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Abstract—A stochastic approach to fission dynamics is proposed. The approach, which is based on Langevin
equations, is used to calculate the mass distributions of fragments originating from the fission of excited nuclel.
The effect of viscosity and light-particle emission on the variance of mass distributionsis studied. The results of
the calculations based on the above approach reveal that, in order to obtain a simultaneous description of mass-
distribution parameters and the multiplicities of prescission particles, it is necessary to use sufficiently large values
of nuclear viscosity both for the one-body and for the two-body viscosity mechanism, anomalously large values
of the viscosity coefficient being required in the latter case. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, avast body of experimental datahas
been accumulated by studying the observed distribu-
tions of fission fragments (mass, energy, and angular
distributions) for various values of compound-nucleus
parameters, such as the excitation energy, the angular
momentum, and the fissility parameter Z%/A. A major
part of this data set was systematized and analyzed in
[1-3]. A theoretical interpretation of the mechanism of
formation of the distributions of fission fragments on
the basis of adynamical description remains one of the
unsolved problems in the physics of fission. Among
severa theoretical schemes [4-8] used to describe the
dynamics of fission treated as a nonequilibrium pro-
cess, the stochastic approach [7, 8] based on Langevin
equations is the most promising and the most popular
one at present.

In [9-12], the parameters of the energy distribution
of fission fragments were calculated, together with the
multiplicities of prescission neutrons, on the basis of
stochastic Langevin equations used as dynamical equa-
tions. The results of these calculations proved to be in
satisfactory agreement with experimental data. On the
other hand, there had been no studies until recently
devoted to adetailed analysis of the parameters of frag-
ment mass distributions on the basis of Langevin equa
tions.

The results of the first calculations of the fragment
mass distributions within a scheme where Langevin
equations are used as dynamical equations can be
found in [13]. However, the calculations in [13] relied
on asimplified model, so that the results obtained there
can claim only for a qualitative description of experi-
mental data. Indeed, the emission of light particles was
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disregarded in [13], but this phenomenon is peculiar to
the reactions under investigation. The mechanism and
the magnitude of nuclear viscosity that lead to the best
description of experimental data were not determined
there either.

In the present study, we give an account of the
results obtained from a calculation of the fragment
mass distributions that is based on the Langevin equa
tions and analyze the effect of the emission of prescis-
sion light particles and of the type and magnitude of
nuclear viscosity on the computed parameters of the
mass distributions in question.

For our investigation, we have chosen heavy-ion
reactions [3, 14] that were investigated experimentally
in detail and which lead to the formation of compound
nuclei with excitation energies E* = 50 MeV (tempera
tures T = 1 MeV). This makes it possible to neglect
shell effects and the nucleon-pairing effect in calculat-
ing the potential energy of the nucleus and the transport
coefficients in dynamical equations.

The calculation in [13] was performed for a wide
range of nuclei (Z?/A = 21-40) within two versions of
the liquid-drop model, that with a sharp boundary of
the nuclear surface and that with a diffuse boundary
[15]. Theinitia conditions for the Langevin equations
were chosen on the ridge separating the ground state
from the fission valley of the nucleus in accordance
with the idea of the transition state.

For the present calculations, the initial conditions
were chosen to correspond to the ground state of the
compound nucleus (in the liquid-drop model, thisis a
sphere). At such initial conditions, however, the higher
the barrier, the larger is the time required for relevant
calculations, since the fission possibility P; decreases
exponentially with increasing fission-barrier height B
(P ~ exp[-B¢/T]). In order to reduce the calculation
time, we decided on three reactions that lead to the for-
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mation of nuclei having abarrier height not greater than
7 MeV. Our results are compared with those from [13].
The present study also aims at clarifying the effect of
the magnitude and type of nuclear viscosity. In addi-
tion, we consider the changes suffered by the mass dis-
tributions when nucleon exchange between the two
parts of the fissile nucleus (that is, between the would-
be fragments) is taken into account in the mass-asym-
metric component of the viscosity tensor as determined
within the one-body dissipation mechanism.

2. DESCRIPTION OF THE MODEL

In describing nuclear surfaces, we restrict ourselves
to axisymmetric shapes using the two-parameter family
of Cassini ovaloids that was proposed in [16]. In cylin-
drical coordinates, the shape of the nuclear surface is
specified by the equation

p = J%M%(z—Klzl)z—%—zz, (1)

v CV v

where zis the coordinate along the symmetry axis; p is
acoordinate orthogonal to the zaxis; p;isthe p value at
the nuclear surface; € and K are the collective coordi-
nates associ ated with the elongation and mass asymme-
try, respectively; and ¢, is a scale factor that is respon-
sible for the conservation of the nuclear volume. In the
symmetric case (k = 0), the nuclear surface corresponds
to mirror-symmetric shapes known as Cassini ovaloids
[17, 18]; for kK > 0, we are dealing with asymmetric

shapes. The condition € < %(1 +K)~? leadsto aset of axi-

symmetric ovaloids; for %(1 +K?Z<e< %(1 —K)?,
Eq. (1) describes a pearlike surface; and the inequality
£> %(1 —K) leads to asymmetric bodies featuring the

neck coordinate of z,.., = 0. At € = 1 and any value of
K, the neck radius vanishes, and thisis considered asthe
simplest condition of the scission of acontinuous shape
into fragments. At the same time, it is sometimes
assumed (see [19-21]) that scission occurs at some crit-
ical value of the deformation corresponding to a rela
tively thick neck.

The evolution of collective degrees of freedom was
considered in a stochastic approach [19, 22] as the
motion of a Brownian particle in a heat bath formed by
single-particle degrees of freedom of the fissile nucleus
being considered. For the case of N collective coordi-
nates, the set of relevant Langevin equationshastheform

a4 = Wb
_ 1 0 oF
Pi = =5Pib OL;J.k oq; —YiHikPc* 058, ()
i,j,k=1..,N,

where q = (¢, K) stands for the set of collective coordi-
nates; p = (p,, P represents the momenta conjugate to
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them; F(q) is the free energy of the system being con-
S|dered my (Il = limy; 1) isthe inertiatensor; y; isthe
friction tensor; 6;¢; is a random force; and 6 is its
amplitude, which'is related to the diffusion tensor Dj;
by the equation

The diffusion tensor in turn obeys the Einstein relation

The random variable §; possesses the following statisti-
cal properties:

[£;0= 0,
Eﬁi(tl)ﬁj(tz)m = 26ij6(t1 —-t5).

Theangular bracketsin (5) denote averaging over asta-
tistical ensemble.

We note that, instead of the free energy F(q, T) =
V(q) — a(q)T?, the potential energy was used in [13] to
determine the conservative force in the Langevin equa-
tion (2). The use of the free energy is one of the signif-
icant improvements in the model proposed in [13]. In
order to calculate the free energy, we took the level-
density parameter a(q) depending on the collective
coordinates, its definition being given below.

As was mentioned above, the potential energy was
calculated within two versions of the liquid-drop
model. We used the Myers-Swiatecki parameters [23]
for the liquid-drop model with a sharp boundary and
the Sierk parameters [24] for the liquid-drop model
with a diffuse boundary.

The inertia tensor was calculated within the
Werner—Wheeler approximation for an irrotational
flow of an incompressible liquid (see [25]).

In order to describe the dissipation of the collective
kinetic energy into theinternal energy, we assumed two
friction mechanisms, a two-body and a one-body one
(asin[25] and [26], respectively). The calculation was
performed by the so-called wall + window formula

&)

1 OoR < [9p:  9pedDip
Yij = 5Pm V[p AG *heTt ,rEBqI 0z oq, U
|:| Znin
,[9Ps, 9p:9Dyy 2 (0P Zdz
Lbg; 09z aq; "oz
T ) (6)
. 9Ps apsangﬁszr%a_Dzu
IDaq 0z dq,tlbg; 0z aq;U
0
2 2 =12
2 [9ps g
Wit o009 e
0
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LANGEVIN DESCRIPTION OF MASS DISTRIBUTIONS

where p,, isthe nuclear density, V isthe mean velocity
of intranuclear nucleons, Ao is the area of the window
(that is the neck between the two would-be fragments),
Risthe distance between the centers of mass of the two
would-be fragments, D, and D, are the positions of
their centers of mass with respect to the center-of-mass
coordinate of the entire system, z,,, and z,,,, aretheleft
and theright boundary of the nuclear surface, z,., isthe
neck coordinate, and k; is the coefficient that takes into
account the reduction of the contribution from the wall
formula[27].

Apart from (6), the calculations relied on the so-
called full formulafor one-body viscosity [28, 29],

- (6)+ 16pmvav aV1
9 Ao aq, an

where V, is the volume of one of the would-be fission
fragments. The additional term is associated with the
flow of nucleons through the neck connecting two parts
of the nucleus. This correction was evaluated by two
methods in the studies of Feldmeier [28] and Randrup
and Swiatecki [29].

The initial conditions for the dynamical equations
(2) were preset in the following way. In [13], the initia
values of the collective coordinates were chosen on the
line of the ridge separating the ground state of the com-
pound nucleus from the fission valley, as was done in
[12]; the momentum distribution was set to that in equi-
librium. In this case, the distribution function has the
form

(N

0 V(qo) + Egoi (9o, Po) O
T ]
U

P(do, o) U expg ®)

where E.i(a, ) = 35, i (PP, is the Kinetic
energy of the collective motion of the nucleusand V(q,)
is the deformation-dependent potential energy of the
nucleus on the ridge line (it is reckoned from the
ground-state energy). Numerically, theinitial values q,
and p, were chosen on the basis of the Neumann
method. In order to choose the initial conditionsin the
ground state, the distribution with respect to the col-
lective coordinates was assumed to be of the delta-
function type, P(q,) ~ 0(q — q,;). In the nuclear-shape
parametrization used, this corresponds to the collec-
tive-coordinate values of ¢, = 0 and K, = 0. The
momentum distribution then has the form P(p,) ~

exp(—Econ(qo, Po)/T).

Over the entire trgjectory of the motion of the
nucleus to the scission line in the collective-coordinate
space, we used the energy-conservation law in the form

E* = Eint + Ecoll + V(q) + Eevap(t)’ (9)

where E* is the total excitation energy of the com-
pound nucleus (in the input reaction channel, it is deter-
mined by the incident-ion energy and by the difference
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of the sum of the masses of colliding nuclei and the
mass of the compound system), E,, is the excitation
energy of single-particle degrees of freedom of the
compound nucleus (internal energy), and E., (1) isthe
nucleus excitation energy that light particles have car-
ried away by the instant t.

The probabilities of light-particle emission were
determined from the compound-nucleus widths with
respect to decays through the corresponding channels.
The decay widths were calculated within the statistical
model on the basis of the formulas [30]

_gm 1
(1%:)*po(Ely)

(10)

S}

I 0N (E)p;(EX — B, —E)EdE,

wherej = n, p, d, t, *He, and a, and
E(O)

_ 1 int (0)
I o,(E)p,(Ei, E)E dE.
' (o) po(E.‘r?B)I v (11)

Here, g;, m, B;, and V, are, respectively, the spin factor,
the mass, the bindi ng energy, and the Coulomb barrier
for the jth particle; p, is the density of single-particle
levels in the compound nucleus; p; and p, are the den-
sities of single-particle levels in the residua nucleus
after the emission of the jth particle and of a photon,

respectively; 0,(,{3 isthe cross section for the absorption

of the jth particle by the residual nucleus (inverse cross
section); o, is the cross section for dipole-photon

absorption; and Ei(,?t) and Ei(r{t) are the internal energies
of, respectively, the original and the residual nucleus,
with the nucleon-pairing energy being included.

In calculating the density of excited levels, we aso
included collective effects by using formulasfrom[30].

Apart from this, we took into account the effect of
nuclear deformation and the effect of the interna
energy of the nucleus on the level-density parameter

a = am + QM- ep(vEw)] D
0 Eint 0

(12)

4= aA+BA”B..

Here, a = 0.09, B =-0.04, y= 0.07, and By is the sur-
face-energy functional depending on the collective
coordinates. For a simple estimate of the shell correc-
tion dW, we took that from [31].

The nuclear temperature T used in the calculations
was determined according to the expression

— Ijjlnp(Eint)[:l_1

T= DdTimD . (13)
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Table 1. Results of theoretical calculations performed within two versions of the liquid-drop model for the reaction °C +

232Th — 2440m (Elab =97 MeV)

Liquid drop with a sharp boundary [23] Liquid drop with adiffuse boundary [24]
Light-particle emission Light-particle emission
Coefficient is disregarded istaken into account isdisregarded istaken into account
ofﬂ [ Of,, [ Morel] ofA te Gf/l te Mgrel]
One-body viscosity mechanism
ks=0.25 211 339 185 33.6 1.89 315 27.7 235 26.8 4.06
ks=0.5 218 38.3 190 38.0 2.04 324 311 245 29.9 4.26
k,=1.0 221 46.7 188 46.5 2.29 348 38.3 253 37.3 4.60
Two-body viscosity mechanism
v =0.02 226 4.02 163 351 0.574 278 3.0 277 2.57 0.867
v=0.10 211 16.8 164 20.0 2.30 248 11.38 244 105 2.64
v=0.25 206 39.9 153 46.0 3.30 256 24.9 216 258 4.0

Note: According to [14], the experimental values are cf,l =319 (amu)2 (L =0) and [hyel= 2.6. Here and in Tables 2 and 3 below, oy, ,

2

t., and the coefficient of two-body viscosity (v) are measured in (amu)?, 102! s, and 1072 MeV s fm™ units, respectively.

Our procedure for combining the statistical model and
the dynamical approach was as follows. The partial
decay widths I'; were determined at each step of inte-
gration of the Langevin equations (2) according to (10)
and (11). On the basis of their sum, we then calculated
the mean lifetime of the compound nucleus before the
emission of any light particle, 1., = #/ J.Fj. In the
interval [0, 1] we further generated an equiprobably
distributed random number &, which was compared
with the ratio 1/t (T is the time step of integration of
the Langevin equation). If the condition & < 1/t,,, was
satisfied, it was assumed that some light particle was
emitted [32]. A particular particle species was chosen
by a Monte Carlo procedure in accordance with the
probability of compound-nucleus decay through a spe-
cific channel by using the calculated decay widths ;.

3. DISCUSSIONS OF THE RESULTS
AND CONCLUSIONS

For the reaction 2C + ?Th — 2*Cm (B, =
97 MeV), the calculations that employed the initia
conditions on the ridge and the friction tensor defined
by (6), which disregarded light-particle evaporation,
and which assumed zero angular momentum L of the

compound nucleus yielded the values of crf,I =

200 (amu)? and t,. = 45.5 x 102! sfor the variance of
the mass distribution and for the mean time of motion
to the scission line within the liquid-drop model with a

sharp boundary and the values of of,, =311 (amu)? and
t,. = 35.6 x 102! sfor the analogous quantities within
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the liquid-drop model with a diffuse boundary. For the
same reaction, a variation in the initial conditions that
corresponds to choosing initial coordinates near the
ground state, all other conditions being the same[L =0,
one-body viscosity calculated by formula (6) with k.= 1,
no light-particle emission], does not change signifi-

cantly the variance of the mass distribution: cf,l =

204 (amu)? and t,. = 53.9 x 102! s within the model
with a sharp boundary and Gf,l =309 (amu)? and t,. =
38.2 x 107%! s within the model with a diffuse bound-
ary. This might have been expected for heavy nuclei
because the ridge line separating the ground state from
thefission valley isoffset by quite alarge distance from
the scission line, so that the evolution before the saddle
point does not affect significantly the parameters of the
mass distribution, only increasing the mean time it
takes for a nucleus to reach the scission line.

A more pronounced effect is observed when, in cal-
culating the friction tensor, we include the additional
term that corresponds to nucleon exchange between the
two parts of the compound system [see Eq. (7)]. In this
case, the variance of the mass distribution increases
noticeably (by 10-15%, depending on the model used).

[The calculated values of of,l and t,. for the reaction

2C + 232Th — 2**Cm (E 4, = 97 MeV) are presented
in Table 1.] The reason behind this increase is that the
value of the mass-asymmetric component of the viscos-
ity tensor as calculated by formula (7) exceeds the cor-
responding value calculated by formula (6), especially
near the scission point (see Fig. 1a). This quenches the
motion along the mass-asymmetric coordinate, on one
Vol. 63

No. 11 2000
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Fig. 1. Variousfeatures of thefission processat k = 0 versus the parameter € for the compound nucleus2**Cm: (a) friction-tensor compo-
nent vy, represented by the dash-dotted curve for the two-body mechanism of viscosity with coefficient v =0.02 x 1072 MeV sfm,
the dashed curvefor the one-body mechanism computed by formula (6) with ky= 1, and the solid curvefor the one-body mechanism
computed by formula (7); (b, c) percent yield of prescission fission neutrons (in relation to their total number) that was calcul ated
within two versions of the liquid-drop model (that which assumes a sharp boundary of a nucleus[23] and which leads to the results
shown by the thick-line histogram and that which assumes a diffuse boundary of anucleus[24] and which leadsto the results shown
by the thin-line histogram) by using, respectively, the one-body (with ks = 1) and the two-body (withv = 0.02 x 102! MeV sfm )
viscosity mechanism; and (d) potential-energy profiles represented by the thick curve for the model of anuclear liquid drop having
a sharp boundary and the thin curve for the model of a nuclear liquid drop having a diffuse boundary (arrows indicate the position

of the fission barrier).

hand, and intensifies fluctuations along it, on the other
hand. As aresult, the variance of the mass distribution
increases.

Another significant factor that affects the parame-
ters of the mass distribution isthe inclusion of the evap-
oration of prescission light particles. Since the techni-
cal aspect of combining the dynamical model of fission
with the static model of light-particle emission was
described above, we present here only the main results.

Light-particle emission from the compound nucleus
affects the variance of the fission-fragment mass distri-
bution intwo ways: (i) avariation in the nucleonic com-
position of the fissile nucleus must increase the scatter
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of thefission-fragment masses; (ii) the emitted particles
take away some part of the excitation energy of the
compound system, whereby the nuclear temperature is
reduced and so therefore are fluctuations of the collec-
tive degrees of freedom, including fluctuations of the
mass-asymmetric coordinate. The concerted effect of
the two factors|eads to adecrease in the variance of the
mass distribution (this decrease may be as large as
30%) and in its mean value. As an illustration of the
particle-emission effect on the shape of the fission-
fragment mass distribution, two mass distributions
computed on the basis of the one-body viscosity mech-
anism with k; = 1 for the reaction involving the com-
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Fig. 2. Example of the fission-fragment mass distributions

in the reaction !C + 232Th — 2%Cm at E;4, = 97 MeV

that were calculated by using the one-body viscosity mech-
anism with kg = 1 on the basis of the mode! of anuclear lig-
uid drop having a diffuse boundary [24]: (thin-line histo-
gram) results obtained without allowance for light-particle
emission and (thick-line histogram) results obtained with
allowance for light-particle emission.

pound nucleus ?**Cm are shown in Fig. 2, where the
thin- and the thick-line histograms represent, respec-
tively, the yield of fragmentsin the calculation without
light-particle emission (the distribution is symmetric
with respect to Ac\/2 in this case) and the analogous
yield obtained with allowance for this process. These
distributions are normalized to the total number of fis-
sion fragments (so-called normalization to 200%).

In order to clarify the viscosity type realized in the
fission process, we performed our calculations for the
reactions

12C + 22Th — ?%Cm (E,;, = 97 MeV),
160 + 29Cf —» 265Sg (E;,, = 145 MeV),
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160 + 205Pb — 24Th (E,,, = 108 MeV).

The characteristics of fission (the variance of mass dis-
tribution, the mean time it takes for a nucleus to reach
the scission line, and the mean number of prescission
neutrons) that were calculated within two versions of
the liquid-drop model—that with asharp boundary [23]
and that with a diffuse boundary [24]—are quoted in
Tables 1-3. In dl these results, the statistical error is
about 1%. This estimate is based on the fact that, for
each nucleus and each viscosity value, we analyzed the
evolution of approximately 10* trajectories.

As can be seen from the tables, the type of viscosity
mechanism affects significantly the value of the vari-
ance and its qualitative dependence on the magnitude
of viscosity. If we use the one-body mechanism of vis-
cosity, the variance of mass distribution increases
dlightly (thisincrease is more pronounced in the model
with a diffuse boundary than in the model with a sharp
boundary) with increasing reduction coefficient k.. In
the case of two-body viscosity, the increase in the coef-
ficient of two-body viscosity v leadsto adecreasein the
variance of the mass distribution. In all probability, this
behavior is dueto the different coordinate dependences
of the friction-tensor components. By way of illustra-
tion, the component 1a as a function of the collective
coordinate € ispresented in Fig. 1a at kK = 0 (Symmetric
shapes)—this component has a greater bearing on the
variance of the mass distribution. The tensor of two-
body viscosity increases sharply only near the scission
line, while the value of one-body viscosity issignificant
even near the fission barrier (€ = 0.5-0.6). If the coeffi-
cient of the two-body viscosity is v = 0.02 x
1072 MeV s fm3, prescission neutrons are therefore
evaporated only immediately prior to scission. In this
case, the mean number of prescission neutrons is mod-
est. The increase in the coefficient v by afactor of 12.5
significantly increases the number of prescission fis-
sion neutrons (by afactor of 3to 7). Here, anoticeable

Table 2. Results of theoretical calculations performed within two versions of the liquid-drop model for the reaction 160 +

208pfy — 224Th (E,, = 108 MeV)

Liquid drop with a sharp boundary [23] Liquid drop with a diffuse boundary [24]
Coefficient ) 5
Om lsc (Diprel] O ts T
One-body viscosity mechanism
ks=0.25 148 67.8 0.8 208 50.8 2.69
ks=0.5 146 76.9 0.878 214 56.9 2.80
ks=1.0 146 86.7 0.967 221 66.7 2.99
Two-body viscosity mechanism
v =0.02 156 7.06 0.233 234 3.86 0.955
v =0.10 135 40.8 1.113 197 19.3 1.69
v=025 126 102.6 1.768 184 49.1 2.65
Note: According to [14], the experimental values are cﬁ,l =180 (amu)2 (L =0) and My[F 2.5.
PHYSICS OF ATOMIC NUCLElI Vol. 63 No. 11 2000
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Table 3. Results of theoretical calculations performed within two versions of the liquid-drop model for the reaction 10 +

29Ct — 26559 (E,, = 145 MeV)

Liquid drop with a sharp boundary [23] Liquid drop with adiffuse boundary [24]
Coefficient 5 5
Om [ Mgrel] Om [ Mrel]
One-body viscosity mechanism
ks=0.25 224 15.9 181 272 141 4.14
k=05 227 18.1 2.0 283 16.1 4.43
ks=1.0 227 22.8 2.38 317 20.1 4.93
Two-body viscosity mechanism
v =0.02 269 2.30 0.668 310 175 0.805
v =0.10 238 7.76 2.094 287 5.59 242
v =025 223 18.6 344 265 135 4,01

Note: According to [14], the experimental values are cf,, =506 (amu)2 (L=0) and [y [=4.1.

part of the neutronsis evaporated not only prior to scis-
sion but al so along the entire descent from the barrier to
the scission point, as in the case of one-body viscosity.
Because of the increase in neutron emission, the tem-
perature of the compound system decreases, and so
therefore does the variance of the mass distribution.
This effect is similar to the smple inclusion of particle
emission in the computational scheme by proceedingin
the same way aswas described above. In the case of the
one-body dissipation mechanism, the viscosity valueis
high even at ks = 0.25, and the cooling of the system via
particle evaporation attains its limit here (a major part
of the excitation energy of the nucleusis converted into
its internal energy and is carried away by light parti-
cles), so that no significant increase in the number of
prescission particles occurs at k, = 1. A dight increase
in the variance of the mass distribution is explained
here by the growth of fluctuations of the mass-asym-
metric coordinate, which are dependent on the nuclear
viscosity.

It should be recalled that the choice of version of the
liquid-drop model is also of importance. Within the
model of aliquid drop having a diffuse boundary, the
fission barrier is higher, whereas the descent in energy
from the saddle point to the scission point islonger. As
aresult, the fission time always proves to be lessin this
model than in the model of aliquid drop with a sharp
boundary, whereasthe variance of the mass distribution
is greater. The mean multiplicity of neutrons in the
model of aliquid drop with a sharp boundary is almost
everywhere one-half asgreat asthat in the model where
the drop boundary is smeared. This is determined by
the potential-energy drop between the saddle and the
scission point in the model s being discussed: the higher
thisdrop, the greater the collective-motion-energy frac-
tion that can be converted into the internal energy,
whereby the emission of particlesisfacilitated.
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In order to explain the distinctions between the
prescission-neutron multiplicities as obtained by using
the different viscosity mechanisms, we invoke data in
Figs. 1 and 3. From Fig. 14, it can clearly be seen that
one-body viscosity [dashed curve and solid curve, the

Yee» 10717 MeV s

2 —
L (a)
] -
() T e
Y, %
L (b)
2 L
1 L
0 0.2 0.4 0.6 0.8 1.g

Fig. 3. Various features of the fission process at k = 0 versus

the parameter € for the compound nucleus2**Cm: (a) friction-
tensor component v, represented by the dash-dotted curvefor

the two-body mechanism of viscosity with coefficient v =
0.02 x 10721 MeV sfm3, the dotted curve for the two-body

mechanism with coefficient v = 0.25 x 102! MeV sfm™, and
the solid curve for the one-body mechanism computed by
formula (7) with kg =1 and (b) percent yield of prescission
fission neutrons (in relation to their total number) that was
calculated within two versions of the liquid-drop model
(that which assumes a sharp boundary of anucleus[23] and
which leadsto the results shown by the thick-line histogram
and that which assumes adiffuse boundary of anucleus[24]
and which leads to the results shown by the thin-line histo-
gram) by using the two-body viscosity mechanism withv =
0.25 x 107! MeV sfm™.
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latter being computed with allowance for the additional
termin (7)] growsfaster than two-body viscosity (dash-
dotted curve for v = 0.02 x 102! MeV s fm=). Fig-
ures 1b and 1c show the percentage of neutrons emitted
at agiven value of the nucleus-elongation coordinate €
for one- and for two-body viscosity, respectively. For
the symmetric case, the shape of the potential energy is
presented in Fig. 1d. From Figs. 1b and 1c, it can be
seen that, in the case of one-body viscosity, the evapo-
ration of neutronsis enhanced faster and begins earlier,
the peak being in the region of the saddle point. By this
instant, a significant part of the energy has been dissi-
pated; apart from this, the system moves in this region
rather slowly. Upon passing the saddle, the probability
of evaporation approaches a constant that is determined
by the transfer of the collective energy to the internal
energy during the descent from the saddle to the scis-
sion point. For two-body viscosity, the pattern is some-
what different. By the instant when the system reaches
the barrier, the viscosity isstill low; therefore, theinter-
nal energy and the number of evaporated neutrons are
not large. Upon passing the saddle point, viscosity
sharply grows, which leadsto an increase in the proba-
bility of neutron evaporation in this region.

In this study, we used three values of the coefficient
v of two-body viscosity. The relationship between one-
and two-body viscosity changes with increasing v,
(Fig. 3a). Two-body viscosity begins to grow earlier
and appears to be commensurate with one-body viscos-
ity. Thisisnoticeably reflected in the dependence of the
neutron-evaporation probability on the elongation
coordinate € (Fig. 3b)—it becomes similar to that in the
one-body case. Here, the mean values of the neutron
multiplicities are nearly equalized in the two cases. As
has already been mentioned, such changes in two vis-
cosity lead to qualitatively different types of behavior

of ., withincreasing viscosity in the two-body and in
the one-body case.

For one of the main results obtained from the
present calculations and quoted in the tables, we indi-
cate that the experimental data on the variances of the
mass distributions and on the multiplicities of prescis-
sion particles can be described on the basis of both the
one- and the two-body mechanism of nuclear viscosity,
but the magnitude of nuclear viscosity must be highin
either case. In order to achieve satisfactory agreement
with experimental data, one therefore has to use an
anomalously large viscosity value in the case of the
two-body mechanism (v ~ 0.25 x 102! MeV s fm3).
Inthis case, however, the coefficient v is more than
12 times as great as that which was extracted from the
description of the mass—energy distributions in [33]
and six times as great as that which was used by a Jap-
anese group in [8]. A similar conclusion was drawn by
Blocki et al. [34]. In view of al this, the possibility of
consistently describing the mass—energy distribution
and the multiplicity of prefission neutrons at the above
value of v is questionable.
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Here, we do not present the energy distributions of
fission fragments. This is because, in calculating such
distributions, it is necessary to invoke, in addition to the
elongation and the mass-asymmetry parameter, a third
collective coordinate that is responsible for the forma-
tion of aneck in the nuclear shape (neck parameter). In
order to describe completely mass—energy distribu-
tions, we must therefore empl oy athree-parameter fam-
ily of fissile-nucleus shapes—in other words, relevant
calculations must be performed within three-dimen-
sional Langevin dynamics. Such investigations are
presently under way.
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Abstract—A method is proposed for taking into account, in a calculation of partial rates of muon capture by
nuclei, experimental information about strength functions for Gamow—Teller and isovector M1 transitions. The
method, which amounts to choosing an orthogonal transformation that acts in the subspace of wave functions
for excited states, requires neither modifying transition operators nor introducing effective charges. The matrix
of the above transformation is constructed as a product of the matrices of reflection in aplane. All calculations
are performed on the basis of the multiparticle shell model. Numerical results are obtained for isovector states
in A =28 nuclei. Strength functions for Gamow—Teller and isovector M1 transitionsin 28Si are considered, and
the lifetimes of 1* states in 28Al and the branching fractions for gamma decays of this state are calculated.
Owing to taking into account experimental information about the properties of isovector states, the branching
fractions for the y decays of the 1* state at 2.201 MeV in 28Al are successfully described for the first time. The
above transformation of the wave functions changes substantially the distribution of partial rates of allowed
muon capture by a 28Si nucleus among the 1* states of the final nucleus 28Al in relation to the results of the
calculations with the eigenfunctions of the Hamiltonian of the multiparticle shell model. The muon-capture
rates calculated with the transformed functions agree well with experimental data. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The results of two independent measurements of a
correlation between the momentum of the neutrino pro-
duced in the capture of polarized negative muons by a
28Si nucleus and the momentum of the photon emitted
in the y decay of an excited state of the daughter
nucleus are known at present [1, 2]. The authors of
these studies considered the same allowed partial tran-
sition

i+ *Si(05¢) — vy, + ZAl(13, 2201).

A comparison of the values that they obtained for the
yv-correlation coefficient with the results of the theoret-
ica calculations from [3-5] led to the conclusion that
induced pseudoscalar weak muon interaction with
intranuclear nucleons is suppressed to a considerable
extent in relation to estimates based on the hypothesis
of a partial conservation of the axial current (PCAC).
Table 1 displays the gp/g, values obtained from a com-
parison of the correlation coefficients measured in [1,
2] with the results of the theoretical studies quoted
above. Another experiment determined the ratio of the
rates of muon capture from the hyperfine-splitting
states of the 2Na muonic atom, and a comparison of
those results with theoretical predictions yielded

Dingtitute of Nuclear Physics, Moscow State University,
Vorob' evy gory, Moscow, 119899 Russia.
* e-mail: kuzmin@thsunl.jinr.dubna.su

** e-mall: tetereva@thsunl.jinr.dubna.su

Op/0a = 7.6 £ 2.1 [6], avaluethat is consistent with the
PCAC hypothesis. Such a great distinction between the
values of gp/g, is quite unexpected, especidly as the
28Si and *°Na nuclel are close to each other in mass
number; therefore, it could be thought that the coupling
constants for induced pseudoscalar interaction would
be nearly identical in the two cases. It should be noted
that, in [5, 6], huclear matrix elements of the effective
Hamiltonian for ordinary muon capture were computed
within the same multiparticle shell modd [7] employ-
ing the full sd-shell space and the parametrization of
the shell Hamiltonian from [8]. However, the partial
transitions being discussed have one important distinc-
tion. The experiment reported in [6] dealt with the
allowed transition 3/2*, 1/2 — 1/2%, 3/2. (Nuclear
states are classified in terms of thetotal spin, parity, and
isospin—that is, J™, T.) Calculations reveal that the
above partial transition is dominated by the single-par-
ticletransition ds;, — ds,. Asaresult, the matrix ele-

Tablel. Ratio gp/g, Obtained from a comparison of the
measured and cal culated angular-correlation factors

Experiment
Calculation
[1] (2]
[3] 34+10 53+20
(4] 20+16 42+25
[5] -28+16 00+32

1063-7788/00/6311-1874%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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ment of the operator j,(vr)ot- (in the notation adopted
in [9, 10], this is the [101] matrix element) makes a
leading contribution, determining the partia rate of
nuclear muon capture; therefore, the results of the cal-
culations prove to be quite reliable. In the case of the

0, — 13 transition, which was considered in the

experiment with 28Si, there is no dominant matrix ele-
ment, since the single-particle transition ds;, — ds,,
which has the greatest amplitude in the single-particle
transition density, is suppressed by the d;, — ds,
transition going in the opposite direction. In the
absence of aleading matrix element, the rate of nuclear
muon capture is determined by the interference of sev-
eral small matrix elements, including velocity-depen-
dent ones. In this case, a theoretica description
becomes much lessreliable, so that afurther investiga-
tion of the properties of excited states of the daughter
nucleus is highly desirable.

Theoreticaly, isovector J™ = 1+ states in A = 28
nuclel were studied in [11] on the basis of the multipar-
ticle shell model by using the full sd-shell space, the
energies of single-particle nucleon states and two-par-
ticle matrix elements of interaction between valence
nucleons being taken from [8]. The results obtained in
[11] can be summarized as follows. The calculated
excitation energies and lifetimes of low-lying 1* states
comply with experimental data. However, the branch-
ing fractions for y decays of the 1* state at 2.201 MeV
in Al could not be reproduced.

Experimentally, the properties of isovector 1+ states
in A =28 nuclel were studied in [12], [13], and [14] by
using the relevant (e, €), (p, n), and (*He, t) reactions,
respectively. Littge et al. [12] compared their experi-
mental excitation-energy distributions of the M1
strengths (M1 strength functions) with the distributions
calculated on the basis of the shell model employing
the Hamiltonian from [8] and arrived at the conclusion
that the theoretical distribution of the quantitiesB(M1),
reduced probabilities of M1 transitions, do not agree
with the experimental distribution. For the mgjority of
states, the computed values of B(M1) considerably
exceed the corresponding experimental values, but this
isnot so for the 11.445-MeV state, which corresponds
to the third eigenstate of the shell-model Hamilto-
nian—here, the theoretical value of B(M1) ismuch less
than the experimental result. The theoretical total
strength of the transitionsfalls considerably short of the
experimental value. In [13], the strength function for
Gamow-Teller ot* transitions was extracted from the
measured cross sections for the reaction 28Si (p, n)*8Al.
Injust the ssmeway asinthe case of M1 transitions, the
theoretical total strength of Gamow—Teller transitions
exceeded considerably the experimental value. For the
transition to the 1* state at 2.10 MeV in 2P, however—
this state corresponds to the third eigenstate of the
Hamiltonian from [8]—the theoretical reduced proba-
bility of the Gamow—Téller transition, B(GT), proved to

PHYSICS OF ATOMIC NUCLEI

Vol. 63  No. 11

2000

1875

be much less than the corresponding experimental
value.

The hypothesis that the isospin is conserved in
nuclel makes it possible to combine isovector 1* states
in 2Al, 28Si, and 8P into isotopic triplets. The table
establishing the correspondence can be found in [11].
From this table, it can be seen that the 1* level at
2.201 MeV in 2Al—this level is populated in the yv
correlation experiment using 2Si—belongs to the same
triplet as the 11.445-MeV level in #Si and the
2.10-MeV level in 8P (for the last two, the theoretical
strengths of Gamow—Teller and M1 transitions proved
to be smaller than the corresponding experimental val-
ues). The transitions from the ?8Si ground state, whose
isospin isequal to zero, to the isotopic-triplet states can
be described in terms of rank-1 isotopic tensor opera-
tors. In the matrix elements of these operators, we can
single out the isospin-projection dependence, thereby
going over to matrix elements reduced in isospin (dou-
bly reduced matrix elements). If the same isospin-
reduced matrix elements had appeared in the ampli-
tudesfor electron scattering, (p, n) reactions, and muon
capture, it would have been possible to use the ampli-
tudes determined in one of the processes to describe
other processes. However, the transition operators for
different properties are different. We can extract the
square of the matrix element O+, 1]||at||P*, 0Ofrom
dataon (p, n) reactions and the square of the matrix ele-

ment 0+, ||’ o +g," 1 ||p*, 0Cfrom dataon M1 transi-
tions, at the sametime, the partial amplitude of muon cap-
ture involves the matrix elements 0+, 1]||j,(vr)ot||p*, OC]
O, 1[2(vnLY,, olit]|Ppr, 0010, 1l (vr)LYy, Dt ||P*, OC)
and O%, 1||]j;(vn)Y,(cD)t]|p*, OLI In describing muon
capture, the quantities B(M1) and B(GT) are therefore
used primarily to assess the degree to which the fea
tures of partial transitions are reproduced. From this
point of view, the fact that the cal cul ations considerably
underestimate the strengths of M1 and Gamow—Teller
transitions to the third eigenstate of the Hamiltonian in
relation to experimental data (although the theoretical
total strengths of the transitions in question consider-
ably exceed the experimental values) evinces inade-
quacy of the theoretical description of the features of
the level being discussed. In addition, it should be
borne in mind that the wave functions were obtained by
diagonalizing the shell-model Hamiltonian in the full
sd-shell space and that a way to improve this descrip-
tion within a consistent theory has yet to be found.

It such a situation, it would be desirable that calcu-
lations of nuclear muon capture invoke available exper-
imental information about Gamow-Teller and M1
strengths. With this aim in view, we propose introduc-
ing, in calculations of muon capture, phenomenologi-
cal corrections via an orthogonal transformation of the
wave functions of J™, T = 17, 1 excited states. A key
point hereisthefollowing. The parameters of thetrans-
formation must be chosen in such a way as to ensure



1876

agreement in form—that is, a full consistency apart
from a numerical factor—between Gamow—Teller and
M1 strength functions calculated with the transformed
wave functions and their experimental counterparts.
Since the transformation in question is orthogonal, the
resulting wave functions will be orthogonal to one
another and will be normalized in just the same way as
the original wave functions. Moreover, the space of
states is neither contracted nor expanded, and the total
Gamow-Tdler and M1 strengths remain unchanged.
Under the transformations of the wave functions, the
transition strength can only be redistributed among
excited states. Thereby, all the problems concerning the
excess of the theoretica total strengths of Gamow-—
Teller and M1 transitions over the experimental values
remain beyond the scope of the present study. Since the
new wave functions are linear combinations of func-
tions characterized by the same values of the total spin,
parity, and isospin (J™, T=1*, 1), wehave J", T=1*, 1
for them. In calculating the features of muon capture, the
proposed method makes it possible to take into account
a maor piece of available experimenta information
about Gamow—Teller and M1 strength functions. In a
sense, this method represents a generalization of the
two-level scheme popular in nuclear spectroscopy.

The present article consists of the Introduction (Sec-
tion 1), four main sections, and the Conclusion. In Sec-
tion 2, we consider the auxiliary mathematical problem
of transforming vectors by means of reflections in a
plane. In Section 3, we analyze in detail Gamow—Teller
and M1 transitions and construct the transformation
matrix for the relevant wave functions. In Section 4, the
transformed wave functions are used to describe the
features of they decays of 1* statesin 8Al. Section5is
devoted to partial rates of muon capture in 28Si. There,
we also compare the results of the calculations with
recent experimental data. The basic results of this study
are summarized in the Conclusion.

2. MATHEMATICAL DETAILS

For the wave functions of excited states, it is neces-
sary to find an orthogonal transformation that repro-
duces the form of the experimenta strength functions
for Gamow—Teller and M1 transitions from the ground
state, whose quantum numbersare 0, 0, to 1%, 1 excited
states. We begin by discussing the auxiliary problem of
transforming one specific N-dimensiona vector into
another specific N-dimensional vector.

2.1. Transformation of Wave functions and Transition
Amplitudes

We denote by @, (k=1, ..., N) the set of wave func-
tions of the chosen excited states. We assume that these
functions are normalized and are orthogonal. With the
aid of a unitary transformation U, we construct a new
set of functions,

P = U@ (k=1,2,...,N). (1)
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Owing to unitarity of the transformation U, the result-
ing functions ), are aso normalized and orthogonal.
The matrix element of the operator O responsible for
the transition between the ground state characterized by
the wave function ® and the excited state described by
the wave function . is given by

[0l ®0= U} [ |O| @O = [ipO| P, . (2)

Thus, the vector of the amplitudes for the transitions
from the @ stateto the transformed states |, is obtained
by applying the unitary transformation U' to the vector
of the amplitudes for transitionsto the origina state ..
The transformation UT is the Hermitian conjugate of
the transformation U. Relation (2) considerably simpli-
fies the problem of seeking the transformation in (1)
since, owing to thisrelation, the problem of seeking the
transformation of a vector whose components are mul-
tiparticle wave functions reduces to seeking the trans-
formation of the much simpler vector composed of
transition amplitudes representing conventional num-
bers. In the overwhelming majority of cases, transition
amplitudes are real numbers; therefore, we can require
that the elements of the U matrix be rea-valued and
that the matrix itself be orthogonal.

2.2. Sructure of the Orthogonal Matrix

A genera orthogonal matrix of dimension N can be
determined in terms of N(N — 1)/2 real-valued parame-
ters. If we consider nine or ten excited states, we must
therefore specify 36 or 45 parameters. As a result, we
have nine or ten equations of the type in (2) for deter-
mining 36 or 45 unknown quantities, so that the prob-
lem is underdetermined. For this reason, we employ
orthogonal matrices of a special form that depend on a
smaller number of parameters.

The simplest orthogonal transformation of a vector
is the reflection with respect to a plane [15, 16]. Any
vector v can be decomposed into the sum of two vec-
tors, v = u + w; of these, one, u, belongs to a preset
plane, while the other, w, is orthogonal to it. The reflec-
tion with respect to this plane reverses the direction of
the vector w, transforming the vector v into the vector
v' = u—w. Under this transformation, the length of the
vector v isconserved, |v | = |v'|, the square of thislength

being [VP = JuP + WP = Vi + Vs + ... + Vi = VWi
Therefore, two arbitrarily preset vectors u and v of the
same length (Ju]= |v|) can be transformed into each
other by means of the reflection with respect to the
plane that passes through the origin of coordinates and
which is orthogonal to the vector u — v. This plane is
determined by the equation

(U=vyx = 0. 3)
The transformation matrix then has the form
(U =v)(u-vj)

lu—vl|?

Rj=29,;-2 4)

Vol. 63 No. 11 2000
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Thematrix in (4) issymmetric—thatis, R ;=R ;—and

isorthogonal, RR = RR= 1, | being an identity matrix.
For any pair of vectors u and v of the same length, the
above transformation of reflection is unique since it is
specified by Eq. (3) (equation of a plane), where the
coordinates of the vector u— v appear to be parameters.
The number of independent parameters is equal to the
dimensionality of the vector space, where we imple-
ment the transformation in question.

In order to construct the matrix transforming the
wave functions of excited states, it is sufficient to know
two vectors composed of transition amplitudes. The
values calculated theoretically for the transition ampli-
tudes within multiparticle shell model are the coordi-
nates of one vector. The other vector must be composed
of the experimental transition amplitudes.

3. GAMOW-TELLER AND M1 STRENGTH
FUNCTIONS

In order to find transformation matrices, we need
two vectors formed by the amplitudes for transitions to
the chosen excited states. The sguare of the length of
each vector is equal to the transition strength (theoreti-
cal or experimental one) summed over al chosen
excited states.

We begin by considering the vector of theoretical
amplitudes. Since we are interested here in a transfor-
mation that reproduces only the shape of the experi-
mental strength function, it islegitimate to use a vector
of unit norm in constructing the required transforma-
tion matrix. Let the vector (t,, ..., ty) be composed of
theoretical Gamow-Teller amplitudes normalized by
the condition t,t, = 1. The relative signs of the coordi-
nates of the vector t are determined by the relative
phases of the wave functions for the excited states
being considered.

3.1. Experimental Amplitudes and Searches
for the Most Appropriate Transformation

Problems to be overcome in dealing with experi-
mental amplitudes are much more intricate. From
experimental data, it is possibleto extract only thetran-
sition strength—that is, the square of the modulus of
the transition amplitude. We denote by g, the strength
of Gamow-Teller transition to the kth chosen excited
state of spin—parity 1*. The absolute value of the ampli-

tude for this transition is |f| = ./e,. By using these

amplitudes, we construct the vector f = (f,, ..., fy).
The square of its length represents the total strength of
the transitions to all chosen states, () = |[ff = ¢ +
...+ €y. The sign of each amplitude f, remains
unknown. Therefore, we have to consider all possible
distributions of the signs of the amplitudes forming the
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vector f. For each distribution of signs in the vector f,
there exists an individual reflection matrix (4),

(=) (F-s()t)
|f —s(f)t?

For the strength of the relevant Gamow—Teller transi-
tions, the vector of theoretical amplitudes that is trans-
formed with the aid of this matrix yields the distribu-
tion that is coincident in form with the experimental
Gamow-Téller strength function. By using only one
strength function, it is therefore impossible single out
the most appropriate transformation among the emerg-
ing set.

There arisesanatural criterion for choosing an opti-
mum transformation if, along with the Gamow—Teller
strength function, we consider the M1 strength func-
tion. The transformation (1) of the wave functions
entails the transformation (2) of the transition ampli-
tudes; therefore, the amplitudes of M1 transitions also
transform in terms of the matrix R(f, t). The distinc-
tions between the operators of Gamow—Teller and M1
transitions result in that the vectors composed of the
amplitudes for these transitions are linearly indepen-
dent. Thisistrue both for the vectors constructed from
the experimental amplitudes and for the vectors con-
structed from the theoretical amplitudes. In general, the
new M1 strength function obtained with the aid of R(f, t)
does not coincide with the experimental strength func-
tion for M1 transitions. This can be deduced from the
fact that the scalar product of two vectors is invariant
under orthogonal transformations. Generally, the scalar
product of the vectors composed of the theoretical
Gamow-Teller and M1 amplitudes is not equa to the
scalar product of the vectors composed of experimental
Gamow-Teller and M1 amplitudes. In an attempt at
fully reconstructing the form of the Gamow-Teller
strength function, the form of the M1 strength func-
tion will therefore be reproduced with some error.
Accordingly, the version characterized by the smallest
root-mean-square deviation will be taken to be the
best one.

Making one step further, we can reduce the distinc-
tions between the forms of the resulting theoretical and
the experimental M1 strength function, by applying an
additional transformation that is of the typein (4) and
which acts in the subspace orthogonal to the vector
formed by the theoretical Gamow—Teller amplitudes
and to the vector formed by the experimental Gamow—
Teller amplitudes. What has already been obtained for
the excitation-energy distribution of the Gamow—Teller
strength remains invariant under this additional trans-
formation.

R(f, 1), = & (5)

i

3.2. Calculation of Srength Functions
for Gamow-Teller and M/ Transitions

The theoretical and experimental Gamow-Teller
and M1 strength functions to be used in the ensuing
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Table 2. Properties of isovector 1* states in the A = 28 nuclei: Gamow-Teller and M1 strength functions calculated on the
basis of the shell model and data obtained by experimentally studying the reactions 22Si(p, n)?2P and 22Si(e, €)%8Si

k 1 2 3 4 5 6 7 8 9 10
Results of the calculations

E.—E; [MeV] 0.0 0.38 0.71 1.83 2.16 2.56 3.56 3.80 4.21 4.70
E, [MeV] 10.81 11.19 11.52 12.64 12.97 13.37 14.37 14.61 15.02 15.51
b(GT) 0.822 0.262 0.862 | —-0.783 0.014 | -0.355 0.798 | -0574 | -0.426 0.342
b(M1) 1.232 0.733 1750 | -1.178 0.162 | —0.091 0.957 | -0.712 0.629 0.538
B(GT) 0.676 0.069 0.744 0.613 0.000 0.126 0.637 0.330 0.182 0.117
B(M1) 1.518 0.538 3.064 1.387 0.026 0.008 0.917 0.507 0.395 0.290

Experimental distributions of the Gamow-Teller strength according to data on the reaction 22Si(p, n)28P [13]
E,—E; [MeV] 0.0 0.34 0.85 1.69 2.62 3.3 3.77 4.30 4.64
E, [MeV] 125 1.59 2.10 2.94 3.87 4.59 5.02 5.55 5.91
B(GT) 0.198 0.109 0.956 0.146 0.163 0.410 0.137 0.092 0.090
Error 0.002 0.002 0.005 0.003 0.002 0.004 0.041 0.004 0.003

Experimental distributions of the M1 strength according to data on the reaction 28Si(e, €)%Si [12]

E,—E; [MeV] 0.0 0.26 0.80 1.69 3.39 450 4.86
E, [MeV] 10.64 10.90 11.45 12.33 14.03 15.15 15.50
B(M1) 0.30 0.90 4.42 0.87 0.37 0.23 0.26
Error 0.04 0.02 0.20 0.06 0.02 0.02 0.03

Note: The following notation is used in the table: B(GT) and B(M1) are the reduced probabilities of Gamow—Teller and M1 transitions,
respectively, while b(GT) and b(M1) are the corresponding transition amplitudes normalized by the conditions B(GT) = b4(GT) and

B(M1) = b%(M1).

analysis are displayed in Table 2. In the calculations,
we made use of the Hamiltonian from [8]. The muilti-
particle wave functions, the energies of the states
involved, and the amplitudes of the Gamow-Teller and
M1 transitionswere cal culated with the aid of the codes
presented in [7].

Thefirst part of the table quotes the results obtained
by calculating the following features of the first ten
excited states whose spin—parity and isospin are J™,
T=1%, 1. the excitation energies and the amplitudes
and reduced probabilities of the relevant Gamow—
Teller and M1 transitions from the 0+, O state at the low-
est energy (ground state of 28Si nucleus). The excitation
energies given there are reckoned from the ground-state
energy of 28Si.

The wave functions of theJ™ T = 1*, 1 states char-
acterized by the isospin projection of T; = 1 represent
the 1+ states in 22P, which manifest themselves as reso-
nances in the charge-exchange (p, n) reaction at inter-
mediate energies. The cross section for this reaction is
proportional to B(GT). The resonance-state energies
and the B(GT) values obtained by experimentally
studying the reaction 28Si(p, n)?P [13] are displayed in
the second part of Table 2. Presented there are al states
that occur at excitation energies below 6 MeV and
which were observed experimentally. The energies of
the states are reckoned from the ground-state energy of
the 28P nucleus. The states at energies in excess of
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6 MeV saturate only an insignificant fraction of the
observed Gamow-—Teller strength; moreover, their spin
values are not known precisely. In total, the experimen-
tally detected strength of Gamow-Teller transitions to
states at excitation energies below 12.6 MeV amounts
to 2.595. The states listed in Table 2 saturate 2.301 of
this strength. The total theoretical strength of Gamow—
Teller transitions that corresponds to the first ten 1+
statesis 3.492.

The wave functions characterized by J™, T = 1%, 1
and by T, = 0 describe the isovector 1+ states in 2Si.
These states are excited in inelastic el ectron scattering,
the values of B(M1) being extracted from the relevant
experimental cross sections. Listed in the last part of
Table 2 are experimental datafrom [12] on the excita-
tion-energy distribution of the strength of isovector
M1 transitions. We display all isovector states discov-
ered in the excitation-energy range between 10.5 and
15.5 MeV.

The following comment on the 10.64-MeV state
indicated in the first column of Table 2 isin order here.
As a matter of fact, two states at energies 10.597 and
10.725 MeV were discovered experimentally in place
of this state. Usually, they are considered as superposi-
tions of one isovector and oneisoscalar 1+ state [17]. It
can easily be shown that, in this case, the total strength
of M1 transitions to the two states in question is equal
to the sum of the strengths of M1 transitionsto theinput
2000

Vol. 63  No. 11



PROPERTIES OF ISOVECTOR 1* STATES 1879
Table 3. Transformation matrix
1 2 3 4 6 7 8 9 10
1 0.952 0.024 -0.293 -0.013 —0.080 -0.032 —0.003 0.006 0.001
2 0.023 0.988 0.146 0.004 0.030 0.014 —0.005 —0.003 —0.001
3 —0.293 0.146 —0.885 0.021 —0.153 —0.149 0.248 0.042 0.011
4 -0.013 0.004 0.021 0.903 —0.340 —0.050 —0.258 —0.002 —0.005
6 —0.080 0.030 —0.153 —0.340 -0.216 -0.194 -0.877 —0.004 —0.018
7 —0.032 0.014 —0.150 —0.050 -0.194 0.961 -0.116 0.002 —0.002
8 —0.003 —0.005 0.248 —0.258 -0.877 -0.116 0.299 -0.011 —0.015
9 0.006 —0.003 0.043 —0.002 —0.004 0.002 -0.011 0.999 —0.000
10 0.001 —0.001 0.011 —0.005 —0.018 —0.002 —0.015 —0.000 1.000

isovector and isoscalar 1* states. The calculations per-
formed within the multiparticle-shell model based on
the Hamiltonian from [8] reveal that the strength of the
isoscalar M1 transition is one to two orders of magni-
tude less than the strength of the isovector M1 transi-
tion. Disregarding the strength of the isoscalar M1 tran-
sition, we can therefore calculate the energy of the
input isovector state as the weighted mean of the ener-

E,B,(M1) + E,B,(M1)
B,(M1) + B,(M1)

The resulting energy of the isovector state and the total

strength of the transitions are quoted in Table 2.

The sum of the experimental B(M1) valueslisted in
Table 2 is equal to 7.360 nuclear magnetons. The sum
of the corresponding theoretical values is 8.623. The
calculations were performed with free gyromagnetic
ratios, but effective magnetic charges were not intro-
duced.

Let us contrast the states observed experimentally
against the eigenfunctions of the shell model. For this
purpose, we compare the energies of these states with
the eigenvalues of the Hamiltonian of the multiparticle
shell model. Such acomparison is considerably simpli-
fied if we consider excitation energies reckoned from
the energy of the first excited state—that is, the differ-
ences E, — E,, which are also given in Table 2. With the
aid of these differences, the eigenfunctions of the
Hamiltonian of the multiparticle shell model can be put
into correspondence to states discovered experimen-
tally quite unambiguously, whereby we arrive at the
conclusion that the energies of the statesin question are
described remarkably well on the basis of the multipar-
ticle shell model implemented with the Hamiltonian
proposed in [8].

From Table 2, we can see that there are eigenfunc-
tions of the Hamiltonian—for example, the fifth func-
tion in this table—that have no counterparts in the
experimental spectrum measured so far. This may be
due to extremely small theoretical values of B(GT) and
B(M1). In what follows, we take no account of this state
because no manifestations of it have been found exper-

gies of the observed states,
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imentally. The state corresponding to the sixth function
was discovered in the (p, n) reaction; its analog at
13.31 MeV in?8Si hasnot yet been recorded ininelastic
electron scattering, athough it manifested itself in
inelastic proton scattering [ 18]. According to the expla-
nation given in [12], this is because the spin magnetic
current and the orbital magnetic current compensate
each other in the M1 transition to the state being dis-
cussed. The calculations with the Hamiltonian from [8]
that were performed in [12] reproduced this effect suc-
cessfully.

Thus, we arrive at the conclusion that the shell
model qualitatively reproduces the basic features of the
excitation-energy distributions of the Gamow—Teller
and M1 strengths—in other words, small experimental
values of the relevant cross sections correspond to
small theoretical values of B(GT) and B(M1). However,
the theoretical distributions of the transition strength
among states whaose contribution saturates a major part
of the entire transition strength differ substantially from
the analogous experimental distributions. In particular,
the B(GT) and B(M1) values calculated for transitions
to the third isovector 1+ states are noticeably less than
the relevant experimental values; at the same time, the
theoretical values of the total strength of Gamow-
Teller and M1 transitions are much greater than the
experimental values. The distinctions between the the-
oretical and experimenta strength functions are illus-
trated graphically in [12, 13]. Thetransformation of the
wave functions that is proposed in the present study is
aimed at removing this discrepancy.

The resulting matrix that represents the entire trans-
formation and which appears to be the product of two
reflection matrices is given in Table 3, which also
guotes the number of the Hamiltonian eigenfunctions
subjected to mixing. The matrix in question is symmet-
ric since the reflections are performed with respect
mutually orthogonal planes, whence it follows that the
matrices of these reflections commute. Basically, the
numbers appearing on the principal diagona of the
matrix are close to unity in absolute value. The sixth
and eighth states, whose experimental counterparts

2000
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Table 4. Distributions of the Gamow-Teller and M1 strengths in 22Si according to the calculations with the transformed
wave functions for excited states

k 1 2 3 4 6 7 8 9 10
B(GT) 0.300 0.165 1451 0.222 0.247 0.622 0.208 0.140 0.137
B(M1) 0.445 1.044 4.641 0.764 0.258 0.620 0.234 0.286 0.330
Table5. Lifetimesof the 1* statesin 22Al (in units of 10715 s)

' . . Experimental
k E., MeV a b E., MeV a b c data
1 1.373 239 152 10.810 184 117 235 320 + 50
2 1.620 465 531 11.192 285 279 590 120 + 60
3 2.201 66 44 11.519 70 48 65 65+35
4 3.105 21 12 12.643 17 10 22
5 3.542 9.7 9.8 12.970 9.1 9.2 7.9
6 4.115 0.94 7.0 13.771 11 8.6 09
7 4.846 0.69 0.88 14.374 0.64 0.80 0.7
8 5.017 12 0.48 14.605 10 041
9 5.435 0.94 0.93 15.024 0.77 0.76
10 5.919 18 18 15.507 15 15
Note: In columnsa, b, and ¢, we display, respectively, the results calculated with the Hamiltonian from [8], the results calculated with the

transformed wave functions for 1" states, and the results of the cal cul ations performed by Endt and Booten [11] (these authorsrelied
on the Hamiltonian from [8]). The experimental values presented here are quoted according [11]. The results given in columns &'
and b’ were obtained by using the excitation energies as calculated with the Hamiltonian from [8], in which case these excitation

energies were reckoned from the ground-state energy of 2°Si.

were discovered only inthe (p, n) reaction, arevirtually
interchanged. In the remaining cases, the main compo-
nent is conserved—other states are admixed to it insig-
nificantly.

Knowing the transformation matrix, we can use
expression (2) to calculate the amplitudes for M1 and
Gamow-Tdller transitions and, after that, to evaluate
the corresponding reduced probabilities B(M1) and
B(GT). The resulting strength functions for Gamow—
Teller and M1 transitionsare quoted in Table 4. Theval-
ues found for B(GT) must be multiplied by 0.66 in
order to obtain the experimental values from Table 2;
that is, the form of the experimental strength function
for Gamow—Téller transitions has been faithfully repro-
duced. The ratios of the experimental values of B(M1)
to the corresponding values from Table 4 vary between
0.67 and 1.5, whence we see that, as might have been
expected, the form of the M1 strength function is
described in this way only approximately.

4. GAMMA DECAYS OF 1* STATES IN 28A|

As an additional check upon the wave functions
obtained here, we will calculate the lifetimes of the 1*
states in 28Al and the branching fractions for their
decays.

Not only does the transformation (1) of the wave
functions change the matrix elements of the operators
that are responsible for transitions between 1* states
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and states of different spin—parities, but it also affects,
as can be seen from Eq. (2), the matrix elements of the
operators for transitions within 1*, 1 states themselves:

[p|Ol@O— OOy, 0= U, , |0l @LU . (6)

As aresult, the gamma-decay lifetimes of isovector 1*
states and the relevant branching fractions a so change.

For the 1* states in 28Al, Table 5 displays the life-
times computed with the original wave functions and
the wave functions (or transition amplitudes) trans-
formed with the aid of the matrix from Table 3. Also
quoted in Table 5 are experimental data from [11, 17].
In our calculations, we took into account the J®= 0", 1+,
2*, and 3* states of the %Al nucleus and used experi-
mental values of the energies of excited states in those
cases where these energies are known. This is because
the rates of electromagnetic transitions depend greatly
on the transition energy [19], and the precision of 0.1—
0.2 MeV achieved in calculating the energies of nuclear
statesisinsufficient at transition energies of 1to 2 MeV.
With increasing gamma-transition energy, the effect of
this uncertainty is reduced. In al probability, Endt and
Booten [11] also performed their calculations with the
experimental values of the excitation energies. Table 5
additionally presents the results of our calculations
employing purely theoretical values of the excitation
energies. By comparing these two versions, we can eas-
ily notice that, at low transition energies, even compar-
atively small variations in the energies of excited levels
Vol. 63

No. 11 2000
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Table 6. Branching fractions for the gamma decays of 1* states in 22Al
cved w2 o s [n[w[z]a]s]a]a]x
E¢ 0.000 | 0.031 | 0972 | 1.014 | 1.372 | 1.620 | 1.623 | 2.139 | 2.201 | 2.486 | 3.012 | 3.105
1372 | a 44 | 732 | 224
b 2.9 758 | 21.3
C 4.4 74 22
Expt. | 4.7(3)| 55(1) | 40(0)
1.620 a 3.8 776 | 18.0 0.5
b 4.2 58.7 | 36.7 0.3
c 4.7 93 21
Expt. | 6 @2 | <
2.201 a 0.2 21 | 804 145 2.6
b 0.0 633 | 352 14
c 0.2 22 | 80.1 14 2.7
Expt. | <6 793) | 16(2) <3 <5
3.105 a 0.5 414 | 305 0.1 0.4 3.7 17.7 13 0.3 4.1
b 0.2 76.1 2.6 0.0 12 49 74 3.7 0.1 3.7
(o 05 43 32 0.2 04 38 18 14 0.3
Expt. 75(3) 25(3)
3.542 a 16 30.2 | 25.7 119 15 22.2 2.6 0.0 4.1
b 16 304 | 258 11.1 16 22.3 2.7 0.1 4.2
4.115 a 0.0 52.3 | 36.0 3.2 2.7 0.1 4.4 0.1 0.6
b 0.1 9.9 21 30.0 0.1 185 | 26.1 5.0 6.3
4.846 a 0.1 77.0 1.2 49 4.5 21 12 51 0.2 2.0 11
b 0.2 718 0.3 4.6 53 4.3 0.3 8.2 0.8 31 0.4
5.017 a 0.3 365 | 29.0 7.9 0.8 4.9 34 0.0 12.1 13 0.3
b 0.1 564 | 36.1 0.4 0.9 0.7 0.3 14 0.2 0.0 2.3
5.435 a 11 11 14.0 0.3 11.0 0.0 61.5 0.2 0.3 4.0 0.4 0.6
b 11 10 12.0 0.3 8.2 0.3 61.7 0.6 4.0 4.0 0.5 0.7
5.919 a 13.2 15.7 34.2 6.8 36 | 106 0.2 0.2 33 0.4
b 12.0 15.1 36.1 6.3 3.7 | 105 0.5 0.3 35 0.2

Note: Theresultsdisplayedinrowsa, b, and c correspond to the same versions of the calculations as those used to obtain the valuesin the

columns of Table 5 that have the same |abels.

cause asizable scatter in the lifetime values. Also given
in the table for the sake of comparison are the results of
the calculations from [11].

The branching fractions for the gamma decays of
the 1* statesin Al are given in Table 6. A comparison
of the results of the calculations with experimental data
reveals that the transformation of the wave functions
for the 1* states leads above all to an enhancement of

the rate of the transitions to the 2; state at 0.031 MeV
from the 1 ; states and to areduction of the rate of the
transition from the 1, level. As aresult, the agreement
between the experimental and theoretical lifetimes of

the 1 , levels becomes poorer. For the 1; level, the

lifetime of 44 x 1015 s obtained from a calculation with
the transformed wave functions (column b) is close to
PHY SICS OF ATOMIC NUCLEI
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thevaluesof (38.3 £2.8) x 10 and [60.8 £ 3.4 (Stat.) £
9.1 (syst.)] x 10715 reported in [1] and [2], respectively.
Concurrently, the correct relationship between the

intensities of the transitions from the 1; , statesto the

2, and 0; states is recovered. Previously, the calcula-

tions within the multiparticle shell model were unable
to describe these branching fractions [11, 20].

Investigation of the branching fractions for the
gamma decays of excited 1+ states of 28Al is necessary
for analyzing experiments measuring partial muon cap-
ture by 28Si nuclei, including relevant polarization
experiments[1, 2]. Of particular importance may prove
to be gamma transitions to the 2.201-MeV state from
higher lying 1* states populated in muon capture.

In connection with our analysis of the lifetimes and
branching fractions, the following comment isin order.
The procedure used here to take into account experi-
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mental data on strength functions implies that the
ground states are well described by the multiparticle
shell model and that the discrepancies between the the-
oretical and the experimental strength functions are due
exclusively to uncertainties in the wave functions for
excited 1* states. By transforming the wave functions
for excited states in such a way as to reproduce the
experimental  strength functions, we simultaneously
make an attempt at partly compensating for the possible
flaws in describing the ground state. The total Gamow—
Teller and M1 strengths can be computed as the expec-
tation values of specific two-particle operators over the
ground state. Therefore, a considerable excess of the
theoretical values of the total transition strength over
the corresponding experimental values evinces inade-
guacy of the description of the ground state.

5. MUON-CAPTURE RATES FOR ALLOWED
PARTIAL TRANSITIONS

The rate of ordinary muon capture accompanied by
the J; — J; partia transition is given by [9, 10]

Ji+J;
AT = vy IMI()
3=13,-3 (N

+M3(J + 1) + M3(=J-1) + M5(J)],

where the abbreviation “OMC” in the superscript on
the left-hand side denotes ordinary muon capture. The
independent nuclear amplitudes M;(k) describe muon
capture from the s, , state in the process where a neu-
tron is produced in the state characterized by the spher-
ica quantum number Kk and where the total angular
momentum J is transferred to the nucleus. The general
formulas for computing these amplitudes can be found
in[9, 10]. The expression for calculating the factor Vis
presented in [10]. For the allowed 0" — 1* transition,
the only nonzero amplitudes are

My(-1) = @Er
L2
3

¥2G,1121] —%\[onp] ¥ fgv[lllp] g

1

(®)
O
M,(2) = ﬁg—%sz[lol] + B3A—§GPH121]

+ﬁ [011p] fgv[lll ]D
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which represent sums of the products of the weak form
factors

Ga = 9n(@) ~[0u(e) + Gu(@N] 5%,

e ©)
p = [9p(a) = 9a(@) ~9(A") — (@] 535
and the multiparticle matrix elements
[101]
= |25 %cb (r)io(VrIot I ==,
am & )23, +1
[121] = E
. . i _ 1
x{J O Jvrd[Yofi), 0l it i) /——.
<szlp kk>2J+1(O)
[111p] = J%T
. . . _ 1
<Jf kZlq)u(rk)Jl(Vrk)[Yl(rk)’ O] 1t Ji>ﬁ,
ol = [ £
<‘Jf Zd) (rdj(vroY.(f)(o Uty >JT1
f

Here, ¢,,(r) isthe bound-muon wave function. Themain
diffi culty encountered in analyzing partial rates of ordi-
nary muon capture is associated with uncertainties in
these nuclear matrix elements. Of prime importance
often appears to be the [101] matrix element; in the
limit of vanishing neutron energy, it comes to be pro-
portional to the Gamow-Teller matrix element
[J]|ot]}% 0 which is known from the theory of beta
decay. The nuclear matrix elements in (10) depend on
the neutrino energy—that is, on the energy of the final
state of the nucleus. In calculating the capture rates, we
will therefore transform, instead of the nuclear matrix
elements in (10) and the amplitudes in (8), the single-
particle transition densities defined as the spin- and
isospin-reduced matrix elements of the tensor product
of the nucleon creation and annihilation operators
between multiparticle wave functions [21],

D(AJ, AT, ad', f, i)
_ 0, Tlltad 0 &1 laTo
JRAI+1)(2AT+1)

Under the transformation in (1), the single-particle
transition densities will therefore change according to

(11
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Table7. Partial rates of muon capture (in units of 10° s™) and nuclear matrix elements computed with (a) the original and
(b) the transformed single-particle transition densities (data for 22Si)

k, number of an 1* excited state
1 2 3 4 5 6 7 8 9 10
AN a 299 3.1 341 | 261 | 002 31 206 | 115 8.2 35
b |128+0.2] 7.6+0.2/63.6 24112+ 05 85+04(187+0.2/7.3£2.1|66+02|42+0.1
Expt.  [23] 12.9+2.1/62.8+ 7.414.7 £ 2.6
[101] a 0039 | 0012 | 0041 | —0.037 | 0001 | -0.017 | 0.039 | -0.028 | -0.021 | 0.017
b 0.027 | 0019 | -0.057 | —0.022 0024 | 0039 | 0023 | -0.018 | 0.018
[121] a | -0006 | 0000 | -0.005 | 0006 | 0001 | -0.002 | 0001 | 0001 | 0.006 | 0.004
b | -0.004 | -0.001 | 0007 | 0.005 -0.002 | 0.002 | -0.001 | 0.005 | 0.004
[111p] a | -0004 | 0011 | 0012 | 0003 | 0005 | 0017 | -0.012 | 0008 | 0002 | —0.001
b | -0008 | 0012 | -0.007 | -0.004 -0.010 | -0.017 | —0.009 | 0.002 | 0.001
[011p] a | -0.016 | -0.007 | -0.017 | 0.017 | 0001 | 0007 | —0.019 | 0015 | 0012 | —0.005
b | -0011 | -0.010 | 0.025 | 0.010 -0.013 | -0.020 | -0.008 | 0.011 | -0.005

(2). The muon-capture rates cal culated with the original
and with the transformed wave functions of excited
states are quoted in Table 7. In calculating the nuclear
matrix elementsin (10), we used ¢,,(r) values averaged
over the nuclear volume [10]. The amplitudes in (8)
were computed with the values of g, = —1.263 and
0p/0a = 7.0. Of particular interest is the muon-capture

process involving the excitation of the 1; 2.201-MeV

state, which was studied in the experiments reported in
[1, 2]. The calculation with transformed functions
revealed that, in muon capture, this state is popul ated at
the highest rate and that the corresponding capture rate
exceeds the total rate of capture into all other 1* states.
The greatest matrix elementsare [101] and [011p]. The
remaining matrix elements are much less. The [101]
matrix element is related to the Gamow—Teller matrix
element, whose value can be tested in (p, n) reactions.
No direct means for testing the values of the [011p]
matrix element has been proposed thus far. In [22], it
was shown that the gp/g, value extracted from data of
the correlation experiments reported in [1, 2] is
extremely sensitive to the theoretical value of the ratio
[011p)/[101].

The experimental values of B(GT) and B(M1) serve
as parameters of the orthogonal transformation in the
space spanned by the wave functions for excited states.
Therefore, itisdesirableto consider the possible effect of
uncertainties in the values of B(GT) and B(M1) on the
results that we obtained. Let us estimate the root-mean-
square error in the values calculated for partial rates of
muon capture. For this purpose, we address Eq. (7). The
error in B(GT)—we denote it by dB, (GT)—can affect

only the quantity S= MZ (=1) + M?(2). For each partial
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transition, the root-mean-square error in the theoretical
capture rate is then given by

SA = V3S,
where
35S
- [0S f, 0 0S f
Jz [Q?B SR + (Ml)zssk(m)m}

The partial derivatives appearing in the expression for
0S can be calculated analytically or estimated with the
aid of afinite-difference approximation of the form

df _ f(x+h)—f(x- h)
dx 2h

Thisisthe way in which we have calculated the values

that are presented in Table 7 for the errors in the theo-
OMC

retical values of A,

The partia rates of ordinary muon capture by
sd-shell nuclel were measured by Goringe et al. [23].
Their results concerning 28Si are also quoted in Table 7.
A comparison of those data with the results of our cal-
culations demonstrates that the wave functions con-
structed for the excited statesin such away asto repro-
duce the shapes of the Gamow-Teller strength func-
tions make it possible to describe quite accurately the
partial rates of muon capture as well. In the case of the

1; state, the theoretical value of the ordinary-muon-

capture rate is very close with the experimental resuilt.
Thisis because thistransition is dominated by the spin-
flip matrix element [101]. That the theoretical values of
muon-capture rates are close to their experimental

2000
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counterparts highlights the following contradiction.
The matrix elements of the Gamow—Teller transitions
as extracted from data on the reaction 28Si(p, n)*Al
proveto be suppressed in relation to the theoretical esti-
mates [according to Tables 2 and 4, we have B, ,(GT) =
0.66B,,.,(GT)]. At the same time, the agreement
between the theoretical (version b) and the experimen-
tal partial rates suggests that, in muon capture, there is
no suppression of the spin matrix element [101]. Obvi-
ously, only further investigations can clarify the reasons
behind this discrepancy.

6. CONCLUSION

We have proposed an approach that makes it possi-
ble to take into account, in calculating the partial rates
of muon capture by nuclel, experimental information
about the strength functions for Gamow-Teller and
isovector M1 transitions. The approach consists in
choosing an orthogonal transformation in the subspace
of the wave functions for excited states in such a way
that the Gamow-Teller and M1 strength functions cal-
culated with the transformed wave functions coincide
in form with the corresponding experimental strength
functions. No modifications of the transition operators
are required within this approach. This point is of
importance since the operators of Gamow—Teller and
M1 transitions differ from the operators of the effective
Hamiltonian for ordinary muon capture. In the present
study, we have set forth a method for constructing the
matrix of such atransformation in terms of reflections
with respect to a plane. All calculations have been per-
formed on the basis of the multiparticle shell model.
The numerical results have been obtained for isovector
statesin A=28 nuclei. In particular, we have considered
the strength functions for Gamow—Teller and isovector
M1 transitionsin 2Si, cal cul ated the gamma-decay life-
times of those 1* states in 28Al that can be excited in
ordinary muon capture by 28Si, and found the relevant
branching fractions. By using experimental informa:
tion in the way outlined above, we have been able to
describe correctly, for thefirst time, the branching frac-
tioggsfor the gammadecay of the 1* state at 2.201 MeV
in28Al.

It has been shown that, upon applying the transfor-
mation of the wave functions that has been introduced
in the present article, the distribution of the partial rates
of alowed muon capture by 28Si among the fina 1*
states of 28Al changes substantially in relation to the
results of the cal culations employing the original eigen-
functions of the Hamiltonian of the multiparticle shell
model. The rates of ordinary muon capture that have
been calculated with g, = —1.263 comply well with
experimental data, being very close to them for the
strongest transition.
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Abstract—A new transformation of double volume integralsinto double surface integralsis presented. A sim-
ple regular method for deriving integrands in a surface integral is proposed. This method is used to calculate
the Coulomb energy of a nucleus within the model of aliquid drop with a sharp boundary. Numerical results
obtained on the basis of the new formula are compared with those calculated by one of the formulas employed

previously.© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Over afew decades, the liquid-drop model has been
extensively used in nuclear physics. Proposed by
Ya Frenkel [1] and by N. Bohr and JA. Wheeler [2],
when nuclear physics was ill in its infancy, it also
forms a basis for the shell-correction approach of
Strutinsky [3, 4]. Within the liquid-drop model, the
energy of anucleusis given by

LD LD ~(0 LD 0 LD
Eo = Bs’ES + BcoyESos + BR Er, (1)
where the first, the second, and the third term stand for,

respectively, the surface, the Coulomb, and the rota-
tional energy of the nucleus being considered; the

. . e LD LD LD
dimensionless quantities B, Bg,, and Bg are

Q)
S

functionals dependent on the nuclear shape; E5’ and

EQ, are, respectively, the surface and the Coulomb
energy of the corresponding spherical nucleus; and Eg
is the angular-momentum-dependent component of the
rotational energy. In dealing with nuclear energies

within this framework, the quantity Beo, requires the
most cumbersome calculations. In this study, we pro-
pose anew method for calculating this quantity.

2. FORMULATING AND SOLVING THE PROBLEM

By definition, the Coulomb energy is expressed in
the term of a sextuple integral,

15 1
Ecou = EcouBou = Eg’cfugg;-[zjde r—r]’ 2)

which is calculated over the volume of the nucleus.
Heredfter the radius of the corresponding spherical
nucleusis used as a unit of length.

D Oomsk State University of Railway Transport, pr. Marksa 35,
Omsk, 644046 Russia

2) Omsk State University, pr. Mira55A, Omsk, 644077 Russia.

* e-mail: kosenko@nrsun.jinr.dubna.su

Since it is necessary to evaluate many times the
Coulomb energy and its derivatives with respect to col-
lective coordinatesin dynamical calculations like those
from [5-7], there arises the pressing problem of opti-
mizing existing computational methods and formulas
implementing these methods. The relevant calculations
can be considerably simplified if we assume that the
charge is uniformly distributed over the nuclear vol-
ume. In this connection, we would like to mention the
well-known method that was proposed in [8, 9] and
which relies on a transformation of the double volume
integral appearing in Eq. (2) into adouble surface inte-
gral where integration is performed over the nuclear
surface and where the nuclear shape depends on param-
eters. Thus, the integral provesto be afunctiona of the
nuclear-surface shape. By going over to a surface inte-
gral, we get rid of two integrations with the result that
the relevant integral assumes the form

1_ 1 1
favav's = —£[(dS T)(dS L), 3)

whereo =r —r'and o =|r —r'|. The price that we have
had to pay for this simplification is that the integrand
becomes more involved. Indeed, the scalar products
(dS- o) and (dS - o) generate an additional dependence
on the angle between the normal to an element of the
integration surface and the vector ¢. On the other hand,
a scalar quantity having dimensions of energy can be
obtained by multiplying two surface elements. { Unfor-
tunately, this possibility was not explored by Davies
and Sierk [8], who obtained integral formulasfor calcu-
lating the Coulomb functional Bg,,—see Egs. (2.24)—
(2.26) in[8].} Theunknown integrand f(o) in thetrans-
formation

J’dVdV‘c—lj = [(dSHS)f(0) )

will then depend on o, the modulus of the difference of
the relevant radius vectors.

1063-7788/00/6311-1885%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Mathematically, the problem is formulated as fol-
lows: it isnecessary to find an appropriate function f(o)
in the simplest way. If, for example, Eq. (3) is used to
perform surface integration, the relevant integrand is
constructed by means of a procedure involving a Fou-
rier transformation followed by a determination of the
Fourier transform via a transition to the relevant com-
plex plane. This procedure is quite regular, but it is not
efficient when there is an arbitrary integrable function
in the double volume integral.

On the other hand, the use of Gauss' theorem for the
gradient of a function [10] makes it possible to recast
Eq. (4) into the form

[(dSTHS)f(0) = [dv(dSgrad,) 1(0).  (5)

The right-hand side of Eqg. (5) involves a volume
integral where the scalar product of the gradient opera-
tor and the remaining second surfaceintegral appearsin
the integrand. Applying Gauss' theorem for the diver-
gence of avector, we obtain the double volume integral

J’dV'(ngradr.)f(o) = J’dVdV‘divrgradr.f(o), (6)

where the integrand has the form of the scalar product
of two del operators differentiating an unknown func-
tion with respect to the different variables.

That Eq. (6) must be satisfied for an arbitrary inte-
gration surface dictates that the integrand on the left-
hand side of Eq. (4) be equal to the integrand on the
right-hand side of Eq. (6); that is,

1

) = )

Introducing the notation o for the difference of the
vector variablesr andr', o =r —r', we can represent the
differential operator on the left-hand side of Eq. (7) in
the form

—div,grad, f(I[r =r']) = <A, f(Ir =r|) = —A(,f(o).(g)

div.grad, f(|r —

Combining Egs. (7) and (8), we arrive at Poisson’s
equation
—Asf(0) = p(0), )
where p(o) = 1/0.
Since the charge “ density” p(o) is spherically sym-
metric, the " potential” f(o) must have the same symme-
try. Going over to spherical coordinates, we obtain

6] d5 @] = po).

Upon the substitution

(10)

(11)
Eqg. (10) takes the form

1d o1
—=5uo) = 2.

4o’ (12)
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A genera solution to Eqg. (12) isgiven by
02
u(o) = _E+C10+C2' (13)
Setting C, = C, =0, we arrive at f(0) = -0/2.

Thus, we have transformed the above double vol-
ume integral into adouble surface integral; that is,

11 .
favav's = S[(dsts)o. (14)

We further test Eq. (14) analytically for the case of
spherical symmetry. A simple integration then yields

_ 32r?

15 (15)

—= J’ (ds@S)o
Substituting (14) and (15) into (2), wefind that Beo, is
equal to unity is this case, as it must for a spherical
nucleus.

Let us now rewrite the expression that we have

obtained for Bg, in terms of cylindrical coordinates.

Restricting our consideration to axisymmetric nuclear
shapes—that is, assuming that p = p(2), where p(2) isa
profile function whose rotation about the symmetry
axis z specifies a nuclear surface—we obtain

Zmax  Zmax
Beou = _1_§[ZI(dS EdS')lr —r'| = dZJ' dz
Znin  Znin
2m (16)
jdtptp(Z)p(r) cosg+ p(z) 22 dp(z) o(z) 2@ dp(i) 0

x{p’(2) + p’(2) - 2p(2) p(2) cosg+ (z—2)*} .
If we have the implicit dependences p(x) and z(x),
Eqg. (16) takes the form
—EJ'(ds S)|r —r]

2n

I dx I dx Idcptp(x)p(x)coscpdg(;) i)
+ p(x)dp(x) p(x)dp(x)

x{ p%(X) + p*(X) — 2p(x) P(X) cosp+ [2(X) — Z(x)]*} "~

We now proceed to discuss our numerical results; con-
currently, we determine the accuracy that the above for-
mulaensures and assess the time required for the cal cu-
lations on its basis. The numerical results obtained for
Beou by using Eq. (16) can be compared with those that
Vol. 63

No. 11 2000
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Results for the functional Bégw that were calculated by the Lawrence formula (17), along with the results obtained by the new

formula (16)

c Fa. (0. £9 (9. |pifference(x109) | £ (2D £ (0. | Difference (x109)
100 | 0999999 1.00001 164 099999999 |  1.0000006 626
101 | 0999977 0.99999 166 099997771 | 09999783 635
102 | 0999911 0.99992 169 099991133 | 09999119 —6.44
108 | 0999801 0.99981 171 099980155 | 0.9998022 654
104 | 0999649 0.99966 ~1.74 099964902 | 09996496 664
105 | 0.999454 0.99947 177 099945435 | 0.9994550 675
106 | 0999218 0.99923 179 099921811 | 09992188 685
107 | 0998940 0.99895 182 099894084 | 09989415 —6.97
108 | 0998623 0.99864 185 099862304 | 0.9986237 7.8
109 | 0998265 0.99828 ~188 099826517 | 0.9982658 720
110 | 0997867 0.99788 191 099786765 | 09978683 ~7.32
111 | 0997430 099745 195 099743087 | 09974316 745
112 | 0996955 0.99697 198 099695520 | 0.9969559 758
113 | 0996440 0.99646 —2.02 099644095 | 09964417 171
114 | 0995888 0.99590 205 099588843 | 0.9958802 784
115 | 0995297 0.99531 209 099520790 | 0.9952987 798
116 | 0994669 0.99469 —2.12 099466959 | 09946704 ~8.13
117 | 0994003 0.99402 216 099400371 | 0.9940045 827
118 |  0.998300 0.99332 220 099330044 | 09933012 842
119 | 0992559 0.99258 —2.24 099255991 | 09925607 858
120 | 0991782 099180 228 090178227 | 09917831 874
121 | 0990967 0.99099 232 099096760 | 0.9909684 890
122 | 0990115 0.99013 237 099011599 | 09901169 —9.06
123 | 0989227 098925 241 098922748 | 0.9892284 923
124 | 0988302 0.98832 246 098830210 | 0.9883030 ~9.40
125 | 0987339 0.98736 250 098733985 | 09873408 958
126 | 0986340 0.98636 255 098634073 | 09863417 976
127 | 0.985304 0.98533 260 098530469 | 0.9853056 ~0.94
128 | 0984231 0.98425 265 098423169 | 09842327 101
129 | 0983121 098314 270 098312165 | 09831226 103
130 | 0981974 0.98200 275 098197449 | 09819755 ~105

Note: Here, cisthe elongation parameter inthe{c, h, a} parametrization and N isthe number of nodesin integration by the Gauss method.

are calculated on the basis of the Lawrence formula sary to calculate atripleintegral in order to estimate the
[11] (seeaso0 [12])

Beo, = 4 J’dz J’dz‘ Id(p

where f

Zinin

min

functional Bgyy.

According to [8], other formulas for calculating the
p’p' *sin’ @ a17) functional B, that involve total elliptic integrals of
-Z+f’

the first and the second kind [4, 8, 14] in the integrand
require using effective high-precision methods [15] for

= J(z-2)’+p’+p”~2pp'cosp and p' =
p(Z). The Lawrence formula was extensively used in
dynamical calculations within the liquid-drop model
[13], despite the fact that, here—asin (16)—it isheces-
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estimating elliptic integrals. Landen’s method (arith-
metic—geometric mean) [14, 16, 17] is not appropriate
for this[8]. Thisisthe reason why, despite an additional
integration, the Lawrence formula, as well as formulas
for Be, interms of double integrals (see, for example,
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[14]), is widely used in numerical calculations per-
formed in the theory of fission.

Our new formula is also advantageous in that, in
contrast to similar formulas from [9, 11, 12], it has no
singularities in the integrand. Since such singularities
must be avoided in numerica calculations, this feature
of our formulais of great value.

In order to perform numerical calculations on the
basis of Eq. (16), we chosethe popular { ¢, h, a} param-
etrization [4] of the nuclear surfaceand seth=a =0for
the sake of simplicity, varying only the nuclear-el onga-
tion parameter c¢. The triple integrals in Egs. (16) and
(17) were calculated by Gauss quadrature formulas
with 32 and 96 nodes. The results are quoted in the
table, where we can seethat the values cal culated by the
two formulas differ only in the fifth significant digit
when integration is performed with 32 nodesand in the
seventh digit when integration is performed with 96
nodes. The example of asphere (c= 1, Bgy, = 1) dem-
onstrates clearly that our formula overestimates the
exact result, whereas the formula employed previously
underestimates it. We also note that computations on
the basis of the new formula require 10-15% less
machine time, depending on the parametrization of the
nuclear shape.

3. CONCLUSION

A new transformation of double volume integrals
into double surfaceintegrals has been presented. A sim-
ple regular method for deducing the integrands in the
surface integral has been proposed: it is sufficient to
perform only two integrations of the function entering
into the volume integral. The new formula does not
require applying special numerical techniques, since
theintegrand in it isfreefrom singularities. Our method
has been used to calculate the Coulomb energy of a
nucleus within the model of aliquid drop with a sharp
boundary. The results of this calculation have been
compared with those obtained according to one of the
formulas employed previously. For the Coulomb func-
tional, the new formula ensures a reasonably high pre-
cision that increases with the number of nodes in the
integration. Calculations by the new formula consume
10-15% less machine time than cal cul ations by the for-
mulas used so far.
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Abstract—It is shown that the s-wave partial amplitude f(k) for scattering on the real-valued Woods-Saxon
potential V(r) =-V,/[1 + exp((r — R)/d)] has very special analytic properties: the trajectories of the poles of the
function k cotd [of the zeros of the amplitude f(Kk)] coincide with the lines of the dynamical singularities [spu-
rious poles of f(k)], so that the zeros and the poles compensate each other. In contrast to what is obtained for
Yukawalike potentials, the scattering length does not vanish here at zero energy. The results reported in this
article were obtained analytically under the assumption that exp(—R/d) < 1. The problem of revealing the poles
of the function k cotd in a partial-wave analysis of neutron scattering on nuclei is discussed.© 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

For analytic Yukawa-like potentials whose asymp-
totic behavior is given by

V(r) — const ’exp(—pur), u>0, b=-2, (1)

a quantum-mechanical theorem on the symmetry of
bound and virtual states was formulated and proven in
[1]. According to this theorem, the positions of the
pointswhere the trgjectories of theselevelsintersect the
lines of dynamical singularities of a partia-wave
amplitude as a function of the interaction strength g =

K2 /u2 (where K3 = 2mV, /%2, V, being the potential-
well depth) exhibit mirror symmetry with respect to the
zero-momentum axis. Later on, this theorem was
proven anaytically for the Woods-Saxon potential [2],
which is extensively used in nuclear physics. Thereby,
it was shown that the theorem on the discrete symmetry
of bound and virtual levels aso holds for potentials
irregular in the region Rer > 0. In [3], it was proven
that, for Yukawa-like potentials, the above theorem of
symmetry hasacorollary according to which thetrajec-
tories of the poles of thefunctionk cotd [or of the zeros
of the swave amplitude f(k)] intersect the lines of
dynamical singularities of the partial-wave S matrix at
the same symmetry points through which the trajecto-
ries of bound and virtual levels pass. The corollary
proven in [3] was illustrated by considering the exam-
ples of the Yukawa and Hulthén potentials.

In deriving the above statements, use was made of the
fact that the scattering length as afunction of theinterac-
tion strength passes through zero smoothly changing
from +oo to —oo in the interval between the neighboring
critical values of theinteraction strength that are defined
as those at which a virtua state becomes a bound state
(an important property of the scattering length indeed).

However, that this property is not universal. It is shown
in the present study that, in the case of the real-valued
Woods-Saxon potential, the scattering length does not
vanish at any parameter value. Nonetheless, the above
corollary of the theorem of symmetry remains valid.
Moreover, it is proven that, for the same potential, the
trgjectories of the zeros of f(k) merely coincide with the
lines of dynamical singularities (spurious poles). Thus,
thedynamical polesand the zeros compensate each other
completely. To the best of my knowledge, thisisaunique
property of a partial-wave amplitude, and it leads to
important corollaries. One of these is that, for the
Woods-Saxon potential, the trgjectory of the pole of
kcotd [zero of f(K)] as a function of the interaction
strength does not intersect the zero-momentum axis (this
isin sharp contrast to what was found for potentials of
the Yukawa type). Thus, the pole of the function k cotd
cannot come arbitrarily close to the physical region (E 2
0). For thisreason, the Woods-Saxon potential cannot be
used, for example, to describe the features of the doubl et
nd system at low energies within a two-body model. In
this connection, we discuss the possibility of reveaing
the pole of the function k cotd in the partial-wave anal-
ysis of neutron—nucleus scattering. Below, we use the
system of unitswhere# =c=1.

2. BEHAVIOR OF THE TRAJECTORIES
OF kcotd AND COROLLARY
OF THE THEOREM OF SYMMETRY
FOR THE WOODS-SAXON POTENTIAL

We begin by recalling the proof of the theorem of
symmetry for the Woods-Saxon potential

V(r) = —VO/[l + expg;R]}. )

1063-7788/00/6311-1889%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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In contrast to the potentials for which the theorem of
symmetry was proven in [1]—those potentials are ana-
Iytic in the region Rer > O0—the potential given by (2),
albeit showing the required asymptotic behavior given
by (1), has an infinite number of poles in the complex
plane of r, the coordinates of the poles being Rer = R
and Imr = £112v + 1)d, wherev is an arbitrary integer.

The well-known analytic solution to the problem in
the s wave for the Woods-Saxon potential was used in
[2] to prove the required statements. Let us introduce
the notation

B? = —2mEd® = A°d’, y® = 2mV,d® = Kid®, 5
2= y2_p? = 2md¥(V, + E), K = 2mE,

where E isthe energy of therelative motion of colliding
particles, while mis the reduced mass of the system.

We now investigate the analytic properties of the s-
wave partial amplitude, representing it as

f(k) = (2ik)"[F(=k) - F(K]/F(K), 4)

where F(K) is the sswave Jost function. The expression
for thisfunctionin the potential (2) isknown. In partic-
ular, the Jost function can be found from the asymptotic
representation of the radial wave function for the prob-
lem of scattering on the Woods-Saxon potential. The
relevant expansion can be found, for example, in [4]
(below, we correct misprints occurring there). For the
scattering of a particle with a momentum k on a spher-
ically symmetric potential V(r), the radial wave func-
tion has the form (see, for example, [5])

Wk, r) = [F(K) f(=k, 1) = F(K) f(k, r)]/2ikr F(K), (5)

where f(+k, r) and f(=k, r) stand for the Jost solutions
whose asymptotic forms are exp(-ikr) and exp(ikr),
respectively. For the scattering problem in question, the
Smatrix is given by

SK) = F(K)/F(K). (6)
After some simple algebra, we find that the explicit

expression for F(k) in the Woods-Saxon potential has
the form

F(k) = cP(1-c)"
xF(i(a + B),i(a +B) +1; 2iB+1; c),
where c = (1 + exp(-R/d))~! and F(s, t; u; 2) isahyper-
geometric function (for its definition and properties,

see, for example, [6]). This function can be calculated
with the aid of the hypergeometric series

F(s,t;u; 2 = 1+ (st/ull)z
+(s(s+ 1)t(t+1)/u(u+ 1) L R)ZL +....
The convergence of this seriesin (7) is ensured by the
inequality ¢ = (1 + exp(-R/d))"!' < 1.
Theanalytic properties of the Jost function F(k) and,

accordingly, of the scattering amplitude f(k) (4) can be
established on the basis of expressions (7) and (8). For

(N

®)
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example, it can easily be seen that the dynamical singu-
larities of F(xk) are spurious poles occurring on the
imaginary axis of the complex-valued momentum k
(k=1iA) at values satisfying the well-known equation

B=Ad==¢/2, 1 =12 ... )

The pole character of the dynamical singularities is
associated with the fact that the Woods-Saxon potential
(2) has the asymptotic form (1) at b = 0. By way of
example, we indicate that the Hulthén potential

V(r) = —Vo/[exp(ur) —1] (10)

has the same asymptotic behavior. In connection with
the theorem being discussed, the properties of the tra-
jectories of the zeros and poles of f(k) for the Hulthén
potential were considered in detail elsewhere[3].

Since the hypergeometric series in (7) converges
very dowly for exp(-R/d) < 1 (thisis so, for example,
in neutron—nucleus interactions), it is reasonable to
transform the hypergeometric function by going over
from the argument z =c to the argument z=1-c =
exp(-R/d)/[1 - exp(-R/d)] Dexp(-R/d). The next step
consistsin retaining only thefirst term in the expansion
of the hypergeometric function whose argument isz =
1 — c (thisfirst term is equal to unity), as was done in
[4]. Inthisapproximation, theJost solution assumesthe
form {see Eq. (64.12) in [4]}

f(-k 1) = (()°r(@p+1) an
x{[[(=2ia)/T(B+1—ic) (B—ic)](1-y(r))"
+[M(ia)/T@+1+io)F(B+ic)](1-y(r) ™},

wherey(r) = [1 + exp((r — R)/d)]! and () isthe Euler

gamma function. The wave function in (5) must be

bounded at r = 0. The boundary condition at the origin
leads to the Jost function in the form

F(K) = f(=k, 0). (12)

Thus, we can see that, in order to obtain the explicit
expression for F(Kk), the value of the function y(r) at the
origin,

y(0) = [1+ exp(-R/d)] ™, (13)

must be substituted into (11). The poles of the scatter-
ing amplitude for bound and virtual states correspond
to the equalities F(k) = 0 and F(—k) = O, respectively.
The pole position for abound state is determined by the
transcendental equation (see, for example, [4, Eq.
(64.16)])

& 4
%rctan 2 arctan BD
(14)

+ arctan— = I,

B

Dn Eq. (11), there appears the factor (y(r))?, which is absent from
(64.12) in [4].
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wherel isan arbitrary integer. The equation for avirtual
pole differs from (14) by the obvious substitution
B — —B and hasthe form (3 > 0)
aR_ < 20 5 arctan 90
g Zl%\rctan - 2arctann_BD

n

(15)

- arctan% = I

The proof of the theorem of symmetry in [2] relied on
the fact that, at the points where the trajectories inter-
sect the lines of the dynamical singularities, B = |Ad| =
v/2 (v is an integer), Eq. (15) goes over to Eq. (14)
(only theinteger | on the right-hand side of the equation
changes).

The positions of the zeros of f(k) are determined by
the obvious condition F(k) — F(—k) = 0, which leads to
the transcendental equation

[

arctan(a/B) + Z [arctan(a/(n + B))

(16)
—arctan(a/(n—-B))] = /2,
=012, ...

It can easily be shown that Eq. (16) is the difference of
Egs. (14) and (15), whence it immediately follows that
the above corollary of the theorem of symmetry is
valid: symmetry points lying at the intersection of the
lines of the dynamical singularities of the Smatrix and
the trajectories of the poles corresponding to bound and
virtual states also belong to the trgjectories of the zeros
of the amplitude f(k) (or of the polesk cotd).

It isinteresting to note that the parameter R does not
appear in Eq. (16), which determines the tragjectory of
the pole of k cotd. Moreover, it can be shown that the
transcendental equation (16), which has a rather com-
plicated form, has an unexpectedly simple solution for
the unknown 3 as afunction of y. This equation is sat-
isfied at B values corresponding to condition (9) such
that B(=Ad) does not depend on y(=K,d) either. Here,
the intersection of the trajectories of the zeros of the
amplitude f(k) (or of the poles of k cotd) and the lines
of the dynamical singularities implies their coinci-
dence.

Thus, we can see that, in the case of the Woods-
Saxon potential, there is an unusual, possibly unique,
situation in potential scattering: the trajectories of the
dynamical singularities (spurious poles of the Smatrix)
merely coincide with the trajectories of the zeros of the
amplitude f(k).

In quantum scattering theory, it is well known that
the poles of the s-wave partial scattering amplitude f(k)
for bound states are simple, and it was emphasized in
[3] that the corollary deduced from the theorem of sym-
metry and discussed here is consistent with the above
statement of quantum scattering theory. By way of
example, we indicate that, in the case of the Hulthén
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potential, the spurious pole is compensated by the zero
of f(k) a the symmetry point, which appears to be a
point of triple intersection where the trajectory of the
position of the bound level as afunction of the interac-
tion strength intersects the dynamical-singularity line.
But in the case of the Woods-Saxon potential, the
swave partia scattering amplitude f(k) has neither
dynamical spurious poles nor zeros because they com-
pensate one another completely (see above). Thus, we
conclude that, in contrast to what was obtained for
Yukawerlike potentials, which were considered previ-
ously, the amplitude f(k) for the real-valued Woods—
Saxon potential has no polesin the complex plane other
than those that correspond to bound, virtual, and reso-
nance states. The zeros of the Jost function F(k) corre-
spond to these poles [F(K) = 0]. With the aid of (4), (7),
and (13), the scattering length [a = —f(0)] can be repre-
sented as

a 0—(2/K,)
0 > 14U a7
X L+ 2(Kod)™ Y [n°+ (Kod)] ™ H(singcosg),
O = O]

¢ = KoR- Z [arctan(2K,d/n) —2arctan(K,d/n)].
n=1

From these expressions, it can clearly be seen that the
scattering length a cannot vanish, since the numerator
in (17) is a positive definite function if the Woods—
Saxon potential isred (that is, K, isreal). At the same
time, the behavior of the scattering length at parameter
values corresponding to interaction-strength values
closeto thecritical oneat which avirtual level becomes
a bound level—that is, when cos@ = 0 [see (14)]—has
acharacter peculiar to quantum mechanics: the scatter-
ing length undergoes an infinite jump, changing sign. In
contrast to what was observed for Yukawa-like poten-
tials, there is, however, another singular point in (17),
that which correspondsto sing = 0. Here, the scattering
length changes sign in the interval between two critical
points, asit doesin the case of Yukawarlike potentials,
but this sign reversal is not smooth as for Yukawa
potentials—this proceeds via an infinite jump in a. For
each interval between the critical values of the parame-
ters of the Woods-Saxon potential, the modulus of |a|
has a nonzero minimum, so that the scattering length
cannot be arbitrarily close to zero. The minimum value
[a)min = Amin 1S achieved for Rvalues at which sin2¢=1
(that is, at @ =174 + nM), |a/d|i, being dependent only
on the scaled parameter y = K, d.

For d — 0, the Woods-Saxon potentia reducesto
arectangular well, for which s-wave scattering length
is given by the well-known expression (see, for exam-
ple, [4])

a = R(1-(KoR)‘tanh(K,R)); (18)

that is, a, > O for any interaction strength, provided that
the potential is real-valued.



1892

B, exp(—x/y)
0.8

0.4

-0.4

-0.8

Fig. 1. Traectories of the s levels in the Woods-Saxon
potential (thick solid lines). The scaled argument x = KR
and the scaled function B = Ad are plotted along the coordi-
nate axes. The graph of the function exp(—x/y) = exp(-R/d)
is depicted by the dashed line. The positions of the dynami-
cal singularities at B = £0.5 are shown by thin horizontal
lines. Higher order poles of the scattering amplitude occur
at the intersections of the dash-dotted line and the trajecto-
ries of the levels (see main body of the text). The calcula-
tions were performed at the fixed value of y = K,d = 0.903,
which corresponds to the parameter values of V, = 40 MeV
andd =0.65fm.

It should be recalled that, for the case of the Woods—
Saxon potential, expressions (14)—(17) were derived in
the approximation exp(—-R/d) < 1. In order to refine the
results of the calculations, the hypergeometric seriesin
(8) can be evaluated with allowance for higher powers
of z=c— 1. However, the above approximation is quite
good even for relatively light nuclei. By way of exam-
ple, we indicate that, at parameter values of R= 3 fm
and d = 0.65 fm, which are peculiar to this region of
nuclei, we have exp(-R/d) < 0.01.

3. NUMERICAL RESULTS

The trgjectories of bound and virtual levels were
calculated here in order to illustrate the above results.
The function A = A,(1) [n is the principal quantum
number (number of alevel) and p = d-'] was calculated
in [2] with the parameter set from [7] for the case of
neutron scattering on a2*®Pb nucleus (V, = 46.232 MeV,
R = 7.347 fm, 2my#? = 0.04824 MeV-! fm2). In con-
trast to the study of Gareev et al. [7], who varied the
potentia depth V,, and fixed the value of d-! = 1.587 fm'!
(d[00.63 fm), the quantity varied in [2] was .. Here, we
consider the dependence 3 = B(x), X = K,R. The quan-
tity y = K,d isfixed at the value of y = 0.903, which is
in reasonably good agreement with the optical-model
parameters for low-energy neutron—nucleus scattering.
The results of the calculations based on Egs. (14) and
(15) are illustrated in Fig. 1. In these equations, sum-
mations can be truncated at n > N = 1000, whereby the
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Fig. 2. Scattering length a as a function of the interaction
strength x = Ky R. The parameter y was set to the same value
as that used to calculate the data displayed in Fig. 1. The
scaled quantity a/An,, is plotted along the ordinate. The
positions of the critical values of x (cos¢ = 0) that corre-
spond to atransformation of avirtual into abound level are
indicated by vertical dashed lines.

required accuracy is ensured. It can be seen that the
points occurring at the intersections of the trajectories
and the straight lines of the dynamical singularities (Ad =
*1/2) form pairs symmetric with respect to the point
A =0, asthey must according to the theorem of symme-
try. Figure 1 also displays the curve that was obtained
with the aid of the pole-order equation {see Eq. (17)
from [2]). At the points where this curve intersects the
trajectories of virtual levels, the relevant S matrix has
second-order poles. Two trajectories—one that appears
to be a continuation of the trgjectory of abound state to
the unphysical list and the other that comes from the
region of virtual lines—meet at each such point. Either
trajectory satisfies Eq. (15), and the two actually form
one continuous line. That these trajectories approach
each other, coming from opposite directions as the
parameter x (equal to KyR) is changed monatonically,
is reflected in that the derivative dp/dx tends to infinity
at the above pole-order points. Finally, the graph of the
function exp(—x/y) = exp(-R/d) < 1 isaso depicted in
Fig. 1, illustrating, for x = 3, the applicability range of
the approximation exp(—R/d) < 1 adopted here. By def-
inition, the binding energy € cannot be greater than V,,
whence it follows that 3 < y. From the behavior of the
trajectoriesin Fig. 1, it can be seen that, with increasing
R, levels corresponding to various values of the princi-
pal quantum number (n=1, 2, 3, 4, ...) areaccumulated
near the bottom of the potential well.

Theresults of the calculationsfor the function a/An
versus the scaled interaction-strength parameter x =
K,R are displayed in Fig. 2 at the same fixed value of
y=K,dasin Fig. 1. These data exhibit the special fea-
turesin the behavior of the scattering length for the case
of the Woods-Saxon potential that were discussed in
Section 2. The critical values of the argument x that cor-
respond to a transformation of a virtual into a bound
level (cosg = 0) are shown by vertical dashed lines. A
2000
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Amin
201

Fig. 3. Minimal absolute value of the scattering length,
Amin = [@lmin, @safunction of the strength of theWoods-Saxon
potential, y = K,d. The quantity K, is fixed at 1.389 fm™! in
accordance with the chosen value of V) = 40 MeV.

periodic character of the interaction-strength depen-
dence of the scattering length is quite conventional and
is associated with a change in the number of a level.
The dependence of the scattering length ontheradiusR
of the Woods—Saxon potential isdetermined entirely by
the denominator on the right-hand side of Eq. (17). The
discontinuities at the x points where singp = 0—they are
shown in Fig. 2 by vertical solid lines—proved to be
quite unexpected. For Yukawa-like potentials, the scat-
tering length changes monotonically in thisregion from
+00 t0 —o0, passing through zero. As can be seen from
Fig. 2, [a/Ayin| = 1.

Figure 3 shows the results of the calculationsfor the
minimal absolute value of the scattering length, A, =
[a]min, VErsusy = K,d. The graph presented there illus-
trates al that was said above about the special features
of the behavior of the scattering length for the Woods—
Saxon potential that distinguish this case from that of
Yukawarlike potentials.

4. CONCLUSION

Aswas indicated in [3], the emergence of apolein
thefunction k cotd [that is, azeroin the amplitudef (k)]
at real negative values of energy (E < 0) is not acciden-
tal; this is quite typical of Yukawa-like potentials, for
which the trgjectories of this pole are periodically rep-
licated as the principal quantum number is increased.
That the poles of kcotd manifest themselves very
rarely in partial-wave analyses of nuclear processes
may be due to the fact that, as can be seen from the
examples of theYukawa and Hulthén potentials, thetra-
jectory of such a pole intersects the zero-momentum
axis at aright angle (infinite derivative at the intersec-
tion point). As aresult, small variations in the interac-
tion strength move such a pole awvay from the physical
region (E = 0); therefore, it can be missed in a partial-
wave analysis. Near apole of the abovetype, theformula
that appearsin the conventiona effective-range approxi-
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mation (k cotd = —1/a + ryk*/2) must be replaced by a
modified formula of effective-range theory,

kcotd = (Cy+ Ck* + C,KY(L+KKD).  (19)

The results obtained in the present study—in partic-
ular, the absence of poles in the function k cotd—
imply that no such poles must appear in an analysis of
experimental data within the optical model featuring
the Woods-Saxon potential. As was indicated in the
Introduction, one of the conclusions from the present
consideration isthat, in contrast to what is obtained for
the family of analytic Yukawarlike potentials, which
lead to a monotonic change in the scattering length a
from —oo to o0 astheinteraction strength increasesin the
interval between the critical values, the scattering
length in the Woods-Saxon potential vanishes
nowhere.

The results of the present study explicitly demon-
strate that the Woods—Saxon potential, which is very
popular in nuclear physics, cannot be applied, for
example, to describing the low-energy (E < 0) features
of the doublet nd system, for which the pole of k cotd
has been reliably established. This follows both from
the results of an analysis of experimental data within
the generalized effective-range theory based on Eq.
(29) (see, for example, [8]) and from theoretical calcu-
lations relying on the Faddeev equations, as well as
from calculations within the N/D method and within
the two-body model employing various potentials of
the Yukawa type (see [3] and references therein). All
calculations on the basis of the Faddeev equations |ead
to asmooth variation of the doublet nd scattering length
inthe vicinity of zero aswe go over from one model of
nucleon—nucleon forces to another (with sign reversal).
This is the main reason behind the existence of well-
known correlations between the doublet nd scattering
length and other low-energy features of the nd system
[in particular, the binding energies of the bound and the
virtual triton (T and T*, respectively)].

Although the Woods-Saxon potential iswidely used
in optical-model calculations, it cannot be considered
as the only acceptable potential for describing, for
example, neutron scattering on nuclel (especially light
nuclei). In this connection, it would be of interest to
reconsider the results of partial-wave analyses of exper-
imental data on low-energy neutron—nucleus scattering
with aspecial emphasison searchesfor apoleof k cotd
at negative energies. Should such a pole be discovered,
thiswould imply the need for modifying optical poten-
tials, and thisisapoint of great practical interest for the
physics of slow neutrons and for astrophysics.

For E — 0, the potential becomes real-valued,
since the optical model goes over to the shell model.
The formulas obtained above can be generalized to the
case of a complex-valued potential, but this is beyond
the scope of the present article.
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Abstract—Previously reported results on the differential cross sections for the process pp — ppy occurring
at beam-proton energies of 280, 350, and 450 MeV and involving the emission of hard photons are supple-
mented with the results of calculations at 400 and 500 MeV. The emerging pattern suggests that, in the energy
range E, = 450-500 M eV, an experiment detecting hard photons from this reaction, in which case outgoing pro-
tons escape at small angles on the different sides of the beam direction, will be very sensitive to the type of
nucleon—nucleon potential (meson-exchange potentials versus the Moscow potential). The energy of E, =
400 MeV isnot optimal for this purpose because the sensitivity is higher even at E, = 350 MeV. The possibility
of distinguishing between the types of nucleon—nucleon potentials through examining the transverse analyzing
power Ay(8,), which reflects the correctness of taking into account spin effects, is studied. This analyzing power
isfound to exhibit comparatively small changesin response to introducing short-range oscillationsin the Sand
P wavesinstead of the repulsive-core-induced vanishing of the wave function at small distances. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Although a great number of studies on the short-
range part of the nucleon—nucleon interaction—and in
general, the baryon-baryon interaction—have been
performed over the past two decades, advances in
understanding its origin have been very slow. More-
over, there remain three different concepts in these
realms.

The first concept assumes meson-exchange poten-
tials involving a repulsive core [1-4]. The second is
based on models of the Skyrme type [5], which are
close to the concept of meson-exchange potentials in
practical aspects. The third relies on quark models of
the nucleon, where gluon perturbative interaction
between quarks [6, 7]—or, more recently, various non-
perturbative interactions [8, 9]—takes the place of
meson exchange at small distances between nucleons.
The majority of calculations performed within the third
concept yielded results close to those obtained on the
basis of meson-exchange potentials, but these poten-
tials are treated there as a phenomenological device.

However, thereisamarkedly different result. Onthe
basis of the symmetry properties of six-quark systems,
itwasfoundin[7, 10] that there are attraction channels
in nucleon—nucleon systems. By way of example, we

D K habarovsk State Technol ogical University, Khabarovsk, Russia.
* e-mail: neudat@annal9.npi.msu.su

indicate that, in the case of color-magnetic qq interac-
tion of AA\co symmetry, such an attraction is induced
by the excitation of the s'p?[42]4[42]cs quark configu-
rations in the S and D waves and the S’p*[33]x[51]cs
quark configurations in the P and F waves. These con-
figurations become energetically favorable [7] when
the amplitude of the above qq interaction is sufficiently
large (for projection onto baryon—baryon channels, see
[10-13]). Inthe case of catt symmetry, which was dis-
cussed in connection with the models of instanton-
induced interactions [8], the Young diagram [42].g iS
replaced by [42]g, etc. On the basis of this concept, the
model of the phenomenological Moscow hucleon—
nucleon potential was proposed in [14-19]. Instead of
arepulsive corein the Sand P waves, this model intro-
duces a wave function that has a node associated with
excited quark configurations [7, 10-13]—that is, the
resulting potential is deep and involves forbidden
states. This approach provided a viable description of
the properties of the deuteron and of low-energy
nucleon—nucleon scattering [15-17]. Also, an overal
pattern of the differential cross sections and polariza-
tions for nucleon—nucleon scattering at energiesup to 5
or 6 GeV was closely reproduced on its basis for the
first time[20]. Later, the ideathat excited quark config-
urations of the above type play a leading role in the
region where the two deuteron nucleons overlap led to
the conclusion [11, 12] that the deuteron includesarich
set of baryon—baryon configurations. Of course, this set

1063-7788/00/6311-1895%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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is dominated by the np component, but, in the order of
importance, it is followed by the NN*(3/2-, 1/27) com-
ponent characterized by P-wave relative motion, the S-
wave NN* component, the NN*(1/2*, Roper) compo-
nent (their probabilities are somewhat less than 1%),
etc.; thereis, however, no AA component. This predic-
tion was confirmed by an analysis of polarization data
ond + p scattering at E4 =7 GeV [21]: it appeared that,
in the deuteron, a sizable N*(3/2-, 1/2)N component
corresponding to P-wave relative motion and substan-
tially affecting polarization transfer is necessary.

In view of the above, investigationsinto the physics
behind the Moscow potential within nonperturbative
QCD must be supplemented with searchesfor areliable
means to distinguish between alternative potentials,
those that feature a repulsive core (meson-exchange
potentials), on one hand, and those that feature a node
in the wave function (Moscow potentia), on the other
hand. It should be considered that scattering data
alone—even if they are available over a very wide
energy interval—are insufficient because, as was indi-
cated quite correctly in [22], the repul sive-core leading
to an r—2 behavior at small distances can yield S- and
P-wave phase shifts that are less than the respective
phase shifts for the Moscow potential by @ However,
such a pronounced phase difference is unobservable in
elastic scattering.

The required means was found in [18], where the
differential cross section for hard bremsstrahlung in the
process pp — ppy was found, for the first time, to be
highly sensitive to the potential type (meson-exchange
potentials versus Moscow potential) at the easily avail-
able beam energies of E, = 350 and 450 MeV (in the
laboratory frame), where exchange currents are imma:
teria for hard photons [23-25]. Here, we continue this
investigation, considering, aong with the differential
cross sections, the transverse analyzing power A, and
extending, in calculating the differential cross sections
and the above anayzing power, the kinematical region,
which now includeslarge proton emission angles and the
beam energies of E, = 400 and 500 MeV. {In[26], it was
shown that, in the case of meson-exchange potentials,
relativistic corrections are less than 20% in the region
being studied; therefore, we apply the nonrelativistic
approach, but there are reasonsto believe that relativistic
effects for the Moscow potential are more pronounced
(see below).} All this enables us to disclose more fully
the pattern of the effects under consideration for future
experiments.

2. DESCRIPTION OF THE FORMALISM

Asin [18], we employ here the coordinate represen-
tation. The amplitude A; for thetransition from theinitial
(i) tothefina (f) state can represented in the form [18]

O(P; — P + k) A;

= 2mId3x | I(x) |y Cexp(—ik X)), W

KNYR et al.

where € is the photon polarization vector and the cur-
rent density has the form
- L < &r5ix—r0
‘](X - ZiZZm[a(X rI)DI
o (2)
+Li0(x—ry)] + peurl(d(x —r)o;),
i=12
. being the proton magnetic moment.

Using the wave functions for the two-proton system
in the form

Wi(ry, 1) = (2m*2exp(iP, (R)(p;, 1),
fd3r¢<p1, NP 1) = 3(p1—Pa)

(the form for the final-state wave function is similar,
with i replaced by f), we consider, by way of example,
the calculation of the component appearing on the
right-hand side of Eq. (1) and corresponding to that
termin (2) which involves &(x —r;)J;. Substituting this
term into the expression on the right-hand side of (1),
we obtain

jd3r1d3r2wf(r1, ro)(0; CE)W(ry, 1) exp(—ik T y)

= IdSRd3r exp(=iP; (R)$(p;, r)%DR—D%[t

x exp(iP; TR) (py, 1) expHik (FR -3¢
: “
= const x| 3¢ (P, ~k)3(P, ~P; =)

* [P )8y 1) PRk - 5P — Py —K)

[ (pr 1) (e (P N explpk 1]

In the initial-state c.m. frame, where P, = 0 and
P; = -k, the first term in the last expression vanishes
since the gauge of the electromagnetic fieldischosenin
such away that € - k = 0. In the final-state c.m. frame,
where P; = 0 and P; = k, this term also vanishes. Con-
sidering similarly other terms on the right-hand side of
Eqg. (1), we obtain

A = 16(m)°/mm

VT Vi e
where
M = J’d3r(exp(—ik [1/2) — exp(ik [1/2))
X (&¢(r)00;(r) —di(r)0¢(r)),
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M = J’dsrdTr)[k x (6,+62)]9(r)
x (exp(-ik [F/2) + exp(ik [1/2)),

M = J'dgrm[k x(6,-062)]0:i(r)
x (exp(—ik [1/2) — exp(ik [/2)),

where 'M™ is diagonal in spin S= 1, while 2M™ is
off-diagonal. The wave functions ¢; (r) and ¢;(r) corre-
spond to the motion of nucleonsin thefield of the Mos-
cow potential or a meson-exchange potential describ-
ing their interaction. These functions are expanded in
terms of partial waves (in even and odd | valuesfor sin-
glet and triplet waves, respectively); the resulting
expressions for the amplitudesin (6)—(8) are very cum-
bersome, but they involve one-dimensiona integrals
[18] calculable numerically. Omitting the expressions
for the differential cross sections from [18], we present
only the necessary formulas for the analyzing power A,
which istraditionally defined as

0,—0
PA, = ——,
o, +0,

)

®)

where P, is the degree of proton-beam polarization,
while o, and o, are the cross sections for, respectively,
the up and the down orientation of the initial-proton
spin with respect to the y axis, which is orthogonal to
the reaction plane in coplanar geometry.

The general expression for the analyzing power
from [27],

A = tr(OyAifA_if)

—, 9
y
tr(AiAir)
can be rewritten in the form [27]
T —T
A = i—2 (10)
Tu+Tx

Here, the subscripts 1 and 2 denote the projections +1/2
and —1/2 of the incident-nucleon spin onto the momen-
tum direction and

Tib: z ( Omem,[M [am,[Timgm,|M | bm,[*

m,mgm,

(11)
—klem3m4|k [M |am,[Tim;m, |k CM |bm,[¥,

where k is the photon momentum and where the basis
|[m,m,Clis used instead of the basis |Sm]

3. DIFFERENTIAL CROSS SECTIONS
AND ANALYZING POWER IN THE EXTENDED
KINEMATICAL REGION

Inour calculations, we employed the same nucleon—
nucleon potentials as in [18] and, in addition, the
PHYSICS OF ATOMIC NUCLEI
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refined version of the Moscow potential from [19] (the
results based on this, last, version exhibit virtualy no
difference from those cal cul ated by using the preceding
version from [17, 18]).

Supplementing the results obtained in [18] for the
beam energies of E, = 280, 350, and 450 MeV, we
present here the differential cross sections for the pro-
cess pp — ppy at E, =400 and 450 MeV (see Figs. 1
and 2, respectively). On the basis of the overall pattern,
we conclude that, as the beam energy increases from
E, = 280 MeV, the sensitivity of the pp — ppy exper-
iment being discussed to the type of nucleon—nucleon
potential does not become monotonically higher.
Indeed, a comparison of the results presented in Fig. 1
with the corresponding cross sections from [18] dem-
onstrates that a high sensitivity (different shapes of the
differential-cross-section curves for potentials of the
two types, with the cross-section values at maxima
being afew times greater for the Moscow potential than
for meson-exchange potentials) that is peculiar to the
energy of E, = 350 MeV and, especialy, to the energy
of E, = 450 MeV, is much lower than at the energy of
E, = 400 MeV. At this, last, energy value, it is accept-
ablefor only one pair of angles, 8, = 20° and 6, = 10°,
of the four pairs considered here.

The angular dependence of the differential cross
section results from a complicated interference pattern.
In the present study, we only conclude that the energy
of E, =400 MeV is not optimal for reliably testing the
off-shell behavior of nucleon—nucleon potentials, not
addressing the separate question of whether the above
unfavorable feature of the cross section a E, =
400 MeV is associated with the fact that this is the
energy at which the Swave phase shift §,(E) for pp
scattering passes through the value of 180° (0° if the
phase shift is defined traditionally).

Let us now proceed to discuss the results presented
in Fig. 2. At E, = 500 MeV—in contrast to the preced-
ing case—the general sengitivity of the differential
cross section for the process pp — ppy to the type of
nucleon—nucleon potential is at approximately the
same level as that found in [18] at E, = 450 MeV. This
especialy concerns the region of small angles—6, =
10°, 8, = 5° and O, = 10°, 8, = 10°—where the cross
section calculated with the Moscow potential at the
maximais approximately four times as large as that for
meson-exchange potentials. Even for somewhat larger
angles of 8, = 20° and 6, = 10°, which can be more con-
venient experimentally, the cross-section ratio at the
maxima s still quite large (2 to 3). Thus, we conclude
that, at E, = 450 and 500 MeV, there are kinematical
conditions—which can bevaried, asis suggested by the
datain Fig. 2 and by the relevant results from [18]—
such that, on the basis of experimental data obtained
under these conditions, it is possibleto find out reliably
which of the two qualitatively different types of
nucleon—nucleon potential describes the actual interac-
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do/dQ,dQ,d8,, pb/(sr* rad)

20°, 10°

14°, 10°

12

J
180 O

8y, deg

Fig. 1. Differential cross section asafunction of the laboratory photon emission angle 8, with respect to the beam direction for the
beam-proton energy of E, =400 MeV at various angles 8, and 6, (indicated in the figures) of proton emission on the different sides
of the beam direction. The results are presented for (solid curve) the Moscow potential, (dotted curve) the supersymmetric partner
(the photon emission angleis reckoned ni the same direction at the angle 8,) to the Moscow potential, (Iong dashes) the Paris poten-
tial, and (short dashes) the Hamada—Johnston potential). Thick and thin curves were computed, respectively, in the c.m. frame of

two initial protons and in the c.m. frame of two final protons.

tion more adequately (in principle, such experimental
data may also favor an intermediate version—that is, a
nonlocal nucleon—nucleon potential [6, 28] for which
the wave function to the left of anodeis shallower than
the wave function in the local potential).

The above possibility of distinguishing between the
types of potential is based on the following two obser-
vations. The first is that, under the aforementioned
kinematical conditions, the different types of nucleon—
nucleon potential lead to different shapes of the differ-
ential cross section asafunction of the photon emission
angle 6,. The second is that the corresponding cross
sections differ considerably in absolute value: at the
maxima, the cross section obtained with the Moscow
potential is afew times as large as that calculated with
meson-exchange potentials. Our recommendation isto
perform relevant measurements a E, = 450 and
500 MeV. Recently, Yasuda et al. [29] reported data on
the process pp — ppy a E, =390 MeV, but thisis not
an optimal energy value (see above). Moreover, these

PHYSICS OF ATOMIC NUCLEI

measurements were performed for the angles of 8, =
0, =26°, which area so unfavorable: the energies of the
emitted photons are not as high as is possible in this
region, and meson-exchange currents and a virtual A
isobar are expected to make maximum contributions
(under the kinematical conditions proposed here and
illustrated in Fig. 1, the role of these effectsis negligi-
ble [23-25]). Despite all the above, the cross section
measured for the forward hemisphere is nearly twice as
large as that predicted in the theory involving meson-
exchange nucleon—nucleon potentials and taking into
account the important contribution of meson-exchange
currents. This can be considered as preliminary evi-
dence in favor of the Moscow potential, which yields
larger cross-section values, and as a further motivation
for performing the proposed experiments, which are
thought to be free from the complicating effect of
meson-exchange currents.

Two important comments are in order here.

Vol. 63 No. 11 2000
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do/dQ,dQ,d8,, ub/(sr? rad) do/dQ,dQ,d8,, ub/(sr? rad)
(a)

(b)

10°, 5° 20°, 10°

140 20

70 10

10°, 10°

60

30¢

0 60
Fig. 2. Asin Fig. 1, but for the laboratory beam-proton energy of E, = 500 MeV. When thin curves prove to be close to thick ones,

the former are not presented.

Ay Ay

: ' 0.5 ' ' .
0 60 120 1800 60 120 180

Gy, deg

Fig. 3. Transverse analyzing power A, as afunction of the photon-emission angle 8, under various kinematical conditions: (a) E,
350 MeV, 8, = 14°, and 8, = 10°; (b) E, =400 MeV, 8, = 14°, and 8, = 10°; (c) E, = 450 MeV, 8, = 14°, and 8, = 10°; and (d) E,
350 MeV, 8, = 20°, and 8, = 10°. Therest of the notation isidentical to that in Fig. 1.
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(i) Instead of measuring small values of theangle6,,
which are inconvenient experimentally, the quantities
E, and 8, or E, can be measured in coincidence at a
given angle 6, (in coplanar geometry, there are three
two-dimensiona momenta in the fina state, but only
three of the six quantities are independent because of
energy—momentum conservation). By selecting their
values corresponding to the hardest photons, we
directly meet the main criterion for choosing optimum
kinematical conditions that ensure a high sensitivity to
the type of nucleon—nucleon potential and which corre-
spond to small values of 0,.

(i) That the broad energy range from 280 to
500 MeV iscovered in our analysis makesit possible to
trace carefully the changes that the distinctions
between our nonrelativistic results derived in the c.m.
frames of two initial- and final-state protons reveal in
response to variations in the energy E,. The data dis-
played in Figs. 1 and 2, together with the results from
[18], show that, while being insignificant at E, =
280 MeV, the above difference increases with energy
E,—it isabout 40% at E, = 500 MeV, which isalimit-
ing energy for a nonrelativistic treatment. An analysis
at higher energies would be uncertain for yet another
reason: the nucleon—nucleon potentials compared here
were fitted to the phase shifts up to E, = 300400 MeV.

One more point is worthy of note. By and large, the
contribution of meson-exchange currents and of an
intermediate deltaisobar increases with increasing beam
energy [30], but it remains smal in the kinematical
region of the hardest photonseven at E, = 500 MeV [25].

Let us now address the analyzing power. Figure 3
shows our results for it over the entire energy range
E, = 350-500 MeV studied here. Of course, we are
interested in the case of small angles 6, and 6,. We see
that, in contrast to the differential cross section, the
analyzing power A, is but weakly sensitive to the type
of nucleon—nucleon potential. Spin effects are close for
the two types of potential, so that the pursued differ-
enceis due entirely, as was indicated above, to the dis-
tinctions between the shapes of the radial dependences
of the wave functions. Neverthel ess, an experiment cor-
responding to Fig. 3 will be of importance—should the
theory be confirmed—as a check upon the correctness
of taking into account spin effects.

4. CONCLUSION

Although much attention has been givenin the liter-
ature to the reaction pp — ppy and to alied pro-
cesses—in addition to the studies reported in [23-27,
29, 30], we would like to mention the analysis of
Gerasimov et al. [31], who considered the possibility of
revealing a dibaryon resonance in the process pp —
ppyy [31]—reactions leading to hard-photon emission
and occurring at energies somewhat higher than those
used previously have not been studied experimentally
throughout the 1990s. Earlier experiments explored
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small angles 6, and 6, at E, = 280 MeV [32] or the
region of insufficiently hard photons (that is, large
angles 6, and 6,) at higher E, energies. At the same
time, the aforementioned relevant experiments with
hard photons could have been performed because pro-
ton energies of E, = 400-500 MeV had been available
and because the required experimental procedures have
been developed [32]. In all probability, the pessimistic
conclusions of the previous theoretical studies [23—
25]—these conclusions were summarized in [ 33]—that
different meson-exchange potentials [1-4] cannot be
distinguished on the basis of data on hard bremsstrahl-
ung in the process pp — ppy (from the datain Figs. 1
and 2 and from the results presented in [ 18], we can see
that the Paris potential [1] and the Hamada—Johnston
potential [34], which was proposed much earlier, yield
virtually indistinguishable results for the reaction in
guestion) had a discouraging effect. We hope that our
results, which extend the conceptual framework behind
the problem of comparing different types of nucleon—
nucleon potential, together with the new preliminary
experimental result from [29], will inspire a renewed
interest in the problem considered here.

In general, the validity of the Moscow potential and
of the quark concepts behind it can be tested along var-
ious lines. In [18], the processesd +y — n+p, d +
A — N* + X, and 2H(e, e'p)N* at energies of a few
GeV, (N* isan orbitally excited nucleon corresponding
to the s'p? quark configuration in the deuteron [12]),
were mentioned in this connection. In addition to the
photodisintegration reaction d + y — n + p [34], the
quasiel astic-knockout processes *H(p, 2p)n [35-37]
and H(e, e'p)n [38-40] were also studied experimen-
tally, the proton momentum distribution being mea-
sured up to the momentum of q = 0.7 GeV/c in the last
case. In order to take consistently into account final-
state interaction, which is very strong at high recoil
momenta [41], so that the simplified treatment of this
interaction in [35] isquestionable, it isdesirableto ana
lyze these reactions by using the Moscow potential.
Finaly, a new partial-wave analysis extended to the
energy of E, = 2.5 GeV was reported in [42]. This
makes it possible to refine the results abtained in [20],
where the phase shifts for nucleon—nucleon scattering
were theoretically extrapolated to high energies on the
basis of the Moscow potential with allowance for
absorption, which increases with energy, and to test the
stability of the partial-wave analysisitself at energiesas
high as some 2 GeV.
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Abstract—It is shown that the discrepancy between the results obtained for different neutron-energy ranges,
when the neutron polarizability is derived from data on neutron scattering, can be removed if one assumes that
a strong-interaction long-range potential of van der Waals (~r=) or of Casimir and Polder (~r~7) is observed in
fast-neutron scattering. This strong-interaction long-range potential possibly has some experimental confirma-
tion in elastic pp scattering. © 2000 MAIK “ Nauka/l nterperiodica” .

There is a strong contradiction between the values
of the neutron electric polarizability o, that are
obtained from experiments on elastic neutron scatter-
ing by heavy nuclei in different energy ranges. a, < 2 x
103 fm? from experiments at neutron energies E, <
40 keV, and a, = 107! fm? from measurements with
neutrons in the energy range from about 0.5 to a few
MeV. Thefirst results do not contradict modern theoret-
ical models[1], inwhicha,~ 1 x 103 fm?, but the sec-
ond one seems overly large, exceeding expectations by
two orders of magnitude.

M easurements of the neutron electric polarizability
at low energies of scattered neutrons are based on the
specific form of the Born amplitude for neutron scatter-
ing in ther—* polarization potential

Upa = —a,(Ze)’/2r*, for r>R;
Uy = 0, for r<R,

where Zeis nuclear electric charge and Ris the electric
radius of the nucleus. For the sake of ssimplicity, wewill
further set long-range potentials to zero within nuclei,
since this does not change significantly the results of
this consideration. In the Born approximation, the scat-
tering amplitude for the potential (1) has the form

)]

[

“m| sinx sint
foo = an%% -ZT?[TJrCOSX_XITdt , (2
X

where misthe neutron mass and X = gR, g being a neu-
tron scattering vector. In the limit x < 1, we have

2

- g Eeggmr, mo, 1. 4
foo = G”DﬁD R[1—4x+6x + O(X )}. 3)

It was shown by Thaler [2] that, owing to the second
term in the neutron polarization scattering amplitude—

* This article was submitted by the author in English.
** e-mail: pokot@nf jinr.ru

this term is linear in g—the differential cross section
for neutron—nucleus scattering must contain aterm lin-
ear in the neutron wave vector k because of the interfer-
ence of the nuclear and polarization amplitudes. The
angular distribution of neutrons,

o(0) = %{[l + w, P;(cosb) + w,P,(cosO) +...], (4)

involves the quantity

TZer2m
5070 a2 © ()

whichislinear in k (a isthe neutron scattering length).

The measurements of the angular distribution of
neutrons scattered by heavy nuclel [3] in the energy
range 0.6-26 keV, together with the earlier measure-
ments [4] in the energy range 50-160 keV [4], yielded
a,< 1072 fn.

It is evident that, because of neutron polarizability,
the total neutron—nucleus cross section must contain a
term linear in k:

oK) = g, +ak+bk*+ ... . (6)

Precise measurements of total neutron cross sec-
tions and the coherent scattering lengths for Pb and Bi
[5] yielded

o, = (0.8+1.0)x 10~ fm’, @)

The result of the measurements of the total cross sec-
tion for neutron scattering by heavy nuclei inthe energy
region up to 40 keV [6, 7] resulted in

a, = (1.20+0.15+ 0.20) x 10~ fm®. (8)

A reconsideration [8] of the experiments reported in
[6, 7] led to the conclusion that a, < 2 x 1073 fm?.

On the other hand, neutron scattering by heavy
nuclei in the MeV energy range demonstrates signifi-

(k)l = —Gn
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cant deviations from the results of optical-model calcu-
lations with allowance for Schwinger (spin—orbit) scat-
tering. For example, the cross sections measured in [9]
are systematically larger than the calculated cross sec-
tions at the smallest angles. The authors of [9] did not
propose any explanation of this disagreement, and the
measurements were not continued.

In aseries of experiments and careful optical-model
calculations, the authors of [10] showed that the great
variety of data on neutron scattering in the MeV energy
range (total cross sections, angular distributions, and
especially small-angle scattering) are described much
better if, in addition to the general short-range Woods—
Saxon potential and the Schwinger interaction, the
polarization term with a neutron polarizability factor as
largeasa,, = (1-2) x 10~ fm? isincluded in the poten-
tial of neutron—nucleusinteraction, which istwo orders
of magnitude greater than the value expected from rea-
sonable calculations [1] and the measured restrictions
[5-7].

Wheat isthe way to reconcil e these two contradicting
results? It is possible that some more refined model of
neutron—nucleus interaction allowing for the
Schwinger term and “reasonable” neutron polarizabil-
ity is able to describe data in the MeV energy range.
However, it may be possible that some other potential
of the ~r" type with n > 4—for example, with n = 6
(van der Waals) or n = 7 (Casimir—Polder) affects neu-
tron scattering in the MeV energy range.

The possibility of a strong long-range interaction
between hadrons was discussed two decades ago by
using various approaches (see, for example, [11] and
references therein) with mostly negative results and
without any firm final conclusion. On the other hand,
there are persistent indications of a strong attractive
potential of the r=" form with n between 6 and 7 (see
[12] and references therein) that follow from a sophis-
ticated analysis of elastic pp scattering in the MeV
energy range. A similar long-range strong interaction
might be observed in neutron—nucleus scattering in the
MeV energy range in just the same way as it was (pos-
sibly) observed between hadrons.

It turns out that, in the experiments that were
reported in [3, 5-7] and which were performed at low
energies (more precisely, a x < 1), these potentials
could hardly be observed. Thereason for thisisthat the
only signal of thelong-rangeinteraction at low energies
(x < 1) that distinguishesit from a short-range interac-
tionisanoneven term in the expansion of thefirst-order
Born amplitude.

In the first Born approximation, the scattering
amplitudes for long-range potentials of the form

u(r) = —URERET, for r>R; ©

u() =0, for r<R,
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where R is the radius of the nucleus, can be represen-
ted as

2mUgR’
hZ

« smx+cosx smx XICOSt
3x 6] t

forn=5, as

fo =
(10)

3 . .
_ 2mUgR’| sinx . cosx _sinx
fg = +

w2 | dx 12\ 24
(11)
_ 2COSX+ X

sint
24 24 Td‘}

X

forn=6, and as

. 2mURR’° sinx+cosx_xsinx
! 72 5x 20 60
. (12)
4
_,2C08X | 3Sinx costdt
120 120 120 t
X
forn=7.

Inthelimit x < 1, these amplitudes are

Iny%<

2mUxR’
fo(x < 1) = _”J__R__[} 1

2 2 EBG
f (13)

+ élenx+ O(x )}

2mU R
fo(x < 1) = thR B éx2+%x3
(14)
1
80X +O(x6)}
2mU-R® 1 1
(15)
L7 Iy 1 ]
+ g~ 1K~ 1267 X+ O(X)

where y = 1.781 is the Euler constant. It can be seen
that the only noneven power of the x term in the expan-
sion of the Born amplitude for an r =3 potential is x*Inx.
For an r=¢ potential, the only odd term is x*; and the
term characteristic of along-ranger~’ interactionisx*Inx.
The short-range potentials yield only even powers of x.
For the potential of an r—2" form, expansion of the Born
amplitude yields the single odd term proportional to x*"-3;
for the potential of an r2"+1 form, the noneven term
Vol. 63
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isx2"-Dlnx. Quantitative estimations for x = 0.2 yield
the result that these terms are more than two orders of
magnitude |lower than the linear term in the decomposi-
tion of the Born amplitude for an r— potential. There-
fore, in low-energy experiments (x < 1), it isvirtually
impossible to recognize the presence of an r=" long-
range potential withn = 5, even if it is as large as two
orders of magnitude greater than the potential due to
neutron polarizability (1) with a,, = 107 fm?.

The scattering amplitudes in the first Born approxi-
mation (3) and (10)—(12) for n = 47 generaly behave
similarly in the range x < 5 where the amplitudes are
not small, differing only by a factor which does not
change significantly. The same is true for the first five
to six Born scattering phases for these potentialsin the
MeV neutron energy range. This means that it is possi-
ble that the large potential of the r type inferred from
fast-neutron scattering in [10] may in fact be the poten-
tial r"with n =6 or n =7 but of larger magnitude at
r=R

Better confirmation or rejection of this viewpoint
requires detailed computations with the most flexible
nuclear optical potential and inclusion of long-range
potentials of ther " typewith different nin order to find
out what kind of long-range potential better satisfiesthe
description of all the data on fast-neutron scattering.
These computations are now in progress. The tentative
calculations of neutron-scattering cross sections in the
MeV energy range for the Woods-Saxon potential with
the addition of long-range potentials r " with different
n between 4 and 7 yield a small difference in the form
of angular distributions and total cross section.

For example, the figure illustrates the result of cal-
culation of the neutron elastic scattering cross section
for the Woods-Saxon potential with the addition of
long-range potential (9) with n = 4 (corresponding to
neutron electric polarizability a, = 0.15 fm? inferred
from the experiments[10]) and n = 6. Thevalue U (14)
for the latter was chosen to reach the best similarity in
the behavior of the elastic cross section for these poten-
tials.

doy,s/dQ is the cross section for the Woods-Saxon
potential with parameters pertinent to the 2*®Pb nucleus
[10], i.e, V, = 432 MeV, W, = 3.8 MeV, Vg =
11.7 MeV (the depths of the real, imaginary, and spin—
orbit parts of the potential, respectively); R, = Ry =
7.64 fm is the radius of the real, imaginary, and spin-
orbit components; r, = r, = 1.29 fm; the diffusivity of
thereal and spin—orbit componentsa = 0.425 fm; and the
diffusivity of theimaginary component a' = 0.475 fm.

do,/dQ is the cross section for the Woods-Saxon
potential plus the potential of (9) withn=4 and Ui =
213 keV, and do./dQ is the cross section for the
Woods-Saxon potential plus the potential of (9) with
n=6and Ug = 300 keV.
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Relative differences of cross sections

0.01 r

-0.01

-0.02

Energy dependence of the relative effects of long-range
interactions in elastic-scattering cross section pBy =

fOws d0,n dows and g = fOws d0e, dows
OTdo ~dal dQ ¢~ 0dQ dol da -
The scattering angleis 6 = 5°.

It isseen that therelative difference of the effect that
these two long-range potentials have on cross sections
isvery small.
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Abstract—The current status of experimental data on inelastic p*He scattering is reviewed, and the cross sec-
tions for respective channels are roughly estimated. These estimates make it possible to compute the amounts
of 3He, 3H, and d nuclei produced in nonequilibrium cosmological nucleosynthesisto aprecision of 10%. Inves-
tigation of inelastic p*He scattering by using the method of accelerated “He nuclei at E,~ 75 MeV isof partic-
ular interest for cosmological applications because this allows one to achieve a higher precision in calculating
nonequilibrium cosmological nucleosynthesis.© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

An extra production of light nuclel in the interac-
tions of high-energy protons and antiprotons with a
cosmological plasmain the early Universeisone of the
problems that arises in investigating nonequilibrium
cosmological nucleosynthesis. Here, a particle is con-
sidered as a nonequilibrium object if its energy far
exceeds the mean thermal energy of particles of the
cosmological plasmain equilibrium.

A high-energy proton or antiproton interacting with
the cosmological plasma, which consists predomi-
nantly of protons and “He nuclei, generates a secondary
proton cascade. Secondary protons, as well as the pri-
mary proton, break up *He nuclei, thereby producing
nonequilibrium 3He, *H, and d nuclei, which may gen-
erate Li and Be nuclei through collisions with primary
“Henuclel. That light nuclei are additionally formed by
the above mechanism can be used to obtain information
about the physics of the early Universe. For example,
constraints on the parameters of the Grand Unified
Theories [1] and on the concentration of the primary
black holes [2] can be derived from the requirement
that the number of deuterons and the number of *He
nuclel produced in nonequilibrium nucleosynthesis be
consistent with their abundances in the present Uni-
verse. At the same time, nonequilibrium cosmological
nucleosynthesis can be considered as the possible
source of evolution of the chemical compoasition in the
early Universe. As aresult, there may arise either small
correctionsto the initial concentrations or a significant
effect distorting the outcome of primary nucleosynthe-
sisto the extent that anew chemical composition of the
early Universe is formed. The above assumption pre-
sents an as-yet-unresolved problem.

As a continuation of investigations into nonequilib-
rium cosmological nucleosynthesis that were per-
formed in [3], new cal culations taking into account cur-

rently available experimental data were reported in [4]
for nucleosynthesis processes featuring protons and
antiprotons. (The effect of electromagnetic processes
on nonequilibrium cosmol ogical nucleosynthesisis not
considered here because this requires a dedicated anal-
ysis of features peculiar to such processes.) The ener-
getic-proton-induced breakup of a*He nucleusis akey
process in nonequilibrium cosmologica nucleosynthe-
sis. It was shown in [4] that, at primary-particle ener-
giesintheregion E, ; > 2 GeV, *He, *H, and d nuclei
are produced primarily by the secondary proton cas-
cade developing in the cosmological plasma, the prob-
ability of “He breakup induced by this cascade taking
maximum values at E ~ 75 MeV. The present analysis
revealed that the uncertainties in computing the num-
bers of product nuclel depend primarily on the error in
determining the cross sections for the channels of
inelastic p*He interaction and that these uncertainties
are estimated at 8-10%.

2. MODEL OF INELASTIC p*He INTERACTION

Experimental data on the cross sectionsfor inelastic
channels of p*He scattering are displayed in the figure.

The reaction p*He —= d’He has received the most
comprehensive study. A vast body of consistent and
precise data is available for this channel, ensuring a
reliable fit to the relevant cross section.

The experimental data reported in [10, 12] make it
possible to describe accurately the reactions p*He —
SHeX, p*He — dX, and p*He — ddX at energiesin
the region E, > 0.2 GeV. In these experiments, the
method that employed accelerated “He nuclei incident
on a proton target permitted an efficient separation of
the channels of indastic p*He interaction. (In the
present study, we everywhere quote relevant Kinetic
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Crosssectionsfor theinelastic channels of p*Heinteraction.
Points represent experimental data on (closed circles) the

total inelastic cross section and on the (open boxes) d°He,

(closed triangles) 3HeX, (open circles) 3HX, (closed boxes)
dX, and (asterisks) ddX channels. The data from [5] on the
total inelastic cross sections are shown by opentriangles. An
arrow near a reference to experimental data indicates that
the quoted study contains data on afew channels at the cor-
responding proton energy. The remaining data were bor-
rowed from [13]. For energiesin the region E, < 0.22 GeV,

three types of approximation of the cross section—upper
and lower bounds (solid curves) and the basic version (dot-
ted curves) are shown for all channels under study, with the

exception of p*He — d*He.

energies of protons in the rest frame of the nucleus.)
More recent dataon theyields of 3He and *H nuclei (not
shown in the figure)—they are summarized in the
review article of Meyer [13]—are much less accurate
and contradict the resultsreported in [10, 12]. The situ-
ation around the yield of tritium is less clear. An
attempt was made in [13] to develop amodel for inelas-
tic p*He interaction on the basis of available data. In
estimating relevant cross sections, it was additionally

assumed that O3, /05, = Op,/Op,. This assumption

leads to an excess of the yield of 3H over the yield of
*He in the energy range 0.6-2.7 GeV, where 0, < 0,
[14]. However, this prediction is inconsistent with the
new datafrom[10, 12]. It would be of interest to test the
above relation at E;, ~ 0.9 GeV (an energy vaue at
which the ratio a,,,/0,, approaches its minimum) in an
experiment similar to that described in [8] or in an
experiment based on the method of accelerated “He
nuclei. The calculations show that the number of *He
nuclei generated in the processes of nonequilibrium
cosmological nucleosynthesisis less affected by small
uncertainties in the cross section for the reaction
p*He — *HX in the energy range E, ~ 0.6-1.4 GeV
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than by similar uncertainties at energies in the region
E,<0.2 GeV.

At energiesbelow 0.2 GeV datasummarized in [13]
do not exhaust the entire body of available experimen-
tal information: there are also data of Sourkes et al. [5]
on the total cross sections for inelastic scattering and
data of Pasechnik et al. [8], who measured the ratio

0 4, 3
—pHe- HeX {0 a precision higher than in any other
p*He - *HX
study (the reactions p*He — 3HeX and p*He — HX
were explored there under the same kinematical condi-
tions); however, the absolute cross-section values are
not presented in [8] because they were measured less
precisely. The results obtained in [8, 10, 12] allow one
0 4, 3
to construct areliable fit to the ratio k(E) = —2He=HeX
p*He - HX

and to use it in the following to evaluate the relevant
cross sections. The function k(E) determined from the
data at energies in excess of 70 MeV can be extrapo-
lated to the region of lower energies, as low as those at
which near-threshold effects comeinto play. In estimat-
ing the cross sections for the reactions p*He — 3HeX
and p*He — 3HX in the near-threshold domain, it is
therefore reasonable to rely on the datafrom [6], which
still remain the most precise in this domain. The total
inelastic cross section, that was estimated in [6] as the
sum of all measured cross sections for individual chan-
nels agrees well with data from [5].

The cross section for the process p*He — 3HeXin
the energy range E, ~ 40-100 MeV was derived from
the data that were reported [7, 9] and which were
revised and corrected in [13]. The corrected data of
Cairnset al. [7] are consistent with the results obtained
in[5].

Experimental data on the reactions p*He — dX
and p*He — ddX for energies in the region E, <
0.2 GeV can be found only in [9]. The experiments
reported in [9] and in [11] were performed by using the
same facility (Wilson chamber) under the same condi-
tions. As can be seen from the figure, the cross section
for the reaction p*He — ddX as determined in [11]
proved to be larger than what was obtained from the
more accurate data presented in [10]. In view of the
above, there is every reason to believe that sameistrue
for the data from [9]. In estimating the cross sections
for the reactions p*He — dX and p*He — ddX, it is
reasonable to use the cross section for the reaction
p*He — 3p2n (not shown in the figure) and to con-
sider that, at energies below the pion-production
threshold, the sum of the five cross sections discussed
above must be equal to the total inelastic cross section
extracted from the data obtained in [5].

The results of the calculations based on the above

considerations on inelastic p*He scattering, which take
into account avail able experimental data, are presented
Vol. 63
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in the figure (curves). For proton energies in excess of
E, = 0.22 GeV, the cross section for the reaction

p*He —= d®He, aswell asthose for other channels, was
fitted unambiguously. For energies below thisvalue, we
give upper and lower bounds on the cross sections for
various channels of inelastic p*He scattering and
present the basic version of the approximation of the
cross sections. The estimates of the cross sections for
the reactions p*He — 3HeX and p*He — 3HX are cor-
related: if some type of estimate is adopted for one
reaction (for example, an upper bound), then the same
type must be used for the other reaction. The main
source of uncertainties for E, < 0.2 GeV is associated
with the estimates of the cross sectionsfor the reactions
p*He — dX and p*He — ddX. However, the fact that
the channel p*He — d*He makes a leading contribu-
tion to the inelastic cross section at energies in the
region E, < 80 MeV significantly reduces the error in

thetotal yield of deuterium and *He in p*He scattering
at low energies.

The proposed approximations of the cross sections
for the channels discussed above differ substantially
from one another. Nevertheless, they make it possible
to compute the number of nuclel generated in nonequi-
librium cosmological nucleosynthesisto a precision of
10% owing to a large contribution of the thoroughly
studied channel p*He — d’He at low energies. It
should be emphasized that the energy range E, ~ 40—
100 MeV, wherethe uncertaintiesin the estimates of the
cross sections for the channels of inelastic p*He scatter-
ing are quitelarge, isof primeinterest for cosmological
applications because the probability of the breakup of
the “He nucleus by a proton from the secondary cascade
reaches amaximum in thisdomain (at E~ 75 MeV) [4].

Investigation of the channels of the inelastic
breakup of the “He nucleus at energies in the region
E, < 0.2 GeV is of interest for exploring the chain of
subsequent nuclear reactions of nonequilibrium cos-
mological nucleosynthesis. Nonequilibrium fragments
(*He, *H, and d) can interact with “He nuclei, thereby
producing %’Li and "Be nuclei, whose yields are deter-
mined by the energy spectra of outgoing fragments. For
the most part, these fragments appear to be spectators
undergoing thermalization within a short time. For this
reason, investigation of the high-momentum tail of the
distribution of fragments by the method used in [12] at
1.4 and 2.6 GeV isof particular interest.

3. CONCLUSION

The proposed estimates of the cross sections for the
inelastic channels of p*He interaction permit comput-
ing, to a precision of about 10%, the yields of *He, 3H,
and d nuclei originating from nonequilibrium cosmo-
logical nucleosynthesis triggered by high-energy pro-
tons and antiprotons (E, > 0.2 GeV). The uncertainties
are due to the absence of reliable experimental data on
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the inelastic channels of p*He interaction for energies
E, < 0.2 GeV. Experiments with accelerated “He nuclei
al E, ~ 75 MeV could remedy this flaw, whereby the
accuracy in computing theyieldsof light elementsfrom
nonequilibrium cosmological nucleosynthesis would
be improved considerably.
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Abstract—On the basis of Glauber diffraction theory, the differential cross sections and analyzing powers are

calculated for elastic and inelastic (to the J" = 15 level at E* = 0.48 MeV) proton scattering on 7Li nuclei at

E,=0.2,0.6, and 1.0 GeV. Inthis calculation, the 7Li wave function is taken in the at model. The sensitivity of
our results to variations in the parameters of the elementary pN and pa amplitudes is investigated. Effects
induced by multiple scattering on the target-nucleus clusters are shown to play a significant role. Theoretical
results are found to comply well with experimental data available only at E, = 0.2 GeV. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Systematic experimental data on the scattering of
protonswith energiesin excessof 100 MeV on’Li nuclei
were obtained by a group from the Gustav Werner Insti-
tute (Uppsala, Sweden) [1], where the domestic synch-
rocyclotron was used for this investigation, and by a
group from the Institute de Physique Nucléaire (Orsay,
France) [2]. The former group measured only angular
distributions for inelastic proton scattering on light
nuclei (up to '°0), while the latter determined the angu-
lar distributions and polarizations both for elastic and
for inelastic scattering (for the range of light nuclei
extending up to '“N). Also, calculations within the
plane-wave optical model were performedin[2]. Since
then, these data have been refined over and over again,
and one of the latest studies[3] presentsthe differential
cross sections and analyzing powers A, at E, = 200 MeV
that were measured at the synchrocyclotron of Indiana
University (IUCF). These experimental data were ana-
lyzed within the microscopic folding model and within
the distorted-wave approximation.

Here, we calculate the differential cross section and
the analyzing power A, within the Glauber theory of
multiple scattering. If the free hadron-nucleon ampli-
tude and the wave function for the target nucleus are
known, this theory is advantageous in direct calcula-
tions of elastic- and inel astic-scattering processes.

To some extent, the application of Glauber theory at
energies of about a few hundred MeV without taking
into account corrections for the internal motion of
nucleons and for deviations from the eikonal propaga
tion of the incident beam may seem questionable. How-
ever, investigations of corrections to Glauber theory—
in particular, those in [4—6]—revealed that different

corrections are mutually canceled to a considerable
extent. For example, Wallace [4] showed that non-
eikonal corrections and corrections for the Fermi
motion of intranuclear nucleons have opposite signs
and cancel; Kolybasov and Marinov [5] estimated all
corrections for the case of scattering on a deuteron and
clarified the physical grounds for the high accuracy of
the eikonal approach at relatively low energies, where
different nonadiabatic effects are partly compensated
and where they even vanish for a loca nucleon—
nucleon potential. With the aim of assessing the effect
of partial nucleon deconfinement in a nucleus (a very
delicate phenomenon indeed) on the behavior of cross
sections, Saperstein and Starodubskii [6] analyzed the
differential cross section for elastic proton scattering
within Glauber theory. Although those authors did not
draw definitive conclusions, they were able to set con-
straints on the magnitude of relevant swelling.

The "Li nucleus was investigated by many authors
within various models, including the Cohen—-Kurath
model [3], the shell model involving LS coupling [7],
and the cluster model [8-10]. In the study of Glover et
al. [3], the "Li wave function was represented in the
form of a nuclear density as the sum of two compo-

nents, a spherical (py') and a quadrupole (p,) one.

Among other things, those authors demonstrated the
importance of taking into account the quadrupole com-
ponent in calculating both the differential cross sec-
tions and the analyzing powers. The results of the cal-
culations were compared with experimental data and
with the results of previous calculations for the °Li
nucleus [11]. Since the °Li nucleus is spherically sym-
metric, the contribution of the quadrupole density com-
ponent is not very important for it.

1063-7788/00/6311-1910$20.00 © 2000 MAIK “Nauka/Interperiodica’
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In contrast to [3], we use here the "Li wave function
derived on the basis of the at cluster model [9] with the
Wood-Saxon potential whose parameters are set to val-
ues recommended in [12]. Thiswave function makes it
possibleto reproduce faithfully static features and elec-
tromagnetic form factors at low momentum transfers.
Similar wave functionsfor the Buck potential were cal-
culated in [10]. Later, Dubovichenko and Dzhazairov-
Kakhramanov [13] obtained wave functions on the
basis of potentials involving forbidden states; their
results proved to be in perfect agreement with the con-
clusions presented in [9, 10] and with the static features
computed in those studies. Thus, we can see that noth-
ing radically new emerged from the use of eight adjust-
able parametersin [13] (instead of threein [12]).

An important point in the present study is that we
takeinto account spin—orbit interaction in the scattering
process. Although it was shown in number of studies
(see [14-16]) that the inclusion of spin—orbit interac-
tion leads to insignificant changes in the cross section
(mainly, intheregion of diffraction minimaand at large
scattering angles), polarization features, which are
more sensitive to model parameters and to the scatter-
ing mechanism than the differential cross section, can-
not be computed without this.

In this study, the differential cross sections and the
analyzing power A, calculated for elastic and inelastic

(totheJ'= 15 level at E* = 0.48 MeV) proton scatter-

ing are analyzed as functions of the parameters of the
elementary pN and pa amplitudes and as functions of
the contributions from the multiple scattering and res-
cattering of incident protons on the target-nucleus clus-
ters. The objective of this study isto systematize, at the
proton energies used, the parameters of the pN and pa
amplitudes as extracted from the literature. That such
data, especialy the spin-dependent parameters of the
elementary amplitudes, are incomplete and show con-
siderable scatter restricts severely the potential of the
theory.

2. FUNDAMENTALS OF FORMALISM

L et us proceed to calcul ate the matrix element or the
amplitude for elastic p’Li scattering in the Glauber dif-
fraction theory of multiple scattering. The gquantum
numbers of the "Li nucleus are J* = (3/2)~, T = 1/2, and
L = 1inthe ground state and J* = (1/2)~, T = 1/2, and
L = 1in the first excited state. Within the at cluster
model, the "Li wave functions can be represented as

W, = LM SMJIM| D DeiX, (1)
2 S

where X
3Ms

the wave functions of the alpha particle, of the triton,

and of their relative motion, respectively. In the form of

isthe spin function and ®,, ®,, and ®, are
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expansions in terms of the Gaussian basis, these wave
functions are given by

®, = Ng$ C exp(—a;R2), Q)
2

3

=N ZCkexpEI—lakz (r,-

1=1
®y = R YLM(R)Nmzciexp(—aiRz), 4)

o[
R)0 (3)
1l

where N,, N;, and N, are the relevant normalization
factors; C; \, and a , are the expansion coefficients,
whose values were borrowed from [17] for apha parti-
cles, from [18] for t, and from [9] for at; R, and R, are
the c.m. coordinates of the alphaparticle and of thetri-
ton; r, stands for the single-particle coordinates of the
triton nucleons; and R is the coordinate of the relative
motion of the alpha particle and the triton in the "Li
nucleus (R = R, — R)).

The Glauber multiple-scattering operator can be
represented in the factorized form

Q= Qa+Qt_Qtha (5)

where Q, isthe operator of scattering on the al pha par-
ticle, Q, is the operator of scattering on the triton, and
Q,Q;, is the operator of multiple scattering on the two
clusters of the target nucleus. It is well known that the
operators Q; are expressed in terms of the profile func-
tions, which in turn involve the dementary pN ampli-
tudes. In considering scattering on the alpha particle, we
disregard its interna structure and, instead of the ele-
mentary pN amplitudes, use the elementary pa ampli-
tude with the parametersfitted to experimental data. This
approach isvalidated in detail elsewhere[19, 20].

Thus, the alpha-particle wave function in the form
(2) depends only on the c.m. coordinates of the apha
particle (R,); in contrast, the triton wave function (3)
involves the single-particle coordinates (r;) of thetriton
nucleons. In Glauber theory, scattering occurs in the
plane orthogonal to the incident-proton beam (in the xy
planeif the zaxisis aligned with the beam distribution,
as is usualy done), whence it follows that al vectors
appearing in the operator Q are two-dimensional and
that the vectors appearing in the wave function are
three-dimensional. Two-dimensional vectors will be
either labeled with atilde, a = {a, a,}, or denoted by
the Greek letter p carrying a corresponding subscript,
ri = {pi, z}. (The Greek letter p without any subscript
will stand for the impact parameter.) In accordance
with this, we have

ch = wor(p_por)
1 L. _ (0)
- Z'ITT(Id qexp(—lq [(p_pu))fpa(q)l
where

Foa(@) = fra(@) + fra(a)o [h. @
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Table 1. Parameters of the pa amplitude

ZHUSUPOV, IBRAEVA

Set
Ep, | Opas c Boas 2 2 s Boas ) 2 | Refe-
Gev| fm? | Epo 2 | W fm t, fm pa | Ds 2| fm oM™ rences ‘ber
0.2 (108 | 0.645|0.867 | 2.48+i2.54 [20] | 1
0.2 | 8.908| 0.357|0.5055|10.09 —i5.16 |4.530 +i1.256|—0.127|10.312|1.071{1.593—-i1.302(12.03 +i2.22| [15] | 2
0.56|12.3 0.083|0.550 | 6.41+il1.15 [20] | 3
0.60|12.3 0.03 |0.56 6.2+il.1 [20] | 4
10 |152 |-05 [1.254 ~0.31 | 0.16 |1.85 [19 | 5
10 |152 |-0.2 |1.188 -0.2 0.15 |1.769 [19] | 6
1.03|12.7 |-0.189(0.652 | 561 +i1.17 [20] | 7
1.05/15.3 |-0.200{0.622 | 5.93+i1.22 [20] | 8
Here, fo, and f ), are, respectively, the central and the FC = Fs ,
spin—orbit component of the elementary pa amplitude; (BS )4
n isaunit vector orthogonal to the scattering plane, n = pd 5 ]
k xk'/|k xk'|; and o isthe Pauli spin matrix of thescat-  V° = Fj(p—p,) + Fa(p—po)” + Fe(p—po)”, (12)
tered proton. As was shown in [15], the diffraction pat- s s s
tern of proton scattering on alpha particles at energies s_1 2F, 12F3 s _F | 6Fs
about a few hundred MeV is described well by the 2 B (B ) 57 2(B: )2 (B )3’
parametrization [up to values of ¢ = 0.8 (GeV/c)?] pa pa pa pa
FS
foa(@) Fo= —2
2(Bpa)
KOy ,. 2 2 ) () pa
= -Zﬁg(l + Sga)%l - ?—%L - ?—Hexp(—ﬁf,aq 12), Unfortunately, there are no data in the literature on
2 the parameters of the pt amplitud_es; for this reason,
pq scattering on a triton will be considered as a process
fou(Q) = (' +€pq) occurring on three constituent nucleons. With allow-
) ance for all multiplicities of scattering, the Glauber

2 2 2
. 4q—sz‘L— L T EPP(BRT2),

where m is the nucleon mass and q is the momentum
transfer. The parameters of the elementary pa ampli-
tude are quoted in Table 1. By substituting (8) and (9)
into (6) and performing relevant integration, we obtain

Q, = GV exp[-Aq(p—pa)’l, (10)
wherev = ¢, s, and where
y = 2F;
Ag = 1\;’ GC=%, GS=—5120'Eh,
2I3pu lkBpa k(Bpa)
v _ ko, c_ 1 1
Fl - 4T[ pu) I:2 - _t_l_t21
1 1 ¢ 1 s 1
F>=—=—-= F5;=-— Fs;=—,
2 ts ts %ttty (11)
Ve = Fi+Fe(p—pa) +Fe(p—pa)’,
Cc [ I:l Cc Cc D
iz Tt Tt Ris O R
Boa  (Bpa) HBpa)” (Bpa) U
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operator Q, then becomes

Qp = W+ Wy + Wy — W0, — W Wy (13)

—Wr,W3 T W W,W3,

where wy can be represented in a form similar to that
given by Egs. (6) and (7) with the substitution of the pN
amplitudes for the pa amplitude. Breaking down the
elementary pN amplitudes into the central and spin—
orbit components, we represent these two in the stan-
dard way as[21]

c koon,. ¢ .
fon = 72+ ep)ep(-Bnd72), (14
s ko s <
fon = 4,?[Nqu(| +€pN)eXp(_I3qu2/2). (15)

where the subscripts N = 1 and 2 correspond to the pro-
ton and the neutron, respectively. The parameters of the
amplitudes are quoted in Table 2.

Substituting (14) and (15) into the formula corre-
sponding to (6) and performing two-dimensiona inte-
gration with respect to g, we obtain

W' (p—p) = Fuexpl—(p —pi)°Aul, (16)

Vol. 63 No. 11 2000
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Table 2. Parameters of the pN amplitude
S | N | oy, 2 £, Bon, fm? Ds, fm e By, fm?  |References Set

GeV pN> pN PN’ S pN pN? number

0.185| pp 25 1.22 0.529 [22] 1
pn 4.77 0.84 0.697

0.2 pp 2.19 —0.068 0.103 [23] 2
pn 4.10 5.199 0.0534

0.2 pp 2.36 1.15 0.65 [24] 3
pn 4.20 0.71 0.68 [25]

0398 | pp 2.56 0584 |0564-i0.61| 0.674 0.102 | 0.316 +i0.0.024 [19] 4
pn 3.332 0.108 [0.612-i0.486| 0.441 0.431 | 0.40-i0.054

0.6 pp 4.00 111 0.022 [23] 5
pn 3.75 1.712 —-0.0122

0.6 pp 3.7 —-0.48 0.097 [27] 6
pn 3.6 -0.36 0.115

0.6 pp 3.96 0.24 0.11 [21] 7
pn 3.66 —0.295 0.175

0.6 ppn* 37 -0.1 0.12 3.0 1.0 0.6 [26] 8

0.6 pp 361 0.378 0.1 [22] 9
pn 3.6 —0.205 0.111

1.0 ppn* 4.356 -0.3 0.187 0.21 0.364 0.298 [30] 10

1.0 pp 4.75 -0.1 0.23 0.16 -0.3 0.75 [29] 11
pn 4,04 -04 0.16 0.16 -0.3 0.75

1.0 pp 4.75 —-0.05 0.109 [22] 12
pn 4,04 -04 0.109

1.0 pp 4.75 -0.1 0.24 0.14 -0.6 0.6 [28] 13
pn 4,04 —-0.45 0.24 0.14 -0.6 0.6

1.0 pp 4.75 —-0.05 0.21 [6] 14
pn 4,04 -05 0.21

1.0 pp 472 —-0.09 0.09 [21] 15
pn 3.92 —0.46 0.12

1.0 pp 4.75 1.99 —-0.0112 [23] 16
pn 4,02 2.133 —0.404

1.0 pp 4.75 —-0.05 0.182 [24] 17
pn 4.00 -05 0.182 [25]

1.0 ppn* 4.356 -0.3 0.187 0.202 0.413 0.333 [30] 18

1.0 ppn* 4.356 -0.3 0.26 0.213 0.3 0.467 + i0.297 [31] 19

1.0 pp 4.75 0.25 0.1 15 0.75 [32] 20
pn 3.85 0.25 0.1 15 0.75

1.0 pp 4.75 0.25 55 0.2 1.25 [32] 21
pn 3.85 0.25 55 0.2 1.25

1.0 pp 4.75 -0.33 0.182 [34] 22
pn 4.00 -0.33 0.182

1.0 pp 4.75 —0.06 0.182 [35] 23
pn 4.00 -04 0.182

1.04 pp 4.75 -0.1 0.24 [33] 24
pn 4.04 -04 0.17

1.05 ppn* 44 -0.27 0.25 2.3 0.7 0.6 [26] 25

Note: Asteriskslabel cases where the parameters of the pp and pn amplitudes areidentical.
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B (i +€5) and A = —— , and
PN 2BpN

where Fy, =

wi(p—p;) = (p—p)Fxexpl-(p—p)°AN], (17)

D
e iy gl and Af = ——.
81(Bpn) 2Bpn

Inserting (16) and (17) into (13), we can represent
the central and the spin component of the Glauber oper-
ator Q, as

where Fy, =

3
S Frexpl~(p—pn) Al

N=1

Q; =

3

z Fx FNeXp[ (P—pn) )\N (P—pn) )\N]
N<N =1 (18)

c\2,-cC c c
+(Fo) Foexp[—(p —po) An—(p—p2)°As

—(p-p3)*N; ],
3

Q= o S Fu(p—puexpl~(p—py) AR
N=1

3
> FiFu(p—py) dp—py)
N<N =1
(19)

x exp[—(p —pn) Ak — (P — Pr) A]

+(F)Fa(p—p)(p—po) Op—ps)

x exp[—(p—po)An—(p—p2)Aa—(p—ps)°Asl,

whereN, N'=1, 2 correspond tonand N, N' = 3 corre-
spond to p.

Within Glauber theory, the scattering amplitude (or
the relevant matrix element) can be written as

M(q)

4
_ ik 2 . (20)
= g e [ 9r.0la D3R N

where r,, stands for the single-particle coordinates of
the nucleons and of the nucleon cluster (alpha particle)
in the target nucleus; k and k' are the c.m. momenta of,
respectively, the incident and the emitted proton; and q
isthe momentum transfer in thereaction, q =k —k'. In
the particular case of elastic scattering, we have k = k'
and |q| = 2ksin(6/2), where 0 is the incident-proton
scattering angle.

Since the Glauber operator Q in (5) depends on the
elementary pa and pN amplitudes and since each of
these two is broken into the sum of the central and the

PHYSICS OF ATOMIC NUCLEI
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spin-orbit term [see EQ. (7)], Q aso appears asthe sum
of two terms,

Q=Q°+Q° 1)

Substituting (21) into (20), we obtain the expression for
the total amplitude in the form

M(q) = M*(q) + M*(q), (22)
where the quantities M%(q) and M%(q) are calculated by
formula (20), where Q is replaced by Q° and QS,
respectively. In terms of the amplitude in (22), the dif-
ferential cross section and the analyzing power (or
polarization) can be expressed in aconventional way as

do_

dQ 2J+1| (@’ 23
A =P = ZRS’[MCZ(Q)M: (@], (24)
M)l + IM3(q)|

In order to proceed further, it is necessary to go over,
inthe wave functions and in the operators, fromthe sin-
gle-particle nucleon coordinates {r,, r,, r;, R,} to the
Jacobi coordinates{a, b, R;, R} ; the relation between
these two sets of coordinates can be represented as

ry+r
a=r,—r, b= 12 21,
L2 17 (25)
Rt = ézri, Ra = eri'
i=1 i=4
Theinverse transformations yield
b,6,a b a
nTRTeTr TR (26)
2
r3 = Rt—éb

The expressions for the coordinate of the relative
motion, R, and for the coordinate of the center of mass
of the nucleus as a discrete unit, R,, are given by

R = R,-R,

=35n

Going over in operators (18) and (19) from the sin-
gle-particle nucleon coordinates to the Jacobi coordi-
nates by formulas (26) and performing some transfor-
mations, we can further represent the operator Q, asthe
sum

(27)

R +2 R (28)

7

= S gnexp(-chp’ —dnp; —enb — 1’
=1

+hnp Op+knp b +npp A+ myp (b (29)
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+lnp B+ s,a0b).
Summation over min (29)—that is, over the multiplic-
ity of scattering on the triton-cluster nucleons, withm=
1-3, 46, and 7 corresponding to single, double, and
triple scattering, respectively—is equivalent to the
summation over N and N' in (18) and (19). In the fol-
lowing, we disregard the term ,w,w;, Which is associ-
ated with triple collisions, in the spin—orbit operator

Q; because, as was shown in [14, 36], its contribution

to the matrix element is approximately two orders of
magnitude less than the contribution of single and dou-

ble collisions. The expressions for the coefficients g, ,
Cm, ..., and s;, are presented in the Appendix.

We begin by calculating the central matrix element
M¢(q). For this, we go over in (20) from the single-par-
ticle coordinates to the Jacobi coordinates according to
(26). Upon integrating the matrix element with respect
to R, with the aid of a delta function and taking into
account (27) and (28), we obtain

3 7

RC( = _Z_Rt’ R = RC(_Rt = _Z_Rt. (30)

In terms of the Jacobi coordinates, the wave functions
(2)4) become

9 o]
®, = N zC expD J16R

(31

®, =N chexp[ Di 2’ D}

asz 3 ap

7 A 49 >
o = —RY(RING Y Clexpaai=Rg

With allowance for (30), the operator Q, in (10) can be
recast into the form

where the expressions for VW, which are specified by
(11) and (12), assume the form

3.3
Ve = é#h FEBJ2+Epf+§pptE
(33)

0
+F [p +Eﬁpt +—(ppt) +3p° [p, + 2p Ebf}%t

3

L3 3
Ve = Fibp+ 4ptD+ Fsgp’+ 0 P+ Zzppf
3 3] 3[b 4 36 3 2
FEROTRP P R PR (Y
PHYSICS OF ATOMIC NUCLElI Vol. 63 No. 11
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3[5233[54355
5pt|:r
) 4* 4

Substituting (30) and (31) into the matrix element (20),
we obtain

M%(q) = Clj'dzpeiqf"thdadb

x e>(p(—V1k612 _V2kb2 — V3 th)QC

xy <1|\/|L%|\/|S

M M,
MsMs

X thlM,_(ﬁt) | RtYlM-L(Iit) X1

X1, .
sMs| " 3M)”

K NN N D7DZchcch

1

3 \ /|3

§M3> (35)

where

Cl-

2T[ atCyd]

-.;cici.,

Vi = Z_(ak+ak')v Vo = é(ak+dk')’

49 9
Vi = 1_6(0‘i +a) + 1_6(0‘1' +aj).
Calculating separately the factor appearing in the
matrix element and depending on the angular-momen-
tum projections, we find for the case of elastic scatter-

ing that

1 3 N TR I T
M M,
MsMg
) ) (36)
x (R Yy, (RY)| RY,,: (R)O
3 2 2 2
= 4_1.[[k1Xt +koy +kez ],
4 2 4 2 4
Wherekl_é_TB’kZ é 73 k3_3 Rtxa

Yi= Rty7 and z = R,
For inelastic scattering, the analogous factor is

1.1 B T R
z <1ML§MS EMJ><1ML§MS QMJ>

M M
- - 1
X R Yu (R)[RY,, (R)T= Z[x —x2].

(37)

MsMs

Because the operators Q, and Q, depend only on the
two-dimensional components of the corresponding
vectors, we represent the integral in (35) as the product



1916

of the factors depending on the longitudinal (z) and
transverse (p) components:

M%(q) = clf— [ pdp,cach
~ ~2 . c
x eXp(—Vyd = Vb —vgp; +iqp)Q (38)
 [dzda,do,exp(~ vy, —Vab; —VsZ)
x [k +Kaoys + ezt
Integration with respect to z projections is performed
with the aid of standard formulasfrom [37]. Theresultis
[dzda,db,exp(= vy, —Vab; —VsZ)

3/2
TU

AV1kV2kV3i

x [kyx? +Koye +kezt] = (KX + Koyt)

32
Tt

3—.
2V35in/V 1KV 2k Vi
If we use symmetric kinematics, then klxt2 + kzyt2 =

k3pt2, where pt2 = A/xt2+ yt2; in this case, integration
with respect to p; in (38) will be simplified consider-
ably. Substituting (5) into (38), we obtain

M () = My(Qg) + My(Q7) — My(Q5Q)),

+ k.

(39)

where the first and the second term determine proton
scattering on the apha particle and on the triton,
respectively, while the third term determines the rescat-
tering of theincident beam on al the clusters and nucle-
ons consgtituting the 7Li nucleus. Inserting the explicit
expressionsfor operators (29) and (32) into each matrix
element in (39), we obtain an expression in the form of
the sum of multidimensional integrals of the Poisson
type, which are calculated analytically with the aid of
the formula[38]

[dp1d"p2d"psexp[—sby —th; —ub; + ep, [p,
+fp1 |:p3+g92 |:p3+hlql Epl (40)

3
Tt T
+ hyq, Op, + hsqs D] = -A—eXpE_ZEf

ZHUSUPOV,

IBRAEVA
| f h.q,
S T3 T3 T3
o g ha
= 2 2 2 |
g, s
2 2 2
hiq; hyd, hsds 0
2 2 2

If the integrand additionally contains a polynomial of
nth degree (33), theintegralsare cal culated by means of
differentiation with respect to the corresponding
parametersin the original expression (40). The ensuing
calculations do not involve difficulties of afundamental
nature, but the final expressions are rather cumbersome
and are not presented here for this reason.

Let us go over to caculating the spin-dependent
matrix elements. Substituting the wave functions (2)—
(4) and the expression for Q¢ into the matrix element
(20) and performing integration with respect to R, with
the aid of the delta function o(R,), we arrive at

M®(q) = C,[d’pdadbdRr,
x exp(_vlkaz_VZkbz T V3 th)QS

xy <1ML%MS

MM
MM

gMﬁ> (41)

3 L
EMJ><1ML§MS

x [RY1w (R)|RY,,. (RO Xy |6 [N

2 S

Xy .\

b
Calculating the spin part of the matrix element sepa-
rately, we obtain [39]

X
(¥

- 2«/1_TZ(—1)1_H<1U%M'S
M

_ 42
") = 2<2MS

1 A
éMs>Yl_u(n)

o [h

s[h‘%M's>

(42)

Considering that 6, = g since n is orthogonal to the

plane spanned by the vectors k and k', we arrive at the
expression for the matrix element in the form

where
1 1.,
s L _f
2 2 0, Mg= Mg
~ || g 1 . 1 .. 1@
A3t 3] = | 5(cosp,~ising,), Ms =3, Ms=—3
f g 1 . 1 .1
272" S(cosp, +ising,), Ms= -5, Ms=3.
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By using thisresult and performing summation over the
projections of the angular momenta, we obtain

1.3 103,
M M,
MsMs (44)
x ERtlexﬁet)lRtle-L(FA«)?x;M o x>
2 S z S
= (X ) + f(2),
where
F (% Vi) = (kaX +ksy?) COSO, + KeX,Y;SIND,,
f(z) = keztzcosd)m (45)
- 1.2 1.2 _2
k4 - ,\/é 37 k5 /\/:.—))+ 3! k6 3

The ensuing cal cul ations are analogous to those for the
central component of the amplitude with the only dif-
ference that the number of termsin the matrix element
increases substantially because of the polynomials

appearing in the operators Q; and Q. .

3. DISCUSSION OF THE RESULTS

Theformulasthat were derived in the preceding sec-
tion make it possible to calculate the differential cross
sections for elastic and inelastic proton scattering on
Liat E,=0.2,0.6, and 1.0 GeV and the corresponding
analyzing powers.

Figure 1 illustrates the behavior of the differential
cross sections versus the incident-proton energy.
Curves 1, 2, 3, 4, and 5 represent the differential cross
sections computed at energies of 0.2, 0.4, 0.6, 0.8, and
1.0 GeV, respectively. The figure shows how the dif-
fractive structure of the cross sections manifests itself
with increasing energy: at 0.2 GeV, the cross section
decreases monotonically (asafunction of the scattering
angle), while, at 1.0 GeV, we clearly see three shallow
minima. As the energy increases further, the first mini-
mum in the differential cross section is shifted to the
region of smaller angles, while the magnitude of the
differential cross section at 8 = 0° is determined by the
total scattering cross section, which depends on o, and
Opn (see Tables 1, 2).

The differential cross sections as functions of the
parameters of the (a—c) pN and (d) pa amplitudes are
displayed in Fig. 2 for three values of the incident-pro-
ton energy. In Fig. 2a (E, = 0.2 GeV), curves 1, 2, and
3 correspond to the parameter sets 1, 2, and 3 from
Table 2. The experimental data are better described
with set no. 1 than with set no. 2 (as can be seen from
Table 2, set no. 2 involves the overly large value of
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do/dQ, mb/sr
107 s

10!
107!

1073
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Fig. 1. Differential cross section asafunction of the scatter-
ing angle at the incident-proton energies of E,=(1) 0.2, (2)
0.4, (3) 0.6, (4) 0.8, and (5) 1.0 GeV.

€on = 5.199). It turns out that, for angles 6 > 35°-40°,

the parameter set no. 2 is at odds with experimental
data. In Fig. 2b, we present the same result, but at E, =
0.6 GeV. The parameter sets 5, 6, 7, and 8 from Table 2
correspond to curves 1, 2, 3, and 4, respectively. All
curves show maximaand minimaat the same positions.
Basically, the curves differ in the depths of the minima
and in their behavior for 8 > 40°. As was indicated in
[14, 22], the depths of the minimaare controlled by the

parameter s;N —the greater the value of this parameter,

the shallower the minima. Thisis clearly seenin Fig. 2
aswell, from a comparison of curve / (Epp=1.11, €y, =
1.712) with curves 2 (g,, = —0.48, €,,=—-0.36), 3 (€, =
0.24, €,,=-0.295), and 4 (g, = €,,=—0.1). The results
of the calculations with the parameter sets 7 and 9 are
similar. In Fig. 2c, we have the same pattern at E, =
1.0 GeV. Because of agreat variety of the parameters at
this energy, we performed calculations with several
options. The parameter sets 10, 11, and 12 from
Table 2 correspond to curves 1, 2, and 3, respectively. It
should be emphasized that, again, all the curves show
minima and maxima at the same positions, differing
only in absolute values at these minima and maxima.

The dependence of the minimaon the parameter s;N is
clearly seen in the figure (we have g,, = €, = -0.3 for
curve 1 and g, = -0.05 and €,, = -0.4 for curve 3). The
parameters of the pa amplitudes correspond to set no.
7 from Table 1. The differential cross sections as func-
tions of the parameters of the pa amplitudes are dis-
played in Fig. 2d at E, = 1.0 GeV. Curves 1, 2, and 3
were calculated with the parameter sets 8, 7, and 5 from
Table 1, respectively. (Curve 3 in Fig. 2c correspondsto
curve 2 in Fig 2d, since the calculation was performed
with the set no. 12 of the parameters of the pN ampli-
tude) A somewhat different pattern can be seen in
Fig. 2d. Curves I and 2 differ insignificantly, mainly
because of the difference in o, (12.7 and 15.3 fm? for
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do/dQ, mb/sr
103

10!

107!

1073
103

10!

107!

1073

102F
100
1072

1074

10°°

102F

Fig. 2. Differential cross section asafunction of the scatter-
ing angle for various sets of the parameters of the (a—) pN
and (d) pa amplitudes at the incident-proton energies of (a)
E, = 0.2 GeV (curves 1, 2, and 3 were calculated with the
parameter sets 1, 2, and 3 from Table 2, respectively; the
experimental data were borrowed from [3]); (b) E, = 0.6
GeV (curves 1, 2, 3, and 4 were calculated with the param-
eter sets 5, 6, 7, and 8 from Table 2, respectively); (c) E, =
1.0GeV (curves1, 2, and 3 were calculated with the param-
eter sets 10, 11, and 12 from Table 2); and (d) E, = 1.0 GeV
(curves 1, 2, and 3 were calculated with the parameter sets
8, 7, and 5 from Table 1, respectively).
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do/dQ, mb/sr
10°

10!

107!

1073

10!
107!
1073

1073

_7 1 1 1 1
10 0 20 40 60

Fig. 3. Contributions of various multiplicities of scattering
tothedifferential crosssection at E, = () 0.2 and (b) 1.0 GeV.
Curves 1, 2, and 3 represent the contrlbutlonsfrom respec-
tively, scattering on the apha particle, scattering on the tri-
ton, and rescattering on the two clusters, while curve 4
shows the total contribution.

curves I and 2, respectively). Beginning from the sec-
ond maximum—that is, for 8 > 20°—curve 3 is in
antiphase with curves / and 2. For want of experimen-
tal data at this energy, no definitive conclusions can be
drawn unfortunately asto the quality of these parameter
sets; however, the amplitude for set 5 differs qualita-
tively from the amplitudes for sets 7 and 8—in the
amplitude corresponding set 5, there is no (1 — ¢/t,)
pole. Aswas shown in [20], this pole ensures a better fit
to the differential cross section for proton scattering on
“He at high momentum transfers (which correspond to
large scattering angles). This naturally affects the
behavior of the differential cross section for proton
scattering on “Li nuclel.

In Figs. 3a and 3b, the individual contributions of
various multiplicities of scattering to the differential
cross section are shown at two values of the proton
energy. These contributions were determined by for-
mula (39). Curves 1, 2, and 3 in Figs. 3a and 3b repre-
sent the contributions of, respectively, the first (scatter-
ing on the a pha-particle cluster), the second (scattering
on the triton), and the third (rescattering on the two

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 11 2000
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do/qu, mb/sr

o0 E,=0.2GeV

50 6, deg

Fig. 4. Differential crosssection for inelastic p’Li scattering
to the E* = 0.48 MeV level as a function of the scattering
angle for various values of the parameters of the pN ampli-
tude. Curves 1, 2, and 3 were calculated with the parameter
sets 1, 2, and 3 from Table 2, respectively. The experimental
data were borrowed from [3].

clusters) term in (39) [gQ IM,(Qg )|2 — =

2J+1

2 do _
2J+1|M2(Qt " dQ ~ 2J+l
respectively]; finally, curve 4 depicts their total contri-

do
' do 2J+1|M1(Q )t
M,(Q;) — My(Q¢ Q). From thefigures, it can be seen
that, at small angles, the main contribution to the differ-
ential cross section comes from scattering on the a and
t clusters; the contribution from rescattering at 8 = 0° is
two orders of magnitude smaller, but it begins to
approach the first two in absolute value at 8 = 30° and
becomes dominant at large angles. This was confirmed
in [14, 22, 36], where it was shown that, as the multi-
plicity of scattering grows, the absolute value of the
amplitude decreases, but the rate of their decrease
diminishes concurrently, so that higher multiplicities
begin dominate over lower ones at specific angles. The
regions where these contributions become commensu-
rate are known as the interference regions. This is
clearly manifested, for example, in Fig. 3a, where the
minimum is smoothed, however, because the cross sec-
tionisequal to the sum of three terms—each amplitude
is complex-valued, and summation of the real and
imaginary parts can lead either to a constructive (when
the partial contributions are added) or to a destructive
(when they are suppressed) interference. It should be
noted here that, as can be seen from the results pre-
sented in Figs. 3a and 3b, it isimpossible to describe
satisfactorily the differential cross section by taking
into account only single (even single and double) scat-
tering. It is necessary to include all multiplicities of
scattering on acluster formed by nucleons (triton in our
case) or to choose aredlistic px amplitude if the cluster

IMy(Qq Q0P

bution to the cross section
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Fig. 5. Analyzing povver Ay for (a b) elasticand () inelastic
proton scattering on “Li nuclei at (a, ¢) E,= 0.2 GeV (curves
1, 2, and 3 were calculated with, r&spec!t)lvely thesats 1, 3,
and 4 of the parameters of thepN amplitudefrom Table 2) and
(b) Ep =1.0GeV (curves 1, 2, and 3 were calculated with,
respectively, the sets 10, 11, and 13 of the parameters of the
pN amplitude from Table 2). The experimental data were
borrowed from [3].

isconsidered as astructurel ess system (alphaparticlein
our case).

The differential cross sections for inelastic proton
scattering on “Li nuclei at E, = 0.2 GeV are shown in
Fig. 4 for three sets of the pN amplitudes. Curves 1, 2,
and 3 were calculated with the amplitude sets 1, 2, and
3, respectively. It was indicated above that, for dastic
scattering, the calculations with the parameter sets 1 and
3yidd closeresults (the parametersthemselves are close,
too). At the same time, the parameters from set 2 differ

sharply inthevaluesof €, and B,y fromthoseinsets1

and 3. This is reflected in the behavior of curve 2—it
describes experimenta datalesswell than curves 7 and 3.
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InFig. 5, the calculated analyzing powersfor elastic
(Figs. 5a, 5b) and inelastic (Fig. 5¢) proton scattering at
E,=0.2GeV (Figs. 54, 5¢) and E, = 1.0 GeV (Fig. 5b)
are depicted for various values of the parameters of the
pN amplitude. At E, = 0.2 GeV, we used set 2 from
Table 1 for the parameters of the pN amplitude. For the
pN amplitude, we took the parameter sets 1 (curve 1),
3 (curve 2), and 4 (curve 3) from Table 2; here, the
spin—sospin parametersfor sets 1 and 3 were chosen to
be identical to those for set 4, but it should be bornein
mind that thisis not quite correct at the incident-proton
energy of 0.2 GeV. Since no fitting was performed for
the parameters of the spin—orbit component of the
amplitude (this is postponed to a future study), the
resulting qualitative agreement between the calcul ated
analyzing power and experimental datafrom [3] can be
thought to be quite good both for elastic and for inelas-
tic scattering. At E, = 1.0 GeV, there are a few equiva-
lent sets of the parameters of the spin—orbit pN and pa
amplitudes (see Tables 1, 2); unfortunately, there are no
experimental datain thisregion. Nevertheless, we have
calculated the analyzing power at E, = 1.0 GeV, the
results being plotted in Fig. 5b. Here, we have used the
parameter set 6 (Table 1) for the pa amplitude and sets
10 (curve 1), 11 (curve 2), and 13 (curve 3) from
Table 2 for the pN amplitudes. All three curves are suf-
ficiently close to one another—the maxima, the min-
ima, and the numbers of oscillations are virtually coin-
cident for them, only dlight distinctions between the
absolute values being observed. We note that the min-
ima of A, correlate with the minima of the differential
Cross sections, a regularity that is also observed for
scattering on other nuclei [19, 20, 22]. Curve / ismore
symmetric, possibly because the parameters of the pp
and pn amplitudes are identical in this set (no. 10).

4. CONCLUSIONS

A systematic analysis of the differential cross sec-
tions and of the analyzing power A, for p’Li scattering
at various energies of incident protons cannot be per-
formed because of paucity of experimental data. How-
ever, some conclusions can be drawn from currently
available information.

(i) The diffractive pattern of elastic scattering mani-
festsitself more clearly with increasing energy of inci-
dent particles. This is one of the reasons why, at E, =
0.2 GeV, adiffractive pattern appears neither in scatter-
ing on the SLi nucleus [10] nor in scattering on the "Li
nucleus [3], despite the fact that the former and the |at-
ter are, respectively, spherically symmetric (Q ~ 0) and
asymmetric (Q ~ 40 mb). Hence, only at sufficiently
high energies (E ~ 0.6-1.0 GeV) can we say that the
diffraction minimum isfilled owing to the contribution
of the quadrupole component.

(if) For E, < 1 GeV, it is illegitimate to take into
account only single collisionsin calculating the differ-
ential cross section and the analyzing power A, . It is
necessary either to include al multiplicities of scatter-

ZHUSUPOV, IBRAEVA

ing on nucleons or to use a well-fitted (realistic) ele-
mentary px amplitude, which effectively incorporates
contributions from multiple collisions.

(iii) 1t is well known that data on the differential
cross sections and on the analyzing power A, can be
used as a test for the parameters of the px amplitudes.
In particular, such atest can reject parameters that do
not correspond to experimental data. In our case, this
concerns the parameter set for the pN amplitude from
[23] with the unusually largeratio of thereal part of the
amplitudeto itsimaginary part (x»:,c)n =5.199). Here, we
do not draw definitive conclusions from the calculation
of the analyzing power, taking our calculations to be
preliminary, because we did not fit the parameters of
the pN amplitude at E, = 0.2 GeV. Moreover, it was
indicated in [38] that, in order to refine the parameters
of the elementary amplitudes, it is necessary to analyze
all observables of proton—nucleus scattering, including
the spin-rotation function Q,, because it is the spin-
rotation function that exhibits the greatest variations
upon going over from one set of proton—nucleon ampli-
tudes to another.

APPENDIX

The coefficients in the operator Q; determined by
formula (29) at v = c are given by

g:n = (Fr('i! Fr(‘i! F;! _(FE)Z’ _FrfF;! _FI(T:F;; (Fﬁ)ZF;)v

Cm = (A A A 2N Arps Ay (A + A7),

c:ﬂ.c}cﬂ-cgc[ﬂ.c ‘_]-CDEEC ﬂ'CDD
en Eg)\”’ 9)\n, 9)\p, 9)\n, Eg)\” + gAPD Eg)‘” + 9)‘PDD

1 1yc 1yc 1,c 1
hm = (2A5, 2\, 28, 4A5, 2h0,, 2h0,, (4N, + 2100)),

k:; — D'_Z)\r(:’ 2)\0 4)\0 4)\:; Eg)\r(i_4)\c|:|

3 m 3% 73 e 3t 3t T 3%
[2)\(: 4)\c|:| [fl)\c 4 c[1]
(g™ 30 M T3

Nm = (As, =An 0,0, Af, =\, 0),

le = (A Ay 0,0, <A, Ar, 0),

czm_gc_gcéc_ﬂ-cm_gc_l_ﬂ-cm

My = F5A —5M 305 —3Mn 50+ 3h00
D_g c ﬂ-cDD_‘_l-c 4_]-c|j:|
0 3)‘”+3}‘9DD 37\n 3)‘PD3
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s = BAi A5 0,035 30, o

The coefficients in the operator Q; determined by
formula (29) at v = s can be represented as

g = 6 C[En(p—Py), Anb, B, Do’ + P7),
ymbzf 6mazl EmP [ph —CmP EB’ —CmPt EB! emp Eﬁ,
_empt Eﬁv Uma EE)] )

Em = (F;l FI:! F:l 01 01 0)1

1 1 s2
a, = E—éF:,—éFs, éF;, 0, O, Og
_ 1_s.-s
0, = —FpFn(O, 0,0,0,1,1),

2

Bn = —3F2(1,1,0,0,0,0),
Om = —(0,0,0, (F3)’, -FiF5, —FoF2),

Vo = é(o, 0,0,—(F3)’, 2F5Fs, 2F3FY),
1, 5.2
6m = Z(Fn) (Ol 01 Ol 11 O! 01 O)i

e = 2(0,0,0, (F)° FFS

2Fp FaFo).

¢ = %(o, 0,0, 2(F3)’, F2FS, F2FY),

W, = %F,ﬁF;(o, 0,0,0,1,-1),

d, =c,

Co = (Aﬁ,)\ﬁ,)\;, ZAE,)\,fp, )\,'fp),
s_[}l.s!.sﬂ-sgs[ﬂ.s ﬂ'SDEE.S ﬂ'SDD
en=ghn ghm e g GpMn * 5her M0 * GMer

fh = B 2a 0.0 2an I

ha = (2A5, 270, 2h;, 4, 2h 0, 2A0,),

nps

K = s, 28, 2 A Bys _ 4o

g 3" 3%er 3% [ T 3%
[2ys_4ys]
EB}‘”_s)‘PDir

nfn = ()\;1 _)\:v 0! 01 )\iv _)\s)v
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s _DZ)\S

2,5 4, s 4 4
= A BB -

m m g e T3 T T 3hen
[2ys_4ys]
M 3Mem

Ifn = (_Aﬁa )\rsu 01 01 _Aﬁa )\:)1

1.5 1 1,51

where Ay, = Ay + A,
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Abstract—Within several models of charm production in hadron—nucleusinteractions, it is shown that prompt-
muon fluxes at the depths of operating and designed neutrino tel escopes (1-4 km) can in principle be measured
in experiments with a high detection threshold. © 2000 MAIK “ Nauka/| nterperiodica” .

1. INTRODUCTION

Not only is charm production in hadron interactions
at energies E > 1 TeV a phenomenon of interest for
particle physics, it aso has an important application in
high-energy astronomy—namely, atmospheric neutri-
nos from the decays of charmed hadrons (predomi-
nantly, D, D*, and A,) produced in the interactions of
cosmic rays with the Earth’s atmosphere appear to be
the main source of background in detecting (quasi)dif-
fuse fluxes of neutrinos of astrophysical and cosmol og-
ical origin [1]. The flux of atmospheric muons geneti-
cally related to neutrinos is a natural tool for testing
charm-production models and for more precisely esti-
mating the background of atmospheric neutrinos [2].

Direct spectrometric measurements of muon fluxes
with ground-based arrays have not yet covered the
muon-energy region above 20 TeV for nearly horizon-
tal fluxes and the region above 3 TeV for vertical fluxes.
The datistical significance of these measurements is
insufficient for extracting quantitative information
about the contribution of muons from charm decay—
that is, prompt muons. The potential of underground
experiments is considerably higher, but there is a natu-
ral limit here caused by irregularitiesin the density and
chemical composition of rock around the facility used,
by alimited detector volume, etc. Therefore, it is perti-
nent to recall important advantages of deep-underwater
Cherenkov facilities, such as a high degree of homoge-
neity of the absorbing medium (water, ice) and alarge
sensitive volume, and to discuss prospects for neutrino
telescopes like AMANDA [3], Baikal NT [4], and
NESTOR [5] in the problem of measuring prompt-
muon fluxes. It isimportant to assess depths, threshold
energies, and zenith angles appropriate for experimen-
tal measurements aimed at reliably identifying the con-
tribution of prompt muons and—as an eventual goal, if
achievable in principle—for establishing the most ade-
quate models of charm production.

Inthisarticle, we discussthe results obtained by cal-
culating the flux of high-energy muons (E, = 1 TeV) at
sealevel and itstransformation at large depths in water

(between 1 and 20 km). The differential cross sections
for charm production in nucleon and pion interactions
with light nuclei were calculated within the model of
quark—gluon strings (QGS model aso known as
QGSM) [6], the recombination quark—parton model
(RQPM) [7], and the model [8] that is based on pertur-
bative QCD with alowance for nonleading contribu-

tions of order 0(3 and which employs, at the stage of

hadronization, nonperturbative fragmentation func-
tions[9].

2. ATMOSPHERIC MUONS AT SEA LEVEL

For various zenith angles 6, the energy spectra of
muons from pion and kaon decays (1, K-muonsin the
following) were calculated on the basis of the nuclear-
cascade model [10] refined in [2, 11]. The parametriza-
tion proposed in [12] was chosen for the spectrum of
primary cosmic rays. The same nuclear-cascade model
was used to compute the prompt-muon contributions
within the QGSM and the QPRM. The predictions of
the QCD-based model [8] were obtained withintheless
detail ed nuclear-cascade model and only for nearly ver-
tical directions. The resulting distinctions can be
neglected, however, against more significant uncertain-
ties associated with known arbitrariness in choosing
parameters of the QCD-based model like pg [the
energy scale specifying the renormalized charge o ~
1/In(Ur/Noep)] @nd pe (the factorization scale separat-
ing perturbative dynamicsfrom theinfrared region) and
the parton distributions in the nucleon. In al cases, the
differential widths with respect to the inclusive semi-
leptonic decays of D and A, were calculated on the
basis of the simple method proposed in [7].

The calculated differential spectra of muons at sea
level, D,(E,, 0), for two zenith-angle values of 6 = 0°
and 89° aredisplayed in Fig. 1, along with experimental
data from [13—18]. All quoted data, with the exception
of those from [13] (MUTRON spectrometer), were
obtained by applying various methodsto processing the
results of underground experiments. A detailed com-
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Fig. 1. Vertical and nearly horizontal fluxes of muons at sea
level. The experimental data were borrowed from (¢) [13]
(89°), (B, v) [14], (D) [15], (@) [16], (4) [17], and (») [18].
The results of the calculations taking into account only Tt,
K-muons are shown by solid curves. The results including
the prompt-muon contribution were computed on the basis
of the (dashed curves) RQPM, (dash-dotted curves) QGSM
and (dotted curves) QCD-based model from [8] (the figures
1, 2, and 3 on the dotted curves correspond to the QCD-1,
QCD-2, and QCD-3 versions, respectively).

parison with experimental data at sea level was pre-
sented in[2, 19].

The RQPM predicts arelatively fast variation of the

exponent of the muon spectrum. We denote by Eﬁ (©)

the energy at which the contributions of ordinary
muons from (1t and K decays) and prompt muons

become equal. Within the RQPM, we have E; (0°) =

150 TeV and E;; (89°) = 1 PeV. According to the QCD-

based model developed in [8], the contribution of
prompt muons begins to dominate in the total muon

flux a higher energies. Specific values of E;(6)
depend heavily on the choice of the parton distributions
and other model parameters. In Fig. 1, curve / repre-
sents the results obtained for the so-caled MRSD
model of the parton distributions [20] with pg = 2pg =
2m,; while curves 2 and 3 correspond to the CTEQ3
model [21] with P = 2Ug = 2m. and Yg = Pg = M,
respectively. Below, these versions will carry the labels
QCD-1, QCD-2, and QCD-3. In all three cases, the
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c-quark mass m, was set to 1.3 GeV. Within the QCD-1

model, the critica energies Eﬁ (6) are numerically

closeto those obtained within the RQPM, while, within
QCD-3, they are close to the QGSM predictions

[E, (0°) =850 TeV, Ej (89°) =5 PeV]. In order to dis-
tinguish experimentally the versions of the QCD-based

model by using sea-level muon data, it is necessary to
cover energies E, = 100 TeV.

From Fig. 1, we can see that, for E, > 10-20 TeV,
none of the models being discussed can reproduce the
data from the experiment with x-ray-emulsion cham-
bers evolved at Moscow State University [14] and from
the experiment with the Fr§us underground detector
[15]; at the same time, noneisruled out by recent LVD
results (Gran Sasso) [16]. As a matter of fact, the
remaining experimental datapresentedin Fig. 1 furnish
no new arguments in favor of or against the modelsin
guestion. This paradoxical situation clearly demon-
strates that new experiments at significantly higher
energies are required. Such experiments can be per-
formed only with large deep-underwater tel escopes.

3. UNDERWATER SPECTRA AND ANGULAR
DISTRIBUTIONS OF MUONS

In order to calculate the transformation of the muon
spectrum at large depths in water, we used the analytic
method developed in [22]. For the boundary spectrum
that decreases sufficiently fast with increasing energy,
this method allows us to solve approximately the
kinetic equation with acollision integral that takesinto
account the actual energy dependences of the differen-
tial cross sections for radiative losses (e*e- production,
bremsstrahlung) and of the cross sections for photonu-
clear muon interaction. The calculation was tested by
comparing the numerical resultsit yieldswith theentire
body of available data on muon absorption in rock of
various compositions and in water [2], as well as with
data on the muon angular distributions measured at the
NT-36 and AMANDA-B4 facilities (see [4] and [3],
respectively) for low recording thresholds [23].

The calculated integral spectral, (>E, h, 8) of ordi-
nary and prompt muons under water are displayed in
Fig. 2 versus (a) the energy E,, (b) the depth haong the
vertical, and (c, d) cos0 at fixed values of the other vari-
ables. Figures 24, 2c, and 2d display the results
obtained on the basis of the QCD-2 version, while
Fig. 2b shows the relevant results for al three versions
of the QCD-based moddl.

A reliableidentification of the prompt-muon contri-
bution can be expected if there is an intersection of the
curves for prompt and for 1, K-muons, in which case
the number of events is doubled with respect to that
which is expected for 1, K-muons. It should be noted
that the curves describing the angular distributions can
intersect twice, asin the case of the RQPM at a depth
of h = 1.15 km (Fig. 2d). This occurs if the prompt-
Vol. 63
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Fig. 2. Results of calculations for muon fluxes at depths of 1-4 km under water: (a) integrated energy spectra at a zenith angle of
8 =78.46° (secH =5); (b) fluxes of muonswith energies E, = 100 TeV as functions of the vertical depth hat sec =5; (c) zenith-
angle distributions for E,, = 10 TeV at the depths of h = 1.15, 2, 3, and 4 km; and (d) asin Fig. 2c, but for E, = 100 TeV. The con-

tribution of T, K-muonsis shown by solid curves. The prompt-muon contributions cal culated on the basis of the RQPM, the QGSM,
and the QCD-based model from [8] are depicted by dashed, dash-dotted, and dotted curves, respectively.

muon contribution at a given depth exceeds the contri-
bution of T, K-muons even at the vertical and is due to
the fact that the factor of angular enhancement at sea
level is significantly higher for 1=, K-mesons than for
prompt muons.

From Fig. 2, we can see that the coordinates of the
points where the spectra of 1t, K-muons and of prompt
muons intersect are highly model-dependent. By way
of example, we indicate that, at secO = 5, the minimal
and the maximal predictions of the models in question
for the prompt-muon flux at the intersection points dif-
fer by three orders of magnitude (Fig. 2b). On the basis
of thisfact, one can in principle test charm-production
models experimentally and, in particular, set con-
straints on the parameters of the QCD-based model.

At a detection threshold of E, ~ 1 TeV, only tele-
scopes arranged at depths of 3 to 4 km (for example,
PHY SICS OF ATOMIC NUCLEI
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NESTOR) can ensure a reliable identification of
prompt muons for 8 < 80°. An order of magnitude
increase in the threshold (Fig. 2¢) would permit one to
address such a problem with the under-ice telescope
AMANDA (h =2 km), but at larger zenith angles of
8 = 85°. At the threshold of E,, = 10 TeV, experiments
at the NESTOR can be performed for smaller angles,
whereby one achieves an increase in statistics and a
reduction of the background from 1, K-muons. The
higher threshold of E, = 100 TeV (Figs. 2b, 2d) pro-
vides the possibility of detecting prompt muons at the
Baikal neutrino telescope as well (h = 1.15 km). At a

fixed value of 8, the energy Efl (6) at which the prompt-
muon contribution doublesthetotal flux is significantly
less at the depth of NESTOR than at the depth of the
Baikal neutrino telescope (by a factor of 35 to 60 at
secB = 5). For example, the QCD-2 version predicts



1926

E, =8 TeV for the NESTOR facility and E,; =300 TeV
for the Baikal neutrino tel escope. Nevertheless, the flux

|(>E,, h, 8) is nearly one order of magnitude grester
in the latter case. This example illustrates a more gen-
eral statement. In future experiments aimed at detecting
muons from charm decay, facilities located at a small
depth (1 to 2 km) may prove to be preferable, in some
respects, to those located at larger depths, provided that
the energy detection threshold and the range of zenith
angles are chosen appropriately (E, ~ 100 TeV and
70°-80°, respectively), al other conditions being the
same.
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Abstract—A simple and efficient method is proposed for solving transport equations that describe the propa
gation of cosmic-ray protons and neutronsin the atmosphere at high energies. It is shown that, upon taking into
account a non-power-law character of the primary spectrum, a growth of total cross sections for inelastic
nucleon—nucleus interactions, and violation of scaling in such interactions, the effective absorption ranges of
nucleons come to be dependent not only on energy but also on the depth in the atmosphere. The results of the
calculations are compared with available experimental data. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Measurements of the fluxes of secondary cosmic-ray
protons and neutrons can furnish valuable information
about primary cosmic radiation and about the interactions
of nucleons and nuclei at high energies. In order to extract
this information from experimental data, it is necessary,
among other things, to be able to cdculate the nucleon
absorption ranges, which are functionals of the spectrum of
primary cosmic rays and of inclusive and total cross sec-
tions for indlagtic interactions and which also depend, in
generd, on energy and the depth in the amosphere. An
exact analytic solution to the problem can be obtained only
within very smple modds of the primary spectrum and
interaction cross sections, but such models are very unreal-
igic just because of their smplicity. In the present sudy, a
sraightforward method is proposed for gpproximeatey
solving one-dimensiond transport equations describing the
propagation of cosmic-ray nucleons. Thismethod, whichis
applicableat sufficiently high energies, doesnot rely onany
unreglistic assumptions about the shape of the primary
spectrum or about the form of differential and total cross
sectionsfor nucleon—nucleusinteractions. With some qua-
ifications (see Section 2), a solution to the trangport equa
tions can be found to aprecision ashigh asisdesirable and
for an arbitrary depth, whereby nucleon fluxes can be stud-
ied at sealevel even for indlined directions?

Dwe recall that the depth of the atmosphere along the vertical direc-
tion is hy = 1030 glem? = 11.4A},, where A}, = 90 glem? is the

characteristic range that a nucleon travelsin air prior to undergoing
interaction. The depth of the atmosphere aong the horizontal direc-

tion exceeds 440 )\?\l . Therefore, the flux of nucleons arriving from

nearly horizontal directions is completely determined by integra-
tion of small deflections in inglastic nuclear interactions, multiple
Coulomb scattering, and elastic scattering, aswell as by the contri-
butions from reactions induced by long-range particles, whence it
followsthat it is meaningless, in this case, to consider aone-dimen-
sional formulation of the problem. For small zenith angles 9, the
above effects can be taken into account as corrections to a solution
of one-dimensiona transport equations.

Basically, the idea of the method consists in reduc-
ing the integro-differential transport egquation to anon-
linear integral equation for a so-called Z factor, a quan-
tity that is directly related to the effective absorption
range. After that, the equation for the Z factor is solved
by mere iterations. Within this method, even the lowest
approximation has a rather high accuracy. The effi-
ciency of the method has aready been demonstrated in
solving the problem of muon-neutrino transfer in a
dense medium with h > A(E) [1] (A, is the distance
that aneutrino travels prior to interaction)—that is, in a
situation where conventional numerical methods,
including the Monte Carlo method, either are inappli-
cable or require enormous amounts of machine time.
By invoking some natural physical assumptions, the
method can be modified to render it appropriate for
solving the problems of transport of high-energy
nuclei, muons, and other mesonsin the atmosphere and
in dense media.

2. BASIC ASSUMPTIONS
OF THE NUCLEAR-CASCADE MODEL

We are interested here in the differentia energy
spectra of cosmic-ray protons and neutrons at energies
that are so high that proton energy losses by ionization
and by the excitation of air atoms, geomagnetic effects,
and effects associated with athree-dimensional charac-
ter of the cascade process (in particular, scattering) can
be disregarded. The one-dimensional approximation
assumes a sharp anisotropy of the angular distribution
of secondary particles formed in inelastic interactions
of nucleons and nuclei and is justified at nucleon
momenta p much greater than [p;= 0.4 GeV/c. Owing
to the fact that the energy spectrum of cosmic rays
decreases fast (and, as a consequence, to the predomi-
nant role of p; < p_ processesin the development of the
cascade), as well as to a high degree of isotropy of pri-
mary radiation, the range where the one-dimensional

1063-7788/00/6311-1927$20.00 © 2000 MAIK “Nauka/Interperiodica’
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approximation isvalid broadens considerably for direc-
tions close to the vertical direction.

In the present study, we use the standard superposi-
tion model for nucleus—nucleus interactions. Since the
range of a nucleus decreases fast with increasing
atomic number A, it is assumed in this model that the
A> 1 nuclel of primary cosmic rays fragment com-
pletely in upper layers of the atmosphere; therefore, the
integrated spectrum of nuclel with energiesin excess of
€ can be approximated by an equivalent summary
spectrum of Z protons and A — Z neutrons with energies
E = €/A. At low and intermediate energies (especialy
at energies below the geomagnetic threshold), this
model is overly rough—approaches having a firmer
basis and taking explicitly into account the interactions
of cosmic-ray nuclel must be used to compute the nucle-
onic components of the cascade (see, for example, [2]).

The superposition model is used for want of more
rigorous models for describing the interactions of high-
energy nuclel and also for want of detailed empirical
data. At high energies, the applicability of thismodel is
eventually justified by the smallness of the relevant
contribution to the total flux of secondary nucleons.

Yet another important approximation that will be
used below consists in the disregard of processes that
lead to the production of nucleon—antinucleon pairsin
meson—nucleus collisions. At not overly large depths or
at modest energiesz) (or when both these conditions are
satisfied), the contribution to the nucleon flux from
such processesisimmaterial for the following reasons:
(i) There are no mesons in primary cosmic radiation;
hence, their flux in upper layers of the atmosphere is
much smaller than the nucleon flux. (ii) The differential

cross sections for TA — NNX, KA — NNX, etc.,

reactions are much smaller than the differential cross
sections for NA — N'X reactions. (iii) Only a small

fraction of mesonswith E < Ey, (9) have timeto inter-
act with nuclei prior to undergoing decay. However, the
total cross sections for inelastic NA interactions exceed
cross sections for the interactions of light mesons with
nucle by about 30%. At a sufficiently large depth, h =

hy(E, 9), and for E = E;, (9), the flux of mesons M
therefore becomes equal to the flux of nucleons of the
same energy. For h > hy(E, 9), the contribution of
nucleon-generation processes in MA interactions (pre-

dominantly TEA — NNX processes) can be disre-
garded no longer [3]. Thus, the formalism used hereis
applicable for depth values satisfying the condition h <
h(E, 9). As amatter of fact, this region is sufficiently

2More specifically, we mean here energies E not greater than
E‘,i; (d), the zenith-angle-dependent critical energy of the meson

M—in particular, we have E;i 0°) = 115 GeV, ECKZ) (0°) =
L

206 GeV, and E‘;’t (0°) ~ 857 GeV.
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broad for describing the entire body of currently avail-
able data on the nucleonic component of high-energy
cosmic rays in the atmosphere and at sea level. In par-
ticular, it covers completely the region of the effective
generation of muons and neutrinos (h < 500 g/cm?).

Within the above assumptions, the problem of calcu-
lating the differential energy spectraof protons, D,(E, h),
and of neutrons, D(E, h), at adepth h reducesto Solvi ng
the set of one-dimensiona transport equations

[a% + }ﬁ}op(a h)

1 do,(E Ep
)\N(E)o!O'i,GA(E) dE

Dy(Eo M)AE, (1)

L doy(E Ey
NG T

[a% + )ﬁ} D,(E, h)

1 don(E Ey
)\N(E)_EOL'}A(E) g DrEadE g

D, (E,, h)dE,,

: 1 dopn(Ev EO)

NG T

with the boundary conditions
D,(E, 0) = DYE), D.(E 0 = DJE), (3)

D(Eo, h)dE,

where D) (E) and Dj(E) are the differential energy
spectra of protons and neutrons at the boundary of the
atmosphere—we emphasize that, according to the
superposition model, these spectra include both pri-
mary protons and the products of the fragmentation of
cosmic-ray nuclei.

In Egs. (1) and (2), we have used the notation

dGNN(E Eo) _

where Ed3ay,./dp is the mvanant differential cross
section for the inclusive reaction NA — N'X (Aisthe
nucleus of an air atom, while X is the system of all
undetected secondaries, including the products of the
decay of the nucleus A); E, is the total energy of the
incident nucleon N; E isthe total energy; pr and p_ are
the components of the momentum p of the final

nucleon N'; and A\(E) = 1/(N00L',"A(E)) is the distance

that a nucleon travels prior to undergoing interaction®
(N, is the number of nuclei A per gram of air). Within
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NN kinematics, the quantity pT- is determined by the
condition

min

<STS ¢t M
< —2 =
where E* is the energy of the inclusive particle in the

c.m. frame of colliding nucleons, while sy isthe min-

imum value of the square of the invariant mass of the X
system. Disregarding the cumulative kinematical
region, which does not play a significant role in the
development of the nuclear cascade, we obtain

max _ ZME(E—M)(].—X)
Pr —/\/ E_ Mx )

where x = E/E, isthe total-energy fraction carried away
by the nucleon N' and M is the nucleon mass.

The approximate isotopic symmetry of NA interac-
tions makes it possible to reduce the set of Egs. (1) and
(2) to two independent equations for the linear combi-
nations

EL

NL(E, h) = D,(E, h) + D,(E, h).

After some simple algebra, these equations can be rep-
resented in the form

o 1
[55 WG (E)} NL(E, h)
| N (4)
G -!Cbt(x, ENL(E/ H)S,

where
0.8 = =[P 5, Ll B
ona(E) dE dE Bo = Elx
3. ZFACTOR METHOD
We define
_ __h
NL(E, h) = N,(E, O)exp[ AE h)] 5)

The functions A,(E, h) will be referred to as effective
absorption ranges, but this term applies, strictly speak-
ing, only to A,—asto A\, it isaquantity that character-
izestherate at which theintensity of the proton compo-
nent of the nucleon flux and the intensity of its neutron
component equalize. It is also convenient to introduce
the auxiliary dimensionless functions Z,(E, h) (Z fac-
tors) that are related to AL(E, h) and Ay (E) by the equa-
tion

1 _1-Z(EN
AEN — AE)

(6)
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In just the same way asthe absorption ranges, the Z fac-
tors contain full information about the kinetics of
nucleons in a medium. From the transport equation (4)
and from the definitions in (5) and (6), it immediately
follows that 0 < Z,(E, h) < 1. In generd, the function
Z_(E, h) must not be of afixed sign. Taking into account
the behavior of the actual primary spectrum of cosmic
rays and considering that, almost everywherein therel-
evant kinematica domain, regeneration processes
(PA — pX and nA —= nX) dominate over charge-
exchange processes (pA — nX and nA — pX), we
can nevertheless show that it also satisfies the inequal -
ity 0 < Z(E, h) < 1. Moreover, it can easily be proven
that Z (E, h) < Z,(E, h) and, hence, A _(E, h) < A,(E, h).

Substituting (5) and (6) into the transport equation
(4), we find that the Z factors satisfy the equation

0o , 1
Ijah + h t(E! h)
» h ho 0
= r-]J’ni(x, E)d.(x, E) exp[/\i(E SN h)}dx,
0
where
N.(E/x, 0)
(X E) = ——. 8
N.(x E) ZNAE. 0 ®)

Since the actua primary spectrum decreases much
faster than E-2 over the entire energy range of our inter-
est, we have 0 < n,(x, E) < 1 and n,(0, E) = 0. In par-
ticular, we note that, for such spectra and purely power-
law boundary spectraof protonsand neutrons| Dg, n(E) ~
EV+1], wehaven,(x, E) = x¥-1.

Integrating (7) by parts, we find that the Z factors
satisfy the integral equation

Z.(E, h)
h 1

_ 1o e , &)
= h_!dh_([ni(x’ E)d.(x, E)exp[-h'D.(x, E, h")]dx,

where

1-Z,(E/x,h) 1-Z.(E, h)
An(E/X) A(E)

Although this equation is nonlinear, it is much more

convenient to solve it by an iterative process than the

original transport equation (4). The rate at which the

iterative process converges depends on the choice of
the zero-order approximation. The simplest choiceis

ZO(E, h) = 0,

D,(x, E h) =

in which case

1 1

DO(x, E, h) =F(x, E) = AEX)  A(E)

(10)
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isindependent of h; in the first approximation, we then
have

1

ZO(E h) = [0 B)®.(x E)
0

(11)

N 1 — exp[-h%D(x, E)] U
g E  oF

Let usfirst addressthe case of small depths. Consid-
ering that, in the integrand on the right-hand side of
(11), the small-x region is cut off by the factor n,(x, E),
we can formally expand the braced expression in pow-
ersof h. Thisyields

ZO(E h) = [n:x B)®:(x B)
(12)

x[l—%+ ...}dx.

The leading term of the expansionin (12),

1

*.(E)=Z.(E 0 = J'rlt(X, E)®.(x, E)dx,  (13)

represents an obvious generalization of Zatsepin'sclas-
sical formula [4], which was first obtained within the
simplest assumptions (power-law primary spectrum,
scaling of invariant inclusive cross sections, invariabil-

ity of GK}?\ with energy)4) and which has been used so

far in many analytic calculations of nuclear-cascade
processes in the atmosphere.

Let us now consider the opposite limiting case of

large h. Taking into account the known growth of
|ne|

Opa (E) with energy and using Egs. (10) and (12), we
can easily show that r!lm Z(f)(E, h) = 0. Under quite

general assumptions, it can aso be proven that
limz,(E, h) = 0O; therefore, the absorption ranges

h - o

NA.(E, h) coincide with the free range A((E) at suffi-
ciently large depths. We will not present here the proof
of this statement because it is of purely academic inter-
est for the reasons indicated above (disregard of three-
dimensional effects, of energy losses, and of the contri-
bution of nucleons from meson—nucleus interactions).
What only counts is that, with increasing depth, Z, and
Z_ decrease, which means that the relative contribution
of regeneration processes is reduced. As a conse-

At can easily be verified that, under the above assumptions, Z, =

Jé xY ™ @, (x)dx = const is an exact solution to Eq. (9).
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guence, the energy spectra of nucleons become steeper
with increasing depth.

Thus, even the first-approximation expression (11)
for the Z factors has a correct asymptotic behavior both
at small and at large values of h. With the aid of expres-
sion (12), we can reproduce approximate analytic
results of some studies that took into account (within
one model or another) the growth of oy, with energy
(see, for example, [3, 5]).

Obvioudly, the recursion relations for the nth
approximation (n > 0) are given by

h 1

(n) _ 1.
Z,'(E h) = ﬁIthni(X’ BE)®.(x E) 14

x exp[-h' D" Y(x, E, h")]dx,

1-zP(E/x, h)  1-Z(E, h)
An(E/X) A(E)

A numerical analysis hasrevealed that, even in the case

of the simplest choice of Z(to) =0, therate at which the
iterative algorithm specified by Egs. (14) and (15) con-
verges is quite sufficient for practical uses. However, it
can be improved (on average or locally—that is, for
preset intervals of E and h values) by choosing the zero-
order approximation more appropriately. To illustrate,
we note that, in view of the inequalities 0 < Z(E, h) <

%.,(E), it is reasonable to set 2V (E, h) = %.(E)/2,
which considerably improves convergence on average.

D{(x, E, h) =

. (15)

4. INPUT DATA AND NUMERICAL RESULTS
4.1. Primary Spectrum

In order to describe the spectrum and the chemical
composition of primary cosmic rays, we employ two
empirical models proposed by Nikolsky, Stamenov,
and Ushev [6] (NSU model) and by Erlykin, Krutik-
ova, and Shabel’ski [8] (EKS moddl). In either model,
the nuclear component of cosmic rays was broken
down into five groups of nuclei—those having the A
values of 1, 4, 15, 26, and 51 in the NSU model and
those having the A values of 1, 4, 15, 27, and 56 in the
EK S model—and the integrated spectrum was parame-
trized as

_ D% 0'< g 06 g . aé0"
06 = lorED Y BaE d+xg0 . (9
where € isthe energy of anucleus, E, =1 GeV, E,o, =

100 GeV, and K = 0.4; the remaining parameters were
takentobe l, = 1.16 cm? st s, y=1.62, B, = 0.40,

9N [7], the predictions of the NSU model were contrasted against
experimental data for € = 100 GeV/nucleon that had been
obtained prior to 1993.
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B4 :0.21, B]S :0.14, BZG :0.13, B51 :012, 61 = 3 X 10_7,
Opsq= 6x10° andk,=0inthe NSU model and I, =
202cm2stgl y=1.70,B,=041,B,=022,B;=
013, 827 = 014, BSG = 010, 61 = 6 X 10_7, 6A24 = 10_5,
K, =K,=0,and K5 =Ky; = Ksc = 0.04inthe EKS model.

For the equivalent differential spectraof protonsand
neutrons, we find with the aid of (16) that

DY(E) = Dy(E)+3 5 DA(E),

Az4

DY(E) = 35 DB,

A=4
(Y—Ka)loBa
(1+3,E/E) A g, &

|:|£|j<A K5A
L yoeEs)

These models cannot provide a quantitative descrip-
tion of the primary spectrum at energies above 108-
10° GeV/nucleon. However, the contribution from this
energy region to the total number of events that are of
interest for experiments aimed at measuring individual
components of secondary cosmic rays (including
experiments devoted to deep-underwater detection of
muons and neutrinos) is insignificant. In order to sim-
plify the calculations, we therefore introduced an ad
hoc soft cutoff of the primary spectrum6) by replacing

the functions D%n(E) in the boundary conditions (3)

by Dg, »(E)(E/E,), where @(t) is a dimensional func-
tion that satisfies the conditions @(t) = 1 fort < 1 and
@(t) =0fort= 1. The explicit form of this function is
immaterial as long as we are interested in energies E
much lower than E; and in not overly large depths h.
Below, weset E.= 3 x 10'° GeV.

nE D—(v +1)

Da(E) = 0

4.2. Cross Sections for NA Interactions
Available data on the total inelastic cross section

oi[,‘A(E) (both data collected at accelerators and data

extracted from cosmic-ray experiments) are described
reasonably well by the empirical dependence

Op(E) = 0,—6(E—-E,)

x[olln%g—czlnz%g}
1 1

where B(E - E,) is the conventional Heaviside step
function and E, = 45.4 GeV. Below, we use expression

(17

6)As amatter of fact, this cutoff roughly simulates the Greisen—Za-
tsepin—Kuz' min effect, which is due to the interaction of extraga-
lactic cosmic rays with relic microwave radiation [9].
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Fig. 1. Invariant inclusive cross sections calculated for the
reactions (solid curves) pC — pX and (dashed curves)
pp — pX within the model from [11] at p, = 100 GeV/c

and the py values of (a) 0.3 and (b) 0.5 GeV/c. The experi-

mental data on the reactions (o) pC — pX and (@)
pp — pX were borrowed from [12].

(17) with the parameter values of o, = 290 £ 5 mb,
0,=8.7 £ 0.5 mb, and 0, =1.14 + 0.05 mb, which
were found in [10].

For the normalized inclusive cross sections
(1/0pa)d%0,,/d°p and (1/0p,)d%0,,/d%p, we took
semiempirical formulas proposed by Kimel’ and
Mokhov [11] and modified dlightly here. In these for-
mulas, the free parameters were determined by fitting
the entire body of available accelerator data on the
interactions of projectile nucleons with various nuclear
targets at p, = 3-1500 GeV/c and 0.45 GeV/c < p< p,
(where p, is the projectile-nucleon momentum in the
laboratory frame). All the ensuing calculations were
performed with the parameter values that correspond to
aberyllium target. According to [ 11], however, the nor-
malized differential cross sections depend only slightly
on thetarget atomic number, so that the results obtained
here are valid for other light nuclei as well, including
the nuclei of air atoms.

The calculated invariant cross section Ed*cy,,/d’°p as
a function of p at p, = 100 GeV/c (in the laboratory
frame) and two fixed values of p; (0.3 and 0.5 GeV/c)
is displayed in Fig. 1, along with experimental data
from [12] that were obtained with hydrogen and carbon
targets. The values of oy and ope , which are neces-
sary for anormalization, were borrowed from [13]. The
differential cross section do,,/dx- for the reaction
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do,,,/dxg, mb

10? T

10!

1
0 0.2 0.4 0.6 0.8 1.0
Xp= ZpE/«[S

Fig. 2. Inclusive differential cross section doy,,/dxg calcu-
lated for thereaction pp — pX withinthe model from [11]

a /s = 62 GeV. The experimental data were borrowed
from [14].

pp — pX a the ISR energy (/s = 62 GeV) is shown
inFig. 2 versusx- =2 p* /./s, where p} isthelongitu-
dinal momentum of the leading proton in the c.m.
frame. The data of two | SR experiments were borrowed
from [14]. As can be seen from the figures presented
here, the model proposed in [11] describes accelerator
data fairly well. It should also be noted that, over a
broad kinematical region, the predictions of this model
for the cross sections describing pp and pA interactions
are numerically close to the results obtained on the
basis of the two-component dua parton model as
implemented within the last version of the DPMJET
I1.5 code[15].

The cross sections (x/0p)do,,(x, E)/dx and
(X/0y)dopa(x, E)/dx calculated within the model pro-
posed in [11] are displayed in Fig. 3 for several values
of the kinetic energy of secondary nucleons E,;,,. From
thisfigure, we can see that, for E;,, = 100 GeV, the dif-
ferential cross sections come to be virtually indepen-
dent of energy everywhere, with the exception of anar-
row diffraction region for the reaction pA — pX,
where the cross section doy,,/dx grows with energy. In
other words, the Kimel’-Mokhov model leads to Feyn-
man scaling at high energies. Because of a descending
character of the primary spectrum, the contribution
from the diffraction region to the Z factors is far from
negligible. In order to avoid an unphysicaly fast
growth of do,,,/dxintheregion around x ~ 1 at ultrahigh

energies, we assumed that, for E, > 10° GeV, this cross

section becomes scale-invariant over the entire kine-
matical region. However, it israther difficult to validate
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(x/0y) do,,,/dx
1.0
0.8
0.6 100
0.2¢
0.4r 0 100

100

1
0 02 04 06 08 1.0
X = E/EO

Fig. 3. Normalized differential cross sections calculated for
the reactions (a) pA — pX and (b) pA — nX according
to the model proposed in [11]. The numbers on the curves
indicate the kinetic energy of the secondary nucleon, Ey;, =

E—-M,in GeV.

this assumption because there are no reliable experi-
mental datafor E, = 10° GeV.

4.3. Results of the Calculations

The calculations were performed for the energy
range between 5and 3 x 10'° GeV at h< 4 x 103 g/cnm?.
It should be noted that, at h ~ 103 g/cm?, the energy lost
by protons in the nucleon cascade must be taken into
account up to E = 25-30 GeV. By way of example, we
indicate that, at E = 10 GeV, the relevant correction is
about 20% for protons and about 6% for neutrons [16].
Moreover, the models adopted here for the primary
spectrum and for the chemical composition become too
crude even for E < 100 GeV. In order to match our
results with the results of the more detailed analysis
from[16], the method used here was extrapolated to the
region of low energies. In the absence of experimental
data on the fluxes of secondary nucleons arriving from
inclined directions, the calculations for depths of h >
103 g/cm? can be used at present only to test conver-
gence of the iterative algorithm.

In order to perform a multidimensional numerical
integration, which is necessary for a numerical imple-
mentation of the method, use was made here of the
adaptive cubature algorithm proposed by Genz and
Malik [17]; afast algorithm relying on standard local B
splines of second degree on an equidistant mesh was
employed to approximate and interpolate intermediate
functions of one and two variables.

At al values of E and h, the iterative process con-
vergesfast: fiveto six iterations are sufficient for calcu-
2000
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Fig. 4. (a) Z, and (b) Z_asfunctions of energy at the depth values of h = 10, 200, 500, 1000, 2000, 3000, and 4000 glcm?. Theenergy
dependences displayed in this figure were computed on the basis of the (solid curves) NSU and (dashed curves) EKS models of the
primary spectrum (see main body of the text). The Z factors are seen to decrease with increasing h.

lating the Z factors to a precision not poorer than 10—
10~*. At moderate depths, h < 300 g/cm?, even the first
approximation ensures a precision of a few percent,
which is sufficient for many applications of the the-
ory—in particular, for calculating the fluxes of atmo-
spheric muons and neutrinos.

Figure 4 illustrates the energy dependences of the Z
factors calculated within the two models of the primary
spectrum at h = 10, 200, 500, 1000, 2000, 3000, and
4000 g/cm?. It is quite natural that the Z factors com-
puted with the harder primary spectrum of the NSU
model proveto be systematically greater at all values of
E and h. Although the relevant relative difference does
not exceed some 4% and decreases with energy, it is
significant at h > Ay(E) since nucleon fluxes depend
exponentially on the combinations hZ,(E, h)/AN(E).
The observed strong dependence of Z, on E and h is
caused by the following three effects: (i) a non-power-
law dependence of the primary spectrum, (ii) the
energy dependence of the total inelastic cross section,
and (iii) violation of Feynman scaling.

Local minima that appear in theregion E < E, =
45 GeV are due to the beginning of growth of 0',32'(E)
[see Eq. (17)]. At not overly large depths, the character
of the energy dependence changes at E = 10%, which is
associated with the artificially introduced freezing of
the growth of the quasielastic peak in the reactions
pA — pX and nA — nX. Finaly, the vanishing of the
Zfactorsat E= E.=3 x 10!° GeV isdueto afall-down
of the primary spectrum for E > E,.

The calculated differential energy spectra of nucle-
ons (D, + Dy), protons (D), and neutrons (D) at vari-
ous values of the depth in the atmosphere are displayed
in Figs. 5 and 6, along with experimental data from
[18-28].
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The calculations were based on two models of the
primary spectrum (NSU and EK'S). Figure 6 also shows
the results of the Monte Carlo calculation from [24] for
sea level. Data on the spectra of nucleons for h <
530 g/cm? (Fig. 5) were obtained from an analysis of
photon spectra in extensive air showers (see [29]) and
aretherefore model -dependent to aconsiderabl e extent.
Nonetheless, our calculations relying on either model
of the primary spectrum are by and large consistent

(E/1 GeV)>D\(E, h), (cm® s st GeV)™!

10
: 20 g/cm?
10°F 5
= %O_gfc?l_ —
R i
107! E—T T

1072

1073
10*

103
E, GeV

Fig. 5. Differential energy spectra of nucleons at the depth
values of h = 20, 200, and 530 g/cm?. Points represent
experimental data from (m) [18], (O0) [19], and (A) [20].
Curves depict the results of our calculations employing the
(solid curves) NSU and (dashed curves) EK'S models of the
primary spectrum (see main body of the text).
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(E/1 GeV)>D\(E, h), (cm % s st GeV) ™!
1072
- Protons

~
~

710 g/cm?

10-3 3
10-4E

10~} Neutrons

1030 g/em? %

10-6¢

10—7 Ll L
10! 102 103 10*
E, GeV

Fig. 6. Differential energy spectra of pragtons (h = 710,
1030 g/cm?) and neutrons (h = 1030 g/cm?). Points repre-
sent experimental datafrom (v) [21], (¢) [22], (A) [23], (x,
A) [24], (0) [25], () [26], (m) [27], and (@) [28]. Curves
depict the results of our calculations employing the (solid
curves) NSU and (dashed curves) EK'S models of the pri-
mary spectrum (see main body of the text). The experimen-
tal and calculated results at sea level for protons and neu-
trons were multiplied by 0.5 and 0.01, respectively.

with this data sample. The most pronounced discrepan-
cies have been observed in a comparison with the
results presented in [19]. In our opinion, the estimate of
the nucleon energy in [19] on the basis of the formula
Ey = 3E, istoo crude and leads to a systematic underes-
timation of nucleon fluxes. Direct measurements of the
proton energy spectrain mountains and at sealevel are
very fragmentary (see Fig. 6), and we can here speak
only about qualitative agreement with the results of the
calculations. Estimates reveal (see aso [3]) that the
inclusion of nucleon-production processes in meson—
nucleus interactions can increase the vertical flux of
nucleons at sealevel by no morethan 10% at E=1TeV
and by no more than 15% at E = 10 TeV, but this
increase is much smaller, in either case, than uncertain-
tiesin the NA cross sections and in the spectrum of pri-
mary cosmic rays. Experimental data on the neutron
component at sea level are vaster, but they are contra-
dictory. The results of our calculations are in good
agreement with data from recent measurements at a
prototype of the KASKADE facility in Karlsruhe [28].
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AscanbeseenfromFig. 6, datafrom[28] at E < 1 TeV
are described much better by the calculation with the
EKS primary spectrum than by the cal culation with the
NSU primary spectrum.

It can be hoped that further experimentsto study the
nucleonic component of secondary cosmic rays will
allow a more detailed test of the method and of the
models for the primary spectrum and for nucleon—
nucleus interactions.
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Abstract—The phase of gwinterference in the reaction e'e” — 1t 1 near the energy of the ¢(1020) peak
is calculated within an approach that is virtually independent of the model for @wmixing. A comparison with
the phase measured recently (with a poor precision) shows that the deviation of the measured result from the
expected value of 180° isassociated largely with the effect of the right shoulder of the tx(782) peak intheregion
of the @(1020) peak. The w width at the energy equal to the ¢ mass is within the interval 120-200 MeV. The
effect of the @urstate-induced unitarity corrections to the ¢ and w coupling constants on the phase of prtinter-
ferenceis considered in detail. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

For the phase of pwinterference, a recent measure-
ment of the cross section for thereaction e'e™ — T T
at energies near the ¢(1020) resonance with the KMD-2
detector yielded the value of X, = 162° £ 17° [1]. The
analysis of these data properly alowed for the phases
of the complex propagators for the @ and w mesons. In
other words, the cross section was fitted in terms of the
expression

1 L Aexp(iXew) |?

2 . 2 .

Mg, —S—i /ST (S) Mp—S—iA/sT (9
where A is areal positive number. Hereafter, s stands
for the square of the total c.m. energy. It is hoped that
the accuracy in measuring the @w phase by the SND
and KMD-2 detectorsinstalled at theVEPP-2M storage
ring in Novosibirsk will be substantially improved in
the near future. Mention should also be made of the
DA®NE facility, which is expected to produce formi-
dable numbers of ¢ mesons, so that prospects for
achieving there a high precision of the relevant mea-
surements are optimistic too. The central value of the
XowPhasein[1] issomewhat surprising becauseit differs
significantly from the standard value of 180°, which is
predicted by many theoretical approaches based on the
V@A) flavor group and by the simplest quark models
featuring real-valued coupling constants [2]. The value
obtained for the phase explains the experimental obser-
vation [1, 3] that the minimum of @winterferencein the
energy dependence of the cross section for the reaction
e'e- — 1T T occurs to the right of the ¢ resonance.

The objective of the present study isto demonstrate
that the phase X, can be calculated by a method that is
virtually independent of the @uwrmixing model used to
describe the decay process ¢ — p1t As will be seen

O3, U

, (LI)

* e-mail: achasov@math.nsc.ru

below, this is associated with a subtle cancellation of
the contributions from the prt state to the @uymixing
amplitude, ¢ — w — pT1, and to the direct transition
@ — p1t We will show that the deviation of X, from
180° is explained predominantly by finite-width
effects. A precise measurement of the above phase
would contribute to areliable validation of the proce-
dure for extrapolating the excitation curve of the
w(782) resonance up to energies corresponding to the
(-Meson mass.

The ensuing exposition is organized as follows. In
Section 2, we give abrief account of basic models used
to explain the decay process @ — pTL In Section 3, we
present the expressions that describe the leading cor-
rections to the @wrmixing amplitude and to the con-
stants of @and w coupling to the prtstate and which sat-
isfy the unitarity condition. In Section 4, we calculate
the phase of @winterference in the reaction e'e= —
1. Our results and conclusions are summarized in
Section 5.

2. BASIC MODELS OF THE DECAY PROCESS
¢ — pTt

The formalism required for analyzing the pattern of
@w interference in the reaction e'e — T T Was
developed in [4-6], where the reader can also find nec-
essary details. Here, we restrict ourselves to briefly
mentioning the most significant points. The problem of
ng the extent to which «(782) and @(1020) rep-
resent the ideal mixture of the states

w? = (un+dd)/.J/2,
¢ = s3

emerged almost simultaneously with the discovery of
these resonances[7]. The point isthat the decay process

@2.1)
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@ — pmt — TrTrTY, Which violates the Okubo—
Zweig-lizuka (OZI) rule [7-9], is usualy considered
as evidence for asmall admixture of nonstrange quarks
in the @-meson wave function; that is,

®1020) = sS+ g4, (Ut +dd)/./2, (2.2)

where the @wmixing amplitude is described by the
complex mixing parameter €,,,= €,.{9), [€p| < 1. This
parameter in turn is expressed in terms of an off-diago-
nal element of the polarization mixing operator accord-
ing to the relation

_ Relg,+ilmM,, 23)
AMZ(S

€ow

where

2 02 . 0 0

AMg(9) = Amg)’ =i /ST -TPE]  24)
with Am” = m? — m(?. Hereafter, m{ and Y
are, respectively, the mass and the width of the ideally
mixed state (2.1), all quantities carrying superscript (0)
referring to this state. In the following, this mechanism
is called the modd of strong @wmixing. In QCD, the
real part of the mixing operator, Rell,,, iS nonzero
either owing to the perturbative three-gluon state [10,
11] shown in Fig. la or owing to nonperturbative
effects[12] that areillustrated in Fig. 2b. However, the
contribution of the diagram in Fig. 1a is smal and has
awrong sign (see [10, 11])—namely, the minimum in
the cross section for thereaction ete” — T T ispre-
dicted to occur on the left of the ¢ resonance, in dis-
agreement with experimental data from [1, 3]. At the
sametime, the calcul ation of €pwON the basis of thedia-
gramin Fig. 1b[12] canyield at best an order-of-mag-
nitude estimate. The contribution of the single-photon
state to Rell,,, is two orders of magnitude less than
what is required for explaining the partial width with
respect to the decay ¢ — 31t

The direct trangition in Fig. 1c, in which case

Regloy, # 0 and Rell,,,= 0, isan aternative to the com-

monly adopted mechanism of @w mixing. As a matter
of fact, this is the well-known Appelquist—Politzer
mechanism [13], which was introduced to explain the
violation of the OZI rule in the decays of heavy quarko-
niainto light hadrons and which is extrapolated in the
present case to the region of energies around the
@-meson mass. It was demonstrated in [6] that the
direct transition makes a significant contribution to the
amplitude for the decay process ¢ — pTt The order-

of-magnitude estimates of Regfp?n from [6] comply
with the value obtained from the partial width with
respect to the decay ¢ — 311 Hereafter, this mecha-
nism will be referred to as the model of weak @uwmix-
ing. Of course, either version representsalimiting case,
and we cannot rule out intermediate situations where
the above mechanisms are both operative.
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Fig. 1. The models of the decay @1020) — p(770)Tt
(a) ewmixing owing to the three-gluon mechanism, (b) @w
mixing owing to nonperturbative QCD effects (shaded
regions denote quark condensates), and (c) direct decay
(¢ — pTrowing to three-gluon mechanism (g stands for a
gluon).
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3. UNITARITY CORRECTIONS
TO THE COUPLING CONSTANTS
AND TO THE @uwMIXING AMPLITUDE

In contrast to Regfpt,),)TT and Refl,,, which are hardly

calculable, the corresponding imaginary parts can eas-
ily be evaluated with the aid of the unitarity condition.

The main contribution to 2Imgiyy .« comes from the
diagrams in Fig. 2. The sum of the first two diagrams
can be calculated by using the results from [14, 15] that

were generalized by allowing for the one-pion-
exchange form factor exp(-A.Jt — mZ]). Isolating the

factor Regiyy o, We then arrive at

2 Js=my 2
D, (s, M%) = — Jommn . I du2u K( —;TZ’T 0
8M./sqf D (1)
0 Tl 3.1
) _
*Haian) P-:[ldxa+ < &XP[2(An)dsla+ X —1]

|
+ (s, m’, 1% 0

where P. denotes the principal-value prescription for
the integral; m and p are the invariant masses of the
final and the intermediate p meson, respectively; the
p-meson propagator is given by

D) = [my -’ ~ipr(p — T )],

and the function

Pofs w7 = (qan)’pa+ IndEhy
*+ (Am@) 20+ In| 2215

represents the contribution of the first two diagramsin
Fig. 2a in the limit of zero dope of the one-pion
exchange form factor [14, 15]. In the above expres-
sions, we have used the notation

a = (W/2-EE)/qq;,

(3.2)
b = m(E; + E; - E;)/20,x0+,
where
qi = C](/\/_S, mm p-)v Ei = E(,\/_S, an U-),
q; = q(/s, m,m), E,=E(W/sm,m), (33)

O = q(m, Mg, mn)v Ep = E(/\/_S, M, mn)
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Here, the expressions for the energy and for the
momentum are given by

E(M, m;, m,) = (M*+m;—m3)/2M,

q(M, m;, m,) (3.4)

= {[M?—(m, + my)’][M* = (m; —m,)*]} "*/2M.

The decay kinematics of the first two diagrams in
Fig. 2a resultsin a very weak dependence of their con-
tribution on A,. Thisis because the contribution of the
cut across the Ttrtlines is significant and isindependent
of A, (for details see [14, 15]). A numerical calculation

yields ®,(mg, m3) = 0.44, 0.45, 0.47, and 0.49 at A=
0, 1, 2, and 4 GeV2, respectively. The weak change
with increasing A, is due to the fact that the contribu-
tions of the first two diagramsin Fig. 2a have opposite

signsat /s < 1.1 GeV. Numerically, the contribution of

the third diagram in Fig. 2a at /s = m,is-3.4 x 10,
provided that the slope parameter for p exchange is
A= 2 GeV~2. This value was chosen from the require-
ment that, to within 10%, the 1Tt phase shift at the
energy value being considered be determined by the
phase of the p-meson propagator, asisindeed the case.
Hence, the contribution of the third diagram in Fig. 2a
can be neglected against the contribution of thefirst two
diagrams. The contribution of the diagram in Fig. 2bis

determined by the KK intermediate state with K*
exchange. In the case of the ¢ meson, this contribution
isgiven by

2
2\ q :
D k(ssm) = g(pKKgK*+K+n°gK*+K+908nj_qu
+1 2 pn (35)
1-X
x IanKK + xexp[ZAKDQKKqPH(aKK )],
2

where a, = (mi - miu +m)/20, ¢ Oore Oyg = Q(«/_S,

My, My), and Oy = q(+/s, m, m,). In the case of the w
meson, expression (3.5) must be multiplied by the
U(3) factor of —1/./2 . We aso note that, accordi ng to
U(3), the coupling constants are related as 90 =
P
Jupr/ 2. The effect of nonzero @, . isnumerically small
for the w meson. In the case of the ¢ meson, this effect
expressed in terms of the phase of the coupling constant
JoprlS & first glance enhanced by the factor g,w/Jgon=
18. Even in this case, however, the contribution of the

KK intermediate stateat /s = 1020 (1050) MeV is6%

(18%) of the @ptttotal effective coupling constant.
These values were obtained at Ax. = 0 and m=m,. The

more realistic value of A\. =1 GeV? [it is considered
Vol. 63
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herethat the average of ®, . (s, n¥) over the mass spec-

trum of the rtrsystem must enter into the expression for
the phase of @w interference—see expression (4.3)
below] leads to a further reduction of the above esti-
mates by afactor of about 2. Since the leading unitarity
correction @, # 0 is relatively large, it is necessary to
take into account the rescattering chain in Fig. 2a
entirely. This can be done by amethod similar to that of
solving the Dyson equation for the vertex function.
Making use of all the above considerations, we can rep-
resent the constants of ¢ and w coupling to prtas

G245 1) — Reg (110,45 1]

+iD, (s, M), (3.6)

g0x(s M) = RegQ/[1-id, (s, m)].

Of course, Reg{gy, Must be determined from the par-

tial width with respect to the decay @(w) — 1T ON
the mass shell of the @(w) meson. It is clear from (3.6)
that the most significant contribution to the imaginary
parts of the coupling constants drops out from their
ratio owing to the prtintermediate states. It should be
borne in mind, however, that the nonzero quantity ®,,,
enters into the expression for the 3t partia decay
widths of the ¢ and w mesons [14, 15]; that is,

MW @ —= T, s) = [Regon] W(/4T, (3.7)

where the decay phase space is given by
Js—my 1
1
W) = 5= [ dMMPT M) (M) faxa- )
2m -1 (3.8)

2

1 .\ 1 .\ 1
Dy(M)Z(m) Dy(mA)Z(m?) Dy(m)z(md)

Expression (3.8) involves the squares of the invariant
masses of the charged p mesons. For these masses, we
have

X

M = (s+3ma—m’)/2 £ 2XQyrGre/S/M,  (3.9)
where Gy = 9(+/S, M, My and Gy = (M, My, My Must
be calculated according to (3.4), while Z(n?) = 1 —
| (s, MP). Theeffect of the nonzero @, onthe partial
width with respect to the decay ¢ — 3Ttis negligible.

The most significant unitarity corrections to the
mixing amplitude, Imr1,,, are determined by the KK
and prtintermediate states and are given by

ImM,, = J/S[Regon (w— T TCT, 9)/Regiy

opTT
—F(@ — KK, 9/4/2]. (5.10)

For the sake of completeness, it should be noted that,
although the effect of nonzero @, is of importance for
PHYSICS OF ATOMIC NUCLEI
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wp interference in the TtTT- mass spectrum [14, 15], we
can simulateit in calculating the 3Tt partial decay width

(at agiven value of ./s) in terms of the form factor
Con® = [L+(Roum)I/(1+Res)  (B.11)

and introduce this form factor in the w — pTtvertex
viathe substitution gy, — G,priCor(S) [14]. The con-
tributionsto the unitarity correction from the Ty and ny
radiative states do not exceed, respectively, 4 and 2% of

the contribution of the KK intermediate state. These
values are well below the accuracy of the quark-model
predictions that is necessary for obtaining relations
between the constants of ¢ and w couplings to the KK

pair. For the accuracy of the calculation, we adopt the
conservative estimate of 20%, so that the contribution
of radiative states can be disregarded.

4. PHASE OF THE @w INTERFERENCE
IN THE REACTION efe — 't 1?

Taking into account the above features of the decay
e'e- — 1T T, We can represent the cross section for
thereaction ¢— 1t T in the form [4, 5]

2
Our9) = T
4.1)

2

gngmpn + gv(Pg‘PPT[

Me —S—i /ST () Mo—S—i/sT )]

where

X

— ~0 (0)
gyw - gyw - S(p(.ogycp ’

- o© ©
gV(P - gV(P + S(ngyw’

— (0) (0) (0)
gwpn - Reprn_eq)ooReg(ppn = Reprm

Goort = REGm + EquREG oy + 1 B, (9)T]

4.2)

In expressions (4.2), the coupling constants for the
physica states of total widths I, ,(S) are expressed in
terms of the coupling constantsfor ideally mixed states.
The quantity

T oulr
B:DKR(S)D: I duu—p(u)
2m

D)

corresponds to averaging over the TiTtmass spectrum—
that is, to approximately taking into account the invari-

ant-mass dependence of ®, .. Quantitatively, this leads
to a 33% reduction of @, with respect to the relevant
value at the p-meson mass. We note that the quantity

0) — (0)2/£(0)
gyV - rn\/ /f ’

DS ) (43)

4.4)
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whereV = w, @, isthe amplitude of the transitiony —
V© and that the quantity .. appearsin the expression
for the leptonic width of the ideally mixed state V© as

(0)2) — 4100 my,

rv® — e'e, mé 4.5)

(o = 1/137 is the QED fine-structure constant). If all
coupling constants and the parameter of @wmixing in
relation (4.1) were real-valued, the phase of @winter-
ference would be determined by the sign of the ratio

Ro = 0\ Ggor/ 9 Guopre (4.6)

At the same time, the position of the interference mini-
mum in the energy dependence of the cross section for
the reaction e'e — 1Tt T, as given by the expres-
sion
2 1/2
Ijnw + Romy

IR D 4.7)

Smin =

was experimentally determined to be sk = 1.05 GeV

[1, 3]. This corresponds to the value of R, = —0.13,

whence we obtain the canonical phase value of 180°.
From the arguments presented in Section 3, it follows,
however, that, because of unitarity corrections, the cou-
pling constants and the mixing amplitudes develop siz-
able imaginary parts. A comparison of expressions
(1.1) and (4.1) [see aso (4.2)] shows that a significant
additional phase Ax,, stems from the phase of the fol-
lowing combination of the coupling constantsthat enter
into relation (4.2):

(0) 2 (0)
A [R
e - Sl (g - o o
gwpn gooprt( ) AM(pm(S) [Regwpn
(4.8)
'\/—S cpKK( )

D+|E¢D (9TReg? .
Am2 " A me, O KK P

ow

Here, Am,, = m; — m5,, while AM_,, (9) is determined
by expression (2.4). To within 5%, the masses and the
widths of the ideally mixed states appearing in the
expression for g,,, have been replaced in Eq. (4.8) [and
will be replaced in Eq. (4.9) below] by the masses and
the widths of the physical vector mesons. We note that
the combination Reg\/Regi, — ReMy/Amg, on
the right-hand side of Eq. (4.8) determines the 31t par-
tial decay width of the @ meson. Hence, it takes the
same value in the two models of @wmixing that have
been mentioned in Section 2. The correction to the
phase due to taking into account terms with nonzero g,
in the y@w) transition amplitude is AX,,= 1.4°, which
isbelow the adopted accuracy of the calculation. There-
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fore, the result for X, is virtually independent of the
mixing model.

Let usfirst obtain a rough estimate of the deviation
of the phase from 180° at the energy value equal to the
(-meson mass. In doing this, we neglect unitarity cor-
rectionsto the w and ¢ coupling constants. For the devi-
ation in question, we then arrive at

2
DX, = arctan 5 mq’r‘p(KO')(/Am
J2(Regiyr/ Reginy— ReM g,/Am:,)
el le(My) — Tl (4.9)
2
Amy,

The first term in (4.9) contributes 6° * 1° t0 X, the
uncertainty being determined by a 20% accuracy of the
(3) predictions for the constants of coupling to the

KK state. The contribution of the second term is oppo-
site in sign to the contribution of the first term and
strongly depends on the w-meson width at the energy
value equal to the ¢-meson mass, I (my). When Ry is

changed from 0 to 1 GeV- (this corresponds to chang-
ing the w width at the @-meson mass from 200 to
120 MeV) in (3.11), the contribution of the second term
changes from —26° to —13°. Larger values of R, would

violate the description of data on the reaction ete” —
T a energies above the @(1020)-meson mass.

Indeed, the fits from [16] yield R, = 0.8%05 GeV-2.

The results of a more precise calculation are as fol-
lows. In addition to the aforementioned uncertainty in
the SU(3) predictions, the error of the calculation
includes the uncertainties in the slopes of the form fac-
tors that appear in the amplitudes of the unitarity con-
dition. (i) If we take into account effects of pttrescat-
terings, ®,. # 0, then a variation of A, in the interval
from 0 to 4 GeV2 leads to a small variation of 0.5° in
the phase X, A variation of Ay. in the same interval
changes the phase by about 2°. Upon taking into
account a 20% uncertainty in the SU(3) predictions for
ImM g, the total error becomes some +3°. Thisresultis
much more precise than available data accurate to
DX = *17° [1] and is commensurate with the accuracy
expected in future. The calculated phase depends on the
form factor (3.11), which restricts an overly fast growth
of the wo-meson width with energy. With allowance for
the above uncertaintiesin the calcul ations, the result for
the phase of pwinterference isx w=165°+3°a R =
0 and X, = 172° + 3° at GeV~2. The existing
error in the measurement [1] of the phase Xow@dmits a
large interval for R, however, the expected reductl on
of the uncertainty to +10° would permit setting the
more stringent constraint R, = 2 GeV~2; a further
improvement of the accuracy would open the possibil-
ity of reliably determining this parameter. (ii) If we do
not take into account effects of prtrescatteringsin the
3mtdecay width, we arrive at X, = 162° £ 4° at Ry =
Vol. 63
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Xoo
180

170

160+
150+
140 1 1 1 1 1
0.96 1.00 1.04
s12 Gev

Fig. 3. Phase of the @winterference as a function of energy
for the case where rescattering effects are disregarded in the
31t decay width (see main body of the text). The solid, the
dashed, and the dotted curve represent the results obtained
at an: 0, 1, and 2 GeV2, respectively. The experimental
point was borrowed from [1].

and Xy, = 170° = 4° at R, = 1 GeV~ (within the afore-
mentioned uncertainties in the calculation).
Unfortunately, the difference of the predictions of
the models of strong and weak gwmixing for the phase
Xowat the energy value equal to the ¢-meson massis as
small as 0.6°. This value cannot be tested experimen-
tally at present. On the other hand, the mixing models
in question yield different predictions for the e'e” —
T TC cross sections at energies around the Qwinter-
ference minimum [5] because the contribution of the

KK intermediate state, which affects the imaginary
parts of the coupling constants and of the amplitude of
@wmixing, strongly depends on energy. At the energy
value equal to the ¢-meson mass, the contribution of the

KK state is within the uncertainties in the calculation,
but it grows with energy, so that the additional phase
from this contribution could be measurable near the w
minimum [5]. Therefore, the study of x,,,as afunction
of energy (this dependence is displayed in Fig. 3) is of
considerable interest.

5. CONCLUSION

We have analyzed the possible contributions to the
@winterference phase X, measured in the reaction

e'e’ — 1T Y. It has been established that the imag-
PHY SICS OF ATOMIC NUCLEI
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inary part of the pwmixing parameter—this imaginary
part is determined primarily by the prt intermediate
state—is the main reason for the experimentally
observed deviation of X, from 180° [1]. However, this
result isnot quite obvious. The point isthat the far right
shoulders of resonance curves are usually considered as
some substitute for the unknown background in the
reaction cross section. Information about the @winter-
ference phase, which is suggested by data from the
experiment reported in [1], but which must be mea
sured more precisely in order to refine thisinformation,
is also of value since it demonstrates the applicability
of field-theoretical calculations to such complicated
systems as hadron resonances. A confirmation of the
deviation observed in [1] would imply that the right
shoulder of the w resonance is significant at energy val-
ues around the @-meson mass, which is offset from the
center of the w peak by a distance of 28 widths of the
peak. Such an effect can hardly be interpreted in terms
of aconventional nonresonance background. Thevalid-
ity of this point of view could be tested by studying the
energy dependence of the phase of pwinterference (see
Fig. 3). In addition to the measurement of the phase X ¢
more precise measurements of the cross section for the
reaction e'e — 1T T in the energy interval between
the w and @ peaks are required. Such measurements
would enable areliable determination of the parameter
R, Which enters into expression (3.11). The calcula-

tion hasrevealed that, at /s = 900 (950) MeV, the cross
section calculated with R, = 1 GeV=2 is 20% (28%)
smaller than the cross section calculated with R, = 0.
Such measurements would also contribute to confirm-
ing that the heavier w' and w'" resonances do not play a

significant role for /s = m,,
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1. INTRODUCTION

Investigation of the structure of hadrons in photon-
induced exclusive reactions is an important line of
modern inquiries into the physics of elementary parti-
cles and nuclei. The advent of continuous electron
accelerators opened qualitatively new possibilities for
further advancesin these realms. At the moment, a vast
experimental program of investigations into nucleon
resonances is being performed at TINAF [1]. Experi-
ments studying the exclusive channel of 11T produc-
tion [2, 3] congtitute an important part of this program.
The point isthat such experimentswill furnishinforma-
tion about the @ dependence of the electromagnetic
form factors for nucleon resonances of masses in
excess of 1.6 GeV, which is currently not known. The
two-pion channd is promising for seeking “missing”
resonances that are predicted in quark models [4, 5],
but which have not been observed experimentally.
Observing missing resonances or reliably establishing
upper bounds on their existence would provide a test
for the foundations of modern quark models.

Their competition of a great number of nonreso-
nance mechanisms, which results in a significant con-
tribution of nonresonance processes, presents one of
the main difficulties in investigating nucleon reso-
nancesin the exclusive channel of pion-pair production
by photons. In the situation where it is necessary to
describe alarge number of various nonresonance mech-
anisms, the problem of extracting electromagnetic form
factors for nucleon resonances becomes very involved.

D |stituto Nazionale di Fisica Nucleare, Sezione di Genova, Gen-
ova, Italy.

2 Department of Physics, Moscow State University, Vorob'evy
gory, Moscow, 119899 Russia.

3) Universita di Genova, via Dodecaneso 33, 1-16146 Genova, Italy.

In order to determine these form factors, one needs
models that relate them to measured cross sections.

An approach to describing pion-pair production by
photons on a proton in the energy region of nucleon-
resonance excitation was proposed in [6, 7]. This
approach takes into account dominant resonance and
nonresonance mechanisms that are described on the
basis of meson—baryon interaction with effective vertex
functionsin terms of tree diagrams. The objective of the
phenomenological description developed here is to
establish relationships between quintuple-differential
cross sections measured in complete kinematics for
pion-pair production in photon—proton collisions and
the helicity amplitudes for nucleon-resonance excita-
tion, which are denoted by A ,(Q%), A;»(Q%), and
C,,(Q?%). From a comparison of experimental data and
the cross sections cal cul ated within the model used, one
can deduce information about the nucleon-resonance
contribution to the exclusive channel of pion-pair pro-
duction by photons. The devel oped model makesit pos-
sible to perform a comparative analysis of various
approaches to determining electromagnetic form fac-
torsfor nucleon resonances, thereby obtaining informa-
tion about the validity of the description of the structure
of the nucleon and its excited states N* in the transition
region between quark confinement and the asymptatic
freedom of quarks. By varying the amplitudes A, ,(Q?),
Ay (@), and C, ,(Q°) treated as free parameters, we can
reconstruct the electromagnetic form factors by impos-
ing the requirement of the best fit to the measured quin-
tuple-differential cross sections for the reaction
YevP — T["TFp

Model approaches to describing the main quasi-
two-body channelsy, ,p — TTA* andy, ,p — pp of
pion-pair production by photons were developed in [6—
9]. Inthe present study, we propose a description of the

1063-7788/00/6311-1943%20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Mechanisms of the reactiony, , p —> Tp.

three-body channel y, ,p — Tt'TTp. The results of our
calculations are compared with data obtained at the
photon point in experiments employing a bubble cham-
ber [10, 11].

For the mgjority of nucleon resonances with masses
above 2.0 GeV, the dectromagnetic form factors for the
majority of nucleon resonances are known quite well [12],
which makes it possible to vadidate the proposed model
description of pion-pair production by photons through a
comparison of the calculated and measured cross sections
for the above exclusive channd at the photon point.

2. DESCRIPTION OF THE REACTIONS
YevP — WWp

2.1. Relationship between the Reaction Amplitudes
and Cross Sections

In order to calculate the cross sections for the three-
body processin question, we rely here on the standard
formalism [13] employing the convolution of the lep-
tonic (L,,) and hadronic (W,,) tensors and invoke the
results from [14] for the three-body phase space. The
final three-particle state will be described in terms of
the following variables: the invariant mass of the 1t'p

system, sn+p; the invariant mass of the TTTT System,
s .- the proton emission angle with respect to the pho-

ton momentum, 6, the angle between the scattering
plane and the plane spanned by the momenta of the pro-
ton and the photon, @,; and the angle between the plane
spanned by the momenta of the proton and the photon
and the plane spanned by the momenta of the pions
forming the Tt pair, a.

By using these kinematical variables, the quintuple-
differential cross section for thereactiony, ,p — 1U'TTP
can be represented in the form

e e (G ‘2; N

4K My
dt = ds. ds. dQ,da,
mp N1

Ww}[(zn);f:szwz}’
(D
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dQ, = sin6,d6,dg,,
where € and Q? are, respectively, the polarization and
the squared 4-momentum of the photon, My, is the pro-

ton mass; Wisthetota energy of the proton and photon
in the reaction c.m. frame; and

W —M3
2My
is the equivalent photon momentum.

The tensor L, was calculated within QED [13].
Information about the dynamics of the channel being
investigated and about the structure of the participant
particles is entirely contained in the hadronic tensor
W which appears to be a bilinear combination of the
hadronic currents J, and J,,

1
- éApZf\]u()\p,)\f)\]\,()\p,)\f). (3)

Ke = )

The hadronic currents are dependent on the initial-
state-proton helicity A, and onthe helicities of thefinal-
state particles, A, and are related to the reaction ampli-
tudesin the helicity representation as

g (M) ' (AN () = DITAVA D 4)

where €,(A)) is the polarization vector of the photon
whose helicity isA,. The first bracketed factor in (1) is
theinvariant flux of the incident photons; the last factor
corresponds to the phase space of three final-state par-
ticles.

2.2. Mechanisms of the Reaction yp — TT°'TTp

The Dalitz plots for the invariant masses of the 1T'1T,
TUp, and TT°p pairs produced in the reaction yp — 11T
show bands corresponding to the production of A+, A°,
and p in the intermediate state, which subsequently
decay through the channels A™ — 1'p, A — 1T,
and p — TUTT, respectively. Therefore, the mecha-
nism of the reaction y, ,p — TT'TTp can be described
as a combination of three quasi-two-body processesin
Fig. 1. We assumed that the amplitude C(W, Q?) of all
the remaining processes is independent of the kinemat-
ical variables that describe the final-state particles and
determined this amplitude by fitting the Dalitz plotsfor
the invariant masses of 1T and TT'p systems. The
amplitude C(W, @?) then can depend on W and Q*. We
approximated the Dalitz distributions independently
for each pair of individual W and @ values. In the tree
approximation, a detailed analysis of the contributions
from the large number of various mechanisms to the
reaction yp — 1rTTp at W< 1.6 GeV in terms of the
meson-baryon degrees of freedom was performed in
[15] at the photon point. According to the calculations
presented there, the entire set of processes not shownin
Fig. 1 does not reveal features in this kinematical
region that depend on the kinematical variables of the
Vol. 63
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final state, so that the above approximation is quite rea-
sonable. More detailed information about mechanisms
other than those in Fig. 1 can be obtained from a com-
parison of the results of the calculation of all possible
two-dimensional correlation distributions in the reac-
tion yp — T'TTp (S - and Seps S and 6, Sep
and 6,, S - and a, Sep and a, and a and 6) with the

experimental data. The absence of special features in
the distributions representing differences between the
calculated and the measured cross sections would be
evidence in favor of the validity of the approximation
used, whilethe presence of such featureswould suggest
that it is necessary to introduce mechanisms other than
those in Fig. 1. Hereafter, the set of all processes not
shown in Fig. 1 will be referred to as the three-body
phase space. The relative contribution of quasi-two-
body processes depends on W. In the region W <
1.7 GeV, the dominant contribution comes from the
reaction yp — 1TA, while, intheregion W> 1.9 GeV,
the contributions of the reactions yp — TTA*™ and
Yp — pp are commensurate. The contribution of the
quasi-two-body reaction yp — TT*A° never saturates
more than 10% of the cross section.

The amplitudes of the processesin Fig. 1 were cal-
culated in the Breit-Wigner approximation. The total
amplitude of the reaction yp — 1TTTp hasthe form

FUTOA LT O
A W TOTAA A [ TIA WO

S Mi—iFA(sﬁp)MA

At

. _ &)
B o0 T A A S TIA o0

2 .
snfp_ MA_IFA(Sn’p)MA

DA I TINA G TN, CW, O,

Zp See—Mp—ilo(s . M,
where  [A LTO[TAAL DA T[TAAL and
A Ap [T |A A Core the amplitudes of the quasi-two-body
reactionsy, ,p — TTA*™, Y, ,p — A% andy, ,p —
pp', respectively; [IA;|TIA, L) TCAL[TIA L) and
[ e [T|A,Oare the amplitudes of the decay processes
A — 1, A —= TUp, and p — TT'TT, respectively;
M, and T(sy,) are the A mass and width; M, and
(s . -) arethe p mass and width; and C(W, @) isthe
amplitude of three-body phase space.

A detailed account of the models for describing the
amplitudes of the quasi-two-body processes yp —
TCAY and yp — ppisgivenin[6-9]. Here, werestrict
ourselves to presenting basic features of the approach
used to calculate the quasi-two-body amplitudes. The
amplitudes of the processes yp — TTA™, yp —
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A°, and yp — pp were taken to be superpositions of
a nucleon-resonance excitation in the s channel of a
photon—proton collison and nonresonance mecha
nisms. The nonresonance amplitudes of the reactions
yp — TTA™ and yp — A’ were represented in
terms of the minimal set of Born diagrams proposed in
[16]. The new elements in the approach developed in
[6-9] were the following. The electromagnetic form
factor for the pion according to the data on one-pion
electroproduction from [17] and the form factor for the
TINA vertex from the analysis of the data on nucleon—
nucleon scattering [18] were used to describe the inter-
action between the virtual photon and the virtual pion
in the t-channel of the pion-in-flight exchange diagram.
The approach took into account particle interactionsin
the initial and the final state with open inelastic chan-
nels on the basis of the method proposed in [9] and
employed the results obtained in [19] from an analysis
of data on the amplitudes of pion—nucleon interaction.
Allowances for channel-coupling effects are of impor-
tance for describing cross sections in the region W >
1.6 GeV, where, because of the competition between
many open inelastic channels, the cross sections are
sizably modified in view of channel coupling. The non-
resonance processes in the channel yp — pp were
described on the basis of the diffraction vector-domi-
nance model [20].

Excitations of nucleon resonancesin photon—proton
collisions were taken into account in the Breit-Wigner
approximation. The model included all reliably estab-
lished nucleon resonances of masses below 2.0 GeV.
The helicity electromagnetic amplitudes A, and A;,
for nucleon-resonance excitation at the photon point
were taken from [12]. The amplitudes of the strong
decays of nucleon resonances through the 1tA and pp
channels were described by using the results of the
analysis from [19].

The approach proposed in [6-9] faithfully repro-
duces the entire body of available data [10, 11] on
the total cross sections and angular distributions for
the quasi-two-body channels yp — TTA*™ and
YP — PP.

The amplitudes of A and p decays were calculated
on the basis of effective Lagrangians, the effect of the
internal structure of particles being taken into account
by introducing the vertex form factors

_ F(Sm) -
|]‘p'.r[l-rl)\AD - gAon_Mg) up pppuuAa

(6)

. F(s. )

O TAO= g, e F(I\T;Ig)

P
where 0, u,s, and €, are the Dirac spinor, the Rarita—
Schwinger spin—tensor, and the polarization vector
describing p, A, and p, respectively; p,p, P and Pur

are the 4-momenta of the proton, the 1t meson, and the

ex(p_—p_)

'
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Fig. 2. Calculated and measured [11] invariant-mass distri-
butions of the Tt*p system. The three-body phase space was
taken to be an adjustable parameter.

TC meson, respectively; and F(s.-) and F(s,) arethe

form factors in the prtrtand Amp vertices. These form
factors, which depend on the invariant masses of the
TP, TUP, and T 7T systems from the decay processes
A — 11'p, A — TUp, and p — TUTT, respectively,
were borrowed from the analysis of data on pion—
nucleon scattering [21]. The effective coupling con-

stants gy, and 9,0 Were determined by fitting, to the

measured decay widths, the results of the calculations
with the amplitudes in (6) at the resonance point
defined as the point at which the invariant mass of the
final-state particlesis equal to the mass of the decaying
particle. In order to usetheform factorsfrom[21] inthe
amplitudes given by (6), it is necessary to calculate the
contractions of the spin-tensors at the resonance point

and to introduce the factor 1/F(s . _ = Mp) or 1/F(Sy,=
M2).

3. RESULTS

Within the approach described above, we cal cul ated
the quintuple-differential cross sectionsfor the reaction
yp — TUTUP at the photon point for W values that lie
in the interval from the threshold to 2 GeV and which
corresponds to excitation energies of nucleon reso-
nances. By appropriately integrating these quintuple-
differentia cross sections, we then obtained the invari-
ant-mass distributions do/dMn+n, and dc/dMn+p,

which were compared with experimental datafrom[10,
11]. For each value of W, the three-body phase space
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Fig. 3. Calculated and measured [11] invariant-mass distri-
butions of the i1t system. Thethree-body phase space was
taken to be an adjustable parameter.

C(W, Q%) wasvariedin order tofix itsvalue on the basis
of the best simultaneous fit to the two invariant-mass
distributions mentioned immediately above. The calcu-

lated invariant-mass distributions d(:/dMn+p and
do/dM .. _ aredisplayed in Figs. 2 and 3, respectively,

along with therelevant experimental datafrom[10, 11].
The amplitude that describes processes forming the
three-body phase space and which is determined from
afit to these datais shown in Fig. 4 as afunction of W,

From Figs. 2 and 3, it can be seen that, by and large,
the proposed approach provides a satisfactory descrip-

tion of the invariant-mass distributions dcr/dMT[+p and

do/dMﬁn_. The greatest distinctions between the cal-

culated and the measured cross sections are observed at
W= 1.45and 1.57 GeV. It should be noted that it isthe
region of W values where the shape of the A line must
induce the most pronounced effects, but available
experimental information about the form factor in the
TINA vertex is insufficient for describing the line shape
unambiguoudly. That our fitsto all experimental invari-
ant-mass distributions of the e and 1Tp systems
proved to be satisfactory over the energy region of
nucleon-resonance excitation and that the fits to the
entire body of data on the quasi-two-body channels
yp — TUA* and yp — pp are of areasonably good
quality indicate that the developed approach can be
applied to analyzing data on the exclusive channel
yp — 1rTTp with the aim of determining the contribu-
tions and the properties of nucleon resonances. Fig-
ures 2 and 3 display the model predictions for the
Vol. 63

No. 11 2000



PION-PAIR PRODUCTION ON A PROTON

|C(W, 0%, arb. units
400} %}
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200+

9
100
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Fig. 4. Absolute value of the amplitude of the processes con-
stituting the three-body phase space as afunction of W. The
results displayed in this figure were obtained from a simul-
taneousfit to the invariant-mass distributions of the Tt"p and
T systems.

invariant-mass distributions of the 1p and T Sys-
temsintheregion W> 1.7 GeV. In thisregion of Wval-
ues, the three-body phase space was determined by
extrapolating the values extracted from the data pre-
sented in[10, 11] for W< 1.7 GeV. A comparison of the
results of calculationsfor W> 1.7 GeV withthe TINAF
data measured with beams of real photons would
enabl e one to expl ore the contributions from high-lying
nucleon resonances to photoproduction on aproton tar-
get and to obtain data on possible manifestations of as-
yet-unobserved nucleon resonances.

Itisclear from Fig. 4 that the amplitude of the three-
body phase space is a monotonically decreasing func-
tion of W, This suggests that some additional mecha-
nisms making the greatest contribution at low W are
operative. Presently, a detailed investigation of the
exclusive two-pion channel in photon-induced reac-
tionsisbeing performed at TINAF[2, 3, 7]. Ananalysis
of dataon all two-dimensional correlations of kinemat-

ical variables(sﬁ_ and Sep S and 6, Sip and 6,
s anda, Sep and o, and a and 8) would furnish

important information, which could be used, in partic-
ular, to construct diagrams that describe the mecha
nisms of the processes under study.

4. CONCLUSION

We have developed a phenomenological approach
to describing pion-pair production by photons on pro-
tons in the energy region of nucleon-resonance excita-
tion. Thereaction yp — 1t'TT p has been considered as
a combination of the quasi-two-body processesyp —
A, yp — 1A°, and yp —= pp. The entire set of
remaining processes has been treated in the approxima:
tion of the amplitude C(W, Q?), which isindependent of
the kinematical variables of the final state, but which
can depend on W and Q?. This amplitude has been
determined by fitting experimental data on the invari-
ant-mass distributions of the final-state particles.
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The proposed approach rel ates the measured quintu-
ple-differential cross sections for the reaction yp —
TP to the electromagnetic form factors A, ,(Q),
Ay (@), and C, ,(Q?) for nucleon resonances. That the

invariant-mass distributions of the 1t~ and 1Tp sys
tems at the photon point have been described here quite
well and that the entire body of available data on the
integrated cross sections and on the angular distribu-
tionsfor the quasi-two-body channelsyp — TTA™ and
yp — pp werefaithfully reproduced in [6-9] suggests
that the developed approach as applied to data analysis
has arich potential for extracting information about the
contributions of nucleon resonances to the exclusive
channel yp — 1rTTP.

The developed approach would make it possible to
predict the nucleon-resonance contributions to the dif-
ferential cross sections for the virtual-photon-induced
reactionsy, p — TUTTp. The observation of kinemati-
cal regions characterized by the most spectacular man-
ifestations of nucleon resonances is of importance for
planning experiments and for data processing in inves-
tigations of the structure of nucleon resonances in
exclusive reactions featuring virtual photons.
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Abstract—The cross section for the processv,, + V, —= U™ + €* inaconstant magnetic field is calculated with

allowance for muon and positron polarizations. The asymptotic behavior of the cross section as a function of
the kinematical and the field parameter is investigated in the case where a high-energy neutrino (antineutrino)
is scattered by alow-energy antineutrino (neutrino). The effect of aweak field is especially important near the
threshold for the free process. The spectrum and the total cross section for the process in a strong field differ
markedly from the corresponding characteristics of the free process. Possible astrophysical applications are

considered. © 2000 MAIK “ Nauka/Interperiodica” .

1. Investigation of neutrino— epton processes makes
it possible to deduce detailed information about the
structure of weak currents in a pure form not compli-
cated by strong-interaction effects[1]. These processes
play an important role in astrophysics [2]. The inverse
muon decay v, + & — W™+ V,, apurely leptonic pro-
cess that is caused by the charged weak current (W
boson exchange), has been investigated experimentally
since the late 1970s [ 3, 4]. Within the Standard Model,
the cross section for this process was calculated in [5]
with allowance for one-loop radiative corrections. For
astrophysical applications, it is of great interest to take
into account the effect of strong external electromag-
netic fields on electroweak processes. For example,
magnetic fields of neutron stars can be aslargeasH =

Ho = m>cehi = 4.41 x 1083 G [6]. Fields of H ~ 10'5-

10! G are generated in supernova explosions (see, for
example, [7]). We note that, even in laboratory experi-
ments with beams of high-energy particles traversing
single crystals, it is necessary to take into account
strong internal electrical fields (E < 10*H,) [8]. Inverse
muon decay in a constant crossed field (E - H = E? —
H? = 0) was investigated in [9, 10]; the case of a mag-
netic field was considered in [11, 12]. In the present
study, we calculate the cross section for the process

V+VU,— | +e. (1)

In a constant crossed field, this process is related to
muon decay by the crossing-symmetry equation. Here,
we study characteristic polarization effects associated
with the direction specified by the external field and
with the weak-current structure. Presently, various pro-
cesses induced by the inelastic scattering of ultrahigh-
energy cosmic (anti)neutrinos on low-energy relic

D Nakhichevan State University, Nakhichevan, Azerbaijan.

(anti)neutrinosin the Milky Way Galaxy are considered
as possible sources of high-energy cosmic rays (see, for
example, [13]).

2. By using the four-fermion approximation of the
Weinberg—Salam Standard Model and the Fierz iden-
tity [1], the amplitude of the processin (1) can be rep-
resented in the form

_ 4Gv (K)yfu(k)

- ,\/é 2L3(ww)jj2 ‘Ja(q)! (2)

fi

where G is the Fermi constant; u(k) and v(k') are the
bispinors of the massless neutrinosv,, and antineutrinos

V. with 4-momentak = (w, k) and k' = (w, k") (K* =k? =
0), respectively; q=k+Kk = (E, @) yi =y*(1+y)/2 are
the left components of the Dirac matrices, y° =

—-iy%y'y?y?; and L is the normalization length. The
charged-lepton current is given by

3(q) = Id“xe““*uf’(x)vﬁwﬁ(x)
= 2ny( ¢+e—E)j(q),

3)

where the muon wave functions lpf,f) and the positron

(negative-frequency € ectron) wave functions lp,(f) are

exact solutionsto the Dirac equation in a constant mag-
netic field and where the delta function expresses the
energy-conservation law in a time-independent field.
We use the pseudo-Euclidean metric with signature (+
——-) and the system of unitswhere# =c=1.

By using Egs. (2) and (3), we represent the cross
section for the process in the general form (compare

1063-7788/00/6311-1949%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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with [12])

- 8’;‘5;26@ +e-B)(K[*)(K)

)

(KT (K*) = (KK (% 1) =i 3 jokik, ],

where summation is performed over the sets of four
muon quantum numbers f' = (n', p,, S, {) and four
positron quantum numbersf = (n, p,, S, ). These num-
bers have the following meaning [14]: n=0, 1, 2, ... is
the principal quantum number (number of the Landau
level); —o0 < p, < o0 isthe projection of the 3-momentum
onto the direction of the magnetic field aligned with the
zaxis; s=0,1, 2, ... istheradia quantum number that
corresponds to the axisymmetric gauge of the 4-poten-
tial of the magnetic field,

o 1 1 1
= t, —5yH, 5xH, 05 5)

and ¢ = %1 is the spin quantum number specifying the
particle polarization (see below). The energy spectrum
of aparticlein amagnetic field is degenerate in sand ¢,

& = (m2+2eHn + po)
j Z 12 | ©)
g = (M:+2eHn+p’) ",

where e > 0 is the positron charge.

By using the explicit form of the wave functions for
charged leptons in a magnetic field in the gauge speci-
fied by Eq. (5) (see [14]), we find that the components
of the current in (3) can be represented as

0,0
0] O

0,0

Ej_zgz 2exp[i(n—n‘)%b+g%}

o] O

0.z 0

o] O )

5 Fo 0

)l 0 OF 1cosd +iF,sing il

21
X Ta(pz+ pz
E F,sing —iF,cosd D

0 Fs D
gzg_ I I Inntllllln—l,n'—l’
@)
g;gz I;.I Inn 1—I I In 1,n

where | and |, are known Laguerre functions [14] of
the argument

2
o
2eH’

96 = g +a,, )
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while ¢ is the azimuthal angle of the vector q (cos¢ =
Oy/dp» sind = q,/q-). The quantities I, (k= 1, 2) in (8)
are expressed in terms of the spin coefficients C, (i =
1,4) in the positron (more precisely, negative-fre-
guency-€electron) wave functions,
1 1
= _(Cl_CB)l |2 = _(CZ_C4)! (10)
2 2
while |, refer to a muon. The explicit expressions for

them depend on the choice of the lepton polarization
operator (integral of the motionin agiven external field);
the wave function is an eigenfunction of this operator;
the spin number { isanormalized eigenvalue [14];

hab = 22y,

hy = {py.
Here, the transverse-polarization operator

(11)

by = Tyt iy (EXP), = V(5 +Y°p)  (12)

determines the projection of the lepton spin onto the

direction of the magnetic field H, &= (€2 — p>)'2, and
P =-i00 + eA isthe momentum operator.

The longitudinal polarization is associated with the
helicity operator

h=XZ[P = ys(myo—e), (13)

and p = (€2 — m?)'2. We note that the operator equalities
(12) and (13) are valid in the class of functions Y satis-
fying the Dirac eguation (the general theory of polar-
ization operators in externa fields is developed in [14,
15]). The interactions of the lepton anomalous mag-
netic moment representing the radiative correction to
the Dirac moment destroy the longitudinal polarization
(quite fast under the actual conditionsin storage rings),
but the operator in (12) remains an integral of the
motion [14]. For this reason, we consider below only
transverse polarization.

3. Werestrict ourselves to the case where a neutrino
and an antineutrino approach each other from opposite
directions in the plane orthogonal to the field H. Since
the problem in an external field possesses axial symme-
try, the choice of the x axis along the collision axis
imposes no constraints on the generality of our consid-
eration. Accordingly, the 4-momenta in the neutrino
pair are then taken to be

k=w(1,100)), k =w(,-100),
inwhich caseq, = g,=0andtheangle ¢ in (7) is

(14)

ED w>w,

¢ = (15)

7w
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Taking into account (14), (15), and (7), we express
the cross section (4) in terms of the functionsin (8) as

=&Mmzzpmaue—awﬂFa(m

¢¢nn

where the upper and the lower sign in the superscript
refer to the cases of g, = w— w' > 0 and g, < O, respec-
tively. In deriving (16), we have used the conservation
of the z component of the momentum [see Eqg. (7)] and
the known formulafor summation over radial quantum

numbers [14],
_ eH L2
zlss -

The case of a coIhsuon between a high-energy neu-
trino (antineutrino) and alow-energy antineutrino (neu-
trino) is of interest for astrophysical applications. Sup-
pose that the energy of the v, v, pair, E= w + ', and
the momentum transfer g = |oo w'| are both much
greater than m, and that the magnetic-field strength sat-

isfiesthe conditionH < H, = mf, /e. The main contribu-
tion to the total cross section for process (16) then
comes from the final-lepton states having large quan-
tum numbers, n, n' > 1 (high Landau levels); for the
Laguerre functions |, in (8), we can therefore use the
well-known semiclassical asymptotic form in terms of
the relativistic parameter y-' = m,/E < 1 [14],

nn(X) O= ao_ (1) (V )]JZDW (D(y)

U1 (/= 00" ) EV1%¢MU
o= I—%I', In_lvn.zl+ll',
17
1 (17)
In—l,n'—l_ I_WI
W= 2KvV, V =1-v,

where

(18)

_ 1 ) tsg
d(y) = TrJdtCOS%/HﬁD
0
isthe Airy function of the argument

y = (2kvv) (v + 3V -AvV +T0),  (19)

and ®'(y) = dd(y)/dy. In (19), we have introduced the
field, the kinematical, and the mass parameter (K, A,
and 9, respectively)

_ 212 _ gy H eHE
= )1 = B
(20)
A= q— = 4ww o= ﬂ:
m mf1 m,
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and the spectral and the angular variable (v and T,
respectively)

fogad B
X___& .= _eg__F_a_s_E_:_F.’z, 21)
TXEX Ere myx+x) M
where
e By 2,12 eHe , \
X = =[—(Fasp p")] — X =X(p—p),
m, m,

Fap = 04 A — 0 A, is the strength tensor of an external

magnetic field, and Fap = %smoFM isits dual coun-

terpart. We notethat v O (0, 1) and that, in the ultrarel-
ativistic approximation adopted here (y = E/m, > 1),
T [ (~00, ).

Since the motion of leptonsis semiclassical, summar
tion over the quantum numbers n and n' in (16) can be
replaced by integration according to the relation [see (6)]

ge'dede’

(eH)’
After that, the integral with respect to €' is removed by
the delta function. Further, we go over to the variables
v and 1 (21). Asaresult, we derive the cross section for

the process at fixed lepton polarizations ¢' and  in the
form

dndn' =

00

2 1
a2, 0) = %Gé%y“fdvvv{dr(ﬁgiﬁz)z, 22)
0

where the upper and the lower sign in the superscript
refer to the kinematical conditions w > w' and w < W,
respectively, and F; is the semiclassical asymptotic
form of the function F;.

The expressions for Fi in (22) can be obtained by
substituting (17) into (8) and retaining only the first,
linear, terms of the expansion in the small parameter y!
in the spin coefficients C, and C/ [see Egs. (8) and
(10)]. In doing this, it should be considered that ww =<
m;; (A ~ y°) and that

M _ a8 M _ al
€ v' ¢ v’
P._ AT P_ AT
€ v o€ v’

the main contribution to the total cross section (22)
coming from the region specified by inequalitiesv < 1
and |t| = 1. Further, we note that, in fact, the mass
parameter [see (20)] issmall, d = 4.8 x 1073, and that it
is on the same order of magnitude as radiative correc-
tions (about a/m~ 10-%), which are disregarded in this



1952

study. To the precision adopted here, we therefore set
this parameter to zero below.

Finally, we find that, in terms of the spectral and the
angular variable, the cross sections for the production
of transversely polarized leptons[see (12)] aregiven by

(+)
(€, Q) wivo, ~\ 13
%j( e Z)E J’dvD// 0 dT[(ZK)
T varl 23)
“B o oped o’ (y) + (2R) “HEP(Y)

+25 1 HPmem |,

where K = kv V and the argument of the Airy func-
tionsis determined by (19) at 6 = 0.

The cross sections (23), which are expressed in
terms of the invariant parameters (20) and the variables
in (21), isapplicable (in the ultrarelativistic approxima:
tion) in an arbitrary constant field F,,, of strength F

much lessthan H,, = mf, /e [see (12)], the spin numbers
(' and ¢ being eigenvalues of the corresponding invari-
ant spin operator (see [12, 15]). The conditions under
which the above generalization to the case of two-body
processesin an external field is applicable are analyzed
in [16] (see aso Section 6 below).

4. The integrands in (23) determine the differential
cross sections d’c®/dvdt. The asymmetric depen-
dence on the angular variable t and the spin variables {
and ' isdueto P and C nonconservation in weak inter-
actions and to the choice of kinematical conditions
(compare with [12])—an ultrarelativistic muon and an
ultrarelativistic positron are emitted at small angles
(not greater than y~') with respect to the direction of the
high-energy-(anti)neutrino momentum.

In order to investigate the spectral distribution
do®/dv, we perform integration with respect to the
variable T by using the relations

—2/3, -1/2

J’thDZ(y) = M2 b Dy(2),
IdrTszz(Y) =m0 @'(2) + 20,(2)], (24)

[re’(y) = ~m 20 [30'(2) + 20,(2)],

where the arguments arey = x + ar?, z=2*3x, and b =
2233 and where d,(2) = r dtd (t). Therelationsin (24)
were derived with the aid of the well-known relations
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for the Airy functions {see [17, ch. 5, formulas (46),
(48), (58)]}-

From expressions (23), (24) and (19), we obtain

(+)
(Z 0. Gr ,V/vD

12)(1-AV . .
[EE(VVIZ))((l A v))%pl(z) - @

Hoke@ ]

Theintegrandsin expression (25) represent the spectral
distributions do®/dv, the argument of the Airy func-
tions being

(25)

z = (kvv)Pv(1-AD). (26)

For the free process (in the absence of an externa
field, k = 0), we find the spectral distributions in the
form

o2, Qldv

(=) D
Mo, (T, Q)/dv 27

GF 23V (1-AV
= o “Erv((lmv))%b(” b.

These expressions follow from (25) for k — 0 with
allowance for the weak limit

lim ®,(Ax) =

A

T (),

where () = (1 + sgnx)/2 is the Heaviside step func-
tion. The range of the spectral variable v in (27) is
determined from the condition AV — 1 = 0, which
yields

Osv<sv, = 1-1/A. (28)

From (28), it can be seen that, in the absence of afield,
reaction (1) has a threshold; that is, the kinematically
allowed regionis

A> L (29)

According to the general theory developed in [16],
the external-field effect on the process allowed in the
absence of afield aswell is determined by the parame-
ter

n = k/|A=1]. (30)

Let us investigate the qualitative characteristics of
the spectra given by (25) in the limiting casesof n < 1
and n > 1 by using the known properties of the Airy
functions[17].

Forn < 1 (wesk field) and A > 1, oscillations are
superimposed on the smooth free spectra (27) in the
region determined by (28), and these oscillations grow
Vol. 63

No. 11 2000
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as v approachesits boundaries. Intheregion v, < v <1,
which is forbidden at n = 0, the differential cross sec-
tion do®/dv decreases fast as we go away from the
point v, [for v — 1, it is proportiona to
exp(—2/3KV)].

Atn > 1 (strongfield) and A > 1, theregion of oscil-
lations is comparatively narrow.

At A <1, thefree process (1) isforbidden, and there
are no oscillations in the spectra. In a weak field, the
spectra are exponentially small in this case over the
entireinterval 0 < v < 1.

The above features of the spectra are typical of al
processes proceeding in the absence of externa fields
as well—in particular, of inverse muon decay [12] and
of the Compton effect in amagnetic field [16].

5. Let us consider the asymptotic behavior of the
total cross section for the process.

Atk < 1andA >1, it followsfrom (26) that we can
use the weak asymptotic expansions of the Airy func-
tions (see, for example, [10, 12]),

P(AX) = JTAS(x) + O(A™,

P(AX) = JTATE) +O(AS), (5

®,(AX) = VT 8(-) + %A‘swx)} +O(A®),

where A> 1 and d(x) =
our case, A = K23 and

do(x)/dx isadetafunction. In

-2/3

X(v) = (vv) Tv(1-AV). (32)

Let us substitute (31) into (25) and perform integration
with respect to v by using the relations

1 vy

J’dvf(v)e(—x) = J’dvf(v),

Vi

J’dvé(“)(x)f(v) = (-1)" ——[v f(V)] :

where v' = dv(x)/dx; v = v(X) isthe function inverse to
X(v) (32); and d™(x) = d"d(x)/dx", n =1, 2. In the above
relations, we have considered that X(0) < 0 and X(v,) > 0.
The derivatives d"v/dx" (n = 1, 2, 3) are calculated by
differentiating, with respect to x, the left- and the right-
hand side of the equation x = x(v), which determines
the function v (x) implicitly.

To terms of order k? inclusive, we eventually obtain
the asymptotic expressions

(+)
(.02 ey i
SO " g

(33)
4_D 0 LK ﬁ[ﬁ(?\)g}
—100(1-1/0) 5% B —10 B (V)
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where

Fo(A) = -(2A+1)E1*1 AD,

3 2
F.(A) = — )\—2—)\—3% (34)
8 2 1
F.(\) = =85 _Xg_

From (33), it can be seen that, in accord with (30), the
external-field effect on the process is described by the
parameter K/(A — 1). Thiseffect isstronger for polarized
particles than for unpolarized particles, being of the
first and of the second order in K, respectively. In arel-
atively wesk field (k < 1) such that therdlationk = A —1
nevertheless holds, the cross section for the process dif-
fers markedly from the cross section for the free pro-
cess, the latter being very smdl near the threshold
[Fo=0atA=1;see(34)]. From (33), it followsthat, for
w> W (W > w), we predominantly have the generation
of muons (positrons) whose spins are aligned with
(oppositeto) the direction of the magnetic field H—that
is, { =+1 (¢'=-1). Thiseffect issimilar to the Sokolov—
Ternov effect, the radiative polarization of electrons
and positrons in a magnetic field due to synchrotron
radiation [14].

For A < 1, thefree process (at k = 0) isforbidden. In
awesk field (n < 1), the cross section for process (1) is
exponentially small, which is characteristic of all pro-
cesses that have a threshold in the absence of a field
[17]. In this case, the argument of the Airy function is
very large (z> 1), so that we asymptotically have

®(2) =

By using this asymptotic expression and the method of
steepest descent and taking into account a finite value
of the mass parameter (& < 1), we can easily obtain

o UK exppr J@él )\D

Forn > 1 andk > 1 (strong field), the main contri-
bution to the integrals in (25) comes from the region
|z| < 1. If only the leading terms are retained in the
asymptotic expressionsin K, the integrands can be sim-
plified by setting there

-16l (1/3)
2/’

16l (2/3)
2./

Upon evaluating the remaining standard integrals with
respect to v, we obtain the strong-field asymptotic

®(2) = d(0) = 3

®'(2) = P'(0) = -3
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expressions for the cross sections (25) in the form

(+)
¢, QO 2 [ﬂ-D w30 [
o )Ez Z;E po “[ 397 @02
(35)
_ 150420 _ 2rafl0
="' mn &5 oo

Asinthe caseof aweak field [see Eq. (16)], we seethat,
for w> W (W > w), thereisapredominant production
of positrons (muons) polarized in the direction parallel
(antiparalldl) to the external field H.

6. In the above analysis [see Eq. (2)], we have made
use of the four-fermion approximation for the ampli-
tude of process (1). As in the absence of an external
field, the relative smallness of the momentum trans-

fer—|o?| < m\f\, , Wherem,, isthe W-boson mass—isthe
necessary condition of its applicability. Taking into
account (20), we obtain the kinematical constraint

A < (my/m)’ = 6x10°. (36)
In an external field, however, there arises an additional
condition: changes in the particle momentum over the
formation length for the process, I;, must be much less

than my. In astrong field (k > 1), thislength is inde-
pendent of the particle massand is given by [17, 18]

I, D[~(eFapq®)’]" eH.

As a result, we find that the field parameter K [see
Eq. (20)] must be constrained as

K < (my/m,)’ = 4.4 x10°. (37)

In our case, the condition in (36) is obvioudly satis-

fied since the semiclassical asymptotic expressions

used for the Laguerre functions I,,(x) (17) are valid

[14] when the argument X is close to the transition point

X = (/N + J/n')2 = (pg + piy)¥2eH,
XIXg—1 = O(y_z)
or [see Egs. (9), (6), and (14)]

9 =q-9q =y E =m;

that is, we have [see EQ. (20)] A < 1.

Following [16], we will now show that the basic
results deduced here under the kinematical conditions
chosen in a special way [see Eq. (14)] can beused in a
more general case. The cross section for the two-body
process (1) in an arbitrary constant field F,g for arbi-
trary directions of the neutrino momenta depends on
eight independent invariant parameters (for unpolar-

BORISOV et al.

ized particles). These are the quantitiesk and A, which
were aready defined in (20), and

e 172 e ~ | 12
f, = Z[|FaF 21", f, = S|FaF 2]
m;, m,
e 1 e ~ B 1
fo = Z|k,F*ky, = Z k. F", 38
m, m,
e V2102 e VL 12
= S [(FPk) T, o = Sk FapF™k;]
m, m,

We note that, in a purely magnetic field, f, = H/H, and
f, = 0. Suppose that the parameters in (38) satlsfy the
condltlons

fi<k, f,<A, f,<1 (i=1-6). (39

They arefulfilled for field strengths F < H,,, high ener-
gies of aneutrino pair (for markedly different energies
of its components), and at not overly small angles
between the ultrarelativistic-(anti)neutrino 3-momen-
tum k and the field-strength vectors E and H. By virtue
of (39), the general expression for the cross section can
be approximated by the simpler two-parameter formula

o(K, A, fq, ..., fg) =0(K,A,0,...,0).

Thus, our results expressed in terms of the invariant
parameters k and A are applicable not only to the case
of kinematics specified by (14) but also in the rather
general case specified by (39).

Let us consider the possibilities for observing the
external-field effect on process (1). Muon neutrinos of
energy w = 20 GeV are used in experimental investiga-
tions of inverse muon decay [4]. Our results are appli-
cable if the energies w' of electron antineutrinos obey
the condition

W < mﬁ/m < 1 MeV

a w = 10 GeV. Such energies w' correspond to the
lower limit on the reactor- and solar-(anti)neutrino
energies recorded by conventional methods [2]. Let us
set H = 10® G (this can be pulsed magnetic fields or
effective single-crystal fields[8]) andE=w+ w = w=
20 GeV. Thefield parameter is then given by [see (20)]

k=LH _10¢

m,H,

where we have used the value of H, = mﬁ /e=19 x

10" G. From (30), it followsthat, in this case, the exter-
nal-field effect becomes sizable in anarrow region of A
valueslying near the free-processthreshold: A = 1, |A -
1| = 1078 [see (33), (34)]. However, the observation of
the effect under laboratory conditions is complicated
by a relatively low density of neutrino beams and by
small dimensions of the interaction region. For thisrea
son, we will focus on astrophysical conditions.
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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As was indicated in Section 1, much attention is
being given at present to the possibility that high-
energy cosmic rays are generated in the annihilation of
ultrahigh-energy neutrinos on low-energy galactic relic
antineutrinos (see [13] and references therein). Assum-
ing that relic (anti)neutrinos are massless, we estimate
their energy (that is, the temperature of relic radiation)
aw~2K=1.7x10*eV. Our results are valid in the
region of cosmic-neutrino energies,

W= mi/oo' < 10%evV.
For the field parameter, we then have
K=< 107 (H/1 G). (40)

The mean-galactic magnetic field is overly weak: H ~
10° G and k = 10713, However, compact objectsin the
Milky Way Galaxy can develop strong fields [19]. The
surface fields of white dwarfstake valuesof H < 10° G,
in which case expression (40) yields k < 10%. The
dipole fields of neutron starsare H < 10" G. For these
fields, k = 10° [the condition in (37) is satisfied in this
case], and the cross section for process (1) in a mag-
netic field is much larger than the cross section for the
free process owing to the factor [see Eqg. (35)]

F(k) = (3k)?* = 10".

Thus, process (1) can be a source of high-energy
charged leptons; in the vicinity of strongly magnetized
stars, their spectra distributions and total fluxes can
differ considerably [see Eq. (25)] from the correspond-
ing values in the regions where the field can be disre-
garded [see (27)]. We note that, despite the relatively
small dimensions of neutron stars, they may modify
sizably the energy spectra of cosmic rays owing to the
large-scale pulsar-wind effect (see, for example, [20]).
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Abstract—BY the Schwinger proper-time method, the one-loop contribution to the W-boson mass operator is
calculated in a constant magnetic field at high temperatures. The static limit is investigated. By averaging the
mass operator over the physical states of a vector particle, the temperature-dependent radiative corrections to
the W-boson energy spectrum are obtained at high magnetic fields (eH/M?> > 1) for various values of the spin
projection onto the field direction. These corrections are found to be positive. In particular, the correction to the
ground-state level stabilizes the W-boson vacuum state at high temperatures. © 2000 MAIK “ Nauka/ | nter peri-

odica” .

1. INTRODUCTION

The W-boson mass operator in a constant magnetic
field H and zero temperature was calculated and inves-
tigated in [1, 2]. Among other things, this makesit pos-
sible to reveal the role of radiative corrections in the
problem of stabilization of the W-boson vacuum. The
problem consistsin the following. In the ground state of

the spectrum, the mode E2(0) = P + M2 — eH, where
P, is the momentum projection onto the field direction,
M is the particle mass, and e is the electric charge,
becomes unstable (tachyonic) for fieldsH > H, = M?/e
[2]. In the tree approximation, the evolution of the
mode leads to W- and Z-boson condensation [3-5]. As
soon as radiative corrections are included, the threshold
for the emergence of instability is shifted with the result
that the spectrum is stabilized if the Higgs boson mass
and the W-boson masses arerel ated in aspecific way. At
nonzero temperatures, the condensation of these fields
was also studied in [3] within some approximations.
However, temperature-dependent radiative corrections
to the W-boson spectrum have not yet been investi-
gated. In [6], for example, it was assumed that the W
boson vacuum state is stabilized by the Debye mass

m> = €T2, which is generated only in the longitudinal
components of gauge fields, but the point is that the

tachyonic mode represents a transverse state resulting
from the interaction of a spin with amagnetic field.

In the present study, we calculate and investigate in
part the W-boson mass operator in a constant magnetic
field at high temperatures. The imaginary-time formal-
ism isused hereto take into account temperature. Asin
the case of the calculation at zero temperature from[1],
werely here on the proper-time method. In general, the
use of this method runs into difficulties associated with

* e-mail: skal ozub@ff.dsu.dp.ua

the need for performing summation over discreteimag-
inary frequencies. However, this method is quite appro-
priate in the high-temperature region, where it is suffi-
cient to take into account only the (I = 0) static modes
[7]. As will be shown in Section 2, the procedure for
implementing the Schwinger proper-time method is
virtually identical to that in the case of T=0]8].

We average the mass operator over W-boson physi-
cal states [n, ol where n and o are, respectively, the
number of the Landau level and the spin variable. The
functions [, g|M|n, oldetermine temperature-depen-
dent radiative corrections to the energy spectrum in an
external magnetic field. The square of the effective
mass of a vector particle is given by M2(H, T) = M? —
eH+ M =0, 0=+IMn=0, o =+10If the quantity
(M-, -+ IS positive, the W-boson vacuum is stabi-
lized by the radiative corrections to the effective mass.
At high temperatures, stabilization of this type may
occur in strong fields (eH > M?) aswell.

The ensuing exposition is organized as follows. We
calculate the W-boson mass operator in Section 2 and
perform averaging of the expression for the mass oper-
ator over W-boson physical statesin Section 3. In Sec-
tion 4, we derive asymptotic expressions for the aver-
aged mass operator in the limit of strong magnetic
fields and high temperatures. Our basic results are dis-
cussed in Section 5.

2. MASS OPERATOR

L et usconsider asimple model of electroweak inter-
actionsthat isbased on the spontaneously broken gauge
symmetry SU(2) — U(1). The relevant Lagrangian
has the form

2
My 2 A a4

1 a2 1 2
L = _Z_(Gpv) +§(DHCP) TS0 -0, (1)
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W-BOSON MASS OPERATOR

where G}, = 9,A; — 3,A} + ge®™AA; and Dy} =
0,5% + ge?* A .

This model is described in detail elsewhere [2]. As
the result of a spontaneous breakdown of symmetry, the

, 1
charged components W, = TZ(A& + iAﬁ ) acquire the

mass M = g®,, where ®,=m,/ /A isthevacuum expec-
tation value of the scalar field; asto the component A=
Afj , it remains massless, playing the role of an electro-
magnetic field. We also identify the gauge coupling g
with the electric charge: g = e. For the sake of definite-
ness, the external magnetic field is assumed to be
aligned with the third axis of the system of Cartesian
coordinates, H = H;. The relevant potential of thisfield

is chosen to be AffXI = (0, 0, Hx, 0), H = const. In order
to quantize the fields being studied, we make use of the
gauge condition

W™ —ieAT'W™ - Mg" = 0, )

where ¢ = %2 (@' + i@?) are charged Goldstone fields.

As amatter of fact, the model being considered repre-
sents amassive regularization of Yang—Mills theory; in
the limit M — 0, it reproduces al relevant results.
Results concerning Weinberg—Salam theory can be
derived with the aid of relevant algebraic transforma-
tions (for more details, see[2]).

In the one-loop approximation, the W-boson mass
operator is determined by the standard set of diagrams
in Fig. 1 [1, 2], where double lines represent the
Green's functions for charged particles—specificaly,
the Green’s functions G, (x, y) for the vector particles

Wi (solid double lines shaded in between), the Green's

function G(x, y) for the Goldstone particles (solid dou-
ble lines closed in between), and the Green’s function
A(x, y) for charged ghost components x* (dashed double
line shaded in between). Thin wavy, thin solid, and thin
dashed lines correspond to a radiated photon AR, a neu-
tral Higgs scadar n, and a neutral ghost component x?,
respectively. In the operator form, the relevant expres-
sions for the above Green's functions are given by

Gu(P) = —[P*+M*+2ieF,] ",

G(P) = A(P) = -[P*+ M.

In order to calculate the mass operator, we make use of
the proper-time representation and the Schwinger opera
tor formalism. The W-boson mass operator in amagnetic
field & nonzero temperatures can be represented as

R LY, w
Moo = 53 [pnyilMith )M P )
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Fig. 1. W-boson mass operator in the one-loop approxima-
tion.

where
M, (k, p) = (K +m)™
x [(2k = p),G(p—K)(2k — p), —4M°G,,(p—K)],

My (K P) = K (T 4 0Gap(P—K)Tug
+(p-K),A(p—K)k, + k,A(p—K) (p—K),
+M*8,,G(p-k) +K[G,,(p—K) —2G,,(p—K)
+8,,Gpp(P—K)1},

rpa,p = 6MG(2p_k)p+6up(2k_ p)p+6up(p+ k)a;
B=1/T, ky=2m/B,1 =0, £1,+2, ...; and P, = id, +

eA;" by definition. The first term in the bracketed

expression on the right-hand side of (3) stands for the
contribution of the neutral Higgs scalar n (diagramsin
Figs. 1a, 1b), while the second term represents the
gauge sector (diagrams in Figs. 1c—1h). As was indi-
cated in Section 1, we restrict our consideration to the
case of the high-temperature limit; in (3), thislimit cor-
responds to the | = 0 term in the sum over k, (see the
review article of Kalashnikov [7]). This case can be
treated by directly applying the standard computational



1958

procedure developed for the case of zero temperature.
For the details of the relevant calculations, the reader is
referred to [1, 2]. Highlighted below are only the basic
points peculiar to the case of k, = 0. For the sake of def-
initeness, let us consider the first term in the bracketed
expression on the right-hand side of (3), M ﬂ\, k, p).

In order to perform three-dimensiond integration with
respecttokin (3), itisnecessary tointroduce aproper time
for each propagator appearing in Mﬂv (k, p) and to repre-
sent the product of the propagatorsin the form

1 0

D,(K)G(p—k) = —IduJ’dsse_SX(”),

where
X(u) = (1-u)K +u(p—K) +(L-u)m’
+u(M? + 2ieF),
m being the mass of the neutral scalar field. The k,-
dependent part of the “Hamiltonian” is equal to zero.
Three-dimensional integration with respect to k is per-

formed with the aid of atransition to the conjugate vari-
ableg;,

[&i k] = 10
By using the eigenstate of the operator §; as deter-

mined by the condition & = 0, the three-dimensional
integral with respect to k can be represented as
3

&’k
J (2m)’
Further, the Hamiltonian R(u) = (1 — WK~ + u(p — k)2

is integrated according to the procedure described in
[8]. The eventual result takes the form

f(k) = & = 0|f (k)[g' = Ol

—sh - A DA 0 _ nF o
(e~ kikO= e EDpDEDpD Ie[bTDJ’
[ ] ij
where
A=e"""_1 D= A+2ieFs(l-u),

—sR 1 0D O 2 _se,

- up?—pl —_ @20
®o = up _p[Zierl O TD}p

The distinction between the cases of a nonzero and
zero temperature consists in the difference of the

dimensionalities of the relevant integrals. This is
reflected in the power to which the parameter sisraised

SKALOZUB, STRELCHENKO

and which represents the dimensionality of theintegral:
the factor s3> comes from the three-dimensional inte-
gral corresponding to T # 0, whereas the factor s
arisesin the case of T =0 [8]. The result for the scalar
sector has the form

1 0
20 —12 D
M = == (dufdss [ dettd D}
! Jﬁg_{ _([ (DieFsd] @

—Smoe—s[(l—u)m2+ uMz]

xe [Kij—Mz(AT+|)ij],
where
- F
Kij = [%—Bu%pl[%—ump} —|eEbTE

The relevant result for the gauge sector is given by

w _ 172 0D O
BJ’du‘[dss [etfﬂlerD}

-s®, —suM
xXe

Mi;(s, u),

TA' (A+2+2A)+2(A)
DD’

Mi(s, u) = 2(A +1)ij p{

+2(A" + |)}r>+ [2(A" = A) + 4cosh’X]

dit DDApD"e”EbTD} 5-adp]
ﬁz(MA) 3A%+2AT'S}D§
+§3A% %T+(2A +A)B+—} g%‘_ Ep}
(5)

.
+ ietr[F(ZA—A;_I)} 2ieA; trﬂg
D D
T
+8(1+ 2sinhPx)K,, —[EM+ ATDp}

O D
ﬁ (2T +1) - u

A’ L. [(2A°—AT—BA)F
<[he+ 5] +1q T lj

[A(ZE 1) 1

D
D
80P°+ M”+ p[ AT+ (A"+ 2
D D
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JATHTATH DAY D)} O
DD’

o™

+ie

OF[4A" + (A")’ —2A] O
0 - 0.

O D O,
where T = 2ieFs(u—1).

3. AVERAGING OVER PHYSICAL STATES

In order to find radiative corrections to the W-boson
energy spectrum, it is necessary to define the mass shell
for avector particlein an external magnetic field at high
temperatures. In the static case, the mass shell is speci-
fied by the equations

[(p*+M?*)3,; + 2ieF'IW] = 0, ©
pWi =0, ¢ =0,

wherei, j = 1, 2, 3 and where the term p,W, vanishes
since p, = O for static modes. If the magnetic field is
constant, it is convenient to choose basic states in such
a way that the tensor F; is diagonal in this basis, in
which case F;; plays the role of the operator projecting
spins onto the field direction. State vectors are normal-
ized by the condition

(m, o|n’, 0'0= 8,105
wheren,n'=0,1,2,3,...and o, 0' =0, £1.

The eigenvalues of the operators F, r)2, and pé in
these states are

F = iHo,
pé = (2n+1)eH.

2

p’ = —M*+ 2eHo,

In order to find the quantity [h, o|M|n, olJit isaso
necessary to evaluate the expectation value of the oper-
ator (pp) over the |n, o[ states. The result is

@, o|ppln, o0= %(Zn +1-0)eH.

The averaged expressions for the mass operator can
be represented as

1 obe 29 caur X reuHal 2
[, a|M;j|n, o= A/ﬁBJ()'du{A/;([eUHA]
9 M? x(l—u)m2 (7)
exp| —xug -S|
x exp{—(2n+1)[p—x(1-u)] -2y(1-u)}
x[K(y)—M"e™],
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(m, o|M; |n GD— (euHA)

3)
xexp{—(2n+1)[p —X(l—U)] —2y(1—U)} M(x, u),
where x = euHs, y = xo,

(1—u)sinhx
sinhx’

tanhp =

(1—u)coshx +u

S|nh2x »sinh®x

=(1- u) +2u(1-u) >
X

The explicit expressions for M(x, u) and K(y) are given
in the Appendix.

4. ASYMPTOTIC EXPANSION OF THE MASS
OPERATOR IN A STRONG MAGNETIC FIELD

The expressions for the averaged mass operator that
were obtained in Section 3 are investigated here in the
limiting case of strong magnetic fields and high tem-
peratures. eH/M? > 1, eH/T? < 1.

Theintegrandsin expressions (7) and (8) involvethe

2
factor exp E—xu mH E whenceit followsthat, in the case

of eH > M?, the main contributionsto the relevant inte-
grals come from the region whereu ~ 1 and x > 1. In
order to find the relevant asymptotic expressions, we
will need the relations

2

u 2
AOD—e™ (u—1,x> 1),
4x

A exp{—(2n+1)[p-x(1-u)] -2y(1-w)} (o)

X —AX(1-u) _
usinhxe exp[2nx(1—u)],

Xx>1,

whereweset A = 1, -3, and -1 for o = +1, -1, and O,
respectively. Without loss of generality, the calcula
tions can be performed in the reference frame where
p; = 0. For the case of the gauge sector, which is
described by expression (A.1), we now present terms
contributing to the integral in (8) for each value of the
spin projection:

0+1

(x,u) = 4¢° “(2n+1)eH

+26%eH [ZA(X) _ E-/i;(i)} + 4(sinh2x + cosi’x)
2X°A
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2 .. ,2 2 .
x[(2n+ 1)eHu S|2nh X, enY snthx}
XA 2X°A
+eH(83mh X+ l)y__sm_u
2X°A
+ 2neH 3L Snh X S’ X0 ()
O
A(=X) uzsinhzx}
+ A(—X)| 2 -
( )[ D(—x) A
N AX)
+2uA( x)[l D(x )}
+8(1+ 2sinh’ x) ( )+neH[|45|nh x+[é§xg
A(—x) u’sinh’x 0
+ }costh+ 2—; cosh2x ]

+eH[2+ A(X)] + A (—x)D( =)’

M®=7Y(x, u) = —4(sinh2x — cosh’x)

u’sinh2x
+eH > }+2(n+1)eH
2X°A

u’sinh®x
xA

[(2n+ 1)eH

DJ sinh2x
D—

[A(=x) + ue”D(x)][1- D(X)]D
0 2x°A O

A
D(X)

A(—X)

D(x )} cosh2x

a .
+neH[4s nh’x + [
O

2 .
u’sinh®x
2
XA

+2

cosh2x D+ 8(1+ 2sinh’ x)
O ( )

u S|nh2x

+eH(83mh x+1) +eH[-2+ A(X)]

+[A(x)+3A(x)+2A( X) — 8A( x)]D( X’

LU
ZX}

M®=%(x, u) = 4(2n+ 1)eH

u’sinh®x
+eH 5
XA

u’sinh2x
NG

+ 4cosh x[(Zn +1)eH
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+eH(8si nh’x + 1)9—5'-911—2-)—(
XA
AKX | A= X)}
+neHj == cosh2x
@D(X) D(—x)
2 .
+ 4sinh?x + 24 S|2nh X cosh2x E+ 169nh2x%.

XA O

Performing integration with alowance for (9), we
obtain

m, o = +1M"|n, 0 = +10
= 0./eHT[12.6 + 6n+i(5+ 24n)],
m, o = -1|M"|n, 0 = -10
(10)
= a./eHT[14+6n+i(9.69 + 2n)],
m, o = ojM"|n, o = 0O
= 0./eHT[13+ 10n+ 6i(1+n)].

By using expression in (A.2) and evaluating the
integral in (7), we arrive at

m, o = +1M"|n, 0 = +10= a./eHT(1.15+ 4i),

m, 6 = -1M"|n, o = —10= 4a./eHT, (11)
M2
m, o =0/M"|n,c = 00= —4m0(A/eHT.

From (10) and (11), it can be seen that the real part
of [MOis positive in the ground state and in excited
states. The emergence of the imaginary part in IMOis
due to nonanalyticity of some terms in the integrands
on the right-hand sides of (7) and (8) for x — . The
choice of an integration contour that ensures conver-
gence of the integrals with respect to x for these terms
generated the imaginary parts in expressions (10) and
(11), which describe a transition to a state occurring at
alower energy.

5. DISCUSSION OF THE RESULTS
Let us now consider the effective mass of the W
boson. With the aid of Egs. (10) and (11), we obtain
M?(H, T) = M*—eH
+Rel =0,06 = +1M|n=0,0 = +10
= M?—eH + 13.750 T ./eH.

From (12), it can be seen that the quantity M?(H, T) is
positive for sufficiently high temperatures. On this
basis, we can conclude that, for T > (eH)!?, the radia-
tive correction to the W-boson ground state stabilizes
the vacuum. Here, the stabilizing mass depends on the

(12)
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field strength and vanishes at H = 0, as it must in the
one-loop approximation [7].

Let us compare our results on the role of radiative
corrections to the W-boson mass in an external field at
nonzero temperatures with the results presented by
Elmfors and Persson [9], who relied on the weak-field
approximation. The basic conclusion drawn by those
authorsisthat, for the ground state |n =0, o = +1[]radi-
ative corrections to the mass at nonzero temperaturesin
an externa field vanish, whichisin aglaring contradic-
tion with expression (12). The reason behind this con-
tradiction is rooted in the computational procedure
adopted in [9], where the field dependence is intro-
duced in (MOexclusively via the W-boson wave func-
tionsin amagnetic field and where the mass operator is
replaced by its field-independent asymptotic expres-
sion for high temperatures. It is obvious that this
approximation cannot be applied to the case of weak
fields, since it fails to reproduce the result at T = O,
where the anomal ous-magnetic-moment contribution
to the W-boson energy must manifest itself in weak
fields[1]. In the case of weak fields, the contribution of
gH istaken into account both via the W-boson external
lines and via the term featuring the magnetic moment
of the W boson.

The above results are of interest for cosmology. We
imply that, if a magnetic field was present in the Uni-
verse in the era of an electroweak phase transition—as
is often discussed in the literature (see, for example, [6,
10])—the radiative mass of the W bosons determines
the dynamical mechanism of vacuum stabilization,
both in the case of a broken vacuum phase and in the
case of the restored vacuum phase. If the magnetic field
is spontaneously generated at a nonzero temperature, it
isgiven by (eH)!> ~ g?T in the one-loop approximation
(see [11, 12]). Therefore, the square of the effective
mass s about g*T? for the restored phase, in which case
M = 0. Moreover, it is positive owing to alarge coeffi-
cient in theradiative mass (12). I n the one-loop approx-
imation, we thereby arrive at a self-consistent pattern
where, at high temperatures, there spontaneously arises
a magnetic field, which is stabilized by the radiative
mass of charged gauge fields.

APPENDIX

The explicit expression obtained upon averaging the
mass operator over physical states has the form

2

[ .
M(x, u) = 2¢”meH [851 nh’x — UT
g XA

cosh3xsinhx

o (Ax(1—u)
O u

2
i ; u-A(X
+8sinh2xsi nhzxg} +eH [ZA(x) _ 2X2(A) %A(x)
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_XA=W A + Zcosth)D} _oup?+2p°E
u 0 0

+4(sinh2y + cosh’ x)[up3 +(2n+1)eH

2

+eH u2
4x°A

+eH [QA( y)————

2%/

2 . 2
LU (8sinh"x + 1)[sinh2x+4x(lu_u)} + U

+neH E4s‘nh2x+ N(x) + N(=x) +
O

X [Zcosth + @

ueH U
g

[25inh2x + 4X(t_ u)} +

u(l u) cosh2x

A

2X|:|

2 . 2
u“sinh™x
2

ZXD

w'sinhx

U
U

. O
sthX} O+ (2n+1-0)eH
O

(A.T)

D(y)

Cp%(y) + (1-asint’y)e D(y) + 2Y(1 - w)AQ)
"B
0

D(y)

X[A(Y) } us'nh)y[A(y)+ue2yD(y)][1 D(-y)]

Ay

+ [4(1— u)usmhzy_ uzsinhzy
y'A(y)

[A( —y) +ePyl= “} [(1+e2y)g‘%3—

YA(yY)

+A(-y)
Yy A(y)

u 2 uzsinhzy
+§[1+-ey-+—7;———-D(—y)
y'A

(y)

eHo

HU2+ WP+ 5

—2A° (y)] +2eHo +eH DA(X)

oo

uzsinhzy 1y
e

g

ol

y)

-Y)

(1-u)]

A(X)

D(—x)
A(X) . U’sinh’x] O
D(¥) }E

} He 81+ sinhy)K(y)
0

== [8A(y) —2A(-Yy) - A’(-y)
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where 2.

sinh2y | uzsinhzy

A(y) = (1-u)®+2u(1-u) 5 v 3
A=A(X), a

K(y) = 5(2n+ 1—0)[—u2e_2y% 5.
LA, sy . eHo (A2) s
D(Y) ~ yA(y) } A(-y)’ ;

N(x) = —S—E%[ZcoshZX—e_z%((l_u)} .

10.

Ay) = €”-1, D(y) = A)-2(1-u).

11.
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Abstract—The Primakoff effect—induced radiative emission of axions by an alternating electromagnetic field,
F,— va, isconsidered for the first time. The synchrotron mechanism and the Coulomb mechanism—in the
latter case, the alternating field is formed when a charge executes an infinite motion in the field of a Coulomb
center—are considered as specific examples. The contributions of these effects to the axion emissivity of mag-
netic neutron stars and of the Sun are estimated. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The axion is one of pseudoscalar particles (omion,
arion, etc.) whose existence is suggested both by some
theoretical considerations and by an analysis of astro-
physical data (primarily by the analysis of the hidden-
mass problem). Namely, the axion as a Goldstone
boson in the Peccei—Quinn scheme [1] provides a natu-
ral explanation of the exact CP invariance of strong
interactions, while the axion condensate formed at
early stages of Universe evolution could constitute a
major part of cold dark matter. This explainswhy inter-
est in the possibility of experimentally detecting the
axion [2—4] and in investigationsinto axion interactions
[5, 6], including interactions under extreme conditions
(for example, in the presence of strong external electro-
magnetic fields [7-9]), has quickened in the last
decade. Hopes for experimentally identifying axions
are pinned primarily on implications of the Primakoff
effect—that is, on direct axion—photon coupling
described by the Lagrangian (hereafter, we use the sys-
tem of unitswhere € = a = 1/137)

_ 9 we
= 161TF Fuwa, (D

where IEle = %EMBF“B is the dual of the electromag-

netic-field strength tensor and

ac
gy = _Z_TFF (13-)
is the coupling constant. The dimensionless parameter
¢, is on the order of unity, its specific value depending
on the axion model used; the parameter f represents the
energy scale at which Peccei—Quinn symmetry is bro-
ken [1, 10]. The possible value of g, in energy units is

* e-mail: v_skobelev@hotmail.com

quite small (not greater than 10-'° GeV-'), which corre-
sponds to the concept of an invisible axion.

The axion massis aso rather small: it can liein the
interval

105=m=102eV, 2)

whose boundaries were determined on the basis of
astrophysical data[6].

From the form of the Lagrangian in (1), it follows
that an axion can be produced in the interactions of real
photons with an alternating external field F, (diagram
in Fig. 1a) or as the result of the transformation of an
external field with a nonzero Fourier transform in the
spacelike region of momentum transfer into a ya pair
(diagramin Fig. 1b). Thefirst mechanism has been vig-
orously discussed in the literature [2], while the second
mechanism has thus far attracted no attention, to the
best of my knowledge.

In the present study, we will analyze general regu-
larities of the process F, — ya (Section 2) and con-
sider specific cases where the alternating field is
formed by a charge moving along a circle (Section 3)

(a) (b)

Fig. 1.
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and in the field of a Coulomb center (Section 4). For a
special version of the ultrarelativistic motion of an elec-
tron in amagnetic field, results are presented in Sec-
tion 3 for the probability and for the intensity of syn-
chrotron radiation e — eyain terms of invariant field
parameters. In Section 5, we discuss the astrophysical
aspects of the issue, comparing the implications of the
above mechanism and of the mechanism of axion gen-
eration through the channel represented by the diagram
inFig. l1a.

2. INVARIANT CHARACTERISTICS
OF RADIATIVE AXION EMISSION

Making the substitution F — F, + F in (1), where
F, and F are the strength tensors of the alternating and
the radiative field, respectively, and performing some
simple transformations, we find that the total probabil-
ity of the emission of an axion and a photon as
expressed in terms of an integral with respect to the
momentum transfer k can be represented in the form

2

W = iﬂ'd“k[ﬁa(k)ﬁ;(k)]wﬁ“, 3)
2(2m)
where F.(Kk) isthe Fourier transform of F, and

v =Id pd” S K"k 8(k—p—K),

2pd 2k, (32)

p and K being, respectively, the axion and the photon
momentum.

The expression for the invariant probability W can
be further ssmplified with the aid of the relations

- % * 1 a —x0B
(FaFa )llV = (FaFa )uv+§gvauBFa (4a)
v T[(kz—mz)3 v 2 v
IV = (4K’ -k°g™), (4b)
24k
and the Maxwell equation
kF +kVFW+kF = 0. (4¢)
Thisyields
k m % Ba
= j =) e rr g, (5
96(2T0

where the invariant region of integration is given by

Ek >m’ D
Dko>0 D

The mean 4-momentum of the emitted axion, [p,[]
is obtained from (3) by introducing the factor (k — K),
in the integrand on the right-hand side of (3a). Further
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transformations are similar to those performed above.
Theresult is

2
Yy

(0= —1L—
-+ 192(2m)°

(6)
4 (k2—m2)3 2, 2 a Ba
XJ’d kT(k +m)Fgp(K)F2 ™ Ky

Obviously, the mean value of the total radiated
4-momentum, [K,[) can be obtained from (5) by intro-
ducing k, in the integrand.

An equivalent representation of expressions (5) and

(6) in terms of the currents generating the field F, is
obtained viathe substitution

(N

If the field F, is generated by a classica pointlike
charge Q, the components of this field are determined
by the well-known Lienard-Wiechert potentials, in
which case the above expressions are valid only if the
radiation recoil is disregarded—that is, under the con-
dition

[k,0< Eq, (8)

where Ej is the energy of the charge. This condition is
rather Weak and is obvioudly satisfied in the cases con-
sidered below.

3. SYNCHROTRON MECHANISM OF RADIATIVE
AXION EMISSION

In the case where a charge Q executes an ultrarela-
tivistic motion along a circle of radius R with a fre-
guency w, the Fourier transforms of the potentials can
be chosen as

2
A = 202,(2),
® ©)
DAl(k)D 8 QRO toshy osing 0. 0
a DA (K) O k? Etbn‘bDZJV(Z) [-l—cogq)DJv(Z)D
As(k) = 0,

wherev =k;/w> 1, 6 and ¢ are spherical angles of the
vector k, the third axisis taken to be orthogonal to the
plane of motion, and the argument z of the Bessel func-
tionsis given by
z = Rk|sin®. (10)
Substituting expression (9) for A5 into F2 and into
(5) and performing some transformations, we obtain
Vol. 63
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the probability of radiative axion emission per unit time
(the prabability divided by the period 217/w) in theform

2Q2m3l 1
W; = V—ZId\')\')zJ’dcose
6(2m) s s

3 ~ 2 3
x dvv [yﬁ} (11)
2 vi(1-v7)
m/(1-9°%)

o 1 042 2
Sl S HOREH ]
Here and below (in this section), we set all powers

of the speed v to unity, when possible, and introduced
the notation

v = [k|/k,, (12)

In addition, it is assumed that the integral with respect
tov isdominated by the contribution of higher harmon-
icswith

m=mw, z=vvisnd,

Vg > 1. (13)

The integralsin (11) can be calculated analytically
at some specific values of the parameter m.

(i) m > 1. In this case, the condition in (13) is sat-
isfied automatically. Under the additional constraints

Vet > (L= v202sin®0)ar (14a)
(14b)

it is reasonable to approximate the Bessel functions
involved as [12]

Ve, (SiNB) g = 1,

J, = (2T[v«/E)_]jzexpg—\éz‘:slzgr s

22 . 2
€=1-v'vsane.
Making the change of variable in the integral with
respect tov as

Ve (16)
(1-v7)
we arrive at the intermediate result
~21
g QW
Wr = 6T[3 I 2312
5 (1=V7)
. (-v’sin’® | o, 5 e
- X
XJ’dCOSGDT+s DJ’dx(x—l) e , (17
I3
0 1
_ g r~h£3/2
3(1-v%)""
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From the analysis of the last expression, it follows
that, in the case of ultrarelativistic motion, the condi-
tion in (14b) is satisfied; taking into account (14a), we
find that the approximation used in item (i) is valid
under the condition

~ ol f |
m[EQD > 1,

where m, and E, are, respectively, the mass and the
energy of the charge Q. Since

(18)

koOOV g O mEFTZ%
the condition in (8), which justifies the disregard of
recoil, assumes the form

M <

e (19)

and always holds in view of the smallness of the axion
mass [see the constraintsin (2)].

An approximate integration in (17) yields

2% 9,Qw Eof = Mo f.
Wi = 5 3(yzn)zﬁ12Eh1QD exp[—«/émEEQD}, (20)

that is, we can conclude with allowance for (18) that, in
the region being considered, W is exponentially small.

If the charge Q is taken to be an electron moving in
a constant uniform magnetic field, the right-hand side
of EQ. (20) can be expressed in terms of the field-
strength tensor F and the electron 4-momentum g in the
standard form

W~EEEF/2 giamf;’ X5
T80 3(211)2m2qO

where

_ Je’(aF’q) m
m M

A similar exponential dependence in the region
specified by Eqg. (214) is also obtained in precise quan-
tum cal culations of the processese — evV ande —
eainan external field [8, 13] (the last effect is possible
in the presence of direct axion—fermion coupling).

The results for the intensity of axion emission that
are given by (20) and (21) can be obtained from expres-
sion (6) by means of similar operations leading to

(21a)

X > X-

22 4
_9 QW Forf’ [ msMorf
8% S exp| ﬁmEEQD}, (22)
920(m5 5 (m/m,)
~ 9y e _ e
S= X exp[ Jé————x } 23)
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(i) M < 1. In this case, we can set m = 0 and
approximate the Bessel functions involved by Mac-
donald functions, as was done in the classical problem
of synchrotron radiation [14]. The momentum-transfer
distribution obtained from the general expression (11)
then takes the form

2231

- 25Q® Idv Idcose Idvv

-9 (2’
X [s(l -v’s nze) Kfjg %53/2%+ 82K§3%53/2E]

After some simple algebra, we obtain the integrated
probability of the process per unit time. Theresult is

2.2 3

_ 1BQgw EEQD’5
" 3% m2(2m)? e
As in the problem of synchrotron radiation, we

(24)

(25)

obtain v ~ 5%@%3 and the condition justifying the
Q

disregard of recoil can be represented as

no rEerf
GnQD}nQD < 1.

For the process e — eya in a magnetic field, the
result corresponding to (25) assumes the form

(26)

13a gf m;1 3
3%* m2(2m)°q,
In the case being considered, the intensity of axion
emission is given by
ng w* (Eorf
 72(2m)° 0

For the process e — eya in amagnetic field, the anal-
ogousresult is

Wy = X < 1. 27)

(28)

s gyam;

4
= ———————-y 62 .
72(2m)

Thex dependencein expressions (27) and (29) coin-
cideswith the corresponding result from[8] for the pro-
cesse — ea.

(29)

4. COULOMB MECHANISM OF RADIATIVE
AXION EMISSION

In this section, we consider radiative axion emission
by the aternating field generated by a classical charge
Q, executing a nonrdativistic infinite motion in the
field of an immobile Coulomb center of charge Q,,
assuming for the sake of definiteness that Q,Q, < 0. In
the ensuing calculations, we will use the representation

SKOBELEV

of the probability in (5) in terms of currents by involv-
ing the substitution in (7). The relevant Fourier compo-
nents of the current density can be obtained from the
equation for the trgjectory in [11] and are given by

iangHS)'(ivex

Ve -1 (1)(IV€)

1

ImQ,g———
0,
(ki1 +kajo) ko,

where H fjl) (x) and H E,l) (X) are, respectively, a Hankel
function of the first kind and its derivative with respect
to the argument; Y is the mass of the charge Q,; and v,
and p isitsvelocity at infinity and itsimpact parameter;
for the sake of brevity, use has also been made of the
notation

Iz (30)

s

o

ko
v = 0_132: ap = |QQ,
HVo

lJ2\/4p2 q

0 _ Up

€= g=—=.
0(12 HVo

The derivation of the expressions in (30) was per-
formed under the condition

(31

Kol < IJVg (32a)

(k, isthe total energy of the emitted axion and photon),
whichisin fact satisfied if recoil can be disregarded:

HVo
2

With the aid of relations (30) and (31), the probabil -
ity of the process can be represented as

ko < — (32b)

2

Id s m) E[H“)(we)]ZE:L——;D
48(21'[) 0 Ko

K20 (33)
[H(l)(IVS)] Eﬂ. - —DE}
kODD

= Q1
Here, the integral with respect to the spatial compo-
nents of k,

kO
[ sk =m). m) 01— 220)
T[ko 0 KO
k| < JKo—m’,
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isgiven by
_ 49
N_[s[zl 8s-T's
e
———(1-5)(7+2 I
2j( $)(7+25-5)In _[} (34)
szl—ﬂ2
0

Physically, the differential cross section for inelastic
scattering on a Coulomb center is a more appropriate
feature of the process. By definition, we have

do

dko Idko 21pdp.

Using the above relations, we obtain

do

g_y lo(12k°N|H(1)(|v)H(1)(|v)|,
kg

288u v0

where the quantity v is given by thefirst relation in (31).

The asymptotic representations of expression (35)
are determined by the threshold and the high-energy (in
the axion mass) behavior of the factor

(35)

Bz s .o
1057
N = (36)
L os—1
5 1

and by the asymptotic expressions for the Hankel func-
tions at large and small v [these cases can be consistent
with the approximation specified by (32a) and (32b)

: , . ko
since v is the product of the small quantity —= and

uve
the large quantity v{)l] in terms of elementary func-

tions. For the product of the Hankel functionsin (35),
the required asymptotic forms are

jé , v>1

\Y)

IHPVHY (iv)| = . (37)
> [Ing—C}, v <l,
L Vv

where C is the Euler constant.

For the case of unlike charges being considered, the
total cross section cannot be estimated correctly
because use is made here of the low-energy approxima-
tion. However, the cutoff exponential factor exp(-211v)
appears in (35) under the condition Q,Q, > 0, and the
two conditions in (32a) and (32b) are satisfied in the
effective region of integration if the additional con-
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straint a,;, > v,, holds. Technically, however, evaluation
of the integral for this caseinvolves serious difficulties.

5. DISCUSSION

If there is no direct axion—fermion coupling in the
tree approximation (aee), the Primakoff effect—induced
synchrotron axion emission considered in Section 3 is
a dominant mechanism of axion generation in the case
of an ultrarelativistic motion of an electron in a mag-
netic field. As a matter of fact, its role can be assessed
in very strong magnetic fields of about 10'>-10'* G,
which are possible only in the shells of neutron stars
[15]. Under such conditions, however, it is necessary to
take into account, in addition, the presence of a dense
photon gas of temperature in the range 103-10'° K, in
which case the crossed process ye — ae, which pro-
ceeds through an intermediate resonance photon state
and which is also caused by the Primakoff effect [16],
becomes possible. A comparison of the present result as
given by (29) with the results from [16] shows that the
contribution of the synchrotron mechanism to the axion
emissivity issmaller by afew orders of magnitude. Itis
obvious that, in the presence of direct coupling (aee),
the processe —» eain an external field isalways dom-
inant over the process e — eya considered here, the
dependence on the parameter X being the same in the
two cases.

From the viewpoint of practice, the results from
Section 4 as applied to calculating the axion emissivity
of the Sun seem more interesting. The Primakoff effect
caused by the interaction of blackbody radiation of
temperature 1.3 keV at the center of the Sun with the
fluctuating electric field of charged particles (electrons,
protons) at a concentration of about 102 cm™ provesto
be a dominant mechanism of solar-axion generation in
this case as well. According to the results presented in
[2], the axion emissivity L, of the Sun is given by

L.=10"Ly(g,10™ GeV)’, (38)

where L = 3.86 x 10°* erg/s is the photon emissivity.
In the case being considered, the condition of applica-
bility of expression (35) is satisfied approximately at k,
values up to 1 keV [in expressions (36) and (37), it is
then necessary to go over to the limit s — 1 and to
consider v values much less than unity]. In the above
energy range, an evaluation of the axion emissivity
within the standard solar model [17] yields aresult that
isnearly three orders of magnitude lessthan the expres-
sionin (38). However, the emissivity in (38) isan inte-
grated one at a mean axion energy of about 4 to 5 keV,
and the contribution of the generation mechanism con-
sidered here is commensurate, in the energy region
extending to 1 keV, with that which is generally
accepted. It should be noted, however, that both the
experiments being presently conducted and the planned
experiments are aimed at detecting axions by their con-
version into x-ray photons in the energy region around
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afew keV and higher. Thus, the above comment will
become of practical importance, should searches for
solar axions be performed at lower energies as well.
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Abstract—We present some remarks on the np partial branching ratios in flight at low momenta of
antineutrons measured by the OBELIX Collaboration. A comparison is made to the known branching ratios
fromthe pp -atomic states. The branching ratio for thereaction np — 1t isfound to be suppressed in com-

parison to what follows from the pp data. It isa so shown that there is no so-called dynamical | = 0 amplitude
suppression for the process NN — KK . © 2000 MAIK “ Nauka/Interperiodica’ .

1. SOME USEFUL DEFINITIONS

Let usfirst consider the NN system. By definition,
I, 150is the isospin wave function of the NN system
with isospin | and its projection |5, Using the notation
of [1], we write the following relations between the
physical states|NN [(and states of definiteisospin I, 15

1
O= {11, 00-(0, O,

lpp ﬁ[l O, O N

A= %2“1' 00k 0, 1.

On the contrary, in terms of physical statesthe wave
function |I, 1300 sought for the isosinglet state as

1
0, 00= ——[|ppC+ |nn(J, ()
| fz[lpp InnJ
and for theisotriplet as

1
1,-10= |np0 |1, 00= —[|ppE |nnl,
| InpL) | fz[lpp R[]

3)
[1, 10= |npQ
Each wave function is normalized as
INNINNO= 1, 0, I14l,1,0= 1.

L et us al so define the wave function for the hadron final
state |aCwith definite isospin |: [all. We shall use the

A~ |
notation V, for the transition operator from the initial
II, 130}y stateto |aly], and

VL = BVl 150 @)

* This article was submitted by the author in English.
** eemail: KUDRYAVTSEV @vxitep.itep.ru

isamatrix element for this operator. It does not depend
on |5. Evidently,

~ |
Vald, 330 = O

inthecasel # J.

2. MATRIX ELEMENTS FOR THE TRANSITIONS
NN — nmAND NN — KK

Consider only the transitions to the final Ttrtstates

from the initial NN Swave (3S)). In this case, the Tt
systemis produced inthe | = 1isospin state. So thereis

~1
only one operator Vr. The expansion of the |Ttrtiwave
function in terms of the states with definite isospin has
the form

+

1 1 1
[T O= =10, 00+ —|1, 00+ —|2, 0
J3 J2 NG

0 1 1 ©)
m 0= —|1, 10- =2, 10
I @l @l
Thus, using definitions (1), (3), and (4), we get
G T ValnpO= %zvﬂ[,
(6)
+ ~l _ 1,1
Gt | Ve|ppO= EV"'

This means that the process pp — TU'TT is to be sup-
pressed at least by a factor of two in comparison to
np — 1r'Te.

1063-7788/00/6311-1969%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Let us now consider the transitions into KK final

states. The isospin wave functions for KK states have
the following form:

KK D= i2[|1, 0T- [0, 0],

N

(7)
IK°R 0= _%2“1' 00 [0, 0],

K'K’O= |1,10 [K°K O= —[1, -10 8)

Inthis case, the |KK [final stateisindeed a mixture
of both | =0 and | = 1 isospin states (I; = 0). Hence,

~1 ~0
both operators, Vk and Vk , makeacontribution to this
reaction and

~1

L VR IL 150, = Vi,
~ 0

«[0, 0[Vk|0, 0y = Vi.

We can calculate the matrix elements between the
physical statesin terms of V,ﬁ and VE :

N Vp +Vy

K K |Vk|ppd= %
o 1 9

0700y (.o Vi —Vk

KK |Vk|ppO= —
KK [VknpO= VL. (10)

The matrix elements (9) and (10) are related to the
corresponding partial cross sections:

o= 4nE|[f|V|iEI]2,

whereqand k arethefinal and initial c.m. momenta. We
get agreement for the expression (10) with what is
givenin [1], but expressions (9) differ from that of [1].
Namely, by redefining the operators according to
Eqg. (32) of [1], we get

a(pp —K'K) + a(pp— K°K")

(11)
= |A0|2+|A1|2

and

a(np — KK = 2/A% (12)

Notice that the factor of 2 on the right-hand side of
Eq. (12) is not present in Eq. (35) in [1]. Historically,
this factor was aso lost in [2, 3], and this error was
reproduced later in somereview papers, see, e.g., [4, 5].
That is why the conclusion [1-3] on | = 0 amplitude
suppression seems to be incorrect and is to be revised.
We shall discuss this problem in Section 4.

PHYSICS OF ATOMIC NUCLEI

KUDRYAVTSEV

3. SOME RELATIONS BETWEEN BRANCHING
RATIOS IN pp- AND np-ANNIHILATION
PROCESSES

Let usfirst consider the TtTicase. By definition of the
branching ratio, we have

o(fip —> T )
o(hp—all)

Brn+no(ﬁp) =

and a similar expression for the pp case. So the ratio
of branching ratiosis

Brn+n0(ﬁ p) _o(hp— T[+T[O) _o(pp—TT)

Br. (pp) o(np—all) = o(pp—=all) (13)

Notice that, at low energies, we have if only the
S-wave contributes,

~ 2
o(pi—= ) = 4n§|D‘m|V1lTI pnil E (14)

and
o(pp— T TT)
= 4n§02(k)|mm|\“/i|pp[hzg. (>
Here, C?(K) is the Gamow factor,

CA(K) = k%"/[l—expD ED}
B

D_kaBD ’

and az = 57.6 fm is the pp Bohr radius. Taking into
account (13)—(15), we get

— - 2
Brn+no(np) _ |ﬁt+r[o|vi[|ﬁp[l]
Br. . R T

PP | e ppd
—2 ann
< [BC (‘2:’ (pp—all] _,r
[Bo™ (np—all)]
where R is now awell-defined and finite quantity:
lim[BC(k)a™"(pp)]
R=&0 . (17)
llino[BG (np)]

From the experimental data of [6, 7], we get the value
of R at low momenta of the incident antiproton
(P, = 5070 MeV/c):

_ 3242
253% 10

Notice that this value coincides with what follows
from the experimental data on annihilation of antipro-
tonson deuterons[8]. Thus, we concludethat thedata[ 7]
on the total annihilation Np cross section are in agree-
ment with the results of quite independent experiments

(16)

= 1.26 = 0.10. (18)
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for the annihilation of antiprotons on deuterons [8].
One can find amore detailed discussion of the quantity
R extracted from different data on deuterons and some
heavier nuclei in the review paper of Bendiscioli and
Kharzeev [9].

The case of kaons looks very similar. Using (9) and
(10), as well as the definition of the ratio R (17), one
getsthefollowing relation between branching ratiosfor

the reactions pp — K*K-, pp — K°K°, and
np — K'K":
v+ el
vl
_ RBr(pp— K'K) +Br(pp —KK’)
Br(np — K'K°)

19)

4. ANALY SIS OF THE EXPERIMENTAL
SITUATION

In [7], the branching ratio for the reaction hp —

TP in the momentum interval 50-150 MeV/c (S
wave) was found to be

Br(np— ') = (23£04)x10°. (20
This value is to be compared with what follows from

the pp-atomic experiment for the reaction pp —
11T, The separation of the S- and P-wave contributions
to the last reaction was provided in [10, 11]. For the
branching ratio into the 17t channel from the atomic S
state we get (2.37 £ 0.23) x 102 [10] and (2.04 +
0.17) x 103 [11].

Substituting these numbersinto (16), we get an evi-
dent contradiction. This means that something iswrong
with the branching ratios. If one believes the experi-

mental branching ratios for both np and pp channels,
the only possible way to solve the problem isto suggest
that the pp-atomic wave function at small distances

has an abnormal admixture of the hn component. We
shall discuss this hypothesisin the next section.
Let us now discuss the case of kaons. The only infor-

mation on the branching ratio NN — KK for isospin
| =1 channel was for along time available from the old
datafor absorption of antiprotons on deuterons[12],

Br(pn — K°K") = (1.47+0.21) x 10,
Nowadays, the OBELIX collaboration gives[7] (Swave)

Br(np — K'Kg) = (0.92+0.23) x 10"
This means that the branching ratio into K'K® is
Br(np — K'K®) = 2Br(np — K'KJ)
= (1.84+0.46) x 10~

PHYSICS OF ATOMIC NUCLEI  Vol. 63  No. 11

2000

1971

It is seen that this last number for the branching ratio
does not contradict the old data by Bettini et al. [12].

At the same time, from the ASTERIX experiments
[3, 13] we have

Br(pp — K'K") = (1.08+0.05) x 10,

Br(pp — K°K’) = (0.83+ 0.05) x 10™°.
Using these values and taking into account Eg. (19), we
get

Vo] = 1.3 vyl 1)

So we conclude that there is no evidence for any sup-
pression of the | = 0 amplitude for the reaction

NN — KK inthe Swave. The dynamical selection
rule for this process declared in [1-5] is the conse-
guence of incorrect formulas for the branching ratios
usedin[1, 2].

L et us also discuss the case of the 1tn channel. From
the experimental data reported in [7], it follows that in
the momentum interval 150-250 MeV/c (P wave)

Br(np —T1'n) = (0.99+0.22) x 10°°.
At the same time, from [10] we have
Br(pp—1'n) = (7.7+113)x 10"
So again we arrive the conclusion that the ratio
Br(np —1'n)
Br(pp—1C'n)
issignificantly less than 2R [see (16)].

5. A POSSIBLE SOLUTION OF THE PROBLEM
FOR THE NN — mmBRANCHING RATIOS

In line with [1, 14, 15], we assume that the wave
function for a pp atom at small distancesis a superpo-
sition of |pp Cand [nn Cconfigurations, i.e.,

1

A/1+e2

In terms of the states of definiteisospin, this means that

1
[Wall= ———==[(1-¢)|1, 00~ (1 +€)[0, 0. (23)
A/2(1+62)

So it followsimmediately that

Wal= [IpPLH €|nni]. (22)

Br(Ya — 1) _ (1-¢)’
Br(np— 01°)  2(1+€)R

The case € = 0 corresponds to the usual suggestion of
the absence of the nn component in the pp atom. In
the limit e = —1, the atomic state is that of definite isos-

(24)
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pin | = 1. Substituting the experimental numbers for
the ttrtbranching ratios (see Section 4), we conclude
that it is possibleto fit the parameter e so Eq. (23) isjus-
tified. For example, taking Br(pp — 1U'TT) = 1.87
(lower limit) and Br(Ap — 1r'1°) = 2.7 (upper limit),
we get e = —2.24, which corresponds to the value of the

mixing angle cosa = 1/A/1+ ez, where a = 66°. This
means that the admixture of the hn component should
be large to fit the experimental data.

6. CONCLUSION

The data on the hp tota annihilation cross section
presented by the OBELIX collaboration [7] are in
agreement with the data on the value of the ratio R
determined from the absorption of antiprotons on deu-
terons (see [6] and referencesin [8]).

The branching ratios for the reactions hp — 110
and hp — 1IN at low energies [7] seem to be too
large in comparison to what follows from the analysis
of the known branching ratios for the pp atom.

Thebranching ratio for thereaction np — K*K;is
in agreement with the known branching ratio for the
reaction pn — KK~ from the deuteron data [12].

Thereisno suppression of thel =0 NN — KK reac-
tion amplitude in the S wave (no specific dynamical
selection rule).

Some admixture of the |nh Ccomponent in the pp-
atomic wave function may help in solving problems
with the branching ratio into two pions and 1tn. How-
ever, to solve this problem, the admixture should be
large enough.

PHYSICS OF ATOMIC NUCLEI

KUDRYAVTSEV

ACKNOWLEDGMENTS

| am very grateful to G. Bendiscioli, B. Giacobbe,
B.O. Kerbikov, A. Rotondi, A. Zenoni, and A. Zoccoli
for a stimulating discussion on the preliminary results
of this study.

This work was supported in part by the Russian
Foundation for Basic Research (project no. 96-15-
96578).

REFERENCES

1. J. Jaenicke, B. Kerbikov, and H. Pirner, Z. Phys. A 339,
297 (1991).

2. R. Landua, in Proceedings of the Proeuropean Sympo-
siumon Proton-Antiproton I nteractions and Fundamen-
tal Symmetries, Mainz, 1988; Nucl. Phys. B (Proc.
Suppl.) 8, 179 (1989).

3. M. Doser et al., Phys. Lett. B 215, 792 (1988).

4. C.Amdler and F. Myhrer, Annu. Rev. Nucl. Sci. 41, 219
(1991).

5. C. Dover, T. Gutsche, M. Maruyama, and A. Faesdler,
Prog. Part. Nucl. Phys. 29, 87 (1992).

6. A.Bertinet al., Phys. Lett. B 369, 77 (1996).

7. OBELIX Collab. (B. Giacobbe), A talk given at the
LEAP 96 Conference, Dinkelsbuhl, Germany, 1996;
A. Bertin et al., Nucl. Phys. B (Proc. Suppl.) 56A, 227
(2997).

8. R. Bizzarri et al., Nuovo Cimento A 22, 225 (1974);
T. Kalogeropulos et al., Phys. Rev. D 22, 2585 (1980);
J. Riedelberger et al., Phys. Rev. C 40, 2717 (1989).

9. G. Bendiscioli and D. Kharzeev, Riv. Nuovo Cimento 17
(6), 1 (1994).

10. K. Peters, in Proceedings of the LEAP'94 Conference,
Bled, Sovenia, 1994 (World Sci., Singapore, 1994), p. 3.

11. C. J. Batty, Nucl. Phys. A 601, 425 (1996).

12. A. Bettini et al., Nuovo Cimento A 62, 1038 (1969).

13. M. Doser et al., Nucl. Phys. A 486, 493 (1988).

14. J. Carbonell, G. Ihle, and J. M. Richard, Z. Phys. A 334,
329 (1989).

15. E. Klempt, Phys. Lett. B 244, 122 (1990).

Vol. 63 No. 11 2000



Physics of Atomic Nuclei, Vol. 63, No. 11, 2000, pp. 1973-1975. From Yadernaya Fizika, Vol. 63, No. 11, 2000, pp. 2065-2067.

Original English Text Copyright © 2000 by Erofeeva, Murzin, Nikonov, Shabelski.

ELEMENTARY PARTICLES AND FIELDS

Theory

Quark Model and Production of Neutral Strange Secondaries
in Neutrino and Antineutrino Beams*

I.N. Erofeeva, V. S. Murzin, V. A. Nikonovl), and Yu. M. Shabelskil)

Institute of Nuclear Physics, Moscow Sate University, Vorob' evy gory, Moscow, 119899 Russia
Received June 29, 1999; in fina form, January 18, 2000

Abstract—Experimental dataon K ° and A productioninv and V beams are compared with the predictions of
aquark model assuming that the direct production of secondaries dominates. Disagreement of these predictions
with the data suggeststhat there exists a considerabl e resonance-decay contribution to the multiplicities of prod-

uct particles. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is well known that, in soft hadron—hadron colli-
sions, the production of resonances makes an important
contribution to the multiplicity of stable secondaries
(such as pions and kaons). For example, in the additive
guark model, the probability of direct production of a
secondary hadron having spin J is proportional to the
factor 2J + 1, which means that the main parts of pions,
kaons, etc. are produced viadecay of vector, tensor, and
higher spin resonances. These results are in reasonable
agreement [1] with the experimental data on soft had-
ron—hadron collisions.

However, the information about the role of reso-
nance production in hard processes is not sufficient.
The mechanisms of multiparticle production in soft and
hard processes can be different. So, in the present
paper, wewill consider therole of resonancesin neutral
strange secondary production in deep-inelastic interac-
tions of high-energy neutrinos and antineutrinos with
protons and neutrons.

2. EXPERIMENTAL DATA

For comparison with the quark model (QM) predic-
tions, the experimental data[2] of the E632 collabora-
tion were used. The experiment was done at the Fermi-
lab Tevatron. The detector was a 15-ft bubble chamber
filled with aliquid neon—hydrogen mixture which also
served as the target. The bubble chamber was exposed
to a neutrino beam. The neutrino beam was formed by
the quadrupole triplet train, which focused secondary
particles produced by the interactions of 800-GeV pro-
tons from the Tevatron.

The data sampl e consisted of 6459 events (5416 vNe

interactions and 1043 VNe interactions). The neutrino
interactions with a single nucleon were picked out by

* This article was submitted by the authorsin English.
D Petersburg Nuclear Physics Ingtitute, Russian Academy of Sci-
ences, Gatchina, 188350 Russia.

using acriterion of selection such asthe mass of thetar-
get [3]. It alowed usto select the interactions with the
peripheral nucleon or neutrino interactions without the
intranuclear cascades. The neutrino—nucleon interac-
tions could be attributed to neutrino—proton and neu-
trino—neutron interactions by using the total charge of
the hadronic system (Table 1). This material was used
for the determination of the numbers of generated K°
and A\ particles, as well as their production rates (or
parts) relative to the different groups of events (vp, vn,
vp, and vn) (Table 2). These production rates are the
results of dividing the number of K°and A particles by
the total number of events in each group. In the data
sample of vees of Table 2, the corrections for losses of
KO and A particles caused by methodological sources
(the limited volume of the bubble chamber, scanning
and fitting efficiency, etc.) [2] were not taken into con-
sideration. The statistical errors have been cited. Nev-
ertheless, the correction coefficients taking into
account these effects must be the same for the neu-
trino—proton and neutrino—neutron interactions.

3. QUARK MODEL PREDICTIONS

We will consider only the events with the charged
current interactions (CC). In the case of interactions
with sea quarks, each type of particle and antiparticleis
produced in virtually the same proportion indepen-

Table 1. Experimental datafrom E632

Reaction | v(V)Ne | v(V)N N(K©) N(A)
vp 5416 739 47 15
vn 1273 84 38
vp 1043 282 20 7
vn 179 7 8

1063-7788/00/6311-1973%20.00 © 2000 MAIK “Nauka/Interperiodica’
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Table 2. Comparison of QM production probabilities with the experimental multiplicities of directly produced K° and A at

EROFEEVA et al.

large x¢
Reaction KO (QM) in units of wy KO (exp.), g <-0.2 A (QM) in units of wy A (exp.), Xe <-0.4
vp ~0 0.008 + 0.003 ~0 0.004 + 0.002
vn =1 0.005 £ 0.002 =1 0.011 £ 0.003
vp =1 0.004 £ 0.004 =1 0.004 + 0.004
vn =2 0.000x ? ~0 0.000£?

dently of their isospin projection (say, we expect equal
multiplicitiesof K*, K°, K9, and K-). However, the sec-
ondaries produced with comparatively large negative
Feynman x (xg) in the laboratory frame should contain
valence quarks of the target nucleus in the target frag-
mentation region; therefore, different kinds of kaons
should be produced with different probabilities. For the
model prediction, we will use the fact that a neutrino
interacts with avalence d quark, which transforms into
a u gquark, whereas an antineutrino interacts with a u
guark, which transforms into a d quark. Thus, we have
the following configurations:

4. COMPARISON OF THE DATA
WITH QM ESTIMATES

Here, we compare the experimental results on neu-
tral kaons and A hyperonsin the production of v and v
beams with quark model predictions. The QM multi-
plicities of strange secondaries, assuming only direct
production of a kaon containing one valence quark of
the incident target nucleon and direct production of A
containing two valence quarks of thetarget nucleon, are
presented in Table 2. Here, wi and w,, are the probabil-
ities of K9 and A production in the processes of frag-
mentation (or recombination) of one and two valence
quarks of the target nucleon, respectively. Let us recall
that, in the case of large contributions of resonance
decay, the multiplicities of K°and A can be moreor less
equal (the exact values of their ratios are model -depen-

Vp — uu+ U, (D)
vn — dd+d', (2)
Vp —ud+d, (3)  dent).
vn — ud +u'. (€))

Here, g means the fast quark in the laboratory frame
which absorbs a W boson and determines the fragmen-
tation in the current region. Another two quarks deter-
minethe fragmentation of the valence remnant into sec-
ondaries with comparatively large X in the target hemi-
sphere.

One can seefrom (1)—(4) that, say, direct production
of K (ds) with comparatively large x- should be sup-
pressed in process (1), where there are no valence d
guarks, in comparison to another reactions. In process
(2), where there are two valence d quarks, it should be
about two times larger than in the cases of (3) and (4).
However, if asignificant part of K° can be produced via
decay of K*(890)* and K*(890)°, the yields of K° with
large X can be more or lessequal in al considered pro-
Cesses.

A similar situation appears in the case of secondary
N\-baryon production with large x-. The direct A\ (con-
taining two initial valence quarks u and d) can be pro-
duced with equal probabilitiesin processes (3) and (4),
and their production should be suppressed in reactions
(1) and (2). However, in the case of A production via
ATt decay of isotriplet resonance %(1385), the multi-
plicities of large-x- A should be of the same order in all
reactions (1)—(4).

PHYSICS OF ATOMIC NUCLEI

One can compare the QM probability estimateswith
the experimental multiplicities of K for xc <-0.2 and
of A for x. <-0.4.

It isclear that the datafor both K° and A production
do not agree with these QM predictions for the direct
mechanism of secondary production. Say, the multi-
plicity of K in vn interactions should be equal to the

sum of their multiplicities in vn and v p interactions,
i.e.,, =0.005 £ 0.002, which isin disagreement with the
experimental value. The most natural explanation is a
large resonance contribution to the multiplicities of
neutral strange secondaries which changes the predic-
tions depending on the model of resonance contribu-
tions. This idea has been discussed before (see, for
example, [4]).

5. CONCLUSION

We compare the experimental dataon K° and A pro-
ductioninv and v beams on proton and neutron targets
with the predictions of the quark model assuming that
their direct production dominates. Disagreement of
these predictionswith the data allows usto suppose that
there exists a considerable resonance decay contribu-
tion to the multiplicities of produced secondaries.
Unfortunately, the experimental statistics are insuffi-
cient for numerical estimations.
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1. INTRODUCTION

Nonlocal separable potentials are of interest and
value not only because the Schrédinger equation can be
solved for a great number of such potentials, but also
because they are extensively used in nuclear physics
and in many-body problems. In particular, nonloca
separable interactions were invoked in applying Fad-
deev equations to the three-body problem. The
approach relying on such potentials proved to be semi-
na in solving inverse problems [1]. However, this
approach cannot be applied to essentially relativistic sys-
tems[2, 3]. By way of example, weindicatethat, for sys-
tems consisting of light quarks, the contribution of rela-
tivistic corrections to the interaction Hamiltonian is
commensurate with the main, nonrelativistic, term. A
relativistic description is also necessary in dealing with
radiative decays of mesons and nucleon resonances,
wherethe energy of the emitted photon may be commen-
surate with or even greater than the constituent quark
mass.

The quasipotentia approach proposed in [4] proved
to beaviabletool for constructing arelativistic descrip-
tion of two-particle systems[5]. In the present study, a
finite-difference quasipotential equation involving a
nonlocal separable quasipotential simulating the inter-
action between two relativistic spinless particles of
unequal masses (m; # m,) is solved within the quasipo-
tential approach developed in [6]. The approach relies
on the equation constructed in [7] for the amplitude of
scattering of two relativistic particles of unequa
masses. In the system of units where 4 = ¢ = 1, this
equation is given by

Coy = M
AP, a) = V(P a5 Eg)
V(p, K’ Eg)AKK', q)

JSy— /S +ig
where dQ, = dk'//1 + (k'/m)?, Ey = J/m? +q?, and

K= m2/(m; + my).

ey

+(2m)~° Iko'

It represents arelativistic generalization of the Lipp-
mann-Schwinger equation in the spirit of Lobachevski
geometry, which is realized on the upper half of the
mass hyperboloid p> = m?, and describes the scattering

of an effectiverelativistic particle of massm' = ,/m;m,
with a relative 3-momentum k' on the quasipotential

\7(p‘, q; Ey), the total c.m. energy of the particles
involved being proportional to the energy of one effec-
tive relativistic particle of massm' [7],

JSe = JmikP e Jmi K = %m
We further introduce the wave function
Wa(p) = (2)°N1+ (p/m)*8(p' - Q')
_2n_ A(p.q) )

M /S-S +ie

Instead of (1), we then arrive at the differential form of
the relativistic Schrodinger equation for the wave func-
tion Wy(p") in the momentum representation. Specifi-
caly, we have

(VS = /S Wa(P)

= (2n)‘3Iko.\7(p', k' Eq)Wq(K').

3)

A transition from the momentum representation to
configuration space is accomplished with the aid of the
coordinate-representation wave function [ 7, 8]

Wy(r) = (Zn)‘jdnp-z(p',r)wq-(p'). 4)

The functions

' ' —1-irm
. _ Po— P U

&P\ r) = g0 ,

Po = Ey = Jm?+p? r=rn, |nf =1,

1063-7788/00/6311-1976%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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play the role of relativistic plane waves and satisfy the
equation

(JSy=Ho)&(d,1) = 0, 5)
where
= T coen X0, 1N XD
Ho = H[cos:hDa + , s Da
A\ iAo
~2h q,exp%‘ar E}
Here, g 4 is the angular part of the Laplace operator,

while A' = 1/m' is the Compton wavelength associated
with the effective particle. By applying the Shapiro
transformation (4) to Eq. (3) and taking into account
Eq. (5), we obtain

(JSy—Ho)Wq(r) = [V EQug(r), - (©)
where
V(r,r'; Eg)
= (2ﬂ)_6_[de-ko-E(p', DV(p, K Eq)&* (K, r).

Obvioudly, Eq. (5) represents an analog of the dif-
ferential Schrodinger equation for particles interacting
viaanonlocal potential and having unequal masses.

Thus, the fact that, within the quasipotential
approach being considered, thetotal c.m. energy of two
nonrelativistic particles of unequal energies can be rep-
resented in a form proportional to the energy of an
effective relativigtic particle of mass m, whence it fol-
lows that the energy denominator in the relativistic
Lippmann—Schwinger equation (1) can be treated as a
single-particle one, makes it possible to reduce the rel-
ativistic problem of two bodies of unequal massesto a
one-body problem. The present study is devoted to pre-
cisely solving and investigating Eq. (6) and to formul at-
ing the Levinson theorem for bound states in the case of
nonlocal separable quasipotentials.

2. WAVE FUNCTION AND PHASE SHIFT

For a separable interaction, we can choose the rep-
resentation [9]

V(r,r";

N,

z (21 +1) z EnVn(r)vn(r )ler

Eq) =V(r, 1)

(7
Expanding the wave function y,(r) in terms of partial
waves as

19,(X, r)PEJq?% ®)

Pe(r) = Z(ZI +1)i
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we can recast Eq. (6) into the form

d }\I(I+1)
[cosh%)\ =0y Texp

g B cos 61X 1)
&)

#33 EnVu(D[ArVa(rd (. ) = 0,

where /S, = (MYW)A/1+ (q'/m)* = (M) coshy’,

V()= A/8nu/m' rvy(n, & =%x1,and r® =r(r +i\").

For the sake of simplicity, we further restrict our
consideration to the case where only one separable
term correspondsto each | (N, = 1). Inthiscase, Eq. (9)
assumes the form

[Cosha)\ d|] A |(I+1)exp%3dg

@ coshx'}

o (10)
X0, 1)+ FEVD [ Vi), ) = O
0

where V,(r) = A/8m1/m'2 rvi(r) and g = =1. A solution
that obeys Eq. (10) and the boundary condition
¢(x,0) =0 (11)

will be sought by applying theintegral Hankel transfor-
mation [9]:

&i(X,X) = Idrcbl(x',r)s*(x,r)/Q.(cothx), (12)
0

0,(X' 1) = %JdXQl(COthX)@(X',X)S(X,r), (13)

0

Vi(x) = [ArVi(NS* (X, N/Qeothx),  (14)

Vi(r) = %deQ.(cothx)Vl(x)S(x,r)- (15)
0

Here, Q,(2) isaLegendre function of the second kind.

It should be noted that the function S(x', r) appears
to be a solution to Eq. (10) in the case where the inter-
actionisswitched off (g, = 0), simultaneously satisfying
the orthonormality and compl eteness conditions [8]

%Jdr&(x', NS (X 1) = (¢ —X),
0
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%deS(x, NS (X 1) = 8(r —r).
0

By applying transformations (13) and (15) to
Eqg. (10), we arrive at

(coshy’ -~ cos)B, (X' X) = 3EN)VI(X), (16)

where

Ni(X') = J'de|(f)¢|(X', r. (17)

Let us now set
Vi(r) = vi(r)y(r), (18)

where v,(r) = D' 1r/A)H+Df—r/AY D] (r/AD =
i'C(I —ir/A)/T(—ir/\'), and I (2) is a gamma function.
Suppose that the relativistic integral Hankel transfor-
mation is valid for the function U, (r):

00

Ui(x) = [arUi(nS (x, 1)/Q(cothy),

0

(19)

uy(r) = %deQ.(cothx)O.(x)S(x.o. (20)
0

We further consider that, for rea-valued | and ¥, the
relation S* (X, r) = v,(S(X, r) holds [10]. Instead of
(17), we therefore have

N(X) = %deQf(cothx)&.(x:x)CJl(x). @1)
0

For aunique solution to Eq. (16) to exigt, it isheces-
sary that

rV,(r) O L,(0, o). (22)

L et us consider this point in some detail. The functions
S (X, r) possess the well-known properties[8, 10]

S(X, r)=sin(xr/A'=ml/2),

S(x, r) = (r/A")Qi(cothx)e" 24)
By virtue of these, the condition in (22) means that the
function V, (X) is continuous everywhere, whereas the

function Q, ( cothy )\7| (X) is differentiable for all non-
negative X. Moreover, it follows from (14) that

Qi(cothx)Vi(x) = O(1), x| — oo;
Vi(x) = O(1), X—0,

XN —= o0, (23)

iTil/2

r— 0.

(25)
(26)
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provided that the condition in (22) is satisfied. It is
obvious that, by virtue of (18), the function U, (x) aso
possesses the aforementioned property.

For scattering states (E,/m' = cosh)' = 1), therele-
vant solution to Eq. (16) is given by

. inhy' .
oi(x,X) = g(—?—z?faﬁ—;é(coshx — coshy)
| X i 27)
1 W ViX)
T8 Ni(x )Pcoshx' — coshy’

where P is the principal-value symbol. The factor in
front of the delta function was chosen in accordance
with the normalization of the wave function; that is, in
the absence of interaction (g, = 0), the representation in
(13) must lead to the expression &, (x',r) =
S, nN/Q(cothy'). Substituting (27) into (13) and
(21), we obtain

Coy - S(XLT)
DX = & oty
1 - hosen
* 26N (X)X Qo) o it
0

Y -1
N 1o 1 A(X)
N (X) = Ui(x) 1+P§J’de} , (29)
0

A = 2eQN(eoth) DOV, (0)

Sincethe functions V, () and U, (¥) are differentiable,
the principal values of the integrals exist; by virtue of
the conditions in (25) and (26), each integral involved
is convergent both at the upper and at the lower limit.
Thus, a conclusion that can be drawn from the above is
the following: provided that the conditionin (22) is sat-
isfied, relations (28)—(30) determine the unique solu-
tion to equation (10) with the boundary condition (11).

The asymptotic behavior of the wave function
¢,(x', r) can be found by representing expression (28)
in the form

oi(X\r) =

—6iN (X)RezP [ xQi(cothy)

sin(rx'/A'—1t/2)
Qi(cothx’)

\7|(X)
coshx — coshy'

x exp(irx/A' —im/2),
rx' /AN —= oo,

This representation follows from the asymptotic
expression (23) and from the fact that the integrand on
the right-hand side of (28) is an even function of x.
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Making use of the relation

1 . D]-D
a—in |T[E'>(0()+PQ;D n — +0,
we obtain
vy = SN XY/A —Td/2) e 01
0 = G oty MOOReG,

Q,(cothx)V|(x)exp(|rx/)\ —itl/2)
coshy — coshy'—in

J’dx

_ Q(cothx)Vi(x)
2sinhy’

[exp(irx'/A'—iTd/2)

—exp(—=irx' /A" +it/2)] Ey
0

r]—>+0_

Theintegral inthelast equality can easily be calculated
by applying the Cauchy residue theorem in the upper
half-plane of the variable x (Imy = 0):

Qi (cothy)Vi(x) exp(irx/\’)

ZIHIdX coshy — coshy' —in
_ res Ql(cothz)V|(z) exp(izr/\')
B z [ coshz—coshy'—in '

z = arccosh(coshx' +in) + 2nni}

Q|(cothz)V|(z) exp(izr/\")
coshz— coshy'—in

+z[

z=—arccosh(coshx' +in) + 2nni}

_ Qi(coth)’ WVi(X) exp(ix'r/N ),
sinhy’'

r]—>+o_

Here, we have considered that the functions sinhz and
Qi(cothz) are periodic with a period of 2mi. Taking into
account the last result, we find that the asymptotic
behavior of the wave function is given by

. _ sn(rx'/\'=md/2) .
oi(x',r) = Q,(cothx’) -&Ni(x)

Q|(cothx )V|(x )eos(rx'/\' —Td /2)
sinhy’'

=27 /N
O(e™ ")

(30&)
(e—ZT[r/)\ )

’

rx'/A\" — oo.
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For arbitrary |, the asymptotic behavior of the wave

functionis
v oy Sin(rx' /N —1d/2)
r) = ;
$00 = g cothx)
N cos(rx'/\' —rd/2)tand,(x')
Qi(cothx’) ’
rx' /A — oo.

(30b)

By comparing these two asymptotic equalities, we find
that the phase shift can be determined from the equa-
tion

tand(X')

A(x)

1
= Jsinh xA.(x){l +P3 Idxm} (1)

We now notice that the equality in (20) can be recast
into the form

Vi(r) = %deq(cothxml(x)s*(x,r).

It follows that the complex-valued functions Vi x) and
U, (X) arerelated by the equation

jdel(cothx)Vl(x)S(x, r

= [dxQi(eothx) Ui(X)S" (x, ).

This equation, together with the condition requiring
that the phase shift and, hence, the function A(x) be
real-valued, leads to the equality

Vi (x) = £Ui(x),
which is equivalent to the condition
ViE(r) = xV(r).

The separable quasipotential V(r, r') involves products
of the form gV, (r)V,(r"); therefore, it follows from the
last condition that the quasipotential must be real-val-
ued:

Vi(r) = Vy(r). (32)
Thisimplies that
VE(x) = Ui(x). (33)
The expression in (30) then takes the form
A = Ze Qi) G4
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3. BOUND STATES AND LEVINSON THEOREM

Suppose that there exists at least one bound state at
energy E' = E;/m = coshy'. The relevant solution to
Eq. (16) isthen given by

BiX X0 = 38NX)P kL.

Substituting this solution into (21), we arrive at the fol -
lowing equation for eigenval ues:

dxA(X)
2 ,rcoshx E'

(35)

(36)

From the condition requiring the existence of bound
states, it follows that Eqg. (36) must have at least one
solution. Hence, the function A, (X) must be real-valued,
which leads to the condition in (33). From (34) and
(36), it follows that the value of g = —1 corresponds to
the bound state whose energy liesintherange0 < E'=

E <1.

At the same time, Eqg. (36) may have solutions at
€ = %1 for bound states at energies satisfying the ine-
quality E'= Ex > 1.

Let usconsider the swave (I = 0). Supposethat there

exists a bound state at an energy satisfying the condi-
tion

O<E/ = coshy; = cosk;<1 (X =

From (35) and (36), it follows that abound state at such
an energy value exists, provided that

iK;).

” ~ 2
€ = -1, %devo(x) >1. 37
0

Obviously, the boundary condition (11) is then satis-
fied; the wave function as determined from (13) and
(35) at g, =—1 and | = 0 can be represented as

No(Xi )
21U

bo(Xi, 1) = jdXQo( CothX)Vo(X)eXp(irx/)\')l

coshy — E/

The asymptotic behavior of this function can be deter-
mined by applying the Cauchy residue theorem in per-
forming integration in the upper half-plane of the vari-
able x. Asaresult, we arrive at

do(Xi 1) = No(Xi)

e o] Qulc0thd V(@ exp(izr/X)
Z coshz—E/

V2= X +2T[n|}

_K No(Xi‘)\~/o(Xil)eXp(—rKi'/)\')
T snk 1—exp(=21wr/N)
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On the basis of this relation, we obtain
do(Xi, 1) = exp(—K;r/\Y),

Let usnow consider | = 0 bound states at energiesin
theregion Eg = coshxg = 1. In this case, Eg. (36) can
have solutions a €, = £1 and | = 0. If such a solution

exists, it can be shown with the aid of (304) that the
asymptotic behavior of the wave function is given by

cothX &) Vo(X ) COS(rX &/’
Dol 1) = ~EoNglxi) 22 X)Sn(;(x) (TXe/N)

/N — .

+ O(exp(=2T1u/AY)),
rIA — oo,

From this relation, it follows that the wave function
asymptotically tends to zero, provided that

Vo(Xg) = O. (38)

Sincethe boundary condition (11) isal so satisfied, abound
State corresponds to the energy vaue E = coshy k.

Summarizing the above results and using expression
(31), we conclude that, at the bound-state energy equal

to Eg, the decreasing phase shift takes the value of T,
where n is an integer. This is so, because, at Er =

coshxr, the numerator and the denominator of the
expression on the right-hand side of (31) are both equal
to zero by virtue of conditions (36) and (38). It should
be noted, however, that the function Ay(x), which is
determined by expression (34), has a zero of order not

lower than two at the point X , whereas the denomina-
tor in (31) has asimple zero. But if the denominator in

(31) does not vanish at X' = X, the phase shift proves
to be tangent to the straight line d, = Tm from above or
from below, not intersecting it; that is, thereis an extre-
mum. Thus, we conclude that, if the phase-shift curve
intersects the straight line &, = Tm from above and if the
conditions in (36) and (38) are satisfied, there is a
bound state at the energy value of E; = coshyy.

Bound states for | > 0 can be analyzed by following
aprocedure that is similar to that used to treat the case
of the swave. By doing this, we arrive at results analo-
gous to those presented above. By using the estimatein
(25) and expression (31), we now conclude that
tang, (e0) = 0. For this reason, we choose §,(x") in such
away asto ensure fulfillment of the equality () = 0.
From here and from the continuity of the phase shift in
X', we obtain the Levinson theorem for the case of a
separable quasipotentia (I = 0). It reads

8(0) =g () = §(0) = (v, +n)m, (39)
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where v, is the number of bound states whose energies
lieintheregion Egx, =1,n=0,1,2,...,v,— 1, whilen,
is the number of bound states at energies in the range
0<E\, <1,k=0,1,2,....,n—1.

4. APPLICATIONS

By way of example, we will use the above resultsto
find the conditions ensuring the existence of bound
states and scattering states for the quasipotentia (I = 0)

Vo(r) = ad(r—a), (40)

and draw a comparison with the corresponding results
emerging from a nonrelativistic treatment for the same
guasipotential . Obvioudly, the image of the quasi poten-
tial in (40) has the form

asinay'

Vo(X') = —=2,
o(X") X
Let us find a bound state at an energy in the range

0< E <1, E =cosK;, 0< K <T172. In accordance

with the conditions in (36) and (37), the bound state in
guestion is then determined as a solution to the equa-
tion

a,a>0,

(41)

nsinh2a(m—K;) 2t

TT—K; . =snk; = 0,
sinh2ma a’ (42)
VLTI
under the condition
an’>1. (43)

At the sametime, scattering statesthat occur at ener-
giestaking valuesin theregion Eg, = coshXg, =1 and
which are determined as simultaneous solutionsto Egs.
(36) and (38) satisfy the equation (g, = 1)

2 1
0 Xrn

2TtsinhX g,

n=12,....
(44)

Equation (44) admits the existence of two scattering
states at energiesin the region

=0, Xg,=TIN/a,

Er, = COSNXr,>1, Xgry = *Tn/a, n=1,2 ...,

under the condition

a’>2m (45)

The value found for the energy of a scattering state,
Er, , possesses the following properties: (i) If the well
width a does not change, the growth of the parameter a
leads to the growth of the scattering-state energy Eg,,

and vice versa. (i) If the parameter a is fixed, changes
in the parameter a lead to changesin the level specified
PHYSICS OF ATOMIC NUCLEI
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by n, but the quantity |Xr, | = T™/a remains unchanged.
Thus, the energy levels in question are quantized as
functions of the parameters a and a according to
Eq. (44) under the condition in (45).

In the nonrelativistic case, which was considered in
[1], the sameimage (41) corresponds to the quasi poten-
tial in (40) at x' = k. In this case, the bound state at a
negative energy k*> = —k? < 0 also exists only under the
condition in (43), but it is determined as a solution to
the equation

1_aze_aKsinhaK -0 (46)
— :

At the same time, there are no scattering states at non-

negative energies k? = 0 in the nonrelativistic case.

5. CONCLUSION

Within the relativistic quasipotential approach to
guantum field theory, a method has been developed
for solving a finite-difference quasi potential equation
involving a nonlocal separable quasipotential that
simulates the interaction between two relativistic
spinless particles of unequal masses. This has permit-
ted finding an explicit expression for the phase shift,
determining the conditions under which bound and
scattering states may exist, and formulating the
Levinson theorem. The proposed approach relies on
the possibility of representing the total c.m. energy of
two relativistic particles of unequal masses as an
expression proportional to the energy of an effective
relativistic particle of massm'.

As an application of the results obtained in the
present study, we have analyzed the conditions of
existence of bound and scattering states for a delta-
function quasipotential and performed a comparison
with the nonrelativistic case. It has been shown that,
in contrast to the nonrelativistic case, relativistic
effectsin particle scattering on adelta-function quasi-
potential manifest themselves in the formation of
scattering states.
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Abstract—Within the relativistic quasipotential approach to quantum field theory, a method is developed
according to which anonlocal separable quasipotential that represents the interaction between two relativis-
tic particles of unequal masses can be reconstructed on the basis of the phase shift and bound-state energies.

© 2000 MAIK “ Nauka/Interperiodica” .

It was proven by Gelfand and Levitan [1, 2], March-
enko [3], and Krein [4, 5] that the inverse problem can
in principle be solved within nonrelativistic theory.
They reduced the problem to linear integral equations
in two versions, which served as a basis for a further
development of inverse-problem theory. The most com-
prehensive survey of thistheory was given in the mono-
graphs of Chadan and Sabatier [6] and Zakhariev and
Suzko [7].

In the majority of studies, however, the problem of
reconstructing the underlying interaction is formulated
on the basis of the nonrel ativistic Schrédinger equation,
so that the important problem of reconstructing interac-
tions for essentially relativistic systems—in particular,
within the relativistic quasipotential approach [8]—has
yet to be solved conclusively.

Within the quasipotential approach proposed in [9],
the problem being discussed is treated here for the case
where a nonlocal separable quasipotential simulating
the interaction between two relativistic spinless parti-
clesof unequal masses (m, # m,) must be reconstructed
on the basis of the phase shift and bound-state energies.
The approach developed here relies on the expression
that was found by the present author for the phase shift
and which hasthe form [10] (we use the system of units
wherefi =c=1)

tand(X')

A(X) rm

_ _I[ . -1, ' 1'00 _—
= 2smh XA|(X)[1+ Pz_[dxcoshx—COShX' ’
0

where the quantity X' is defined viathe relation

Eq = m'A/1+(q'/m')2 = mcoshy', m = ,/mm,,

and

N = 2. A2 NV —
A(X) = ZaQi(cothx)ViX)| & = 2L ()

Here, Q,(2) isaLegendre function of the second kind.
In order to find the quasipotential V,(r) on the basis

of the phase shift §,(X'), it isnecessary to solve the inte-

gral equation (1) for the function A (x"). After that, the

function V, (X) is determined from Eq. (2). The quasi-
potentia V,(r) is then reconstructed by performing the
relativistic Hankel transformation

[

V() = E{axQ(eoth0%(0S06D.  G)
0

It should be noted that the function S(x, r) is a free
solution to afinite-difference quasipotential equationin
configuration space [11].

In particular, the relativistic Hankel transforma-
tion (3) a | = 0 reduces to the conventional Fourier
transformation

00

2 ~ _
Vo(r) = ;dexvo(x)snrx-
0

We assume that the phase shift §(x') in Eq. (1) isa
function continuous in the sense of Holder with a posi-
tiveindex and that, for X' — oo, it behaves as

5(x) = 0(e"), 120, y>L1 %)

These constraints are necessary and sufficient for the
guasipotential to satisfy the conditions

rV,(r) 0 L,(0, ), )

which ensures the uniqueness of the solution to the
problem at hand.

It should be noted that, if the phase shift intersects
thestraight lines §,(x') = Tm (nisan integer) from bel ow
as X' increases, the inverse problem has no solutions.
We therefore assume that, as x' increases, the phase
shift §,(x") intersects the straight lines §,(x') = Th (n =
0,1, 2,...) from above.

1063-7788/00/6311-1983%20.00 © 2000 MAIK “Nauka/Interperiodica’
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Suppose that there exist v, (I = 0) bound states at
energies satisfying the conditions
Er, = mcoshxg,=m, n=0,1,...,v,—1
We then have
5(0) = mv,. (6)

In this case, the phase shift at large energy values
appears to be a negative quantity of small magnitude
(¢, = +1), while the bound-state energies Ex, = m are
found by using the same values of X' at which the phase
shift §(x") intersects the straight lines ,(x") = Tm from
above as ' increases; that is,

8 (Xra) = TN, N =012 ..v-1 7)
Theintegral equation (1) can be reduced to the form

A (arccoshx)g (x) = 1+= Pfdtq"(t)h'x(t) (8)

wherex = coshx' and where weintroduced the follow-
ing notation:

Y =
x[1+(i2)g () ~1) 1,

a(x) = —(2/m) (¢ =1) “tand (%),
A (X) = §/(arccoshx),

h(x) = (W2)g(x)(x*~1) "

A (arccoshx)g; (X)

©

x[1-(im2)g ()" -1) 1"
= —sinA(x)exp(—i L (x)).
With the aid of the representation
1/(a—i0) = imd(a) + P(1/a),
Eqg. (8) can berecast into the form

Pi(Hh* (1)

P(x) = 1+TJdt 0" (10)

L et us consider the function

UJu(t)h| ®

H,(2) = 1+T[J'dt (11)

If the function ,(X) is continuous in the sense of
Holder and if the integral in Eq. (11) converges, the
function H,(2) is analytic in the complex plane of the
variable z with the cut from 1 to +o0; in addition, the
relation

limH,(z2) =1

‘Z‘aoo

(12)
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holdsin al directions. Hence, a solution to the integral
equation (10) can be represented as

Wi (x) = Hi(x,)= n'LrTlOH|(X+ in,
By substituting the solution in (13) into the expression

for the discontinuity suffered by the function H,(2)
upon traversing the cut,

Hi(x,) = Hi(x) = 2ig,()hf" (x)
= —2isind (x)exp(idy(x)) (%),

we arrive at the homogeneous Riemann-Hilbert equa-
tion for the function H,(2):

H,(x,)exp(2iA(x)) —H|(x)) = 0, 1<x<o. (14)

A particular solution satisfying Eqg. (14) and the
condition in (12) hasthe form

I<x<ow. (13)

Hi(2) = explw (2)], (15)
where
A (t
w(z) = —= dtt (z)' (16)
1
We dso have the relation
lim w(z) = 0,

‘Zaoo

which holds in all directions, as follows from the
assumptions on the behavior of the phase shift and from
the condition in (4). Moreover, the function specified
in (16) is defined everywhere on the cut, perhaps with
the exception of the point z = 1, where its behavior is
given by

w(2) = (UYmA(1)In]1-7 +Q(2). (17

Here, the function Q,(2) is finite for z — 1, while
A (1) = §(0) = 1y (there are v, bound states at energies
lying in region Eg, = mcoshXg, =m,n=0, 1, ...,
- 1). Therefore, the function H, (2) has azero of order
v, a thepoint z= 1.
Thus, we conclude that, according to (13), (15), and

(16), the relevant solution to the nonhomogeneous inte-
gral egquation (10) has the form

Pi(x) = explay(x) =id(x)], (18)

where

A1)

a(x) = —= PJ'dt (19)

It should be noted that the function given by (18) is
regular at x =1 (it hasazero of order v, at thispoint), is
continuous in the sense of Holder with the same index
as the phase shift, and is bounded for x — +co. (All
this is consistent with the a priori assumptions on its
Vol. 63
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properties.) Finally, thisfunction isasolution to Eq. (10)
since, according to the Cauchy theorem, we have

1, UJ|(t)h| (1)
TJ t—x—i0
1
= lim  ==|[dz Hi(2) z Hi(2)
N - +0,R - +00 2T z—X—in zZ—X—in

= Hi(x)-1={(0-1,

where I is the closed contour consisting of a circle of
radius R, two banks of the cut from 1 to R (obviously,
the contour goes in opposite directions along these
banks), and acircle C, having aradiusn and acenter at
the point z = 1. The contribution of the integral along
the circle C, tendsto zero for n — +0 since the func-

tion Hi (2) isregular at the point z= 1.

Let us now find a general solution to the homoge-
neous equation

LU|o(t)h| Q)

Pio(x) = ,Jdt ~5 20)
For this, we will now consider the function
H(2) = TJdtw.o(t)h. () on

which isanalytic in the complex plane of the variable z
with the cut from 1 to + oo and which obeys the relation

‘Ilm Ho(2) = 0 (22)
in al directions. The relevant solution to the integral
equation (20) has the form (13), as before, while the
function H(2) satisfies the homogeneous Riemann—
Hilbert equation (14). A general solution to this equa-
tion will be sought in the form

eXIO(CO|(Z))

(z-1)"

Substituting (23) into (14) and requiring that the func-
tion H,,(2) be finite at z= 1, we obtain m = v,. Hence,
we have

Hio(2) = z (23)

Wio(X) = Hjp(Xx,)

Vi

= 3 (Aci/(x=1)")exploy(x) —iA ().

k=1

(24)

It is obviousthat, in just the same way asin the case of
a particular solution, integration along the contour I
shows that the function in (24) satisfies Eq. (14) and
possesses all the required properties.
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Therefore, a general solution to the integral equa-
tion (10) has the form

Wi(x) = explo(x) —id(x)]
x 3 (14 Aci/(x-1)").
2
By using the notation in (9) and rearranging the sum as

a product, we can recast the solution in (25) into the
form

(25)

A(X") = —(2/m)sinhx'sind(X")
Wt (26)
x exp[a,(coshx')] |_| (1+B,/(coshx'-1)),

where

o, (coshx’)

00

27
= —(1/Tt)Pfdxsinh)(é'(x)/(coshx—coshx'). (&n

In order to determine the constants B, in (26), we note
that, in accordance with the definition in (2), the func-
tion A(x") isof fixed sign at all values of x'; since g, =
+1, it must be positive. At the sametime, the phase shift
changes sign at the bound-state energies Egr, =

m coshxr, = M. Hence, the function A(X') retains a
plus sign, provided that

B, = 1-coshxgr,, N=0,1,...,v,—1
Instead of (26), we will then have
A(X) = —(2/msinhx’'sing,(X") exp[a(cosh')]

v -1

x |_| (1—(coshxr, —1)/(coshy' —1)). (28)

Thus, the solution in (28) is completely determined
by the phase shift since X, is also determined by the
behavior of the phase shift. Moreover, it follows from
expressions (27) and (28) that the function A (X)) is
continuous in the sense of Holder and that, for X' —
+00, it behaves as

e—(y—l)X', y> 1,

provided that the phase shift satisfies condition (4).
Thisin turn implies that the quasipotential V,(r) satis-
fies condition (5).

The case where g, = —1 and where there are v, bound
states whose energieslie in the region

Er, = mcoshxg,=m, n=0,1,...,v,—1,
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and n, bound states whose energies satisfy the condition

0<E|, = mcosk;,<m, k=0,1,..n-1
is considered in the same way.
By virtue of the Levinson theorem, we have

0,(0) = m(v, +ny).

In accordance with expression (17), the function H,(2)
therefore has a zero of order (v, + n) at z= 1. Further
following the same line of reasoning asthat adopted for
the case of g = +1 and considering that the solution
A (X') must now retain aminus sign for all values of X'
(g,=-1), weabtain

AX) = ~2/m SinhX'Sin5 (X') exp[a(coshx’)]
COShXrn —

x:lj)%_ coshy' — 1 Dl_l %L

Thus, the function A (x") is completely determined
by the phase shift and bound states, and itssign isoppo-
siteto the sign of the phase shift for x' — +oo.

In order to reconstruct the quasipotential V,(r) by
means of the transformation in (3), it is necessary to

know the complex-valued function V, (X'), but expres-
sion (2) specifiesonly itsabsolute valuefor | > 0. None-

theless, V, (X)) is completely determined by the func-
tion A (X", because the latter controls all bound states,
the zeros of this function. These zeros occur either on

the real axis (Eg, = m) or on the imaginary axis (0 <

1-cosKix (29)

coshy' — 10

E\. < m) in the complex plane of the variable ¥'.
Owing to this, we can introduce the function

n—-1
N : "+ik\ U ~
Vi(X') = |‘| Pm.(cothx')v.(x')mfs, (30)
K=o X —iKj O
where n; is the number of bound states whose energies

liein the region

O0<E/, = mcosK{, <m, X = IKj,

and A’ isthe asymptotic form of the function
|Qi(cothx')Vi(x)| = J(T02)e A (X)
for x| — oo.

The function V, (x') is analytic in the region Imy' > O;

is continuous for Im' = 0; and satisfies the condition
Vi(x) = 1+0(1), (31)
provided that the conditionin (5) ismet. In addition, the
function V, (X" vanishes nowhere for Imx' > 0. There-

fore, the function InV, (") is analytic in the region
ImY' > 0 and tends to zero at infinity by virtue of the

|X‘| — ©,
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estimate in (31). We can then apply the integral Hilbert
transformation to the real and the imaginary part of the

function InV, (X)), setting

Q(cothx)Vi(x") = |Q(cothx)Vi(X)|exp(i®y(x)).
We then obtain

ReInV|(x)

ImInVi(x') = —(1/T[)PJ'dx _—

= iIn(|Q,(cothx')V|(x')|/A, (32)

In(|Q(cothX)Vi(X)|/A®)
nIdX

X—X—i0
Combining (32) with the expression for

RelnVi(x") = In(|Q(cothx)Vi(X)[/A®),

we now obtain the formula

In(ie, A (X)/2(A™))

InVi(x) = Zm_[dx v

(33)

whichisvalidintheregion Imy' > 0. From expressions
(30) and (33), it eventually follows that

Qcath V() = A |‘| %S
- - (34)

h In(ne.Al(x)/Z(A. )"0
%I .

Thisequationisvalid for Imy' > 0.

Thus, asolution to the inverse problem existsand is
completely determined if the function A (X') is found
on the basis of the phase shift and bound-state energies
for | = 0.

To summarize, we note that the method proposed
here to reconstruct a nonlocal separable quasipotential
simulating the interaction between two relativistic
spinless particles of unequal masses actually reduces
to a one-body problem. This is due to the possibility
of representing, within the relativistic quasipotential
approach to quantum field theory, the total c.m. energy
of two relativistic particles of unegual masses as an
expression proportional to the energy of an effective
relativistic particle of massm.
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Abstract—Back-to-back Ttrtcorrelations arising owing to the evolution of the pionic field in the course of the
pion-production process are estimated for central heavy-ion collisions at moderate energies. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

It is usually suggested that in high-energy heavy-
nucleus collisions, an excited volume is formed which
undergoes evolution and subsequent decay into free
final particles. Particles existing in the excited volume
represent a part of the medium, being quasiparticles
rather than free particles. So the form of their energy
spectrum E, may differ essentially from that of free

particles E, = (k2 + m?)!”2. It was noted (see [1-4]) that
this feature leads to the appearance of specific back-to-
back particle—antiparticle correlations (PAC effect). No
practical estimations of the pionic PAC effect is known
to us.

Below we consider central heavy-nucleus collisions
at moderate (afew GeV per nucleon in the laboratory
system) energies. In this case, the excited volume con-
sists mainly of nucleons and pions (at least, at the late
stage). We consider final-state pion correlations. The
PAC effect is determined through the evolution param-
eter r(k) and depends on two factors: first, to what
extent the pionic energy E, is modified and, second,
what the characteristic time t, of the energy spectrum
evolutionis. Our numerical estimations showed [4] that
pion modification in the course of hadronic matter evo-
lution (say expansion, cooling) istoo slow to giveasiz-
able PAC effect. So we consider only the fast breakup
of hadronic matter into free pions (freeze-out) as a
source of PAC. Usually the breakup is considered as an
instantaneous process (neglecting its time duration t;),
thus ensuring the maximal PAC effect. However, the
PAC effect under consideration is sensitive to rather
small time intervals of the order of 1 fm. So below we
estimate PAC for finitet,.

2. HBT AND PAC EFFECTS

In this section, we describe in parallel the main fea-
tures of identica particle correlations (Hanbury-

* This article was submitted by the author in English.

Brown-Twiss (HBT) effect) and PAC taking into
account pion energy modification. The reason for the
PAC effect is the time evolution of the medium in
which the (quasi)particles propagate. The correspond-
ing problem is similar to that of a quantum oscillator
with variable frequency. The solution of this problem
can berepresented in the form of the Bogolyubov trans-
formation [5] of the creation and annihilation operators

a(k, 1) = u(k)a(k, 0) + v(k)b'(-k, 0),

(1)
bf(—k, t) = v(k)a(k, 0) + u(k)b'(-k, 0),
where a(k, t), af(k, t), bk, t), and bf(k, t) are time-
dependent annihilation and creation operators of parti-
cles and antiparticles and the Bogolyubov coefficients
uk), v(k) satisfy the equation

lu(k)l®=[v(K)|* = 1 )

preserving canonical commutation relations. The
Bogolyubov coefficients u(k), v(k) aretaken to bereal-
valued and |k |-dependent. So we use a parametrization

u(k) = coshr(k), v(k) = sinhr(k) 3)
introducing the evolution parameter r(k) (for more
details, see [4]).

To present the resultsin asimple form, we use here
asimplified description of the excited hadronic volume
(particle source). So the following expressions represent
a limiting case of those in [1, 4].1) The volume is sug-
gested to be homogeneous, motionless (neglect of the
flow), isotopically symmetric, and large enough (heavy
nuclei). Under these conditions, the single-particle

l)Thesign of one of the two momentap;, p, on the right-hand side
of the second of Eq. (14) in [1] must be changed. Then Egs. (13)
and (14) of that paper will be applicable for neutral pions. This
erroneous sign appeared because of neglect of the difference
between arelativistic quantum field and a simple set of quantum
oscillatorsin [1].

1063-7788/00/6311-1988%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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inclusive cross section can be written in asimple form:

ldo

= == f(k)a(k
N(k) ogK = [@'(k)ak)0

“)

-V s[n(K) + (2n(k) + 1)sinh’r(k)],

(2m)
where a' and a are creation and annihilation operators
of the final-state pions, V is the volume of the source,
n(k) isthe level occupation number (for example, Bose
distribution), and r(k) is the evolution parameter.

Two-particle inclusive cross sections are given by
the expressions

1 d’c"”
——= 3 - Eala;alazﬂ
ook, ok, ®)

= @la,Taa,+ Bla,da a0
for like-sign charged (identical) pions (HBT effect),

1 d’c"”
(—fﬁ = Eﬂ{b;alsz
d*k,dk, ©)

= [@la,[Tbib,+ [AlbiTh,b,0

for charged particle-antiparticle (Tt1T) pairs (PAC),
and

2_00
l% = Eala;alazm
Id’k,d’k, (7)

= @la,Tha,+ [Bla,Taa,0+ Ml asTh,a,0]
for neutral pion pairs (both HBT and PAC) with
@&'(k,)a(k,)0

8
= [n(k) + (2n(k) + 1)sinh?r (K)] F(k, — k), ®

Ca(k)b(ky)O= S|nh2r(k)[n(k) + }F(kl+ Ky (9)

(the same for [&(k,)a(k,)in the case of neutral pions).
In (8) and (9), F(k, + k,) represents the Fourier trans-
form of the source volume at the breakup stage. It isa
sharply peaked function of k; + k, (at zero momentum)
having a characteristic scale of the order of the inverse
size of the source, this scale being much less than the
characteristic scales of the pion momentum distribution
n(k) and evolution parameter r(k). So the last two func-
tions may be evaluated at any of the momentak,, k, =
tk (we suggest that the processisk — —k symmetric,
for example, collision of identical nuclel at the center-
of-mass system). Evidently, pion-pion interaction
effects are not present in (6) and (7); it is supposed (as
usual) that they can be separated from exposed PAC
and HBT correlations.
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Relative two-particle correlation functions which
are measured in the experiment are given by

, [ kdak)
NN()

| Ca(k ) b(k ) OF
N(kN(k,)

| & (kak)
N(K)N(K>)

|Eﬁ(k1)a(kz)q]
N(k)N(k;) -

I ntroducing the normalized form factor of the prebreakup
volume,

Cy(ky ko) =1 (10)

Cy(ky k) = 1+ (11)

C(ky k) = 1+
(12)

V
F(k,tk,) = a—TF)EG(kli k), G(0) =1, (13)

we therefore get

C7(ky, ky) = 1+ Gk, —ky), (14)

C'(ky, k) = 1+¢(k)G(k, +ky), (15)

C®ky, ky) = 1+G(ky—ky) +c(k)G(k, +k;) (16)
with

o(k) = @nhr(k)coshr(k)(zn(k) +1)?

Dsinh?r (i) (2n(k) + 1) + n(k) &’

where (14) gives the usua HBT effect and (15)
describes the PAC effect. Both of them contain the
same form factor G(k) (in our approximation) ensuring
the same-direction 1Tt correlations and back-to-back
T0TC correlations. Neutral pions show both kinds of
correlations, being identica particles and simulta-
neously antiparticles to themselves.

As can be seen from (17), the PAC effect is deter-
mined through the evolution parameter r(k). Inturn, the
evolution parameter depends on the time duration t,, of
the pion energy evolution. For very small characteristic
timest,, the expression for r(k) is universal [1]:

(17)

ro ——In[’z"D t, =0

[ 1]

(18)

where E, is the pion energy at the prebreakup moment

and E(k) isthe free pion energy. For larger t,, the evolu-

tion parameter |essens and depends on unknown details
of the breakup process. For estimation of r(k), we shall
use the model expression of [4]'

=3 ﬁ&ﬁﬁ@:@ﬁm 1
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Fig. 1. Quasipion energy in nucleon medium (with p =
0.5py,) calculated through pseudopotential (solid curve) and
polarization operators (dashed curves), together with the
free pion energy (dotted curve). All the values are taken in
pion mass units.

Below, we estimate the evolution parameter r(k) and
the factor c(k) in (17) which determines the strength of
the PAC effect.

3. ESTIMATING PAC IN FINITE
NUCLEON-DENSITY MATTER

To evaluate PAC, one has to know the pion energy
spectrum E, in finite nucleon-density matter. The sim-
plest way to find the energy spectrum is the use of the
notion of the pseudopotential [6]. It isdetermined asan
effective potential in which the pions propagate, and it
is given by the forward scattering amplitude f(k) of the
pions on the particles of the medium

U(k) = —4mp ¥ (k)L (20

where p is the density of the medium particles and the
amplitude f(k) is averaged over the states of the
medium particles.

In finite nucleon-density matter, f(k) is mainly the
TiN-scattering amplitude. The main contribution to the
amplitude is given here by P-wave scattering domi-
nated by delta resonance. The corresponding momen-
tum-dependent effective potential for isotopically sym-
metric (number of protonsis equal (close) to the num-
ber of neutrons) matter may be taken in the form (see
aso[7, 8])

_ 8,.2M,E, 'S
Uk) = —5fa Y 21)
with
f2/4m = 0.37, (22)
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E, = (MA—=M*=iM,[,)/2M = (2.4—-05i)m, (23)

where f, is the empirical T?WA coupling constant, mis
the pion mass, M is the nucleon mass, and M, and I,
are the mass and width of the delta resonance. Equa-
tions (21)—(23) represent the sum of the direct and
exchange miN-scattering diagrams with delta resonance
in the intermediate state where we neglected nucleon
velocities and omitted terms containing the inverse
nucleon mass (first order M~! terms give only afew per-
cent correction to E,). The pion energy in the nucleon
matter is now given by the equation

EZ = m’+k*+ U(K). (24)

ItisshowninFig. 1 for nucleon density p equal to one-
half of the nuclear matter density (energies and
momenta are taken in pion Mass units).

Let us note that (24) has the form of the pionic dis-
persion equation with substitution of the effective
potential U(k) for the pionic polarization operator
M, Ey), which depends on both momentum k and
energy E,. The polarization operator Nk, E,) in the
same approximation is given by (21) with substitution

of the energy squared E; for k2 + n? in the denomina-

tor of (21), and the pion spectrum (excitations having
pion quantum numbers) is then given by the self-con-
sistent solution of the resulting dispersion equation. At
first sight, the resulting pion energy spectrum [7] differs
essentially from that of (24), containing at least two
branches shown in Fig. 1 by dashed curves (original
pion and delta-hole mixed states tend to be intersecting
onesinthelimit of zero coupling constant f,). However,
when considering the effects of the pion-energy evolu-
tion, one must use two pieces of these two branches
which correspond to true pions and we essentially
return to the single branch given by (24); see solid
curve in Fig. 1. The vicinity of the would-be intersec-
tion point (the resonant point ki + M? = ReEx, Ko =
2.1m), where these two descriptions still differ, does
not contribute in any case (here, r(k,) = 0 and the
imaginary part of the pion energy is maximal and
large). All that justifies the use of the pseudopotential
U(k) for calculation of the evolution parameter r(k)
(introduction of the polarization operator Mk, E,)
would require a reformulation of the scheme of calcu-
lation of the evolution effects).

To evaluate the evolution effects, it is necessary to
specify the level population n(k), the nucleon density p
at breakup, and the time duration t,, of the breakup stage
of the process. The level population can be estimated
from thermal analysis of the data on momentum spectra
of secondary particles. When extracted from the slope
of the spectra, the apparent temperature gradually
increases with energy and seems to saturate at around
140 MeV at a beam energy E, = 10 GeV (see [9], for
example). Below, the level population will be approxi-
mated by a Bose distribution with temperature 120 MeV
Vol. 63
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N/N,

1.12F
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1.00 . I I
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k

Fig. 2. Enhancement of the single-particle inclusive cross
section due to the evolution effect at nucleon density p =
0.5p, for t; = 0, 0.5, 1.0, 1.5 fm (from top to bottom);
momentum K is taken in pion mass units.

corresponding to abeam energy of about afew GeV per
nucleon,

n(k) = (exp(E/T)-1)", T = 120 MeV. (25)

It seems reasonabl e to take the nucleon density p to be
dlightly less than nuclear matter density p,. So below,
we present estimations for two values of p which we
consider aslimiting ones, p=0.5p,,and p = p,. Thetime
duration t, is left as a free parameter.

One more problem is the permissible range of the
pion momenta k, where the potential U(k) given by
(21) (that is, the corresponding scattering amplitude)
may be used. Evidently, thisis a low-energy potential
applicable at the most at k < (3—4)m. Furthermore, the
imaginary part of the potential must not exceed the dif-
ference between the quasipion energy and free pion
energy. This leaves us a small momentum region k <
1.5m where the calculation of the PAC effect seemsto
be reliable. It must also be noted that just above the
delta resonance energy (k. = 2.1m), there is another
source of back-to-back pairs, that is, p-meson decay
(k= (2.5 £ 0.5)mfor free p mesons). So the PAC effect
under consideration is an additional possible source of
the correlated Ttrtpairs active at lower energies.

Calculation of the evolution parameter r(k) accord-
ing to (18) and (19), together with (21)—24), shows
that in the case under consideration, it is rather small,
being zero at k =0 and at k = k. = 2.1m and reaching
the maximal values

Fme(K) = 0.16 a k=1.6m for p=0.50p,, t,=0;

Fma(K) =022 a k=1.5m for p=0.75p,, t,=0;
rmax(K) =030 a k=1.3m for p=1.00p,, t,=0.
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0 0.5 1.0 1.5 k

Fig. 3. Relative strength of the PAC effect (see (15)—17)) at
nucleon density p = 0.5p,, for t; = 0, 0.5, 1.0, 1.5 fm (from
top to bottom); momentum k = |k; — k,|/2 is taken in pion
mass units.
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Fig. 4. The same asin Fig. 3 for nucleon density p = pp,.

Thefunction r(k) decreasesfast when the characteristic
timet, increases and vanishes at t, = 2 fm.

The enhancement of single-particle inclusive cross
sections arising due to the evolution effect is shown in
Fig. 2, where the distribution N(k) given by (4), over
the nonenhanced (r = 0) value N, (k), is depicted for dif-
ferent values of the characteristic time t, for nucleon
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density p = 0.5p, (pion momentain Figs. 2—4 are taken
in pion mass units). At higher nucleon densities, the
enhancement rises, reaching at p = p,, the maximal val-
uesl37att,=0,1.21att,=0.5fm,1.05att,=1.0fm,
and 1.02 at t, = 1.5fm.

The results for the factor c(k) in (15)—(17), which
gives the strength of the PAC effect, are shown in
Figs. 3 and 4. As can be seen, the PAC effect can be
essentia if the characteristic breakup time t; is small
enough (t, < 1fm). The presence or absence of PAC can
serve as a measure of the time duration t,, about which
we have no other information. Contrary to single-parti-
cle enhancement, which can have various origins, the
PAC effect can be unambiguously identified through
measurement of the excess of, say, zero-rapidity (in the
center-of-mass system) small-momentum anticorre-
lated particle—antiparticle pairs.

4. CONCLUSION

Estimation of the pionic PAC effect in heavy-
nucleus collisions shows that it can serve as a substan-
tial source of low-energy back-to-back 't and T
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pairs (also ensuring an enhancement of single-particle
pion distributions) if the breakup (freezeout) time is
small enough.
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Abstract—A phase-equivalent transformation of local interaction is generalized to the multichannel casein the
direct-scattering problem. Generally, the transformation does not change the number of bound statesin the sys-
tem and their energies. For a specia choice of the parameters involved, however, the transformation removes
one of the bound states and is equivalent to the multichannel supersymmetry transformation recently proposed
by J.M. Sparenberg and D. Baye (1997). With the aid of the transformation, it is also possible to add a bound
state to the discrete spectrum of the system at a given energy E < 0 if the angular momentum | = 2 in at least
one of the coupled channels. © 2000 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

Nucleon—nucleon, nucleon—cluster, and cluster—clus-
ter potentials are an input for various microscopic calcu-
lations of nuclear structure and reactions. Unfortunately,
the exact form of the potential s describing these interac-
tions is unknown. It is conventionally supposed that the
available scattering data and bound state properties can
be fitted with approximately the same accuracy by differ-
ent loca potentials. For example, there are a lot of so-
called redlistic NN potentials on the market describing
NN scattering and deuteron properties with high accu-
racy. Moreover, a description of phenomenological data
can be achieved with potentials very different in struc-
ture. In particular, meson-exchange NN potentials of the
Nijmegen kind [1] are known to have a short-range
repulsive corein atriplet s wave. The same high-quality
description of the nucleon—nucleon data is provided by
the latest versions of the Moscow potentid [2, 3] that
does not have a repulsive core but instead is deeply
atractive in the triple s wave at short distances and sup-
ports an additiona forbidden state. The possibility of
aternative descriptions of various cluster—cluster and
nucleon—cluster interactions by means of repulsive-core
and deeply attractive potentias with forbidden statesis
also well known (see, e.g., the discussion in [2] and ref-
erences therein).

Principally, it is possible to distinguish experimen-
tally between alternative potentials by studying their
off-shell properties in interactions with an additional
particle. The simplest probeisthe photon, and asit was
shown in [4-6], the proton—proton bremsstrahlung
reaction pp — ppy in the energy range of 350—

* This article was submitted by the authorsin English.
** e-mail: shirokov@npi.msu.su
*** eemail: sidorenko@goa.bog.msu.su
D Moscow State University, Vorob' evy gory, Moscow, 119899 Rus-
sia

400 MeV can be used to discriminate between various
NN potentials. However, the pp — ppy reaction has
not been examined experimentally in this energy range.

Another possibility is to study the properties of three-
and four-body systems bound by two-body potentials of
interest. From this point of view, it looks like we do not
have satisfactory nucleon—nucleon, cluster-nucleon, and
cluster—cluster potentials a present. It iswell known that
noneof therealistic NN potential s provides proper binding
of tritium or *He. There have been successful attemptsin
generating phenomenological three-nucleon interactions
tuned to fit the properties of light nuclei [7] (see dso [8]
and references therein). However, as it was shown in the
detailed study of Picklesimer et al. [9], the effect of three-
nucleon forces consistent with realistic two-body oneson
the binding energy of the triton is canceled by the effects
of virtua excitations of A isobars, etc. Hence, the trinu-
cleon cannot be satisfactorily described using known real-
igic two-body potentiads supplemented by three-body
potentials consistent with them. All caculations within
three-body cluster models also fail to reproduce the cor-
rect binding energy of three-cluster nuclear systems with
known loca cluster—cluster and cluster—nucleon poten-
tialsfitted to the corresponding scattering data.

To design apotential consistent with two-body phe-
nomenological data and providing the correct binding
of few-body systems, it seems promising to make use
of phase-equivalent transformations depending on a
continuous parameter(s). Some attempts in this direc-
tion have been performed using nonlocal phase-equiv-
alent transformations. The results of these attempts are
encouraging: in [10], an oversimplified NN potential
providing a satisfactory description of s-wave NN scat-
tering data was fitted to exactly reproduce the triton
binding energy, while in [11], redlistic na potentials
were tuned to reproduce various ®He properties, includ-
ing the binding energy within the a + n + n cluster

1063-7788/00/6311-1993%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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model. The interactions suggested in [10, 11] are non-
local ones. Various applications (see, e.g., [12, 13]) of
local phase-equivalent transformations to few-body
problems were restricted to the supersymmetry trans-
formation [14-16] that removes one of the bound states
in atwo-body system. The supersymmetry transforma:
tion does not contain parameters and cannot be used for
fine tuning of the interaction of interest.

However, a locd phase-equivalent transformation
which preserves the number of bound states and depends
on acontinuous parameter existsand iswell knowninthe
inverse scattering theory [17]. To the best of our knowl-
edge, so far nobody has used it in few-body calculations.
This transformation was developed for a single-channel
case only and cannot be applied without some approxi-
mationsto redistic NN interactions that mix triplet sand
d partia waves. Another drawback of the transformation
isthat it involves a bound-state wave function and, thus,
cannot be used to modify nn and pp interactions and the
np interaction in al “nondeuteron” partial waves.

Recently, Sparenberg and Baye [18] suggested a mul-
tichannel supersymmetry transformation. We use some
ideas of [18] to derive a multichannel phase-equivalent
transformation which depends on continuous parameters.
The transformation can be treated as a generalization of
both the single-channel phase-equivaent transformation
[17] and the multichannel supersymmetry transformation
of [18]. Generally, the transformation does not changethe
number of bound states in the system and their energies.
However, with a specia choice of the parameters, the
transformation removes one of the bound states and
becomes equivalent to the multichannel supersymmetry
transformation suggested in [18]. If the angular momenta
in al coupled channels are less than two, a parameter-
dependent family of local interactions phase-equivaent
tothegiveninitial one can be constructed by means of the
transformation, even in the case when the system does not
have abound state. If the angular momentumisl =2 inat
least one of the coupled channels, the transformation can
be used to add a bound dtate to the discrete spectrum of
the system at agiven energy E < 0. Having abound state,
one can construct afamily of phase-equivaent potentials
and afterwards remove the bound state by the supersym-
metry version of the transformation. Thus, the suggested
transformation can be used in amultichannel caseto pro-
duce phase-equivalent interactions without any restric-
tion on the structure of the discrete spectrum of the sys-
tem. In particular, the transformation can be applied tothe
redlistic NN interactionin al partial waves.

2. GENERAL FORM OF LOCAL
MULTICHANNEL PHASE-EQUIVALENT
TRANSFORMATION

Multichannel scattering and bound states are
described by the Schrédinger equation

Z(Hij—E5ij)¢j(E:r) =0, (D
j
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whereindicesi and j label the channels, E isthe energy,

IR G Tl
1] 2m er 2

isthe Hamiltonian, misthe reduced mass, and |, stands
for the angular momentum in the channel i. We suppose
that the potential V,;(r) (i) is Hermitian and (ii) tends
asymptotically at large distances to adiagonal constant
matrix,

2

i|6ij+vij(r) ()

Vii(r) €9, 3)

-
where €; is athreshold energy in the channel i. We sup-
posethate, =0ande; 2 ¢ if i >].

The boundary conditions for the wave functions are

¢i(E, 0) = 0, (4)
$i(E, ») <o, 5)

Except for the discussion in Section 3.3, we suppose
that there is at least one bound statein the system at the
energy E,. The corresponding wave function ¢,(E,, r) is
supposed to be normalized:

ZJ'q)i*(EOa s)$i(Ey, s)ds = 1, (6)

where «x» denotes complex conjugation. Of course,

0,(E,, r) fits a more severe boundary condition for
r — oo than (5):

¢i(Eg, ) = 0. (7

We define the transformed potential Vi j(r)as

Viilr) = V() + vy (), @®)
where
§ *
Vii(r) = _ZC;L—rn% ¢i(Eo, r)¢j (EO’ r) (9)

A+ CZJJd)k(EO, s)|%ds
k

and A, C, and ¢ are arbitrary real parameters.

The main result of this paper can be formulated as
the following statement.

The wave function

di(Er) = ¢i(ET)

Y [0 (o )4(E. s
—Cy(Eq 1)

A+ c2!|¢k(Eo, s)|%ds
k

(10)
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fits the nonhomogeneous multichannel Schrodinger
equation

S (Hij—E8)§,(E.r)
i

2
= sz}— q)ir(EO’ ) W (E, E; a), (I

m
A+CZ!|¢k(EO, s)|%ds
k

where the Hamiltonian
2

YRR N G TR0 ) R
Hij = 5i12m[—dr2+ 2 }+Vu(f) (12)
and the quasi-Wronskian
W (E,, E; a)

13
= [0k (Eo 2)0i(E, 8) - 0 "(Eo, 2)0i(E, )] 1
k

We use the prime to denote derivatives: f' = df /dr.
To prove the statement, one can verify (11) by the
direct calculation of i (Hj —E6ij)q~>,- (E, r) using def-

initions (8)—(10) and (12) and other formulas given
above, as well as the fact that the interaction V;(r) is

Hermitian, V; (r) = V;(r). The calculation is lengthy

but straightforward.

Itisclear from (10) and (7) that the suggested trans-
formation is phase-equivalent at any energy E > 0; all
the bound states supported by theinitial potentia V;; are
preserved by the transformation, since the wave func-
tions ¢, (E,, r) for the corresponding energies E, < 0
(including Ey) fit both boundary conditions (4) and (7).
However, the denominator in the last term in (10)
should be nonzero at any distance r; therefore, one
should be accurate in assigning values to arbitrary
parameters A, C, and a. This requirement can be easily
satisfied in a wide and continuous range of parameter
values.

3. PARTICULAR CASES OF THE PHASE-
EQUIVALENT TRANSFORMATION

3.1. Homogeneous Schrddinger Equation

Of course, we are mostly interested in phase-equiv-
alent transformations that result in the homogeneous
Schrédinger equation

z(ﬁij—Eéij)&)j(E,r) =0 (14)
j

instead of the nonhomogeneous Schridinger equations
(11). To derive the transformation leading to (14), we
PHY SICS OF ATOMIC NUCLEI

Vol. 63  No. 11

2000

1995

can search for the parameters A, C, and a providing
zero values of the right-hand side of (11). The choice
C = 0 brings us to the equivalent (contrary to phase-
equivalent) transformation that is of no interest. Thus,
we should search for the parametersthat fit the equation

W (E,, E; a) = 0. (15)

Two obvious solutions of (15) area =0 and a = co.
Various other solutions of (15) can be found for partic-
ular potentials V;(r). However, the nonzero finite solu-
tionsa of (15) are energy-dependent. With the solutions
a(E) of (15), we can obtain energy-dependent poten-
tias Vij (E; r) phase-equivalent to the initial energy-
independent potential Vj;(r). It may be interesting for
some applications, but we shall not discuss the energy-
dependent transformation and shall concentrate our
attention on the solutionsa =0 and a = .

The case a = 0 presents a generalization of the sin-
gle-channel  phase-equivalent transformation from
[17]. For the bound state at the energy E,, the wave
function obtained by means of the transformation is of
the form

Adi(Eq 1)

A+ CZJ’|¢,-(EO, s)|%ds
io

¢i(Eo 1) = (16)

The wave function (16) is not normalized. The normal-
ization constant can be easily calculated. The normal-
ized bound-state wave function is

ATCq e, 1) = AATON(ED

A+ CJZ{|¢j(EO, s)|ds

a7

It is interesting that the components of the bound-
state wave function in all channels are modified by the
transformation synchronously: al the components
¢,(E,, r) are multiplied by the same factor

JA(A+C) (A +CZj J‘O 10, (Eo, 9Pds)™. Neverthe-

less, the relative weight of the components ¢;(Eo, r) in
the norm of the total multichannel wave function can be
changed by the transformation.

Let us now discuss the case of a = «. The trans-
formed wave function in this caseis of the form

di(Er) = ¢i(ET)

(13)

Coi(Eo, F)ZIW(EO, s)¢;(E, s)ds
o

A+CZJ’|¢J-(EO, s)|%ds
i
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If E # E,, the functions ¢;(E, r) and ¢,(E,, r) are
orthogonal:

J’W(Eo, s)¢i(E, s)ds = 0. (19)
0

With the help of (19) and (6), we can rewrite (18) as

¢i(Er) = ¢i(E )

Coi(Ea 1)) [0 (Eo S)0;(E, s)ds
e mess

A-C+ czﬁq)j(Eo, s)|%ds
io

Itisseen from (20) that the case of a= o isidentical (up
to the redefinition of the parameter A — A + C) to the
caseof a=0if E#E,. Itisclear, however, that after the
redefinition of the parameter A — A + C, the potential
v;(r) obtained with a = « becomes equivalent to the
potential v,(r) corresponding to the case of a = 0.
Hence, the case of a = co appearsto be equivalent to the
caseof a=0at any energy E, including E = E,. To dem-
onstrate this explicitly, let us examine the wave func-
tion §; (E,, r) in the case of a = o. Replacing E by E,in
(18), we obtain

¢i(Ep 1) = Aq)ri(EO’ ) Q1)
A+CzI|¢j(EO, s)| ds
j o
or, equivalently,
§i(Eo 1) = Ab(Eo 1) 22)

A—C+CZJ’|¢J-(E0, s)|*ds
i o

Replacing A by A + C and normalizing the wave func-
tion (22), we obtain expression (17).

3.2. Supersymmetry

Let usdiscussaparticular choice of parameters. C =
1, a=o, and A= 1. Thewavefunctioninthiscaseis

di(Er) = ¢i(E )

O(Eo D) 07 (Eq S)b,(E, 9ds
2 b =

+

ZI|¢1(E°’ s)|2ds
io
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or

di(Er) = &i(ET)

$i(Eai 1) [¢7 (Eo 5)0;(E, s)ds
i

ZI|¢J-(EO, s)|%ds
i o

Equation (23) can be used at any energy E, while (24)
is applicable only if E # E,. In the case of E = E,, the
wave function can be rewritten in asimpler form as

§i(Eq 1) = —2iEel)
ZJ’M)J-(EO, s)|2ds
i o

Equation (23) isjust Eq. (4) of [18]. In[18], Sparen-
berg and Baye suggested a multichannel supersymme-
try transformation. Thus, Egs. (24) and (25) describe
the multichannel supersymmetry transformation, or, in
other words, the multichannel supersymmetry transfor-
mation is aparticular case of the phase-equivaent mul-
tichannel transformation discussed in this paper that
corresponds to the particular choice of the parameters.
L et us discuss how it works.

It is clear from (25) that |§; (E,, r)| — o ast —

0. Hence, at the energy E,, the wave function §; (E,, r)
does not match the required boundary condition (4) at
r =0. At the sametime, §; (E,, r) fits the boundary con-
dition (7) at r = . Therefore, it is impossible to con-
struct another solution of the Schrodinger equation (14)
consistent with both boundary conditions at the energy
E = E,. Asaresult, the phase-equival ent transformation
removes the bound state at E = E,. At the same time, it
is clear from (24) that for all energies E # E,, the zero
in the denominator arising in the limit r — O is can-
celed by the zero in the numerator and the wave func-
tion (24) matches the boundary conditions at the origin
and at infinity both at once. Thus, the transformation in
this case removes the bound state at E = E, but none of
the other bound states, while the S-matrix at any energy
E > 0 isunchanged.

Of course, the supersymmetry transformation can
also be formulated in the case of a = 0. It isinteresting
that the bound state in this case is removed by a differ-
ent mechanism. Suppose that A = 0 and that C is arbi-
trary. The wave function at any energy E in this case
may be written as (24). However, it is seen that, at E =
E,, the wave function §; (E,, r) = 0.

We used the boundary condition (4) to construct the
supersymmetry transformation: the bound state is
removed because, for some particular parameter val-

ues, the wave function ; (E,, r) diverges at the origin
and appears to be inconsistent with (4). One can sup-

(25)
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pose that it is also possible to use the boundary condi-
tion at r = co to remove the bound state and to construct
another supersymmetry transformation. This is not so.
Let usdiscussthe case of a= o, A=0, and arbitrary C.
Asisseenfrom (18), §; (E,, r) = 0inthiscase; thus, the
bound state is removed. However, the transformation is
no longer phase-equivalent. Indeed, at energies E > E,,
the last term in (18) does not vanish whenr — c and
provides an additional phase shift, or, in other words, it
modifies the Smatrix.

3.3. Inverse Supersymmetry

We shall refer to atransformation that adds a bound
state to the discrete spectrum of the system and leaves
unchanged the S matrix and the energies of all bound
states supported by the initial Hamiltonian as the
inverse supersymmetry transformation.

Let us suppose that there is no bound state at the
energy E, < 0. By ¢,(E,, r), we now denote the wave
function at energy E, that matches the boundary condi-

tion (7) at infinity but diverges at the origin as r (see,
eg., ) [19]), where |, is the angular momentum in the
channel i.

With ¢;(E,, r), we can use our transformation to
obtain the homogeneous Schrédinger equation (14) in

the case of a = . The transformed wave function ; (E,
r) is given by (18). It is seen from (18) that ; (E, r)
doesnot diverge at the origin and matches the boundary

conditions, both at the origin and at infinity, at any
energy E # E,. For E = E, the transformed wave func-

tion §; (E,, r) isgiven by (21). It is clear that ; (Ey, 1)

at the origin is proportional to P2 where L =

max{1}. Hence, §; (E,, r) matches the boundary condi-
tion (4) if L = 2 and is not consistent with (4) if L < 1.
Therefore, our transformation with ¢; (E,, r) irregular at
the origin is the inverse supersymmetry transformation
inthecase of L = 2. In the case of L < 1, the transfor-
mation appears to be a phase-equival ent transformation
that does not make use of the bound state and can be
applied to a system that does not support abound state.
If the transformation is applied to the free Hamiltonian
with Vj;(r) = 0 in the s or p partial wave, it produces a

nonzero “transparent” potential Vij; (r) that providesthe
phase shift d = 0 at any energy E. The multichannel ver-
sion of thetransformation couples sand p partial waves
to produce atwo-channel “transparent” interaction that
provides the Smatrix of the form §; = 9.

AThe r divergence of the wave functions at the origin is derived
in[19] f_?r the single-channel case only. However, the derivation
of the r™ rule from [19] can be easily generalized to the multi-
channel case, at least for the potentials that do not diverge at the
origin.
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It is interesting that the inverse supersymmetry
transformation is not unique: we have three parameters
E,, A, and C that provide afamily of inverse supersym-
metry partner potentials. Contrary to it, the supersym-
metry transformation is unique; however, it can be used
in combination with the phase-equivalent transforma-
tion to construct afamily of potential s phase-equivalent
to the initial one but not supporting one of the bound
states.

4. CONCLUSION

We derived a multichannel phase-equivaent trans-
formation that can be used without restrictions on the
structure of the discrete spectrum of the system in var-
ious scattering problems like NN scattering, nucleon—
cluster, or cluster—cluster scattering. The multichannel
supersymmetry and inverse supersymmetry transfor-
mations appear to be particular cases of the suggested
general phase-equival ent transformation corresponding
to particular choices of the parameter values. The
inverse supersymmetry transformation is possible if
only the orbital angular momentum |; = 2in at least one
of the coupled channels. It is interesting to note that,
from the point of view of the NN system, this means
that a deep attractive NN potential, supporting an addi-
tional forbidden state like the Moscow NN potential,
can be constructed through the inverse supersymmetry
transformation of the realistic meson-exchange poten-
tial with arepulsive core only dueto the d-wave admix-
ture in the deuteron wave function.

By using the suggested transformation, one can con-
struct a family of phase-equivalent potentials depend-
ing on continuous parameters. Such families may be
very useful for fine tuning of theinteraction aimed to fit
not only two-body observables but also three- and few-
body ones. If the system has at least one bound state,
the phase-equivalent potential family is constructed
using formulas (8) and (9) directly. One can construct
phase-equivalent single- or multichannel potential fam-
ilies also in the case when there are no bound states in
the system: if all channel orbital angular momentall; <
1, one can directly apply the transformation with the
irregular function ¢; (Eo, r); if at least one of the channel
orbital angular momenta |; = 2, one can produce a
bound state using inverse supersymmetry at the first
stage and remove the bound state at the final stage by
using the supersymmetry version of the transformation.
Thus, one can, for example, construct a family of
phase-equivalent potentials for any combination of
coupled partial wavesin the NN system.

It should be noted that our method allows to one
construct the family of phase-equivalent potentialswith
given properties of the spectrum in the multichannel
case without use of Gelfand—Levitan—-Marchenko pro-
cedure applied in the inverse scattering problem (for
example, see [20]).
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We hope that the suggested transformation will be
useful in various few-body applications.
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Abstract—Spin effects in the weak two-body hadronic decays of the B, and B; mesons into J/y and p(Ty)
mesons are considered within the model of hard one-gluon exchange between quarks at high momentum trans-
fers. Itis shown that the polarization of the J/y meson in the decays of the BY meson differs substantially from

that in the decays of the B, meson. The decay widths of the B} meson differ significantly from the widths of

the B, meson. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The B, meson was first observed by the CDF collab-

oration at FNAL in collisonsoccurring in Js=18Tev
[1], and an estimate of its mass was given in the same
study. This initiated experimental investigations into
unique properties of heavy quarkonia involving quarks
of different flavors. The experimental result for the
B.-meson mass, mg_ = 6.40 £ 0.39 £ 0.13 GeV, isin
agreement with the theoretical predictions based on
nonrelativistic quark models[2] and on QCD sum rules
[3]. The predicted splitting of the 3S, and 'S, levelsin
the bc system is 0.05-0.07 GeV, which is much
smaller than the current experimental error in the
B,-meson mass.

According to calculations within the nonrelativistic
model for heavy quarkonium that were performed to

order 0(;1 in perturbative QCD, the ratio of the cross

sections for the production of B and B, mesons is
about 2 to 3 [4]. At the same time, the same ratio esti-
mated on the basis of the fragmentation mechanism of
B.-meson production is about 1.3 [5]. Thus, the ability
to discriminate experimentally between events leading
to the production of BY mesons and events leading to
the production of B, mesonsis of prime importance for
testing models that claim for correctly describing the
production of B, mesons.

A peak in the mass spectrum of the J/Qlv, (I = e, W)
system produced in the semileptonic decay

B, — J/y+Il+v, €))

D Samara State University, ul. Akademika Pavlova 1, Samara,
443011 Russia, and Nayanova Municipal University, Samara,
Russia.

where J/ is detected by its leptonic decay mode
JW — Il isasignals of B;-meson production [1]. In
what is concerned with detection, the two-body had-
ronic decays featuring a J/ meson in the final state,

B, — J/Wp(m), (2)

are preferable B.-meson decay channels.
According to the theoretical estimates given in [6],
the branching fraction for this decay modeis about 1%.
A feature peculiar to the two-body hadronic decays

(2) of the B, meson isthat the decaying b antiquark and
the spectator ¢ quark are both heavy. This being so,
high momentum transfers to the spectator quark (k> >

/\éCD ) arerequired for a cC pair to form abound state.

Under this condition, the wave functions of the initial
B. meson and thefinal J/y meson cannot overlap sizably,
so that the spectator approachisinapplicablein thiscase.
In support of this conjecture, we note that the gluon vir-
tuality in the decay processes (2) is estimated as
m
K= —4—n§l((ml —my)’—mi) =—1.2 GeV’,

where m;, m,, and m; are the masses of B., J/{), and
p(1D), respectively; therefore, it is necessary to invoke
the hard-exchange formalism [7].

2. MODEL OF HARD EXCHANGE

Within the hard-exchange approximation allowing
for one-gluon exchange with a ¢ quark in the initial

state, the exclusive decay modes B, —~ J/1t(p*) and

B: — n.JT(p*) werefirst considered in [6], where
it was shown that the decay amplitudes calculated
under the assumption that hard t-channel exchangeis
dominant are twice as great as the amplitudes calcu-
lated in the spectator approach. However, an arith-

1063-7788/00/6311-1999%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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™(p*)

P2 D1

Feynman diagrams for the decays B}, (B,) — J/yp(T0).

metic error was made there in calculating the decay
width (B, — n.m) and the branching ratio

r(B; — n.m)/(B. — J/P1t). Moreover, neither

the decays of the B meson nor J/ production in var-
ious polarization states was considered in [6].

Within the hard-exchange approximation, the
amplitudes for the decays B, (BY ) — J/Pp(T0) are
represented by the diagramsin the figure. Here, we per-
form our analysis in the nonrelativistic approximation,
which implies that the 4-velocities of the quarks in a
heavy meson are equal, whence it follows that, in the
B. meson of 4-momentum p,, the momenta of the
guarks are given by

m, _omy
mb+mpl’ Ps m, + m,

Pe = Py,

and that, in the J/@ meson of 4-momentum p,, the
momenta of the quarks are

-1 -1
pC - 2p21 pC - 2p2

Provided that the binding energy is disregarded, the
constituent quark masses can be expressed in terms of
the meson masses as

In order to go over from the amplitude for bound-state
production to the amplitude for the production of a
guark—antiquark pair in which the quark and the anti-
guark have the same 4-velocity v = p/m, it is sufficient
to make the substitution

L(1+70) fm 3’
2 233

where & = y,g* (¢" is the polarization 4-vector) in the
case of avector meson and & =y?° in the case of apseu-
doscalar meson; f isthe leptonic meson decay constant,
which isrelated to the meson wave function at the ori-
gin by the equation

_ |12 i
f = [ﬁw(on,

Vi(v)T'(v) —a
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and 3/./3 isthe color factor considering that the quark
and the antiquark in the meson are in the color-singlet
state.

The effective four-fermion Hamiltonian describing
nonleptonic decays of the type b — crip) has the
form

Hest(b— cmi(p))

:%vbcalc(x)vu(l—vs)b(x)Aip(x>, )

where Ay () = if,py €™ and Aj (X) = if,merA)eP, A,
fr, and f, being, respectively, the polarization of the vec-
tor meson, the leptonic decay constant for the Ttmeson,
and the leptonic decay constant for the p meson; a, =

% (Cf (m) + c’ (m)), the coefficients CE (m) taking into

account strong-interaction corrections to the effective
four-fermion vertex due to hard gluons at the scale m;
Gy isthe effective Fermi constant; and V,. isan element
of the Cabibbo—-Kobayashi—Maskawa matrix. We note
that the negligibly small final-state interactions are dis-
carded in the effective Hamiltonian (3).

With allowance for (3), the amplitude for the decay
process BY — J/Yp, whichisrepresented by the Fey-
nman diagrams in the figure, assumes the form
GF 16110, fim;

ﬁ Ve 3 msfs 2.3

2 2L gy [s2(1+ Vo)V 8 (1-0,)

M(B} — J/pp) =

fzm
" 238K
X (E3(1-ys) (=X + mc)Va

“)

+ %y“(_ X, + mb)ég(l—ys))}

where the quantities carrying indices 1, 2, and 3 refer to
BY , Jp, and p, respectively, and where

N N m, .
Xy = m2V2—7 1
o ~ m, .
X, = m1V1—‘2‘V2,
m2 )
2 _ My
k - 2 (1 y)!

2 2 2
mg+m, —ms

y = (vyvy) = om,m,

For the decay of the pseudoscalar B, meson, €, in (4)

must be replaced by y;, and the substitution €, — 7,
must additionally be made if a Tt meson is produced in
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the decay under study. In the B.-meson rest frame, we
have

vi =(1,0,0,0),

1
Vo, = @(Ez- 0,0, |p,)),
vy = i(m Vi—M,V,)
3 m3 1v1 2V 2) (6)
mj + m, —m;

B, = 2m,

lpg = «/Eg—mg-

In the limit m; = O, we obtain

m’ + m> m’—m:
E ~ 1 2 and ~ 1 2
27 2my [P 2m,

Summation over the polarizations of vector particlesis
performed by the formula

ZSJ(V)SV(V) = _guv+vpvv- (7)
LT

If the product J/ meson islongitudinally polarized, its
polarization 4-vector can be represented as

M M
() = 2= ooy

wheren* = (1, —p/|p|), so that (nn) = 0 and (np) = E + [p|.

The use of the auxiliary 4-vector n* makesiit possi-
ble to perform summation over the transverse and the
longitudinal polarization of J/y in a manifestly covari-
ant way:

®)

(TIRY vo_p (TR

*H v puv vn+vn nn
e (V)g(v) =vv — , (9
vIElv) CORme

TR vin'+v'n"  n'n’
& (v)er(v)=—-0g, t - .(10

3. RESULTS OF THE CALCULATIONS
The width with respect to the decay B — J/yip

is expressed in terms of the quantity |M|° that is
obtained from the squared modulus of the relevant
amplitude by performing summation over the polariza-
tions of the outgoing particles and averaging over the

polarizations of the B} meson. Specifically, we have

M(B: — JIyp) = 'p—2|2|M|2. (11)
8rm;
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Making use of formulas (4)—(11), we arrive at
M (B — J/yp)

202,22

12
24T[Gsflf2f3 |p2| ( )

— 2 2 *
r(B.— J/yp)
Aol fi 562 |p (13)
= Gy Tpe e P ot
m;m, (1-y)

wheref, = fg = fB:,f2 =fy G=f=f, m=mg,
My = My, My =M,
3F(BY) = mg +2mo(13m; — 2mym, —m?)

+ 2m§(— 19m11 - 18mfm2 — 16mfm§ + 2mlm§’ + mg)
+ 2m§(— Bmf + 18mfm2 + mfms - 20mfm§
+11mems + 2mms —ms) + 17ms + 4m; m,
—32mfm§ - 12mfm§ + 14mfm;1 + 12mfm§

—4m1mg + mg,
F(B.) = mj +2mom,(5m, + 8my)

+ mg(— 19m11 - 56mfm2 + Gmfmg - 8mlm§ - 3m§)
+ 2m§(2m§3 + ZOmfm2 — 3mfm§ - 16mfm§’
+16m2m; —4m,m; + my)

+ 4mf(m§1 - 2mfm§ + mg).

Inthelimit m; = 0and mg. = mg_, we obtain

M(By — Jigp) _ T(BF —J/ym)
r(B,— J/yp) (B, — J/Pm)

(14)
= 1—12(17 +4x+2x —4x° +x") = 1.58,

where x = my/m.
A precise computation with m; = m, = 0.77 GeV at
Mg: = 6.3 GeV and mg = 6.25 GeV yields

r(B: — J/yp)

FE ) 1.35, (15)
r(Bs — J/wp) 305

(B — Jym) (6
(B, — J/yp) _

(B, — J/Ym) =343,
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The polarization of the J/) mesons in the decay pro-
cesses (2) can be determined through the angul ar distri-
bution of the leptons produced in the decay J/ — I*1-.
We denote by 0 the angle between the vector of J/
polarization and the lepton-momentum vector. In the
J/ rest frame, the angular distribution of the leptons,
dr/dé(J/y — I*1-), then hasthe form

g—g(J/w—»lT) 01+ acos®, (17)

where

|_-|——2|_|_

@ T rvor,

Iy and ", being the widths with respect to the B, (B} )
decays into, respectively, the transversely and the lon-
gitudinally polarized J/{p meson. We do not present
here exact analytic expressionsfor thewidthsrand I,
calculated with allowance for the nonvanishing masses
of the Ttand p mesons because they are rather cumber-
some. However, the expressions for a are simplified
considerably in the limit of m; = 0 to become

a(Bf — J/pp) = a(BY — J/ym)

4 (18)

2 3
:7—4x—2x +4X" —X — 045

9+4x+2x°—4x3+ X'

a(B,— J/yp) = a(B,— J/ym) =-1. (19)

With alowance for the nonzero value of the p-meson
mass, we obtain

a(BY — J/yp) =0.40 (20)

a(B, —J/yp) =-0.85. 2D

The probability that the J/{» meson retains the polariza-
tion of the BY meson is governed by the parameter

g = 1.1

= (22)
I

where ¢ _ 1 isthe width with respect to the decay of a
transversely polarized B meson into a transversely
polarized J/@ meson and ', is the width with
respect to the decay of a transversely polarized B}

meson into alongitudinally polarized J/{y meson. Inthe
limit of m; = 0, we have
§(B — J/Yp) =&(B{ —J/ym) = 1. (23)

The calculation under the assumption that the p-
meson mass does not vanish yields

§(BY — J/yp) = 0.97.

PHYSICS OF ATOMIC NUCLEI
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At fg = fg. =044 GeV, f,, = 054 GeV, f, =
0.14 GeV, f, = 0.22 GeV, Vi = 0.04, Gy = 1.166 X
107 GeV~2, and ag = 0.33 [6], we obtain (in units of
107° eV)

M(B,— J/Wp) =30.1a7, (24)
M(BX— J/yp) =40.2aZ, (25)
(B.—= J/ym) = 8.75a;, (26)
M(BY— J/ym) = 13.4a’. 27)

Apart from the factor of af = 1.21, which takes into

account hard corrections to the vertex of four-fermion
interaction, our decay-width values in (24)—<27) agree
with the results obtained in [8, 9] for the decays B, —
J/Wp(1). However, the width with respect to the weak

decay BY — J/Qp(1m) is much smaller than the width

with respect to the electromagnetic transition BY —
B.y, the latter being estimated at 60 eV in [8]. Because
of this, it is next to impossible to study experimentally

the weak modes of BY decay.

4. CONCLUSION

The results of this study can be summarized as fol-
lows. It has been shown that the decay widths

F(BY — JWp) and (B — J/Ym of the vector

BY meson are, respectively, 1.35 and 1.58 times as
great as the corresponding decay widths of the pseudo-
scalar B, mesons. The product J/y mesons are trans-
versely polarized in B} decays (o = 0.40 for BY —

JWpanda =0.45for BY — J/Ym) and are longitudi-
nally polarized in B, decays (o =—-0.85for B, — J/p
and a =-1.0 for B, — J/ym). Theratio of the B} and
the J/» polarization is nearly equal to unity in the decay
BY — J/Ymandis97% inthedecay B} — J/p.
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XXIX INTERNATIONAL CONFERENCE ON THE PHYSICS
OF CHARGED-PARTICLE INTERACTION WITH CRYSTALS

XXIX International Conference on the Physics
of Charged-Particle Interaction with Crystals
May 31-June 2, 1999, M oscow

The XXIX International Conference on the Physics
of Charged-Particle Interaction with Crystals took
place in May—June 1999 at the Institute of Nuclear
Physics, Moscow State University. Traditionally, atten-
tion there was given primarily to basic phenomena and
processes in the interaction of accelerated particles
with targets formed by ordered structures and to gen-
eral problemsin the physics of fast-ion interaction with
matter.

Some results obtained recently in these realms are
of fundamental importance. These include those that
emerged from detailed investigations into particle
channeling, the shadow effect, the resonance coherent
excitation of ions, electromagnetic radiation from
channeled electrons, and a wide variety of coherent
effects in electromagnetic processes. These effects
formed a basis for evolving new procedures of a con-
siderable potential for experimental studies both in
atomic and nuclear physics and in solid-state physics.
At present, these new methods are being extensively
used to explore processes involving high-energy ele-
mentary particles. Analysis of the phenomena consid-
ered at the present conference ensured a qualitatively
new level in applying ion beams as a research tool. In
particular, contemporary semiconductor technologies
are based on the use of these methods.

Theinvestigations being discussed have been vigor-
ously developing in a number of leading research insti-
tutions and universities in the Commonwealth of Inde-
pendent States of the former Soviet Union. In previous
years, research groups from these ingtitutions per-
formed pioneering investigations and obtained results
that were commonly recognized. The conferences tra-
ditionally held at Moscow State University play a sub-
stantia rolein coordinating these investigations. Scien-
tists from almost all states of the former Soviet Union
and, as a rule, leading researchers from other foreign
countries systematically participate in this conference.

Since the proceedings of the XX1X Conference are
published in 2000, it is worthwhile to dwell upon the
program of the next (XXX) conference, which will
occur in 2000 and which is expected to be especially
extensive. It will consist of four sections. The first sec-
tion will include general issues of the physics of orien-

tation phenomenaand of their application in fundamen-
tal investigations. Among these, mention should be
made of the dynamics of charged-particle scattering in
ordered media, coherent inelastic processes accompa-
nying particle interactions with crystal atoms, and
problems associated with the physics of ion—atom col-
lisions (like energy losses, aswell as excitation and ion-
ization phenomena). Unique possibilities for measur-
ing nuclear-reaction times and detailed analyses of
crystal defects and of the distribution of impurity atoms
stand out among applications. Recently, some results of
paramount importance have been obtained in studying
structural transitions in high-temperature superconduc-
tors by using orientation effects. The potential of the
channeling effect is widely used to govern beams at
high-energy accel erators and to solve some problemsin
elementary-particle physics. The relevant problems
will also be discussed at the conference.

The second section will be devoted to electromag-
netic radiation from particlesin crystals. A wide variety
of phenomena has attracted the attention of many
research groups experimenting at high-energy acceler-
ators. Here, applied investigations are aimed at creating
sources of electromagnetic radiation with unique spec-
tral characteristicsin the x-ray and gamma-ray ranges.

Thethird section will cover the application of meth-
ods based on orientation phenomenain various fiel ds of
physics to research and applied problems.

The fourth section will deal with problems associ-
ated with ion-beam-induced modifications to the prop-
erties of substances. Of particular interest are phenom-
ena observed near solid-state surfaces. The conference
to be held in 2000 will pay specia attention to these
phenomena because research ingtitutions that have
hitherto focused only on the problems of the physics of
orientation phenomena are now extending the subject
of their investigations to cover the fundamenta prob-
lem of creating new materials. A dedicated section for
discussing processes that occur in solids under the
effect of intense beams of elementary particles will be
organized at the conference.

Chairman of the Organizing Committee,
Professor A.F. Tulinov
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XXIX INTERNATIONAL CONFERENCE ON THE PHYSICS
OF CHARGED-PARTICLE INTERACTION WITH CRYSTALS

Spectral Structure of Polarization Radiation
from Rdativistic Electronsin Aluminum

S. V. Blazhevich? V. K. Grishin, B. S. Ishkhanov, N. N. Nasonov®, G. S. Nefedov,
V. P. Petukhov, and V. |. Shvedunov

Intitute of Nuclear Physics, Moscow Sate University, Vorob’ evy gory, Moscow, 119899 Russia
Received December 10, 1999; in final form, February 11, 2000

Abstract—Caollective effects in polarization bremsstrahlung generated by relativistic electrons in a polycrys-
talline aluminum foil are studied experimentally on the basis of the 2.4-MeV electron accelerator installed at
the Institute of Nuclear Physics (Moscow State University, Moscow). A peak structurefound in this polarization
bremsstrahlung for the first time isin agreement with theoretical predictions. © 2000 MAIK “ Nauka/Inter pe-

riodica” .

1. INTRODUCTION

Polarization bremsstrahlung results from a variable
polarization of atomic electrons that is induced by the
electromagnetic field of fast charged particles [1].
Owing to its special features, polarization bremsstrahl-
ung isone of the most interesting processes observedin
collisions of charged particles with atoms. By way of
example, weindicate that, in the x-ray region of photon
energies between a few keV and a few tens of keV,
which is of importance for various applications, polar-
ization bremsstrahlung comesto be of acollective char-
acter because the polarization process involves coher-
ently all atomic electrons. Owing to this, the radiation
intensity integrated over the angles of observation per
atom is equal to that of conventional bremsstrahlung.
However, angular anisotropy is less pronounced in the
case of polarization bremsstrahlung than in the case of
conventional bremsstrahlung. We can therefore expect
that, in the interaction of fast particles with atoms, radi-
ation at observation angles larger than 1/y, wherey is
the Lorentz factor for incident €l ectrons, will be domi-
nated by polarization bremsstrahlung.

In the above energy region, the effective impact
parameter at which the motion of an incident particle
generates polarization bremsstrahlung is commensu-
rate with atomic dimensions and, hence, with inter-
atomic distances in condensed media. Therefore, the
properties of polarization bremsstrahlung are expected
to be rather sensitive to the structure of condensed sub-
stances. In particular, a tight correlation between the
properties of polarization bremsstrahlung and the struc-
ture of amorphous and polycrystalline condensed
mediawas predicted in [2].

Unfortunately, experiments studying polarization
bremsstrahlung were performed predominantly in the

D Belgorod State University, Studencheskaya ul. 12, Belgorod,
308007 Russia

region of resonance atomic frequencies (see[1]), where
correlations between atoms are insignificant. At the
Institute of Nuclear Physicsin Moscow (Moscow State
University) and at the Institute of Nuclear Physics in
Tomsk (Tomsk Polytechnic University), experimental
investigations into coherent processes in polarization
bremsstrahlung generated by relativistic particles
employed 6.7-MeV electrons incident on amorphous
targets [3] and 900-MeV electrons incident on heavy-
metal targets [4], respectively.

This article reports on new results coming from an
experimental investigation of the spectral distribution
of polarization bremsstrahlung from a polycrystalline
auminum foil exposed to relativistic electrons. The
ensuing discussion also covers the results from [3, 4].

2. DESCRIPTION OF THE EXPERIMENT

The experiment made use of a 2.4-MeV electron
beam from the continuous linear electron accelerator
installed at the Institute of Nuclear Physics (Moscow
State University, Moscow). The beam of cross-sec-
tional area2 x 2 mm? wasincident on a2-pum-thick alu-
minum foil arranged in a vacuum chamber at an angle
of 45° with respect to the beam tragjectory. The electrons
that traversed the target were then absorbed in a Fara-
day cup. The target was fixed on a movable bench with
aremote control. The quality of the incident beam was
monitored with the aid of a special TV camera and a
screen covered with luminophore and positioned in the
same chamber. Photons emitted in electron—target
interactions were recorded by a cooled SiLi detector
within a small solid angle of 1.5 msr. The detector,
which had an energy resolution of 200 eV, was oriented
at aright angle to the beam and was positioned at adis-
tance of 0.5 m from the target. As was mentioned
above, this geometry allowed us to obtain an optimum
proportion between polarization bremsstrahlung and
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Fig. 1. Experimental spectrum of x-ray radiation generated
by 2.4-MeV electrons in an auminum target 2 um thick
(spectral section above the K-line of aluminum): (/) main
signal and (2) external background.
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Fig. 2. Spectral distribution of polarization-bremsstrahlung
intensity: (1) experimental data upon external-background
subtraction; (2) conventional-background intensity; and
(3, 4) calculated intensities of polarization bremsstrahlung
and conventional background in an amorphous and in a
polycrystalline aluminum target, respectively.

conventional bremsstrahlung—the former is dominant
here, since the latter is characterized by a high degree
of angular anisotropy. There was also a small lead
screen in the chamber, which allowed us to cover the
detector along the line-of-sight direction toward the tar-
get. In that case, the detector recorded the actual exter-
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nal background arising in the chamber owing to target
irradiation with the accelerated beam. Moreover, addi-
tional magnets shielded the detector from scattered
electrons.

The photon flux was measured at a beam current
whose maximum value did not exceed 10 nA, whereby
nonlinear distortions were avoided in accumulating
spectral data. The use of the continuous mode of accel-
erator operation permitted considerably reducing the
time required to accumulate a statistically reliable data
sample and minimizing the effect of the facility time
drift.

Several runs of measurements of polarization
bremsstrahlung were performed. In the first runs,
whose results were reported in [5, 6], polarization
bremsstrahlung for moderately relativistic electrons
was separated for thefirst time. Because of ahigh back-
ground level, however, it was impossible to perform a
reliable analysis of the structure of polarization
bremsstrahlung. In the subsequent runs reported here,
the measurements were performed at an appreciably
reduced level of the external background.

Curve I in Fig. 1 represents a typical energy spec-
trum of x-ray photons according to the latest experi-
ment. Apart from polarization radiation proper, this
spectrum contains conventional bremsstrahlung and a
background. The background is shown by curve 2 in
Fig. 1 (theresults are presented with due regard to radi-
ation absorption in the target and the spectral sensitivity
of the detector; however, the relevant corrections were
insignificant in the energy region being considered). A
dominant contribution to the total radiation flux comes
from the peak that correspondsto the K-line of the alu-
minum characteristic radiation and which occursin the
region around 1.5 keV. This peak exceeds the level of
radiation in the neighboring photon-energy region by a
factor of about 3. In Fig. 1, we do not therefore display
the K-lineregion in the overall spectrum.

3. DISCUSSION OF THE RESULTS

Figure 2 shows the resulting energy (frequency)
spectrum of the observed-radiation intensity upon
background subtraction (curve I). For the sake of com-
parison, we also show a few curves (2—4) calculated
under conditions complying with the experimental con-
ditions of radiation collimation. Curve 2 describes the
spectrum of conventional-bremsstrahlung intensity—
in the energy region being considered, it appears to be
a horizontal line. Curves 3 and 4 represent the spectra
of polarization-bremsstrahlung intensity in amorphous
and in polycrystalline aluminum, respectively, the con-
tribution of conventional-bremsstrahlung intensity
being taken into account for each spectrum. The curves
in guestion were calculated on the basis of the theoret-
ical relations from [2].

According to the results of the calculations (see also
[1]), the spectral distributions of polarization
Vol. 63
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SPECTRAL STRUCTURE OF POLARIZATION RADIATION

bremsstrahlung in amorphous and polycrystaline
mediadiffer markedly. In the coherent region, polariza-
tion bremsstrahlung in a polycrystalline medium has a
peak structure, whose origin is similar to that in the
case of Debye-Scherrer peaks observed in the scatter-
ing of an x-ray flux in a polycrystalline medium. In the
photon-energy range 1-8 keV, there are three peaks at
3.75,4.33, and 6.12 keV (these are their mean energies)
corresponding to the coherent scattering of the inci-
dent-electron field onthe (111), (200), and (220) alumi-
num crystallographic planes at a Wolf—Bragg angle of
45° in the experiment. For moderately relativistic elec-
trons, the peaks are rather broad, the heights of the peak
maxima decreasing fast as their mean energy becomes
higher. Therefore, the (111) and (200) peaks are poorly
resolved, merging into thefirst peak on curve4 in Fig. 2.

Comparing the curves in Fig. 2, we can conclude
that polarization bremsstrahlung can be singled out
reliably from experimental data and that the character
of this radiation is governed by the polycrystaline
structure of atarget material. The positions of the peaks
on the measured curve are in agreement with the pre-
dictions. The measured yield of polarization
bremsstrahlung in the vicinity of the (111) and (200)
peaks also complies with theoretical values. The main
discrepancy between theoretical predictions and exper-
imental data, which is observed in the vicinity of the
(220) peak, can be attributed tentatively to coherent
Bragg reflection from the surface texture of the target
and to the background of the iron K-line, which comes
into play as the result of rescattering of secondary par-
ticles on the chamber walls.

Thus, experimental results confirm that the spectral
properties of polarization bremsstrahlung generated by
relativistic electrons in polycrystaline and in amor-
phous media differ considerably, in contrast to what is
observed for conventional bremsstrahlung [7]. Bearing
in mind previous experimental data on the behavior of
polarization bremsstrahlung from relativistic electrons
in amorphous carbon [3], we can state that the mecha
nism of thisradiation is highly sensitive to the structure
of the medium. This is supported by our preliminary
data from the measurements of polarization
bremsstrahlung in other media. This circumstance is of
considerable importance for developing new methods
for astructural analysis of substances.

The above conclusions also supplement substan-
tially theresults of Verzilov et al. [4], who studied radi-
ation generated by 900-MeV electronsin heavy metals
that was observed at an angle of 19° with respect to the
electron trajectory. In heavy metals, the upper bound-
ary of the coherent region of bremsstrahlung radiation
falls within the region around 100 keV because, there,
the effective radius of the atomic electron shell, R =
a,/Z' (where a, is the Bohr radius and Z is the charge
number of the atomic nucleus), is less than an ang-
strom. On this basis, the radiation recorded in [4] near
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50 keV wasinterpreted as polarization bremsstrahlung.
However, no correlation between the properties of this
radiation and the structures of the medium was found.
The possiblereason for thisisthat, under the conditions
of the experiment reported in [4], the region of lower
polarization-bremsstrahlung energies, where the struc-
ture of the medium could be operative, was closeto the
detection threshold of about 20 keV (we used a more
informative presentation of the results than that in [4],
displaying the intensity values instead of the flux den-
sities of x-ray photons, whereby the conventional-
bremsstrahlung intensity representing a horizontal
line—see, for example, curve 2 in our Fig. 2—can be
singled out easily).

4. CONCLUSION

Two important features of polarization bremsstrahl-
ung have been revealed for the first time in the present
article:

(i) The spectral distribution of polarization
bremsstrahlung generated by relativistic electrons in
polycrystalline substances has a clear-cut peak struc-
ture.

(ii) Theyield of polarization bremsstrahlung is sup-
pressed noticeably outside the peak region.
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Abstract—An analytic theory is developed for dynamical-diffraction effects in x-ray radiation from arelativ-
istic electron traversing athin single crystal. It is shown that such dynamical effects may be responsible for a
glaring discrepancy between recent experimental data and the traditional theory of parametric x-ray radiation.
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1. INTRODUCTION

Parametric x-ray radiation [1-4] arises owing to the
scattering of the Coulomb field of a fast particle mov-
ing in a medium characterized by a periodic dielectric

permittivity, €(w, r) = 1 + X,(w) + g)(g((o)eig'r,

where w is the photon energy, while g is a reciprocal-
lattice vector. The dynamical theory of x-ray diffraction
in a crystal [5] or its simplified version, kinematical
theory (perturbation theory), isusually used to describe
this radiation. Previous investigations of the spectral
and angular distributions of relevant x-ray photons
propagating along the direction of Bragg scattering
reveal ed good agreement between experimental dataon
parametric radiation and kinematical theory. Here, the
absence of dynamical effectsis due to the fact that, in
the case of parametric x-ray radiation, the necessary
condition of synchronism between the emitted photon
and the radiating particle, w = k - v (k is the photon
wave vector, and v isthe velocity of the radiating parti-
cle), is satisfied only off the region of the dynamical
maximum in the Bragg scattering of the pseudophoton
field of aparticle on the set of atomic crystal planes.

Of particular interest in connection with the afore-
said is the experimenta result reported recently by
Freudenberger et al. [6], who measured, in Bragg
geometry, the orientation dependence of the yield of
collimated parametric x-ray radiation generated by
87-MeV electrons in a Si crystal (111). At the maxi-
mum of this orientation dependence, the measured
yield is eight times as great as the theoretical predic-
tion, the orientation angle corresponding to the experi-
mental maximum being 2.8 times smaller than that
which follows from the theory of parametric radiation.

The objective of the present study is to develop an
analytic theory of the dynamical scattering of the elec-
tromagnetic field of arelativistic electron traversing a
thin single crystal. On the basis of our results, we will
attempt to explain the experimental results presented in
[6] and propose a new scheme for generating x-ray
radiation.

2. GENERAL RELATIONS

Let us consider the structure of the electromagnetic
field excited by a relativistic electron traversing a thin
crystal whose reflecting crystallographic plane (which
is specified by a reciprocal-lattice vector g) is parallel
to the crystal surface (see Fig. 1). Within the two-wave
approximation of the dynamical theory of diffraction
[5], the Fourier amplitude of the electric field, E,, =

1 4J’dg’rth(r, tye 'k " +ivt s sought in the form of
(2m)
the sum of the direct and diffracted waves, E, =

%i _&0Ey and E; = Zi _ &gEng respectively,
where the polarization vectors are given by e, = g4 =
k x g, &=k X, &y=kyXe) andky=k +g. Deter-
mining the free and forced solutions to the Maxwell
equations for the Fourier amplitudes of the relevant
fields within and outside the crystal and finding
unknown coefficients from the boundary conditions at

y O

Q”Z-\—e‘ ¢/2\0v e
v /’\

L

Fig. 1. Geometry of the parametric-radiation process. The
following notation is adopted in thisfigure: v isthe velocity

of theradiating particle, n = e%l.— %9% + 0 isaunit vector

in the direction of radiation (e - 6 = 0), 6' is the orientation
angle measured with respect to the position of the exact
Bragg resonance, L isthe crystal thickness, gisareciprocal -
lattice vector, and 8, is the absolute value of the projection

of the vector @ onto adirection parallel to the reaction plane.
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DYNAMICAL-DIFFRACTION EFFECTS IN PARAMETRIC RADIATION

the crystal surface, one obtains the conventional (rather
cumbersome) expression for the distribution of the
radiation with respect to spectral and angular variables
in Bragg geometry (see, for example, [3, 4]).

In the theory of parametric x-ray radiation, a tradi-
tional approach relies on the asymptotic formulafor the
above distribution. This formula describes the yield of
parametric x-ray radiation associated with the scatter-
ing of the equilibrium Coulomb field of afast particle
over the entire crystal thickness. Because of the screen-
ing of the equilibrium field due to the polarization of
medium electrons, the yield of this radiation is satu-
rated fast with increasing energy of the radiating parti-
cle (density effect in parametric x-ray radiation [7]).

By analyzing the general formula for the yield of
parametric x-ray radiation generated by a relativistic
electron traversing the surface of acrystal, it was shown
in [8] that there is additional radiation due to the
dynamical scattering of transition radiation from this
electron in the crystal. A generalization of the problem
considered in [8] to the case of afinite-thickness crystal
was given in [9, 10], where the relevant results were
obtained from a numerical analysis. In the present
study, we describe the process analytically on the basis
of an asymptotic approach, which is opposite, in a
sense, to that which is adopted in the conventional the-
ory of parametric x-ray radiation.

In the general expression for the distribution of the
radiation with respect to the spectral and angular vari-
ables, we first single out terms representing the contri-
bution of transition radiation (such terms are always
discarded in the asymptotic formula for parametric
x-ray radiation). After some simple algebra, we obtain

dN, e’ Qi
=€ R, 5,
“dods gy "
oo s 1-2)

[1-¢]] +|snn*(E,/1-2D)

where A isthe polarization subscript, Q, = 8y, 6, =26+
8, v is the Lorentz factor, {, = (wy,/wy, — D)/By, By =
207 Xgllon l/g?, oy = 1, a, = cosd, w, = w,(1 + (6" +
By cot(9/2) ), w, = g/2sin(9/2), and J, = B, gL/2.

The ensuing analysis will rely on expression (1),
which differs markedly from that traditionally used in
the theory of parametric x-ray radiation. Thisexpression

describes radiation correctly for y2|x,| = y%)(z, o > 1
since, under the conditions being considered, the angu-
lar distributionin (1) (AQ = y!) is concentrated almost
completely in the region of a dip in the angular distri-
bution of conventional parametric x-ray radiation (Q <
wy/W, wy/w > y~!, where wy, is the plasmon frequency
in the medium) that is generated by a particle over the
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Fig. 2. Universal frequency dependence of the coefficient of
the dynamical reflection of thefield of afast particle from a
crystal at 8, = (1) 0.5 and (2) 5.

entire crystal thickness and which is suppressed by the
density effect.

We note that the factor eZQA2 (Y2 + Q%)% in (1)

describes the angular distribution of the vacuum Cou-
lomb field of arelativistic electron and that the quantity
R(C,, &,) corresponds to the coefficient of the dynami-
cal reflection of the field from the crystal. The reason
why the dynamical regime of reflection isrealized here
is that, in the present case, the process involves free
transition-radiation photons (rather than bound
pseudophotons, as in conventional parametric x-ray
radiation), whose distribution with respect to spectral
and angular variables differs only slightly from the dis-
tribution of pseudophotons in a vacuum for w < yw,
(recall that we consider precisely this region of fre-
guencies). The dependence R({,, d,), which character-
izes the intrinsic linewidth of the radiation being dis-
cussed, isillustrated in Fig. 2.

The crystal-thickness dependence of the radiation
yield is a very important characteristic. Integrating
expression (1) with respect to w, we obtain

dN, € Q?
—r = g, (),
d’e TIZB}\(y_2+Q2)2 ©)

2

s < 2p dx|sinh®(8,/1—0)| |
&) ﬂ[|1_x2| +|sinh?(8,//1-0)

According to the curve in Fig. 3, the yield of the
radiation being considered is saturated at a crystal
thickness approximately equal to the extinction length
for Bragg scattering.

By comparing the theoretical result in (2) with the
experimental data from [6], we find that thereis agree-
ment for the values of the orientation angle 6' that cor-
respond to the maximum of the orientation dependence
of the radiation yield; in addition, it turns out that the
calculated radiation yield at the maximum of the radia-
tion dependence is approximately twice as large as the
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041
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Fig. 3. Universal crystal-thickness dependence of theradia-
tionyield.

measured value. The latter may be due to a sizable
interference contribution of conventional parametric x-
ray radiation {in the experiment reported in [6], the
crystal thickness was comparatively large, while the
coefficient yw,/w exceeded unity insignificantly (it was
about 2.5)}.

Performing a two-dimensional integration of
expression (1) with respect to 0, we find the spectrum
of anoncollimated radiation in the form

dN,
dw

T, = [wﬁy‘zcotzq—z) + B»—wb%l—e'cot%g}_m, 3)

Bu—cobgl— e'cotq—z)Eg
[wﬁy_zcotzq—z) + Bn— oob%L —g cotq—z)EgT/Z.

Expressions (2) and (3) show that, under the condi-
tion w < yw,, both the angular width A8 = y! and the
relative spectral width Aw/w= y! of theradiation being
considered are much less than the corresponding quan-
titiesfor conventional parametric x-ray radiation.

From (2), it follows that the total number of emitted
photonsis

= SBFEITA(),

T, =

2

e 242 \/292
N, = ZBAF(éx)[ln(l"‘Y 8q) — d

S )
1+ vzei}

where 8, isthe angular dimension of the collimator. On
the basis of expression (4), it can be concluded that, in
the crystal-thickness region L < 4/(gB,), where the
effect of saturation isnot yet observed, thetotal yield of
the radiation being considered is on the same order of
magnitude asthe total yield of conventional parametric
X-ray radiation.

A considerable excess of the distribution of our radi-
ation with respect to spectral and angular variables over
the analogous quantity for the conventional parametric

x-ray radiation (by a factor of about yzoog /ooﬁ >1a
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L = Loy = 4/9B,) can be used to develop an efficient
source of quasimonochromatic pencil-like x-ray radia-
tion.

The proposed source consists of aset of thin crystals
(of thicknessL = L) positioned in avacuum along the
trajectory of abeam of radiating electrons, the distance
T between the neighboring crystals being greater than
the radiation-formation length in avacuum, also known
as the coherence length |, = 2y?*/wy,. In this case, pho-
tons are emitted in each crystal independently and
propagate in a vacuum at a large angle with respect to
the electron trgjectory without undergoing photoab-
sorption (here, the total thickness of the system, L, =
NLo. N being the number of crystals, may consider-
ably exceed the photoabsorption length, which restricts
the yield of radiation in conventional x-ray sources,
where photons propagate along the trajectory of parti-
clesradiating in a medium).
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Abstract—It is shown that, by varying the angular size of a collimator, the spectral distribution of parametric
x-ray radiation can be split into two i solated peaks and that the center of the spectral distribution of thisradiation
is shifted in frequency in response to an increase in the collimator size. It is also predicted that an increase in
theangular size of the collimator will lead to asubstantial modification of the character of the orientation depen-
dence of the radiation spectrum. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The motion of afast charged particle in acrystal is
accompanied by the scattering of its Coulomb field by
atomic electrons of the crystal. Owing to the periodic
arrangement of atomsin the crystal lattice, this scatter-
ing has a coherent character. Parametric x-ray radiation
[1-4] generated under such conditions has a number of
unique characteristics: it has a quasimonochromatic
spectrum; it has a pencil-like character, propagating at
a large angle with respect to the radiating-particle
velocity; and the energy of the photons constituting this
radiation can be smoothly changed.

Since the energy of a photon emitted in parametric
x-ray radiation is tightly related to the angle of radia-
tion observation, the properties of this radiation depend
substantialy on the collimator (or radiation-detector)
sizes. The objective of this study isto analyze in detail

the spectral and orientation properties of parametric
x-ray radiation versus angular sizes of the collimator.
We will show that these properties undergo qualitative
changes with increasing collimator sizes.

2. GENERAL RELATIONS

Presently, the theory of parametric x-ray radiation
has been firmly established. In a number of studies, the
validity of its description on the basis of perturbation
theory (kinematical approximation) was demonstrated
theoretically and confirmed experimentally. Following
[2] and using conventional methods, we find that the
distribution of the intensity of parametric x-ray radia-
tion with respect to spectral and angular variables can
be represented as

dN_ _ 8nZ’e’ng|(g)l’e o

dtdwd S

m’(1+¢’R?)’

)]

V(g ) —g(1— Je(n B))/e]*~ [(n C)(@ Iv) — (n ) (L~ Je(n 3))/€]* 1
[g°(1 - JJe(n T0)) + 2./e(n Co)(g )]

where g is a reciprocal -l attice vector that specifies the
reflecting crystallographic plane; S(g) is a structural

factor; € " isthe Debye-Waller factor; n, is the den-
sity of crystal atoms; Z isthe number of electronsin the
atom; Risthe screening radius, e=1 - oog/ooz, w, being
plasmon frequency; n isaunit vector in the direction of
emitted-photon momentum; and v isthe velocity of the
radiating particle. The disposition of the vectors g, v,
and e lying in the same plane is shown in Fig. 1. The
vector n is given by

_ 1,17 _ —
n = e%—éemﬂi, el® =0 0 =0,+0, (2

_ [
1—.Je(n V) g 1- fe(n Gy~

where 8, and 6, are, respectively the parallel and per-
pendicular components of the two-dimensional vector
0 appearing to be the angular variable in the distribu-
tion of the radiation. The orientation angle 6' is mea-
sured from the position of the exact Bragg resonance. A
changein 6' correspondsto arotation of the crystal asa
discrete unit about the axis orthogonal to the plane of
the figure. The angle between the vectors v and e
remains unchanged upon this rotation.

In terms of the variables  and 0', formula (1) takes
the conventional form in the kinematical theory of
parametric x-ray radiation; that is,

1063-7788/00/6311-2011$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Geometry of the parametric-radiation process (v is
the radiating-particle velocity, while g isareciprocal-lattice
vector).

LN _ Eajsgle’”
dtdwd®®  nigX(1+ ¢°RY)?

62+ (26" +6,)°cos’d
(y* 2+ 0%+ (20'+6,))°

x 6[(»— WL+ (8'+6)) cotq—z)g},

3

where y* = y(1 + Y25 /6?) 12, y= (1 — v2)712 > 1, and
W, =0/2sin(¢p/2) is the Bragg frequency in whose
neighborhood the spectrum of the radiation is concen-
trated.

Expression (3) (or expressions similar to it) is
widely used to describe experimental results. In doing
this, it is implied that the angular size of the radiation
collimator is sufficiently small. In the following, we
will study the collimator-size effect on the spectrum of
the detected radiation.

We consider the case of arectangular collimator:

%AOD.

Performing a two-dimensional integration in (3) with

respect to 6, we obtain the observed radiation spectrum
in the eventual form

o2
dw

1 1
‘Ae”, —EAGD < GD <

1

NoF(X, ¥, A Ay,

N = 2205|S(g)’e YO sn’(0/2)
0o~ 3 ’

g’ (1+g*R%) cos(9/2)

F =

L (x+ y)2cosz¢} @

1
1
J1+ (x+y)2§:

1+(x+y)’
0 0 2 2
X arctanB._____)\_D____D_ [1_%}
1+ (x+y)D 1+(x+y)
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AL+ (x+y)))
1+7\u(1+(X+y) %)

where x = y*tan($/2) (ww, — 1), y = y*0, Ay =
%V*AGD, A= %V*AGH, 0(2) is the Heaviside function,

= [p(x y+A)o(y +A—x),

and L is the crystal thickness assumed to be much
smaller than the photoabsorption length.

Below, the universal function F is used in our anal-
ysis of the effect of the parameters A, and A, on the
spectrum and on the orientation depen ence of theradi-
ation yield.

3. DISCUSSION

Let usfirst consider the properties of theradiationin
thelimiting caseof A < 1, ¢ # 172. Formula(4) isthen
simplified considerably to become

(x+y)’
[1+(x+y)]” )
XO(X=y+A)a(y+A;—X),

F= ZADcoszq)

whence we can see that, under the conditions being
considered, the shape and the amplitude of the spec-
trum depend substantially on the parameters A and y.
For A < 1, the spectrum represents a narrow Ime (Ax =
20 <1) centered at the point x = y. The corresponding
energy of the emitted photon is given by

w = wy(1+6cot(d/2)). 6)

This expression is usually used in the theory of para-
metric x-ray radiation.

The amplitude of the spectral line is determined by
the value of the orientation parameter y in accordance
with the factor 4y?/(1 + 4y*)? following from (5) for
A< 1. This factor describes the orientation depen-
dence of theradiation yield with two peaks at y = +1/2
(it istypical of parametric x-ray radiation).

L et us now consider the case of A — o (dlit colli-
mator). The spectrum is then described by the formula

_ry) o
[1+(x+y)]

which follows from (5) and which predicts two sub-
stantial modifications to the spectrum in relation to the
preceding case. From Eq. (7), we can see that, in the
case being considered, the spectrum represents a sym-
metric curve having two peaks at x=+1 —y. The width
of the spectral distributionislarge, Ax= 1, anditiscen-
tered at x = -y, which corresponds to the emitted-pho-
ton energy

F= 2)\Dcosz¢

W = wy(1-06'cot($/2)). ®)
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G, arb. units

Fig. 2. Universal orientation dependence of the radiation
yieldfor Ag < 1at A =(1) 0.1, (2) 0.5, (3) 2, and (4) 5.

It follows that, when we go over from a pointlike to
adlit collimator, the spectrum of parametric x-ray radi-
ation is split; concurrently, line broadening and a shift
of the spectral-distribution center occur, the latter being
dependent on the orientation angle. For this splitting,
Awy, and the shift of the distribution center, Aw,, we
have

) - oot
5 Aw, = 21,0 cot2. )
Integrating the function F in (5) with respect to x,

we obtain the orientation dependence of the radiation
yield in the form

Aw, = 20,y cot

Gy, A) = IdxF = )\Dcosz¢[arctan(2y+)\”) "
(2y+A)) (2y—=A\) }
l+(2y+)\”)2 1+(2y—)\“)2 .

Thefunction G shown in Fig. 2 for various val ues of
the parameter A exhibits a qualitative variation in the
orientation dependence of the yield of parametric x-ray
radiation with increasing angular size of the collimator
inthe reaction plane. Withincreasing A, the orientation
curve that is typical of parametric x-ray radiation and
which has two peaks at small values of A transforms
into an orientationally independent constant.

Formulas (5)—(9) are not valid in the particular case
of ¢ = 172. For thisvalue of the emission angle ¢, it fol-
lows from (4) that

—arctan(2y —A) -

2 A

T 311 (x4 )

An analysis of this formula by a method similar to that
used above leads to results that are by and large analo-

F o(x—=y+A)ao(y+A;—x). (11)
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Fig. 3. Universal orientation dependence of the radiation
yieldfor A\g —=coand ¢ =1y8 & A= (1) 0.3and (2) 2.

gousto thosein the preceding case, but the spectral dis-
tribution of radiation does not undergo splitting here.

Let us now consider another limiting case, that of
Ag — . From (4), we then obtain

-1
2

. [“ (x+y)’cos’¢

1+(x+y)Pl L+ (x+y) } (12)
Xo(X=y+A)a(y +A;—X).

It can easily be verified that, in the case being con-
sidered, the radiation spectrum transforms from a nar-
row line of width 2A, for A < 1 into abell-like curve of
width Ax = 1 for )\” — oo, However, only in the emis-
sion-angle region ¢ < 174 does the spectra curve split
into two peaks, but these peaks are rather weak.
In response to an increase in the collimator size, the
center of the spectral distribution of the radiation shows
a shift of the same magnitude as in the preceding case
of \p < 1.

The orientation dependence of the radiation yield is
given by the formula

Gy, \) = IdxF
=(1+ cosz¢)[arcsinh(2y+)\”)—arcsinh(2y—)\”)]

2y+h)  (2y=N\) } ()
JL@y+A)? 1+ (2y-))’

- coszq)[

which follows from (11). The curves that represent the
dependence G(y) for various values of A, and ¢ are
shownin Figs. 3 and 4.
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Fig. 4. Asin Fig. 3, but for ¢ = 172.

4. CONCLUSION

The spectral and orientation characteristics of para-
metric x-ray radiation depend substantialy on the
angular sizes of the radiation collimator.

With increasing collimator size in the reaction
plane, the spectral distribution of the radiation broad-
ens, while its center undergoes a shift.

If adlit collimator, with the slit being oriented along
the reaction plane, is used, the observed radiation spec-
trum splits into two isolated peaks.

Anincrease in the angular size of the collimator can
radically change the orientation dependence of the
yield of parametric x-ray radiation (a trend toward
weakening of this dependence is observed).

The above effects are of a simple geometric origin.
The angular distribution (3) of the reflex of parametric
x-ray radiation is bell-shaped and has adip at its center
(this is the angular structure of transverse pseudopho-
tons of the Coulomb field of a relativistic particle that
arereflected by acrystal). Because of the presence of a

PHYSICS OF ATOMIC NUCLEI

KAMYSHANCHENKO et al.

delta function in (3), there is a tight correlation here
between the energy of the emitted photon, on one hand,
and the values of the angle of radiation observation in
the reaction plane, 6, and the orientation angle €', on
the other hand. Owing to the above features, the shape
of the observed spectrum and its orientation depen-
dence are determined by the degree of overlap of the
reflex of parametric x-ray radiation and the collimator.
If the aperture of the collimator is small in relation to
the intrinsic width of the angular distribution of para-
metric x-ray radiation, the observed spectrum is nar-
row, and the orientation dependence is similar to the
angular distribution of parametric x-ray radiation. On
the other hand, no orientation dependence is observed
if the collimator is open completely; as to the corre-
sponding spectrum, which features all possible photon
energies, it can have a dip (at specific transverse sizes
of the collimator, A8, and specific values of the emis-
sion angle ¢) caused by the absence of photons emitted
through the mechanism of parametric x-ray radiationin
the direction of Bragg scattering.
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Abstract—The propagation of high-energy ions through a bent single crystal near a crystallographic axisis
investigated. The results of these investigations reveal that a new mechanism of ion-beam deflection is possible
in this case. This mechanism is based on multiple ion scattering by atomic stringsin a bent crystal. The results
obtained from a computer simulation of the effect are also presented. The effect is shown to depend strongly on
the particle charge. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The deflection of beams of high-energy positively
charged particles via the mechanism of planar channel-
ing in bent crystals is a well-studied effect, which is
used in practice [1, 2]. In [3-5], it was indicated that
there exists another mechanism of beam deflection by a
bent crystal, that which isbased on the multiple scatter-
ing of particles by atomic strings. A feature peculiar to
this mechanism is that, in scattering by atomic strings,
beam deflection is possible both for channeled and for
above-barrier particles; at the sametime, only for chan-
neled particles is this possible in the case of motion
along bent crystallographic planes. Moreover, a beam
incident on a bent crystal at a small angle with respect
to a crystallographic axis can undergo both deflection
and splitting. It is important to note that not only ele-
mentary-particle beams but also beams of multiply
charged ions can be deflected by bent crystals [6]. In
the latter case, the value of the charge affects substan-
tially the deflection of the charged-particle momentum
[6, 7]. Inthe present study, we analyzed the mechanism
of deflection of relativistic-ion beams due to multiple
particle scattering on atomic stringsin a bent crystal.

2. SSIMULATION PROCEDURE
AND BASIC RESULTS

The possibility of deflecting ion beams that traverse
a bent crystal near a crystallographic axis was consid-
ered both anaytically and on the basis of a numerical
simulation. The problem at hand can be treated analyt-
icaly in the case where the conditions of dynamical
chaos are realized in the scattering process [8]. But in
the general case, it is necessary to apply methods of a

D Ukrainian Research Center Kharkov Ingtitute for Physics and
Technology, ul. Akademicheskaya 1, Kharkov, 310108 Ukraine
and Belgorod State University, Studencheskaya ul. 12, Belgorod,
308007 Russia.

* e-mail: shulga@kipt.kharkov.ua

numerical simulation. For this purpose, we developed a
computer code for simulating the propagation of
charged particles through a bent crystal near a crystal-
lographic axis [4, 8]. The propagation of particles
through a crystal is considered as a step-by-step two-
dimensional mation in the plane orthogona to the
direction of the crystallographic axisin thetotal field of
atomic strings. A continuous potential of atomic strings
can be computed on the basis of the Mollier approxima-
tion for the potential of an individual atom. At each
step, we computed both coherent and incoherent parti-
cle scattering, the former being caused by an averaged
continuous potential. Incoherent scattering is associ-
ated with the distinction between the actual potential of
a string and the averaged potential. This distinction is
due to the thermal displacements of lattice atoms from
equilibrium positions and to lattice electrons. Incoher-
ent scattering changes the transverse energy of the scat-
tered particle. It istaken into account under the assump-
tion of a Gaussian distribution of computed quantities.

An analytic consideration of charged-particle prop-
agation through a bent crystal near a crystallographic
axis shows [8] that the effect of beam deflection by a
crystal is possible under the condition

(1

where L is the crystal thickness, Ris the radius of cur-
vature of its bend, |, isthe critical angle of axial chan-
neling, and | is the length over which the distribution
of particleswith respect to the azimuthal angleis estab-
lished as the result of multiple scattering. For g < yJ,
we have the approximate relation I = (Yndap)™,
where n is the density of atoms, d is the interatomic
spacing along the direction of motion (z axis), and a;r
isthe radius of screening of the atomic potential.

Since a ~ Y2° and Y, ~ ./Z;, the mechanisms of
propagation through abent crystal can be very different

1063-7788/00/6311-2015%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Propagation of 450-GeV beams of (a, ¢, €) protons and (b, d, f) U**2 ions through a bent silicon crystal whose thicknessis
of L = 3 cm and whose radius of curvature is of R = 10 m near its 0 100axis:. (a, b) angular distributions of particles leaving the
crystal, (c, d) horizontal profile of the beam leaving the crystal, and (e, f) fractions of (upper curves) deflected and (lower curves)
hyperchanneled particles versus the crystal thickness. The dashed curvesin Figs. 1c and 1d represent the profiles of the beams that
traversed a 3-cm layer of amorphous silicon. The coordinates of theinitial-beam center, the beam divergence, the coordinates spec-
ifying the crystal-axis direction at the downstream surface of the crystal, the beam dimensions, and the observation base were,
respectively, (8y. 6y) = (0, 0), 3 x 107 rad, (B, 8y) = (3.1, 0, 0) mrad, 1 x 2 mm?, and 4 m.

for protons and for multiply charged ions. By way of protons and o, = 0.1 for uranium ions. Taking into
example, we indicate that, for abeam of 450-GeV par-  account the condition in (1), we conclude that, for the
ticlesincident on asilicon single crystal alongthe 11000  above values of the beam and crystal parameters, the
axisat L = 3 cm and R =10 m (which corresponds to  mechanism of deflection viamultiple scattering on sin-
the parameters of the CERN experiment studying the gle-crystal strings must be operative for ions and inop-
axial deflection of protons [9]), we have a, = 80 for erative for protons. This theoretical prediction is fully
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confirmed by the results of a numerical simulation (for
aproton beam, the results of the simulation are in good
agreement with the experimental datafrom [9]). Figure
1 shows the results of our computer simulation for the
above conditions.

Our results demonstrate that the angular distribu-
tions of protons that traversed a single crystal differ
considerably from the analogous distribution for multi-
ply charged uranium ions. The direction of the crystal-
lographic axis at the downstream surface of the crystal
is taken here to correspond to 6 = 3 mrad. In the case
of ions, a significant fraction of beam particles (about
20%) are deflected through this angle, following the
bend of the crystallographic axis. It is predominantly
the above-barrier particles that undergo deflection
under such conditions (see Fig. 1f). Among protons,
only the hyperchanneled particles are deflected in the
case being considered (see Fig. 1€). Initidly, the frac-
tion of hyperchanneled protonsis much lessthan that in
the case of ions because the depth of the two-dimen-
siona potential well is much greater for ions than for
protons. The results of our simulation reveal, however,
that the process of dechanneling is more vigorous for
ions than for protons; as a result, the beam of uranium
ions leaving the crystal does not contain hyperchan-
neled particles. Our analysis of the numerical data
shows that this effect is due to a sharp intensification of
incoherent scattering on lattice electrons with increas-
ing particle charge. Thus, the deflection mechanism
associated with multiple scattering on bent atomic
strings is operative for multiply charged ions. Indeed,
strong incoherent scattering, which suppresses the
deflection of hyperchanneled particles (both inthe axial
and in the planar case), leaves the possibility for the
axial deflection of above-barrier particles.

Symmetric peaks in the distribution of protons (see
Figs. 1a, 1c) are associated with particles captured in
planar channels. This capture occurswhen the deflected
particles cease to follow the axis and resultsin the pos-
sible splitting of the beam into severa isolated frac-
tions. A gradual escape of particles from the trajectory
along the axis occurs when the deflection conditions
are impared—that is, when the parameter o
approaches unity with increasing crystal thickness. The
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fractions captured by planes are localized when the
capture of new particles is terminated—that is, when
a > 1; thisineguality can be considered asthe condition
under which the effect of beam spitting is realized.

Thus, the propagation of relativistic multiply
charged ionsthrough a bent crystal differs considerably
from the propagation of protons and must be consid-
ered separately. The results obtained here show that the
above effects can be investigated at the GSI ion accel-
erator.
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Abstr act—I onization energy losses of an ultrarelativistic electron produced in matter are considered. Theinter-
ference of the proper Coulomb field of the product particle and the electromagnetic wave that this particle emits
isshown to be significant at impact-parameter val ues that make adominant contribution to the ionization energy
losses. The effect is shown to exert virtually no influence on the ionization energy losses of the particle. © 2000

MAIK “ Nauka/Interperiodica” .

1. lonization energy losses of clusters formed by
fast charged particles occurring at small distances from
one another may differ significantly from the total ion-
ization energy losses of the individual particles consti-
tuting the cluster if these particles are far from one
another. This distinction is associated with the interfer-
ence of the electromagnetic fields created by the parti-
cles of the cluster at distances that contribute signifi-
cantly to ionization energy losses. Such a situation
emerges, for example, when a high-energy eectron—
positron pair is produced in matter [1]. The point isthat
the characteristic angles of divergence of ahigh-energy
pair produced in matter are very small. It follows that,
over rather long atime interval, the transverse distance
between the particles of the pair will be small in rela-
tion to the maximum impact-parameter values of p,.x ~
v/w,, (v isthe particle velocity, and w, is the plasmon
frequency) that contribute significantly to the ioniza-
tion energy losses of the individual particles of the pair.
The electromagnetic fields of the electron and the
positron of the product pair compensate each other partly
at distances of v/w, the from the pair in the transverse
direction; therefore, the ionization energy losses of such
acluster are smaller than the ionization energy losses of
theindividua particles. By way of example, weindicate
that, at photon energies of Aw ~ 100 GeV, characteristic
angles of divergence of the particlesforming the pair are
estimated as 0, ~ 4mc?/fiw ~ 2 x 107 rad, so that the
reduction of the ionization energy losses of the product
pair must manifest itself at longitudinal distances of | ~
Prax/B: ~ 0.05 cm from the pair-production vertex. This
effect was observed in cosmic rays [1].

* e-mail: shulga@kipt.kharkov.ua

1 National Research Center, Kharkov Institute for Physics and
Technology, Akademicheskaya ul. 1, Kharkov, 310108 Ukraine
and Belgorod State University, Studencheskaya ul. 12, Belgorod,
308007 Russia.

A similar effect occursin the Coulomb explosion of
fast moleculesin athin layer of matter [2]. The similar-
ity of these two processes was noticed in [3].

For along time, the electromagnetic field surround-
ing a high-energy charged particle (electron) produced
in matter can differ significantly from the normal
proper field of a similar particle that moves at a con-
stant speed in the same direction [4, 5]. The effect is
determined by the interference of the Coulomb field of
the electron and the field of the electromagnetic wave
that this electron emits. An ultrarelativistic electron
emitswaves predominantly at small angleswith respect
to its velocity, 8 ~ mc*/E, where E is the electron
energy. As aresult, an electron, with its Coulomb field,
and the emitted electromagnetic wave will be at small
distances from each other for a long period of time;
hence, the effect of interference between the two fields
will be significant. In this sense, the electron and the
electromagnetic wave emitted by it can be treated as a
cluster formed by the Coulomb field of the electron and
the emitted electromagnetic wave. Such clusters mani-
fest themselves in many processes associated with radi-
ation from ultrarelativistic electrons in matter, such as
coherent radiation from relativistic electrons in ori-
ented crystals and the Landau—Pomeranchuk effect,
which consists in the suppression of bremsstrahlung
from ultrahigh-energy electrons in amorphous media
(see, for example, [5]). There naturally arises the ques-
tion of whether such a cluster can manifest itself inion-
ization energy losses of a particle in amedium. Thisis
the problem to be addressed in the present article.

2. We consider some specia features of the evolu-
tion of the field of a particle following its production in
matter and theionization energy losses of the particlein
this case. First, we analyze the evolution of the field of
a high-energy particle produced in a medium, neglect-
ing the dielectric properties of the medium.

We assumethat acharged particleisinstantaneously
produced at thetimeinstant t = O with afinite velocity v.

1063-7788/00/6311-2018%20.00 © 2000 MAIK “Nauka/Interperiodica’
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The potentials of the particle field are determined by
the equations (c = 1)

gjz_(%;gq)(r,t) = —4med(r —vt)O(t), (1

%]Z_E?E%A(r, t) = —4mevd(r —vt)O(t), ()

where O(t) is the Heaviside step function. Solutions to
Egs. (1) and (2) can be represented in terms of the Fou-
rier integrals

d’k

_ € ik CF o kvt ikt
o(r,t) = ZT[ZReI—k(k—kEv)e (e e ), 3
_ e d’k ikUt, —ikOvt ikt
A(I’,t) = ;[ZVReIme (e —€ )(4)
These solutions can also be recast into the form
d(r,t) = O(t—r)do(r, 1), (5)
A(r,t) = O(t—r)Ay(r,t), 6)

where ¢, and A, determine the conventional Coulomb
field of acharged particle that moves at avelocity v,

e
bo(r, t) = , (7
[(z-vt)?+ oy
ev
2 2, —241/2° ®)
[(z-v)"+p7y ]
Here, y = (1 — v?)'2 isthe Lorentz factor, the z axisis
aligned with v, and p is a radius vector in the plane
orthogonal to v.

Thefirst termsin (3) and (4) describe the potentials
of the conventional Coulomb field of a particle that
moves at a velocity v. The second terms describe the
field of the emitted wave for t — oo. In each term in
(3) and (4), the main contribution to the integrals with
respect tok in every comesfromk whose directionsare
close to the direction of v—more specifically, from the
region where the characteristic angle 6 between k and
vis0 ~y!. For suchk, therelevant Fourier components
of the surrounding field are suppressed over the time
period fromt=0tot< (k—k - v)"! ~2y’/kinreationto
those in the region t > 2y?/k. This means that, over the
period At ~ 2y*/k, the particle isin a “semibare” state
deprived of its normal Coulomb field. Considering that
the main contribution to the ionization energy losses of
the particle comes from the region k > w,/v, we can
expect that the ionization energy losses are suppressed
over the time interval At ~ 2y?/k. For electron energies
of E,~ 100 GeV, we have vAt ~ 10?> cm.

Direct calculations reveal, however, that there is no
such effect—that is, the ionization energy losses of the
electron reach their normal value after a lapse of the
timeAt ~ p,.../V. By using relations (5) and (6), we can
indeed show (in accordance with the Bohr method for
calculating the ionization energy losses [6]) that the

Ao(r,t) =
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energy losses of aparticle at distancesz> p,,,, fromits
production vertex in matter are given by

Tt ot Pm, B
0|:| In(pmax/pmin) 4-Z2 .“D
where
2 2
W€ min
T, = -5—|ngzx (10)

and p,,;,, is the minimum impact-parameter value that
contributes significantly to theionization energy losses.
This value is determined on the basis of quantum con-
siderations and is about p!, where p is the projectile
momentum.

From Eg. (9), we can see that, at z> p,,,,, the cor-
rection to the conventional expression T, for the energy
lost by the particle in matter owing to the prolonged
existence of the electron in the “semibare’ state is
small. That the ionization energy losses increase within
atimeinterval smaller than the time over which the nor-
mal Coulomb field of the electron is recovered can be
explained by the fact that the splash A of the field
strength at t = r [see Egs. (5) and (6)] compensates for
the decreasein the ionization energy lossesthat is asso-
ciated with the absence of thefield for distancesr > t.

3. Let us now take into account the dielectric prop-
erties of the medium. In this case, Egs. (1) and (2)
assume the form [7]

. .0
s%]z—sé—tz%b(r,t) = 4med(r —vt)O(t), (11)

2
gjz—ég—tzgﬁ(r,t) = —4mevd(r —vt)O(t). (12)

If the dielectric permittivity is given by
2

(Jop
, 13
(w+i0)? ()

solutions to these equations can be represented as

g(w) = 1-

(I)(r t) _ __G_Re g_al_(eikﬂg_ wpe—ikD/ N wpe—lwpt
’ a Ikz 0 W,—KIV wy—k¥
(14)

, K+ ope™ ™ JK + W) e Wity
S+ 2—k v i+ wl—k v 0

e 3, ik [F
A(r,t) = —vRe[d ke
.9 210 .[

—ik Wt
e

K2 + 02k + w2 —k )

(15)
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It can easily be seen that, for w, — 0, Egs. (14) and
(15) reduce to Egs. (3) and (4). Calculating the ioniza-
tion energy losses on the basis of the method described
in[7], we obtain

2 . 2 2
e w,sin(w,t) _gw,

T t Y

To+

(16)
x [ci (0,t) Sin’(wyt) — i (wyt) cos’ ()],
where

(<9 X
Gi(x) = - %Stdt =C+ Inx+J’COS:_1dt,
X 0

o X
. sint T, ~Snt
= —| — = —=—+4 [ —
si(x) J’ n dt 5 I n dt,
X 0
and C = Iny = 0.577 isthe Euler constant.

The quantity X = (v/wje)(T — T,), which deter-
mines the deviation of the ionization energy losses of

SHUL’GA, SYSHCHENKO

the “semibare”’ electron from the normal energy losses
in accordance with expressions (9) and (16), is dis-
played in the figure as a function of wyt.

For electron energies of E, ~ 1 GeV, (v/cof:, eNHT, ~
17; therefore, the difference of the T value computed

according to (16) and T, at distances of afew oo;l (that
is, afew p,,., for ultrarelativistic particles) iswithin 2%.

Thus, we seethat the prolonged existence of an elec-
tron deprived of its normal Coulomb field has virtually
no effect on the ionization energy loss of aparticlein a
medium. We emphasize, however, that the semibare-
electron effect is significantly manifested in the radia-
tion from relativistic particles [8].
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Abstract—The classical and quantum scattering of fast electrons on an atomic string of acrystal is considered
at angles of particle incidence on the string that are much smaller than the critical angle of axial channeling.
The investigation was performed within the simplest approximation of the continuous atomic-string potential
intheform of acutoff Coulomb potential. For this case, the azimuthal scattering of particlesat an angle exceed-
ing 180° in the plane orthogonal to the string axis is shown to be possible for all impact-parameter values. It is
demonstrated that, in particle scattering on a string, an effect can occur that is similar to the Ramsauer—
Townsend effect, which consistsin a considerable reduction of the total cross section for slow-electron scatter-

ing on atoms. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

When a fast charged particle is incident on an
atomic string of acrystal at asmall angle ) with respect
toitsaxis, correlations between successive collisions of
the particle with string atoms are of importance.
Because of these correlations, the particle is scattered
predominantly at the azimuthal angle ¢ in the plane
orthogonal to the string axis [1]. At angles of particle
incidence that exceed the critical angle of axial chan-
neling, Y., typical values of the azimuthal scattering
angle are small. However, these typical values of the
azimuthal scattering angle increase with decreasing
angle Y, achieving 180° at Y ~ Y. Of particular interest
is scattering of negatively charged particles on an
atomic string because, at all possiblevalues of theangle
Y, such particles can approach closely the string axis,
undergoing intense interactions with the string field.

In the present study, we analyze specia features of
the scattering of a negatively charged particle on an
atomic string of acrystal at ultrasmall angles of particle
incidence on the string. The study is performed within
the simplest approximation relying on a continuous
potential of the atomic string in the form of a cutoff
Coulomb potential. It is shown that, in the region Y <
Y., the character of particle scattering on a string
changes drastically with decreasing . In particular, it
turns out that, at some value of g = Y, (Y < ), the
classical angle of particle scattering is 180° for all
impact-parameter values. This effect is similar to the
effect of giant glory in slow-electron scattering on an
atom [2]. For Y < Y, the angle of particle scattering on

D National Research Center Kharkov Ingtitute for Physics and
Technology, ul. Akademicheskaya 1, Kharkov, 310108 Ukraine
and Belgorod State University, Studencheskaya ul. 12, Belgorod,
308007 Russia.

* e-mail: shulga@kipt.kharkov.ua

the string is shown to exceed 180° for al impact-
parameter values resulting in scattering.

We have considered quantum aspects of particle
scattering on an atomic string. For ) < g, the quantum-
scattering cross section can oscillate considerably
about the classical value over the entire range of azi-
muthal scattering angles. This effect is similar to the
generalized Ramsauer—Townsend effect for dow-elec-
tron scattering on atoms at alarge angle [3, 4].

We also investigate the scattering cross section as a
function of the angle ¢. At small angles y, the total
scattering cross section is shown to have arather com-
plicated structure. In particular, this cross section
appearsto have adegp minimum at acertain value of (.
Thisresult issimilar to the Ramsauer—Townsend effect,
which consists in a considerable reduction of the total
cross section for slow-electron scattering on an atom
(see[3]).

2. QUANTUM- AND CLASSICAL-SCATTERING
CROSS SECTIONS

The motion of afast charged particle incident on an
atomic string of acrystal at asmall angle ) with respect
to its axis (z axis) is determined primarily by a contin-
uous string potential—that is, by the potential of string
atoms that is averaged along the z axis [5, 6]. The
zcomponent of the momentum is conserved in this
field, so that the particles undergo scattering only at the
azimuthal angle ¢ in the (x, y) plane, which is orthogo-
nal to the string axis. As aresult, we arrive at the two-
dimensional problem of particle scattering on a poten-

tial U(p) inthe (x, y) plane, where p = //x° +y°.
Thisformulation of the problem isvalid both for the

guantum and for the classical treatment of the process
of particle scattering on an atomic string. In classica

1063-7788/00/6311-2021$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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Fig. 1. Deflection function ¢ = ¢(b/R) (Risthe cutoff radius
of the string potential) for electron scattering by an atomic
string of a silicon crystal at ¢ = (1) 0.05y, (2) 0.2y,
(3) Wy, (4) 0.4y, and (5) 0.8U.

mechanics, the angle of azimuthal particle scatteringin
thefield U(p) isgiven by [1]

d(b) = - ZbIdp%l =) 0o )

)

wherebisthe string |mpact parameter, €= eP?/2 isthe
transverse particle energy, € is the particle energy, and
P, iSthe minimum distance between the particle and the
string axis.

If the function ¢(b) is known, we can find the cross
section for classical particle scattering on the string,

d
H%C’ at anglesintheinterval (¢, ¢ + dd). Theresult is
do, _
do
where L isthe string length.

The cross section for quantum particle scattering on
the atomic-string field has the form [1]

N @)
B,

do _

dcl) 21‘[pD 3)

Z (-1 |

wheren, are phase shiftsfor scattering on thefield U(p)
and pp = €Y. Summation is performed over the integral
values of the angular momentum in the transverse
plane.

In the semiclassical approximation, the phase shifts
n, are given by

n = IdpJpD—Zeu(p)—lzp‘z—jdp«/pé—lzp‘z, @
P

where p, is the root of the radicand (at | = O, we have
=0).
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According to (3), the total cross section for particle
scattering on the string is

Z sin’n;. 5)

| = -

In order to find the scattering cross section, it is nec-
essary to know the form of the function U(p). The con-
tinuous potential of the atomic string has a rather com-
plex form; therefore, ssimpler forms of the potential
energy U(p) are often used to approximate the potential
of the particle interaction with the string.

For the function U(p), we use here the form (see[1,

5,7))

o 10 (R
Up) ={ " RZ P 6)
0, p>R,

wherea = U,a, a being the Thomas—Fermi radius of the
screening of the atomic potential U, = niZe?/2d (here,
Zle| and e are the charges of the atomic nucleus and the
electron, respectively, and d is the spacing between the
string atoms), while R is the cutoff radius of the string
potential.

Functions of the form U(p) = a/p are often used in
the theory of particle channdling in crystals [5, 7]. In
this approximation, the potential U(p) is cut off at the
distance equal to half the spacing between the nearest
atomic strings of the crystal.

The problem of particle scattering on the potential
(6) was also considered in studying slow-electron scat-
tering on atoms|[2, 3, §].

3. RESULTS AND DISCUSSION

Formulas (1)—5) allow us to study particle scatter-
ing on an atomic string within the quantum and within
the classical framework.

The calculated deflection function ¢ = ¢(b) for a
negatively charged particle scattered by an atomic
string isshownin Fig. 1 at various values of the param-

eter Y/, where . = ./2U /€ isthe critica angle of
axial channeling.

Our results reveal that the character of particle scat-
tering on an atomic string changes significantly at Q) ~

Wy, where Yy = Ja/eR.
For ¢ > g, ¢(b) is a monotonically decreasing

function of the impact parameter, the particles being
scattered here at angles that do not exceed 180°.

At Y = |, the particles are scattered at ¢(b) = 180°
for all |mpact parameter values. Thiseffect issimilar to
the effect of giant glory in slow-electron scattering on
atoms|[2].

For @ < Y, ¢(b) isamonotonically increasing func-
tion of the |mpact parameter, the particles being scat-
Vol. 63
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tered at anglesin excess of 180° at all impact-parameter
values.

Figure 2 showsthe differential cross sectionsfor the
scattering of 10-MeV electrons incident on an atomic
string of asilicon crystal at angles of Y = (a) 0.8y). and
(b) 0.2, with respect to the [100Caxis. These values of
U correspond to the angles of particle incidence such
that Y >, inthe former case (a) and Y < Yy in the latter

case (b). Thevauesof F = (Lay)™! do

do
the ordinate. The thin and the thick curve correspond to
the calculations by formulas (2) (classical scattering)
and (3) (quantum scattering), respectively. The cutoff
radius of the potential was taken to be R = 0.96 A,
which corresponds to half the mean spacing between
the atomic strings in the plane orthogonal to the 01000
axis of asilicon crystal.

These results show that, at Y = 0.8y, the quantum
and classical cross sections coincide over a consider-
able region of scattering angles; modest oscillations of
the quantum-scattering cross section about the values
of the classical-scattering cross section in the region of
small scattering angles are caused by diffraction effects
in particle scattering on the localized string potential.

At @ = 0.2, the classical cross section increases
monotonically with increasing scattering angle. Here,
the quantum cross section devel ops sizable oscillations
about the values of the classical cross section over the
whole region of scattering angles. The oscillations are
caused by a significant contribution to the scattering
cross section (3) from terms associated with small val-
ues of the quantum number |. These oscillations are
similar to those that occur in the generalized Ram-
sauer—Townsend effect for slow-electron scattering on
atoms at large angles[3, 4].

Figure 3 displaysthetotal cross section for the scat-
tering of 10-MeV electrons on an atomic string of the
silicon crystal [see Eq. (5)] asafunction of the angle of
particle incidence on the string. Here, the quantity G =
(CRLY) o, is plotted along the ordinate. Our results
demonstrate that the total cross section has a rather
complicated structurein theregion of small anglesy. In
the region of large values of Y ({ = 4., the total cross
section decreases smoothly with increasing . In the
region of small |, the cross section exhibits sharp vari-
ations. The reason for thisis that the contributions of
some terms drop out from the sum over | (5) when @
decreases.

Thetotal crosssectioniscloseto zero at {J ~ 0.04..
This effect is analogous to the Ramsauer—Townsend
effect, which consists in a significant decrease in the
total cross section for slow-electron scattering on atoms
in a certain region of particle energies (see [3] and ref-
erences therein).

In conclusion, we note that the above specia fea-
tures of electron scattering on the string field are pecu-
liar not only to the approximation of the string field in

areplotted along
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Fig. 2. Differential cross sections for the scattering of
10-MeV electrons incident on an atomic string of a silicon
crystal at angles of Y = (a) 0.8y, and (b) 0.2y, with respect

to the 1000axis. The values of F = (Lay)~! do

do
aongtheordinate. Thethin and thethick curverepresent the
results of the calculations by formulas (2) (classical scatter-
ing) and (3) (quantum scattering), respectively.

are plotted

Wi

Fig. 3. Total cross section for the scattering of 10-MeV elec-
trons on an atomic string of asilicon crystal asafunction of
the angle of incidence. The values of G = 2RLWY) !0, and
of Y/, are plotted aong the ordinate and the abscissa,
respectively.

the form (6) but also to other approximations that fall
off fast with increasing distance.
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Abstract—On the basis of acomputer simulation, it is shown that, in the spectrum of radiation from ultrarela
tivistic electrons in oriented crystals, new maxima can appear in the low-frequency region in addition to ordi-
nary coherent maxima. This effect is due to the influence of high-index planes on the radiation in question. The
af orementioned new maxima manifest themselves not only in the spectrum but also in the polarization charac-
teristics of the radiation. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Relativistic electrons moving in a crystal at a small
angle to one of the crystal planes closely packed with
atoms can induce coherent and interference phenomena
in their radiation. Owing to these effects, the radiation
spectrum exhibits sharp peaks at which the radiation is
characterized by a high intensity and by a polarization
[1-5]. With increasing particle energy, the positions of
those peaks are shifted fast toward the high-frequency
region. From an energy value of about 100 GeV, the
coherent maximaare localized in the region where pho-
ton energies are close to the energy of radiating elec-
trons [6-8].

It was indicated in [9] that, for specific orientations
of the crystal axes and planes, the spectrum of coherent
radiation from ultrarelativistic electrons exhibits, in
addition to ordinary peaks, some new peaksin the low-
frequency region. The intensity and polarization of the
radiation at these new peaks are close to those at the
ordinary peaks. The origin of these peaks is associated
with the influence of the weakly packed crystal planes
on coherent radiation.

This result was obtained in the approximation of a
nearly straight electron trajectory in acrystal. However,
the motion of a particle in a crystal can have a rather
complicated character. In particular, it can be either
regular or chaotic in the periodic field of a crystal lat-
tice. Therefore, there arises the problem of whether
these peaks can indeed arise under the conditions of
actual particle dynamicsin acrystal. Inthe present arti-
cle, this problem is considered on the basis of asimula-
tion of coherent radiation from relativistic electronsin
acrystal.

From the results of this simulation, it follows that
the actual dynamicsof electron motion does not destroy
coherent peaks induced by the effect of weakly packed
crystal planes.

Among other things, these results demonstrate that
the new peaks in the coherent-radiation spectrum can
be observed not only at ultrahigh energies but also at
particle energies of about 1 GeV.

2. SPECIAL FEATURES OF COHERENT
RADIATION FROM ULTRARELATIVISTIC
ELECTRONS MOVING NEAR CRY STAL PLANES

Basic results of the theory of coherent radiation
from relativistic electrons moving in a crystal were
obtained in thefirst Born approximation [1, 4, 5]. How-
ever, the conditions of its applicability are soon vio-
lated as the energy € of the radiating particle is
increased or as the angles of its incidence with respect
to the crystal axes and planes—) and 6, respectively—
are decreased [8, 10]. At the same time, the radiation
from aparticle moving in acrystal can be described in
the semiclassical approximation over a broad range of
energies € and of angles Y and 6. In the semiclassica
approximation, the cross section for this radiation can
be expressed in terms of the classical trgjectory of the
radiating particle. If, within the coherence length, the
trajectory in question is close to a straight line, the
spectral density of coherent radiation in a crystal coin-
cides with the corresponding result obtained in the
Born approximation [5-8, 10] and is given by

do _ 2e’3¢’ 290
w35 = m2A82|5(9)| 7
g (1)

2 2 2
x[1+ W 58 —§D}|ug|2e‘“g,
g

2ee’ g
where € and €' are, respectively, theinitial and the final
energy of theradiating electron; misthe electron mass;
w = € — €' is the radiated-photon energy; 6 = wny/2eg’;
Ais the elementary-cell volume, S(g) is the structural
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Fig. 1. (@) Spectrum and (b) polarization of coherent radiation from € = 100 GeV electronsin adiamond crystal at Y = 2.5 x 1073 rad

and a = 0.199 (the values of F = _1_dE
nLoydw

, where 6, = Z2€m2, are plotted along the ordinate in Fig. 1a): (solid curves) results of

our simulation, (dashed curves) results of the calculation according to (1), and (dash-dotted curve) results of the cal culation accord-

ing to the Bethe—Heitler formula.

factor; g isareciprocal-lattice vector, g, and g, being its
components parallel and orthogonal to the initial-elec-
tron momentum p; U, is the Fourier component of the

potential of a single atom in a crystal; and u® is the
mean-square amplitude of lattice thermal vibrations.
Summation in (1) is performed over vectors g that sat-
isfy the condition g, = &. We use the system of units
wherefi=c=1.

In the situation commonly considered within the
theory of coherent radiation, an electron moves in a
crystal at a small angle Y with respect to one of the
closely packed crystal axes (taken to bethe zaxis). The
expressions for g, and g, can then be represented as

gy = 9.+ W(g,c0s0 +g,sna), g5 = gi+g;, ()

where o is the angle between the initial-electron-
momentum component orthogonal to the z axis and the
y axis.

When an electron traverses a crystal, there can arise
the situation where it moves simultaneously at a small
angle Y with respect to the one of the crystal axes () <
1) and at asmall angle a with respect to the one of the
crystal planes (a < 1). Thiscaseisof particular interest
since it will be shown below that, under such condi-
tions, there exists aregion of the angles  and a and of
the energies € where the coherent-radiation spectrum
develops, in addition to conventional peaks, new peaks
at which the intensity and the polarization of the radia-
tion are rather high. These peaks in the coherent-radia-
tion spectrum, which are induced by the effect of crys-
tal planes whose order is higher than that of the plane
near which the electron moves, are highly sensitive to
small variationsin the angle a.

In order to demonstrate this, we consider the coher-
ent radiation from € = 100 GeV electrons moving in a
diamond crystal at an angle of @ = 2.5 x 103 rad with
respect to the [001Caxis, the angle a between the parti-
cle-momentum projection onto the (001) plane and the
(110) crystallographic plane being a = 0.2. The results
of the calculations for (a) the spectrum and (b) the

PHYSICS OF ATOMIC NUCLEI

polarization of the coherent radiation from such elec-
trons are depicted in Fig. 1 by dashed curves. An anal-
ysis of these results reveals that, in the case under con-
sideration, in addition to ordinary coherent peaksin the
frequency region w = 0.8¢, a new peak appears in the
low-frequency region w < 0.8 and that this new peak is
characterized by a high radiation intensity.

Let us now focus on some features of the radiation
process that are responsible for the emergence of this
maximum.

The main peak in the coherent-radiation spectrum at
w ~ 0.8¢ is associated with the contribution to the radi-
ation cross section from the reciprocal-lattice vector

having the components g, = g, = 0 and g, = 411./2 /3,
where a is the lattice constant (the x and y axes are

aligned with the O0100and [1100 crystallographic
axes, respectively). This peak is dueto the interference
of the electromagnetic wavesradiated by the electronin
collisions with crystal planes paralel to the (110)
plane.

The peak in the coherent-radiation spectrum at low
frequencies is controlled by the contribution to the
cross section from the vector g whose components are

g, =0, g, = 4m./2/a, and g, = 20m./2/a. This pesk
emerges owing to the interference of the electromag-
netic waves radiated by the electron in collisions with
the crystal planes parallel to the (320) plane.

Under variations of about 0.02 in a, the low-fre-
guency peak disappears, while the coherent-radiation
peak at w ~ 0.8, which is dominant under the condi-
tions being considered, remains virtually intact.

Thus, we can see that, in the case under consider-
ation, a significant contribution to the radiation comes
not only from the main crystall ographic plane (110) but
also from the rather “weak” (320) plane. Here, we are
dealing with the situation where a particle movesin a
crystal at small anglesto two different crystallographic
planes with the result that there arise two different
peaks in the coherent-radiation spectrum, each being
Vol. 63

No. 11 2000



SIMULATING THE SPECTRUM AND THE POLARIZATION CHARACTERISTICS 2027
F B (a) /) P
---------- /
| el 0.1
10 == :
0 /I 1 1 1 1 1 1 —01 1 1 1 1 1 1 1
40 120 200 280 40 120 200 280
g, GeV g, GeV
Fig. 2. Asin Fig. 1, but for € = 1 GeV and g = 2.5 x 1072 rad.
characterized by a high intensity and by a high degree  where
of the linear polarization of the radiation. .
)

3. SSIMULATING COHERENT RADIATION
IN A CRYSTAL

The above results were obtained within the dipole
approximation of the quantum theory of radiation.
Moreover, it was required that the particle trgjectory in
acrystal be closeto astraight line. The last approxima-
tion soon becomes invalid as the angle of particleinci-
dence on the crystal with respect to one of the crystal-
lographic axesis decreased. Moreover, the motion of a
particlein acrystal with respect to the atomic strings of
the crystal, which are aligned with the z axis, may be
either regular or chaotic. Further, the character of this
motion can affect pronouncedly the interference prop-
erties of the coherent radiation from the particle. Since
the particle trgjectory in acrystal israther complicated,
a simulation of the motion and the radiation under the
conditions of actual dynamicsin the crystal is of partic-
ular importance.

Within the semiclassical approximation of QED, the
spectral density of the radiation can be expressed in
termsof the classical trgjectory of the particlein acrys-
tal. Provided that the conditions under which the radia-
tion from a particle moving in a crystal can be consid-
ered in the dipol e approximation are satisfied, the spec-
tral density and the polarization of the coherent
radiation, the quantities that are obtained by averaging
the spectral density of the coherent radiation and the
degree of its polarization over various particle trajecto-
ries, can be represented as

dE\ _ we?+e? dof, 3y O 26
<d5)> T 4T e _!qZ[l_zq%l_atgz_ks.z} 3)
x OW (9)/°0

2 2%
_ €Wd dg a2,y 2
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5 4)
dE\ , dEg 77
g |:< d5)> * Dj(")Dmcohi| ’
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W(q) = J'dt\'/D(t)eiqt

is the Fourier component of the transverse component
of the particle acceleration, while (dE/dw), ., iS the
spectral density of incoherent radiation. The recoil
effect in radiation has been taken into consideration in
(3—5).

We areinterested in the radiation of frequenciesthat
are less than or about the frequency corresponding to
thefirst coherent peak in the radiation spectrum. Inthis
region of frequencies, the condition w < eg'P/M’R(Ris
the screening radius) is satisfied, which enables us to
represent W(q) in theform

W(g) = 5 9,e™n, ©6)

where 9, is the scattering angle in the nth collision
between the particle and the atomic string that is paral -
lel to the zaxis, whilet, isthetimeinstant at which this
collision occurs. The quantities 9, and t,, can be found
by solving the equation of motion for the electronin the
field of the continuous potential of an atomic stringin a
crystal [5, 11].

Expressions (3)—(6) make it possible to develop a
method for numerically simulating the motion of elec-
tronsin acrystal and the coherent radiation from them
under the conditions ensuring either aregular or acha
otic pattern of particle motion. On the basis of this
method, we can analyze the effect of the character of
particle motion in a crystal on the interference proper-
ties of coherent radiation and, in particular, reveal the
role of “weak” crystallographic planesin the coherent-
radiation process.

Along with (a) the coherent-radiation spectrum and
(b) the polarization degree both cal culated according to
(1), Fig. 1 displays the results of our simulation for the
properties of radiation under the same conditions (solid
curves). The simulation was performed for a diamond
crystal of thicknessL ~ 50 pm.

It can be seen that the results of the simulation com-

ply well with the corresponding results obtained
accordingto (1). Thismeansthat, in the case being con-
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sidered, the actual dynamics of electrons in a crysta
does not destroy the coherent peaks induced by the
effect of “weak” crystallographic planes.

The effect considered here manifests itself at lower
electron energies as well. Figure 2 displays the results
of the simulation and of the calculations according to
(2) for the spectral characteristics of the coherent radi-
ationfrome =1GeV eectronsat P =2.5 x 102 rad and
at the same value of a as before. In this case, the effect
is not so pronounced: the radiation intensity at the
coherent peaksis on the same order of magnitude asthe
incoherent-radiation intensity. Asto the polarization of
the radiation, it is quite sizable at either coherent peak.

Our results demonstrate that new peaksin the coher-
ent radiation can appear not only at energies of € ~
100 GeV but also at much lower energies. In order to
observe this effect experimentally, one needs electron
beams of angular divergence AB not greater than YAQ,
where Aa is the interval of angles a where the peaks
under consideration do exist.
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Abstract—Optical resonance diffractive and transition radiation from 200-MeV electrons in conducting peri-
odic targets with spaced strips are investigated experimentally at the Tomsk synchrotron. The orientation and
spectral properties of the radiation are measured. © 2000 MAIK “ Nauka/Interperiodica” .

Electromagnetic radiations stemming from a
dynamical perturbation of atomic electron shells and
free electrons by the electromagnetic field of a charged
particle traveling in a medium (polarization radiation)
include transition radiation, diffractive radiation, Cher-
enkov radiation, parametric x-ray radiation, and polar-
ization bremsstrahlung. In contrast to all others, dif-
fractive radiation arises when relativistic particles pass
in close proximity to the target edge, at a distance of
about yA, where y is the particle Lorentz factor and A is
the wavelength of the emitted radiation. Interest in this
type of radiation is associated with the possibility of
using it for nondisturbing beam diagnostics [1] and with
the possibility of generating monochromatic-radiation
beamsin the millimeter and submillimeter ranges[2].

In recent years, attention in theoretical studies has
been focused on resonance diffractive radiation as a
useful subject for experimental investigations [3-6]. At
observation angles 6 > y~!, the formation length for dif-
fractive radiation that is generated by ultrarelativistic
particles (y > 1) and which belongsto the optical wave-
length range becomes sufficient for applying periodic
targets in order to obtain monochromatic radiation and
to increase its intensity [6]. Periodic targets (that is,
gratings whose profile was obtained by periodically
deforming a continuous surface) for diffractive-radia-
tion generation werefirst employed to study the Smith—
Purcell effect [7—9]. As was shown in [3], the use of a
periodic structure formed by spaced narrow metal
strips (h ~ yA) could increase considerably theintensity
of the radiation being discussed.

The first experiment that studied millimeter diffrac-
tive radiation generated by a beam of relativistic elec-
trons was performed in 1995 [10]. Optical diffractive
radiation was first observed in the experiment reported
in[11] and performed in abeam of 200-MeV electrons
from the SIRIUS synchrotron. According to [12, 13],
inverse transition radiation in the optical range shows a
great promisefor beam diagnostics. It can be hoped that
beam diagnostics with periodic targets (see above) will
extend the applicability range of the method, simulta-

neously reducing multiple particle scattering in the tar-
get to aconsiderable degree, since someinitial particles
will pass through the target gapsin this case.

The intensity of resonance diffractive radiation is
given by [3]

where F, isthe intensity of diffractive radiation from a
semi-infinite plane; F, isafactor that takesinto account
interference from the different edges of a single target
element; and F; isafactor that takes into account inter-
ference from the different target elements,

U
Fs = eXp[(l_N)ao]B

|
[7)]
-]
]
[§]|
(]
O
]

Here,
_ RTdsSinGqy [ a3,
c10 - ] VB)\ 0 (l+y eX)v

0
o = L] cos(ey 09 -2,

where 6, is the target-orientation angle, 8« and 6, are
the observation angles, d isthe period of thetarget, A is
the radiation wavelength, and N is the number of grat-
ing periods.

At small grating-inclination anglessuchthat a, < 1,
the radiation spectrum develops appreciable maxima
caused by the periodicity of the target in the longitudi-
nal direction. The condition under which there arises a
resonance can be written as

o = 4 cos(0, - 8) - 2]

1063-7788/00/6311-2029%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Layout of the experimental setup: (/) phototube, (2, 3, 9) collimators, (4) mirror, (5) prism, (6) detection unit, (7) target,

(8) accelerator chamber, and (/0) scintillation counter.

where k isan integral number representing the order of
diffraction. It can be expected that the above condition
of the emergence of a resonance remains valid in the
case where a relativistic particle traverses an inclined
grating, irrespective of whether it passes through the
grating gap or through a strip.

In 1998, Haberle et al. [14] studied experimentally
resonance optical inverse transition radiation. Their
measurements, which employed a continuous periodic
target, were performed with electrons incident on the
target at large angles, in which case the efficiency of the
use of aresonance was reduced considerably.

In the experiments at the Tomsk synchrotron, orien-
tation dependences and the spectra of resonance dif-
fractive radiation from 200-MeV electrons were mea-
sured for planar aluminum targets having athickness of
30 um and forming gratings of period 0.2, 0.4, or
0.8 mm at an angle of 4.2° with respect to the direction
of electron motion. The experiment was performed in
the internal beam of the accelerator. In order to sup-
press the synchrotron-radiation contribution, a mode
was implemented where the electron spill onto the tar-
get was short (about 10 ps). The beam spill was
dumped at the stage of growth of the accelerator mag-
netic field. In this case, the pitch of the electron helix
was 40 um. The angular spread of the electron beam
was gy = 2.3 mrad. Figure 1 shows the layout of the
experimental setup.

Accelerated el ectrons were dumped onto a periodic
target (7) manufactured from polished aluminum and
placed on a two-coordinate goniometer in the straight
section of the accelerator.

An optical spectrometer recorded radiation gener-
ated by electrons at an angle of 4.2° with respect to the
electron beam. The spectrometer was based on a colli-
mator (9) and an optical prism (5), which expands the
radiation under study in the energy spectrum. The
expansion interval necessary for obtaining a frequency

PHYSICS OF ATOMIC NUCLEI

resolution of 10% was recorded by a detection system
(6) that consisted of a phototube (/) and a collimator
(3). The PMT-110 phototube with a sensitivity to light
of 5.5 x 10 A/lm was used in the experiment. The
spectral-sensitivity region of the photocathode in the
phototube used was 300-900 nm. In order to reduce the
background, the detection unit was removed from the
plane of the electron-beam orbit by means of a mirror
(4) and was arranged vertically.

The spectrum was scanned by rotating the prism.
The frequency calibration of the spectrometer was per-
formed by using calibrated photodiodes. Figure 2
shows the calibration curve. The spectral efficiency of
the spectrometer was determined on the basis of the
spectrum of transition radiation from a continuous tar-
get (see below).

A scintillation counter (10) was employed to moni-
tor the measurement by bremsstrahlung. The beams of
bremsstrahlung and of optical radiation were colli-
mated to 1.5 and 1.05 mrad, respectively. (This was
done with collimators 2 and 3.)

Figure 3 shows the orientation dependence of the
intensity of inversetransition radiation for acontinuous
target rotated about the vertical axis. The FWHM value,
which was determined by the divergence of the electron
beam, the angular aperture of the detector, and the
intrinsic divergence of transition radiation, was 2.44 y.
The maximum of the orientation dependence (at 6, =
2.1°) corresponds to the peak of the mirror reflection of
transition radiation.

Figure 4 shows the spectrum of the inverse optical
transition radiation according to measurements at the
maximum of the orientation dependence. Such mea
surements are necessary for determining the efficiency
of the spectrometric setup. From Fig. 4, it can be seen
that the spectrum of inverse optical transition radiation
is not a constant, in contradiction with theoretical pre-
dictions. The maximum transition-radiation yield lies
Vol. 63

No. 11 2000
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Fig. 2. Spectrometer-calibration curve.
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Fig. 4. Spectrum of inverse optical transition radiation for a
continuous target oriented at the angle of 8, = 2.1°.

in the energy range between 2.2 and 3 eV; thisisdue to
the special features of the photocathode in the photo-
tube used and to the optical properties of the spectro-
metric channel.

The orientation dependence of the optical resonance
diffractive radiation from electrons incident on a peri-
odic target of period 0.8 mm is displayed in Fig. 5 for
angles in the range between 1.3° and 1.9°. In analyzing
this dependence, we can see that, for different wave-
lengths, the orientation curves behave somewhat differ-
ently, which is associated with the dynamical process
of diffractive-radiation formation. The most pro-
nounced distinction between the dependences on spec-
tral and angular variablesis observed at the orientation
Vol. 63
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Fig. 3. Orientation dependence of the inverse-transition-
radiation intensity for arotating continuous target.
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Fig. 5. Orientation dependence of the yield of optical reso-
nance diffractive radiation for a periodic target of period
0.8 mm.

angle of 6, = 1.72°. Figure 6 shows the optical-radia-
tion spectrum for this orientation angle, the correction
for the spectrometer efficiency being included. The
maximum of the spectral distribution corresponds to
thefirst order of resonance diffractive radiation, and its
width is due primarily to grating defects (according to
our estimates, the angular spread of the grating stripsis
o =0.85°).

The results of the present experimental studies can
be summarized as follows:

(i) We have evolved an experimental setup for mea-
suring the orientation and spectral properties of optical
radiation from relativistic electrons.
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Fig. 6. Spectrum of optical resonance polarization radiation
for aperiodic target.

(ii) We have measured the orientation and spectral
dependences of the optical resonance polarization radi-
ation from 200-MeV electrons traversing a conducting
target formed by spaced strips.

(iii) In order to ensure a correct comparison of
experimental and theoretical results, future studies
must be performed with targets characterized by a
small scatter of strip orientations with respect to the
grating plane.
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Abstract—The polarization fields of arelativistic particle moving in a homogeneous medium are cal culated.
Theresults areillustrated by graphs that show the behavior of the electric and magnetic fields in the reference
frame comoving with the particle. The behavior of the fields at large distances from the particle is analyzed.
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1. INTRODUCTION

Polarization fields generated by a charged particle
moving in a solid can significantly affect some pro-
cesses accompanying the propagation of atomic or
molecular ions, neutral atoms, and molecules through
solid films. In particular, special features of high- and
low-energy peaks and alignment of ions along the
velocity direction in the Coulomb explosion of molec-
ular ions (see, for example, [1, 2]) areusually explained
by introducing the concept of the wake potential. The
pattern of the energy losses of clusters formed by
charged particles can also strongly depend on the wake
potentials of each particle. There is every reason to
believe that polarization fields are important in study-
ing various phenomena associated with the motion of
relativistic atoms, ions, or nuclei through solid-state
targets[3].

Polarization fields (or wake potentials) were calcu-
lated by many authors within various models (see, for
example, [4, 5]), so that some aspects of this problem
have been clarified to a considerable extent. As to the
polarization fields of relativistic particles, their general
theory based on the formalism of dielectric functions
has been known for along time (see, for example, [6]).
However, specific calculations of fields in the vicinity
of a moving particle are incomplete [7]. It is well
known that, in the laboratory frame, the electric field of
a moving particle is distorted in such a way that the
transverse components increase by a factor of y, where
y is the Lorentz factor. In addition to the electric field,
there arises a proper magnetic field, which increases
with increasing particle velocity. In the reference frame
comoving with the particle, there exists only an ordi-
nary Coulomb field. When a particle moves in a
medium, fast charges arisein any reference frame, pro-
ducing a magnetic field. In the reference frame comov-
ing with the particle, thisis a purely polarization field.
If the energy of the particle and, hence, its Lorentz fac-
tor, increase, we can expect that the transverse compo-
nents of the fields will be significantly enhanced, irre-

spective of the reference frame where these fields are
specified. Thefirst specific calculations of the polariza-
tion fields in the comoving reference frame revealed
that the electric polarization field increases with the
Lorentz factor, but that, in the direction of the velocity
vector, the longitudinal and the transverse dielectric
function cause cancellation of the leading terms, which
are proportional to y. Thefield is stretched linearly iny
along the direction of motion, so that the deceleration
force increases only in proportion to alogarithm of the
Lorentz factor. We do not know any specific calcula
tions of the magnetic polarization fields. In this article,
we are going to fill this gap partly. The magnetic field
formed in the vicinity of arelativistic particle can con-
siderably exceed maximum fields obtained under labo-
ratory conditions; therefore, they can significantly
affect various polarization phenomena in clusters, fast
atoms, and molecular ions.

2. POLARIZATION FIELDS
OF RELATIVISTIC PARTICLES

In the reference frame comoving with a relativistic
charged particle, its field must be static; therefore, it is
sufficient to calculate the scalar potential and the mag-
netic field to characterize this field. From general con-
siderations, it is clear that the magnetic field must be
axisymmetric and must be directed, according to the
corkscrew rule, along a circle whose center occurs on
the symmetry axis. Specificaly, it is given by (hereaf-
ter, we use the system of atomic units)

00 [

2
4% o gz
Ho(p, 2) = —y — J dqz‘[dquqé +k2e J1(anp)
— 0 yA

00

1)
o1 v Kk e)-1)
gk, w) i+ k(1 —gy(k, )vc?) |

where g = (k, w) and g, (k, w) are, respectively, the lon-
gitudina and the transverse permittivity of the
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Fig. 1. Magnetic field Hy in the vicinity of a particlein the
reference frame comoving with it (y = 100) as a function of
the coordinates p and z All quantities are measured in
atomic units. A particle with charge Z = 1 moves in carbon
(rs= 1.53 au. is the average spacing between electrons in
the electron gas of carbon).

medium; w= vk, q = (qg, 0); K= (0o, YO); Z =Yz vt);

p= /X +y*; J,isaBessel function of nth order; Z is
the charge of the particle; v isits velocity; the zaxisis
directed along the velocity; and c is the speed of light.
In the reference frame comoving with the particle, the
electric-field potential, which determines the electric
field by the equality E, = —grad®,,, has the form

Z dg,dqg, ia,2
Omlp.2) = VE[[ LT a0

qIII 4
(2)
1o viak &1
g ¢ off P+Ki(1-g, v |

where the notation is identical to that in Eq. (1). Since
the vector potential is independent of time in the
comoving reference frame, it does not contribute to the
electricfield, which istherefore apurely potential field.
The transverse and the longitudinal dielectric permit-
tivity, which appear in Egs. (1) and (2), can be calcu-
lated in some cases. By way of example, we indicate
that, for a dense electron gas, they are described quite
accurately by the Lindhard formulas [8]. For a solid-
state target, the dielectric permittivities within the
microscopic theory proposed in [9] take into account
the excitations and polarizations of atomic cores. So
far, the quantities in (1) and (2) have not been calcu-
lated for the cases being considered. Below, we make use
of simplified model expressions for the diglectric func-
tionssuch that (i) € (g, w), €,(Q, W) — 1 whenq — o
or w— oo; (ii) for g — oo, the energies of longitudina
elementary excitations must tend to the free-electron
energy; (iii) in the limit g — 0, the frequencies of the
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Fig. 2. AsinFig. 1, but in the nearest vicinity of the particle.

longitudinal and the transverse modes must coincide; and
(iv) g — oo, the energy of thetransverse collective mode
must tend to the free-photon energy.

The simplest form of the dielectric functions that
satisfy conditions (i)—iv) is
2 (02
5 El(@ W) = 1-=5, (3)
Wy W
where wy, is the plasmon frequency and w, = wy, + ¢%/2.
In this case, the expressions for the fields can be
reduced to single integrals; for example, we have

&(a, w) = 1—w2+w2
o —

Pl

v qumqéJl(qu)

2 2 2 2
C v ) O+ Wl v

 Bexp(12/q; + wr/c’)
O Jod + sl

where

Hy =

1l
+ y/\(pv Z qD) %

1 1

v |qé + 20— V2| q- + 2w,

/\(p! Z, qD) =

% {8(01— /v~ 2000) €™,/ + 20~ v7ly
- ddv
x [(sz—wo) JOP + 200, — vzsn%—%—g

+v(2vi—q’ - 3wy cosg%%}
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0(&) istheHeaviside step function,and v > /2w, . The
scalar potential can reduced to the form
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2 2, 2

o =—Z >
v qp + wy/v

/\(p! Z qD)

2035

e,
,,/ll’l l’)”’l”"

T
7

4

17
ll””l"’”l’l’”’l’l’

g0
mml""

7 ¥
I

7

7

m“““
7

7
7

)

7
Y
75

X,

N\
I
2

NS
R
N
7
A

>

N
!
Y

74

—200000

—100000
Z a.u.

Fig. 4. Asin Fig. 3, but for arelativistic (y = 100) particle.

Figures 1 and 2 display thefunctions Hy(p, ) for the
motion of a proton in a carbon film. Figures 3 and 4
show the scalar potential whose gradient determines
the polarization electric field in the reference frame
comoving with the proton. At large distances from the
particle, the peaks of wavelike field perturbations do
not show atypical “retardation” at relativistic energies
in relation to the nonrelativistic case (compare Fig. 3 at
v =2and Fig. 4 at y = 100). The reason for thisis that,
fory> 1, thefield propagates at |arge distances, where
long-wave transverse and longitudinal excitations of
arbitrarily large phase velocities are dominant. Physi-
cally, the particle brings the entire electron subsystem
of a solid into synchronous motion in this case. If the
behavior of the field at small distances is inspected
more closely, a characteristic retardation of thefield in

. q 0 _ia, quexp(-lZ4/a2 + wi/c®) O relation to the particle can be observed for y > 1 (see
+ZI G0Jo(doP) %—e e . T 2% Fig. 5). In the chosen model, the exact expression for
0 (g5 + o/ Vo) Jap + wp/c the force decelerating the particle has the form.
2
- zzoof,ln VIV = 0/ €)= 200001y (L = 030/267) + V(L — 6/ H)]
Ve 200(1 — 03/ 267) '

3. POLARIZATION FIELDS OF A MOVING ATOM

Expressions (1) and (2), which were obtained for a
pointlike charge, can be generalized quite straightfor-
wardly for a more complicated charge distribution. By
way of example, weindicatethat, for an atom wherethe
electron density-distribution is steady-state and is char-
acterized by the Fourier components p.(q), we arrive at
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Fig. 5. Contour plot of the scalar potential at small distances
from arelativistic particle (y = 100).

H(xX) = —ivzgr—l[z— Jq—%q—k—ze‘w[q xV](Z - pda))
0 z
YA ¥ ) }

(5)
1
x| =—=1 -y
L ¢’ + Ki(1—g,v7Icd)

If p«(q) is axisymmetric with respect to the z axis,
expressions (4) and (5) reduce to double integral s of the
typesin (1) and (2).

Expressions (4) and (5) do not involve the self-inter-
action of charges because the polarization fields
express the effect of medium particles on externa par-
ticles moving through a medium. In calculating the
state of each electron in an atom, we must therefore
take fully into account the fields given by (4) and (5).
Because of the mutual screening of the charges
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involved, these fields are suppressed in relation to the
case of themotion of anindividual charge, but thisisso
only at large distances from an atom. At small dis-
tances, which correspond to large g, the polarization
fieldsare not subject to strong screening and can signif-
icantly affect the states of atomic electrons. Therefore,
estimates of these fields and their configurations are of
considerable interest for experimentalists investigating
the propagation of atomic particles through solid films.

Detailed calculations of fields for this case are now
in progress.
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1. INTRODUCTION

Excitation and ionization that occur in an atom
reflected from ameta surface and which are dueto the
surface polarization of a solid and to the generation of
surface quasiparticles were considered in [1]. The
experiments reported in [2] demonstrated that the state
of an atom moving at a certain distance from a surface
can undergo changes. In the present study, the probabil-
ities of transitions in an atom that are induced by its
interaction with surface modes are theoretically esti-
mated for the case where the atom moves near the sur-
face without coming into contact with it. In particular,
we consider in detail the case where the direction of
motion is parallel to the surface. Our calculation in the
first and in the second order of perturbation theory
revealed that, upon moving along metal surface for a
short time interval, a hydrogen atom undergoes a tran-
sition from the 2s state to the 2p state, the transition
probability being sufficient for detecting the resulting
radiation. We believe that the experimental results
reported in [2] (so-called Sokolov effect) can be
explained on this basis.

2. BRIEF REVIEW OF RELEVANT THEORY

Surface electromagnetic fields that arise owing to
the generation of surface plasmons or to the polariza-
tion of their vacuum play a substantial role in various
surface phenomena. The theory of surface plasmons
(more precisely, plasmon-polaritons) was reviewed in
detail elsewhere[3, 4]. Inthe present study, wefocuson
the excitation of an atom moving along ametal surface.
Let H,; be the Hamiltonian of atom interaction with the
field of surface plasmons, and let the atom be initially
in the @,, state characterized by zero total angular
momentum. The state of the atom at an arbitrary instant
of time can be roughly treated as a coherent mixture of
the 2s and 2p states whose angular momenta are 0 and
1, respectively,

—ig,t

—iAEt)e . (1)

W = (0@, +B@pe

Here, AE isthe Lamb shift, while g, isthe energy of the
excited state of the hydrogen atom. In the two-state

approximation considered here, the time-dependent
coefficientsin the expansion in Eq. (1) satisfy the set of
equations

i = (HindeB: 1B = (Hin) 0l @)

Solving the set of Egs. (2), we find that the coefficients
o and 3 depend periodically ontime. Thisresult can be
treated as a special case of so-called quantum besating.
Another type of quantum beating was observed in the
experiments that were reported in [2] and which
employed a beam of hydrogen atoms in state (1) with
|a] = |BJ Once the atoms had traveled adistance L in a
vacuum, the beam was transmitted through a facility
that changed the number of 2p atoms owing to the tran-
sitions of asmall fraction of 2s atoms. As aresult, there
arose a coherent mixture including two groups of the2p
atoms shifted in phase by the constant AEL/v. If the
amplitude of the 2p atomsin theinitial beam was equal
to B and if the amplitude of the second group of such
atomsisf3', the experimentally observed intensity of the
leading line in the Lyman seriesis proportional to

| = |B*+|B|*+ 2IBB] cos(AEL/v + arg(BLP')). (3)

The resulting beats are due to the Lamb shift. The con-
trast of the relevant interference pattern is determined
by the ratio

BB
- = . 4
I BI”+ 1B

3. CALCULATION OF THE TRANSITION
PROBABILITY

We now proceed to cal culate the probabilities of the
transitions from the 2s state to the 2p state in a hydro-
gen atom moving aong the surface, assuming that
these transitions are due to atom interaction with the
fields of surface electromagnetic excitations. We will
consider first-order processes in which the atomic tran-
sition is accompanied by the generation of a surface
plasmon, second-order processes involving a virtua
surface plasmon, and processes caused by the nonuni-
formity of the surface polarization fields of the atom.

1063-7788/00/6311-2037$20.00 © 2000 MAIK “Nauka/Interperiodica’
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We assume that the atom moves along an infinite planar
metal surface at adistance afromit and thefield of sur-
face plasmons is switched on abruptly at the instant
t=0. This formulation of the problem simulates the
experimental situation where the atoms fly above the
restricted surface region.

The Hamiltonian of atom interaction with the field
of surface plasmons can be represented as

Hin = JIB0X=xo(0) = Pelx, D] ox, td’x,

where the operator of the potential of the surface-plas-
mon field has the form

ALEKSANDROV et al.

dy(x, t) = zgque—qmzi(équeiqnﬁ + éaue_iqm)-

qi
Here, x = {r, z}, X,(t) = a+ vt isthe equation of thetra-
jectory of an atom moving along the metal surfacez=0at
a distance a, ¢ is the plasmon momentum parallel to
the surface, and g, isthe coupling constant. The zaxis,

which is orthogonal to the surface, is directed from the
metal to the vacuum; the velocity v is paralel to they
axis; and the x axisis chosen to be the axis of angular-
momentum quantization (Fig. 1).

Inthefirst order of perturbation theory, the probabil-
ity of the 2s — 2p transition has the form

d + g )t =i ! i ?
Wy = z gqnfdt 2qZ e 03— Wanle 92000 (&)
q” +q;
where ¢,,, and ¢,,,, are the wave functions of , respec-
tively, the 2s and the 2p state of the hydrogen atom; W5 (t) __9 |2 ©)
ws is the surface-plasmon energy; and wy; = €,, — €)= W ®) 16005&3 3
AE. 1

At large times t, the transition probability
decreases asymptotically with increasing atom-to-sur-
face distance in inverse proportion to the distance
cubed:

ty

2 —iwgty —ty) qu
w2t = qul Jdtljdtz Iznq
ng, o ||
where Aq(q, t) = e "G, - dleta g and g =
@ a;)-

The following circumstances are of importance in
calculating the probability by formulas (5) and (7): (i)
Since the Lamb shift is small, the probability
approaches dowly a steady-state regime. (ii) If the
velocity of the atom is less than the minimum phase
velocity of surface plasmons (as was the case in the
experiment reported in [2]), the plasmons are not
excited, in which case the probabilities of first-order
processes asymptotically tend to constant values for
t — oo0; at the same time, the probabilities of second-
order processes involving a virtual surface plasmon
increase in proportion to t at large times. (iii) At small
values of t, when the steady-state regime has not yet
been established, the relevant probabilities may be non-
linear functions of time. (iv) Formulas (5) and (7) were
derived under the assumption that the atom undergoes
atransition from the 2s state to the 2p state; when the
population of the 2p state becomes commensurate with
the population of the 2s state, the inverse transitions

In the second order of perturbation theory, the tran-
sition of the hydrogen atom from the 2s state to the 2p
state is accompanied by the excitation of avirtual plas-
mon, which is then absorbed. The probability of this
processis given by

2

; )

"dq, 2q
29 A ) j qq 9
||

(=’ 1)

2n|

begin to occur. In this case, quantum beats between the
2s and 2p states arise, their frequency being dependent
on the distance a. For this reason, expressions (5) and
(7) can betreated asthe probabilities of the correspond-
ing transitions only in the case where W and W are
much less than unity. If W or W are about or greater
than unity, the probability that the atomisinthe2p state
ison the order of unity in accordance with the relevant
solutions to equations of the typein (2).

Numerical estimates revea that, for a < qgl, where
g, is the endpoint momentum of the surface plasmon, a
dominant contribution to the transition probability
comes from the intermediate state n = [100L] However,
this contribution is exponentially suppressed in the

region a > q', where the intermediate state n = [2100]
makes a dominant contribution, which decreases in
proportion to a® for a—» co. For thisreason, the prob-
ability W was calculated by taking into account both
the intermediate state |100Jand the intermediate state
[210L1 According to our estimates, other intermediate
PHYSICS OF ATOMIC NUCLEI  Vol. 63
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Fig. 1. Geometry of the motion of an atom over the metal
surface.

w®, 107

Fig. 2. Probabilities W) of second-order transitions to the
(Z) 121 — 10and (2) [211Cstates of a hydrogen atom moving
aong agold surface at the distance of a= 1 a.u. for thetime
t = 10° au. versus the atom veloci ty. The first-order contri-
bution is negligibly small here.

logW
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Fig. 3. (, 2) Probabilities W1 of first-order transitions
to, respectively, the |211Cand the |21 — 1 [state of ahydro-
gen atom moving along a gold surface at the velocity of
v=1au. for thetimet = 10° au. and (3, 4) probabilities \W?)
of second-order transitions to the same states versus the dis-
tance from the surface.
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states yield small corrections to the contributions of
these two states under the conditions prevalent in the
experiment reported in [2]. In the second order, the
probability was calculated as the squared modulus of
the sum of the contributions to the total transition
amplitude from all included intermediate states. The
transition probabilities calcul ated in the second order of
perturbation theory are displayed in Fig. 2 versus the
atom velocity at afixed distance from the surface. The
peak position correspondsto the velocity value of (€,, —
€s + WY/q.. The transition probabilities calculated in
the first and in the second order of perturbation theory
are shown in Fig. 3 versus the atom-to-surface distance
for two final states |21 + 10J1t can be seen from thisfig-
ure that the probabilities W and W are much less
than unity for a> 30 a.u. Near the surface, the probabil-
ity W may take large values, depending on the dura-
tion of the motion of the atom over the metal surface.
Typical time dependences of the probabilities WV and
W2 are given by the following estimates: (i) W ~ t2
for 1 <t < 1/AE; (ii) W® ~ t for t > 1/AE; and (iii)
WD ~ t2 for t — 0 and attains fast (withint ~ 10—
10* a.u.) a constant value for v < v, where v, was
estimated here at about 1.5 a.u. (which is less than the
atom velocity of about 0.94 a.u. in Sokolov's experi-
ments).

4. DISCUSSION

Our calculations have demonstrated that, owing to
the interaction with el ectromagnetic surface modes of a
solid, an atom moving near it can undergo transitions
from one state to another without directly colliding
with surface atoms. Thus, the phenomenon being con-
sidered isof acollective origin. Since the surface polar-
ization field exists in a vacuum at distances from the
surface that are much greater than atomic dimensions,
the probability of first-order transitions decreases with
increasing distance from the surface in inverse propor-
tion to the distance cubed, in contrast to what is known
for collisions between neutral atoms, where this
decrease is exponential (see, for example, [5]). In the
second order, the contributions of some intermediate
states decrease exponentially with increasing a,
whereas others exhibit a power-law dependence.

According to our estimates, the integrated probabil-
ity of the transition of beam atoms from the 2s state to
the 2p state is about 10~ under actual experimental
conditions, which is sufficient for detecting the effect
viathe observation of the resulting dipole radiation.
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Abstract—Two alternative approaches to deriving the equation of motion for a spin are compared. It is shown
that the conventional approach leadsto the conclusion that the spin of a positron isrotated through alarge angle
astheresult of planar positron channeling in astraight crystal. The quantum-mechanical approach based on the
Foldy—Wouthuysen transformation predicts no spin rotation in this case. Experimental measurements can reli-
ably discriminate between the two methods for deriving the equation of motion for a spin. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

In the past few years, considerable advances have
been made in measurements of spin rotation for polar-
ized particles channeled through a bent crystal [1, 2].
Experiments of this type make it possible to determine
the magnetic moments of short-lived particles [3]. In
order to interpret correctly relevant experimental data,
one needs detailed information about the motion of par-
ticle spinsin the nonuniform field of crystals. In[1, 2],
the motion of a spin was calculated on the basis of the
Bargmann-Michel-Telegdi (BMT) equation [4]. A
conventional method for deriving this equation relies
on the assumption that the 4-velocity vector W is
orthogonal to the polarization 4-vector a [4, 5],

u"a, = 0. (1

However, ageneralization of this method to the case of
anonuniform field givesrise to termsin the equation of
motion for aspin that are proportional to thefirst deriv-
atives of the strengths of the electric and magnetic
fields [6, 7]. Such terms appear in the respective quan-
tum equations as well if these equations are derived by
using relation (1) [8, 9]. The use of this relation as an
auxiliary condition in deriving the quantum equation of
motion for a spin can be avoided by going over to the
Foldy—Wouthuysen representation. Since the polariza
tion operator is known in this representation, the equa-
tion of motion for aspin can readily be derived by com-
puting the commutator of the polarization operator and
the Hamiltonian [10, 11] D The resulti ng equation rep-
resents an exact quantum analog of the BMT equation,
and it does not involve the first derivatives of the field
strengths. There are no such derivativesin the equations
from [11, 14] either, where they were obtained on the

DThe expressions for the Hamiltonian in the Foldy—\Wouthuysen
representation that were obtained in [10, 12, 13] are consistent.

basis of classical electrodynamics without resort to the
condition in (1). However, the equation from [11, 14]
differsfromthe BMT equation even for auniformfield.

Of course, the theoretical concept based on the
orthogonality of the velocity and polarization 4-vectors
seems appealing, because it defines the polarization
vector and, hence, the particle spin in quite a natural
and simple way. However, there arises the question of
whether this semiclassical model conforms to an exact
quantum description.

It will be shown below that the two alternative
approaches to describing particle polarization, which
lead to qualitatively different types of motion of aspin
in anonuniform field, can be discriminated experimen-
tally by studying spin motion in the planar channeling
of ultrarelativistic particlesin straight crystals.

We use here the system of unitsinwhichz =c= 1.

2. EQUATION OF MOTION OF A SPIN
IN A NONUNIFORM FIELD

By differentiating the orthogonality condition (1)
for the velocity and polarization 4-vectors with respect
to the proper time T, we obtain a relation between the
equation of motion of a particle and the equations of
motion of its spin [5]:

du” _ da"
v - W 2)

The equation of motion of the particle involves
terms proportional to the first derivatives of the field
strengths. These terms are due to the drawing of a mag-
netic dipole into the domain of a stronger field or forc-
ing it out of such a domain, depending on the orienta-
tion of the magnetic momentum. In accordance with
Egs. (1) and (2), this gives rise to terms involving the

1063-7788/00/6311-2041$20.00 © 2000 MAIK “Nauka/Interperiodica’
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first derivatives of the field strengths in the equation of
motion for a spin as well. For this reason, the equation
of motion of a spin in a nonuniform electromagnetic
field (Good—Nyborg equation [6, 7]) has the form

da

pv
ac = 2uF"a, - 2u'u'F"? "
—Eu“a"a"uxa————G“,

m P

ox

which is dictated by the equation for motion of the par-
ticle and by the condition in (2). The notation used in
Eg. (3) is the following: p is the total magnetic
moment; W' = 1 —e/2m is the anomalous magnetic
moment; F¥ = (-E, H) is the strength tensor of the
electromagnetic field; G = (-H, —E) isitsdual;

d w, 0

0
H _ 2
= 0O,=— u u"ax\,’

Vax _a_x“

o) = &) —u'u,

and &) is a Kronecker delta. The last term in (3)

describes spin precession caused by the nonuniformity
of thefield. The respective equation for the polarization
3-vector & has the form [6]

d¢ _ '
T = FraufexH]

+ 2 (o) rucg] + G2

=+ 2 HE x [E xV]]

. o
[& [V NI OE HE V) +(3 H)

m(e + m)

-8 D/)(VEH)E;

Thus, the conventional method for deriving the
eguation of motion for a spin on the basis of condi-
tion (1) leadsto Eq. (4), which involves the first deriv-
atives of the field strengths. In the case of a uniform
field, EQ. (4) reduces to the BMT equation. In contrast
to Eq. (4), the quantum equation of mation for aspin as
derived with the aid of the Foldy—Wouthuysen repre-
sentation does not involve terms with the first deriva-
tives of the field strengths other than those appearing in
the BMT equation. In the semiclassical approximation,
it hasthe form [11]

2U'e

S = BeafexH + 2 v )y xg]

&)

+ =+ 2uHE X [E x V).
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Equation (5) differs both from Eg. (4) and from the
guantum equations of motion for a spin that were
derived in [8, 9] with the aid of condition (1).

Asto the equation derived in [11, 14] within classi-
cal electrodynamics without resort to condition (1),
what is of importance hereisthat it isinconsistent with
Eqg. (5), which was derived by the methods of quantum
theory. To put it differently, the semiclassical and the
classical description of spin motion are inconsistent
with the quantum description (see [11, 14]). In what
follows, it is demonstrated that this conclusion holds
not only for spin-1/2 particles.

3. MOTION OF A PARTICLE SPIN IN PLANAR
CHANNELING THROUGH A CRYSTAL

It was shown in[15] that, from the Good equation (4),
it follows that, in the planar channeling of an ultrarel-
ativistic positron through a straight crystal, the
positron spin is rotated through a large angle. For
heavier particles, this effect is less pronounced. Here,
we study the rotation of the spin of particles movingin
acrystal at an arbitrary velocity, taking into account the
oscillatory character of particle motion in the crystal
field.

Itiswell known that the motion of relativistic parti-
cles channeled through a crystal can be adequately
described in the semiclassical approximation, whereas
the motion of aspinisof essentialy aquantum charac-
ter. In the case of channeling through a straight crystal,
the equation of motion of a spin as obtained from the
Good equation (4) hasthe form

dé oM X [E x
20yt HHE X [E X V) o
+ g[8 X [V X DII(E TE X)),

where |4, = €/2misthe Dirac magnetic moment and y =
e/m is the Lorentz factor. The quantum equation of
motion for a spin from [11] differs from Eqg. (6) in that
the former does not contain the last term from the latter.
Let the x axis be orthogonal to the system of crystallo-
graphic planes, and let the y axis be aligned with the
particle velacity. In this case, Eq. (6) can be reduced to

the form
% = o Ho Y =g e
Ev+1 ] y Z A
_Amu(y-1)
—my PElE el
where _ Ld&
P= I dx

In planar channeling, a particle executes oscillatory
motion along the x axis. For this reason, the electric
field in the reference frame comoving with the particle
Vol. 63
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isanearly sinusoidal function of time. In this case, the
first termin EqQ. (7) isalarge quantity developing rapid
oscillations, whereas the second term is a compara-
tively small quantity closeto aconstant. Such equations
can readily be solved by the Kapitza method [16]. Let
us represent vector & as the sum of the two terms,

§=0+n,

where © isaquantity slowly varying over atypical time
on the order of the period of spin precession, T, and n
is a quantity rapidly oscillating with a frequency Q
[®| > m|. Upon averaging over thetimeinterval t satis-
fying the condition 1/Q <t < T, we obtain [®[= O,
MCE 0, and (= 0.2 Equation (7) then breaks down
into two equations

doe — »J Ho . Nyz—l
dt _2[v+1+u|:| y EEX[T]er]D
_Amuly—1)
 Pee xel, ®)

/2
= y _1EX[G) xe,).

dt E‘§/+1+“D y

We now solve the second equation and substitute the
result into the first one. Since the averaged value of the
time derivative of a quantity varying within a bounded
region is zero, we arrive at

(B[EQ) = %<d9t( J’Ex(t)dt)2> )

Hence, the oscillating term does not contribute to
the rotation of the polarization vector, and the equation
of motion for a spin takes the form

do _ 4mu(y-1)
dt - my |]3[@2[6) x ez] . (9)

Equation (9) is deduced from the Good-Nyborg
equation (3). Fromthe BMT equation, which is consis-
tent with quantum theory [10, 11], it follows that the
angle of rotation of the polarization vector nearly van-
ishes.®)

From Eq. (9), it follows that not only does the polar-
ization vector & execute small-amplitude high-fre-
guency oscillations, but that it is also rotated at the
angular velocity

d_Tl_ZDUO

_ Ay —1) Ay —1)

o = my |J)Eqazez my H)l:zzez-
Thisrelation is consistent with the formulafor ultrarel-
ativistic particles (y> 1) from [15].

The spin-rotation angle per unit distance traveled by
the particleis given by

IHere, angular brackets denote averaging over the time period t
satisfying the above condition.
3The spin-rotation effect described in [17] is very small.
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do _ 1d® _ 4mi y-1
d~vd  m y+1ED[EZ'

In the case of planar channeling through abent crys-
tal, the spin-rotation angles per unit length for oppo-
sitely polarized particle beams differ by the quantity

(10)

gmy fy—1
m y+1EpD

4. DISCUSSION OF THE RESULTS

Thus, there are two aternative approaches to deriv-
ing the equation of motion for a spin that lead to quali-
tatively different results. The conventional method,
which isbased on condition (1) and whichisused inthe
majority of studies, leads to the emergence of termsin
the equation of motion for a spin that involve the first
derivatives of thefield strengths. No such termsarisein
the equation derived by the quantum method that
employs the Fol dy—Wouthuysen transformation, so that
spin motion is described here by the BMT equation. It
can be shown that, within the quantum approach, con-
ditions (1) and (2) do not hold because the equation of
motion for a particle as derived by using the Hamilto-
nian in the Foldy—Wouthuysen representation (see
[10]) involvesthe first derivatives of the field strengths.

Equation (1) determines the polarization 3-vector &
in the noninertial reference frame comoving with the
particle [11, 14] because it is only in this reference
frame that the spatial components of the 4-vector U+ are
equal to zeroand a* = (0, &). If the vector & isdefined in
an inertial reference frame coincident at one instant of
time with the reference frame comoving with the parti-
cle, itstime dependence, which determines the form of
the equation of motion, will be different [11].

There arises the question as to which of these two
alternative methods for deriving the equation of motion
for aspinis correct. A reliable answer to this question
can be found experimentally. For this purpose, it is suf-
ficient to measure the change in the polarization of a
relativistic-positron beam upon its planar channeling
through astraight crystal. From (3), (4), and (10), it fol-
lows that the spin vector rotates in this case through a
sizable angle about the z axis, which is orthogonal to
the system of crystallographic planes and to the particle
velocity. Thisangle can be measured to a sufficient pre-
cision. For Si, Ge, and W single crystals, the values
obtained with aid of (10) for the spin-rotation angle per
unit distance traveled by channeled ultrarelativistic
(y> 1) positrons in a direction paralel to the (110)
planeat ,=a(a< 1) ae4la, 28a, and 77arad cm!,
respectively. These estimates, obtained at temperature
T =293 K, are consistent with those obtained in [15].
In the case of a heavier particle, the effect is much less
pronounced (see[19]).

From the BMT equation, it follows that thereis vir-
tually no spin rotation in planar channeling through a
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straight crystal. Only depolarization of the beam does
occur [18].

No information about observation of spinrotationin
channeling through a straight crystal can be found in
the literature. Nonobservation of such spin rotation in
dedicated experiments, should it be reliably estab-
lished, would imply that the motion of a spinin anon-
uniform field cannot be adequately described on the
basis of the known classica and semiclassical
approaches. This would cast some doubt upon the
applicability of the BMT equation to spin-1 and spin-
3/2 particles because this equation was derived by the
methods of quantum theory only for the case of spin-
1/2 particles. For this reason, it is of fundamental
importance to develop a rigorous guantum theory of
spin motion in an electric field for the case of higher
spins(s= 1). A comprehensive theoretical investigation
of this problem is required for determining the mag-
netic moments of these particles from experiments
based on channeling. The validity of the BMT equation
for higher spin particles can be tested experimentally.
Measurements of the rotation of the relativistic-deu-
teron spin in planar channeling though a bent crystal
seems to be the best test in this field. In implementing
such experiments, it is necessary to take into account
spin oscillations described in [19].

5. CONCLUSION

We have performed a comparative analysis of two
alternative methods for deriving the equation of motion
for a spin. It has been shown that the conventional
approach leads to the conclusion that the spin of a
positron traveling through a planar channel in astraight
crystal is rotated through a large angle. The quantum
approach based on the Foldy—Wouthuysen transforma-
tion predicts no spin rotation in this case. Thus, experi-
mental measurements are needed to find out which of
the two methods for deriving the equation of motion for
a spin is correct. The question of whether the BMT
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equation is applicable to the case of higher spin parti-
cles(s= 1) can also be solved experimentally.
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1. INTRODUCTION

The quadrupole moment of aparticlewithaspin| = 1
is responsible for very special properties of the mation
of its spin in external fields. There occur spin oscilla-
tions consisting in alteration to the spin projection [1].
There is such an effect even in channeling or qua-
sichanneling in straight crystals, and it can be
employed to determine the quadrupole moments of
short-lived particles [1]. Usually, this concerns relativ-
istic or ultrarelativistic particles; therefore, it is heces-
sary to take exactly into account relativistic effects in
deriving the equation of motion for a spin. In [1], the
equation of motion for a spin was derived by the stan-
dard approach, which consists in a transition from the
particle rest frame to the laboratory frame with allow-
ance for Thomas precession. However, it was indicated
in [2, 3] that this approach can yield incorrect results
because it relies on the incorrect assumption that the
4-velocity vector UM is orthogonal to the polarization
4-vector a*: Wa, = 0 (see [4-6]). In the present article,
the equation of motion for the spin of a particle having
a quadrupole moment is derived by constructing the
Hamiltonian by a method that takes rigorously into
account relativistic effects and by employing the
canonical equation of rotational motion [3].

2. THEORETICAL ANALYSIS

Particlesmoving in the electrostatic field of acrystal
are involved in the quadrupole and in the contact inter-
action. The termsin the Hamiltonian that are responsi-
ble for these interactions are given by

Q 0’ 1acp
130X, " 6 o’

ey

where @ is the scalar potentia of the crystal field; Q;
and 1 are, respectively, the tensor of the quadrupole
moment of the moving particle and the mean square of
itschargeradius; and X;(i = 1, 2, 3) arethe c.m. coordi-
nates of this particle. Summation is performed here

over dummy indices. For nonrelativistic particles, we
have Q; = Q and T =1, where

(0) — J’p(r(o))(3x(0) (0) 6”r(0)2)d\/(0),

1© (0)y (02 4 (0) @
= I p(r ) dv.

Hereafter, the superscript (0) labels quantities defined
in the particle rest frame, whiler© and xi(o) (i=1,2,3)
are, respectively, the radius vector and the coordinates
of the chargesthat constitute the particle and which are
distributed with the density p(r ®). Upon going over to
operators, the tensor of the quadrupole moment is
expressed in terms of the particle-spin operator as

o - _3Q% . 2 )
Ty  LURILES GRS LI Y
where | isthe particle spin (I = 1), |; are the spin-oper-
ator projections, and QY is the quadrupole moment.

For moving particles, the quantities Q; and T are
given by the expressions

= J’p(r)(Sxixj—éijr yav, 1 = Ip(r)rzdv, “4)

which are similar to (2). This follows from the relativ-
istic invariance of the elementary charge de = p(r)dV,

p(NdV = p(r*)dv®. )

The transformation of the quantities Q; and T iscon-
trolled by the relativistic length-contracti on law. Owing
to this law, moving particles, which are spherically
symmetric in their rest frame, assume the shape of an
oblate ellipsoid in the laboratory frame. Consequently,
their effective quadrupole moment is not zero [7].

We use the well-known expression for the relativis-
tic transformation of lengths in the covariant form

dx
% = X0 sBB B = v = ©

1063-7788/00/6311-2045%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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wherey=1/1- Bz isthe Lorentz factor. We then have
(see[7])
(0),,(0)

XXj = X% (1+y)<s. X"+ Bx”)Bix”
2 (7)

+ V—yzsis,sks.xﬁ’)xf”.

From expressions (2), (4), (5), and (7), it follows
that

Qy = QF = 7 (BBQL + BB

(O) 6|JBkBI (0)

(v 1)° )
_5”[3251[(0),

—gsis,-—é

T= B-2vHO-28,80F.

Relations (8) determine the quadrupole and contact
interaction of the particle with the electrostatic field.
Upon going over to operators, the velocity v can be
replaced by the momentum operator p = —if[ accord-
ing to the relation

P ___ P
ym (m2c2 + p2)1/2’
where mis the particle mass. As arule, the relativistic
motion of a particlein acrystal can be described semi-

classically, while the motion of a spin is always of a
guantum character.
The equation of motion for a spin is determined by

the commutator of the spin operator | and the Hamilto-
nian,

vV =

=i x1]. ©)

According to (3), the character of spin motion is
controlled by the operator Qi(jo) , but it isindependent of
1, We have the commutation relation

[QP, 1] = i(eqi Q) + ey, QY),
where g; is an antisymmetric tensor.

According to (8)—10), the spin motion caused by
the quadrupole moment of the particle is described by
the equation

(10)

diy, _ 1 ) ©) ©
a —|: mQ —y+1(ekJnQ +ekan )BiBm
Y’ (0) O’y "

el BB;B.Bm}aXian-
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3. DISCUSSION OF THE RESULTS

Equation (11) describes the motion of the particle
spininan electrostatic field. In general, it doesnot coin-
cidewith that which is presented in [1], the distinctions
being quite pronounced for relativistic particles. In the
case of planar or axial channeling—this case is of par-
ticular interest for practical application—it is, however,
possibleto neglect, for afirst approximation, the veloc-
ity components in the plane orthogonal to the direction
of channeling. If the particles move along the z-axis
direction, then v,, v, < v, and 0*¢/0Z> = 0. In this case,
the external field is transverse with respect to the parti-
cle motion, and Eqg. (11) reduces to the form

dh _ 1

2
A0_0°9
dt mQ

" 9X;0X;"

(12)

Equation (12) coincides with that obtained by Bary-
shevsky and Shechtman [1], who performed a detailed
analysis of spin motion, which is of an oscillatory char-
acter in the case of channeling or quasichanneling in
straight crystals. From (8) and (11), it follows that, for
relativistic particles, the contributions to spin oscilla
tions from the quadrupol e and from the contact interac-
tion are on the same order of magnitude owing to the

presence of the term BB, QY /3 in expression (8) for .

It can be seen from (12), however, that the resulting
motion of the spin does not depend on the velocity. This
effect can be explained in the following way: the con-
traction of the longitudina size of a charged particle
moving along the z axis does not change the energy of
its interaction with the transverse electric field since
this energy is determined by the coordinates x and v,
respectively.

The second and the third term in the bracketed
expression on the right-hand side of (11) can affect siz-
ably the motion of the spin in particle scattering.

Equations (11) and (12) do not describe the spin
motion associated with the existence of the particle
magnetic moment. The corresponding contribution to
the spin motion is pronounced in the case of channeling
in bent crystals, but it is negligibly small in the case of
channeling in straight crystals (see [8]).

4. CONCLUSION

The Hamiltonian for the quadrupol e and the contact
interactions of relativistic particles havingaspin| 2 1
with an electrostatic field has been constructed. This
has enabled us to derive the equation of motion for a
spin. In the case where moving particles undergo chan-
neling or quasichanneling in bent crystals, the equation
obtained here coincides with that presented in [1].

Vol. 63

No. 11 2000



QUADRUPOLE AND CONTACT INTERACTION 2047

REFERENCES 5. R. H. Good, Phys. Rev. 125, 2112 (1962).
1. V.G. Baryshevsky and A. G. Shechtman, Nucl. Instrum. 6. P. Nyborg, Nuovo Cimento 31, 1209 (1964).
Methods Phys. Res. B 83, 250 (1993). 7. A.Ya Silenko, 1zv. Akad. Nauk, Ser. Fiz. 63, 997 (1999).
2. A.Ya Silenko, Poverkhnost, No. 2, 111 (1997). 8. A.Ya. Silenko, Zh. Eksp. Teor. Fiz. 107, 1240 (1995)
3. A.Ya Silenko, Poverkhnost, No. 5, 97 (1998). [JETP 80, 690 (1995)].

4. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskif,
Quantum Electrodynamics (Nauka, Moscow, 1989; Per-
gamon, Oxford, 1982). Trandated by O. Chernavskaya

PHYSICS OF ATOMIC NUCLEI  Vol. 63 No. 11 2000



Physics of Atomic Nuclei, Vol. 63, No. 11, 2000, pp. 2048-2050. Translated from Yadernaya Fizika, Vol. 63, No. 11, 2000, pp. 2142-2144.

Original Russian Text Copyright © 2000 by Slenko.

XXIX INTERNATIONAL CONFERENCE ON THE PHYSICS
OF CHARGED-PARTICLE INTERACTION WITH CRYSTALS

Rotation of the Spin of a Charged Particle
with an Anapole Moment in Planar Channeling

A. J. Silenko

Ingtitute of Nuclear Problems, Belarussian State University, Minsk, Belarus
Received December 10, 1999

Abstract—Interaction of relativistic particles possessing an anapole moment with an electric field of acrystal
is studied. The equation of motion of a spin is derived. The spin-rotation angle in planar channeling is found.

© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In the channeling of a charged particle, its spin is
rotated about its momentum owing to parity-violating
weak interaction [1-3]. It will be shown below that
thereisasimilar effect caused by the interaction of the
anapole moment of a moving particle or nucleus with
the electrostatic field of acrystal.

An anapole moment, whose exi stence was predicted
by Zel’dovich [4], is one of the static moments of the
magnetic type. However, the existence of an anapole
moment stems from parity nonconservation. For this
reason, the magnitude of the anapole moment is deter-
mined by weak interaction. An account of the theory of
the anapole moment was given in [5-7] D The anapole
moment was observed experimentally in [8].

The motion of aparticle with an anapole moment in
an electrostatic field gives rise both to quadrupole [ 7, 9]
and to contact interaction. In[7, 9], their strengthswere
computed to terms of order v/c, where v isthe particle
velocity. In the present study, an exact relativistic
expression for the Hamiltonian describing the interac-
tion of the anapole moment of a particle with an elec-
trostatic field is derived, which makesit possibleto find
the equation of mation for a spin. We use the system of
unitsinwhichfa =c=1.

2. THEORETICAL ANALYSIS

We proceed from the expression given in [10] for
the Hamiltonian describing the interaction of arelativ-
istic particle having amagnetic moment p with an elec-
tromagnetic field. If there is only an electric field, the
interaction Hamiltonian is given by

1
Hin = —ZW IEXP], (1
where € is the kinetic energy of the particle; P is the

generalized momentum; E = —[@ ; and E and ¢ are,
respectively, the strength and the potential of the elec-

DThe anapole moment (anapole) is also known as atoroidal dipole.

tric field. It should be emphasized that the magnetic
moment p is determined in the reference frame instan-
taneously comoving with the particle under consider-
ation. To a sufficient degree of precision, we have P =
ev, wherev isthe particle velocity. Asarule, the motion
of ardativistic particle in a crystal can be adequately
described in the semiclassical approximation, whereas
the motion of aspinisaways of essentialy a quantum
character.

The interaction of the anapole moment with an
external field can be considered on the basis of the sm-
plified model where the anapole moment is assumed to
be formed by pointlike magnetic dipoles. The anapole
moment can be defined by one of the following two
equivalent formulas [6, 7]:

= —nJ’ij dv, a= 2nf(r 0)rdv. 2)

In this case, the radius vector of an e ement of the
current of density j can be represented in the form
r=r@+r, <],
where r® is the radius vector of the center of the mag-
netic dipole and r' istheradius vector of the current ele-

ment with respect to this center. Upon integration with
respect to r, expression (2) takes the form

a= ZHZr(O)x”. 3)

In contrast to magnetic moments, the strength of the
electricfield E in (1) isdefined in the laboratory frame.
Supposethat r' = R + r, wherer' is the radius vector of
the center of the magnetic dipole, R isthe radius vector
of the center of the particle having an anapole moment,
and r is the end-to-end vector from the center of the
particle to the center of the magnetic dipole. The quan-
tity E = E(r') isthe field strength at the point where the
magnetic dipole resides. Expanding it in a power series
to terms of order r/R inclusive, wherer is on the order

1063-7788/00/6311-2048%20.00 © 2000 MAIK “Nauka/Interperiodica’
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of the particle radius, we obtain

E(r) = E(R)- &g;g§> @

where summation over dummy indicesisimplied. The
guantities x; must be expressed in terms of the quanti-

ties x(o) defined in the reference frame comoving with

the particle. In our manipulations, we make use of the
relativistic formula for coordinate transformations in
the covariant form

dX;

x = x0-—Y—vv® v == )
(1+y)c dt

wherey = (1 — v?/c*)~'”? is the Lorentz factor. We then

sum products of the form x(o) W, over the magnetic

dipoles that form the anapole moment (the magnetic
dipoles are assumed to be pointlike). Sincetheintrinsic
guadrupole magnetic moment of the particleis zero, we
have

©

POUTIESRITIE 6)

The terms in the Hamiltonian that are responsible for
the interaction of the anapole moment with an electro-
static field can be found by summation over the mag-
netic dipoles with the aid of Egs. (3)—(6). Theresultis

_1 acp

16
5Qi33ax 8 an

652’

J'

N —viv@am) @)

3
Qj = Z;[-y(aiVijajVi)me

1 1
_515”(‘3[")’ = T[aEv.

The anapole moment of a particle at rest isa = al/l,
whereI isthe spin operator and

1 +1/2-1
a0 = ex, S (+12)(1) |
J2a | +1

Here, e is an elementary charge, G is the Fermi con-
stant, o isthe fine-structure constant, and K, isadimen-
sionless factor [6].

The quantities Q;; and T are, respectively, the effec-
tive quadrupole moment of the particle and the mean
square of its charge radius; they manifest themselvesin
the case of a moving anapole moment. Formula (7)
defines a parity-violating interaction.

®)

3. DISCUSSION OF THE RESULTS

Let us consider the case of planar channeling and
chose the z axis to be orthogonal to the system of crys-
tallographic planes. The component of the particle
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velocity along the z axis can be neglected. Expres-
sion (7) for the interaction Hamiltonian then takes the
form

a(p
0Z°

The equation of motion of a spin is determined by the
commutator of the operator I and the Hamiltonian.
Upon evaluating this commutator, we arrive at

d _ .
—d—t = I[%int,l] = O)XI,
where w is the angular velocity of spin rotation. In the
case being considered, it is given by

%int = 4T[| a‘O(

a_q’
4n| am 205 52" ©)

The spin of a particle is rotated about its velocity.
The spin-rotation angle per unit length traveled by the
particleis

do _ 1d® _ o
dl—vdt v

It is independent of the velocity, its absolute value

being given by

do 1| é°
ae _ 1 ao__f_g,
d 4| 57

The anapole moments of elementary particles and
nuclei are on the order of G or G/a [6, 11, 12]. The cal-
culations revealed that, both for elementary particles
(including the electron and the positron) and for nuclei,
the spin-rotation angle per unit length traveled by apar-
ticlein planar channeling is dd/dl ~ 10°-10-!! rad/cm.
This estimate shows that the spin-rotation angles
caused by anapole moments and by weak interaction
[2, 3] are on the same order of magnitude. The preci-
sion of current experimentsis not sufficient for detect-
ing such small angles.

4. CONCLUSION

The Hamiltonian describing the interaction of the
anapole moment of arelativistic particle with an elec-
trostatic field has been derived. The motion of aparticle
having an anapole moment givesriseto parity-violating
quadrupole and contact interactions. The equation of
motion of a spin has been obtained. The spin-rotation
angles caused by anapole moments are on the same
order of magnitude as those caused by weak interac-
tion.
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