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Abstract—A stochastic approach to fission dynamics is proposed. The approach, which is based on Langevin
equations, is used to calculate the mass distributions of fragments originating from the fission of excited nuclei.
The effect of viscosity and light-particle emission on the variance of mass distributions is studied. The results of
the calculations based on the above approach reveal that, in order to obtain a simultaneous description of mass-
distribution parameters and the multiplicities of prescission particles, it is necessary to use sufficiently large values
of nuclear viscosity both for the one-body and for the two-body viscosity mechanism, anomalously large values
of the viscosity coefficient being required in the latter case. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, a vast body of experimental data has
been accumulated by studying the observed distribu-
tions of fission fragments (mass, energy, and angular
distributions) for various values of compound-nucleus
parameters, such as the excitation energy, the angular
momentum, and the fissility parameter Z2/A. A major
part of this data set was systematized and analyzed in
[1–3]. A theoretical interpretation of the mechanism of
formation of the distributions of fission fragments on
the basis of a dynamical description remains one of the
unsolved problems in the physics of fission. Among
several theoretical schemes [4–8] used to describe the
dynamics of fission treated as a nonequilibrium pro-
cess, the stochastic approach [7, 8] based on Langevin
equations is the most promising and the most popular
one at present.

In [9–12], the parameters of the energy distribution
of fission fragments were calculated, together with the
multiplicities of prescission neutrons, on the basis of
stochastic Langevin equations used as dynamical equa-
tions. The results of these calculations proved to be in
satisfactory agreement with experimental data. On the
other hand, there had been no studies until recently
devoted to a detailed analysis of the parameters of frag-
ment mass distributions on the basis of Langevin equa-
tions.

The results of the first calculations of the fragment
mass distributions within a scheme where Langevin
equations are used as dynamical equations can be
found in [13]. However, the calculations in [13] relied
on a simplified model, so that the results obtained there
can claim only for a qualitative description of experi-
mental data. Indeed, the emission of light particles was
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disregarded in [13], but this phenomenon is peculiar to
the reactions under investigation. The mechanism and
the magnitude of nuclear viscosity that lead to the best
description of experimental data were not determined
there either.

In the present study, we give an account of the
results obtained from a calculation of the fragment
mass distributions that is based on the Langevin equa-
tions and analyze the effect of the emission of prescis-
sion light particles and of the type and magnitude of
nuclear viscosity on the computed parameters of the
mass distributions in question.

For our investigation, we have chosen heavy-ion
reactions [3, 14] that were investigated experimentally
in detail and which lead to the formation of compound
nuclei with excitation energies E* ≥ 50 MeV (tempera-
tures T ≥ 1 MeV). This makes it possible to neglect
shell effects and the nucleon-pairing effect in calculat-
ing the potential energy of the nucleus and the transport
coefficients in dynamical equations.

The calculation in [13] was performed for a wide
range of nuclei (Z2/A . 21–40) within two versions of
the liquid-drop model, that with a sharp boundary of
the nuclear surface and that with a diffuse boundary
[15]. The initial conditions for the Langevin equations
were chosen on the ridge separating the ground state
from the fission valley of the nucleus in accordance
with the idea of the transition state.

For the present calculations, the initial conditions
were chosen to correspond to the ground state of the
compound nucleus (in the liquid-drop model, this is a
sphere). At such initial conditions, however, the higher
the barrier, the larger is the time required for relevant
calculations, since the fission possibility Pf decreases
exponentially with increasing fission-barrier height Bf
(Pf ~ exp[–Bf/T]). In order to reduce the calculation
time, we decided on three reactions that lead to the for-
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mation of nuclei having a barrier height not greater than
7 MeV. Our results are compared with those from [13].
The present study also aims at clarifying the effect of
the magnitude and type of nuclear viscosity. In addi-
tion, we consider the changes suffered by the mass dis-
tributions when nucleon exchange between the two
parts of the fissile nucleus (that is, between the would-
be fragments) is taken into account in the mass-asym-
metric component of the viscosity tensor as determined
within the one-body dissipation mechanism.

2. DESCRIPTION OF THE MODEL

In describing nuclear surfaces, we restrict ourselves
to axisymmetric shapes using the two-parameter family
of Cassini ovaloids that was proposed in [16]. In cylin-
drical coordinates, the shape of the nuclear surface is
specified by the equation

(1)

where z is the coordinate along the symmetry axis; ρ is
a coordinate orthogonal to the z axis; ρs is the ρ value at
the nuclear surface; ε and κ are the collective coordi-
nates associated with the elongation and mass asymme-
try, respectively; and cv is a scale factor that is respon-
sible for the conservation of the nuclear volume. In the
symmetric case (κ = 0), the nuclear surface corresponds
to mirror-symmetric shapes known as Cassini ovaloids
[17, 18]; for κ > 0, we are dealing with asymmetric

shapes. The condition ε < (1 + κ)–2 leads to a set of axi-

symmetric ovaloids; for (1 + κ)–2 < ε < (1 – κ)–2,

Eq. (1) describes a pearlike surface; and the inequality

ε > (1 – κ)–2 leads to asymmetric bodies featuring the

neck coordinate of zneck = 0. At ε = 1 and any value of
κ, the neck radius vanishes, and this is considered as the
simplest condition of the scission of a continuous shape
into fragments. At the same time, it is sometimes
assumed (see [19–21]) that scission occurs at some crit-
ical value of the deformation corresponding to a rela-
tively thick neck.

The evolution of collective degrees of freedom was
considered in a stochastic approach [19, 22] as the
motion of a Brownian particle in a heat bath formed by
single-particle degrees of freedom of the fissile nucleus
being considered. For the case of N collective coordi-
nates, the set of relevant Langevin equations has the form

(2)

where q = (ε, κ) stands for the set of collective coordi-
nates; p = (pε, pκ) represents the momenta conjugate to
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them; F(q) is the free energy of the system being con-
sidered; mij(||µij|| = ||mij ||–1) is the inertia tensor; γij is the
friction tensor; θijξj is a random force; and θij is its
amplitude, which is related to the diffusion tensor Dij
by the equation

(3)

The diffusion tensor in turn obeys the Einstein relation

(4)

The random variable ξj possesses the following statisti-
cal properties:

(5)

The angular brackets in (5) denote averaging over a sta-
tistical ensemble. 

We note that, instead of the free energy F(q, T ) =
V(q) – a(q)T2, the potential energy was used in [13] to
determine the conservative force in the Langevin equa-
tion (2). The use of the free energy is one of the signif-
icant improvements in the model proposed in [13]. In
order to calculate the free energy, we took the level-
density parameter a(q) depending on the collective
coordinates, its definition being given below.

As was mentioned above, the potential energy was
calculated within two versions of the liquid-drop
model. We used the Myers–Swiatecki parameters [23]
for the liquid-drop model with a sharp boundary and
the Sierk parameters [24] for the liquid-drop model
with a diffuse boundary.

The inertia tensor was calculated within the
Werner–Wheeler approximation for an irrotational
flow of an incompressible liquid (see [25]).

In order to describe the dissipation of the collective
kinetic energy into the internal energy, we assumed two
friction mechanisms, a two-body and a one-body one
(as in [25] and [26], respectively). The calculation was
performed by the so-called wall + window formula

(6)
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LANGEVIN DESCRIPTION OF MASS DISTRIBUTIONS 1867
where ρm is the nuclear density,  is the mean velocity
of intranuclear nucleons, ∆σ is the area of the window
(that is the neck between the two would-be fragments),
R is the distance between the centers of mass of the two
would-be fragments, D1 and D2 are the positions of
their centers of mass with respect to the center-of-mass
coordinate of the entire system, zmin and zmax are the left
and the right boundary of the nuclear surface, zneck is the
neck coordinate, and ks is the coefficient that takes into
account the reduction of the contribution from the wall
formula [27].

Apart from (6), the calculations relied on the so-
called full formula for one-body viscosity [28, 29],

(7)

where V1 is the volume of one of the would-be fission
fragments. The additional term is associated with the
flow of nucleons through the neck connecting two parts
of the nucleus. This correction was evaluated by two
methods in the studies of Feldmeier [28] and Randrup
and Swiatecki [29].

The initial conditions for the dynamical equations
(2) were preset in the following way. In [13], the initial
values of the collective coordinates were chosen on the
line of the ridge separating the ground state of the com-
pound nucleus from the fission valley, as was done in
[12]; the momentum distribution was set to that in equi-
librium. In this case, the distribution function has the
form

(8)

where Ecoll(q, p) = (q)pipj is the kinetic

energy of the collective motion of the nucleus and V(q0)
is the deformation-dependent potential energy of the
nucleus on the ridge line (it is reckoned from the
ground-state energy). Numerically, the initial values q0
and p0 were chosen on the basis of the Neumann
method. In order to choose the initial conditions in the
ground state, the distribution with respect to the col-
lective coordinates was assumed to be of the delta-
function type, P(q0) ~ δ(q – qg.s.). In the nuclear-shape
parametrization used, this corresponds to the collec-
tive-coordinate values of ε0 = 0 and κ0 = 0. The
momentum distribution then has the form P(p0) ~
exp(–Ecoll(q0, p0)/T).

Over the entire trajectory of the motion of the
nucleus to the scission line in the collective-coordinate
space, we used the energy-conservation law in the form

(9)

where E* is the total excitation energy of the com-
pound nucleus (in the input reaction channel, it is deter-
mined by the incident-ion energy and by the difference
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of the sum of the masses of colliding nuclei and the
mass of the compound system), Eint is the excitation
energy of single-particle degrees of freedom of the
compound nucleus (internal energy), and Eevap(t) is the
nucleus excitation energy that light particles have car-
ried away by the instant t.

The probabilities of light-particle emission were
determined from the compound-nucleus widths with
respect to decays through the corresponding channels.
The decay widths were calculated within the statistical
model on the basis of the formulas [30]

(10)

where j = n, p, d, t, 3He, and α, and

(11)

Here, gj , mj , Bj, and Vj are, respectively, the spin factor,
the mass, the binding energy, and the Coulomb barrier
for the jth particle; ρ0 is the density of single-particle
levels in the compound nucleus; ρj and ργ are the den-
sities of single-particle levels in the residual nucleus
after the emission of the jth particle and of a photon,

respectively;  is the cross section for the absorption
of the jth particle by the residual nucleus (inverse cross
section); σγ is the cross section for dipole-photon

absorption; and  and  are the internal energies
of, respectively, the original and the residual nucleus,
with the nucleon-pairing energy being included.

In calculating the density of excited levels, we also
included collective effects by using formulas from [30].

Apart from this, we took into account the effect of
nuclear deformation and the effect of the internal
energy of the nucleus on the level-density parameter

(12)

Here, α = 0.09, β = –0.04, γ = 0.07, and Bs is the sur-
face-energy functional depending on the collective
coordinates. For a simple estimate of the shell correc-
tion δW, we took that from [31].

The nuclear temperature T used in the calculations
was determined according to the expression
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Table 1.  Results of theoretical calculations performed within two versions of the liquid-drop model for the reaction 12C +
232Th  244Cm (Elab = 97 MeV)

Coefficient

Liquid drop with a sharp boundary [23] Liquid drop with a diffuse boundary [24]

Light-particle emission Light-particle emission

is disregarded is taken into account is disregarded is taken into account

tsc tsc 〈npre〉 tsc tsc 〈npre〉

One-body viscosity mechanism

ks = 0.25 211 33.9 185 33.6 1.89 315 27.7 235 26.8 4.06

ks = 0.5 218 38.3 190 38.0 2.04 324 31.1 245 29.9 4.26

ks = 1.0 221 46.7 188 46.5 2.29 348 38.3 253 37.3 4.60

Two-body viscosity mechanism

ν = 0.02 226 4.02 163 3.51 0.574 278 3.0 277 2.57 0.867

ν = 0.10 211 16.8 164 20.0 2.30 248 11.38 244 10.5 2.64

ν = 0.25 206 39.9 153 46.0 3.30 256 24.9 216 25.8 4.0

Note: According to [14], the experimental values are  = 319 (amu)2 (L = 0) and 〈npre〉  = 2.6. Here and in Tables 2 and 3 below, ,

tsc, and the coefficient of two-body viscosity (ν) are measured in (amu)2, 10–21 s, and 10–21 MeV s fm–3 units, respectively.

σM
2 σM

2 σM
2 σM

2

σM
2 σM

2

Our procedure for combining the statistical model and
the dynamical approach was as follows. The partial
decay widths Γj were determined at each step of inte-
gration of the Langevin equations (2) according to (10)
and (11). On the basis of their sum, we then calculated
the mean lifetime of the compound nucleus before the

emission of any light particle, τtot = \/ . In the
interval [0, 1] we further generated an equiprobably
distributed random number ξ, which was compared
with the ratio τ/τtot (τ is the time step of integration of
the Langevin equation). If the condition ξ < τ/τtot was
satisfied, it was assumed that some light particle was
emitted [32]. A particular particle species was chosen
by a Monte Carlo procedure in accordance with the
probability of compound-nucleus decay through a spe-
cific channel by using the calculated decay widths Γj .

3. DISCUSSIONS OF THE RESULTS 
AND CONCLUSIONS

For the reaction 12C + 232Th  244Cm (Elab =
97 MeV), the calculations that employed the initial
conditions on the ridge and the friction tensor defined
by (6), which disregarded light-particle evaporation,
and which assumed zero angular momentum L of the

compound nucleus yielded the values of  =
200 (amu)2 and tsc = 45.5 × 10–21 s for the variance of
the mass distribution and for the mean time of motion
to the scission line within the liquid-drop model with a

sharp boundary and the values of  = 311 (amu)2 and
tsc = 35.6 × 10–21 s for the analogous quantities within

Γ jj∑

σM
2

σM
2

P

the liquid-drop model with a diffuse boundary. For the
same reaction, a variation in the initial conditions that
corresponds to choosing initial coordinates near the
ground state, all other conditions being the same [L = 0,
one-body viscosity calculated by formula (6) with ks = 1,
no light-particle emission], does not change signifi-

cantly the variance of the mass distribution:  =
204 (amu)2 and tsc = 53.9 × 10–21 s within the model

with a sharp boundary and  = 309 (amu)2 and tsc =
38.2 × 10−21 s within the model with a diffuse bound-
ary. This might have been expected for heavy nuclei
because the ridge line separating the ground state from
the fission valley is offset by quite a large distance from
the scission line, so that the evolution before the saddle
point does not affect significantly the parameters of the
mass distribution, only increasing the mean time it
takes for a nucleus to reach the scission line.

A more pronounced effect is observed when, in cal-
culating the friction tensor, we include the additional
term that corresponds to nucleon exchange between the
two parts of the compound system [see Eq. (7)]. In this
case, the variance of the mass distribution increases
noticeably (by 10–15%, depending on the model used).

[The calculated values of  and tsc for the reaction
12C + 232Th  244Cm (Elab = 97 MeV) are presented
in Table 1.] The reason behind this increase is that the
value of the mass-asymmetric component of the viscos-
ity tensor as calculated by formula (7) exceeds the cor-
responding value calculated by formula (6), especially
near the scission point (see Fig. 1‡). This quenches the
motion along the mass-asymmetric coordinate, on one

σM
2

σM
2

σM
2
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Fig. 1. Various features of the fission process at κ = 0 versus the parameter ε for the compound nucleus 244Cm: (a) friction-tensor compo-
nent γκκ represented by the dash-dotted curve for the two-body mechanism of viscosity with coefficient  ν = 0.02 × 10–21 MeV s fm–3,
the dashed curve for the one-body mechanism computed by formula (6) with  ks = 1, and the solid curve for the one-body mechanism
computed by formula (7); (b, c) percent yield of prescission fission neutrons (in relation to their total number) that was calculated
within two versions of the liquid-drop model (that which assumes a sharp boundary of a nucleus [23] and which leads to the results
shown by the thick-line histogram and that which assumes a diffuse boundary of a nucleus [24] and which leads to the results shown
by the thin-line histogram) by using, respectively, the one-body (with  ks = 1) and the two-body (with ν = 0.02 × 10–21 MeV s fm–3)
viscosity mechanism; and (d) potential-energy profiles represented by the thick curve for the model of a nuclear liquid drop having
a sharp boundary and the thin curve for the model of a nuclear liquid drop having a diffuse boundary (arrows indicate the position
of the fission barrier).
hand, and intensifies fluctuations along it, on the other
hand. As a result, the variance of the mass distribution
increases.

Another significant factor that affects the parame-
ters of the mass distribution is the inclusion of the evap-
oration of prescission light particles. Since the techni-
cal aspect of combining the dynamical model of fission
with the static model of light-particle emission was
described above, we present here only the main results.

Light-particle emission from the compound nucleus
affects the variance of the fission-fragment mass distri-
bution in two ways: (i) a variation in the nucleonic com-
position of the fissile nucleus must increase the scatter
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
of the fission-fragment masses; (ii) the emitted particles
take away some part of the excitation energy of the
compound system, whereby the nuclear temperature is
reduced and so therefore are fluctuations of the collec-
tive degrees of freedom, including fluctuations of the
mass-asymmetric coordinate. The concerted effect of
the two factors leads to a decrease in the variance of the
mass distribution (this decrease may be as large as
30%) and in its mean value. As an illustration of the
particle-emission effect on the shape of the fission-
fragment mass distribution, two mass distributions
computed on the basis of the one-body viscosity mech-
anism with ks = 1 for the reaction involving the com-
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pound nucleus 244Cm are shown in Fig. 2, where the
thin- and the thick-line histograms represent, respec-
tively, the yield of fragments in the calculation without
light-particle emission (the distribution is symmetric
with respect to ACN/2 in this case) and the analogous
yield obtained with allowance for this process. These
distributions are normalized to the total number of fis-
sion fragments (so-called normalization to 200%).

In order to clarify the viscosity type realized in the
fission process, we performed our calculations for the
reactions

12C + 232Th  244Cm (Elab = 97 MeV),
16O + 249Cf  265Sg (Elab = 145 MeV),

3

2

1

0

Y, %

244Cm

80 100 120 140 160 180
Afrag

Fig. 2. Example of the fission-fragment mass distributions
in the reaction 12C + 232Th  244Cm at Elab = 97 MeV
that were calculated by using the one-body viscosity mech-
anism with ks = 1 on the basis of the model of a nuclear liq-
uid drop having a diffuse boundary [24]: (thin-line histo-
gram) results obtained without allowance for light-particle
emission and (thick-line histogram) results obtained with
allowance for light-particle emission.
P

16O + 208Pb  224Th (Elab = 108 MeV). 

The characteristics of fission (the variance of mass dis-
tribution, the mean time it takes for a nucleus to reach
the scission line, and the mean number of prescission
neutrons) that were calculated within two versions of
the liquid-drop model—that with a sharp boundary [23]
and that with a diffuse boundary [24]—are quoted in
Tables 1–3. In all these results, the statistical error is
about 1%. This estimate is based on the fact that, for
each nucleus and each viscosity value, we analyzed the
evolution of approximately 104 trajectories.

As can be seen from the tables, the type of viscosity
mechanism affects significantly the value of the vari-
ance and its qualitative dependence on the magnitude
of viscosity. If we use the one-body mechanism of vis-
cosity, the variance of mass distribution increases
slightly (this increase is more pronounced in the model
with a diffuse boundary than in the model with a sharp
boundary) with increasing reduction coefficient ks. In
the case of two-body viscosity, the increase in the coef-
ficient of two-body viscosity ν leads to a decrease in the
variance of the mass distribution. In all probability, this
behavior is due to the different coordinate dependences
of the friction-tensor components. By way of illustra-
tion, the component 1‡ as a function of the collective
coordinate ε is presented in Fig. 1a at κ = 0 (symmetric
shapes)—this component has a greater bearing on the
variance of the mass distribution. The tensor of two-
body viscosity increases sharply only near the scission
line, while the value of one-body viscosity is significant
even near the fission barrier (ε = 0.5–0.6). If the coeffi-
cient of the two-body viscosity is ν = 0.02 ×
10−21 MeV s fm–3, prescission neutrons are therefore
evaporated only immediately prior to scission. In this
case, the mean number of prescission neutrons is mod-
est. The increase in the coefficient ν by a factor of 12.5
significantly increases the number of prescission fis-
sion neutrons (by a factor of 3 to 7). Here, a noticeable
Table 2.  Results of theoretical calculations performed within two versions of the liquid-drop model for the reaction 16O +
208Pb  224Th (Elab = 108 MeV)

Coefficient
Liquid drop with a sharp boundary [23] Liquid drop with a diffuse boundary [24]

tsc 〈npre〉 tsc 〈npre〉

One-body viscosity mechanism

ks = 0.25 148 67.8 0.8 208 50.8 2.69

ks = 0.5 146 76.9 0.878 214 56.9 2.80

ks = 1.0 146 86.7 0.967 221 66.7 2.99

Two-body viscosity mechanism

ν = 0.02 156 7.06 0.233 234 3.86 0.955

ν = 0.10 135 40.8 1.113 197 19.3 1.69

ν = 0.25 126 102.6 1.768 184 49.1 2.65

Note: According to [14], the experimental values are  = 180 (amu)2 (L = 0) and 〈npre〉  = 2.5.

σM
2 σM

2

σM
2
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Table 3.  Results of theoretical calculations performed within two versions of the liquid-drop model for the reaction 16O +
249Cf  265Sg (Elab = 145 MeV)

Coefficient
Liquid drop with a sharp boundary [23] Liquid drop with a diffuse boundary [24]

tsc 〈npre〉 tsc 〈npre〉

One-body viscosity mechanism

ks = 0.25 224 15.9 1.81 272 14.1 4.14

ks = 0.5 227 18.1 2.0 283 16.1 4.43

ks = 1.0 227 22.8 2.38 317 20.1 4.93

Two-body viscosity mechanism

ν = 0.02 269 2.30 0.668 310 1.75 0.805

ν = 0.10 238 7.76 2.094 287 5.59 2.42

ν = 0.25 223 18.6 3.44 265 13.5 4.01

Note: According to [14], the experimental values are  = 506 (amu)2 (L = 0) and 〈npre〉  = 4.1.

σM
2 σM

2

σM
2

part of the neutrons is evaporated not only prior to scis-
sion but also along the entire descent from the barrier to
the scission point, as in the case of one-body viscosity.
Because of the increase in neutron emission, the tem-
perature of the compound system decreases, and so
therefore does the variance of the mass distribution.
This effect is similar to the simple inclusion of particle
emission in the computational scheme by proceeding in
the same way as was described above. In the case of the
one-body dissipation mechanism, the viscosity value is
high even at ks = 0.25, and the cooling of the system via
particle evaporation attains its limit here (a major part
of the excitation energy of the nucleus is converted into
its internal energy and is carried away by light parti-
cles), so that no significant increase in the number of
prescission particles occurs at ks = 1. A slight increase
in the variance of the mass distribution is explained
here by the growth of fluctuations of the mass-asym-
metric coordinate, which are dependent on the nuclear
viscosity.

It should be recalled that the choice of version of the
liquid-drop model is also of importance. Within the
model of a liquid drop having a diffuse boundary, the
fission barrier is higher, whereas the descent in energy
from the saddle point to the scission point is longer. As
a result, the fission time always proves to be less in this
model than in the model of a liquid drop with a sharp
boundary, whereas the variance of the mass distribution
is greater. The mean multiplicity of neutrons in the
model of a liquid drop with a sharp boundary is almost
everywhere one-half as great as that in the model where
the drop boundary is smeared. This is determined by
the potential-energy drop between the saddle and the
scission point in the models being discussed: the higher
this drop, the greater the collective-motion-energy frac-
tion that can be converted into the internal energy,
whereby the emission of particles is facilitated.
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In order to explain the distinctions between the
prescission-neutron multiplicities as obtained by using
the different viscosity mechanisms, we invoke data in
Figs. 1 and 3. From Fig. 1‡, it can clearly be seen that
one-body viscosity [dashed curve and solid curve, the

(a)

(b)

2

1

0

2

1

0

γεε, 10–17 MeV s

0.2 0.4 0.6 0.8 1.0
ε

Yn, %

Fig. 3. Various features of the fission process at κ = 0 versus
the parameter ε for the compound nucleus 244Cm: (‡) friction-
tensor component γεε represented by the dash-dotted curve for
the two-body mechanism of viscosity with coefficient ν =
0.02 × 10–21 MeV s fm–3, the dotted curve for the two-body
mechanism with coefficient ν = 0.25 × 10–21 MeV s fm–3, and
the solid curve for the one-body mechanism computed by
formula (7) with ks = 1 and (b) percent yield of prescission
fission neutrons (in relation to their total number) that was
calculated within two versions of the liquid-drop model
(that which assumes a sharp boundary of a nucleus [23] and
which leads to the results shown by the thick-line histogram
and that which assumes a diffuse boundary of a nucleus [24]
and which leads to the results shown by the thin-line histo-
gram) by using the two-body viscosity mechanism with ν =
0.25 × 10−21 MeV s fm–3.
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latter being computed with allowance for the additional
term in (7)] grows faster than two-body viscosity (dash-
dotted curve for ν = 0.02 × 10–21 MeV s fm–3). Fig-
ures 1b and 1c show the percentage of neutrons emitted
at a given value of the nucleus-elongation coordinate ε
for one- and for two-body viscosity, respectively. For
the symmetric case, the shape of the potential energy is
presented in Fig. 1d. From Figs. 1b and 1c, it can be
seen that, in the case of one-body viscosity, the evapo-
ration of neutrons is enhanced faster and begins earlier,
the peak being in the region of the saddle point. By this
instant, a significant part of the energy has been dissi-
pated; apart from this, the system moves in this region
rather slowly. Upon passing the saddle, the probability
of evaporation approaches a constant that is determined
by the transfer of the collective energy to the internal
energy during the descent from the saddle to the scis-
sion point. For two-body viscosity, the pattern is some-
what different. By the instant when the system reaches
the barrier, the viscosity is still low; therefore, the inter-
nal energy and the number of evaporated neutrons are
not large. Upon passing the saddle point, viscosity
sharply grows, which leads to an increase in the proba-
bility of neutron evaporation in this region.

In this study, we used three values of the coefficient
ν of two-body viscosity. The relationship between one-
and two-body viscosity changes with increasing ν,
(Fig. 3‡). Two-body viscosity begins to grow earlier
and appears to be commensurate with one-body viscos-
ity. This is noticeably reflected in the dependence of the
neutron-evaporation probability on the elongation
coordinate ε (Fig. 3b)—it becomes similar to that in the
one-body case. Here, the mean values of the neutron
multiplicities are nearly equalized in the two cases. As
has already been mentioned, such changes in two vis-
cosity lead to qualitatively different types of behavior

of  with increasing viscosity in the two-body and in
the one-body case.

For one of the main results obtained from the
present calculations and quoted in the tables, we indi-
cate that the experimental data on the variances of the
mass distributions and on the multiplicities of prescis-
sion particles can be described on the basis of both the
one- and the two-body mechanism of nuclear viscosity,
but the magnitude of nuclear viscosity must be high in
either case. In order to achieve satisfactory agreement
with experimental data, one therefore has to use an
anomalously large viscosity value in the case of the
two-body mechanism (ν ~ 0.25 × 10–21 MeV s fm–3).
In this case, however, the coefficient ν is more than
12 times as great as that which was extracted from the
description of the mass–energy distributions in [33]
and six times as great as that which was used by a Jap-
anese group in [8]. A similar conclusion was drawn by
Blocki et al. [34]. In view of all this, the possibility of
consistently describing the mass–energy distribution
and the multiplicity of prefission neutrons at the above
value of ν is questionable.

σM
2

P

Here, we do not present the energy distributions of
fission fragments. This is because, in calculating such
distributions, it is necessary to invoke, in addition to the
elongation and the mass-asymmetry parameter, a third
collective coordinate that is responsible for the forma-
tion of a neck in the nuclear shape (neck parameter). In
order to describe completely mass–energy distribu-
tions, we must therefore employ a three-parameter fam-
ily of fissile-nucleus shapes—in other words, relevant
calculations must be performed within three-dimen-
sional Langevin dynamics. Such investigations are
presently under way.
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Abstract—A method is proposed for taking into account, in a calculation of partial rates of muon capture by
nuclei, experimental information about strength functions for Gamow–Teller and isovector M1 transitions. The
method, which amounts to choosing an orthogonal transformation that acts in the subspace of wave functions
for excited states, requires neither modifying transition operators nor introducing effective charges. The matrix
of the above transformation is constructed as a product of the matrices of reflection in a plane. All calculations
are performed on the basis of the multiparticle shell model. Numerical results are obtained for isovector states
in A = 28 nuclei. Strength functions for Gamow–Teller and isovector M1 transitions in 28Si are considered, and
the lifetimes of 1+ states in 28Al and the branching fractions for gamma decays of this state are calculated.
Owing to taking into account experimental information about the properties of isovector states, the branching
fractions for the γ decays of the 1+ state at 2.201 MeV in 28Al are successfully described for the first time. The
above transformation of the wave functions changes substantially the distribution of partial rates of allowed
muon capture by a 28Si nucleus among the 1+ states of the final nucleus 28Al in relation to the results of the
calculations with the eigenfunctions of the Hamiltonian of the multiparticle shell model. The muon-capture
rates calculated with the transformed functions agree well with experimental data. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The results of two independent measurements of a
correlation between the momentum of the neutrino pro-
duced in the capture of polarized negative muons by a
28Si nucleus and the momentum of the photon emitted
in the γ decay of an excited state of the daughter
nucleus are known at present [1, 2]. The authors of
these studies considered the same allowed partial tran-
sition

A comparison of the values that they obtained for the
γν-correlation coefficient with the results of the theoret-
ical calculations from [3–5] led to the conclusion that
induced pseudoscalar weak muon interaction with
intranuclear nucleons is suppressed to a considerable
extent in relation to estimates based on the hypothesis
of a partial conservation of the axial current (PCAC).
Table 1 displays the gP/gA values obtained from a com-
parison of the correlation coefficients measured in [1,
2] with the results of the theoretical studies quoted
above. Another experiment determined the ratio of the
rates of muon capture from the hyperfine-splitting
states of the 23Na muonic atom, and a comparison of
those results with theoretical predictions yielded

µ_ Si28 0g.s.
+( ) νµ Al28 13

+ 2201,( ).++
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gP/gA = 7.6 ± 2.1 [6], a value that is consistent with the
PCAC hypothesis. Such a great distinction between the
values of gP/gA is quite unexpected, especially as the
28Si and 23Na nuclei are close to each other in mass
number; therefore, it could be thought that the coupling
constants for induced pseudoscalar interaction would
be nearly identical in the two cases. It should be noted
that, in [5, 6], nuclear matrix elements of the effective
Hamiltonian for ordinary muon capture were computed
within the same multiparticle shell model [7] employ-
ing the full sd-shell space and the parametrization of
the shell Hamiltonian from [8]. However, the partial
transitions being discussed have one important distinc-
tion. The experiment reported in [6] dealt with the
allowed transition 3/2+, 1/2  1/2+, 3/2. (Nuclear
states are classified in terms of the total spin, parity, and
isospin—that is, Jπ, T.) Calculations reveal that the
above partial transition is dominated by the single-par-
ticle transition d5/2  d5/2. As a result, the matrix ele-

Table 1.  Ratio gP/gA obtained from a comparison of the
measured and calculated angular-correlation factors

Calculation
Experiment

[1] [2]

[3] 3.4 ± 1.0 5.3 ± 2.0

[4] 2.0 ± 1.6 4.2 ± 2.5

[5] –2.8 ± 1.6 0.0 ± 3.2
000 MAIK “Nauka/Interperiodica”
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ment of the operator j0(νr)σt– (in the notation adopted
in [9, 10], this is the [101] matrix element) makes a
leading contribution, determining the partial rate of
nuclear muon capture; therefore, the results of the cal-
culations prove to be quite reliable. In the case of the

   transition, which was considered in the
experiment with 28Si, there is no dominant matrix ele-
ment, since the single-particle transition d5/2  d3/2,
which has the greatest amplitude in the single-particle
transition density, is suppressed by the d3/2  d5/2
transition going in the opposite direction. In the
absence of a leading matrix element, the rate of nuclear
muon capture is determined by the interference of sev-
eral small matrix elements, including velocity-depen-
dent ones. In this case, a theoretical description
becomes much less reliable, so that a further investiga-
tion of the properties of excited states of the daughter
nucleus is highly desirable.

Theoretically, isovector Jπ = 1+ states in A = 28
nuclei were studied in [11] on the basis of the multipar-
ticle shell model by using the full sd-shell space, the
energies of single-particle nucleon states and two-par-
ticle matrix elements of interaction between valence
nucleons being taken from [8]. The results obtained in
[11] can be summarized as follows. The calculated
excitation energies and lifetimes of low-lying 1+ states
comply with experimental data. However, the branch-
ing fractions for γ decays of the 1+ state at 2.201 MeV
in 28Al could not be reproduced.

Experimentally, the properties of isovector 1+ states
in A = 28 nuclei were studied in [12], [13], and [14] by
using the relevant (e, e'), (p, n), and (3He, t) reactions,
respectively. Lüttge et al. [12] compared their experi-
mental excitation-energy distributions of the M1
strengths (M1 strength functions) with the distributions
calculated on the basis of the shell model employing
the Hamiltonian from [8] and arrived at the conclusion
that the theoretical distribution of the quantities B(M1),
reduced probabilities of M1 transitions, do not agree
with the experimental distribution. For the majority of
states, the computed values of B(M1) considerably
exceed the corresponding experimental values, but this
is not so for the 11.445-MeV state, which corresponds
to the third eigenstate of the shell-model Hamilto-
nian—here, the theoretical value of B(M1) is much less
than the experimental result. The theoretical total
strength of the transitions falls considerably short of the
experimental value. In [13], the strength function for
Gamow–Teller σt+ transitions was extracted from the
measured cross sections for the reaction 28Si (p, n)28Al.
In just the same way as in the case of M1 transitions, the
theoretical total strength of Gamow–Teller transitions
exceeded considerably the experimental value. For the
transition to the 1+ state at 2.10 MeV in 28P, however—
this state corresponds to the third eigenstate of the
Hamiltonian from [8]—the theoretical reduced proba-
bility of the Gamow–Teller transition, B(GT), proved to

0g.s.
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+
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be much less than the corresponding experimental
value.

The hypothesis that the isospin is conserved in
nuclei makes it possible to combine isovector 1+ states
in 28Al, 28Si, and 28P into isotopic triplets. The table
establishing the correspondence can be found in [11].
From this table, it can be seen that the 1+ level at
2.201 MeV in 28Al—this level is populated in the γν
correlation experiment using 28Si—belongs to the same
triplet as the 11.445-MeV level in 28Si and the
2.10-MeV level in 28P (for the last two, the theoretical
strengths of Gamow–Teller and M1 transitions proved
to be smaller than the corresponding experimental val-
ues). The transitions from the 28Si ground state, whose
isospin is equal to zero, to the isotopic-triplet states can
be described in terms of rank-1 isotopic tensor opera-
tors. In the matrix elements of these operators, we can
single out the isospin-projection dependence, thereby
going over to matrix elements reduced in isospin (dou-
bly reduced matrix elements). If the same isospin-
reduced matrix elements had appeared in the ampli-
tudes for electron scattering, (p, n) reactions, and muon
capture, it would have been possible to use the ampli-
tudes determined in one of the processes to describe
other processes. However, the transition operators for
different properties are different. We can extract the
square of the matrix element 〈1+, 1|||σt |||0+, 0〉  from
data on (p, n) reactions and the square of the matrix ele-

ment 〈1+, 1||| σ + l |||0+, 0〉 from data on M1 transi-
tions; at the same time, the partial amplitude of muon cap-
ture involves the matrix elements 〈1+, 1|||j0(νr)σt |||0+, 0〉,
〈1+, 1|||j2(νr)[Y2, σ]1t |||0+, 0〉, 〈1+, 1|||j1(νr)[Y1, ∇ ]1t |||0+, 0〉,
and 〈1+, 1|||j1(νr)Y1(σ∇ )t |||0+, 0〉 . In describing muon
capture, the quantities B(M1) and B(GT) are therefore
used primarily to assess the degree to which the fea-
tures of partial transitions are reproduced. From this
point of view, the fact that the calculations considerably
underestimate the strengths of M1 and Gamow–Teller
transitions to the third eigenstate of the Hamiltonian in
relation to experimental data (although the theoretical
total strengths of the transitions in question consider-
ably exceed the experimental values) evinces inade-
quacy of the theoretical description of the features of
the level being discussed. In addition, it should be
borne in mind that the wave functions were obtained by
diagonalizing the shell-model Hamiltonian in the full
sd-shell space and that a way to improve this descrip-
tion within a consistent theory has yet to be found.

It such a situation, it would be desirable that calcu-
lations of nuclear muon capture invoke available exper-
imental information about Gamow–Teller and M1
strengths. With this aim in view, we propose introduc-
ing, in calculations of muon capture, phenomenologi-
cal corrections via an orthogonal transformation of the
wave functions of Jπ, T = 1+, 1 excited states. A key
point here is the following. The parameters of the trans-
formation must be chosen in such a way as to ensure
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agreement in form—that is, a full consistency apart
from a numerical factor—between Gamow–Teller and
M1 strength functions calculated with the transformed
wave functions and their experimental counterparts.
Since the transformation in question is orthogonal, the
resulting wave functions will be orthogonal to one
another and will be normalized in just the same way as
the original wave functions. Moreover, the space of
states is neither contracted nor expanded, and the total
Gamow–Teller and M1 strengths remain unchanged.
Under the transformations of the wave functions, the
transition strength can only be redistributed among
excited states. Thereby, all the problems concerning the
excess of the theoretical total strengths of Gamow–
Teller and M1 transitions over the experimental values
remain beyond the scope of the present study. Since the
new wave functions are linear combinations of func-
tions characterized by the same values of the total spin,
parity, and isospin (Jπ, T = 1+, 1), we have Jπ, T = 1+, 1
for them. In calculating the features of muon capture, the
proposed method makes it possible to take into account
a major piece of available experimental information
about Gamow–Teller and M1 strength functions. In a
sense, this method represents a generalization of the
two-level scheme popular in nuclear spectroscopy.

The present article consists of the Introduction (Sec-
tion 1), four main sections, and the Conclusion. In Sec-
tion 2, we consider the auxiliary mathematical problem
of transforming vectors by means of reflections in a
plane. In Section 3, we analyze in detail Gamow–Teller
and M1 transitions and construct the transformation
matrix for the relevant wave functions. In Section 4, the
transformed wave functions are used to describe the
features of the γ decays of 1+ states in 28Al. Section 5 is
devoted to partial rates of muon capture in 28Si. There,
we also compare the results of the calculations with
recent experimental data. The basic results of this study
are summarized in the Conclusion.

2. MATHEMATICAL DETAILS
For the wave functions of excited states, it is neces-

sary to find an orthogonal transformation that repro-
duces the form of the experimental strength functions
for Gamow–Teller and M1 transitions from the ground
state, whose quantum numbers are 0+, 0, to 1+, 1 excited
states. We begin by discussing the auxiliary problem of
transforming one specific N-dimensional vector into
another specific N-dimensional vector.

2.1. Transformation of Wave functions and Transition 
Amplitudes

We denote by φk (k = 1, …, N) the set of wave func-
tions of the chosen excited states. We assume that these
functions are normalized and are orthogonal. With the
aid of a unitary transformation U, we construct a new
set of functions,

(1)ψk Uk k', φk' k = 1 2 … N, , ,( ).=
P

Owing to unitarity of the transformation U, the result-
ing functions ψk are also normalized and orthogonal.
The matrix element of the operator O responsible for
the transition between the ground state characterized by
the wave function Φ and the excited state described by
the wave function ψk is given by

(2)

Thus, the vector of the amplitudes for the transitions
from the Φ state to the transformed states ψk is obtained
by applying the unitary transformation U† to the vector
of the amplitudes for transitions to the original state φk.
The transformation U† is the Hermitian conjugate of
the transformation U. Relation (2) considerably simpli-
fies the problem of seeking the transformation in (1)
since, owing to this relation, the problem of seeking the
transformation of a vector whose components are mul-
tiparticle wave functions reduces to seeking the trans-
formation of the much simpler vector composed of
transition amplitudes representing conventional num-
bers. In the overwhelming majority of cases, transition
amplitudes are real numbers; therefore, we can require
that the elements of the U matrix be real-valued and
that the matrix itself be orthogonal.

2.2. Structure of the Orthogonal Matrix

A general orthogonal matrix of dimension N can be
determined in terms of N(N – 1)/2 real-valued parame-
ters. If we consider nine or ten excited states, we must
therefore specify 36 or 45 parameters. As a result, we
have nine or ten equations of the type in (2) for deter-
mining 36 or 45 unknown quantities, so that the prob-
lem is underdetermined. For this reason, we employ
orthogonal matrices of a special form that depend on a
smaller number of parameters.

The simplest orthogonal transformation of a vector
is the reflection with respect to a plane [15, 16]. Any
vector v can be decomposed into the sum of two vec-
tors, v = u + w; of these, one, u, belongs to a preset
plane, while the other, w, is orthogonal to it. The reflec-
tion with respect to this plane reverses the direction of
the vector w, transforming the vector v into the vector
v' = u – w. Under this transformation, the length of the
vector v is conserved, |v | = |v '|, the square of this length

being |v |2 = |u|2 + |w|2 =  +  + … +  = vkvk.
Therefore, two arbitrarily preset vectors u and v of the
same length (|u | = |v |) can be transformed into each
other by means of the reflection with respect to the
plane that passes through the origin of coordinates and
which is orthogonal to the vector u – v. This plane is
determined by the equation

(3)

The transformation matrix then has the form

(4)

ψk O Φ〈 〉 Uk k',*= φk' O Φ〈 〉 φk' O Φ〈 〉 Uk' k,
†

.=

v 1
2 v 2

2 v N
2

ui v i–( )xi 0.=

Ri j, δi j, 2
ui v i–( ) u j v j–( )

u v– 2
------------------------------------------.–=
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The matrix in (4) is symmetric—that is, Ri, j = Rj, i —and

is orthogonal,  = RR = I, I being an identity matrix.
For any pair of vectors u and v of the same length, the
above transformation of reflection is unique since it is
specified by Eq. (3) (equation of a plane), where the
coordinates of the vector u – v appear to be parameters.
The number of independent parameters is equal to the
dimensionality of the vector space, where we imple-
ment the transformation in question.

In order to construct the matrix transforming the
wave functions of excited states, it is sufficient to know
two vectors composed of transition amplitudes. The
values calculated theoretically for the transition ampli-
tudes within multiparticle shell model are the coordi-
nates of one vector. The other vector must be composed
of the experimental transition amplitudes.

3. GAMOW–TELLER AND M1 STRENGTH 
FUNCTIONS

In order to find transformation matrices, we need
two vectors formed by the amplitudes for transitions to
the chosen excited states. The square of the length of
each vector is equal to the transition strength (theoreti-
cal or experimental one) summed over all chosen
excited states.

We begin by considering the vector of theoretical
amplitudes. Since we are interested here in a transfor-
mation that reproduces only the shape of the experi-
mental strength function, it is legitimate to use a vector
of unit norm in constructing the required transforma-
tion matrix. Let the vector (t1, …, tN) be composed of
theoretical Gamow–Teller amplitudes normalized by
the condition tktk = 1. The relative signs of the coordi-
nates of the vector t are determined by the relative
phases of the wave functions for the excited states
being considered.

3.1. Experimental Amplitudes and Searches 
for the Most Appropriate Transformation

Problems to be overcome in dealing with experi-
mental amplitudes are much more intricate. From
experimental data, it is possible to extract only the tran-
sition strength—that is, the square of the modulus of
the transition amplitude. We denote by ek the strength
of Gamow–Teller transition to the kth chosen excited
state of spin–parity 1+. The absolute value of the ampli-

tude for this transition is | fk | = . By using these

amplitudes, we construct the vector  = ( f1, …, fN).
The square of its length represents the total strength of
the transitions to all chosen states, s2( f ) = |f |2 = e1 +
… + eN. The sign of each amplitude fk remains
unknown. Therefore, we have to consider all possible
distributions of the signs of the amplitudes forming the

R̃R

ek

f̃
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vector f. For each distribution of signs in the vector f,
there exists an individual reflection matrix (4),

(5)

For the strength of the relevant Gamow–Teller transi-
tions, the vector of theoretical amplitudes that is trans-
formed with the aid of this matrix yields the distribu-
tion that is coincident in form with the experimental
Gamow–Teller strength function. By using only one
strength function, it is therefore impossible single out
the most appropriate transformation among the emerg-
ing set.

There arises a natural criterion for choosing an opti-
mum transformation if, along with the Gamow–Teller
strength function, we consider the M1 strength func-
tion. The transformation (1) of the wave functions
entails the transformation (2) of the transition ampli-
tudes; therefore, the amplitudes of M1 transitions also
transform in terms of the matrix R( f, t). The distinc-
tions between the operators of Gamow–Teller and M1
transitions result in that the vectors composed of the
amplitudes for these transitions are linearly indepen-
dent. This is true both for the vectors constructed from
the experimental amplitudes and for the vectors con-
structed from the theoretical amplitudes. In general, the
new M1 strength function obtained with the aid of R( f, t)
does not coincide with the experimental strength func-
tion for M1 transitions. This can be deduced from the
fact that the scalar product of two vectors is invariant
under orthogonal transformations. Generally, the scalar
product of the vectors composed of the theoretical
Gamow–Teller and M1 amplitudes is not equal to the
scalar product of the vectors composed of experimental
Gamow–Teller and M1 amplitudes. In an attempt at
fully reconstructing the form of the Gamow–Teller
strength function, the form of the M1 strength func-
tion will therefore be reproduced with some error.
Accordingly, the version characterized by the smallest
root-mean-square deviation will be taken to be the
best one.

Making one step further, we can reduce the distinc-
tions between the forms of the resulting theoretical and
the experimental M1 strength function, by applying an
additional transformation that is of the type in (4) and
which acts in the subspace orthogonal to the vector
formed by the theoretical Gamow–Teller amplitudes
and to the vector formed by the experimental Gamow–
Teller amplitudes. What has already been obtained for
the excitation-energy distribution of the Gamow–Teller
strength remains invariant under this additional trans-
formation.

3.2. Calculation of Strength Functions 
for Gamow–Teller and M1 Transitions

The theoretical and experimental Gamow–Teller
and M1 strength functions to be used in the ensuing

R f t,( )i j, δi j, 2
f i s f( )ti–( ) f j s f( )t j–( )

f s f( )t– 2
------------------------------------------------------------.–=
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Table 2.  Properties of isovector 1+ states in the A = 28 nuclei: Gamow–Teller and M1 strength functions calculated on the
basis of the shell model and data obtained by experimentally studying the reactions 28Si(p, n)28P and 28Si(e, e')28Si

k 1 2 3 4 5 6 7 8 9 10

Results of the calculations
Ek – E1 [MeV] 0.0 0.38 0.71 1.83 2.16 2.56 3.56 3.80 4.21 4.70
Ek [MeV] 10.81 11.19 11.52 12.64 12.97 13.37 14.37 14.61 15.02 15.51
b(GT) 0.822 0.262 0.862 –0.783 0.014 –0.355 0.798 –0.574 –0.426 0.342
b(M1) 1.232 0.733 1.750 –1.178 0.162 –0.091 0.957 –0.712 0.629 0.538
B(GT) 0.676 0.069 0.744 0.613 0.000 0.126 0.637 0.330 0.182 0.117
B(M1) 1.518 0.538 3.064 1.387 0.026 0.008 0.917 0.507 0.395 0.290

Experimental distributions of the Gamow–Teller strength according to data on the reaction 28Si(p, n)28P [13]
Ek – E1 [MeV] 0.0 0.34 0.85 1.69 2.62 3.34 3.77 4.30 4.64
Ek [MeV] 1.25 1.59 2.10 2.94 3.87 4.59 5.02 5.55 5.91
B(GT) 0.198 0.109 0.956 0.146 0.163 0.410 0.137 0.092 0.090
Error 0.002 0.002 0.005 0.003 0.002 0.004 0.041 0.004 0.003

Experimental distributions of the M1 strength according to data on the reaction   28Si(e, e')28Si [12]
Ek – E1 [MeV] 0.0 0.26 0.80 1.69 3.39 4.50 4.86
Ek [MeV] 10.64 10.90 11.45 12.33 14.03 15.15 15.50
B(M1) 0.30 0.90 4.42 0.87 0.37 0.23 0.26
Error 0.04 0.02 0.20 0.06 0.02 0.02 0.03

Note: The following notation is used in the table: B(GT) and B(M1) are the reduced probabilities of Gamow–Teller and M1 transitions,
respectively, while b(GT) and b(M1) are the corresponding transition amplitudes normalized by the conditions B(GT) = b2(GT) and
B(M1) = b2(M1).
analysis are displayed in Table 2. In the calculations,
we made use of the Hamiltonian from [8]. The multi-
particle wave functions, the energies of the states
involved, and the amplitudes of the Gamow–Teller and
M1 transitions were calculated with the aid of the codes
presented in [7].

The first part of the table quotes the results obtained
by calculating the following features of the first ten
excited states whose spin–parity and isospin are Jπ,
T = 1+, 1: the excitation energies and the amplitudes
and reduced probabilities of the relevant Gamow–
Teller and M1 transitions from the 0+, 0 state at the low-
est energy (ground state of 28Si nucleus). The excitation
energies given there are reckoned from the ground-state
energy of 28Si.

The wave functions of the Jπ, T = 1+, 1 states char-
acterized by the isospin projection of T3 = 1 represent
the 1+ states in 28P, which manifest themselves as reso-
nances in the charge-exchange (p, n) reaction at inter-
mediate energies. The cross section for this reaction is
proportional to B(GT). The resonance-state energies
and the B(GT) values obtained by experimentally
studying the reaction 28Si(p, n)28P [13] are displayed in
the second part of Table 2. Presented there are all states
that occur at excitation energies below 6 MeV and
which were observed experimentally. The energies of
the states are reckoned from the ground-state energy of
the 28P nucleus. The states at energies in excess of
P

6 MeV saturate only an insignificant fraction of the
observed Gamow–Teller strength; moreover, their spin
values are not known precisely. In total, the experimen-
tally detected strength of Gamow–Teller transitions to
states at excitation energies below 12.6 MeV amounts
to 2.595. The states listed in Table 2 saturate 2.301 of
this strength. The total theoretical strength of Gamow–
Teller transitions that corresponds to the first ten 1+

states is 3.492.

The wave functions characterized by Jπ, T = 1+, 1
and by T3 = 0 describe the isovector 1+ states in 28Si.
These states are excited in inelastic electron scattering,
the values of B(M1) being extracted from the relevant
experimental cross sections. Listed in the last part of
Table 2 are experimental data from [12] on the excita-
tion-energy distribution of the strength of isovector
M1 transitions. We display all isovector states discov-
ered in the excitation-energy range between 10.5 and
15.5 MeV.

The following comment on the 10.64-MeV state
indicated in the first column of Table 2 is in order here.
As a matter of fact, two states at energies 10.597 and
10.725 MeV were discovered experimentally in place
of this state. Usually, they are considered as superposi-
tions of one isovector and one isoscalar 1+ state [17]. It
can easily be shown that, in this case, the total strength
of M1 transitions to the two states in question is equal
to the sum of the strengths of M1 transitions to the input
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
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Table 3.  Transformation matrix

1 2 3 4 6 7 8 9 10

1 0.952 0.024 –0.293 –0.013 –0.080 –0.032 –0.003 0.006 0.001

2 0.023 0.988 0.146 0.004 0.030 0.014 –0.005 –0.003 –0.001

3 –0.293 0.146 –0.885 0.021 –0.153 –0.149 0.248 0.042 0.011

4 –0.013 0.004 0.021 0.903 –0.340 –0.050 –0.258 –0.002 –0.005

6 –0.080 0.030 –0.153 –0.340 –0.216 –0.194 –0.877 –0.004 –0.018

7 –0.032 0.014 –0.150 –0.050 –0.194 0.961 –0.116 0.002 –0.002

8 –0.003 –0.005 0.248 –0.258 –0.877 –0.116 0.299 –0.011 –0.015

9 0.006 –0.003 0.043 –0.002 –0.004 0.002 –0.011 0.999 –0.000

10 0.001 –0.001 0.011 –0.005 –0.018 –0.002 –0.015 –0.000 1.000
isovector and isoscalar 1+ states. The calculations per-
formed within the multiparticle-shell model based on
the Hamiltonian from [8] reveal that the strength of the
isoscalar M1 transition is one to two orders of magni-
tude less than the strength of the isovector M1 transi-
tion. Disregarding the strength of the isoscalar M1 tran-
sition, we can therefore calculate the energy of the
input isovector state as the weighted mean of the ener-

gies of the observed states, .

The resulting energy of the isovector state and the total
strength of the transitions are quoted in Table 2.

The sum of the experimental B(M1) values listed in
Table 2 is equal to 7.360 nuclear magnetons. The sum
of the corresponding theoretical values is 8.623. The
calculations were performed with free gyromagnetic
ratios, but effective magnetic charges were not intro-
duced.

Let us contrast the states observed experimentally
against the eigenfunctions of the shell model. For this
purpose, we compare the energies of these states with
the eigenvalues of the Hamiltonian of the multiparticle
shell model. Such a comparison is considerably simpli-
fied if we consider excitation energies reckoned from
the energy of the first excited state—that is, the differ-
ences Ek – E1, which are also given in Table 2. With the
aid of these differences, the eigenfunctions of the
Hamiltonian of the multiparticle shell model can be put
into correspondence to states discovered experimen-
tally quite unambiguously, whereby we arrive at the
conclusion that the energies of the states in question are
described remarkably well on the basis of the multipar-
ticle shell model implemented with the Hamiltonian
proposed in [8].

From Table 2, we can see that there are eigenfunc-
tions of the Hamiltonian—for example, the fifth func-
tion in this table—that have no counterparts in the
experimental spectrum measured so far. This may be
due to extremely small theoretical values of B(GT) and
B(M1). In what follows, we take no account of this state
because no manifestations of it have been found exper-

E1B1 M1( ) E2B2 M1( )+
B1 M1( ) B2 M1( )+

----------------------------------------------------------
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imentally. The state corresponding to the sixth function
was discovered in the (p, n) reaction; its analog at
13.31 MeV in 28Si has not yet been recorded in inelastic
electron scattering, although it manifested itself in
inelastic proton scattering [18]. According to the expla-
nation given in [12], this is because the spin magnetic
current and the orbital magnetic current compensate
each other in the M1 transition to the state being dis-
cussed. The calculations with the Hamiltonian from [8]
that were performed in [12] reproduced this effect suc-
cessfully.

Thus, we arrive at the conclusion that the shell
model qualitatively reproduces the basic features of the
excitation-energy distributions of the Gamow–Teller
and M1 strengths—in other words, small experimental
values of the relevant cross sections correspond to
small theoretical values of B(GT) and B(M1). However,
the theoretical distributions of the transition strength
among states whose contribution saturates a major part
of the entire transition strength differ substantially from
the analogous experimental distributions. In particular,
the B(GT) and B(M1) values calculated for transitions
to the third isovector 1+ states are noticeably less than
the relevant experimental values; at the same time, the
theoretical values of the total strength of Gamow–
Teller and M1 transitions are much greater than the
experimental values. The distinctions between the the-
oretical and experimental strength functions are illus-
trated graphically in [12, 13]. The transformation of the
wave functions that is proposed in the present study is
aimed at removing this discrepancy.

The resulting matrix that represents the entire trans-
formation and which appears to be the product of two
reflection matrices is given in Table 3, which also
quotes the number of the Hamiltonian eigenfunctions
subjected to mixing. The matrix in question is symmet-
ric since the reflections are performed with respect
mutually orthogonal planes, whence it follows that the
matrices of these reflections commute. Basically, the
numbers appearing on the principal diagonal of the
matrix are close to unity in absolute value. The sixth
and eighth states, whose experimental counterparts
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Table 4.  Distributions of the Gamow–Teller and M1 strengths in 28Si according to the calculations with the transformed
wave functions for excited states

k 1 2 3 4 6 7 8 9 10

B(GT) 0.300 0.165 1.451 0.222 0.247 0.622 0.208 0.140 0.137

B(M1) 0.445 1.044 4.641 0.764 0.258 0.620 0.234 0.286 0.330

Table 5.  Lifetimes of the 1+ states in 28Al (in units of 10–15 s)

k Ek , MeV a b , MeV a' b' c Experimental 
data

1 1.373 239 152 10.810 184 117 235 320 ± 50
2 1.620 465 531 11.192 285 279 590 120 ± 60
3 2.201 66 44 11.519 70 48 65 65 ± 35
4 3.105 21 12 12.643 17 10 22
5 3.542 9.7 9.8 12.970 9.1 9.2 7.9
6 4.115 0.94 7.0 13.771 1.1 8.6 0.9
7 4.846 0.69 0.88 14.374 0.64 0.80 0.7
8 5.017 1.2 0.48 14.605 1.0 0.41
9 5.435 0.94 0.93 15.024 0.77 0.76

10 5.919 1.8 1.8 15.507 1.5 1.5
Note: In columns a, b, and c, we display, respectively, the results calculated with the Hamiltonian from [8], the results calculated with the

transformed wave functions for 1+ states, and the results of the calculations performed by Endt and Booten [11] (these authors relied
on the Hamiltonian from [8]). The experimental values presented here are quoted according [11]. The results given in columns  a'
and b' were obtained by using the excitation energies as calculated with the Hamiltonian from [8], in which case these excitation
energies were reckoned from the ground-state energy of 28Si.

Ek
'

were discovered only in the (p, n) reaction, are virtually
interchanged. In the remaining cases, the main compo-
nent is conserved—other states are admixed to it insig-
nificantly.

Knowing the transformation matrix, we can use
expression (2) to calculate the amplitudes for M1 and
Gamow–Teller transitions and, after that, to evaluate
the corresponding reduced probabilities B(M1) and
B(GT). The resulting strength functions for Gamow–
Teller and M1 transitions are quoted in Table 4. The val-
ues found for B(GT) must be multiplied by 0.66 in
order to obtain the experimental values from Table 2;
that is, the form of the experimental strength function
for Gamow–Teller transitions has been faithfully repro-
duced. The ratios of the experimental values of B(M1)
to the corresponding values from Table 4 vary between
0.67 and 1.5, whence we see that, as might have been
expected, the form of the M1 strength function is
described in this way only approximately.

4. GAMMA DECAYS OF 1+ STATES IN 28Al

As an additional check upon the wave functions
obtained here, we will calculate the lifetimes of the 1+

states in 28Al and the branching fractions for their
decays.

Not only does the transformation (1) of the wave
functions change the matrix elements of the operators
that are responsible for transitions between 1+ states
P

and states of different spin–parities, but it also affects,
as can be seen from Eq. (2), the matrix elements of the
operators for transitions within 1+, 1 states themselves:

(6)

As a result, the gamma-decay lifetimes of isovector 1+

states and the relevant branching fractions also change.

For the 1+ states in 28Al, Table 5 displays the life-
times computed with the original wave functions and
the wave functions (or transition amplitudes) trans-
formed with the aid of the matrix from Table 3. Also
quoted in Table 5 are experimental data from [11, 17].
In our calculations, we took into account the Jπ = 0+, 1+,
2+, and 3+ states of the 28Al nucleus and used experi-
mental values of the energies of excited states in those
cases where these energies are known. This is because
the rates of electromagnetic transitions depend greatly
on the transition energy [19], and the precision of 0.1–
0.2 MeV achieved in calculating the energies of nuclear
states is insufficient at transition energies of 1 to 2 MeV.
With increasing gamma-transition energy, the effect of
this uncertainty is reduced. In all probability, Endt and
Booten [11] also performed their calculations with the
experimental values of the excitation energies. Table 5
additionally presents the results of our calculations
employing purely theoretical values of the excitation
energies. By comparing these two versions, we can eas-
ily notice that, at low transition energies, even compar-
atively small variations in the energies of excited levels

φk O φl〈 〉 ψk O ψl〈 〉 Ul l', φk' O φl'〈 〉 Uk' k,
† .=
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Table 6.  Branching fractions for the gamma decays of 1+ states in 28Al

Ei , MeV
Ef 0.000 0.031 0.972 1.014 1.372 1.620 1.623 2.139 2.201 2.486 3.012 3.105

1.372 a 4.4 73.2 22.4

b 2.9 75.8 21.3
c 4.4 74 22

Expt. 4.7(3) 55(1) 40(1)
1.620 a 3.8 77.6 18.0 0.5

b 4.2 58.7 36.7 0.3
c 4.7 93 2.1

Expt. 6 92 <2
2.201 a 0.2 2.1 80.4 14.5 2.6

b 0.0 63.3 35.2 1.4
c 0.2 2.2 80.1 14 2.7

Expt. <6 79(3) 16(2) <3 <5
3.105 a 0.5 41.4 30.5 0.1 0.4 3.7 17.7 1.3 0.3 4.1

b 0.2 76.1 2.6 0.0 1.2 4.9 7.4 3.7 0.1 3.7
c 0.5 43 32 0.2 0.4 3.8 18 1.4 0.3

Expt. 75(3) 25(3)
3.542 a 1.6 30.2 25.7 11.9 1.5 22.2 2.6 0.0 4.1

b 1.6 30.4 25.8 11.1 1.6 22.3 2.7 0.1 4.2
4.115 a 0.0 52.3 36.0 3.2 2.7 0.1 4.4 0.1 0.6

b 0.1 9.9 2.1 30.0 0.1 18.5 26.1 5.0 6.3
4.846 a 0.1 77.0 1.2 4.9 4.5 2.1 1.2 5.1 0.2 2.0 1.1

b 0.2 71.8 0.3 4.6 5.3 4.3 0.3 8.2 0.8 3.1 0.4
5.017 a 0.3 36.5 29.0 7.9 0.8 4.9 3.4 0.0 12.1 1.3 0.3

b 0.1 56.4 36.1 0.4 0.9 0.7 0.3 1.4 0.2 0.0 2.3
5.435 a 1.1 1.1 14.0 0.3 11.0 0.0 61.5 0.2 0.3 4.0 0.4 0.6

b 1.1 1.0 12.0 0.3 8.2 0.3 61.7 0.6 4.0 4.0 0.5 0.7
5.919 a 13.2 15.7 34.2 6.8 3.6 10.6 0.2 0.2 3.3 0.4

b 12.0 15.1 36.1 6.3 3.7 10.5 0.5 0.3 3.5 0.2
Note: The results displayed in rows a, b, and c correspond to the same versions of the calculations as those used to obtain the values in the

columns of Table 5 that have the same labels.

J f
π 3g.s.

+ 21
+ 01

+ 31
+ 11

+ 12
+ 22

+ 23
+ 13

+ 24
+ 02

+ 14
+

cause a sizable scatter in the lifetime values. Also given
in the table for the sake of comparison are the results of
the calculations from [11].

The branching fractions for the gamma decays of
the 1+ states in 28Al are given in Table 6. A comparison
of the results of the calculations with experimental data
reveals that the transformation of the wave functions
for the 1+ states leads above all to an enhancement of

the rate of the transitions to the  state at 0.031 MeV

from the  states and to a reduction of the rate of the

transition from the  level. As a result, the agreement
between the experimental and theoretical lifetimes of

the  levels becomes poorer. For the  level, the
lifetime of 44 × 10–15 s obtained from a calculation with
the transformed wave functions (column b) is close to

21
+

11 3,
+

12
+

11 2,
+ 13

+
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the values of (38.3 ± 2.8) × 10–15 and [60.8 ± 3.4 (stat.) ±
9.1 (syst.)] × 10–15 reported in [1] and [2], respectively.
Concurrently, the correct relationship between the

intensities of the transitions from the  states to the

 and  states is recovered. Previously, the calcula-
tions within the multiparticle shell model were unable
to describe these branching fractions [11, 20].

Investigation of the branching fractions for the
gamma decays of excited 1+ states of 28Al is necessary
for analyzing experiments measuring partial muon cap-
ture by 28Si nuclei, including relevant polarization
experiments [1, 2]. Of particular importance may prove
to be gamma transitions to the 2.201-MeV state from
higher lying 1+ states populated in muon capture.

In connection with our analysis of the lifetimes and
branching fractions, the following comment is in order.
The procedure used here to take into account experi-

13 4,
+

21
+ 01

+
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mental data on strength functions implies that the
ground states are well described by the multiparticle
shell model and that the discrepancies between the the-
oretical and the experimental strength functions are due
exclusively to uncertainties in the wave functions for
excited 1+ states. By transforming the wave functions
for excited states in such a way as to reproduce the
experimental strength functions, we simultaneously
make an attempt at partly compensating for the possible
flaws in describing the ground state. The total Gamow–
Teller and M1 strengths can be computed as the expec-
tation values of specific two-particle operators over the
ground state. Therefore, a considerable excess of the
theoretical values of the total transition strength over
the corresponding experimental values evinces inade-
quacy of the description of the ground state.

5. MUON-CAPTURE RATES FOR ALLOWED 
PARTIAL TRANSITIONS

The rate of ordinary muon capture accompanied by
the Ji  Jf partial transition is given by [9, 10]

(7)

where the abbreviation “OMC” in the superscript on
the left-hand side denotes ordinary muon capture. The
independent nuclear amplitudes MJ(κ) describe muon
capture from the s1/2 state in the process where a neu-
tron is produced in the state characterized by the spher-
ical quantum number κ and where the total angular
momentum J is transferred to the nucleus. The general
formulas for computing these amplitudes can be found
in [9, 10]. The expression for calculating the factor V is
presented in [10]. For the allowed 0+  1+ transition,
the only nonzero amplitudes are

(8)
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which represent sums of the products of the weak form
factors

(9)

and the multiparticle matrix elements

(10)

Here, ϕµ(r) is the bound-muon wave function. The main
difficulty encountered in analyzing partial rates of ordi-
nary muon capture is associated with uncertainties in
these nuclear matrix elements. Of prime importance
often appears to be the [101] matrix element; in the
limit of vanishing neutron energy, it comes to be pro-
portional to the Gamow–Teller matrix element
〈Jf ||σt±||Ji〉, which is known from the theory of beta
decay. The nuclear matrix elements in (10) depend on
the neutrino energy—that is, on the energy of the final
state of the nucleus. In calculating the capture rates, we
will therefore transform, instead of the nuclear matrix
elements in (10) and the amplitudes in (8), the single-
particle transition densities defined as the spin- and
isospin-reduced matrix elements of the tensor product
of the nucleon creation and annihilation operators
between multiparticle wave functions [21],

(11)

Under the transformation in (1), the single-particle
transition densities will therefore change according to

GA gA q2( ) gV q2( ) gM q2( )+[ ]
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Eν

2M
--------=

101[ ]

=  3
4π
------ J f ϕµ rk( ) j0 νrk( )σktk

–

k 1=

A

∑ Ji
1

2J f 1+
----------------------,

121[ ] 3
4π
------=

× J f ϕµ rk( ) j2 νrk( ) Y2 r̂k( ) σk,[ ]1tk
–

k 1=

A

∑ Ji
1

2J f 1+
----------------------,

111 p[ ] 3
4π
------=

× J f ϕµ rk( ) j1 νrk( ) Y1 r̂k( ) ∇ k,[ ]1tk
–

k 1=

A

∑ Ji
1

2J f 1+
----------------------,

011 p[ ] 1
4π
------=

× J f ϕµ rk( ) j1 νrk( )Y1 r̂k( ) σk∇ k( )tk
–

k 1=

A

∑ Ji
1

2J f 1+
----------------------.

D ∆J ∆T αα' f i, ,,,( )

=  
J f T f, aα

† ãα'⊗[ ] ∆J ∆T,( )
JiTi〈 〉

2∆J 1+( ) 2∆T 1+( )
---------------------------------------------------------------------------.
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Table 7.  Partial rates of muon capture (in units of 103 s–1) and nuclear matrix elements computed with (a) the original and
(b) the transformed single-particle transition densities (data for 28Si)

k, number of an 1+ excited state

1 2 3 4 5 6 7 8 9 10

a 29.9 3.1 34.1 26.1 0.02 3.1 20.6 11.5 8.2 3.5

b 12.8 ± 0.2 7.6 ± 0.2 63.6 ± 2.4 11.2 ± 0.5 8.5 ± 0.4 18.7 ± 0.2 7.3 ± 2.1 6.6 ± 0.2 4.2 ± 0.1

Expt. [23] 12.9 ± 2.1 62.8 ± 7.4 14.7 ± 2.6

[101] a 0.039 0.012 0.041 –0.037 0.001 –0.017 0.039 –0.028 –0.021 0.017

b 0.027 0.019 –0.057 –0.022 0.024 0.039 0.023 –0.018 0.018

[121] a –0.006 0.000 –0.005 0.006 0.001 –0.002 0.001 0.001 0.006 0.004

b –0.004 –0.001 0.007 0.005 –0.002 0.002 –0.001 0.005 0.004

[111p] a –0.004 0.011 0.012 0.003 0.005 0.017 –0.012 0.008 0.002 –0.001

b –0.008 0.012 –0.007 –0.004 –0.010 –0.017 –0.009 0.002 0.001

[011p] a –0.016 –0.007 –0.017 0.017 0.001 0.007 –0.019 0.015 0.012 –0.005

b –0.011 –0.010 0.025 0.010 –0.013 –0.020 –0.008 0.011 –0.005

Λk
OMC
(2). The muon-capture rates calculated with the original
and with the transformed wave functions of excited
states are quoted in Table 7. In calculating the nuclear
matrix elements in (10), we used ϕµ(r) values averaged
over the nuclear volume [10]. The amplitudes in (8)
were computed with the values of gA = –1.263 and
gP/gA = 7.0. Of particular interest is the muon-capture

process involving the excitation of the  2.201-MeV
state, which was studied in the experiments reported in
[1, 2]. The calculation with transformed functions
revealed that, in muon capture, this state is populated at
the highest rate and that the corresponding capture rate
exceeds the total rate of capture into all other 1+ states.
The greatest matrix elements are [101] and [011p]. The
remaining matrix elements are much less. The [101]
matrix element is related to the Gamow–Teller matrix
element, whose value can be tested in (p, n) reactions.
No direct means for testing the values of the [011p]
matrix element has been proposed thus far. In [22], it
was shown that the gP/gA value extracted from data of
the correlation experiments reported in [1, 2] is
extremely sensitive to the theoretical value of the ratio
[011p]/[101].

The experimental values of B(GT) and B(M1) serve
as parameters of the orthogonal transformation in the
space spanned by the wave functions for excited states.
Therefore, it is desirable to consider the possible effect of
uncertainties in the values of B(GT) and B(M1) on the
results that we obtained. Let us estimate the root-mean-
square error in the values calculated for partial rates of
muon capture. For this purpose, we address Eq. (7). The
error in Bk(GT)—we denote it by δBk (GT)—can affect

only the quantity S = (–1) + (2). For each partial

13
+

M1
2 M1

2
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transition, the root-mean-square error in the theoretical
capture rate is then given by

where

The partial derivatives appearing in the expression for
δS can be calculated analytically or estimated with the
aid of a finite-difference approximation of the form

This is the way in which we have calculated the values
that are presented in Table 7 for the errors in the theo-

retical values of .

The partial rates of ordinary muon capture by
sd-shell nuclei were measured by Goringe et al. [23].
Their results concerning 28Si are also quoted in Table 7.
A comparison of those data with the results of our cal-
culations demonstrates that the wave functions con-
structed for the excited states in such a way as to repro-
duce the shapes of the Gamow–Teller strength func-
tions make it possible to describe quite accurately the
partial rates of muon capture as well. In the case of the

 state, the theoretical value of the ordinary-muon-
capture rate is very close with the experimental result.
This is because this transition is dominated by the spin-
flip matrix element [101]. That the theoretical values of
muon-capture rates are close to their experimental

δΛ VδS,=

δS

≈ ∂S
∂Bk GT( )
---------------------δBk GT( ) 

  2 ∂S
∂Bk M1( )
---------------------δBk M1( ) 

  2

+
k 1=

N

∑ .

df
dx
------ f x h+( ) f x h–( )–

2h
-----------------------------------------------.≈

Λk
éåë

13
+
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counterparts highlights the following contradiction.
The matrix elements of the Gamow–Teller transitions
as extracted from data on the reaction 28Si(p, n)28Al
prove to be suppressed in relation to the theoretical esti-
mates [according to Tables 2 and 4, we have Bexp(GT) =
0.66Btheor(GT)]. At the same time, the agreement
between the theoretical (version b) and the experimen-
tal partial rates suggests that, in muon capture, there is
no suppression of the spin matrix element [101]. Obvi-
ously, only further investigations can clarify the reasons
behind this discrepancy.

6. CONCLUSION
We have proposed an approach that makes it possi-

ble to take into account, in calculating the partial rates
of muon capture by nuclei, experimental information
about the strength functions for Gamow–Teller and
isovector M1 transitions. The approach consists in
choosing an orthogonal transformation in the subspace
of the wave functions for excited states in such a way
that the Gamow–Teller and M1 strength functions cal-
culated with the transformed wave functions coincide
in form with the corresponding experimental strength
functions. No modifications of the transition operators
are required within this approach. This point is of
importance since the operators of Gamow–Teller and
M1 transitions differ from the operators of the effective
Hamiltonian for ordinary muon capture. In the present
study, we have set forth a method for constructing the
matrix of such a transformation in terms of reflections
with respect to a plane. All calculations have been per-
formed on the basis of the multiparticle shell model.
The numerical results have been obtained for isovector
states in A =28 nuclei. In particular, we have considered
the strength functions for Gamow–Teller and isovector
M1 transitions in 28Si, calculated the gamma-decay life-
times of those 1+ states in 28Al that can be excited in
ordinary muon capture by 28Si, and found the relevant
branching fractions. By using experimental informa-
tion in the way outlined above, we have been able to
describe correctly, for the first time, the branching frac-
tions for the gamma decay of the 1+ state at 2.201 MeV
in 28Al.

It has been shown that, upon applying the transfor-
mation of the wave functions that has been introduced
in the present article, the distribution of the partial rates
of allowed muon capture by 28Si among the final 1+

states of 28Al changes substantially in relation to the
results of the calculations employing the original eigen-
functions of the Hamiltonian of the multiparticle shell
model. The rates of ordinary muon capture that have
been calculated with gA = –1.263 comply well with
experimental data, being very close to them for the
strongest transition.
P
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Abstract—A new transformation of double volume integrals into double surface integrals is presented. A sim-
ple regular method for deriving integrands in a surface integral is proposed. This method is used to calculate
the Coulomb energy of a nucleus within the model of a liquid drop with a sharp boundary. Numerical results
obtained on the basis of the new formula are compared with those calculated by one of the formulas employed
previously.© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over a few decades, the liquid-drop model has been
extensively used in nuclear physics. Proposed by
Ya. Frenkel [1] and by N. Bohr and J.A. Wheeler [2],
when nuclear physics was still in its infancy, it also
forms a basis for the shell-correction approach of
Strutinsky [3, 4]. Within the liquid-drop model, the
energy of a nucleus is given by

(1)
where the first, the second, and the third term stand for,
respectively, the surface, the Coulomb, and the rota-
tional energy of the nucleus being considered; the

dimensionless quantities , , and  are

functionals dependent on the nuclear shape;  and

 are, respectively, the surface and the Coulomb
energy of the corresponding spherical nucleus; and ER

is the angular-momentum-dependent component of the
rotational energy. In dealing with nuclear energies

within this framework, the quantity  requires the
most cumbersome calculations. In this study, we pro-
pose a new method for calculating this quantity.

2. FORMULATING AND SOLVING THE PROBLEM

By definition, the Coulomb energy is expressed in
the term of a sextuple integral,

(2)

which is calculated over the volume of the nucleus.
Hereafter the radius of the corresponding spherical
nucleus is used as a unit of length.

Etot
LD BS

LDES
0( ) BCoul

LD ECoul
0( ) BR

LDER,+ +=

BS
LD BCoul

LD BR
LD

ES
0( )

ECoul
0( )

BCoul
LD

ECoul ECoul
0( ) BCoul

LD ECoul
0( ) 15

32π2
----------- V V'

1
r r'–
---------------,dd∫= =
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Since it is necessary to evaluate many times the
Coulomb energy and its derivatives with respect to col-
lective coordinates in dynamical calculations like those
from [5–7], there arises the pressing problem of opti-
mizing existing computational methods and formulas
implementing these methods. The relevant calculations
can be considerably simplified if we assume that the
charge is uniformly distributed over the nuclear vol-
ume. In this connection, we would like to mention the
well-known method that was proposed in [8, 9] and
which relies on a transformation of the double volume
integral appearing in Eq. (2) into a double surface inte-
gral where integration is performed over the nuclear
surface and where the nuclear shape depends on param-
eters. Thus, the integral proves to be a functional of the
nuclear-surface shape. By going over to a surface inte-
gral, we get rid of two integrations with the result that
the relevant integral assumes the form

(3)

where s = r – r' and σ = |r – r'|. The price that we have
had to pay for this simplification is that the integrand
becomes more involved. Indeed, the scalar products
(dS · s) and (dS' · s) generate an additional dependence
on the angle between the normal to an element of the
integration surface and the vector s. On the other hand,
a scalar quantity having dimensions of energy can be
obtained by multiplying two surface elements. {Unfor-
tunately, this possibility was not explored by Davies
and Sierk [8], who obtained integral formulas for calcu-
lating the Coulomb functional BCoul—see Eqs. (2.24)–
(2.26) in [8].} The unknown integrand f(σ) in the trans-
formation

(4)

will then depend on σ, the modulus of the difference of
the relevant radius vectors.

V V'
1
σ
---dd∫ 1

6
--- Sd s⋅( ) S'd s⋅( )1

σ
---,∫–=

V V'
1
σ
---dd∫ Sd S'd⋅( ) f σ( )∫=
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Mathematically, the problem is formulated as fol-
lows: it is necessary to find an appropriate function f(σ)
in the simplest way. If, for example, Eq. (3) is used to
perform surface integration, the relevant integrand is
constructed by means of a procedure involving a Fou-
rier transformation followed by a determination of the
Fourier transform via a transition to the relevant com-
plex plane. This procedure is quite regular, but it is not
efficient when there is an arbitrary integrable function
in the double volume integral.

On the other hand, the use of Gauss’ theorem for the
gradient of a function [10] makes it possible to recast
Eq. (4) into the form

(5)

The right-hand side of Eq. (5) involves a volume
integral where the scalar product of the gradient opera-
tor and the remaining second surface integral appears in
the integrand. Applying Gauss’ theorem for the diver-
gence of a vector, we obtain the double volume integral

(6)

where the integrand has the form of the scalar product
of two del operators differentiating an unknown func-
tion with respect to the different variables.

That Eq. (6) must be satisfied for an arbitrary inte-
gration surface dictates that the integrand on the left-
hand side of Eq. (4) be equal to the integrand on the
right-hand side of Eq. (6); that is,

(7)

Introducing the notation s for the difference of the
vector variables r and r', s = r – r', we can represent the
differential operator on the left-hand side of Eq. (7) in
the form

(8)
Combining Eqs. (7) and (8), we arrive at Poisson’s

equation

(9)

where ρ(σ) = 1/σ.
Since the charge “density” ρ(σ) is spherically sym-

metric, the “potential” f(σ) must have the same symme-
try. Going over to spherical coordinates, we obtain

(10)

Upon the substitution

(11)

Eq. (10) takes the form

(12)

Sd S'd⋅( ) f σ( )∫ V' Sgradr'd( ) f σ( ).d∫=

V' Sgradr'd( ) f σ( )d∫ V V'divrgradr' f σ( ),dd∫=

divrgradr' f r r'–( ) 1
r r'–
---------------.=

divrgradr f r r'–( )– ∆r f r r'–( )– ∆s f σ( ).–= =

∆s f σ( )– ρ σ( )= ,

1

σ2
----- d

dσ
------ σ2 d

dσ
------ f σ( )– ρ σ( ).=

f σ( )
u σ( )

σ
----------,=

1
σ
--- d2

dσ2
---------u σ( )–

1
σ
---.=
P

A general solution to Eq. (12) is given by

(13)

Setting C1 = C2 = 0, we arrive at f(σ) = –σ/2.
Thus, we have transformed the above double vol-

ume integral into a double surface integral; that is,

(14)

We further test Eq. (14) analytically for the case of
spherical symmetry. A simple integration then yields

(15)

Substituting (14) and (15) into (2), we find that  is
equal to unity is this case, as it must for a spherical
nucleus.

Let us now rewrite the expression that we have

obtained for  in terms of cylindrical coordinates.
Restricting our consideration to axisymmetric nuclear
shapes—that is, assuming that ρ = ρ(z), where ρ(z) is a
profile function whose rotation about the symmetry
axis z specifies a nuclear surface—we obtain

(16)

If we have the implicit dependences ρ(x) and z(x),
Eq. (16) takes the form

We now proceed to discuss our numerical results; con-
currently, we determine the accuracy that the above for-
mula ensures and assess the time required for the calcu-
lations on its basis. The numerical results obtained for
BCoul by using Eq. (16) can be compared with those that

u σ( ) σ2

2
-----– C1σ C2.+ +=

V V'
1
σ
---dd∫ 1

2
--- Sd S'd⋅( )σ.∫–=

1
2
--- Sd S'd⋅( )σ∫–

32π2
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64π2
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32π
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 
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Results for the functional that were calculated by the Lawrence formula (17), along with the results obtained by the new
formula (16)

c Eq. (17), 
N = 32

Eq. (16), 
N = 32 Difference (×10–5) Eq. (17), 

N = 96
Eq. (16), 
N = 96 Difference (×10–5)

1.00 0.999999 1.00001 –1.64 0.99999999 1.0000006 –6.26

1.01 0.999977 0.99999 –1.66 0.99997771 0.9999783 –6.35

1.02 0.999911 0.99992 –1.69 0.99991133 0.9999119 –6.44

1.03 0.999801 0.99981 –1.71 0.99980155 0.9998022 –6.54

1.04 0.999649 0.99966 –1.74 0.99964902 0.9996496 –6.64

1.05 0.999454 0.99947 –1.77 0.99945435 0.9994550 –6.75

1.06 0.999218 0.99923 –1.79 0.99921811 0.9992188 –6.85

1.07 0.998940 0.99895 –1.82 0.99894084 0.9989415 –6.97

1.08 0.998623 0.99864 –1.85 0.99862304 0.9986237 –7.08

1.09 0.998265 0.99828 –1.88 0.99826517 0.9982658 –7.20

1.10 0.997867 0.99788 –1.91 0.99786765 0.9978683 –7.32

1.11 0.997430 0.99745 –1.95 0.99743087 0.9974316 –7.45

1.12 0.996955 0.99697 –1.98 0.99695520 0.9969559 –7.58

1.13 0.996440 0.99646 –2.02 0.99644095 0.9964417 –7.71

1.14 0.995888 0.99590 –2.05 0.99588843 0.9958892 –7.84

1.15 0.995297 0.99531 –2.09 0.99529790 0.9952987 –7.98

1.16 0.994669 0.99469 –2.12 0.99466959 0.9946704 –8.13

1.17 0.994003 0.99402 –2.16 0.99400371 0.9940045 –8.27

1.18 0.993300 0.99332 –2.20 0.99330044 0.9933012 –8.42

1.19 0.992559 0.99258 –2.24 0.99255991 0.9925607 –8.58

1.20 0.991782 0.99180 –2.28 0.99178227 0.9917831 –8.74

1.21 0.990967 0.99099 –2.32 0.99096760 0.9909684 –8.90

1.22 0.990115 0.99013 –2.37 0.99011599 0.9901169 –9.06

1.23 0.989227 0.98925 –2.41 0.98922748 0.9892284 –9.23

1.24 0.988302 0.98832 –2.46 0.98830210 0.9883030 –9.40

1.25 0.987339 0.98736 –2.50 0.98733985 0.9873408 –9.58

1.26 0.986340 0.98636 –2.55 0.98634073 0.9863417 –9.76

1.27 0.985304 0.98533 –2.60 0.98530469 0.9853056 –9.94

1.28 0.984231 0.98425 –2.65 0.98423169 0.9842327 –10.1

1.29 0.983121 0.98314 –2.70 0.98312165 0.9831226 –10.3

1.30 0.981974 0.98200 –2.75 0.98197449 0.9819755 –10.5

Note: Here, c is the elongation parameter in the {c, h, α} parametrization and N is the number of nodes in integration by the Gauss method.

BCoul
LD
are calculated on the basis of the Lawrence formula
[11] (see also [12])

(17)

where f =  and ρ' =
ρ(z'). The Lawrence formula was extensively used in
dynamical calculations within the liquid-drop model
[13], despite the fact that, here—as in (16)—it is neces-

BCoul
LD 15

4π
------ z z' φρ2ρ'2 φsin

2

z z'– f+
-------------------------,d

0

π

∫d

zmin

z

∫d

zmin

zmax

∫=

z z'–( )2 ρ2 ρ'2 2ρρ' φcos–+ +
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sary to calculate a triple integral in order to estimate the
functional BCoul.

According to [8], other formulas for calculating the
functional BCoul that involve total elliptic integrals of
the first and the second kind [4, 8, 14] in the integrand
require using effective high-precision methods [15] for
estimating elliptic integrals. Landen’s method (arith-
metic–geometric mean) [14, 16, 17] is not appropriate
for this [8]. This is the reason why, despite an additional
integration, the Lawrence formula, as well as formulas
for BCoul in terms of double integrals (see, for example,
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[14]), is widely used in numerical calculations per-
formed in the theory of fission.

Our new formula is also advantageous in that, in
contrast to similar formulas from [9, 11, 12], it has no
singularities in the integrand. Since such singularities
must be avoided in numerical calculations, this feature
of our formula is of great value.

In order to perform numerical calculations on the
basis of Eq. (16), we chose the popular {c, h, α} param-
etrization [4] of the nuclear surface and set h = α = 0 for
the sake of simplicity, varying only the nuclear-elonga-
tion parameter Ò. The triple integrals in Eqs. (16) and
(17) were calculated by Gauss’ quadrature formulas
with 32 and 96 nodes. The results are quoted in the
table, where we can see that the values calculated by the
two formulas differ only in the fifth significant digit
when integration is performed with 32 nodes and in the
seventh digit when integration is performed with 96

nodes. The example of a sphere (c = 1,  = 1) dem-
onstrates clearly that our formula overestimates the
exact result, whereas the formula employed previously
underestimates it. We also note that computations on
the basis of the new formula require 10–15% less
machine time, depending on the parametrization of the
nuclear shape.

3. CONCLUSION
A new transformation of double volume integrals

into double surface integrals has been presented. A sim-
ple regular method for deducing the integrands in the
surface integral has been proposed: it is sufficient to
perform only two integrations of the function entering
into the volume integral. The new formula does not
require applying special numerical techniques, since
the integrand in it is free from singularities. Our method
has been used to calculate the Coulomb energy of a
nucleus within the model of a liquid drop with a sharp
boundary. The results of this calculation have been
compared with those obtained according to one of the
formulas employed previously. For the Coulomb func-
tional, the new formula ensures a reasonably high pre-
cision that increases with the number of nodes in the
integration. Calculations by the new formula consume
10–15% less machine time than calculations by the for-
mulas used so far.
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Abstract—It is shown that the s-wave partial amplitude f(k) for scattering on the real-valued Woods–Saxon
potential V(r) = –V0/[1 + exp((r – R)/d)] has very special analytic properties: the trajectories of the poles of the
function k  [of the zeros of the amplitude f(k)] coincide with the lines of the dynamical singularities [spu-
rious poles of f(k)], so that the zeros and the poles compensate each other. In contrast to what is obtained for
Yukawa-like potentials, the scattering length does not vanish here at zero energy. The results reported in this
article were obtained analytically under the assumption that exp(–R/d) ! 1. The problem of revealing the poles
of the function k  in a partial-wave analysis of neutron scattering on nuclei is discussed.© 2000 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

For analytic Yukawa-like potentials whose asymp-
totic behavior is given by

(1)

a quantum-mechanical theorem on the symmetry of
bound and virtual states was formulated and proven in
[1]. According to this theorem, the positions of the
points where the trajectories of these levels intersect the
lines of dynamical singularities of a partial-wave
amplitude as a function of the interaction strength g =

/µ2 (where  = 2mV0/"2, V0 being the potential-
well depth) exhibit mirror symmetry with respect to the
zero-momentum axis. Later on, this theorem was
proven analytically for the Woods–Saxon potential [2],
which is extensively used in nuclear physics. Thereby,
it was shown that the theorem on the discrete symmetry
of bound and virtual levels also holds for potentials
irregular in the region Rer > 0. In [3], it was proven
that, for Yukawa-like potentials, the above theorem of
symmetry has a corollary according to which the trajec-
tories of the poles of the function k  [or of the zeros
of the s-wave amplitude f(k)] intersect the lines of
dynamical singularities of the partial-wave S matrix at
the same symmetry points through which the trajecto-
ries of bound and virtual levels pass. The corollary
proven in [3] was illustrated by considering the exam-
ples of the Yukawa and Hulthén potentials. 

In deriving the above statements, use was made of the
fact that the scattering length as a function of the interac-
tion strength passes through zero smoothly changing
from +∞ to –∞ in the interval between the neighboring
critical values of the interaction strength that are defined
as those at which a virtual state becomes a bound state
(an important property of the scattering length indeed).

V r( ) const rb µr–( )exp , µ 0, b 2,–≥>⋅

K0
2 K0

2
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However, that this property is not universal. It is shown
in the present study that, in the case of the real-valued
Woods–Saxon potential, the scattering length does not
vanish at any parameter value. Nonetheless, the above
corollary of the theorem of symmetry remains valid.
Moreover, it is proven that, for the same potential, the
trajectories of the zeros of f(k) merely coincide with the
lines of dynamical singularities (spurious poles). Thus,
the dynamical poles and the zeros compensate each other
completely. To the best of my knowledge, this is a unique
property of a partial-wave amplitude, and it leads to
important corollaries. One of these is that, for the
Woods–Saxon potential, the trajectory of the pole of
k  [zero of f(k)] as a function of the interaction
strength does not intersect the zero-momentum axis (this
is in sharp contrast to what was found for potentials of
the Yukawa type). Thus, the pole of the function k
cannot come arbitrarily close to the physical region (E ≥
0). For this reason, the Woods–Saxon potential cannot be
used, for example, to describe the features of the doublet
nd system at low energies within a two-body model. In
this connection, we discuss the possibility of revealing
the pole of the function k  in the partial-wave anal-
ysis of neutron–nucleus scattering. Below, we use the
system of units where " = c = 1.

2. BEHAVIOR OF THE TRAJECTORIES 
OF k  AND COROLLARY 

OF THE THEOREM OF SYMMETRY 
FOR THE WOODS–SAXON POTENTIAL

We begin by recalling the proof of the theorem of
symmetry for the Woods–Saxon potential

(2)
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In contrast to the potentials for which the theorem of
symmetry was proven in [1]—those potentials are ana-
lytic in the region Rer > 0—the potential given by (2),
albeit showing the required asymptotic behavior given
by (1), has an infinite number of poles in the complex
plane of r, the coordinates of the poles being Rer = R
and Imr = ±π(2ν + 1)d, where ν is an arbitrary integer.

The well-known analytic solution to the problem in
the s wave for the Woods–Saxon potential was used in
[2] to prove the required statements. Let us introduce
the notation

(3)

where E is the energy of the relative motion of colliding
particles, while m is the reduced mass of the system.

We now investigate the analytic properties of the s-
wave partial amplitude, representing it as

(4)

where F(k) is the s-wave Jost function. The expression
for this function in the potential (2) is known. In partic-
ular, the Jost function can be found from the asymptotic
representation of the radial wave function for the prob-
lem of scattering on the Woods–Saxon potential. The
relevant expansion can be found, for example, in [4]
(below, we correct misprints occurring there). For the
scattering of a particle with a momentum k on a spher-
ically symmetric potential V(r), the radial wave func-
tion has the form (see, for example, [5])

(5)

where f(+k, r) and f(–k, r) stand for the Jost solutions
whose asymptotic forms are exp(–ikr) and exp(ikr),
respectively. For the scattering problem in question, the
S matrix is given by

(6)

After some simple algebra, we find that the explicit
expression for F(k) in the Woods–Saxon potential has
the form

(7)

where c = (1 + exp(–R/d))–1 and F(s, t; u; z) is a hyper-
geometric function (for its definition and properties,
see, for example, [6]). This function can be calculated
with the aid of the hypergeometric series

(8)

The convergence of this series in (7) is ensured by the
inequality c = (1 + exp(–R/d))–1 < 1.

The analytic properties of the Jost function F(k) and,
accordingly, of the scattering amplitude f(k) (4) can be
established on the basis of expressions (7) and (8). For

β2 2mEd2– λ2d2, γ2 2mV0d2 K0
2d2,= = = =

α2 γ2 β2– 2md2 V0 E+( ), k2 2mE,= = =
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example, it can easily be seen that the dynamical singu-
larities of F(±k) are spurious poles occurring on the
imaginary axis of the complex-valued momentum k
(k = iλ) at values satisfying the well-known equation

. (9)

The pole character of the dynamical singularities is
associated with the fact that the Woods–Saxon potential
(2) has the asymptotic form (1) at b = 0. By way of
example, we indicate that the Hulthén potential

(10)

has the same asymptotic behavior. In connection with
the theorem being discussed, the properties of the tra-
jectories of the zeros and poles of f(k) for the Hulthén
potential were considered in detail elsewhere [3].

Since the hypergeometric series in (7) converges
very slowly for exp(–R/d) !

 

 1

 

 (this is so, for example,
in neutron–nucleus interactions), it is reasonable to
transform the hypergeometric function by going over
from the argument 

 

z
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. The next step
consists in retaining only the first term in the expansion
of the hypergeometric function whose argument is 

 

z

 

 =
1 – 

 

c

 

 (this first term is equal to unity), as was done in
[4]. In this approximation, the Jost solution assumes the
form {see Eq. (64.12) in [4]}
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 is the Euler
gamma function. The wave function in (5) must be
bounded at 

 

r

 

 = 0. The boundary condition at the origin
leads to the Jost function in the form
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Thus, we can see that, in order to obtain the explicit
expression for 

 

F
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, the value of the function 
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 at the
origin,
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must be substituted into (11). The poles of the scatter-
ing amplitude for bound and virtual states correspond
to the equalities 

 

F

 

(

 

k

 

)

 

 = 0 and 

 

F

 

(–

 

k

 

)

 

 = 0, respectively.
The pole position for a bound state is determined by the
transcendental equation (see, for example, [4, Eq.
(64.16)])

 

(14)
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In Eq. (11), there appears the factor 

 

(
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(
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β

 

, which is absent from
(64.12) in [4].
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where l is an arbitrary integer. The equation for a virtual
pole differs from (14) by the obvious substitution
β  –β and has the form (β > 0)

(15)

The proof of the theorem of symmetry in [2] relied on
the fact that, at the points where the trajectories inter-
sect the lines of the dynamical singularities, β = |λd | =
ν/2 (ν is an integer), Eq. (15) goes over to Eq. (14)
(only the integer l on the right-hand side of the equation
changes).

The positions of the zeros of f(k) are determined by
the obvious condition F(k) – F(–k) = 0, which leads to
the transcendental equation

(16)

It can easily be shown that Eq. (16) is the difference of
Eqs. (14) and (15), whence it immediately follows that
the above corollary of the theorem of symmetry is
valid: symmetry points lying at the intersection of the
lines of the dynamical singularities of the S matrix and
the trajectories of the poles corresponding to bound and
virtual states also belong to the trajectories of the zeros
of the amplitude f(k) (or of the poles k ).

It is interesting to note that the parameter R does not
appear in Eq. (16), which determines the trajectory of
the pole of k . Moreover, it can be shown that the
transcendental equation (16), which has a rather com-
plicated form, has an unexpectedly simple solution for
the unknown β as a function of γ. This equation is sat-
isfied at β values corresponding to condition (9) such
that β(=λ d) does not depend on γ(=K0d) either. Here,
the intersection of the trajectories of the zeros of the
amplitude f(k) (or of the poles of k ) and the lines
of the dynamical singularities implies their coinci-
dence.

Thus, we can see that, in the case of the Woods–
Saxon potential, there is an unusual, possibly unique,
situation in potential scattering: the trajectories of the
dynamical singularities (spurious poles of the S matrix)
merely coincide with the trajectories of the zeros of the
amplitude f(k).

In quantum scattering theory, it is well known that
the poles of the s-wave partial scattering amplitude f(k)
for bound states are simple, and it was emphasized in
[3] that the corollary deduced from the theorem of sym-
metry and discussed here is consistent with the above
statement of quantum scattering theory. By way of
example, we indicate that, in the case of the Hulthén
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potential, the spurious pole is compensated by the zero
of f(k) at the symmetry point, which appears to be a
point of triple intersection where the trajectory of the
position of the bound level as a function of the interac-
tion strength intersects the dynamical-singularity line.
But in the case of the Woods–Saxon potential, the
s-wave partial scattering amplitude f(k) has neither
dynamical spurious poles nor zeros because they com-
pensate one another completely (see above). Thus, we
conclude that, in contrast to what was obtained for
Yukawa-like potentials, which were considered previ-
ously, the amplitude f(k) for the real-valued Woods–
Saxon potential has no poles in the complex plane other
than those that correspond to bound, virtual, and reso-
nance states. The zeros of the Jost function F(k) corre-
spond to these poles [F(k) = 0]. With the aid of (4), (7),
and (13), the scattering length [a = –f(0)] can be repre-
sented as

(17)

From these expressions, it can clearly be seen that the
scattering length a cannot vanish, since the numerator
in (17) is a positive definite function if the Woods–
Saxon potential is real (that is, K0 is real). At the same
time, the behavior of the scattering length at parameter
values corresponding to interaction-strength values
close to the critical one at which a virtual level becomes
a bound level—that is, when cosφ = 0 [see (14)]—has
a character peculiar to quantum mechanics: the scatter-
ing length undergoes an infinite jump, changing sign. In
contrast to what was observed for Yukawa-like poten-
tials, there is, however, another singular point in (17),
that which corresponds to sinφ = 0. Here, the scattering
length changes sign in the interval between two critical
points, as it does in the case of Yukawa-like potentials,
but this sign reversal is not smooth as for Yukawa
potentials—this proceeds via an infinite jump in a. For
each interval between the critical values of the parame-
ters of the Woods–Saxon potential, the modulus of |a |
has a nonzero minimum, so that the scattering length
cannot be arbitrarily close to zero. The minimum value
|a |min = Amin is achieved for R values at which sin2φ = 1
(that is, at φ = π/4 + nπ), |a/d |min being dependent only
on the scaled parameter γ = K0d.

For d  0, the Woods–Saxon potential reduces to
a rectangular well, for which s-wave scattering length
is given by the well-known expression (see, for exam-
ple, [4])

(18)

that is, a0 > 0 for any interaction strength, provided that
the potential is real-valued.

a 2/K0( )–≅
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It should be recalled that, for the case of the Woods–
Saxon potential, expressions (14)–(17) were derived in
the approximation exp(–R/d) ! 1. In order to refine the
results of the calculations, the hypergeometric series in
(8) can be evaluated with allowance for higher powers
of z = c – 1. However, the above approximation is quite
good even for relatively light nuclei. By way of exam-
ple, we indicate that, at parameter values of R ≥ 3 fm
and d ≈ 0.65 fm, which are peculiar to this region of
nuclei, we have exp(–R/d) ≤ 0.01.

3. NUMERICAL RESULTS

The trajectories of bound and virtual levels were
calculated here in order to illustrate the above results.
The function λ = λn(µ) [n is the principal quantum
number (number of a level) and µ = d–1] was calculated
in [2] with the parameter set from [7] for the case of
neutron scattering on a 208Pb nucleus (V0 = 46.232 MeV,
R = 7.347 fm, 2m/"2 = 0.04824 MeV–1 fm–2). In con-
trast to the study of Gareev et al. [7], who varied the
potential depth V0 and fixed the value of d–1 = 1.587 fm–1

(d ≅  0.63 fm), the quantity varied in [2] was µ. Here, we
consider the dependence β = β(x), x = K0R. The quan-
tity γ = K0d is fixed at the value of γ = 0.903, which is
in reasonably good agreement with the optical-model
parameters for low-energy neutron–nucleus scattering.
The results of the calculations based on Eqs. (14) and
(15) are illustrated in Fig. 1. In these equations, sum-
mations can be truncated at n > N = 1000, whereby the

0 4 8 12

0.8

0.4

0

–0.8

–0.4

n = 1 n = 2 n = 3
n = 4

x

β, exp(–x/γ)

Fig. 1. Trajectories of the s levels in the Woods–Saxon
potential (thick solid lines). The scaled argument x = K0R
and the scaled function β = λd are plotted along the coordi-
nate axes. The graph of the function exp(–x/γ) = exp(–R/d)
is depicted by the dashed line. The positions of the dynami-
cal singularities at β = ±0.5 are shown by thin horizontal
lines. Higher order poles of the scattering amplitude occur
at the intersections of the dash-dotted line and the trajecto-
ries of the levels (see main body of the text). The calcula-
tions were performed at the fixed value of γ = K0d = 0.903,
which corresponds to the parameter values of V0 = 40 MeV
and d = 0.65 fm.
P

required accuracy is ensured. It can be seen that the
points occurring at the intersections of the trajectories
and the straight lines of the dynamical singularities (λd =
±1/2) form pairs symmetric with respect to the point
λ = 0, as they must according to the theorem of symme-
try. Figure 1 also displays the curve that was obtained
with the aid of the pole-order equation {see Eq. (17)
from [2]). At the points where this curve intersects the
trajectories of virtual levels, the relevant S matrix has
second-order poles. Two trajectories—one that appears
to be a continuation of the trajectory of a bound state to
the unphysical list and the other that comes from the
region of virtual lines—meet at each such point. Either
trajectory satisfies Eq. (15), and the two actually form
one continuous line. That these trajectories approach
each other, coming from opposite directions as the
parameter x (equal to K0R) is changed monotonically,
is reflected in that the derivative dβ/dx tends to infinity
at the above pole-order points. Finally, the graph of the
function Âı(–x/γ) = exp(–R/d) ! 1 is also depicted in
Fig. 1, illustrating, for x ≥ 3, the applicability range of
the approximation exp(–R/d) ! 1 adopted here. By def-
inition, the binding energy ε cannot be greater than V0,
whence it follows that β < γ. From the behavior of the
trajectories in Fig. 1, it can be seen that, with increasing
R, levels corresponding to various values of the princi-
pal quantum number (n = 1, 2, 3, 4, …) are accumulated
near the bottom of the potential well.

The results of the calculations for the function a/Amin
versus the scaled interaction-strength parameter x =
K0R are displayed in Fig. 2 at the same fixed value of
γ = K0d as in Fig. 1. These data exhibit the special fea-
tures in the behavior of the scattering length for the case
of the Woods–Saxon potential that were discussed in
Section 2. The critical values of the argument x that cor-
respond to a transformation of a virtual into a bound
level (cosφ = 0) are shown by vertical dashed lines. A

3

2

1

0

–1

–2

–30 2 4 6 8
x

a/Amin

Fig. 2. Scattering length a as a function of the interaction
strength x = K0R. The parameter γ was set to the same value
as that used to calculate the data displayed in Fig. 1. The
scaled quantity a/Amin is plotted along the ordinate. The
positions of the critical values of x (cosϕ = 0) that corre-
spond to a transformation of a virtual into a bound level are
indicated by vertical dashed lines.
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periodic character of the interaction-strength depen-
dence of the scattering length is quite conventional and
is associated with a change in the number of a level.
The dependence of the scattering length on the radius R
of the Woods–Saxon potential is determined entirely by
the denominator on the right-hand side of Eq. (17). The
discontinuities at the x points where sinφ = 0—they are
shown in Fig. 2 by vertical solid lines—proved to be
quite unexpected. For Yukawa-like potentials, the scat-
tering length changes monotonically in this region from
+∞ to –∞, passing through zero. As can be seen from
Fig. 2, |a/Amin | ≥ 1.

Figure 3 shows the results of the calculations for the
minimal absolute value of the scattering length, Amin =
|a |min, versus γ = K0d. The graph presented there illus-
trates all that was said above about the special features
of the behavior of the scattering length for the Woods–
Saxon potential that distinguish this case from that of
Yukawa-like potentials.

4. CONCLUSION

As was indicated in [3], the emergence of a pole in
the function k  [that is, a zero in the amplitude f(k)]
at real negative values of energy (E < 0) is not acciden-
tal; this is quite typical of Yukawa-like potentials, for
which the trajectories of this pole are periodically rep-
licated as the principal quantum number is increased.
That the poles of k  manifest themselves very
rarely in partial-wave analyses of nuclear processes
may be due to the fact that, as can be seen from the
examples of the Yukawa and Hulthén potentials, the tra-
jectory of such a pole intersects the zero-momentum
axis at a right angle (infinite derivative at the intersec-
tion point). As a result, small variations in the interac-
tion strength move such a pole away from the physical
region (E ≥ 0); therefore, it can be missed in a partial-
wave analysis. Near a pole of the above type, the formula
that appears in the conventional effective-range approxi-

δcot

δcot

20

10

0 1 2
γ

Amin

Fig. 3. Minimal absolute value of the scattering length,
Amin = |a|min, as a function of the strength of the Woods–Saxon
potential, γ = K0d. The quantity K0 is fixed at 1.389 fm–1 in
accordance with the chosen value of V0 = 40 MeV.
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mation (k  = –1/a + r0k2/2) must be replaced by a
modified formula of effective-range theory,

(19)

The results obtained in the present study—in partic-
ular, the absence of poles in the function k —
imply that no such poles must appear in an analysis of
experimental data within the optical model featuring
the Woods–Saxon potential. As was indicated in the
Introduction, one of the conclusions from the present
consideration is that, in contrast to what is obtained for
the family of analytic Yukawa-like potentials, which
lead to a monotonic change in the scattering length a
from –∞ to ∞ as the interaction strength increases in the
interval between the critical values, the scattering
length in the Woods–Saxon potential vanishes
nowhere.

The results of the present study explicitly demon-
strate that the Woods–Saxon potential, which is very
popular in nuclear physics, cannot be applied, for
example, to describing the low-energy (E ≤ 0) features
of the doublet nd system, for which the pole of k
has been reliably established. This follows both from
the results of an analysis of experimental data within
the generalized effective-range theory based on Eq.
(19) (see, for example, [8]) and from theoretical calcu-
lations relying on the Faddeev equations, as well as
from calculations within the N/D method and within
the two-body model employing various potentials of
the Yukawa type (see [3] and references therein). All
calculations on the basis of the Faddeev equations lead
to a smooth variation of the doublet nd scattering length
in the vicinity of zero as we go over from one model of
nucleon–nucleon forces to another (with sign reversal).
This is the main reason behind the existence of well-
known correlations between the doublet nd scattering
length and other low-energy features of the nd system
[in particular, the binding energies of the bound and the
virtual triton (T and T*, respectively)].

Although the Woods–Saxon potential is widely used
in optical-model calculations, it cannot be considered
as the only acceptable potential for describing, for
example, neutron scattering on nuclei (especially light
nuclei). In this connection, it would be of interest to
reconsider the results of partial-wave analyses of exper-
imental data on low-energy neutron–nucleus scattering
with a special emphasis on searches for a pole of k
at negative energies. Should such a pole be discovered,
this would imply the need for modifying optical poten-
tials, and this is a point of great practical interest for the
physics of slow neutrons and for astrophysics.

For E  0, the potential becomes real-valued,
since the optical model goes over to the shell model.
The formulas obtained above can be generalized to the
case of a complex-valued potential, but this is beyond
the scope of the present article.

δcot

k δcot C0 C2k
2

C4k4+ +( )/ 1 k2/k0
2+( ).=

δcot

δcot

δcot
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Abstract—Previously reported results on the differential cross sections for the process pp  ppγ occurring
at beam-proton energies of 280, 350, and 450 MeV and involving the emission of hard photons are supple-
mented with the results of calculations at 400 and 500 MeV. The emerging pattern suggests that, in the energy
range E0 = 450–500 MeV, an experiment detecting hard photons from this reaction, in which case outgoing pro-
tons escape at small angles on the different sides of the beam direction, will be very sensitive to the type of
nucleon–nucleon potential (meson-exchange potentials versus the Moscow potential). The energy of E0 =
400 MeV is not optimal for this purpose because the sensitivity is higher even at E0 = 350 MeV. The possibility
of distinguishing between the types of nucleon–nucleon potentials through examining the transverse analyzing
power Ay(θγ), which reflects the correctness of taking into account spin effects, is studied. This analyzing power
is found to exhibit comparatively small changes in response to introducing short-range oscillations in the S and
P waves instead of the repulsive-core-induced vanishing of the wave function at small distances. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Although a great number of studies on the short-
range part of the nucleon–nucleon interaction—and in
general, the baryon–baryon interaction—have been
performed over the past two decades, advances in
understanding its origin have been very slow. More-
over, there remain three different concepts in these
realms.

The first concept assumes meson-exchange poten-
tials involving a repulsive core [1–4]. The second is
based on models of the Skyrme type [5], which are
close to the concept of meson-exchange potentials in
practical aspects. The third relies on quark models of
the nucleon, where gluon perturbative interaction
between quarks [6, 7]–or, more recently, various non-
perturbative interactions [8, 9]—takes the place of
meson exchange at small distances between nucleons.
The majority of calculations performed within the third
concept yielded results close to those obtained on the
basis of meson-exchange potentials, but these poten-
tials are treated there as a phenomenological device.

However, there is a markedly different result. On the
basis of the symmetry properties of six-quark systems,
it was found in [7, 10] that there are attraction channels
in nucleon–nucleon systems. By way of example, we

1) Khabarovsk State Technological University, Khabarovsk, Russia.
* e-mail: neudat@anna19.npi.msu.su
1063-7788/00/6311- $20.00 © 21895
indicate that, in the case of color-magnetic qq interac-
tion of λλσσ symmetry, such an attraction is induced
by the excitation of the s4p2[42]X[42]CS quark configu-
rations in the S and D waves and the s3p3[33]X[51]CS
quark configurations in the P and F waves. These con-
figurations become energetically favorable [7] when
the amplitude of the above qq interaction is sufficiently
large (for projection onto baryon–baryon channels, see
[10–13]). In the case of σσττ symmetry, which was dis-
cussed in connection with the models of instanton-
induced interactions [8], the Young diagram [42]CS is
replaced by [42]ST , etc. On the basis of this concept, the
model of the phenomenological Moscow nucleon–
nucleon potential was proposed in [14–19]. Instead of
a repulsive core in the S and P waves, this model intro-
duces a wave function that has a node associated with
excited quark configurations [7, 10–13]—that is, the
resulting potential is deep and involves forbidden
states. This approach provided a viable description of
the properties of the deuteron and of low-energy
nucleon–nucleon scattering [15–17]. Also, an overall
pattern of the differential cross sections and polariza-
tions for nucleon–nucleon scattering at energies up to 5
or 6 GeV was closely reproduced on its basis for the
first time [20]. Later, the idea that excited quark config-
urations of the above type play a leading role in the
region where the two deuteron nucleons overlap led to
the conclusion [11, 12] that the deuteron includes a rich
set of baryon–baryon configurations. Of course, this set
000 MAIK “Nauka/Interperiodica”
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is dominated by the np component, but, in the order of
importance, it is followed by the NN*(3/2–, 1/2–) com-
ponent characterized by P-wave relative motion, the S-
wave NN* component, the NN*(1/2+, Roper) compo-
nent (their probabilities are somewhat less than 1%),
etc.; there is, however, no ∆∆ component. This predic-
tion was confirmed by an analysis of polarization data
on d + p scattering at Ed = 7 GeV [21]: it appeared that,
in the deuteron, a sizable N*(3/2–, 1/2–)N component
corresponding to P-wave relative motion and substan-
tially affecting polarization transfer is necessary.

In view of the above, investigations into the physics
behind the Moscow potential within nonperturbative
QCD must be supplemented with searches for a reliable
means to distinguish between alternative potentials,
those that feature a repulsive core (meson-exchange
potentials), on one hand, and those that feature a node
in the wave function (Moscow potential), on the other
hand. It should be considered that scattering data
alone—even if they are available over a very wide
energy interval—are insufficient because, as was indi-
cated quite correctly in [22], the repulsive-core leading
to an r–2 behavior at small distances can yield S- and
P-wave phase shifts that are less than the respective
phase shifts for the Moscow potential by π. However,
such a pronounced phase difference is unobservable in
elastic scattering.

The required means was found in [18], where the
differential cross section for hard bremsstrahlung in the
process pp  ppγ was found, for the first time, to be
highly sensitive to the potential type (meson-exchange
potentials versus Moscow potential) at the easily avail-
able beam energies of E0 = 350 and 450 MeV (in the
laboratory frame), where exchange currents are imma-
terial for hard photons [23–25]. Here, we continue this
investigation, considering, along with the differential
cross sections, the transverse analyzing power Ay and
extending, in calculating the differential cross sections
and the above analyzing power, the kinematical region,
which now includes large proton emission angles and the
beam energies of E0 = 400 and 500 MeV. {In [26], it was
shown that, in the case of meson-exchange potentials,
relativistic corrections are less than 20% in the region
being studied; therefore, we apply the nonrelativistic
approach, but there are reasons to believe that relativistic
effects for the Moscow potential are more pronounced
(see below).} All this enables us to disclose more fully
the pattern of the effects under consideration for future
experiments.

2. DESCRIPTION OF THE FORMALISM

As in [18], we employ here the coordinate represen-
tation. The amplitude Aif for the transition from the initial
(i) to the final (f) state can represented in the form [18]

(1)
δ Pi P f– k+( )Aif

=  2 4π d3x ψ f J x( ) e⋅ ψi〈 〉 ik x⋅–( ),exp∫

P

where e is the photon polarization vector and the cur-
rent density has the form

(2)

µ being the proton magnetic moment.
Using the wave functions for the two-proton system

in the form

(3)

(the form for the final-state wave function is similar,
with i replaced by f), we consider, by way of example,
the calculation of the component appearing on the
right-hand side of Eq. (1) and corresponding to that
term in (2) which involves δ(x – r1)∇ 1. Substituting this
term into the expression on the right-hand side of (1),
we obtain

(4)

In the initial-state c.m. frame, where Pi = 0 and
Pf = –k, the first term in the last expression vanishes
since the gauge of the electromagnetic field is chosen in
such a way that e · k = 0. In the final-state c.m. frame,
where Pf = 0 and Pi = k, this term also vanishes. Con-
sidering similarly other terms on the right-hand side of
Eq. (1), we obtain

(5)

where

(6)

J x( ) i
2
--- e

m
---- δ x ri–( )∇ i[

i 1 2,=
∑–=

+ ∇ iδ x ri–( ) ] µcurl δ x ri–( )si( ),
i 1 2,=
∑+

ψi r1 r2,( ) 2π( )3/2 iPi R⋅( )ϕ pi r,( ),exp=

d3rϕ p1 r,( )ϕ p2 r,( )∫ δ p1 p2–( )=

d3r1d3r2ψ f r1 r2,( ) ∇ 1 e⋅( )ψi r1 r2,( ) ik r1⋅–( )exp∫
=  d3Rd3r iP f R⋅–( )ϕ f p f r,( ) 1

2
--- ∇ R ∇ r– 

  e⋅exp∫

× iPi R⋅( )ϕ pi r,( ) ik R
1
2
---r– 

 ⋅– 
 expexp

=  const
i
2
---e Pi k–( )δ Pi P f– k–( )⋅×

× d3rϕ f p f r,( )ϕ i pi r,( )
i
2
---k r⋅ 

 exp∫ δ Pi P f– k–( )–

d3rϕ f p f r,( ) e ∇ r⋅( )ϕ i pi r,( ) i
2
---k r⋅ 

  .exp∫×

Aif 16 π( )3 πm=

× e
im
------Mel µ1Mmag µ2Mmag+ + 

  e,⋅

Mel d3r ik r/2⋅–( ) ik r/2⋅( )exp–exp( )∫=

× ϕ f r( )∇ ϕ i r( ) ϕ i r( )∇ ϕ f r( )–( ),
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(7)

(8)

where 1Mmag is diagonal in spin S = 1, while 2Mmag is
off-diagonal. The wave functions ϕi(r) and ϕf(r) corre-
spond to the motion of nucleons in the field of the Mos-
cow potential or a meson-exchange potential describ-
ing their interaction. These functions are expanded in
terms of partial waves (in even and odd l values for sin-
glet and triplet waves, respectively); the resulting
expressions for the amplitudes in (6)–(8) are very cum-
bersome, but they involve one-dimensional integrals
[18] calculable numerically. Omitting the expressions
for the differential cross sections from [18], we present
only the necessary formulas for the analyzing power Ay,
which is traditionally defined as

where Py is the degree of proton-beam polarization,
while σ↑ and σ↓ are the cross sections for, respectively,
the up and the down orientation of the initial-proton
spin with respect to the y axis, which is orthogonal to
the reaction plane in coplanar geometry.

The general expression for the analyzing power
from [27],

(9)

can be rewritten in the form [27]

(10)

Here, the subscripts 1 and 2 denote the projections +1/2
and –1/2 of the incident-nucleon spin onto the momen-
tum direction and

(11)

where k is the photon momentum and where the basis
|m1m2〉  is used instead of the basis |Sm〉 .

3. DIFFERENTIAL CROSS SECTIONS
AND ANALYZING POWER IN THE EXTENDED 

KINEMATICAL REGION

In our calculations, we employed the same nucleon–
nucleon potentials as in [18] and, in addition, the

M1 mag d3rϕ f r( ) k s1 s2+( )×[ ]ϕ i r( )∫=

× ik– r/2⋅( ) ik r/2⋅( )exp+exp( ),

M2 mag d3rϕ f r( ) k s1 s2–( )×[ ]ϕ i r( )∫=

× ik– r/2⋅( ) ik r/2⋅( )exp–exp( ),

PyAy

σ↑ σ↓–
σ↑ σ↓+
------------------,=

Ay

tr σyAif Aif( )
tr Aif Aif( )

-----------------------------,=

Ay i
T12

2
T22

2
–

T11
2

T22
2

+
----------------------.=

Tab
2 m3m4 M am2〈 〉 m3m4 M bm2〈 〉 *(

m2m3m4

∑=

–
1

k2
---- m3m4 k M⋅ am2〈 〉 m3m4 k M⋅ bm2〈 〉 *,
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refined version of the Moscow potential from [19] (the
results based on this, last, version exhibit virtually no
difference from those calculated by using the preceding
version from [17, 18]).

Supplementing the results obtained in [18] for the
beam energies of E0 = 280, 350, and 450 MeV, we
present here the differential cross sections for the pro-
cess pp  ppγ at E0 = 400 and 450 MeV (see Figs. 1
and 2, respectively). On the basis of the overall pattern,
we conclude that, as the beam energy increases from
E0 = 280 MeV, the sensitivity of the pp  ppγ exper-
iment being discussed to the type of nucleon–nucleon
potential does not become monotonically higher.
Indeed, a comparison of the results presented in Fig. 1
with the corresponding cross sections from [18] dem-
onstrates that a high sensitivity (different shapes of the
differential-cross-section curves for potentials of the
two types, with the cross-section values at maxima
being a few times greater for the Moscow potential than
for meson-exchange potentials) that is peculiar to the
energy of E0 = 350 MeV and, especially, to the energy
of E0 = 450 MeV, is much lower than at the energy of
E0 = 400 MeV. At this, last, energy value, it is accept-
able for only one pair of angles, θ1 = 20° and θ2 = 10°,
of the four pairs considered here.

The angular dependence of the differential cross
section results from a complicated interference pattern.
In the present study, we only conclude that the energy
of E0 = 400 MeV is not optimal for reliably testing the
off-shell behavior of nucleon–nucleon potentials, not
addressing the separate question of whether the above
unfavorable feature of the cross section at E0 =
400 MeV is associated with the fact that this is the
energy at which the S-wave phase shift δ0(E) for pp
scattering passes through the value of 180° (0° if the
phase shift is defined traditionally).

Let us now proceed to discuss the results presented
in Fig. 2. At E0 = 500 MeV—in contrast to the preced-
ing case—the general sensitivity of the differential
cross section for the process pp  ppγ to the type of
nucleon–nucleon potential is at approximately the
same level as that found in [18] at E0 = 450 MeV. This
especially concerns the region of small angles—θ1 =
10°, θ2 = 5° and θ1 = 10°, θ2 = 10°—where the cross
section calculated with the Moscow potential at the
maxima is approximately four times as large as that for
meson-exchange potentials. Even for somewhat larger
angles of θ1 = 20° and θ2 = 10°, which can be more con-
venient experimentally, the cross-section ratio at the
maxima is still quite large (2 to 3). Thus, we conclude
that, at E0 = 450 and 500 MeV, there are kinematical
conditions—which can be varied, as is suggested by the
data in Fig. 2 and by the relevant results from [18]—
such that, on the basis of experimental data obtained
under these conditions, it is possible to find out reliably
which of the two qualitatively different types of
nucleon–nucleon potential describes the actual interac-
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Fig. 1. Differential cross section as a function of the laboratory photon emission angle θγ with respect to the beam direction for the
beam-proton energy of E0 = 400 MeV at various angles θ1 and θ2 (indicated in the figures) of proton emission on the different sides
of the beam direction. The results are presented for (solid curve) the Moscow potential, (dotted curve) the supersymmetric partner
(the photon emission angle is reckoned ni the same direction at the angle θ2) to the Moscow potential, (long dashes) the Paris poten-
tial, and (short dashes) the Hamada–Johnston potential). Thick and thin curves were computed, respectively, in the c.m. frame of
two initial protons and in the c.m. frame of two final protons.
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tion more adequately (in principle, such experimental
data may also favor an intermediate version—that is, a
nonlocal nucleon–nucleon potential [6, 28] for which
the wave function to the left of a node is shallower than
the wave function in the local potential).

The above possibility of distinguishing between the
types of potential is based on the following two obser-
vations. The first is that, under the aforementioned
kinematical conditions, the different types of nucleon–
nucleon potential lead to different shapes of the differ-
ential cross section as a function of the photon emission
angle θγ. The second is that the corresponding cross
sections differ considerably in absolute value: at the
maxima, the cross section obtained with the Moscow
potential is a few times as large as that calculated with
meson-exchange potentials. Our recommendation is to
perform relevant measurements at E0 = 450 and
500 MeV. Recently, Yasuda et al. [29] reported data on
the process pp  ppγ at E0 = 390 MeV, but this is not
an optimal energy value (see above). Moreover, these
P

measurements were performed for the angles of θ1 =
θ2 = 26°, which are also unfavorable: the energies of the
emitted photons are not as high as is possible in this
region, and meson-exchange currents and a virtual ∆
isobar are expected to make maximum contributions
(under the kinematical conditions proposed here and
illustrated in Fig. 1, the role of these effects is negligi-
ble [23–25]). Despite all the above, the cross section
measured for the forward hemisphere is nearly twice as
large as that predicted in the theory involving meson-
exchange nucleon–nucleon potentials and taking into
account the important contribution of meson-exchange
currents. This can be considered as preliminary evi-
dence in favor of the Moscow potential, which yields
larger cross-section values, and as a further motivation
for performing the proposed experiments, which are
thought to be free from the complicating effect of
meson-exchange currents.

Two important comments are in order here.
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
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(i) Instead of measuring small values of the angle θ2,
which are inconvenient experimentally, the quantities
E1 and θγ or Eγ can be measured in coincidence at a
given angle θ1 (in coplanar geometry, there are three
two-dimensional momenta in the final state, but only
three of the six quantities are independent because of
energy–momentum conservation). By selecting their
values corresponding to the hardest photons, we
directly meet the main criterion for choosing optimum
kinematical conditions that ensure a high sensitivity to
the type of nucleon–nucleon potential and which corre-
spond to small values of θ2.

(ii) That the broad energy range from 280 to
500 MeV is covered in our analysis makes it possible to
trace carefully the changes that the distinctions
between our nonrelativistic results derived in the c.m.
frames of two initial- and final-state protons reveal in
response to variations in the energy E0. The data dis-
played in Figs. 1 and 2, together with the results from
[18], show that, while being insignificant at E0 =
280 MeV, the above difference increases with energy
E0—it is about 40% at E0 = 500 MeV, which is a limit-
ing energy for a nonrelativistic treatment. An analysis
at higher energies would be uncertain for yet another
reason: the nucleon–nucleon potentials compared here
were fitted to the phase shifts up to E0 = 300–400 MeV.

One more point is worthy of note. By and large, the
contribution of meson-exchange currents and of an
intermediate delta isobar increases with increasing beam
energy [30], but it remains small in the kinematical
region of the hardest photons even at E0 = 500 MeV [25].

Let us now address the analyzing power. Figure 3
shows our results for it over the entire energy range
E0 = 350–500 MeV studied here. Of course, we are
interested in the case of small angles θ1 and θ2. We see
that, in contrast to the differential cross section, the
analyzing power Ay is but weakly sensitive to the type
of nucleon–nucleon potential. Spin effects are close for
the two types of potential, so that the pursued differ-
ence is due entirely, as was indicated above, to the dis-
tinctions between the shapes of the radial dependences
of the wave functions. Nevertheless, an experiment cor-
responding to Fig. 3 will be of importance—should the
theory be confirmed—as a check upon the correctness
of taking into account spin effects.

4. CONCLUSION

Although much attention has been given in the liter-
ature to the reaction pp  ppγ and to allied pro-
cesses—in addition to the studies reported in [23–27,
29, 30], we would like to mention the analysis of
Gerasimov et al. [31], who considered the possibility of
revealing a dibaryon resonance in the process pp 
ppγγ [31]—reactions leading to hard-photon emission
and occurring at energies somewhat higher than those
used previously have not been studied experimentally
throughout the 1990s. Earlier experiments explored
P

small angles θ1 and θ2 at E0 = 280 MeV [32] or the
region of insufficiently hard photons (that is, large
angles θ1 and θ2) at higher E0 energies. At the same
time, the aforementioned relevant experiments with
hard photons could have been performed because pro-
ton energies of E0 = 400–500 MeV had been available
and because the required experimental procedures have
been developed [32]. In all probability, the pessimistic
conclusions of the previous theoretical studies [23–
25]—these conclusions were summarized in [33]—that
different meson-exchange potentials [1–4] cannot be
distinguished on the basis of data on hard bremsstrahl-
ung in the process pp  ppγ (from the data in Figs. 1
and 2 and from the results presented in [18], we can see
that the Paris potential [1] and the Hamada–Johnston
potential [34], which was proposed much earlier, yield
virtually indistinguishable results for the reaction in
question) had a discouraging effect. We hope that our
results, which extend the conceptual framework behind
the problem of comparing different types of nucleon–
nucleon potential, together with the new preliminary
experimental result from [29], will inspire a renewed
interest in the problem considered here.

In general, the validity of the Moscow potential and
of the quark concepts behind it can be tested along var-
ious lines. In [18], the processes d + γ  n + p, d +
A  N* + X, and 2H(e, e 'p)N* at energies of a few
GeV, (N* is an orbitally excited nucleon corresponding
to the s4p2 quark configuration in the deuteron [12]),
were mentioned in this connection. In addition to the
photodisintegration reaction d + γ  n + p [34], the
quasielastic-knockout processes 2H(p, 2p)n [35–37]
and 2H(e, e 'p)n [38–40] were also studied experimen-
tally, the proton momentum distribution being mea-
sured up to the momentum of q = 0.7 GeV/Ò in the last
case. In order to take consistently into account final-
state interaction, which is very strong at high recoil
momenta [41], so that the simplified treatment of this
interaction in [35] is questionable, it is desirable to ana-
lyze these reactions by using the Moscow potential.
Finally, a new partial-wave analysis extended to the
energy of Elab = 2.5 GeV was reported in [42]. This
makes it possible to refine the results obtained in [20],
where the phase shifts for nucleon–nucleon scattering
were theoretically extrapolated to high energies on the
basis of the Moscow potential with allowance for
absorption, which increases with energy, and to test the
stability of the partial-wave analysis itself at energies as
high as some 2 GeV.
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Abstract—It is shown that the discrepancy between the results obtained for different neutron-energy ranges,
when the neutron polarizability is derived from data on neutron scattering, can be removed if one assumes that
a strong-interaction long-range potential of van der Waals (~r–6) or of Casimir and Polder (~r–7) is observed in
fast-neutron scattering. This strong-interaction long-range potential possibly has some experimental confirma-
tion in elastic pp scattering. © 2000 MAIK “Nauka/Interperiodica”.
There is a strong contradiction between the values
of the neutron electric polarizability αn that are
obtained from experiments on elastic neutron scatter-
ing by heavy nuclei in different energy ranges: αn ≤ 2 ×
10–3 fm3 from experiments at neutron energies En ≤
40 keV, and αn ≥ 10–1 fm3 from measurements with
neutrons in the energy range from about 0.5 to a few
MeV. The first results do not contradict modern theoret-
ical models [1], in which αn ~ 1 × 10–3 fm3, but the sec-
ond one seems overly large, exceeding expectations by
two orders of magnitude.

Measurements of the neutron electric polarizability
at low energies of scattered neutrons are based on the
specific form of the Born amplitude for neutron scatter-
ing in the r–4 polarization potential

(1)

where Ze is nuclear electric charge and R is the electric
radius of the nucleus. For the sake of simplicity, we will
further set long-range potentials to zero within nuclei,
since this does not change significantly the results of
this consideration. In the Born approximation, the scat-
tering amplitude for the potential (1) has the form

(2)

where m is the neutron mass and x = qR, q being a neu-
tron scattering vector. In the limit x ! 1, we have

(3)

It was shown by Thaler [2] that, owing to the second
term in the neutron polarization scattering amplitude—
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this term is linear in q—the differential cross section
for neutron–nucleus scattering must contain a term lin-
ear in the neutron wave vector k because of the interfer-
ence of the nuclear and polarization amplitudes. The
angular distribution of neutrons,

(4)

involves the quantity

(5)

which is linear in k (a is the neutron scattering length).
The measurements of the angular distribution of

neutrons scattered by heavy nuclei [3] in the energy
range 0.6–26 keV, together with the earlier measure-
ments [4] in the energy range 50–160 keV [4], yielded
αn ≤ 10–2 fm3.

It is evident that, because of neutron polarizability,
the total neutron–nucleus cross section must contain a
term linear in k:

(6)

Precise measurements of total neutron cross sec-
tions and the coherent scattering lengths for Pb and Bi
[5] yielded

(7)

The result of the measurements of the total cross sec-
tion for neutron scattering by heavy nuclei in the energy
region up to 40 keV [6, 7] resulted in

(8)

A reconsideration [8] of the experiments reported in
[6, 7] led to the conclusion that αn ≤ 2 × 10–3 fm3.

On the other hand, neutron scattering by heavy
nuclei in the MeV energy range demonstrates signifi-
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cant deviations from the results of optical-model calcu-
lations with allowance for Schwinger (spin–orbit) scat-
tering. For example, the cross sections measured in [9]
are systematically larger than the calculated cross sec-
tions at the smallest angles. The authors of [9] did not
propose any explanation of this disagreement, and the
measurements were not continued.

In a series of experiments and careful optical-model
calculations, the authors of [10] showed that the great
variety of data on neutron scattering in the MeV energy
range (total cross sections, angular distributions, and
especially small-angle scattering) are described much
better if, in addition to the general short-range Woods–
Saxon potential and the Schwinger interaction, the
polarization term with a neutron polarizability factor as
large as αn . (1–2) × 10–1 fm3 is included in the poten-
tial of neutron–nucleus interaction, which is two orders
of magnitude greater than the value expected from rea-
sonable calculations [1] and the measured restrictions
[5–7].

What is the way to reconcile these two contradicting
results? It is possible that some more refined model of
neutron–nucleus interaction allowing for the
Schwinger term and “reasonable” neutron polarizabil-
ity is able to describe data in the MeV energy range.
However, it may be possible that some other potential
of the ~r–n type with n > 4—for example, with n = 6
(van der Waals) or n = 7 (Casimir–Polder) affects neu-
tron scattering in the MeV energy range.

The possibility of a strong long-range interaction
between hadrons was discussed two decades ago by
using various approaches (see, for example, [11] and
references therein) with mostly negative results and
without any firm final conclusion. On the other hand,
there are persistent indications of a strong attractive
potential of the r–n form with n between 6 and 7 (see
[12] and references therein) that follow from a sophis-
ticated analysis of elastic pp scattering in the MeV
energy range. A similar long-range strong interaction
might be observed in neutron–nucleus scattering in the
MeV energy range in just the same way as it was (pos-
sibly) observed between hadrons.

It turns out that, in the experiments that were
reported in [3, 5–7] and which were performed at low
energies (more precisely, at x ! 1), these potentials
could hardly be observed. The reason for this is that the
only signal of the long-range interaction at low energies
(x ! 1) that distinguishes it from a short-range interac-
tion is a noneven term in the expansion of the first-order
Born amplitude.

In the first Born approximation, the scattering
amplitudes for long-range potentials of the form

(9)
U r( ) UR

R
r
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where R is the radius of the nucleus, can be represen-
ted as

(10)

for n = 5, as
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for n = 6, and as
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for n = 7.
In the limit x ! 1, these amplitudes are
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where γ . 1.781 is the Euler constant. It can be seen
that the only noneven power of the x term in the expan-
sion of the Born amplitude for an r–5 potential is x2lnx.
For an r–6 potential, the only odd term is x3; and the
term characteristic of a long-range r–7 interaction is x4lnx.
The short-range potentials yield only even powers of x.
For the potential of an r–2n form, expansion of the Born
amplitude yields the single odd term proportional to x2n – 3;
for the potential of an r–(2n + 1) form, the noneven term
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is x2(n – 1)lnx. Quantitative estimations for x = 0.2 yield
the result that these terms are more than two orders of
magnitude lower than the linear term in the decomposi-
tion of the Born amplitude for an r–4 potential. There-
fore, in low-energy experiments (x ! 1), it is virtually
impossible to recognize the presence of an r–n long-
range potential with n ≥ 5, even if it is as large as two
orders of magnitude greater than the potential due to
neutron polarizability (1) with αn . 10–3 fm3.

The scattering amplitudes in the first Born approxi-
mation (3) and (10)–(12) for n = 4–7 generally behave
similarly in the range x < 5 where the amplitudes are
not small, differing only by a factor which does not
change significantly. The same is true for the first five
to six Born scattering phases for these potentials in the
MeV neutron energy range. This means that it is possi-
ble that the large potential of the r–4 type inferred from
fast-neutron scattering in [10] may in fact be the poten-
tial r–n with n = 6 or n = 7 but of larger magnitude at
r = R.

Better confirmation or rejection of this viewpoint
requires detailed computations with the most flexible
nuclear optical potential and inclusion of long-range
potentials of the r–n type with different n in order to find
out what kind of long-range potential better satisfies the
description of all the data on fast-neutron scattering.
These computations are now in progress. The tentative
calculations of neutron-scattering cross sections in the
MeV energy range for the Woods–Saxon potential with
the addition of long-range potentials r–n with different
n between 4 and 7 yield a small difference in the form
of angular distributions and total cross section.

For example, the figure illustrates the result of cal-
culation of the neutron elastic scattering cross section
for the Woods–Saxon potential with the addition of
long-range potential (9) with n = 4 (corresponding to
neutron electric polarizability αn = 0.15 fm3 inferred
from the experiments [10]) and n = 6. The value UR (14)
for the latter was chosen to reach the best similarity in
the behavior of the elastic cross section for these poten-
tials.

dσWS/dΩ is the cross section for the Woods–Saxon
potential with parameters pertinent to the 208Pb nucleus
[10], i.e., V0 = 43.2 MeV, W0 = 3.8 MeV, VSO =
11.7 MeV (the depths of the real, imaginary, and spin–
orbit parts of the potential, respectively); R0 =  =
7.64 fm is the radius of the real, imaginary, and spin–
orbit components; r0 =  = 1.29 fm; the diffusivity of
the real and spin–orbit components a = 0.425 fm; and the
diffusivity of the imaginary component a' = 0.475 fm.

dσ4/dΩ is the cross section for the Woods–Saxon
potential plus the potential of (9) with n = 4 and UR =
213 keV, and dσ6/dΩ is the cross section for the
Woods–Saxon potential plus the potential of (9) with
n = 6 and UR = 300 keV.

R0'

r0'
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It is seen that the relative difference of the effect that
these two long-range potentials have on cross sections
is very small.
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Abstract—The current status of experimental data on inelastic p4He scattering is reviewed, and the cross sec-
tions for respective channels are roughly estimated. These estimates make it possible to compute the amounts
of 3He, 3H, and d nuclei produced in nonequilibrium cosmological nucleosynthesis to a precision of 10%. Inves-
tigation of inelastic p4He scattering by using the method of accelerated 4He nuclei at Ep ~ 75 MeV is of partic-
ular interest for cosmological applications because this allows one to achieve a higher precision in calculating
nonequilibrium cosmological nucleosynthesis.© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An extra production of light nuclei in the interac-
tions of high-energy protons and antiprotons with a
cosmological plasma in the early Universe is one of the
problems that arises in investigating nonequilibrium
cosmological nucleosynthesis. Here, a particle is con-
sidered as a nonequilibrium object if its energy far
exceeds the mean thermal energy of particles of the
cosmological plasma in equilibrium.

A high-energy proton or antiproton interacting with
the cosmological plasma, which consists predomi-
nantly of protons and 4He nuclei, generates a secondary
proton cascade. Secondary protons, as well as the pri-
mary proton, break up 4He nuclei, thereby producing
nonequilibrium 3He, 3H, and d nuclei, which may gen-
erate Li and Be nuclei through collisions with primary
4He nuclei. That light nuclei are additionally formed by
the above mechanism can be used to obtain information
about the physics of the early Universe. For example,
constraints on the parameters of the Grand Unified
Theories [1] and on the concentration of the primary
black holes [2] can be derived from the requirement
that the number of deuterons and the number of 3He
nuclei produced in nonequilibrium nucleosynthesis be
consistent with their abundances in the present Uni-
verse. At the same time, nonequilibrium cosmological
nucleosynthesis can be considered as the possible
source of evolution of the chemical composition in the
early Universe. As a result, there may arise either small
corrections to the initial concentrations or a significant
effect distorting the outcome of primary nucleosynthe-
sis to the extent that a new chemical composition of the
early Universe is formed. The above assumption pre-
sents an as-yet-unresolved problem.

As a continuation of investigations into nonequilib-
rium cosmological nucleosynthesis that were per-
formed in [3], new calculations taking into account cur-
1063-7788/00/6311- $20.00 © 21907
rently available experimental data were reported in [4]
for nucleosynthesis processes featuring protons and
antiprotons. (The effect of electromagnetic processes
on nonequilibrium cosmological nucleosynthesis is not
considered here because this requires a dedicated anal-
ysis of features peculiar to such processes.) The ener-
getic-proton-induced breakup of a 4He nucleus is a key
process in nonequilibrium cosmological nucleosynthe-
sis. It was shown in [4] that, at primary-particle ener-
gies in the region  > 2 GeV, 3He, 3H, and d nuclei
are produced primarily by the secondary proton cas-
cade developing in the cosmological plasma, the prob-
ability of 4He breakup induced by this cascade taking
maximum values at E ~ 75 MeV. The present analysis
revealed that the uncertainties in computing the num-
bers of product nuclei depend primarily on the error in
determining the cross sections for the channels of
inelastic p4He interaction and that these uncertainties
are estimated at 8–10%.

2. MODEL OF INELASTIC p4He INTERACTION

Experimental data on the cross sections for inelastic
channels of p4He scattering are displayed in the figure.

The reaction p4He  d3He has received the most
comprehensive study. A vast body of consistent and
precise data is available for this channel, ensuring a
reliable fit to the relevant cross section.

The experimental data reported in [10, 12] make it
possible to describe accurately the reactions p4He 
3HeX, p4He  dX, and p4He  ddX at energies in
the region Ep > 0.2 GeV. In these experiments, the
method that employed accelerated 4He nuclei incident
on a proton target permitted an efficient separation of
the channels of inelastic p4He interaction. (In the
present study, we everywhere quote relevant kinetic

Ep p,
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energies of protons in the rest frame of the nucleus.)
More recent data on the yields of 3He and 3H nuclei (not
shown in the figure)—they are summarized in the
review article of Meyer [13]—are much less accurate
and contradict the results reported in [10, 12]. The situ-
ation around the yield of tritium is less clear. An
attempt was made in [13] to develop a model for inelas-
tic p4He interaction on the basis of available data. In
estimating relevant cross sections, it was additionally
assumed that /  = σpn/σpp. This assumption

leads to an excess of the yield of 3H over the yield of
3He in the energy range 0.6–2.7 GeV, where σpn < σpp

[14]. However, this prediction is inconsistent with the
new data from [10, 12]. It would be of interest to test the
above relation at Ep ~ 0.9 GeV (an energy value at
which the ratio σpn/σpp approaches its minimum) in an
experiment similar to that described in [8] or in an
experiment based on the method of accelerated 4He
nuclei. The calculations show that the number of 3He
nuclei generated in the processes of nonequilibrium
cosmological nucleosynthesis is less affected by small
uncertainties in the cross section for the reaction
p4He  3HX in the energy range Ep ~ 0.6–1.4 GeV

σ
He

3 σ
H

3

Cross sections for the inelastic channels of p4He interaction.
Points represent experimental data on (closed circles) the
total inelastic cross section and on the (open boxes) d3He,
(closed triangles) 3HeX, (open circles) 3HX, (closed boxes)
dX, and (asterisks) ddX channels. The data from [5] on the
total inelastic cross sections are shown by open triangles. An
arrow near a reference to experimental data indicates that
the quoted study contains data on a few channels at the cor-
responding proton energy. The remaining data were bor-
rowed from [13]. For energies in the region Ep < 0.22 GeV,
three types of approximation of the cross section—upper
and lower bounds (solid curves) and the basic version (dot-
ted curves) are shown for all channels under study, with the
exception of p4He  d3He.

σ, mb

100

10

1

0.023 0.053 0.09 0.22 0.3 0.9 1.4 2.6
Ep, GeV

[6]

[7] [9]
[10]

[12] [12]

[8]

3H d

dd
d3He

Inel

3He

[11]
than by similar uncertainties at energies in the region
Ep < 0.2 GeV.

At energies below 0.2 GeV data summarized in [13]
do not exhaust the entire body of available experimen-
tal information: there are also data of Sourkes et al. [5]
on the total cross sections for inelastic scattering and
data of Pasechnik et al. [8], who measured the ratio

 to a precision higher than in any other

study (the reactions p4He  3HeX and p4He  3HX
were explored there under the same kinematical condi-
tions); however, the absolute cross-section values are
not presented in [8] because they were measured less
precisely. The results obtained in [8, 10, 12] allow one

to construct a reliable fit to the ratio k(E) = 

and to use it in the following to evaluate the relevant
cross sections. The function k(E) determined from the
data at energies in excess of 70 MeV can be extrapo-
lated to the region of lower energies, as low as those at
which near-threshold effects come into play. In estimat-
ing the cross sections for the reactions p4He  3HeX
and p4He  3HX in the near-threshold domain, it is
therefore reasonable to rely on the data from [6], which
still remain the most precise in this domain. The total
inelastic cross section, that was estimated in [6] as the
sum of all measured cross sections for individual chan-
nels agrees well with data from [5].

The cross section for the process p4He  3HeX in
the energy range Ep ~ 40–100 MeV was derived from
the data that were reported [7, 9] and which were
revised and corrected in [13]. The corrected data of
Cairns et al. [7] are consistent with the results obtained
in [5].

Experimental data on the reactions p4He  dX
and p4He  ddX for energies in the region Ep <
0.2 GeV can be found only in [9]. The experiments
reported in [9] and in [11] were performed by using the
same facility (Wilson chamber) under the same condi-
tions. As can be seen from the figure, the cross section
for the reaction p4He  ddX as determined in [11]
proved to be larger than what was obtained from the
more accurate data presented in [10]. In view of the
above, there is every reason to believe that same is true
for the data from [9]. In estimating the cross sections
for the reactions p4He  dX and p4He  ddX, it is
reasonable to use the cross section for the reaction
p4He  3p2n (not shown in the figure) and to con-
sider that, at energies below the pion-production
threshold, the sum of the five cross sections discussed
above must be equal to the total inelastic cross section
extracted from the data obtained in [5].

The results of the calculations based on the above
considerations on inelastic p4He scattering, which take
into account available experimental data, are presented
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in the figure (curves). For proton energies in excess of
Ep = 0.22 GeV, the cross section for the reaction
p4He  d3He, as well as those for other channels, was
fitted unambiguously. For energies below this value, we
give upper and lower bounds on the cross sections for
various channels of inelastic p4He scattering and
present the basic version of the approximation of the
cross sections. The estimates of the cross sections for
the reactions p4He  3HeX and p4He  3HX are cor-
related: if some type of estimate is adopted for one
reaction (for example, an upper bound), then the same
type must be used for the other reaction. The main
source of uncertainties for Ep < 0.2 GeV is associated
with the estimates of the cross sections for the reactions
p4He  dX and p4He  ddX. However, the fact that
the channel p4He  d3He makes a leading contribu-
tion to the inelastic cross section at energies in the
region Ep < 80 MeV significantly reduces the error in
the total yield of deuterium and 3He in p4He scattering
at low energies.

The proposed approximations of the cross sections
for the channels discussed above differ substantially
from one another. Nevertheless, they make it possible
to compute the number of nuclei generated in nonequi-
librium cosmological nucleosynthesis to a precision of
10% owing to a large contribution of the thoroughly
studied channel p4He  d3He at low energies. It
should be emphasized that the energy range Ep ~ 40–
100 MeV, where the uncertainties in the estimates of the
cross sections for the channels of inelastic p4He scatter-
ing are quite large, is of prime interest for cosmological
applications because the probability of the breakup of
the 4He nucleus by a proton from the secondary cascade
reaches a maximum in this domain (at E ~ 75 MeV) [4].

Investigation of the channels of the inelastic
breakup of the 4He nucleus at energies in the region
Ep < 0.2 GeV is of interest for exploring the chain of
subsequent nuclear reactions of nonequilibrium cos-
mological nucleosynthesis. Nonequilibrium fragments
(3He, 3H, and d) can interact with 4He nuclei, thereby
producing 6, 7Li and 7Be nuclei, whose yields are deter-
mined by the energy spectra of outgoing fragments. For
the most part, these fragments appear to be spectators
undergoing thermalization within a short time. For this
reason, investigation of the high-momentum tail of the
distribution of fragments by the method used in [12] at
1.4 and 2.6 GeV is of particular interest.

3. CONCLUSION

The proposed estimates of the cross sections for the
inelastic channels of p4He interaction permit comput-
ing, to a precision of about 10%, the yields of 3He, 3H,
and d nuclei originating from nonequilibrium cosmo-
logical nucleosynthesis triggered by high-energy pro-
tons and antiprotons (Ep > 0.2 GeV). The uncertainties
are due to the absence of reliable experimental data on
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
the inelastic channels of p4He interaction for energies
Ep < 0.2 GeV. Experiments with accelerated 4He nuclei
at Ep ~ 75 MeV could remedy this flaw, whereby the
accuracy in computing the yields of light elements from
nonequilibrium cosmological nucleosynthesis would
be improved considerably.
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Abstract—On the basis of Glauber diffraction theory, the differential cross sections and analyzing powers are

calculated for elastic and inelastic (to the Jπ =  level at E* = 0.48 MeV) proton scattering on 7Li nuclei at

Ep = 0.2, 0.6, and 1.0 GeV. In this calculation, the 7Li wave function is taken in the αt model. The sensitivity of
our results to variations in the parameters of the elementary pN and pα amplitudes is investigated. Effects
induced by multiple scattering on the target-nucleus clusters are shown to play a significant role. Theoretical
results are found to comply well with experimental data available only at Ep = 0.2 GeV. © 2000 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

Systematic experimental data on the scattering of
protons with energies in excess of 100 MeV on 7Li nuclei
were obtained by a group from the Gustav Werner Insti-
tute (Uppsala, Sweden) [1], where the domestic synch-
rocyclotron was used for this investigation, and by a
group from the Institute de Physique Nucléaire (Orsay,
France) [2]. The former group measured only angular
distributions for inelastic proton scattering on light
nuclei (up to 16O), while the latter determined the angu-
lar distributions and polarizations both for elastic and
for inelastic scattering (for the range of light nuclei
extending up to 14N). Also, calculations within the
plane-wave optical model were performed in [2]. Since
then, these data have been refined over and over again,
and one of the latest studies [3] presents the differential
cross sections and analyzing powers Ay at Ep = 200 MeV
that were measured at the synchrocyclotron of Indiana
University (IUCF). These experimental data were ana-
lyzed within the microscopic folding model and within
the distorted-wave approximation.

Here, we calculate the differential cross section and
the analyzing power Ay within the Glauber theory of
multiple scattering. If the free hadron–nucleon ampli-
tude and the wave function for the target nucleus are
known, this theory is advantageous in direct calcula-
tions of elastic- and inelastic-scattering processes.

To some extent, the application of Glauber theory at
energies of about a few hundred MeV without taking
into account corrections for the internal motion of
nucleons and for deviations from the eikonal propaga-
tion of the incident beam may seem questionable. How-
ever, investigations of corrections to Glauber theory—
in particular, those in [4–6]—revealed that different
1063-7788/00/6311- $20.00 © 21910
corrections are mutually canceled to a considerable
extent. For example, Wallace [4] showed that non-
eikonal corrections and corrections for the Fermi
motion of intranuclear nucleons have opposite signs
and cancel; Kolybasov and Marinov [5] estimated all
corrections for the case of scattering on a deuteron and
clarified the physical grounds for the high accuracy of
the eikonal approach at relatively low energies, where
different nonadiabatic effects are partly compensated
and where they even vanish for a local nucleon–
nucleon potential. With the aim of assessing the effect
of partial nucleon deconfinement in a nucleus (a very
delicate phenomenon indeed) on the behavior of cross
sections, Sapersteœn and Starodubskiœ [6] analyzed the
differential cross section for elastic proton scattering
within Glauber theory. Although those authors did not
draw definitive conclusions, they were able to set con-
straints on the magnitude of relevant swelling.

The 7Li nucleus was investigated by many authors
within various models, including the Cohen–Kurath
model [3], the shell model involving LS coupling [7],
and the cluster model [8–10]. In the study of Glover et
al. [3], the 7Li wave function was represented in the
form of a nuclear density as the sum of two compo-

nents, a spherical ( ) and a quadrupole ( ) one.
Among other things, those authors demonstrated the
importance of taking into account the quadrupole com-
ponent in calculating both the differential cross sec-
tions and the analyzing powers. The results of the cal-
culations were compared with experimental data and
with the results of previous calculations for the 6Li
nucleus [11]. Since the 6Li nucleus is spherically sym-
metric, the contribution of the quadrupole density com-
ponent is not very important for it.

ρ0
m ρ2

m
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In contrast to [3], we use here the 7Li wave function
derived on the basis of the αt cluster model [9] with the
Wood–Saxon potential whose parameters are set to val-
ues recommended in [12]. This wave function makes it
possible to reproduce faithfully static features and elec-
tromagnetic form factors at low momentum transfers.
Similar wave functions for the Buck potential were cal-
culated in [10]. Later, Dubovichenko and Dzhazairov-
Kakhramanov [13] obtained wave functions on the
basis of potentials involving forbidden states; their
results proved to be in perfect agreement with the con-
clusions presented in [9, 10] and with the static features
computed in those studies. Thus, we can see that noth-
ing radically new emerged from the use of eight adjust-
able parameters in [13] (instead of three in [12]).

An important point in the present study is that we
take into account spin–orbit interaction in the scattering
process. Although it was shown in number of studies
(see [14–16]) that the inclusion of spin–orbit interac-
tion leads to insignificant changes in the cross section
(mainly, in the region of diffraction minima and at large
scattering angles), polarization features, which are
more sensitive to model parameters and to the scatter-
ing mechanism than the differential cross section, can-
not be computed without this.

In this study, the differential cross sections and the
analyzing power Ay calculated for elastic and inelastic

(to the Jπ =  level at E* = 0.48 MeV) proton scatter-

ing are analyzed as functions of the parameters of the
elementary pN and pα amplitudes and as functions of
the contributions from the multiple scattering and res-
cattering of incident protons on the target-nucleus clus-
ters. The objective of this study is to systematize, at the
proton energies used, the parameters of the pN and pα
amplitudes as extracted from the literature. That such
data, especially the spin-dependent parameters of the
elementary amplitudes, are incomplete and show con-
siderable scatter restricts severely the potential of the
theory.

2. FUNDAMENTALS OF FORMALISM

Let us proceed to calculate the matrix element or the
amplitude for elastic p7Li scattering in the Glauber dif-
fraction theory of multiple scattering. The quantum
numbers of the 7Li nucleus are Jπ = (3/2)–, T = 1/2, and
L = 1 in the ground state and Jπ = (1/2)–, T = 1/2, and
L = 1 in the first excited state. Within the αt cluster
model, the 7Li wave functions can be represented as

(1)

where  is the spin function and Φα, Φt, and Φαt are

the wave functions of the alpha particle, of the triton,
and of their relative motion, respectively. In the form of

1
–

2
-----
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expansions in terms of the Gaussian basis, these wave
functions are given by

(2)

(3)

(4)

where Nα, Nt, and Nαt are the relevant normalization
factors; Ci(j, k) and αi(j, k) are the expansion coefficients,
whose values were borrowed from [17] for alpha parti-
cles, from [18] for t, and from [9] for αt; Rα and Rt are
the c.m. coordinates of the alpha particle and of the tri-
ton; rl stands for the single-particle coordinates of the
triton nucleons; and R is the coordinate of the relative
motion of the alpha particle and the triton in the 7Li
nucleus (R = Rα – Rt).

The Glauber multiple-scattering operator can be
represented in the factorized form

(5)

where Ωα is the operator of scattering on the alpha par-
ticle, Ωt is the operator of scattering on the triton, and
ΩαΩt is the operator of multiple scattering on the two
clusters of the target nucleus. It is well known that the
operators Ωi are expressed in terms of the profile func-
tions, which in turn involve the elementary pN ampli-
tudes. In considering scattering on the alpha particle, we
disregard its internal structure and, instead of the ele-
mentary pN amplitudes, use the elementary pα ampli-
tude with the parameters fitted to experimental data. This
approach is validated in detail elsewhere [19, 20].

Thus, the alpha-particle wave function in the form
(2) depends only on the c.m. coordinates of the alpha
particle (Rα); in contrast, the triton wave function (3)
involves the single-particle coordinates (ri) of the triton
nucleons. In Glauber theory, scattering occurs in the
plane orthogonal to the incident-proton beam (in the xy
plane if the z axis is aligned with the beam distribution,
as is usually done), whence it follows that all vectors
appearing in the operator Ω are two-dimensional and
that the vectors appearing in the wave function are
three-dimensional. Two-dimensional vectors will be
either labeled with a tilde, a = { , az}, or denoted by
the Greek letter r carrying a corresponding subscript,
ri ≡ {ri , zi}. (The Greek letter r without any subscript
will stand for the impact parameter.) In accordance
with this, we have

(6)

where

(7)
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Table 1.  Parameters of the pα amplitude

Ep, 
GeV

σpα , 
fm2

, 

fm2
t1, fm–2 t2, fm–2 Ds

, 

fm2
t3, fm–2 t4, fm–2 Refe-

rences

Set 
num
ber

0.2 10.8 0.645 0.867 2.48 + i2.54 [20] 1

0.2 8.908 0.357 0.5055 10.09 – i5.16 4.530 + i1.256 –0.127 10.312 1.071 1.593 – i1.302 12.03 + i2.22 [15] 2

0.56 12.3 0.083 0.550 6.41 + i1.15 [20] 3

0.60 12.3 0.03 0.56 6.2 + i1.1 [20] 4

1.0 15.2 –0.5 1.254 –0.31 0.16 1.85 [19] 5

1.0 15.2 –0.2 1.188 –0.2 0.15 1.769 [19] 6

1.03 12.7 –0.189 0.652 5.61 + i1.17 [20] 7

1.05 15.3 –0.200 0.622 5.93 + i1.22 [20] 8

εpα
c βpα

c

εpα
s βpα

c

Here,  and  are, respectively, the central and the
spin–orbit component of the elementary pα amplitude;
n is a unit vector orthogonal to the scattering plane, n =
k × k'/ |k × k' |; and s is the Pauli spin matrix of the scat-
tered proton. As was shown in [15], the diffraction pat-
tern of proton scattering on alpha particles at energies
about a few hundred MeV is described well by the
parametrization [up to values of q2 = 0.8 (GeV/c)2]

(8)

(9)

where m is the nucleon mass and q is the momentum
transfer. The parameters of the elementary pα ampli-
tude are quoted in Table 1. By substituting (8) and (9)
into (6) and performing relevant integration, we obtain

(10)

where ν = c, s , and where
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(12)

Unfortunately, there are no data in the literature on
the parameters of the pt amplitudes; for this reason,
scattering on a triton will be considered as a process
occurring on three constituent nucleons. With allow-
ance for all multiplicities of scattering, the Glauber
operator Ωt then becomes

(13)

where ωi can be represented in a form similar to that
given by Eqs. (6) and (7) with the substitution of the pN
amplitudes for the pα amplitude. Breaking down the
elementary pN amplitudes into the central and spin–
orbit components, we represent these two in the stan-
dard way as [21]

(14)

(15)

where the subscripts N = 1 and 2 correspond to the pro-
ton and the neutron, respectively. The parameters of the
amplitudes are quoted in Table 2.

Substituting (14) and (15) into the formula corre-
sponding to (6) and performing two-dimensional inte-
gration with respect to q, we obtain

(16)
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Table 2.  Parameters of the pN amplitude

Ep, 
GeV

pN σpN, fm2 , fm2 Ds , fm , fm2 References Set
number

0.185 pp 2.5 1.22 0.529 [22] 1
pn 4.77 0.84 0.697

0.2 pp 2.19 –0.068 0.103 [23] 2
pn 4.10 5.199 0.0534

0.2 pp 2.36 1.15 0.65 [24] 3
pn 4.20 0.71 0.68 [25]

0.398 pp 2.56 0.584 0.564 – i0.61 0.674 0.102 0.316 + i0.0.024 [19] 4
pn 3.332 0.108 0.612 – i0.486 0.441 0.431 0.40 – i0.054

0.6 pp 4.00 1.11 0.022 [23] 5
pn 3.75 1.712 –0.0122

0.6 pp 3.7 –0.48 0.097 [27] 6
pn 3.6 –0.36 0.115

0.6 pp 3.96 0.24 0.11 [21] 7
pn 3.66 –0.295 0.175

0.6 ppn* 3.7 –0.1 0.12 3.0 1.0 0.6 [26] 8
0.6 pp 3.61 0.378 0.1 [22] 9

pn 3.6 –0.205 0.111
1.0 ppn* 4.356 –0.3 0.187 0.21 0.364 0.298 [30] 10
1.0 pp 4.75 –0.1 0.23 0.16 –0.3 0.75 [29] 11

pn 4.04 –0.4 0.16 0.16 –0.3 0.75
1.0 pp 4.75 –0.05 0.109 [22] 12

pn 4.04 –0.4 0.109
1.0 pp 4.75 –0.1 0.24 0.14 –0.6 0.6 [28] 13

pn 4.04 –0.45 0.24 0.14 –0.6 0.6
1.0 pp 4.75 –0.05 0.21 [6] 14

pn 4.04 –0.5 0.21
1.0 pp 4.72 –0.09 0.09 [21] 15

pn 3.92 –0.46 0.12
1.0 pp 4.75 1.99 –0.0112 [23] 16

pn 4.02 2.133 –0.404
1.0 pp 4.75 –0.05 0.182 [24] 17

pn 4.00 –0.5 0.182 [25]
1.0 ppn* 4.356 –0.3 0.187 0.202 0.413 0.333 [30] 18
1.0 ppn* 4.356 –0.3 0.26 0.213 0.3 0.467 + i0.297 [31] 19
1.0 pp 4.75 0.25 0.1 15 0.75 [32] 20

pn 3.85 0.25 0.1 15 0.75
1.0 pp 4.75 0.25 5.5 0.2 1.25 [32] 21

pn 3.85 0.25 5.5 0.2 1.25
1.0 pp 4.75 –0.33 0.182 [34] 22

pn 4.00 –0.33 0.182
1.0 pp 4.75 –0.06 0.182 [35] 23

pn 4.00 –0.4 0.182
1.04 pp 4.75 –0.1 0.24 [33] 24

pn 4.04 –0.4 0.17
1.05 ppn* 4.4 –0.27 0.25 2.3 0.7 0.6 [26] 25

Note: Asterisks label cases where the parameters of the pp and pn amplitudes are identical.

εpN
c βpN

c εpN
s βpN

s
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where  = (i + ) and  = , and

(17)

where  = (i + ) and  = .

Inserting (16) and (17) into (13), we can represent
the central and the spin component of the Glauber oper-
ator Ωt as

(18)

(19)

where N, N ' = 1, 2 correspond to n and N, N ' = 3 corre-
spond to p.

Within Glauber theory, the scattering amplitude (or
the relevant matrix element) can be written as

(20)

where rν stands for the single-particle coordinates of
the nucleons and of the nucleon cluster (alpha particle)
in the target nucleus; k and k' are the c.m. momenta of,
respectively, the incident and the emitted proton; and q
is the momentum transfer in the reaction, q = k – k'. In
the particular case of elastic scattering, we have k = k '
and |q | = 2ksin(θ/2), where θ is the incident-proton
scattering angle.

Since the Glauber operator Ω in (5) depends on the
elementary pα and pN amplitudes and since each of
these two is broken into the sum of the central and the
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P

spin–orbit term [see Eq. (7)], Ω also appears as the sum
of two terms,

(21)

Substituting (21) into (20), we obtain the expression for
the total amplitude in the form

(22)

where the quantities Mc(q) and Ms(q) are calculated by
formula (20), where Ω is replaced by Ωc and Ωs,
respectively. In terms of the amplitude in (22), the dif-
ferential cross section and the analyzing power (or
polarization) can be expressed in a conventional way as

(23)

(24)

In order to proceed further, it is necessary to go over,
in the wave functions and in the operators, from the sin-
gle-particle nucleon coordinates {r1, r2, r3, Rα} to the
Jacobi coordinates {a, b, Rt , Rα}; the relation between
these two sets of coordinates can be represented as

(25)

The inverse transformations yield

(26)

The expressions for the coordinate of the relative
motion, R, and for the coordinate of the center of mass
of the nucleus as a discrete unit, R7, are given by

(27)

(28)

Going over in operators (18) and (19) from the sin-
gle-particle nucleon coordinates to the Jacobi coordi-
nates by formulas (26) and performing some transfor-
mations, we can further represent the operator Ωt as the
sum
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Summation over m in (29)—that is, over the multiplic-
ity of scattering on the triton-cluster nucleons, with m =
1–3, 4–6, and 7 corresponding to single, double, and
triple scattering, respectively—is equivalent to the
summation over N and N' in (18) and (19). In the fol-
lowing, we disregard the term ω1ω2ω3, which is associ-
ated with triple collisions, in the spin–orbit operator

 because, as was shown in [14, 36], its contribution
to the matrix element is approximately two orders of
magnitude less than the contribution of single and dou-

ble collisions. The expressions for the coefficients ,

, …, and  are presented in the Appendix.

We begin by calculating the central matrix element
Mc(q). For this, we go over in (20) from the single-par-
ticle coordinates to the Jacobi coordinates according to
(26). Upon integrating the matrix element with respect
to R7 with the aid of a delta function and taking into
account (27) and (28), we obtain

(30)

In terms of the Jacobi coordinates, the wave functions
(2)–(4) become
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With allowance for (30), the operator Ωα in (10) can be
recast into the form
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Substituting (30) and (31) into the matrix element (20),
we obtain

(35)

where

Calculating separately the factor appearing in the
matrix element and depending on the angular-momen-
tum projections, we find for the case of elastic scatter-
ing that

(36)

where k1 =  – , k2 =  + , k3 = , xt = Rtx ,
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For inelastic scattering, the analogous factor is
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Because the operators Ωα and Ωt depend only on the
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of the factors depending on the longitudinal (z) and
transverse (ρ) components:

(38)

Integration with respect to z projections is performed
with the aid of standard formulas from [37]. The result is

If we use symmetric kinematics, then  +  =

, where  = ; in this case, integration
with respect to ρt in (38) will be simplified consider-
ably. Substituting (5) into (38), we obtain

(39)

where the first and the second term determine proton
scattering on the alpha particle and on the triton,
respectively, while the third term determines the rescat-
tering of the incident beam on all the clusters and nucle-
ons constituting the 7Li nucleus. Inserting the explicit
expressions for operators (29) and (32) into each matrix
element in (39), we obtain an expression in the form of
the sum of multidimensional integrals of the Poisson
type, which are calculated analytically with the aid of
the formula [38]
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If the integrand additionally contains a polynomial of
nth degree (33), the integrals are calculated by means of
differentiation with respect to the corresponding
parameters in the original expression (40). The ensuing
calculations do not involve difficulties of a fundamental
nature, but the final expressions are rather cumbersome
and are not presented here for this reason.

Let us go over to calculating the spin-dependent
matrix elements. Substituting the wave functions (2)–
(4) and the expression for Ωs into the matrix element
(20) and performing integration with respect to Rα with
the aid of the delta function δ(R7), we arrive at

(41)

Calculating the spin part of the matrix element sepa-
rately, we obtain [39]
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plane spanned by the vectors k and k', we arrive at the
expression for the matrix element in the form
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By using this result and performing summation over the
projections of the angular momenta, we obtain

(44)

where

(45)

The ensuing calculations are analogous to those for the
central component of the amplitude with the only dif-
ference that the number of terms in the matrix element
increases substantially because of the polynomials

appearing in the operators  and .

3. DISCUSSION OF THE RESULTS

The formulas that were derived in the preceding sec-
tion make it possible to calculate the differential cross
sections for elastic and inelastic proton scattering on
7Li at Ep = 0.2, 0.6, and 1.0 GeV and the corresponding
analyzing powers.

Figure 1 illustrates the behavior of the differential
cross sections versus the incident-proton energy.
Curves 1, 2, 3, 4, and 5 represent the differential cross
sections computed at energies of 0.2, 0.4, 0.6, 0.8, and
1.0 GeV, respectively. The figure shows how the dif-
fractive structure of the cross sections manifests itself
with increasing energy: at 0.2 GeV, the cross section
decreases monotonically (as a function of the scattering
angle), while, at 1.0 GeV, we clearly see three shallow
minima. As the energy increases further, the first mini-
mum in the differential cross section is shifted to the
region of smaller angles, while the magnitude of the
differential cross section at θ = 0° is determined by the
total scattering cross section, which depends on σpα and
σpN (see Tables 1, 2).

The differential cross sections as functions of the
parameters of the (a–c) pN and (d) pα amplitudes are
displayed in Fig. 2 for three values of the incident-pro-
ton energy. In Fig. 2‡ (Ep = 0.2 GeV), curves 1, 2, and
3 correspond to the parameter sets 1, 2, and 3 from
Table 2. The experimental data are better described
with set no. 1 than with set no. 2 (as can be seen from
Table 2, set no. 2 involves the overly large value of
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 = 5.199). It turns out that, for angles θ > 35°–40°,
the parameter set no. 2 is at odds with experimental
data. In Fig. 2b, we present the same result, but at Ep =
0.6 GeV. The parameter sets 5, 6, 7, and 8 from Table 2
correspond to curves 1, 2, 3, and 4, respectively. All
curves show maxima and minima at the same positions.
Basically, the curves differ in the depths of the minima
and in their behavior for θ > 40°. As was indicated in
[14, 22], the depths of the minima are controlled by the

parameter —the greater the value of this parameter,
the shallower the minima. This is clearly seen in Fig. 2
as well, from a comparison of curve 1 (εpp = 1.11, εpn =
1.712) with curves 2 (εpp = −0.48, εpn = –0.36), 3 (εpp =
0.24, εpn = –0.295), and 4 (εpp = εpn = –0.1). The results
of the calculations with the parameter sets 7 and 9 are
similar. In Fig. 2c, we have the same pattern at Ep =
1.0 GeV. Because of a great variety of the parameters at
this energy, we performed calculations with several
options. The parameter sets 10, 11, and 12 from
Table 2 correspond to curves 1, 2, and 3, respectively. It
should be emphasized that, again, all the curves show
minima and maxima at the same positions, differing
only in absolute values at these minima and maxima.

The dependence of the minima on the parameter  is
clearly seen in the figure (we have εpp = εpn = –0.3 for
curve 1 and εpp = –0.05 and εpn = –0.4 for curve 3). The
parameters of the pα amplitudes correspond to set no.
7 from Table 1. The differential cross sections as func-
tions of the parameters of the pα amplitudes are dis-
played in Fig. 2d at Ep = 1.0 GeV. Curves 1, 2, and 3
were calculated with the parameter sets 8, 7, and 5 from
Table 1, respectively. (Curve 3 in Fig. 2c corresponds to
curve 2 in Fig 2d, since the calculation was performed
with the set no. 12 of the parameters of the pN ampli-
tude.) A somewhat different pattern can be seen in
Fig. 2d. Curves 1 and 2 differ insignificantly, mainly
because of the difference in σpα (12.7 and 15.3 fm2 for
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Fig. 1. Differential cross section as a function of the scatter-
ing angle at the incident-proton energies of Ep = (1) 0.2, (2)
0.4, (3) 0.6, (4) 0.8, and (5) 1.0 GeV.
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Fig. 2. Differential cross section as a function of the scatter-
ing angle for various sets of the parameters of the (a–c) pN
and (d) pα amplitudes at the incident-proton energies of (a)
Ep = 0.2 GeV (curves 1, 2, and 3 were calculated with the
parameter sets 1, 2, and 3 from Table 2, respectively; the
experimental data were borrowed from [3]); (b) Ep = 0.6
GeV (curves 1, 2, 3, and 4 were calculated with the param-
eter sets 5, 6, 7, and 8 from Table 2, respectively); (c) Ep =
1.0 GeV (curves 1, 2, and 3 were calculated with the param-
eter sets 10, 11, and 12 from Table 2); and (d) Ep = 1.0 GeV
(curves 1, 2, and 3 were calculated with the parameter sets
8, 7, and 5 from Table 1, respectively).
PH
curves 1 and 2, respectively). Beginning from the sec-
ond maximum—that is, for θ > 20°—curve 3 is in
antiphase with curves 1 and 2. For want of experimen-
tal data at this energy, no definitive conclusions can be
drawn unfortunately as to the quality of these parameter
sets; however, the amplitude for set 5 differs qualita-
tively from the amplitudes for sets 7 and 8—in the
amplitude corresponding set 5, there is no (1 – q2/t1)
pole. As was shown in [20], this pole ensures a better fit
to the differential cross section for proton scattering on
4He at high momentum transfers (which correspond to
large scattering angles). This naturally affects the
behavior of the differential cross section for proton
scattering on 7Li nuclei.

In Figs. 3‡ and 3b, the individual contributions of
various multiplicities of scattering to the differential
cross section are shown at two values of the proton
energy. These contributions were determined by for-
mula (39). Curves 1, 2, and 3 in Figs. 3a and 3b repre-
sent the contributions of, respectively, the first (scatter-
ing on the alpha-particle cluster), the second (scattering
on the triton), and the third (rescattering on the two
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Fig. 3. Contributions of various multiplicities of scattering
to the differential cross section at Ep = (‡) 0.2 and (b) 1.0 GeV.
Curves 1, 2, and 3 represent the contributions from, respec-
tively, scattering on the alpha particle, scattering on the tri-
ton, and rescattering on the two clusters, while curve 4
shows the total contribution.
YSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
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clusters) term in (39) [  = |M1( )|2,  =

|M2( )|2, and  = |M3( )|2,

respectively]; finally, curve 4 depicts their total contri-

bution to the cross section,  = |M1( ) +

M2( ) – M3( )|2. From the figures, it can be seen
that, at small angles, the main contribution to the differ-
ential cross section comes from scattering on the α and
t clusters; the contribution from rescattering at θ = 0° is
two orders of magnitude smaller, but it begins to
approach the first two in absolute value at θ ≈ 30° and
becomes dominant at large angles. This was confirmed
in [14, 22, 36], where it was shown that, as the multi-
plicity of scattering grows, the absolute value of the
amplitude decreases, but the rate of their decrease
diminishes concurrently, so that higher multiplicities
begin dominate over lower ones at specific angles. The
regions where these contributions become commensu-
rate are known as the interference regions. This is
clearly manifested, for example, in Fig. 3‡, where the
minimum is smoothed, however, because the cross sec-
tion is equal to the sum of three terms—each amplitude
is complex-valued, and summation of the real and
imaginary parts can lead either to a constructive (when
the partial contributions are added) or to a destructive
(when they are suppressed) interference. It should be
noted here that, as can be seen from the results pre-
sented in Figs. 3‡ and 3b, it is impossible to describe
satisfactorily the differential cross section by taking
into account only single (even single and double) scat-
tering. It is necessary to include all multiplicities of
scattering on a cluster formed by nucleons (triton in our
case) or to choose a realistic px amplitude if the cluster
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Fig. 4. Differential cross section for inelastic p7Li scattering
to the E* = 0.48 MeV level as a function of the scattering
angle for various values of the parameters of the pN ampli-
tude. Curves 1, 2, and 3 were calculated with the parameter
sets 1, 2, and 3 from Table 2, respectively. The experimental
data were borrowed from [3].
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is considered as a structureless system (alpha particle in
our case).

The differential cross sections for inelastic proton
scattering on 7Li nuclei at Ep = 0.2 GeV are shown in
Fig. 4 for three sets of the pN amplitudes. Curves 1, 2,
and 3 were calculated with the amplitude sets 1, 2, and
3, respectively. It was indicated above that, for elastic
scattering, the calculations with the parameter sets 1 and
3 yield close results (the parameters themselves are close,
too). At the same time, the parameters from set 2 differ

sharply in the values of  and  from those in sets 1
and 3. This is reflected in the behavior of curve 2—it
describes experimental data less well than curves 1 and 3.
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Fig. 5. Analyzing power Ay for (a, b) elastic and (c) inelastic
proton scattering on 7Li nuclei at (a, c) Ep = 0.2 GeV (curves
1, 2, and 3 were calculated with, respectively, the sets 1, 3,
and 4 of the parameters of the pN amplitude from Table 2) and
(b) Ep = 1.0 GeV (curves 1, 2, and 3 were calculated with,
respectively, the sets 10, 11, and 13 of the parameters of the
pN amplitude from Table 2). The experimental data were
borrowed from [3].
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In Fig. 5, the calculated analyzing powers for elastic
(Figs. 5‡, 5b) and inelastic (Fig. 5c) proton scattering at
Ep = 0.2 GeV (Figs. 5‡, 5c) and Ep = 1.0 GeV (Fig. 5b)
are depicted for various values of the parameters of the
pN amplitude. At Ep = 0.2 GeV, we used set 2 from
Table 1 for the parameters of the pN amplitude. For the
pN amplitude, we took the parameter sets 1 (curve 1),
3 (curve 2), and 4 (curve 3) from Table 2; here, the
spin–isospin parameters for sets 1 and 3 were chosen to
be identical to those for set 4, but it should be borne in
mind that this is not quite correct at the incident-proton
energy of 0.2 GeV. Since no fitting was performed for
the parameters of the spin–orbit component of the
amplitude (this is postponed to a future study), the
resulting qualitative agreement between the calculated
analyzing power and experimental data from [3] can be
thought to be quite good both for elastic and for inelas-
tic scattering. At Ep = 1.0 GeV, there are a few equiva-
lent sets of the parameters of the spin–orbit pN and pα
amplitudes (see Tables 1, 2); unfortunately, there are no
experimental data in this region. Nevertheless, we have
calculated the analyzing power at Ep = 1.0 GeV, the
results being plotted in Fig. 5b. Here, we have used the
parameter set 6 (Table 1) for the pα amplitude and sets
10 (curve 1), 11 (curve 2), and 13 (curve 3) from
Table 2 for the pN amplitudes. All three curves are suf-
ficiently close to one another—the maxima, the min-
ima, and the numbers of oscillations are virtually coin-
cident for them, only slight distinctions between the
absolute values being observed. We note that the min-
ima of Ay correlate with the minima of the differential
cross sections, a regularity that is also observed for
scattering on other nuclei [19, 20, 22]. Curve 1 is more
symmetric, possibly because the parameters of the pp
and pn amplitudes are identical in this set (no. 10).

4. CONCLUSIONS

A systematic analysis of the differential cross sec-
tions and of the analyzing power Ay for p7Li scattering
at various energies of incident protons cannot be per-
formed because of paucity of experimental data. How-
ever, some conclusions can be drawn from currently
available information.

(i) The diffractive pattern of elastic scattering mani-
fests itself more clearly with increasing energy of inci-
dent particles. This is one of the reasons why, at Ep =
0.2 GeV, a diffractive pattern appears neither in scatter-
ing on the 6Li nucleus [10] nor in scattering on the 7Li
nucleus [3], despite the fact that the former and the lat-
ter are, respectively, spherically symmetric (Q ~ 0) and
asymmetric (Q ~ 40 mb). Hence, only at sufficiently
high energies (E ~ 0.6–1.0 GeV) can we say that the
diffraction minimum is filled owing to the contribution
of the quadrupole component.

(ii) For Ep < 1 GeV, it is illegitimate to take into
account only single collisions in calculating the differ-
ential cross section and the analyzing power Ay . It is
necessary either to include all multiplicities of scatter-
P

ing on nucleons or to use a well-fitted (realistic) ele-
mentary px amplitude, which effectively incorporates
contributions from multiple collisions.

(iii) It is well known that data on the differential
cross sections and on the analyzing power Ay can be
used as a test for the parameters of the px amplitudes.
In particular, such a test can reject parameters that do
not correspond to experimental data. In our case, this
concerns the parameter set for the pN amplitude from
[23] with the unusually large ratio of the real part of the

amplitude to its imaginary part (  = 5.199). Here, we
do not draw definitive conclusions from the calculation
of the analyzing power, taking our calculations to be
preliminary, because we did not fit the parameters of
the pN amplitude at Ep = 0.2 GeV. Moreover, it was
indicated in [38] that, in order to refine the parameters
of the elementary amplitudes, it is necessary to analyze
all observables of proton–nucleus scattering, including
the spin-rotation function Q0, because it is the spin-
rotation function that exhibits the greatest variations
upon going over from one set of proton–nucleon ampli-
tudes to another.

APPENDIX

The coefficients in the operator  determined by
formula (29) at ν = c are given by
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The coefficients in the operator  determined by
formula (29) at ν = s can be represented as
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Abstract—Within several models of charm production in hadron–nucleus interactions, it is shown that prompt-
muon fluxes at the depths of operating and designed neutrino telescopes (1–4 km) can in principle be measured
in experiments with a high detection threshold. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Not only is charm production in hadron interactions
at energies E @ 1 TeV a phenomenon of interest for
particle physics, it also has an important application in
high-energy astronomy—namely, atmospheric neutri-
nos from the decays of charmed hadrons (predomi-
nantly, D, D*, and Λc) produced in the interactions of
cosmic rays with the Earth’s atmosphere appear to be
the main source of background in detecting (quasi)dif-
fuse fluxes of neutrinos of astrophysical and cosmolog-
ical origin [1]. The flux of atmospheric muons geneti-
cally related to neutrinos is a natural tool for testing
charm-production models and for more precisely esti-
mating the background of atmospheric neutrinos [2].

Direct spectrometric measurements of muon fluxes
with ground-based arrays have not yet covered the
muon-energy region above 20 TeV for nearly horizon-
tal fluxes and the region above 3 TeV for vertical fluxes.
The statistical significance of these measurements is
insufficient for extracting quantitative information
about the contribution of muons from charm decay—
that is, prompt muons. The potential of underground
experiments is considerably higher, but there is a natu-
ral limit here caused by irregularities in the density and
chemical composition of rock around the facility used,
by a limited detector volume, etc. Therefore, it is perti-
nent to recall important advantages of deep-underwater
Cherenkov facilities, such as a high degree of homoge-
neity of the absorbing medium (water, ice) and a large
sensitive volume, and to discuss prospects for neutrino
telescopes like AMANDA [3], Baikal NT [4], and
NESTOR [5] in the problem of measuring prompt-
muon fluxes. It is important to assess depths, threshold
energies, and zenith angles appropriate for experimen-
tal measurements aimed at reliably identifying the con-
tribution of prompt muons and—as an eventual goal, if
achievable in principle—for establishing the most ade-
quate models of charm production.

In this article, we discuss the results obtained by cal-
culating the flux of high-energy muons (Eµ * 1 TeV) at
sea level and its transformation at large depths in water
1063-7788/00/6311- $20.00 © 21923
(between 1 and 20 km). The differential cross sections
for charm production in nucleon and pion interactions
with light nuclei were calculated within the model of
quark–gluon strings (QGS model also known as
QGSM) [6], the recombination quark–parton model
(RQPM) [7], and the model [8] that is based on pertur-
bative QCD with allowance for nonleading contribu-

tions of order  and which employs, at the stage of
hadronization, nonperturbative fragmentation func-
tions [9].

2. ATMOSPHERIC MUONS AT SEA LEVEL

For various zenith angles θ, the energy spectra of
muons from pion and kaon decays (π-, K-muons in the
following) were calculated on the basis of the nuclear-
cascade model [10] refined in [2, 11]. The parametriza-
tion proposed in [12] was chosen for the spectrum of
primary cosmic rays. The same nuclear-cascade model
was used to compute the prompt-muon contributions
within the QGSM and the QPRM. The predictions of
the QCD-based model [8] were obtained within the less
detailed nuclear-cascade model and only for nearly ver-
tical directions. The resulting distinctions can be
neglected, however, against more significant uncertain-
ties associated with known arbitrariness in choosing
parameters of the QCD-based model like µR [the
energy scale specifying the renormalized charge αs ~
1/ln(µR/ΛQCD)] and µF (the factorization scale separat-
ing perturbative dynamics from the infrared region) and
the parton distributions in the nucleon. In all cases, the
differential widths with respect to the inclusive semi-
leptonic decays of D and Λc were calculated on the
basis of the simple method proposed in [7].

The calculated differential spectra of muons at sea
level, Dµ(Eµ, θ), for two zenith-angle values of θ = 0°
and 89° are displayed in Fig. 1, along with experimental
data from [13–18]. All quoted data, with the exception
of those from [13] (MUTRON spectrometer), were
obtained by applying various methods to processing the
results of underground experiments. A detailed com-
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parison with experimental data at sea level was pre-
sented in [2, 19].

The RQPM predicts a relatively fast variation of the

exponent of the muon spectrum. We denote by (θ)
the energy at which the contributions of ordinary
muons from (π and K decays) and prompt muons

become equal. Within the RQPM, we have (0°) ≈

150 TeV and (89°) ≈ 1 PeV. According to the QCD-
based model developed in [8], the contribution of
prompt muons begins to dominate in the total muon

flux at higher energies. Specific values of (θ)
depend heavily on the choice of the parton distributions
and other model parameters. In Fig. 1, curve 1 repre-
sents the results obtained for the so-called MRSD
model of the parton distributions [20] with µF = 2µR =
2mc; while curves 2 and 3 correspond to the CTEQ3
model [21] with µF = 2µR = 2mc and µF = µR = mc,
respectively. Below, these versions will carry the labels
QCD-1, QCD-2, and QCD-3. In all three cases, the

Eµ
c

Eµ
c

Eµ
c

Eµ
c

108

10–1

104 106

Eµ, GeV

10–2

10–3

Eµ
3D(Eµ, θ), cm–2 s–1 sr–1 GeV2

θ = 89°

1

2

3

θ = 0°

Fig. 1. Vertical and nearly horizontal fluxes of muons at sea
level. The experimental data were borrowed from ( ) [13]
(89°), (h, .) [14], (∗ ) [15], (d) [16], (m) [17], and (n) [18].
The results of the calculations taking into account only π-,
K-muons are shown by solid curves. The results including
the prompt-muon contribution were computed on the basis
of the (dashed curves) RQPM, (dash-dotted curves) QGSM
and (dotted curves) QCD-based model from [8] (the figures
1, 2, and 3 on the dotted curves correspond to the QCD-1,
QCD-2, and QCD-3 versions, respectively).
P

c-quark mass mc was set to 1.3 GeV. Within the QCD-1

model, the critical energies (θ) are numerically
close to those obtained within the RQPM, while, within
QCD-3, they are close to the QGSM predictions

[ (0°) ≈ 850 TeV, (89°) ≈ 5 PeV]. In order to dis-
tinguish experimentally the versions of the QCD-based
model by using sea-level muon data, it is necessary to
cover energies Eµ * 100 TeV.

From Fig. 1, we can see that, for Eµ > 10–20 TeV,
none of the models being discussed can reproduce the
data from the experiment with x-ray-emulsion cham-
bers evolved at Moscow State University [14] and from
the experiment with the Frèjus underground detector
[15]; at the same time, none is ruled out by recent LVD
results (Gran Sasso) [16]. As a matter of fact, the
remaining experimental data presented in Fig. 1 furnish
no new arguments in favor of or against the models in
question. This paradoxical situation clearly demon-
strates that new experiments at significantly higher
energies are required. Such experiments can be per-
formed only with large deep-underwater telescopes.

3. UNDERWATER SPECTRA AND ANGULAR 
DISTRIBUTIONS OF MUONS

In order to calculate the transformation of the muon
spectrum at large depths in water, we used the analytic
method developed in [22]. For the boundary spectrum
that decreases sufficiently fast with increasing energy,
this method allows us to solve approximately the
kinetic equation with a collision integral that takes into
account the actual energy dependences of the differen-
tial cross sections for radiative losses (e+e– production,
bremsstrahlung) and of the cross sections for photonu-
clear muon interaction. The calculation was tested by
comparing the numerical results it yields with the entire
body of available data on muon absorption in rock of
various compositions and in water [2], as well as with
data on the muon angular distributions measured at the
NT-36 and AMANDA-B4 facilities (see [4] and [3],
respectively) for low recording thresholds [23].

The calculated integral spectra Iµ (>Eµ, h, θ) of ordi-
nary and prompt muons under water are displayed in
Fig. 2 versus (a) the energy Eµ, (b) the depth h along the
vertical, and (c, d) cosθ at fixed values of the other vari-
ables. Figures 2‡, 2c, and 2d display the results
obtained on the basis of the QCD-2 version, while
Fig. 2b shows the relevant results for all three versions
of the QCD-based model.

A reliable identification of the prompt-muon contri-
bution can be expected if there is an intersection of the
curves for prompt and for π-, K-muons, in which case
the number of events is doubled with respect to that
which is expected for π-, K-muons. It should be noted
that the curves describing the angular distributions can
intersect twice, as in the case of the RQPM at a depth
of h = 1.15 km (Fig. 2d). This occurs if the prompt-
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Fig. 2. Results of calculations for muon fluxes at depths of 1–4 km under water: (‡) integrated energy spectra at a zenith angle of
θ = 78.46° (  = 5); (b) fluxes of muons with energies Eµ ≥ 100 TeV as functions of the vertical depth h at  = 5; (c) zenith-
angle distributions for Eµ ≥ 10 TeV at the depths of h = 1.15, 2, 3, and 4 km; and (d) as in Fig. 2c, but for Eµ ≥ 100 TeV. The con-
tribution of π-, K-muons is shown by solid curves. The prompt-muon contributions calculated on the basis of the RQPM, the QGSM,
and the QCD-based model from [8] are depicted by dashed, dash-dotted, and dotted curves, respectively.

θsec θsec
muon contribution at a given depth exceeds the contri-
bution of π-, K-muons even at the vertical and is due to
the fact that the factor of angular enhancement at sea
level is significantly higher for π-, K-mesons than for
prompt muons.

From Fig. 2, we can see that the coordinates of the
points where the spectra of π-, K-muons and of prompt
muons intersect are highly model-dependent. By way
of example, we indicate that, at secθ = 5, the minimal
and the maximal predictions of the models in question
for the prompt-muon flux at the intersection points dif-
fer by three orders of magnitude (Fig. 2b). On the basis
of this fact, one can in principle test charm-production
models experimentally and, in particular, set con-
straints on the parameters of the QCD-based model.

At a detection threshold of Eµ ~ 1 TeV, only tele-
scopes arranged at depths of 3 to 4 km (for example,
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
NESTOR) can ensure a reliable identification of
prompt muons for θ & 80°. An order of magnitude
increase in the threshold (Fig. 2c) would permit one to
address such a problem with the under-ice telescope
AMANDA (h ≈ 2 km), but at larger zenith angles of
θ * 85°. At the threshold of Eµ = 10 TeV, experiments
at the NESTOR can be performed for smaller angles,
whereby one achieves an increase in statistics and a
reduction of the background from π-, K-muons. The
higher threshold of Eµ = 100 TeV (Figs. 2b, 2d) pro-
vides the possibility of detecting prompt muons at the
Baikal neutrino telescope as well (h = 1.15 km). At a

fixed value of θ, the energy (θ) at which the prompt-
muon contribution doubles the total flux is significantly
less at the depth of NESTOR than at the depth of the
Baikal neutrino telescope (by a factor of 35 to 60 at
secθ = 5). For example, the QCD-2 version predicts

Eµ
c
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 ≈ 8 TeV for the NESTOR facility and  ≈ 300 TeV
for the Baikal neutrino telescope. Nevertheless, the flux

Iµ(> , h, θ) is nearly one order of magnitude greater
in the latter case. This example illustrates a more gen-
eral statement. In future experiments aimed at detecting
muons from charm decay, facilities located at a small
depth (1 to 2 km) may prove to be preferable, in some
respects, to those located at larger depths, provided that
the energy detection threshold and the range of zenith
angles are chosen appropriately (Eµ ~ 100 TeV and
70°–80°, respectively), all other conditions being the
same.
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Abstract—A simple and efficient method is proposed for solving transport equations that describe the propa-
gation of cosmic-ray protons and neutrons in the atmosphere at high energies. It is shown that, upon taking into
account a non-power-law character of the primary spectrum, a growth of total cross sections for inelastic
nucleon–nucleus interactions, and violation of scaling in such interactions, the effective absorption ranges of
nucleons come to be dependent not only on energy but also on the depth in the atmosphere. The results of the
calculations are compared with available experimental data. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Measurements of the fluxes of secondary cosmic-ray
protons and neutrons can furnish valuable information
about primary cosmic radiation and about the interactions
of nucleons and nuclei at high energies. In order to extract
this information from experimental data, it is necessary,
among other things, to be able to calculate the nucleon
absorption ranges, which are functionals of the spectrum of
primary cosmic rays and of inclusive and total cross sec-
tions for inelastic interactions and which also depend, in
general, on energy and the depth in the atmosphere. An
exact analytic solution to the problem can be obtained only
within very simple models of the primary spectrum and
interaction cross sections, but such models are very unreal-
istic just because of their simplicity. In the present study, a
straightforward method is proposed for approximately
solving one-dimensional transport equations describing the
propagation of cosmic-ray nucleons. This method, which is
applicable at sufficiently high energies, does not rely on any
unrealistic assumptions about the shape of the primary
spectrum or about the form of differential and total cross
sections for nucleon–nucleus interactions. With some qual-
ifications (see Section 2), a solution to the transport equa-
tions can be found to a precision as high as is desirable and
for an arbitrary depth, whereby nucleon fluxes can be stud-
ied at sea level even for inclined directions.1) 

1)We recall that the depth of the atmosphere along the vertical direc-
tion is h0 . 1030 g/cm2 . 11.4 , where  = 90 g/cm2 is the

characteristic range that a nucleon travels in air prior to undergoing
interaction. The depth of the atmosphere along the horizontal direc-
tion exceeds 440 . Therefore, the flux of nucleons arriving from

nearly horizontal directions is completely determined by integra-
tion of small deflections in inelastic nuclear interactions, multiple
Coulomb scattering, and elastic scattering, as well as by the contri-
butions from reactions induced by long-range particles, whence it
follows that it is meaningless, in this case, to consider a one-dimen-
sional formulation of the problem. For small zenith angles ϑ, the
above effects can be taken into account as corrections to a solution
of one-dimensional transport equations.

λN
* λN

*

λN
*
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Basically, the idea of the method consists in reduc-
ing the integro-differential transport equation to a non-
linear integral equation for a so-called Z factor, a quan-
tity that is directly related to the effective absorption
range. After that, the equation for the Z factor is solved
by mere iterations. Within this method, even the lowest
approximation has a rather high accuracy. The effi-
ciency of the method has already been demonstrated in
solving the problem of muon-neutrino transfer in a
dense medium with h @ λν(E) [1] (λν is the distance
that a neutrino travels prior to interaction)—that is, in a
situation where conventional numerical methods,
including the Monte Carlo method, either are inappli-
cable or require enormous amounts of machine time.
By invoking some natural physical assumptions, the
method can be modified to render it appropriate for
solving the problems of transport of high-energy
nuclei, muons, and other mesons in the atmosphere and
in dense media.

2. BASIC ASSUMPTIONS
OF THE NUCLEAR-CASCADE MODEL

We are interested here in the differential energy
spectra of cosmic-ray protons and neutrons at energies
that are so high that proton energy losses by ionization
and by the excitation of air atoms, geomagnetic effects,
and effects associated with a three-dimensional charac-
ter of the cascade process (in particular, scattering) can
be disregarded. The one-dimensional approximation
assumes a sharp anisotropy of the angular distribution
of secondary particles formed in inelastic interactions
of nucleons and nuclei and is justified at nucleon
momenta p much greater than 〈 pT〉  ≈ 0.4 GeV/c. Owing
to the fact that the energy spectrum of cosmic rays
decreases fast (and, as a consequence, to the predomi-
nant role of pT ! pL processes in the development of the
cascade), as well as to a high degree of isotropy of pri-
mary radiation, the range where the one-dimensional
000 MAIK “Nauka/Interperiodica”
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approximation is valid broadens considerably for direc-
tions close to the vertical direction.

In the present study, we use the standard superposi-
tion model for nucleus–nucleus interactions. Since the
range of a nucleus decreases fast with increasing
atomic number A, it is assumed in this model that the
A > 1 nuclei of primary cosmic rays fragment com-
pletely in upper layers of the atmosphere; therefore, the
integrated spectrum of nuclei with energies in excess of
% can be approximated by an equivalent summary
spectrum of Z protons and A – Z neutrons with energies
E ≥ %/A. At low and intermediate energies (especially
at energies below the geomagnetic threshold), this
model is overly rough—approaches having a firmer
basis and taking explicitly into account the interactions
of cosmic-ray nuclei must be used to compute the nucle-
onic components of the cascade (see, for example, [2]).

The superposition model is used for want of more
rigorous models for describing the interactions of high-
energy nuclei and also for want of detailed empirical
data. At high energies, the applicability of this model is
eventually justified by the smallness of the relevant
contribution to the total flux of secondary nucleons.

Yet another important approximation that will be
used below consists in the disregard of processes that
lead to the production of nucleon–antinucleon pairs in
meson–nucleus collisions. At not overly large depths or
at modest energies2) (or when both these conditions are
satisfied), the contribution to the nucleon flux from
such processes is immaterial for the following reasons:
(i) There are no mesons in primary cosmic radiation;
hence, their flux in upper layers of the atmosphere is
much smaller than the nucleon flux. (ii) The differential
cross sections for πA  , KA  , etc.,
reactions are much smaller than the differential cross
sections for NA  N'X reactions. (iii) Only a small

fraction of mesons with E & (ϑ) have time to inter-
act with nuclei prior to undergoing decay. However, the
total cross sections for inelastic NA interactions exceed
cross sections for the interactions of light mesons with
nuclei by about 30%. At a sufficiently large depth, h =

hM(E, ϑ), and for E * (ϑ), the flux of mesons M
therefore becomes equal to the flux of nucleons of the
same energy. For h @ hM(E, ϑ), the contribution of
nucleon-generation processes in MA interactions (pre-
dominantly π±A   processes) can be disre-
garded no longer [3]. Thus, the formalism used here is
applicable for depth values satisfying the condition h &
hπ(E, ϑ). As a matter of fact, this region is sufficiently

2)More specifically, we mean here energies E not greater than

(ϑ), the zenith-angle-dependent critical energy of the meson

M—in particular, we have (0°) . 115 GeV, (0°) .

206 GeV, and (0°) . 857 GeV.

EM
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E
π±
cr

E
KL

0
cr

E
K

±
cr

NN X NN X

EM
cr

EM
cr

NN X
P

broad for describing the entire body of currently avail-
able data on the nucleonic component of high-energy
cosmic rays in the atmosphere and at sea level. In par-
ticular, it covers completely the region of the effective
generation of muons and neutrinos (h & 500 g/cm2).

Within the above assumptions, the problem of calcu-
lating the differential energy spectra of protons, Dp(E, h),
and of neutrons, Dn(E, h), at a depth h reduces to solving
the set of one-dimensional transport equations

(1)

(2)

with the boundary conditions

(3)

where (E) and (E) are the differential energy
spectra of protons and neutrons at the boundary of the
atmosphere—we emphasize that, according to the
superposition model, these spectra include both pri-
mary protons and the products of the fragmentation of
cosmic-ray nuclei.

In Eqs. (1) and (2), we have used the notation

where Ed3σNN ' /d 3p is the invariant differential cross
section for the inclusive reaction NA  N 'X (A is the
nucleus of an air atom, while X is the system of all
undetected secondaries, including the products of the
decay of the nucleus A); E0 is the total energy of the
incident nucleon N; E is the total energy; pT and pL are
the components of the momentum p of the final
nucleon N '; and λN(E) = 1/(N0 (E)) is the distance

that a nucleon travels prior to undergoing interaction3)

(N0 is the number of nuclei A per gram of air). Within

3)In the following, we assume that  = .

∂
h∂
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NN kinematics, the quantity  is determined by the
condition

where E* is the energy of the inclusive particle in the

c.m. frame of colliding nucleons, while  is the min-
imum value of the square of the invariant mass of the X
system. Disregarding the cumulative kinematical
region, which does not play a significant role in the
development of the nuclear cascade, we obtain

where x = E/E0 is the total-energy fraction carried away
by the nucleon N ' and M is the nucleon mass.

The approximate isotopic symmetry of NA interac-
tions makes it possible to reduce the set of Eqs. (1) and
(2) to two independent equations for the linear combi-
nations

After some simple algebra, these equations can be rep-
resented in the form

(4)

where

3. Z-FACTOR METHOD

We define

(5)

The functions Λ±(E, h) will be referred to as effective
absorption ranges, but this term applies, strictly speak-
ing, only to Λ+—as to Λ–, it is a quantity that character-
izes the rate at which the intensity of the proton compo-
nent of the nucleon flux and the intensity of its neutron
component equalize. It is also convenient to introduce
the auxiliary dimensionless functions Z±(E, h) (Z fac-
tors) that are related to Λ±(E, h) and λN(E) by the equa-
tion

(6)

pT
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E∗ s sX
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2 s
----------------------------,≤
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1 Z± E h,( )–
λ N E( )
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In just the same way as the absorption ranges, the Z fac-
tors contain full information about the kinetics of
nucleons in a medium. From the transport equation (4)
and from the definitions in (5) and (6), it immediately
follows that 0 < Z+(E, h) < 1. In general, the function
Z−(E, h) must not be of a fixed sign. Taking into account
the behavior of the actual primary spectrum of cosmic
rays and considering that, almost everywhere in the rel-
evant kinematical domain, regeneration processes
(pA  pX and nA  nX) dominate over charge-
exchange processes (pA  nX and nA  pX), we
can nevertheless show that it also satisfies the inequal-
ity 0 < Z–(E, h) < 1. Moreover, it can easily be proven
that Z–(E, h) < Z+(E, h) and, hence, Λ–(E, h) < Λ+(E, h).

Substituting (5) and (6) into the transport equation
(4), we find that the Z factors satisfy the equation

(7)

where

(8)

Since the actual primary spectrum decreases much
faster than E–2 over the entire energy range of our inter-
est, we have 0 ≤ η±(x, E) ≤ 1 and η±(0, E) = 0. In par-
ticular, we note that, for such spectra and purely power-

law boundary spectra of protons and neutrons [ (E) ~
E–γ + 1], we have η±(x, E) = xγ – 1.

Integrating (7) by parts, we find that the Z factors
satisfy the integral equation

(9)

where

Although this equation is nonlinear, it is much more
convenient to solve it by an iterative process than the
original transport equation (4). The rate at which the
iterative process converges depends on the choice of
the zero-order approximation. The simplest choice is

in which case

(10)
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is independent of h; in the first approximation, we then
have

(11)

Let us first address the case of small depths. Consid-
ering that, in the integrand on the right-hand side of
(11), the small-x region is cut off by the factor η±(x, E),
we can formally expand the braced expression in pow-
ers of h. This yields

(12)

The leading term of the expansion in (12),

(13)

represents an obvious generalization of Zatsepin’s clas-
sical formula [4], which was first obtained within the
simplest assumptions (power-law primary spectrum,
scaling of invariant inclusive cross sections, invariabil-

ity of  with energy)4) and which has been used so
far in many analytic calculations of nuclear-cascade
processes in the atmosphere.

Let us now consider the opposite limiting case of
large h. Taking into account the known growth of

(E) with energy and using Eqs. (10) and (12), we

can easily show that  = 0. Under quite

general assumptions, it can also be proven that
(E, h) = 0; therefore, the absorption ranges

Λ±(E, h) coincide with the free range λN(E) at suffi-
ciently large depths. We will not present here the proof
of this statement because it is of purely academic inter-
est for the reasons indicated above (disregard of three-
dimensional effects, of energy losses, and of the contri-
bution of nucleons from meson–nucleus interactions).
What only counts is that, with increasing depth, Z+ and
Z– decrease, which means that the relative contribution
of regeneration processes is reduced. As a conse-

4)It can easily be verified that, under the above assumptions, Z± =

Φ±(x)dx = const is an exact solution to Eq. (9).
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x
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0
1∫

σpA
inel

Z±
0( ) E h,( )

h ∞→
lim

Z±
h ∞→
lim
P

quence, the energy spectra of nucleons become steeper
with increasing depth.

Thus, even the first-approximation expression (11)
for the Z factors has a correct asymptotic behavior both
at small and at large values of h. With the aid of expres-
sion (12), we can reproduce approximate analytic
results of some studies that took into account (within

one model or another) the growth of  with energy
(see, for example, [3, 5]).

Obviously, the recursion relations for the nth
approximation (n > 0) are given by

(14)

(15)

A numerical analysis has revealed that, even in the case

of the simplest choice of  = 0, the rate at which the
iterative algorithm specified by Eqs. (14) and (15) con-
verges is quite sufficient for practical uses. However, it
can be improved (on average or locally—that is, for
preset intervals of E and h values) by choosing the zero-
order approximation more appropriately. To illustrate,
we note that, in view of the inequalities 0 < Z±(E, h) ≤
]±(E), it is reasonable to set (E, h) = ]±(E)/2,
which considerably improves convergence on average.

4. INPUT DATA AND NUMERICAL RESULTS

4.1. Primary Spectrum

In order to describe the spectrum and the chemical
composition of primary cosmic rays, we employ two
empirical models proposed by Nikolsky, Stamenov,
and Ushev [6] (NSU model)5) and by Erlykin, Krutik-
ova, and Shabel’ski [8] (EKS model). In either model,
the nuclear component of cosmic rays was broken
down into five groups of nuclei—those having the A
values of 1, 4, 15, 26, and 51 in the NSU model and
those having the A values of 1, 4, 15, 27, and 56 in the
EKS model—and the integrated spectrum was parame-
trized as

(16)

where % is the energy of a nucleus, E1 = 1 GeV, E100 =
100 GeV, and κ = 0.4; the remaining parameters were
taken to be I0 = 1.16 cm–2 s–1 sr–1, γ = 1.62, B1 = 0.40,

5)In [7], the predictions of the NSU model were contrasted against
experimental data for % ) 100 GeV/nucleon that had been
obtained prior to 1993.
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B4 = 0.21, B15 = 0.14, B26 = 0.13, B51 = 0.12, δ1 = 3 × 10–7,
δA ≥ 4 =  6 × 10–6, and κA = 0 in the NSU model and I0 =
2.02 cm–2 s–1 sr–1, γ = 1.70, B1 = 0.41, B4 = 0.22, B15 =
0.13, B27 = 0.14, B56 = 0.10, δ1 = 6 × 10–7, δA ≥ 4 = 10–5,
κ1 = κ4 = 0, and κ15 = κ27 = κ56 = 0.04 in the EKS model.

For the equivalent differential spectra of protons and
neutrons, we find with the aid of (16) that

These models cannot provide a quantitative descrip-
tion of the primary spectrum at energies above 108–
109 GeV/nucleon. However, the contribution from this
energy region to the total number of events that are of
interest for experiments aimed at measuring individual
components of secondary cosmic rays (including
experiments devoted to deep-underwater detection of
muons and neutrinos) is insignificant. In order to sim-
plify the calculations, we therefore introduced an ad
hoc soft cutoff of the primary spectrum6) by replacing

the functions (E) in the boundary conditions (3)

by (E)φ(E/Ec), where φ(t) is a dimensional func-
tion that satisfies the conditions φ(t) = 1 for t ! 1 and
φ(t) = 0 for t ≥ 1. The explicit form of this function is
immaterial as long as we are interested in energies E
much lower than Ec and in not overly large depths h.
Below, we set Ec = 3 × 1010 GeV.

4.2. Cross Sections for NA Interactions

Available data on the total inelastic cross section

(E) (both data collected at accelerators and data
extracted from cosmic-ray experiments) are described
reasonably well by the empirical dependence

(17)

where θ(E – E*) is the conventional Heaviside step
function and E* = 45.4 GeV. Below, we use expression

6)As a matter of fact, this cutoff roughly simulates the Greisen–Za-
tsepin–Kuz’min effect, which is due to the interaction of extraga-
lactic cosmic rays with relic microwave radiation [9].
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(17) with the parameter values of σ0 = 290 ± 5 mb,
σ1 = 8.7 ± 0.5 mb, and σ2 = 1.14 ± 0.05 mb, which
were found in [10].

For the normalized inclusive cross sections

(1/ )d3σpp/d3p and (1/ )d3σpn/d3p, we took
semiempirical formulas proposed by Kimel’ and
Mokhov [11] and modified slightly here. In these for-
mulas, the free parameters were determined by fitting
the entire body of available accelerator data on the
interactions of projectile nucleons with various nuclear
targets at p0 = 3–1500 GeV/Ò and 0.45 GeV/Ò & p ≤ p0
(where p0 is the projectile-nucleon momentum in the
laboratory frame). All the ensuing calculations were
performed with the parameter values that correspond to
a beryllium target. According to [11], however, the nor-
malized differential cross sections depend only slightly
on the target atomic number, so that the results obtained
here are valid for other light nuclei as well, including
the nuclei of air atoms.

The calculated invariant cross section Ed3σpp/d3p as
a function of p at p0 = 100 GeV/Ò (in the laboratory
frame) and two fixed values of pT (0.3 and 0.5 GeV/Ò)
is displayed in Fig. 1, along with experimental data
from [12] that were obtained with hydrogen and carbon

targets. The values of  and , which are neces-
sary for a normalization, were borrowed from [13]. The
differential cross section dσpp/dxF for the reaction

σpA
in σpA

in

σpp
inel σpC

inel

(a)
102

101

100

Ed3σpp/d3p, mb/(GeV/Ò)2

(b)
102

101

100

20 40 60 80 100
p, GeV/Ò

Fig. 1. Invariant inclusive cross sections calculated for the
reactions (solid curves) pC  pX and (dashed curves)
pp  pX within the model from [11] at p0 = 100 GeV/Ò
and the pT values of (a) 0.3 and (b) 0.5 GeV/c. The experi-
mental data on the reactions (m) pC  pX and (d)
pp  pX were borrowed from [12].
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pp  pX at the ISR energy (  = 62 GeV) is shown

in Fig. 2 versus xF = 2 / , where  is the longitu-
dinal momentum of the leading proton in the c.m.
frame. The data of two ISR experiments were borrowed
from [14]. As can be seen from the figures presented
here, the model proposed in [11] describes accelerator
data fairly well. It should also be noted that, over a
broad kinematical region, the predictions of this model
for the cross sections describing pp and pA interactions
are numerically close to the results obtained on the
basis of the two-component dual parton model as
implemented within the last version of the DPMJET
II.5 code [15].

The cross sections (x/σ0)dσpp(x, E)/dx and
(x/σ0)dσpn(x, E)/dx calculated within the model pro-
posed in [11] are displayed in Fig. 3 for several values
of the kinetic energy of secondary nucleons Ekin. From
this figure, we can see that, for Ekin * 100 GeV, the dif-
ferential cross sections come to be virtually indepen-
dent of energy everywhere, with the exception of a nar-
row diffraction region for the reaction pA  pX,
where the cross section dσpp/dx grows with energy. In
other words, the Kimel’–Mokhov model leads to Feyn-
man scaling at high energies. Because of a descending
character of the primary spectrum, the contribution
from the diffraction region to the Z factors is far from
negligible. In order to avoid an unphysically fast
growth of dσpp/dx in the region around x ~ 1 at ultrahigh
energies, we assumed that, for E0 > 106 GeV, this cross
section becomes scale-invariant over the entire kine-
matical region. However, it is rather difficult to validate

s

pL* s pL*

101

102

0 0.2 0.4 0.6 0.8 1.0

xF = 2p*
L/ s

dσpp/dxF, mb

Fig. 2. Inclusive differential cross section dσpp/dxF calcu-
lated for the reaction pp  pX within the model from [11]

at  = 62 GeV. The experimental data were borrowed
from [14].

s

P

this assumption because there are no reliable experi-
mental data for E0 * 106 GeV.

4.3. Results of the Calculations

The calculations were performed for the energy
range between 5 and 3 × 1010 GeV at h ≤ 4 × 103 g/cm2.
It should be noted that, at h ~ 103 g/cm2, the energy lost
by protons in the nucleon cascade must be taken into
account up to E = 25–30 GeV. By way of example, we
indicate that, at E = 10 GeV, the relevant correction is
about 20% for protons and about 6% for neutrons [16].
Moreover, the models adopted here for the primary
spectrum and for the chemical composition become too
crude even for E & 100 GeV. In order to match our
results with the results of the more detailed analysis
from [16], the method used here was extrapolated to the
region of low energies. In the absence of experimental
data on the fluxes of secondary nucleons arriving from
inclined directions, the calculations for depths of h >
103 g/cm2 can be used at present only to test conver-
gence of the iterative algorithm.

In order to perform a multidimensional numerical
integration, which is necessary for a numerical imple-
mentation of the method, use was made here of the
adaptive cubature algorithm proposed by Genz and
Malik [17]; a fast algorithm relying on standard local B
splines of second degree on an equidistant mesh was
employed to approximate and interpolate intermediate
functions of one and two variables.

At all values of E and h, the iterative process con-
verges fast: five to six iterations are sufficient for calcu-
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Fig. 3. Normalized differential cross sections calculated for
the reactions (a) pA  pX and (b) pA  nX according
to the model proposed in [11]. The numbers on the curves
indicate the kinetic energy of the secondary nucleon, Ekin =
E – M, in GeV.
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Fig. 4. (a) Z+ and (b) Z– as functions of energy at the depth values of h = 10, 200, 500, 1000, 2000, 3000, and 4000 g/cm2. The energy
dependences displayed in this figure were computed on the basis of the (solid curves) NSU and (dashed curves) EKS models of the
primary spectrum (see main body of the text). The Z factors are seen to decrease with increasing h.
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(a) (b)
lating the Z factors to a precision not poorer than 10–3–
10–4. At moderate depths, h & 300 g/cm2, even the first
approximation ensures a precision of a few percent,
which is sufficient for many applications of the the-
ory—in particular, for calculating the fluxes of atmo-
spheric muons and neutrinos.

Figure 4 illustrates the energy dependences of the Z
factors calculated within the two models of the primary
spectrum at h = 10, 200, 500, 1000, 2000, 3000, and
4000 g/cm2. It is quite natural that the Z factors com-
puted with the harder primary spectrum of the NSU
model prove to be systematically greater at all values of
E and h. Although the relevant relative difference does
not exceed some 4% and decreases with energy, it is
significant at h @ λN(E) since nucleon fluxes depend
exponentially on the combinations hZ±(E, h)/λN(E).
The observed strong dependence of Z± on E and h is
caused by the following three effects: (i) a non-power-
law dependence of the primary spectrum, (ii) the
energy dependence of the total inelastic cross section,
and (iii) violation of Feynman scaling.

Local minima that appear in the region E &  .

45 GeV are due to the beginning of growth of (E)
[see Eq. (17)]. At not overly large depths, the character
of the energy dependence changes at E * 106, which is
associated with the artificially introduced freezing of
the growth of the quasielastic peak in the reactions
pA  pX and nA  nX. Finally, the vanishing of the
Z factors at E = Ec = 3 × 1010 GeV is due to a fall-down
of the primary spectrum for E > Ec.

The calculated differential energy spectra of nucle-
ons (Dp + Dn), protons (Dp), and neutrons (Dn) at vari-
ous values of the depth in the atmosphere are displayed
in Figs. 5 and 6, along with experimental data from
[18–28].

E*
σNA

inel
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The calculations were based on two models of the
primary spectrum (NSU and EKS). Figure 6 also shows
the results of the Monte Carlo calculation from [24] for
sea level. Data on the spectra of nucleons for h ≤
530 g/cm2 (Fig. 5) were obtained from an analysis of
photon spectra in extensive air showers (see [29]) and
are therefore model-dependent to a considerable extent.
Nonetheless, our calculations relying on either model
of the primary spectrum are by and large consistent

20 g/cm2

20 g/cm2

530 g/cm2

101

100

10–1

10–2

10–3

104 105

(E/1 GeV)2.75DN(E, h), (cm2 s sr GeV)–1

E, GeV

Fig. 5. Differential energy spectra of nucleons at the depth
values of h = 20, 200, and 530 g/cm2. Points represent
experimental data from (j) [18], (h) [19], and (m) [20].
Curves depict the results of our calculations employing the
(solid curves) NSU and (dashed curves) EKS models of the
primary spectrum (see main body of the text).
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with this data sample. The most pronounced discrepan-
cies have been observed in a comparison with the
results presented in [19]. In our opinion, the estimate of
the nucleon energy in [19] on the basis of the formula
EN ≈ 3Eγ is too crude and leads to a systematic underes-
timation of nucleon fluxes. Direct measurements of the
proton energy spectra in mountains and at sea level are
very fragmentary (see Fig. 6), and we can here speak
only about qualitative agreement with the results of the
calculations. Estimates reveal (see also [3]) that the
inclusion of nucleon-production processes in meson–
nucleus interactions can increase the vertical flux of
nucleons at sea level by no more than 10% at E = 1 TeV
and by no more than 15% at E = 10 TeV, but this
increase is much smaller, in either case, than uncertain-
ties in the NA cross sections and in the spectrum of pri-
mary cosmic rays. Experimental data on the neutron
component at sea level are vaster, but they are contra-
dictory. The results of our calculations are in good
agreement with data from recent measurements at a
prototype of the KASKADE facility in Karlsruhe [28].

★

★ ★
★

★
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(E/1 GeV)2.75DN(E, h), (cm 2 s sr GeV)–1

Fig. 6. Differential energy spectra of protons (h = 710,
1030 g/cm2) and neutrons (h = 1030 g/cm2). Points repre-
sent experimental data from (.) [21], (e) [22], (m) [23], (w,
n) [24], (s) [25], (h) [26], (j) [27], and (d) [28]. Curves
depict the results of our calculations employing the (solid
curves) NSU and (dashed curves) EKS models of the pri-
mary spectrum (see main body of the text). The experimen-
tal and calculated results at sea level for protons and neu-
trons were multiplied by 0.5 and 0.01, respectively.

★

P

As can be seen from Fig. 6, data from [28] at E & 1 TeV
are described much better by the calculation with the
EKS primary spectrum than by the calculation with the
NSU primary spectrum.

It can be hoped that further experiments to study the
nucleonic component of secondary cosmic rays will
allow a more detailed test of the method and of the
models for the primary spectrum and for nucleon–
nucleus interactions.
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Abstract—The phase of φω interference in the reaction e+e–  π+π–π0 near the energy of the φ(1020) peak
is calculated within an approach that is virtually independent of the model for φω mixing. A comparison with
the phase measured recently (with a poor precision) shows that the deviation of the measured result from the
expected value of 180° is associated largely with the effect of the right shoulder of the ω(782) peak in the region
of the φ(1020) peak. The ω width at the energy equal to the φ mass is within the interval 120–200 MeV. The
effect of the φω-state-induced unitarity corrections to the φ and ω coupling constants on the phase of ρπ inter-
ference is considered in detail. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For the phase of φω interference, a recent measure-
ment of the cross section for the reaction e+e−  π+π–π0

at energies near the φ(1020) resonance with the KMD-2
detector yielded the value of χφω = 162° ± 17° [1]. The
analysis of these data properly allowed for the phases
of the complex propagators for the φ and ω mesons. In
other words, the cross section was fitted in terms of the
expression

(1.1)

where A is a real positive number. Hereafter, s stands
for the square of the total c.m. energy. It is hoped that
the accuracy in measuring the φω phase by the SND
and KMD-2 detectors installed at the VEPP-2M storage
ring in Novosibirsk will be substantially improved in
the near future. Mention should also be made of the
DAΦNE facility, which is expected to produce formi-
dable numbers of φ mesons, so that prospects for
achieving there a high precision of the relevant mea-
surements are optimistic too. The central value of the
χφω phase in [1] is somewhat surprising because it differs
significantly from the standard value of 180°, which is
predicted by many theoretical approaches based on the
SU(3) flavor group and by the simplest quark models
featuring real-valued coupling constants [2]. The value
obtained for the phase explains the experimental obser-
vation [1, 3] that the minimum of φω interference in the
energy dependence of the cross section for the reaction
e+e–  π+π–π0 occurs to the right of the φ resonance.

The objective of the present study is to demonstrate
that the phase χφω can be calculated by a method that is
virtually independent of the φω-mixing model used to
describe the decay process φ  ρπ. As will be seen

σ3π
1

mω
2

s– i sΓω s( )–
-------------------------------------------

A iχφω( )exp

mφ
2 s– i sΓφ s( )–

-----------------------------------------+
2

,∝
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below, this is associated with a subtle cancellation of
the contributions from the ρπ state to the φω-mixing
amplitude, φ  ω  ρπ, and to the direct transition
φ  ρπ. We will show that the deviation of χφω from
180° is explained predominantly by finite-width
effects. A precise measurement of the above phase
would contribute to a reliable validation of the proce-
dure for extrapolating the excitation curve of the
ω(782) resonance up to energies corresponding to the
φ-meson mass.

The ensuing exposition is organized as follows. In
Section 2, we give a brief account of basic models used
to explain the decay process φ  ρπ. In Section 3, we
present the expressions that describe the leading cor-
rections to the φω-mixing amplitude and to the con-
stants of φ and ω coupling to the ρπ state and which sat-
isfy the unitarity condition. In Section 4, we calculate
the phase of φω interference in the reaction e+e– 
π+π–π0. Our results and conclusions are summarized in
Section 5.

2. BASIC MODELS OF THE DECAY PROCESS
φ  ρπ

The formalism required for analyzing the pattern of
φω interference in the reaction e+e–  π+π–π0 was
developed in [4–6], where the reader can also find nec-
essary details. Here, we restrict ourselves to briefly
mentioning the most significant points. The problem of
assessing the extent to which ω(782) and φ(1020) rep-
resent the ideal mixture of the states

(2.1)

emerged almost simultaneously with the discovery of
these resonances [7]. The point is that the decay process

ω 0( ) uu dd+( )/ 2,=

φ 0( ) ss=
000 MAIK “Nauka/Interperiodica”
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φ  ρπ  π+π–π0, which violates the Okubo–
Zweig–Iizuka (OZI) rule [7–9], is usually considered
as evidence for a small admixture of nonstrange quarks
in the φ-meson wave function; that is,

(2.2)

where the φω-mixing amplitude is described by the
complex mixing parameter εφω ≡ εφω(s), |εφω| ! 1. This
parameter in turn is expressed in terms of an off-diago-
nal element of the polarization mixing operator accord-
ing to the relation

(2.3)

where

(2.4)

with ∆  =  – . Hereafter,  and 
are, respectively, the mass and the width of the ideally
mixed state (2.1), all quantities carrying superscript (0)
referring to this state. In the following, this mechanism
is called the model of strong φω mixing. In QCD, the
real part of the mixing operator, ReΠφω, is nonzero
either owing to the perturbative three-gluon state [10,
11] shown in Fig. 1‡ or owing to nonperturbative
effects [12] that are illustrated in Fig. 2b. However, the
contribution of the diagram in Fig. 1‡ is small and has
a wrong sign (see [10, 11])—namely, the minimum in
the cross section for the reaction e+e–  π+π–π0 is pre-
dicted to occur on the left of the φ resonance, in dis-
agreement with experimental data from [1, 3]. At the
same time, the calculation of εφω on the basis of the dia-
gram in Fig. 1b [12] can yield at best an order-of-mag-
nitude estimate. The contribution of the single-photon
state to ReΠφω is two orders of magnitude less than
what is required for explaining the partial width with
respect to the decay φ  3π.

The direct transition in Fig. 1c, in which case

Re  ≠ 0 and ReΠφω ≡ 0, is an alternative to the com-
monly adopted mechanism of φω mixing. As a matter
of fact, this is the well-known Appelquist–Politzer
mechanism [13], which was introduced to explain the
violation of the OZI rule in the decays of heavy quarko-
nia into light hadrons and which is extrapolated in the
present case to the region of energies around the
φ-meson mass. It was demonstrated in [6] that the
direct transition makes a significant contribution to the
amplitude for the decay process φ  ρπ. The order-

of-magnitude estimates of Re  from [6] comply
with the value obtained from the partial width with
respect to the decay φ  3π. Hereafter, this mecha-
nism will be referred to as the model of weak φω mix-
ing. Of course, either version represents a limiting case,
and we cannot rule out intermediate situations where
the above mechanisms are both operative.

φ 1020( ) ss εφω uu dd+( )/ 2,+=

εφω
ReΠφω iImΠφω+

∆Mφω
2 s( )

-----------------------------------------,–=

∆Mφω
2 s( ) ∆mφω

0( )2 i s Γφ
0( ) s( ) Γω

0( ) s( )–[ ]–=

mφω
0( )2 mφ

0( )2 mω
0( )2 mV

0( ) ΓV
0( )

gφρπ
0( )

gφρπ
0( )
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mixing owing to nonperturbative QCD effects (shaded
regions denote quark condensates), and (c) direct decay
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3. UNITARITY CORRECTIONS 
TO THE COUPLING CONSTANTS 

AND TO THE φω-MIXING AMPLITUDE

In contrast to Re  and ReΠφω, which are hardly
calculable, the corresponding imaginary parts can eas-
ily be evaluated with the aid of the unitarity condition.

The main contribution to 2Im  comes from the
diagrams in Fig. 2. The sum of the first two diagrams
can be calculated by using the results from [14, 15] that
were generalized by allowing for the one-pion-

exchange form factor exp(–λπ|t – |). Isolating the

factor Re , we then arrive at

(3.1)

where P. denotes the principal-value prescription for
the integral; m and µ are the invariant masses of the
final and the intermediate ρ meson, respectively; the
ρ-meson propagator is given by

and the function

represents the contribution of the first two diagrams in
Fig. 2‡ in the limit of zero slope of the one-pion
exchange form factor [14, 15]. In the above expres-
sions, we have used the notation

(3.2)

where

(3.3)

gφρπ
0( )

gφ ω( )ρπ
0( )

mπ
2

gφ ω( )ρπ
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gρππ

2

8π sq f
3
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π Dρ µ2( )
2

----------------------------------------------d

2mπ

s mπ–

∫–=

× qiq f( )2P. x
1 x2–
a x+
------------- 2 λπ–( )qiq f a x+ 1–[ ]expd

1–

+1

∫



+ Φ0 s m2 µ2, ,( )

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,

1/Dρ µ2( ) mρ
2 µ2– iµΓ ρ ππ µ,( )–[ ] 1–
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Φ0 s m2 µ2, ,( ) qiq f( )2 2a a 1+
a 1–
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+ qππq f( )2 2b b 1+
b 1–
------------ln+ 

 

a µ2/2 EiE f–( )/qiq f ,=

b m Ei E f Eρ–+( )/2qππq f ,=

qi q s mπ µ, ,( ), Ei E s mπ µ, ,( ),= =

q f q s mπ m, ,( ), E f E s mπ m, ,( )= = ,

qππ q m mπ mπ, ,( ), Eρ E s µ mπ, ,( ).= =
Here, the expressions for the energy and for the
momentum are given by

(3.4)

The decay kinematics of the first two diagrams in
Fig. 2‡ results in a very weak dependence of their con-
tribution on λπ. This is because the contribution of the
cut across the ππ lines is significant and is independent
of λπ (for details see [14, 15]). A numerical calculation

yields Φρπ( , ) = 0.44, 0.45, 0.47, and 0.49 at λπ =
0, 1, 2, and 4 GeV–2, respectively. The weak change
with increasing λπ is due to the fact that the contribu-
tions of the first two diagrams in Fig. 2‡ have opposite

signs at  < 1.1 GeV. Numerically, the contribution of

the third diagram in Fig. 2‡ at  = mφ is –3.4 × 10–2,
provided that the slope parameter for ρ exchange is
λπ = 2 GeV–2. This value was chosen from the require-
ment that, to within 10%, the ππ phase shift at the
energy value being considered be determined by the
phase of the ρ-meson propagator, as is indeed the case.
Hence, the contribution of the third diagram in Fig. 2‡
can be neglected against the contribution of the first two
diagrams. The contribution of the diagram in Fig. 2b is
determined by the  intermediate state with K*
exchange. In the case of the φ meson, this contribution
is given by

(3.5)

where  = (  –  + m2)/2 qρπ,  = q( ,

mK, mK), and qρπ = q( , m, mπ). In the case of the ω
meson, expression (3.5) must be multiplied by the

SU(3) factor of –1/ . We also note that, according to
SU(3), the coupling constants are related as  =

gωρπ/2. The effect of nonzero  is numerically small
for the ω meson. In the case of the φ meson, this effect
expressed in terms of the phase of the coupling constant
gφρπ is at first glance enhanced by the factor gωρπ/gφρπ .
18. Even in this case, however, the contribution of the

 intermediate state at  = 1020 (1050) MeV is 6%
(18%) of the φρπ total effective coupling constant.
These values were obtained at λK* = 0 and m = mρ. The
more realistic value of λK* = 1 GeV–2 [it is considered

E M m1 m2, ,( ) M2 m1
2 m2

2–+( )/2M,=

q M m1 m2, ,( )

=  M2 m1 m2+( )2–[ ] M2 m1 m2–( )2–[ ]{ } 1/2
/2M.

mφ
2

mρ
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s

s

KK
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K
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qKK
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---------------------=
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here that the average of (s, m2) over the mass spec-
trum of the ππ system must enter into the expression for
the phase of φω interference—see expression (4.3)
below] leads to a further reduction of the above esti-
mates by a factor of about 2. Since the leading unitarity
correction Φρπ ≠ 0 is relatively large, it is necessary to
take into account the rescattering chain in Fig. 2‡
entirely. This can be done by a method similar to that of
solving the Dyson equation for the vertex function.
Making use of all the above considerations, we can rep-
resent the constants of φ and ω coupling to ρπ as

(3.6)

Of course, Re  must be determined from the par-
tial width with respect to the decay φ(ω)  π+π–π0 on
the mass shell of the φ(ω) meson. It is clear from (3.6)
that the most significant contribution to the imaginary
parts of the coupling constants drops out from their
ratio owing to the ρπ intermediate states. It should be
borne in mind, however, that the nonzero quantity Φρπ
enters into the expression for the 3π partial decay
widths of the φ and ω mesons [14, 15]; that is,

(3.7)

where the decay phase space is given by

(3.8)

Expression (3.8) involves the squares of the invariant
masses of the charged ρ mesons. For these masses, we
have

(3.9)

where qρπ = q( , m, mπ) and qππ = q(m, mπ, mπ) must
be calculated according to (3.4), while Z(m2) = 1 –
iΦρπ(s, m2). The effect of the nonzero  on the partial
width with respect to the decay φ  3π is negligible.

The most significant unitarity corrections to the
mixing amplitude, ImΠφω, are determined by the 
and ρπ intermediate states and are given by

(3.10)

For the sake of completeness, it should be noted that,
although the effect of nonzero Φρπ is of importance for

ΦKK

gφρπ
0( ) s m2,( ) . Regφρπ

0( ) / 1 iΦρπ s m2,( )–[ ]

+ iΦKK s m2,( ),
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0( ) / 1 iΦρπ s m2,( )–[ ] .
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1

2π
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ωρ interference in the π+π– mass spectrum [14, 15], we
can simulate it in calculating the 3π partial decay width

(at a given value of ) in terms of the form factor

(3.11)

and introduce this form factor in the ω  ρπ vertex
via the substitution gωρπ  gωρπCρπ(s) [14]. The con-
tributions to the unitarity correction from the π0γ and ηγ
radiative states do not exceed, respectively, 4 and 2% of
the contribution of the  intermediate state. These
values are well below the accuracy of the quark-model
predictions that is necessary for obtaining relations
between the constants of φ and ω couplings to the 
pair. For the accuracy of the calculation, we adopt the
conservative estimate of 20%, so that the contribution
of radiative states can be disregarded.

4. PHASE OF THE φω INTERFERENCE 
IN THE REACTION e+e–  π+π–π0

Taking into account the above features of the decay
e+e–  π+π–π0, we can represent the cross section for
the reaction φ  π+π–π0 in the form [4, 5]

(4.1)

where

(4.2)

In expressions (4.2), the coupling constants for the
physical states of total widths Γφ, ω(s) are expressed in
terms of the coupling constants for ideally mixed states.
The quantity

(4.3)

corresponds to averaging over the ππ mass spectrum—
that is, to approximately taking into account the invari-
ant-mass dependence of . Quantitatively, this leads

to a 33% reduction of  with respect to the relevant
value at the ρ-meson mass. We note that the quantity

(4.4)

s

Cρπ s( ) 1 Rρπmω( )2+[ ] / 1 Rρπ
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KK

KK
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4πα2W s( )
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mω
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-------------------------------------------
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-----------------------------------------+
2

,
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. Regωρπ
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where V = ω, φ, is the amplitude of the transition γ 
V (0) and that the quantity  appears in the expression
for the leptonic width of the ideally mixed state V (0) as

(4.5)

(α = 1/137 is the QED fine-structure constant). If all
coupling constants and the parameter of φω mixing in
relation (4.1) were real-valued, the phase of φω inter-
ference would be determined by the sign of the ratio

(4.6)

At the same time, the position of the interference mini-
mum in the energy dependence of the cross section for
the reaction e+e–  π+π–π0, as given by the expres-
sion

(4.7)

was experimentally determined to be  = 1.05 GeV
[1, 3]. This corresponds to the value of R0 = –0.13,
whence we obtain the canonical phase value of 180°.
From the arguments presented in Section 3, it follows,
however, that, because of unitarity corrections, the cou-
pling constants and the mixing amplitudes develop siz-
able imaginary parts. A comparison of expressions
(1.1) and (4.1) [see also (4.2)] shows that a significant
additional phase ∆χφω stems from the phase of the fol-
lowing combination of the coupling constants that enter
into relation (4.2):

(4.8)

Here, ∆  =  – , while ∆ (s) is determined
by expression (2.4). To within 5%, the masses and the
widths of the ideally mixed states appearing in the
expression for εφω have been replaced in Eq. (4.8) [and
will be replaced in Eq. (4.9) below] by the masses and
the widths of the physical vector mesons. We note that

the combination Re /Re  – ReΠφω/∆  on
the right-hand side of Eq. (4.8) determines the 3π par-
tial decay width of the φ meson. Hence, it takes the
same value in the two models of φω mixing that have
been mentioned in Section 2. The correction to the
phase due to taking into account terms with nonzero εφω
in the γφ(ω) transition amplitude is ∆χφω = 1.4°, which
is below the adopted accuracy of the calculation. There-
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P

fore, the result for χφω is virtually independent of the
mixing model.

Let us first obtain a rough estimate of the deviation
of the phase from 180° at the energy value equal to the
φ-meson mass. In doing this, we neglect unitarity cor-
rections to the ω and φ coupling constants. For the devi-
ation in question, we then arrive at

(4.9)

The first term in (4.9) contributes 6° ± 1° to χφω, the
uncertainty being determined by a 20% accuracy of the
SU(3) predictions for the constants of coupling to the

 state. The contribution of the second term is oppo-
site in sign to the contribution of the first term and
strongly depends on the ω-meson width at the energy
value equal to the φ-meson mass, Γω(mφ). When Rρπ is
changed from 0 to 1 GeV–2 (this corresponds to chang-
ing the ω width at the φ-meson mass from 200 to
120 MeV) in (3.11), the contribution of the second term
changes from –26° to –13°. Larger values of Rρπ would
violate the description of data on the reaction e+e– 
π+π–π0 at energies above the φ(1020)-meson mass.

Indeed, the fits from [16] yield Rρπ =  GeV–2.

The results of a more precise calculation are as fol-
lows. In addition to the aforementioned uncertainty in
the SU(3) predictions, the error of the calculation
includes the uncertainties in the slopes of the form fac-
tors that appear in the amplitudes of the unitarity con-
dition. (i) If we take into account effects of ρπ rescat-
terings, Φρπ ≠ 0, then a variation of λπ in the interval
from 0 to 4 GeV–2 leads to a small variation of 0.5° in
the phase χφω. A variation of λK* in the same interval
changes the phase by about 2°. Upon taking into
account a 20% uncertainty in the SU(3) predictions for
ImΠφω, the total error becomes some ±3°. This result is
much more precise than available data accurate to
∆χφω = ±17° [1] and is commensurate with the accuracy
expected in future. The calculated phase depends on the
form factor (3.11), which restricts an overly fast growth
of the ω-meson width with energy. With allowance for
the above uncertainties in the calculations, the result for
the phase of φω interference is χφω = 165° ± 3° at Rρπ =
0 and χφω = 172° ± 3° at Rρπ = 1 GeV–2. The existing
error in the measurement [1] of the phase χφω admits a
large interval for Rρπ; however, the expected reduction
of the uncertainty to ±10° would permit setting the
more stringent constraint Rρπ & 2 GeV–2; a further
improvement of the accuracy would open the possibil-
ity of reliably determining this parameter. (ii) If we do
not take into account effects of ρπ rescatterings in the
3π decay width, we arrive at χφω = 162° ± 4° at Rρπ = 0

∆χφω . arc
mφΓφKK/∆mφω

2

2 Regφρπ
0( ) /Regωρπ

0( ) ReΠφω/∆mφω
2–( )

---------------------------------------------------------------------------------------tan

–
mφ Γω mφ( ) Γφ–[ ]

∆mφω
2

----------------------------------------.tan
1–

KK

0.8 0.3–
+0.6
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and χφω = 170° ± 4° at Rρπ = 1 GeV–2 (within the afore-
mentioned uncertainties in the calculation).

Unfortunately, the difference of the predictions of
the models of strong and weak φω mixing for the phase
χφω at the energy value equal to the φ-meson mass is as
small as 0.6°. This value cannot be tested experimen-
tally at present. On the other hand, the mixing models
in question yield different predictions for the e+e– 
π+π–π0 cross sections at energies around the φω inter-
ference minimum [5] because the contribution of the

 intermediate state, which affects the imaginary
parts of the coupling constants and of the amplitude of
φω mixing, strongly depends on energy. At the energy
value equal to the φ-meson mass, the contribution of the

 state is within the uncertainties in the calculation,
but it grows with energy, so that the additional phase
from this contribution could be measurable near the φω
minimum [5]. Therefore, the study of χφω as a function
of energy (this dependence is displayed in Fig. 3) is of
considerable interest.

5. CONCLUSION

We have analyzed the possible contributions to the
φω-interference phase χφω measured in the reaction
e+e−  π+π–π0. It has been established that the imag-

KK

KK

180

170

160

150

140
0.96 1.00 1.04

s1/2, GeV

χφω

Fig. 3. Phase of the φω interference as a function of energy
for the case where rescattering effects are disregarded in the
3π decay width (see main body of the text). The solid, the
dashed, and the dotted curve represent the results obtained
at Rρπ = 0, 1, and 2 GeV–2, respectively. The experimental
point was borrowed from [1].
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inary part of the φω mixing parameter—this imaginary
part is determined primarily by the ρπ intermediate
state—is the main reason for the experimentally
observed deviation of χφω from 180° [1]. However, this
result is not quite obvious. The point is that the far right
shoulders of resonance curves are usually considered as
some substitute for the unknown background in the
reaction cross section. Information about the φω-inter-
ference phase, which is suggested by data from the
experiment reported in [1], but which must be mea-
sured more precisely in order to refine this information,
is also of value since it demonstrates the applicability
of field-theoretical calculations to such complicated
systems as hadron resonances. A confirmation of the
deviation observed in [1] would imply that the right
shoulder of the ω resonance is significant at energy val-
ues around the φ-meson mass, which is offset from the
center of the ω peak by a distance of 28 widths of the
peak. Such an effect can hardly be interpreted in terms
of a conventional nonresonance background. The valid-
ity of this point of view could be tested by studying the
energy dependence of the phase of φω interference (see
Fig. 3). In addition to the measurement of the phase χφω,
more precise measurements of the cross section for the
reaction e+e–  π+π–π0 in the energy interval between
the ω and φ peaks are required. Such measurements
would enable a reliable determination of the parameter
Rρπ, which enters into expression (3.11). The calcula-

tion has revealed that, at  = 900 (950) MeV, the cross
section calculated with Rρπ = 1 GeV–2 is 20% (28%)
smaller than the cross section calculated with Rρπ = 0.
Such measurements would also contribute to confirm-
ing that the heavier ω' and ω'' resonances do not play a

significant role for  & mφ.
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Abstract—A model is proposed for describing the production of π+π– pairs by real and virtual photons on pro-
tons in the energy region of nucleon-resonance excitation. The invariant-mass distributions of the π+π– and
π+p systems at the photon point are calculated. The results are compared with available experimental data.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the structure of hadrons in photon-
induced exclusive reactions is an important line of
modern inquiries into the physics of elementary parti-
cles and nuclei. The advent of continuous electron
accelerators opened qualitatively new possibilities for
further advances in these realms. At the moment, a vast
experimental program of investigations into nucleon
resonances is being performed at TJNAF [1]. Experi-
ments studying the exclusive channel of π+π– produc-
tion [2, 3] constitute an important part of this program.
The point is that such experiments will furnish informa-
tion about the Q2 dependence of the electromagnetic
form factors for nucleon resonances of masses in
excess of 1.6 GeV, which is currently not known. The
two-pion channel is promising for seeking “missing”
resonances that are predicted in quark models [4, 5],
but which have not been observed experimentally.
Observing missing resonances or reliably establishing
upper bounds on their existence would provide a test
for the foundations of modern quark models.

Their competition of a great number of nonreso-
nance mechanisms, which results in a significant con-
tribution of nonresonance processes, presents one of
the main difficulties in investigating nucleon reso-
nances in the exclusive channel of pion-pair production
by photons. In the situation where it is necessary to
describe a large number of various nonresonance mech-
anisms, the problem of extracting electromagnetic form
factors for nucleon resonances becomes very involved.

1) Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Gen-
ova, Italy.

2) Department of Physics, Moscow State University, Vorob’evy
gory, Moscow, 119899 Russia.

3) Università di Genova, via Dodecaneso 33, I-16146 Genova, Italy.
1063-7788/00/6311- $20.00 © 21943
In order to determine these form factors, one needs
models that relate them to measured cross sections.

An approach to describing pion-pair production by
photons on a proton in the energy region of nucleon-
resonance excitation was proposed in [6, 7]. This
approach takes into account dominant resonance and
nonresonance mechanisms that are described on the
basis of meson–baryon interaction with effective vertex
functions in terms of tree diagrams. The objective of the
phenomenological description developed here is to
establish relationships between quintuple-differential
cross sections measured in complete kinematics for
pion-pair production in photon–proton collisions and
the helicity amplitudes for nucleon-resonance excita-
tion, which are denoted by A1/2(Q2), A3/2(Q2), and
C1/2(Q2). From a comparison of experimental data and
the cross sections calculated within the model used, one
can deduce information about the nucleon-resonance
contribution to the exclusive channel of pion-pair pro-
duction by photons. The developed model makes it pos-
sible to perform a comparative analysis of various
approaches to determining electromagnetic form fac-
tors for nucleon resonances, thereby obtaining informa-
tion about the validity of the description of the structure
of the nucleon and its excited states N* in the transition
region between quark confinement and the asymptotic
freedom of quarks. By varying the amplitudes A1/2(Q2),
A3/2(Q2), and C1/2(Q2) treated as free parameters, we can
reconstruct the electromagnetic form factors by impos-
ing the requirement of the best fit to the measured quin-
tuple-differential cross sections for the reaction
γr,vp  π+π–p.

Model approaches to describing the main quasi-
two-body channels γr,vp  π–∆++ and γr,vp  ρp of
pion-pair production by photons were developed in [6–
9]. In the present study, we propose a description of the
000 MAIK “Nauka/Interperiodica”
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three-body channel γr,vp  π+π–p. The results of our
calculations are compared with data obtained at the
photon point in experiments employing a bubble cham-
ber [10, 11].

For the majority of nucleon resonances with masses
above 2.0 GeV, the electromagnetic form factors for the
majority of nucleon resonances are known quite well [12],
which makes it possible to validate the proposed model
description of pion-pair production by photons through a
comparison of the calculated and measured cross sections
for the above exclusive channel at the photon point.

2. DESCRIPTION OF THE REACTIONS
γr,vp  π+π–p

2.1. Relationship between the Reaction Amplitudes
and Cross Sections

In order to calculate the cross sections for the three-
body process in question, we rely here on the standard
formalism [13] employing the convolution of the lep-
tonic (Lµν) and hadronic (Wµν) tensors and invoke the
results from [14] for the three-body phase space. The
final three-particle state will be described in terms of
the following variables: the invariant mass of the π+p
system, ; the invariant mass of the π+π– system,

; the proton emission angle with respect to the pho-

ton momentum, θp; the angle between the scattering
plane and the plane spanned by the momenta of the pro-
ton and the photon, φp; and the angle between the plane
spanned by the momenta of the proton and the photon
and the plane spanned by the momenta of the pions
forming the π+π– pair, α.

By using these kinematical variables, the quintuple-
differential cross section for the reaction γr,vp  π+π–p
can be represented in the form

(1)

s
π+

p

s
π+π–

d5σ=
1

4KLMN

------------------ 4πα( )1 –ε
Q2–

---------1
2
---LµνWµν dτ
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p
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π+π–dΩpdα ,=
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p

π–γ

∆++ π+

γ π+

π–

π–

p'
p

γ
π+

ρ

p p'

π–

=

+ + C(W, Q2)+ ∆0

Fig. 1. Mechanisms of the reaction γr,v p  π+π–p.
P

where ε and Q2 are, respectively, the polarization and
the squared 4-momentum of the photon, MN is the pro-
ton mass; W is the total energy of the proton and photon
in the reaction c.m. frame; and

(2)

is the equivalent photon momentum.
The tensor Lµν was calculated within QED [13].

Information about the dynamics of the channel being
investigated and about the structure of the participant
particles is entirely contained in the hadronic tensor
Wµν, which appears to be a bilinear combination of the
hadronic currents Jµ and Jν,

(3)

The hadronic currents are dependent on the initial-
state-proton helicity λp and on the helicities of the final-
state particles, λf, and are related to the reaction ampli-
tudes in the helicity representation as

(4)

where εµ(λγ) is the polarization vector of the photon
whose helicity is λγ. The first bracketed factor in (1) is
the invariant flux of the incident photons; the last factor
corresponds to the phase space of three final-state par-
ticles.

2.2. Mechanisms of the Reaction γp  π+π–p

The Dalitz plots for the invariant masses of the π+π–,
π–p, and π+p pairs produced in the reaction γp  π+π–p
show bands corresponding to the production of ∆++, ∆0,
and ρ in the intermediate state, which subsequently
decay through the channels ∆++  π+p, ∆0  π–p,
and ρ  π+π–, respectively. Therefore, the mecha-
nism of the reaction γr,vp  π+π–p can be described
as a combination of three quasi-two-body processes in
Fig. 1. We assumed that the amplitude C(W, Q2) of all
the remaining processes is independent of the kinemat-
ical variables that describe the final-state particles and
determined this amplitude by fitting the Dalitz plots for
the invariant masses of π+π– and π+p systems. The
amplitude C(W, Q2) then can depend on W and Q2. We
approximated the Dalitz distributions independently
for each pair of individual W and Q2 values. In the tree
approximation, a detailed analysis of the contributions
from the large number of various mechanisms to the
reaction γp  π+π–p at W < 1.6 GeV in terms of the
meson–baryon degrees of freedom was performed in
[15] at the photon point. According to the calculations
presented there, the entire set of processes not shown in
Fig. 1 does not reveal features in this kinematical
region that depend on the kinematical variables of the

dΩp θpdθpdφp,sin=

KL

W2 MN
2–

2MN

---------------------,=

Wµν 1
2
--- Jµ* λ p λ f,( )Jν λ p λ f,( ).

λ pλ f

∑=

εµ λγ( )Jµ λ pλ f( ) λ f〈 |T λγλ p| 〉 ,=
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final state, so that the above approximation is quite rea-
sonable. More detailed information about mechanisms
other than those in Fig. 1 can be obtained from a com-
parison of the results of the calculation of all possible
two-dimensional correlation distributions in the reac-
tion γp  π+π–p (  and ,  and θp, 

and θp,  and α,  and α, and α and θ) with the

experimental data. The absence of special features in
the distributions representing differences between the
calculated and the measured cross sections would be
evidence in favor of the validity of the approximation
used, while the presence of such features would suggest
that it is necessary to introduce mechanisms other than
those in Fig. 1. Hereafter, the set of all processes not
shown in Fig. 1 will be referred to as the three-body
phase space. The relative contribution of quasi-two-
body processes depends on W. In the region W <
1.7 GeV, the dominant contribution comes from the
reaction γp  π–∆++, while, in the region W > 1.9 GeV,
the contributions of the reactions γp  π–∆++ and
γp  ρp are commensurate. The contribution of the
quasi-two-body reaction γp  π+∆0 never saturates
more than 10% of the cross section.

The amplitudes of the processes in Fig. 1 were cal-
culated in the Breit–Wigner approximation. The total
amplitude of the reaction γp  π+π–p has the form

(5)

where 〈 π–|T |λγλp〉, 〈 π+|T|λγλp〉, and

〈λ ρλp'|T |λγλp〉 are the amplitudes of the quasi-two-body
reactions γr,vp  π–∆++, γr,vp  π+∆0, and γr,vp 
ρp', respectively; 〈π+λp'|T| 〉, 〈π–λp'|T| 〉, and

〈π+π–|T|λρ〉 are the amplitudes of the decay processes
∆++  π+p, ∆0  π–p, and ρ  π+π–, respectively;
M∆ and Γ∆(sπp) are the ∆ mass and width; Mρ and
Γρ( ) are the ρ mass and width; and C(W, Q2) is the

amplitude of three-body phase space.
A detailed account of the models for describing the

amplitudes of the quasi-two-body processes γp 
π−∆++ and γp  ρp is given in [6–9]. Here, we restrict
ourselves to presenting basic features of the approach
used to calculate the quasi-two-body amplitudes. The
amplitudes of the processes γp  π–∆++, γp 
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π+∆0, and γp  ρp were taken to be superpositions of
a nucleon-resonance excitation in the s channel of a
photon–proton collision and nonresonance mecha-
nisms. The nonresonance amplitudes of the reactions
γp  π–∆++ and γp  π+∆0 were represented in
terms of the minimal set of Born diagrams proposed in
[16]. The new elements in the approach developed in
[6–9] were the following. The electromagnetic form
factor for the pion according to the data on one-pion
electroproduction from [17] and the form factor for the
πN∆ vertex from the analysis of the data on nucleon–
nucleon scattering [18] were used to describe the inter-
action between the virtual photon and the virtual pion
in the t-channel of the pion-in-flight exchange diagram.
The approach took into account particle interactions in
the initial and the final state with open inelastic chan-
nels on the basis of the method proposed in [9] and
employed the results obtained in [19] from an analysis
of data on the amplitudes of pion–nucleon interaction.
Allowances for channel-coupling effects are of impor-
tance for describing cross sections in the region W >
1.6 GeV, where, because of the competition between
many open inelastic channels, the cross sections are
sizably modified in view of channel coupling. The non-
resonance processes in the channel γp  ρp were
described on the basis of the diffraction vector-domi-
nance model [20].

Excitations of nucleon resonances in photon–proton
collisions were taken into account in the Breit–Wigner
approximation. The model included all reliably estab-
lished nucleon resonances of masses below 2.0 GeV.
The helicity electromagnetic amplitudes A1/2 and A3/2
for nucleon-resonance excitation at the photon point
were taken from [12]. The amplitudes of the strong
decays of nucleon resonances through the π∆ and ρp
channels were described by using the results of the
analysis from [19].

The approach proposed in [6–9] faithfully repro-
duces the entire body of available data [10, 11] on
the total cross sections and angular distributions for
the quasi-two-body channels γp  π–∆++ and
γp  ρp.

The amplitudes of ∆ and ρ decays were calculated
on the basis of effective Lagrangians, the effect of the
internal structure of particles being taken into account
by introducing the vertex form factors

(6)

where , uµ∆, and ερ are the Dirac spinor, the Rarita–
Schwinger spin–tensor, and the polarization vector
describing p, ∆, and ρ, respectively; pµp, , and 

are the 4-momenta of the proton, the π+ meson, and the

λ p'π〈 |T λ∆| 〉 g∆πp

F sπp( )
F M∆

2( )
----------------up pµpuµ∆,=

π+π–〈 |T λ p| 〉 g
ρπ+π–

F s
π+π–( )

F Mρ
2( )

-------------------εµ
0 p

π+ p
π––( )

µ
,=

up

p
µπ+ p

µπ–
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π– meson, respectively; and F( ) and F(sπp) are the

form factors in the ρππ and ∆πp vertices. These form
factors, which depend on the invariant masses of the
π+p, π–p, and π+π– systems from the decay processes
∆++  π+p, ∆0  π–p, and ρ  π+π–, respectively,
were borrowed from the analysis of data on pion–
nucleon scattering [21]. The effective coupling con-
stants g∆πp and  were determined by fitting, to the

measured decay widths, the results of the calculations
with the amplitudes in (6) at the resonance point
defined as the point at which the invariant mass of the
final-state particles is equal to the mass of the decaying
particle. In order to use the form factors from [21] in the
amplitudes given by (6), it is necessary to calculate the
contractions of the spin–tensors at the resonance point

and to introduce the factor 1/F(  = ) or 1/F(sπp =

).

3. RESULTS

Within the approach described above, we calculated
the quintuple-differential cross sections for the reaction
γp  π+π–p at the photon point for W values that lie
in the interval from the threshold to 2 GeV and which
corresponds to excitation energies of nucleon reso-
nances. By appropriately integrating these quintuple-
differential cross sections, we then obtained the invari-
ant-mass distributions dσ/d  and dσ/d ,

which were compared with experimental data from [10,
11]. For each value of W, the three-body phase space

s
π+π–

g
ρπ+π–

s
π+π– Mρ

2

M∆
2

M
π+π– M

π+
p

W = 1.45 GeV500

0

W = 1.51 GeV500

0
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1.92200 1.96200
0

1.2 1.81.41.0

1.0 1.2 1.4 1.0 1.4 1.8

1.6 2.0
Mπ+p, GeV

0

Fig. 2. Calculated and measured [11] invariant-mass distri-
butions of the π+p system. The three-body phase space was
taken to be an adjustable parameter.
P

C(W, Q2) was varied in order to fix its value on the basis
of the best simultaneous fit to the two invariant-mass
distributions mentioned immediately above. The calcu-
lated invariant-mass distributions dσ/d  and

dσ/d  are displayed in Figs. 2 and 3, respectively,

along with the relevant experimental data from [10, 11].
The amplitude that describes processes forming the
three-body phase space and which is determined from
a fit to these data is shown in Fig. 4 as a function of W.

From Figs. 2 and 3, it can be seen that, by and large,
the proposed approach provides a satisfactory descrip-
tion of the invariant-mass distributions dσ/d  and

dσ/d . The greatest distinctions between the cal-

culated and the measured cross sections are observed at
W = 1.45 and 1.57 GeV. It should be noted that it is the
region of W values where the shape of the ∆ line must
induce the most pronounced effects, but available
experimental information about the form factor in the
πN∆ vertex is insufficient for describing the line shape
unambiguously. That our fits to all experimental invari-
ant-mass distributions of the π+π– and π+p systems
proved to be satisfactory over the energy region of
nucleon-resonance excitation and that the fits to the
entire body of data on the quasi-two-body channels
γp  π–∆++ and γp  ρp are of a reasonably good
quality indicate that the developed approach can be
applied to analyzing data on the exclusive channel
γp  π+π–p with the aim of determining the contribu-
tions and the properties of nucleon resonances. Fig-
ures 2 and 3 display the model predictions for the

M
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M
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M
π+
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M
π+π–

W = 1.45 GeV
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0
0.2 0.4 0.6
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Fig. 3. Calculated and measured [11] invariant-mass distri-
butions of the π+π– system. The three-body phase space was
taken to be an adjustable parameter.
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invariant-mass distributions of the π+p and π+π– sys-
tems in the region W > 1.7 GeV. In this region of W val-
ues, the three-body phase space was determined by
extrapolating the values extracted from the data pre-
sented in [10, 11] for W < 1.7 GeV. A comparison of the
results of calculations for W > 1.7 GeV with the TJNAF
data measured with beams of real photons would
enable one to explore the contributions from high-lying
nucleon resonances to photoproduction on a proton tar-
get and to obtain data on possible manifestations of as-
yet-unobserved nucleon resonances.

It is clear from Fig. 4 that the amplitude of the three-
body phase space is a monotonically decreasing func-
tion of W. This suggests that some additional mecha-
nisms making the greatest contribution at low W are
operative. Presently, a detailed investigation of the
exclusive two-pion channel in photon-induced reac-
tions is being performed at TJNAF [2, 3, 7]. An analysis
of data on all two-dimensional correlations of kinemat-
ical variables (  and ,  and θp,  and θp,

 and α,  and α, and α and θ) would furnish

important information, which could be used, in partic-
ular, to construct diagrams that describe the mecha-
nisms of the processes under study.

4. CONCLUSION

We have developed a phenomenological approach
to describing pion-pair production by photons on pro-
tons in the energy region of nucleon-resonance excita-
tion. The reaction γp  π+π–p has been considered as
a combination of the quasi-two-body processes γp 
π–∆++, γp  π+∆0, and γp  ρp. The entire set of
remaining processes has been treated in the approxima-
tion of the amplitude C(W, Q2), which is independent of
the kinematical variables of the final state, but which
can depend on W and Q2. This amplitude has been
determined by fitting experimental data on the invari-
ant-mass distributions of the final-state particles.

s
π+π– s

π+
p

s
π+π– s

π+
p

s
π+π– s

π+
p

|C(W, Q2) |, arb. units

400

300

200

100
1.2 1.4 1.6 1.8 2.0 W, GeV

Fig. 4. Absolute value of the amplitude of the processes con-
stituting the three-body phase space as a function of W. The
results displayed in this figure were obtained from a simul-
taneous fit to the invariant-mass distributions of the π+p and
π+π– systems.
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The proposed approach relates the measured quintu-
ple-differential cross sections for the reaction γp 
π+π–p to the electromagnetic form factors A1/2(Q2),
A3/2(Q2), and ë1/2(Q2) for nucleon resonances. That the
invariant-mass distributions of the π+π– and π+p sys-
tems at the photon point have been described here quite
well and that the entire body of available data on the
integrated cross sections and on the angular distribu-
tions for the quasi-two-body channels γp  π–∆++ and
γp  ρp were faithfully reproduced in [6–9] suggests
that the developed approach as applied to data analysis
has a rich potential for extracting information about the
contributions of nucleon resonances to the exclusive
channel γp  π+π–p.

The developed approach would make it possible to
predict the nucleon-resonance contributions to the dif-
ferential cross sections for the virtual-photon-induced
reactions γvp  π+π–p. The observation of kinemati-
cal regions characterized by the most spectacular man-
ifestations of nucleon resonances is of importance for
planning experiments and for data processing in inves-
tigations of the structure of nucleon resonances in
exclusive reactions featuring virtual photons.
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Abstract—The cross section for the process νµ +   µ– + e+ in a constant magnetic field is calculated with
allowance for muon and positron polarizations. The asymptotic behavior of the cross section as a function of
the kinematical and the field parameter is investigated in the case where a high-energy neutrino (antineutrino)
is scattered by a low-energy antineutrino (neutrino). The effect of a weak field is especially important near the
threshold for the free process. The spectrum and the total cross section for the process in a strong field differ
markedly from the corresponding characteristics of the free process. Possible astrophysical applications are
considered. © 2000 MAIK “Nauka/Interperiodica”.

νe
1. Investigation of neutrino–lepton processes makes
it possible to deduce detailed information about the
structure of weak currents in a pure form not compli-
cated by strong-interaction effects [1]. These processes
play an important role in astrophysics [2]. The inverse
muon decay νµ + e–  µ– + νe, a purely leptonic pro-
cess that is caused by the charged weak current (W-
boson exchange), has been investigated experimentally
since the late 1970s [3, 4]. Within the Standard Model,
the cross section for this process was calculated in [5]
with allowance for one-loop radiative corrections. For
astrophysical applications, it is of great interest to take
into account the effect of strong external electromag-
netic fields on electroweak processes. For example,
magnetic fields of neutron stars can be as large as H *

H0 = c3/e" = 4.41 × 1013 G [6]. Fields of H ~ 1015–
1017 G are generated in supernova explosions (see, for
example, [7]). We note that, even in laboratory experi-
ments with beams of high-energy particles traversing
single crystals, it is necessary to take into account
strong internal electrical fields (E & 10–4H0) [8]. Inverse
muon decay in a constant crossed field (E · H = E2 –
H2 = 0) was investigated in [9, 10]; the case of a mag-
netic field was considered in [11, 12]. In the present
study, we calculate the cross section for the process

(1)

In a constant crossed field, this process is related to
muon decay by the crossing-symmetry equation. Here,
we study characteristic polarization effects associated
with the direction specified by the external field and
with the weak-current structure. Presently, various pro-
cesses induced by the inelastic scattering of ultrahigh-
energy cosmic (anti)neutrinos on low-energy relic

me
2

νµ νe µ–
e

+
.+ +

1) Nakhichevan State University, Nakhichevan, Azerbaijan.
1063-7788/00/6311- $20.00 © 21949
(anti)neutrinos in the Milky Way Galaxy are considered
as possible sources of high-energy cosmic rays (see, for
example, [13]).

2. By using the four-fermion approximation of the
Weinberg–Salam Standard Model and the Fierz iden-
tity [1], the amplitude of the process in (1) can be rep-
resented in the form

(2)

where GF is the Fermi constant; u(k) and v(k') are the
bispinors of the massless neutrinos νµ and antineutrinos

 with 4-momenta k = (ω, k) and k' = (ω', k') (k2 = k'2 =

0), respectively; q = k + k' = (E, q);  = γα(1 + γ5)/2 are
the left components of the Dirac matrices; γ5 =
−iγ0γ1γ2γ3; and L is the normalization length. The
charged-lepton current is given by

(3)

where the muon wave functions  and the positron

(negative-frequency electron) wave functions  are
exact solutions to the Dirac equation in a constant mag-
netic field and where the delta function expresses the
energy-conservation law in a time-independent field.
We use the pseudo-Euclidean metric with signature (+
– – –) and the system of units where " = c = 1.

By using Eqs. (2) and (3), we represent the cross
section for the process in the general form (compare

S fi
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with [12])

(4)

where summation is performed over the sets of four
muon quantum numbers f ' = (n', , s', ζ') and four
positron quantum numbers f = (n, pz , s, ζ). These num-
bers have the following meaning [14]: n = 0, 1, 2, … is
the principal quantum number (number of the Landau
level); –∞ < pz < ∞ is the projection of the 3-momentum
onto the direction of the magnetic field aligned with the
z axis; s = 0, 1, 2, … is the radial quantum number that
corresponds to the axisymmetric gauge of the 4-poten-
tial of the magnetic field,

(5)

and ζ = ±1 is the spin quantum number specifying the
particle polarization (see below). The energy spectrum
of a particle in a magnetic field is degenerate in s and ζ,

(6)

where e > 0 is the positron charge.
By using the explicit form of the wave functions for

charged leptons in a magnetic field in the gauge speci-
fied by Eq. (5) (see [14]), we find that the components
of the current in (3) can be represented as

(7)

(8)

where Iss' and Inn' are known Laguerre functions [14] of
the argument

(9)

σ 8π
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while ϕ is the azimuthal angle of the vector q (cosϕ =
qx /q⊥ , sinϕ = qy/q⊥ ). The quantities lk (k = 1, 2) in (8)
are expressed in terms of the spin coefficients Ci (i =

) in the positron (more precisely, negative-fre-
quency-electron) wave functions,

(10)

while  refer to a muon. The explicit expressions for
them depend on the choice of the lepton polarization
operator (integral of the motion in a given external field);
the wave function is an eigenfunction of this operator;
the spin number ζ is a normalized eigenvalue [14];

(11)

Here, the transverse-polarization operator

(12)

determines the projection of the lepton spin onto the

direction of the magnetic field H, ε⊥  = (ε2 – )1/2, and
P = –i∇  + eA is the momentum operator.

The longitudinal polarization is associated with the
helicity operator

(13)

and p = (ε2 – m2)1/2. We note that the operator equalities
(12) and (13) are valid in the class of functions ψ satis-
fying the Dirac equation (the general theory of polar-
ization operators in external fields is developed in [14,
15]). The interactions of the lepton anomalous mag-
netic moment representing the radiative correction to
the Dirac moment destroy the longitudinal polarization
(quite fast under the actual conditions in storage rings),
but the operator in (12) remains an integral of the
motion [14]. For this reason, we consider below only
transverse polarization.

3. We restrict ourselves to the case where a neutrino
and an antineutrino approach each other from opposite
directions in the plane orthogonal to the field H. Since
the problem in an external field possesses axial symme-
try, the choice of the x axis along the collision axis
imposes no constraints on the generality of our consid-
eration. Accordingly, the 4-momenta in the neutrino
pair are then taken to be

(14)

in which case qy = qz = 0 and the angle ϕ in (7) is

(15)
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Taking into account (14), (15), and (7), we express
the cross section (4) in terms of the functions in (8) as

(16)

where the upper and the lower sign in the superscript
refer to the cases of qx = ω – ω' > 0 and qx < 0, respec-
tively. In deriving (16), we have used the conservation
of the z component of the momentum [see Eq. (7)] and
the known formula for summation over radial quantum
numbers [14],

The case of a collision between a high-energy neu-
trino (antineutrino) and a low-energy antineutrino (neu-
trino) is of interest for astrophysical applications. Sup-
pose that the energy of the  pair, E = ω + ω', and
the momentum transfer q⊥  = |ω – ω'| are both much
greater than mµ and that the magnetic-field strength sat-

isfies the condition H ! Hµ = /e. The main contribu-
tion to the total cross section for process (16) then
comes from the final-lepton states having large quan-
tum numbers, n, n' @ 1 (high Landau levels); for the
Laguerre functions Inn' in (8), we can therefore use the
well-known semiclassical asymptotic form in terms of
the relativistic parameter γ–1 = mµ/E ! 1 [14],

(17)

where

(18)

is the Airy function of the argument

(19)

and Φ'(y) = dΦ(y)/dy. In (19), we have introduced the
field, the kinematical, and the mass parameter (κ, λ,
and δ, respectively)

(20)
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and the spectral and the angular variable (v and τ,
respectively)

(21)

where

Fαβ = ∂α Aβ – ∂β Aα is the strength tensor of an external

magnetic field, and  = εαβλσFλσ is its dual coun-

terpart. We note that v ∈  (0, 1) and that, in the ultrarel-
ativistic approximation adopted here (γ = E/mµ @ 1),
τ ∈  (–∞, ∞).

Since the motion of leptons is semiclassical, summa-
tion over the quantum numbers n and n' in (16) can be
replaced by integration according to the relation [see (6)]

After that, the integral with respect to ε' is removed by
the delta function. Further, we go over to the variables
v and τ (21). As a result, we derive the cross section for
the process at fixed lepton polarizations ζ' and ζ in the
form

(22)

where the upper and the lower sign in the superscript
refer to the kinematical conditions ω @ ω' and ω ! ω',

respectively, and  is the semiclassical asymptotic
form of the function Fi .

The expressions for  in (22) can be obtained by
substituting (17) into (8) and retaining only the first,
linear, terms of the expansion in the small parameter γ–1

in the spin coefficients Ci and  [see Eqs. (8) and
(10)]. In doing this, it should be considered that ωω' &

(λ ~ γ0) and that

the main contribution to the total cross section (22)
coming from the region specified by inequalities v & 1
and |τ| & 1. Further, we note that, in fact, the mass
parameter [see (20)] is small, δ . 4.8 × 10–3, and that it
is on the same order of magnitude as radiative correc-
tions (about α/π ~ 10–3), which are disregarded in this
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study. To the precision adopted here, we therefore set
this parameter to zero below.

Finally, we find that, in terms of the spectral and the
angular variable, the cross sections for the production
of transversely polarized leptons [see (12)] are given by

(23)

where  =  and the argument of the Airy func-
tions is determined by (19) at δ = 0.

The cross sections (23), which are expressed in
terms of the invariant parameters (20) and the variables
in (21), is applicable (in the ultrarelativistic approxima-
tion) in an arbitrary constant field Fµν of strength F

much less than Hµ = /e [see (12)], the spin numbers
ζ' and ζ being eigenvalues of the corresponding invari-
ant spin operator (see [12, 15]). The conditions under
which the above generalization to the case of two-body
processes in an external field is applicable are analyzed
in [16] (see also Section 6 below).

4. The integrands in (23) determine the differential
cross sections d2σ(±)/dvdτ. The asymmetric depen-
dence on the angular variable τ and the spin variables ζ
and ζ' is due to P and C nonconservation in weak inter-
actions and to the choice of kinematical conditions
(compare with [12])—an ultrarelativistic muon and an
ultrarelativistic positron are emitted at small angles
(not greater than γ–1) with respect to the direction of the
high-energy-(anti)neutrino momentum.

In order to investigate the spectral distribution
dσ(±)/dv, we perform integration with respect to the
variable τ by using the relations

(24)

where the arguments are y = x + aτ2, z = 22/3x, and b =

22/3a and where Φ1(z) = (t). The relations in (24)

were derived with the aid of the well-known relations
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for the Airy functions {see [17, ch. 5, formulas (46),
(48), (58)]}.

From expressions (23), (24), and (19), we obtain

(25)

The integrands in expression (25) represent the spectral
distributions dσ(±)/dv, the argument of the Airy func-
tions being

(26)

For the free process (in the absence of an external
field, κ = 0), we find the spectral distributions in the
form

(27)

These expressions follow from (25) for κ  0 with
allowance for the weak limit

where θ(x) = (1 + )/2 is the Heaviside step func-
tion. The range of the spectral variable v in (27) is
determined from the condition  – 1 ≥ 0, which
yields

(28)

From (28), it can be seen that, in the absence of a field,
reaction (1) has a threshold; that is, the kinematically
allowed region is

(29)

According to the general theory developed in [16],
the external-field effect on the process allowed in the
absence of a field as well is determined by the parame-
ter

(30)

Let us investigate the qualitative characteristics of
the spectra given by (25) in the limiting cases of η ! 1
and η @ 1 by using the known properties of the Airy
functions [17].

For η ! 1 (weak field) and λ > 1, oscillations are
superimposed on the smooth free spectra (27) in the
region determined by (28), and these oscillations grow
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as v approaches its boundaries. In the region v1 ≤ v ≤ 1,
which is forbidden at η = 0, the differential cross sec-
tion dσ(±)/dv decreases fast as we go away from the
point v1 [for v  1, it is proportional to
exp(−2/3 )].

At η @ 1 (strong field) and λ > 1, the region of oscil-
lations is comparatively narrow.

At λ < 1, the free process (1) is forbidden, and there
are no oscillations in the spectra. In a weak field, the
spectra are exponentially small in this case over the
entire interval 0 ≤ v ≤ 1.

The above features of the spectra are typical of all
processes proceeding in the absence of external fields
as well—in particular, of inverse muon decay [12] and
of the Compton effect in a magnetic field [16].

5. Let us consider the asymptotic behavior of the
total cross section for the process.

At κ ! 1 and λ > 1, it follows from (26) that we can
use the weak asymptotic expansions of the Airy func-
tions (see, for example, [10, 12]),

(31)

where A @ 1 and δ(x) = dθ(x)/dx is a delta function. In
our case, A = κ –2/3 and

(32)

Let us substitute (31) into (25) and perform integration
with respect to v by using the relations

where v' = dv(x)/dx; v = v(x) is the function inverse to
x(v) (32); and δ(n)(x) = dnδ(x)/dxn, n = 1, 2. In the above
relations, we have considered that x'(0) < 0 and x'(v1) > 0.
The derivatives dnv/dxn (n = 1, 2, 3) are calculated by
differentiating, with respect to x, the left- and the right-
hand side of the equation x = x(v), which determines
the function v(x) implicitly.

To terms of order κ2 inclusive, we eventually obtain
the asymptotic expressions
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where

(34)

From (33), it can be seen that, in accord with (30), the
external-field effect on the process is described by the
parameter κ/(λ – 1). This effect is stronger for polarized
particles than for unpolarized particles, being of the
first and of the second order in κ, respectively. In a rel-
atively weak field (κ ! 1) such that the relation κ * λ – 1
nevertheless holds, the cross section for the process dif-
fers markedly from the cross section for the free pro-
cess, the latter being very small near the threshold
[F0 = 0 at λ = 1; see (34)]. From (33), it follows that, for
ω @ ω' (ω' @ ω), we predominantly have the generation
of muons (positrons) whose spins are aligned with
(opposite to) the direction of the magnetic field H—that
is, ζ = +1 (ζ' = –1). This effect is similar to the Sokolov–
Ternov effect, the radiative polarization of electrons
and positrons in a magnetic field due to synchrotron
radiation [14].

For λ < 1, the free process (at κ = 0) is forbidden. In
a weak field (η ! 1), the cross section for process (1) is
exponentially small, which is characteristic of all pro-
cesses that have a threshold in the absence of a field
[17]. In this case, the argument of the Airy function is
very large (z @ 1), so that we asymptotically have

By using this asymptotic expression and the method of
steepest descent and taking into account a finite value
of the mass parameter (δ ! 1), we can easily obtain

For η @ 1 and κ @ 1 (strong field), the main contri-
bution to the integrals in (25) comes from the region
|z| ! 1. If only the leading terms are retained in the
asymptotic expressions in κ, the integrands can be sim-
plified by setting there

Upon evaluating the remaining standard integrals with
respect to v, we obtain the strong-field asymptotic
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expressions for the cross sections (25) in the form

(35)

As in the case of a weak field [see Eq. (16)], we see that,
for ω @ ω' (ω' @ ω), there is a predominant production
of positrons (muons) polarized in the direction parallel
(antiparallel) to the external field H.

6. In the above analysis [see Eq. (2)], we have made
use of the four-fermion approximation for the ampli-
tude of process (1). As in the absence of an external
field, the relative smallness of the momentum trans-

fer—|q2 | ! , where mW is the W-boson mass—is the
necessary condition of its applicability. Taking into
account (20), we obtain the kinematical constraint

(36)

In an external field, however, there arises an additional
condition: changes in the particle momentum over the
formation length for the process, lf, must be much less
than mW . In a strong field (κ @ 1), this length is inde-
pendent of the particle mass and is given by [17, 18]

As a result, we find that the field parameter κ [see
Eq. (20)] must be constrained as

(37)

In our case, the condition in (36) is obviously satis-
fied since the semiclassical asymptotic expressions
used for the Laguerre functions Inn' (x) (17) are valid
[14] when the argument x is close to the transition point

x0 = (  + )2 = (p⊥  + )2/2eH,

or [see Eqs. (9), (6), and (14)]

that is, we have [see Eq. (20)] λ & 1.

Following [16], we will now show that the basic
results deduced here under the kinematical conditions
chosen in a special way [see Eq. (14)] can be used in a
more general case. The cross section for the two-body
process (1) in an arbitrary constant field Fαβ for arbi-
trary directions of the neutrino momenta depends on
eight independent invariant parameters (for unpolar-
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ized particles). These are the quantities κ and λ, which
were already defined in (20), and

(38)

We note that, in a purely magnetic field, f1 = H/Hµ and
f2 = 0. Suppose that the parameters in (38) satisfy the
conditions

(39)

They are fulfilled for field strengths F ! Hµ, high ener-
gies of a neutrino pair (for markedly different energies
of its components), and at not overly small angles
between the ultrarelativistic-(anti)neutrino 3-momen-
tum k and the field-strength vectors E and H. By virtue
of (39), the general expression for the cross section can
be approximated by the simpler two-parameter formula

Thus, our results expressed in terms of the invariant
parameters κ and λ are applicable not only to the case
of kinematics specified by (14) but also in the rather
general case specified by (39).

Let us consider the possibilities for observing the
external-field effect on process (1). Muon neutrinos of
energy ω . 20 GeV are used in experimental investiga-
tions of inverse muon decay [4]. Our results are appli-
cable if the energies ω' of electron antineutrinos obey
the condition

at ω * 10 GeV. Such energies ω' correspond to the
lower limit on the reactor- and solar-(anti)neutrino
energies recorded by conventional methods [2]. Let us
set H = 108 G (this can be pulsed magnetic fields or
effective single-crystal fields [8]) and E = ω + ω' . ω =
20 GeV. The field parameter is then given by [see (20)]

where we have used the value of Hµ = /e . 1.9 ×
1018 G. From (30), it follows that, in this case, the exter-
nal-field effect becomes sizable in a narrow region of λ
values lying near the free-process threshold: λ . 1, |λ –
1| & 10–8 [see (33), (34)]. However, the observation of
the effect under laboratory conditions is complicated
by a relatively low density of neutrino beams and by
small dimensions of the interaction region. For this rea-
son, we will focus on astrophysical conditions.
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As was indicated in Section 1, much attention is
being given at present to the possibility that high-
energy cosmic rays are generated in the annihilation of
ultrahigh-energy neutrinos on low-energy galactic relic
antineutrinos (see [13] and references therein). Assum-
ing that relic (anti)neutrinos are massless, we estimate
their energy (that is, the temperature of relic radiation)
at ω' ~ 2 K . 1.7 × 10–4 eV. Our results are valid in the
region of cosmic-neutrino energies,

For the field parameter, we then have

κ & 10–7 (H/1 G). (40)

The mean-galactic magnetic field is overly weak: H ~
10–6 G and κ & 10–13. However, compact objects in the
Milky Way Galaxy can develop strong fields [19]. The
surface fields of white dwarfs take values of H & 109 G,
in which case expression (40) yields κ & 102. The
dipole fields of neutron stars are H & 1013 G. For these
fields, κ & 106 [the condition in (37) is satisfied in this
case], and the cross section for process (1) in a mag-
netic field is much larger than the cross section for the
free process owing to the factor [see Eq. (35)]

Thus, process (1) can be a source of high-energy
charged leptons; in the vicinity of strongly magnetized
stars, their spectral distributions and total fluxes can
differ considerably [see Eq. (25)] from the correspond-
ing values in the regions where the field can be disre-
garded [see (27)]. We note that, despite the relatively
small dimensions of neutron stars, they may modify
sizably the energy spectra of cosmic rays owing to the
large-scale pulsar-wind effect (see, for example, [20]).
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Abstract—By the Schwinger proper-time method, the one-loop contribution to the W-boson mass operator is
calculated in a constant magnetic field at high temperatures. The static limit is investigated. By averaging the
mass operator over the physical states of a vector particle, the temperature-dependent radiative corrections to
the W-boson energy spectrum are obtained at high magnetic fields (eH/M2 @ 1) for various values of the spin
projection onto the field direction. These corrections are found to be positive. In particular, the correction to the
ground-state level stabilizes the W-boson vacuum state at high temperatures. © 2000 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

The W-boson mass operator in a constant magnetic
field H and zero temperature was calculated and inves-
tigated in [1, 2]. Among other things, this makes it pos-
sible to reveal the role of radiative corrections in the
problem of stabilization of the W-boson vacuum. The
problem consists in the following. In the ground state of

the spectrum, the mode E2(0) =  + M2 – eH, where
P3 is the momentum projection onto the field direction,
M is the particle mass, and e is the electric charge,
becomes unstable (tachyonic) for fields H > H0 = M2/e
[2]. In the tree approximation, the evolution of the
mode leads to W- and Z-boson condensation [3–5]. As
soon as radiative corrections are included, the threshold
for the emergence of instability is shifted with the result
that the spectrum is stabilized if the Higgs boson mass
and the W-boson masses are related in a specific way. At
nonzero temperatures, the condensation of these fields
was also studied in [3] within some approximations.
However, temperature-dependent radiative corrections
to the W-boson spectrum have not yet been investi-
gated. In [6], for example, it was assumed that the W-
boson vacuum state is stabilized by the Debye mass

 ≈ e2T2, which is generated only in the longitudinal
components of gauge fields, but the point is that the
tachyonic mode represents a transverse state resulting
from the interaction of a spin with a magnetic field.

In the present study, we calculate and investigate in
part the W-boson mass operator in a constant magnetic
field at high temperatures. The imaginary-time formal-
ism is used here to take into account temperature. As in
the case of the calculation at zero temperature from [1],
we rely here on the proper-time method. In general, the
use of this method runs into difficulties associated with

P3
2

mT
2

* e-mail: skalozub@ff.dsu.dp.ua
1063-7788/00/6311- $20.00 © 21956
the need for performing summation over discrete imag-
inary frequencies. However, this method is quite appro-
priate in the high-temperature region, where it is suffi-
cient to take into account only the (l = 0) static modes
[7]. As will be shown in Section 2, the procedure for
implementing the Schwinger proper-time method is
virtually identical to that in the case of T = 0 [8].

We average the mass operator over W-boson physi-
cal states |n, σ〉, where n and σ are, respectively, the
number of the Landau level and the spin variable. The
functions 〈n, σ|M |n, σ〉 determine temperature-depen-
dent radiative corrections to the energy spectrum in an
external magnetic field. The square of the effective
mass of a vector particle is given by M2(H, T) = M2 –
eH + 〈n = 0, σ = +1|M |n = 0, σ = +1〉 . If the quantity
〈M〉n = 0, σ = +1 is positive, the W-boson vacuum is stabi-
lized by the radiative corrections to the effective mass.
At high temperatures, stabilization of this type may
occur in strong fields (eH @ M2) as well.

The ensuing exposition is organized as follows. We
calculate the W-boson mass operator in Section 2 and
perform averaging of the expression for the mass oper-
ator over W-boson physical states in Section 3. In Sec-
tion 4, we derive asymptotic expressions for the aver-
aged mass operator in the limit of strong magnetic
fields and high temperatures. Our basic results are dis-
cussed in Section 5.

2. MASS OPERATOR

Let us consider a simple model of electroweak inter-
actions that is based on the spontaneously broken gauge
symmetry SU(2)  U(1). The relevant Lagrangian
has the form

(1)L
1
4
--- Gµν

a( )
2

–
1
2
--- Dµφ( )2 m0

2

2
------φ2 λ

4
---φ4

,–+ +=
000 MAIK “Nauka/Interperiodica”
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where  = ∂µ  – ∂ν  + geabc  and  =

∂µδab + geabc .

This model is described in detail elsewhere [2]. As
the result of a spontaneous breakdown of symmetry, the

charged components  = (  ± i ) acquire the

mass M = gΦ0, where Φ0 = m0/  is the vacuum expec-
tation value of the scalar field; as to the component Aµ =

, it remains massless, playing the role of an electro-
magnetic field. We also identify the gauge coupling g
with the electric charge: g ≡ e. For the sake of definite-
ness, the external magnetic field is assumed to be
aligned with the third axis of the system of Cartesian
coordinates, H = H3. The relevant potential of this field

is chosen to be  = (0, 0, Hx, 0), H = const. In order
to quantize the fields being studied, we make use of the
gauge condition

(2)

where φ± = (φ1 ± iφ2) are charged Goldstone fields.

As a matter of fact, the model being considered repre-
sents a massive regularization of Yang–Mills theory; in
the limit M  0, it reproduces all relevant results.
Results concerning Weinberg–Salam theory can be
derived with the aid of relevant algebraic transforma-
tions (for more details, see [2]).

In the one-loop approximation, the W-boson mass
operator is determined by the standard set of diagrams
in Fig. 1 [1, 2], where double lines represent the
Green’s functions for charged particles—specifically,
the Green’s functions Gµν(x, y) for the vector particles

 (solid double lines shaded in between), the Green’s
function G(x, y) for the Goldstone particles (solid dou-
ble lines closed in between), and the Green’s function
∆(x, y) for charged ghost components χ± (dashed double
line shaded in between). Thin wavy, thin solid, and thin
dashed lines correspond to a radiated photon AR, a neu-
tral Higgs scalar η, and a neutral ghost component χ3,
respectively. In the operator form, the relevant expres-
sions for the above Green’s functions are given by

In order to calculate the mass operator, we make use of
the proper-time representation and the Schwinger opera-
tor formalism. The W-boson mass operator in a magnetic
field at nonzero temperatures can be represented as

(3)

Gµν
a

Aν
a

Aµ
a

Aµ
b
Aν

c
Dµ

ab

Aµ
c

Wµ
± 1

2
------- Aµ

1
Aµ

2

λ

Aµ
3

Aµ
ext

∂µW
µ±

ieAµ
ext

W
µ±

– Mφ±
– 0,=

1

2
-------

Wµ
±

Gµν P( ) P
2

M
2

2ieFµν+ +[ ]
1–
,–=

G P( ) ∆ P( ) P
2

M
2

+[ ]
1–
.–= =

Mµν
e

2

β
---- d

3
k

2π( )3
------------- Mµν

η
k p,( ) Mµν

W
k p,( )+[ ] ,∫

k4

∑=
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where

β = 1/T; k4 = 2πl/β, l = 0, ±1, ±2, …; and Pµ = i∂µ +

e  by definition. The first term in the bracketed
expression on the right-hand side of (3) stands for the
contribution of the neutral Higgs scalar η (diagrams in
Figs. 1a, 1b), while the second term represents the
gauge sector (diagrams in Figs. 1c–1h). As was indi-
cated in Section 1, we restrict our consideration to the
case of the high-temperature limit; in (3), this limit cor-
responds to the l = 0 term in the sum over k4 (see the
review article of Kalashnikov [7]). This case can be
treated by directly applying the standard computational

Mµν
η

k p,( ) k
2

m
2

+( )
1–

=

× 2k p–( )µG p k–( ) 2k p–( )ν 4M
2
Gµν p k–( )–[ ] ,

Mµν
W

k p,( ) k
2– Γµα ρ, Gαβ p k–( )Γνβ ρ,{=

+ p k–( )µ∆ p k–( )kν kµ∆ p k–( ) p k–( )ν+

+ M
2δµνG p k–( ) k

2
Gµν p k–( ) 2Gνµ p k–( )–[+

+ δµνGρρ p k–( ) ] } ,

Γµα ρ, δµα 2 p k–( )ρ δαρ 2k p–( )µ δµρ p k+( )α ;+ +=

Aµ
ext

W+–

η

(a) (b)

(d)

φ+–

η

(c)
W+–

χ+

φ+–

(e)

(f)

χ3

χ–

χ3

φ+–W+–

AR AR

(g)

Fig. 1. W-boson mass operator in the one-loop approxima-
tion.
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procedure developed for the case of zero temperature.
For the details of the relevant calculations, the reader is
referred to [1, 2]. Highlighted below are only the basic
points peculiar to the case of k4 = 0. For the sake of def-
initeness, let us consider the first term in the bracketed

expression on the right-hand side of (3), (k, p).

In order to perform three-dimensional integration with
respect to k in (3), it is necessary to introduce a proper time

for each propagator appearing in (k, p) and to repre-
sent the product of the propagators in the form

where

m being the mass of the neutral scalar field. The k4-
dependent part of the “Hamiltonian” is equal to zero.
Three-dimensional integration with respect to k is per-
formed with the aid of a transition to the conjugate vari-
able ξi ,

By using the eigenstate of the operator ξi as deter-

mined by the condition  = 0, the three-dimensional
integral with respect to k can be represented as

Further, the Hamiltonian R(u) = (1 – u)  + u(  – )2

is integrated according to the procedure described in
[8]. The eventual result takes the form

where

The distinction between the cases of a nonzero and
zero temperature consists in the difference of the
dimensionalities of the relevant integrals. This is
reflected in the power to which the parameter s is raised
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η
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and which represents the dimensionality of the integral:
the factor s–3/2 comes from the three-dimensional inte-
gral corresponding to T ≠ 0, whereas the factor s–2

arises in the case of T = 0 [8]. The result for the scalar
sector has the form

(4)

where

The relevant result for the gauge sector is given by

(5)
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where T = 2ieFs(u – 1).

3. AVERAGING OVER PHYSICAL STATES

In order to find radiative corrections to the W-boson
energy spectrum, it is necessary to define the mass shell
for a vector particle in an external magnetic field at high
temperatures. In the static case, the mass shell is speci-
fied by the equations

(6)

where i, j = 1, 2, 3 and where the term p4W4 vanishes
since p4 = 0 for static modes. If the magnetic field is
constant, it is convenient to choose basic states in such
a way that the tensor Fij is diagonal in this basis, in
which case Fij plays the role of the operator projecting
spins onto the field direction. State vectors are normal-
ized by the condition

where n, n' = 0, 1, 2, 3, … and σ, σ' = 0, ±1.

The eigenvalues of the operators F, , and  in
these states are

In order to find the quantity 〈n, σ|M |n, σ〉, it is also
necessary to evaluate the expectation value of the oper-
ator ( ) over the |n, σ〉 states. The result is

The averaged expressions for the mass operator can
be represented as

(7)
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(8)

where x = euHs, y = xσ,

The explicit expressions for M(x, u) and K(y) are given
in the Appendix.

4. ASYMPTOTIC EXPANSION OF THE MASS 
OPERATOR IN A STRONG MAGNETIC FIELD

The expressions for the averaged mass operator that
were obtained in Section 3 are investigated here in the
limiting case of strong magnetic fields and high tem-
peratures: eH/M2 @ 1, eH/T2 ! 1.

The integrands in expressions (7) and (8) involve the

factor exp , whence it follows that, in the case

of eH @ M2, the main contributions to the relevant inte-
grals come from the region where u ~ 1 and x @ 1. In
order to find the relevant asymptotic expressions, we
will need the relations

(9)

where we set λ = 1, –3, and –1 for σ = +1, –1, and 0,
respectively. Without loss of generality, the calcula-
tions can be performed in the reference frame where
p3 = 0. For the case of the gauge sector, which is
described by expression (A.1), we now present terms
contributing to the integral in (8) for each value of the
spin projection:
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Performing integration with allowance for (9), we
obtain

(10)

By using expression in (A.2) and evaluating the
integral in (7), we arrive at

(11)

From (10) and (11), it can be seen that the real part
of 〈M〉  is positive in the ground state and in excited
states. The emergence of the imaginary part in 〈M〉  is
due to nonanalyticity of some terms in the integrands
on the right-hand sides of (7) and (8) for x  ∞. The
choice of an integration contour that ensures conver-
gence of the integrals with respect to x for these terms
generated the imaginary parts in expressions (10) and
(11), which describe a transition to a state occurring at
a lower energy.

5. DISCUSSION OF THE RESULTS

Let us now consider the effective mass of the W
boson. With the aid of Eqs. (10) and (11), we obtain

(12)

From (12), it can be seen that the quantity M2(H, T) is
positive for sufficiently high temperatures. On this
basis, we can conclude that, for T @ (eH)1/2, the radia-
tive correction to the W-boson ground state stabilizes
the vacuum. Here, the stabilizing mass depends on the
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field strength and vanishes at H = 0, as it must in the
one-loop approximation [7].

Let us compare our results on the role of radiative
corrections to the W-boson mass in an external field at
nonzero temperatures with the results presented by
Elmfors and Persson [9], who relied on the weak-field
approximation. The basic conclusion drawn by those
authors is that, for the ground state |n = 0, σ = +1〉, radi-
ative corrections to the mass at nonzero temperatures in
an external field vanish, which is in a glaring contradic-
tion with expression (12). The reason behind this con-
tradiction is rooted in the computational procedure
adopted in [9], where the field dependence is intro-
duced in 〈M〉  exclusively via the W-boson wave func-
tions in a magnetic field and where the mass operator is
replaced by its field-independent asymptotic expres-
sion for high temperatures. It is obvious that this
approximation cannot be applied to the case of weak
fields, since it fails to reproduce the result at T = 0,
where the anomalous-magnetic-moment contribution
to the W-boson energy must manifest itself in weak
fields [1]. In the case of weak fields, the contribution of
gH is taken into account both via the W-boson external
lines and via the term featuring the magnetic moment
of the W boson.

The above results are of interest for cosmology. We
imply that, if a magnetic field was present in the Uni-
verse in the era of an electroweak phase transition—as
is often discussed in the literature (see, for example, [6,
10])—the radiative mass of the W bosons determines
the dynamical mechanism of vacuum stabilization,
both in the case of a broken vacuum phase and in the
case of the restored vacuum phase. If the magnetic field
is spontaneously generated at a nonzero temperature, it
is given by (eH)1/2 ~ g2T in the one-loop approximation
(see [11, 12]). Therefore, the square of the effective
mass is about g4T2 for the restored phase, in which case
M = 0. Moreover, it is positive owing to a large coeffi-
cient in the radiative mass (12). In the one-loop approx-
imation, we thereby arrive at a self-consistent pattern
where, at high temperatures, there spontaneously arises
a magnetic field, which is stabilized by the radiative
mass of charged gauge fields.

APPENDIX

The explicit expression obtained upon averaging the
mass operator over physical states has the form

M x u,( ) = 2e2y neH 8 xsinh
2 u
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Abstract—The Primakoff effect–induced radiative emission of axions by an alternating electromagnetic field,
Fa  γa, is considered for the first time. The synchrotron mechanism and the Coulomb mechanism—in the
latter case, the alternating field is formed when a charge executes an infinite motion in the field of a Coulomb
center—are considered as specific examples. The contributions of these effects to the axion emissivity of mag-
netic neutron stars and of the Sun are estimated. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The axion is one of pseudoscalar particles (omion,
arion, etc.) whose existence is suggested both by some
theoretical considerations and by an analysis of astro-
physical data (primarily by the analysis of the hidden-
mass problem). Namely, the axion as a Goldstone
boson in the Peccei–Quinn scheme [1] provides a natu-
ral explanation of the exact CP invariance of strong
interactions, while the axion condensate formed at
early stages of Universe evolution could constitute a
major part of cold dark matter. This explains why inter-
est in the possibility of experimentally detecting the
axion [2–4] and in investigations into axion interactions
[5, 6], including interactions under extreme conditions
(for example, in the presence of strong external electro-
magnetic fields [7–9]), has quickened in the last
decade. Hopes for experimentally identifying axions
are pinned primarily on implications of the Primakoff
effect—that is, on direct axion–photon coupling
described by the Lagrangian (hereafter, we use the sys-
tem of units where e2 = α = 1/137)

+ (1)

where  = εµναβFαβ is the dual of the electromag-

netic-field strength tensor and

(1‡)

is the coupling constant. The dimensionless parameter
cγ is on the order of unity, its specific value depending
on the axion model used; the parameter f represents the
energy scale at which Peccei–Quinn symmetry is bro-
ken [1, 10]. The possible value of gγ in energy units is

gγ

16π
---------F

µν
F̃µνa,–=

F̃µν
1
2
---

gγ
αcγ

2πf
---------–=

* e-mail: v_skobelev@hotmail.com
1063-7788/00/6311- $20.00 © 21963
quite small (not greater than 10–10 GeV–1), which corre-
sponds to the concept of an invisible axion.

The axion mass is also rather small: it can lie in the
interval

10–5 & m & 10–2 eV, (2)

whose boundaries were determined on the basis of
astrophysical data [6].

From the form of the Lagrangian in (1), it follows
that an axion can be produced in the interactions of real
photons with an alternating external field Fa (diagram
in Fig. 1a) or as the result of the transformation of an
external field with a nonzero Fourier transform in the
spacelike region of momentum transfer into a γa pair
(diagram in Fig. 1b). The first mechanism has been vig-
orously discussed in the literature [2], while the second
mechanism has thus far attracted no attention, to the
best of my knowledge.

In the present study, we will analyze general regu-
larities of the process Fa  γa (Section 2) and con-
sider specific cases where the alternating field is
formed by a charge moving along a circle (Section 3)

γ γ

Fa Fa

a a

(a) (b)

Fig. 1.
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and in the field of a Coulomb center (Section 4). For a
special version of the ultrarelativistic motion of an elec-
tron in a magnetic field, results are presented in Sec-
tion 3 for the probability and for the intensity of syn-
chrotron radiation e  eγa in terms of invariant field
parameters. In Section 5, we discuss the astrophysical
aspects of the issue, comparing the implications of the
above mechanism and of the mechanism of axion gen-
eration through the channel represented by the diagram
in Fig. 1a.

2. INVARIANT CHARACTERISTICS 
OF RADIATIVE AXION EMISSION

Making the substitution F  Fa + F in (1), where
Fa and F are the strength tensors of the alternating and
the radiative field, respectively, and performing some
simple transformations, we find that the total probabil-
ity of the emission of an axion and a photon as
expressed in terms of an integral with respect to the
momentum transfer k can be represented in the form

(3)

where Fa(k) is the Fourier transform of Fa and

(3‡)

p and κ being, respectively, the axion and the photon
momentum.

The expression for the invariant probability W can
be further simplified with the aid of the relations

(4‡)

(4b)

and the Maxwell equation

(4c)

This yields

(5)

where the invariant region of integration is given by

The mean 4-momentum of the emitted axion, 〈pα〉 ,
is obtained from (3) by introducing the factor (k – κ)α
in the integrand on the right-hand side of (3a). Further
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transformations are similar to those performed above.
The result is

(6)

Obviously, the mean value of the total radiated
4-momentum, 〈kα〉 , can be obtained from (5) by intro-
ducing kα in the integrand.

An equivalent representation of expressions (5) and
(6) in terms of the currents generating the field Fa is
obtained via the substitution

(7)

If the field Fa is generated by a classical pointlike
charge Q, the components of this field are determined
by the well-known Lienard–Wiechert potentials, in
which case the above expressions are valid only if the
radiation recoil is disregarded—that is, under the con-
dition

(8)

where EQ is the energy of the charge. This condition is
rather weak and is obviously satisfied in the cases con-
sidered below.

3. SYNCHROTRON MECHANISM OF RADIATIVE 
AXION EMISSION

In the case where a charge Q executes an ultrarela-
tivistic motion along a circle of radius R with a fre-
quency ω, the Fourier transforms of the potentials can
be chosen as

(9)

where ν = k0/ω @ 1, θ and ϕ are spherical angles of the
vector k, the third axis is taken to be orthogonal to the
plane of motion, and the argument z of the Bessel func-
tions is given by

(10)

Substituting expression (9) for  into Fa and into
(5) and performing some transformations, we obtain
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the probability of radiative axion emission per unit time
(the probability divided by the period 2π/ω) in the form

(11)

Here and below (in this section), we set all powers
of the speed v to unity, when possible, and introduced
the notation

(12)

In addition, it is assumed that the integral with respect
to ν is dominated by the contribution of higher harmon-
ics with

(13)

The integrals in (11) can be calculated analytically
at some specific values of the parameter .

(i)  @ 1. In this case, the condition in (13) is sat-
isfied automatically. Under the additional constraints

(14‡)

(14b)

it is reasonable to approximate the Bessel functions
involved as [12]

(15)

Making the change of variable in the integral with
respect to ν as

(16)

we arrive at the intermediate result

(17)

WT

gγ
2
Q

2ω3

6 2π( )2
------------------ νν2 θcosd

0

1

∫d

0

1

∫=

× νν3
1 m̃

2

ν2
1 ν2

–( )
------------------------–

3

d

m̃/ 1 ν2
–( )

1/2

∞

∫

× 1

ν2 θsin
2

------------------ 1– 
  Jν

2
z( ) Jν'

2
z( )+ .

ν k /k0, m̃ m/ω, z v νν θ,sin= = =

νeff @ 1.

m̃

m̃

νeff @ 1 v
2ν2 θsin

2
–( )eff

3/2–
,

νeff,  θ sin ( ) eff 1, ≈

Jν 2πν ε( ) 1/2– ν
3
---ε3/2

– 
  ,exp≈

ε 1 v
2ν2 θ.sin

2
–=

ν x
m̃

1 ν2
–( )

1/2
------------------------,=

WT

gγ
2
Q

2ω3
m̃

3

6π3
------------------------- νd

1 ν2
–( )

3/2
------------------------

0

1

∫≈

× θ 1 ν2 θsin
2

–

ε1/2
--------------------------- ε1/2

+ 
  x x 1–( )3

e
cx–

,d

1

∞

∫cosd

0

1

∫

c
2
3
--- m̃ε3/2

1 ν2
–( )

1/2
------------------------.=
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
 

From the analysis of the last expression, it follows
that, in the case of ultrarelativistic motion, the condi-
tion in (14b) is satisfied; taking into account (14a), we
find that the approximation used in item (i) is valid
under the condition

 

(18)

 

where 
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 are, respectively, the mass and the
energy of the charge 

 

Q

 

. Since

the condition in (8), which justifies the disregard of
recoil, assumes the form

 

(19)

 

and always holds in view of the smallness of the axion
mass [see the constraints in (2)].

An approximate integration in (17) yields
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that is, we can conclude with allowance for (18) that, in
the region being considered, 

 

W
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 is exponentially small.
If the charge 

 

Q

 

 is taken to be an electron moving in
a constant uniform magnetic field, the right-hand side
of Eq. (20) can be expressed in terms of the field-
strength tensor  F   and the electron 4-momentum  q  in the
standard form
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where

 

(21‡)

 

A similar exponential dependence in the region
specified by Eq. (21a) is also obtained in precise quan-
tum calculations of the processes 

 

e

 

  

 

 and 
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 in an external field [8, 13] (the last effect is possible
in the presence of direct axion–fermion coupling).

The results for the intensity of axion emission that
are given by (20) and (21) can be obtained from expres-
sion (6) by means of similar operations leading to
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(ii)  ! 1. In this case, we can set  = 0 and
approximate the Bessel functions involved by Mac-
donald functions, as was done in the classical problem
of synchrotron radiation [14]. The momentum-transfer
distribution obtained from the general expression (11)
then takes the form

(24)

After some simple algebra, we obtain the integrated
probability of the process per unit time. The result is

(25)

As in the problem of synchrotron radiation, we

obtain νeff ~ , and the condition justifying the

disregard of recoil can be represented as

(26)

For the process e  eγa in a magnetic field, the
result corresponding to (25) assumes the form

(27)

In the case being considered, the intensity of axion
emission is given by

(28)

For the process e  eγa in a magnetic field, the anal-
ogous result is

(29)

The χ dependence in expressions (27) and (29) coin-
cides with the corresponding result from [8] for the pro-
cess e  ea.

4. COULOMB MECHANISM OF RADIATIVE 
AXION EMISSION

In this section, we consider radiative axion emission
by the alternating field generated by a classical charge
Q1 executing a nonrelativistic infinite motion in the
field of an immobile Coulomb center of charge Q2,
assuming for the sake of definiteness that Q1Q2 < 0. In
the ensuing calculations, we will use the representation
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of the probability in (5) in terms of currents by involv-
ing the substitution in (7). The relevant Fourier compo-
nents of the current density can be obtained from the
equation for the trajectory in [11] and are given by

(30)

where (x) and (x) are, respectively, a Hankel
function of the first kind and its derivative with respect
to the argument; µ is the mass of the charge Q1; and v0
and ρ is its velocity at infinity and its impact parameter;
for the sake of brevity, use has also been made of the
notation

(31)

The derivation of the expressions in (30) was per-
formed under the condition
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(k0 is the total energy of the emitted axion and photon),
which is in fact satisfied if recoil can be disregarded:
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is given by

(34)

Physically, the differential cross section for inelastic
scattering on a Coulomb center is a more appropriate
feature of the process. By definition, we have

Using the above relations, we obtain

(35)

where the quantity ν is given by the first relation in (31).
The asymptotic representations of expression (35)

are determined by the threshold and the high-energy (in
the axion mass) behavior of the factor

(36)

and by the asymptotic expressions for the Hankel func-
tions at large and small ν [these cases can be consistent
with the approximation specified by (32a) and (32b)

since ν is the product of the small quantity  and

the large quantity ] in terms of elementary func-
tions. For the product of the Hankel functions in (35),
the required asymptotic forms are

(37)

where C is the Euler constant.
For the case of unlike charges being considered, the

total cross section cannot be estimated correctly
because use is made here of the low-energy approxima-
tion. However, the cutoff exponential factor exp(–2πν)
appears in (35) under the condition Q1Q2 > 0, and the
two conditions in (32a) and (32b) are satisfied in the
effective region of integration if the additional con-
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straint α12 @ v0 holds. Technically, however, evaluation
of the integral for this case involves serious difficulties.

5. DISCUSSION

If there is no direct axion–fermion coupling in the
tree approximation (aee), the Primakoff effect–induced
synchrotron axion emission considered in Section 3 is
a dominant mechanism of axion generation in the case
of an ultrarelativistic motion of an electron in a mag-
netic field. As a matter of fact, its role can be assessed
in very strong magnetic fields of about 1012–1014 G,
which are possible only in the shells of neutron stars
[15]. Under such conditions, however, it is necessary to
take into account, in addition, the presence of a dense
photon gas of temperature in the range 108–1010 K, in
which case the crossed process γe  ae, which pro-
ceeds through an intermediate resonance photon state
and which is also caused by the Primakoff effect [16],
becomes possible. A comparison of the present result as
given by (29) with the results from [16] shows that the
contribution of the synchrotron mechanism to the axion
emissivity is smaller by a few orders of magnitude. It is
obvious that, in the presence of direct coupling (aee),
the process e  ea in an external field is always dom-
inant over the process e  eγa considered here, the
dependence on the parameter χ being the same in the
two cases.

From the viewpoint of practice, the results from
Section 4 as applied to calculating the axion emissivity
of the Sun seem more interesting. The Primakoff effect
caused by the interaction of blackbody radiation of
temperature 1.3 keV at the center of the Sun with the
fluctuating electric field of charged particles (electrons,
protons) at a concentration of about 1026 cm–3 proves to
be a dominant mechanism of solar-axion generation in
this case as well. According to the results presented in
[2], the axion emissivity La of the Sun is given by

(38)

where L( = 3.86 × 1033 erg/s is the photon emissivity.
In the case being considered, the condition of applica-
bility of expression (35) is satisfied approximately at k0
values up to 1 keV [in expressions (36) and (37), it is
then necessary to go over to the limit s  1 and to
consider ν values much less than unity]. In the above
energy range, an evaluation of the axion emissivity
within the standard solar model [17] yields a result that
is nearly three orders of magnitude less than the expres-
sion in (38). However, the emissivity in (38) is an inte-
grated one at a mean axion energy of about 4 to 5 keV,
and the contribution of the generation mechanism con-
sidered here is commensurate, in the energy region
extending to 1 keV, with that which is generally
accepted. It should be noted, however, that both the
experiments being presently conducted and the planned
experiments are aimed at detecting axions by their con-
version into x-ray photons in the energy region around

La 10
3–
L( gγ10

10
 GeV( )

2
,≈
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a few keV and higher. Thus, the above comment will
become of practical importance, should searches for
solar axions be performed at lower energies as well.

ACKNOWLEDGMENTS

I am grateful to Yu.O. Yakovlev for technical assis-
tance.

REFERENCES
1. R. D. Reccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440

(1977).
2. K. van Bibber, P. M. McIntyre, D. E. Morris, and

G. G. Raffelt, Phys. Rev. D 39, 2089 (1989).
3. F. T. Avignone III et al., Yad. Fiz. 61, 1237 (1998) [Phys.

At. Nucl. 61, 1137 (1998)].
4. M. Minowa, Yad. Fiz. 61, 1217 (1998) [Phys. At. Nucl.

61, 1117 (1998)].
5. G. G. Raffelt, Phys. Rep. 198, 1 (1990).
6. G. G. Raffelt, Stars as Laboratories for Fundamental

Physics (Univ. of Chicago Press, Chicago, 1996).
7. A. V. Borisov and V. Yu. Grishina, Zh. Éksp. Teor. Fiz.

106, 1553 (1994) [JETP 79, 837 (1994)].
P

8. V. V. Skobelev, Zh. Éksp. Teor. Fiz. 112, 25 (1997)
[JETP 85, 13 (1997)].

9. V. V. Skobelev, Yad. Fiz. 61, 2236 (1998) [Phys. At.
Nucl. 61, 2123 (1998)].

10. R. D. Peccei, CP Violation (World Sci., Singapore,
1989).

11. L. D. Landau and E. M. Lifshitz, The Classical Theory
of Fields (Nauka, Moscow, 1967; Pergamon, Oxford,
1975).

12. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series, and Products (Nauka, Moscow, 1971; Academic,
New York, 1980).

13. V. V. Skobelev, Zh. Éksp. Teor. Fiz. 107, 322 (1995)
[JETP 80, 170 (1995)].

14. A. A. Sokolov, I. M. Ternov, and V. G. Bagrov, in Syn-
chrotron Radiation (Nauka, Moscow, 1976), p. 18.

15. A. D. Kaminker, K. P. Levenfish, and D. G. Yakovlev,
Pis’ma Astron. Zh. 17, 1090 (1991) [Sov. Astron. Lett.
17, 450 (1991)].

16. A. V. Borisov and K. V. Zhukovskii, Yad. Fiz. 58, 1298
(1995) [Phys. At. Nucl. 58, 1218 (1995)].

17. J. Bahcall et al., Rev. Mod. Phys. 54, 767 (1982).

Translated by A. Isaakyan
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000



  

Physics of Atomic Nuclei, Vol. 63, No. 11, 2000, pp. 1969–1972. From Yadernaya Fizika, Vol. 63, No. 11, 2000, pp. 2061–2064.
Original English Text Copyright © 2000 by Kudryavtsev.

                                                                                                  

ELEMENTARY PARTICLES AND FIELDS
Theory
Some Comments on the Branching Ratios for  Annihilation 

into pp, , and ph Channels*
A. E. Kudryavtsev**

Institute of Theoretical and Experimental Physics, Bol’shaya Cheremushkinskaya ul. 25, Moscow, 117259 Russia
Received September 27, 1999; in final form, December 16, 1999

Abstract—We present some remarks on the  partial branching ratios in flight at low momenta of
antineutrons measured by the OBELIX Collaboration. A comparison is made to the known branching ratios
from the -atomic states. The branching ratio for the reaction   π+π0 is found to be suppressed in com-
parison to what follows from the  data. It is also shown that there is no so-called dynamical I = 0 amplitude

suppression for the process   . © 2000 MAIK “Nauka/Interperiodica”.
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1. SOME USEFUL DEFINITIONS

Let us first consider the  system. By definition,

|I, I3〉 is the isospin wave function of the  system
with isospin I and its projection I3. Using the notation
of [1], we write the following relations between the
physical states | 〉 and states of definite isospin |I, I3〉:

(1)

On the contrary, in terms of physical states the wave
function |I, I3〉  is sought for the isosinglet state as

(2)

and for the isotriplet as

(3)

Each wave function is normalized as

Let us also define the wave function for the hadron final
state |a〉  with definite isospin I: |a〉 I . We shall use the

notation  for the transition operator from the initial
|I, I3  state to |a〉 I , and

(4)
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is a matrix element for this operator. It does not depend
on I3. Evidently,

in the case I ≠ J.

2. MATRIX ELEMENTS FOR THE TRANSITIONS 
  ππ AND   

Consider only the transitions to the final ππ states
from the initial  S wave (3S1). In this case, the ππ
system is produced in the I = 1 isospin state. So there is

only one operator . The expansion of the |ππ〉 wave
function in terms of the states with definite isospin has
the form

(5)

Thus, using definitions (1), (3), and (4), we get

(6)

This means that the process   π+π– is to be sup-
pressed at least by a factor of two in comparison to

  π+π0.
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Let us now consider the transitions into  final

states. The isospin wave functions for  states have
the following form:

(7)

(8)

In this case, the | 〉  final state is indeed a mixture
of both I = 0 and I = 1 isospin states (I3 = 0). Hence,

both operators,  and , make a contribution to this
reaction and

We can calculate the matrix elements between the

physical states in terms of  and :

(9)

(10)

The matrix elements (9) and (10) are related to the
corresponding partial cross sections:

where q and k are the final and initial c.m. momenta. We
get agreement for the expression (10) with what is
given in [1], but expressions (9) differ from that of [1].
Namely, by redefining the operators according to
Eq.  (32) of [1], we get

(11)

and

(12)

Notice that the factor of 2 on the right-hand side of
Eq. (12) is not present in Eq. (35) in [1]. Historically,
this factor was also lost in [2, 3], and this error was
reproduced later in some review papers, see, e.g., [4, 5].
That is why the conclusion [1–3] on I = 0 amplitude
suppression seems to be incorrect and is to be revised.
We shall discuss this problem in Section 4.
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3. SOME RELATIONS BETWEEN BRANCHING 
RATIOS IN - AND -ANNIHILATION 

PROCESSES

Let us first consider the ππ case. By definition of the
branching ratio, we have

and a similar expression for the  case. So the ratio
of branching ratios is

(13)

Notice that, at low energies, we have if only the
S-wave contributes,

(14)

and

(15)

Here, C 2(k) is the Gamow factor,

and aB = 57.6 fm is the  Bohr radius. Taking into
account (13)–(15), we get

(16)

where R is now a well-defined and finite quantity:

(17)

From the experimental data of [6, 7], we get the value
of R at low momenta of the incident antiproton
(plab = 50–70 MeV/c):

(18)

Notice that this value coincides with what follows
from the experimental data on annihilation of antipro-
tons on deuterons [8]. Thus, we conclude that the data [7]
on the total annihilation  cross section are in agree-
ment with the results of quite independent experiments
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for the annihilation of antiprotons on deuterons [8].
One can find a more detailed discussion of the quantity
R extracted from different data on deuterons and some
heavier nuclei in the review paper of Bendiscioli and
Kharzeev [9].

The case of kaons looks very similar. Using (9) and
(10), as well as the definition of the ratio R (17), one
gets the following relation between branching ratios for

the reactions   K+K–,   , and

  :

(19)

4. ANALYSIS OF THE EXPERIMENTAL 
SITUATION

In [7], the branching ratio for the reaction  
π+π0 in the momentum interval 50–150 MeV/c (S
wave) was found to be

(20)
This value is to be compared with what follows from
the -atomic experiment for the reaction  
π+π–. The separation of the S- and P-wave contributions
to the last reaction was provided in [10, 11]. For the
branching ratio into the π+π– channel from the atomic S
state we get (2.37 ± 0.23) × 10–3 [10] and (2.04 ±
0.17) × 10–3 [11]. 

Substituting these numbers into (16), we get an evi-
dent contradiction. This means that something is wrong
with the branching ratios. If one believes the experi-
mental branching ratios for both  and  channels,
the only possible way to solve the problem is to suggest
that the -atomic wave function at small distances
has an abnormal admixture of the  component. We
shall discuss this hypothesis in the next section.

Let us now discuss the case of kaons. The only infor-
mation on the branching ratio    for isospin
I = 1 channel was for a long time available from the old
data for absorption of antiprotons on deuterons [12],

Nowadays, the OBELIX collaboration gives [7] (S wave)

This means that the branching ratio into  is
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It is seen that this last number for the branching ratio
does not contradict the old data by Bettini et al. [12].

At the same time, from the ASTERIX experiments
[3, 13] we have

Using these values and taking into account Eq. (19), we
get

(21)

So we conclude that there is no evidence for any sup-
pression of the I = 0 amplitude for the reaction

   in the S wave. The dynamical selection
rule for this process declared in [1–5] is the conse-
quence of incorrect formulas for the branching ratios
used in [1, 2].

Let us also discuss the case of the πη channel. From
the experimental data reported in [7], it follows that in
the momentum interval 150–250 MeV/c (P wave)

At the same time, from [10] we have

So again we arrive the conclusion that the ratio

is significantly less than 2R [see (16)].

5. A POSSIBLE SOLUTION OF THE PROBLEM 
FOR THE   ππ BRANCHING RATIOS

In line with [1, 14, 15], we assume that the wave
function for a  atom at small distances is a superpo-
sition of | 〉  and | 〉  configurations, i.e.,

(22)

In terms of the states of definite isospin, this means that
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So it follows immediately that
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The case e = 0 corresponds to the usual suggestion of
the absence of the  component in the  atom. In
the limit e = –1, the atomic state is that of definite isos-
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pin I  = 1. Substituting the experimental numbers for
the ππ branching ratios (see Section 4), we conclude
that it is possible to fit the parameter e so Eq. (23) is jus-
tified. For example, taking Br(   π+π–) = 1.87
(lower limit) and Br(   π+π0) = 2.7 (upper limit),
we get e = –2.24, which corresponds to the value of the

mixing angle cosα = 1/ , where α ≈ 66°. This
means that the admixture of the  component should
be large to fit the experimental data.

6. CONCLUSION

The data on the  total annihilation cross section
presented by the OBELIX collaboration [7] are in
agreement with the data on the value of the ratio R
determined from the absorption of antiprotons on deu-
terons (see [6] and references in [8]).

The branching ratios for the reactions   π+π0

and   π+η at low energies [7] seem to be too
large in comparison to what follows from the analysis
of the known branching ratios for the  atom.

The branching ratio for the reaction   K+KS is
in agreement with the known branching ratio for the
reaction   K0K– from the deuteron data [12].

There is no suppression of the I = 0    reac-
tion amplitude in the S wave (no specific dynamical
selection rule).

Some admixture of the | 〉  component in the -
atomic wave function may help in solving problems
with the branching ratio into two pions and πη. How-
ever, to solve this problem, the admixture should be
large enough.
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Abstract—Experimental data on K 0 and Λ production in ν and  beams are compared with the predictions of
a quark model assuming that the direct production of secondaries dominates. Disagreement of these predictions
with the data suggests that there exists a considerable resonance-decay contribution to the multiplicities of prod-
uct particles. © 2000 MAIK “Nauka/Interperiodica”.

ν

1. INTRODUCTION

It is well known that, in soft hadron–hadron colli-
sions, the production of resonances makes an important
contribution to the multiplicity of stable secondaries
(such as pions and kaons). For example, in the additive
quark model, the probability of direct production of a
secondary hadron having spin J is proportional to the
factor 2J + 1, which means that the main parts of pions,
kaons, etc. are produced via decay of vector, tensor, and
higher spin resonances. These results are in reasonable
agreement [1] with the experimental data on soft had-
ron–hadron collisions.

However, the information about the role of reso-
nance production in hard processes is not sufficient.
The mechanisms of multiparticle production in soft and
hard processes can be different. So, in the present
paper, we will consider the role of resonances in neutral
strange secondary production in deep-inelastic interac-
tions of high-energy neutrinos and antineutrinos with
protons and neutrons.

2. EXPERIMENTAL DATA

For comparison with the quark model (QM) predic-
tions, the experimental data [2] of the E632 collabora-
tion were used. The experiment was done at the Fermi-
lab Tevatron. The detector was a 15-ft bubble chamber
filled with a liquid neon–hydrogen mixture which also
served as the target. The bubble chamber was exposed
to a neutrino beam. The neutrino beam was formed by
the quadrupole triplet train, which focused secondary
particles produced by the interactions of 800-GeV pro-
tons from the Tevatron.

The data sample consisted of 6459 events (5416 νNe
interactions and 1043  interactions). The neutrino
interactions with a single nucleon were picked out by
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using a criterion of selection such as the mass of the tar-
get [3]. It allowed us to select the interactions with the
peripheral nucleon or neutrino interactions without the
intranuclear cascades. The neutrino–nucleon interac-
tions could be attributed to neutrino–proton and neu-
trino–neutron interactions by using the total charge of
the hadronic system (Table 1). This material was used
for the determination of the numbers of generated K 0

and Λ particles, as well as their production rates (or
parts) relative to the different groups of events (νp, νn,

, and ) (Table 2). These production rates are the
results of dividing the number of K 0 and Λ particles by
the total number of events in each group. In the data
sample of vees of Table 2, the corrections for losses of
K 0 and Λ particles caused by methodological sources
(the limited volume of the bubble chamber, scanning
and fitting efficiency, etc.) [2] were not taken into con-
sideration. The statistical errors have been cited. Nev-
ertheless, the correction coefficients taking into
account these effects must be the same for the neu-
trino–proton and neutrino–neutron interactions.

3. QUARK MODEL PREDICTIONS

We will consider only the events with the charged
current interactions (CC). In the case of interactions
with sea quarks, each type of particle and antiparticle is
produced in virtually the same proportion indepen-

ν p νn

Table 1. Experimental data from E632

Reaction ν( )Ne ν( )N N(K0) N(Λ)

νp 5416 739 47 15

νn 1273 84 38

p 1043 282 20 7

n 179 7 8
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Table 2.  Comparison of QM production probabilities with the experimental multiplicities of directly produced K0 and Λ at
large xF

Reaction K0 (QM) in units of wK K0 (exp.), xF < –0.2 Λ (QM) in units of wΛ  Λ (exp.), xF < –0.4

νp ~0 0.008 ± 0.003 ~0 0.004 ± 0.002

νn ≈1 0.005 ± 0.002 ≈1 0.011 ± 0.003

p ≈1 0.004 ± 0.004 ≈1 0.004 ± 0.004

n ≈2 0.000 ± ? ~0 0.000 ± ?

ν

ν

dently of their isospin projection (say, we expect equal
multiplicities of K+, K0, , and K–). However, the sec-
ondaries produced with comparatively large negative
Feynman x (xF) in the laboratory frame should contain
valence quarks of the target nucleus in the target frag-
mentation region; therefore, different kinds of kaons
should be produced with different probabilities. For the
model prediction, we will use the fact that a neutrino
interacts with a valence d quark, which transforms into
a u quark, whereas an antineutrino interacts with a u
quark, which transforms into a d quark. Thus, we have
the following configurations:

νp  uu + u', (1)

  dd + d', (2)

  ud + d', (3)

νn  ud + u'. (4)

Here, q' means the fast quark in the laboratory frame
which absorbs a W boson and determines the fragmen-
tation in the current region. Another two quarks deter-
mine the fragmentation of the valence remnant into sec-
ondaries with comparatively large xF in the target hemi-
sphere.

One can see from (1)–(4) that, say, direct production
of K0 ( ) with comparatively large xF should be sup-
pressed in process (1), where there are no valence d
quarks, in comparison to another reactions. In process
(2), where there are two valence d quarks, it should be
about two times larger than in the cases of (3) and (4).
However, if a significant part of K0 can be produced via
decay of K*(890)+ and K*(890)0, the yields of K0 with
large xF can be more or less equal in all considered pro-
cesses.

A similar situation appears in the case of secondary
Λ-baryon production with large xF. The direct Λ (con-
taining two initial valence quarks u and d) can be pro-
duced with equal probabilities in processes (3) and (4),
and their production should be suppressed in reactions
(1) and (2). However, in the case of Λ production via
Λπ decay of isotriplet resonance Σ(1385), the multi-
plicities of large-xF Λ should be of the same order in all
reactions (1)–(4).

K0

νn

ν p

ds
4. COMPARISON OF THE DATA 
WITH QM ESTIMATES

Here, we compare the experimental results on neu-
tral kaons and Λ hyperons in the production of ν and 
beams with quark model predictions. The QM multi-
plicities of strange secondaries, assuming only direct
production of a kaon containing one valence quark of
the incident target nucleon and direct production of Λ
containing two valence quarks of the target nucleon, are
presented in Table 2. Here, wK and wΛ are the probabil-
ities of K0 and Λ production in the processes of frag-
mentation (or recombination) of one and two valence
quarks of the target nucleon, respectively. Let us recall
that, in the case of large contributions of resonance
decay, the multiplicities of K0 and Λ can be more or less
equal (the exact values of their ratios are model-depen-
dent).

One can compare the QM probability estimates with
the experimental multiplicities of K0 for xF < –0.2 and
of Λ for xF < –0.4.

It is clear that the data for both K0 and Λ production
do not agree with these QM predictions for the direct
mechanism of secondary production. Say, the multi-
plicity of K0 in  interactions should be equal to the
sum of their multiplicities in νn and  interactions,
i.e., .0.005 ± 0.002, which is in disagreement with the
experimental value. The most natural explanation is a
large resonance contribution to the multiplicities of
neutral strange secondaries which changes the predic-
tions depending on the model of resonance contribu-
tions. This idea has been discussed before (see, for
example, [4]).

5. CONCLUSION

We compare the experimental data on K0 and Λ pro-
duction in ν and  beams on proton and neutron targets
with the predictions of the quark model assuming that
their direct production dominates. Disagreement of
these predictions with the data allows us to suppose that
there exists a considerable resonance decay contribu-
tion to the multiplicities of produced secondaries.
Unfortunately, the experimental statistics are insuffi-
cient for numerical estimations.
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Abstract—Within the relativistic quasipotential approach to quantum field theory, a method is developed for
solving a quasipotential equation for a nonlocal separable quasipotential simulating the interaction of two rel-
ativistic particles of unequal masses. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nonlocal separable potentials are of interest and
value not only because the Schrödinger equation can be
solved for a great number of such potentials, but also
because they are extensively used in nuclear physics
and in many-body problems. In particular, nonlocal
separable interactions were invoked in applying Fad-
deev equations to the three-body problem. The
approach relying on such potentials proved to be semi-
nal in solving inverse problems [1]. However, this
approach cannot be applied to essentially relativistic sys-
tems [2, 3]. By way of example, we indicate that, for sys-
tems consisting of light quarks, the contribution of rela-
tivistic corrections to the interaction Hamiltonian is
commensurate with the main, nonrelativistic, term. A
relativistic description is also necessary in dealing with
radiative decays of mesons and nucleon resonances,
where the energy of the emitted photon may be commen-
surate with or even greater than the constituent quark
mass.

The quasipotential approach proposed in [4] proved
to be a viable tool for constructing a relativistic descrip-
tion of two-particle systems [5]. In the present study, a
finite-difference quasipotential equation involving a
nonlocal separable quasipotential simulating the inter-
action between two relativistic spinless particles of
unequal masses (m1 ≠ m2) is solved within the quasipo-
tential approach developed in [6]. The approach relies
on the equation constructed in [7] for the amplitude of
scattering of two relativistic particles of unequal
masses. In the system of units where " = c = 1, this
equation is given by

(1)

where dΩk' = dk'/ , Eq ' = , and
µ = m'2/(m1 + m2).

A p' q',( ) µ
2π
------Ṽ p' q'; Eq',( )–=

+ 2π( ) 3– Ωk'

Ṽ p' k'; Eq',( )A k' q',( )
Sq' Sk'– iε+

----------------------------------------------------,d∫

1 k'/m'( )2
+ m'

2 q'
2

+
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It represents a relativistic generalization of the Lipp-
mann–Schwinger equation in the spirit of Lobachevski
geometry, which is realized on the upper half of the
mass hyperboloid p'2 = m'2, and describes the scattering

of an effective relativistic particle of mass m' = 
with a relative 3-momentum k' on the quasipotential

(p', q'; Eq ' ), the total c.m. energy of the particles
involved being proportional to the energy of one effec-
tive relativistic particle of mass m' [7],

.

We further introduce the wave function

(2)

Instead of (1), we then arrive at the differential form of
the relativistic Schrödinger equation for the wave func-
tion Ψq'(p') in the momentum representation. Specifi-
cally, we have

(3)

A transition from the momentum representation to
configuration space is accomplished with the aid of the
coordinate-representation wave function [7, 8]

(4)

The functions

m1m2

Ṽ

Sk' m1
2 k2

+ m2
2 k2

++
m'
µ
----- m'

2 k'
2

+= =

Ψq' p'( ) 2π( )3
1 p'/m'( )2

+ δ p' q'–( )=

–
2π
µ

------ A p' q',( )
Sq' Sp'– iε+

-------------------------------------.

Sq' Sp'–( )Ψq' p'( )

=  2π( ) 3– Ωk'Ṽ p' k'; Eq',( )Ψq' k'( ).d∫

ψq' r( ) 2π( ) 3– Ωp'ξ p' r,( )Ψq' p'( ).d∫=

ξ p' r,( )
p0' p'– n⋅

m'
----------------------- 

 
1– irm'–

,=

p0' Ep' m'
2 p'

2
+ , r rn, n 1,= = = =
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SOLVING A RELATIVISTIC QUASIPOTENTIAL EQUATION 1977
play the role of relativistic plane waves and satisfy the
equation

(5)

where

Here, ∆θ, ϕ is the angular part of the Laplace operator,
while λ' = 1/m' is the Compton wavelength associated
with the effective particle. By applying the Shapiro
transformation (4) to Eq. (3) and taking into account
Eq. (5), we obtain

(6)

where

Obviously, Eq. (5) represents an analog of the dif-
ferential Schrödinger equation for particles interacting
via a nonlocal potential and having unequal masses.

Thus, the fact that, within the quasipotential
approach being considered, the total c.m. energy of two
nonrelativistic particles of unequal energies can be rep-
resented in a form proportional to the energy of an
effective relativistic particle of mass m', whence it fol-
lows that the energy denominator in the relativistic
Lippmann–Schwinger equation (1) can be treated as a
single-particle one, makes it possible to reduce the rel-
ativistic problem of two bodies of unequal masses to a
one-body problem. The present study is devoted to pre-
cisely solving and investigating Eq. (6) and to formulat-
ing the Levinson theorem for bound states in the case of
nonlocal separable quasipotentials.

2. WAVE FUNCTION AND PHASE SHIFT

For a separable interaction, we can choose the rep-
resentation [9]

(7)

Expanding the wave function ψq'(r) in terms of partial
waves as

(8)

Sq' H0–( )ξ q' r,( ) 0,=

H0
m'

2

µ
------- iλ'∂

∂r
--------- 

 cosh
iλ'
r

------ iλ'∂
∂r

--------- 
 sinh+=

–
λ'

2

2r
2

-------∆θ ϕ,
iλ'∂
∂r

--------- 
  .exp

Sq' H0–( )ψq' r( ) r'V r r'; Eq',( )ψq' r'( ),d∫=

V r r'; Eq',( )

=  2π( ) 6– Ωp' Ωk'ξ p' r,( )Ṽ p' k'; Eq',( )ξ* k' r',( ).dd∫

V r r'; Eq',( ) V r r',( )≡

=  2l 1+( ) εnlv nl r( )v nl r'( )Pl
r r'⋅
rr'

---------- 
  .

n 1=

Nl

∑
l 0=

∞

∑

ψq' r( ) 2l 1+( )i
lϕ l χ' r,( )

r
-------------------Pl

q' r⋅
q'r

----------- 
  ,

l 0=

∞

∑=
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we can recast Eq. (6) into the form

(9)

where  = (m'2/µ)  = (m'2/µ) ,

Vnl(r) = rvnl(r), εnl = ±1, and r(2) = r(r + iλ').

For the sake of simplicity, we further restrict our
consideration to the case where only one separable
term corresponds to each l (Nl = 1). In this case, Eq. (9)
assumes the form

(10)

where Vl(r) = rvl(r) and εl = ±1. A solution
that obeys Eq. (10) and the boundary condition

(11)

will be sought by applying the integral Hankel transfor-
mation [9]:

(12)

(13)

(14)

(15)

Here, Ql(z) is a Legendre function of the second kind.

It should be noted that the function Sl(χ', r) appears
to be a solution to Eq. (10) in the case where the inter-
action is switched off (εl = 0), simultaneously satisfying
the orthonormality and completeness conditions [8]

iλ'
d
dr
----- 

 cosh
λ'

2
l l 1+( )
2r

2( )------------------------ iλ'd
dr

--------- 
 exp χ'cosh–+ ϕ l χ' r,( )

+
1
2
--- εnlVnl r( ) r'Vnl r'( )ϕ l χ' r',( )d

0

∞

∫
n 1=

Nl

∑ 0,=

Sq' 1 q'/m'( )2
+ χ'cosh

8πµ/m'
2

iλ'
d
dr
----- 

 cosh
λ'

2
l l 1+( )
2r

2( )------------------------ iλ'd
dr

--------- 
 exp χ'cosh–+

ϕ l χ' r,( ) 1
2
---εlVl r( ) r'Vl r'( )ϕ l χ' r',( )d

0

∞

∫ 0,=+×

8πµ/m'
2

ϕ l χ' 0,( ) 0=

ϕ̃ l χ' χ,( ) rϕ l χ' r,( )Sl* χ r,( )/Ql χcoth( ),d

0

∞

∫=

ϕ l χ' r,( ) 2
π
--- χQl χcoth( )ϕ̃ l χ' χ,( )Sl χ r,( ),d

0

∞

∫=

Ṽ l χ( ) rVl r( )Sl* χ r,( )/Ql χcoth( ),d

0

∞

∫=

Vl r( ) 2
π
--- χQl χcoth( )Ṽ l χ( )Sl χ r,( ).d

0

∞

∫=

2
π
--- rSl χ' r,( )Sl* χ r,( )d

0

∞

∫ δ χ' χ–( ),=
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By applying transformations (13) and (15) to
Eq. (10), we arrive at

(16)

where

(17)

Let us now set

(18)

where νl(r) = (–1)l + 1(r/λ')(l + 1)/(–r/λ')(l + 1), (r/λ')(l) =
ilΓ(l – ir/λ')/Γ(–ir/λ'), and Γ(z) is a gamma function.
Suppose that the relativistic integral Hankel transfor-
mation is valid for the function Ul(r):

(19)

(20)

We further consider that, for real-valued l and χ, the
relation (χ, r) = νl(r)Sl(χ, r) holds [10]. Instead of
(17), we therefore have

(21)

For a unique solution to Eq. (16) to exist, it is neces-
sary that

(22)

Let us consider this point in some detail. The functions
Sl(χ, r) possess the well-known properties [8, 10]

(23)

(24)

By virtue of these, the condition in (22) means that the

function (χ) is continuous everywhere, whereas the

function Ql( ) (χ) is differentiable for all non-
negative χ. Moreover, it follows from (14) that

(25)

(26)

2
π
--- χSl χ r,( )Sl* χ r',( )d

0

∞

∫ δ r r'–( ).=

χ'cosh χcosh–( )ϕ̃ l χ' χ,( ) 1
2
---εlNl χ'( )Ṽ l χ( ),=

Nl χ'( ) rVl r( )ϕ l χ' r,( ).d

0

∞

∫=

Vl r( ) ν l r( )Ul r( ),=

Ũl χ( ) rUl r( )Sl* χ r,( )/Ql χcoth( ),d

0

∞

∫=

Ul r( ) 2
π
--- χQl χcoth( )Ũl χ( )Sl χ r,( ).d

0

∞

∫=

Sl*

Nl χ'( ) 2
π
--- χQl

2 χcoth( )ϕ̃ l χ' χ,( )Ũl χ( ).d

0

∞

∫=

rVl r( ) L1 0 ∞,( ).∈

Sl χ r,( ) χr/λ' πl/2–( ), χr/λ' ∞,sin≈

Sl χ r,( ) r/λ'( )Ql χcoth( )e
iπl/2–

, r 0.≈

Ṽ l

χcoth Ṽ l

Ql χcoth( )Ṽ l χ( ) O 1( ), χ ∞;=

Ṽ l χ( ) O 1( ), χ 0,=
P

provided that the condition in (22) is satisfied. It is

obvious that, by virtue of (18), the function (χ) also
possesses the aforementioned property.

For scattering states (Eq’ /m' =  ≥ 1), the rele-
vant solution to Eq. (16) is given by

(27)

where P is the principal-value symbol. The factor in
front of the delta function was chosen in accordance
with the normalization of the wave function; that is, in
the absence of interaction (εl = 0), the representation in
(13) must lead to the expression ϕl(χ', r) =
Sl(χ', r)/Ql( ). Substituting (27) into (13) and
(21), we obtain

(28)

(29)

(30)

Since the functions (χ) and (χ) are differentiable,
the principal values of the integrals exist; by virtue of
the conditions in (25) and (26), each integral involved
is convergent both at the upper and at the lower limit.
Thus, a conclusion that can be drawn from the above is
the following: provided that the condition in (22) is sat-
isfied, relations (28)–(30) determine the unique solu-
tion to equation (10) with the boundary condition (11).

The asymptotic behavior of the wave function
ϕl(χ', r) can be found by representing expression (28)
in the form

This representation follows from the asymptotic
expression (23) and from the fact that the integrand on
the right-hand side of (28) is an even function of χ.

Ũl

χ'cosh

ϕ̃ l χ' χ,( ) π
2
--- χ'sinh

Ql
2 χ'coth( )

---------------------------δ χ'cosh χcosh–( )=

+
1
2
---εlNl χ'( )P

Ṽ l χ( )
χ'cosh χcosh–

-------------------------------------,

χ'coth

ϕ l χ' r,( )
Sl χ' r,( )

Ql χ'coth( )
--------------------------=

+
1
π
---εlNl χ'( )P χQl χcoth( )

Ṽ l χ( )Sl χ r,( )
χ'cosh χcosh–

-------------------------------------,d

0

∞

∫

Nl χ'( ) Ũl χ'( ) 1 P
1
2
--- χ

Al χ( )
χcosh χ'cosh–

-------------------------------------d

0

∞

∫+

1–

,=

Al χ( ) 2
π
---εlQl

2 χcoth( )Ũl χ( )Ṽ l χ( ).=

Ṽ l Ũl

ϕ l χ' r,( ) rχ'/λ' πl/2–( )sin
Ql χ'coth( )

------------------------------------------=

– εlNl χ'( )Re
1

2iπ
--------P χQl χcoth( ) Ṽ l χ( )

χcosh χ'cosh–
-------------------------------------d

∞–

∞

∫
× irχ/λ' iπl/2–( ),exp

rχ'/λ' ∞.
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Making use of the relation

we obtain

The integral in the last equality can easily be calculated
by applying the Cauchy residue theorem in the upper
half-plane of the variable χ (Imχ ≥ 0):

Here, we have considered that the functions sinhz and
Ql(cothz) are periodic with a period of 2πi. Taking into
account the last result, we find that the asymptotic
behavior of the wave function is given by

(30‡)

1
α iη–
--------------- iπδ α( ) P

1
α
--- 

  , η +0,+=

ϕ l χ' r,( ) rχ'/λ' πl/2–( )sin
Ql χ'coth( )

------------------------------------------ εlNl χ'( )Re
1

2iπ
--------





–=

× χ
Ql χcoth( )Ṽ l χ( ) irχ/λ' iπl/2–( )exp

χcosh χ'cosh– iη–
---------------------------------------------------------------------------------------d

∞–

∞

∫

–
Ql χ'coth( )Ṽ l χ'( )

2 χ'sinh
----------------------------------------- irχ'/λ' iπl/2–( )exp[

--– irχ'/λ'– iπl/2+( ) ]exp




,

η +0.

1
2iπ
-------- χ

Ql χcoth( )Ṽ l χ( ) irχ/λ'( )exp
χcosh χ'cosh– iη–

--------------------------------------------------------------------d

∞–

∞

∫

=  res
Ql zcoth( )Ṽ l z( ) izr/λ'( )exp

zcosh χ'cosh– iη–
------------------------------------------------------------------,

n 0=

∞

∑

--z χ'cosh iη+( )arccosh 2πni+=

+ res
Ql zcoth( )Ṽ l z( ) izr/λ'( )exp

zcosh χ'cosh– iη–
------------------------------------------------------------------,

n 1=

∞

∑

--z χ'cosh iη+( )arccosh– 2πni+=

=  
Ql χ'coth( )Ṽ l χ'( ) iχ'r/λ'( )exp

χ'sinh
------------------------------------------------------------------------ O e

2πr/λ'–( ),+

η +0.

ϕ l χ' r,( ) rχ'/λ' πl/2–( )sin
Ql χ'coth( )

------------------------------------------ εlNl χ'( )–=

×
Ql χ'coth( )Ṽ l χ'( ) rχ'/λ' πl/2–( )cos

χ'sinh
------------------------------------------------------------------------------------- O e

2πr/λ'–( ),+

rχ'/λ' ∞.
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For arbitrary l, the asymptotic behavior of the wave
function is

(30b)

By comparing these two asymptotic equalities, we find
that the phase shift can be determined from the equa-
tion

(31)

We now notice that the equality in (20) can be recast
into the form

It follows that the complex-valued functions (χ) and

(χ) are related by the equation

This equation, together with the condition requiring
that the phase shift and, hence, the function Al(χ) be
real-valued, leads to the equality

which is equivalent to the condition

The separable quasipotential V(r, r') involves products
of the form εlVl(r)Vl(r'); therefore, it follows from the
last condition that the quasipotential must be real-val-
ued:

(32)

This implies that

(33)

The expression in (30) then takes the form

(34)

ϕ l χ' r,( ) rχ'/λ' πl/2–( )sin
Ql χ'coth( )

------------------------------------------=

+
rχ'/λ' πl/2–( ) δl χ'( )tancos

Ql χ'coth( )
------------------------------------------------------------------,

rχ'/λ' ∞.

δl χ'( )tan

=  
π
2
--- χ'Al χ'( ) 1 P

1
2
--- χ

Al χ( )
χcosh χ'cosh–

-------------------------------------d

0

∞

∫+

1–

.sinh
1–

–

Vl r( ) 2
π
--- χQl χcoth( )Ũl χ( )Sl* χ r,( ).d

0

∞

∫=

Ṽ l

Ũl

χQl χcoth( )Ṽ l χ( )Sl χ r,( )d

0

∞

∫

=  χQl χcoth( )Ũl χ( )Sl* χ r,( ).d

0

∞

∫

Ṽ l* χ( ) Ũl χ( ),±=

Vl* r( ) Vl r( ).±=

Vl* r( ) Vl r( ).=

Ṽ l* χ( ) Ũl χ( ).=

Al χ( ) 2
π
---εlQl

2 χcoth( ) Ṽ l χ( )
2
.=
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3. BOUND STATES AND LEVINSON THEOREM

Suppose that there exists at least one bound state at
energy E ' = Eq ' /m' = . The relevant solution to
Eq. (16) is then given by

(35)

Substituting this solution into (21), we arrive at the fol-
lowing equation for eigenvalues:

(36)

From the condition requiring the existence of bound
states, it follows that Eq. (36) must have at least one
solution. Hence, the function Al(χ) must be real-valued,
which leads to the condition in (33). From (34) and
(36), it follows that the value of εl = –1 corresponds to
the bound state whose energy lies in the range 0 ≤ E ' =

 < 1.

At the same time, Eq. (36) may have solutions at
εl = ±1 for bound states at energies satisfying the ine-
quality E ' =  ≥ 1.

Let us consider the s wave (l = 0). Suppose that there
exists a bound state at an energy satisfying the condi-
tion

From (35) and (36), it follows that a bound state at such
an energy value exists, provided that

(37)

Obviously, the boundary condition (11) is then satis-
fied; the wave function as determined from (13) and
(35) at ε0 = –1 and l = 0 can be represented as

The asymptotic behavior of this function can be deter-
mined by applying the Cauchy residue theorem in per-
forming integration in the upper half-plane of the vari-
able χ. As a result, we arrive at

χ'cosh

ϕ̃ l χ' χ,( ) 1
2
---εlNl χ'( )P

Ṽ l χ( )
χ'cosh E '–

---------------------------.–=

1
1
2
---P

χAl χ( )d
χcosh E '–

--------------------------

0

∞

∫+ 0.=

Ei'

ER'

0 Ei'≤ χ i'cosh κ i'cos 1 χ i' iκ i'=( ).<= =

ε0 1,
2
π
--- χṼ0

2
χ( )d

0

∞

∫– 1.>=

ϕ0 χ i' r,( )
N0 χ i'( )

2πi
---------------- χQ0 χcoth( )Ṽ0 χ( ) irχ/λ'( )exp

χcosh Ei'–
--------------------------------------------.d

∞–

∞

∫=

ϕ0 χ i' r,( ) N0 χ i'( )=

× res
Q0 zcoth( )Ṽ0 z( ) izr/λ'( )exp

zcosh Ei'–
----------------------------------------------------------------- z χi' 2πni+=,

n 0=

∞

∑

=  
κ i'

κ i'sin
------------

N0 χ i'( )Ṽ0 χ i'( ) rκ i'/λ'–( )exp

1 2πr/λ'–( )exp–
-----------------------------------------------------------------.
P

On the basis of this relation, we obtain

Let us now consider l = 0 bound states at energies in
the region  =  ≥ 1. In this case, Eq. (36) can
have solutions at ε0 = ±1 and l = 0. If such a solution
exists, it can be shown with the aid of (30a) that the
asymptotic behavior of the wave function is given by

From this relation, it follows that the wave function
asymptotically tends to zero, provided that

(38)

Since the boundary condition (11) is also satisfied, a bound
state corresponds to the energy value  = .

Summarizing the above results and using expression
(31), we conclude that, at the bound-state energy equal
to , the decreasing phase shift takes the value of πn,

where n is an integer. This is so, because, at  =

, the numerator and the denominator of the
expression on the right-hand side of (31) are both equal
to zero by virtue of conditions (36) and (38). It should
be noted, however, that the function A0(χ), which is
determined by expression (34), has a zero of order not

lower than two at the point , whereas the denomina-
tor in (31) has a simple zero. But if the denominator in

(31) does not vanish at χ' = , the phase shift proves
to be tangent to the straight line δ0 = πn from above or
from below, not intersecting it; that is, there is an extre-
mum. Thus, we conclude that, if the phase-shift curve
intersects the straight line δ0 = πn from above and if the
conditions in (36) and (38) are satisfied, there is a
bound state at the energy value of  = .

Bound states for l > 0 can be analyzed by following
a procedure that is similar to that used to treat the case
of the s wave. By doing this, we arrive at results analo-
gous to those presented above. By using the estimate in
(25) and expression (31), we now conclude that

(∞) = 0. For this reason, we choose δl(χ') in such
a way as to ensure fulfillment of the equality δl(∞) = 0.
From here and from the continuity of the phase shift in
χ', we obtain the Levinson theorem for the case of a
separable quasipotential (l ≥ 0). It reads

(39)

ϕ0 χ i' r,( ) κ i'r/λ'–( ), r/λ' ∞.exp≈

ER' χR'cosh

ϕ0 χR' r,( ) = ε0N0 χR'( )
Q0 χR'coth( )Ṽ0 χR'( ) rχR' /λ'( )cos

χR'sinh
--------------------------------------------------------------------------–

+ O 2πr/λ'–( )exp( ),

r/λ' ∞.

Ṽ0 χR'( ) 0.=

ER' χR'cosh

ER'

ER'

χR'cosh

χR'

χR'

ER' χR'cosh

δltan

δl 0( ) δl ∞( )– δl 0( ) ν l nl+( )π,= =
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where νl is the number of bound states whose energies

lie in the region  ≥ 1, n = 0, 1, 2, …, νl – 1, while nl

is the number of bound states at energies in the range
0 ≤  < 1, k = 0, 1, 2, …, nl – 1.

4. APPLICATIONS

By way of example, we will use the above results to
find the conditions ensuring the existence of bound
states and scattering states for the quasipotential (l = 0)

(40)

and draw a comparison with the corresponding results
emerging from a nonrelativistic treatment for the same
quasipotential. Obviously, the image of the quasipoten-
tial in (40) has the form

(41)

Let us find a bound state at an energy in the range
0 ≤  < 1,  = cos , 0 <  ≤ π/2. In accordance
with the conditions in (36) and (37), the bound state in
question is then determined as a solution to the equa-
tion

(42)

under the condition

(43)

At the same time, scattering states that occur at ener-
gies taking values in the region  =  ≥ 1 and
which are determined as simultaneous solutions to Eqs.
(36) and (38) satisfy the equation (ε0 = 1)

(44)

Equation (44) admits the existence of two scattering
states at energies in the region

under the condition

(45)

The value found for the energy of a scattering state,
, possesses the following properties: (i) If the well

width a does not change, the growth of the parameter α
leads to the growth of the scattering-state energy ,
and vice versa. (ii) If the parameter α is fixed, changes
in the parameter a lead to changes in the level specified

ERn'

Eik'

V0 r( ) αδ r a–( ), α a 0,>,=

Ṽ0 χ'( ) α aχ'sin
χ'

-------------------.=

Ei' Ei' κ i' κ i'

π κ i'–
π 2a π κ i'–( )sinh

2πasinh
----------------------------------------–

2π
α2
------ κ i'sin– 0,=

0 κ i'
π
2
---,≤<

aα 2
1.>

ERn' χRn'cosh

1
α 2

2π
------

χRn'

χRn'sinh
-------------------–  = 0, χRn'  = πn/a, n±  = 1 2 … ., ,

ERn' χRn'cosh 1, χRn'> πn/a, n± 1 2 …,, ,= = =

α 2
2π.>

ERn'

ERn'
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by n, but the quantity | | = πn/a remains unchanged.
Thus, the energy levels in question are quantized as
functions of the parameters a and α according to
Eq. (44) under the condition in (45).

In the nonrelativistic case, which was considered in
[1], the same image (41) corresponds to the quasipoten-
tial in (40) at χ' = k. In this case, the bound state at a
negative energy k2 = –κ2 < 0 also exists only under the
condition in (43), but it is determined as a solution to
the equation

(46)

At the same time, there are no scattering states at non-
negative energies k2 ≥ 0 in the nonrelativistic case.

5. CONCLUSION

Within the relativistic quasipotential approach to
quantum field theory, a method has been developed
for solving a finite-difference quasipotential equation
involving a nonlocal separable quasipotential that
simulates the interaction between two relativistic
spinless particles of unequal masses. This has permit-
ted finding an explicit expression for the phase shift,
determining the conditions under which bound and
scattering states may exist, and formulating the
Levinson theorem. The proposed approach relies on
the possibility of representing the total c.m. energy of
two relativistic particles of unequal masses as an
expression proportional to the energy of an effective
relativistic particle of mass m'.

As an application of the results obtained in the
present study, we have analyzed the conditions of
existence of bound and scattering states for a delta-
function quasipotential and performed a comparison
with the nonrelativistic case. It has been shown that,
in contrast to the nonrelativistic case, relativistic
effects in particle scattering on a delta-function quasi-
potential manifest themselves in the formation of
scattering states.
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Abstract—Within the relativistic quasipotential approach to quantum field theory, a method is developed
according to which a nonlocal separable quasipotential that represents the interaction between two relativis-
tic particles of unequal masses can be reconstructed on the basis of the phase shift and bound-state energies.
© 2000 MAIK “Nauka/Interperiodica”.
It was proven by Gelfand and Levitan [1, 2], March-
enko [3], and Krein [4, 5] that the inverse problem can
in principle be solved within nonrelativistic theory.
They reduced the problem to linear integral equations
in two versions, which served as a basis for a further
development of inverse-problem theory. The most com-
prehensive survey of this theory was given in the mono-
graphs of Chadan and Sabatier [6] and Zakhariev and
Suzko [7].

In the majority of studies, however, the problem of
reconstructing the underlying interaction is formulated
on the basis of the nonrelativistic Schrödinger equation,
so that the important problem of reconstructing interac-
tions for essentially relativistic systems—in particular,
within the relativistic quasipotential approach [8]—has
yet to be solved conclusively.

Within the quasipotential approach proposed in [9],
the problem being discussed is treated here for the case
where a nonlocal separable quasipotential simulating
the interaction between two relativistic spinless parti-
cles of unequal masses (m1 ≠ m2) must be reconstructed
on the basis of the phase shift and bound-state energies.
The approach developed here relies on the expression
that was found by the present author for the phase shift
and which has the form [10] (we use the system of units
where " = c = 1)

(1)

where the quantity χ' is defined via the relation

and

(2)

δl χ'( )tan

=  
π
2
--- χ'Al χ'( ) 1 P

1
2
--- χ

Al χ( )
χcosh χ'cosh–

-------------------------------------d

0

∞

∫+

1–

,sinh
1–

–

Eq' m' 1 q'/m'( )2
+ m' χ', m'cosh m1m2,= = =

Al χ'( ) 2
π
---εlQl

2 χ'coth( ) Ṽ l χ'( )
2
, εl 1.±= =
1063-7788/00/6311- $20.00 © 1983
Here, Ql(z) is a Legendre function of the second kind.
In order to find the quasipotential Vl(r) on the basis

of the phase shift δl(χ'), it is necessary to solve the inte-
gral equation (1) for the function Al(χ'). After that, the

function (χ') is determined from Eq. (2). The quasi-
potential Vl(r) is then reconstructed by performing the
relativistic Hankel transformation

(3)

It should be noted that the function Sl(χ, r) is a free
solution to a finite-difference quasipotential equation in
configuration space [11]. 

In particular, the relativistic Hankel transforma-
tion (3) at l = 0 reduces to the conventional Fourier
transformation

We assume that the phase shift δl(χ') in Eq. (1) is a
function continuous in the sense of Hölder with a posi-
tive index and that, for χ'  ∞, it behaves as

(4)

These constraints are necessary and sufficient for the
quasipotential to satisfy the conditions

(5)

which ensures the uniqueness of the solution to the
problem at hand.

It should be noted that, if the phase shift intersects
the straight lines δl(χ') = πn (n is an integer) from below
as χ' increases, the inverse problem has no solutions.
We therefore assume that, as χ' increases, the phase
shift δl(χ') intersects the straight lines δl(χ') = πn (n =
0, 1, 2, …) from above.

Ṽ l

Vl r( ) 2
π
--- χQl χcoth( )Ṽ l χ( )Sl χ r,( ).d

0

∞

∫=

V0 r( ) 2
π
--- χχ Ṽ0 χ( ) rχ .sind

0

∞

∫=

δl χ'( ) O e
γ χ'–( ), l 0, γ 1.>≥=

rVl r( ) L1 0 ∞,( ),∈
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Suppose that there exist νl (l ≥ 0) bound states at
energies satisfying the conditions

We then have

(6)

In this case, the phase shift at large energy values
appears to be a negative quantity of small magnitude
(εl = +1), while the bound-state energies  ≥ m' are
found by using the same values of χ' at which the phase
shift δl(χ') intersects the straight lines δl(χ') = πn from
above as χ' increases; that is,

(7)

The integral equation (1) can be reduced to the form

(8)

where x =  and where we introduced the follow-
ing notation:

(9)

With the aid of the representation

Eq. (8) can be recast into the form

(10)

Let us consider the function

(11)

If the function ψl(x) is continuous in the sense of
Hölder and if the integral in Eq. (11) converges, the
function Hl(z) is analytic in the complex plane of the
variable z with the cut from 1 to +∞; in addition, the
relation

(12)

ERn' m' χRn'cosh m', n≥ 0 1 … ν l 1.–, , ,= =

δl 0( ) πν l.=

ERn'

δl χRn'( ) πn, n 0 1 2 … ν l 1.–, , , ,= =

Al xarccosh( )gl
1–

x( ) 1
1
π
---P t

ψl t( )hl* t( )
t x–

--------------------------,d

1

∞

∫+=

χ'cosh

ψl x( ) Al xarccosh( )gl
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x( )=

1 iπ/2( )gl x( ) x
2

1–( )
1/2–

+[ ] ,×

gl x( ) 2/π( ) x
2

1–( )
1/2

∆l x( ),tan–=

∆l x( ) δl xarccosh( ),=

hl x( ) π/2( )gl x( ) x
2

1–( )
1/2–

=

× 1 iπ/2( )gl x( ) x
2

1–( )
1/2–

–[ ]
1–

=  ∆l x( ) i∆l x( )–( ).expsin–

1/ α i0–( ) iπδ α( ) P 1/α( ),+=

ψl x( ) 1
1
π
--- t

ψl t( )hl* t( )
t x– i0–

--------------------------.d

1

∞

∫+=

Hl z( ) 1
1
π
--- t

ψl t( )hl* t( )
t z–

--------------------------.d

1

∞

∫+=

Hl z( )
z ∞→
lim 1=
P

holds in all directions. Hence, a solution to the integral
equation (10) can be represented as

(13)

By substituting the solution in (13) into the expression
for the discontinuity suffered by the function Hl(z)
upon traversing the cut,

we arrive at the homogeneous Riemann–Hilbert equa-
tion for the function Hl(z):

(14)

A particular solution satisfying Eq. (14) and the
condition in (12) has the form

(15)

where

(16)

We also have the relation

which holds in all directions, as follows from the
assumptions on the behavior of the phase shift and from
the condition in (4). Moreover, the function specified
in  (16) is defined everywhere on the cut, perhaps with
the exception of the point z = 1, where its behavior is
given by

(17)

Here, the function Ωl(z) is finite for z  1, while
∆l(1) = δl(0) = πνl (there are νl bound states at energies

lying in region  = m'  ≥ m', n = 0, 1, …,
νl − 1). Therefore, the function Hl(z) has a zero of order
νl at the point z = 1.

Thus, we conclude that, according to (13), (15), and
(16), the relevant solution to the nonhomogeneous inte-
gral equation (10) has the form

(18)

where

(19)

It should be noted that the function given by (18) is
regular at x = 1 (it has a zero of order νl at this point), is
continuous in the sense of Hölder with the same index
as the phase shift, and is bounded for x  +∞. (All
this is consistent with the a priori assumptions on its

ψl x( ) Hl x+( ) Hl x iη+( ), 1
η +0→
lim x ∞.≤ ≤≡=

Hl x+( ) Hl x–( )– 2iψl x( )hl* x( )=

=  2i ∆l x( ) i∆l x( )( )ψl x( ),expsin–

Hl x+( ) 2i∆l x( )( )exp Hl x–( )– 0, 1 x ∞.≤ ≤=

H̃l z( ) ωl z( )[ ] ,exp=

ωl z( ) 1
π
--- t

∆l t( )
t z–
-----------.d

1

∞

∫–=

ωl z( )
z ∞→
lim 0,=

ωl z( ) 1/π( )∆l 1( ) 1 z–ln Ωl z( ).+=

ERn' χRn'cosh

ψ̃l x( ) α l x( ) i∆l x( )–[ ] ,exp=

α l x( ) 1
π
---P t

∆l t( )
t x–
-----------.d

1

∞

∫–=
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properties.) Finally, this function is a solution to Eq. (10)
since, according to the Cauchy theorem, we have

where Γ is the closed contour consisting of a circle of
radius R, two banks of the cut from 1 to R (obviously,
the contour goes in opposite directions along these
banks), and a circle Cη having a radius η and a center at
the point z = 1. The contribution of the integral along
the circle Cη tends to zero for η  +0 since the func-

tion (z) is regular at the point z = 1.
Let us now find a general solution to the homoge-

neous equation

(20)

For this, we will now consider the function

(21)

which is analytic in the complex plane of the variable z
with the cut from 1 to +∞ and which obeys the relation

(22)

in all directions. The relevant solution to the integral
equation (20) has the form (13), as before, while the
function Hl0(z) satisfies the homogeneous Riemann–
Hilbert equation (14). A general solution to this equa-
tion will be sought in the form

(23)

Substituting (23) into (14) and requiring that the func-
tion Hl0(z) be finite at z = 1, we obtain m = νl . Hence,
we have

(24)

It is obvious that, in just the same way as in the case of
a particular solution, integration along the contour Γ
shows that the function in (24) satisfies Eq. (14) and
possesses all the required properties.

1
π
--- t

ψ̃l t( )hl* t( )
t x– i0–

--------------------------d

1

∞

∫

=  
1

2πi
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z x– iη–
----------------------d
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∫ z
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z x– iη–
----------------------d

CR
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η +0 R +∞→,→

lim

=  H̃l x+( ) 1– ψ̃l x( ) 1,–=

H̃l

ψl0 x( ) 1
π
--- t

ψl0 t( )hl* t( )
t x– i0–

----------------------------.d

1

∞

∫=

Hl0 z( ) 1
π
--- t

ψl0 t( )hl* t( )
t z–

----------------------------,d

1

∞

∫=

Hl0 z( )
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lim 0=

Hl0 z( ) Ak 1–

ωl z( )( )exp

z 1–( )k
---------------------------.

k 1=

m

∑=

ψl0 x( ) Hl0 x+( )=

=  Ak 1– / x 1–( )k( ) α l x( ) i∆l x( )–[ ] .exp
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νl

∑
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Therefore, a general solution to the integral equa-
tion (10) has the form

(25)

By using the notation in (9) and rearranging the sum as
a product, we can recast the solution in (25) into the
form

(26)

where

(27)

In order to determine the constants Bn in (26), we note
that, in accordance with the definition in (2), the func-
tion Al(χ') is of fixed sign at all values of χ'; since εl =
+1, it must be positive. At the same time, the phase shift
changes sign at the bound-state energies  =

m'  ≥ m'. Hence, the function Al(χ') retains a
plus sign, provided that

Instead of (26), we will then have

(28)

Thus, the solution in (28) is completely determined
by the phase shift since  is also determined by the
behavior of the phase shift. Moreover, it follows from
expressions (27) and (28) that the function Al(χ') is
continuous in the sense of Hölder and that, for χ' 
+∞, it behaves as

provided that the phase shift satisfies condition (4).
This in turn implies that the quasipotential Vl(r) satis-
fies condition (5).

The case where εl = –1 and where there are νl bound
states whose energies lie in the region

ψl x( ) α l x( ) i∆l x( )–[ ]exp=

× 1 Ak 1– / x 1–( )k
+( ).

k 1=

νl

∑

Al χ'( ) 2/π( ) χ' δl χ'( )sinsinh–=
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n 0=
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∏exp
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0

∞
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χRn'cosh
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Al χ'( ) 2/π( ) χ' δl χ'( ) α l χ'cosh( )[ ]expsinsinh–=
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e
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ERn' m' χRn'cosh m', n≥ 0 1 … ν l 1,–, , ,= =
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and nl bound states whose energies satisfy the condition

is considered in the same way.
By virtue of the Levinson theorem, we have

In accordance with expression (17), the function Hl(z)
therefore has a zero of order (νl + nl) at z = 1. Further
following the same line of reasoning as that adopted for
the case of εl = +1 and considering that the solution
Al(χ') must now retain a minus sign for all values of χ'
(εl = –1), we obtain

(29)

Thus, the function Al(χ') is completely determined
by the phase shift and bound states, and its sign is oppo-
site to the sign of the phase shift for χ'  +∞.

In order to reconstruct the quasipotential Vl(r) by
means of the transformation in (3), it is necessary to

know the complex-valued function (χ'), but expres-
sion (2) specifies only its absolute value for l > 0. None-

theless, (χ') is completely determined by the func-
tion Al(χ'), because the latter controls all bound states,
the zeros of this function. These zeros occur either on

the real axis (  ≥ m') or on the imaginary axis (0 ≤
 < m') in the complex plane of the variable χ'.

Owing to this, we can introduce the function

(30)

where nl is the number of bound states whose energies
lie in the region

and  is the asymptotic form of the function

for |χ'|  ∞.

The function (χ') is analytic in the region Imχ' > 0;
is continuous for Imχ' ≥ 0; and satisfies the condition

(31)

provided that the condition in (5) is met. In addition, the

function (χ') vanishes nowhere for Imχ' > 0. There-

fore, the function ln (χ') is analytic in the region
Imχ' > 0 and tends to zero at infinity by virtue of the

0 Eik'≤ m' κ ik'cos m', k< 0 1 … nl 1–, , ,= =

δl 0( ) π ν l nl+( ).=

Al χ'( ) 2/π( ) χ' δl χ'( ) α l χ'cosh( )[ ]expsinsinh–=

× 1
χRn'cosh 1–
χ'cosh 1–

-----------------------------– 
  1

1 κ ik'cos–
χ'cosh 1–

-------------------------+ 
  .

k 0=

nl 1–

∏
n 0=

νl 1–

∏

Ṽ l

Ṽ l

ERn'

Eik'

V̂ l χ'( )
χ' iκ ik'+

χ' iκ ik'–
-------------------

 
 
 

Ql χ'coth( )Ṽ l χ'( )/Al
as

,
k 0=

nl 1–

∏=

0 Eik'≤ m' κ ik'cos m', χ ik'< iκ ik' ,= =

Al
as

Ql χ'coth( )Ṽ l χ'( ) π/2( )εlAl χ'( )=

V̂ l

V̂ l χ'( ) 1 o 1( ), χ' ∞,+=

V̂ l

V̂ l
P

estimate in (31). We can then apply the integral Hilbert
transformation to the real and the imaginary part of the

function ln (χ'), setting

We then obtain

(32)

Combining (32) with the expression for

we now obtain the formula

(33)

which is valid in the region Imχ' > 0. From expressions
(30) and (33), it eventually follows that

(34)

This equation is valid for Imχ' > 0.
Thus, a solution to the inverse problem exists and is

completely determined if the function Al(χ') is found
on the basis of the phase shift and bound-state energies
for l ≥ 0.

To summarize, we note that the method proposed
here to reconstruct a nonlocal separable quasipotential
simulating the interaction between two relativistic
spinless particles of unequal masses actually reduces
to a one-body problem. This is due to the possibility
of representing, within the relativistic quasipotential
approach to quantum field theory, the total c.m. energy
of two relativistic particles of unequal masses as an
expression proportional to the energy of an effective
relativistic particle of mass m'.
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Abstract—Back-to-back ππ correlations arising owing to the evolution of the pionic field in the course of the
pion-production process are estimated for central heavy-ion collisions at moderate energies. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is usually suggested that in high-energy heavy-
nucleus collisions, an excited volume is formed which
undergoes evolution and subsequent decay into free
final particles. Particles existing in the excited volume
represent a part of the medium, being quasiparticles
rather than free particles. So the form of their energy
spectrum Ek may differ essentially from that of free

particles  = (k2 + m2)1/2. It was noted (see [1–4]) that
this feature leads to the appearance of specific back-to-
back particle–antiparticle correlations (PAC effect). No
practical estimations of the pionic PAC effect is known
to us.

Below we consider central heavy-nucleus collisions
at moderate (a few GeV per nucleon in the laboratory
system) energies. In this case, the excited volume con-
sists mainly of nucleons and pions (at least, at the late
stage). We consider final-state pion correlations. The
PAC effect is determined through the evolution param-
eter r(k) and depends on two factors: first, to what
extent the pionic energy Ek is modified and, second,
what the characteristic time t0 of the energy spectrum
evolution is. Our numerical estimations showed [4] that
pion modification in the course of hadronic matter evo-
lution (say expansion, cooling) is too slow to give a siz-
able PAC effect. So we consider only the fast breakup
of hadronic matter into free pions (freeze-out) as a
source of PAC. Usually the breakup is considered as an
instantaneous process (neglecting its time duration t0),
thus ensuring the maximal PAC effect. However, the
PAC effect under consideration is sensitive to rather
small time intervals of the order of 1 fm. So below we
estimate PAC for finite t0.

2. HBT AND PAC EFFECTS

In this section, we describe in parallel the main fea-
tures of identical particle correlations (Hanbury-

Ek
0

* This article was submitted by the author in English.
1063-7788/00/6311- $20.00 © 21988
Brown–Twiss (HBT) effect) and PAC taking into
account pion energy modification. The reason for the
PAC effect is the time evolution of the medium in
which the (quasi)particles propagate. The correspond-
ing problem is similar to that of a quantum oscillator
with variable frequency. The solution of this problem
can be represented in the form of the Bogolyubov trans-
formation [5] of the creation and annihilation operators

(1)

where a(k, t), a†(k, t), b(k, t), and b†(k, t) are time-
dependent annihilation and creation operators of parti-
cles and antiparticles and the Bogolyubov coefficients
u(k), v(k) satisfy the equation

(2)

preserving canonical commutation relations. The
Bogolyubov coefficients u(k), v(k) are taken to be real-
valued and |k|-dependent. So we use a parametrization

(3)

introducing the evolution parameter r(k) (for more
details, see [4]).

To present the results in a simple form, we use here
a simplified description of the excited hadronic volume
(particle source). So the following expressions represent
a limiting case of those in [1, 4].1) The volume is sug-
gested to be homogeneous, motionless (neglect of the
flow), isotopically symmetric, and large enough (heavy
nuclei). Under these conditions, the single-particle

1)The sign of one of the two momenta p1, p2 on the right-hand side
of the second of Eq. (14) in [1] must be changed. Then Eqs. (13)
and (14) of that paper will be applicable for neutral pions. This
erroneous sign appeared because of neglect of the difference
between a relativistic quantum field and a simple set of quantum
oscillators in [1].

a k t,( ) u k( )a k 0,( ) v k( )b† k– 0,( ),+=

b† k– t,( ) v k( )a k 0,( ) u k( )b† k– 0,( ),+=

u k( ) 2 v k( ) 2– 1=

u k( ) coshr k( ), v k( ) sinhr k( )= =
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inclusive cross section can be written in a simple form:

(4)

where a† and a are creation and annihilation operators
of the final-state pions, V is the volume of the source,
n(k) is the level occupation number (for example, Bose
distribution), and r(k) is the evolution parameter.

Two-particle inclusive cross sections are given by
the expressions

(5)

for like-sign charged (identical) pions (HBT effect),

(6)

for charged particle–antiparticle (π+π–) pairs (PAC),
and

(7)

for neutral pion pairs (both HBT and PAC) with

(8)

(9)

(the same for 〈a(k1)a(k2)〉  in the case of neutral pions).
In (8) and (9), F(k1 ± k2) represents the Fourier trans-
form of the source volume at the breakup stage. It is a
sharply peaked function of k1 ± k2 (at zero momentum)
having a characteristic scale of the order of the inverse
size of the source, this scale being much less than the
characteristic scales of the pion momentum distribution
n(k) and evolution parameter r(k). So the last two func-
tions may be evaluated at any of the momenta k1, k2 ≈
±k (we suggest that the process is k  –k symmetric,
for example, collision of identical nuclei at the center-
of-mass system). Evidently, pion–pion interaction
effects are not present in (6) and (7); it is supposed (as
usual) that they can be separated from exposed PAC
and HBT correlations.

N k( )
1
σ
--- dσ

d3k
-------- a† k( )a k( )〈 〉= =

=  
V

2π( )3
------------- n k( ) 2n k( ) 1+( )sinh2r k( )+[ ] ,

1
σ
--- d2σ++

d3k1d3k2

--------------------- a1
†a2

†a1a2〈 〉=

=  a1
†a1〈 〉 a2

†a2〈 〉 a1
†a2〈 〉 a2

†a1〈 〉+

1
σ
--- d2σ+–

d3k1d3k2

--------------------- a1
†b2

†a1b2〈 〉=

=  a1
†a1〈 〉 b2

†b2〈 〉 a1
†b2

†〈 〉 a1b2〈 〉+

1
σ
--- d2σ00

d3k1d3k2

--------------------- a1
†a2

†a1a2〈 〉=

=  a1
†a1〈 〉 a2

†a2〈 〉 a1
†a2〈 〉 a2

†a1〈 〉 a1
†a2

†〈 〉 a1a2〈 〉+ +

a† k1( )a k2( )〈 〉

=  n k( ) 2n k( ) 1+( )sinh2r k( )+[ ]F k1 k2–( ),

a k1( )b k2( )〈 〉 sinh2r k( ) n k( ) 1
2
---+ F k1 k2+( )=
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
Relative two-particle correlation functions which
are measured in the experiment are given by

(10)

(11)

(12)

Introducing the normalized form factor of the prebreakup
volume,

(13)

we therefore get

(14)

(15)

(16)

with

(17)

where (14) gives the usual HBT effect and (15)
describes the PAC effect. Both of them contain the
same form factor G(k) (in our approximation) ensuring
the same-direction π+π+ correlations and back-to-back
π+π– correlations. Neutral pions show both kinds of
correlations, being identical particles and simulta-
neously antiparticles to themselves.

As can be seen from (17), the PAC effect is deter-
mined through the evolution parameter r(k). In turn, the
evolution parameter depends on the time duration t0 of
the pion energy evolution. For very small characteristic
times t0, the expression for r(k) is universal [1]:

(18)

where Ek is the pion energy at the prebreakup moment

and  is the free pion energy. For larger t0, the evolu-
tion parameter lessens and depends on unknown details
of the breakup process. For estimation of r(k), we shall
use the model expression of [4]:

(19)
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-------------------------------------,+=
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-----------------------------------,+=

C2
00 k1 k2,( ) 1

a† k1( )a k2( )〈 〉 2

N k1( )N k2( )
-------------------------------------+=

+
a k1( )a k2( )〈 〉 2

N k1( )N k2( )
-----------------------------------.

F k1 k2±( )
V
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Below, we estimate the evolution parameter r(k) and
the factor c(k) in (17) which determines the strength of
the PAC effect.

3. ESTIMATING PAC IN FINITE 
NUCLEON-DENSITY MATTER

To evaluate PAC, one has to know the pion energy
spectrum Ek in finite nucleon-density matter. The sim-
plest way to find the energy spectrum is the use of the
notion of the pseudopotential [6]. It is determined as an
effective potential in which the pions propagate, and it
is given by the forward scattering amplitude f(k) of the
pions on the particles of the medium

(20)

where ρ is the density of the medium particles and the
amplitude f(k) is averaged over the states of the
medium particles.

In finite nucleon-density matter, f (k) is mainly the
πN-scattering amplitude. The main contribution to the
amplitude is given here by P-wave scattering domi-
nated by delta resonance. The corresponding momen-
tum-dependent effective potential for isotopically sym-
metric (number of protons is equal (close) to the num-
ber of neutrons) matter may be taken in the form (see
also [7, 8])

(21)

with

(22)

U k( ) 4πρ f k( )〈 〉 ,–=

U k( )
8
9
--- f ∆

2 M∆E∆

Mm2
-------------- k2

E∆
2 k2– m2–

------------------------------–=

f ∆
2 /4π 0.37,=

4

3

2

1
0 1 2 3 4

k

E(k)

Fig. 1. Quasipion energy in nucleon medium (with ρ =
0.5ρn) calculated through pseudopotential (solid curve) and
polarization operators (dashed curves), together with the
free pion energy (dotted curve). All the values are taken in
pion mass units.
P

(23)

where f∆ is the empirical πN∆ coupling constant, m is
the pion mass, M is the nucleon mass, and M∆ and Γ∆
are the mass and width of the delta resonance. Equa-
tions (21)–(23) represent the sum of the direct and
exchange πN-scattering diagrams with delta resonance
in the intermediate state where we neglected nucleon
velocities and omitted terms containing the inverse
nucleon mass (first order M–1 terms give only a few per-
cent correction to E∆). The pion energy in the nucleon
matter is now given by the equation

(24)

It is shown in Fig. 1 for nucleon density ρ equal to one-
half of the nuclear matter density (energies and
momenta are taken in pion mass units).

Let us note that (24) has the form of the pionic dis-
persion equation with substitution of the effective
potential U(k) for the pionic polarization operator
Π(k, Ek), which depends on both momentum k and
energy Ek. The polarization operator Π(k, Ek) in the
same approximation is given by (21) with substitution

of the energy squared  for k2 + m2 in the denomina-
tor of (21), and the pion spectrum (excitations having
pion quantum numbers) is then given by the self-con-
sistent solution of the resulting dispersion equation. At
first sight, the resulting pion energy spectrum [7] differs
essentially from that of (24), containing at least two
branches shown in Fig. 1 by dashed curves (original
pion and delta-hole mixed states tend to be intersecting
ones in the limit of zero coupling constant f∆). However,
when considering the effects of the pion-energy evolu-
tion, one must use two pieces of these two branches
which correspond to true pions and we essentially
return to the single branch given by (24); see solid
curve in Fig. 1. The vicinity of the would-be intersec-

tion point (the resonant point  + m2 = Re , kres =
2.1m), where these two descriptions still differ, does
not contribute in any case (here, r(kres) = 0 and the
imaginary part of the pion energy is maximal and
large). All that justifies the use of the pseudopotential
U(k) for calculation of the evolution parameter r(k)
(introduction of the polarization operator Π(k, Ek)
would require a reformulation of the scheme of calcu-
lation of the evolution effects).

To evaluate the evolution effects, it is necessary to
specify the level population n(k), the nucleon density ρ
at breakup, and the time duration t0 of the breakup stage
of the process. The level population can be estimated
from thermal analysis of the data on momentum spectra
of secondary particles. When extracted from the slope
of the spectra, the apparent temperature gradually
increases with energy and seems to saturate at around
140 MeV at a beam energy EL ≈ 10 GeV (see [9], for
example). Below, the level population will be approxi-
mated by a Bose distribution with temperature 120 MeV

E∆ M∆
2 M2– iM∆Γ∆–( )/2M 2.4 0.5i–( )m,= =

Ek
2 m2 k2 U k( ).+ +=

Ek
2

kres
2 E∆

2
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corresponding to a beam energy of about a few GeV per
nucleon,

(25)

It seems reasonable to take the nucleon density ρ to be
slightly less than nuclear matter density ρn. So below,
we present estimations for two values of ρ which we
consider as limiting ones, ρ = 0.5ρn and ρ = ρn. The time
duration t0 is left as a free parameter.

One more problem is the permissible range of the
pion momenta k, where the potential U(k) given by
(21) (that is, the corresponding scattering amplitude)
may be used. Evidently, this is a low-energy potential
applicable at the most at k ≤ (3–4)m. Furthermore, the
imaginary part of the potential must not exceed the dif-
ference between the quasipion energy and free pion
energy. This leaves us a small momentum region k ≤
1.5m where the calculation of the PAC effect seems to
be reliable. It must also be noted that just above the
delta resonance energy (kres = 2.1m), there is another
source of back-to-back pairs, that is, ρ-meson decay
(k = (2.5 ± 0.5)m for free ρ mesons). So the PAC effect
under consideration is an additional possible source of
the correlated ππ pairs active at lower energies.

Calculation of the evolution parameter r(k) accord-
ing to (18) and (19), together with (21)–(24), shows
that in the case under consideration, it is rather small,
being zero at k = 0 and at k = kres = 2.1m and reaching
the maximal values

rmax(k) = 0.16 at k = 1.6m for ρ = 0.50ρn, t0 = 0;

rmax(k) = 0.22 at k = 1.5m for ρ = 0.75ρn, t0 = 0;

rmax(k) = 0.30 at k = 1.3m for ρ = 1.00ρn, t0 = 0.

n k( ) Ek/T( )exp 1–( ) 1– , T 120 MeV.= =

1.12

1.08

1.04

1.00

N/N0

0 1 2
k

Fig. 2. Enhancement of the single-particle inclusive cross
section due to the evolution effect at nucleon density ρ =
0.5ρn for t0 = 0, 0.5, 1.0, 1.5 fm (from top to bottom);
momentum k is taken in pion mass units.
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The function r(k) decreases fast when the characteristic
time t0 increases and vanishes at t0 ≈ 2 fm.

The enhancement of single-particle inclusive cross
sections arising due to the evolution effect is shown in
Fig. 2, where the distribution N(k) given by (4), over
the nonenhanced (r = 0) value N0(k), is depicted for dif-
ferent values of the characteristic time t0 for nucleon

Fig. 3. Relative strength of the PAC effect (see (15)–(17)) at
nucleon density ρ = 0.5ρn for t0 = 0, 0.5, 1.0, 1.5 fm (from
top to bottom); momentum k = |k1 – k2|/2 is taken in pion
mass units.
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Fig. 4. The same as in Fig. 3 for nucleon density ρ = ρn.
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density ρ = 0.5ρn (pion momenta in Figs. 2–4 are taken
in pion mass units). At higher nucleon densities, the
enhancement rises, reaching at ρ = ρn the maximal val-
ues 1.37 at t0 = 0, 1.21 at t0 = 0.5 fm, 1.05 at t0 = 1.0 fm,
and 1.02 at t0 = 1.5 fm.

The results for the factor c(k) in (15)–(17), which
gives the strength of the PAC effect, are shown in
Figs. 3 and 4. As can be seen, the PAC effect can be
essential if the characteristic breakup time t0 is small
enough (t0 < 1 fm). The presence or absence of PAC can
serve as a measure of the time duration t0, about which
we have no other information. Contrary to single-parti-
cle enhancement, which can have various origins, the
PAC effect can be unambiguously identified through
measurement of the excess of, say, zero-rapidity (in the
center-of-mass system) small-momentum anticorre-
lated particle–antiparticle pairs.

4. CONCLUSION

Estimation of the pionic PAC effect in heavy-
nucleus collisions shows that it can serve as a substan-
tial source of low-energy back-to-back π+π– and π0π0
pairs (also ensuring an enhancement of single-particle
pion distributions) if the breakup (freezeout) time is
small enough.
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Abstract—A phase-equivalent transformation of local interaction is generalized to the multichannel case in the
direct-scattering problem. Generally, the transformation does not change the number of bound states in the sys-
tem and their energies. For a special choice of the parameters involved, however, the transformation removes
one of the bound states and is equivalent to the multichannel supersymmetry transformation recently proposed
by J.M. Sparenberg and D. Baye (1997). With the aid of the transformation, it is also possible to add a bound
state to the discrete spectrum of the system at a given energy E < 0 if the angular momentum l ≥ 2 in at least
one of the coupled channels. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nucleon–nucleon, nucleon–cluster, and cluster–clus-
ter potentials are an input for various microscopic calcu-
lations of nuclear structure and reactions. Unfortunately,
the exact form of the potentials describing these interac-
tions is unknown. It is conventionally supposed that the
available scattering data and bound state properties can
be fitted with approximately the same accuracy by differ-
ent local potentials. For example, there are a lot of so-
called realistic NN potentials on the market describing
NN scattering and deuteron properties with high accu-
racy. Moreover, a description of phenomenological data
can be achieved with potentials very different in struc-
ture. In particular, meson-exchange NN potentials of the
Nijmegen kind [1] are known to have a short-range
repulsive core in a triplet s wave. The same high-quality
description of the nucleon–nucleon data is provided by
the latest versions of the Moscow potential [2, 3] that
does not have a repulsive core but instead is deeply
attractive in the triple s wave at short distances and sup-
ports an additional forbidden state. The possibility of
alternative descriptions of various cluster–cluster and
nucleon–cluster interactions by means of repulsive-core
and deeply attractive potentials with forbidden states is
also well known (see, e.g., the discussion in [2] and ref-
erences therein).

Principally, it is possible to distinguish experimen-
tally between alternative potentials by studying their
off-shell properties in interactions with an additional
particle. The simplest probe is the photon, and as it was
shown in [4–6], the proton–proton bremsstrahlung
reaction pp  ppγ in the energy range of 350–

    * This article was submitted by the authors in English.
  ** e-mail: shirokov@npi.msu.su
*** e-mail: sidorenko@goa.bog.msu.su
1) Moscow State University, Vorob’evy gory, Moscow, 119899 Rus-

sia.
1063-7788/00/6311- $20.00 © 21993
400 MeV can be used to discriminate between various
NN potentials. However, the pp  ppγ reaction has
not been examined experimentally in this energy range.

Another possibility is to study the properties of three-
and four-body systems bound by two-body potentials of
interest. From this point of view, it looks like we do not
have satisfactory nucleon–nucleon, cluster-nucleon, and
cluster–cluster potentials at present. It is well known that
none of the realistic NN potentials provides proper binding
of tritium or 3He. There have been successful attempts in
generating phenomenological three-nucleon interactions
tuned to fit the properties of light nuclei [7] (see also [8]
and references therein). However, as it was shown in the
detailed study of Picklesimer et al. [9], the effect of three-
nucleon forces consistent with realistic two-body ones on
the binding energy of the triton is canceled by the effects
of virtual excitations of ∆ isobars, etc. Hence, the trinu-
cleon cannot be satisfactorily described using known real-
istic two-body potentials supplemented by three-body
potentials consistent with them. All calculations within
three-body cluster models also fail to reproduce the cor-
rect binding energy of three-cluster nuclear systems with
known local cluster–cluster and cluster–nucleon poten-
tials fitted to the corresponding scattering data.

To design a potential consistent with two-body phe-
nomenological data and providing the correct binding
of few-body systems, it seems promising to make use
of phase-equivalent transformations depending on a
continuous parameter(s). Some attempts in this direc-
tion have been performed using nonlocal phase-equiv-
alent transformations. The results of these attempts are
encouraging: in [10], an oversimplified NN potential
providing a satisfactory description of s-wave NN scat-
tering data was fitted to exactly reproduce the triton
binding energy, while in [11], realistic nα potentials
were tuned to reproduce various 6He properties, includ-
ing the binding energy within the α + n + n cluster
000 MAIK “Nauka/Interperiodica”
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model. The interactions suggested in [10, 11] are non-
local ones. Various applications (see, e.g., [12, 13]) of
local phase-equivalent transformations to few-body
problems were restricted to the supersymmetry trans-
formation [14–16] that removes one of the bound states
in a two-body system. The supersymmetry transforma-
tion does not contain parameters and cannot be used for
fine tuning of the interaction of interest.

However, a local phase-equivalent transformation
which preserves the number of bound states and depends
on a continuous parameter exists and is well known in the
inverse scattering theory [17]. To the best of our knowl-
edge, so far nobody has used it in few-body calculations.
This transformation was developed for a single-channel
case only and cannot be applied without some approxi-
mations to realistic NN interactions that mix triplet s and
d partial waves. Another drawback of the transformation
is that it involves a bound-state wave function and, thus,
cannot be used to modify nn and pp interactions and the
np interaction in all “nondeuteron” partial waves.

Recently, Sparenberg and Baye [18] suggested a mul-
tichannel supersymmetry transformation. We use some
ideas of [18] to derive a multichannel phase-equivalent
transformation which depends on continuous parameters.
The transformation can be treated as a generalization of
both the single-channel phase-equivalent transformation
[17] and the multichannel supersymmetry transformation
of [18]. Generally, the transformation does not change the
number of bound states in the system and their energies.
However, with a special choice of the parameters, the
transformation removes one of the bound states and
becomes equivalent to the multichannel supersymmetry
transformation suggested in [18]. If the angular momenta
in all coupled channels are less than two, a parameter-
dependent family of local interactions phase-equivalent
to the given initial one can be constructed by means of the
transformation, even in the case when the system does not
have a bound state. If the angular momentum is l ≥ 2 in at
least one of the coupled channels, the transformation can
be used to add a bound state to the discrete spectrum of
the system at a given energy E < 0. Having a bound state,
one can construct a family of phase-equivalent potentials
and afterwards remove the bound state by the supersym-
metry version of the transformation. Thus, the suggested
transformation can be used in a multichannel case to pro-
duce phase-equivalent interactions without any restric-
tion on the structure of the discrete spectrum of the sys-
tem. In particular, the transformation can be applied to the
realistic NN interaction in all partial waves.

2. GENERAL FORM OF LOCAL 
MULTICHANNEL PHASE-EQUIVALENT 

TRANSFORMATION

Multichannel scattering and bound states are
described by the Schrödinger equation

(1)Hij Eδij–( )ϕ j E r,( )
j

∑ 0,=
P

where indices i and j label the channels, E is the energy,

(2)

is the Hamiltonian, m is the reduced mass, and li stands
for the angular momentum in the channel i. We suppose
that the potential Vij(r) (i) is Hermitian and (ii) tends
asymptotically at large distances to a diagonal constant
matrix,

(3)

where ei is a threshold energy in the channel i. We sup-
pose that e1 = 0 and ei ≥ ej if i > j.

The boundary conditions for the wave functions are

(4)

(5)

Except for the discussion in Section 3.3, we suppose
that there is at least one bound state in the system at the
energy E0. The corresponding wave function ϕi(E0, r) is
supposed to be normalized:

(6)

where “*” denotes complex conjugation. Of course,
ϕi(E0, r) fits a more severe boundary condition for
r  ∞ than (5):

(7)

We define the transformed potential (r) as

(8)

where 

(9)

and A, C, and a are arbitrary real parameters.
The main result of this paper can be formulated as

the following statement.
The wave function

(10)

Hij
"

2

2m
------- d

2

dr
2

--------–
li li 1+( )

r
2

--------------------+ δij Vij r( )+=

Vij r( ) eiδij,r → ∞

ϕ i E 0,( ) 0,=

ϕ i E ∞,( ) ∞.<

ϕ i* E0 s,( )ϕ i E0 s,( ) sd

0

∞

∫
i

∑ 1,=

ϕ i E0 ∞,( ) 0.=

Ṽ ij

Ṽ ij r( ) Vij r( ) v ij r( ),+=

v ij r( ) 2C
"

2

2m
------- d

dr
-----

ϕ i E0 r,( )ϕ j* E0 r,( )

A C ϕk E0 s,( ) 2
sd

a

r

∫
k

∑+

----------------------------------------------------------–=

ϕ̃ i E r,( ) ϕ i E r,( )=

– Cϕ i E0 r,( )

ϕk* E0 s,( )ϕk E s,( ) sd
a

r

∫
k

∑

A C ϕk E0 s,( ) 2
sd

a

r

∫
k

∑+

------------------------------------------------------------
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fits the nonhomogeneous multichannel Schrödinger
equation

(11)

where the Hamiltonian

(12)

and the quasi-Wronskian

(13)

We use the prime to denote derivatives: f ' ≡ df /dr.
To prove the statement, one can verify (11) by the

direct calculation of  – Eδij) (E, r) using def-
initions (8)–(10) and (12) and other formulas given
above, as well as the fact that the interaction Vij(r) is
Hermitian, (r) = Vji(r). The calculation is lengthy
but straightforward.

It is clear from (10) and (7) that the suggested trans-
formation is phase-equivalent at any energy E > 0; all
the bound states supported by the initial potential Vij are
preserved by the transformation, since the wave func-
tions (Eb , r) for the corresponding energies Eb < 0
(including E0) fit both boundary conditions (4) and (7).
However, the denominator in the last term in (10)
should be nonzero at any distance r; therefore, one
should be accurate in assigning values to arbitrary
parameters A, C, and a. This requirement can be easily
satisfied in a wide and continuous range of parameter
values. 

3. PARTICULAR CASES OF THE PHASE-
EQUIVALENT TRANSFORMATION

3.1. Homogeneous Schrödinger Equation

Of course, we are mostly interested in phase-equiv-
alent transformations that result in the homogeneous
Schrödinger equation

(14)

instead of the nonhomogeneous Schrödinger equations
(11). To derive the transformation leading to (14), we

H̃ij Eδij–( )ϕ̃ j E r,( )
j

∑

=  C
"

2

2m
-------

ϕ i E0 r,( )

A C ϕk E0 s,( ) 2
sd

a

r

∫
k

∑+

----------------------------------------------------------0 E0 E; a,( ),

H̃ij δij
"

2

2m
------- d

2

dr
2

--------–
li li 1+( )

r
2

--------------------+ Ṽ ij r( )+=

0 E0 E; a,( )

≡ ϕk* E0 a,( )ϕk' E a,( ) ϕk*' E0 a,( )ϕk E a,( )–[ ] .
k

∑

(H̃ijj∑ ϕ̃ j

Vij*

ϕ̃ i

H̃ij Eδij–( )ϕ̃ j E r,( )
j

∑ 0=
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can search for the parameters A, C, and a providing
zero values of the right-hand side of (11). The choice
C = 0 brings us to the equivalent (contrary to phase-
equivalent) transformation that is of no interest. Thus,
we should search for the parameters that fit the equation

(15)

Two obvious solutions of (15) are a = 0 and a = ∞.
Various other solutions of (15) can be found for partic-
ular potentials Vij(r). However, the nonzero finite solu-
tions a of (15) are energy-dependent. With the solutions
a(E) of (15), we can obtain energy-dependent poten-

tials (E; r) phase-equivalent to the initial energy-
independent potential Vij(r). It may be interesting for
some applications, but we shall not discuss the energy-
dependent transformation and shall concentrate our
attention on the solutions a = 0 and a = ∞.

The case a = 0 presents a generalization of the sin-
gle-channel phase-equivalent transformation from
[17]. For the bound state at the energy E0, the wave
function obtained by means of the transformation is of
the form

(16)

The wave function (16) is not normalized. The normal-
ization constant can be easily calculated. The normal-
ized bound-state wave function is 

(17)

It is interesting that the components of the bound-
state wave function in all channels are modified by the
transformation synchronously: all the components
ϕi(E0, r) are multiplied by the same factor

(A + C (E0, s)|2ds)–1. Neverthe-

less, the relative weight of the components ϕi(E0, r) in
the norm of the total multichannel wave function can be
changed by the transformation.

Let us now discuss the case of a = ∞. The trans-
formed wave function in this case is of the form

(18)

0 E0 E; a,( ) 0.=

Ṽ ij

ϕ̃ i E0 r,( )
Aϕ i E0 r,( )

A C ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑+

---------------------------------------------------------.=

A C+
A

--------------ϕ̃ i E0 r,( )
A A C+( )ϕ i E0 r,( )

A C ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑+

---------------------------------------------------------.=

A A C+( ) |ϕ j0

r∫j∑

ϕ̃ i E r,( ) ϕ i E r,( )=

–

Cϕ i E0 r,( ) ϕ j* E0 s,( )ϕ j E s,( ) sd

∞

r

∫
j

∑

A C ϕ j E0 s,( ) 2
sd

∞

r

∫
j

∑+

--------------------------------------------------------------------------------------.
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If E ≠ E0, the functions ϕi(E, r) and ϕi(E0, r) are
orthogonal:

(19)

With the help of (19) and (6), we can rewrite (18) as

(20)

It is seen from (20) that the case of a = ∞ is identical (up
to the redefinition of the parameter A  A + C) to the
case of a = 0 if E ≠ E0. It is clear, however, that after the
redefinition of the parameter A  A + C, the potential
vij(r) obtained with a = ∞ becomes equivalent to the
potential vij(r) corresponding to the case of a = 0.
Hence, the case of a = ∞ appears to be equivalent to the
case of a = 0 at any energy E, including E = E0. To dem-
onstrate this explicitly, let us examine the wave func-
tion (E0, r) in the case of a = ∞. Replacing E by E0 in
(18), we obtain

(21)

or, equivalently,

(22)

Replacing A by A + C and normalizing the wave func-
tion (22), we obtain expression (17).

3.2. Supersymmetry

Let us discuss a particular choice of parameters: C =
1, a = ∞, and A = 1. The wave function in this case is

(23)

ϕ i* E0 s,( )ϕ i E s,( ) sd

0

∞

∫ 0.=

ϕ̃ i E r,( ) ϕ i E r,( )=

–

Cϕ i E0 r,( ) ϕ j* E0 s,( )ϕ j E s,( ) sd

0

r

∫
j

∑

A – C C ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑+

--------------------------------------------------------------------------------------.

ϕ̃ i

ϕ̃ i E0 r,( )
Aϕ i E0 r,( )

A C ϕ j E0 s,( ) 2
sd

∞

r

∫
j

∑+

---------------------------------------------------------=

ϕ̃ i E0 r,( )
Aϕ i E0 r,( )

A C– C ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑+

-------------------------------------------------------------------.=

ϕ̃ i E r,( ) ϕ i E r,( )=

+

ϕ i E0 r,( ) ϕ j* E0 s,( )ϕ j E s,( ) sd

r

∞

∫
j

∑

ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑
---------------------------------------------------------------------------------
P

or 

(24)

Equation (23) can be used at any energy E, while (24)
is applicable only if E ≠ E0. In the case of E = E0, the
wave function can be rewritten in a simpler form as

(25)

Equation (23) is just Eq. (4) of [18]. In [18], Sparen-
berg and Baye suggested a multichannel supersymme-
try transformation. Thus, Eqs. (24) and (25) describe
the multichannel supersymmetry transformation, or, in
other words, the multichannel supersymmetry transfor-
mation is a particular case of the phase-equivalent mul-
tichannel transformation discussed in this paper that
corresponds to the particular choice of the parameters.
Let us discuss how it works.

It is clear from (25) that | (E0, r)|  ∞ as r 

0. Hence, at the energy E0, the wave function (E0, r)
does not match the required boundary condition (4) at
r = 0. At the same time, (E0, r) fits the boundary con-
dition (7) at r = ∞. Therefore, it is impossible to con-
struct another solution of the Schrödinger equation (14)
consistent with both boundary conditions at the energy
E = E0. As a result, the phase-equivalent transformation
removes the bound state at E = E0. At the same time, it
is clear from (24) that for all energies E ≠ E0, the zero
in the denominator arising in the limit r  0 is can-
celed by the zero in the numerator and the wave func-
tion (24) matches the boundary conditions at the origin
and at infinity both at once. Thus, the transformation in
this case removes the bound state at E = E0 but none of
the other bound states, while the S-matrix at any energy
E > 0 is unchanged.

Of course, the supersymmetry transformation can
also be formulated in the case of a = 0. It is interesting
that the bound state in this case is removed by a differ-
ent mechanism. Suppose that A = 0 and that C is arbi-
trary. The wave function at any energy E in this case
may be written as (24). However, it is seen that, at E =
E0, the wave function (E0, r) ≡ 0.

We used the boundary condition (4) to construct the
supersymmetry transformation: the bound state is
removed because, for some particular parameter val-
ues, the wave function (E0, r) diverges at the origin
and appears to be inconsistent with (4). One can sup-

ϕ̃ i E r,( ) ϕ i E r,( )=

–

ϕ i E0 r,( ) ϕ j* E0 s,( )ϕ j E s,( ) sd

0

r

∫
j

∑

ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑
---------------------------------------------------------------------------------.

ϕ̃ i E0 r,( )
ϕ i E0 r,( )

ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑
-------------------------------------------.=

ϕ̃ i

ϕ̃ i

ϕ̃ i

ϕ̃ i

ϕ̃ i
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000



MULTICHANNEL PHASE-EQUIVALENT TRANSFORMATION 1997
pose that it is also possible to use the boundary condi-
tion at r = ∞ to remove the bound state and to construct
another supersymmetry transformation. This is not so.
Let us discuss the case of a = ∞, A = 0, and arbitrary C.
As is seen from (18), (E0, r) ≡ 0 in this case; thus, the
bound state is removed. However, the transformation is
no longer phase-equivalent. Indeed, at energies E > E0,
the last term in (18) does not vanish when r  ∞ and
provides an additional phase shift, or, in other words, it
modifies the S matrix.

3.3. Inverse Supersymmetry

We shall refer to a transformation that adds a bound
state to the discrete spectrum of the system and leaves
unchanged the S matrix and the energies of all bound
states supported by the initial Hamiltonian as the
inverse supersymmetry transformation. 

Let us suppose that there is no bound state at the
energy E0 < 0. By ϕi(E0, r), we now denote the wave
function at energy E0 that matches the boundary condi-

tion (7) at infinity but diverges at the origin as  (see,
e.g.,2) [19]), where li is the angular momentum in the
channel i.

With ϕi(E0, r), we can use our transformation to
obtain the homogeneous Schrödinger equation (14) in
the case of a = ∞. The transformed wave function (E,

r) is given by (18). It is seen from (18) that (E, r)
does not diverge at the origin and matches the boundary
conditions, both at the origin and at infinity, at any
energy E ≠ E0. For E = E0, the transformed wave func-
tion (E0, r) is given by (21). It is clear that (E0, r)

at the origin is proportional to , where L =
max{li}. Hence, (E0, r) matches the boundary condi-
tion (4) if L ≥ 2 and is not consistent with (4) if L ≤ 1.
Therefore, our transformation with ϕi(E0, r) irregular at
the origin is the inverse supersymmetry transformation
in the case of L ≥ 2. In the case of L ≤ 1, the transfor-
mation appears to be a phase-equivalent transformation
that does not make use of the bound state and can be
applied to a system that does not support a bound state.
If the transformation is applied to the free Hamiltonian
with Vij(r) ≡ 0 in the s or p partial wave, it produces a

nonzero “transparent” potential (r) that provides the
phase shift δ = 0 at any energy E. The multichannel ver-
sion of the transformation couples s and p partial waves
to produce a two-channel “transparent” interaction that
provides the S matrix of the form Sij = δij .

2)The r–l divergence of the wave functions at the origin is derived
in [19] for the single-channel case only. However, the derivation
of the r–l rule from [19] can be easily generalized to the multi-
channel case, at least for the potentials that do not diverge at the
origin.

ϕ̃ i

r
li–

ϕ̃ i

ϕ̃ i

ϕ̃ i ϕ̃ i

r
2L li– 1–

ϕ̃ i

Ṽ ij
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It is interesting that the inverse supersymmetry
transformation is not unique: we have three parameters
E0, A, and C that provide a family of inverse supersym-
metry partner potentials. Contrary to it, the supersym-
metry transformation is unique; however, it can be used
in combination with the phase-equivalent transforma-
tion to construct a family of potentials phase-equivalent
to the initial one but not supporting one of the bound
states.

4. CONCLUSION

We derived a multichannel phase-equivalent trans-
formation that can be used without restrictions on the
structure of the discrete spectrum of the system in var-
ious scattering problems like NN scattering, nucleon–
cluster, or cluster–cluster scattering. The multichannel
supersymmetry and inverse supersymmetry transfor-
mations appear to be particular cases of the suggested
general phase-equivalent transformation corresponding
to particular choices of the parameter values. The
inverse supersymmetry transformation is possible if
only the orbital angular momentum li ≥ 2 in at least one
of the coupled channels. It is interesting to note that,
from the point of view of the NN system, this means
that a deep attractive NN potential, supporting an addi-
tional forbidden state like the Moscow NN potential,
can be constructed through the inverse supersymmetry
transformation of the realistic meson-exchange poten-
tial with a repulsive core only due to the d-wave admix-
ture in the deuteron wave function.

By using the suggested transformation, one can con-
struct a family of phase-equivalent potentials depend-
ing on continuous parameters. Such families may be
very useful for fine tuning of the interaction aimed to fit
not only two-body observables but also three- and few-
body ones. If the system has at least one bound state,
the phase-equivalent potential family is constructed
using formulas (8) and (9) directly. One can construct
phase-equivalent single- or multichannel potential fam-
ilies also in the case when there are no bound states in
the system: if all channel orbital angular momenta li ≤
1, one can directly apply the transformation with the
irregular function ϕi(E0, r); if at least one of the channel
orbital angular momenta li ≥ 2, one can produce a
bound state using inverse supersymmetry at the first
stage and remove the bound state at the final stage by
using the supersymmetry version of the transformation.
Thus, one can, for example, construct a family of
phase-equivalent potentials for any combination of
coupled partial waves in the NN system.

It should be noted that our method allows to one
construct the family of phase-equivalent potentials with
given properties of the spectrum in the multichannel
case without use of Gelfand–Levitan–Marchenko pro-
cedure applied in the inverse scattering problem (for
example, see [20]).
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We hope that the suggested transformation will be
useful in various few-body applications.
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Abstract—Spin effects in the weak two-body hadronic decays of the Bc and  mesons into J/ψ and ρ(π)
mesons are considered within the model of hard one-gluon exchange between quarks at high momentum trans-
fers. It is shown that the polarization of the J/ψ meson in the decays of the  meson differs substantially from

that in the decays of the Bc meson. The decay widths of the  meson differ significantly from the widths of
the Bc meson. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The Bc meson was first observed by the CDF collab-

oration at FNAL in collisions occurring in  = 1.8 TeV
[1], and an estimate of its mass was given in the same
study. This initiated experimental investigations into
unique properties of heavy quarkonia involving quarks
of different flavors. The experimental result for the
Bc-meson mass,  = 6.40 ± 0.39 ± 0.13 GeV, is in
agreement with the theoretical predictions based on
nonrelativistic quark models [2] and on QCD sum rules
[3]. The predicted splitting of the 3S1 and 1S0 levels in

the  system is 0.05–0.07 GeV, which is much
smaller than the current experimental error in the
Bc-meson mass.

According to calculations within the nonrelativistic
model for heavy quarkonium that were performed to

order  in perturbative QCD, the ratio of the cross

sections for the production of  and Bc mesons is
about 2 to 3 [4]. At the same time, the same ratio esti-
mated on the basis of the fragmentation mechanism of
Bc-meson production is about 1.3 [5]. Thus, the ability
to discriminate experimentally between events leading
to the production of  mesons and events leading to
the production of Bc mesons is of prime importance for
testing models that claim for correctly describing the
production of Bc mesons.

A peak in the mass spectrum of the J/ψlνl (l = e, µ)
system produced in the semileptonic decay

(1)

s

mBc

bc

α s
4

Bc*

Bc*

Bc J /ψ l ν l,+ +

1) Samara State University, ul. Akademika Pavlova 1, Samara,
443011 Russia, and Nayanova Municipal University, Samara,
Russia.
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where J/ψ is detected by its leptonic decay mode
J/ψ  l+l–, is a signals of Bc-meson production [1]. In
what is concerned with detection, the two-body had-
ronic decays featuring a J/ψ meson in the final state,

(2)

are preferable Bc-meson decay channels.
According to the theoretical estimates given in [6],

the branching fraction for this decay mode is about 1%.
A feature peculiar to the two-body hadronic decays

(2) of the Bc meson is that the decaying  antiquark and
the spectator c quark are both heavy. This being so,
high momentum transfers to the spectator quark (k2 @

) are required for a  pair to form a bound state.
Under this condition, the wave functions of the initial
Bc meson and the final J/ψ meson cannot overlap sizably,
so that the spectator approach is inapplicable in this case.
In support of this conjecture, we note that the gluon vir-
tuality in the decay processes (2) is estimated as

where m1, m2, and m3 are the masses of Bc, J/ψ, and
ρ(π), respectively; therefore, it is necessary to invoke
the hard-exchange formalism [7].

2. MODEL OF HARD EXCHANGE

Within the hard-exchange approximation allowing
for one-gluon exchange with a c quark in the initial

state, the exclusive decay modes   J/ψπ+(ρ+) and

  ηcπ+(ρ+) were first considered in [6], where
it was shown that the decay amplitudes calculated
under the assumption that hard t-channel exchange is
dominant are twice as great as the amplitudes calcu-
lated in the spectator approach. However, an arith-

Bc J /ψρ π( ),

b

ΛQCD
2

cc

k
2 m2

4m1
--------- m1 m2–( )2

m3
2

–( )– 1.2 GeV
2
,–≈ ≈

Bc
+

Bc
+
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metic error was made there in calculating the decay

width Γ(   ηcπ+) and the branching ratio

Γ(   ηcπ+)/Γ(   J/ψπ+). Moreover, neither

the decays of the  meson nor J/ψ production in var-
ious polarization states was considered in [6].

Within the hard-exchange approximation, the
amplitudes for the decays Bc ( )  J/ψρ(π) are
represented by the diagrams in the figure. Here, we per-
form our analysis in the nonrelativistic approximation,
which implies that the 4-velocities of the quarks in a
heavy meson are equal, whence it follows that, in the
Bc meson of 4-momentum p1, the momenta of the
quarks are given by

and that, in the J/ψ meson of 4-momentum p2, the
momenta of the quarks are

Provided that the binding energy is disregarded, the
constituent quark masses can be expressed in terms of
the meson masses as

In order to go over from the amplitude for bound-state
production to the amplitude for the production of a
quark–antiquark pair in which the quark and the anti-
quark have the same 4-velocity v = p/m, it is sufficient
to make the substitution

where  = γµεµ (εµ is the polarization 4-vector) in the
case of a vector meson and  = γ5 in the case of a pseu-
doscalar meson; f is the leptonic meson decay constant,
which is related to the meson wave function at the ori-
gin by the equation

Bc
+

Bc
+

Bc
+

Bc*

Bc*

pc

mc

mb mc+
------------------- p1, pb

mb

mb mc+
------------------- p1,= =
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2
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1
2
--- p2.= =
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m2

2
------, mb m1

m2

2
------.–= =

V
i
v( )U

j
v( ) â

1 v̂+( )
2

------------------ fm

2 3
---------- δij

3
-------,

â
â

f
12
m
------ Ψ 0( ) ;=

p1
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p2
k

x2

p1

π+(ρ+)

p2
k

x1

Feynman diagrams for the decays (Bc)  J/ψρ(π).Bc
*

P

and δij/  is the color factor considering that the quark
and the antiquark in the meson are in the color-singlet
state.

The effective four-fermion Hamiltonian describing
nonleptonic decays of the type b  cπ(ρ) has the
form

(3)

where (x) = ifπ eipx and (x) = ifρmρεµ(λ)eipx, λ,
fπ, and fρ being, respectively, the polarization of the vec-
tor meson, the leptonic decay constant for the π meson,
and the leptonic decay constant for the ρ meson; a1 ≈

( (m) + (m)), the coefficients (m) taking into

account strong-interaction corrections to the effective
four-fermion vertex due to hard gluons at the scale m;
GF is the effective Fermi constant; and Vbc is an element
of the Cabibbo–Kobayashi–Maskawa matrix. We note
that the negligibly small final-state interactions are dis-
carded in the effective Hamiltonian (3).

With allowance for (3), the amplitude for the decay
process   J/ψρ, which is represented by the Fey-
nman diagrams in the figure, assumes the form

(4)

where the quantities carrying indices 1, 2, and 3 refer to
, J/ψ, and ρ, respectively, and where

(5)

For the decay of the pseudoscalar Bc meson,  in (4)

must be replaced by γ5, and the substitution   
must additionally be made if a π meson is produced in

3

*eff b cπ ρ( )( )
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2
-------Vbca1c x( )γµ 1 γ5–( )b x( )Aπ ρ,
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the decay under study. In the Bc-meson rest frame, we
have

(6)

In the limit m3 = 0, we obtain

Summation over the polarizations of vector particles is
performed by the formula

(7)

If the product J/ψ meson is longitudinally polarized, its
polarization 4-vector can be represented as

(8)

where nµ = (1, –p/|p|), so that (nn) = 0 and (np) = E + |p|.
The use of the auxiliary 4-vector nµ makes it possi-

ble to perform summation over the transverse and the
longitudinal polarization of J/ψ in a manifestly covari-
ant way:

(9)

(10)

3. RESULTS OF THE CALCULATIONS

The width with respect to the decay   J/ψρ

is expressed in terms of the quantity  that is
obtained from the squared modulus of the relevant
amplitude by performing summation over the polariza-
tions of the outgoing particles and averaging over the
polarizations of the  meson. Specifically, we have

(11)
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Making use of formulas (4)–(11), we arrive at

(12)

(13)

where f1 =  = , f2 = fJ/ψ, f3 = fρ = fπ, m1 = ,
m2 = mJ/ψ, m3 = mρ, 

In the limit m3 = 0 and  = , we obtain

(14)

where x = m2/m1.
A precise computation with m3 = mρ = 0.77 GeV at

 = 6.3 GeV and  = 6.25 GeV yields

(15)
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The polarization of the J/ψ mesons in the decay pro-
cesses (2) can be determined through the angular distri-
bution of the leptons produced in the decay J/ψ  l+l–.
We denote by θ the angle between the vector of J/ψ
polarization and the lepton-momentum vector. In the
J/ψ rest frame, the angular distribution of the leptons,
dΓ/dθ(J/ψ  l+l–), then has the form

(17)

where

ΓT and ΓL being the widths with respect to the Bc ( )
decays into, respectively, the transversely and the lon-
gitudinally polarized J/ψ meson. We do not present
here exact analytic expressions for the widths ΓT and ΓL

calculated with allowance for the nonvanishing masses
of the π and ρ mesons because they are rather cumber-
some. However, the expressions for α are simplified
considerably in the limit of m3 = 0 to become

(18)

(19)

With allowance for the nonzero value of the ρ-meson
mass, we obtain

(20)

(21)

The probability that the J/ψ meson retains the polariza-
tion of the  meson is governed by the parameter

(22)

where ΓT → T is the width with respect to the decay of a

transversely polarized  meson into a transversely
polarized J/ψ meson and ΓT → L is the width with

respect to the decay of a transversely polarized 
meson into a longitudinally polarized J/ψ meson. In the
limit of m3 ≈ 0, we have

(23)

The calculation under the assumption that the ρ-
meson mass does not vanish yields
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α Bc J /ψρ( ) 0.85.–≈

Bc*

ξ
ΓT T→

ΓT T→ ΓT L→+
----------------------------------,=

Bc*

Bc*
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P

At  =  = 0.44 GeV, fJ/ψ = 0.54 GeV, fπ =
0.14 GeV, fρ = 0.22 GeV, Vbc = 0.04, GF = 1.166 ×
10−5 GeV–2, and αs ≈ 0.33 [6], we obtain (in units of
10−6 eV)

(24)

(25)

(26)

(27)

Apart from the factor of  ≈ 1.21, which takes into
account hard corrections to the vertex of four-fermion
interaction, our decay-width values in (24)–(27) agree
with the results obtained in [8, 9] for the decays Bc 
J/ψρ(π). However, the width with respect to the weak
decay   J/ψρ(π) is much smaller than the width

with respect to the electromagnetic transition  
Bcγ, the latter being estimated at 60 eV in [8]. Because
of this, it is next to impossible to study experimentally
the weak modes of  decay.

4. CONCLUSION

The results of this study can be summarized as fol-
lows. It has been shown that the decay widths
Γ(   J/ψρ) and Γ(   J/ψπ) of the vector

 meson are, respectively, 1.35 and 1.58 times as
great as the corresponding decay widths of the pseudo-
scalar Bc mesons. The product J/ψ mesons are trans-

versely polarized in  decays (α = 0.40 for  

J/ψρ and α = 0.45 for   J/ψπ) and are longitudi-
nally polarized in Bc decays (α = –0.85 for Bc  J/ψρ
and α ≈ –1.0 for Bc  J/ψπ). The ratio of the  and
the J/ψ polarization is nearly equal to unity in the decay

  J/ψπ and is 97% in the decay   J/ψρ.
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XXIX International Conference on the Physics 
of Charged-Particle Interaction with Crystals

May 31–June 2, 1999, Moscow
The XXIX International Conference on the Physics
of Charged-Particle Interaction with Crystals took
place in May–June 1999 at the Institute of Nuclear
Physics, Moscow State University. Traditionally, atten-
tion there was given primarily to basic phenomena and
processes in the interaction of accelerated particles
with targets formed by ordered structures and to gen-
eral problems in the physics of fast-ion interaction with
matter.

Some results obtained recently in these realms are
of fundamental importance. These include those that
emerged from detailed investigations into particle
channeling, the shadow effect, the resonance coherent
excitation of ions, electromagnetic radiation from
channeled electrons, and a wide variety of coherent
effects in electromagnetic processes. These effects
formed a basis for evolving new procedures of a con-
siderable potential for experimental studies both in
atomic and nuclear physics and in solid-state physics.
At present, these new methods are being extensively
used to explore processes involving high-energy ele-
mentary particles. Analysis of the phenomena consid-
ered at the present conference ensured a qualitatively
new level in applying ion beams as a research tool. In
particular, contemporary semiconductor technologies
are based on the use of these methods.

The investigations being discussed have been vigor-
ously developing in a number of leading research insti-
tutions and universities in the Commonwealth of Inde-
pendent States of the former Soviet Union. In previous
years, research groups from these institutions per-
formed pioneering investigations and obtained results
that were commonly recognized. The conferences tra-
ditionally held at Moscow State University play a sub-
stantial role in coordinating these investigations. Scien-
tists from almost all states of the former Soviet Union
and, as a rule, leading researchers from other foreign
countries systematically participate in this conference.

Since the proceedings of the XXIX Conference are
published in 2000, it is worthwhile to dwell upon the
program of the next (XXX) conference, which will
occur in 2000 and which is expected to be especially
extensive. It will consist of four sections. The first sec-
tion will include general issues of the physics of orien-
1063-7788/00/6311- $20.00 © 22004
tation phenomena and of their application in fundamen-
tal investigations. Among these, mention should be
made of the dynamics of charged-particle scattering in
ordered media, coherent inelastic processes accompa-
nying particle interactions with crystal atoms, and
problems associated with the physics of ion–atom col-
lisions (like energy losses, as well as excitation and ion-
ization phenomena). Unique possibilities for measur-
ing nuclear-reaction times and detailed analyses of
crystal defects and of the distribution of impurity atoms
stand out among applications. Recently, some results of
paramount importance have been obtained in studying
structural transitions in high-temperature superconduc-
tors by using orientation effects. The potential of the
channeling effect is widely used to govern beams at
high-energy accelerators and to solve some problems in
elementary-particle physics. The relevant problems
will also be discussed at the conference.

The second section will be devoted to electromag-
netic radiation from particles in crystals. A wide variety
of phenomena has attracted the attention of many
research groups experimenting at high-energy acceler-
ators. Here, applied investigations are aimed at creating
sources of electromagnetic radiation with unique spec-
tral characteristics in the x-ray and gamma-ray ranges.

The third section will cover the application of meth-
ods based on orientation phenomena in various fields of
physics to research and applied problems.

The fourth section will deal with problems associ-
ated with ion-beam-induced modifications to the prop-
erties of substances. Of particular interest are phenom-
ena observed near solid-state surfaces. The conference
to be held in 2000 will pay special attention to these
phenomena because research institutions that have
hitherto focused only on the problems of the physics of
orientation phenomena are now extending the subject
of their investigations to cover the fundamental prob-
lem of creating new materials. A dedicated section for
discussing processes that occur in solids under the
effect of intense beams of elementary particles will be
organized at the conference.

Chairman of the Organizing Committee,
Professor A.F. Tulinov
000 MAIK “Nauka/Interperiodica”
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Abstract—Collective effects in polarization bremsstrahlung generated by relativistic electrons in a polycrys-
talline aluminum foil are studied experimentally on the basis of the 2.4-MeV electron accelerator installed at
the Institute of Nuclear Physics (Moscow State University, Moscow). A peak structure found in this polarization
bremsstrahlung for the first time is in agreement with theoretical predictions. © 2000 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Polarization bremsstrahlung results from a variable
polarization of atomic electrons that is induced by the
electromagnetic field of fast charged particles [1].
Owing to its special features, polarization bremsstrahl-
ung is one of the most interesting processes observed in
collisions of charged particles with atoms. By way of
example, we indicate that, in the x-ray region of photon
energies between a few keV and a few tens of keV,
which is of importance for various applications, polar-
ization bremsstrahlung comes to be of a collective char-
acter because the polarization process involves coher-
ently all atomic electrons. Owing to this, the radiation
intensity integrated over the angles of observation per
atom is equal to that of conventional bremsstrahlung.
However, angular anisotropy is less pronounced in the
case of polarization bremsstrahlung than in the case of
conventional bremsstrahlung. We can therefore expect
that, in the interaction of fast particles with atoms, radi-
ation at observation angles larger than 1/γ, where γ is
the Lorentz factor for incident electrons, will be domi-
nated by polarization bremsstrahlung.

In the above energy region, the effective impact
parameter at which the motion of an incident particle
generates polarization bremsstrahlung is commensu-
rate with atomic dimensions and, hence, with inter-
atomic distances in condensed media. Therefore, the
properties of polarization bremsstrahlung are expected
to be rather sensitive to the structure of condensed sub-
stances. In particular, a tight correlation between the
properties of polarization bremsstrahlung and the struc-
ture of amorphous and polycrystalline condensed
media was predicted in [2].

Unfortunately, experiments studying polarization
bremsstrahlung were performed predominantly in the

1) Belgorod State University, Studencheskaya ul. 12, Belgorod,
308007 Russia.
1063-7788/00/6311- $20.00 © 22005
region of resonance atomic frequencies (see [1]), where
correlations between atoms are insignificant. At the
Institute of Nuclear Physics in Moscow (Moscow State
University) and at the Institute of Nuclear Physics in
Tomsk (Tomsk Polytechnic University), experimental
investigations into coherent processes in polarization
bremsstrahlung generated by relativistic particles
employed 6.7-MeV electrons incident on amorphous
targets [3] and 900-MeV electrons incident on heavy-
metal targets [4], respectively.

This article reports on new results coming from an
experimental investigation of the spectral distribution
of polarization bremsstrahlung from a polycrystalline
aluminum foil exposed to relativistic electrons. The
ensuing discussion also covers the results from [3, 4].

2. DESCRIPTION OF THE EXPERIMENT

The experiment made use of a 2.4-MeV electron
beam from the continuous linear electron accelerator
installed at the Institute of Nuclear Physics (Moscow
State University, Moscow). The beam of cross-sec-
tional area 2 × 2 mm2 was incident on a 2-µm-thick alu-
minum foil arranged in a vacuum chamber at an angle
of 45° with respect to the beam trajectory. The electrons
that traversed the target were then absorbed in a Fara-
day cup. The target was fixed on a movable bench with
a remote control. The quality of the incident beam was
monitored with the aid of a special TV camera and a
screen covered with luminophore and positioned in the
same chamber. Photons emitted in electron–target
interactions were recorded by a cooled SiLi detector
within a small solid angle of 1.5 msr. The detector,
which had an energy resolution of 200 eV, was oriented
at a right angle to the beam and was positioned at a dis-
tance of 0.5 m from the target. As was mentioned
above, this geometry allowed us to obtain an optimum
proportion between polarization bremsstrahlung and
000 MAIK “Nauka/Interperiodica”
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conventional bremsstrahlung—the former is dominant
here, since the latter is characterized by a high degree
of angular anisotropy. There was also a small lead
screen in the chamber, which allowed us to cover the
detector along the line-of-sight direction toward the tar-
get. In that case, the detector recorded the actual exter-
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Fig. 1. Experimental spectrum of x-ray radiation generated
by 2.4-MeV electrons in an aluminum target 2 µm thick
(spectral section above the K-line of aluminum): (1) main
signal and (2) external background.

Fig. 2. Spectral distribution of polarization-bremsstrahlung
intensity: (1) experimental data upon external-background
subtraction; (2) conventional-background intensity; and
(3, 4) calculated intensities of polarization bremsstrahlung
and conventional background in an amorphous and in a
polycrystalline aluminum target, respectively.
P

nal background arising in the chamber owing to target
irradiation with the accelerated beam. Moreover, addi-
tional magnets shielded the detector from scattered
electrons.

The photon flux was measured at a beam current
whose maximum value did not exceed 10 nA, whereby
nonlinear distortions were avoided in accumulating
spectral data. The use of the continuous mode of accel-
erator operation permitted considerably reducing the
time required to accumulate a statistically reliable data
sample and minimizing the effect of the facility time
drift.

Several runs of measurements of polarization
bremsstrahlung were performed. In the first runs,
whose results were reported in [5, 6], polarization
bremsstrahlung for moderately relativistic electrons
was separated for the first time. Because of a high back-
ground level, however, it was impossible to perform a
reliable analysis of the structure of polarization
bremsstrahlung. In the subsequent runs reported here,
the measurements were performed at an appreciably
reduced level of the external background.

Curve 1 in Fig. 1 represents a typical energy spec-
trum of x-ray photons according to the latest experi-
ment. Apart from polarization radiation proper, this
spectrum contains conventional bremsstrahlung and a
background. The background is shown by curve 2 in
Fig. 1 (the results are presented with due regard to radi-
ation absorption in the target and the spectral sensitivity
of the detector; however, the relevant corrections were
insignificant in the energy region being considered). A
dominant contribution to the total radiation flux comes
from the peak that corresponds to the ä-line of the alu-
minum characteristic radiation and which occurs in the
region around 1.5 keV. This peak exceeds the level of
radiation in the neighboring photon-energy region by a
factor of about 3. In Fig. 1, we do not therefore display
the ä-line region in the overall spectrum.

3. DISCUSSION OF THE RESULTS

Figure 2 shows the resulting energy (frequency)
spectrum of the observed-radiation intensity upon
background subtraction (curve 1). For the sake of com-
parison, we also show a few curves (2–4) calculated
under conditions complying with the experimental con-
ditions of radiation collimation. Curve 2 describes the
spectrum of conventional-bremsstrahlung intensity—
in the energy region being considered, it appears to be
a horizontal line. Curves 3 and 4 represent the spectra
of polarization-bremsstrahlung intensity in amorphous
and in polycrystalline aluminum, respectively, the con-
tribution of conventional-bremsstrahlung intensity
being taken into account for each spectrum. The curves
in question were calculated on the basis of the theoret-
ical relations from [2].

According to the results of the calculations (see also
[1]), the spectral distributions of polarization
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
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bremsstrahlung in amorphous and polycrystalline
media differ markedly. In the coherent region, polariza-
tion bremsstrahlung in a polycrystalline medium has a
peak structure, whose origin is similar to that in the
case of Debye–Scherrer peaks observed in the scatter-
ing of an x-ray flux in a polycrystalline medium. In the
photon-energy range 1–8 keV, there are three peaks at
3.75, 4.33, and 6.12 keV (these are their mean energies)
corresponding to the coherent scattering of the inci-
dent-electron field on the (111), (200), and (220) alumi-
num crystallographic planes at a Wolf–Bragg angle of
45° in the experiment. For moderately relativistic elec-
trons, the peaks are rather broad, the heights of the peak
maxima decreasing fast as their mean energy becomes
higher. Therefore, the (111) and (200) peaks are poorly
resolved, merging into the first peak on curve 4 in Fig. 2.

Comparing the curves in Fig. 2, we can conclude
that polarization bremsstrahlung can be singled out
reliably from experimental data and that the character
of this radiation is governed by the polycrystalline
structure of a target material. The positions of the peaks
on the measured curve are in agreement with the pre-
dictions. The measured yield of polarization
bremsstrahlung in the vicinity of the (111) and (200)
peaks also complies with theoretical values. The main
discrepancy between theoretical predictions and exper-
imental data, which is observed in the vicinity of the
(220) peak, can be attributed tentatively to coherent
Bragg reflection from the surface texture of the target
and to the background of the iron ä-line, which comes
into play as the result of rescattering of secondary par-
ticles on the chamber walls.

Thus, experimental results confirm that the spectral
properties of polarization bremsstrahlung generated by
relativistic electrons in polycrystalline and in amor-
phous media differ considerably, in contrast to what is
observed for conventional bremsstrahlung [7]. Bearing
in mind previous experimental data on the behavior of
polarization bremsstrahlung from relativistic electrons
in amorphous carbon [3], we can state that the mecha-
nism of this radiation is highly sensitive to the structure
of the medium. This is supported by our preliminary
data from the measurements of polarization
bremsstrahlung in other media. This circumstance is of
considerable importance for developing new methods
for a structural analysis of substances.

The above conclusions also supplement substan-
tially the results of Verzilov et al. [4], who studied radi-
ation generated by 900-MeV electrons in heavy metals
that was observed at an angle of 19° with respect to the
electron trajectory. In heavy metals, the upper bound-
ary of the coherent region of bremsstrahlung radiation
falls within the region around 100 keV because, there,
the effective radius of the atomic electron shell, R =
a0/Z1/3 (where a0 is the Bohr radius and Z is the charge
number of the atomic nucleus), is less than an ang-
strom. On this basis, the radiation recorded in [4] near
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
50 keV was interpreted as polarization bremsstrahlung.
However, no correlation between the properties of this
radiation and the structures of the medium was found.
The possible reason for this is that, under the conditions
of the experiment reported in [4], the region of lower
polarization-bremsstrahlung energies, where the struc-
ture of the medium could be operative, was close to the
detection threshold of about 20 keV (we used a more
informative presentation of the results than that in [4],
displaying the intensity values instead of the flux den-
sities of x-ray photons, whereby the conventional-
bremsstrahlung intensity representing a horizontal
line—see, for example, curve 2 in our Fig. 2—can be
singled out easily).

4. CONCLUSION

Two important features of polarization bremsstrahl-
ung have been revealed for the first time in the present
article:

(i) The spectral distribution of polarization
bremsstrahlung generated by relativistic electrons in
polycrystalline substances has a clear-cut peak struc-
ture.

(ii) The yield of polarization bremsstrahlung is sup-
pressed noticeably outside the peak region.
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Abstract—An analytic theory is developed for dynamical-diffraction effects in x-ray radiation from a relativ-
istic electron traversing a thin single crystal. It is shown that such dynamical effects may be responsible for a
glaring discrepancy between recent experimental data and the traditional theory of parametric x-ray radiation.
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1. INTRODUCTION

Parametric x-ray radiation [1–4] arises owing to the
scattering of the Coulomb field of a fast particle mov-
ing in a medium characterized by a periodic dielectric

permittivity, ε(ω, r) = 1 + χ0(ω) + (ω)eig · r,
where ω is the photon energy, while g is a reciprocal-
lattice vector. The dynamical theory of x-ray diffraction
in a crystal [5] or its simplified version, kinematical
theory (perturbation theory), is usually used to describe
this radiation. Previous investigations of the spectral
and angular distributions of relevant x-ray photons
propagating along the direction of Bragg scattering
revealed good agreement between experimental data on
parametric radiation and kinematical theory. Here, the
absence of dynamical effects is due to the fact that, in
the case of parametric x-ray radiation, the necessary
condition of synchronism between the emitted photon
and the radiating particle, ω = k · v (k is the photon
wave vector, and v is the velocity of the radiating parti-
cle), is satisfied only off the region of the dynamical
maximum in the Bragg scattering of the pseudophoton
field of a particle on the set of atomic crystal planes.

Of particular interest in connection with the afore-
said is the experimental result reported recently by
Freudenberger et al. [6], who measured, in Bragg
geometry, the orientation dependence of the yield of
collimated parametric x-ray radiation generated by
87-MeV electrons in a Si crystal (111). At the maxi-
mum of this orientation dependence, the measured
yield is eight times as great as the theoretical predic-
tion, the orientation angle corresponding to the experi-
mental maximum being 2.8 times smaller than that
which follows from the theory of parametric radiation.

The objective of the present study is to develop an
analytic theory of the dynamical scattering of the elec-
tromagnetic field of a relativistic electron traversing a
thin single crystal. On the basis of our results, we will
attempt to explain the experimental results presented in
[6] and propose a new scheme for generating x-ray
radiation.

χgg∑
1063-7788/00/6311- $20.00 © 22008
2. GENERAL RELATIONS

Let us consider the structure of the electromagnetic
field excited by a relativistic electron traversing a thin
crystal whose reflecting crystallographic plane (which
is specified by a reciprocal-lattice vector g) is parallel
to the crystal surface (see Fig. 1). Within the two-wave
approximation of the dynamical theory of diffraction
[5], the Fourier amplitude of the electric field, Ekω =

rdt E(r, t)e–ik · r + iωt, is sought in the form of

the sum of the direct and diffracted waves, E0 =

Eλ0 and Eg = Eλg, respectively,
where the polarization vectors are given by e10 = e1g ≈
k × g, e20 ≈ k × e10, e2g ≈ kg × e10, and kg = k + g. Deter-
mining the free and forced solutions to the Maxwell
equations for the Fourier amplitudes of the relevant
fields within and outside the crystal and finding
unknown coefficients from the boundary conditions at

1

2π( )4
------------- d3∫

eλ0λ 1=
2∑ eλgλ 1=

2∑

L
xg

e

θ||

 ϕ/2 + θ'
v

y

 ϕ/2 – θ'

Fig. 1. Geometry of the parametric-radiation process. The
following notation is adopted in this figure: v is the velocity

of the radiating particle, n = e  + q is a unit vector

in the direction of radiation (e · q = 0), θ' is the orientation
angle measured with respect to the position of the exact
Bragg resonance, L is the crystal thickness, g is a reciprocal-
lattice vector, and θ|| is the absolute value of the projection
of the vector q onto a direction parallel to the reaction plane.

1
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2
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the crystal surface, one obtains the conventional (rather
cumbersome) expression for the distribution of the
radiation with respect to spectral and angular variables
in Bragg geometry (see, for example, [3, 4]).

In the theory of parametric x-ray radiation, a tradi-
tional approach relies on the asymptotic formula for the
above distribution. This formula describes the yield of
parametric x-ray radiation associated with the scatter-
ing of the equilibrium Coulomb field of a fast particle
over the entire crystal thickness. Because of the screen-
ing of the equilibrium field due to the polarization of
medium electrons, the yield of this radiation is satu-
rated fast with increasing energy of the radiating parti-
cle (density effect in parametric x-ray radiation [7]).

By analyzing the general formula for the yield of
parametric x-ray radiation generated by a relativistic
electron traversing the surface of a crystal, it was shown
in [8] that there is additional radiation due to the
dynamical scattering of transition radiation from this
electron in the crystal. A generalization of the problem
considered in [8] to the case of a finite-thickness crystal
was given in [9, 10], where the relevant results were
obtained from a numerical analysis. In the present
study, we describe the process analytically on the basis
of an asymptotic approach, which is opposite, in a
sense, to that which is adopted in the conventional the-
ory of parametric x-ray radiation.

In the general expression for the distribution of the
radiation with respect to the spectral and angular vari-
ables, we first single out terms representing the contri-
bution of transition radiation (such terms are always
discarded in the asymptotic formula for parametric
x-ray radiation). After some simple algebra, we obtain

(1)

where λ is the polarization subscript, Ω1 = θ⊥ , θ|| = 2θ' +
θ||, γ is the Lorentz factor, ζλ = ( /ωb – 1)/βλ, βλ =

2ω2|χg ||αλ |/g2, α1 = 1, α2 = cosϕ,  = ωb(1 + (θ' +

θ||) ), ωb = g/2sin(ϕ/2), and δλ = βλ gL/2.

The ensuing analysis will rely on expression (1),
which differs markedly from that traditionally used in
the theory of parametric x-ray radiation. This expression

describes radiation correctly for γ2|χ0| = γ2 /ω2 @ 1
since, under the conditions being considered, the angu-
lar distribution in (1) (∆Ω ≈ γ–1) is concentrated almost
completely in the region of a dip in the angular distri-
bution of conventional parametric x-ray radiation (Ω ≤
ω0/ω, ω0/ω @ γ–1, where ω0 is the plasmon frequency
in the medium) that is generated by a particle over the

ω
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entire crystal thickness and which is suppressed by the
density effect.

We note that the factor e2 π–2(γ–2 + Ω2)–2 in (1)
describes the angular distribution of the vacuum Cou-
lomb field of a relativistic electron and that the quantity
R(ζλ, δλ) corresponds to the coefficient of the dynami-
cal reflection of the field from the crystal. The reason
why the dynamical regime of reflection is realized here
is that, in the present case, the process involves free
transition-radiation photons (rather than bound
pseudophotons, as in conventional parametric x-ray
radiation), whose distribution with respect to spectral
and angular variables differs only slightly from the dis-
tribution of pseudophotons in a vacuum for ω ! γω0
(recall that we consider precisely this region of fre-
quencies). The dependence R(ζλ, δλ), which character-
izes the intrinsic linewidth of the radiation being dis-
cussed, is illustrated in Fig. 2.

The crystal-thickness dependence of the radiation
yield is a very important characteristic. Integrating
expression (1) with respect to ω, we obtain

(2)

According to the curve in Fig. 3, the yield of the
radiation being considered is saturated at a crystal
thickness approximately equal to the extinction length
for Bragg scattering.

By comparing the theoretical result in (2) with the
experimental data from [6], we find that there is agree-
ment for the values of the orientation angle θ' that cor-
respond to the maximum of the orientation dependence
of the radiation yield; in addition, it turns out that the
calculated radiation yield at the maximum of the radia-
tion dependence is approximately twice as large as the
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Fig. 2. Universal frequency dependence of the coefficient of
the dynamical reflection of the field of a fast particle from a
crystal at δλ = (1) 0.5 and (2) 5.
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measured value. The latter may be due to a sizable
interference contribution of conventional parametric x-
ray radiation {in the experiment reported in [6], the
crystal thickness was comparatively large, while the
coefficient γω0/ω exceeded unity insignificantly (it was
about 2.5)}.

Performing a two-dimensional integration of
expression (1) with respect to θ, we find the spectrum
of a noncollimated radiation in the form

(3)

Expressions (2) and (3) show that, under the condi-
tion ω ! γω0, both the angular width ∆θ ≈ γ–1 and the
relative spectral width ∆ω/ω ≈ γ–1 of the radiation being
considered are much less than the corresponding quan-
tities for conventional parametric x-ray radiation.

From (2), it follows that the total number of emitted
photons is

(4)

where θd is the angular dimension of the collimator. On
the basis of expression (4), it can be concluded that, in
the crystal-thickness region L < 4/(gβλ), where the
effect of saturation is not yet observed, the total yield of
the radiation being considered is on the same order of
magnitude as the total yield of conventional parametric
x-ray radiation.

A considerable excess of the distribution of our radi-
ation with respect to spectral and angular variables over
the analogous quantity for the conventional parametric

x-ray radiation (by a factor of about γ2 /  @ 1 at
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Fig. 3. Universal crystal-thickness dependence of the radia-
tion yield.
P

L ≈ Lopt = 4/gβλ) can be used to develop an efficient
source of quasimonochromatic pencil-like x-ray radia-
tion.

The proposed source consists of a set of thin crystals
(of thickness L ≈ Lopt) positioned in a vacuum along the
trajectory of a beam of radiating electrons, the distance
T between the neighboring crystals being greater than
the radiation-formation length in a vacuum, also known
as the coherence length lcoh = 2γ2/ωb. In this case, pho-
tons are emitted in each crystal independently and
propagate in a vacuum at a large angle with respect to
the electron trajectory without undergoing photoab-
sorption (here, the total thickness of the system, Ltot =
NLopt, N being the number of crystals, may consider-
ably exceed the photoabsorption length, which restricts
the yield of radiation in conventional x-ray sources,
where photons propagate along the trajectory of parti-
cles radiating in a medium).
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Abstract—It is shown that, by varying the angular size of a collimator, the spectral distribution of parametric
x-ray radiation can be split into two isolated peaks and that the center of the spectral distribution of this radiation
is shifted in frequency in response to an increase in the collimator size. It is also predicted that an increase in
the angular size of the collimator will lead to a substantial modification of the character of the orientation depen-
dence of the radiation spectrum. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The motion of a fast charged particle in a crystal is

accompanied by the scattering of its Coulomb field by
atomic electrons of the crystal. Owing to the periodic
arrangement of atoms in the crystal lattice, this scatter-
ing has a coherent character. Parametric x-ray radiation
[1–4] generated under such conditions has a number of
unique characteristics: it has a quasimonochromatic
spectrum; it has a pencil-like character, propagating at
a large angle with respect to the radiating-particle
velocity; and the energy of the photons constituting this
radiation can be smoothly changed.

Since the energy of a photon emitted in parametric
x-ray radiation is tightly related to the angle of radia-
tion observation, the properties of this radiation depend
substantially on the collimator (or radiation-detector)
sizes. The objective of this study is to analyze in detail
1063-7788/00/6311- $20.00 © 22011
the spectral and orientation properties of parametric
x-ray radiation versus angular sizes of the collimator.
We will show that these properties undergo qualitative
changes with increasing collimator sizes.

2. GENERAL RELATIONS

Presently, the theory of parametric x-ray radiation
has been firmly established. In a number of studies, the
validity of its description on the basis of perturbation
theory (kinematical approximation) was demonstrated
theoretically and confirmed experimentally. Following
[2] and using conventional methods, we find that the
distribution of the intensity of parametric x-ray radia-
tion with respect to spectral and angular variables can
be represented as
(1)

ω dN

dtdωd2θ
---------------------

8πZ2e6n0
2

S g( ) 2e g
2
u

2–

m2 1 g2R2+( )2
---------------------------------------------------=

× v g v⋅( ) g 1 ε n v⋅( )–( )/ε–[ ] 2
n g⋅( ) g v⋅( ) n g⋅( ) 1 ε n v⋅( )–( ) ε⁄–[ ] 2

–

g2 1 ε n v⋅( )–( ) 2 ε n g⋅( ) g v⋅( )+[ ] 2
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1

1 ε n v⋅( )–
------------------------------δ ω g v⋅

1 ε n v⋅( )–
------------------------------– 

  ,
where g is a reciprocal-lattice vector that specifies the
reflecting crystallographic plane; S(g) is a structural

factor;  is the Debye–Waller factor; n0 is the den-
sity of crystal atoms; Z is the number of electrons in the

atom; R is the screening radius; ε = 1 – /ω2, ω0 being
plasmon frequency; n is a unit vector in the direction of
emitted-photon momentum; and v is the velocity of the
radiating particle. The disposition of the vectors g, v,
and e lying in the same plane is shown in Fig. 1. The
vector n is given by

(2)

e–g
2
u

2

ω0
2

n e 1
1
2
---θ2– 

  q, e q⋅+ 0, q q⊥ q||,+= = =
where θ|| and θ⊥  are, respectively the parallel and per-
pendicular components of the two-dimensional vector
q appearing to be the angular variable in the distribu-
tion of the radiation. The orientation angle θ' is mea-
sured from the position of the exact Bragg resonance. A
change in θ' corresponds to a rotation of the crystal as a
discrete unit about the axis orthogonal to the plane of
the figure. The angle between the vectors v and e
remains unchanged upon this rotation.

In terms of the variables q and θ', formula (1) takes
the conventional form in the kinematical theory of
parametric x-ray radiation; that is,
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(3)

where γ* = γ(1 + γ2 /ω2)–1/2, γ = (1 – v2)–1/2 @ 1, and
ωb = g/2sin(ϕ/2) is the Bragg frequency in whose
neighborhood the spectrum of the radiation is concen-
trated.

Expression (3) (or expressions similar to it) is
widely used to describe experimental results. In doing
this, it is implied that the angular size of the radiation
collimator is sufficiently small. In the following, we
will study the collimator-size effect on the spectrum of
the detected radiation.

We consider the case of a rectangular collimator:

Performing a two-dimensional integration in (3) with
respect to θ, we obtain the observed radiation spectrum
in the eventual form

(4)

ω dN

dtdωd2θ
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Fig. 1. Geometry of the parametric-radiation process (v is
the radiating-particle velocity, while g is a reciprocal-lattice
vector).
P

where x = γ* (ω/ωb – 1), y = γ*θ', λ⊥  =

γ*∆θ⊥ , λ|| = γ*∆θ||, σ(Z) is the Heaviside function,

and L is the crystal thickness assumed to be much
smaller than the photoabsorption length.

Below, the universal function F is used in our anal-
ysis of the effect of the parameters λ|| and λ⊥  on the
spectrum and on the orientation dependence of the radi-
ation yield.

3. DISCUSSION

Let us first consider the properties of the radiation in
the limiting case of λ⊥  ! 1, ϕ ≠ π/2. Formula (4) is then
simplified considerably to become

(5)

whence we can see that, under the conditions being
considered, the shape and the amplitude of the spec-
trum depend substantially on the parameters λ|| and y.
For λ|| ! 1, the spectrum represents a narrow line (∆x =
2λ|| ! 1) centered at the point x = y. The corresponding
energy of the emitted photon is given by

(6)

This expression is usually used in the theory of para-
metric x-ray radiation.

The amplitude of the spectral line is determined by
the value of the orientation parameter y in accordance
with the factor 4y2/(1 + 4y2)2 following from (5) for
λ|| ! 1. This factor describes the orientation depen-
dence of the radiation yield with two peaks at y = ±1/2
(it is typical of parametric x-ray radiation).

Let us now consider the case of λ||  ∞ (slit colli-
mator). The spectrum is then described by the formula

(7)

which follows from (5) and which predicts two sub-
stantial modifications to the spectrum in relation to the
preceding case. From Eq. (7), we can see that, in the
case being considered, the spectrum represents a sym-
metric curve having two peaks at x = ±1 – y. The width
of the spectral distribution is large, ∆x ≥ 1, and it is cen-
tered at x = –y, which corresponds to the emitted-pho-
ton energy

(8)

×
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It follows that, when we go over from a pointlike to
a slit collimator, the spectrum of parametric x-ray radi-
ation is split; concurrently, line broadening and a shift
of the spectral-distribution center occur, the latter being
dependent on the orientation angle. For this splitting,
∆ωp, and the shift of the distribution center, ∆ωc, we
have

(9)

Integrating the function F in (5) with respect to x,
we obtain the orientation dependence of the radiation
yield in the form

(10)

The function G shown in Fig. 2 for various values of
the parameter λ|| exhibits a qualitative variation in the
orientation dependence of the yield of parametric x-ray
radiation with increasing angular size of the collimator
in the reaction plane. With increasing λ||, the orientation
curve that is typical of parametric x-ray radiation and
which has two peaks at small values of λ|| transforms
into an orientationally independent constant.

Formulas (5)–(9) are not valid in the particular case
of ϕ = π/2. For this value of the emission angle ϕ, it fol-
lows from (4) that

(11)

An analysis of this formula by a method similar to that
used above leads to results that are by and large analo-
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2
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2
---.cot= =
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= =
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Fig. 2. Universal orientation dependence of the radiation
yield for λ⊥  ! 1 at λ|| = (1) 0.1, (2) 0.5, (3) 2, and (4) 5.
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gous to those in the preceding case, but the spectral dis-
tribution of radiation does not undergo splitting here.

Let us now consider another limiting case, that of
λ⊥   ∞. From (4), we then obtain

(12)

It can easily be verified that, in the case being con-
sidered, the radiation spectrum transforms from a nar-
row line of width 2λ|| for λ|| ! 1 into a bell-like curve of
width ∆x ≥ 1 for λ||  ∞. However, only in the emis-
sion-angle region ϕ < π/4 does the spectral curve split
into two peaks, but these peaks are rather weak.
In response to an increase in the collimator size, the
center of the spectral distribution of the radiation shows
a shift of the same magnitude as in the preceding case
of λ⊥  ! 1.

The orientation dependence of the radiation yield is
given by the formula

(13)

which follows from (11). The curves that represent the
dependence G(y) for various values of λ|| and ϕ are
shown in Figs. 3 and 4.
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Fig. 3. Universal orientation dependence of the radiation
yield for λ⊥   ∞ and ϕ = π/8 at λ|| = (1) 0.3 and (2) 2.
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4. CONCLUSION

The spectral and orientation characteristics of para-
metric x-ray radiation depend substantially on the
angular sizes of the radiation collimator.

With increasing collimator size in the reaction
plane, the spectral distribution of the radiation broad-
ens, while its center undergoes a shift.

If a slit collimator, with the slit being oriented along
the reaction plane, is used, the observed radiation spec-
trum splits into two isolated peaks.

An increase in the angular size of the collimator can
radically change the orientation dependence of the
yield of parametric x-ray radiation (a trend toward
weakening of this dependence is observed).

The above effects are of a simple geometric origin.
The angular distribution (3) of the reflex of parametric
x-ray radiation is bell-shaped and has a dip at its center
(this is the angular structure of transverse pseudopho-
tons of the Coulomb field of a relativistic particle that
are reflected by a crystal). Because of the presence of a

–4 –2 0 2 4
y

1.0

1.5

G, arb. units

2.5

2.0

0.5
1

2

Fig. 4. As in Fig. 3, but for ϕ = π/2.
P

delta function in (3), there is a tight correlation here
between the energy of the emitted photon, on one hand,
and the values of the angle of radiation observation in
the reaction plane, θ||, and the orientation angle θ', on
the other hand. Owing to the above features, the shape
of the observed spectrum and its orientation depen-
dence are determined by the degree of overlap of the
reflex of parametric x-ray radiation and the collimator.
If the aperture of the collimator is small in relation to
the intrinsic width of the angular distribution of para-
metric x-ray radiation, the observed spectrum is nar-
row, and the orientation dependence is similar to the
angular distribution of parametric x-ray radiation. On
the other hand, no orientation dependence is observed
if the collimator is open completely; as to the corre-
sponding spectrum, which features all possible photon
energies, it can have a dip (at specific transverse sizes
of the collimator, ∆θ⊥ , and specific values of the emis-
sion angle ϕ) caused by the absence of photons emitted
through the mechanism of parametric x-ray radiation in
the direction of Bragg scattering.
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Abstract—The propagation of high-energy ions through a bent single crystal near a crystallographic axis is
investigated. The results of these investigations reveal that a new mechanism of ion-beam deflection is possible
in this case. This mechanism is based on multiple ion scattering by atomic strings in a bent crystal. The results
obtained from a computer simulation of the effect are also presented. The effect is shown to depend strongly on
the particle charge. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The deflection of beams of high-energy positively
charged particles via the mechanism of planar channel-
ing in bent crystals is a well-studied effect, which is
used in practice [1, 2]. In [3–5], it was indicated that
there exists another mechanism of beam deflection by a
bent crystal, that which is based on the multiple scatter-
ing of particles by atomic strings. A feature peculiar to
this mechanism is that, in scattering by atomic strings,
beam deflection is possible both for channeled and for
above-barrier particles; at the same time, only for chan-
neled particles is this possible in the case of motion
along bent crystallographic planes. Moreover, a beam
incident on a bent crystal at a small angle with respect
to a crystallographic axis can undergo both deflection
and splitting. It is important to note that not only ele-
mentary-particle beams but also beams of multiply
charged ions can be deflected by bent crystals [6]. In
the latter case, the value of the charge affects substan-
tially the deflection of the charged-particle momentum
[6, 7]. In the present study, we analyzed the mechanism
of deflection of relativistic-ion beams due to multiple
particle scattering on atomic strings in a bent crystal.

2. SIMULATION PROCEDURE 
AND BASIC RESULTS

The possibility of deflecting ion beams that traverse
a bent crystal near a crystallographic axis was consid-
ered both analytically and on the basis of a numerical
simulation. The problem at hand can be treated analyt-
ically in the case where the conditions of dynamical
chaos are realized in the scattering process [8]. But in
the general case, it is necessary to apply methods of a
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Technology, ul. Akademicheskaya 1, Kharkov, 310108 Ukraine
and Belgorod State University, Studencheskaya ul. 12, Belgorod,
308007 Russia.
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numerical simulation. For this purpose, we developed a
computer code for simulating the propagation of
charged particles through a bent crystal near a crystal-
lographic axis [4, 8]. The propagation of particles
through a crystal is considered as a step-by-step two-
dimensional motion in the plane orthogonal to the
direction of the crystallographic axis in the total field of
atomic strings. A continuous potential of atomic strings
can be computed on the basis of the Mollier approxima-
tion for the potential of an individual atom. At each
step, we computed both coherent and incoherent parti-
cle scattering, the former being caused by an averaged
continuous potential. Incoherent scattering is associ-
ated with the distinction between the actual potential of
a string and the averaged potential. This distinction is
due to the thermal displacements of lattice atoms from
equilibrium positions and to lattice electrons. Incoher-
ent scattering changes the transverse energy of the scat-
tered particle. It is taken into account under the assump-
tion of a Gaussian distribution of computed quantities.

An analytic consideration of charged-particle prop-
agation through a bent crystal near a crystallographic
axis shows [8] that the effect of beam deflection by a
crystal is possible under the condition

(1)

where L is the crystal thickness, R is the radius of cur-
vature of its bend, ψc is the critical angle of axial chan-
neling, and l⊥  is the length over which the distribution
of particles with respect to the azimuthal angle is estab-
lished as the result of multiple scattering. For ψ ≤ ψc,
we have the approximate relation l⊥  ≈ (ψcndaTF)−1,
where n is the density of atoms, d is the interatomic
spacing along the direction of motion (z axis), and aTF
is the radius of screening of the atomic potential.

Since α ~  and ψc ~ , the mechanisms of
propagation through a bent crystal can be very different

α L
Rψc

--------
l⊥

Rψc

-------- 1,<=

ψc
3– Zi
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Fig. 1. Propagation of 450-GeV beams of (a, c, e) protons and (b, d, f) U+92 ions through a bent silicon crystal whose thickness is
of L = 3 cm and whose radius of curvature is of R = 10 m near its 〈110〉  axis: (a, b) angular distributions of particles leaving the
crystal, (c, d) horizontal profile of the beam leaving the crystal, and (e, f) fractions of (upper curves) deflected and (lower curves)
hyperchanneled particles versus the crystal thickness. The dashed curves in Figs. 1c and 1d represent the profiles of the beams that
traversed a 3-cm layer of amorphous silicon. The coordinates of the initial-beam center, the beam divergence, the coordinates spec-
ifying the crystal-axis direction at the downstream surface of the crystal, the beam dimensions, and the observation base were,
respectively, (θX, θY) = (0, 0), 3 × 10–6 rad, (θX, θY) = (3.1, 0, 0) mrad, 1 × 2 mm2, and 4 m.
for protons and for multiply charged ions. By way of
example, we indicate that, for a beam of 450-GeV par-
ticles incident on a silicon single crystal along the 〈110〉
axis at L = 3 cm and R = 10 m (which corresponds to
the parameters of the CERN experiment studying the
axial deflection of protons [9]), we have αp = 80 for
P

protons and αU = 0.1 for uranium ions. Taking into
account the condition in (1), we conclude that, for the
above values of the beam and crystal parameters, the
mechanism of deflection via multiple scattering on sin-
gle-crystal strings must be operative for ions and inop-
erative for protons. This theoretical prediction is fully
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
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confirmed by the results of a numerical simulation (for
a proton beam, the results of the simulation are in good
agreement with the experimental data from [9]). Figure
1 shows the results of our computer simulation for the
above conditions.

Our results demonstrate that the angular distribu-
tions of protons that traversed a single crystal differ
considerably from the analogous distribution for multi-
ply charged uranium ions. The direction of the crystal-
lographic axis at the downstream surface of the crystal
is taken here to correspond to θR = 3 mrad. In the case
of ions, a significant fraction of beam particles (about
20%) are deflected through this angle, following the
bend of the crystallographic axis. It is predominantly
the above-barrier particles that undergo deflection
under such conditions (see Fig. 1f). Among protons,
only the hyperchanneled particles are deflected in the
case being considered (see Fig. 1e). Initially, the frac-
tion of hyperchanneled protons is much less than that in
the case of ions because the depth of the two-dimen-
sional potential well is much greater for ions than for
protons. The results of our simulation reveal, however,
that the process of dechanneling is more vigorous for
ions than for protons; as a result, the beam of uranium
ions leaving the crystal does not contain hyperchan-
neled particles. Our analysis of the numerical data
shows that this effect is due to a sharp intensification of
incoherent scattering on lattice electrons with increas-
ing particle charge. Thus, the deflection mechanism
associated with multiple scattering on bent atomic
strings is operative for multiply charged ions. Indeed,
strong incoherent scattering, which suppresses the
deflection of hyperchanneled particles (both in the axial
and in the planar case), leaves the possibility for the
axial deflection of above-barrier particles.

Symmetric peaks in the distribution of protons (see
Figs. 1a, 1c) are associated with particles captured in
planar channels. This capture occurs when the deflected
particles cease to follow the axis and results in the pos-
sible splitting of the beam into several isolated frac-
tions. A gradual escape of particles from the trajectory
along the axis occurs when the deflection conditions
are impaired—that is, when the parameter α
approaches unity with increasing crystal thickness. The
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
fractions captured by planes are localized when the
capture of new particles is terminated—that is, when
α > 1; this inequality can be considered as the condition
under which the effect of beam spitting is realized.

Thus, the propagation of relativistic multiply
charged ions through a bent crystal differs considerably
from the propagation of protons and must be consid-
ered separately. The results obtained here show that the
above effects can be investigated at the GSI ion accel-
erator.
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Abstract—Ionization energy losses of an ultrarelativistic electron produced in matter are considered. The inter-
ference of the proper Coulomb field of the product particle and the electromagnetic wave that this particle emits
is shown to be significant at impact-parameter values that make a dominant contribution to the ionization energy
losses. The effect is shown to exert virtually no influence on the ionization energy losses of the particle. © 2000
MAIK “Nauka/Interperiodica”.
1. Ionization energy losses of clusters formed by
fast charged particles occurring at small distances from
one another may differ significantly from the total ion-
ization energy losses of the individual particles consti-
tuting the cluster if these particles are far from one
another. This distinction is associated with the interfer-
ence of the electromagnetic fields created by the parti-
cles of the cluster at distances that contribute signifi-
cantly to ionization energy losses. Such a situation
emerges, for example, when a high-energy electron–
positron pair is produced in matter [1]. The point is that
the characteristic angles of divergence of a high-energy
pair produced in matter are very small. It follows that,
over rather long a time interval, the transverse distance
between the particles of the pair will be small in rela-
tion to the maximum impact-parameter values of ρmax ~
v/ωp, (v is the particle velocity, and ωp is the plasmon
frequency) that contribute significantly to the ioniza-
tion energy losses of the individual particles of the pair.
The electromagnetic fields of the electron and the
positron of the product pair compensate each other partly
at distances of v/ωp the from the pair in the transverse
direction; therefore, the ionization energy losses of such
a cluster are smaller than the ionization energy losses of
the individual particles. By way of example, we indicate
that, at photon energies of "ω ~ 100 GeV, characteristic
angles of divergence of the particles forming the pair are
estimated as θ± ~ 4mc2/"ω ~ 2 × 10−5 rad, so that the
reduction of the ionization energy losses of the product
pair must manifest itself at longitudinal distances of l ~
ρmax/θ± ~ 0.05 cm from the pair-production vertex. This
effect was observed in cosmic rays [1].
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A similar effect occurs in the Coulomb explosion of
fast molecules in a thin layer of matter [2]. The similar-
ity of these two processes was noticed in [3].

For a long time, the electromagnetic field surround-
ing a high-energy charged particle (electron) produced
in matter can differ significantly from the normal
proper field of a similar particle that moves at a con-
stant speed in the same direction [4, 5]. The effect is
determined by the interference of the Coulomb field of
the electron and the field of the electromagnetic wave
that this electron emits. An ultrarelativistic electron
emits waves predominantly at small angles with respect
to its velocity, θ ~ mc2/E, where E is the electron
energy. As a result, an electron, with its Coulomb field,
and the emitted electromagnetic wave will be at small
distances from each other for a long period of time;
hence, the effect of interference between the two fields
will be significant. In this sense, the electron and the
electromagnetic wave emitted by it can be treated as a
cluster formed by the Coulomb field of the electron and
the emitted electromagnetic wave. Such clusters mani-
fest themselves in many processes associated with radi-
ation from ultrarelativistic electrons in matter, such as
coherent radiation from relativistic electrons in ori-
ented crystals and the Landau–Pomeranchuk effect,
which consists in the suppression of bremsstrahlung
from ultrahigh-energy electrons in amorphous media
(see, for example, [5]). There naturally arises the ques-
tion of whether such a cluster can manifest itself in ion-
ization energy losses of a particle in a medium. This is
the problem to be addressed in the present article.

2. We consider some special features of the evolu-
tion of the field of a particle following its production in
matter and the ionization energy losses of the particle in
this case. First, we analyze the evolution of the field of
a high-energy particle produced in a medium, neglect-
ing the dielectric properties of the medium.

We assume that a charged particle is instantaneously
produced at the time instant t = 0 with a finite velocity v.
000 MAIK “Nauka/Interperiodica”
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The potentials of the particle field are determined by
the equations (c = 1)

(1)

(2)

where Θ(t) is the Heaviside step function. Solutions to
Eqs. (1) and (2) can be represented in terms of the Fou-
rier integrals

(3)

(4)
These solutions can also be recast into the form

(5)

(6)

where ϕ0 and A0 determine the conventional Coulomb
field of a charged particle that moves at a velocity v,

(7)

(8)

Here, γ = (1 – v2)–1/2 is the Lorentz factor, the z axis is
aligned with v, and r is a radius vector in the plane
orthogonal to v.

The first terms in (3) and (4) describe the potentials
of the conventional Coulomb field of a particle that
moves at a velocity v. The second terms describe the
field of the emitted wave for t  ∞. In each term in
(3) and (4), the main contribution to the integrals with
respect to k in every comes from k whose directions are
close to the direction of v—more specifically, from the
region where the characteristic angle θ between k and
v is θ ~ γ–1. For such k, the relevant Fourier components
of the surrounding field are suppressed over the time
period from t = 0 to t < (k – k · v)–1 ~ 2γ2/k in relation to
those in the region t > 2γ2/k. This means that, over the
period ∆t ~ 2γ2/k, the particle is in a “semibare” state
deprived of its normal Coulomb field. Considering that
the main contribution to the ionization energy losses of
the particle comes from the region k > ωp/ν, we can
expect that the ionization energy losses are suppressed
over the time interval ∆t ~ 2γ2/k. For electron energies
of Ee ~ 100 GeV, we have v∆t ~ 102 cm.

Direct calculations reveal, however, that there is no
such effect—that is, the ionization energy losses of the
electron reach their normal value after a lapse of the
time ∆t ~ ρmax/v. By using relations (5) and (6), we can
indeed show (in accordance with the Bohr method for
calculating the ionization energy losses [6]) that the
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energy losses of a particle at distances z @ ρmax from its
production vertex in matter are given by

(9)

where

(10)

and ρmin is the minimum impact-parameter value that
contributes significantly to the ionization energy losses.
This value is determined on the basis of quantum con-
siderations and is about p–1, where p is the projectile
momentum.

From Eq. (9), we can see that, at z @ ρmax, the cor-
rection to the conventional expression T0 for the energy
lost by the particle in matter owing to the prolonged
existence of the electron in the “semibare” state is
small. That the ionization energy losses increase within
a time interval smaller than the time over which the nor-
mal Coulomb field of the electron is recovered can be
explained by the fact that the splash ∆ of the field
strength at t = r [see Eqs. (5) and (6)] compensates for
the decrease in the ionization energy losses that is asso-
ciated with the absence of the field for distances r > t.

3. Let us now take into account the dielectric prop-
erties of the medium. In this case, Eqs. (1) and (2)
assume the form [7]

(11)

(12)

If the dielectric permittivity is given by

(13)

solutions to these equations can be represented as

(14)

(15)
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It can easily be seen that, for ωp  0, Eqs. (14) and
(15) reduce to Eqs. (3) and (4). Calculating the ioniza-
tion energy losses on the basis of the method described
in [7], we obtain

(16)

where

and C = lnγ = 0.577 is the Euler constant.

The quantity X = (v/ e2)(T – T0), which deter-
mines the deviation of the ionization energy losses of

–
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Quantity X calculated according to the expressions (dashed
curve) (9) and (solid curve) (16) versus ωpt.
P

the “semibare” electron from the normal energy losses
in accordance with expressions (9) and (16), is dis-
played in the figure as a function of ωpt.

For electron energies of Ee ~ 1 GeV, (v/ e2)T0 ~
17; therefore, the difference of the T value computed

according to (16) and T0 at distances of a few  (that
is, a few ρmax for ultrarelativistic particles) is within 2%.

Thus, we see that the prolonged existence of an elec-
tron deprived of its normal Coulomb field has virtually
no effect on the ionization energy loss of a particle in a
medium. We emphasize, however, that the semibare-
electron effect is significantly manifested in the radia-
tion from relativistic particles [8].
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Abstract—The classical and quantum scattering of fast electrons on an atomic string of a crystal is considered
at angles of particle incidence on the string that are much smaller than the critical angle of axial channeling.
The investigation was performed within the simplest approximation of the continuous atomic-string potential
in the form of a cutoff Coulomb potential. For this case, the azimuthal scattering of particles at an angle exceed-
ing 180° in the plane orthogonal to the string axis is shown to be possible for all impact-parameter values. It is
demonstrated that, in particle scattering on a string, an effect can occur that is similar to the Ramsauer–
Townsend effect, which consists in a considerable reduction of the total cross section for slow-electron scatter-
ing on atoms. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

When a fast charged particle is incident on an
atomic string of a crystal at a small angle ψ with respect
to its axis, correlations between successive collisions of
the particle with string atoms are of importance.
Because of these correlations, the particle is scattered
predominantly at the azimuthal angle ϕ in the plane
orthogonal to the string axis [1]. At angles of particle
incidence that exceed the critical angle of axial chan-
neling, ψc, typical values of the azimuthal scattering
angle are small. However, these typical values of the
azimuthal scattering angle increase with decreasing
angle ψ, achieving 180° at ψ ~ ψc. Of particular interest
is scattering of negatively charged particles on an
atomic string because, at all possible values of the angle
ψ, such particles can approach closely the string axis,
undergoing intense interactions with the string field.

In the present study, we analyze special features of
the scattering of a negatively charged particle on an
atomic string of a crystal at ultrasmall angles of particle
incidence on the string. The study is performed within
the simplest approximation relying on a continuous
potential of the atomic string in the form of a cutoff
Coulomb potential. It is shown that, in the region ψ !
ψc, the character of particle scattering on a string
changes drastically with decreasing ψ. In particular, it
turns out that, at some value of ψ = ψg (ψg ! ψc), the
classical angle of particle scattering is 180° for all
impact-parameter values. This effect is similar to the
effect of giant glory in slow-electron scattering on an
atom [2]. For ψ < ψg, the angle of particle scattering on

1) National Research Center Kharkov Institute for Physics and
Technology, ul. Akademicheskaya 1, Kharkov, 310108 Ukraine
and Belgorod State University, Studencheskaya ul. 12, Belgorod,
308007 Russia.
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the string is shown to exceed 180° for all impact-
parameter values resulting in scattering.

We have considered quantum aspects of particle
scattering on an atomic string. For ψ < ψg, the quantum-
scattering cross section can oscillate considerably
about the classical value over the entire range of azi-
muthal scattering angles. This effect is similar to the
generalized Ramsauer–Townsend effect for slow-elec-
tron scattering on atoms at a large angle [3, 4].

We also investigate the scattering cross section as a
function of the angle ϕ. At small angles ψ, the total
scattering cross section is shown to have a rather com-
plicated structure. In particular, this cross section
appears to have a deep minimum at a certain value of ψ.
This result is similar to the Ramsauer–Townsend effect,
which consists in a considerable reduction of the total
cross section for slow-electron scattering on an atom
(see [3]).

2. QUANTUM- AND CLASSICAL-SCATTERING 
CROSS SECTIONS

The motion of a fast charged particle incident on an
atomic string of a crystal at a small angle ψ with respect
to its axis (z axis) is determined primarily by a contin-
uous string potential—that is, by the potential of string
atoms that is averaged along the z axis [5, 6]. The
z component of the momentum is conserved in this
field, so that the particles undergo scattering only at the
azimuthal angle ϕ in the (x, y) plane, which is orthogo-
nal to the string axis. As a result, we arrive at the two-
dimensional problem of particle scattering on a poten-

tial U(ρ) in the (x, y) plane, where ρ = .
This formulation of the problem is valid both for the

quantum and for the classical treatment of the process
of particle scattering on an atomic string. In classical

x2 y2+
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mechanics, the angle of azimuthal particle scattering in
the field U(ρ) is given by [1]

(1)

where b is the string impact parameter, ε⊥  = εψ2/2 is the
transverse particle energy, ε is the particle energy, and
ρ0 is the minimum distance between the particle and the
string axis.

If the function ϕ(b) is known, we can find the cross
section for classical particle scattering on the string,

, at angles in the interval (ϕ, ϕ + dϕ). The result is

(2)

where L is the string length.
The cross section for quantum particle scattering on

the atomic-string field has the form [1]

(3)

where ηl are phase shifts for scattering on the field U(ρ)
and p⊥  = εψ. Summation is performed over the integral
values of the angular momentum in the transverse
plane.

In the semiclassical approximation, the phase shifts
ηl are given by

(4)

where ρ0 is the root of the radicand (at l = 0, we have
ρ0 = 0).
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Fig. 1. Deflection function ϕ = ϕ(b/R) (R is the cutoff radius
of the string potential) for electron scattering by an atomic
string of a silicon crystal at ψ = (1) 0.05ψc, (2) 0.2ψc,
(3) ψg, (4) 0.4ψc, and (5) 0.8ψc.
According to (3), the total cross section for particle
scattering on the string is

(5)

In order to find the scattering cross section, it is nec-
essary to know the form of the function U(ρ). The con-
tinuous potential of the atomic string has a rather com-
plex form; therefore, simpler forms of the potential
energy U(ρ) are often used to approximate the potential
of the particle interaction with the string.

For the function U(ρ), we use here the form (see [1,
5, 7])

(6)

where α = U0a, a being the Thomas–Fermi radius of the
screening of the atomic potential U0 = πZe2/2d (here,
Z|e | and e are the charges of the atomic nucleus and the
electron, respectively, and d is the spacing between the
string atoms), while R is the cutoff radius of the string
potential.

Functions of the form U(ρ) = α/ρ are often used in
the theory of particle channeling in crystals [5, 7]. In
this approximation, the potential U(ρ) is cut off at the
distance equal to half the spacing between the nearest
atomic strings of the crystal.

The problem of particle scattering on the potential
(6) was also considered in studying slow-electron scat-
tering on atoms [2, 3, 8].

3. RESULTS AND DISCUSSION

Formulas (1)–(5) allow us to study particle scatter-
ing on an atomic string within the quantum and within
the classical framework.

The calculated deflection function ϕ = ϕ(b) for a
negatively charged particle scattered by an atomic
string is shown in Fig. 1 at various values of the param-

eter ψ/ψc, where ψc =  is the critical angle of
axial channeling.

Our results reveal that the character of particle scat-
tering on an atomic string changes significantly at ψ ~

ψg, where ψg = .
For ψ > ψg, ϕ(b) is a monotonically decreasing

function of the impact parameter, the particles being
scattered here at angles that do not exceed 180°.

At ψ = ψg, the particles are scattered at ϕ(b) = 180°
for all impact-parameter values. This effect is similar to
the effect of giant glory in slow-electron scattering on
atoms [2].

For ψ < ψg, ϕ(b) is a monotonically increasing func-
tion of the impact parameter, the particles being scat-
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tered at angles in excess of 180° at all impact-parameter
values.

Figure 2 shows the differential cross sections for the
scattering of 10-MeV electrons incident on an atomic
string of a silicon crystal at angles of ψ = (a) 0.8ψc and
(b) 0.2ψc with respect to the 〈100〉  axis. These values of
ψ correspond to the angles of particle incidence such
that ψ > ψg in the former case (a) and ψ < ψg in the latter

case (b). The values of F = (Laψ)–1  are plotted along

the ordinate. The thin and the thick curve correspond to
the calculations by formulas (2) (classical scattering)
and (3) (quantum scattering), respectively. The cutoff
radius of the potential was taken to be R = 0.96 Å,
which corresponds to half the mean spacing between
the atomic strings in the plane orthogonal to the 〈100〉
axis of a silicon crystal.

These results show that, at ψ = 0.8ψc, the quantum
and classical cross sections coincide over a consider-
able region of scattering angles; modest oscillations of
the quantum-scattering cross section about the values
of the classical-scattering cross section in the region of
small scattering angles are caused by diffraction effects
in particle scattering on the localized string potential.

At ψ = 0.2ψc, the classical cross section increases
monotonically with increasing scattering angle. Here,
the quantum cross section develops sizable oscillations
about the values of the classical cross section over the
whole region of scattering angles. The oscillations are
caused by a significant contribution to the scattering
cross section (3) from terms associated with small val-
ues of the quantum number l. These oscillations are
similar to those that occur in the generalized Ram-
sauer–Townsend effect for slow-electron scattering on
atoms at large angles [3, 4].

Figure 3 displays the total cross section for the scat-
tering of 10-MeV electrons on an atomic string of the
silicon crystal [see Eq. (5)] as a function of the angle of
particle incidence on the string. Here, the quantity G =
(2RLψ)–1σtot is plotted along the ordinate. Our results
demonstrate that the total cross section has a rather
complicated structure in the region of small angles ψ. In
the region of large values of ψ (ψ ≥ ψc), the total cross
section decreases smoothly with increasing ψ. In the
region of small ψ, the cross section exhibits sharp vari-
ations. The reason for this is that the contributions of
some terms drop out from the sum over l (5) when ψ
decreases.

The total cross section is close to zero at ψ ~ 0.04ψc.
This effect is analogous to the Ramsauer–Townsend
effect, which consists in a significant decrease in the
total cross section for slow-electron scattering on atoms
in a certain region of particle energies (see [3] and ref-
erences therein).

In conclusion, we note that the above special fea-
tures of electron scattering on the string field are pecu-
liar not only to the approximation of the string field in

dσ
dϕ
------
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the form (6) but also to other approximations that fall
off fast with increasing distance.
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of ψ/ψc are plotted along the ordinate and the abscissa,
respectively.
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Abstract—On the basis of a computer simulation, it is shown that, in the spectrum of radiation from ultrarela-
tivistic electrons in oriented crystals, new maxima can appear in the low-frequency region in addition to ordi-
nary coherent maxima. This effect is due to the influence of high-index planes on the radiation in question. The
aforementioned new maxima manifest themselves not only in the spectrum but also in the polarization charac-
teristics of the radiation. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Relativistic electrons moving in a crystal at a small
angle to one of the crystal planes closely packed with
atoms can induce coherent and interference phenomena
in their radiation. Owing to these effects, the radiation
spectrum exhibits sharp peaks at which the radiation is
characterized by a high intensity and by a polarization
[1–5]. With increasing particle energy, the positions of
those peaks are shifted fast toward the high-frequency
region. From an energy value of about 100 GeV, the
coherent maxima are localized in the region where pho-
ton energies are close to the energy of radiating elec-
trons [6–8].

It was indicated in [9] that, for specific orientations
of the crystal axes and planes, the spectrum of coherent
radiation from ultrarelativistic electrons exhibits, in
addition to ordinary peaks, some new peaks in the low-
frequency region. The intensity and polarization of the
radiation at these new peaks are close to those at the
ordinary peaks. The origin of these peaks is associated
with the influence of the weakly packed crystal planes
on coherent radiation.

This result was obtained in the approximation of a
nearly straight electron trajectory in a crystal. However,
the motion of a particle in a crystal can have a rather
complicated character. In particular, it can be either
regular or chaotic in the periodic field of a crystal lat-
tice. Therefore, there arises the problem of whether
these peaks can indeed arise under the conditions of
actual particle dynamics in a crystal. In the present arti-
cle, this problem is considered on the basis of a simula-
tion of coherent radiation from relativistic electrons in
a crystal.

From the results of this simulation, it follows that
the actual dynamics of electron motion does not destroy
coherent peaks induced by the effect of weakly packed
crystal planes.
1063-7788/00/6311- $20.00 © 2025
Among other things, these results demonstrate that
the new peaks in the coherent-radiation spectrum can
be observed not only at ultrahigh energies but also at
particle energies of about 1 GeV.

2. SPECIAL FEATURES OF COHERENT 
RADIATION FROM ULTRARELATIVISTIC 

ELECTRONS MOVING NEAR CRYSTAL PLANES

Basic results of the theory of coherent radiation
from relativistic electrons moving in a crystal were
obtained in the first Born approximation [1, 4, 5]. How-
ever, the conditions of its applicability are soon vio-
lated as the energy ε of the radiating particle is
increased or as the angles of its incidence with respect
to the crystal axes and planes—ψ and θ, respectively—
are decreased [8, 10]. At the same time, the radiation
from a particle moving in a crystal can be described in
the semiclassical approximation over a broad range of
energies ε and of angles ψ and θ. In the semiclassical
approximation, the cross section for this radiation can
be expressed in terms of the classical trajectory of the
radiating particle. If, within the coherence length, the
trajectory in question is close to a straight line, the
spectral density of coherent radiation in a crystal coin-
cides with the corresponding result obtained in the
Born approximation [5–8, 10] and is given by

(1)

where ε and ε' are, respectively, the initial and the final
energy of the radiating electron; m is the electron mass;
ω = ε – ε' is the radiated-photon energy; δ = ωm2/2εε';
∆ is the elementary-cell volume, S(g) is the structural

ωdσ
dω
------- 2e2δ

m2∆
-----------ε'

ε
--- S g( ) 2g⊥

2

g||
2

-----
g

∑=

× 1 ω2

2εε'
---------- 2

δ
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---- 1 δ
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Fig. 1. (‡) Spectrum and (b) polarization of coherent radiation from ε = 100 GeV electrons in a diamond crystal at ψ = 2.5 × 10–3 rad

and α = 0.199 (the values of F = , where σ0 = Z2e6m–2, are plotted along the ordinate in Fig. 1a): (solid curves) results of

our simulation, (dashed curves) results of the calculation according to (1), and (dash-dotted curve) results of the calculation accord-
ing to the Bethe–Heitler formula.

1
nLσ0
------------- dE

dω
-------
factor; g is a reciprocal-lattice vector, g|| and g⊥  being its
components parallel and orthogonal to the initial-elec-
tron momentum p; Ug is the Fourier component of the

potential of a single atom in a crystal; and  is the
mean-square amplitude of lattice thermal vibrations.
Summation in (1) is performed over vectors g that sat-
isfy the condition g|| ≥ δ. We use the system of units
where " = c = 1.

In the situation commonly considered within the
theory of coherent radiation, an electron moves in a
crystal at a small angle ψ with respect to one of the
closely packed crystal axes (taken to be the z axis). The
expressions for g|| and g⊥  can then be represented as

(2)

where α is the angle between the initial-electron-
momentum component orthogonal to the z axis and the
y axis.

When an electron traverses a crystal, there can arise
the situation where it moves simultaneously at a small
angle ψ with respect to the one of the crystal axes (ψ !
1) and at a small angle α with respect to the one of the
crystal planes (α ! 1). This case is of particular interest
since it will be shown below that, under such condi-
tions, there exists a region of the angles ψ and α and of
the energies ε where the coherent-radiation spectrum
develops, in addition to conventional peaks, new peaks
at which the intensity and the polarization of the radia-
tion are rather high. These peaks in the coherent-radia-
tion spectrum, which are induced by the effect of crys-
tal planes whose order is higher than that of the plane
near which the electron moves, are highly sensitive to
small variations in the angle α.

In order to demonstrate this, we consider the coher-
ent radiation from ε = 100 GeV electrons moving in a
diamond crystal at an angle of ψ = 2.5 × 10–3 rad with
respect to the 〈001〉  axis, the angle α between the parti-
cle-momentum projection onto the (001) plane and the
(110) crystallographic plane being α ≈ 0.2. The results
of the calculations for (a) the spectrum and (b) the

u2

g|| gz ψ gy α gx αsin+cos( ), g⊥
2+ gx

2 gy
2,+= =
P

polarization of the coherent radiation from such elec-
trons are depicted in Fig. 1 by dashed curves. An anal-
ysis of these results reveals that, in the case under con-
sideration, in addition to ordinary coherent peaks in the
frequency region ω ≥ 0.8ε, a new peak appears in the
low-frequency region ω < 0.8ε and that this new peak is
characterized by a high radiation intensity.

Let us now focus on some features of the radiation
process that are responsible for the emergence of this
maximum.

The main peak in the coherent-radiation spectrum at
ω ~ 0.8ε is associated with the contribution to the radi-
ation cross section from the reciprocal-lattice vector

having the components gz = gy = 0 and gx = 4π /a,
where a is the lattice constant (the x and y axes are

aligned with the 〈110〉  and  crystallographic
axes, respectively). This peak is due to the interference
of the electromagnetic waves radiated by the electron in
collisions with crystal planes parallel to the (110)
plane.

The peak in the coherent-radiation spectrum at low
frequencies is controlled by the contribution to the
cross section from the vector g whose components are

gz = 0, gy = –4π /a, and gx = 20π /a. This peak
emerges owing to the interference of the electromag-
netic waves radiated by the electron in collisions with
the crystal planes parallel to the (320) plane.

Under variations of about 0.02 in α, the low-fre-
quency peak disappears, while the coherent-radiation
peak at ω ~ 0.8ε, which is dominant under the condi-
tions being considered, remains virtually intact.

Thus, we can see that, in the case under consider-
ation, a significant contribution to the radiation comes
not only from the main crystallographic plane (110) but
also from the rather “weak” (320) plane. Here, we are
dealing with the situation where a particle moves in a
crystal at small angles to two different crystallographic
planes with the result that there arise two different
peaks in the coherent-radiation spectrum, each being

2

110〈 〉

2 2
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Fig. 2. As in Fig. 1, but for ε = 1 GeV and ψ = 2.5 × 10–2 rad.
characterized by a high intensity and by a high degree
of the linear polarization of the radiation.

3. SIMULATING COHERENT RADIATION 
IN A CRYSTAL

The above results were obtained within the dipole
approximation of the quantum theory of radiation.
Moreover, it was required that the particle trajectory in
a crystal be close to a straight line. The last approxima-
tion soon becomes invalid as the angle of particle inci-
dence on the crystal with respect to one of the crystal-
lographic axes is decreased. Moreover, the motion of a
particle in a crystal with respect to the atomic strings of
the crystal, which are aligned with the z axis, may be
either regular or chaotic. Further, the character of this
motion can affect pronouncedly the interference prop-
erties of the coherent radiation from the particle. Since
the particle trajectory in a crystal is rather complicated,
a simulation of the motion and the radiation under the
conditions of actual dynamics in the crystal is of partic-
ular importance.

Within the semiclassical approximation of QED, the
spectral density of the radiation can be expressed in
terms of the classical trajectory of the particle in a crys-
tal. Provided that the conditions under which the radia-
tion from a particle moving in a crystal can be consid-
ered in the dipole approximation are satisfied, the spec-
tral density and the polarization of the coherent
radiation, the quantities that are obtained by averaging
the spectral density of the coherent radiation and the
degree of its polarization over various particle trajecto-
ries, can be represented as

(3)

(4)

dE
dω
------- e2ω

4π
---------ε2 ε'2+

εε'
---------------- qd

q2
------ 1 2

δ
q
--- 1 δ
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ε2 ε'2+
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δ

∞
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P
e2ωδ2
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q4
------ Wx
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 

incoh

+
1–

,

CLEI      Vol. 63      No. 11      2000
where

(5)

is the Fourier component of the transverse component
of the particle acceleration, while (dE/dω)incoh is the
spectral density of incoherent radiation. The recoil
effect in radiation has been taken into consideration in
(3)–(5).

We are interested in the radiation of frequencies that
are less than or about the frequency corresponding to
the first coherent peak in the radiation spectrum. In this
region of frequencies, the condition ω ! εε'ψ/m2R (R is
the screening radius) is satisfied, which enables us to
represent W(q) in the form

(6)

where ϑn is the scattering angle in the nth collision
between the particle and the atomic string that is paral-
lel to the z axis, while tn is the time instant at which this
collision occurs. The quantities ϑn and tn can be found
by solving the equation of motion for the electron in the
field of the continuous potential of an atomic string in a
crystal [5, 11].

Expressions (3)–(6) make it possible to develop a
method for numerically simulating the motion of elec-
trons in a crystal and the coherent radiation from them
under the conditions ensuring either a regular or a cha-
otic pattern of particle motion. On the basis of this
method, we can analyze the effect of the character of
particle motion in a crystal on the interference proper-
ties of coherent radiation and, in particular, reveal the
role of “weak” crystallographic planes in the coherent-
radiation process.

Along with (a) the coherent-radiation spectrum and
(b) the polarization degree both calculated according to
(1), Fig. 1 displays the results of our simulation for the
properties of radiation under the same conditions (solid
curves). The simulation was performed for a diamond
crystal of thickness L ~ 50 µm.

It can be seen that the results of the simulation com-
ply well with the corresponding results obtained
according to (1). This means that, in the case being con-

W q( ) tv̇ ⊥ t( )eiqtd

∞–

∞

∫=

W q( ) ϑ neiqtn,
n

∑=
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sidered, the actual dynamics of electrons in a crystal
does not destroy the coherent peaks induced by the
effect of “weak” crystallographic planes.

The effect considered here manifests itself at lower
electron energies as well. Figure 2 displays the results
of the simulation and of the calculations according to
(1) for the spectral characteristics of the coherent radi-
ation from ε = 1 GeV electrons at ψ = 2.5 × 10–2 rad and
at the same value of α as before. In this case, the effect
is not so pronounced: the radiation intensity at the
coherent peaks is on the same order of magnitude as the
incoherent-radiation intensity. As to the polarization of
the radiation, it is quite sizable at either coherent peak.

Our results demonstrate that new peaks in the coher-
ent radiation can appear not only at energies of ε ~
100 GeV but also at much lower energies. In order to
observe this effect experimentally, one needs electron
beams of angular divergence ∆θ not greater than ψ∆α,
where ∆α is the interval of angles α where the peaks
under consideration do exist.
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Abstract—Optical resonance diffractive and transition radiation from 200-MeV electrons in conducting peri-
odic targets with spaced strips are investigated experimentally at the Tomsk synchrotron. The orientation and
spectral properties of the radiation are measured. © 2000 MAIK “Nauka/Interperiodica”.
Electromagnetic radiations stemming from a
dynamical perturbation of atomic electron shells and
free electrons by the electromagnetic field of a charged
particle traveling in a medium (polarization radiation)
include transition radiation, diffractive radiation, Cher-
enkov radiation, parametric x-ray radiation, and polar-
ization bremsstrahlung. In contrast to all others, dif-
fractive radiation arises when relativistic particles pass
in close proximity to the target edge, at a distance of
about γλ, where γ is the particle Lorentz factor and λ is
the wavelength of the emitted radiation. Interest in this
type of radiation is associated with the possibility of
using it for nondisturbing beam diagnostics [1] and with
the possibility of generating monochromatic-radiation
beams in the millimeter and submillimeter ranges [2].

In recent years, attention in theoretical studies has
been focused on resonance diffractive radiation as a
useful subject for experimental investigations [3–6]. At
observation angles θ > γ–1, the formation length for dif-
fractive radiation that is generated by ultrarelativistic
particles (γ @ 1) and which belongs to the optical wave-
length range becomes sufficient for applying periodic
targets in order to obtain monochromatic radiation and
to increase its intensity [6]. Periodic targets (that is,
gratings whose profile was obtained by periodically
deforming a continuous surface) for diffractive-radia-
tion generation were first employed to study the Smith–
Purcell effect [7–9]. As was shown in [3], the use of a
periodic structure formed by spaced narrow metal
strips (h ~ γλ) could increase considerably the intensity
of the radiation being discussed.

The first experiment that studied millimeter diffrac-
tive radiation generated by a beam of relativistic elec-
trons was performed in 1995 [10]. Optical diffractive
radiation was first observed in the experiment reported
in [11] and performed in a beam of 200-MeV electrons
from the SIRIUS synchrotron. According to [12, 13],
inverse transition radiation in the optical range shows a
great promise for beam diagnostics. It can be hoped that
beam diagnostics with periodic targets (see above) will
extend the applicability range of the method, simulta-
1063-7788/00/6311- $20.00 © 22029
neously reducing multiple particle scattering in the tar-
get to a considerable degree, since some initial particles
will pass through the target gaps in this case.

The intensity of resonance diffractive radiation is
given by [3]

where F1 is the intensity of diffractive radiation from a
semi-infinite plane; F2 is a factor that takes into account
interference from the different edges of a single target
element; and F3 is a factor that takes into account inter-
ference from the different target elements,

Here,

where θ0 is the target-orientation angle, θX  and θY are
the observation angles, d is the period of the target, λ is
the radiation wavelength, and N is the number of grat-
ing periods.

At small grating-inclination angles such that α0 ! 1,
the radiation spectrum develops appreciable maxima
caused by the periodicity of the target in the longitudi-
nal direction. The condition under which there arises a
resonance can be written as
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Fig. 1. Layout of the experimental setup: (1) phototube, (2, 3, 9) collimators, (4) mirror, (5) prism, (6) detection unit, (7) target,
(8) accelerator chamber, and (10) scintillation counter.
where k is an integral number representing the order of
diffraction. It can be expected that the above condition
of the emergence of a resonance remains valid in the
case where a relativistic particle traverses an inclined
grating, irrespective of whether it passes through the
grating gap or through a strip.

In 1998, Haberle et al. [14] studied experimentally
resonance optical inverse transition radiation. Their
measurements, which employed a continuous periodic
target, were performed with electrons incident on the
target at large angles, in which case the efficiency of the
use of a resonance was reduced considerably.

In the experiments at the Tomsk synchrotron, orien-
tation dependences and the spectra of resonance dif-
fractive radiation from 200-MeV electrons were mea-
sured for planar aluminum targets having a thickness of
30 µm and forming gratings of period 0.2, 0.4, or
0.8 mm at an angle of 4.2° with respect to the direction
of electron motion. The experiment was performed in
the internal beam of the accelerator. In order to sup-
press the synchrotron-radiation contribution, a mode
was implemented where the electron spill onto the tar-
get was short (about 10 µs). The beam spill was
dumped at the stage of growth of the accelerator mag-
netic field. In this case, the pitch of the electron helix
was 40 µm. The angular spread of the electron beam
was σθ = 2.3 mrad. Figure 1 shows the layout of the
experimental setup.

Accelerated electrons were dumped onto a periodic
target (7) manufactured from polished aluminum and
placed on a two-coordinate goniometer in the straight
section of the accelerator.

An optical spectrometer recorded radiation gener-
ated by electrons at an angle of 4.2° with respect to the
electron beam. The spectrometer was based on a colli-
mator (9) and an optical prism (5), which expands the
radiation under study in the energy spectrum. The
expansion interval necessary for obtaining a frequency
P

resolution of 10% was recorded by a detection system
(6) that consisted of a phototube (1) and a collimator
(3). The PMT-110 phototube with a sensitivity to light
of 5.5 × 10–5 A/lm was used in the experiment. The
spectral-sensitivity region of the photocathode in the
phototube used was 300–900 nm. In order to reduce the
background, the detection unit was removed from the
plane of the electron-beam orbit by means of a mirror
(4) and was arranged vertically.

The spectrum was scanned by rotating the prism.
The frequency calibration of the spectrometer was per-
formed by using calibrated photodiodes. Figure 2
shows the calibration curve. The spectral efficiency of
the spectrometer was determined on the basis of the
spectrum of transition radiation from a continuous tar-
get (see below).

A scintillation counter (10) was employed to moni-
tor the measurement by bremsstrahlung. The beams of
bremsstrahlung and of optical radiation were colli-
mated to 1.5 and 1.05 mrad, respectively. (This was
done with collimators 2 and 3.)

Figure 3 shows the orientation dependence of the
intensity of inverse transition radiation for a continuous
target rotated about the vertical axis. The FWHM value,
which was determined by the divergence of the electron
beam, the angular aperture of the detector, and the
intrinsic divergence of transition radiation, was 2.44 γ–1.
The maximum of the orientation dependence (at θ0 =
2.1°) corresponds to the peak of the mirror reflection of
transition radiation.

Figure 4 shows the spectrum of the inverse optical
transition radiation according to measurements at the
maximum of the orientation dependence. Such mea-
surements are necessary for determining the efficiency
of the spectrometric setup. From Fig. 4, it can be seen
that the spectrum of inverse optical transition radiation
is not a constant, in contradiction with theoretical pre-
dictions. The maximum transition-radiation yield lies
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 11      2000
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in the energy range between 2.2 and 3 eV; this is due to
the special features of the photocathode in the photo-
tube used and to the optical properties of the spectro-
metric channel.

The orientation dependence of the optical resonance
diffractive radiation from electrons incident on a peri-
odic target of period 0.8 mm is displayed in Fig. 5 for
angles in the range between 1.3° and 1.9°. In analyzing
this dependence, we can see that, for different wave-
lengths, the orientation curves behave somewhat differ-
ently, which is associated with the dynamical process
of diffractive-radiation formation. The most pro-
nounced distinction between the dependences on spec-
tral and angular variables is observed at the orientation

3.5
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1.5
0 100 200 300 400
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Fig. 2. Spectrometer-calibration curve.
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Fig. 4. Spectrum of inverse optical transition radiation for a
continuous target oriented at the angle of θ0 = 2.1°.
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angle of θ0 = 1.72°. Figure 6 shows the optical-radia-
tion spectrum for this orientation angle, the correction
for the spectrometer efficiency being included. The
maximum of the spectral distribution corresponds to
the first order of resonance diffractive radiation, and its
width is due primarily to grating defects (according to
our estimates, the angular spread of the grating strips is
σ = 0.85°).

The results of the present experimental studies can
be summarized as follows:

(i) We have evolved an experimental setup for mea-
suring the orientation and spectral properties of optical
radiation from relativistic electrons.

0.4

0.2

0
–1.0 1.0 2.0 3.0

θ0, deg

Intensity, arb. units

0

Fig. 3. Orientation dependence of the inverse-transition-
radiation intensity for a rotating continuous target.
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Spectrum
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 (ω = 2.9 eV)

Intensity, arb. units
0.06

0.04

0.02

0

–0.02
1.4 1.6 1.8
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Fig. 5. Orientation dependence of the yield of optical reso-
nance diffractive radiation for a periodic target of period
0.8 mm.
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(ii) We have measured the orientation and spectral
dependences of the optical resonance polarization radi-
ation from 200-MeV electrons traversing a conducting
target formed by spaced strips.

(iii) In order to ensure a correct comparison of
experimental and theoretical results, future studies
must be performed with targets characterized by a
small scatter of strip orientations with respect to the
grating plane.
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Abstract—The polarization fields of a relativistic particle moving in a homogeneous medium are calculated.
The results are illustrated by graphs that show the behavior of the electric and magnetic fields in the reference
frame comoving with the particle. The behavior of the fields at large distances from the particle is analyzed.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Polarization fields generated by a charged particle
moving in a solid can significantly affect some pro-
cesses accompanying the propagation of atomic or
molecular ions, neutral atoms, and molecules through
solid films. In particular, special features of high- and
low-energy peaks and alignment of ions along the
velocity direction in the Coulomb explosion of molec-
ular ions (see, for example, [1, 2]) are usually explained
by introducing the concept of the wake potential. The
pattern of the energy losses of clusters formed by
charged particles can also strongly depend on the wake
potentials of each particle. There is every reason to
believe that polarization fields are important in study-
ing various phenomena associated with the motion of
relativistic atoms, ions, or nuclei through solid-state
targets [3].

Polarization fields (or wake potentials) were calcu-
lated by many authors within various models (see, for
example, [4, 5]), so that some aspects of this problem
have been clarified to a considerable extent. As to the
polarization fields of relativistic particles, their general
theory based on the formalism of dielectric functions
has been known for a long time (see, for example, [6]).
However, specific calculations of fields in the vicinity
of a moving particle are incomplete [7]. It is well
known that, in the laboratory frame, the electric field of
a moving particle is distorted in such a way that the
transverse components increase by a factor of γ, where
γ is the Lorentz factor. In addition to the electric field,
there arises a proper magnetic field, which increases
with increasing particle velocity. In the reference frame
comoving with the particle, there exists only an ordi-
nary Coulomb field. When a particle moves in a
medium, fast charges arise in any reference frame, pro-
ducing a magnetic field. In the reference frame comov-
ing with the particle, this is a purely polarization field.
If the energy of the particle and, hence, its Lorentz fac-
tor, increase, we can expect that the transverse compo-
nents of the fields will be significantly enhanced, irre-
1063-7788/00/6311- $20.00 © 22033
spective of the reference frame where these fields are
specified. The first specific calculations of the polariza-
tion fields in the comoving reference frame revealed
that the electric polarization field increases with the
Lorentz factor, but that, in the direction of the velocity
vector, the longitudinal and the transverse dielectric
function cause cancellation of the leading terms, which
are proportional to γ. The field is stretched linearly in γ
along the direction of motion, so that the deceleration
force increases only in proportion to a logarithm of the
Lorentz factor. We do not know any specific calcula-
tions of the magnetic polarization fields. In this article,
we are going to fill this gap partly. The magnetic field
formed in the vicinity of a relativistic particle can con-
siderably exceed maximum fields obtained under labo-
ratory conditions; therefore, they can significantly
affect various polarization phenomena in clusters, fast
atoms, and molecular ions.

2. POLARIZATION FIELDS 
OF RELATIVISTIC PARTICLES

In the reference frame comoving with a relativistic
charged particle, its field must be static; therefore, it is
sufficient to calculate the scalar potential and the mag-
netic field to characterize this field. From general con-
siderations, it is clear that the magnetic field must be
axisymmetric and must be directed, according to the
corkscrew rule, along a circle whose center occurs on
the symmetry axis. Specifically, it is given by (hereaf-
ter, we use the system of atomic units)

(1)

where εl = (k, ω) and εtr(k, ω) are, respectively, the lon-
gitudinal and the transverse permittivity of the
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medium; ω = vkz; q = (q⊥ , qz); k = (q⊥ , γqz); z' = γ(z – vt);

ρ = ; Jn is a Bessel function of nth order; Z is
the charge of the particle; v is its velocity; the z axis is
directed along the velocity; and c is the speed of light.
In the reference frame comoving with the particle, the
electric-field potential, which determines the electric
field by the equality Epol = –gradΦpol, has the form

(2)

where the notation is identical to that in Eq. (1). Since
the vector potential is independent of time in the
comoving reference frame, it does not contribute to the
electric field, which is therefore a purely potential field.
The transverse and the longitudinal dielectric permit-
tivity, which appear in Eqs. (1) and (2), can be calcu-
lated in some cases. By way of example, we indicate
that, for a dense electron gas, they are described quite
accurately by the Lindhard formulas [8]. For a solid-
state target, the dielectric permittivities within the
microscopic theory proposed in [9] take into account
the excitations and polarizations of atomic cores. So
far, the quantities in (1) and (2) have not been calcu-
lated for the cases being considered. Below, we make use
of simplified model expressions for the dielectric func-
tions such that (i) εl (q, ω), εtr(q, ω)  1 when q  ∞
or ω  ∞; (ii) for q  ∞, the energies of longitudinal
elementary excitations must tend to the free-electron
energy; (iii) in the limit q  0, the frequencies of the
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Fig. 1. Magnetic field Hϕ in the vicinity of a particle in the
reference frame comoving with it (γ = 100) as a function of
the coordinates ρ and z. All quantities are measured in
atomic units. A particle with charge Z = 1 moves in carbon
(rS = 1.53 a.u. is the average spacing between electrons in
the electron gas of carbon).
P

longitudinal and the transverse modes must coincide; and
(iv) q  ∞, the energy of the transverse collective mode
must tend to the free-photon energy.

The simplest form of the dielectric functions that
satisfy conditions (i)–(iv) is

(3)

where ω0 is the plasmon frequency and ωq = ω0 + q2/2.
In this case, the expressions for the fields can be

reduced to single integrals; for example, we have

where
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Fig. 2. As in Fig. 1, but in the nearest vicinity of the particle.
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θ(ξ) is the Heaviside step function, and v > . The
scalar potential can reduced to the form

+ θ v 2 2ω0– q⊥–( ) 2v 2 ω0–( ) v 2 q⊥
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Fig. 3. Scalar potential of the polarization field in the vicin-
ity of a nonrelativistic particle (v = 2 a.u. ≈ 4.39 × 106 m/s).
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Figures 1 and 2 display the functions Hϕ(ρ, z) for the
motion of a proton in a carbon film. Figures 3 and 4
show the scalar potential whose gradient determines
the polarization electric field in the reference frame
comoving with the proton. At large distances from the
particle, the peaks of wavelike field perturbations do
not show a typical “retardation” at relativistic energies
in relation to the nonrelativistic case (compare Fig. 3 at
v = 2 and Fig. 4 at γ = 100). The reason for this is that,
for γ @ 1, the field propagates at large distances, where
long-wave transverse and longitudinal excitations of
arbitrarily large phase velocities are dominant. Physi-
cally, the particle brings the entire electron subsystem
of a solid into synchronous motion in this case. If the
behavior of the field at small distances is inspected
more closely, a characteristic retardation of the field in
relation to the particle can be observed for γ @ 1 (see
Fig. 5). In the chosen model, the exact expression for
the force decelerating the particle has the form.
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Fig. 4. As in Fig. 3, but for a relativistic (γ = 100) particle.
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3. POLARIZATION FIELDS OF A MOVING ATOM

Expressions (1) and (2), which were obtained for a
pointlike charge, can be generalized quite straightfor-
wardly for a more complicated charge distribution. By
way of example, we indicate that, for an atom where the
electron density-distribution is steady-state and is char-
acterized by the Fourier components ρe(q), we arrive at
0
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(5)

If ρe(q) is axisymmetric with respect to the z axis,
expressions (4) and (5) reduce to double integrals of the
types in (1) and (2).

Expressions (4) and (5) do not involve the self-inter-
action of charges because the polarization fields
express the effect of medium particles on external par-
ticles moving through a medium. In calculating the
state of each electron in an atom, we must therefore
take fully into account the fields given by (4) and (5).
Because of the mutual screening of the charges

H x'( ) iγ2 1
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Fig. 5. Contour plot of the scalar potential at small distances
from a relativistic particle (γ = 100).
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involved, these fields are suppressed in relation to the
case of the motion of an individual charge, but this is so
only at large distances from an atom. At small dis-
tances, which correspond to large q, the polarization
fields are not subject to strong screening and can signif-
icantly affect the states of atomic electrons. Therefore,
estimates of these fields and their configurations are of
considerable interest for experimentalists investigating
the propagation of atomic particles through solid films.

Detailed calculations of fields for this case are now
in progress.
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1. INTRODUCTION

Excitation and ionization that occur in an atom
reflected from a metal surface and which are due to the
surface polarization of a solid and to the generation of
surface quasiparticles were considered in [1]. The
experiments reported in [2] demonstrated that the state
of an atom moving at a certain distance from a surface
can undergo changes. In the present study, the probabil-
ities of transitions in an atom that are induced by its
interaction with surface modes are theoretically esti-
mated for the case where the atom moves near the sur-
face without coming into contact with it. In particular,
we consider in detail the case where the direction of
motion is parallel to the surface. Our calculation in the
first and in the second order of perturbation theory
revealed that, upon moving along metal surface for a
short time interval, a hydrogen atom undergoes a tran-
sition from the 2s state to the 2p state, the transition
probability being sufficient for detecting the resulting
radiation. We believe that the experimental results
reported in [2] (so-called Sokolov effect) can be
explained on this basis.

2. BRIEF REVIEW OF RELEVANT THEORY

Surface electromagnetic fields that arise owing to
the generation of surface plasmons or to the polariza-
tion of their vacuum play a substantial role in various
surface phenomena. The theory of surface plasmons
(more precisely, plasmon-polaritons) was reviewed in
detail elsewhere [3, 4]. In the present study, we focus on
the excitation of an atom moving along a metal surface.
Let Hint be the Hamiltonian of atom interaction with the
field of surface plasmons, and let the atom be initially
in the φ2s state characterized by zero total angular
momentum. The state of the atom at an arbitrary instant
of time can be roughly treated as a coherent mixture of
the 2s and 2p states whose angular momenta are 0 and
1, respectively,

(1)

Here, ∆E is the Lamb shift, while ε2 is the energy of the
excited state of the hydrogen atom. In the two-state

Ψ αφ2s βφ2 pe i∆Et–+( )e
iε2t–

.=
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approximation considered here, the time-dependent
coefficients in the expansion in Eq. (1) satisfy the set of
equations

(2)

Solving the set of Eqs. (2), we find that the coefficients
α and β depend periodically on time. This result can be
treated as a special case of so-called quantum beating.
Another type of quantum beating was observed in the
experiments that were reported in [2] and which
employed a beam of hydrogen atoms in state (1) with
|α| @ |β|. Once the atoms had traveled a distance L in a
vacuum, the beam was transmitted through a facility
that changed the number of 2p atoms owing to the tran-
sitions of a small fraction of 2s atoms. As a result, there
arose a coherent mixture including two groups of the 2p
atoms shifted in phase by the constant ∆EL/v. If the
amplitude of the 2p atoms in the initial beam was equal
to β and if the amplitude of the second group of such
atoms is β', the experimentally observed intensity of the
leading line in the Lyman series is proportional to

(3)

The resulting beats are due to the Lamb shift. The con-
trast of the relevant interference pattern is determined
by the ratio

(4)

3. CALCULATION OF THE TRANSITION 
PROBABILITY

We now proceed to calculate the probabilities of the
transitions from the 2s state to the 2p state in a hydro-
gen atom moving along the surface, assuming that
these transitions are due to atom interaction with the
fields of surface electromagnetic excitations. We will
consider first-order processes in which the atomic tran-
sition is accompanied by the generation of a surface
plasmon, second-order processes involving a virtual
surface plasmon, and processes caused by the nonuni-
formity of the surface polarization fields of the atom.
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We assume that the atom moves along an infinite planar
metal surface at a distance a from it and the field of sur-
face plasmons is switched on abruptly at the instant
t = 0. This formulation of the problem simulates the
experimental situation where the atoms fly above the
restricted surface region.

The Hamiltonian of atom interaction with the field
of surface plasmons can be represented as

where the operator of the potential of the surface-plas-
mon field has the form

Ĥ int δ x x0 t( )–( ) ρ̂e x t,( )–[ ] ϕ̂ s x t,( )d3x,∫=
P

Here, x = {r, z}, x0(t) = a + vt is the equation of the tra-
jectory of an atom moving along the metal surface z = 0 at
a distance a, q|| is the plasmon momentum parallel to
the surface, and  is the coupling constant. The z axis,
which is orthogonal to the surface, is directed from the
metal to the vacuum; the velocity v is parallel to the y
axis; and the x axis is chosen to be the axis of angular-
momentum quantization (Fig. 1).

In the first order of perturbation theory, the probabil-
ity of the 2s  2p transition has the form
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where ϕ200 and ϕ21m are the wave functions of, respec-
tively, the 2s and the 2p state of the hydrogen atom;
ωs is the surface-plasmon energy; and ωfi = ε2p – ε2s =
∆E.

At large times t, the transition probability
decreases asymptotically with increasing atom-to-sur-
face distance in inverse proportion to the distance
cubed:
(6)

In the second order of perturbation theory, the tran-
sition of the hydrogen atom from the 2s state to the 2p
state is accompanied by the excitation of a virtual plas-
mon, which is then absorbed. The probability of this
process is given by
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where Afi(q, t) = (δfi – 〈 f |e–iq · x|i〉) and q' =
(q||, ).

The following circumstances are of importance in
calculating the probability by formulas (5) and (7): (i)
Since the Lamb shift is small, the probability
approaches slowly a steady-state regime. (ii) If the
velocity of the atom is less than the minimum phase
velocity of surface plasmons (as was the case in the
experiment reported in [2]), the plasmons are not
excited, in which case the probabilities of first-order
processes asymptotically tend to constant values for
t  ∞; at the same time, the probabilities of second-
order processes involving a virtual surface plasmon
increase in proportion to t at large times. (iii) At small
values of t, when the steady-state regime has not yet
been established, the relevant probabilities may be non-
linear functions of time. (iv) Formulas (5) and (7) were
derived under the assumption that the atom undergoes
a transition from the 2s state to the 2p state; when the
population of the 2p state becomes commensurate with
the population of the 2s state, the inverse transitions

e
iωfi t iq x0 t( )⋅+

qz'
begin to occur. In this case, quantum beats between the
2s and 2p states arise, their frequency being dependent
on the distance a. For this reason, expressions (5) and
(7) can be treated as the probabilities of the correspond-
ing transitions only in the case where W(1) and W(2) are
much less than unity. If W(1) or W(2) are about or greater
than unity, the probability that the atom is in the 2p state
is on the order of unity in accordance with the relevant
solutions to equations of the type in (2).

Numerical estimates reveal that, for a ≤ , where
qc is the endpoint momentum of the surface plasmon, a
dominant contribution to the transition probability
comes from the intermediate state n = |100〉 . However,
this contribution is exponentially suppressed in the

region a @ , where the intermediate state n = |210〉
makes a dominant contribution, which decreases in
proportion to a–8 for a  ∞. For this reason, the prob-
ability W(2) was calculated by taking into account both
the intermediate state |100〉  and the intermediate state
|210〉 . According to our estimates, other intermediate

qc
1–

qc
1–
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Fig. 1. Geometry of the motion of an atom over the metal
surface.
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Fig. 2. Probabilities W(2) of second-order transitions to the
(1) |21 – 1〉  and (2) |211〉  states of a hydrogen atom moving
along a gold surface at the distance of a = 1 a.u. for the time
t = 106 a.u. versus the atom velocity. The first-order contri-
bution is negligibly small here.

Fig. 3. (1, 2) Probabilities W(1) of first-order transitions
to, respectively, the |211〉  and the |21 – 1〉  state of a hydro-
gen atom moving along a gold surface at the velocity of
v = 1 a.u. for the time t = 106 a.u. and (3, 4) probabilities W(2)

of second-order transitions to the same states versus the dis-
tance from the surface.
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states yield small corrections to the contributions of
these two states under the conditions prevalent in the
experiment reported in [2]. In the second order, the
probability was calculated as the squared modulus of
the sum of the contributions to the total transition
amplitude from all included intermediate states. The
transition probabilities calculated in the second order of
perturbation theory are displayed in Fig. 2 versus the
atom velocity at a fixed distance from the surface. The
peak position corresponds to the velocity value of (ε2p –
ε1s + ωs)/qc. The transition probabilities calculated in
the first and in the second order of perturbation theory
are shown in Fig. 3 versus the atom-to-surface distance
for two final states |21 ± 1〉. It can be seen from this fig-
ure that the probabilities W(1) and W(2) are much less
than unity for a > 30 a.u. Near the surface, the probabil-
ity W(2) may take large values, depending on the dura-
tion of the motion of the atom over the metal surface.
Typical time dependences of the probabilities W(1) and
W(2) are given by the following estimates: (i) W(2) ~ t2

for 1 ! t  ! 1/∆E; (ii) W(2) ~ t for t @ 1/∆E; and (iii)
W(1) ~ t 2 for t  0 and attains fast (within t ~ 102–
104 a.u.) a constant value for v < vcr, where vcr was
estimated here at about 1.5 a.u. (which is less than the
atom velocity of about 0.94 a.u. in Sokolov’s experi-
ments).

4. DISCUSSION

Our calculations have demonstrated that, owing to
the interaction with electromagnetic surface modes of a
solid, an atom moving near it can undergo transitions
from one state to another without directly colliding
with surface atoms. Thus, the phenomenon being con-
sidered is of a collective origin. Since the surface polar-
ization field exists in a vacuum at distances from the
surface that are much greater than atomic dimensions,
the probability of first-order transitions decreases with
increasing distance from the surface in inverse propor-
tion to the distance cubed, in contrast to what is known
for collisions between neutral atoms, where this
decrease is exponential (see, for example, [5]). In the
second order, the contributions of some intermediate
states decrease exponentially with increasing a,
whereas others exhibit a power-law dependence.

According to our estimates, the integrated probabil-
ity of the transition of beam atoms from the 2s state to
the 2p state is about 10–3 under actual experimental
conditions, which is sufficient for detecting the effect
via the observation of the resulting dipole radiation.
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Abstract—Two alternative approaches to deriving the equation of motion for a spin are compared. It is shown
that the conventional approach leads to the conclusion that the spin of a positron is rotated through a large angle
as the result of planar positron channeling in a straight crystal. The quantum-mechanical approach based on the
Foldy–Wouthuysen transformation predicts no spin rotation in this case. Experimental measurements can reli-
ably discriminate between the two methods for deriving the equation of motion for a spin. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In the past few years, considerable advances have
been made in measurements of spin rotation for polar-
ized particles channeled through a bent crystal [1, 2].
Experiments of this type make it possible to determine
the magnetic moments of short-lived particles [3]. In
order to interpret correctly relevant experimental data,
one needs detailed information about the motion of par-
ticle spins in the nonuniform field of crystals. In [1, 2],
the motion of a spin was calculated on the basis of the
Bargmann–Michel–Telegdi (BMT) equation [4]. A
conventional method for deriving this equation relies
on the assumption that the 4-velocity vector uµ is
orthogonal to the polarization 4-vector aµ [4, 5],

(1)

However, a generalization of this method to the case of
a nonuniform field gives rise to terms in the equation of
motion for a spin that are proportional to the first deriv-
atives of the strengths of the electric and magnetic
fields [6, 7]. Such terms appear in the respective quan-
tum equations as well if these equations are derived by
using relation (1) [8, 9]. The use of this relation as an
auxiliary condition in deriving the quantum equation of
motion for a spin can be avoided by going over to the
Foldy–Wouthuysen representation. Since the polariza-
tion operator is known in this representation, the equa-
tion of motion for a spin can readily be derived by com-
puting the commutator of the polarization operator and
the Hamiltonian [10, 11].1) The resulting equation rep-
resents an exact quantum analog of the BMT equation,
and it does not involve the first derivatives of the field
strengths. There are no such derivatives in the equations
from [11, 14] either, where they were obtained on the

1)The expressions for the Hamiltonian in the Foldy–Wouthuysen
representation that were obtained in [10, 12, 13] are consistent.

uµaµ 0.=
1063-7788/00/6311- $20.00 © 22041
basis of classical electrodynamics without resort to the
condition in (1). However, the equation from [11, 14]
differs from the BMT equation even for a uniform field.

Of course, the theoretical concept based on the
orthogonality of the velocity and polarization 4-vectors
seems appealing, because it defines the polarization
vector and, hence, the particle spin in quite a natural
and simple way. However, there arises the question of
whether this semiclassical model conforms to an exact
quantum description.

It will be shown below that the two alternative
approaches to describing particle polarization, which
lead to qualitatively different types of motion of a spin
in a nonuniform field, can be discriminated experimen-
tally by studying spin motion in the planar channeling
of ultrarelativistic particles in straight crystals.

We use here the system of units in which " = c = 1.

2. EQUATION OF MOTION OF A SPIN
IN A NONUNIFORM FIELD

By differentiating the orthogonality condition (1)
for the velocity and polarization 4-vectors with respect
to the proper time τ, we obtain a relation between the
equation of motion of a particle and the equations of
motion of its spin [5]:

(2)

The equation of motion of the particle involves
terms proportional to the first derivatives of the field
strengths. These terms are due to the drawing of a mag-
netic dipole into the domain of a stronger field or forc-
ing it out of such a domain, depending on the orienta-
tion of the magnetic momentum. In accordance with
Eqs. (1) and (2), this gives rise to terms involving the

aµ
duµ

dτ
-------- uµ

daµ

dτ
--------.–=
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first derivatives of the field strengths in the equation of
motion for a spin as well. For this reason, the equation
of motion of a spin in a nonuniform electromagnetic
field (Good–Nyborg equation [6, 7]) has the form

(3)

which is dictated by the equation for motion of the par-
ticle and by the condition in (2). The notation used in
Eq. (3) is the following: µ is the total magnetic
moment; µ' = µ – e/2m is the anomalous magnetic
moment; Fµν = (–E, H) is the strength tensor of the
electromagnetic field; Gνλ = (–H, –E) is its dual;

and  is a Kronecker delta. The last term in (3)
describes spin precession caused by the nonuniformity
of the field. The respective equation for the polarization
3-vector x has the form [6]

(4)

Thus, the conventional method for deriving the
equation of motion for a spin on the basis of condi-
tion (1) leads to Eq. (4), which involves the first deriv-
atives of the field strengths. In the case of a uniform
field, Eq. (4) reduces to the BMT equation. In contrast
to Eq. (4), the quantum equation of motion for a spin as
derived with the aid of the Foldy–Wouthuysen repre-
sentation does not involve terms with the first deriva-
tives of the field strengths other than those appearing in
the BMT equation. In the semiclassical approximation,
it has the form [11]

(5)
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Equation (5) differs both from Eq. (4) and from the
quantum equations of motion for a spin that were
derived in [8, 9] with the aid of condition (1).

As to the equation derived in [11, 14] within classi-
cal electrodynamics without resort to condition (1),
what is of importance here is that it is inconsistent with
Eq. (5), which was derived by the methods of quantum
theory. To put it differently, the semiclassical and the
classical description of spin motion are inconsistent
with the quantum description (see [11, 14]). In what
follows, it is demonstrated that this conclusion holds
not only for spin-1/2 particles.

3. MOTION OF A PARTICLE SPIN IN PLANAR 
CHANNELING THROUGH A CRYSTAL

It was shown in [15] that, from the Good equation (4),
it follows that, in the planar channeling of an ultrarel-
ativistic positron through a straight crystal, the
positron spin is rotated through a large angle. For
heavier particles, this effect is less pronounced. Here,
we study the rotation of the spin of particles moving in
a crystal at an arbitrary velocity, taking into account the
oscillatory character of particle motion in the crystal
field.

It is well known that the motion of relativistic parti-
cles channeled through a crystal can be adequately
described in the semiclassical approximation, whereas
the motion of a spin is of essentially a quantum charac-
ter. In the case of channeling through a straight crystal,
the equation of motion of a spin as obtained from the
Good equation (4) has the form 

(6)

 

where 

 

µ

 

0

 

 =

 

 

 

e

 

/2

 

m
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 is the Lorentz factor. The quantum equation of
motion for a spin from [11] differs from Eq. (6) in that
the former does not contain the last term from the latter.
Let the 

 

x

 

 axis be orthogonal to the system of crystallo-
graphic planes, and let the 

 

y

 

 axis be aligned with the
particle velocity. In this case, Eq. (6) can be reduced to
the form

 

(7)

 

where 

 

ρ

 

 = 

 

 is the charge density.

In planar channeling, a particle executes oscillatory
motion along the 

 

x

 

 axis. For this reason, the electric
field in the reference frame comoving with the particle

dx
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is a nearly sinusoidal function of time. In this case, the
first term in Eq. (7) is a large quantity developing rapid
oscillations, whereas the second term is a compara-
tively small quantity close to a constant. Such equations
can readily be solved by the Kapitza method [16]. Let
us represent vector x as the sum of the two terms,

x = Q + h,

where Q is a quantity slowly varying over a typical time
on the order of the period of spin precession, T, and h
is a quantity rapidly oscillating with a frequency Ω
|Q| @ |h|. Upon averaging over the time interval t satis-
fying the condition 1/Ω ! t ! T, we obtain 〈Q〉 = Q,
〈h〉 = 0, and 〈 〉 = 0.2) Equation (7) then breaks down
into two equations

(8)

We now solve the second equation and substitute the
result into the first one. Since the averaged value of the
time derivative of a quantity varying within a bounded
region is zero, we arrive at

Hence, the oscillating term does not contribute to
the rotation of the polarization vector, and the equation
of motion for a spin takes the form

(9)

Equation (9) is deduced from the Good–Nyborg
equation (3). From the BMT equation, which is consis-
tent with quantum theory [10, 11], it follows that the
angle of rotation of the polarization vector nearly van-
ishes.3) 

From Eq. (9), it follows that not only does the polar-
ization vector x execute small-amplitude high-fre-
quency oscillations, but that it is also rotated at the
angular velocity

This relation is consistent with the formula for ultrarel-
ativistic particles (γ @ 1) from [15].

The spin-rotation angle per unit distance traveled by
the particle is given by

2)Here, angular brackets denote averaging over the time period t
satisfying the above condition.

3)The spin-rotation effect described in [17] is very small.

h.
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In the case of planar channeling through a bent crys-
tal, the spin-rotation angles per unit length for oppo-
sitely polarized particle beams differ by the quantity

4. DISCUSSION OF THE RESULTS

Thus, there are two alternative approaches to deriv-
ing the equation of motion for a spin that lead to quali-
tatively different results. The conventional method,
which is based on condition (1) and which is used in the
majority of studies, leads to the emergence of terms in
the equation of motion for a spin that involve the first
derivatives of the field strengths. No such terms arise in
the equation derived by the quantum method that
employs the Foldy–Wouthuysen transformation, so that
spin motion is described here by the BMT equation. It
can be shown that, within the quantum approach, con-
ditions (1) and (2) do not hold because the equation of
motion for a particle as derived by using the Hamilto-
nian in the Foldy–Wouthuysen representation (see
[10]) involves the first derivatives of the field strengths.

Equation (1) determines the polarization 3-vector x
in the noninertial reference frame comoving with the
particle [11, 14] because it is only in this reference
frame that the spatial components of the 4-vector uµ are
equal to zero and aµ = (0, x). If the vector x is defined in
an inertial reference frame coincident at one instant of
time with the reference frame comoving with the parti-
cle, its time dependence, which determines the form of
the equation of motion, will be different [11].

There arises the question as to which of these two
alternative methods for deriving the equation of motion
for a spin is correct. A reliable answer to this question
can be found experimentally. For this purpose, it is suf-
ficient to measure the change in the polarization of a
relativistic-positron beam upon its planar channeling
through a straight crystal. From (3), (4), and (10), it fol-
lows that the spin vector rotates in this case through a
sizable angle about the z axis, which is orthogonal to
the system of crystallographic planes and to the particle
velocity. This angle can be measured to a sufficient pre-
cision. For Si, Ge, and W single crystals, the values
obtained with aid of (10) for the spin-rotation angle per
unit distance traveled by channeled ultrarelativistic
(γ @ 1) positrons in a direction parallel to the (110)
plane at ξz = a (a ≤ 1) are 41a, 28a, and 77a rad cm–1,
respectively. These estimates, obtained at temperature
T = 293 K, are consistent with those obtained in [15].
In the case of a heavier particle, the effect is much less
pronounced (see [15]).

From the BMT equation, it follows that there is vir-
tually no spin rotation in planar channeling through a
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dl
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v
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------- 4πµ

m
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m
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straight crystal. Only depolarization of the beam does
occur [18].

No information about observation of spin rotation in
channeling through a straight crystal can be found in
the literature. Nonobservation of such spin rotation in
dedicated experiments, should it be reliably estab-
lished, would imply that the motion of a spin in a non-
uniform field cannot be adequately described on the
basis of the known classical and semiclassical
approaches. This would cast some doubt upon the
applicability of the BMT equation to spin-1 and spin-
3/2 particles because this equation was derived by the
methods of quantum theory only for the case of spin-
1/2 particles. For this reason, it is of fundamental
importance to develop a rigorous quantum theory of
spin motion in an electric field for the case of higher
spins (s ≥ 1). A comprehensive theoretical investigation
of this problem is required for determining the mag-
netic moments of these particles from experiments
based on channeling. The validity of the BMT equation
for higher spin particles can be tested experimentally.
Measurements of the rotation of the relativistic-deu-
teron spin in planar channeling though a bent crystal
seems to be the best test in this field. In implementing
such experiments, it is necessary to take into account
spin oscillations described in [19].

5. CONCLUSION

We have performed a comparative analysis of two
alternative methods for deriving the equation of motion
for a spin. It has been shown that the conventional
approach leads to the conclusion that the spin of a
positron traveling through a planar channel in a straight
crystal is rotated through a large angle. The quantum
approach based on the Foldy–Wouthuysen transforma-
tion predicts no spin rotation in this case. Thus, experi-
mental measurements are needed to find out which of
the two methods for deriving the equation of motion for
a spin is correct. The question of whether the BMT
P

equation is applicable to the case of higher spin parti-
cles (s ≥ 1) can also be solved experimentally.
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Abstract—The Hamiltonian for the quadrupole and the contact interaction of relativistic particles with an elec-
trostatic field is found. The equation of motion for the particle spin is derived. © 2000 MAIK “Nauka/Interpe-
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1. INTRODUCTION

The quadrupole moment of a particle with a spin I ≥ 1
is responsible for very special properties of the motion
of its spin in external fields. There occur spin oscilla-
tions consisting in alteration to the spin projection [1].
There is such an effect even in channeling or qua-
sichanneling in straight crystals, and it can be
employed to determine the quadrupole moments of
short-lived particles [1]. Usually, this concerns relativ-
istic or ultrarelativistic particles; therefore, it is neces-
sary to take exactly into account relativistic effects in
deriving the equation of motion for a spin. In [1], the
equation of motion for a spin was derived by the stan-
dard approach, which consists in a transition from the
particle rest frame to the laboratory frame with allow-
ance for Thomas precession. However, it was indicated
in [2, 3] that this approach can yield incorrect results
because it relies on the incorrect assumption that the
4-velocity vector uµ is orthogonal to the polarization
4-vector aµ: uµaµ = 0 (see [4–6]). In the present article,
the equation of motion for the spin of a particle having
a quadrupole moment is derived by constructing the
Hamiltonian by a method that takes rigorously into
account relativistic effects and by employing the
canonical equation of rotational motion [3].

2. THEORETICAL ANALYSIS

Particles moving in the electrostatic field of a crystal
are involved in the quadrupole and in the contact inter-
action. The terms in the Hamiltonian that are responsi-
ble for these interactions are given by

(1)

where φ is the scalar potential of the crystal field; Qij

and τ are, respectively, the tensor of the quadrupole
moment of the moving particle and the mean square of
its charge radius; and Xi(i = 1, 2, 3) are the c.m. coordi-
nates of this particle. Summation is performed here

*
1
6
---Qij

∂2φ
Xi∂ X j∂

----------------- 1
6
---τ ∂2φ

Xi
2∂

---------,+=
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over dummy indices. For nonrelativistic particles, we

have Qij =  and τ = τ(0), where

(2)

Hereafter, the superscript (0) labels quantities defined

in the particle rest frame, while r(0) and  (i = 1, 2, 3)
are, respectively, the radius vector and the coordinates
of the charges that constitute the particle and which are
distributed with the density ρ(r(0)). Upon going over to
operators, the tensor of the quadrupole moment is
expressed in terms of the particle-spin operator as

(3)

where I is the particle spin (I ≥ 1), Ii are the spin-oper-
ator projections, and Q(0) is the quadrupole moment.

For moving particles, the quantities Qij and τ are
given by the expressions

(4)

which are similar to (2). This follows from the relativ-
istic invariance of the elementary charge de = ρ(r)dV,

(5)

The transformation of the quantities Qij and τ is con-
trolled by the relativistic length-contraction law. Owing
to this law, moving particles, which are spherically
symmetric in their rest frame, assume the shape of an
oblate ellipsoid in the laboratory frame. Consequently,
their effective quadrupole moment is not zero [7].

We use the well-known expression for the relativis-
tic transformation of lengths in the covariant form

(6)

Qij
0( )

Qij
0( ) ρ r 0( )( ) 3xi

0( )
x j

0( ) δijr
0( )2–( ) V 0( ),d∫=

τ 0( ) ρ r 0( )( )r 0( )2 V 0( ).d∫=

xi
0( )

Qij
0( ) 3Q 0( )

2I 2I 1–( )
------------------------- IiI j I j Ii

2
3
--- I I 1+( )δij–+ ,=

Qij ρ r( ) 3xix j δijr
2–( ) V , τd∫ ρ r( )r2 V ,d∫= =

ρ r( )dV ρ r 0( )( )dV 0( ).=

xi xi
0( ) γ

1 γ+( )
-----------------βiβkxk

0( ), βi–
v i

c
-----, v i

dXi

dt
--------,= = =
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where γ = 1/  is the Lorentz factor. We then have
(see [7])

(7)

From expressions (2), (4), (5), and (7), it follows
that

(8)

Relations (8) determine the quadrupole and contact
interaction of the particle with the electrostatic field.
Upon going over to operators, the velocity v can be
replaced by the momentum operator p = – i"∇  accord-
ing to the relation

where m is the particle mass. As a rule, the relativistic
motion of a particle in a crystal can be described semi-
classically, while the motion of a spin is always of a
quantum character.

The equation of motion for a spin is determined by
the commutator of the spin operator I and the Hamilto-
nian,

. (9)

According to (3), the character of spin motion is

controlled by the operator , but it is independent of
τ(0). We have the commutation relation

(10)

where ekli is an antisymmetric tensor.
According to (8)–(10), the spin motion caused by

the quadrupole moment of the particle is described by
the equation

(11)

1 β2–

xix j xi
0( )x j

0( ) γ
1 γ+( )

----------------- βix j
0( ) β j xi

0( )+( )βkxk
0( )–=

+
γ2

1 γ+( )2
-------------------βiβ jβkβlxk

0( )xl
0( ).

Qij Qij
0( ) γ

γ 1+
------------ βiβkQkj

0( ) β jβkQki
0( )+( )–=

+
γ2

γ 1+( )2
-------------------βiβ jβkβlQlk

0( ) 1
3
---δijβkβlQlk

0( )+

– βiβ j
1
3
---δijβ

2– 
  τ 0( ),

τ 1
1
3
---v 2– 

  τ 0( ) 1
3
---βkβlQlk

0( ).–=

v p
γm
-------

cp

m2c2 p2+( )1/2
---------------------------------,= =

dI
dt
----- i * I×[ ]=

Qij
0( )

Qij
0( ) Ik,[ ] i ekliQ jl

0( ) ekljQij
0( )+( ),=

dIk

dt
-------

1
3"
------ ekinQ jn

0( ) γ
γ 1+
------------ ekjnQmn

0( ) ekmnQnj
0( )+( )βiβm–=

+
γ2

γ 1+( )2
-------------------ekmnQln

0( )βiβ jβlβm
∂2φ
Xi X j∂∂

-----------------.
P

3. DISCUSSION OF THE RESULTS

Equation (11) describes the motion of the particle
spin in an electrostatic field. In general, it does not coin-
cide with that which is presented in [1], the distinctions
being quite pronounced for relativistic particles. In the
case of planar or axial channeling—this case is of par-
ticular interest for practical application—it is, however,
possible to neglect, for a first approximation, the veloc-
ity components in the plane orthogonal to the direction
of channeling. If the particles move along the z-axis
direction, then vx, vy ! vz and ∂2φ/∂Z2 = 0. In this case,
the external field is transverse with respect to the parti-
cle motion, and Eq. (11) reduces to the form

(12)

Equation (12) coincides with that obtained by Bary-
shevsky and Shechtman [1], who performed a detailed
analysis of spin motion, which is of an oscillatory char-
acter in the case of channeling or quasichanneling in
straight crystals. From (8) and (11), it follows that, for
relativistic particles, the contributions to spin oscilla-
tions from the quadrupole and from the contact interac-
tion are on the same order of magnitude owing to the

presence of the term βkβl /3 in expression (8) for τ.
It can be seen from (12), however, that the resulting
motion of the spin does not depend on the velocity. This
effect can be explained in the following way: the con-
traction of the longitudinal size of a charged particle
moving along the z axis does not change the energy of
its interaction with the transverse electric field since
this energy is determined by the coordinates x and y,
respectively.

The second and the third term in the bracketed
expression on the right-hand side of (11) can affect siz-
ably the motion of the spin in particle scattering.

Equations (11) and (12) do not describe the spin
motion associated with the existence of the particle
magnetic moment. The corresponding contribution to
the spin motion is pronounced in the case of channeling
in bent crystals, but it is negligibly small in the case of
channeling in straight crystals (see [8]).

4. CONCLUSION

The Hamiltonian for the quadrupole and the contact
interactions of relativistic particles having a spin I ≥ 1
with an electrostatic field has been constructed. This
has enabled us to derive the equation of motion for a
spin. In the case where moving particles undergo chan-
neling or quasichanneling in bent crystals, the equation
obtained here coincides with that presented in [1].

dIk

dt
-------

1
3"
------ekinQ jn

0( ) ∂2φ
Xi X j∂∂

-----------------.=

Qlk
0( )
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Abstract—Interaction of relativistic particles possessing an anapole moment with an electric field of a crystal
is studied. The equation of motion of a spin is derived. The spin-rotation angle in planar channeling is found.
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1. INTRODUCTION
In the channeling of a charged particle, its spin is

rotated about its momentum owing to parity-violating
weak interaction [1–3]. It will be shown below that
there is a similar effect caused by the interaction of the
anapole moment of a moving particle or nucleus with
the electrostatic field of a crystal.

An anapole moment, whose existence was predicted
by Zel’dovich [4], is one of the static moments of the
magnetic type. However, the existence of an anapole
moment stems from parity nonconservation. For this
reason, the magnitude of the anapole moment is deter-
mined by weak interaction. An account of the theory of
the anapole moment was given in [5–7].1) The anapole
moment was observed experimentally in [8].

The motion of a particle with an anapole moment in
an electrostatic field gives rise both to quadrupole [7, 9]
and to contact interaction. In [7, 9], their strengths were
computed to terms of order v/c, where v is the particle
velocity. In the present study, an exact relativistic
expression for the Hamiltonian describing the interac-
tion of the anapole moment of a particle with an elec-
trostatic field is derived, which makes it possible to find
the equation of motion for a spin. We use the system of
units in which " = c = 1.

2. THEORETICAL ANALYSIS
We proceed from the expression given in [10] for

the Hamiltonian describing the interaction of a relativ-
istic particle having a magnetic moment m with an elec-
tromagnetic field. If there is only an electric field, the
interaction Hamiltonian is given by

(1)

where e is the kinetic energy of the particle; P is the
generalized momentum; E = –∇ϕ ; and E and φ are,
respectively, the strength and the potential of the elec-

1)The anapole moment (anapole) is also known as a toroidal dipole.

*int –
1
e
---m E P×[ ] ,⋅=
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tric field. It should be emphasized that the magnetic
moment m is determined in the reference frame instan-
taneously comoving with the particle under consider-
ation. To a sufficient degree of precision, we have P =
ev, where v is the particle velocity. As a rule, the motion
of a relativistic particle in a crystal can be adequately
described in the semiclassical approximation, whereas
the motion of a spin is always of essentially a quantum
character.

The interaction of the anapole moment with an
external field can be considered on the basis of the sim-
plified model where the anapole moment is assumed to
be formed by pointlike magnetic dipoles. The anapole
moment can be defined by one of the following two
equivalent formulas [6, 7]:

(2)

In this case, the radius vector of an element of the
current of density j can be represented in the form

where r(0) is the radius vector of the center of the mag-
netic dipole and r' is the radius vector of the current ele-
ment with respect to this center. Upon integration with
respect to r, expression (2) takes the form

(3)

In contrast to magnetic moments, the strength of the
electric field E in (1) is defined in the laboratory frame.
Suppose that r' = R + r, where r' is the radius vector of
the center of the magnetic dipole, R is the radius vector
of the center of the particle having an anapole moment,
and r is the end-to-end vector from the center of the
particle to the center of the magnetic dipole. The quan-
tity E = E(r') is the field strength at the point where the
magnetic dipole resides. Expanding it in a power series
to terms of order r/R inclusive, where r is on the order

a π r2 j V , ad∫– 2π r j⋅( )r V .d∫= =

r r 0( ) r', r'  ! r0 ,+=

a 2π r 0( ) m.×∑=
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of the particle radius, we obtain

(4)

where summation over dummy indices is implied. The
quantities xi must be expressed in terms of the quanti-

ties  defined in the reference frame comoving with
the particle. In our manipulations, we make use of the
relativistic formula for coordinate transformations in
the covariant form

(5)

where γ = (1 – v2/c2)–1/2 is the Lorentz factor. We then

sum products of the form µj over the magnetic
dipoles that form the anapole moment (the magnetic
dipoles are assumed to be pointlike). Since the intrinsic
quadrupole magnetic moment of the particle is zero, we
have

(6)

The terms in the Hamiltonian that are responsible for
the interaction of the anapole moment with an electro-
static field can be found by summation over the mag-
netic dipoles with the aid of Eqs. (3)–(6). The result is

(7)

The anapole moment of a particle at rest is a = a0I/I,
where I is the spin operator and

(8)

Here, e is an elementary charge, G is the Fermi con-
stant, α is the fine-structure constant, and κa is a dimen-
sionless factor [6].

The quantities Qij and τ are, respectively, the effec-
tive quadrupole moment of the particle and the mean
square of its charge radius; they manifest themselves in
the case of a moving anapole moment. Formula (7)
defines a parity-violating interaction.

3. DISCUSSION OF THE RESULTS

Let us consider the case of planar channeling and
chose the z axis to be orthogonal to the system of crys-
tallographic planes. The component of the particle

Ei r'( ) Ei R( ) x j
∂2φ R( )
∂Xi∂X j

------------------,–=

xi
0( )

xi xi
0( ) γ

1 γ+( )c2
----------------------v iv kxk

0( ), v i–
dXi

dt
--------,= =

xi
0( )

xi
0( )µ j x j

0( )µi+ 0.=

*int
1
6
---Qij

∂2φ
∂Xi∂X j

------------------ 1
6
---τ ∂2φ

∂Xi
2

---------,+=

Qij
3

4πγ
--------- aiv j a jv i+( ) 3γ

2π γ 1+( )
------------------------v iv j a v⋅( )+=

–
1

2π
------δij a v⋅( ), τ 1

π
---a v.⋅–=

a0 eκa
G

2α
----------- I 1/2+( ) 1–( )I 1/2 l–+

I 1+
-------------------------------------------------.=
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velocity along the z axis can be neglected. Expres-
sion (7) for the interaction Hamiltonian then takes the
form

The equation of motion of a spin is determined by the
commutator of the operator I and the Hamiltonian.
Upon evaluating this commutator, we arrive at

where ω is the angular velocity of spin rotation. In the
case being considered, it is given by

(9)

The spin of a particle is rotated about its velocity.
The spin-rotation angle per unit length traveled by the
particle is

It is independent of the velocity, its absolute value
being given by

The anapole moments of elementary particles and
nuclei are on the order of G or G/α [6, 11, 12]. The cal-
culations revealed that, both for elementary particles
(including the electron and the positron) and for nuclei,
the spin-rotation angle per unit length traveled by a par-
ticle in planar channeling is dΦ/dl ~ 10–9–10–11 rad/cm.
This estimate shows that the spin-rotation angles
caused by anapole moments and by weak interaction
[2, 3] are on the same order of magnitude. The preci-
sion of current experiments is not sufficient for detect-
ing such small angles.

4. CONCLUSION
The Hamiltonian describing the interaction of the

anapole moment of a relativistic particle with an elec-
trostatic field has been derived. The motion of a particle
having an anapole moment gives rise to parity-violating
quadrupole and contact interactions. The equation of
motion of a spin has been obtained. The spin-rotation
angles caused by anapole moments are on the same
order of magnitude as those caused by weak interac-
tion.
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