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We consider massive photon decay reactions via intermediate states of electron–electron-holes
and proton–proton-holes into neutrino–antineutrino pairs in the course of neutron star
cooling. These reactions may become operative in hot neutron stars in the region of proton
pairing where the photon due to the Higgs–Meissner effect acquires an effective massmg that is
small compared to the corresponding plasma frequency. The contribution of these reactions
to neutrino emissivity is calculated; it varies with the temperature and the photon mass as
T3/2mg

7/2 exp(2mg /T) for T,mg . Estimates show that these processes appear as extra
efficient cooling channels of neutron stars at temperaturesT.109– 1010 K. © 1998 American
Institute of Physics.@S1063-7761~98!00108-5#
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1. INTRODUCTION

The EINSTEIN, EXOSAT and ROSAT observatorie
measured surface temperatures of certain neutron stars
put upper limits on the surface temperatures of others~see
Ref. 1 and further references therein!. Data on the supernov
remnants in 3C58, the Crab, and RCW103 indicate ra
slow cooling, while the data for Vela, PSR 2334161, PSR
0656114, and Geminga point to significantly more rap
cooling. In the so-called standard scenario of neutron
cooling, the most important channel up to temperatureT
<108– 109 K corresponds to the modified URCA proce
nn→npen̄. Rough estimates of its emissivity were fir
made in Ref. 2. Friman and Maxwell3 recalculated emissivity
of this process in a model, in which the nucleon-nucle
interaction is treated with the help of slightly modified fre
one-pion exchange. Their result for emissivity,«n

FM , proved
to be an order of magnitude higher than previously obtain
The value«n

FM was used in various computer simulatio
resulting in the standard cooling scenario; see Ref. 4,
example. Subsequent works5–7 took in-medium effects into
account inNN-interaction, showing that emissivity of th
modified URCA process depends heavily on neutron
mass. For stars of more than one solar mass, the resu
emissivities turned out to be substantially higher than
values given by«n

FM .
These and other in-medium effects were recently inc

porated in the computer code8 leading to a new scenario o
neutron star cooling. For low-mass stars numerical result
the new and standard scenarios more or less coincide. In
present work, we continue to look for enhanced react
channels. To demonstrate the efficiency of new reac
channels, we compare the results with emissivity«n

FM , which
2111063-7761/98/87(8)/7/$15.00
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dominates cooling in the standard scenario over the temp
ture range under consideration.

Besides the modified URCA process, the standard s
nario numerical codes also include neutron and pro
bremsstrahlung processesnn→nnnn̄ and np→npnn̄,
which in all models lead to a somewhat smaller contribut
to emissivity than the modified URCA process.3,5,6,9 Also
included are processes that contribute to emissivity in
neutron star crust. These are plasmon decaygpl→nn̄,10,11

electron bremsstrahlung on nucleieA→eAnn̄,11–13electron-
positron annihilationee1→nn̄,14,15 and photon absorption
by electronsge→enn̄.15–17 Numerical simulations show
that the latter two processes contribute only negligibly to
crust neutrino emissivity at the temperatures under disc
sion in this paper and they always contribute negligibly
the full neutron star’s emissivity; see Fig. 7 of Ref. 11.

When the temperature decreases, it is energetically
vorable for neutrons to pair in the neutron star interior a
inner crust and for the protons to pair in the star’s interior.
a system with nucleon pairing, the emissivity of the modifi
URCA process is suppressed by a factor exp@2(Dn1Dp)/T#,3

whereDn andDp are the respective neutron and proton ga
defined by

D i~T!5D i~0!
Tc,i2T

Tc,i
u~Tc,i2T!

~hereu(x) is the Heaviside step function,i 5$p,n%, andTc,i

is the corresponding critical temperature for nucleon pa
ing!. At temperaturesT!Tc,p , Tc,n the process become
marginal. Nevertheless, this star’s interior process s
dominates those of crust cooling up to temperatu
T;108– 109 K, depending on the values of the gaps; s
© 1998 American Institute of Physics
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Fig. 7 of Ref. 11. ForT<(1 – 3)•108 K cooling in the stan-
dard scenario is largely dominated by the photon emiss
from the neutron star surface.

In the present work we look for more efficient coolin
processes atT,Tc,p , Tc,n . We analyze photon decay int
neutrino-antineutrino pairs. The related processesge→enn̄
andgp→pnn̄ turn out to be suppressed by several orders
magnitude compared to those under discussion, due to
lack of free final states in degenerate fermionic systems,
are therefore not considered here. The contribution of pho
decay via electron–electron-hole intermediate states for
case of a normal electron plasma in white dwarfs and neu
star crusts has been calculated by several authors~see Ref.
10 for further references!. In an ultrarelativistic electron
plasma, a photon acquires an effective in-medium plasm
dispersion law with a gap equal to the electron plasma
quencyvpl.2eme /A3p, wheree is the electron charge an
me denotes the electron chemical potential~we employ units
with \5c51). Therefore, the contribution to emissivity o
the cited process is suppressed by a factor exp(2vpl /T).
Nevertheless, in white dwarfs and neutron star crusts,
electron density is not too high, and the process is still eff
tive. In neutron star interiors, the electron densityre is equal
to the proton densityrp by virtue electrical neutrality, and
along with b stability one obtains a relation for the tot
density

re5rp.0.016r0S r

r0
D 2

, ~1!

wherer0.0.17 fm23 denotes the nuclear saturation densi
and we use the values of the neutron and proton Fe
momenta,3 pFn.340(r/r0)1/3 MeV and pFp5me.85(r/
r0)2/3 MeV. Thus, at typical densities for neutron star int
riors r*r0 , the value of the electron plasma frequency
high, e.g.,vpl(r0)'4.7 MeV forr.r0 , and at temperature
T,Tc,n , Tc,p,vpl the processgvpl

→ee21→nn̄, where the
superscript21 denotes the hole, is strongly suppressed.
therefore seek another process that can contribute to r
cooling.

We exploit the fact that, contrary to a normal electr
plasma, in superconducting proton matter, due to the Hig
Meissner effect, the photon acquires an effective mass th
small compared to the plasmon frequency. In the region
proton pairing atT,Tc,p , we therefore find that new deca
processes of massive photons (gm) via electron–electron-
hole (ee21) and proton-proton-hole (pp21) intermediate
states to neutrino–antineutrino pairs,gm→ee211pp21

→n l n̄ l , l 5$e,m,t%, can dominate neutron star cooling
certain temperatures. These processes are determined b
diagrams

In the first diagram, the solid lines in the loop are related
Green’s functions of nonsuperfluid relativistic electrons.
the second and third diagrams, the solid lines in the lo
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correspond to superconducting nonrelativistic protons. T
distinct orientations of arrows indicate that the second d
gram is calculated with so-called ‘‘normal’’ Green’s func
tions→—, which become the usual Green’s functions f
normal Fermi liquids in the limitDp→0. In contrast, the
third diagram is built up with the ‘‘anomalous’’ Green’
functions↔ and→—←, which are proportional to the pro
ton gap. Therefore the contribution of the third diagram va
ishes forDp→0. The fat vertices in the second and thi
nucleon diagrams include nucleon–nucleon correlations.

The contribution to neutrino production matrix elemen
of the third diagram and terms proportional to the gap in
second diagram is as small as (Dp /eFp)2!1 for T,Tc,p

!eFp ~hereeFp is the proton Fermi energy!, compared to the
contribution of the second diagram calculated with t
Green’s functions of the normal Fermi liquid. To this sam
accuracy, we drop the third diagram and use the Gree
functions of protons for the normal Fermi liquid1! in the sec-
ond diagram. We thus calculate emissivity according to
first two diagrams, assumingDp50 in the second diagram
but taking into account that the photon dispersion relation
changed due to proton superconductivity.

Our paper is organized as follows. In Sec. 2 we sh
that in the region of proton superconductivity due to t
Higgs–Meissner effect, the photon spectrum is rearrang
and instead of the plasmon gap the photon acquires a m
which is now determined by the density of paired protons.
Secs. 3 and 4 we demonstrate the efficiency of these
processes in the course of neutron star cooling. The emis
ity corresponding to the above diagrams is calculated
compared with emissivity of the standard URCA process a
photon emissivity from the neutron star surface. In Sec. 5
detail our conclusions.

2. PHOTON SPECTRUM IN THE SUPERCONDUCTING
PHASE

As is well known,18 the photon spectrum in supercon
ducting matter and in a normal plasma are substantially
ferent. In the superconducting matter considered here,
deal with two subsystems. The normal subsystem cont
electrons and nonpaired protons and neutrons, which
present to some extend at finite temperatures. The super
subsystem contains paired protons and neutrons. In the p
ence of a superconducting proton phase, normal currents
sociated with both electrons and residual nonpaired prot
are fully compensated by the corresponding response of
superconducting current,18,20,21otherwise there would be no
superconductivity. What remains after this compensation
part of the superconducting current. The resulting pho
spectrum is thereby determined by the inverse of the Lon
penetration depth~due to the Higgs–Meissner effect18!, but
not by the plasma frequency, as in the normal system.

In convential superconductors, which contain positive
charged ions, paired electrons, and normal electrons aT
Þ0, the photon spectrum is determined by the relation
tween the vector potentialA and the currentj , which is pro-
portional toA; see Eqs.~96.24! and ~97.4! of Ref. 20. The
analogy with the present case is straightforward. From
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latter equation, for sufficiently low photon momenta we im
mediately obtain the relation 4p j.2mg

2(T)A between the
Fourier components of the current and the vector poten
where the effective photon mass is

mg~T!.A4pe2rp* ~T!

mp*
, T,Tc,p . ~2!

Heremp* denotes the effective in-medium proton mass, a
rp* (T)5rp(Tc,p2T)/Tc,p denotes the paired proton densit
The choice of a linear temperature dependence forrp* corre-
sponds to the Ginzburg–Landau approach. A small comp
contribution ;e2f (v,k)exp(2Dp /T)A, where f (v,k) is a
function of the photon frequencyv and momentumk, has
been neglected in the above relation betweenj andA. More
realistically, forT nearTc,p , one must take into account th
off-shell effect for the photon. At lower temperatures, co
rection terms are exponentially suppressed. Below we t
the photon spectrum to be

v5Ak21mg
2, ~3!

thus neglecting the aforementioned small polarization
fects.

Note that external photons cannot penetrate far into
superconducting region. The photons that we deal with
thermal photons with foregoing dispersion law, governed
the corresponding Bose distribution. In considering neutr
reactions below, we integrate over the photon phase-sp
volume, thus accurately accounting for the distribution
these photons in warm neutron star matter.

To illustrate more transparently the most important fa
ets of the reconstruction of the photon spectrum in the su
conducting region, we consider a two-component, loca
neutral system consisting of charged fermions~i.e., the nor-
mal subsystem! described by the Dirac fieldc, and a charged
condensate~i.e., the superconducting subsystem! described
by a condensate wave function

w5wce
iF. ~4!

The real quantitywc is the order parameter of the system
i.e., wc

2;nc , wherenc is the number density of particles i
the condensate, and the real valueF is a phase. In a fermi-
onic system with pairing, the densitync is proportional to the
pairing gapD.

The equation for the electromagnetic fieldAm in such a
system reads

hAm54p j m , ~5!

where the current is

j m5eic̄gmc2ei~w* ]mw2w]mw* !22e2uwu2Am . ~6!

Substituting Eq.~4! into Eq. ~6!, we obtain for the electro-
magnetic current

j m5 j m
A1d j m . ~7!

where the first termj m
A522e2wc

2Am is the superconducting
current, and the second termd j m contains the normal curren
j m
nor and some responsej m

res from the charged condensate, i.e
l,
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d j m5 j m
nor1 j m

res5eic̄gmc12ewc
2]mF0 . ~8!

Due to gauge invariance, the phaseF5F01F8 is not
constrained, andF0 can be chosen in such a way that
cancels the normal current, i.e.,d j m50; otherwise the re-
maining part of the normal current would destroy superc
ductivity and the ground state energy would increase. T
compensation of the normal currentj m

nor, which in metals
and in normal plasma is proportional to the electric fieldE, is
a necessary condition for the existence of superconductiv
Only a diamagnetic part of the fermionic current propo
tional to the electromagnetic fieldAm may remain. The latter
may lead only to a minor (;e2) contribution to the unit
values of dielectric and diamagnetic constants. The rem
ing part of the phaseF8 is hidden in the gauge field, resul
ing in the disappearance of the Goldstone field~see the
analogous discussion of the Higgs effect, e.g., in Ref. 2!.
The total number of degrees of freedom does not change
the disappearance of the Goldstone field is compensate
the appearance of an extra~third! polarization of the photon.
As a result of Eqs.~5! and ~7!, the electromagnetic field
obeys the equation

hAm528pe2wc
2Am , ~9!

which immediately yields the photon spectrum in the fo
~3!, where the photon mass is now given by

mg5A8pe2wc
2. ~10!

What we have demonstrated is known as the Hig
Meissner effect: in the presence of a superconducting c
ponent, the photon acquires finite mass. We see that
two-component (normal1superconducting) system, the ph
ton is described by the dispersion relation~3!, as it would be
in a purely superconducting system, and not by a plasma-
dispersion law, as in the absence of superconductivity.
other way to arrive at Eq.~3! is given in the Appendix in a
noncovariant formulation. Similar derivations for differe
specific physical systems, guided by the general principle
the compensation of the normal currents in a superconduc
can be found in Refs. 18, 20, 21, and 23.

Expressing the amplitude of the condensate field
terms of the paired proton density,18 one obtains from Eq.
~10! the result~2!. Takingmp* (r0).0.8mN ~with mN the free
nucleon mass!, with Eqs.~1! and ~2! we estimate

mg~r5r0 ,T!@MeV#.1.6ATc,p2T

Tc,p
!vpl~r;r0!.

Due to the rather low effective photon mass in supercond
ing neutron star matter atT,Tc,p,vpl , one may expect a
corresponding increase in the contribution of the above d
grams to neutrino emissivity.

To avoid misunderstanding, we note the following.
the first glance one might suggest that the photon self-ene
is completely determined by the above neutrino product
diagrams, but with neutrino legs replaced by a photon line
so, the contributions of the electron-loop and proton-lo
diagrams would accurately determine the plasmon spect
of photon excitations with energy gap equal to a high plas
frequency~at least if one drops small terms proportional
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the proton gap in the calculation of the proton–proton-h
diagram, now with an incoming and outgoing photon,
suggested for the corresponding neutrino process!. How does
this relate to the massive photon spectrum of supercond
ing systems? The answer is that in a system with a cha
condensate, in addition to the cited photon propagation
grams, there appear specific diagrams for photon rescatte
off the condensate given by terms proportional toe2wc

2AmAm

and 2ewc
2]mFAm in the corresponding Lagrangian. The

contributions to the equation of motion for the electroma
netic field are, respectively, the last two condensate term
the electromagnetic current in Eq.~6!. The specific conden
sate diagrams responsible for the compensation of the
diagram contributions in the photon propagator make
contribution to neutrino emissivity. Indeed, the neutrino le
cannot be directly connected to the photon line via such
teractions~without invoking the internal structure of the con
densate order parameterwc ; this contribution is obviously
small compared to what we have taken into account!. Thus,
we have argued that in the presence of superconducting
tons, neutrino pairs can be produced in the reaction show
the above diagrams, where the photons possess rather
masses generated by the Higgs–Meissner mechanism.

Having clarified this important issue, we are ready
calculate the contribution of these processes to neut
emissivity and compare the result with known emiss
rates.

3. CALCULATION OF EMISSIVITY

The matrix element of the above diagrams for thei th
neutrino species (i 5$ne ,nm ,nt%) is

M~ i !a52 iA4p e
G

2&
«m

a ~GgTp
~ i !mr2Te

~ i !mr!l r , ~11!

where

Tj
~ i !mr52TrE d4p

~2p!4 gmiĜ j~p!Wj
~ i !r iĜ j~p1k!,

j 5$e,p%, ~12!

and

Ĝj~p!5~ p̂1mj !H 1

p22mj
2 12p i n j~p!d~p22mj

2!u~p0!J
~13!

is the in-medium electron~proton! Green’s function;nj (p)
5u(pF j2p); «m

a is the corresponding polarization fou
vector of the massive photon, with three polarization sta
in superconducting matter. The factorGg takes into accoun
nucleon-nucleon correlations in the photon vertex. The qu
tity G51.17•1025 GeV22 is the Fermi constant of the wea
interaction. Above,l p denotes the neutrino weak current. T
electron and proton weak currents are

We
~ i !r5gr~cV

~ i !2cA
~ i !g5!, Wp

r5gr~kpp2gAgppg5!,
~14!

where cV
(ne)

5cV
(1)5114 sin2 qW.1.92 and cV

(nm)
5cV

(nt)

5cV
(2)5124 sin2 qW.0.08; qW is the Weinberg angle, an
e
s
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(ne)

52cA
(nm ,nt)

51. Proton coupling is corrected b
nucleon-nucleon correlations, i.e., by the factorskpp and
gpp .24

Integrating Eq.~12! over the energy variable, we obtai
for the i th neutrino species

2 i ~Tp
~ i !mr2Te

~ i !mr!5t t
~ i !Pmr1t l

~ i !Fmr1t5
~ i !P5

mr , ~15!

Pmr5S gmr2
kmkr

k2 1FmrD , Fmr5
j m j r

k2@~k•u!22k2#
,

P5
mr5

i

Ak2
«mrdlkdul , ~16!

where j m5(k•u)km2umk2, (k•u)5kmum, km5(v,k), k2

5kmkm5v22k2. The four-velocityum of the medium is
introduced for the sake of covariant notation. The transve
(t t), longitudinal (t l), and axial (t5) components of the
tensors in Eq.~15! yield

t t
~ i !5t te

~ i !2t tp
~ i !52cV

~ i !~Ae1k2Be!

22cV
~2 !Rk~Ap1k2Bp!, ~17!

t l
~ i !5t le

~ i !2t lp
~ i !54k2@cV

~ i !Be2cV
~2 !RkBp#, ~18!

t5
~ i !5t5e

~ i !2t5p
~ i !5~k2!3/2@cA

~ i !Ce2gAgppCp#, ~19!

whereRk5kpp /cV
(2) , and

Aj5E d3p

~2p!3

nj~p!

Ep
~ j ! 1

k2

2 S 11
k2

2mj
2DmjCj , ~20!

Bj5E d3p

~2p!3

nj~p!

2Ep
~ j !

12~pk!2/Ep
~ j !2k2

~v2pk/Ep
~ j !!22k4/4Ep

~ j !4 , ~21!

Cj5E d3p

~2p!3 nj~p!
mj

Ep
~ j !3 F S v2

pk

Ep
j D 2

2
k4

4Ep
~ j !4G21

,

Ep
~ j !5Amj

21p2. ~22!

Here we note that the contribution of the axial componentt5

to the resulting neutrino emissivity is small (t5 /t t

;mg
2t5 /v2t l;mg /mN* for protons and ;(mgme /pFe

2 )
3 ln(pFe/me) for electrons!, so that it will be omitted.

The squared matrix element~11! for a certain neutrino
species, summed over the lepton spins and averaged ove
three photon polarizations, can be cast in the form

( uM~ i !u25
4

3
pe2G2Ft t

~ i !2S 2v1v212
~kq1!~kq2!

k2 D
2t l

~ i !2S v1v21q1q222
~k•q1!~k•q2!

k2

22
~kq1!~kq2!

k2 D G , ~23!

where (k•q1,2)5vv1,22(kq1,2), and v1,2 and q1,2 denote
the frequencies and momenta of the neutrino and
tineutrino. We have also used the fact that Tr$ l ml n%
58@q1

mq2
n1q2

mq1
n2gmn(q1•q2)24i«mnlrq1lq2r#.

The emissivity of our processes is given by



i

y

s
A

n

of

e

n

.
ge
of
the

ere-
the
m

tron
ent.

s

e
d the

e
re
r-
-

215JETP 87 (2), August 1998 Voskresensky et al.
«n
g5E d3k

~2p!32v

d3q1

~2p!32v1

d3q2

~2p!32v2

3
v11v2

exp@~v11v2!/T#21

3 (
i 5ne ,nm ,nt

( uM~ i !u2~2p!4d4~k2q12q2!. ~24!

Substituting Eq.~23! into Eq. ~24!, we finally obtain

«n
g5

T5

9~2p!3 pe2G2a2I ,

I 5E
a

` djj

ej21
Aj22a2Ft t

2S a2

j2 D1t l
2S a2

j2 D G , ~25!

wherea5mg /T, and

t t
2~x!'4 (

i 5ne ,nm ,nt
FcV

~2 !Rk

rp

2mp*
~11x!2cV

~ i !

3S 3

8p
rpD 2/3S 11

x

2D G2

, ~26!

t l
2~x!'4x2 (

i 5ne ,nm ,nt
FcV

~2 !Rk

rp

2mp*
2cV

~ i !S 3

8p
rpD 2/3G2

.

~27!

Some numerically small terms have been dropped
Eq. ~26!.

The integralI in Eq. ~25! can be calculated analyticall
in the two limiting cases,a!1 anda@1:

I ~a@1!'
A2p

2
a3/2S 11

3

2a De2a@t l
~2!~1!1t t

2~1!#,

~28!

I ~a!1!'2z~3!@t l~0!1t t
2~0!#, z~3!.1.202. ~29!

Thus, combining Eqs.~1! and ~25!–~28!, we obtain an esti-
mate for emissivity of our reactions~we present here the
result formg.T and for three neutrino species!:

«n
gF erg

cm3
•sG'2.6•1025T9

3/2 expS 2
mg

T D S mg

MeVD 7/2

3S r

r0
D 8/3S 11

3

2

T

mg
D @11h#, ~30!

h50.0003Rk
2S mp

mp*
D 2S r

r0
D 4/3

20.035Rk

mp

mp*
S r

r0
D 2/3

.

~31!

Here T9 denotes temperature measured in units of 109 K.
The unity in square brackets in Eq.~30! corresponds to the
electron–electron-hole diagram, whereas the factorh is re-
lated to the proton–proton-hole~first term in Eq.~31!! and
the interference diagrams~second term in Eq.~31!!.

Emissivity given by Eq.~30! varies with temperature a
T3/2 exp(2mg /T), whereas emissivity of the modified URC
process varies asT8 exp@2(Dp1Dn)/T# in the region of pro-
ton (DpÞ0) and neutron (DnÞ0) pairing. Hence, one ca
n

expect that the processgm→nn̄ will dominate at compara-
tively low temperatures, whenDp(T)1Dn(T)2mg(T).0
andT,Tc,p .

4. NUMERICAL ESTIMATES

To obtain quantitative estimates we need the values
the nucleon-nucleon correlation factorskpp andGg . Accord-
ing to Ref. 24, we can exploit

kpp5cV
~2 !22 f npC0AnnG~ f nn!, ~32!

where f np.20.75 and f nn.1.25 are the constants in th
theory of finite Fermi systems;19,24 C0

215mn* pFn /p2 is the
density of states at the Fermi surface;Ann is the neutron–
neutron-hole loop,

C0Ann5 iC0E d3p

~2p!4 Gn~p1k!Gn~p!'
pFn

2 k2

6mn* v2 ,

~33!

for values ofv@ukupFn /mn* of interest, andG21( f nn)51
22 f nnC0Ann .

We note that the second term in Eq.~32! is not propor-
tional to a small factorcV

(2) , because the nucleon-nucleo
correlations also allow for emission ofnn̄-pairs from the
nn21 loop. Numerical estimates of the ratioRk are as fol-
lows: for a@1, we have Rk.1.6 for r5r0 , mn* (r0)
.0.8mn , and Rk.2.1 for r52r0 , mn* (2r0).0.7mn ; for
a!1, we obtainRk.1 and correlation effects are negligible
The in-medium renormalization of the proton electric char
included in the factorGg can be also expressed in terms
the constants in the theory of finite Fermi systems and
proton–proton loop factor (App); see Ref. 19. The latter is
suppressed at relatively low proton densities. We can th
fore takeGg'1. With these estimates, we observe that
main contribution to neutrino emissivity comes fro
electron–electron-hole processes.

The ratio of emissivity«n
g ~30! to emissivity«n

FM of the
modified URCA process,RFM5«n

g/«n
FM , is

RFM'15•104T9
213/2 expS Dn1Dp2mg

T D S mg

MeVD 7/2

3S 11
3

2

T

mg
D S r

r0
D 2 mn

3mp

mn*
3mp*

@11h#. ~34!

For further estimates we need the values of the neu
and proton gaps, which are unfortunately model-depend
For instance, the evaluation in Ref. 25 yieldsDn(0)
.8.4Tc,n.0.6 MeV, Tc,n.0.07 MeV for 3P2 neutron pair-
ing at r5r0 , and Dp(0).1.76Tc,p.3 MeV, Tc,p

.1.7 MeV for 1S proton pairing, while Ref. 26 use
Dn(0).2.1 MeV, Tc,n.0.25 MeV and Dp(0).0.7 MeV,
Tc,p.0.4 MeV for r5r0 . Employing these estimates of th
zero-temperature gaps, its temperature dependence, an
photon effective mass, we obtain from Eq.~34! the tempera-
ture dependence of the ratioRFM .

In order to find the lower temperature limit at which th
processesgm→nn̄ are still operative, we need to compa
the value«n

g with photon emissivity at the neutron star su
face, «g

s53sTs
4/R, wheres is the Stefan–Boltzmann con
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stant,Ts denotes the surface temperature of the star, andR is
the star’s radius. By employing a relation27 between the sur-
face and interior temperatures, we obtain forRg5«n

g/«g
s

Rg'1.2•109T9
20.7 expS 2

mg

T D S mg

MeVD 7/2

3S 11
3

2

T

mg
D S r̄

r0
D 8/3

@11h#, ~35!

where the star radius and mass are taken to be 10 km
1.4M ( , with M ( the solar mass andr̄ some averaged valu
of the density in the neutron star interior.

The ratiosRFM and Rg are plotted as a function of th
temperature in Fig. 1 for both of the foregoing parame
choices. We see that our new processes are operative i
temperature range 1•109 K&T&8•109 K for the parameter
choice of Ref. 25, and 1•109 K&T&4•109 K for the param-
eters of Ref. 26. As one observes in Fig. 1, within the
intervals the new cooling channel might exceed known co
ing processes by up to a factor 106.

5. CONCLUDING REMARKS

As mentioned above, forT.Tc,n , Tc,p , i.e., in a normal
plasma region of the star crust and star interior, photons w
approximately the electron plasma frequency2! vpl can decay
into neutrino pairs, as has been shown in previo
estimates.10 At T,Tc,p , however, we are already dealin
with massive photons in the region of proton pairing, and
new reaction channels can significantly contribute to cooli

Our processes can also occur in a charged-pion~or kaon!
condensate state but they are suppressed due to the hig
fective photon mass3! mg.A8pe2wc

2.6 MeV for the con-
densate fieldwc.0.1mp.14 MeV.

In deriving the value of«n
FM used above, one describe

the nucleon-nucleon interaction essentially by free one-p
exchange. In reality, however, atr.(0.5– 1)r0 the total
nucleon-nucleon interaction does not reduce to free one-
exchange, because of the strong polarization of the med
whereby a significant part comes from in-medium pion
excitations.5–7,24Occurring in intermediate states of the rea
tion, the in-medium pions can also decay intoen̄, or first into

FIG. 1. Temperature dependence of the ratiosRFM andRg at nucleon den-
sity r5r0 . Solid curves correspond to the parameter choice of Ref.
whereas the dashed curves depict results with parameters of Ref. 26. S
bars indicate the temperature regions in which cooling via massive ph
decay is more efficient than standard cooling processes.
nd
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a nucleon–nucleon-hole, which then radiatesen̄, thereby
substantially increasing the resulting emissivity. Other re
tion channels such asn→npairnn̄ andp→ppairnn̄ open up in
the superfluid phase with paired nucleons,6,24,28 wherenpair

(ppair) means a paired neutron~proton!. All these reaction
channels give rise to a larger contribution to emissivity th
that of the modified URCA process estimated via free o
pion exchange. Above we compared«n

g with «n
FM just be-

cause the latter is used in the standard scenarios of neu
star cooling.

As we also mentioned in the Introduction, there are ot
processes like those considered above. Emissivity of the
cesspgm→ppairnn̄ is substantially suppressed~at least by a
factor e2 and also due to a much smaller phase-space
ume! compared to that of the processp→ppairnn̄. According
to simple estimates, e.g., using Eq.~22! of Ref. 16, the pro-
cesseg→enn̄ makes a very small contribution to emissivi
both in the inner crust and in the interior of neutron sta
even when one neglects the photon mass. Thus we may
clude that the processegm→enn̄ also leads to a minor con
tribution to emissivity at the densities and temperatures
der consideration.

In summary, the processesgm→ee211pp21→nn̄
might be operative over some temperature intervalT
.109– 1010 K, T,Tc,p , and together with other in-medium
modified processes,8 they should be incorporated into com
puter simulations of neutron star cooling.
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Science Foundation and N3W300 from the International S
ence Foundation and the Russian Government. B. K.
E. E. K. are supported by BMBF Grant 06DR666. E. E.
acknowledges the support of the Heisenberg–Landau
gram.

APPENDIX

We can also achieve the same results that led to Eq.~10!
by starting with Maxwell’s equations~in obvious notation!:

ik–E54pr̃, ik3B54p j2 ivE,

k–B50, k3E5vB,

where the charge densityr̄ is the superposition of the densit
of free charges and the density of bound charge. Full f
charge density being zero in our case due to local elec
neutrality. The currentj is a superposition of an external te
current and the induced current:

j5 jext1 j ind.

In normal systems, the induced current~i.e., the current of
nonpaired charged particles! j ind5 jnor is related toE via lon-
gitudinal e l and transversee t dielectric constants. This con
nection results in longitudinal and transverse branches of
electromagnetic excitations, with an effective photon g
equal to the plasma frequencyvpl .

10 In contrast, in a super-
conducting system the condensate makes two other cont
tions to the current, namelyjA522e2wc

2A and j res

,
ded
on
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52ewc
2¹F. Letting F5F (1)1F (2) , we have j res5 j (1)

res

1 j (2)
res . These two terms are determined as follows. As

have argued above, superconductivity requires the com
sation of the normal component of the current proportiona
E, i.e., we can takejnor1 j (1)

res50. Only small contributions
;e2 exp(2Dp /T)v2A and;e2 exp(2Dp /T)k2A, as well as
a small imaginary contribution; ie2F(v,k)exp(2Dp /T)A,
whereF is some function ofv andk, can still remain from
the valuejnor ~see Eqs.~96.24! and ~97.4! of Ref. 20!. We
neglect these small contributions. The part of the curr
;¹F (2) can be hidden injA by a gauge transformation o
the fieldA. We then have

ik3B. jA2 ivE.

Taking the vector product of this equation withk, we obtain

~v22k228pe2wc
2!B50.

From this relation we observe that the electromagnetic e
tations possess the mass given by Eq.~10!. Hence, we have
demonstrated that one can obtain the well-known plas
photon spectrum for a normal system, and at the same
one can obtain a massive photon spectrum and the Hig
Meissner effect in a system with a charged condensate.

* !E-mail: voskre@rzri6f.gsi.de
†!E-mail: kolomei@tpri6f.gsi.de
1!Note that in conventional nuclear physics one usually employs partic

hole diagrams even at zero temperature, thereby considering nuclear m
to be normal. Small effects of pairing can be neglected, since the typ
energy in a nucleonic particle–hole diagram is of the order of the Fe
energyeF , andeF@D holds.7,18,19

2!A rather small extra contribution also comes from the proton-proton-h
diagram.

3!For simplicity, in this estimate the peculiarities of a condensate with n
vanishing momentum7 are ignored.
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Variational estimates of the diffusion coefficient of cosmic rays in a random magnetic
field
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A variational method is used to obtain estimates of the effective particle transport coefficients in
a random static magnetic field. The particle propagation is described by an anisotropic
diffusion equation. The diffusion coefficient parallel to the local magnetic field is much greater
than the transverse diffusion coefficient. For large-scale magnetic-field variations the
diffusion is described by effective coefficients. The variational approach can be used to find the
effective parallel and perpendicular diffusion coefficients. It was shown that the instability
growth rate of the magnetic field lines determines the upper estimate of the effective transverse
diffusion coefficient. ©1998 American Institute of Physics.@S1063-7761~98!00208-X#
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1. INTRODUCTION

The motion of charged particles in a random magne
field has frequently been examined in connection with
propagation of cosmic rays in interplanetary and interste
media.1–4 Scattering of particles by small-scale magne
field variations~with scales of the order of the particle gyro
radius! causes them to become isotropic and gives rise
diffusion, which is usually strongly anisotropic: the diffusio
coefficient parallel to the field is much greater than the p
pendicular diffusion coefficient. The presence of a larg
scale random magnetic field component enhances the tr
verse diffusion~known as anomalous diffusion! and makes
the overall diffusion more isotropic. To be more specific,
assume that time-dependent diffusion equation

] f

]t
5¹ iDi j ¹ f , ~1!

whereDi j is the symmetric diffusion tensor. Here we sh
consider the diffusion tensor given in the following form:

Di j 5~D i2D'!bibj1D'd i j ,

Di j
215~D i

212D'
21!bibj1D'

21d i j . ~2!

Here D i and D' are the diffusion coefficients parallel an
perpendicular to the magnetic field~we shall subsequently
assume that these are independent of position!, andb is the
unit vector parallel to the magnetic field:b5B/B. Fluctua-
tions of the magnetic field give rise to fluctuations of t
diffusion tensor and the problem involves averaging Eq.~1!
over these fluctuations. We shall subsequently consider
the magnetic field is static and we shall analyze a stea
state variant of Eq.~1!. This is correct if the diffusion coef-
ficient is so large that over the characteristic time on wh
the field varies, the particle diffuses over a distance gre
than the correlation length of the field~more strictly, the time
of variation of the field should exceed the time required
the particle to ‘‘forget’’ the field line; see Conclusions!. So
2181063-7761/98/87(8)/5/$15.00
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far, the problem of averaging the diffusion in a static fie
has only been solved for trivial cases~for example, if the
diffusion tensor only depends on a single coordinate!, except
for the result obtained by Dykhne.5 An exact result exists for
the two-dimensional problem and the diffusion tensor~2!
with an isotropic random magnetic field, for which the effe
tive diffusion coefficient has the form

D* 5AD iD'.

The case of the average magnetic field is of interes
the theory of cosmic ray propagation. Averaging Eq.~1! us-
ing perturbation theory~see Ref. 4! shows that the smal
parameter of the problem iŝA2&AD i /D'. Here the vector
amplitude of the random magnetic field is defined
A5(B2B0)/B0 , B05^B& and the angular brackets deno
averaging over volume. The effective transverse diffus
coefficient may be expressed as the series

D'
* 5D'S 11C1^A

2&AD i

D'

1C2^A
2&2

D i

D'

1 . . . D ,

~3!

whereC1 ,C2 . . . are numerical coefficients. In the case
practical interest̂ A2&<1, perturbation theory is unsuitabl
sinceD i@D' and the parameter in question is large. Und
these conditions, it may be interesting to determine the lim
of variation of the effective transverse diffusion coefficie
and for this purpose we use a variational approach.

2. VARIATIONAL ESTIMATES OF THE EFFECTIVE
PARAMETERS

In order to obtain variational estimates of the effecti
diffusion coefficient for the equation

¹ iDi j ¹ f 50 ~18!

we shall consider the functionals

L ~1!5^Di j gigj&, L ~2!5^Di j
21 j i j j&. ~4!
© 1998 American Institute of Physics
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Hereg and j are vectors which depend on position. We c
show that subject to the additional conditions

G5^g&, curl g50, J5^ j &, div j50 ~5!

~whereG andJ are constant vectors, the first two conditio
refer to the first functional, and the third and fourth refer
the second!, these functionals have extreme values if

gi5¹ i f , j i52Di j ¹ j f , ~6!

and the functionf satisfies Eq.~18! ~see Refs. 6 and 7!. In
other words, Eq.~18! may be obtained if the first functiona
in Eq. ~4! is varied subject to the second additional conditi
~5!. These extrema are minima if the components of the
fusion tensor are positive definite quadratic coefficients,
the value of the functionals at the minimum is given by

Lmin
~1! 5Di j* GiGj , Lmin

~2! 5~Di j* !21JiJj . ~7!

Here the effective diffusion tensorDi j* gives the relation be-
tween the average current and the gradient:

Ji52Di j* Gj . ~8!

Equality ~7! implies that the following inequalities are sati
fied:

Di j* GiGj<^Di j gigj&, ~Di j* !21JiJj<^Di j
21 j i j j&, ~9!

wheregi and j i are any functions satisfying the condition
~5!. By selecting trial functions, we can use the inequalit
~9! to obtain upper and lower constraints on the effect
diffusion coefficient. If the trial function depends on som
nonrandom function, this function may be obtained by so
ing the variational problem~the right-hand sides of the in
equalities~9! must be minimized!. The smaller the right-
hand sides of the inequalities~9!, the closer are the limits o
variation of the diffusion coefficient to the accurate soluti
of the problem.

When using the inequalities~9!, we shall assume that th
average over volume is equal to the average over an
semble of realizations of the random field~for a justification
of this assumption and the mathematical aspects of avera
Eq. ~18! see Ref. 8!.

3. ESTIMATES OF THE EFFECTIVE PARALLEL DIFFUSION
COEFFICIENT

We shall use the following trial functions to obtain es
mates of the effective parallel diffusion coefficient:

g5G, j5BJ/B0 . ~10!

We can easily see that the conditions~5! are satisfied~the
average gradientG and the average currentJ are directed
parallel to the average magnetic field!. Substituting these
trial functions into inequality~9! with the diffusion tensor
~2!, we obtain

D iB0
2/^B2&<D i* <D i^bi

2&1D'^b'
2 &. ~11!

Herebi andb' are the components of the unit vector paral
and perpendicular to the average field.
f-
d

s
e

-
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4. ESTIMATES OF THE EFFECTIVE PERPENDICULAR
DIFFUSION COEFFICIENT

If the problem is two-dimensional~the vector of the
magnetic field lies in thexz plane and does not depend o
y), we take the trial function for the gradient in the followin
form (ey is the unit vector of they axis!:

g5ey3B
G

B0
. ~12!

In this case, the first pair of conditions~5! is satisfied~the
average gradient is directed along thex axis and the average
field along thez axis!. Substituting the trial function~12!
into the first inequality~9! yields the estimate

D'
* <D'^B2&/B0

2 . ~13!

For the three-dimensional problem we shall confine o
analysis to perturbations of the magnetic field perpendicu
to the average field directed along thez axis ~this situation
arises for Alfvén wave turbulence, for example!. We take the
trial function for the gradient in the form

g5G1¹E d3r 8d2r 1'N~r ,r 8!GkAk

3~z8,r1'!q~z2z8,r1'2r'8 !. ~14!

Here q(z,r') is a nonrandom function of the coordinate
N(r ,r 8) is the field line distribution function which satisfie
the equation

]N

]z8
1

]

]r'8
•~A~z8,r'8 !N!50, Nuz5z85d~r'2r'8 !.

~15!

Expression~14! corresponds to the fact that forD i@D' , the
particle moves along the magnetic field line for a long tim
The dependence of the functionq on r' describes the drift of
the particle from the field line~an equation will be derived
below for this function!.

When substituting the trial function~14! into the first
inequality ~9!, we use the obvious inequality (b–g)2<gz

2

1(g–A)2. The new functional obtained by making this su
stitution will be denoted by the letterL. In order to calculate
this functional, we need to be able to calculate the avera
of the product of the components of the vectorA and the
functionsN, for which we can use perturbation theory if th
following condition is satisfied:

ALi /L'!1. ~16!

HereA is the amplitude of the random field andL i andL'

are the correlation dimensions of the random field para
and perpendicular to the average field. Retaining ter
through the second order inA in the expression forL, we
obtain
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L5~D i2D'!Ai j ~0,0!GiGj1D'G214~D i2D'!

3E d3r 8d2r 1'GiGjd~z2z8!Bi j ~r'2r1'!

3^N~r ,r 8!&
]q~z2z8,r'8 2r1'!

]z
12

3E dz8d2r'8 d2r'9 d2r 1'd2r 2'Bi j ~r1'2r2'!

3GiGjFD i^N~z,z8,r' ,r'8 !N~z,z8,r' ,r'9 !&

3
]q~z2z8,r'8 2r1'!

]z

]q~z2z8,r'9 2r2'!

]z

1D'K ]N~z,z8,r' ,r'8 !

]r'

]N~z,z8,r' ,r'9 !

]r'
L

3q~z2z8,r'8 2r1'!q~z2z8,r'9 2r2'!G . ~17!

Here

Bi j ~r'!5
1

2E dz Ai j ~z,r'!

is the correlation function of the statistically uniform rando
magnetic fieldAi j (z,r')5^Ai(z,r')Aj (0,0)& integrated over
z. In the derivation of expression~17! we assumed that th
characteristic scale of variation of the functionsN andq with
respect toz is much greater than the correlation dimensi
L i , which allowed us to perform a single integration overz9
in the second integral. Note that expression~17! is accurate if
the field Ak(z,r') is delta-correlated with respect toz and
has Gaussian statistics.

In order to calculate the averages in the seco
integral in expression~17!, we analyze the function
F(z,z8,r' ,r'8 ,r'9 )5N(z,z8,r' ,r'8 )N(z,z8,r' ,r'9 ) for which
an equation is derived from Eq.~15!:

]F

]z8
1

]

]r'8
•~A~z8,r'8 !F !1

]

]r'9
•~A~z8,r'9 !F !50. ~18!

The first and second averages in the second integral in
pression~17! have the following initial conditions:

F~z,z8,r ,r'8 ,r'9 !uz5z85d~r'2r'8 !d~r'2r'9 !,

F~z,z8,r ,r'8 ,r'9 !uz5z85
]d~r'2r'8 !

]r'

•

]d~r'2r'9 !

]r'

. ~19!

An equation for the averaged functionF05^F& may be ob-
tained by using perturbation theory~for further details see
Ref. 9!:

sign~z82z!
]F0

]z8
5Bi j ~0!S ]2F0

]r' i8 ]r' j8
1

]2F0

]r' i9 ]r' j9
D

12
]2

]r' i8 ]r' j9
Bi j ~r'8 2r'9 !F0 . ~20!
d

x-

This equation is accurate if the fieldAk(z,r') is delta-
correlated with respect toz and has Gaussian statistics. I
solutions with the initial conditions~19! may be obtained by
using a Fourier transformation with respect tor 8' and r'9 :

sign~z82z!
]Fk

'8 ,k
'9

]z8
52E d2k'

~2p!2
Hi j ~k'!

3@~k' i8 k' j8 1k' i9 k' j9 !Fk
'8 ,k

'9

12k' i8 k' j9 Fk
'8 2k' ,k

'9 1k'
#, ~21!

where the tensorHi j (k') is related to the correlation func
tion of the random magnetic field by the expression

Hmn~k'!5H~k'!S dmn2
k'mk'n

k'
2 D

5E d2r'Bmn~r'!exp~2 ik'•r'!, m,n51, 2.

~22!

The initial conditions~19! in the Fourier representation hav
the form

Fk
'8 ,k

'9
uz5z85exp@2 i ~k'8 1k'9 !•r'#,

Fk
'8 ,k

'9
uz5z852k'8 •k'9 exp@2 i ~k'8 1k'9 !•r'#. ~23!

For a random field statistically isotropic in the plane perpe
dicular to the average field, the solutions have the follow
form:

Fk
'8 ,k

'9
5exp@2 i ~k'8 1k'9 !•r'2Dm~k'8 1k'9 !2uz2z8u#,

Fk
'8 ,k

'9
52k'8 •k'9 exp$2 i ~k'8 1k'9 !•r'

2@Dm~k'8 1k'9 !222g#uz2z8u%, ~24!

or in the coordinate representation

F0~z,z8,r ,r'8 ,r'9 !5^N~z,z8,r' ,r'8 !&d~r'8 2r'9 !,

F0~z,z8,r ,r'8 ,r'9 !5exp~2guz2z8u!
]

]r'8
•

]

]r'9

3^N~z,z8,r' ,r'8 !&d~r'8 2r'9 !,

^N~z,z8,r' ,r'8 !&5
1

4pDmuz2z8u
expF2

~r'2r'8 !2

4Dmuz2z8u
G .

~25!

HereDm andg are the diffusion coefficient and the instab
ity growth rate of the field lines, respectively, which are e
pressed in terms of the spectrum of the random magn
field:

Dm5
1

2E d2k'

~2p!2
H~k'!, g5

1

2E d2k'

~2p!2
k'

2 H~k'!.

~26!
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These coefficients describe the behavior of the magnetic
lines. The mean square of the displacement of the field
in the transverse direction is given by

^r'
2 &54Dmuz2z8u, ~27!

and for the mean square of the distance between the ne
field lines in the transverse direction, we have

^~r1'2r2'!2&5^~r1'2r2'!2&uz5z8 exp~2guz2z8u!,

^~r1'2r2'!2&!L'
2 . ~28!

Substituting the expressions~25! into Eq. ~17!, performing a
single integration with respect tor 8' , and converting to the
k' representation, we obtain

L5~D i2D'!Ai j ~0,0!GiGj1D'G2

1E dz8d2k'GiGjHi j ~k'!

3F4~D i2D'!d~z8!
]Q~z8,k'!

]z8

12D iS ]Q~z8,k'!

]z8
D 2

12D'k'
2

3exp~2guz8u!Q2~z8,k'!G . ~29!

Here the function

Q~z,k'!5E d2r'q~z,r'!exp~2 ik'•r'!

is the Fourier transform of the functionq. By varying this
functional with respect toQ, we obtain the following expres
sion:

D i
]2Q

]z2
2k'

2 D'Q exp~2guzu!52~D i2D'!d8~z!. ~30!

Using the substitutionz5exp(guzu), we can reduce the equa
tion to a Bessel equation of imaginary argument:

Q52
signz

2 S 12
D'

D i
DK0S k'

g
AD'

D i
exp~guzu! D Y

K0S k'

g
AD'

D i
D . ~31!

Substituting this function into expression~29! and assuming
that at the extremum the value of the integral is half t
given by the first term in brackets, we obtain an upper bou
on the effective transverse diffusion coefficient:

D'
* <D'2

1

2E d2k'

~2p!2
k'H~k'!AD iD'K08

3S k'

g
AD'

D i
D Y K0S k'

g
AD'

D i
D . ~32!

Here the prime denotes differentiation with respect to
argument. The order-of-magnitude instability growth rate
ld
e

est

t
d

e
f

the field lines isg'(1/2)^A2&L i /L'
2 ~we assume that the

random field is concentrated in the main scale, which is
the order of the correlation dimension, so that the integr
~26! are determined by the amplitude of the random fie
on this scale! and thus in the most interesting ca
^A2&2L i

2D i /L'
2 D'@1, the argument of the functionK0 is

small in that part of the integration region where the expr
sion in the integrand differs appreciably from zero. Using t
asymptotic form of this function forx→0, K0(x)'2 ln x,
we obtain

D'
* <D'1

1

2
D igE d2k'

~2p!2
H~k'!Y lnS g

k'

AD i

D'
D .

~33!

5. CONCLUSIONS

In many cases, the variational approach can be use
estimate the limits of variation of the effective diffusion c
efficient. If information is available on the spectrum of th
random magnetic field andD i.D' holds, it follows from
inequality~11! that the effective parallel diffusion coefficien
lies within the range

D i /~11^A2&!<D i* <D i . ~34!

In the two-dimensional case, inequality~13! gives the fol-
lowing range of variation of the effective perpendicular d
fusion coefficient:

D'<D'
* <D'~11^A2&!. ~35!

Thus, in the limit^A2&!1 in these cases the effective diffu
sion coefficients will be close to the corresponding local c
efficients. In the three-dimensional case, the inequality~33!
gives an upper estimate of the effective diffusion coefficie

D'
* <D'1D iDmgY lnS gL'AD i

D'
D

'D'1
D i^A

2&2L i
2

4L'
2 Y lnS ^A2&L i

L'

AD i

D'
D . ~36!

Here the equality is only approximate because of the
sumptions made to derive the inequality~36!. The right-hand
side of inequality~36! is of the same order of magnitude a
the estimated transverse diffusion coefficient obtained
Refs. 10 and 11. Let us assume thatt is the time when the
particle ‘‘forgets’’ the field line. As it moves along the fiel
line as a result of diffusion, the particle covers the distan
AD it in this time and the transverse displacement as a re
of ‘‘wandering’’ of the field line will beDmAD it. Thus, in
order of magnitude the transverse diffusion coefficient
given by

D'
* 'DmAD i /t. ~37!

Over the timet the particle is displaced by the distanc
AD't in the transverse direction as a result of diffusion. Th
distance increases as a result of the instability of adjac
field lines~see formula~28!!. Equating this to the transvers
correlation scale, we obtain
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D't exp~2gAD it!'L'
2 . ~38!

Solving this equation approximately fort, we have

t'
1

D ig
2

ln2S gL'AD i

D'
D . ~39!

Substituting this expression into formula~37!, we obtain an
expression for the transverse diffusion coefficient wh
agrees with the right-hand side of inequality~36!. Note that
for D'→0 this value is lower than the transverse diffusi
coefficient calculated using various approxima
methods.12–14.
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6A. M. Dykhne, Zh. Éksp. Teor. Fiz.52, 264 ~1967! @Sov. Phys. JETP25,
170 ~1967!#.

7M. I. Shvidler, Statistical Hydrodynamics of Porous Media@in Russian#,
Nedra, Moscow~1981!.

8S. M. Kozlov, Usp. Fiz. Nauk40, 61 ~1985! @sic#.
9J. R. Jokipii, Astrophys. J.183, 1029~1973!.

10A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett.40, 38 ~1978!.
11E. G. Klepach, V. S. Ptuskin, and L. G. Chuvil’gin, Izv. Ross. Aka

Nauk, Ser. Fiz.57~7!, 86 ~1993!.
12B. B. Kadomtsev and O. P. Pogutse, inProceedings of the Seventh Inte

national Conference on Plasma Physics and Controlled Nuclear Fus
Research, Vienna, 1978, Vol. 1, p. 649.

13A. A. Galeev and I. M. Zeleny, Physica~Amsterdam! 20, 90 ~1981!.
14L. G Chuvilgin and V. S. Ptuskin, Astron. Astrophys.279, 278 ~1993!.

Translated by R. M. Durham



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 2 AUGUST 1998
New classes of exact solutions in inflationary cosmology
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The problem of determining a representation of the self-interaction potential in the form of a
time dependence of the field potential energy which admits the existence of an
inflationary regime and the transition of evolution to a Friedmann regime of asymptotic expansion
is investigated within a cosmological model with a self-interacting scalar field. A variational
formulation of the slow-roll concept is introduced, and, on the basis thereof, an exact solution is
constructed for the evolution of the scale factor and the form of the self-interaction
potential. A method based on representing the Einstein equations in the form of a linear second-
order equation is developed for constructing and analyzing exact cosmological solutions of
these equations. Selected types of potentials and the corresponding evolutions of the universe are
investigated. ©1998 American Institute of Physics.@S1063-7761~98!00308-4#
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1. INTRODUCTION

In this paper we investigate general properties of
evolution of a homogeneous isotropic universe on the b
of an analysis of the system of Einstein equations for a s
interacting scalar field. One of the important requireme
imposed on early-universe theories by present-day obse
tional data is the existence of an inflationary phase in
evolution of the universe with an exponentially increasi
scale factor.1 However, the physical causes responsible
the inflationary phase and its subsequent termination with
certain stage of the evolution of the universe have not b
fully elucidated. There are several different hypotheses
this regard. It is therefore important to ascertain the gen
properties of the self-interacting-scalar-field model wh
characterize the inflationary phase and distinguish this fi
from the background of the general evolution of the unive
over a period beginning with the preinflationary epoch a
ending with later epochs in the evolution of the universe. I
reasonable to hope that this information can be used to
cidate the actual causes of the onset and termination o
flation. The formulation of the problems and the metho
used to investigate them in the present study draw heavily
the method for fine tuning of the potential in Ref. 2 a
illustrate its heuristic capabilities.

The inflationary phase of the~isotropic and homoge
neous! universe is customarily understood to be the per
t i,t,t f of its early evolution, beginning at the timet i and
ending at the timet f , when the scale factorK(t) increased at
an accelerated rate, i.e.,

K̈5K~H21Ḣ !.0

~see Ref. 3!. In this setting the term subinflation is used wh
Ḣ,0, standard or exponential inflation whenḢ50, and su-
perinflation in the case ofḢ.0.

We take a special look at the cases in which the l
governing the variation of the scale factorK(t) has one of
the forms
2231063-7761/98/87(8)/6/$15.00
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K~ t !5K0tm, m.1,K0.0, ~1!

K~ t !5K0eH0t, H0.0, ~2!

K~ t !5K0~ t* 2t !n, n,0, t* .t i , ~3!

which ensure fulfillment of the general inflation conditio
K̈.0. The scale factor~1! corresponds to subinflation and
called power-law inflation. The case of superinflation~3! is
unattainable within the scope of the theory of a se
interacting scalar field.

The existence of an inflationary period of expansion
the universe is necessary for solving the horizon~homogene-
ity!, flatness, and relic-monopole problems, which have b
discussed in detail, for example, in the original work
Guth4 ~see also Linde’s book1!. The specific mechanism
driving inflation in the theory with a self-interacting scal
field ~inflaton field! is usually identified with the form of the
functional dependence of the effective self-interaction pot
tial of the scalar field on the field itself:V5V(f). An im-
portant factor in substantiating the existence of such
mechanism is the slow-roll regime, i.e., a regime in whi
the variation of the fieldf @and the potentialV(f)] was
relatively slow, so that the ‘‘kinetic’’ energy of the scala
field can be disregarded:ḟ2!V(f) ~Ref. 5!.

In the standard model~2! the self-interaction potential is
specified as a quadratic function off:

V~f!5m2f21b.

In this case the field varies linearly with time:f}t, whereas
the scale factor increases exponentially:K(t)}eHt ~Refs. 1
and 6!.

A new approach to the construction of exact solutions
inflationary cosmology~without any reliance on the slow-rol
regime! has been developed in Refs. 2, 7, and 10. T
method can be broadly summarized as follows. We spe
the regime of evolution of the scale factorK5K(t) and de-
termine the evolution of the self-interaction potentialV
5V(t) in such a way as to ensure the regime assigned
© 1998 American Institute of Physics
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K5K(t). We then determine the rate of change of the sca
field ḟ(t). Next, integrating overt, we find the law of evo-
lution of the scalar fieldf5f(t), which is also matched to
the regime chosen for the scale factor. We ultimately obt
a parametric expression forV5V(f), which then represent
the self-interaction potential ‘‘fine-tuned’’ to the exact sol
tion assigned.

In particular, in Ref. 2 the self-interaction potentia
were plotted as a function of the scale factorK(t) corre-
sponding to the inflationary regimes~1! and~2!. Also, in Ref.
2, V(f) was obtained in a general parametric form for c
tain types of large-t asymptotic behavior ofK(t) which en-
sure regime~1! or ~2!.

A somewhat different approach to the construction
exact solutions in cosmological inflation models was p
sented by Barrow.11 In his approach11 the evolution of the
scalar fieldf5f(t) is first specified, and then the evolutio
of the scale factorK5K(t) and the potential, which depend
explicitly on the scalar fieldf, are determined.

We also mention the work of Maartenset al.,12 who
used a method similar to fine tuning of the potential, but w
a special parameter introduced in place of time. This
proach might well be practical for the solution of some pro
lems, but it complicates the process of obtaining and ana
ing solutions.

Here we follow the general scheme of the method
fine tuning of the potential and submit two new techniqu
for constructing classes of exact inflationary solutions fo
homogeneous isotropic universe. One technique entai
variational formulation of the conditions underlying th
slow-roll regime, and the other rests on the possibility
specifying the self-interaction potential as a function of tim
We investigate the general implications of such an appro
and present new exact solutions.

2. EXACT SOLUTION AND SELF-INTERACTION POTENTIAL
FOR THE SLOW-ROLL REGIME

The Einstein equations for a homogeneous isotropic u
verse and an arbitrary form of the self-interaction poten
V(f) of the scalar fieldf(t) can be represented in the cla
of Friedmann metrics by two equations:2

V~ t !5
1

k
S L1

K̈

K
12

K̇2

K2 1
2e

K2D , ~4!

f~ t !56A2

k EA2
d2 ln K

dt2
1

2e

K2 dt1f0 , ~5!

wherek is the gravitational constant,L is the cosmological
constant, andf0 is an integration constant. This system
equations provides the basis of the method for fine tuning
the potential. As mentioned in the Introduction, once
evolution of the scale factor has been specified, this met
can be used to find the appropriate form of the se
interaction potential to achieve a given regime of evolut
of the universe.

The method has been used previously2,8 to analyze infla-
tionary regimes and to demonstrate the existence of a l
number of self-interaction potentials admitting such a regi
r
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of evolution. The enormous diversity of potentials leading
inflation compels us to look for an additional principle th
might be used to isolate the potential that actually occur
in the early stages of evolution of the universe. Consider
the special importance of the existence of the slow-roll
gime for an inflationary scenario, we look into a nonstand
formulation of the slow-roll regime. We define the slow-ro
regime with the aid of the variational principle of minimum
variation of the scalar fieldf with variation of the scale
factorK(t) and, as a consequence, minimum variation of
values of the potentialV(f). On the basis of Eq.~5! this
condition can be specified by the variational equation

df5E
t1

t2
dA2

d2 ln K

dt2
1

2e

K2 dt50, ~6!

wheret i<t1,t2<t f . This condition literally means that th
evolution of the scale factor must be such that the differe
in the values of the fieldf in any finite time interval@ t1 ,t2#
would be the smallest among all other possible evolutio
The variation of the value ofV(f) is also the smallest in this
case.

If we introduce the notation

F~ t !5S 2
d2 ln K

dt2
1

2e

K2D 21/2

,

the Euler–Lagrange equations corresponding to the va
tional problem~6! assume the form of a pair of equations f
F(t) andK(t):

2
d2 ln K

dt2
1

2e

K2 5
1

F2 , ~7!

d2F

dt2
1

2e

K2 F50. ~8!

It is simplest to find exact solutions of this system for t
casee50, which corresponds to a spatially flat Friedma
universe. In this case, from Eqs.~7! and ~8! we have:

2
d2 ln K

dt2
5

1

F2 ,
d2F

dt2
50.

The solution of these equations is given by the functions

K~ t !5k0~a0t1b0!1/a0
2
ec0t, F~ t !5a0t1b0 , ~9!

wherea0 , b0 , c0 , andk0 are arbitrary constants. Substitu
ing the solution~9! into Eqs. ~4! and ~5!, we obtain the
following results for the field and the potential:

f~ t !5A2

k

1

a0
ln~a0t1b0!1f0 , ~10!

V~f,c0!5
1

k FL13c0
21S 3

a0
221De22a~f2f0!

1
6c0

a0
e2a~f2f0!G , ~11!

wherea5a0Ak/2. It is interesting to note that the solutio
~9!–~11! generalizes a solution obtained previously13 by gen-
erating new solutions using invariant transformations off,



r
e

er

th
e
,
s
re

e

ti

n

n
e
a
te

o
no
th
r

a

re

-

th
im
e
t
c

f the
a

en
the
ater
to-
the

l of
unc-

of
mo-
self-

in
nal

e
ur
en-

es
n-
o-
di-
tion

of

al

e
in

for
y
of

225JETP 87 (2), August 1998 Zhuravlev et al.
K, andV, which do not alter the equations of the standa
inflation model. As should be expected, this solution d
scribes an inflationary regime of the exponential or pow
law type or a combination thereof.

Parallels between the solution~10!, ~11! and the equa-
tion of state of matter can be drawn on the basis of
analogy between the theories of a self-interacting-scalar-fi
and an ideal fluid. This analogy is expressed, in particular
the fact that by comparing the energy-momentum tensor
these two models one can formally calculate the pressup
and the energy densityr of an ideal fluid in terms of the
parameters of the scalar-field model according to the rul

T4
45r5

1

2
ḟ21V~f!, ~12!

2T1
152T2

252T3
35p5

1

2
ḟ22V~f!. ~13!

Substituting the expressions for the self-interaction poten
V(f) from Eq.~11! and the fieldf from Eq.~10!, we obtain
the relations

r5
1

k FL13c0
21

3

a0
2 e22a~f2f0!1

6c0

a0
e2a~f2f0!G ,

p52
1

k FL13c0
21S 3

a0
2 22De22a~f2f0!1

6c0

a0
e2a~f2f0!G .

Eliminating the fieldf from these equations, we obtain a
effective equation of state of matter in the form

p52r1
2a0

2

k S 2c01A1

3
~kr2L! D 2

. ~14!

When the class of solutions~9!–~11! is extrapolated to
small and large times, i.e., beyond the limits of the inflatio
ary phaset i<t1,t2<t f , the following characteristics ar
readily established. The solution under consideration alw
begins from a singular state, i.e., for any model parame
(L,a0 ,c0 ,b0) there is a timet052b0 /a0 in the history of
the evolution of the scale factor whenK(t0)50, after which
the scale factor increases at an accelerated rate for s
time. A natural transition to Friedmann expansion does
take place at larger times, and this is a drawback of
solutions under analysis. The transition to the Friedmann
gime requires that 1/a0

252/3 andc050. It is therefore obvi-
ous that in the absence of the cosmological constantL in Eq.
~4! its role is assumed byc0 , and the conditionc050 cor-
responds to the standard departure from the inflation
regime.1

Again we emphasize that the analytical solution~9!–~11!
corresponds to a potential tuned exactly to the slow-roll
gime in the variational formulation.

It is a well-known fact that the pioneering work on in
flation ~see the reviews in Refs. 1, 5, and 6! treated a trun-
cated system of Einstein and scalar-field equations, with
slow-roll regime defined so as to eliminate the second t
derivative of the scalar fieldf̈ from the equations, a devic
justified by the conditionḟ2!V(f). There are no significan
constraints on the self-interaction potential in this approa
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In our case we have obtained an exact representation o
potential in the explicit form~11!. We note once again that
solution analogous to~11! has been obtained previously,13

but without any mention of the slow-roll regimeper se. It is
easily verified that the conditionḟ2!V(f) is satisfied in a
certain time periodt i<Dt,t f for the exact solution~9!–
~11!.

3. GENERATION OF EXACT SOLUTIONS FOR A GIVEN
POTENTIAL V5V„t …

The problem of analyzing the interrelationship betwe
the scenario of evolution of the universe and the form of
self-interaction potential can be treated in time scales gre
than the inflationary phase. In this section, with a view
ward completeness, we discuss the overall evolution of
universe.

In the standard approach the self-interaction potentia
the scalar field appears in the Einstein equations as the f
tion V5V(f). In our approachV(f) is actually replaced by
V(t), which must be interpreted as an effective potential
material fields. We note that in the present case of a ho
geneous and isotropic universe the representation of the
interaction potential byV5V(t) does not conflict with the
general variational problem of the derivation of the Einste
equations, where significant use is made of the functio
dependenceV(f), since each of the functionsV(t) andf(t)
corresponds uniquely to a particular functionV(f). We call
the functionV(t) the evolution of the potential energy or th
history of the potential, underscoring the departure of o
approach from the standard approach, in which the dep
denceV5V(f) is fixed.

Let us consider the problem of finding all possible typ
of evolution of the universe for a fixed history of the pote
tial V5V(t), which describes the time variation of the p
tential energy of the material fields. Stated in the form in
cated, the problem has exact solutions, whose construc
reduces to the integration of linear equations in the case
e50. We write Eq.~4! as an equation for the functionZ(t)
5K3:

2Z̈13~kV~ t !2L!Z26eZ1/350. ~15!

In the case of a spatially flat universe (e50) this equa-
tion acquires the form of the ordinary linear differenti
equation

2Z̈13~kV~ t !2L!Z50, ~16!

which has the same form as the Schro¨dinger equation for the
motion of a quantum particle with a potential energyU(t)
53kV(t) and a self-energyE53L in one-dimensional
space. Now the functionZ(t) assumes the role of the wav
function of the particle. We wish to examine this case
more detail.

We assume that one of the solutions of this equation
a fixed dependenceV5V(t) has been found. We denote it b
Z1(t), whereupon a second linearly independent solution
this equationZ2(t) for a fixedU(t) is easily found, because
any two linearly independent solutions of Eq.~16! are related
by the equation
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Z1Ż22Z2Ż15W0 , ~17!

whereW0 is a constant. From this result we obtain

Z25Z1S Q01W0E dt

Z1
2 D , ~18!

whereQ0 is an integration constant. All solutions of Eq.~16!
corresponding to an assigned fixed potentialU(t) can be
found by varying the constantsQ0 andW0 .

For example, the solution~9! for K(t) in the problem
with a minimally varying field leads to the solutions

K2~ t !5K0~ t !FQ01W0E K26~ t !dtG1/3

5k0~a0t1b0!1/a0
2
ec0tFQ01k0

6W0

3E dt~a0t1b0!26/a0
2
e26c0tG1/3

. ~19!

In the case of pure power-law inflationc050 in the solution
~9! with the minimally varying scalar field we obtain a ge
eral class of solutions forV(t) fixed in ~10!:

K2
~p!~ t !5k0~a0t1b0!1/a0

2FQ01k0
6W0E dt~a0t1b0!26/a0

2G1/3

5k0~a0t1b0!1/a0
2
@Q01k0

6W0A~a0t1b0!26/a0
2
11#1/3,

~20!

whereA5a0
2/(a0

226).
Note that the solutions~19! and ~20! are new exact so

lutions for the parametric dependenceV5V(f), i.e., V
5V(t) andf5f(t), indicated in the solution~10!–~11!.

The proposed method based on~17! carries over without
too much difficulty to the case ofeÞ0. It is necessary here t
fix the function

Q~ t !53~kV~ t !2L!26eZ22/3

as a function of time. The potentialV(t) then depends on th
form of the solution. The case ofeÞ0 requires a separat
investigation.

The linearity of Eq.~16! for Z(t) permits the formula-
tion of a problem in eigenfunctions and eigenvalues, the r
of which is taken here by the cosmological constant, p
vided this equation is supplemented with homogeneous
tial conditions. For example, we can investigate all poss
evolutions for a fixedV(t) which begin at a certain timet0

from the stateK(t)5Z(t)50 and return to the same singul
state at another timet1.t0 . Such scenarios of the evolutio
of the universe can be mapped to oscillating solutions:15 the
universe originated and disappeared in the time pe
(t0 ,t1). The corresponding problem appears as follows:

2Z̈13~kV~ t !2L!Z50, ~21!

Zu t5t0
50, Zu t5t1

50. ~22!

This problem has the same form as quantum-mechan
problems for a discrete spectrum. If the initial conditions a
set at timest052` andt151`, and the potential energy i
le
-
i-
e

d

al
e

a smooth function of time, the universe can evolve from
state other than a singular state and pass again into a n
ingular state inasmuch as the energy densities and o
physical characteristics of matter~field! are finite. Other
types of homogeneous initial conditions are also possi
The fact that there is only a finite or denumerable set
admissible values of the cosmological constant for e
problem of this kind can shed light on the issue of the tr
value of the cosmological constant and the physical reas
for it.

4. ANALYSIS OF THE EVOLUTION OF THE UNIVERSE FOR
VARIOUS TYPES OF POTENTIALS

The determination of the features of the origin and ev
lution of various inflationary regimes can be pursued on
basis of the representation~16! in the example of a series o
models that are simple from the standpoint of construct
solutions but are interesting from the standpoint of the
havior of the potentials. In the present study we have cho
the following model potentials:

3kV~ t !52t2, ~a!

3kV~ t !5
m

t2 , m5const, ~b!

3kV~ t !52
2l0

cosh2~l0t !
. ~c!

We investigate the solutions for the potentials~a!, ~b!,
and~c! from the viewpoint of the possible existence of infl
tionary regimes and their transition to a Friedmann phase
evolution.

~a! It is readily verified that the potential~a! admits os-
cillating solutions corresponding to the statement of
problem in the form~21!, i.e., laws of evolution of the scale
factor such that the universe goes from a singularity in
limit t→2` to a new singularity in the limitt→1`. Thus,
the solutions of Eq.~16! with the zero boundary condition
for t→6` have the form

Z~ t !5Hi~ t !e2t2/2,

whereHi(t) are Hermite polynomials. For example, the sim
plest solution has the formZ(t)5d0

3 exp$2t2/2%. In this case

K~ t !5d0 exp$2t2/6%, f~ t !56A 2

3k
t1f0 ,

V~f!5~f~ t !2f0!2.

The value of the cosmological constant ensuring this evo
tion regime isL51/3 ~in appropriate units of measure fo
the problem!. For this particular solution the condition

K̈5~d0/3!exp$2t2/6%$t2/321%.0

implies the start of inflation att.) and no exit from the
inflationary regime.

Other Hermite polynomials correspond to higher ab
lute values ofL51, 5/3,. . . . Theevolution regimes in this
case are such that the universe passes through a singular
several times. It is readily verified that the inflationary pha
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for these oscillating solutions begins att→2`, where the
scale factor has a zero minimum, and ends at a timet0 cor-
responding to the point of inflection of the functionK
5K(t).

~b! Potentials of the type~b! for m>21/4 are interesting
because in the case ofL50 they describe all possible type
of power-law evolution of the scale factor, including powe
law inflation. In fact, the general solution of Eq.~21! for
arbitrarym.0 andL50 has the form

Z~ t !5C1ta1C2tb, ~23!

wherea andb are noncoinciding solutions of the algebra
equationx22x2m50, i.e.,

a5
1

2
1A1

4
1m.0, b5

1

2
2A1

4
1m,0.

Hence it is evident that in the case ofC1.0 andC2.0 the
solution ~23! is positive att.0 and has one minimum at
point t0.0 and that after passage through this minimu
power-law inflation begins at a timet1.t0 , asymptotically
approaching theta/3 regime. The asymptotic power-law in
flation regime corresponds to the requirementa.3, so that
m.6. We note that at times prior tot1 the fieldf is imagi-
nary and that the evolution regime physically achieved in
self-interacting-scalar-field model begins precisely att1 . To
avoid this problem, it must be required that the conditio
C1.0 andC2<0 hold. In this case evolution begins from
singular state at a timetS and makes an immediate transitio
to power-law inflation.

Remarkably, the only regime of power-law evolution
the scale factor that does not lead to the potential~b! is
Friedmann expansion with the ultimately rigid state of mat
p5r, for which K(t)}t1/3, so thatZ}t andV(t)50 for L
50. The Friedmann expansion regimeK(t)}t1/3 sets in as
t→` provided the potential tends to zero more rapidly th
1/t2 as it decreases. An example of this kind of behavio
afforded by one of the possible forms ofK5K(t) based on
evolution according to the function

Z~ t !5z01
t2

11t
.

At t.21 the scale factor passes through a minimum va
z0

1/3 at the timet50, after which inflation begins. Inflation
ends when the point of inflection is reached, and then
evolution asymptotically settles into the Friedmann regi
K(t)}t1/3 as t→1`. The self-interaction potential in thi
case is

V~ t !5
L

k
1

2

3k~11t !2

1

t21z0t1z0
,

whence it follows that

V~ t !→
2

3k

1

t4 as t→`.

For transition to the Friedmann regime with dustli
matter, i.e., whenp50, it is sufficient thatV(t)→2/t2 as t
→`. For any other equation of state of the typep5gr,
,

e

s

r

n
s

e

e
e

where g5const, it is sufficient thatV(t)→m/t2 for m
>21/4 as t→`. The case ofm521/4 corresponds to a
radiation-dominated state of matter.

The potential~b! also leads to oscillating solutions fo
m,0, which correspond toL,0. For example, the genera
solution of Eq.~16! for the potential~b! in the case ofm
522 andL,0 has the form

Z~ t !5AS k2
1

t Dekt1BS 2k2
1

t De2kt, k5A23L.

~24!

The set of solutions of Eq.~24! includes one that satisfies th
condition Z(6`)50. It is the solution corresponding toL
50 and has the formZ5A/utu, A.0.

~c! To discern certain features of the limitations impos
on the growth rate by the condition that there be a transit
to Friedmann expansion, we give additional consideration
the history of the potential~c!. Like the potential~a!, it in-
creases ast→`, but only to a constrained value equal
zero. In this case the solution forZ(t) with L,0 has the
form

Z~ t !5A~l2l0 tanh~l0t !!elt1B~l1l0 tanh~l0t !!e2lt.

Herel2523L.0. Whenl5l0 , this potential correspond
to oscillatory evolution of the form

Z~ t !5
C

cosh~l0t !
, K~ t !5C1/3 cosh21/3~l0t !,

whereC is an arbitrary constant. This is a unique solution f
the potential under consideration andl5l0 , which corre-
sponds to a unique bound state. As in the case of the po
tial ~a!, it describes an inflationary regime in the interva
(2`,t0), wheret0 is the point of inflection of the function
K(t).

In the case ofl5L50 the solution is the function

K~ t !5C tanh1/3 l0t,

which describes the departure of the universe from a sing
state at the timet50 and its asymptotic transition to th
stationary stateK5C5const ast→1`.

In the case ofl.l0 , A.0, andB50 we have the so-
lution

Z~ t !5A~l2l0 tanh~l0t !!elt,

K~ t !5A1/3elt/3~l2l0 tanh~l0t !!1/3,

which describes evolution without singularities and with t
onset of the inflationary regime at a timet0.0.

The solutions corresponding toL.0 are oscillating so-
lutions that pass repeatedly through the valueZ50. It is
evident that asymptotic Friedmann expansion does not o
for this potential.

Comparing the solutions obtained for the three types
potentials, we arrive at the following conclusions. First, t
potentials that increase ast→` @potentials~a! and ~c!# do
not allow any transition to the Friedmann regime if th
growth rate of the potential energy exceeds the rate at wh
the functionmt22 with m521/4 approaches zero. Trans
tion to the Friedmann regime requires that the potential
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crease with time according to a power law of the typemt22

with m.0 or that it increase by an analogous law w
21/4,m,0. Second, all three types of potentials exhibit t
existence of the inflationary regime, corroborating the c
clusion that this regime is not selective with regard to
form of the potential. All this indicates that the most pr
ferred models are those of the type~b!, which require slight
modifications to ensure transition to the required Friedm
regime. For example, one such modification is the introd
tion of a weak dependence ofm in the equation for the
potential~b! on the temperatureT of matter

V~ t,T!5
m~T!

t2 ~25!

such thatm(T).0 near the minimum ofK(t) and m(T)
→2 in the limit t→`. For example,m(T) can be an
abruptly varying function that characterizes phase transiti
in early universe matter. The potential~11! falls in this cat-
egory in the casec050. Consequently, these potentials~b!
satisfy the slow-roll principle in the variational formulatio
set forth in Sec. 2.

It should also be noted that the simplicity of Eq.~25! for
the potential is preserved only when it is written in the fo
V5V(t). If the form of the functionV5V(f,T) is written
on the basis of the solutions obtained forK(t) andf(t), this
function acquires an intricate form and depends significa
on the integration constants of Eq.~16!, which, in turn, are
determined by the initial conditions forK(t) andf(t). The
latter demonstrates the preferability ofV5V(t) over V
5V(f) for analyzing the dynamics of a model.

5. CONCLUSION

We have found new classes of exact solutions for a s
consistent system of gravitating scalar fields with se
interaction within the cosmology of a homogeneous isotro
universe. We have analyzed aspects of this model that h
bearing on the determination of the physical conditions
stricting the admissible form of the self-interaction potent
and on the determination of the general form of evolution
the scale factor from the standpoint of the existence of
inflationary phase in the evolution of the universe and so
of its other fundamental characteristics.

1. We have shown that the definition of the slow-ro
regime, which is actively utilized in inflation, is amenable
a variational formulation. In this formulation we have o
tained an exact solution for the standard model of inflat
with a self-interacting scalar field and have given an equa
of state of matter corresponding to this solution.

2. We have proposed a method for generating exact
lutions with a fixed history of the potentialV5V(t). We
have used this method to formulate an eigenfuncti
eigenvalue problem for a flat Friedmann universe with
role of the eigenvalues taken by the cosmological const
We have shown that in order to analyze the character of
evolution of the universe, it is simpler to analyze the dyna
ics of the model using a representation of the potential in
form of its historyV5V(t) than a representation in the form
of a function of the fieldV5V(f).
-
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3. We have analyzed several characteristic types of
tories of the potential and the corresponding evolutions
the scale factor. Our analysis shows that the formal analo
the Einstein equations in the form of Schro¨dinger equation
~15! or ~16! proposed in this paper can be used to analyze
detail the behavior of various physical factors in models
self-interacting scalar fields and to reveal a potential se
tion criterion on the basis of physical conceptions regard
the character of the evolution of the universe in large ti
scales with inflation~subinflation! as one of the stages, a
well as the conditions for passage of the universe into
Friedmann regime. It follows from our analysis that the mo
realistic model of the history of the potential energy is
model of the form~25!.
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The phase structure of the Nambu–Jona-Lasinio model in space–time with the topologyR33S1

~spatial coordinate compactified! and chemical potentialm is investigated. Phase portraits
of the model are constructed in theml plane (l51/L, whereL is the size of the dimensionS1)
in the case with periodic boundary conditions. It is shown here for the first time that there
exist in the model an infinite number of both chirally symmetric massless phases and asymmetric
massive phases, between which~as a rule! transitions are second-order. Because of this
phase structure, changes in the parameterl induce oscillations in the particle density, fermion
mass, and the critical curve on which chiral invariance is restored. ©1998 American
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it
re
u
za

f
co

a
ef
o
s

pla
n-

t i
ed
a-
s

ith
st

s
-
m
e-
ch
ith
n

in

e.,
of

s.
re-

na-

the
ed

, is

of
eter,

is
ear
t of
e-
eter
.
, in

ly
ys-
1. INTRODUCTION

A study of effects associated with the presence of a fin
density, temperature, and external fields is of current inte
and can reveal new phenomena that were previously
known. These effects include oscillations in the magneti
tion of an electron gas in metals1 and the prediction of the
existence of a ‘‘Yang–Mills’’ crystal.2 Besides, the study o
matter under extreme conditions is necessary in order to
struct a consistent theory of strong interactions3 and also to
construct various models of stars.4

Studies of the action of external factors for nonline
four-fermion theories have led to the discovery of new
fects. This is very important since theories with this kind
interaction find application in the explanation of a wide cla
of phenomena. Thus, we may point to their use in the ex
nation of superconductivity5 and high-temperature superco
ductivity.6

We may also mention the general theoretical interes
theories of this type, motivated by the fact that a unifi
theory of all of the forces of nature, including the gravit
tional force, is still far from realized. Therefore it make
sense to examine quantum field theories in the spaces w
nontrivial metric and topology in which the Universe mo
probably existed in the early stages of its evolution.7 Here
special attention has been given, in particular, to space
the formRd3S13 . . . 3S1. The point here is that compac
tification of one or more spatial coordinates occurs in so
superstring theories8 and it is convenient to describe ph
nomena like the Casimir effect in spaces with su
topology;9 finally, when investigating theories in spaces w
the simplest nontrivial topology it is possible to make ge
2291063-7761/98/87(8)/10/$15.00
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eralizations and predict properties of physical systems
spaces with more complicated structure.

The concept of dynamical symmetry-breaking, i.
spontaneous symmetry-breaking without the introduction
Higgs fields, is very fruitful in elementary particle physic
Such a mechanism of chiral symmetry-breaking was first
vealed in models with a four-fermion interaction,10,11 the
simplest of which has a Lagrangian of the form

Lc5 (
k51

N

c̄ki ]̂ck1
G

2N F S (
k51

N

c̄kckD 2

1S (
k51

N

c̄kig5ckD 2G
~1!

and in (311)-dimensional space is called the Nambu–Jo
Lasinio~NJL! model. We will consider this model in the 1/N
expansion. To realize this program we must choose
N-fermion version of the model. Here it should be point
out that the expansion in powers of 1/N, characteristic of
models of Nambu–Jona-Lasinio and Gross–Neveu type
quasi-classical in this parameter, and the parameter 1/N is an
analog of the Planck constant. Note that for the given type
expansion, at each order in the given expansion param
we have a set of infinite series of Feynman diagrams.

A rigorous mathematical treatment of models of th
type as quantization of classical mechanics with a nonlin
phase space was given in Refs. 12. From the standpoin
physical applications of this method it is important that d
spite the strict mathematical requirement that the param
N tend to infinity, in reality its value can be limited to 3
Significant use has been made of this fact, for example
quantum chromodynamics.3,13 The results so obtained~even
for this value ofN) are nonetheless such that qualitative
they correctly reproduce the properties of the physical s
© 1998 American Institute of Physics
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tem described in terms of this model. Moreover, availa
treatments of the 1/N expansion which include higher orde
of the expansion indicate that these improvements do
alter the physical picture—they only refine some of the n
merical values of the parameters.14 All of this gives us rea-
son to place some hope in the reliability of the results
tained on the basis of this approach.

In what follows we consider theN-fermion version of
the model, which is invariant with respect to simple contin
ous chiral transformations:

ck→exp~ iug5!ck ~k51, . . . ,N!. ~2!

The idea of dynamical symmetry-breaking also finds
plication in the explanation of superconductivity15 and high-
temperature superconductivity,16 in the description of low-
energy meson physics,17 the construction of alternative
models of the electroweak interaction,18 etc. It was recently
shown that one source of dynamical symmetry-breaking~of
chiral symmetry, that is! is external magnetic and chromo
magnetic fields.19

One interesting fact demonstrated recently is that lo
energy NJL models of can be consistently constructed fr
the first principles of quantum chromodynamics~QCD!.20 In
this light, the question of predicting the effects that might
revealed by such models acquires some importance. It is
known that the QCD ground state contains a nonzero gl
condensatê 0uFa

mnFmn
a u0&50.215 GeV2, whose structure

~on the basis of model lattice calculations! has a chromomag
netic component.

As one could expect, by reason of its numerous phys
applications the phenomenon of dynamical symme
breaking has also been studied in spaces with nontrivial m
ric and topology.21–24 In particular, Refs. 22 and 23 consid
ered the properties of various models with a four-ferm
interaction in spaces of the formR23S13S1 and R13S3,
and Ref. 24 examined the structure of the vacuum in N
models in the presence of an external magnetic field i
space with nonzero curvature.

Since in reality many phenomena take place under c
ditions of nonzero particle density~superconductivity, the
Hall effect, processes in neutron stars, etc.!, in the present
paper we also examine the effect of dynamical symme
breaking with a chemical potentialm. We consider the phas
structure of NJL models in a multiply connected space of
form R33S1 for nonzero values ofm. ~Here one of the spa
tial coordinate axes has been compactified, the length of
dimensionS1 is equal toL, and the fermion fields satisfy
periodic boundary conditions.! It turns out that the presenc
of a chemical potential radically alters the phase portrait
the model and leads to oscillations of the particle num
density and also of other physical quantities associated
it. This is one aspect of the given theme. Another, and p
haps more important aspect is the fact that the scope of
given model problem~after some modifications! can be
broadened to a larger circle of physically more realistic pr
lems. Such problems include four-fermion models which
low for such interaction with a magnetic field, or fermions
periodic structures~crystalline lattices, etc.!.25 General ob-
served physical effects for these models include oscillati
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in the phase plane, sets of massive and massless phase
also oscillations of the particle density in these phases.

As our method for investigating the theory described
the Lagrangian~1! we use the effective potential method.7,13

As is well known, it is in fact a somewhat different form o
representation of the method of ‘‘quasi-means.’’ Therefo
the results obtained using it can be rigorously justified,
example, in terms of functional integrals.

2. PHASE STRUCTURE OF A MODEL WITH m5” 0, L5`

AND WITH m50, LÞ`

On the conceptual plane, the present study is a cont
ation of a study of the vacuum begun in Refs. 26 and 27
the NJL model under various external conditions.1! We will
formulate the main results obtained in Refs. 26 and 27,
derive the necessary mathematical formulas needed in w
follows.

2.1. The case m5” 0, L5`

To start with, let us recall the properties of the vacuu
in the theory~1! for m50 in Minkowski space, i.e., forL
5`. With this goal in mind, instead of expression~1!, we
consider the auxiliary Lagrangian

Ls5c̄ i ]̂c2c̄~s11 is2g5!c2
N

2G
~s1

21s2
2! ~3!

~here for simplicity we have dropped the subscriptk labeling
the Fermi fields!, which in the equation of motion for the
auxiliary boson fieldss1,2 is equivalent to the original La-
grangian~1!.

The effective action of the model to leading order in 1N
is given by the following expression:

exp@ iNSeff~s1,2!#5E Dc̄Dc expS i E Lsd4xD ,

where

Seff~s1,2!52E d4x
s1

21s2
2

2G
2 i ln det~ i ]̂2s12 ig5s2!.

~4!

Taking the fieldss1,2 to be independent of the space
time coordinates~because we seek the vacuum solutions!, we
have by definition

Seff~s1,2!52Veff~s1,2!E d4x, ~5!

where

Veff~s1,2!5
S2

2G
12i E d4p

~2p!4
ln~S22p2![V0~S!, ~6!

S5As1
21s2

2.

Transforming in expression~6! to the Euclidean metric
(p0→ ip0) and introducing the Lorentz-invariant cutoff o
the range of integration (p2<L2), we obtain
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V0~S!5
S2

2G
2

1

16p2 H L4 lnS 11
S2

L2D
1L2S22S4 lnS 11

L2

S2D J . ~7!

The condition that the function~7! be stationary has the form

]V0~S!

]S
505

S

4p2 H 4p2

G
2L21S2 lnS 11

L2

S2D J . ~8!

Hence it is clear that forG,Gc54p2/L2 Eq. ~8! has no
solutions besidesS50, i.e., in this case the fermions a
massless and the chiral invariance~2! is not violated.

For G.Gc the stationary condition~8! will have one
nontrivial solution, containing the global minimum of th
potentialV0(S), which implies spontaneous breaking of ch
ral symmetry and the appearance on the fermions of non
mass.

Let us now assume thatm.0. This case was considere
in detail in Ref. 26, which also derived an expression for
corresponding effective potential@the form of V0(S) is
given by expression~7!#:

Vm~S!5V0~S!22E d3p

~2p!3
u~m2AS21p2!

3~m2AS21p2!. ~9!

Here u(x) is the Heaviside step function. Calculating th
integral appearing in this formula, we have

Vm~S!5V0~S!2
u~m2S!

16p2 H 10

3
m~m22S2!3/2

22m3Am22S21S4 lnF ~m1Am22S2!2

S2 G J .

~10!

A study of the absolute minimum of this potential26 re-
vealed previously unknown properties of the NJL model.
particular, it was shown there that in this case for nonz
values of the chemical potential the state with massive
mions is described by two different phases, the transit
between which is second-order. It was also shown there
the chiral symmetry of the model can be restored with
help of both first-order and second-order phase transit
depending on the values of the model parameters. A ph
portrait of the NJL model containing two tricritical point
was constructed in the (m,M ) plane, whereM is the dy-
namic mass of the fermions, form50.

2.2. m50, L5” `

We now assume that space–time has the structureR3

3S1, where one of the spatial coordinates has been com
tified and the length of the dimensionS1 is a finite value,L.
Here we must distinguish two cases. In the first of these
fields of the model~1! satisfy periodic boundary condition
in the compactified coordinate, i.e.,
ro

e

o
r-
n
at
e
s

se

c-

e

c~ t,x1L,y,z!5c~ t,x,y,z!. ~11!

In the second, the fields are antiperiodic in this coordina
However, this latter case will not be considered in this pap

Now, in order to obtain the effective potential forL
5`, it is necessary to replace the integral overp1 in expres-
sion ~6! by a sum over the discrete valuesp1n according to
the following rule:

E dp1

2p
f ~p1!→

1

L (
n52`

`

f ~p1n!,

p1n5
2pn

L
, n50,61,62, . . . . ~12!

Transforming in the newly obtained expression to the E
clidean metric and summing overn ~Ref. 30!, we find the
effective potential of the NJL model with topologyR3

3S1:

VL~S!5V0~S!2
2

p2L
E

0

`

dx x2 ln@12exp~2LAx21S2!#.

~13!

The potential~13! has an ultraviolet divergence which
concentrated in the first term. To eliminate it, we will, a
before, regularize with the help of a Lorentz-invariant cuto
of the range of integration in expression~6!. This leads to
expression~7! for V0(S). We will examine the absolute
minimum of the function~13! in the variableS. Here, by
virtue of the parity ofVL(S), we may consider only nonne
gative values ofS. The condition that this function be sta
tionary has the form

]VL~S!

]S
505

2S

p2
$F~S!2I ~S!%, ~14!

where

F~S!5
p2

2G
2

L2

8
1

S2

8
lnF11

L2

S2G ,

I ~S!5E
0

` x2dx

Ax21S2

1

exp~LAx21S2!21
. ~15!

Hence~see Ref. 27! it follows that

F~0!5
p2

2G
2

L2

8
, I ~0!5

p2

6L2
. ~16!

It is not hard to see that on the half-intervalS>0 the func-
tion F(S) grows monotonically from the valueF(0) at S
50 to p2/(2G) at S5`. On the other hand,I (S) is a
monotonically decreasing function, decreasing fromI (0) to
zero. Consequently, the graphs of this function forF(0)
,I (0) necessarily intersect at a single pointS0(L), which is
a nontrivial solution of the stationary condition~14!. We
introduce the new variablel51/L. Then ~see Ref. 27! the
nonzero rootS0(l) ([S0(L)) of Eq. ~14! grows monotoni-
cally as a function ofl.

We consider two cases: 1! G.Gc , 2! G,Gc @the quan-
tity Gc is defined following Eq.~8!#. In the first case, as
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follows from Eq.~16!, we haveF(0),0, so for all values of
l Eq. ~14! has a nontrivial solutionS0(l), for which the
potential VL(S) has an absolute minimum. Consequent
for G.Gc the vacuum of the NJL model does not ha
chiral symmetry. Besides, it is obvious thatS0(l)→M as
l→0, whereM is the solution of the equation of stationari
for L5`.

Let us now consider the second case, for whichF(0)
.0. We introduce the notation

F~0!5
p2

2G
2

L2

8
[

p2

6
l0

2 . ~17!

It is clear that forl,l0 ~i.e., for F(0).I (0)) theequation
of stationarity~14! has only a trivial solution, and the sym
metry of the NJL model is not broken. At the pointl5l0 a
second-order phase transition takes place in the model,
for l.l0 the symmetry of the model is broken spontan
ously since in this case the global minimum point of t
potential,S0(l), is not equal to zero. It is not hard to obta
the asymptotic limit of this solution of the equation of st
tionarity asl→l01 ~Ref. 27!:

S0~l!5
2

3
p~l2l0!1o~l2l0!. ~18!

It can also be shown27 that both forG.Gc and for G
,Gc the solutionS0(l) has the following asymptotic limit
asl→`:

S0~l!;2pl•~2.719 . . .!. ~19!

Finally, for what follows note should be made of th
obvious fact thatF(S)2I (S) is a monotonically increasing
function on the half-intervalS>0.

3. PHASE STRUCTURE OF THE MODEL FOR m5” 0, L5” `

IN THE CASE G<GC

The effective potential of the NJL model to leading o
der in 1/N in this case can be found from Eq.~9! with the
help of the transformation~12! @we will be dealing here only
with periodic boundary conditions~11!#:

VmL~S!5VL~S!2
l

6p (
n50

`

anu~m2AS21~2pln!2!

3@m2AS21~2pln!2#2@m12AS21~2pln!2#.

~20!

Recall that herel51/L. In addition,an522dn0 . The con-
dition that the function~20! be stationary has the form

]VmL~S!

]S
5

2S

p2 H F~S!2I ~S!1
lp

2

3 (
n50

`

anu~m2AS21~2pln!2!

3@m2AS21~2pln!2#J [
2S

p2
f~S!50. ~21!
,

nd
- We are interested in the phase structure of the model~1!;
therefore, some phase of the NJL theory must be put in c
respondence with each point of theml plane, wherem>0
and l>0. The structure of the potential~20! dictates the
following strategy for studying the absolute minimum of th
function. We partition theml plane into regionsvk such that

~m,l!5øk50
` vk , vk5$~m,l!:2plk<m,2pl~k11!%.

~22!

If we fix m andl in some arbitrary regionvk , then only the
k11 first terms of the sums in expressions~20! and ~21!
make a nonzero contribution to these expressions. Below
will run through all these regions in succession, starting w
v0 , and identify the phase structure of the model in each
them.

In the regionv0 the phase portrait of the model wa
obtained in Ref. 27 with the help of a quite lengthy analy
of the effective potential~20!. It turns out that here forL2

,L0
2[16p2l0

2
•(0.926. . . ) two phases exist: the chirally

symmetric phaseA0 with massless fermions and the pha
B, in which the symmetry~2! is spontaneously broken an
the single-particle fermion excitations of the vacuum ha
nonzero mass. IfL2.L0

2 holds, then another massive pha
C appears in the phase diagram of the model. Just this ca
reflected in Fig. 1, where the regionv0 includes all those
points lying below the linem52pl. In this figure the
dashed lines are first-order phase curves, the remaining
are the critical curves of second-order phase transitions.
pointsa andb in the regionv0 are tricritical points.

We now assume that we find ourselves near the bou
ary of the regionv0 , separating it fromv1 , i.e., in the
subregion labeledA0 in Fig. 1. In this case from the entir
sum only then50 term contributes to the effective potenti
~20!, and its global minimum is located at the pointS50
~see Ref. 27!. As we go to the regionv1 , an additional
nonzero term appears in the effective potential~20!, namely
the n51 term. It gives a nonzero contribution to the pote
tial only in a neighborhood of the origin defined by the co
dition 0<S<Am22(2pl)2, and increases the depth of th
potential well at the pointS50 still further. Consequently
the point S50 is also the absolute minimum point of th

FIG. 1.
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potential in the regionv1 . By analogy it is not hard to se
that S50 is the global minimum point of the potential~20!
in all the other regions:v2 , v3 , etc.

Recall that the thermodynamic potentialV of the system
can be defined as the value of its effective potential at
global minimum. Therefore, in the entireml plane, except
for regionsB andC in Fig. 1, the thermodynamic potentia
has the form

V~m![VmL~0!5VL~0!2
l

6p (
n50

`

anu~m22pln!

3~m22pln!2~m14pln!. ~23!

As is well known, at the point of a first-order~second-order!
phase transition all derivatives of the thermodynamic pot
tial, starting with the first~second!, are discontinuous. Using
this criterion of a phase transition, let us investigate
phase structure of the model in the regionsv1 ,v2 , . . .

From Eq.~23! it can be seen that in regionA0 , which
lies in v0 , the thermodynamic potential of the system h
the form

V~m!uA0
[VmL~0!uv0

5VL~0!2
lm3

6p
. ~24!

In the regionv1 it is equal to

V~m!uv1
[VmL~0!uv1

5V~m!uA0

2
l

3p
~m22pl!2~m14pl!. ~25!

It is easy to see that like the functions~24! and ~25! them-
selves, their derivatives with respect tom are discontinuous
on the linem52pl separating the regionsv0 andv1 . How-
ever, their second derivatives with respect tom on this line
do not coincide. Consequently, here the second derivativ
the thermodynamic potential with respect tom is discontinu-
ous, and we have a second-order phase transition from
phaseA0 to a different massless phase of the model,A1 .
Using similar arguments it is not hard to show that ea
regionvk ~22! corresponds to a distinct massless phaseAk of
the model. The boundaries of these regions are indeed c
cal curves of second-order phase transitions. A phase po
of the model forG,Gc andL2.L0

2 is given in Fig. 1.
Let us now assume thatm5const. In theml plane this

corresponds to a straight line intersecting the boundarie
the regionsv0 ,v1 , . . . ,vn , . . . at thepoints

l05
m

2p
, l15

m

4p
, . . . , ln5

m

2p~n11!
, . . .

respectively. Let us consider the particle number densityN
52]V/]m of the system as a function of the parameterl
for m5const, i.e.,N5N(l). Employing Eq.~23!, it is not
hard to show that the function]2V(m)/]m]l is discontinu-
ous at the boundaries of the regionsvk . Consequently, the
function N(l) is discontinuous forl>0, and its graph
has characteristic kinks at an infinite number of poi
ts

-

e

s

of

he

h

iti-
ait

of

s

l0 ,l1 , . . . ~such behavior of a function in practice is calle
oscillatory!, i.e., the fermion number density oscillates as
function of l. These oscillations are especially clearly pr
nounced for small~large! values ofl (L). To show this, we
apply Poisson’s formula31,32 to the sum in expression~23!

(
n50

`

anF~n!52(
k50

`

akE
0

`

F~x!cos~2pkx!dx, ~26!

the application of which gives the following result:

V~m!5VL~0!2
m4

12p2
2 (

n50

` F 4l4

p2k4
2

2ml3

p2k3

3sin~mkL!2
4l4

p2k4
cos~mkL!G . ~27!

Recall thatl51/L. It can be seen from Eq.~27! that the
thermodynamic potential contains a component that os
lates as a function of the parameterL with frequency
m/(2p). Consequently, the particle number densityN(l)
also oscillates as a function of the parameterL with the same
frequency.

4. PHASE STRUCTURE OF THE MODEL FOR m5” 0, L5” `

IN THE CASE GC<G

In the case under consideration we haveF(0),0 @see
Eq. ~16!#; therefore, it is convenient to introduce the follow
ing notation:

F~0!5
p2

2G
2

L2

8
[2

p2

6
l̄0

2 . ~28!

The effective potential and the stationary condition, as
fore, have the form~20! and~21!, respectively. In Ref. 27 the
phase structure of the model forGc,G was investigated in
detail in the regionv0 . Results of this analysis for values o
the coupling constant in the interval

Gc,G,~1.225 . . .!Gc ~29!

are shown in Fig. 2, where under the straight linem52pl
~the boundary of the regionv0) is located a phase portrait o
the NJL model for the points (m,l)Pv0 . In this figure the

FIG. 2.
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solid lines are the critical curves of second-order phase t
sitions, and the dashed lines are the critical curves of fi
order phase transitions. It can be seen that, as forG,Gc ,
the model has two tricritical points,a and b, in the region
v0 . Also note that the curvec1b in this figure corresponds to
the equationf(0)50, and the projection of the pointc1 on
the l axis is t1[l̄0 /A5. In addition, the curveMa has the
form m5S0(l), whereS0(l) is the root of the stationary
condition~14! which is the fermion mass in the phaseB. ~A
more detailed description of the phase portrait of the mo
in the regionv0 can be found in Ref. 27!.

In this section we examine the properties of the vacu
of the NJL model in the regionsv1 ,v2 , . . . In order not to
encumber the article with additional calculations, we lim
the discussion here to the range of values of the coup
constants bounded by the inequalities~29!.

4.1. Particular case

Let us assume, to start with, that (m,l)Pv1 ~i.e., 2pl
,m,4pl), and the value ofl is fixed ‘‘near’’ t1 so that
l,t1 . In this case the functionf(S) in the stationary con-
dition ~21! has the form

f~S!5H F~S!2I ~S!, if m,S,

f 1~S!, if m1,S,m,

f 2~S!, if 0,S,m1 , ~30!

where

m15Am22~2pl!2, f 1~S![F~S!2I ~S!1
lp

2
~m2S!,

f 2~S![F~S!2I ~S!1
lp

2
~m2S!

1lp~m2AS21~2pl!2!.

For the range of values of the coupling constants bounde
inequalities~29! the functionf(S) ~30! grows monotoni-
cally for S>0. Its graph is plotted in Fig. 3 form,2pl,
i.e., in the case whenf 1(m1),0 and f 1(m).0. Thus it is
clear that the only zero of this functionS1(m,l) ~this zero
being the fermion mass in the phaseC0 of the theory; see
Fig. 1! is defined by the equationf 1(S)50. It is important to

FIG. 3.
n-
t-

el

t
g

by

note that there is a kink in the graph of the functionf(S) at
the pointm1 . It is also important to note thatf 1 and f 2 grow
monotonically with increase of the parameterm. Therefore,
asm is increased, at some valuem5m̄1(l) this kink reaches
the S axis. And form.m̄1(l) the pointS2(m,l), being a
root of the equationf 2(S)50, becomes a solution of th
stationary condition. Finally, for the valuem5mc(l) defined
by the conditionf(0)5 f 2(0)50 the fermion mass vanishe
and a transition to the chirally symmetric phase of the mo
takes place. Employing definition~30!, we can show that

mc~l!

p
5

13l21l̄0
2

9l
. ~31!

Note that the situation described above is valid for valu
t2,l,t1 , where t2 is the intersection point of curve~31!

with the upper boundary of the regionv1 : t25l̄0 /A23.
We will now show that a second-order phase transit

takes place at the pointm5m̄1(l). To this end, note that for
m,m̄1(l) the thermodynamic potential of the systemV(m)
has the form

V~m!um,m̄1~l![V0~m!5VmL~S1!5VL~S1!

2
l

6p
~m2S1!2~m12S1!, ~32!

and formc(l).m.m̄1(l) it is given by

V~m!um.m̄1~l![V1~m!5VmL~S2!

5VL~S2!2
l

6p
~m2S2!2~m12S2!

2
l

3p
@m2AS2

21~2pl!2#2

3@m12AS2
21~2pl!2#. ~33!

In Eqs. ~32! and ~33! we have introduced the abbreviate
notation S1,2[S1,2(m,l). Also, it is necessary to bear i
mind that in the case under consideration only those term
the effective potential~20! corresponding ton<1 and satis-
fying the inequalitiesS2<m1<S1<m are nonzero.

DifferentiatingV0 with respect tom, we have

dV0~m!

dm
5H ]VmL~S!

]m
1

]VmL~S!

]S

]S

]mJ U
S5S1~m,l!

. ~34!

SinceS1 is a solution of the stationary condition, the seco
term on the right-hand side of Eq.~34! vanishes. Taking Eq
~32! into account, we obtain

dV0~m!

dm
5

]VmL~S!

]m U
S5S1

52
l

2p
@m22S1

2~m,l!#.

~35!

Analogously, we obtain
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dV1~m!

dm
52

l

2p
@m22S2

2~m,l!#

2
l

p
@m22S2

2~m,l!2~2pl!2#. ~36!

Below we will have need of relations which follow in
transparent way from Fig. 3~see above!:

S1~m̄1~l!,l!5S2~m̄1~l!,l!5Am̄1
2~l!2~2pl!2.

~37!

Thanks to relation~37! it is not hard to see that th
values of the functionsV0,1(m), and also their derivatives
with respect tom, coincide at the pointm5m̄1(l). How-
ever, if we differentiate expressions~35! and~36! once more
with respect tom ~in this case we need expressions of t
form ]S1,2/]m, which can be found without any difficulty
from the stationary condition!, it turns out that the values o
the second derivatives of the functionsV0,1 do not coincide
at this point ~similar calculations were carried out in Re
26!. Thus, the second derivative of the thermodynamic
tential V(m) with respect tom is discontinuous at the poin
m5m̄1(l). Consequently, this point is the critical point of
second-order phase transition~recall that the value of the
parameterl is fixed!. If we allow l to vary, then the func-
tion m5m̄1(l) in the ml plane will correspond to the criti
cal curves of a set of second-order phase transitions,l 1 ,
which separate the two massive phases of the system,C0 and
C1 ~see Fig. 2!. Finally, note that the curvel 1 is given im-
plicitly by the equation@this follows from Eq.~37!#

f~Am22~2pl!2!50. ~38!

4.2. The general case

For the general case, when the parameterl is fixed with-
out any restrictions in the interval 0,l,t1 , the graph of the
function f(S) for (m,l)Pvn is given in Fig. 4, where

mk5Am22~2kpl!2, k51,2, . . . . ~39!

If the coupling constant is fixed in the interval~29!, then
f(S) grows monotonically for 0<S for fixed values ofm.
In addition, for fixed values ofS the functionf(S) grows

FIG. 4.
-

monotonically as a function of the parameterm. It can be
seen from Fig. 4 that the first derivative of this function
discontinuous at the pointsmk , i.e., that these points ar
kinks of the graph of this function. With growth ofm these
kinks are shifted upward and to the right, and as one en
into the regionvn11 another kink appears in the graph of th
function at the pointmn11 . At the same time, the nontrivia
root of the stationary condition~21! is shifted to the left, and
as the next kink crosses theS axis a second-order phas
transition from one massive phase to another takes plac
the theory~this can be shown in a way analogous to the c
considered above!. In the ml plane the critical curvesm
5m̄k(l), wherek51,2, . . . correspond to these phase tra
sitions~in Fig. 2 these curves are the linesl 1 ,l 2 , . . . , which
separate the massive phasesC0 ,C1 ,C2 , . . . , onefrom the
other!. Each critical curvel k , obviously, is defined by the
equation

f~mk![f~Am22~2kpl!2!50. ~40!

Finally, for those values of the chemical potentialm
5mc(l) that are assigned implicitly by the equation

f~0!5052
p2

6
l̄0

22
p2

6
l21

lp

2

3 (
n50

`

anu~m22pln!~m22pln!, ~41!

the nontrivial root of the stationary condition~identically
equal to the fermion mass! vanishes. The dependencemc(l)
is depicted in Fig. 2 by the critical curves of the second-or
phase transitionsmc(0)cnc2c1b, on which the chiral symme-
try of the model is restored.~In the following section the
properties of this curve are discussed in more detail.! The
curve mc(l) intersects the boundaries of the regionsvk at
the pointsc1 ,c2 , . . . ,cn , . . . . Thelines l 1 ,l 2 , . . . ,l n , . . . ,
which all begin at the point with coordinates (M ,0) in Fig. 2,
terminate at these same points. Thus, it follows from o
analysis that infinitely many massive phasesC0 ,C1 ,C2 , . . .
exist in the NJL model~see Fig. 2!.

Analogous to the caseG,G0 , it is possible to show
without any effort that infinitely many massless phas
A0 ,A1 , . . . ,An , . . . exist above the curvemc(l) ~see Fig.
2!, the boundaries between which pass along the bounda
of the regionsvn , i.e., along the linesm52pnl, wheren
51,2, . . . Each of the linesm52pnl is a critical curve of a
second-order phase transition from one massless phas
another by virtue of the fact that here the thermodynam
potentialV(m) has a discontinuous second derivative w
respect tom.

5. OSCILLATORY PHENOMENA FOR GC<G<„1.225 . . . …GC

We will now show that the presence in the NJL model
infinite sets of both massless and massive phases lead
various oscillatory phenomena. This question was alre
considered in part in Sec. 3, where we showed that in
caseG,Gc the particle density of the vacuum of the syste
oscillates.
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We say that a physical quantity oscillates as a funct
of l ~or any other parameter! if its graph has an infinite
number of kinksl1 ,l2 , . . . , i.e., its derivative at these
points is discontinuous.

Of course, smoother functions can also oscillate; the
fore, the above definition requires some clarification. T
point is that at zero temperature and in the presence
chemical potential oscillations of physical quantities, as
rule, satisfy the definition. This is because the number
filled energy levels of the system, i.e., levels lying below t
Fermi surface, depends in a discrete way on the values o
external parameters. As an example, we note that the m
netizationM (H) and particle densityN(H) of a free fermion
gas located in an external magnetic fieldH at zero tempera-
ture have an infinite number of points of discontinuity of t
first derivative inH.31,32 Just this property can be proper
called oscillatory behavior of the magnetization and dens
which for small values ofH can be extracted from the func
tionsM (H) andN(H) explicitly with the help of the Poisson
formula ~26! ~Ref. 33!.

The behavior of the thermodynamic potential becom
smoother at nonzero temperature; however, we do not c
sider this case here, and of the types of oscillations analy
in the present section are in accord with our definition.

5.1. Oscillations of the critical curve m̄c„l…

Recall that the functionmc(l) is defined as the solution
of Eq. ~41!. Let us examine its behavior in the regionVk

(2pkl<m,2p(k11)l) ~22!. In this case, only the term
corresponding ton<k11 in the sum in Eq.~41! are non-
zero. After summing them up, we easily obtain an express

mc~l!uVk
[m~k!~l!5

2p$@6k~k11!11#l21l̄0
2%

6~2k11!l
,

~42!

defining the functionmc(l) inside the regionVk of the ml
plane. Thus we have

mc~l!5m~k!~l! for tk11<l<tk , k51,2,3,. . . ,
~43!

wheretk is the value of the parameterl for which the graph
of the functionm (k)(l) intersects the right-hand boundary
the regionVk , i.e., the straight linem52pkl:

tk5
l̄0

A6k221
. ~44!

It should also be noted thatm (k)(tk)5m (k21)(tk); conse-
quently, the functionmc(l) ~43! is discontinuous over the
entire intervall.0. It is easy to show that

dm~k21!~l!

dl U
l→tk1

5
p~226k!

3~2k21!
,0,

dmk~l!

dl U
l→tk2

5
p~216k!

3~2k11!
.0.

This means that the functionmc(l) is not differentiable at an
infinite number of pointstk (k51,2,. . . ) andthese points
n

-
e
a

a
f

he
g-

,

s
n-
ed

n

are kinks of this function. Consequently,mc(l) oscillates. In
order to extract in explicit form the component of this fun
tion that oscillates asl→0 (L→`), we apply the Poisson
summation formula~26! to expression~41!. After some un-
complicated transformations, Eq.~41! reduces to the form

f~0!52
1

6
1

mc
2~l!

4p2l̄0
2

2
l2

p2l̄0
2 (

n51

`
cos@nmc~l!L/2#

n2
[0.

~45!

Hence it can be seen thatmc(0)52pl̄0 /A6. In addition, it
is possible to obtain the following asymptotic formula for th
critical curvemc(l) in the limit l→0:

mc~l!'
2pl̄0

A6
H 11

3l2

p2l̄0
2 (

n51

`
cos~npl̄0L/A6!

n2 J . ~46!

It can be seen that the sum appearing in formula~46! is a
periodic function of the parameterL. Thus, mc(l) has an
oscillatory component with oscillations whose frequency
the limit L→` is equal tol̄0 /(2A6), and whose amplitude
falls off asl→0. It is clear from formula~45! that the fre-
quency of the oscillations of this function depends on
value of the parameterl.

5.2. Oscillations of the fermion condensate

We will now show that the nontrivial solutionS(m,l)
~identically equal to the fermion mass or fermion conde
sate! of the stationary condition~21!, which, as can be easily
gathered from Fig. 4, is the global minimum point of th
effective potential, also oscillates with variation ofl51/L.

In the phase diagram of Fig. 2 we can mentally draw
straight linem5const such thatM,m,mc(0). We denote
the projections of its intersection points with the critic
curves l 1 ,l 2 , . . . onto the l axis asl1 ,l2 , . . . , respec-
tively. With the help of Eq.~21! it is possible to show that a
these points the fermion massS(m,l), considered only as a
function of the parameterl, has discontinuities in its firs
derivative~in order not to overload the article with elabora
formulas, we omit these calculations here!. Consequently,
according to the above definition, the fermion condens
oscillates with variation ofl.

In Ref. 26 it was shown that for the values of the chem
cal potential considered there the solutionS(m,0)[m(m)
satisfies the equation

f ~m![F~m!1
m

4
Am22m22

m2

4

3 lnS m1Am22m2

m D 50, ~47!

where for simplicity we have omitted the dependence onm
andm. We now apply the Poisson summation formula~26!
to Eq. ~21!, which yields
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05 f ~S!2I ~S!1Am22S2

3 (
n51

` E
0

1

@m2AS21~m22S2!x2#

3cos~nAm22S2Lx!dx. ~48!

Let us consider Eq.~48! for small values ofl ~largeL). In
this caseS(m,l)'m(m) and f (S)' f 8(m(m))@S2m(m)#
@the latter relation is obvious if we take Eq.~47! into ac-
count#. The asymptotic behavior of the integrals in Eq.~48!
can be found using the following formula, found after mu
tiple integration by parts:

E g~x!cos~Lx!dx5
1

L
g~x!sin~Lx!

1
1

L2
g8~x!cos~Lx!1oS 1

L2D .

Finally, noting the exponential smallness of expressions
the type I (S) as L→` ~Ref. 34! we obtain the following
equation from Eq.~48!, valid for smalll:

f 8~m~m!!@S2m~m!#2
l2Am22m2~m!

m

3 (
n51

`
cos@nAm22m2~m!L#

n2
1o~l2!50. ~49!

Solving Eq.~49! for S, we find

S~m,l!5m~m!1
l2Am22m2~m!

m f 8~m~m!!

3 (
n51

`
cos@nAm22m2~m!L#

n2
1o~l2!. ~50!

5.3. Oscillations of the particle density

In Sec. 3~the caseG,Gc) we showed that as the pa
rameterL increases for a fixed value of the chemical pote
tial m, a theoretically unlimited number of second-ord
phase transitions from one chirally symmetric, massl
phase to another takes place in a quantum system desc
by the NJL Lagrangian~1!. At the instant of each of thes
phase transitions the derivative with respect tol of such a
physical quantity as the fermion number densityN(L) varies
discontinuously. From the point of view of an experimen
measuringN(L), the particle density would be seen to osc
late with frequencym/(2p).

Analogously, in the caseGc,G,(1.225. . . )Gc for the
chemical potential fixed at some value in the interv
mc(0),m ~see Fig. 2!, we have a sequence of phase tran
tions from one massless phase to another taking place
variation of the parameterl. Here the particle density oscil
lates with the same frequencym/(2p).

Now let us study the question of oscillations of the de
sity for the chemical potential fixed at some value in t
interval M,m,mc(0). In this case it is obvious that th
global minimum point of the potential,S(m,l), is not equal
f

-
r
s
ed

r

l
i-
ith

-

to zero. Therefore, asL increases an infinite number of pha
transitions from one massive phase to another is possib
the system. At an interface between phases the derivativ
the functionN(L) is discontinuous, as a result of which de
sity oscillations are observed. We will describe this proc
with an analytical expression. First of all, note that the th
modynamic potential of the system is defined as the valu
the effective potential at the global minimum point, i.e.,
the equalityV(m)5VmL(S(m,l)). The particle density in
the ground state is

N~L !52
dV0~m!

dm

52H ]VmL~S!

]m
1

]VmL~S!

]S

]S

]m J
S5S~m,l!

5
l

2p (
n50

`

anu~m2AS2~m,l!1~2pln!2!

3@m22S2~m,l!2~2pln!2#. ~51!

Applying the Poisson summation formula~26! to expression
~51!, we obtain

N~L !5
~m22S2!3/2

3p2

2 (
n51

`
2l2Am22S2 cos~nAm22S2L !

p2n2

1 (
n51

`
2l3 sin~nAm22S2L !

p2n3
, ~52!

where it is understood thatS is the solution of the stationary
condition~21!, i.e., it depends onm andl and, consequently
at smalll oscillates according to formula~50!. With the help
of formula ~50! it is not hard to extract the leadin
asymptotic behavior from formula~52! as l→0 for m
5const:

N~L !5
@m22m2~m!#3/2

3p2

1l2Fm~m!@m22m2~m!#

m f 8~m~m!!
22Am22m2~m!G

3 (
n51

`
cos@nAm22m2~m!L#

p2n2
1o~l2!, ~53!

wherem(m) is the fermion mass forl51/L50, which is the
solution of Eq.~47!.

Thus we see that in the limitL→` the particle density
in the ground state of the system oscillates in this param
in the same way as the fermion condensate, i.e., with
quencyAm22m2(m)/(2p).

6. CONCLUSION

In this work we have carried out a detailed study of t
phase structure of the Nambu–Jona-Lasinio model in
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space–time with topologyR33S1 and chemical potentialm.
We have demonstrated here for the first time that an infi
set of massless and massive phases exists in this mode
have indicated the types of phase transitions between t
phases. We have demonstrated the possibility of oscillat
of the particle number density in this model, and also os
lations of the phase curve. It follows directly from our trea
ment that for fermions with interaction Lagrangian of t
form ~1! in a uniform magnetic field oscillatory effects of d
Haas–van Alphen type take place,1,33 and also oscillations in
the phase planeSm for the case of finite temperature as we
as for cold, dense fermion matter. The existence of such
effect is possible thanks to the special discrete structur
the fermion spectrum in a magnetic field~Landau levels!.1

This same effect is very unusual for the four-fermion mo
and probably plays a definite role in the physical applicatio
discussed in the Introduction. In our treatment we have
sumed the fieldss1 ands2 to be independent of the space
time coordinates. If we reject this requirement and admit
possibility of field fluctuations, then, generally speaking,
arrive at a new physical theory. Such a theory can be han
by summing the entire series in the effective poten
method. However, in light of the fact that the oscillations w
have found are due to scale parameters of the problem a
ciated with the values of the density,m, andL, and fluctua-
tions in such a theory are apparently equiprobable, it may
hoped that the revealed effect holds up in more complica
physical situations.
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A new ‘‘classical’’ formulation of conventional quantum mechanics is used to construct a
description of quantum states with spinj 51/2 which uses only positive classical probabilities of
observables instead of a complex density matrix. These probabilities are functions of points
on a unit sphere which determine the directions relative to which the spin projections are measured.
The proposed construction is a generalization of a system for tomography of the spin states
of a single particle and may be used as a new method of measuring two-particle spin states. For
pure spin states this method is exactly the same as the case of a single particle. Additional
probabilities must be defined to describe mixed states. ©1998 American Institute of Physics.
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1. INTRODUCTION

Since quantum mechanics was first developed and
Schrödinger equation1 was formulated for the complex wav
function of the coordinate, attempts have been made to a
a classical treatment to quantum-mechanical relationship2–5

A particular role which distinguishes the internal angu
momentum from the coordinate is played by the particle s
introduced by Pauli,6 an internal degree of freedom whic
has no classical analog. For pure states the spin state i
scribed by complex spinors. The concept of the den
matrix7,8 was introduced to allow for quantum fluctuations
descriptions of the coordinates and the spins. The
diagonal elements of the density matrix may be comp
numbers, while the diagonal elements are always posi
and have the meaning of the probabilities of the values
certain observables.

In Refs. 9 and 10, which were based on the results
Ref. 11, attention was drawn to the existence of a revers
transformation which links the Wigner function12 of the co-
ordinates and momenta with the positive distribution
probabilities defined by the diagonal elements of the sa
density matrix used to construct the Wigner function. In R
13 this method was used to propose a new method of m
suring the quantum state, known as optical tomography
was shown in Refs. 14 and 15 that this circumstance ma
used as the basis for a new quantum-mechanics formula
which uses a positive probability distribution rather th
wave functions and density matrices. In fact, since two
versible transformations exist, one linking the density ma
with the Wigner function and the other linking the Wign
function with the probabilities of the measurable quantiti
these probabilities contain the same information as the d
sity matrix and may be used to describe the state of a qu
tum system. In other words, the density matrix can be rec
structed in terms of its diagonal elements measured in
reference frames.14,15

This approach was developed in Refs. 16–18 an
Fokker–Planck equation was obtained to describe the ev
2391063-7761/98/87(8)/7/$15.00
e

ly

r
n

de-
y

f-
x
e
f

f
le

f
e
.
a-
It
be
on

-
x

,
n-
n-
n-
ll

a
u-

tion of positive classical probabilities, and also its stead
state analog which can be used to find the energy levels
system in terms of its ‘‘classical’’ distribution function
These serve as an alternative to the time-independent
time-dependent Schro¨dinger equations and were used in
new quantum-mechanics formulation to analyze an oscilla
with friction.19,20

These equations describe systems of scalar particles
which the Wigner functions depend on the coordinates
the momenta. If the particles possess internal degrees of
dom such as spin, the formalism developed in Refs. 14
15 requires substantial modification. The problem of gen
alizing the probability formulation to the spin states of
single particles was examined in Refs. 21, 22, and 26. It w
shown that the spin state may be defined by the probab
distribution of the spin projection on a selected axis who
direction is fixed by two angles which determine the point
a unit sphere through which it passes. The direct genera
tion of this description to two particles with spin using tw
sets of independent probabilities which are functions of
coordinates of the points on two different spheres was c
sidered in Refs. 23 and 24.

However, the problem of measuring the spin state of t
or more particles with spin is best solved by using the sa
approach as that for a single particle. For a single particle
state can be completely measured if the probability of
spin projection on a selected axis can be determined exp
mentally in all reference frames. Thus, we need to be abl
describe the state of two particles with spin such that
states of the individual spins are defined not by independ
probabilities of the spin projections on different axes w
independent rotations of the measurement frames for e
spin, but by a general probability distribution which depen
on a single rotation common to both spins.

This problem is solved here. We shall show that the p
state of two particles with spinj 51/2 can be completely
defined by the distribution of the probabilities of the sp
projections on their axes considered in an ensemble of
tems turned with a single common rotation and we shall a
© 1998 American Institute of Physics



at
nc
, t
w
c
n
o

is
tio
d
e
in
d

ne
ny

le
ff
on

i

ta

c
th

on

pi

he

od

nsity

x

of

ff-
ag-
t to
first

l

g-

f

240 JETP 87 (2), August 1998 V. A. Andreev and V. I. Man’ko
analyze the difference between the mixed and pure st
encountered for many-particle spin systems. This differe
arises from the fact that for many-particle spin systems
obtain a complete description of the mixed spin state
need to know not only the probabilities of the spin proje
tions as functions of the coordinates of the points on a u
sphere but also the probabilities defining the contributions
the pure states to the mixed ones. The mathematical bas
this method involves constructing a reversible transforma
~‘‘change of variables’’! between the spin density matrix an
the positive probabilities. This formulation is of interest b
cause of the possibility of a new approach to the Einste
Podolsky–Rosen paradox and hidden variables for spin
grees of freedom and also because of the possibility of a
‘‘tomographic’’ method of measuring the spin state of ma
particles, among other applications.

2. TRANSFORMATIONS OF ELEMENTS OF THE TWO-
PARTICLE DENSITY MATRIX

We shall analyze the density matrix of two-partic
states with arbitrary spins and we shall show that its o
diagonal elements may be expressed in terms of the diag
elements measured in all reference frames.

Let us assume that we have single-particle states w
spinsj 1 and j 2 characterized by the wave functionsCm1

j 1 and

Cm2

j 2 . These can be used to construct the two-particle s

and its wave function is expressed in terms of the produ
Cm1

j 1 Cm2

j 2 . For pure two-particle states the elements of

density matrix are expressed in terms of the wave functi

r
~m1m2!~m18m28!

j 1 j 2 5~Cm1

j 1 Cm2

j 2 !~C
m

18

j 1 C
m

28

j 2 !* . ~1!

Assuming that the wave functions of the single-particle s
states are transformed in accordance withO~3! rotation
group representations, expression~1! may be transformed to
give

r
~m1m2!~m18m28!

j 1 j 2 5 (
l ,k5u j 12 j 2u

j 11 j 2

Cm1m2m
j 1 j 2 l C

m
18m

28m8

j 1 j 2 k
Cm

l Cm8
k * ,

~2!

where Cm1m2m
j 1 j 2 j are the Clebsch–Gordan coefficients of t

O(3) group.
When we go to a different coordinate system, the pr

uct Cm
l Cm8

k * is transformed as follows:

C̃m̃
l

C̃m̃8
k *

5 (
m52 l

l

(
m852k

k

Dm̃m
l

Cm
l Cm8

k* Dm̃8m8
k * , ~3!

whereDmn
l is the WignerD function.25

From this it follows that in a different coordinate system

the entire matrix elementr
(m1m2)(m18m28)

j 1 , j 2 is transformed ac-

cording to the rule

r̃
~m̃1m̃2!~m̃18m̃28!

j 1 j 2 5(
l ,k

C
m̃1m̃2m̃

j 1 j 2 l
C

m̃1m̃2m̃

j 1 j 2 k (
m,m8

Dm̃m
l

rmm8
l k Dm̃8m8

k * ,

~4!
es
e
o
e
-
it
f
of
n

-
–
e-
w

-
al

th

te

ts
e

:

n

-

,

wherermm8
l k

5Cm
l Cm8

k * . This transformation rule~4! is valid
in the general case when the state is not pure and the de
matrix elements do not have the form~1!. In this case, the
values ofrmm8

l k are determined using the relation

rmm8
l k

5 (
m1 ,m2 ,m18 ,m28

Cm1m2m
j 1 j 2 l C

m
18m

28m8

j 1 j 2 k
r

~m1m2!~m18m28!

j 1 j 2 .

~5!

Knowing the values ofrmm8
l k , we can reconstruct the matri

elementsr
(m1m2)(m18m28)

j 1 j 2 :

r
~m1m2!~m18m28!

j 1 j 2 5(
l ,k

Cm1m2m
j 1 j 2 l C

m
18m

28m8

j 1 j 2 k
rmm8

l k . ~6!

When we go to a different coordinate system, the values
rmm8

l k transform as

r̃m̃m̃8
l k

5 (
m,m8

Dm̃m
l

~f,u,c! rmm8
l k Dm̃8m8

k *
~f,u,c!, ~7!

and the matrix elementsr
(m1m2)(m18m28)

j 1 j 2 transform in accor-

dance with formula~4!.
Our aim is to derive a formula which expresses the o

diagonal elements of the density matrix in terms of the di
onal ones measured in all coordinate systems. It is difficul
relate these matrix elements directly, and thus we shall
express the values ofrmm8

l k in terms of the diagonal matrix
elements and then, using formula~6!, we shall reconstruct al

r
(m1m2)(m18m28)

j 1 j 2 using these. For this purpose we take the dia

onal elementr
(m̃1m̃2)(m̃1m̃2)

j 1 j 2 (f,u,c) and express it in terms o

rmm8
l k , relative to some fixed coordinate system:

r̃
~m̃1m̃2!~m̃1m̃2!

j 1 j 2 5(
l ,k

C
m̃1m̃2m̃

j 1 j 2 l
C

m̃1m̃2m̃

j 1 j 2 k
r̃m̃m̃

l k

5(
l ,k

C
m̃1m̃2m̃

j 1 j 2 l
C

m̃1m̃2m̃

j 1 j 2 k

3 (
m,m8

Dm̃8m
l

~f,u,c! rmm8
l k Dm̃8m8

k *
~f,u,c!

5(
l ,k

C
m̃1m̃2m̃

j 1 j 2 l
C

m̃1m̃2m̃

j 1 j 2 k

3 (
m,m8,S

Cm̃ 2m̃ 0
l k S

Cm 2m8 m2m8
l k S

~21!m̃2m8

3D0,m2m8
S

~f,u,c! rm m8
l k . ~8!

We multiply the right- and left-hand sides of Eq.~8! by
D0,m2m8

S and integrate over all angles:
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1

p2E dV r̃
~m̃1m̃2!~m̃1m̃2!

j 1 j 2 D0,m2m8
S

~f,u,c!~2S11!~21!2m̃

5(
l ,k

C
m̃1m̃2m̃

j 1 j 2 l
C

m̃1m̃2m̃

j 1 j 2 k (
m,m8

Cm̃ 2m̃ 0
l k S

Cm 2m8 m2m8
l k S

3~21!2m8rm m8
l k

5P
m̃1 ,m̃2 ,m2m8

j 1 , j 2 , S
. ~9!

In order to reconstruct all the elements of the dens
matrix using formula~6!, we must solve the system~9! and
express rm m8

l k in terms of the diagonal elemen

r
(m̃1m̃2)(m̃1m̃2)

j 1 j 2 . However, it seems that unlike single-partic

states, the density matrix of many-particle states is not
ways completely reconstructed in terms of its diagonal e
ments. We shall analyze this problem in detail for the c
j 15 j 251/2, and in the general case we shall calculate th
elementsrmm8

l k for which an explicit expression can be d
rived without any additional assumptions, these being
valuesrm m8

l l . In order to calculate these, we sum the syst

~9! overm̃1 andm̃2, keepingm̃ constant. Taking into accoun
that

(
m1 ,m2

Cm1m2m
j 1 j 2 l Cm1m2m

j 1 j 2 k
5d lk , ~10!

we obtain

(
m̃1 ,m̃2

P
m̃1m̃2m2m8

j 1 j 2 S
5(

l
(

m,m8
~21!2m8

3Cm̃2m̃ 0
l l S

Cm 2m8 m2m8
l l S rm m8

l l

5Q
m̃,m2m8

j 1 , j 2 , S
. ~11!

If we assume thatm̃5m̃11m̃25 j 11 j 2 ,, then the sum overl
in Eq. ~11! only contains one term

Q
j 11 j 2 ,m2m8

j 1 , j 2 ,S
5Cj 11 j 2 2 j 12 j 2 0

j 11 j 2 j 11 j 2 S

3 (
m,m8

C
m 2m8 m2m8

j 11 j 2 j 11 j 2 S

3~21!2m8r
m m8

j 11 j 2 j 11 j 2 . ~12!

Herem2m8 is fixed. Using the identity

(
S

Cm1 m2 m
j 1 j 2 S C

m18 m28 m8

j 1 j 2 S
5dm1m18 dm2m28 , ~13!

we obtain from Eq.~12!

r
m m8

j 11 j 2 j 11 j 25(
S

~21!m8Q
j 11 j 2 ,m2m8

j 1 , j 2 ,S

3~Cj 11 j 2 2 j 12 j 2 0
j 11 j 2 j 11 j 2 S

!21C
m 2m8 m2m8

j 11 j 2 j 11 j 2 S
.

~14!

All the other valuesrm m8
l l can be calculated similarly; in th

process the parameterm̄ must be reduced step by step in E
~11!. The resulting equation will contain one unknown val
y

l-
-
e
e

e

.

of rm m8
l l and several known values. The orthogonality re

tion ~13! can be used to express the unknown in terms of
known values. To obtain the required formula, we introdu
the notation

Fn
S5 (

l 5n11

j 11 j 2

Cn 2n 0
l l S (

m,m8
Cm 2m8 m2m8

l l S
~21!m8rm m8

l l .

~15!

Using this, we obtain

rm m8
n n

5(
S

~Q
n, m2m8

j 1 , j 2 , S
2Fn

S!

3~Cn 2n 0
n n S !21Cm 2m8 m2m8

n n S
~21!m8 . ~16!

3. TOMOGRAPHY OF PARTICLES WITH SPIN j 51/2

We shall now analyze the casej 15 j 251/2. Using for-
mula ~16!, we can calculate ten values

r00
00 , rmm8

11 , m,m8521,0,1 ~17!

leaving six values ofrm0
10 , r0m

01 still to be determined.
However, it is easy to establish that these appear as

ear combinations in formula~9!. For example, the right-hand
side P1/2 21/2 0

1/2 1/2 1 contains the sumr00
101r00

01, the right-hand
side P1/2 21/2 1

1/2 1/2 1 contains the differencer1 0
1 02r0 21

0 1 , and the
right-hand sideP1/2 21/2 21

1/2 1/2 1 contains the differencer21 0
1 0

2r0 1
0 1. In the formulas ~9! with the values

P21/2 1/2 0
1/2 1/2 1 ,P21/2 1/2 1

1/2 1/2 1 , andP21/2 1/221
1/2 1/21 , the same linear com

binations appear but with opposite sign

~2r00
102r00

01!,~2r10
101r021

0 1 !,~2r210
10 1r10

01!. ~18!

Thus, ten values of~17! and three values of~18! are recon-
structed in terms of the diagonal elements of the den
matrix. This is insufficient to reconstruct the entire dens
matrix.

We can immediately check that if we take the o
diagonal matrix elements r (1/221/2)(21/2 1/2)

1/2 1/2 and
r (21/21/2)(1/221/2)

1/2 1/2 and write a formula similar to~9! for these,
the following linear combinations appear on the right-ha
side of the resulting relations

~r00
102r00

01!, ~r210
10 1r01

01!, ~r10
101r021

0 1 !,

2~r00
102r00

01!,2~r210
10 1r01

01!, 2~r10
101r021

0 1 !. ~19!

We can see that having only some of the diagonal elem
of the density matrix is insufficient to reconstruct the ent
density matrix; further information on the state is require
Let us assume, for example, that the state is pure. The
ments of its density matrix then satisfy

rnnrmm5rnmrmn . ~20!

We substitute into Eq.~20! the expressions for the matri
elements

r~1/2 1/2!~1/2 1/2!
1/2 1/2 , r~1/2 21/2!~1/2 21/2!

1/2 1/2 , r~1/2 21/2!~1/2 1/2!
1/2 1/2 ,

r~1/2 1/2!~1/2 21/2!
1/2 1/2 , r~21/2 1/2!~21/2 1/2!

1/2 1/2 , r~1/2 21/2!~21/2 1/2!
1/2 1/2 ,

r~21/2 1/2!~1/2 21/2!
1/2 1/2 , r~1/2 1/2!~21/2 1/2!

1/2 1/2 , r~21/2 1/2!~1/2 1/2!
1/2 1/2

~21!
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in terms of the valuesrm n
l k , using the formulas from Appen

dix 1, and we obtain

~r0 0
1 02r0 0

0 1!25~r0 0
1 01r0 0

0 1!224r0 0
0 0r0 0

1 1. ~22!

Since r00
101r00

01 is determined by the diagonal terms of th
density matrix, Eq.~22! can be used to calculater00

10 andr00
01.

In addition to Eq.~22!, the relations~20! yield

r11
11~r00

001r00
111r00

101r00
01!5~r10

111r10
10!~r01

111r01
01!, ~23!

r11
11~r00

001r00
112r00

102r00
01!5~r10

112r10
10!~r01

112r01
01!. ~24!

By adding and subtracting Eqs.~23! and ~24!, we obtain

r10
10r01

015r11
11~r00

001r00
11!2r10

11r01
11, ~25!

r10
10r01

111r01
01r10

115r11
11~r00

101r00
01!. ~26!

Solving the systems~25! and~26!, we can findr10
10 andr01

01,
which immediately gives usr021

0 1 andr210
10 .

Thus, the relations~20! obtained for pure states can b
used to reconstruct the entire density matrix of the pure s
in terms of its diagonals.

We shall now analyze a mixed state formed by the p
states

C15au~1!1&u~2!2&1bu~1!2&u~2!1&,

C25b* u~1!1&u~2!2&2a* u~1!2&u~2!1&, ~27!

aa* 1bb* 51,

contained in it with the probabilitiesw1 andw2.
The density matrix of the stateC1 has the form

r~C1!5S 0 0 0 0

0 aa* ab* 0

0 ba* bb* 0

0 0 0 0

D . ~28!

In a rotated system of coordinates the elements of
density matrix~28! are expressed by the following formula

r11~C1!5r S 1
2

1
2D S 1

2
1
2D

1
2

1
2

5
1

4
~a1b!~a* 1b* !sin2 u,

r12~C1!5r S 1
2

1
2D S 1

2 2
1
2D

1
2

1
2

5
i

2
e2 iw~a1b!

3sinuS a* cos2
u

2
2b* sin2

u

2D ,

r13~C1!5r S 1
2

1
2D S 2

1
2

1
2D

1
2

1
2

5
i

2
e2 iw~a1b!

3sinuS b* cos2
u

2
2a* sin2

u

2D ,

r14~C1!5r S 1
2

1
2D S 2

1
2 2

1
2D

1
2

1
2

5
1

4
e22iw~a1b!

3~a* 1b* !sin2 u,
te

e

e

r22~C1!5r S 1
2 2

1
2D S 1

2 2
1
2D

1
2

1
2

5S a cos2
u

2
2b sin2

u

2D
3S a* cos2

u

2
2b* sin2

u

2D ,

r23~C1!5r S 1
2 2

1
2D S 2

1
2

1
2D

1
2

1
2

5S a cos2
u

2
2b sin2

u

2D
3S b* cos2

u

2
2a* sin2

u

2D ,

r24~C1!5r S 1
2 2

1
2D S 2

1
2 2

1
2D

1
2

1
2

52
i

2
e2 iw

3~a* 1b* !sinuS a cos2
u

2
2b sin2

u

2D ,

r34~C1!5r S 2
1
2

1
2D S 2

1
2 2

1
2D

1
2

1
2

5
i

2
e2 iw

3~a* 1b* !sinuS a sin2
u

2
2b cos2

u

2D ,

r44~C1!5r S 2
1
2 2

1
2D S 2

1
2 2

1
2D

1
2

1
2

5
1

4
~a1b!

3~a* 1b* !sin2 u,

r33~C1!5r S 2
1
2

1
2D S 2

1
2

1
2D

1
2

1
2

5S a sin2
u

2
2b cos2

u

2D
3S a* sin2

u

2
2b* cos2

u

2D . ~29!

The elements of the density matrix of the stateC2 are simi-
lar.

The elements of the density matrix of the mixed state
the sums of the density matrix elements of its constitu
states, multiplied by the appropriate probabilities.

We introduce the notation

a5sinvei t, b5cosve2 i t. ~30!

Using the parameterization~30!, we write the diagonal
elements of the density matrix of the mixed state formed
the pure states~27!

r115
1

4
~11D sin 2v cos 2t!sin2 u,

r225
1

2S 12D cos 2v cosu2
1

2

3sin2u~11D sin 2v cos 2t! D ,

r335
1

2S 11D cos 2v cosu2
1

2

3sin2 u~11D sin 2v cos 2t! D ,
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r445
1

4
~11D sin 2v cos 2t!sin2u, ~31!

whereD5w12w2.
We can see that the diagonal matrix elements con

two quantitiesQ15D sin2v cos2t and Q25D cos2v which
depend on three parameters. The elementsr14 and r41 are
expressed in terms of these two parameters, and all the o
depend on the value ofR5D sin 2v sin 2t, which is not ex-
pressed in terms ofQ1 and Q2. We can easily derive the
expressions

R5~D22Q1
22Q2

2!1/2, cos 2v5Q2 /D,

cos 2t5Q1~D22Q2
2!21/2. ~32!

The formulas~32! describe a single-parameter family
states~27! whose density matrices have the same diago
elements~31! but different off-diagonal ones. In genera
when a mixed state consists of four pure ones, the st
having the same diagonal density matrix elements belon
a three-parameter family. This is easily confirmed by cal
lating the number of parameters which are not determi
using formula ~9!. We cannot determine the values~19!,
these being three complex numbers, but from formula~5! we
can easily obtain

~r00
01!* 5r00

01, ~r01
01!* 52r210

10 , ~r021
01 !* 5r10

10 .
~33!

It follows from the formulas~33! that the unknowns~19!
contain only three real unknown parameters and these t
parameters determine the family of states. In order to iden
a specific state inside a family, we need to define three
numbers characterizing these, for which we can take
probabilitiesw1, w2, w3, andw4 which define the structure
of the mixed state.

Defining the probabilitiesw151, w25w35w450, we
obtain the pure state and for a mixed state consisting of p
states, we havew1Þ0, w2Þ0, w350, w450, w11w251
and we arrive at the formulas~32! which can reconstruct the
entire density matrix. Similar but more complex formul
can be obtained for the case when allwiÞ0, i 51, . . . ,4.

4. CONCLUSIONS

A concept whereby the entire quantum mechanics
malism was reformulated using only measurable quanti
was developed in Refs. 14–18. It was suggested that
classical probabilities of the values of particular observab
should be used as these quantities. For the systems ana
in Refs. 14–18 these probabilities are defined by the dia
nal elements of the density matrix of the correspond
states.

The results of the present study show that for mix
two-particle states, using only some of the diagonal eleme
of the density matrix examined merely in terms of a sin
reference frame common to both spins is inadequate fo
complete description of the state and these must be sup
mented by the probabilitieswi ,i 51 . . . ,with which the pure
states appear in the mixed ones. The diagonal element
then used to construct a family of states whose density
in

ers
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trices have the same diagonal matrix elements but diffe
off-diagonal ones and the probabilitieswi determine the re-
quired state within the family. Thus, we have implement
the overall concept of defining states using classical pr
abilities.

This work was supported financially by the Russi
Fund for Fundamental Research~Grants Nos. 96-02-17222
and 96-02-17987!.

APPENDIX A:

We give the expressions for the elements of the tw
particle density matrix for spinsj 15 j 251/2 in terms ofrmn

kl :

r S 1
2

1
2D S 1

2
1
2D

1
2

1
2

5r11
11,

r S 1
2

1
2D S 1

2 2
1
2D

1
2

1
2

5
1

A2
~r10

111r10
10!,

r S 1
2

1
2D S 2

1
2

1
2D

1
2

1
2

5
1

A2
~r10

112r10
10!,

r S 1
2

1
2D S 2

1
2 2

1
2D

1
2

1
2

5r121
11 ,

r S 1
2 2

1
2D S 1

2
1
2D

1
2

1
2

5
1

A2
~r01

112r01
01!,

r S 1
2 2

1
2D S 1

2 2
1
2D

1
2

1
2

5
1

2
~r00

001r00
111r00

101r00
01!,

r S 1
2 2

1
2D S 2

1
2

1
2D

1
2

1
2

5
1

2
~2r00

001r00
112r00

101r00
01!,

r S 1
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APPENDIX B:

We give the explicit form of the elements of the dens
matrix of various two-particle states. These are calcula
using formula~3! and theD-functions

D1
2

1
2

1
2

5e2 i
1
2 ~f1c! cos

u

2
, D1

2 2
1
2

1
2

5 ie2 i
1
2 ~f2c! sin

u

2
,

D
2

1
2

1
2

1
2

5 ie2 i
1
2 ~2f1c! cos

u

2
,

D
2

1
2 2

1
2

1
2

5 ie2 i
1
2 ~2f2c! sin

u

2
.

The singlet state is given by:

C005
1

A2
~ u~1!1&u~2!2&2u~1!2&u~2!1&),

r225
1

2
, r2352

1

2
, r3252

1

2
, r335

1

2
.

The other matrix elements are zero. Since the stateC00 is a
scalar, the elements of its density matrix remain unchan
when we go to a different coordinate system, as is confirm
by direct calculations using formula~3!.

The triplet state is given by:

C105
1

A2
~ u~1!1&u~2!2&1u~1!2&u~2!1&),

C115u~1!1&u~2!1&, C1215u~1!2&u~2!2&.

In the laboratory coordinate system the elements of the d
sity matrix of the stateC10 have the form

r225
1

2
, r235

1

2
, r325

1

2
, r335

1

2
,

and the others are zero. On changing to a different coordi
system in accordance with formula~3!, we have

r̃115
1

2
sin2u, r̃125 r̃135

i

2
e2 ifsinu cosu,

r̃145
1

2
e22ifsin2u ,

r̃225 r̃235
1

2
cos2u, r̃2452

i

2
e2 ifsinu cosu,

r̃335
1

2
cos2u, r̃3452

i

2
e2 ifsinu cosu,
d

d
d

n-

te

r̃445
1

2
sin2 u.

The stateC11 corresponds to a density matrix with a sing
nonzero elementr1151. In an arbitrary coordinate system
we have

r̃115cos4
u

2
, r̃125 r̃1352 ie2 ifsin

u

2
cos3

u

2
,

r̃1452 ie2 if sin2u cos2u,

r̃225 r̃235sin2
u

2
cos2

u

2
, r̃2452 ie2 if sin3

u

2
cos

u

2
,

r̃335sin2
u

2
cos2

u

2
, r̃3452 ie2 ifsin3

u

2
cos

u

2
,

r̃445sin4
u

2
.

For the stateC121 there is also only one nonzero matr
elementr4451. When we go to an arbitrary coordinate sy
tem, we obtain

r̃115sin4
u

2
, r̃125 r̃135 ie2 if cos

u

2
sin3

u

2
,

r̃1452 ie2 if sin2 u cos2u,

r̃225 r̃235sin2
u

2
cos2

u

2
, r̃245 ie2 if cos3

u

2
sin

u

2
,

r̃335sin2
u

2
cos2

u

2
, r̃345 ie2 ifcos3

u

2
sin

u

2
,

r̃445cos4
u

2
.
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Exact quantum mechanical description of the motion of spin-1/2 particles and of spin
motion in a uniform magnetic field

A. Ya. Silenko* )
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The Dirac–Pauli equation is used to obtain the exact equation of spin motion for spin-1/2
particles with an anomalous magnetic moment in a constant and uniform magnetic field. Exact
formulas are established for the angular velocity of the revolution of such particles along
circular orbits and the rotation of the particle spin with respect to momentum. Finally, a quantum
mechanical equation for the motion of the particles in a strong magnetic field is derived.
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1. INTRODUCTION

Only a limited number of exact solutions of the Dira
and Dirac–Pauli equations1 that allow for the presence of a
anomalous magnetic moment are known. A full coverage
these solutions can be found in the monograph by Bag
et al.2 Almost all exact solutions amounted to finding th
energy levels and wave particles of spin-1

2 particles in an
external field. Such problems were solved in the Dirac r
resentation and in the Foldy–Wouthuysen~FW! represen-
tation.3

A distinctive feature of the FW representation is the qu
sidiagonal form of the Hamiltonian operator, which separa
the equations for the two spinors. Hence one spinor is su
cient for completely describing the state of particles in
FW representation. What is important is that in the FW re
resentation the operators are even, so that there is no ne
separate the even part of operators. The special role of
FW representation also consists in the fact that we can a
ciate the corresponding classical quantities with the opera
given in this representation~say, the position operatorr and
momentum operatorp!, while as a result of unitary transfor
mations to other representations, including the Dirac rep
sentation, the form of the given operators may change s
stantially.3

However, deriving the exact expressions for the Ham
tonian operator in the FW representation is extremely d
cult, with the result that such expressions have been fo
only in some cases.4–7 Among the problems that can be e
actly solved in the FW representation is that of a parti
with an anomalous magnetic momentm8 in a uniform mag-
netic field of arbitrary strength.6,7 The exact equation of spin
motion for the particular case of a Dirac particle (m850) in
a uniform magnetic field was found by Case.4 In the work
that followed, the motion of particle spin in a strong ma
netic field was studied in the Dirac representation.8,9 It was
in this representation that the dependence of the value o
anomalous magnetic moment on field strength was disc
ered ~the dynamical nature of the anomalous magne
moment!.10 However, a complete description of polarizatio
2461063-7761/98/87(8)/5/$15.00
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in the FW representation has an advantage: it yields a s
pler polarization operator.

Here we will derive an exact equation of motion for th
spin of particles with an anomalous magnetic moment i
uniform magnetic field. The theory is based on the Dira
Pauli equation in the Foldy–Wouthuysen representation.
comparing the motion of the particles and their spin
achieve an exact description of particle motion and the ro
tion, due to the anomalous magnetic moment, of the s
with respect to momentum.

Throughout the work we use the relativistic system
units \5c51.

2. DESCRIBING POLARIZATION IN THE
FOLDY–WOUTHUYSEN REPRESENTATION

The description of polarization effects in the FW repr
sentation is simpler because the polarization operator in
representation reduces to the matrixP5bS ~Refs. 11 and
12!, where

P5S s 0

0 2s
D , b5S 1 0

0 21D , S5S s 0

0 s
D ,

with s the Pauli matrix, and 0 and61 standing for the
respective 2-by-2 matrices. If to describe the state of a p
ticle we use only one spinor,s is the polarization operator
In the Dirac representation, the polarization operator of
particle is given by a more cumbersome expression.9,11–16

The operator equation of spin motion is found by calc
lating the commutator of the Hamiltonian operator and
polarization operator:

dP

dt
5 i @H,P#. ~1!

Since the absolute value of the polarization vector d
not change with the passage of time, Eq.~1! can be written as

dP

dt
5

1

2
~V3P2P3V!, V5S v8 0

0 v9
D , ~2!
© 1998 American Institute of Physics
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whereV, v8, andv9 are the operators of the angular velo
ity of spin precession for the bispinorC5(z

c) and the
spinorsc andz, respectively. The operatorV is quasidiago-
nal in view of the separation of the equations for the t
spinors. Note that the operatordP/dt is Hermitian.

There exists a certain arbitrariness in determining
operatorV from Eq. ~2!. In particular, the equation does n
change under transformations of the form

V→V85V1LG~S–G!, ~3!

whereL is a scalar operator,@L,S#5@L,V#50, andG is a
constant vector.

The operatorV can be used for a rigorous quantum m
chanical description of spin motion,17 since the average val
ues of the projections of this operator

^V i&5E C†V iCdV, i 5x,y,z, ~4!

determine the spin rotation anglesF i about thei th axis:
^V i&5dF i /dt. Of course, it is much more practical to us
only the upper spinor, and~4! assumes the form

^v i8&5
dF i

dt
5E c†v i8cdV, ~5!

with the functionsc normalized to unity.

3. THE HAMILTONIAN OPERATOR IN THE
FOLDY–WOUTHUYSEN REPRESENTATION

For a particle with an anomalous magnetic mom
placed in a constant uniform magnetic field, the energy sp
trum and the eigen-wave-functions were first found in
Dirac representation.18 The same problem was successfu
solved in the FW representation.6,7 By applying a unitary
transformation we can transform the Hamiltonian operato
the form7

H5bAp'
2 1m22eS–H2m8P–H1azpz , ~6!

az5S 0 sz

sz 0 D ,

wherep[2 i¹ andp5p5eA are the operators of momen
tum and kinetic momentum, andA is the vector potential of
the external field, which for a uniform field can be written
A5(H3r )/2.

We assume that the magnetic field is directed along thz
axis. The HamiltonianH is not strictly diagonal, since the
matrix az is not diagonal. However,H is diagonal when the
particle is moving transversely, i.e., when the eigenvalue
the operatorpz is zero. Since]A/]z50, pz commutes with
H, and this particular case is meaningful. The case of tra
verse particle motion is most interesting from the practi
viewpoint, and when the particle moves in an arbitrary m
ner, we can always select a reference frame in whichpzC
5pzC50. Then p'5p, and the Hamiltonian operator i
diagonal and has the form

H5bAp21m22eS–H2m8P–H. ~7!
e

-

t
c-
e

o

f

s-
l
-

The fact that the Hamiltonian is diagonal indicates th
the Hamiltonian corresponds to the FW representation.
Hamiltonian can be obtained in another way: by multiplyi
the Dirac–Pauli equation for a particle in a magnetic field

@gmpm2m1m8S–H#C50, pm5pm2eAm ,

into the operatorgmpm1m1m8S–H. Using this approach
similar to the one used in Ref. 19, we can reduce the gi
equation to a form quadratic in the operatorE[ i (]/]t) and
then do the operator extraction of the square root.

If we use the weak-field approximation (ueuH!m2), the
Hamiltonian~7! corresponds to the one found by Suttorp a
deGroot20 ~see also Ref. 21!, and if m850, we arrive at the
Hamiltonian of a Dirac particle obtained by Case.4 In con-
trast to the Dirac wave function, the eigen-wave-functionC
of the Hamiltonian~7! is the eigenfunction of the operato
Pz ~see Ref. 19!. These arguments suggest that Eq.~7! de-
fines the Hamiltonian operator in the FW representation.

4. EXACT QUANTUM MECHANICAL EQUATION OF SPIN
MOTION

The first to obtain the exact equation of spin motion f
Dirac particles in a constant uniform magnetic field,

dS

dt
5b~E12E2!

S3H

H
, E65Ap21m26eH, ~8!

was Case~Ref. 4!.1! The use of the operatorS instead ofP
to describe particle polarization is possible because the
trices b and S commute. The angular velocity of spin pre
cession for Dirac particles is

VD52b~E12E2!
H

H
. ~9!

The equation of spin motion for particles with an anom
lous magnetic moment can be found in a similar way. L
earizing the expression~7! for the Hamiltonian by the
method used in Ref. 22 and calculating the commutator
the Hamiltonian with the polarization operator, we find th
the exact operator equation of spin motion has the form~2!,
where the operator of the angular velocity of precession
defined as

V52bFE12E2

H
12m8GH5VD22bm8H. ~10!

The operatorV commutes with the Hamiltonian~7! and
its eigenvalues for stationary states are

V52bF ~Am21~2n11!ueuH1eH

2Am21~2n11!ueuH2eH!
1

H
12m8GH. ~11!

Within the limits of the Dirac–Pauli equation, formul
~11! is the exact expression for the frequency of precess
~and hence of the rotation angles! of the spin of a spin-12
particle in a strong magnetic field. The formulas~10! and
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~11! constitute a generalization of the Bargmann–Miche
Telegdi ~BMT! equation23 to the case where strong-field e
fects are taken into account.

As noted in Sec. 2, a term of the formLG(S–G), which
does not change the equation of spin motion, must be ad
to the operatorV. If G5H holds, the presence of such
term may create the illusion that the angular velocity of s
precession depends on the sign of the projection of spin
the direction of the magnetic field, since the operatorS–H
5SzH commutes with the Hamiltonian. In reality, howeve
the main characteristic of spin motion is the equation of s
motion, i.e., the expression for the operatordP/dt rather
than for the operatorV, which cannot be defined unambigu
ously. This suggests that the average value of the operatoV
calculated by~2! and ~4! determines the average velocity
spin rotation if and only if this operator commutes withS
andP and hence contains no spin matrices. Otherwise, w
we pass to the semiclassical approximation by averaging
operators in Eq.~2! for the spin motion, the operatorV, in
accordance with this equation, cannot be regarded as a
directly on the wave functionC, so that for it formula~4! is
invalid. Hence, only the operatorV that is defined by~10!
and ~11! and commutes withS and P makes it possible to
find an expression for the average angular rate of spin r
tion.

5. EXACT QUANTUM MECHANICAL DESCRIPTION OF
PARTICLE MOTION

Studying the motion of a particle is more complicat
than studying the motion of spin, since the operator of
angular velocity of a particle moving along a circular orbit
a magnetic field does both commute with the kinet
momentum operator. Ba�er et al.16 found the equation of mo
tion for a scalar particle in a magnetic field solvable by t
method of successive approximations, and Suttorp
deGroot20 found the equation of motion for a spin-1

2 particle
in the weak-field approximation. Here we will show that it
possible to achieve an exact quantum mechanical descrip
of the motion of a spin-12 particle by comparing particle mo
tion and spin motion.

It is natural to find the angular velocity operatorv by
solving an equation similar to~2!:

dp

dt
5

1

2
~v3p2p3v!. ~12!

However,v is not an operator whose average value is
angular velocity of particle rotation. Since the operatorsp
and v do not commute, when we pass to the semiclass
approximation by averaging the operators,v cannot be con-
sider an operator acting directly on the wave functionC.
Hence^v i&5df i /dt, wheref i are the angles of rotation o
the momentum vector about the axesi 5x,y,z. Conse-
quently, although equations of the form~12! provide a mean-
ingful description of particle motion within the accuracy
which they were derived, by themselves they do not yi
expressions for the angular velocity of particle motion.
the same time, when the particle moves in a constant unif
magnetic field, its angular velocity has a fixed value, wh
ed

n
n

n

n
he

ing
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e
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d
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is proved by the following arguments. It is convenient
write the Hamiltonian operator~7! in the form

H5H11H2 ,

H15bAp21m22eS–H5bAm21~S–p!2,

H252m8P–H. ~13!

HereH1 is the Dirac Hamiltonian. It commutes with th
operatorP–p5bS–p, sincebS5Sb, and with the opera-
tor upu5Ap2. Allowing for the fact thatP–p5Ppupu, we
find that

@H1 ,Ppupu#5@H1 ,Pp#upu50, @H1 ,Pp#50,

and for Dirac particles the projection of the polarization o
erator on the direction of the kinetic momentumPp is con-
served. This result was obtained by Sokolov and Terno13

and Ba�er et al.,16 who used the Dirac representation. Th
angular velocities of the gyration of a Dirac particle in
circular orbit and of the precession of the particle’s spin c
incide because the projection of the polarization operator
the direction of the kinetic momentum is conserved.

We introduce the operator of the angular velocity of r
tational motion,o, whose average, in contrast to the avera
of v, reflects the real particle motion,^oi&5df i /dt. The
above implies thato5VD . Since

@H2 ,p#50,
dp

dt
5 i @H,p#5 i @H1 ,p#,

the equation of motion of a particle with an anomalous m
netic moment does not differ from the equation of motion
a Dirac particle. Hence the operatoro for such a particle is
defined by the exact expression

o5VD52b~E12E2!
H

H
. ~14!

The rotation of spin with respect to the momentum ve
tor is given by the difference of the angular velocities
particle spin precession,V, and of the particle’s orbital mo-
tion, o. The exact expression for this quantity can be fou
from Eqs.~10! and ~14!:

V2o522bm8H. ~15!

6. EQUATION OF PARTICLE MOTION IN A STRONG
MAGNETIC FIELD

Although in Sec. 5 we derived an exact description
the motion of the particle with an anomalous magnetic m
ment in a uniform magnetic field by introducing the opera
o, it would be interesting to find the equations of motion o
particle in a strong magnetic field. The derivation of a theo
of strong-field effects requires stepping outside the scop
the Dirac–Pauli equation. However, to calculate the corr
tions introduced by such effects into the equations of mot
of particle and spin correctly we must first derive these eq
tions from the Dirac–Pauli equation. Hence in this sect
we will find an equation of particle motion based on t
Dirac–Pauli equation and valid to within terms of orderH4.
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It is impossible to derive an exact equation, since the op
tor p commutes neither withp2 nor with the kinetic-energy
operatore5Ap21m2:

@p2,p#5 ie~H3p2p3H!52ieH3pÞ0,

@e,p#Þ0.

The equation of particle motion written for the kineti
momentum operatorp has the form~12!. We wish to show
that the expression forv does not change when we establi
the equations of motion for two other operators: the iden
operator in the direction of the motion,

1

2 S 1

upu
p1p

1

upu D ,

and the velocity operator, which can be written as

v5
1

2 S 1

e
p1p

1

e D .

The reason is that bothupu and« commute with the Hamil-
tonian H and, as we will see shortly, with the operatorv.
For any operatorA that commutes withH andv we have

d

dt
~Ap!5 iA@H,p#5

1

2
A~v3p2p3v!

5
1

2
~v3Ap2Ap3v!,

wherev is defined by Eq.~12!. A similar relationship can
easily be obtained ford(pA)/dt, which makes it possible to
prove the above assertion.

We can easily derive the exact relationships that mak
possible to express the commutator of two arbitrary ope
tors A andB in terms of the commutator ofA2 andB:2!

@A21,B#5A21@B,A#A21, ~16!

@A,B#5
1

4
$A21,@A2,B#%12

1

4
@@A,@A,B##,A21#, ~17!

whereA21[1/A, and$¯ ,¯%1 is an anticommutator.
Equation ~17! makes it possible to find@A,B# by the

method of successive approximations if the commutato
the operator is small in comparison to the product of
operators. In the first approximation,

@A,B#'
1

4
$A21,@A2,B#%1

2
1

16
@@A,$A21,@A2,B#%1#,A21#.

Since@A,$A21,C%1#5A21@A2,C#A21 for any operatorC,
we have

@A,B#'
1

4
$A21,C%12

1

16
@A21@A2,C#A21,A21#

'
1

4
$A21,C%12

1

64
A22$A21,@A2,@A2,C##%1A22,

~18!
a-

y

it
-

f
e

whereC5@A2,B#.
If we use Eqs.~16!–~18!, we can find the operatorv to

within terms of orderH4. Next we introduce the operato
A5Ap21m22eS–H. Then for the Hamiltonian~7! we
have@H,p#5b@A,p#. The commutators in Eq.~18! are

@A 2,p#5@p2,p#52ieH3p,

@A 2,@A 2,@A 2,p###58ie3H2H3p. ~19!

Combining~12! with ~16!–~19!, we arrive at an equation
describing particle motion:

dp

dt
52b

e

2
$A 21,H3p%1

1
1

8
be3H2A 22$A 21,H3p%1A 22.

To within a double commutator of orderH5,

dp

dt
52b

e

2 H 1

A
S 12

e2H2

4A4 D ,H3pJ
1

. ~20!

According to Eqs.~12! and ~20!, the expression for the
operatorv is

v52b
e

A
S 12

e2H2

4A 4DH. ~21!

The corrections to Eqs.~20! and ~21! are of orderH5.
Hence Eqs.~20! and~21! are the equation of particle motio
and the expression for the angular velocity of the particl
orbital motion to within terms of orderH4 inclusive. Note
that both~20! and~21! demonstrate the validity of the abov
assumption that the operatorv commutes withupu5Ap2

ande.
Clearly, for Dirac particles the equations of particle a

spin motion have same structure. The commutators co
sponding to~19! are

@A 2,P#52e@~S–H!,P#52ieH3P,

@A 2,@A 2,@A 2,P###58ie3H2H3P.

As a result the approximate~to within terms of orderH4

inclusive! equation of spin motion for Dirac particles can b
written as

dP

dt
52b

e

2 H 1

A
S 12

e2H2

4A4 D ,H3PJ
1

. ~22!

The fact that Eqs.~20! and ~22! are identical in form
supports the conclusion that the angular velocities of the
bital motion of a Dirac particle and of the precession
particle spin coincide. Equation~28! can be transformed to a
form that agrees with the exact equation~8!.

7. DISCUSSION AND CONCLUSIONS

We have carried out an exact quantum mechanical
scription of the motion of spin-1

2 particles with an anomalou
magnetic moment and the motion of spin in a uniform ma
netic field. Since we used the Dirac–Pauli equation in
Foldy–Wouthuysen representation, we would like to kno
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how these equations are modified when we go over to o
representations. From the general ideas of the theory of
resentations it follows that in this case the operators unde
a unitary transformation but the form of the equations d
not change. However, it is clear that if there is an exter
field, such a transformation changes not only the form of
polarization operatorsO, and coordinates,x, y, andz, but
also of the operators of momentum,p[2 i¹, and kinetic
momentum,p5p2eA. In particular, for this reason the de
pendence of the equation of spin motion in the Dirac rep
sentation on the operatorp85U21pU, with U the operator
of the unitary transformation, is exactly the same as the
pendence of that equation in the FW representation on
operatorp. However, these two equations differ in their d
pendence onp. As a result one is tricked into thinking tha
the nature of the spin motion has changed or that new eff
have emerged.

As is known, the FW representation is special becaus
it the operators are even and can be assigned to the c
sponding classical quantities. The other representations
not possess this property. The equation of spin motion
uniform magnetic field derived in the present paper can
transformed into the Dirac representation by using a unita
transformation operator, which for the given case was fou
by Tsai.7

An exact quantum mechanical description of the mot
of particle spin with respect to particle momentum in
strong magnetic field is important from the practical vie
point. Since the particle moves along a circular orbit,
angular velocities of rotation of the particle and the parti
spin can be compared, with the difference of these two qu
tities yielding the rotation of the spin in relation to the pa
ticle momentum. Dirac particles do not experience such m
tion (VD5o), and the rotation of spin with respect t
momentum occurs only for particles with an anomalo
magnetic moment. Using Eqs.~4! and ~15!, we can deter-
mine this angle exactly. For instance, if initially the partic
beam was polarized along the momentum vector, after timt
has elapsed the polarization vector of the beam forms is
rected at an angleu to the momentum vector, with

u5~^Vz&2^oz&!t522m8Ht. ~23!

Of course, we must bear in mind that Eqs.~15! and~23!
are exact only within the framework of the Dirac–Pa
equation. As is known, allowance for strong-field effec
provides corrections both to the anomalous magnetic
ment of the electron and to the Dirac–Pauli equation~see
Ref. 9!. There are also radiative corrections to the equat
of spin motion, which allow for damping.16 The detection of
corrections to Eqs.~10!, ~15!, and~23! in experiments would
be a clear indication that the limits of the Dirac–Pauli ha
been passed,3! and establishing the values of these corr
tions would make it possible to demonstrate the exten
which the theoretical results agree with the experimen
data.

According to the method of exact solutions formulat
in Refs. 9, 13, and 15, the exact solutions of the Dirac a
Dirac–Pauli equations are taken as the zeroth approxima
and the corrections to these solutions are calculated
er
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perturbation-theory techniques by abandoning the sin
particle approach. This makes it possible to use the res
obtained in this paper if strong-field effects must be tak
into account more thoroughly.

* !E-mail: silenko@inp.minsk.by
1!Note that formula~8! and the other formulas in this section are exact in t

sense that they are equivalent to the initial Dirac equation. However,
Dirac and Dirac–Pauli equations obtained in the single-particle appr
mation do not give an exhaustive description of the state of a particle
particular, they do not allow for radiative corrections.

2!A similar method was used in Ref. 16.
3!In particular, the linear dependence betweenu and H follows rigorously

from the Dirac–Pauli equation.
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This paper develops an effective method for calculating the bremsstrahlung cross section with
allowance for the polarization mechanism. We calculate the cross section of
bremsstrahlung produced in the scattering of electrons and positrons by H and Kr atoms. We
also demonstrate the important role of polarization bremsstrahlung in the formation of
the total emission spectrum over the entire frequency range. ©1998 American Institute of
Physics.@S1063-7761~98!00708-2#
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1. INTRODUCTION

When charged particles collide with a target that has
internal electron structure, bremsstrahlung arises as a r
of two different mechanisms. The first is known as ‘‘ord
nary’’ bremsstrahlung and occurs as a result of the brakin
an incident particle by the static field of an atom~see, e.g.,
Refs. 1 and 2!, while the second is known as ‘‘polarization
bremsstrahlung and occurs as a result of dynamic polar
tion of the target by the electric field of the incident partic
~see, e.g., Refs. 3–5!.

In this paper we study the role of polarization brem
strahlung formed in the process of electron and positron s
tering by atoms within a broad spectral range. An analysis
the relative role of the two bremsstrahlung mechanism
carried out using the hydrogen and krypton atoms as
amples.

The hydrogen atom is a one-electron system, and
such a system one can derive closed analytical express
The polarization bremsstrahlung mechanism that occurs
result of collisions of electrons, positrons, and protons w
the hydrogen atom in the ground state was studied
Bu�mistrov et al.6,7 and Dubois and Maquet.8 They found
that this mechanism is important to the formation of the to
bremsstrahlung spectrum. In the present paper we carry o
detailed analysis of the role that the polarization mechan
plays in collisions of charged particles with the hydrog
atom in an excited state. We find that there are substa
differences in the behavior of the bremsstrahlung cross
tion when the target is in its ground state and when it is in
excited state. Our calculations show that as the princ
quantum number of the state of the electron in the hydro
atom increases, the relative role of the polarization mec
nism becomes less important because the screening o
nuclear charge by the electron weakens. However, the s
2511063-7761/98/87(8)/9/$15.00
n
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tral dependence of the cross section of bremsstrahlung
duced by scattering of charged particles by the hydro
atom in an excited state exhibits singularities absent w
the atom is in the ground state. The numerical calculation
the cross sections are done for the states 1s, 2s, and 3s.

Prior to publication of our recent paper,9 calculations of
the cross section of polarization bremsstrahlung resul
from the collision of charged particles with multielectro
atoms were carried only in a relatively narrow photon fr
quency range characteristic of excitation of giant resonan
in atoms. The interest in this spectral range is due to
collective multielectron nature of giant resonances and
related large value of atomic polarizability, which imply th
the polarization mechanism plays the leading role in the to
bremsstrahlung spectrum.

The bremsstrahlung spectrum formed in electron–at
collisions has been calculated in the nonrelativistic Born
proximation ~BA! for the Ar atom by Amus’yaet al.10–13

They found the total bremsstrahlung cross section in the p
ton frequency range characteristic of excitations of electr
belonging to the 3p-subshell of Ar (v510–50 eV). Similar
calculations have been done in the spectral range near
ionization potential of the 4d-subshell (v5100–200 eV) of
the Xe and La atoms14–16 in the Born approximation and fo
Xe, Ba, La, and Eu in the distorted partial wave approxim
tion ~DPWA!.17–22It was found that in bremsstrahlung spe
tra the polarization mechanism gives rise to a resona
structure near the 3p ionization potential of Ar and the 4d
ionizati on potential of Xe, Be, La, and Eu. The existence
such peaks was proved in experiments in which the emis
spectra for the electron scattering by La and rare-ea
elements,23 Xe ~Refs. 15 and 24!, and Ba~Ref. 25! were
measured.

In this paper we also study the bremsstrahlung proc
© 1998 American Institute of Physics
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for electrons with energies«151–25 keV scattered by th
Kr atom. The spectral dependence of the total bremsst
lung cross section~i.e., the cross section that incorporates t
contributions of ordinary and polarization bremsstrahlu
and an interference term! is calculated for the entire photo
frequency range fromv510 eV to«1. We find that the po-
larization mechanism plays an important role in forming t
total bremsstrahlung spectrum not only near the ioniza
potentials of atomic multielectron subshells but also in
range of the emitted-photon frequencies. Allowance for
polarization bremsstrahlung mechanism alters dramatic
the common idea that the cross section is a monotonic fu
tion of the emitted-photon frequency. The dependence of
total bremsstrahlung cross section of the photon energy
nonmonotonic function with characteristic resonance sin
larities. When the polarization mechanism is taken into
count, the nonmonotonic nature of the total bremsstrahl
cross section appears even in a one-electron system~the hy-
drogen atom or hydrogenlike ion!, where no multiparticle
effects are present.

Throughout the paper we use the atomic system of u
(ueu5\5me51).

2. TOTAL BREMSSTRAHLUNG AMPLITUDE AND CROSS
SECTION

The total bremsstrahlung amplitudef tot is the sum of the
ordinary (f ord) and polarization (f pol) bremsstrahlung ampli
tudes:

f tot5 f ord1 f pol . ~1!

In the lowest order of the nonrelativistic perturbatio
theory in the electron–photon interaction and in the C
lomb interactionV51/ur2rau between the incident~r ! and
atomic (ra) electrons that excites the atom virtually, the a
plitudes f ord and f pol are given by the expressions

f ord5^p2
~2 !ue•r up1

~1 !&, ~2!

f pol52(
n

H ^0ue–Dun&^p2
~2 ! ,nuVup1

~1 !,0&
vn02v2 i0

1
^p2

~2 !,0uVup1
~1 ! ,n&^nue–Du0&

vn01v J , ~3!

whereup1
(1)& and up2

(2)& are the wave functions of the inc
dent and scattered electrons with momentap1 andp2, respec-
tively. The ‘‘plus’’ and ‘‘minus’’ superscripts denote the so
lutions of the Schro¨dinger equation that asymptotically ar
respectively, a diverging~plus! and converging~minus!
wave at infinity. The partial-wave expansion of the wa
function of the incident particle in the initial (j 51) and final
( j 52) states is

upj
~6 !&54pAp

pj
(
l ,m

i l exp@6 id l~pj !#
Pn j

~r !

r

3Ylm* ~ p̂j !Ylm~ r̂ !. ~4!

Hereâ[a/uau, wherea is any one of thepj or r , d l(p) is the
phase shift, and the symboln stands for the set of quantum
h-
e
g

n
e
e
ly
c-
e
a
-
-
g

ts

-

-

numbers (p,l ). The radial wave functionPn(r ) satisfies the
Schrödinger equation with a ‘‘frozen’’ atomic core and i
normalized to energy in rydbergs.

The operatore–D in ~3! is the operator of the dipole
interaction of an atomic electron and the electromagn
field, v ande are the electron energy and polarization vect
vn05En2E0 is the energy of an atomic transition from th
initial state u0& to an excited stateun& in the discrete or
continuous spectrum.

The amplitude~3! does not take into account the e
change between the incident and atomic electrons. In
present paper we assume that the incident electron en
before and after the emission process is large compare
the ionization potentials of the atomic shells that for a giv
photon frequencyv provide the main contribution to the
sum over the excited states.

Following Ref. 18, we express the amplitude~3! for a
spherically symmetric atom in terms of the generalized
namic dipole polarizabilitya(v,Q). To this end we write
the Coulomb interaction operatorV in the form of a Fourier
integral:

V[
1

ur2rau
5

1

2p2 E dQ

Q2
exp$2 iQ–~r2ra!%. ~5!

Inserting~5! into ~3! yields

f pol52
i

2p2 E dQ
e–Q

Q2
^p2

~2 !ue2 iQ–rup1
~1 !&a~v,Q!, ~6!

where

i ~e–q!a~v,Q!5(
n

H ^0ue–Dun&^nueiQ–rau0&
vn02v2 i0

1
^0ueiQ–raun&^nue–Du0&

vn01v J . ~7!

Integration in~6! is done over the entire space of the vecto
Q. At Q50 the generalized dynamic polarizabilitya(v,Q)
becomes the ordinary dynamic polarizabilitya(v).

The representation off pol in the form ~6! makes it easy
to pass to the Born limit in the amplitude of polarizatio
bremsstrahlung. Indeed, replacing the distorted wavesup1,2

(6)&
in ~6! with the free-particle wave functionsup̃1,2

(6)&
5exp(ip1,2–r ) and bearing in mind that

^p̃2
~2 !uexp~2 iQ–r !up̃1

~1 !&5~2p!3d~q2Q!,

we arrive at an expression forf pol in the Born approximation:

f pol
B 524p i

e–q

q2
a~v,q!, ~8!

whereq5p12p2 is the momentum transferred to the atom
the collision process.

The expression~8! for the amplitude of polarization
bremsstrahlung in the Born approximation and the cor
sponding expression for the bremsstrahlung cross sec
were first obtained by Amus’yaet al.10
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Substituting~4! in ~2! and ~6!, we arrive at expression
for f ord and f pol in the form of sums of partial contributions
The structure of both series is the same and is given by
expression

f 5
16p3

Ap1p2

A4p

3 (
l 1 ,l 2

i l 12 l 2 exp@ i ~d l 1
~p1!1d l 2

~p2!!#

3~21! l .Al . Tl 2l 1
~ ê,p̂1 ,p̂2!Rl 2l 1

, ~9!

where l 25 l 161 in accordance with dipole selection rule
andl .5max$l1,l2%. The factorTl 2l 1

(ê,p̂1 ,p̂2) depends on the
angular variables of the vectorse, p1, andp2:

Tl 2l 1
~ ê,p̂1 ,p̂2!5 (

m1 ,m2 ,m
~21!m2S l 2 1 l 1

2m2 m m1
D

3Y1m* ~ ê!Yl 1m1
* ~ p̂1!Yl 2m2

~ p̂2!. ~10!

In ~9!, the function

Rl 2l 1
5H 1Rl 2l 1

ord
for ordinary bremsstrahlung,

2Rl 2l 1
pol

for polarization bremsstrahlung,

can be expressed in terms of the integrals

Rl 2l 1
ord 5^n2ir in1&, ~11!

Rl 2l 1
pol 5

2

p E
0

`

dQ Q^n2i j 1~Qr !in1&a~v,Q!, ~12!

where j 1(Qr) is the spherical Bessel function.
The differential cross section of total bremsstrahlun

which characterizes the spectral distribution of the emit
radiation, can be written as

vS ds

dv D5
1

~2p!4

v4

c3

p2

p1
E dVp2

dVg (
l

u f totu2, ~13!

wherec is the speed of light. The integration in~13! is over
the directions of propagation of the scattered elect
(dVp2

) and the emitted photon (dVg), and summation is
over the photon polarizations (l).

Plugging~9!–~12! into ~13!, we arrive at an expressio
for the total bremsstrahlung cross section:

vS ds

dv D5
32p2

3

v4

c3p1
2 (

l 1 ,l 2
l .uRl 2l 1

ord 2Rl 2l 1
pol u2. ~14!

Since bremsstrahlung is formed by two different mec
nisms, it is natural to write the total cross section~13! as the
sum of the cross sections of ordinary bremsstrahlung
polarization bremsstrahlung and an interference term:

vS ds

dv D5vS ds

dv D
ord

1vS ds

dv D
pol

1vS ds

dv D
int

. ~15!

The expression for the cross section of ordinary brem
strahlung,v(ds/dv)ord can be derived from~14! if we put
Rl 2l 1

pol 50. If in ~14! we putRl 2l 1
ord 50, we arrive at the expres

sion for the cross section of polarization bremsstrahlu
v(ds/dv)pol .
e

,
d

n

-

d

-

,

Calculating the generalized dynamic dipole polarizability of
an excited hydrogen atom by the Coulomb Green’s
function method

Equations~9!–~13! show that the behavior of the tota
bremsstrahlung cross section is determined by the gen
ized dynamic polarizability of the target atom. The gener
ized polarizability describes the dynamic response of the
get to the external field of the incident particle. F
multielectron atoms such a response is usually determine
multielectron correlation effects, which require using t
methods of multiparticle perturbation theory if we want
account for them.26 Hence ordinarily the calculations of gen
eralized polarizability constitute a complicated problem a
require involved numerical methods~see Refs. 18 and 5!.
However, for hydrogenlike systems the solution can be
tained analytically.

To calculate the generalized dynamic polarizability
the hydrogen atom we use the method of the Coulo
Green’s function in the coordinate representation. Ot
methods for calculatinga(v,q) may also be employed~e.g.,
Sternheimer’s method27!. The use of Coulomb units allow
extending the results to hydrogenlike ions.

The proposed method for calculating the generalized
namic polarizability makes it possible to derive closed a
lytic expressions for the generalized polarizability of a st
with an arbitrary principal quantum number. The idea of t
method consists in representing the radial wave functionRnl

of the hydrogen atom in terms of derivatives of the gene
ing function of Laguerre polynomials:28

Rnl~r !5
2l 11

nl 12AG~n2 l !G~n1 l 11!

3
dn2 l 21

dtn2 l 21 F r le2lr

~12t !2l 12GU
t50

, ~16!

wherel5(1/n)(11t)/(12t).
Such a representation of the wave functions is con

nient for calculating the matrix elements and hence the
larizability ~7!, since the operation of finding the derivative
is done after calculating the radial integrals in the mat
elements, which simplifies the entire calculation sign
cantly. Actually one must calculate the matrix elements
which the radial wave functions of the hydrogen atom a
replaced by the productr le2lr . The final result for different
states is then obtained by finding the derivatives of differ
orders of the expression obtained. This method is espec
convenient if differentiation with respect to a parameter c
be done symbolically~in our calculations we used the Math
ematica 2.2 package of Wolfram Research, Inc.!.

Let us show how the sum of matrix elements compris
the polarizability can be expressed in terms of a set of
pergeometric functions. Using the dispersion representa
of the Green’s function, we write the polarizability as th
sum of two terms,:

a~v,q!5X~E01v,q!1X~E02v,q!, ~17!

where
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FIG. 1. Spectral curves of the bremsstrahlung cross sections~the Born approximation! for 220 eV electrons~a! and positrons~b! scattered by the hydrogen
atom. The solid curves1, 2, and3 represent the total bremsstrahlung cross sections for the case of hydrogen atom in the 1s-, 2s-, and 3s-states, respectively.
The dashed curves18, 28, and38 represent the ordinary bremsstrahlung cross sections for the hydrogen atom in the 1s-, 2s-, and 3s-states, respectively. The
dots correspond to the bremsstrahlung cross sections for an electron scattered by a point Coulomb potential~see the explanation in text!.
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X~E,q!52
i

q
^0u exp~2 iq–r1!G~r1 ,r2 ;E!r2–q̂u0&.

Here we have used the notationâ[a/uau, wherea is an ar-
bitrary vector. Next we write the spherical-wave expans
of the Green’s function:

G~r1 ,r2 ;E!5(
l ,m

Gl~r 1 ,r 2 ;E!Ylm~ r̂1!Ylm* ~ r̂2!, ~18!

where for the Green’s function of the radial Schro¨dinger
equation we use the representation29

Gl~r 1 ,r 2 ;E!5
2i

Ar 1r 2

~21! l 11 E
1

` dj

Aj221
S j11

j21D in

3J2l 11~2kAr 1r 2 Aj221 !

3exp@ ikj~r 11r 2!#, ~19!

wherek5A2E , andn51/k. Formally, this representation i
valid for E.0. However, it can be analytically continue
into the region whereE,0. We do this analytic continuation
in the formulas by expressingX(E,q) in terms of hypergeo-
metric functions.

Let us considered in detail the case wherel 50, which
means we have chosen thes-states of the hydrogen atom i
the initial and final states of the process. Then, after integ
tion over the angular variables has been performed, we
write the matrix elementX(E,q) as

X~E,q!5
4

n5G2~n!
D̂1D̂2M . ~20!

Here the differentiation operators have been defined as

D̂m f ~ tm!5
dn21

dtm
n21F f ~ tm!

~12tm!2GU
tm50

, m51,2, ~21!

and the radial integral, after integration with respect tor 1

and r 2 and a change of variable, can be written as
n

a-
an

M529ik3E
0

1 dt ~12t!t12 in~by2axt!

@~by2axt!21q2~y2xt!2#3

229ik5E
0

1 dt t22 in@5~by2axt!22q2~y2xt!2#

@~by2axt!21q2~y2xt!2#4
,

~22!

where a5l11 ik, b5l12 ik, x5l21 ik, y5l22 ik, and
l1,25(1/n)(11t1,2)/(12t1,2).

The final expression for the integral~22! can be written
as a sum of hypergeometric functions by expanding the
tegrands in partial fractions. The result, however, is e
tremely cumbersome, so that its explicit form is given in t
Appendix.

3. RESULTS OF CALCULATIONS OF THE
BREMSSTRAHLUNG CROSS SECTION FOR THE
HYDROGEN ATOM AS TARGET

Figure 1 depicts the results of calculations of the cro
section of bremsstrahlung formed in the process of the s
tering of 220 eV electrons~Fig. 1a! and positrons~Fig. 1b!
by the hydrogen atom. The calculations were done in
Born approximation. The solid curves1, 2, and3 represent
the total bremsstrahlung cross sections and the dashed c
18, 28, and38, the ordinary bremsstrahlung cross sections
the hydrogen atom in the 1s-, 2s-, and 3s-states, respec
tively. The small vertical lines indicate the values of th
ionization potentials of the atomic shells.

Figures 1a and 1b show that the polarization mechan
plays an important role in forming the total bremsstrahlu
spectrum for the hydrogen atom in the ground state and in
excited state. For photon frequencies close to the ioniza
potential of the hydrogen atom, the total bremsstrahlu
cross section greatly exceeds the ordinary bremsstrah
cross section. As the photon frequency increases, the
bremsstrahlung cross section monotonically decreases,
in absolute value remains larger than the ordinary bre
strahlung cross section for the electron, while for the po
tron it becomes smaller than the ordinary bremsstrahl
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cross section. Such behavior of the total bremsstrahl
cross section~15! is due primarily to the constructive~for
electrons! and the destructive~for positrons! contribution of
the interference of the amplitudes of ordinary and polari
tion bremsstrahlung,v(ds/dv) int . The effect has been de
scribed earlier. As shown in Refs. 12 and 30, the total bre
strahlung spectrum in the photon frequency rangev@I 1s is
effectively formed due to the braking of an incident electr
in the Coulomb field of the bare atomic nucleus~the ‘‘de-
screening’’ effect!.

The dots in Fig. 1a represent the bremsstrahlung sp
trum for an electron scattered by a Coulomb potential wit
chargeZ51. We see that when the photon energies
higher than the respective ionization potentials, the result
calculations of the total bremsstrahlung cross section alm
fully agree with those calculated for the Coulomb potenti

A comparison of the spectral curves of the cross sec
of bremsstrahlung formed in the scattering of electrons
positrons by the hydrogen atom shows that for equal co
sion rates the contribution of the polarization bremsstrahl
mechanism increases with the principal quantum num
This effect is due to the increase in the radius of the orbit
hence to the weakening of the screening of the nucleus a
principal quantum number increases. Indeed, when bre
strahlung is formed by the ordinary mechanism, small imp
parameters are important, i.e.,r ,Rat ~which means that the
incident particles passes near the nucleus of the target at!.
Hence an increase in the radius of the target atom leads t
increase in the ordinary bremsstrahlung cross section. On
other hand, polarization bremsstrahlung is formed most
fectively at large impact parameters,14,31 i.e., when the inci-
dent particle strongly polarizes the target atom.

Note that the spectral dependence of the total bre
strahlung cross section for the case where an electro
positron is scattered by a hydrogen atom in the 3s-state con-
tains a narrow peak above the ionization potential of
3s-shell. The presence of such a maximum is due to a p
singularity in the polarizability in the photon frequenc
range corresponding to the 3s→2p transition.

Let us examine in detail the singularities exhibited in t
generalized dynamic polarizability of excited states of
hydrogen atom. To this end we analyze Eq.~7!, naming, for
the sake of brevity, the first term in the bracesA and the
second termB.

For intermediate statesun& in the discrete spectrum w
haveEn,0. If En is higher than the energy of the initial an
final statesE0, i.e., vn0.0, the termB behaves monotoni
cally as the frequencyv increases, while the termA in-
creases in a resonant manner near the polesv→vn0. The
poles in the polarizability correspond to a real process
which the hydrogen atom interacting with the incident p
ticle is excited to the stateun& and then returns to its initia
stateu0&, emitting a photon in the process. The divergence
the polarizability is removed by introducing an imagina
term iG into the energy denominator, withG the width of the
level. In the present paper the only frequenciesv we con-
sider are those for whichv2v0@G. Since the radiation
width G is small, this condition holds up to frequencies th
are extremely close to the polarizability poles.
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If the initial stateu0& of the hydrogen atom is not th
ground state, then for some intermediate statesun& we have
0.E0.En , i.e.,vn0,0. If this condition is met,A behaves
monotonically as the frequencyv increases, whileB reso-
nantly increases asv→2vn0. This divergence also corre
sponds to a real process in which the hydrogen atom, initi
in the excited stateu0&, is de-excited and emits a photon an
then, interacting with the incident particle, returns to the i
tial excited state. Here the excited state of the hydrogen a
must meet the conditionI[2E0,2vn0, i.e., the polariz-
ability polesv52vn0 are above the ionization thresholdI
of the given excited stateu0&.

Thus, the frequency dependence of polarizability co
tains poles corresponding to real processes of excitation
de-excitation of the atom in an intermediate state. Here
poles corresponding to de-excitation processes are abov
ionization potential of the corresponding excited stat
Hence the spectrum of polarization bremsstrahlung ge
ated in collisions with the excited hydrogen atom must co
tain narrow lines not only below the ionization potential
the excited state but also above the ionization potentia
that state. The only exception is the 2s-state, since dipole
transitions with de-excitation are forbidden for this state
selection rules.

Figure 2 depicts the spectral dependence of the dyna
polarizabilitya(v) of a hydrogen atom that is in its 3s-state
near the frequency corresponding to the 3s→2p transition.
We see that the real part of the polarizability has a disti
pole, while the imaginary part is described solely by the te
A and decreases monotonically with increasing frequencyv.
For instance, the presence of a pole in the generalized po
izability above the ionization potential of the 3s-shell leads
to a narrow line in the bremsstrahlung spectrum~see Fig. 1!.

Note that the interference term in the total cross sect
of the process is proportional to the real part of the pola
ability, which changes sign as the pole is passed. The cha
in sign of the interference of the ordinary and polarizati
bremsstrahlung mechanisms implies that below the pola
ability pole the bremsstrahlung cross section for a positro
larger than that for an electron, while above the pole
situation is just the opposite.

FIG. 2. The real~solid curve! and imaginary~dashed curve! parts of the
dynamic dipole polarizabilitya(v) of the hydrogen atom in the 3s-state
near the polarizability polev5E3s2E2p51.89 eV.



th

0
–5
b
he
ls
s
a

f
or
ti
n

io
e

by
n,

to

c-

of
t
nge
is

he
on

the
o
late
or

axi-
n-

a-
la-

tal

ner
h

e
hat
tal

y t

tio

y t

tio

y the

tions

256 JETP 87 (2), August 1998 Korol’ et al.
4. RESULTS OF CALCULATIONS OF THE
BREMSSTRAHLUNG CROSS SECTION WITH THE
KRYPTON ATOM AS TARGET

The results of calculations of the cross sections of
total ~solid curves1! and ordinary~solid curves2! brems-
strahlung formed in the scattering of 1-keV, 5-keV, and 1
keV electrons by the krypton atom are depicted in Figs. 3
The calculations were done in the DPWA approximation
Eq. ~14!. The small vertical lines indicate the values of t
Hartree–Fock ionization potentials of the atomic subshel

These calculations show that the polarization brem
strahlung mechanism plays an important role in the form
tion of the total bremsstrahlung spectrum. Instead o
smooth curve characteristic of the spectral distribution of
dinary bremsstrahlung, the total bremsstrahlung cross sec
exhibits a complicated dependence on the photon freque
and has broad, high maxima and narrow dips near the
ization potentials. This pattern of the spectral dependenc

FIG. 3. Bremsstrahlung cross sections for 1 keV electrons scattered b
krypton atom. Curve1 represents the total cross section~DPWA!, curve2
represents the ordinary bremsstrahlung cross section~DPWA!, curve18 rep-
resents the total cross section~the Born approximation!, and curve28 rep-
resents the ordinary bremsstrahlung cross section~the Born approximation!.
The dots stand for the data on the ordinary bremsstrahlung cross sec
taken from Refs. 32 and 33.

FIG. 4. Bremsstrahlung cross sections for 5 keV electrons scattered b
krypton atom. Curve1 represents the total cross section~DPWA!, curve2
represents the ordinary bremsstrahlung cross section~DPWA!, curve1 rep-
resents the total cross section~the Born approximation!, and curve2 repre-
sents the ordinary bremsstrahlung cross section~the Born approximation!.
The dots stand for the data on the ordinary bremsstrahlung cross sec
taken from Refs. 32 and 33.
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the total bremsstrahlung cross section is determined both
the polarization component of the cross sectio
v(ds/dv)pol and by the interference termv(ds/dv) int .

In the photon frequency rangev510–100 eV, the total
bremsstrahlung spectrum for Kr exhibits a maximum due
the contribution to the amplitudef pol of virtual dipole exci-
tations of electrons from the outer 4s- and 4p-subshells.
Such excitations are of a collective nature26 and are charac-
terized by a strong intershell correlation interaction of ele
trons from thens- andnp-subshells.34 Amus’ya et al.34 car-
ried out a numerical calculation of the cross section
photoabsorption of the outerns-subshells of atoms of iner
gases using the random phase approximation with excha
~RPAE! and found that the photoabsorption cross section
strongly influenced by multielectron correlation effects. T
expression~13! for the total bremsstrahlung cross secti
contains only one characteristic,a(v,q), which determines
the dynamic response of the target to the external field of
incident particle. Atomic polarizability is closely linked t
the photoabsorption cross section, so that to calcu
a(v,q) of Kr we used the RPAE method with allowance f
dipole transitions from all the atomic subshells.

In the photon frequency rangev5100–1000 eV, the to-
tal bremsstrahlung spectrum for Kr acquires a second m
mum, which is related to the dipole excitations into the co
tinuous spectrum of electrons from the intermediate 3s-,
3p-, and 3d-subshells of the krypton atom. Near the ioniz
tion potentials of these subshells, the multielectron corre
tion effects strongly influence the value ofa(v,q). We used
the RPAE method to account for these effects.

For photon frequencies exceeding 2000 eV, the to
bremsstrahlung cross section is a monotonic function ofv,
except for regions near the ionization potentials of the in
1s-, 2s-, and 2p-subshells of Kr. Below we analyze suc
behavior of the spectral dependence of bremsstrahlung.

The dashed curves1 and 2 in Figs. 3–5 represents th
results obtained in the first Born approximation. We see t
the Born approximation gives a poor description of the to
bremsstrahlung spectrum for allv with the exception of the

he

ns

he

ns

FIG. 5. Bremsstrahlung cross sections for 10 keV electrons scattered b
krypton atom. Curve1 represents the total cross section~DPWA!, curve2
represents the ordinary bremsstrahlung cross section~DPWA!, curve1 rep-
resents the total cross section~the Born approximation!, and curve2 repre-
sents the ordinary bremsstrahlung cross section~the Born approximation!.
The dots stand for the data on the ordinary bremsstrahlung cross sec
taken from Refs. 32 and 33.
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low-frequency range,v/«1<0.2 ~see also Ref. 35!.
The discrepancy between the total bremsstrahlung c

sections obtained in the Born approximation and in
DPWA approximation, which are especially evident in F
3, is related primarily to the difference in the ordinary brem
strahlung cross sections~curve2!. As noted earlier, ordinary
bremsstrahlung is formed primarily at small distancesr
<Rat, where the distorting effect of the atomic potent
causes the wave function of the incident electron to de
substantially from a plane wave. At the same time, polari
tion bremsstrahlung is formed at distances much larger t
the atomic,14,31 so that it is less sensitive to the approxim
tions describing the motion of the incident electron.

The dots in Fig. 3–5 represent the results of calculati
of the ordinary bremsstrahlung cross sections done by
relativistic DPWA approximation by Prattet al.32 and Selt-
zer and Berger.33 The 5–10% discrepancy between their da
and the curves2 may arise because we ignored relativis
effects and higher-order multipole moments of the photon
our calculations and to the accuracy of the data of Refs
and 33, which is estimated at 10 % by the researchers.

To study in greater detail the main tendencies in
behavior of the total bremsstrahlung cross section we ex
ined the process of scattering of 25 keV electrons by the
atom. Curve1 in Fig. 6 represents the total bremsstrahlu
cross section and curve2, the ordinary bremsstrahlung cros
section.

In the photon frequency rangev510–1000 eV, the tota
bremsstrahlung cross section has two maxima. Within
spectral range, the total bremsstrahlung cross section~see Eq.
~15!! is determined by the sum of the ordinary and polari
tion bremsstrahlung cross sections~curve3!, while the con-
tribution of the interference termv(ds/dv) int ~curve 4! is
small.

Near the ionization potentials of the inner 1s-, 2s-, and
2p-subshells the spectral distribution of the total bremsstr
lung cross section for the Kr atom as target exhibits d
narrow dips~cusps!. The value of the total bremsstrahlun
cross section at the tip of a cusp is smaller than that of
ordinary bremsstrahlung cross section. Similar singulari

FIG. 6. The cross sections of total~curve1!, ordinary~curve2!, and polar-
ization ~curve3! bremsstrahlung for 25 keV atoms scattered by the kryp
atom. Curve4 represents the interference component of the total cross
tion. The dots correspond to the bremsstrahlung cross section for an ele
scattered by a point Coulomb potential~see the explanation in text!.
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manifest themselves in the spectral dependence of the
bremsstrahlung cross section for the Ne and Ar atoms n
the ionization potentials of the 1s-subshell.9

Such singularities in the spectral dependence of the t
bremsstrahlung cross section reflect the behavior of the
part of the generalized atomic dynamic polarizability ne
the ionization potentials of the inner atom subshells.

The amplitude~6! of polarization bremsstrahlung can b
expressed in terms of the generalized atomic polarizabi
The behavior ofa(v,Q) as a function ofv proves to be
similar for all values of Q. Hence qualitatively the
v-dependence of the polarization and interference term
~15! can be estimated as follows:

vS ds

dv D
pol

;v4 @~Rea~v!!21~ Im a~v!!2#g1~v!,

vS ds

dv D
int

;2v2 Rea~v!g2~v!,

whereg1(v) andg2(v) are smooth, monotonically decrea
ing functions ofv. This estimate shows that the interferen
term may be either positive or negative, depending on
sign of Rea(v).

Figure 7 depicts the frequency dependence of the
namic dipole polarizability in the spectral regionv
510 eV–25 keV. The solid curve depicts2v2 Rea(v) and
the dashed curve,v2 Im a(v). For the present paper th
atomic dynamic polarizabilitya(v) was calculated in the
RPAE approximation with allowance for dipole transition
from all atomic subshells.

The imaginary part of the atomic polarizability of Kr ha
discontinuities near the ionization near the ionization pot
tials of the inner 1s-, 2s-, and 2p-subshells~see Fig. 7!.
These discontinuities lead to deep dips~cusps! in Rea(v),
which in turn lead to deep, narrow dips in the total brem
strahlung cross section. The occurrence of minima is de
mined by the fact that the interference part of the cross s
tion, v(ds/dv) int , in the frequency range unde
investigation is negative.

The origin of such singularities in the total bremsstra
lung cross section can be understood from the following r

c-
ron

FIG. 7. The real~solid curve! and imaginary~dashed curve! parts of the
dynamic dipole polarizabilityv2a(v) of the krypton atom in the RPAE
approximation.
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soning. The imaginary part of the dipole polarizability
related to the photoabsorption cross section as follo
sg(v)54pv Im a(v)/c. Usually the absorption cross se
tion for the inner atomic subshells is hydrogenlike. Th
means that at the photon frequencyv5I inner the cross sec-
tion sg(v) has a discontinuity~see, e.g., the tables given
Ref. 36!. Since the real and imaginary parts of the dynam
susceptibility are linked by a dispersion relation, the disc
tinuity in sg(v) leads to a cusp in Rea(v). These discon-
tinuities and dips manifest themselves in the form of sin
larities in the spectral dependence of the total bremsstrah
cross section at frequenciesv'I inner. The type of singulari-
ties in v(ds/dv) tot depends on the relationships betwe
Rea(v) and Ima(v) and betweenv(ds/dv) int and
v(ds/dv)pol and on the sign ofv(ds/dv) int . Generally,
the total bremsstrahlung cross section may contain both
and peaks.

In conclusion we discuss the bremsstrahlung process
photons whose energies exceed the ionization potentia
the 1s-subshell. Figure 6 shows that forv.I 1s the total
bremsstrahlung cross section decreases with increasing
ton energy but exceeds the ordinary bremsstrahlung c
section. Such behavior of the total bremsstrahlung cross
tion ~15! is due primarily to the ‘‘descreening’’ effect,12,30

which leads to a situation in which the total bremsstrahlu
spectrum of an electron in the frequency rangev@I 1s is
effectively formed by the braking of the incident electron
the Coulomb field of the bare atomic nucleus, while the c
tribution of the polarization part of cross section is negligib
~see Fig. 6!.

The dots in Fig. 6 represent the bremsstrahlung spect
of an electron scattered by a Coulomb potential with
chargeZ536. We see that for photon energiesv.I 1s the
results of calculations of the total bremsstrahlung cross
tion ~curve1! practically coincide with the results of calcu
lations of the bremsstrahlung cross section for scattering
Coulomb potential.

The present work was made possible by grants from
Russian Fund for Fundamental Research~Project 96-02-
17922-a! and the International Science and Technology C
ter ~Project 076-95!.

APPENDIX

Below we give an explicit expression for calculating t
generalized dynamic polarizability of the hydrogen atom i
state with principal quantum numbern and zero orbital an-
gular momentuml 50.

The polarizability is expressed as the sum of two ter
containing hypergeometric functions2F1. Note that the final
expression can be transformed into a more compact on
reducing the number of hypergeometric functions. Howev
we believe that the given representation is more conven
for doing numerical calculations:

ans~v,q!5X~En1v,q!1X~En2v,q!, ~A1!

where
s:
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X~E,q!5
26

n5G2~n!
D̂1D̂2M . ~A2!

The differential operatorsD̂ have been defined in~21!,
andM has the form

M523
x2a

y5gq3k~22 in!~32 in!
2F1~1,22 in,42 in,z1!

13
xa2

y5bq3k~22 in!~32 in!
2F1~1,22 in,42 in,z2!

16i
x2a

y6gq3~32 in!
2F1~1,32 in,42 in,z1!

26i
xa2

y6bq3~32 in!
2F1~1,32 in,42 in,z2!

12i
x2~a12iq !

y5g2q3~22 in!~32 in!
2F1~2,22 in,42 in,z1!

22i
a2~x22iq !

y5b2q3~22 in!~32 in!
2F1~2,22 in,42 in,z2!

16
x2k~a1 iq !

y6g2q3~32 in!
2F1~2,32 in,42 in,z1!

26
a2k~x2 iq !

y6b2q3~32 in!
2F1~2,32 in,42 in,z2!

18i
x2k

y5g3q2~22 in!~32 in!
2F1~3,22 in,42 in,z1!

18i
a2k

y5b3q2~22 in!~32 in!
2F1~3,22 in,42 in,z2!

24i
x2k2~a14iq !

y6g3q3~32 in!
2F1~3,32 in,42 in,z1!

14i
a2k2~x24iq !

y6b3q3~32 in!
2F1~3,32 in,42 in,z2!

224i
x2k3

y6g4q2~32 in!
2F1~4,32 in,42 in,z1!

224i
a2k3

y6b4q2~32 in!
2F1~4,32 in,42 in,z2!, ~A3!

where the following notation has been used:

k5A2E , n5
1

k
,

z15
xx

gy
, z25

ax

by
,

a5l11 ik1 iq, b5l12 ik1 iq, ~A4!
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x5l21 ik2 iq, g5l22 ik2 iq,

x5l21 ik, y5l22 ik,

l15
1

n

11t1

12t1
, l25

1

n

11t2

12t2
.
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The nonlinear dynamics of an open quantum system consisting of a ‘‘dressed’’ atom, i.e., an
atom coupled with an external multifrequency electromagnetic field, and a single
quantized mode of an electromagnetic field is studied. At different crossing points of the
quasilevels of the dressed atom, the average number of photons in the quantized mode may either
increase without limit with the passage of time or oscillate within finite limits. In the latter
case a decrease of the number of photons is accompanied by regularization of their statistics, which
may become sub-Poissonian. ©1998 American Institute of Physics.@S1063-7761~98!00808-7#
te
od
e
h
th

-
es
uls

o
el

u
tu
in
e
f t
th
te

m
e
ve
e
e

1

g
n
ti

as
a
s
by

ics
ral

ater
Here

t the
such
een
is-

tates

uasi-
f an
and
sid-
ab-

so-
the
ion
any
rre-

ergy
as
-
on
may
ical
ere

the
nian

n-

tom

tom,
20–
1. INTRODUCTION

The Jaynes–Cummings model, a closed quantum sys
consisting of a two-level atom and a single quantized m
of an electromagnetic field,1 is a basis for more elaborat
physical models of quantum optics and laser theory. T
solution of the quantum mechanical equations describing
nonlinear dynamics of the Jaynes–Cummings model can
obtained in a fairly simple form.2,3 Nevertheless, this solu
tion describes important qualitative effects that manif
themselves in lasers and other complicated systems: p
tions of atomic level populations, changes in the statistics
the photons in a quantized mode of an electromagnetic fi
and generation of squeezed quantum states of a field.3–5 On
the other hand, the development of experimental techniq
has made it possible to experimentally realize a quan
system that is close in structure to the Jaynes–Cumm
model, a one-atom maser.6,7 Earlier theoretical results hav
been corroborated. Among these is the unusual nature o
dynamics of level populations and the dipole moment of
atom. Periodic collapses and revivals constitute a charac
istic feature of this dynamics.8,9

As a result of the achievements in experiments~de-
scribed above! and the development of theoretical quantu
optics, many papers have appeared in which the Jayn
Cummings model is generalized to the case of a multile
atom, several quantized modes of an electromagnetic fi
and multiphoton interaction. Some results were obtain
without resorting to the rotating-wave approximation.10,11

The review of these studies can be found in Refs. 3 and
and some latest results are given in Refs. 11–17.

A promising generalization of the Jaynes–Cummin
model is the open model, which, in addition to the atom a
the quantized field, may incorporate the electromagne
field vacuum17 or an external classical field.18,19 In the latter
case the problem arises of the interaction between
‘‘dressed’’ atom, i.e., an atom coupled with an external cl
sical field, and a single quantized mode of an electrom
netic field. The general solution of this problem for the ca
of a monochromatic classical field was obtained
2601063-7761/98/87(8)/6/$15.00
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Kazakov,18 and the new features that emerge in the dynam
of an open system if the classical field consists of seve
spectral components was analyzed in Ref. 19. In the l
case the quasi-energy approach has proved to be useful.
is a brief discussion of this approach.

The energy of dressed atoms is not conserved, so tha
gain, absorption, and resonance-fluorescence spectra of
atoms cannot be interpreted in terms of transitions betw
energy levels. However, if the classical field has an equid
tant frequency spectrum, the concepts of quasi-energy s
and levels can be brought into the picture.20,21 Spectroscopi-
cally, i.e., in studies of linear gain~absorption! of light by a
dressed atom and of resonance fluorescence, these q
energy levels play the same role as the energy levels o
isolated atom. The difference between the energy levels
the quasi-energy levels becomes important when one con
ers nonlinear effects, such as the saturation of gain and
sorption. The emission or absorption of a photon by an i
lated atom is always accompanied be changes in
population of the energy levels, while emission or absorpt
of a photon by a dressed atom may take place without
change in the population of the quasi-energy states co
sponding to different quasi-energy levels.19 Here a change in
the energy of the atom is balanced by an exchange of en
with the classical field. In Ref. 19 this type of interaction w
named ‘‘elastic,’’ in contrast to the ordinary ‘‘inelastic’’ in
teraction, in which the emission or absorption of a phot
changes the state of the dressed atom. Elastic interaction
lead to an effective conversion of the energy of the class
field into the energy of photons in the quantized mode. H
the quantum state of the atom remains unchanged and
statistics of the photons in the quantized mode is Poisso
or super-Poissonian, i.e.,Dn2>n̄, where n̄ is the average
andDn2 the variance of the number of photons in the qua
tized mode.

The position of the quasi-energy levels of a dressed a
depends on the parameters of the classical field~the different
approaches to defining the energy levels of a dressed a
which lead to the same results, are examined in Refs.
23!. If these parameters~the intensity of the classical field, in
© 1998 American Institute of Physics
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particular! are chosen appropriately, the quasilevels m
cross, and at the crossing points the elastic and inelastic
teraction mechanisms may act simultaneously.19,24

In an earlier paper19 we examined the case where th
quasi-energy levels do not cross and the frequency inte
between the levels is much larger than the Rabi frequency
the equations we can then ignore the terms describing
quantum interference of quasi-energy states20 and arrive at a
solution in analytic form. In the present paper we study
dynamics of the Jaynes–Cummings model with a dres
atom and crossing of the quasilevels. Actually we consi
only one of the possible cases where such crossing occ
the classical field is assumed modulated in amplitude~a tri-
harmonic field!, its median frequency coincides with th
transition frequency between the atomic levels, and the R
frequency is an integral multiple of the modulation fr
quency. We analyze the temporal variations of the aver
number of photons, of the variance of the number of phot
in the quantized mode, and of the populations of the qu
energy states. It is assumed that initially the atom and
quantized mode are statistically independent, with the a
being in one of its quasi-energy states and the mode
vacuum or coherent quantum state.

The plan of the paper is as follows. Section 2 conta
the derivation of the Heisenberg equations for the annih
tion ~creation! operators of a photon in a quantized mode a
the transition between quasi-energy states. Section 3
cusses the results of an analytical solution of these equa
in various cases, while Sec. 4 does the same via a nume
solution. Finally, Sec. 5 briefly discusses the main res
and formulates the conclusions.

2. HEISENBERG EQUATIONS FOR AN OPEN MODEL

Let us take a two-level atom interacting with a
amplitude-modulated classical field:

E~ t !5Ẽg~v8t !exp~ iVt !1c.c., ~1!

whereẼ is the complex-valued amplitude of the field,v8 is
the modulation frequency,V is the optical carrier frequency
and

g~t!5exp~ i t!@112a cost# ~2!

is the modulation function. By a classical field we mean la
light whose intensity is so high that we can ignore shot no
produced by photons.25,26 The optical carrier frequencyV
exceeds the modulation frequencyv8 by many orders of
magnitude. The real parametera is the percentage modula
tion. Thus, a classical field contains a central componen
the frequencyV05V1v8 and two sideband components
frequenciesV062v8. In what follows we assume that th
central component coincides with the transition frequencv
of the transition between the atomic levels:V05V1v8
5v. If we use the dipole-interaction and rotating-wa
approximations,2 the Hamiltonian of the atom in the extern
field can be written as

Ĥa5\vb̂†b̂2\v8sg~v8t !exp@ i ~Vt1c!#b̂1h.c., ~3!
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wherev is the transition frequency between the atomic e
ergy levels,s[um01Ẽ/\v8u is the dimensionless field am
plitude ~the Rabi frequency normalized to the modulati
frequency!, with m01 the matrix element of the dipole mo
ment of the transition;c[arg@m01Ẽ/\v8#; b̂[u0&a a^1u is
the transition operator between the loweru0&a and upperu1&a

energy levels of the atom, and h.c. stands for an expres
that is the Hermitian conjugate of the first two terms on t
right-hand side of Eq.~3!. The Schro¨dinger equation with the
Hamiltonian ~3! has two orthonormalized solutions,uu0&a

and uu1&a , known as quasi-energy states.19–21

The quasi-energy levels can be found by analyzing
temporal variations of the wave functions describing t
quasi-energy states.21 Thus, we can show that each atom
energy level splits into two equally spaced sequences
quasilevels. Near the lower atomic level there emerge qu
levels with energies\v8(2l12n) and \v8(l2d12m
11), while near the upper level the quasilevels that eme
have the energies\v1\v8(d2l2(2m11)) and \v
1\v8(l22n), wherem,n50,1,2,..., l5s is the charac-
teristic number, andd[(V2v)/v8521 is the detuning of
the optical carrier frequency from the transition frequen
~the detuning is normalized to the modulation frequenc!.
This implies that if the Rabi frequencyum01Ẽ/\u is an inte-
gral multiple of the modulation frequencyv8, i.e., s5 l
51,2,..., thequasilevels belonging to different sequenc
cross. The indexl 51,2,... can beinterpreted as the order o
the parametric resonance that emerges as a result of q
level crossing.20,27

To go over to the open Jaynes–Cummings model,
must introduce a quantized mode of an electromagnetic fi
into the system. In describing the interaction between
quantized mode and the atom we use the dipole-interac
and rotating-wave approximations. The Heisenberg eq
tions for the transition operator between the quasi-ene
states,ĉ5uu0&a a^u1u, and the annihilation operatorâ for a
photon in the quantized mode were derived in Ref. 19. T
interaction between a dressed atom and the quantized m
is of a resonant nature if the frequencyvq of the quantized
mode coincides with one of the transition frequencies
tween the quasi-energy levels, which can be written as

dq[
V2vq

v8
52m11,

wherem is an integer. In this case we can use the sec
rotating-wave approximation, leaving only the princip
terms on the right-hand sides of the Heisenberg equati
For a resonance characterized by integral values of the i
ces,l 50,1,2,... andm50,61,62,..., theequations become

d

dt
ĉ5~ Î 22ĉ†ĉ!~aâq1gâq

†!12~bâq2b* âq
†!ĉ, ~4!

d

dt
âq5b* ~ Î 22ĉ†ĉ!1g ĉ†2a* ĉ, ~5!

where
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a5~21! l 1m11
1

2
kq* Jl 1m11~2al !, ~6!

g5~21! l 2m21
1

2
kqJl 2m21~2al !, ~7!

b5
1

2
kq* at m521, and b50 at mÞ1, ~8!

kq5k exp~2 ic!, âq5â exp~ ivqt !,

with k the atom–quantized-mode coupling constant. If
introduce an effective Hamiltonian

Ĥeff5 i @aâqĉ†2a* âq
†ĉ1gâq

†ĉ†2g* âqĉ

1~b* âq
†2bâq!~ Î 22ĉ†ĉ!#, ~9!

Eqs.~4! and ~5! can be written in canonical form:

d

dt
ĉ52 i @ ĉ,Ĥeff#,

d

dt
âq52 i @ âq ,Ĥeff#. ~10!

3. NONLINEAR DYNAMICS: ANALYTICAL SOLUTIONS

In Secs. 3 and 4 we use the solutions of the system
equations~4! and~5! ~or ~10!! to examine the temporal varia
tions of the average number of photons in the quanti
mode,

n̄5^â†~t!â~t!&5^âq
†~t!âq~t!&, ~11!

of the variance of the number of photons in the quantiz
mode,

Dn25^n̂2&2~ n̄!2, ~12!

^n̂2&5^â†~t!â~t!â†~t!â~t!&5^âq
†~t!âq~t!âq

†~t!âq~t!&,

and of the populations of the quasi-energy statesuu1&a and
uu0&a :

N15^ ĉ†~t!ĉ~t!&, N25^ĉ~t!ĉ†~t!&512N1 ~13!

~the angle brackets denote quantum mechanical averag!.
We start with the particular cases for which analytical so
tions can be obtained.

The first case is

a5g50. ~14!

If this condition is met, the Hamiltonian~9! describes the
elastic Jaynes–Cummings model discussed in Ref. 19.

The second case is

b50, uauÞugu. ~15!

Here the equations of motion~4! and ~5! can be formally
reduced to the ordinary~inelastic! model. Indeed, in the cas
uau.ugu we can introduce the unitarily transformed annih
lation operator

ê1[
aâq1gâq

†

Auau22ugu2
, @ ê1 ,ê1

†#5 Î . ~16!

Equations~4! and~5! then lead to the following equations o
motion for the operatorsê1 and ĉ:
e

of

d

d

g
-

d

dt
ĉ5k1~ Î 22ĉ†ĉ!ê1 ,

d

dt
ê152k1ĉ, ~17!

where k15Auau22ugu2. The equations are equivalent t
those of the ordinary Jaynes–Cummings model, the only
ference being that instead of the transition operatorb̂ they
contain the quasi-energy transition operatorĉ.

In the caseuau,ugu we can perform a similar transfor
mation by introducing the annihilation operator

ê2[
a* âq

†1g* âq

Augu22uau2
, @ ê2 ,ê2

†#5 Î .

The equations of motion for the operatorsê2 and ĉ become

d

dt
ĉ†5k2~ Î 22ĉĉ†!ê2 ,

d

dt
ê252k2ĉ†, ~18!

wherek252Augu22uau2. The equations are equivalent t
those of the ordinary Jaynes–Cummings model in whichb̂ is
replaced byĉ†. Actually, the difference between~17! and
~18! is that in the first the quasi-energy stateuu0&a acts as the
lower state of the atom anduu1&a as the upper, while in the
seconduu1&a is the lower state anduu0&a is the upper.

The third case is

b50, uau5ugu. ~19!

Using Eqs. ~4! and ~5!, we can show that the operato
Â5aâq1gâq

† is a constant of motion of the system:

Â~t!5Â~0!5aâ01gâ0
† ,

whereâ0[âq(0). Taking the derivatives with respect tot of
the right- and left-hand sides of Eq.~5!, we get (d2/dt2)âq

50, which yields

âq~t!5â01~g ĉ0
†2a* ĉ0!t, ~20!

whereĉ0[ ĉ(0).
Suppose that initially the atom was in one of its qua

energy states and the quantized mode was in the cohe
stateun& f ~Ref. 25!:

â0un& f5nun& f . ~21!

Then, using the solution~20!, we arrive at the following
relationships for the average number of photons and the v
ance of the number of photons in the quantized mode:

n̄5unu21uau2t2, ~22!

Dn25unu21@ uau2~2unu211!2a* g~n* !22ag* n2#t2,
~23!

where uau5ugu Without loss of generality we can assum
that the coupling constantkq is real. Then, according to~6!
and ~7!, a andg a re also real. In two cases the statistics
the photons in the quantized mode is Poissonian (Dn25n̄):
~a! a andg are of the same sign andn is real, and~b! a and
g have opposite signs andn is purely imaginary. In all other
cases the photon statistics is super-Poissonian,
Dn2.n̄.
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FIG. 1. Temporal variations of the average number of ph
tons and of the variance of the number of photons in
quantized mode ata5g520.29kq and b50.5kq (kq is
real!. This corresponds to the resonancel 51 andm521
at a50.968 (a is the percentage modulation!. At t50 the
mode is in the coherent quantum stateun& f (n52.5) and
the dressed atom is in the quasi-energy stateuu1&a . Curve1
represents the deviation of the average number^n& of pho-
tons from the initial valuen05unu2 and curve2 the relative
varianceDn2/^n& of the photon number.
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4. NONLINEAR DYNAMICS: NUMERICAL ANALYSIS

Above we discussed three cases in which only one of
two possible types of interaction is present, elastic or ine
tic. When both are present, the system of equations~4! and
~5! can probably be solved only numerically. In the nume
cal solution we used the matrix representation of opera
entering into Eqs.~4! and ~5! in the base of quasi-energ
states. Programs were written using the Mathematica 2.2
Delphi 2.0 packages. The programs were tested and the
curacy of the calculations was checked by comparison w
the analytical solutions of Sec. 3. Below we discuss so
results of the numerical analysis of the dynamics of the o
model.

Figures 1 and 2 depict the temporal variations of
average value and variance of the number of photons in
quantized mode~Fig. 1! and of the population of the quas
energy stateuu1& ~Fig. 2! for the open model at the point o
quasilevel crossing determined by the indicesl 51 and
m521 at a50.968 (a5g520.29kq andb50.5kq). The
e
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-
rs

nd
ac-
h
e
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e
e

quantities ^n(t)&2n0 ~for curve 1! and h(t)
5Dn2(t)/^n(t)& ~for curve 2! are laid off on the vertical

axis in Fig. 1~here^n(t)&[n̄(t) andn05unu2 are the aver-
age number of photons in the quantized mode at the cur
and initial moments in time, respectively!. The photon statis-
tics at time t is sub-Poissonian ifh(t),1. Initially ~at
t50) the atom was in the quasi-energy stateuu1&a and the
quantized mode was in the coherent stateun& f , where n
52.5. As in the ordinary Jaynes–Cummings model,3 there
are fast and slow oscillations. The average number of p
tons ~curve 1 in Fig. 1! may exceed the initial number o
photons by more than one, which is possible because of
ergy exchange with the classical field. Here the absorption
photons in the quantized mode is accompanied by regu
ization of their statistics, which becomes sub-Poisson
~curve 2 in Fig. 1!. The squeezing factorj(t)5h(t)21
reaches its minimum valuej'20.6. A possible interpreta
tion of this goes as follows: there is a positive correlati
between successive events of photon absorption from
FIG. 2. Temporal variation of the average populationN1 of
the quasi-energy stateuu1&a for the same initial conditions
and values of the parameters as in Fig. 1.
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quantized mode~photons tend to be absorbed in pai
triples, etc.!, which leads to antigrouping and the su
Poissonian photon statistics.26 This is similar to the genera
tion of squeezed states in two-photon absorption.28 The
reader will also note that there is no distinct correlation
tween the oscillations of the population of stateuu1&a ~Fig. 2!
and those of the average number of photons in the quant
mode ~curve 1 in Fig. 1!. At different quasilevel crossing
points the dynamics of the open model differs significan
In particular, there can be a limitless increase in the num
of photons in the quantized mode~as long as the classica
field fixed-amplitude approximation remains valid!. An ex-
ample of this kind is shown in Fig. 3, which illustrates th
dynamics of~a! the average number of photons,~b! the rela-
tive variance of the number of photons, and~c! the popula-
tion of the stateuu1&a , at l 51, m50, and a50.75 (a
50.11kq , b50, andg50.256kq). The initial conditions are
the same as in Figs. 1 and 2.

5. CONCLUSION

We have studied the nonlinear dynamics of an open s
tem consisting of a two-level atom interacting with a clas
cal electromagnetic field and a quantized mode of an e
tromagnetic field. The parameters of the classical field
assumed fixed. It is also assumed that this field has an e

FIG. 3. Temporal variations of~a! the average number^n& of photons in the
quantized mode,~b! the relative varianceDn2/^n& of the number of photons
in the quantized mode, and~c! the average populationN1 of the quasi-
energy stateuu1&a , at a50.116kq , b50, and g50.256kq . This corre-
sponds to the resonancel 51 and m50 at a50.75 (a is the percentage
modulation!.
,
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ed
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er
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distant frequency spectrum. The interaction of both fie
with the atom is described in dipole-interaction and rotatin
wave approximations.

A two-level atom coupled with a classical field can b
interpreted as a new quantum object, a dressed atom.
spectroscopic properties of a dressed atom are determine
the discrete quasi-energy levels, which shift as the class
field intensity changes~the dynamic Stark effect!. If the
natural frequency of the quantized mode coincides with
transition frequency between the quasi-energy levels, the
teraction of the dressed atom and the quantized mode is
resonant nature, and in describing such an interaction m
ematically we can use the second rotating-wave approxi
tion.

The difference between the energy levels of an isola
atom and the quasi-energy levels of a dressed atom mani
itself in the analysis of nonlinear effects~the effect of satu-
ration of the population difference, in particular!. In contrast
to an isolated atom, the emission of absorption of a pho
by a dressed atom may not be accompanied by a chang
the populations of the quasi-energy states. Such an inte
tion, known as ‘‘elastic,’’ leads to a dramatic difference b
tween the dynamics of an open model and that of the o
nary Jaynes–Cummings model. Elastic interaction increa
the oscillation amplitude of the average number of photo
in the quantized mode in relation to the ordinary Jayne
Cummings model. Successive absorption~or emission! by
the atom of several photons from~or into! the quantized
mode becomes possible due to energy exchange with
classical field.

At a point where quasilevels cross, both interacti
mechanisms~the elastic and the ordinary inelastic! may act
simultaneously. However, in some cases only one mec
nism is present, and for these cases an analytical solutio
the Heisenberg equation of the open model can be obtai
For the general case a method of numerical investigation
the dynamics of the open model has been developed.
interpretation of the results of calculations is that the eve
in which a sequence of photons are absorbed are corre
with each other and lead to a ‘‘smoothing-out’’ of the phot
noise in the quantized mode. After several photons are
sorbed, the statistics of the remaining photons may beco
sub-Poissonian. At some quasilevel crossing points the
namics of the open model is different: the average numbe
photons in the quantized mode increases without limit~as
long as one can ignore the variations in the amplitude of
classical field! and their statistics remains Poissonian or b
comes super-Poissonian.

Although all the numerical results refer to the particu
case of quasi-energy level crossing in an amplitu
modulated classical field, the expression~9! for the effective
Hamiltonian and the analytical solutions of Sec. 3 are m
general and are independent of the spectrum of the clas
field ~the only requirement being that the quasi-energy lev
cross!. Actually, the characteristics of the classical field d
termine only the specific form of the coefficientsa, b, andg
in the analytical expressions.
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Coherent suppression of the EPR-nutation signal in quartz
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Bloch equations are used to derive an analytic expression for the integral nutation-signal decay
rate in a two-level quantum system. It is found that when inhomogeneous line broadening
is taken into account, the temporal decay of the response is due not only to coherent suppression
but also to additional decay whose rate depends on the ratio of the Rabi frequency to the
inhomogeneous linewidth. The results are used to explain the anomalous~Rabi-frequency-
dependent! EPR-nutation decay detected in quartz in the experiments of R. Boscaino,
F. M. Gelardi, and J. P. Corb@Phys. Rev. B48, 7077~1993!#. Contrary to the statement made
by these researchers that this decay is non-Bloch, it is found that the process can be
described by Bloch equations without any modification. ©1998 American Institute of Physics.
@S1063-7761~98!00908-1#
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1. INTRODUCTION

The phenomenon of transient nutations observed in v
ous parts of the electromagnetic spectrum reflects the tem
ral evolution of a quantum system that was in a state
thermodynamic equilibrium prior to excitation and develo
into a new state in response to a resonant electromag
field. If the system is an ensemble of identical particles,
tation decay takes place at a dephasing rateT2

21. But if the
ensemble driven by the field consists of particles with diff
ent transition frequencies, then even without irreversible
laxation, nutation decay occurs because of what is know
the coherent suppression effect. The essence of this effe
that the statistics of the spread of the values of the transi
frequencies~inhomogeneous broadening! gives rise to a de-
cay of coherent oscillations of the ensemble average o
observable ~polarization, magnetization! of the quantum
system.1 ~The other factors that lead to coherent suppress
of nutation are the nonuniformity of the driving field over th
volume of the sample and the spread in the orientation
the dipole moments of transitions.1! The limiting cases of
broad and narrow inhomogeneously broadened lines are
ally considered in treatments of nutation. In the first ca
coherent suppression is described by a Bessel function
irreversible decay follows an exponential law. In the seco
the decay is due only to irreversible relaxation. In the int
mediate case, where the finiteness of the linewidth mus
taken into account, the decay law is more complicated t
in the above limits.

Despite the simplicity and generality of the nutation e
fect, there are relatively few works on the subject. Prima
this is due to the experimental difficulties associated with
discrimination of a particular decay mechanism. On the ot
hand, the problem of nutation decay is interesting from
viewpoint of verifying the validity of the Bloch equation i
describing coherent phenomena in high-power driving fie
Recently this aspect has been examined by Boscainoet al.,2

who studied EPR nutations of@AlO4#
0 and E1 centers in
2661063-7761/98/87(8)/4/$15.00
i-
o-
f

tic
-

-
-

as
t is
n

n

n

of

su-
,

nd
,
-
e
n

e
r

e

s.

quartz. In the experiment described in Ref. 2 the act
source of coherent suppression was inhomogeneous broa
ing, which the researchers considered in the broad-line
proximation. After extracting the oscillating part of the si
nal, described by a zeroth-order Bessel function,
researchers found that the signal envelope decays expo
tially with a damping constant

b5
1

2T2
1ax, ~1!

wherea is a constant coefficient andx is the Rabi frequency.
According to Boscainoet al.,2 this is an unexpected re

sult, since after coherent suppression due to inhomogen
broadening has been isolated the decay of the response i
broad-line approximation occurs solely because of irreve
ible relaxation. Such behavior of the signal is not describ
by Bloch equations, which prompted the researchers to c
clude that the additional nutation decay dependent on
field amplitude is generally inherent in homogeneous s
tems. Recently, Fedoruk3 has checked the above statement
NMR experiments on protons in glycerin. It was found th
in a large range of field amplitudes nutation decay is d
solely to irreversible relaxation and is independent of
field amplitude. Calculations of nutation decay in the hig
field approximation of Torrey4 also provided no satisfactor
explanation of the observed anomaly.5 The present paper is
an attempt to study nutation decay in the general case w
out resorting to approximations. It is believed that the use
the broad-line approximation by Boscainoet al.2 was unjus-
tified, since in Ref. 2 the ratiox/s ~s is the inhomogeneous
halfwidth of the line! reached 1.4. Under such conditions o
must take into account the finiteness of the linewidth, wh
may lead to ‘‘additional’’ damping od the response. In oth
words, the goal was to establish whether under the co
tions of the experiment described in Ref. 2 the broad-l
approximation is adequate for calculating such a subtle ef
as nutation decay.
© 1998 American Institute of Physics
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2. THEORETICAL ANALYSIS

Let us examine the expression for theV-component of
the magnetization of a spin system (S51/2) with allowance
for irreversible relaxation:4

V~ t,D!5V0

x sin~ tAD21x2!

AD21x2
expS 2

t

2T2
D , ~2!

whereV0 is the equilibrium value of magnetization,D is the
spread of the frequencies of the spin packets of an inho
geneously broadened line, andt.0.

For further analysis of~2! we must average the abov
expression over the envelope of the inhomogeneously br
ened line:

^V~ t !&5E
2`

`

V~ t,D!g~D!dD. ~3!

Assuming that the form factorg(D) is a Lorentzian, we can
use the integral representation6

sin~ tAD21x2!

AD21x2
5E

0

t

J0~xAt22x2!cosDx dx.

After repeated integration, Eq.~3! becomes

^V~ t !&5V0xtE
0

1

J0~xtA12x2!expF2tS sx1
1

2T2
D Gdx, ~4!

whereJ0(z) is the zeroth-order Bessel function.
In the above expression the role of the finiteness of

linewidth in the signal decay clearly manifests itself. In ord
to clarify this role, the expression~4! was evaluated numeri
cally for different x/s ratios without allowing for irrevers-
ible relaxation~Fig. 1!. For the sake of comparison, Fig.
also depicts the nutation signal in the broad-line approxim
tion of Ref. 4:

^V~ t !&5V0

x

s
J0~xt !. ~5!

We see that forx/s<1 the signals~4! and ~5! coincide
except for the initial section~Fig. 1a!. However, forx/s
.1 some discrepancy appears, which grows withx ~Figs. 1b
and 1c!. The initial section resembles more and more
damped sinusoid, with the damping constant depending
x/s.

To estimate the decay we calculate the integral de
rate for signal~4!:

G5
^V~0!&

*0
`^V~ t !&dt

. ~6!

For ^V(0)& we take the value of the signal at the timetm of
the initial nutation burst,̂ V(tm)&. The integral in the de-
nominator of~6!,

^^V~ t !&&5E
0

`

^V~ t !&dt5V0xE
0

`

t dtE
0

1

J0~xtA12x2!

3expF2tS 1

2T2
1sxD Gdx,
o-

d-

e
r

-

a
n

y

after repeated integration becomes

^^V~ t !&&5xFAx21
1

4T2
2 S s1Ax21

1

4T2
2 D G21

. ~7!

Then the integral decay rate is

G5^V~ tm!&Ax21
1

4T2
2 S s1Ax21

1

4T2
2 D x21. ~8!

Let us analyze~8! for various field-amplitude values. A
small amplitudes,̂ V(tm)& varies approximately accordin

FIG. 1. Temporal dependence of the nutation signal atx/s50.64 ~a!, 1.5
~b!, and 3.0~c!. The solid curves represent the signal described by Eq.~4!;
the dashed curves represent the signal described by formula~5!.
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linearly, ^V(tm)&.x/s, while at large amplitude it asymp
totically approaches unity~Fig. 2!. Hence for moderate val
ues ofx the integral decay rate is

G5Ax21
1

4T2
21

x211/4T2
2

s

5F E
0

`

J0~xt !expS 2
t

2T2
DdtG21

1
x

s

3F E
0

`

sin xt expS 2
t

2T2
DdtG21

, ~9!

i.e., the total integral decay rate is the sum of two rates,
first being a reflection of the signal decay in the broad-l
approximation and the second, in the narrow-line approxim
tion. For x,s the predominant decay is the one due to c
herent suppression and irreversible relaxation, while the
cay corresponding to the second term acts as a s
addition, whose ‘‘weight’’ increases withx. If x.T2

21 holds
~the condition that must be met if nutation is to be observe!,
we haveG;x(11x/s). The extrapolation of~9! into the
region of very lowx yields the decay rate (2T2)21 of irre-
versible relaxation, which can be found from electroma
netic echo-signal experiments. In the opposite case,
whenx@s(^V(tm)&)→1, we have

G5
s

x
Ax21

1

4T2
2 1

x211/4T2
2

x

5
s

x F E
0

`

J0~xt !expS 2
t

2T2
DdtG21

1F E
0

`

sin xt expS 2
t

2T2
DdtG21

. ~10!

In other words, the roles played by the different compone
of the total integral decay rate change: the second term
vides the main contribution to decay, while the contributi
of the first term is determined by the value of the ratios/x.
If x@(2T2)21, we haveG.x(11s/x).

The above estimates can easily be verified by dire
calculating the integral decay rate for signal~4! without al-
lowing for irreversible relaxation:

FIG. 2. Field dependence of the amplitude^V(tm)& in the initial spike in the
nutation.
e
e
-

-
e-
all

-
.,

ts
o-

y

G15^V~ tm!&FxE
0

`

t dtE
0

1

exp~2sxt!J0~xtA12x2!dxG21

5^V~ tm!&~s1x!, ~11!

which can formally be interpreted as the result of calculat
the damping constant of an exponential function exp@2(s
1x)t# normalized to the factor̂V(tm)&. We can also find the
rate of integral decay due to the coherent suppression me
nism:

G15F E
0

`

J0~xt !dtG21

5x, ~12!

which can also be interpreted as the damping constant o
exponential function. In this representation, the express
~8! for the integral decay rate can be approximated by

G.
1

2T2
1^V~ tm!&~s1x!. ~13!

This makes it possible to reproduce the procedure, don
Ref. 2, of distinguishing the oscillating part of the respon
described by a Bessel function by simply subtracting~12!
from ~13!. If we subtract~11! from ~13!, we arrive at the
natural result of Bloch’s theory: in the absence of inhom
geneous broadening, the decay of the nutations is due on
irreversible relaxation.

Thus, allowance for the finiteness of the inhomogene
linewidth enhances the decay of nutations. The above e
mates show that for small values ofx the decay is a quadrati
function of the amplitude, while for large values ofx it as-
ymptotically tends tos.

We now return to the experiment described in Ref.
where nutation decay was studied in connection with
second harmonic. For this case the above expressions
be modified, which is trivial, as shown in Ref. 7:x must be
replaced byxJ1(x/v)5x̃, wherev is the carrier frequency
of the driving radiation.

3. RESULTS AND DISCUSSION

In order to compare the results with the experimen
data of Ref. 2 we calculated the integral decay ratesG25G
2G1 andG2G1 as functions of the Rabi frequency. Figu
3 depicts the data taken from Ref. 2 and our results on
tation decay in samples No. 1 (T2512031026 s and
s50.125310632p Hz) and No. 2 (T258.731026 s and
s50.625310632p Hz) studied in Ref. 2. We see tha
when the field amplitude is moderate, the theoretical res
are in satisfactory agreement with the experimental data,
the region where this is true is wider for sample No. 2 th
for sample No. 1. The explanation is that the inhomogene
linewidth of sample No. 2 is five times larger than of samp
No. 1. Hence for the second sample the broad-line appr
mationx̃/s!1 holds inn a wider interval of field amplitude
than for the first sample. In the casex̃/s<1 the theoretical
integral decay rate exceeds the experimental rate, and
excess can be estimated if we employ the fact that both
oretical curvesG5G(x̃) have linear sections. The slopes
these linear sections areK155.531022 and K256.45
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FIG. 3. Field dependence of the integra
nutation-signal decay rate in samples No. 1~a!
and No. 2~b!. The curves represent the theore
ical results and the open circles, the experime
tal data of Boscainoet al.2
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31022, respectively. These values are approximately tw
as large as the experimental values2 K15(2.460.1)31022

andK25(3.360.2)31022, respectively.
Thus, in contrast to the statement made by Bosca

et al.,2 the additional~in comparison to the decay of th
zeroth-order Bessel function! x-dependent nutation-signa
decay they detected can be described qualitatively by Bl
equations and is due to the finite value of the inhomogene
linewidth. Boscainoet al.2 did not take this fact into accoun
since they used the broad-line approximation in the en
range of values ofx̃. In the light of our results, it must be
noted that in estimating such a subtle effect as nutation de
the broad-line approximation should be used very cautiou
Our results were obtained by calculating the integral de
rate, while in Ref. 2 the decay was found over a finite int
val of the evolution of the response. Hence theory and
periment agree here on the qualitative level. In a rec
paper, Shakhmuratovet al.8 attempted to explain the
‘‘anomalous’’ nutation decay detected by Boscainoet al.2

using the stochastic model of the driving field. Howev
since in Ref. 2 the contribution to decay of the finite value
the inhomogeneous linewidth was not separated, we bel
such an attempt was premature. To establish the full role
inhomogeneous line broadening plays in the response’s
cay it is advisable to carry out experiments in nutation de
in the one-photon regime. In such experiments the rang
possible values ofx can be widened significantly and nut
tions can be studied forx/s.1. Moreover, doing such an
experiment will make it possible to exclude various dist
tions inherent in the two-photon method. Obviously, the
sults of the present paper hold not only for a magnetic re
nance but also for an optical resonance.
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4. CONCLUSION

We have established that within the scope of Blo
equations the inhomogeneous broadening of the spectral
not only coherently suppresses the nutation signal in a t
level quantum system but also causes exponential resp
decay, which depends on the ratio of the Rabi frequency
the inhomogeneous linewidth. At moderate field amplitud
the decay constant depends on the Rabi frequency accor
to a quadratic law, but in strong fields it asymptotically ten
to a value equal to the inhomogeneous linewidth.

Thus, within the present approach we have given an
planation of the ‘‘anomalous’’ EPR-nutation decay detec
in weak fields in quartz by Boscainoet al.2
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Fund for Basic Research.
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Photon cooperative effect in resonance spectroscopy
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A systematic method is proposed for calculating the density matrix of subsystems interacting
with their environment under conditions of thermodynamic equilibrium. The density
matrix of photons resonantly interacting with a surrounding gas is calculated. It is shown that
use of the Gibbs distribution allows one to completely eliminate inelastic processes
from the calculations. A correct account of photon–photon correlators indicates the presence of
new cooperative effects. A new branch of the polariton spectrum is predicted, which is
due to the presence of excited atoms in the medium. With the help of the density matrix the
mean filling numbers of the photon modes are calculated. In terms of wavelengths, we have
obtained a generalization of the Planck formula which accounts for photon cooperative
phenomena. The manifestation of these effects in kinetic processes is discussed. ©1998
American Institute of Physics.@S1063-7761~98!01008-7#
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1. INTRODUCTION

The kinetic phenomena in a medium consisting of ato
interacting with an electromagnetic field are quite varie
Most of them can be described with the help of second-or
two-time Green’s functions.1–3 But one must also deal with
so-called cooperative effects, which are not encompasse
this theory. A striking example is the Dicke effe
~superradiance!,4 involving mutually-induced spontaneou
emission from a few atoms. To describe this effect, it
necessary at a minimum to take account of fourth-order c
relators ^ĉ1ĉ1ĉĉ&, where ĉ is the field operator of the
atom field.5 An extensive literature is dedicated to the Dic
effect.6–8 Interest in it has grown9–11 in connection with the
study of squeezed states of the electromagnetic field. F
large number of atoms the Dicke effect admits, as a rule
quasiclassical description.7

We direct our attention to the existence of cooperat
effects of a different kind. These cooperative effects are
sociated with correlatorŝâkl

1 âkl
1 âklâkl&, whereâkl (âkl

1 )
is the annihilation~creation! operator of a photon in a mod
characterized by wave vectork and polarization indexl.
Such effects are due to correlations between photons in
or virtual states. One manifestation of the photon coopera
effect is the specific character of the reflection of reson
radiation from excited media.12,13But this phenomenon doe
not admit a quasiclassical description. For light that h
passed through a thin layer of atoms, the effect disappea14

Such an asymmetry forces us to carry out a more comp
description. We correspondingly restrict the discussion to
state of thermodynamic equilibrium, whose theory is re
tively simple. Against this background the behavior of inte
est to us stands out more clearly. The investigated coop
tive effect is manifested here, in particular, in the form of
additional branch of the energy spectrum, whose prese
allows us to suppose the existence of new effects in the
netic phenomena.
2701063-7761/98/87(8)/10/$15.00
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Our approach was based on a modification of the met
of G operators,13 which automatically take into account a
possible correlators of the electromagnetic field while p
serving all of the attractive properties of the Green’s funct
method, the Dyson equation, spectral representations,
The proposed formalism automatically distinguishes coh
ent scattering processes, in which the state of the med
does not change, from incoherent scattering processe
which it does. It has been rigorously shown that the use
the Gibbs distribution to describe the interacting atom1
field system allows one to omit all the incoherent process
This circumstance, which does not hold in kinetic theo
simplifies things extraordinarily.

This work also pursues a different goal. It demonstra
that the proposed formalism allows one to effectively gen
alize the Gibbs distribution for subsystems interacting w
the surrounding medium. It can be imagined that this f
may be useful in the study of phase transitions and non
structive quantum measurements.15,16 Specifically, in this
work we explicitly calculate the density matrix of the ph
tons in the medium. For a vanishingly small interaction
the photons with the atoms it, of course, coincides with
Gibbs distribution. With the help of the density matrix w
calculate the distribution of the mean photon number o
modes. This distribution is a generalization of the Plan
formula. Features arising from cooperative phenomena
noted.

2. THE MODEL

We consider a nonrelativistic gas consisting of ato
with one valence electron. Spin effects are neglected.
assign the field operatorĉ(r ,R) in the Schro¨dinger represen-
tation to a particular atom of the gas. HereR is the position
vector of the center of gravity of a particular atom andr is
the position vector of the valence electron. We assign
operatorÂn(r ) to the transverse electromagnetic field. A
© 1998 American Institute of Physics
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suming the interaction to be quasiresonant, i.e.,uk2vmmu
!k1vmm (vmm is the frequency of the optical transition i
the atoms!, we adopt the following Schro¨dinger equation to
describe the system (\5c51):

i
]C

]t
5ĤC. ~1!

Here

Ĥ5Ĥ01Ĥ8, Ĥ05Ĥa1Ĥph, Ĥph5(
kl

Ĥkl ,

Ĥkl5kS âkl
1 âkl1

1

2D , Ĥa5(
ip

« i~p!b̂ip
1b̂ip ,

Ĥ852
e

mE ĉ1~r ,R!p̂•Â~r !ĉ~r ,R!dr dR,

ĉ~r ,R!5(
ip

c i~r2R!eip–R
b̂ip

AV
, « i~p!5« i1

p2

2M
,

c i is the wave vector describing the internal structure of
atoms of the gas with energy« i , p is the momentum of the
atom,M is the mass of the atomic radical~atom minus elec-
tron!, V5LxLyLz is the normalization volume,b̂ip

1 (b̂ip) are
the creation~annihilation! operators of the atom in the sta
( i ,p);

Ân~r !5(
kl

Âkl
n ~r !, Âkl

n ~r !5
ekn

l

A2kV
âkleik–r1H.c.,

ek
l is the linear polarization vector of the photons (l51,2).

In the absence of temperature degeneracy of the gas the
tistical properties of the operatorsb̂ip

1 and b̂ip are of little
consequence. We assume that

@ b̂ip ,b̂i 8p8
1

#5d i i 8dpp8 .

3. QUALITATIVE ANALYSIS

The role of the photon–photon correlators is made cl
when induced processes are correctly accounted for in
propagation of a quantized field in the medium. Equation~1!
can be rewritten in integral form

C5C01 i
e

mE
2`

t

exp@2 iĤ 0~ t2t8!#ĉ1p̂•Âĉ dr dR dt8,

whereC0 describes the state of the system before the in
action of the field with the medium is switched on. Assumi
the medium to be transparent, we are interested only in
cesses of elastic light scattering. We seek the solution of
equation in the form of an iterative series. We omit the ter
proportional to the odd powers of the coupling consta
which are responsible for the nontransparency of the
dium. Summing the remaining subseries is equivalent
solving the following integral equation:
e

ta-

r
he

r-

o-
e

s
t,
e-
o

C5C02S e

mD 2E
2`

t

dt8E exp@2 iĤ 0~ t2t8!#

3ĉ1p̂•Âĉdr 8dR8E
2`

t8
exp@2 iĤ 0~ t82t9!#

3ĉ1p̂•Âĉdr 9dR9C~ t9!dt9.

Since the atoms of the medium remain in their initial state
a result of elastic scattering, only the following products
operatorsĉ of the original set remain in the latter equation
the dipole approximation as a consequence of the selec
rules:

ĉ1ĉĉ1ĉ}b̂ip
1b̂i 8p8b̂i 8p8

1 b̂ip .

Under the action of such an operator, the wave function
the system remains factored

C5xw,

if it was factored before the interaction of the electroma
netic field with the medium was switched on,

C05x0w, w5)
ip

b̂ip
1u0&exp@2 i« i~p!t#.

Only the operators of the states occupied by the atoms
switched on in the product. Here

x5x01E D r
0~ t2t8!P̂ r~ t82t9!x~ t9!dt8dt9, ~2!

where

D r
0~ t !52 ie2 iĤ 0tu~ t !,

P̂ r~ t !5E e2 iEtP̂ r~E!
dE

2p
,

P̂ r~E!5 (
klk8l8

@âk8l8
1 cr

kl~E2Ĥph!

3âkl1âklar
kl~E2Ĥph!âkl

1 #,

and u(t) is the Heaviside step function. For the structu
coefficients we have the following expressions:

cr
kl~E!5(

i i 8p
UPi 8 i

l
~k!

A2kV
U2

Ni~p!d~p2p81k!

E1« i~p!2« i 8~p8!1 i0
,

ar
kl~E!5(

i i 8p
UPii 8

l
~k!

A2kV
U2

Ni~p!d~p2p82k!

E1« i~p!2« i 8~p8!1 i0
.

Ni(p) denotes the filling number of thei th atomic state. In
the dipole approximation

Pii 8
l

~k!5
e

mE c i* ~r!ek
l
•p̂c i 8~r!dr.

For simplicity we neglect the Doppler effect and restr
the treatment to the two-level approximation for the atom
denoting the Zeeman sublevels of their excited state by
subscriptm, and their unexcited state by the subscriptm.
Now
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P̂ r~E!uNkl&5(
mm

U Pmm
l ~k!

A2kV
U2

3F NmNkl

E2k~Nkl21/2!2vmm1 i0

1
Nm~Nkl11!

E2k~Nkl13/2!1vmm1 i0G uNkl&.

~3!

The operator~3!, defining the evolution of the field, pos
sesses the following properties. First of all, it is not algeb
ically related to the dielectric constant, which for excit
rarefied media depends1,2 on Nm2Nm . The dispersion rela-
tion corresponding to Eq.~2! has three branches, one
which disappears ifNm50. This branch arises as a result
virtual induced emission processes. The last term of exp
sion ~3!—the term responsible for this branch—describes
verse scattering processes, which are well known in quan
electrodynamics. For processes of this kind, according to
~3! the excited atom at first is induced to emit an additio
photon into the (k,l) mode and only later does it absorb o
of the photons of the field inducing this process. In the v
tual state the effect per photon is greater than in real st
before and after scattering. All the photons are correla
Thus, the cooperation of the photons is closely associa
with processes of induced emission of the atoms. This fac
unknown to semiclassical theory. A correct description
virtual induced emission is nowhere to be found in the te
nique of closed equations for the mean quantities.1–3

Note that in Eq.~2! we have omitted incoherent pro
cesses, which alter the state of the atoms as a result of
tering. Such processes introduce their own contribution
kinetic phenomena. Below we will show that based on
Gibbs distribution under conditions of thermodynamic eq
librium, incoherent processes can be completely exclu
from the calculations. The equilibrium distribution functio
in this case is completely determined by the operator~3!.

4. METHOD OF SPLIT G OPERATORS

To account for photon correlators in an arbitrary mo
(k,l) we proceed as follows. Let the filling of the mode b
characterized by the numberNkl . We introduce the auxil-
iary G space with the generating vector&G

0 , in which the
creation operatorsÂ1(Nkl) are defined so that the wav
function of the state consisting ofNkl photons in this space
has the form

Â1~Nkl!&G
0 .

We define the annihilation operatorÂ(Nkl) in a correspond-
ing way. Since powers of these operators exceeding unity
not arise in the theory, their specific commutation relatio
have no effect on the final results. We assume that

@Â~Nkl!,Â1~Nk8l8
8 !#5d~Nkl ,Nkl8 !dkk8dll8 .

We may point out one possible realization of theG
space. We apply the function
-

s-
-
m
q.
l

-
es
d.
ed
is
f
-

at-
o
e
-
d

o
s

Hn~z~Nkl!!expF2
j2~Nkl!

2 G ,
to the setNkl , whereHn are the Hermite polynomials. Now

&G
05)

kl
)
Nkl

H0~j~Nkl!!expF2
j2~Nkl!

2 G ,
Â~Nkl!5

1

A2
S j~Nkl!1

]

]j~Nkl! D ,

Â1~Nkl!5
1

A2
S j~Nkl!2

]

]j~Nkl! D .

The wave functionÂ1(Nkl8 )&G
0 is the product&G

0 given
above, in which the subscriptn on the function with argu-
ment Nkl8 is equal to unity. Since the setNkl8 cannot be
encountered in the theory in more than one realization, n
of the subscripts. . . ,n, . . . can exceed unity. The merit o
the formalism lies in precisely this property. Now it is cle
that any power of the annihilation operator greater than
@i.e., Â(Nkl))n for n.1] annihilates any physical state an
extraordinarily simplifies the formalism. No products of th
operatorsÂ(Nkl) arise in the theory. In other words, com
plicated correlators do not arise and the need to cut them
in the calculations falls away. This fact allows the theory
take all the photon–photon correlators exactly into accou

Other realizations of theG representation are possible
leading to the same final results. Reference 13 used m
generalG operatorsÂ1(N) corresponding to the total aggre
gateN5 . . . ,Nkl , . . . of photons. In terms of the notatio
of the present paper

Â1~N!5)
kl

Â1~Nkl!.

The use of simpler, one may say split,G operators
Â1(Nkl) makes it possible to represent the result of cal
lations in factored form in the manner of the Hartree rep
sentation in traditional quantum mechanics. Ifw(Nkluzkl)
are the wave functions of a quantum oscillator, then the w
function of a free electromagnetic field can be represente
the form

)
kl

w~Nkluzkl!.

The unitary transformation from the standard representa
of the filling numbers to theG representation is realized b
the operator13

Ô5)
kl

F̂1~zkl!&G
0 , F̂~zkl!5(

Nkl

Â~Nkl!w~Nkluzkl!.

The wave function of an arbitrary free electromagne
field in theG representation has the form

)
kl

(
Nkl

C~Nkl!Â1~Nkl!&G
0 , ~4!

hereC(Nkl) are the expansion coefficients. Now it is obv
ous that
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E F̂1~zkl!F̂~zkl!dzkl5(
Nkl

Â1~Nkl!Â~Nkl!51.

~5!

In the G representation the Schro¨dinger equation has th
form

i
]CG

]t
5F Ĥa1(

kl
E F̂1~zkl!ĤklF̂~zkl!dzkl2

e

m

3(
kl

E F̂1~zkl!ĉ1p̂•Âkl~r !ĉF̂

3~zkl!dr dR dzklGCG .

The mean value of any field operatorK̂kl is given by

^Kkl&5Tr K̂klrkl ,

where

rkl5r~zkl ,zkl8 !5^F̂1~zkl8 !F̂~zkl!&G .

Here

&G5CG .

For systems in thermodynamic equilibrium, averagi
can be performed simultaneously over quantum states
over the ensemble of systems. Therefore

r~zkl ,zkl8 !5Tr ^F̂1~zkl8 !F̂~zkl!rH&G ,

rH5exp
V2Ĥ2mN̂a

T
,

where N̂a is the number operator of the atoms,m is their
chemical potential, andV is the thermodynamic potential o
the system.

If we transform to the argumentsNkl with the help of
the quantum oscillator functions, then making use of the
agonality ofr under equilibrium conditions, we have

r~Nkl ,Nkl!5r~Nkl!5Tr^Â1~Nkl!Â~Nkl!rH&G . ~6!

and it follows from Eqs.~5! and ~6! that

(
Nkl

r~Nkl!51. ~7!

5. METHOD OF TEMPERATURE GREEN’S FUNCTIONS

It is convenient to calculate the desired construction~6!
by the method of Matsubaro Green’s functions.1 To this end
we introduce the function

D~Nkl ,t,Nkl8 ,t8!52Tr rHT̂tǍ~Nkl ,t!Ǎ̄~Nkl8 ,t8!,
~8!

where T̂t is the time-ordering operator in the parametert.
The trace symbol~Tr! here represents averaging in both t
quantum and statistical senses. The HeisenbergG operators
are constructed as follows:
nd

i-

Ǎ~Nkl ,t!5exp@~Ĥ2mN̂a!t#Â~Nkl!exp@2~Ĥ2mN̂a!t#,

Ǎ̄~Nkl ,t!5exp@~Ĥ2mN̂a!t#Â1~Nkl!

3exp@2~Ĥ2mN̂a!t#, ~9!

the parametert is assumed to be positive. The desired de
sity matrix r is found by taking the limit

D →
t8→t10

d~Nkl ,Nkl8 !r~Nkl!. ~10!

6. THE INTERACTION REPRESENTATION

To calculate the temperature Green’s function~8!, we
transform to the Matsubaro interaction representation.
define in the interaction representation the operat

Â̄(Nkl ,t) and Â(Nkl,t) with the help of formulas~9!, in
which the operatorĤ is replaced by the operatorĤ0. Re-
expressing expression~8! in terms of these newly introduce
operators is effected in the standard way1 and leads to the
result

D~Nkl ,t,Nkl8 ,t8!52Q21

3 K T̂tÂ~Nkl ,t!Â̄~Nkl8 ,t8!ŜS 1

TD L 0

.

~11!

The angular brackets here denote averaging both in the q
tum sense over states of the noninteracting atomic and e
tromagnetic fields and in the standard sense with the we

r05expS V02Ĥ02mN̂a

T
D ,

V0 is the thermodynamic potential in the absence of inter
tion

Q5expF2
V2V0

T G5 K ŜS 1

TD L 0

.

As for the operatorŜ, it is equal to

Ŝ~t!5T̂t expF E
0

t

Ĥ8~t8!dt8G ,
where Ĥ8(t) is the interaction operator in the interactio
representation. It follows from the definition that

]

]t
Â~Nkl ,t!5@Ĥ02mN̂a ,Â~Nkl ,t!#

52k~Nkl11/2!Â~Nkl ,t!.

Therefore

Â~Nkl ,t!5Â~Nkl!exp@2k~Nkl11/2!t#.

Analogously

Â̄~Nkl ,t!5Â1~Nkl!exp@k~Nkl11/2!t#.

7. FREE-FIELD GREEN’S FUNCTIONS

First, let us consider the difference between the tim
ordered and normal operator products:
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~ T̂t2N̂!Â~Nkl ,t!Â̄~Nkl8 ,t8!

52d~Nkl ,Nkl8 !D0~Nkl ,t2t8!,

where

D0~Nkl ,t2t8!52@Â~Nkl ,t!Â̄~Nkl8 ,t8!#u~t2t8!

52u~t2t8!exp@2k~Nkl11/2!~t2t8!#.

~12!

If there is no interaction in the system, thenŜ(1/T)51 and

D 052$@11r0~Nkl!#u~t2t8!1r0~Nkl!u~t82t!%

3d~Nkl ,Nkl8 !exp@2k~Nkl11/2!~t2t8!#.

Here

r0~Nkl!5^Â1~Nkl!Â~Nkl!&0

5expFVkl
0 2k~Nkl11/2!

T G ,
where

expS Vkl
0

T D 5
ek/2T

12e2k/T
.

Comparing the last three formulas allows us to write

D 05D02r0~Nkl ,t2t8!,

r0~Nkl ,t2t8!5r0~Nkl!exp@2k~Nkl11/2!~t2t8!#.
~13!

Since now

r0~Nkl ,21/T!5exp~Vkl
0 /T!,

it follows that

r0~Nkl ,t2t8!52D0~Nkl ,t2t8!r0~Nkl!

52D0~Nkl ,t2t811/T!r0~Nkl ,21/T!.

~14!

Analogously

r0~Nkl ,t2t8!52D0~Nkl ,t!r0~Nkl ,2t8!

52r0~Nkl ,t21/T!D0~Nkl,1/T2t8!.

~15!

For the Green’s function of a free atomic field we have

G~X,X8!52^T̂tĉ~X!ĉ̄~X8!&0, X5$r ,R,t%.

Using the interaction representation

ĉ~X!5(
ip

c i~r2R!
b̂ip

AV
exp@ ip–R2« i~p!t#,

ĉ̄~X!5(
ip

c i* ~r2R!
b̂ip

1

AV
exp@2 ip–R1« i~p!t#,

in the absence of temperature degeneracy we find
G~X,X8!52
1

V(
j p

c j~r2R!c j* ~r 82R8!exp@ ip•~R2R8!#

3E
2`

`

dg~E2« i~p!!exp@2E~t2t8!#

3dE@u~t2t8!1Nj~p!u~t82t!#. ~16!

HereNj (p) are the mean filling numbers of the state (j ,p),
anddg is the usual Dirac delta-function. But if we take a
count of the interaction of the atoms of the medium w
foreign particles~the reservoir!, which leads to a broadenin
of the energy spectrum, then the Dirac delta-function m
be replaced by the Lorentzian

dg~E2«!52
1

2p i S 1

E2«1 ig/2
2

1

E2«2 ig/2D ,

whereg is the width of the energy level«. The lower inte-
gration limit in Eq.~16! should be taken as large as is co
venient, but finite.

8. SECOND-ORDER PERTURBATION THEORY

In the interaction representation

F̂~zkl ,t!5(
Nkl

w~Nkluzkl!Â~Nkl!exp~2kNklt!,

F̂̄~zkl ,t!5(
Nkl

w~Nkluzkl!Â1~Nkl!exp~kNklt!.

Therefore

Ĥ8~t!52
e

m (
klNklNkl8

E Â̄~Nkl ,t!ĉ̄p̂•ÂklĉÂ

3~Nkl8 ,t!dr dR.

The operatorÂkl here is understood to mean the express

E w~Nkluzkl!Âkl~r !w~Nkl8 uzkl!dzkl . ~17!

In essence, the transformation~17! effects only a unitary
change in the arguments. For this reason we retain the
notation for the operatorÂkl in the new arguments.

Let us write out expression~11! in second-order pertur
bation theory. From the argumentszkl we transform with the
help of w(Nkluzkl) to the argumentsNkl . We have

QD5D 02 K T̂tÂ~Nkl ,t!Â̄~Nkl8 ,t8!
1

2! S e

mD 2

3E Â̄ĉ̄p̂•ÂklĉÂdX1E Â̄ĉ̄p̂•ÂklĉÂdX2L ,

dX5dr dR dt.

For brevity, we have dropped the obvious arguments fr
the operatorsÂ and ĉ. To simplify the product ofĉ opera-
tors, we use a thermodynamic variant of Wick’s theorem.1 In
other words, we assume that in the thermodynamic limit
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higher correlators are expressed in terms of the lower o
Possible pairings of operators are indicated by a horizo
bracket:

ĉ ĉ̄52G~X,X8!.

To simplify the products of operatorsÂ we make use of
an algebraic theorem due to Wick17 and the fact that in the
physical states~4! the identity Â(Nkl)Â(Nkl)50 holds.
Thus, out of allN̂ possible products, only those ‘‘survive
that contain only one annihilation operator corresponding
the mode (k,l). For this reason, the functionr0(Nkl) can
appear only to the first power in any term.

The use of Wick’s algebraic theorem does not introdu
any approximations or simplifications. For this reason,
photon–photon correlators are taken into account in
technique exactly. Now

QD5D 02S e

mD 2

(
n1n2

E p̂n1G~X,X8! p̂n2G~X8,X!

3@2D0Âkl
n1D0Âkl

n2D01r0Âkl
n1D0Âkl

n2D0

1D0Âkl
n1r0Âkl

n2D01D0Âkl
n1D0Âkl

n2r0#dX8dX

~the operatorsp̂n act on the closest arguments of theG func-
tion!. We have taken into account only those terms cor
sponding to connected Feynman diagrams. The last form
can be rewritten as follows:

QD5D02r01D0P̂ D02r0P̂ D02D0P̂ r02D0P̂ ~n!D0,
~18!

where

P̂ 5S e

mD 2E p̂•ÂklG~X,X8!D0p̂•ÂklG~X8,X!

3dr dr 8 dR dR8, ~19!

P̂ ~n!5S e

mD 2E p̂•ÂklG~X,X8!r0p̂•ÂklG~X8,X!

3dr dr 8dR dR8. ~20!

Expressions~19! and ~20! are, respectively, the firs
terms of the expansions in the parametern|3, where |
52p/k andn is the concentration of the atoms. Therefo
the smallness of this parameter serves as a condition o
applicability of the above formulas.

9. GENERAL STRUCTURE OF THE PERTURBATION-
THEORY SERIES

An account of the higher approximations in express
~18! leads to the result thatD0 is augmented by terms no
containing r0(Nkl) corresponding to the connected Fey
man diagrams. Their sum withD0 is denoted asD. This sum
is multiplied by the sum of all possible loop diagrams, whi
is equal1 to Q. Thus,

QD5QD2Qklrcon.
s.
al

o

e
e
is

-
la

,
he

n

The variablercon denotes the sum of connected Feynm
diagrams, each of which necessarily containsr0(Nkl). This
quantity, in turn, is multiplied by the sum of all possible loo
diagramsQkl , in which, however,r0(Nkl) is absent. Below
we restrict the discussion to an account of linear processe
the interaction of light with matter. In other words, we a

sume that the operatorP̂ does not depend onr0(Nk8l8) for

any (k8,l8). As for the operatorP̂ (n), it depends linearly on
r0(Nkl). Under these conditions the contributions of all t
Feynman diagrams are summed up in the following eq
tions:

D5D01D0P̂ D, ~21!

rcon5r01r0P̂ D1D0P̂ rcon1D0P̂ ~n!D. ~22!

According to the limit~10! the desired matrixr is given by

r~Nkl!52D5
Qkl

Q
rcon, t8→t10. ~23!

Equation~22! can be written in the form

~12D0P̂ !rcon5r0~11P̂ D!1D0P̂ ~n!D. ~24!

A direct check using Eq.~21! shows that

~11DP̂ !~12D0P̂ !51.

Now, after multiplication on the left by the operato

11DP̂ Eq. ~24! takes the form

rcon5~11DP̂ !r0~11P̂ D!1DP̂ ~n!D.

This equation serves as a basis for further discussion.
convenient to write it in the form

rcon5r~c!1r~n!,

where

r~c!5~11DP̂ !r0~11P̂ D!, ~25!

r~n!5DP̂ ~n!D. ~26!

The matrixr (c) contains scattering processes, as a resul
which the state of the scatterers does not vary~coherent
channel!. The matrixr (n) corresponds to processes that al
the state of the scattering system~incoherent channel!. The

functionD0 and along with it the operatorP̂ have a ‘‘retard-
ing’’ character. The operatorD, according to Eq.~21!, also
possesses this property. Since the integration in expres
~26! extends over the interval from zero to 1/T,

r~n!~t,1/T!50, t,1/T.

According to the definition~8!, all the functions depend ont
andt8 in terms of differences. Consequently,

rcon~t,1/T!5r~c!~t21/T!, t,1/T.

Making the substitution of argumentst→(1/T)1t2t8
,1/T, we have

rcon~t2t8!5r~c!~t2t8! for t,t8

and
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rn~t2t8!50 for t,t8. ~27!

In the lowest order of perturbation theory the polariz

tion operatorP̂ (n) is given by formula~20!. Substitution of
this expression into Eq.~26! leads to a contradiction with Eq
~27!. We arrive at the conclusion that the incoherent chan
cannot be calculated in perturbation theory; therefore, we
required here to sum up infinite subsequences of Feyn
diagrams. For our purposes, there is no need accordin
Eqs. ~23! and ~27! to calculate processes of the incohere
channel. Thus, the given variant, in essence, represen
manifestation of the fluctuation–dissipation theorem.

Let us consider the coherent channel. By virtue of
retarding nature of the propagatorD, it follows from Eq.~25!
that

r~c!~0,t8!5r0~11P̂ D!,

r~c!~t,1/T!5~11DP̂ !r0 for t,1/T.

Employing formulas~14! and ~15! and Eq.~21! we can re-
cast the above two relations in the following form:

r~c!~0,t8!52r0~0,1/T!D~1/T,t8!, ~28!

r~c!~t,1/T!52D~t,0!r0~0,1/T!. ~29!

Taking the difference nature of the dependence of th
functions ont and t8 into account, Eqs.~27!–~29! lead to
the general formula

rcon~t2t8!52D~t2t811/T!r0~0,1/T!, t,t8.
~30!

According to Eqs.~23! and ~30!, the desired density matrix
can be found from the expression

r52
1

Z
DS 1

TD , Z215
Qkl

Q
expS Vkl

0

T D . ~31!

The quantityZ can be calculated by the graphical techniqu
but it is simpler to use the normalization condition~7!.

10. THE PROPAGATOR D

According to Eqs.~31!, it is necessary to calculat
D(1/T). This function is found from Eq.~21!, which for
t,1/T, by virtue of the retarding properties of the functio
entering into it, can be written in the form

D5D01E
0

t

D0~t2t8!E
0

t8
P̂ ~t82t9!D~t9!dt8dt9.

For the Laplace transform we have the obvious result

D~s!5
D0~s!

12D0~s!P̂ ~s!
, ~32!

and according to Eq.~12!

D0~s!52@s1k~Nkl11/2!#21.

An explicit expression forP̂ (s) can be easily found from
formulas~12!, ~16!, and~19!:
-

el
re
an
to
t

a

e

e

,

P̂ ~s!uNkl&5@~Nkl11!akl~s!1Nklckl~s!#uNkl&,

where the structural coefficientsckl andakl are represented
everywhere by analytical functions with boundary values
the real axis

ckl~s6 i0!52 (
i 1i 2p

U Pi 2i 1
l ~k!

A2kV
U2

3
Ni 2

~p!

s1« i 1
~p2k!2« i 2

~p!1k~Nkl21/2!6 ig/2
,

akl~s6 i0!52 (
i 1i 2p

U Pi 1i 2
l ~k!

A2kV
U2

3
Ni 2

~p!

s1« i 1
~p2k!2« i 2

~p!1k~Nkl13/2!6 ig/2
,

whereg5g i 1
1g i 2

.
The resemblance of the above two formulas to expr

sion ~3! is obvious. The inverse Laplace transform

D~t!5E
a2 i`

a1 i`

etsD~s!
ds

2p i

allows us to find the final result.
A spectral analysis, analogous to the spectral analysi

standard Green’s functions,1 shows that the propagatorD(s)
can be represented by an analytical function with singul
ties only on the real axis. Therefore

D~t!5E
Emin

`

e2ts@D~2s2 i0!2D~2s1 i0!#
ds

2p i
. ~33!

The constantEmin coincides with the lower limit of the en
ergy spectrum of the system as a whole. In practical ca
lations, the question of its magnitude is resolved individua
in each case. As above, we use the two-level approxima
for the atoms. We neglect the Doppler effect. In the dip
approximation we have

ckl~2s6 i0!5
2c

2s1vmm1k~Nkl21/2!6 ig/2
,

c5(
mm

uPmm
l ~k!u2nm

2k
,

akl~2s6 i0!5
2a

2s2vmm1k~Nkl13/2!6 ig/2
,

a5(
mm

uPmm
l ~k!u2nm

2k
.

To finish evaluating the coefficientsckl and akl, we can
make use of the fact that

(
mm

uPmm
l ~k!u25pg r

2 j m11

vmm
.

Here j m is the orbital quantum number andg r
21 is the radia-

tive lifetime of the excited state of the atom. The zeros of
denominator of the integrand~32! form a spectrum with
three branches. Therefore
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D~2s2 i0!5
@s2vmm2k~Nkl21/2!1 ig/2#@s1vmm2k~Nkl13/2!1 ig/2#

~s2s0!~s2s1!~s2s2!
.

i
ito

o
rm
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tiv
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te
th

f

r

To first order in the expansions in the concentrationsnm and
nm we have

s05s0
~0!1Ds0 , s15s1

~0!1Ds1 , s25s2
~0!1Ds2 ,

where

s0
~0!5kS Nkl1

1

2D , s1
~0!5vmm1kS Nkl2

1

2D2 i
g

2
,

s2
~0!52vmm1kS Nkl1

3

2D2 i
g

2
,

Ds05Nkl~hm2hm!~k2vmm!2 i
g

2
Nkl~hm1hm!

2hmS k2vmm1 i
g

2D ,

Ds152NklS k2vmm2 i
g

2Dhm ,

Ds25~Nkl11!hmS k2vmm1 i
g

2D . ~34!

These formulas are valid provided

hm5
c

~k2vmm!21g2/4
,1,

hm5
a

~k2vmm!21g2/4
,1. ~35!

In the absence of excited atoms, the branchs2 disappears and
we arrive at the standard polariton spectrum, well known
the semiclassical theory of radiation. The standard polar
spectrum also follows from quantum electrodynamics.18 De-
termined by the polarization operator in the technique
total cutoff of the correlators, this spectrum retains its fo
for excited media, requiring in this case the substitutio
nm→nm2nm ~Ref. 2!. Thus, the appearance of a third bran
of the spectrum is characteristic of the photon coopera
effect. The standard polariton spectrum depends solely
the differencenm2nm . The sum of concentrationsnm1nm

enters along with this difference in formulas~34!. This pe-
culiarity, like the presence of a third branch of the spectru
owes its existence to the induced emission. It is formed
the extra photon in the virtual state of the process of in
action of an excited atom with radiation. The reason for
presence of the termi (nm1nm) in the spectrum is physically
obvious13 since the stateuNkl& may vanish as a result o
absorption of a photon in the medium,uNkl&→uNkl21&,
and as a result of induced emission of a photon,uNkl&
→uNkl11&. Both of the newly arising statesuNkl61& are
orthogonal to the original state.
n
n

f

s

e
n

,
y
r-
e

The spectrum formed by the poles of the propagatorD in
the limit g→0 is plotted forNkl51 in Fig. 1.

The integral~33! in the limit g→0 can be calculated
explicitly:

D~t!5e2ts0
~s02s1

0!~s02s2
~0!!

~s02s1!~s02s2!

1e2ts1
~s12s1

~0!!~s12s2
~0!!

~s12s0!~s12s2!

1e2ts2
~s22s1

~0!!~s22s2
~0!!

~s22s0!~s22s1!
.

Under conditions in which inequalities~35! are valid, guided
by Eqs.~31! we find the following photon distribution ove
the mean filling numbersNkl , which replaces the Gibbs
distribution: (b51/T):

Zekb/2r~Nkl!

5exp$2b@kNkl1Nkl~hm2hm!~k2vmm!2hm

3~k2vmm!#%2$exp~2bkNkl!2exp@2b~vmm2k

1kNkl!#%hmNkl2$exp~2bkNkl!

2exp@2b~vmm1k1kNkl!#%hm~11Nkl!,

where

exp@bhm~k2vmm!#Zekb/2

5$12exp~2b@k1~hm2hm!~k2vmm!#!%

3F11hm

12exp@2b~vmm2k!#

ebk21

FIG. 1. Dispersion curves corresponding to the propagatorD for Nkl51.
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1hm

12exp@2b~vmm2k!#

ebk21

1hm~12exp@2b~k2vmm!#!G .

The coefficient ofhm contains vacuum terms which disa
pear from the distribution function of ideal photons a
which now contribute to all the moments of the distributi
function. In particular,

^Nkl&5 (
N50

`

Nr~N!

5$exp~b@k1~hm2hm!~k2vmm!#!21%21

3F11hm

12exp@2b~vmm2k!#

ebk21

1hm~12exp@2b~k2vmm!#!S 11
1

ebk21
D G

2
hm

ebk21
S 11

2

ebk21
D ~12exp@2b~vmm2k!# !

2
2hm

ebk21
S 11

1

ebk21
D ~12exp@2b~k2vmm!#!.

~36!

We have arrived here at a generalization of the Planck
mula in terms of wavelengths. The generalizations of t
formula in terms of wavelengths and in terms of frequenc
are fundamentally different.19 The ‘‘overgrowth’’ of the
mean values of the filling numbers in the Green’s funct
technique based on cutting off the correlators was inve
gated in Ref. 20. The results of this work in our notation
hm,m,1 looks like this:

^Nkl&5$exp~b@k1~hm2hm!~k2vmm!#!21%21

2
hm2hm

ebk21
1

hm2hm

ebvmm21
. ~37!

As already noted, in a technique of this kind correctio
for nonideal behavior depend only on the differencehm

2hm , but not on either of these quantities separately. T
account of cooperative phenomena contained in formula~36!
is substantially different from that contained in formula~37!.
This difference, as could be expected, is not analytical in
charge. Fork/T@1 the role of induced processes in the fo
mation of the equilibrium distribution is small. Under the
conditions, formulas~36! and ~37! coincide. Here it is nec-
essary to bear in mind that the presence of any appreci
values of

hm;|3nm

g rvmm

~k2vmm!21g2/4

requires thatk→vmm .
r-
s
s

i-
r

s

e

e

le

11. CONCLUSION

The photon cooperative effect, closely associated w
the induced emission of atoms, is manifested quantitativ
for hm,m;1, i.e., under conditions near resonance. This d
not mean that the effect is important only for frequenc
inside the spectral contour of the spontaneous emissio
the atoms of the medium. As follows from the differen
between formulas~36! and ~37!, it is also manifested when
uvmm2ku.g. For uvmm2ku,g the role of this effect is en-
hanced thanks to the appearance of the termig(nm1nm).
The standard refractive index of the medium, which fa
back to unity ifnm5nm , cannot depend onnm,m in this way.

The occurrence of a cooperative effect under equilibri
conditions obviously implies its occurrence in kinetic ph
nomena. In this context its experimental confirmation is s
nificantly simpler, and the appearance of the effect itself m
be expected on the macroscopic level. In nonequilibri
situations, the incoherent reaction channel, as was n
above, does not admit a perturbation-theory treatment
must be taken into account. The coherent and incohe
channels must be studied differently since, as a resul
orthogonality of the wave functions of the medium in th
final states these channels do not interfere. Besides,
number of situations the incoherent channel can be show13

to be positive definite. Under such conditions, a study of j
the coherent channel makes it possible to obtain a lo
estimate for a number of phenomena. Precisely in this wa
was shown in Ref. 13 that the coefficient of reflectionR of
resonant radiation from a thermally excited medium is giv
by R}u ig(nm1nm)u2, which is characteristic for a coopera
tive effect. In contrast to the predictions of semiclassi
theory,RÞ0 for nm5nm . In the standard technique of quan
tum Green’s functions1 which presupposes a cutoff in all th
correlators, such a result cannot be obtained. The manife
tion of a cooperative effect can also be expected in ot
optical phenomena. It is precisely this effect, and not
standard refractive index, that determines the intensity of
transient back-emission21 in excited media in the resonan
frequency region. It may be supposed that in the descrip
of all coherent optical phenomena in excited media in
quasiresonant region the standard refractive index mus
used with care. Indeed, the standard refractive index is a

braically related to the polarization operator)̂mn arising in
the Green’s function technique,1 which excludes cooperative
effects. An account of the latter requires the introduction

the polarization operatorP̂ in the G-operator technique. In

the quasiresonant region the operators)̂mn and P̂ do not
coincide. Moreover, these operators generate different po
iton spectra fornmÞ0. The appearance of a specific dispe

sion relation due to the operatorP̂ and the appearance of
third branch of the spectrum raises the question of th
manifestations in experimentally realizable situations. T
dispersion relation by itself governs Vavilov–Cˇ erenkov ra-
diation, transient forward-emission, and light refraction ph
nomena at interfaces. FornmÞ0 peculiarities may be ex
pected in these phenomena. Conditions facilitating
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appearance of such peculiarities for thermally excited me
arek→vmm andnm→nm .
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Optical pumping of velocity-selective coherent population trapping states in three-level
atoms
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An analytical theory of optical pumping of velocity-selective coherent population trapping states
in three-levelL-atoms is presented. The theory is based on an atomic density matrix in the
superpositional state representation. The representation introduced for the atomic density matrix
directly describes coherent population trapping~CPT! states in a three-levelL-atom and
yields an approximate analytical description for the shape of the two-peak momentum~velocity!
distribution of atoms. Optical pumping of velocity-selective CPT states is described in the
superpositional state representation as a process of redistribution of atoms in the region of small
velocities due to the photon recoil. Typical times of formation of velocity-selective CPT
states are found to be inversely proportional to the square of the recoil energy. ©1998 American
Institute of Physics.@S1063-7761~98!01108-1#
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1. INTRODUCTION

The interaction of multilevel atoms with optical fields
essentially different from that of two-level atoms because
coherence effects due to interference between the diffe
excitation channels. The best known of these effects is
coherent population trapping~CPT! effect in three-level at-
oms with the so-calledL-scheme of energy levels.1,2 At cer-
tain detunings between two optical waves exciting an at
on two adjacent transitions, aL-atom can be driven to a
superpositional CPT state composed of the two lower sta
In such a state, the atom is optically decoupled from
upper state owing to destructive interference between
excitation channels. The CPT effect is a fairly common fe
ture of multilevel systems and occurs in all cases when c
ditions for the destructive interference between excitat
channels are satisfied.3–5 The influence of the CPT effect o
the dynamics of internal transitions in multilevel atoms h
been studied experimentally.2,6,7 In recent years, the CPT
effect has attracted a lot of attention in connection with
use for formation of velocity-selective CPT states in las
cooled atomic ensembles.8–12

From the theoretical standpoint, one of the basic pr
lems in the analysis of velocity-selective superpositio
states of atoms is the analytical description of formation
CPT states. A solution to this problem is needed both for
adequate description of time-dependent momentum distr
tions of multilevel atoms in multifrequency optical fields an
for analytical estimates of formation rates of CPT states
the standard approach, the formation of CPT states is usu
described by equations for the atomic density matrixrab in
the basis of unperturbed bare atomic statesua& andb&.

This paper presents an analysis of formation of veloc
selective CPT states based on a description of the ato
2801063-7761/98/87(8)/8/$15.00
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dynamics in terms of the density matrix in the superpo
tional state representation. This representation has cons
able advantages over the conventional representation sin
directly describes dynamics of superpositional states cou
with and decoupled from an external optical field. This re
resentation was previously used in part for qualitative e
mates of the momentum~velocity! width of the atomic dis-
tribution produced by a velocity-selective CPT effect.9 A
general theoretical description of this approach was d
cussed by Kocharovskayaet al.13 For definiteness, in this
paper, we analyze the simplest~but at the same time practi
cally important! case of a three-levelL-atom with two
ground-state sublevels and one optically excited upper le
We assume that aL-atom interacts with two plane optica
waves each of which is considered to be at resonance wit
optical transition from one of the ground-state sublevel to
upper state.

2. SUPERPOSITIONAL STATE REPRESENTATION FOR
PROBABILITY AMPLITUDES

Consider first the basic equations describing the cohe
dynamics of atomic wave packet of a three-level atom int
acting with an optical field composed of two traveling lig
waves:

E5E1 cos~k1•r2v1t !1E2 cos~k2•r2v2t !, ~1!

where the first wave with frequencyv1 is assumed to be
close to resonance with theu1&→u3& atomic transition, and
the second is close to theu2&→u3& transition~Fig. 1a!.

If the interaction times are shorter than the spontane
decay time of the upper level, the evolution of the atom
wave packet can be described by the Schro¨dinger equation
with the Hamiltonian
© 1998 American Institute of Physics
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H52~\2/2M !D1H02D–E, ~2!

where the HamiltonianH0 determines the states of an unpe
turbed atom,V52D–E is the dipole interaction operato
andD is the dipole moment operator. The total wave fun
tion in the coordinate representation describing the inte
and translational motion of aL-atom can be expressed a
usual through atomic probability amplitudesa5a(r ,t):

C~r ,j,t !5( aa~r ,t !ca~j!expS 2
i«at

\ D , ~3!

whereca(j) are unperturbed wave functions describing t
motion of electrons in the atom in statesua&, a53,2,1. The
probability amplitudesaa5aa(r ,t) satisfy equations which
include explicit coordinate and time dependence:

i
]

]t
a352

\

2M
Da32g1 exp@ i ~k1•r2d1t !#a12g2

3exp@ i ~k2•r2d2t !#a2 ,

i
]

]t
a252

\

2M
Da22g2 exp@2 i ~k2•r2d2t !#a3 ,

i
]

]t
a152

\

2M
Da12g1 exp@2 i ~k1•r2d1t !#a3 , ~4!

whereg1 and g2 are equal to half the Rabi frequencies,d1

andd2 are the detuning parameters:

g15d13•E1/2\, g25d23•E2\, ~5!

d15v12v31, d25v22v32, ~6!

andvab5(«a2«b)/\ are the frequencies of atomic trans
tions. For simplicity, the matrix elements of the atomic d
pole moments,dab , are assumed to be real.

In analyzing the coherent dynamics of aL-atom deter-
mined by Eqs.~4!, it is natural to introduce new amplitude
ba(r ,t) that satisfy equations without an explicit dependen
on space and time. Given Eqs.~4!, we define the new prob
ability amplitudes by the relations

a35b3 , a25b2 exp@2 i ~k2•r2d2t !#,

a15b1exp@2 i ~k1•r2d1t !#. ~7!

The new amplitudesba5ba(r ,t), a53,2,1, satisfy
equations that contain only an implicit space and time dep
dence:

FIG. 1. Three-levelL-atom~a! in the standard representation and~b! in the
superpositional state representation.
-
al

e

n-

i
]

]t
b352

\

2M
Db32g1b12g2b2 ,

i
]

]t
b252

\

2M
Db22g2b31~d21v r !b21 iv2¹b2 ,

i
]

]t
b152

\

2M
Db12g1b31~d11v r !b11 iv1¹b1 , ~8!

where ¹5]/]r , and v15\k1 /M and v25\k2 /M are the
recoil velocities. In the present case of two light waves
close frequencies,v1.v2 , and wave vectorsuk1u.uk2u
.k, the absolute values of recoil velocities are appro
mately equal:uv1u.uv2u.v r5\k/M . The frequencyv r de-
termines the total recoil energyR5\v r :

v r5\k2/2M . ~9!

The character of the coherent dynamics of a three-le
L-atom in an electromagnetic field~1! is clearly seen from
the equations for probability amplitudesba5ba(p,t) in the
momentum representation:

i
]

]t
b35

p2

2M\
b32g1b12g2b2 ,

i
]

]t
b25

p2

2M\
b22g2b31@D~v!2d~v!#b2 ,

i
]

]t
b15

p2

2M\
b12g1b31@D~v!1d~v!#b1 , ~10!

wherev5p/M is the atom velocity,D(v) andd(v) are the
velocity-dependent detunings:

D~v!5
1

2
@~d12k1•v!1~d22k2•v!#1v r ,

d~v!5
1

2
@~d12k1•v!2~d22k2•v!#. ~11!

Note that in the momentum representation Eq.~7! trans-
forms to

a3~p!5b3~p!, a2~p!5eid2tb2~p1\k2!,

a1~p!5eid1tb1~p1\k1!. ~12!

The last two lines of Eqs.~10! clearly show that, under
the condition of coherent population trapping,

d~v!50, ~13!

there is always a specific CPT state, in which the atom
wave packet is decoupled from the exciting optical fie
Given the structure of Eqs.~11!, the existence of a CPT stat
becomes obvious if, keeping the amplitude of the upper s
unchanged, one introduces superpositional probability am
tudesbc(p,t) andbu(p,t) for the ground atomic states1,2:

bc5b1 sinu1b2 cosu, bu5b1 cosu2b2 sinu, ~14!

where

sinu5g1 /g0 , cosu5g2 /g0 , g0
25g1

21g2
2 , ~15!
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and the subscriptsc and u refer to the lower superpositio
states optically coupled with and decoupled from, resp
tively, the upperL-atom state under the CPT condition~13!.

Equations for the probability amplitudeb35b3(p,t) and
superpositional probability amplitudesbc5bc(p,t) and bu

5bu(p,t), in accordance with definition~14! and Eqs.~10!,
are

i
]

]t
b35

p2

2M\
b32g0bc ,

i
]

]t
bc5

p2

2M\
bc2g0b31@D~v!2d~v!cos 2u#bc

1d~v!bu sin 2u, ~16!

i
]

]t
bu5

p2

2M\
bu1@D~v!1d~v!cos 2u#bu

1d~v!bc sin 2u.

The last line of Eqs.~16! clearly shows that, under conditio
~13!, the superpositional statebu5bu(p,t) is decoupled from
other atomic states. Thus, the representation of superp
tional states~14! can be considered as a natural represe
tion for describing the coherent population trapping effec
a L-atom.

In the coordinate representation, the structure of Eq.~14!
is basically the same. In this case, the equations for the
perpositional probability amplitudesba5ba(r ,t), a53,c,u
have the form

i
]

]t
b52

\

2M
Db32g0bc ,

i
]

]t
bc52

\

2M
Dbc2g0b31~d1 sin2 u1d2 cos2 u1v r !bc

1
1

2
~d12d2!bu sin 2u1 i ~v1 sin2 u1v2 cos2 u!

3¹bc1
i

2
~v12v2!¹bu sin 2u,

i
]

]t
bu52

\

2M
Dbu1

1

2
~d12d2!bc sin 2u

1~d1 cos2 u1d2 sin2 u1v r !bu1
i

2

3~v12v2!¹bc sin 2u1 i ~v1 cos2 u1v2 sin2 u!¹bu .

~17!

Physically, the set of equations~17! is equivalent to Eqs.
~8!. Mathematically, the difference between Eqs.~8! and~17!
is caused by the use of different representations, namely
standard representation of bare atomic statesu2& and u1& in
Eqs.~8!, and the superpositional stateuc& and uu& represen-
tation in Eqs.~17!.

Note that the normalization condition for the superpo
tional probability amplitudesba , a53,c,u, in both the co-
ordinate and momentum representations has the usual f
c-

si-
a-

u-

he

-

m:

E @ ubcu21ubuu21ub3u2#d3r 51, ~18a!

E @ ubcu21ubuu21ub3u2#d3p51. ~18b!

3. SUPERPOSITIONAL STATE REPRESENTATION FOR
ATOMIC DENSITY MATRIX

The superpositional state representation introdu
above allows us to generalize the description of the C
effect in aL-atom by taking into account spontaneous rela
ation.

A natural approach to the description of quantum sta
tical states of an atomic wave packet in a resonant light fi
is based on an atomic density matrix in the Wigner repres
tation, r5r(r ,p,t).14 The relation between the Wigner rep
resentation and the coordinate representation of the den
matrix is described by the well-known equations

r~r ,p!5
1

~2p\!3E rS r1
s

2
,r2

s

2DexpS 2
ip–s

\ D d3s,

~19!

r~r ,r 8!5E rS r1r 8
2

,pDexpF i ~r2r 8!•p

\ G d3p.

The density matrixr is expressed in terms of the probabili
amplitudesaa , a53,2,1. In the case of pure atomic states
the coordinate representation,

rab~r ,r 8!5aa~r !ab* ~r 8!. ~20!

The matrix elements of the Wigner density matrixr(r ,p,t),
which describes the dynamics of aL-atom in the field~1!,
satisfy the equations

d

dt
r33~p!5 ig1 exp@ i ~k1•r2d1t !#r13S p2

\k1

2 D
1 ig2 exp@ i ~k2•r2d2t !#r23S p2

\k2

2 D
1c.c.22~g11g2!r33~p!,

d

dt
r22~p!5 ig2 exp@2 i ~k2•r2d2t !#r32S p1

\k2

2 D
1c.c.12g2E F~ n̂!r33~p1n̂\k!dn̂,

d

dt
r11~p!5 ig1 exp@2 i ~k1•r2d1t !#r31S p1

\k1

2 D
1c.c.12g1E F~ n̂!r33~p1n̂\k!dn̂,

d

dt
r31~p!5 ig1 exp@2 i ~k1•r2d1t !#Fr11S p2

\k1

2 D
2r33S p1

\k1

2 D G1 ig2 exp@ i ~k2•r2d2t !#

3r21S p2
\k2

2 D2~g11g2!r31~p!,
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d

dt
r32~p!5 ig2 exp@ i ~k2•r2d2t !#Fr22S p2

\k2

2 D2r33

3S p1
\k2

2 D G1 ig1 exp@ i ~k1•r2d1t !#r12

3S p2
\k1

2 D2~g11g2!r32~p!,

d

dt
r12~p!5 ig1 exp@2 i ~k1•r2d1t !#r32S p1

\k1

2 D
2 ig2 exp@ i ~k2•r2d2t !#r13S p1

\k2

2 D , ~21!

where r(p)5r(r ,p,t), d/dt denotes the total~convective!
time derivative

d/dt5]/]t1v•]/]r , ~22!

and n̂ is the unit vector which defines the direction of
photon emitted in a single spontaneous decay act. The f
tion F(n̂) describes the spatial asymmetry of photon em
sion, and hence the anisotropy of the photon recoil. The s
cific form of F(n̂) is determined by the polarization of ligh
waves.14 This function is normalized to unity:

E F~ n̂!dn̂51. ~23!

The elements of the density matrix satisfy the conventio
Hermitian conditionrab* (r ,p,t)5rba(r ,p,t). The Rabi fre-
quencies and detunings in Eqs.~21! are determined by Eqs
~5! and ~6!.

The Wigner functionW(r ,p,t), which describes the
shape of the atomic wave packet, is defined by the equa

W~r ,p,t !5r11~r ,p,t !1r22~r ,p,t !1r33~r ,p,t !. ~24!

The Wigner function is assumed to be normalized to un
for a single atom:

E W~r ,p,t !d3r d3p51. ~25!

Equations~21! can be transformed into the superpo
tional state representation using the procedure based on
relation between the elements of the density matrix and p
ability amplitudes for pure atomic states. In order to perfo
this procedure, we introduce a density matrixs related to the
probability amplitudesba . For pure atomic states, the de
sity matrix elementssab are related to the amplitudesba by
equations having the form of Eq.~20!:

sab~r ,r 8!5ba~r !bb* ~r 8!, ~26!

where a,b53,2,1 in the standard representation of ba
atomic states anda,b53,c,u in the superpositional stat
representation.

The Wigner representation and coordinate representa
for density matrixs are related by formulas similar to Eq
~19! after the changer→s. Using these relations and Eq
~7!, ~20! and~26!, it is convenient to determine first the co
c-
-
e-

l

on

y

the
b-

e

on

respondence between the Wigner density matricesr(r ,p,t)
5r(p) ands(r ,p,t)5s(p) in the standard representation
bare atomic states:

s33~p!5r33~p!, s22~p!5r22~p2\k2!,

s11~p!5r11~p2\k1!,

s31~p!5exp@2 i ~k1•r2d1t !#r31S p2
\k1

2 D ,

s32~p!5exp@2 i ~k2•r2d2t !#r32S p2
\k2

2 D ,

s12~p!5exp@ i ~k12k2!•r2 i ~d12d2!t#

3r12S p2
\~k11k2!

2 D . ~27!

Using once again the relation between the Wigner and co
dinate representations and taking into account Eqs.~14!,
~20!, and~26!, one can find the relation between elements
the Wigner density matrixs in the standard representation
bare atomic states and in the superpositional state repre
tation:

s335s33,

scc5s11sin2 u1s22cos2 u1~s121s21!sinu cosu,

suu5s11cos2 u1s22sin2 u2~s121s21!sinu cosu,

s3c5s31sinu1s32cosu, s3u5s31cosu2s32sinu,

scu5~s112s22!sinu cosu1s21cos2 u2s12sin2 u.
~28a!

The formulas for the inverse transform of elements of
Wigner density matrixs can be derived from the abov
equations:

s225scc cos2 u1suu sin2 u2~scu1suc!sinu cosu,

s115scc sin2 u1suu cos2 u1~scu1suc!sinu cosu,

s315s3c sinu1s3u cosu, s325s3c cosu2s3u sinu,

s125~scc2suu!sinu cosu2scu sin2 u1suc cos2 u.
~28b!

Finally, by calculating total time derivatives on the lef
hand and right-hand sides in Eqs.~28a! and using Eqs.~21!,
~27!, and~28a!, ~28b!, we obtain the following equations fo
the Wigner density matrixs(r ,p,t)5s(p) in the superposi-
tional state representation:

d

dt
s33~p!5 ig0@sc3~p!2s3c~p!#22~g11g2!s33~p!,

d

dt
scc~p!5 ig0@s3c~p!2sc3~p!#1 idcu~v!@scu~p!

2suc~p!#12E F~ n̂!@g1s33~p2\k11n̂\k!

3sin2 u1g2s33~p2\k21n̂\k!cos2 u#dn̂
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1~v1 sin2 u1v2 cos2 u!
]

]r
scc~p!

1
1

4
~v12v2!sin 2u

]

]r
@scu~p!1suc~p!#,

d

dt
suu~p!52 idcu~v!@scu~p!2suc~p!#12E F~ n̂!

3@g1s33~p2\k11n̂\k!cos2 u1g2s33

3~p2\k21n̂\k!sin2 u#dn̂

1~v1 cos2 u1v2 sin2 u!
]

]r
suu~p!

1
1

4
~v12v2!sin 2u

]

]r
@scu~p!1suc~p!#,

d

dt
s3c~p!5 ig0@scc~p!2s33~p!#1 idcu~v!s3u~p!

1@ idc~v!2~g11g2!#s3c~p!

1
1

2
~v1 sin2 u1v2 cos2 u!

]

]r
s3c~p!

1
1

4
~v12v2!sin 2u

]

]r
s3u~p!,

d

dt
s3u~p!5 ig0scu~p!1@ idu~v!2~g11g2!#s3u~p!

1 idcu~v!s3c~p!1
1

2
~v1 cos2 u1v2 sin2 u!

3
]

]r
s3u~p!1

1

4
~v12v2!sin 2u

]

]r
s3c~p!,

d

dt
scu~p!5 ig0s3u~p!1 idcu~v!@scc~p!2suu~p!#

1 iDcu~v!scu~p!1sin 2uE F~ n̂!@g1s33

3~p2\k11n̂\k!2g2s33~p2\k21n̂\k!#

3dn̂1
1

2
~v11v2!

]

]r
scu~p!

1
1

4
~v12v2!sin 2u

]

]r
@scc~p!1suu~p!#, ~29!

wherev15\k1 /M andv25\k2 /M are the recoil velocities
uv1u.uv2u.v r , v r is the total recoil velocity. The effective
detunings in Eqs.~29! are defined as

dc~v!5~d12k1•v!sin2 u1~d22k2•v!cos2 u1v r ,

du~v!5~d12k1•v!cos2 u1~d22k2•v!sin2 u1v r ,

dcu~v!5
1

2
@d12d21~k22k1!•v#sin 2u5d~v!sin 2u,
Dcu~v!5@d12d21~k22k1!•v#cos 2u52d~v!cos 2u.
~30!

Equations~29! are related to the leading functionw,
which is defined, as usual, by a trace, but over the supe
sitional states:

w~r ,p,t !5scc~r ,p,t !1suu~r ,p,t !1s33~r ,p,t !. ~31!

This function, which it is natural to call a Wigner quasifun
tion, satisfies the equation of motion

d

dt
w52E F~ n̂!@g1s33~p2\k11n̂\k!1g2s33

3~p2\k21n̂\k!#dn̂22~g11g2!s33~p!

1~v1 sin2 u1v2 cos2 u!
]

]r
scc~p!

1~v1 cos2 u1v2 sin2 u!
]

]r
suu~p!

1
1

2
~v12v2!sin 2u

]

]r
@scu~p!1suc~p!#. ~32!

Physically, the Wigner quasifunctionw is different from the
Wigner atomic function since it describes an atomic wa
packet whose states are perturbed by the light field~1!. At
the same time, the normalization condition for the Wign
quasifunction is identical to the normalization condition~25!
for the atomic Wigner function:

E w~r ,p,t !d3r d3p51. ~33!

The atomic Wigner function expressed in terms of the d
sity matrix elements in the representation of superpositio
states is determined by the equation

W~r ,p,t !5sin2 u@scc~p1\k1!1suu~p1\k2!#

1cos2 u@scc~p1\k2!1suu~p1\k1!#

1
1

2
sin 2u@scu~p1\k1!1suc~p1\k1!

2scu~p1\k2!2suc~p1\k2!#1s33~p!.

~34!

Equations~29! together with Eq.~32! are a natural set o
equations describing effects of optically induced atomic
herence in a three-levelL-atom. It is clear that, at zero ef
fective detuningdcu(v)50 @i.e., when condition~13! is sat-
isfied# and in the case of an infinitely broad atomic wa
packet, the third equation in set~29! describes an atomic
state which is decoupled from the light field and other atom
states. The decoupling of atomic stateuu& from other states
means that the whole atomic population is pumped to
optically decoupled state when the detuning isdcu(v)50.
Thus, the set of equations~29! explicitly describes optical
pumping of a velocity-selective CPT state.

Formally, Eqs.~29! describe an effectively three-leve
atom with upper stateu3& and two ground states,uc& anduu&
~Fig. 1b!. Given the CPT condition~13!, Eqs. ~29! can be
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treated as three coupled groups of equations, namely, e
tions describing the evolution of an effectively two-lev
atom with the statesu3& and uc&, equations describing th
optical pumping of stateuu& decoupled from the optical field
and equations describing the evolution of coherence betw
the states of the effectively two-level atom and the decoup
stateuu&.

4. COUNTER-PROPAGATING LASER WAVES

Integral-differential equations~29! and ~32! can be ana-
lyzed in many practically important cases. Below we der
as a specific example analytical estimates for the form of
momentum distribution ofL-atoms at times when a two
peak structure arises due to the CPT effect. For definiten
we consider the case of interaction of spatially broad ato
wave packets with counter-propagating electromagn
waves, i.e., the casek152k2.k5kez , which has been
studied in many experiments. For simplicity we assu
equal detunings,d15d25d, equal relaxation rates,g15g2

5g5G/2, and the equal Rabi frequencies,g15g25g
5g0 /A2.

In the case of a spatially broad atomic wave pack
space derivatives]sab /]r in Eqs.~29! and ~32! can be ne-
glected. Furthermore, we note that the recoil due to spo
neous photon emission can only spread the momentum
tribution. Hence, when the peak widths are comparable t
larger than the recoil momentum, we can replace functi
s33(p6n̂\k) in Eqs. ~29! with their approximate expres
sions obtained by expanding in powers of the recoil mom
tum. With these simplifications, equations~29! reduce to a
set of approximate difference equations

d

dt
s335 ig0~sc32s3c!22Gs33,

d

dt
scc5 ig0~s3c2sc3!2 ikv~scu2suc!

1
1

2
G@s33~p2\k!1s33~p1\k!#1 . . . ,

d

dt
suu5 ikv~scu2suc!1

1

2
G@s33~p2\k!

1s33~p1\k!#1 . . . ,

d

dt
s3c5 ig0~scc2s33!1~ id r2G!s3c2 ikvs3u ,

d

dt
s3u5 ig0scu1~ id r2G!s3u2 ikvs3c ,

d

dt
scu5 ig0s3u2 ikv~scc2suu!

1
1

2
G@s33~p2\k!2s33~p1\k!#1 . . . , ~35a!

and Eq.~32! to the approximate equation
ua-

en
d

e
e

ss
ic
ic

e

t,

a-
is-
or
s

-

]

]t
w5G@s33~p2\k!1s33~p1\k!#22Gs33

1
1

2
\2k2G( a i i

]2

]pi
2 @s33~p2\k!1s33~p1\k!#,

~35b!

wherep5Mvz , vz is the velocity projection on thez-axis,
G52g, andd r5d1v r . The coefficientsa i i ( i 5x,y,z) are
determined by the angular distribution of the rate of spon
neous photon emission:

a i i 5E ni
2F~ n̂!dn̂. ~36!

For the practically important case of circularly polarize
photons~the s12s2 configuration!

F~ n̂!5
3

16p
~11nz

2!, axx5ayy5
3

10
, azz5

2

5
.

Note that the arguments in Eqs.~35! are only those momenta
which are shifted by the recoil momentum.

These simplifications in the equations for the dens
matrix do not radically change the momentum distributio
since they have no effect on the superpositional state re
sentation. In particular, the simplifications do not affect t
splitting of the wave packet in the momentum space de
mined by Eq.~34!.

Further analysis of the equation for the density mat
can be performed for interaction times longer than charac
istic evolution times of internal atomic states, but not so lo
that the scale of deformation of the momentum distribution
smaller than the recoil momentum.

If we neglect the recoil momentum in Eqs.~35a! at these
interaction times and calculate steady-state solutions
those density matrix elements that decay with the rate
spontaneous decay,G, and then substitute the steady-sta
solutions in the rest of equations~35a!, we find that Eqs.
~35a! contain in an implicit form another decay constant
orderg2/G. This second constant determines the decay t
of coherence between superpositional states. Given the p
ence of comparable relaxation times in the set of equatio
one can neglect in the lowest approximation changes in
momenta due to recoil and calculate steady-state density
trix elements at timest@G21, (G/g)2G21. The latter can be
expressed through the Wigner quasifunction~quasiprobabil-
ity density! w(p):

s33~p!5n3~p!w~p!, scc~p!5nc~p!w~p!,

suu~p!5nu~p!w~p!, scu~p!5suc* ~p!5n~p!w~p!, ~37!

with the dimensionless functions

n3~p!5GS kv
G D 2

d~p!,

nc~p!5
1

2 S kv
G D 2F11G1S kv

G D 2

1S d r

G D 2Gd~p!,



r
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FIG. 2. Relative populationsna of states
~curve 1! a53, ~2! a5c, and ~3! a5u as
functions of the dimensionless velocityV
5kv/G at detuningd50, saturation paramete
~a! G51, ~b! G510, andv r /G50.05.
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nu~p!512
1

2 S kv
G D 2F113G1S kv

G D 2

1S d r

G D 2Gd~p!,

n~p!5
1

2 S kv
G D Fd r

G S G22S kv
G D 2

1 iG D Gd~p! ~38!

and the resonance factord and saturation parameterG:

d~p!5H G21S kv
G D 2F11G1S kv

G D 2

1S d r

G D 2G J 21

,

G5
1

2 S g0

G D 2

5S g

G D 2

. ~39!

In the case of a spatially broad atomic wave packet,
functions defined by Eqs.~38! determine relative population
na(p) of statesa53,c,u and coherencen(p) between the
superpositional states~Fig. 2!.

It can be seen now from Eq.~34! that in the lowest
approximation, the approximate solution~37! defines a two-
peak momentum distribution concentrated near the mom
6\k. In the most interesting region of small momen
uDpu<MG/k, whenn3.nc.n.0, nu.1, the shape of the
two-peak distribution, in accordance with Eq.~34!, is defined
by the formula

W~p,t !5
1

2
@suu~p1\k!1suu~p2\k!1scc~p1\k!

1scc~p2\k!1scu~p1\k!1suc~p1\k!

2scu~p2\k!2suc~p2\k!#1s33~p!

.
1

2
@w~p1\k!1w~p2\k!#. ~40!

It follows from Eq. ~40! that an effective estimate of th
time evolution of the Wigner functionW can be obtained
using the equation for the time evolution of the leading fun
tion w. By substituting the solution~37! in the lowest ap-
proximation in Eq.~35b! and neglecting the momentum sh
in the quasiprobability density, one can obtain an appro
mate equation forw5w(p,t):

]

]t
w5Qw1(

]2

]pi
2 ~Dii w!. ~41!

The functionsQ andDii in Eq. ~41! defined by equations

Q5G@n3~p2\k!1n3~p1\k!#22n3~p!, ~42!
e

ta

-

i-

Dii 5\2k2Ga i i n3~p!, ~43!

determine the effective pumping rate and quasidiffusion t
sor.

Equation ~41! has a direct physical interpretation. De
pending on the sign ofQ, the first term on the right-hand
side of Eq.~41! describes either the optical pumping of th
decoupled stateuu& or depopulation of the decoupled stat
The term with the derivatives describes the diffusive bro
ening of peaks on the momentum scale owing to spontane
decays. Since the optical pumping term includes input te
n3(v6v r) at shifted velocities, according to Eq.~42!, the
optical pumping is effective only in a narrow range of sm
velocities. The latter statement means that the populatio
the uu& state is gradually transferred to a narrow peak arou
the zero velocity, and this process, in accordance with
~40! determines the two-peak shape of the velocity distrib
tion.

The dependence of the effective pumping rate on
atomic velocity, which controls the process of optical pum
ing of the CPT state, is illustrated by Fig. 3. In accordan
with Eq. ~42!, theuu& state is optically populated in a narro
range of velocities determined by the recoil velocity. Outs
this narrow range whereQ,0 holds, the population of the
decoupled stateuu& drops to zero with time. The effective
pumping rate as a function of atomic velocity at differe
light wave intensities is plotted in Fig. 4. At low wave inten
sities the pumping rate is a steep function of the atomic
locity because of a narrow dip in the populationn3 of the
upper level as a function of velocity. At higher intensities

FIG. 3. Normalized effective optical pumping rateS550Q/G ~curve1! and
relative populations of the re- and blue-shifted upper state:~2! n3(v1v r)
and ~3! n3(v2v r), as functions of the dimensionless velocityV5kv/G at
detuningd50, saturation parameterG53, andv r /G50.05.
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light waves, both the dip in the upper state population a
the peak of the effective pumping rate versus atomic velo
are broadened.

As follows from Eq.~41!, the typical time in which two
peaks are created is inversely proportional to both the l
wave intensity and recoil energy squared:

t5
1

Q~0!
.

1

8G S G

v r
D 2

G21.

For example, in the case of4He atoms driven by two circu
larly polarized laser waves at the 23S1223P1 transition (l
51.08 mm, v r52.73105 s21, 2G51.63106 s21) at inter-
mediate values of the saturation parameterG5(g/G)2.1,
the characteristic time is 831026 s. This estimate is in good
agreement with experimental data.8

V. CONCLUSIONS

The theoretical approach to optical pumping of deco
pled CPT states in three-levelL-atoms described in this pa
per has demonstrated that it is natural to apply the den
matrix in the superpositional state representation to the o
cal formation of velocity-selective CPT states. Our inves

FIG. 4. Normalized effective optical pumping rateQ(v,G)5Q/2G as a
function of dimensionless velocityV5kv/G at d50, v r /G50.05, and
~curve1! G51; ~2! 2; ~3! 4; ~4! 10.
d
y

t

-

ty
ti-
-

gation has clearly shown that the superpositional state re
sentation allows one to describe directly velocity-select
CPT states and to derive a kinetic equation for the quasip
ability density, which determines the formation and evo
tion of a two-peak velocity distribution. The kinetic descri
tion of the evolution of the velocity~momentum! distribution
shows that formation of a velocity-selective CPT state can
interpreted in terms of optical pumping under conditions
weak quasidiffusion. The kinetic approach to the proble
developed on this basis allows one to derive parameter
the process leading to formation of a velocity-selective C
state from a single basic parameter, namely the effective
tical pumping rate.
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A quantum cryptosystem is proposed using single-photon states with different frequency spectra
as information carriers. A possible experimental implementation of the cryptosystem is
discussed. ©1998 American Institute of Physics.@S1063-7761~98!01208-6#
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1. INTRODUCTION

The idea of quantum cryptography was first proposed
Ref. 1, initially inaccessible. In its current form the protoc
for propagation of a key~a secret random sequence of zer
and ones! was proposed in Ref. 2. A new qualitative jump
the understanding of secrecy in quantum cryptography a
after Ref. 3, in which a protocol was proposed for exchan
using nonorthogonal states, and Ref. 4 where a protocol
described using the Einstein–Podolsky–Rosen effect.

Various versions of cryptosystems using nonorthogo
states and the Einstein–Podolsky–Rosen effect were
posed subsequently.5–22Experimental prototypes of quantum
cryptosystems have been implemented using nonorthog
polarization states of photons for coding5,11,12and also using
the principle of phase coding based on a fiber-optic Mac
Zehnder interferometer with time separation8–10,19 ~an im-
proved version of the system from Ref. 10 was implemen
in Ref. 19!. The longest communication channel achiev
under laboratory conditions is 30 km~Ref. 10!. The opera-
tion of a prototype quantum cryptosystem has been dem
strated under natural conditions using a 23 km long opt
cable below Lake Geneva18 and also between various build
ings at the Los Alamos National Laboratory.13

Most of these systems use the interference princ
which roughly involves ‘‘splitting’’ a photon at the transmi
ting end of the line and ‘‘collimating’’ it at the receiving end
Here we propose a quantum cryptosystem using diffe
photon frequency states which utilizes the ‘‘internal interf
ence’’ of the different photon frequency components. Suc
system may well prove more stable in operation than dir
interference systems, although this can only be confirmed
means of an experimental implementation.

The secrecy of the key in quantum cryptography is ba
on two facts: 1! the impossibility of coding~cloning! a pre-
viously unknown quantum state23 and 2! the impossibility of
extracting information on quantum states without perturb
them if they belong to a nonorthogonal basis.3 Formally, any
pair of nonorthogonal states corresponding to logic 0 an
can be used as information carriers. The detection proce
~quantum-mechanical measurement! at the receiving end
should be set up so that any attempts at intervention wi
the communication channel, i.e., changes in states, ca
2881063-7761/98/87(8)/6/$15.00
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identified from the results of the measurements. If the pai
nonorthogonal statesuc0& and uc1& are used as carriers, th
formal measurements are given by the projectors3

Ē0512uc0&^c0u, Ē1512uc1&^c1u,

whose action reduces to the projection of states orthogon
the vectorsuc0& and uc1&, respectively, on the subspaces3

The result of the action of the projectors is treated as a st
ment and the probability of the measurement results is gi
by the expressions

Pr5Tr$r̂0Ē0%5Tr$r̂1Ē1%[0,

Pr5Tr$r̂0Ē1%5Tr$r̂1Ē0%512u^c0uc1&u2Þ0. ~1!

Measurements usingĒ0 and Ē1 in an ideal communication
channel~without noise! can detect any attempts at eave
dropping, i.e., changes in states. The first nonzero outco
of a control measurement definitely indicates the presenc
an eavesdropper. When it is known that a signal, sayuc0&,
was sent, measurements were made usingĒ0, and a nonzero
result was obtained, the nonzero result is considered to
statement that the stateĒ0 has a nonzero component in th
corresponding orthogonal complement of the Hilbert sp
~i.e., that the stateuc0& was changed!.

Photon states are used as information carriers for
fiber-optic communication channels. Formally any pair
nonorthogonal photon states can be used~not necessarily
even single-photon states!. However, it is unclear how the
measurement procedure corresponding to the projectorsĒ0,1

for a given pair of states can be implemented experimenta
It would be easiest to use a pair of nonorthogonal polari
tions, but an optical fiber does not maintain polarization~see
details given in Refs. 11 and 12!. The prototypes of quantum
cryptosystems mentioned use the phase coding princ
based on interferometers with time separation.8–10 After the
interferometer has been operating for a few minutes, the
tem requires additional alignment.10

2. CRYPTOGRAPHY USING PHOTON FREQUENCY STATES

A quantum cryptographic system using the Einstei
Podolsky–Rosen effect for a biphoton field was proposed
© 1998 American Institute of Physics
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an earlier study20 and this idea is developed here. Subs
quently, the use of frequency states which do not use in
ference over large distances is suggested.

Let us first analyze a formal system and then discuss
experimental realization. Three single-photon states are u
as carriers: two information states corresponding to lo
zero and one and one control state. The information st
are mutually orthogonal. The control state is pairwise non
thogonal to the information states. The use of only two
formation states is inadequate for secrecy because they
be reliably distinguished as a result of their orthogonality

The information states consist of pure stationary sta
with the density matrices

r̂05ue0&^e0u, r̂15ue1&^e1u, ^e1ue0&50, ~2!

where ue0& and ue1& are certain basis states assigned to
energiesv0 and v1, respectively. The control state is no
stationary and contains both basis componentsue0& andue1&:

ucc~ t0!&5e2 iv0t0f 0ue0&1e2 iv1t0f 1ue1&,

r̂c~ t0!5ucc~ t0!&^cc~ t0!u, ~3!

and the normalization condition

u f 0u21u f 1u251.

The time t0 describes the beginning of the time measu
ment, the state preparation time~see below!. The density
matrix at timest.t0 is obtained by substituting into the a
gument r̂c(t)5ucc(t2t0)&^cc(t2t0)u. The introduction of
two orthogonal information states reduces the number
‘‘dummy’’ outcomes because of their distinguishability if n
eavesdropping is detected in the exchange process.

This scheme uses two types of measurements. The m
surements of the frequency spectrum are described by
orthogonal partition of unity in space relative to the sta
ue0&, ue1&:

E01E15I , E05ue0&^e0u, E15ue1&^e1u, ~4!

whereI is the unit operator. The second family of measu
ments involves measuring the time and is given by a non
thogonal partition of unity~see Ref. 24, for example!, which
in our case has the form

E
0

T

E~dt!5I , T5
2p

uv12v0u
,

E~dt!5~e2 iv0tue0&1e2 iv1tue1&)(^e0ueiv0t

1^e1ueiv1t!
dt

T
. ~5!

In accordance with the general philosophy of quantu
mechanical measurements, the measurements are mad
particular time.24–26 The probability of the outcome of th
measurements using the projectorsE0 and E1 does not de-
pend on time and is given by

Pr5Tr$r̂0E0%51, Pr5Tr$r̂1E1%51,

Pr5Tr$r̂0,1E1,0%[0,
-
r-

n
ed
c
es
r-
-
an

s

e

-

f

a-
an
s

-
r-

-
at a

Pr5Tr$r̂c~ t !E0%5u f 0u2, Pr5Tr$r̂c~ t !E1%5u f 1u2. ~6!

Measurements of the time give the probability distribution
the outcomes in the range (t,t1dt):

Pr~dt!5Tr$r̂0,1E~dt!%51•
dt

T
, ~7!

Pr~dt!5Tr$r̂c~ t !E~dt!%5u f 0exp@2 iv0~ t2t0!#

1 f 1exp@2 iv1~ t2t0!#u2S dt

T D
5$112Re@ f 0f 1* exp@2 i ~v02v1!

3~ t2t0!##%S dt

T D . ~8!

For the control state the probability is an oscillating functi
with the periodT52p/uv12v0u. This set of measurement
can completely reconstruct information on the states—
other density matrices can reproduce the statistics of
measurements so that any attempts at eavesdropping ca
detected~for further details see Ref. 22!.

The key generation protocol is as follows. We assu
that all the parameters of the states are known to everyb
including any potential eavesdropper. UserA ~henceforth
‘‘Alice’’ ! randomly sends into the communication chann
statesr̂c , r̂0, or r̂1. UserB ~henceforth ‘‘Bob’’! randomly
and independently of Alice selects measurement typeE0, E1,
or E(dt). After making a series of measurements, Ali
transmits through the open channel~accessible to all includ-
ing an eavesdropper,‘‘Eve’’! the numbers of some measur
ments whenr̂0 and r̂1 were sent and all the numbers whe
control stater̂c was sent. Bob sorts the measurements i
three groups according to whenr̂c , r̂0, or r̂1 were transmit-
ted. In each of these three groups, three subgroups are
tified according to measurement proceduresE0, E1, or
E(dt). For instance, for those messages when Alice tra
mitted stater̂c , the relative fraction of the measurement ou
comes when the projectorsE0 andE1 were used should be
u f 0u2/u f 1u2 regardless of the measurement time. For
E(dt) measurements the probability of the measurement
sults at various times should converge to the probability d
tribution ~8!. The convergence of the distribution functio
for a finite sample should by checked by using some sta
tical criterion such as the Kolmogorov criterion27 ~see also
Ref. 22!. The convergence is checked similarly for the me
surements when statesr̂0 or r̂1 were sent. For example, fo
state r̂0 the measurements usingE0 should give the same
outcome in all attempts, which does not depend on the m
surement time. For theE1 measurements in all attempts th
outcome should be zero regardless of the measurement
For theE(dt) measurements the probability of the outcom
is only determined by the duration of the time intervaldt and
does not depend on the timet.

The secrecy of the protocol is guaranteed by the non
thogonality of the information states to the control state a
by the fact that a set of measurements is informati
complete so that any attempts at eavesdropping, i.e., cha
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in states, can be detected. In other words, no other den
matrices can reproduce the statistics of the measuremen
the receiving end~for further details see Ref. 22!.

After having established that no eavesdropping is tak
place, Alice transmits the numbers of those measurem
when the control state was sent. All the idle measureme
when the detector was not actuated are discarded. Then
the remaining numbers Bob only transmits the numbers
those measurements in which he usedE0 or E1 but does not
communicate which measurement,E0 or E1, was used in
each specific attempt~this information is now known only to
Alice and Bob!. These remaining measurements give the
cret key~an identical random sequence of zeros and ones
Alice and Bob!.

We shall illustrate why an eavesdropper will inevitab
introduce errors. In order to obtain information on the ke
Eve must distinguish statesr̂0 and r̂1. To do this, she mus
make measurements with a narrow-band detector~measure-
ments ofE0 or E1). If there were no control stater̂c con-
taining both spectral components with frequenciesv0 and
v1, as a result of the mutual orthogonality of the informati
states, it would be possible to determine uniquely which s
is present in the line. However, their nonorthogonality to
control state will inevitably lead to errors, since there w
always be measurements with an undetermined result.
instance, ifr̂c is present in the line and Eve measuredE0 and
obtained a nonzero result, it is impossible to uniquely de
mine which state,r̂c or r̂0, gave this result. Resendingr̂0

instead of the true stater̂c leads to a change in Bob’s mea
surement statistics. It is also impossible to discern in o
measurement that both spectral components with energiev0

andv1 are present simultaneously in a state because of
orthogonality of the components, since this requires m
surements by means ofE0E1. This projector can be consid
ered as confirmation that the propertyE0 (v0 present! and
E1 (v1 present! are found simultaneously. However becau
of the orthogonality (E0ùE15�) the action ofE0E1 on any
density matrix has a result identically equal to zero. Also,
unique information can be obtained on the simultane
presence of spectral components using more general~non-
von Neumann! measurements, which is guaranteed by
theorem in Ref. 3.

3. POSSIBLE IMPLEMENTATION OF A CRYPTOSYSTEM

We shall now discuss a possible experimental imp
mentation in which the carriers are three single-photon st
of the form

u1v0
&5ae,v0

1 u0&, u1v1
&5ae,v1

1 u0&,

u1c&5 f 0e2 iv0t0ae,v0

1 u0&1 f 1e2 iv1t0ae,v1

1 u0& ~9!

with the corresponding density matrices

r̂0,15u1v0,1
&^1v0,1

u, r̂c5u1c&^1cu,

whereae,v i

1 is the creation operator of a Fock monochroma

state with the frequencyv i ( i 50,1) and polarizatione, and
u0& is the vacuum state. Quite clearly, a strictly monoch
ity
at
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matic state is an idealization. However, there are no fun
mental constraints on the formation of states arbitrarily clo
to monochromatic.

The measurement procedures described above ma
implemented by using a fast~fairly wide-band! photodetector
operated in a waiting regime, and two narrow-band filters
frequencies v0 and v1. From standard photodetectio
theory,28 the detection probability is proportional to the firs
order correlation function of the field

G~1!~ t !5Tr$r̂ i Ê
~2 !~x,t !Ê~1 !~x,t !%, ~10!

where

Ê~1 !~x,t !5 i(
vn

A\vn

2V
aen,vn

exp~2 ivnt1 iknx!,

Ê~2 !~x,t !52 i(
vn

A\vn

2V
aen,vn

1 exp~ ivnt2 iknx!,

andV is the normalization volume. At this stage it is mo
convenient to use a formal normalization of the states i
finite volume ~see below!. We can even use unnormalize
states. With this definition the probabilities of the measu
ment outcomes will also be unnormalized, but since only
relative probability is important for the different measur
ments, this lack of normalization is unimportant.

Measurements of the correlation function of the fie
~the instantaneous intensity! G (1)(t) are a realization of the
E0,1 and E(dt) measurements described above in the se
that the statistics of the outcomes gives the same informa
on the states as the statistics of theE0,1 andE(dt) measure-
ments. A combination of measurements using a fast ph
detector and measurements using two narrow-band fil
and the same photodetector can provide information on
amplitudeu f 0,1u and relative phase of the componentsf 0 and
f 1, which exhausts the information on the states~see also
Ref. 22!.

The probabilityp of a photon being recorded in the tim
interval (t,t1dt) by an ideal photodetector is proportional
the field intensityI (t)}G (1)(t) ~Ref. 28!:

p~ t !dt}I ~ t !dt5G~1!~ t !dt. ~11!

If the photodetector activation time istdet!1/uv12v0u, this
photodetector implementsE(dt) measurements in the sens
indicated above. It can be seen from Eq.~10! that for state
~9! the recording probability with allowance for Eqs.~9!–
~11! has the form

p~ t !dt}I ~ t !dt5G~1!~ t !dt5UAv0f 0expF2 iv0~ t2t0!

1
ik0L

c G1Av1f 1expF2 iv1~ t2t0!1
ik1L

c GU2 dt

2V
,

~12!

where k0,1 are the wave vectors corresponding to the f
quenciesv0,1 andL is the length of the communication chan
nel ~we assume that the measurement is made at a distanL
from the transmitting end!.
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FIG. 1. Schematic of cryptosystem. The signal from
single-photon source is directed to a ‘‘prism’’ beyon
which is a screen that transmits the signal either with t
frequencyv0 ~logic zero, upper diaphragm open! or v1

~logic one, lower diaphragm open!, or both frequencies
~control signal, both diaphragms open!. At the receiving
end the measurement procedure is arranged simila
Upper diaphragm open, measurement ofE0; lower dia-
phragm open, measurement ofE1; and both open, measure
ment ofE(dt). The diaphragms are open or shut during
entire specific message.
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Measurements of the amplitude of the spectral com
nentsf 0,1 are made using a pair of narrow-band filters, whi
cut out the frequenciesv0,1 prior to photodetection, and th
same photodetector. The recording probability, in acc
dance with Eqs.~9!–~11!, does not depend on time:

pc~ t !dt}G~1!~ t !dt5H \v0

V
u f 0u2dt, measured E0,

\v1

V
u f 1u2dt, measured E1,

p0,1~ t !dt}G~1!~ t !dt

55
\v0

V
31 dt, E0 measured forr̂0 ,

0 E1 measured forr̂0 ,

\v1

V
31 dt, E1 measured forr̂1 ,

0 E0 measured forr̂1 .

~13!

A schematic of a cryptosystem is shown in Fig. 1. Befo
entering the line, the signal from a single-photon source
expanded into a spectrum from which are cut either one
the frequencies (v0 or v1), or both spectral component
with the frequenciesv0 and v1. The E(dt) measurements
are made using a fast photodetector operating in a wai
mode. In this mode the occurrence of an event~its recording!
will take place at a random time, not chosen by the exp
mentalist. This differs from theE(dt) measurements made
a time preselected by the experimentalist in the ranget,t
1dt); the probability of recording at this time is describe
by the densitypc(t). In this case, theE(dt) measuremen
cannot be understood as a measurement by the fast pho
tector which has an input diaphragm in front of it which
opened in the interval (t,t1dt). This procedure also corre
sponds to some measurement, but not to anE(dt) measure-
ment.

The integrated recording probability at timeT is given
by

P~T!5ET

dt pi~ t !, i 5c, 0, 1,

from which the probability density in the time interval (t,t
1dt) can be obtained by differentiating with respect to t
upper limit.

TheE(dt) measurement essentially contains informat
on the ‘‘interference’’ of the different spectral compone
within a single quantum state~information on the relative
-

r-

is
f

g

i-

de-

phase of the components with the frequenciesv0 and v1).
Thus, it is fundamentally important that in different me
sages the stater̂c is prepared so that the relative phase of t
spectral components is the same. Otherwise, the ti
oscillating ~interference! component with the frequencyv1

2v0 in the probabilitypc(t) will not be reproduced at the
same times in different attempts. The problem of preparin
single-photon state where the relative phase of the com
nents is fixed can be solved as follows. Let us assume th
two-level system exists with a spin-nondegenerate elec
spectrum~for example, a quantum dot with Coulomb inte
action; see details given in Ref. 29!. Resonant illumination
with a square-wave pulse can transfer the system to the
cited ~quasi-steady! state. We shall assume that the squa
wave pulse is much shorter than the radiative recombina
time (tp!tR). The square-wave pulse can be made subs
tially shorter thantR with some margin for not violating the
condition of resonant illumination.29 This implies that the
time of excitationt0 is determined to within;tp!tR . After
the square-wave pulse has been switched off, the free ev
tion of the system comprising an electron in the excited s
plus the electromagnetic field in the vacuum state leads
recombination of the electron and the appearance of a sin
photon packet with the characteristic spectral wid
Dv'1/tR . The single-photon packet is defined as30,31

u1 f&5(
k

f kavk

1 u0&, (
k

u f ku251. ~14!

The average number of photons in the packet is

n5^1 f uavk

1 avk
u1 f&51, ~15!

and physically this implies that recording by an ideal wid
band photodetector~which captures all the spectral comp
nents! leads to actuation with a probability of unity. Recor
ing by an ideal narrow-band detector at the frequencyvn

leads to a probabilityu f nu2,1 of actuation.
Since each system at timet0 starts from the same state

in different messages the single-photon packets are the s
~the phase of all the spectral components determined by
factors exp(2ivit0) is the same in different messages!. Cut-
ting out two narrow spectral components from the spectr
conserves their relative phase. In fact, the cutting of the sp
tral components is formally described as the action of
projector1!

E01E15~ u1v0
&^1v0

u1u1v1
&^1v1

u!,

after which the density matrix of the single-photon wa
packet is transferred to a new state~see Refs. 25, 26, and 32!
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r̂ in~ t !5H(
k

exp@2 ivk~ t2t0!# f ku1vk
&J

3H(
k8

^1v
k8
u f k8

* exp@ ivk8~ t2t0!#J
→

1

Tr$r̂ in~ t !~E01E1!%
~E01E1!

3H(
k

exp@2 ivk~ t2t0!# f ku1vk
&J

3H(
k8

^1v
k8
u f k8

* exp@ ivk8~ t2t0!#J ~E01E1!

→
1

u f 0u21u f 1u2
$exp@2 iv0~ t2t0!# f 0u1v0

&

1exp@2 iv1~ t2t0!# f 1u1v1
&%

3$^1v0
u f 0* exp@ iv0~ t2t0!#

1^1v1
u f 1* exp@ iv1~ t2t0!#%. ~16!

Physically this implies that if an ideal wide-band photodet
tor is placed after the filters, in a large number of repea
tests it will only be actuated in the fraction Tr$r̂ in(t)(E0

1E1)% of the total number of cases.
The relative phase of the components with frequenc

v0 and v1 is determined by their phase at the preparat
time which is attainable in principle, as described abo
Thus, provided thattp!tR!1/uv12v0u holds, we can as-
sume that in different messages the temporal interfere
pattern stays in place. In different messages the interfere
pattern only ‘‘floats’’ by virtue of the inaccuracy of the in
tial preparation time dt0 by the amount dt0<tp!T
52p/uv12v0u, which is substantially less than the perio
of the temporal interference pattern.

Assuming that the square-wave pulse duration
tp;10212 s ~see Ref. 29! and the radiative recombinatio
time is tR;10210 s ~in this case the spectral width of th
initial single-photon state isDv;1010 Hz), and spectral
components of widths'107 Hz separated by the distanc
dv5uv12v0u;108 Hz are cut out~which is still very far
from the limits now attainable!, the required photodetecto
response speed is satisfied fortdet;1029 s.

The chain of inequalitiestp!tR!tdet!1/dv is then
satisfied with some margin. The efficiency as a result of c
ting out narrow spectral components of widths;107 Hz
from a spectrum of widthDv;1010 Hz is ;s/Dv;1023.
However, at least the problem of a strictly single-phot
source can be solved in principle.

We shall estimate the accuracy in fixing the length of
communication channel. Changes in the length of the fib
optic line also lead to blurring of the interference pattern a
result of the presence of terms withk0,1L in the exponent in
formula ~12!. The changes in the relative phase of the sp
tral components as a result of variation of the line lengthdL
should satisfy the condition
-
d

s
n
.

ce
ce

s

t-

e
r-
a

-

uk12k0udL'uv12v0udL/c!2p,

and permissible variations of the line length should lead t
relative phase shift much less than 2p. This gives the esti-
mate

dL!2pc/dv'102 cm,

which is a fairly mild condition.
The interference pattern may also become blurred a

result of the polarization vector rotating at different speeds
the different frequency components. However, if the posit
of the cable is fixed, the interference pattern may be pre
librated. In this case, any changes will only be attributed
the different optical paths of the frequency components,
variation of the line length. This condition is clearly noncrit
cal. The frequency dispersion of the dielectric constant of
optical fiber can also lead to smoothing of the amplitude
the oscillations of the interference pattern. The longer
line, the stronger this smoothing. However, estimates21 show
that if the width of the spectral components iss'107 Hz,
the dispersion has an influence at far greater lengths than
attenuation. Attenuation does not influence the secrecy of
system and only reduces its efficiency by increasing the fr
tion of idle measurements.

The states with infinitely narrow spectral componen
analyzed above are an idealization and are unsuitable
transmission along a communication channel because
their formally infinite duration. In real experiments we ca
only prepare states with a finite line width~the preparation of
strictly monochromatic photon states would require a f
mally infinite time!. The information states can be singl
photon states of the form~14! with Gaussian spectral dens
ties

u1v0,1,c&5E
0

`

f 0,1,c~v!a1~v!u0&,

@a~v!,a1~v8!#5d~v2v8! Î , ~17!

E~1 !~x,t !5
1

A2p
E

0

`

expF2 ivS t2
x

cD Ga~v!dv, ~18!

f 0,1~v!5
1

~2ps2!1/4
expF2

~v2v0,1!
2

4s2 Gexp~2 ivt0!

~19!

and a control state containing both narrow-band Gaus
components with amplitudesf 0 and f 1:

f c~v!5
const

~2ps2!1/4H f 0 expF2
~v2v0!2

4s2 G
1 f 1 expF2

~v2v1!2

4s2 G J exp~2 ivt0!, ~20!

where the normalization constant is
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const5H u f 0u21u f 1u21A2Re@ f 0f 1* #

3expF2
~v0

21v1
22v0v1!

2s2 G J 21

. ~21!

Measurements of narrow spectral components using suit
Gaussian filters yield a weak time dependence of the m
surement outcomes unlike the previous analysis of stri
monochromatic states, where the probability of the outco
did not depend on time. The corresponding probability d
sity of the results has the form

p~ t !dt}I ~ t !dt52A2ps2exp@22s2~ t2t02L/c!2#dt,
~22!

from which it follows in particular that the probability o
recording by a photodetector in the waiting mode only ten
to unity if the waiting timeT exceeds the reciprocal width o
the spectrum (T>1/s). This factor is consistent with intui
tive ideas on the prolonged recording time of a narrow-ba
state.

The probability density of the measurement outcom
for the control state has the form

pc~ t !dt}I ~ t !dt5const•2A2ps2exp@22s2

3~ t2t02L/c!2#$u f 0u21u f 1u212Re~ f 0f 1*

3exp@2 i ~v02v1!~ t2t02L/c!# !%dt. ~23!

The interference oscillating component is well-defined un
the conditions!uv12v0u.

4. CONCLUSIONS

Although various versions of quantum cryptosyste
have been proposed, in the author’s view there is some
determinacy associated with the following. The proof of s
crecy in quantum cryptography using two nonorthogo
states proposed in Ref. 3 implies that the states are statio
and belong to the same energy. Otherwise, for nonstatio
states the projectorsĒ0 and Ē1 would differ at different
times. The nonorthogonality of the stationary states imp
that they correspond to the same energy. Otherwise the
tionary states belonging to different energies would au
matically be orthogonal. In this sense, the protocol for
stationary states exists, as it were, outside time. Attempt
introduce the time explicitly in the exchange protocol14,17

still use reasoning from Ref. 3 for stationary states as pr
of secrecy~see, for example, Ref. 17!. The stationary state
are infinite in time. A similar situation arises here. Eviden
of secrecy for states with infinitely narrow spectral densiti
which are thus infinitely extended in time, is also based
the reasoning given in Ref. 3. For the case where the s
space of the system is infinite-dimensional~described by a
continuous variable!, proof of secrecy of the same degree
rigor as in Ref. 3 is not obtained, as far as we are aware
this sense, the author takes the view that evidence of sec
is not obtained for real-time quantum cryptosystems.

In conclusion, the author is grateful to B. A. Volkov
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1!Strictly speaking, an ideal filter corresponds to a projector on the subs

of states with frequenciesv0, v1 and all occupation numbers,Ev0
1Ev1

5(n50
` (unv0

&^nv0
u1unv1

&^nv1
u&), but this does not alter the results.
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Theory of spin diffusion in liquid-phase polymer systems
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A general theory of spin diffusion in condensed media is constructed by the method of
Zwanzig–Mori projection operators using the superpositional approximation to decouple the many-
particle correlation functions. The spin diffusion coefficient is expressed in the formDsp

5D tr1D f , whereD tr is the contribution associated with translational displacements of the
molecules andD f is the contribution caused by intermolecular flip-flop processes. The
expression forD tr differs from the well-known Kubo–Green formula for the self-diffusion
coefficientDsd in that the integrand contains an additional factorPf(t), which is the probability
of the molecular spins not participating in intermolecular flip-flop transitions over the time
t. A microscopic expression is obtained forD f in the form of a time integral of the intermolecular
dipole–dipole dynamic correlation functions. For liquid-phase polymer system with fairly
high molecular mass the conditionDsp@Dsd is satisfied. ©1998 American Institute of Physics.
@S1063-7761~98!01308-0#
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1. INTRODUCTION

The phenomenon of spin diffusion is well-known
NMR spectroscopy of solids~see, for example, Refs. 1–6!. It
is the basic mechanism for the establishment of a spat
uniform distribution for an arbitrary longitudinal magneti
ing field mz(r ,t). Magnetic dipole–dipole interactions be
tween spins of different unit cells induce flip-flop transitio
which result in spatial transport of the spin polarizatio
which helps to equalizemz(r ,t) in different regions of the
solid.

The characteristic size of the spatial nonuniformities
the field mz(r ,t) is generally much greater than the chara
teristic linear dimensiona0 of a unit cell:

Ua0

]

]r
mz~r ,t !U!umz~r ,t !u,

and the characteristic timest satisfy the inequalityt f!t
!T1 , wheret f is the characteristic time of the intercell flip
flop transitions andT1 is the spin–lattice relaxation time. I
these conditions are satisfied, the evolution of the fi
mz(r ,t) is determined by the classical diffusion equation:

]

]t
mz~r ,t !5DspDmz~r ,t !, ~1!

whereDsp is the spin diffusion coefficient,D is the Laplac-
ian, andr is the spatial position vector.

The order-of-magnitude spin diffusion coefficient is e
timated as

Dsp.
1

6

a0
2

t f
. ~2!
2941063-7761/98/87(8)/9/$15.00
ly

,

f
-

d

-

In magnetically concentrated solids the timet f is ap-
proximately 1024 s and a0'3 Å, which gives Dsp

.10216 m2/s.
In liquid-phase systems a spatially nonuniform fie

mz(r ,t) can also be created by stimulated spin echo wit
pulsed magnetic field gradient.7–9 Intermolecular dipole–
dipole interactions are capable of inducing intermolecu
flip-flop transitions. The characteristic times of these tran
tionst f51022– 1 s are much greater because the mobility
the molecules in the liquid is higher than that in solids. Ne
ertheless, on the experimentally attainable time intervalst f

!t!T1 the evolution of the fieldmz(r ,t) satisfies Eq.~1!.
However, in this case, the coefficientDsp differs negli-

gibly from the self-diffusion coefficient of spin-carryin
molecules:Dsd.Dsp. This is attributed to the high transla
tional mobility of liquid molecules which move in space ov
distances of the order of 102–104 Å or more within times of
the ordert f , with the lower limit even being typical of ex
tremely viscous macromolecular melts. Thus, at first glan
it can be shown that for liquids flip-flop transitions cann
have any significant influence on the rate at which the s
tially nonuniform fieldmz(r ,t) becomes uniform. Thus, ther
is no reason to distinguish between the self-diffusion coe
cient of the moleculesDsd and the spin diffusion coefficien
Dsp.

Arguments were put forward earlier to suggest that
macromolecular solutions and melts with fairly high molec
lar masses, the situation is not so simple.10–12This is because
the maximum relaxation time of macromolecules depe
strongly on the molecular mass:tmax}tsN

3.4, where ts

510211– 1029 s is the segmental relaxation time andN is
the number of Kuhn segments per macromolecule. At
same time, the molecular mass dependence of the timt f
© 1998 American Institute of Physics
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should be similar to that of the spin–spin relaxation timeT2 ,
which initially decreases with increasingN and then reache
a constant value,13 i.e., becomes independent of the molec
lar mass of the macromolecules. The timet f should satisfy
the conditionsT2,t f,T1 , so that the estimatet f51022–
1021 s is reasonable. Thus, there is a certain critical mole
lar massN* for which

t f5tsN* 3.4. ~3!

We then obtainN* 5(t f /ts)
1/3.4'102– 103.

It is found12 that the relation between the coefficients
spin diffusion and self-diffusion depends strongly on the
lation between the critical molecular massN* and the mo-
lecular mass of the polymer meltN. For N!N* both these
coefficients are almost equal, whereas forN@N* the in-
equalityDsp@Dsd is satisfied. We shall demonstrate this
citing one of the results of Ref. 12:

Dsp5
1

6t f
@^r 2~t f !&1a0

2#, ~4!

where^r 2(t f)& is the mean-square displacement of the m
romolecular segments over the timet f and a0

2 is the addi-
tional mean-square displacement of the spin polariza
caused by intermolecular flip-flop processes.

In solids we find^r 2(t f)&
1/2'0.01 Å anda0'3 Å, i.e.,

a0
2@^r 2(t f)&, so that Eq.~4! is in fact equivalent to expres

sion ~2!. In liquids with molecular massesN!N* for times
t@tmax the mean-square molecular displacements satisfy
normal diffusion conditions~Einstein relation!:

^r 2~ t !&56Dst. ~5!

Since the value ofa0 does not exceed the linear dime
sions of the molecule~macromolecule!, it follows from Eqs.
~5! and ~4! that

Dsp5
1

6t f
~6Dst f1a0

2!.Ds . ~6!

However, in the limitN@N* relation ~5! ceases to be
valid, since for times of ordert f the macromolecular motion
resembles anomalous diffusion. The mean-square displ
ment of the segments may be estimated as

^r 2~ t !&'b2N2a~ t/ts!
b, ~7!

where the exponentsa and b are determined by details o
the micromolecular dynamics andb is the length of a Kuhn
segment.

For the Rouse model, for example, we havea51/2, b
51/2 ~Ref. 14!, for the reptation model we havea50, b
51/4 in region II anda51/2, b51/2 in region III~Ref. 14!,
and for the renormalized Rouse model,a50, b52/5 ~Refs.
15 and 16!, and so on.

An alternative description of anomalous diffusion to r
lation ~7! is the concept of an effective, generally tim
dependent, self-diffusion coefficient, defined as

Dsd* ~ t !5
1

6

^r 2~ t !&
t

'
1

6

b2

Na

1

ts
bt12b

, t!tmax. ~8!
-

-

-

-

n

e

e-

The effective self-diffusion coefficient decreases with tim
for t!tmax and Dsd* (t)@Dsd. Using Eqs.~7! and ~4!, we
obtain the inequalities

Dsp>Dsd* ~t f !@Dsd, ~9!

which are valid even when the contribution containinga0
2 is

neglected in relation~6!. The substantial difference betwee
the coefficients of self-diffusion and spin diffusion in liqui
polymer systems withN@N* has a simple physical expla
nation.

Spin diffusion takes place as a result of spatial displa
ments of elementary spin polarization quanta. In the lim
N!N* , tmax!tf , randomization, i.e., transfer of the spati
trajectories of the spin polarization quanta to the asympt
diffusion curve, takes place within timestmax, i.e., much
earlier than the flip-flop transitions and thusDsd.Dsp. In the
limit N@N* , t f!tmax the trajectories of the spin polariza
tion quanta become randomized at timest f , whereas the
trajectories of the spin-carrying polymer segments beco
randomized within times of the ordertmax, i.e., much later,
so thatDsp@Dsd.

In order to avoid confusion over terminology, we sha
allow ourselves some additional explanations. Strictly spe
ing, spin diffusion should be understood as the recovery
spatially uniform magnetization in a system removed from
state of thermodynamic equilibrium regardless of its ph
state: solid, liquid, or gas. This is the effect considered
fairly general studies~see Ref. 17, for example!. In this case,
the coefficient of spin diffusion is the kinetic coefficientDsp

in Eq. ~1!. This naturally gives rise to the question: ‘‘i
which cases are the coefficients of self-diffusion~molecular
diffusion! and spin diffusion similar and when do they diffe
substantially?’’

In the vast majority of studies dealing with specific sy
tems, the term ‘‘spin diffusion’’ is associated with solids an
the coefficient of spin diffusion is identified with the secon
term in Eq.~4!, i.e., with expression~2!. Although this is not
the case, strictly speaking, the smallness of the first term
relation~4! does not yield any actual errors. In liquids, as f
as we are aware, it was assumed until the publication
Refs. 10–12 that the diffusion coefficient measured by
method of stimulated spin echo with a pulsed magnetic fi
gradient is always the same as the self-diffusion coeffici
of spin-carrying molecules. For the reasons put forwa
above serious differences may arise here. We shall call th
spin diffusion effects or effects of intermolecular flip-flo
processes.

To the best of our knowledge, the first observation
anomalously high diffusion coefficients measured expe
mentally by the method of stimulated spin echo with
pulsed magnetic field gradient was reported in the exp
mental studies of Res. 18,19 Although the authors did
attribute these experimental results to spin diffusion effe
they did stimulate the theoretical predictions published
Refs. 10–12. The results published in Ref. 20 also indic
that macromolecules may have anomalously high mea
able coefficients of self-diffusion, although this observati
lay outside the scope of their investigation. Recently,
existence of spin diffusion effects in macromolecular me
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was demonstrated experimentally by comparing the diffus
coefficients measured by the method of stimulated spin e
with a pulsed magnetic field gradient in melts of deutera
and nondeuterated polyethyleneoxide molecules with m
lecular massM5450 000~Ref. 21!. The observation of spin
diffusion effects in polystyrene solutions was also repor
in Ref. 22. In the light of this new experimental situatio
further theoretical studies of this problem are required.

The result~4! was in fact obtained by us earlier using th
density matrix method for the spin subsystem of a sam
and treating the operator of the magnetic dipole–dipole
teraction energyV̂ as a perturbation. Actual calculation
were only made with allowance for effects quadratic inV̂
and accurately describing the behavior of the spin sys
only on time scalest!t f . The result~4! is only meaningful
for times t@t f . Thus, strictly speaking, it was not derive
but was inferred by extrapolating the results of the low
order of perturbation theory. It is therefore natural to attem
to obtain the result~4! without recourse to perturbatio
theory and provide a more reliable basis for the microsco
calculations of the parameterst f anda0 .

The present paper reports a systematic discussion of
topic.

2. DERIVATION OF A GENERAL RELATION FOR THE SPIN
DIFFUSION COEFFICIENT

This section contains the derivation of the transp
equations describing spin diffusion processes in a cer
sample placed in a static, generally speaking, spatially n
uniform external magnetic field. A convenient means
achieving this aim is the method of Zwanzig–Mori proje
tion operators~see Refs. 17, 23, and 24! by means of which
one can derive the so-called generalized Langevin equa

As far as we are aware, the derivation of the generali
Langevin equation describing the kinetics of the longitudi
components of the magnetizing field has not been exam
in the literature with the generality required for our purpos
although a particular case was studied in Ref. 17 where
magnetic dipole–dipole interactions were neglected and o
the translational displacements of the spins were taken
account. Thus, for greater cohesiveness we shall describ
necessary underlying assumptions of the method
Zwanzig–Mori projection operators as well as details of
derivation of the transport equation of interest to us.

2.1. Generalized Langevin equation

We shall analyze two arbitrary physical quantities d
scribed by the quantum-mechanical operatorsÂ and B̂. Be-
tween these quantities we can determine the scalar produ
the Kubo sense:

^ÂuB̂&[b21E
0

b

dlTr ~Â* B̂~ i\l!r̂eq!, ~10!

whereÂ* is an operator which is the Hermitian conjugate
Â,

B̂~t![expH i
Ĥt

\
J B̂expH 2 i

Ĥt

\
J
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is the operatorB̂ in the Heisenberg representation,b51/kT

is the reciprocal temperature, andr̂eq is the equilibrium den-
sity matrix of the entire system.

The set of all linear operators treated as a linear sp
with the metric defined by relation~10! forms the so-called
Liouville spaceL. Subsequently we shall use as the ope
tors Â and B̂ some specially selected linear combination
spin operators whose time evolution is significant for tim
of order t>1022 s. The characteristic time\l which ap-
pears in the definition of the scalar product~10! is of the of
order\/kT.10213 s !t f . This allows us to simplify rela-
tion ~10!:

^ÂuB̂&5Tr ~Â* B̂r̂eq!5^Â* B̂&eq, ~11!

where^Â* B̂&eq denotes the equilibrium autocorrelation fun
tion of Â* and B̂.

Let us assume that we are interested in the kinetics
certain set of physical quantitiesA1 ,A2 , . . . ,An . The set of
all linear combinations of these quantities forms the line
subspaceLn$Ai%PL. The existence of a metric in the entir
Liouville spaceL allows us to determine the projection op
erator onLn$Ai%:

P̂[(
k,m

uAk&^AuA&km
21^Amu, ~12!

where ^AuA&km
21 is a matrix element of the matrix which i

the inverse of the static correlation matrix̂AuA&
[uu^AkuAm&uu, uAm& is the ket vector in the Liouville spaceL
corresponding to the operatorÂm , and^Aku is a bra vector in
the Liouville spaceL corresponding to the operatorÂk .

Mori transformations can be used to formally obtain
accurate system of equations for the operatorsÂn(t) in the
Heisenberg representation:

d

dt
Ân~ t !5(

k
ivnkÂk~ t !

2(
k
E

0

t

dt Knk~t!Âk~ t2t!1Fn
Q~ t !, ~13!

where

vnk5(
m

1

^AuA&km
^AmuL̂uAn& ~14!

is the frequency matrix,L̂[(1/\)@Ĥ, . . . # is the Liouville
operator of the system,

Fn
Q~ t ![exp$ iQ̂L̂t% iQ̂L̂uAn& ~15!

is a generalized stochastic Langevin force associated with
physical quantityÂn , Q̂512 P̂ is the projection operator on
the subspace orthogonal toLn$Âi%, and

Knk[(
m

1

^AuA&km
^Fm

Q~0!uFn
Q~t!& ~16!

is the memory matrix.
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2.2. Generalized Langevin equation for the longitudinal
magnetizing field

We shall define the microscopic magnetizing field as

m̂z~r ![(
i 51

N

m0Î i
zd~r2r i !, ~17!

where m0 is the magnetic moment of the spin,Î i
z is the z

component of the operator of thei th spin, r is the ‘‘field’’
position vector, andr i is the position vector of thei th spin.

Using a Fourier representation for the Diracd function
in relation ~17!, we obtain the following expression for th
magnetizing field:

m̂z~r !5E dk

~2p!3
exp$2 ik–r %S (

i 51

N

exp$ ik–r i%m0Î i
zD .

~18!

We define the collective~‘‘hydrodynamic’’! modes of
this field characterized by the wave vectork as follows:

m̂z~k!5m0(
i 51

N

Î i
z exp$ ik–r i%. ~19!

A simple relationship exists between the fieldm̂z(r ) and
the collective modesm̂z(k):

m̂z~k!5E dk

~2p!3
exp$2 ik–r i%m̂

z~k!. ~20!

In the following calculations, the collective variable
m̂z(k) will play the role of the quantitiesÂn , and the wave
vectork plays the role of the indexn numbering the quanti-
ties m̂z(k). The transport equations for these are obtain
from the equations~12! by replacing summation over th
discrete indexn by integration over the continuous indexk.

We shall first calculate the scalar products of two mod
with the wave vectorsk1 andk2 :

^m̂z~k1!um̂z~k2!&5m0
2(

i , j
^ Î i

zÎ j
z&eq̂ exp$ ik2•r j2 ik1•r i%&eq.

~21!

In the high-temperature approximation in terms of t
spin variables, no spin–spin correlations exist:

^m̂ i
zm̂ j

z&eq5
m0

2I ~ I 11!

3
d i j . ~22!

Substituting this relation into expression~21!, we obtain

^m̂z~k1!um̂z~k2!&5
m0

2I ~ I 11!

3
rs~2p!3d~k12k2!, ~23!

wherers is the spin density in this particular sample.
Thus, the normal modesm̂z(k) are mutually orthogonal

The right-hand side of Eq.~23! may be considered to be
matrix element of a matrix with the continuous indicesk1

andk2 . Its inverse matrix̂ m̂z
^ m̂z&k1k2

21 is given by

Edk3^m̂
z
^ m̂z&k1k3

21 ^m̂~k3!um̂z~k2!&[d~k12k2!. ~24!
d

s

This definition and formula~23! give

^m̂z
^ m̂z&k1k2

21 5
3

m0
2I ~ I 11!rs~2p!3

d~k12k2!. ~25!

Then, using this equality and the general definition~12!,
we obtain the following expression for the projection ope
tor on the half-space extended to the hydrodynamic varia
m̂z(k):

P̂5
3

~2p!3

1

m0
2I ~ I 11!rs

E dkum̂z~k!&^m̂z~k!u. ~26!

The following calculations require some refinement
the structure of the system Hamiltonian:

Ĥ5ĤS1ĤL1V̂, ~27!

whereĤS is the ‘‘spin Hamiltonian’’ describing the interac
tion of the spins with the external magnetic fields,ĤL is the
lattice Hamiltonian which describes the spatial displa
ments of the molecules and atoms in the system, andV̂ is the
‘‘spin–lattice interaction’’ operator, which in our case is th
same as the Hamiltonian of the dipole–dipole interaction

In the cases of interest to us, the external magnetic fi
may be represented as the sum of two terms oriented a
thez axis: a constant term and a spatially nonuniform gra
ent term. Accordingly, the spin Hamiltonian contains tw
contributions:

ĤS5(
n

\v0Î n
z2(

n
\ggznÎ n

z , ~28!

wherev0 is the Larmor precession frequency,g is the mag-
netic field gradient,g is the spin gyromagnetic ratio, andzn

is the spatialz coordinate of thenth spin.
In the HamiltonianV̂ it is most interesting for our pur-

poses to express the so-called Van VleckB component
which describes flip-flop processes in the spin subsystem

V̂f5 (
k,m

bkm~ Î k
1 Î m

21 Î k
2 Î m

1!, ~29!

where

bkm52
1

4

g4\2

r km
3 ~123cos2ukm!,

r km is the position vector connecting spins numbersk andm,
andukm is the polar angle betweenr km and thez axis.

We shall now derive the generalized Langevin equat
for the hydrodynamic modesm̂z(k) of a magnetizing field
having the following structure~compare with the general re
lation ~13!!:

d

dt
m̂z~k,t !5E dk8V~kuk8!m̂z~k,t !2E

0

t

dt

3E dkM ~kuk8;t!m̂z~k,t2t!1 f zQ~k,t !,

~30!
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whereV(kuk8) is the frequency matrix which is the analo
of vnk in formula ~13!, M (kuk8;t) is the memory matrix
which is the analog ofKnk in formula ~13!, and f zQ(k,t) is
the stochastic Langevin force associated with the m
m̂z(k), which is the analog ofFn

Q(t).
Using formulas~14!, ~19!, and~28!, we can easily con-

firm that in our case

V~kuk8!50. ~31!

In order to calculatef zQ(k,t), we need to use formula
~15! and the analogies described above:

f̂ zQ~k,t ![exp$ iQ̂L̂t% iQ̂L̂um̂z~k!&. ~32!

We shall first calculate this force for the initial time:

f̂ zQ~k!5 iQ̂L̂m̂z~k!5
i

\
Q̂@Ĥ;m̂z~k!#

5
i

\
@ĤL ;m̂z~k!#1

i

\
@V̂;m̂z~k!#. ~33!

It then becomes clear that initially the operatorf zQ(k,t)
is the same as the operator of the moment of force acting
the hydrodynamic mode of the magnetizing fieldm̂z(k),
taken in the Schro¨dinger representation.

The first term in relation~33! is associated with the spa
tial displacement of the spins for which we introduce t
special notation:

f̂ tr
z~k![

i

\
@ĤL ;m̂z~k!#. ~34!

The second term describes the transport of the spin
larization induced by flip-flop processes, and we denote
by

f̂ f
z~k![

i

\
@V̂f ;m̂z~k!#. ~35!

We shall calculate the translational contribution to t
moment of force:

f̂ tr
z~k![

i

\ F(
n

p̂n
2

2m
;(

k
exp$ ik–r k~0!% Î k

zG
.(

m
V̂m~0!•k exp$ ik–rm~0!% Î m

z . ~36!

Note that in going over to the last relation, we neglec
quantum-mechanical effects associated with the noncom
tating behavior of the operatorsp̂m and rm . This is permis-
sible since the typical temperatures for liquid-phase polym
systems areT.300 K.

Using formulas~35! and ~29!, we transform the expres
sion for f̂ f

z(k) to give

f̂ f
z~k!5

i

\ (
kÞm

bkm~0!@12exp$ ik–r km~0!%#

3 Î k
1 Î m

2 exp$ ik–r k~0!%. ~37!
e

on

o-
is

d
u-

r

We shall analyze the long-wavelength approximationk
→0 of the greatest interest for our purposes in which expr
sion ~37! has the form

f̂ f
z~k!5

i

\ (
kÞm

bkm~0!k–r km~0! Î k
1 Î m

2exp$ ik–r k~0!%.

~38!

For an arbitrary timet, the values of f̂ f
zQ(k,t) and

f̂ tr
zQ(k,t) are obtained from relations~36! and ~38! by the

action of the ‘‘projection evolution’’ operator on them:

f̂ tr
zQ~k,t ![exp$ iQ̂L̂t% f̂ tr

zQ~k!, ~39!

f̂ f
zQ~k,t ![exp$ iQ̂L̂t% f̂ f

zQ~k!. ~40!

In order to calculate the memory matrixM (kuk8;t) which
appears in expression~30! for the generalized Langevin
equation, we need to calculate the following dynamic cor
lation function:

^ f̂ zQ~k1!u f̂ zQ~k2 ,t !&5^ f̂ z* ~k1! f̂ z~k2 ,t !&eq. ~41!

In the small wave vector limit, the cross correlation cont
butions from the translational and flip-flop terms in expre
sion ~41! are zero. In fact, in accordance with formulas~36!
and ~38! these contributions are linear in the velocities a
quadratic in the spin operators, i.e., we have a funct
which is odd with respect to the time reversal operatio
Averaging these with the Gibbs equilibrium distributio
function yields zero identically, which gives

^ f̂ zQ~k1!u f̂ zQ~k2 ,t !&5^ f̂ tr
z* ~k1! f̂ tr

zQ~k2 ,t !&eq

1^ f̂ f
z* ~k1! f̂ f

zQ~k2 ,t !&eq. ~42!

Then we are naturally confronted with the general u
solved problem involving the decoupling of the man
particle correlation functions. In cases without a clearly d
fined small parameter, such as the liquid-phase systems
which we are dealing, no decoupling scheme can be rig
ously justified in thes present stage of development. Here
shall use the superpositional approximation, which is
simplest in mathematical terms and can indicate the type
correlations which are neglected although, like any other
coupling scheme, it cannot estimate their absolute va
This approximation generally gives reasonable quantita
results when compared with the experimental data. For
stance, the equation of state for a liquid of solid sphe
obtained using this approximation differs from that found
the computer ‘‘experiments’’ by no more than 20%~Ref. 25!
and its application to calculate the self-diffusion coefficien
of macromolecules in dilute solutions gives differences
only a few percent compared with the real experiment14

Thus, it is natural to first analyze our problem using t
superpositional approximation.

We shall analyze the first term associated with the tra
lational contribution in relation~42!. Using relations~36! and
~39!, we can rewrite this in the form
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^ f̂ tr
z~k1!u f̂ tr

zQ~k2 ,t !&5(
k,m
a,b

kakb^Vak~0!Vbm
Q ~ t !

3exp$ i ~k2•rm
Q~ t !2k1•r k~0!!%

3 Î m
zQ~ t ! Î k

z&eq, ~43!

where the superscriptQ indicates the dynamic evolution o
the physical quantity determined by the projection dynam
i.e., by the evolution operator exp$iQ̂L̂t%, anda andb denote
the Cartesian coordinates of the vectors.

The right-hand side of formula~43! contains the many-
particle dynamic correlation function which we shall subs
quently calculate using the superpositional approximation

^ f̂ tr
z~k1!u f̂ tr

zQ~k2 ,t !&5(
k,m
a,b

kakb^Vak~0!Vbm
Q ~ t !&eq

3^exp$ ik2•~rm
Q~ t !2rm~0!!%&eq

3^exp$ i ~k2•rm
Q~0!

2k1•r k~0!!%&eq̂ Î m
zQ~ t ! Î k

z&eq. ~44!

Assuming that the system is isotropic and that the motion
the various molecules~macromolecules! is uncorrelated, we
reduce the velocity–velocity correlation function to the for

^Vak~0!Vbm
Q ~ t !&eq5

1

3
^VQ~ t !•V~0!&eqdabdkm . ~45!

We substitute this relation into formula~44! and assum-
ing that in the limitk→0, the fourth factor tends to unity, w
obtain

^ f̂ tr
z~k1!u f̂ tr

zQ~k2 ,t !&5
Ns

3
^VQ~ t !•V~0!&eq

3^exp$ i ~k22k2!

•rm~0!%&eq̂ Î m
zQ~ t ! Î m

z &eq, ~46!

whereNs is the number of spins in the sample.
The penultimate factor in expression~46! is the Fourier

transform of the single-particle distribution function:

^exp$ i ~k22k2!•rm~0!%&eq5
~2p!3

V
d~k22k1!. ~47!

We then note that in all the formulas given above we c
take the spin operatorsÎ m

z to mean their fluctuational compo
nentsd Î m

z 5 Î m
z 2^ Î m

z &eq. This ensures that all the spin–sp
dynamic correlation functions being discussed decay in
limit t→`. We shall now define the single-spin relaxatio
function Pf(t) by

^ Î m
zQ~ t ! Î m

z &eq[^~ Î m
z !2&eqPf~ t ![

1

3
I ~ I 11!Pf~ t !. ~48!

Note that in the general case, exact quantitative calc
tion of the functionPf(t) is a complicated many-particl
dynamic problem. However, its qualitative physical mean
is fairly clear. Damping of the correlation functio

^ Î m
zQ(t) Î m

z &eq is caused by two factors: by intermolecular fli
s,

-

f

n

e

a-

g

flop processes and by spin–lattice relaxation processes.
latter are far less likely since, unlike flip-flop processes, th
lead to a substantial change in the energy of the spin sys
In consequence, the relaxation functionPf(t) may be taken
as the probability of a given spin not participating in flip-flo
processes in the timet.

Thus, using formulas~47! and ~48!, we transform rela-
tion ~46! to give

^ f̂ tr
z~k1!u f̂ tr

zQ~k2 ,t !&5
~2p!3

3
rsk

2I ~ I 11!

3^VQ~ t !V~0!&eqPf~ t !d~k22k1!.

~49!

We shall now apply similar procedures to the seco
term in relation~42!, which represents the contribution from
the torque induced by flip-flop transitions. Using relatio
~38! and ~40!, we express this in the form

^ f̂ f
z~k1!u f̂ f

zQ~k2 ,t !&5
1

\2 (
kÞm

k8Þm8
a,a8

kaka8^bkm
Q ~ t !bk8m8~0!

3r km
Qa~ t !r k8m8

a8 ~0! Î k
1Q~ t ! Î k8

2 Î m
2Q~ t ! Î m8

1

3exp$ i ~k2•r k
Q~ t !2k1•r k8~0!!%&eq,

~50!

wherer km
Qa(t) denotes the Cartesian coordinatea of the po-

sition vectorr km
Q (t),and r k8m8

a8 (0) denotes the Cartesian co
ordinatea8 of the position vectorr k8m8(0).

Before applying the superpositional approximation
decouple the correlation function in expression~50!, we rep-
resent the dynamics of the spin operators in the form

Î k
1Q~ t ! Î m

2Q~ t !5exp$ iQ̂L̂t%exp$2 i L̂ 0t%exp$1 i L̂ 0t% Î k
1 Î m

2

5exp$ iwm% Ĩ̂ k
1Q~ t ! Ĩ̂ m

2Q~ t !, ~51!

where L̂0 is the Liouville operator generated by the Ham
tonian Ĥ05ĤS1ĤL ,

wm5gg•E
0

t

r km~ t8!dt8

is the phase difference between spins numbersk and m,
caused by the presence of the external magnetic field gr

ent, andÎ̃ m
6Q are the spin operators in the interaction rep

sentation.
Note that formula~51! can easily be modified to allow

for the magnetic nonequivalence of the different sp
caused for example, by chemical shifts of the resonance
quencies. For this purpose the additional phasevkmt must be
added to the phase differenceswkm , wherevkm is the differ-
ence between the resonance frequencies.

An analog of the transition from formula~43! to formula
~44! will involve applying the superpositional approximatio
for decoupling the many-particle dynamic correlation fun
tions to the right-hand side of expression~50! in the follow-
ing scheme:
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^ f̂ f
z~k1!u f̂ f

zQ~k2 ,t !&5
1

\2 (
kÞm

k8Þm8
a,a8

kaka8^bkm
Q ~ t !bk8m8

3~0!r km
Qa~ t !r k8m8

a8 ~0!exp$ iwm~ t !%&eq

3^exp$ i ~k2•r k
Q~ t !2k1•r k8~0!!%&eq

3^ Ĩ̂ k
1Q~ t ! Î k8

2 &eq̂ Ĩ̂ m
2Q~ t ! Î m8

1 &eq. ~52!

The spin–spin correlation functions essentially represent
decay of the transverse magnetization as a result of dipo
dipole interactions. Neglecting interspin correlations, we
timate these as follows:

^ Ĩ̂ k
1Q~ t ! Î k8

2 &5^ Ĩ̂ k
2Q~ t ! Î k8

1 &5
2

3
I ~ I 11!dkk8P2~ t !, ~53!

where the relaxation functionP2(t) describes the relaxatio
of the transverse components of an isolated spin in a stoc
tic magnetic field created by all the other spins in the syst

The situation here is exactly the same as that for
relaxation functionPf(t) introduced earlier by relation~48!.
Strictly speaking, formula~53! is a definition of the function
P2(t) whose subsequent calculation requires additional
proximations based on an analysis of the physical mean
of this quantity.

The second of the spatial correlation functions in t
long-wavelength approximationk1 ,k2→0 reduces to the
single-particle static correlation function:

^exp$ i ~k2•r k
Q~ t !2k1•r k~0!!%&eq5dkk8

~2p!3

V
d~k12k2!.

~54!

Substituting relations~53! and~54! into formula~52!, we
obtain

^ f̂ f
z~k1!u f̂ f

zQ~k2 ,t !&5
4

9
~2p!3rs@ I ~ I 11!#2d~k12k2!P2

2~ t !

3(
a

ka
2(

m
8 ^bkm

Q ~ t !r km
Qa~ t !bkm

3~0!r km
a ~0!exp$ iwkm~ t !%&eq, ~55!

where the sum(m8 . . . indicates summation over all spin
excluding the spin labelledk, a. An average over all spins
with subscriptk is assumed to be included in the definition
the bracketŝ . . . &eq.

From relations~55!, ~49!, ~42!, ~33!, ~32!, and the gen-
eral definition of the memory matrix~16!, we obtain the
following expression for the density matrix contained in E
~30!:

M ~k1uk2 ;t !5d~k12k2!H k2

3
^VQ~ t !•V~0!&Pf~ t !

1
4

3
@ I ~ I 11!#2P2

2~ t !(
a

ka
2(

m
8 ^bkm

Q ~ t !r km
Qa

3~ t !bkm~0!r km
a ~0!exp$ iwkm~ t !%&eqJ . ~56!
e
–
-

as-
.

e

p-
g

.

Substituting this formula into Eq.~30!, with allowance for
relation ~31!, we obtain

d

dt
m̂z~k,t !52(

a
ka

2E
0

t

D̃aa~t!m̂z~k,t2t!dt1 f̂ zQ~k,t !,

~57!

where

D̃sp
aa~ t ![D̃ tr~ t !1D̃ f

aa~ t !, ~58!

D̃ tr~ t !5
1

3
^VQ~ t !•V~0!&Pf~ t !, ~59!

D̃ f
aa~ t !5

1

12
I ~ I 11!g4\2P2

2~ t !(
m

^Lkm
zzQ~ t !r km

Qa~ t !

3Lkm
zz ~0!r km

a ~0!exp$ iwkm~ t !%&eq, ~60!

Lkm
zz 5

123cos2ukm

r km
3

.

It can be seen from Eq.~57! that for long-wavelength
hydrodynamic modes the characteristic relaxation time
creases ask2, whereas the characteristic decay times of
dynamic correlation functions contained inD̃ tr(t) andD̃ f

a(t)
do not depend on the wave vector fork→`. This allows us
to apply the Markov approximation to Eq.~30!. With allow-
ance for relation~31!, this gives

d

dt
m̂z~k,t !52(

a
ka

2Dsp
aam̂z~k,t !1 f̂ zQ~k,t !, ~61!

where

Dsp
aa5E

0

`

D̃sp
aa~t!dt. ~62!

A Fourier transformation of Eq.~61! yields the diffusion
equation with a Langevin source:

]

]t
m̂z~r ,t !5(

a
Dsp

aa ]2

]xa
2
m̂z~r ,t !1 f̂ zQ~r ,t !. ~63!

Generally speaking, the coefficientsDsp
aa form the com-

ponents of the anisotropic spin diffusion tensor. The s
diffusion tensor in accordance with relations~58! and ~62!
contains two contributions:

Dsp
aa5D tr1D f

aa , ~64!

whereD tr is the contribution associated with thermal tran
lational displacements of the spins in space andD f

aa is the
component associated with translational displacement of
spin polarization quanta as a result of flip-flop processes

The translational contribution to the spin diffusion coe
ficient in accordance with formulas~59! and~62! is given by

D tr5
1

3E0

`

dt^VQ~ t !•V~0!&eqPf~ t !. ~65!

Similarly for the contributionD f
aa we obtain
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D̃ f
aa~ t !5

1

12
I ~ I 11!g4\2E

0

`

dt P2
2~ t !

3(
m

^Lkm
zzQ~ t !r km

Qa~ t !Lkm
zz

3~0!r km
a ~0!exp$ iwkm~ t !%&eq. ~66!

3. DISCUSSION OF RESULTS

Relations~63!–~66! constitute the principal result of th
present study. They solve the problem of spin diffusion
condensed media in a fairly general form.

It is easy to see that the expression forD tr resembles the
Kubo–Green formula for the self-diffusion coefficient:17,25

Dsd5
1

3E0

`

dt^V~ t !•V~0!&eq. ~67!

There are two differences between them. First, the
namic autocorrelation function̂VQ(t)•V(0)&eq is deter-
mined by the ‘‘projection’’ evolution operator exp$iQ̂L̂t%,
whereas in relation~67! the autocorrelation function̂V(t)
3V(0)&eq is determined by the complete evolution opera
exp$iL̂t%. Second, unlike expression~67!, the integrand of
formula ~65! contains the additional dynamic factorPf(t),
this being the probability that the spin being studied wo
not participate in intermolecular flip-flop processes over
time t.

The first difference is unimportant because the opera
Q̂ projects dynamic quantities onto a half-space orthogo
to the set of spin quantities determined by relation~19!,
which includes any purely lattice dynamic variables. T
specific heat of the spin system at the temperatures b
discussed is much lower than the specific heat of the latt
so that any kinetic processes taking place in the spin s
system influence the lattice dynamics negligibly. This allo
us to assumeVQ(t).V(t) in relation ~65!, i.e., to approxi-
mate the projection dynamics with real dynamics.

The second factorPf(t) plays a fundamental role unde
certain circumstances. We define the average time of a
flop jump by

t f[E
0

`

dt Pf~ t !. ~68!

The autocorrelation function̂V(t)•V(0)&eq for times t
@tmax decays fairly rapidly and in accordance with formu
~67!, the main contribution to the coefficientDsd when inte-
grating over time is made by timest;tmax.

For low-molecular liquids or polymer systems withN
,N* we havetmax!tf , and in relation~65! the slowly vary-
ing function Pf(t) can be assumed to be close to unity f
t!t f . Thus, in the limit discussed relation~65! differs very
little from expression~67!.

Before discussing the other limiting casetmax@tf , N
.N* , we shall use the easily verified identity

1

2

d2

dt2
^r 2~ t !&eq5^V~ t !•V~0!&eq. ~69!
-
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We substitute this into formula~65! and after integrating
by parts, we obtain

D tr5
1

6E0

`

dt^r 2~ t !&eq

d2

dt2
Pf~ t !. ~70!

This expression can be estimated as

D tr.
1

6

^r 2~t f !&eq

t f
. ~71!

Thus, we obtain the first term in relation~4! which was
derived earlier using the density matrix method in the sec
order of perturbation theory in terms of the dipole–dipo
interaction operator12 and leads to the inequalityDsp>D tr

@Dsd for polymer systems withN.N* .
Note that this can be seen from formula~65!. In liquid-

phase systems for timest@10212 s the autocorrelation func
tion ^V(t)•V(0)&eq is negative as a result of a negative co
relation effect caused by inelastic backward reflection
molecules after the first collision with a nearest neighbor~see
Ref. 25, for example!. In polymer systems this negativ
long-lived tail extends to timestmax.tsN

3.4 and in accor-
dance with formula~67!, it determines the self-diffusion co
efficient of the macromolecule. However, for the trans
tional contribution to the spin diffusion coefficient as give
by formula~65!, the contribution of the negative correlation
is truncated at times of the ordert f . Thus, we findD tr

@Dsd, if t f!tmax. The additional contribution associate
with D f in formula ~64! merely sharpens the difference b
tween the spin diffusion and self-diffusion coefficients
polymer systems with fairly high molecular masses.

Expression~66! is essentially the microscopic expressio
of the second term in formula~4! which was derived previ-
ously on the basis of phenomenological concepts. Fur
calculations ofD tr andD f require a detailed analysis of var
ous aspects of the intermolecular spin kinetics contained
Pf(t) andP2(t) and of specific features of existing dynam
models of polymer systems.
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Inelastic scattering of phonons by quadrupole defects with internal degrees of freedom
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We solve the quantum mechanical problem of the inelastic scattering of phonons by a
quadrupole defect in a crystal lattice for the case of solid parahydrogen whose matrix contains
pair complexes of H2 orthomolecules. By employing the pseudospin approximation for
the operator of the energy of quadrupole–quadrupole interaction of the molecules in an orthopair
we derive an effective Hamiltonian that describes the interaction of phonons with a pair
quadrupole orthodefect in the lattice. We set up the scattering matrix and calculate the effective
phonon relaxation timet(v,T) as a function of the frequencyv and the crystal temperature
T. We also find that a pair quadrupole defect, which has a complicated system of levels, can be
replaced by an effective two-level system with temperature-dependent parameters. The fact
that a pair quadrupole orthocluster has internal degrees of freedom results in a resonant scattering
peak near a certain critical temperatureT0. Our estimates for H2 yield T0.6–7 K. Finally,
we discuss the contribution of this mechanism to the low-temperature thermal conductivity of solid
hydrogen. ©1998 American Institute of Physics.@S1063-7761~98!01408-5#
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1. INTRODUCTION

The study of mechanisms of phonon scattering in cr
tals constitutes one of the central problems of solid s
physics.1,2 The main channel of relaxation of the phono
subsystem in a nonconducting medium is the phono
phonon interaction.1,2 This channel includes normal pro
cesses~or N-processes! and umklapp processes~or U-
processes!, whose properties have been thoroughly studie2

There is, however, a broad class of relaxation phenom
that occur because of the interaction of phonons with
structure defects and impurities in the crystal lattice.3 Scat-
tering by point centers~vacancies and interstitial and subs
tutional impurities!, linear defects~dislocations!, and planar
defects ~grain boundaries, stacking faults, and interpha
boundaries! has a strong effect on the thermal conductiv
of the samples, especially in the low-temperature ra
where the intensity of phonon–phonon processes is not
high.

All aspects of the kinetics of the phonon subsystem
come especially important when we study atomic and m
lecular cryocrystals~solidified inert gases and solid hydro
gen, oxygen, nitrogen, etc.! and solid solutions based o
these cryocrystals.4 Most interesting in this series are th
hydrogen and helium crystals, since their observed phys
properties are a consequence of essentially quantum eff
which do not manifest themselves in classical solids. As
example directly related to the topic of the present paper
would like to mention the anomalous temperature beha
of the thermal conductivity coefficientk(T) of solid H2 in
the 1–7 K temperature range.5–8 The curve representing thi
behavior has a peak at.4–5 K, whose nature and also b
havior k(T)}Tm(m.2–3) at temperatures below 5 K a
still topics of discussions.

Hydrogen crystals are formed by diatomic molecu
3031063-7761/98/87(8)/7/$15.00
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each of which is either in the ortho modification (o-H2) or in
the para modification (p-H2). To any finite temperature o
the crystal there corresponds a certain equilibrium concen
tion x of the ortho modification. However, in low
temperature experiments one can prepare H2 crystals with
any ortho–para composition desired, since in the absenc
external perturbations the ortho–para conversion times
extremely long.

Bohn and Mate5 measured the thermal conductivity o
solid H2 at low orthocomponent concentrations and fou
that the height of the low-temperature peak in thek vs. T
curve decreases with increasingx. Further experiments car
ried out by Huebler and Bohn6 and Reynolds and Anderson7

showed that such behavior also holds for samples with h
o-H2 content. Bohn and Mate5 suggested semiempiricalk
vs.T curves, which fit fairly well the experimental data in th
low-temperature range if one assumes that the main pho
relaxation mechanism in this range is the scattering by g
boundaries in polycrystalline hydrogen and the average c
tallite size in the sample decreases with increasingx. Within
this setting, however, the crystallite size is present only a
fitting parameter, since the literature contains no data on
correlation between grain size and orthocomponent conc
tration in H2 crystals.

Ebner and Sung9 attempted to theoretically explain th
anomalous thermal conductivity of H2 by allowing for pho-
non relaxation at single orthomolecules is the paramat
They found that the contribution of this mechanism to t
total thermal conductivity is moderate and that the mec
nism cannot be used to interpret the temperature depend
of k unambiguously. This comes as no surprise, howev
since the interpretation of an orthomolecule as an impurity
the paramatrix of solid hydrogen is largely a matter of tas
An orthoimpurity is really not a structure defect, since
isolated orthomolecule does not differ from the surround
© 1998 American Institute of Physics
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paramolecules either in intermolecular interaction parame
or in mass. A distinctive feature of an orthomolecule is t
finite nuclear spin and quadrupole electric moment. On
other hand, since the intermolecular distances in the H2 crys-
tal are large compared to the size of the molecules, an or
molecule can rotate almost freely at the site it occupies.
timates that use the well-known parameters of the2
molecule4 show that the ‘‘angular velocity’’ of such rotatio
exceeds the Debye frequencyvD of hydrogen by a factor of
1.5. Thus, from the viewpoint of phonon processes,
orthoimpurity is spherically symmetric and spatially isotr
pic, i.e., is practically a paramolecule.

At the same time it is known10,11that an significant num-
ber of orthomolecules are present in the parahydrogen m
in the form of double, triple, etc. clusters, which means t
we must establish their role in bringing about the experim
tally observable thermal conductivity of solid H2. This prob-
lem appears to be even more natural if we note that,
shown by Nakamura,12 the contribution of pair orthocluster
can explain the low-temperature anomalies of the ther
conductivity of solid ortho–para mixtures. A pair of ortho
molecules occupying two neighboring sites of the mat
comprise a pair cluster with its own energy spectrum, wh
differs from the rotational spectrum of a single molecule.
a result, one can expect resonant phonon scattering in
range of temperatures comparable to the distance betw
the levels in an orthopair. It is natural to assume that in
main features this mechanism is similar to the resonant s
tering of phonons by the quasilocal levels of heavy atom
impurities inp-H2 ~see Refs. 13 and 14!.

Kokshenev15 attempted to develop a theory of therm
conductivity of solid hydrogen that takes into account t
effects of inelastic scattering of phonons by pair orthoco
plexes from the start. The theory was then applied to
corresponding experimental data.8 Although there is some
quantitative agreement with the experimental data at 1–
~the theory developed in Ref. 15 neither reproduces nor
plains the peak in thermal conductivity atT.5 K), the cor-
responding calculation is not very consistent. In particu
the contribution of orthopairs to the total phonon relaxat
time was calculated in Ref. 15 witĥtp

21& unjustifiably re-
placed by^tp&

21 before the kinetic equation had even be
solved. After that̂ tp& was arbitrarily increased by a facto
of 5.4 to achieve quantitative agreement with the experim
tal data. In addition to this, the total thermal conductiv
took into account the scattering by crystallite boundaries
by single orthomolecules, with the parameters pertaining
these mechanisms considered fitting parameters. The
come of all this is that the results of Ref. 15 cannot be u
to arrive at definite conclusions concerning the relative r
of orthopairs in the formation of the low-temperature therm
conductivity of solid H2.

Thus, we see that providing a consistent description
the interaction of phonons and quadrupole clusters in cr
crystal matrices is still an important task. The aim of th
paper is to give a rigorous solution of the quantum mecha
cal problem of the inelastic scattering of phonons by a p
orthocomplex in the parahydrogen matrix.
rs
e
e

o-
s-

n

rix
t
-

s

al

h
s
he
en
s
t-

c

-
e

K
x-

r,

n-

d
to
ut-
d
e
l

f
-

i-
ir

2. STATEMENT OF THE PROBLEM

We can describe the anisotropic interaction of two orth
hydrogen molecules with a high accuracy by the quadrup
part of the interaction.4 The corresponding Hamiltonian is

VQ5
3

4

Q2

R5
~35Q1

abQ2
gdnanbngnd

220Q1
abQ2

bgnang12Q1
abQ2

ba!, ~1!

whereQ is the electric quadrupole moment of the orthom
ecule,R is the distance between the two impurity molecule
n5R/R is the unit vector along the line connecting the ce
ters of the molecules, andQj

ab is the operator of the dimen
sionless quadrupole moment (j 51,2 and a,b5x,y,z).
Since theo-H2 molecule is usually in a state with the orbit
quantum numberl 51 ~but with three possible values of th
magnetic quantum numberm521,0,1), it is convenient to
write the operatorQj

ab in the pseudospin approximation,12 in
which

Qj
ab52 1

5~Sj
aSj

b1Sj
bSj

a2 4
3Dab!, ~2!

whereSj is the spin operator withS51.
Below we will be interested in the interaction of th

phonon subsystem and a pair defect. The Hamiltonian of
corresponding interaction can be obtained by the follow
reasoning. LetR0 be the equilibrium distance between th
centers of the two orthomolecules (n05R0 /R0) positioned
at two neighboring lattice sites. AssumingR5R01u, where
u5u12u2 is the relative displacement of the twoo-H2 mol-
ecules from their positions of equilibrium, we expand t
Hamiltonian~1! in powers of the small displacementu. Here
we allow for the fact that a variation ofR in the denominator
of ~1! does not give rise to off-diagonal elements describ
transitions between the various levels of the subsystem c
sisting of two orthomolecules. We ignore this variatio
since it can yield only a correction to elastic phonon scat
ing and is not involved in the inelastic effects we are int
ested in. Thus, we should perform the expansion only for
unit vectorn. As a resultn acquires an incrementdn0 equal
to

dn05w3n0 , w5
1

R0
n03u . ~3!

This increment is a rotation of the system as whole throu
the anglew about the axis directed along the vectorw. The
structure of the Hamiltonian~1! will be preserved if we ro-
tate the vectorsSj through the same angle. Indeed, the ro
tion ~3! corresponds to the operator of a unitary transform
tion to which the vectorsSj are subjected,

U5exp~2 i w•S!, ~4!

whereS5S11S2. SinceSj enters into~1! either in the com-
binationSi•Sj ~invariant under transformation~4!! or in the
combinationSj•n ~transformed intoSj•n0), the Hamiltonian
~1! of quadrupole interaction proves to be invariant under
transformation~4!. The physical meaning of this result is th
rotations~and translations! of a molecule as a whole canno
excite the internal degrees of freedom. What the transfor
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tion ~4! does is separate explicitly the terms in the Ham
tonian that are responsible for excitation of internal degr
of freedom and lead to inelastic scattering of phonons by
orthoclusters. A similar transformation was proposed
Dyson16 for solving problems of quantum field theory.

Thus, at first glance it would appear that within this a
proximation no essentially inelastic effects manifest the
selves. However, we now turn our attention to the fact t
the operator~4! does not commute with the part of th
kinetic-energy operator that describes the translational
tion of the orthomolecules:

Hkin5
1

2M
~ p̂1

21p̂2
2!, ~5!

where thep̂i are the operators of the momenta of the m
ecules, andM is the molecule’s mass. In the final analysis
is the noncommutativity of the operator~5! and the operator
~4!, which diagonalizes the potential energy~1!, that guaran-
tees the occurrence of off-diagonal transitions. Applying
transformation~4! to ~5! and allowing for the fact that

U†p̂j
2U5S 12 i

uj

R0
•~n03S! D p̂j

2S 11 i
uj

R0
•~n03S! D

5p̂j
21

2

R0
p̂j•~n03S!,

we find that

Hkin→H̃kin5U†HkinU5Hkin1DHkin , ~6!

where

DHkin5
1

MR0
~n03S!~ p̂12p̂2!.

We can assume, without loss of generality, that one
the molecules (j 51) of orthohydrogen that form the ortho
pair is at the origin of the coordinate system. Then, in
second quantization representation for the phonon variab
the momentum operatorsp̂j have the form

p̂15
1

A2N
(
k,a

AMvka «a~k!~aka
† 1a2ka!, ~7!

p̂25
1

A2N
(
k,a

AMvka «a~k! exp~ ik•n0R0!

3~aka
† 1a2ka!. ~8!

Here N is the number of sites in the lattice,«a(k) are the
polarization vectors of the phonons, satisfying the condit
«a* (2k)5«a(k), andvka is the frequency of a phonon wit
momentumk and polarizationa, and aka

† and aka are the
phonon creation and annihilation operators. Next it is con
nient to write the operatorS as

S5n0Sz1e1Sx1e2Sy, ~9!

where the unit vectorsn0 andej satisfy the following condi-
tions:

e13e25n0 , n03e15e2 , e23n05e1 .
-
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Allowing for the fact that an orthohydrogen molecule has t
same mass as a parahydrogen molecule and differs on
the fact that it has an intrinsic angular momentum, we c
use Eqs.~6!–~9! and write the total Hamiltonian of the sys
tem as

H5H01DHkin , H05Hph1VQ ,

Hph5(
k,a

vka~aka
† aka1 1

2!, ~10!

DHkin5
1

AN
(
k,a

Vka~aka
† 1a2ka!,

where we have introduced the notation

Vka5Ra~k!S12Ra* ~2k!S2, ~11!

where

Ra~k!5
1

2
Avka

M
~k–n0!~«a~k!–e* !, ~12!

S65Sx6 iSy, e5
1

A2
~e11 ie2! .

In writing ~11! we used the long-wavelength approximatio
since a specific feature of quantum crystals is that their
bye temperatureQD is much higher than their melting poin
Thus, we are always within the low-temperature rangeT
!QD .

3. THE MATRIX OF PHONON SCATTERING BY A
QUADRUPOLE DEFECT

Let us write the equations of motion for the operat
aka . Since the interaction between the pseudospin and p
non subsystems is weak, the effect of one subsystem on
other can be taken into account in the mean-field approxi
tion. Then the equation of motion has the form

i
d

dt
aka5vkaaka1

1

AN
^Vka&. ~13!

Here the angle brackets indicate averaging,^•••&5Tr$r(t)
•••%, with the statistical operatorr(t), which satisfies the
equationi (dr/dt)5@H, r(t)# and the initial condition

r~ t !u t52`5r05
exp~2H0 /T!

Tr exp~2H0 /T!
. ~14!

The initial condition means that att52` the system was in
a state of statistical equilibrium and was described by
Gibbs canonical distribution.

The average valuêVka(t)& to first order inDHkin is
given by the following relationship:17

^Vka~ t !&5^Vka&02 i E
2`

t

dt ^@Vka~ t !, DHkin~t!#&0 ,

~15!
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where^•••&0 indicates averaging with the equilibrium distr
bution function~14!. Extending the integral in~15! over all
values oft and allowing for the fact that in our case we ha
^Vka&050, we obtain

^Vka~ t !&5E
2`

`

dt ^^Vka~ t !uDHkin~t!&&, ~16!

where by^^A(t)uB(t8)&& we denote the retarded two-tim
Green’s function. Plugging~16! into ~13! and using~10!, we
arrive at the following equation foraka :

i
d

dt
aka5vkaaka1

1

N (
p,g

E
2`

`

dt ^^Vka~ t !uVpg~t!&&

3@apg
† ~t!1a2pg~t!#. ~17!

Let us apply the Fourier transformation with respect to ti
to ~17!. Then, bearing in mind~11!, for the Fourier trans-
forms Aka of the operatorsaka we obtain

Aka5DkqDab1
2p

vqb2vka

1

N (
p,g

$Ra~k!Rg* ~2p!

3^^S1uS2&&vqb
1Ra* ~2k!Rg~p!

3^^S2uS1&&vqb
%~Apg

† 1A2pg!. ~18!

The Green’s function in~18! can be calculated by th
standard method:17

^^S2uS1&&V[
P~V!

2p
5

1

2p (
i , j

uSi j
2u2

n i2n j

V2Ei1Ej1 id
.

~19!

Here Si j
65(c i* S6c j ), wherec i and Ei are the eigenfunc-

tions and eigenvectors of the operatorVQ , and n i5exp
(2Ei /T)/Z0, with Z05( i exp(2Ei /T). Similarly,
^^S1uS2&&V5P(2V)/2p. Direct calculations show that th
function P(V) is even and reduces to

P~V!5(
i , j

uSi j
2u2

~n i2n j !~Ei2Ej !

~Ei2Ej !
22V2

. ~20!

If we use~19!, Eq. ~18! becomes

Aka5DkqDab1
P~vqb!

vqb2vka

1

N(
p,g

@Ra* ~2k!Rg~p!1Ra~k!

3Rg* ~2p!#~Apg
† 1A2pg!. ~21!

Similarly,

Aka
† 52

P~vqb!

vqb1vka

1

N(
p,g

@Ra* ~k!Rg~p!1Ra~2k!

3Rg* ~2p!#~Apg
† 1A2pg!. ~22!

The system of linear integral equations~21! and ~22!
with degenerate kernels can be solved by the stand
method.18 For simplicity we ignore the difference betwee
longitudinal and transverse phonons, i.e., we assumevka

[vk5sk, wheres235 1
3(sl

2312st
23), with sl andst the lon-

gitudinal and transverse speeds of sound. As a result
obtain
e

rd

e

Aka5DkqDab1
1

N

Tkq
ab

vq2vk1 id
. ~23!

Here theT matrix has the form

Tkq
ab5

1

N

P~vq!

12B~vq!
@Ra~k!Rb* ~q!1Ra* ~2k!Rb~2q!#,

~24!

where

B~vq!5
P~vq!

2MN (
p

vp
2~p–n0!2

vq
22vp

2
. ~25!

We now average~25! overn0 and replace summation overp
by integration:

1

N (
p

f ~p!5
3

kD
2 E0

kD
dp p2f ~p!,

wherekD is the Debye wave vector. As a result we have

B~v!5
P~v!

2MkD
3 E0

kD
dp p4

vp
2

v22~vp1 id!2
. ~26!

Integrating with respect tovp5sp and using the identity

1

E2v6 id
5P

1

E2v
7 ipd~E2v!, d→10

~hereP is the principal-value symbol!, we finally obtain

B~v!52
gvDP~v!

4 F2

5
1 ipS v

vD
D 5G , g5

vD

Ms2
, ~27!

wherevD5skD is the Debye frequency. In calculating th
principal value of the integral with respect tovp we ignored
v2 in the denominator in~26!, sincev is small compared to
vD .

The T matrix ~24! is linked to the effective relaxation
time tp(k) of phonons in pair complexes averaged over ph
non polarizations through the relationship

1

tp~k!
52

2np

3 (
a

Im Tkk
aa , ~28!

wherenp is the orthopair concentration. Using~24! and~12!
and averaging~28! over n0, we finally get

1

tp~v!
52

npv3

9Ms2
Im

P~v!

12B~v!
. ~29!

To keep the notation concise we have putvk[v. Plugging
~27! into ~29!, we arrive at the following expression for th
relaxation time:

1

tp~v!
52

gnpvD
2

9 S v

vD
D 3

3ImH 1

P~v!
1gvDF2

5
1 ipS v

vD
D 5G J 21

. ~30!

The quantityP(v) in ~30! has a complicated structure~see
Eq. ~20!!. At v50 Eq. ~20! becomes
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P~0!5(
i , j

uSi j
2u2

n i2n j

Ei2Ej
[2

s1~T!

vD
, ~31!

while in the limit v→`,

v2P~v!→2(
i , j

uSi j
2u2~n i2n j !~Ei2Ej ![vDs2~T!.

~32!

By direct computer calculations it can be shown that
the intermediate range ofv-values the functionP(v) is ap-
proximated fairly well by the expression

P~v!5C
v0

v22v0
2

, ~33!

whereC5As1s2 , andv0
25vD

2 s2 /s1.
Actually this approximation corresponds to a situation

which the orthopair, which has a complicated system of l
els, can be replaced by an effective two-level system wh
parameters, however, are functions of the temperature. U
~33!, we arrive at the final expression for the reciprocal
laxation time:

1

tp~u!
5

4npvD

9p

j2u8

~u22bu0
2!21j2u10

. ~34!

Here we have introduced the following notation:

u5
v

vD
, u05

v0

vD
, j5

pg

4
s2 , b5120.1gs1 .

Thus, the expression for the reciprocal time of the phon
scattering by a pair orthocluster is very similar in structure
the corresponding expression for the reciprocal time of p
non scattering by a heavy impurity.19 At the same time, there
are important differences, the principal of which is that t
‘‘resonant frequency’’ and the parameterj in ~34! are
temperature-dependent and the ratiov/vD in ~34! is raised
to a high power.

The dependence of the relaxation timetp on the dimen-
sionless frequencyu is determined by the relationship be
tween three parameters,g, s1(T), ands2(T), with the last
two being temperature-dependent. Using Eqs.~31! and ~32!
and the explicit expressions for the eigenfunctions and eig
values of the operator~1! ~see Refs. 12 and 20!, we can
expresss1(T) ands2(T) as follows:

s1~T!5
2

5

vD

G0
f 1~b!, ~35!

f 1~b!5
e4b

Z0
~12e25b!~713e25b!,

s2~T!540
G0

vD
f 2~b!, ~36!

f 2~b!5
e4b

Z0
~12e25b!~413e25b!,

whereG05(6/25)(Q2/R0
5), b5G0 /T, and the orthopair par

tition function introduced earlier isZ05412e4b12e2b

1e26b. The quantityb(T) in ~34! may be either positive o
negative, depending on the temperature. Clearly, asT→`,
the functionsf 1 and f 2 tend to zero, withu0

2→const andb
-
se
ng
-

n
o
-

n-

→1. Thus, at high temperatures the functiontp
21(u) has a

resonant peak at the frequencyur5u0Ab . The peak’s height
and dimensionless width are, respectively,

tpm
215

4npvD

9pur
2

, dm'
1

2
jur

4 . ~37!

In the limit T→0, the functionsf 1(b) and f 2(b) ~and hence
u0

2) tend to finite values andb becomes b(0)51
20.14g(vD /G0). Hence, the sign ofb(0) is determined by
the parameters of the specific system. Usually we havevD

@G0 ,Ms2 in cryocrystals, so that at low temperaturesb is
negative and there is no resonant scattering.

Thus, we can say that resonant scattering of phonon
a pair orthocluster occurs at temperatures higher than a
tain critical valueT0, which can be found by solving the
transcendental equationb(T0)50 or, which is the same,

s1~T0!5
10

g
. ~38!

As T0 is approached from higher temperatures, bothur and
the width dm of the resonance peak tend to zero, while t
height of the peak increases without limit. Thus, the funct
~34! has a singularity atu5ur only at a single value of the
parametersT5T0. By comparison, the functiontp

21(v), de-
termined earlier in Ref. 15, is essentially singular at all te
peratures: it has temperature-independent delta-function
gularities at frequenciesv5Ei2Ej . Using the valuesG0

;1 K and vd.117 K for solid hydrogen~known from the
literature5!, we find thatT0.6–7 K. This result has an obvi
ous physical meaning: resonant scattering is important o
when the average phonon energy becomes comparable t
separation of levels in the orthoimpurity spectrum.

4. DISCUSSION

The above expression for the reciprocal relaxation ti
for phonons scattered by pair quadrupole orthocomple
makes it possible to take into account the contribution of t
mechanism to the thermal conductivity coefficientk of solid
hydrogen:

k5 1
3CVs2t, ~39!

whereCV is the phonon-gas specific heat. The total effect
mean free time of phonons,t, is determined by the interfer
ence between the normal andU-processes and the scatterin
by the sample boundary, grain boundaries, and impurity c
ters in the crustal. Generally, fort we have the Callaway
formula21

t5^t t&1
^t t /tN&2

^1/tN&2^t t /tN
2 &

, ~40!

in which

1

t t
5

1

tN
1

1

tU
1

1

tB
1

1

tp
,

wheretN and tU refer toN- andU-processes, respectively
andtB is the time of phonon relaxation due to scattering
boundaries. The angle brackets in~40! stand for averaging
with the weighting functionw(q):
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w~q!5Fv~q!

2T G2Fsinh
v~q!

2T G22

,

^•••&5
1

CV
E d3q

~2p!3
~••• !, CV5E d3q

~2p!3
w~q!.

The orthopair concentrationnp in the expression for the
relaxation time can be found from the conditions for equil
rium of the hydrogen orthosubsystem at a given temperat
Let us assume for definiteness that orthohydrogen is pre
in p-H2 either in the form of single molecules~of concentra-
tion ns) or in the form of pair clusters; we ignore the fact th
the lattice may contain clusters consisting of large numb
of orthomolecules. Thus, the total average concentration
molecules of the ortho-modification in the crystal isx5ns

12np . The value ofnp can be obtained from the following
considerations. Letm be the chemical potential of the sy
tem. Then at low concentrationsx the condition that the free
energy must be a minimum inm yields

x53em/T1z Z0e2m/T,

wherez is the coordination number. Here the first term
the right-hand side describes the concentration of sin
orthomolecules, with the factor 3 being the partition functi
of a single impurity that has a three-fold degenerate le
E50 ~if the splitting due to the crystal field is ignored!. The
second term corresponds to the concentration 2np of the
orthomolecules that form pair clusters. As a result we ha

np5
x

2a
~A11a21!2, a5

4

9
xzZ0 . ~41!

The same expression for the pair-defect concentration ca
obtained from the formulas of Refs. 10 and 11, with the o
difference thata in ~41! is set ata5(4/9)Z0Pp /Ps

2 , where
Ps5(12x)z is the probability of an orthomolecule being
single impurity, andPp512Ps is the probability of a mol-
ecule being a constituent of a pair defect. This expression
a reduces to that in~41! if we put x!1. Similar calculations
can be carried out in the case where in addition to pairs
system has clusters consisting of large numbers of partic

Now let us use~34! and~41! to calculate the temperatur
dependence of the average reciprocal relaxation time^tp

21&
at pair orthocomplexes. This parameter is proportional to
total cross section of phonon scattering by a pair cluster
hence gives an unambiguous idea about the properties o
relaxation mechanism under investigation. The results of
numerical calculations are depicted by the solid curve1 in
Fig. 1. For the sake of comparison, in the same diagram
give the temperature curve of the average reciprocal re
ation time^ts

21& at single orthomolecules that has been co
structed via the formulas of Ref. 9~curve2!, and the function
^tp

21& reproduced from the data of Ref. 15~curve3!. All of
the curves are calculated for the same value of the con
tration of the orthocomponent, 5%. It can be seen that
quantity ^tp

21& we calculated is two orders of magnitud
smaller than the valuêts

21&. A direct computer calculation
of the thermal conductivity~Eq. ~39!! of a solid ortho–para
solution that uses formula~34! for the relaxation time and
formula ~41! for np shows that the contribution of orthopai
to the thermal conductivity of H2 in theT,5 K range proves
-
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to be very small even in comparison to boundary scatter
effects, while at higher temperatures it plays an insignific
role in comparison to the dominant contribution ofN- and
U-processes.

Generally speaking, this results has an obvious phys
meaning. Indeed, a pair orthocluster in the zeroth appro
mation is simply a scattering orthocenter of double streng
It is clear from general considerations that the effects of
citation of the internal degrees of freedom, effects that a
because of the perturbation of the spectrum due to the in
action of the single molecules comprising the stable ort
pair, constitute only a small correction to the double con
bution of the single molecules at the neighboring sites of
matrix. Transitions in the orthocluster spectrum occur b
cause the energy of the quadrupole–quadrupole interac
VQ and the translational part of the phonon kinetic energy
not commute. At low temperatures, long-wavelength lo
energy phonons dominate in the lattice, which in the fin
analysis leads to a small cross section of the inelastic s
tering of the photons by orthopairs. ForT,T0 the phonon
energy is insufficient for exciting resonant transitions, wh
for T.T0 resonant scattering is possible, but in this range
contribution is suppressed by the already substantial co
bution of N- andU-processes.

However, in this connection we must mention the r
markably large value of̂ tp

21& obtained by Kokshenev in
Ref. 15, exceedinĝts

21& in the 1–5 K range by a factor o
100. No less remarkable is the temperature dependenc
the reciprocal inelastic-scattering time: it has a peak near
and rapidly decreases with increasing temperature, whil
would seem that the probability of inelastic processes sho
increase. The explanation is that when calculating the de
mation potential generated by phonons for the pair orthoc

FIG. 1. Temperature curves for the average reciprocal relaxation time
the inelastic scattering of phonons by pair orthoclusters in solid hydroge
an orthocomponent concentrationx55 %: curve1 represents our results an
curve3, Kokshenev’s results.15 Curve2 represents the temperature behavi
of the reciprocal time of relaxation at single orthomolecules calculated fr
Ebner and Sung’s data.9 All times are given in units of the reciprocal Deby
frequency.
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ter, Kokshenev15 allowed only for the part of the potentia
that is related to variations in the orientation of the vectorn.
What he overlooked was the fact that under rotation of
orthopair as a whole through an anglew the vectorsSi also
acquire increments, and this is true even if the orthom
ecules do not change their orientation with respect ton. If
the perturbation potential is now calculated with allowan
of the discarded terms, it proves to be zero to within ter
that are a reflection of the change in the bond length in
orthopair and contribute nothing to the inelastic scatter
~as noted earlier!. Since Kokshenev15 allowed neither for the
corrections to elastic scattering related to changes inR0 nor
for the termDHkin ~see Eq.~6!!, the approach he used mu
yield no inelastic scattering by pair clusters in the hydrog
paramatrix.

Thus, our study suggests that the low-temperat
anomalies in the thermal conductivity of solid hydrogen o
served in experiments probably cannot be explained so
by the contribution of the scattering of phonons by orthom
ecules. At the same time it is obvious that the thermal c
ductivity of the paramatrix depends significantly on the co
centrationx of the orthomolecules present in the matr
Hence the natural question is: Can orthoimpurities have
indirect effect on other relaxation mechanisms? In particu
Bohn and Mate5 proposed a phenomenological model a
cording to which the contribution of boundary scattering
creases monotonically withx. But why then does an increas
in orthoimpurity concentration lead to an increase in the s
face area of the boundaries, i.e., to a decrease in the cry
lite size in the sample? An alternative approach is to all
for the scattering by other structure defects, e.g., dislo
tions. To check whether this is the case we did a prelimin
calculation of the contribution of dislocations to the low
temperature thermal conductivity of the H2 matrix, using the
well-known results of Klemens.3 If we assume that the dis
location densityr increases with the orthomolecule conce
tration, then we can give a satisfactory description of
low-temperature branch ofk(T) as a function ofx, and asx
changes from 0.05 to 5%,r increases by a factor of approx
mately five, retaining a reasonable order of magnituder
;108–109 cm22. For comparison we note that in the sam
orthocomponent concentration interval the size of the cr
tallites predicted in Ref. 5 decreases by a factor of appro
mately 50. Of course, we still do not know the physic
reasons for a relationship betweenr andx, the more so that
the defect structure of samples used in measuring the
conductivity is not monitored and the literature has no d
on the density of dislocations in H2. Nevertheless, using th
numerous and well-documented data on the disloca
structure of classical HCP-crystals with impurities,22,23 we
can make reasonable assumptions concerning the increa
dislocation density and number of stacking faults in so
hydrogen with the orthocomponent concentration in the pa
matrix. Naturally, these ideas are only qualitative, and es
lishing the role of lattice defects in thermal conductivity r
quires further studies.

In conclusion we note that our results are of a gene
nature and can be used to examine the kinetic properties
only of solid hydrogen but of other molecular cryocrystals
e
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well. The real systems in which the mechanism discus
above may strongly influence the observed low-tempera
thermal properties are, in particular, solid solutions of t
molecules CO2, CO, N2, and N2O in argon and krypton
matrices.4 All these impurities have large quadrupole elect
moments, so that, e.g., the fraction of quadrupol
quadrupole interaction amounts to more than 60% of
total energy of the intermolecular interaction of carbo
dioxide impurities in a Ar–CO2 solution, and it can be ex
pected that the mechanism discussed in this paper provid
considerable contribution to the thermal conductivity of su
mixtures. There is also another class of problems to wh
our results can be applied. The internal degrees of freed
of quadrupole clusters can be excited not only by phon
but also by fields of inner stresses generated by defects in
crystal structure, e.g., dislocations. Thus, inelastic relaxa
at quadrupole defects must manifest itself not only in
thermal properties of solid cryosolutions but also in the m
chanical properties. Allowing for this fact may be importa
in interpreting some experimentally observable effects, s
as the thermomechanical effect in the thermal expansion
solid solutions of the Ar–N2-type.24
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Exact, complete, and universal continuous-time worldline Monte Carlo approach
to the statistics of discrete quantum systems

N. V. Prokof’ev,* ) B. V. Svistunov, and I. S. Tupitsyn

Kurchatov Institute, 123182 Moscow, Russia
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Zh. Éksp. Teor. Fiz.114, 570–590~August 1998!

We show how the worldline quantum Monte Carlo procedure, which usually relies on an
artificial time discretization, can be formulated directly in continuous time, rendering the scheme
exact. For an arbitrary system with discrete Hilbert space, none of the configuration update
procedures contain small parameters. We find that the most effective update strategy involves the
motion of worldline discontinuities~both in space and time!, i.e., the evaluation of the
Green’s function. Being based on local updates only, our method nevertheless allows one to
work with the grand canonical ensemble and nonzero winding numbers, and to calculate any
dynamical correlation function as easily as expectation values of, e.g., total energy. The
principles found for the update in continuous time generalize to any continuous variables in the
space of discrete virtual transitions, and in principle also make it possible to simulate
continuous systems exactly. ©1998 American Institute of Physics.@S1063-7761~98!01508-X#
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1. INTRODUCTION

Quantum Monte Carlo~MC! simulation is the most pow
erful available method, if not the only one, of obtaining a
curate results for complex systems, where analytic soluti
are not possible and exact diagonalization methods do
work because of the enormous Hilbert space. However, m
MC schemes are far from ideal, and suffer from significa
shortcomings. These include~see, e.g., the most recent r
view article Ref. 1!

a! systematic errors due to artificial time discretizatio
which in most schemes scales as (Dt)2, whereDt is the time
slice width;

b! restriction of the simulation to the zero winding num
ber sectorM50 ~a configuration in which world lines con
nect the initial stateua1 ,a2 ,...,aL& at t50 to the final state
ug1 ,g2 ,...,gL& at t5b, with the set$g i% being obtained by
cyclically permuting $a i% M times ~and all topologically
equivalent configurations!, is said to have a winding numbe
M!. Such a restriction results in systematic errors too, wh
however vanish with increasing system size. Also, one lo
the ability to study topological excitations in the system, e
vortices or supercurrent states;

c! working with a fixed number of particlesN5const
~canonical ensemble!;

d! the critical slowing-down problem, which arises clo
to a second-order phase transition. This problem is clos
related to constraints~b! and ~c!, and is indicative of ineffi-
cient procedures used to update configurations with la
length scales;

e! slow accumulation of statistics when calculating co
relation functions of operators not present in the init
Hamiltonian, e.g., the Green’s function;

f! small acceptance rates in update procedures. Th
may be due to small parameters present in the formulatio
the MC scheme, or systems described by Hamiltonians w
3101063-7761/98/87(8)/12/$15.00
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different energy scales~e.g., when the hopping matrix ele
ment t is much smaller than the typical potential ener
changeU@t), or the necessity of global Metropolis update
which arise in certain cluster-update algorithms;

g! anomalous dependence of the computation time
system size~due to self-averaging effects in the thermod
namic limit, the computation time required to achieve giv
accuracy is expected to be system-size independent!;

h! a notorious sign problem, which emerges when
configuration weight is not positive definite. Since we do n
see any reasonable solution of the sign problem in the g
eral case, in what follows we exclude it from the discussi

To eliminate some of these shortcomings, a number
different MC schemes were developed. Unfortunately, no
of the existing schemes succeeded in solving all of th
~leaving the sign problem aside! in the general case: there a
extremely efficient algorithms which are far from univers
while the efficiency of existing universal algorithms is f
from high for a large number of problems.

The standard worldline algorithm is based on imagina
time discretization and utilizes the small parametertDt!1
in an approximate treatment of noncommuting operators
the Hamiltonian, known as Trotter break-up.2,3 Physical in-
tuitiveness and easy programming probably make
method the one most widely used. On the other hand,
weak points range over the whole list from~a! to ~f!, the
most severe ones being~e! and ~f!.

In the worldline algorithm, one describes the configu
tion by specifying the system stateuak& at all time slicestk

5kDt, wherek50,1,...,Kb and tKb
51/T[b. The system

state is then conventionally defined in the basis set in wh
the potential energy of the system is diagonal, i.e., in the
representation. Let us consider, as a typical example,
Hamiltonian of interacting particles on a lattice
© 1998 American Institute of Physics
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H52t(̂
i j &

ai
†aj1(

i j
Ui j ninj , ~1!

whereai
† creates a particle at sitei, t is the hopping matrix

element,ni5ai
†ai , and ^ij & denotes nearest-neighbor site

From now on, we call points in time at which the syste
changes state ‘‘kinks.’’ The typical separation in time b
tween two adjacent kinks at the same site is of order 1/t and
independent ofDt, so that for smallDt there are some
1/(tDt)@1 time intervals between them.

The acceptance rate of the variation suggesting crea
of a new kink–antikink pair is proportional to the square
the small parameter (tDt)2. On the other hand, when th
MC procedure suggests shifting an already existing kink
the nearest point in time, the corresponding variation of
configuration is accepted with probability;O(1). Thus, on
average, by selecting different random time slices, it ta
some 1/(tDt)2 attempts to create a new kink–antikink pa
and 1/(tDt) attempts to move a kink to the nearest positi
in time. Still, the updated configuration is only slightly di
ferent from the previous one, and expectation values ca
lated before and after the variation are strongly correla
An uncorrelated contribution of the given configuration fra
ment is obtained by shifting the kink a distance of order 1t,
which requires some 1/(tDt)3 operations, since the kink
shift process is diffusive in nature. This means that the au
correlation time in the standard worldline algorithm grow
}(Dt)23 even in the absence of critical slowing dow
Since all update procedures are local, the algorithm is sub
to critical slowing down near the transition temperature.

In order to calculate the Green’s functionG ( i ,t), two
worldline discontinuities are inserted at time slicest150
andt25t ~in other words, one extra worldline is inserted
or removed from the interval@t1 ,t2#).3,4 One then probes
different configurations using standard update procedu
and collects statistics in ad-dimensional histogram, which
describes the spatial separationi between the discontinuities
The length of the time interval is then changed, and the sa
calculation is repeated. One MC step, i.e., the numbe
update operations performed between successive ‘‘meas
ments,’’ whereupon another point is included in the statis
of the calculated quantity, is proportional toLdb, whereLd

is the number of lattice sites considered. Thus, it requ
about Ldb operations to include only one point in the (d
11)-dimensional spacetime histogram forG.

In a sense, the standard worldline procedure of calcu
ing G ( i ,t) has an anomalous dependence onN andb, since
it takes at least (Nb)2 operations to update the whole hist
gram ~typically G decays in space and time, and large sc
behavior requires much more computation!. We note that
winding numbers and the grand canonical ensemble ave
can be incorporated, in principle, in the worldline algorith
It is sufficient to consider separate contributions to the s
tistics ofG ( i ,t) wheni 5ML andt5nb with integerM and
n. However, in practice, only small systems at rather h
temperatures can be considered using this algorithm.

The determinant method based on the Hubba
Stratonovich transformation5–7 also uses the discrete-tim
Trotter break-up, and thus becomes more and more in
.
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cient due to long autocorrelation times whenDt→0 ~points
~a! and ~f! above!. It has an important advantage over th
worldline method in calculating the Green’s function, since
works with the grand canonical ensemble. However with
creasing system size, the calculation time scales asL3 ~point
~g!! and some of the procedures become ill-conditioned
low temperatures.

Another technique allowing Green’s function calcul
tions is called Green-function MC~or, more generally, the
projection operator method!.8 It is applicable at zero tem
perature only, and the final result forG ( i ,t50) depends on
the trial wave function~we are not aware of whether it i
possible to calculate the time dependence ofG ( i ,t) by this
method!.

The stochastic series expansion~SSE! technique,1,9,10

which stems from the Handscomb’s method,11 relies on the
direct Taylor expansion of the statistical operator. Th
scheme is exact~contains no systematic errors!. SSE has
clearly demonstrated that time discretization is an artific
trick that is not at all necessary for MC simulation. Since
elementary update in the SSE scheme is equivalen
roughly 1/(tDt)3 updates in the standard worldline metho
it results in a significant drop in computation time for hig
precision calculations. The rest of the problems, i.e.,~b!–~f!,
survive in the SSE approach~point ~f! still applies, because
by expanding in powers of the full Hamiltonian one has
compare weights corresponding to the kinetic- and poten
energy terms, and if, e.g.,U@t in the Hamiltonian~1!, then
small acceptance rates appear in the update procedu!.
Still, away from the transition point, for large systems at lo
temperature, for whichU;t, the SSE method is superior i
evaluating basic thermodynamic properties like the total
ergy and density—density or current—current correlat
functions.

A qualitatively new class of extremely efficient MC
schemes12 has been developed in recent years.13–18 These
schemes are based on the so-called loop cluster up
~LCU! algorithm, which performs nonlocal updates f
worldline loops with sizes as large as the system itself. Ap
from solving the problem of critical slowing down, it als
allows one to work in the grand canonical ensemble and w
nonzero winding numbers. From this method we learn t
problems ~b!, ~c! and ~d! can be circumvented. Unfortu
nately, the LCU algorithm, as far as we know, is not unive
sal. It applies to spin systems and to hard-core Hubbard m
els, but was never formulated for the general latt
Hamiltonian, like interacting soft-core bosons with arbitra
Ui j , arbitrary density~chemical potential!, or on-site disor-
der. Another shortcoming of the LCU, which in a sense c
also be called nonuniversality, is that it does not admit o
universal code. It should be noted that LCU allows for co
siderable generalization to the cases of external magn
field and disorder, but generally speaking the cost is l
efficiency because of the exponentially small accepta
rates for large loops1!.

It is shown in Ref. 19 how to build a path integral i
continuous time for quantum systems in a discrete basis.
configuration is specified by transition times and syst
states before and after the transition. Within this descript
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one can formally think about taking the limitDt→0 in the
standard approach. However, to implement this descrip
one has to formulate the update process. In the stan
worldline algorithm, one of the basic procedures is gene
tion of new kink–antikink pairs when system evolution on
given site changes fromua&→ua&→ua& to ua&→ugÞa&
→ua&. In the continuous limit, the acceptance rate for suc
variation vanishes as (Dt)2, and thus the problem of quali
tatively new update principles arises.

Recently, two independent continuous time schemes
lizing the ideas of Ref. 19 were developed.18,20 Beard and
Wiese18 find that with the LCU algorithm, one can go d
rectly to the continuous-time limitDt→0, thus rendering the
LCU algorithmexact.

The general solution to the problem of configuration u
date in continuous time is found in Ref. 20. The resulti
continuous-time worldline~CTWL! method is exact, and like
SSE, is 1/(tDt)3 times more efficient than finite-Dt local
schemes. It also completely eliminates problem~f!, since
none of the procedures relies on small parameters~potential
energy is accounted for in the exponent, and one does
have to weight relative contributions to the statistics of
potential and kinetic energy terms, as happens in SSE!.

In its original formulation, the CTWL approach did no
solve problems~b!–~e!, and was tested only on a simp
single-particle Hamiltonian.20 In the present article, we
present a complete description of the CTWL approach to
statistics of arbitrary many-particle system with discrete H
bert space. We demonstrate that it enables one to solve p
lem ~e! in a physically intuitive way by formulating thelocal
update procedures in terms of the motion of two worldli
discontinuities~in what follows we call them ‘‘worms’’! in
space and time, i.e., in terms of a calculation of the Gree
function. During one MC step~consisting ofNb/t opera-
tions! the whole histogram forG ( i ,t) is updated, which
means thatG is calculated as efficiently as, say, the to
energy, and is not affected by point~g!. Since
G ( i 5@MxLx ,M yLy ,...#,nb) with integerMx , M y ,... and
n describes a system withn extra particles and winding num
bers$M%, we are working in the grand canonical ensemb
This solves problems~b! and ~c!.

Closer examination of the loop building rules14,18 for the
Heisenberg Hamiltonian shows their remarkable similarity
the evolution of an extra worldline segment. The crucial d
ference is that only closed loops are considered by the L
algorithm, while our scheme considers all the intermedi
configurations as well, and utilizes them for the Gree
function calculation. Working in the extended configurati
space, which includes discontinuous worldlines, we use lo
Metropolis21 updates only. However, when discontinuiti
annihilate, and we return to the configuration space of clo
worldlines, the net result of the update is of global charac
Since CTWL with ‘‘worm’’ updates effectively mimics
single-loop LCU, we may hope that it possesses all the
markable features inherent in LCU, and in particular tha
solves, or at least softens, the problem~d!.

To summarize, we propose a method which is exa
complete ~allows calculation of any correlation function!,
and universal~applies to arbitrary quantum systems with d
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crete Hilbert space, and enables one to write a unified co
that is simultaneously applicable to lattice bosons and a
trary spins, with arbitrarily long-range interactions and d
order!. The sign problem now becomes the only stumbli
block to making quantum MC an ‘‘ideal’’ computational too
for studying complex systems.

This paper is organized as follows. In Sec. 2 we form
late the general principles of the continuous-time worldli
approach. In Sec. 3 we introduce the update procedures
we find to be the most effective and sufficient for simulati
of the quantum statistics of many-particle systems. In Se
we demonstrate the advantages of the new method by
senting some results that cannot be obtained by any o
MC approach: the Green’s function and the critical index
the 1-D boson Hubbard model at the quantum critical poi
and the low-energy properties of the strongly disorde
Bose glass phase. In Sec. 5~and Appendix A! we discuss the
feasibility of increasing the efficiency of our method in th
case of long-range interactions, and consider the feasib
of generalizing the method to continuous systems.

2. GENERAL PRINCIPLES

Let H0 andV be the diagonal and off-diagonal parts
the HamiltonianH in a chosen representation correspond
to the full set $a% of eigenstates ofH0 , with H0ua&
5Eaua&. The statistical operator can then ordinarily be r
lated to the Matsubara evolution operators in the interaction
picture, i.e., we writee2bH5e2bH0s, with

s512E
0

b

dt V~t!1...

1~21!mE
0

b

dtm¯E
0

t2
dt1V~tm!¯V~t1!1..., ~2!

whereV(t)5etH0Ve2tH0. Without loss of generality and in
accordance with typical forms of Hamiltonians of interest,V
can be written as a sum of elementary termsQs , whose
action on any function from the set$a% results in another
function from this set:

V5(
s

Qs , Qsua&52qga~s!ug& ~g5g~s,a!!. ~3!

SinceV is Hermitian, for anys in the sum~3! there exists an
s8 such thatQs85Qs

† . We rewrite Eq.~2! in components
~below Eag[Ea2Eg):

sag5dag1(
s
E

0

b

dt qag~s!etEag1...

1 (
s1 ,...,sm

E
0

b

dtm¯E
0

t2
dt1 qan~sm!

3etmEan...qlg~s1!et1Elg1... . ~4!

Note that there is no additional summation over the indi
of the intermediate complete sets~labeled by Greek letters!,
since these are defined in a unique way by configuration
(s1 ,s2 ,...,sm).
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We confine ourselves to the case of finite-range inter
tion, which is defined by the requirement that for each te
s1 of elementary operators$Qs% there exists only a finite
number of termss2 for which the condition

@Qs1
~t1!,Qs2

~t2!#50 ~5!

is not met. In finite-range interactions, the structure of
series~4! is drastically simplified, the simplification being o
crucial importance for practical realization of our algorithm
From ~5! it follows that up to an irrelevant change in th
indexing of energies and matrix elements, one can ignore
chronological order ofQs1

(t1) andQs2
(t2) in the evolution

operator.
This suggests representing a general term of the se

~4! in the following form. First, we introduce the notion of
‘‘kink of type s,’’ which is characterized by a timet, a ma-
trix elementqag(s), and a diagonal energy differenceEag .
The former two we refer to as parameters of the kink. It
essential that~i! to obtain parameters of a kink one need n
know explicitly the whole stateua&, or ug&—local information
is enough;~ii ! to specify a particular structure of a term
Eq. ~4!, including the chronological order of all noncommu
ing operators, it suffices to specify associated with each k
the neighbors, i.e., the noncommuting kinks nearest in ti

Now our goal is to describe in general terms a stocha
process that directly evaluates Eq.~4!. For simplicity, we
assume that allqab(s) are positive real numbers.~In many
particular alternative cases, a straightforward generaliza
is possible, but usually at the expense of convergence.! Sum-
mations and integrations in Eq.~4! then can be regarded, u
to a normalizing factor, as an averaging over the statistic
different configurations of kinks, each configuration bei
defined by a certain number of kinks of certain types, th
associations and particular positions in imaginary time. T
Monte Carlo process should examine these statistics by
erating different kink configurations in accordance with th
weights. The global process will consist of a number of
ementary subprocesses, each being responsible for ce
modifications of a particular type.

An update procedure of a general type should invo
subprocesses of creation and annihilation of kinks. Clea
the qualitative difference between discrete- and continuo
time QMC schemes is associated with processes of just
kind. To introduce the general principles of construction
subprocesses that change the total number of kinks, we
sider some particular~but still rather rich! class of elemen-
tary transformations~which seems to be sufficient for a
practical purposes!. By an elementary transformation w
mean a subprocess that either only creates or only annihi
a certain number of kinks. The set of elementary subp
cesses can be decomposed into self-balanced creat
annihilation pairs. Our task then is to specify the structure
creation and annihilation subprocesses, and to derive the
ance equation that would guarantee that the statistics ge
ated by each pair of subprocesses does really correspon
that introduced by Eq.~4!.

Let some subprocess createn kinks of given type
s1 ,s2 ,...,sn , the temporal positions of the kinks being spe
c-
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fied by then-dimensional vectort5$t1 ,t2 ,...,tn%. In the
most general case, the creation procedure involves two s

First, one considers creatingn new kinks attPG, where
G is a certain region in then-dimensional space of time
t1 ,t2 ,...,tn . The probability densityW(t) of choosing a
given t is, generally speaking, arbitrary, providedW(t) is
nonzero at every physically meaningful configuration
kinks.

In the second step, one either accepts~with probability
Pacc(t)) or rejects the suggested modification.

The annihilation procedure is much simpler. Then kinks
of given types1 ,s2 ,...,sn and withtPG are either removed
~with probability Prem(t)) or remain untouched.

The equation of balance for the given pair of subp
cesses reads

A0 pcW~t!Pacc~t!dt2dAn~t!paPrem~t!50. ~6!

Here A0 (An(t)) is the probability~probability density! of
finding a configuration without the specifiedn kinks ~with
the specifiedn kinks at the givent!. We have also intro-
duced the probabilitiespc andpa of addressing the creatio
and annihilation subprocedures. In the next section we sh
how it can turn out quite naturally that these probabilities
not coincide.

The statistical interpretation of Eq.~4! implies

dAn~t!

A0
5dt)

j 51

n

q~sj !exp~DEjt j !, ~7!

whereq(sj )[qa jb j
(sj ) andDEj[Ea j

2Eb j
. Combining~6!

and ~7! we obtain the necessary and sufficient condition
the pair of subprocesses to be self-balanced:

W~t!Pacc~t!

Prem~t!
5R~t!,

R~t!5
pa

pc
)
j 51

n

q~sj !exp~DEjt j !. ~8!

Given W(t), the condition~8! is satisfied, e.g., by the fol
lowing obvious choice ofPacc andPrem.

Pacc~t!5H R~t!/W~t!, if R~t!,W~t!

1, otherwise
, ~9!

Prem~t!5H W~t!/R~t!, if R~t!.W~t!

1, otherwise
. ~10!

From ~9! it can be seen that there is a certain reason
choosingW(t)}R(t), as in this casePacc becomes indepen
dent oft, and the accept—reject decision can be made be
suggesting a particular configuration, thus saving compu
tional time. However, if the structure of the functionR(t) is
complicated, the numerical generation of the correspond
distribution will be very expensive. In this case it is better
takeW(t)}R̃(t), whereR̃(t) is some ‘‘coarse-grained’’ ap
proximation toR(t) with a simple form.

We do not consider here a general theory of subp
cesses that do not change the number of kinks, since
basically the well-known theory of taking multidimension
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integrals by standard Monte Carlo procedures. Particular
amples of such subprocesses can be found in Ref. 20 an
the next section.

The foregoing approach does not involve any expl
truncation of the series~4!. One might wonder, however
what the effect of implicit truncation in the practical realiz
tion of the process would be, due to the finite size of
computer memory. To this end we note that even for sim
lations of many-particle systems, where the typical num
of kinks Nkink ~that is, the typical number of terms in th
series~4!! that contribute to the final result is really larg
and one might expect the memory/accuracy problem, the
fect can be easily made absolutely negligible. Indeed, fr
the Central Limit Theorem, it follows that the number
kinks in significant configurations has a Gaussian distri
tion with the peak atN̄kink and a half-width of orderAN̄kink

~cf. Ref. 9!. If one just reserves at least twice as mu
memory as necessary to describe the configuration withN̄kink

elements, then during a computation spanning the age o
Universe, the system will not fluctuate to states which can
be fit into memory. The implicit truncation error thus can
made astronomically small.

3. UPDATE PROCEDURES

A. Kink motion

Let us first consider update procedures that are strai
forward generalizations of those known in the discrete-ti
worldline algorithm, and work with closed trajectories on
The simplest process involves transformations that do
change the number of kinks, but change their types, t
positions, and temporal ordering,20

^auQa1
~ta1

!Qa2
~ta2

!...Qan
~tan

!ug&

→^auQb1
~tb1

!Qb2
~tb2

!...Qbn
~tbn

!ug&. ~11!

The number of operators involved in the transformatio
their types, and time positions are not constrained, exc
that the two configurations have nonzero weight. Obviou
one could suggest many different realizations of Eq.~11!,
and some might work more efficiently than others, depe
ing on the system. Here we describe the procedure ca
‘‘kink motion;’’ other procedures have too much in commo
to be described separately, and allow trivial modification

To move a kink, we first select it at random from the l
of existing kinks and decide on the time interval to be co
sidered. Suppose that we have chosen a transition desc
by (Q0 ,t0). We then find kinks of the same type that a
nearest in time~both to the left and to the right oft0), i.e.,
Q0 or Q0

† , and consider their timest1,t0 andt2.t0 as the
boundaries of the time ‘‘window’’ transformed by this pro
cedure~in certain configurations at high temperature, it m
happen that (t1 ,t2)5(0,b)). It is allowed to have any num
ber of kinks of different typesQaÞQ0 ,Q0

† within (t1 ,t2).
Thus the typical initial configuration has the form

...ut1
Qa1

~ta1
!Qa2

~ta2
!...Q0~t0!...Qan

~tan
!ut2

..., ~12!

~as explained above, one has to consider only those k
which do not commute withQ0).
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The second step is to analyze all possible configurati
obtained from~12! by removingQ0 from point t0 and in-
serting it at arbitraryt8P(t1 ,t2). We keep the time posi-
tions and the chronological ordering of all the other operat
Qa1

,Qa2
,...,Qan untouched. The new position of the s

lected kinkQ0 in time is decided according to the statistic
weight of the final configuration as defined by Eq.~4!. This
is done in complete analogy with the classical MC proced
of taking multidimensional integrals.

The acceptance rate of the kink motion procedu
is unity, since the differential measure of the initial co
figuration is zero. In this way, all noncommuting kink
in the Hamiltonian ~except kink–antikink pairs,
which are dealt with in the next subsection! can
change places. In dimensionsd.1, the kink motion
procedure must be supplemented with a ‘‘local loop
procedure, which generates small loops in real spa
e.g., by replacingQi→ i 1g1

(t1)Qi 1g1→ i 1g11g2
(t2)→Qi→ i

1g2
(t3)Qi 1g2→ i 1g11g2

(t4), where g1 ,g2 are the neares
neighbor indices.

B. Creation and annihilation of kink–antikink pairs

In this subsection we make use of the general theory
Sec. 2 and explain how the elementary procedure of crea
and annihilation of kink–antikink pairs is organized in pra
tice. An important new principle realized in our algorithm
the possibility of selecting different update procedures w
certain probabilities~see also Appendix A!. These probabili-
ties,pa andpc , are at our disposal, and if necessary, can
used to ‘‘fine tune’’ the efficiency of the MC process as
whole. The most natural starting point for the update is
address at random some configuration fragment. It can
characterized by the kinkQ0(t0), or by the system state
ua( i 0)& between the two adjacent kinks that change this s
~in computer memory, allua( i 0)& between kinks are as
signed labels; the configuration itself is described as a lin
graph by specifying nearest-neighbor associations~in space
and time! between the labels!. We choose the latter varian
and address site labels. Thus the probability of applying
update procedure to a given fragment is}1/Nlab whereNlab

is the total number of labels characterizing the initial co
figuration. By inserting~deleting! n extra kinks, we increase
~decrease! Nlab by

(
j 51

n

mQj
,

wheremQj
gives the number of states changed by the k

Qj . Thus, the ratiopa /pc in Eq. ~8! is proportional to

NlabY S Nlab1(
j 51

n

mQj D ,

when addressing the creation ofn kinks, and

S Nlab2(
j 51

n

mQj D Y Nlab,

when addressing the annihilation procedure.
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To fix the values ofpa andpc , we count the number o
possible kink–antikink processes that can be applied t
given fragment. This number is denoted byNproc. The sim-
plest choice is then to assign equal weight, 1/Nproc to all
possibilities. For example, if we consider a model with t
nearest-neighbor hopping in 1D, then there are three poss
bilities for the site stateua( i )&: to insertQi→ i 11Qi 11→ i or
Qi→ i 21Qi 21→ i and to delete a pair of kinks that change th
state to the left and to the right in time, provided they form
kink–antikink pair~i.e., are of theQi 61→ iQi→ i 61 type!. In
this casemQj

52 as well, and we finally have

pa

pc
5

Nlab

Nlab14
~creation!;

pa

pc
5

Nlab24

Nlab
~annihilation!. ~13!

Obviously, in the thermodynamic limit and at low temper
ture, these ratios are very close to unity. Again, this is onl
particular example; other choices may prove to be more
ficient under certain conditions.

Once the configuration fragment and update proced
are selected, we proceed along the lines described in Se
Here we would like to comment on the choice of probabil
densityW(t). It would be perfect from the acceptance ra
point of view to takeW(t)}R(t). However, this can turn
out to be a very expensive procedure. To illustrate the po
consider a configuration fragment of lengtht l ,r5t r2t l .
Due to the large interaction radius between particles, an
fective field acting on updated states can change many ti
during t l ,r . If the number of time slices thus induced on t
interval (t l ,t r) is Nt l ,r

@1, then complete parametrization o
the R(t) function will require calculation of theNt l ,r

(Nt l ,r

11)/2 partial probabilities, according to the number of wa
one can distribute two kinks amongNt l ,r

time subintervals.
The solution of the problem lies in choosingW(t)

5W(Ē,t), whereW(Ē,t) is an analytic function with the
same properties asW(t), controlled by a parameterĒ that is
used to minimize the variance ofuW(Ē,t)2R(t)u. The most
obvious physical choice ofĒ is the mean field potential act
ing on the updated states duringt l ,r from the rest of the
system

exp~2Ēt l ,r !5R~t l ,t r !, ~14!

W~Ē,t!5
exp~2Ē~t22t1!!

I
,

I 5E
t l

tr
dt2E

t l

t2
dt1 exp~2Ē~t22t1!!. ~15!

One immediately recognizes inW(Ē,t) the statistics of the
kink–antikink pair in the biased two-level system,20 which,
through the mean-field definition of the bias energyĒ, most
closely approximates the local statistics of kink–antiki
pairs in a real system.

The procedures described in the last two subsections
resent a direct generalization of local procedures alre
known in the discrete-time worldline method. The
a
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continuous-time versions are, however, only specific real
tions of a much wider class of possible, procedures, t
making the overall CTWL scheme more flexible.

C. Creation—annihilation, jump, and reconnection
procedures for worldline discontinuities

Up to now, we have considered procedures for work
with closed worldlines. These are sufficient to simulate qu
tum statistics in the canonical ensemble and in theM50
sector. To overcome this essential drawback, and to calcu
the Green’s function, one usually introduces an extra wo
line segment and simulates quantum statistics in the pres
of two worldline discontinuities at points (i 1 ,t1) and
( i 2 ,t2). This process is highly inefficient, because one has
probe all degrees of freedom in the configuration~numbering
roughly ;Ldb) to collect statistics for only two extra de
grees of freedom. In practice, this method was never use
calculate Green’s function in large systems, e.g., withLdb
;104. The solution we find for this problem is in conside
ing the two worldline discontinuities to be real dynamic va
ables in the Hamiltonian, which are allowed to move throu
the configuration both in space and time. It turns out that t
motion can be arranged to be ergodic, and probes all poss
system states. One can even completely ignore all the o
update procedures, such as moving other kinks and work
with kink–antikink pairs, probably at the expense of bei
less efficient, but still remaining accurate, complete, and u
versal. Below we describe the details of update procedu
with worldline discontinuities~‘‘worms’’ !, which were first
introduced in Ref. 20.

We start with the general expression for the Matsub
Green’s function~see, e.g., Ref. 22! in the interaction picture

G ~ i , j ,t1 ,t2!52ebV Tr@e2bH0Tt~ai~t1!aj
†~t2!s!#,

~16!

where Tt is the t-ordering operator, which was explicitly
written before in defining the Matsubara evolution opera
s in Eq. ~2!; V is the grand canonical potential. To be sp
cific, we assume here thatH0 is diagonal in the site repre
sentation; in the general case, one might imagine that
index i refers to some parametrization of eigenstates ofH0 .
Since we now work in the grand canonical ensemble,
Hamiltonian contains an extra term

2mN[2m(
i

ni , ~17!

wherem is the chemical potential. Formally, the only diffe
ence between the statistics given by Eq.~4! and the Green’s
function ~16! is that we have two extra kinks,ai(t1) and
aj

†(t2). Hence one has the possibility of calculating t
Green’s function in aunified process, together with standard
thermodynamic averages~‘‘energy,’’ for the sake of brevity!.
To this end, it is necessary just to work in an extended c
figuration space, where two classes of configurations
present:~i! with continuous worldlines, and~ii ! with two
worldline discontinuities, corresponding to the kinksai(t1)
andaj

†(t2). ~Clearly, configurations of class~i! contribute to
‘‘energy,’’ while those of the class~ii ! contribute to the
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Green’s function.! The transitions between the two class
are performed by the processes of creation and annihila
of the kinksai(t1) andaj

†(t2), in accordance with the gen
eral balance principles Eq.~8!. For computational purposes
it is reasonable to redefine the Green’s function by a triv
scaling transformationai→h* ai , aj

†→haj
† , where the con-

stanth is adjusted to produce the optimal acceptance~rejec-
tion! probability.

Alternatively, one can arrive at the above scheme by
standard trick of introducing a source to the configurat
action S ~the notationh for the source is chosen delibe
ately!:

E
0

b

dtV~t!→E
0

b

dtV~t!1(
i
E

0

b

dt

3~h i* ~t!ai~t!1h i~t!ai
†~t!!, ~18!

and defining the Green’s function as a functional derivat
of the generating functional~the partition function with the
source!

G ~ i , j ,t1 ,t2!52
1

Z

d2Z

dh i~t1!dh j* ~t2!
U

h,h*→0

. ~19!

The numerical procedure equivalent to the variational der
tive in the limit h→0 means that only configurations with~i!
zero and~ii ! two worldline discontinuities are included in th
statistics. Confining ourselves to just these configuratio
we do not have to deal any longer with infinitesimally sm
h, and can chooseh to be a certain finite constant.~This is
crucial for any realistic computational process, sinceh→0
clearly means that the time of accumulation of statistics g
to infinity.! Indeed, a particular value ofh just defines the
relative weights of classes~i! and ~ii !, thus changing the
relative norm of the Green’s function with respect to ‘‘e
ergy’’ by the known factor ofuhu2. ~Incidentally, one may

FIG. 1. A typical 8-site configuration with two worldline discontinuitie
marked by filled circles. The width of the solid line is proportional to the s
occupation number, and dashed lines are empty sites.
on
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pay no attention at all to the normalizing statistics for t
Green’s function, as the norm can ultimately be fixed by
conditionG ( i ,i ,t,t10)52density.)

A typical configuration with two ‘worms’’ is shown in
Fig. 1 ~‘‘live’’ picture taken from the computer!. To update it
we apply the following transformations:

Creation and annihilation of two worldline discontinu
ties. We delete a pair,ai(t1)ai

†(t2) or ai
†(t1)ai(t2), when

discontinuities happen to meet at the same sitei and there are
no other kinks between them that can change the statei.
The only difference between this and the kink–antikink p
cedure is that now we transform only a single-site state, t
mQ51. The annihilation procedure addresses the pair
worms, but the creation procedure~which makes sense onl
when there are no worms! addresses the randomly select
configuration fragment label. The ratio of probabilitiespa /pc

to address update procedures that transform the same
figuration fragment back and forth is now

pa

pc
5Nlab ~creation!,

pa

pc
5Nlab22 ~annihilation!.

~20!

This ratio is macroscopically large, which is obviously u
pleasant for the computational process. However, we h
R(t);uhu2, with the freedom of choosingh. By setting
uhu2;1/̂ Nlab&, where^Nlab& is the average number of labe
in the configuration, we obtain an update procedure tha
not based on small parameters~in practice, any rough esti
mate like (Ldb) for ^Nlab& is sufficient!. The rest is done in
exactly the same manner as described in Sec. 3 B.

Jump.This update procedure is illustrated in Fig. 2. W
select one of the worldline discontinuities and suggest sh
ing it in space by inserting an ordinary kink~hopping opera-
tor! to the left ~in time! of the annihilation operator and t
the right of the creation operator. As a result, the wo
‘‘jumps’’ to another site. The number of kinks changes
one in this procedure, butpa /pc is unity, because we addres
it upon the availability of worms, and not according to th
number of labels. Also, since we are dealing with only o
extra kink here, the structure of theR(t) function ~see Sec.
2! is much simpler, and we chooseW(t)5R(t)/*dtR(t).
The integral is over the time interval of the updated fra
ment. The opposite procedure is called an ‘‘anti–jump.’’

Reconnection.Formally, this update procedure, which
shown in Fig. 3, is technically identical to the ‘‘jump,’’ bu
now an extra kink is inserted to the right of the annihilati
operator and to the left of the creation operator. We s
distinguish between them, because in the jump procedure
corresponding particle trajectories do not exchange pla
while they do so in the reconnection update. Figure 3 ma
it clear that we have effectively reconnected worldline se
a
FIG. 2. Jump procedure for the annihilation operator.!
Initial configuration fragment; b! suggested variation
~in the antijump procedure,~b! is the initial configura-
tion and~a! is the suggested variation!.
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FIG. 3. Reconnection procedure for the annihilation o
erator. a! Initial configuration fragment; b! suggested
variation ~in the antireconnection procedure,~b! is the
initial configuration and~a! is the suggested variation!.
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ments of different trajectories. Note that in fermionic sy
tems, any reconnection/antireconnection procedure resul
a change of the configuration sign.

Shift in time.The motion of worldline discontinuities in
time is essentially the kink motion process~see Sec. 3 A!.
Suppose that we have decided to shift an annihilation k
Q05ai . The only difference from the scheme~12! is in the
definition of the updated time interval. Its boundari
(t1 ,t2) now correspond to the time positions of the near
left and right neighbors~kinks! of any type that operate o
the same statei. Of course other possibilities are allowed
well, if one has some physical arguments in favor of, s
extending the time window farther to the next-nearest ki
or a kink of a special type.

The update procedures thus defined comprise an erg
stochastic process that operates on the entire configura
space of the system. All configurations, including those w
nonzero winding numbers and different number of particl
are accounted for. Extra particles are inserted/removed f
the system whena† j (t2) makes a complete loop in tim
~relative toai(t1)), i.e., whent22t1 changes by multiples
of b. Winding numbers are introduced whenj 2 i changes by
multiples of L. The key point of our approach is that ea
local update makes a contribution to theG ( i ,t) histogram,
except rare cases in which there are no worms in the c
figuration; these configurations contribute to the ‘‘diagona
~or conventional! statistics of closed worldlines. Contrary t
the standard calculation, we do not adjust all degrees of f
dom to the current positions of worms, but rather probe a
update the whole configuration through their motion. T
almost trivial modification results in a factor of (Ldb) accel-
eration of the scheme!

It is instructive to draw an analogy between the moti
of worldline discontinuities and the loop cluster update rul
As is easily seen, the basic elements of the single-loop L
method known as ‘‘optional decay’’ and ‘‘forced trans
tion’’ 18 correspond to a particular evolution of the worldlin
discontinuities ~‘‘optional decay’’ corresponds to the
‘‘jump’’ procedure, and ‘‘forced continuation’’ to the ‘‘anti-
reconnection’’ procedure!. A closed loop is obtained afte
annihilating the paira anda†. Notice, however, that in ou
scheme~i! not only closed loops, but also all intermedia
configurations are physically meaningful and are includ
into the statistics;~ii ! nothing is based on the special stru
ture of the system Hamiltonian;~iii ! the update is always
local ~it is known that acceptance rates for large loops
come very small when an external magnetic field in theZ-
direction is applied to the Heisenberg system~magnetic field
is equivalent to a finite chemical potential in bosonic la
guage!; this problem is simply absent in local schemes!.

The statistics of discontinuities in space and time
-
in

k

t

,
,

ic
on
h
,
m

n-
’

e-
d
s

.
U

d

-

-

s

given by G ( i ,t), i.e., it is defined by the Hamiltonian. In
general, the optimal update scheme depends on the qua
being calculated, and thus one might wish to control
statistics of worldline discontinuities ‘‘at will.’’ This can be
easily achieved by introducing a fictitious spacetime dep
dent potential acting between the ‘‘worm’’ ends, so that th
relative positions are now distributed according to the fu
tion

G ~ i ,t!Q~ i ,t!,

whereQ ( i ,t) is arbitrary. In this way, one can change th
typical size and shape of the loops generated by the ‘‘wor
algorithm.

The scope of the present paper is such that we are un
to discuss here many important details concerning the p
tical implementation of our algorithm~optimal triple-linked
storage, particular forms of Eqs.~9!, ~10! for each subpro-
cess, optimal management of subprocesses, etc.!. Readers in-
terested in these issues are encouraged to take advanta
our FORTRAN code with comments.

4. ILLUSTRATIVE RESULTS

To demonstrate the advantages of the CTWL algorith
we have calculated properties of the 1-D boson Hubbard
model ~Eq. ~1! with Ui j 5U0d i j ) for various coupling con-
stantsU0 and particle densitiesr.

Comparison with the exact diagonalization results
small systems has demonstrated the lack of any detect
systematic error. In particular, for a system with eight latt
sites and six bosons, and on-site repulsionU50.5, the exact
diagonalization result for the ground-state energy isEG5
210.49209, while long-run Monte Carlo simulations yie
EG5210.4922(2), i.e., a result with relative accuracy bette
than 1024.

It is well known that a commensurate system w
r51 undergoes a superfluid–Mott-insulator transition
Berezinskii–Kosterlitz–Thouless23,24 type when the on-site
interaction is strong enough~for the most accurate estimat
of the transition pointU051.645t, see Ref. 25!. In the su-
perfluid phase, including the critical point, one can utili
knowledge of the long-wavelength behavior of the syste
As explained by Haldane,26 the energy associated with extr
particles and nonzero winding numbers is quadratic inM and
N2N̄ ~for simplicity, in what follows we count particle
numbers from the commensurate value:N→N2L and N̄
→N̄2L). This means that the corresponding probability d
tribution in M andN is a Gaussian, i.e.,
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W~N,M !}expF2
L

2bLs~0!
M22

b

2Lk~0!
~N2N̄!2G

}expF2
pK~0!

2 S L

cb
M22

cb

L
~N2N̄!2D G .

~21!

The zero argument of the superfluid stiffnessLs and com-
pressibilityk denotes values atT50. HereK215pALsk is
the index that controls the asymptotic behavior of the co
lation functions, andc is the speed of sound.

At the critical point,K(L), k(L) andLs(L) are system-
size dependent quantities, withK(L→`)→1/2. Since the
speed of sound is unrenormalizable in a homogeneous
tem, it is sufficient to study scaling equations for the critic
index only. In fact, the solution of the renormalization gro
~RG! equations forK(L) can be ‘‘visualized’’ by consider-
ing the logarithmic derivative of the Green’s function, sin
its index is justK/2:

K~ l !522
d ln G ~r !

d ln r
, l 5 ln r . ~22!

Here we have introduced the variabler 25x21(ct)2, which
by conformal invariance describes asymptotic decay ofG

both in space and time.
Expressions~21! and~22! allow for a comprehensive tes

of the new algorithm. It is also tempting to consider a lar
system right at the quantum critical point and to evaluate
properties under the most unfavorable conditions for
standard worldline method. To calculate the critical ind
and the speed of sound, we considered a ring with 100 la
sites andb5100/t. The critical parameters of the Hami
tonian areU051.645t andm51.94t.25 We had no problems
in accumulating sufficient statistics of winding numbers a
N for this system~the corresponding calculation is virtuall
impossible using the standard worldline algorithm!. Simple
manipulations with the exponents in~21! result in the follow-
ing expressions:

N̄5
N22r N

2~N21r N!
, r N5

ln@W~0,N!/W~0,0!#

ln@W~0,2N!/W~0,0!#
,

k~0!5
b

L

N2

pN
, pN52 lnFW~0,N!W~0,2N!

W2~0,0! G ,
Ls~0!5

L

b

M2

gM
, gM52 lnFW~0,M !W~0,2M !

W2~0,0! G . ~23!

If one is interested in evaluating directlyK(0) then

K~0!5
~pNgM !1/2

puNMu
. ~24!

The choice ofN and M here is arbitrary, but for numeric
reasons, the optimalN and M correspond to values wher
(pN ,gM);1. The advantage of working with nonzero win
ing numbers in the grand canonical ensemble is obvious:
single MC calculation, one collects all the necessary inf
mation about the parameters in the effective long-wavelen
action, which is very convenient in determining quantu
-

s-
l

e
s
e
x
ce

d

a
-
th

critical points fromK5Kc . For the aforementioned system
we foundc/t52.4(1), andK( l 5 ln(100))50.47(1).

One note is in order here. The Gaussian distribution~21!
implies that the system is in the superfluid phase. In
general case one has to define the compressibility ak
5dr/dm, where by definitionr5N̄/L. The superfluid stiff-
nessLs is defined as the coefficient relating persistent c
rent and gauge phase whenw→0; this yields27 Ls

5M̄2L/b.
Finally, we used our method to evaluate the Gree

function G ( i ,t) and to extract the critical index of th
Berezinskii–Kosterlitz–Thouless transition from i
asymptotic behavior; one can then check the consistenc
all calculations. Since the CTWL simulation yields a tw
dimensional histogram forG ( i ,t), much more accurate re
sults forK( l ) are obtained by computing logarithmic deriv
tives along different directions in the (x,t) plane with
subsequent angular averaging. The speed of sound, whi
necessary for such a calculation, is extracted from the as
metry betweenx andt in the asymptotic decay ofG . For the
Green’s function calculation, we considered a ring with 4
lattice sites andb5200/t. In Fig. 4, we show the short-rang
behavior of the Green’s function in thet-direction, with the
characteristic jump att50. The dashed curve is a linea
interpolation between the calculated points. In Fig. 5,
present the full-scale behavior ofG (x,t) by plotting it as a
function of r 5(x21(ct)2)1/2 along the time andx5ct di-
rections. In accordance with conformal invariance, for largr
the two curves are indistinguishable to within the statisti

FIG. 4. Short-time behavior of the Green’s functionG (0,t) of the commen-
surate 1-D Hubbard model at the quantum critical point.

FIG. 5. Long-range behavior ofG ( i ,t), demonstrating conformal invari-
ance.
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errors. The speed of sound obtained from the Green’s fu
tion is c/t52.4(1), andanalysis of the logarithmic deriva
tive ~22! yields K( l 5 ln(100))50.46(2).

It is worth noting that our calculations forW(N,M ) and
G were performed on a Pentium-90 PC. None of these
sults ~e.g., for L.100) can be obtained by other method
even with the use of supercomputers.

The strong on-site disorder at low temperatures is a
vere trial for most Monte Carlo schemes. Cluster meth
suffer from inefficient global Metropolis updates here, wh
standard canonical-ensemble algorithms suffer from slow
down due to one-particle local minima in the effective acti
~the lowest single-particle states are well localized, and pr
ing different configurations requires deep sub-barrier m
tion!. The unique feature of our ‘‘worm’’ update method—
the possibility of locally seeding an extra world line at a
point in the spacetime continuum—obviates these proble

To demonstrate the efficiency of our method, we pres
the results of just one nontrivial calculation—the depende
of the average particle number on the chemical potentia
the Bose glass~BG! phase of the 1-D disordered Hubbard
model, Fig. 6. We consider a system withL560 sites atb
5150,U53t. Disorder is introduced by randomly distribu
ing the on-site potential( ie ini between2D andD, with D
56t. The curvê N&(m) allows precise determination of th
low-energy quasiparticle spectrum of the system to or
0.01t, which is equivalent to the calculation of the total sy
tem energy to a relative accuracy of order 1024. The entire
plot of ^N&(m) was obtained in a few days of CPU time o
a Pentium PRO-200 processor.

To obtain further evidence of the effectiveness of o
method in more familiar problems, the reader is referred t
calculation of the superfluid—Bose glass–Mott insula
phase diagram in the 1-D disordered boson Hubbar
model.28

5. CONCLUDING REMARKS

Although the CTWL algorithm developed here is qu
general, some aspects deserve special discussion. What
interaction radiusr 0 is large? All of the procedures upda
configuration fragments with the typical durationt r2t l

;1/t. Since the method is exact, we trace all the kin
within the interaction radius, because they contribute to
functionR(t). This means that the interval (t l ,t r) is further
split into Nt l ,r

;r 0
dz@1 subintervals~z is the coordination

FIG. 6. Number of particles vs. chemical potential in a large Bose g
cluster at macroscopically low temperature.
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number!, and each subinterval requires special considerat
If r 0 is as large as the system size, then the whole schem
in trouble, becoming a ‘‘victim of exactness.’’

The idea of solving such a problem is demonstrated
the stochastic series expansion method.1,9,10 One might well
wonder why continuous-time schemes, which contain as
essential ingredient an evaluation of time integrals, work
efficiently as SSE, which has all these integrals being eva
ated exactly right at the start? Also, why is keeping the p
tential energyU in the t-exponent not at all an advantage
U;t? The point is that the MC process is exact only f
asymptotically long computation times, and there is no r
son to calculate anything more precisely than the unavo
able statistical error, especially if the corresponding calcu
tion becomes the bottleneck for the whole schem
Evaluating time integrals in CTWL or reproducing exp
nents by expanding in power series inU;t are just two
cases that illustrate this point.

Suppose that all particles in the system interact with o
another, so that formallyr 05L, but *drr(r )U(r )5F(L)
Þ`. We divide the interaction Hamiltonian into two part
H int

(1)(r ,r t)1H int
(2)(r .r t), by introducing the truncation ra

dius

E
ur u.r t

dr r̄U~r !5t. ~25!

We then writeH05H int
(1) and combineH int

(2) with V ~see Sec.
2!, i.e., the long-range part of the interaction Hamiltonian
now considered to consist of diagonal kinks. Because of
definition ~25!, the total number of kinks within the time
interval ;1/t remains finite and independent of system si

The case of a divergent integral*dr r(r )U(r )5F(L)
→` is more subtle, since the number of diagonal kin
within the time interval;1/t, given byF(L), is now large
~if F(L) is a logarithmic function ofL, we do not regard this
problem as serious!. On the other hand, for long-range inte
actions the so called ‘‘mean-field approximation’’ becom
more accurate. Since the mean-field potential is easy to
count for analytically~and numerically!, one now has to dea
with fluctuations, and these quite often satisfy the condit

U E dr ~r~r !2 r̄ !U~r !U5dF~L !Þ`. ~26!

In Appendix A we explain how to organize the Monte Car
process using the mean-field approximation for the confi
ration weight. The net result is that even for long-range p
tentials, the calculation time can remain independent of s
tem size.

In this paper we have concentrated on the Green’s fu
tion calculation by restricting the number of worldline di
continuities to 0 or 2. Of course the scheme can be trivia
extended to include the case with a larger number of disc
tinuities, if one is interested in the two- orn-particle Green’s
function or n-point vertex. More generally, our schem
makes it possible to work with Hamiltonians that do n
conserve the number of particles, i.e., when there are sou
with finite strength in the bare Hamiltonian.

s
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Although in this paper we consider a system with d
crete Hilbert space in detail, the principles of update in c
tinuous time developed here are much more general. M
ematically, we construct an exact method~in the statistical
limit ! of averaging over a distribution represented as a se
of integrals with an ever-increasing number of variables,
with essential similarity among the terms of the series,
lowing their local comparison~weighting!. We may call such
structures integrals with a variable number of variables
VNV integrals. Physically, we sum a perturbative expans
in the interaction picture for some observable of a large
essentially finite-size system.~For a system with discrete
Hilbert space, the only continuous variables in this expans
are the times of virtual transitions.! But perturbative expan
sions for continuous systems also have the structure of V
integrals, with additional integrations over some continuo
variables. Thus~apart from the fact that for spatially continu
ous systems one cannot expand the kinetic part of the Ha
tonian and must use the potential energy as a perturbat!,
there is no qualitative difference between perturbative exp
sions for continuous and discrete systems. The gen
method of evaluating VNV integrals is given by Eqs.~6! and
~8!–~10!, where the vectort now stands for any set of con
tinuous variables, and the functionR(t) is defined straight-
forwardly, given the particular form of the series.

We would like to thank V. Kashurnikov, A. Sandvik
M. Troyer, H. Evertz, B. Beard, and N. Kawashima for i
spiring discussions of existing Monte Carlo schemes
valuable comments on the final version of the paper. T
work was supported by Grant No. INTAS-93-2834-ext~of
the European Community! and partially by the Russian Fun
for Fundamental Research~Grant No. 95-02-06191a!.

APPENDIX

Long-range potentials

Suppose that we are dealing with the caseF(L)→`, but
finite dF(L). The idea is to organize the Monte Carlo pr
cess in such a way, that in most updates we simply ign
fluctuations, and account for distant particles by replac
them with a homogeneous density distribution. Obvious
for the scheme to remain accurate, in some updates we
to consider deviations from the mean-field distribution. T
goal is to address the procedure dealing with distant fluc
tions with the small probability which is at least inverse
proportional to the number of operations in this procedur

Consider again the balance equation for the given pai
subprocesses, but now including the possibility of comp
ing the same update procedure in a number of ways:

A0 pcW~t!(
j 50

j
*

g~ j !Pacc
~ j ! ~t!dt2dAn~t!pa

3(
j 50

j
*

g~ j !Prem
~ j ! ~t!50. ~A1!

Here g ( j ) is the probability of using thej th version of the
update procedure. We require
-
-
h-

es
t

l-
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t
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s
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d
is

re
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e
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(
j 50

j
*

g~ j !51, and g0@g1 ...@g j
*
.

We also assume that the procedurej * corresponds to the
exact treatment of all fluctuations. Other quantities have
actly the same meaning as in~6!. The self-balance condition
now reads~compare Eq.~8!!

W~t!(
j 50

j
*

g~ j !Pacc
~ j ! ~t!5R~t!(

j 50

j
*

g~ j !Prem
~ j ! ~t!. ~A2!

To satisfy ~A2! we suggest the following scheme. Le
R( j )(t) be the distribution corresponding to the exact tre
ment of fluctuations up to the distancer ( j ) with r (0)!r (1)

!...!r ( j
*

)5L, and the mean-field treatment of more dista
(r .r ( j )) particles. We can write then

R~ j !5R~0!1dR~1!1...dR~ j !, R~ j
*

![R. ~A3!

If dF is finite andr (0) is sufficiently large, then alldR( j ) are
small. We then chooseg (0)'1 and

Pacc
~0!~t!5H R~0!~t!/W~t!, if R~0!~t!,W~t!

1, otherwise
, ~A4!

Prem
~0! ~t!5H W~t!/R~0!~t!, if R~0!~t!,W~t!

1, otherwise
, ~A5!

and solve the self-balance condition deductively by requir

W~t!(
j 50

k

g~ j !Pacc
~ j ! ~t!5R~k!~t!(

j 50

k

g~ j !Prem
~ j ! ~t!, ~A6!

or equivalently

g~k!@WPacc
~k!2R~k!Prem

~k! #5dR~k!(
j 50

k21

g~ j !Prem
~ j ! . ~A7!

The final answer can be written

Pacc
~k!

5H FdR~k!(
j 50

k21

g~ j !Prem
~ j ! G Y @g~k!W~t!#, if dR~k!.0

0, otherwise

,

~A8!

Prem
~k!

5H 2FdR~k!(
j 50

k21

g~ j !Prem
~ j ! G Y @g~k!R~k!~t!#, if dR~k!,0

0, otherwise

.

~A9!

Since alldR(k) are assumed to be small, it is possible to ke
g (k)!1 ~for k51,2,...,j * ), but large enough to avoid situa
tions with Pacc

(k).1 or Prem
(k) .1.

* !E-mail: prokofev@kurm.polyn.kiae.su
1!To stress this important point, we find it reasonable to distinguish betw

‘‘efficient’’ LCU algorithms and others. By ‘‘efficient’’ LCU we mean
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algorithms in which detailed balance is taken care of in the cluster-build
rules, not in having a global Metropolis step with small acceptance r
for large clusters. Nevertheless, in certain cases ‘‘inefficient’’ LCU co
works reasonably well.15
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Josephson array of mesoscopic objects. Modulation of system properties through the
chemical potential
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The phase diagram of a two-dimensional Josephson array of mesoscopic objects~superconducting
granules, superfluid helium in a porous medium, traps with Bose-condensed atoms, etc.! is
examined. Quantum fluctuations in both the modulus and phase of the superconducting order
parameter are taken into account within a lattice boson Hubbard model. Modulating the
average occupation numbern0 of the sites in the system~the ‘‘number of Cooper pairs’’ per
granule, the number of atoms in a trap, etc.! leads to changes in the state of the array, and the
character of these changes depends significantly on the region of the phase diagram being
examined. In the region where there are large quantum fluctuations in the phase of the
superconducting order parameter, variation of the chemical potential causes oscillations
with alternating superconducting~superfluid! and normal states of the array. On the other hand,
in the region where the bosons interact weakly, the properties of the system depend
monotonically onn0 . Lowering the temperature and increasing the particle interaction force lead
to a reduction in the width of the region of variation inn0 within which the system
properties depend weakly on the average occupation number. The phase diagram of the array is
obtained by mapping this quantum system onto a classical two-dimensionalXY model
with a renormalized Josephson coupling constant and is consistent with our quantum path-
integral Monte Carlo calculations. ©1998 American Institute of Physics.
@S1063-7761~98!01608-4#
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1. INTRODUCTION

Advances in microlithographic techniques have mad
possible to create regular arrays of mesoscopic Josep
objects. These systems, which are under active experime
and theoretical study, include superfluid helium in poro
media1! ~see Ref. 2 and the literature cited there!, lattices of
mesoscopic Josephson contacts,3,4 and ultrasmall supercon
ducting granules.5,6 One interesting physical realization of
Josephson array consists of Josephson junctions in a s
ture with superfluid3He created by means of lithography7

Major advances in experiments with Bose condensate
atoms cooled by laser irradiation followed by evap
ration8–10 suggest that it may be possible to fabricate a
sephson array of close magneto-optical traps with Bo
condensed atoms2! or with clusters of Bose-condensed atom
cooled and localized at the nodes of a system of stand
electromagnetic waves. Finally, another remarkable real
tion of a Josephson array might be a system of Joseph
coupled ‘‘lakes’’ of Bose-condensed excitons in single
double quantum wells located at the minima of the rand
field created by the roughness of the well surfaces, i.e.
‘‘natural’’ quantum dots,12 or in an array of artificial quan-
tum dots.

For concreteness, the following discussion considers
example of a system of superconducting mesoscopic g
ules or Josephson junctions, but the results apply to all
systems mentioned above. We shall consider a regular a
of mesoscopic granules situated on a conducting subs
3221063-7761/98/87(8)/7/$15.00
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and separated from it by a thin dielectric layer. A volta
applied to the conducting substrate serves as the chem
potential of the Cooper pairs, which determines the aver
occupation numbern0 of the granules in the system.13,14 For
example, in the case of superfluid helium in a porous m
dium, the chemical potential of the atoms can be varied~be-
cause of the contribution of the van der Waals interaction! by
changing the thickness of the layer of adsorbed helium.15,16

The state of an array of mesoscopic traps with cooled ato
can be controlled by changing the average number of at
in the system~by, for example, capturing them from an e
ternal flow!.

The systems being examined here, in which the cha
ter of the processes taking place is determined by the bo
degrees of freedom, are conveniently described by a lat
boson Hubbard model17,18 with the Hamiltonian

Ĥ5
t

2 (
^ i , j &

~2ai
†ai2ai

†aj2aj
†ai !

1
U

2 (
i

~ai
†ai !

22m(
i

ai
†ai . ~1!

In this model sitei corresponds to one superconducting gra
ule or pore with helium, to a single trap with a Bose conde
sate, etc. The operatorsai

† (ai) are the Bose creation~anni-
hilation! operators of an ‘‘effective’’ boson at sitei 51,N2 of
anN3N lattice. The first term in the Hamiltonian takes in
account the kinetic energy of the particles, which cor
© 1998 American Institute of Physics
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sponds to the Josephson tunneling energy and is describe
the parametert. The second term in Eq.~1! describes the
interaction of effective bosons at a granule with a charac
istic energyUi.0.

The model~1! is interesting in that it can be used
study the properties of arrays of mesoscopic structure
which the relative fluctuations in the modulus of the sup
conducting order parameter are large. In this regard, we
that the quantumXY model is justified only when these fluc
tuations are small,14 i.e., in the case of arrays of macroscop
granules.

A lattice system~1! with Mott-insulator and supercon
ducting phases atT50 has been studied both anal
tically17–19and by computer simulation.20,21 In this paper we
shall be interested in the properties of the system~1! at finite
temperatures, digressing from the interesting phase tra
tions at T50.22 In some earlier papers,23 the investigation
was limited to the case of integer~commensurable! populat-
ing, in which the average number of bosons per site~gran-
ule!, n05^ai

†ai&, is a whole number. AtT50, adding even a
single particle to an arbitrarily large system changes its pr
erties in a fundamental way. Specifically, a system with
noninteger average number of bosons per granule rem
superconducting for arbitrary values ofU/t for the interac-
tion between the particles.17–22 It is evident that this surpris
ing behavior should be present even in the limit ofT50. In
fact, as will be shown below, at finite temperatures the pr
erties of the system vary little within an intervaln05k
6dn0 about an integer population, whose width 2dn0 de-
creases as the temperature is lowered.

The purpose of this paper is to study the changes in
character of the ordering in an array of granules as the s
strate voltage~chemical potential of the effective bosons! is
varied. Here we shall not use the simplifying assumption
small relative fluctuations in the modulus of the superc
ducting order parameter. The results given below corresp
to an array of mesoscopic objects for which the root-me
square fluctuations in the number of particles are compar
to their average number. In Sec. 2 we present results f
mean-field calculations. The method used there correspo
to mapping the initial boson model~1! onto an effective
classicalXY model with a renormalized Josephson coupli
constant. To refine the results of the analytical calculatio
we use the quantum path-integral Monte Carlo method~see
Sec. 3!. A discussion and comparison of the results in Sec
completes the presentation.

2. BOSON HUBBARD MODEL IN THE MEAN-FIELD
APPROXIMATION

A qualitative approximation for the phase diagram of t
model ~1! can be obtained using an approach descri
previously.19,23,24In terms of this model, the boundary of th
ordered state is located where the local density of the su
conducting component vanishes in the effective functio
describing long-wavelength excitations of the system. T
latter can be obtained in the usual way using the Hubba
Stratonovich transform25 followed by an expansion of the
effective functional in components of the fluctuatin
by
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field.19,24 The condition that the local density of the supe
conducting component vanish for the system described
the Hamiltonian~1! yields an equation for determining th
boundary of the ordered state:

q̃254(
n50

` FexpS 2
0.5q̃2~n2h̃ !2

T̃
D

2expS 2
0.5q̃2~n112h̃ !2

T̃
D G n11

2~n2h̃ !11

3F (
n50

`

n expS 2
0.5q̃2~n2h̃ !2

T̃
D G21

. ~2!

Here we have used the following independent dimension
parameters, which specify the state of the system:

q̃5AU

t
, T̃5

kBT

t
, h̃5

m

U
2

2t

U
.

The average number of particles in the granules of the s
tem in the disordered state is given by the equation

n05
(n50

` n exp$20.5q̃2~n2h̃ !2/T̃%

(n50
` exp$20.5q̃2~n2h̃ !2/T̃%

. ~3!

The solid curves in Fig. 1a represent the phase diag
of the system~1! in the variables$AU/t,m/U% obtained by
solving Eq.~2! for different temperatureskBT/t. The region
of low values ofU/t ~low particle interaction energies! cor-
responds to the superconducting~S! state of the system.

As kBT/t→0, the disordered state of the system cor
sponds to an integer average number of particles per gran
n05k, and determines the domain of existence of the M
insulator~I!.17 In this limit, the superfluid state of the syste
corresponds to the case of incommensurate populations,
to a noninteger average number of particles per granule.
ure 1a shows that forT50 and half-integer values of th
chemical potentialm50.51k, a superconducting state exis
for arbitrarily strong interparticle interactions, in accord wi
earlier work.17,18

At finite temperatures an increase in the boson inter
tion force leads the system into a disordered state for a
trary values of the chemical potential~see Fig. 1a!. It is also
clear from the figure that as the temperature is increased
domain of existence of the ordered state is shifted tow
higher values of the chemical potential.

The transition to the case of a system of macrosco
granules corresponds to increasing the particle densityn0

and reducing the role of the fluctuations in the modulus
the order parameter. It is most convenient to follow t
changes in system~1! with increasingn0 in the$q,Q% plane,
where we use the dimensionless temperatureQ5kBT/tn0

and the quantum parameterq5AU/tn0, which are the con-
trol parameters that also determine the state of the quan
XY model. The corresponding phase diagram is shown
Fig. 2a. As can be seen from this figure, for any values oU
the estimate of the boundary of the ordered state in the H
bard model according to mean-field theory lies above
corresponding limit in theXY model and approaches it as th
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average populationn0 of the lattice sites increases. Our ca
culations confirm that the phase diagram is periodic in
parameterm/U whenn0@1.14

The dotted lines in Fig. 2a comprise a family of curve
at whose points a system with densityn0 becomes disor-
dered. The points where they intersect theQ5const lines
determine the phase diagram of a system in the$q,Q% plane
corresponding ton0 particles per granule. A similar analys
shows that for an incommensurate boson density at low t
peratures~see below!, an ordered~superconducting! state of
an array exists for arbitrarily large values ofq, i.e., for arbi-
trarily large quantum fluctuations in the phase of the sup
conducting order parameter in terms of the quantumXY
model.

This approach only yields a qualitative estimate of t
characteristic features of the phase diagram of this system
comparison with the results of a numerical simulation~see
below! shows that Eqs.~2! and ~3! give a greatly overesti-
mated value for the disorder temperatureQc(q;m/U). In
order to obtain more accurate quantitative estimates,
necessary to determine the temperature at which the gl

FIG. 1. Phase diagram for the Hubbard model~1! in the coordinates
$AU/t,m/U%. S—the superconducting state; N—the normal~metallic! state;
I—Mott insulator~hatched region in Fig. b!. ~a! Mean-field calculation. The
solid curves were obtained by solving Eq.~2! and correspond to vanishing
of the local density of the superfluid component. The Kosterlitz–Thou
topological transition~6! takes place on the dashed curves.~b! Monte Carlo
calculations forkBT/t50.8.
e

,

-

r-

A

is
al

~rather than local, as in the method described above! super-
fluid density of the array vanishes. This temperature can
estimated as the Kosterlitz–Thouless temperature for the
pological phase transition according to the classicalXY
model, onto which the initial system is mapped by expand
the effective Ginzburg–Landau functional for weak fluctu
tions in the phase of the order parameter.

Using the approach in Refs. 19, 24, and 26 it is easy
show that the effective action of the classical tw
dimensionalXY model sought is given by

S~$wk%!5
JXY

2 (
k

uku2wkw2k'JXY

3(
^ i , j &

@12cos~w i2w j !#,

~4!

JXYS m

U
;

t

U
;

kBT

t D5
tD2

4
,

s

FIG. 2. Phase diagram for the Hubbard model~1! in the coordinates
$q,m/U% and $q,Q%. ~a! Mean-field theory calculation. The solid curve
were obtained by solving Eq.~2!. The dotted curves correspond to the joi
solution of the system of Eqs.~2! and~3!. ~b! Monte Carlo calculations. The
filled squares are the phase diagram for the 211-dimensionalXY model
~for integer values ofn5k@1!.34 The system with$U/t,kBT/t%5$3.5,0.8%
and a variable chemical potentialm/U moves along the dotted curve~see
Figs. 4 and 5 below!.
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where JXY is the coupling constant for the effectiveXY
model, which depends on the dimensionless parame
m/U, t/U, andkBT/t. The local superfluid densityD2/4 of
the system is described by the relation

D5
Tr$~ â†1â!exp~2bĤm f!%

Tr$exp~2bĤm f!%
,

~5!

Ĥm f5
U

2
n̂21~2t2m!n̂2tD~ â†1â!.

A plot of the Kosterlitz–Thouless phase-transition tempe
tures in the effectiveXY model27 specifies the boundar
sought of the superfluid state for this array of granules:

kBTc50.98JXY~m/U;t/U;kBTc /t !. ~6!

Estimates given by Eqs.~4! and~5! are shown as dashe
curves in Fig. 1a. Note that, although the two approac
discussed above yield a similar qualitative behavior of
boundary of the ordered phase, the temperature of the t
logical phase transition in the effectiveXY model~6! is con-
siderably lower than the temperature at which the local
perfluid density vanishes according to Eq.~2!. A comparison
of the phase diagram obtained in this way with the results
Monte Carlo calculations~see below and Fig. 1! shows that
they are in fair quantitative agreement.

3. QUANTUM MONTE CARLO METHOD. MEASURABLE
QUANTITIES

The Trotter discretization procedure makes it possible
estimate all the thermodynamic averages of the operator
a D-dimensional quantum system in terms of a classicaD
11-dimensional system, where the product of the ma
elements~calculated approximately! of the high temperature
density matrix serves as the Boltzmann weight of the c
figurations of the corresponding classical system. For stu
ing the properties of the model~1!, we shall use the ‘‘check-
erboard version’’ of the quantum Monte Carlo method.~A
detailed discussion of the discretization procedure and
organization of the Monte Carlo step during the simulat
of systems of lattice bosons in a large canonical ensemb
given elsewhere.28! In this method, the degrees of freedom
the discretized system are the occupation numbers$ni

p% of
the sites of theN3N34P three-dimensional lattice forme
by 4P-fold multiplication of the initialN3N lattice along
the imaginary time axis. The number of subdivisionsP was
chosen so that the parametere5q2/P2Q2, which character-
izes the discretization error, would be less than 0.06.

The densityns of the superfluid component was calc
lated at each computational point of the phase diagr
whose position is specified by the parameters$AU/t,kBT/t%
and the chemical potentialm/U. To find this quantity, we
used both the fluctuations in the topological windi
number20,28 and the correlation function of the paramagne
current.29 We found that when the average particle density
the boundaryn0,2 and q.2, the statistical errors in the
second method were considerably higher than the error
determining the superfluid density from the fluctuations
the winding number, rendering it unsuitable.
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We also measuredn0 , which is controlled by the chemi
cal potential of the system, and the compressibility modu
k, which is defined as

k5kBT
]n0

]m
5

1

4PN2 K (
p50

4P21

(
i

~ni
p!2L 2~n0!2. ~7!

It turned out to be convenient to make the measureme
with U/t5const andkBT/t5const and variation of the
chemical potentialm/U. As an example, in Fig. 2b the line
along which the system moves for$U/t,kBT/t%5$3.5,0.8% is
plotted in the coordinates$q,Q%. The location of the system
on this line for a given value of the chemical potential can
determined by measuring the average numbern0 of particles
per granule. In addition, we did a number of calculations
fixed n0 ~in a canonical ensemble!. It might be expected tha
for the same particle densityn0 the results of the simulation
would be independent of the choice of the ensemble for s
ficiently large systems. We tested this assumption and fo
for a system of dimensionN3N5636 that the difference in
the measured quantities is less than 10% in the region
variation of the control parameters of interest to us. The
fore, in analyzing the results, data obtained by assigning
densityn0 ~within a canonical distribution! and by assigning
the chemical potential~which corresponds to using a gran
canonical ensemble! can be used simultaneously.

4. DESCRIPTION AND DISCUSSION OF RESULTS

We first consider the computational results forq,1.5,
where the interparticle interaction is weak and mean-fi
theory ~see Figs. 1a and 2a! predicts a monotonic depen
dence of the phase-transition temperature on the particle
sity n0 . Figure 3 shows the calculated density of the sup
fluid component as a function of average occupation num
ns(n0), for q51 andQ51 ~unfilled symbols!. As the occu-
pation number increases,ns approaches a constant equal
the helicity modulusg(q,Q) in the 211-dimensional~quan-
tum! XY model.30,31 We found previously23 that in this re-
gion of the phase diagram, this limit, which corresponds t
small contribution of the quantum fluctuations to the mod
lus of the order parameter, is approached already whenn0

54 – 5. The monotonicity ofns(n0) suggests that the result
of experiments on a system of isolated granules will n
differ greatly from those on a system of granules on a s
strate with an applied potential. It turned out that the syst
behaves similarly up toq.2.3. As the quantum parameterq
is raised further and the temperatureQ is lowered,ns(n0)
ceases to be a monotonic function of the average occupa
number n0 . Characteristic oscillations inns(n0) with
minima at integer values ofn05k are noticeable in Fig. 3
($q,Q%5$2.75,0.5%, filled symbols!. For sufficiently high
boson densities~n0.7 in the region$q,Q%'$2.5,0.5%; see
Ref. 23! there is a transition to the quasiclassical limit a
the density of the superconducting componentns(n0) be-
comes a periodic function of the average occupation num
with a period of unity.14

Figure 4a shows plots of the superfluid density as a fu
tion of the chemical potential of the system, which is prop
tional to the voltage applied to the substrate. The squa
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refer to a system withAU/t52, kBT/t50.8 and the triangles
to AU/t52.5, kBT/t50.8. The feature atn0.1 @a dip on
the plots ofns(m/U) andk(m/U) for at m/U.1.2# is poorly
seen forq.2 ~squares in Fig. 4! but becomes clearly eviden
for q.2.5 ~triangles!. The figure confirms that the case
commensurate populations corresponds to lower densitie
the superfluid component, i.e., increasing the deviation of
average boson density from integer values ofn05k leads to
spreading of the phase diagrams for the model~1! in the
$q,Q% plane.

As the quantum parameterq is increased further, the
differences in the properties of the system for integer a
noninteger boson densities become increasingly more
nificant. In fact, based on the results from mean-field cal
lations ~see Fig. 1a!, we can assume that there is a value
U/t for which theAU/t5const line intersects the region o
the disordered state withn0.1. Further increases in the in
teraction constantU should lead to the possibility of an in
tersection with the disordered region havingn0.2, etc. The
computational results shown in Fig. 5 confirm this assum
tion. Note that forAU/t55.0 ~triangles in Fig. 5! and integer
values ofm/U, changes in the chemical potential lead
essentially no change in the average number of particle
the sites in the system. This feature, which is characteristi
an insulator, can also be seen in Fig. 5b, which shows a

FIG. 3. Plots of the fractionns of the superfluid component as a function
the average occupation numbern0 . The solid curves were obtained by in
terpolation of the data with a fourth-order polynomial. The lengths of
horizontal arrows correspond to estimates ofdn(q,Q)5k(q,Q)un051 . See
Eq. ~8!.
of
e
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-
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of the compressibility modulusk as a function of the chemi
cal potentialm/U.

At T50 a lattice boson system without disorder und
goes a superconductor-insulator phase transition.17 As for the
system being studied here, we may assume that as the
perature is raised, the domain of existence of the Mott in
lator decreases and shifts toward largerU/t, so that, for ex-
ample, on moving along them/U5k line the superfluid
phase is replaced by the normal~metallic! phase. Further
increases in the interaction constant, under which the ma
tude of the Mott dielectric gap increases so much that th
mal excitations become unimportant, lead to crossover
mation of the insulator state.32 An estimate of the location o
the boundary of the insulator state forn051, based on our
calculations, is shown in Fig. 1b. Several constant-den
(n05const) contours are also shown for comparison. A m
detailed study of crossover-type metal-insulator transitio
requires that systems of substantially larger size
examined.24,33,34

An analysis of Figs. 1–5 shows that interesting effe
caused by incommensurate populating of the sites in the
tem occur only in quite strongly interacting systems and
sufficiently low temperatures. For the boson Hubbard mo
~1!, the domain in which they exist can be estimated by
inequalitiesq.2.3 andQ,0.7. Quantitatively, the magni
tude of the deviationdn of the average particle density from
an integer value ofn05k at which a significant change in th
system properties will be observed can be expressed in te
of the compressibility modulus:

dn'
]n0

]m U
n05k

kBT5kun05k . ~8!

It is known that the compressibility modulus@which is in-
versely proportional to the phase fluctuations in t
211-dimensionalXY model; see Eq.~7!# falls off substan-
tially as the quantum parameterq becomes greater and th
temperatureQ is reduced. We found that the following est
mates hold for the Hubbard model~1! when n051: dn
'1.2 for $q,Q%'$0.5,1%, dn'0.3 for $q,Q%'$2.5,0.8%,
anddn'0.06 for$q,Q%'$2.75,0.5%. As an illustration, Fig.
3 shows the values ofdn(q,Q) found for the points$q,Q%
5$1,1% ~unfilled symbols! and$q,Q%5$2.5,0.8% ~filled sym-
bols!. The figure demonstrates the fair agreement betw
the theoretical estimate~8! and the Monte Carlo calculations
-
-

of
FIG. 4. ~a! The superfluid densityns as a
function of the chemical potentialm/U.
~b! Average particle densityn0 ~filled
symbols! and compressibility modulusk
~unfilled symbols! as functions of the
chemical potential m/U: squares—
$U/t,kBT/t%5$2.0,0.8%, triangles—
$U/t,kBT/t%5$2.5,0.8%. Spline interpo-
lations are shown for visual conve
nience. The statistical errors are not in
dicated, but are smaller than the sizes
the corresponding symbols.
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FIG. 5. ~a! The superfluid densityns as a
function of the chemical potentialm/U.
~b! Average particle densityn0 ~filled
symbols! and compressibility modulus
k ~unfilled symbols! as functions
of the chemical potential m/U:
squares—$U/t,kBT/t%5$3.5,0.8%, triangles
—$U/t,kBT/t%5$5.0,0.8%.
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The above results yield the phase diagram of the sys
shown in Fig. 1b~in the coordinates$AU/t,m/T% for kBT/t
50.8! and in Fig. 2b~in the coordinates$q,Q%!. The loca-
tion of the boundary of the ordered superconducting s
was estimated from the universal jump in the superfl
density30 and from the location of the peak in its temperatu
derivative.35

Quantum phase transitions~at T50! in the two-
dimensional Hubbard model~1! are determined by the criti
cal properties of the corresponding effective thre
dimensional system.17,32 At finite temperatures a Josephso
array will display Kosterlitz–Thouless critical behavior o
someQc(m/U,q) curve. We now try to evaluate the effe
of quantum fluctuations on the temperature of this transiti
assuming it to be rather low~see below!. There is interest in
two cases:~a! the system has a commensurate particle d
sity n05k and at some temperatureQc(q) it undergoes a
transition from the superconducting to the normal state,
~b! a phase transition takes place atQc(n0) because of a
change in the densityn0 .

For the region near the pointqc
XY'2.5 of the quantum

transition in the 211-dimensionalXY model ~see Fig. 2b!,
the temperatureQc(q) of the topological Kosterlitz–
Thouless phase transition has been estimated24 as Qc(q)
;uq2qc

XYuz1 with z1'0.67. This estimate was derived u
der the assumption that the system temperature is less
the temperature of the 2D→3D crossover; i.e.,Q<Q3D ,
whereQ3D;uq2qc

XYun with n'z1 . This makes it possible
to estimate the density of the superfluid compone
ns(q,Q), which determines the phase-transition temperat
m

te
d

-

,

-

d

an

t,
re

Qc(q), asns(q,Q)'ns(q,0). Evidently, similar arguments
apply in the neighborhood of the pointsqc

Hun05k of the quan-
tum phase transitions in the Hubbard model~1! for integer
populating of the array granules, i.e.,n05k ~qc

Hun051'2.8;
see Ref. 20!. Thus, we may expect that

Qc~q;k!;uqc
Hun05k2qu0.67. ~9!

Similar arguments can also be applied to the case
incommensurate boson densities,n0Þk. It has been
shown17,20 thatns;un02kuz2 with z2'1.0 forq.qc

H . Thus,
the following relation holds for the temperatureQc(n0) of
the topological Kosterlitz–Thouless phase transition:

Qc~n0!;un2ku1.0. ~10!

Our quantum calculations are in qualitative agreement w
the predictions of Eqs.~9! and ~10!, but it is difficult to
confirm their validity with sufficient accuracy because of t
large errors in determining the position of the quantu
phase-transition linem(U/t;T50).

There is great interest in the question of the existence
reentrant superconductivity, for which, within some range
variation of the quantum parameterq, disorder sets in not
only as the temperatureQ is lowered, but also as it is raised
The existence of reentrant effects has been predicted a n
ber of times within the quantumXY model~see Ref. 13 and
the literature cited therein!, but as far as we know, compute
simulation cannot unequivocally confirm31,36 or refute34 the
existence of this phenomenon. The earlier numerical ca
lations of the Hubbard model did not reveal low-temperat
of

e
d

FIG. 6. Superfluid density of the system as a function
Q5kBT/tn0 for q53.0; unfilled symbols—n051.306;
filled symbols—n051.194. The dotted line indicates th
straight linens52Q/p. The inset shows the calculate
superfluid density of the system as a function ofkBT/t
for AU/t52.5 andm/U50.75.
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instability or reentrant superconductivity.20,23 For this paper
we studied the low temperature regionq'2.5, Q,0.5 of the
boson Hubbard model both for different noninteger occu
tion numbers and for fixed values of the chemical potent
The results, shown in Fig. 6, indicate a lack of reentr
superconductivity effects, at least within the range of var
tion of the control parameters studied here. Special atten
was devoted to the region$AU/t,m/U%'$2.5,0.8%, within
which low-temperature disorder has been predicted.19 The
numerical simulations clearly showed that there were
such effects within this region. In addition, our calculation
the boundary of the ordered state using mean-field the
~see Sec. 2! also disagrees with these predictions. Note t
Eq. ~2!, which specifies the boundary of the ordered state
more accurate in this method than is the equation used in
paper just cited inasmuch as its derivation did not rely on
assumption thatn0@1 @the latter is valid form/U@1 ~Ref.
19!#.

We conclude by discussing the basic results of this
per. We have analyzed the effect of quantum fluctuation
the phase and modulus of the superconducting or super
order parameter on the character of the ordering in tw
dimensional mesoscopic Josephson and granular sys
within a lattice boson Hubbard model. Quantum Mon
Carlo calculations have been used to show that the way
system properties change as a result of modulation of
average occupation number of the array elements by
chemical potential~the substrate potential! is determined by
the parameterq5AU/tn0 ~i.e., the ratio of the characteristi
Coulomb energy of a granule to the Josephson tunne
energy!. For q,1.5, which is the quasiclassical region f
the quantumXY model and the region of strong fluctuation
in the modulus of the order parameter for the Hubbard mo
~1!, the system properties are insensitive to the average n
ber of particles in the granules. In the region where there
significant quantum fluctuations in the order parameter~q
.2, Q,0.8!, we have found that the state of the syste
depends~more distinctly at lower temperatures! on the aver-
age number of particles in it.

This work was supported by grants from the Russ
Fund for Fundamental Research and the Program on
Physics of Solid-State Nanostructures.
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Theory of the pseudogap formation in 2D attracting fermion systems
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The two-dimensional fermion system with the indirect Einstein phonon-exchange attraction and
additional local four-fermion interaction is considered. It is shown that as a result of the
attraction between fermions, the normal phase of such a system is divided into two regions. In
one of them, called the pseudogap region, the absolute value of the order parameter
exists as essentially nonzero value, but its phase is a random quantity. It is important that in the
case of attraction due to the phonons, this abnormal region appears at rather low carrier
concentrations, i.e., it decreases appreciably with increasing doping. The relevance of the results
obtained for high-temperature superconductors is speculated. ©1998 American Institute
of Physics.@S1063-7761~98!01708-9#
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1. INTRODUCTION

An adequate description of the physical properties
high-temperature superconductors~HTSCs! still remains one
of the important problems of modern solid-state physics. I
connected with some peculiar properties of HTSCs. Amo
them there are such problems as quasi-2D character of
tronic ~and magnetic! properties, a relatively low and
changeable carrier densitynf , and its influence on the prop
erties of HTSCs~see, for example, the review article1!.

At present, one of the widely discussed topics on HTS
is the ‘‘pseudogap’’~or ‘‘spin gap’’ if magnetic subsystem
of HTSCs is taken into account!,2–4 which is experimentally
observed, for example, as a loss in the spectral weigh
quasiparticle~or spin! excitations in the normal-state sampl
with lowered carrier density.5–7 Corresponding samples re
veal some specific spectral, magnetic, and thermodyna
peculiarities which are not yet sufficiently understood. In a
dition, the striking difference between the low~underdoped!
and high~overdoped! density regions in HTSCs is hotly de
bated and is considered as one of the central and key to
considered in the physics of cuprates.8,9

The possibility of experimentally changing the carri
concentration in HTSCs created a general theoretical p
lem of the description of the crossover from composite bo
superfluidity~low nf! to Cooper pairing~largenf! whennf

increases~in other words, a description of the continuo
transition from the so-called underdoped regime to the ov
doped one!. Such a crossover has already been studied in
and quasi-2D systems~see the review articles10,11!. The 2D
case has been considered10,12at temperatureT50 in connec-
tion with the Honenberg–Mermin–Wagner theorem, wh
forbids any homogeneous, i.e., long-range! order in pure 2D
systems atTÞ0 due to the long-wave fluctuations of th
charged order parameter~OP!.

The problem of the inhomogeneous condensate@the
3291063-7761/98/87(8)/8/$15.00
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Berezinskii–Kosterlitz–Thouless~BKT! phase# formation
was also considered, despite some difficulties in the 211
relativistic field models,13 where the fermion concentratio
effects are irrelevant. At the same time, these effects w
studied in the nonrelativistic model in Ref. 14, for examp
without allowance for the existence of the neutral order
rameterr. Its consideration proves to be very important~see
Ref. 15! and, in fact, results in the formation of an equilib
rium region withrÞ0, which is mainly located in the phas
diagram of a system between the ordinary normal phase
the superconducting~here BKT! phase. Because of the fluc
tuations of the OP phase, this new region of the syst
which is a part of the normal phase, is of course a nonsu
conducting phase.

In this paper we attempt to study the crossover and
possibility for the appearance of the above-mentioned n
region in the 2D fermion system with a more realistic ind
rect ~phonon! and also a direct~local! four-fermion ~4F! in-
teractions. Thus, this study is to a certain extent a spec
and nontrivial generalization of the preliminary sho
communication,15 where this abnormal region was studie
for the 4F case only, and of the paper,16 in which the Fro¨h-
lich model was used to study the crossover atT50. As will
be seen in the boson-exchange model~in contrast with the
pure 4F case!, the new region exists whennf is rather small,
which allows one to compare this result qualitatively wi
the underdoped HTSC compounds. It is actually more in
esting to take into account a more realistic situation with
indirect attraction and some kind of local repulsion, whi
may in principle correspond to the short-range~screened!
Coulomb interaction between carriers. In general, howev
we assume that 4F interaction can be repulsive as wel
attractive. In addition, the case of total repulsion allows o
to explore the fermion-antifermion~electron-hole! pairing
channel, which, despite a physical difference, can be
mally described in the same manner.
© 1998 American Institute of Physics
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2. MODEL AND BASIC EQUATIONS

Let us choose the simplest Hamiltonian density in
form

H~x!52cs
†~x!S ¹2

2m
1m Dcs~x!Hph~w~x!!

1gphcs
†~x!cs~x!w~x!

2g4Fc↑
†~x!c↓

†~x!c↓~x!c↑~x!, ~x5r ,t !, ~1!

wherecs(x) is the fermionic field with an effective massm
and spins5↑, ↓, m is the chemical potential of the fermion
which fixesnf , w(x) is a phonon field operator, andgph and
g4F are the electron-phonon and the 4F interaction coup
constants, respectively. As was indicated above,g4F can be
positive ~fermion-fermion attraction! or negative~fermion-
antifermion attraction!; in Eq. ~1! we set\5kB51.

In Eq. ~1! Hph is the Hamiltonian of free phonons, whic
can be described by the propagator

D~ iVn!52
v0

2

Vn
21v0

2 , ~2!

where Vn52npT ~n is an integer! is the Matsubara
frequency.17 As follows from ~2!, the propagatorD( iVn)
was chosen in a very simple form; herev0 is the Einstein
~dispersionless! phonon frequency. This choice was made
several reasons. First, this propagator makes it possibl
integrate the equations which we obtained. Second, the o
phonon and quadrupolar exciton modes with their relativ
weak dispersion are widely considered as exchange bo
which can contribute to the hole-hole attraction
HTSCs.1,18,19 Third, the qualitative results concerning reta
dation effects do not strongly depend on the model stud
On the other hand, the propagator~2! for the model under
consideration can hardly be used for quantitative descrip
of the cuprates and their spin-wave branches, which, a
well known, obey the linear dispersion relation.

It is important that the Hamiltonian~1! is invariant under
global gauge transformations of two types:20

cs~x!→cs~x!eia, cs
†~x!→cs

†~x!e2 ia, ~3!

and

c↑~x!→c↑~x!eia, c↓~x!→c↓~x!e2 ia,

c↑
†~x!→c↑

†~x!e2 ia, c↓
†~x!→c↓

†~x!eia, ~4!

which must be taken into account. The phasea in ~3! and~4!
is real.

To calculate the phase diagram of a system it is nec
sary to find its thermodynamic potential. It can be calcula
by making use of the auxiliary bilocal field method~see, for
example, Ref. 21!, which is a generalization of the standa
Hubbard-Stratonovich method for the boson-exchange c
The grand partition functionZ can then be expressed
terms of the path integral over the fermioniccs(x) and the
complex auxiliary fields @for example, f(x,x8)
;^c↑

†(x)c↓
†(x8)&].

In the case of model~1! it is convenient, following Ref.
22, to introduce the bispinor
e

g

r
to
tic
y
ns

d.

n
is

s-
d

e.

C†~x!5~c↑
†~x!,c↓

†~x!,c↑~x!,c↓~x!! ~5!

and its Hermitian conjugate, which here are the analogs
the Nambu spinors.23 After substituting~5! in ~1!, we can
write the Hamiltonian in the form

H~x!52
1

2
C†~x!S ¹2

2m
1m D I ^ tzC~x!2

1

2
gphC

†~x!I

^ tzC~x!w~x!2
1

4
g4FC

†~x!I ^ tzC~x!C†~x!I

^ tzC~x!1w~x!D21~x!w~x!, ~6!

where I ^ tz is the direct product of the unitI and Paulitz

232 matrices, andD(x) is defined by~2!. In such a repre-
sentation of the Hamiltonian~6! and the field variables~5!
the Feynman diagram technique is applicable in the us
form.22 Thus, after standard exclusion of the boson fie
w(x), the Lagrangian of the system can be expressed by
formula

L~x1 ,y1 ,x2 ,y2!5
1

2
C†~x!F2]t1S ¹2

2m
1m D I ^ tzG

3C~x!2
1

4
C~x1!C†~y1!I

^ tzK~x1 ,y1 ;x2 ,y2!C~x2!

3C†~y2!I ^ tz . ~7!

The kernelK is the effective, nonlocal, particle-particle in
teraction function which is explicitly defined in the mome
tum space below.

In order to explore the pairing possibility in the syste
we introduce the bilocal auxiliary field or OP.

f~x1 ,y1!5tzK~x1 ,y1 ;x2 ,y2!C~x2!C†~y2!I

^ tz[2 i t1 ^ tyfch* ~x1 ,y1!2 i t2

^ tyfch~x1 ,y1!2tz^ If ins~x1 ,y1!, ~8!

where t15(tx1 i ty)/2, t25(tx2 i ty)/2, and the integra-
tion over x2 and y2 is assumed. Herefch;^c↓

†c↑
†& and

f ins;^c↑
†c↑& are the electron-electron~charged! and the

electron-hole~insulating! spin-singlet OP, respectively~we
ignore the nonzero spin pairing!. The auxiliary fieldsfch and
f ins are responsible for the dynamic symmetry breaking@in
accordance with~3! and ~4!, respectively#.

Adding to ~7! a zero term

1

4
@f~x1 ,y1!2K~x1 ,y1 ;x18 ,y18!C~x18!C†~y18!I ^ tz#

3K21~x1 ,y1 ;x2 ,y2!@f~x2 ,y2!

2K~x2 ,y2 ;x28 ,y28!C~x28!C†~y28!I ^ tz#

in order to cancel the 4F interaction, we obtain the Lagra
ian in the form
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L~x1 ,y1 ;x2 ,y2!

5
1

2
C†~x1!F2]t1S ¹2

2m
1m D I ^ tz

2
1

2
I ^ tzf~x1 ,y1!GC~y1!1

1

4
f~x1 ,y1!K21

3~x1 ,y1 ;x2 ,y2!f~x2 ,y2!. ~9!

Let us transform the expression for the kernelK; in the
momentum space it then is

K~x1 ,y1 ;x2 ,y2!5E d3Pd3p1d3p2

~2p!9 KP~p1 ;p2!

3expF2 iPS x11y1

2
2

x21y2

2 D
2 ip1~x12y1!2 ip2~x22y2!G ,

where pi5(pi ,v i) ( i 51,2) and P5(P,v) represent the
relative and the center-of-mass momenta, respectively.
cording to the definition, the kernelKP(p1 ;p2) is in fact
independent ofP ~we can therefore omit the indexP below!
and acquires a simple form

K~p1 ;p2!5gph
2 D~p12p2!2g4F, ~10!

which is used in~9!. The last expression evidently demo
strates that the total character of the effective particle-part
interaction, as it always takes place in such a situation,23,24 is
defined by a possible competition between the first~retarded!
and the second~nonretarded! terms in ~10! or, in other
words, by their common action.

The partition function can be written as

Z5E DC†DCDfDf*

3expF2bE L~C†,C,f* ,f!dxdyG
[E DfDf* exp~2bV@G # !, b51/T,

where V@G # is the thermodynamic potential which in th
‘‘leading order’’ is

bV@G #52TrF ln G 211
1

2
~fK21f!G , ~11!

where Tr includes 2D spatialr and ‘‘time’’ 0<t<b inte-
grations, as well as the standard trace operation. The c
plete Green’s function of the system is

G 2152
1

2 F]t2S ¹2

2m
1m D I ^ tz2fG . ~12!

From ~11! and ~12! we obtain the f-equation ~the
Schwinger–Dyson equation!

dV

df
5f2E d2kdv

~2p!3 K~p;k,v!G ~k,v!50. ~13!
c-

le

m-

Substituting ~13! into ~11!, we obtain the expression fo
V~G !

bV~G !52Tr ln G 211
1

2
Tr G KG .

This expression is the standard Cornwell–Jackiw
Tomboulis formula for the effective action in the one-loo
approximation.25 Using ~13!, we can rewrite this expressio
in the form

bV~G !52TrF ln G 1
1

2
@G G 0

2121#G . ~14!

As was shown by Thoulesset al.26 ~see also Ref. 15! in
the 2D case it is more logical to use a new parametrization
the charge OP@Eq. ~8!#—its absolute value~modulus! and
the phase. In other words,1!

fch~x,y!5rch~x,y!exp@2 i ~u~x!1u~y!!/2#, ~15!

whererch is real. As forr ins, it corresponds, as can be se
from Eq. ~8!, to a one-component OP and therefore does
characterize the phase factor.

As will be shown below, with the given kernel~10! only
one (fch or f ins! OP can arise. Therefore, it is necessary
make, simultaneously with~15!, the spinor transformation
@in accordance with~3! and ~4!#

C†~x!5x†~x!exp~ iu~x!I ^ tz/2!, ~16!

C†~x!5x†~x!exp~ iu~x!tz^ tz/2! ~17!

@the spinorx(x) is real and formally corresponds to charg
less fermions#. Below we shall obtain theu-corrections for
the fch case only, but the equations forr ins are the same up
to the substitutionrch→r ins. The reason is that when
K(p1 ,p2) describes the attraction~charge pairing channel!,
the symmetry of the Lagrangian under operations~3! proves
to be crucial for the representation~16!; but whenK(p1 ,p2)
corresponds to the repulsion~chargeless or electron-hol
pairing channel!, the symmetry~4! is already important and
the representation~17! must be used as a ‘‘working’’ repre
sentation. With this difference, the rest of the calculations
r’s are almost identical but the ‘‘phase effects’’ persist f
the charge channel only. We shall therefore examine in de
this channel, the most interesting one for metallic~supercon-
ducting! systems.

In the variables~16! the Green’s function~12! trans-
forms to

G 2152
1

2 F]t2I ^ tzS ¹2

2m
1m D1 i tx^ tyrch2I

^ tzS ]tu1
¹u2

2m D2 i I ^ I S ¹2u

2m
1

¹u¹

m D G
[G21~rch!2S~]u!. ~18!

Using ~18! under assumption that theu gradients are
small ~the hydrodynamic approximation! and taking them
into account up to the second order, we can divide the ef
tive potential ~14! into two parts: V5Vkin(rch,¹u)
1Vpot(rch), where in the (¹u)2 approximation
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bVkin~rch,¹u!5TrFGS2G0S1
1

2
GSGS2

1

2
G0SG0S

1tx^ I
1

2
irchG~GS1GSGS!G . ~19!

Assuming by analogy with Ref. 27~see also Ref. 28! that
rch(x,y) is homogeneous2! after rather tedious but otherwis
straightforward calculation, we find from~19! the expression

Vkin~rch,Du!5
T

2

3E
0

b

dtE d2rJ~m,T,rch~m,T!!~¹u!2,

~20!

where

J~m,T,rch~m,T!!5
1

8p S Am21rch
2 1m12T

3 lnF11expS 2
Am21rch

2

T
D G

2
T

4p F12
rch

2

4T2

]

]~rch
2 /4T2!G

3E
2m/2T

`

dx
x1m/2T

cosh2 Ax21rch
2 /4T2

, ~21!

which plays the role of the neutral OP stiffness. Note tha
comparison with the retardation-free 4F model,15 the last ex-
pression contains one more term: the term with the der
tive.

The equation for the temperatureTBKT of the BKT tran-
sition can be written, after direct comparison of the kine
term ~20!, in the effective action with the Hamiltonian of th
2D XY model, which formally has the identical form.29 It is
therefore easy to conclude that

p

2
J~m,TBKT ,rch~m,TBKT!!5TBKT . ~22!

The basic difference between this equation and the one
theXY model is the inherent dependence of the former onm
~or nf! andrch.

To complete the set of self-consistent equations, wh
allow one to trace an explicit dependence ofTBKT on nf , we
also give the equations forrcoshandm. In particular, a simple
equation for rch( ivn) is Eq. ~13! with ¹u50; i.e., the
Green’s functionG of the neutral fermions substitutesG , so
that ~13! in the frequency-momentum representation ta
the form

S rch~ ivn!

r ins~ ivn! D5T (
m52`

` E d2k

~2p!2 S 2rch~ ivm!

1r ins~ ivm! D
3

K~vn ,vm!

vm
2 1j2~k!1rch

2 ~ ivm!1r ins
2 ~ ivm!

,

~23!
n

-

or

h

s

where vn5(2n11)pT is the Matsubara fermionic
frequency,23 j(k)5k2/2m2m, and the kernelK(vm ,vn) is
defined above.

We gave the final equations for both OPs,rch andr ins in
order to show that they indeed are the same but alternativ
the kernelK changes sign. The analytic solution of the
equations, of Eq.~22!, and the number equation can be do
by assuming thatrch( ivn) does not depend on the Matsuba
frequencies~see the footnote on p. 6!.

Making use of this approximation, the equation whi
follows from the ordinary conditionV21]V@G #/]m52nf

(V is the volume of the system! and which is crucial for the
crossover description must be added to Eqs.~22! and~23! for
self-consistency. We thus obtain

Am21rch
2 1m12T lnF11expS 2

Am21rch
2

T
D G52eF , ~24!

whereeF5pnf /m is the Fermi energy of free 2D fermion
with a simple quadratic dispersion relation. Thus, in the c
under consideration all unknown quantities,rch, m, and
TBKT , are the explicit functions ofnf .

3. ANALYSIS OF THE SOLUTIONS

In contrast with the standard~the T-independent unit
vector! XYmodel, in the superconducting model two chara
teristic temperatures can be introduced:Tr , where formally
the complete OP given by~8! arises but its phase is a rando
quantity,3! i.e., ^f(x,y)&50 and another temperature,TBKT

,Tr , where the phase of the OP is ordered, so t
^f(x,y)&Þ0. In other words, we define the temperatureTr

as the temperature of a relatively abrupt change in the neu
OP, which does not break any real symmetry. Therefore,
temperature~in contrast with TBKT) is not the phase-
transition temperature. Nevertheless, it gives~see Refs. 27
and 28! a convenient scale for the description of the neut
OP temperature behavior. Recall that according to the eq
tions obtained above, both these temperatures directly
pend on the carrier density in the system.

The ‘‘critical’’ temperatureTr can be found, for ex-
ample, from Eqs.~21!–~24! by settingrch50 ~in accordance
with the derivation of these equations, it corresponds to
mean-field approximation4!!. As a result, with a decrease i
temperature, a 2D metal~similarly to a 1D metal27! passes
from the normal phase (T.Tr) to another phase, where th
average homogeneous~charged! OP ^f(x,y)&50 or,
equivalently, the superconductivity is absent, but charge
OP rchÞ0. It is evident that the pseudogap is formed just
the temperature regionTBKT,T,Tr , because, as follows
from the formulas cited above@see, e.g., Eqs.~21!–~24!#,
rch5rch(T) acquires all the spectral characteristics of a
metal in the same way as the superconducting gapD(T)
enters into corresponding expressions for ordinary superc
ductors. It justifies why this region can be called ‘‘th
pseudogap phase.’’ The density of states neareF in the
pseudogap phase is definitely lower than that in the regio
the normal phase withrch50, but does not equal zero as
the superconducting phase. The latter must be checked
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direct calculation of the one-particle fermion Green’s fun
tion, which is most likely a separate problem that is n
considered here.

The phase diagram of a system can be found from E
~21!–~24!. The quantitiesTr(nf) and TBKT(nf) behave dif-
ferently for different correlations between interaction co
stants.

1! g4F.0, gph50 ~an unretarded interaction!.
This case has been analyzed in part in Ref. 15. It co

sponds to fermion-fermion pairing due to the local attracti
Note @see Eq.~23!# that in this case~or in the case of attrac
tion between carriers! the fermion-antifermion~insulating!
pairing channel is absent, i.e.,r ins50. The corresponding
phase diagram is shown in Fig. 1. We see that the pseud
phase exists at any carrier concentrations, that the temp
ture width of this phase region increases only slightly w
increasingnf , and that the BKT phase always begins to fo
whenrch(TBKT) is finite. This means that fluctuations of th
latter near and belowTBKT are not essential.

As eF→0, the temperature of the BKT phase formati
is defined by the equalityTBKT5eF/8, andTr as a function
of nf can be found from the equation

Tr ln~Tr /eF!5W exp~24p/g4Fm!52«b
~4F!/2,

which follows from ~23! ~W is the conduction band width
and «b

(4F) is the two-fermion bound-state energy, which
always different from zero in the 2D case!.

2! g4F50, gphÞ0 ~a pure indirect interaction!.
This is one of the most interesting cases because it

responds to the widely accepted electron-phonon~or the
BCS-Bogolyubov–Eliashberg! model of superconductivity
The numerically calculated phase diagram is shown in Fig
It shows that a comparatively large region with t
pseudogap phase exists at rather low carrier concentra
only, and that its temperature area shrinks whennf→`.
Such a behavior qualitatively agrees with that which ta
place in real HTSCs5–8 and demonstrates that a pseudog
~and also a spin gap! is mainly observed in underdope
HTSC samples.

It is not difficult to conclude that the asymptotic beha
ior of Tr(nf) andTBKT(nf) has the following forms:

FIG. 1. TheT2nf phase diagram of the 2D metal with 4F fermion attra
tion. The lines correspond to the functionsTr(nf) ~the dotted curve! and
TBKT(nf )

~the solid curve! at g4Fm/2p50.5. Figures I, II, and III show the
regions of the normal, pseudogap, and superconducting phases, respec
-
t

s.

-

-
.

ap
ra-

r-

2.

ns

s
p

i! when the ratioeF /v0!1 ~very low free fermion den-
sity or the local pair case!, the first one satisfies the equatio

Tr ln~Tr /eF!5v0 exp~24p/gph
2 m!52«b

~ph!/2,

which immediately results in]Tr(nf)/]nf unf→0→` ~here
similarly to the 4F case it is convenient to introduce t
bound-state energy«b

(ph) for the phonon attraction!. At the
same time, the temperatureTBKT in the limit nf→0 has iden-
tical dependence on the carrier density and, as above,TBKT

5eF/8. This simply means that here again it is proportion
to the numbernf /2 of composite bosons; in this density r
gionTr /TBKT@1 ~this inequality is also satisfied for the pur
4F interaction!.

ii ! in the opposite caseeF /v0@1 ~very large fermion
density or the Cooper pair case! we easily obtain the standar
BCS value:

Tr5~2gv0 /p!exp~22p/gph
2 m![TBCS

MF 5~2g/p!DBCS

(DBCS is the usual one-particle BCS gap atT50!. In other
words, in this limit the temperatureTr is equal, as it should
be, to the BCS value.5! TheTBKT asymptotic behavior here i
not so evident and requires a more detailed consideratio

First of all, it is natural to assume that for largenf the
temperatureTBKT→Tr . It is then necessary to check th
dependence ofr on T asT→Tr . For this purpose Eq.~23!
can be transformed to

2p

gph
2 m

5E
0

`

dxS tanhAx21rch
2 /4T2

Ax21rch
2 /4T2

2
tanhAx21rch

2 /4T22tanh~v0/2T!

2~Ax21rch
2 /4T22v0/2T!

2
tanhAx21rch

2 /4T21tanh~v0/2T!

2~Ax21rch
2 /4T21v0/2T!

D . ~25!

~Here it was assumed that in the concentration region un
consideration the ratio m/Tr.eF /Tr@1 because
m.eF .10–12,16!

Since usuallyv0 /Tr@1, only very smallx give the main
contribution to the integral~25! ~this is seen from the limit
r/Tr→0, wheneF /v0→`!. Therefore, it takes the approx
mate form

ely.

FIG. 2. TheT2nf phase diagram of the 2D metal with indirect intercarri
attraction forl50.5. Similarly to Fig. 1, the curves correspond to the fun
tions Tr(nf) andTBKT(nf )

and separate the same regions.
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2p

gph
2 m

5E
0

`

dxS tanhAx21rch
2 /4T2

Ax21rch
2 /4T2

2
1

x1v0/2TD . ~26!

On the other hand, the accepted conditionrch(Tr)50 in ~26!
directly results in the simple equation

2p

gph
2 m

5E
0

`

dxS tanhx

x
2

1

x1v0/2Tr
D ~27!

for Tr . Comparing~26! and ~27!, we obtain

E
0

`

dxS tanhx

x
2

tanhAx21rch
2 /4T2

Ax21rch
2 /4T2 D 5 ln

Tr

T
.

Now from the expansions

tanhAx21rch
2 /4T2

Ax21rch
2 /4T2

.H 12321@x21rch
2 /4T2#, x<1

x212rch
2 /8T2x3, x.1

,

we obtain the expression which we need

rch~T!.2.62TrATr /T21. ~28!

Recall that the well-known 3D result isDBCS(T)
53.06TBCS

MF ATBCS
MF /T21 ~Ref. 17! and the small difference

can be explained by the above approximation, which is s
able for the qualitative discussion below~see Sec. 4!.

The dependence~28! must be substituted in Eq.~22!;
because m/TBKT.eF /TBKT@1 and rch(TBKT)/TBKT!1
whenTBKT→Tr , this equation can be written as

eF

4TBKT
F12

rch
2

4TBKT
2

]

]~rch
2 /4TBKT

2 !G
3E

0

`

dxS 1

cosh2 x
2

1

cosh2 Ax21rch
2 /4TBKT

2 D 51. ~29!

Finally, using the expansion inrch(TBKT)/2TBKT in integral
~29!, the latter can be transformed to

aeF

8TBKT
Frch~TBKT!

2TBKT
G4

51, ~30!

where the numerical constant

a5E
0

`

dx
tanh2 x2x21 tanhx11

2x2 coshx
.1.98.

Combining now~28! and ~30!, we obtain the final simple
relation betweenTr andTBKT for the large carrier density

TBKT.Tr~122.34ATr /eF!.

In other words,TBKT as a function ofnf ~see Fig. 2! actually
approachesTr ~or TBCS

MF !.
With regard to the crossover region defined by the equ

ity m.0, it is easy to see from Eqs.~21!–~24! and Fig. 2 that
the former corresponds to the densities when the temp
tures Tr and TBKT are essentially different; otherwise, th
pseudogap phase really exists here. It is important that
t-

l-

a-

e-

cause of the relatively low, for the phonon case, value of
energy of state of the bound pair«b

(ph) and the very small
region of negativem ~Ref. 16!, the behaviorTBKT(nf);eF

hardly corresponds to the Bose–Einstein condensation
in fact, is consistent for carrier densities whenm.0 ~al-
though probablymÞeF!.

3! g4FÞ0, gphÞ0.
This general case contains the boson exchange and

retarded interactions. The situation closest to the real syst
corresponds to the caseg4F,0 ~or to some sort of short-
range repulsion! but total interaction has attractive characte
this means that at leastgph

2 .ug4Fu. There are two qualita-
tively different cases again: i! low and ii! high carrier densi-
ties.

i! eF /v0!1. For this inequality we see thatTr satisfies
the same equationTr ln(eF /Tr)52«b/2, where now

«b522WS v0

W1v0
D l/~l2mC* !

expS 2
2

l2mC*
D

is the two-body bound state energy, andl5gph
2 m/2p and

mC* 52g4Fm/2p are the ordinary, effective, electron-phono
~attractive! and Coulomb~repulsive! constants; the differ-
encel2mC* should be positive. We see that«b equals to
«b

(4F) or «b
(ph) ~if W@v0! for the previous limiting cases

HereTBKT5eF/8 and]Tr(nf)/]nf→` asnf→0.
ii ! eF /v0@1. In this limit the expression forTr has the

form

Tr5
g

p
Av0u«buS eF

v0
D mC* /~l2mC* !

. ~31!

It follows from this expression that the dependence onnf is
still weak, which results in an increase~for g4F.0! or de-
crease~for g4F,0! of Tr wheneF>v0(l2mC* )/mC* , which
is direct consequence of the model with unretarded 4F in
action. The temperatureTBKT is described by Eq.~30! with
Tr , defined by~31!.

It must be noted, however, that with more realistic a
sumptions about Coulomb repulsionmC* , which can be ini-
tially represented~see, for example, Ref. 22! by the matrix
elements

V~k,k8!5H Vc , uj~k!u,uj~k8!u<umu

0, uj~k!u,uj~k8!u.umu
,

it acquires the well-known Tolmachev logarithmic correcti
or turns out to be screened at largenf . At low carrier den-
sities such effect~screening! does not take place, so the loc
repulsion model can be considered as a good approxima
in the physical cases in which the Fermi energy of free f
mions is less than or not much greater than the character
boson frequency.

4. CONCLUSIONS

The model proposed to describe the possible two-st
superconducting phase transition in 2D~and quasi-2D! me-
tallic systems was greatly simplified in order to investiga
their most typical and general features. Surprisingly, it giv
some essential details which are characteristic of underdo
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HTSC copper oxides. In particular, the experimental d
show30,31 that i! the critical temperatureTc for low nf indeed
is proportional tonf ~which is simplyeF!, ii! Tc ‘‘becomes
saturated’’ whennf approaches ‘‘optimal doping’’~i.e., car-
rier concentration whenTc as a function ofnf reaches its
highest possible value for the given compound!, iii ! the ratio
Tc /eF in these and other ‘‘exotic’’ superconductors is
high as 1022– 1021, which independently points to rathe
low Fermi energy, etc.~for details see Ref. 31!. In addition,
the standard ratio~see Ref. 23! 2D(0)/Tc can be roughly
estimated as 2r(0)/TBKT ; this value always exceeds its c
nonical BCS value and increases approximately;nf

21/2 at
small values ofnf .

One would think that the peculiarities mentioned abo
receive their natural interpretation on the basis of the mo
for the metal with indirect fermion-fermion interaction if th
temperatureTBKT is the critical temperatureTc ~this is justi-
fiable for pure 2D systems13!. In a quasi-2D model the third
spatial direction and the phase fluctuation stabilization g
rise to the true temperatureTc of an ordinary homogeneou
ordering31,32 ~see also Ref. 11!, but the region whereTc

ÞTr ~or Tc
BCS! can be conserved.11

As regards the other temperature~here estimated asTr!,
it is usually determined empirically as some temperat
point T* , where the observable spectral~or magnetic! prop-
erties of HTSCs begin to deviate appreciably from their st
dard for normal metallic state behavior.5–9 As a rule, such a
deviation is attributable to the appearance of fluctuat
~short-lived! pairs. We showed, however, that a finite num
ber of these pairs does exist or begins to be formed~rapidly!
below some definite~in the mean-field approximation! tem-
peratureTr , which, as indicated above, does not correspo
to a phase transition. Additionally, because of the fluct
tions ~including quantum fluctuations!, r(Tr) remains non-
zero at T.Tr . In this temperature region the number
pairs is exponentially small, and the fluctuations, which
superconducting~developed in the 2D case! can contribute to
the temperature behavior of different observables@even at
large nf ~Ref. 33!#. The only difference from the suppose
dependenceT* on the density of doped holes is the decre
ing asymptotic behavior atnf . We have found that this col
lective temperature also decreases, while~see, for example
Ref. 31! T* is usually plotted as one that increases w
decreasingnf . It seems that such a behavior still has
satisfactory explanation, especially for the 2D case, wh
the bound states do not demand, as in the 3D case, a s
coupling. Nevertheless, it must be stressed that the ab
limit, Tr(nf)→0 as nf→0, cannot be considered as suf
ciently regular because of the growth of the neutral OP fl
tuations; their role is disregarded, and they become very
portant at small values ofnf , when, for example, any
collective behavior cannot exist.

The model under consideration qualitatively correc
describes the explicit narrowing of the pseudogap area as
carrier density increases@such a narrowing results in a rath
rapid confluence of the temperatures (Tc and Tr) and their
experimental confluence, rendering them indistinguishabl
the BCS limit#. On the other hand, recent angle-resolv
photoemission spectra unexpectedly showed2,3 that, in con-
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trast with Tc , the superconducting gap even in the und
doped samples is essentially independent of doping. Su
difference to some extent also follows from the superc
ducting transition scenario proposed by us: Indeed, o
particle spectrum gap as a function ofnf is simply defined by
the valuer(nf) ~it was calculated in Ref. 16!, which is pro-
portional toTr(nf), and the latter~see Fig. 2! very quickly
becomes equal toDBCS or a constant, althoughTBKT ~andTc!
not quite yet reach this point. This behavior is a direct co
sequence of the evident smallness of the negativem ~local
pairs and/or strongly developed fluctuations! region for the
indirect fermion-fermion interaction model in which th
bound states prove to be extremely subtle.

Some important problems still remain unresolved a
must be investigated. These problems are: more comp
and deep development of the model, which must cons
different kinds of dispersion relations for the intermedia
bosons; more careful allowance for the Coulomb repulsi
neutral OP fluctuations, especially for lownf ; generalization
of the approach to the case of nonisotropic pairing. On
other hand, high-Tc compounds must be studied in the fram
of more realistic models, which include such pecularities
HTSCs as the magnetism of cuprate layers, non-qudratic
carrier dispersion relation with possible van Hove singula
ties in the hole density of states, and, of course, spatial qu
two-dimensionality. One of the most interesting problems
to obtain doping and temperature-dependent effective act
which is equivalent to the Ginzburg–Landau potential, b
cause in many cases the phenomenology is more prefer
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1!It should be noted that Efetov and Larkin, in fact, were the first to use s

a parametrization. They studied27 the effect of interchain hopping and OP
phase fluctuations on the superconducting transition temperature in
superconductors.

2!Equations forrch andr ins are obtained below and, as was shown in R
16, it is an admissible approximation to put in them the valuerch ~and
r ins!, which is independent space and time variables.

3!Becauserch andr ins cannot exist simultaneously@see Eq.~23!#, the index
r is the only OP, which appears at a definite sign of the kernel~10!.

4!Despite the fact that the temperatureTr is not identical to the BCS critical
temperatureTBCS

MF , they coincide for the large carrier density only~see
below!.

5!Being equal~in the mean-field approximation only!, these temperatures
(Tr andTBCS

MF ! are in fact different: ifTBCS
MF immediately decreases to zer

as the fluctuationsf andf0 are taken into account,Tr does not decrease
and is renormalized only whenr fluctuates.
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Magnetoluminescence of Ge/Ge 12xSix heterostructures
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This paper reports on the first investigation made of luminescence of Ge/Ge12xSix heterostructures
at liquid-helium temperatures in a magnetic field of up to 14 T. The luminescence lines
observed in the spectra are due to both free and impurity bound excitons in Ge layers. The
diamagnetic shift of the quasi-two-dimensional exciton has been measured. From the experimental
data the size of the exciton has been estimated to be 75–90 Å. ©1998 American Institute
of Physics.@S1063-7761~98!01808-3#
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1. INTRODUCTION

The interest in studies of optical properties of tw
dimensional Si/Ge structures is stimulated primarily by
prospect of integrating them in traditional silicon microd
vices and using them as sources and detectors of lig1

Moreover, high-quality structures based on Si/Ge are of g
interest in view of studying many-body effects in the syst
of photogenerated excitons. Since radiative recombinatio
slower than in structures based on III–V semiconducto
one can expect longer exciton lifetimes (t;1025– 1026 s).
An electron–hole system with longert should be capable o
cooling down to a temperature close to that of the crys
lattice. In this connection, we note a recent publication2 re-
porting an observation of a line corresponding to recombi
tion of quasi-two-dimensional excitonic molecules~biexci-
tons! in luminescence spectra of a Si/SiGe/Si quantum w

Since the publication by Sturmet al.,3 who were the first
to observe excitonic luminescence from Si/Si12xGex /Si
quantum wells, the number of investigations of luminesce
in such structures has been quite considerable. The na
and properties of lines in these spectra have been studie
detail. At the same time, only two publications4,5 were dedi-
cated to luminescence of Ge/GeSi multiple quantum w
~MQW! structures. Luminescence lines detected in spectr
Ge/GeSi MQW structures were attributed to annihilation
free and, probably, impurity bound excitons in Ge laye
assuming that these features could not be resolved. On
low-energy side of the dominant spectral line, a mark
‘‘shoulder’’ ~the x1 line in Fig. 1; see also Ref. 5! was de-
tected, whose nature has remained unclear and which
tentatively ascribed to an excitonic state with an ene
lower than that of the free exciton, such as an excitonic m
ecule.

Earlier studies6 of excitonic molecules in uniaxially
strained Ge indicated that, under the conditiontexc@ts

~wheretexc is the exciton lifetime andts is its spin relaxation
time!, an excitonic molecule is destroyed by a magnetic fi
3371063-7761/98/87(8)/5/$15.00
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higher thanBc5DM /gmB , whereDM is the biexciton bind-
ing energy. In uniaxially strained Ge the excitonicg-factor is
considerable, and dissociation of a molecule induced
magnetic field occurs atBc;1.5 T. A similar biexciton be-
havior should have been expected in the case under inv
gation, which would allow us to reliably identify these sp
cies. Note that in strained silicon we havetexc,ts , and
excitonic molecules are not destabilized by external m
netic fields. It seems that this property also applies to
case of Si/Si12xGex /Si quantum wells. Since the diamag
netic shift is a function of the exciton size,7 the shift of
excitons localized at impurities and on fluctuations of t
random potential plotted against magnetic field should
smaller than that of free excitons. At an appropriate magn
field strength, this should allow us to resolve different ex
tonic lines. Thus, magnetoluminescence measurements s
promise in view of identifying different lines in lumines
cence spectra.

This paper reports on the first measurements of mag
toluminescence ever made in Ge/Ge12xSix MQW structures.

2. EXPERIMENTAL PROCEDURE AND DISCUSSION

In our experiments we used Ge/Ge12xSix structures
grown by the vapor-phase hydride technique on Ge@111#
substrates with the following parameters. Sample No. 1
Ge layers with thicknessdGe5210 Å, superlattice period
D5530 Å, number of periods in the sampleN572,
x512.3%, and lattice constant in the lateral directi
a55.638 Å, whereasdGe5120 Å, D5420 Å, N5262,
x514%, anda55.629 Å in sample No. 2. The residual con
centration of n-impurities in Ge layers was (1 – 2
31013cm23. A detailed description of the samples an
manufacturing technique can be found in Ref. 5 and re
ences therein, where samples No. 1 and No. 2 are labelle
No. 261 and No. 262, respectively. The pump radiation w
generated by Nd:YAG and Ar1 cw lasers operated at wave
lengths of 1064 and 488 nm, respectively. Spectra were
© 1998 American Institute of Physics
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FIG. 1. ~a! Nonphonon ~NP! and LA-
phonon components of luminescence spec
of sample No. 1 (dGe5120 Å! at liquid-
helium bath temperatureTb52 K, under cw
pumping by the Nd:YAG laser at a powe
density of W530 W/cm2 and at different
magnetic fields. The shoulder on the low
energy side of thex0 line is labeledx1. ~b!
Luminescence spectra of sample No.
(dGe5210 Å for a constant Nd:YAG pump
at a power densityW555 W/cm2, Tb

52 K, and at different magnetic fields. Th
features of the luminescence spectrum a
labeled byx0, x1, x2, and x3, and their
peaks are connected by the dashed lines.
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persed by a grating monochromator and recorded usin
cooled germanium light detector operated in the pha
locked mode. Measurements in a magnetic field were p
formed in a cryostat with a superconducting solenoid in
Faraday configuration. The pump radiation was fed to
sample via an optic fiber, and luminescence from the sam
was picked up by the same fiber. In measurements at
magnetic field, an optical cryostat was used.

Energy spectra of electrons and holes in Ge/Ge12xSix
heterostructures were calculated by Aleshkin and Bek8

These calculations indicate that Ge layers are quantum w
for both electrons and holes. Positions of lines in lumin
cence spectra are in reasonable agreement with calculati5

The lattice constants of materials in the quantum wells
barriers~Ge and GeSi! are notably different~up to;0.4%),
which generates strain in the two-dimensional layers. Ge
ers are compressed in the lateral directions, which can
represented as a hydrostatic compression combined
uniaxial tensile strain along the@111# axis. Using the formu-
las from Ref. 8, we find that Ge layers in sample No.
(dGe5120 Å) are under an equivalent uniaxial stressP
.8.5 kbar, and in sample No. 1 (dGe5210 Å) P.5.8 kbar.
In the presence of uniaxial stress (D5dS44/A3
.3.6 meV/kbar, whered is the deformation potential an
S44 is the compliance coefficient9! and size quantization, th
splitting between the subbands in the valence band is 20
meV.8

Figure 1 shows luminescence spectra of heterostruct
No. 1 and 2~labelled by a and b, respectively! at high pump
power and in different magnetic fields aligned normally
the superconducting layers. The intensity of luminesce
lines increases with the magnetic fieldB up to a factor of
about two atB512 T. In both structures, the high-energ
sideband of the luminescence line slightly shifts toward h
energies.

It is clear that the intensity of the sideband on the lo
energy side of the dominant line in sample No. 1~it is de-
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noted byx1 in Fig. 1a! rises with the magnetic field faste
than that of linex0. The spectra in Fig. 1b, whose shapes
more complicated than the curves in Fig. 1a, show that f
tures x2 and x3 transform to well resolved lines, and th
intensities of the low-energy lines increase faster than th
of lines corresponding to higher energies. At higher magn
fields, a feature similar tox1 in Fig. 1a can be seen~it is also
labelled asx1 in the other figures!. In addition, at a fixed
magnetic field, the intensities of different lines were found
depend differently on the pump power. One can see in Fi
that the lower the line energy, the faster its growth with t
pump power. At zero magnetic field, the intensities and

FIG. 2. Luminescence spectrum of sample No. 2 atTb54.2 K and a fixed
magnetic fieldB512 T at different powers of the Nd:YAG laser radiation
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FIG. 3. ~a! NP-components of luminescenc
spectra of sample No. 1 atTb54.2 K ~1! ex-
cited by the Nd:YAG laser atW580 W/cm2

and ~2! by the Ar1 laser atW535 W/cm2.
The spectra are normalized to the amplitud
of x0 line. ~b! Luminescence spectra o
sample No. 2~1! before and~2! after etching.
The spectra were taken atTb54.2 K under ex-
citation by the Nd:YAG at a power density
W550 W/cm2.
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sitions of different lines change similarly with the temper
ture and pump power. The separation between the peak
linesx0 andx1 in Fig. 1b is about 3.4 meV, and between t
peaksx0 andx2 about 7.5 meV. When the laser spot w
scanned over the sample surface, the positions and shap
different lines remained constant, whereas changes in t
relative intensities were within 15%.

When a sample was excited by radiation from t
Nd:YAG laser ~the penetration depth atl51.064 mm is
about 1mm and atl5488 Å about 8 nm!, the relative in-
tensity of thex1 line with respect tox0 is higher than unde
Ar1 laser radiation, as can be seen in Fig. 3a. This led u
conjecture that different lines in the spectra of both structu
were due to luminescence from different quantum wells.

In order to test this conjecture, we etched sample No
in the SR-4A solution for about one second. Figure 3b gi
the spectra of sample No. 2~curve 1! before and~curve 2!
after the etching. One can see that the linex2 vanished from
the spectrum after etching, and the width of the linex0 di-
minished. This result confirms our assumption.

The parameter characterizing different quantum wells
heterostructures is their width. The shift of the exciton li
due to small changes in the quantum well widthLz is
-
of

s of
eir

to
s

2
s

n

DEexc5udEexc/dLzuDLz5p2\2DLz /~m iLz
3! ,

1/m i51/m i
e11/m i

h ,

wherem i
e andm i

h are the reduced electron and hole masse
the vertical direction andm0 is the free electron mass.9

Hence thex1 andx2 lines correspond to luminescence fro
quantum wells near the surface whose widths differ byDLz

54 – 6 Å ~2–3 monolayers! and 6–10 Å~3–4 monolayers!,
respectively.

The spectra of sample No. 1~Fig. 1a! and of the etched
sample No. 2~Fig. 3b! are the simplest, and are therefo
more convenient for measurements of the diamagnetic s
Figure 4b shows luminescence spectra of the etched sa
No. 2 in magnetic field aligned with the@2̄11# axis parallel to
the layers~i.e., perpendicular to the@111# axis!. Unlike the
spectra of the same sample recorded in perpendicular m
netic field ~Fig. 4a!, they show the exciton luminescenc
intensity slowly changing with magnetic fieldB, but the shift
of the high-energy sideband of the exciton line is compara
to that in the caseBi@111#. The spectra in the field aligne
with the @01̄1# axis are almost identical to those in Fig. 4
er

es
FIG. 4. Nonphonon~NP! components of
sample No. 2 luminescence spectra aft
etching with cw Nd:YAG pumping atTb

54.2 K in a magnetic field:~a! Bi@111#,
pump power densityW550 W/cm2, the
spectra are normalized to the peak intensiti

of NP lines; ~b! Bi@ 2̄11#, pump pwer den-
sity W520 W/cm2.
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The spectra of sample No. 1 are similar to the spectra
sample No. 2 in Fig. 4.

The exciton luminescence line in a perpendicular m
netic field is apparently enhanced because of the decrea
the diffusion length of photogenerated electron–hole pair
a magnetic field, which should increase the probability
their localization on fluctuations of the random potential a
irregularities of heterojunctions, thereby raising the radiat
recombination probability.10

An estimate of the excitonic line diamagnetic shift usi
the point at half maximum on the high-energy edge yie
;2 meV in a field of 14 T. The position of the similar poin
on the low-energy edge is, in fact, constant. The lumin
cence line broadens with the magnetic field because
evidently a complex line incorporating lines of both free a
bound excitons. Then the shift of the high-energy edge
magnetic field is controlled by diamagnetic properties of f
quasi-two-dimensional excitons.

In order to test this assumption, let us estimate the s
of the excitonic line in the magnetic fieldB.

The hole masses in both size quantization subbands
highly anisotropic. The lowest subband of heavy holes (hh)
with the larger density-of-states mass has the follow
masses: along the@111# axis mi

hh50.49m0, and in the plane
normal to the@111# axis m'

hh50.053m0. In the subband of
light holes (lh) we havem'

lh50.13m0 and mi
lh50.049m0,

wherem0 is the free electron mass.9 The holes from the split
subbands are characterized by definite projectionsj z of the
full angular momentum on the@111# axis. The holes of the
lower subband havej z563/2. Under uniaxial strain, level
in the conduction band also split. The minimum of the co
duction band is formed by three equivalent valleys, wher
the energy of the forth valley, which is symmetrical abo
the @111# axis, shifts toward higher energies at a ra
.11 meV/kbar. Notwithstanding the high anisotropy of bo
electron and hole masses, the excitonic mass anisotrop
the Ge/Ge12xSix quantum well is considerably lower. Th
energy surfaces for electrons and holes are ellipsoids of r
lution, but their symmetry axes are different~@111# for holes,
and@11̄1̄# and equivalent axes for electrons!. The longer axis
of the reduced mass ellipsoid for an exciton incorporating
electron from any of the equivalent valleys makes an an
of about 21° with the@111# axis. The exciton’s reduced
masses arem150.045m0, m250.032m0, andm350.087m0.
The excitonic masses in Ge stretched along the@111# axis are
very close to those in Ge compressed along the@100# axis:
m1850.047m0, m2850.031m0, andm3850.083m0. This allows
us to use variational calculations of the exciton binding
ergy Ry in strained Ge@100#11 and obtain fairly accurate re
sults. These calculations yield Ry.2.8 meV. The exciton
sizes corresponding to the reduced masses given abov
a1'170 Å, a2'200 Å, anda3'140 Å.

A simple analytical calculation which takes into accou
barrier penetration of electron and hole wave functions an
in reasonable agreement with exact calculations ofE0 for a
GaAs/AlGaAs quantum well12 yields E0'2.1 Ry.5.9 meV
for a well with dGe5120 Å andE051.8 Ry.5 meV for a
well with dGe5210 Å.

The exciton’s diamagnetic susceptibility in bulk Ge is
of
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function of electron and hole masses and, unlike the bind
energy, is different for Ge compressed along the@100# axis
and stretched along the@111# axis. But since the reduce
masses in these two cases are quite close, calculations11 of
x i j for compressed Ge@100# and stretched Ge@111# are also
close. This theory yields diagonal elements of the diam
netic susceptibility tensorx i i '0.3– 0.5 meV/T2. Moreover,
the Van Vleck correction to the diamagnetic susceptibility
only several percent of the Langevin susceptibility.11

The low-field diamagnetic shift of an isotropic quas
two-dimensional exciton~either free, localized, or bound t
an impurity! is described by an expression for the Langev
correction similar to that in the three-dimension
configuration13: DE5e2B2^r 2&/(8m'c2), where ^r 2&
[^Cur 2uC& characterizes the exciton localization andm' is
the reduced mass in the plane perpendicular to the magn
field. In the isotropic case, the diamagnetic correction to
quasi-two-dimensional exciton energy is a factor of^r 2&/2aB

smaller than in the three-dimensional configuration. For
ideally two-dimensional exciton this ratio is 16/3. The exc
ton localization on irregularities of the potential and impu
ties also leads to a smallerDE. A value ofx i

2D several times
smaller than in the three-dimensional case should be
pected.

In order to calculate changes in the exciton energy du
magnetic field, one should also take into account the te
linear in B: DE5(1/2)gexcmBB (gexc is the excitong-factor
equal to the sum of electron and holeg-factors!. Measure-
ments of Shubnikov oscillations as functions of the magne
field tilt angle in Ge/Ge12xSix quantum wells selectively
doped with boron and whose parameters are close to thos
quantum wells studied in our experiments (x514%, dGe

5110, 180 Å! indicate that the spin projection on the@111#
axis in magnetic field is constant.14 The g-factor derived
from these measurements is25.8. In the case of bulk Ge
under a strong tensile strain along the@111# axis one has
gh.27.9 For electrons of all three equivalent valleys in
magnetic field aligned with the@111# axis,ge.1. In a mag-
netic fieldBi@2̄11#, ge is different for different valleys. The
diamagnetic shift was a maximum for excitons containi
electrons from the@11̄1̄# valley. These electrons havege

.1.5.
Thus, the Zeeman component in the exciton energy

Bi@111# is DE.2(7/2)mBB520.2B meV, and for
Bi@2̄11# DE52(1/2)mBB.20.03B meV. The red shift in
low magnetic fields, when the linear term dominates,
within 0.4 meV and could barely be detected in our expe
ments.

Since the diamagnetic shift in magnetic fields para
and perpendicular to the structure layers is about 2 meV
B514 T, by solving a set of two equations we obtainx i
50.04 meV/T2 andx'50.03 meV/T2. Thus, it turns out that
the susceptibilityx of the two-dimensional exciton is a facto
of 8–10 lower than that of the three-dimensional excito
Hence, using the relationship13 x3D/x i

2D5^r 2&/2aB
2 , we ob-

tain the size of the region in which a quasi-two-dimensio
exciton is localized:A^r 2&50.4–0.5aB575–90 Å.

The width of the excitonic luminescence line in quantu
wells is determined by fluctuations in their widths and co
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position of the solid solution. In the case of excitons loc
ized in wide Ge wells, whenLz>aB , fluctuations in the
solid solution composition can be neglected. If fluctuatio
in Lz are Gaussian, the luminescence line width adequa
characterizes the random potential.15

In this case,16 the exciton luminescence line has a Gau
ian bell shape with FWHM

s51.18Ap~12p! dzdxyudEexc/dLzuLz5L0
/~2a'!,

whereLz is the well width anddz is the amplitude of fluc-
tuations inLz . Assuming that the amplitude of width fluc
tuations is within the spread of the widths of different wel
which was determined above, we takedz510 Å. Let us take
p, the average fraction of ‘‘islands’’ and ‘‘depressions’’ i
the total interface area, to be equal to the most proba
value of 0.5. The lateral exciton size in our estimatea'

5A^r 2&580 Å. The exciton luminescence line has the ma
mum width smax when the typical size of interface irregu
larities equals the lateral exciton size.16 Then s
50.59dzudEexc/dLzuLz5L0

. In the case under consideratio
s.2.5 meV. When a sample is pumped by Ar1 laser radia-
tion, luminescence is generated only in several surface w
The minimum width of measured luminescence lines pro
to be 4.5–5 meV. Since the exciton binding energy on
purities in Ge layers is 1.5–2 meV,5 the estimate of the ex
citon line width is in fair agreement with the measureds.

Recent studies of exciton localization in strain
InGaAs/GaAs structures indicated that the Stokes shift
luminescence line width are virtually independent,17 which
means that fluctuations in the random potential in such st
tures are non-Gaussian and caused by relaxation of el
energy on heterojunctions.

It seems that this conclusion also applies to the strai
Ge/Ge12xSix structures studied in this work. In this cas
although the estimate ofs given above is in agreement wit
measurements, the luminescence line width cannot be
as a unique characteristic of the random potential.

3. CONCLUSION

We have demonstrated that our observations can be
terpreted in terms of diamagnetic properties of quasi-tw
dimensional excitons which can be either free, or bound
impurities, or localized in Ge layers. Since the diamagne
shift of a bound exciton is smaller than that of a free excit
-
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the broadening of luminescence lines in a magnetic field
vors the hypothesis about its complex nature. Measurem
of the exciton diamagnetic shift yield an estimate of the l
eral exciton size. At the same time, we have obtained
indications of the existence of biexcitons in the studied str
tures.
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Amplification of spin oscillation noise by self-modulation in a traveling magnetostatic
wave
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A theoretical analysis is made of the formation and evolution of modulational instability of a
traveling magnetostatic spin wave in a ferromagnetic film. Results of earlier experiments
are analyzed and it is demonstrated that the experimental results can be explained using a model
describing the evolution of the signal wave and initial noise allowing for their nonlinear
interaction. The instability process is simulated numerically and the results are compared with
calculations using a deterministic model. Mechanisms are discussed for the loss of spectral
symmetry in the formation of modulation frequency satellites. ©1998 American Institute of
Physics.@S1063-7761~98!01908-8#
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1. INTRODUCTION

Yttrium iron garnet films are important for studying th
physical properties of traveling magnetostatic spin wav
which can easily be excited and propagate readily in th
films. As the power of the oscillator exciting the signal wa
increases, the wave may become unstable against modul
of the wave amplitude. The instability of magnetostatic s
waves in magnetic films has been studied in Refs. 1–11
Refs.1–4, for example, first-order decay processes in yttr
iron garnet films were observed experimentally in the pha
matching region for three interacting waves~three-magnon
processes!. Outside these regions four-wave scattering p
cesses predominate, for which the phase-matching condit
have the form

2v~k0!5v1~k1!1v2~k2!, 2k05k11k1 . ~1!

This type of process for magnetostatic spin waves trave
in magnetic films was observed in Refs. 5–11. This effec
characterized by the appearance of satellite signals in
spectrum of the transmitted wave, equidistant in freque
and wave number from the initial wave. As the electroma
netic pump power increases, one of the satellites is repla
by a high-intensity noise signal with a broad region of ex
tation spectrum.5–7 This noise signal was interpreted in Ref
5 and 6 as a kinetic instability caused by the secondary g
eration of spin waves.12

In addition to the phase-matching conditions~1! being
satisfied, the onset of parametric instability requires the w
power to exceed some threshold determined by the lo
accompanying the wave propagation. The parametric in
bility may be satisfied for several pairs of waves simul
neously. If the group velocities of the interacting waves ha
similar values and directions, parametric instability is co
verted into a self-modulational instability in which compe
tion between the nonlinear and dispersion shifts of the w
phase velocities plays a major role. Self-modulation effe
involving the self-interaction of magnetostatic spin waves
magnetic films caused by the tendency to soliton format
3421063-7761/98/87(8)/7/$15.00
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were discussed in Refs. 13–17. According to theory,
second-order parametric scattering thresholds are determ
by the condition18

n5Ab12
2 w42

1

4
@v1~k1!1v2~k2!22v~k0!#2.dv,

~2!

wheren is the instability growth rate,dv is the ferromag-
netic resonance line width for a particular wave, which d
termines the losses in the wave,b12 is the coefficient of
parametric coupling of the harmonic formed as a result
decay of the fundamental-frequency wave, andw is the am-
plitude of the signal wave~angular deflection!. As this wave
decays into waves with a large difference between the gr
velocities vgi , when the frequency detuning is determin
mainly by the linear sections of the dispersion curve, i.e.

Dv5
1

2
~vg11vg222vg0!Dk,

the dispersion phase shift does not play a significant r
The growth rate has a maximum at the phase-matching p
Dv50 since

n5Ab12
2 w42~Dv!2. ~3!

In the modulational instability the growth rate depends
the dispersion and nonlinear frequency shifts of the intera
ing waves, since the linear detuning as a result of a diff
ence between the group velocities plays a minor role in
mechanism. The growth rate of this type of instability
given by

n5A2
vkk

vg
2 ~Dv!2Fvkk

vg
2 ~Dv!212b00w

2G , ~4!

wherevkk is the dispersion coefficient andb00 is the coeffi-
cient of nonlinear frequency shift. From this it follows th
the maximum growth rate of the self-modulational perturb
tion is achieved when
© 1998 American Institute of Physics
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343JETP 87 (2), August 1998 Savchenko et al.
Dv05Au2b00~vg
2/vkk!w

2u

and is proportional to the signal wave amplitude. For this l
case, the spectral width of the region in which the dec
perturbations occur, determined from their growth rate, d
fers substantially from the previous case. Whereas in the
case this width is determined only by the nonlinear
Dvmax5b12w

2, in the second case it has a root depende
on the dispersion and the nonlinear frequency shift, si
Dvmax52Dv0. In view of this, the peak width of the self
modulational satellite may exceed by an order of magnit
or more the frequency width of the peak of the parame
cally excited wave in the magnetic film having a differe
group velocity. In analyses of wave decay processes in fi
this factor has not usually received any attention and
appearance of broad frequency peaks has been attribut
the onset of a ‘‘kinetic’’ instability. If we bear in mind tha
as the pump wave propagates it undergoes damping
result of dissipation, the relative gain of the wave satel
will also depend on the propagation length. The spectral
pendence of the self-modulational peak in the evolution
the interacting waves in a dissipative nonlinear medium w
analyzed using a model of the generalized nonlinear Sc¨-
dinger equations for light propagation in a fiber.19 Numerical
calculations of the evolution of instability in a magnetosta
wave caused by self-interaction effects were reported
Refs. 20 and 21. However, these studies contained no
tailed spectral analysis of the modulated magnetostatic w
In addition, it should also be noted that the evolution of t
parametric instability in the nonlinear Schro¨dinger equation
model is usually simulated using a harmonic initial perturb
tion of the amplitude of the exact solution at the initi
point19,22

A~0!5A0~11« cosvt !,

whereA(0) is the signal amplitude. In reality, however,
random perturbation exists at the input, corresponding to
noise spectrum of the exciting signal which is in fact t
noise of the oscillator used to excite the rf current which
turn excites the magnetostatic waves.

Here we propose a model of self-modulational instabi
as a process involving the evolution of the signal wave a
the noise, with allowance for their nonlinear interaction. W
shall compare the results of this simulation of the instabi
of a traveling spin wave with the calculations using a det
ministic model. In addition, we shall also discuss possi
mechanisms for the loss of spectral symmetry in the form
tion of the satellites in modulational instability which a
observed in experiments using magnetic films. Thus, our
is to perform a theoretical analysis and numerical simulat
of the formation and evolution of the self-modulation noi
of spin oscillations in a traveling spin wave and to discu
mechanisms for the occurrence of spectrally broad noise
nals and loss of spectral symmetry of the satellites forme
modulational instability, which are observed in experime
using magnetic films.
t
y
-
st

e
e

e
i-

s
e
to

a
e
e-
f
s
o

in
e-
e.

e

-

e

d

-
e
-

m
n

s
g-
in
s

2. EQUATION FOR THE EVOLUTION OF THE ENVELOPE
AND LINEAR ANALYSIS OF SELF-MODULATIONAL
INSTABILITY

If the nonlinear dispersion dependence is known for
wave numberk5k(v,uwu2) wherew is the wave amplitude,
the evolution of the wave packet in the Fourier represen
tion

w~z,t !5exp@ i ~k0z2v0t !#E wV~z!exp~2 iVt !dV,

whereV5v2v0 is the frequency detuning, may be writte
using the equation for the envelope23

]wV

]z
5@2G~V!1 ik~V!#wV

1 ik uwu2@ uw~z,t !u2w~z,t !#V , ~5!

where k(V)5k(v,0)2k0 is the spectrum of a low-
amplitude wave near the frequency and wave number of
signal wave,kuwu25(]k/]uwu2)w50 is the coefficient of the
nonlinear frequency shift, andG(V) is the damping factor.
In the literature analyses are usually confined to second-o
dispersion and the linear frequency shift is taken into acco
by introducing the space–time coordinatez2vgt, traveling
with the group velocityvg . In this case, we havek(2V)
5k(V). We shall subsequently consider the more gene
case,k(2V)Þk(V), which specifically allows for third-
order dispersion.

The dispersion parameters for various types of s
waves in a magnetic film of thicknessd and the nonlinear
coefficients are given in Refs. 13 and 24. For example, fo
normally magnetized film and for the initial region of th
excitation spectrum of the dominant mode of forward ma
netostatic waves these parameters are

G~V!5
dv

vg
, vg5S ]k

]v D 21

,

k~V!5
1

dA2m
arctanS 2

2A2m

m11 D ,

where

m5
wH

2 1wHwM2V2

wH
2 2V2 ,

wH5g~H24pM !, wM54pMg,

g is the magnetomechanical ratio, 4pM is the saturation
magnetization,H is the external magnetic field, andkuwu2

5wM /vg .
Equation ~5! has a solution in the form of a dampe

nonlinear wave at the carrier frequencyv0 with
wV5F0(z)d(V), where d(V) is the Dirac delta function
and the amplitude is given by

F0~z!5A0 expF2G~0!z1
ik uwu2

2

A0
2

G~0!
~12e22G~0!z!G ,

~6!



f

n

th

ea
io

th

a
e

nt
pe

-

a

e,
y

tric
g
of

en
the
e
al

.
ble,

on
t is

344 JETP 87 (2), August 1998 Savchenko et al.
whereA0 is the initial wave amplitude. In the derivation o
this last expression we assumed thatk(0)50.

We shall analyze the evolution of this wave with a
arbitrary initial perturbationu(t)5*uVexp(iVt)dV, assum-
ing that

wV~0!5A0d~V!1uV . ~7!

We shall postulate that the evolution-induced change in
perturbation is small compared with the amplitude~6! of the
fundamental-frequency wave. The solution of the nonlin
equation can then be found in the form of a main solut
and a correction:

wV~z!5F0~z!d~V!1F1~z,V!. ~8!

To first order in the small perturbation amplitude

F1~z,t !5E F1~z,V!exp~2 iVt !!F0~z!

we can obtain coupled equations for the amplitudes of
Fourier representationF1(z,V):

F18~z,V!5~2G11 ik1!F1~z,V!

1 ik uwu2A0
2e22G0zH 2F1~z,V!

1expF ik uwu2
A0

2

G0
~12e22G0z!GF1* ~z,2V!J ,

~9!

F* 18~z,2V!5~2G22 ik2!F1* ~z,2V!

2 ik uwu2A0
2e22G0zH 2F1* ~z,2V!

1expF2 ik uwu2
A0

2

G0
~12e22G0z!GF1~z,V!J ,

~10!

where

G15G~V! G25G~2V! G05G~0!

k15k~V! k25k~2V!.

These equations give pairwise relationships between the
plitudes of the positive and negative frequencies. In the g
eral case, the solution of the systems~9! and ~10! may be
expressed in the form

F1~z,V!5F1~z,V!u~V!1F2~z,V!u* ~2V!, ~11!

whereF6(z,V) are the solutions of this system for differe
initial conditions for positive and negative frequencies, s
cifically

F1~z,V!5F1~z,V! for F1~0,V!51,

F1* ~0,2V!50,

F2~z,V!5F1~z,V! for F1~0,V!50,

F1* ~0,2V!51.
e

r
n

e

m-
n-

-

The asymptotic form of the solution~11! in the nondis-
sipative limitG(V)50 is easily found from the coupled sys
tem of equations and has the form

F1~z,V!5
exp~ ik uwu2A0

2z!

l22l1
@~2 ik11l22 ik uwu2A0

2!el1z

1~ ik12l11 ik uwu2A0
2!el2z#,

F2~z,V!5
exp~ ik uwu2A0

2z!

l22l1

~2 ik uwu2A0
2el1z

1 ik uwu2A0
2el2z!, ~12!

where

l1,25 i
k12k2

2
6k,

k252S k11k2

2 D 2

22kuwu2A0
2 k11k2

2
.

If we now assume that the initial perturbation is
d-correlated random signal~white noise! for which

^uV&50, ^uV1uV2&50, ^uV1uV2* &5Sd~V12V2!,
~13!

where S5const is the spectral density of the white nois
then using the solution~11! we can find the spectral intensit
of the output signal:

^F1~V1 ,z!F1* ~V2 ,z!&5Sd~V12V2!~ uF1~z,V1!u2

1uF2~z,V1!u2!. ~14!

We can show that in the general case (GÞ0) the solu-
tions F6(z,V) can be expressed in terms of hypergeome
functions. However, we merely note that in the followin
section we shall give the results of a numerical integration
a more general initial system. In the asymptotic limitG50
we have

^F1~V1 ,z!F1* ~V2 ,z!&5Sd~V12V2!

3F11
2~kuwu2A0

2!2

k2
sinh2kzG .

~15!

It can be seen that modulational instability occurs wh
k2.0. These formulas show that the spectral density of
amplified noise differs slightly from the expression for th
frequency dependence of the amplified deterministic sign

uF1~z,V!u25S0uF1~z,V!1F2~z,V!u2, ~16!

whereS0 is the initial intensity of the harmonic perturbation
At large distances this difference becomes more apprecia
as will become clear from the numerical calculations.

3. NUMERICAL SIMULATION OF SELF-MODULATION NOISE
AMPLIFICATION

In order to take account of the initial noise perturbati
of the signal wave and describe its nonlinear evolution, i
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FIG. 1. Normalized intensity of noise ampli
fied by self-modulation at initial signal wave
powersuC0u250.01 and noiseue (mÞ1000)

0 u259
310212 (0<m<2000, Dv51024). Calcula-
tions using formula~18! were made for the
spectrum of forward internal waves for th
film parameters corresponding to the da
given in Ref. 6: magnetization
4pM51750 G, line widthDH50.3 Oe, film
thicknessd50.5mm, bias fieldH52500 Oe,
carrier frequencyv052.4 GHz. The frequen-
cies in the figure are normalized to
vH5g(H24pM ) and the distance along the
z axis is measured in film thicknessesd.
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convenient to use a different approach, based on a spe
representation of the desired solution in the form of an
pansion as a Fourier series:

w~ t,z!5 (
m50

2N

cm~z!exp@ i ~m2N!Dvt#, ~17!

whereDv52p/v. In this case, the evolution of the ampl
tudes of the harmonics of the Fourier expansion is descr
by a normalized system of equations in the form

dcl

dz
52Gcl2 ik lcl22i (

m50

2N

cmS2N1m2 l , ~18!

wherel 50, . . . , 2N,

Sm5 (
n52N2m

2N

cnc2N2m1n* , m50, . . . , 2N,

Sm5S4N2m* , m52N, . . . , 4N,

kl5k(V l), V l5( l 2N)Dv . In Eq. ~18! we use the normal-
ization of the amplitude@F#5A0Akuw2u. In this case, the
initial condition for the deterministic perturbation schem
has the form

cN~0!5C0 , cN6 l~0!5e61
0 , cmÞN,N6 l~0!50.
ral
-

d

The noise perturbation is simulated under the initial con
tions

cN~0!5C0 , cmÞN~0!5em
0 exp~ ibm

0 !,

where the amplitudesem
0 have a random normal distributio

with a mean of zero and the phasesbm
0 are uniformly dis-

tributed in the range 0,bm
0 ,2p. The spectral intensity of

the noise is determined by the mean-square deviation in
cordance with the formulaSv510 loĝ em

2 & dB. The Runge–
Kutta method was used for a numerical solution of the s
tem ~18!.

Figures 1–3 give results of a numerical simulation of t
self-modulation effect in cases of noise and deterministic
tial perturbations for parameters consistent with the exp
mental data presented in Ref. 6, in which the following e
periments were carried out using several yttrium iron gar
~YIG! samples. The samples were YIG films 0.5–5mm thick
in which forward internal magnetostatic spin waves were
cited using microstrip antennas 0.5–7 mm apart. The sig
from the output antenna was fed to a spectrum analyzer
low input powers the propagation was linear. Above a c
tain threshold power, 0.5–1 mW, discrete frequency sa
lites appeared in the spectrum, equidistant from the car
frequency by frequencies of the order of 50–300 MHz.
ce
FIG. 2. Normalized intensity of self-modulation noise in accordan
with formula ~14! for S59310212.
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FIG. 3. Normalized intensity of self-modulation signal for a dete
ministic initial perturbation withe61

0 5331026.
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the input signal power increased, the number of satell
increased and a broad noise-like peak formed from the l
frequency satellites. A high-frequency peak was not usu
observed or was of substantially lower amplitude. Figure
and 2 show the evolution of the deterministic signal a
noise calculated using Eqs.~18! and ~14!, respectively and
Fig. 3 shows that calculated using formula~16!. The fre-
quency range of the self-modulational amplification of t
noise agrees with the experimental data given above. It
be seen from the figures that the spectral distribution pat
of the intensity envelope of the output signal in the prese
of initial white noise at short distances when the influence
nonlinear interaction is negligible, correlates with the det
ministic model of frequency-independent instability evo
tion. Moreover, the calculations using the noise model
self-modulation obtained in the linear approximation~14!
and using the deterministic model~16! almost agree. The
calculations allow for the frequency dispersion of the dam
ing which gives rise to asymmetry of the amplitud
frequency characteristic of the signal during the evolution
instability, as is usually observed experimentally. The re
tive amplitude of the right-hand frequency satellite, whi
undergoes strong damping, reaches a maximum and the
cays. The relative amplitude of the left-hand satellite
creases continuously over the selected propagation le
s
-
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1
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f
-

de-
-
th

and has a broad spectral width. According to these calc
tions, the frequencies of the peak satellites are separ
from the carrier frequency by 80 MHz, which is consiste
with the experimentally observed frequencies.

For higher intensities of the initial signal and long
propagation lengths the deterministic and noise models
modulational instability evolution predict differen
amplitude-frequency characteristics. This case is shown
Figs. 4 and 5, which give the results of calculations
DH50.2 Oe. The insets show the spectral intensities of
self-modulated signal for a short propagation leng
z5250d, whered is the film thickness. A comparison of th
figures shows that the spectral distribution pattern of the n
malized amplitudes of the signal intensity for the noise a
deterministic models differs substantially at large distanc

In addition to the dispersion of the damping, the disp
sion of the nonlinearity may also influence the asymmetry
the self-modulation spectrum in accordance with formula~4!
for the growth rate. In subsequent experiments it would
extremely interesting to observe the dispersion of the s
wave nonlinearity and its influence on the behavior of t
modulational instability, since numerical calculations allo
ing for the dispersion of the nonlinear frequency shift usi
the model formula
-
-

FIG. 4. Normalized intensity of self-modulation noise with re
duced damping (DH50.2 Oe! and an increased signal wave am
plitude uC0u250.0144.
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FIG. 5. Normalized intensity of self-modulation signa
with a deterministic initial perturbation, with reduce
damping and an increased signal wave amplitude, a
Fig. 4.
n
wt
it
s
e
a

a
w
li

e–
en
f a
b
iv
is
n

pli-
b-

ng.
elf-
tly
b-

or
ed
tal

gh-
re-
nd
ns-
lm.
o-

ent
a-

lms
er
of
]v

]uwu2
5S ]v

]uwu2D
0

1aDv,

have shown that the amplification of the right- and left-ha
satellites in the noise model takes place at different gro
rates~Fig. 6!. The change in the dispersion associated w
the nonzero third derivative does not cause any difference
the rates of amplification of the satellites. This is also d
duced from a linear analysis of modulational instability,
can be seen from the formula~12!.

4. CONCLUSIONS

To sum up, a simulation of the evolution of modulation
instability as the amplification of a noise signal has sho
that in the range of weak supercriticality, where the amp
tude of the forming satellites is low, the resulting amplitud
frequency characteristic of the signal is broadly consist
with the model of frequency-independent amplification o
deterministic harmonic perturbation. A difference is o
served for a long propagation length in a weakly dissipat
medium when the relative amplitudes of the amplified no
at the satellite frequencies and the fundamental freque
d
h
h
in
-
s

l
n
-

t

-
e
e
cy

become appreciable compared with the signal wave am
tude. Conditions of weak supercriticality are usually esta
lished in magnetic films because of the strong dampi
Quite clearly, four-wave narrow-band, and broad-band s
modulational instabilities can coexist almost independen
under these conditions. A similar situation was clearly o
served in Ref. 6. At a minimum, the frequency interval f
the self-modulational amplification of the noise calculat
for the given film parameters agrees with the experimen
data. The observed asymmetry of the amplification of nei
boring self-modulation peaks can be attributed to the f
quency dispersion of the nonlinear frequency shift a
damping. This asymmetry is particularly large near the tra
mission boundaries of the magnetostatic waves in the fi
Allowance for ordinary third-order dispersion does not pr
duce this asymmetry.

For a further comparison between theory and experim
it would be useful to continue our investigation of modul
tional instability in YIG films. In particular, it would be in-
teresting to study four-wave decay processes in thicker fi
~10–20mm!. In these films the wave dispersion is strong
which changes the conditions for the onset and buildup
the
FIG. 6. Spectrum of self-modulation noise calculated using
system ~18! with the dispersion of the nonlinearityv uwu252
160Dv. A dispersion law in the formk(V)5V1V2 was ana-
lyzed. The initial signal wave power wasuC0u250.01, and the
noise wasuemÞ160

0 u256.25310210 (0<m<320,Dv5231023).
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instability. A comparison with the case of thin YIG film
used experimentally will clarify the mechanism for the ev
lution of modulational instability in the beyond-threshold r
gion and in particular, will reveal the more precise nature
the formation of a noise pedestal and the transition to ch
with allowance for the specific characteristics of magne
films.
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We develop a theory of Coulomb oscillations in superconducting devices in the limit of small
charging energyEC!D. We consider a small superconducting grain with finite
capacitance connected to two superconducting leads by nearly ballistic single-channel quantum
point contacts. The temperature is assumed to be very low, so there are no single-particle
excitations on the grain. Then the behavior of the system can be described in terms of the quantum
mechanics of the superconducting phase on the island. The Josephson energy as a function
of this phase has two minima that become degenerate when the phase difference on the leads
equals top, the tunneling amplitude between them being controlled by the gate voltage
on the grain. We find the Josephson current and its low-frequency fluctuations, and predict their
periodic dependence with period 2e on the induced chargeQx5CVg . © 1998 American
Institute of Physics.@S1063-7761~98!02008-3#
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1. INTRODUCTION

Coulomb effects in several different types of thre
terminal devices consisting of an island connected to ex
nal leads by two weak-link contacts, and capacitive
coupled to an additional gate potential, have been ex
sively studied in the last few years. Systems with a norm
metal island and leads were studied theoretically both in
tunnel-junction limit1 and in the case of a quantum poi
contact with almost perfect transmission.2 The theory of
charge-parity effects and Coulomb modulation of the Jose
son current was investigated in detail in Ref. 3. All of t
above systems at present are realized experimentally.

Recently, it was shown to be possible to produce a qu
tum point contact between two superconductors via a n
mally conductive region made of two-dimensional electr
gas;4 smeared step-wise behavior of the critical current w
observed, in qualitative agreement with predictions5 for a
superconductive quantum contact with a few conduct
channels of high transmittivity. Observation of a nonsinus
dal current–phase relation in superconducting mechanic
controllable break junctions has been reported in Ref.
again in agreement with Ref. 5.

Another interesting experimental achievement was
ported in Ref. 7, whereS–N–S contact with a size compa
rable to the de Broglie wavelength in the N region made
BiPb was realized and nonmonotonic behavior of the criti
current with the thickness of normal region was found. T
remarkable development of technology suggests the feas
ity of making a system of a small superconductive~SC! is-
land connected to the superconductive leads by two quan
point contacts~QPC!. In such a system, macroscopic qua
tum effects due to competition between Josephson coup
3491063-7761/98/87(8)/8/$15.00
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energy and Coulomb~charging! energy could be realized
together with quantization~due to the small number of con
ductive channels! of the Josephson critical current.

In the present paper we develop a theory for a limiti
case of such a system, namely, two almost ballistic o
channel QPCs connecting a small SC island with two
leads. We consider the limit of the characteristic charg
energy much smaller than the superconducting gap,EC

!D; therefore, Coulomb effects are small. We derive t
dependence of the average Josephson current across th
tem and its fluctuations~noise power! as functions of the SC
phase difference between the leadsa, and of the electric gate
potentialVg . Coulomb effects show up at phase differenc
a close top, where the two lowest states are almost deg
erate. We show that such a system realizes a tunable q
tum two-level system~pseudospin 1/2! which may be useful
for the realization of quantum computers~see, e.g., Refs
8–11!.

The paper is organized as follows. We start by cons
ering a single QPC connecting a superconducting island
single lead~Sec. 2!. We find the oscillations of the effective
capacitance of the island as a function of the gate poten
~in some analogy with Matveev’s results2 for a normal QPC!.
Depending on the backscattering probability in the contac
can be described either in the adiabatic or in the diab
approximation. We find the condition for diabatic–adiaba
crossover. Then in Sec. 3 we formulate a simple model fo
double-contact system in the adiabatic approximation.
replace the full many-body problem by a quantum
mechanical problem for the dynamics of the SC phase on
middle island. In Sec. 4 we calculate the average Joseph
current through the system as a function ofa andVg , with
particular emphasis on phase differencesa close top ~where
© 1998 American Institute of Physics
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FIG. 1. a! Single QPC. The system consists of a S
grain connected to a SC lead via a QPC. A ga
terminal is used to control the electric potential o
the grain. b! Double-contactS–S–S system. The
second terminal is added to the single-QPC setu
; w
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our effective two-level system is almost degenerate!. Section
5 is devoted to the analysis of Josephson current noise
calculate total intensityS0 of the ‘‘zero’’-frequency noise~an
analog of the noise calculated in Refs. 12–14 for a sin
superconductive QPC!, as well as finite-frequency noiseSv

due to transitions between the two almost-degenerate le
Finally, we present our conclusions in Sec. 6.

2. ADIABATIC–DIABATIC CROSSOVER IN A SINGLE
QUANTUM POINT CONTACT

Consider a small superconducting island connected to
external superconducting lead by an one-channel, nearly
listic quantum point contact.5,15 The electric potential of the
grain can be adjusted via a gate terminal~Fig. 1a!. Following
Ref. 5, we assume that the contact is much wider than
Fermi wavelength~so that transport through the constrictio
can be treated adiabatically!, but much smaller than the co
herence lengthj0[\vF /pD ~wherevF is the Fermi veloc-
ity, andD is the superconducting gap!.

Our low-temperature assumption is that the aver
number of one-electron excitations on the island is much
than one. Then they cannot contribute to the total charg
the grain, and we may restrict our Coulomb blockade pr
lem to the evolution of the superconducting phase only. T
low-temperature condition is thenT,D/ ln(Vn(0)D), where
V is the volume of the grain andn~0! is the density of elec-
tron states at the Fermi level.

We neglect phase fluctuations in the bulk of the isla
and describe the whole island by a single superconduc
phasex. At a fixed value of the phase on the island, t
spectrum of the junction consists of the two Andreev sta
localized on the junction and the continuum spectrum ab
the gap15 D ~Fig. 2!. The energies of the Andreev states
below the gap:

FIG. 2. Single-contact energy spectrum. The spectrum consists of the
tinuum of delocalized states and the two Andreev~subgap! states. Dashed
lines denote Andreev states in the absence of backscattering~diabatic
terms!. Solid lines are the states split by backscattering~adiabatic terms!.
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E~x!56DA12t sin2~x/2!, ~1!

wherex is the phase difference at the contact andt is the
transmission coefficient.

At t51, the spectrum of Andreev states~1! has a level
crossing point atx5p. At this point, the left and right An-
dreev states have equal energies, but in the absence of b
scattering (t51), transitions between them are impossib
Therefore, we expect that an ideal ballistic contact can
adiabatically follow the ground state as the phasex changes,
but remains in the same left or right Andreev state as
passes the level-crossing pointx5p. We borrow the termi-
nology from the theory of atomic collisions16 and call the
~crossing! Andreev levels att51 diabatic terms~dashed
lines in Fig. 2!, and the split levels—adiabatic terms~solid
lines in Fig. 2!. Instead of a transmission coefficientt, it will
be more convenient to speak of the reflection coefficienr
512t. At r 50, the contact is described by diabatic term
As r increases, transitions occur between the terms, an
sufficiently larger the system will mostly adiabatically fol
low the split Andreev levels. In this section we study t
adiabatic–diabatic crossover, and find the crossover scal
the reflection coefficientr.

We assume that the reflection probabilityr !1 ~almost
perfect transmission! and that the charging energyEC!D
~the charging energy is defined byEC5(2e)2/C). The latter
assumption appears natural, because as in tunnel junctio17

we expect that the capacitanceC of the grain has an addi
tional contribution from the capacitance of the point conta
This capacitance is of orderD/e2. A more detailed discus-
sion of this phenomenon will be given elsewhere. For no
we just mention that this contribution to the capacitan
leads to the inequalityEC<D.

To probe the degree of adiabaticity, we study the pe
odic dependence of the ground state energyE0 on the gate
voltage. Because of the weakness of charging effects,
dependence will be sinusoidal:

E0~Vg!5« cos~2pN! ~2!

~whereN5VgC/2e is the dimensionless voltage!, and we are
interested in the amplitude« of these oscillations. The physi
cal origin of this periodicity is oscillations of the induce
charge on the grain; this follows immediately from the re
tion

dQ5
C

2e

]E0

]N
. ~3!

There is a simple physical explanation of the sinusoi
dependence~2!. The ground-state energy modulation is d

n-
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termined by phase-slip processes in the contact. Such
cesses are phase tunneling events with phase changin
62p. While the magnitudes of the clockwise and count
clockwise tunneling amplitudes are the same, their pha
are62pN. This results in the expression~2!. Higher-order
tunneling processes would give rise to higher-order harm
ics in the periodicN-dependence. This argument shows th
the amplitude of oscillations« coincides with the phase
tunneling amplitude, and therefore provides a good mea
of adiabaticity in the phase dynamics.

AssumingEC!D, we can describe the contact by th
dynamics of the phase on the grain, and thus reduce
problem to single-particle quantum mechanics. Since we
strict our attention to low-lying excitations, it is only nece
sary to include the two Andreev levels on the junction. T
potential term is the Josephson energy of the Andreev lev
and the kinetic term is the charging energy. After a sim
computation of the backscattering matrix elements~the off-
diagonal entries in the potential term!, we arrive at the
Hamiltonian:

H5H~x!1
1

2
EC~px2N!2, ~4!

where

H~x!5DS 2cos
x

2
r 1/2 sin

x

2

r 1/2 sin
x

2
cos

x

2

D . ~5!

Herex is the phase difference across the contact, andr is the
reflection coefficient. Obviously, the eigenvalues ofH(x)
reproduce the result~1!. The number of Cooper pairs at th
grain px is the momentum conjugate tox, @x,px#5 i . No-
tice thatx takes values on the circlex5x12p, and accord-
ingly px is quantized to take integer values. We can a
write px52 i ]/]x.

This Hamiltonian loses its validity at the top of the upp
band atx52pn, where the upper Andreev state mixes w
the continuous spectrum~Fig. 2!. However, the probability
of the phasex reaching the top of the upper band ofH(x) is
exponentially small atEC!D ~smaller than the tunneling
probability!. The adiabatic–diabatic crossover is determin
by the properties of the system near the minimal-gap p
x5p. We can therefore neglect transitions to the continu
spectrum atx52pn. At the same time, we must disrega
tunneling processes via the top of the upper Andrees b
~next-nearest-neighbor tunneling!, which are present in the
Hamiltonian~4!–~5!, but not in the original system. Neares
neighbor tunneling is a feature of our model, and is beyo
the precision of our approximation.

There are two opposite limits of the problem: small a
‘‘strong’’ reflection.

At zero reflection, the Hamiltonian splits into lower an
upper components. Within each component the potentia
periodic with period 4p. As explained above, we must ne
glect next-nearest-neighbor tunneling via the top of
bands. Therefore, the potential minima ofH(x) are discon-
nected and cannot tunnel to each other («50).
ro-
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The opposite limit is the case of ‘‘large’’ reflection~the
precise meaning of ‘‘strong reflection’’ consistent withr
!1 will be clarified below!. In this limit, a gap opens in the
spectrum of Andreev states, and the system adiabatically
lows the lower state. We can replace the two-level Ham
tonian H(x) by its lowest eigenvalue and arrive to th
quantum-mechanical problem of a particle in a periodic p
tential. The semiclassical limit of this problem is solved
Ref. 18. In our notation, the result is

«ad5constAECD exp~2Scl!, ~6!

where

Scl5B1A D

EC
2

1

4
ln

D

EC
1O~1! ~7!

is the classical action connecting two nearest minima~or
more precisely, the two turning points!. The numerical con-
stant B1 is of order unity ~at r→0, B154.6911.41r ln r
1...).

To study how the adiabaticity is destroyed, it is useful
introduce the dimensionless ‘‘coherence factor’’f (r ) defined
by

«5 f ~r !«ad, ~8!

where«ad is the amplitude of oscillation of the ground-sta
energy derived in the adiabatic approximation~with only the
lowest Andreev state included!. We see thatf (0)50 and
f (r @r ad)51. The crossover scaler ad can be derived by
computing the corrections tof (r ) in these two limits.

We first consider the limit of weak backscatterin
(r !r ad). In this limit, we take the wavefunction to be th
ground state of the Hamiltonian with zeror ~at a given
wavevectorN!, and then compute the first-order correction
r 1/2 to the energy. The wavefunction is of ‘‘tight-binding’
type, and is generated by the ‘‘ground-state’’ wavefunctio
C i localized in the potential minima~diabatic terms!. The
components of the two-dimensional vectorsC i alternate:

C i5S C i~x!

0 D , C i 115S 0
C i 11~x! D . ~9!

We then find

«52^C i uH12~x!uC i 11&

52r 1/2DE dxC i* ~x!C i 11~x!sin
x

2
~10!

~we assume the wavefunctionsC i to be normalized!. It is
important to note thatC i and C i 11 are wavefunctions for
different potentials (2D0 cos(x/2) and D0 cos(x/2)); the
overlap integral~10! has a saddle point at the minimal-ga
point x5p, and it reduces the effective region of integratio
to ux2pu<(EC /D)1/4. The normalization of the semiclass
cal tail of the wavefunctionsC i(x) yields

C~x5p!5exp~2Scl~x5p!! ~11!

~up to a numerical factor independent ofEC /D). We thus
obtain
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FIG. 3. Tunneling paths in the diabatic a! and adiabatic
b! limits. These diagrams represent the lowest-ord
corrections to the phase-tunneling amplitudes in the
abatic and adiabatic limits, respectively.
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«;r 1/2DS EC

D D 1/4

exp~2Scl!, ~12!

i.e., in terms of the ‘‘coherence factor’’f (r ),

f ~r !;r 1/2S D

EC
D 1/4

. ~13!

Physically, meaning of the integral~10! is the sum over all
paths shown in Fig. 3a.

The above calculation shows that the crossover scal
adiabatic behavior is

r ad;S EC

D D 1/2

. ~14!

In fact, we neglected the effect of change in the class
actionScl due to the gap opening; this effect is estimated
be of order

dScl;A D

EC
r ln r , ~15!

i.e., it is a higher-order effect than the change inf (r ) pro-
portional to r 1/2. Notice that the characteristic scale of th
change in the classical action is againr ad;AEC /D ~corre-
sponding todScl;1).

We can alternatively find the crossover scaler ad by com-
puting the lowest order correction to the ‘‘coherence facto
f (r ) in the adiabatic limit. In this limit the Hamiltonian~4!,
~5! can be rewritten in adiabatic terms~for simplicity the
voltage N is introduced into the boundary conditionC(x
12p)5e2ipNC(x) by a gauge transformation! as

H52
EC

2 S ]

]x D 2

1D~x!

2
EC

2 FG~x!
]

]x
1

]

]x
G~x!G2

EC

2
G2~x!, ~16!

where

D~x!5S E1~x! 0

0 E2~x!
D ~17!

is the diagonalized form of the matrix~5!,

G~x!5S 0 g~x!

2g~x! 0 D , g~x!5^0u
]

]x
u1&, ~18!
to

al
o

’

andu0& andu1& are the eigenvectors of the matrix~5!. The last
term in the Hamiltonian~16! can be shown to yield smalle
corrections than the first-order term inG(x). A careful
second-order perturbation calculation ing(x) yields

12 f ~r !;E
x1,x2

exp$S1~x1 ,x2!2S2~x1 ,x2!%

3g~x1!g~x2!dx1dx2 , ~19!

whereS1,2(x1 ,x2) are the classical actions along the low
and upper adiabatic branches between the pointsx1 andx2 .
This integral corresponds to summation over all tunnel
paths shown in Fig. 3~b!. The functiong(x) for the given
matrix H(x) is a Lorentzian peak atx5p of height r 21/2

and widthr 1/2. Putting everything together, the integral~19!
is calculated to be

12 f ~r !;
1

r
AEC

D
. ~20!

This asymptotic behavior agrees with the crossover sc
~14! found previously.

To summarize the results of this section, the charac
istic scale for adiabatic–diabatic crossover in a nea
ballistic single contact is found to ber ad;AEC /D. The
phase tunneling amplitude is proportional to the gate-volt
modulation of the effective capacitance of the island, a
thus can be directly measured. At low reflection coefficien
these oscillations are proportional toAr , as in the normal
one-channel QPC.2

3. ADIABATIC APPROXIMATION OF A DOUBLE-JUNCTION
SYSTEM

We now turn to the case of a double-junction syste
~Fig. 1b!. As before, we assume that the reflection probab
ties in both contacts are small,r i!1, that the charging en
ergy EC!D, and that the temperature is sufficiently low
preclude single-electron excitations on the grain. To ad
the electrostatic potential of the grain we again use a g
terminal; N5VgC/2e denotes the dimensionless gate vo
age, as before.

For the moment, to simplify the discussion we assu
that the reflection coefficients in the contacts are greater t
the crossover scaler ad found in the previous section; we ca
therefore consider only the lower adiabatic branch of
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Andreev states. In fact, the results can be extended furth
the caser i,r ad by using appropriate ‘‘coherence factors
f (r ), similar to those in the previous section.

We set the superconducting phase on one of the lead
zero; the phase on the other leada is assumed to be fixed
externally. Then the total Josephson energy of the two c
tacts is~Fig. 4!:

U~x!5U1~x!1U2~a2x!, ~21!

where

Ui~df!52DA12t i sin2~df/2! ~22!

are the lower adiabatic Andreev terms in the two junction
At t15t251, the potentialU(x) obviously has two

minima—atx5a/2 and atx5a/21p—and sharp peaks a
x5p andx5p1a ~Fig. 4!. At small nonzeror i , gaps open
at the crossing points of Andreev levels, which smoothes
peaks ofU(x). Still, the bottom of the potential remain
essentially unchanged.

The adiabatic Hamiltonian for the double junction b
comes

H~a,N!5U~x!1U~a2x!1
1

2
ECS 2 i

]

]x
2ND 2

.

~23!

The potential term of the Hamiltonian is the sum of Jose
son energies of the contacts, and the kinetic term is the C
lomb energy of the charge at the grain.

4. JOSEPHSON CURRENT

The conditionEC!D enables us to treat the Coulom
term in the Hamiltonian perturbatively. First, neglecting t
Coulomb term, we obtain a classical system defined on
circle xP(0,2p) in the potential~21! with two minima. The
energies of the minima areV1(a)522Ducos(a/4)u and
V2(a)522Dusin(a/4)u ~see Fig. 4!. To very high accuracy
we can neglect backscattering in determining the minim
except neara50. Since all Coulomb effects occur near th
resonance pointa5p, this approximation is justified. A
zero temperature, our classical system prefers the lowe
the minima. Thus the energy of theS–S–S system in the
absence of the Coulomb term is given by

E~a!522D cos~a/4! for 2p,a,p ~24!

FIG. 4. PotentialU(x). At aÞ0 it has two minima. Finite backscattering i
the contacts smoothes the summits of the potential, but leaves the botto
the wells unchanged.
to

to

n-

.

e

-
u-

e

,

of

~see Fig. 5!. Differentiating this energy with respect to th
phasea gives the Josephson current

I ~a!52e
]E~a!

]a
5D sin

a

4
for 2p,a,p ~25!

~Fig. 6!. Notice that the current has large jumps at the poi
of level crossinga5p12pn. Qualitatively this picture is
very similar to the case of a singleS–S ballistic junction, but
the shape of the current–phase dependenceI (a) is different.

If we assume a nonzero temperatureT!D, the occupa-
tion of the upper minimum is exponentially small except
the vicinity of the level-crossing pointua2pu;T/D. Thus,
the effect of the temperature is to smear the singularity
I (a) at a5p.

Another source of level mixing near the singular po
a5p is quantum fluctuations, i.e., fluctuations arising fro
the kinetic term in the Hamiltonian~23!. They result in non-
zero tunnelling amplitudes through the two potential barri
between the potential minima. Due to the shift in the ‘‘ang
lar momentum’’ byN, the wave functions in the two poten
tial wells acquire an additional factor exp(iNx). This results
in the relative phase of the two tunneling amplitudes diff
ing by 2pN. The net tunneling amplitude~defining the level
splitting! can be written

H12~N![Dg~N!5D~g1eipN1g2
2 ipN!, ~26!

whereg1 andg2 are the two amplitudes of phase tunnelin
in the two different directions~i.e., of phase slip processes
the two different contacts!. Below we assume that these am

of
FIG. 5. Classical minimum of the potentialU(x) as a function of the ex-
ternal phase differencea. Dotted line shows the quantum gap opened by
Coulomb term.

FIG. 6. Josephson current as a function of the external phase differena.
Dotted line shows smearing of the singularity due to the Coulomb term
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plitudes are computed at the level-crossing pointa5p,
where they are responsible for level splitting.

The amplitudesg1 andg2 have the asymptotic behavio
derived in the previous section~except for numerical fac-
tors!. When the backscattering in the contacts is such thr
@r ad, they can be found in the semiclassical approximati

g1,2;S EC

D D 1/4

expS 2B2A D

EC
D !1, ~27!

whereB2;1 is determined by the classical action conne
ing the two potential minima ~at r !1, B2.1.45
12.20r ln r1...). At r !r ad, the tunneling amplitudes are

g1,2;r 1/2 expS 2B2A D

EC
D . ~28!

For the best observation of Coulomb oscillations,g1 and
g2 must be of the same order, but not too small. In the id
caseg15g25g, the total amplitude is

g~N!52g cos~pN!. ~29!

Although the periodic dependence~29! has a period of 4e as
function of the ‘‘external charge’’Qx5CVg[2eN, the Jo-
sephson current and its fluctuations only depend onug(N)u2

~cf. Eqs. ~32! and ~34! below!, and their period is 2e, as
expected.3

The characteristic scale for ther-dependence ofB2 is
dr;AEC /D, so for g1 andg2 to be of the same order, th
transparencies of the two contacts must differ by no m
than ur 12r 2u<AEC /D.

Here we should comment on the difference between
result ~26!–~28! and the normal two-channel system d
cussed in Ref. 2. In the normal system, the two tunnel
amplitudes multiply, and the net ground-state energy osc
tions are proportional tor ln r at small r. In the supercon-
ducting system, the external leads have different superc
ducting phases, and the tunneling in the two contacts oc
at different values of the phase on the grain. Therefore,
tunneling amplitudes add with certain phase factors,
yield the asymptotic behaviorAr at r→0. In fact, the oscil-
lations in the superconducting system will be proportiona
r ~as in the normal system2! in a different limit—at a phase
differencea50, where the potentialU(x) has a single mini-
mum and a single barrier.

The hybridized energy levels in the vicinity ofa5p are
given by the eigenvalues of the 232 Hamiltonian

H~a,N!5S V1~a! H12~N!

H12~N! V2~a!
D . ~30!

Diagonalization yields the two energy levels:

E1,2~a,N!52DFUsin
a

4U1Ucos
a

4U
6AS Usin

a

4U2Ucos
a

4U D
2

1g2~N!G . ~31!

The off-diagonal matrix elements of the Hamiltonian open
gap at the level-crossing pointa5p ~Fig. 5!. This gap de-
:

-

l

e

r

g
-

n-
rs
e
d

o

a

pends periodically on the gate voltageVg , and these oscilla-
tions comprise the Coulomb effects in theS–S–S junction.

We can obtain the Josephson current by differentiat
the energy levels with respect to the phasea. The gap results
in smearing the singularity inI (a), even at zero temperatur
~Fig. 6!:

I ~a!5
D

&

sinS a2p

4 D

3F 12

cosS a2p

4 D
AsinS a2p

4 D1
1

2
g2~N!

G
for a;p. ~32!

The width of the crossover ata5p depends periodically on
Vg :ua2pu;ug(N)u.

In the above discussion we neglected excited oscilla
states. The interlevel spacing for the excitations in the pot
tial wells is of orderADEC@Dg. Therefore, Coulomb ef-
fects have a much smaller energy scale and the excited s
do not participate in mixing the ground states of the tw
potential wells.

At nonzero temperature, these Coulomb effects comp
with temperature-induced smearing, so that the width of
singularity ata5p is given at nonzero temperatureT!D by
ua2pu;max(g(N),T/D). In order for Coulomb effects to
dominate thermal fluctuations, we must therefore haveT
<gD.

It is instructive to compare this picture with the case o
multi-channelS–S–S tunnel junction~in contrast to the re-
sults of Ref. 3, note that we consider the opposite limit, w
D@EC). If we develop a similar theory for tunnel Josephs
junctions, we find that the potentials~21! and ~22! are both
sinusoidal, and therefore the total potential~21! has only one
minimum ~versus two in the nearly ballistic system!. In the
tunnel S–S–S system, the current–phase relationI (a) is
smeared ata5p due to the difference between the critic
currents of the two Josephson junctions. Coulomb effe
compete with this smearing, and in order to prevail, t
charging energyEC must be greater than the difference
the critical currents. In the tunnel system, the correspond
splitting g is linear inEC , while in the nearly ballistic sys-
tem it is exponentially small. Otherwise, Coulomb oscill
tions in I (a) will appear similar in these two cases.

To summarize this section, we observed that the C
lomb effects in the one-channelS–S–S junction smears the
singularity in the Josephson currentI (a) at the critical value
a5(2n11)p. This smearing depends periodically on th
potential of the grain with period 2e/C, and is exponentially
small in the adiabatic parameterEC /D!1. The smearing is
the result of mixing the two states in the potential minima
the Josephson energy.

5. FLUCTUATIONS OF THE JOSEPHSON CURRENT

In this section we compute the low-frequency spectr
of the fluctuations of the Josephson current in our model.
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shall be interested in frequencies much less than the osc
tor energy scaleADEC, so we consider only transitions be
tween the eigenstates of the reduced ground-state Ha
tonian ~30!. We also assume that the temperature is low
thanADEC; we can then disregard excited oscillator sta
and internal noise in the contacts~discussed in Refs. 12–14
19!. Obviously, under these assumptions we can observe
rent fluctuations only in the immediate neighborhood of
resonance pointa56p, where the energies~31! of the two
low-lying states are close to each other.

We expect to observe two peaks in the noise spectrum
one at zero frequency~due to thermal excitations above th
ground state!, and the other at the transition frequencyuE1

2E2u ~due to off-diagonal matrix elements of the curre
operator!. In this section we compute the total weights
these peaks and postpone discussion of their width~deter-
mined by dissipative processes!.

Consider first the zero-frequency peak. In our appro
mation it is just the thermal noise of a two-level system.
the vicinity of the resonance pointa5p, we can linearize
the spectrumV1,2(a) and make the approximation that on
of the two states carries the currentI (a,N), and the other
2I (a,N). The spectral weight of the noise is then given
a simple formula:

S0~a,N,T![^I 2&2^I &25
I 2~a,N!

cosh2
E12E2

2T

. ~33!

SubstitutingI (a,N) and E1,2(a,N) from the previous sec
tion, we obtain the noise intensity near resonance:

S0~a,N,T!5
D2

2

S a2p

2& D 2

S a2p

2&
D 2

1g2~N!

3cosh22S D

T
AS a2p

2&
D 2

1g2~N!D .

~34!

For the effect of the Coulomb interaction to be observab
the temperature must be smaller than the Coulomb gapT
<gD. At constantT and N, the noise decreases expone
tially as a moves away from its critical valuea5p, and at
a5p the noise is suppressed in the intervalua2pu,g(N)
~Fig. 7!. The interplay between these two factors results i
strong dependence of the peak noise on the potential o
grain. The peak value of the noise maxa S(a,N,T) is plotted
againstN in Fig. 8. Most favorable is the case of identic
contacts, whereg15g25g, and therefore g(N)52g
3cos(pN). In this case, cos(pN)!T/gD ~small gap limit! the
noise takes its maximal valueS'D2/2. In the opposite limit
of large gap (cos(pN)@T/gD), the noise decreases expone
tially:

S'D2F T

DgucospNu
expS 24

DgucospNu
T D G .
la-

il-
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The noise has a sharp peak at the resonance point copN
50, where two levels on the grain with different electro
numbers have equal energies.

Now we turn to the noise peak at the interlevel fr
quencyv5uE12E2u. Sincev can now be large compared t
T, one needs to discriminate between different kinds
frequency-dependent correlation functions, which can
measured as a noise intensity in different experimen
situations;21 here, by noise we mean the Fourier spectrum
the time-symmetric current-current correlation function.
our approximation of a two-level system, such noise is te
perature independent, and its weight is determined purely
the off-diagonal matrix element:

Sv5
1

2
u^1uI u2&u2. ~35!

A straightforward computation for the Hamiltonian~30! and
I 52e(]H/]a) yields ~in the vicinity of a5p)

^1uI u2&5
D2g~N!

v S cos
a

4
1sin

a

4 D ~36!

and

Sv~a,N!5D2S Dg~N!

v D 2

cos2
a2p

4
. ~37!

This result contrasts with the corresponding noise int
sity in the single quantum point contact~found in Refs. 12,
13, and 19!. In the single quantum point contact, the corr
sponding noise intensitySv is temperature-dependent, b
cause that system has four possible states~or, alternatively,
two fermion levels!. In the case of the double junction, th

FIG. 7. Zero-frequency noise as a function of phasea. It decays exponen-
tially for a far from the resonance pointa5p. Right at the very resonance
point, the noise is suppressed, because both states carry nearly zero J
son current.

FIG. 8. Maximum value of the noise versus the potential of the grain. T
period of the peaks corresponds to the period 2e of the induced chargeQ
5CVg . The width of the peaks depends on the capacitance of the gra
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system has only two states differing by the phase on
grain, and the quantum fluctuationsSv become temperature
independent.

6. CONCLUSIONS

We have developed a theory of Coulomb oscillations
the Josephson current and its noise power via theS–S–S
system with nearly ballistic quantum point contacts. The
riod of Coulomb oscillations as a function of the gate pote
tial is Vg

052e/C. These oscillations arise from the semicla
sical tunneling of the superconducting phase on the gr
and are therefore exponentially small inAEC /D at EC!D.
In addition, we predict a crossover from adiabatic to diaba
tunneling at the backscattering probabilityr ad;AEC /D. At
backscattering belowr ad, the amplitude« of the Coulomb
oscillations is proportional to the square root of the lesser~of
the two contacts! reflection probabilityAr min. This is in con-
trast to the case of a normal double-contact system,20 in
which « is proportional to the productAr 1r 2.

The average Josephson current–phase relationI (a) is
shown to be strongly nonsinusoidal and roughly similar
the one known for a single nearly ballistic QPC in the se
that it exhibits abrupt ‘‘switching’’ between positive an
negative values of the current as the phase varies via
5p. The new feature of our system is that it is possible
vary the width of the switching regionda by the electric gate
potential Vg ; in the case of equal reflection probabilitie
r 15r 2 , this electric modulation is especially pronounce
da}ucos(pCVg/2e)u. The noise spectrum of the supercurre
is found to consist mainly of two peaks: the ‘‘zero
frequency’’ peak due to rare thermal excitations of the up
level of the system, and another one centered around
energy differenceva between the two levels. The widths o
these peaks are determined by the inverse lifetimet of the
two states of our TLS, which is due to electron-phonon a
electromagnetic couplings. Both sources of level decay
expected to be very weak in the system considered, but
corresponding quantitative analysis is postponed to fu
studies; we present here only results for thefrequency-
integrated~over those narrow intervals;1/t! noise power.

The S–S–S device with almost ballistic contacts is
new type of system that can be used to implement an a
cial ‘‘spin 1/2’’—an elemental unit for quantum computa
e

f
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tion. In comparison with conventional Josephson syste
with tunnel junctions, which were proposed for use in ad
batic quantum computation,11 the advantage of our system
that it can operate at considerably higher critical Joseph
currents. Moreover, the current–phase characteristics of s
a system is almost universal, in the sense that they are d
mined mainly by the microscopic parameters of the SC m
terials, and only weakly by the specifics of contact fabric
tion.
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Features of the thermal expansion coefficienta(T) of crystal lattices with different isotopic
compositions have been analyzed. The case of germanium lattices has been studied in detail.
© 1998 American Institute of Physics.@S1063-7761~98!02108-8#
ta

u
so

t
e

a
e
l

dy

th
t
dy
rg
r

ke

in
m
rm

s
ur

g

al
b
-

he
a

of
ys-
ve

by

ic
e

l to

ve

rtain
e
is
x-
by
1. INTRODUCTION

Many problems concerning thermal expansion of crys
lattices have been studied in detail~see, for example, the
monograph by Novikova1 and review by Barronet al.2!.
Nonetheless, the thermal expansion coefficienta of crystals
with different isotopic compositions, to the best of the a
thor’s knowledge, has not been investigated. For this rea
the paper considers effects of the first and second order in
difference between isotope masses on the expansion co
cient a.

The study is based on the standard quasiharmonic
proximation. In other words, the temperature dependenc
the lattice constanta is calculated. The point is that in rea
materials the energy of interatomic interaction, related
namic parameters, and frequenciesv l of phonon modes
~here the indexl labels different modes! are functions of
a(T) because of the lattice anharmonicity, whereas in
harmonic approximation the frequenciesv l are independen
of a(T). In the quasiharmonic approach used in this stu
the terms of order higher than two in the potential ene
expansion in powers of displacement coordinates are
jected. In this case, some of anharmonicity effects are ta
into account sincea is a function ofT andv l depends ona.

The paper considers a specific example of changesa
with variations of the isotopic composition of germaniu
crystals over a wide temperature range. The case of ge
nium is interesting for the following reason. It is known1,2

that the temperature dependence of the thermal expan
coefficienta is determined in most cases by the temperat
dependence of the lattice specific heatCL . This is because
the partial Gru¨neisen parametersg l , which characterizev l

as a function of volume, are usually close to their avera
values in the high-temperature range. Sinceg l is an alternat-
ing function of l , the functiona(T) in Ge is largely deter-
mined by the total Gru¨neisen parameterg(T), but not the
lattice specific heatCL . Therefore changes in the therm
expansion of Ge, unlike that of standard materials, should
first of all, controlled byg(T). This paper analyzes the un
conventional temperature dependence ofa, taking as an ex-
ample a comparison between calculations for highly enric
70Ge, 74Ge, and76Ge crystals, and a crystal with the natur
isotopic composition with the average atomic massM
572.59.
3571063-7761/98/87(8)/8/$15.00
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This research has been stimulated by investigations
chemically pure and isotopically enriched germanium cr
tals performed by the group directed by Ozhogin. They ha
measured the thermal conductivity of these materials,3 and
an investigation of other properties is under way.

2. THERMAL EXPANSION AND DENSITY OF PHONON
STATES IN A CRYSTAL WITH ISOTOPIC DISORDER

2.1. Thermal expansion

It is known that the crystal free energy is expressed

F5Eel1Fv , ~1!

whereEel is the equilibrium potential energy, andFv is the
contribution from vibrational energy. In the quasiharmon
approximation, the energyFv is expressed in terms of th
density of phonon statesg:

Fv5E
0

`

dvv f T~v!g~v!,

f T~v!5
2T

v
ln @n~v!11#1

1

2
, ~2!

where n(v)5(ev/T21)21. In order to simplify the equa-
tions, we set the Boltzmann and Planck constants equa
unity.

Using expressions for the free energy~1! and ~2!, one
can derive the unit cell volumeV5V(T) at temperatureT
from the equilibrium condition. For a cubic crystal we ha

]F~V!/]V50 . ~3!

Suppose that we know the crystal parameters at a ce
temperatureT0,T. For simplicity we are considering th
case of a cubic lattice~in this case thermal expansion
isotropic!. With due account of these conditions, let us e
pandF about the equilibrium state, which is characterized
the volumeV05V(T0). In what follows, we takeT050.
We have
© 1998 American Institute of Physics
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F~V!5F~V0!1
1

2S ]2Eel

]V2 D
V0

~V2V0!2

1S ]Fv

]V D
V0

~V2V0! . ~4!

From Eqs.~3! and ~4! we directly derive a standard ex
pression for the change in the cell volumeV2V0 as a func-
tion of temperature:

V2V0

V0
52

~]Fv /]V!V0

B0
, B05S V

]2Eel

]V2 D
V0

. ~5!

HereB0 is the bulk modulus atT5T0 ~see also Refs. 4–6!.
Next, the parameterV2V0 is expressed directly in

terms of the differenceDa5a2a0, wherea anda0 are the
lattice constants atT andT0. We have

a2a0

a0
5

V2V0

3V0
1O~~Da!2!. ~58!

The linear thermal expansion coefficienta(T) of a cubic
lattice is

a~T! 5
]

]T

a2a0

a0
. ~6!

The temperature dependence ofa is determined by
]Fv /]V. Note that the expression for the density of stateg
in the formula forFv can be written as a power series in t
parameter which is the difference between the isot
masses.

Note also that in classical statistical mechanics the p
tition function Z, which contains Gibbs’s distribution func
tion and depends on the atomic displacements and mom
can be expressed as a product of the integralsJ1 andJ2. It is
well known that the former is determined only by the dist
bution with repect to the components of atomic mome
~i.e., the kinetic energies of the atoms!. The second integra
is a function of the atomic coordinates and is determined
the potential energy of dynamic interatomic interacti
through atomic force constants. The integralJ1, which de-
pends on the kinetic energies of the isotopes and t
masses, can be easily calculated and is independent o
cell volume. On the other hand, the integralJ2 is a function
of cell volume, since the dynamic parameters depend on
lattice constants. Since, by definition,

Fv5 2T ln Z5 2T~ ln J11 ln J2!,

the derivative (]Fv /]V)V0
does not depend on atomic mas

In other words, the thermal expansion coefficient is not s
sitive to the isotope composition in the case of classical
tistical mechanics. Changes ina(T) due to variations in the
isotopic composition of a crystal are due to quantum effe

2.2. Density of states in a crystal with isotopic disorder

Let us calculate the density of vibrational states in
crystal containing different isotopes. The Hamiltonian
such a crystal is expressed by
e

r-

ta,

a

y

ir
the
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.
-

a-

s.

f

H5
1

2 (
s

ps
2

2M s
1

1

2 (
ss8

Fss8usus8 . ~7!

Hereus andps are the dynamic displacement and moment
operators of the atom located at sites of massM s.

The expression for the vibrational energy of a syst
characterized by Eq.~7! can be written, with due account o
the virial theorem, in the form

Ev5(
s

^ps
2&

M s
5(

s
M ŝ u̇s

2& , ~8!

where angular brackets denote thermodynamic averag
After averaging Eq.~8! over various isotopic configurations
we find

Ēv5Mc (
s

^^u̇s
2&&c1(

s
~M s2Mc!^^u̇s

2&&c . ~9!

Here ^ . . . &c denotes configurational averaging,Mc is the
effective average atomic mass,Mc5(sM s/N, andN is the
total number of lattice sites.

Let us derive explicit expressions for the correlators
Eq. ~9!. To this end, we introduce a Green’s function com
posed of operators of dynamic atomic diplacements:

Gss8~ t ! 5 2 iu~ t ! ^@us~ t !,us8~0!#& . ~10!

Using Eq.~7!, one can prove that the temporal Fourier tran
form of function ~10! satisfies the equation

Gss8~v!5Ḡss8~v!1v2

3(
s1

Ḡss1
~v!~Mc2M s1

!Gs1s8~v! . ~11!

HereḠ(v) is the Green’s function of the ordered lattice wi
atoms of massMc at all its sites. By definition,

Ḡss8~v!5
1

McN
(
f j

exp~ i f•~r s2r s8!!

v22v2~ f, j !
, ~12!

where r s is the radius-vector of sites, v(f, j ) denotes the
frequency of the phonon mode with quasimomentumf and
polarizationj . To simplify our formulas in what follows, we
introduce the notationl 5(f, j ). In addition, we will ignore
the presence of polarization vectors in Eq.~12! for the
Green’s functions.

Using the iteration method, we express an approxim
solution to Eq.~11! in the form7

Gss8~v!'Ḡss8~v!1v2 (
s1

Ḡss1
~v!~Mc2M s1

!Ḡs1s8~v!

1v4 (
s1s2

Ḡs1s2
~v!~Mc2M s1

!Ḡs1s2
~v!

3~Mc2M s2
!Ḡs2s8~v!. ~13!

From Eq.~13! we derive the Green’s function average
over isotopic configurations,^Gss8&c . We have
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^Gss8~v!&c ' Ḡss8~v!

1v4Mc
2j2Ḡc~v!(

s1

Ḡss1
~v!Ḡs1s8~v! .

~14!

Here Ḡc5Ḡss(v), and the parameterj2 is defined by the
expression

j25
^M s

2&2Mc
2

Mc
2

, ^M s
2&5

1

N (
s

M s
2 .

Let us take into account that

Mc
2 Im Ḡc~v!(

ss1
Ḡss1

~v!Ḡs1s~v!

5Ḡc~v!
1

N2 (
ss1 , ff1 , j

exp$ i f•~s2s1!%

3exp$ i f1•~s12s!%Ḡf j~v! Ḡf1 j~v!

5Ḡc~v! (
l

Ḡl~v! 2

52Ḡc~v!
d

dv2 (
l

Ḡl~v!, ~15!

where the Green’s function of the phonon model is

Ḡl~v!5@v22v2~ l !1 id#21.

Using Eqs.~14! and ~15!, we transform the first term in the
expression for the average energyĒv in Eq. ~9!:

Mc(
s

^^u̇s
2&&c→ E

0

vmax
dvFn~v!1

1

2Gv2$gc~v2!

2v4j2@ReḠc~v!Im Ḡ8c~v!

1Im Ḡc~v!ReḠc8~v!#%. ~16!

Here

gc~v2! 5(
l

d~v22v2~ l !! ~17!

is the density function of squared frequencies in the orde
lattice of atoms with massMc , where the density of states
g(v)52vgc(v

2). The factorgc describes the effects tha
are linear in the difference between the isotope masse
addition, ReḠc and ImḠc in the equations above denote th
real and imaginary parts of the lattice Green’s functions:

ReḠc~v!5Re^Gss~v!&c5
1

McN
(

l

1

v22v2~ l !

5 E
0

vmax
2

dz2
gc~z2!

v22z2 ,

Im Ḡc~v!5Im ^Gss~v!& c5
p

Mc
gc~v2!.

The primes in Eq.~16! denote the differentiationd/dv2.
d

in

Consider the second term in expression~9! for the vibra-
tional energy of the crystal. Using the approximate equat
~13! for the Green’s function, we obtain

K (
s

~M s2Mc!^u̇s
2&L

c

→ E
0

vmax
dvv2Fn~v!1

1

2G j2v2

3Im (
ss1 ,ff1 , j

exp$ i f•~s2s1!%

3exp$ i f1•~s12s!%Ḡf j~v! Ḡf1 j~v!

52E
0

vmax
dvv2Fn~v!1

1

2Gj2v2
d

dv2 Im Ḡc~v!. ~18!

As a result, we obtain with due account of Eqs.~16! and~18!

an expression for the energyĒv of a crystal containing dif-
ferent isotopes in the form

Ēv5E
0

`

dvv2Fn~v!1
1

2G ḡ~v2!,

ḡ~v2!5gc~v2!1Dgc~v2!, ~19!

whereḡ is the desired density of states.
Recall that the factorgc was defined above in Eq.~17!,

whereas the correctionDgc to ḡc , which is quadratic in the
difference between isotope masses due to disorder in t
distribution, is given by the formula

Dgc~v2!52j2v2$v2@ReḠc~v!Im Ḡc~v!

1ReḠ8c~v! Im Ḡc~v!1Im Ḡ8c~v!. ~20!

Using Eqs.~17!, ~19!, and~20! for the density of phonon
states, we express the vibrational partFv of the free energy
defined by Eq.~2! to terms of first and second order in th
difference between the isotope masses.

3. THERMAL EXPANSION, GRÜ NEISEN PARAMETER, AND
UNIT CELL VOLUME TO FIRST ORDER IN THE
ISOTOPE MASS DIFFERENCE: BASIC RELATIONS

In the case of natural or enriched mixtures of isotopes
one element, such as germanium, the contribution toḡ of
terms of the second order in the mass difference is essent
smaller than that of first-order terms. In what follows, w
will neglect terms of the second order~they should be very
important, for example, in3He and4He quantum crystals!.

It is interesting that in the transport problem the situati
is quite different. It is known that the phonon scattering tim
due to the isotopic disorder is inversely proportional to t
isotope mass difference squared. The value of this param
determines the amplitude of the thermal conductivity pe
Effects linear in the isotope mass difference also take pl
owing to the dependence of the Debye frequencyvD on the
average atomic mass, but their contribution is less import
The relationship betweenvD and Mc affects the freeze-ou
temperature of umklapp processes, and hence the locatio
the peak on the temperature axis.

Using the quasiharmonic approach and linearizing in
isotope mass difference, with due account of Eqs.~2! and
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~17!, we obtain forFv , which is the contribution of atomic
vibrations to the free energy, a standard formula

Fv 5
1

2 (
l

v~ l !1T (
l

ln F12expS 2
v~ l !

T D G . ~21!

The phonon frequencies in this equation are functions of
cell volume. Irrespective of the isotope composition, the f
lowing relation holds for each phonon model :

Mc v2~ l ! 5f~ l !, ~22!

wheref( l ) does not depend onMc .
Note also that, in the case of a cubic crystal, the s

over wave vectors in the first Brillouin zone can be expres
in the form

(
f, j

. . . 5
V

2p3 (j
E df . . . , ~23!

where integration is performed over the first Brillouin zon
andV is the unit cell volume. By definition,

V5Da3, f 5pQ/a , ~24!

wherea is the lattice constant. The factorD is determined by
the lattice configuration~bcc or fcc!. It is important thatQ is
a dimensionless parameter~it depends on neither the ce
volume nor the temperature!.

It directly follows from Eqs.~23! and ~24! that the vi-
brational component~21! of the free energy depends on th
cell volume only through the frequencies of the phon
modes and is independent of the dimensions of the Brillo
zone~they are functions of temperature!, i.e., integration lim-
its. In other words, when Eq.~21! is applied to cubic crystals
it is enough to differentiate the integrand alone with resp
to the volume. As a result, we obtain

S ]Fv

]V D
V0

52
1

V0
(

l
g~ l !e~v~ l !! ,

g~ l !52
]v~ l !/]V

v~ l !/V
, e~v~ l !! 5v~ l !S n~v~ l !!1

1

2D .

~25!

Hereg( l ) is the partial Gru¨neisen factor for thelth phonon
mode. It is introduced to take into account the different v
ume dependence in the frequencies of different modes.
functione( l ) denotes the contribution of a single mode to t
thermal energy.

Now let us consider the thermal expansion coeffici
a(T) of a cubic crystal lattice. Using Eqs.~5!, ~6!, and~25!,
we obtain

a~T! 52
1

3V0B0

]

]T (
l

g~ l !e~v~ l !!

5
1

3V0B0
(

l
g~ l !Cl~T! , ~26!

where

Cl~T! 5
]e~ l !

]T
5

1

T2
v2~ l !n~v~ l !!@n~v~ l !!11#
e
-

d

,

n

ct

-
he

t

is the contribution of thelth phonon mode to the specific he
~see also Ref. 1!.

If at small and large frequencies the factorg( l ) is close
to a certain mean valueg05const, we have instead of Eq
~26! the following expression for the thermal expansion c
efficient:

a~T! '
1

3V0B0
g0CL~T! , ~27!

whereCL is the lattice specific heat.
As for the total Gru¨neisen parameterg(T), it is defined

as

g~T!5(
l

g~ l !Cl~T!/(
l

Cl~T! . ~28!

Note thatg(T) is a weighted function of contributions from
different modes.

Another parameter is considered concurrently w
g(T):

g j~T!5(
f

g~ f i j !Cf~T!/(
l

Cl~T!, ~29!

which is the total Gru¨neisen parameter for modes with p
larization j .

Note that, since the range of populated modes narrow
the temperature drops, the Gru¨neisen parameter defined b
Eq. ~28! is a function of temperature owing to the differen
betweeng( l ) at high and low phonon frequencies.

As was noted above, the temperature dependence o
thermal expansion coefficient is determined in most case
the specific heat, i.e., by Eq.~27!. This is because the Gru¨n-
eisen parameter and isothermal bulk modulus depend
temperature weakly in most cases, but, generally speak
the relationship betweeng andT is quite essential.

Now let us briefly discuss the general case of an anh
monic crystal. Owing to the interaction among phonons,
measured frequencyṽ l of the lth mode is the sum of the
harmonic part and anharmonic correction. Let us use the
pression

ṽ l~V,T!5v l~V!1D l
~3!1D l

~4! , V5V01DV . ~30!

HereD l
(3) andD l

(4) are the anharmonic contributions due
standard anharmonic processes of the third and fo
orders.8,9

In view of this, it seems reasonable to define the app
priate partial Gru¨neisen parameterg l

(a) as follows:

g l
~a!52$] ln ṽ l~V,T!/] ln V%V5V~T! , ~31!

whereV(T) is the cell volume with due account of therm
expansion. The expression for the anharmonic correctio
the Grüneisen parameterg l has the form

Dg l
~a!~T!'DV~T!

]g l

]V0
2

]$~D l
~3!1D l

~4!!/v l%

]V0
. ~32!

Now let us consider the case of two crystals with av
age atomic massesMc1

andMc5Mc1
1DM . The change in
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the thermal expansion coefficientDac(T)5a(Mc)
2a(Mc1

) in the case ofuDM u!Mc1
can be expressed by

Dac ' a~Mc1
! S Dgc

g~Mc1
!

1
DCc

CL
D , ~33!

where

Dgc~T!5g~Mc!2g~Mc1
!,

DCc~T!5CL~Mc!2CL~Mc1
!.

Let us comment on Eq.~33!. The shape of the tempera
ture dependence ofDac is determined by the perturbation i
the phonon spectrum. If the partial Gru¨neisen parametersg l

vary slightly about certain mean values, changes in the p
non spectrum have little effect on the total parameterg(T),
and the first term on the right-hand side can be neglecte
the difference between parametersg l at high and low fre-
quencies is considerable, the terms with bothDgc andDCc

in Eq. ~33! are essential.
To conclude this section, let us discuss the depende

of the equilibrium cell volume~and lattice constant! on the
average atomic mass of the mixture of isotopes. Given E
~5!, ~25!, and~22!, we obtain atT50

dV 5
V2V0

V0
5

1

2B0V0
(

l
g~ l !v~ l !;

1

AMc

. ~34!

Note that the relationship betweendV(T50) andAMc is
due to quantum oscillations of atoms in the ground state.
presence of the ground-state energy is a characteristic fe
of quantum-mechanical motion. This reflects the fact tha
state of absolute rest for a particle is meaningless in quan
mechanics.

Let us consider the case of two crystals with avera
atomic massesMc1

and Mc5Mc1
1DM , where uDM u

!Mc1
. Then it follows from Eq.~34! that the difference

between the respective equilibrium cell volumes is

dV~Mc1
!2dV~Mc1

1DM !52r DM /Mc1
,

r5S 1

2B0V0
(

l
g~ l !v~ l ! D

M5Mc1

.

In germanium, for example, we haver'231023, and
DM /Mc1

can be up to several hundredths. Thus, relat
changes in the cell volume atT50 owing to variations in the
isotopic composition can be about 1025.

At arbitrary temperatures, one can show, using Eq.~4!,
that the difference between equilibrium cell volumes
crystals with massesMc1

andMc5Mc1
1DM is

DV̄52DM S 1

B

]2Fv

]V]M D
M5Mc1

.

Hence one can derive, using Eq.~21!, the temperature depen

dence ofDV̄.
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4. UNIVERSAL RELATIONSHIP FOR ISOTOPIC
DEPENDENCE OF THERMAL EXPANSION COEFFICIENT

Taking into account the relationshipv( l )}M 21/2, one
can determine the isotopic dependence of the thermal ex
sion factor described by Eq.~26!. Let us specify some isoto
pic composition labeled by a subscriptc0. Then, by virtue of
Eq. ~22!, we have for an arbitrary isotopic composition l
beled by a subscriptc a universal relationship like

ac~T! 5ac0
~T8!, T85T AMc /Mc0

.

It follows that, in the range of very low temperatures,

ac~T! 5bc0
~Mc /Mc0

!3/2T3, ~35!

wherebc0
is independent of the atomic mass.

The factor in front ofT3 in Eq. ~35! is sensitive to the
isotopic composition and is almost linear in the differen
between isotopic masses.~See also Ref. 10, which demon
strated that at low temperatures heavy isotopic impurities
as centers of anomalous thermal dilatation.! In the range of
higher temperaturesT@v l , as directly follows from Eq.
~26!, where Cl'3@12v l

2/(12T2)#, thermal expansion
should be a very weak function of the isotopic compositio

5. ISOTOPIC DEPENDENCE OF THERMAL EXPANSION
COEFFICIENT AND THE GRÜNEISEN PARAMETER FOR
GERMANIUM

On the base of the results described in the previous
tion, we have studied the isotopic dependence ofa(T) and
g(T) in germanium. In the process of our investigation, w
have performed some calculations based on microsc
theories.

In particular, phonon mode frequenciesv l have been
determined on the base of the Born–Ka´rmán theory. The
interatomic interaction parameters have been determined
fitting to neutron diffraction data.11 Further, the partial pa-
rametersg l were analyzed theoretically12 with the help of the
bond-charge model. It is based on the assumption tha
electron charge concentrated at the center of a chemical b
can be treated as a dynamic variable affecting the interato
interaction. This model can be applied to germanium beca
it allows one to describe a large flat region of the transve
acoustic phonon branch. It turned out that the interact
between nearest bond charges is stronger than betwee
atom and a neighboring bond charge. It is significant that
theory is in reasonable agreement with measurements og l

for a set of phonon modes.
In our study, we have used results of Refs. 11 and 12

calculations ofa(T) by @Eq. ~26!#, g(T) @Eq. ~28!#, and
g i(T) @Eq. ~29!#, integration was performed along symmet
cal axes using the Houston formula~see Appendix! since the
partial Grüneisen parameters were defined in Ref. 12 o
along symmetrical directions. We have used the followi
parameters in our calculations: the lattice constanta0

55.658 Å and bulk modulusB050.77231012dyn/cm2.
Note the following circumstance. The partial Gru¨neisen

factorsg l , by definition, are related to anharmonic atom
force constants. Consider as an example a linear chain
pair interaction between atoms. Then the expression for
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interatomic forcesf in the form of a series in powers of th
atomic displacements from equilibrium positions has
form f 52a2u1a3u31a4u4. Here a2, a3, and a4 are
atomic force parameters of the second, third, and fourth
ders. Consequently,

g l 52
] ln v l

] ln V
}2

] f ~u!/u

]u
'a31a4 u.

This formula indicates that the Gru¨neisen parameter is reall
determined only by the anharmonic parametersa3 anda4. If
the displacement amplitudes are small, we can takeg l}a3.
In the general case,g l is a function of the displacementu, as
a result, it depends not only on the volume, but also on
temperature. In our calculations we assumed thatg l}a3,l .

The results of our calculations are given in Figs. 1–4 a
Table I.

Figure 1 shows curves of the Gru¨neisen parameter dete
mined by Eq.~28! and partial Gru¨neisen parametersg j @Eq.
~29!# for transverse (t) and longitudinal (ln) acoustic
branches of the phonon spectrum, as well as for opt
branches, versus temperature. For transverse acoustic
optical branches the factorg j is positive. In other words, the
amplitudes of these phonons increase with interatomic
tances and the frequencies drop. For acoustic transv
branchesg t is negative. ~This means that the attractiv

FIG. 1. Total Gru¨neisen parametersg andg j as functions of temperature in
the case of natural isotopic composition. Curves1 and 2 plot partial total
parameters for transverse and longitudinal acoustic modes, respect
Curve3 corresponds to optical modes. Curve4 shows the total parameterg.

FIG. 2. Parameterg(Mc)2g(Mn) at differentMc versus temperature:~1!
Mc570; ~2! Mc574; ~3! Mc576. In germaniumMn572.59.
e
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e
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atomic forces, which determine parameters of transve
modes, increase faster than the repulsive forces when
interatomic distance changes.! The absolute value ofg t is
larger than that ofg ln . Note also that the partial Gru¨neisen
parameter for optical branches is ‘‘unfrozen’’ only at tem
peratures higher than that of liquid nitrogen,T>TN . In other
words, the contribution of optical modes can be neglecte
T,TN . As a result, the Gru¨neisen parameterg summed over
all branches of the phonon spectrum is negative at low te
peratures and has a minimum atTm'41 K. At high tempera-
turesT.TN the total parameterg is positive definite owing
to the contribution of optical phonon modes.

The comparison between calculations ofg(T) and ex-
perimental data1 indicates that the microscopic theory is
qualitative agreement with experiments. In the range
lower temperatures~on the left ofTmin), the agreement be
tween the numbers is noticeably better.

Figures 2 and 3 illustrate the magnitudes of isotopic
fects ona(T) andg(T) over a wide temperature range. The
show plots of Dgc5g(Mc)2g(Mn) and Dac5a(Mc)
2a(Mn) versus temperature, whereMn572.59 andMc

570, 74, and 76. Recall that the natural isotopic composit
corresponds to the mean atomic mass of 72.59. The ma
of 70, 74, and 76 correspond to samples with maximum c
centrations of specific isotopes, and samples of70Ge on one
side and74Ge, 76Ge on the other can be considered as ma
rials with ‘‘light’’ and ‘‘heavy’’ isotopes in comparison with
natural samples.

Now let us comment on the curves ofDgc andDa ver-
sus temperature. It is noteworthy that the curves are m
edly nonmonotonic and have several extrema, in particula
T1'22 K andT2'70 K, where the calculatedg changes its
sign. The values corresponding to light and heavy isoto
have opposite signs. In the range of high temperatures
about 300 K the isotopic effect is limited because the opti
modes are not completely ‘‘defrosted.’’ Since the linear is
topic effect for the thermal expansion coefficient is det
mined by changes in both the Gru¨neisen parameter and sp
cific heat, relative changes inDac(T) are, generally
speaking, larger than inDgc(T).

Figure 4 shows the curves ofDac /a(Mn) versus tem-
perature to illustrate the relative magnitudes of isotopic

ly.

FIG. 3. Parametera(Mc)2a(Mn) versus temperature for the cases of lig
and heavy isotopes:~1! Mc570; ~2! Mc574; ~3! Mc576.
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FIG. 4. Parametera(Mc)/a(Mn)21 as a func-
tion of temperature:~1! Mc570; ~2! Mc574; ~3!
Mc576.
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fects for highly enriched crystals in comparison with natu
samples. One can see in Fig. 4a that, in the tempera
intervalT55 – 100 K, a strong isotopic effect~of about 10%
or higher! occurs in narrow temperature ranges ('5 K) near
T1 and T2, whereg(Mn) changes its sign. Figure 4b dem
onstrates that at relatively high temperatures the change
a(T) in isotopically enriched samples can be several p
cent, and the absolute value ofDac /a(Mn) drops with the
temperature.

Finally, Table 1 lists values ofDgc /g(Mn) and
DCc /CL , which determineDac /a(Mn) @Eq. ~26!#, for Mc

570, 74 (Mn572.59). As was noted above, the term
Dgc /g(Mn) due to the renormalization of the Gru¨neisen pa-
rameter have opposite alternating signs for light (Mc570)
and heavy (Mc574) isotopes. On the contrary, the term
DCc /CL due to changes in the specific heat have the sa
sign throughout the studied temperature range, besides
term DCc /CL is negative for the light isotope and positiv
for the heavy one. The values ofDgc /g(Mn) andDCc /CL

are comparable far from pointsT1 andT2, where the Gru¨n-
eisen parameter changes its sign. Around the pointsT1 and

TABLE I. ParametersDg5Dg(Mc)/g(Mn) and DC5DC(Mc)/CL(Mn)
as functions ofT for crystals enriched in light (l , Mc570) and heavy
(h,Mc574) isotopes.

T, K Dg l DCl Dgh DCh

2 0.0001 20.0532 20.0001 0.0294
10 0.0119 20.0300 20.0069 0.0169
15 0.0439 20.0302 20.0248 0.0161
20 0.1723 20.0313 20.0955 0.0137
30 20.0434 20.0197 0.0234 0.0119
40 20.0033 20.0166 0.0010 0.0094
42.5 0.0037 20.0162 20.0030 0.0090
45 0.0109 20.0159 20.0071 0.0088
47.5 0.0189 20.0157 20.0116 0.0086
50 0.0280 20.0157 20.0168 0.0085
60 0.0979 20.0166 20.0565 0.0081
67.5 0.4897 20.0227 20.2788 0.0062
80 20.1331 20.0131 0.0746 0.0091
90 20.0695 20.0135 0.0387 0.0085
100 20.0465 20.0130 0.0258 0.0079
150 20.0150 20.0089 0.0082 0.0050
200 20.0076 20.0058 0.0042 0.0033
250 20.0047 20.0040 0.0025 0.0022
300 20.0032 20.0029 0.0017 0.0016
l
re

in
r-

e
the

T2 the inequalityuDgc /g(Mn)u@uDCc /CLu holds, i.e., the
behavior ofDac /a(Mn) is largely determined by the renor
malization of the Gru¨neisen parameter.

Note also that in the temperature rangesT1,T
,Tm(g) and T2,T<300 K the termsDgc /g(Mn) and
DCc /CL are not only comparable, but also have the sa
sign. In the intervals 2 K<T,T1 andTm(g)<T,T2 these
parameters have opposite signs and partially compensate
another. In the interval 2 K<T,T1 the parameterDCc /CL

dominates, and ifTm(g)<T,T2, the termDgc /g(Mn) is
more important.

Finally, anharmonic partial Gru¨neisen parameters hav
been estimated using Eqs.~30!–~32! based on the model o
Ref. 12. It turned out that for most phonon modesg l

(a) in-
crease with temperature. The renormalization due to the
harmonicity atT'300 K is 10–15%. At the same time, a
anomalous situation takes place in the case of a soft tr
verse mode, namely, the absolute values ofg l

(a) diminish
owing to the anharmonicity, for example, by a factor
about one and a half at room temperature. The main pos
contribution is due to the anharmonic terms proper, i.e.,
second term on the right-hand side of Eq.~32!.

The effect of anharmonicity of higher orders has be
estimated by replacing the cell volume with the measu
values. Such corrections, generally speaking, are not sm
but do not radically change the results, and the param
g l

(a) for the transverse mode, nonetheless, drops rapidly w
the temperature.

Thus, taking into account the anharmonicity should le
to better agreement between calculations and conventi
experimental data on thermal expansion of Ge.1

The role of anharmonicity in thermal expansion of ge
manium deserves a detailed investigation based on the
croscopic model of bond charges.

6. CONCLUSIONS

In the reported work, the thermal expansion coefficie
for isotopically mixed crystals has been determined with d
account of terms of the first and second orders in the dif
ence between isotope masses. A universal formula fora has
been derived. An approximate description of the effects
atomic mass variation ona(T) andg(T) for germanium in a
wide temperature range has been given. These paramete
natural and enriched isotope mixtures have been compa
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Unlike conventional crystals, the factorDac /a(Mn) in Ge
as a function of temperature is largely determined
Dgc /g(Mn), i.e., by the renormalization of the Gru¨neisen
parameter. This factor dominates over temperature ran
within several degrees ofT1 andT2, whereg(T) changes its
sign. The parameterDCc /CL , which usually determines
Da/a(Mn), dominates only at very low temperaturesT
,T1. At relatively high temperaturesT.T2 the effects of
Grüneisen parameter renormalization and changes in the
cific heat are comparable and have the same sign.

I am indebted to D. A. Zhernov for help in the work
Helpful remarks by S. M. Stishov are acknowledged. T
work was supported by V. I. Ozhogin.

APPENDIX

Let us calculate the integral

J5E
0

p

dq sinq/E
0

2p

dfI ~q,f!.

In accordance with the conditions of the problem, the fu
tion I (q,f) has a cubic symmetry. Suppose that the in
grand is defined along symmetrical directions~100!, ~110!,
and~111!. Let us denote them asA, B, andC. Then, follow-
ing Houston, we obtain an approximate expression13

J5
4p

35
~10JA116JB19JC!.

In the case of germanium discussed in this paper,
coordinates of high-symmetry points are

G5
2p

a
~0 ,0 ,0!, X5

2p

a
~0 ,0 ,1!,
y

es

e-

e

-
-

e

L5
2p

a S 1

2
,
1

2
,
1

2D , K5
2p

a S 3

4
,
3

4
, 0D .

HereG denotes the Brillouin zone center,X is the center of
the square face of the unit cell,L is the center of the hexago
nal face,K denotes the mid-points of edges of the hexago
face, anda is the length of the edge of the unit lattice cub
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An exact solution is derived for the two-dimensional two-phase model of a disordered medium
proposed by Morozovski� and Snarski� @Ukr. Fiz. Zh. ~Russ. Ed.! 28, 1230~1983!# that
arises because of hierarchical mixing of phases with different dielectric constants. The problem
reduces to a nonlinear recurrence relation for the dielectric constants. It is found that the
expressions for the dielectric constants at thenth stage of the iteration process can be expressed
in terms of elementary functions. It is also found that in the absence of absorption the high-
frequency dielectric constant of a composite material with different signs of the initial dielectric
constants« does not converge to a limit and is an oscillatory function of the frequency
andn. Finally, for massive and thin-film samples, the local plasmon frequencies in the medium
are established. ©1998 American Institute of Physics.@S1063-7761~98!02208-2#
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Recent research has shown2–7 that in randomly inhomo-
geneous macroscopic media made up of nondissipative
croscopic parts, the values of high-frequency effective e
tric parameters never becomes stationary. In this respec
high-frequency case differs dramatically from the sta
limit. In Ref. 4, the renormalization equation for the hiera
chical chain of impedances was studied by methods
dynamic-chaos theory and it was found that the impeda
of a large chain is a fractal function of frequency. The a
sence of self-averaging leads to giant fluctuations of
high-frequency electric fields in a randomly inhomogeneo
medium2 and to divergence of the moments of the square
the absolute value of the electric field.6 As a result there is
giant enhancement of the nonlinear effects related to th
moments, such as Raman scattering5 and the photovoltaic
effect.7

The work described in Ref. 2 was based on the Dykh
model8 of a two-dimensional statistically equivalent two
phase random insulator medium. By analogy with Ref.
one should expect that in the nondissipative case the die
tric constant of a large system does not tend to a defi
limit, the effective dielectric constant. Unfortunately, there
no way in which this can be established if the reasoning
based on the Dykhne model, which uses a limiting proce
However, there exists a regular model of an isotropic tw
dimensional medium, the Morozovski�–Snarski� ~MS!
model,1 which in the static case has the same effective
electric constant as the Dykhne medium. This model is ba
on a hierarchical construction, which facilitates the exact
lution of the problem.

The MS model is based on a method of constructin
medium by connecting the initial phases in series and pa
lel: one takes extremely thin layers of equal thickness w
conductivitiess1 ands2 and stacks them. The resulting m
dium has an anisotropic conductivity with principal valu
s18 ands28 . At the next step of the hierarchy the procedure
repeated: the resulting medium is cut along the axes 1 a
3651063-7761/98/87(8)/4/$15.00
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into thin layers of equal thickness, which are then stack
Figure 1 depicts two steps in the iteration, with one medi
replaced by empty spaces. What we get is a chain of cond
tivities s1,2

n . Repeating this procedure indefinitely leads
equal valuess1

` ands2
` that obey the Dykhne relations:

s1
`5s2

`5seff5As1s2. ~1!

It is more convenient to speak in terms of dielectric co
stants «5114p is/v instead of conductivities. The MS
transformation for the complex-valued dielectric consta
«1

n and«2
n of the system has the form

«1
n115

«1
n1«2

n

2
, «2

n115
2«1

n«2
n

«1
n1«2

n . ~2!

In the dc case,«1 and «2 are purely imaginary and the re
sulting chain converges to the Dykhne result. The sam
true in the case of purely real and positive«1 and «2 , cor-
responding to a static dielectric constant.

By analogy with Ref. 4, one should expect that the m
~2! leads to the dynamic-chaos scenario for purely real«1

and «2 with opposite signs. By computer simulatio
Luk’yanets, Morozovski�, and Snarski�9 showed that for
«1 ,«2,0 the sequence of values of~2! does not converge
The result proves to be sensitive to the initial value, a
there is no stage at which the system becomes isotropic«1

n

Þ«2
n .
In this paper we will obtain an exact solution for a finit

size MS model and study its behavior for complex-valued«.
The solution makes it possible to determine the plasm
spectrum of a finite-size MS model.

If we introduce the substitutions

«1
n5znA«1«2, «2

n5
«1«2

«1
n , ~3!

h5
«1

«2
, ~4!
© 1998 American Institute of Physics
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Eqs.~2! become

z05
1

Ah
, zn115

zn11/zn

2
.

First we note that if we writezn5tanht, the above recur-
rence relation becomeszn115coth 2t. Bearing this in mind,
we obtain

zn5coth 2nt, n>1. ~5!

The initial condition yieldst5tanh21 z05coth21 Ah. Let h
be real and positive. In the limitn→`,

zn;11~21!n exp~22nt !.

This leads to the expression~1! for conductivity. The limit
exists not only forh real but whenevert has a real part.

For h negative, by replacing hyperbolic functions b
trigonometric functions we get

«1
n52A2

«1

«2
cotS 2n cot21A2

«1

«2
D , «2

n5
«1«2

«1
n .

~6!

For n large andh negative, thezn are rapidly oscillating
functions ofh. Within a small interval of values ofh these
functions behave as tan(2nh1const). Forh;1 the distance
between the neighboring zeros or poles ofzn is of order
p22n, i.e., asn increases by one unit, the oscillation fr
quency doubles. Although such behavior is extraordina
the function~5! is fairly regular, and no fractal behavior o
alternating regular/fractal behavior, as in the dynamic-ch
pattern,4 is observed. According to~3!, the zeros of«1

n and
the poles of«2

n ~and vice versa! coincide with the zeros and
poles ofzn , respectively.

The frequency dependence of the dielectric constant
massive sample is determined in terms ofh by the depen-
dence on the frequencyv of the initial dielectric constants«1

and«2 . Let us assume that the two initial media are met
described by the Drude–Lorentz model:

FIG. 1.
,

s

a

s

«1 ,«2512
vp~1,2!

2

v~v1 i /t1,2!
. ~7!

In the weak-absorption limit,t→` and

«1 ,«2512
vp~1,2!

2

v2 1 i
vp~1,2!

2

v3t
.

For «1 and «2 to have different signs we must assume th
the frequency lies in the interval between the plasma
quenciesvp1 andvp2 of the massive materials; in particula
vp1,v,vp2 .

Figure 2 depicts the frequency dependence of the im
nary part of the dielectric constant«1

6 at 2vp15vp252 and
1/t50.02, which on the average follows Im«eff5Im A«1«2

~the median line!. Clearly visible in both curves are the low
frequency absorption region and the plasmon reg
vp1,v,vp2 . In the latter region«1

6 oscillates. As 1/t de-
creases, the oscillations become more rapid and the sinu
dally modulated median curve splits into separate peaks
n grows, the frequency of the peaks also increases, and
peaks merge into a median curve corresponding to the ef
tive conductivity. Due to the merging of resonances, in
frequency range between the plasma frequencies the e
tive conductivity acquires~in a nondissipative medium! a
finite real part.

According to Refs. 4 and 6, the resonances in the die
tric constant of a composite material reflect the local f
quencies of oscillations in the medium. In a massive sam
the zeros of the dielectric constant determine the plasma
quencies of the sample in the long-wavelength limit. Ho
ever, to determine the plasma frequencies we must know
only the microscopic properties of the medium but also
construction of the sample.

We start with a massive three-dimensional sam
whose dielectric constant depends only on two coordina
(x,y)5r. The method by which the sample is construct
was described earlier. We assume that the hierarchical
struction is terminated at thenth step; after that the medium
is constructed homogeneously. The quantities«1

n and«2
n are

FIG. 2.
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the diagonal elements of the tensor of the effective dielec
constant of the medium. Let the plasmon wave vectork lie in
the planer and be shorter than the reciprocal characteri
spatial scale of the penultimate hierarchy level. This is n
essary if the medium is to be examined macroscopically

With allowance for anisotropy, the Maxwell equations
the low-frequency limit,

¹–D50, ¹3E50, ~8!

yield a dispersion equation for plasmons with a wave vec
k5(kx ,ky) and polarizationEik:

«1
nkx

21«2
nky

250.

Expressing the above formulas in terms ofh and the anglea
betweenk and thex axis, we find that

2h5cot2 g, v25vp1
2 sin2 g1vp2

2 cos2 g,

where

g522n~p~ j 11/2!6a!, j is an integer.

The number of different plasma modes is 2n1121, i.e., to
within a number of order unity equals twice the number
elementary construction ‘‘bricks.’’

The result can easily be understood if we notice tha
the boundary of two media with dielectric constants«1 ,«2

,0 coupled plasmons with a frequencyA(vp1
2 1vp2

2 )/2
emerge. The overlap of the fields generated by the diffe
plasmons split their frequencies. At the same time, since
fields are assumed to be smooth in comparison to all
geometrical scales of the problem, all layers at a given p
tition level yield one additional frequency, and the number
resonant modes is independent of the number of layers
which the given level is partitioned.

Another example is presented by plasma oscillations
two-dimensional composite film whose material is co
structed in the same manner. Consider a film of thicknesd
that covers the surfacez50 of an insulator with a dielectric
constant«0 . We will assume that the film thickness excee
the maximum size of the partition hierarchy but is smal
than the surface-plasmon wavelength. The first condit
must be met if we want to replace the medium by an eff
tive medium, and the second must be met if we want to so
the problem of the plasmon spectrum without taking in
account the film thickness. The dielectric constant of the fi
is

«1,2
n ~r !5d«1,2

n d~z!.

The plasmon spectrum in the long-wavelength qua
static approximation is given by Eq.~8! with allowance for
the spatial dependence of the dielectric constant,

«~r !5d«1,2
n d~z!111~«021!u~z!,

whereu(z) is the Heaviside step function. Equation~8! for
the surface plasmons in the film10,11 has the following solu-
tion:

f5f0eik–re2kuzu, ~«011!k524pd~«1
nkx

21«2
nky

2!,
~9!
ic
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wheref is the plasmon frequency. In the limitkd!1, Eq.
~9! is satisfied as«1

nkx
21«2

nky
2→`. Thus, the condition for

the generation of plasma oscillations in a film is opposite
that for the generation of plasma oscillations in a mass
sample. With the exception of anglesa that are extremely
small or very close top/2, this condition implies that eithe
«1

n→` or «2
n→`. This yields the following dispersion rela

tion:

v25vp1
2 sin2~22~n11!p j !1vp2

2 cos2~22~n11!p j !.

Thus, the resonances in the dielectric constant determine
local plasmon frequencies. In the limitn→`, the system
under consideration is a unique example of an exactly s
able large non-one-dimensional system.

The results show that asn→`, the neighboring reso-
nances of the dielectric constant and, respectively, the p
mon frequencies are spaced almost evenly.

The local plasmon frequencies of a large system can
examined in the same way as electron states in a ran
medium. According to the Wigner–Dyson theory of rando
matrices,12 in a system with nonseparable variables the sp
trum of states is chaotic and the probability of neighbori
states moving closer together behaves as a power
}dEm, where m51,2,4, depending on the ensemble. T
system we are considering here is two-dimensional and
dom, so that we can expect a similar behavior of the plas
resonances.

In one-dimensional quasiclassical wells the states in
spectrum are almost equally spaced, but the correlation
multidimensional systems is usually not so strict. For
stance, the neighboring states of an electron in a rectang
two-dimensional well are not correlated. In an isotropic o
cillator, which is an exception, the equal spacing of the sp
trum arises because of degeneracy of the states, which is
the case in the present model.

In the hierarchical chain of impedances4 described by a
recurrence relation that cannot be made simpler, the imp
ance resonances are distributed at random with a power
correlation. Computer simulation shows that the distribut
function for the distancesdv between neighboring reso
nances behaves asdv21.25 over a broad range of values o
dv. Probably, such power-law behavior is typical of syste
with dynamic chaos.

However, due to the exact solvability of the map~5!, no
dynamic chaos emerges in the MS model, and the st
make up an approximately equidistant spectrum.
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18397! and Volkswagen-Stiftung.
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The propagation of electromagnetic waves in organic layered conductors with metallic
conductance and a quasi-two-dimensional electron energy spectrum of arbitrary form is studied
theoretically. The depth of penetration of the electromagnetic field into the conductor is
found, and it is discovered to be sensitive to the polarization of the incident wave. This is done
for an arbitrarily oriented~with respect to the layers! magnetic field so strong that the
radius of curvature of the electron path is much smaller than the electron’s mean free path. It is
established that studying these effects in experiments can reveal in detail the shape and
dimensions of the Fermi surface and the relaxation properties of the conduction electrons.
© 1998 American Institute of Physics.@S1063-7761~98!02308-7#
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To a great extent the interest in low-dimensional orga
conductors is due to their unusual behavior in strong m
netic fields and to a number of phase transitions at mode
pressures. The discovery of Shubnikov–de Haas oscillat
of the magnetoresistance in tetracyano–tetracene halo
and a large family of tetrathiafulvalene-based ion-radi
salts with charge transfer in magnetic fields of several ren
teslas suggests that these compounds have metallic con
tivity and that the carrier mean free pathl in them reaches
several micrometers. At present strong magnetic fields
be generated inside such conductors, with the result tha
curvature radiusr of the conduction electron path becom
much smaller thanl , so that the inverse problem of recrea
ing the electron energy spectrum from the results of an
perimental study of the kinetic phenomena in a magn
field can be resolved.

Usually organic conductors are layered or filament
structures with a marked electrical-conductivity anisotro
and their electron energy spectrum is quasi-two-dimensio
or quasi-one-dimensional. The topologically simplest mo
of a Fermi surface for quasi-two-dimensional conductors
slightly fluted cylinder, is in good agreement with the resu
of experimental studies of the magnetoresistance and
Shubnikov–de Haas effect of the organic conduct
~BEDT-TTF!2I3 and ~BEDT-TTF!2IBr2 ~Refs. 1–6!. How-
ever, the unusual behavior of the magnetoresistance of
family of salts of the~BEDT-TTF!2MHg~SCN!4 type,7–15

where M5~K, Rb, or Tl!, suggests that the Fermi surface
such layered conductors is complicated, and to reproduce
electron energy spectrum of such compounds one must
ploy, in addition to galvanomagnetic results, alternat
methods of studying the carrier dispersion law. A possi
topological structure of the electron energy spectrum of
family of organic compounds, which follows from ban
calculations,16,17 is a Fermi surface that, in addition to
slightly fluted cylinder, contains two quasi-one-dimension
sheets in the form of slightly rippled planes on which t
charge carrier velocity has a preferred direction in the pl
3691063-7761/98/87(8)/6/$15.00
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of the layers. The extent to which such a model spectr
corresponds to the real dispersion law for the charge carr
can easily be established by experimentally studying
high-frequency phenomena in a strong magnetic fi
(r ! l ), which will make it possible to determine the fin
details of the Fermi surface and the relaxation properties
the charge carriers in such conductors.

In this connection we consider the propagation of el
tromagnetic waves in layered conductors whose Fermi
face consists of a quasi-two-dimensional cavity and a qu
one-dimensional cavity, i.e., the electron energy spectr
consists of two bands with quasi-two-dimensional,

«~p!5 (
n50

`

«n~px ,py!cosFanpz

\
1an~px ,py!G , ~1!

and quasi-one-dimensional,

«8~p!5 (
nm

q50

`

Anmq

cosa1npx

\

cosa2mpy

\

cosaqpz

\
, ~2!

dispersion laws for the charge carriers; the relationship
tween the numbers of conduction electrons in each ene
band is taken to be arbitrary. Herea is the distance betwee
the layers,a1 and a2 are the crystal lattice periods in th
layer planes, andan(px ,py)52an(2px ,2py). In expres-
sion ~1! for the quasi-two-dimensional carrier spectrum, t
coefficients of the cosines rapidly decrease with increas
number n, so that the maximum value of the functio
max@«F2«0(px , py)#5h«F at the Fermi surface«(p)5«8(p)
5«F is much smaller than the Fermi energy«F , i.e., h!1.
At the same time we assume thath is not too small, so that
h@\V/«F , whereV5eH/m* c is the gyration frequency
of the electron in a magnetic field along a closed orbit, a
m* is the electron cyclotron effective mass. This conditi
makes it possible to use the semiclassical approximatio
describe nonequilibrium processes in conductors with
quasi-two-dimensional electron energy spectrum. In the
persion law «8(p) for charge carriers with a quasi-one
© 1998 American Institute of Physics
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dimensional energy spectrum, the terms withm5q50 pro-
vide the main contribution. If we assume thatA1005U>«F

2A000 holds and all the other coefficientsAnmq vanish, the
hollow of the Fermi surface corresponding to this ene
band consists of two planes,

px56
\

a1
arccos

«F2A000

U
.

The slight rippling of these planes can be taken into acco
by assuming that two more terms in~2! are finite, A010

5h1U andA0015h2U, where not onlyh2 but alsoh1 must
be much smaller than unity.

The complete system of equations describing the pro
gation of electromagnetic waves in conducting media c
sists of the Maxwell equations

curlH52 ivE1
4p j

c
, ~3!

curlE5 ivB, B5H14pM ~4!

and the kinetic equation for the charge-carrier distribut
function,

f ~p,r ,t !5 f 0~«!1c~p,r !e2 ivt
] f 0~«!

]«
, ~5!

which makes it possible to relate the current density

j ~r !52E 2d3p

~2p\!3 evc~p,r !
] f 0~«!

]«
~6!

to the electric fieldE~r ! of the wave.
In Eqs.~4!, M is the magnetization of the conductor. Th

magnetic susceptibilityx i j 5]Mi /]Bj may reach values o
order unity at low temperatures, where the de Haas–van
phen effect manifests itself most clearly. Under these con
tions the homogeneous state proves to be unstable18,19 and
small-amplitude nonlinear waves can be excited.20 When the
temperature of a conductor in which there is no magn
ordering is not too low, the magnetic susceptibility is neg
gible and there is no need to distinguish between the m
netic fieldH and the magnetic inductionB. This approxima-
tion will be used here. We will also assume that t
perturbation of the system of charge carriers by the elec
magnetic wave is weak, so that we can work to first orde
the weak electric field of the wave.

The Maxwell equations in this approximation are line
and it is sufficient to keep only one temporal harmonic, i
the electromagnetic field can be assumed monochrom
with a frequencyv, a fact taken into account in the definitio
of the nonequilibrium addition to the Fermi distributio
function f 0(«) of the charge carriers. Hence in the Maxwe
equations~3! and ~4! we have replaced the time derivative
of the electromagnetic fields by the factor2 iv. In what
follows, t is the time of the motion of a charge in a magne
field according to the equation

dp

dt
5

e

c
v3H. ~7!
y

nt
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An important assumption that makes it possible to re
resent the current density as~6! is the smallness of the quan
tum corrections to the electrical conductivity of the condu
tor, which oscillate with the magnetic field. If in th
semiclassical approximation we ignore these corrections,
kinetic equation linearized with respect to the weak pert
bation of the conduction electrons by the wave assumes
form

S v–
]c

]r
2 ivc1

e

c
~v3H!–

]c

]p D ] f 0~«!

]«
1Wcol~c!

5ev–E~r !
] f 0~«!

]«
, ~8!

whereWcol(c) is the linear integral collision operator, whic
we take into account in thet-approximation, i.e., we assum
that Wcol$ f %5( f 02 f )/t, with t the carrier mean free time

Under the conditions of the anomalous skin effect, wh
the depthd to which an electromagnetic field penetrates t
conductor ~penetration depth! is smaller than the carrie
mean free path, the manner in which the charge carriers
reflected by the sample surfacer s50 manifests itself most
clearly, with the result that we must augment the kine
equation with a boundary condition at the surface that s
ters the conduction electrons:

c~p1 ,r s!5q~p2!c~p2 ,r s!1E d3pW~p,p1!

3$12u~n–v!%c~p,r s!, ~9!

where the specular reflection parameter of the sample,q(p),
i.e., the probability that an electron incident on the surfa
r s50 with a momentump2 will be specularly reflected by
the surface, is connected to the scattering indicatrix thro
the following relationship:

q~p2!512E d3pW~p,p1!$12u~n–v!%, ~10!

where u~j! is Heaviside’s function,n is the normal to the
surface of the conductor, andp2 andp1 ~the momenta of the
incident and reflected electrons, respectively! are connected
by the specular reflection condition, which ensures that
energy and projection of momentum on the sample surf
are conserved. When there are several groups of charge
riers, several specular reflection channels are possible, c
ing the enhancement within the bulk of the conductor
electromagnetic-field bursts21 predicted by Azbel’.22 The
multichannel nature of the specular reflection of electro
from the sample boundary manifests itself most vividly
the transparency and surface impedance of a thin sam
whose thicknessL is less than or of order the carrier mea
free path, but has no significant effect on the penetrat
depth for electromagnetic waves in a massive condu
(L@ l ). Hence we ignore band-to-band transitions of cha
carriers when they scatter inside a massive sample and a
sample surface.

The integral term in the boundary condition~9! ensures
that no current flows through the conductor’s surface, bu
high frequenciesv the solution of the kinetic equation i
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weakly dependent on this functional,23 so that if we ignore
this term, in a magnetic field parallel to the sample surfa
when charge carriers with the quasi-two-dimensional sp
trum ~1! drift along open electron orbits into the interior o
the conductor, the solution of Eq.~8! assumes the form

c~ tH ,pH ,r !5E
l

tH
dtev~ t,pH!–E~r ~ t,pH!

2r ~l,pH!!exp@n~ t2tH!#1q~l,pH!

3$12q~l,pH!exp@n~2l2T!#%21

3E
l

T2l

dtev~ t,pH!–E~r ~ t,pH!

2r ~l,pH!!exp@n~ t2tH12l2T!#, ~11!

wheren52 iv11/t, T52p/V is the period of motion of a
charge along a closed orbit,pH5p–H/H5const, andl is the
root of the equation

r ~ t,pH!2r ~l,pH!5E
l

t

v~ t8,pH!dt85r2r s ~12!

that is closest totH . Here and below the subscript ‘‘H ’’ on a
variable in momentum space that coincides with the time
motion of the charge in a magnetic field is dropped. F
conduction electrons not colliding with the sample surfa
we must putl52`.

Let us now discuss the propagation of electrom
netic waves along thex axis in a magnetic field
H5(0,H sinq, H cosq) parallel to the sample surfacexs

50. If the sample thickness is not only much larger than
mean free path of the charge carriers but also much la
than the penetration depth, then, to a high accuracy, the
tribution of the variable electric field in the sample near t
sample boundary has the same shape as in the half-spax
>0 occupied by the conductor. Following Reuter a
Sondheimer,24 we continue the electric field as an even fun
tion into the region of negativex and write the Fourier trans
forms for the current density and electric field:

j ~k!52E
0

`

dx j ~x!coskx,

E~k!52E
0

`

dx E~x!coskx. ~13!

Using the solution~11! of the kinetic equation, we can
find the relationship between the Fourier transforms of
current density and those of the variable electric field:

j i~k!5@s i j ~k!1s i j
~1!~k!#Ej~k!

1E dk8Qi j ~k,k8!Ej~k8!, ~14!

where the contribution of the charge carriers with a qua
two-dimensional energy spectrum to the high-frequen
electrical conductivity is
e
c-

f
r
e

-

e
er
is-

e

-

e

i-
y

s i j ~k!5
2e3H

c~2p\!3

3E dpHE
0

T

dt v i~ t,pH!E
2`

t

dt8v j~ t8,pH!

3exp@n~ t82t !#cosk@x~ t8,pH!

2x~ t,pH!#[^e2v i R̂v j&, ~15!

and only conduction electrons obeying the dispersion law~2!
contribute tos i j

(1)(k).
The Maxwell equations in the Fourier representation,

S k22
v2

c2 DEa~k!2
4p iv

c2 j a~k!522Ea8 ~0!, a5~y,z!,

~16!

together with the material equation~14! make it possible to
easily find the Fourier transforms of the variable electric fie
and then, using the inverse Fourier transform, the distri
tion of the electric field in the conductor.

The electric field Ex(x) can be found by solving
Poisson’s equation

div E524pE 2d3p

~2p\!3 ec~p,r !
] f 0~«!

]«
[4pe^c&,

~17!

which in conductors with a high charge-carrier density
ymptotically reduces to the electrical neutrality condition f
such conductors:

^c&50. ~18!

The kernelQi j (k,k8) of the integral operator strongly
depends on the state of the sample surface, i.e., on the p
ability of conduction electrons being specularly reflected
the surface. When the the charge carriers are reflected by
sample surface nearly specularly and the skin effect
anomalous, the second term on the right-hand side of
~14! is the principal one for electrons with a quasi-tw
dimensional energy spectrum, but is unimportant for el
trons with a quasi-one-dimensional spectrum. A signific
number of the charge carriers with a quasi-one-dimensio
spectrum do not return to the sample surface; instead they
reflected from the surface into the bulk of the sample. T
contribution of such carriers to the high-frequency curren
only weakly sensitive to the state of the conductor’s surfa
i.e., to the form of the kernelQi j (k,k8). Allowance for the
surface scattering of these electrons only modifies the
merical factor of order unity in the expression for the pe
etration depth for the electromagnetic wave and in no w
influences the dependence ofd on the magnetic field and th
low-dimensionality parameters of the energy spectrum of
conduction electrons. Hence, when calculatings i j

(1)(k), we
assume that the charge carriers with a quasi-one-dimens
spectrum of the form~2! are specularly reflected by th
sample boundary.

When the magnetic field is so strong that the diameterr
of the orbit of conduction electrons with a quasi-tw
dimensional spectrum~1! is much smaller than the penetra
tion depth, the contribution to the high-frequency current
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the charge carriers colliding with the conductor surface
negligible compared to the contribution of the electrons t
do not reach the sample boundary. In this case we can l
ourselves to an approximation in which only the local co
pling between the Fourier transforms of the current den
and electric field is taken into account and the last term
the right-hand side of Eq.~14! is ignored. The penetration
depth is easily found by solving the dispersion equation

det@dab2js̃ab~k!#50, a,b5~y,z!, ~19!

wherej54p iv/(k2c22v2), and

s̃ab~k!5sab~k!1sab
~1!~k!

2
@sax~k!1sax

~1!~k!#@sxb~k!1sxb
~1!~k!#

sxx~k!1sxx
~1!~k!

.

~20!

The contribution tos̃ab(k) of the charge carriers with a
quasi-one-dimensional energy spectrum is primarily de
mined by the componentsxx

(1)(k), which to within small cor-
rection terms proportional toh1

2 andh2
2 has the form

sxx
~1!~k!5s1~k!5

s1

11~kl1!2 , ~21!

where we have writtenl 15v0t1 /(12 ivt1), s1 is the con-
tribution of this group of charge carriers to the electric
conductivity along thex axis in a uniform electric field,t1 is
the mean free time of the charge carriers with the ene
spectrum~2!, andv05(Ua1 /\)3sin@(«F2A000)/U#.

The magnetic-field dependence ofs i j
(1)(k) manifests it-

self only in the higher-order terms in the expansion in po
ers of the small parametersh1 andh2 :

syy
~1!~k!5(

6

h1
2s1a2

2U2/4\2v0
2

11~k6eHa2 cosq/c\!2l 1
2 , ~22!

szz
~1!~k!5(

6

h2
2s1a2U2/4\2v0

2

11~k6eHa sin q/c\!2l 1
2 , ~23!

and allowing for these terms has no significant effect on
penetration depth for the electromagnetic fields.

The asymptotic behavior of the componentss̃ab(k) in
strong magnetic fields (g51/Vt!1),

s̃yy~k!5
s1~k!~g2s01szz tan2 q!1g2s0

2

s1~k!1g2s0
, ~24!

s̃yz~k!5s̃zy~k!5
s1~k!

s1~k!1g2s0
szz tan q, ~25!

s̃zz~k!5szz1szz
~1!~k!, ~26!

is extremely sensitive to the occurrence of a group of cha
carriers with a quasi-one-dimensional energy spectrum
Eqs. ~24!–~26! we have left out the unimportant numeric
factors of order unity and the small corrections of ord
(kr)2 in the expression forszz, and ins0 we discarded the
contribution to the electrical conductivity parallel to the la
ers of charge carriers with the spectrum~1! at H50.
s
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If s1 and s0 are of the same order of magnitude, th
s̃yy(k) is much smaller thans0 over a broad range of mag
netic field strengths, which makes the conductor much m
transparent.

The dispersion equation~19! together with ~24!–~26!
make it possible to find the penetration depths for elec
magnetic fields in a strong magnetic field:

d1.
d0

h
, d2.

d0

g
, ~27!

whered05Ac2/2pv(s01s1).
In the limit s1!s0 but with s1>g2s0 , the above ex-

pression for d2 acquires a small factorAs1 /s0. For
s1!g2s0 the penetration depths for the electric fieldsEz(x)
and Ey(x) differ considerably, and we havedz5d1 and
dy.d0 , respectively; but ifs1@g2s0 holds, the electric
fields along the layers and perpendicular to the layers con
both components with very different penetration depthsd1

and d2 . Thus, even in fairly pure conductors, in the lim
lh@d0 , not onlyEz(x) but also the electric fieldEy(x) de-
cay in magnetic fields in whichr !d0 holds, over distances
much larger than the carrier mean free path.

In the above formulas~24!–~27!, tanq is not assumed to
be very large, so that we haveg5g0 /cosq!1, where
g05r 0 / l , andr 05c\/eHa coincides in order of magnitude
with the orbit radius of electrons with the spectrum~1! at
q50. We also assume that forh!1, kr!1, vt!1, and
g!1 the asymptotic expression for the electrical conduc
ity across the layers,

szz~h,H !5
2e3H

c~2p\!3 E
0

~2p\/a!cosq dpH~a/\!2

12exp~2T/t!

3E
0

T

dtE
t2T

t

dt8(
n,m

«n~ t,pH!«m~ t8,pH!

3sinH an

\ S pH

cosq
2py~ t,pH!tan q D J nm

3sinH am

\ S pH

cosq
2py~ t8,pH!tan q D J

3expS t82t

t D ~28!

has the formszz.h2s0 .
When the magnetic field is directed relative to the lay

so that cosq@g0 holds, the equations~7! for the charge mo-
tion imply that the period-average of the velocity of electro
with the quasi-two-dimensional spectrum~1!, directed at
right angles to the layers, is

v̄z~pH ,q!5
1

T E
0

T

dt vz~ t,pH ,q!, ~29!

and px(t,pH) and py(t,pH) are weakly dependent on th
momentum projectionpH5py sinq1pz cosq.

When q is much larger than zero, there is always
q5qc ~whose value is not unique! such that not only
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v̄z~0,q!5 (
n51

`
an

\T E
0

T

dt «n~ t,0!sin
anpy~ t,0!tan q

\
50,

~30!

but also

(
n51

`
an

\T E
0

T

dt «n~ t,0!cos
anpy~ t,0!tan q

\
50. ~31!

Clearly, at q5qc the value of v̄z(pH ,qc) decreases
considerably, which leads to a significant change in
asymptotic behavior of the high-frequency conductiv
component

szz5
e2tam* ~q!cosq

8p3\4 (
n51

`

n2uI n~q!u21s0h2

3Fh2f 1~q!1S g0

cosq D 2

f 2~q!1~kr !2f 3~q!G , ~32!

where

I n~q!5
1

T E
0

T

dt «n~ t !expF ianpy~ t !

\
tan q G , ~33!

and f i(q) is a function of order unity that depends on t
specific form of the dispersion law for the charge carriers

If I n(q) rapidly decreases with increasingn, the signifi-
cant change in the asymptotic behavior ofszz for g0

!cosq changes significantly whenI 1(q) vanishes, i.e., a
values ofq at whichI 1(qc)50. For such orientations of th
magnetic field, not only doesd2 increase withH but so does
d1 , reaching its limitd0 /h2.

For g0!cosq!1, the zeros of the function

I 1~q!52«1~0!A 2p\c

aeHvx8~0!sin q

3cosS aDp tan q

2\
2

p

4 D ~34!

recur with a period

D~ tan q!5
2p\

aDp
, ~35!

whereDp is the diameter of the Fermi surface along thepy

axis, a prime indicates a derivative with respect to timet,
and the origin oft is placed at the point of stationary phas
wherevx50.

In a magnetic field that is almost parallel to the laye
(cosq<g0), the electron does not have enough time to co
plete a full period in the section of the fluted cylinder by t
planepH5const, so that the asymptotic behavior of the co
ponents of the matrixs̃ab(k) changes significantly. As
q→p/2, the coupling of linearly polarized waves with th
electric fieldsEz(x) and Ey(x) weakens. The electric field
Ey(x) decays over distances of orderd0 , while the penetra-
tion depth for the fieldEz(x) increases with the magneti
field strength first in proportion toH1/2, wheng0>h1/2,
e

,

-

-

dz.
d0

hg0
1/2, ~36!

and only in fairly strong fields satisfyingg0!h1/2 does it
increase linearly with the magnetic field strength:

dz.
d0

h3/4g0
. ~37!

When there is an electromagnetic wave propagat
along they axis, the presence of a group of charge carri
with a quasi-one-dimensional energy spectrum does
change the penetration depth for the electromagnetic w
appreciably. As in the case of only one group of char
carriers with the dispersion law~1!, the electric field along
the layers decays over distances of orderd0 , while for the
field perpendicular to the layers penetrates the quasi-t
dimensional conductor to a depth25–27

dz.
d0

h
F~q,h,g0!, ~38!

where the functionF strongly depends on the orientation
the magnetic field in relation to the layers. When cosq<g0

holds, the penetration depth for the electric field along
normal to the layers is described by~36! and ~37!. But for
cosq@g0 the functionF is equal to unity almost everywher
anddz.d0 /h, and only atq5qc do we have

F5Acos2 qc1~ lhg0 /d0!2

h2 cos2 qc1g0
2 . ~39!

Thus, by studying the magnetic-field dependence of
surface impedance when an electromagnetic wave trave
two different directions along the layers we can unambig
ously determine the presence of a quasi-one-dimensi
hollow in the Fermi surface and its contribution to the ele
trical conductivity of an organic conductor.

The above formulas were derived under the assump
vt!1. In all the organic conductors synthesized so far t
condition is sure to be met in the radio- and microwav
frequency ranges for electromagnetic waves. However, in
submillimeter range the frequency of the electromagne
wave at low temperatures may be comparable to the collis
rate of the charge carriers and the carrier mean free path
be much larger than the penetration depth. In this range
interaction of the conduction electrons and the electrom
netic field are resonant when the wave frequencyv is equal
to an integral multiple of,V, the frequency of electron revo
lution in the magnetic field, and the surface impedance
sensitive to the state of the conductor surface.

Under anomalous skin effect conditions, the reflection
charge carriers that effectively interact with the electrom
netic wave from the sample boundary is close to specula28

so that the integral term in~19! begins to play an importan
role. Simple calculations lead to the following expression
the penetration depth for the electric fieldEy(x) with
w! l 3/2r 1/2d0

22:

dy5d0
4/5r 1/5S g1w

g D 2/5

, ~40!
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where w is the width of the scattering indicatrix for th
charge carriers scattered by the sample boundary, whic
the case of a slightly bumpy surface is determined by
binary correlation function of the bumps on the surface
different points, i.e., the mean-square height of the bum
and the average length of the flat sections of the sam
surface.29 As usual, unimportant numerical factors of ord
unity have been omitted.

Whenh!wd0
2l 23/2r 21/2<1, the penetration depthdz for

the electric field Ez(x) is of order d0 /h, but when
w! l 3/2r 1/2(h/d0)2, we have the following universal rela
tionship:

dz5h24/5dy . ~41!

The study of the high-frequency properties of thin co
ductors~whose thickness is less than or of order the car
mean free path! makes it possible to extract detailed info
mation about the spectrum of the conduction electrons
the nature of their interaction with the conductor’s surface
particular, organic conductors are an extremely conven
object for studying the electron transfer of an electrom
netic field into the bulk of the sample in the form of slow
decaying waves and Azbel’ bursts of a high-frequency fie
since low-dimensional conductors possess anoma
transparency.30

The work was partially supported by a grant from t
Ukrainian Ministry of Science~Grant 2.4/192!
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22M. Ya. Azbel’, Zh. Éksp. Teor. Fiz.39, 400 ~1960! @Sov. Phys. JETP12,

283 ~1961!#.
23V. G. Peschansky, inSoviet Scientific Reviews, Section A, I. M. Khalatni-

kov ~ed.!, Vol. 16, 1 ~1992!.
24G. E. H. Reuter and E. H. Sondheimer, Proc. R. Soc. London195, 336

~1948!.
25V. G. Peschanski�, S. N. Savel’eva, and Kh. Kkheir Bek, Fiz. Tverd. Te

~Leningrad! 34, 1630~1992! @Sov. Phys. Solid State34, 864 ~1992!#.
26V. G. Peschanski�, Kh. Kkheir Bek, and S. N Savel’eva, Fiz. Nizk. Temp

18, 1012~1992! @Sov. J. Low Temp. Phys.18, 711 ~1992!#.
27V. G. Peschansky, Phys. Rep.288, 305 ~1997!.
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Current-voltage characteristics of SIS structures with localized states in the material
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Elastic resonant tunneling through a single localized state in an insulating layer~I-layer! situated
in the constriction zone between two thick superconducting electrodes is investigated
theoretically, and the current-voltage characteristic~IVC! of the structure is calculated. The
accompanying analysis leads to the prediction that an appreciable current can flow through the
structure, not atueVu52D ~D is the modulus of the order parameter of the superconducting
electrodes! as in the case of an ordinary SIS junction, but atueVu>D, and also that the IVC can
acquire segments of negative differential resistance in the case of tunneling through a
single localized state. Averaging of the IVC over an ensemble of localized states distributed
uniformly throughout the volume of the I-layer and with respect to the energy near the chemical
potentialm in the limit G0 /D@1 (G0 is the half-width of the resonance line of the localized
state! produces a smaller excess current than in a junction of the SNS type. It is shown that the
IVC’s exhibit a transition from an excess current to a deficit current asG0 decreases in the
high-voltage range. ©1998 American Institute of Physics.@S1063-7761~98!02408-1#
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A great many experimental results have been publis
lately1–5 in support of the hypothesis6 that current transpor
in high-Tc superconducting Josephson junctions with ox
semiconductor barrier layers is a resonance phenomenon
investigation of the stationary properties of such junctio7

has shown that the presence of localized states in the ba
layer results in the formation of rather unique Joseph
junctions of the ScS type. In contrast to the thoroughly st
ied ‘‘geometrical’’ ScS constrictions,8–13 the properties of
the junction type discussed below are determined not
much by geometrical factors as by the relation between
characteristic energies of the problem: the half-width of
resonance lineG0 and the modulus of the order parameterD
of the superconducting electrodes.

The problem of calculating the total current through S
structures whose transparencyD (0,D<1) does not de-
pend on the quasiparticle energy has already been solve
general form.9 Only recently,10 however, a generalized
Blonder–Tinkham–Klapwijk trajectory technique11 has been
used to carry through the calculations to specific results s
able for comparison with experiment, and it has be
proved12 that calculations based on a quasiclassical trajec
model10 and the Keldysh Green’s function formalism9 are
equivalent.

The objective of the present study is to generalize
approach developed in Ref. 10 to the case of ScS struct
whose transparencyD depends on the quasiparticle ener
as a result of localized states present in the constriction z
Unlike the previously investigated14,15 phenomenon of tun-
neling along a ‘‘resonant-percolation’’ path consisting of
set of localized states, the present article is confined stri
to processes of single resonant tunneling of
superconducting-electrode/localized-state/superconductin
3751063-7761/98/87(8)/7/$15.00
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electrode type. The current transport through the structur
determined either by the average current through the se
localized states or by the current through a single locali
state, depending on the density of localized states. These
limits will be systematically discussed below.

1. THE JUNCTION MODEL

We assume that the geometrical width of the constrict
in the direction of the current is much smaller than the c
herence lengthj of the barrier layer and the elastic and i
elastic mean free paths of electrons. To simplify the calcu
tions, we confine them to the one-dimensional model;
addition, we assume that the interface between the super
ducting electrodes and the material of the constriction zon
transparent and that the dielectric barrier is in the shape
rectangle of heightW and thickness 2d, which is localized
inside the constriction and contains a negative delta-func
potential2Bd(z2z0) describing a localized state situated
a distancez0 from the center of the rectangular potential.16 In
addition, following the same line of reasoning as in Ref. 1
we assume that the voltageV applied to the junction is fixed
and that the resistance of the insulating layer~I-layer! con-
taining a localized state is much lower than the resistanc
the constriction as a whole. The voltage drop therefore ta
place outside the I-layer containing the localized state.
confine the ensuing discussion strictly to an isotropic type
coupling in the S-electrodes. However, the method dev
oped below is naturally extended to other possible types
symmetry of the order parameter in high-Tc superconducting
structures.17
© 1998 American Institute of Physics



le

de
tin
e
th

io
e
p

-
s,

r

o
ta

le

t
elf-

and

s

gh

376 JETP 87 (2), August 1998 I. A. Devyatov and M. Yu. Kupriyanov
2. BASIC RELATIONS

The assumptions made enable us to reduce the prob
of calculating the current-voltage characteristic~IVC! to the
problem of matching the solutions of the Bogolyubov–
Gennes equations in the constriction zone while neglec
the nongradient terms in these equations and to write th
solutions as a superposition of plane waves describing
propagation of electron and hole excitations of energyE in
the weak-coupling region. For example, the wave funct
generated by electronlike excitation of the left-hand sup
conductor for quasiparticles accelerated by the applied
tential V has the form10

cel5(
n

@~a2nAn1J0dn,0!exp~ ikx!1Bn

3exp~2 ikx!#exp$2 i ~E12neV!t%,

Jn5A12uan~E!u2~2d,z,z0!,

ch5(
n

@An exp~ ikx!1a2nBn exp~2 ikx!#

3exp$2 i ~E12neV!t% ~2d,z,z0!,

cel5(
n

@Cn exp~ ikx!1a2n11Dn exp~2 ikx!#

3exp$2 i ~E1~2n11!eV!t% ~z0,z,d!,

ch5(
n

@a2n11Cn exp~ ikx!1Dn exp~2 ikx!#

3exp$2 i ~E1~2n11!eV!t% ~z0,z,d!. ~1!

Here am5a(E1meV) is the coefficient of Andreev reflec
tion of quasiparticles from the superconducting electrode10

a~E!5
1

D H sgn~E!D2~ uEu1AE22D2!21, uEu>D

E2 iAD22E2, uEu,D
,

~2!

m is the Fermi energy, andD is the modulus of the orde
parameter of the electrodes (D!m,W). The relation be-
tween the coefficients characterizing the wave function
opposite sides of the localized states is determined by s
dard matching conditions, which yield

S Bn

Cn
D5Sel~E0 ,Ee

n!S a2nAn1Jdn,0

a2n11Dn
D ,

S An

Dn21
D5Sh~E0 ,Eh

n!S a2nBn

a2n21Cn21
D . ~3!

Here Ee
n5E12neV, Eh

n5E22(E1neV), and Sel and Sh

5Sel* are the scattering matrices for electrons and ho
respectively:8,10

Sel5S r t

t r 8
D , r ~E0 ,E!5

up

dn
,

t~E0 ,E!5
1

dn
, r 8~E0 ,E!52

up*

dn
, ~4!
m

g
se
e

n
r-
o-

n
n-

s,

dn5dn~E0 ,E!5
1

G0
F 2kk

k21k2 ~E02E!1 i H S k22k2

k21k2D
3~E02E!2S k21k2

2kk D S G11G2

2 D J G , ~5!

up5up~E0 ,E!5
1

G0
F S G22G1

2 D1 i H S k22k2

k21k2D
3S G11G2

2 D2~E02E!J G ,
G1,25G0 exp~62kz0!, ~6!

G052~W2E!AD0, D0516
k2k2

~k21k2!2 exp~24kd!,

k5A2m~W2m!, k5A2mm. ~7!

In Eqs.~1!–~7! G0 is the half-width of the resonance line a
the center of the barrier of a localized state having a s
energy equal to the Fermi energym, D0 is the transparency
of the rectangular potential without a localized state,k is the
reciprocal radius of the localized state,G1,2 denotes the de-
cay rates of the resonant state in the right- and left-h
electrodes, respectively,E05W2B2/8m is the energy of the
localized state, andm is the electron effective mass. It i
readily verified that Eqs.~5!–~7! impart a Breit–Wigner
form to the amplitude of quasiparticle transmission throu
the barrier:

ut~E0 ,E!u25
G0

2

~ER2E!21~G11G2!2/4
, ~8!

where

ER5E01
~k22k2!

2kk

G11G2

2

is the renormalized energy of the localized state.16

Eliminating the coefficientsCn andDn from Eqs.~3!, we
arrive at a recursion formula forBn andAn ~to simplify the
notation we have omitted the dependence ofr andt on E0):

FnBn112CnBn1HnBn2152r ~Ee
n!J0dn,0 ,

Fn5
a2n11a2n12t~Ee

n!t* ~Eh
n11!

12a2n11
2 bn8

, bn85
r 8* ~Eh

n11!

r 8* ~Ee
n!

,

Hn5
a2na2n21r ~Ee

n!t* ~Eh
n!t~Ee

n21!

r ~Ee
n21!~12a2n21

2 bn218 !
,

Gn512r ~Ee
n!r * ~Eh

n!a2n
2 2

a2n
2 a2n21

2 r ~Ee
n!t* 2~Eh

n!

r 8* ~Ee
n21!~12a2n21

2 bn218 !

2
a2n11

2 r 8* ~Ee
n11!t2~Ee

n!

r ~Ee
n!~12a2n11

2 bn8!
. ~9!

The solutions of Eq.~9! have the form of a continued
fraction18 ~see also Refs. 10 and 13!:

B052
r ~Ee

0!J0

F0S12G01H0S21
, Bn5B0)

i 51

unu

Su i u ,
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Sn,n.05
Hn

Gn2FnSn11
, Sn,n.05

Fn

Gn2HnSn11
,

An5r * ~Eh
n!a2nBn1a2n21

3
t* ~Eh

n!t~Ee
n21!~Bn212a2na2n21Bnt* ~Eh

n!/t* ~Ee
n21!!

r ~Ee
n21!~12a2n21

2 bn218 !
.

~10!

The wave function generated by electronlike excitation
the right-hand superconductor for quasiparticles in theI-
layer has a form similar to~1!:

cel5(
n

@~a2n21An81J1dn,1!exp~2 ikx!1Bn8 exp~ ikx!#

3exp$2 i ~E1~2n21!eV!t% ~z0,z,d!,

ch5(
n

@~An8 exp~2 ikx!1a2n21Bn8 exp~ ikx!#

3exp$2 i ~E1~2n21!eV!t% ~z0,z,d!,

cel5(
n

@C8 exp~2 ikx!1a2~n21!Dn8 exp~ ikx!#

3exp$2 i ~E12~n21!eV!t% ~2d,z,z0!,

ch5(
n

@~a2~n21!Cn8 exp~2 ikx!1Dn8 exp~ ikx!#

3exp$2 i ~E12~n21!eV!t% ~2d,z,z0!. ~11!

Performing calculations analogous to those descri
above, we arrive at a recursion formula forBn8 similar to ~9!:

Fn8Bn118 2Gn8Bn81Hn8Bn218 52r 8~Ee
n21!J1dn,1 ,

Fn85
a2na2n21r 8~Ee

n21!t* ~Eh
n!t~Ee

n!

r 8~Ee
n!~12a2n

2 bn!
, bn5

r * ~Eh
n!

r * ~Ee
n!

,

Hn85
a2n22a2n23t~Ee

n21!t* ~Eh
n21!

12a2n22
2 bn21

,

Gn8512r 8~Ee
n21!r 8* ~Eh

n!a2n21
2

2
a2n

2 a2n21
2 r 8~Ee

n21!t* 2~Eh
n!

r * ~Ee
n!~12a2n

2 bn!

2
a2n22

2 r * ~Eh
n21!t2~Ee

n21!

r 8~Ee
n21!~12a2n22

2 bn21!
. ~12!

Introducing the new indexs512n and the change o
notationbs5B12s8 5Bn8 we can reduce the recursion form
las ~12! to the form~9! with dn,0 on the right-hand side. The
solutions~12! therefore acquire a form similar to~10!:

b052
r 8~Ee

0!J1

f 0s12g01h0s21
, bn5b0)

i 51

unu

su i u ,

sn,n.05
hn

gn2 f nsn11
, sn,n,05

f n

gn2hnsn21
,

f

d

an5A12n8

5r 8* ~Eh
12n!a122nbn1t* ~Eh

12n!a2~12n!

3
bn21t~Ee

12n!/r 8~Ee
12n!1bna122na2~12n!t* ~Eh

12n!/r * ~Ee
12n!

12a2~12n!
2 b12n

,

~13!

wherehn5F12n8 , f n5H12n8 , gn5G12n8 , andan5A12n8 .
It is convenient to work with the current through th

junction in the constriction zone, where it is expressed by
usual quantum-mechanical formula for one-particle exc
tions and is represented by a Fourier series:

I ~ t !5(
k

I k exp~2ikeVt!,

I kp\

e
5eVdk,01E d« f ~«!H J0@a2k* Ak* 1a22kA2k#

1(
n

~11a2na2~n1k!
* !~AnAn1k* 2BnBn1k* !J

2E d« f ~«1eV!H J1@a2k11* a2k* 1a122kak#

1(
n

~11a2n21a2~n1k!21* !~a12na12~n1k!
*

2b12nb12~n1k!
* !J . ~14!

Equations~10!–~14! determine all the components of th
current through the structure with a localized state. If t
scattering matricesSe andSh associated with the presence
the localized state are independent of the energy, the exp
sion for the current~14! and the recursion formulas~10! and
~13! go over to Eqs.~6! and ~5! in Ref. 10, where now

An8~E!52A12n* ~2E2eV!,

Bn8~E!5~r /r * !B12n* ~2E2eV!.

3. CALCULATION OF THE AVERAGED CURRENT

If a large number of localized states are present in
barrier, the current through the junction is a self-averag
quantity, and Eqs.~14! must be averaged over the energies
the localized states and their spatial distribution. Assum
that the localized states are distributed uniformly with a d
sity g in the weak-coupling zone and with respect to t
energy in the vicinity of the Fermi surface, we can show th
in the limit eV@D the asymptotic expression for the co
stant current through the structure, averaged over the coo
nates and the energies of the localized states, has the fo

I dc~V!5RN
21eV1dI , eV@D, RN

215p2gG0/2k,
~15!

whereRN
21 is the averaged resonant conductance of an an

gous structure with normal electrodes.19

At low temperatures,T!D, we write the termdI in ~15!
in the form
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FIG. 1. IVC’s of an ScS structure with a single localized state
the weak-coupling zone calculated numerically on the basis
Eqs. ~9!–~14! for D/G0510, z050, and various values of the
energy of the single localized state:1! ER50; 2! ER

520.4G0 ; 3! ER521.4G0 ; 4! ER522.3G0 . The caseER

520.4G0 is represented by a dashed curve. Inset: for comp
son, IVC’s for analogous NcN structures with nonsupercondu
ing electrodes calculated numerically for the same values of
parameter; the dashed lines represent the conductance as a
tion of voltage.
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dI 5
e

p\ E d« K ut* ~«!t~2«!u2

u12a2~«!r * ~2«!r ~«!u2 L ~ ua~«!u2

1ua~«!u4!1
e

p\ E
u«u.D

d« K ut~«!u2

3S 12ua~«!u4

u12a2~«!r * ~2«!r ~«!u2 21D L 2
2D

eRN
, ~16!

where the angle brackets signify averaging over the ene
E0 and the coordinatez0 of the localized state.

In the limit of a broad resonance line,G0@D, the differ-
ences between the pairt(«), t(2«) and the pairr («),
r (2«) in the integrals over the energy~16! can be disre-
garded in the significant energy interval«'D, whereupon
they can be reduced to tabulated integrals:

dI 5
eD

p\ K T2S 1

12T
1

2

A12T~22T!
arctanhF2A12T

22T G
2

22T

~12T!3/2 arctanh@A12T# D L , ~17!

whereT[ut(E0 ,Eu2. Numerical averaging over the energ
and coordinate of the localized state in Eq.~17! gives posi-
tive values of the excess currentdI .0.22(2D/«RN).

In the opposite limit of a narrow resonance lin
D@G0 , analytical estimates and numerical calculations
the triple integrals in Eq.~16! yield negative values ofdI ,
which correspond to a deficit current through the structu
dI .20.7(2D/eRN).

The results concur with those in Ref. 15, where t
Keldysh Green’s function approach led to the prediction o
similar transition from a deficit current to an excess curr
in tunneling along resonant-percolation paths consisting
large number of localized states. It should also be noted
in the limit G0@D, despite a qualitative similarity to ballisti
ScS constrictions, the expression obtained for the excess
rent is 1.5 times smaller than the one obtained for ScS ju
tions.
gy

f

,

a
t
a
at

ur-
c-

4. CURRENT THROUGH A SINGLE LOCALIZED STATE

It is interesting to determine the current through a sin
localized state for a low density of localized statesg in the
I-layer.

Let us first consider current transport through the ana
gous structure with normal reservoirs. This problem has b
investigated previously.16,19 Inasmuch as Andreev reflectio
processes can be ignored when there is no superconduc
in the electrodes, the expression for the current~14! reduces
to the equation

I 5
e

p\ E d«$ f ~«!ut~ER ,«!u2

2 f ~«1eV!ut~ER ,«!u2% ——→
T→0 e

p\

3E
0

eV

d«ut~2ER ,«!u2. ~18!

It follows from Eq. ~18! that at low temperature
T!G0 , the derivative of the currentdI(V)/dV takes the
form of a Lorentzian plot ofut(2ER ,V)u2 with a maximum
at eV52ER , and the currentI (V) is represented by a step
which is diffuse on the scale ofG0 , beginning its rise at
eV<2ER and leveling off at a constant amplitude (e/p\)
3@pG0 /cosh(z0)# at eV@2ER . This conclusion is valid for
ER!2G0 . For ER@0 the resonant current is insignificant
V.0, and forER50 it corresponds to a linear segment
V50, exhibits a linear dependence as long aseV!G0 , and
approaches a constant value (e/p\)@pG0 /2 cosh(z0)# at
eV@G0 . The IVC’s calculated numerically according to E
~18! for a structure with normal reservoirs are shown in t
inset to Fig. 1 for various values of the localized-state e
ergy.

The presence of superconductivity in the electrodes
the structure makes it necessary to include numerous
cesses involving the Andreev reflection of quasipartic
from the superconducting electrodes in addition to the o
electron scattering described by the matrix~2!. The current
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through the structure is no longer determined from Eq.~18!,
but from the more general expression~14!. We now discuss
various relations betweenD andG0 .

For a broad resonance line,G0@D, and a localized-state
energyER'0 analytical determinations and a numerical c
culation according to Eq.~14! yield an IVC having a form
similar to the IVC of a ballistic SNS constriction with tran
parencyD51 ~Fig. 2!. This result is entirely natural: in this
case quasiparticles move freely in the constriction zone
their significant energy interval«'D!G0 , undergoing
many Andreev reflections in the subgap region. This proc
induces a current jump 2De/p\ at V50 and an excess cur
rent dI 58De/3p\ at eV@D, just as in the SNS case.9

For a resonance linewidthG0'D and a localized-state
energy close to zero,ER'0, a numerical calculation accord
ing to Eq. ~14! imparts a complex form to theI (V) curve.
The IVC’s acquire prominent features in the subgap regio
eV.2D/n, segments with a negative differential resistan
and current saturation in the high-voltage region~see the
inset to Fig. 2!. This result also admits a natural explanatio
a finite probability of normal quasiparticle scattering in t
constriction zone emerges forG0'D. This effect alters the
pattern of known subgap features ateV.2D/n ~Refs. 10 and
13! typical of structures withD<1, but with a different am-
plitude from that obtained for an energy-independent, de
function scattering potential. The onset of saturation
eV@G0 is typical of structures with current transpo
through a single localized state.

An interesting feature of the IVC of a structure in th
narrow-resonance limitG0!D is the possibility of the ap-
pearance of a major current resonance atueVu>D for defi-
nite values of the localized-state energy, along with
emergence of segments where the IVC drops abruptly~Fig.

FIG. 2. IVC’s of an ScS structure with a single localized state in the we
coupling zone for various relationships between the half-width of the re
nance lineG0 and the modulus of the order parameterD of the supercon-
ducting electrodes calculated numerically on the basis of Eqs.~9!–~14! for
ER50 andz050; RQ5h/4e2 is the quantum unit of resistance. Inset: IV
calculated forD/G051, ER50, andz050 on a magnified scale.
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1!. This behavior is associated with the formation of an
fective single coherent Andreev process in the narrow b
of voltages ueV2ERu'G0!D at definite values of the
localized-state energy and a departure from this resonanc
the voltage is increased.

For example, if the localized-state energyER coincides
with the Fermi energy of the left-hand electrode~Fig. 3!, the
current through the structure is not very significant~curve1
in Fig. 1! for any positive voltageV on the junction. Indeed
the Fermi energy of the left-hand superconducting electr
in this case exceeds the energy of the right-hand electrod
the amounteV. Therefore, at a low temperatureT!D there
are no energy levels of the right-hand electrode filled w
quasiparticles opposite the Lorentzian transparency wind
ut(ER ,E)u2 ~8! created by the localized state, and thus
current flows from the right- to the left-hand electrode. Cu
rent flowing in the opposite direction is also suppressed
virtue of the inequalityG0!D.

For negative voltages on the junction,V'2D/e ~see
Fig. 4!, there are filled levels of the right-hand superco
ductor opposite the Lorentzian transparency wind
ut(ER ,E)u2 described by Eq.~8!. The resulting effective
single Andreev reflection of electrons moving from the righ
to the left-hand electrode in the narrow banduV2ERu'G0

!D induces a significant resonant current. A similar situ
tion has also occurred in the case of an equilibrium reson
Josephson current atV50 ~Ref. 7!. Accordingly, in the limit
of a narrow resonance line,G0!D, once again a resonan
Josephson current could flow effectively through such
structure only in the narrow energy bandER'G0 . As the
absolute value of the voltage is increased, the curr
smoothly approaches a constant value in a way reminis
of the behavior in a structure with normal electrodes.

For self-energies of the localized stateER that do not
coincide with the Fermi energy of the left-hand electrode a
are smaller thanD, an effective Andreev process does n
occur for any voltage on the junction. This result preclud

-
-

FIG. 3. ‘‘Semiconductor’’ diagram illustrating the impossibility of curren
flow through a structure with a localized state for a self-energyER50 and
for a junction voltageeV.2D.
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any appreciable current through the structure~curve2 in Fig.
1!.

For uERu.D, on the other hand, it is once again possib
for a resonant current to flow through the structure~curves3
and4 in Fig. 1!. Now the most prominent feature of the IV
of the structure is the presence of a very pronounced
scending segment. AteV.2ER the current rises abruptly in
connection with the emergence of an effective Andreev p
cess in the narrow energy bandueV2ERu'G0!D ~see Fig.
5!. A further increase in the voltage (2ER,eV,D1uERu)
leads to a disparity between the transparencies for elec

FIG. 4. ‘‘Semiconductor’’ diagram explaining the appearance of an ap
ciable current through a structure with a localized state for a self-en
ER50 and for a junction voltageeV,2D as a result of the occurrence o
an effective Andreev process relative to the Fermi level of the left-h
superconductor in the narrow energy band for transparency of these s

FIG. 5. ‘‘Semiconductor’’ diagram illustrating current transport through
structure with localized states for a self-energyER,2D and a junction
voltageeV.D as a result of the occurrence of an effective Andreev proc
relative to the Fermi level of the left-hand superconductor in the nar
energy band for transparency of these states.
e-

-

on

and hole excitations, which suppresses the Andreev proc
At eV.D1uERu, however, a channel of one-electron res
nant current transport opens up in much the same way a
resonant structures with normal electrodes~Fig. 6!. A further
increase in the voltage causes the current to achieve a
stant value, which tends to the analogous constant in N
junctions as the localized-state energy decreases,ER!2D.

An increase in the temperature of the structure and sh
ing of the localized-state coordinatez0 from the optimum
z050 lower the amplitude and spread out the features of
IVC of the structure.

5. CONCLUSION

To summarize, we have shown that the IVC’s of S
structures having a localized state in the material of the b
rier layer depend strongly on the parameterD/G0 and on the
density of localized states. If their density is low, the curre
is determined by transport through a single localized state
this case, for a broad resonance line,G0@D, the IVC of the
junction coincides with the IVC of a ballistic junction havin
a transparencyD51. For intermediate resonance linewidth
G0'D, the IVC of the junction exhibits a modified patter
of known subgap features10,13 at eV.2D/n with the current
subsequently approaching saturation. In the limit of a narr
resonance line,G0!D, at certain values of the localized
state self-energyER an appreciable current can flow throug
the junction when it is subjected to an applied voltageueVu
5D. Segments characterized by a negative differential re
tance can also be observed on the IVC of the junction.

For a high density of localized states the current throu
the junction is not determined by the current through a sin
state, but by the average contribution from a set of su
states distributed uniformly throughout the volume of t
I-layer and with respect to the energy near the Fermi ene
Now in the high-voltage limiteV@D an excess curren

-
y

d
es.

s

FIG. 6. ‘‘Semiconductor’’ diagram illustrating current transport through
structure with localized states for a self-energyER,2D and a junction
voltage eV.D1uERu as a result of one-electron transport in the narro
energy band for transparency of these states.
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should be observed on the IVC of the junction for a bro
resonance line,G0@D, and a deficit current should be ob
served in the limit of a narrow resonance line,G0!D. This
result is consistent with previous results15 obtained by a dif-
ferent technique for structures qualitatively similar to tho
discussed in this paper. We have calculated numerically
values of the deficit and excess currents.

Our investigation has focused on the case of ordin
isotropic S-type superconductors. However, the propo
method can be extended in a natural way to the cased
symmetry.17
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Grant RFBR95-1305!.
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Linear and nonlinear excitonic absorption in semiconducting quantum wires
crystallized in a dielectric matrix

V. S. Dneprovski  and E. A. Zhukov
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Spectra of linear and nonlinear absorption of GaAs and CdSe semiconducting quantum wires
crystallized in a transparent dielectric matrix~inside chrysotile-asbestos nanotubes! have
been measured. Their features are interpreted in terms of excitonic transitions and filling of the
exciton phase space in the quantum wires. The theoretical model presented here has
allowed us to calculate the energies of excitonic transitions that are in qualitative agreement with
experimental data. The calculated exciton binding energies in quantum wires are a factor of
several tens higher than in bulk semiconductors. The cause of this increase in the exciton binding
energy is not only the size quantization, but also the ‘‘dielectric enhancement,’’ i.e.,
stronger attraction between electrons and holes owing to the large difference between permittivities
of the semiconductor and dielectric matrix. ©1998 American Institute of Physics.
@S1063-7761~98!02508-6#
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1. INTRODUCTION

In recent years, research attention has been focusse
quantum wires, i.e., semiconducting structures where cur
carriers can move freely in one direction, because they
only demonstrate interesting properties, but also show pr
ise in view of their application to electronic and optoele
tronic devices. As a result of a transition from a tw
dimensional system with its stepped density of states t
one-dimensional system, we have narrow peaks in the d
sity of electronic states. Additional quantum confineme
gives rise a narrower gain spectrum, hence to a higher
ferential gain,1 to a higher binding energy of excitons and
more intense laser generation on the excitonic transitio2

and to stronger optical nonlinearities.3 Thus, using quantum
wires, one can upgrade the parameters of lasers~by obtaining
a lower generation threshold and broader modulation
quency band, and limiting the effect of temperature on la
characteristics!, transistors~by increasing the carrier mobil
ity!, and optical switches~by reducing both the switching
energy and relaxation time!.

This paper presents measurements of linear absorptio
GaAs and CdSe quantum wires crystallized in a transpa
matrix and nonlinear absorption subject to powerful picos
ond laser pulses. The features observed in linear absorp
spectra can be interpreted in terms of excitonic transitio
Energies of excitonic transitions calculated using a va
tional procedure~with due account of image potentials an
size quantization of both electrons and holes! are in accor-
dance with the measurements. Owing to the effect of die
tric strengthening,4,5 the exciton binding energies are ve
high ~more than 100 meV!. Physical processes leading
nonlinear effects in the absorption have been analyzed
3821063-7761/98/87(8)/6/$15.00
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particular, filling of the exciton phase space, screening
excitons, and renormalization and filling of one-dimension
electron and hole bands when high-density plasma is ge
ated in semiconductors.

2. EXPERIMENTAL TECHNIQUES AND RESULTS

There are various techniques for fabrication of semic
ducting quantum wires, namely, the molecular-beam epit
~MBE! or metal-organic chemical vapor-phase deposition
preprocessed substrates, etching of two-dimensional s
conducting structures, and cleaving of a two-dimensio
structure in a plane perpendicular to the surface with
MBE process continued on the cleaved surface~fabrication
of a T-shaped quantum wire!, etc.6 These techniques, how
ever, do not produce samples in which the dimensions
density of quantum wires would allow the researchers
measure linear and nonlinear absorption spectra withou
optical near-field microscope. We used samples manu
tured using an alternative technique:7 melted semiconducting
material was injected in hollow nanometer channels
chrysotile-asbestos tubes and crystallized. Given the la
sample dimensions and density of crystalline quantum wi
we could measure both linear and nonlinear absorption.
samples were densely packed regular structures of par
chrysotile-asbestos nanotubes with an external diamete
about 30 nm containing GaAs and CdSe crystalline wir
The internal diameters of chrysotile-asbestos nanotubes w
measured by a high-resolution electron microscope.1! The
samples in which GaAs and CdSe wires were grown c
tained nanotubes of two types: most of them had an ins
diameter of 4.8 nm, the rest had a diameter of about 6 n
© 1998 American Institute of Physics
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FIG. 1. Spectra of~1! linear absorption and~2, 3! differential
transmission at zero delay between the pumping and prob
pulses for different regions of the sample of GaAs quantu
wires crystallized inside chrysotile-asbestos nanotubes.
solid and dashed arrows show calculations of excitonic tran
tion energies in quantum wires with diameters of 4.8 nm an
nm, respectively.
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The quantum wires were excited by ultrashort opti
pulses~with a duration of about 20 ps! of the second har-
monic of a Nd:YAG mode-locked laser (\v52.33 eV). The
pump intensity was up to 100 MW/cm2. The pumping laser
beam polarized in the direction parallel to the quantum wi
was incident normally on the sample surface and focu
into a spot with a diameter of 200mm. The central part of the
excited spot was probed by a focused ‘‘white’’ light. In ord
to generate the ultrashort white probing pulse, a fraction
laser light at the fundamental frequency was fed to a
filled with heavy water. An optical delay line allowed us
delay the probing pulse from the pumping laser pulse
study the kinetics of changes induced by the pumping ra
tion. The spectrum of the probing pulse~‘‘picosecond con-
tinuum’’! was recorded both before and behind the sam
using an OVA-284 optical multichannel analyzer.

In our experiments, we measured the differential tra
mission

DT~l!5
T~l!2T0~l!

T0~l!
, ~1!

whereT(l) and T0(l) are the transmission spectra of th
excited and nonexcited sample.

The spectra of linear absorption and differential tra
mission of GaAs quantum wires crystallized insi
chrysotile-asbestos nanotubes are given in Fig. 1. Note
l
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features in the linear absorption spectrum~curve1!, namely
the broad lines peaking at 1.82 eV, 1.89 eV, and 2.11
alongside the ‘‘shoulder’’ at 1.69 eV against the backgrou
of absorption increasing with decreasing wavelength. T
positions of bleaching bands in the differential transmiss
spectrum coincided with the broad bands and the shoulde
the linear absorption spectrum. The light-induced bleach
bands at 1.84 eV and 2.14 eV~curve2! disappeared after 50
ps. The shorter lifetime of the 1.68-eV band could not
measured because of the insufficient time resolution of
facility. Note that the low-frequency band at 1.68 eV w
detected~curve 3! only in some regions of the sample
~when both pumping and probing beams were scan
across sample surfaces!. The differential transmission spectr
of most samples were similar to the curve2 in Fig. 1.

The linear absorption and differential transmission sp
tra of samples containing CdSe quantum wires crystalli
inside chrysolite-asbestos nanotubes are given in Fig
Against the background of absorption increasing with d
creasing wavelength, one can see two broad features:
short-wave band at 1.9860.08 eV and one long-wave ban
about 1.8 eV. The positions of induced bleaching bands
the spectrum of differential transmission with zero delay b
tween the pumping and probing pulses coincide with
features in the linear absorption spectrum.
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FIG. 2. Spectra of~a! linear absorption and~b! differential trans-
mission@~1! at zero delay and~2! 7-ps delay between the pumpin
and probing pulses# of CdSe quantum wires crystallized insid
chrysotile-asbestos nanotubes. The solid and dashed arrows
calculations of excitonic transition energies for quantum wires w
diameters of 4.8 nm and 6 nm, respectively.
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3. THEORETICAL MODEL

Our theoretical description of the features in the line
absorption spectrum of quantum wires is based on the m
of a Wannier exciton localized in a thin cylindrical semico
ducting wire inside a dielectric matrix.8 Given the large dif-
ference~a factor of five to six! between the permittivities o
the semiconductor and matrix, image potentials play an
portant role, alongside the size quantization, which de
mines the quasi-one-dimensional character of excito
These potentials lead to the effect of dielect
strengthening4,5 ~the exciton binding energy increases by
factor of several tens! and to renormalization of localizing
potentials in quantum wires owing to additional self-acti
potentials.9

The separation between size quantization levels in G
~CdSe! quantum wires varies between 100 meV for hea
holes (A and B valence subbands! to several hundreds o
meV for light holes and electrons. These values are com
rable to or higher than the calculated exciton binding ene
~see Table I! and much larger than the Coulomb correlati
energy between size quantization levels. This allows us
separate the carrier motion in the localizing potential perp
dicular to the wire axis from the relative electron–hole m
tion along the quantum wire axis. The complex spectrum
the valence band in GaAs and CdSe and the hybridizatio
the light and heavy hole subbands (A andB subbands! in the
localizing potential deserve a dedicated investigation~see,
for example, Ref. 10!. Under the conditions of size quant
zation, however, the valence band degeneracy is lifted~a
quasi-degeneracy takes place!, and the hole subbands a
r
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-
r-
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split from one another~their effective masses remain anis
tropic!. The effects of band nonparabolicity in this case a
suppressed, which allows us to neglect the hole mass re
malization when the subband splitting is large and use
hole effective masses11 obtained at room temperature. Thu
our theoretical model considers two types of excitons.
GaAs we havee–hh excitons formed by holes which ar
light along the wire axis and heavy in the plane where
motion is confined, ande–lh excitons with holes which are
heavy along the wire axis and light in the confinement pla
In CdSe, these are excitons formed by holes from theA and
B valence subbands.

Note that the two-dimensional localizing potentials a
ing on electrons and holes include, as in Ref. 9, the s
action potentials of the charges.2! The self-action potentials
greatly modify the quantum well shape by reducing its dep
which affects primarily the renormalized semiconduc
band gap, hence the exciton peak position.

The exciton parameters, namely the binding ener
wave function, and mean linear size along the wire axis,
calculated using the variational technique8 taking into ac-
count the contribution of image potentials to the energy
the Coulomb interaction between electrons and holes a
aged over wave functions of transverse motion of carrier

4. DISCUSSION OF RESULTS

Unlike three- and two-dimensional semiconducting s
tems, optical properties of quasi-one-dimensional syste
are largely controlled by excitonic transitions owing to t
anomalously large concentration of the oscillator strength
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TABLE I. Calculations of excitonic parameters of GaAs and CdSe quantum wires crystallized in chrysotile-asbestos nanotubes and measurements
transition energies~the notations are explained in the text!.

Wire

Model parameters10 Theory Experiment

material
and exciton type

m'e

m0

m'h

m0

m

m0

Eg
0,

eV «`
w «`

b
d,
nm

Eb,
meV

Eg,
eV

Lexc,
nm

Eexc,
eV

Eexc,
eV

GaAs
0.067 0.50 0.034 1.426 10.9 2.2 4.8 160 2.000 7.5 1.840 1.8260.04

e–hh

6.0 133 1.843 8.8 1.710 1.6960.04
GaAs

0.067 0.068 0.059 1.426 10.9 2.2 4.8 165 2.284 6.9 2.118 2.1160.05
e– lh

6.0 137 2.047 8.2 1.910 1.8960.05
CdSe

0.12 0.45 0.107 1.751 5.8 2.2 4.8 196 2.188 5.6 1.992
A

6.0 161 2.066 6.8 1.905 1.9860.08
CdSe

0.12 0.9 0.107 1.771 5.8 2.2 4.8 198 2.173 5.6 1.975
B

6.0 163 2.063 6.7 1.900
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ea-
frequencies of excitonic transitions.12,13 In linear absorption
spectra of chrysotile-asbestos samples containing GaAs~Fig.
1, curve1! and CdSe~Fig. 2a!, we also observe absorptio
which grows monotonically with the photon energy. It see
that a fraction of the superconducting material is crystalliz
between bunches of chrysotile-asbestos nanotubes in
form of relatively large microcrystals. The interband abso
tion in the bulk semiconductor~microcrystals unaffected by
size quantization! can contribute a monotonic component
the absorption spectrum.

This conjecture is confirmed by the spectra of the diff
ential transmission of chrysotile-asbestos samples contai
CdSe~Fig. 2b!, which exhibit, along with the nonlinear ab
sorption of CdSe quantum wires, nonlinear changes in
transmission near the bulk CdSe absorption edge~about 700
nm!.3! The 1.79-eV band in the differential transmissio
spectrum corresponds to transitions in bulk CdSe, and
blue shift and beaching at high pumping powers can be
tributed to renormalization of the semiconductor band g
filling of electron and hole energy bands, effects of the C
lomb screening, and filling of the exciton phase space.14,15

Differential absorption spectra of pumped samples allow
to separate the nonlinear absorption in quantum wires du
‘‘saturation’’ of excitonic transitions~see below!. It seems
that changes in the bulk absorption occur only in the ba
near the fundamental absorption edge after fast relaxation~in
less than 10211s) of carriers to the band minima, where
the discrete bleaching bands in the differential transmiss
spectra in the 1.6–2.2-eV band for GaAs and 1.9–2.1
band for CdSe are due to changes in the absorption of n
structures. Thus, we can get rid of the background due to
bulk semiconductor by measuring differential transmiss
spectra.

In accordance with this theoretical model~see above!,
we attribute the features in the linear absorption spectra
s
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bleaching bands in differential transmission spectra
samples with GaAs and CdSe wires at 2.14 eV, 1.84 eV,
1.68 eV in Fig. 1, and 2.03 eV in Fig. 2 to linear and no
linear absorption bye–hh ande–lh excitons (A andB ex-
citons in CdSe! in quantum wires with diameters of 4.8 nm
and 6.0 nm. Table 1 gives calculations of the exciton bind
energyEb and average lengthLexc in quantum wires, posi-
tions of excitonic peaks in linear absorption spectra and,
comparison, their measurements, and also parameters o
structures used in our calculations, namely the quantum w
diameterd, effective masses of electrons and holes in
size quantization plane,m',e,h , the exciton reduced massm
(m215mie

211mih
21), high-frequency permittivities4! of the

semiconductor and dielectric,«`
w,b , the band gapEg

0 of the
bulk semiconductor and that renormalized due to the s
quantization,Eg . We assume that the potential barriers f
electrons and holes are equal and calculate them assum
band gap of 4 eV in chrysotile-asbestos. For simplicity t
effective masses in the semiconductor and dielectric are
posed to be equal, since their variation within reasona
limits changesEg by 10–50 meV, which is smaller than lin
widths measured in the experiment. Note also that the a
age diameter of localized electrons and holes is much sm
thand, and the calculations yield approximately 2–3 nm.

One can clearly see in Table 1 that the size quantiza
and electrostatic self-action effect in such narrow quant
wires gives rise to a considerable renormalization of
semiconductor band gap, and the image potentials resu
very large exciton binding energies. The latter are ma
times larger than the binding energies in the GaAs quan
wire formed on the crossing between two GaAs/GaAl
quantum wells with a width of 7 nm~so-called T-shaped
quantum wires, whereEb517 meV!.3

The calculations which are in good agreement with m
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sured linear absorption spectra also allow us to analyze
tures of the nonlinear spectra. Hence the differential tra
mission spectrum 2 shown in Fig. 1 is typical of mo
regions in samples containing largely quantum wires 4.8
in diameter, whereas the spectrum 3 in Fig. 1 was obtai
only in some fractions of the samples which contain, app
ently, comparable numbers of both wire species. This fac
due to both the inhomogeneous distribution of nanotu
with diameters of 4.8 nm and 6.0 nm in the samples and
predominance of thinner wires in them. A similar pictu
was observed in samples with CdSe wires. In the la
samples, however, the energies of transitions due toA andB
excitons are closer~the separation between them is with
the spectral line width! owing to the smaller difference be
tween masses ofA- andB-hole subbands and initial separ
tion between these subbands, as a result, these pairs of
tonic transitions form wider excitonic absorption bands~Fig.
2!.

As the optical pumping intensity increases, differe
nonlinear processes in quantum wires co-exist and com
with one another, namely, the effect of filling of the pha
space and screening of excitons, filling of electron and h
energy bands, and renormalization of the band gap in
one-dimensional semiconductor.16 Generation of excitons
and high-density plasma causes bleaching in the exciton
sorption band~curves2 and3 in Fig. 1, and Figs. 2b and 3!
because the electron–hole interaction is moderated owin
screening effects and filling of the phase space. The effec
phase space filling becomes apparent because exciton
composed of electrons and holes, which obey the Pauli
clusion principle, whereas only electron–hole states unoc
pied by electrons and holes can be involved in forming

FIG. 3. Spectra of differential transmission of GaAs quantum wires~near
the 1.84-eV absorption band! for different delays between the pumping an
probing pulses:~1! 13 ps;~2! 0; ~3! 20 ps;~4! 50 ps.
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citons. The screening gives rise to a spatial redistribution
electrons and holes. This process, which is usually s
pressed in quasi-one-dimensional structures, can be gre
intensified in the presence of image charges. Both th
effects—filling of the phase space and Coulomb screenin
shift the exciton band toward short wavelengths. On
other hand, the band gap renormalization taking place at h
densities of photogenerated nonequilibrium carriers~it is up
to 1027 cm21 in our experiments! shift the exciton absorp-
tion line toward long wavelengths.

One can see in Fig. 3 that the 1.84-eV band in the d
ferential transmission spectrum of the sample with GaAs
broadened, since its low-frequency edge shifts toward lo
wavelengths with the pumping power~spectra recorded a
different delays between the pumping and probing pulses
compared!. The long-wave shift depends on the delay and
maximum at zero delay~when the photogenerated plasm
density is maximal!. Thus, the band gap renormalization
the dominant effect in our samples.

Given the measurements of light-induced bleaching
samples with GaAs quantum wires crystallized in chrysoli
asbestos nanotubes in the 1.84-eV band, we can estimat
cubic componentx (3) of the nonlinear susceptibility5! in our
samples:17

Im x~3!5
c2n0

2Da~v!

8p2vI ~v!
, ~2!

whereDa is the change in the absorption coefficient in t
sample subject to a resonant monochromatic field of int
sity I (v), andn0 is the linear refraction index. With quas
stationary pumping,I (v) can be expressed in terms of th
numberne of photogenerated excitons in one quantum wi

I ~v!5
neNl\v

@12T0~v!2r #t
, ~3!

whereN is the density of quantum wires in the chrysotil
asbestos matrix,t is the recombination time of photogene
ated excitons,T0 andr are the linear transmission and refle
tivity of the sample, andl is its thickness. The spectrum o
Da can be derived from the spectrumDT(l):

Da52 ln~11DT!/ l . ~4!

After substituting in Eq.~2! the maximum value ofDa
at the excitonic transition frequency~in the 1.84-eV band!
and the measured relaxation time of the light-induced cha
in the absorption, we obtain Imx (3)'2431028 cgs units
~the relaxation time is about 30 ps!. This value of the dy-
namic nonlinearity is four to five orders of magnitude high
than the amplitude of classical noninertial nonlinearity. No
also that the relaxation time of this nonlinearity is qu
short.

5. CONCLUSIONS

The behavior of linear and nonlinear absorption spec
of GaAs and CdSe semiconducting quantum wires imbed
in dielectric nanotubes has been interpreted in terms of e
tonic transitions and their saturation~filling of the phase
space and screening of excitons!.
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Owing to the effect of dielectric strengthening, the ex
ton binding energy has been observed to increase cons
ably ~by more than 100 meV! in the samples studied. Th
theoretical estimates of transition energies in quantum w
provide a fairly accurate description of features in linear
sorption spectra.

The work was supported by the Russian Fund for F
damental Research~Grants 96-2-17339 and 97-2-17600!,
Physics of Solid-State Nanostructuresprogram~Grants 97-
1083 and 97-1072!, and theMaterials for Electronic Tech-
niquesproject. We are indebted to V. V. Poborchii and S.
Romanov for supplying the samples for our experiments,
A. Kiselev and D. N. Zakharov for electronic microscop
measurements, and R. Zimmerman for constructive critici

* !E-mail: tikh@gpi.ru
1!These measurements were performed by N. A. Kiselev and D. N. Zakh

~Institute of Crystallography, Russian Academy of Sciences!.
2!The self-action potentials in quantum wires are derived from formulas

the electrostatic potential acting on charges within quantum wires~see
Appendix to Ref. 8!. Note that the factor (21)n in Eqs. ~A2! and ~A5!
should be omitted because it resulted from an error. Although this fa
has no effect on the results of Ref. 8, in this specific case it is import

3!The limited spectral range of the OVA-284 multichannel analyzer use
our experiments, however, has not allowed us to detect similar featur
GaAs spectra~the optical absorption edge of bulk GaAs is around 860 n!.

4!We have used in our calculations high-frequency permittivities far fr
the phonon resonance, since the exciton energy is many times higher
the optical phonon energy.

5!We consider the so-called strong~resonant! dynamic~inertial! nonlinearity
associated with light absorption in semiconducting nanostructures.18 Un-
like the so-called ‘‘classical’’ nonlinearity in transparent media, the stro
nonlinearity occurs when high densities of quasiparticles~electrons, holes,
excitons, etc.! are generated. The relaxation time of strong nonlinearity
determined by the lifetime of nonequilibrium quasiparticles. In 1926 S
Vavilov and V. L. Levshin detected strong optical nonlinearity in uraniu
glass subjected to resonant pumping19 associated with saturation of th
optical transition~saturation of a two-level system!.
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Spatial–temporal dispersion of the kinetic coefficients near the Anderson transition
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A generalization of the Vollhardt–Wo¨lfle localization theory is proposed to make it possible to
study the spatial–temporal dispersion of the kinetic coefficients of ad-dimensional
disordered system in the low-frequency, long-wavelength range~v!EF andq!kF). It is shown
that the critical behavior of the generalized diffusion coefficientD(q,v) near the Anderson
transition agrees with the general Berezinski�–Gor’kov localization criterion. More precisely, on
the metallic side of the transition the static diffusion coefficientD(q,0) vanishes at a
mobility thresholdlc common for allq: D(q,0)}t5(lc2l)/lc→0, wherel51/(2pEFt) is a
dimensionless coupling constant. On the insulator side,qÞ0 D(q,v)}2 iv asv→0 for
all finite q. Within these limits, the scale of the spatial dispersion ofD(q,v) decreases in
proportion tot in the metallic phase and in proportion tovj2, wherej is the localization
length, in the insulator phase until it reaches its lower limit;lF . The suppression of the spatial
dispersion ofD(q,v) near the Anderson transition up to the atomic scale confirms the
asymptotic validity of the Vollhardt–Wo¨lfle approximation:D(q,v).D(v) as utu→0 andv
→0. By contrast, the scale of the spatial dispersion of the electrical conductivity in the
insulator phase is of order of the localization length and diverges in proportion toutu2n as utu
→0. © 1998 American Institute of Physics.@S1063-7761~98!02608-0#
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1. INTRODUCTION

The problem of the Anderson transition1 is central to the
theory of disordered systems~see the review in Refs. 2–6!.
The success achieved in this field of research is largely
to the development of self-consistent localization theory. I
tially developed by Vollhardt and Wo¨lfle7,8 for low-
dimensional systems (d<2), it was later extended to sys
tems of arbitrary dimensiond ~Refs. 9 and 10!. The theory
uses the well-developed apparatus of averaged Green’s f
tions ~Ref. 11, Sec. 39!. The self-consistent approach o
Vollhardt and Wo¨lfle is based on an attractive idea about t
nature of the localization phenomenon12 and provides an ef-
fective interpolation method for calculating the kinetic coe
ficients of disordered systems, a method whose validity
tends from classical kinetic theory to Anderson insulato
The main conclusions of the Vollhardt–Wo¨lfle theory agree
with the results of the field-theoretic13 and scaling3 ap-
proaches to the Anderson localization problem. What is a
important is that this theory allows for generalizations th
take into account various electron scattering mechanisms
effect of external fields, and other factors~see, e.g., the re
view in Ref. 5!.

All this makes self-consistent localization theory e
tremely useful from the practical viewpoint. However, it h
a number of drawbacks, which often makes one question
reliability of its conclusions. A detailed analysis of the diffi
culties of the Vollhardt–Wo¨lfle theory can be found in the
review in Ref. 4~see also Ref. 14!. Some of these are dis
cussed below, but here we touch on the problems that a
as a result of ignoring the spatial dispersion of the diffus
coefficient. The important point is that the basic equation
3881063-7761/98/87(8)/8/$15.00
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the Vollhardt–Wo¨lfle theory establishes an integral relatio
ship between the local diffusion coefficientD(v)5D(q
50,v) and the generalized diffusion coefficientD(q,v).
Usually this difficulty is avoided by assuming, as in Refs
and 8, thatD(q,v).D(v). This, however, is an uncontrol
lable approximation.

The problem of the spatial dispersion of the kinetic c
efficients near the Anderson transition has scarcely b
studied at all to date.5 Qualitative estimates of the
q-dependence ofD(q,0) made on the basis of scalin
considerations3 lead to contradictory results and in fact d
stroy the structure of self-consistent localization theory.
corporating into thes-model Lagrangian terms with highe
powers (.2) of gradients~which is equivalent to allowing
for spatial dispersion of the diffusion coefficient! leads to an
anomalous increase under scaling transformations,15 i.e., to
instability of the renormalization group. The approximatio
adopted in deriving the basic equations of the Vollhard
Wölfle theory7–9 do not make it possible to consistently tak
into account the spatial dispersion of the kinetic coefficie
within the scope of the theory either.5

The first to examine this problem consistently w
Suslov,14 who concluded that in a small neighborhood of t
Anderson transition the spatial dispersion of the diffusi
coefficient becomes insignificant on scalesq}1/j ~j is the
localization length!, and its presence forq}kF (kF is the
Fermi momentum! does not influence the critical behavior o
D(q,v) predicted by self-consistent localization theory.9,10

Actually this means that in the critical region (utu→0 and
v→0) the Vollhardt–Wo¨lfle theory becomes asymptoticall
exact. The symmetry analysis of the Anderson transit
done by Suslov14 is extremely general, but its quantitativ
© 1998 American Institute of Physics
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results concerning the behavior ofD(q,v) in the critical
region are valid only asymptotically, asv→0.

In a recent paper16 we proposed a generalization of se
consistent localization theory that makes it possible to c
sistently take into account the spatial–temporal dispersio
the diffusion coefficient for the charge carriers in a tw
dimensional disordered system at finite frequency and wa
number values in the regionv!EF and q!kF (EF is the
Fermi energy!. At the microscopic level the results of tha
paper support the main conclusions drawn by Suslov,14 who
to a certain extent obtained them phenomenologically.
particular, there we show that due to suppression of the
tial dispersion ofD(q,v) the Vollhardt–Wo¨lfle approxima-
tion D(q,v).D(v) becomes valid in the localization re
gime but only in the regionvt!( l /j)2(lF / l )1/3!1 (l
5vFt is the mean free path!. Thus, meaningful calculation
of D(v) in a broad frequency range require consistent allo
ance for theq-dependence of the generalized diffusion co
ficient. As a possible way of resolving this problem we pr
pose a treatment of disordered systems with an arbit
number of dimensionsd that generalizes the approach dev
oped in Ref. 16 ford52.

2. STATEMENT OF THE PROBLEM AND THE BASIC
EQUATIONS

We consider ad-dimensional degenerate ideal gas
spinless electrons subject to elastic scattering by immo
impurities having a concentrationnI and distributed in the
sample according to the Poisson law. The one-elec
Hamiltonian of the problem has the form

H5
p2

2m
1(

R
U~r2R!, ~1!

whereU(r2R) is the potential of an isolated impurity loca
ized at the point with the radius vectorR. We assume tha
the potential is short-range and can be approximated b
delta function:U(r )5U0d(r ). This is a good approximation
provided thatr 0!lF , l , wherer 0 is the range of the poten
tial U(r ), lF is the de Broglie wavelength, andl is the
electron mean free path at the Fermi level. We also ass
that the scattering of an electron by an isolated impurity
weak and that the first Born approximation is sufficient
calculating the scattering amplitude.

Since the system is spatially homogeneous on the a
age, the averaged one-electron Green’s function is diag
in the momentum representation:

^^puR6~E !up8&& I5dpp8Gp
6~E !5

dpp8
E2Ep2Sp

6~E !
. ~2!

Here R6(E)5(E2H6 id)21 (d→10) is the resolvent of
the Hamiltonian~1!, ^¯& I indicates averaging over the im
purity distribution, andSp

6(E) is the electron self-energ
part, which determines the perturbation of single-parti
levelsEp5p2/2m in the random field of the impurities.

The information on the kinetic properties of the syste
in the low-frequency and long-wavelength limits (v!EF

andq!kF) is contained in the two-particle Green’s functio
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wpp8~q,v!5^^p1uR1~E 1!up18 &^p28 uR2~E 2!up2&& I
~3!

(p65p6q/2 andE 65E6v/2), simply related to the cor-
relation functions of the density–density~diffusion propaga-
tor! and the density–current type:

P~q,v!5
1

2pnF
(
pp8

wpp8~q,v!5
1

2 iv1q2D~q,v!
,

~4!

Pj~q,v!5
1

2pnF
(
pp8

q̂–p

m
wpp8~q,v!, q̂5

q

q
,

where nF is the density of states at the Fermi level, a
D(q,v) is the generalized diffusion coefficient. The correl
tion functions~4! satisfy the continuity equation

vP~q,v!2qPj~q,v!5 i 1OS v

EF
D , ~5!

which is one way to mathematically formulate the law
conservation of the number of particles.

Using Eqs.~4! and ~5!, we can easily arrive at the fol
lowing definition of the generalized diffusion coefficient:

D~q,v!5
i

q

Pj~q,v!

P~q,v!
, ~6!

which is related to the electrical conductivitys(q,v) by the
equation17

s~q,v!5e2nF

D~q,v!

12~q2/ iv!D~q,v!
. ~7!

The reason for the discrepancy between this equation and
ordinary Einstein relations(v)5e2nFD(v) is that in the
case of a spatially inhomogeneous nonequilibrium state
total longitudinal current, specified by the generalized Ohm
law j (q,v)5s(q,v)E(q,v), is the sum of the drift and
diffusion currents:j 5 j drift1 j diff . Indeed, in addition to the
drift current, a longitudinal electric fieldE(q,v) generates in
the system a finite gradient of the charged-particle dens
and hence a diffusion currentj diff5(q2/ iv)D(q,v) j .

We use the relation

DGp~q,v!F~p,q,v!5(
p8

wpp8~q,v! ~8!

to determine a density relaxation functionF~p,q,v! that sat-
isfies the transport equation

Fv2
q–p

m
1DSp~q,v!GF~p,q,v!

2(
p8

Upp8~q,v!DGp8~q,v!F~p8,q,v!51, ~9!

which can easily be obtained from the Bethe–Salpe
equation7–9 for wpp8(q,v) of Eq. ~3!. Here we have intro-
duced the notation
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DGp~q,v!5Gp2

2 ~E 2!2Gp1

1 ~E 1!,

~10!
DSp~q,v!5Sp2

2 ~E 2!2Sp1

1 ~E 1!.

The self-energy partSp
6(E) and the kernelUpp8(q,v) ~the

irreducible vertex! of the integral equation~9! are related by
the Ward identity7–9

DSp~q,v!5(
p8

Upp8~q,v!DGp8~q,v!, ~11!

which plays an important role in the ensuing calculations
particular, it guarantees that the transport equation~9! satis-
fies the law of conservation of the number of particles. S
cifically, after multiplying Eq.~9! by DGp(q,v) we sum the
product overp, allowing for the Ward identity~11! and the
symmetry property of the irreducible vertex,Upp8(q,v)
5Up8p(q,v). As a result we arrive at the continuity equ
tion ~5!, which relates the correlation functions~4!.

In the self-consistent localization-theory approx
mation,7–9 the irreducible vertexUpp8(q,v) has the form

Upp8~q,v!5W1
W

t0

1

2 iv1~p1p8!2D~ up1p8u,v!
,

~12!

whereW5nIU0
2, t051/2pnFW is the bare relaxation time

~the lifetime! of an electron at the Fermi level, andD(q,v)
is the exact wave-number- and frequency-dependent d
sion coefficient. The diffusion pole in the second term on
right-hand side of Eq.~12! causes the elastic (v→0) back-
scattering (p→2p8) probability to diverge, which is the
physical reason for the localization of charge carriers in d
ordered systems.12 As shown by Suslov,14 the singular struc-
ture of ~12! is the result of the symmetry of the system und
time reversal, and the exact expression forUpp8(q,v) may
differ from ~12! only by factors in the first and second term
that are smooth functions ofp, p8 andq. However, allowing
for these factors does not change the critical behavior of
diffusion coefficient near the Anderson transition,14 and for
this reason we use the approximation~12! in what follows.

At first glance the presence of a diffusion pole of ty
~12! in the irreducible vertexUpp8(q,v) should lead to a
divergence on the right-hand side of the Ward identity~11!:
DSp(q,v)}1/v in the insulator phase andDSp(q,0)}1/utu
in the static regime near the mobility thresholdlc on the
metallic side of the transition. This, however, contradicts
generally accepted viewpoint according to which the av
aged single-particle Green’s function, considered a func
of the energyE and the frequencyv, retains its analytic
properties in the metal–insulator transition.2 This paradox
was resolved in Ref. 14, where it was shown that in
right-hand side of the Ward identity~11! the divergences o
type 1/v or 1/utu cancel out because the singular part
Upp8(q,v) is approximately~to within terms of orderO(v)
or O(utu), respectively! orthogonal to DGp(q,v). The
Vollhardt–Wölfle approximation~12! does not satisfy this
condition and hence violates the Ward identity~11!. The
difficulties associated with this fact have been analyzed
review by Sadovski�.4 Bearing all this in mind, we regard th
Ward identity ~11! in what follows as being a formal rela
n
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tionship between one- and two-particle characteristics of
system, and the electron self-energy partSp

6(E) is assumed
a priori to be an analytic function of its arguments. In th
approach the lifetimet51/2 ImSp

2(E) must be considered
a parameter of the theory, generally differing from the ba
lifetime t0 . However, following custom,5,9,10 we will think
of t andt0 as being identical, since this does not change
results dramatically.

3. SOLVING THE TRANSPORT EQUATION

On the average, the system is isotropic, so that the re
ation functionF~p,q,v! given by~8! depends on the absolut
values of its vector arguments,p5upu and q5uqu, and the
angleu5p,q̂. It is therefore convenient to expand the fun
tion in a series in Gegenbauer polynomials~Ref. 18, Sec.
10.9!:

F~p,q,v!5 (
n50

`
A0

An
Fn~p,q,v!Cn

~d22!/2~cosu!,

~13!

Fn~p,q,v!5
1

A0
E

21

1

~12x2!~d23!/2Cn
~d22!/2~x!

3F~p,q,v!dx,

wherex5cosu, andAn is a normalization constant. The sy
tem of Gegenbauer polynomials is a natural orthogonal b
for expanding functions that depend on the polar angleu
(x5cosu) in a d-dimensional spherical system of coord
nates. Ford53 the expression~13! coincides with the ex-
pansion in Legendre polynomialsPn(x), and asd→2 it be-
comes the expansion of the relaxation function in a Fou
series in cosnu ~see Ref. 16!.1!

In the definition~8!, the delta-function singularity of the
two-particle Green’s function~3! at p.kF (q!kF) has been
explicitly separated. Hence the expansion coefficients in~13!
are functions that depend only weakly onp in the interval
up2kFu,1/l . This makes it possible to approximately pa
from the integral transport equation~9! to a system of linear
algebraic equations with respect toFn5Fn(kF ,q,v). To
this end we multiply ~9! by Cn

(d22)/2(x)DGp(q,v)/2pnF

and, after substituting the expansion~13! for F~p,q,v!, sum
over p, allowing for the recurrence relations for the Gege
bauer polynomials. Using the delta-function property
DGp(q,v), we take all the functions that depend smooth
on p outside the summation signs. As a result we arrive a
system of equations for the expansion coefficients in~13!
(n>1):

vF02
1

d22

qkF

m
F151,

~14!S v1
i

t DFn2
qkF

m F n1d23

2n1d22
Fn21

1
n11

2n1d22
Fn11G1 (

n851

`

Mnn8~q,v!Fn850.

All coefficients in this system that are regular forv→0 and
q→0 have been calculated to zeroth order in the smalln
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parametersq/kF and v/EF , e.g., DSp(q,v).DSp(0,0)
5 i /t. The elements of the memory function matr
Mnn8(q,v) have the form

Mnn8~q,v!52
1

2p inF

A0

An8
(
pp8

Cn
~d22!/2~x!DGp~q,v!

3Upp8~q,v!DGp8~q,v!Cn8
~d22!/2

~x8!,

~15!

wherex5cos(p,q̂), andx85cos(p8,q̂).
In deriving the system of equations~14! and ~15! we

have allowed for the fact that due to the Ward identity~11!
the matrix elementsM0n(q,v) and Mn0(q,v) (n>0) and
the corresponding matrix elements ofDSp(q,v) cancel out.
In particular, because of this the first equation in~14! is
equivalent to the continuity equation~5!. Accordingly, the
first two coefficients in the sequence$Fn(kF ,q,v)% coin-
cide, to within termsO(q/kF), with the correlation functions
~4!:

F0~kF ,q,v!.2 iP~q,v!,
~16!

F1~kF ,q,v!.2 i
m

kF
~d22!Pj~q,v!.

Taking into account the explicit form of the Gegenbau
polynomial C1

(d22)/2(x)5(d22)x and the fact thatA0 /A1

5d/(d22)2, we can easily prove thatM11(q,v) of ~15!
coincides with the known expression for the current rel
ation kernel.7–9 Hence, keeping only the first two terms
the expansion~13! (n50,1) and allowing for~16!, we see
that~14! and~15! reduce to the closed system of equations
the Vollhardt–Wo¨lfle theory.7–9 As shown in Ref. 16, such
an approximation makes it possible to calculate the kin
coefficients without allowing for their spatial dispersio
Otherwise we are forced to solve the infinite system of eq
tions ~14!. This can be done in the long-wavelength lim
since forq!kF the approximation linear inq/kF is sufficient
for calculating the elements of the memory function mat
~15!, which in this approximation is tridiagonal:
ib

a
ra
r

-

f

ic

a-

Mnn8~q,v!52
~21!n

t H iDn~v!dnn8

1qlF n1d23

2n1d22
Ln21~v!dnn811

2
n11

2n1d22
Ln~v!dnn821G J . ~17!

In the Appendix the coefficientsDn(v) andLn(v) are cal-
culated approximately in the low-frequencyv!EF and
long-wavelength (q!kF) regions.

In contrast to the regular coefficients of the system
equations~14!, calculated in the zeroth order in the sma
parametersv/EF and q/kF , here we allow for the off-
diagonal elementsMn,n61 } q/kF . The point is that asv
→0 in the insulator phase or asutu→0 on the metallic side
of the Anderson transition, in the static regime the singu
parts ofMn,n61 increase and in the corresponding limits b
gin to prevail over the terms in the square brackets of
second equation in~14!. The singularities die to the diffusion
pole in ~12! are also present in the other elements of
memory function matrix. Nevertheless, in the lon
wavelength limit the tridiagonal part~17! plays the leading
role in the matrix. Indeed, if we continue to expand~15! in
powers ofq/kF , the following estimate holds:

UMn,n6k~q,v!

Mn,n61~q,v!
U}S q

kF
D k21

!1. ~18!

After ~17! is substituted in~14!, the infinite system of equa
tions for the coefficientsFn becomes tridiagonal. Its forma
exact solution can be obtained if we employ the methods
continued-fraction theory.19 Actually it is enough to find the
coefficient ratioF1 /F0 , in terms of which we can express
via Eqs.~6! and ~16!, the generalized diffusion coefficien
To this end, introducing the notationYn5Fn11 /Fn , we
write the second equation in~14! as follows:
Yn2152
iql @12~21!n21Ln21~v!#~n1d23!/~2n1d22!

12 ivt2~21!nDn~v!1 iql @12~21!nLn~v!#Yn~n11!/~2n1d22!
. ~19!
This begins the recurrence process, which makes it poss
to write D(q,v) } Y0 in the form

D~q,v!5
D0

12 ivt1D1~v!
K~q,v!, ~20!

whereD05vF
2t/d is the classical diffusion coefficient of

d-dimensional system. The spatial dispersion of the gene
le

l-

ized diffusion coefficientD(q,v) of Eq. ~20! is completely
determined by the continued-fraction expansion

K~q,v!5
1

11
R1

2~v!q2

11
R2

2~v!q2

11¯

,
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Rn
2~v!5

~n11!~n1d22!

~2n1d22!~2n1d!

3
l 2@12~21!nLn~v!#2

@12 ivt2~21!nDn~v!#@12 ivt2~21!n11Dn11~v!#
. ~21!
-
ta

on
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Note that atd51 we haveK(q,v)[1, i.e., in the
present approximation theq-dependence of the diffusion co
efficient of a one-dimensional disordered system is impor
only on the atomic scale (qlF.1).2! According to this re-
mark, the nonlocal nature of the diffusion coefficient
larger scales (qlF!1) may manifest itself only in system
with d.1. In this case the range where Eqs.~20! and ~21!
are valid is limited by the convergence condition for t
continued-fraction expansion ofK(q,v). According to the
Worpitski test for convergence~Ref. 19, p. 107!, this expan-
sion tends to a finite limit ifquRn(v)u<1/2 for all n.n0

>1. Since the singular coefficientsuDn(v)u→0 and
uLn(v)u→0 asn→`, the above condition is equivalent t
the inequalityql/u12 ivtu,1.

4. CRITICAL BEHAVIOR NEAR THE ANDERSON
TRANSITION

The continued-fraction expansion in~20! and ~21!,
whose coefficients are determined by~A1! and~A3!, consti-
tutes a nonlinear integral equation with respect toD(q,v).
Replacing ~A4! with ~A3! yields the first iteration of the
generalized diffusion coefficient, with D̃(v)
5D(( iv/D̃)1/2,v).1 as the initial condition. The auxiliary
quantity satisfies the self-consistency equation obtained f
~20! if in the right-hand side we putq25 iv/D̃. In the critical
region we have (v→0,utu→0) K̃(v)5K(( iv/D̃)1/2,v)
.1, so that

D̃~v!5
D0

11D1~v!
. ~22!

Thus, the behavior ofD̃(v) ~and hence ofD(q,v)) near the
Anderson transition is determined by a single parame
D1(v) of ~A7!, proportional to the current relaxatio
kernel.7–9 For our purposes it is sufficient to use the low
frequency asymptotic expression

D1~v!5
D0

D̃~v!
F f d~l!1

2dld21

d22
~Kdy2Cdy~d22!/2!G

~23!

(uyu!1), where

y524divt
D0

D̃~v!
, Cd5S p

2
D d22

GS d

2
D GS 42d

2
D ,

Kd5
Cd

Ap
GS d

2DGS 52d

2 D .

Generally, to calculate the first term in~23! we must
integrate~A1! with ~A4! at v50. Only in systems withd
nt

m

r,

close to 2 will the mobility threshold, found from the equ
tion f d(l)51, satisfy the weak-coupling condition (lc

!1). In this range of values ofl and d we have a simple
approximation forf d(l):

f d~l!5
4

p

d

d22 S p

2
l D d21

, l!1, d→21. ~24!

The mobility threshold calculated via~22! and ~24!,

lc5
2

p S p

4

d22

4 D 1/~d21!

, d→21, ~25!

differs from the Vollhardt–Wo¨lfle result~see Eq.~38! in Ref.
9! by an insignificant factor, 2(d23)/(d21). The dependence
of lc on d, which can be found by numerically solving th
equationf d(lc)51, agrees quantitatively with~25! over the
entire range 2,d,4 ~the relative deviation amounts to n
more than 15–20%! and asymptotically tends to~25! as d
→2. This agreement can be considered satisfactory. To
lyze the critical behavior of the kinetic coefficients it
enough to expandf d(l) in a Taylor series in the neighbor
hood of lc and keep only the terms linear int5(lc

2l)/lc . This leads to the well-known asymptoti
behavior6,9,10

D̃~v!

D0
}H ~2 ivt!1/~112n!, v@vc ~metal–insulator!,

t, v!vc , t.0 ~metal!,

2 ivj2, v!vc , t,0 ~ insulator!,
~26!

wherevct5utu112n, andn is the critical index of the local-
ization lengthj } utu2n; n51/(d22) for 2,d,4, and n
51/2 for d.4. A detailed analysis of the critical behavior o
the diffusion coefficientD(v) can be found in Ref. 9~see
also the reviews in Refs. 4–6!.

Now let us discuss the spatial dispersion of the kine
coefficients in the critical region. To this end we approx
mate the continued fractionK(q,v) in ~21! by truncating it
at the first denominator. As a result we arrive at an expr
sion for the diffusion coefficient:

D~q,v!5
D̃~v!

11R1
2~v!q2 , ~27!

which is valid if uR1(v)qu!1, whereR1(v) is the radius of
nonlocality @determining the scale of spatial dispersion
D(q,v)] defined in~21!. The critical behavior of the gener
alized diffusion coefficient ~27! is determined by the
q-independent parameter D̃(v) of ~26!. Hence
lim
v→0

D(q,v)50 in the insulator phase and lim
t→0

D(q,0)50
in the metallic phase hold simultaneously for all values ofq.
Thus result, first obtained by Suslov14 on the basis of a sym
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metry approach to the Anderson-transition problem, agr
with the Berezinski�–Gor’kov localization criterion.20

How does the nonlocality rangeR1(v) of the general-
ized diffusion coefficient change when we replace the c
sical conductor by an Anderson insulator? Far from
Anderson transition we haveuD1(v)u.uD2(v)u!1 and
uL1(v)u!1 in the metallic phase, so thatR1(v) } l @lF is
of order of the mean free path or the diffusion lengthl D

5AD0t5 l /Ad.
The behavior of the nonlocality range ofD(q,v) near

the Anderson transition depends on the relationship betw
the singular parametersDn(v) and Ln(v). In the critical
region (utu→0 and v→0) we have D1(v).D2(v)
.D0 /D̃(v) (uD0 /D̃(v)u@1), which causes suppression
the spatial dispersion ofD(q,v) as long asuR1(v)u@lF and
uL1(v)u!1 hold simultaneously. Directly from~21! and the
estimate ~see ~A8!! uL1(v)u } lkuD0 /D̃(v)u (k53 at d
53, andk54 at d52 and d54) it follows that both in-
equalities hold only when the disorder is extremely we
whenl!uD̃(v)/D0u!1. In this case the asymptotic expre
sion, obtained in Ref. 16 for a two-dimensional disorde
system,

R1
2~v!52

2~d21!

d~d12!
l 2S D̃~v!

D0
D 2

, ~28!

is valid. According to~28! and ~26!, in the scaling regime
(v@vc) the nonlocality of the generalized diffusion coef
cient is the same in the metallic and insulator phases. As
move into the critical region (v!vc, utu→0), together with
suppression of the spatial dispersion ofD(q,v) there is a
dramatic change in nature of the dispersion in the meta
phase (R1

2(v),0) as compared to the insulator pha
(R1

2(v).0). However, in all cases the scale of th
q-dependence of the generalized diffusion coefficient~28! is
determined, in accordance with the physical interpretat
proposed in Ref. 16, by the renormalized diffusion leng
l D(v)} l uD̃(v)/D0u.

In a three-dimensional system, the coupling constan
the mobility threshold~Eq. ~25!! is equal tolc'0.32, which
corresponds tol'0.16lF . With such a degree of disorde
the nonlocality rangeR1(v) given by Eqs.~28! and ~26! is
sure to be smaller, in absolute value, thanlF . As noted at
the end of Sec. 3, under these conditions the scale of
spatial dispersion of the generalized diffusion coefficie
reaches its lower limituR1(v)u } lF , determined by the
wave nature of the quantum mechanical laws of motion
other words, the Anderson transition lies outside the limits
validity of the asymptotic expressions~28! and ~26!. Never-
theless, the anomalies in the spatial dispersion ofD(q,v)
predicted by these expression may be observed in hig
anisotropic~quasi-two-dimensional! disordered systems, in
which the mobility threshold lies within the weak-disord
rangelc!1 ~see Ref. 21!.

In contrast to D(q,v), the electrical conductivity
s(q,v) specified by Eq.~7! and the related longitudinal di
electric constant«(q,v)5114p is(q,v)/v exhibit much
stronger anomalies in spatial dispersion, which are due to
es
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presence of a diffusion pole in~7!, Indeed, if we plug~27!

into ~7!, we immediately obtainuR1(v)u2!uD̃(v)/ ivu near
the Anderson transition and hence

«~q,v!511
qFT

2 D̃~v!

2 iv1q2D̃~v!
, ~29!

whereqFT
215(4pe2nF)21/2 is the Fermi–Thomas screenin

radius.
Equation ~29! is usually employed as the initia

expression22 in analyzing the dielectric and optical propertie
of disordered systems. The above results show that irres
tive of the relationship betweenv and q2uD̃(v)u it is valid
because of suppression of the spatial dispersion of the
eralized diffusion coefficient in Anderson localization. Su
stituting ~26! in ~29! yields the well-known asymptotic ex
pressions for the dielectric constant.4,22 In particular, in the
critical region (v!vc and utu→0),

«~q,v!511
qFT

2 ~j21 iD hop/v!

11~j21 iD hop/v!q2, ~30!

holds on the insulator side of the transition, whereDhop is the
hopping diffusion coefficient. Asv→0, the above expres
sion ~30! becomes«(q,0)511qFT

2 /q2, i.e., in an Anderson
insulator a static electric field is screened, as it is in an o
nary metal.4

At finite frequenciesvj2@uDhopu holds in a small neigh-
borhood of the Anderson transition, so that the contribut
of hopping transfer to~30! can be ignored. In this case
shielding of the electric fields occurs only at distances wh
are small compared with the localization length, i.e., forqj
@1 ~which is equivalent tov!q2uD̃(v)u). In the opposite
limit, i.e., qj!1 (v@q2uD̃(v)u), ~30! tends to«(0,0)51
1qFT

2 j2, the dc dielectric constant of a gas of neutral ato
with a concentratione2nF /j and a polarizabilityj3. In other
words, a long-wavelength low-frequency (qj!1 and v
!vc) external fieldEext induces in an Anderson insulator
field E5Eext/«(0,0), which decreases in proportion
1/«(0,0)} utu2n as the mobility threshold is approached un
it reaches its minimum value;(q/qFT)2Eext. The huge val-
ues of «~0,0! associated with this anomaly have been o
served on the insulator side of the metal–insulator transi
in, e.g., Si:P~Ref. 23!.

5. CONCLUSION

Thus, within the scope of self-consistent localizati
theory, it has proved possible to consistently take into
count the spatial dispersion of kinetic coefficients. This
important because by completely discarding the nonlocal
havior of the diffusion coefficient in the self-consisten
equation~20! we end up with an uncontrollable approxim
tion. Hence, strictly speaking, the Vollhardt–Wo¨lfle
theory7–9 is valid only asymptotically, asv→0 ~see Ref.
14!. Our results make possible a quantitative analysis of
frequency dependence of the kinetic coefficients near
Anderson transition at finite frequencies satisfying the c
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dition v!EF . This problem arises, for instance, when t
electron–electron interaction is taken into account in s
consistent localization theory.5,24,25

The nature of the spatial dispersion ofD(q,v) in Ander-
son localization strongly depends on the number of dim
sions d of the disordered system. Ford53 the mobility
threshold is in the strong-coupling region (lc'0.32) and the
nonlocality rangeR1(v) given by~28! is smaller thanlF . In
other words, near the Anderson transition, within a bro
frequency range, the nonlocality of the diffusion coefficie
of a three-dimensional system is important only on
atomic scale. Hence, ignoring the spatial dispersion in
self-consistency equation25 is justified. The situation is dif-
ferent when we are dealing with low-dimensional system
where the localization conditions are met in the wea
coupling range (l!1). As shown in Ref. 16, whend52, we
can ignore the spatial dispersion ofD(q,v) in the self-
consistency equation only in the low-frequency limitvt
!( l /j)2l1/3!1, since otherwise, even when calculati
D(q50,v)5D(v), we must use numerical methods
solve an integral~in q! equation of type~20!.

The authors are grateful to A. K. Arzhnikov for stimu
lating discussions and N. V. Sadovski� and É. Z. Kuchinski�
for useful comments made in the discussion of the result
the present study.

APPENDIX: CALCULATION OF ELEMENTS OF THE
MEMORY FUNCTION MATRIX

The contribution of the first term in~12! to the matrix
elementMnn8(q,v) ~Eq. ~15!! is nonsingular and of orde
((q/kF)n1n8) (n,n8>1), so it can be ignored. To calcula
the singular part of the memory function matrix, we expa
the second term in~12! in a series of the form~13! in Ge-
genbauer polynomials dependent on cosg, whereg5p,p8̂ is
the scattering angle. In thed-dimensional spherical system o
coordinates we direct the polar axis parallel to the vectoq.
Then cosg5cosu cosu81cosr sinu sinu8, wherer is the
angle between the planes containing the vector pairsp,q and
p8,q, respectively, andu5p,q̂ andu85p,q8̂. Using the ad-
dition theorem~Ref. 26, Sec. 16.3,~20!! and carrying out
simple transformations, we obtain

Mnn8~q,v!52
i

p~d22!t0
2 (

l 50

`
l !

G~ l 1d22!

1

~2p!d

3E
0

`

pd21dpE
0

`

p8d21dp8Pl~p,p8!

3^nuDGp~q,v!u l &^ l uDGp8~q,v!un8&, ~A1!

where the matrix elements of the difference of single-part
Green’s functions are

^nuDGp~q,v!u l &5
1

2p inFAl
E

21

1

~12x2!~d23!/2Cn
~d22!/2~x!

3Cl
~d22!/2~x!DGp~q,v!dx, ~A2!
f-

-

d
t
e
e

,
-

of

d

e

and the coefficients in the expansion~13! of the diffusion
propagator are

Pn~p,p8!5E
21

1 ~12x2!~d23!/2Cn
~d22!/2~x!dx

2 iv1~p1p8!2D~ up1p8u,v!
, ~A3!

with x5cosg.
In a space withd<3, the integrand in~A3! has a nonin-

tegrable singularity asv→0 andp→2p8. Hence, assuming
that in the low-frequency limit the main contribution to~A3!
is provided by the vicinity of the diffusion pole, we use th
approximation in which the diffusion coefficientD(up
1p8u,v) is replaced by its value at the pole,D̃(v)
5D(( iv/D̃)1/2,v) ~see Ref. 16!, after which we can use a
tabulated integral~Ref. 26, Sec. 16.3,~17!! to express
Pn(p,p8) in terms of the Legendre function of the seco
kind ~Ref. 27, Chap. 3!:

Pn~p,p8!.
~21!n

2pp8D̃~v!

2Ap

G~~d22!/2!
expH 2 ip

d23

2
J

3S z221

4
D ~d23!/4

Qn1~d23!/2
~d23!/2 ~z!, ~A4!

where the Legendre function depends on the parametz

5(2 iv1(p21p82)D̃(v))3@2pp8D̃(v)#21. Thus, for-
mula ~A4! determines the low-frequency asymptotic beha
ior of Pn(p,p8) when d<3. For instance, for a two-
dimensional system this formula is valid foruD̃(v)/D0u3

!lF / l ~Ref. 16!. In systems withd.3, the singularity of the
diffusion propagator in~A3! is balanced by the factor (1
2x2)(d23)/2, which originates in the Jacobian of th
d-dimensional spherical system of coordinates. The integ
in ~A3! remains convergent asz→1; nevertheless, at low
frequenciesv!kF

2 uD̃(v)u the leading contribution to it is
still provided by a small neighborhood of the diffusion pol
As v→0, in the metallic phase (D̃(0)Þ0) this condition is
met automatically, while in the insulator phase (D̃(v)}
2 ivj2) it is met if kFj@1.

The leading contribution to the integrals in~A1! comes
from the vicinity of the Fermi level,up2kFu<1/l , inside
which uzu.1 if v!kF

2 uD̃(v)u. In this case, expressin
Qn

m(z) in terms of the hypergeometric function~see Ref. 27,
Sec. 3.2,~38!!, we readily arrive at an expression for th
asymptotic behavior of~A4!:

Pn~p,p8!.
~21!n

2pp8D̃~v!

2ApG~~52d!/2!

G~~d22!/2!

1

d23

3FG~~d22!/2!

G~~52d!/2!
2

G~n1d22!

n!

3S z221

4
D ~d23!/2G , ~A5!

which is valid in the neighborhoodun2(12z2)u!1 of the
point z51. This inequality means that~A5! can be used to
obtain asymptotic estimates of the coefficientsMnn8(q,v)
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only when n,kFl . For larger values ofn the asymptotic
expression breaks down already inside the integration in
val up2kFu.1/l and~A1! can be calculated only by numer
cal methods.

Expanding the matrix elements~A2! of the single-
particle Green’s functions in a power series inp–q/m and
limiting ourselves to first order inq,

^nuDGpu l &5
1

2p inF
H dn,lDG2

qp

2m F n1d23

2n1d22
dn,l 11

1
n11

2n1d22
dn,l 21G ]DG

]a J , ~A6!

whereDG.2a/@(E2Ep)
21a2#, a5pEFl, we arrive at a

long-wavelength asymptotic expression for the tridiago
memory function matrix~17!. If we take into account the
delta-function property of the diagonal part of~A6!, one of
the integrals in~A1! can be dropped. Substituting~A4! and
~A5!, we can evaluate the remaining integral analytically

After some lengthy transformations, we can write t
coefficientDn(v) in ~17! as follows (l!1):

Dn~v!5pdGS d

2
D GS 42d

2
D l2

D0

D̃~v!

1

32d

3F S p

2
l D d23

FS 32d

2
,

42d

2
;

52d

2
;12yD

2
n!G~d22!

G~n1d22!
sinS p

d22

2
D G , ~A7!

wherey524divtD0 /D̃, andF(a,b;c;z) is Gauss’s hyper-
geometric function~see Ref. 27, Chap. 2!. At d52 the sin-
gular part of~A7! coincides with the expression forD in Ref.
16. Reasoning along similar lines, we arrive at

Ln~v!5
p2

2
dl3

D0

D̃~v!

n!G~d21!

G~n1d21!

3GS d21

2
D GS 52d

2
D cosS d21

2
t D , ~A8!

which is also valid forl!1, with cost52(11p2l2)21/2.
Using the formulas for the analytic continuation of th

hypergeometric function~Ref. 27, Sec. 2.10,~1!!, we can
easily derive the asymptotic expressions~23! and ~24! from
~A7!.

* !E-mail: nov@otf.fti.udmurtia.su
1!From now on the number of dimensionsd of the space can be considere
r-

l

a continuously varying real parameter. Its range is limited by the inequa
d.1, which follows from the condition of the integrability of the weigh
ing function w(x)5(12x2)(d23)/2 of the system of Gegenbauer polyno
mials ~see Ref. 18, Sec. 10.9!.

2!Due to the wave nature of the quantum mechanical laws of motion,lF is
the lower bound on the nonlocality range, which determines the sp
dispersion of the kinetic coefficients.
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A theoretical analysis is made of Doppler-shifted cyclotron resonance in zinc in linear and
nonlinear regimes. It is shown that the absence of a threshold for cyclotron absorption by holes
makes the doppleron strongly damped or eliminates it for low-amplitude wave-fields. At
high amplitudes capture of holes by the magnetic field of the wave suppresses collisionless
absorption and the doppleron can propagate. As a result, the impedance of the plate is
an oscillating function of the magnetic field. It is shown that the effect should be observed at
frequencies of the order of a few tens of kilohertz, in magnetic fields of the order of a
few kilogauss, and for exciting field amplitudes of the order of a few tens of gauss. ©1998
American Institute of Physics.@S1063-7761~98!02708-5#
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1. INTRODUCTION

Numerous theoretical and experimental investigatio
have been made of dopplerons in cadmium caused
Doppler-shifted cyclotron resonance~DSCR! of lens elec-
trons, and the main results are reviewed in Ref. 1. Howe
no dopplerons have been observed in zinc, whose Fermi
face contains an electron lens very similar to that of c
mium. This can be attributed to the difference between
Fermi surfaces of zinc and cadmium. The hole ‘‘monster’’
zinc consists of six columns connected by ‘‘arms’’ distri
uted in the central plane of the Brillouin zone. In cadmiu
these arms are broken. This last feature means that the m
mum displacement of the holes per cyclotron period in c
mium is several times smaller than the displacement of
electrons at the reference point of the lens, and in the wa
length range corresponding to electron DSCR no collisi
less cyclotron absorption by holes is observed. Thus, an e
tron doppleron in cadmium undergoes no collisionle
damping and its excitation gives rise to clearly defined os
lations of the plate impedance as a function of the magn
field. Zinc however, has carrier orbits passing through
arms of the monster for which the displacements of the ho
may have arbitrarily high values. In consequence, cyclot
absorption by holes occurs at any wavelengths, includ
those near DSCR of the lens electrons. This collisionl
absorption makes a significant contribution to the damp
of an electron doppleron, as a result of which this dopple
is not observed.

This is the scenario for low-amplitude rf exciting field
At high amplitudes the situation is different. In this cas
carriers may be trapped by the magnetic field of the wa
leading to a substantial drop in collisionless absorption
was established in Ref. 2 that capture of electrons resp
sible for collisionless damping of a hole doppleron in ca
mium substantially increases the amplitude of the co
sponding doppleron oscillations of the plate impedance
the nonlinear regime. It was shown later in Refs. 3 and 4
in noble metals, suppression of collisionless absorption
3961063-7761/98/87(8)/5/$15.00
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carriers with open orbits makes it possible for helicons
propagate in a geometry in which they are not observed
the linear regime (kuuHuu@110#, wherek is the wave propa-
gation vector andH is the static magnetic field!. It was also
shown in Refs. 5 and 4 that suppression of cyclotron abso
tion in noble metals should lead to the existence of a n
nonlinear wave in comparatively weak magnetic fields~ap-
preciably below the helicon threshold!, which has no analog
in the linear regime.

Here we show that cyclotron absorption by holes does
fact lead to strong damping of an electron doppleron in z
in the linear regime and may be substantially suppresse
quite attainable amplitudes of the exciting field in the no
linear regime. As a result, it becomes possible to observ
nonlinear electron doppleron in zinc.

2. MODEL OF THE FERMI SURFACE AND NONLOCAL
CONDUCTIVITY

Here we consider DSCR in zinc in akiHiC6 geometry.
A characteristic property of its hole Fermi surface is the pr
ence of saddle points. These points lie in the plane perp
dicular to theC6 axis which separates the cross sections
the monster passing through the arms from the cross sec
passing only through the columns. Two such planes ex
positioned symmetrically relative to the central plane, ea
having six saddle points lying on the upper~or lower! sur-
faces of arms exactly midway between neighboring colum
It is known that on orbits passing through the saddle poin
the cyclotron mass and thus the displacement of the car
per cyclotron period, become infinite. Since the orbits
holes positioned between two such planes differ negligi
from circular, this part of the monster may be approxima
by an axisymmetric surface. We shall consider a mode
which the cross-sectional plane of the hole Fermi surfaceSh

depends on the longitudinal component of the momentumpz

as follows:
© 1998 American Institute of Physics
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Sh~pz!52ppp2

3H a1A12~pz /p2!2, upzu<p2 ,

a2A12~2p22upzu!2/p2
2 , p2<upzu<2p2 ,

~1!

wherea.1 andp andp2 are the dimensional parameters
the momentum. It follows from Eq.~1! that the displacemen
of the holes per cyclotron period, defined by the derivat
]Sh /]pz has a root characteristic forpz5p2 :

uh52
c

eH

]Sh

]pz
, ~2!

]Sh

]pz
55 22pp

pz /p2

A12~pz /p2!2
, upzu,p2 ,

2pp~ upzu22p2!signpz

p2A12~2p22upzu!2/p2
2

, p2,upzu,2p2 .

~3!

Thus, the parameterp determines the characteristic displac
ment of the holes. The value ofp is of the order of the
corresponding value for the electrons at the reference p
of the lens. The hole concentration equal to the electron c
centration is

n5
2

~2p\!3E22p2

2p2
Sh~pz!dpz . ~4!

When the wave propagation vector and the static m
netic field are directed along the axis of the axisymme
Fermi surface (kiHiz), the nonlocal conductivity is given
by ~see Ref. 1, for example!:

s6~k,H !5sxx6syx

5
ec

H

2

~2p\!3E Sh~pz!dpz

g1 i @612ku~pz!/2p#
, ~5!

wheree is the absolute value of the electron charge,c is the
velocity of light, g5n/vc , n is the frequency of collisions
between carriers and scatterers,vc5eH/mc is the cyclotron
frequency of the carriers, andm is their cyclotron mass. In
Eq. ~5! we neglected the dependence ofs6 on the wave
frequencyv, assuming thatv!n.

We shall derive an expression for the nonlocal cond
tivity which determines the properties of a doppleron p
duced by the DSCR of the lens electrons, which is circula
polarized with a minus sign. Substituting Eqs.~1!–~3! into
Eq. ~5! and integrating overpz with allowance for Eq.~4!
yields the following expression for the hole component
the conductivity:

s_
h~k,H !5 i

nec

H

1

I h
21qh

2

3F I h1
qh

2

2AI h
21qh

2S ln
AI h

21qh
21I h

AI h
21qh

22I h

2 ip D G ,

~6!
e

-

int
n-

-
c

-
-
y

f

where

qh5kcp/eH, I h511 igh , ~7!

gh5nh /vch , vch and nh are the cyclotron frequency an
collision frequency of the holes. Here we are interested in
situation where the scattering of carriers is weak and
magnetic field is strong, such thatgh!1.

The components2
h , proportional to2 ip in parentheses

in Eq. ~6! describes the collisionless absorption of the wa
by those holes whose displacement over the cyclotron pe
uh is equal to the wavelength 2p/k. This cyclotron absorp-
tion has no threshold in terms ofqh since in the range ofpz

between2p2 andp2 , the derivative]S/]pz varies between
2` and `, so that for any wavelength 2p/k there exist
holes for which the conditionuh(pz)52p/k is satisfied.
Thus, the presence of saddle points on the Fermi sur
means that cyclotron absorption exists in the metal at
wavelengths.

We are subsequently interested in the vicinity of t
DSCR of the lens electrons where the value ofqh is slightly
less than unity. In this case, the dissipative components2

h

caused by scattering of holes is much smaller than the t
associated with cyclotron absorption. Thus, we can neg
terms of ordergh and setI h51 so that the expression fors2

h

has the form

s_
h5 i

nec

H
G~qh! ,

G~qh!5
1

11qh
2

1
qh

2

2~11qh
2!3/2S ln

A11qh
211

A11qh
221

2 ip D .

~8!

In order to describe the electron lens, we shall us
model which we proposed in Ref. 6 in an analysis of DSC
in cadmium. In this model, the dependence of the cro
sectional area of the lens on the longitudinal electron m
mentum has the form

Se~pz!54p0p3S cos
ppz

2p3
2r D , ~9!

wherer is a dimensionless parameter andp0 andp3 are the
dimensional parameters of the momentum. Forr>21 Eq.
~9! describes a closed convex body extending alongpz from
2pF to pF , where

pF5
2p3

p
arccosr. ~10!

The singularity of the nonlocal electron conductivity dete
mined by the form of the function]Se /]pz depends on the
value of r. In the range21<r,0 the conductivity has a
root singularity, forr50 it is logarithmic, and forr.0 the
singularity becomes weakly logarithmic. We shall subs
quently analyze electron DSCR in two cases:r521 and
r.0. The caser521 is the most clear-cut: the nonloca
electron conductivity has a particularly simple form and t
problem of calculating the impedance of the plate can
completely resolved analytically. Substituting Eq.~9! into
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Eq. ~5! for r521 and integrating overpz allowing for Eq.
~10! yields the following expression for the electron condu
tivity:

s_
e~k,H !52 i

nec

H

1

AI 22q2
, ~11!

where

q5kp0c/eH, I 5211 ig, ~12!

n54p0p3
2/~p\!3, ~13!

n is the concentration of lens electrons.

3. DISPERSION EQUATION

The dispersion equation for a negatively polarized
wave has the form

k2c254p iv@s_
e~k,H !1s_

h~k,H !#. ~14!

The root of the dispersion equation corresponding to an e
tron doppleron lies in the rangeq2,1. An analysis shows
that in this range the dependence of the nondissipative c
ponent s2

h on k is considerably weaker thans2
e . Thus,

when solving the dispersion equation, we can confine o
selves to allowance for Ims2

h in the local approximation and
for Res2

h we need only retain the quadratic term ink2. The
dispersion equation can then be written in the form

D~q!50, ~15!

where

D~q!5q22j0S 1

AI 22q2
211 iaq2D , ~16!

j054pvnp0
2c/eH3, ~17!

a5~p/2!~p2/p0
2! , ~18!

the term21 in parentheses in Eq.~16! corresponds to the
local Hall conductivity of the holes and the last term is a
sociated with cyclotron absorption.

Equation~15! can be transformed to give a cubic equ
tion for q2 whose roots have the form

ql
2

I 2
5

1

3
~122I j!1

2

3
~11I j!

3sinH 2p l

3
2

1

3
arcsinF12

27

2

j2

~11I j!3G J , l 50,1,2,

~19!

where

j5j0 /~12 iaj0!. ~20!

We shall subsequently takeql to mean those roots positione
in the upper half-plane of the complex planeq. In the range
of fields H above the doppleron threshold (j0,2) we find
q0;Aig. This small complex root applies to the damp
skin component of the wave field. The rootq1 refers to a
doppleron and its value tends asymptotically to21 in strong
-

f

c-

-

r-

-

-

fields (j0!1). The rootq2 is located on the second sheet
the Riemann surface of the functionD(q) and does not cor-
respond to any component of the wave field.

4. IMPEDANCE OF THE PLATE

The impedance of a compensated metal plate with a
singularity of the nonlocal conductivity was studied theore
cally in Ref. 7. An analysis was made of oscillations of t
impedance caused by the excitation of a propagating w
mode~a doppleron!, and of Gantmakher–Kaner oscillation
caused by the excitation of a nonexponential componen
the wave field as a result of the presence of a branching p
(q25I 2) in the nonlocal conductivity~11!. It was shown that
if the thickness of the plate is not too small, the amplitude
the doppleron oscillations substantially exceeds that of
Gantmakher–Kaner oscillations. Since we are intereste
the possible propagation of a doppleron in zinc, we sh
subsequently analyze this situation and in the expression
the plate impedance we shall neglect the term describing
Gantmakher–Kaner oscillations. The expression for the
pedance of the plate can then be expressed in the form

Z5Zs@12kZsb
2D8~q1! A exp~ iq1L !#, ~21!

~kZs!
215q0

11exp~ iq0L !

12exp~ iq0L !
1q12

I

2
2

1

p

3S q0 arcsin
q0

I
1q1 arcsin

q1

I
2q2 arcsin

q2

I D ,

~22!

where

b522q1~q01q1!exp@J~q1!#/D8~q1! ,

D8~q!5dD~q!/dq , ~23!

J~q!52
1

2
ln S 11

q

I D2
j0

p

3E
0

` ~3z2111j0! ln@~11z2!1/21q/I #dz

~11z2!@~z21j0!21z2#
, ~24!

A5expF2S seH

p0c D 2G , ~25!

k5
ceH

8pvp0
, L5

eH

cp0
d, ~26!

d is the plate thickness ands is the mean-square dimensio
of the surface roughness of the plate. The quantityZs repre-
sents the smooth part of the plate impedance and the
containing the factor exp(iq1L) describes the oscillations o
the impedance as a function ofH caused by the excitation o
a doppleron wave in the plate. The factorA in Eq. ~21! de-
scribes the decrease in the amplitude of the doppleron o
lations as a result of the surface roughness.6

In the range of strong fieldsj!1 the integral term in Eq.
~24! is equal to the first term, and asH decreases to the
doppleron thresholdHL it varies by less than 10%. Thus
J(q1) may be approximated by
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J~q1!.2 ln~11q1 /I ! , ~27!

and as a result, expression~23! for b is simplified and has the
form

b52
2q1~q01q1!

~11q1 /I !D8~q1!
. ~28!

Figure 1 gives the results of calculations of the surfa
resistanceR5ReZ of the plate as a function ofH for a
low-amplitude rf exciting field when linear theory applie
~curve1!. The calculations are made for

p051.5 \ Å21, n5531021cm23 , n543108 s21 ,
~29!

exciting field frequencyv/2p5100 kHz, plate thickness
d52 mm, ands5331023 cm. It can be seen that the grap
R(H) is a monotonically increasing function with almost n
oscillations. This is attributable to two factors. First, dopp
ron oscillations are suppressed as a result of the roughne
the plate: in strong magnetic fieldsH where the displacemen
of the resonant electrons 2pcp0 /eH becomes comparabl
with the size of the roughness, the value ofA is much less
than unity. Second, cyclotron absorption by holes subs
tially reduces the doppleron damping lengthw. In Fig. 2 the
solid curve givesw(H). For comparison the dashed curv
givesw0(H) in the absence of cyclotron absorption by ho
(a50). It can be seen that in moderate magnetic fie
H.HL the value ofw is considerably less than the pla
thicknessd. As a result, a doppleron excited by an extern
field at one surface of the plate does not reach the o
surface. Thus, in strong magnetic fields the oscillations

FIG. 1. Surface resistance of the plate versus magnetic field in linear~curve
1! and nonlinear~curve 2! regimes withv/2p5100 kHz andd52 mm
(HL53 kOe).

FIG. 2. Doppleron damping length versus static magnetic field in lin
~solid curve! and nonlinear~dashed curve! regimes.
e

-
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n-
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l
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suppressed as a result of the roughness of the plate whi
weak fields they are suppressed as a result of collision
damping.

In the nonlinear regime the situation may change s
stantially. The magnetic field of a large-amplitude wa
‘‘captures’’ holes withpz5pz

0 which satisfy the condition

uh~pz
0!52p/k. ~30!

The longitudinal velocity of these holes is modulated at
frequency2

v05
e

mcUHHaS uShu
p D 1/2]2Sh

]pz
2 Y ]Sh

]pz
U

pz5p
z
0

1/2

, ~31!

whereHa is the amplitude of the magnetic field of the wav
in the metal. For our model of a hole Fermi surface we ha

v0;vchAHa /H. ~32!

In the nonlinear regime when the frequencyv0 is much
greater than the hole collision frequencynh , cyclotron ab-
sorption decreases as the rationh /v0 decreases. This implie
that the substitutiona→anh /v0 must be made in expres
sion ~16! for D(q). As a result, the doppleron damping
reduced. If the ratiov0 /nh is fairly large, the doppleron
damping length increases fromw to w0 , as is shown by the
dashed curve in Fig. 2. In this case, the dependenceR(H) is
given by curve2 in Fig. 1. Unlike curve1, curve2 clearly
reveals doppleron oscillations.

5. DOPPLER-SHIFTED CYCLOTRON RESONANCE
OF REFERENCE-POINT ELECTRONS

We have so far considered the case when in which
DSCR is caused by electrons with an orbit of finite dime
sions and the conductivity has a root singularity. However
is more likely that DSCR in zinc is caused by electrons at
reference point of the lens and that the conductivitys2

e has a
weak logarithmic singularity. We shall now analyze th
case. We shall assume that the parameterr which character-
izes the shape of the lens and the type of resonance,
small positive quantity. In order to ensure that the high
value of u]Se /]pzu is equal to 2pp0 as before, we write the
expression forSe(pz) not in the form~9! but in a slightly
different form:

Se~pz!52pp0

p1

s2S cos
spz

p1
2r D , upzu<pF , ~33!

s5A12r2, pF5~p1 /s!arcsins, ~34!

wherep1 is a parameter with dimensions of momentum.
The longitudinal electron velocity is

vze52
1

2pme

]Se

]pz
5

p0

mes
sin

spz

p1
, ~35!

its maximum is achieved at the reference point of the le
pz5pF , and equalsv05p0 /me . The electron concentration
n is now determined by

r
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n5
p0p1

2

p2s2\3
l, l512r

pF

p1
. ~36!

Substituting Eq.~33! into Eq. ~5! and integrating overpz

gives

s2
e ~k,H !52 i

nec

H
f ~q!, ~37!

f ~q!5
1

l F 1

2q
ln

I 2q

I 1q
1 i

r

2As2I 22q2
ln

r1 iAs22q2/I 2

r2As22q2/I 2 G ,

~38!

whereq and I are given by the formulas~12!.
The expression for the functionD(q) on the left-hand

side of the dispersion equation~15! now has the form

D~q!5q22j0@ f ~q!2G~hq!#, h5p/p0 , ~39!

whereG is given by the formula~8!.
In this model the region of existence of the doppler

not only has a lower threshold in terms ofH but also an
upper threshold.6 The lower thresholdHL is given by

HL5S 4pvnp0
2c

ejL
D 1/3

, jL56S 3

s2
2

1

l D 21

. ~40!

The upper thresholdHU corresponding to the conditio
q251 is obtained from the equationD(1)50 and is given
by

HU5HLS jL

jU
D 1/3

, jU5S 1

l
ln

1

r
21D 21

. ~41!

It follows from Eq. ~41! that HU increases asr decreases
For r→0 the value ofHU increases without bound, whic
corresponds to the conversion of an elliptic reference p
into a parabolic one.

In this model, the dispersion equationD(q)50, as be-
fore, has the skin rootq0 and the doppleron rootq1 although
these can now only be found numerically. Thus, the smo
component of the plate impedance is given by the integr

~kZs!
215q0

11exp~ iq0L !

12exp~ iq0L !
1q11K, ~42!

K5
j0

p E
1

`

qdq
2qD2q2D82j0~F8D2FD8!

~q22j0F !21j0
2D2

, ~43!

where

F~q!5
1

l F 1

2q
ln

q2I

q1I
2

r

2Aq22s2I 2

3 ln
Aq2/I 22s21r

Aq2/I 22s22r
G2G~hq!, ~44!

D~q!5
p

2l S 1

q
2

r

Aq22s2I 2D , ~45!

and the prime indicates differentiation with respect toq. We
also note that as in the model with a root singularity, t
value ofb characterizing the amplitude of the doppleron o
cillations may be approximated by the expression~28!.
nt
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e
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The results of calculations of the derivative of the su
face resistance of the platedR/dH for the values of the
parameters ~29!, frequency v/2p5100 kHz, thickness
d51.5 mm, ands5431023 cm are plotted in Fig. 3. Curve
1 corresponds to the linear regime and curve2 to the nonlin-
ear. Curve 2 was obtained for a wave field amplitud
Ha520 G, for which the ration/v0 is less than 0.1 in the
region where dopplerons exist. Thus for moderate value
Ha the suppression of cyclotron absorption is so great tha
is possible for a doppleron to propagate.

In these calculations, the parametera given by Eq.~18!,
which determines the cyclotron damping, is close to unity.
practice, existing information on the hole monster in zinc
inadequate for an accurate determination of the parametp
contained in formula~18! for a. The real value ofa may be
larger than we assumed. It is therefore advisable to ana
how the value ofa influences the properties of the doppl
ron. The analysis shows that asa increases, the dopplero
root q1 of the dispersion equation passes counterclockw
around the conductivity branch pointq5I and at a certain
value a5a0 is transferred below the cut to a nonphysic
sheet of the Riemann surface of the functionD(q). This
critical value ofa0 depends on the magnetic fieldH. It has a
maximum near the range of existence of the doppleron
decreases asH approaches the upper or lower threshold. A
result, it is found that asa increases, the upper and lowe
threshold fieldsHU and HL converge and fora.2 the
doppleron disappears. Thus, if the monster in zinc is s
that a.2, the nonlinear effect will be more striking: in th
nonlinear regime a doppleron can propagate whereas in
linear regime it does not generally exist.
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FIG. 3. Graphs of the derivative of the surface resistance of the plate
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We discuss the dynamics of a magnetic soliton in a one-dimensional ferromagnet placed in a
weakly nonuniform magnetic field. In the presence of a constant weak magnetic-field
gradient the soliton quasimomentum is a linear function of time, which induces oscillatory
motion of the soliton with a frequency determined by the magnetic-field gradient; the phenomenon
is similar to Bloch oscillations of an electron in a weak electric field. An explicit description
of soliton oscillations in the presence of a weak magnetic-field gradient is given in the
adiabatic approximation. Two turning points are found in the motion of the soliton and the varieties
of bounded and unbounded soliton motion are discussed. The Landau–Lifshitz equations are
solved numerically for the case of a soliton moving in a weakly nonuniform magnetic field. The
soliton is shown to emit a low-intensity spin wave near one of the turning points due to
violation of the adiabatic approximation, and the necessary conditions for such an approximation
to hold are established. ©1998 American Institute of Physics.@S1063-7761~98!02808-X#
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1. INTRODUCTION

A remarkable feature of the nonlinear dynamics of t
magnetization of ferromagnets and antiferromagnets is
presence of dynamic magnetic solitons. By a dynamic sol
we mean a spatially localized perturbation in the magnet
tion field whose stability is ensured by the presence of c
tain integrals of motion for the dynamical equations of th
field. In one-dimensional ferromagnets, where the magn
zation dynamics is described by Landau–Lifshitz equatio
a complete description of all types of nonlinear excitations
possible; in particular, there exists an exact analytical
scription of dynamic solitons in uniaxial and biaxial ma
netic materials in a uniform magnetic field in the absence
dissipation.1,2

The phenomenological Landau–Lifshitz equations
ferromagnets have a quantum mechanical basis and pro
an accurate explanation of the dynamical properties of m
netically ordered media. This suggests the possibility
broadening the range of physical phenomena to which
Landau–Lifshitz equations can be applied. In particular,
will describe the important effect of nonuniformity of th
magnetic field on the motion of a magnetic soliton. To fo
mulate the problem within a general setting, we start by
calling the basic principles of the nonlinear dynamics of
magnetization of ferromagnets at low temperatures.

The instantaneous state of a ferromagnet is determ
by the magnetization vector as a function of position a
time, M (r ,t). According to current ideas about the exchan
spin nature of ferromagnetism, the magnitudeM0 of the
4011063-7761/98/87(8)/7/$15.00
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magnetization vector remains unchanged, so that the ma
tization dynamics reduces to the precessional motion of
vector.3 In other words, if we introduce the polar anglesu
andw, the magnetization vectorM of the ferromagnet can be
written as

Mx1 iM y5M0 sin ueiw, Mz5M0 cosu. ~1!

In terms of the angular variablesu and w, the Landau–
Lifshitz equations

]M

]t
52

2m0

\
M3

dE

dM

take the form

sin u
]u

]t
52

2m0

\M0

dE

dw
, sin u

]w

]t
5

2m0

\M0

dE

du
, ~2!

where the right-hand sides of the equations contain va
tional derivatives of the total magnetic energy of the ma
netic material,E, with respect to the magnetization and th
angular variables, andm0 is the Bohr magneton. The tota
energyE can be written as

E5E w$u,w%d3x, ~3!

where the magnetic energy densityw depends on the angula
variablesu andw and their gradients.

We limit our discussion to the case of a ferromagn
with uniaxial magnetic anisotropy placed in an external m
© 1998 American Institute of Physics
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402 JETP 87 (2), August 1998 Kosevich et al.
netic fieldH that is directed along the anisotropy axisn. We
identify thez axis with this axis. Then the magnetic ener
density can be written as3

w$u,w%5w0~u,¹u,¹w!1M0~12cosu!H, ~4!

where

w05
1

2
aS ]M

]xi
D 2

1
1

2
bM0

2 sin2 u,

with a being the exchange constant andb the anisotropy
constant. The functionw0(u,¹u,¹w) depends on the gradi
ents of the angular variables but does not depend explic
on the angular variablew ~the phase!. Some statements re
ferring to a magnetic soliton are unrelated to the spec
form of the functionw0 if the latter depends on the specifie
arguments.

The Landau–Lifshitz equations for a uniaxial ferroma
net always has two constants of motion: the total magne
excitation energyE, and the projection of the total magnet
moment on the anisotropy axis. The second constant of
tion, related to the presence of the cyclic coordinatew, can
be conveniently written as

N5
1

2m0
E @M02Mz~u!#d3x

5
M0

2m0
E ~12cosu!d3x. ~5!

The normalization~5! makes it possible to assume thatN is
the number of magnons whose bound state forms
soliton.1,2

If the external magnetic field is uniform, the total exc
tation field momentum~total quasimomentum!

P52
\M0

2m0
E ~12cosu!¹wd3x ~6!

is also conserved~in addition toE andN).
A dynamic magnetic soliton is a solution of Eqs.~2!

localized in space, moving with a constant velocity, and c
responding to finite values of the constants of motionsE, N,
andP. Such a solution has the form

u5u~r2Vt !, w5Vt1c~r2Vt !, ~7!

where V is the soliton velocity,V is the frequency of the
soliton’s internal precession, and the functionsu~j! andw~j!
possess the following properties:

u~j!50, u¹wu,` as j→6`. ~8!

Hence a magnetic soliton is a two-parameter excitation, w
V andV being the parameters.

The constants of motionE, N, andP are connected by a
remarkable relationship, which is independent of the type
the functions~7!; namely, under small variations of the fun
tions u andw the variation of the total energy is1,2

dE5V–dP1\VdN. ~9!

This yields two equations of motion for the soliton:
ly

c

-
c-

o-

e

-

h

f

V5S ]E

]PD
N

, \V5S ]E

]ND
P

, ~10!

where the first determines the rate of variation of the posit
of the soliton’s center of gravity, and the second the rate
variation of its phase. In a uniaxial ferromagnet in the pr
ence of a uniform magnetic field, the position of the soliton
center of gravity and its phase are cyclic variables, wh
ensure the validity of the following conservation laws:

P5const, N5const. ~11!

In this paper we study the dynamics of a magnetic s
ton in a uniaxial ferromagnet in a weakly nonuniform ma
netic field; in particular, we investigate the case of a const
magnetic-field gradient:

H5H01hx, h5
dH

dx
. ~12!

In Sec. 2 we show that in this case the soliton posit
ceases to be a cyclic variable, with the result that the qu
momentumP ceases to be a constant of motion. Whenh is
small, the quasimomentumP is a linear function of time,
which changes the soliton dynamics dramatically.

For an object for which the calculations can be carr
out analytically we take a one-dimensional easy-axis fer
magnet. The magnetic energy densityw0 of such a ferromag-
net in terms of the angular variablesu andw is

w05
1

2
aM0

2F S ]u

]xD 2

1sin2 uS ]w

]x D 2G1
1

2
bM0

2 sin2 u.

~13!

We discuss the dynamics of a magnetic soliton with
magnetic energy~13! in a one-dimensional uniaxial ferro
magnet. In a uniform magnetic field, the energy of such
soliton is a periodic function ofP ~Refs. 1 and 2!:

E5E0~P,N!12m0NH0 , E0~P,N!52W0l 0k~P,N!,
~14!

l 0k~P,N!5tanh
N

N1
F11

sin2~pP/2P0!

sinh2~N/N1! G ,
whereW052M0

2Aaba2 is the surface energy of the doma
boundary;l 05Aa/b@a, with l 0 the characteristic magneti
length anda the interatomic separation;P05p\a3M0 /m0 ;
and N152a2l 0M0 /m0 ~hereN1 coincides in order of mag-
nitude with the maximum number of spin deviations that c
occur over the lengthl 0 , and P052ps\/a, wheres is the
atomic spin, which determines the magnetism of the ma
rial!.

If the magnetic-field gradient is so weak thath l 0!H,
then in the presence of a smallh the dependence of th
energyE on P can still be described by Eq.~14! but the field
momentumP must be assumed to be a linear function
time ~this corresponds to what is known as the adiaba
approximation!.

If the momentumP is a linear function of time, Eqs
~14! and ~10! imply that the soliton oscillates with a fre
quency determined by the magnetic-field gradient. Sin
such motion is similar to the oscillations of a Bloch electr
in a uniform electric field, we call it Bloch oscillations. Th
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403JETP 87 (2), August 1998 Kosevich et al.
phenomenon of Bloch oscillations of a magnetic soliton in
magnetic field with a weak gradient was noted recently
one of the present authors in Ref. 4.

In Sec. 3 we study the dynamics of a one-dimensio
soliton in the more general case of a weakly nonunifo
magnetic field. If the nonuniformity of the magnetic field
located in a bounded interval of the one-dimensional m
netic material~the x axis!, it creates an effective potentia
barrier for the soliton’s motion. We discuss the various va
ants of bounded and unbounded soliton motion in the p
ence of different potential barriers.

Finally, in Sec. 4 we present the results of a numeri
solution of the one-dimensional Landau–Lifshitz equatio
for the case of a soliton moving in a weakly nonunifor
magnetic field. We find that when a soliton is in oscillato
motion, near one of the turning point a low-intensity sp
wave with a frequencyV is emitted. Such emission of a sp
wave is due to the violation of the condition of validity of th
adiabatic approximation. The criteria for the applicability
such an approximation are discussed.

2. BLOCH OSCILLATIONS OF A SOLITON IN A MAGNETIC
FIELD WITH A CONSTANT GRADIENT

Let us study the soliton dynamics of a one-dimensio
uniaxial ferromagnet with uniaxial anisotropy placed in
nonuniform magnetic with a weak gradient of type~12!. As
noted earlier, in a nonuniform magnetic field,P ceases to be
a constant of motion. Let us examine the emerging time
pendence of the quasimomentum defined according to
definition ~6! and the property~8!:

dP

dt
5

\M0

2m0
E Fsin u

]w

]t

]u

]x
2sin u

]w

]x

]u

]t Gdx. ~15!

We now use the equations of motion~2!:

dP

dt
5E FdE

du

]u

]x
1

dE

dw

]w

]x Gdx. ~16!

Since the magnetic field depends on thex coordinate, the
magnetic energy density also depends onx explicitly:
w$u,w;x%. This means that

dP

dt
5E Fdw$u,w;x%2

]w

]x
dxG

52E ]w

]x
dx52hM0E ~12cosu!dx522hm0N.

~17!

Thus, the quasimomentum is a linear function of time

P~ t !5P~0!22hm0Nt, P~0!5const. ~18!

Let us now calculate the total energyE of a soliton
moving in the field of the weak gradienth. A weak gradient
of the magnetic field can be interpreted as a weak pertu
tion of the soliton’s motion in a uniform field. Then, in th
adiabatic approximation,5–7 the soliton retains its shape an
the distribution of magnetization in it remains the same fu
tion of x given by Eq.~7!:
a
y

l

-

-
s-

l
s

l

e-
he

a-

-

u5u~x2X~ t !!, w5w0~ t !1c~x2X~ t !!, ~19!

where the coordinateX(t) of the soliton’s center of gravity
and its phasew0(t) are functions of time to be determined
The main dynamical parameters of the soliton, the velocityV
of the center of gravity and the frequencyV, are given by
obvious relationships:

V5
dX

dt
, V5

dw0

dt
. ~20!

The total soliton energy can be written as

E5E0~P,N!12m0NH01hM0E ~12cosu!x dx,

~21!

whereE0(P,N) is defined in~14!, and in the third term on
the right-hand side we must bear in mind that in the adiab
approximationu(j)5u(2j):

E ~12cosu!x dx5E @12cosu~x2X~ t !!#x dx5X~ t !

3E ~12cosu~j!!dj52hm0NX.

~22!

Combining~21! and ~22!, we get

E5E0~P,N!12m0NH012hm0NX. ~23!

We see that the energyE is a function of three dynamica
variables,P, X, andN, and that the expression~17! for the
time derivative of the momentum serves as one of the
nonical Hamiltonian equations:

dP

dt
52

]E

]X
,

dX

dt
5

]E

]P
. ~24!

On the other hand, selecting the initial coordinate of t
soliton appropriately, we can use~23! and ~14! to find the
explicit time dependence of the coordinate of the solito
center of gravity:

X~ t !5X~0!1
W0@cos~pP~ t !/P0!2cos~pP~0!/P0!#

hm0N sinh~2N/N1!
,

~25!

where P(t) is given in ~18!. If P(0)Þ0 holds for short
times, as long ashm0Nt!P0 is satisfied, the soliton is in
uniform motion:

X~ t !5X~0!1
2pW0 sin~pP~0!/P0!

P0 sinh~2N/N1!
t. ~26!

For long times (hm0Nt.P0), the soliton is in oscilla-
tory motion. As Eq.~25! implies, the amplitude of the spatia
oscillations is

DX5
W0

hm0N sinh~2N/N1!
. ~27!

Naturally, it is inversely proportional to the magnetic- fie
gradient and drops off rapidly asN increases, i.e., as th
soliton grows in size:
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V~ t ![
dX

dt
5Vm

sin~pP~ t !/P0!

sinh~2N/N1!
, ~28!

whereVm52gM0Aab is the minimum phase velocity of th
spin waves (g52m0 /\).

The oscillations of the soliton precession frequency c
be found from the second formula in~10! and the definition
~23!:

V~ t !5
1

\

]E0~P,N!

]N
1gH01ghX~ t !, ~29!

with the first term on the right-hand side specified as

]E0~P,N!

]N
5\v0H cos2~pP~ t !/2P0!

cosh2~N/N1!

2
sin2~pP~ t !/2P0!

sinh2~N/N1! J , ~30!

wherev05gbM0 is the frequency of the homogeneous fe
romagnetic resonance.

3. SOLITON MOTION IN A NONUNIFORM MAGNETIC FIELD

We now turn to the more general problem of the dyna
ics of a soliton moving in a one-dimensional uniaxial ferr
magnet placed in a nonuniform magnetic fieldH(x) that is
parallel to the anisotropy axis. We assume that the func
H(x) varies in an arbitrary manner as a function ofx but that
the characteristic spatial scale over whichH(x) varies is
much larger than the soliton width. Since the magnetic
ergy density of a uniaxial ferromagnet is independent of
phasew, the energyE and the numberN of magnons remain
constants of motion. The dependence of the soliton ene
on the three dynamical variablesP, X, andN in the adiabatic
approximation is an obvious generalization of~23!, i.e.,

E5E0~P,N!12m0NH~X!, ~31!

whereE0(P,N) is still given by~14! and corresponds to th
soliton energy in the absence of a magnetic field.

The time dependence of the quasimomentumP is given
by an expression that is an obvious generalization of~17!:

dP

dt
522m0N

dH~X!

dX
. ~32!

Equation~32! together with~31! and~14! solve the problem
of the time dependence ofP. However, it is more convenien
to study the motion of the center of gravity directly by usi
the explicit form of single-soliton solutions of the Landau
Lifshitz equations.

In the reference frame attached to the center of gra
(j5x2Vt), the single-soliton solution of Eqs.~2! for a uni-
form magnetic field has the form1

tan2
u~j!

2
5

2k

~kM2km!cosh~2kj!1km1kM22k
, ~33!

wherek5(E22m0NH)/2W0l 0 is the inverse of the soliton
width, km5 l 0

21 tanh(N/N1), kM51/kml 0
2, and the soliton ve-

locity V and the angular precession frequencyV are related
to the parameterk as follows:
n

-

n

-
e

gy

y

V5Vml 0A~k2km!~kM2k!, ~34!

V5gH1gM0b@12~k l 0!22~V/Vm!2#. ~35!

Since the parameterk depends on the soliton’s total energ
and coordinate of the center of gravity, it is convenient
take it as the dynamical characteristic of the soliton. In p
ticular, Eq. ~34! shows that the possible movements of t
soliton are limited to the range of values ofk for a fixedN:
km<k<kM .

The motion of a soliton in a slowly varying magnet
field can be described in the adiabatic approximation by
same Eqs.~33!–~35! if we put j5x2X(t) in them. Here the
position of the center of gravityX(t) of the soliton at timet
is uniquely determined by the laws of conservation of t
energy and the projection of the total magnetic moment
thez axis. In a nonuniform magnetic field, the parametersE
andN, which enter into Eqs.~33!–~35!, are still constants of
motion, and the velocityV, the precession frequencyV, and
the inverse of the soliton width,k, become slowly varying
functions of time, and functionally the quantitiesV, V, andk
are determined by the running values of the magnetic fieldH
at the soliton’s center of gravityX(t):

k~X!5
E22m0NH~X!

2W0l 0
,

V~X!5gH~X!1gM0

3H 22 l 0~kM1km!
E22m0NH~X!

2W0
J , ~36!

V~X!5
2gm0N

M0
$@H~X!2Hm#@HM2H~X!#%1/2, ~37!

where Hm5(E22W0l 0kM)(2m0N)21 and HM5(E
22W0l 0km)(2m0N)21 are the values of the magnetic fie
at the turning pointsxm andxM of the soliton~Fig. 1!.

Integrating the equationdX/dt5V(X) together with Eq.
~37!, we obtain the dependence of the coordinateX of the
center of gravity on timet in the implicit form

t5
N1

gl0N
@F~X!2F~X~0!!#, ~38!

where

F~X!5E dX

$@HM2H~X!#@H~X!2Hm#%1/2.

If the magnetic fieldH(x) reaches both characteristic valu
Hm andHM for finite x, the soliton is in a state of bounde
motion between the turning pointsxm andxM ~Fig. 1a! with
a period

T5
N1

gl0N
@F~xM !2F~xm!#. ~39!

In a field with a constant magnetic-field gradie
h5dH/dx, the soliton is in a state of harmonic oscillato
motion, where neither the frequencyV052gl0(N/N0)uhu
nor the oscillation amplitude DX5uxM2xmu/2
5(N1bM0 /Nuhu)/sinh(2N/N1) depends on the soliton en
ergy E; they depend only on the numberN of magnons. If
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FIG. 1. Soliton motion in a nonuniform magnetic field
~a! bounded motion,~b! inbounded motion in the direc-
tion x5`, ~c! unbounded motion in the direction
x52`, and~d! unbounded above-the-barrier motion
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H(x) reaches only one value,Hm or HM , the soliton is in
unbounded motion, the reflection of the magnetic soli
from a ‘‘magnetic potential barrier’’~Figs. 1b and 1c!. If
Hm,H(x),HM , the unbounded motion takes place abo
the barrier~Fig. 1d!.

4. COMPUTER SIMULATION OF SOLITON OSCILLATIONS
IN A NONUNIFORM FIELD

To verify our results we used a computer to numerica
solve the one-dimensional Landau–Lifshitz equations

]M

]t
5gM3Fbn~M–n!2a

]2M

]x2 1H~x!G , ~40!

where the unit vectorn is directed along the anisotropy ax
~the z axis!, and the nonuniformity of the magnetic field
characterized by a constant value of the field’s gradi
h5dH/dx. Equations ~40! were solved by a standar
fourth-order Runge–Kutta method with automatic select
of the timestep, and the spatial derivatives]2M /]x2 were
calculated via a five-point finite-difference approximatio
the number of grip points in the variablex wasn5400. At
n

e

t

n

;

first glance it seems that Eqs.~40! are entirely useless, sinc
in addition we must know the soliton’s initial state in th
nonuniform magnetic field, and this is unknown. Hence
employed the following method of ‘‘preparing’’ a solito
with fixed values of the parametersE andN in the nonuni-
form magnetic field. First we constructed an effective ma
netic field H(x) by joining a horizontal sectionH(x)
5const with a slanted section with the given gradientdH/dx
~Fig. 2a!. Then a soliton was placed in the horizontal secti
~curve 1!, for which Eqs.~33!–~35! were used. Finally the
procedure of numerical solution of Eqs.~40! was initiated.
As the soliton moves it enters the slanted section, where
field is nonuniform~curve2!. At the moment when the soli
ton is entirely in the slanted section the horizontal section
replaced by a slanted one~Fig. 2b!. Since the amplitude of
magnetization oscillations in this section is infinitesimal, t
soliton is ‘‘unaware’’ of such a substitution~curve28).

Figure 3 depicts the results of computer simulation
the soliton motion with the following values of the param
eters:
FIG. 2. ‘‘Preparation’’ of a soliton with given values
of the parametersE and N: ~a! the soliton is in an
effective field, and~b! the soliton is in a field with a
constant gradient.
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FIG. 3. Oscillatory motion of a soliton in a nonuni
form magnetic field.
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N1
50.75,

E

W0
56,

l 0uhu
bM0

50.07.

The results of our calculations agree fairly well wi
those found from the formulas of the adiabatic theory. F
instance, for the given values of the parameters, the theo
ical values of the period and amplitude of the oscillations
T559.8/gM0b andDX58.95l 0 . The numerical calculations
yield T560.4/gM0b andDX58.7l 0 , which are close to the
theoretical values. However, more accurate calculati
show that near the right turning pointxM the soliton emits a
small-amplitude spin wave whose frequency correspond
the frequency of magnetization precession in the solitonV
~Fig. 4!. This phenomenon is related to the violation of ad
baticity and is described by higher-order corrections in
magnetic-field gradient.

The violation of the adiabatic approximation resu
from the interaction of the soliton and the spin waves, wh
the spin waves with the frequencyV play the major role. The
domain of existence of the waves,x,xs , is bounded by the
turning pointxs for these spin waves, wherexs can be found
from the equationgH(xs)1gM0b5V(X).

Using the formulas in~36!, we can calculate the distanc
between the soliton’s center of gravity and the boundary
the spin-wave range:

uX2xsu5F ~11km
2 l 0

2!
k~X!

km
21G bM0

uhu
. ~41!

We see that the distance is inversely proportional to the fi
gradienth and depends onX, the coordinate of the center o
gravity.

According to~33!, the amplitude of magnetization osci
lations in the soliton falls off at large distance ase2kuju.
Thus, the interaction of the soliton and the spin waves
characterized by the small parameter exp(2kuX2xsu). Corre-
spondingly, the adiabatic approximation holds if the distan
from the center of gravityX to the spin-wave turning poin
xs is much larger than the soliton sizek21:

uX2xsuk~X!@1. ~42!
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We note that the adiabatic approximation may be valid
one spatial region and invalid in another. According to~41!,
the distance uX2xsu reaches its minimum value
bM0l 0

2km
2 /uhu near the right turning point. At this point th

adiabaticity condition~42! amounts to the requirement tha
the magnetic-field gradient be small:

U dH

dxM
U!bM0l 0

2km
3 . ~43!

Hence, the adiabatic theory that we developed to describe
soliton motion in a weakly nonuniform magnetic field
valid if

l 0

bM0
U dH

dxM
UY tanh3

N

N1
!1. ~44!

As the magnetic-field gradient gets stronger, the adiab
approximation is violated first of all near the turning poi
that corresponds to the maximum admissible value of
magnetic field~which in our case is the right turning point!.

FIG. 4. Emission of a spin wave by a magnetic soliton.
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For the values of the parameters used in the comp
simulation of soliton oscillations, the left-hand side of~44! is
«50.3, which is the limit of the applicability of the adiabat
approximation. Near the left turning point the condition~44!
is replaced by a less stringent condition,

l 0

bM0
U dH

dxm
Utanh3

N

N1
!1, ~45!

whose left-hand side in our example is«50.017. Note that
exp(21/«) is the small parameter in the adiabatic appro
mation.

Thus, a magnetic soliton placed in a nonuniform ma
netic field can be in a state of periodic motion with a fr
quencyV0 of order 109 Hz.
er

-

-
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The structure of the zero modes in a discrete (211)-dimensional model of the gauge-invariant
nonlinear Schro¨dinger equation is studied. Including the compactification of the
Chern–Simons gauge fields eliminates the difficulties with the continuous model@L. A. Abramyan
and A. P. Protogenov, JETP Lett.64, 859 ~1996!; L. A. Abramyan, V. I. Berezhiani, and
A. P. Protogenov, Phys. Rev. E56, 6026~1997!# and leads to a prediction of the existence of a
transition region characterized by a hierarchical sequence of collapses which are enumerated
by the Chern–Simons coefficient. Using the zero modes in calculating the dependence of the
critical powerN on the Chern–Simons coefficient, we have found that the transition
region lies in the interval 11.703<N<12.01. © 1998 American Institute of Physics.
@S1063-7761~98!02908-4#
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1. INTRODUCTION

The nonlinear Schro¨dinger equation~NLSE! is one of
the basic models in the theory of nonlinear waves. The
ditional domain of application of the NLSE is nonline
optics,2,3 where it describes the propagation of wave bea
in dispersive nonlinear media. In this case, the time varia
is replaced by the axial coordinatez along the beam in the
(211)-dimensional NLSE. The NLSE also appears in stu
ies of various nonlinear waves in hydrodynamics and plas
physics.4 One of the most important applications in this ca
is the detailed description of collapsing field distributio
both using the NLSE with a local cubic nonlinearity,5,6 and
in terms of the Zakharov equations.7 In the case of a nonlin-
earity of opposite sign~repulsion!, the NLSE is used, for
example, to describe vortices in the Bose condensa
problem,8 and as a basis model9 for a low-dimensional field
theory.

Recently there has been increased interest in the N
for (211)-dimensional systems as a result of attempts
allow for the topological features of the manifold on whic
the field is defined in spatially two-dimensional system
This can be done with the aid of a gauge field and by rep
ing the ordinary derivatives with covariant derivatives in t
equations of motion. The gauge field satisfies its own eq
tion of motion with a flux defined by the solutions of th
NLSE and, as an auxiliary variable, describes an additio
contribution to the nonlinearity of the standard NLSE. In t
infrared limit the main contribution in the equations of m
tion for a gauge field in a (211)-dimensional system is th
Chern–Simons term in the action for the system under c
sideration. For a certain relationship among the coupl
constants, the contribution of the gauge field compens
the contribution of the nonlinearity leading to collapse in t
4081063-7761/98/87(8)/9/$15.00
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Hamiltonian. In this case the soliton field distributions r
ported by Jackiw and Pi10 are formed. This phenomenon
easily understood if we note that in (211)-dimensional sys-
tems the Chern–Simons term breaks the symmetry with
spect toP and T inversion of the coordinates and time.
preferential orientation of a vector in a direction perpendic
lar to the plane can be perceived as a preferential directio
rotation in a plane, which leads to the appearance of an
fective repulsion. In a situation where this repulsion comp
sates the attraction inherent in the NLSE, the Hamilton
ends up having a lower bound, and its zero-point value c
responds to self-dual Chern–Simons solitons.10 These field
distributions are solutions of the duality equations.

A stream of papers in this area has been stimulated
the results of Jackiwet al.10,12and Honget al.11 Let us focus
our attention on some of them. Barashenkov and Har13

performed a detailed analysis of the structures of the fi
configurations for a nonlinear function in the NLSE whic
describes a repulsion~in the absence of a Chern–Simon
interaction! and includes a contribution from a nonze
vacuum average for the particle number density. A formu
tion of the initial problem by Berge´ et al.14 led them to the
conclusion that, under the most general initial conditions,
solutions of the equations of motion for the NLSE with a
lowance for a Chern–Simons gauge field at a negative va
of the Hamiltonian correspond to collapse. However, in t
paper, neither the spatial structure of the collapsing mode
its critical power~the number of particles in the mode! were
analyzed. The integrability of this model was the subject
Ref. 15 The main result is that the system is not exac
integrable, except in two cases: the self-dual limit10 and the
situation where the (211)-dimensional equations can be r
duced to a (111)-dimensional model through a replaceme
© 1998 American Institute of Physics
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of variables. An incidental, but no less important conclus
is that the solutions of the gauge-invariant NLSE have n
stationary singularities on several curves in a tw
dimensional plane. A detailed study of topological defects
low-dimensional systems has always been, to a consider
extent, fundamental to understanding the dynamics of fi
distributions. A recent paper16 was devoted to the problem o
studying so-called semilocal topological defects in the
tended Chern–Simons–Higgs model.

The main reason for the extremely specific behavior
the field distributionsC(x,y,t) in spatially two-dimensiona
systems is that the spaceM in which the complex-valued
functions are defined is multiply connected in this case.
this reason, the fundamental homotopic groupp1(M),
which determines the analytic properties of the functionC
with respect to transformations of its arguments, does
coincide with the permutation group in (211)-dimensional
systems, but with the braid group. There are several es
tially equivalent ways of representing this circumstance
the methods used in the theory. One is the Lagrange
proach, which incorporates the Chern–Simons action. In
long-wavelength approximation the Chern–Simons term
codes the existence and specific features of the spatially
dimensional point singularities contained in the Bohm
Aharonov potentials of the gauge field. The long-ran
interaction, represented through the Chern–Simons ga
field, is usually referred to as a statistical or correlation
teraction between different field configurations. The distrib
tion of the fieldC itself can then be assigned different form
depending on the representation. There is the so-called a
representation,17,18 where the gauge field is explicitly ex
cluded from the Hamiltonian for the model to ensure a p
ture of ‘‘noninteracting’’~with the aid of a gauge field! field
configurationsC(x,y,t). In this case, however, the gaug
field is included in the phase of the functionC(x,y,t),
which contains a section in the complex plane that ensu
that this function is multivalued. The section describes
string stretching toward a point defect~a so-called nonloca
topological defect!, which separates the sheets in the mu
sheet covering of the two-dimensional basis space. It is w
known17,18 that a representation in which the gauge field
explicitly present in a Lagrange model can have differ
forms, depending on the parity of the representation of
permutation group. The correlation effects, however, do
depend on the representation, and the anyon statistics tak
the form of the dynamics of the long-range gauge field in t
case. From this standpoint, an approach based on a repr
tation with fractional statistics of the field configurations
identical to the dynamic approach, where we are intereste
the form of field distributions that are subjected to the infl
ence of a ‘‘statistical’’ gauge field.

Although the reason for the existence of the gauge in
action is exclusively topological~geometric! and is not re-
lated to quantum theory, this interaction has generally~ex-
cept for the above mentioned papers! not been taken into
account in studies of the classical dynamics of nonlin
models with a complex field in spatially two-dimension
systems. The topological features, of course, impose a
tional limitations on the quantization procedure in systems
n
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this type.18 An important common feature of both the qua
tum and classical theories is the use of a complex func
C(x,y,t) with a phase distribution which takes the form
the phase dynamics in the classical region. The role of
Chern–Simons gauge interaction in this case is to acco
for the vortex part of the phase dynamics, which has usu
been neglected in classical systems using a model of th
11)-dimensional NLSE.

In this paper our goal is to clarify the role and magnitu
of the topological effects associated with the violation
chiral invariance in classical (211)-dimensional systems
From this standpoint, the NLSE can be regarded as a us
example for solving this problem. Thus, in this paper w
continue the earlier studies14,15,1 of the equations of motion
in a (211)-dimensional model for the gauge-invaria
NLSE. In Ref. 1, primary attention was devoted to studyi
the structure of the collapsing field distribution which is
solution of the (211)-dimensional NLSE in the continuum
limit. In particular, numerical integration of the equation
motion yielded the dependences of the critical power a
effective width of the zero mode on the coefficientk in front
of the Chern–Simons term. We used the limitk→`, where
the interaction with the gauge field is negligibly small, as
test. In this case, the known values of the power and wi
were reproduced. At lowk, however, this computationa
scheme led to a divergence in the critical power. In t
present paper we show that including nonperturbative va
of the gauge field makes it possible to move into the reg
of small k. Introducing a solely spatial lattice makes it po
sible to only partially allow for the contribution of gaug
fields of finite amplitude. Thus, in order to solve the proble
stated here, we include two conditions in the analysis. Fi
this model is placed on a two-dimensional lattice. We n
that the stability of NLSE solitons on a lattice without
gauge field has been studied in detail recently.19,20 Second,
we include the discreteness of time. Here discrete evolu
is a necessary condition. The motive for introducing a d
crete time is the requirement for a unified description of
contribution from large amplitude spatial and temporal co
ponents of the gauge potential. This approach is suppo
by recent papers on discrete dynamics.21

If the phase of the fieldC(x,y,t) completely describes
the longitudinal part in the gauge potential, then the evo
tion of the field configurations is determined only by the tim
dependence of the gauge field. In this case the conserva
laws in the Chern–Simons system, viz., Gauss’ law and
conservation of the number of particles, are equivalent to
equations of motion of an ideal fluid in vortex form. Man
festations of gauge coupling in classical systems with n
trivial topologies, including cases in two-dimensional hydr
dynamics, are well known, in particular, in the description
swimming motions at low Reynolds numbers.22 The new
factor in this connection is that the justification for two
dimensional turbulence based on the Euler equations is
this case, the dynamics of the Chern–Simons gauge field
this sense, the gauge-invariant NLSE is a useful tool
hydrodynamics.23

Regarding the reason for the appearance of Che
Simons fields in the two-dimensional turbulence proble
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we would like to note the following. It is well known tha
Chern–Simons action with suitable boundary conditions
means for classifying conformal theories.24 The machinery
of conformal field theory can, in turn, be applied25 to the
study of two-dimensional turbulence. The observation m
tioned above actually means that, in terms of this mode
connection between the dynamics of the Chern–Sim
fields and two-dimensional turbulence can be establis
without using conformal field theory.

This paper is organized as follows. For completeness
the discussion and clarification of all details of the proble
in the second section we formulate the problem of a
present results pertaining to solutions of the equations
motion of this model in the continuum limit. The third se
tion is devoted to stating and solving the main problem
this paper: analyzing the structure of the fundamental mo
and their contribution to the integrals of motion in the d
crete variant of the model. In the fourth section results fr
a numerical analysis of the problem are presented. In
final, fifth, section, some open questions, as well as the a
of applicability of these results, are discussed.

2. EQUATIONS OF MOTION

In the continuum limit the density of the Lagrangian f
the system under consideration has the form

L5
k

2
«abgAa]bAg1 iC* ~] t1 iA0!C

2
1

2
u~¹2 iA!Cu21

g

2
uCu4. ~1!

For Eq.~1! we write the equations of motion

i ] tC52
1

2
~¹2 iA!2C1A0C2guCu2C, ~2!

~curlA!'52
1

k
uCu2, ~3!

] tAi1] iA052
1

k
« i j j j . ~4!

Here g is the coupling constant,j5Im C* (¹2iA)C is the
current density, andk is the Chern–Simons coefficient. Th
Hamiltonian for Eq.~1! is

H5
1

2 E d2r ~ u~¹2 iA!Cu22guCu4!, ~5!

where the potentialAm is an auxiliary variable expressed
terms ofuCu2 as follows:

A~r ,t !5
1

k E d2r 8G~r2r 8!r~r 8,t !, ~6!

A0~r ,t !5
1

k E d2r 8G~r2r 8!• j ~r 8,t !. ~7!

The Green’s functionG~r !,

Gi~r !5
1

2p

« i j xj

r 2 , ~8!
a

-
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,
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of
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satisfies the equation

curlG~r !52d2~r !, ~9!

so thatAm is a solution of Eqs.~3! and ~4!. Since in the
Hamiltonian formulation the potentials are uniquely rep
sented by Eqs.~6! and ~7!, the gauge freedom

Am→Am2]mw, ~10!

C→eiwC ~11!

is fixed. This is achieved by choosing the Coulomb condit
div A50 supplemented by the boundary conditions

lim
r→`

r 2Ai~r ,t !5
1

2pk
« i j xjN, ~12!

lim
r→`

A0~r ,t !50. ~13!

The choice of boundary condition~12! is related to the need
to satisfy the integral representation~3! of Gauss’ law for
Chern–Simons dynamics:

F5E d2r ~curlA!'52
1

k E d2r uCu2. ~14!

Here the magnetic fluxF and the number of particles

N5E d2r uCu2 ~15!

are conserved quantities that ensure the global constrainF
52N/k, which has the significance of Gauss’ law for th
Chern–Simons system.

As a consequence of Eqs.~2!–~4! there is a continuity
equation

] tuCu21div j50, ~16!

which expresses the time independence ofN.
We now proceed, for convenience, to dimensionle

variables and coordinates using the substitutions

C5uku3/2reiw, A052
k2

2
w2] tw,

Ax52ku1]xw, Ay52kv1]yw, ~17!

t→2
2

kuku
t, x→

x

uku
, y→

y

uku
. ~18!

The equations of motion and the continuity equatio
expressed in terms of the new real functionsr[r(x,y,t),
u[u(x,y,t), v[v(x,y,t), andw[w(x,y,t), have the form

rxx1ryy522Cr31r~u21v22w!, ~19!

uy2vx52r2, ~20!

ut2wx522vr2, ~21!

v t2wy52ur2, ~22!

r t
252@~ur2!x1~vr2!y# ~23!

with the parameterC5guku and the notationut5] tu, etc.
In the case of the standard NLSE
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i ] tC52¹2C2uCu2C, ~24!

after substitutingC5r exp@2iw(x,y,t)#, we obtain

rxx1ryy52r31r@~wx!
21~wy!22w t#, ~25!

~r2! t52@~wxr
2!x1~wyr

2!y#. ~26!

A comparison of Eqs.~25! and ~26! with Eqs.~19! and
~23! reveals the following differences. First, because of
gauge invariance in Eq.~19!, the phase derivativesw, which
exist in Eq.~25!, are absent. Their role is played by sca
and vector potentials. Thus, the evolution of the fie
r(x,y,t) is determined by time derivatives of the functio
u(x,y,t) andv(x,y,t) in Eqs.~21! and~22!. The fieldsu and
v are responsible for the transverse dynamics of the phas
the fieldC, in contrast to Eq.~25!. The longitudinal dynam-
ics of the phase are described by the scalar poten
w(x,y,t), which replaces the functionw t in Eq. ~19!. The
function w(x,y,t) plays the role of a Lagrange multiplie
permitting local allowance for the constraint~20!, which is
imposed by Gauss’ lawF52N/k. Second, the continuity
equation~23!, which replaces Eq.~26!, is a direct conse-
quence of Eqs.~20!–~22!. It can be obtained by eliminating
the scalar potentialw from Eqs.~21! and~22!, if Eq. ~20! is
used.

Let us consider the ansatz for the fieldC(x,y,t), which
corresponds to the generalized lens transformation6,14

C~r ,t !5
F~z,t!

g~t!
expS 2

ib~t!z2

2
1 ilt D . ~27!

Here z5r /g(t), t5*0
t du@ f (u)#22, and b(t)52 f t f

52gtg. With this substitution, the gauge potenti
transforms10 as follows:

A~r ,t !→@g~t!#21A~z,t!, ~28!

A0~r ,t !→@g~t!#22@A0~z,t!2b~t!zA~z,t!# ~29!

with preservation of the coupling of~6! and ~7!, where the
function r5uFu. After these transformations, Eq.~2!
changes form:

i ]tF1~bz 22l!F52
1

2
~¹2 iA!2F1A0F2guFu2F,

~30!

since b(t)5(b21bt)/252 f 3f tt/2 in the case where
w(x,y,t);b(x21y2) andb(t)Þt02t is nonzero. However
if we are interested in the collapsing solutions26 with f 2(t)
;(t02t)/ ln @ln(t02t)#, then the structure of the self-simila
nonlinear core14 is described by solutions of the followin
equation:

2lF52
1

2
~¹2 iA!2F1A0F2guFu2F. ~31!

Numerical integration was used in Ref. 1 to find a loc
ized solution~with zero energy! of Eq. ~31!. Figure 1 shows
the dependence of the critical power~the numberN corre-
sponding to the onset of collapse in the two-dimensio
case! found using this solution on the parameterC5guku.
Here we note that the normalizations of the functionr2 and,
therefore, of the number of particlesN in Fig. 1, differ from
e

r

of

al

-

l

the normalizations in Eq.~17! of this paper and in Ref. 1 by
a factor of 2C, i.e., r2→2Cr2. These changes in notatio
stem from passage to a description using the quantities
tomarily employed to describe self-focusing phenomena
the interval 1,C,2.83 we were unable to do the calcul
tions within a model with a continuous field distribution
since the convergence of the iterative calculation sche
broke down. This was one of our reasons for turning to d
crete field dynamics. The formal reason for the divergen
lay in a change in the sign of the right-hand side of Eq.~19!
whenC.1.

For a fixed value ofC in the rangeC>2.83, we always
haveN(AmÞ0).N(Am50), as is to be expected, since th
Chern–Simons gauge field describes an effective repuls
This result was obtained using a function with a Gauss
decay law~as a seed function! in the calculations. Note tha
the minimum possible value,C51 ~i.e., to the discrete value
k51 when g51), corresponds to the self-dual limit.10 In
this case, the functionr exhibits power-law decay, and fo
axially symmetric fieldsN54p512.56. The classical region
for this theory corresponds to the limitk→`, where the
gauge field splits off from the fieldC(x,y,t) @see Eq.~3!#,
and the critical self-focusing power isN511.703.

3. DISCRETE DYNAMICS

The reason for the difficulties in calculatingN noted at
the end of the previous section lies in the following. As t
parameterC5guku of the problem is reduced, the contribu
tion from the nonlinearity induced by the gauge field, whi
is effectively proportional tor5, becomes comparable to th
contribution from the nonlinear term of the NLSE, which
proportional to 2Cr3 @see Eq.~19!#. Since the iterative cal-
culation scheme of Ref. 1 used a stabilizing factor that
cluded both terms to some extent~which is determined by
comparing the degrees of homogeneity of the functions!, this
stabilizing factor did not tend to unity at smallC, where the
terms became similar in magnitude.

In order to solve the problem forC.1, we point out the
following circumstance. Equation~2! was written in the
long-wavelength limit corresponding to gauge fields of sm
amplitude. An approach for finite values of the gauge fie
is known. It is a formulation of the theory on a lattice usin
the derivatives

Dm
1r~r ![exp@ iAm~r !#r~r1em!2r~r !, ~32!

Dm
2r~r ![r~r !2exp@2 iAm~r !#r~r2em! ~33!

FIG. 1. Number of particlesN5*d2r r2 as a function of the parameterC
5guku for the gauge-invariant NLSE in the continuum limit.
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and the Laplacian

D~A!rm,n[D1D2rm,n5exp~ iAm,n̂!rm,n11

1exp~2 iAm,ň!rm,n211exp~ iAm̂,n!rm11,n

1exp~2 iAm̌,n!rm21,n24rm,n . ~34!

Here and in the following we adhere to the following not
tion. The site coordinatesr5(m,n)PZ2 comprise a discrete
spatial variable, and the subscriptm indicates the direction o
the unit vectorem on the lattice and the componentAm(r ) of
the gauge field in Eqs.~32! and~33!. For convenience in the
notation, we have returned tor , keeping in mind that Eq
~30! in the variablesz for describing the core structure~when
b!1) and Eq.~3! in the variablesr are the same. Severa
cells of the direct and dual lattices are shown in Fig. 2.
accordance with the rules of the gauge field theory o
lattice, we shall assume that the phase of the fieldC~r ! is
defined at sitesA,B,... of thedirect lattice, that the gaug
field is defined at the linksAB of the lattice, and that the cur
of the fieldAm(r ) and the densityr2 are defined at the site
a,b,... of thedual lattice. The notationAm,n̂ means that the
field componentAy(m,n) is defined on the link with end
coordinates (m,n) and (m,n11). Accordingly,Am,ň corre-
sponds to defining the fieldAy(m,n) on the link with end
coordinates (m,n) and (m,n21).

The same reason that made us have to formulate
theory on a spatial lattice, taking small values of the vec
potential into account, dictates a need to add discrete tim
the analysis. Here the form in which the time component
the gauge potential is represented in the equation of mo
must be equivalent to that in which the spatial component
the gauge potential are represented. In other words,
Polyakov and Wilson indices~homologs! must be repre-
sented on the same footing. The fact that motion on a sp
lattice dictates the need for discrete evolution was noted f
hyperbolic operator in Ref. 21.

The above requirements of the theory correspond to
following replacement:

S i
]

]t
2A0DC→

i

2 FexpS ]

]t
1 iA0D2expS 2

]

]t
2 iA0D GC

52C sin~A011!. ~35!

The last equality in Eq.~35! is valid for the stationary state
C(r ,t)5rm,n exp(ilt) to which we restrict ourselves in thi
paper. Without loss of generality, we shall assume thal
51 ~for further details, see the next section!.

The equations of motion in the model of a discre
gauge-invariant NLSE with allowance for Eqs.~34! and~35!
have the form

exp~ iAm,n̂!rm,n111exp~2 iAm,ň!rm,n21

1exp~ iAm̂,n!rm11,n1exp~2 iAm̌,n!rm21,n24rm,n

522Crm,n
3 2rm,n sin~wm,n21!. ~36!

Here

Am,n̂52 (
m8,n8

D1G~m2m8,n2n8!rm8,n8
2 , ~37!
a

he
r
to
f
n

of
he

ial
a

e

wm,n5(
r8

@~D2G~r2r 8!!~rm8,n8
2

1rm8,n811
2

!Am8,n̂8

2~D1G~r2r 8!!~rm8,n8
2

1rm811,n8
2

!Am̂8,n8# ~38!

and

D1f ~r ![ f ~r1e1!2 f ~r !.

Equations~37! and ~38! are the discrete analogs of Eq
~6! and ~7!. The sum overr 8 in Eqs. ~37! and ~38! corre-
sponds to summing over all sites of the dual lattice. Here
use the convention that the coordinate of a site in the d
lattice, where the densityr2 is defined~point a in Fig. 2!
corresponds to a certain~point A in Fig. 2! site in the direct
lattice, where the starting point of the link on which th
gauge field is determined lies. The Green’s function on
lattice, which appears in Eqs.~37! and ~38!, has the form

G~m2m8,n2n8!

5
1

~2p!2E
2p

p exp i $s~m2m8!1t~n2n8!%

422 coss22 cost
ds dt. ~39!

For numerical solution of the problem we rewrite E
~36! in the following form:

rm,n111rm,n211rm11,n1rm21,n24rm,n

52Crm,n
3 1rm,n@422 cosum,n22 cosvm,n

2sin~wm,n21!#. ~40!

In writing down the nonlinear terms on the right-han
side of this equation that are associated with the spatial c
ponents of the gauge potential, to simplify the numeri
calculations we have neglected the difference between
functions in neighboring sites and links. We emphasize o
again, in order to avoid misunderstandings, that we are
troducing the model~40!, which differs from Eq.~19!, into
the discussion in order to proceed to small values of
parameterC. For largeC they coincide in the continuum
limit.

The form of Eq.~40! satisfies the requirements formu
lated at the beginning of this section. In fact, trigonomet
expressions of the type cosu and sin(w21) reflect the im-
possibility of a large contribution from large amplitud
gauge fields. In other words, regularization of the theory o
ing to the spatiotemporal lattice naturally leads to its co
pactification.

Some results of numerically integrating this equatio
which give an idea of the structure of the zero mode and

FIG. 2. Fragment of the direct and dual lattices with sites at the po
A,B,... anda,b,..., respectively.
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form of the auxiliary fieldsAm(m,n), are presented in the
next section. The field configurationsr~r ! found, which are
used to calculate the number of particlesN as a function of
the parameterC, make it possible to clarify the details of th
intermediate power self-focusing regime at smallC.

4. NUMERICAL CALCULATIONS

For numerical analysis of the solutions of the equation
motion ~40! we use the Petviashvili stabilizing facto
method.27 The iteration scheme for Eq.~40! has the form

r l 115MlF
21~G~p!F~22Cr l

31 j r l$422 cosu

22 cosv2@11sin~w21!#% l !!, ~41!

Ml5F E d2p~Fr l !
2GaF E d2pG~p!Fr lF~22Cr l

31 j r l

3$422 cosu22 cosv2@11sin~w21!#% l !G2a

.

~42!

Herer l[(rm,n) l , the indexl denotes the iteration numbe
F (F21) is the Fourier~inverse Fourier! transformation op-
erator, andG(p)52(422 cospx22 cospy11)21. Here j
51 or j 50, depending on whether we include or neglect
nonlinear contribution from the gauge fields in the struct
of the zero modes.

The exponenta in the stabilizing factorMl should be
chosen from the requirement thatMl→1 as l→`. In the
case of homogeneous functions and without the nonlin
term r(u21v22w), it follows from a comparison of the
degrees of homogeneity of the terms on the left- and rig
hand sides of Eq.~19! that a53/2. In small gauge fields
where the nonlinearity in Eq.~40! has a polynomial depen
dence of the type22Cr35br5 @since bothrw and r(u2

1v2) are proportional tor5#, the exponenta must lie within
the interval 5/4<a<3/2 for convergence of the iteratio
scheme. Although the nonlinear functions we are using n
are inhomogeneous, we used the exponenta53/2 in the
present numerical calculations; this yields a rapid appro
to a value ofMn51 for the stabilizing factor. For the initia
field configurations we used distributions of the for
r(m,n)5(g/p)exp$2g(m21n2)% with g52. As opposed to
the continuum limit,1 in the calculations on a lattice we di
not encounter difficulties associated with divergence of
expressions used, since our cutoff radius equalled the la
spacing.

The modeling was done on a square lattice with a sp
ing of unity and with maximum linear dimensions ofLx

5Ly520. As a test, the solution of the equation of moti
~40! with Am50 ( j 50) in aC51/2 normalization was used
this yielded the well-known valueN511.703. In addition,
we compared the field distributions in the discrete and c
tinuous cases atC>5, where they practically coincided.

Figure 3 shows the configurations of the fieldsr, u, and
w for the typical valueC53. Some idea of the function
v(m,n) can be obtained using the formulav(m,n)
52u(n,m).
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Using the zero moderm,n , we calculated the depen
dence of the mean square of the effective width^R2&
5N21Sm,n(m21n2)/rm,n

2 and of the critical powerN on C.
The calculated values of^R2& are listed in Table I. A plot of
N(C) for C>1 is shown in Fig. 4.

5. DISCUSSION

An idea of the magnitude of the topological Chern
Simons effects can be obtained from Fig. 4. We see
allowing for compactification of the theory leads to a radic
change in the critical power for self focusing phenome
Correct allowance for the contribution of large-amplitu
gauge fields led to a reduction inN for all C and made it
possible to calculate the critical power for smallC. In the
theory which neglects the contribution of the gauge fiel
there is a sharp boundary atN511.703. Now we can see tha
the critical powersN corresponding to zero modes with di
ferent values of the Chern–Simons parameterk lie within the
interval 11.703<N<12.01. We estimate the accuracy of o
calculations as a few percent.

We note that, if we allow for the discrete character of t
motion in time using the function sin(w21), while retaining
the nonlinear functionu21v2 ~i.e., while disregarding the
possibility of constraining the large-amplitude spatial co
ponents of the gauge potential through compactification
the theory!, then we obtain the following result: up toC
53 we haveN511.7, which corresponds to the value wit
out a gauge field.@Calculating the functionsu(m,n) and
v(m,n) shows that they are indeed small: max$um,n ,vm,n%
<0.1.# And only for small C<3 is N observed to fall to
valuesN,11.703.

The natural conclusion to be reached in this case is
allowance for discrete evolution should be accompanied b
quite definite deformation in the form of the nonlinear term
An observation of this sort can be found in some recen
published papers.21,28 From this point of view, including the
function 452 cosu22 cosv is a deformation of theu2

1v2 nonlinearity and is a natural partner of the discrete e
lution expressed through the function sin(w21). The differ-
ence in the trigonometric functions is related to the fact th
as opposed to Refs. 21 and 28, we are considering an e
tion of motion with a parabolic operator.

In going from Eq.~36! to Eq. ~40! to implement a nu-
merical scheme based on the Petviashvili stabilizing fac
method, we assumed thatrm,n615rm61,n5rm,n , Am,n̂61

5Am,n̂ , andAm̌61,n5Am̌,n in the nonlinear terms. We found
indirect confirmation of this hypothesis in calculations whe
the main nonlinearity22Crm,n

3 was varied following the
suggestions of others.29,21

The spatial distributions of the fieldsr(m,n), u(m,n),
andw(m,n) for C53 are shown in Fig. 3. A reduction in th
amplitude ofr(m,n) compared to the continuous case can
seen there. A rapid isotropization of the initially anisotrop
Gaussian distribution could be seen in the course of ca
lating r(m,n). Thus, in the subsequent numerical calcu
tions, an isotropic field distributionr(m,n)5(g/p)
3exp$2g(m21n2)% with g52 was used as a seed functio
The results of calculating the mean square of the effec
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FIG. 3. Plots ofr(m), u(m), andw(m) for C
53 ~left-hand sides of in Figs. a, b, and c, re
spectively! and the surfacesr(m,n), v(m,n),
andw(m,n) to the right of them. The functions
in the continuum limit are indicated by dashe
lines. The values ofu and w for the discrete
case in Figs. b and c are magnified by a factor
2p.
al
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e
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width ^R2& of the functionrm,n and its dependence onC are
shown in Table I. Unlike the continuum model~19!, here we
observed a transition to an asymmetric distribution ofwm

along thex axis. This phenomenon occurred only at sm
C<4, wherewm becomes similar to2um .

In comparing these results, it should be kept in mind t
the relationships between the amplitude functionr, the pa-
rameterC, and the spatial scale lengthL for arbitrary l

TABLE I. Mean square of the width of the distribution of the fieldr for
different values of the parameterC.

C 2 2.5 3 5

^R2& 2.57 2.60 2.64 2.72
l

t

~which are denoted by a tilde!, on one hand, and the sam
quantities forl51 ~which are denoted by a bar!, on the
other, are given by

r̃25Alr̄2, C̃5AlC̄, L̃25l21L̄2.

Therefore, the following chain of equalities holds:

Ñj Þ05N̄j Þ0 /Al5N̄j 50/2AlC̄5Ñj 50/2C̃.

These equalities are useful for analyzing the contribution
the various terms on the right-hand sides of Eqs.~19! and
~40! to the nonlinearity iflÞ1.

An idea of a few new possibilities which follow from
these calculations can also be obtained from Fig. 4. They
related to the possible values of the coefficientk. Let g51.
In the case of an Abelian gauge field, the integer characte
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the Chern–Simons coefficientk is an open question currentl
under intense discussion in the literature. In the non-Abe
case, wherek is an integer or fraction~equal to the ratio of
two mutually prime numbers!, Abelian gauge fields can b
regarded as added representations corresponding to the
ter of a non-Abelian group. Thus, we come upon the int
esting possibility of comparing~with the aid of Fig. 4! dis-
crete values of the critical power tok and thereby classifying
the zero modes in terms of the values of this coefficient.

The usual treatment of Langmuir turbulence based
solving the NLSE relies on models of the appearance o
cascade of self-similar collapsing solutions. Now we can
part the following content to this picture. It is evident fro
Fig. 4 that the spectrum of critical powers becomes narro
with increasingk. This leads to a hierarchical picture o
collapse, in which zero modes with different values ofk are
involved, and, as Eq.~18! implies, different spatial scale
and characteristic times.

The coefficientk has the meaning of the number
points of interlocking of the world lines describing the ev
lution of the point singularities in a two-dimensional spac
The small values ofC52,3 for g51, where we observed
significant differences from the classical results, corresp
to singly (k52) and doubly (k53) interlocked world lines.
We emphasize once again that these comments apply to
space of ground states that are degenerate ink. A description
of the complete dynamics of the field configurations go
beyond the scope of this paper, but even now we can c
clude that the discrete evolution of the zero modes we h
considered will be a necessary element of a complete fi
description.

A fragment of this complete picture in the continuu
model has been discussed previously1 under the condition
div A52ux2vy1Dw50 when the phasew satisfies the
equationDw50. In this case the phasew(x,y,t) is the linear
function w5ax1by, which, from the standpoint of the
NLSE, corresponds~locally for smallt) to a constant propa
gation direction of the rays specified by the vectorn
5(a,b). In the case of self-focusing, this is not true, and t
phasew(x,y,t), which does not obey the equationDw50,
creates an additional ‘‘longitudinal’’ contribution to the po
tentialsu(x,y,t) andv(x,y,t) @see Eqs.~17!, ~27!, and~30!#.
The question of which of these possibilities is realized
related to the boundary conditions for the problem.

If the fieldsu andv do not contain a potential part, the
the continuity equation~23! and Gauss’ law~20! are equiva-
lent to the equation of motion of an ideal Euler fluid
vortex form. For the stream functiona(x,y) this equation
has the form

k
]

]t8
Da1

D~Da,a!

D~x,y!
50.

Here D is the Laplacian andD(Da,a)/D(x,y) is the Jaco-
bian. The timet85kt in this equation is reduced to dimen
sionless form with the aid of the coefficientk by analogy
with the spatial coordinatesx and y @see Eq.~18!#. In the
limit k→` or, equivalently,Dt8→0, the Jacobian equal
n

en-
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n
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s
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zero. This means that there is a functional relationship
tweenDa anda. Thus, in the case of small values ofk, we
necessarily encounter a nonstatic situation.

It can be presented in a graphic form by examining
evolution of the interlocked contours. The interlocking
closed lines of flow in the context of the present paper
flects the entanglement of the world lines of the point sing
larities with the formation of interlocking after projection o
the world lines onto a two-dimensional space. Stochast
tion near the points of interlocking of the contours within
formulation of the two-dimensional hydrodynamics of a
ideal liquid in terms of contour variables30,31 has been
observed.32 This kind of random behavior has a univers
character. It is characterized by arbitrariness in the loca
of the point of interlocking of the world lines along the tim
axis and, therefore~which is equivalent!, to random position-
ing in the plane of the site where the closed contours
interlocked. The number of points of interlockingk is a hid-
den parameter, which does not appear explicitly in the Eu
equation. This means that allowance for the specifics of s
tially two-dimensional systems that are reflected in t
Chern–Simons gauge fields can lead to the traditional pic
of turbulence associated with the Euler equations. The e
tence of a close analogy between states with a constant
in turbulence and the Chern–Simons anomalies expresse
Eq. ~20! has been used to describe turbulence spe
elsewhere.25

One medium in which this mechanism for turbulen
may operate is an optical medium with a random inhomo
neous distribution of reflecting surfaces in a channel.
being reflected from the surfaces, the wave fronts acq
random propagation directions, in which nonlinear pha
shifts cannot develop.

We have, thus, studied the effect of the Chern–Sim
gauge field, which reflects the specific features of the dim
sionality of our problem, on the structure of the zero mod
in a model of the discrete gauge-invariant NLSE. We ha
shown that correct allowance for large-amplitude gau
fields is important for 1,k,3. We have also discovered th
existence of a transition regime for self-focusing that is ch
acterized by a finite range 11.703<N<12.01 of critical pow-
ers.
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