and T are given in GeV).

four Breit—Wigner distributions with free parameters.
The value of x? per degree of freedom is 1.3, while the
resulting values of the masses and widths of the ob-
served resonance states are virtually coincident with
those for already known resonances that are included
in the systematics of the Particle Data Group [6].
[t should also be noted that the description of the
mass spectrum of the Kg KgK|, system in terms of a
fourth-degree polynomial yields a x? value per degree
of freedom that is twice as great as that given above.

Since accumulated statistics (553 events) are not
sufficient for performing a partial-wave analysis, we
attempted to study the properties of these states on
the basis of the angular distributions for their decays.
For this purpose, the mass distribution was split into
five bins: 1.50—1.70, 1.70—1.90, 1.90—2.14, 2.14—
240, and 2.40—2.64 GeV; in each of these, the an-
gular distributions for the decays in question were
investigated in the Gottiried—Jackson frame—that is,
in the rest frame of the KgKgKj system, with the
z and the y axis being aligned with, respectively, the
primary-beam axis and the normal to the produc-
tion plane. In order to pinpoint the channels through
which these states decay, we plotted, in Figs. 4 and
5, the effective-mass distributions of, respectively, the
KsKy and the KgKg system and, in Fig. 6, the
effective-mass distribution of the KgKg system for
three regions lying above 1.9 GeV.
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Fig. 4. Distribution of events with respect to the effective
mass of the K g Ky, system.

In the distribution of KsKp, (Fig. 4), where both
combinations are included for each event, there are no
noticeable features, other than that which is associ-
ated with ¢-meson production. For events where the
mass of the Kg K, system is less than 1.07 GeV, the
effective-mass distribution of the KgKgKy system
(see Fig. 7a) suggests that, at the beginning of the
spectrum, there are two structures around 1.65 and
1.82 GeV. While, for the structure at 1.65 GeV, the
Kg K system exhibits features peculiar to the ¢ me-
son (P} wave), for the structure at 1.82 GeV, the dis-
tribution with respect to the cosine of the decay angle
for the KK system is isotropic. For the structure
around 1.65 GeV, the preferred spin—parity values are
JP =1t

In the KgKg spectrum (see Fig. 5), which has
a maximum near the threshold, one can also clearly
see maxima in the regions of the fo(1270), fo(1370),
f2(1525), and f5(1710) resonances; in view of this, we
described this spectrum in terms of five Breit—Wigner
resonances with 15 parameters. The x? value per de-
gree of freedom was 0.7, and the resulting parameter
values (masses and widths) were in agreement, within
the errors, with the values known from [6, 7]. The
maximum near the threshold has the properties of
the fo(980) resonance, since the distributions with
respect to cos Oy and ¢y (that is, with respect to
the polar and the azimuthal angle) exhibit a uniform
character.

In the mass distribution of the KgKgK}, system,
events in the mass region M ko < 1.12 GeV gen-
erate a distinct peak of mass M = 1.743 £ 0.015 GeV
and width I' = 0.147 £ 0.07 GeV (see Fig. 7b), its
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Fig. 5. Distribution of events with respect to the effective
mass of the KgKg system (events involving a ¢ meson
were discarded).

position and width being in agreement, within the
errors, with those of the known K5(1770) resonance.
The distributions with respect to cos gy and ¢y in
Fig. 8 are compatible with the D1 wave at the x? value
of unity per degree of freedom, this corresponding to
the spin—parity assignment of J©' = 2.

Events populating the interval 1.7—1.9 GeV of the
KsKgKj mass may be associated with the decay
of a 1.82-GeV resonance according to the scheme
K> (1820) — f2(1270) + K, and the formation of a
f2(1270) resonance at the threshold. The angular dis-
tributions for the decay of the f5(1270) resonance are
well described by the Dy wave (see Fig. 9a), while the
angular distributions for the decay of the K5(1820)
resonance are isotropic, which makes it possible to
assign the Ko(1820) resonance the spin—parity of
JP =27

The feature in the mass range 1.90—2.14 GeV
is observed predominantly in the decay channel
K5(2020) — f2(1270) + K, (see Fig. 6a), and the
distribution with respect to cosfqgy (Fig. 96) can
be described in terms of the P; wave; in the set
JP =1% 2% and 3%, which is compatible with
this, the spin—parity of J* = 2% coincides with the
corresponding quantum numbers of the Ky(1980)
resonance presented by the Particle Data Group, its
decay producing the K*(890)m and Kp final states.
The decay channel K5(2020) — fp(1370) + K, can
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Fig. 6. Distribution of events with respect to the effec-
tive mass of the Ks K system for three regions of the
KsKsKy spectrum: (a) 2.02 £0.12, (b) 2.27 £0.13,
and (¢) 2.52 £ 0.12 GeV.



832

N,./(40 GeV)
- (a)
X2/NDF = 0.71/4
16 L A =884+544
M, =1631+0014
L I\ =0.059  0.057
Ay =16.70 % 3.03
L M,=1815+0.019
r,=0.212+0.088
8 -
41
O 1 1 1 1 1 |
1.0 1.5 2.0 2.5
o @
X%/NDF = 3.99/5
L A, =7.68 £2.90
M, =1.743 £0.015
8 M, =0.147 £0.071
i \
6 L —
4+
2L
0 1 1 } 1 1 1 J
1.5 2.0 2.5

MKSKSKL’ GeV

Fig. 7. Distribution of events with respect to the effec-
tive mass of the Ks Ks Ky, system for the following se-
lection criteria: (a) Mrxgrgr, < 1.92 GeV, Mkgx, <
1.07 GeV and (b) Mrgrgs < 1.12 GeV, Mr ok, >
1.07 GeV.

also be realized,!) but, because of insufficient statis-

YA Monte Carlo simulation performed later for the decay
process K2(2270) — fo(1370) 4+ K™(890) revealed that the
peak at a mass value of 1370 MeV in the Ks K5 spectra for
two neighboring bins (1900—2014, 2014—2400 MeV) of the
KsKsK;, system may be associated with the same object,
K>(2270), decaying into fo(1370) and K*(890). This is be-
cause we calculated the K, -meson momentum from the law
of conservation of the longitudinal momentum component in
reaction (2).
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Fig. 8. Angular distributions for the decay of the
K5(1740) resonance in the Gottfried—Jackson frame
(0cy and 1y are, respectively, the polar and the az-
imuthal angle).

tics, we were unable to give preference to one of the
possible hypotheses, J¥ = 1t or J© =27,

Of particular interest are the maxima around 2.28
and 2.50 GeV, for which the spectra of the KgKg
system are given in Figs. 66 and 6¢. A feature peculiar
to the spectrum in Fig. 66 is that the relevant events
are obviously concentrated around four known reso-
nances, fa(1270), fo(1370), f2(1525), and fo(1710).
The angular distributions for the decay of the struc-
ture at 2.28 GeV cannot be described in terms of a
single specific partial wave. At the same time, the
decay of the features at 2.28 and 2.50 GeV to a
particular set of known resonance states may suggest
that they are excited states. The properties of these
excited states are in accord with the QCD predictions
in [8] for hybrids, where the gluon degree of freedom is
excited in the presence of a quark pair, the lightest of
these hybrid states having mass values 1 GeV above
those of their conventional gq counterparts. Accord-
ing to the color-tube model, the decay channels that
play a dominant role for the lightest hybrids (the J =
27 hybrid in our case) are those that produce one
meson in the ground (1Sy or 357 ) state and the other
meson in an orbitally excited (3P, or 3 Py) state [9].

In [10], a neutral tensor meson involving a gluon
component and participating in the mixing of the
gluon component and the quark components in
the fo(1270), fo(1525), and fo(1660) resonances
is assumed to exist, which aids in explaining the
branching fractions of their decays through various
channels—in particular, the channel fo(1525) — ~~.

Close and Kirk [7] presented pieces of evidence
for the mixing of the gluon component and the
quark components in the scalar resonances fo(1370),
fo(1500), and fo(1710).

In Fig. 6b, it can clearly be seen that three reso-
nances [ f2(1270), fa(1525), f2(1660)] correspond to
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Fig. 9. Angular distributions in the Gottiried—Jackson
frame for (a) the decay of the f2(1270) resonance (we
selected events from the range 1.70—1.90 GeV of the
KsKsKj spectrum, which are characterized by mass
values in the region Mk rxg > 1.12 GeV, the index f
indicating the decay of the KgKg system) and (b) the
decay of the K>(1980) resonance through the channel
K>(1980) — f2(1270) + K1, (we selected events from
the range 1.90—2.14 GeV of the KsKgKp spectrum,
which are characterized by mass values in the interval
1.12 < Mrgrg < 1.35 GeV).

the tensor triplet discussed in [10], both in position
and in shape. We have attempted to consider the peak
at 1390 MeV as a manifestation of a feature that
is characterized by the same mass value and which
is comparatively well produced in the KgKgKy-
spectrum section neighboring that value on the left. In
attempting to move the boundary between the regions
of the K5(1980) and K5(2280) resonances to the
right, we revealed that the amplitudes of all four peaks
decrease simultaneously, which may be indicative of
an insufficient reliability of the hypothesis used. As
a result, we have arrived at the conclusion that a
scalar triplet is present in the decay of the K5(2280)
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Fig. 10. Distribution of events with respect to the square
of the transverse-momentum transfer to the K3(2280)
hybrid.

resonance as well, and a peak that is seen at a mass
value of 1390 MeV and which can be associated with
the fo(1370) resonance is an obvious manifestation of
this. Aninsufficient mass resolution in our experiment
and paucity of statistics are the reasons why we were
unable to distinguish between fo(1500) and fo(1525),
as well as between fy(1710) and f5(1660).

Some of scalar mesons can go over to the region of
low masses in the K¢ K¢ K, spectrum rather than fall
within the interval 2.14—2.40 GeV. This is because
scalar mesons must be produced in a pair with a me-
son in the 3S; state—that is, with the K*(890) reso-
nance. In refining the K;-meson momentum with the
aid of the law of longitudinal-momentum-component
conservation, we disregarded the neutral pion from
K*(890) decay. If scalar mesons are produced in a
pair with a K*(890) meson, then the fp(1500) and
fo(1710) resonances occur beyond the threshold of
their production in the decay of the K5(2280) feature.
We can clearly see the fy(1370) resonance or some
part of it, but it does not seem possible to prove, on the
basis of our data, that this resonance is produced in a
pair with the K*(890) resonance, since, in the mass
range 2.14—2.40 GeV, the acceptance of the electro-
magnetic calorimeter recording neutral pions is one-
fourth as great as the acceptance of the hadronic
calorimeter recording K. Thus, we can assume that
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Fig. 11. Distribution of events in the cosine of the emis-
sion angles for various intervals of the mass of the Kg Ky
system (1.16—1.34, 1.44—1.60, 1.60—1.80 GeV): (upper
panels) distributions in cos @ for the emission of a Kg
meson with respect to the K meson in the rest frame
of the two K's mesons and (lower panels) distributions in
cos Oy for the emission of the K's K's system with respect
to the primary beam in the rest frame of the K5(2280)
hybrid.

the decay of the K9(2280) feature involves a tensor
and, most likely, a scalar triplet, which are coupled by
the mixing of a gluon with a pair of quarkonia [11].
This gives reasons to believe that the feature in ques-
tion is a hybrid.

The production of a K9(2280) hybrid is well de-
scribed by a natural exchange, as can be seen in
Fig. 10, where the distribution of events with respect
to the square of the transverse-momentum transfer,
T, to the K5(2280) hybrid is well approximated by the
function do/dT = at exp(—f7) at @« = 183 £ 53 and
B=8+1

The spin—parity of J = 27 for the K5(2280) hy-
brid can be predicted on the basis of its decay into
f2 and Kp with zero relative orbital angular mo-
mentum (L = 0). Despite an insufficient statistical
significance of the experimental data, this conclusion
can be confirmed by an analysis of the angular dis-
tributions for the decay of either the KgKg or the
KgKgKj, system (see Fig. 11). For the mass ranges
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Fig. 12. Diagram for the decay of the H hybrid (the
shaded box represents the place where a gluon pair un-
dergoes color rearrangement and transitions to a quark—
antiquark pair).

1.16—1.34 and 1.44—1.60 GeV in the KgKg spec-
trum, the distribution of events with respect to the
cosine of the polar angle of the decay of the Kg Kg K7,
system can be considered to be isotropic, while the
distribution with respect to the cosine of the polar
angle of the decay of the KgKg system is compatible
with the description in terms of the D; wave, but the
assumption of isotropy is also admissible.

Figure 6¢ displays the spectrum of the KgKg
system for the range 2.4—2.64 GeV, where the con-
centration of the relevant events in the regions of the
f2(1270), fo(1710), and f2(1920) resonances is also
indicative of a hybrid character of the K4(2500) max-
imum, but a reliable analysis of it is next to impossible
because of insufficient statistics.

RESULTS AND DISCUSSION

We believe that, in reaction (2), the production
of the KgKgK system through resonance states
with their subsequent cascade decay is energetically
favorable, but that nonresonance events form a back-
ground (other reactions and random superpositions
in reconstructing events), their estimation in various
sections of the spectrum revealing that they do not

exceed 10%.

The low-mass section of the KgKgKp, spectrum
(below 2 GeV) contains bound states formed by
valence quark—antiquark pairs, but, with increasing
mass, there emerge exotic mesons, the first of these
being the K(2280) resonance, whose observable
properties are similar to those of a hybrid (Gqg state).
The mode of their decay into three tensor resonances
f2(1270), f2(1525), and f2(1660) and, possibly, three
scalar resonances fo(1370), fo(1500), and fo(1710)
is also exotic. As to the content of the scalar mesons,
we cannot draw definitive conclusions on the basis
of our experimental data,?) but, as soon as statistics
are enlarged and the geometry of recording the

DIn performing a further analysis of experimental data and in
simulating the decay K2(2270) — fo(980) + K*(890), we
obtained a piece of evidence that, in the decay of K>, there
is also a threshold feature that can be identified with the
production of the f,(980) resonance.
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K*(890) + fo states is improved, it will become
possible to clarify the composition of the scalar nonet.
In the decay of the K5(2280) hybrid, the mecha-
nism described by the diagram in Fig. 12, where the
product gluon pair undergoing color rearrangement
yields, at the final stage, a decomposition into the
scalar and the tensor triplet, is likely to be operative.

The parameters of the K5(2280) resonance state
are identical to those of the K5(2250) resonance [6],
which was observed in the A channel. If J¥ =27,
it is quite possible to identify it with the quark—
antiquark meson 23D, /23Dy, which is predicted in
the same mass interval [12]. Observation of the Kz
decay mode, which is natural for quarkonium and
which is strongly suppressed for a hybrid, would make
it possible to distinguish between these two pos-
sibilities (a hybrid strange meson versus a quark—
antiquark meson).

Let us briefly summarize the results of this study:

(i) For the K5(1770) resonance of mass M =
1.743 4 0.015 GeV, width I' = 0.147 + 0.07 GeV, and
spin—parity J© = 27 we have obtained an indication
of a new decay channel: K5(1770) — f(980) + K.

(ii) For the K5(1980) resonance of mass M =
2.02+0.02 GeV, width ' =0.18 £ 0.07 GeV, and
spin—parity J = 2%, we have also obtained an
indication of a new decay channel: K5(1980) —
f2(1270) + K.

(iii) For the first time, we have discovered an exotic
decay channel for the K5(2280) resonance (Kr, + fo,
K*(890) + fo); this is indicative of a hybrid nature of
this object. Its features (M = 2.28 £ 0.02 GeV, I' =
0.18 £0.06 GeV, JP = 27) are identical to those of
the K9(2250) resonance [6], which decays through
the Knm and pA channels.
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Features of pC Interactions at a Momentum of 4.2 GeV/c
versus the Degree of Centrality of Collisions between Protons
and Carbon Nuclei: Multiplicity of Secondary Particles
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Abstract—New experimental data obtained for the multiplicities of charged pions and protons from the
interaction of 4.2-GeV/c protons with a carbon nucleus by using the 2-m propane bubble chamber
installed at the High Energy Laboratory (Joint Institute for Nuclear Research, Dubna) are presented versus
the degree of collision centrality. The parameter @ defined for each individual event as the difference of
the total multiplicities of positively and negatively charged particles without allowing for the multiplicity
of evaporated protons whose momentum is less than 0.3 GeV/c is taken for a criterion of the degree
of collision centrality. It is shown that, with increasing @, the multiplicity of positively charged pions
and the multiplicity of participant protons from the target nucleus grow considerably; concurrently, the
multiplicity of negatively charged pions remains at nearly the same level, while the mean multiplicity of
evaporated protons decreases sharply. Our experimental data are compared with the results of calculations
based on the cascade—evaporation model and the modified FRITIOF model. Within the FRITIOF model,
nonnucleon degrees of freedom in nuclei (A+, A isobars) are taken into account for the first time, and
the resulting description of the features of secondary particles appears to be by and large satisfactory.

© 2003 MAIK “Nauka/Interperiodica”.

INTRODUCTION

The interaction of protons with carbon nuclei (pC
interactions) at a momentum of 4.2 GeV/c under
conditions of a 47 coverage was explored by many
authors (see [1—=8]). The authors of [1—3] presented
inclusive features of secondaries from such interac-
tions, while the authors of [4, 5] reported on an anal-
ysis of events resulting in a complete disintegration
of a carbon nucleus. Some authors (see [6—8]) in-
vestigated the angular distributions of the invariant
inclusive cross sections for the yield of pions and
protons. In this study, we perform a detailed analysis
of the features of secondaries at various values of the
impact parameter of collisions between protons and
carbon nuclei. First, we present the multiplicities of
charged particles for six groups of pC interactions
from peripheral to central ones and compare them
with the predictions of various theoretical models.
Investigation of these features of product particles

DJoint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia; Yerevan Physics Institute, ul. Brat’ev
Alikhanian 2, Yerevan, 375036 Armenia.

Dlnstitute for Physics and Technology, Ulan Bator, Mongolia.

3Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.
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is of paramount importance for reconstructing the
spacetime pattern of pC interactions at various values
of the impact parameter—in particular, of particle
rescattering in a carbon nucleus—and for a further
development of relevant theoretical concepts.

Among the existing theoretical models, the Glau-
ber—Sitenko approximation [9], which makes it pos-
sible to calculate the total, elastic, and inelastic
cross sections, is thought to be the most reliable.
The treatment of this approximation within the
Reggeon approach—this is sometimes referred to
as the Glauber—Gribov approximation—makes it
possible to evaluate cross sections for interactions
involving various numbers of intranuclear nucleons.
Therefore, a model that is employed to analyze exper-
imental data must include the Glauber approxima-
tion. In addition, such a model must admit a broad
variation in the presumed physics scenario of the
interactions in question. The FRITIOF model [10,
11] satisfies these requirements.

The FRITIOF model includes the Glauber ap-
proximation [12]. Within the FRITIOF code version
used in the present study, the Fermi motion of in-
tranuclear nucleons [12] and special features of the
two-body decays of excited nucleons [13] are taken
correctly into account, which makes it possible to
reduce the threshold of its applicability to 1—4 GeV

1063-7788/03/6605-0836$24.00 © 2003 MAIK “Nauka/Interperiodica”
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per nucleon. In [14], elastic nucleon rescatterings
were phenomenologically incorporated into the model
in analyzing CC interactions. For hadron—nucleus
interactions, this can be validated within the Glauber
approximation [15]. The possibility of taking into
account nonnucleon degrees of freedom in nuclei
(specifically, AT and A isobars) within the FRITIOF
model is considered for the first time in the present
study.

I. EXPERIMENTAL DATA

The experimental data used here were obtained on
the basis of processing stereophotographs from the 2-
m propane bubble chamber constructed at the High
Energy Laboratory of the Joint Institute for Nuclear
Research (JINR, Dubna), placed in a magnetic field
of strength 1.5 T, and irradiated with a beam of pro-
tons accelerated to a momentum of 4.2 GeV/c at the
JINR synchrophasotron.

In order to select events of inelastic pC inter-
actions in the total set of proton interactions with
propane (CsHg), we used criteria described in [1,
2, 16]. The procedure for isolating elastic pp and
pC events, introducing corrections for the multiplic-
ities of secondaries and their angular and momen-
tum features, and specifying the weights of posi-
tively charged particles having momenta in excess of
0.5 GeV/c was described in detail elsewhere [16]. We
recall that, under the conditions of the present exper-
iment (which does not measure ionization induced by
positively charged particles), positively charged pions
and protons are reliably identified up to momenta of
0.5 GeV/e.

In the ensemble of pC interactions that is sub-
jected to an analysis here, we selected charged
pions, participant protons of momenta p in excess
of 0.3 GeV/c, and evaporated protons (0.15 < p <

0.3 GeV/c).®) In addition, we have considered two
groups of protons, those of momenta ranging between
0.3 and 0.75 GeV/c (these are predominantly par-
ticipant protons from the target nucleus) and those
of momenta p > 0.75 GeV/c. For the most part,
the last group consisted of protons that interacted
with a target nucleus and carbon-nucleus protons to
which the momentum transfer in the interaction with
a primary proton was high.

For the degree of centrality of a pC interaction, we
have taken the quantity @ definedas Q@ =ny —n_ —

ny ", where ny and n_ are the numbers of positively

YProtons of momenta below 150 MeV/c are not recorded
in the propane bubble chamber because of a short range
(less than 2 mm). Their multiplicity was determined from the
missing charge in an event.
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Fig. 1. Mean impact parameter (b) of pC interactions as a
function of Q. Points represent the results of the calcula-
tions performed on the basis of the FRITIOF model with
allowance for delta isobars (to guide the eye, the points
are connected by a line).

and negatively charged particles in an event, respec-
tively, while n, *" is the number of evaporated protons.
The quantity @ is equal to the total charge of particles
in an event that participate in the interaction actively.
[t correlates with the impact parameter of colliding
nuclei (see Fig. 1). The degree of interaction centrality
increases with increasing Q.

2. MODIFIED FRITIOF MODEL

The FRITIOF model assumes a two-body kine-
matics of inelastic nucleon—nucleon interactions, a +
b— a' + b, where o/ and b’ are excited states of
primary nucleons. An excited state is characterized
by a mass. Within the modified FRITIOF model, the
lower boundary of excited-nucleon masses, 1.1 GeV,
and the mean square of the transverse momentum
that colliding nuclei exchange, 0.15 (GeV/c)?, were
determined in fitting the features of np interactions

over the momentum interval 1.25—5.1 GeV/c[13].

In the case of hadron—nucleus and nucleus—
nucleus interactions, it is assumed that nucleons
excited in primary collisions can interact both with
one another and with other intranuclear nucleons
and increase their mass. The probabilities of multiple
collisions are calculated within the Glauber approach.
In the present study, we have taken into account not
only inelastic collisions of nucleons but also their
elastic rescatterings by using a method that is similar
to that in [14].

Excited hadrons are considered as QCD strings
whose fragmentation yields hadrons.

In order to describe the disintegration of nuclei at
the fast stage of interaction, the FRITIOF model was
supplemented with the Reggeon model of nuclear dis-
integration[17]. At the first step, the number of nucle-
ons that underwent inelastic interaction (“wounded”
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Fig. 2. Multiplicity distributions of (a) charged particles,
(b) negatively charged pions, (c¢) positively charged pi-
ons, and (d) participant protons from pC interactions:
(closed circles) experimental data; (solid and dashed
curves) results of the calculations performed on the basis
of the FRITIOF model, respectively, with and without
allowance for At and A° isobars; and (dotted curves)
results of the calculations on the basis of the cascade—
evaporation model.

ones) is determined within the Glauber approxima-
tion [18]. Noninteracted nucleons are considered at
the second step. Such nucleons are involved in the
Reggeon cascade with the probability

W = Cndeiﬁ/?qida Cnd = 17

where r is the difference of the impact-parameter
radius vectors of the nucleon initiating the interaction
event being considered and a given involved nucleon.
An involved nucleon can involve another spectator
nucleon, and so on. It is assumed that all wounded
and involved nucleons leave colliding nuclei. The re-
laxation of excited residual nuclei is simulated in
terms of the evaporation model [19]. A more detailed
description of the model used here can be found in
[12, 14].

The model version described in [12, 14] yielded
an underestimated multiplicity of negatively charged
particles, especially in the region of target-nucleus
fragmentation. In view of this, an attempt was made

Tnd = 1.2 fm,
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here to take into account nonnucleon degrees of free-
dom in nuclei.

There is no doubt that, in nuclei, nucleons can
undergo virtual transitions of the N — N + 7 and
N +m — N types. Upon suffering interaction with
an incident hadron, virtual N7 pairs can approach
the mass shell, becoming real. A calculation of the
features of such processes, including their cross sec-
tions, would involve solving many problems in the
theory of the nucleus; therefore, it cannot be fully
performed at present. Moreover, it is necessary to
consider the production of N pairs in the course of
a Reggeon cascade. In order to obtain a qualitative
insight into the processes in question, we therefore
assumed that a wounded or an involved nucleon may
become, with a probability of about 20%, a N pair.
More specifically, we assumed that a proton or a
neutron participating in the interaction may become,
respectively, a AT or a A% isobar. From the point of
view of the FRITIOF model, this is the simplest solu-
tion to the problem being discussed. It also removes
the intricate question of the kinematical features of an

For the sake of completeness, a comparison of
experimental data with the results of theoretical cal-
culations was performed in terms of two versions of
the modified FRITIOF model (with and without delta
isobars) and in terms of the cascade—evaporation
model [20].

3. MULTIPLICITY OF SECONDARIES
FROM pC INTERACTIONS AT 4.2 GeV/c

Figure 2 gives an idea of the multiplicity distribu-
tions of various secondaries in pC interactions. The
greatest number of charged particles recorded in pC
interactions is 13; the greatest number of 7+ and 7~
mesons is 4, while the greatest number of participant
protons (with allowance for the charge-exchange
processes p — n and n — p) is 8. The number of pC
events subjected to analysis and the mean multiplic-
ities of secondaries for all pC interactions and for six
groups of events characterized by specific values of
the degree of centrality (as specified by the quantity
() in each group are quoted in Table 1. One can see
that peripheral interactions (@ < 2) constitute more
than 70% of all inelastic pC interactions. The fraction
of events that are characterized by the highest degree
of centrality (@ > 4) is small (about a few percent).
As a result, all pC interactions are characterized by a

mean multiplicity of participant protons, <ngart>, that

is less than two. The mean multiplicity of positively

n the calculations, we disregarded the anisotropic decay of
delta isobars.

Vol.66 No.5 2003
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Fig. 3. Calculated momentum distributions of participant
protons in pC interactions (histogram). The solid and the
dashed curve represent, respectively, the contribution of
surviving protons and the contribution of target protons.
The vertical line indicates the optimum boundary between
the spectra.

charged pions, (n,+), considerably exceeds that of
negatively charged pions, (n.-), and this is typical of
proton interactions with symmetric nuclei [21].

As can be seen from Table 1, the mean multi-
plicities of positively and negatively charged pions in
pC interactions exceed their counterparts in proton—
nucleon collisions (in the case of a normalization

to the total cross section for proton—nucleon in-

teractions, a};}{,, the relevant multiplicities in such

collisions are (n-),n = 0.31 and (n.+),n = 0.51)
[22, 23]. A comparison of the mean multiplicities
of pions in pC and pN collisions makes it possible
to conclude that about 30% of negatively charged
pions and about 40% of positively charged pions
are formed in secondary interactions in the carbon
nucleus involved.

The multiplicity of protons having momenta in
excess of 1.4 GeV/c (see Table 1) is basically in
agreement with the multiplicity of leading, most
energetic, protons (primary protons after interaction).
The choice of boundary between the momentum
spectra of surviving and target protons was based
on the FRITIOF model involving delta isobars.
Within this model, we have determined the spectra of
surviving protons and protons appearing as carbon-
nucleus fragments. On the basis of these results,
we have chosen the optimum boundary between
the spectra at p = 1.4 GeV/c. For this choice, the
mean multiplicity of leading protons that have mo-
menta in the region p < 1.4 GeV/c and which are
associated with the surviving projectile proton is

<n;§ad>p<1_4Gev/C = 0.10, while the multiplicity of
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Fig. 4. Mean multiplicities of (a) charged particles, ()
negatively charged pions, (¢) positively charged pions,
and (d) participant protons versus Q. The notation for the
points and curves is identical to that in Fig. 2.

leading protons that appear to be knock-on target

protons is <n;ar>p>1'4 Gev/e = 0.09. The momentum

range between 0.3 and 1.0 GeV/c is populated
predominantly by protons from the target nucleus. In
the momentum range 1.0 < p < 1.8 GeV/c, there is
an overlap of target and surviving protons (see Fig. 3).
Knowing the multiplicities and kinematical features
of leading protons whose momenta take values in the
region p > 1.4 GeV/c, one can in principle find the
stopping power of carbon nuclei; we will address this
problem in our next publication.

Let us now consider the mean multiplicities of
secondaries versus the degree of centrality of pC col-
lisions. The relevant dependences are illustrated in
Table | and in Fig. 4. One can see that the mean mul-
tiplicities of all charged particles, positively charged
pions, and participant protons increase considerably
upon going over from peripheral to central interac-
tions. At the same time, the mean multiplicity of neg-
atively charged pions is only weakly sensitive to vari-
ations in Q. The greatest value of (n,-) is observed
in Q = 1 events, while its smallest value is realized in
@ = 2 events. This is because @) = 1 events are pre-
dominantly proton—neutron interactions ({r.-),,, =

0.43 [22]), while ) = 2 events are proton—proton in-



Table 1. Mean multiplicities of secondaries from pC interactions at 4.2 GeV/c versus the degree of collision centrality (the calculation based on the FRITIOF model was performed
with allowance for delta isobars)

0r8

[ATONN DIWOLV 40 SOISAHd

€006 G 'ON 99 IoA

, (np"), (np™), (np™"), (np™),
Q Nev (%) (Mch) (n.—) (Nt ) (nj™) 0.3<p<0.75 p>1.4 0.15<p<0.3 p<0.15
GeV/e GeV/e GeV/c GeV/e

I |Expt. 2989(27.3)|  2.7240.08 0.5224+0.013 | 0.4164+0.010 | 1.054+0.015 0.241 =+ 0.009 0.588 & 0.020 0.732 4 0.020 5.32 4 0.02
FRITIOF | 28457(28.4)| 2.1524£0.008 | 0.47940.004 | 0.37940.003 | 1.088 % 0.005 0.114 =+ 0.002 0.785 & 0.006 0.206 4 0.004 5.800 & 0.003

2 |Expt. 3814(45.6)|  3.15+0.02 0.321 4 0.007 | 0.660 +0.008 | 1.743 4 0.010 0.584 & 0.009 0.740 & 0.018 0.425 4 0.013 0.49 4 0.01
FRITIOF | 37635(37.6)| 2.926+£0.007 | 0.32140.003 | 0.66240.004 | 1.658 % 0.004 0.454 & 0.003 0.794 & 0.005 0.284 4 0.004 4.716 4 0.003

3 |Expt. 1477(17.6)|  4.70 +0.04 0.423 £ 0.016 | 0.9654+0.020 | 2.526 4 0.024 1.212 +0.024 0.664 & 0.027 0.779 4 0.026 3.15 4 0.03
FRITIOF | 16675(16.7)| 4.594+0.014 | 0.424+0.005 | 0.787+0.006 | 2.624 4 0.007 1.219 + 0.006 0.712 & 0.007 0.759 4 0.009 3.255 & 0.009

4 |Expt. 575(6.9)| 5.7340.07 0.476 & 0.027 1.22 40.04 3.22 4+ 0.04 1.84+0.05 0.57 4 0.04 0.82 4 0.04 2.22 4 0.05

FRITIOF|  9551(9.6)|  6.00 = 0.02 0.448 £ 0.006 | 0.857 4 0.008 3.54 4 0.01 2.03 £ 0.01 0.62 & 0.01 1.15 +0.01 1.89 + 0.01

5 |Expt. 164(2.0)| 6.7240.12 0.43 +0.05 1.40 + 0.08 4.02 4 0.09 2.6140.10 0.47 £+ 0.06 0.87 4+ 0.03 1.15 £ 0.01

FRITIOF|  5166(5.2)| 6.96 + 0.02 0.45 4 0.01 0.89 4 0.01 4.46 4 0.02 2.89 4 0.02 0.54 & 0.01 1.16 £ 0.01 0.94 4 0.01

6 |Expt. 52(0.6)| 7.6040.20 0.36 & 0.07 1.58 +£0.16 5.10 £ 0.18 3.39 £ 0.21 0.56 +0.11 0.56 4 0.08 0.1140.15

FRITIOF|  2516(25)| 7.71+0.03 0.46 4 0.01 0.93 4 0.02 5.75 4 0.03 4.1740.03 0.44 £ 0.01 0.57 +0.01 0.21 4 0.01

All |Expt. 8371(100)|  3.61 40.02 0.407 +£0.006 | 0.706+0.007 | 1.860 % 0.010 0.747 % 0.009 0.668 + 0.010 0.640 =+ 0.009 4.20 + 0.02
events | FRITIOF | 100000 (100)| 3.627 +0.007 | 0.4060.002 | 0.640+0.002 | 2.085 = 0.004 0.855 = 0.004 0.739 + 0.003 0.476 = 0.003 4.204 + 0.006
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Table 2. Ratios (nE) /(nb™) in pC interactions at 4.2 GeV/c versus Q (the calculation based on the FRITIOF model
was performed with allowance for delta isobars)

art art
0 (ne=)/{np"") () /(")
expt. FRITIOF expt. FRITIOF
1 0.495 £ 0.014 0.440 £ 0.005 0.395 £ 0.012 0.348 £ 0.004
2 0.184 +0.007 0.194 + 0.002 0.379 + 0.006 0.399 £ 0.003
3 0.167 + 0.006 0.162 £ 0.002 0.382 £ 0.008 0.299 £+ 0.003
4 0.148 + 0.009 0.126 £ 0.002 0.378 +0.012 0.242 £ 0.003
5 0.108 £0.012 0.101 £ 0.003 0.349 + 0.020 0.200 £+ 0.003
6 0.070 + 0.014 0.080 £ 0.002 0.310 £ 0.032 0.162 + 0.004
All events 0.219 + 0.004 0.195 £ 0.001 0.380 + 0.004 0.307 £ 0.001

teractions ((n,-),, = 0.18 [23]). This is suggested

by peaks at odd values of n¢, in the multiplicity dis-
tributions of charged particles in Q =1 events and,
accordingly, peaks at even n.y in the corresponding
distributions for @ = 2 events (see Fig. 5). In @ > 3
events, the mean multiplicity of negatively charged
pions is nearly invariable, while the mean multiplicity
of positively charged pions continues growing and
exceeds significantly that which is observed in pe-
ripheral interactions (see Table 1 and Fig. 4). The
effect of the positive charge of a primary proton can
be traced in all groups with respect to @, with the
exception of the @ = 1 group (only in this group do
we have (n.+) < (n,-)). We note that, at 4 GeV/c,
the cross section for the reaction pp — pnr™, o1,
exceeds the cross section for the reaction pn — ppr—,
o9, by a factor of 3 [23]. As the momentum of the
primary proton decreases in the course of the inter-
action with the carbon nucleus, this excess becomes
more pronounced (o7 increases significantly, while o9
decreases slowly [23]). In this way, one can explain
the fact that the mean multiplicies (n,-) and (n,+)
depend differently on Q.

Let us consider the effect of the degree of cen-
trality of pC interactions on the mean multiplic-
ities of slow protons appearing as target protons
(0.3 <p<0.75 GeV/c) and of fast protons (p >
0.75 GeV/c). The smallest value of <ngart> for mo-
menta in the range 0.3 < p < 0.75 GeV/c is ob-
served in Q =1 events (see Table 1), which, as
was indicated above, result predominantly from the
interaction of a primary proton with a carbon neutron.
With increasing @, the multiplicity of target protons
grows—an ever greater number of carbon-nucleus
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nucleons is involved in the interaction process. Con-
currently, the multiplicity of evaporated protons nat-
urally decreases—in particular, the multiplicity of
protons whose momenta do not exceed 150 MeV/c
decreases to zero in Q > 6 events. The multiplicity
of target protons with momenta in the region p >
0.75 GeV/c ((nb™) — (nd™(0.3 < p < 0.75 GeV/c))—
(n}fad(p > 1.4 GeV/c))) also grows with increasing
Q. This occurs owing to an increase in the fraction
of target protons to which the momentum transfer
in a collision with an incident proton was high. Over
the entire range of Q) values, the mean multiplicity of
leading protons takes values at a level of 0.6 to 0.7.

On the basis of data presented for (n,-), (n,+),
and <n§;"‘”> at various values of @, we have deter-

mined the ratios (nﬂi>/(ngart> and obtained the de-
pendences of these ratios on @ (see Table 2). As can
be seen, the mean multiplicity of negatively charged
pions per average participant proton from pC inter-
actions at 4.2 GeV/c decreases considerably (by a
factor of 7) upon going over from peripheral to cen-
tral collisions. This suggests that, with increasing
@, the fraction of secondary interactions resulting in
the production of negatively charged pions decreases.

At the same time, the ratio (n,+)/(nb™) proved to
be less sensitive to variations in @ (see Table 2). A
decrease in this ratio over the corresponding interval
of @Q is about 20%. This is quite clear since the mean
multiplicity of positively charged pions increases with
@ nearly in direct proportion to the increase in the
mean multiplicity of participant protons with increas-
ing @, but this is not so for the mean multiplicity of
negatively charged pions.
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Fig. 5. Multiplicity distribution of charged particles from pC interactions at various values of Q. The notation for the points
and curves is identical to that in Fig. 2.
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Fig. 6. Multiplicity distribution of negatively charged pions from pC interactions at various values of Q. The notation for the
points and curves is identical to that in Fig. 2.
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Fig. 7. Multiplicity distribution of positively charged pions from pC interactions at various values of Q. The notation for the

points and curves is identical to that in Fig. 2.

The FRITIOF model taking into account A* and
A isobars satisfactorily reproduces experimental da-

ta on (n,-)/(n)™). A comparison of experimental
data on the mean multiplicities of secondaries with
the results of the calculations based on the FRITIOF
model revealed that the model is able to describe
satisfactorily the mean multiplicities of all charged
particles, negatively charged pions, and participant
protons not only for the entire ensemble of pC interac-
tions but also for their individual groups (see Table 1).
The calculated values of (n,+) agree with their exper-
imental counterparts only for peripheral interactions.

The cascade model satisfactorily reproduces the @

dependences of (n+) and (ngart>, but it overestimates

the multiplicity of negatively charged pions. If A* and
A isobars are not included in the FRITIOF model, it
leads to underestimated values of (n.-) (see Fig. 4).

In addition to the ) dependences of the mean mul-
tiplicities of secondaries, we have also obtained the
distributions of pC-interaction events with respect
to the multiplicity n., of charged particles (Fig. 5),
the multiplicities of negatively and positively charged
pions (Figs. 6 and 7, respectively), the multiplicity
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ng*‘“ of participant protons (Fig. 8), and the mul-

tiplicity np, " of evaporated protons (Fig. 9) for in-
dividual groups specified by @ values. Figures 5—
9 give a clear idea of the effect that the degree of
centrality of pC interactions exerts on the shapes of
the distributions being studied. By way of example,
we indicate that, with increasing @, the maximum
in the distributions with respect to n¢, is shifted
toward greater values of n.p, the distribution itself
becoming narrower. The distributions with respect
to nen proved to be unexpectedly broad for periph-
eral interactions (@ = 1, 2)—they feature multiprong
events. An analysis of such events revealed that the
increase in the number of particles in them is due
to evaporated protons having momenta in the range
0.15—0.3 GeV/c and originating from the deexcita-
tion of carbon-nucleus residues (see Fig. 9). It follows
that, in some peripheral pC interactions, there occurs,
in addition to proton—nucleon collisions producing
pions (Figs. 6, 7), a significant excitation of the tar-
get nucleus. As @ becomes greater, the multiplicity
of charged particles in pC events is determined to
an ever greater extent by the number of target pro-
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Fig. 8. Multiplicity distribution of participant protons from pC interactions at various values of ). The notation for the points

and curves is identical to that in Fig. 2.

tons involved in the interaction process. The excited
carbon-nucleus residue survives until (Q > 6 events
occur (see Table 1 and Fig. 9). We note that the

FRITIOF model (both versions) describes satisfac-
torily the distributions given in Fig. 5.

Figure 6 shows that a significant fraction (up to
70%) of pC events in all groups do not involve neg-
atively charged pions. Along with this feature, the
presence of two or three negatively charged pions
for @ <4 is worthy of note. Events characterized
by maximum multiplicities of negatively and posi-
tively charged pions at a minimum multiplicity of
participant protons also contribute to the number of
events where the multiplicity of charged particles is
high. With decreasing primary-proton momentum,
the cross section for the reaction pn — ppn~ de-
creases (see above), which is manifested in the reduc-
tion of the number of n,— > 2 events (see Fig. 6 at
@ =>5and Q > 6).

The fraction of events featuring no positively
charged pions is maximal among peripheral interac-
tions. At greater values of @, the set of pC interactions

PHYSICS OF ATOMIC NUCLEI

is enriched in events where the multiplicity of posi-
tively charged pions is not less than two (see Fig. 7).
This is due to a sharp growth of the cross section for
the reaction pp — pnm™ with decreasing momentum
of the proton interacting with a target proton.

The distribution of pC-interaction events with re-
spect to the multiplicity of negatively charged pions
is well described by the FRITIOF model taking into
account the production of A* and A isobars in a car-
bon nucleus (see Fig. 6). The same applies to the de-
scription of the distributions of pC-interaction events
with respect to the multiplicity of positively charged
pions in the < 3 groups. More central interactions
are better described by the cascade model [20].

A feature peculiar to the @ dependence of the
distributions of pC-interaction events with respect to
the multiplicity of participant protons is that the max-
imum in these distributions is shifted toward greater

values of nb™ with increasing Q (see Fig. 8). This

phenomenon is due to an increase in the multiplicity
of participant protons from the target as we go over

Vol.66 No.5 2003
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Fig. 9. Multiplicity distribution of evaporated protons from pC interactions at various values of Q. The notation for the points

and curves is identical to that in Fig. 2.

from peripheral to central pC interactions. Both ver-
sions of the FRITIOF model and the cascade model
describe satisfactorily the experimental distributions
with respect to the multiplicity of participant protons.

[t would be of interest to find out which mechanism
of pC interaction is responsible for the disintegration
of a carbon nucleus at the fast stage of the interaction.
This may be a Reggeon cascade that was proposed
in [17] and which develops through the involvement
in it of nucleons that did not participate in the in-
teraction at the first step of a collision between a
proton and a carbon nucleus. The multiplicity of nu-

cleons involved that was estimated on the basis of the
FRITIOF model with allowance for delta isobars is
about 30% of the mean multiplicity of protons having

momenta in the range between 0.3 and 1.4 GeV/c. In

Q > 5 events, <n;;“’> may be as large as 50 to 60%

of (n!a"). If the number of wounded nucleons is taken
to be equal to the number of collisions between the
primary proton and the target-nucleus nucleons, then
we arrive at a reasonable idea of the spacetime picture
of pC interactions.
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4. CONCLUSIONS

(i) New experimental data on the multiplicities
of charged pions and protons from the interactions
of 4.2-GeV/c protons with carbon nuclei have been
presented versus the parameter (), which correlates
with the impact parameter of colliding nuclei.

(ii) With increasing degree of the centrality of a
collision between a proton and a carbon nucleus,
the total multiplicity of charged particles grows
significantly owing to an increase in the multiplicity
of positively charged pions and participant protons
from the target nucleus; concurrently, the multi-
plicity of negatively charged pions remains virtually
unchanged, while the mean multiplicity of evapo-
rated protons having momenta below 0.15 GeV/c
decreases sharply (nearly down to zero).

(iii) In peripheral pC interactions (@ = 1, 2), there
occurs target-nucleus excitation, which results in
the emission of slow protons having momenta up to
0.3 GeV/e.

(iv) It has been shown that the cascade—evapora-
tion model significantly overestimates the multiplicity
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of negatively charged pions in multinucleon colli-
sions in relation to experimental data and that the
FRITIOF model underestimates it if no account is
taken of nonnucleon degrees of freedom in nuclei.

(v) Upon taking into account A+ and A isobars,
the experimental features of secondaries are satisfac-
torily described within the FRITIOF model.
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Abstract—Data from the Tien Shan array Adron on the dependence of the lateral distributions of the
electron—photon component (age parameter §) in extensive air showers of cosmic rays on the number
of electrons, N., which is a quantity that characterizes the primary-nucleus energy Ejy, are subjected to a
comparative analysis. The distributions in question are given both for all showers and for showers accom-
panying high-energy gamma rays and hadrons in x-ray emulsion chambers. According to calculations,
events associated with the latter are generated predominantly by primary protons, and this makes it possible
to assess their role at various values of Ey. The distributions with respect to .S suggest a significant fraction
of light nuclei, predominantly protons, in the region after the knee in the spectrum for N, > 10°, at least up

to N, = 5.6 x 10 (Ey ~ 10 PeV). © 2003 MAIK “Nauka/Interperiodica”.

One of the main problems in the physics of cosmic
rays at primary energies in the range 0.1—100 PeV
is that of clarifying the reasons behind the change
in the shape of the spectra of various components of
extensive air showers—that is, the presence of the so-
called knee in these spectra (a change in the exponent
appearing in a power-law approximation of the spec-
tra). A knee of this type was observed predominantly
in the spectra of extensive air showers with respect
to the number of electrons; it was recorded by many
arrays, including those at the Moscow State Univer-
sity [1] and at Tien Shan [2]. The most comprehen-
sive compilation of data on the knee and a detailed
analysis of these data can be found in [3]. A knee
is also obtained upon rescaling data to the energy
of primary cosmic radiation on the basis of standard
models—it occurs in the region around Ey = 3 PeV.
In a number of studies (see, for example, [4, 5]), the
presence of a knee is explained in terms of a change
in the nuclear composition of primary cosmic radi-
ation according to the diffusion model, where it is
stated that, as the energy of cosmic radiation becomes
higher, its nuclear composition is depleted first in
protons at an energy of a few PeV and then in other
nuclear species at higher energies (in accordance with
magnetic rigidity). This must lead to a considerable
increase in the fraction of heavy nuclei at an energy
of about 10 PeV. An analysis of experimental data on
extensive air showers recorded by various arrays that

was performed with the aim of revealing variations in
the nuclear composition of primary cosmic radiation
after the knee has not yet yielded a definitive result, al-
beit many authors of experimental studies devoted to
extensive air showers believe that their data suggest
that this nuclear composition becomes “heavier” after
the knee. An alternative explanation of the change in
the spectrum is based on the assumption that primary
cosmic radiation receives an additional contribution
from nuclei generated by a close cosmic source [3].
In [6], the presence of a knee is explained by a change
in the character of the interaction between cosmic-
ray radiation with nuclei of air atoms rather than
by a change in the composition of primary cosmic
radiation.

The lateral distribution of electrons at the ob-
servation level reflects the stage of the longitudinal
development (age parameter S) of a shower, this
stage being dependent on the charge number of
the primary-cosmic-radiation nucleus and on the
features of its interaction with nuclei of air atoms.
Since the electron—photon components of extensive
air showers initiated by light and by heavy nuclei
develop differently in the atmosphere, their lateral
distributions must also be different (under standard
assumptions on the interaction). It should be re-
called here that “young” extensive air showers (those
that are characterized by smaller values of S) are
generated predominantly by primary protons, albeit

1063-7788/03/6605-0847$24.00 © 2003 MAIK “Nauka/Interperiodica”
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Various features of S versus N,

Ne, 107 | (S) | a(Sexpt) | a(S) | a(8)/(S)
56-10 | 088 | 0.13 | 0.080 0.11
10-18 | 0.84 | 0.2 | 0.085 0.12
18-32 | 0.81 | 0.12 | 0.089 0.13
32-56 | 0.79 | 0.12 | 0.093 0.14
56—100 | 0.77 | 0.2 | 0.092 0.14
100-180 | 0.75 | 0.13 | 0.089 0.14
180-320 | 0.77 | 0.4 | 0.115 0.17

such showers have a rather broad distribution with
respect to S because of significant fluctuations; at the
same time, “old” extensive air showers (those that are
characterized by greater values of S') are generated by
heavy nuclei because of a faster development of the
relevant cascade in the atmosphere. In a number of
recent studies, this property, combined with various
features of other components of extensive air showers,
has been employed to estimate the composition of
primary cosmic radiation. The total number of elec-
trons, N,, in an extensive air shower that was used
to perform a classification of events is proportional
to EJY, and this fact makes it possible to study
changes in relevant processes with increasing energy
of primary cosmic radiation.

At the Tien Shan multipurpose array Adron
(690 g cm™2)[2, 7], experimental data on the lateral
distributions of the electron—photon component of
extensive air showers and on its distributions with
respect to S were obtained over a few intervals of the
number N, of electrons from 5.6 x 10° to 3.2 x 107
(Ey = 1-50 PeV). The fluxes of the electron—photon
component of extensive air showers were recorded at
distances of 1 to 120 m from the axis with the aid of
a multichannel system consisting of 130 scintillation
detectors arranged in 46 groups at distances of up to
80 m from the array center (see Fig. 1). Each of 37
main groups contained three detectors of dimensions
0.5 % 0.5 x0.050r1.0 x 1.0 x 0.05 m3, and this made
it possible to test the readings of individual detectors
by comparing them with those of the neighboring
ones. The parameters of the electron—photon com-
ponent (the coordinates of the axis, « and y, and
the zenith and azimuthal angles of its inclination, N,
and S) were determined by using the readings of the
scintillation detectors [2]. The angles of inclination of
the extensive-air-shower axis were found from the
delay of signals in the scintillation detectors at a
distance of 20 m from the array center with the aid
of the Khronotron nanosecond system.

In order to observe high-energy gamma-ray and
hadronic families, six rows of x-ray emulsion cham-
bers interspersed with lead and carbon absorbers
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and four rows of ionization chambers were placed
at the center of the array over an area of 160 m?.
For events in the x-ray emulsion chambers, their
energies and coordinates were determined and then
contrasted against the readings of the ionization
chambers, whereupon they were associated with
specific extensive air showers [8].

For various intervals in N, for the energies of pri-
mary cosmic radiation in the range Fy = 1—20 PeV,
the distributions with respect to S were obtained both
for all extensive air showers and for individual show-
ers featuring high-energy gamma rays and hadrons
recorded in the x-ray emulsion chambers. According
to model calculations, showers of the latter type are
generated predominantly by protons and light nu-
clei[9, 10]. Lateral distributions of electrons in exten-
sive air showers are usually approximated by the cal-
culated Nishimura—Kamata—Greisen (NKG) func-
tions with various age parameters S depending on
the steepness of their slump with increasing distance
from the shower axis. In[11] and in some other stud-
ies, it was shown that, at various observation levels,
lateral distributions obtained from experimental data
correspond to S values that are less than those corre-
sponding to calculations of the NKG type. The results
of more recent calculations of lateral distributions
approached experimental data (see, for example, [12]).
In view of this, the NKG value of S was used here as
a formal parameter in performing a comparison with
other data in describing the lateral distributions of the
electron—photon component of extensive air showers.
For distances up to 120 m and zenith angles in the
range 0°—30° with respect to the vertical direction
({P) = 720 g cm~2), where these lateral distributions
were measured, they are well described by the NKG
functions. It should be emphasized that, in processing
data from the Adron experiment, the age parameter S
was determined via approximating the lateral distri-
butions obtained on the basis of scintillation-detector
readings, S, in each individual shower. In contrast to
what was done in analyzing the previous data in [13],
we did not eliminate here the photon contribution to
scintillation-detector readings from the outset. In or-
der to eliminate it, we later performed a calibration by
using gas-discharge counters and thin scintillation
detectors and compared the results being discussed
with the readings of ionization chambers arranged
under the central group of scintillation detectors. In
order to extend the range of detection of the particle-
flux density and to perform a calibration of extensive
air showers characterized by N, values up to 3 x 107,
gas-discharge counters of small area were installed
at various distances from the array center. According
to the calculations performed in [12], the photon-
detection efficiency becomes significantly lower as the
scintillator thickness is reduced. In order to perform a

Vol.66 No.5 2003
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Fig. 1. Arrangement of detectors at the Tien Shan array Adron: (closed circles and boxes) scintillation detectors of area 0.25
and 1 m?, respectively; (open circles) newly deployed scintillation detectors; (horizontal shading) x-ray emulsion chambers;
(inclined shading) muon detector; (HD) neutron monitor (it will be used in future measurements); and (circumscribed inclined

crosses) scintillation detectors for controlling HD.

calibration, scintillators of thickness 1.0 and 1.8 cm
were therefore positioned near conventional scintil-
lators of thickness 5.0 cm. On the basis of a com-
parison of the readings of all counters, we were able
to establish, for a purely electron cascade (without
a photon contribution), the Sy, dependence of S for
our array. The results of experimental-data process-
ing were obtained with the aid of the Space basic
package [14] and were tested by using other codes—
such as Q100 [15] and Nelde-Mid (A.P. Chubenko,
O.M. Efimova)—that yielded close mean values of
Sse and close distributions with respect to S, with
somewhat different tails, however, the distributions at
Sse = 0.5—0.8 being shifted by +0.05. As a result, we
found, taking calibration into account, that S = Sg. +
0.15 according to Space and that, to within 4+0.02,
S = Ss + 0.10 according to Q100.

The distributions with respect to S (Ss.) were
obtained for all extensive air showers within various
intervals of N, (Fig. 2). Figure 2a shows such dis-
tributions for N, values in the ranges (5.6—10.0) x
105, (10.0—17.8) x 10°, and (56—100) x 103, while
Fig. 2b displays those for (56—100) x 10° (this frag-
ment of Fig. 2a is repeated for the sake of compari-
son), (100—178) x 10°, and (178—316) x 10° (the er-

PHYSICS OF ATOMIC NUCLEI

rors given in Fig. 2 are purely statistical). From these
figures, it can be seen that the fraction of extensive
air showers characterized by small values of S (young
extensive air showers) increases monotonically as N,
increases from 5.6 x 10° to 1.8 x 107. By way of ex-
ample, we indicate that the contribution of S < 0.75
(Sse < 0.6) extensive air showers increases from 15 to
43%, while the contribution of S > 0.95 (S > 0.8)
extensive air showers decreases from 29 to 7% over
this range of N.. The fraction of old extensive air
showers characterized by S > 1.2 is very small.

We note that, at the old Tien Shan array, the corre-
sponding reduction of S was observed for extensive air
showers having smaller values of N, (5 x 103—4.8 x
10°)[6, 16]. With increasing N, the mean value (S)
decreased monotonically, but this decrease became
slower in the region N, > 5.6 x 10°. Since the sta-
tistical accuracy is insufficient in the processed data
sample for the interval N, = (1.8—3.2) x 107, we are
unable to answer the question of whether this trend
persists there.

However, a treatment of extensive air showers of
ultrahigh energies [2] with N, > 3 x 10® according
to different algorithms revealed that approximately

Vol.66 No.5 2003
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Fig. 2. Distributions with respect to the age parameter S
and Ss. of extensive air showers for five intervals in the
number of electrons, N, at a level of 720 g cm 2.

100% of such showers are characterized by Ss. <
0.6. Because of low statistics in [2] (in contrast to
what was achieved in the present study), extensive air
showers were considered over a wider region of zenith
angles and distances from the array center.

The table presents the data of the present study,
and Fig. 3 gives, in addition to them, data from [6,
16] on the mean value (S) as a function of N.. The
second column contains the values of (S). In the third
column, we give the experimental values o(Sexpt) of
the root-mean-square deviation in the distribution
with respect to S. The fourth column presents the
same results corrected for the measurement errors
6(5): 0(8S) = /0% (Sexpt) — 02(S). We obtained val-
ues of 4(S) < 0.1 by sampling generated extensive
air showers with allowance for actual experimental
errors in measuring the particle flux through a scintil-
lation detector and with the aid of the same codes for
determining the parameters of extensive air showers.
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Fig. 3. Dependence of (S) on N, according to data ob-
tained in (closed boxes) the present study, (open boxes)
[6], and (crosses)[16].
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Fig. 4. Dependence of the ratio of the fraction of “young”
(S < 0.6) and “old” (S > 1.2) extensive air showers to
the fraction of middle-aged showers defined as those for
which S = 0.6—0.8 on N, for various values of the exper-
imental error §(.S) (the values of ¢ are indicated on each
line—for example, the thick lines correspond to § = 0.1).
The lines depict the results of the calculations performed
in [17], while the points represent our experimental data
[(S < 0.6) solid lines and open circles; (S > 1.2) dashed
lines and closed circles]. The actual values of the experi-
mental error lie in the region 6 < 0.1.

The data in the fifth column on the relative half-width
a(9), a(5)/(S), demonstrate that the relative half-
width of the distributions somewhat increases with
increasing N, owing primarily to a growth of the
fraction of young extensive air showers.

[f the nuclear composition remains unchanged as
the energy of primary cosmic radiation increases and
if the character of the interaction changes according
to currently used models, which are based on the
extrapolation of accelerator data to the region of en-
ergies peculiar to extensive air showers, it can be ex-
pected that extensive air showers will become some-
what “younger” (the maximum of the development of

Vol.66 No.5 2003
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Fraction of extensive air showers

02 | IOgNe = 575—60

0.1F

Fig. 5. Distributions with respect to Ss. or S for various
intervals in N, (according to the Q100 code) for (solid
curves) extensive air showers featuring gamma rays and
hadrons and (dashed curves) all extensive air showers.

extensive air showers will be shifted into the depth
of the atmosphere). The evolution toward younger
showers is enhanced if primary cosmic radiation is
enriched in light nuclei and is moderated if it is en-
riched in heavy nuclei. Therefore, the change in S due
to a change in the nuclear composition may be estab-
lished on the basis of a comparison of experimental
data with the results of model calculations, where it
is considered that showers may become younger in
response to a change in the features of interactions
with increasing Ey.

We have compared our data with the results of
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Fig. 6. Ratios of the numbers of (closed boxes) S <
0.6 and (open boxes) S > 0.85 extensive air showers
involving (@) gamma rays and hadrons (}_ E, > 10 TeV,
> E) >10 TeV) to the total number of such exten-
sive air showers (according to the Q100 code) and (b)
gamma rays (Y Ey > 16 TeV) to the total number of
such showers (according to the Space code) versus Ne
and Eo; (c) results of the calculation performed within
the MQ1 model for the N. dependence of the fraction
of extensive air showers involving gamma-ray families
(3> E4 > 16 TeV) and originating from primary-cosmic-
radiation nuclei [(p + He) solid line; (CNO + H 4+ VH)
dashed line].

the calculations performed in [17] on the basis of
the QGSJET model and on the basis of the dif-
fusion model of the propagation of primary cosmic
radiation through the Milky Way Galaxy, where it
is assumed that the nuclear composition changes,
according to [4], from a “light” (about 65% of p + He
and about 20% of H + VH) at an energy of a few PeV
to a rather heavy (about 40% of p 4+ He and about
40% of H + VH) one at a few tens of PeV. The results
of this comparison are illustrated in Fig. 4, where our
experimental results are superimposed on the graph
from [17]. In just the same way as in [17], the graph
displays a set of curves corresponding to different
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assumptions on the values of the experimental error
0 in determining the age parameter S for the fraction
of extensive air showers having small and large values
of S (less than 0.6 and greater than 1.2, respectively)
with respect to the fraction of extensive air show-
ers with average values of (S) = 0.6—0.8 versus N,
at Tien Shan level. The experimental error obtained
by simulating extensive air showers takes the value
of 6 22 0.1 at N. =5 x 10° and decreases somewhat
with increasing Ne,. The thick lines correspond to 6 =
0.1 (the solid and dashed lines represent the results
for S < 0.6and S > 1.2, respectively). In Fig. 4, open
(closed) circles correspond to S < 0.6 (S > 1.2) ex-
perimental extensive air showers. As can be seen from
Fig. 4, extensive air showers whose age parameter S
exceeds 1.2 constitute not more than 1%.

[t should be noted that, before the knee (at N, =
5.6 x 10%), where a rather light nuclear composition
is assumed in the calculations performed in [17], our
experimental data are in good agreement with the re-
sults of the calculations performed on the basis of the
QGSJET model. According to the results of the mea-
surements, the fraction of young extensive air show-
ers increases with increasing N, this increase ex-
ceeding considerably the possible errors of the mea-
surements. As strong an increase in the fraction of
H + VH nuclei at an energy of about 10 PeV as that
which is assumed in [17] is at odds with our experi-
mental data on the dependence of S on N,. These data
are indicative of a systematic growth of the steepness
of the average lateral distribution of the electron—
photon component of extensive air showers (decrease
in S) as N, changes from 5.6 x 10° to (5.6—10) x 10°
(Ep = 10—20 PeV) and suggest that the fraction of
light nuclei (including primarily protons) does not
decrease—possibly, it even increases—in the energy
region after the knee.

However, more justified conclusions can be drawn
upon a comparison with the results of a simulta-
neous measurement of other components of exten-
sive air showers. For this purpose, we have analyzed
the distributions with respect to S(NV,) in extensive
air showers accompanying high-energy gamma rays
and hadrons in the x-ray emulsion chambers. The
efficiency of the formation of such events is mod-
erately low at small V. The calculations performed
in [10] revealed that, at N, = 10, it is 0.003 of all
extensive air showers for primary protons, is 107% of
them for C, N, and O nuclei, and is negligible for
heavy nuclei (for the formation of families where the
total energy of gamma rays is in excess of 16 TeV).
These events are generated by protons belonging to
extensive air showers of small S and penetrating into
the depth of the atmosphere. With increasing N, the
efficiency of generation increases (at N, ~ 109, it is
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about 0.1 for protons); accordingly, the values of S
for showers in which such events are formed must
also increase. Our measurements show that this does
indeed occur up to N, = 10%. At greater values of
N., however, where a knee is observed, the number
of events corresponding to small S begins to grow.
For the N, intervals (5.6—10.0) x 10°, (10—18) x
10°, (18—32) x 105, (32—56) x 10°, and (56—100) x
10°, the distributions with respect to S (Ss) that
were obtained upon data processing according to the
Q100 code are displayed in Fig. 5 for all extensive air
showers (dashed curves) and for extensive air show-
ers accompanying, in the x-ray emulsion chambers,
gamma rays and hadrons associated with families of
energy > E, ory_ E > 10 TeV at individual particle
energies of E, or E > 2 TeV for the case where
their number in a family satisfies the condition n > 1
(solid lines). The errors displayed in Fig. 5 are purely
statistical. From this figure, it can be seen that, as N,
increases from 5.6 x 10° to 5.6 x 109, the fraction of
extensive air showers having small values of S (young
extensive air showers) among extensive air showers
generating events in x-ray emulsion chambers in-
creases monotonically; the same is true for the frac-
tion of young showers among all extensive air show-
ers. In this range of Ve, the values of (S) for events in
x-ray emulsion chambers are shifted toward smaller
values by AS ~ 0.1 in relation to the values of S for all
extensive air showers. This might have been expected
since, according to calculations, they are generated
by light nuclei deep in the atmosphere. For a selection
of extensive air showers involving gamma rays whose
families containing more than one particle have total
energies satisfying the condition ) | E, > 16 TeV and
whose individual energies satisfy the condition E, >
4 TeV, similar distributions obtained according to the
Space code yielded the same results [18].

For the N, dependence of the fraction of events
where extensive air showers generate, in the x-ray
emulsion chambers, gamma rays and hadrons whose
total energy satisfies the condition > E, or 3 E) >
10 TeV, the results obtained by means of data pro-
cessing on the basis of the Q100 code are displayed
in Fig. 6a, where the open and closed boxes repre-
sent the relevant dependences for, respectively, young
(S < 0.6) and somewhat older (S > 0.85) showers.
For total gamma-ray-family energies satisfying the
condition ) £, > 16 TeV, similar data obtained on
the basis of the Space code are shown in Fig. 6b.
From Fig. 6, it can be seen that, in the range N, =
(1.0—5.6) x 105 (Ey = 2—10 PeV), the fraction of
young extensive air showers grows with increasing
Ne (Ey), while the fraction of older showers for which
S > 0.85 decreases. At N, ~ 107, this trend is possi-
bly moderated (see Fig. 6a). Thus, the experimental
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data on extensive air showers accompanying high-
energy gamma rays and hadrons, as well as the data
on all extensive air showers, indicate that the steep-
ness of the lateral distribution of the electron—photon
component of extensive air showers grows monoton-
ically (accordingly, S decreases) as IV, changes from
108 to 5.6 x 10° (Ep = 2—10 PeV).

For the case where simulated-data processing was
based on the MQ1 model, the N, dependence of the
fraction of extensive air showers involving gamma-
ray families whose total energy satisfies the condi-
tion ) | E,, > 16 TeV that were generated by primary-
cosmic-radiation nuclei is shown in Fig. 6¢ for (solid
line) light (p + He) and (dashed line) medium-mass
and heavy (CNO + H + VH) nuclei. As can be
seen from Fig. 6¢, extensive air showers accompanied
by high-energy gamma rays are generated predomi-
nantly by primary protons and light nuclei.

Therefore, our data on the lateral distributions
of the electron-photon component in such extensive
air showers, as well as in all extensive air showers,
suggest that, at Tien Shan level, the fraction of light
nuclei does not decrease at primary-cosmic-radiation
energies above the energy of the knee in the spectrum
of extensive air showers with respect to the number
of electrons (this being so at least up to primary-
cosmic-radiation energies of about 10 PeV) or that
the fraction of particles penetrating deep into the at-
mosphere increases in this region.

For primary cosmic radiation of energy up to
10 PeV, the same conclusion was drawn from an
analysis of the energy spectra of gamma rays in the
x-ray emulsion chambers for various intervals of N,
and from a comparison of the results of model calcu-
lations with the N, spectra of extensive air showers
accompanying such gamma rays. At energies of 10
to 20 PeV, these data are, however, indicative of
the possible variations in the nuclear composition
of primary cosmic radiation or in the character of its
interactions.
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Ordered Structure of the Directions of Arrival of Ey~ 5 x 10'7 eV
Cosmic Rays According to Data from the Yakutsk Array for Recording
Extensive Air Showers
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Abstract—Results are presented that were obtained by analyzing arrival directions for cosmic rays
recorded by the Yakutsk array between 1974 and 2001 in the energy range Eq = 101767179 eV for zenith
angles in the region § < 53°. It is shown that their flux consists of two components—an isotropic (about
75%) and a cluster (about 25%) one—that are characterized by sharply different degrees of anisotropy. At
Ey = 101777178 ¢V, the observed showers are found to be strongly correlated with the Supergalaxy plane.

© 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

There is the opinion that primary cosmic radiation
of ultrahigh energy (Ey > 10'7 eV) consists predomi-
nantly of charged particles, protons and nuclei of var-
ious chemical elements. They are strongly mixed by
the magnetic field of the Milky Way Galaxy, with the
result that their distribution over the celestial sphere
is nearly isotropic. Under such conditions, it is very
difficult to discover local sources of primary cosmic
radiation.

In [1, 2] the AGASA (Akeno Giant Air Shower
Array) group found, by the method of a harmonic
analysis, a significant anisotropy at Ey ~ (8—20) x
10'7 eV, the amplitude of the first harmonic being
about 4% according to its results. This anisotropy
was due to an enhanced flux of primary cosmic
radiation from a source occurring near the center
of the Milky Way Galaxy. The AGASA result was
then corroborated and refined by the Australian
group SUGAR (Sydney University Giant Airshower
Recorder) [3].

Unfortunately, the Yakutsk array does not see the
center of the Milky Way Galaxy. Previously, it was re-
ported in [4] that, in the directions of arrival of primary
cosmic radiation of energy in the region Fy > 4 x
10'7 eV, a small-scale structure is observed, which
may have some bearing on local sources. Some more
pieces of evidence in favor of this point of view were
obtained in [5, 6], where it was shown, among other

“e-mail: a.v. glushkov@ikfia.ysn.ru

things, that the contribution of primary cosmic radi-
ation of extragalactic origin is quite sizable in the en-
ergy range Ey =~ (2—5) x 10'® eV. Presented below
are experimental data that shed some more light on
the problem of the origin of ultrahigh-energy primary
cosmic radiation.

2. FEATURES BEING INVESTIGATED AND
DISCUSSION

In the present article, we consider extensive air
showers recorded by the Yakutsk array between 1974
and 2001 at energies in the range Ey = (4—8) x
10'7 eV and zenith angles satisfying the condition
cosf > 0.6. We study a small-scale anisotropy—
that is, local irregularities within about 5° to 10°.
Our analysis included extensive air showers whose
arrival directions were determined on the basis of
data from four or more stations and whose axes
traversed the central circle of the array with a radius of
1250 m (it was required that they never go beyond the
perimeter of the array). Such events yield minimum
errors in determining basic parameters of extensive
air showers (such as the directions and coordinates of
the axis and Ey). The primary-particle energy £y was
determined from the relations

Eo = (4.8 4+ 1.6) x 10" (ps 600(0°)) 0202 [eV], (1)

£5,600(0%) = ps.600(6) (2)

x exp((secf — 1) x 1020/),) [m~?],

Ap = (450 & 44) + (32 £ 15)log(ps,600(0°)) [g /m(lf;];

1063-7788/03/6605-0854$24.00 © 2003 MAIK “Nauka/Interperiodica”
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where p; 600(6) is the charged-particle density mea-
sured by scintillation detectors at the distance of R =
600 m from the shower axis.

We took three narrow energy intervals Ey =
101767177 101777178 and 101787179 oV and, in
each of them, considered seven independent samples
featuring approximately the same number of showers.
These samples differed only in that their axes occurred
in different annular areas (see Table 1), all other
conditions being the same. Each of the 21 samples
was explored individually for the presence in it of local
groups of showers in the celestial sphere. This was
done in the following way. Around the direction of
arrival of any shower, we found all of its neighbors
within three angular degrees (d < 3°). If there were
n >3 showers in the circle, then we performed
averaging over their coordinates and used, in the
following, the result of this averaging as new points
(we refer to them as nodes).

In this procedure, any isolated group of showers
(that is, that which occurs at a distance in excess of
d) is associated with the same node, while a chain of
showers is preserved in the form of the same chain of
nodes. In the following, nodes from different samples
were considered from the point of view of coinci-
dence of their celestial coordinates. If they intersected
m >2 times (under the condition that their centers
were within the distance not larger than three angular
degrees, d < 3°), then we found a new, larger, node
(cluster). It included all showers found at the preced-
ing step.

The densest arrangement of nodes was observed
in the vicinity of the North Pole of the Earth. The
contribution of random events increased considerably
there, since, in view of the geographic location of the
Yakutsk array (61.7°N), this part of the sky has the
largest exposure. In order to reduce the fraction of
such events, it was therefore required that, in equa-
torial coordinates, the number of showers in nodes, n,
gradually increase from 3 to 8 at latitudes in excess of
40°. An analysis revealed that this procedure is quite
legitimate and that it made a major contribution to
revealing true clusters.

For showers of energy in the range FEy=
101777178 eV the chart of the arrangement of nodes
(points) and clusters in the developed celestial sphere
is shown in Fig. | in terms of galactic coordinates.
Clusters featuring m = 2 and m > 3 nodes are rep-
resented by crosses and closed circles, respectively.
To give a clearer presentation of data, the equatorial
coordinates are also shown in this chart. It is worthy
of note that the majority of events are grouped into
clusters and that the clusters themselves are often
situated close to one another, forming chains.

A Monte Carlo simulation revealed that the posi-
tions of the clusters in Fig. | are not random. For the
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Table 1. Radii of the circles for selecting extensive air
showers according to location of their axes

Sample | R;,m Ry, m Number of showers
Ey = 101767177 ¢y
1 0 280 1109
2 280 390 1091
3 390 480 1023
4 480 570 1040
5 570 660 1093
6 660 740 1076
7 740 822 1063
Ey = 10177178 gy
| 0 320 1087
2 320 450 1032
3 450 565 1076
4 565 665 1044
5 665 760 1058
6 760 853 1082
7 853 965 1061
Ey = 101787179 oy
1 0 380 1056
2 380 530 1034
3 530 660 1052
4 660 790 1097
5 790 910 1059
6 910 1050 1036
7 1050 1225 1044

case of d < 3° n >3, and Ey = 101777178 ¢V the
distributions of 1812 showers at nodes with respect
to arrival directions specified by the latitude of arrival
(with a step of Ab = 3°) are displayed in Figs. 2a—2d
in terms of galactic (G) and supergalactic (SG) co-
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Fig. 1. Chart of the positions of nodes (points) and clusters from 1812 showers having energies of Fo = 10'"77-8 ¢V and
arriving at zenith angles of 6 < 53° in terms of galactic coordinates according to data from the Yakutsk array for observing
extensive air showers. The direct crosses and closed circles represent clusters consisting of, respectively, m = 2 and m > 3

nodes ford < 3°.

ordinates. The North Pole of the Supergalaxy has the
equatorial coordinates of o = 286.2° and § = 14.1°.
Figures 2a and 2b show the observed (Neyp) and
expected (Vyay) distributions, while Figs. 2¢ and 2d
present the deviations of the number of measured
events from the expected number in units of ¢ =
vV Nian; here, ngy = (Nexpt — Nyan)/o. The smooth
curves in Figs. 2¢ and 2d correspond to the averaged
behavior of n, upon smoothing with the aid of a
Fourier series involving five harmonics.

The values N;,, were obtained by simulating the
explored number of showers distributed at random
over the celestial sphere. This was done in the follow-
ing way. For each measured shower, we determined
500 directions in terms of galactic coordinates by
replacing the actual arrival time and azimuth (in the
horizontal coordinate frame of the array) by random
ones. The resulting distributions of random events
were then normalized in absolute value to the actual
ones.

In both coordinate frames, x? takes here enor-
mous values of x? =~ 110—150 for k = 50 degrees
of freedom. The probability of such random events
is estimated as P < 1075. A statistically significant
(about 50) excess of events is quite pronounced in the
Supergalaxy plane. On the contrary, the Galaxy plane
manifests itself only as a modest dip (see Fig. 2¢),
which becomes more distinct against the background
of the distribution segments adjacent to it on two
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sides. These results can be interpreted as an indica-
tion of an extragalactic origin of the primary-cosmic-
radiation fraction contained in the clusters. In all
probability, the Galaxy only absorbs this radiation,
this absorption being more intense in its disk. Other
significant peaks and dips in Figs. 2a—2d are likely to
be indicative of a complex and nonuniform structure
of the spatial region housing the sources of primary
cosmic radiation that generate clusters.

Similar distributions for the remaining showers
that did not enter into the aforementioned nodes
(5614 events) are displayed in Fig. 2a’—2d’. It can
be seen that the pattern here has changed abruptly.
The measured distributions for random variables are
close to the expected ones (x? = 47—59). This result
suggests that the degree of isotropy in the primary-
cosmic-radiation part singled out in this way is rather
high. The fraction of these particles in the total flux is
5614/7426 ~ 0.75.

Of particular interest in this connection are data in
the energy regions adjacent to that which was con-
sidered above. Figures 3 and 4 display distributions
that are similar to those in Fig. 2, but which were
constructed for showers of energy in the ranges Ey =
101767177 and 101787179 eV, respectively. These dis-
tributions also exhibit multiple clusters. The distri-
butions of showers in the clusters lead to values of
x? ~ 100—120 not associated with random events
(P < 107°). However, they do not feature noticeable
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Fig. 2. Distributions of showers of energy in the range Eg =

857

SG

-60 0 60
bsg. deg
101777178 oV with respect to the latitude of their arrival in

terms of the galactic (G) and supergalactic (SG) coordinates according to the results obtained for (a—d) nodes from seven
samples featuring not less than three showers at d < 3° and (a’—d") for seven samples without nodes: (a, b; a’, b") observed,
Nexpt (histograms), and expected, Nyan (curves), distributions; (¢, d; ¢’, d') deviations of the number of measured events from
the expected number, ne = (Nexpt — Nran)/v/Nran (histograms), and averaged behavior of n, (curves). The numerals in the

figure are the numbers of showers.

correlations with the Supergalaxy and Galaxy disks
if we pay no attention to Fig. 4d, where there is yet
some trend toward an excessive radiation from the
Supergalaxy disk. As to showers that did not enter
into the clusters, they still yield values of x? = 46—65,
which are close to those peculiar to a random uniform
distribution.

Figure ba depicts a diagram illustrating the rel-
ative location of the Milky Way of the Galaxy (G)
and the Milky Way of the Supergalaxy (SG), while
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Fig. 5b shows schematically the spiral structure of the
Galaxy [7]. The shaded sectors represent regions that
are visible to the Yakutsk array for studying extensive
air showers. A nearly perpendicular orientation of the
Galaxy plane with respect to the Supergalaxy plane
in Fig. 5a makes it possible to refine some details
in Fig. 2. For events induced by showers of energy
in the range Ey = 101777178 eV, the distributions of
the directions of arrival of the showers in the nodes
and clusters from the Galaxy and Supergalaxy disks
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Table 2. Phases and amplitudes of the first harmonics

Energy, eV Array Total Without nodes Nodes
o1, deg Ay, % o1, deg A1, % o1, deg A1, %
1017-6-17.7 Yakutsk 317 £ 43 2.4 315 £ 37 5.8 296 + 14 16.5
AGASA 300+ 5 2.0 - - - -
10177178 Yakutsk 29+ 115 0.2 211+ 136 1.2 228 + 95 1.3
AGASA 292+5 2.2 - - - -
101787179 Yakutsk 15 + 61 2.8 264 + 124 1.6 56 + 26 11.0
AGASA 295+ 5 3.0 - - - -

(|b] < 2°) are shown in Figs. 6a—6d in terms of the
longitude coordinates (with a step of Al = 3°). The
longitude of the Supergalaxy was reckoned from the
anticenter in the counterclockwise direction.

In the surveyed sectors of both disks (I ~ 30°—
210°), many peaks and dips are observed with a sta-
tistical significance not less than two standard devi-
ations. Values of x? ~ 93—96 for k = 50 degrees of
freedom correspond to probabilities of P < 10~ for
such random events. In all probability, these spatial
irregularities in the fluxes of primary cosmic radia-
tion are associated with some small-scale structural
features of the objects being considered. Here, we
will dwell on only one point that supports the above
assumption on an extragalactic origin of showers en-
tering into the clusters. An intense peak (of statistical
significance at a level of 5¢) in Fig. 6¢ in the direction
la ~ 137°, which coincides with the line of intersec-
tion of the Galaxy and Supergalaxy planes (SO in
Fig. 5a), is a compelling piece of evidence in favor of
this. As a matter of fact, this peak is a local section
of data in Fig. 2d. It also manifests itself in Fig. 6d in
the direction lgg ~ 94°.

Figures 6a’—6d’ display the distributions of show-
ers not belonging to the nodes and clusters, hav-
ing energies in the range Eg = 101777178 eV, and
originating from the regions of the Galaxy and Su-
pergalaxy disks (|b| < 2°). They were obtained by a
method that is similar to that used to derive the distri-
butions in Figs. 6a—6d. Here, the measured and the
expected distributions for the isotropic flux of primary
cosmic radiation are compatible (y? = 54—63).

Let us now consider the global anisotropy of pri-
mary cosmic radiation. For this, we will make use
of the traditional harmonic-analysis method imple-
mented in terms of equatorial coordinates. For groups
of showers selected for the analysis, Table 2 presents
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the phases ¢; and the amplitudes A; of the first
harmonics of approximating functions:

N(a) = (N)+ Ajcos(a — ¢1). (4)

Our data included only those events for which the
arrival directions were determined by using not less
than five stations and for which the shower axes tra-
versed the central circle of the array with a radius of
about 1000 m. Values quoted in the column under
the heading “Total” correspond to samples subjected
to no selections of clusters. The AGASA data were
borrowed from [1].

Before proceeding to perform a comparative anal-
ysis of the results obtained to date, we note that
they change significantly with the width of the energy
intervals, since it is clear from the aforesaid that differ-
ent regions of the sky have different primary-cosmic-
radiation intensities depending on shower energy. For
this reason, data from different arrays can hardly be
subjected to a direct comparison. This can clearly be
seen from Fig. 7, where the unshaded region around
the North Pole of the Earth is the sky zone surveyed
by the Yakutsk array at cos 8 > 0.6, while the shaded
region is the complementary part of the sky—it is
seen from the AGASA array at cos€ > 0.5. The cir-
cles in Fig. 7 represent the magnetic fields in the
Galaxy [8]: the open and closed ones correspond to
the field orientation toward the observer and away
from it. The dimensions of the circles are proportional
to the field strength.

The dashed arrow [/ in Fig. 7 denotes the phase
p1 = 295° according to the AGASA data (at Ey =
101767177 eV) (Table 2); it points toward the out-
let of the Orion arm at Ig =~ 50°. The phase ¢ =
317° according to data of the Yakutsk array from the
sample “Total” at Ey = 101767177 eV is shown in
Fig. 7 by the dashed arrow 2. Although these phases
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Fig. 3. Distributions for showers of energy in the range Ey =

are somewhat different, agreement between the two
results cannot be ruled out because of the errors in
our experiment. At different energy values, the phases
according to our data differ more strongly from those
according to AGASA data.

In order to understand what occurs here, we con-
sider the distribution of primary cosmic radiation for
right ascension at the nodes and without them. For
three energy intervals, they are shown in Fig. 8 by
histograms [ and 2, respectively. The corresponding
values of the phases and amplitudes are given in
Table 2. In the distributions without nodes, there are
insignificant distinctions between the fluxes in differ-
ent hour angles; in view of this, the phases for them
were found with large uncertainties. These data still
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(b) 1946

-60 0 60
bSG’ deg
10'75717-7 eV The notation is identical to that in Fig. 2.

indicate (see Figs. 2—4) that primary cosmic radiation
is isotropic to a considerable extent.

As to the data on showers in the clusters in Fig. 8
(histograms 1), they are in glaring contradiction, as
might have been expected on the basis of the afore-
said, with the hypothesis of an isotropic distribution.
For example, the scatter of data around the approx-
imating curve (4) at Eg = 101777178 eV leads to a
value of x? ~ 71.6 for k = 24 degrees of freedom,
this corresponding to a probability of P < 1075 for a
random event. The distribution at Ey = 101787179 ¢V
leads to a still greater value of x? ~ 118.2. As to
events generated by showers of energy in the range
Ey = 10767177 eV we have x? ~ 37.9 for them, in
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Fig. 4. Distributions for showers of energy in the range Ey =

which case the probability of a random event is P ~
3.5 x 1072,

Let us highlight some important features of these
distributions. The peak in Fig. 8 (histogram /) at
a &~ 180°—195° is indicative of excessive radiation
from the Supergalaxy disk in the vicinity of the cen-
ter (Csq in Fig. 7), while the peak at a ~ 15°—45°
suggests the presence of an excessive flux along the
line of intersection of the Galaxy and Supergalaxy
planes (« = 40° in Fig. 7). They are in agreement
with the peaks in these directions in Fig. 6d. The
peaks in Fig. 8¢ (/) at a =~ 15°—180° may also be
due to excessive radiation from various regions of the
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SG
(b) 1649

bSG’ deg

10'7-8717-9 eV, The notation is identical to that in Fig. 2.

Supergalaxy disk; as to the peaks at a &~ 315°—345°,
they are likely to be associated with the Galaxy disk.

[t can be assumed that clusters are formed near
some local sources of primary cosmic radiation.
From the data quoted above, it can be seen that, at
Ey ~ 10177178 eV clusters indicate that there is
some correlation with the Supergalaxy plane. In all
probability, primary particles forming these clusters
are electrically neutral; otherwise, they would lose,
because of motion in the magnetic field of the Galaxy,
any correlation in direction with their production
sources. These can hardly be neutrons, because their
Lorentz factor at the above energies is about 5 x 108,
so that they can travel, prior to undergoing decay, a

Vol.66 No.5 2003
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b)
240 2109804567130
1270
300
330—— o 30

Fig. 5. (a) Diagram illustrating relative location of the
Milky Way of the Galaxy (G) and the Milky Way of the
Supergalaxy (SQ): (Cq, Csg) centers, (ACq, ACsq)
anticenters, (Ng, Nsg) North Poles, (OO’) line of the
intersection of the planes, (5) observation point, and
(shaded sectors) sectors visible to the Yakutsk array for
studying extensive air showers; (b) schematic represen-
tation of the spiral structure of the Galaxy [7].

distance of about 5 kpc, which is much shorter than
the Supergalaxy dimension (approximately 50 Mpc).
Most likely, these are some other stable neutral
particles.

In this connection, we will consider muons, whose
threshold energy is £, ~ 1.0 - sec§ GeV and whose
content in showers is sensitive to the composition of
primary cosmic radiation. The closed circles in Fig. 9
represent the lateral distribution of muons in showers
having energies of Eg = 101777178 eV, arriving at
zenith angles satisfying the condition cos @ > 0.9, and
belonging to the clusters. The solid curve is the ap-
proximation of the experimental data by the function

pu(R) = N,C,(R/280)70™ (5)
x (14 R/280)%7~b« (1 + R/2000)~%5,

where C), is a normalization constant, N, is the total

number of muons at the observation level, and the
fitted value of the parameter b, is b, = 2.67 £ 0.04.
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Fig. 6. Distributions of showers having energies in the
range Eo = 107778 ¢V and arriving from the Galaxy
(G) and Supergalaxy (SG) disks (|b] < 2°) versus the
longitude of their arrival. The notation is identical to that
in Fig. 2.

The open circles represent the average lateral distri-
bution according to the data of our group from [9,
10] for showers without any selections with respect
to arrival directions. The dashed curve corresponds
to the approximation by the function in (5) with b, =
1.99 £ 0.04, and it is compatible with the results of the
calculations in [9, 10] on the basis of the QGSJET
model for the mixed composition of primary cosmic
radiation from light nuclei, protons being dominant
among them.

[t can be seen that the lateral distribution of muons
in showers forming clusters is very steep. For primary
protons, the calculations in [9, 10] yielded a much
more gently sloping distribution of the form in (5) with
b, = 2.02. Air showers initiated by protons and neu-
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360

Fig. 7. Sky zones (in galactic coordinates) surveyed by the Yakutsk array (unshaded region), § ~ 15°—90°, and by AGASA
(shaded region), 6 &= —25°—90°. The closed and open circles show the disposition of the magnetic arms of the Galaxy [8]
with directions, respectively, away from the observer and toward it, the dimensions of the circles being proportional to the
field strength. The dashed arrows / and 2 correspond to the phases of the first harmonics of showers of energy in the range
Eo = 10767177 eV according to, respectively, the AGASA data from[1]and the data from the Yakutsk array.
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36 Fig. 9. Lateral distributions of muons (for a threshold en-

18 ergy of E,, = 1.0 - sec  GeV) in showers having energies
_;.-=|:|=a=—-l‘—"|_—,_|:|-=-|:|ll-2|:

in the range Eo = 10'"77'"% eV and arriving at zenith

120 angles satisfying the condition cos @ > 0.9: (closed cir-
cles) data for showers belonging to the clusters and (open

80 L circles) data for a sample without isolation of clusters.

400 120 240 360 The solid and the dashed curve represent the approxima-

a, deg tions by the function in (5) with the parameter values of

b, = 2.67 £ 0.04 and 1.99 £ 0.04, respectively.

Fig. 8. Distribution of showers of energy in the

ranges Bo = (a) 10757177, (b) 10177175 and (c) trons develop identicglly. Therefoye, negtr.ons can-
101787179 &V for right ascension (histograms /) at the not be hypothetical primary-cosmic-radiation parti-
nodes for n > 3 and d < 3° and (histograms 2) in sam- cles either. Nor can these be photons, since, accord-
ples without nodes. The smooth curves represent the ing to various estimates, they produce showers where

approximations by the function in (4). the content of muons is 7 to 15 times less than that in
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showers generated by protons. In all probability, these
are some other stable neutral particles.

3. CONCLUSION

Summarizing the results quoted above, we arrive
at the following pattern. Most likely, primary cosmic
radiation of energy in the range Ey =~ 101767179 eV
consists of two components. One of these is ap-
proximately three times more intense than the other
one and seems to include charged particles. They
are vigorously stirred by the magnetic field of the
Galaxy. A global anisotropy, with the first harmonic
being 1 ~ 280°—300° according to AGASA data[1,
6], is explained by the diffusion of protons from the
Galaxy center. Possibly, the Galaxy arms are also
operative here (see Fig. 7). Our experimental data and
the results of the calculations of various features of
extensive air showers on the basis of the QGSJET
model [9—14] are also compatible with the hypothesis
that, in this energy region, the composition of primary
cosmic radiation is close to a purely protonic one.

The second component differs from the first one
noticeably. In all probability, it consists of neutral
particles forming, within d < 3° solid angles, clusters
near the sources of their generation. At the moment,
it is difficult to deduce any specific information about
these sources. Clusters at Fy ~ 101777178 eV attract
particular attention. They correlate with the Super-
galaxy disk rather strongly (see Figs. 2a—2d, 6a—
6d). Moreover, the lateral distribution of muons in
these events proved to be anomalously steep (see
Fig. 9).
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Abstract—String-loop corrections to magnetic black holes are studied. 4D effective action is obtained by
compactification of the heterotic string theory on the manifold K3 x T2 or on a suitable orbifold yielding
N = 1supersymmetry in 6D. In the resulting 4D theory with N = 2 local supersymmetry, the prepotential
receives only one-string-loop perturbative correction. The loop-corrected black hole is obtained in two
approaches: (i) by solving the system of the Einstein—Maxwell equations of motion derived from the loop-
corrected effective action and (ii) by solving the system of spinor Killing equations (conditions for the
supersymmetry variations of the fermions to vanish) and Maxwell equations. We consider a particular
tree-level solution with the magnetic charges adjusted so that the moduli connected with the metric of
the internal two-torus are constant. In this case, the loop correction to the prepotential is independent of
coordinates, and it is possible to solve the system of the Einstein—Maxwell and spinor Killing equations
in the first order in string coupling analytically. The set of supersymmetric solutions of the loop-corrected
spinor Killing equations is contained in a larger set of solutions of the equations of motion derived from
the string-loop-corrected effective action. Loop corrections to the metric and dilaton are large at small

distances from the center of the black hole. © 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

At present, string theory is considered the best
candidate for a fundamental theory that would provide
a consistent quantum theory of gravity unified with
the other interactions [1]. In particular, string theory
provides a powerful approach to the physics of black
holes (for a review, see [2, 3] and references therein).
In this setting, we meet a fundamental problem of
understanding how the intrinsically stringy effects
modify the Einstein gravity.

In this paper, we discuss two of these effects:
presence of scalar fields such as the dilaton and the
moduli and higher genus contributions modifying the
tree-level effective action. We focus on the higher
genus corrections, because string theory, being a the-
ory formulated on string world sheets, always con-
tains string-loop corrections from higher world sheet
topologies (these vanish only for higher supersymme-
tries N > 4), while o/ corrections can vanish in cer-
tain constructions based on conformal field theories
and for a large class of backgrounds [4, 5].

We consider solutions of the equations of motion
derived from the 4D string effective action obtained
by dimensional reduction of 6D, N =1 supersym-
metric string effective action on the two-torus. For

*This article was submitted by the author in English.

“e-mail: iofa@theory.sinp.msu.ru

this class of compactifications, the effective 4D theory
is N = 2 supergravity interacting with matter. As a
concrete example of this construction, we have in
view heterotic string theory compactified on the man-
ifold K3 x T? or its suitable orbifold limit, although
we do not rely on any specific properties of this model.

We consider the perturbative one-string-loop
(torus topology) corrections for a special class of
backgrounds: 4D magnetic black holes provided by
the “chiral null models” [4—6] embedded in heterotic
string theory compactified on the manifold K3 x T2.

The universal sector of the theory contains super-
gravity and vector multiplets, the vector fields result-
ing from components G,,,,, and B,,,,, of the 6D metric
and antisymmetric tensor with mixed 4D and internal
indices, where the index m = 1,2 refers to the two-
torus T°2.

Due to N =2 supersymmetry, the prepotential
of the theory receives only one-string-loop correc-
tions (from the string world sheets of torus topol-
ogy)[7—9]. There are examples of explicitly calculated
loop-corrected prepotential [7—10], although only its
general structure is relevant for the present study. Us-
ing the prepotential, we calculate the loop-corrected
Kéhler potential and gauge couplings.

There are two ways to obtain classical solutions
in supersymmetric theories: one can either solve the
equations of motion derived from the loop-corrected
effective action, which, for bosonic fields, are of the

1063-7788/03/6605-0864$24.00 © 2003 MAIK “Nauka/Interperiodica”
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second order in derivatives, or solve “spinor Killing
equations” resulting from the requirement that su-
persymmetry variations of the fermionic fields vanish.
The latter are of the first order in derivatives. The first
method, in general, provides a larger set of solutions
that can include nonsupersymmetric ones. The sec-
ond approach leads to supersymmetric solutions with
partially broken supersymmetry.

In the case of a magnetic black hole with the
charges P, and P;, the string-tree-level dilaton ¢ =
In[(r + P1)(r + P,)/r?) increases, and the effective
gauge couplings proportional to e~? decrease at small
distances, so that effective gauge couplings are sen-
sitive to string-loop corrections.

A technical simplification is achieved for a special
choice of magnetic charges, in which case the tree-
level metric of the two-torus G,,,, is independent of
coordinates, and the charges P; and P, are expressed
via one charge P and the components of the metric
Gmn. However, qualitatively, the results remain un-
changed in a general case of unequal charges.

Solving the system of the equations of motion for
the moduli and the Einstein—Maxwell equations, in
the first order in the string-loop counting parameter

€= e‘f’(r)]r_)oo, we obtain the loop-corrected met-
ric and dilaton. A family of solutions of the equa-
tions of motion for the loop-corrected metric ds? =
—e2VMat? 1 e 2U0) (dr? + 12dQ%) of a magnetic
black hole is

P P P
2U:—1H<1+?> +€(?A1_T—|——PA2>’

where A and As are arbitrary constants.

Next, in the first order in string coupling, we solve
the loop-corrected system of Maxwell equations for
the gauge fields and spinor Killing equations for the
moduli. We obtain a family of solutions for the loop-
corrected metric and dilaton of a magnetic black hole
depending on one parameter C,

2U:—ln<1+£>
r

re(E(Y iy Y
‘A7 \3 r+P4)’

where V is the Green—Schwarz function that en-
ters the Kahler potential for the moduli and which is
strictly positive [9].

The family of supersymmetric solutions of spinor
Killing equations is contained in the set of solutions
of the equations of motion of the low-energy effective
theory.

In Section 2, we review the structure of the action
of the compactified heterotic string theory and impli-
cations on its structure of the N = 2 local supersym-
metry.
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In Section 3, we consider the tree-level dyonic and
magnetic-black-hole solutions.

In Section 4, we construct the loop-corrected ef-
fective action in the first order in the string-loop
counting parameter e. Using the symplectic structure
of the theory, we calculate the gauge couplings in a
basis admitting the prepotential and, by symplectic
transformation, obtain them in the heterotic basis (in
which case the prepotential does not exist).

In Section 5, we solve the system of Maxwell
equations and Bianchi identities.

In Section 6, we write the loop-corrected Einstein
and dilaton equations of motion and, starting from
the tree-level extremal magnetic-black-hole solution,
in the first order in € solve the system of the loop-
corrected equations.

In Section 7, we review the structure of the spinor
Killing equations for the gravitino and gaugino.

In Section 8, solving the system of Maxwell and
spinor Killing equations, we obtain the tree-level
magnetic-black-hole solution.

In Section 9, using this solution as an input,
we obtain solution of the loop-corrected system of
Maxwell and spinor Killing equations.

Concluding remarks are collected in Section 10.

2. HETEROTIC STRING
COMPACTIFICATION AND N =2
SUPERSYMMETRY

4D effective string theories obtained by two-torus
dimensional reductions of 6D, N = 1 supersymmet-
ric theories share a number of universal properties.
The resulting 4D theory is N = 2 supersymmetric
dilatonic supergravity interacting with matter. The
bosonic part of the universal sector of this theory
written in the standard form of N = 2 special geome-
try [11=17]is

1 _
I4:/d4:c\/—_g §R+(N1J]-"_If_‘] (1)

— Ny FHFH) + k50,2002 + ..

Here, N1 ;(X) are the gauge couplings that are func-
tions of the moduli X7, the vector fields AfL are the

superpartners of X', and the (anti)seli-dual vector
field strengths are

1
+1 I . * =1
Fow = 5(‘7:#'/ *iv—g"F,)

Here, *F,,, =

tisymmetric tensor.

§ew,p)\.7-"pl, where e, is the flat an-



866
The Kéhler metric k;; is
O*K
021073’
where K is the Kéhler potential defined below. The
moduli 2% are

Xl

ﬁ—zl—zy1*z<e¢+ia1), (2)
X2

0= 22 =iys =1 (e”'w +w2) )

X3

0= 23 =iys =1 (677‘7 -l—z'ag) ,

and dots in (1) stand for contributions from other
moduli. Here and below, I, J =0,...,3 and 4,j =
1,2, 3. The functions «, o, and a3 are determined by
comparing (2) with parametrization of the metric
Gmn in (9); ¢ and a; are defined in (8) (see below).
The moduli 2% and the vector fields are identified by
comparing the action (1) with the action resulting
from compactification (of the universal sector) of the
action of the 6D theory,

Is= [ dV/—-GE)e? (3)
H2
X R(6)+(6¢>)2—E +...,

on the two-torus. Dimensional reduction of the ac-
tion (3) on the two-torus yields the 4D action [18§]

R+ (99)* — N (4)

I, = /d4x\/—G’e_¢ B

1 1
— JF(LML)F + ST (OMLOML) + ...

Here,

o=
ALGon

where A} = G""' Gy and G, = Gy + A ARG,
Here, p,v =0,...,3 and m,n =1,2. The second
pair of vector fields are the components B, of the
antisymmetric field B. The matrices M and L are

Am
pGmn | (5)
Gmn

G' G'B 0 I
M= , L= 1. (6)
—BG™! G I, 0

Here, G = (Gyun), B = (Bmn), and all contractions
in (4) are performed with the metric G/,,,. Written
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in the Einstein frame, where g, = e*¢G;LV, the ac-
tion (4) is
4 1 y e ?
(7)

+ %(}'L}'L)*}' + éTr(ﬁM LoML)|,
where
dpa1 = —H"" ™22\ /=ge,n,

/I/>\ = le)\ - (A(l)nH”VA
— AWM AP 4 eyel. perms.),

H =

and the metric of the two-torus is parametrized as [19]

2y—20 2 _
G = 2 <e +as ‘“”) T

—as 1

The dilaton ¢ can be split into the sum of the
constant part and a term vanishing at spatial infin-
ity, ¢ = ¢o + ¢1. In string perturbation theory, higher

order contributions enter with the factor e%X‘Z’, where
x is the Euler characteristic of the string world sheet.

The exponent e?® = e can be considered as a string-
loop expansion parameter.

The moduli y; (2) are conventional moduli S, T', U
(Y1,92,3) = <S =0+ tay, T = \/a—i- 1B,
g (VG+ iG12)>

Ga2

Here, a; is the axion dual to the field strength of the
antisymmetric tensor, and By, = a2€mn.

The gauge part of the action (4) with G12 = 0 and
Blg =0is

1 1
_ZGll(f(1)1)2 - ZGQQ(F(1)2)2 (10)

1 1
B ZG11(j_-1(2))2 . ZG22(?2(2))2'

The vector fields labeled in correspondence with the
moduli with which they form the superfields are

1 _ 10 _ 11
A, =VBA), By, =V8A,

(11)

The factor v/8 is due to different normalizations of the
gauge fields in the actions (1) and (7).
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The dynamics of NV = 2 supersymmetric theory is
encoded in the holomorphic prepotential of the theory.
In the case of the NV = 2 supersymmetric compact-
ification of heterotic string theory, the holomorphic

prepotential receives only one-loop correction A1)
and is of the form [7, 8, 10]

X1x2x3
F=_222 (12)
XO
. 02 (1) ‘X2 ‘Xg
—1eX""h —Z—XO,—Z—XO + ...

In holomorphic sections that admit the prepo-
tential, the coupling constants in the action (1) are
calculated using the formula

(ImF[KXK)(ImFJLXL)

(XMIITIFMNXN) ’
where Fy = 0x1F, F1jy = 0%,
culation yields

N[J:F[J—i-Qi (13)

F, etc. Explicit cal-

_ 3 n
Noo—ly ( 1+€4—y3> (14)
2
N01:—€n+ U_Zeal%a
4:1./1 Y1
N + 2v — 2yohy + 4ysho Y1Y3
02 = —¢€ —ledy—
4y9 Y2
n + 2v + 2yshy + 4yshs Y1y2
N03 = —¢ —ea3——,
4:1./3 Y3
3
N11 = —’Ly <1 + L)
3/1 4y
2yohy —
Nig = Eiyg% + eas,
4y
yshy —n
Ni3 = €iys 3 + eao,
4y
2uhy — 4ysh —-n
No3 = eiyy S y23 i + ear,
4y
3 h n
Y3 Y3 4y
3
Y y3hasys n
e 2 (1 b )
Y3 v’ 1y’

Here, we introduced the following notation: 33 =
Y1y2y3, hy = haYa = hoy2 + hsys, yhy = Yahasys,
ha = Oy, h, hqy = 0y, 0y, h, and
v=h—hy, n=h-—hy+yhy,
Y2hy = y2hoayp.
In the case of magnetic-black-hole solution, the tree-
level moduli y; are real. Because in (14) and below

the one-loop corrections are calculated by substitut-
ing the tree-level moduli, in cases where there is no

(15)
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confusion, we use the same notation y; for the real
parts of the moduli y;.

The Kéhler potential is invariant under symplec-
tic transformations and its part that depends on the
moduli y; is given by

K =—In[(y1 + 71 +€V)(y2 + 92)(y3 + ¥3)], (16)
where the Green—Schwarz function V is
V(?/%g%ySaQS) (17)

_ Reh® — ReysRed,,h1) — RengeaySh(
a ReysReys
In the first order in string coupling,
V =e .

The field equations and the Bianchi identities for the
gauge field strengths are

A («/_—gImGI_W> — 0,
Op (vV—=glmF~—7m) =0,

where G, = Ny, F~7/# Equations (18) are invari-
ant under symplectic transformations

(18)

A B
0= )

C D

(19)

where
ATc—-cT™A=0,B"D—-D"B =0,
ATD-C0TB =1.

In sections that do not admit a prepotential (in-
cluding that which naturally appears in compactifi-
cation of the heterotic string action), the gauge cou-
plings are obtained by making a symplectic transfor-
mation of the couplings calculated in the section with
the prepotential

=(C+DN)(A+BN)™!

Here and below, the quantities with hats refer to
the heterotic holomorphic section. At the tree level,
transformation to the heterotic section is performed
with the matrices [8]

A = diag(1,0,1,1), B = diag(0,1,0,0),
C = diag(0,1,0,0), D = diag(1,0,1,1).

We look for the transformation in the first order in
string coupling in the form

A = diag(1,0,1,1) + €(aij), (20)
= diag(0, 1,0, 0) + €(bi;),
= d]ag((), 1,0, 0) + €(Cij)7
= diag(1,0,1,1) + e(d;j),
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where a, b, ¢, and d are constant matrices. The form
of the matrices is constrained by the requirement
that, in the heterotic section, the loop corrections
to the couplings are proportional to ee?. This re-
sults in symplectic transformation with a =b =0,

IOFA

¢ is an arbitrary symmetric matrix with ¢y; =0,
and the only nonzero element of the matrix d is
d11~

Explicitly, the matrix of the loop-corrected cou-
plings in the heterotic section is

N2 No1 No1Nq2 No1 N3
_ -’01 - _ _ 97 TAS
Noo + €cop Niy Ny Ngo + €cpa Niy Nos + €co3 Ny
N 1 12 13
— ——— +edyy — —
N NN N oz NN (21)
Ij = 214V10 21 21 214V13
N. - 2 N. _ 2 -
20 + €C20 Nt Nit 29 + €C29 N1y 23 + €Co3 Ni;
N31N1g N3 N31Nq2 N321
N. - 8 N. - N. _ 8
30 + €C30 Niy Nut 32 + €C32 Noy 33 + €C33 Niy

From the symplectic transformation of the field
strengths, we obtain the relations between the field
strengths:

FO=F" FP=F72 F3=757" (22

Gy = Gy + cooF ° + coaF % + cosF 3,
Gy = —F; +dnG7,

Gy =Gy + a0 F 4 cnF % + e F 7,

Gy =G5 +csoF "+ cnF 7 + s F 7,

1

1o _Nozo 1 2
) N1 ) N1
Nugo Nugpa
N1y N1y

The expression for F~! was obtained from the rela-
tion G; = NyyF~7 with any I = 0, 1,2, 3 by substi-
tuting the gauge couplings (21) and field strengths
into the heterotic holomorphic section. Below, it will
be made clear that, for a restricted problem of solving
equations for the metric and real parts of the moduli,
the explicit expressions for the constants in (21) are
not necessary.

3. MAGNETIC-BLACK-HOLE SOLUTION

A class of solutions of the equations of motion
derived from (7)is [, 6]

ds® = —A(r)dt* + A= (dr? + r2d03),
A*(r)=FK 'kf™,
d=ImFK'fE !,
G111 =FK, G = fk,

(23)
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where

K:A(H@), F—lzB(H@),
T T

Pl P2
klza(1+—>, f:b<1+—)
T T

are harmonic functions. Requiring that at spatial in-
finity the metric and dilaton be asymptotic to the
Lorentzian metric and unity, we have ABab = 1 and
AB/ab =1, which is solved by AB =1 and ab = 1.

Here, FW1 and 7 are magnetic and M2 and

]—"2(2) are electric field strengths, and G171 and G are
the nonzero components of the metric of the torus
T?. From the 4D point of view, the backgrounds are
interpreted as charged black holes.

We shall concentrate on the case of tree-level so-
lutions that are purely magnetic (@1 = Q2 = 0) ex-
tremal black holes with the metric of the internal two-
torus (9) independent of 4D coordinates and vanish-
ing antisymmetric tensor By,,. These solutions can
be embedded in4D, N = 2 dilatonic supergravity and
leave 1/2 of the supersymmetry unbroken. In this
case, the nonvanishing backgrounds of the chiral null
model are expressed via a single function (we consider
one-center solution) fy:

ds? = — f; ' dt? + foda”
¢=1Infy, a,=a 'P(l—cosd),
by, = aP(1 —cos?), fo(r) =1+ P/r,

where a, and b, are nonzero components of poten-
tials in spherical coordinates. The tree-level compo-
nents of the internal metric G,,,,, are

Gop = A2.

(24)

(25)

2
Gi1 =a”,
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The magnetic field strengths are

~1z ~(2) r r k
a ‘Fijp ‘Flij = a’ﬂja Ej = _5ijk:8 fo

(26)

DL _
£ =

and, in spherical coordinates, have a single nonzero
component Fy, = Psin.

4, LOOP-CORRECTED EFFECTIVE ACTION
4.1. Kinetic Terms of the Moduli

At the tree level, in the case of the magnetic-
black-hole solution, the moduli a; vanish and, if they
appear at the one-loop level, are of order O(e). The
Green—Schwarz function, which is of the first order in
string coupling, depends on the real parts of tree-level
moduli. For a choice of magnetic charges discussed in
the preceding section, the tree-level moduli ReT" and
ReU are constants, and 9ReT and dReU are of the
first order in string coupling e. Keeping only relevant
terms up to the second order in ¢, for the kinetic term
of the moduli, we obtain

K |08
4 _Ouzions = 27
8zi82 He 0 = (ReS)2 (27)
!8T!2 0U |2
ReU)
—9S89Te—L Vz —9S9T L
(ReS)2 “(ReS)?
Vi Vis
—9SoU U _ _9SoU .
“(ReS)? “(ReS)?
Here, |05 = (OReS)? + (day)?, etc., and (9a;)* =

O(€2).

From the above, it follows that, with accuracy of
the terms of higher order in O(¢), the imaginary parts
of the moduli S, T', and U do not enter the equations
for the real parts. Since, in this paper, we are primarily
interested in string-loop corrections to the metric and
dilaton, in the following, we shall consider the real
parts of the moduli.

Keeping the leading and the next-order terms in
string coupling €, we obtain the kinetic terms for the
moduli as

62 =02 ighzi — (09)°
62132

(1 —ee®V) + (90)?
(28)
+ (87)2 — 0p(0y + 80)66¢R€VT

— Ap(dy — Do)ee’ReVy.
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4.2. Gauge Part of the Action

Let us consider the gauge part of the action. In the
basis associated with the heterotic string compactifi-
cation, the tree-level couplings calculated via (21) are

- . 1
Noo = —iy1yays, Nip = —Zy—
y2y3
Noy = _Zw Nag = _; 2
Y2 Y3

With accuracy to the terms of the first order in string
coupling e, general covariance fixes the form of the
loop-corrected gauge part in the action (7) as

1 .
Ly=-7 [(e%’ F ARG (FOYH2 (29)

+ (€70 + Do) G (FP)? + 2A12(7}(1)1]}1(2))] ;

where Ay = O(e). Using the expressions for the

loop-corrected couplings Ny, the corresponding
terms in the action (1) written in the basis associated
with the heterotic string compactification are

b (o o ) (g L2 <f°ﬁ1>] .

The gauge terms in the action (1) can also be
written as
ImN[JfI .7:“%]

1 ~ AT oA
v _gReN[(]]:;ﬁ]:lWJ. (31)

Since at the tree level only magnetic fields are
present, the second term in (31) is zero. At the one-
loop level, this term can appear only if electric fields,
with the charges of order O(e), are generated. Be-
cause the couplings ReNy; are of order O(e), these
(topological) terms are of order O(e?). To conclude,
all the terms in the gauge part of the action that are
absent at the tree level are of order O(€?) at the one-
loop level.

Collecting the expressions for the loop-corrected
gauge and moduli parts of the action and keeping
only relevant terms needed for solving the Einstein
equations and equations for moduli, we obtain the
loop-corrected 4D action (in the Einstein frame) in
the form

S = /d4:c\/—_g

—(80)2 — (87)% + 9p(dy + Do )ee®ReVrr
+ 0¢p(dy — Do )ee’ReVy

R - %(8@2(1 —ee®V)  (32)




870 [

n

4) (]:(1)1)2

:

(1)1531(2))>1 '

-9 ( (edﬂr?v
+ <€_¢_2'Y _

n+2v, .
4 (7

n _ ~
e—e Y
4

+ €

Here and below,
(F?) = Fu 7, (F?)w = FRF

5. SOLUTION OF MAXWELL EQUATIONS

The system of Maxwell equations and Bianchi
identities for the gauge field strengths obtained from
the action (1) is

9, (x/_—gImN”]:"J v ReNIJJ:"*J>W —0  (33)

and

O, F I = . (34)

With the required accuracy, keeping only the terms
of the leading and first order in e, we obtain the
Maxwell equations in the form

J=0: 671[\/ —gImNo()]:-O + RQNOO *f:() (35)
+ ReNg; *FH"™ =0,

J=1  8,[v—glmNyF' +ReNyp *F0  (36)
+ ReNyy *FLmm = o,

J=2 8n[\/—glm1\7227}2 + ReNgg *F° (37)
+ ReNg; *FH"™ = 0,

J=3 3n[\/—glm]\733.7:-3 + RQN?)O *FO (38)

+ ReNg; *F"™ = 0.
Only diagonal gauge couplings Ny; contain terms of
zero order in string coupling.
The v = ¥ component of Eq. (33) with I = 0 (the

v = ¢ component yields the same result) with accu-
racy up to the terms of order O(e) is

~ ~ N ~\U
dp (\/—gImNo()]:O + ReN(n}'l) ’ =0

and, for spherically symmetric fields, is satisfied iden-
tically. Here, * 70" = Fy,, and *Fy, = —F°". A simi-
lar equation holds for I = 1. Bianchi identities are

01
0, Fy, =0,
yielding the field strengths in the form

F2y = P"lsino.

0 (39)

OFA

Comparing (39) with the field strengths (26), we find
that

6_’YOP e’YOP
V8 V8’
where a = 7. Solving the Maxwell equations and

Bianchi identities for electric field strengths, we ob-
tain

1

PO — —

(40)

C() — COQPO — CL1P1

FO = : 41
/g ImNog (41)
_ 1 _ 0
7= 601 wl 7 ol ImNyq,
V=g
F20r _ eCy — (ReNgg + ecy0) P? — Re%_ﬂpl
V—9'ImNay ’
F30r _ eC3 — (ReN3g + ecgp) P — Re%_ipl
V—9'ImN33
(42)

In (41), we expressed all the couplings in the basis
with the prepotential. All the electric field strengths
are of the first order in the string coupling. Here, C;
are arbitrary constants, v/—¢ = e~2Yr2 . Depending
on the boundary conditions imposed on the loop-
corrected solution, one can require that either the
loop-corrected solution, as the tree-level one, contain
only magnetic charges, or any number of electric
charges of the first order in string coupling can ap-
pear. By a suitable choice of arbitrary constants, any
number of electric charges can be made equal to zero.

6. SOLUTION OF THE LOOP-CORRECTED
EINSTEIN AND DILATON EQUATIONS

The general ansatz for the spherically symmetric
metric is

ds? = —e’dt? + e dr? + ed03. (43)
In the leading order, from (10), the metric compo-
nents, dilaton, and moduli are
vy =—Info, Ay =1nfo,
poy =In fo+2Inr, @) =1In fo,

where the function fy was introduced in (24). The
tree-level field strengths are those in (26), and

(F)% =24 ¢ = fi/fo.

In the first order in string coupling, we look for a
solution in the form

(44)

A=1nfo+ e,
¢ =In fo + ep1,

o =09+ €01.

v=—Info+en, (45)
w=1Info+2Inr 4+ em,

Y =" + €1,
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Here n,m, [, ¢1,~1, and o7 are unknown functions
that are determined from the field equations. Keeping
in the dilaton equation of motion the terms up to the
order O(e), we obtain

S0, (400l - ver))

(46)
+§(8¢>) eVe
L 6 ( 2y (112 —2v ¢ 7(2)y2
+ e (e (FO1)2 4 o2 (F )):0.

With the required accuracy, the terms containing the
gauge fields can be written as

1 N

e {6270(1 + 2eyp ) (FO1)2

+em0(1 = 20e9) (A2

In view of (40), the terms with 7 cancel, and we are
left with

S0 (¢ g00) - e POV (4T
- %e_‘z’(]})Q(l +ee?V) =0,

where we inverted the bracket (1 — ¢V e®) in the first

term in (46). The field F is defined in (26). Here
and below, all the expressions having the factor e are
calculated with the tree-level entries.

Up to the terms of the first order in string coupling,
the Einstein equations are

1 1 1
R, — 59’“’R 3 <au¢8u¢ - 59#1/(8913)2) (48)
1
X (1 - €V€¢> + (Lg),, — EQWLQ =0.
Here,
1 A
_ - —¢ 2
Ly =7 2677+ V] (#2),

(L), = i [Qe_d’ + €V] (ﬁ)iu

The field strengths squared have the following non-
zero components:
mot _ (F)?

(FPf = (5% = 5

where
(F)? = 2¢"*(1 — 2em). (49)

The functions o1 and 7y decouple from the above
equations. Since in this paper we are interested in
the form of the loop-corrected 4D metric and dilaton,
we shall not determine these functions explicitly (the
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corresponding equations of motion are solved else-
where). The Einstein Egs. (48) (with one index lifted)
take the form [20]

/

_ 3 2 WX _ 1 302
A "o 02 R e WY
e (,u +4,u 5 e +4e ¢ (50)

1 .
X (1 - eVe¢) t1 <e¢ + i) (N2 =0,

pw? 1 2
e > +u'v | —2e7H — 567)\# (51)

2
X (1 — eVed’) + % (ed’ + %)(J’:—) =0,

67)\(2”// + 9 + H/2 + I/l2 _ ,u/)\/ —UN 4+ N/V/)
(52)

+e g (1 - eve¢>) - <e¢’ + %) (F)? = 0.

In the first order in parameter ¢, the Einstein equa-
tions (50)—(52) are!)

1 1
m" +m’ (q’ + §> U (—q' + —) (53)
r 2 r
, ¢ l—m 1

+¢1§_r—2+§q s =0,

w2 <q' ; 3) _od (54)
T T

—m
o+ d s+ Vfod® =0,

2 1 1
m" +n" +m'=—U'-+n (—q' + —) (55)
rooor r

+¢hd — s — Vfogd® = 0.
Here,
s=1—¢1—2m. (56)

We also need the equation for the dilaton (47) in the
O(e) order:

2 1
{4 o)+ 5@+ =) (57)
+q%s+afod? = 0.
We look for a solution such that [ = —n, because,

in this case, as at the tree level, the components of
the metric satisfy the relation g = g} Substituting

DBelow, we work with dimensionless variable r. In the final
expressions, P is reinstated by substitution r — r/P.
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this ansatz into the above equations and forming the
combination of equations (53) — 1/2(54), we have

2 \%4
m" + 'm’ (q' + ;) + ¢1'q' — §f0q'2 =0. (58)

Taking into account the explicit form of the functions

fo and ¢’ = fy/fo, we integrate this equation and
obtain the first integral as
Vq
/ / _ Y9 _

m +q<Cl+¢1) o 07
where C) is an integration constant. Substitut-
ing (59) into the remaining equations, we find that
the system is consistent.

Solving the resulting system of differential equa-
tions and requiring that, in the limit » — oo, our solu-
tions should be asymptotic to the Lorentzian metric,
we obtain

(59)

P P
m__?Al—'_AQr—f—P’ (60)
P Cy P
”—?<A1‘7)‘A2r+—p’
and
P Vv P
o= (4+y)+htp 6D

Here, Ay, Ao, and Cs are arbitrary constants.

By coordinate transformation the metric (43) can
be reduced to the form

ds? = —e2UPD g2  2U(R) (gR? 4 R240?), (62)

where the new variable R is determined from the
relation
m}% _ / dr' b,

T1

Here, r; is an arbitrary point and Ry = R(r1). Sub-
eCo

stituting into (62) solution (60), we have R = Ce2r |
where C' is an arbitrary constant. In the new coordi-
nates, the asymptotic form of the metric and dilaton
are obtained by setting Cy = 0in (60).

7. N =2 SUPERSYMMETRY
TRANSFORMATIONS

To write the supersymmetry transformations, one
introduces symplectic invariant expressions (for ex-
ample, [13—15, 17])

S = X'ImN, 7,7 (63)
T, = 2ie"/%S,,,

PHYSICS OF ATOMIC NUCLEI
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and
G_i = —kijf_‘]ﬁllmN[Jf_J

j2% [17Z8]

(64)
where k% is the inverse Kihler metric and
fl= (al- + %&K) K12 Xl

Supersymmetry transformations of the chiral grav-
itino 14, and gaugini A are

5o = Dpea — Ty’ eape”, (65)

O = iy 02" €™ + Gty e*Pes,  (66)

where
1 4 )
Duea = 8/L - Zwu Ya7p + EQ/L €a-

Here, wfji’ and @, are the spin and Kahler connec-
tions. The tangent space indices are @, b, . .., and the
curved space indices are without hats: a, b, .. ..
Requiring that supersymmetry variations of spi-
nors vanish, we obtain a system of supersymmetric
Killing equations for the moduli. We look for a solu-
tion of this system with the supersymmetry parameter
satisfying the relation e* = vﬁeaﬁeﬁ. The = 0 com-
ponent of the equation 6v,, = 0 takes the form
L b — bn
<§w8b'y@’yl;'y@ — TOneb ’713> eageﬁ =0. (67)
Here, e is the inverse Vielbein.
In the metric (62), the only nonvanishing compo-
ab

nents of the spin connection w@ are w)® = 58{,62(].

The Vielbein ez is ez = 5ZeU. To have a nontrivial
solution for the supersymmetry parameter, we must
require that

1 a-

5@08" — VT, =o. (68)
Using the relations

Gr_rm = iemnpoG_pO

and
G ea = 4G, "7 ea
valid for any self-dual tensor and chiral spinor,

the condition that supersymmetry transformation of
gaugini vanishes is written as

(19" 0p 270 + 4G5 17 9")e™Pes = 0. (69)
There is a nontrivial solution provided
i0p2" +4e”V Gy = 0. (70)
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The factor eV is due to the relation Yo = —fyé =
—edy? = —eV40. Convoluting Eq. (70) with the
functions f{ and using the relation of special N = 2
geometry

S 1 _
KL = —5(mN)T — B XX,
we finally obtain it in the form [22—24]

) 1 _
ifl0,2 + 4e7Y (5%—,{ + eKXfSOn) =0. (71)

8. MAGNETIC-BLACK-HOLE SOLUTION
OF SPINOR KILLING EQUATIONS

In this section, we solve the combined system of
equations for the gauge field strengths and the mod-
uli. We look for a string-tree-level solution with the

metric in the form (62), two magnetic fields ]:'2,, and

]:";V, and purely real moduli y; (2). This means that we
consider configurations with diagonal metrics Gy,n,

vanishing tensor B, and vanishing functions a;.

Using the field strengths (39) and the cou-
plings (21), we obtain the tree-level expression for
the function 17, (63):

Ty, = 2ie’/2 8, = 2ieX/?

X (ImNooﬁ(;lO + Z'ylllelﬁo_nl)
K/2(

(72)

— 1923 For — 1 F o)

_ <y1y2y3>1/2 <P0+ P! >€2U§.
8 Y2U3 r

Here, K is the tree-level Kahler potential, K =
— In 8y192ys3.
The gravitini Eq. (68) takes the form

1 1/2 Pl
fonett - (L) (poy T T

= 2ie

8

The tree-level gaugini Eqgs. (71) written in the
section associated with the prepotential are

,L'eK/Q U
I1=0: 5 On Iny1y2ys — 4e (74)
1 —0 K
K/2
I=1: 2 9 mPP 4V

Y1
JA(;l K
X g S =0
2N, 1Y1€ Oon ,
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K/2
I1=2: Y2¢ Op In y19s3 +4e7Y
2 Y2
X ( — iygeKSOn> =0,
?/36K/2 Y1Yy2 U
I1=3 Op In + de”

2 Y3

X ( — iy36K50n> =0.

In Eq. (74) with I = 1, by using (22), we expressed
the field strength in the basis with the prepoten-
tial via that in the heterotic section. The system of
Egs.(73)and (74)is solved by a general configuration
of a magnetic black hole with two arbitrary magnetic
charges [5, 6]. In the following, we shall consider a
particular extremal solution

P P!
eV =14+4—, y=e?= <1-|——> . (75)
r r
The charges P and P! are expressed via the charge
P (cf. (40)),
po L
Y2ys’
and the moduli yo, y3 are arbitrary real constants. The
metric components G, of the torus are

P = 8?/2?/3P0a (76)

G = yays = €77, Gaz = y2/ys = €*°.

As in (11), the factor v/8 appears because of different
normalizations of vector fields in (1) and (7).

9. SOLUTION OF THE LOOP-CORRECTED
SPINOR KILLING EQUATIONS

Substituting solutions for the field strengths (41)
and using the loop-corrected gauge couplings (14),
we have

Son = {[P°(ImNgo + y;ReNjo + €coaya)
— Ply; — e(Caya + Csy3)]

— ie[P%(a1y2ys + agy1ys + asy1y2) + aaQa
+ CL1P1 — (C() — C()()PO)

)
— (Cy — di1 PYYyays] } 562(]
Only the couplings Ngg and N;g, i = 1,2, 3, enter the

final expression (77), yielding
ImNoo + yiReNio = —(y192y3 + €(20 + haYa))-

All the terms containing second derivatives of the

prepotential have canceled. Note that ReSp,, depends
only on the constants Cy and Cs.

(77)

:I/,n
r3’
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Since gaugini spinor Killing equations are linear
in derivatives of the moduli, and the functions a; are
of the first order in string coupling, the equations for
the real parts of the moduli, which are the real parts
of spinor Killing equations, are independent of the
imaginary parts of the moduli. The equations for the
imaginary parts of the moduli decouple from those
for the real parts. In the following, we shall discuss
only the spinor Killing equations for the real parts
of the moduli. The equations for the axions will be
considered elsewhere.

Using the Kéihler potential (16), we calculate

the combinations B. = f19,2" that enter the spinor
Killing equations (27) for the moduli z;. We have

1
BY = __K/2 <1 — el> onIny?,  (78)
2 2y

Bi — iy, (Bg + K29, lnyi> . i=1,2.3.

All the expressions are calculated in the first order
in the string coupling. In particular, all the factors
multiplying the expression €V should be taken in the
leading order in string coupling.

The function 2U in the metric will be written as
20Uy + euy. At the tree level [see (75)], we have

e o =0 = fy =1+ P/r.
For the Kéhler potential, we have

oK foe82vo [1 e (¢1 9y, — VTfoﬂ . (79)

The function T}, (63) which enters the gravitini
Eq. (68) is transformed to the form

Ty, = eK/2y1 [POeQ'Y(l +e(2V + hayaefho)fo)
(80)

xn
+ Pl 4 eCayafo]eQUﬁ.

The factors fy appear because the modulus y1, when
it multiplies an expression of the first order in string

coupling, can be replaced by its tree-level value f; .

Using the expression for the Kéhler potential (79)
and expanding all the terms in (80) to the first order in
string coupling, we obtain

_ —1/2P
Ty, = fo 1

N

where the constant C' is

1 Caya —2
C = § <haya—|— W) e -,

(81)

(82)
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Substituting Eq. (81) into the gravitini spinor Killing
equation, we obtain it in the form

O e - T ()

3ui ¢ "
x [1—#6(%—71—#(?—#0))} = =o.

In this equation, the combination of the tree-level
terms vanishes; the remaining part of the first order
in string coupling is

ul —h _
7—1— 5 +<T+C>f0_0'
Here, ¢’ is defined after (44).

Let us consider the gaugini spinor Killing equa-
tions (71). Substituting the expression

eX Son = —i (1 . <71 + (Z + c) f0>> (85)

Pe™70 4 QUCC
R 2¢ W)

we obtain the combination (1/2)F,
form

(84)

—|— el Sy, in the
| K
=Fo, +€" Son

(e (5)5)

Pe70 4 2U:1:
/B 2° 3 )

For the combination 1/25’:0_n1 — iy1e% S, that en-
ters the gaugini Killing equation with I = 1, we ob-
1 —1 ; KS
57'- on — 1€ Son

tain
= Zil (1 —€ <3’)/1 + <K +C) fo))

Pe70 4 2U:1:
R 2° W3 )

Keeping the terms up to the first order in string
coupling, we have the one-loop-corrected expres-
sions for BY and B},

(86)

(87)

' fo' /e

BY 88
n NG (83)
I 2 / —92 n
X [1+¢€ o1 n +¢1 71_3Vf0 x_7
q 2 4 T
Bl Aq’fofl/Qe_%
n— 7/ —(F———
2v/8

Vol.66 No.5 2003



MAGNETIC BLACK HOLES

! !/
+2 +2 |4 "
x[l—i—e(% q/’71_¢1271+ Io)]r'

Using the expressions (86)—(88), we verify that
leading-order terms in Egs. (71)with/ =0and I =1
cancel, and the remaining equations for the combina-
tions of the terms of first-order in string coupling are

¢/1—2Vi+¢1—u1

1=0: 7 5 271 (89)
Vv
(e
/ / _
=1 Qtm  hom o,
q 2
Vv
(E Y amo
Equations (89) split into the following system:
P p1—wm 14 _
7 + 5 1 Clfo=0, (90)

1 +qd7n =0.

Let us consider the remaining gaugini Killing
equations (71) with I =2 and I = 3. Substituting
the expressions for the loop-corrected couplings (14)
and the field strengths (41), we have

. P (v Coya\ 1 ™
Fol=—|=z+h e ()|
on V1Ys <2 + h2y2 + Po 26 r3 (91)
\%4 1 T
_ 0 2U
—y2Pf0(§+L)§€ 3

and a similar expression for 7:0;13 obtained by the
substitution 2 — 3. The field strengths 723, absent
at the string tree level, are of the first order in the
string coupling. Here, we introduced

Lo = <h2y2 + Cﬁf) e 20, (92)
C3y3\ o
Ly = (h3y3 + PO Y0

Subtracting Eq. (91) with I = 2 from that with
I =0 (the same for I = 3 ) and using, for the com-
binations B, expressions (78), we have

0,
je/29nY2

" (93)
Fol 1.
+ 4€7U <—2Z(Z; — §‘F(;10 - 2€K80n> = 0

Substituting the expressions for the field strengths
F5,0, F5.2 and Eq. (85) for eX Sp,, and keeping the
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terms of the first order in the string coupling, we
obtain

P
71'+U1'+(C—L2—71f61)ﬁ =0, (94)
P
' =o'+ (C—Ls— ’Ylfal)r_g = 0.
The sum of Egs. (94) is
Yy +md 4+ (2C — Ly — L3) fo = 0. (95)

Using expressions (82) and (92) for C' and L, we find
that

2C — Ly — L3 =0, (96)
so that Eq. (95) coincides with the second Eq. (90).

Let us solve the system of the gravitini Eq. (84)
and the first Eq. (90). Adding and subtracting the
equations, we obtain the solution

wton=a- (G420 h 1)
u1_¢1:%_VTfO7

where ¢; o are arbitrary constants. Requiring that, at
large distances from the center of the black hole, the
metric and dilaton be asymptotic to the Lorentzian
metric and the constant dilaton be equal to unity, we
have

\% \%
a=5 + 20, 2= 5 (98)
and we obtain
v rp v P
m—‘(5+0)?‘zr+p (%9)
P VvV P
¢1 __C7+ZT+P'

At the tree level, magnetic black hole is the ex-
tremal BPS saturated configuration [5, 6], where the
function fy was introduced in (24). Provided su-
persymmetry is unbroken in perturbation theory, the
loop-corrected solution must have the same proper-
ties. The ADM mass can be obtained from the r — oo
asymptotics of the metric. From (99), we have

w20 (12 ).

The BPS mass is determined from the asymptotics of
the function T'~, which can be written as

T, = (F1FL, — X"Grw). (100)
Asymptotics of the fields F! and G are proportional
to electric and magnetic charges, respectively. Taking
the limit r — oo of the function T, we find the BPS
mass that is equal to the ADM mass.
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The loop-corrected metric can be considered as
the leading and first-order terms in the expansion in
e of the metric

o0 P+r+ePV/A
Ji =TI = T P(V/A+ O)

in the string-loop counting parameter e. If the con-
stant C can be taken such that V/2 4+ C < 0, the
metric of the loop-corrected black hole, when extrap-
olated to the region of small r, has no singularity that
is smeared by quantum corrections. This case is real-
ized if the magnetic black hole is obtained from a dy-
onic black with the constant metric of the two-torus
Gn in the limit of vanishing electric charges [21].
In this case, V/2 + C = Reh, which is known to be
a negative function for all values of the moduli [10].
The Green—Schwarz function V' is known to be pos-
itive [9], which ensures no extra singularities of the
metric.

(101)

10. DISCUSSION

Solving the loop-corrected system of the Ein-
stein—Maxwell equations, we obtained a two-para-
meter set of solutions for the loop corrections to the
metric and dilaton:

P P
=A——-A 102
U1 17“ 27”+P’ ( )
VNP P
¢1— (A1+5>?+A2T+P.

The one-parameter family of solutions of the system
of Maxwell and spinor Killing equations (99) is of the
form (102) with Ay = —C —V/2 and Ay = V/4 and
thus is contained in solution (102).

Near the locations of the enhanced symmetry
points in the moduli space, the second derivatives of
the prepotential have logarithmic singularities [7, 8].
In particular, for yo ~ ys,

hY (g, y3) = (y2 — y3)?log(ya — y3)?.

Although the loop-corrected gauge couplings (31)
contain second derivatives of the prepotential, the fi-
nal expressions for the metric and moduli contain only
the first derivatives of the prepotential and thus are
regular at the points of enhanced symmetry. Note that
the Green—Schwarz function is positive [9], which
also can be seen from the form of the Kéhler potential
for the moduli, which is a regular function at finite
values of the moduli.

Our solution for the loop corrections is valid for
all r for which the perturbation expansion in string
coupling is valid. Since the dilaton increases at small
distances, both the tree-level and the loop-corrected
solutions are valid for r/P > €V.
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Our treatment of spinor Killing equations is similar
in spirit to [22—25]. However, in these papers, only
the tree-level spinor Killing equations were discussed.
Another distinction is that, in these papers, the em-
phasis was placed on the form of solution at the sta-
bilization point [23, 26], whereas we were interested
in the full coordinate dependence of the solution.

Our approach is different from that in [24, 27]
based on the assumption that there is a “small” mod-
ulus which can be used as an expansion parameter for
the loop-corrected action. In string-loop perturbative
expansion, a natural expansion parameter is associ-
ated with the dilaton, and the loop correction to the
tree-level prepotential is independent of the modulus
Y1 = S

Finally, in the perturbative approach, we neglect
the terms of the form O(e?™), and the duality prop-
erties of the full theory [28] cannot be checked in this
setting.
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Abstract—A scheme is proposed for studying the nucleon spin with the aid of observables in the production
of single W bosons in hadron—hadron collisions. Special attention is given to determining the distributions
of polarized quarks in the low-z region. Lowest order electroweak radiative corrections to observables
are calculated. For the conditions of future experiments at the RHIC facility, the relevant cross sections
and single and double asymmetries are estimated numerically with allowance for radiative corrections.

© 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Despite considerable advances in solving the
proton-spin problem [1] that were made in fixed-
target experiments at CERN [2], SLAC [3], and
HERMES [4], the distributions of polarized u, d,
and s quarks and of a gluon in a nucleon have yet to
be determined conclusively. Unfortunately, inclusive
measurements that determine the spin structure
functions g1 (x, @?) for nucleons and deuterons make
it possible to obtain information only about specific
combinations of polarized-parton distributions. In
order to perform a complete analysis and separate
individual components, additional measurements are
required. For example, investigation of semi-inclusive
reactions at SMC [5] and HERMES [6] enables one
to obtain parton-distribution combinations differing
from the inclusive ones, but the accuracy of their
determination is not very high since the results
depend on fragmentation functions.

New combinations of polarized-quark distribu-
tions can also be deduced from experimental data
on single (or double) spin asymmetries for the case
where an unpolarized (or polarized) proton beam col-
lides with polarized nucleons. Such an experiment
is planned to be implemented in the near future at
the RHIC facility [7]—in particular, the collider po-
larization experiments STAR and PHENIX at an
energy of /s ~ 500 GeV will enable one to measure
some single spin asymmetries. In addition, there are
prospects for accelerating polarized protons at the
Tevatron (Fermilab) collider [8] and, possibly, in the

HERA-N experiments [9].

“e-mail: zykunov@gstu.gomel.by

In the present study, we focus on the inclusive
production of single W bosons in hadron—hadron
interactions involving one or two longitudinally po-
larized beams,

(=)

hi +hy —» W+ X —I* + X, (1)

As was mentioned above, the single and double
spin asymmetries in W-boson production (for ex-
ample, the single asymmetry Ay in [10]) are highly
sensitive to the behavior of quark distributions in a
polarized nucleon. In Section 2, we derive formulas
for the single and double spin asymmetries in pro-
cess (1) underthe condition that only the charged lep-
ton is detected in the experiment. We also show there
how, by using the proposed asymmetries, one can
study quark distributions in a polarized nucleon—in
particular, in the region of low z.

Events that occur against the background of the
main reaction and which originate from loop diagrams
and (since we consider an inclusive reaction) from
photon-bremsstrahlung diagrams cannot be isolated
from it experimentally; therefore, they must be calcu-
lated theoretically, whereupon their contribution must
be subtracted from observables. In the present study,
we calculate the total electroweak radiative correc-
tions of order « to the cross sections and polarization
asymmetries for reaction (1) and present a detailed
numerical calculation of their contributions to ob-
servables.

2. BORN CROSS SECTION
AND ASYMMETRIES

Within the quark-parton model, the cross section
for an inclusive hadron reaction is constructed by

1063-7788/03/6605-0878$24.00 © 2003 MAIK “Nauka/Interperiodica”
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using the generally accepted formula

hi h2—>liX
X Z fi(l)ml (LEl, QQ)fi(/z)mg (‘r27 QQ)da-?Z‘:/u

o
,15T1,72

where fi(a)’r(x, Q?) is the density of the probability of
finding, in hadron a, a parton of sort 4 having a helicity
r and carrying a nucleon-momentum fraction x (at
a momentum transfer squared Q?), while dc”}—iii, is the
cross section for an elementary process that leads to
the desired final state (Fig. 1). The sum is taken over
all possible parton configurations and the helicities
of the first and the second parton (12 = +1). The
meaning of the “hat” operator will be explained below.

The production of a single W boson in a hadron—
hadron collision is described within the quark-parton
model by two pairs of elementary quark—antiquark
subprocesses. For example, the elementary processes
for W~ production are

@i(p1,m) + qir(p2.m2) — W (q) — 17 (k1) + V(k%%)

Here, we have used the following notation (see
Fig. 1): p1 is the 4-momentum of the first (anti)quark

879

of sort ¢ having a mass my and a polarization vector
M, p2 is the 4-momentum of the second (anti)quark
of sort ¢’ (the index i’ everywhere labels the isospin
partner of a quark of sort ¢) having a mass moy and
a polarization vector 7y, k1 is the 4-momentum of
the charged lepton [~ or [T of mass my, ko is the
(anti)neutrino 4-momentum, and ¢ = py + po is the
4-momentum of a W boson of mass my,. We employ
the standard set of Mandelstam variables for elastic
parton scattering; that is,

sq = (p1+p2)?, t=(p1 —ki)% (7)
u = (k‘l - p2)2.

Taking the squares of the matrix elements for par-
ton subprocesses, we obtain the invariant cross sec-
tion for elastic parton—parton scattering in the Breit—
Wigner form (for the polarization vectors of initial
particles, we use the covariant expressions presented,
for example, in[11])

d + 042 “/’ii”ZBii’ (8)
.., =
W AN sq((sq — mBy)? + mETE,)
d3k:1 d3k:2
19 — k1 —ky)———=
X (p1 + P2 1 2) k1o 2]@07

where « is the fine-structure constant; 1/N. = 1/3 is

a color factor; syy = /1 — C%v is the sine of the Wein-
berg angle; cywy = my /mz, myz being the Z-boson
mass; 'y is the W-boson width; and Vj is the
Cabibbo—Kobayashi—Maskawa matrix. The quanti-
ties By are formed by the products of terms depend-
ing only on invariants, BZ,, and only on the helicities
and polarization degrees, BL);

i

specifically, we have

u?(1 = r1pp, ) (1 — ropp,) for subprocess (3),

I pP
Bijir = By By =

t2(1 — 71pp, ) (1 — mapp,) Tor subprocess (4),
t2(1 4 71pp, ) (1 + 72pp, ) Tor subprocess (5),

u?(1 4 71pp, ) (1 + 72pp,) for subprocess (6),

where py, ,, is the degree of the longitudinal polariza-

tion of the first (second) hadron (it takes the values of
+1).

The integration with respect to the 4-momentum
of an unobserved neutrino leads to the relation

d3ks

——0(p1 +p2 — k1 — k2) (9)
2kag

=8(sqg +t+u—mi—mj—mi).

Upon using this relation, we make, according to
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the rules of the quark-parton model, the substi-
tutions py(o) — w1(2)Pr(2), where Py is the 4-
momentum of the first (second) hadron of mass my, ,,
and () is the first-hadron-momentum (second-
hadron-momentum) fraction carried by the parton.
The procedure consisting in this substitution is
denoted by the operator “*”. Further, we multiply the
result by the parton distributions in the first and the
second hadron, take the sum over quark helicities,
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and perform integration with respect to x; and 9
according to formula (2).

Let us introduce the Mandelstam invariants for
the hadronic reaction. According to the quark-parton
model (naturally, the transverse component of the
quark momentum in a nucleon is disregarded), we
neglect the parton and nucleon masses against the
energies and the variables s, t, and u. For Eq. (1),
these invariants are given by

S = 2P1P2, T = —2P1k‘1, (10)

so that, with allowance for all simplifications within
the quark-parton model, we can write

2? = CClT,

U= —2Pki,

(11)

Performing integration with respect to x5 with the aid
of the delta function and noticing that

84 = 11728, U = xoU.

§(8 +t+a—m3—m3—mi) (12)
1 xz1T
where
D=xs+U, (13)

we can prove that, in the case of Born kinematics
considered here, we have

Ty =19 = —2,T/D. (14)

Below, we will label quantities for which this kinemat-
ics is applicable with the index “0.”

Finally, we consider the general form of the cross
section for the hadronic process (1). In order to write
it, use is made of variables that are standard for
the hadron—hadron reaction: the c.m. hadron en-
ergy (4/s); the detected-lepton-momentum compo-
nent orthogonal to the beam axes (|k1 | | = k17); and
the pseudorapidity (), which, for the reaction being
considered, is equal to the ordinary rapidity y since

(a) (b)

hy(Py) I=(ky) q(py) I=(ky)

W=(q)

hy(P,)

v 1(kp) C_I(Pz) v 1(k2)

Fig. 1. (a) lllustration of the interaction of partons from
the initial hadrons h; and hq that is followed by the pro-
duction of a charged lepton and an antineutrino. The first
(second) parton carries the hadron-momentum fraction
x1 (z2). (b) Feynman diagram for the elementary process
qq — " .
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my; < kip. As a result, we find that the invariant
quantities 7"and U can be expressed as

T = —\/glee*”, U= —\/glee”. (15)
Upon integration with respect to the azimuthal angle

®, we obtain the phase space d®ky/kig — 7rd77k:12T
and, finally, the Born cross section in the form

=3 [ e, o

where o is the double differential cross section; that
is,

do .
ot = heolFX h2_)2liX (17)
dndki 7
This notation and the relation
+_ £ +
o-=0" +pp,Ac™, (18)

where &% (Ao™) is the unpolarized (polarized) part
of the cross section (we mean the polarization of the
second nucleon), will be used below.

As can be seen, the Born cross section is propor-
tional to the factor 2§ = X% (23), where

7TOé2

~ AN.sl

“/ii/PBiIi’ (2) 2
54((8¢ = m¥)2 + m¥I%,)D" " (2, Q%)

27 (2) (19)

In expressions (16) and (19) for the cross sections,
the combinations of the quark distributions in the
hadrons (a = 1, 2) have the form

FY(21,Q%) = ¢ (21, Q%) + cipn, Ag) (21, Q(QQ)(,))

‘F;(/z) (:C27 Q2) = qZ(’Q) (x27 QQ) - C’i'pthqz‘(IQ) (x27 Q2)7
(21)

where

3 @.Q% = £ @) + £ (1.Q%), (22)
Mg (@, Q%) = £ (@,Q%) — 1 (2,Q2) (23)

are the distributions of, respectively, unpolarized and
longitudinally polarized quarks and c¢;;) = —1 (+1)
for a quark (antiquark).

Let us denote the state where the degree of hadron
polarization is pp, = +1 (—1) by the arrow T (]).
Single asymmetries that are constructed for the inter-
action of the first unpolarized nucleon with the second
one polarized longitudinally can then be represented
in the form

] _ st Agt
£ o o
AL (777le) - == —|—O‘il - 5t -

(24)
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RADIATIVE CORRECTIONS 881

For the double asymmetries (both nucleons are lon-
gitudinally polarized, the first arrow corresponding to
the first nucleon), we accordingly have

o — gEI gl 4 gl
o + o= 4 g1l 4 gL

+
ALY (nkar) = (25)

[f the Cabibbo—Kobayashi—Maskawa matrix has
a diagonal form, Vj; = &;;, the flavors of the quarks
and antiquarks participating in the reaction take the
values

i=d,s,b; i =u,¢t forprocess(3); (26)
i=1u,¢t; i =d,s,b forprocess(4);
i=wu,ct; i =d,50b forprocess(5);

=d,5,b; i =wu,ct forprocess(6).

Disregarding the contributions of the heavy quarks
(¢,b,t) and the contribution of the process su — W~
(because the matrix element Vg is small), we can
represent the Born asymmetries as

AL o(n, k1) (27)
[ dxq (—u’(xl)AJ(xg) + J’(xl)Au(xg))
fdan( (e)d(2) + & (a1 )ula 3)) |
AL o kr) = AL o, ki) (w e d),  (28)
A0, kr) (29)

[ dxy (Au’(xl)AJ(xg) + Ac?’(xl)Au(xg))

04 <x1>u<w3>)

9

J o (1 (o)idta

Al o kir) = AL o(n, ki) (u < d).

Here, the polarized-quark distributions appear in the
asymmetries in the form

(30)

A (z1) = KiAu(ry), AW (z1) = KiAti(xy),
(31)

Ad'(xl) = KuAd(xl), AJ’(xl) = KuACZ(.’/Ul)
(32)

[similar equations relate unpolarized distributions to
the quantities «/(x), d'(z), @' (z), and d'(x), which
appear in the asymmetries: for example, u'(x1) =
Ku(x1)]. We also note that, in all of the above for-
mulas beginning from Eq. (27), we have omitted the
argument Q? for the sake of simplicity. The factors K
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X2
1 n=1 n=2
0.8
| ™ n=-2
04r
n=-1
n=0 \
0 0.4 08 x|

Fig. 2. Region of the variables z1 and zs. The curves
represent the dependence of =3 on z; at various values
of n (/s = 500 GeV, ki = 40 GeV).

in the aforementioned formulas are combinations of
invariant quantities:

£2(a?)
3q((8q — miy)? +myT,) D 0

T2=T,

Ky = . (33)

The physical region of variables x1 and x5 (Fig. 2)
is determined by the inequalities

e <y <1, 2y <ap <1, (34)
where
U
min - . 35
= s+T (35)
In order to highlight the symmetry of this region, we

express the dependence z9(z1) in terms of kyp and n

explicitly; that is,
n -
e _ Vs

I xg le.

(36)

The symmetry in question is associated with the
invariance of this equation under the substitutions
x1 «» 29 and n — —n. Noticing that, in the region of
high 1 and low le/\/_ the function 29 is virtually
independent of z1 (29 ~ —T/s = e ki1 /\/3),

can somewhat simplify the equations relating the
distributions to the observables. It should be borne in
mind, however, that we propose only a version of sim-
plification and that relations (27)—(30) must be used
for a more precise analysis. Specifically, we break
down the domain of integration in relations (27)—(30)
by the parameter 27 (we can choose a value of z7 in
such a way that, in the region x; < 27, we will have
the polarized quark distributions that are bounded
and well defined since large :1:3 correspond to low x1);

by factoring the functions depending on xJ outside
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the integral sign, we find that the asymmetry Alg is
related to the quark distributions by the equation

1

Au(=T)/s) / drid (x1)

”
L1

(37)

1
— Ad(—T/s) /dxlu x1) Afo(n,klgp)

1

x| day (W (21)d(23) + d (x1)u(z9)
[ ans )

min
1

.
Ty

- [ an (Aueh @) - o)

x[{lln
and obtain a similar relation for AL by means of the
substitutions u < d. It is straightforward to derive a
similar relation for the double asymmetry.

We note that the approach used here to calculate
observables makes it possible to investigate quark
distributions at rather low x. For example, the ex-
pression —1"/s at the kinematical point of the RHIC
facility (1/s = 500 GeV, ki1 = 10 GeV, n = 2) does
not indeed exceed 0.0027.

Thus, equations of the type in (37) relate the polar-
ized quark distributions to the observed single (and
double) asymmetries and those combinations of the
distributions that are rather well defined and studied.
One can see that these equations are sufficient (there
are four of them) for singling out unknown distri-
butions of polarized quarks. If we invoke additional
measurable quantities [for example, the expression
obtained for g;(x) on the basis of the quark-parton
model], we can restrict ourselves to the use of sin-
gle asymmetries and, accordingly, to an experiment
where unpolarized hadrons probe the spin structure
of polarized ones. It is such experiments to which the
spin program of the RHIC facility is devoted. If, in the
future, there appears the possibility of polarizing both
nucleon beams, measurement of double asymmetries
will provide a basis for testing and further refining the
result in question.

3. CONTRIBUTIONS OF ADDITIONAL
VIRTUAL PARTICLES TO THE CROSS
SECTIONS

In order to obtain precise and reliable informa-
tion about observables, it is necessary to consider
processes that cannot be isolated from that being
investigated by experimental methods (we mean
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here radiative processes). For the first time, radiative
corrections to W-boson production in collisions of
unpolarized protons were calculated in [12]. Only the
contribution induced by radiation from particles in
the final state (final-state radiation) was estimated
there. More precise calculation was performed in [13,
14], where radiation from particles in the initial state
(initial-state radiation) was considered in addition to
final-state radiation. For the final state, a collinear
singularity, which consists in that the corrections in
question are dominated by the contributions of pho-
ton emission from charged particles in the direction
of their momentum, was isolated by a conventional
method involving the introduction of a radiating-
lepton mass. On the contrary, a collinear singularity
of the initial state was singled out by introducing
the collinear region and was absorbed in the parton
distributions, in just the same was as this is done,
for example, in QCD in taking into account gluon
radiation. As a result, final formulas for corrections
appear to be independent of parameters that are not
physically well defined, such as the quark masses.
Instead of them, there appears, in cross sections, a
different parameter, &y, that specifies the boundaries
of the collinear region. Nevertheless, numerical cal-
culations demonstrate but a weak dependence of the
results on this parameter; therefore, the method is
thought to be quite reliable.

The dependence of the results obtained in [13,
14] on another unphysical parameter (maximum en-
ergy of soft photons, E.,) is an uncertainty that
has a crucial effect on the validity of the interpreta-
tion of these results. This dependence arises in iso-
lating the bremsstrahlung-cross-section component
that involves an infrared divergence. The calculation
performed in [15], where the corrections to the cross
sections and single spin asymmetries for W-boson
production in collisions of unpolarized hadrons and
in collisions of a polarized and an unpolarized hadron
were derived and estimated numerically, is completely
free from this significant drawback. In [15], as well
as in the calculation proposed in this article, the in-
frared divergence is singled out in a covariant way
by using the method proposed in [16], so that the
final expressions involve no dependence on FE., or
on some analog of it. However, the quark masses
are used here within this method, as well as in the
earlier studies reported in [17] and devoted to cal-
culating corrections to the hadron current in deep-
inelastic lepton—nucleon scattering (see also [18]), as
parameters that regularize the collinear singularity of
the initial state. The dependence of the results on the
choice of quark-mass values is considered in [15] and
in Section 5 below, where it is proven (and this is
the most important fact) that spin asymmetries are
virtually independent of this choice.
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In this study, the one-loop contribution induced by
the radiation of additional virtual particles (V' con-
tribution) was calculated in the 't Hooft—Feynman
gauge and according to the on-shell renormalization
scheme employing the constants o, myy, and myz; the
mass my of the Higgs boson; and the fermion masses
as independent parameters. The corresponding Feyn-
man diagrams are presented in Fig. 3.

The V-contribution cross section is proportional

to the Born cross section and can be written in the
form

E=3 / dayF (21, Q1)0 |0 S, (38)

where the factor 6%}/ is independent of initial-hadron
polarizations and is well known. It involves seven
terms:

S = 0w + Oyt + Oy + Ot + Osq + Oy + Oy

(39)

We will not reproduce the exact expressions for these
terms—they are presented in [18, 19]; instead, we will
consider their origin and give necessary comments
at the points where the results were rescaled and
modified.

The correction dyy is caused by the contribution to
the cross section from the diagrams of the W -boson
self-energy (Fig. 3, 1); it has a form that differs from
that in [18] (this is due to the s-channel resonance
W -boson production); that is,

2 .
8¢ —myy — imw 'y
2 \2 2 12
(8¢ — myy)? +my, Iy,

dw = 2Re S (sq),  (40)
where 3 (s,) is the renormalized transverse part of
the W-boson seli-energy (see [19]).

The term dy; is the leptonic vertex function (Fig. 3,
2) {see Eq. (2.10) in [18]}, while 6%}; is the quark
vertex function (Fig. 3, 3) {see Eq. (2.11) in [18]}; in
the present study, we retain the flavor index on this
correction and on the contributions due to two-boson
exchange. The term dg; is the neutrino self-energy
(Fig. 3, 4) {see Eq. (2.12) in [18]}. The contribution
of the u-quark self-energy (Fig. 3, 5) can be written
in the form

m2

« ’m

2 2 3
— Q% (mXZ o M =l
Qd( 'md A2 +

This expression was obtained from formula (5.46)
in [19] (see also the comment given below).

We have also rescaled the contributions of the box

diagrams in terms of the quantities Iﬁ;v’f and IfQW’f

(41)
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V, Z(W)
W(Z)
Y, Z(W)
8 9 10
11
Fig. 3. (1—7) Set of Feynman diagrams for the process
qq — 1~ p. Open blocks represent the contributions to
self-energies and vertices; their exact content can be

found in [18, 19]. (8—11) Feynman diagrams for the
bremsstrahlung process gg — 1~ v7y.

from [18] and present them here in order to highlight
the dependence of these functions on the type of
particle involved in the reaction and on the reaction
channel. The contribution of yW exchange to the
cross section (Fig. 3, 6 and 7) can be represented as

(5“ 5’YW = O4yW, (42)
5ff 5,YW—,YW(t<—>u2<—>z)

where

5’YW = —Rte[QZ['Y (qu ) + Qy I’YW (qu )]v

(43)
the contribution of ZW exchange (Fig. 3, 6 and 7)
can be expressed in terms of the corrections

Sy = 0%ty = dzw, (44)
O, = 6%, = dpw (t — u,i — 1),
where
2cy
5ZW = ?Re[((vl + al)(vi + ai) (45)

+ (vy + ay) (v + ai’))Ilzw(qut) + (v + )
X (v + ay) + (vy + @) (i + ai)) 15 (54, u)).

The vector and axial-vector coupling constants v;
and a; (here, the index is spelled out as j = I, v,1,4’)
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for the vertex corresponding to Z-boson emission
from the j fermion are determined in terms of the
fraction of the fermion charge @; in units of the pro-

ton charge (that is, Qu=Qu =+2/3; Qu=Qz=

—1/3; Q; = —1; and, naturally, @, = 0) and the 3-
component of the weak isospin I]‘(-)’:
I3 —2s j I3
v; = 17“”@] a; = J (46)
28ch 28wcw

Let us represent the V'-contribution cross section
as the sum of an infrared-divergent and a finite term;

that is,
7t =t ot = 3 [ o, Q7) (47)

0,3’

Z” (5IR + 5V)’:tg :t

The infrared divergence in the V' contribution is reg-

ularized with the aid of the photon mass A. For the

correction 5{5 involving an infrared divergence, we

then arrive at the expression
R = —1

~£.J(0) (48)

)\2
[a natural derivation for J(0) will be given in the next
section]; as to the finite part of the V' contribution, it
includes the correction

5 =0 — IR = 5 (X2 - s,). (49)

4. BREMSSTRAHLUNG CONTRIBUTION

In order to obtain, for an observable, a physically
meaningful result—that is, that which is finite in the
infrared limit—it is necessary to include, in the anal-
ysis, the contribution of that part of bremsstrahlung
which cannot be experimentally separated from the
process being studied. Reaction (1) is inclusive;
therefore, we must calculate the contributions of both
soft and hard bremsstrahlung photons to the cross
section (Fig. 3, 8—11).

We calculate the cross section for bremsstrahlung
in the partonic process using conventional Feynman
rules. The result is

043“/1‘1‘"2
267T25%VN05(1
d3ky d3ky d3k

R%5 —ky — ko — k) —=
stpi;’ |“0(p1 + p2 1 2 )2k102k202k0’

(50)

do-qiq;;/*)llj’y =

where we perform summation over the spin states
of final particles (leptons and photon) and averaging
over the spin states of quarks. Further, we represent
the square of the relevant matrix element as the sum
of terms that correspond to radiation from the initial
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state (index ), radiation from the final state (index f),
and their interference; that is,

IR = (RiRS)™ + (ReR)™  (51)
spin
+ (R;R} + RyR;)™
(R;R;)™ (52)

e ) o e
x tr[’YuU?,la'Yu’ UJT”L,;?]’
(ReR)™ = —ILIL ]y, Ul U]
< til(@y) v ey U,
(RiR} + RpR )™
= —ILIL; (eGP U A

TL’T W
) Ufp]

T try UL (G )p Uil
< Ar{(GF ) UT A UT)).

The indices n and n’ denote the process type:
n = — (+) for the qq (gq) initial state and n’ = — (+)
for the [=v (I*v) final state. The quantity II; (II,) is
the W-boson propagator for the case of radiation from
a lepton (quark) line. Specifically, we have

V! Uz??a]

X tr['yMU}f/a(G

II; = 1/(Sq — m%;[/ + imwrw), (53)

I, = —1/(s; — 2kq — m¥, + imyTw)

=1/(z +twr),
where
twr = tw —imwlw, tw=v-—s,+ m%/l/v (54)
q=p1+Dp2.

For kinematical variables that describe the radiative
process, we use the invariant quantities

z = 2kkq, t1 = (p2 — k2)27
up = 2kpe =v+2— 2,

21 = 2'I€p17 (55)

U:Qkkgzsq—l—u—i-t—m%—m%—ml?,

where k is the 4-momentum of the radiated photon.

The matrices U originate from the products of the
bispinor amplitudes and the matrices (1 £ ~5), while
G stands for a combination of the fermion propagators
and the WWr vertex. Specifically, we have

Up,=0=)p1, U, = 1+702)(p2 —m2),

(56)
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U, = (1=rs)pa, U, =p1—m,

Upy =0 =5)ks, Up,=hi+m,

~

Ui, =(1~- s )1, Uf, = k2 (p=7"pu),
7 2pp — ii"')’p
G = QLI 57
(6" = Qi1 (57)
o2ph — APk ol HP
— QT (G
’ _2pp +’)/p]%
G+n HP =Q; 1 nw
(G =0i— ——
—2p8 + kP N
Qa2 T (W
QZ PY Uy +( 3 ) Y
Qkp+’Y k‘ — Hp
(G = Q=——"+(G})",  (58)
G =-Q w—%f +hy (clianie
z
we 1
(Gf ),U'P =" 2chpup ( k Q7'I€ q)a
- i1
w 7 3
(Gf )Hp_ﬂ)/ %pr u( k,k_q,Q),
. L1
(Gl/v )MP_PY 2—kq0pu u( k,q,k — Q)a
w= _ 3
(Gz )NP - ﬁcpyp ( ka k — q, Q)a

where the matrix C corresponds to the W W~ vertex.
In the case of the minimal standard model, it can be
expressed in terms of the metric tensor g,g, its prin-
cipal diagonal being (1, —1,—1, —1), and 4-momenta
entering this vertex:

Co,® 0 0 ) =90 — 1M
+ 9W(p+ - po)p + gup(po P v

Upon going over from the partonic cross section
to the hadronic cross section in accordance with the
prescriptions of the quark-parton model, we can rep-
resent the bremsstrahlung cross section (R contribu-
tion) as the sum of the soft term involving an infrared
divergence and the hard contribution [16] [recall that
we use the notation in (17) for the double differential
cross section o*;

(59)

+ +,IR

of = ot Ry ot (60)

Upon the substitution dxy = do/D and some sim-
ple transformations, the infrared-divergent part (first
term) of expression (60) takes the form

iIR Z/de( 1.0 )EIRH’
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where
Dmax
SR _ @ / oS () IIF'R). (62)
T
@min

The procedure for integration over the phase space of
the bremsstrahlung photon—the corresponding in-
tegral is defined as I[A]—is described in detail else-
where (see formulas of Appendix A in[15]). By using
the method forisolating infrared-divergent terms [ 16],

we reduce the quantity FR to the form

Qz + ClQle_ —atiQi - (63)
+ QQ—; QiQu
1
where
o = +1 for processes (3) and (6), (64)
—1 for processes (4) and (5).

By introducing the function J(9) = o }\ir% I[FR],

we obtain two terms in the soft part of the brems-
strahlung contribution:

@max
&IR ! & iy do
Yo = ——X% — 065
ﬁmin
ﬁmax
o . .. . .. A~
+2 / di (24 1(0) /5 — 57 (a2) 1[FR))
ﬁmin

The second term appears to be free from inirared
divergences (in view of this, the lower limit of integra-
tion in it is set to zero), while the first term involves an
infrared singularity in the lower limit of integration.
By parametrizing the infrared divergence in terms of
the photon mass, we write the first term in the c.m.
frame of initial hadrons, which is of prime interest to
us at the moment. Considering that, in this frame, the
integration limits are given by
2
Omin = 2Ak2g = AU, U=~ ﬂ,

Dy/s

Omax = D(1 — :cg),

(66)

we can see that the first term in (65) assumes the

simplest logarithmic dependence on the photon mass;
that is,

—(a/7)SF J(0) In(Bax /AD).

Upon summation of the divergent components in

the V and R contributions [formulas (47) and (61)],
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(dogwc/dk p)/(doy/dk, 1), %o

=~

-10

-20

pp - WX
Js=1.8TeV

=30

25 30 35 40 45 50
k1, GeV

Fig. 4. Ratios of the cross section allowing for elec-
troweak radiative corrections to the Born cross sec-
tion versus kir at various values of the quark masses:
(curve I)my = 5 MeV and mg = 8 MeV, (curve 2)m,, =
30 MeV and mg = 30 MeV, (curve 3) m, = 100 MeV
and mg = 100 MeV, (curve 4) m, = 0.33 GeV andmg =
0.33 GeV; the dashed curve corresponds to the choice
in (74). The results are presented for the reaction pp —
X (the proton and antiproton involved are unpolar-
ized) at /s = 1.8 TeV, —1.2 < n < 1.2, and A® = 2r
(Tevatron collider kinematics). We have used the MRS
LO 98 parametrization for parton distributions from [20)].

we obtain the expression

O']i{JR iIR Z/dxlF( 71, 2)21 (67)
T

~2/\

x S9 7 (0 anQqO +Z/d:c1F( 21, Q%)<
’UlTlch m
« /d@Eo J(O)—? (9«“2)J(v)’
v

0

where the infrared divergences cancel completely,
leaving no unphysical parameters in the total cross
section.

In performing integration over the photon phase
space, I[F'R], we employed the expressions

1 1 1 1
Il =——, I|5|=— 68
H =t H e (%)

221 vt m?m%’

1 1 u?
I—|=——In——,

ZUq vu o mpms
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1 55 1 1
[T NS
Z1U1 vSq  mims uj mav
With the aid of these expressions, we can easily obtain
the quantity J(v) in the form [recall that o = D(zo —

x9) and that the case of % = 0 corresponds to Born
kinematics]

72 @2
J(0) = Q —q@QQiIn —— + q@QQy In ——— p—
i . <69>
2
+ Q2 Q Qz In 2 + Q2
1 2

Thus, the infrared-divergence-free cross section

(=) -
for the bremsstrahlung process hy ho— I*yX has

the form
:I:,F (70)

_Z/dxldng (x1,Q )FZ(Q)( 2,Q )EFZZ,

where
o
= 847“/“ HQILILV
Sy SqlV
+ QiRe[IL V] + Vg + QILIL Re[Viw]
+ Re[IL|Vow + ILIL Viy).

AR (71)

The indices on V' mean the origin of the bremsstrah-
lung photon: I, ¢, and W refer to radiation from the
lepton (Fig. 3, 10), quark (Fig. 3, § and 9), and W
boson (Fig. 3, 11), respectively. Double indices cor-
respond to interference terms. The expressions for V'
are independent of particle polarizations and coincide
with those given in Appendix C of [15].

Thus, we see that, in the O(a?) cross section for
process (1) (we label it with the subscript EWC,
which means electroweak corrections), there are
three terms—the finite components a‘f’(g) of the

V' (R) contributions and the term (o‘j,E IR + EIR),

where infrared divergences cancel in the sum. Specif-
ically, we have

+,IR

+ O_:I: IR)

otye =0y ot + (o) (72)

It is a remarkable feature of all of these terms that
their dependence on initial-hadron polarization is
factored out in the expressions for Fl-(l)(xl, Q?) and

FZ(,2)(:1:2,Q2). This factorization makes it possible
to derive straightforwardly, from the formulas given
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do/dndk 7, nb/GeV
x1072 |

0.12

0.08

0.04

x1072

887

do/dndk 7, nb/GeV
x1072|

pp - WX

0.12

Fig. 5. Unpolarized part of the double differential cross section for the process pp — I* X at /s = 500 GeV and A® = 27
(RHIC kinematics) versus ki for the pseudorapidity values of (curve /) n = —1, (curve 2) n =0, (curve 4) n = 1.5, and
(curve 5) n = 2 for the cases of e* and u* production. The dashed and solid curves represent, respectively, the Born cross
sections and the cross sections including electroweak radiative corrections. The distributions of unpolarized quarks were taken

in the GRV94 form from [21].

above in this study, the cross section for any combi-
nation of initial-hadron polarizations via the simple
substitutions

FM (21,0 — ¢V (1,Q?),
_F;(,z)(.’EQ, QQ) — (jz(/z)(x27 Q2)7

which transform the hadron in question into an unpo-
larized one.

(73)

5. NUMERICAL RESULTS
AND CONCLUSIONS

The objective of this section is to obtain numerical
estimates for radiative and spin effects considered

PHYSICS OF ATOMIC NUCLEI

above.!) The question of comparing our results with
those given previously in [13] and the problem of
the quark-mass dependence of the corrections to the
cross section that are calculated within the present
approach are considered in detail elsewhere [15] (see
also the comments in the recent study of Dittmaier
and Kramer [14]). Here, we will briefly comment on

the behavior of the radiative corrections to the cross
section for W-boson production in collisions of an

unpolarized proton and an unpolarized antiproton un-

DThe FORTRAN code for numerically calculating the total
O(a) electroweak radiative correction to the cross sections
and to the single and double spin asymmetries can be re-
ceived from the present author by sending a request to his
electronic address.
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Fig. 6. Corrections 6 for the process pp — £ X under the conditions of RHIC kinematics versus k17 at the pseudorapidity
values of (curve /) n = —1, (curve 2)n = 0, (curve 8) 7 = 1, and (curve 5) n = 2 for the cases of e* and pF production.

der the kinematical conditions of the Tevatron col-
lider. It can be seen that, in the resonance region, the
cross section including the corrections is smaller by
about 0.0025 nb/GeV {that is, by approximately 5%
(see Fig. 4; see also Fig. 6 in [15])} than the Born
cross section. As to the dependence of the corrections
on the choice of quark masses, which parametrize
here the collinear singularity of the initial state, we
note that the corrections decrease by approximately
5% as the masses in question increase by one order
of magnitude; of course, this would impose rather
strong limitations on the region of applicability of
our approach to estimating unpolarized observables.
Considering that, within the quark-parton model, the
masses of the initial-state quarks can be replaced by
the expressions

my = xlmhl, mo = xgmh2 (74)

and that there are no other quarks in the reaction
being studied, we can state, however, that our ap-
proach is free from an uncertainty in the choice of
quark masses. The correction corresponding to the
choice in (74) is shown by the dashed curve in Fig. 4.
It can be seen that this correction virtually coincides
with the correction calculated by using the current
quark masses, this agreement being especially close
in the resonance region and at high values of k7.
Further, we will show that the problem of a strong
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quark-mass dependence is nonexistent in the case of
polarization observables. Nevertheless, we will return
to this problem once again at the end of this section.

Thus, we want to estimate numerically the elec-
troweak radiative corrections for process (1). We are
interested first in the effect of the electroweak radia-
tive corrections on the cross section (Fig. 5) and then
in the total correction 64 to the unpolarized cross-

section component (Fig. 6), which is given by

ot = e (1401 + prolog (1 +60);  (75)

further, we estimate the electroweak radiative correc-
tions to the single and double spin asymmetries [AfE
(Figs. 7,8)and AlLiL (Fig. 9), respectively] over a wide
region of kinematical variables. By way of example,
we take the region of the STAR experiment at the
RHIC facility—that is, /s = 500 GeV, —1 < n < 2,
and A® = 27. We have used the standard set of elec-
troweak parameters,

o = 1/137.036,
myz = 91.19 GeV,

mw = 80.43 GeV,
my = 300.0 GeV,

and the fermion masses
my =5 MeV, myg=8MeV, my;=150MeV,
me = 1.5 GeV, my=4.5GeV, my=175GeV.
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ki, GeV

889

A, %

ki, GeV

Fig. 7. Single polarization asymmetries for the process pp’ — I* X versus ki 1 for various values of ) in the Born approximation
(dashed curves) and with allowance for electroweak radiative corrections (solid curves). The rest of the notation is identical to

that in Fig. 6.

We have also employed the GRV94 parametrization
[21]{or the distributions of unpolarized quarks and the
GRSVI6 (LO) parametrization [22] for the distribu-
tions of polarized quarks. For the momentum trans-
fer squared Q? in these Q?-dependent distributions,

we have chosen (as in [13]), the value of Q% = mj;.

Using the exact value of Q2 for the partonic reac-
tion (for example, Q? = 54 for the Born cross section
and for the final-state-radiation component), we have
not found, however, any noticeable difference in the
effects considered here. Finally, we note that, since
the contributions to the observables of the processes
in question from different origins are experimentally
indistinguishable, we do not perform here their com-
parative analysis.

The numerical results obtained here for the cross-
section component corresponding to the scattering
of unpolarized hadrons are presented in Fig. 5 ver-
sus kyp for various pseudorapidity values. One can
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see from this figure that, both for a positron and
for an electron in the final state, the electroweak
radiative corrections are significant and increase the
Born cross section in the region k17 < myy /2 forn =
—1, 0; further, the electroweak radiative corrections
are insignificant at low k7 forn > 1 and in the region
k17 > my /2 for all values of . For a positively and
a negatively charged muon in the final state, the elec-
troweak radiative corrections are more significant in
the resonance region at n = —1, 0 and for low values
of ki at n = 1.5, 2 (here, the electroweak radiative
corrections reduce the Born cross section).

Further, Fig. 6 displays the corrections §* to the
unpolarized part of the Born cross section. It can
be seen that the corrections are less in the muon-
production than in the electron-production process
(the difference is about 0.12). This fact conforms to
the general character of the dependence of the elec-
troweak radiative corrections on masses that regu-
larize the collinear singularity since the mass m,, is
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Fig. 8. Corrections to the single polarization asymmetries for the process pp — 1T X versus ki for various values of . The
solid, dashed, and dash-dotted curves are plotted for, respectively, current quarks, the choice of m, = mq = 30 MeV, and the
choice in (74). The rest of the notation is identical to that in Fig. 6.

greater than m, by a factor of about 2 x 102. A feature
that is common to the behavior of corrections for all
cases (e*, u*) and at almost all values of 7 is that
they increase in the region k17 < myy /2, decrease
sharply in the vicinity of the resonance, and then grow
smoothly in the region ki > my /2. We note that
the corrections to the transverse-mass distribution
that are displayed in Fig. 9 of [13] (see also [14])
exhibit a similar behavior.

Let us consider the effect of the electroweak radia-
tive corrections on the observable single [Egs. (27),
(28)] and double [Egs. (29), (30)] spin asymmetries.
By way of example, Fig. 7 shows the Born asym-

metries ALf)i and the asymmetries with allowance
for the electroweak radiative corrections. One can
see that the corrections to the single asymmetry are
significant and that they reduce the Born asymmetries
nearly over the entire region being investigated, with
the exception of the low-ki7 and high-n regions.
It should be noted that the corrections in question
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are virtually independent of the masses of final-state
particles (m, versus my,). In other words, the cross-
section ratios (that is, asymmetries) are much less
sensitive to variations in the mass values than the
cross sections themselves. Because of this, the cor-
rections to the asymmetries are weakly dependent on
the quark masses as well. If, for example, we change
the quark masses from the current values of m, =
5 MeV and mg = 8 MeV to the constituent values
of my, = mg = 0.33 GeV, the asymmetries change by
not more than 0.01% over the entire region investi-
gated here; in the region specified by the values of n =
2 and k17 = 10 GeV, which is of importance for ana-
lyzing the quark distributions at low x (see Section 2),
this shift is as small as 0.0032% (0.0021%) for a
negatively (positively) charged muon in the final state.
A small distinction between the single asymmetries
that arises in response to varying the quark masses
is clearly seen in Fig. 8, which shows the quantities

= 4E £ .
AAL = AL pwe — AL o versus kyp at various values
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10 20 30 40 50
ki, GeV

A, %

6

10 20 30 40 50
ki, GeV

Fig.9. Double polarization asymmetries for the process iy — I X versus k11 for various values of 7 in the Born approximation
(dashed curves) and with allowance for electroweak radiative corrections (solid curves). The notation is identical to that in

Fig. 6.

of . One can see that the variation of AA%ﬁE in
response to the variation of the quark masses with-
in a factor of about 5 does not exceed 0.2% over
the entire kinematical region under consideration, in-
cluding the region of our prime interest around the

values of n = 2 and k17 = 10 GeV, where AA%i is
as low as about 0.015%. The curves corresponding
to the choice of the quark masses in (74) (Fig. 8, u~
in the final state) have a perfectly similar character,
deviating nowhere from those for the current-quark-
mass choice by more than 0.5%. Thus, we see that
our approach to calculating the electroweak radiative
corrections to the asymmetries is nearly free from the
uncertainty in choosing the quark masses.

Finally, the double Born asymmetries and the dou-
ble asymmetries with allowance for the total radiative
correction are shown in Fig. 9. These asymmetries
prove to be smaller than the single asymmetries, but
they are quite sizable (about 5%) almost over the
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entire kinematical region being considered. We can
see that the electroweak radiative corrections to these
asymmetries are especially significant in the case of
scattering at n = 0 and at low values of kjp. There,
the difference between the asymmetries is 0.5%; with-
in the remaining region of variables, the correction is
appreciably smaller. Figure 9 also demonstrates an
interesting feature of the Born double asymmetries—
the equality Apro(n, k17) = ApLpo(—n, k17). This re-
lation follows from the structure of the double asym-
metries and from the symmetry of the region of z; and
x2 [see Fig. 2 and formula (36)]. Naturally, it does not
hold for the asymmetries calculated with allowance
for the radiative corrections.

6. CONCLUSION

Thus, the results of the present study can be used
in exploring the nucleon spin at hadron colliders—
first of all, in interpreting data that will be obtained
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in experiments at the RHIC facility. The analysis per-
formed in this study makes it possible to estimate, for
the first time, electroweak radiative corrections to a
wide variety of observables in the production of single
W bosons—that is, to the cross sections and to single
and double polarization asymmetries. A numerical
analysis of the results has revealed that the effects
being considered are significant in experiments under
the kinematical conditions of the RHIC facility.
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Abstract—New logarithmic corrections in the mass ratio to the shiit of the 1.5 and 25 energy levels in
the muonium atom are calculated analytically. Corrections of this type that have been obtained so far are

discussed and systematized. © 2003 MAIK “Nauka/Interperiodica”.

The contribution to the fine shift of the S energy
levels in a hydrogen-like atom from recoil effects was
analyzed even at the early stage of investigations into
the problem of bound states of two particles [1, 2].
The theoretical value found there for the shift and
reproduced later on by other methods [3, 4] can be
written in the form

(Za)Spu? 1 (2 42
AE=———<—-In(Z — —Inlk
mmime nS | 3 n(Za) 3 nlko(n)]
(1)
2
+ P R— [m%lnni—m%lnn&] +C},
1 2

where Z is the charge of the nucleus being consid-
ered, n is the principal quantum number, In[kg(n)] is
the Bethe logarithm, p is the reduced mass, « is
the fine-structure constant, 77172 =my2/(m1 + mg),
and C'is the constant determining the contributions
featuring no logarithms.

We emphasize that a rather high order logarithmic
contribution in the mass ratio is present here; that is,

Za) u? 1 2
N A (2)
mmimg n3m2 —m3

X [m% In 771 — m% In né]

20Za)°u? 1 1 1
_ AZa) i 1 In _g2m P
mmimg n31 =32 1+0 1+8
20Za)u? 1
~ ( a):u’ ﬂ2h'lﬂ_1,

Tmimae n3

where 3 = mj/mg (m1 and mq are the masses of the
light and the heavy particle, respectively).

DScientific Council for the Interdisciplinary Problem Cy-
bernetics, Russian Academy of Sciences, ul. Vavilova 40,
Moscow, 117976 Russia.

A feature peculiar to the procedure for deriving the
quantity in (1)is that the Feynman diagram technique
was modified in such a way as to take into account
the effects of binding in virtual states of the system.
In analyzing two-photon diagrams, it turns out that
one must take into account the multiple exchange
of Coulomb photons. However, the effects of binding
manifest themselves only in the low-frequency region
at virtual-momentum values of k| < ¢, u(Za)? <
e < u, since the binding energy of a hydrogen-like
atom is small. In view of this, it is reasonable to break
down the interval of integration into the low- and the
high-frequency regions:

/d3k:dk:0: /d3k...+/d3k... /dko.

|k|<e |k|>e

In taking the sums of the integrals involved, the
boundary parameter ¢ is canceled, so that its exact
value is immaterial.

In [4], use was made of the quasipotential ap-
proach to describing bound states. In the most gen-
eral case [5, 6], the quasipotential can be expressed in
terms of the amplitude 7¢ as

V(p.q:E) = (Gc ) 'GeTGe (@H (4)

=70 — TCG_C+7'C + ..
where 7c = (G_c+)’1GcTGC(G_C+)71»
Gt (p.q;E)

= ui(p)us(—p)G(p, q; E)Toui(q)ua(—q),

G(pvq’ E) = (27T)2/dp0dQOG (p07q07p7q; E)7

1063-7788/03/6605-0893$24.00 © 2003 MAIK “Nauka/Interperiodica”



w N _ [Eip +m;
o-p o Nmap =[5
—_—Ww Eip
Eip + My

(5)

Here, w is an arbitrary two-component quantity that
satisfies only the normalization condition w*w = 1;
o is the vector whose components are the Pauli ma-
trices; E is the total energy of the system; g;, =

\/P?+m?; and To = y10720, 7io standing for the
Dirac matrices (i = 1, 2).

The total Green’s function of the system can be
written as

G = G¢ + GeTGe, (6)
where T is the scattering amplitude,
T=K+KGK. (7)

Here, K = Kpgs — K¢, where Kgg is the kernel of
the Bethe—Salpeter equation and K¢ = vevy10720, ve
being the Coulomb potential.

The Coulomb Green’s function has the form
Gc = Go + GoKcG, (8)

where G is the Green’s function for noninteracting
fermions.

Animportant feature peculiar to the quasipotential
(4) is that, for each reducible diagram, there is an it-
eration term that improves its behavior in the infrared
region [6]. In order to illustrate this statement, we will
consider the simplest situation where the amplitude
can be represented as

T=Kr (9)
_ Ara (71-k)(72 - k)
TR oK1 <71 ts K2 '

The index “T" symbolizes here the exchange of a
transverse photon, while the effects of binding can be
taken into account by means of the approximation

Gc =2 Gy + GoKcGy. (10)
By definition, we have
Go(k, k' E) = i(2m)*6* (k — k') (11)
X S1(mE + ko, k)Sa(neE — ko, —k),
E? + m? — m} E% +m3 —m?
m = — opz N2 = T op2
where
Si(ko, k) = (Aj(k) ko — e +i07 (12)

A7 (=K [ko + ik — 107 ) 0

F(p,q) = (21)*3(p — q) (E — e1, —£25) "
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Here, AT (p) = P+ ™ o and A (p) = o™ are
Ep 2¢ep
projection operators. From the above, we have
G =FT K, Go =F (13

For the amplitude 7¢, we then obtain the expression

TC = (KT)(J)FF + (KcGOKT)(J)FF (14)
— KC—’—F(KT)OF + (KTGOKC)E")_F
— (Kr)gpFE{
Here, we have used the notation
o
(«..)dp = F'Go(...)Gy F~1. (15)

Upon performing integration in (14) with respect
to the zeroth components of the initial- and the final-
state momentum, we find, in the vicinity of the mass
shell, that

T(p7q7 E) = T(PO = 0#10 = Oupaqa E)a
—_— ~
F7lGy TGy F~' =T, (p,q;F)

= 1 (p)u2(—P)T (P, q; E)ui(q)uz(—q).
In our case, the quasipotential (4) takes the form
V=v® yv® (17)
where V() = (K7),4,
VW = (KcGoKr)+ — (Ko)+ F(Kr)+
+ (KrGoKc)+ — (K1)+ F(Kc)+.

Each of the leading contributions to the energy-
level shift from the terms (KcGoKr)+ and
(Kc)y F(Kr)y is individually proportional to a*—
that is, it is of the same order as the contribution
of the quasipotential V®). However, it should be
noted that, because of the arising difference of the
reducible-diagram contribution and the contribution
of the corresponding iteration, the main corrections
to the Coulomb energy level from the quasipotentials

V@ and v appear to be, in one case, of lower order
in a (V@ ~ a*) and, in the other case, of higher

order in a (V® ~ a®). As the number of events
of Coulomb photon exchange increases in higher
orders of perturbation theory, the conditions for the
cancellation of the leading corrections in the differ-
ences of reducible diagrams and the corresponding
iterations remain unchanged. Thus, summation of
multiple exchanges of Coulomb photons as a means
for removing infrared singularities retains value only
for irreducible diagrams that can be associated with
internal intermediate states of a nucleus.

The scattering amplitude 7T, describing the ex-
change of two transverse photons has no singularities

(16)
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at the virtual-momentum value of |k| = 0. Indeed, it
follows from the results reported in [4] that, in the
low-frequency region, the spin-independent part of
the amplitude 7'y = Trp is given by

Trr —% (18)
/ d’k ( (kp ) kq)2>’
R

where k, = |k — r|, r = p, q, and that the fine shift of
the n, S energy levels due to the amplitude component
in (18) has the form

AEL. = (nS| TE |nS) . (19)

The wave function |n.S) = ¥,,s(p) is a solution to the

Schrédinger equation

042 2 a d3
<P2+ nl; )‘I’ns(p) W’;/ﬁ‘l’nsm)-
(20)

By breaking down the interval of integration into
two parts (0 < |k| < ap/nand ap/n < |k| <e¢), we
can easily find that, in the first part, AELE. ~ o® does
not involve the quantity Ina~! or In 3=! and that, in
the second part, we can use the § approximation for
wave functions; that is,

[nS) = ¥,s(p) ~ (0)é(p),

3,3
2 _H
s (O = E

(27)3W g (21)

By using expressions (19), we can therefore obtain

£

 (Zw)? 9 / dk
ap/n
Zo EN
_AZ (0P
mims al

In the high-ifrequency region, the wave-function
approximation (21) is also used for the initial and the
final state of the system; therefore, radical expres-
sions of the types ¢;, and ;4 in the definition of the
quasipotential (17) are replaced by the masses of the
ith particle. At the same time, radical expressions of
the type e; are retained in the electron and muon
propagators (14). Hence, we are to consider integrals
of the type

~Inpg !, (23)

dk
m
2/ VE2+m3 k2 +m3

which were previously discussed in [7].
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At n = 2, it follows from the results presented in
[4] that

2(Z)? 2¢ mZlnn, — m2Inn,
TTT— (Za) m 77% g b} ’
mimsy 1% ml—mQ

(24)

and the total correction to the fine shift from this
diagram makes a logarithmic contribution in g over
the entire interval of integration with respect to the
virtual momentum:

(Za)°p? 1

AEP = — 25
T dTtmime m% — m% (2)
7 5,,3
« [mflni C g L] o O g g1
mo my dTmmims

At Z =1, the logarithmic contribution that we ob-
tained perfectly coincides with that which appears in
expression (2).

The calculations performed in [4] reveal that, in
the ¢ approximation of wave functions, there exist no
other contributions of order [a® 3 /(m1m2)] 3% In 371,
[t is obvious that, in this approximation, it is impos-
sible to obtain corrections of order

5 3 6 3 5,3
P ogmpta 28 mgts 2F g2y,5-1
mo m11msy

mims

Let us now consider a different possibility. We as-
sume that, in contrast to what occurs in expressions
(25), the use of the 4 approximation for wave functions
leads to the vanishing of the integral.

By way of example, we choose the integral

;o pp d*pN, (26)
86 1+ 08 ) (p?+ a2u?)?
y / d3qN, / A3k
(qQ _|_a2,u2)2 k%(k? +a2u2)

o Mie Maw Moy ( B k?_Q)
€1 ok Mg + Moy k)’

which is typical of practical calculations. Here,

My, = g4, +m;

and

VrZ+m? +m
NT = leergr = \/ L !

2/12 +m?

\/\/r2+m§+'m2
X

2,/12 4+ m3

is the product of the normalization factors of the Dirac
bispinors (5).
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The use of the wave-function approximation (21)
is equivalent to the substitution

R SR o

(r2+a2u?)?2  ap
whereupon the quantity I vanishes, but this occurs
only in the case where the integral must be calculated

to terms of order o®; by no means does this imply,
however, that there are no higher order corrections,

5,3 5,3
CE Bt or 2E g2t
mimsa

(27)

mimesy

Suppose that we want to calculate the integral I to
terms of order [a®u3/(m1m2)] 3% In 371, In this case,
we can make the following simplifications:

My, Moy,
Ny=1l, —~—7
€1k 2k

Moy, mo
~ at N, #£ 1.
My, + Moy, ¢

Furthermore, integration with respect to the 3-
momentum p leads to the expression

_ 046,113 6] / d3qu
o2t (14 B)2) (¢ + a?p?)?

y /L (1 _ ’f)
(k% + a?p?)? kg

- a6,u3 5 / d3qu
C 2 (148 ) (¢ +ep?)?

q ap
+ q2+a2ﬂ2) :

[t is interesting to note that the quantity I vanishes
as before if the § approximation (27) is used at this
stage.

Exact calculations show that the required loga-
rithmic contribution in the particle-mass ratio comes
from the integral

a6u3 5 L/ d3qu
22 (1402 an ) (¢ +a?p?)?
_ 045,u3 I6] dgquqNgq
2m2mama 1+ 8 ) (¢ +7%)%
Upon the change of variable ¢ = ¢'ms in (30), it
turns out that the integrand is characterized by the

dimensionless variable of integration and the quanti-
ties

~ 2, (28)

mi + ms

(29)

(30)
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The integral I involves two small parameters, ~
and 3. We note that, to the required degree of pre-
cision, we have N, =1 at ¢ =+ and N, = 1/V2 at
B <qg<l.

Taking this circumstance into account, we can
obtain, to the required degree of precision, the relation

d3qu w27
T 7 2 m(1+v2) - V2
/(q2+a2u2)2 an [n( +v2) \q

- % [1n(1+\/§) - \/5]

o—r (31)

By comparing (31) with the result presented in (1), we
deduce that the integral I involves a new logarithmic
contribution in the parameter g,

V2 b

I =—
16T mimo

gt (32)
Thus, diagrams that, in the § approximation of
wave functions, did not make a logarithmic contribu-
tion in 3 to the fine shift of energy levels are of greatest
interest.
Let us write the fine shift due to the exchanges of a

Coulomb photon and a transverse photon in the form
AFE,s (33)
= (V. g|(Ker + KcGoKr + KrGoKe) i | Vhs)
— (| (K7)gpFuc |¥,s)
— (V5| ve F(Kr)dp | Phs) -

Here, the subscript C symbolizes Coulomb photon
exchange; K is the kernel of the Bethe—Salpeter

equation in the second order in «; and

;S(p) = Qp\I/nS(p)a (34)
where ¥, s(p) is determined by Eq. (20) and
_ 1 (e1p + En)(ezp + Eb)
p= o ; (35)
2,u €lp + E2p + E1 + EQ
a2 a2
Ei=mi— —t  By=my— .
L=m 2min?’ 2= 2man?
We also note that, from Eq. (20), it follows that
FocW¥pns = Q,V0,s = ¥ . (36)

Therefore, calculating the contribution from the it-
erative term reduces to calculating the appropriate
contribution from the diagram involving the exchange
of one transverse photon. Two-photon diagrams in-
clude two fermion lines; according to the definitions
in (11) and (12), the contribution AFy, can then be
represented in the form

AEy, = AES + AEST + AE, T + AE; T,

(37)
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Table 1
Diagram AFEpay
5,3 * *
2l gmp! 2 2o 2v2 0 0 0 0 0
mima ™ ™ 7r m
5,3 * *
a H 3mg! 1 1 7_‘/5 _7_‘/5 _Q _Q 0 0 0
mims s s 47 47 8 8
afp’ 2 -1 2v2 2v2 V2
—r - — - -— 0 0 0 0 0
m1m251n g w2 2 w2
6,3
THE mpt 0 0 0 0 0 0 0 0
mimeso
where the term AEJ' involves the product ATAT ~8a'y’ &*pQpN, d*q - *QgN,
2y p 149 Acer = —
of the operators of projection onto positive-energy 7 (2m)° ) (P + a?u?)? ) (¢ + o2u?)?
states and the term AE, ™ involves the product (42)
AT A5 of the analogous operators. P’k 1 1 L My

In order to represent expression (33) in a detailed
form, we introduce the sum

AE,s = AEpa + AE,,, (38)

AEpar = <\IJ;zS‘ (KcGOKT + KTGOKC)E)FF ‘\I;;ls> )
(39)

ABe = (V5| (Kcr) + (K7c))dr | Vhs),  (40)

3

where the indices “par” and “cr” correspond to the
contributions from diagrams featuring, respectively,
parallel and crossed photon lines.

For the sake of definiteness, we consider here the
case of n = 1. At n # 1, the corrections to the S
energy levels decrease, in just the same way as in
expression (1), in inverse proportion to the cube of the
principal quantum number.

As the result of calculating the quantities in (39)
and (40) to a high degree of precision, we have estab-
lished the existence of new logarithmic contributions
in the parameter (3 to the fine structure of S energy
levels in the muonium atom, these contributions in-
cluding those that are analogous to the contributions
appearing in expression (1).

Let us now isolate the corrections Aep,r and Aec,
in the expressions for AF,,: [Eq. (39)] and AFE,,
[Eq. (40)], respectively. The results are

16 o u? d3pQL, N,

= o7 | Gy

d3q - ¢*Qy N, A3k 1

(¢* + a?p?)? / (k? + a?p?) (p — k)?
11 My My, My, My

(k —q)? ear e1r Mg My + My, Moy’

Aepar = -

</

X

(41)
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« il

/ (k%2 +a?u?) (p— k)2 (k —q)? ek €1k

o {kg _ My (egkpg + m2)(e1k — €1¢) (E2kpg — 5210)}
(k — q)? ’

where 2,0 = /(k — p — @)% + m3.
First, it is obvious that, in the ¢ approximation

for the Coulomb wave functions, both corrections
vanish.

Second, if we want to calculate the quantities in

5,3
(41)and (42) to terms of order -+
set

BIn ™t wecan

mima

. My, (52kzpq +ma) (e1r — 51q) (52kpq - 5210)
(k —q)?
_ g2 (et m) (e — 1)
(k —q)?
2

p
X |1—
( (e2p + m2) (E2kpg + 5217))

2
2 o e ) o CMik
X ((k q)” —2p-(k q)) ~ i,

k,2

(43)

My,
My, + Moy,

Upon integration with respect to the momentum p,
we obtain

mi + mso

2a6M3

(2m)*
/ d’q-¢*Ny My,

X

(¢% + a®p?)? Mg + Maq

1
Accr = =5 Acpar = (45)
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Table 2
Diagram AEcr AETT AET AEit
5,3
YH Bt V2 0 0 0
mimso s
a’ 2 1 V2 2"
=r - - = 0 0
m1m26 hlﬁ 8w ™
oo Vo ! 2
mlmgﬁln f o2 0 T n2 2
6,3
CF mpt 0 0 2v2 In(1+v2) - v2 A2 4 vB) - Ve
—. 2 2
/ d3k 1 M3, The logarithmic contribution in 3 that we obtained
(k2 +a2u?)? (k — q)? eop e1x is the most significant contribution of the diagrams

After some simple algebra, the correction in question ~ featuring crossed photon lines, but it is not the only
takes the form one.

1 b3 Bmy
AP = —ZAP = — 4
=30 =Gy (4O
y d3q - N, 3k 11 o b3 .
My Ma, K2+ a22)2 (k— q) en Contributions of orders mlmZﬂlnﬂ and
5 b5 6,,3
= —£ il Bln Bt o G1n? 31 also appear in the expressions
2T mims mima
AE+- — AR — T / d3pQ, N, / d3qQ, N, / 3k 1 (47)
par par 476 P2+ 0222 | (@+a212)2 | erpear (p — k)2
1
X — 8= Ace —Ae(S5),
(K= al T et e (K-l Ferg — Br T om— By) @~ 51 = A (@) = 4=(8)
AE—— — _a7,u5 / d3pSL,N,, / d3qQ2y Ny, / d®k 1 1 (49)
T4 | WP ) @ oeP ) e+ ) - K7 k—df
1 1
X + — R] = A¢ — Ae(R),
(e e emarensen) 0 A= 8@ -2
(e2k + €2¢) (1K + €14) { o My M, (k- q)2
R = MM, — (k-q) + + . (50)
(k —q)? W2 My M) MM
b
In the differences Ae (Q) — Ae(S) and Ae(Q) — Ae (R), corrections of orders BInB~! and
mims
6,3
&ﬂIHQ 1 cancel. The problem is that, in the quantity R, we must consider the total set of terms since
mimesg
only in this case is the singularity at k = q canceled:
o My My | (k-q)?
MlkMQk_(k'q)< o 2+’“>+ — (51)
{ M2q Mlq MlqM?q q=k
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E* k2
-l # (G
1k°"2k 1k 2k

k2 it
M+M+> M YERYE; } =0
1k°"2k 1k°"2k

The diagram involving parallel photon lines carries the most important information about the logarithmic

contributions in the parameter 3:

AR — Calyd / d3pQ, N, / d3qQ2y N, / d3k 1 1 1 My Moy
P 7 ) (p?+a2u2)? ) (24 a?p?)? | (k2 + a2p?) (p — k)2 (k — q)? e1pear Mg + Moy
k% — ¢%)? M Moy, My, Moy,
x k% — ( 2 + (k- 52
{ (k=) Gt erg)en T ong) 4 Mg iy T Y (52)
[Mlk L My, (R = ¢)° My, L (K = ¢?)? My 1 } N %}
My, My (k—q)? Moy (e1x +e19)(€2k +629)  (k—q)? Mig (e1x + €1¢) (21 + €2¢) '

Integration of the quantity

k2 k2 k2 — ¢%)?
R =(p-k) + - ( )2
Mllek M2pM2k (k - q)
(53)
1 (Mlk M2k>
X +
(61 +€1q) (E2k +E29) \ Moy~ My
N p2k4
My, Moy, My, Moy,

does not lead to the appearance of logarithmic contri-
butions.

Table | summarizes the results of the calculations
performed in this study, including the entire set of
integrals in (52) that is required for analysis, irrespec-
tive of whether they include (or do not include) loga-
rithmic contributions in 3. The analytic expressions
for the contributions to the fine shift of the S energy
levels in hydrogen-like atoms from the exchange of
one and two transverse photons were previously dis-
cussed in [4, 7].

As to the corrections from the diagrams involving
crossed Coulomb and transverse-photon lines, ex-
pressions (40) and (42) give the idea of their analytic
structure.

In Tables 1 and 2, the corrections from all of the
aforementioned processes are given in a generalized
form. The contributions that do not vanish in the §
approximation of wave functions are labeled with an
asterisk in Tables | and 2.

Analyzing the entire set of various quantities in the
parameter §, we can see that, in the § approximation
of wave functions, the only nonvanishing contribution
is

5,3
ABrp(n ) = 2285 g2, g1,
2

T™mim

(54)

that is, in this approximation, there are no logarithmic
contributions in the parameter 8 other than those
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discovered in[1]. All variety of the nonvanishing log-
arithmic corrections calculated in this study result
from the use of the exact expressions for the wave
functions and the quasipotential.

The contributions of each of these terms appearing
in the expression for AEy,, are written in Table 1 in
the same order as in expression (52).

The use of the Schrodinger equation with the
Coulomb potential makes it possible to reduce the
calculation of the contributions A E}; from the iterated
diagrams to the calculation of the corresponding cor-
rections to the shifts of energy levels from one-photon
exchanges.

We now go over to numerical estimates. In Ta-
bles 3 and 4, we present the corrections AE(1S) for,
respectively, the muonium and the hydrogen atom.
For AE(2S), we have AE(2S) = (1/8)AE(1S).

The resulting total correction for fine shift is

AE*(18)™ = —66.12 kHz
for the 15 energy level of the muonium atom and
AE(28)™ = —8.265 kHz (56)

for the 25 energy level. The resulting value of
dvys g = —57.855 kHz is within the error corridor
both for the currently known theoretical value [8]
and for the last precision experimental result [9] on
the 1.5—28 shift of the energy levels in the muonium
atom:

dvyl_oq(theory) = 2455528 934.9(0.3) MHz,
(57)

(59)

SU_, (expt.) = 2455528941.0(9.8) MHz. (58)

As to the hydrogen atom, our calculations give
here, as can be seen from Table 4, an appreciable value
for the Lamb shiit of the 25 level:

AE(28)™ ~ 1.1419 kHz. (59)
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Table 3. Correction values for the muonium atom (in kHz)

BOIKOVA ef al.

Diagram AFEpar AE,, AEpr AETr AFE; >
ol i’
BlnpBt 0 —141.52 0 0 0 —141.52
mimeso
ol 3
— gt —0.17 0.09 0.97 0 0 0.89
mimeso
a3
fln? a1 1.75 —0.88 0 —1.24 2.48 2.11
mimeso
a3
Ing~! 0 0 0 —72.4 144.8 72.4
mimeso
> —66.12
Table 4. Correction values for the hydrogen atom (in kHz)
Diagram AFEpar AE,, AEpr AET AFE; >
a® 3
B1n 1 0 —2.56285 0 0 0 —2.56285
mimeso
ol 3
— gt —0.00035 0.00017 0.00197 0 0 0.00179
mimeso
a3
fln? gt 0.04476 —0.02238 0 —0.03165 0.06330 0.05403
mimeso
a3
In ﬁfl 0 0 0 —11.64242 23.28484 11.64242
mimeso
D 9.13539
The experimental values found with a high pre- et al.[8]:
cision for the Lamb shift of the 25; ,—2P; ), energy th
levels in the hydrogen atom and their high sensitivity AB; = 1057833(4) kHz, (64)
to the values of the fine shiit of the 2S5, ,, energy expt
level require a thorough comparison of the theory and AE =1057845(3) kHz (1999). (65)

experiment.

In[10], a comparison of the data on the Lamb shift
of the 251 ,—2P, /5 levels was as follows:

AEM = 1057838(6) kHz, (60)
AEP® = 1057845(9) kHz (1981),  (61)
AEP® =1057851(2) kHz (1994),  (62)

AEP® = 1057839(12) kHz (1994). (63)

In the opinion of the authors, these results demon-
strate that the theoretical and experimental data are in
satisfactory agreement.

New data on the classical Lamb shift of the 25} j,—

2P 5 levels are quoted in the review article of Eides

PHYSICS OF ATOMIC NUCLEI

From these data, it can be seen that the discrep-
ancy between the theoretical and experimental values
of the Lamb shift in the hydrogen atom is not less than
5 kHz.

In conclusion, we note that the numerical estimate
obtained here for the Lamb shift of the 25 energy level
in the hydrogen atom makes it possible to increase its
theoretical value (64) by 1.1419 kHz, and this reduces
the distinction between the theoretical [see (64 )] and
the experimental value of the Lamb shiit of the 2.5} ,—

2P s, energy levels in the hydrogen atom.
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Abstract—A duality-inspired model for verifying a consistency of the evaluation of the next-to-leading-
order hadronic contributions to the muon anomalous magnetic moment with that of the leading-order
ones is proposed. A part of the next-to-leading-order hadronic contributions related to the photon vacuum
polarization function is rather accurately reproduced in the model. [ find a new numerical value for the light-
by-light hadronic contribution that leads to the agreement of the Standard Model theoretical prediction
for the muon anomalous magnetic moment with the recent experimental result. © 2003 MAIK “Nau-

ka/Interperiodica”.

1. INTRODUCTION

A numerical value of the muon anomalous mag-
netic moment measured experimentally with high
precision can be used to test quantitatively the the-
ories suggested for describing particle interactions.
The experimental result for the muon anomalous
magnetic moment presented in [1] reads

as? =116 592 023(151) x 107" (1)

with the uncertainty equal to 151 x 10~'!. The main
anomalous effect is due to the Schwinger term

«
ap = 2, (2)
where « is a fine structure constant with the numeri-
cal value a—! = 137.036. ... The theoretical contri-

butions presently computed in the Standard Model
for the comparison with the experimental value given
in Eq. (1) are divided into three parts: leptonic (QED),
electroweak (EW), and hadronic (had). The pure lep-
tonic part is computed in perturbative QED through
a® order [2, 3]. The numerical value of the QED con-
tribution to the muon anomalous magnetic moment
reads (for a review and for further references, see [1])

adtP =116 584 705.7(2.9) x 10!, (3)

The electroweak corrections are well defined in the
perturbation theory framework of the Standard Model
and have been computed with the two-loop accuracy
(for a review, see[1])

a;V =152(4) x 107, (4)

*This article was submitted by the author in English.

e-mail: aapivOms2.inr.ac.ru

Numerically this contribution matches the present
uncertainty of the experimental result given in Eq. (1).
The electroweak correction will be noticeable if a
goal to reach the planned experimental accuracy of
40 x 10~ is accomplished (as a review see[1]).

The hadronic contribution to the muon anomalous
magnetic moment is sensitive to the infrared region
of integration in Feynman diagrams and cannot be
computed in perturbative QCD with light quarks.
The current masses of light quarks are too small to
provide a necessary infrared cutoff, and explicit mod-
els of hadronization are required for the quantitative
analysis of the hadronic contributions to the muon
anomalous magnetic moment. This constitutes the
main difficulty of the theoretical evaluation of the
muon anomalous magnetic moment in the Standard
Model. Writing

SM _ _QED |, _EW | had
a,”" =ay; +a," +a, (5)
and assuming
exp _ SM
a,? =a,;", (6)

one finds a numerical value for the hadronic contribu-
tion to the muon anomalous magnetic moment

a, i (7)

= (7165.3 £ 151]exp & 2.9|qEp £ 4|pw) x 1071
with the experimental error dominating the uncer-
tainty.

Since the hadronic contribution is sensitive to the
details of the strong coupling regime of QCD at low
energies and cannot be unambiguously computed in
the perturbation theory framework, the theoretical

1063-7788/03/6605-0902$24.00 © 2003 MAIK “Nauka/Interperiodica”
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prediction for the muon anomalous magnetic mo-
ment in the Standard Model depends crucially on
how this contribution is estimated. In the absence of
a reliable theoretical tool for the computation of the
hadron spectrum in the inirared region, one turns to
experimental data on low-energy hadron interactions
for extracting the necessary numerical value for a/?!.

In general terms, the hadronic contribution to the
muon anomalous magnetic moment is determined
by the correlation functions of hadronic electromag-
netic currents. As the source for the electromagnetic
current is readily available for a wide range of en-
ergies, one tries to extract these functions (or their
characteristics necessary for the computation of the
muon anomalous magnetic moment) from experi-
ment. Without an explicit use of QCD, the correction

ah™ is generated through the electromagnetic inter-

act1or1 egdeA“, with jzdd being the hadronic part of

the electromagnetic current in the Standard Model
and A" being the photon field. At the leading order of
electromagnetic interaction (a? in the formal power
counting), only the two-point correlation function of
the electromagnetic currents emerges in the analysis
of the hadronic contributions to the muon anomalous
magnetic moment:

My ~ (i ()5(0)). (8)

At the next-to-leading order in the electromagnetic

interaction (a?), the four-point correlation function
appears:

Iy ~ (i ()70 ()i (2)570)). (9

These correlators are not calculable perturbatively in
the region that is essential for the determination of
the hadronic contributions to the muon anomalous
magnetic moment. The leading-order hadronic con-
tribution to the muon anomalous magnetic moment
comes from the two-point correlator Eq. (8) referred
to as the hadronic vacuum polarization contribution,
while the four-point function Eq. (9) first emerges
at the o order, most explicitly as the light-by-light
scattering. To avoid using QCD in the strong cou-
pling mode, one has to extract the necessary contri-
bution to the muon anomalous magnetic moment by
studying these two correlation functions experimen-
tally without an explicit realization of the hadronic

electromagnetic current jhdd in terms of elementary

fields. Historically, this was a way of studying the
electromagnetic properties of hadrons before QCD
had emerged as a fundamental theory of strong inter-
actions (see, e.g., [4]).
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2. HADRONIC CONTRIBUTION
AT THE LEADING ORDER

At the leading order in «, the hadronic contri-
bution to the muon anomalous magnetic moment is
described by the correlator

/ (T ()75 (0) e

o gquQ)Hhad(qQ)’

which reduces to a single function I1"#d(¢2) of one
variable ¢%. The correlator is transverse due to the
conservation of the hadronic electromagnetic current
in the Standard Model. The function I1"(¢?) gives
a leading-order hadronic contribution to the muon
anomalous magnetic moment (e.g., see [5])

(10)

= (QMqV

QK(S)ImHhad(s) (11)

2
dmz

a4 (LO) = 4x (%)2

with the one-loop kernel of the form

1
/d:r
0

Im {114 (¢?)

21— )
(1 —x)s/m2Z

(12)

Here, Im IT"d(5) =
the muon mass.

l2=s+i0} and my, is

The leading-order hadronic contribution to the
muon anomalous magnetic moment given in Eq. (11)
is represented by an integral over the entire hadron
spectrum. No specific information about the function

Im I1M () is necessary pointwise except its threshold
structure in the low-energy region. For applications
at the leading order in electromagnetic interaction,

the function ImTI"(s) can uniquely be identified

with data extracted from the process of ete™ anni-
hilation into hadrons. Introducing the experimental
ratio R%P(s),

o(eTe” — hadrons)
olete” — ptu)

§= (peJr +pe*)27

and identifying it with the theoretical quantity

RM(s)|10 for s > 4mi taken at the leading order in
a as

ROP(s) = .13

RM($)|ro = 127Im 1M (s), (14)
one finds
: 1 P (s
a™(LO) :§ - [ R RE()K() 5 (15)
4m2
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Note that m, = 139.6 MeV > m,, = 106 MeV. The
hadronic contribution to the muon anomalous mag-
netic moment based on the representation given in
Eq. (15)is well studied. Several determinations of the

numerical value for the quantity a?f‘d(LO) based on
different sets of experimental data are

al?(LO) = 7011(94) x 107 [6];  (16)
al™(LO) = 6924(62) x 107 [7);  (17)
al?(LO) = 6988(111) x 10~ [8].  (18)

In further analysis, [ use a naive average of these
three results (both central values and errors are av-
eraged) for definiteness only, because they are con-
sistent within error bars. The average reads

al?(LO) = 6974(89) x 10~ (19)

Writing
ah]y, = al®(LO) + a(NLO)

and comparing it with Eq. (7), one finds (in units
10—11)

al?(NLO) = [7165 & 151 exp (20)

+2.9oeD + 4|ew] — [6974 + 89|10
=191 + 151|exp & 2.9|QED + 4|Ew & 89]had-

Assuming statistical independence of the uncertain-
ties, one finds after adding them in quadratures

al®(NLO) = (191 £175) x 107, (21)

which does not allow one to detect higher order
hadronic effects clearly since the result in Eq. (21)
is consistent with zero. The error given in Eq. (1)
comes mainly from the error of the experimental
value given in Eq. (19) and from the error of the
leading-order hadronic data given in Eq. (20), the
statistical correlation of which is supposed to be small
as they come from different sources. Other errors in
Eq. (20) are negligible. For the target experimental
error of the muon anomalous magnetic moment
at the level of 40 x 10~ (instead of the present
value of 151 x 10711), one finds that the uncertainty
of the next-to-leading-order hadronic contribution
becomes 98 x 107!, Assuming that the mean value
of a,’ in the planned experiment will not change,
one finds that the numerical value for the next-to-
leading-order hadronic contribution becomes

al(NLO) = (191 £98) x 107, (22)

which makes the next-to-leading-order hadronic
effects noticeable at the level of two standard devia-
tions. If the mean value of a;, " changes in the range of
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the present experimental uncertainty of 151 x 10711,
the next-to-leading order hadronic effects can be
more or less pronounced. From the naive counting
in «, a numerical value for the theoretical next-
to-leading-order hadronic contribution about 50 x
10~* can be expected. This number is comparable
in magnitude with the uncertainty in Eq. (22) and
should be taken into account.

3. HADRONIC CONTRIBUTION
AT THE NEXT-TO-LEADING ORDER

In the next-to-leading order, there is no such
transparency in determining hadronic contributions
as in the leading order. Basically, two new features
appear in the analysis. On the experimental side,
the interpretation of data to be used in the next-
to-leading-order theoretical calculations is more
involved. The problem is to avoid double counting
because part of the hadronic contributions have
already been taken into account through the use
of data at the leading order. On the theoretical
side, a new correlation function IIy from Eq. (9),
which is much more complicated than the two-point
correlator, enters the game. At present, there is no
accurate experimental determination of the four-point
function in the kinematical range necessary for the
muon anomalous magnetic moment computation
and one has to rely on phenomenological models
suggested for the evaluation of this function. It is
difficult to control the accuracy of such models,
which introduces an explicit model dependence in
the calculation of the next-to-leading-order hadronic
contribution and makes predictions less definite than
in the leading order.

3.1. Interpretation of Data at the Next-to-Leading
Order of Electromagnetic Interaction

For applications at the next-to-leading order in «,
the extraction of data is more involved. For instance,
one should explicitly take into account the next-to-
leading-order corrections to theoretical factors that
emerge in a description of the process from which a
set of data is taken. These “theoretically corrected”
data should be used in the next-to-leading-order ap-
plications for computing the muon anomalous mag-
netic moment. Since the sets of data are mainly ex-
tracted from the process of eTe™ annihilation into
hadrons, [ discuss this particular process in some
detail.

3.1.1. One-photon mediated ete~ annihila-
tion. The main object studied experimentally in this
sector is a full photon propagator D(q?):

1 1
D(¢*) =
(@) —¢* 1+ ¢*1l(¢?)

(23)
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with TI(¢?) = T1'*P'(¢?) + T1"44(¢?) being a one-par-
ticle irreducible block and e? = 47wa. Note that, in
higher orders in «, the one-particle irreducible block
does not split into a sum of pure leptonic and pure
hadronic contributions. It happens first at the next-
next-to-leading order, which is far beyond practical
interest though. I discuss only the next-to-leading-
order contributions or o terms in the formal o power
counting. Since the data are collected at low energies,
the electroweak sector can be excluded. With these
restrictions, the cross section of ete~ annihilation
into hadrons through the one-photon exchange at the
next-to-leading order without the vertex corrections
to initial states is proportional to

Im{QQD(q2)|q2:s+i0}
e2ImTI(s)
(1 + e2Rell(s))? + e*(ImII(s))?
e2(Im TPt (s) + Im T (5))
(1 + €2Rell(s))? + e*(ImTI(s))?"
The theoretical expression for the R ratio related to

the photon propagator at the next-to-leading order
reads

(24)

Im I1h2d (s)

th o
R7(s)lvzo = Im Ik (s)

(25)

where IT##(s) is the vacuum polarization function due
to virtual muon production. If R (s)|nLo is identified
with R®P(s) from Eq. (13), then Im IT"%4(s) can be re-
stored by using a theoretically calculated Im IT#*(s).
For s > mi, one finds with a next-to-leading-order

accuracy
n 3o
47 )"

In some analyses, the cross section o(ete™ —
hadrons) divided by the normalization factor

127Im I () = R%P(s) <1 (26)

4o
3s
is used as a data set instead of the R ratio [1]. Then,

the relation
127Im 1" (s) = o(e*e™ — hadrons)/og + O((o§)8)

is valid only at the leading order in «. One of the
differences between the cross section and the R ratio
at the next-to-leading order from Eq. (25) is the
term RelI"(s) from the denominator in Eq. (24).
The quantity RelI"(s) can be found by reiterating
the leading-order term ImII"(s) through the dis-
persion relation, which gives a relative error of o?
order. The next-to-leading-order contribution in the

oo =o(ete” — ptpu7)|o = (27)
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denominator of the expression for the photon propa-
gator is related to the running of the electromagnetic
coupling constant and can partly be taken into ac-
count through the renormalization group technique
for the energies far from the resonances [9]. Another
difference is the corrections to the production vertex
that should properly be taken into account as they

enter the cross section. Extracting ImII"d(s) from
the cross section requires subtraction of these correc-
tions from the data in order to avoid double counting
in the next-to-leading-order analysis of the muon
anomalous magnetic moment if a theoretical next-
to-leading-order kernel for averaging the two-point
correlator is used.

The use of the R ratio is preferable from the the-
oretical point of view because it relates data to the
imaginary part of the two-point hadronic correlator

ImI1Md(s) in a simple way. It is also preferable from
the experimental point of view since the total nor-
malization of the data is fixed, which helps to elim-
inate systematic errors. In this respect, a 7-data set
that can be used to determine the part of the two-
point function generated by the isovector part of the
hadronic electromagnetic current in the limit of the
exact isotopic invariance has a different normalization
at the next-to-leading order compared to the data
on eTe™ annihilation and should be corrected by an
explicit account of the contributions of the relative
« order. Note that the next-to-leading-order correc-
tion emerging from the interpretation of data can be
controlled theoretically within counting in «, while
corrections due to the violation of isotopic invariance
between the data sets obtained from the 7 and eTe™
channels can only be estimated in models. The prob-
lem of different normalization also persists for heavy
hadrons if their contribution to the cross section is
calculated from their leptonic branchings. The next-
to-leading-order contribution of heavy flavors is not
essential though, because it is small and also can
reliably be evaluated in perturbation theory.

3.1.2. Two-photon-mediated ete~ annihila-
tion. The next-to-leading-order cross section of the
process of eTe™ annihilation into hadrons contains
a contribution of two-photon annihilation with one
hadronic insertion into the photon propagator. This
contribution requires a special treatment before the
data set is related to the hadronic two-point func-
tion with the next-to-leading order accuracy. For in-
stance, the next-to-leading-order kernel for the muon
anomalous magnetic moment diagram with a ver-
tex correction integrates the part of data emerging
through the double-photon scattering channel in the
process of ete™ annihilation. This can lead to double
counting at the next-to-leading order for the evalua-
tion of the muon anomalous magnetic moment.
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Thus, one concludes that, at the next-to-leading-
order in electromagnetic interaction, a strict corre-
lation between sets of data and theoretical expres-
sions for the next-to-leading-order kernels for the
evaluation of the muon anomalous magnetic moment
emerges. This leads to additional contributions of the
relative o order, which numerically amount to about
1% of the leading-order contribution, which is the
precision one is trying to reach for comparison with
the experimental result for the muon anomalous mag-
netic moment.

3.2. Four-Point Correlator

At the next-to-leading order in electromagnetic
interaction, a new correlation function of the hadronic
electromagnetic currents enters the theoretical com-
putation of the muon anomalous magnetic moment.
This correlation function leads to a new effect that
is known as light-by-light scattering. Besides this
explicit effect a less pronounced mixed effect also
emerges. The four-point function gives a contribution
to the full photon propagator of the form

/ ddy Dy (z — y) (T35 () 1139 ()19 (2) 1124 (0)),
(29)

where D, (z) is a free-photon propagator with a

scalar amplitude D(x) ~ 1/22. In other words, a pro-
jection of the four-point function of the form

dxd
[ i @ )i () )
(z—y)

is present in the two-photon Green’s function. In
QCD and other models, where the electromagnetic
current is explicitly expressed through the elementary
fields, this contribution is interpreted as an electro-
magnetic correction to the one-particle irreducible
block of the photon two-point function (the photon
vacuum polarization).

(30)

Thus, an accurate account of the next-to-leading-
order hadronic contributions to the muon anomalous
magnetic moment from general principles is a rather
challenging task, both experimentally and theoreti-
cally. As an approach to it, one can use an effec-
tive theory with a few free parameters providing a
unique framework for the calculations at both leading
and next-to-leading order. In such an approach, the
leading-order information is used to obtain the nu-
merical values for the model parameters. The next-to-
leading-order results are then computed theoretically.
This approach can also serve as a basis for verify-
ing the consistency of the estimates for the next-to-
leading-order hadronic contributions made in differ-
ent phenomenological models.
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4. A MODEL FOR EVALUATING
THE HADRONIC CONTRIBUTIONS

In this section, I describe a duality-based model
to check the consistency of the next-to-leading-order
hadronic contributions with the results of the leading-
order analysis for the muon anomalous magnetic mo-
ment. The simplest version of the model contains
three light quarks with QCD quantum numbers and
the mass my,, which is the only model parameter.
The numerical value of m, is fixed from the leading-
order hadronic contribution and then used to find the
next-to-leading-order result. Heavy quarks enter the
model with their Standard masses. In this model,
the calculations are explicit and can be performed
analytically, which is an advantage. Indeed, the model
differs from the leptonic sector only by the QCD group
factors and the numerical values of fermion masses.

4.1. Fixing the Numerical Value of the Model
Parameter my from the Leading-Order Hadronic
Contribution

A fermion with mass m, without the QCD group
factors (as a lepton) gives the leading-order contribu-
tion to the muon anomalous magnetic moment of the
form

asm(1L0) = 1(my) (2)°, @)
with
I O C PR
4m2
and

S S

1 4m?2 2m?
pq(s):§ 1——q(1—|——q>. (33)

Explicit integration over s with the kernel K(s) from
Eq. (12) gives

1
I(mg) = / dx(1 - 2)[-m(z,mg)],  (34)
0
where
) = (= -1) e -5 @9
and
1
¢(z) = —=arctanh(v/2) — 1, (36)
\/E m2:c2

o
z= .
dmZ(1 — z) + m2z?
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The analytical expression for the function I(mg) is
known; however, the integral representation given
in Eq. (34) is convenient and sufficient for practical
applications.

The contributions of heavy ¢ and b quarks can
directly be computed in QCD perturbation theory in-
dependently of the model. In the present calculation,
[ use only the free-quark approximation for simplicity.
For the ¢ quark with the mass m. = 1.6 GeV [10] and
the electric charge e. = 2/3, one finds from Eq. (31)
multiplied by the group factor 3¢? = 4/3

al®(LO; ¢) = 69.3 x 10711 (37)

The b-quark contribution for my, = 4.8 GeV [11] and
e, = —1/3 is small and reads

al®(LO; b) = 1.9 x 107 (38)

Thus, the contribution of light hadronic modes that
are represented in our model by light fermions with
the mass m, amounts to

a™(LO; uds) = (6974.3 — 69.3 — 1.9) x 1071
(39)

= 6903(89) x 1071,

[ assume that this result directly corresponds to the
contribution of the photon two-point correlator at the
leading order as given in Eq. (11). It means that a real
data set is properly corrected to extract ImII"ad(s).
As was discussed earlier, the extraction of Im Hhad(s)
with the next-to-leading-order accuracy requires a
careful interpretation of experimental data, which is
assumed to have been done.

A numerical value for the single model parameter
myq is obtained from Egs. (31)—(36) and (39) and
reads

mg = 179 + 1 MeV. (40)

This numerical value is rather close to the charged
pion mass, m, = 139.6 MeV, which is expected since
the leading-order contribution is mainly sensitive to
the first derivative at ¢* = 0 of the two-point function
1M (42) given in Eq. (10). For definiteness, I give
the leading-order contribution of the light hadronic
modes within the model obtained literally with the
numerical value from Eq. (40):

aZ‘Od(LO; uds)(mg =179 £ 1 MeV)
= (6920 £ 70) x 10~ .

(41)

Since in the framework of the model the next-to-
leading-order hadronic contributions to the muon
anomalous magnetic moment are determined by the
single parameter m, with the numerical value from
Eqg. (40), they can readily be found.
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4.2. Hadronic Contributions at the Next-to-Leading
Order in Electromagnetic Interaction

The first check is to use the model for computing
the higher order hadronic contributions due to the
photon vacuum polarization graphs. The data-based
analysis gives for the next-to-leading-order effects of
this type the following numerical result [12]:

al(vac; NLO) = —101(6) x 1071, (42)

This number is about 1.5% of the leading-order term,
as expected from the naive estimate based on the
numerical value of the fine structure constant. As was
discussed above, at this level of precision, the numer-
ical value for the next-to-leading-order contribution
depends strongly on the data sets used in the analysis.
For different data sets, the different expressions of the
next-to-leading-order kernel should be used to avoid
double counting. For example, if the R ratio is used
in the one-loop computation, then the leading-order
result should first be divided by the factor[cf. Eq. (26)]

m 3a ’mﬁ

(43)

before being used in the next-to-leading-order anal-
ysis, which changes the leading-order result by 12 x
10~ exceeding the uncertainty quoted in Eq. (42).
In fact, even mass-suppressed terms can be impor-
tant at this level of precision, and the entire function
Im IT"#(s) should be integrated since the mass terms
from the leading order can partly cancel the next-to-
leading-order corrections in a.. For other types of data
(7 data especially), the change can be larger. This un-
certainty is a reflection of the mixture of contributions
at the next-to-leading order.

In the proposed model, the analysis is unambigu-
ous and straightiorward. I present different contribu-
tions separately for a detailed comparison with the
results of the data-based analysis from [12].

For the vertex-type contributions, I use the explicit
analytical formulas in the leading order of the mass
expansion as they are given in [13]. The exact expres-
sions are presented in [14]. The analytical expression
for the contribution of a fermion with mass m, with-
out any group factors reads

2 (my\>
aifrm(ver; mg) = —= (—“)

3o (44)

o (2089 T 23 my ()’
5400 15 90 " m, ) \7)
which leads to a numerical result for the light mode
contribution in the model

al® (ver; NLO; uds) = —172 x 1071, (45)
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A more accurate evaluation (using numerical inte-
gration with the kernel given up to the third order in
the mass expansion from [12]) gives for the contribu-
tion of light modes

ali*!(ver; NLO; uds) = —188 x 10711, (46)

The difference from the result obtained by using only
the first term of the mass expansion given in Eq. (45)
is on the order of 10%. It is smaller than one could
expect from the numerical value of the expansion pa-
rameter (m,,/mg)? = (0.106/0.179)% = 0.36. For the
c-quark contribution, one finds

a‘;de(ver; NLO; ¢) = —4 x 1071, (47)
while the b-quark contribution is small:
a:f(’d(ver; NLO; b) = —0.2 x 1071, (48)

The total vertex contribution computed in the model,
al®(ver; NLO) = =192 x 1071, (49)

should be compared with the result of the data-based
analysis from [12],

au(ver; NLO) = —211(5) x 107", (50)

The next check of the model is done for a mixed
contribution of the lepton—hadron type. This contri-
bution contains the electron and 7-lepton loops and
depends on three masses m,, mgq, and m, or m;.
For fermions without the QCD group factors, this
double-bubble-type (db) contribution is given by the
integral representation

a3

ai™ (db; f1& fo) = (;)

1

X /d:r(l —x)m(x,myp)mw(x,my,).
0

(51)

For the combined contribution of light modes with the
electron loop, one has

ai*!(db; NLO; e&uds) = 105 x 101" (52)
and, with the 7-lepton loop,
ai®!(db; NLO; 7&uds) = 0.05 x 10711, (53)

The contribution of heavy modes is only visible for
the combined insertion of the ¢-quark loop and the

electron loop,
aj!(db; NLO; elee) = L1 x 1071 (54)

The results givenin Egs. (52)—(54) are in good agree-
ment with the data-based estimate [12]

a,(lept&had; NLO) = 107(2) x 107, (55)
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Next comes the contribution from the reiteration of
hadronic insertions. The light modes give

afi®!(db; NLO; uds&uds) = 3 x 10711, (56)

The combination of the c-quark insertion with the
light-mode loops gives

azwd(db; NLO; c&uds) = 0.1 x 10711, (57)

while the contribution of the two c-quark insertions
is negligible. The results of the model from Egs. (56)
and (57) are in agreement with the data-based esti-
mates [12]

a,(had&had; NLO) = 2.7 x 107 . (98)

Thus, one sees good agreement of the model re-
sults with calculations based on data. However, in
the model, there is a contribution that is missing in
the explicit calculations based on data related to the
internal structure of the hadronic block. In the data-
based calculation, this contribution is hidden in the
data, while in the model it can explicitly be resolved as
a correction to the one-particle irreducible hadronic
block. At the leading order of the mass ratio, the ana-
lytical expression for this contribution without group
factors reads

41 (m,\? a3

ferm 4. ©

4;NLO; =—|(— - .

@ (4 NLO; my) 486(mq) <7r) (59)

The result for the light modes of the model is
a*(4;NLO; uds) = 25 x 107", (60)

while the c¢-quark contribution is small:
al*(4;NLO; ¢) = 0.3 x 107", (61)

One could argue that this contribution is already con-
tained in the experimental data used for the evaluation
of the leading-order contribution in Egs. (11) and
(15). As was discussed earlier, this ambiguity reflects
the difficulty of the interpretation of the hadronic con-
tributions with next-to-leading-order accuracy.

The result for the total next-to-leading-order
hadronic contribution of the vacuum polarization type
is

a*!(vac; NLO) = —58 x 1071, (62)

The difference from Eq. (42) representing the result
obtained in the data-based analysis comes mainly
from two sources: the vertex-type contributions
and a new term related to the one-particle irre-
ducible hadronic block. Both contributions are of the
(my/mg)? order, which explains the magnitude of
the difference. All remarks about the double counting
because of the data interpretation apply here. Note
that only the first few terms of expansions in the mass
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ratio (m,,/mg)? are used for the numerical estimates,
which provides a sufficient accuracy.

Thus, the duality-inspired model reproduces rat-
her accurately the results for the next-to-leading-
order hadronic contributions found in the data-based
analysis for the graphs related to the photon vacuum
polarization. This is expected since these results are
obtained by the integration of the two-point correla-
tion function with the next-to-leading-order kernel,
which is rather similar to the leading-order one.

The next try for the model is the computation of the
light-by-light contribution given by the four-point
correlator. The analytical expression for a contribu-
tion of the fermion without group factors through the
(my./mg)?* order reads [15]

3
a*™ (1bl; NLO; ) = (%) (63)

2 4

my 3 19 my

o 26(3) — == 2]

X{<mq) <2C( ) 16>+(mq
o (1612 (Mg 16189 /m,
8§10 \m,) 48600 " \m,

13 161 , 831931

180~ o™ 972000> }

With this formula, one finds the value for the light
modes,

a®!(Ibl; NLO; uds) = 140.5 x 107!, (64)
and the value for the ¢ quark,
a®(Ibl;NLO; ¢) =2 x 1071, (65)

The total light-by-light contribution predicted by the
model,

a4 (Ibl;NLO) = (140.5 + 2) x 1011
=143 x 1071,

is different from the value used in the literature [1, 16,
17],

a™(Ibl; standard) = —85(25) x 1071,

(66)

(67)

Recently, the authors of [17] have corrected the sign
of the neutral-pion contribution obtained in the ex-
plicit hadronization approach for the evaluation of the
light-by-light contribution related to the four-point
correlation function of electromagnetic currents [18].
The corrected results are closer to the values obtained
within the duality model of the present paper. [ post-
pone a more detailed discussion of this point until
Section 5.

Thus, the next-to-leading-order hadronic contri-
bution obtained in the model reads

a;*(NLO) = (=58 + 143) x 1071 (68)
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— 85 x 10711,

[t agrees with the present experimental result from
Eq. (21), which we repeat here:

al™d = (191 +£175) x 107

The agreement with the future experimental result for
the muon anomalous magnetic moment depends on a
possible change of the mean value of a,”, as one sees
from Eq. (22).

The prediction of the next-to-leading-order had-
ronic contribution obtained in the model is fairly sen-
sitive to the numerical value of the mass parameter
for the light modes. This numerical value is, however,
strictly determined by the leading-order result. To
check how sensitive the obtained results are to the
details of the model, I introduce a mass difference
between s and wu,d quarks [SU(3) flavor violation in
the mass sector in the approximation of exact iso-
topic invariance]. I write m, = my + 0.18 GeV with
0.18 GeV being the value of the running mass for
the strange quark. Then, one finds that the numerical
value for the new model parameter mé becomes

my =166 £ 1 GeV (69)
with
a/TOdl (LO; uds)(mé =166 £1 MeV)

= (6928 +71) x 101,

(70)

The prediction of the next-to-leading-order contribu-
tion in this case as compared to the SU(3)-symmetric
oneis

a®(NLO) — al*/(NLO)
= (2444 14) x 10711

(71)

where the first term comes from vertex corrections,
the second term comes from insertions into the pho-
ton propagator, and the last term comes from the
light-by-light graphs. The result is fairly stable. Fi-
nally, the model with SU(3) flavor violation in the
mass sector gives the next-to-leading order hadronic
contribution to the muon anomalous magnetic mo-
ment

al®"(NLO) = 105 x 107, (72)

which is rather close to the prediction of the model
with SU(3)-symmetric mass arrangement from
Eq. (68).

One could consider an even more sophisticated
model including a violation of the isotopic invariance
by using different masses for w and d quarks. An
additional uncertainty emerges from the errors in
the numerical value for the c¢-quark mass. By using

the MS mass around 1.3 GeV for the ¢ quark,
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one could enhance its leading-order contribution
by about 50% [a leading-order rescaling factor is
(me(pole)/m.(MS))? = (1.6/1.3)2 = 1.5].  Within
the proposed model, the use of the pole mass of the
heavy quark looks more natural, while an account
of the difference between the numerical values for
the pole and MS masses is beyond the accuracy
of the approximation used for the evaluation of the
contributions of heavy quarks. It can readily be done
though, since the contribution of heavy quarks is
perturbative and corrections in the strong coupling
constant can reliably be found.

5. DISCUSSION OF THE RESULTS

The underlying idea of the presented analysis is
to introduce a framework for computing the next-
to-leading-order hadronic contributions to the muon
anomalous magnetic moment using the LO infor-
mation. Presently, the results for the light-by-light
contribution, which is the most interesting term at
the next-to-leading order are available analytically
for fermions, which dictates the choice of model from
the technical point of view almost uniquely. Thus,
a model of massive quarks with electromagnetic
interaction emerges as a suitable candidate. It is
not an approximation for QCD as a gauge model
with constituent quarks. It is just a bridge from the
leading-order results for hadronic contributions to
a particular observable to the next-to-leading-order
ones. Note that, for another important parameter
of the Standard Model—the running electromag-
netic coupling constant at the scale of the Z-boson
mass—there is no possibility of using such kind
of a model since there are no important next-to-
leading-order terms to compute. Calculations for
the infrared-sensitive observables using constituent
quarks with masses around 300—500 MeV as the
only infrared scales are unjustified in pQCD in
general since the higher order corrections in the
strong coupling constant cannot be found. Also,
the introduction of finite masses for the light quarks
explicitly violates chiral invariance, which is a well-
established symmetry of the light hadronic sector.
In this sense, the approximation for QCD with con-
stituent quarks cannot be considered as a reasonable
general framework. In the high-energy limit, the
massless approximation for strong interactions is
perturbative and quite precise. This means that the
high-energy contributions to the muon anomalous
magnetic moment can be represented by almost
any model that satisfies the duality constraints. In
this sense, the fermionic model fits the Standard
Model approximation for large energies. However, the
main contribution to the muon anomalous magnetic
moment comes from the infrared region, where there
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is no sensible approximation for strong interactions
deduced from QCD. Therefore, the necessary charac-
teristics of the strong-interaction amplitudes relevant
for the computation of the muon anomalous magnetic
moment have to be extracted from data. The first
amplitude, that emerges is the two-point correlator,
which is given by a single function of one complex
variable with simple analytic properties (see Egs. (8),
(10)). For computing the muon anomalous magnetic
moment, one need not know the pointwise behavior
of the spectrum but only the integral over all energies
with some enhancement of the threshold region. A
model of massive fermions is then well suitable to fit
this integral over data. When hadrons are introduced
into the threshold infrared region to fit the experiment,
the effective masses of quarks increase. Therefore,
an account of the low-energy hadronization for the
two-point function entering the muon anomalous
magnetic moment is achieved by introducing an
explicit cut in energy in the spectral sum over the
states. In practice, at the leading order, the hadron
contributions are represented by the pion with an
electromagnetic interaction of the form ejﬁA“, where,

at the leading order, j7 = i(7™ }3” 7). The inclu-
sion of pions leads to the scalar type of spectrum near

the threshold,
1 Am?2 Am?
1 (1— m”),

prls) = 12 s ] (73)
instead of the fermionic form given in Eq. (33).
Furthermore, the fermionic contributions can be
moved to higher energies by using the classical vector
mesons p,w,¢. In the vector-meson-dominance
model, one identifies the electromagnetic current
with the contribution of the canonically normalized

elementary p-meson (or w, @) field p, through the

relation jﬂad = fppu- Here, f, gives a form factor re-

lated to the leptonic width of the p meson. Because of
the nature of the muon anomalous magnetic moment
observable, this contribution can be well represented
in the sense of duality by the contribution of light
fermions since it resides at a rather large scale. This
hadronization picture is transparent for the two-point
function, which is sufficient for the leading-order
analysis. At the next-to-leading order, a hadroniza-
tion procedure for the four-point correlation function
is necessary. Within a hadron picture of the low-
energy spectrum, the most important contribution
to the muon anomalous magnetic moment comes
from pions. To handle contributions from the four-
point function quantitatively, a quantum field model
for pions given by the Lagrangian

2,2

2 .
Llow—energy = |DM7T| —m,T, DM = 8M — ZGAH,

(74)
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is introduced. This model generates vertices that al-
low one to compute the pion contribution to the
four-point hadronic electromagnetic current correla-
tor that enters the light-by-light diagram explicitly.
The high-energy contribution of this model should
then be replaced by the Standard Model quark con-
tributions. In the pure fermionic model with a small
effective mass, this replacement is effectively made
at rather low energies, which makes the separate
contribution of pions small or even vanishing. Thus,
the hadronization procedure of the model is effectively
realized in the duality sense through the light massive
quarks rather than the real hadrons. This is possible
because of the inclusive nature of the observable—
the muon anomalous magnetic moment—that de-
pends on the contribution of many hadrons, i.e., on
the integral over the entire hadronic spectrum. This
is exactly the situation where the duality concept is
applicable. Note that the hadronization picture need
not be universal for all strong interaction processes
but can specially be tailored for a given observable.

The results for the muon anomalous magnetic
moment related to the photon two-point function,
which have been obtained in the data-based analysis,
are well reproduced by the model with the mass of the
light fermion around the pion mass. Using the model
prediction for the light-by-light graph, I find agree-
ment of the next-to-leading-order hadron contribu-
tion to the muon anomalous magnetic moment with
experiment. The results for the light-by-light graph
in the pion model are available numerically. In the ab-
sence of analytical expressions for the light-by-light
contributions in the pion model, I could not quantita-
tively check how fermionic contributions replace the
pion ones when the effective fermion mass decreases.
However, it seems probable that the explicit inclusion
of the pion contributions in the framework of the
present model will simply shift the effective mass of
light quarks, making it larger.

The fermionic model gives a smooth spectrum at
low energies, which can be considered as an average
of the hadronic spectrum according to the duality
concept. An important question is whether such a
smooth spectrum is a reasonable approximation for
computing the muon anomalous magnetic moment.
In the two-point correlator of electromagnetic cur-
rents, there are no resonances in the relevant region.
The contribution of the vector mesons (the p meson,
for instance) is located at relatively large scales. In
the axial channel, for instance, the situation is dif-
ferent because of the presence of the pion resonance
and the use of the duality arguments requires special
consideration [19]. Note, however, that, as soon as the
pion is considered to be massive (not a pure Gold-
stone mode), the chiral invariance is explicitly broken,
which makes quarks massive as well (or vice versa).
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Note also that a model can be suited for a description
of a specific observable and need not give a universal
approximation of any Green’s function. For instance,
in the case of the axial-vector two-point correlator,
the projection related to spin-one particles contains
only massive resonances and the spectrum of this
invariant amplitude can be well approximated by a
fermionic model without the pion pole. For the four-
point functions, the situation is much more com-
plicated, since it is a function of several complex
variables. In the literature, there are models where
the four-point correlation function at low energies is
represented through the elementary fields of neutral
pseudoscalar bosons in order to compute contribu-
tions of the light-by-light graphs to the muon anoma-
lous magnetic moment. The representation employs
the neutral-pion contribution to the four-point func-
tion through the iteration of an effective Lagrangian
for the interaction of the neutral pion 7% with photons
due to the Abelian anomaly in the axial current (for
a review, see [17]). The result for the light-by-light
contribution obtained using the neutral-pion domi-
nance, Eq. (67), is different from the one obtained in
the present model Eq. (66). In [17], the sign of the
neutral-pion contribution is negative, which produces
a large difference with the prediction of the present
paper based on the duality arguments. The sign of the
neutral-pion contribution has recently been corrected
in [ 18], making the neutral-pion contribution positive
in accordance with the results of the present analysis
based on the duality concept. Still, it is interest-
ing to discuss the validity of the assumption about
the neutral-pion dominance for the evaluation of the
muon anomalous magnetic moment in more detail. In
general, the reduction of the four-point amplitude of
the hadronic electromagnetic currents to a two-point
correlator of axial currents uses the operator product
expansion at small distances

i ()7, (—2) a0
= au,,w)\x”jé(O)C(xQ) + ...,

where C(?) is a coefficient function of the local op-

erator j2(0), which has the quantum numbers of the
axial current (see, e.g.,[20]). In other words, the com-
bination of two hadronic electromagnetic currents of
the form

Euwin& Ti (x + €) b (z — O F(€?)

taken at small ¢ with some form factor F(¢2) may
act in some applications as a local axial current that
can serve as an interpolation field for the neutral
pion. Thus, this combination can be replaced by a
fundamental pion field in a hadronization procedure.
This kind of factorization for the four-point amplitude
is quantitatively justified for the process of vy — vy

(75)

(76)
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scattering in a specific region of the phase space in
kinematic variables where all three external momenta
are essential. In other regions of the phase space,
the saturation of the scattering amplitude with the
pion-pole contribution can be invalid numerically in
a sense that the pion contribution is not dominant
for the integrals of the four-point amplitude rele-
vant for the computation of the muon anomalous
magnetic moment. The projection of the four-point
function that emerges in the light-by-light graphs for
the muon-anomalous-magnetic-moment calculation
has the form

[ et ) ) ) )

In momentum space, this projection depends on two
external momenta only as the third momentum is
set to zero after the differentiation according to the
definition of the muon anomalous magnetic moment.
In the neutral pseudoscalar model, the projection of
the four-point function given in Eq. (77) is saturated
by the contribution of the neutral pion supplemented
by the explicit cutoff of the high-energy contributions
starting from the p-meson mass. The accuracy of
this procedure is not under control because other
hadronic contributions are important and the pion
dominance cannot be justified quantitatively in the
integral over the entire hadronic spectrum. In the ab-
sence of strong numerical dominance of the neutral-
pion-pole contribution in the hadronization picture
for the light-by-light graph, the fermionic model can
be used for its computation on the same footing as
was used for the vacuum polarization graphs. Note
also that the corresponding contribution of the neu-
tral pion to the projection of the four-point function
emerging in the photon propagator and related to the
process v* — ~7* is usually not considered. In other
words, the neutral-pion approximation for the four-
point function should also be taken into account in
Eq. (30). In this case, it leads to a cut starting from
the pion mass square m2 as in the physical decay
process of an off-shell photon to a real photon and the
pion v* — ~xY. This contribution was not used in the
analysis of data in the process of ete™ annihilation
into hadrons. This calls for a quantitative evaluation
of the validity of the neutral-pion-dominance model
for the calculation of the four-point correlation func-
tion in the kinematical region relevant for computing
the next-to-leading-order hadronic contribution to
the muon anomalous magnetic moment.

Despite the fact that the fermionic model with
mass mgy = 179 MeV predicts a value for the next-
to-leading-order hadronic contribution to the muon
anomalous magnetic moment in good agreement
with experiment, there remains a disturbing feeling
that this prediction is obtained within an unrealistic

(77)
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approximation for strong interactions and, therefore,
cannot be taken seriously. A historic reminiscence
may be appropriate here. A century ago, think-
ing about light as existing in the form of discrete
portions—photon quanta—was rather disturbing for
classical physics. However, the quantum representa-
tion allowed for the quantitative explanation of exper-
imental facts on photoeffect and blackbody radiation.
[t did not change the description of electromagnetic
phenomena insensitive to the quantum nature of the
light. It may happen that the muon anomalous mag-
netic moment is sensitive to the contribution of all
hadrons in a way in which it would be sensitive to that
of free fermions with an appropriate mass which is a
standard realization of the duality concept. The direct
application of this concept to a particular case of
muon anomalous magnetic moment looks suspicious
because the infrared region is explicitly involved in
the analysis and the results depend strongly on the
numerical value of the effective quark mass, which
happens to be rather small. However, the model is
only designed for computing the next-to-leading-
order hadronic contribution to the muon anomalous
magnetic moment using the leading-order result as
input. This does not mean that this model approx-
imation suited for computing the muon anomalous
magnetic moment is in any sense a universal limit of
QCD automatically applicable to other observables.

6. CONCLUSION

A duality-inspired model for describing the next-
to-leading-order hadronic contributions to the muon
anomalous magnetic moment is proposed. The model
contains a single parameter, which is fixed from the
experimental result for the leading-order hadronic
contribution to the muon anomalous magnetic mo-
ment. The model describes the next-to-leading-order
hadronic contributions of the vacuum polarization
type in agreement with the existing estimates. It pre-
dicts a numerical value for the light-by-light contri-
bution that has recently been confirmed after correct-
ing the results based on the neutral-pion dominance
with additional assumptions on the form of regu-
larization of the ultraviolet behavior for the relevant
amplitudes. The result of the present analysis has
considerably changed the prediction of the total next-
to-leading-order hadronic contribution to the muon
anomalous magnetic moment used in the literature as
a basis for the search for new physics . The prediction
of the model agrees with the present experimental
value for the muon anomalous magnetic moment,
which confirms the validity of the Standard Model.
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Abstract—Partial widths of the vy decay of the tensor ¢ states a2(1320), f2(1270), and f2(1525) and their
radial excitations a2(1660), f2(1640), and f2(1800), as well as 3 Fxqq states, are calculated. Calculations
are performed in the framework of the same approach that was used before for the study of radiative decays
f0(980) — 7, ap(980) — 7, and ¢(1020) — ~f5(980): the assumption made is that of ¢G structure of
f0(980) and a(980) [A.V. Anisovich ef al., Phys. Lett. B 456, 80 (1999); Yad. Fiz. 65, 523 (2002)]. The
description of the decay partial widths for a2(1320), f2(1270), f2(1525) and f(980), a¢(980) is reached
with the approximately equal radial wave functions, thus giving a strong argument in favor of the fact
that these scalar and tensor mesons are to be classified as members of the same P-wave ¢g multiplet.

© 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

For the time being, the main problem of meson
spectroscopy is the reliable determination of states
belonging to the P-wave ¢ multiplet 13P;qq. The
solution of this problem is of fundamental importance
for the quark systematics, as well as for the search
for exotic mesons such as glueballs and hybrids (in
connection with this problem, see [1—4]). The clas-
sification of mesons fp(980) and ao(980), which is
of crucial meaning for the nonet of scalar mesons
13Pyqq, gives rise to certain questions. In a set of
papers [5—10], on the basis of the analysis of experi-
mental data, it was argued that, for the states f(980)
and ag(980), the 13Pyqg component is dominant.
However, another point of view on the structure of
these mesons exists as well (see minireview [11] and
references therein).

The investigation of radiative decays is a powerful
tool for establishing the quark structure of hadrons.
At an early stage of the quark model, radiative decays
of vector mesons provided strong evidence for a con-
stituent quark being a universal constructive element
of mesons and baryons [12—15]. In our opinion, the
radiative decays of the 13 P;qq mesons are equally im-
portant for the determination of the P-wave multiplet.

Partial widths of the decays f,(980) — 7+ and
ap(980) — ~~ were calculated in [9] assuming the
mesons f(980) and a((980) to be dominantly ¢q
states, that is, 13Pyqq mesons. The results of our
calculation agree well with experimental data. In[10],

*This article was submitted by the authors in English.
“e-mail: anisovic@thd.pnpi.spb.ru

on the basis of data [16] for the decay ¢(1020) —
~vf0(980) together with the value of partial width
f0(980) — ~ obtained in the reanalysis [17], the
flavor content of f,(980) was studied. Assuming the
flavor wave function in the form nn cos ¢ + s5sin ¢,
where ni = (ut — dd)/+/2, we described the experi-
mental data with two allowed values of mixing angle:
either ¢ = —48° + 6° or ¢ = 85° £ 4° (the negative
angle is preferable). Both values of mixing angle are
in qualitative agreement with data on hadronic decays
of fo(980) into 7w and K K [8, 18].

Although direct calculations of widths of radia-
tive decays agree well with the hypothesis that the
qq component dominates both fy(980) and a(980),
to be confident that these mesons are members of
the 13 Pyqq multiplet one more step is needed: it is
necessary to check whether radiative decays of ten-
sor mesons az(1320), f2(1270), and f2(1525) can be
calculated under the same assumption and within
the same technique as was done for the reactions
involving fo(980) and a¢(980). The tensor mesons
az(1320), f2(1270), and f2(1525) are basic members
of the P-wave ¢g multiplet, and just the existence of
tensor mesons forms the basis of the nonet classifica-
tion of mesons as ¢q states, with four P-wave nonets
[19, 20].

In the framework of a spectral integration tech-
nique, we calculate the transition form factors for ten-
sor meson transitions  ag(1320) — v*(Q?)y,
f2(1270) — v*(Q%)y, and f2(1525) — v*(Q?)y in
the region of small momentum transfer squared
Q?: these form factors, in the limit Q% — 0, de-
termine partial widths of reactions a2(1320) — 7,
f2(1270) — ~, and f3(1525) — 7. The spectral

1063-7788/03/6605-0914$24.00 © 2003 MAIK “Nauka/Interperiodica”
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p ko q2

915

p ko p'

Fig. 1. (a) Triangle diagram for the transition form factor of the reaction T' — ~(q?)v(¢3); (b) diagram for the double spectral
representation over P? = s and P’?> = s’; the intermediate-state particles are on the mass shell, the cuts of the diagram are
shown by dashed lines; (c) triangle diagram for the meson charge form factor.

representation technique was developed in [21] for
the investigation of the transitions of pseudoscalar
mesons such as 70 — 7*(Q%)y, n — v*(Q?)y, and
n — v*(Q?)y. As is stated above, by using this
technique, the calculation of the decay coupling
constants of reactions fp(980) — 7, ap(980) — v,
and ¢(1020) — v fp(980) was performed in [9, 10].

In the region of moderately small Q?, where strong
QCD works, the form factor for transition ¢g me-
son — v*(Q?)y is determined by the quark loop di-
agram of Fig. la, which is a convolution of the ¢g
meson and photon wave functions, ¥,q ® 1,,. The cal-
culation of the process of Fig. la is performed in terms
of the double spectral representation over ¢ invariant
masses squared, s = (m? +k%)/ (z(1 —x)) and s’ =
(m? + k'3)/ (x(1 — z)), where k%, k2, and x are the
light-cone variables and m is the constituent-quark
mass. Following [21], we represent the photon wave
function as a sum of two components that describe
the prompt production of the ¢ pair at large s’ (with
a pointlike vertex for the transition v — ¢g, corre-
spondingly) and the production in the low-s’ region
where the vertex v — ¢g has a nontrivial structure
due to soft ¢q interactions. The necessity to include
such a component can be argued, for example, by the
vector-dominance model v — p°,w, ¢ — ¢q.

The process of Fig. la at moderately small Q?
is mainly determined by the low-s" region, in other
words, by the soft component of the photon wave
function.

The soft component of the photon wave function
was restored in [21], on the basis of the experimen-
tal data for the transition 70 — v*(Q?)y at Q? <
1 GeV2. Once the photon wave function is found,
the form factors of reactions as — v*(Q?)y and fo —
Q%) at @Q* < 1 GeV? provide us with the oppor-
tunity to investigate in detail the tensor-meson wave
functions. However, when investigating a small-Q?
region, we may restrict ourselves to a simplified, one-
parameter wave function of the basic tensor mesons
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13 Pyqq, this parameter being the mean radius squared
RZ.

Assuming the ¢q structure of tensor mesons, the
flavor content of a2(1320) is fixed, thus allowing un-
ambiguous calculation of the transition form factor of
reaction as(1320) — ~~. Reasonable agreement with
data has been obtained at 7 < Rzg(mzo) <12GeV—2

(recall that, for a pion, R? ~ 10 GeV~2 ~ 0.4 fm?).
To describe the decay a¢(980) — v, the quark wave
function of a(980) should have nearly the same mean
radius squared [9], 7 < R? <12 GeV~2. Still,
a0 (980)

we do not exclude the possibility that the P-wave
states may be rather compact. Hadronic reactions
agree with this possibility: the estimation of the ra-
dius of fp(980) carried out by using GAMS data for
7~ p — w070n [22] proves that the ¢gg component in
f0(980) gives [7] R§0(980) =646 GeV~2

Partial widths I'(f2(1270) — ) and
I'(f2(1525) — ~v) depend on the relative weights of
strange and nonstrange components in a tensor—
isoscalar meson, s§ and nn. The study of hadronic
decays tells us that f»(1270) is dominantly an nn
state, while f2(1525) is, correspondingly, an ss one. It
is in accordance with the calculated values of partial
widths T'(f2(1270) — ~vv) and T'(f2(1525) — ~v):
at Rf@(um) ~ R§2(1525) ~ R?O(%O), the agreement
with data is reached with nn- and ss-dominated
components in f5(1270) and f2(1525), respectively.

The two-photon decays of radial-excited states,
23 Pyqq — 7, are suppressed as compared to decays
of basic states. The reason is that radial wave func-
tions of the states 23 Pyqg change sign, so the con-
volution of wave functions ¥y3p, .7 ® 1 is compara-
tively small. This fact is also the reason for a qualita-
tive character of predictions for the decays 23 Pyqq —
Y-

The paper is organized as follows. In Section 2,
we present basic formulas for the calculation of the
amplitudes for tensor mesons, members of the 13 Pyqq
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and 23 P,qq nonets, decaying into 4. The results of
the calculation are given in Section 3. In the Con-
clusion, we discuss the gg-multiplet classification of
tensor and scalar mesons resulting from radiative
meson decays.

2. TENSOR-MESON DECAY AMPLITUDES
27 (qq) — vy
Below, the formulas are presented for the am-
plitudes of radiative decay of the ¢g tensor mesons
belonging to the multiplets located at <2000 MeV:
13 Pyqq, 23 Pyqq, and 13 Faqq.

2.1. Spin—Momentum Structure of the Decay
Amplitude
The decay amplitude for the process T — ~7,
where T is the 277 (qq) state, has the following
structure:

T 0 0
AD =[S0 Y 0,0 (1)
+ S/(j/{aﬁ(pu Q)F’I(“Q_)yyry(ou 0) ’

where e is the electron charge (e? /41 = a = 1/137).

Here, Sgl)j)aﬂ and Sl(i)aﬂ are the moment opera-
tors, and indices «, (3 refer to photons and u, v
to the tensor meson. The transition form factors

for the decays into photons with transverse polar-
ization T — 71 (g2)yL(g3), namely, F”__(¢3.q3)

and F}Q_))W(q%, q3), depend on the photon momenta

squared ¢? and ¢3; the limit values ¢? = 0 and ¢3 = 0
correspond to the two-photon decay. We also use the
notation p = q1 + g2 and ¢ = (q1 — ¢2)/2.

The moment operators read

() _ oo (e Ly
Suy7aﬂ(p7Q) _gaﬁ < q2 _gguu> (2>

and

2 11 11 11 11 11 11
S/(“,{ag(pa q) = gua 9v3 + guﬁ va — guy 9ap s (3)

~ 1 11 :
where metric tensors g, and 95 are determined as
follows:

1 PuPv 11 qa4p PaPp
gp,l/ - gMV - p2 ) gaﬂ — gaﬂ - q2 - p2 .
(4)
The moment operators are orthogonal in the space of
photon polarizations: Sﬁ?aﬁsﬁ/ of = 0.

The spin structure of the amplitude ALTV?aﬁ is dis-

cussed in more detail in Appendix A; also presented
there is a connection between amplitudes written in
terms of spin operators and standard helicity ampli-
tudes.
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2.2. Form Factor Py _(¢3.,43)

Following the prescription of [21], we write the
amplitude of the process of Fig. la in terms of the
spectral representation in the channels related to ten-
sor meson and photon v(g2). The double spectral

representation for the form factor Fiﬁ[i)w(q%, q3) with
H =0,2reads

7 dsds’
F(@2.63) = Zry/N, / @A (5

2
4m?2
X 7(28)d(1)(P7 Pl; k1, k{v k?)
% S(H)(P2 pr (.72) G'wqq’(sl).
9 ] 8/ - q%
The right-hand side of Eq. (5), being a convolution of
the qq vertices, Gr_.qq and Gy_.4q, is determined by
the ¢q phase space d® and ¢g spin factor SUH) 1n the
spectral integral (5), the momenta of the intermediate

states differ from those of the initial/final states. The
corresponding momenta for intermediate states are
redenoted as is shown in Fig. 1b:

ql_)P_Plu
PQZS, Pl2:S/7

q2 — Pl? p— P, (6)
(P'=P)? =3¢ =qi.
It should be stressed that we fix ¢* = ¢, although

P’ — P =G # ¢. The triangle-diagram phase space
d®(P, P’; k1, K}, k) is equal to

d®(P,P's k1, kY, ko) =

" d3K) d3ko
(27‘(‘)3 . 2]45’10 (27‘(‘)3 . 2]€20
x (2m)46W (P — k| — ko) .

2m)16W (P — k1 — ky)

The factor Zr is determined by the quark content of
the tensor meson. For the ay meson and nn or s5
components in the fo meson, the charge factors are
equal to

2 2 2 2
ey — €y e, tey

’ Ty = 2+ )
V2 " V2

ng = 262

(8)

The factor v/N., where N, = 3 is the number of col-
ors, is related to the normalization of the photon ver-
tex made in[21]. We have two sorts of diagrams: with
quark lines drawn clockwise and anticlockwise; the
factor 2 in (8) stands for this doubling. The vertices
Gy—nn(s') and Gy_ss(s") were found in [21]; the
photon wave function Gy—_.,5(s)/s is shown in Fig. 2.

Zoy =2
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2.2.1. Wave functions for the 13P,qq and
23P,qq states. We parametrize the wave functions
of mesons of the basic multiplet, 13P,qq, in the
exponential form

Gr_qa(s
wT(s) — T (1(1(2 )

S — M

=Ce™?, (9)

where C'is the normalization constant, ¢ ® ¥ = 1,
and the parameter b can be related to the tensor-
meson radius squared.

For mesons of the first radial excitation, 23Psqq,
the wave functions can be written using exponential
approximation as

’l,Z)Tl(S) = Cleibls(Dls — 1) (10)

The parameter by can be related to the radius of the
radial excitation state; then, the values Cy and Dy are
fixed by the normalization and orthogonality require-

ments, Y1 ® Y1 = 1 and 7 @ 71 = 0.

2.3. Spin Structure Factors SO (P2, P2 §?)
and S® (P2, P, )
For the amplitude of Fig. 16 with transversely po-
larized photons, the spin structure factors are fixed by

the vertex for transition T' — ¢g, and we denote this
vertex as T},,. One has

tr 93 G+ m)v Gy + m) T Oy = )| (1)

= S/(j,(BQ/B(P7 PJ/_)S(O)(P27P/2762)

+8% (P, P)S@ (P2, P2 ).

uv,af
Here, 5 and 55 stand for photon vertices, y,+ =
g-Lyy, while g4 is determined by (4) with the
substitutions ¢ — P — P’ and ¢ — P’ [recall that,
in(4),p=q + g2 and ¢ = (q1 — ¢2)/2]. The moment
operators S;S(L),aﬁ(Pv P’ )and Sﬁ)’aﬁ(P, P’ ) also work
in the intermediate-state momentum space. Recall
that the momenta k{, ki, and ko in (11) are on the
mass shell.
The vertex T}, taken in a minimal form reads
2 .
k i
T;S,V) = kM,YV + kV’Yp, - ggp,uk7
where k = ki — kg and gg, P, = 0. With T}, deter-
mined by (12), we present the spin structure fac-
tors SUD (P2, P2, %) at ¢3 = 0 and small ¢} = ¢ =
—Q?. Below, we denote ¥ = (s + §')/2 and A = s —
s’ and consider that A ~ Q. For the nonvanishing
terms in the limit Q% — 0, we have
64m2¥2Q*
(A2 +4%0Q?)?

(12)

SOP? P2, Q%) = (13)
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qu = nivs GeV2

100

0 05 10 15 20
k2, (GeV/c)?

107!

Fig. 2. Photon wave function for nonstrange quarks,
Yynn (k?) = Gyonn(s)/s = g(k?)/(k* +m?), where
k* = s/4 — m?; the wave function for the s5 component
is equal to ¥, —ss (k%) = g4 (k%) /(k* + m2), where m is
the constituent s-quark mass.

4¥ Q% A?

2 4 2
X (4m _E)—'_(AQ-FTQQ)Q (32m -|-8m E
4m2At
2 2

and
8x2Q*

2 2 2 2

S()(P’Pl’_Q):(NHzQ?)? (14)
43 A?
4 2 4
x (=16m* + %) + (A2 11502 (—16m
4m2A*
2 2 2
—Am*X + X )+(A2+TQ2)2(_2W —E).

2.3.1. Spin structure factors SU) (P2, P2, §?)
for pure ¢g(L =1) and ¢g(L =3) states. The
qq(2TT) state can be constructed in two ways,
namely, with the ¢g orbital angular momenta of
L =1 and L = 3 (the 3Pyqq and 3F,qq states). The
vertex T}, of Eq. (12), corresponding to the dominant
P-wave ¢q state, also includes a certain admixture of
the F'-wave ¢q state.

The vertex for the production of pure ¢qg(L = 1)
state reads

2
=1),(k) _ "
Tﬁ(j 1),(k) — k), + kI, — ggwj(rk),

kt
T = V’J‘_  om —IF \/§’

where the operator I, selects the spin-1 state for ¢g,
and fyj = g/fl,fyy (see[23, 24] for details). We present
the corresponding spin factors, Sg):)l(PQ, P2 —Q?)
and Sg:)l(PQ, P2, —@Q?), in Appendix B.

The (L = 3) operator for the 3Fyqq state is equal
to

(15)

Tﬁ(j::’)),(k) = kuk,(T'k) (16)
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K
-+ (gW(I‘k) + Tk, + F,,ku) .

The corresponding spin factors, SéOZ)S(PQ, P2 Q%

and 8223(P2,P’2,—Q2), are also given in Ap-
pendix B.

2.4. Spectral Integral Representation
In formula (5), one can integrate over the phase
space by using d functions given by Eq. (7). Thus, we
have

dsds’
A (-Q%0) = VN, / S vr(sn ()
4m?2 (17)
« 0 (88/Q2 - mQ)\(Sy 8/7 _Q2)) S(H) (8, S/, _QQ)

16 )‘(87 8/7 _Q2)
with
s, s, —Q%) = (5" — 5)2 +2Q%(s' + 5) + Q1. (18)

The 6 function restricts the integration region for

different Q% 0(X) =1 at X >0 and §(X) =0 at
X <0.
In the limit Q? — 0, one has
H
FD(~Q* —0,0) = Zr\/N.

o0 +b (H) / 2
) dASH (Svsv_Q)
< [ Foru, @ [ o ,
™ T 16y/A(Z, A, Q%)
4m?2 —b
b=QvVX(X/m?—4),
A(S,A,Q%) = A% +43Q%,
where the spin factors St)(s,s’, —Q?) are given
in(13)and (14).
After integration with respect to A, the spectral
) (0,0) reads

(19)

representation for the form factor F}

-7y
Z
P (0.0) = Tlﬁ“ﬂ_ % (i ()10 ),
where
1O(s) = —2y/s(s — 4m?) (12m® +5)  (21)
9/ 9 s+ /s (s —4m?)
+4m (4m +38)ln8_ G i)
and
[(2)(8) - M (5m2 + s) (22)

3
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S+

S —

s (s —4m?)

s (s —4m?)

— 4m? (2m2 + 5) In

The tensor-meson decay form factors of reaction T' —
~7 with vertices for pure ¢g(L = 1) and ¢g(L = 3)
states [see (15) and (16)] are given in Appendix C.

2.5. Light-Cone Variables

Formula (5) allows one to make the transforma-
tion to the light-cone variables easily using the boost
along the z axis. Let us use the frame in which the
initial tensor meson moves along the z axis with the
momentum p — oc:

2
P= <p+ 0p> P’:<p+8+Q,Q,>.

Then, the transition form factor of reaction T —
v*(Q?)y reads

1
Zrv/ N, dx
1673 x(1—x)?
0

x/fmw®%ww@@5r@%

where x = ko, /p, ki = ko, and the ¢g invariant
mass squares are

m? + k2 , m?+ (—2Q+ k)2

Tai-o T ai-g

F(-Q%,0) = (24)

2.6. Tensor-Meson Charge Form Factor

In order to relate the wave-function parameters C'
and b entering into (9) to the tensor-meson radius
squared, we calculate the meson charge form factor
averaged over polarizations; the corresponding pro-
cess is shown diagrammatically in Fig. l¢. Thus, this
form-factor amplitude has the structure

Ay = (pu + 1) Fr(—Q%),

where the meson charge form factor Fr(Q?) is the
convolution of the tensor-meson wave functions,
U1 ® .

2.6.1. Charge form factor in the light-cone
variables. Using light-cone variables, one can ex-
press the gg-meson charge form factor as follows
(see, for example, [10, 21]):

(26)

1

1 / dz
1673 ) x(1—x)?

0

x/fmm@Wﬂﬂ&@d—yh

Pr(-Q*) =

(27)
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Sr(s, s, —Q?) being determined by the quark loop
trace in the intermediate state:

1 “ A

T G+ m)vally +m)T{ED (ke —m)] (28)

= P+ P TP RIS, 8, Q)

- 6% (07 Q2 o (0% T 87 S 9 Y
where (P’ — P)? = —Q2.

To relate the wave-function parameters to the
tensor-meson radius squared, R% , we may restrict
ourselves to the consideration of the low-Q? region.
The low-Q? charge form factor can be expanded in a
series in Q?:

1
Pr(—Q*) ~1— ER%Q2- (29)
At small Q?, one has
QQ
Sr(s,s', Q) = (30)

45(A2 + 45Q?)x2
x [-48%° (8m® 4 3X%) (4m* — %)
— 16Q*%? (64m" — 22m*Y + 95?)
+ 8LA? (40m* + 29m*% — 95%)]
Q*%? (8m? + 3%) (4m? — %)
45(A2 +4¥.Q?)?
272 4
e &
424 ¥3 32
Recall that ¥ = (s + ¢')/2and A = s — &',
2.6.2. Spectral integral representation for
charge form factor. Expanded in a series in Q?,

the spectral integral for charge form factor, Frp(—Q?),
reads

o0

Cuies) e

where
—am2
1(s) = SV (2 5 (o am?),
(32)
4,/5 (s — dm?
Ir(s) = % (—64mS — 40m*s
S

+26m2s® + 953) + is (16m4 — 46m?s + 952)

s+

S —

s (s —4m?)

x In .
s (s —4m?)
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Comparison of this expression with formula (29) gives
us the parameters of the tensor-meson wave function.

Formulas (31) and (32) can be used for the de-
termination of the wave-function parameters for any
n3 P>qq meson.

3. RESULTS

Here, the results of the calculation of the v~ partial
widths for mesons of the basic multiplet 12 Pyqq, that
is, a2(1320), f2(1270), and f2(1525), are presented.
According to[25], mesons of the first radial excitation,
23 Pyqq, are az(1660), f2(1640), and f2(1800), and we
calculate their v~ partial widths as well. We also es-
timate the vy widths of the F-wave mesons, namely,

the members of the 13 F5qg nonet, these mesons being
located in the vicinity of 2000 MeV [25].

3.1. Tensor-Meson v~y Decay Partial Width

Partial width I'r_., is determined as follows:

1
mTFTH'y'y =3 /dq)2 b; Q1,Q2 Z |Auua,3|
W aB

(33)
= %71’04 [6 (Fr}(iw(o’oo <FF}2_))W(O’O)> 2} '

Here, my is the mass of the tensor meson; the sum-
mation is carried out over outgoing-photon polar-
izations («, 3), and the photon identity factor 1/2 is
written explicitly; averaging over the tensor-meson
polarizations (u, v) results in the factor 1/5. The two-
particle invariant phase space is equal to

1 d3ql
2 (27‘(‘)3 . 26]10
d3(12

e 454 (p — gy —

and for photons, [ d®s(p; ¢1,q2) = 1/167.

d®s(p;q1,q2) = (34)

3.2. Transition Form Factors F( ) andF( ) for

na—yy 85—y

Mesons of the 13 Poqq Nonet

The transition form factors FT(mlv and Fs(slw
are determined by Eq. (20). They depend on the quark
mass and type of the vertex entering into the spin

factor, as well as the tensor meson wave function.
For nonstrange quarks, the ratios Fa(QH_)WW(O,O)/Za2

and FénLW(O,O)/Zm—l are equal to each other, pro-

vided the ay and (nn)s states belong to the same
() (0,0) and

qq multiplet. The magnitudes of F,
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Fig. 3. Transition form factors of reaction T" — ~~y [see (17) or (24)] for the nonstrange (nn) and strange (s5) quarks vs. mean
tensor-meson radius squared R%. (a) Fq(?)((), 0) for 1° P2qq state with minimal vertex, Eqs. (9) and (12); (b) Fq(?)((), 0) for
the vertex determined by (15); (¢) Fgf) (0, 0) for 22 P,qq state with the vertex given by (10) and (12); (d) Fq(?) (0,0) for 1> Fhqq

state with vertex given by (9) and (16).

(H) - .
Fy52,,(0,0) are shown in Fig. 3 for different tensor

mesons.

The transition form factors for mesons of the basic
multiplet 13Pyqq for the case where the transition

vertex T' — qq is chosen in the minimal form (12) are
shown in Fig. 3a. Form factors decrease noticeably
with the increase in radius of the ¢ system in the
interval 6 < R% < 16 GeV~2. The calculated form
factors reveal a strong dependence on the quark mass.
In our calculations, we set m = 350 MeV for the
nonstrange quark and m = 500 MeV for the strange
quark. One can see that, with the increase in quark
mass by 150 MeV, the transition form factors fall by a
factor of 1.5.

H
Fq(«i—)>w(0’ 0)/Z4q are

shown for mesons 12P»qq in case where the vertex
of reaction T'— qq is taken in the form (15), which
corresponds to a pure P wave.

In Fig. 3b, the form factors

PHYSICS OF ATOMIC NUCLEI

3.3. Decays ag — v

The form factor Fa(flw((), 0) is equal to that of the
nn component, apart from the charge factor:

Za2 F(H)

H
p(H) 7 Funloy

a2—y7y

(07 0) =

(0,0). (35)
Since flavor structure of the as meson is fixed, we can
calculate partial vy widths rather reliably.

In Fig. 4, the values of I', (1320)—~~ are shown vs.

R ) together with experimental data.

(212(1320
Recent measurements of the ~~ partial width of
the a(1320) meson yielded 'y, (1320)—y = 0.98 £
0.05 % 0.09 keV [26] and T, (1320) -y = 0.96£0.03 £
0.13 keV [27] (corresponding areas are shown by
close-hatched lines in Fig. 4). In addition, one
should consider that the extraction of the signal
a2(1320) — ~y faces the problem of correctly taking
into account coherent background. In the analy-
sis [28], it was shown that the measured value of
L4, (13200—44 can fall by a factor of ~1.5 due to
the “signal—background” interference. Therefore,
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we estimate the allowed region for T'y,(1320)—+~ as
1.12 < Ty, (1320)—~y < 0.60 keV (light-hatched lines
in Fig. 4).

Figure 5a demonstrates a full set of the as — vy
widths. The thick solid curve is drawn for 'y, 1320y~~~
with the vertex given by (9) and (12), while the dashed
curve presents Iy, (1320)— for the vertex given by (9)
and (15). The thin solid and dotted curves show,
respectively, 'y, (1660)—~~ for the vertex given by (10)
and (12) and T, (2000)—~~ for the vertex given by (9)
and (16).

When comparing the calculated values with ex-
perimental data, one should keep in mind that quark
masses are strictly fixed: as was mentioned above,
m = 350 MeV for the nonstrange quark and m =
500 MeV for the strange quark. The same mass
values were used in [10] for the calculation of the
decays ao(980) — vy and f,(980) — ~+. Still, the
two-photon decays of scalar mesons depend rather
weakly on quark masses, while, for the tensor meson,
the situation is quite the opposite: the decrease in
constituent-quark mass by 10% results in the in-

crease in the form factor Fég) (0,0) by approximately
10%, which means a 20% growth of the calculated
value of Iy, (1390)—+ at fixed R§2(1320). The 10% un-
certainty in the definition of the constituent-quark
mass looks quite reasonable; therefore, the 20% ac-
curacy of the model prediction for I, (1320)—~~ should

be regarded as quite normal.
Coming back to the decay a2(1320) — v, we
conclude that the calculated values of Ty, (1320)—~y

demonstrate rather good agreement with data at

R2, (1300) S 12 GeV~2,

3.4. Decays f2(1270) — ~~ and f2(1525) — ~~

First, we consider the decays of mesons belonging

to the basic 13P,qg nonet. We define flavor wave
functions of f2(1270) and f2(1525) as follows:

f2(1270) :
f2(1525)

Then, the form factors of the two-photon decays of f
mesons read

(36)

coS YT NN + sin prss,

— sin prnn + cos pTS5.

(H) . (H)
Ff2(1270)Hw(0’ 0) = cos o7 F,52,,,(0,0)  (37)
+ sin SOTFS(;QW(O, 0),
(H) s (H)
FY, (1525) - (0:0) = —siner 52, (0, 0)
+ cos SDTFS(QW(O, 0).
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Fig. 4. Partial width 'y, (1320)—~~ (thick solid curve)
along with the data (hatched areas—see Subsection 3.3)

as a function of the mean meson radius squared R% for
the vertex determined by Egs. (9) and (12).

Hadronic decays tell us that f5(1270) is mainly the
nn system, while f2(1525) is ss, that is, the mixing
angle ¢ is small.

Following [26—29], we accept partial widths as
follows: T' 1, (1270)—y = (2.60 £ 0.2570:92) keV and

Tty (1525) -y = (0.097 £0.0155052) keV. The mag-
nitude of the extracted signal depends on the type of
model used for the description of the background. For
the coherent background, the magnitude of the signal
decreases, and the second error in I, 1270)—-, and
['4,(1525)—~~ is related to the background uncertain-
ties.

Figure 5b shows the values of T't,(1970)—+4 and
L4, (1525)—~~ calculated under the assumption that
or = 0.

In Fig. 6, the results of the fit to data for
L4,01270)-vy and ', (1525)—,, are shown without
any fixation of p7. One can see that there exist two
solutions: @7 ~ 0° and @r ~ 25°, in both cases,
R2 <10 GeV~2. The rare-hatched areas correspond
to the description of data near the low border: 2.10 <
Ff2(1270)—>'w < 2.35 keV and 0.57 < Ff2(1525)—>’7’7 <
0.82 keV.

3.5. Two-Photon Decays of the 23 Pyqq and 13 Fqq
States

As follows from [25], at 1600—1800 MeV, there are
two tensor—isoscalar states—members of the 23 Pyqg
multiplet: they are f2(1640) and f2(1800) (presum-

ably nn- and ss-dominant states, correspondingly).
In Fig. 3¢, the form factors of mesons from radial
excitation nonet 23P,qq are shown: the transition
vertex for reaction T — qq is defined by the wave
function (10) and spin matrix (12). A small magnitude
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Fig. 5. Partial widths for a2 and f> mesons vs. mean tensor-meson radius squared R%. (a) Thick solid curve: Lo, (1320)—n~ for
the vertex given by (9) and (12); dashed curve: I, (1320)—~~ for the vertex given by (9) and (15); dotted curve: I'y, (2000) —~~
for the vertex given by (9) and (16); thin solid curve: Iy, (1660)—~~ for the vertex given by (10) and (12). (b) Partial widths for
isoscalar mesons of the basic 1% P2qq nonet: for f2(1525) meson supposed to be a pure s3 state and for f2(1270) assumed to
be pure n7. (c) Partial width for f2(1800) meson supposed to be a pure 23 P»s5 state and for f2(1640) considered as a pure
23 Pynii state. (d) Partial widths for 1% F»s5 and 1% Fonf states with mass ~2000 MeV.

of transition form factors at R% > 10 GeV~? is due
to a zero in the wave function (10). The form-factor
values calculated for the transitions 23 Pygg — ~ are
in some way only approximate—they strongly depend
on the details of the wave functions of 23 P»qq states,
and a comparatively weak variation, which, for exam-
ple, does not change the mean radius squared, R?,
may affect the form-factor value by 100%.

A special feature of the two-photon decays of
radial-excitation mesons is that their partial widths
are considerably smaller than the corresponding
widths of the basic mesons:

F13P2nﬁ~>'y'y > F23P2nﬁ~>'y'yv (38)

F13PQS§—>'y'y > F23 Poss—yy-

The inequalities are due to the fact that the ra-

dial wave function of the 23P»qq state contains a
zero; therefore, the convolution of wave functions,

PHYSICS OF ATOMIC NUCLEI

V93 pygq @ 1y, is significantly smaller than the con-
volution 93 p, .5 ® ¥~ (Wave function of basic state
has no zeros).

In Fig. 5c¢, one can see partial widths for
f2(1640) — ~v and f2(1800) — ~~ calculated under
the simple hypothesis that f2(1640) is a pure nn
state, while f(1800) is a pure ss state. One should
emphasize that the probability for the transition
23 Pynin — v is higher by an order of magnitude than
23 Pys5 — 7. This means that a comparatively small
admixture of the nn component may considerably
enhance the width of T'f,(1800)—+~, by a factor of 2
to 3 as compared to what follows from a pure ss state.

The verification of Eq. (38) has a fundamental
meaning from the point of view of meson quark struc-
ture. Preliminary data of the L3 Collaboration [30] on

the reaction vy — K9KY allow one to evaluate the
transition f2(1800) — ~~: Figure 7 shows the K2 K?

Vol.66 No.5 2003
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Fig. 6. The (R%, ¢) plot, where ¢ is the mixing angle for
the flavor components f2(1270) = nicos ¢ + s5sin ¢
and f2(1525) = —nfisin ¢ + s5 cos p, with hatched ar-
eas that show the regions allowed by data for decays
f2(1270) — vy and f2(1525) — 7.

spectrum, where the peaks corresponding to the pro-
duction of f2(1525) and f2(1800) are distinctly seen.
The description of these peaks in terms of Breit—
Wigner resonances gives us the following relation:

r _ BR(f2(1525) — KK)
22018000297 ™ BR(4,(1800) — K K)
x (0.10 £ 0.05) keV.

(39)

Comparing (39) with partial width values shown
in Fig. 5¢ proves that the L3 data agree qualita-
tively with (38), provided Br(f2(1800) — KK) ~
Br(f2(1525) — KK); that is, the decay channel
f2(1800) — K K is not small. A rather large magni-
tude of the branching ratio for f5(1800) — K K looks
natural because f2(1800) and f3(1525), according
to the systematics in the (n, M?) plane [25], should
belong to the same trajectory, so they both have a
rather large s§ component. The fact that, according
to (39), the partial width of the decay f2(1800) — ~~
should be greater than T'ys p, g5, =~ 0.03 keV may
be explained by the 20—30% admixture of the nn
component in f2(1800).

Figure 3d demonstrates form factors for mesons
of the 13Fyqq multiplet: the wave functions are de-
fined by (9), while the vertex for reaction T" — ¢g has
the form (16). In Fig. 5d, partial widths are shown
for the transitions 13Fynn — vy and 13F»s5 — vy
calculated under the assumption that the masses of
these states are on the order of 2000 MeV [25].
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Fig. 7. The K$K?2 mass spectrum in vy — K2 K9 [30]
with production of f2(1525) and f2(1800). The dashed
curve is the background, and the solid line is a full contri-
bution.

4. CONCLUSION

We have calculated the two-photon decays of ten-
sor mesons, members of the ¢g multiplets 13 Pyqq,
23 Pyqq, and 13 Fyqq.

The main goal was to calculate the decays of
mesons of basic multiplet 13 P,qq: a2(1320), f2(1270),
and f(1525). All calculated partial widths of radiative
decays of these mesons, a2(1320) — 77, f2(1270) —
v, and f9(1525) — v, are in reasonable agree-
ment with the hypothesis about the quark—antiquark
structure of tensor mesons. In addition, radial wave
functions of a2(1320), f2(1270), and f2(1525) are
close to radial wave functions of ap(980) and f(980)
found in the study of radiative decays ao(980) — v,
f0(980) — 77, and ¢(1020) — ~v [10]. The possi-
bility of simultaneously describing scalar and tensor
mesons using approximately equal wave functions
may be considered as a strong argument in favor
of the fact that all these mesons—tensor a2(1320),
f2(1270), and f2(1525) and scalar ao(980) and
f0(980)—are members of the same P-wave ¢gg mul-
tiplet.

The mesons of the first radial excitation, according
to [25], are a2(1660), f2(1640), and f2(1800). We
have calculated the partial vy widths for all these
mesons. The comparison with data of the L3 Collab-
oration on the reaction f5(1800) — ~~ reveals quali-
tative agreement. However, it should be stressed that
calculated values of partial vy widths of mesons be-
longing to the 23 P,qq multiplet are rather sensitive to
the details of the wave function of the ¢g system.
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We have also calculated the v+ width of mesons
belonging to the 13 Fqg multiplet. These mesons are
located near 2000 MeV [25], and we may expect
them to be a target for studying the reactions vy —
hadrons.
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APPENDIX A
Spin Structure of the Decay Amplitude T — ~~y
(H)
Swa&ﬁ
Here we demonstrate that the convolution of the
angular momentum operators for L =2 and L =4

The Completeness of Operators

with the helicity operator Sgi)ag#lm does not change
the amplitude stucture given by (1).

The convolution of the helicity H =2 operator
with that of L = 2 reads

X ,ﬁ%(@sg)a?,m 5(P,q) (A.1)
— 3 (aho - gt
% (05 9+ a0 — 050 )
2
= —% (ﬁilgﬁ;g + GirinTison — g,f@ai@)
)

5 Saton i (P @)

The convolution of the helicity H = 2 operator with
that of L = 4 also gives the term proportional to the
H = 2 operator:

35

Xfi?U«QV)\(Q)Sgi)ag,y)\(pa Q) = g (AQ)

2

4q il 1
X [QMQMQQVQ)\ - 7 (gmquVq)‘ + gmz/qluq}\

1 1
+ gung}u ax + Jurdu, QIL2>

_g (9@2 A+ GyuavFin + gﬁlAgﬁgu)]
« (sbi ot + stk — o ok
= qZ4 (gi‘ltlgi‘j% + GiianGrmes — g,itggéiy?)
= %45&21)@,#1”2 (p: q)-

Thus, we see that both convolutions, the H = 2 op-
erator with L = 2 and L = 4, give terms proportional

to S&QI)QQ,;H 75 (pa Q)'
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H
S

To demonstrate the connection of the intro-
duced operators with the standard helicity technique,
we consider, as an example, the transition vy —
2+ *resonance — 7%7%. Using the momenta ¢; and
g2 for photons and kp, ko for mesons, one has the
following results for relative momenta and photon
polarization vectors:

The Operators and Standard Helicity Technique

1
q= 5((]1 - Q2) = (07 07 07 qz)7 (AS)
1
k= §(k1 — ko) = (0, kg, ky, k),
€ = (0, €z, €y,0) = (0,cos ¢,sin ¢, 0).
In the helicity basis,
€= (07€+76770)7 (A4)
1 1
€y = —%(695 +iey), €- = %(Ex —i€y).

The spin-dependent part of the amplitude with H = 0
reads

Ve g XD @WXD (k) (AB)
= ZqQk2 <00829 - %) (eiLl)Ef) + 6(_1)6(_2)).
For H = 2, one has
€D XD (k). (A.6)
Different components are written as follows:
eMe?s? L xP(k) =0, (A7)
eg)eg)szyqug)(k) = ;kQ sin? 0

x (1 + 2isin ¢ei¢) ,

L,

x (1 — 2isin ¢e—i¢) ,

6(1)6(2)5(2) X(2) (k‘) —0.

— b= Me——uruy

3., .
XD (k) = §k2 sin” 0

S(H)

pnv,af

and Analytic Properties of Vertex
Function

The operators S/(ELQ are expressed in terms of the

metric tensors g5 that work in the space perpendic-

ular to the T" — ~+ reaction plane. This metric tensor
has the structure as follows:

92t = Gap — Paps/MmF + 44aqs/mb.

Operators

(A.8)

The presence of factors 1/m?2. may evoke the ques-
tion about the behavior of the form-factor amplitude
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at mQT = 0. Of course, this is a far removed point for For H = 2, one has

the reactions under consideration (the lowest tensor

resonance is at my ~ 1600 GeV?). Still, this problem (e (s,8',—Q2) = 8x2Q* (A.10)

is important, so it should be considered it in detail. L=1\" "> (A% 4 4%Q2)2 ’
When treating the reaction “composite system om (4m?2 — T2

— 7,” one should distinguish it from the transition % [(—16m4 +32) + m (4m?* — %) }

“constituents — ~~,” in this case, g7 — 7. These 2m + VX

processes, though related to each other, are differ- A5Q2A?

ent: the amplitude for the process “composite system

[ (—16m* — 4m?*S + £2)
— 4y” (or T — ~7) is determined by the residue at

T ATy

the amplitude pole for reaction gz — vy at s = m%, 8m? (4m? — ) Am2A*
where s is the invariant energy squared of the ¢g sys- + ] + A2 1 45202)2
tem. Both amplitudes should satisfy the requirement 2m + VI ( +3 @)
of gauge invariance (this requirement for the transi- » [ (_2m2 —%) + 4m ]
tion T' — v+ is imposed by the operators Sﬁilﬂ), but 2m + VS

they have different analytic properties. In particular,

the threshold theorems appropriate for ¢qg — 7y do  Correspondingly, the spin factors Sgi)g(s,s’, -Q?)
not work in the vertex function; i.e., for the residue at  for the pure (L = 3) state are as follows:

the pole s = mQT, the threshold theorems are realized

by the interplay of pole and nonpole terms. Due to this ) , ) 48%2Q*
fact, we must keep the mass of the tensor meson, m%, Sp=s(s,s,—Q7) = 5(A2 + 42Q2)2 (A.11)
in Eq. (A.8) at a fixed value. ) 3
The problem of interrelation of gauge invariance y [2m2 (4m? — 2)2 _m (4m? — %) ]
and analyticity in the spectral-integration technique 2m 4+ VY

was discussed in detail in [21, 23] for the transitions

272
qq — 793, NN — yNN,and NNy — NN~ and the 1224 [(16m4+4m22+22)
corresponding vertex functions describing composite 5(A? +4%Q?)?
systems (mesons and deuteron). om (4m2 + 3 (4m? — )2

An opposite point of view according to which the X (4m2 -3) - m (4 + %) (4m ) }
threshold theorems should work for vertex functions 2m + Vv
was advocated in [31]. 12m2A4

4 2 2
4m?Y + %
+5(A2+4EQ2)2[(8m+ m’Y + %?)

APPEN]()IX B) ( | 2m (4m? — X)) (2m? + 3)
Spin Factors for Pure qg(L = 1) and qg(L = 3 -
States 2m + VE

At small Q2, the spin factor SYT% (P2 = 5, P2 =  and

I N2 —
s', —Q*) for pure (L = 1) state reads 4320

(2) / 2
2Q* Sios(s,s,—Q%) = (A.12)
S (5,8, -Q%) = L (A.9) L=s 5(AZ + 45Q2)?
(AZ ¥ 15Q2)? .
(4 2 2)2 > |:(_6m2+2)(4m2_2)2+ 3m (4m2_2) :|
x [2m2 (4m? — %) — u] 2m + VS
2m + V% 2 A2
4X.Q2A? 264 [ (—24m* + 4m°Y — ¥?)
| (32m* % — 3%2 5(A2 +45Q2)2
+(A2+4EQ2)2[(3 m” +8m 3%%) ( Q?) o 2
B 4m (16m4 _ 22) . Am2 A4 o (4m2 B Z) n 12m (4m — E) ]
2m + V% (A2 +43Q?)? 2m + VS
9 4m (2m? + %) n 2m?A* [ (—12m4 1 om2y - 22)
3 (42
Recall that we use the notation ¥ = (s + s’)/2 and + 6m? (4m? — E)}
A=s—4. o2m + V%
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APPENDIX C

Transition Form Factors FF}?L))_)W (0,0)

The spectral integral for the form factor
H .
FF}(L))_)W(O,O) with a pure (L = 1) or (L = 3) wave
in the vertex T" — ¢q reads as follows:
ZqgV/ Ne
167

(H)
FT (L)—ry

[e. 9]

< [ L5y (5)15s)

4m?

(0,0) = (A.13)

where, for (L = 1), one has
11(21(8) = —2y/s(s—4m?) (12m* +3) (A.14)
s+ /s (s —4m?)

s—1/s(s—4m?)

+4m® (4m® + 3s) In

16m?

—l—m 3vs (s —4m?2) — (2m® + s)

)
><ln8+ s (s m)]

s — /s (s —4m?2)
and

2) 4/s (s — 4m?2)
3

1? (s) = (5m? +s)  (A.15)

s+ /s (s —4m?)

s — /s (s —4m?)

— 4m? (2’m2 + s) In

n 4m
2m+ /s

— 2
— (10m2 — s)

+4m*In

Analogously, for the qg(L = 3) wave (13 Fyqq multi-
plet), we have
— A2
70 (s) = 2 8(85 4m?)

L=3 (72m4
+8m?%s + 82) + 1—52m2 (8fm4 +4m?s + 82)

(A.16)

s+ /s (s —4m?)

s— /s (s —4m?)

24m3 (s — 4m2)
5(2m + +/s)

X In

x | —3y/s(s—4m?2) + (2m® + s)

s+ /s (s —4m?)

s —/s(s—4m?)

X In
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and
2 — 4Am?
12 (s) = 2¥2 (815 m) (30m*  (A.17)
2
—4m?s + 82) — gm2 (12m4 —2m?s + 82)

m (s — 4m2)

5(2m + +/s)

s+ /s (s —4m?)

s—/s(s—4m?)

x [V/s (s —4m?) (10m* — s) — 12m*

— Am2
L5t s (s —4m?)

x 1 .
s—1/s(s—4m?)
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Process mp — 7w N at High Energies and Moderate Momenta
Transferred to the Nucleon and the Determination of Parameters
of the f(980) and f0(1300)*

V. V. Anisovich™ and A. V. Sarantsev

Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, 188350 Russia
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Abstract—We present the results of simultaneous analysis of the S-wave n7 spectra in the reactions
77 p — (77)sn at pap, = 38 GeV/c(GAMS)and 7~ p — (w7)sn at pr, = 18 GeV/c(E852 Collaboration)
at moderate momenta transferred to the nucleon, |¢t| < 1.5 (GeV/c)?. The t distributions are described
by the Reggeized 7 and a; exchanges provided by the leading and daughter trajectories, while the M,
spectra are determined by a set of scalar—isoscalar resonances. With M, distributions averaged over
different ¢ intervals, we have found several solutions given by different ¢-channel-exchange mechanisms
at [t| ~ (0.5—1.5) (GeV/c)?, with resonance parameters close to each other. We conclude that, despite
a poor knowledge of the structure of the ¢ exchange, the characteristics of resonances such as masses
and widths can be reliably determined using the processes under discussion. As to pole positions, we
have found (1031 & 10) — (35 + 6) MeV for fo(980) and (1315 % 20) — i(150 = 30) MeV for fo(1300).

© 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The reactions of meson production in meson—
nucleon collisions such as 7p — 7w N, KKN, nN,
and KN — nKN are traditionally a source of in-
formation about resonances in the two-meson spec-
tra, namely, 77, KK, nn, and 7K (see, e.g., [1—3]).
Therefore, it would be important to know what res-
onance characteristics could be reliably determined
from these reactions and where one may encounter
problems.

A set of the K-matrix analyses [4—10] are based
on the three-meson production data in pp annihila-
tion, together with data on the two-meson produc-
tion in meson—nucleon high-energy collisions. The
GAMS data for the reaction 77 p — 7%7% at pip =
38 GeV/c[3], which represent the production of 7079
at relatively large momentum transfers, are impor-
tant for the investigation of the 1200—1400 MeV
mass region: at the momentum transfer squared || ~

0.5—1.0 (GeV/c)?, a distinct peak was seen near
1300 MeV in 770 spectra.

The resonance fp(1300) (denoted as f,(1370) in
the compilation [11]) was observed in the analysis
of the mw and nn spectra obtained from the anni-

hilation of pp (at rest, liquid Hy) — 79%7%7°, 7%,

*This article was submitted by the authors in English.
“e-mail: anisovic@thd.pnpi.spb.ru

7%n [12—14]. In the most comprehensive anal-
ysis [13], where both resonance production (pole
singularities of the amplitude) and meson rescat-
tering in the final state (logarithmic singularities of
the amplitude [15]) were taken into account, the
magnitude for the complex-valued mass was found
to be M —il'/2 = (1335 +40) — i(127139) MeV.
In the analyses presented in [12, 14], a simplified
fitting procedure was carried out, without accounting
for logarithmic singularities: one obtained (1340 +
40) —i(127759) MeV [14]. In the Crystal Barrel
Collaboration paper [12], the claimed mass was
1365722 MeV, reflecting an attempt to make it closer
to a scalar resonance, which was then defined at
1430 — 4125 MeV [16]. The existence of a scalar—
isoscalar resonance was also claimed to be at 1430 —
i73 MeV [17] or 1420 — 4110 MeV [18].

But now it became obvious that the mass shift
towards higher values is due to an insufficiently
correct account of the interference resonance +
background: the fact that, just due to a consider-
able interference in the ww S wave, the resonance
fo(1300) reveals itself not as a bump or minimum
but as a shoulder in the spectrum was specially
emphasized in [8, 13]. No visible structure was ob-
served in the two-meson spectra from Crystal Barrel
reactions pp (atrest, liquid Hy) — 707979, 7970,
7%, although this state was strongly needed for
the combined description of the three-meson Dalitz

1063-7788/03/6605-0928$24.00 © 2003 MAIK “Nauka/Interperiodica”
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plots and the two-pion production reactions [1, 3]:
the combined fits [5, 6, 8] provide a strong restriction
for the position of this state—it could be no higher
than 1350 MeV. The notation f,(1370) used in the
PDG compilation [11] is a tribute to these early (and

exaggerated) values.!)

There is no common belief in the existence of
fo(1300), and its parameters are supposed to be
poorly defined: in the compilation [11], the mass and
half-width are quoted as M ~ 1200—1500 MeV and
I'/2 ~ 75125 MeV.

The data with direct evidence for this state were
obtained by the GAMS group [3], where the peak
associated with fp(1300) was clearly seen at large
momenta transferred to the target nucleon. (Note that
a hint to the smallness of the background at large mo-
mentum transfers was given by the K K production
data [19], where events were collected in the interval
0.2 < |t| £ 0.5 GeV? and a strong bump was seen in
the mass region ~ 1300 MeV.)

The GAMS data [3], where a strong enhancement
in the spectra was observed in the 1300-MeV mass
region, were included in recent K-matrix analyses
of the IJP¢ = 00T+ amplitude [8—10]. In [10], the
mass (1300 & 20) — (120 £ 20) MeV was found for
fo(1300). It became obvious that exchange by large
momenta favors the production of this state, and new
measurement of the 7070 spectra at moderately large
|t| in the reaction 7= p — 797%n at pj,, = 18 GeV/c
performed by the E852 Collaboration [20] provided an
important contribution to verification of parameters
of this resonance. The signal from f(1300) is clearly
seen in the 7079 spectra at |t| ~ 0.5—1.5 (GeV/c)?,
for, as was stated above, the background at such
momenta transferred is small.

However, the account of the pion-pair-production
data in the K-matrix analysis meets with a poor
knowledge of the details of the ¢-channel-exchange
mechanism at such momenta. At small momenta,
It] < 0.2 (GeV/c)?, the Reggeized pion exchange
dominates. At |t| ~ 0.2—0.4 (GeV/c)?, the behavior
of the two-pion production cross section with the
growth of |t| changes: the decrease in do/dtdMy
becomes less steep. The change of the regime can
be due to the onset of different ¢-channel-exchange
mechanisms at moderate |t| such as multi-Reggeon
rescatterings, say, 7P, 7PP, and so on (P denotes
the Pomeron), or to the contribution of the a; ex-

change and related branchings such as a;P and
CL1PP.

DNote that, in[11], in the discussion of the status of fo(1370),
the papers [13] with the most detailed analysis of this reso-
nance were not mentioned.
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In [4], by performing the K-matrix analysis of
the GAMS nm spectra in the vicinity of fp(980),
the ¢ distributions were approximated by the effective
pion exchange. It was supposed that, at small |¢],
the Reggeized pion exchange dominates, while at
increasing |¢| the change of regime is accompanied
by a change of sign in the amplitude (recall that the
7P branching changes the amplitude sign). In the
analysis [9] of the 7w spectra in the region of f(980)
and fp(1300), a scenario with a large contribution
of the Reggeized a; exchange at |t| > 0.5 (GeV/c)?
was realized in the K -matrix fit. The hypothesis that
the change of regime in the t distribution at M, ~
1000 MeV is due to the a; exchange was also dis-
cussed in [21].

To decrease the uncertainties related to a poor
knowledge of the ¢t-channel-exchange mechanism,
the M., distributions averaged over a broad ¢ interval
|t1] < |t]| < |ta| were used in [4] to fit to data,

to

do
N /dtdthm’ (1)

t1

{do)

dMzr

for the ¢ intervals as follows: 0 < |t| < 0.2, 0.3 <
lt| < 1.0, 0.35 < [t| < 1.0, 04 < |t| < 1.0, 0.45 <
t| < 1.0,and 0.5 < |t| < 1.0(GeV/c)?. The averaged
distributions, as one may believe, are not sensitive
to the details of the ¢ distribution, as the averaging
over a broad momentum-transfer interval makes the
particularities of ¢ distributions smoother. Fitting
to the spectra confirmed this statement [9, 10]. In
the analysis of ¢ distributions [9], where, together
with pion exchange, the a; Reggeized exchange was
included, the parameters of f,(980) and fy(1300)
appeared to be weakly sensitive to different entries of
the t-channel-exchange mechanism, thus giving us
hope that a reliable determination of resonance pole
singularities as well as pole residues (associated with
partial widths) are possible in the framework of the
averaging procedure (1).

Recent measurements of the M, spectra in the
reaction 77 p — 707% at |t| < 1.5 (GeV/c)? [20]
provide us with an opportunity to clarify the ¢-
channel mechanism as well as to study to what extent
the averaging of spectra (1) makes the extracted
resonance parameters insensitive to the details of the
t-exchange mechanism. The present paper is devoted
to the consideration of these problems.

As in previous studies [4—10], we analyze the 77
spectra in terms of the K -matrix amplitude. Because
of that, in Section 2, we recall the necessary K-
matrix-technique formulas. Section 3 presents the
results of the fit. In the Conclusion, we summarize
our understanding on the ¢t-channel-exchange mech-
anism and recall the properties of the f,(980) and
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Fig. 1. Number of weighted events, N/AMzr, vs. Myx
for the |t| interval 0.3 < |t| < 0.4 (GeV/c)*: compari-
son of GAMS (open circles) and E852 (closed circles)
data. Open circles correspond to the subtraction of two
sets of GAMS data, [t| = 0.3—1.0 (GeV/c)? and |t| =
0.4—1.0 (GeV/c).

f0(1300) resonances found in the K-matrix analy-
sis based on the spectra measured by the GAMS
group [3] and E852 Collaboration [20].

2. THE K-MATRIX AMPLITUDE

In this section, we present the formulas for the K-
matrix analysis of the 00T+ wave. The given analysis
is a continuation of earlier work [8—10]. In the latter
paper [10], the 00T+ wave was reconstructed on the
basis of the following data set:

(1) GAMS data on the S-wave two-meson pro-
duction in the reactions 7p — 7%7%, nnn, and
nm'n at small nucleon momenta transferred, |¢| <
0.2 (GeV/c)?[3, 22, 23];

(2) GAMS data on the w7 S-wave production in
the reaction mp — 7°7%n at large momenta trans-

ferred, 0.30 < |t| < 1.0 (GeV/c)?[3, 22];

(3) BNL data on mp~ — K Kn [24];

(4) Crystal Barrel data on pp (at rest, liquid Hy) —
707970 7070, 70nn [12, 25].

Now, the experimental basis has been much
broadened, and additional samples of data are in-
cluded in current analysis of the 00" wave as
follows:

(5) Crystal Barrel data on proton—antiproton an-

nihilation in gas: pp (at rest, gaseous Hy) — 707970,

7r07r0?7, 7r0'm7 [26];
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(6) Crystal Barrel data on proton—antiproton
annihilation in liquid Ho: pp (at rest, liquid Hg) —
ata—n0 Kt K70 KgKgr®[26];

(7) Crystal Barrel data on neutron—antiproton an-
nihilation in liquid deuterium np (at rest, liquid Dy) —
0 nrnt, KgK 7% KgKgn™ [26];

(8) E852 Collaboration data on the 77w S-wave
production in the reaction 7=p — 7%7%n for nucleon
momentum transfers squared 0 < [¢t| < 1.5 (GeV/c)?
[20].

Below, we set out the K-matrix formulas used
for the data analysis of the S wave in the reaction
7 p — (7m)gn.

2.1. The K -Matrix Scattering Amplitude for the
00*t Partial Wave

The K-matrix technique is used for the description
of the two-meson coupled channels:

A=K -ipK)™, (2)
where K is an n x n matrix (n is the number of chan-

nels under consideration) and I is the unity matrix.
The phase-space matrix is diagonal: pap = dappa. The
phase space factor p, is responsible for the threshold
singularities of the amplitude: to keep the amplitude
analytical in the physical region under considera-
tion, we use analytical continuation for p, below the
threshold. For example, the nn phase space factor
oy = (1 —4m2 /s)1/2is equal to i(4m2 /s — 1)/% be-
low the nn threshold (s is the two-meson invariant
energy squared). To avoid a false singularity in the
physical region, we use for the nn’ channel the phase
space factor p,y = (1 — (my, +myy)?/s)/2.

For the multimeson phase volume in the isoscalar
sector, we use the four-pion phase space defined as
either the pp or oo phase space, where ¢ denotes
the S-wave 7 amplitude below 1.2 GeV. The result
hardly depends on whether we use the pp or oo state
for the description of the multimeson channel: below,
we provide formulas and the values of the obtained
parameters for the pp case, for which the fitted expres-
sions are less cumbersome.

For the S-wave amplitude in the isoscalar sector,
we use our standard parametrization [6, 8, 10]:

(a) (@) 2
Kab(s)_ ( ~ Mogl_s""fab s+ 50 (3)

S—SA
5+8A0’

with the following notation for meson states: 1 =
mm, 2=KK, 3 =mnn,4=mnny, and 5 = multimeson

Vol.66 No.5 2003
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040<-r<1.50
20 -
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0
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Fig. 2. Description of the E852 data: number of weighted events, N/AMx, vs. Mz for different ¢ intervals (in (GeV/c)?) for
solution A. Dashed and dotted curves show the contribution of a1 (eading) and m(daugnter) trajectories, respectively; solid curves

stand for the description of spectra, all contributions included.

states (four-pion state mainly at /s < 1.6 GeV).

The term g((la) is a coupling constant of the bare

state o to the meson channel; the parameters f,
and sy describe the smooth part of the K-matrix
elements (sg > 1.5 GeV?). We use the factor (s —
s4)/(s+ sa0) to suppress the effect of the false
kinematical singularity at s =0 in the amplitude
near the wx threshold. Parameters s4 and s4q are
kept to be of the order of s4 ~ (0.1—0.5)m2 and
s40 ~ 0.1-0.5) GeV? (note that the upper limit of
sao coincides with the position of the p-meson left-
hand singularity); for these intervals the results hardly
depend on precise values of s4 and s 4¢.

For the two-meson states, 77, KK, nn, and 1/,
the phase space matrix elements are equal to

pa(s) = \/8 — (e + mQa)Qy

S

a = 17273747 (4)
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where m1, and mo, are masses of the pseudoscalars.
The multimeson phase space factor is defined as

at s <1GeV?,
p5(8) — {/051

5
pso at s>1GeV?, (®)

ds ds
p = [ S [ AT
T s
x /(s + 51 — 59)2 — 4ssys 1 [(M? — 51)?
+ MPT?(s1)] 7 (M? = 52)* + MPT?(s9)] ",

< s—l6m%>n
ps2 =\ ——— | -
s

Here, s1 and so are the two-pion energies squared,
M is the p-meson mass, and I'(s) is its energy-
dependent width. The factor pg provides the continu-
ity of ps(s) at s = 1 GeV2. The power parameter n is
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Fig. 3. Description of the GAMS data: number of weighted events, N/AM,., vs. M, for different ¢ intervals [in (GeV/c)?]
for solution A (solid curves). Dashed curves show the solution published previously [10] for the fit of GAMS data alone.

taken to be 1, 3, 5 for different variants of the fitting;
the results are weakly dependent on these values (in
our previous analysis [10], the value n = 5 was used).

2.2 The S-Waverr, KK, nn, and gy’ Production
in High-Energy mp Collisions

Here, we present formulas for the high-energy S-
wave production of wmw, KK, nn, and nn' at small
and moderate momenta transferred to the nucleon.
In [3, 20, 22—24], the wp collisions were studied
at Ppeam ~ (15_40) GGV/C (or sxN =~ 2MNDpeam ~
30—80 GeV?). At such energies, two pseudoscalar
mesons are produced due to the t-channel exchange
by Reggeized mesons belonging to the 7 and aq tra-
jectories, leading and daughter ones.

PHYSICS OF ATOMIC NUCLEI

The 7 and a; Reggeons have different signatures,
&x = +1 and &,; = —1. Accordingly, we write the 7
and a, Reggeon propagators as
an(t)
TN
sin(ma(t)/2)’
g1 (t
sﬂ]\}( )
cos(mag (t)/2)’

where «, and «a,; are Reggeon intercepts. Follow-
ing [27], we use for leading trajectories

eiman (t)/2

(6)

,L-e—iﬂaal(t)/2

Qr(leading)(t) =~ —0.015 + 0.72t, (7)
Qg1 (leading) (t) =~ —0.10 + 0.72¢

and for daughter ones
Qr(daughter)(t) =~ —1.10 + 0.72t, (8)

Vol.66 No.5 2003
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Fig. 4. The ¢ dependence of the K-matrix couplings, G
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(o)
Gnn

0.4 (b)

03

0.2

G, (d)
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—t, (GeV/c)?

, for the 7 (eading) trajectory exchange in the solution A: (a) solid

curve for f82™(720) and dashed curve for £ (1250); (b) solid curve for f52(1600) and dashed curve for f52(1230); (¢, d) ¢
dependence of the same vertices for the a1 (jeadging) trajectory exchange GSSZ)I (notation is the same as in a, b).

aal(daughter)(t) ~ —1.10 + 0.72¢.

Here, the slope parameters are in GeV units, o/ =
0.72 (GeV/c)™2. In the c. m. frame, which is the
most convenient for the consideration of Reggeon
exchanges, the incoming particles move along the z
axis with momentum p. In the leading order of the 1/p
expansion, the spin factors for 7 and a; trajectories
read

7 trajectory : (o-q1), (9)

ay trajectory : i(o-n;),

where n, = ppeam/Pbeam and g is the momentum
transferred to the nucleon (¢ ~ —¢?). The Pauli ma-
trices o work in the two-component spinor space
for the incoming (i,) and outgoing (¢7 ) nucle-
ons: (¢* (opin) (for more details, see, for example,
[28, 29]). Consistent removal from the vertices (9) of
the terms decreasing with p — oo is necessary for a
correct inclusion of the daughter trajectories, which
should obey, similar to the leading ones, the con-
straints imposed by the ¢-channel unitarity condition.

In our calculations, we conventionally modify

PHYSICS OF ATOMIC NUCLEI

Vol.66 No.5 2003

Reggeon propagators in (6). We replace
SN

37TN07
where the normalization parameter s;nq is of the
order of 4—20 GeV?2. To eliminate the poles at t <

0, we introduce additional factors into the Reggeon
propagators, the gamma functions, by replacing in (6)

sin (gaﬂ(t)> — sin (gaﬂ(t» r <a7r2(t) + 1) ,
(11)

cos (%aal (t)) — COs (gaal (t)) r (aa;(t) + %) .

The K-matrix amplitude for the transitions T7R(t) —

am, KK, nn, n, mnrm, where R(t) refers to a
Reggeon, reads

(10)

SN —

ATI’R = KnR(—f—iﬁK)ily (12)
where K, p is the following vector:
G\ (t)g'* 1GeV2+s
K% xR\ @ S UFY PR
mhb <za: M2 —s + Frra(t) 5+ SRo
(13)
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Fig. 5. The same as in Fig. 2, but for the solution B1.

s—Sa
s+ sS40

Here, fo]‘%(t) and Fp,(t) are the Reggeon t-
dependent form factors; sgg, s4, and s4¢ are param-
eters introduced into the K-matrix fit; they are of the
order as follows:

SRO ~~ 1-5 GGVQ,

SA,540 ~ 0.1-0.5 GeV?.

For the t intervals under consideration, the results
hardly depend on the precise values of sgg, s4, and
sao. The following limits are imposed on the form
factors:

G7(ro7ér (t - mgr) = 97(ro7ér)a Fmr,a(t - mfr) = f7r7r,a7
1

where g,(ro,‘r) and frr o enter the matrix element (3).

Different parametrizations of the form-factor ¢ de-
pendence were investigated in our analysis. First, the

PHYSICS OF ATOMIC NUCLEI

t dependence of the form factors is introduced in
exponential form (denoted as the A parametrization):

G(1) = garexp (B (¢~ m2))
Fﬂ'ﬂ',a(t) = fmr,a exp ('Ya(t - mgr)) .

Here, for the sake of simplicity, we have used the
same slopes, 7,, for nonresonance K-matrix terms
in the channels nn, nn/, and wr7wr. Also, for the
trajeCtorieS Q1(leading)> 7 (daughter) and a1 (daughter)> the
nonresonance couplings were set to zero.

(15)

In the second type of parametrization, denoted as
B, a more complicated ¢ dependence has been used
for the 7 trajectory: it is assumed to be a two-term
exponential form for the form factor, either

Gl = gl5) [(1 = ) exp (817t = m2))

+ Aexp (ﬁéa) (t— mi))] :

(16)

Vol.66 No.5 2003
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Fig. 6. The same as in Fig. 3, but for the solution B1.

or
Gl — gl)

7 — 9nrx

exp (At -m2))  (7)

+ A= m2)exp (87— m2)) ]

The parametrization C' assumes a weaker decrease
with |¢| for the second term, which corresponds to the
so-called Orear behavior [30]:

¢ =g [(1 - Nexp (80— m2))  (18)
+ Aexp (—5§a)\/ [t — ’m%\)} ,
G =g [exp (A7t - m2)  (19)

+ A= m2)exp (=58 /]t —m2])]

PHYSICS OF ATOMIC NUCLEI

The other form-factor terms are treated in the same
way as in the parametrization A. As was stated above,

the change of regime at [t| > 0.5 (GeV/c)? is possible
due to multi-Pomeron exchanges, thus leading to the
Orear behavior (see [31] and references therein).

3. RESULTS

In this section, we present the K-matrix anal-
ysis results related to the reactions 77p — (7m)gn
at pap, = 38 GeV/c[3] and m~p — (77)gn at p, =
18 GeV/c[20].

In the partial-wave analysis performed by the
E852 Collaboration [20], two solutions were found.
We fit to the first one, which is called in [20] a
physical solution because of its characteristics in the
low-mass region. However, near 1100 MeV, both

Vol.66 No.5 2003
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Fig. 7. The same as in Fig. 4, but for the solution B1.

solutions give close results, thus creating a prob-
lem of separating these solutions above 1100 MeV.
Therefore, along with fitting to the first solution,
we have performed an analysis where, in the mass
region higher than 1100 MeV, the points of the
second solution are used. It was found that fitting to
this modified second solution does not lead to any
qualitative change as compared to the first solution
but a nonsignificant redefinition of parameters for
the ¢ dependence of Reggeon form factors. It is the
reason for not presenting parameters for the modified
second solution, and we restrict ourselves only to the
discussion of the results obtained from fitting to the
first E852 solution [20].

3.1. The Description of the M. andt Distributions
in the Reactionmp — (mm)gn at0 < |t| < 1.5

(GeV/cP

A comparison of the spectra obtained at pj,, =
38 GeV/c [3] and pi,, = 18 GeV/c [20] points to a
change in the t-dependence behavior with energy.
This is clearly seen in Fig. 1, where the E852 data
are plotted in the interval [t| = 0.3—0.4 (GeV/c)?
vs. the difference of GAMS spectra for the intervals
t| = 0.3—1.0 (GeV/c)? and |t| = 0.4—1.0 (GeV/c)?
(unfortunately, the E852 data are presented for other

PHYSICS OF ATOMIC NUCLEI

t intervals than those measured by GAMS). A
strong difference of spectra is seen for My, ~ 1100—
1350 MeV, which reveals a significant contribution of
daughter trajectories to the formation of M, and ¢
distributions.

The description of data with form factors parame-
trized in the form A is shown in Figs. 2 and 3, and the
corresponding t-dependence of the K -matrix cou-
pling constants is presented in Fig. 4 (normalization
constant being s;nyo =4 GeV?). In this solution,
at large [t| (|t| > 0.4 (GeV/c)?), the a; exchange
gives the peak in 1-GeV region, while the peak at
1300 MeV at large || is due to the m daughter trajec-
tory. At [¢| between 0.1 and 0.4 GeV?, the ay(eading)
and 7 (qaughter) trajectories contribute to a small peak
in 1000-MeV region. For this parametrization, the
form factors do not cross the abscissas (see Fig. 4);
that means the description of spectra is reached in
terms of Regge poles, without Regge branchings. The
description of GAMS data is quite satisfactory in this
approach (see Fig. 3), although a certain deviation
is observed at small |¢{| in the mass region below
1000 MeV. The fp(1300) at large |¢| is mainly de-
scribed by the m(gaugnier)-trajectory exchange. In this
case, the a; (jeading) contribution is rather large at small
|t|, providing a noticeable deviation from the one-term
unitarized amplitude.

Vol.66 No.5 2003
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Fig. 8. The same as in Fig. 2, but for the solution B2.

Further improvement can be obtained with the
form-factor parametrizations for the 7 trajectory in
the form B: Figures 5—7 demonstrate the results for
one of the variants of this parametrization. For the
variant shown in Figs. 5—7, which we denote as B1,
we omitted the aj(gaugnter) trajectory. The aj(jeading)
exchange is quite large at |t| < 0.4 (GeV/c)®. At
rather large [t[, the 7(jeading) aNd T (qaughter) trajectories
are responsible for the peak in the 1300-MeV mass
region. The m(caging) €xchange is also responsible
for the peak at 1000 MeV, while 7(4a,gnter) €xchange
becomes very small here. For this solution, the pion-
exchange form factors for the states f)ae(720),
f5¢(1230), and f5ar¢(1600) cross the abscissas,
thus corresponding to the wP branching effective
contribution. The coupling of the fb¢(1230) state
grows with [t| at |t} < 0.5 (GeV/e)® due to the
increase in relative weight of fp(1300) at large |¢].
However, the description of the GAMS data within
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the parametrization B1 in the small-¢ region is not
perfect (see Fig. 6). Adding the a;(gaugnter) trajectory

leads to a noticeable improvement of the description.

Adding the a;(qaugnter) trajectory, we obtained the
solution shown in Figs. 8—10 (parametrization B2); it
has no visible problems with the description of either
E852 or GAMS data. For the 7(jcaqing) €xchanges,
this solution is similar to those found in our previous
analyses [9, 10] by fitting to GAMS data only: two
resonance couplings cross the abscissas at mode-
rate [¢].

We have also fitted to data under the assumption
that the change of the ¢-distribution structure at |¢| >
0.4 (GeV/c)? is due to the onset of the Orear regime,
Egs. (18)and (19). For this case (parametrization C'),
the results are close to those of the B parametrization,
so we do not present here the M, and t distributions.
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Fig. 9. The same as in Fig. 3, but for the solution B2.

3.2. Resonance Pole Positions for the fy(980)
and fy(1300) States

Using the solutions found, we have determined the
positions of poles corresponding to the resonances
f0(980) and f0(1300)2

(1031 + 10) — i(35 4 6) MeV,
(1315 + 20) — (150 + 30) MeV.

(20)

The pole for fp(980) is under the 77 and mwwm cuts,
the closest physical region to this pole being located
below the K K threshold (for more detail, concerning
the determination of sheets, see [10]).

Recall that, in the previous K -matrix analysis [10],
we obtained for fy(1300) the mass value (1300 +
20) — (120 £20) MeV, while for f,(980) it was
(1015 £ 15) — (43 £ 8) MeV. One can see that the

PHYSICS OF ATOMIC NUCLEI

magnitudes quoted in [10] and (20) agree reasonably
with each other.

By fitting to data on the two-meson spectra at
|t| ~ 0.5—1.0 (GeV/c)?, we should definitely recog-
nize that our a priori knowledge about the ¢-channel-
exchange mechanism is poor. In the considered ¢
region, together with the Regge pole terms (7 and
a; exchanges), the Regge branching contributions
with additional Pomeron-induced interactions (7 PP,
7P P, or a1P, a1PP, etc., t-channel exchanges)
should be significant. The contribution of Regge
branchings is enhanced at moderately large |¢]; this
circumstance was known long ago (see, e.g., [31,
32]). The presence of a number of terms in the t-
channel-exchange mechanism at [t| > 0.5 (GeV/c)?
makes the model-independent reconstruction of the
t-channel amplitude hardly plausible. Hence, a ne-
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cessity appears to use at moderately small momen-
tum transfers the M, distributions, which are not
sensitive to the details of the t-channel mechanism.
Let us stress once again that, in our opinion, the
M distributions averaged over a broad interval of
momentum transfers do respond to the problem of
finding the masses and widths of the resonances.

4. CONCLUSION

We have performed the fitting to data to deter-
mine parameters of f,(980) and fy(1300) observed in
the (7m)g spectra in the reaction 7~ p — (77m)sn [3,
20] by checking several hypotheses about the |¢| ex-
change mechanism.

Concerning the structure of the |¢|-channel-
exchange mechanism, one can see that the E852
data satisfy well the suggestion about Reggeized =
exchange dominating small momentum transfers,
lt| < 0.2 (GeV/c)?; this very mechanism works at
GAMS energies as well [4]. With the increase in
|t|, the change of regime occurs, and the E852 data
definitely confirm this. Yet, the details of the change
of regime remain unclear: this may happen due to
the inclusion of the a; exchange, or the branchings
7P, a1 P (P is the Pomeron), or even due to multiple
rescatterings (the Orear regime). The E852 data

PHYSICS OF ATOMIC NUCLEI

reveal that, at |t| > 0.2 (GeV/c)?, the daughter tra-
jectories (pion or a; meson) contribute significantly,
and the change of the structure of |¢| distributions
with energy definitely proves it.

The fitting procedure uses the M, spectra that
are averaged over certain intervals of |¢|. With dif-
ferent inputs for the t-channel-exchange mechanism
at |t| ~ 0.4 (GeV/c)?, we have observed a stability
of the resonance parameters found for f,(980) and
f0(1300), and they are close to those obtained in
previous analysis [10]. Thus, our analysis does not
confirm the statement of [33] about a strong depen-
dence of extracted parameters on the details of the -
channel-exchange mechanism at [¢t| > 0.4 (GeV/c)?.
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Abstract—It is shown that a chiral quark model of the Nambu—Jona-Lasinio type can be used to
describe “soft”-momentum parts of the amplitudes with large momentum transfer. As a sample, the
processes v* — v(m, n,n'), where one of the photons, v*, has large spacelike virtuality, are investigated.
The v* — ~(m,n,n’) transition form factors are calculated for a wide region of the momentum transfer.
The results are consistent with the calculations performed in the instanton-induced chiral quark model
and agree with experimental data. The distribution amplitudes of pseudoscalar mesons are derived.
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1. INTRODUCTION

Effective chiral quark models (ECQM) are very
useful tools for the investigation of the nonpertur-
bative sector of QCD. Of particular interest are the
Nambu—Jona-Lasinio (NJL) model and its exten-
sions [1—5], where the low-energy theorems are ful-
filled and the mechanism of spontaneous breaking of
chiral symmetry (SBCS) is realized in a simple and
transparent way. The internal properties of the ground
states of scalar, pseudoscalar, vector, and axial-vector
mesons (such as masses, radii, and polarizabilities),
as well as all the main decays and other low-energy
strong and electroweak interactions of mesons, are
satisfactorily described in NJL. Recently, noticeable
progress has also been achieved in constructing a
U(3) x U(3) NJL model for the description of first
radial excitations of scalar, pseudoscalar, and vec-
tor mesons, including even the lightest scalar glue-
ball [6—8].

As a rule, the NJL model is used in low-energy
physics, in particular, for the description of processes
with a low momentum transfer (<1 GeV). And, in
view of the above-mentioned success of the NJL
model, it is quite interesting to extend the range of
its application and to try, in particular, to describe
some processes with a large momentum transfer. In-
deed, for many of such processes, the factorization
theorem [9—11] can be applied, which allows one
to rewrite the amplitude of the process as a convo-
lution of “hard” and “soft” parts. The hard part is

*This article was submitted by the authors in English.
“e-mail: dorokhov@thsuni. jinr.ru
" e-mail: volkov@thsun1. jinr.ru

described by perturbative QCD (pQCD), whereas the
soft part requires a nonperturbative approach. Usu-
ally, in QCD, the nonperturbative dynamics of quarks
inside a meson is parametrized by distribution ampli-
tudes (DA)[9], the exact form of which cannot be de-
rived from pQCD. However, an approximation for DA
can be obtained in the QCD sum rules approach (see,
e.g., [12—14]). On the other hand, one can calculate
the soft part of the amplitude within a chiral quark
model, where the dynamics of (constituent) quarks
inside a meson is described by the corresponding
quark—meson vertex instead of DA (however, one
can restore the shape of DA on the basis of quark-
model calculations). The validity of this approach is
investigated in the present work.

In our paper, we calculate the form factors that de-
scribe the transition processes v* — P~y ory*y — P,
where P is a pseudoscalar meson, for a wide range
of transferred spacelike momenta. Of interest is the
kinematic region, where one of the photons is not on
mass-shell and has a large spacelike virtuality. It is
also shown that our results do not contradict either
the experimental data or other theoretical models. As
to experiment, we refer to the data on the v* — 7,
~v* — 1y, and v* — 7'+ transition processes reported
by the CLEO collaboration [15]. For comparison with
other theoretical models, we choose the results re-
cently obtained in the framework of the instanton-
induced chiral quark model (IQM)[16].

The structure of our paper is as follows. In Sec-
tion 2, we introduce the ~* — P~ transition form
factor. In Section 3, the part of the NJL. Lagrangian
describing the quark—meson interaction and the
Lagrangian derived in the instanton vacuum model
are introduced, and the asymptotic behavior of the

1063-7788/03/6605-0941$24.00 © 2003 MAIK “Nauka/Interperiodica”
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~v* — P~y transition form factor for pseudoscalar
mesons at high spacelike virtuality of one of the
photons is investigated. In particular, the shapes
of DA of w,n, and ' mesons are found. In the
last section, we discuss the obtained results and
compare them with experimental data. An outlook
of further possible applications of our approach is also
given.

2. THE 4* — Py TRANSITION FORM
FACTOR

The transition process ~*(q1) — P(p)v*(q2),
where p is the final-state meson momentum, P = 7¥,
n, n', and g1 and g9 are photon momenta, is described
by the amplitude

T (v (q1,e1) = P (p) 7" (g2, €2)) (1)
= fP((I%? qgap2)€uupaelf€5%qgu
where e; (i = 1,2) are the photon polarization vec-
tors, Fp(q?,q3,p?) is the transition form factor, and
€ po 18 the fully antisymmetric tensor.
Theoretically, at zero virtualities, the form factor

1
Py (2)
is related to the axial anomaly [17, 18]. Here, fp
is a pseudoscalar-meson weak-decay constant de-
fined by the well-known PCAC relation (for the pion,
fr =93 MeV). At asymptotically large photon vir-
tualities, its behavior is predicted by pQCD [19] and
depends crucially on the internal meson dynamics
parametrized by a nonperturbative DA, p4(z), with =
being the fraction of the meson momentum p carried
by a quark.

Further, it is convenient to parametrize the pho-
ton virtualities as ¢® = —(1+w)Q?/2 and ¢3 =
—(1 — w)Q?/2, where Q% and w are, respectively, the
total virtuality of the photons and the asymmetry in
their distribution,

Q*=—(qi+4) >0, (3)
w= (gt - @)/ +3¢), |v <L

Recent analysis of the experimental data on the
form factors Fp for small virtuality of one of the pho-

tons, ¢3 ~ 0, with the virtuality of the other photon
being scanned up to 8 GeV? for the pion, 22 GeV? for
the n, and 30 GeV? for the ' mesons has been pub-
lished by the CLEO Collaboration [15]. According to
this analysis, the process v* — P~ (lw| = 1) can be
fitted by a monopole form factor

FP(Q% = _Q27Q% ~ 07p2)|]‘1t =

Fp(0,0,0) =

9Pyy
I (4
1+Q2/u3 *
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Gry =027 GeV™H g ~0.26 GeV™H,
Gy ~ 0.34 GeV
fr =~ 0.78 GeV, py ~ 0.77 GeV,
oy =~ 0.86 GeV,
where gp,, are the two-photon meson decay con-
stants.
In the lowest order of pQCD, the light-cone oper-

ator product expansion (OPE) predicts the high-Q?
behavior of the form factor as follows [19]:

fP(Q%vc.é?pQ = 0)‘@2*)00 (5)
Ip s 1

with the asymptotic coefficient given by
1

1) =3 [ o met@. ©
0

where (% () is the leading-twist meson light-cone
DA normalized by fol dr pp(z) = 1.

In (6), the asymptotic coefficient is expressed in
terms of DA. Alternatively, as was mentioned in the
Introduction, Jp(w) can be calculated directly either
from the NJL model or from IQM. In Section 3, one
will see that, in both models, Jp(w) can be rewritten
in the form (6), and thus the shape of DA is extracted.

Since the meson DA reflects the internal nonper-
turbative meson dynamics, the prediction of the value
of Jp (w) is a rather nontrivial task, and its accurate
measurement would provide quite valuable informa-
tion. It is important to note that, for the consid-
ered transition process, the leading asymptotic term
of pQCD expansion (5) is not suppressed by the
strong coupling constant as. Hence, the pQCD pre-
diction (5) can become reasonable at the highest of
the presently accessible momenta Q2 ~ 10 GeV?. At
asymptotically high @2, the DA evolves to ™ (z) =
6x(1 —x) and J¥ (Jw| =1) =2. The fit of CLEO
data for the pion corresponds to JEMO(jw| ~ 1) =
1.6 + 0.3, indicating that, even at moderately high
momenta, this value is not too far from its asymptotic
limit.

However, since the pQCD evolution of DA reaches
the asymptotic regime very slowly, its exact form at

moderately high Q2 does not coincide with ™ (x).

At lower Q?, the power corrections to the form factor
become important. Thus, the study of the behavior of
the transition form factor at all experimentally acces-
sible Q2 is the subject of nonperturbative dynamics.
Thus, the theoretical determination of the transition
form factor is still challenging, and it is desirable to
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perform direct calculations of Fp(q?, ¢3, p?) without a
priori assumptions about the shape of the meson DA.

The asymptotic coefficient of the light-cone tran-
sition form factor in the symmetric kinematics,
¢ = ¢3 (w=0), at high virtualities is given by the
integral defining fp. In the other extreme limit,
where one photon is real (Jw| = 1), the asymptotic

coefficient is proportional to fol drpp(x)/x and thus
is very sensitive to a detailed form of the DA.

In [12], some progress was achieved by using a
refined technique based on the OPE with nonlocal
condensates [13], which is equivalent to the inclusion
of the whole series of power corrections. By means
of the QCD sum rules with nonlocal condensates, it
was shown that this approach works in almost the
whole kinematic region |w| <1 and that, for high
values of the asymmetry parameter |w| 2 0.8, the pion
transition form factor is very sensitive to the nonlocal
structure of the QCD vacuum.

3. THE y* — Py TRANSITION FORM
FACTOR IN ECQM MODELS

3.1. The NJL-Model Lagrangian

Let us consider the part of the effective quark—
meson Lagrangian that is necessary in our calcula-
tions. It has the following form:

L= LO + Lil]t7 (7>
Lo =q(i @ —m)q, (8)
Lint = L1+ Ly + L3 + 0L, (9)

3
= (jZ’Yg) (gﬂ Z Nt + gnu)\unu + Ins As"?s) q,

a=1
(10)
3
Ly = i s <f,r1(1 ~ 2y A

a=1

(11)

+ £ = Z Y A + £ - Zs_l))‘s775> 4,

Ly = gQAq, (12)

where m is the diagonal 3 x 3 flavor matrix of con-
stituent quark masses, m = diag(m,,, mq, ms) (we
consider the case of approximate isotopic symmetry
my = mg); A are the Gell-Mann matrices; A, =
(V2X0 + As)/V3; As = (=Ao + V2X8)/V3; g and
are, respectively, the quark and pion; and n,, and 7,
are pure 4w and §s pseudoscalar meson states.

The fields 7, and n, in (10) and (11) are not
physical, because they are subjected to singlet—octet
mixing. Here, it is assumed that the terms responsible
for the singlet—octet mixing are accumulated in the
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v(q1) Y(q1)
P + P
V2o) ) (P
Y(42)
Fig. 1. The diagrams contributing to the process v*~* —
P (y* — Pv*)amplitude.

term!) §L [see (9)], the account of which results in
the following relation between “nonphysical” 7, 7s
and “physical” n, ' meson fields:

nu = nsin(fg — ) +1n' cos(fg — ),  (13)
ns = ncos(fg — ) — ' sin(fy — 6), (14)
where § = —19° is the singlet—octet mixing angle

and 0y ~ 35.5° is the ideal mixing angle [2, 20].
The quark—meson coupling constants (see[2]) are

defined as follows:
I = GuV/ Znuu 9ns = Gs/ Z")s’

95 = GuV Zx,

(15)
where we introduced g, and g,:
AN [ O(AZ; —k?)
-2 c NJL 4
0 = Gy | e (00)
(a =u,s).

The integration is performed in the Euclidean metric.
The divergence is eliminated by a simple O(4)-sym-
metric cutoff on the scale Ayj;. that characterizes the
domain of SBCS.

The terms with derivatives of meson fields in Lo
[see (11)] appear because of m—a; transitions [2],
which also result in additional renormalization factors
Zo i gr, Gy, 9n,- Further, we assume that Z, for
different mesons are approximately equal [see (15)]:

6m2>_1
— U ~ 1.45.
Mgl

(17)

Here, M,, = 1.23 GeV is the mass of the a; me-
son [21].

The term Lg in (12) describes the electromagnetic
interaction of quarks. The photon fields are denoted

by A, and Q stands for the charge matrix

A € )\8
= — )\ —
o=5(n+ )
where e is the elementary electric charge (e? = 4ra,
a~! =~ 137).

ZnS%Zm%ZﬂEZ:(l

(18)

DThe singlet—octet mixing appears once the pseudoscalar
gluon anomaly is taken into account[2]. One can also obtain
the mixing after introducing the 't Hooft term into the quark
Lagrangian [20].
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The values of Ayjr, and m,, are fixed by two equa-
tions [2, 20]: (i) the Goldberger—Treiman relation
my = gr fr and (ii) the p-meson decay constant [2,
22,23

9p = V644, (19)

whose value of 6.1 is well known from the experimen-
tally observed decay p — wm. Taking into account
these equations and the expression for Z [see (17)],
one finds the constituent u-quark mass

M2 402 £2
mg = = (1 . gpf“) (20)

_ 7]
with the value m, =280 MeV. Equating the left-
hand side of (19) to its experimental value and using
the definition of g, [see (15)] with m, = 280 MeV,
one obtains Any.. = 1.25 GeV [2]. The mass of the

strange quark is fixed by the kaon mass,? m, =
425 MeV [20].

3.2. Meson Transition v* — P~* Form Factor

Let us consider the v* — P~* invariant ampli-
tude corresponding to the triangle diagrams shown in

d*k

DOROKHOV et al.

Fig. I,
T (7" (q1,e1) — P (p) 7" (g2, €2)) (21)
= tpyy(q1,€1; G2, €2) + tpyy (g2, €251, €1),
tpyy(q1,€1;q2,€2) = —NegpQp (22)

4
« / %tr{iw&'(lﬂ - p/2ima)ér
x S(k = (q1 — q2)/2;mq)é25(k — p/2;ma)},

where Qp depends on the electric charges and flavors
of quarks that constitute the meson, Q0 = 1/3 for
7™, Qp, = 5/9 for n,, and Q,, = —v/2/9 for n,; and
S is the quark propagator,

Sil(k‘; ma) = K —ma, (23)

with the constituent quark mass, m, = m, for P =m

or n, and m, = mg for P = ng. Comparing (21) with

(1), one obtains

Folaha3:0%) = S5malps (3.7 (24)
The Feynman integral Ip,.(q%, ¢3, p®) is given (in

Euclidean metric) by

0(AZ; — k%)

IPwW(Q%aQ%aPQ)_/—

w2 [m + (k+ p/2)?)[mg + (k — p/2)?][m3 + (k — (@1 — 42)/2)°]

In the chiral limit p? = 0, when both photons are
on-mass-shell (¢7 = ¢3 = 0), integral (25) becomes
very simple. Formally, it is finite, and one can set the
UV cutoff Ayyy to infinity and thus find that it is equal
to 1/(2m?2). As a result, one reproduces the well-
known result for the decay 7 — ~v [see (2)]. For the
n and i’ mesons, the result is similar, and the only
difference is that the singlet—octet mixing should be
taken into account:

1 1
fn(07070) = F%7 Fn’(07070) = WT]?T)/’ (26)
Fle D sin— 0) — Y2 cos(o— ), (27)
TR 3f 0
fn_,l = % cos(fy — 0) + Z;/ff sin(fp — ). (28)

Here, the meson weak-decay constants are f~u =
f= and fs=ms/gs =~ 1.25f,. Thus, we have f, =

83 MeV and f‘n/ = 73 MeV. (For the discussion of
singlet—octet mixing, see [25].)

DThe strange-quark mass can also be fixed from the ¢-meson
mass [24].
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(25)

Let us now consider the high-virtuality region:
Q? — oo [see (3) for the definition]. We estimate the
asymptotic form of the transition form factor. Let
us rewrite the expression for integral (25) by using
the Feynman « parametrization for the denominators
and integrating over the angular variables. Then, the
corresponding integral Ip,~ is given by

Aﬁ'JL/mg d
udu
It = [ —F— (29)
5 m2tu—
. 4
1 1
X /da
9 bt —al <b2 + /b ai)
1
+ )
ot at (024 bt - at)
where u = k% and
1 1
b2:mg+u+§aQ2—Z(1—2a)p2, (30)

ad = 2uaQ* (et w(l —a)) — (1 - 2a)up’
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In this way, the expression (29) can be safely ana-
lyzed in the asymptotic limit of high total virtuality of
the photons, Q? — co. Moreover, the integral over a
can be taken analytically, leading, in the chiral limit
p? =0, to the asymptotic expression given by (5),
where (see [16])

2
_ gpQprZ
= = 31
Jp(w) = Jpnp (w) 82w (31)
Ayr/mg
du 1+u(l+w)
X In ,
l+u  |[14+u(l—-w)
0
a=uifP=mmn; a=siiP =n;. (32)

The i and n’ mesons appear as mixed 7, and 7 states
[see (13) and (14)], and for them one has

In(w) = c1dy, (W) + c2Jy, (W), (33)
Iy (W) = c3dy, (W) + cady, (w), (34)
where the coefficients ¢; are
~ 5fu . V2
0= 37, sin(fp — 0), co=— 37, cos(6p — 0),
(35)
5fu V2fs .
3 3, cos(fp —0), c 35, sin(fy — 6),
and the constants f, and f,, are defined as?)
S, .
fo = 5 fusin(6o — 0) (36)
- \/?ifs cos(fg — ) = 95 MeV,
5
fy = §f“ cos(fy — 0) (37)

+ gfs sin(fp — 0) = 135 MeV.

One should also note an extra factor Z in the
expression of Jp(w) in (31). Analogously, the factor
Z appears in the amplitude of the decay 7 — puw, that
determines the pion weak coupling constant f,. To
obtain the correct result, one should take account of
m—a transitions by considering additional contribu-
tions going from the diagrams with axial-vector-type
vertices [see the term Ly in (11)]. When calculating
both the # — i, amplitude and the v* — P~* tran-
sition form factor, the account of m—a; transitions
leads to cancellation of the factor Z.

»Note that the definition of f,, and f, differs from that of fa
and f, [see (27) and (28)].
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IQM

Fig. 2. The DA ¢, in the NJL and IQM models and the
asymptotic DA.

b,(x) —_NJL

2.0 . P
s Asymptotlc

1.5

10
05F 7

0

Fig. 3. The DA ¢, in the NJL and IQM models and the
asymptotic DA.

3.3. Distribution Amplitudes of Pseudoscalar
Mesons

The quark—meson interaction in the NJL model
[2] is described by the vertices given in (7)—(12). One
just has to calculate the integral (25). Formally, the
integral (25) is convergent, and a UV cutoff is not
necessary here; however, the extraction of its asymp-
totic behavior at large Q2 would lead to a logarithmic
dependence ~(In Q?)?/Q?, which is not expected, as
is known from QCD. Therefore, the UV cutoff in the
NJL model should be treated not only as a trick to
make the integrals convergent, but also as a way
to take into account the nontrivial nonlocal vacuum
structure. The UV cutoff also forbids the large mo-
menta flow through meson vertices.

From (31), it is clear that the prediction of the non-
perturbative approach to the asymptotic coefficient
Jp(w) is rather sensitive to the ratio of the ultraviolet
cutoff, Anyr; to the value of the constituent mass my;
and to the relative distribution of the total virtual-
ity among photons, w. In particular, for the off-shell
process v* — 7%9* in the kinematic case of sym-
metric distribution of photon virtualities, ¢? = ¢3 —
—00 (w — 0), the result J (Jw| = 0) = 4/3 obtained
from (31) is in agreement with the OPE prediction.

Integral (25) is similar in its structure to the inte-
gral arising in the lowest order of pQCD treating the

Vol.66 No.5 2003
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quark—photon interaction perturbatively. In the latter
case, its asymptotic behavior is due to the subprocess
v (q1) +7"(a2) — 4(@p) + q(ap) withz (Z =1 — x)
being the fraction of the meson momentum p carried
by the quark produced at the ¢;(g2) photon vertex.
The relevant diagram is similar to the handbag di-
agram for hard exclusive processes, with the main
difference that one should use, as a nonperturbative
input, a quark—meson vertex instead of the meson
DA. As we see below, this similarity allows one to
reconstruct the shape of the meson DA.

Both expressions for Jp, derived within the quark—
meson model (31) and from the light-cone OPE (6),
can be put into the common form

1

2 1
Ir () = o [derptom ||
0
with
d 1+
B ——ed (K5H).
2 1
R,n§:162§9(1— § m> ,
pnp(§) g, vy Ry

DOROKHOV et al.

where 0 < £ = (2z — 1) < 1, and similar expressions
for =1 < ¢ < 0. Equating both contributions, we find

the meson DA,
dy
/ ’ (1 - > 1y

[22—1|
(40)

2

my

2
NJL

Y
1—yA

Thus, we show that (31) obtained within the NJL
model is equivalent to the standard lowest order
pQCD result (6), with the only difference that the
nonperturbative information accumulated in the me-
son DA % (z) in pQCD is represented in NJL by
the quark—meson vertex and is connected with the
regularization procedure.

Within the NJL model, from (40), one can easily
obtain analytic expressions for two special DA de-
scribing the distribution of u(d) and s quarks, respec-
tively,

1—- fu
1 T la. 11 u 1 1 —Sul)s 2 - 1 < (73]
0’ |2:1/‘ - 1| > é-u,
where the constant &, is defined as follows:
AL
e 1 12
In TS - &), e -1 <€
n|l——-—— s n — Gs|)s Tr — XSSy
pi(w)=q  11—[22 -1 (43)
0, |22 — 1] > &,
A2
§s = %&2 (44) . . .
Ay +m3 effective quark—meson dynamics can be summarized
For the . 1, and 1 mesons, one has in the covariant nonlocal action given by
on(2) = 0 (2), (15)  Sw=-— [ded'yF ot y/ze-y/nad]
on(x) = cr9y (@) + c297 (), (46) (48)
A A 3
() = capy, () + capy (), 47 “ a
()DT)( ) 3¢ ( ) 4P ( ) ( ) gquz)\ T (-’E)"_gnu)\unu(x)

where the coefficients ¢; are defined in (35). The DA
calculated in the NJL are shown in Figs. 2—5.

3.4. Instanton-Induced Effective Quark—Meson
Lagrangian

Let us now consider the piece of the effective
quark—meson Lagrangian that appears in IQM. The

x q(z +y/2) i’Y5[

a=1

+ 9ns )\sns(‘r) Q(x - y/2)

The dynamic vertex F {:c +y/2,x —y/2 AI_Q2M] de-

pends on the coordinates of the quark and antiquark
and arises due to the quark—antiquark interaction
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q)r](x) _ NL
200 1OM
1.5+ “:";_._.‘_\‘:" """" ASymptOtic
e 5
r/ ‘\‘
0.5+ N\
.'. I
0 0 2 0 4 06 0.8 1.0
X

Fig. 4. The DA ¢, in the NJL and IQM models and the
asymptotic DA.

induced by exchange of an instanton with size

AI_QM ~ p., Aigm ~ 0.742 GeV. The nonlocal vertex
characterizes the coordinate dependence of the order
parameter for SBCS and can be expressed in terms of

nonlocal quark condensates.

We restrict ourselves to the approximation (see,
e.g.,[26])

Flz+y/2,x —y/2; AIQM] — F(y? IQM) (49)
when the dynamic quark—meson vertex depends only
on the relative coordinate of the quark and antiquark
squared, 32, if neglecting the dependence of the vertex
on the angular variable (yx). The Fourier transform of
the vertex function in the Minkowski space is defined

as F(kQ;AIQQM)f [ dzF (2 Al(gm)exp(—ikx) with
normalization F(O;AIQQM) =1, and we assume that

it rapidly decreases in the Euclidean region (k% =
—k% = —u). As in the NJL model, we also approx-
imate the momentum-dependent quark self-energy
in the quark propagator S~ (k;m,) = k¥ —m, by a
constant quark mass [26] and neglect meson-mass
effects. The quark masses are m,, = 275 MeV and
ms = 430 MeV, close to those obtained in the NJL
model (see Subsection 3.1). We have to note that
the approximations used here are not fully consistent.
Further, as the reader will see below, the choice of the
model for the quark—meson vertex (49), depending
only on the relative coordinate, induces a certain arti-
fact in the z behavior of DA. However, these deficien-
cies of the chosen approximation are not essential for
the present purpose and do not lead to large numerical
errors.

The quark—meson coupling is given by the condi-
tion [26]

. N [ 3+ 2u
9(12 87T2/dUUF( IQM/m)( T+ )P
0
(50)
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Fig. 5. The DA ¢, in the NJL and IQM models and the
asymptotic DA.

and the meson weak decay constants f. = f, and f;
are expressed by

_ Negq
fo= 472

Mq/duuﬁ(—u; A%QM/mg) =
u

(51)

We have rescaled the integration variable by the quark

mass squared. Within the instanton vacuum model,
the size of nonlocality of the nonperturbative gluon

field, pe ~ AI_QlM ~ 0.3 fm, is much smaller than the

1
(1+

quark Compton length m*

To calculate the transition form factors, one can
use the same formulas that have been obtained
above in the NJL model. The only exception is that
the 6 function should be replaced by the nonlocal

quark—meson vertex function F(—u;AIQQM/mZ). In

the next section, we discuss numerical results ob-
tained in IQM as compared with the NJL-model
calculation and experimental data.

Let us note that we use an approximation to the
model with constant constituent quark masses for
all three quark lines in the diagrams of the process
(see Fig. 1). However, the asymptotic result (31) is

0%Tq;. 45). GeV
0.20
0.16
0.12
0.08
0.04

02 GeV?

Fig. 6. The light-cone transition form factor for the pion.
The solid curve corresponds to the NJL-model calcula-
tion, the dashed curve is a fit to the CLEO data, the dash-
dotted curve corresponds to IQM, and the dotted line is

2.
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0%T,(q}. q3). GeV

Il
0 4 8 12

1 1 J
16 20
02, GeV?

Fig. 7. The light-cone transition form factor for the n
meson. The solid curve corresponds to the NJL-model
calculation, the dashed curve is a fit to the CLEO data,
the dash-dotted curve corresponds to IQM, and the dot-
ted lineis 2f,.

independent of the mass in the quark propagator with
hard momentum flow, as it should be. The other two
quark lines remain soft during the process; thus, the
mass m, can be considered as given on a certain
characteristic soft scale in the momentum-dependent
case myg.

4. DISCUSSION AND CONCLUSION

Within the two ECQM under consideration that
describe the quark—meson dynamics, we calculated
the v* — P~* transition form factor at moderately
high momentum transfers squared in a wide kine-
matic domain. From the model calculations, the nor-
malization coefficient Jp(w) of the leading Q2 term
is found [see (31)]. It depends on the ratio of the con-
stituent quark mass to the UV cutoff A and also on
the kinematics of the process. From the comparison
of the kinematic dependence of the asymptotic coef-
ficient of the transition form factors, given by pQCD
and NJL, the meson distribution amplitudes (40) are
derived. Analogously, a relation between DA and the
dynamic quark—meson vertex function is obtained in
IQM. In the specific case of symmetric kinematics
(g2 = ¢3), our result agrees with the one obtained by
OPE and also with the expression for the constant fp
that determines the decay P — p,, of meson P.

Let us discuss DA obtained in different ap-
proaches. In the NJL, we obtained explicit expres-
sions for the DA of the pion, n meson, and 1’ meson.
They are plotted in Figs. 2—5 (solid curve), from
which one can see that the NJL model predicts a
flatter distribution of quark momenta in a meson than
IQM. To compare with other theoretical approaches,
we also plotted, as a sample, the results obtained
in IQM (dashed curve). Also given is the asymp-
totic pQCD expressions for DA: ¢ (x) = 6z(1 — z)
(dash-dotted curve). One can see that, for most =z,
the DA’s shapes are similar in different approaches.
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0°Ty(q7. 43). GeV
0.28
0.24
020 /
0.16 ff
0.12
0.08
0.04

0 4 8 12 16 20 24 28
0?2, GeV?

/

Fig. 8. The light-cone transition form factor for the n
meson. The solid curve corresponds to the NJL-model
calculation, the dashed curve is a fit to the CLEO data,
the dash-dotted curve corresponds to IQM, and the dot-
ted lineis 2.

A difference can be noticed near z ~ 1/2 and at the
edges. The cusp at z = 1/2 and a very sharp decrease
in DA near z =0 and = =1 are artifacts closely
related to the UV regularization in the NJL model
and to the shape of the nonlocal quark—meson vertex
function in IQM. However, these deficiencies turned
out not to be crucial in our calculations.

Now, we would like to make some notes regarding
the definition of f;,, and f, used by the authors of [15].
In [15], fp are obtained from the tabulated data on
the decays P — 4+, using the low-energy limit of the
process amplitude

Fp(0,0,0) ~ 1/(472 fp) (52)

{see (6) in [15]}. This works well for the pion, but the
case of the n and ' mesons is rather different because
of the singlet—octet mixing. In the limit Q% — oo, one
should expect

lim Q*Fp(qi = —Q* ¢* = 0,p> = 0) = 2fp,
@50 (53)

where fp are not the same as fp except for f;, as
one can see from comparing (36) and (37) with (27)
and (28). That is why the CLEO fit noticeably dis-
agrees with the limit 2f,, {see Eq. (5)in[15] drawn in
Fig. 23 [15]}. Therefore, it is not correct to use Eq. (7)
in [15] to perform a fit. From our calculation, we see
that, taking into account the singlet—octet mixing,
one can avoid the discrepancy in the description of the
v* — Py interaction at both small and large Q2.

Now, we compare our results for the case w =1
(v* — P~) with those given by the CLEO Collabo-
ration [15] for large Q2. We calculate the product of
@Q? and transition form factor:

Fplw) = Jm Q*Fp(d,a.p).  (534)
Theoretically, we have
Fp(w) = Jp(w)fp, (55)
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according to (5). In the NJL model, J(1) = 1.97,
Jy(1) =2.04, and J,y(1) = 1.9. Therefore, Fr(1) ~
0.184 GeV, F,(1)~0.193 GeV, and Fy (1)~
0.256 GeV. The IQM predicts J(1) = 1.78, J,(1) =
1.83, and Jy(1) =1.73 and Fr(1) =0.16 GeV,
Fy(1) = 0.17 GeV, and F,y (1) = 0.23 GeV.

An infinite value of Q? cannot be reached in ex-
periment, so we determine Fp(w) at the value of the
maximum accessible Q? in experiment. Thus, the
CLEO collaboration gives F(1) = 0.17 £ 0.3 GeV
at Q% = 7.0-9.0 GeV?, F,(1) ~ 0.16 GeV at Q* ~
22 GeV?, and F,/ (1) ~ 0.25 GeV at Q% ~ 30 GeV2.
The monopole interpolation for the transition form
factors (5) obtained both theoretically and experimen-
tally is shown in Figs. 6—8. One can see that the
experiment gives values for the transition form fac-
tors lower than models. The biggest difference (about
20%) is seen for the n meson. The best agreement of
models with the CLEO fit is obtained for = and 7.

The constants gp,, in the monopole ansatz (4)
for the transition form factors are related to the
P — ~v decay width. It is interesting to compare
their values predicted in different models with ex-
perimental data. According to (52), we obtain from
NJL gryy = 0.27 GeV™L, g, = 0.31 GeV™L, and
Gy = 0.35 GeV~L. The same gives us IQM. From

experiment, we have gry = 0.26 GeV~!, g =

0.26 GeV~', and g,,* =0.34 GeV~'. Again, the
model prediction for = and 7/ is better suited to the
experimental values, whereas for the  meson one has
a noticeable discrepancy.

The results presented in our paper are in accor-
dance with the conclusions made in[12, 14, 27] with-
in the QCD sum rules, which is evidence that our
approach is valid for the process under consideration
and gives us hope that it can be applied to other
processes with large momentum transfers as well.

We plan to use the ECQM approach approved
here on the process v* — Py for the description of the
following processes: v* — Pp, v* — Pw, v* — P’y
(with P’ being a radial excitation of a pseudoscalar
meson), v* — S~ (with S being a scalar meson),
~v* — ~vA(with A being an axial-vector meson), v* —
yro, v* — ymp, vy — 7w, ete.
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Abstract—Gauge-invariant extended configurations are considered for the three fundamental (quarks)
or adjoint (gluons) particles. For quarks, it is shown that the Y-shaped configuration is the only one
possible. For adjoint sources, both Y -shaped and triangular configurations may exist. The corresponding
static potentials are calculated by the method of field correlators and, in the case of baryons, shown to
be consistent with the lattice simulations. For adjoint sources the potentials of Y-shaped and A-shaped
configurations turn out to be close to each other, which leads to almost degenerate masses of 37~3g

glueballs and odderon trajectories. © 2003 MAIK “Nauka/Interperiodica”.

1. To make conclusions on the structure of gluonic
fluxes confining color charges in physical states, one
has to start from consideration of the space-extended
gauge-invariant wave function of the hadron. It is
easy then to show that, in the case of static charges,
the Green’s function of the hadron reduces to the
Wilson loop, which in the case of the baryon has
the Y-type shape and consists of the three contours
formed by the quark trajectories and joined at the
point of the string junction [1, 2]. The Wilson loop of
the three adjoint sources is less well known than the
3q one. In the paper, we show that it can have both
Y -type and A-type shape.

Using the formalism of the method of the field
correlators (MFC), we compute the static potentials
corresponding to the Wilson loops of the hadrons.
In the case of the baryon, the static potential was
used long ago in many dynamical calculations [3,
4]. Recently, it has been computed in lattice gauge
theory in a number of papers [5—7]. We show that our
potential is in good agreement with the latest lattice
studies [6, 7].

In the case of adjoint sources, we find that the
Y -type and A-type potentials remain near each other
at the characteristic hadronic size. Using that, we
estimate the masses of the lowest 3¢ glueballs, lying
on the corresponding odderon trajectories, and show
that they are close to each other, implying that there
are two possible odderon trajectories with not much
different Regge slopes. A short discussion of physical
implications of these results concludes the paper.

*This article was submitted by the authors in English.
“e-mail: kuzmenkoG@heron.itep.ru
" e-mail: simonov@heron. itep.ru

To avoid confusion, we should stress that the term
“A configuration” used in [5—8] in the context of the
static baryon potential refers to the perimeter behavior
of the potential, rather than to the gauge-invariant
configurations or to the structures of fluxes discussed
in the present paper.

2. Hadron building in SU(3) starts with listing
elementary building blocks: quarks ¢%, a=1,2,3;
gluons (or adjoint static sources) g%, a=1,...,8;
parallel transporters (PTs) @g(:):,y) = (Pexp(ig X

fAu(z)dzu))g in a fundamental representation; ad-

joint parallel transporters ®,;(x, y); generators ${@8.

symmetric symbols 5@, Sap, and d¢; and antisym-
metric symbols e,g, and fec. Note that we always
use Greek indices for the fundamental representation
and Latin ones for the adjoint. To construct a real
extended (not pointlike) hadron, one uses all listed
elements, PTs included, and forms a white (gauge-
invariant) combination. It is convenient to form an
extended quark (antiquark) operator

¢*(2.Y) = ¢ (2)@f(x,Y), (1)

Go(2,Y) = g3(2) @5 (x,Y).
In this way, one has for the Y -shaped baryon
By (2,y,2,Y) = aprd®(2,Y)d" (4,Y)a" (2,Y). (2)

One can also define a quark operator with two lower
indices: eq3,q*(x) = q,(x). However, an attempt
to create a gauge-invariant combination from three
operators gg- () and three PTs to construct a A-type
configuration fails: the structure

Ba(#,y,2) = qap(®)®5 (2, y)q,5(y)  (3)

1063-7788/03/6605-0950$24.00 © 2003 MAIK “Nauka/Interperiodica”
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x By, 2)¢=p(2) P4 (2, )

is not gauge-invariant, which can be checked directly,
substituting in (3) ¢*(z) — Ug(x)¢°(x). One can
try all combinations, but it is impossible to form a
continuous chain of indices to represent the A-type
structure using as operators ¢, as gng. Thus, one can
conclude that the Y-shaped configuration is the only
possible gauge-invariant configuration of the wave
function for baryons.

One may wonder, What is the relation between
the spacial structures of the wave function of hadrons
and their gluonic flux? The answer from the flux-tube
models is that these structures coincide. In realistic
lattice calculations, one has to use the Wilson loop,
which describes the gauge-invariant state of a hadron
generated at some initial and annihilated at some final
moment of time. As is well known, for static charges,
the Wilson loop consists of two wave functions [see,
e.g., (2) or (3)] joined by PTs. Let us imagine now
some evolution of the fluxes in a baryon that would
lead to the emergence of the A-type configuration
of fluxes at some intermediate time. First of all, we
should note that the cross section of the Wilson loop
by the timelike hypersurface will recover a gauge-
invariant 3¢ state, i.e., the Y-type configuration. To
have a A-shape for fluxes, one should admit that the
fluxes have no relation to the wave function, which is
improbable.

Consider now the adjoint source g“(x)t&a)ﬁ =

Gg(x) We do not specify here the Lorentz struc-
ture of g*(z), but only impose the condition that

it should gauge-transform homogeneously, GS —
U;,’gGgUOO/. Therefore, g%(x) can be either the field

strength F, (z) or the valence gluon field af; () in the
background-field perturbation theory [9]. It is easy
to construct a A-type configuration for three such

sources:
Galr,9,2) = Goo)Ph(@ )G (y)  (4)
x ©5(y, 2)GE(2) P} (2, 7).

[t is clear that in (4) all repeated indices form gauge-
invariant combinations and Ga(z,y,2) is a gauge-
invariant A-type configuration, which was used pre-
viously for the 3g glueball in [10].

But one can persuade oneself that (4) is not the
only 3¢ gauge-invariant configuration. Consider ad-
joint sources and adjoint PTs (here, distinguishing
upper and lower indices is not necessary) and form as
in (1) an extended gluon operator

Ga(2,Y) = ¢"(2)®ap(2,Y) (5)
and a Y -shaped configuration

G (@,y,2,Y) = F™ga(2,Y)gb(y, Y )ge(2,Y). (6)
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In the same way, one constructs Ggf)replacing f by
d in (6). It is clear that Gy is gauge-invariant and
should be considered on the same grounds as Ga.

At this point it is necessary to clarify how (2) and
(6) generate Green’s functions and Wilson loops.

To this end, consider initial and final states made of
(2),(4), and (6), and for simplicity of arguments, take
all fundamental and adjoint sources to be static, i.e.,
propagating only in Euclidean time.

Then the Green’s function for the object will be

where ¥; = Ga, Gy, By;and X = z,y, z for Ga and
x, y, z, Y otherwise. Now, it is important that the
vacuum average in (7) denoted by (...) produces a
product of Green’s functions for quarks or for valence
gluons in the external vacuum gluonic field, which is
proportional to the corresponding PTs, fundamental
for quarks and adjoint for gluons. Namely,

(qs(7)q" (2)) ~ (T, x), (8)

<ga(‘i)gb(x)> ~ q)ab(j7 ‘T)

This statement is well known for static sources; for
relativistic quarks and gluons, this follows directly
from the exact Fock—Feynman—Schwinger repre-
sentation (FFSR); see[11, 12] and for a review [13].

As a result, one obtains a gauge-invariant Wilson
loop combination for each Green’s function (7). In
particular, for By (2), one has a familiar three-lobe
Wilson loop Wy

3
Wy (X, X) = try [[Wi(Cy), (9)

i=1
where try = (1/6)eqgyeq/gy, and the contour C; in
the open loop W; passes from Y to Y through points
z,z (i=1),y,7 (i =2),0rz2z (i =3), as shown in

Fig. 1.

This situation is well known and was exploited
in numerous applications. Relatively less known are
the Wilson loop configurations for Gy and Ga. In

the first case, the structure is the same with the
replacement of fundamental lines and symbols by the

adjoint ones: eag, — f%€ oreqp, — d¥°, 2 - Dy,
so that the whole structure in (9) is the same with
this replacement. Contrary to the baryon case, we
can contract adjoint indices in two ways, using an-
tisymmetric symbol f%¢ or symmetric symbol d®*.
The proper choice is related to the Bose statistics of
the gluon system, which ensures symmetry of the full
coordinate-spin function.

In the case of Ga, using (4) and (8), one can write
the resulting structure symbolically as follows:

QA(X,X) - Aa/b/c/(jvg7 5)(1)(1/(1({1_?,21?) (10)
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G

Fig. 1. Y-shaped Wilson loop.

X (I)b/b(ga y)q)c/c(za Z)Aabc(xa Y, Z),
where we have denoted
Agbe(,y, 2) = t{P D) (w, )t
x D5 (y, 2120 (2, ).

(11)

To understand the structure of (10) better, one can
use the large- N, approximation, in which case one
has

’ Y4 1 ,
U = (2, 2)t 0 520 (z,2)0",(z, ).
(12)
As a result, in this approximation, Ga appears

to be a product of three fundamental closed loops,
properly oriented with respect to each other:

Ga (X, X) ~ W(Z, glz, y)W (7, 2|y, 2)
x W(z,z|z,2) = Wa(X, X);
it is displayed in Fig. 2.
3. Static potentials for configurations (2), (4), and

(6) can be computed using the MFC [14], through the
equation

(13)

1
V =— lim TIH<W>’

T—o0

(14)

where T is the time extension of the Wilson loop.

For the baryon in the case of three quarks forming
the equilateral triangle, at distance R from the string
junction Y, the static baryon potential is [15]

VE(R) = 3vM(R) + VII(R),  (15)
where
R/T,
(M) . 20'
VWI(R)=—<(R dxxzK;(x) (16)
T

0
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Fig. 2. A-shaped Wilson loop.

1 (2 (1)}

is the mesonic confining potential with the asymp-

totic slope o ~ 0.18 GeV? and the gluonic correlation
length Tj; = 0.12—0.20 fm [16], and the nondiagonal
part of the potential,

2 3v/3 o R?
(nd) =—0ly — ——— 17
w/3
X/ dy K, V3R ’
cos 2Ty cos ¢
/6

appears due to the interference of the gluonic fields
on different lobes of the Wilson loop. Note the dif-
ference in the overall factor —1/2 with the previous
calculations [17], where it was erroneously omitted.
Let us denote by L = 3R the total length of the string.
In Fig. 3 from [15], the dependence of the lattice
nonperturbative baryon potential from [7] on L is
shown along with the MFC potential (15)—(17) is
shown. One can see that our potential is in complete
agreement with the lattice results. In the asymptotic
region L 2 1.5 fm, the potential has a linear form
(B)(R) ~ 22

V (R)waL—i—(\/g 7r>JT9' (18)
The dotted tangent curve in Fig. 3 demonstrates that,
in the range 0.3 < L < 1.5 fm, the lattice data can be
described by a linear potential with a slope some 10%
less than o.

The potential written so far contains only the non-
perturbative confining part. To obtain the total po-
tential, we should add to it the perturbative color

Vol.66 No.5 2003
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I
0.5 1.5 2.5
L, fm

Fig. 3. The lattice nonperturbative baryon potential
from [7] (points) for lattice parameter 5= 5.8 and
MFC potential VB (solid curve) with parameters
o =0.22 GeV? and T, = 0.12 im vs. the length of the
string L. The dotted curve is a tangent at L = 0.7 fm.
This figure is taken from[15].

Coulomb potential

t 3 Ca(fund)as
V(?L?;@("") 73 r ’

where r = v/3R is the interquark distance in the equi-
lateral triangle and Ca(fund) = 4/3.

In Fig. 4, lattice data from [6] and the potential
VB (r) + V(?ue]:td)(r) are shown. One can see that our

results are in complete agreement with this indepen-
dent set of lattice data as well.

(19)

In a similar way, one can write the static potential
for the adjoint sources, neglecting the nondiagonal
term, which is different in symmetric and antisym-
metric states:

Co(adj) (B

VDR = 20y,

G () = TP R). (20)

Consider the A configuration in approximation

(12). In this case, VA(G) (R) reduces to the sum of the
mesonic potentials corresponding to area laws for all
three loops minus the nondiagonal interference term,

and one obtains
VD) =3V () — vy (21)

Along with the adjoint perturbative potential

pert o 3 CQ(adj)as
Vi) = -5 (22)
where Cy(adj) = 3, we plot both VéG) and VA(G) in

Fig. 5 without the interference terms. We see from the
figure that the curves intersect at » ~ 0.5 fm and are
very close to each other.

4. To summarize our results, we have consid-
ered possible gauge-invariant configurations of three
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V, GeV
35

2.5

L5F

1
d.2 0.6 1.0 1.4
r, fm

Fig. 4. The lattice baryon potential in the equilateral

triangle with quark separations r from [6] (points) and
the MFC potential V(&) 4 V(});:i) (solid curve) for lat-
tice parameter 8 = 5.8 and MFC parameters o = 0.18,

o =0.18 GeV?, and T, = 0.12 fm.

fundamental or adjoint sources and the correspond-
ing Wilson loops, which have Y -type shape for fun-
damental charges and may have both Y-type and
A-type shapes for the adjoint ones. We have shown
that the static baryon potential obtained in the MFC
is in complete agreement with the lattice data.

For adjoint sources, it was demonstrated that two
possible configurations yield static potentials differ-
ing only a little. This in turn implies that 3¢ glue-
balls [10] may be of two distinct types, with no direct
transitions between them (quark-containing hadrons
must be involved as intermediate states). The mass
of the A-shaped 37~ glueball was found in [10] to be

Mfg) = 3.51 GeV for ¢ = 0.18 GeV? (or 4.03 GeV

for 0 = 0.238 GeV?, to be compared with the lat-
tice one calculated in [18] 4.13 £0.29 GeV). The
mass of the Y-shaped glueball can easily be com-
puted from the baryon mass calculated in [19], mul-
tiplying it by 1/9/4 = 3/2. In this way, one obtains

M =347 GeV (o = 0.18 GeV?2). The slope of the

V, GeV
1k /
1 J 1 1 ]
0.2 0.6 1.0
~1F r, fm
_3L

Fig. 5. Glueball potentials V)(/G)(T)—FV{ESS(T) (solid

curve) and VA(G)(T) + V{Zfij;(r) (dotted curve) in the equi-

lateral triangle with the quark separations r for as = 0.3,
o0 =0.18 GeV? and T, =0.12 im. The nondiagonal
terms are neglected.
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corresponding odderon trajectory is almost the same
and corresponds to the g—gg configuration. Thus,

one obtains the A odderon (slope)™' to be twice the
standard Regge slope, while for the Y odderon it is
9/4 of the standard slope. In both cases, the intercept
turns out as in [10] to be rather low (—1.8 for the
Y shape and —2.4 for the A shape), implying a very
small odderon contribution to the reactions under
investigation [20] in agreement with measurements.
We plan to perform more accurate calculations of
glueball potentials and spectra taking into account
the string—string interference in subsequent publica-
tions.
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Abstract—The short- and intermediate-distance behavior of the hybrid adiabatic potentials is calculated in
the framework of the QCD string model. The calculations are performed with the inclusion of the Coulomb
force. The spin-dependent force and the so-called string correction term are treated as a perturbation at
the leading-potential-type regime. Reasonably good agreement with lattice measurements takes place for
adiabatic curves excited with magnetic components of field strength correlators. © 2003 MAIK “Nau-

ka/Interperiodica”.

1. INTRODUCTION

Gluonic degrees of freedom in the nonperturbative
region should manifest themselves as QCD bound
states containing constituent glue, so one expects
that purely gluonic hadrons (glueballs) should exist
as well as hybrids, where the glue is excited in the
presence of a gg pair. There is general agreement
that the lightest hybrids occur in the mass range
between 1.3 and 1.9 GeV, so the absolute mass scale
remains somewhat imprecise in the absence of exact
analytic methods of nonperturbative QCD. Existing
experimental data seem to point towards gluonic ex-
citations being present, and prima facie candidates
are identified [1], but no conclusive evidence has ever
been presented. There is no hope that, in the nearest
future, data analyses could unambiguously pinpoint
the signatures for gluonic mesons and settle the issue
of constituent glue. The state of the art is that the pre-
dictions of different models on hadronic spectra and
decays are involved in order to distinguish between
gluonic mesons and conventional ones.

In such a situation, the lattice gauge calculations
remain the only source of knowledge. Lattice calcu-
lations are now accurate enough to serve as a guide,
so that the results of different QCD-motivated ap-
proaches can be compared and contrasted with lattice
data. Of particular interest are the measurements
of gluelump [2] and hybrid adiabatic potentials [3].
These simulations measure the spectrum of the glue
in the presence of a static source in the adjoint color
representation (gluelump) and in the presence of a
static quark and antiquark separated by some dis-
tance R. These systems are the simplest ones and
play the role of the hydrogen atom of soft glue stud-
ies, since, first, the gluonic effects are not obscured

*This article was submitted by the authors in English.

by light dynamical quarks and, second, the problem
of center-of-mass motion separation is not relevant
here.

The large-distance limit of hybrid adiabatic poten-
tials is important, as one expects the formation of a
confining string at large R. The short-range limit is
relevant to the heavy hybrid mass estimations. One
expects that, in the case of very heavy quarks, the
hybrid resides in the bottom of the potential well given
by the adiabatic curve, which, in accordance with
lattice results [3], is somewhere around 0.25 fm for the
lowest curves.

In the present paper, we study hybrid adiabatic
potentials in the so-called QCD string model [4]. This
model deals with quarks and pointlike gluons propa-
gating in the confining QCD vacuum and is derived
from the vacuum background correlator method. In
the latter, the confining vacuum is parametrized by
the set of gauge-invariant field strength correlators [5]
responsible, among other phenomena, for the area
law asymptotics. The basic assumption of the QCD
string model is the minimal area law for the Wilson
loop, so that the only nonperturbative input is the
string tension o.

The QCD string model describes the spectra of
qq mesons with remarkable agreement [6, 7]. It is
also quite successfull in describing glueballs [8], hy-
brids [9], and gluelump [10], as well as meson—hyb-
rid—glueball mixing [11].

The first studies of hybrid adiabatic potentials in
the QCD string model were performed in [12], with
special attention paid to the large-distance limit. It
was shown that, at large interquark distances, two
kinds of QCD string vibrations take place, potential-
type longitudinal and string-type transverse. Here,
we consider the short-distance behavior of the exci-
tation curves.

1063-7788/03/6605-0955$24.00 © 2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Hybrid Wilson loop.

The paper is organized as follows. In Section 2,
we briefly discuss the essentials of the QCD string
approach for gluons. The effective Hamiltonian for a
gluon bound by the static quark—antiquark pair is
derived in Section 3. It is argued in Section 4 that,
at short and intermediate interquark distances, the
potential-type regime of string vibrations is adequate,
and the lowest excitation curves are calculated. The
spin-dependent forces and the so-called string cor-
rections are considered in Section 5. Results and dis-
cussion are given in Section 6 together with conclu-
sions and an outlook. Appendices contain the details
of our variational calculations.

2. GLUONS IN THE CONFINING
BACKGROUND

The QCD string model for gluons is derived in the
framework of perturbation theory in the nonperturba-
tive confining background [13]. The main idea is to
split the gauge field as

Ay =By +ay, (1)

which allows one to distinguish clearly between con-
fining field configurations B,, and confined valence
gluons a,. The valence gluons are treated as a per-
turbation in the confining background.

We start with the Green’s function for the gluon
propagating in the given external field B, [13]:

Guw(z,y) = (D*(B)du + 2igF,,(B)~',  (2)

where both covariant derivative D$* and field strength
Fy, depend only on the field By:

DS(B) = 805 + g By, (3)

Fi(B) = 8,B} — 9,Bj; + gf "™ BBy, (4)

(@, b, and ¢ are color indices). The term proportional
to F,,,(B) in (2) is responsible for the gluon spin
interaction. We neglect it for the moment; it will be
considered in Section 5.

Now we use the Feynman—Schwinger represen-
tation for the quark—antiquark—gluon Green’s func-
tion [9], which, for a static quark and antiquark, is
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reduced to the form

G(acg,yg)—/dS/ngexp(—Kg)<W>B, (5)
0

where angular brackets mean averaging over the
background field. The quantity K, is the kinetic
energy of the gluon (to be specified below), and all
the dependence on the vacuum background field is
contained in the generalized Wilson loop W, depicted
in Fig. 1, where the contours I'g and I'g run over
the classical trajectories of the static quark and
antiquark, and the contour I'y runs over the gluon
trajectory 2,4 in (5).

Expression (5) is the starting point of the QCD
string model, as, under the minimal area law as-
sumption, the Wilson loop configuration in the color
SU(N,) case takes the form

N2 -1
2

where S and Sy are the minimal areas inside the
contours formed by quark and gluon and antiquark
and gluon trajectories, respectively, and o is the string
tension.

W)p = exp(—o(S1 + S2)), (6)

3. EINBEIN FIELD FORM OF THE GLUONIC
HAMILTONIAN

To proceed further, we must fix the gauge in the
reparametrization transformations group. For the
case of static quark and antiquark sources, the most
natural way to do this is to identify the proper time
7 of the Feynman—Schwinger representation with
the laboratory time. Then, the classical quark and
antiquark trajectories are given by

R R
2Qu = <T, 5) s 20 = <T,—E> ) (7)

and the action of the system can be immediately
obtained from representation (5):

T

A_/m (8)

0

1
-2
x {’; +5-- o/dﬂl\/(wlw’l)Q — wPu?
0

1
o / (o2 - wgw';} .

0

Here, r is the three-dimensional gluonic coordinate,
and the minimal surfaces S; and Sy are parametrized
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by the coordinates w;,(7,8;) (i=1,2), W, =
Ow;y, /0T, wgu = Owj, /0p;. Choosing the straight-
line ansatz for the minimal surfaces, one has in the
laboratory time gauge

wo=7, Wip=+(1-fg+hr (9)

The kinetic energy in (8) is given in the so-called
einbein field form [14]. The einbein field g = p(7) is
the auxiliary field introduced to deal with relativistic
kinematics. Note that, in the case of a gluon, one is
forced to introduce it from the very beginning, since it
provides meaningful dynamics for the massless parti-
cle.

In order to pass to the Hamiltonian formulation, it
is convenient to get rid of Nambu—Goto square roots
in (8), introducing a continuous set of einbein fields
v; = v;(T, B;), as was first suggested in [6]:

1
) 2.2
popr a’r
L=-FE I
L[S o)
0
1 1 -
— [ dB1—(1—-07l7)— | d
/512( Bily) /5221/2
0 0
1
1%
- [an'2a - s,
0
1 R
Z%Q = ?”2 —(1‘172 I‘) N 1‘172 =r+ —.
’ T%Q 2

Note that the Lagrangian (10) describes the con-
strained system. As no time derivatives of the einbeins
enter it, the corresponding equations of motion play
the role of second-class constraints [14].

The Hamiltonian H = p - — L is easily obtained
from the Lagrangian (10):

1

1
2,..2 2,..2
H:m+ﬁ+/wf”+/wf” (11)
2 141 1%}
0 0
1 1
141 1%
s [as2+ [am2
0 0
2
Hy= -7 ! (12)

4
2(M+J1 +J2) 2A(M+J1 +J2)

(p-r1)?
foon
2J1J5

1
2.2
SR

2
- T
Gt 1)+ P )
2

(r1-r2)(p-11)(p r2>} ,
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2
rir
A=(p+J1)(p+ J2) — JIJQ%a
)
1
Ji = /dﬂiﬂfw(ﬂi), i=12
0

The Hamiltonian (11) together with the con-
straints

H H
OH 57:0

completely defines the dynamics of the system at the
classical level. To quantize, one should first find the
extrema of einbeins from Eqgs. (13) and substitute
them back to the Hamiltonian (11). Then, the ex-
tremal values of einbeins would become the nonlin-
ear operator functions of coordinate and momentum,
and, in addition, the problem of operator ordering
would arise. To avoid this complicated problem, the
approximate einbein field method is usually applied
in the QCD string model calculations. Namely, ein-
beins are treated as c-number variational parameters:
the eigenvalues of the Hamiltonian (11) are found
as functions of g and v; and minimized with respect
to einbeins to obtain the physical spectrum. Such a
procedure, first suggested in [6], provides an accuracy
of about 5—10% for the ground state (for details, see
first entry in[7]).

(13)

4. POTENTIAL REGIME OF THE QCD
STRING VIBRATIONS

The einbeins p and v;(5;) play the role of con-
stituent gluon mass and energy densities along two
strings. Note that, even with simplifying assumptions
of the einbein field method, these quantities are not
introduced as model parameters, but are calculated
in the formalism. It is clear from the form (12) of
the kinetic energy that two kinds of motion compete
to form the spectrum: the potential-type longitudinal
one with respect to R vibrations due to gluonic mass
1 and the string-type transverse one due to the string
inertia.

It was shown in [12] that, for large interquark
distances, R > 1/,/0, these two types of motion de-
couple, displaying the corrections to the leading o R

behavior proportional to (¢/R)'/3 in the case of lon-
gitudinal vibrations and proportional to 1/ R for trans-
verse ones.

On the contrary, for small R, one can neglect the
terms J; responsible for string inertia in the kinetic
energy (12). Then, the Hamiltonian takes the form

1 1
02?”2
L [asn St + [ s
2
0 0

S+

2
p

H=—

+2

2p

2,.2
oy (14)
1)

2
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V(R), U(R), GeV
n=0

1.5
1.0
05— "=----.

Fig. 2. Einbein fields v, (R) (solid curve) and pn(R)
(dashed curve)forn =0, 1,2, 3and ¢ = 0.21 GeV?Z.

1 1
141 1)
g — dB,—.
+ [as' o [an
0 0
The spectrum of the Hamiltonian (14) was found
in[12]. At small R, it reads
o3/2 R2

23/2(71 + 3/2)1/2 ’

(15)

En(R) = 28262 (n + 3/2)Y/2 +

The extremal values of einbeins are given by

3\ 1/2 o3/2 R2
_9l/2_1/2 — —
pn(B) = 2% <n+2) 2P (n+3/2)7%
(16)
oy (n+3/2)1 21 30°/2R?
Vi2n(R) = 91/2 27/2(n + 3/2)1/2
(17)

where n is the number of oscillator quanta.

Expressions (16) and (17) immediately yield
Ji2/n~1/6, so the neglect of string inertia is
justified. The curves u,(R) and v, (R) for arbitrary
R from [12] are shown in Fig. 2 forn =0, 1, 2, 3
and o = 0.21 GeV2. It is clear that the potential-
type Hamiltonian can be employed at R <1 fm for
n=0,1and at R<1.5 fm for n =2, 3, and the
corrections due to string inertia can be taken into
account perturbatively.

The form (14) allows one to eliminate einbeins and
arrive at the potential-type Hamiltonian

H =+\/p?+ory +ors. (18)

Nevertheless, as we are going to calculate the spin-
dependent forces and string correction, we prefer to
eliminate only einbeins v;, treating the quantity p in
the framework of the einbein field method.
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If only the confining force is taken into account,
the QCD string model predicts the oscillator poten-
tial (15) with the minimum at R = 0. However, the
minimum is shifted if the long-range confining force
is augmented by the short-range Coulomb potential,
3as Qg
6R’
with the strong coupling as ~ 0.4. The coefficients
in (19) are in accordance with the color content of
the QQg system [15]. The QQ Coulomb force in (19)
is repulsive, and it is compatible with the behavior of
gluon energies [3] at small R. Note that such behavior
comes out naturally in the QCD string model, since
pointlike gluons do carry color quantum numbers.

The final form of our Hamiltonian reads

2
H = p—+H+UT1+UT2+Vc.
2u 2

The angular momentum is not conserved in the
Hamiltonian (20), but it is a good quantum number in
the einbein-field Hamiltonian (14). For the case of a
pure confining force, we have compared the spectra of
exact and einbein-field Hamiltonians and have found
that angular momentum is conserved within better
than 5% accuracy. The same phenomenon is observed
in the constituent gluon model [16] and seems to
be a consequence of linear potential confinement
embedded there.

The eigenvalue problem for the Hamiltonian (20)
was solved variationally with wave functions

W) = 0i(r) D Clivyy Vi (5) Xigas (21)

r
p1 2

3o
Ve=—22—
¢ 2T1 2’!”2

(19)

(20)

where x1, is the spin-1 wave function, A=
|(j- R)/R] is the projection of total angular mo-
mentum j onto the z axis, and z || R. The radial
wave functions ¢;(r) were taken to be Gaussian,
that is, of the form exp(—3%r2/2) multiplied by
the appropriate polynomials, with § treated as a
variational parameter. The eigenvalues Ejjx (1, R) =
(Wjia|H (1, R)|¥j;0) were found in such a way, and
the resulting adiabatic potentials,

ViA(R) = Ejia(u*(R), R),

(22)
depend on the extremal value p* defined from the
condition
anlA(H7 R)
O
The details of this variational procedure are given in
Appendix A.
In the QCD string model, the gluon is effectively
massive and has three polarizations [8, 10]. Only two
of them are excited with magnetic components of

— 0. (23)
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field strength correlators used in lattice calculations.
We list these states in the table in terms of j, [,
A and standard notation borrowed from physics of
diatomic molecules. For more details justifying such
correspondence, see [10].

Quantum numbers of lowest levels

(a) jPC:1+* j=11=1A=0,1 ¥, 10,
()P =1""| j=11=2,A=0,1 DI
(0|7 =2""]j=21=2A=0,1,2| 5 I, A,
(d)|jPC =2t]j=2,1=3, A=0,1,2|%F, II,, A,

Fitting the ground lattice state with Coulomb +
linear potential yields the values of parameters a; =
0.4 and o = 0.21 GeV2.

5. STRING CORRECTION
AND SPIN-DEPENDENT INTERACTION

Now, we turn to the calculations of corrections to
the leading potential regime (22).

Let us first consider the correction due to string
inertia. It corresponds to the terms in (12) linear in J;:

o= it (24)
2
1 ((p-r1)’ (p-r2)?
— J Ja ).
+ 22 < r? 1 3 2

In the potential regime, v; = or; and J; = or;/3. So
the string correction Hamiltonian takes the form

o 1 1
= —— (L2 4+ =12 25
6u2<r% 1+r§ 2)7 (25)
where
Li =r; XPp. (26)

The choice (26) solves the ordering problem in (25),
since it assures the hermiticity of the operator H*¢.

In actual calculations, it is convenient to rewrite
(25) as

‘ o 1 1 R?
H*=——{ (=+< ) (LP+—H 27
mﬂ{(%'%@>( ) e

where
9 1 L
H =— 8p+—8p+—28¢ ) (28)
p "
Hy = H, + pi,0. + 0. (29)
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The adiabatic potentials of the string correction are
listed in Appendix B.

The spin-dependent force originates from the term
proportional to F),,,(B) in(2). This term generates the
spin-dependent interaction as

—iFix = (S - B)a, (30)

where spin operator S acts at the vector function ¥ as
(SZ‘I’)] = _ieijk\ljk- (31)

One averages this term over the background, as was
done in [17], and, in our case, it gives

1

o (i<L1-s>+5<L2-s>>, (32)

gLstp) — 7
2u% \ry

3o 1 1
g0 = 255 [ (1, -8)+ — (Lo - S 33

4412 Ti’,( 1 )"’_T%( 2 8) (33)
for nonperturbative and perturbative forces, respec-
tively. One easily recognizes the contribution of
Thomas precession in (32) and (33). The spin-
dependent interaction is conveniently represented as

FLSmp) _ _2%2{ (l + i) (L-S) (34)

o2

3« 1 1
BSP) =220 (4 — ) (L-S 35
4H2{(T%+T%>< ) @)
1 1\R
— - | =H
+(ﬁ ve>2 R}
where
H ew(—a +18>S +£<a +38>8
R 9 p p(b + 9 P p¢<36’

Sy =S, +1S,.

Spin-dependent potentials are given in Appen-
dix C.

We would like to stress here that, in spite of the
apparently nonrelativistic form of expressions (27)
and (34), (35), these are not the nonrelativistic inverse
mass expansions. The mass p entering these expres-
sions is replaced in matrix elements by the value p*
obtained from stationary point Eq. (23). The latter
plays the role of effective mass of the gluon and is not
large. The R dependence of corrections is shown in
Figs. 3 and 4.
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V, GeV
Vi1

0.3

R, fm

Fig. 3. Taken with opposite sign potentials of string —V**(R) (dotted curves), spin-dependent perturbative —V5)(R)
(dashed curves), and nonperturbative —V'>"(R) (dash-dotted curves) corrections along with their sum —V*(R) —
VESPI(R) — VESOP(R) (solid curves) for levels (@) and (b) of the table.

V, GeV
04r j=2,1=2,A=0

02;,(f~*”)>//

- - <

0' I~ = = - |

-0.2
04r- j=2,1=3,A=0

0.2r

-0.2%

Fig. 4. The same as in Fig. 3, but for levels (¢) and (d).

6. RESULTS AND DISCUSSION

The results of full QCD string calculations are
given at Fig. 5 for the levels listed in the table, to-
gether with the lattice data [3]. As is seen from Fig. 5,
at small distances, the calculated curves are in good
agreement with lattice results, with an accuracy bet-
ter than 100 MeV. The level ordering is reproduced
too, with the exception of the ¥, g, and Ay levels
(Fig. 5c). Note that the lattice data claim only one I,
level, and its R behavior is rather peculiar (see dashed
thick gray curve in Fig. 5b). One expects that the
curves should tend to form degenerate levels as the
distance R decreases, fulfilling the angular-momen-
tum-conservation demands at R = 0. This feature
is made explicit in the QCD string model: our cal-
culations reproduce the gluelump spectrum [10] for
R = 0 after subtracting the Q@ Coulomb force [last
term in (19)] and with the obvious replacement 20 —
oadj = (9/4)0, 20,5 — (9/4)as.

PHYSICS OF ATOMIC NUCLEI

Lattice data indeed seem to follow such a ten-
dency. Moreover, the curvatures of all potentials
but II, are compatible with the dominance of the
Coulomb force acting between static sources in the
octet color representation. Thus, one suspects [18,
19] that something goes wrong with the lattice II,
level, and its strange behavior could be due to the
presence of several levels, severely mixed and poorly
resolved by present simulations.

The most pronounced feature of the QCD string
approach is the following. It was already mentioned
that the gluon here is effectively massive and has three
polarizations. As a consequence, the level ordering
follows the increasing dimension of the valence gluon
operator, or, in other words, the increasing orbital
momentum [. This is in contrast to the standard
viewpoint of constituent glue studies (see [20] and
realization of this idea in the framework of potential
NRQCD [18]). The level ordering there is supposed
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to follow the increasing dimension of the operators E;,
B;, D; By, etc. The equations of motion, which relate
different operators with the same quantum numbers,
are involved to exclude spurious states in such a
picture.

In our approach, we expect an extra family of levels
to appear, namely, E; and I, and the corresponding

gluelump limit achieved with 1=~ quantum numbers.
The wave functions of these states contain mostly the
[ = 0 component, so these levels should be the lowest
one-gluon ones. The search for this family, accessible
only with electric field correlators, is of paramount
importance in both gluelump and adiabatic poten-
tial settings. The presence or absence of such states
would allow one to discriminate among models.

The flux-tube model [21], as well as its relativis-
tic version [22], assumes that soft glue is stringlike,
with phonon-type effective degrees of freedom. These
string phonons are colorless, so that the QQ pair
is in a color-singlet state. Thus, the Coulomb QQ
interaction is to be attractive. Adiabatic potentials are
calculated in [22], and, in order to improve the short-
range behavior of adiabatic curves, the Coulomb in-
terquark repulsion was added, which obviously con-
tradicts the general philosophy of a flux tube. Without
essential modifications of the dynamical picture at
small interquark distances, the flux-tube-type models
seem to be ruled out by lattice data [3]. A rather elab-
orate constituent gluon model [16], based on the field-
theoretical Hamiltonian approach, agrees with lattice
data on hybrid potentials at short and intermediate
interquark distances only under the rather confusing
assumption of gluon parity taken to be positive.

The gluelump spectrum, as well as the small-R
limit of hybrid adiabatic potentials, is successfully
calculated in the bag model [23]. The lowest bag-
model gluelump state is 177, and the X—IT splitting
at small interquark distances is in accordance with
lattice data. In this regard, we stress once more the
importance of lattice measurements with electric field
correlators. If the ground state E;—Hg family is not
found, then, with above-mentioned drawbacks of the
flux-tube and constituent-gluon pictures, it would
mean that soft glue is baglike rather than stringlike or
pointlike. To conclude, we have presented full QCD
string calculations of hybrid adiabatic potentials. The
results are in general agreement with lattice data. We
outline the problems connected with a restricted set of
gluonic operators used in lattice simulations and call
for further studies of excitation curves with electric
field operators.
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i'oV
6 _ —
(a) (b)

3 0.5 1.0 1.5 0.5 1.0 1.5

R/2ro

Fig. 5. Hybrid potentials with corrections included (black
curves) compared to lattice ones (thick gray curves) in
units 1/79 = 400 MeV (ro = 2.5 GeV™1); QQ distance
R is measured in 2rg &~ 1 fm. States (a)—(d) are given
in the table. Solid, dashed, and dash-dotted curves corre-
spond to A = 0, 1, and 2. Solid line at right bottom corner
of a represents the Coulomb + linear potential with as =
0.4 and o = 0.21 GeV>.
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APPENDIX A
Variational Calculations of Adiabatic Potentials
In this appendix, we derive the explicit variational

equations for adiabatic potentials (22).

The average momentum for an oscillatory wave
function with orbital momentum [ is given as

2043
2 2

P*)y = —5—1"
where (3 is a variational parameter with dimensions of

mass. Thus, the calculation of the extremum over p
(23) leads to the expression

(A1)

20+ 3

pr=p 9 (A.2)
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Due to the symmetry of wave functions,
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R(z) = 2z/5(x). (A.8)

(r1) = (ra), <r_> = <r_> (A.3) Equations (A.7) and (A.8), along with calculated
! 2 functions f(z), g(z), and §(z), define adiabatic po-
Let us introduce the dimensionless variables tentials (22) explicitly. Note that all expressions for
- 5?’ 1 = By (A4) the averages contain the error function
and define the dimensionless averages i
. erf(z \/,/dt ! (A.9)
=re. (£)=g@. (D)
For the energy levels, we will get We present them below for the levels of the table:
1
<7:1>110 =2 erf(x) 14— —-—— (AIO)
22 4ot
o (22 3aug(a) + 2
2 RIS ~a? 1
)
Let us now calculate the extremum of the last equa- Ve r
tion over (3, provided that = is a function of § and 1 1 o—a?
0 (2(8))/98 = f'(x)x/B. So we find that <_> = 2 i) <1 _ _2> LU
20(f(z) — f' () i v
B (x) = . (AB)
V2 saugla) + 29/ (@) 1 LY,
2 As\g\T) T TGL il eri(z) (1 - — + &
T 2x2 T
20 %10 = 2N\
E(x) = —f(x) 5 3as 2xe™™
B(x) 5 8 erf(z) — Nz
20+3 s
+ B(x) ( S ) . (AT)
2 12
oy = ad et (14 2+ L) 4 8 (1oL (A11)
=y e 472 84 NZE" 472 ’ ’
1 1 1 e’ 1
il — “deorf 14— | — —
<":1>111 x{er(x)( +45’32) VT <x+2x) }’
2 |1 1 e’ .
 rfiefet) e
= = 3 ) 2 ;
9 Qg 1 xre 2 4
5 .3 ( 2el"f(ac)—i— NG (14222 + 22 ))
erf(z LIy o S (A.12)
(oo = 15x2 2021 ) " Ymz \15 1022/ [ '
1 7 ze @ (82 28 7
Bl — ~derf 1 _ > 22 L
< >120 x{er( )< +10$2> 5V/m ( 3 * 3 952)}’
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3

20 28 9 2e~%" 2222 4z
2% Jerf Ly 7y (g L
X 5x { (=) ( 3 x2> NLE" < T3t >
re= o 2222 16z* 826 ’

120 — - 3 5
Qs
\/g — <—7erf(:):) + o/

53
_ 77 9 e /14 9
<’I”1>121 =X {erf(x) <1 + GOIEQ - 40$4> + 5ﬁx (g + @) }, (AIS)
1 1 7 e~ (7T Tr 273
il — ~Jeri 1 _ Lo
<fl>121 x {er ) ( 20352) 5/ ( 3 3 >}7
2 (1 779 P 1122 224
22 ) Zerf L2 _ _ =
; 5x{2er($)(3 x2>+ T (9 3 3 >}
N Lerf(a) + Sl (O AN
2 523 |2 NG 3 3 3
eri() (14 % + > 3 P SO T} (A.14)
20 =7 2?2 4xt 226 LT 212 ) ’
1 1 2 3 3¢~
- ——(1+= i 1
<"71>220 93( +x2> {er( )( 2932>+ \/_35}
3

20 {erf(x) <2+;—%>+%<1+%>}

12 2¢—%
> ¢ (12+7x2+2x4)}

-

13 1 1\ e* /2 13 2
F)oot = erf(@) (14 —o — — 4+ — S S A15
(Fi)mm =@ {e (@) ( T2 TR x6> T (3 1222 x4> } ’ ( )
1 iy (14 L 4 2 e 200 7w 19 4
091 T v 4r2 24 VT o\ 3 3 6z %) |’
) x 222 't Voo 3 3 oz a3
o = 18\ e 3527 TPTON
e x x
—erf 4= 1 - 447 4 7
\/; x3{ er(x)(2+x2>+ 7r:1:<6+ 3 + 624 + 3 + 3>}
4 1 1 e’ 5 1
—pded(e) (14— - — -~ )+ (142 4 = Al
(F1)z2 = {e () ( T332 T A 4x6> t /e ( Tz T 2x4> } ’ (A.16)

1 1 +e*x2 5,1
T \3 x2 ’

1 1
- — ~derf 1— —
<"71>222 z {er (@) < 222 2z

PHYSICS OF ATOMIC NUCLEI Vol.66 No.5 2003



KALASHNIKOVA, KUZMENKO
20 8 1 3 e’ 3
22 ) eri °_ - 2 R B
x {e (z) <3 x? 2x4>+ﬁx ( +:):2>}
= 7T 3a 2 2e~" 722 ;
— 2 e 1+= )= (94 422
\/; 3 {er(x)( +x2> iz ( t5+3
81 33 39 e (422 1 14 39
F — f 1 - il e A7
(Frjzo =2 {er () ( 0 o T 28x6> N < 35 T35 52 " 14:):4) } (A-17)
1 1 i) (1 36 N 33 ze=*" [ 33 N 26 N 26 N 442 N 8
JE— —_ x€X — — R - R R
F1/930 X 3522 14x? v o \7z%  bx? 7 35 35 ’
20 erf(z) 81 N 66 N 117 e~ (117 N 522 N 278 N 6823 N 8P
—_— x [ —_— —_— _— — —_— _— _— _—
Tx 5  ba? 2zt Vo \ 23 bx 5 5 5

230 = g2 2 4 6 8 10\ )’
3 3o 12 11 4e 146z 76x 32x 12z 4x
—6erf(x) | — + — 33 + + + 5 + + 5

964

ot

5 ' 22)  /mzx 5 5
93 22 13 e~ /13 2 23 4z
z — f 1 - e i A.18
(Frjz =2 {er (z) ( T 7022 T 354 14:;:6) MV (:):5 52% ' 52 15) } (A.18)
1 i) (14 18 11 N e~ /922 N 112 98z 4423  8zP
1/ 931 3502 Txt 7ym\z3 15z 15 15 15 )(°

1
X
20 i) (234 88 39 4T (39 21 107w 17} 2
5  bx? at Vro\223 5z 30 15 15
«

) Tx
ﬂ231 )
3 1204 erf(z) 9 N 11 N 2¢— " 8322  142% N 82,6 N 228 N 27,10
_— x —_— [ R N — _— _— —_—
D) T3 5 2 N 15 15 15 5 15

—x

) eri() (14 129 121 13 ) e ’ Ly 19 13
T =z T — — — ——
17232 7022 1402% ' 5626 ) T /7x 10522 2821 ) [

E _ 1 erf(z) [ 1— 36 + 1 + e _ A + 2 + L
P /ag @ 3502 ' 282%) " & \ 142% ' 15z 105) [’
20 erf(x) %_12_1_1_& +€_$2 _ﬁ_ﬁ_ﬂ_ﬁ_l(ﬁ_x
) T 5  bx?  dat N 223 br 15
Bazs = — . ’ R
i B 6arg erf(z) % _ 1_1 n e * 11— 106z B 52z B 8i
5 222 T 15 15 15

APPENDIX B e’ 11
+ 1+-— %,

String Corrections

The string correction  potentials, Vj} = Vi = —%{SQrf(x) <1 + 2—32 - %) (A.21)
(W jin|H>| 1), have the following form: v v
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Spin—Orbit Corrections

The nonperturbative spin—orbit potentials, given
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Abstract—TFor the case of finite quark and baryon densities, the interaction of light quarks with an
instanton liquid is considered in a phase that involves a nonvanishing chiral condensate. The generating
functional is considered in the tadpole approximation, and the behavior of the dynamical quark mass and
the behavior of the chiral condensate, as well as the behavior of the instanton-liquid (gluon-condensate)
density, which grows slightly with the quark chemical potential, are explored. Arguments are presented in
favor of the statement that the quark-density threshold for the emergence of a diquark condensate grows

sizably owing to interaction with the instanton liquid. © 2003 MAIK “Nauka/Interperiodica”.

Since the discovery of instantons, the formulation
of quantum field theory in terms of a path integral has
become very popular and, in some cases, nearly the
only tool for studying the phenomenology of QCD. It
enables one to identify nonperturbatively field config-
urations that dominate the action functional and to
obtain deeper insight into the fundamental distinction
between the physics of QCD and the physics of other
complicated systems involving many degrees of free-
dom. In the overwhelming majority of cases, quan-
ta that interacting fermions exchange in accordance
with the original Lagrangian specify, for such sys-
tems, the form of the interaction potential. In the case
of QCD, a dominant role of topological excitations of
the gluon field (instantons and quantum oscillations
about them) made it possible to reveal and to ex-
plain definitively a whole series of new physical effects
concerning, first of all, chiral-symmetry breaking and
put in doubt the the concept of potential (perturbative
description).

Within a later period, a considerable amount of
theoretical effort was expended in analytically go-
ing beyond the approximation of a dilute instanton
gas [1]. As a result, it was shown that an effec-
tive instanton—anti-instanton interaction stabilizes
the medium of these pseudoparticles [2] at a level
of reasonable phenomenological parameters (mean
size of pseudoparticles and mean spacing between
them), more likely forming an instanton liquid [3].
The approach developed in [2] even makes it possible
to obtain quite justified quantitative predictions, al-
though only lattice QCD was able to provide a serious

YBogolyubov Institute for Theoretical Physics, National
Academy of Sciences of Ukraine, Metrologicheskaya ul. 14b,
Kiev, 03143 Ukraine.

theoretical basis for the problem of studying the role
of instantons [4]. Yet, this concerns primarily lattice
QCD at zero and finite temperatures—lattice QCD at
finite quark densities has received much less adequate
study, largely because of technical difficulties involved
in realizing the lattice approximation. Nowadays, in-
vestigation of QCD at high densities of quark matter
provides a new possibility for a direct experimental
examination of instantons (along with searches for
small-size instantons in deep-inelastic collisions [5])
since a flavor superconducting phase can be realized
in collisions of ultrarelativistic nuclei [6].

The present study is devoted to exploring the in-
teraction of light quarks with an instanton liquid in
a phase featuring a nonzero chiral condensate at fi-
nite quark and baryon densities and is a continua-
tion of investigations initiated in [7], where a method
was proposed that makes it possible to take into ac-
count the reaction of the instanton liquid to the pres-
ence of quarks. We recall that, in the instanton-liquid
model [2], the generating functional is represented as
the product of a gluon and a quark component; that
is,

Z=2, Zy

The first factor furnishes information about the gluon
condensate, while the fermion component serves for
describing quarks in an instanton medium—in par-
ticular, a quark and a diquark condensate and their
excitations [2]. The component Zg is calculated in the
semiclassical approximation under the assumption
that a superposition of pseudoparticle fields Az;(x;7)
defined as Euclidean solutions to the Yang—Mills
equations—they are referred to as (anti)instantons
(IT) and are characterized by the parameters v =
p,z, U, where p is the size of a pseudoparticle, z is

1063-7788/03/6605-0968$24.00 © 2003 MAIK “Nauka/Interperiodica”
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the coordinate of its center, and U is the orientation in
the color space of the SU(N,) group—is a dominant
saturating configuration. For the sake of definiteness,
we assume that there are N pseudoparticles in the
4-volume V and, additionally, that Ny = N_ = N/2
(a plus and a minus sign correspond to I and I, re-
spectively). On the basis of the variational maximum
principle, we can obtain the following estimate for the
gluon component:

Zy ~ e (5)

Here, the averaged instanton-liquid action (S) is
given by the additive functional

®)= [ az [ anip)sio) (1)
the action per instanton,
s(p) = B(p) + 5n(Ap) — In >N (2)

+5§2p2/dp1n(m)pi

being averaged by using the equilibrium size distribu-
tion of instantons, which has the form

n(p) = Cre=s) = Cp_SBQNCe_ﬁ(p)_VPQ/FQ7 (3)

where

1/2
5 _ 2 _ v _
p* = [dpp*n(p)/n = (55—2n> , n=
b—4 11N, — 2N
Jdon(p) = 7, v ="——, befv
Ny is the number of flavors. The constant C' is
determined self-consistently from the variational
2
maximum principle, while 5(p) = 89% =—InCy, —
bln(Ap) (A = Agrg = 0.92Apy, and g is the strong
coupling constant), with Cn, being renormalization-
4.66 exp(—1.68N,)

m2(N. — DI(N,. — 2)!"
The parameters = (p) and f =+ InCy, are
fixed at the scale of the mean pseudoparticle size p.

2 N,
The constant &2 = Z7N2 —

interaction in a stochastic ensemble of pseudopar-
ticles. The resulting parameters of the instanton
liquid—for example, the mean pseudoparticle size p
and the instanton-liquid density n—are in reasonably
good agreement with analogous estimates obtained
within the phenomenology of the QCD vacuum.

In the quark determinant Z,, the quark fields are
considered to be affected by a preset stochastic en-
semble of pseudoparticles, while the inverse effect of
quarks on the instantons is disregarded; that is,

Zy =~ / Dyl Dy (541 D)) .

and

<|=

scheme dependent: Cpy, ~

72 characterizes the
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Since the instanton liquid is dilute (the characteristic
packing-fraction parameter np* is small), we also
disregard correlations between pseudoparticles; in
addition, we will consider the approximation of N, —
oo. The leading contribution to the action functional
for fermion fields is mainly determined by zero modes
®(x — z; p), which are solutions to the Dirac equation
with the chemical potential p,

[if)(AH) - W’M]‘I’H =0,

in the (anti)instanton field A7;. The Weyl components
of the solution,

Sl
P(x;p) = ,

have the explicit form [8]

Bpp ()] = —L et /TI(2)0)
Bru@)]" = Lo A0,
e M E (x; ) i _jk
() e
where
2
(z) =1+ —2—;
(@) =1+ z3 +r?’
1
F(z;p) = e [cos(,ur) + %sin(,ur)] ;
1+
Ppr = PrP; PL = 275; oif = (+io, 1), o being

the 3-vector of the Pauli matrices; z = (x,z4); r =
|x|; and e is an antisymmetric tensor. For the par-
ticular case of Ny = 1, the quark determinant can be
represented as

z,=~ [ pyiny (%)N <%)N )
X exp { / dzpt () (i — wm)zb(:v)} ;

where R is afactor that reduces the result to a dimen-
sionless form. The preexponential factors describe the
instanton-induced quark interaction [9],

YE = i/dszdpn(p)/n

X /d:cdyd)LR(x)(ia —ip)T

x @z — 2)@r(y — 2)(i0 — i) i, r(Y),
averaging over color orientations being given by in-
tegration with respect to U. The notation ® was
introduced for the conjugate zero mode, ®;(z; p) =
@}(m; —p); p* and similar conventions are used for
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the 4 vectors associated with the matrices of: p* =

proik, = (0, ).

With the aid of integration with respect to the
auxiliary parameter A, the quark determinant Z,, can
be reduced to an exponential form, which is con-
venient for calculations by the saddle-point method.
The result is

2= [ Lo {vn( ) )
X/D@Z)TD@Z)eXp{/%
x T (k )(— —1M+%70(k u)>¢(k)}-

The complex-valued function ~o(k; u) appearing in
the above expression is determined by Fourier com-
ponents of zero modes; that is,

Yo(ki ) = (k +ip)a(k + i) ahs(k; p)hs(k; 1),
®(k; )" = bk ) (0;;) ;e U,

hy(ka, k) = 4k: (’f po— ika)[(2ka +ip) f1
+i(k —p—ika)fy ]+ (K + p+ iky)
X [(2ka +ap) fi7 — i(k + p+ika) £33,

mp°ki
4k?

ol s 1) = {(% )k = k)
(k4 )kt ik S+ [we )
X (k — p —iky) — %(u +ika)[kF + (p — u)2]] Iy

1
E(M + tka)

+ [2(k+u)(k+u+ik4)+
x [k3 + (p+u)2]]fg+},

where k = |k| for the spatial components of the
4-vector,

Il(Zi)Ko(Zi) — Io(Zi)Kl(Zi)
i = ~£ ’
T T N T
3

and I; and K;(i = 0, 1) are modified Bessel functions.

In order to avoid encumbering the formulas with
extra factors, it is convenient to introduce dimension-
less variables via the substitutions

kap ko A

k
5 T 9N,

— A,
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Y(k) = (k).

It can be shown that, in terms of these variables, the
saddle-point equation has the form

& (ks )]y
— 2N,
/W‘1 k+w +>\2 5 (ks )

where a prime denotes differentiation with respect
to A.

=0, (9)

[t was shown in [7, 10] that the reaction of quarks
to the instanton liquid can be described within per-
turbation theory by considering small variations of
the instanton-liquid parameters, dn and ép, in the
vicinity of their equilibrium values n and p, the vari-
ations being included in the theory if use is made
of deformable field configurations (crumpled instan-
tons) of dimension p as a function of x and z—that
is, p — p(z,z). In the case of perturbations whose
wavelength is much longer than the characteristic in-
stanton size p (this is so for the example of 7 mesons),
the averaged action per instanton is supplemented
with the kinetic-energy-type term generated by de-
formable (anti)instantons; that is,

@w3/M/mmm{§G%f+dm},w>

where « is the kinetic coefficient that is calculated
within the semiclassical approach. To the precision
adopted in this study, the kinetic coefficient is fixed at
some characteristic scale—for example, as k ~ k(p).
For this coefficient, our estimations yield x ~ ¢f—
that is, the instanton action multiplied by a factor
of ¢ ~ 1.5—6, its specific value being dependent on
the ansatz adopted for the saturating configuration.
Retaining second-order terms in the deviation from
ds—(p) = 0, at which the action functional
dp |y,
attains a minimum, and approximately setting

the point

s(p) = s(p) + —5 (7)
2
4
where s(2) () ~ d 8(2p) — = and where the scalar
dp Pc p2

field p = dp = p — p. =~ p — pis thefield of deviations
1\ /2

from the equilibrium value p. = p <1 — 5) ~

p, one can easily see that the deformation field is
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described in terms of the Lagrangian density!)

E—E 8_902+M22
2 0z Yo

@)(5 4
where M? = s20) _ 2 is the mass gap; M ~

K /{p2
1.21A for an instanton liquid in the quenched approx-
imation with parameters N, =3, ¢ =4, pA ~ 0.37,
[~ 17.5, and nA~* ~ 0.44[10].

The inclusion of a variation of zero modes in the
quark determinant reduces to replacing these modes

1
by @77 (x — 2,p) = ®rp(x — 2, pc) + V) (& — 2, pe) X

dp(x, z), where @) (u, pc) = 0% (u, p) /Oplp=p.: in

accordance with the adiabaticity condition, we must
set here 0p(z,z) ~ dp(z,z) = p(z). The additional
contributions from scalar fields generate corrections
in the kernels of the factors Y*: these corrections
are considered in the linear approximation in ¢, and
the approximate relation p. ~ p is used everywhere.
As a result, we arrive at a generating functional that
involves an effective Lagrangian of the Yukawa type
and which has the form

Z o~ / drZ) / Dy DyDy (8)

o v (2 1)
- [ G+ 3o}
X exp { / %W(/ﬂ) -2 [w‘*a(/c — )~k —ip

T idaoks ) + idop Ok, o) — w]w(w},

where ¢ is a colorless scalar field interacting with
quarks and Zj denotes that part of the gluon com-
ponent of the generating functional which survives
upon expanding the action per instanton in terms of
a small deviation from the equilibrium instanton size;
it should be recalled that we use here dimensionless
variables: (k) — (nk)~'/25%¢(k) for the scalar field
and Mp/2 — M for its mass. In this study, we will
not need a general form of the kernel v (k, ; 1) since,
in view of the presence of a quark condensate, we
can make a significant simplification, retaining only
higher order contributions from the functional in (8),
which are given by tadpole-type diagrams. In this

YIn our opinion, the physical meaning of the deformation
fields is analogous to the meaning of phonons in solid-state
physics; therefore, we refer to them as phonon-like excita-
tions of an instanton liquid [10].
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particular case, the following scheme of perturbation
theory in the deviation from the condensate value is
applicable:

Ve = Wiphe + (P — @WiY)te.  (9)

Here, the first term generates the leading contribu-
tion, the expansion being performed in the second,
small, term. As a result, the vertex is obtained in the
form

(ki p) = W{[kh + (K + ipt)ha]

X [k6h + (kg + ip)ohg] + [(kg + ip)h — khy]
X [(k4 + Z/L)(Sh — k5h4]}
Here, we have introduced the component h aligned
with the unit vector k;/k, h; = (k;/k)h, while 6h and
dhy can be derived from h and hy by means of the
substitutions £ — g, where

gi = fi +2U0F Ky —ITKY), gy =—fi — f5-

In the present study, we will take into account two
corrections. One is associated with the change in the
dynamical quark mass and the chiral condensate due
to interaction with the scalar field, while the other
is associated with the change in the instanton-liquid
density due to the shift of the equilibrium pseudopar-
ticle size. The first correction is described by the
contribution

2(M)2/Ww(k,l;u)%(k’,l’;u)
X YT R0 )0 ()l = Dok ~ 1)
=02 [ Skl (o)

< / Lot mrs(@)D(0),

where ~v1(k; 1) = v1(k, k; p); in expression (10), use
is made of natural definitions for the convolution of
the scalar field,

p(k)p(l) = '8k + 1) D(k),
1
~ Ak + M?)
and for the quark Green’s function S(k),
(W k)e(D) = —7*d(k — DtrS(k).

The expression in front of the combination ¢ (k) (k)
in (10) describes an additional contribution to the dy-
namical quark mass, Ayo(k;u) — AL(k;p) =
Mo (k; 1) + Adyo(k; i), where

6v0(ks ) = 71 (ks ) (—2iX)

(10)

D(k)

(11)
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x / L) 1S (D (0).

Let us introduce an auxiliary function ¢(A) such that
it would enable us to isolate the explicit dependence
on the parameters in § in a convenient form; that is,

510k 1) = WNW N2e(A (k: ).

Using the quark Green’s function, we can derive the
closed integral equation for determining the function
c(A),

dk

F%(k;u) (12)

e(N) = (npti)V? /

" L(k; )
(k +ip)? + N202(k; )’
whence we can find S(k).
[t was found in[7]that the change in the instanton-

liquid density is due to the shift of the equilibrium
pseudoparticle size and is given by the tadpole con-

4N, .
tribution ¢(0)A, A = —ZA%¢(X), which leads to an
np

additional term in the averaged action per instanton:

(S) = /dzn{(s) - <A%>}.

With the aid of the variational maximum principle, we
can find explicitly the mean pseudoparticle size, pA =

2N,
exp {_ﬁ}’ and derive the following quadratic

equation for determining the instanton-liquid den-
sity [7]:

Vo A I(v+1/2)
5" = G e i)
Finally, we can show that the saddle point of the gen-
eratmg functional (8) is determined by the equation

2 2
N, /dk?)\F (k; ) + NT(k; )T (ks )

k+ip)? + N2 (k; p)
(14)

(np")? — (13)

-4
—Avrq. TP
- In— =0
(n") n 2 = 0,
which enables one to take into account the change
in the instanton-liquid density. Here, a prime denotes
differentiation with respect to A. In order to close the

equation, it is also necessary to find the derivative .
With the aid of (12), we can obtain

(1= A2AN)(N) = 20 A(N)e(N) + B(N).
The functions A(A) and B(A) appearing in this ex-
pression are given by

A()\):oz()\)Nﬁ dk

v il
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Y2k ) [(k + ip)? — A202(k; )
[(k +ip)? + N2T2(k; )]t

~ dk
—2A(nptk)'/? / gy

L nBrR)
[(k +ip)? + X212 (k; p)]*
where the factor a(\) has the form
g N. T'(v+1/2) c(AN)
ﬁfQ VI/QF(V) nﬁ4 (nﬁ4 .

B(\) =

a(A)=1-2A

N
203¢?

A transition to the case of many flavors, Ny > 1, is
implemented as follows [7, 11]: the additional contri-
bution to the dynamical mass in expression (10) and
the factor A in the tadpole contribution are increased
-4

by the factor Ny, and the logarithmic term ln%

on the right-hand side of Eq. (14) for the saddle

1/Ny 1
point is replaced by In (n2p > Nk [t should

be emphasized that, for the sake of definiteness, we
everywhere set the renormalization factor R [see, for
example, (4)] to unity. As a result, the dimensional
parameters of the theory are expressed only in terms
of the corresponding powers of Aqcp—Tfor example,
pA—and are obtained in a self-consistent way upon
determining the saddle point. In general, however, the
renormalization factor could be considered as a free
parameter.

The results obtained by calculating the positive
AT(r+1/2)

root of Eq. (13),
14 14 2
v+ | () + sy
for the dynamical quark mass AI'(0, ) and for the

quark condensate —i(¢)T¢) are displayed in Fig. 1
(solid and dashed curves, respectively) versus the
chemical potential pat A = 280 for the case of N, = 3
and Ny = 2. The lower curves were obtained with
allowance for the contribution appearing in the tad-
pole approximation. With allowance for the resulting
values, the dynamical quark mass and the chiral con-
densate do not go beyond the boundaries prescibed by
the phenomenology of the QCD vacuum; in principle,
better agreement can be reached by fitting the model
parameters—for example, Aqcp.

1/2

)

nﬁ4 =

We can see from Fig. 2 that, in the case where
the quarks are in the phase of a nonvanishing chiral
condensate, the change in the instanton-liquid den-
sity is insignificant; by and large, we can say that,
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M, MeV
500

400

300

]
800
H, MeV

Fig. 1. Dynamical masses (solid curves) and chiral con-
densates (dashed curves) versus the chemical potential
at A = 280 for the case of N. = 3 and Ny = 2. The lower
curves were obtained with allowance for instanton-liquid
perturbations.

in this phase, allowance for the quark effect on the
instanton liquid leads to a small enhancement of the
gluon condensate—that is, an additional attraction
appears in the system formed by quarks and an in-
stanton liquid. The results obtained in this study are
in agreement with those reported in [12], where the
behavior of an instanton liquid is considered with-
in the model of instanton liquid featuring an ad-
mixture of (anti)instanton molecules (cocktail model)
and where, in the phase of broken chiral symmetry,
the instanton-liquid density remains nearly constant,

nf/A\*
111
1.10F
1.09
1'08 1 1 1 1
0 400 800
W, MeV

Fig. 2. Instanton-liquid density in the chiral-condensate
phaseat N. = 3and Ny = 2 as a function of the chemical
potential p.
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as in the case being considered, up to the phase-
transition point.

Figure 3 shows the values of the saddle-point
parameter A at N, =3 and Ny = 2. We recall that,
to the one-loop approximation, this parameter is pro-
portional to the free energy of the system. The upper
curve was obtained without taking into account the
quark effect on the instanton liquid. The results pre-
sented in this figure make it possible to predict quali-
tatively the possible behavior of the critical chemical-
potential value p. at which there occurs a transition
to the color-superconductivity phase. In view of the
results reported in [12, 13], one can conjecture that
the point u. can be noticeably shifted toward greater
values since, at subcritical values of u, the param-
eter A for the diquark phase always lies above the
corresponding curves for the phase of broken chiral
symmetry. This means that the point at which the
curve corresponding to the diquark phase intersects
the lower curve always lies farther than the point
of intersection with the upper curve. As a result, it
may turn out that, in the vicinity of the phase tran-
sition, the quark-matter density becomes commen-
surate with (or higher than) a normal nuclear density.
However, it is worth noting that, at very large values
of the chemical potential, the instanton-liquid model
is inapplicable (the region of the transition to the
perturbative phase of quark—gluon matter). As the
quark-matter density increases, the mean interquark
spacing appears to be so small that gluon (Coulomb)
fields become commensurate with (or greater than)
instanton fields. In this region, it is already illegitimate
to consider an (anti)instanton ensemble as a saturat-
ing configuration, so that the instanton-liquid model

A
o _\/
0.004
0.003
0.002 L L L L
0 400 800
W, MeV

Fig. 3. Saddle-point parameter A in the phase of broken
chiral symmetry at N. =3 and Ny =2 as a function
of . The upper curve was obtained without taking into
account quark effects on the instanton liquid.
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and the treatment of color superconductivity on its
basis become invalid. In other words, it may occur
that the region of the diquark-condensate phase is
very narrow.
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Angular Correlations in the Decays of Two Unstable Identical Particles
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Abstract—For the decay of two identical particles with close momenta, the angular correlations between
the directions of emission of decay products are considered on the basis of the model of independent single-
particle sources emitting unstable unpolarized particles of nonzero spin. These correlations reflect spin
correlations that are caused by quantum-statistics and final-state-interaction effects. A general theory
of angular correlations in the decays of two arbitrarily polarized particles (resonances) is constructed.

© 2003 MAIK “Nauka/Interperiodica”.

1. Previously, a theoretical analysis of spin corre-
lations in the system of two spin-1/2 particles was
performed in [1—=7]. The angular correlations in the
parity-nonconserving decays of A-hyperon pairs [5—
7] (see also [8]), unstable leptons, and t quarks [7]
were studied in this connection. It was shown in [7]
that investigation of angular correlations in the
asymmetric decays of two unstable particles provides
a unique possibility for experimentally testing the
implications of quantum-mechanical coherence for
two-particle systems—in particular, those that are
associated with violation of the classic Bell inequali-
ties [9, 10].

The present article is devoted to studying, for the
decay of two unpolarized identical particles having
close momenta and an arbitrary spin, the angular
correlations between the directions of emission of
decay products. These angular correlations are due
to quantum-statistics effects (symmetrization or an-
tisymmetrization of two-particle wave functions), as
well as effects induced by the final-state interaction

of unstable particles [11].!) In the Appendix, we de-
rive general formulas for angular correlations in the
decays of two arbitrary, identical or nonidentical, par-
ticles that have arbitrary polarizations (see also [5]).

2. The normalized (to unity) angular distribution
of the direction n of emission of one of the particles
originating from the two-particle decay of an unstable
spin-j particle, or of the direction of the normal to the
plane of three-body particle decay, or of the direction
of any vector that characterizes a multiparticle decay

YIn general, one considers the interaction of stable particles.
Instability reduces somewhat final-state interaction [12]. A
discussion of this issue is beyond the scope of this study.

has a common structure [13]; that is,
1 ) ;
AWm) =3 3D 2+ DD, m) (1)
m m/ A

X DZ%)' (1) RA prm dS2n,s

where n is a unit vector that is specified in the rest
frame of the decaying particle; df2y, is the solid-angle
element in the direction of n;

DY), (n) = DY), (6,6,0) = df,,

m m

()™

are elements of the finite-rotation matrix (generalized

spherical Wigner functions [13—15]),2) @ and ¢ being,
respectively, the polar and the azimuthal angle of the
vector n in a coordinate frame where the z axis is
aligned with the spin-quantization axis; py,, are ele-
ments of the spin density matrix for an unstable parti-
cle (m and m/ are the spin projections onto the z axis);
and Rp are nonnegative parameters (the probabilities
that the projections of the decaying-particle spin onto
the vector n take the values A), these probabilities
being normalized by the condition

J
> Ry=1 (2)

A=—j

We note that, if n is a polar vector and if parity
is conserved, the equality Ry = R_, holds. In this
case, the angular distribution for the decays of an
unstable spin-1/2 particle will be isotropic for any
polarization; an anisotropy (asymmetry) arises only

n [5, 13, 16], the elements of the matrix that is the inverse
of the final-rotation matrix DY) used in [14, 15] and in
the present study were considered as generalized spherical
functions.

1063-7788/03/6605-0975$24.00 © 2003 MAIK “Nauka/Interperiodica”
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in weak decays of the type A — p+ 7~, which are
accompanied by P violation (R; /5 # R_y ), parity-
nonconserving decay playing here the role of an ana-
lyzer of the decaying-particle spin[5—7]. Butifnis an
axial vector aligned, for example, with the normal to
the plane of three-particle decay, an anisotropy may
also arise in the parity-conserving decays of spin-
1/2 particles. At j > 1, two-particle and multiparticle
decays are, in general, anisotropic, irrespective of the
presence of symmetry with respect to space inversion.

3. Let us now consider the system of two unstable
particles whose spins are denoted by j; and js. For
the decays of this system, the two-dimensional dis-
tribution of the directions of decay-product emission
can be represented in the form

(21 +1)(2ja +1)

2
PV (01, m) = P (3)
x ZZZZZZD(XEM DY), (1)
mi omf m2 mj A
X Dg\]jgw( 2)DA(]Q) (HQ)RAIRAQPEnm)h smaml,

% dQp, A,

where dQy,, and d€2,, are the solid-angle elements
corresponding to the directions n; and ny that are
specified in the rest frames of, respectively, the first

1,2
(1,2) , are ele-

and the second decaying particle; P! smam
1 2

ments of the spin density matrix for the system of two

unstable particles; and Ra, and RAQ are parameters
that characterize the decay of the first and the second
particle, respectively.

The properties of the spin density matrix for
two identical particles with close momenta were
discussed in [1, 2]. Within the model of independent
single-particle sources, which is generally applied to
describing narrow pair momentum correlations [17],
it can be shown that, in the case where the sources
emit particles of spin j that have the spin density
matrix p and where there is no Coulomb interaction,
the elements p(12) of the spin density matrix for
two identical particles, which satisfies the condition
tr(p(1?)) = 1, have the form [1]

1

= m {pmlm'l pm2m/2|:]. + Bint(p, Q)]

(1) Doty P [ F (9, @) + Bini(p, ) }

where p and q are, respectively, the half-sum and the
difference of the 4-momenta of the identical particles
in question, while

P(p,q) = 1+ Biy(p,q) (5)

PHYSICS OF ATOMIC NUCLEI
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+ (=D)tr(p*)[|1F (0, ) + Bint(p, 0)]

is the momentum correlation function [1, 2]. In ex-
pression (5), the quantity | F(p, ¢)|? describes the ef-
fect of Bose statistics (at integral values of j) or Fermi
statistics (at hali-integer values of j) and Biy(p, q)
is the contribution of the s-wave strong final-state
interaction [11, 18].%) Each of the functions F and
Bi,t depends on the spatial and time parameters of the
region of multiparticle generation and tends to zero at
high values of the relative momentum g; the function
F(p, q) is the Fourier component of the distribution of
the 4-coordinates of the sources [17, 18]

F(p,q) = /W(p,w)eiqxd4w;
F(p,0) =1.

For the emission of unpolarized particles, in which
case we have

. 5mm’
Pmm/ = 2] + 1’
formulas (4) and (5) yield
(1,2) _ 1 1 6
pm1m'1;m2m/2 (27 + 1)2 Py(p, q) (6)

X {5m1m/1 5m2m’2 [1 + Bil]t(pv Q)]

+ (=17 80y [ F (9, ) + B, )] }

PO(pv Q) = 1+Bint(p7 Q) (7>
(WP e
+ 2] 41 H (p7 Q)’ + m‘[(pa q)]a

where d,,,,,/ is a Kronecker delta symbol. It should be
emphasized that formulas (4)—(7) involve exchange
terms (with a plus sign for identical bosons and with a
minus sign for identical fermions) violating statistical
independence.

4. Upon substituting expression (6) into formula
(3) at j1 = jo = j and considering that, in view of the
unitarity of the finite-rotation matrix, the equalities

ZDAlml A(1j7311 (nl) =1,

3The total spin S and the total orbital angular momentum L
of the system of two identical particles in their c.m. frame
are related by the equation (—1)**° = 1 (see, for example,
[14]). In view of this, the s-wave interaction of two identical
particles (both bosons and fermions) manifests itself only in
states having even values of the spin S. Formula (4) was
written under the assumption that the interaction potential is
independent of the spin quantum numbers, so that, forj > 1,
the function Bin(p, q) is the same for all states having even
values of the spin S (at j = 1/2, the total spin takes only one
even value: S = 0).
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2) Do, (2) = 1

Z DAzmz

hold [14, 15], we find that, for the decay of two un-
polarized identical unstable particles with correlated
spins, the two-dimensional distribution of the direc-
tions of decay-product emission (axes of the spin
analyzer) can be represented as
d2W(n1,n2) . 1 (8)
dQn,dQn,  1672Py(p,q)

X [1 + Bint(pv Q) + (—1)2jA(‘F(p’ Q)‘2 + Bint(pa Q))]a
where Py(p, q) is defined according to (7) and

2

A= ZZR/\lRM ZD j) (nl) (9)

Further, we can represent the operator f)(j)(ng) as
the product of the successive-rotation operators that
first transform the z axis into the vector n; and then
transform ny into the vector ns [14, 15]; that is,

DY) }jdhi B)e DY) (ny),

Agm
where (3 is the angle between the vectors n; and
4 and 1 is the azimuthal angle of the rotation of the

(10)

1+ Bint(p7 Q) -+ (_

12 A(B)[|F(p,q)]* + Bint(p, q)]
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vector ng about the vector n;. With allowance for the
unitarity condition for the operators of finite rotations,

ZD n)D,Y) (n) = d.,,

we obtain
S DY) (m)DY) (ny) = df) (e

As a result, we arrive at

A=A =33 R B, (9,,(9)

A1 As

(11)

We note that, without loss of generality, we can
consider the solid-angle element df2y, in the coordi-
nate frame where the spin density matrix in question
is defined and the solid-angle element d€2y,, in the
coordinate frame where the z axis is parallel to the
vector n;. We then have

Ay, = sin BdBdy. (12)

Upon integration of the two-dimensional distribution
(8) over the solid angle €, and with respect to the
azimuthal angle 1, we obtain the following expression
for the angular correlation between the directions n;
and no:

1
NG = T Brpog) + (=

Formula (13) can be recast into the form

dN () = % [1 + 2K <A(ﬂ) 2] 11” sin Bd3,
(14)
where

25 [F (0, 91> + Bini(p, q)
2Py (p; q)

YFormally, the angle 3 is determined by the formula cos 8 =
n; - ny. Here, it is implied that the systems of spatial co-
ordinate axes where the vectors n; and ns are specified are
made to be coincident with each other. This is achieved in
the following way. In the c.m. frame of the pair of unsta-
ble particles, one chooses the directions of the coordinate
axes. Further, it is necessary go over to the rest frame of
the first and second particles by using the corresponding
Lorentz transformations along the direction of the relative
momentum of the particles under consideration. Thus, the
unit vectors n; and n2 and the elements of the spin density
matrix for two-particle decay are determined with respect to
a unified system of spatial coordinate axes. In this system,
we can construct the scalar product of the three-dimensional
vectors ny and ng, which specifies the angle between these
vectors.

K= (1)

(15)
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dcos 3. (13)

Within the model of independent single-particle
sources emitting unpolarized particles, it can be
shown that, because of the effects of symmetrization
or antisymmetrization of the two-particle wave func-
tions and of the s-wave final-state interaction, the
total relative weights (fractions) of states in which two
identical particles have even total spins (even orbital
angular momenta) and odd total spins (odd orbital
angular momenta) become

1 o1
ven — o 1 -1 2 1
o= (14 1) a6
1+ ’F(pv Q)P + QBint(pv Q)
PO(pv Q) ’
1 2 1 )1—|F(p,q)|2
=—|1-(-1)%— . (17

In accordance with relation (7) for Py(p, q), we ad-
ditionally have peyen + podd = 1. As a result, we find
that, for integral values of j,

K= 25 +1 <1f)even _ po.dd>
4 741 j

(18)
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and that, for half-integer values of j,

2j+1 (peven _ Podd )
4 J j+1)
As the difference ¢ of the momenta tends to zero, the
states in which two identical particles have nonvan-
ishing total orbital angular momenta L in the c.m.
frame of the pair die out, so that only states where
L = 0 and where the total spin S'is even survive [14]
(see also Footnote 3). In this limiting case, we have
K = (2j+1)/4(j + 1) at integral values of the spin
jand K = —(2j + 1)/4j at half-integer values of the
spin j.

Considering that d functions satisfy the normal-
ization condition [14]

™

/ (dﬁ\jl)/\g (5))  sin Bdf =

0

K=— (19)

2
2j + 1

and that the parameters Ry, and Ry, are normalized
to unity [see Eq. (2)], we can easily see that the
function A(f) satisfies the relation

uy
2

/A(ﬁ) sin Bdf = T (20)
0

By virtue of (20), the angular correlation specified by

Egs. (13) and (14) is normalized to unity.

5. It should be emphasized that the present con-
sideration applies both to the same and to different
modes of decay of identical unstable particles. By n;
and ny, we generally mean the directions of the axes
of analyzers that select the projections of unstable-
particle (resonance) spins according to decay modes.
Below, we consider some pairs of decays.

(a) In the decays w — 7%y and w — 7 T7 =70, the
direction of the photon (or 7°-meson) momentum in
the rest frame of the w meson plays the role of the
vector nj, while the direction of the normal to the
plane of w-meson decay into three 7 mesons plays the
role of the vector ny. In this case, we have j = 1 and
the nonvanishing parameters Ry, and Rp, take the

values [13]
1
Rii=R 1= 5

According to (11), we then obtain

4@ = 5 [(@06)"+ ()] = 222
21)

Ro = 1.

(b) For the pair of the decays w — 7%y and w —
70y, aswellasforV — ete” and V. — utp~ (where
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V =p"w, ¢, J/¢, T; it is assumed that m? , <
mi), we have j = 1,
- -
RJrl = Rfl = R+1 = Rfl = 5, (22)

Ap) =1 |(aV®)" + (@)

W ) 1 (gV 11 2
+ (d%3) + (a4 .®) } — 7(1+cos? ).
(c)For¢ — KTK~and ¢ — K2K?, as wellas for
w— rrr 7 and w — 7770, the corresponding
values are the following: j = 1,

Ry = Ry = 1; (23)

A(B) = (d&’ (ﬁ))2 = cos? §.

(d) Finally, we consider the decay processes
£2(1270) — 7+~ and f2(1270) — K+K~, in which
case j = 2; here, the results are

Ry = Ry = 1; (24)

A®) = (4Q®)" = {Beos?p - 1)2

Let us now examine the angular correlation in the
parity-nonconserving decays of two unpolarized A
particles with close momenta through the channel
A — p+ 7~ [5—8]. In this case, we have j = 1/2,

~ 1+«

Ryjp =Ry = 5
~ 1l -«
R_1jp=R_1/0= 5

where av = 0.642 is the coefficient of P-odd asymme-
try in the angular distribution of protons originating
from the decay of the polarized A particle.?) We then
have

062
A = T8 ()

4
1—a)? 2
022 (@) ) +

4
() + (12,a0) ]

1+ o? 9 B 1—a2,25
= 5 COS E—I—Tsm§

(25)

1 —a?

S)This angular distribution has the form dW (n) = (1 + oP -
n)dQn /4w, where P is the polarization vector and n is the
unit vector directed along the proton momentum in the rest
frame of the A particle.
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1
= 5(1 + a? cos ().
Upon substituting expression (25) into formula (14)
at j = 1/2, we obtain (compare with the result quoted
in[6])

dN(B) = %(1 + Ko? cos 3) sin 3d3, (26)

where

__|F(p.q)]* + But(p, q)
2—|F(p,q)* + Bint(p; 9)

It should be noted that, if the channels of decays of
two identical particles or resonances are identical (or
if they are different, but there are identical particles
among the final-state particles), additional exchange
corrections to the relations for the angular corre-
lations arise owing to symmetrization or antisym-
metrization with respect to the momenta of identical
final-state particles originating from the two decays.
These corrections may be significant in the case of
rather broad resonances. It should be emphasized
that, if there are no identical particles among the
decay products in the two channels, such corrections
vanish at any resonance width.

An analysis reveals that the relative contribution
of the exchange corrections to formulas (11) and
(13)—(15) is maximal for identical two-particle decay
channels and that, at =0 and ¢ =0, it is 100%,
irrespective of the resonance width. With increasing
08 and g, this contribution decreases. But if each of
the parameters p?/mI and ¢p/mI is less than or on
the order of unity (p is the decay momentum; ¢ is
the absolute value of the difference of the momenta
of the two decaying resonances in the rest frame of
one of them; and m and I" are the resonance mass and
the resonance width, respectively), formulas (11) and
(13)—(15) are inapplicable at any values of the angle
B. In particular, this directly applies to the decay pair
P’ — ntr and p° — 7w (p2/mD ~ 1.1) or fo —
atr~and fo — 7T~ (p?/ml ~ 1.6).

In the case of narrow resonances (p%/mI’ > 1),
the additional exchange corrections are small at the

angles > vmlI'/p; specifically, they are on the order

of
€ = min [(ﬁ)l’ (@)1] .
mI mI

For the above case of the decays of two w mesons
through the channel w — 7%y, the parameter p%/mI’
is approximately equal to 21.8; therefore, the dis-
regard of the additional exchange corrections can
be considered to be justified in the angular region
B > 0.2rad. In the case of the decays of two .J/v reso-
nances through the channel J/¢ — ete™ (or J/1 —

K:

(27)
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ptp™), the parameter 52 /mlI is approximately equal
to 0.9 x 10%, whence it follows that, beyond the nar-
row angular region 3 < 1072 rad, the angular corre-
lation has the same character as that for the decays of
two J /v resonances through different leptonic chan-
nels [see formula (22) for the function A(3)].

As to the decays of two A particles through the
channel A — pr~ (p?/mI ~ 3.9 x 10'2), the ques-
tion of additional symmetrization with respect to the
momenta of two 7~ mesons (or antisymmetrization
with respect to the momenta of two protons) does not
arise in principle, since the experimentally detected
vertices of the decay of long-lived particles are sep-
arated by a macroscopic distance.

We have considered the simplest angular correla-
tions induced by the identity of decaying unpolarized
particles. These correlations are described by formu-
las (13)—(15), where the function A(() is defined
according to relation (11). A general theory of angular
correlations in the decays of two arbitrary resonances
having the spins j; and js and arbitrary polarizations
can be constructed in a similar way (see Appendix).
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APPENDIX

From the expansion of the product of general
spherical functions {see formula (110.1) in [14]}, the
relation

D9 () = (~1)*' DY) (m),

and the properties of Clebsch—Gordan coefficients, it
follows that

DY) (0)D}) (n)
= ()M YO Al Dl ()
L

_Z : JALO~ jm/ LM OM(n)7
T 27 +1

(A1)

where
M=m-—m.

With allowance for (A.1), the general formula (3),
which describes, for the decay of two unstable par-
ticles, the two-dimensional distribution of the direc-
tions of decay-product emission, can be recast into
the form [5, 16]

1

2 _
d W(l’ll,l’l2) = 1671'2

(A.2)



980

X ZZZZ@LI + 1) (2L + 1)tr, Aty Lo
Ly L2 M; M

1 2 L L
X Tl(dZ)Tég)OD(()J\/}l) (nl)D(()]\/z) (nQ)din dQnga

where tr, ar,. 1., M5 are the multipole parameters for the
production of two unstable particles,

M1+ M:
ULy My;LaMy = (_1) 1 QtLl —M;y;La— Mo (A-3>
_2 :2 :2 :2 :leml ]ng (1,2)
Jim/ L1 M, szngMg'Ormml,mgm2
mi m1 ma2 m2

while Téll)o and Tg)o are the multipole parameters for
their decay [16],

1 1A
T[(/I)O - ZRAlCJj'llAllLlo’ (A.4)
A
2) jo A
Tih = Y RanCiiLe
Ao

We now integrate the distribution in (A.2) with
respect to the angles, fixing only the angle 5 between
the vectors nj and ny. According to (12), we can write

A, Y, = dy, sin BdBdy.

In accordance with (10), we have
Zd L2) zmle(Wz[)( 1)

z o (- 1p D) ()

(A.5)

The orthogonahty relation for D functions yields
[ D)D) (),

mCsLlLQ 6/1,06]\41 Mo -

Thus, we have

/DLl)

5L1L25M1 MQ( 1)_M2d6162) (ﬂ)

)DS (n)d2n,dp (A6)

:2L2+1

By taking into account relation (A.6), we find that
the angular correlations between the spin-analyzer
directions characterizing the decays of two unstable
particles (resonances) can be represented as

AN () = % Ser+nrd) (A7)
L
x T K[, P (cos B) sin BdB,
where
Ky = Z(_l)MtLM;LfM (A.8)

M
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and Py (cos 3) = d(()ﬁ) (B) is a conventional Legendre
polynomial.

[t should be emphasized that the coefficients K7,
are scalar quantities (that is, they are invariant under
rotations of the coordinate frame in three-dimensional
space). In view of the unitarity of the finite-rotation
matrix, we do indeed have

Kp = Z(_l)M,tLM’;LfM’

M/
=>.> > (-1 M’M D(L]\)/[’MgtLMl;LM2
M’ M; Ms
- Z Z Z(_ MQDE\?M D}k\/([’LlMgtLMULMQ
My Mo M’

= Z Z(_l)M26M1*M2tLM1§LM2 = Kp.
1 Mo

We can see that the coefficients K, are linear com-
binations that are formed by the elements of the two-
particle spin density matrix and which are invariant
under the transformations of the rotation group. The
same applies to the weights pg of two-particle states
that are pure in the total spin S. By definition, we do
indeed have

ps = pSSimm: P ps =1,
m S

(A.9)

where

PSS"ymm! = Z Z Z Z C Jjimijama

mi m1 m2 m2

% CS'm p(l’Q)

!, /
Jlmlj2m2 mi1m3i;mamy

(A.10)

are elements of the two-particle density matrix in the
representation of pure states in the total spin S and its
projection m. It is obvious that the trace of the sub-

matrix p(5) corresponding to the value S’ = S is in-
variant under unitary transformations of the group of
rotations; therefore, the weights pg are scalar quanti-
ties. The scalar quantities K7, and pg must obviously
be related by a linear equation. By using the algebra
of 3j and 65 coefficients [14], one can show that

KL= asps,
s

where the coefficients agy, are proportional to 65 co-
efficients (Racah coefficients):

asp = \/(2j1 + 1)(2jz + 1)(=1)5 1772
x W(j1j2j1j2; SL).
In particular, we have Ky = 1 and
3 S(S+1) —j(+1) —gl2+1)
5 2/71(1 + 1)j2(j2 + 1)

(A.11)

Ky =

(A.12)
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For two spin-1/2 particles, the corresponding result
is

P1

37

while, for L > 2, the coefficients K, are equal to zero.
For the parity-nonconserving decays of two A hy-
perons through the channel A — p + 77—, we have

TV _ @ _ °

%7

where o = Ry /5 — R_y 5 is the coefficient of P-odd
asymmetry in the angular distribution of protons. In
the case being considered, formula (A.7) leads to the
result [compare with formulas (14) and (26)]

1 a? .
dN(B) = = |1+ —(pt — 3ps) cos ﬂ] sin 6d3,

2 3
(A.13)

which was previously obtained in [5—8]. Here, p; = p1
is the relative weight of the triplet states, while ps =
po is the relative weight of the singlet state.

One can test that, at j; = jo = j, formulas (8)
and (13) for unpolarized identical particles follow from
the general formulas (A.2) and (A.7) upon the sub-
stitution of the density matrix (6) into expression
(A.3) for the multipole parameters of the production
process. Here, it is necessary to consider that the
function A(f3) defined according to (11) is related to
the multipole parameters for the decay processes by
the equation

2L+ 1, (1),4(2
A(B) = Z T Téo)Téo)PL(COS B).
L

Ky =—po+ —

For the vector-meson and fy-meson decays consid-
ered above, the following multipole parameters (apart
from Ty = 1) take nonzero values:

Too(w — 799,V = ete™,V — utp™) = +/1/10,
Tgo(w—>37r ¢—>KK 2/5,
Tgo(f2—>2ﬂ' f2—>KK 2/7,
Tyo(f2 — 2w, fo — KK) = \/2/7.
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Abstract—The purpose of the present article is to call attention to some realistic quasiparticle-based
description of quark/gluon matter and its consistent implementation in thermodynamics. A simple and
transparent representation of the thermodynamic consistency conditions is given. This representation
allows one to review critically and systemize available phenomenological approaches to the deconfinement
problem with respect to their thermodynamic consistency. Particular attention is paid to the development
of a method for treating the string screening in the dense matter of unbound color charges. The proposed
method yields an integrable effective pair potential that can be incorporated into the mean-field picture.
The results of its application are in reasonable agreement with lattice data on the QCD thermodynamics.
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1. INTRODUCTION

With the advent of the RHIC and LHC, there is a
growing need for a deeper understanding of various
properties of QCD matter at high temperature and
finite density. At the moment, we are still far from a
satisfactory level in this respect, even for equilibrium
properties of quark—gluon plasma. Indeed, although
such a system can in principle be approximated as a
gas of quarks and gluons, a fully perturbative calcu-
lation with these degrees of ireedom does in practice
not work well at any reasonable temperature since
the perturbative series are badly converged due to
infrared-sensitive contributions. On the other hand,
the QCD lattice calculation, the only systematic fully
nonperturbative method available, is restricted in the
presence of light dynamical quarks and even more so
in the presence of a finite baryon density (see[1] where
the current state of the art is summarized). Therefore,
various phenomenological, QCD-motivated models
are considered for describing the thermodynamics of
highly excited nuclear matter and its equation of state
(EoS).

General arguments from QCD and lattice data
tell us that a kind of string is developed between
quarks and antiquarks at large distance and it is
natural to identify such ¢q system with conventional
mesons. Treating quark and gluon propagation in the
confining QCD vacuum within non-Abelian SU(3)
gauge theory, the string dynamics was successfully
applied to conventional mesons, hybrids, glueballs,

*This article was submitted by the authors in English.

DPermanent address: Joint Institute for Nuclear Research,
Dubna, Moscow oblast, 141980 Russia.

and gluelumps. However, if such a string is sur-
rounded by unbound quarks and gluons, the ¢ sys-
tem can be excited not only in color-singlet states,
but also in color-octet states, even dissociate into
constituent elements. The latter will signal, in gen-
eral, the deconfinement phase transition. These phase
transformations are intimately related to the change
in string properties (in particular, color charges of
quarks are screened in a quark—gluon environment):
string behavior becomes medium-dependent.

At present, there are number of simplified models
for describing static hadron properties as well as
a highly excited, deconfined state of quark matter,
the quark—gluon plasma (QGP). A common feature
of these models is that they all are based on a
quasiparticle picture, considering isolated particle-
like degrees of freedom and assuming that these
quasiparticles are moving in a background mean field.
Two- and many-particle correlations are included in
the mean-field contributions and in the modification
of the one-particle spectra. Well-known examples are
the original bag model and its later versions [2—4],
phenomenological approaches with a temperature-
dependent bag constant [5, 6], string-motivated
density-dependent corrections to an ideal (massive
or massless) quark matter equation of state, the very
consideration of hadrons as composite objects in
QCD, excluded volume corrections [7, 8], and finally
mixed phase [9] and chemical mixture[10, 11] models
dealing with the transition between quark matter and
hadron matter in a phenomenological way.

The present paper concerns the quasiparticle de-
scription of the QCD thermodynamics with the par-
ticular emphasis on the mean-field treatment of in-
medium strings. The paper is organized as follows.

1063-7788/03/6605-0982$24.00 © 2003 MAIK “Nauka/Interperiodica”



TOWARD THERMODYNAMIC CONSISTENCY

In Section 2, we consider the thermodynamic consis-
tency of the quasiparticle description in general. Any
phenomenological approach involving quasiparticle
interaction usually operates with a Hamiltonian that
may depend on the thermodynamic characteristics of
the surrounding matter, like the temperature T and
density n. As has been known for a long time (for
details, see [12, 13]), there exist certain restrictions
on the dependence of such a Hamiltonian on the
thermodynamic variables. In this section, a transpar-
ent and useful representation of these restrictions is
derived [see Egs. (21) and (22)] that directly involves
the quasiparticle spectra. The obtained representa-
tion of thermodynamic consistency allows us to get
an instructive relation between a number of modern
approaches dealing with the deconfinement problem
at the framework of a quasiparticle picture, as exem-
plified at the end of Section 2. The QCD-motivated
interactions, in particular, stringlike interactions [14],
are investigated in Section 3. A comprehensive model
of string formation in the dense matter of unbound
color charges is developed, which supports the choice
of the mean field proportional to an inverse power of
the color-charge density, as proposed in the papers [9,
12, 15—17]. This quasiparticle scheme is applied in
Section 4 for thermodynamics of the deconfined QCD
phase. The case when the system is in thermal but not
chemical equilibrium is also considered. The results
are summarized in the concluding Section 5.

2. QUASIPARTICLE HAMILTONIAN

In order to obtain an effective quasiparticle des-
cription of a medium made of unbound color charges,
one should operate with screened long-range poten-
tials. A natural way to introduce the screening in
quark matter is based on using the probability density
P(r) to form a string of the length r. It is worth
noting that this investigation scheme has much in
common with another one which deals with the prob-
ability density that the nearest neighbor occurs at a
distance r [16]. Both approaches involve thermody-
namic variables, which lead to a screened pair poten-
tial depending on thermodynamic quantities. Due to
such effects, the quasiparticle Hamiltonian becomes
density- and temperature-dependent, which in turn
leads to a modification of a thermodynamic potential
(e.g., the Gibbs free energy). Eventually, a nonideal
EoS emerges.

2. 1. General Structure of Hamiltonian

We start with the general quasiparticle Hamilto-
nian

H= Z Z eri(T, n)a;r(iaki +Vo(T,n). (1)

% k
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Here, aLZ. and ay; are the usual creation and annihi-
lation operators for quasiparticles of the ith sort with
momentum k. They also may depend on other inter-
nal degrees of freedom like spin, color, and isospin.
The volume V' is constant and rather large (infinite
in the thermodynamic limit). Thus, in this limit, the
summation over quantum states labeled by k can
be replaced by a phase space integral (including the
internal degeneracy factor d;):

d®k
k

In general, the one-particle energy ex;(T,n) =
exi(T,n) and the background field contribution
®(T,n) to the energy density both depend on the
temperature 7" and the set of particle densities n =
{n1,n9,...}. Note that the quantity V®(T,n) is
nothing else but the energy of the quasiparticle vac-
uum. Generally speaking, it differs from the vacuum
of primordial particles, which leads to the c-number
term V®(T,n) appearing in Eq. (1). In the present
paper, we consider the situation when, similarly to
the case of the Hartree—Fock quasiparticles, the ex-
pectation value of the quasiparticle number operator
N; = Yk altiaki is equal to the number of primordial
particles V; = n;V. This implies that we deal with
the picture of quasiparticles interacting and, thus,
correlating with each other. In turn, the expectation
value of the Hamiltonian has to be equal to the mean
energy of the system under consideration. This leads
to the following relations:

. d3k
(i) =B =V Y d [ e+ Ve, (3)

N 3
m»:m:V@/égwh (4)

with the occupation numbers vy; = <aLiakZ~>. There
is another way of calculating the mean energy F =
Ve(T,n) and mean multiplicity N; = Vn; that pro-
ceeds from a thermodynamic potential rather than
from Egs. (3) and (4). For density- and temperature-
dependent Hamiltonians, these different ways may
lead to different results (see, for example, [9, 12]).
Hence, in what concerns the dependence on n and
T, the quasiparticle Hamiltonian will have a correct
structure only if the thermodynamic consistency re-
quirements (3) and (4) are satisfied when starting
with either the Hamiltonian or the thermodynamic
potential.
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2.2 Chemical Potentials

Using temperature 7' and number densities n; =
N;/V as basic descriptive variables, the thermody-
namic behavior and the appropriate EoS can be de-
rived from the corresponding thermodynamic poten-
tial, the free energy F'(V, N, T):

3k
F=Vf= TZ{idi/Wln (1—¢ge ™) (5)
+VZuini + V.

7

Here, & = 41 is determined by the quasiparticle
statistics, p; stands for the chemical potential of the
quasiparticles of the ith sort, and zy; is defined by

€ki — Hi

2hi = (6)
The simplest way of calculating the free energy im-
plies the use of the grand-canonical ensemble when
particle numbers are known only on average and
chemical potentials y; are introduced instead of N;
as descriptive thermodynamic variables. To calculate
the partition function in this case, the quasiparticle
Hamiltonian (1) should be modified to

H' =H-3 wN (7)

where H is defined by Eq. (1). We recall that the
physical meaning of y; is the energy loss due to
removing a quasiparticle of the ith species while the
total entropy and volume of the system are kept con-
stant. This chemical potential a priori has nothing
to do with the fact whether this particle really car-
ries a conserved charge or not. However, there are
Lagrange multipliers associated with the conserva-
tion laws of such charges like the baryon number,
strangeness, or electric charge. In order to elucidate
the difference between chemical potentials in general
and those associated to the conserved charges, let
us consider a particle mixture of many sorts whose
abundance is known only on average. The mixture
components (not necessarily all of them) carry some
conserved charges. The conservation of these charges
is controlled by the appropriate chemical potential.
We denote such a charge of type b carried by a particle
belonging to the ith component of the mixture as gy;.
Then, for conserved quantities, we have

Qy = Z qvi ;.- (8)

Usually there are more components than the number
of conserved charges. In particular, it is the case for
quark—gluon matter, to which we pay special interest
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in the present paper. Besides the case of a single-
component system, Eq. (8) is insufficient for calcu-
lating all mean numbers for the mixture components.
Therefore, we need some additional requirements that
would allow us to determine the particle numbers V;
by making use of Eq. (8). Chemical equilibrium is
usually assumed, and then these additional require-
ments are given by

= it 9)
b

where pyp, stands for the chemical potential associated
to the charge sort b. In the general case, when the
system is out of chemical equilibrium and the com-
ponent concentrations become time-dependent, the
chemical potential can be split into two parts,

i = Qivttn + i, (10)
b

and Eq. (7)is reduced to
B = 1= 3 - 3l
b i

The quantities ji; describe the deviation from chemi-
cal equilibrium in the thermally equilibrated system.
They are exactly zero in the chemical equilibrium
limit, resulting in the familiar relation

ity = 11— 3 s
b

(11)

(12)

Below, we shall investigate consistency of the quasi-
particle picture in a thermodynamic treatment in-
cluding the possibility of deviations from chemical
equilibrium in a mixture.

2.3. Thermodynamic Consistency

As mentioned above, any approach starting with
a thermodynamic potential appears to be thermody-
namically consistent. In other words, if all the quan-
tities of interest can be calculated only through the
derivatives of this thermodynamic potential, one is
prevented from encountering thermodynamic incon-
sistency. Problems arise, however, when the calcu-
lation can proceed not only from the constructed
thermodynamic potential but also from a more fun-
damental level, some quasiparticle Hamiltonian at a
given temperature and/or density. In the last case, the
result may depend on the calculation method unless
the quantities €;(T,n) and ®(7T,n) obey relations
derived in accordance with the consistency require-
ments (3) and (4). Below, these relations are called
the conditions of thermodynamic consistency.

To elaborate on these conditions, let us consider
a system with the Hamiltonian defined by Egs. (1)

Vol.66 No.5 2003
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and (7). If the abundance of all mixture components
is known only on average, the proper thermodynamic
potential has the form

Q=E-TS-> N, (13)

with S being the total entropy. The grand-canonical
partition function corresponding to H' can readily be
calculated:

Z = tr(e”H'/T)

H § e —RkiNki

k,i ngi

(14)

o~ OV/T _ —QT

Recall that, in the Fermi gas case, the integer quantity
ny; equals either 0 or 1, while in the Bose one it runs
from 0 to co. Hence, from Eq. (14), it follows that

Q d3k

Note that Eq. (15) covers Eq. (5) with the definition
F =FE —T§S. It is well known that, for the Hamilto-
nian H’, the average quasiparticle occupation number
Vi is

—&e ) + 0. (15)

1
Vi = <nkz> = ezT—fi’ (16)
which together with Eq. (15) leads to
_<I> TZd@/ In(1+& ). (17)

The total differential of the thermodynamic potential
Q is given by

3
dQ = dV <q> - TZ di&; / % In(1+ giy,m-)>

(18)
Pk
—VTZdifi/W

&idvg
1+ &g

Since in the grand-canonical ensemble the quasipar-
ticle densities m; and average occupation numbers
vk; are functions of the temperature T and chemical
potentials p;, all the differentials can be expanded in
terms of dT', dV', and dp;. In particular, we have

dvg; = —vi(1 + & v )d (Em; 'ui) ,

dTl
X (? ln(l—l-fin;i)-F > + Vdo.

8eki
oT

Oeki
O,

de ki — d,u 5 + dT,

PHYSICS OF ATOMIC NUCLEI

Vol.66 No.5 2003

985

Bl 9P
do = 2= dqp; + 2 ar,
;M T AT

Inserting these relations into Eq. (18) and then com-
paring the derived result with the general formula

dQ = —pdV — SdT = Nydy;,

one can arrive at

E—Zd/ S €kiVki + P (19)
- Zﬂici - TCr,
Bk
m=d [ =G 0)
where
>k 3ek]
+Z / 3 oT Vij,
A3k 86@
ci 8uz +Z / ) o

Equations (19) and (20) should be compared to the
consistency requirements given by Egs. (3) and (4).
It leads to the conditions Cr = 0 and C; = 0. This re-
sult can be rewritten in a more manageable form that
allows for relating our specific case based on Eq. (1)
to a more general one. To elucidate this connection,
let us consider the derivative matrix

Mij == 8’01/8[1,]

[ts elements can, in principle, have arbitrary values,
and we expect that the determinant of M;; is not zero.
This is indeed the case since the derivative matrix is
given by the implicit relation

8ni 1 dgk‘ aeki

T —d | —u(1 (65 — ’

op; T / (2m)3 il + ) ( ’ 3uj>

leading to the matrix equation

My, = Ajr, = > MyBy;
i

with

1 d3k
Ajre = S d; / W%(l + Vij),

1 A3k Ok
Bij=~d; | 2 0 (11 u) o

This matrix equation has a formal solution M = (1 +
B)~'A. While B may have zero eigenvalues, A does
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not, so the determinant detM = detA/det(1 + B)
cannot vanish. Using this information, the equalities
Ct = 0 and C; = 0 can be rewritten as follows:

A3k 86@

Z / o =0,  (21)
8<I> A3k ey
+Z /%38 Ly =0.  (22)

Equations (21) and (22) represent a particular case of
the more general relations [9, 12]

OHe \ OHe \
<8T>_0’ <8ni>_0'

These conditions of the quasiparticle consistency are
reduced to Egs. (21) and (22) when the (temperature-
and density-dependent) effective Hamiltonian Hj
has the quasiparticle form (1). Equations (23) were
first derived in [12] (see also [9]) under the require-
ment that all the statistical ensembles of the system
governed by the density- and temperature-dependent
Hamiltonian H,y yield the same thermodynamics in
the infinite volume limit. Thus, to avoid thermody-
namic inconsistency, the constraints (23) should be
satisfied in construction of the effective quasiparticle
Hamiltonians.

Let us emphasize that thermodynamic consis-
tency is not sufficient by itself when the thermody-
namics is constructed starting from the level of a
thermodynamic potential but the Hamiltonian struc-
ture is ignored. In this case, nonphysical expressions
can be involved even if there is no problem with ther-
modynamic consistency and all the thermodynamic
quantities are derived by differentiating a thermody-
namic potential. We suggest that relations (21) and
(22) should also be employed in a situation like that
to avoid unreasonable expressions for quasiparticle
spectra which can be met in the literature. For
instance, see the papers on the compressible bag
model [18]. It is thermodynamically consistent, but
the quasiparticle spectra used there have nothing to
do with (21) and (22). Another example concerns the
approach of [19] that has no problem with thermo-
dynamics either. However, the shift of the chemical
potential proposed in that article is equivalent to the
introduction of a temperature-dependent vector-type
mean field. It is shown below from Egs. (21) and (22)
(see the next subsection, Example 1) that a mean field
like this cannot depend on the temperature explicitly.
By the way, it is quite possible that the nonphysical
feature of the quasiparticle spectra used in [19] is an
actual reason for causality violation when the sound
velocity becomes larger than the velocity of light (for
more details, see [20]).

(23)
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Note that, when temperature and density depen-
dence of the effective Hamiltonian is mediated only
by some thermodynamic quantity A, the consistency
conditions (23) are equivalent to (0H.;/0A) = 0.
This relation comes from the well-known expression
0F = (0H.5) [21], where 6F and 0H.; stand for
infinitesimal changes of the free energy and Hamil-
tonian, respectively. This expression can easily be
derived by analogy with the familiar Hellmann—
Feynman theorem and, taken in conjunction with the
extremum condition for the free energy with respect
to the parameter A, leads to (0H,j/0A) = 0.

2.4. Quasiparticle Spectra

Conditions of thermodynamic consistency (21)
and (22) result in certain physical restrictions to the
mean-field potential depending on the structure of
quasiparticle spectra without going into any detail of
interaction between constituents. We shall demon-
strate that in a few cases used in phenomenological
treatments.

Example 1. Let the energy of a quasiparticle of the
ith sort moving with the 3-momentum k be approxi-
mated as (for instance, see[9, 12, 15—17, 22—24])

where w;(k) stands for the energy of the free particles
of the 7th sort and, as above, n denotes the set of
particle number densities {n1,ns, ...}. Generally, the
mean-field potential U;(T, n) is a function of temper-
ature and particle densities. The free-particle energy
can be given in either the relativistic form, w;(k) =

\/k? 4+ m2,, or in the nonrelativistic one, w;(k) =

k% /2mg;. 1t depends only on the momentum k and
bare particle mass my;. Then, the conditions of quasi-
particle consistency (21) and (22) are reduced to the

following equations:
od ou; 0P ou;
Tt 0 g T gy,
(25)

As is seen, ignoring the background field contribution
®(T,n), as, for example, in [17, 22], results in a loss
of thermodynamic consistency. [t is important to note
that Egs. (25) are compatible only if the mean field U;
does not depend on the temperature explicitly. Indeed,
the first equation in (25) has an integral of the form

anUj +® =,
J
where ¢ = (n) is an arbitrary function of the quasi-
particle densities. By differentiating this expression

Vol.66 No.5 2003



TOWARD THERMODYNAMIC CONSISTENCY

with respect to n;, we get

8@ 3Uj 0P
8m_Ui+;nj—i+ '

Taken in conjunction with the second equation in
(25), the obtained relation is reduced to dp/0n; =
U;. It follows then that U; and & are temperature-
independent functions. In other words, when quasi-
particle spectra are defined by Eq. (24), the ther-
modynamically consistent mean-field potential may
depend only on particle densities: U; = U;(n), ® =
®(n). Note that this important point is missed in
some papers [25], where the excluded volume effects
are treated by means of the mean-field approximation.

Equations (25) lead to one more interesting result,
ou;  0U;
8nj N 8nz ’

This crossing relation, first presented in [24], fol-
lows from the second equality in Egs. (25). To derive
Eq. (26), one should differentiate the second equation
in (25) with respect to n;. Then, by interchanging the
indices / and ¢ and comparing the obtained expression
with the previous one, we arrive at Eq. (26). By doing
s0, one should keep in mind that

’U;  9*U; e 9’0
8nl8ni N 8ni8nl’ 8n18nl N 8’0187”

This is valid provided that the second derivatives of
U; and ® are continuous functions of 7" and n, which
is usually the case. Note that Eq. (26) is very use-
ful when dealing with the mean fields U; for many-
component systems. For example, see the investiga-
tion of quark—hadron interactions in [9]. The crossing
relation (26) should be fulfilled when constructing
the mean fields acting on quasiparticles of different
species in a many-component system. Otherwise,
the thermodynamic consistency can be lost. As an
example, one can point out the paper [23], where
mean fields were chosen as U; = ny(1h/mo;)® with
6 =1 or 2. Here, /. denotes the nucleon mass and
Mot = D Nj.

Example 2. Another popular form of quasiparticle
spectra eg; (T, n) is given as

(26)

eki(T,n) = \/k? + m2(T,n); (27)
i.e., an effective quasiparticle mass m; = m;(T,n) is
introduced in a way similar to scalar mass in the rela-
tivistic mean-field theory [26]. In this case, Egs. (21)
and (22) can be rewritten as follows:
0P 4 ( )8mj
aT ; " ar

=0, (28)
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3‘1’ +Z S)%m] — 0,

U

where the Lorentz scalar quasiparticle density ngs)

defined by
(s)

d dgk‘ m]’
(2m) \/E +mj

For the sake of simplicity, let us limit ourselves to the
case of one sort of quasiparticles. Differentiating the
first equation in (28) with respect to n and the second
one with respect to T, we arrive at

On) om _ on') om

oT on on 0T

provided the mixed second derivatives of ® and m are
equal to each other. As follows from Eq. (30), the gra-

dients of functions n(®)(T',n) and m(T, n) are parallel
vectors in the T'n plane. Hence, m is left constant

along any line where n(®) is constant. Since n(*)(T, n)
and m(T,n) are differentiable functions of 7" and n,
the T'n plane is densely covered by lines of constant

n(®). Therefore, in a thermodynamically consistent
model with one sort of quasiparticles, whose energy
is defined by (27), the effective quasiparticle mass de-
pends on temperature and quasiparticle density only
through the scalar density. The Walecka model [26]
without vector field (for zero baryon density) is a par-
ticular case of the considered variant. Another exam-
ple can be found in the paper of Boal, Schachter, and
Woloshin in [15], where interactions in the quark—
gluon plasma are described by introducing the ef-
fective masses of quarks and gluons depending on
the sum of the color-charge densities. As has been
proven above, this version is inconsistent. One can
expect that the case of many quasiparticle species is
described by equations similar to Eq. (28), i.e., m;

is a function of the set of ngs). As a consequence, ®

depends on 7" and n through the scalar densities too

and satisfies
= —/an-s)dmj.
J

Deconfinement models dealing with the tempera-
ture- and density-dependent masses of quarks and
gluons [5, 27, 28] are also related to Example 2.
Here, it is often assumed n(®) o m? and ®  m*. A
purely temperature-dependent bag constant, ®(7),
without mass modifications, on the other hand, is
inconsistent. The same is related to the situation
when temperature-dependent masses without the
background term are used [29]. To go into more detail,
see also [13].

is

(29)

=0, (30)

(31)
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Example 3. If the mean field in Eq. (24) is scaled
with some coupling constant, U; = g;U (see, for ex-
ample, [9, 12, 24]), then conditions of thermodynamic
consistency take the form

9  oU _, 0
ar "Par = onm,

with
p=>_gin;.
J

Using a procedure similar to that described in the
previous example, one can be convinced that the den-
sity dependence of the mean field U is mediated by
p(n) only. If g; is proportional to the baryon number
b; of the quasiparticle i, g; = gb;, then we get p =
g, bin; = gnp, where ny, is the total baryon density.
A similar situation is realized when the quasiparticle
interaction is mediated by a vector field.

U

0 (32)

Now let us return to [23], mentioned at the end
of Example 1. Equations (32) suggest how one can
correct the mean field U; = ny(1m/mg;)° used in
that paper in such a way as to keep the relation
U; o (1 /mq;)?. It turned out that the unique solution
is given by U; = ¢(p)(1h/mo;)°, where instead of n
we use p = Zj(m/moj)‘snj and an arbitrary function
©(p) which can be chosen as ¢(p) = p.

Sometimes, it is convenient to subdivide the full
@ <o
(corresponding to attractive interaction) and gzm >0
(related to repulsive interaction—see, for exam-
ple, [24]). In this case, U; = glm U, — \gga)\Ua, and we

can expect that the repulsive-interaction component

set of coupling constants into two groups: g

U, is afunction of p, =), gZ(T)ni, while the attractive
one U, depends on quasiparticle densities through
Pa = ZZ gga)m.

Example 4. By analogy with the approximation
U; = g;U considered in Example 3, the effective
quasiparticle mass of Example 2 can also be scaled
asm; = g;M(T,n). In particular, M (T, n) can be the
constituent quark mass, whereas g; is the number of
quarks in the baryon cluster of the ith sort. Generally,
a cluster of g; constituents may consist of quarks, an-
tiquarks, and gluons (i.e., forming baryons, mesons,
hybrids, and glueballs) as well. By doing so, we get

00 @M _, g@ @M _ (33
T, ;

on;
o9 =3 gn
205
J

ar TP ar T
with
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The thermodynamics of such a system depends on
the descriptive variables 7" and n through the quantity

pl)(T,n).

3. MEAN-FIELD TREATMENT OF STRING
INTERACTIONS

Until now, we have discussed general restrictions
to the phenomenological Hamiltonian due to the
thermodynamic consistency. It can be further elab-
orated by specifying the interaction between generic
constituents. The quasiparticle properties ought to
be derived from this underlying interaction. In our
phenomenological treatment, we consider a particular
case of strong pair interaction mediated by strings
stretched between color charges. The main difficulty
here is that such a system is plagued with long-range
interaction, and only in-medium screening renders
the problem treatable, even in the weak-correlation
approximation.

Strings are particular QCD field constructions in-
volved in the interaction between two color charges
in vacuum. We consider here how this interaction
will behave in a medium consisting of pointlike color
charges. Let some reference color charge creating a
string be placed at the origin of coordinates and other
color charges be distributed around with the den-
sity n(¢), where ¢ is the distance from the reference
charge. Physically, we can expect that the string for-
mation is characterized by a probability depending on
its length, but not on its formation history. Let P(¢)d¢
be the probability for a string to have a length between
¢and ¢ + d¢. The quantity P(¢) can be represented as
a product of two factors:

l
P) = 1—/de(ac) w(l). (34)
0

The first factor in Eq. (34) is the probability for the
string to have a length not less than ¢. The second
factor w(f) is related to the conditional probability,
w(¢)dl, meaning that a string is formed between ¢ and
¢+ d¢ (provided it has already reached the length 7).

For gradually growing strings, the quantity w(¢)
can be obtained by invoking arguments similar to
those used in calculation of the mean-iree path of
a particle moving through a medium in a given di-
rection. In this scenario, we assume that a string is
caught by any color charge within a cylinder of the
radius a and with an axis along the considered string
direction. This leads to

w(l) = ma’n(l). (35)

The factor ma? is interpreted as a string cross section
accounting also for a lack of string dynamics. The
effective radius a may depend on the medium.

Vol.66 No.5 2003
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In another scenario, the strings are assumed to
wildly fluctuate in direction. The gross factor w(?) is
rather well approximated in this case by the relation

w(l) = 4ml’n(0). (36)

Equation (36), having an additional ¢? factor, can
be derived by analogy to Eq. (35) if the whole area
of the spherical shell, 47¢2d¢, at the distance ¢ is
taken into account. Here, all possible partner charges,
located at the distance ¢, potentially participate in the
screening. Note that, in both cases, n(¢) stands for
the number density of potential partners on which a
string of length ¢ can be closed.

Usually, it turns out to be more convenient to deal
with the integro-differential equations rather than
with the integral ones. After differentiating Eq. (34),
we arrive at

£
dP dw
—7 = WO PO+ (1 - /P(x)dx) - (37)
0

After substituting here the integral definition (34), we
get
dpP dw P
= —w(l)P(L) + T
This ordinary differential equation is separable and
has the following explicit solution:

P(f) = buw(f)e Jo w@) do. (39)

The integration constant b is determined by normal-
ization of the probability density:

+00
0/ P(z)dz = 1.

Let us consider now Egs. (35), (36), and (39) in more
detail. Neglecting the spatial charge correlations (i.e.,
taking n(¢) = n = const), Egs. (35) and (39) (be-
longing to the first, straight string, scenario) result in
an exponential screening

P(0) = wane ™ L (41)

From here, the probability for a string to be shorter
than or equal to n is given by

(38)

(40)

n
Q) = [ Playdz =1 a2)
0

and the average string length is

(0) = fo(x)dx S

mwa=n
0

(43)
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Noting that the probability distribution (41) can be
represented in the form

P(l) x e~ EWO/E(0) — o—t/) (44)
with E(¢) = o/, one sees that short strings are ener-
getically favored. This looks like a natural conclusion,
but, nevertheless, it is not trivial, because “energy”
arguments have not been involved explicitly in the
reasoning.

Within the second scenario of the string screening
[i.e., strings wildly fluctuating—see Eq. (36)], the
corresponding probability density becomes

P(t) = drnt2e /3, (45)

This expression covers the result of [16], where the
probability of string formation has been calculated in
the nearest neighbor approximation. The probability
of the string length to be less than or equal to n now
has the form

U

Qn) = /P(:c)dx =1- e_%mm?), (46)
0

and the average string length is given by

o))"

with T'(...) being Euler’s gamma function. By anal-
ogy with the representation (44), Eq. (45) can be
rewritten as

P(0) x (£)% exp (— (r (%) %)j (48)

which also agrees with the argument that short
strings are favorable.

As noted above the straight-string scenario based
on Eq. (35) involves the effective string radius, a,
which may depend on thermodynamic variables. In-
deed, the string survives only in the case when the
characteristic length a does not exceed the mean
distance between neighboring color charges, rg =
(47n/3)~1/3. Therefore, operating with Eq. (35) and
Egs. (41)—(44), we should employ a < rg. Now, es-
timating a = ¢rg (¢ < 1 is some constant), we obtain
from Eq. (43)

0= (s8)

in accordance with Eq. (47) under the choice ¢ =

2/4/3'(1/3) = 0.7 < 1. In summary, the thermody-
namics of string interactions is ruled by the average
length of in-medium strings. Thus, in spite of differ-
ences in P(¢), both considered scenarios of the string

(47)

(49)
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screening lead to qualitatively similar thermodynamic
pictures. It is interesting that the density-dependent
interpretation of a in Eq. (41) leads to a density-
dependent screening:

2

—ma“nr __ _—Msger
—e ,

e
with the screening mass M. = (3¢ /4)%/3(7n)1/3.
At sufficiently high temperatures, the QCD thermo-
dynamics approaches the Stefan—Boltzmann regime
where n ~ T3. This yields M. o< T, which is nicely
consistent with perturbative QCD.

The modification of the energy density due to pres-
ence of in-medium strings can be constructed as

Ae =no(l), (50)

with the string tension o. In this case, the color con-
stituents of the system are affected by the following
mean field:

U=o{l) =An"", (51)

where the constants A and  carry information about
the sort of color charges and character of the in-
medium string screening. Note that the results of
lattice simulations for SU(3) symmetry can be ap-
proximated by v ~ 2/3 [9, 12]. This is in qualitative
agreement with our rough estimate v ~ 1/3 neglect-
ing the spatial correlations of color charges. Indeed, in
respect to the thermodynamic character of the EoS,
only the fact that ~y lies between 0 and 1 is decisive.

Concluding this section, we sketch how one
should, in principle, deal with the case when spatial
correlations of color charges are taken into account.
Let us consider a reference color charge placed at the
origin. The important point is that the ratio

9(0) = o

is nothing else but the radial distribution function [30]
which determines the pair particle correlations in the
uniform system of color charges with the density n
given by

(52)

n= glim n(l).
As follows from Eq. (52), Egs. (41) and (45) operate
with g(¢) = 1, which corresponds to neglecting the
spatial correlations of color charges. To go beyond
this simplification, one should replace n(¢) by ng(¢) in
Eq. (36). In particular, using Eq. (35), one can derive
the following equation:

P(f) = bra’ng(f) e~ n fo 9@de (53

the average length of the in-medium strings being
dependent on the charge—charge spatial correlations.
Note that, for ¢ — oo the quantity g(¢) tends to 1, and
we arrive at the same exponential decay of P(¢) as in
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Eq. (41), but with a different prefactor. In principle,
this difference can lead to another estimate of v being
closer to the lattice result mentioned above. Thus, the
probability density P(¢) should not be identified with

the radial distribution function as was done in [16].

4. APPLICATION TO QCD
THERMODYNAMICS

The developed technique allows one to construct
a thermodynamic potential in a self-consistent way
starting from the microscopic level. The Hamiltonian
structure of a particular phenomenological model is
defined by the physical assumptions used. Some sim-
ple models for QCD thermodynamics are considered
below in order to illustrate the convenience and power
of the conditions of thermodynamic consistency (21),
(22) and to show the rationality of our treatment of
in-medium strings.

4.1. Ideal Gas in a Baglike Model

Let us consider an ideal gas of particles whose
one-particle spectrum is independent of medium pa-
rameters,

ewi(n, T) = wi(k). (54)
Then Eqgs. (21) and (22) have the form
0P 0P

leading to a constant background energy & = B. It
is frequently associated with the bag constant. In
this relatively simple case, the chemical potentials
are nevertheless determined by the set of the implicit
equations

3k 1
n; = di .
(27)3 e(witk)—pi)/T — ¢,

However, in the classical approximation, we have
v < 1 [see the definition (16)] and Eq. (56) is re-
duced to the expression

Cr )i wi/ T
n; = d; (27r)3€ ¢ ¢ = Xi(T)e v

Here, the second equality defines x;(7"), which relates
to the chemical potential as

pi = <XZZZT)> '

Thus, for the internal energy density, we obtain

e=3TY n;+B,
[

(56)

(57)

(58)
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whereas the pressure is given by
p=T Z n; — B.
i

These equations constitute the classical approxima-
tion to the familiar MIT bag model [2, 31], being a
popular approach of investigating the thermodynam-
ics of the quark—gluon plasma.

(59)

4.2. Temperature-Dependent Scalar Mean Field

The temperature-dependent scalar mean field ac-
counts for a temperature-dependent mass. In this
situation, for the one-component system, the quasi-
particle spectrum is given by [cf. (27)]

ex(T,n) = k2 +m2(T), (60)
the corresponding scalar density [cf. Eq. (29)] de-
pending only on temperature. The gluon and quark

plasma (at zero baryon density) is of particular inter-
est, where approximately

m*(T) = mé + g*T". (61)
Neglecting the derivative of the slowly changing tem-
perature function g(T"), from Eq. (60), we obtain

Oey _ m(T) dm(T)  ¢*T

oT € dtT - € (62)
Hence, the Cr = 0 constraint leads to

o 9 3k vy

— Td | —=— =0. 63

or T / (2m)3 e 0 (63)

In the high-temperature regime, the influence of my
can be ignored, and for chemical equilibrium (x = 0),
one obtains

1
e=KT*"+B, p= §/CT4 - B, (64)
where K is given by the integral
lC—d/ d3x 1 x2+%gQ. (65)
O i\t

The g = 0 case provides the original MIT-bag EoS.

4.3. Density-Dependent Mean Field

Our next example deals with a system of quasi-
particles of a single sort with the density-dependent
spectrum justified in Section 3:

ex(T,n) =w(k) + An™7, (66)

where A and v have been discussed above. In this
case, Egs. (21)and (22) give rise to the following form
of the background energy density:

B(n) = ﬁAnH. (67)
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Hence, in the Boltzmann approximation, we find
n

x(T)

whereas for the internal energy and pressure one can
derive

nd / >k _ 1 _
e=— | —w(k)e®/T 4~ Ap'7,
@) ] e ® T
(69)

uw="TIn + An77, (68)

p=nT — —— Ap'~7, (70)
L=~

As follows from our consideration in Section 3,
0 < v < 1. In this case, the chemical potential grows
with decreasing density (e.g., due to string pulling),
and therefore such systems reveal a strong tendency
to form clusters. Free sources of strings, or long
strings, respectively, will eventually be purged out of
the system.

4.4. Massless Gluons with String Interaction

Let us consider in more detail the case given
by Eq. (66) for massless SU(3) gluons. The choice
v =1/3 and A = (2/3)0 satisfies Egs. (49) and (51)
ata ~ ro = (3/47n)'/3. The relation between density
and nonequilibrium chemical potential [see Eq. (10)]
is now given by

/ B3k 1
n=d a—
(27)3 o(k+3on=1/3—p)/T _

In the Boltzmann approximation, which is quite ap-
propriate to the system of interest, this equation yields

(71)

= —on +TIn ——, 72
b= NGB (72)
where x(T') is proportional to T3:
q\1/3
= OrP A= (5) . @)

We seek the solution of the chemically equilibrium
state defined by u = 0,
eq = x(T)e” i T, (74)

This can be transformed into a simple transcendental
equation by denoting
2 =Tng'?, (75)

We get
Az = €%, (76)
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Fig. 1. Normalized energy density and pressure of a
massless gluon gas with string-like interaction. Dashed
line demonstrates the Stephan—Boltzmann regime cor-
responding to the case of a gas of noninteracting gluons.

This equation has no real solution above the value of &
corresponding to a temperature, Tipem. At this chem-
ical critical temperature, the left-hand side and right-
hand side of Eq. (76) and their derivatives should be
equal to each other. Thus, the last condition gives

A= Ged* (77)
Comparing with Eq. (76), we obtain
zer = 1/0, A=ae, (78)

where e = el. Finally reexpressing the temperature,
we arrive at the result that, below the value

2e
9_)\\/57
there is no equilibrium solution for the stringlike EoS.
Assuming SU (3) symmetry for massless gluons with
d =16 degrees of freedom, we have A ~ 1.175 and
arrive at the estimate

Toper =~ 0.718V/3, (80)

which for 0 = 0.22 GeV? gives Typem ~ 337 MeV. It
is noteworthy that a similar relation between the color
deconfinement temperature and string tension, T, =
(0.60—0.65)/c = 280—305 MeV, has been obtained
in the Monte Carlo simulation of the lattice SU(3)
quenched QCD[1, 32].

In Fig. | the quantities /7 and 3p/T* are plotted
as functions of the temperature for the system of
gluons with the spectrum Eq. (66) beyond the Boltz-
mann approximation. As is seen, Eq. (80) indeed
provides a good estimate for the limiting temperature
Tehem, Which is now 303 MeV. The deviation of the

Tchem = (79)
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0 | T AN R R |
1 2

PR R
3T/Tdec

Fig. 2. The interaction measure (g —3p)/T* of the
SU (3) gluon system: circles are our data for the massless
gluons interacting via screened strings; squares show the
lattice results from [32]. Our data are plotted for the case
Tiee = 303 MeV.

pressure and energy curves from the ideal-gas value
reflects essential attraction even at ~ 2T,. It is now
interesting to clarify to what extent our treatment
of the in-medium string interactions agrees with the
nonperturbative lattice QCD. This can be understood
with the help of the special quantity (¢ — 3p)/T* that
is often called the interaction measure. This quantity
is directly related to remnant interactions that survive
in the high-temperature QCD phase because, for
ideal massless quarks and gluons, € = 3p. In Fig. 2,
the interaction measure for the SU(3) gluon plasma
is shown. As is seen, our treatment of the in-medium
strings provides quite reasonable results. The quan-
tity (e — 3p)/T* turns out to be very sensitive to the
QCD interactions. Indeed, it is still equal to zero even
in the one-gluon-exchange approximation, provided
the temperature dependence of the running coupling
constant is neglected. The agreement with the lattice
calculations could be even better if we chose v ~ 2/3,
as in [33]. Thus, an interesting question arises as to
what additional arguments, being able to change ~
from 1/3 to 2/3, should be taken into account for
our picture of the in-medium string screening. In this
respect, the spatial correlations of color charges may
be of importance (see Section 3).

In the transchemistry [11], the reduced effective
value o = 0.5 GeV/fm = 0.1 GeV? is used, which
results in Tepem = 185 MeV. It seems that the trans-
chemistry model starts at slightly lower temperature
where the chemical equilibrium for the quarks would
not be possible at all. On the other hand, this simu-
lation begins with a huge oversaturation of the quark

Vol.66 No.5 2003
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T, GeV
0.3

ub’ GeV

Fig. 3. The critical curve (line with closed circles) on
the temperature—chemical potential plane, below which
chemical equilibrium ceases for a massless quark gas
with stringlike interaction.

number, so a later reheating of the system brings
the massive quark matter in an overcritical state.
Eventually, expansion and cooling leads to dynam-
ical hadronization at low temperatures (7" < Tthem),
where the quark component cannot be in chemical
equilibrium anymore.

Now, returning to the Boltzmann statistics, for the
critical number density we have

Nchem = 96 .

Substituting this quantity into Eq. (70) and taking

(81)

v=1/3and A = (2/3)0, we get a negative pressure,
2\
Pchem = _830-27 (82)

at the critical point. It means that the mechanical
equilibrium ceases at a somewhat higher temperature
than the chemical one.

Equations similar to Eq. (76) were considered by
Boal, Schachter, and Woloshin [15] and by Moska-
lenko and Kharzeev [17] as well. However, investi-
gation of the quark plasma at zero baryon density,
presented in the latter paper, did not take into account
the important background term ®. As to the for-
mer one, only the boundary for the high-temperature
QCD phase, rather than the full thermodynamics,
was studied without any reference to the problem
of thermodynamic consistency. This is why one of
the considered spectrum of unbound partons in that
paper is not consistent with Egs. (21) and (22). In
addition, none of these papers uses the relevant clas-
sical approximation providing analytical results like
Egs. (79), (81), and (82), which would have signif-
icantly simplified the understanding. Finally, an ad-
vantage of our treatment is that it is based on the
elaborated model of the in-medium string formation
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T=219 MeV
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Fig. 4. The scaled chemical potential u/T" as a function

of n1/3/T for massless Boltzmann gas with stringlike
interaction. The chemical equilibrium conditionis u = 0.

that enables us to derive the mean-field term (51)
rather than postulate it by invoking the nearest neigh-
bor approximation inspired by the analogy with the
I[sing model (see the third paper in[15]).

4.5. Fermions with String Interaction

Another interesting case is massless quarks at
zero temperature. The number density integral is
given by

— k)k*dk.  (83)

=53 /@ “w— —Jn
Here, d is the color, light flavor, and spin degeneracy
factor, and ©(z) denotes the Heaviside step function.
Expression (83) can be readily rewritten as

9 3
n=¢ (,u - gan_1/3>

with ¢ = (d/672)'/3. In the situation considered, we
have one conserved charge: the baryon number with
the density n, = n/3. Then, the chemical equilibrium
is specified by the relation p = pp/3, where py is
the baryon chemical potential (see Section 2). The
magnitude of u;, is determined by the equation

n CS 2 2 _on L3 ’

(84)
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Using z = Cn;1/3/34/3, we get
1

—=pp — 012
z

(85)

with &1 = 60/¢. Equation (85) has a solution pro-
vided
Hb = fchem = 24/ 01, (86)
i.e., the chemical potential (Fermi energy) is larger
than the minimum value of (12 + 1/z). It means
that the Fermi energy of quarks should be larger
than 2v/G1/3. A typical numerical value, fichem ~
2.442 GeV, can be found using d =12 and o =
0.18 GeV2.
At finite temperature, we obtain a T- and -
dependent consistency equation, which can be solved

only numerically. Figure 3 shows the resulting
boundary in the T, plane.

4.6. Chemical Off-Equilibrium in the Classical
Approximation

[f an isolated system is out of chemical equilibrium
and expands as a perfect fluid, the relation

dE + pdV =TdS + > p;dN; = 0

2

(87)

is fulfilled and the entropy production rate
s N Hipn
S = Z 7N

is either positive or zero. This means that, in the one-
component case for quasiparticles with positive u, the
corresponding particle number NV = Vn decreases,
while it increases for negative values of p.

Figure 4 shows the off-equilibrium chemical po-
tential scaled with the temperature, /T as a function

of the scaled density n!/3/T for a one-component,
massless Boltzmann gas made of particles with the
SU(3)-gluon degrees of freedom and interacting via
strings. Chemical equilibrium corresponds to u = 0,
which is not reachable below a certain temperature.
Here, the strings pull the charges together, never
reaching a screened equilibrium state: the chemical
potential remains positive, driving the density of this
component towards zero.

The situation is more complicated in a many-
component mixture due to possible constituent ex-
change between different species of quasiparticles. In
both cases, the chemical equilibrium, corresponding
to u; = 0, is stable. In some special cases for nonideal
EoS, it may happen that the p(n,T) curve for a
constant 7" (isoterm) does not cross the p =0 line
at all; i.e., no chemical equilibrium is possible and
the system is driven towards a state with either zero

(88)
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or infinite particle numbers. In a many-component
system, it means that this particular component will
dominate or vanish in the mixture.

Another remark concerns with the chemical po-
tential assigned to the conserved charges (e.g.,
baryon number). This is a physically different situa-
tion when the term —pup @, (see Section 2) is added
to the Hamiltonian, which is not compensated by
its expectation value in the background field. As a
consequence, the chemical equilibrium point (if any)
is placed not at = 0 but at = pp. This situation is
quite customary in nuclear physics.

5. CONCLUSION

A useful representation of the conditions of ther-
modynamic consistency of quasiparticle description,
Egs. (21) and (22), has been found. The advantage
of this representation is that it directly involves the
effective quasiparticle spectra, which results in im-
portant restrictions on the form of these spectra. In
particular, two essential findings can be mentioned. If
the interaction with surrounding matter is taken into
account by introducing a mean field, the latter should
be either temperature-independent (Example 1, Sec-
tion 2) or, when in-medium effects are included in
the Hamiltonian by means of the effective mass (Ex-
ample 2, Section 2), this mass should depend on the
temperature or/and the quasiparticle density exclu-
sively through the scalar density of quasiparticles. In
the large market of available phenomenological mod-
els, these general restrictions in the majority of cases
were used intuitively, but sometimes were erroneously
missed.

The structure of the thermodynamic potential,
derived from the medium-dependent Hamiltonian
in a thermodynamically consistent way, has been
further detailed by implementing the string picture for
the interaction between generic constituents. With
this aim, the elaborated mean-field model of the
in-medium string interactions has been developed.
This model supports the use of the inverse power
of the color charge density in the color mean field
[see Eq. (51)] that was introduced earlier by various
authors assuming validity of the nearest neighbor
approximation [15—17]. Results of our treatment of
the in-medium strings are found to be in reason-
able agreement with the lattice data on QCD ther-
modynamics. Further probing of these interactions
can be an application of the developed equation of
state to (hydro)dynamical calculations allowing direct
comparison with observables. Some steps towards
this direction have been done recently by analyzing
the excitation function for nucleon directed flow [34]
and the relation of the “softest point” of EoS with
chemical freeze-out [35] in heavy-ion collisions.
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Along with other results, we would like to com-
ment on the excluded volume modification of the
single-particle energy. In our treatment, the condi-
tions Cr = 0,Cy = 0 have no solution in this case
without some additional assumptions. A resolution of
this issue was done in [8] and in the first paper of [12].
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Abstract—An important role of the scalar isoscalar o meson in low-energy physics is discussed. The
behavior of the ¢ meson in a hot and dense medium is studied. [t is shown that, in the vicinity of the critical
values of the temperature (") and the chemical potential (x), the o meson can become a sharp resonance.
This effect can lead to a strong enhancement of the processes mm — ~+ and 7w — 7w near the two-pion
threshold. Experimental observation of this phenomenon can be interpreted as a signal of approaching the
domain where the chiral symmetry restoration and the phase transition of hadron matter into quark—gluon

plasma take place. © 2003 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

In recent years, the problem of studying the scalar
isoscalar o-meson properties has attracted the atten-
tion of many authors [1, 2]. The subjects of investi-
gations are internal properties of the o-meson and its
role as an intermediate particle in various processes,
both in vacuum and in hot and dense matter. The
latter problem is especially important, because many
experiments on heavy-ion collision are performed and
planned (CERN, Brookhaven, DESY, Darmstadt).
One of the aims of those experiments is to study
the problem of phase transition of hadron matter into
quark—gluon plasma. Special workshops were dedi-
cated to the study of the o-meson properties in Japan
(June 2000) [1] and in France (September 2001) [2].
Very interesting talks on this topic were given by
Kunihiro [3—5]. In this article, we will follow these re-
ports. However, here we will use the results obtained
only in our previous works.

Let us start with the experimental status of the
o meson. The experimental value of the o-meson
mass is not accurately determined and lies in a wide
interval [6]:

M, = 400—1200 MeV. (1)

This can be explained by large values of the decay
width of this meson into two pions [6]:!)

I'; = 600—1000 MeV. (2)

However, at high temperature and density, M, can

become lower than the mass of two pions. There-
fore, the decay ¢ — 7 is closed, and the ¢ meson

*This article was submitted by the authors in English.
"e-mail: volkov@thsuni. jinr.ru

YNote that for a long time information about the o meson was
absent in PDG and appeared only in 1998 as fo(400—1200).

becomes a stable particle. As a result, the o meson
can give sharp resonance when it participates in pro-
cesses as an intermediate state.

Now let us describe the theoretical status of the
o meson. The o meson is a chiral partner of the 7 me-
son in different linear SU(2) x SU(2) o models [7].
On the other hand, it is a scalar isoscalar singlet in a
U(3) x U(3)-symmetric quark model of the Nambu—
Jona-Lasinio (NJL) type [8].

In the NJL model, the ¢ meson mass can be
expressed via the pion mass M, and the constituent

quark mass m:?
MZ2 = M? + 4m?. (3)

Here, we assume that the constituent masses of up
and down quarks are equal to each other: m, =~ my =
m.

Formula (3) plays a very important role in the de-
scription of different processes in hot and dense mat-
ter, where the o meson participates as an intermedi-
ate particle. Indeed, from (3), it follows that, in vac-
uum, M, is larger than M, because m =~ 280 MeV,
M, ~ 140 MeV, and M, = 580 MeV [8]. A different
situation occurs in hot and dense matter in the vicinity
of the critical values of the temperature and chemical
potential, where m — mg ~ 0 and M, — M. This
corresponds to the restoration of the chiral symmetry.
As will be shown below, this behavior of M, can
lead to the resonant enhancement of some processes,
where the o meson participates as an intermediate

DWe would like to note that, for a more accurate description of
the mass spectra of scalar mesons, it is necessary to take into
account the singlet—octet mixing of scalar isoscalar mesons
with each other and with the scalar glueball [9, 10].

1063-7788/03/6605-0997$24.00 © 2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The quark diagrams describing the 7w scattering.
All'loops in Figs. 1—4 consist of constituent quarks.

particle (for example, 7w — ~7, 7w — 7m). Observa-
tion of such effects, for instance, in heavy-ion colli-
sions, could indicate approaching the domain of 7', i
values where the phase transition from hadron mat-
ter into quark—gluon plasma appears. The possibility
of such a phase transition and the chiral-symmetry
restoration is a subject of intensive investigation at
present.

The paper is organized as follows. In Section 2,
we demonstrate the important role of the o meson
for the correct description of different processes in
vacuum. In Section 3, we compare the behavior of
the o-meson propagator in vacuum and hot dense
matter. We show that, in hot and dense matter, the
o-meson propagator can be a sharp resonance. Pro-
cesses 7tn~ — vy and 7°7% — v in vacuum and
hot dense matter are investigated in Section 4. No-
ticeable enhancement of these reaction cross sections
near the two-pion threshold in the vicinity of the
critical T', p values is found. In the last section, a short
discussion of the results is given. Theoretical and
experimental results concerning the mwm-scattering
process in hot and dense matter are discussed.

2. ¢ MESON IN VACUUM

Before describing the o-meson properties in hot
and dense matter, we show a very important role of the
o meson in a set of processes taking place in vacuum.
Let us consider some of them here: wx scattering,
7w — v, therule AI = 1/2(where [ is the isospin of
the meson system) in kaon decays and the calculation
of the pion—nucleon 3 term in 7—nucleon scattering.
We give only a qualitative picture of these processes.
Details can be found in the original works [11—16].

Let us start with 77 scattering. In the SU(2) x
SU(2) chiral NJL model, this process can be de-

scribed by the Lagrangian®)
L(q,q,0,m) (4)
= q(x) (zé —M+g(o(z)+ i’y57'7r(x))) q(z),

SFor simplicity, we do not take into account m—a; transitions
(a1 is the axial-vector meson).
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where g(z) = (a(x), d(z)) is the quark field; o (z) and
m(x) are o- and m-meson fields, respectively; M is the
diagonal mass matrix of the constituent quarks; 7 are
the Pauli matrices; and g is the quark—meson strong
coupling constant

g=(4I)7/2, (5)

where Iy is a logarithmical divergent integral that
appears in the quark loop. I, (n = 1,2) is equal to

1, O — k%)

N
In = Ty / e ©

where A is a cut off parameter (A = 1.25 GeV) [8],
the symbol di k stands for the integration in the Eu-
clidean metric, and N, is the number of quark colors.

Diagrams describing wm scattering are given in
Fig. 1. Then, using Lagrangian (4), we obtain the
following expression for the amplitude A, [8, 11]:

(4mg)? _ 5= M?
M2 —s F2

where F; = 93 MeV is the pion weak decay constant

and s = (p1 + p2)?, p1 and py being the momenta of
the incoming pions.

The final expression for A, is the famous formula
that describes the mw-scattering amplitude at low
energies. This formula was first obtained by Weinberg
in the 1960s. It was one of the basic formulas demon-
strating the chiral symmetry of strong interaction [7].
The following relations were used to derive this for-
mula:

(i) The Goldberger—Treiman identity g = m/Fy;

(ii) The formula for the o-meson mass (3);

(iii) The amplitude for the o — 77~
Ayt r— = dmg.

We can see from Eq. (7) that the constant part
of the o-pole diagram cancels the contribution of
the box diagram. The remaining part of the o-pole
diagram determines the s dependence of the 7r-
scattering amplitude in agreement with the chiral
symmetry requirements [7].

The o-pole diagram plays an important role for
describing the polarizability of the pion, which is a
significant characteristic of its electromagnetic struc-
ture [8, 17, 18]. The o meson is also necessary for de-
scription of the processes 7 — vy and ym — 7 in
hot and dense matter [12, 13]. Below, we will discuss
the process mm — 77y in detail.

The famous rule AI =1/2 is connected with an
experimentally observable enhancement of the decay
Kg — 7 as compared with kaon decays with Al =
3/2. This effect can be explained by the presence
of the channel with the intermediate ¢ meson (see
Fig. 2) in this process. Indeed, the o-pole diagram

Arn = _492 + (7)

decay
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T
K o
:: \ T

Fig. 2. The diagram describing the Ks — 7m decay with
AI =1/2. The dot is a weak vertex.

in the process Kg — w7 leads to the appearance of
a resonance factor in the decay amplitude. This factor
takes the form

1
M2 — M%_ —iM,T,’

(8)

where I',, is the decay width of the & meson. The kaon
mass M is close to the o-meson mass. That gives a
noticeable enhancement of this channel as compared
with the channels with AT = 3/2, where the o-pole
diagram cannot exist and pions are emitted directly
from quark loops containing a weak vertex [14].

We would also like to emphasize an important role
of the o-pole diagram in the calculation of the pion—
nucleon ¥ term [15, 16]. The value of the ¥ term is
determined by diagrams in Fig. 3. These diagrams
lead to the following expression (see [16]):

(7 (0)|@u + dd|7 ™ (0)) (9)
2\ 89°

In this formula, the first term corresponds to the tri-
angle quark diagram (Fig. 3a) and the second term
corresponds to the o-pole diagram (Fig. 3b).

Taking into account the relations g = (415)~/% =

m/F, and M, ~ 2m, we see that the first term is
canceled by the part of the second term containing /.

The remaining part of Eq. (9) takes the form*)
(77 (0)|au + dd|7 " (0))
2
~ 9 _oh

(10)

2
T

[t is easy to see that the contribution from the sum
of diagrams a and b in Fig. 3 is 5.8 times as large
as the contribution from diagram a. As a result, in
our work [15], the ¥ term for 7N, was found to be
Yan =50+ 10 MeV. Note that, in [19—21], where
the 7N ¥ term was calculated in the framework of
nonlinear chiral models, the authors obtained a small
value for the ¥ term because they did not take into
account the contribution from the scalar ¢ meson.

YHere, we neglect the momentum and mass of the pion and
use theformula I; = 3 (A* — m® In(A*/m® + 1)) /(47)* =
0.025 GeV?.
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Fig. 3. The quark diagrams describing the matrix element
(77 (0)|au + dd|zt (0)). The left vertices are scalar quark
vertices interacting with a nucleon.

3. c-MESON PROPAGATOR IN VACUUM
AND HOT DENSE MATTER

Up to now, we have considered the above-mentio-
ned processes only in vacuum. Now let us study the
o-meson properties in hot and dense matter. It is
especially interesting to investigate the behavior of
the o-meson propagator for the process nm — =,
™ — Y

1
M2 — 5 — iM,Ty(s)’

As(s) = (1)
where s = (p; +p2)2, p1 and po being the momenta

of the incoming pions. The decay width I'; in the NJL
model has the form

3m4 4M?2
To(s) = — /1 £
o(8) = 3oL, 72 s

In vacuum, when T'= 0 and px = 0 and the con-
stituent quark mass is m = 280 MeV, we can consider
two extreme cases:

(i)s ~ M2.In this case, the real part of the denom-
inator of A, (s) (11)is equal to zero but the imaginary
part is large: M,I', ~ 0.3 GeV2.

(ii) s ~ 4M?2. In this case, the imaginary part of the
denominator is close to zero; however, its real part is
large: M2 — 4M? ~ 0.25 GeV?2,

Therefore, in vacuum, the real and imaginary parts
of the denominator cannot be close to zero simulta-
neously, and the o-pole diagram cannot give a sharp
resonance in the whole energy domain.

A more interesting situation can arise in a hot
and dense medium. The constituent quark mass de-
creases and the pion mass slightly increases with
increasing T and u. Therefore, the case where 4m? ~
3M? is possible. Then, if we consider the above-
mentioned processes near the two-pion threshold at
s =4M2(1 +¢€) (e < 1), we can see that the real and
imaginary parts of the A,(s) denominator become
very small simultaneously:

Re (Ay(s)™") (13)
= M? — s =4m?* — 3M? — 4M?e ~ —4M?e,
Im (Ay(s)™) = =M, T, (14)

(12)
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Fig. 4. The quark diagrams describing the matrix element
T — Y.

_ 3m? € 3m?

= T\ T Y Ve

As a result, the propagator takes the form

4\@).

A, ~ 1/(—4M7%e— ;3m (15)

"orF2
The formula shows that, in hot and dense matter in
the vicinity of the critical T and p values, the o-meson
propagator can become a sharp resonance. This leads
to a noticeable enhancement of processes where the
o meson participates as an intermediate particle.

In the next section, we demonstrate this effect on
the basis of the process 7 — ~+ following [12, 13].

4. PROCESS 77 — v+ IN VACUUM AND HOT
DENSE MATTER

To describe the processes 7tm~ — vy and

7070 — ~~ it is necessary to consider quark loop
diagrams of three types (see Fig. 4).

In Fig. 4, diagram a exists only for charged pions;
diagrams a and b define the Born terms in a local
approximation (see Fig. 5). In this approximation,
only divergent parts of quark diagrams are considered
and the Lagrangian for the photon—meson vertices
takes the form

LB = jeA, (770t — 7t O] + (A m .
(16)

Here, 7 and «~ are the charged pion fields and A,
is the photon field. In the next order of the k2 expan-
sion, only diagrams b and ¢ in Fig. 4 give nontrivial
contributions. The Lagrangians corresponding to the
vertices 7 — ~v and o — ~~y take the form

(0}

box __ +, — 0.0 2
= 7187rF7? [77 T+ 5T ]FW, (17)
9
L7 = 97% oF2,; (18)
T
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Tt Tt Tt Tt Tt

Fig. 5. The quark diagrams in the Born approximation
describing the matrix element 7 — 7.

1
here, we use the notation o = €2/(4rm) ~ B (e is
the electron charge); F),, = 9, A, — 0,A,. The La-
grangian describing the vertex ¢ — 7 has the form
(19)

L°™™ = 2mgom?.

These Lagrangians allow us to define the total
amplitude describing processes wm — ~y7:%)

T (s) = The () + T:QV(S), (20)
I Mo v 4
TH (s) = 22| gtv — P1P2 —p—Qpl}, 21
Bom(*) _g pik1 p2ki 1)
TiY (s) = 2 A(s)[g" kiks — K'RS],  (22)
1 [ 40m?
Als) = (67Fn)2 | M2 — s — iM,T, 1}’ (23)

where s = (p1 + p2)?; p; and k; are the momenta of
the pions and photons, respectively; g"¥ is the metric
tensor; and T',, is the decay width of the o meson [see
(12)].

For the process %7% — ~, the Born term is ab-

sent. The contribution of the box diagram increases
by a factor of 10 [8].

The cross section of the process 7t~ — 7 con-
sists of three parts:

2

T - ~ ~
Ontn——nyy = R [Ul + 02 + 0-3] ) (24)
where
2
p= )1 Mz (25)
S

Here, &1 corresponds to the Born term, &3 cor-
responds to contributions from the o-pole and box
diagrams, and &9 is the interference term of the Born
and k?-order contributions. For the neutral pion, we
have only the &3 term and the box contribution is
10 times larger than in the case with charged pions.
Further, we will consider these processes near the

% Let us note that, in the Born approximation, only diagrams a
and b (see Fig. 4) together give a gauge-invariant expression

for amplitudes. In the k2 order, diagrams b and ¢ give a
gauge-invariant expression separately.
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two-pion threshold. Variables s and & in this domain
take the form

8:4M73(1+6)7 ﬁ:\llj_ea

where € < 1. Then, for 61, &9, and &3, we have
1—k* 14 H:|

(26)

In

27
2K 1—~k (27)

&1—16[2—/@2—

1—k2. 14k

g9 = 4sReA(s) In

)

11—k
03 = sQ\A(s)\Q.

The &3 term has the form

e (0e0(2))

y [ 0m?a(s) 1] 2 . (40m>M,T )
als)? + MZT2 la(s) + M2T2]" |
where a(s) = M2 — s = M? — 4M2(1 + €). This ex-
pression consists of two parts. The first part contains
the contributions from the box diagram and from the
real part of the o-pole diagram (the expression in the
square brackets). The second part corresponds to the
contribution from the imaginary part of the o-pole
diagram. Both parts have the common small factor 4:

4
0= Mx .
3nF;

Now, let us compare the behavior of &1 and &3
near the two-pion threshold s = 0.1 GeV? in vac-
uum and in a dense medium at 7" = 100 MeV and
= 290 MeV, where m = 138 MeV, M, = 156 MeV,
and F; = 57 MeV [22]. The value of &1 changes very
little from 12 in vacuum, where € = 0.28, to 15.5 in
matter, where e = 0.02.

The opposite situation takes place for g3. Indeed,
in vacuum, we have § = 6.5 x 10~* and the main part
of &3 is defined by the contribution connected with the
real part of the o-pole diagram:

40m?
m-a %84_
a? + M2T2

We can see that the contribution from &3 is very small
compared to the contribution of the Born term in this
case.

In hot and dense matter, the imaginary part of the
o-pole diagram gives a dominant contribution to &3.
The parameter & in this case equals 7 x 1073, and
the main contribution from the imaginary part has the
form

(28)

(29)

(30)

40m?2 \ 2
(J;”;) ~10'  (a< M,T,). (31)
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As aresult, the contribution from the o-pole diagram
becomes comparable with the contribution from the
Born term.

This effect plays an especially important role for
the neutral pion. In vacuum, the cross section of the
process w70 — v is very small. However, in hot
and dense matter, the cross sections of the reactions

atn~ — yvand 797% — 7 can be comparable.

After qualitative estimations, let us give a more
exact numerical calculation for the above-considered
cases.

The value s = 0.1 GeV? corresponds to the en-
ergy of outgoing photons, w, =160 MeV. In vac-
uum (7= 0, p = 0), we have the following values
for masses m and M, and parameters e and x:
m = 280 MeV, M, = 580 MeV, ¢ = 0.28, k = 0.46.
Using these values, we obtain for the charged pions
01~ 12,59 =~ 1.8, and 3 ~ 0.1. For the neutral pion,
we have 63 ~ 0.04.

The cross sections o

approximately

and o are

T —yy 00—y

Ot = —yy 2 4.8 b, O 070 _yy & 0.015 ub. (32)
Now, let us consider these processes in hot and
dense matter when 7" = 100 MeV and p = 290 MeV.
Here, the parameters € and « are equal to 0.02 and
0.14, respectively. The masses m, M, and M, and
value of F; are given above. After substituting the
parameters and masses into (27), we obtain

0]~ 155, 09 R 283, o3 ~ 57.4 (33)
for charged pions and
o3 ~ 57.5 (34)
for neutral pions. For the cross sections o+,-_,,
and 000_,,,, We have

Ot —nyy & 75.6 Mb, O 070 sy =2 57.5 Mb. (35)

So, we see that, in this domain of T" and p near
the two-pion threshold, &3 increases dramatically.
As a result, the cross section of the charged mode
increases approximately by one and a half orders of
magnitude. The cross section of the neutral mode
increases by more than three orders of magnitude and
becomes comparable with those of the charged mode.

The cross sections ¢ and o1, o9, and o3 (o; =
ma?5;/(4sk), i =1, 2, 3) of the process 77~ —
~~ are plotted in Figs. 6 and 7 as a function of s.
Figure 6 shows the numerical results for vacuum,
where the main contribution comes from the Born
terms. The situation changes at a finite temperature
and chemical potential. As is shown in Fig. 7, the o-
pole diagram gives the dominant contribution and the
cross section strongly increases at the threshold. The
behavior of the 797 — ~+ cross section is shown in
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0, mb

0.12}

0.08

0.04

120
S—4M2 , MeV

Fig. 6. The total cross section o (thick solid curve) for the
process 7t~ — 7y and partial cross sections o1 (long-
dashed curve), o2 (thin solid curve), and o3 (short-dashed
curve) in vacuum.

Fig. 8 in vacuum and in hot and dense matter. It is
easy to see from Fig. 8 that the contribution from the
o-pole diagram dramatically increases near the two-
pion threshold.

Here, we used the approximate expression for the
amplitudes where the dependence of quark loops on T’
and p was neglected. A more careful calculation was
made in[12, 13].

5. DISCUSSION AND CONCLUSION

We have shown that the scalar ¢ meson plays an
important role in low-energy meson physics. The o-
pole diagram gives the main contribution to the 7r-
scattering amplitude and ensures its chiral invari-
ance [8, 11, 23]. The intermediate o meson gives a
dominant contribution to charged pion polarizability
in the process ymr — v [8, 17]. Using the o-pole
diagram, we can explain the rule AT =1/2 in kaon
decays [14, 24]. The diagram with the ¢ meson de-
termines the value of the pion—nucleon ¥ term [15,
16, 25]. It is not a complete list of significant phys-
ical results where taking the ¢ meson into account
allows us to describe hadron properties in vacuum

correctly.)
However, the behavior of the o meson is especially

interesting in a hot and dense medium. Here the
o meson can become a sharp resonance in the vicinity

®11 is worth noting that, to describe the decay n — %y~ in
agreement with experiment, it is also necessary to take into
account the channel with the intermediate scalar—isovector
meson ao(980).
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g, mb

1.2

0.8

0.4

I —T— = T+ -1

80 120
Js—4M2  MeV

Fig. 7. The total cross section o (thick solid curve) for
the process 7t7n~ — ~v and partial cross sections o1
(long-dashed curve), o2 (thin solid curve), and o3 (short-
dashed curve) in hot and dense matter at 7' = 100 MeV
and p = 290 MeV.

of the critical values of T"and p. This situation leads to
a strong increase in the processes where the o meson
participates as an intermediate particle. In this work,
we have demonstrated this effect on the basis of the
process mm — 7y (see [12, 13]). Similar results were
obtained in [26, 27]. An analogous situation can also
occur in the w-scattering process.

The spectral function of a w7 system in the o
channel has been studied for finite densities in [3—5].
Characteristic enhancement of the spectral function
near the two-pion threshold is found. This effect is
close to our results obtained for the process 77w — v~
(see Section 4).

In [5], Kunihiro pointed out the first experimen-
tal support of his theoretical results. The CHAOS
collaboration [28, 29] studied the differential cross
sections MA = do?/dMy, for the 1A — 7rt A’
reaction on nuclei A =2, 12, 40, 208. The observ-
able composite ratio

_7\[’4 N
CA _ 77T tot (36)
T N A
g
™ tot

was chosen to disentangle the acceptance issue be-
cause it is slightly dependent on the reaction mecha-
nism and nuclear distortion (here, at]gt and at‘gt are the
total cross sections on the nucleon and nucleus, re-
spectively). It was found that the C’f . distributions
for different nuclei peak at the 2m,; threshold and their
yield increases as A increases. At the same time, the
Cf+ﬂ+ distribution depends weakly on A. This means
that nuclear matter weakly affects the (77)7,7=20
interactions, whereas the (w7);—=j—o state forms a
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logo [mb]

|
0 40 80 120
s—4M2  MeV

Fig. 8. The cross section for the process 7%7% — ~v in
vacuum (dashed curve) and in hot and dense matter at
T =100 MeV and . = 290 MeV (solid curve).

strongly interacting system (the intermediate o me-
son). The experimental results were compared with
some theoretical models, and the best agreement was
found with the models that take into account the
medium modifications of the scalar isoscalar o me-
son and the partial restoration of chiral symmetry in
nuclear matter.

The Crystal Ball (CB) Collaboration [30] studied
the reaction 7~ A — 79794’ on H, D, C, Al, and Cu.
They reported that there was no peak near the 2m,
threshold, observed by the CHAOS Collaboration,
but the increase in strength as a function of A was
also observed in the 797Y system. Later, the CB re-
sults were reanalyzed [31] in terms of the composite
ratio (36) and accounting for different acceptances of
the two experiments. It was shown that, as far as the
(mm)r=j=o interacting system is concerned, the re-
sults agree with each other very well. This agreement
may be interpreted as an independent confirmation by
the CB experiment of the modification of the o-meson
properties in nuclear matter first reported by CHAOS.

The above-described experimental data for 77
scattering allow us to hope that similar results can be
experimentally obtained for the processes mm — v
in hot and dense matter. It is especially interesting
to study 7%7% — 7+, because the cross section of
this process can increase by several orders of mag-
nitude near the two-pion threshold. Experimental
observation of all these effects will be evidence for
approaching the boundary of the domain where the
partial restoration of chiral symmetry and the phase
transition of hadron matter into quark—gluon plasma
take place.
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