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Behavior of a bundle of rays forming the image of a source in cosmological models
with rotation
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Our earlier results regarding the absence of Birch anisotropy in cosmological models with
rotation were obtained under the assumption that a bundle of rays forming the image of a source
is nonrotating. This appears to be at variance with the rotation of space. The detailed
analysis in the present paper of the behavior of rays propagating from a source to an observer
shows that the congruence of the rays is, in fact, nonrotating. The doubts expressed by
some authors in reference to our conclusions that the Birch effect is not attributable to
cosmological rotation are thereby put to rest. ©1998 American Institute of Physics.
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1. INTRODUCTION

A debate as to whether it is possible to attribute
Birch effect to cosmological rotation has been continued
the literature for a fairly long time. We recall that Birch1

claimed on the basis of his own observations of a large se
radio galaxies that there is dipole anisotropy of the posit
angleD ~the angle between the dominant polarization of
radiation and the direction of maximum elongation of t
radio galaxy! in the form D}cosu, where u is the angle
between the direction of the ray and the anisotropy axis.
also theorized that this anisotropy could be attributed to c
mological rotation.

It was shown in Ref. 2 that rotation of the polarizatio
vector ~relative to a local coordinate basis set! does, in fact,
take place in a rotating cosmological model and that
rotation law is similar to the one proposed by Birch. Ho
ever, no allowance was made for the possible variation of
direction of maximum elongation of the source. Such ro
tion occurs because of deformation of the bundle of r
forming the image of the source as the rays propagat
curved space. Therefore, the results in Ref. 2 did not ans
the question of what happens to the angleD in rotating uni-
verses. We3 recently investigated the character of the var
tion of the position angleD in a cosmological model with
global Gödel rotation. It was discovered that this rotatio
cannot induce the Birch type of anisotropy withD} cosu
and that anisotropy withD}sin2u should be expected. It wa
concluded in Ref. 3 on this basis that the Birch effect, if
exists at all, cannot be caused by rotation of the univers

It was shown in Ref. 4 that the anisotropy of space
anisotropic cosmological models leads to the appearanc
visible anisotropy in the orientations of distant galaxies. T
effect was calculated in first order from the curvature for
most general case of Petrov type-I spaces. At the same t
it was concluded in Ref. 4 that Birch’s observations can
4171063-7761/98/87(9)/4/$15.00
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be a consequence of general-relativistic effects accomp
ing the propagation of radiation.

The conclusions in Ref. 3 were challenged in Ref. 5. T
subject of the discursion was the properties of a bundle
rays forming the image of a source. In Ref. 3 it was calle
‘‘representative’’ bundle, and it was assumed that it is no
rotating. Objections were raised specifically against this
sumption in Ref. 5, where it was stated that a bundle
isotropic geodesics producing an image in a rotating unive
must also be rotating. In this paper we examine the prop
ties of a representative bundle of rays in greater detail tha
Ref. 3 and show that it has the properties ascribed to i
Ref. 3. The criticism expressed by Korotki� and Obukhov5 is
thereby put to rest.

2. EQUATIONS OF RAYS IN A REPRESENTATIVE BUNDLE

For simplicity, the further calculations are performed f
a stationary Go¨del-type cosmological model described by t
metric

ds25dt22dx22ka2~x! dy22dz222Ap a~x! dy dt.
~1!

This metric differs from the constant scale factor used
Refs. 3 and 5, which was set equal to unity. In the metric~1!
a(x)5emx, andk, p, andm are constants.

Let us consider a system of rays propagating from
sourceABCD to an observerO ~see Fig. 1!. It is assumed
that photons of a definite frequencyv reach pointO at the
same moment in timet1 , being emitted from points
A,B,C, . . . of the source at different moments in time, d
pending on the coordinates of the points. If the position o
photon on an isotropic geodesic is characterized by the af
parameters, the value ofs for all photons arriving at the
time t1 at point O can be set equal tos1.0. The initial
values ofs for the photons emerging from pointsA, B, etc.
© 1998 American Institute of Physics
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at different times~which correspond to their arrival at poin
O at t1) will naturally be different and will depend on th
coordinates of these points.

We take into account that the observer receives the
age of the projectionAB8C8D8 of the source onto a plan
perpendicular to the line of vision, rather than the sou
itself. In this plane we assign the values5s0 to the affine
parameters. In flat space a definite value ofs12s0 would
correspond to a definite distance from the observer. Then
segment of the spherical wave surface which is tangent to
source at pointA would correspond tos5s0 . Because of the
great distance to the source, this segment of the wave su
would be indistinguishable from the flat surface depicted
Fig. 1.

We can do virtually the same thing in curved space:
projection of the source consists of a set of spatial points
isotropic geodesics characterized by the same value of
affine parameter, which is equal, say, to the value ofs0(A)
for a photon emerging from pointA, to which we assign the
value s0(A)50. We note that in view of the small dimen
sions of the source in comparison to the cosmological cu
ture, the relation between the geometry of the source and
image of it derived from the conditions5s0(A)50 will be
practically the same as in flat space~as is shown in Fig. 1!.
Let M0(x0

m) be an arbitrary point on the projection of th
source. We have

x0
05t0 , x0

15x0 , x0
25y0 , x0

35z0 .

A ray belonging to the representative bundle emerges f
point M0(t0 ,x0 ,y0 ,z0) and reaches pointO(t1 ,x150,
y150, z150), ands is the affine parameter on the ray. It
assumed for all the rays of the representative bundle
s5s050 at points on the projection of the source a
s5s1 at pointO.

Space~1! has four Killing vectors

z0
m5d0

m , z1
m5

1

m
d1

m2yd2
m , z2

m5d2
m , z3

m5d3
m . ~2!

Therefore, the equations of the isotropic geodesics have
first integrals, which we denote for convenience as

~kmz0
m!5q0 , ~kmz i

m!5q0qi , i 51,2,3. ~3!

FIG. 1. Behavior of a bundle of rays forming the image of a source
cosmological models with rotation.
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It is not difficult to obtain the following expressions for th
co- and countervariant components of the wave vector fr
the equationskm;n

m kn50 and the equalitykmkm50:

k05q0 , k152q0

g~a,q2 ,q3!

a
,

k252q0q2 , k352q0q3 , ~4!

k05
q0k

k1p S 11
q2Ap

ak D , k15
q0g

a
,

~5!

k25
q0

a~k1p! S 2Ap1
q2

a D , k35q0q3 .

Here

g~a,q2 ,q3!5Fa2S k

k1p
2q3

2D1
2Ap q2a

k1p
2

q2
2

k1pG1/2

.

Integrating the equationsdxm/ds5km(xa,qa) with km from
~5! and with the conditionsxi(s1)50 andt(s1)5t1 , we ob-
tain

t5t11
kq0

k1p S s2s11
Ap q2

k E
s1

s ds

a~s,q2 ,q3! D ,

x5q0E
s1

s g~a,q2 ,q3!

a
ds, ~6!

y5
q0

k1p F2ApE
s1

s ds

a
1q2E

s1

s ds

a2G , z5q0q3~s2s1!.

Motion along an isotropic geodesic is accompanied by
variation of x(s) and, therefore, ofa(x(s))5exp(mx(s)).
The equation fora(s) has the form

mq0s5E
a0

a da

g~a,q2 ,q3!
, a05exp~mx0!, ~7!

and its solution has the form

a~s,q2 ,q3!5
q2A12q3

2

Ak1p~k/~k1p!2q3
2!

3coshFw01mq0sA k

k1p
2q3

2 G
2

Ap q2

k2~k1p!q3
2

. ~8!

Herew0 is related toa05exp(mx0) by the expression

Ap1k

q2A12q3
2 Fa0S k

k1p
2q3

2D1
Ap q2

k1p G5coshw0 . ~9!

Sincea(s1)5em051 for s5s1 , we have

15
q2A12q3

2

Ak1p ~k/~k1p!2q3
2!

3coshFw01mq0s1A k

k1p
2q3

2G2
Ap q2

k2~k1p!q3
2

. ~10!
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Using~10!, we can eliminatew0 in ~8! and expressa in terms
of only s, q2 , andq3 :

a5~11B!coshc2A~11B!22A2 sinhc2B, ~11!

where

B5
Ap q2

~k1p!@k/~k1p!2q3
2#

, A5Ak1p

p
A12q3

2 B,

c5mq0A k

k1p
2q3

2 ~s12s!.

3. CONGRUENCE PROPERTIES OF THE RAYS OF A
REPRESENTATIVE BUNDLE

In order to obtain the field of isotropic vectorskm , for
which the rotation tensorvmn5(km,n2kn,m)/2 characteriz-
ing the rotation of a bundle of rays is calculated,s, q2 , and
q3 must be expressed in terms ofx, y, andz using Eqs.~6!
and then substituted into~4!. In light of everything, the lack
of this procedure was the reason for the erroneous conclu
drawn in Ref. 5. In any case, the expression given in Re
for the rotation parameterv is obtained, if only the explicit
dependence on the coordinates is taken into account in
mulas~4! andq2 andq3 are regarded as constants~in Ref. 5
the constantsq2 and q3 were replaced by the angles of a
proachu andw of the rays at the point of observation!.

The position of a point on an isotropic geodesic is co
pletely defined by assigning the parametersq2 , q3 , s, and
t1 . In this caset1 specifies the temporal sequence of wa
fronts reaching pointO and is an analog of the phaseu. The
parameterq0 remains equal to a constant~at least in the
stationary case; incidentally, in the nonstationary case th
is no such constant parameter! and does not play any role i
the expressions describing the congruence of the wave
tors. If q0 is assumed to be absolutely constant, it can be
equal to unity, which we shall do in the following. Th
corresponds to the fact that we are considering a phys
situation in which photons of one frequency are emitted fr
each point on the projection of the source. However, ther
a possibility which can lead to rotating congruence. Mo
specifically, whenq0 , being an integral of motion, i.e., bein
independent ofs, is a function of two other constantsq2 and
q3 : q05q0(q2 ,q3). In this case the frequency of the emitte
photons is different for different points of the source. W
shall not consider such a physical situation in this paper

In principle,s, q2 , andq3 must be expressed in terms
x, y, andz using ~6! and then substituted into~4!. The con-
gruence ofkm(xa) is thus obtained, and the rotation tens
vmn must be calculated for it. However, we shall proce
differently. Instead of the componentskm in the (t,x,y,z)
system of coordinates, we shall work with the compone
km8 in a new system of the coordinates

x805t1 , x815s, x825q2 , x835q3 .

We have

k085ka

]xa

]t1
5k0

]t

]t1
5k05q0 ,
on
5

r-

-

re

c-
et

al
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e

r

ts

k185ka

]xa

]s
5kaka50S since

]xa

]s
5kaD , ~12!

k285ka

]xa

]q2
5k0

]t

]q2
1k1

]x

]q2
1k2

]y

]q2
1k3

]z

]q2
.

To calculate]xa/]x8a we use formulas~6!. Then,

]t

]q2
5

q2q0Ap

k1p E
s

s1 1

a2

]a

]q2
ds2

q0Ap

k1pEs

s1 ds

a~s!
,

]t

]q3
5

Ap q0q2

k1p E
s

s1 1

a2

]a

]q3
ds,

]x

]q2
5

1

ma

]a

]q2
,

]x

]q3
5

1

ma

]a

]q3
,

~13!
]y

]q2
52

q0

k1pEs

s1ds

a2
2

q0Ap

k1pEs

s1 1

a2

]a

]q2
ds

1
2q0q2

k1p E
s

s1 1

a3

]a

]q2
ds,

]y

]q3
52

q0Ap

k1pEs

s1 1

a2

]a

]q3
ds1

2q0q2

k1p E
s

s1 1

a3

]a

]q3
ds,

]z

]q2
50,

]z

]q3
5q0~s2s1!.

Using ~13! and ~4!, we obtain

k285
q0

2

k1p
Ap F2E

s

s1ds

a
12q2E

s

s1 1

a2

]a

]q2
dsG

1
q0

2q2

k1pEs

s1 ds

a2
2

2q0
2q2

2

k1p E
s

s1 1

a3

]a

]q2
ds2

g

ma2

]a

]q2
,

~14!

k385
Ap q0

2q2

k1p E
s

s1 1

a2

]a

]q3
ds2q0

2q2F2
Ap

k1pEs

s1 1

a2

]a

]q3
ds

1
2q2

k1pEs

s1 1

a3

]a

]q3
dsG2

g

ma2

]a

]q3
2q0

2q3~s2s1!.

It is not difficult to show that

k2,18 5
]k28

]s
5k3,18 5

]k38

]s
50. ~15!

This can be proved by direct differentiation of expressio
~14!. However, it can also be demonstrated in a differe
manner. In fact,k285km]xm/]q2 can be regarded as an in
variant. Then, usingD/]s and D/]q2 to denote covariant
derivatives alongs andq2 , we obtain

k2,18 5
]k28

]s
5

D

]s S km

]xm

]q2
D5km;nkn

]xm

]q2
1km

D

]s S ]xm

]q2
D

5km

Dkm

]q2
5

1

2

D

]q2
~kmkm!50.



he

-
the

e-
-
is
e-
d

ys
ct,
he
on
of
to
g
pite

olu-
e
for
ns

os-

420 JETP 87 (3), September 1998 V. F. Panov and Yu. G. Sbytov
Here we have only utilized the fact thatkm is an isotropic
geodesic vector (km;nkn50, kmkm50).

Similarly, it can be shown thatk3,18 5]k3 /]s50. Thus,
k28 andk38 are constant along rays and are equal, say, to t
values at the points5s1 ~point O). At this point all the
integrals in the expressions fork28 and k38 vanish, and we
have

k28us5s1
52

g~1,q2 ,q3!

m

]a

]q2
U

s5s1

,

k38us5s1
52

g~1,q2 ,q3!

m

]a

]q3
U

s5s1

. ~16!

On the basis of Eq.~11! we can obtain

q2

]a

]q2
5a2

Ak1pg~a,q2 ,q3!

A~k1p!~12q3
2!2~Ap2q2!2

5a2
g~a,q2 ,q3!

g~1,q2 ,q3!
,

~17!
]a

]q3
5

]B

]q3
~coshc21!

2
~11B!~]B/]q3!2A~]A/]q3!

A~11B!22A2

3sinhc1@~11B!sinhc

2A~11B!22A2 coshc#
]c

]q3
,

where

]c

]q3
52

mq0q3~s12s!

Ak/~k1p!2q3
2

.

It follows from ~17! for s5s1 (a51) thatc50 and

]a

]q2
5

]a

]q3
50.

Thus, everywhere
ir

k285k3850. ~18!

Therefore, in the (t1 ,s,q2 ,q3) system of coordinates the iso
tropic congruence of the wave vectors investigated has
form

ka85~q0,0,0,0!, ~19!

and the rotation tensor for this congruence equals zero.
It can be concluded from the foregoing that if the fr

quencyq0 of the light is an absolute integral, which is iden
tical for all rays, the bundle of rays forming the image
nonrotating in the cosmological model with rotation d
scribed by the metric~1!. A similar result should be expecte
for all metrics with global rotation.

4. CONCLUSION

We have shown that the ‘‘representative’’ bundle of ra
forming an image of a source considered in Ref. 3 is, in fa
nonrotating. Thus, the main conclusion in Ref. 3 that t
Birch effect cannot be attributed to cosmological rotati
within the general theory of relativity holds. The question
the possibility of attributing the observed Birch anisotropy
cosmological rotation in a theory of gravitation with twistin
requires a separate treatment. Finally, we note that des
the advances regarding inflationary scenarios of the ev
tion of the early universe, within which the rotation of th
early universes is strongly damped, it would be useful
astrophysicists to continue the efforts to find manifestatio
of rotation of the universe in the modern epoch and its p
sible global anisotropy.
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We show that the singular behavior of Rindler solutions near horizon testifies to the currents of
particles from a region arbitrarily close to the horizon. Besides, the Rindler solutions in
right Rindler sector of Minkowski space can be represented as a superposition of only positive-
or only negative-frequency plane waves; these states require infinite energy for their
creation and possess infinite charge in a finite space interval, containing the horizon. The positive-
or negative-frequency representations of Rindler solutions analytically continued to the
whole Minkowski space make up a complete set of states in this space, which have, however,
the aforementioned singularities. These positive~negative!-frequency states are
characterized by positive~negative! total charge, the charge of the same sign in right~left!
Rindler sector and by quantum numberk. But in other Lorentz invariant sectors they do not
possess positive~negative!-definite charge density and have negative~positive! charge in
left ~right! Rindler sector. Therefore these states describe both the particle~antiparticle! and pairs,
the mean number of which is given by Planck function ofk. These peculiarities make the
Rindler set of solutions nonequivalent to the plane wave set and the inference on the existence of
thermal currents for a Rindler observer moving in empty Minkowski space is unfounded.
© 1998 American Institute of Physics.@S1063-7761~98!00209-1#
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As is known, it is impossible to create a constant u
form gravitational field with accelerationa in a space length
of the order ofa21, or the coordinate system in Minkowsk
space, imitating such a field.1 So, in the Rindler coordinate
system due to hardness requirement the acceleration i
versely proportional to the space coordinate,a(z)5z21, and
becomes infinite at a distancea21 from the plane with ac-
celerationa ~event horizon!. It is clear that such a system
unrealizable by moving bodies up to horizon. At the sa
time there are statements in literature that the wave equa
solutions with the Rindler system symmetry testify to a
pearance of currents of particles with thermal spectrum
an observe at rest in the Rindler system, i.e., uniformly
celerated in Lorentz system where no particles are prese2,3

Moreover, it is stated that this phenomenon imitates bl
hole evaporation.2–4 On the other hand, according to the i
teresting paper by Belinski,5 the already formed black hol
should not create particles. The same is expected if the a
ogy with QED is warranted:6 both virtual or real pair com-
ponents are attracted by black hole and no particles sh
appear far away.

Rindler solution~the solution of Klein–Gordon equatio
in Rindler wedge!, decreasing forz→`, is given by the
Bessel function of the second kind~McDonald function!,

Kik~z!exp~2 ikv1 ip'x'!,

v5at85tanh21
t

z
, z5m'z85m'Az22t2, ~1!
4211063-7761/98/87(9)/5/$15.00
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and may be written down6 as a superposition of positiv
(p0.0) or negative (p0,0) frequency plane waves with
different rapidityu :

Kik~z!exp~2 ikv !5
1

2
expS 7

pk

2 D
3E

2`

`

du exp@ i ~p3z2p0t !7 iku#,

p056m' coshu, p35m' sinh u. ~2!

It is an analytic function of variablesx65t6z with branch
points atx650. This solution can be analytically continue
to the whole Minkowski space from semiaxesx2,0, x1

.0 to semiaxesx2.0, x1,0; for p0.0 the continuation
is performed through the lower and forp0,0 through the
upper half-planes of complexx6 . According to the lower or
upper ways of continuation we get the positive- or t
negative-frequency solutionsFk

(1) or Fk
(2) coinciding in

Rindler sectorR and differing in other sectors:

R: Fk
~6 !5Kik~z!exp~2 ivt8!, v5ak,

F: Fk
~6 !5expS 7

pk

2 DKik~6 i t!exp~2 ivz8!,

t5m'At22z2,

P: Fk
~6 !5expS 7

pk

2 DKik~7 i t!exp~2 ivz8!,

az85tanh21
z

t
,

© 1998 American Institute of Physics



y
e

g

n

o-

h
e

go

-

eg

cel
sult
e

m

d
ent
h

e

-
arc

n
rcs

es
s
be

seg-

422 JETP 87 (3), September 1998 A. I. Nikishov and V. I. Ritus
L: Fk
~6 !5exp~7pk!Kik~z!exp~2 ivt8!. ~3!

So, the solutionsFk
(6) are characterized by frequenc

sign and by real parameterk ~the latter instead of plane wav
momentum!.

SolutionsF (2) may be obtained fromF (1) by complex
conjugation and changing the sign ofk :

Fk
~2 !5F2k

~1 !* . ~4!

If instead of F (6) one considers f (6)5exp
(6pk/2)F (6) then these solutionsf (6) will be ‘‘similarly
normalized’’ in whole Minkowski space by values differin
only in sign. The solutionf (1) corresponds to positive
charge located mainly inR or L for k greater or less than 0
andf (2) corresponds to negative charge located mainly iL
or R for the samek.

For F (1) we have the following current density comp
nentsj 65 j 06 j 3:

R: j 657
2k

x7
Kik

2 ~z!,

F: j 65
e2pk

x7
@p72kuKik~ i t!u2#,

P: j 65
e2pk

x7
@2p72kuKik~2 i t!u2#,

L: j 657e22pk
2k

x7
Kik

2 ~z!. ~5!

In sectorsR and L the current flows along hyperbolae wit
constantz and in sectorsF andP both along the hyperbola
with constantt and along the rays outgoing from~in F! and
ingoing to ~in P! the origin of coordinates:

R: j a5 j a
hyp52

2k

z22t2 Kik
2 ~z!eabxb, ~6!

F: j a5 j a
lin1 j a

hyp,

j a
lin5

pe2pk

t22z2 xa ,

j a
hyp5

2ke2pk

t22z2 uKik~ i t!u2eabxb, ~7!

eab is the antisymmetric tensor,e0352e3051.
The linear and hyperbolic current densities are ortho

nal:

j a
lin j hypa50.

Singular behavior of current density atx650 is evident.
Due to current density conservation the current

J5
1

2 E
C
~ j 1dx22 j 2dx1!

through a contourC lying in F and having ends on the hy
perbola t5t1 at the points (x11 ,x22) and (x12 ,x21) is
equal to the current through a broken line formed by s
ments of the straight linesx15x12 and x25x22 crossing
on the hyperbolat5t2[m'Ax22x12 ~see Fig. 1!:
-

-

1

2 E
x21

x22 dx2

x2
e2pk@p22kuKik~ i t!u2#

1
1

2 E
x11

x12 dx1

x1
e2pk@p12kuKik~ i t!u2#

52pe2pk ln
t2

t1
. ~8!

It is seen that the hyperbolic parts of the currents can
each other and the linear parts are equal, and yield the re
presented in~8!. The former is evident beforehand as th
contour can be deformed to the arc of hyperbolat5t1 be-
tween the chosen points on it, while the latter follows fro
~7! and the relation

x22

x21
5

x12

x11
5S t2

t1
D 2

. ~9!

If one fixes the coordinatesx11 ,x12 of the hyperbola arc
ends and the parametert1 tends to zero, then the considere
arc of hyperbola can be made as close to the segm
(x11 ,x12) of x1-axis one wishes. Yet the current throug
this arc of hyperbola remains constant according to~8!, ~9!;
the same is true for its components alongx1- andx2-axes.
Similarly the current through the contour lying in sectorR
with ends on hyperbolaz5z1 at points (x11 ,x228 ) and
(x12 ,x218 ) is equal to the current through the broken lin
formed by segments of straight linesx25x228 and x1

5x12 crossing on the hyperbolaz5z2[A2x228 x12:

1

2 E
x11

x12 dx1

x1
@22kKik

2 ~z!#1
1

2 E
x218

x228 dx2

x2
2kKik

2 ~z!50.

~10!

It is equal to zero as inR the current flows only along hy
perbolae and the chosen contour can be deformed to the
of hyperbolaz5z1 . So the arcs of hyperbolaet5t1 andz
5z1 , lying in F andR and having the projection (x11 ,x12)
on x1-axis, fort1 , z1→` press themselves to the projectio
from both sides but the current flowing through the both a
remains constant and equal to~8!. If the ends of contours in
F andR are placed not on hyperbolae, but on straight lin
x25x22.0 andx25x228 ,0 at the points with coordinate
x11 ,x12 , then the current through these contours will
given by the second and the first integrals in~8! and~10! as
these contours can be deformed to the corresponding

FIG. 1.
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ments of straight lines. Choosingx228 52x22 ~what is
equivalent toz15t1! it is possible to show that the tota
current crossing both segments, when they approach
other ~i.e., for t1,2→0, but t2 /t15const!, differs from zero
and oscillates with increasing frequency:

e2pkH p ln
t2

t1
12kE

t1

t2 dt

t
uKik~ i t!u2J

22kE
t1

t2 dz

z
Kik

2 ~z!'
2p

k~epk11!
sinS k ln

t2

t1
D

3cosS b1k ln
t1t2

4 D , ~11!

whereb5arg(G2(12ik)), t1t25m'
2 Ax11x12x21→0.

So the current through the closed contour, going throu
the ends of the segment (x11 ,x12) on thex1-axis and lying
in F andR, due to singular behavior of current density at t
x1-axis depends on the way of calculating the integrals n
the singularity. Calculations of principal values of integra
by means of ‘‘hyperbolic’’ or ‘‘linear’’ approaches give re
spectively finite~8! or indefinite~11! values.

Note, that the charge and the energy of the state~2! in
any finite volume containing horizon are infinite due to s
gularities of charge densityj 0 and energy densityT00 on the
horizon.

Let us consider the scalar or ‘‘inner’’ product of tw
positive-frequency solutions~3! in Rindler sectorR:

Jkk8
R

5E
utu

`

dzK2 ik~z!eivt8i ]Jt Kik8~z!e2 iv8t8. ~12!

Replacing the integration variablez by the variablez, it is
not difficult to see that the integrand is total differential
function

2Jkk8
R

~z!5
z

k2k8
expF i ~k2k8!sinh21

m't

z G
3@K2 ik~z!Kik8

8 ~z!2K2 ik8 ~z!Kik8~z!#, ~13!

which exponentially decays at the upper limit~for z→`! and
oscillates with infinitely increasing frequency at the low
limit ~for z→0!. So, the integralJkk8

R which is equal to the
limit of the functionJkk8

R (z) for z→0 does not exist in or-
dinary sense. Let us consider the functionJkk8

R (z) instead of
it, i.e., the integral~12! in which the low limit z5utu is sub-
stituted byz1(t)5At21(z/m')2, wherez is the parameter
of hyperbola which intersects the straight line of constantt at
the pointz1(t). For this function there is also another repr
sentation:

Jkk8
R

~z!5expF i ~k2k8!sinh21
m't

z G
3~k1k8!E

z

` dx

x
K2 ik~x!Kik8~x!. ~14!

For the special casek5k8 the functionJkk
R (z) is real,

positive and represents the charge of the state~1!, pertaining
ch

h

ar

-

-

to the regionz1(t)<z,` and related to unit area of plan
z1 . For z→` this charge exponentially decreases,

Jkk
R ~z!'

pk

2z2 e22z, z→`, ~15!

and forz→0 it increases logarithmically:

Jkk
R ~z!5

p

sinh pk F ln
2

z
1Re~c~12 ik!!1

1

2k

3sinS b12k ln
z

2D1¯ G , z→0. ~16!

Here c(x) is logarithmic derivative ofG-function, andb
52 arg(G(12ik)).

So, the charge in any finite volume becomes arbitra
large when this volume approaches the horizonz5utu.

Using equations~13!, ~14! and asymptotic expression
for the McDonald functions, it is easy to show that fork
Þk8 andz→0

E
z

` dx

x
K2 ik~x!Kik8~x!'

p

2kk8
A kk8

sinh~pk!sinh~pk8!

3H 1

k2k8
sinF ~k2k8!

3 ln
2

z
2

b2b8

2 G2
1

k1k8

3sinF ~k1k8!ln
2

z
2

b1b8

2 G J ,

~17!

where the omitted terms go to zero forz→0.
Using the representation

lim
N→`

sin~Nx!

x
5pd~x!, ~18!

let us rewrite the right-hand side of~17! in the form

p2

2kk8
A kk8

sinh~pk!sinh~pk8!
$d~k2k8!2d~k1k8!%.

~19!

Then

lim
z→0

Jkk8
R

~z!5
p2

sinh~pk!
d~k2k8!. ~20!

The scalar product of the same two solutions~3! in sec-
tor F

Jkk8
F

5e2p~k1k8!/2

3E
2t

t

dzK2 ik~2 i t!eivz8i ]J t Kik8~ i t!e2 iv8z8 ~21!

is considered as a limit fort→0 of functionJkk8
F (t), which

differs from the integral~21! in that the limits of integration
z57t are substituted by limitsz1,2(t)57At22(t/m')2,
wheret is the parameter of limiting hyperbola which inte
sects the straight line of constantt at the pointsz1,2. It can be
shown that
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Jkk8
F

~t!52
2 exp@2~p/2!~k1k8!#

k2k8

3sinF ~k2k8!cosh21
m't

t Gt@K2 ik~2 i t!Kik8
8

3~ i t!1K2 ik8 ~2 i t!Kik8~ i t!# ~22!

5
2 exp@2~p/2!~k1k8!#

k2k8

3sinF ~k2k8!cosh21
m't

t G S p2 i ~k22k82!

3E
t

` dx

x
K2 ik~2 ix !Kik8~ ix ! D . ~23!

For k5k8 the function

Jkk
F ~t!52pe2pk cosh21

m't

t
. ~24!

It gives the charge in regionF between planesz5z1 andz
5z2 per unit area of one of the planes. As seen from~24!
this charge is positive, increases logarithmically in time a
also as the limits of integration approach the horizons.

For kÞk8 andt→0 it follows from ~22! and ~18!

lim
t→0

Jkk8
F

~t!52p2e2pkd~k2k8!. ~25!

Equations~22!–~25! also hold for sectorP, if one subjects
them to complex conjugation and notes that archx is an even
function.7

Finally, scalar products of two positive-frequency so
tions ~3! in sectorsL andR are related by the expression

Jkk8
L

~z!52exp~2p~k1k8!!Jkk8
R* ~z!. ~26!

Hence in the region2`,z<2z1(t) of sectorL the charge
is negative, makes up the exp(22pk) part of the charge in
symmetrical region of sectorR and increases logarithmicall
for z→0, i.e., as the limiting plane approaches the horizo

Jkk
L ~z!'2

p exp~22pk!

sinh~pk! H ln
2

z
1Re~c~12 ik!!

1
1

2k
sinS b12k ln

z

2D J . ~27!

At the same time forkÞk8 andz→0

lim
z→0

Jkk8
L

~z!52
p2 exp~22pk!

sinh pk
d~k2k8!, ~28!

Summing~20!, ~25!, and~28! yields

lim
z,t→0

@Jkk8
R

~z!1Jkk8
F

~t!1Jkk8
L

~z!#54p2e2pkd~k2k8!,

~29!

which may be considered as the orthogonality and norm
ization condition of two positive-frequency solutions in th
whole space.

For negative-frequency solutionsF (2) the integralsJkk8
may be obtained from~12!–~16!, and~20!–~29! by complex
d

-

:

l-

conjugation, changing the signs ofk and k8 and changing
the overall sign, and for ‘‘similarly normalized’’ solution
f (6) they differ from those obtained forF (6) by multipliers
exp@6(p/2)(k1k8)#.

All given formulas hold both for positive and negativek.
Changing sign ofk is equivalent to reflectionz→2z:

f2k
~7 !~z!5fk

~6 !~2z!. ~30!

In other words, the sign ofk is not connected with the sign
of total charge, but is connected with its spatial distributio

Note the important relation

fk
~2 !5f2k

~1 !* , ~31!

which is satisfied also by functionsFk
(6) .

Two solutionsfk
(1) and fk8

(2) with different frequency
signs are orthogonal in Minkowski space, moreover, they
orthogonal inR1L, F andP separately.

The energy density of the stateF (1) in sectorR is

T005
m'

2 ~ t21z2!

z22t2 uK8u21
k2~z21t2!

~z22t2!2 uKu21m'
2 uKu2,

~32!

whereK5Kik(z), z5m'Az22t2, and in sectorF it is

T005e2pkH m'
2 ~ t21z2!

t22z2 uK8u21
k2~z21t2!

~ t22z2!2 uKu2

1m'
2 uKu22

2pkzt

~ t22z2!2J , ~33!

whereK5Kik( i t), t5m'At22z2. Comparison with charge
density j 0 shows thatT00 diverges forz→6t stronger then
j 0 both in R and inF.

The infinite charge and infinite energy in finite volum
containing the horizon testify to nonequivalence of the se
Rindler solutions to usual complete sets of wave equa
solutions.8 That the horizons act as sources of particle a
antiparticle pairs is confirmed also by changing of cha
density sign at crossing horizon. Finally, the positiv
frequency solutionf (1) possesses in sectorsL and R the
chargesQL

(1) andQR
(1) of opposite signs and the total pos

tive chargeQ(1). These charges are connected by the re
tion

QL
~1 !52e22pkQR

~1 !52
1

2
~e2pk21!21Q~1 !,

Q~1 !.0. ~34!

Similar connection between the charges in sectorsL, R and
total charge for negative-frequency statef (2) is

QR
~2 !52e22pkQL

~2 !52
1

2
~e2pk21!21Q~2 !,

Q~2 !,0. ~35!

Any ratio of the charges of opposite signs may be taken
Minkowski space as a measure of intensity of pair prod
tion in this space.
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The general feature of the statesf (6) and their arbitrary
superposition~36! is that their total charge is equally divide
between the sectorsR1L andF ~or P!.

The fact that the statefk
(1)(fk

(2)), being a superposition
of positive ~negative!-frequency plane waves, not ever
where possess the positive~negative! charge density, is an
other manifestation of nonequivalence offk

(6)-system to
plane wave system.

As the functionsf (6) differ in each of the sectorsR and
L only by constant factor, it is always possible to find su
superpositions:

fk
R5afk

~1 !1bfk
~2 ! , fk

L5bfk
~1 !1afk

~2 ! , ~36!

which a! are identically zero inL- andR-sectors correspond
ingly and b! have only positive and only negative charg
and their densities in other sectors. For this it is necess
that

a) b52ae2pk, b) b25a2215
1

e2pk21
, k.0.

~37!

Therefore it is possible to consider the statesfk
R and fk

L ,
k.0, as describing the positively and negatively charg
particles, i.e., the particle and antiparticle.

Then in representations

fk
~1 !5afk

R2bfk
L , fk

~2 !52bfk
R1afk

L , k.0,
~38!

inverse to~36!, the squares of the coefficientsa andb must
be interpreted as mean numbers of particles and antipart
in the statefk

(1) with total charge11, and as mean number
of antiparticles and particles in the statefk

(2) with total
charge21. Relation~34! shows that in sectorL there is only
half ~i.e., b2/2! of all antiparticles of the statefk

(1) . The
other half is in sectorF or P. Similarly, half of all particles of
the statefk

(2) are in sectorR while the other half is in secto
F or P.

It is interesting to note that the positivity of charge de
sity j 0 for the statefk

R in F andP sectors (uzu,utu),

j 05
p

t22z2 F utu2z
pk

sinh~pk!
uJik~t!u2G , ~39!

mathematically is the consequence of inequality

pk

sinh~pk!
uJik~t!u2<1, k,t>0, ~40!

for Bessel functionJik(t), which was not found in math
ematical literature.

The charge density for the statefk
(1) in the same sector

j 05
p

t22z2 F utu2z
2k

p
uKik~ i t!u2G ~41!

has both signs.
According to unconvincing arguments in Ref. 3, the va

ishing offR in L means that for Rindler observer~uniformly
y,

d

les

-

-

accelerated in sectorR of Minkowski space, i.e., at rest in
Rindler system! the b2 turns out to be the measure of pa
production intensity, and looks like a thermal Bose spectr
with temperaturea/2p and frequencyv5ak.

In our opinion, if the exotic statefk
(1) is created, then

two observers, one at rest in Minkowski system and the ot
in Rindler’s one, can measure and receive information ab
the chargesQkR

(1) andQkP
(1) in sectorsR andP. The difference

of these charges divided byQkP
(1) for each of the observers i

given by the expression

QkR
~1 !2QkP

~1 !

QkP
~1 ! 5

1

e2pk21
. ~42!

The same formula holds also for the charges inR and P
sectors of the complex conjugated statefk

(1)* 5f2k
(2) , as

they differ from considered ones only by the sign. Therefo
both observers deal with the same field state in Minkow
space, creation of which needs sources of unlimited int
sity.

According to Ref. 9, for the quantization of free field
Rindler space it is necessary to satisfy the boundary co
tion on the Rindler manifold boundaryz850 with arbitrary
t8, which corresponds to the pointz5t50 in Minkowski
space. So, these authors conclude that the quantizatio
free fields is quite different in Rindler and Minkowski spac
and their analysis can give no ground for any conclusio
about the behavior of uniformly accelerated detector.
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The temperature dependence of the loss factor for ultracold neutrons owing to heating at thermal
energies on the surface of a beryllium sample is studied. The probability of heating
ultracold neutrons is anomalously high throughout the entire measured temperature interval, but
especially at low temperatures. ©1998 American Institute of Physics.
@S1063-7761~98!00309-6#
m
p

es
e

ld

In
on
or

ria
i-
os
a
da
tra
in

d
e
m
lt

d

rial.
ns.
bil-
uld

and

at

eri-
-
re-
the

K,
-
han

yl-
e-

nes
1. INTRODUCTION

The condition of complete reflection of neutrons fro
matter at arbitrary angles of incidence imposes an up
bound on their energy at a level of 1027 eV determined by
the magnitude of the nuclear potential of the material. Th
neutrons are referred to as ultracold, and are capable of b
retained in hermetic vessels for a long time.1,2

The theoretical description of the reflection of ultraco
neutrons is based on solving the Schro¨dinger equation for a
plane wave interacting with a so-called optical potential.
terms of this theory, the probability of loss of a neutr
during reflection is determined by the loss fact
h5Im U/ReU, where U is the optical potential, which
should be complex when absorption occurs in the mate
The difficulty of confining ultracold neutrons in traps is d
rectly related to the fact that experimental values of the l
factor h are one or two orders of magnitude greater th
theoretical estimates obtained assuming that the stan
neutron–matter interaction cross sections are valid for ul
cold neutrons. For example, the theoretical loss factor ow
to inelastic scattering for Be ish5531026 at T5300 K,
and that owing to radiative capture is 331027, while experi-
ment yieldsh5(224)31024.

A significant advance in solving this problem occurre3

when it was shown that about 75% of the neutrons leav
trap as a result of inelastic scattering with heating at ther
energies. It seemed most reasonable to explain this resu
terms of the hypothesis that ultracold neutrons are heate
4261063-7761/98/87(9)/7/$15.00
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hydrogen contained in the surface layer of the trap mate
Hydrogen actually was observed through nuclear reactio4

In order to obtain the experimentally observed loss proba
ity, however, the required concentration of hydrogen wo
have to have been too high. It was shown5 that high-
temperature heating of a Be sample atT51000 K could be
used to reduce the loss factorh from (223)31023 to
231024 (h was measured atT5300 K!, while the gas de-
sorbed from the Be surface was predominantly hydrogen
water.

Deep cooling of a trap with a sputtered Be coating th
has initially been outgassed toh51024 (T5300 K! leads to
a reduction inh to 331025.6 It should be noted that this
value of the loss factor was attained byT577 K and did not
vary as the temperature was reduced to 6.5 K.

Interesting results were obtained during some exp
ments at Gatchina7 to study the retention of ultracold neu
trons in Be traps. The main conclusion of these measu
ments was that, regardless of the technique for coating
trap ~sputtering or entirely of Be! and the extent to which it
has been initially outgassed (h5631025 to 231024 at
T5300 K!, when the trap temperature was reduced to 13
the loss factors reached 331025, although as before the ex
perimental result was two orders of magnitude greater t
the theoretical estimate.

The possible heating of ultracold neutrons on a ber
lium foil surface as the reason for their loss during confin
ment has been studied before.8 It was shown that, at room
temperature, the heating of ultracold neutrons determi
© 1998 American Institute of Physics
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their loss during confinement. At liquid nitrogen temper
tures, however, the probability of heating ultracold neutro
on a beryllium foil turned out to be substantially lower th
331025, the probability of loss during confinement.

A detailed analysis of the other possible channels
loss of ultracold neutrons from the trap, such as superw
heating or contamination of the surface by substances
high capture cross sections, did not yield a reason for
limitation of the losses at a level of 331025. These losses
have been characterized as anomalous.

2. STATEMENT OF THE PROBLEM

The purpose of this work was to study the possibility
the penetration of ultracold neutrons into a medium. If
ultracold neutron penetrates into beryllium, it will be heate
for the most part, since the heating cross section for be
lium ~above liquid nitrogen temperature! exceeds the captur
cross section. For stainless steel, on the other hand, ca
will predominate. Thus, by studying the heating of ultraco
neutrons on an intact beryllium foil and on a stainless s
foil, it is possible to perceive the large difference in the he
ing probabilities if the anomalous loss process is determi
by penetration to a depth exceeding the sputtering dept
;3000 Å.

One additional purpose of the experiment was to ve
the results of Ref. 8, i.e., to measure the heating probab
for ultracold neutrons on beryllium surfaces near the te
perature of liquid nitrogen.

3. EXPERIMENTAL SETUP

In this paper we study the inelastic scattering~heating!
of ultracold neutrons at sample surfaces made of berylliu
We used two types of Be samples. The first was prepare
hot rolling of pressed, powdered, distilled 99.59%-pure
ryllium. The major impurities were Fe~0.216%!, Cu
~0.096%!, Cr ~0.036%!, Ni ~0.029%!, and Mn ~0.025%!.
After etching in an HNO3 solution and washing in distilled
water, a Be ribbon of thickness 0.1 mm and width 5 cm w
crumpled and placed in a special basket made of the s
kind of ribbon. The second sample was prepared by mag
tron sputtering onto a corrugated substrate of stainless
0.1 mm thick and 5 cm wide. The layer of sputtered ber
lium was at least 3000 Å thick. The magnetron target w
made of Be of the same purity as in the first case. The t
area of each sample was 1 m2.

The measurements were made at the high-flux reacto
the ILL in Grenoble, France~the PF2 instrument!; the setup
is sketched in Fig. 1. The test samples were positioned in
containment vessel2, made of 1.5-mm-thick polished stain
less steel and covered with a 3000-Å-thick layer of sputte
Be. Containment vessel2 was surrounded by3He counters to
detect heated neutrons.

A gas of ultracold neutrons fills containment vessel2 via
valve 5, which has a 100-mm-thick aluminum separation
membrane4 at its inlet. Containment vessel2, in conjunction
with valve5, forms a so-called clean volume with a separ
pumping system6 that includes a heated vacuum valve a
an oil-free~Dry Scroll Pump!, which provides a vacuum o
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631023 Torr. The pure volume was cooled by pumpin
liquid nitrogen through an outside coil7 and heated by elec
trical heaters8 wrapped around the outside of all its parts

The samples were outgassed by heating toT5650 K
with repeated purges of helium gas~helium scrubbing!. After
completion of outgassing atT5650 K the heated vacuum
valve on the pure volume was closed and kept clo
throughout subsequent measurements in order to en
vacuum integrity. The temperature was monitored by th
mocouples, of which two were located inside the conta
ment vessel near the sample, while the remaining four w
located at various points outside the containment vessel

The thermal insulation9 on the pure volume was mad
of asbestos and aluminum foil. Forty-eight vertical
mounted cylindrical counters, each 20 mm in diameter a
300 mm long, evenly surrounded the containment vessel
formed the principal element of the device, i.e., the hea
neutron counter11. Since the characteristics of the individu
cylindrical counters differ somewhat, they were selected a
grouped in eight sections. The anodes of the counters
section were joined, and each section of the counter had
own preamplifier.

Filter chamber 10~a cylindrical cavity 4 cm thick, filled
with BF3 enriched to 10%10B) was positioned in front of the
heated neutron counter11. This device measured the avera
energy of heated neutrons. The velocity of heated neutr
could be derived from the dependence of the filter transm
sion on BF3 pressure. A 1.5-mm-thick Cu plate12 was at-
tached to the cooling/heating system to stabilize the temp
ture of counter11 when the containment vessel was hea
or cooled.

The heated neutron counter was surrounded by a sh
13 made of borated sheet resin 10–15 mm thick. The low
part of this shield, which was attached firmly to the hea
parts of the device, was made of 1-mm sheet cadmium.

4. EXPERIMENTAL TECHNIQUE

The presence of even a small number of neutrons w
energies exceeding the cutoff energy of Be in the spect
of the ultracold neutrons presents a serious problem. N
trons with energies exceeding the barrier energy will prod
a spurious reading when they penetrate the sample.

The experimental setup included a preliminary conta
ment vessel14 because of the need for reliable suppress
of ultracold neutrons with energies exceeding the Be cut
This cylinder, 2 m high and 0.6 m in diameter, was made
polished stainless steel. A polyethylene neutron absorbe15
suspended on a shaft makes it possible to remove neut
from the vessel volume that have enough energy to
higher than the absorber in the gravitational field. For
chosen absorber height of 1.8 m, a ultracold neutron sp
trum with an upper bound of 185 neV is produced.

Neutrons were transported from the ultracold neutr
source along a neutron duct made of stainless steel with
aluminum separator foil. The intensity of ultracold neutro
in the preliminary containment vessel14 was monitored us-
ing two 3He monitor counters. Counter19, with a 2 cm2

aluminum input window mounted above the bottom of ves
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FIG. 1. Setup at the ILL reactor in Grenoble fo
studying the heating of ultracold neutrons~thick ar-
row! at beryllium surfaces:~1! Be target foil;~2! con-
tainment vessel for ultracold neutrons;~3! neutron
counter chamber;~4!, ~21! Al separator foils;~5!, ~20!
valves; ~6! pumpout valve;~7! cooling system;~8!
heating system;~9! thermal insulation;~10! BF3 filter
chamber;~11! heated neutron counter;~12! copper
thermal plate;~13! detector neutron shield;~14! pre-
liminary containment vessel;~15! polyethylene ab-
sorber;~16!, ~19! ultracold neutron monitor detectors
~17! bent neutron duct;~18! 56-mm-thick beryllium
foil.
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14, measured the flux of ultracold neutrons with energ
exceeding the cutoff energy of aluminum. One of the outl
of vessel 14 was covered with a 56-mm-thick Be foil.
Counter 16, with a 50 cm2 aluminum inlet window, was
located at the end of a neutron duct17 bent at an angle of 90
°. This configuration made it possible to measure the flux
ultracold neutrons penetrating through the beryllium foil a
avoid the inevitable background of residual ultracold ne
trons heated at the foil surface. Temporal variations in
detected neutron intensities during a single measurem
cycle are shown in Fig. 2. The time trace begins at the t
inlet valve20 is opened. The filling of the containment ve
sels with neutrons continues for 100 s, whereupon valve
is closed. The total cycle time is 310 s.

The ratio of the detection intensities from the berylliu
and aluminum monitor counters over the first 100 s of
cycle can be used to estimate the fraction of ultracold n
trons with energies exceeding the Be cutoff. Given the ra
of the areas of the inlet windows of the monitor counte
this fraction is 0.7%. Further analysis shows that the num
of neutrons with energies exceeding the barrier energy f
off over a few seconds to negligible levels with a time co
stant of 0.7 s. Ten seconds after closure of the gate v
s
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~i.e., at the 110 s point in the time evolution of Fig. 2!, the
fraction of neutrons with energies above the barrier energ
less than 1026. Thus, working with neutrons detected aft
the 110th second of the cycle time evolution diagram co
pletely guarantees the lack of any contribution from neutro
with energies exceeding the barrier energy.

As a rule, the total count of heated neutrons between
and 210 s was used in the subsequent analysis. The
count of heated neutrons in the interval between 0 and 10
is roughly five times greater, but about 0.7% of the neutro
with energies exceeding the barrier energy penetrate into
volume from the beryllium foil. An analysis of the dat
showed that the ratio of the total counts is constant to h
accuracy over the full temperature range studied. Thus,
results obtained for 0–100 s are identical to those for 11
210 s, but their statistical accuracy is more than twice tha
the latter. In the following analysis we shall, in several cas
use the statistically more accurate data, since the lack
spurious effects in these data was reliably demonstrated
perimentally.

The resulting total count curves for the neutrons hea
on the sample surface were cross-calibrated in units of
dimensionless parameterh, the loss factor. As a so-calle
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FIG. 2. Detected neutron intensity as a function of time duri
a single measurement cycle:~1! ultracold neutron monitor
counter with aluminum foil~19 in Fig. 1!; ~2! ultracold neutron
monitor counter~16 in Fig. 1!; ~3! heated neutron counter~11
in Fig. 1!.
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calibration source of heated neutrons we used high pu
gaseous4He, which is inert and does not capture neutro
The inelastic interaction of4He atoms with ultracold neu
trons conforms to a simple theory. For practical calculatio
we used the parameter (pt)He, with an experimental value
of 467633 mbar•s.9

The technique for calibrating using4He is as follows: the
count rate of heated ultracold neutrons is proportional to
heating probability and the density of neutrons in the c
tainment vessel:

Nupsc5~tupsc
21 1tHe

21!
N0

11t f~tupsc
21 1tHe

21!
expF2

pHeteff

~pt!He
G ,
~1!

where the first factor is the heating probability and the s
ond describes the dependence of the density of ultracold
trons in the containment vessel on the total loss factor
the size of the inlet aperture. The third factor accounts for
loss of ultracold neutrons in the section of the neutron d
preceding the containment vessel, wheretupsc

21 5h ieḡ, tHe
21

5pHe/(pt)He, h ie is the loss factor owing to heating o
ultracold neutrons,ḡ is the product of the spectral loss fun
tion and the collision frequency of ultracold neutrons in t
containment vessel averaged over the spectrum, or the
called effective collision frequency,pHe is the pressure o
4He, t f is the geometric filling time of the containment ve
sel, teff is the time to transport ultracold neutrons betwe
the foil 4 and the inlet of the containment vessel2, andN0 is
the product of the density of ultracold neutrons in the p
liminary containment vessel, the heated neutron detection
ficiency, and the effective solid angle. The unknown para
ty
.
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eters N0, t f , and teff can be determined by fitting th
experimentally measuredNupsc(pHe) curve to the theoretica
curve ~1!.

The heated neutron count rate is plotted as a function
4He pressure in Fig. 3. The smooth curve corresponds to
~1!. The values of the fit parameters are shown in the cap
to Fig. 3. PuttingpHe50 in Eq. ~1! and separating out the
loss factor h, we obtain an expression for the cros
calibration ofNupsc andh:

h ie5
Nupsc

N0

1

ḡ

1

12Nupsct f /N0
. ~2!

FIG. 3. Count rate of heated neutrons as a function of the4He pressure in
the containment vessel for ultracold neutrons.N0530175(2920) neutrons;
tupsc

21 50.0145(0.0018) s21; t f58.76(1.4) s;teff50.28(0.07) s.



ron
es.

en-
q.

430 JETP 87 (3), September 1998 Varlamov et al.
FIG. 4. Temperature dependence of the ultracold neut
loss factor owing to heating at the surface of Be sampl
Open circles: rolled beryllium foil; filled circles: beryllium-
coated stainless steel foil; smooth curve: theoretical dep
dence of the ultracold neutron loss factor according to E
~4!.
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The mean effective collision frequencyḡ of ultracold
neutrons in the containment vessel is a computational par
eter which in the present case isḡ512068. The uncertainty
in this calculation is due to imperfect knowledge of the upp
bound on the spectrum of ultracold neutrons in the trap.

To properly calibrate the loss factor on a beryllium fo
of neutrons heated in helium gas, one must know the fi
energy of the neutrons heated on the foil and in the heliu
inasmuch as the detector efficiency can depend on energ
the present experiment this circumstance was studied
measuring the transmission of heated neutrons through a
ter with varying10BF3 pressure.10 It was found that the de
pendence on the10BF3 pressure is essentially identical in th
two cases, so there is no need to correct for the energy
pendence of the detector when calibrating. Note, howe
that no conclusion can be drawn regarding the energy of
neutrons heated on the beryllium, because there is eno
material between the containment vessel and the detecto
thermalize the neutrons.

5. RESULTS

The experimentally obtained heated neutron count ra
Nupsc were cross-calibrated with values of the dimensionl
loss factorh in accordance with Eq.~2!. Figure 4 shows the
temperature variation of the partial ultracold neutron lo
factorh ie owing to heating on the surface of rolled berylliu
foil ~hollow points! and on a sputtered Be surface~solid
points!. The loss factor owing to heating of ultracold ne
trons at room temperature ish ie ~300 K!5(1.3960.18)
31024 and (1.4760.15)31024, respectively, for the sput
tered and rolled samples, while atT590 K these quantities
m-
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are (1.760.2)31025 and (2.660.2)31025. The uncer-
tainty in these results depends on the accuracy of the cali
tion technique.

Temperature dependences were measured during co
and warming of the samples. We show temperature-avera
variations, which make it possible to eliminate so-called te
perature hysteresis, a dynamic effect. In Fig. 4 only the s
tistical measurement errors are shown in the experime
temperature variation of the partial loss factorh ie ; the total
measurement errors are given in the text.

As will be shown below, the measured heating probab
ity cannot be explained by inelastic scattering on berylliu
When invoking the hypothesis of heating of ultracold ne
trons on hydrogen contained in the surface layer, it is imp
tant to understand the relationship between the probabil
of capture and heating.

To assess the relative contribution of capture on hyd
gen to the total loss factor, we use the data of Bondare
et al.,11 who determined experimentally the ratio of the i
elastic scattering cross section to the cross section for
sorption on hydrogen dissolved in the surface layer of a
sample atT5300 K: s ie

H /sa
H520.660.5. We estimate the

loss factor owing to capture for our samples to beha
H51.5

31024/20.650.731025. Then the total loss factor at room
temperature will be (1.4660.18)31024 and (1.5460.15)
31024 for the sputtered and rolled samples, respective
and at T590 K it is (2.460.2)31025 and (3.360.2)
31025. These results are in good agreement with meas
ments of the total loss in a sputtered beryllium trap of sta
less steel6 and in a trap made entirely of beryllium,7 where
the total loss factors wereh ~77 K!5331025 and h ~300
K!5131024. A comparison of the loss factors atT590 K
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shows that inelastic scattering is the main process limit
the confinement time of ultracold neutrons in traps with
beryllium coating, even at liquid nitrogen temperatures.

6. DEBYE MODEL CALCULATIONS OF INELASTIC
SCATTERING

In an experiment on the transmission of very co
~10–15 m/s! neutrons through beryllium samples12 it was
shown that the temperature variation of the inelastic sca
ing cross section on beryllium is fairly well described by
Debye model in the incoherent approximation. However
calculation of the loss probability during reflection of ultr
cold neutrons from beryllium owing to thermal fluctuatio
of the crystal lattice yields a value much lower than the
perimentally observed one, so it becomes necessary to
voke the hypothesis of scattering on hydrogen dissolved
the beryllium, for which the scattering cross section is mu
larger.

According to Blokhintsev and Plakida13 the flux of neu-
trons heated on physically sorbed~i.e., weakly bound to the
surface! hydrogen should have a weak fractional-expon
dependence on the temperature. The quite sharp temper
variation in the loss factor suggests that the observed hea
of ultracold neutrons is due to hydrogen strongly bound
the surface. An attempt to describe the dependence of ine
tic scattering on hydrogen atoms rigidly bound to the crys
lattice of beryllium in terms of a Debye model appears lo
cal; the stiffness of the bond between hydrogen and be
lium suggests that the hydrogen atom will undergo osci
tions at frequencies characteristic of beryllium. Then, for
Debye approximation of the single-phonon inelastic scat
ing cross section we can obtain14

s ie
H ~E0!5s0

H 1

M E
0

uA E

E0
expS 2

E

eM D 3E2dE

u3~eE/T21!
, ~3!

wheres0
H580 b is the cross section for incoherent scatter

on a bound hydrogen atom,E0 and E are the respective
energies~in Kelvins! of the incident and inelastically sca
tered neutrons,M51 is the relative mass of the hydroge
atom, andu and e are the parameters of the Debye mod
The smooth curve in Fig. 4 is the theoretical dependenc
the loss factor given by Eq.~3!. The theoretical cross sectio
for inelastic scattering on hydrogen calculated using Eq.~3!
and reduced to the thermal velocity of a neutron is 4.4 b
T5300 K. For comparison, the cross section calculated fr
the experimental data of Ref. 11 iss ie~300 K!56.860.2 b.

Since the contribution of the cross section for inelas
scattering on hydrogen to the loss factorh ie is determined by
the concentration of hydrogen in the surface layer,

h ie~T!5
cHs ie

H ~T!1s ie
Be~T!

2lbcoh
Be

'
cHs ie

H ~T!

2lbcoh
Be

, ~4!

wherecH is the concentration of hydrogen atoms normaliz
to the concentration of Be atoms,l is the wavelength of the
ultracold neutrons, andbcoh

Be is the coherent scattering leng
on Be. Fitting the experimental values ofh ie(T) to a theo-
retical dependence of the form~4! enables us to determin
g
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the hydrogen concentrationcH . In the present case, the re
quired hydrogen concentration is 96%, or;1017 hydrogen
atoms per cm2 in a 100-Å-thick surface layer.

The existence of so much hydrogen in the surface la
seems unlikely. No direct measurements of the amoun
surface hydrogen were made. However, data obtained b
nuclear reaction technique15 on a number of other material
~Cu, Ni, Pb, Al! suggest that the hydrogen concentration
the surface layer is (224)31015 cm22. This is much lower
than the concentration required to explain our measured
factors for the Be samples.

Since the loss factorh ie is proportional to the product o
the hydrogen concentration and the inelastic scattering c
section, there can in principle be two possible explanati
for such a large loss factor. Indeed, the first is that the c
centration of hydrogen in the surface layer is close to 100
This must be tested by direct measurements, which will
conducted in the near future. The second is that the hydro
concentration is low, but the cross section for inelastic sc
tering on hydrogen is enhanced. A possible mechanism
such an enhancement has been discussed by Serebro
Romanenko,16–18who have shown that the total cross secti
for ultracold neutrons interacting with impurities in a m
dium can be greatly enhanced when the neutrons have
barrier energies relative to the optical potential of the m
dium.

Note that the temperature dependence of the heatin
ultracold neutrons given by the Debye model is satisfact
only at high temperatures. Near 100 K the calculated a
experimental cross sections differ by a factor of two or mo
~see Fig. 4!.

The difference in heating probability between the a
beryllium and sputtered foils is not significant, and is at m
30–40%. Thus, if ultracold neutrons do penetrate a mate
the penetration falls off quite rapidly with depth.

A comparative experiment to study the heating of ult
cold neutrons on all-beryllium foils and on beryllium-coate
stainless steel foils would make it possible to estimate
probability of minor heating of ultracold neutrons, if such
process exists. For minor heating of ultracold neutrons,
example up to 10 m/s, a neutron will penetrate the foil m
terial. It will be heated to thermal energies in an a
beryllium foil, but captured in a beryllium-coated stainle
steel foil. The lack of any difference in the count rate
heated neutrons~to within 10%! in experiments with the dif-
ferent foils makes it possible to place an upper bound
431025 per collision on the probability of minor heating.

7. CONCLUSIONS

We have experimentally studied the behavior of the p
tial loss factor for ultracold neutrons heated by interact
with Be sample surfaces.

1. Our results suggest that inelastic scattering on hyd
gen is the dominant factor in the loss of ultracold neutro
when they are confined in beryllium traps~or in traps with a
beryllium coating!, even at liquid nitrogen temperature
Thus, the process responsible for anomalous losses at
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peratures around 80 K has been found experimentally. T
result failed to confirm the results of Ref. 8.

2. The probability of heating of ultracold neutrons
anomalously high throughout the entire temperature ra
that was measured, but especially at low temperatures.

3. We propose that the observed loss factor at Be
faces can be accounted for by an enhancement in the in
tic scattering and absorption cross sections on hydrog
which is a small impurity relative to the beryllium,16–18

rather than by an anomalously high concentration of hyd
gen in the surface layer of the Be sample.
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Fundamental Research~Grant No. 92-02-18663! and INTAS
~Grant No. 93-0298!. The authors thank S. Neumaier fo
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work.
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A relativistic version of the quasiclassical imaginary-time formalism is developed. It permits
calculation of the tunneling probability of relativistic particles through potential barriers, including
barriers lacking spherical symmetry. Application of the imaginary-time formalism to
concrete problems calls for finding subbarrier trajectories which are solutions of the classical
equations of motion, but with an imaginary time~and thus cannot be realized in classical
mechanics!. The ionization probability of ans level, whose binding energy can be of the order of
the rest energy, under the action of electric and magnetic fields of different configuration is
calculated using the imaginary-time formalism. Besides the exponential factor, the Coulomb and
pre-exponential factors in the ionization probability are calculated. The Hamiltonian
approach to the tunneling of relativistic particles is described briefly. Scrutiny of the ionization
of heavy atoms by an electric field provides an additional argument against the existence
of the ‘‘Unruh effect.’’ © 1998 American Institute of Physics.@S1063-7761~98!00409-0#
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10.
1. The imaginary-time formalism was proposed1,2 in
connection with the calculation of the probability of the mu
tiphoton ionization of atoms by the field of a strong lig
wave. Subbarrier trajectories which satisfy the class
equations of motion, but have an imaginary ‘‘time’’t, are
introduced to describe the tunneling process. The imagin
part of the action function calculated along such a ‘‘clas
cal’’ trajectory determines the tunneling probability of a pa
ticle in quantum mechanics.1–3

The imaginary-time formalism has recently been used
investigate the influence of a magnetic field on the ionizat
of atoms and ions,4–6 as well as on Lorentzian ionization7

which occurs when atoms move in a constant magnetic fi
In these studies the subbarrier motion of the electron
considered to be nonrelativistic, as is the case for vale
electrons in all atoms from hydrogen to uranium. Howev
in the case of ionization of theK shell in heavy atoms, the
relativistic effects become significant, and systematic allo
ance for them~in the quasiclassical approximation! requires
generalization of the imaginary-time formalism to the re
tivistic case, which can also be useful in a number of qu
tions in relativistic nuclear physics and quantum chromo
namics.

We shall demonstrate the possibility of such a gener
zation in the specific problem of the ionization of a bou
state, whose binding energyEb5mc22E0 is comparable to
the rest energymc2, and find the leading~exponential! factor
in the ionization probability. We shall also consider the
lowance for the Coulomb interaction in the tunneling proc
and the calculation of the pre-exponential factor.

This paper is organized in the following manner. Se
tions 2–5 consider the cases of pure electric fields and
allel and mutually perpendicular fieldsE andH ~the poten-
4331063-7761/98/87(9)/12/$15.00
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tial binding an electron to an atomic core is assumed to
short-range!. Section 4 is devoted to the special case
crossed fields, i.e.,E'H andE5H. In these examples we
describe the procedure for determining the extremum sub
rier trajectory, which specifies the most probable tunnel
path of a particle and thus the exponential factor in the i
ization probability. Consideration of a bundle of subbarr
trajectories close to the extremum one also permits find
the pre-exponential factor. Section 6 describes the met
for taking into account~within the imaginary-time formal-
ism! the Coulomb interaction between an escaping elect
and the atomic core. The introduction of a Coulomb corr
tion enables us to consider the case of the ionization of n
tral atoms and positive ions, which is of practical impo
tance. The barrier width and the conditions for applicabil
of the imaginary-time formalism are discussed in Sec. 7. T
Hamiltonian approach to the tunneling of relativistic pa
ticles is described briefly in Sec. 8. In Sec. 9 we use
solution of the ionization problem to discuss the Unr
effect,8 and we offer some remarks to supplement the ar
ments previously advanced in Ref. 9 that the response
uniformly accelerated detector is not universal, but depe
on its structure. The concluding section, Sec. 10, enumer
the main conclusions of the work, and details of the calcu
tions and some cumbersome formulas are presented in
pendices A–C.

In the following \5c51, but in the final formulas we
restore the dimensions of the quantities appearing in th
Some of the results of this work were announced in Ref.

2. We start out from the ionization of ans level bound
by short-range forces under the action of an electric fieldE .
In this case the subbarrier trajectories have the form
© 1998 American Institute of Physics
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x5
ip'

eE
~arcsint02arcsint!, y50,

z5
M

eE
~A12t22A12t0

2 !. ~1!

In addition, px(t)5p'5const, and pz(t)5eE t52 iM t.
Heret5 ieE t/M @t is a real quantity, which is related to th
intrinsic time s by the expressions52 i (m/eE)arcsint#,
M5Am21p'

2 , the z axis is parallel toE , and p' is the
transverse momentum of the particle. The initial timet0 of
subbarrier motion is determined from the bounda
conditions2

r ~ t0!50,
m

A12 ṙ2~ t0!
5E0 , Im r ~0!5Im ṙ ~0!50

~2!

@in the gauge wherew(0,t)50 and A(0,t)50 and in the
approximation of a zero radius for the forces binding t
level#, whence

t05
im

eE
A12e0

21q2, q5p' /m. ~3!

Here E05me0 is the energy of the bound state (21<e0

,1, and the valuese0561 correspond to the boundaries
the upper and lower continua!. The probability of the tunnel-
ing of an electron along trajectory~1! equals2

dw~p'!5
const

\m
expH 2

2

\
Im W~p'!J d2p' , ~4!

whereW is the reduced action:

W5E
t0

0

~L1E0! dt2~p•r ! t50 ,

L52mA12v21e~A•v!2ew ~48!

(t50 is the time when the particle emerges from under
barrier!. When the level deepens, the pointt0 moves in a
complex plane, traveling around the branch pointt* , as is
shown in Fig. 1. Taking this into account, we can write

FIG. 1. Variation of the imaginary timet during subbarrier motion: a! en-
ergy of the levelE0.0; b! 0.E0.2m; c! E052m ~level on the boundary
of the lower continuum!. The asterisk marks the branching point of th
functionAp(t)21m2.
e

t05A12e0
21

e0
2q2

2A12e0
2

1 . . . ,

~5!

W5
im2

2eEF ~11q2!arccos
e0

A11q2
2e0A12e0

21q2 G
5

im2

2eE
@F~e0!1q2 arccose01O~q4!#,

where F(e)5arccose2eA12e2. We note thatF(2e)
5p2F(e) and

F~e!

55
25/2

3
~12e!3/2F12

3

20
~12e!1 . . . G , e→1,

p

2
22e1

1

3
e31 . . . , e→0,

p2
25/2

3
~11e!3/21 . . . , e→21.

6
~58!

Integrating~4! and ~5! over the transverse momentum, w
find the probability~per unit time! of the ionization of thes
level in an electric field:

w~E ,e0!5
mc2

2\
uAku2

E /Fcr

arccose0
expH 2

Fcr

E
F~e0!J , ~6!

where Ak is the asymptotic~as r→`) coefficient of the
wave function of the bound state in the absence of the ex
nal field E @compare with Eq.~9! in Ref. 4!, and Fcr

5m2c3/e\ is the critical, or Schwinger, field, which is cha
acteristic of quantum electrodynamics.11,12

In the nonrelativistic limit (e0→1) this formula trans-
forms into the known expression13,14 for the ionization prob-
ability of negative ions (H2, Na2, etc.!. Whene0521, i.e.,
for a level which has sunken to the boundary of the low
continuum @the critical charge of the nucleusZcr(1s1/2)
5173 ~Refs. 15–18!#, the exponential factor in~6! becomes
equal to exp(2pFcr /E) and coincides with the correspond
ing factor in Schwinger’s formula11 for the probability of the
production of electron-positron pairs from a vacuum in
constant electric field.

3. If the fieldsE andH are parallel, the trajectory of a
relativistic particle has the form of a spiral of variable pitc
The subbarrier trajectory is obtained from known formula19

using the analytical continuation with respect tot:

z5
M

eE
~A12t22A12t0

2 !,

r5x1 iy5
ip'

eH
~e2 iq2e2 iq0!,

~7!

t5 i
eE t

M
5 i sinhS E

H
q D , M5Am21p'

2
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~the fieldsE andH are parallel to thez axis!. The quantities
t andq in the subbarrier motion are imaginary, andt is real.
For a scalar~spin-free! particle the actionS equals

S~ t !5E tS 2mA12v21
1

2
eH~xẏ2yẋ!1eEzD dt

5
M2

4eE
sinh 2c2

m2

2eE
c1

p'
2

2eH
sinq1const,

q5
eH

m
s, c5

eE

m
s, ~8!

wheres is the intrinsic time of the particle~which is purely
imaginary!. We ultimately obtain1!

Im W~p'!5
m2

2eE
F~e0!1sinhS H

E
arccose0D p'

2

2eH
1 . . .

~9!

@when H50, this formula transforms into~5!#. Integrating
~4! and ~9! over p' , we obtain

w~E ,H!

w~E ,0!
5

s

sinhs
, s5

H

E
arccose0 . ~10!

For nonrelativistic bound statese0512a2k2/2→1 (a
5e2/\c51/137, andk;1; see Table I in Ref. 6!, and
arccose05ak1(ak)3/241 . . . . Therefore, s5akH/E

coincides with the parameterg introduced in Ref. 4, and Eq
~10! yields the correct expression for the pre-exponential f
tor P0(g)5g/sinhg in the case of the ionization of a neg
tive ion.5,20 In the other limit, e0521, we have s
5pH/E , and Eq.~10! is consistent with the first term of th
Schwinger expansion11 for the imaginary part of the effective
Lagrange function in scalar electrodynamics:

w0~E ,H!5
a

2p

EH

sinh~pH/E !
expS 2

pFcr

E
D ~11!

@under the condition2! E , H!Fcr the ensuing terms of this
expansion are exponentially small compared with~11!#.

The imaginary-time formalism enables us to obtain
formula like ~9! for fermions as well: we need only add th
spin expression

TABLE I. Accuracy of the approximation~29!.

eb r50.5 0.75 1.0 `

0.1 0.116 0.021 1.2(23) 20.014
0.2 0.467 0.087 5.3(23) 20.058
0.25 0.729 0.137 8.5(23) 20.092
0.50 2.80 0.580 0.040 20.404
0.75 5.69 1.36 0.102 21.01
1.0 8.76 2.49 0.206 22.04
1.2 11.1 3.63 0.326 23.27

Note. The values of the errord ~in percent! are given@see Eq.~B4!#; eb

5Eb /mc2, r5E /H, anda(b)[a•10b.
-

ie

2m
eabmn E Fabumsn ds

5
e

m E $~s•H!2~v•s!~v•H!1~v3s!•E% dt ~12!

to the action function, whose contribution~as t varies along
the loop in Fig. 1c! is calculated using the Bargmann
Michel–Telegdi equations21 for the four-spinsn in an exter-
nal field. We can ultimately obtain22 a formula like~11! for
ws(E ,H), in which the pre-exponen tial factor (sinhs)21,
wheres5pH/E , should be replaced by 2 coths in the case
of electrons (s51/2 g52) and by (sinhs)2112 coths in
the case of vector bosons (s51) with a gyromagnetic ratio
g52, i.e., in the case where the theory is renormalized.23

In the special case of constant uniform fieldsE andH,
we can take into account all~exponentially small! correc-
tions to ~11! by introducing subbarrier trajectories that co
respond to then-fold wandering of the particle between th
lower and upper continua.24 Thus, the quasiclassica
imaginary-time formalism enables us to obtain not only t
leading term~11! in the probability of pair production, bu
also to exactly restore the entire series forw52 ImL pre-
viously calculated ~in a more complicated way! by
Schwinger11 for scalar and spinor particles and by Vanyash
and Terent’ev23 for vector bosons. This coincidence betwe
the results, however, is accidental and is similar to the co
cidence between the exact and quasiclassical spectra o
Schrödinger equation for several simple potentials: a h
monic oscillator, a Coulomb potential, the Morse potent
U(x)5U0(e22x22e2x), etc.

To complete this section, we note the difference betwe
~6! and ~11!. In the case of an electric field ande0521
(H50, the level on the boundary of the lower continuum!
these formulas, while completely coinciding with respect
the exponential factor specified by the value of ImS along
the extremum (p'50) trajectory, differ with respect to the
dependence of the pre-exponential factor on electric fie
according~6!, P(E)}E , while for ~11! P(E)}E 2. This is
not surprising, since~6! and ~11! refer to different physical
processes and have different dimensions: the probability~11!
refers to the invariant four-volume of the vacuumVT51 and
has the dimensionsm4 ~or cm23

•s21), and ~6! refers to an
individual atom and has the dimensions s21.

4. Crossed fields.We go over to more complicate
cases, in which the extremum trajectory is not just on
dimensional. LetE'H; the gauge

A5~2Hy,0,0!, w52Ey ~13!

corresponds to the fact that they axis is directed along the
field E and thez axis is directed alongH. For crossed fields
(E5H) the classical trajectories are assigned in parame
form:19

x5
m

2eE
F ~l221!q1

1

3
l2q3G1C1 ,

y5
m

2eE
lq21C2 , z5

1

eE
lqpz1C3,
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t5
m

2eE
F ~l211!q1

1

3
l2q3G ,

whereq5py /m is a parameter, andl5m/(Ap21m22px)
is the~dimensionless! integral of motion, which is related to
the integral indicated in Ref. 19a5Ekin2px by the expres-
sion l5ma21. In subbarrier motion the ‘‘time’’t and the
momentum componentpy are purely imaginary:

t52
im

eE
t, q5 il21u ~14!

(2t0,t,0). Using the boundary conditions~2!, we find
the integration constantsCi and determine the extremum
subbarrier trajectory:

x5
im

2eElF ~l221!u2
1

3
u3G5

im

6eEl
~u0

22u2!u,

~15!

y5
m

2eEl
~u0

22u2!, z50, t5
1

2lF1

3
u32~l211!uG ,

whence

r 0~ t ![Ax21y21z25
m

2eEl
~u0

22u2!A12
u2

9
,

A12v25
2l

l2112u2
, ~158!

where u0[u(2t0), the valuet52t0 corresponds to the
beginning of subbarrier motion, andt5u50 corresponds to
the time when the particle emerges from under the barrie
subbarrier motion the velocity componentvx is real, andvy

~along the electric field! is purely imaginary. The boundar
conditions~2! are satisfied, if

~l221!u02
1

3
u0

350, l1~12u0
2!l2152e0 .

Hence it follows thatu0, t0, andl are uniquely determined
by the energy of the bound state:u05A11j2t05A3j, and

j5Al2215A12
1

2
e0~Ae0

2182e0!. ~16!

Here we have introduced the parameterj 0,j<A3, which
is convenient for the further treatment.

Equations ~14!–~16! completely determine the extre
mum trajectory. We note thatu is proportional to the intrin-
sic times of the particle:

s5E t
A12v2 dt5

im

eE
u,

which, like t, is imaginary on the subbarrier portion of th
trajectory. In particular, at the initial time3! we have

t05
s0

A11j2
5

im

eE
A 3j2

11j2
.

Going over to integration overu in (48) and using the gauge
~13!, we have
In

L5m~e02A12v2!1eE~12 ẋ!y

52
m

A11j2

j42~j222!u2

j2122u2
,

and we find~to within exponential accuracy! the ionization
probability in crossed fields:

w~E5H,e0! } exp~22 ImW!

5expS 22A3
j3

11j2

Fcr

E D . ~17!

In the nonrelativistic limit

j5
1

A3
akS 11

7

72
a2k21 . . . D

and

w } expH 2
2

3«S 12
1

24
a2k2D J , «!1, ~18!

where«5E /k3Ea and Ea5a3Fcr . The correction of order
a2 slightly increases the ionization probability compar
with the corresponding nonrelativistic formula.13 The factor
2A3j3/(11j2) in the exponential function in~17! increases
monotonically with increasing depth of the level~for ex-
ample, it equalsA3 and 9/2 whene050 and21), causing a
sharp drop in the probabilityw.

To conclude this section, we offer several comments
1! As we know, the probability of the production of pair

from a vacuum vanishes in crossed fields. This follows b
from the exact expression for ImL ~Refs. 11 and 12! and
from the following simple argument. When we go over
reference frameK, which moves with the velocityV in the
direction perpendicular toE and H, the intensities of the
crossed fields decrease by a factor ofA(c1V)/(c2V) and
can be made extremely small asV→c. Pairs, of course, are
not generated in an extremely weak electric field.

In our case the probabilityw is nonzero: according to
~17! w } exp(29Fcr/2E) when e0521. This difference is
attributed to the fact that there is a preferential refere
frame K0 ~in which the atom is at rest!, and the transition
from K0 to the Lorentz frameK qualitatively alters the for-
mulation of the problem~unlike the vacuum, which is
Lorentz-invariant!.

2! As is seen from~18!, the relativistic subbarrier trajec
tory led to a result which differs only slightly from the resu
of the nonrelativistic theory, ifE0'm ~or k;1). Neverthe-
less, the motion of charged particles in crossed fields is
ways relativistic,19 since the drift velocityvd5cE /H→c.
This apparent paradox is explained by recalling that the e
tron accelerates to a velocity of the order of the velocity
light soon after it emerges from under the barrier:

px

mc
'k1S t

T0
D 2/3

,
py

mc
'k2S t

T0
D 1/3

,

v
c

512k3S t

T0
D 24/3

, t→`,
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where T05mc/eE is the time during which the electro
achieves a velocityv;c, and theki are coefficients of orde
unity. On the other hand, the characteristic tunneling ti
Tt5mek/\E ; therefore,T0 /Tt5(ak)21@1.

3! Unlike the one-dimensional quasiclassical approxim
tion, here the point of emergence from under the barrie
not a stopping point of the particle~even for the extremum
trajectory!. For example, att50 from ~15! we obtain

vx~0!5c
j2

j212
, px~0!5mc

j2

2Aj211
, ~19!

the escape velocity being directed perpendicularly toE and
H.

5. Let E'H, but let the ratior5E /H deviate from
unity. Such a field configuration appears, in particular, in
rest frame of or an atom or ion moving in a constant m
netic field@so-called Lorentzian ionization~see, for example
Refs. 7 and 25!; in this caser,1#.

The classical trajectories can be obtained using the L
entz transformation from a reference frame in which o
one of the fields,H or E , is present.26,27For example, when
E,H, the extremum subbarrier trajectory has the form

x5 i
m

eH

ar

~12r2!3/2S t2
t0

sinht0
sinht D ,

y5
m

eH

ar

12r2
~cosht02cosht!

t0

sinht0
, z50, ~20!

vct5 i
a

~12r2!3/2S t2r2
t0

sinht0
sinht D , 2t0,t,0,

wherevc5eH/m is the cyclotron or Larmor frequency, an
a5(Ap21m22rpx)/m is the integral of motion.4! The
equations for determining the constantsa andt0 follow from
~2!:

tanht0

t0
5

r2a

a2~12r2!e0

, cosht05
a2~12r2!e0

rAa21r221
~21!

~here 0,r,1, anda.A12r2). In this case the intrinsic
time of the particle equals

s5E
0

t
A12v2 dt5

i

vc

a

12r2
A12r2S t0

sinht0
D 2

t.

~22!

In the initial moment of subbarrier motion

s05t0A12r2~t0 /sinht0!2

12r2
,

so thatus0u.ut0u, as in the preceding case. The system~21!
can be reduced to a single equation:

12r2t0 cotht0

A12r2~t0 /sinht0!2
5A12r2 e0 , ~23!
e

-
is

e
-

r-
which specifies the parametert05t0(e0 ,r). In the gauge
~13! we have the Lagrangian

L52mA12v21eE~12r21ẋ!y.

From ~48! and~20! we find ~to within exponential accuracy!
the ionization probability:

w } exp$2FcrE
21F~e0 ,r!%, ~24!

where

F5
rt0~12ae0!

A12r2
5

rt0

A12r2F12
~12r2!e0

2

12r2t0 cotht0
G ~25!

@when r51, i.e., in the case of crossed fields, it is mo
convenient to use Eqs.~17! and ~16! from the preceding
section#.

Equations~23!–~25! solve the problem posed. Let u
discuss some limiting cases and results of numerical ca
lations.

a! As can be seen from Fig. 2, the values ofF(e0 ,r)
increase with both increasing depth of the level and incre
ing strength of the magnetic field~at a fixed value ofE).
This fact is easily explained within the imaginary-time fo
malism: when H50, the extremum trajectory is one
dimensional~and is directed alongE), and asH increases, it
is ‘‘twisted,’’ and the barrier width increases~see Sec. 7
below!.

b! In the nonrelativistic limite0→1 it is convenient to
go over to atomic units:

G5\w5
me4k2

2\2
uAku2

E

Ea

3expH 2
2k3Ea

3E
@g~g!2a2k2g1~g!1O~a4!#J ,

~26!

whereg5vc /v t5akH/E , G is the width of the level,w is
the ionization probability,Ea5a3Fcr55.143109 V/cm is
the electric field intensity,k5AEb /I H @see also Eq.~B1!#,
Eb is the binding energy of the level,I H is the ionization
potential of the hydrogen atom,

FIG. 2. Plots ofF(e0 ,r), which determines the exponential factor in th
ionization probability~24!, as a function of the binding energy of the lev
eb5(m2E0)/m, 0,eb,2. The values ofr5E /H are indicated near the
curves.
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g~g!5
3t0

2g F12
At0

22g2

g2 G5
1

g3 (
k51

`

ckt0
2k11 ,

ck53•22k21
B2k

~2k21!!
~27!

(c151, c2522/15, c352/105, etc., theB2k are Bernoulli
numbers!, t05t0(g) is determined from the equation

tanht05
t0

11At0
22g2

, ~28!

and the expression forg1(g) is fairly cumbersome and ha
been transferred to Appendix A. The inequalityg1(g)
!g(g) always holds. For example,g(0)51, and g1(0)
53/40. Asg increases, i.e., as the magnetic field increas
the relative value of the relativistic correction only decrea
~Fig. 3!.

c! If r@a51/137, i.e., if the electric field is not ver
small, theng!1, and the expression~26! can be simplified:

w }
E

Ea
expH 2

2k3Ea

3E F11
a2k2

30E 2S H 22
9

4
E 2D G J . ~29!

This simple approximation has surprisingly good accura
even for deep levels~but, of course, not whene0'21). For
example, whene050 ~i.e., for a level whose binding energ
equalsmc2 andeb51) the difference between the expone
in ~29! and the exact functionF(0,r) from ~24! amounts to
2% in the case of a pure electric field and only 0.2%
crossed fields~for further details, see Table I, as well a
Appendix B!.

d! The limit r→0 corresponds to removal of the electr
field:

w } expH 2F ~12e0!2
FcrH

E 2
1

1

2
~12e0

2!
Fcr

H
1OS r2

Fcr

H
D G J
~30!

(E!H!Fcr). The proportionality w } exp(2const/E 2)
shows that the ionization probability is extremely small
this case.

e! Whenr→1, an uncertainty appears in~20!–~25!. Re-
moving it, we arrive at Eq.~17! for crossed fields.

f! We assumed above thatr,1. The equations for the
case ofE.H can easily be obtained from the precedi

FIG. 3. Plots ofg(g) andg1(g) from ~26!. The scale along the vertical axi
has been magnified 100 times forg1.
s,
s

y

t

r

relations using the analytical continuation:A12r2

→ iAr221, t→ i t. In this case the ‘‘time’’t and the intrin-
sic times in subbarrier motion remain purely imaginary.

6. The Coulomb correction. We have hitherto ne-
glected the Coulomb interaction between the escaping e
tron and the atomic core; therefore, the equations obtai
above refer to the case of the ionization of negative ions~like
H2, Na2, etc.!. To take into account the Coulomb intera
tion, we use perturbation theory within the imaginary-tim
formalism4,28 and a procedure for matching the asympto
expansions, introducing the matching pointr 1 such that̂ r &
!r 1!b, where^r & is the mean radius of the bound state a
b is the barrier width~under the conditions for applicability
of the quasiclassical approximation, the choice of such
point r 1 is always possible; see the next section!. Proceeding
in analogy to Refs. 4 and 5, we obtain the Coulomb factoQ
in the ionization probability:

Q5expH 2Fh ln~mr 1!1 iZa E
t1

0

@r0
2~ t !#21/2dtG J , ~31!

wherem5mA12e0
2, h5Za•e0(12e0

2)21/2 is the relativis-
tic analog of the Sommerfeld parameter,r 15@r0

2(t1)#1/2 is
the matching point,r0(t) is the extremum subbarrier trajec
tory, t is the imaginary time, andZ is the charge of the
atomic core, so that at large distances from the atom,^r &
!r &b, the electron moves in the potentialV(r )52Za/r
1o(r 22) ~in a free atom, i.e., whereE5H50). We note
thatZ51, 2, and 0 in the cases of the ionization of a neut
atom, a singly charged positive ion, and a singly charg
negative ion.

Let us examine some special cases. The extremum
jectory for an electric fieldE can be obtained from~1! by
settingp'50 and is one-dimensional. An analytical calcul
tion of the integral in~31! gives

Q5@2~12e0
2!3/2Fcr /E #2h exp~2Za arccose0! ~32!

~the details of the calculations are discussed in Appendix!.
The Coulomb correction increases the ionization probabi
significantly. For example, in the nonrelativistic case

Q5~2k3Ea /E !2Z/k@1. ~33!

Although the magnitude of this correction decreases as
binding energy of the levelEb5m(12e0) increases, it re-
mains significant. For example,Q5exp(pZa);25 whenEb

5mc2.
Multiplying the expressions~6! and ~32!, we find the

ionization probabilityw ~we stress that in the present cas
i.e., when only an electric field is present, both the expon
tial expression and the Coulomb and pre-exponential fac
are calculated; therefore, the formula forw is asymptotically
exact in the weak-field limit!. In particular, if e0'1, using
the expansions

e0512
1

2
a2k2, m5makS 12

3

8
a2k21 . . . D ,

h5h0S 12
3

8
a2k21 . . . D
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(h05Z/k), with allowance for corrections of ordera2 we
have

w~E ,e0!5
me4k2

2\2
uAku2S «

2D 122h0

expH 2
2

3e

3@12a2k2~c01c1« ln «1c2«!1 . . . #J , ~34!

where

c05
3

40
, c15

9

8
h0 , c252S 32

9

8
ln 2Dh01

1

16
,

«5E /k3Ea!1.

In analogy to~29! it can be expected that the applicabili
region of this ‘‘semirelativistic’’ formula extends up toEb

;mc2.
In the case of crossed fields the integral in~31! can be

expressed in quadratures@see (158) and Appendix C#, en-
abling us to obtain the Coulomb correction in closed form

Q5F2j3~32j2!2

A3~11j2!

Fcr

E G 2h

expS 6Za arcsin
j

A3
D , ~35!

wherej5j(e0) was defined in~16!. Whene0→1, this ex-
pression transforms into~33!, and whene050, we obtain
Q5exp(3.8Za);45. In both cases~32! and ~35!, the Cou-
lomb factorQ@1 whene050.

Finally, for the subbarrier trajectory~21! we obtain

r 0~ t !5
m

eE

ar2t0

~12r2!3/2F ~12r2!S cosht02cosht

sinht0
D 2

2S sinht

sinht0
2

t

t0
D 2G1/2

. ~36!

In this case the integral in~31! is no longer taken analyti
cally. As is shown in Appendix C, it can be brought into t
regularized form~C9!, which does not contain an arbitrar
matching point, and thereafter it is not difficult to find th
Coulomb correctionQ numerically.

The examples considered show that formula~31! is fully
effective for calculations. We note that it is similar to th
corresponding formula of the nonrelativistic theory@see Eqs.
~6!–~8! in Ref. 4#. This is because the Coulomb interactio
dV(r )52Za/r is the temporal component of the fou
potentialAm and appears in the Lagrangian (48) precisely as
in the nonrelativistic case.

7. Barrier width and condition for applicability of the
imaginary-time formalism. The tunneling probability is
relative to the barrier widthb. Settingt50 in Eqs.~1!, ~15!,
and ~20!, we find

b5
m

eE
d~e0 ,r!5

Fcr

E
d~e0 ,r!|c , ~37!

where|c5\/mc. For a pure electric fieldd512e0, and for
crossed fields

d5
3j2

2A11j2
5

3

8
~Ae0

21823e0!, r51. ~38!
In the more general case~20!, we have

d~e0 ,r!5
r2e0t0 tanh~t0/2!

12r2t0 cotht0

, ~39!

wheret0 is determined from Eqs.~21! or ~23!. The barrier
width increases with the magnetic field; therefore, in th
problem the perturbative formula~31! is applicable for all
values ofg ~in contrast to multiphoton ionization,1–3 whereb
decreases proportionally tog21 for g@1). In addition, in the
ranger>1, where the electric field dominates, the depe
dence onr5E /H is insignificant:

d~e0 ,r51!

d~e0 ,r5`!
55

11
1

18
~12e0!1 . . . , e0→1,

3•223/251.061, e050,

1.125, e0521.

~40!

If Eb;m, the mean radius of the bound state^r &
;|cA12e0

2, and b/^r &;Fcr /E@1, ensuring applicability
of the imaginary-time formalism.

If a Coulomb interaction takes place, the estimate giv
above for̂ r & ceases to be valid whene0→21. However, in
this case, too, the bound state on the boundary of the lo
continuum remains localized, and̂r &;|c . Thus, for the
ground 1s1/2 level in the Coulomb fieldV(r )52Za/r we
have16–18

^r &5
~110.3z2!~z223/4!

z2~z223/4!
|c'

1

3
|c , ~41!

where z5Zcra, and Zcr is the critical nuclear charge, a
which the ground-state level of the electron spectrum si
to the boundary of the lower continuum (Zcr51692173 and
z251.5221.59, depending on whether the nucleus is bare
the outer electronic shells are filled!.

For nonrelativistic bound statese0512a2k2/2→1, d
5(ak)2/2!1, and the barrier width equals

b~E !5
1

2
k2

Ea

E
aB , aB5~ma!21, ~42!

where aB is the Bohr radius. For neutral atoms^r &;k22

(k;1/n, wheren is the principal quantum number!, and for
negative ionŝ r &;k21. Ultimately, b/^r &;e21@1.

8. Hamiltonian approach. There is a possibility for a
somewhat different approach to the tunneling of relativis
particles, which we shall illustrate in the example of cross
fields with E5H. The integrals of motion@in the gauge
~13!# are

Px , Pz , and H5Am21~Px1eEy!21Py
21Pz

2

2eEy5E0 , ~43!

whereH is the Hamiltonian,E0 is the initial energy of the
level, P is the generalized momentum~for the extremum
trajectory Pz50), and Py

25E0
22m22Px

222eE(E02Px)y.
Thus, the tunneling problem has been reduced to a o
dimensional problem; therefore, to within exponential acc
racy
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w } expH 22E
0

y0A2Py
2 dyJ 5expS 2

2m2

eE
JD , ~44!

wherey0 is the turning point and

J5
~q2112e0

2!3/2

3uq2e0u
. ~45!

The minimization ofJ(q,e0) with respect toq is equivalent
to isolating the extremum trajectory from the entire bundle
subbarrier trajectories. There are two minimum points

q65
1

4
~3e07Ae0

218 !,

of which q1 corresponds to ionization of the electronic lev

J~q1 ,e0!5
A3j3

11j2
, j5A~q12e0!2221, ~46!

in complete agreement with~16! and ~17!.
To calculate the pre-exponential factorP we write the

asymptote of the unperturbed wave function of thes level in
the form

c0~r !'AA m

2p

exp~2mr !

r

5
AkAm

23/2p5/2 E exp~ ip•r !

p21m2
d3p, r @R, ~47!

wherem5mA12e0
2, R is the action radius of the forces~the

potential binding thes level is assumed to be short-range!,
and we ignore the spin of the particle. Near they axis ~the
direction of the electric field! we representc0 in the form

c0'
Ak

~2p!3/2 E d2p'

Aupyu
exp~2upyuy1 ip'•r!, ~48!

which is convenient for matching with the quasiclassical
lution of the Klein–Gordon equation in an external field,
p' is the integral of motion@here y'r @r, upyu'm(1
1p'

2 /2m2, andr andp' are two-dimensional vectors in th
xz plane#. Continuing~48! through the turning pointy0 and
calculating the particle fluxes aty→`, we obtain

w5
Ak

2

A4p
E dPx

AJ1~Px!
expH 2

2~m21P'
2 !3/2

3eE~E02Px!
J , ~49!

whereP'5(Px ,Pz),

J1~Px!5E
0

y0 dy

Am21Px
222eE~E02Px!y

5
Am21Px

2

eE~E02Px!
~488!

andE02Px.0. Expanding here with respect toP'
2 and ap-

plying the saddle-point method, we arrive at a formula li
~6! for w, in which the exponential function should be r
placed by~17!, and 1/ arccose0 in the pre-exponential facto
should be replaced by
f

-

P~e0 ,r51!5~jAj213!21. ~50!

The dependences of the pre-exponential factorP on the en-
ergye0 in these two cases have similar forms~see Fig. 4!. In
the nonrelativistic limit P(e0 ,r)51/ak1 . . . for any r
.0.

The Hamiltonian approach can be applied to fields
more complex configuration, but this question is beyond
scope of the present paper.

9. Comments on the Unruh effect.It was claimed more
than 20 years ago that from the standpoint of an obse
moving along a straight line with a constant intrinsic acc
eration g ~as a consequence of a force of nongravitatio
origin on him!, an ordinary vacuum state in Minkowsk
space is a mixed state and can be described by a the
density matrix with the effective Fulling–Unruh
temperature8,29,30

T5\g/2pc. ~51!

This claim has been termed the Unruh effect in the literat
~see Refs. 31–33 and the references cited therein!. It has
become folklore that this effect is due to the fact that in t
rest frame of a Rindler~i.e., uniformly accelerating! observer
the metric5!

ds25r2ds22dr22dy22dz2, 2`,s,`, 0<r,`
~52!

has a horizon. Therefore, some of the information availa
to an inertial observer~relative to which the Minkowski
vacuum is defined! is not accessible to a Rindler observe
This results in the appearance of a mixed state.

Recently, however, arguments9 were advanced agains
the existence of the Unruh effect. Their essential point is
follows. A free quantum~scalar! field w in Rindler space
should vanish not only whenr→`, but also whenr→0,
i.e., it should satisfy the boundary conditionw(r,s)ur50

50 ~which corresponds to an impermeable wall atr50, i.e.,
on the boundary of the Rindler manifold!. This means that
the problems of quantizingw in Rindler and Minkowski
spaces are totally different@see Eqs.~18!–~20! in Ref. 9#.

A Boltzmann distributionpn } exp(2En /T) among the
energy levels of a uniformly accelerated detector would
an observable manifestation of the Unruh effect. Let us
amine the ionization of a heavy atom in a constant unifo
electric fieldE from this standpoint. In this case the intrins
accelerationg of the detector~i.e., an atom or ion in the

FIG. 4. Dependence of the pre-exponential factorP on the binding energy
of the level:1 — in the case of only an electric field;2 — for crossed fields.
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present case! is constant, since the longitudinal component
the electric field remains unchanged after Lorentz trans
mations:

g5
Z21

A

E

Ea
g0 , g05

m2e6

\4mp

54.9331021cm•s22.

~53!

Here, as above~Sec. 6!, Z denotes the charge of the ‘‘atom
core’’ obtained from the atom~ion! when one electron is
removed, A5M /mp , and m[me , mp , and M are the
masses of the electron, the proton, and the atom. For
temperature~51! we obtain

T5
uZ21u

A

E

Ea
T0 , ~54!

where Ea5m2e5/\455.143109 V/cm and T0

5m2e4/\2mp51.7231025 eV ~for example, whenE5Ea

andA'200, the temperatureT'1027eV'1023 K!.
By virtue of the principle of detailed equilibrium th

ionization probability of an atom in a thermal bath at t
temperature~54! equals

w~T! } expS 2
k2

2TD . ~55!

On the other hand, according to quantum mechanics the
ization probability of an atomic level is6!

w~ i !~E ,k! } expS 2
2k3

3E
D5expS 2k

k3

T D , ~56!

whereEb5k2/2 is the binding energy of the level andk is an
extremely small coefficient

k5
a

3p

uZ21um
Amp

.231029. ~57!

A comparison of~55! and ~56! reveals that~56! is not a
universal Boltzmann distribution, since even the depende
on k ~i.e., on the energy of the level! in these two formulas is
functionally different.

Let us consider a mental experiment. As we know19

under the effect of a constant accelerationg a classical par-
ticle moves along the trajectory

x5x01
c2

g
~A11u22A11u0

2 !, t5t01
c

g
~u2u0!,

v5
cu

A11u2
, s5

c

g
~arcsinhu2arcsinhu0!

(t is the laboratory time, ands is the intrinsic time!. As a
consequence of ionization the atom~ion! alters its charge
(Z→Z11) at the timess5s0 , s1 , s2 , . . . , wheres05t0,
s12s05t1, s22s15t2, etc., tk51/wk

( i )(E ,kk), and its in-
trinsic accelerationgk varies accordingly. The motion of a
atom following N-fold ionization is assigned by the equ
tions

x5 l N1
c2

gN
~coshu2coshuN!,
f
r-

he

n-

ce

t5tN1
c

gN
~sinhu2sinhuN!, u.uN ,

whereu5 ln(u1A11u2) is the velocity, andl N and tN are,
respectively, the total path and time~for a static observer!
until the time ofN-fold ionization:7!

l N5 (
k51

N

D l k5 (
k50

N21
c2

gk
~coshuk112coshuk!,

tN5 (
k50

N21
c

gk
~sinhuk112sinhuk!,

~58!

vN5c tanhuN , sN5 (
k50

N

tk ,

uk5u01
1

c (
j 50

k21

gjt j ,

D l k is the path traversed by thekth ion andu0 corresponds to
the initial velocity of the atom. Using the quasiclassical fo
mula for the ionization probability in an electric fieldE , we
obtain ~to within accuracy to constants of order unity!

gktk

c
'431026

uZ21u
A S E

Ea
D 2hk

expS 2kk
3
Ea

3E
D , ~59!

wherehk5Zk /kk is the Sommerfeld parameter for the su
barrier motion of an electron.

Table II lists estimates of the lifetimetk51/wk
( i ) in the

accompanying reference frame and the pathsD l k for two
characteristic cases, in which there is a neutral uranium a
or a negative iron ion att50 ~we assume thatu050, i.e.,
that the atom is initially at rest!. We note that Fe2 and Fe
move against the fieldE ~therefore, the first twouk have
negative signs!, while the positive Fe1 ion is at first slowed
by the electric field and is only subsequently accelera
along E . It is seen from Table II that the values of thekk

increase as the extent of ionization increases, leading@see the
exponential function in~59!# to a sharp increase in the life
time tk . The pathsD l k increase even more rapidly, sinc
apart from the increase in lifetime, the relativistic slowing
time also affects them:

TABLE II. Successive stages in the ionization process~for E50.02E a

'108 V/cm!.

Atom or ion

U U1 U21 Fe2 Fe Fe1

I k , eV 6.194 11.9 20 0.398 7.900 16.19
kk 0.674 0.935 1.2 0.171 0.762 1.091
Zk 1 2 3 0 1 2
tk

( i ) , s 7.4(216) 5.5(212) 1.3 2.4(216) 6.5(214) 1.8(24)
uk 0 7.6(25) 3.6~7! 21.4(28) 21.4(28) 1.1~4!
D l k , cm 0 6.2~26! ` 5.1(214) 4.2~2! `

Note.The lifetimestk[tk
( i ) were calculated using formula~13! from Ref. 6,

and the ionization potentialsI k were taken from Ref. 35.
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s;
c

g
ln

gt

c
, D l k;expuk ~60!

for uk@1. Therefore, only a small extent of ionization
achievable in an assigned field. For example, for the dou
charged uranium ion U21 and E50.02Ea the path D l 2

;exp(1.83107) cm ~!!, which, of course, means only tha
this ion always remains stable~in the fieldE cited!.

On the other hand, the Unruh effect givest (T)51/w(T)

for the lifetime, which amounts to;exp(33109) s in E

50.02Ea for the neutral uranium atom and equally lar
values in other cases.8! Thus, the ‘‘thermal’’ ionization time
of the atom~detector! is immeasurably greater than the tim
for its destruction by the electric field. The Unruh effec8

refers to detectors of any nature; therefore, the mental exp
ment is at variance with its counter experiment.

We have hitherto considered the nonrelativistic ca
Eb!m. Without going into the fairly fine question of th
quantum-field description of relativistic bound states,
note that if formula~6! is used forEb5m(12e0);m, in-
stead of~56! we obtain

w~ i ! } expH 2
Eb

T
f ~Eb!J , ~61!

where f (Eb)5(m/2pM )F(e0)/(12e0). Unruh’s claim
would correspond tof (Eb)[1, which clearly does not hold

It is noteworthy that Nikishov and Ritus36 showed that if
elemental particles are considered as detectors, the en
spectrum of their radiation, generally speaking, does not
respond to a universal Unruh law. A heavy atom, to wh
the quasiclassical treatment is applicable, satisfies the ph
cal requirements imposed on a detector to a consider
greater extent. As is seen from the foregoing, the elec
field accelerating the atom destroys the detector itself, wh
was intended to detect the thermal radiation in the accom
nying reference frame.

10. Conclusion.A generalization of the imaginary-tim
formalism to the relativistic case has been developed. A
culation of subbarrier trajectories satisfying the classi
equations of motion~which, however, have an imaginar
time t and are thus impossible in classical physics! enables
us to use the well developed machinery of analytical m
chanics and to find both the exponential function and
Coulomb and pre-exponential factors in the ionization pr
ability of a level with an arbitrary binding energy (0,Eb

,2mc2) under the action of electric and magnetic field
The equations obtained cover, as limiting cases, both
theory of the ionization of nonrelativistic bound systems~at-
oms and ions! and the case ofEb52mc2 ~a level on the
boundary of the lower continuum,Z5Zcr), where this prob-
ability is comparable in value to the probability of the pr
duction of electron-positron pairs from a vacuum in an e
ternal field. We note that the imaginary-time formalism w
previously employed in the problem of the instability of
vacuum and the production of pairs in a strong field in qu
tum electrodynamics,24 as well as in the case of non-Abelia
gauge theory.37

A system of two particles with strongly differing mass
~an electron in the field of a heavy nucleus can serve as
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example! was considered above. The possibility of applyi
the imaginary-time formalism to relativistic systems consi
ing of particles with commensurate masses (qq̄, qqq, etc.!
remains open.
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composing this article The work was performed with part
support from the Russian Fund for Fundamental Resea
~Grants Nos. 95-02-05417 and No. 98-02-17 007!.

APPENDIX A:

The functiong1 appearing in~26! equals

g1~g!5
3t0

8g5

s423s32~s326s216s!g22~s22!g4

s22~s22!g2
,

~A1!

where s512(t0 /sinht0)
2, and t05t0(g) is determined

from Eq. ~28!. Taking into account the expansions

s5
1

2
t0

22
1

15
t0

41 . . .

5
1

3
g2S 12

4

45
g22

8

2835
g41 . . . D , g→0, ~A2!

s5124t0
2e22t01 . . . 512exp@2~g211!#g4

3~112g221g241 . . . !, g→`, ~A3!

we arrive at the following asymptotes:

g~g!511
1

30
g21

11

7560
g41 . . . ,

g1~g!5
3

40S 12
11

378
g21 . . . D , g→0, ~A4!

g~g!5
3

8
g~112g221g241 . . . !,

g1~g!5
3

16g
~12g2222g241 . . . !. ~A5!

In both casesg1(g)!g(g). This inequality is also confirmed
by a numerical calculation~see Fig. 3! and holds for allg.

APPENDIX B:

Let us discuss the question of the applicability region
the approximation~29!. Defining the parameterk on the ba-
sis of the relation9! e05E0 /m512a2k2/2, we have

k5a21A2~12e0!, a5e2/\c51/137. ~B1!

The exponential factor in~29! can be rewritten in a form
similar to ~24!:

w~E ,H! } expH 2
Fcr

E
F̃~e0 ,r!J , ~B2!
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where

F̃5
A32

3
eb

3/2F12
3

20S 12
4

9r2D ebG , eb512e0 . ~B3!

This simple approximation has a high accuracy even in
case of fairly deep levels; see Table I, in whichd is the
relative error of~B3!:

d[d~e0 ,r!5~F2F̃!/F. ~B4!

A comparison of formulas~29! and ~30! shows that the
power of E varies asr→0; therefore, the approximatio
~29! is inapplicable whenH@E . If r5E /H*0.5, the ap-
plicability region of formula~29!, which was obtained in the
nonrelativistic (k&1) limit, ‘‘extends’’ up to energiesE0

'20.5mc2, i.e., up tok;200 ~see Table I!. Of course, for-
mula ~29! ceases to be applicable when the level approac
the boundary of the lower continuum; in this case the er
already amounts to tens of percent. For example,d50.123
and20.188 forr51 and`, respectively~whene0521).

APPENDIX C:

Here we consider the calculation of the Coulomb corr
tion ~31!.

a! In writing the extremum (p'50) trajectory in the
case of an electric field in the form

z5
m

eE
~cosw2cosw0!, 0,w,w05arccose0 , ~C1!

we use the value of the integral

J~w,w0!5E
0

w cosw dw

cosw2cosw0
5w

1cotw0 lnFsin@~w01w!/2#

sin@~w02w!/2#G . ~C2!

Whenw→w0,

J~w,w0!52a ln~w02w!1a01a1~w02w!1 . . . ,
~C3!

wherea5cotw0, a05w01cotw0 ln(2 sinw0), . . . . Also tak-
ing into account thath5Za cotw0,

z~ t !5 iA12e0
2 e0

21~ t2t0!1 . . .

5
m

eE
~w02w!sinw01 . . . , t→t0 ,

mz15~Fcr /E !~w02w1!sin2w01 . . . ,

we find

h ln~mz1!1 iZaE
t1

0 dt

z~ t !

5hH w0 tanw01 lnFFcr

E

~w02w1!sin3w0

sin@~w02w1!/2#J . ~C4!

Assuming here thatw1→w0 @in this case the matching poin
z15z(t1) drops out of the result#, we arrive at formula~32!.
e

es
r

-

In the relativistic limit~34! follows from ~6! and~32!. If
e050, thenh50 andQ5exp(pZa)521.1 for Z5137 @the
values ofZ andQ for E(1s1/2)50 increase somewhat furthe
when the finite dimensions of the nucleus are taken i
account17,18#.

b! For crossed fields the Coulomb integral~31! can also
be expressed in elementary functions:

E
0

w dw

a22sin2w
5

1

sin 2w0
ln

sin~w01w!

sin~w02w!
, ~C5!

whereu53 sinw, a5u0/35j/A3, andw05arcsina.
Taking into account that at the beginning of subbarr

motion

r 15
A3m

eE

j~32j2!

A11j2
~w02w1!1 . . . , w1→w0 , ~C6!

and the value of the integral~C5!, we arrive at~35!.
c! In the case of mutually perpendicular fields, it follow

from ~36! that

r 05~t02t!
mart0

eH~12r2!3/2
A12r2S 1

t0
2cotht0D 2

1 . . . , t→t0

~we assume thatr,1). UsingJs to denote the singular par
of the integral in~31!, we have

Js5ZaE
t1

A

t2t0
dt,

A5
12r2t0 cotht0

rt0A12r22~t0
212cotht0!2

. ~C7!

Heret0 is defined by Eq.~25!, from which we find

1

Ae0
2221

5
12r2t0 cotht0

r@2t0 cotht0212~t0 /sinht0!22r2t0
2#1/2

[A.

~C8!

Hence h5ZaA and Js52h ln(t12t0)1O(1). The term
ln@mr1 /(t12t0)#, which has a finite limit fort1→t0, ulti-
mately appears in~31!. After some manipulations we obtai
the regularized expression for the Coulomb correction:

Q5expH 2hF lnS m2

eE

12e0
2

e0
D 1E

0

t0S w~t!2
1

t02t D G dtJ ,

~C9!

w~t!5
1

rt0
S 12r2t0

cosht

sinht0
D F ~12r2!S cosht02cosht

sinht0
D 2

2S sinht

sinht0
2

t

t0
D 2G21/2

, ~C10!

in which the pole singularities are mutually canceled, and
is not difficult to find the integral numerically. This examp
shows that exclusion of the matching pointr 1 in ~31! is
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sometimes associated with fairly cumbersome transfor
tions, but it can always be accomplished, if the condit
^r &!b holds.

* !E-mail: karnak@theor.mephi.msk.su
1!In performing the integration in~48! it is convenient to go over to the

variables q and c with allowance for the relationdt/mA12v2

5dq/eH5dc/eE .
2!This condition is necessary for applicability of the quasiclassical appr

mation and is known to hold in experiment~for electronsFcr51.32
31016 V/cm, or 4.4131013 G!.

3!We note that, unlike the classical trajectories, hereut0u,us0u; this corre-
sponds to imaginary velocities in the subbarrier motion.

4!The presence of this integral is characteristic of the case of mutually
pendicular fields. Whenr51, it coincides with the integral indicated in
Ref. 19a5Ekin2cpx .

5!This is the so-called Rindler metric,34 for which x5r coshs and t
5r sinhs. We note that the transition from the global coordinatesx andt
to the Rindler coordinatesr ands is a transformation that is singular fo
r50 @which corresponds to the apex of the light cone,x5t50, in a flat
(111)-dimensional space#.

6!Here we have gone over to atomic units, and we have ignored the
exponential factors in~55! and ~56!, since these formulas differ from on
another only in the exponential function.

7!For a neutral atom in thekth segment of a trajectory the correspondi
terms in~58! must be replaced byD l k5ctk sinhuk andDtk5tk coshuk .

8!The enormous difference betweent ( i ) and t (T) is attributed to the small
value of the coefficientk appearing in the exponential function~56!.

9!For any energyE0 of the level, in the nonrelativistic caseE05mc2

2k2me4/2\2 andk;1 ~see Table I in Ref. 6!.
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Stabilization of a Rydberg atom and competition between the L and V transition
channels
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The photoionization and stabilization of a Rydberg atom in a strong laser field are investigated
theoretically. The role of Raman-type transitions between neighboring Rydberg levels via
the continuum~L transitions! and via lower-energy resonant Rydberg levels (V transitions! is
analyzed. The conditions under which this phenomenon can be observed experimentally
are determined. The characteristics of stabilization due toV-type transitions are described.
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1. INTRODUCTION

One of the most interesting and widely discussed p
nomena involving the interaction of atoms with a strong la
field is stabilization of atoms, i.e., an increase in their sta
ity against photoionization as the laser field strength
creases. In Refs. 1 and 2~and in a large number of subse
quent works! two considerably different stabilizatio
mechanisms were proposed and described: adiabatic or h
frequency stabilization1 and interference stabilization o
Rydberg atoms.2 According to the theory of interference st
bilization, when a Rydberg atom interacts with the field o
light wave, efficient coherent redistribution of the popu
tions of the atomic levelsEn close to the initially populated
level En0

occurs as a result ofL-type Raman transitions~via
the continuum!. The resulting coherent superposition
Rydberg states is found to be stable against photoioniza
as a result of which transitions from various Rydberg sta
into the continuum interfere and quench one another, imp
ing ionization of the atom. The experimental observation
interference stabilization of Rydberg atoms and coherent
distribution of the populations of Rydberg levels is describ
in Refs. 3 and 4, respectively.

In principle, besidesL-type transitions, coherent repopu
lation of Rydberg levels can also result fromV-type Raman
transitions through lower-lying resonant atomic levels, if t
latter exist~see Fig. 1!. In Ref. 4 it was concluded thatV
transitions do not play a role in the redistribution of t
populations of Rydberg levels, which is unlikely to be true
general.

It should be noted that in Refs. 5–7, redistribution of t
populations of the Rydberg levels was investigated theor
cally, taking account of bothL- andV-type transition chan-
nels. However, the importance of theV channel and the con
ditions under which this channel is dominant were not fou
and were not fully investigated, specifically because of
lack of a clearly understood relationship between theL and
V transition matrix elements.

In the present paper, interference stabilization
Rydberg atoms is investigated theoretically, taking acco
of both L and V transition channels, using the well-know
4451063-7761/98/87(9)/9/$15.00
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expressions for matrix elements calculated in the semicla
cal ~WKB! approximation.8–10 Section 2 is devoted to the
mathematical formulation of the problem and the approxim
tions used in the solution process. Section 3 presents a
simple three-level model that can be solved analytically, a
under certain conditions makes it possible to investig
qualitatively the relation between and the role of bothL- and
V-type transitions in interference stabilization. The thre
level model becomes incorrect for large detunings. The s
plest generalization of the three-level model to the nonre
nant case is the four-level model studied in Sec. 4. Sectio
presents the results of a numerical analysis of the prob
that incorporates up to 22 levels, which makes it possible
validate conclusions based on the analytic solutions, an
make quantitative estimates of the experimentally mea
able parameters. The concluding section briefly summar
the status of the problem and reviews the conditions un
which stabilization of a Rydberg atom in a laser field
V-type Raman transitions might be observed experimenta

2. STATEMENT OF THE PROBLEM AND GENERAL
EQUATIONS

We consider the interaction of an atom with the classi
field of a light wave whose electric field strength in the d
pole approximation is

«~ t !5«0~ t !cos~vt !, ~1!

where v is the frequency and«0(t) is the time-dependen
field strength~envelope! of a pulse;«0(t)→0 as t→6`.
Prior to the arrival of the laser pulse (t→2`), let the atom
be in an excited ~Rydberg! s state with energyEn0

521/2n0
2 , where n0@1 ~we employ units \5c51

throughout!. Let v be greater than the electron binding e
ergy in the statewn0

, v.uEn0
u, i.e., a one-photon transition

is possible from this state to the continuum. Raman tran
tions of theL type are transitions via the continuum~for
example,wn0

→continuum→wn), which are accompanied b
virtual absorption and emission of a photonv and excitation
© 1998 American Institute of Physics
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of Rydberg levelsEn close to the initially populated leve
En0

. Since in generalEnÞEn0
, such transitions can be effec

tive only in a sufficiently strong field.
Let the structure of the atomic spectrum be such t

together withL-type transitions~via the continuum!, effi-
cient resonant~or almost resonant! transitions between state
wn and Rydbergp stateswn8 with smaller values of the prin
cipal quantum number (n8,n0) and energy (En8,En0

) are
also possible. We call Raman transitions between th
groups of states~for example,wn0

→wn8→wn) V-type tran-
sitions ~see Fig. 1!.

The wave functionC(t) of an atom in the field«(t) ~1!
can be expanded in a basis of free-atom wave functions.
projection of C(t) on the bound states of the atom
Cbound(t), can be represented as a superposition of the fu
tions wn andwn8 ,

Cbound~ t !5(
n

an~ t !wn1(
n8

an8~ t !wn8 , ~2!

where an(t) and an8(t) are the probability amplitudes fo
finding the atom in the levelsEn and En8 , respectively.
Since the atom undergoes ionization, the norm ofCbound(t)
is not conserved, and determines the probability of ionizat
by the pulse:

wi512^Cbound~ t !uCbound~ t !&u t→` . ~3!

By stabilization of the atom we mean a situation such t
when the field exceeds a certain threshold, the ioniza
probability wi becomes a decreasing function of the pe
field strength of the pulse,«0 max, or it becomes equal to a
constant less than 1.

FIG. 1. Overall transition scheme taking account of bothL and V
population–redistribution channels.
t

se

he

c-

n

t
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k

The Schro¨dinger equation for the complete functio
C(t) of the atom in a field can be reduced to an equation
Cbound(t) or to an equivalent system of equations for t
probability amplitudesan(t) and an8(t) by a procedure
known as adiabatic elimination of the continuum.11,12 In this
approach theL transitions between nearby Rydberg leve
~for example,En andEm) are described by the tensorGn,m of
ionization widths

Gn,m52pVn,EVE,muE5Em1v , ~4!

whereE is the energy of an electron in an intermediatep
state of the continuum,Va,b5^wau2d•«0/2uwb& are the tran-
sition matrix elements, andd is the dipole moment of the
atom.

On this basis, and taking account of bothL andV tran-
sitions, we write the equations for the probability amplitud
an(t) and an8(t) in the rotating-wave approximation~reso-
nance approximation11,12! in the form

i ȧn8~ t !5~En81v!an8~ t !1(
n

Vn8,nan~ t !, ~5!

i ȧn~ t !5Enan~ t !1(
n8

Vn,n8an8~ t !2 i(
m

Gn,m

2
am~ t !.

As noted above, the transition matrix elementsVa,b have
very simple and convenient analytic expressions obtaine
the semiclassical~WKB! approximation8–10:

Vn,n8;
«0

~nn8!3/2v5/3, Vn,E;
«0

n3/2v5/3. ~6!

For largen and n8, the dependence of the matrix ele
mentsVn,n8 and Vn,E on n and n8 becomes quite slow and
can be approximately neglected, settingn'n0 andn8'n08 ,
wheren08 is the principal quantum number of the levelEn

08

~from the seriesEn8) closest to resonance with the levelEn0
,

i.e., the level corresponding to minimum detuning of t
resonance

d5En
08
1v2En0

. ~7!

In the approximationn'n0 and n8'n08 we find from Eqs.
~4! and ~6!

Gn,m'G5const;
«0

2

n0
3v10/3,

~8!

Vn,n8'VR5const;
«0

~n0n08!3/2v5/3,

whereVR is the analog of the Rabi frequency in a two-lev
system.13

The ionization widthG and the Rabi frequencyVR ~8!
are the basic parameters that characterize the system u
study. Additional but also important parameters of the s
tem are the detuningd ~7! of resonance between the leve
En0

andEn
08
, and the spacingsD andD8 between neighbor-

ing Rydberg levels near the energies;En andEn8 , respec-
tively,
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D5En0112En0
'

1

n0
3 , D85En

08112En
08
'

1

n08
3 . ~9!

3. THREE-LEVEL MODEL AND THE ROLE OF THE MAIN
PARAMETERS CHARACTERIZING THE INTERACTION
OF AN ATOM WITH A FIELD

The simplest physical model for the system under stu
is a model in which only two Rydberg levelsE1 andE2 in
the series$En% ~for example,En0

andEn011) and one level
E0(En

08
) from a lower-lying series$En8% are taken into ac-

count ~Fig. 2!. The main advantage of this model is its sim
plicity, which makes it possible to obtain analytic solutio
that most clearly show which of the parameters introduce
the end of the preceding section govern the behavior of
system in various field ranges.

In the three-level model the system~5! consists of three
equations:

i ȧ0~ t !5~E01v!a0~ t !1VR@a1~ t !1a2~ t !#,

i ȧ1~ t !5VRa0~ t !1E1a1~ t !2 i
G

2
@a1~ t !1a2~ t !#, ~10!

i ȧ2~ t !5VRa0~ t !1E2a2~ t !2 i
G

2
@a1~ t !1a2~ t !#.

In a model where the interaction is turned on and off inst
taneously~i.e., a model with rectangular pulses!, the pulse
envelope is constant while the pulse is on, just likeVR and
G. In this case the system~10! is a set of linear differentia
equations with constant coefficients, which has solutions
the form

ak~ t !5bk exp~2 igt !, ~11!

FIG. 2. Transition scheme for a three-level model.
y

at
e

-

f

wherebk are constants satisfying the algebraic equations

~E01v!b01VR~b11b2!5gb0 ,

VRb01S E12 i
G

2 Db12 i
G

2
b25gb1 , ~12!

VRb02 i
G

2
b11S E22 i

G

2 Db25gb2 .

The constantg is the complex quasienergy of the system,14,15

and its values are given by the eigenvalues of the matrix
coefficients on the left-hand side of Eqs.~12!. Since Eqs.
~12! are a set of homogeneous equations, the existence
terion for a solution is that the determinant of the syst
vanish. This is the characteristic equation of the syste
which in the present case can be written in the form

VR
2~2x2D!5~x2d!Fx~x2D!1 i

G

2
~2x2D!G , ~13!

where x is the quasienergy relative toE1 x5g2E1, D
5E22E1 , andd5E01v2E1 .

Figure 3 showsVR andG as functions of the amplitude
«0 . The range of fields in which a deviation from perturb
tion theory occurs is the region whereVR or G exceeds the
splitting D between the levelsE1 andE2 ~horizontal line in
Fig. 3!. Let «1 and«2 be solutions of the equationsVR(«)
5D and G(«)5D, respectively. The third characterist
value of the field strength,«3 , noted in Fig. 3, is given by the
solution of the equationG(«)5VR(«), i.e., this is the field
at which the Rabi frequency and the ionization width beco
equal. Using Eqs.~6!–~9!, we find the explicit form of the
characteristic fields«1 , «2 , and«3 in the semiclassical ap
proximation to be

«15S n08

n0
D 3/2

v5/3, «25v5/3, «35S n0

n08
D 3/2

v5/3. ~14!

These values correspond to the following values ofV
5«/v5/3:

V15S n08

n0
D 3/2

, V251, V35S n0

n08
D 3/2

. ~15!

These values are arranged in increasing order, and each
fers from the preceding one by a factor (n0 /n08)

3/2. This
factor can become fairly large, and therefore the points«1 ,
«2 , and «3 can correspond to considerably different fie
ranges. For example, under the experimental conditions

FIG. 3. Relations between the parameters of the problem in various ra
of the field strength. The characteristic fields are shown.
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Ref. 4, the quantum numbersn0 and n08 were 26 and 5,
which yields (n0 /n08)

3/2;12. The corresponding characteri
tic fields are

«1573105, «2583106, «3593107 V/cm. ~16!

These fields clearly differ from one another each by
order of magnitude. Here we focus on the situation cor
sponding to a large value of (n0 /n08)

3/2. In so doing, we also
analyze the development of the ionization dynamics wh
the ration0 /n08 becomes of order 1.

As follows from the foregoing estimates and from Fig.
if ( n0 /n08)

3/2 is large, then there exists a very wide range
fields«0 , «1,«0,«3 , to which perturbation theory is inap
plicable (VR.D), and the Rabi frequencyVR is then much
greater than the ionization widthG. Under these conditions
V-type resonant transitions can play a decisive role in st
lizing an atom. Taking account of resonant coupling with t
lower-lying level E0 has the effect that the ‘‘threshold o
nonlinearity,’’ i.e., the field at which deviations from pertu
bation theory («1) first appear, is much lower than whe
there is no such coupling~in which case the field«2 , i.e., the
root of the equationG(«)5D, is the threshold field for sta
bilization!.

We now analyze Eq.~13! to determine the complex
quasienergies of the system. We consider first the cas
which the detuningd is half the spacingD between the
Rydberg levels,d5D/2. It is easy to see that Eq.~13! can
then be solved analytically, and the roots of Eq.~13! take the
form

x15
D

2
, x3,45

D

2
2 i

G

2
6b,

b5A2VR
21S D

2 D 2

2S G

2 D 2

. ~17!

The first of these equations shows that the levelx1 is
stable (Im(x1(«0))[0), and its position does not depend o
the field (Re(x1(«0))5D/25const). As for the rootsx2,3(«0),
the functionsuIm(x2,3(«0))u increase monotonically right up
to field strength«0'2«3 , for whichG52VR andb50. The
monotonic growth of the functionsuIm(x2,3(«0))u means that
the quasienergy levelsx2,3 do not narrow anywhere in th
range of fields 0,«0,2«3 . This behavior of the quasien
ergy levels is in striking contrast to the behavior of t
quasienergy levels in the absence ofV transitions, i.e., for
VR50: when onlyL transitions are taken into account, th
quasienergy levels start to narrow at field strength«0;«2 ,
which is the reason forL-type interference stabilization
Therefore, the scheme considered here~Fig. 2! differs quali-
tatively from the one that takes account of onlyL transitions:
in such a scheme, ford5D/2, the level widths do not de
crease~right up to «0'2«3) and there is no field-induce
stabilization of the atom, but nevertheless one quasiene
level (x1) arises that is stable at any field strength betwee
and«3 .

The ‘‘absolute’’ stability of the levelx1 is a result of the
special choice of the detuningd. For d;D but dÞD/2, the
level x1 acquires a width that is small compared with t
ionization width G, and is proportional to (d2D/2)2. De-
n
-

n

,
f

i-
e

in

gy
0

pending on the field strength«0 , the widthuIm(x1(«0))u of the
level has a maximum at«0;«1 , and for«0.«1 it decreases,
suggesting narrowing of the level and stabilization of t
atom.16 Thus, in the general casedÞD/2 ~but d;D), in the
three-level system under study~Fig. 2!, as the field increases
one of the three quasienergy levels (x1) first undergoes the
usual ionization broadening, and then it undergoes narr
ing, which starts at anomalously low fields~as compared to a
scheme withoutV transitions!.

For large detunings the solutions of Eq.~13! can be
found, in principle, by representing them as expansions
powers of 1/d. However, we do not present the solutio
here, since the applicability of such an expansion in its
seems formally justified only for very large detunings,

udu.
VR

2

G
5

1

n08
3 5D8, ~18!

i.e., detunings exceeding the spacing between the neigh
ing Rydberg levelsEn8 . Here the four-level model is bette
suited.

The solution of the photoionization problem is not com
plete when the quasienergies have been found. In principl
is necessary to solve the initial value problem, i.e., to find
total electron wave functionC(t) in a field or, at least, the
projection Cbound(t) of this wave function on the bound
states. When the interaction is turned on and off instan
neously, this problem can be solved by the method
quasienergies and quasienergy states. In this method,
function Cbound(t) is represented as a superposition
quasienergy functions

Cbound~ t !5(
k

Ck exp~2 igkt !ck , ~19!

where theck are quasienergy functions corresponding
quasienergiesgk and are obtained by solving equations lik
~12!, while the expansion coefficientsCk are determined
from the initial conditions.17

For a three-level system~Fig. 2!, an exact analytic solu-
tion of the initial value problem can be found when the d
tuning d is half the spacing between levelsE1 and E2 , d
5D/2. Omitting the cumbersome calculations, we pres
the result:

wi~ t !512^Cbound~ t !uCbound~ t !&5
VR

21~D/2!2

2VR
21~D/2!2

3@12exp~2Gt !#1
G

2b

VR
2

2VR
21~D/2!2

3exp~2Gt !sin~2bt !2
G2

2b2

VR
21~D/2!2

2VR
21~D/2!2

3exp~2Gt !sin2~bt !, ~20!

whereb is defined by Eq.~17!.
According to Eq.~20!, the atom is ionized in a timet1

;1/G. However, even in the asymptotic limitt@t i , there
exists a finite, nonzero, residual probability of finding t
atom in the discrete levelswres:
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wres5
VR

2

2VR
21~D/2!2 . ~21!

SinceVR}«0 , in weak fields (VR,D/2) the residual prob-
ability wres(«0) of ~21! is an increasing function of the fiel
strength«0 . ForVR.D/2 the ionization probabilitywres(«0)
saturates at 1/2.

We emphasize that this limit is typical only of a thre
level model. In a model with a large number of levels, t
limiting residual probabilitywres(«0) for large «0 will be
different, but will nevertheless be finite, so that the ionizat
probability will never reach 1. In Sec. 4, we examine in mo
detail the effect that the number of levels included in t
analysis has on the results by solving the problem num
cally.

Note that the finiteness of the residual probability~the
probability that the atom is not ionized in the limit of arb
trarily long laser pulse duration! is closely related to the in
clusion of V transitions: when there is noV channel, the
asymptotic residual probability vanishes. This result follow
specifically, from Eq.~21!, where the lack of aV channel
corresponds toVR[0, and thereforewres[0.

It follows from Eq. ~20! that V stabilization requires a
laser pulse of substantial duration. Indeed, if the pulse d
tion t is so short thatGt!1 andbt!1, then the right-hand
side of Eq.~20! can be expanded in a Taylor series in t
time t, acquiring in the linear approximation a form identic
to the result of perturbation theory~Fermi’s golden rule!18:

wi~ t !5Gt. ~22!

Obviously Eq.~22! does not describe any sort of stabiliz
tion, since according to Eq.~22! wi}«0

2, i.e., the ionization
probability increases monotonically as the field strength
creases.

In the intermediate range of pulse durations,b21!t
!G21, the first term on the right-hand side of Eq.~20! can
easily be shown to make the main contribution to the ioni
tion probabilitywi(t). Assuming thatGt!1, the exponential
exp(2Gt) can be expanded in series, which yields

wi~ t !'
VR

21~D/2!2

2VR
21~D/2!2 Gt. ~23!

This expression likewise in no way describes stabilization
the corresponding ionization probabilitywi(«0) is again a
monotonically increasing function of the field strength«0 .

Finally, only when the pulse durationt is greater than
the ionization time of the atom 1/G, Gt.1, does the ioniza-
tion probabilitywi(«0) saturate and reach the level

wi512wres, ~24!

where the residual probability of finding the atom in t
discrete levelswres is given by Eq.~21!. According to our
definition, saturation of the functionwi(«0) at a level less
than 1 can be interpreted as stabilization of the atom.
pulse durations of the order of the classical Kepler peri
t;TK , the resulting stabilization criterionGt;1 holds for
field strengths«0;«2 , i.e., under the same conditions as f
interference stabilization due toL-type Raman transitions
n

i-

,

a-

-

-

s

or
,

However, if much weaker fields are of interest,«0;«1 , the
stabilization criterionGt.1 will impose a very stringent
lower bound on the pulse durationt:

t.~n0 /n08!3TK . ~25!

Just how stringent~25! actually is can be assessed, f
example, with parameter values corresponding to the exp
mental conditions of Ref. 4:TK'3 ps, n0526, n0855, and
(n0 /n08)

3'102. Then ~25! holds if t.50 ps. It should be
noted that according to the numerical calculations perform
below ~Sec. 4!, the inequality~25! softens somewhat whe
the number of levels in the model system is large. Nevert
less, stabilization due toV-type transitions can again be ob
served in comparatively weak fields,«0;«1 , only if the
pulse durationt is sufficiently long and exceeds at least se
eral Kepler periods. In this respect, stabilization due
V-type transitions differs radically from stabilization due
L-type transitions, which is most pronounced att,TK .

It was assumed everywhere in this section thatn0@n08 .
We note here that such a strong inequality may not be sa
fied. For example, at a frequencyv close to the electron
binding energy in the levelEn0

, v'1/2n0
2, and as follows

from energy conservation inL and V transitions, n08
'n0 /&. Hence, generally speaking, it also makes sens
study the casen0;n08 . It is easy to see that in such a situ
tion all three characteristic fields«1 , «2 , and «3 given by
Eq. ~14! and by the diagram in Fig. 3 are similar to on
another,«1;«2;«3 . This means that forn0;n08 , the exis-
tence region forV stabilization«1,«2,«3 degenerates es
sentially to a point, and the only feasible stabilization mec
nism is that due toL-type transitions.

Thus, the existence of a nontrivial range of parameter
which stabilization of the atom byV-type transitions can
occur requires that the frequency of the field exceed
threshold value by a sufficient margin:v@uEn0

u. On the
other hand, in order for resonances with low-lying Rydbe
levels to come into play,v must not be too high,v!uEgu,
where Eg is the ground-state energy of the atom. On t
whole, the constraints on the frequency of the laser field t
ensure the existence of stabilization of an atom byV-type
transitions can be written

uEn0
u!v!uEgu. ~26!

4. FOUR-LEVEL MODEL OF AN ATOM

As noted in the preceding section, the three-level mo
considered above becomes inapplicable at large detuni
d>D8 ~18!. A natural and very simple generalization of th
three-level model is a model with four levels,En0

[E1 ,
En011[E2 and, for example,En

0821[E18 andEn
08
[E28 ~see

Fig. 4!.
For a four-level model, the set of equations~5! assumes

the form

i ȧ18~ t !5~E181v!a18~ t !1VR@a1~ t !1a2~ t !#,

i ȧ28~ t !5~E281v!a28~ t !1VR@a1~ t !1a2~ t !#,
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i ȧ1~ t !5VR@a18~ t !1a28~ t !#

1E1a1~ t !2 i
G

2
@a1~ t !1a2~ t !#,

~27!
i ȧ2~ t !5VR@a18~ t !1a28~ t !#

1E2a2~ t !2 i
G

2
@a1~ t !1a2~ t !#,

whereG andVR are given, as before, by Eqs.~8!.
The characteristic equation of the system~27! is a

fourth-order equation that generalizes Eq.~13!:

~x2d!~x2d1D8!Fx~x2D!1 i
G

2
~2x2D!G

5VR
2~2x2D!@2~x2d!1D8#, ~28!

wherex is, as before, the quasienergy measured fromE1 ,
x5g2E1 , andd, D, andD8 are given by Eq.~7! and ~9!.

To analyze large detuningsd>D8 analytically on the
basis of simple equations, we examine the simplest cas
which d5D8/2. AssumingD8 to be a large parameter of th
problem (D8@D), we note that ford5D8/2 the right-hand
side of Eq.~28! does not containD8. Therefore, in the zeroth
approximation in 1/D8, the solutions of Eq.~28! are identical
to the solutions of the same equation with a vanishing rig
hand side:

x1
~0!5d, x2

~0!5d2D, x3,4
~0!5

D

2
2 i

G

2

6AS D

2 D 2

2S G

2 D 2

. ~29!

FIG. 4. Transition scheme for a four-level model.
in

t-

The solutions~29! are completely independent of the Ra
frequencyVR . This means that in zeroth order in 1/D8 with
d5D8/2, interactions of the levelsE1,2 with the levelsE18,28
are suppressed by virtue of interference. Therefore, the s
tions ~29! are the quasienergies that would be obtained fo
system of two levels,E1 andE2 , coupled to the continuum
(x3,4), and two lower-lying levelsE18 andE28 that are nei-
ther coupled to one another, nor to the upper levels, no
the continuum (x1,2).

In this regard, it is understandable that the solutionsx3,4

of ~29! describe narrowing of one of the levels forG.D
(«0.«2), corresponding to interference stabilization of t
atom byL-type transitions.2 The requirement that the correc
tions to the solution~29! introduced by a nonvanishing right
hand side of~28! be small leads to the condition

udu,VR , ~30!

which holds up to fields«0;«3 . ThereforeL-type stabiliza-
tion occurs when the detuningd is of the order of half the
spacingD8 between the lower-lying levels.

This result cannot be obtained in models containing o
one level in the series of levels$En8% ~see Fig. 1!, since it is
a consequence of the partial mutual quenching of the con
butions from various levels of the series~in the case at hand
the levelsE18 andE28). The range of detunings over whic
V transitions cancel one another to a substantial degre
fairly wide, and is comparable toD8. Thus, it is possible to
formulate constraints on the magnitude of the detuning un
which stabilization of one or another type arises: near re
nance, when

udu!D8, ~31!

V stabilization occurs in fields«0.«1 that are weak com-
pared with the fields«0;«2 typical of L stabilization in the
absence of aV-transition channel. In turn,L stabilization
arises far from resonance, withudu;D8/2, in fields «0

.«2 . These two types of stabilization transform into o
another as the detuningd varies over a scale;D8.

FIG. 5. Ionization probability as a function of the field for various numbe
of levels in the series$En%: 3,5,...,21. The laser pulse is rectangular. T
calculations were carried out witht58TK , d50, and (n0 /n08)

3/2510.
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FIG. 6. Ionization probability calculated on th
basis of a three-level model as a function of th
field for a laser pulse turned on in two differen
ways—gradually~1! and instantaneously~2!. a!
narrow pulses (t5TK); b! significantly longer
pulses (t55TK). Other parameters:d5D/2,
(n0 /n08)

3/2510.
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5. NUMERICAL RESULTS

For all their attractiveness and simplicity, the mode
studied above cannot claim to yield a satisfactory quant
tive description of the spectra and ionization dynamics o
Rydberg atom. To better approximate reality, we examin
more complicated multilevel models, solving the photoio
ization problem numerically. The numerical solution al
made it possible to analyze the dependence of the result
other previously employed approximations, such as, for
ample, an approximation in which the interaction is turn
on instantaneously, and others.

Above all, the existence of stabilization of an atom d
to V-type transitions was checked against complicated m
tilevel models, which must be used to produce a quantita
description of the photoionization of a real Rydberg ato
Figure 5 displays the ionization probability curves cor
sponding to a systematically and symmetrically increas
number of levels near the initially populated levelEn0

~we
study exact resonance,d50). It is assumed that these leve
are equally spaced and possess equal transition matrix
ments~see Eq.~8!!. As one can easily see, adding new lev
only strengthens the stabilization effect.

We also compared results obtained with two laser fie
one turned on gradually and the other instantaneously~Fig.
6!. The results for pulses with identical peak field streng
and energy per pulse were compared for the two turn
modes. Gradual turn-on was modeled by an envelope of
form f (t)5sin2(t/t). It was found that for narrow pulses, th
numerical results for instantaneous and gradual turn-on
similar ~Fig. 6a!. For longer pulses it is clear~Fig. 6b! that
the two ionization probability curves, for both gradual a
instantaneous switching, are identical over the range of
plicability of perturbation theory, but beyond this range th
diverge. Significantly, gradual switching does not introdu
any qualitative changes and does not destroy the stabiliza
-
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effect, though it is less pronounced than when the interac
of the atom with the field is turned on instantaneously.

The dependence of the solutions on laser pulse dura
is illustrated by numerical results plotted in Figs. 7a and
These figures differ from one another in the number
atomic levels taken into account: three close lev
(En0

,En011 ,En021)1one levelEn
08

~Fig. 7a! as opposed

nine levelsEn1one levelEn
08

~Fig. 7b!. One can see from

the figure that the rise in ionization probability with increa
ing field strength, i.e., stabilization of the atom, ceases
fields that weaken as the pulse duration increases. Howe
the more levels the model contains, the less sensitive
results are to pulse duration. Thus, the condition~25! ob-
tained in a three-level model relaxes somewhat in mod
comprising more levels. Nevertheless, even in such mu
level models,V-type transitions can only stabilize an atom
the pulse is at least several Kepler periods long.

Note that the numerical results obtained using mod
with small and large numbers of levels differ appreciab
from one another. Nevertheless, all qualitative asserti
made on the basis of the simplest models with a small nu
ber of levels still apply to more complicated models. W
shall therefore not take up the question here of how m
levels should be taken into account in types of models st
ied in order to obtain a correct quantitative description of
ionization of a real Rydberg atom. It is possible that suc
problem will actually require not only quantitative but als
qualitative modification of the computational models. Th
question requires further analysis, and despite its indisp
able relevance, lies outside the scope of the present pap

Figure 8 shows the ionization probability as a functi
of detuningd for variousV5«/v5/3. The numerical scheme
comprises three levelsEn

08
and fifteen levelsEn . The result-

ing curves confirm completely the assertion of the preced
f
-

e

FIG. 7. Ionization probability as a function o
field strength for a laser pulse turned on in
stantaneously. Pulse durationt5TK/2 ~1!,
2TK ~2!, 8TK ~3!. Other parameters:d50,
(n0 /n08)

3/2510. The computational schem
contains 311 ~a! and 911 ~b! levels.
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FIG. 8. Ionization probability as a function of detuning for variou
laser field strengths~V50.1 ~1!, 0.3 ~2!, 1 ~3!, 3 ~4!!. The number of
levels is 15 in the series$En% and 3 in the series$En8%. The laser
pulse is rectangular. Pulse parameters:t53TK , (n0 /n08)

3/2510.
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section that the dependence of the solutions on the detu
appears on a scale;D8. V-type stabilization, characterize
by strong suppression of ionization, starting with relative
weak fieldsV;V1 , occurs when there is strong resona
coupling (d50,6D8). In contrast,L-type stabilization oc-
curs in the interresonance region2 (d;6D8/2), showing up
only in much stronger fieldsV>V2;1. Indeed, in the region
d;6D8/2, the curvewi(d) in Fig. 8 forV53 lies below the
curvewi(d) for V51, indicating stabilization of the atom in
fields V.1.

6. CONCLUSIONS

We have undertaken a systematic theoretical descrip
of the photoionization of a Rydberg atom in a strong la
field, taking account of bothL- and V-type Raman transi-
tions, and investigated the conditions and mechanisms l
ing to stabilization of the atom under such conditions. W
have shown thatV-type resonant transitions determine a n
type of interference stabilization of Rydberg atoms that d
fers from stabilization due toL-type transitions. The princi-
pal feature ofV stabilization is that it can set in at ver
moderate field strength («0;«1), much weaker than forL
stabilization. For example, forn0 /n08;5, the laser field
strength at which deviations from perturbation theory fi
appear is two orders of magnitude lower than the fi
strength at which nonlinear effects would be observed in
absence ofV transitions.

As shown above, the prerequisites forV-type stabiliza-
tion are given by Eqs.~25!, ~26!, and~31!: the pulse duration
must be long enough~25!; the field frequencyv must be
much greater than the binding energyuEn0

u of an electron in
the Rydberg level, but much less than the binding ene
uEgu in the ground state~26!; and the detuningd of the reso-
nance must be much less than the spacing between neig
ing Rydberg levels in the seriesEn8 ~with energyEn8;En0

2v) ~31!. As shown above, the constraint on the pulse
ration ~25! is most stringent in the very simple three-lev
model, and softens somewhat in more realistic multile
models. However, the requirement that the pulse duration
much greater than the classical Kepler periodTK holds as
before.

Note also that none of the previous experiments on
bilization and population redistribution3,4,19 satisfied all of
the pertinent constraints for stabilization of a Rydberg at
ng
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due toV transitions. For example, in Ref. 4, no changes w
observed in the redistribution of the populations of the Ry
berg levels as the field frequencyv was varied. The detuning
d varied over a range of the order of 10D, whereD is the
spacing between neighboring Rydberg levels of the gro
$En% ~see Fig. 1!. However, on the scale of the spacingD8
between neighboring levels of the group$En8% this range of
variation ofd is very small—less than 0.1D8. On the other
hand, in accordance with the results obtained above, la
changes in the mechanism of ionization and stabilization
an atom and in the pattern of the distribution of the popu
tion of the atomic levels can be observed for detuningd
varying over a range of the order ofD8. Moreover, in the
experiment of Ref. 4, the laser pulse duration was less t
one Kepler period, which, according to Eq.~25!, is insuffi-
cient for stabilization of an atom byV-type Raman transi-
tions.

Thus, on the whole, it must be acknowledged that to d
stabilization of an atom byV-type Raman transitions has no
been observed experimentally. At the same time, the co
tions necessary for such an experiment are easily realiza
In our opinion, it would definitely be of interest to perform
such an experiment.V-type stabilization can be observed, fo
example, under the following conditions:n0525, n0855, v
'831014 s21, t.15 ps, and«>106 V/cm, which corre-
sponds to intensitiesI>109 W/cm2.
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Generation of the line radiation of argon added to DT gas in Iskra-5 experiments
S. A. Bel’kov,* ) A. V. Bessarab, A. V. Veselov, V. A. Ga dash, G. V. Dolgoleva,
N. V. Zhidkov, V. M. Izgorodin, G. A. Kirillov, G. G. Kochemasov,†) D. N. Litvin,
S. P. Martynenko, E. I. Mitrofanov, V. M. Murugov, L. S. Mkhitar’yan, S. I. Petrov,
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Nizhegorod Region, Russia
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The first experiments measuring the density of a compressed deuterium and tritium mixture in
microtargets of indirect irradiation~x-ray targets! were performed at the Iskra-5 facility.
The density was determined according to the broadening of the lines of hydrogen- and helium-
like argon added to the DT gas as a diagnostics material. A series of three experiments
was performed with x-ray targets in which the central capsule filled with a DT1Ar mixture over
a range of shell thicknesses. In two of the experiments, argon emission spectra were
recorded and the density of the compressed gas was determined. For a microtarget approximately
280 mm in diameter with a wall approximately 7mm thick, an analysis of the experimental
results yielded an estimated density in the compressed gas of;1 g/cm3. Gas-dynamic calculations
using the SNDA~spectral nonequilibrium diffusion with absorption! program show that
argon emission takes place just after reaching maximum temperature, but much sooner than
maximum compression. The results of a calculation for an experiment with low relative Ar
concentration are in overall agreement with the experimental data. Additional investigations
are needed to interpret experiments at a relatively high concentration. ©1998 American Institute
of Physics.@S1063-7761~98!00609-X#
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1. INTRODUCTION

Determining the density of compressed deuterium
tritium ~DT! fuel is one of the most difficult problems o
laser-induced thermonuclear fusion. Information about D
fuel parameters can be obtained by analyzing the chara
istics of the x-rays and thermonuclear particles emerg
from the volume occupied by the compressed and heated
~see, for example, Ref. 1!. An effective method of determin
ing the density is based on introducing medium- and highZ
additives into the DT fuel, with spectroscopy of the resulti
ionic lines of the diagnostics material. In practice, prefere
is given to inert gases~Ne, Ar, Xe!.2–5 The density of the DT
mixture is monitored on the basis of measurements of
width of the emission lines of H- and He-like ions.

Calculations show6 that temperatures of the ionic com
ponent of DTTi.2 – 3 keV ~Ref. 7! and electron tempera
tures Te.1 – 1.5 keV have been obtained in experime
performed at the Iskra-5 facility using.280 mm diameter
glass targets with walls 3–7mm thick positioned inside a
spherical gold box 2 mm in diameter. At such temperatu
a substantial number of Ar ions are in hydrogen- and heliu
like states. Thus, we are able, using the Iskra-5 facility,
determine the density of compressed DT gas on the bas
Ar ion spectroscopy.

For the measurements, a spectrometer that detects
radiation in the range.3 – 4 Å with resolutionl/Dl5103

and a technology for filling shells with a mixture of DT an
Ar were developed. The results of the first successful Iskr
4541063-7761/98/87(9)/7/$15.00
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experiments in which the line spectra of He- and H-like A
ions were recorded are reported below.

2. EXPERIMENTAL LAYOUT AND PRINCIPAL RESULTS

The target consists of a thin-wall spherical copper sh
whose inner surface is coated with a gold layer;1 mm
thick. Shells with a diameter of 2 mm and with apertures
mm in diameter for introducing laser radiation were used
the experiments. A glass capsule 280–300mm in diameter
was positioned at the center.

The glass capsule was filled with a mixture of Ar
(;1 atm) and DT~10–20 atm!. The capsule was filled with
argon through an opening made in the capsule usin
periodic-pulse laser. After the opening was sealed, the c
sule was filled with the DT mixture by diffusion.8

The amount of argon in the capsule was checked ei
via mass spectrometry or x-ray fluorescence, based on e
tation of the x-ray lines of Ar by tritiumb-radiation.

After the capsules were filled and checked for the pr
ence of argon and DT gas, they were coated with an a
tional layer of SiO2 to make up the required wal
thickness.9,10

The Iskra-5 diagnostics system is described in detai
Refs. 7 and 11.

The principal experimental results are presented in Ta
I. In all experiments, the radiation-to-background contras
both energy and power was at least 108. Schlieren images
showed that the target sustained no damage before the a
of a monopulse.
© 1998 American Institute of Physics
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TABLE I.

Experiment
No.

fsh ,
mm

DRsh ,
mm

PDT ,
atm

EL ,
J

t0.5,
ns

tgg ,
ns

tgn ,
ns

N,
109

TDT ,
keV

1 296 4 11 6700 0.41 0.4560.15 0.6660.2 0.8 -
2 300 6.7 20 7400 0.34 0.5860.15 0.5260.12 2.5 2.3
3 272 10 9 7300 0.36 - - 0.07 -

Notation: Bsh , DRsh—diameter and thickness, respectively, of a glass microsphere;PDT—pressure of the DT
gas;EL , t0.5—energy and duration of the laser pulse introduced into the interaction chamber;tgg—delay of the
onset of x-ray generation from the compressed core relative to the onset of x-ray generation at the co
wall; tgn—delay of neutron generation onset relative to x-ray generation onset at the converter wall;N—total
neutron yield;TDT—DT fuel temperature determined by the time-of-flight method.
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Images of the target obtained with a camera obsc
with '25 mm spatial resolution behind various filters a
presented in Fig. 1. The line of sight of the camera obscur
off-axis relative to the aperture for the laser radiation, so t
the image of the microtarget lies near the edge of that a
ture. It is evident from the figure that in experiment No. 1 t
compressed region is circular, with a bell-shaped brightn
distribution~in experiments without the Ar additive the com
pressed region is annular!. The size of the compressed regio
is <55– 60mm. In experiment No. 3, the obscurogram co
sists of a brightly luminescing region surrounded by a dar
aureole; the size of the region is at most'30 mm. The di-
ameter of the aureole is 50–60mm, just as in experiments
Nos. 1 and 2.

We used a spectrograph based on a flat Si crystal
spatially-resolved detection of x-ray line radiation to me
sure the density of the compressed core according to
ra
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t
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ss

-
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-
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Stark broadening of the hydrogen- and helium-like Ar line
The measurement scheme is presented in Fig. 2.

The spectrograph parameters are as follows:
range 1.1 Å~from 2.6–2.9 Å to 3.7–4.0 Å, depending o

the placement of the spectrograph in the chamber!;
spectral resolution~with a 50 mm core! '0.003 Å

('3 eV), determined entirely by the size of the compress
core;

spatial resolution'70 mm;
magnification 4;
target–photographic film distance 10 cm.
Figure 3 displays spectrophotograms and reconstru

x-ray intensities for experiment No. 1. The spectrum appe
approximately the same in experiment No. 2. The numbe
the array element obtained by digitizing the image is plot
on thex axis in the spectrogram. One element in this arr
ri-
FIG. 1. Obscurograms of the central capsule in expe
ments No. 1~a, b! and No. 3~c, d!. The images were
obtained with the following filters: a and c—20mm
lavsan, b and g—10mm polyparaxymelene12.1mm
Cd.
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corresponds to 30mm on the photographic film, i.e.
'0.00158 Å.

The lines detected are marked in the spectrograms. T
wavelengths@in Å# are: Hea @3.949#, La @3.722#, Heb

@3.366#, Heg @'3.20#, Lb @3.155#, Hed @'3.13# Lg @2.987#.
Satellites are observed about the Hea and Heb lines.

A preliminary analysis of the spectrograms showed t
1! the ratio of theLb to Heb line intensity is approximately
0.8 in both experiments; 2! the width of the Heb line at half
intensity in both experiments is'20 mÅ ('22 eV); 3! the
width of the Lb line is '13.5 mÅ ('17 eV) and'9 mÅ
('11 eV) for the first and second experiments, respectiv

3. DISCUSSION

We now summarize the principal experimental result

FIG. 2. Diagram of Ar x-ray line radiation measurements:1! Target;2! Si
crystal;3! UFSH-S photographic film;4! entrance filter~Be 20–40mm!; 5!
filter for shielding from scattered and fluorescence x rays and light~Al 2
mm!; 6! spectrograph case;7! filter for shielding the film from hard radiation
~Pd 3 mm!; 8! diaphragms for shielding from scattered radiation.
eir

t

y.

1. In two1! of the three experiments, lines of the 2–
3–1, and in part the 4–1 transitions in hydrogen- a
helium-like Ar ions with linewidth up to'20 eV, which is
much greater than the resolution of the spectrogra
('3 eV), were detected at a high confidence level.

2. The structures of the line spectrum in experiments N
1 and 2 are similar to one another. The linewidths of the 3
transitions, which were of principal interest for density dia
nostics, are also essentially the same.

3. Ar line radiation was not detected in experiment N
3, where the glass shell was 10mm thick. The image of the
luminescing compressed ‘‘core’’ in the obscurogram in th
experiment is much smaller than in the first two experimen

We first analyze experiment No. 2 in some detail. T
Heb , Heg , andLb lines are clearly seen in the spectrum
this experiment. The two-peak structure at the position of
Lb line can be interpreted in two ways. First, it can be int
preted as a singleLb line with a central intensity dip typica
of 3–1 transitions, and width'30 eV. The second and mor
likely interpretation is that the structure consists of aLb line
with a width '11 eV and a Heb line. The ratio of theLb to
Heb line intensity is approximately 0.8. A preliminary est
mate of the density can be made using the Inglis–Teller
mula logne523.2627.5 logn14.5 logZ, where n is the
number of the last line that can be resolved in the series
Z is the charge of the nucleus~in this caseZ517 for H-like
and Z516 for He-like ions!. Settingn54 andZ516, we
obtainne52.7531023 cm23 (r'1 g/cm3).

A more accurate estimate of the electron density can
obtained by analyzing the lineshapes—specifically, the li
FIG. 3. Spectrophotogram and reconstructed intensity of x rays from the target in experiment 1.
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widths. Both ions and electrons contribute to broadening
the Ar lines. As is often the case, under the conditions t
we analyzed, it is the ions, whose effect is quasistatic,
make the main contribution.12

In the quasistatic regime, the ions are assumed to
immobile. Line broadening is due to the Stark shift of t
levels induced by the electric field of the ions surround
the emitting ion. Linewidths in an ideal plasma can be e
mated using the relation12

DE5
5.55~n221!ea0

ZAr
F0~S! , ~1!

wheren is the principal quantum number of the level,a0 is
the radius of the Bohr orbit, andZAr518 is the charge of the
argon nucleus. In the present case, both ions of hydro
isotopes (Z51) and argon ions contribute to the fieldF0(S) .

In the presence of two types of perturbing particles,
characteristic Holtsmark fieldF0(S) is

F0~S!5~F0~DT!
3/2 1F0~Ar!

3/2 !2/352.6e~nH1ZAr
3/2nAr!

2/3

52.6ene
2/3~a1bZAr

3/2!2/3. ~2!

Here a5nH /ne , b5nAr /ne , and ne , nH , and nAr are the
electron, hydrogen ion, and argon densities. The quantitiea
andb can be expressed in terms ofnH andnAr . Introducing

p5
nH

nH1nAr
, q512p5

nAr

nH1nAr
,

we obtain

a5
p

p1ZAr q
, b5

q

p1ZAr q
.

The relation~1! is valid if the number of particles in the
Debye sphere is large,ND>103. In a nonideal plasma, th
presence of screening and correlation of charged parti
effectively reduces the mean active field. Extending the
sult of Ref. 13 to a multicomponent plasma yields a corr
tion associated with the departure from ideal behavior:

Fnonid5F0~S!~120.7ND
21/3!

.expS 2
2

3

r 1

r D
D •2.6ene

2/3~a1bZAr
3/2!2/3, ~3!

wherer 1 is the mean separation between particles,ND is the
total number of particles in the Debye sphere, andr D is the
Debye radius, given by

1

r D
2 54pr 0

mec
2

T
ne~11a1bZAr

2 !.

Here r 052.8310213 cm is the classical radius of the ele
tron.

To check the relation~1! with F from Eq. ~3!, we com-
pared it with calculations from Ref. 14, where the shape
the Ar Lb line was calculated forne5231023 cm23, Te

51 keV, and various values ofp by the Baranger–Moze
method. Figure 4 compares the calculations14 of the line-
width DE and the widths estimated using Eq.~1!, with F0(S)

replaced byFnonid from Eq. ~3!. The calculations agree we
with the simple estimate.
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The estimates reproduce two important circumstan
also found in Ref. 15. In the first, a 10% addition of Ar to D
gas produces almost the same broadening as pure Ar. In
second, in a nonideal plasma the sign of the inequality
tween the Ar linewidths due to the action of the argon io
themselves and the deuterium and tritium ions withne

5const remains unchanged:DEAr.DEDT .
We also checked the approach based on Eqs.~1! and~3!

by calculating the width of theLb line for extremely low Ar
concentrations in DT at various values ofne , and compared
the results with data from Ref. 4. The results of the detai
calculations agree with the simple estimate, forne ranging
from 1023 cm23 to 1024 cm23.

Using Eqs.~1! and~3!, the behavior of theLb linewidth
~and also the Heb linewidth4! can be calculated with a high
degree of confidence at an Ar concentrationq50.025. Thus,
ne52.531023 cm23 corresponds to a linewidthDE
.17 eV.

Estimates of the contribution of other broadeni
mechanisms, such as Doppler, impact, and so on, show
they play a minor role compared to quasistatic broadening
ions; they contribute 2–3 eV at most.

Estimates of the optical depth of the lines of 3→1 tran-
sitions show that for our conditions these lines can be trea
as optically thin to a first approximation.

We now proceed to an analysis of experiment No.
Comparing the spectra in experiments No. 1 and 2 sho
that they are very similar. This seems strange, as in all li
lihood, the density in the second experiment should
higher than in the first. Indeed, the initial densities of t
DT1Ar mixture in these experiments arer (0)'4.2 mg/cm3

and r (0)'6.2 mg/cm3. The degree of compression~assum-
ing that compression is governed primarily by gas dynam
while radiation and electronic heat conduction play a sm
role! is governed by the ratioM /m, whereM andm are the
mass of the shell and gas. The ratio of these quantities in
two experiments was'0.88, while the ratio of the densitie
of the compressed gas should be'0.6 ~when heat conduc-
tion and the transition to the ablation regime are taken i
account, this number should become even smaller!. The Lb

linewidths should therefore have differed by at least a fac
of 1.37.

FIG. 4. Dependence of the ArXVIIILb linewidth on the percentage conten
of DT in the mixture Ar1DT ~ne5231023 cm23, Te5Ti51 keV): 1! Data
from Ref. 12;2! estimate from Eq.~1!.
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It was shown above~see Fig. 4! that the linewidth at
fixed electron densityne increases with the relative Ar con
centration in the mixture. Asq increases from 0.025~experi-
ment No. 2! to q50.044 ~experiment No. 1!, the linewidth
increases by approximately 30%. If the fact that the den
of the DT1Ar mixture at fixedne varies as a function ofp
according to

r5
ne

NA
~ADTa1AArb!

is also taken into account~hereNA is Avogadro’s number,
andADT andAAr are the atomic weights of the gas comp
nents!, then we find that for the second experiment the d
sity should be'0.8 g/cm3 ~see Fig. 5!.

4. COMPARISON OF EXPERIMENTAL DATA WITH GAS-
DYNAMIC CALCULATIONS

For a more complete interpretation of the experimen
results, calculations were performed using the o
dimensional gas-dynamic program SNDA~spectral nonequi-
librium diffusion with absorption!.6 The calculations were
performed for parameters of the target and the laser p
introduced into the converter box that correspond to exp
ment. The equation of state and transport coefficients
DT1Ar were calculated using the average-ion model. T
numerical results are presented in Table II.

We see from Table II that the computed neutron yie
for experiments 1 and 2 is two to four times the yield me
sured in the corresponding experiment. For experiment 3,
computed neutron yield is essentially identical to the exp

FIG. 5. Density dependence of the Heb and Lb linewidths with various
initial DT pressures (pAr51 atm): 1—pDT510 atm, 2—PDT520 atm ~in-
strumental line broadening'3 eV is taken into account!.

TABLE II.

Experiment
No.

R0 ,
mm

EDT ,
J

Eg ,
J

Ee ,
J

Rmin ,
mm dN/2 dAr d

N,
109

1 147 10 5.5 3.1 31 47.9 67 107 3.8
2 146.9 13 8.6 0.71 19 173 175 463 5.6
3 133.6 6.6 4.4 0.58 9.36 153 269 2904 0.0

Notation: EDT—energy introduced into the DT gas during the compress
process up to the moment of maximum compression of the central cap
Eg , Ee—energy losses of the DT gas due to radiation and electronic
conduction up to the same moment in time;R0 , Rmin—initial and minimum
interior radii of the glass shell.
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mental value. Comparing the energy balance for the DT
at the moment of maximum compression shows that in
calculations the principal energy losses from the compres
hot gas are mediated by argon x-ray emission.

Figure 6 shows the computed distribution of ion tem
perature as a function of normalized mass coordinate of
gas at the moment of maximum neutron production rate.
see from the figure that the temperature distribution in
gas is highly nonuniform.

An important characteristic for determining gas dens
is the instant at which argon line emission begins. Since
kinetics of gas ionization is calculated in the SNDA progra
in the average-ion approximation, it is impossible to mak
direct, accurate calculation of the temporal form of the em
sion of the corresponding lines, since we know only the
erage populations of the ionic levels in the various cha
states of argon. However, if it is assumed that the den
distributions in the excited states of hydrogen- and heliu
like argon are close to equilibrium,2! we can reconstruct the
concentration of excited states in terms of the average po
lations, using the binomial distribution

Ck5)
n

C
gn

Nn
k

f
n

Nn
k

~12 f n!gn2Nn
k
,

wheren is the principal quantum number of the level, theNn
k

are the occupation numbers of leveln for a prescribed state
of the ion k, gn is the statistical weight of a level (gn

52n2), f n5Pn /gn , Pn is the average population of leveln,
the and

Cgn

Nn5
gn!

Nn! ~gn2Nn!!

are binomial coefficients.
For a calculation of the emission of the hydrogen- a

helium-like argon ions of interest—La , Lb , Lg , Hea , Heb ,
and Heg—the occupation numbers of the correspondi
states are

Nn
La5H 1, n52,

0, nÞ2,
Nn

Lb5H 1, n53,

0, nÞ3,

n
le;
at

FIG. 6. Computed ion temperature distribution as a function of the m
coordinate in gas at the moment of generation of half of the neutron yield1!
Experiment 1;2! experiment 2;3! experiment 3;m0 is the total gas mass in
the corresponding calculation.
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Nn
Lg5H 1, n54,

0, nÞ4,
Nn

Hea5H 1, n51,2,

0, nÞ1,2,

Nn
Heb5H 1, n51,3,

0, nÞ1,3,
Nn

Heg5H 1, n51,4,

0, nÞ1,4.

The concentrations of the excited states of the argon
oms calculated in this manner were used to calculate
temporal shape of the argon lines. In so doing, the absorp
of the lines as they pass both through the compressed ga
through the glass shell was taken into account. Figur
shows the computed results for the temporal characteris
of the radiating mixture of DT and Ar in experiment 2. F
experiments 1 and 3, the behavior looks approximately
same. Moreover, as one can see from the figures, in all
culations the various lines are emitted at virtually the sa
instant in time~to within 625 ps). The duration of emissio
is also essentially the same. The lines are emitted essen
immediately after the peak of the neutron production r
~approximately 25–50 ps later, i.e., somewhat later than
time at which the gas temperature reaches its maxim
value!, and much earlier than the time of maximum compr
sion.

Figure 8 shows the spatial profiles of the density, el

FIG. 7. Computed time dependence for the conditions of experiment 21!
Neutron generation ratedN/dt; 2, 3! emission intensities of theLb , Heb

argon lines;4! average gas density. The maximumLa , Lb , Lg , Hea , Heb ,
and Heg line intensities are in the ratio 8.2:2.3:1:15:4.4:1.9.

FIG. 8. Computed spatial profiles of the electron temperature~curve 1!,
luminosities of the linesLb ~curve2! and Heb ~curve3!, and density of the
DT1Ar mixture ~curve4! at the moment of maximum argon line emissio
for the conditions of experiment 2.
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tron temperature, and luminosity of theLb and Heb lines for
the conditions of experiment 2.

For experiment 2, the maximum luminosity of the Heb

line corresponds to a density'1.1 g/cm3, which agrees with
the estimate based on the linewidth, presented earlier in
section. The maximum luminosity of theLb line corresponds
to a density'0.7 g/cm3, which is also close to the estimat
'0.6 g/cm3. The indicated ranges correspond to electr
temperaturesTe'1 keV. The computed ratio of theLb and
Heb line intensities is 0.52, and the experimental value
'0.8. The diameter of the line emission region in the cal
lation is approximately 50mm, and the experimental est
mate obtained with the camera obscura is'55 mm. The
computed timestgn andtgg in experiment 2 are 0.57 ns an
0.6 ns, and the experimental values are 0.52 ns and 0.58

The computed and experimental values of the vario
parameters for experiments 1 and 2 are compared in Tabl
~top row—experiment, bottom row—calculation!.

The agreement between calculation and experiment
experiment 2 is very good. For experiment 1, the discrepa
is greater.

The main difference between the experiments is that
relative Ar concentration is higher in the first experime
This suggests that the model of thermodynamic and radia
properties of DT1Ar plasma with high relative Ar concen
trations must be improved.

This is also suggested by experiment 3, in which t
relative Ar concentration is approximately the same as in
first experiment. Here it is observed that the computed
experimental neutron yields are in agreement, and the siz
the emitting region ('30 mm) obtained from the obscuro
gram is correlated with the computed size. The luminosity
the lines obtained in the optical transparency approxima
is comparable to the luminosities in experiments 1 and 2,
no line radiation is observed in the experiment. Addition
investigations are required to understand the reason for
discrepancy.

5. CONCLUSIONS

1. The first successful series of experiments with in
rectly illuminated targets, in which Ar was added to DT g
for diagnostic purposes, has been conducted at the Isk
experimental station. We detected the emission-line sp
trum of hydrogen- and helium-like Ar ions—specifically
lines corresponding to the transitions 2→1, 3→1, and pos-
sibly 4→1. The density of the compressed gas at the m
ment of maximum line emission was estimated from t

TABLE III.

Experiment
No.

N,
109

Ti ,
keV

DE(Heb),
eV

DE(Lb),
eV I H /I He

Bmin ,
mm

tgn ,
ns

tgg ,
ns

1 0.8 - 22 17 0.8 60 0.66 0.45
1 3.8 - '10 7 0.2 70 0.35 0.4
2 2.5 2.3 22 11 0.8 55 0.52 0.58
2 5.6 2.6 '20 13 0.52 50 0.57 0.6
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width of the Heb (3→1) lines: rDT1Ar'0.8 g/cm3 for ex-
periment 1 andrDT1Ar'1.1 g/cm3 for experiment 2.

2. The experiments were analyzed with the aid of sph
cally symmetric calculations using the radiative gas dyna
ics program SNDA. It was shown that for experiment 2,
which the partial Ar concentration wasq52.44%, highly
satisfactory agreement is observed with all measured cha
teristics: neutron yield, ion temperature, time intervals
tween the laser pulse and the pulsed neutron and x-ray~gen-
erated by the capsule with DT1Ar) emission, the sizes of the
compressed and heated regions, and densities of the
pressed and heated DT1Ar gas. In experiments 1 and 3
where the Ar concentration isq'5%, behavior appreciably
different from the calculations is observed. To determine
reasons for such behavior and to formulate a more deta
interpretation of the resulting spectral structure, additio
~numerical-! theoretical and experimental investigations a
needed. Time-resolved measurements of the argon line s
trum would be especially important here.

This work was carried out at the Iskra-5 laser therm
nuclear facility ~registration number 01-50! with financial
support from the State Committee of the Russian Federa
on Science and Technology, and from the Russian Fund
Fundamental Research~Grant No. 96-01-00046!.
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1!With shells'4 mm and 7mm thick.
2!This is not that bad an assumption at high gas densities, when local
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Magnetic field generated in a plasma by a short, circularly polarized laser pulse
L. M. Gorbunov* ) and R. R. Ramazashvili

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 27 January 1998!
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We study the generation of a quasistatic magnetic field by a short, circularly polarized laser
pulse in a tenuous cold uniform plasma. It is shown that two physical mechanisms are responsible
for the generation of the various components of the magnetic field. One mechanism is due
to the ponderomotive forces and governs the generation of the azimuthal component of the
magnetic field. The other is similar to the inverse Faraday effect~IFE! in a nonuniform
plasma and gives rise to axial and radial components of the magnetic field. At moderate radiative
intensities, all magnetic field components are proportional to the squared intensity. The
spatial structure of the magnetic field depends strongly on the pulse shape and the plasma density.
© 1998 American Institute of Physics.@S1063-7761~98!00709-4#
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1. INTRODUCTION

In the last few years, substantial progress has been m
in the generation of subpicosecond laser pulses with ener
of tens of Joules and radiative intensity 1018– 1020 W/cm2.
Such pulses propagating in plasma excite plasma osc
tions, in whose electric field electrons can be accelerate
high energies~see review in Ref. 1!. Together with a quasi-
static electric field that results from charge separation in
plasma, a laser pulse generates quasistatic transverse cu
and magnetic fields. This question has begun to attract a
tion recently, especially for circularly polarized laser puls
where an inverse Faraday effect~IFE! is possible. In Ref. 2 it
was found on the basis of perturbation theory with respec
the parametera5vE /c,1 (vE andc are the average veloc
ity of an electron in the laser radiation field and the speed
light! that in a cold uniform nondissipative plasma the IF
arises in the quadratic approximation. However, in Ref. 3
was shown under the same restrictions as in Ref. 2 that
spective of its polarization, a laser pulse generates a qu
static magnetic field only in fourth order in the parametera.
In Refs. 4 and 5 the axial magnetic field generated in plas
by a laser pulse on account of the IFE was studied with
using perturbation theory in the parametera.

However, these results are mutually inconsistent. A
cording to Ref. 4, in the limita,1 the magnetic field is
proportional toa2, which corresponds to the result of Ref.
According to Ref. 5, fora,1 the magnetic field is propor
tional toa4, which agrees with Ref. 3. The error that led t
authors of Refs. 2 and 4 to overestimation of the IFE c
siderably is pointed out in Ref. 5. However, both in Refs
and 4 and in Ref. 5 only the magnetic field associated w
the IFE is discussed, while other physical mechanisms wh
under certain conditions lead to generation of a stron
magnetic field also exist.

In the present paper, using perturbation theory in
parametera, we systematically study all components of t
magnetic field that a short, circularly polarized laser pu
generates in a cold uniform nondissipative plasma. We sh
4611063-7761/98/87(9)/7/$15.00
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that quasistatic transverse currents and magnetic fields
only in the fourth-order approximation ina. There are two
types of currents and magnetic fields. One~azimuthal mag-
netic field, axial and radial current components! is generated
by a laser pulse irrespective of the polarization of the pu
and exists not only inside the pulse but also in the wake fi
region behind it.3 The other~azimuthal current, axial and
radial magnetic field components! is generated only by a
circularly polarized laser pulse~IFE!. Such a magnetic field
is localized in a longitudinal direction inside the pulse. T
absolute values of all three components of the magnetic fi
depend on both the pulse size and the plasma density.
IFE can appear only for sufficiently long or short puls
propagating in a relatively dense plasma. We discuss th
questions here for a pulse with a concrete shape.

2. BASIC RELATIONS

To study the propagation of a short laser pulse in plas
we employ Maxwell’s equations for the electricE and mag-
netic B fields, together with the system of relativistic hydr
dynamic equations for a cold electron fluid~see, for example,
Ref. 2!:

curl E52
1

c

]B

]t
, ~2.1!

curl B5
1

c

]E

]t
1

4p

c
env, ~2.2!

div E54pe~n2n0!, ~2.3!

div B50, ~2.4!

]p

]t
1~v–¹!p5eE1

e

c
v3B, ~2.5!

]n

]t
1div~nv!50, ~2.6!
© 1998 American Institute of Physics
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wheren, v, andp are the density, velocity, and momentu
of the electrons, andp5mvg, whereg5A11(p/mc)2 is the
relativistic factor. The plasma ions are assumed to be im
bile and singly charged, and their density is assumed to
uniform and equal ton0 .

From Eqs.~2.5! and ~2.1! there follows an equation fo
V5curl p1(e/c)B, called the generalized vorticity,

]V

]t
5curl v3V. ~2.7!

According to Eq. ~2.7! the flux of generalized vorticity
through an arbitrary surface bounded by a contour mov
together with the fluid is constant~see, for example, Ref. 6!.
Therefore the quantityV at a given point vanishes provide
that it was vanished at the same point before the laser p
arrived there, and therefore

B52
c

e
curl p. ~2.8!

Substituting~2.8! into Eq. ~2.5! we find for the electric field
intensity

eE

mc
5e¹g1

1

mc

]p

]t
. ~2.9!

According to Eq.~2.3!, the electron density is

n2n0

n0
5

c

vp
2 ¹S ]

]t

p

mc
1c¹A11S p

mcD
2D , ~2.10!

wherevp5A4pn0e2/m is the electron plasma frequency e
pressed in terms of the ion density.

Taking the time derivative of Eq.~2.9! and making use
of ~2.2!, ~2.8!, and ~2.10!, we find an equation containin
only the dimensionless electron momentumq5p/mc:7

]2q

]t2 1c2 curl curl q1
vp

2q

A11q2
52c

]

]t
¹A11q2

2
cq

A11q2 S div
]q

]t
1c¹2A11q2D . ~2.11!

In what follows, we are interested in the wea
nonlinearity approximation, where the velocity of the ele
trons is small compared to the velocity of light. This restr
tion is equivalent to the conditionuqu,1 and enables us to
seek a power-series solution of Eq.~2.11!:

q5 (
n51

`

«nqn ,

where« is a small parameter. Expanding the expression
Eq. ~2.11! in powers of « and collecting terms with like
powers of the small parameter, we obtain a coupled se
equations forqn .

In the first approximation (n51) we have, according to
Eq. ~2.11!,

]2q1

]t2 1c2 curl curl q11vp
2q150. ~2.12!
o-
e

g

se

-
-

in

of

According to the Helmholtz theorem,8 the vectorq1 can be
split into two parts (q15q1

l 1q1
tr), such that divqtr50 and

curl q1
l 50. For the transverse partq1

tr , Eq. ~2.12! has the
form

]2q1
tr

]t2 2c2¹2q1
tr1vp

2q1
tr50. ~2.13!

For the irrotational~potential! part q1
l , Eq. ~2.12! assumes

the form

]2q1
l

]t2 1vp
2q1

l 50. ~2.14!

Specifically, Eqs.~2.13! and ~2.14! describe transverse an
longitudinal waves, which in a linear approximation prop
gate in a uniform medium independently of one another.

A laser pulse propagating in a nonmagnetized plas
must be treated in the linear approximation as a transv
electromagnetic wave with a slowly varying amplitud
Thereforeq1 is a solenoidal vector, so that divq150. To
simplify the notation, in what follows we drop the symbol t

Since divq150, in the second approximation (n52) we
find from Eq.~2.11!

]2q2

]t2 1c2 curl curl q21vp
2q252

c

2
¹

]q1
2

]t
. ~2.15!

Since an irrotational vector stands on the right-hand side
Eq. ~2.15!, the solution of this equation satisfies the con
tion curl q250. According to Eq.~2.8!, this means that the
magnetic fieldB2 vanishes in the second approximatio
(B250).

Thus, in a uniform, cold nondissipative plasma, a so
noidal electromagnetic field does not generate any magn
field in the second approximation.3 This result is at variance
with the results of Refs. 2 and 4, where a quadratic inve
Faraday effect was obtained for circularly polarized la
pulses. The reason that the authors of Refs. 2 and 4 were
to incorrect results is indicated in Ref. 5 and consists in
fact that the condition divq150 was ignored.

A second-order quasistatic magnetic field is genera
when factors that are of no consequence for short laser pu
propagating in a tenuous plasma are taken into account~col-
lisions and thermal motion of electrons, plasma nonunif
mity, irrotational high frequency field!. Concerning this
point, see, for example, the review articles Refs. 9 and 1

When the condition curlq250 is taken into account, Eq
~2.5! becomes

S ]2

]t2 1vp
2Dq252

c

2

]

]t
¹q1

2 . ~2.16!

In the third approximation (n53) we find from Eq.~2.11!

]2q3

]t2 1c2 curl curl q31vp
2q3

52c¹
]

]t
~q1q2!1q1S 1

2
~vp

22c2¹2!q1
22c¹

]q2

]t D ,

~2.17!



n
,
e

,

fo

e
a

e

en

e

is
th

r

e
ch

a-

e

te

se

ry,
is-
va-

ith
ulse

ef-
late

463JETP 87 (3), September 1998 L. M. Gorbunov and R. R. Ramazashvili
where¹2 is the Laplacian operator. Equation~2.17! makes it
possible to investigate the generation of the third harmo
~for short laser pulses this question has been discussed
example, in Refs. 11!, as well as quadratic corrections in th
dispersion relation for laser radiation.

Returning to the issue of generating a magnetic field
is necessary to find the quantity divq3 , the equation for
which, according to Eq.~2.17!, has the form

S ]2

]t2 1vp
2Ddiv q35q1¹S 1

2
~vp

22c2¹2!q1
22c¹

]q2

]t D
2c

]

]t
¹2~q1•q2!. ~2.18!

There is no great difficulty in writing an equation forq4 .
However, we confine ourselves here only to an equation
curl q4 , since this quantity~see Eq.~2.8!! is proportional to
the fourth-order magnetic field (B452(mc2/e)curl q4):

]2B

]t2 2c2¹2B1vp
2B54pc curl~ j4

~1!1 j4
~2!!, ~2.19!

where we have dropped the subscript 4 in the magnetic fi
(B4[B) and we have written the fourth-order current as
sum of two terms. The first current term specifies the curr
in the direction ofq2 :

j4
~1!52

mc

4pe
q2S 1

2
~vp

22c2¹2!q1
22c

]

]t
¹•q2D . ~2.20!

The direction of the currentj4
(2) is specified byq1 :

j4
~2!52

mc

4pe
q1S ~vp

22c2¹2!~q1•q2!2c
]

]t
¹•q3D .

~2.21!

Bearing in mind the general expression for the current d
sity

j5env5ecn0q
n/n0

g
, ~2.22!

and introducing the notationg5n/n0g, we rewrite the
fourth-order current one more time:

j45ecn0~q2g21q1g3!, ~2.23!

whereg2 andg3 specify the perturbations of the ratio of th
electron density to the relativistic factorg in the second and
third approximations,

g25
1

vp
2 Fc

]

]t
div q22

1

2
~vp

22c2¹2!q1
2G , ~2.24!

g35
1

vp
2 Fc

]

]t
div q32~vp

22c2¹2!~q1•q2!G . ~2.25!

The expressions~2.20!, ~2.24!, and ~2.25! can in general
form be put into a form that is more convenient for analys
Since there are no perturbations at a given point in
plasma prior to the arrival of a laser pulse there (t→2`),
we write the solution of Eq.~2.16! in the form
ic
for

it

r

ld

nt

-

.
e

q2~r ,t !52
c

2vp
2 ¹

]f~r ,t !

]t
, ~2.26!

where

f5vpE
2`

t

dt8 sin@vp~ t2t8!#q1
2~ t8,r !. ~2.27!

Substituting~2.26! into Eqs.~2.24! and ~2.25!, we find

g252
1

2vp
2 S ]2

]t2 1vp
22c2¹2Df, ~2.28!

S ]2

]t2 1vp
2Dg352c

]

]t
~q1•¹g2!

1S c2¹22
]2

]t2 2vp
2D ~q1•q2!. ~2.29!

The current~2.20! can be written, using Eqs.~2.26! and
~2.28!, in the form3

j4
~1!5ecn0S c

2vp
2 ¹

]f

]t D 1

2vp
2 S ]2

]t2 1vp
22c2¹2Df.

~2.30!

3. QUASISTATIONARY NONLINEAR SOLENOIDAL
CURRENT

For the quantityq1(r ,t), which characterizes a lase
pulse in the linear approximation, we use the expression

q1~r ,t !5
1

2
@a~r ,t !exp~2 ivt1 ikz!1c.c.#, ~3.1!

where it is assumed that the pulse propagates along thz
axis, v and k are the frequency and wave number, whi
according to Eq.~2.13! satisfy the dispersion relationk2c2

5v22vp
2 , and a is the complex amplitude~envelope!,

which is assumed to be slowly varying in both time~on a
scale 2p/v) and space~on a scale 2p/k).

To a first approximation in the spatial and time deriv
tives, an equation for the envelopea follows from Eq.~2.13!:

]a

]t
1vg

]a

]z
50, ~3.2!

where vg5c2k/v is the group velocity of the pulse. Th
solution of Eq.~3.2! is an arbitrary function of the variable
j52z1vgt, representing an axial variable in a coordina
frame comoving with the pulse, and the variabler' , which
specifies the position in a plane perpendicular to thez axis.
In other words, Eq.~3.2! describes the propagation of a pul
of constant shape.

In reality, both the shape and energy of the pulse va
both on account of linear effects such as diffraction and d
persion, for which the second spatial and temporal deri
tives of the slowly varying amplitudea are responsible, and
nonlinear effects. If the laser pulse is short compared w
the distance over which the shape and energy of the p
vary ~the so-called quasistatic approximation1!, then the
variation can be neglected when studying the nonlinear
fect of the pulse on the plasma. For this reason, to calcu
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the magnetic field we assume that the characteristics
pulse, such as its width, duration, and energy, are gi
~constant-pulse approximation!.

Using Eq.~3.1!, we find

q1
25

1

2
uau21

1

4
@a2 exp~22ivt12ikz!1c.c.#, ~3.3!

where the first term varies slowly in both space and tim
while the second term characterizes the second harmon
the laser radiation.

Since we have in mind laser radiation that is both circ
larly and linearly polarized, we expressa in the form

a~r ,t !5a0~r ,t !~ex1 iley!1ezaz , ~3.4!

whereex,y,z are unit vectors in a plane perpendicular to t
direction of propagation of the pulse (xy) and in the direc-
tion of the propagation axis (z), a0 is the scalar complex
amplitude in the (x,y) plane, andaz is the axial componen
of the envelope, which by virtue of divq150 can be ex-
pressed in terms ofa0 :

az.
1

ik S ]a0

]x
1 il

]a0

]y D .

The quantityl equals 0 for linearly polarized radiation an
61 for circularly polarized radiation~the sign specifies the
rotation direction of the polarization vector!.

Substituting~3.4! into Eq. ~3.3!, we take account of the
fact thatuazu!ua0u. As a result, neglecting small terms pr
portional to the squared ratio of the wavelengthl0 of the
laser radiation to the transverse pulse sizer L , we obtain

q1
25

1

2
~11l2!ua0u21

1

4
~12l2!

3@a0
2 exp~22ivt12ikz!1c.c.#. ~3.5!

It follows from ~3.5! that there is no second harmonic f
circularly polarized laser radiation~in reality, it is small, of
the order of (l0 /r L)2).

We note that the radiative intensity is proportional
^q1

2&, where the brackets denote averaging over time.
introduce the quantity

I 5
1

2
~11l2!ua0u2,

to characterize the dimensionless intensity. Obviously,
fixed amplitudeua0u the intensity for linearly polarized radia
tion is half that for circularly polarized radiation.

According to the definition~2.27! and Eq.~3.5!, f can
be written in the form

f5f01f2 ,

where

f05vpE
2`

t

dt8 sin@vp~ t2t8!# I ~r ,t8!, ~3.6!
a
n

,
of

-

e

r

f25
12l2

4
vpE

2`

t

dt8 sin@vp~ t2t8!#@a0
2~r ,t8!

3exp~22ivt812ikz!1c.c.#. ~3.7!

The integrand in Eq.~3.7! contains the product of a rapidl
varying function exp(62ivt8) and slowly varying functions.
Integrating by parts, the functionf2 can be represented as
series in powers ofv21. The first two terms of the serie
have the form

f25
12l2

16

vp
2

v2 H 2S a0
22

i

v

]a0
2

]t D
3exp~22ivt12ikz!1c.c.J . ~3.8!

It is simplest to find the quasistationary part of the cu
rent ~2.30!, which can arise from terms quadratic inf0 , and
in linearly polarized radiation from terms quadratic inf2 . In
Ref. 3 it is shown that the contribution of the second h
monics to the quasistationary current is (vp /v)2 times
smaller than that of the zeroth harmonics. Neglecting s
small terms, the quasistationary part of the current~2.30! is3

^ j4
~1!&5

en0c2

4vp
2 S ¹

]f0

]t D S I 2
c2

vp
2 ¹2f0D , ~3.9!

where the brackets indicate that the current varies slo
with time over the intervalv21.

For a linearly polarized laser pulse, the quasistation
part of the current~2.21! was studied in Ref. 3, where it i
shown to be (vp /v)2 times smaller than the current~3.9!. In
the case of circular polarization, as will be shown below,
slowly varying part of the current~2.21! is much larger.

As follows from Eqs.~3.5! and ~3.7!, in the case of cir-
cular polarization the second harmonics of the quantitiesq2

andg2 vanish, and Eq.~2.29! assumes the form

S ]2

]t2 1vp
2Dg352c

]

]t
~q1•¹g20!

1S c2¹22
]2

]t2 2vp
2D ~q1•q20!, ~3.10!

where g20 and q20 are the zeroth harmonics of the corr
sponding quantities.

Neglecting the derivatives of these quantities and tak
account of~2.13!, Eq. ~3.10! assumes the form

S ]2

]t2 1vp
2Dg352c~¹g20!

]q1

]t
. ~3.11!

Bearing in mind thatv@vp , we neglect the second term o
the left-hand side of Eq.~3.11! and write it in the form

]g3

]t
52cq1•¹g20. ~3.12!

Actually, Eq. ~3.12! reflects the fact that the high-frequenc
third-order perturbations of the electron density (g3) result
from the high-frequency motion of electrons with veloci
cq1 in a nonuniform plasma. In addition, the nonuniformi
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of the plasma is produced by the laser pulse and depe
quadratically on the radiation amplitude (g20).

Solving Eq.~3.12!, we find for the quasistatic part of th
second term in Eq.~2.23!, corresponding to the curren
~2.21!,

^ j4
~2!&5

ien0c2

8v F¹S ua0u2

2
2

c2

vp
2 ¹2f0Da* 3aG . ~3.13!

Obviously, the current~3.13! is nonzero only for a circularly
polarized wave, wherea* 3aÞ0.

4. QUASISTATIC MAGNETIC FIELD OF A CIRCULARLY
POLARIZED LASER PULSE

Consider an axisymmetric laser pulse, for which t
quantityI depends only on the variablesj5ct2z andr . For
definiteness, we assume that

I 5I 0f 1~j! f 2~r !, ~4.1!

whereI 0 characterizes the maximum dimensionless radia
intensity, while the functionsf 1 and f 2 specify the variation
in the intensity in the longitudinal and transverse directio
respectively. In the accordance with the definition~4.1!, ~3.6!
then takes the form

f052 f 2~r !I 0w~j!, ~4.2!

where

w~j!5
kp

2 E
2`

j

dj8 sin@kp~j2j8!# f 1~j8!, ~4.3!

in which kp5vp /c is the characteristic wave number. W
note that~4.3! is nonvanishing not only in the vicinity of the
laser pulse, but also behind it, where it describes the w
field.12

For circularly polarized radiation, all three componen
of the solenoidal quasistationary current are present. Tw
them, specified by Eq.~3.9!, are unrelated to the polarizatio
of the radiation, and using~4.2! they can be represented
the form

^ j z&52ecn0

]2w~h!

]h2 f 2~r!w~h!@~12¹r
2! f 2~r!# I 0

2 ,

~4.4!

^ j r&5ecn0

]2w~h!

]h

] f 2

]r
w~h!@~12¹r

2! f 2# I 0
2 , ~4.5!

where the indices 4 and 1 in the current have been drop
and the dimensionless longitudinal and transverse coo
natesh5kpj and r5kpr have been introduced;¹r

2 is the
transverse part of the Laplacian.

Making the same changes in notation and coordina
we transform the azimuthal angle~3.13!, using Eqs.~4.1! and
~4.2!, to the form

^ j w&5ecn0

vp

2v
I 0

2l f 1~h!w~h! f 2~r!
]

]r
@~12¹r

2! f 2#.

~4.6!
ds

e

,

e

of

ed
i-

s,

By comparison to the other components, the current~4.6!
contains an extra small factorvp/2v, and fails to vanish
only in the vicinity of the pulse, where the functionsf 1(h)
and f 2(r) are also nonvanishing.

The axial and radial current components~4.4! and ~4.5!
determine the azimuthal magnetic field of the laser pulse,
equation for which, according to Eq.~2.19!, can be reduced
to the form

S ¹r
22

1

r2 21D Bw5I 0
2
F w~r,h!, ~4.7!

where

B5eB/mcvp ,

F w5S dw

dh D 2 d f2

dr
@~12¹r

2! f 2#2w
d2w

dh2 f 2

d

dr
@~12¹r

2! f 2#.

~4.8!

The azimuthal current~4.6! is responsible for the gen
eration of the axial and radial magnetic field componen
which are governed by equations similar to~4.7!. We write
the solutions of the equations for all three magnetic fi
components, satisfying the boundary conditions

B~r→`!50, Bw~0!5Br~0!5
]Bz~0!

]r
50,

in the form

Bw5I 0
2H S dw

dh D 2

G1~r!2S w
d2w

dh2DG2~r!J , ~4.9!

Br5I 0
2 d

dh
~ f 1w!G3~r!, ~4.10!

Bz5I 0
2f 1wG4~r!, ~4.11!

where

G3~r!52l~vp/2v!G2~r!,

G1~r!5I 1~r!E
r

`

dx xK1~x!
d f2

dx
@~12¹x

2! f 2#

1K1~r!E
0

r

dx xI1~x!
d f2

dx
@~12¹x

2! f 2#, ~4.12!

G2~r!5I 1~r!E
r

`

dx xK1~x! f 2~x!
d

dx
@~12¹x

2! f 2#

1K1~r!E
0

r

dx xI1~x! f 2~x!
d

dx
@~12¹x

2! f 2#,

~4.13!

G4~r!52l
vp

2v H I 0~r!E
r

`

dx K0~x!
d

dx H x f2

d

dx

3@~12¹x
2! f 2#J 1K0~r!E

0

r

dx I0~x!
d

dx

3H x f2

d

dx
@~12¹x

2! f 2#J J , ~4.14!
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FIG. 1. Dimensionless azimuthal current densi
versus the transverse coordinater ~a! and longitu-
dinal coordinateh ~b! for a wide (a250.2) and
long (kL50.2) pulse. The dashed line shows th
shape of the laser pulse in the corresponding dir
tion.
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a-
and I 0,1 and K0,1 are modified Bessel functions of the fir
and second kind, respectively.

To obtain actual expressions for the components of
magnetic field, it is necessary to know the explicit form
the functionsf 1(h) and f 2(r). Just as in Ref. 3, we tak
them in the form

f 1~h!5sin2S ph

L D , f 2~r!5exp~2a2r2!, ~4.15!

where 0,h,L, L is the pulse length in units ofkp
21 , a2

52(kpr L)22, andr L is the effective pulse width.
The expressions for the functionsG(r) can be repre-

sented in a relatively simple form in two limiting cases:a
@1 ~short pulse! anda!1 ~wide pulse!. We consider below
a wide pulse, for which

G1.G2.22a2r exp~22a2r2!,

G3.l
vp

2v
2a2r exp~22a2r2!, ~4.16!

G4.l
vp

2v
4a2~122a2r2!exp~22a2r2!.

The dependence of the magnetic field component on
longitudinal coordinateh is given by~4.3!, which according
to Eq. ~4.15! assumes the form

w~h!5
1

2~kL
221!

FkL
2 sin2~h/2!2sin2S kLh

2 D G , ~4.17!

wherekL52p/L. We confine our attention to long pulse
(kL

2,1), for whichw(h).(1/2)f 1(h).
Thus, in the vicinity of a circularly polarized laser puls

whose width and length are greater thanc/vp , the compo-
nents of the quasistatic magnetic field are

Bw522I 0
2a2kL

2r exp~22a2r2!sin2~kLh!, ~4.18!

Br5I 0
2l

vp

2v
a2kLr exp~22a2r2!sin~kLh!sin2S kLh

2 D ,

~4.19!

Bz5I 0
2l

vp

v
a2~122a2r2!exp~22a2r2!sin4S kLh

2 D .

~4.20!

As follows from Eqs.~4.18!–~4.20!, the azimuthal and radia
components of the magnetic field vanish on the pulse a
(r50), while the axial component does not. Comparing
e
f

e

is
e

maxima of the various components of the magnetic field
follows from Eqs.~4.18!–~4.20! that that the effects due to
the circular polarization of the radiation become domina
only for sufficiently long pulses, such thatkL

2,(vp /v)a.
We note that the azimuthal current~4.6! is responsible

for the generation of the radial and axial components of
magnetic field. For a sufficiently wide and long laser pul
such as the one considered here, whose shape is give
~4.15!, this current has the form

2^ j w&Flecn0I 0
2a2

vp

2vG21

.sin4S kLh

2 D r exp~22a2r2!.

~4.21!

Figure 1 shows the dimensionless azimuthal current~4.21! as
a function of the longitudinal and transverse coordinateh
andr for a250.2 andkL50.2. The current reaches its max
mum value ath05p/kL andr051/2a.

Figure 2 shows, for the same parametersa2 andkL , the
flux lines of the magnetic field generated by the curre
~4.21!, which according to Eqs.~4.18! and ~4.19! are given
by

r2 exp~22a2r2!sin4S hkL

2 D5C, ~4.22!

where C is an arbitrary constant that ranges from 0
(2a2e)21. The direction of the flux lines is determined b
the rotation sense of the polarization vector.

We note that forr50, ~4.20! is identical to the expres
sion obtained in Ref. 5, if in the latter the limitua0u,1 is
taken.

5. CONCLUSIONS

In summary, when a short, circularly polarized las
pulse propagates in a cold, uniform, nondissipative plas

FIG. 2. Flux lines of the magnetic field resulting from the circular polariz
tion of the radiation fora250.2 andkL50.2.
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two mechanisms give rise to a quasistatic magnetic field~as
noted in Ref. 13!. One is not associated with the polarizatio
of the radiation, and is governed by ponderomotive forc
This mechanism generates an azimuthal magnetic fi
which emerges not only within the pulse but also in the wa
field region behind it.3 The second mechanism is associa
with the circular polarization of the radiation. It is respo
sible for the generation of an azimuthal quasistationary c
rent, and both axial and radial magnetic field components
this case, it can be interpreted as the inverse Faraday e

Figure 3 illustrates the physical mechanism that giv
rise to an azimuthal quasistatic current in a radially nonu
form plasma. The solid curve is a curve of constant elect
density in the absence of the pulse. The small dashed cir
represent the trajectories of electrons in the field of a cir
larly polarized wave propagating transverse to the grad
of the nonuniformity~perpendicular to the plane of the fig
ure!. The dots show the instantaneous positions and the
rows the velocities of the electrons. The dashed curve c
necting the electrons is a curve of constant electron densi
a certain moment in time. If the plasma density increa
with increasing radius, the electron density in the hatch
regions with a plus or minus sign is either less than or gre
than the density in the absence of the radiation. From Fig
it is then clear that a clockwise component of the instan
neous electron velocity is present in the low-density regi
and a counterclockwise component in the high-density
gion. The instantaneous azimuthal electron current, whic
given by the product of the rapidly varying velocity and t
rapidly varying perturbation of the electron density, has
same sign everywhere along the circle. This means that
current has a constant, time-independent azimuthal com
nent.

In the example considered, the initial plasma elect
density unperturbed by the pulse was assumed to be non
form. For this reason, the quasistationary current given
the product of two rapidly varying quantities is proportion
to the squared amplitude of the high-frequency radiati
However, in the problem considered above, the ini
plasma density was uniform. The slowly time-varying red

FIG. 3. Generation of a quasistationary azimuthal current by circularly
larized radiation in a radially nonuniform plasma.
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tribution of the electrons and therefore the nonuniformity
the plasma were produced by the ponderomotive forces.
radial density gradient itself was therefore proportional to
squared amplitude of the laser radiation, and the slow
muthal current was proportional to the fourth power of t
amplitude.

As noted in Ref. 3, the azimuthal magnetic field th
emerges not only inside the pulse but also in the wake fi
region can influence the focusing of electrons accelerate
the wake wave. However, the IFE can appear only inside
laser pulse, where excitation of the wake wave occurs
stands to reason that forua0u;1 the electron cyclotron fre-
quency will become comparable to the plasma frequen
and this will be reflected in the excitation of a wake wav
However, this question lies beyond the scope of the appr
mation ua0u,1 considered here.

For ua0u.1, numerical results can be used as a gui
Such results are presented in Ref. 3 for the axial magn
field component. It is shown there that forua0u52, a255
31022, and L510 the maximum dimensionless magne
field eBw /mcvp is 0.1. For plasma with electron densi
1018 cm23 (vp55.6431013 s21), these parameters corre
spond to a focal spot radius 30mm, pulse duration 175 fs
and pulse energy about 5 J. The maximum magnetic fieldBw

reaches 350 kG. In order for the other magnetic field co
ponentsBr andBz induced by the inverse Faraday effect
become comparable toBw , the duration of the laser puls
must be increased to 1.4 ps, and accordingly the pulse en
must be increased to 42 J. These parameters are all attain
with existing technology.
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We give a theoretical description of the mechanisms underlying the generation of harmonics of
plasma-warming radiation, which depend on the polarization of the latter. We show that
there is a striking anomaly in the polarization of the harmonics in the presence of a low degree
of circular polarization of the pump, and that harmonic generation efficiency increases.
Variations in the polarization of the pump accompanying inverse bremsstrahlung absorption are
discussed. ©1998 American Institute of Physics.@S1063-7761~98!00809-9#
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1. Interest in the generation of higher-order harmonics
laser radiation has increased appreciably in connection
the transition to femtosecond pulses, which has mad
easier to obtain strong laser fields.1–3 Such generation open
up the possibility of producing compact sources of hard
herent ultraviolet and x-ray emission.4,5 In this regard, inter-
est in the generation of higher-order harmonics in plas
predicted in 1964 in Ref. 6~see also Refs. 7–9!, is natural.
This phenomenon is due to the bremsstrahlung of electr
coherently oscillating in a coherent plasma-warming elec
magnetic field, in the process of scattering of electrons by
Coulomb field of the ions.

In the present paper, we discuss conditions produced
the polarization of the warming radiation, under which, fir
harmonic generation is more efficient than discussed her
fore, and second, new and unique phenomena arise. Th
sence of these phenomena lies in the fact that the cohe
current generating the harmonics in accordance with
standard bremsstrahlung law6,8 is proportional to the velocity
vector and inversely proportional to the cubed modulus
the velocity. For circular polarization, the modulus of t
velocity of the electron oscillations does not depend on tim
Therefore, harmonic generation is suppressed. For ell
cally polarized warming pump radiation, unique mechanis
arise. If the degree of circular polarization is low, then a
certain moment in time the modulus of the velocity of t
electron oscillations will be very small. At approximately th
same moment the projection of the electron velocity on
direction of approximately linear polarization will be sma
Conversely, the perpendicular projection of the velocity
not so small. The phenomenon, discussed below, of ano
lous polarization of harmonics in a plane almost perpend
lar to the polarization plane of the pump is connected w
this. The anomalous increase, discussed below, of the
monic generation efficiency is also connected with this. T
mechanisms found are similar to the polarization depende
of the static conductivity of plasma in a powerful radiatio
field.10 We note that for exact plane polarization of the pum
the modulus of the velocity, just like the velocity vector
the oscillations itself, vanishes at the same moment in ti
4681063-7761/98/87(9)/10/$15.00
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A consistent description could previously only be obtain
by taking account of the thermal motion.6 This produced an
effect of the order of the logarithm of the ratio of the larg
amplitude of the velocity of the oscillations of an electron
its thermal velocity. This way of taking account of the the
mal motion and analysis of its competition with the polariz
tion of the radiation made it possible to construct in t
present paper a systematic theory of the increase in the
monic generation efficiency and to describe the polarizat
properties of the harmonics. In connection with the imp
tance of the influence of the polarization of the warmi
radiation, a theory of the nonlinear variation of its polariz
tion as a result of inverse bremsstrahlung absorption is giv

2. We study plasma in the field of elliptically polarize
radiationE5(Ex ,Ey,0), where

Ex5exE cos~vt2wx!, Ey52eyE sin~vt2wx!.
~2.1!

HereE is the real electric field amplitude, theea (a5x,y)
characterize the polarization of the plasma-warming rad
tion ~2.1!, ex

21ey
251, and for simplicity it is assumed tha

ex>ey>0. The polarization tensor11 of such radiation has
the form

Rab5Uex
2 iexey

2 iexey ey
2 U[ 1

2 S 11j3 j12 i j2

j11 i j2 12j3
D . ~2.2!

This obviously means that the corresponding Stokes par
eters arej150, j2522exey , and j35ez

22ey
2 . For what

follows, it is helpful to use the degree of circular polarizatio
A[j2 as well as the degree of maximum linear polarizati
r2[L5Aj3

25A12A2.11

In the electric field~2.1! an electron oscillates with ve
locity uE5(uEx ,uEy,0), where

uEx52vEex sin~vt2wx!, uEy52vEey cos~vt2wx!.
~2.3!

Here

vE5~ ueuE/mv! ~2.4!

characterizes the amplitude of the velocity oscillations, ane
andm are the electron charge and mass. We say that the
© 1998 American Institute of Physics
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is weak when the velocity~2.3! is small compared with the
thermal velocityvT5AkBT/m of the electrons. Conversely
we shall say that the radiation field is strong if

vE@vT . ~2.5!

We assume that the frequency of the plasma-warm
radiation is much higher than the effective electron–ion c
lision frequency. For a weak field the latter frequency can
expressed in the conventional manner~compare, for ex-
ample, Ref. 12!, which yields

nei5
4A2p Ze4neL

3m2vT
3 . ~2.6!

Here

Z5(
i

~ei
2ni /e2ne!,

where the summation extends over all types of ions,ei is the
ion charge,ne andni are the electron and ion number de
sities, andL is the Coulomb logarithm. In the opposit
strong-field limit we have for the effective electron–ion co
lision frequency6–8,10

n~E!5
8p& Ze4neL

m2vE
3 . ~2.7!

This collision frequency is much lower than the frequen
~2.6! on account of the inequality~2.5!. We emphasize tha
in the case~2.7! the Coulomb logarithm by no means coi
cides with the corresponding expression in the weak-fi
limit ~see below!.

In contrast to Ref. 6, we employ the simplified approa
of Ref. 8. Following the latter, we use the Fokker–Planc
Landau form of the collision integral to describe electro
ion collisions:

Jei@ f #5
2pZe4neL

m2

]

]v r
S v2d rs2v rvs

v3

] f

]vs
D , ~2.8!

wheref (v) is the electron distribution function. In Eq.~2.8!,
small terms of the order of the ratio of the electron and
masses are neglected. In using this approach below, we
introduce the dependence of the Coulomb logarithm on
electric field heuristically. At the same time, an indisputa
positive aspect of this approach is the comparative simpli
and obviousness of the results obtained.

The interaction of the radiation with plasma in the dipo
approximation corresponds to neglect of the spatial dep
dence of the field and the distribution function. According
the Boltzmann equation can be written in the form

] f

]t
1

e

m
E~ t !•

] f

]v
5Jee1Jei@ f #. ~2.9!

HereJee is the electron–electron collision integral, the actu
form of which will not be required.

The assumption that the frequency of the plasm
warming radiation is high makes it possible to neglect in
g
l-
e

ld

n
ust
e

y

n-
,

l

-
e

zeroth approximation the right-hand side of Eq.~2.9!. The
zeroth-approximation equation

] f 0

]t
1

e

m
E•

] f 0

]v
50 ~2.10!

has the solution

f 0~v,t !5F~v2uE~ t !!. ~2.11!

We assume below thatF(u)5 f M(u), where f M(u) is a
Maxwellian distribution with temperatureT. The following
expression for the electric current density in the zero
approximation follows from Eq.~2.11!:

j05eneuE~ t !. ~2.12!

We multiply the kinetic equation

]d f

]t
1

e

m
E•

]d f

]v
5Jee1Jei@ f 0~v,t !# ~2.13!

for the correction to the electron distribution function by t
electron charge and velocity vectorv and integrate over ve
locity space. Then, since*dvd f 50, we obtain for the per-
turbationd j of the electric-current density

]d j

]t
52

4pZe4neL

m2 E dv
ev

v3 F~v2uE~ t !!. ~2.14!

The right-hand side of Eq.~2.14! is due to electron–ion col-
lisions. The electron–electron collision integral does n
contribute because the collisions conserve momentum.
remainder of the present paper is given over to analysis
the consequences of Eq.~2.14!.

3. To describe the generation of the harmonics of
plasma-warming radiation,~2.14! must be represented as
Fourier series expansion. To do so, we apply first the rela

v

v3 52E dq

~2p!3

4p iq

q2 exp~ iq–v!. ~3.1!

Using a Maxwellian distribution forF(u) this formula
makes it possible to represent Eq.~2.14! in the form

]d j

]t
5

Ze4neL

2p2m2 eneE dq
iq

q2 expF2
1

2
vT

2q21 iq–uE~ t !G .
~3.2!

Using spherical coordinatesq5(q,u,w) in q-space we have

q–uE52qvE sin u@d1 sin~vt2wx1w!

1d1 sin~vt2wx2w!#, ~3.3!

where d65(1/2)(ex6ey). In accordance with Ref. 13
~p. 987, Eq. 8.511.3!, this form makes it possible to write

exp~ iq–uE!5 (
k,l 52`

1`

Jl~qvEd1 sin u!Jk~qvEd2 sin u!

3exp$ i ~k1 l !~vt2wx!1 i ~ l 2k!w%, ~3.4!

where theJl(z) are Bessel functions. Hence it is obvious th
Eq. ~3.2! can be expressed in the form of a Fourier seri
The required transformations can be found in Appendix
The result is
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]d j x

]t
5(

l 50

`

sxx
~2l 11!

]

]t
exE cos@~2l 11!~vt2wx!#, ~3.5!

]d j y

]t
5(

l 50

`

syy
~2l 11!

]

]t
~2eyE!sin@~2l 11!~vt2wx!#, ~3.6!

sxx
~2l 11!5

vLe
2 n~E,l !

4p~2l 11!v2 FAl S r2,
vE

2vT
D2Al 11S r2,

vE

2vT
D G ,
~3.7!

syy
~2l 11!5

vLe
2 n~E,l !

4p~2l 11!v2 FAl S r2,
vE

2vT
D1Al 11S r2,

vE

2vT
D G .
~3.8!

HerevLe5A4pe2ne /m is the electron Langmuir frequency
According to Eq.~A1.8!, the functionsAl(r

2,N) are given
by

Al~r2,N!5
2

Ap
E

0

N2

dzAz e2zI l~r2z!. ~3.9!

The latter formula, as we shall see below, is very conven
for the required analysis.

We must now discuss the collision frequencyn(E,l ),
which for

~2l 11!v.vLe ~3.10!

can depend on the number of the harmonic on account o
Coulomb logarithm. The Coulomb logarithm in the Land
logarithmic approximation is determined by the ratio of t
maximum and minimum impact parametersL
5 ln(rmax/rmin), which bound the region where the contrib
tion of collisions is considerable~see Ref. 12!. The maxi-
mum impact parameter is determined by the ratio of the e
tron velocity to the characteristic frequency. For a weak lo
frequency field this is the ratio of the thermal velocity to t
Langmuir frequency, equal to the Debye screening radiu
the Coulomb field. For a weak field, but such high freque
cies thatv.vLe , as was established in Refs. 14–16, t
ratio of the thermal velocity to the frequency arises for t
maximum impact parameter. In our strong-field limit it
natural to assume thatr max.@vE /(2l11)v#. The minimum
impact parameter is determined by the larger of the two v
ues r min,cl5(Ze2/mvE

2)—the classical limiting impact param
eter, bounding the region of small momentum transfer,
r min,qu5\/mvE—the quantum lower limit on the impact pa
rameters of Landau’s logarithmic approximation. Here\ is
Planck’s constant. Thus, in light of~3.10!, we have

L5 ln
mvE

2

\v~2l 11!
,

vE.
Ze2

\
or L5 ln

mvE
3

Ze2v~2l 11!
, vE,

Ze2

\
.

~3.11!

The decrease in the Coulomb logarithm at large harmo
numbers can be one of the reasons for the cutoff of the se
~3.5! and ~3.6!.
nt

he

c-
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We now discuss certain general consequences of E
~3.5! and ~3.6!. We note that forl 50 we can write the dis-
sipative conductivity tensor determined by the relation

d j a
~1!5sab

~1!Eb . ~3.12!

We havesxy
(1)5syx

(2)50, and

sxx
~1!5

e2ne

mv2 n~E,0!FA0S r2,
vE

2vT
D2A1S r2,

vE

2vT
D G ,

~3.13!

syy
~1!5

e2ne

mv2 n~E,0!FA0S r2,
vE

2vT
D1A1S r2,

vE

2vT
D G .

~3.14!

Aside from the nonlinear dependence of such a conducti
tensor on the intensity of the plasma-warming radiation,
nonlinear dependence on the polarization is also import
This latter dependence is manifested in the anisotropy of
dissipative conductivity tensor.

We now dwell on the intensity of the generated harmo
ics (l .0). We assume that

wx5kz, ~3.15!

and accordingly,

k25v22vLe
2 . ~3.16!

Neglecting dissipation, from Maxwell’s equations we ha
for the field of the harmonics~compare Ref. 8!

Ex
~2l 11!52exE

n~E,l !

4l ~ l 11!v FAl S r2,
vE

2vT
D

2Al 11S r2,
vE

2vT
D Gsin@~2l 11!~vt2kz!#,

~3.17!

Ey
~2l 11!52eyE

~2l 11!n~E,l !

4l ~ l 11!v FAl S r2,
vE

2vT
D

1Al 11S r2,
vE

2vT
D Gcos@~2l 11!~vt2kz!#.

~3.18!

Forming the ratio of the time-averaged squared electric v
tor given by~3.17! and ~3.18! to the mean squared electr
field vector of the pump~2.1! (E)25E2/2, we obtain

h~2l 11!5
~E~2l 11!!2

~E!2
5

n2~E,l !

16l 2~ l 11!2v2
BlS r2,

vE

2vT
D ,

~3.19!

where

Bl~r2,N!5Al
2~r2,N!1Al 11

2 ~r2,N!

22r2Al~r2,N!Al 11~r2,N!. ~3.20!

The expression~3.19! characterizes the harmonic generati
efficiency. It must be emphasized that the right-hand side
Eq. ~3.19! depends on the square of the plasma density~com-
pare Ref. 8!. The dependence of the intensity of the radiat
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harmonics on the polarization and intensity of the pump
determined by~3.20!, which we study below.

We now present an expression for the Stokes par
eters, which are given by Eqs.~3.17! and ~3.18! and which
r-
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characterize the polarization of the harmonics (l .0). Above
all, we note thatj (2l 11)50. This means that the harmonic
just like the pump, are completely elliptically polarized. Fu
thermore, we have
j2
~2l 11![A~2l 11!5j2

Al
2~r2,vE/2vT!2Al 11

2 ~r2,vE/2vT!

Bl~r2,vE/2vT!
, ~3.21!

j3
~2l 11!5

j3@Al
2~r2,vE/2vT!1Al 11

2 ~r2,vE/2vT!#22Al~r2,vE/2vT!Al 11~r2,vE/2vT!

Bl~r2,vE/2vT!
, ~3.22!
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whereA(2l 11) is the degree of circular polarization of ha
monic number (2l 11). The specific analysis given belo
will demonstrate the uniqueness of the mechanisms
scribed by these general expressions.

4. In this section we examine the asymptotic propert
of the relations obtained in the preceding section, where
inequality ~2.4! holds so well that it can be assumed th
vE /vT→`. Neglecting the thermal motion completely, w
can use the asymptotic result Eq.~A1.10!. This corresponds
to the fact that

Al~r2,`![Al
~3/2!~r2!5

G~3/22 l !

uAu3/2G~3/2!
P1/2

l S 1

uAu D , ~4.1!

whereG(z) is the Euler function andPn
l (z) is the Legendre

function. Equation~4.1! corresponds to coefficients in th
Fourier series expansion of the solutions of the Lapl
equation~Refs. 10 and 17, §33; Ref. 18, Eq.~3.10!!. The
Legendre functions can be expressed in terms of the c
plete elliptic integralsE(k) and K (k). The corresponding
expressions, obtained on the basis of Refs. 18 and 19, ca
found in Appendix 2. They are helpful for describing th
properties of harmonics with low numbers. For example,
characterize the intensity of the third harmonic the cor
sponding expression~3.20! can be represented in the form

B1~r2,`!5
4~11r2!

p2r8~12r4!2 H @16231r4115r8#E2

3SA 2r2

11r2D 1~12r2!2~1627r4!K2

3SA 2r2

11r2D 22~1629r413r8!~12r2!E

3SA 2r2

11r2DK SA 2r2

11r2D J . ~4.2!

For a low degree of circular polarizationA of the warming
radiation~or, equivalently, for a large difference of the max
mum degree of linear polarizationr2 from 1! the number of
the generated harmonics is small. This can be easily s
from Eq. ~A3.12! of Appendix 3. Conversely, the number o
harmonics generated in the plasma becomes large for a s
degree of circular polarization of the warming radiation
e-

s
e

t

e

-

be

o
-

en

all

uAu!1, ~4.3!

when the polarization is almost planar. In the limit~4.3!
asymptotic formulas must be used for the Legendre fu
tions. The corresponding expressions can be found in App
dix 3.

We turn first to the third harmonic (l 51) in the limit
~4.3!. Using Eq.~A3.4! we can write

A1
~3/2!~r2!2A2

~3/2!~r2!5
3

p&
H ln

64

A2 2
14

3 J , ~4.4!

A1
~3/2!~r2!1A2

~3/2!~r2!5
25/2

pA2 . ~4.5!

This makes it possible, specifically, to obtain for Eq.~3.20!

B1~r2,`!58/p2A2. ~4.6!

We thereby have for the efficiency of third-harmonic gene
tion

h~3!5
1

8p2A2

n2~E,1!

v2 . ~4.7!

The presence of the square of the low degree of circu
polarization in the denominator in Eq.~4.7! attests to the
important phenomenon whereby generation intensifies w
the polarization of the warming pump deviates by a sm
amount from planar polarization.

We now consider the polarization of the third harmon
In accordance with Eqs.~3.21! and ~3.22! and the expres-
sions~4.4! and ~4.5!, we obtain

A~3!5j2
~3!53AF ln

8

uAu
2

7

3G , ~4.8!

j3
~3!.2S 12

1

2
@j2

~3!#2D'21. ~4.9!

Sincej2
(3) is small, Eq.~4.9! indicates that the polarization o

the harmonic, just like that of the polarization of the warm
ing radiation, is almost planar. However, the overall min
sign in Eq.~4.9! means that if the pump is polarized almo
along thex axis, then the harmonic is polarized in a perpe
dicular direction, i.e., almost along they axis. This remark-
able property contrasts sharply with the result obtained in
theory of harmonic generation by plane-polarized radiati
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where the harmonics were found to be polarized in the
larization plane of the pump.6 Another important property o
the harmonic polarization is given by Eq.~4.8!, according to
which the degree of circular polarization of the third ha
monic is logarithmically (lnuAu) greater than the degree o
circular polarization of the pump.

We now examine the properties of the high harmoni
Above all, we note that for the high harmonics Eq.~3.20!
reduces to~4.6!. Therefore we have for the generation ef
ciency of all harmonics, under the condition~4.3!, in a cold
plasma

h~2l 11!5
n2~E,l !

2p2l 2~ l 11!2v2A2 . ~4.10!

The general formula for the degree of circular polariz
tion of the harmonics under the condition~4.3! is

A~2l 11!5AH ~2l 11!F ln
2

uAu
2cS l 1

3

2D2CG112
2

2l 13J .

~4.11!

Clearly the logarithmic (lnuAu) increase in the circular polar
ization is a general property. For high harmonics,l @1, it
follows from Eq.~4.11! that

A~2l 11!5AlF ln
4

A2l 2 22CG . ~4.12!

Hence, the circular polarization of the harmonics increase
their order increases. Note that the right-hand side of
~4.12! remains small compared to 1. The latter assertion
associated above all with the fact that the asymptotic re
sentation~A3.4! is applicable only if

A2l 2!1. ~4.13!

The smallness of the left-hand side of the inequality~4.13! is
a consequence of the anomalous increase in the gener
efficiency of high harmonics compared with the case of p
nar polarization~compare Refs. 6 and 8!.

When the inequality~4.13! is not satisfied, the coeffi
cientsAl

(3/2)(r2) are given by the asymptotic representati
~A3.13!, according to which it can be asserted that if t
dependence of the Coulomb logarithm onl does not lead to
cutoff of the harmonic series~3.5! and ~3.6!, then in the
cold-plasma approximation we are considering, such a cu
arises sharply~exponentially! at l;uAu21.

5. Having established the important role of the polariz
tion of the plasma-warming radiation, we now draw attent
to the nonlinear change, following from our analysis, in th
polarization accompanying absorption of the radiation. To
so, we consider the fundamental harmonic, whose cur
density j (1) can be written, according to Eqs.~2.11! and
~3.12!,

] j a
~1!

]t
5

vLe
2

4p
Ea1sab

~1!
]Eb

]t
, ~5.1!

where sab
(1) is given by Eqs.~3.13! and ~3.14!. Since the

electric field vector of the pump satisfies
-

.

-

as
q.
is
e-

ion
-

ff

-
n

o
nt

]2E

]z2 5
1

c2

]2E

]t2 1
4p

c2

] j ~1!

]t
, ~5.2!

taking account of Eqs.~3.15! and ~3.16! and assumingea

andE to be slowly varying functions of the coordinatez, we
obtain the following truncated equations for them:

1

E

dE

dz
52

2pv

kc2 ~sxx
~1!ex

21syy
~1!ey

2!

52
vLe

2 n~E,0!

2kc2v
@A0

~3/2!~r2!2r2A1
~3/2!~r2!#, ~5.3!

dr2

dz
52

2pv

kc2 ~12r4!~sxx
~1!2syy

~1!!

5
vLe

2 n~E,0!

kc2v
~12r4!A1

~3/2!~r2! . ~5.4!

Making use of Eqs.~A2.3!, ~5.3! assumes the form

1

E

dE

dz
52

vLe
2 n~E,0!

pkc2vA11r2
K SA 2r2

11r2D , ~5.5!

which corresponds to the law, established in Ref. 10, that
absorption of the strong polarized radiation in plasma
pends nonlinearly on the polarization of the radiation. Wh
the condition~4.3! is satisfied, it follows from Eq.~5.5! that

1

E

dE

dz
52

vLe
2 n~E,0!

vkc2p&
ln

8

uAu
[

1

z~E,A!
, ~5.6!

where z(E,A) is the characteristic absorption length. N
glecting the relatively weak logarithmic dependences,
have for the law expressing the decrease of the field

E3~z!.E3~0!23z/z~E~0!,A~0!!. ~5.7!

Equation ~5.4! describes the change in the degree
maximum linear polarizationL[r2 of the warming radiation
as it is absorbed while propagating into the plasma (z.0).
The positiveness ofA1

(3/2)(r2) corresponds to the fact thatL
increases in the process. This property corresponds to
dependence of the polarization of the warming radiation
its intensity. This dependence is characterized by the follo
ing nonlinear equation:

E
dr2

dE
52p~12r4!A11r2A1

~3/2!~r2!FK SA 2r2

11r2D G21

.

~5.8!

The solution of this equation is especially simple in the ca
~4.3!, when Eq.~5.8! reduces approximately to

dE

4E
5 ln

64

A2 dS A2

64D . ~5.9!

Hence follows the law expressing the decrease of the de
of circular polarization of the plasma-warming radiation
the presence of inverse bremsstrahlung absorption of this
diation:
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A2~z!

64 F ln
64

A2~z!
11G5

A2~0!

64 F ln
64

A2~0!
11G2

1

4
ln

E~0!

E~z!
.

~5.10!

The physical reason for this phenomenon is the anisotrop
the dissipative conductivity tensor~3.13! and ~3.14!, for
which in the case~4.3! we have for a cold plasma

sxx
~1!5

e2ne

mv2 n~E,0!
21/2

p F ln
8

uAu
21G ,

syy
~1!5

e2ne

mv2 n~E,0!
25/2

pA2 . ~5.11!

It is obvious that they component of the field is absorbe
relatively more efficiently than thex component. This is
what leads to the increase in the maximum degree of lin
polarization.

6. Having established in the cold-plasma model a nu
ber of striking nonlinear polarization properties, we mu
now analyze the role of the thermal motion of the particl
This will make it possible to eliminate the seeming incons
tency, facilitate the transition to the case of planar polari
tion of the pump, and determine the magnitude of the co
sponding anomalies. To this end, we turn to Eq.~3.9! for
Al(r

2,N), whereN5vE/2vT@1 according to Eq.~2.4!.
Equation~3.9! can be rewritten in the form

Al~r2,N!5Al
~3/2!~r2!2dal~A2,N!, ~6.1!

where

dal~A2,N!5
2

Ap
E

N2

`

dzAze2zI l~A12A2z!. ~6.2!

For a strong plasma-warming field, by virtue of the conditi
~2.4!, the asymptotic expansion of the functionI l(r

2z) ~Ref.
13, Eq. 8.451.5! can be used in the integrand in Eq.~6.2!.
The result is

dal~A2,N!5
23/2

p H 1

A2 expS 2
A2N2

2 D
2

1

4 S l 22
1

4DE1S A2N2

2 D J , ~6.3!

whereE1(z) is the exponential integral~Ref. 19, Eq. 5.1.1!.
Here, small terms; l 2A2vT

2/vE
2 in this asymptotic expansion

have been dropped.
Since E1(z);z21 exp(2z) for z@1, it is obvious that

the quantity~6.3! is exponentially small when

N2A25~AvE/2vT!2@1. ~6.4!

This inequality determines the region of applicability of t
cold-plasma model.

It is obvious that under the condition~2.4! the inequality
~6.4! can break down only if the degree of circular polariz
tion is small, whenAl

(3/2)(r2) has the form~A3.4!. This
means that in the region where it is important to take acco
of the thermal motion Eq.~6.1! can be represented in th
form
of

ar

-
t
.
-
-
-

-

nt

Al~r2,N!5
23/2

p H 1

A2 F12expS 2
A2N2

2 D G
1

1

2 S l 22
1

4D F1

2
E1S A2N2

2 D2
1

2
ln

4

A2

1cS l 1
3

2D1C2
1

2G2
l

2J . ~6.5!

This equation completely describes the effect of the ther
motion of the particles under our conditions of a stro
warming field ~2.4! on all anomalous polarization phenom
ena discussed above. Here we examine the limit of a v
low degree of circular polarization

A!vT /vE , ~6.6!

where the transition to the previously studied case of pla
polarized radiation can be examined. Under the conditi
~6.6!, Eq. ~6.5! assumes the form

Al S r2,
vE

2vT
D5

23/2

p H vE
2

8vT
2 2

1

4 S l 22
1

4D
3F ln

vE
2

2vT
2 22cS l 1

3

2D2C11G2
l

2J ,

~6.7!

which does not depend on the polarization. Hence we h
for the high harmonics (l @1)

Al S r2,
vE

2vT
D5

23/2

p H vE
2

8vT
2 2

l 2

4

3F ln
vE

2

2l 2vT
2 2C11G1o~1!J . ~6.8!

This equation shows, specifically, that forl .vE /vT the har-
monics series cuts off.8 Under such conditions, we obtain fo
the high harmonics

Bl S r2,
vE

2vT
D5

2

p2 S l 2F ln
vE

2

2l 2vT
2 2CG2

1A2
vE

4

16 vT
4D .

~6.9!

Accordingly, we obtain for the degree of circular polariz
tion of the high harmonics

A~2l 11!5
A~vE

2/2vT
2!l @ ln~vE

2/2l 2vT
2!2C#

~AvE
2/4vT

2!21 l 2@ ln~vE
2/2l 2vT

2!2C#2 . ~6.10!

The degree of circular polarization of the harmonics may
be small. However, in the plane polarization limit (A50) the
expression~6.10! vanishes. Equation~3.6! likewise vanishes,
while according to the law

h~2l 11!5
n2~E,l !

8l 2p2v2 H F ln
vE

2

2l 2vT
2 2CG2

1
A2vE

4

16l 2vT
4J ~6.11!

as A→0 the generation efficiency of the high harmoni
tends to the formula corresponding to the case of a pla
polarized pump.6,8

7. The striking polarization effects characterizing th
generation of harmonics in plasma substantially increase
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efficiency of such a process. Indeed, an estimate using
~6.10! at the limit of applicability of this expression, justifie
by Eq. ~6.5!, with (A2vE

2/8vT
2);1 yields according to Eq

~6.9! the following estimate of the efficiency~3.19! of high-
harmonic generation:

h~2l 11!;
n2~E,l !

2p2v2

vE
2

8l 4vT
2 . ~7.1!

This expression is greater than the efficiency~6.11! ~in the
limit A50) of harmonic generation by plane-polarize
plasma-warming radiation on account of the fact that
condition

vE
2

2l 2vT
2 @F ln

vE
2

2l 2vT
2 2CG2

~7.2!

holds for essentially all harmonics. Aside from this polariz
tion increase in the intensity of the harmonics emitted dur
coherent oscillation of electrons in a laser radiation field, i
necessary to call attention to the anomaly in the polariza
of the harmonics. Indeed, the Stokes parameterj3

(2l 11) of the
harmonics with small but finite degree of circular polariz
tion of the pump field turned out to be different in sig
according to Eqs.~4.9! and~4.12!, from the Stokes paramete
j3 of the warming radiation. This means that in this case
harmonics are polarized, to a high degree of accuracy,
pendicular to the polarization plane of the pump. In the tr
sitional region, as the degree of circular polarization of
pump decreases,A(2l 11) increases, reaching 1, according
Eq. ~6.11!, when

uAu
vE

2

4vT
2 5 l F ln

vE
2

2l 2vT
2 2CG ,

and then decreases to zero forA50. Accordingly, the Stokes
parameterj3

(2l 11) changes from a value close to21, passes
through zero, and increases up to11, corresponding for
A50 to polarization of the harmonic in the polarizatio
plane of the pump. We have pointed out the properties of
nonlinear phenomenon whereby the polarization of
warming radiation changes as a result of inverse bremss
lung, having in mind the importance of the pump polariz
tion for the effects discussed.

We present several formulas in a form convenient
making estimates. These formulas, in the first place, mak
possible to see the condition of applicability of the resu
obtained and, in the second place, indicate the efficienc
the conversion of pump radiation into high harmonics. Fi
to demonstrate the obviousness of the fact that the cond
~2.5! is satisfied, we write

vE
2

vT
2 53.73103

ql2

T
.

Here and belowq is the flux density of the pump radiation i
units of 1016 W/cm2, l is the pump wavelength in microns
andT is the electron temperature in electron volts. To see
possibility of using the nonrelativistic approximation w
present the relation
q.

e

-
g
s
n

-

e
r-
-

e

e
e
h-
-

r
it

s
of
t,
n

e

vE
2

c2 57.331023ql2.

In accordance with Eq.~6.11!, the generation efficiency o
the higher harmonics, which depends on the harmonic n
ber, is given for a plane-polarized pump by

n2~E!

p2v2 S ln
vE

vT
D 2

55310210
Z2ne

2

l4q3 S L

10D
2S ln

vE

vT
D 2

.

Here and belowne is the electron number density in units o
1020 cm23.

The law ~7.1!, which depends on the harmonic numbe
of the high-harmonic generation efficiency in the presence
a low degree of circular polarization is characterized by
parameter

n2~E!vE
2

~2pv!2vT
2 5431027

Z2ne

l2q2T S L

10D
2

.

The theoretical results in this paper should make it p
sible to formulate detailed experiments studying the pheno
enon of coherent bremsstrahlung generation of harmonic
plasma. Comparing our plasma model with the atomic mo
of harmonic generation from Ref. 21 shows that the prop
ties that we have established should also appear in non
ized gases if the radiation intensity is sufficiently high.
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the Russian Fund for Fundamental Research~Project 96-02-
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‘‘New Coherent Sources of Ultrashort Pulses,’’ prepared
accordance with law No. 212/92 of the Italian governmen

APPENDIX 1

Substituting the Fourier expansion~3.4! into Eq. ~3.2!
gives

]

]y H j x

j y
J 52E

vLe
2

4p (
l 50

`
n~E,l !

v

3H Ml
~1 !S d1 ,d2

vT
2

2vE
2 D sin@~2l 11!~vt2wx!#,

Ml
~2 !S d1 ,d2

vT
2

2vE
2 D cos@~2l 11!~vt2wx!#,

~A1.1!

where vLe5A4pe2ne /m is the electron Langmuir fre-
quency, and

Ml
~6 !~a,b;a2!5

1

A8p
E

0

`

dx xE
0

p

du

3expS 2
x2a2

sin2 u D @Jl 11~ax!Jl~bx!

6Jl 11~bx!Jl~ax!#. ~A1.2!

Using Eq. 3.363.1 of Ref. 13~p. 329!, it can be shown that
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E
0

p

du expS 2
a2x2

sin2 u D5p@12F~ax!#, ~A1.3!

where F(z)5(2/Ap)*0
zdte2t2 is the error function. This

makes it possible to represent Eq.~A1.2! in the form

Ml
~6 !~a,b;a2!5

1

A2p
E

a

`

dtE
0

`

dx x2e2x2t2

3@Jl 11~ax!Jl~bx!

6Jl 11~bx!Jl~ax!#. ~A1.4!

Using the recurrence relations

Jl 11~z!52
d

dz
Jl~z!1

l

z
Jl~z!

for the Bessel functions~Ref. 13, Eq. 8.472.2!, this expres-
sion can be reduced to the well-known integral

M ~6 !~a,b;a2!5F l

a
2

]

]a
6S l

b
2

]

]bD G
3

1

A2p
E

a

`

dtE
0

`

dx xJl~ax!Jl~bx!e2x2t2
.

~A1.5!

Indeed, according to Eq. 6.333.2 of Ref. 13~p. 732!, we have

E
0

`

dx xJl~ax!Jl~bx!e2x2t2
5

1

2t2

3expS 2
a21b2

4t2 D I l S ab

2t2D ,

~A1.6!

where I l(z) is a modified Bessel function. Using now th
recurrence relation~Ref. 13, Eq. 8.486!

l I l~z!2z
dIl~z!

dz
52zIl 11~z!,

Eq. ~A1.5! can be put into the form

M ~6 !~a,b;a2!5
~a6b!2

Ap
E

0

~1/8a2!
dzAz

3exp~22@a21b2#z!@ I l~4abz!

7I l 11~4abz!#. ~A1.7!

In the cold-plasma limit,a2→0, this relation assumes th
form

Ml
~6 !~a,b;0!5

~a6b!2

Ap
E

0

` dzAz

~4ab!3/2

3expS 2
@a21b2#z

2ab D @ I l~z!7I l 11~z!#.

~A1.8!

Using now Eq. 6.624.5 of Ref. 13~p. 727!
E
0

`

expH 2
tz

Az221
J I m~ t !tndt

5G~n112m!~z221!~11n!/2Pn
m~z!, ~A1.9!

wherePn
m(z) is a Legendre function, we obtain

Ml
~6 !~a,b;0!5

~a6b!G~3/22 l !

u2~a22b2!u3/2G~3/2!
P1/2

l S Ua21b2

a22b2U D .

~A1.10!

The latter equation makes it possible, specifically, to write
expression for the following improper integral:

E
0

`

dx x@Jl 11~ax!Jl~bx!6Jl 11~bx!Jl~ax!#

5
~a6b!G~3/22 l !

ua22b2u3/2G~3/2!
P1/2

l S Ua21b2

a22b2U D . ~A1.11!

APPENDIX 2

We present here several expressions for the coeffici
in the Fourier expansion~4.1!, which can be written in terms
of complete elliptic integrals. We use, first, Eq. 8.13.5
Ref. 19~p. 159!

P1/2~z!5
2

p
~z1Az221!1/2ESA 2~z221!1/2

z1~z221!1/2D ~A2.1!

and, second, Eq. 3.6.1.4 of Ref. 18~p. 149!

Pn
m~z!5~z221!m/2

dm

dzm Pn~z!. ~A2.2!

These relations lead to the following expressions for the
efficients~4.2!:

A0
~3/2!~r2!5

2

p

A11r2

12r4 E~k!,

A1
~3/2!~r2!5

2

p

A11r2

12r4 H E~k!1
12r2

r2 @E~k!2K ~k!#J ,

A2
~3/2!~r2!5

2

p

A11r2

12r4 H E~k!14
12r4

r4

3FE~k!2
1

11r2 K ~k!G J , ~A2.3!

A3
~3/2!~r2!5

2

p

A11r2

12r4 H E~k!2
~12r4!~11r2!

12r4

3@~27k42128k21128!K ~k!

1~23k4164k22128!E~k!#J ,

where

k5A 2r2

11r2 and 12k25
12r2

11r2 . ~A2.4!
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APPENDIX 3

The asymptotic expansion, required for our analysis,
the Legendre functionsPn

l (z) for half-integern and large
argumentsz can be found in Hobson’s book.17 Retaining the
required higher terms of the asymptotic expansion and m
ing convenient transformations, we can write

P1/2
l ~z!5

1

ApG~3/22 l !
~2z!1/2H 12

2l

~2z!2 1
1

~2z!2 S l 22
1

4D
3F22 ln~2z!12cS l 1

3

2D12C21G J , ~A3.1!

whereC50.577 . . . is Euler’s constant. This asymptotic e
pression makes it possible to use the following approxim
tion for the Fourier coefficientAl(r

2,`):

Al
~3/2!~r2!5

23/2

p H 1

A2 1
1

2 S F l 22
1

4G
3F2 ln

2

uAu
1cS l 1

3

2D1C2
1

2G2 l D J .

~A3.2!

This expression is also applicable to low harmonic numb
On the other hand, for high harmonics (l @1), for which
c( l 13/2)' ln l11/l , we have, up to and including term
linear in l ,

Al
~3/2!~r2!5

23/2

p H 1

A2 1
l 2

2 F2 ln
2

uAu l
1C2

1

2G1o~1!J .

~A3.3!

The asymptotic expansion~A3.1! is inapplicable for
l 2.z2. We now obtain the required asymptotic represen
tion for the Fourier coefficientsAl

(3/2)(r2) in the limit

l 2@z2. ~A3.4!

To do so, we employ Eq.~8.702! of Ref. 13~p. 1013!

Pn
m~z!5

1

G~12m! S z11

z21D m/2

FS 2n,n11;12m;
12z

2 D ,

~A3.5!

which expresses the Legendre function in terms of the
pergeometric function. Using also the relation

P1/2
2 l~z!5

G~3/22 l !

G~3/21 l !
P1/2

l ~z!, ~A3.6!

we can now express the Fourier coefficientsAl
(3/2)(r2) in

terms of hypergeometric series as follows:

Al
~3/2!~r2!5

G~3/21 l !

uAu3/2G~3/2!G~ l 11! S 12uAu
11uAu D

l /2

3FS 2
1

2
,
3

2
; l 11;

1

2
2

1

2uAu D . ~A3.7!

Since the hypergeometric seriesF(a,b;c;z) for large values
of c is an asymptotic expansion inc, to obtain the desired
asymptotic representation of the coefficientsAl

(3/2)(r2) we
employ
f

k-

-
-

s.

-

-

FS 2
1

2
,
3

2
; l 11;

1

2
2

1

2uAu D.11
3~12uAu!

8l uAu
1oS 1

l 2A2D .

~A3.8!

Since, further, according to Ref. 20~p. 87!

G~3/21 l !

G~ l 11!
.Al S 11

3

8l
1...D , ~A3.9!

we obtain

Al
~3/2!~r2!.

2Al

ApuAu3/2 S 11
3

8l uAu
1...D

3expH 2
l

2
ln

11uAu
12uAuJ . ~A3.10!

This asymptotic formula can also be used for degrees
circular polarization that are not small. Assuming now th
uAu!1, it follows from Eq.~A3.10! that

Al
~3/2!~r2!.

2Al

ApuAu3/2
exp~2 l uAu!. ~A3.11!

Finally, we present an interpolation formula describi
the leading terms of the asymptotic expansions of E
~A3.2! and ~A3.11! for large harmonic numbers:

Al
~3/2!~r2!5

23/2l

puAu
K1~ l uAu!, ~A3.12!

whereK1(z) is a modified Bessel function.
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We derive the existence conditions for relativistic shock waves propagating in a perfectly
conducting fluid with a general equation of state that guarantees that the stationary wave has a
continuous profile in the presence of weak viscosity. To this end we study the one-
dimensional solutions of the magnetohydrodynamic equations with a relativistic viscosity tensor.
We allow for anomalous regions of thermodynamic variables and do not use the well-
known condition for the convexity of Poisson adiabats. The results lead to relationships among
the velocities of magnetoacoustic, Alfve´n, and shock waves in front of and behind the
discontinuity that prove to be more stringent than the corollaries of the evolution conditions. In
the nonrelativistic case and in parallel and perpendicular shock waves, any difference
between the two conditions disappears. ©1998 American Institute of Physics.
@S1063-7761~98!00909-3#
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1. INTRODUCTION

The physical criteria determining the admissibility
discontinuities in the solutions of hydrodynamic equatio
play an important role in the theory of shock waves. T
role is especially prominent in the complicated equations
state of superdense matter used, for instance, in relativ
astrophysics. Qualitatively, the derivation of these criteria
relativistic hydrodynamics is no different from the derivatio
of such criteria in the nonrelativistic theory. However, o
results illustrate the specific features of the relativistic tre
ment that emerge when one allows for the additional deg
of freedom related to a magnetic field. It turns out that
magnetohydrodynamics~MHD! the derivation of the two
fundamental existence criteria for shock waves, the evolu
condition and the structure condition, i.e., the existence o
continuous profile in the shock wave in the presence of
bitrarily weak viscosity, differ in the relativistic case, a
though they coincide in the nonrelativistic case.

It is well known that the conservation laws that rela
thermodynamic quantities on the two sides of the shock fr
are insufficient to define unambiguously a physically adm
sible shock transition. This forces one to introduce additio
criteria that ensure the uniqueness of the solutions of
hydrodynamic equations near the discontinuity. Among th
additional criteria is the most general evolution condition
shock waves.1 In classical MHD, the evolution criterion
leads to relationships between the velocities of magne
coustic and Alfve´n waves, and the velocity of the shoc
wave with respect to the medium in front of and behind
discontinuity,2,3 which bounds the domain of existence
various types of shock wave.

It is interesting to compare the evolution conditions w
other constraints on the parameters of a shock wave
emerge in the weak-viscosity method. Introduction of visc
ity is one of the most effective and physically justifiab
tools that make it possible to define discontinuous flow as
4781063-7761/98/87(9)/6/$15.00
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limit of continuous solutions~see, e.g., Ref. 4!. Here the
admissibility condition for a shock transition from a state
of the medium in front of the shock front to a state 1 behi
the front is obtained as the existence condition for a visc
profile of the shock wave, stationary viscous flow who
parameters change continuously from state 0 to state 1.

In the present paper, to obtain this condition we intr
duce into the equations of relativistic MHD5,6 a relativistic
viscosity tensor1 and then pass to the zero-viscosity lim
We found that it is possible to examine the general equa
of state without limiting ourselves to the requirement that
Poisson adiabats be convex, a requirement that plays an
portant role in shock wave theory as one of the Bethe–W
conditions for a normal medium.4 Classical hydrodynamics
states4 that if the convexity condition is violated, the entrop
criterion does not eliminate all nonphysical solutions an
therefore, is not sufficient for selecting the admissible so
tions. The results of shock-wave studies in relativis
MHD5,6 also rely on the convexity property, which in th
relativistic range has the form (]2p/]X2)S.0, where
X5(«1p)V2, p is the pressure,« is the entropy density,
V is the specific volume~per baryon!, andS is the specific
entropy.

The convexity property is not a thermodynam
requirement,1 and it can break down in complicated equ
tions of state. In the past this fact has drawn much atten
to the study of relativistic shock waves propagating in me
with anomalous properties in connection with hydrodynam
models of a quark-to-hadron phase transition~see, e.g., Refs
7–12 and the literature cited therein!. The general admissi
bility criteria for relativistic shock waves with a viscous pro
file were obtained by Bugaevet al.11,12 One result of this
work was a constraint on the shock wave velocities12 that
coincides with the conclusions drawn from the evoluti
conditions~just as in nonrelativistic hydrodynamics1!.

In the present paper we generalize the results of Bug
et al.11,12 to the case of MHD for a fluid with perfec
© 1998 American Institute of Physics
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conductivity.5,6 The existence condition for a viscous profi
in a relativistic shock wave makes it possible to formula
the admissibility criterion for such a wave in terms of i
equalities that contain the equation of state. This leads
restrictions on the shock wave velocities, which in our ca
differ from the corollaries of the evolution conditions. Th
difference disappears, however, in the nonrelativistic lim

2. BASIC RELATIONSHIPS

The equations of motion of an ideal relativistic fluid wi
infinite conductivity and unit permeability in a magnetic fie
are derivable from the conservation laws for the magneto
drodynamic energy–momentum tensor5,6

Tmn5~p* 1«* !umun2p* gmn2
1

4p
hmhn, ~1!

whereum is the 4-velocity of the fluid,gmn5gmn5diag(1,
21,21,21), hm52(1/2)emabgFabug is the magnetic field,
eabgd is the Levi-Civita symbol,Fab is the electromagnetic
field tensor, and

p* 5p1
1

8p
uhu2, «* 5«1

1

8p
uhu2, uhu252haha.0.

We assume that the pressurep is related to the energy den
sity « and the baryonic number densityn ~or the density of
any other conserved charge! via a sufficiently smooth equa
tion of statep5p(«,n).

Energy–momentum conservation must be suppleme
by baryonic charge conservation and the Maxwell equatio
Continuous fluid flow is described by the equations of m
tion

]mTmn50, ~2!

]m~num!50, ~3!

]m~umhn2unhm!50. ~4!

If there is a discontinuity in the flow, the conservation law
relate the hydrodynamic and electrodynamic properties
the two sides of the shock wave:1

D10@Tmnl m#50, ~5!

D10@numl m#50, D10@~umhn2hmun!l m#50, ~6!

where l m is the normal to the discontinuity’s hypersurfac
l ml m521, andD10(F)5F12F0, with F0 andF1 the values
of the quantityF in front of and behind the discontinuity. Fo
a given state of the medium in front of the shock front, E
~5! and ~6! determine the curve of the shock transitions,
the Hugoniot–Taub–Lichnerowicz shock adiabat.5,6 How-
ever, not all such transitions are admissible.

To analyze the admissible shock waves that satisfy E
~5! and ~6!, we ‘‘smear’’ the discontinuity by introducing
viscosity effects, i.e., we replace Eq.~2! with

]m~Tmn1tmn!50, ~7!

where
to
e

y-

ed
s.
-

n

,

.
r

s.

tmn5h~um,n1un,m2umuaun,a2unuaum,a!

1S z2
2

3
h D ]ua

]xa
~gmn2umun! ~8!

is the relativistic viscosity tensor.1 We then consider Eqs.~3!
and~4! together with Eq.~7! under the assumption that the
exists a solution that tends to a limit ash→0 andz→0 and
describes discontinuous flow of an ideal fluid.

3. EXISTENCE CONDITIONS FOR A SHOCK TRANSITION

Strictly speaking, a thorough study of such phenome
presupposes a detailed analysis of the physical process
the shock front that takes into account the extent of the sh
front. However, when studying superdense matter, the
searcher is limited to phenomenological models, which
not allow for a description of the microstructure of the sho
wave. Hence it would be interesting to analyze the vario
methods of regularizing discontinuous flow and to comp
the different requirements that limit the class of admissi
relativistic shock waves. Such studies have been done
classical MHD ~see, e.g., Ref. 13 and the literature cit
therein!. The conclusions drawn in these studies show th
generally speaking, the criteria for the existence of sho
waves depend on the way in which the discontinuity
smeared. For instance, Kulikovski� and Lyubimov13 found
that in the presence of magnetic viscosity, only evolution
shock waves possess a continuous profile for any relat
ship between the dissipation coefficients. A different intr
duction of dissipation effects presupposes allowance for
nite electrical or thermal conductivity. The method
smearing via the tensor~8!, which is used in this paper, ha
been chosen because of its simplicity and the possibility
comparing the results with those of a nonmagnetic case.

Below we consider shock waves that are obtained ir
spective of the way in which the limit ofh→0 andz→0 is
attained. This makes it possible to limit ourselves to the c
whereh50, and one viscosity coefficientzÞ0 is sufficient
for the shock wave to have a continuous profile and to blo
the evolution conditions.

A stationary shock wave propagating in the spacel
direction l m can be locally represented in an appropriate r
erence frame by a stationary viscous flow that depends o
on one variable,x5xml m . We select a system of coordinate
such that$ l m%5$0,1,0,0% and x5x1. Then, asx→2`, all
viscous-flow parameters tend to constant values, to which
attach the index ‘‘0,’’ corresponding to the state in front
the shock wave; asx→`, they tend to values to which we
attach the index ‘‘1,’’ corresponding to the state behind t
shock wave. Accordingly,u1.0.

Equations~7!, ~3!, and~4! yield the following constants
of the motion:

T1n1t1n5const, ~9!

u1hn2h1un[Hn5const, ~10!

nu1[ j 5const. ~11!
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Sincetmn→0 asx→6`, Eqs.~5! and ~6! are valid for
the corresponding asymptotic values ofTmn, n, andhm ob-
tained from the continuous solutions of the system~9!–~11!.
Reasoning by analogy with classical hydrodynamics,4 we
find that the existence conditions for the solutions of t
boundary value problem can be interpreted as the admiss
ity conditions for the corresponding shock transiti
u(0)

m ,h(0)
m ,n0 ,p0→u(1)

m ,h(1)
m ,n1 ,p1, and these states mu

satisfy Eqs.~5! and ~6! for a shock wave.
Next, without loss of generality, we can putu3[0 and

h3[0; the componentsu1 andh1 are normal to the surfac
x5const parallel to the shock front, andu2 and h2 are the
tangential components. We are still free to select the re
ence frame, so we choose one in whichu(0)

2 50.
Equation~10! yields

hm5
1

u1
@Hm2umHaua#. ~12!

Multiplying ~9! by un and allowing for the fact thattmnun

50, we find that

«* u15T~0!
1mum , ~13!

which can be used to express« andhm in terms ofu1 andu2.
Eliminating the single derivativedu1/dx from ~9! at h

50 for m51,2, we arrive at a relationship that linksu1 and
u2. Combining this with~12! and ~13!, we obtain

~H2u22H0u0!~H2u02H0u2!54pu1~T~0!
10 u22T~0!

12 u0!.

This leads to a relationship between the components of
three-dimensional velocity,v15u1/u0 andv25u2/u0:

v152A
~v22a!~v22b!

v22c
, ~14!

where

A5
H0H2

4pT~0!
10 , a5

H2

H0
, b5

1

a
, c5

T~0!
12

T~0!
10

,

which is linear inv1 and quadratic inv2. Here we are inter-
ested in the connected part of the curve~14!, which contains
the pointv250. At m51 Eq. ~9! yields

z@11~u1!2#
du1

dx
5T112T~0!

11 . ~15!

Since velocities can be expressed in terms of the den
n ~see Eq.~11!!,

u15
u~0!

1 n0

n
, ~16!

the problem reduces to a study of a first-order ordinary
ferential equation inn(x) or u1(x). Equations~12!–~16!
fully determine the structure of the shock transition.

Using Eqs.~12!–~14! and ~16!, we can rewrite Eq.~15!
in the form

z
n0u0

1

n2

dn

dx
5 p̃~n!2p~ «̃~n!,n!, ~17!
s
il-

r-

e

ity

-

where we have introduced the notation

p̃~n!5$11~u1!2%21H T~0!
11 1

1

4p
~Haua!22T~0!

1mumu1J
2

1

8p
~u1!22$~Haua!22HaHa%,

«̃~n!5
T~0!

1mum

u1
2

1

8p
~u1!22$~Haua!22HaHa%.

The requirement that the right-hand side of Eq.~17! have
a constant sign inside the interval (n0 ,n1) ~the right-hand
side vanishes at the endpoints of the interval! ensures the
existence of a continuous solution whose asymptotic beh
ior is n(x)→n0 as x→2` and n(x)→n1 as x→`. If, for
instance,n1.n0 and the right-hand side of Eq.~17! is a
positive, continuously differentiable function ofnP(n1 ,n0),
a solution with such properties does indeed exist. But if
right-hand side of Eq.~17! changes sign at a certain poin
betweenn0 andn1, there can be no such solution. One mu
make sure that there is no transition through a branch p
of the functionv2(u1), where the solution can cease to b
differentiable. This point corresponds to the extremumv2

5v2* of the inverse functionu1(v2). To prove this we need
only write Eq.~17! in the form

z
du1

dv2

dv2

dx
5p~ «̃~n!,n!2 p̃~n!,

in which n5n(v2) by virtue of ~11! and~14!, and the right-
hand side is a single-valued function ofv2, and study it in
the neighborhood of this point, wheredu1/dv2'C(v2

2v2* ), CÞ0. Assuming, reductio ad absurdum, that
v2(x* )5v2* at a pointx* , we can easily see that the solutio
can be continued through this point only if the sign of t
right-hand side of Eq.~17! also changes at the same poin
But even if this coincidence occurs, it will not be preserv
under small variations of the equation of state in the nei
borhood of the point$«(v2* ),p(v2* )%. Such variations would
change the position of the root of the right-hand side of E
~17! but not the position of the pointv2* , which depends on
the equation of state only at points 0 and 1~see Eq.~14!!.
Hence this case must be ruled out, and we must assume
u1 andu2 vary monotonically along the solutions.

Thus, we have arrived at the admissibility criterion for
stationary shock transition,

~n02n1!~p~ «̃~n!,n!2 p̃~n!!>0, ~18!

for all n betweenn0 andn1, where it is assumed that Eq.~14!
has in this interval a unique regular solution with respect
v2. Here we cannot rule out the possibility that the curvep

and p̃ touch ~at the Chapman–Jouguet point!, which is al-
lowed in the weak-viscosity limit, when the left-hand side
Eq. ~18! can vanish at a point betweenn0 and n1 but does
not change sign. This criterion is considered a necessary
It is not, however, a sufficient criterion, e.g., for an equati
of state that leads to multivalued shock adiabats: from c
sical hydrodynamics we know that here there can be m
than one discontinuous solution even if the existence co
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tions for a viscous profile of the shock wave are met, a
removing this ambiguity requires imposing additional con
tions of a nonhydrodynamic nature.14,15

The same criterion can be formulated in terms of
Hugoniot–Taub–Lichnerowicz shock adiabat4,5 ~see Appen-
dix A!, with the two forms being equivalent.

4. COROLLARIES OF CRITERION „18…

Below we will need one more relationship that is sat
fied identically along the solutions of Eqs.~9!–~11!. This
relationship can be obtained if we allow for the explicit for
of the energy–momentum tensor~1!:

T~0!
12 H02T~0!

10 H25~T121t12!H02~T101t10!H2

52A11~u1!2 h̃2FR2z~u1!2
du1

dx G . ~19!

Here R5(p* 1«* )(u1)22(h1)2/4p, and h̃2 is the trans-
verse component of the magnetic field in the reference fra
in which u250:

h̃ 25
h2~11~u1!2!2u1u2h1

u0A11~u1!2
5u0

h22v2h0

A11~u1!2
.

Since we are interested in a continuous solution in the in
val (2`,`), from ~19! it follows that h̃2 does not change
sign ~or h̃2[0 in front of and behind the shock wave!. This
implies that in relativistic MHD there can be no turning on
turning off of shock waves~cf. Ref. 5!. Recall that the tan-
gential magnetic field in front of a shock wave that is su
denly turned on is zero, and behind it the field is nonze
such shock waves are admissible in classical MHD.3 The fact
that there can be no relativistic turning on or turning off o
shock wave has also been analyzed in detail using ano
method5

Sincedu/dx→0 asx→6` and the right-hand side o
Eq. ~19! at these limits is proportional toR, Eq. ~19! implies
that in a nontrivial caseR does not change sign either. Th
relationship

~uA!25
~h1!2

4p~p* 1«* !

determines the component of the 4-velocity of Alfve´n waves
propagating along thex axis, i.e., the sign ofR is the same as
that of the difference (u1)22(uA

1)2, which, consequently, is
conserved in the transition through the shock wave. Acco
ingly, if R.0, the equations describe in the weak-viscos
limit a fast shock wave, while ifR,0, they describe a slow
shock wave.

An additional condition imposed on velocities follow
from the result thatdu1/dv2 must not change sign along a
admissible path. Using Eq.~~14!, we calculate this quantity
in front of the shock front (x→2`) in a reference frame in
which u(0)

2 50:

du1

dv2
U

~0!

52
4pu0

h1h̃ 2
R*U

~0!

, ~20!
d
-

e

-

e

r-

-
;

er

-
y

where

R* 5~p1«!~u1!2@11~u1!2#2
1

4p
~h1!2

contains components of velocity and magnetic field that
normal to the planex5const, and has the same form in in
ertial reference frames moving parallel to that plane. Sin
the sign ofdu1/dv2 does not change in such motion,R*
determines this sign in an arbitrary reference frame of t
type. And sincedu1/dv2 also retains its sign along a solu
tion, the sign ofR(0)* in front of the shock front is the same a
that ofR(1)* behind the shock front. Here we must use the f
that h̃2 andh1 retain their signs~see below! along an admis-
sible path. Note that in the nonrelativistic limitR* and R
coincide.

We thus obtain a relationship similar to~19!,

T~0!
12 H22T~0!

10 H05u1h1S p1«2z
du1

dx D , ~21!

which states that the sign of the longitudinal componenth1

of the magnetic field is preserved.
Now we analyze formula~14! in a reference frame in

which u(0)
2 50. We assume thath(0)

1 Þ0 andh(0)
2 Þ0. ~Note

that the cases of perpendicular (h(0)
1 50) and parallel (h(0)

2

50) shock waves are much simpler.16! In such a reference
frame the expressions for the constants in~14! are

A5
u~0!

1 c

u~0!
0

, a52
u~0!

1 u~0!
0 h~0!

2

h~0!
1

, b5
1

a
,

c52h~0!
1 h~0!

2 F4pS p01«01
~h~0!

2 !2

4p D u~0!
1 u~0!

0 G21

.

Using Eqs.~19! and~20!, one can easily see that the ca
wherec is betweena andb corresponds to a negativeR and
describes a slow shock wave; here the branch of the de
dence~14! containing the initial pointv250 is monotonic.
But if c is outside the interval@a,b#, then R.0, with the
result that the shock wave is fast; in this case the branch
an extremum.

Now we establish a relationship between the velocity
a shock wave and the velocities of magnetoacoustic wave
front of and behind the discontinuity. We expand~18! at 0
and 1. Allowing for ~12!–~14! and ~16!, we see that direct
calculations in the neighborhood of 0 yield

p2 p̃5
d~p2 p̃!

du1 U
u15u

~0!
1

~u12u~0!
1 !5

~p01«0!2

u~0!
1

D~u~0!
1 !

3~u12u~0!
1 !,

where

D~u1!5
Q~u1!

R* ~u1!
,

Q~j!5j4~12cs
2!2j2S cs

21
uhu2

4p~p1«! D1
~h1!2cs

2

4p~p1«!
,
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with cs
25(]p/]«)S the speed of sound; all quantities we

calculated in the neighborhood of 0.
Note thatQ(j)50 coincides with the equation for th

normal components of the 4-velocityof fast and slow mag
toacoustic waves,j f and jsl ~see Refs. 5 and 6!, which are
the roots of the function

Q~j![~12cs
2!~j22j f

2!~j22jsl
2 !.

If we now use the condition~18! in the neighborhood of 0
we obtainD(j)uj5u

(0)
1 .0.

Similar reasoning for the final point 1~with allowance
for appropriate notation; nowj f andjsl are calculated at this
point! yields D(j)uj5u

(1)
1 ,0. We see that if, for instance, i

the initial state (u(0)
1 )2.j f (0)

2 , in the final state~with allow-
ance for the fact thatR does not change sign! we obtain
j f (1)

2 .(u(1)
2 )2.(uA(1))

2.
An additional lower bound on the velocity of fast sho

waves with respect to the medium is obtained if we note t
R* has the same sign at 0 and 1. We denote the compon
of the 4-velocity at whichR* vanishes by

uA* 5A1

2SA11
~h1!2

p~p1«!
21D .

Allowing for the relationship betweenuA and uA* ~see Ap-
pendix B!, we arrive at a relationship for the parameters
front of the shock front:j f (1)

2 .(u(1)
2 )2.(uA(1)* )2>(uA(1))

2.
Examining the feasible alternatives with these inequ

ties in mind, we obtain relationships for the following thre
dimensional velocities in front of and behind the shock fro
the shock-wave velocity vsh, the fast and slow
magnetoacoustic-wave velocitiesv f and vsl , the Alfvén-
wave velocityvA , andvA* , which are all related to the com
ponents of the 4-velocitiesush, j f , jsl , uA , anduA* in the
usual manner. For fast shock waves the characteristic ve
ties obey

ush~0!.v f ~0!.vA~0!
* .vA~0!.vsl~0! ~22!

in front of and

uf ~1!.vsh~1!.vA~1!
* .vA~1!.vsl~1! ~23!

behind the shock front. For slow shock waves we have,
spectively,

vA~0!.vsh~0!.vcl~0! , vsl~1!.vsh~1! . ~24!

Here allowance for the monotonic variation of velocities in
fast shock wave leads to the emergence of a forbidden re
@vA(1) ,vA(1)* #. Such a region is a hallmark of relativisti
MHD: in the classical limitvA(1)'vA(1)* , and the region dis-
appears. We also note that for a parallel shock wavevA

5vA* ; for a perpendicular shock wave both velocities vani

5. DISCUSSION

The necessary condition~18! for the existence of a con
tinuous viscous profile of a shock wave in relativistic MH
also guarantees the growth of entropy, since it originate
the equations with viscosity. This criterion and its altern
form in terms of shock adiabats~see Appendix A! agree in
-

t
nts

i-

:

ci-

-

on

.

in
e

the case of a zero magnetic field with the results of Bug
et al.,11,12 where a similar condition proves sufficient for th
realization of a continuous profile of a shock and its evo
tion. When the magnetic field is taken into account, the
lationships~24! for slow shock waves coincide with the wel
known restrictions on shock-wave velocities,5,6 which can be
derived from the evolution conditions, while the inequaliti
~23! for fast shock waves are more stringent.

Note that condition~18! must be met over the entir
interval @n0 ,n1# and not only at the endpoints; if only fo
this reason it is more stringent that the evolution conditio
However, in a normal nonconducting medium~in nonmag-
netic relativistic hydrodynamics!, where the Poisson adiaba
and hence the shock adiabats do not change the sign of
vexity, the principal constraint is on the velocities of th
shock and acoustic waves. Here, the result is the sa
whether we start with the evolution conditions or with th
assumption that there is a viscous profile,11,12 as in the non-
relativistic case.4 But when we consider the continuous stru
ture of a shock wave in relativistic MHD, a new characte
istic velocity vA* appears, and limits the velocity of fas
shock waves with respect to the medium behind the sh
front. In the nonrelativistic limit, this parameter coincide
with the ordinary Alfvén velocity, and so do the admissibl
intervals of shock-wave velocities. Thus, the more string
constraint on velocities is a reflection of the relativistic n
ture of the process; however, this constraint is lifted for p
pendicular and parallel relativistic shock waves.

In conclusion we reiterate that here we have used a s
cial model for smearing the discontinuity by introducin
weak viscosity. This is not the only possibility, and we b
lieve it would be interesting to examine other methods
regularization, in particular, those that allow for other dis
pation effects.

APPENDIX A: ANOTHER FORM OF THE EXISTENCE
CONDITIONS FOR A SHOCK TRANSITION

For a given initial stateu(0)
m , h(0)

m , V0, p0, where V
51/n is the specific volume, the shock adiabatpH(V) ~see
Refs. 5 and 6! determines the possible shock transitions
the conditions~5! and ~6!. The pH vs. V dependence migh
not be single-valued. By their very definition, the curv
p( «̃(V),V), p̃(V), and pH(V) have common intersection
points only: if at a point V* we have p( «̃(V* ),V* )
5 p̃(n* ), then~see the right-hand sides of~15! and~17!! that
T(* )

1n 5T(0)
1n , i.e., the pointV* belongs to the shock adiaba

and p( «̃(V* ),V* )5pH(V* ). If there is a viscous profile
then by virtue of~15!, these curves intersect only at the in
tial and final points and have no common points in betwe
~with the possible exception of points of tangency!.

Let us examine the relative position of these curves.
H we denote the function that defines a shock adiabat:5

H[w2V22w0
2V0

22~wV21w0V0
2!~p2p0!

1
1

2
~wV22w0V0

2!~c2c0!250,

where
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w5«1p, c25hn
21uhu2~12un

2!.

At the initial point of the adiabat,

]H

]pU
V5V0

5
2t0T0

V0

]S

]pU
V5V0

.0, t5wV2,

which means thatH is positive above the initial point an
negative below. Now we calculate the value ofH on the
curve p( «̃(V),V), i.e., H(p( «̃(V),V),V) in the neighbor-
hood of the initial point. Some tedious but straightforwa
calculations yield

H~p~ «̃~V!,V!,V!

'
t0

V0
S dp~ «̃~V!,V!

dV
2

dp̃~V!

dV
D

0

~V2V0!2. ~A1!

Bearing in mind that the sign ofp( «̃(V),V)2 p̃(V) in the
neighborhood of the initial point determines the sign of~A1!,
we find that

~V12V0!~pH~V!2 p̃~V!!>0 ~A2!

in the neighborhood of the initial point. This condition, whe
considered in conjunction with the fact that the shock adia
does not intersect the template curve, is an equivalent f
of the existence criterion for a shock wave. If, in additio
pH(V) is a single-valued function, then since these curves
not intersect between the initial and final points, the sign
the left-hand side of~A2! remains the same everywhere b
tween these points. Condition~A2! must then hold over the
entire interval betweenV0 andV1, and is equivalent to~18!.
This result agrees with the conclusions drawn in Refs. 11
12 for the case of zero magnetic field.

APPENDIX B: RELATIONSHIPS BETWEEN THE
CHARACTERISTIC VELOCITIES

In both relativistic and classical MHD we havev f.vA

.vsl in front of and behind the shock front.
To compare the quantitiesuA and uA* , which respec-

tively makeR andR* vanish, we note that they do not de
pend on motion of the reference frame parallel to the sh
front. Then, using a reference frame in whichu250 and
allowing for the fact that the 4-vectorsum andhm are mutu-
ally orthogonal, we obtain

R5Fp1«1
~h2!2

4p G~u1!22
~h1!2

4p@11~u1!2#
.

at
m
,
o
f

d

k

Comparing the expressions forR* and R, we find that
(uA)2<(uA* )2. Clearly, for a parallel shock wave we hav
uA5uA* . For a perpendicular shock wave both velociti
vanish.

In the nonrelativistic limitp* 1«* 'p1«, so that

~uA* !2'
~h1!2

4p~p1«!
'~uA

1 !2,

and condition~23! coincides in this limit with the evolution
conditions in classical MHD.

SubstitutinguA* into the explicit expression forQ(j), we
obtain

Q~uA* ![~uA* !4@~uA* !211#~12cS
2!2~uA* !2

p* 1«*

p1«

1
~h1!2cS

2

4p~p1«!
5

p* 1«*

p1«
@~uA!22~uA* !2#,0.

Since j f
2 and jsl

2 are the roots of the quadratic trinomia
Q(j), we thereby obtainjsl

2,(uA)2,j f
2 .

* !E-mail: zhdan@aoku.freenet.kiev.ua
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On the basis of statistical analysis, we derive expressions for the dynamic susceptibility,
magnetization relaxation times, and the effective rheological characteristics of a moderately
concentrated homogeneous ferrocolloid consisting of identical spherical ferroparticles
suspended in a Newtonian liquid. The magnetic moment of a particle is assumed constant and
rigidly ‘‘frozen’’ into the body of the particle. We also estimate how the magnetodipole
and hydrodynamic interactions of the particles influence the effective dynamic properties of the
ferrocolloid. © 1998 American Institute of Physics.@S1063-7761~98!01009-9#
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1. INTRODUCTION

One of the central goals of the physics of magnetic l
uids ~ferrocolloids! is to establish the relationship that exis
between the macroscopic dynamic characteristics descri
the properties of the colloid in the continuum approximati
and the parameters characterizing it on the microscopic le
such as the size, shape, properties, and concentration o
particles and the properties of the liquid carrier medium. D
spite a large body of data~see, e.g., Refs. 1–6!, a theory that
adequately describes the macroscopic dynamic propertie
magnetic liquids has yet to be developed. This leads t
situation in which the results of many experiments are in
preted by the researchers differently.

The existing consistent theoretical models of the d
namic properties of magnetic liquids deal primarily with e
tremely dilute systems, in which interparticle interactio
can be completely ignored~see, e.g., Refs. 7–9!. However,
in various ferrocolloids such interactions play an importa
and sometimes crucial, role: they lead not only to corre
tions between particles but also to the emergence
drop,10–12 chain,13–15 and other heteroaggregates capable
radically altering the effective characteristics of the collo
The effect of chain aggregates on the macroscopic prope
of magnetic liquids was studied theoretically in Refs. 16–
The analysis of the macroscopic properties of magnetic
uids is complicated by the fact that the ferrocolloids co
monly used in experiments and applications are polyd
perse. Since particles belonging to different fractions
involved in different mechanisms of magnetic moment rel
ation ~Brownian, Néel, etc.! and the contributions of the dif
ferent fractions to the overall response are not additive
systems with interaction, the results of experiments that
tablish the properties of polydisperse magnetic liquids
hardly be expected to be interpreted correctly, even qua
tively.

Under such circumstances it is advisable to study mo
disperse systems, both theoretically and experimentally
that we can separately analyze the effect of each facto
the macroscopic properties of dense magnetic liquids.
believe that only this line of research will provide a cohere
4841063-7761/98/87(9)/10/$15.00
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picture of the behavior and properties of these systems.
This paper is a theoretical study of the dynamic susc

tibility and the rheological characteristics of a moderate
concentrated ferrocolloid consisting of identical spheri
particles with their magnetic moments being constant
magnitude and ‘‘frozen’’ into their bodies. We ignore th
possibility of formation of drop, chain, and other heteroa
gregates. The problem of the conditions for the emergenc
such aggregates requires a special study.

Attempts to calculate the dynamic response functions
dense homogeneous ferrocolloids were made by Tsebe19

and Kasherski�.20 However, they took the magnetodipole in
teraction of the particles into account by employing Weis
theory of a self-consistent field. Such a model suggests
the interaction of the particles effectively manifests its
only after the ferrocolloid has gone into the ferromagne
phase. However, there are no experimental indications
ferromagnetism is present in magnetic liquids or, to that m
ter, in other similar polar systems. Hence one should be c
ful when using the results of Refs. 19 and 20.

In Ref. 21 a consistent thermodynamic perturbati
theory ~a variant of the second virial coefficient approxim
tion! was used to account for the magnetic interaction
particles in the analysis of the kinetics of alternating mag
tization of moderately concentrated homogeneous ferro
loids. Byevich and Ivanov22 and Pshenichnikov23 demon-
strated that the theory could be used to describe
equilibrium properties of magnetic liquids. In Ref. 21 th
magnetization relaxation equation was derived from
Fokker–Planck equation for the many-particle distributi
function of the positions and orientations of the particle
The effective-field method7 was employed to reduce thi
equation.~The high accuracy of this method as applied
dilute ferrocolloids has been demonstrated in the numer
experiments of Tsebers.24! However, in Ref. 21 the dynamic
of magnetization variations was analyzed only for wea
nonequilibrium systems, which means that we still do n
know the nature of the response of magnetic liquids to r
idly varying fields and the rheological properties of su
liquids.

In the present paper we study the dynamic response
© 1998 American Institute of Physics
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moderately concentrated ferrocolloid that is arbitrarily
from equilibrium, and the rheological characteristics of su
a system. Methodologically, the work is close to Ref. 21, a
we also correct the errors discovered in that paper.

2. MATHEMATICAL MODEL AND BASIC EQUATIONS

Consider a ferrocolloid occupying a volumeV and con-
sisting of N identical spherical particles of radiusa. The
absolute valuem of the magnetic momentm of a particle is
constant: the moment is ‘‘frozen’’ into the body of the pa
ticle ~the magnetic anisotropy energy is high!. We denote the
unit vector directed along the magnetic moment of thei th
particle byei5mi /m and the radius vector of this particl
by r i .

To calculate the macroscopic characteristics of the s
tem, we must determine theN-particle distribution
PN(e1 , . . . ,eN ,r1 , . . . ,rN), which can be found by solving
the appropriate Fokker–Planck equation, in which we m
allow for the magnetic and hydrodynamic interactions of
particles with each other. The fact that this equation conta
terms corresponding to nonpotential hydrodynamic interp
ticle interactions complicates the mathematics significan
To simplify analysis and obtain results in a tangible fo
that can be analyzed from the standpoint of physics, inst
of explicitly writing the appropriate terms in the Fokker
Planck we effectively allow for the hydrodynamic effect b
using renormalized particle diffusion coefficients in th
equation. These coefficients already allow for the hydro
namic interparticle interactions. Such a model of an effect
medium has been repeatedly employed with success in
theory of the macroscopic properties of suspensions
composite materials.

If we adopt a system of coordinates in which the avera
velocity u of the colloid as a whole is zero, the Fokker
Planck equation reduced in this manner has the form

]PN

]t
5(

i
Î i–F S Dr

T
Î iU2VD PNG1(

i
¹ i–F S Dt

T
¹ iU D PNG

1Dr (
i

Î i
2PN1Dt (

i
¹ i

2PN ,

Î i5ei3
]

]ei
, ¹ i5

]

]r i
, U52T (

i
a–ei1

1

2 (
iÞ j

wi j ,

a5
mH

T
, V5

1

2
curl u,

wi j 5m2
~ei–ej !r i j

2 23~ei–r i j !~ej–r i j !

r i j
5

. ~1!

HereT is the absolute temperature in energy units,Dr andDt

are the effective coefficients of rotational and translatio
diffusion of the particles calculated with allowance for t
hydrodynamic and steric interactions of the particles,U is
the total potential energy of the particle system, andwi j is
the energy of the dipole–dipole interactions of thei th and
r
h
d

s-

st
e
s

r-
.

ad

t
-
e
he
d

e

l

j th particles. Summation in~1! is over particle numbers. In
solving Eq.~1! we take into account the condition that th
particles do not overlap:r i j 5ur i2r j u>2a.

Even the reduced Fokker–Planck equation~1! cannot be
solved exactly. Here, as in Ref. 21, we use the effective-fi
approximation,7 a variant of the trial-function method. Ac
cording to Ref. 7, the solution of Eq.~1! must be sought in
the form of an equilibrium function with respect to an effe
tive potential energyUe , which differs fromU in Eq. ~1! in
that instead of the true magnetic fieldH it contains an effec-
tive field He , which must be found. Thus, we postulate t
validity of the equation

(
i

Î i–F S Dr

T
Î iUeD PNG1(

i
¹ i–F S Dt

T
¹ iUeD PNG

1Dr(
i

Î i
2PN1Dt(

i
¹ i

2PN50, ~2!

Ue52T (
i

ae–ei1
1

2 (
iÞ j

wi j , ae5
mHe

T
.

Subtracting~2! from ~1!, we get

]PN

]t
52(

i
Î i–F S Dr

T
Î i@da–ei #1VD PNG , ~3!

whereda5ae2a.
Up to this point all the transformations were exact: si

ply put, instead of the unknown functionPN we introduced a
new unknownae linked to PN by the Gibbs formula

PN5Z21 expS 2
Ue

T D ,

Z5E expS 2
Ue

T D de1 ••• deN dr1 ••• drN . ~4!

The crucial assumption of the method developed in R
7 is that the effective fieldHe is independent of the vectorsei

and r i and that its components can be found from the eq
tion for the first moment ofe1. Obviously, after this assump
tion is made, Eq.~3! ceases to be equivalent to Eq.~1! and
the function PN that this new equation yields is only a
approximation to the true function satisfying Eq.~1!. As
noted earlier, Tsebers24 and Pokrovski�25 showed that this
approximation is extremely accurate when applied to dil
ferrocolloids. Note that similar ideas have been successf
used in analyzing the dynamic properties of polar liqu
crystal systems.26,27

As is common in statistical physics, interparticle intera
tions do not make it possible to exactly calculate the aver
values of quantities via~4!. From now on we assume that th
concentration of the colloid is low or moderate and use
second virial coefficient approximation. As noted earlier, t
fact that this approximation produces adequate results in
scribing the properties of many real ferrocolloids has be
demonstrated in Refs. 22 and 23.
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First, we will find it convenient ifPN is averaged over
the particle coordinates. Introducing the Mayer functi
f i j 5exp(2wij /T)21 and averaging~4! over all ther k , we
obtain

pN5E PN )
k

dr k5 Z21 expS ae–(
i

ei D
3E )

i . j
~11 f i j ! )

k
dr k . ~5!

Expanding~5! in a power series inf i j , keeping only the
first two terms, and performing standard transformations,
get

pN5S)
k

wkD S 12r~N21!Ge1
1

V (
i . j

Qi j D , ~6!

r5
N

V
v, v5

4

3
pa3, w i5w~ei !5

exp~ae–ei !

z1
,

z15E exp~ae–e! d3e54p
sinh ae

ae
,

Qi j 5E
r i j .2a

f i j dr i j , r i j 5r i2r j ,

Ge5
1

2v
^w1w2Q12&12,

^•••& i 1••• i n
5E •••)

k51

n

dei k
, i k51, . . . ,N.

Here and in what follows,r is the volume concentration o
the particles.

When calculating the integral in the expression forQi j ,
we must bear in mind that the result depends on the shap
the infinite volume over which the integration is don
Proper selection of this volume was done by Byevich a
Ivanov.22 Unfortunately, the complicated form of the Maye
function makes an analytic calculation ofQi j impossible.
Here, as in Ref. 22, we limit ourselves to an analysis o
system in whichwi j is small in comparison to the therma
energy of the system. Note that this assumption means
there are no heteroaggregates in the ferrocolloid.

Expanding the Mayer function in a power series inwi j ,
keeping only linear terms, and using the method of Ref. 22
calculate the integral inQi j , we obtain

Qi j 58gvei–ej , G~x!54gL2~x!, L~x!5coth x2
1

x
,

G5G~a!, Ge5G~ae!, g5
m2

8a3T
. ~7!

The parameterg characterizes the ratio of the dipole
dipole interaction of two closely located particles to the th
mal energy of the system.

Averaging~3! over the radius vectors of the particles, w
arrive at an equation that is identical to Eq.~3!, with PN

replaced bypN . Multiplying the resulting equation bye1 and
averaging over allei , we obtain
e

of
.
d

a

at

o

-

]m

]t
52Dr K e1(

i
Î i~@da–ei #pN!L 2K e1V(

i
Î i pNL ,

^•••&5^•••&1•••N , m5^e1pN&, ~8!

wherem is the average value of the vectore1 of a particle.
Obviously, the colloid’s magnetization is

M5mnm, n5
N

V
5

r

v
. ~9!

Using ~6! and ~7!, we easily find that

m5mehe , me5Le1
N21

V
v

dGe

dae
, ~10!

Le5L~ae!, he5
He

He
.

In the thermodynamic limit,

me5Le1r
dGe

dae
. ~11!

If we employ the fact that the angular momentum ope
tor Î i is antihermitian and use the approximation~6! for pN ,
we get

K e1 (
i

Î i~@da–ei #pN!L 5^jpN&5^jw1&1

1
N21

V
v@^jbw1&1

22Ge^jw1&1#, ~12!

wherej5e13(da3ei) andb51/v ^w2Q12&2.
In the thermodynamic limit,

K e1 (
i

Î i~@da–ei #pN!L 5^jw1&11r@^jbw1&1

22Ge^jw1&1#. ~13!

Allowing for the antihermitian nature ofÎ i and using~6!
and ~10!, we easily find that

K e1V (
i

Î i pNL 5^e13VpN&5^e1pN&3V

52meV3he . ~14!

If we now combine~6!, ~7!, and~13! and perform simple
transformations, we obtain

K e1(
i

Î i~@da–ei #pN!L 5Aeda2Be~he–da!he , ~15!

Ae5A~ae!, Be5B~ae!,

A~x!512
L~x!

x
18rg

L~x!

x
~L2~x!2C~x!!,

B~x!5C~x!124rg~L2~x!2C~x!!,

C~x!5123
L~x!

x
.
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Allowing for ~14! and ~15!, we can write Eqs.~8! and
~10! as

]m

]t
52Dr@Aeda2Be~he–da!he#1meV3he ,

m5mehe , me5Le1r
dGe

dae
,

da5ae2a, ae5aehe . ~16!

We have arrived at a system of equations for the vec
m and ae . For subsequent calculations it is convenient
write this system in the form of a single equation with r
spect toae . To this end we employ the fact thatm5mehe

and write

dm

dt
5Jeȧehe1meḣe , Je5

dme

dae
~17!

~as usual, the dot indicates a time derivative!.
Allowing for ~7! and~16!, in the linear approximation in

rg we get

Je5
dLe

dae
18rgS S dLe

dae
D 2

1Le

d2Le

dae
2 D . ~18!

Plugging~17! into the first equation in~16! and writing
the scalar product of the result and the vectorhe , we get

ȧe5
Dr

Je
~Be2Ae!he–da. ~19!

If we now plug~19! into ~17! and the result into~16!, we
arrive at the equation

ḣe52Dr

Ae

me
~da2~he–da!he!1V3he , uheu51.

~20!

Equations~19! and ~20! form a system of equations fo
finding ae andhe , which can easily be reduced to a sing
equation:

dae

dt
52DrFAe2Be

ae
2Je

~ae–da!ae1
Ae

me
aeS da2

ae–da

ae
2

aeD G
1V3ae . ~21!

Finding ae from ~21! or ~19! and ~20! and plugging the
result into~10! and~11! or into the second and third relation
in ~16!, we arrive at an expression for the average vectorm.
If we then plug the expression form into ~9!, we obtain the
nonequilibrium magnetization of the ferrocolloid. Asr→0,
Eq. ~21! becomes the equation for the effective field deriv
in Ref. 7. Note that in deriving~21! we corrected the error
that were made in deriving a similar expression in Ref. 2

3. DYNAMIC SUSCEPTIBILITY

Equation~21! is nonlinear and, generally speaking, c
be solved only numerically. In this section we study the
sponse of a ferrocolloid that macroscopically is at restV
50) to a linearly polarized oscillating magnetic field.
rs

.

-

Let

Hx5H0 cosvt, Hy5Hz50. ~22!

We write the magnetization, defined in~9!, in the form

M ~ t !5 (
n50

`

M1~nv!cosnvt1 (
n51

`

M2~nv!sinnvt,

M1~nv!5
1

T E
T
M ~ t !cosnvt dt,

M2~nv!5
1

T E
T
M ~ t !sinnvt dt, T5

2p

v
. ~23!

Now we define the realxv8 and imaginaryxv9 parts of the
magnetic susceptibility in the following manner:

xv8 5
M1~v!

H0
, xv9 5

M2~v!

H0
. ~24!

For H0 small and the dependence ofM on H linear, the
definitions~24! coincide with the ordinary definitions for th
components of the complex-valued dynamic susceptibilit

The system of equations~19! and ~20! was solved nu-
merically with respect toae andhe for

V50, da5aehr2a,

a5~a0 cosvt,0,0!, a05
mH0

T
. ~25!

The result was then plugged into the second and third r
tionships in~16!, which together with~9! yieldedM (t). Af-
ter numerical Fourier transformations were carried out,
Fourier transforms ofm were calculated,

m1~v!5
M1~v!

mn
, m2~v!5

M2~v!

mn
,

and so were the quantities

k8~v!5
m1~v!

a0
, k9~v!5

m2~v!

a0
, ~26!

which correspond to the nonlinear response of a particle
the external field frequency.

Equations~19! and ~20! contain the effective rotationa
diffusion coefficientDr . In the approximation of two hydro-
dynamically interacting particles~similar to the second virial
coefficient approximation! this diffusion coefficient was es
timated by Perez-Madrid and Pubi:28

Dr5D0S 12
14

5
r D , D05

T

6h0v
, ~27!

where h0 is the viscosity coefficient of the liquid carrie
medium, andD0 is the rotational diffusion coefficient for a
single particle. Note that the value ofDr used in Ref. 21,
chosen intuitively, differs somewhat from the value given
~27!, which we use below.

The results of calculatingk8 andk9 are depicted in Figs.
1–3. Figure 1 shows that at low frequencies the real partk8
of the specific susceptibility increases with the parameteg
of the magnetodipole interaction of the particles, while
high frequencies it decreases. This agrees with the w
known fact that the magnetodipole interparticle interact
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FIG. 1. Plots ofk8 ~a! andk9 ~b! vs. the di-
mensionless frequencyv85v/D0 of an alter-
nating magnetic field ata053 and r50.15.
Curves1 correspond tog50, curves2 to g
51.5, and curves3 to g52.5.
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enhances the dc susceptibility of magnetic liquids~see, e.g.,
Ref. 23!. At the same time, at high frequenciesv, collective
effects hinder the rotation of particles, which results ink8
decreasing with increasingg. The same physical reason
lead to an increase ink9 and to a shift of its maximum to the
left along the frequency axis asg increases.

Figure 2 shows that as the volume concentrationr in-
creases, the parameterk8 at low frequencies also increase
which again agrees with the well-known properties of
susceptibility. At high frequencies,k8 decreases with in-
creasingr, since ‘‘braking’’ effects of the magnetodipol
interaction of the particles begin to manifest themselves
the decrease of the effective rotational mobilityDr /T of the
particles comes into play. A comparison of Figs. 1 and
reveals that hydrodynamic interparticle interactions hav
stronger effect on the dynamic susceptibility~especially on
its imaginary part! than dipole–dipole interactions.

Figure 3 shows that an increase in the magnetic fi
strength reduces, on the whole, bothk8 andk9 and shifts the
maximum ink9 to the left along the frequency axis. This
understandable since an increase in field strength with
limit cannot lead to a similar increase in magnetization—
reaches a plateau and becomes saturated; the charact
time of response of the system to variations in field stren
decrease in the process.

Our approach can be used to calculate response f
tions at frequencies that are integral multiples of the f
quencyv of the external field. Such calculations were don
d

2
a

d

ut
t
istic
h

c-
-
,

and we found that the corresponding susceptibilities w
smaller by several orders of magnitude than the suscepti
ties k8 andk9 at the signal frequency.

4. RELAXATION TIMES

Analytic treatment of~16! is possible only for weakly
nonequilibrium processes, in whichm(t) differs only slightly
from its equilibrium value corresponding to the current ma
netic field H(t). Formally this means thatda(t) in ~16! is
small. In the approximation linear inda(t), instead of~16!
we have

]m

]t
52Dr@A da2B~h–da!h#,

m5m~a1da!5m0~a!1
m0

a
da1S J2

m0

a D ~h–da!h,

m05m0h, m05L~a!1r
dG~a!

da
,

A5A~a!, B5B~a!, J5J~a!, h5
H

H
, ~28!

where m0 is the equilibrium value of the vectorm corre-
sponding toH(t). In deriving the first relationship in~28! we
again assumed that macroscopically the colloid is at
(V50). The second relationship in~28! is the expansion of
m(a1da) in a Taylor series and is independent ofV.
FIG. 2. Plots ofk8 ~a! andk9 ~b! vs. the di-
mensionless frequencyv85v/D0 of an alter-
nating magnetic field ata053 and g51.5.
Curves1 correspond tor50.05, curves2 to
r50.15, and curves3 to r50.25.
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FIG. 3. Plots ofk8 ~a! and k9 ~b! vs. the
dimensionless frequencyv85v/D0 of an al-
ternating magnetic field atg51.5 and r
50.15. Curves1 correspond toa050.01,
curves2 to a052.5, and curves3 to a055.
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We introduce a local system of coordinates whosez axis
is directed alongH. This means that we can write~28! as
follows:

dmx,y

dt
52DrAdax,y ,

dmz

dt
52Dr~A2B!daz ,

mx,y5m0

dax,y

a
, mz5m01J daz . ~29!

Eliminating the components ofda and using~9!, we arrive at
the magnetization relaxation equations

dMx,y

dt
52

1

t'

Mx,y ,
dMz

dt
52

1

t i
~Mz2M0!, ~30!

with M05mnm0 the equilibrium magnetization in the fiel
H, and

t i5S Dr

A2B

J D 21

5t0i
118rg~W1LYW21!

118rg~C2L2!
,

t'5S Dr

aA

m0
D 21

5t0'

118rgW

a2L18rg~L22C!
~a2L !,

t0i5
a

2DrL

]L

]a
, t0'5

1

Dr

L

a2L
,

W5
dL

da
, Y5

d2L

da2
. ~31!
The parameterst i andt' are the times it takes the com
ponents of magnetizations parallel and perpendicular to
field to relax to their equilibrium values, andt0i and t0'

are the values of these times atg50. The results of
calculatingt i andt' are depicted in Figs. 4–8. A combina
tion of the following factors determines the above depe
dence:

1. An increase in the strength of the magnetodipole
teraction of the particles~both p andg increase! leads to an
increase inm0 and hence to an increase in the strength w
which the particles are coupled to the field and a decreas
the relaxation timest.

2. The magnetodipole interaction of the particles mak
the configuration of their moments more stable, which h
ders particle rotation in the field and hence enhancest.
Thus, the magnetic interaction of the particles affectst in
two ways, and the predominant behavior oft depends
on the conditions. In Ref. 21 it was shown that at lar
values ofa, an increase ing leads to a decrease int, while
at small values ofa, an increase ing leads to an increase in
t.

3. The hydrodynamic interaction of the particles, whi
becomes stronger asr increases, leads to an increase int.

4. As the magnetic field strength grows, the stren
with which the particle moment is coupled to the field i
creases, which leads to a decrease int.
FIG. 4. Plots oft' ~a! and t i ~b! vs. the con-
stant external magnetic fielda at r50.15.
Curves 1 correspond tog50, curves2 to g
51, and curves3 to g51.5.
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FIG. 5. Plots oft' ~a! and t i ~b! vs. the volume
concentrationr at g51.5. Curves1 correspond to
a051, curves2 to a053, and curves3 to a0510.
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5. EFFECTIVE COLLOID VISCOSITY

When there is a magnetic field, the average hydro
namic stress tensors in a ferrocolloid becomes asymmetri
We write this tensor as

s5sS1sA, ~32!

where the superscriptsS andA designate the symmetric an
antisymmetric parts ofs. The literature devoted to calcula
tions of sS in dense suspensions of neutral spheres is v
The most rigorous result in the approximation linear in t
gradient of the average velocity was obtained by Batche
and Green29 in the approximation of two interacting pa
ticles:

s i j 52hSG i j , hS5h0~112.5r17.6r2!,

G i j 5
1

2S ]ui

]xj
1

]uj

]xi
D , i , j 5x,y,z, ~33!

wherehS is the effective viscosity of a suspension of neut
hard spheres. This result agrees well with the experime
data if r<0.1; at higher concentrations it leads to undere
mated results.

Our goal in this section and in Sec. 6 is to calculate
components of the antisymmetric partsA of the average
stress tensor in an approximation linear in the component
the tensor of the ferrocolloid’s average velocity gradie
Here we examine steady flow and estimate the effective
cosity of the ferrocolloid.

The components of the antisymmetric part of the str
tensor of a magnetic liquid can be written as follows~see,
e.g., Refs. 25 and 30!:

FIG. 6. Plots of q vs. the constant external magnetic fielda at
r50.1. Curve1 corresponds tog50, curve2 to g51.5, and curve3 to g
52.5.
-

st.

r
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e

of
.
s-

s

s i j
A5

1

2
~MiH j2M jHi !5

1

2
naT~m ihj2m jhi !,

i , j 5x,y,z; n5
N

V
. ~34!

Thus, to calculate the components ofsA, we must
find the components of the nonequilibrium magnetizat
M and plug them into~34!. To this end we go back to
~16!, assuming that the flow and external field are stea
state.

In the approximation linear inV andda, Eqs.~19! and
~20! yield a system of time-independent equations,

B2A

J
~h–da!50, ~35!

Dr

A

m0
~da2~h–da!h!1V3h50.

From the first equation in~35! it immediately follows
that h–da50. Using~28!, we obtain

m5m01
m0

a
da. ~36!

Finding da from the second equation in~35! and plug-
ging the result into~36!, we get

m5m02
1

Dr

m0
2

aA
~V3h!. ~37!

Plugging the components ofm from ~37! into ~34!, we
find that

FIG. 7. Plots of q vs. the constant external magnetic fielda at
g51.5. Curve1 corresponds tor50.01, curve2 to r50.1, and curve3 to
r50.2.
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FIG. 8. Plots ofqv8 ~a! and qv9 ~b! vs. the dimen-
sionless frequencyv85v/D0 of an external pertur-
bation atg51.5 andr50.15. Curves1 correspond
to a51, curves2 to a53, curves3 to a55, and
curves4 to a510.
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s i j
A53

D0

Dr
h0

m0
2

A
Ti jkmVkm ,

Ti jkm5hm~d ikhj2d jkhi !, Vkm5
1

2S ]uk

]xm
2

]um

]xk
D ,

~38!

which can be written

s i j
A52hAsin2u V i j , hA5h0

3

2

D0

Dr

m0
2

A
, ~39!

with u the angle between the vectorsH andV.
The quantityhAsin2u, which acts as the effective viscos

ity coefficient for the antisymmetric part of the stress tens
is sometimes called the rotational viscosity coefficient, w
amplitudehA. Figures 6 and 7 depicts the results of calc
lating the dimensionless quantity

q5
hA

~3/2!
h0r ~40!

(3h0r/2 is the limit of the rotational viscosity coefficient o
a dilute ferrocolloid placed in an infinitely strong magne
field!. The increase inq with g in Fig. 6 can be explained by
the fact that the magnetodipole interaction of the partic
enhances their coupling to the external field, and hind
rotation in the field of a hydrodynamic vortex. As a resu
the perturbation introduced by the particles into the susp
sion flux grows, which manifests itself in an increase in t
suspension’s viscosity. The increase inq with r in Fig. 7 is
related to the magnetodipole and hydrodynamic interac
of the particles. A comparison of Figs. 6 and 7 reveals t
hydrodynamic effects have a stronger influence on rotatio
viscosity than dipole–dipole effects.

The total effective viscosity coefficient of a ferrocollo
is, of course, the sum ofhS andhA. Although the problem of
the effect of the magnetodipole interaction of the particles
hS remains unresolved, the results of some experiments~see,
e.g., Refs. 31 and 32! suggest that ifg is not too large and no
heteroaggregates are formed in the magnetic liquid,hS in the
first approximation can be estimated by formulas valid
suspensions of neutral spheres. For instance, for sys
with a low concentration we can use~33!.

6. VISCOELASTIC PROPERTIES

As is known, suspensions of neutral particles may
hibit viscoelastic properties.33,34The reason is that in a mov
r,

-

s
rs
,
n-
e

n
t

al

n

r
ms

-

ing suspension the two-point correlation function of the p
ticles changes, which generates additional specific stress35

If the flow velocity gradient changes in time, the correlati
function relaxes to it in the course of a finite time interva
and this is the cause of macroscopic viscoelastic effe
Since these effects are due to correlations, in low and m
erately concentrated suspensions such effects are not
and manifest themselves only in subtle experiments.

In ferrocolloids, even extremely dilute ones, the v
coelastic nature of the relationship between the tensorss i j

A

and V i j is determined by the finite rate of tuning of th
average moments of separate particles to the steady-state
ues corresponding to the fixedV i j . Since interparticle inter-
actions have a profound effect on the kinetics of this proc
~see Secs. 3 and 4!, they should also have a profound effe
on the viscoelastic behavior of magnetic liquids. In th
section we study the nature of the relationship betweens i j

A

and V i j in a time-dependent flow in a constant magne
field.

In the approximation linear inV and da, the time-
dependent equations~19! and ~20! can be written

dae

dt
52DrFA2B

J
~h–da!h

1
aA

m0
~da2~h–da!h!G1a~V3h!,

ae5a1da, a5const. ~41!

After a Fourier transformation of~41! with respect to
time is carried out, we get

ivdav52DrFA2B

J
~h–dav!h

1
aA

m0
~dav2~h–dav!h!G1a~V3h!, ~42!

where v is the Fourier frequency, and the correspondi
subscripts indicate that we are dealing with the amplitude
the harmonics of the physical quantities involved.

From ~42! we find

dav5
am0

DraA1m0iv
~V3h!. ~43!
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FIG. 9. Plots ofqv8 ~a! and qv9 ~b! vs. the dimen-
sionless frequencyv85v/D0 of an external pertur-
bation ata53 and g51.5. Curves1 correspond
to r50.01, curves2 to r50.1, and curves3 to
r50.2.
e
so
an

on
s
le

m
eo
on
a

are
le
d’s
le

co-

of
p,
liq-
of

of

r
ch
nd
re
x-

the
en
he
that

ally
n
a-
ies

us-
In the first approximation in the small quantityda, in-
stead of~36! we have

mv5m0d~v!1
m0

a
dav . ~44!

Plugging~44! into ~34!, we obtain

sv i j
A 52hv

ATi jkmVkm52hv
Asin2u V i j ,

hv
A5

3

2
rh0

D0

Dr

m0
2

A

12 ivtA

11~vtA!2
, tA5

m0

DraA
. ~45!

The quantitytA acts as the characteristic relaxation tim
for the antisymmetric part of the hydrodynamic stress ten

We introduce the complex-valued dimensionless qu
tity

qv5qv8 1 iqv9 ,

qv8 5
1

~3/2!h0r
Re hv

A , qv9 5
1

~3/2!h0r
Im hv

A . ~46!

The results of several calculations ofqv8 andqv9 are de-
picted in Figs. 8–10. Clearly, the hydrodynamic interacti
of the particles has a more profound effect on the viscoela
properties of a homogeneous ferrocolloid than the dipo
dipole interaction.

7. DISCUSSION AND CONCLUSIONS

In this paper we have studied the macroscopic dyna
characteristics of a moderately concentrated homogen
magnetic liquid with the Brownian mechanism of relaxati
of the moments of the particles. From our analysis we dr
r.
-

tic
–

ic
us

w

the general conclusion that even if no heteroaggregates
formed in the ferrocolloid, the dipole–dipole interpartic
interaction has a substantial effect on the ferrocolloi
properties, but the effect of hydrodynamic interpartic
interaction is somewhat stronger. In principle, this result
incides with the one obtained in experiments.36 It must be
noted, however, that it is the magnetodipole interaction
the particles that is responsible for the formation of dro
chain, and other heteroaggregates in many real magnetic
uids. The emergence of such aggregates is capable
strongly affecting the macroscopic characteristics
ferrocolloids.16–18

Unfortunately, it is extremely difficult to compare ou
results with those of well-known experiments, since su
experiments ordinarily use polydisperse ferrocolloids, a
particles belonging to different fractions in such colloids a
involved in different mechanisms of magnetic moment rela
ation. We believe that developing an coherent picture of
dynamic properties of magnetic liquids is possible only wh
model single-fraction systems have been studied. T
present paper analyzes such a system theoretically. Note
all the adopted approximations are either mathematic
consistent ~allowance for the dipole–dipole interactio
within the context of the second virial coefficient approxim
tion! or have been thoroughly checked in previous stud
~the effective-medium method in reducing Eq.~1! to ~2! and
the effective-field method7!.
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FIG. 10. Plots ofqv8 ~a! andqv9 ~b! vs. the dimen-
sionless frequencyv85v/D0 of an external pertur-
bation ata053 andr50.1. Curves1 correspond to
g50, curves2 to g51.5, and curves3 to g52.5.
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1É. Ya. Blum, M. M. Ma�orov, B. L. Nikoaru, and A. O. Tsebers, Magn
Gidrodinam. No. 1, 53~1987!.

2A. F. Pshenichnikov and A. V. Lebedev, Zh. E´ ksp. Teor. Fiz95, 869
~1989! @Sov. Phys. JETP68, 498 ~1989!#.

3Yu. L. Ra�kher and A. F. Pshenichnikov, JETP Lett.41, 132 ~1985!.
4A. Tari, J. Popplewell, and S. W. Charles, J. Magn. Magn. Mater.15,
1125 ~1980!.

5K. O’Gady, J. Popplewell, and S. W. Charles, J. Magn. Magn. Mater.39,
56 ~1983!.

6A. A. Minakov, I. A. Zaitsev, and V. I. Lesnin, J. Magn. Magn. Mater.85,
60 ~1990!.

7M. A. Martsenyuk, Yu. L. Ra�kher, and M. I. Shliomis, Zh. E´ ksp. Teor.
Fiz 65, 834 ~1973! @Sov. Phys. JETP38, 413 ~1974!#.

8M. C. Miguel and J. M. Rubi, Physica A231, 288 ~1996!.
9J. P. Shen and M. Doi, J. Phys. Soc. Jpn.59, 111 ~1990!.

10C. F. Hayes, J. Colloid Interface Sci.52, 239 ~1975!.
11E. A. Peterson and A. A. Kruger, J. Colloid Interface Sci.62, 24 ~1977!.
12A. F. Pshenichnikov and I. Yu. Shurtsbor, Magn. Gidrodinam. No. 2, 1

~1986!.
13P. H. Hess and P. H. Parker, J. Appl. Polym. Sci.10, 1915~1966!.
14P. Goldberg, J. Hansford, and P. J. van Heerden, J. Appl. Phys.42, 3874

~1971!.
15N. A. Yusuf, Physica D22, 1916~1989!.
16S. Kamiyama and A. Satoh, J. Colloid Interface Sci.127, 173 ~1989!.
17M. Doi and H. See, J. Phys. Soc. Jpn.61, 2090~1992!.
18A. Yu. Zubarev and L. Yu. Iskakova, Zh. E´ ksp. Teor. Fiz107, 1534

~1995! @JETP80, 857 ~1995!#.
7

19A. O. Tsebers, Magn. Gidrodinam. No. 1, 3~1983!.
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The thermodynamics of high polymers in equilibrium with a low-molecular solvent with a large
correlation radius~super- and near-critical solvent! is studied. Special attention is devoted
to the analysis of typical phase diagrams describing the conditions of solubility of a polymer in
such a solvent. The nature of these diagrams is determined by the existence of long-range
multiparticle attraction between the monomers, which increases as the critical point of the solvent
is approached. At the critical point the contribution of this attraction to the free energy of
the system is nonanalytic with respect to the polymer concentration. It is shown that the nontrivial
dependences of the polymer–polymer and polymer–solvent coupling constants, which
appear in the phenomenological analysis, on the pressure and temperature of the solvent play an
important role in the quantitative analysis of the phase diagrams of the solubility of the
polymer. These dependences are found in explicit form under the assumption that in the absence
of intermonomer bonds the system can be described as a compressible two-component
lattice alloy. The partition function of the system under study is represented as a functional integral
over two coupled, strongly fluctuating fields, one of which, describing the fluctuations of the
polymer density, is the 0 component. By virtue of the specific nature of the problem, the effective
temperature corresponding to the 0-component of the field cannot be specified independently,
but can be determined by minimizing the total free energy of the system. ©1998
American Institute of Physics.@S1063-7761~98!01109-3#
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1. INTRODUCTION

The behavior of polymers in super- and near-critical s
vents has been of great interest in recent years. On the
hand, this interest is due to the myriad applications of s
solvents on industrial scales for the most diverse purpo
extraction, chromatography, purification, dissolution, and
on ~see, for example, Ref. 1!. These applications are a
based on the feasibility of closely regulating the solubility
polymers in supercritical liquids by combining the fast ma
transfer processes that they~and gases! typically display with
the strong temperature and pressure dependence of the
solution power typical of critical solvents. The direct rel
tionship of the latter factor to high susceptibility, and there
to the existence of anomalously large fluctuations typica
near-critical systems, has also focused the attention of th
reticians on the industrial properties of critical solven
Thus, the characteristic features of the solubility of impu
ties near a critical point of a pure solvent have been analy
in Refs. 2 and 3 from the phenomenological standpoint,
glecting the microscopic structure of the impurities.

On the other hand, the behavior of polymers in critic
solvents is also of special interest. Indeed, because of
anomalously high susceptibility and large correlation rad
of polymer solutions~as compared with low-molecular sub
stances!, they exhibit a well-known analogy with a
n-component magnetic material, as first pointed out by
Gennes4,5 and des Cloizeaux6 for the casen50, and by the
present author7,8 for the continuous rangen.0 ~see also
4941063-7761/98/87(9)/11/$15.00
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Refs. 9–14!. For solutions of polymers in critical solvents
an analogy is therefore to be expected with a system of
coupled fluctuating fields described by differing effecti
temperatures and coupling constants.15,16 The development
of a theory of solutions of polymers in critical solvents mig
thereby make it possible to derive new consequences f
the general fluctuation theory of phase transitions, and to
them under laboratory and industrial conditions. The qua
tative microscopic description of the behavior of polymers
critical and supercritical solvents and the analysis of some
the characteristic features of such a description are the a
of the present paper.

We proceed as follows. In Sec. 2 we review the ba
results of the theory of semidilute polymer solutions, and
introduce the concept of the effective free energyFeff(r,m,T)
for polymers in critical solvents, wherem and T are the
chemical potential of the solvent and the temperature of
system, andr is the density of monomers. We also descri
the renormalization of the two-body interaction and the s
ond virial coefficient of the monomers as a result of scre
ing by particles of the critical solvent.17–22

In Sec. 3 the renormalization of the multiparticle inte
action of the monomers is taken into account for the fi
time and an expression is obtained for the nonpolynom
functionFeff(r,m,T) of r, which is used to study a number o
properties of the condensed polymer phase.

We analyze and discuss the characteristic features o
phase diagrams for a simple model of a polymer solution
a critical solvent in Sec. 4, where for this model we deri
© 1998 American Institute of Physics
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the explicit dependence of the polymer–polymer a
polymer–solvent coupling constants on the temperaturT
and pressureP. In the preceding sections these were int
duced only phenomenologically.

Finally, we derive the basic equations of the theory
the coil–globule transition for a polymer chain in a critic
solvent are derived in Sec. 5 by representing the parti
function as a functional integral over two coupled fields. T
analysis performed here leads to no additional results, b
does place the system of interest in the general context o
theory of phase transitions,16,23 and makes it possible to
study the system in the Landau approximation. We brie
summarize our results in Sec. 6.

2. PHYSICS OF SEMIDILUTE SOLUTIONS OF POLYMERS IN
SIMPLE AND CRITICAL SOLVENTS

Consider a system whose volumeV containsn solvent
particles andM identical linear polymer chains, each o
which consists ofN monomers. The characteristic param
eters of this system are the concentration of solvent parti
rs5n/V, chainsn5M /V, and monomersr̄5nN, the rms
radius of gyration of a chain as a wholeRG;aAN (a is the
average distance between neighboring monomers~bond
length!!, and the ranger 0 of the interaction potential betwee
monomers belonging to different chains. For

r̄r 0
3!1, ~2.1!

the collision probability between monomers belonging to d
ferent chains is low. To describe their interaction, it is the
fore sufficient to use the virial expansions.23,24

If

nRG
3 ;r̄a3AN@1, ~2.2!

which always holds for sufficiently high degrees of polyme
ization N, then the volumeRG

3 of each chain will contain
many other chains simultaneously. Such solutions are sa
be semidilute,25 and the dominant contribution to the inte
action energy in them comes from collisions of monom
that belong to different polymer chains. Averaging of t
contribution of these collisions when calculating the partiti
function of such solutions is performed on low-molecu
scales;r 0 and is therefore statistically independent of t
averaging of the contribution of the conformational colle
tion of chains that occurs on macromolecular scales;RG .
In other words, the partition function of semidilute polym
solutions with a prescribed~generally speaking, nonuniform
and nonequilibrium! spatial distribution$r~r !% of their mono-
mer densities factorizes into a product, while the free ene
can be expanded in a sum of the corresponding contr
tions:

Fpoly~$r~r !%!5F* ~$r~r !%!1Fstr~$r~r !%!. ~2.3!

The first term of Eq.~2.3! is therefore independent of th
degree of polymerization of the chains and can be identi
with the energy contribution of disconnected monomers
the free energy of the system~low-molecular system whos
particles have the same interaction energy as the monom!.
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This term is also called the contribution of the ‘‘volum
interaction’’ of monomers and is written in the form

F* ~$r~r !%!5Fbls~$r~r !%!T2TE dr r~r !ln~r~r !/e!

5E dr f * ~r~r !!,

f * ~r!5T(
i 52

i 5`
air

i

i 21
, ~2.4!

where theai are the virial coefficients that appear in th
expansion of the equation of state of a system of disc
nected monomers in powers of the density:23,24

Pbls5Tr1P* ~r!5T~r1a2r21a3r31...!. ~2.5!

The second term in Eq.~23! is the free energy of a
system of noninteractingN-mers with distribution$r~r !%, and
it is ordinarily called the structural–entropy term. The fir
equality in Eq.~2.4! follows from the fact that for a system
of disconnected monomers this term is the entropy of
ideal gas. The necessity of averaging over different scale
order for the additive decomposition~2.3! of the free energy
of polymers to be valid and the idea of a system of disc
nected monomers were first formulated by I. M. Lifshitz26

~see also Refs. 25 and 27!.
Neglecting fluctuation effects, Eq.~2.3! assumes the

simple form25

Fpoly~$r~r !%!5F* ~$r̄%!1VTn ln~n/e!, ~2.6!

whence follows the virial equation of state of semidilu
polymer solutions in the mean-field approximation5,25,28

Ppoly52~]F/]V!v,T5~Tr/N!1P* ~r!

5T~~r/N!1a2r21a3r31...!, ~2.7!

whereP* (r) ~the energy contribution to the pressure, ide
tical for polymers and disconnected monomers!, which also
appears in Eq.~2.5!, is given by

P* ~r!5r~] f * /]r!T2 f * ~r,T!. ~2.8!

Thus, the equation of state~2.7! of a semidilute polymer
solution and the equation of state~2.5! of a system of dis-
connected monomers have identical virial coefficients,
the linear term of the equation of state for high-polymer s
tems (N→`) is negligible because of the anomalously lo
translational entropy of large molecules. The behavior
polymer solutions therefore depends heavily on the sign
the second virial coefficienta2 .

Specifically, fora2,0 the range of low monomer den
sities bounded by the inequality

~]Ppoly /]r!T5T~2a213a3r1...!r,0, ~2.9!

is unstable against condensation of the polymer into a ph
whose densityrg can be determined by requiring that th
~osmotic! pressure of the polymer vanish:

P* ~rg!5a2rg
21a3rg

31...50. ~2.10!
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The notation forrg derives from the fact that the solution o
Eq. ~2.10! also determines the density of a globule formed
a single infinitely long polymer chain.25,26 If in addition to
the inequality~2.8! we also have

«5ua2a4u/a3
2!1, ~2.11!

then Eq.~2.10! yields

rg52a2 /a3 ~2.12!

for the density of the condensed phase. This quantity v
ishes ata250, and plays the role of the triple point in sem
dilute polymer solutions.29 ~We have ignored a small correc
tion ;O(«) to the density of the condensed phase, a
vanishingly small corrections;O(N21) to the density of the
dilute phase and the position of the critical point, which
the theory of polymer solutions is usually called au point.!

Thus, the sign of the second virial coefficient of the sy
tem of disconnected monomers qualitatively determines
behavior of semidilute polymer solutions. To investigate
dependence ofa2 on the state of the solvent, we examine t
change in the free energy of the solvent when monom
with a distribution$r~r !% are added to it:

DF~$r~r !%,T!

52T ln
*drs~r !exp~2F~$r~r !%,$rs~r !%,T!/T!

*drs~r !exp~2Fsolv~$rs~r !%,T!/T!
,

~2.13!

where the functional integral extends over all density dis
butions $rs(r )% of the solvent particles,Fsolv($rs(r )%,T) is
the free energy of the solvent in the absence of a polym
andFsolv($r(r )%,$rs(r )%,T) is the free energy of the system
under study as a functional of both density distributions. R
peating the arguments used in the derivation of the exp
sion ~2.3!, the free energy of the system can be represen
in the form

F~$r~r !%,$rs~r !%,T!5Fsolv~$rs~r !%,T!1F0* ~$r~r !%,T!

1F1* ~$r~r !%,$rs~r !%,T!

1Fstr~$r~r !%,T!, ~2.14!

where the termsF1* ($r(r )%,$rs(r )%,T), and F0* ($r(r )%,T)
describe the respective contributions of monomer inter
tions with solvent particles and one another. Substitut
~2.14! into Eq. ~2.13!, we obtain

DF5Feff* ~$r~r !%,T!1Fstr~$r~r !%,T!, ~2.15!

where the contribution of the effective volume interaction
given by

Feff* ~$r~r !%,T!5F0* ~$r~r !%,T!1DF* ~$r~r !%,T!,
~2.16!

i.e., the sum of the initial volume interactionF0* ($r(r )%,T)
and the renormalizationDF* ($r(r )%,T) due to the change in
solvent free energy as a result of solvent particle redistri
tion in the field produced by the prescribed monomer dis
bution $r~r !%:
y
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DF* ~$r~r !%,T!

T

52 ln
*drs~r !exp~2~ F̃solv~$rs~r !%,$r~r !%,T!!/T!

*drs~r !exp~2Fsolv~$rs~r !%,T!/T!
,

F̃solv~$rs~r !%,$r~r !%,T!5Fsolv~$rs~r !%,T!

1F1* ~$r~r !%,$rs~r !%,T!.

~2.17!

This renormalization grows in an obvious manner w
the susceptibility of the solvent. Indeed, let us expa
F̃solv($rs(r )%,$r(r )%,T), which appears in Eq.~2.17!, in
powers of the density fluctuations of the solvent partic
c(r )5rs(r )2 r̄s ( r̄s is the mean density of the latter! and
the average monomer densityr̄, limiting the expansion to
terms no higher than second order inc and first order inr̄:

F̃solv~ r̄,$rs~r !%,T!5Fsolv~ r̄s ,T!1F1* ~ r̄,r̄s ,T!

1ms~ r̄s!,T)E c~r !dV

1
T

2 E dV~cĜ21c1v0b2r̄c2~r !!

1Tb1r̄E c~r !dV. ~2.18!

Here the operatorĜ21 is the inverse of the integral operato

Ĝf 5E dr 8G~r2r 8! f ~r 8!,

whose kernel is the density–density correlation function
particles of the pure solvent. Limiting attention here for sim
plicity to a description of the properties of a critical solve
in the Landau approximation, we can represent the Fou
transform of this function in the standard Ornstein–Zern
form23

G~r !5^c~0!c~r !&,

G̃~q!5E dr G~r !exp~ iqr !5~v0~teff1d2q2!!21.

~2.19!

In ~2.18! and ~2.19! the scaled;r 0 and the parametersb1 ,
b2 , andv05rmax

21 (rmax is the maximum packing density o
the solvent particles!, which have dimensions of volume, ar
phenomenological constants, while the parameterteff

5(]ms/]rs)T /v0T vanishes at the critical point of the solven
Substituting~2.18! into Eq. ~2.17!, taking account of the

fact that the term in Eq.~2.18! that is proportional to the
chemical potentialms of the solvent and linear inc vanishes
~since the number of solvent particles is conserved!, and cal-
culating the resulting Gaussian integral, we have

DF* ~$r~r !%,T!52
T

2 E d3q

~2p!3

b1
2urqu2/v0

teff1b2r1d2q2

~2.20!
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whence the final expression for the first nonvanishing term
the free energy of a semidilute polymer solution is, to ter
;O(N21),

Feff* ~$r~r !%,T!

T
5E d3q

~2p!3 S a22
1

2

b1
2/v0

teff1d2q2D urqu2.

~2.21!

As we can see from Eq.~2.21!, the redistribution of the
solvent particles around the particles of the dissolved s
stance~screening! introduced into the solvent always be
haves like an attraction, whose strength and range increa
t decreases, i.e., as the critical point is approached. T
effect, a special case of which is the familiar Debye–Hu¨ckel
screening in the theory of electrolytes,23 was first studied in
the theory of polymers by Edwards17 ~see also Refs. 8, 14
and 18–22!.

Since in the present work we are interested primarily
phase equilibrium, we neglect the existence of polymer d
sity fluctuations and we rewrite Eq.~2.21! in the form

Feff* ~r,T!5VTa2
effr2, a2

eff5a22~b1
2/2v0!teff

21 . ~2.22!

Thus the conditiona2
eff,0, which ensures the instability of

semidilute polymer solution in critical solvents against fo
mation of a condensed phase, holdsa fortiori near the critical
point of the solvent. A coil–globule transition is therefore
be expected here for a long single chain, while for a sys
of many chains a condensed phase where the polymer
centrationrg depends on proximity to the critical point of th
solvent can be expected to precipitate from the solution.

At first glance,rg is determined, in accordance wit
~2.12!, by the balance of the attraction due to the negat
renormalized value of the second virial coefficienta2

eff and
the repulsion due to the presence solid cores in the mo
mers, which is described by the third virial coefficie
a3.0:

rg52a2
eff/a3 . ~2.23!

~A similar result was obtained in Ref. 30.! Since, however,
the above-noted long-range nature of the interaction of
particles can lead to violation of~2.1!, it is not sufficient to
calculate only the first few terms of the virial expansion
determine the properties of the condensed phase. We th
fore carry out a more detailed analysis of the contributions
the effective volume interaction to the free energyFeff* (r,T)
and the pressurePeff* (r,T), which are related by~2.8!.

3. FREE ENERGY OF THE EFFECTIVE VOLUME
INTERACTION OF MONOMERS IN A CRITICAL SOLVENT

Let us consider as the simplest microscopic model o
critical solvent, where it is possible to express the vertices
the phenomenological Ginzburg–Landau Hamiltonian
terms of the microscopic parameters of the solvent partic
a lattice gas~liquid! whose free energy has the form31

F5E dV

v0
~ f ~f~r !,T!12Td2~¹f!2!, ~3.1!

f ~f,T!5T~f ln f1~12f!ln~12f!!22f2, ~3.2!
n
s

b-
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is

n-

m
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e

re-
f
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f
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wherev0 is the volume of a unit cell of the lattice gas,f~r !
is the local value of the volume fraction of cells occupied
solvent particles,d is a phenomenological scale, and the te
perature, free energy, and chemical potential are express
units such that the temperature at the critical point equal

In the mean-field approximation the pressure and che
cal potential as functions ofT and the average value off
have the form

P̃5v0P52T ln~12f!22f2,

m5T ln~f/~12f!!24f. ~3.3!

The condition]2f /]f250 determines the chemical potenti
mc522, the volume fraction of the solventfc50.5, and the
pressurev0Pc5pc5 ln 220.5 at the critical point~the con-
dition ]3f /]f350 holds automatically atfc50.5).

The Gibbs free energy of the grand canonical ensem
convenient for studying phase equilibria, can be written n
the critical point as

V~m,T,V!52T ln E df~r !

3expS m*~dV/v0!f~r !2F~$f~r !%,T!

T D
5F~fc ,T,V!2~Vm/2v0!1Vc~h,t,V!,

~3.4!

wheret512T21, h5(mc2m)/Tmc and the function

Vc~h,t,V!52T ln E dC~r !expH E dV

v0

3S hC2
tC21d2~¹C!2

2
2

C4

12D J , ~3.5!

describes the thermodynamics of the solvent near the cri
point.

To give the functional integrals in Eqs.~3.4! and~3.5! a
more precise meaning, they can be defined by subtracting
the fluctuation contribution to the free energy of the latti
gas~in the limit T→`):

Vc~h,t,V!

T
52 ln

3
*dC~r !exp *~dV/v0!~hC2~tC21d2~¹C!2!/22C4/12!

*dC~r !exp~2*dV~C21d2~¹C!2!/2v0!
.

(3.6)

This representation, somewhat different from that obtain
in Ref. 23 on the basis of a different~isothermally isobaric!
potential, is valid so long as the values of the order para
eterC(r )52f(r )21 that make the principal contribution t
the integrals~3.5! and ~3.6! remain small compared to 1.

For simplicity, we confine our attention in the prese
paper to the Landau approximation,1! in which there is no
difference between~3.5! and~3.6!; the latter then lead to the
simple result
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V52PsolvV52
V

v0
S T~ ln 220.5!1

m2mc

2
2TR~h,t! D ,

~3.7!

where the functionR(h,t) is the absolute minimum of the
function

H~h,t,C!5
C4

12
1t

C2

2
2hC. ~3.8!

Using Eq.~3.7!, the pressure of the pure solvent near t
critical point can be written conveniently in terms of th
reduced pressureP:

v0Psolv5T~pc1P!, ~3.9!

whereP can be written as a function of the chemical pote
tial and temperature:

P5h2R~h,t!. ~3.10!

Similarly, generalizing the arguments of the preceding s
tion that led to~2.18! and ~2.22!, it is easy to obtain the
Gibbs free energy of a polymer solution with prescribed v
ues of the chemical potentialm of the solvent and the poly
mer density:

F~m,T,r,V!5VS f * ~r,T,fc!1Tv0
21

3S RS h1
b1r

2
,t1

b2r

4 D2h2pcD D ,

~3.11!

whereb1 andb2 are coefficients in the expansion of the fr
energy~2.18!. An expression for the pressure of such a s
lution follows from Eq.~3.11!:

P52S ]F

]V D
T,m

5Psolv1P* 1DP, ~3.12!

where the contributionsPsolv andP* are given by~3.9! and
~2.8!, respectively, while the correction to the pressure due
long-range screening by solvent particles of the interacti
between monomers is

v0DP5rS ]D f

]r D
T

2D f , ~3.13!

where

D f ~r,T,h,t!/T5R~h1b1r/2,t1b2r/4!2R~h,t!.

Carrying out the differentiation in Eq.~3.13!, we obtain

DP5
T

v0
S C0

42C4

12
1t

C0
22C2

2
2h~C02C! D , ~3.14!

whereC andC0 are the respective positions of the absolu
minima, as given by Eq.~3.8!, of the functions H(h
1b1r/2,t1b2r/4,C0) andH(h,t,C0).

It is convenient to rewrite the correction~3.14! as an
expansion
e

-

c-

-

-

o
s

DP52
T

v0
~C2C0!2S teff

8
1C0

C2C0

3
1

~C2C0!2

12 D ,

~3.15!

whereteff54(t1C0
2), which has the same meaning as in t

preceding section, is everywhere positive~except at the criti-
cal point!. Substituting the limit C2C052b1r/teff ~as
r→0) into Eq.~3.15!, we again arrive at~2.22!.

At the critical point itselfh5t5teff50, the long-range
screening of the monomer-monomer interaction by solv
particles results in the contributions to the free energy a
pressure which have~similarly to the case of electrolytes14! a
nonanalytical form

DP~r,T,0,0!52
T

12v0
C4

'2
T

12v0
H ~3b1r/2!4/3, b1r!b1

3/b2
3 ,

~2b1 /b2!4, b1r@b1
3/b2

3 .

~3.16!

The contribution~3.16! decreases with decreasing pol
mer density more slowly than the renormalized contribut
of two-body collisions~2.22! obtained above. This mean
that as the critical point is approached, all terms of the vir
expansion become important, and in this sense even a
dilute solution can be considered to be concentrated.13 How-
ever, as before, the sum~3.13! of all these terms correspond
to attraction, determining the existence condition and den
of the condensed phase~globular state! of polymers near the
critical point of the solvent.

Indeed, the polymer densityrg in the condensed phas
can be determined by requiring that the pressure~3.11! of
this phase equal the pressure~3.8! of the pure solvent, i.e., by
requiring that the osmotic pressure of the polymer vanish

v0

P* 1DP

T
5a2v0rg

22S C4~rg!2C0
4

12

1t
C2~rg!2C0

2

2
2h~C~rg!2C0! D 50.

~3.17!

Specifically, at the critical point itself, substituting~3.16!
into Eq. ~3.17! yields

fg5v0rg5A v0

3a2

C2

2

'5A
v0

3a2

3b1
2

32a2v0
, b2

2!a2v0 ,

A v0

3a2

2b1
2

b2
2 , b2

2@a2v0 .

~3.18!

Here, clearly, the equilibrium volume fractionrg is com-
pletely independent ofa3 , contrary to the result~2.23! in
Ref. 30. This is due to the fact that the repulsive compon
of the two-body interactions of monomers, described by
valuea2.0 of the initial second virial coefficient, is in fac
sufficient to balance the nonpolynomial attraction~3.16! of
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the monomers at the critical point. However, it must
borne in mind that asfg increases, the quantitative contr
bution of three-body and higher-order collisions can ag
become critically important. Specifically, higher-order col
sions ensure thatfg,1. The applicability of~3.18! is thus
constrained by

fg!1. ~3.19!

The requirement that the densityrg vanish,

rg~h,t!50, ~3.20!

or equivalently that the effective second virial coefficie
~2.22! vanish

teff5t0[
b1

2

2a2v0
, ~3.21!

determines the locus of critical points of the polymer so
tion in the PT plane. The second equality in Eq.~3.21! is
simply a definition of the parametert0 that characterizes th
relative interaction force between the monomers and solv
compared with their repulsion of one another, in terms of
microscopic parametersb1 anda2 .

4. PHASE DIAGRAMS OF POLYMER SOLUTIONS IN A
CRITICAL SOLVENT AND PT DEPENDENCE OF
THE COUPLING CONSTANTS b 1 AND a2

At first glance, it follows from Eq.~3.21! that all pos-
sible partitions of thePT plane into one- and two-phas
regions~where one phase is always the pure solvent pha!
in the mean-field approximation can be specified by the c
tour lines of the function

teff~P,T!5T21S ]ms

]rs
D

T

5
1

f~12f!
2

4

T
5t0 , ~4.1!

where the volume fractionf of the solvent is a single-value
function ofP andT that can be derived from the first of Eq
~3.3! for the thermodynamic equilibrium phase at givenP
andT. As shown in Fig. 1, these lines are closed curves t
encircle the critical point, and the region bounded by
latter, in which a condensed phase forms, grows ast0 ~i.e.,
the interaction of the polymer with the critical solvent! in-
creases.

However, these curves are not true phase transition li
as the microscopic parametert0 itself depends onP andT.
To take account of this dependence explicitly~albeit phe-
nomenologically!, we examine the polymer solution in th
limit N→`. In this limit, according to Eqs.~2.4! and ~2.6!,
its free energy takes the form

F5~V/v ! f * ~fs ,f,T!, ~4.2!

wheref and fs are the respective volume fractions of th
monomers and solvent, and

f * ~fs ,f,T!5 f bls~fs ,f,T!2f ln~f/e!. ~4.3!

Thus, in this limit the description of a polymer solutio
reduces to choosing a free energy that corresponds to a
n

t

-

t,
e

e
-

at
e

s,

o-

component system of disconnected monomers. It is natur
use as the latter the following generalization of the free
ergy ~3.2! of a one-component lattice gas:

f bls~fs ,f,T!5T~f ln f1fs ln fs1~12f2fs!

3 ln~12f2fs!!22~fs1df!2. ~4.4!

Here we again take the temperature of the critical point
the pure solvent to be the unit of temperature, whiled is a
parameter that characterizes the attraction between disso
monomers and solvent particles~and one another!; it is re-
lated to the critical temperature of a pure system of mo
mers:

Tc
~1!5d2. ~4.5!

An expression for the pressure of a polymer solution with
infinite degree of polymerization~or, equivalently, globules!
follows from Eqs.~4.2!–~4.4!:

P̃5v0P52T~ ln~12fs2f!1f!22~fs1fd!2,
~4.6!

which in the absence of the solvent (fs50) assumes the
form

P̃52T~ ln~12f!1f!22d2f2. ~4.7!

At temperaturesT.4d2, the isothermP(f) given by Eq.
~4.7! is positive, and increases monotomically over the en
range 0,f,1, while forT,4d2 it decreases on the interva
0,f,fc and increases on the intervalfc,f,1 (fc51
2T/4d2), remaining negative for 0,f,fg . Herefg is a
root of the equation

P̃~fg!52T~ ln~12fg!1fg!22d2fg
250 ~4.8!

and represents the volume fraction of the pure polymer
T,4d2 in the absence of external pressure. As shown in F
2, fg decreases monotonically with increasing temperat
and vanishes atT54d2, while the volume of a polymer

FIG. 1. PT phase diagrams of the solubility of a polymer, neglecting t
dependence of the phenomenological constantsa2 and b1 on the pressure
and temperature of the solvent. The contour lines of the function~4.1! with
t050.2, 0.5, and 1.0 are shown by the solid curves1, 2, and3, respectively;
the dashed line shows the liquid–gas phase transition for the pure sol
the dot-dashed lines show the position of the critical point of the p
solvent.
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sample with an infinite degree of polymerization increa
continuously~the polymer swells!, until atT54d2 it fills the
entire accessible volume~no matter how large!. The unfilled
part of the volume can be formally interpreted as a coex
ing phase with zero polymer concentration~void!.

In other words, in the limitN→` the temperature and
volume fraction of the pure polymer at its critical poi
become19

fc
~`!50, Tc

~`!54d254Tc
~1! . ~4.9!

~At finite N these values acquire corrections;O(N21/2),
and accordingly the increase in volume as the polymer
proaches its critical point is governed by the large param
N1/2; henceforth we neglect such refinements.!

If two-phase separation occurs in a solvent, then the
vent volume fractionfs , in Eq. ~4.6! is not an independen
quantity in the polymer phase, but is instead determined
the chemical potentialm of the solvent in the pure solven
phase~which can be both liquid and vapor! that coexists with
it:

ms~T,fs ,f!5T ln~fs /~12fs2f!!

24~fs1fd!5ms~T,fs
0,0!5m. ~4.10!

Herefs
0(P,T) andfs(P,T,f) are the solvent volume frac

tions in the coexisting phases, while the explicit depende
ms(T,fs ,f) given by the first equality in Eq.~4.10! follows
from Eqs.~4.2!–~4.4!. It is convenient to give the pressure

FIG. 2. Monomer volume fraction phase diagrams~f vs. temperatureT) for
a system of disconnected monomers~1! and a system consisting of the sam
monomers of high polymer~in the limit of an infinite degree of polymeriza
tion! ~2!. Asterisks mark the critical points.
s

t-

p-
er

l-

y

e

the polymer phase parametrically, supplementing the eq
tion of state~4.6! with equations for the volume fractions o
the components:

P̃5 P̃~u!52T~ ln~~12u!~12f~u!!!

1f~u!!22~fs~u!1f~u!d!2, ~4.11!

fs5fs~u!5u~12f~u!!, ~4.12!

f5f~u!5
T ln~u/~12u!!24u2m

4~d2u!
, ~4.13!

where as one can see from Eq.~4.12!, the parameteru is just
the reduced volume fraction of the solvent, i.e., the fract
of locations not occupied by monomers that are neverthe
occupied by solvent particles.

Direct calculation easily yields

]~ P̃/T!

]f
5

fT

12f S 124
~d2u!2

tu~12u!

12f

T D , ~4.14!

S ]2~ P̃/T!

]f2 D U
f50

5
2a2

eff

v0
5124

~d2fs
0!2

T

2
~4~d2fs

0!/T!2

teff~P,T!
, ~4.15!

whereteff(P,T) is given by~4.1!. It follows from Eqs.~4.14!
and ~4.15! that for a negative right-hand side of~4.15!,

124
~d2fs

0!2

T
2

~4~d2fs
0!/T!2

teff~P,T!
,0, ~4.16!

the addition of a small amount of polymer to a pure solve
with chemical potentialm at temperatureT and pressureP
reduces the pressure of the polymer phase~the corresponding
isotherm is shown in Fig. 3a!. In this case, the system i
always unstable against separation into two phases, on
which is pure solvent. The second phase contains both p
mer and solvent, whose volume fractions can be determi
by substituting the functionu(T,m) given implicitly by the
equation

D P̃5 P̃~u,T,m!2 P̃s~m,T!50 ~4.17!

into Eqs.~4.12! and~4.13!, whereP̃s(m,T) is the pressure of
the pure solvent given by Eqs.~3.3!. Since the pure solven
volume fractionfs

0 in the condition~4.16! depends onP and
re
of

-
.

FIG. 3. Typical curves of the reduced pressu
of the polymer phase vs. the volume fraction
that phase~for definiteness,d.0.5): a! outside
the regionT1T2 below the line~4.18!; b! inside
the regionT1T2 . The lines are numbered in or
der of increasing pressure of the pure solvent
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FIG. 4. Reduced solubility diagrams~pressure
P vs. temperatureT) for a high polymer in a
low-molecular solvent in the limit of an infinite
degree of polymerization: a! d,0.5; b! 0.5,d
,6.79; c! d.6.79. The liquid–vapor transition
of the pure solvent and solubility of the polyme
~4.18! are shown as dashed and solid lines, r
spectively. Near a critical point of the pure so
vent ~small rectangles in Figs. 4a and 4b!, these
essentially merge, so that they can only be d
tinguished in the much more detailed view i
the insets.
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T, it determines the boundary of the region of solubility
the polymer in thePT plane. This boundary can be repr
sented in the form

4fs
0~P,T!5

T24d2

122d
. ~4.18!

The shape of the curve~4.18! depends on the value ofd in
Eq. ~4.4! and in subsequent expressions, which represents
relative cohesion energy of the polymer~as compared with
the solvent!. Specifically, at the ends of this line

fs
050, P50, T54d2,

fs
051, P5`, T54~12d!2, ~4.19!

As one can see from Fig. 4, ford,dc56.79 it crosses the
curve describing the liquid–vapor phase transition of
pure solvent at the pointsT1 andT2 , taking a detour above
the critical point of the latter ford.0.5, and below it for
d,0.5. In the first instance, all points on the line~4.18! to
the left of the critical point of the pure solvent correspond
the liquid phase~for these points, Eq.~4.18! yields fs

0

.0.5), and the part below the line of the phase transition
the pure solvent corresponds to a metastable liquid ph
The condensed phase of the polymer is therefore also s
inside the region bounded by the segmentsT1T2 of the lines
~4.18! and the phase transition of the pure solvent, ev
though the pressure increases monotonically with polym
concentration~see Fig. 3b!, on account of the negative os
motic pressureD P̃ due to the metastability of the liquid
phase of the pure solvent in the indicated region.
he

e

f
e.

ble

n
r

Summarizing the foregoing analysis, which can be
rectly extended to situations in whichd,0.5, we conclude
that the density of the condensed polymer phase~globules!
vanishes on that line of the two indicated above~liquid–
vapor transition of the pure solvent or~4.18!! that corre-
sponds to the higher or lower pressure~for d.0.5). How-
ever, upon crossing line segments of the liquid–vap
transition of the pure solvent that lie below~for d,0.5) or
above ~for
d,0.5) the line~4.18!, the density of a globule remains con
stant but its pressure and temperature derivatives are dis
tinuous~together with the derivatives of the chemical pote
tial of the pure solvent!. We also note that ford.dc56.79
the regionT1T2 vanishes, and the solubility diagram a
sumes the form shown in Fig. 4c.

In concluding this section we note that both the mod
phase diagrams in Fig. 1 and the diagrams in Fig. 4 hav
loop around the critical point. The existence of this lo
indicates that the effective attraction of monomers in a cr
cal solvent plays a decisive role in the formation of the
gion of the swelled undissolved polymer. Differences amo
other details of the phase diagrams in Figs. 1 and 4 can
explained by the existence of a strongPT dependence of the
previously introduced phenomenological parameters. Inde
direct comparison of the right-hand side of Eq.~4.15! with
Eq. ~2.22! yields

a2~P,T!5v0S 1

2
22

~d2fs
0~P,T!!2

T D ,
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b1~P,T!54v0

d2fs
0~P,T!

T
,

t05
b1

2

2a2v0
5

16~d2fs
0~P,T!!2

T~T24~d2fs
0~P,T!!2!

. ~4.20!

The similarity of the experimentally observed pha
diagram1 and the diagrams in Fig. 4 underscores the imp
tant role of factors taken into account by our analysis: lo
range attraction of monomers which increases as the cri
point of the solvent is approached; a decrease in
polymer–critical-solvent coupling constant; and an incre
in repulsion due to direct two-body collisions of monome
as the volume fraction of the solvent increases.

5. TWO-FIELD MODEL OF A SOLUTION OF A POLYMER IN
A CRITICAL SOLVENT

The analysis in the preceding sections was conducte
the Landau~mean-field! approximation. Although numerica
calculations of phase diagrams outside this approxima
are not studied in the present paper, it would be useful h
to suggest a general technique that makes it possible to
account of the fluctuation corrections in the general case
do so, we recall that in the absence of a solvent~or taking
account of its structure explicitly!, the partition function of a
polymer chain consisting ofN monomers and filling a vol-
umeV can be represented in the form8–13,32

Z~V,T,N!5
1

2p i R Z~V,T,z!
dz

zN11 , ~5.1!

where the integral is taken over a small contour around
origin in the complexz plane, while the thermodynamic po
tential of the grand canonical ensemble can be represent
the form

Z~V,T,z!5E dR

3
*dw~r !w~R!w~0!exp~*dVx~t~w~r !!!2L~$w~r !%!!

*dw~r !exp~2L~$w~r !%!!
,

(5.2)

t~w~r !!5zw2~r !/2, L~$w~r !%!5E wg21wdV/2. ~5.3!

Here ĝ21 is the operator inverse of the integral operator

ĝw5E g~r2r 8!w~r 8!dV8,

where the nearest-neighbor correlation functiong(r ) is usu-
ally given by its Fourier expansion in the form

gk5E dV g~r !exp~ ikr !511~ka!2/61... ~5.4!

~the phenomenological parametera2 represents the rms dis
tance between neighboring monomers in a polymer cha!,
andx~t! is the generating function, familiar from the theo
of simple liquids, of all connected Mayer diagrams24 for the
corresponding system of disconnected monomers:
r-
-
al
e
e

in

n
re
ke
o

e

in

x~t!5t2a2t21S 2a2
22

a3

2 D t31... ~5.5!

The functionx(t) makes it possible to write the equation
state of a system of disconnected monomers in the para
ric form24

P/T5x~t!, r5tx~t!. ~5.6!

In the mean-field approximation the partition function
a polymer chain is the saddle point value of the integ
~5.1!, obtained after~5.2!–~5.4! are substituted into this inte
gral. The condensed~globular! state of the chain correspond
to the solution characterized by certain optimal values of
complex activityz, globule volumeV occupied by a chain of
N monomers, and the constant value of the fieldw0 in this
volume ~with the exception of the surface layer!. The corre-
sponding equations for the extremum have the form

t]x/]t5N/V, x~t0!5w0
2/2,

w0
25w0]x/]w052t]x/]t. ~5.7!

Taking account of Eqs.~5.6! and the fact thatN/V is the
average densityrg of a globule, Eqs.~5.7! can be reduced to
the classical equations for a ‘‘large globule’’26,33

P* ~rg!50, F~T,N!52T ln Z~N,T!5Nl,

l5T ln z05mbls~rg!2T ln rg , V5N/rg . ~5.8!

Equations~5.7! and ~5.8! always have a trivial solution cor
responding to a coiled state of the chain:

rg5w050, l50. ~5.9!

The nontrivial thermodynamic equilibrium value ofrg can
be easily found if it is small, whereupon only the first fe
nontrivial terms of the virial expansion of the functionx
need be retained in the integral~5.2!:

Z~V,T,N!5
1

2p i R dz

zN11 E dR

3
*dw~r !w~R!w~0!exp~2H~$w~r !%!/T!

*dw~r !exp$2*dV~c2~¹w!21w2!/2%
,

H~$w~r !%!5TE dVH c2~¹w!21«w2

2

1a2S zw2

2 D 2

1
a324a2

2

2 S zw2

2 D 3J , ~5.10!

where we have used the expansions~5.4! and ~5.5! and in-
troduced the parameterc25a2/6 and the effective tempera
ture «512z. If the inequality

a3@a2
2 , ~5.11!

holds, as it usually does for real systems, then fora2.0 the
trivial solution of Eqs.~5.8! remains the only one, while fo
a2,0 it becomes unstable and can be replaced by a st
nontrivial solution describing the condensed~globular! state
of the chain:

rg52a2 /a3 , w0
252rg , l5a2rg/2,0. ~5.12!
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Thus, as first reported by de Gennes,29 the triple point
a25«50 of the Landau Hamiltonian in Eq.~5.10! corre-
sponds to the coil–globule transition point in the mean-fi
approximation. In the condensed state itself, i.e., for«,0,
a2,0, the effective temperature« is not an independent vari
able, but is instead determined by the conditions~5.6! for the
maximum of the functional integrals~5.2! and ~5.8!. ~This
specific feature of the theory of critical phenomena appl
to the physics of the condensed state of polymers, wh
follows from the derivation above, was first pointed out
the present author in Ref. 8.!

To extend the above analysis to the case of a poly
solution in a critical solvent, we note that the partition fun
tion Z(V,T,z,ms) of a solution of disconnected monomers
the latter, wherez5exp(m/T) andm andms are the chemica
potentials of the disconnected monomers and solvent,
spectively, can be written, using the results obtained in S
2 and 3, in the form

Z~V,T,z,ms!5E dC~r !exp E dV

v H ~ ln 220.5!

1h1x0~ z̃!1S h1
b1z̃

2 DC

2
1

2 F S t1
b2z̃

4 DC21d2~¹C!2G2
C4

12J
3H E dC~r !expH 2E dV

3
C21d2~¹C!2

2v J J 21

, ~5.13!

wherez̃5z exp(2a(T)/T) anda(T) is the change that would
be introduced in the thermodynamic potential of the solv
with f50.5 when a single monomer is introduced into it

Substituting~5.13! into ~5.1! and ~5.2!, we obtain the
final expression for the partition function of a solution of
polymer in a critical solvent:

Z~V,T,N,ms!5
exp$~V/v0!~ ln 220.51h!%

2p i

3 R Z~V,T,z,ms!
dz

zN11 , ~5.1a!

Z~V,T,z,ms!5E dC~r !dw~r !expH E dV

v F S h1
b1z̃

2

3
w2~r !

2 DC2
1

2 F S t1
b2z̃

4

w2~r !

2 DC2

1d2~¹C!2G2
C4

12G2
H~$w~r !%!

T J
3H E dC~r !dw~r !expH 2E dV

3FC21d2~¹C!2

2v
1

c2~¹w!21w2

2 G J J 21

,

~5.13a!
d

d
h
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-

e-
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where the functionalH($w(r )%) is given by~5.10! with the
substitution«512 z̃.

The representation~5.1a! reduces the description of
solution of a polymer in a critical solvent to analysis of
system of two coupled fluctuating fields,15,16 with the afore-
mentioned specific additional condition that the effecti
temperature« of the field w~r ! describing the polymer is
dictated by the conditions that maximize the total partiti
function ~5.1a!. In the Landau approximation these cond
tions are similar to~5.7! and equivalent to Eq.~3.17!.

Beyond this approximation~in the scaling region!, when
calculating the fluctuation renormalizations of the free e
ergy, the fieldsw~r ! in the integrals~5.2! and~5.13! must be
interpreted as (n→0)-component vector fields5–14 with a
fixed temperature«, and the expression for the total fre
energy of the system should once again be minimized w
respect to« and the volume occupied by the condensed po
mer phase. Although the corresponding analysis is bey
the scope of the present paper, it makes sense to note tha
derivation in the preceding section of the explicitPT depen-
dences~4.20! for the phenomenological parametersa2 , b1 ,
and t0 of the field description under study opens up t
possibility of explicitly calculating the lines of the
fluctuation-induced first-order swelled–dissolved polym
phase transitions15,16 in a critical solvent.

6. CONCLUSIONS

I now summarize the basic results of the foregoi
analysis.

1. A long polymer chain located in a low-molecular so
vent near the critical point of the solvent always forms
globule, while a solution of many high-polymer chains form
a condensed phase. The monomer densityrg in such a phase
is determined by the balance between multiparticle attrac
among the monomers, which is associated with redistribu
of the solvent particles around them and increases as
critical point of the solvent is approached, and repulsion d
to hard-core effects in monomers undergoing two-body c
lisions ~see Sec. 3 and Eq.~3.18!!. Attempts to restrict this
aspect of the analysis to just an effective two-bo
interaction30 lead to much too high a value ofrg .

2. At the same time, the global nature of the phase d
grams describing solubility conditions of a polymer in such
solvent is determined in many respects by the actual solv
pressure and temperature dependence of the coupling
stants describing the indicated attraction. As shown fo
simple model in Sec. 4, the important molecular parame
that governs these dependences is the ratiod of the critical
temperature of the system of disconnected monomers to
of the solvent. The solubility of the polymer can increase
the pressure increases~for d.0.5) or decreases~for
d,0.5).

3. There exists a mathematical isomorphism betwe
models of a high polymer in thermodynamic equilibriu
with a critical solvent and a system of two strongly fluctua
ing fields ~0-component field for the polymer and scalar f
the solvent! with differing effective temperatures. One typ
cal feature of polymer systems is that the effective tempe
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ture for the field, which describes the density fluctuations
the polymer, cannot be chosen independently, but is ins
dictated~along with the density of the condensed phase
the polymer! by the minimization of the total free energy o
the system.
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This paper examines the diffusion of impurity particles in a compressible turbulent medium and
compares it to diffusion in an incompressible medium. The turbulent diffusion coefficients
are calculated using exact formulas expressed in terms of the Green’s function describing impurity
transport in an infinite homogeneous, isotropic, stationary turbulent medium. To obtain an
approximate expression for the Green’s function, numerical solutions of the nonlinear DIA~direct
interaction approximation! equation~which in this paper are obtained for the first time for
the case of compressible turbulence! are employed. Two types of turbulence are examined,
acoustic and a mixture of shock waves. These are described by different generalized
spectra. Finally, it is shown that compressibility significantly enhances the diffusion coefficient in
the case of acoustic turbulence and reduces it in the second case. ©1998 American Institute
of Physics. © 1998 American Institute of Physics.@S1063-7761~98!01209-8#
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1. INTRODUCTION

The problem of transport of impurity particles and
magnetic field in a turbulent medium is an important part
the theory of turbulence.1 The case of incompressible turbu
lence is the most thoroughly investigated. Here the gen
formulas for the turbulent diffusion coefficientsDT were first
derived in the Lagrangian representation of velocitiesv(r ,t)
~see Refs. 2–4!, and only much later was the Euler represe
tation in terms of the velocitiesu(r ,t) developed.5 In calcu-
lating DT in the Euler representation~which, practically
speaking, is the most important!, the first step was the use o
the solutions of the simplest nonlinear equation for the av
age Green’s function̂G(1,2)&[^G(r1 ,t1 ;r2 ,t2)&, first pro-
posed by Kraichnan6 and then thoroughly developed b
Roberts7 and Kraichnan.8,9 This equation is now known a
the DIA ~direct interaction approximation! equation. Calcu-
lations that use the numerical solutions of this equation10–13

have revealed that DIA solutions allow the values of t
turbulent diffusion coefficient to be found for the range of
admissible values of the Strouhal numberj05u0p0t0 ,
where u0 , p0 , and t0 are the characteristic values of th
turbulent velocity, the wave number~the characteristic
length R0.1/p0), and the lifetime of turbulent pulsations
The corrections to this theory due to the contribution of
reducible fourth-order correlators, which are ignored in
DIA equation, amount to approximately 7 % for broad Ko
mogorov spectra and to approximately 11 % for peak-sha
spectra in the ‘‘frozen’’ turbulence limit (j0→`). Being
negative, these corrections monotonically decrease to ze
j0→0. Note that DIA solutions allowDT to be calculated
even in the case of ‘‘multihumped’’ spectra~see Ref. 11!,
where a simple estimate ofDT is extremely difficult.

The derivation of the DIA equation, the first in a hiera
chy of nonlinear equations for the average Gree
function,10 does not depend on whether the turbulent m
5051063-7761/98/87(9)/8/$15.00
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dium is compressible or incompressible. It is then natura
also use the DIA equation to calculate the turbulent diffus
coefficients in the general case of a compressible medi
Moreover, it must be noted that the very problem of calc
lating DT for the case of compressible turbulence is s
underdeveloped. Of the earlier work mention should be m
of Eschrich’s paper,14 in which the casej0!1 is examined,
and of others5,15,16 in which approximate calculations wer
used for the first time to establish the fact thatDT can be
negative in turbulence consisting of a chaotic mixture
shock waves with fairly large values ofj0 , namely,>2 – 3.

An interesting treatment of the problem of turbulent d
fusion, not limited to an incompressible medium, can
found in Refs. 17 and 18. The result of this work is surpr
ing: the formulas forDT are the same, irrespective o
whether the medium is incompressible or compressible,
do not explicitly contain correlators with divu, the compres-
sion index. The diffusion coefficient is found to depend on
on the turbulent energy spectrum. It is obvious that the f
mula is incomplete: the same energy spectrum in inco
pressible and compressible media corresponds to entirely
ferent motions and hence to different diffusion coefficien
The term with divu is absent from the formulas of Ref. 1
because of a direct error in using the Klyatskin
Tatarski� method ~note that this method is limited to th
j0<1 range!.

In Ref. 18, devoted to acoustic turbulence, the term w
divu is absent because the molecular diffusion coeffici
was ignored from the start, although the value ofDT ob-
tained in that paper is equal, in order of magnitude, toDm .
Below it will be demonstrated that allowance for the ter
with divu in the event of low absorption may change t
result threefold~of course the conclusion drawn in Ref. 1
thatDT is small remains valid!. We also note that in the cas
of acoustic turbulence turbulent diffusion not only due
© 1998 American Institute of Physics
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wave absorption by the medium but also due to the prese
of chaotic irregularities in the phases, a fact not mention
by Kazantsevet al.18 Generally speaking, these processes
different, but they lead to the same form of the veloc
correlator. Probably, the chaotic irregularities in the pha
are substantial even if wave absorption is low, which e
hances the turbulent diffusion in such a medium.

Formally exact equations, expressed in terms of the
chastic Green’s function, for the turbulent diffusion coef
cients valid for both incompressible and compressible me
were derived in Ref. 5. They explicitly contain correlators
the Green’s function with divu and form a reliable basis fo
calculations of turbulent diffusion coefficients for a com
pressible medium. Approximations are introduced only wh
a specific method of finding or approximating the exa
Green’s function is used. In the present work formulas
calculatingDT that allow for all powers of the second- an
fourth-order correlators are derived, which is a direct con
quence of the nonlinearity of the DIA equation. For the sa
of definiteness, diffusion of impurity particles in a turbule
medium is examined.

2. BASIC EQUATIONS

The law of conservation of the number of impurity pa
ticles leads to an equation for the impurity particle conc
tration n(r ,t):

S ]

]t
2Dm¹2Dn~r ,t !52¹–~u~r ,t !n~r ,t !!, ~1!

whereDm is the molecular diffusion coefficient, andu(r ,t)
is the velocity field in the turbulent medium, whose statis
cal ensemble is assumed homogeneous, isotropic, and
tionary. The term on the right-hand side has the meaning
a source of particles, which appear in a volume element
cause of the transport~convection! of particles from regions
with a higher particle concentration and because of comp
sion of the volume element itself~recall that divu(r ,t)
5DV/Vdt has the meaning of the relative variation of t
volume element of the medium per unit time!.

The solution of Eq.~1! with a given Lagrangian velocity
field v(a,t) for Dm50 has the form19,20

n~r ,t !5
n0~r2X~a,t !!

D~a,t !
[

n~a,t !

D~a,t !
, ~2!

wherer5(x1 ,x2 ,x3), anda is the radius vector of a liquid
particle at initial timet50. The quantityn0(a) stands for the
initial concentration of the impurity particles. The followin
relationships hold:

r5a1X~a,t ![a1E
0

t

dt v~a,t !,
]r

]t
[u~r ,t ![v~a,t !, ~3!

Di j ~a,t !5
]xi

]aj
, D~a,t !5det Di j ,

Ḋ5
]D

]t
,

Ḋ

D
5div u~r ,t !, ~4!
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DspḊpq
2152

]vs

]aq
, dr5D~a,t ! da. ~5!

As usual, summation is implied over repeated indices.
Defining a random field of Lagrangian velocitiesv(a,t)

determines an ensemble of realizations of turbulent flo
over which the solution~2! must be averaged so that equ
tions for the average concentration^n(r ,t)& can be obtained.
For fixedr andt the vectora5r2X(a,t) is a random quan-
tity, and the problem reduces to averaging of the kno
function n0(a) of the random argumenta with the random
weighting factor 1/D(a,t). The transition to the diffusion
approximation presupposes thatn0(a) is smooth over the
characteristic lengthR0.A^X2& and involves using a Taylo
expansion as a series inX(a,t) ~see Refs. 3 and 9!. As a
result, we arrive at an exact expression for the turbulent
fusion coefficient in the Lagrangian representation:

DT5
1

3E0

t

dt K v~a,t !–v~a,t!

D~a,t ! L , ~6!

where^•••& denotes averaging over the ensemble of veloc
realizations. For an incompressible medium (D(a,t)[1),
Eq. ~6! becomes the well-known expression derived by Ta
lor in 1921 ~see Ref. 2!.

In the Euler representation, the expression forDT(t)
becomes5

DT~ t1!5
1

3E d3RE
0

t1
dt2 @^ui~1!G~1,2!ui~2!&

2^R–u~1!G~1,2!div u~2!&#. ~7!

Here and below we the following convenient notation:f (1)
5 f (r1 ,t1), f (122)5 f (r12r2 ,t12t2), dn5drn dtn , R
5r12r2 , t5t12t2 , etc., andG(1,2) is the Green’s func-
tion of Eq. ~1!, whose formal expression in the Lagrangia
notation has the form

G~1,2!5
D~a,t2!

D~a,t1!
dS r12r22E

t2

t1
dt v~a,t! D . ~8!

Substituting this into Eq.~7! and using~4! and~5!, we again
obtain Eq.~6!. We see that the exact formulas forDT in the
Lagrangian and Euler representations contain the correla
divu ~or divv), which agrees with the qualitative treatment
the Introduction. Below we use only the Euler formula~7!,
which, unlike the Lagrangian representation, allows the
fect of molecular diffusion to be treated, which is mandato
if we wish to examine acoustic turbulence.

The exact linear integral equation for the stochas
Green’s functionG(1,2) of Eq.~1! has the form

G~1,2!5Gm~122!2E d3 Gm~123!

3¹~3!u~3!G~322!. ~9!

The molecular Green’s functionGm(122)[Gm(R,t) is
given by the simple expression

Gm~R,t!5
H~t!

~4pDmt!3/2
expF2

R2

4DmtG , ~10!
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whereH(t)51 for t.0 andH(t)50 for t,0 ~the well-
known Heaviside unit function!. Inserting the iterates of this
equation into~7! yields a power series in the parameterj0

5u0p0t0 , an asymptotically divergent series, in which kee
ing only the first term is meaningful since the other terms
either very large~acoustic turbulence! or simply diverge~tur-
bulence with a broad Kolmogorov spectrum!. For more de-
tails see Ref. 12.

The stochastic equation~1! shows that the average pa
ticle concentration̂ n(r ,t)& is related to the fluctuating par
ticle concentration, and vice versa. Hence an attempt to w
a single closed equation solely for the average Green’s fu
tion ^G(1,2)&[G(122) leads to a hierarchy of nonlinea
equations~see Refs. 10 and 12! . Equation~9! can be written
in a renormalized form by using, in particular, the avera
Green’s functionG(122) ~or, more precisely, the solution o
some truncated equation in the hierarchy! in both the con-
stant term and the kernel. Substitution of the iterations of
renormalized equation into~7! results in an asymptotically
convergent series, which can be used to calculateDT for all
values of the Strouhal number (0,j0,`) ~for details see
Refs. 10 and 12!. The simplest equation in the hierarchy
nonlinear equations is the DIA equation:

G~122!5Gm~122!1E d3E d4 Gm~123!¹ i
~3!

3G~324!¹ j
~4!Bi j ~324!G~422!, ~11!

where Bi j (122)[^ui(1)uj (2)& is the two-point velocity
correlator. Below we find it convenient to use the Four
transforms of this correlator and of the Green’s functi
F(R,t)[H(t)g(R,t), i.e., we write

Bnk~R,t!5
1

~2p!3E d3p exp~ ip–R! B̃nk~p,t!,

B̃nk~p,t!5~dnkp
22pnpk! f ~p,t!1pnpkW~p,t!

1 ienkqpqD~p,t!. ~12!

The above formula forBnk(R,t) is the most general expres
sion for the two-point velocity correlator in the case of h
mogeneous, isotropic, and stationary turbulence.21 The func-
tion D describes the helicity of the turbulent motion (h
5^u(1)–curl u(2)&Þ0), so that in a reflection-symmetri
medium D vanishes. In an incompressible medium (divu
50), W50. Note that helicity does not enter into the DI
equation~11!. Hence, in the absence of helicity in the m
dium, this equation also describes the diffusion of the im
rity’s magnetic field. The generalized turbulent spectrum

^u~r ,t !–u~r ,t1t!&5
1

p2E0

`

dp Fp4f ~p,t!1
p4W~p,t!

2 G ,

~13!

is the sum of the spectrum of incompressible motio
(div u50) and the spectrum of compressible, irrotation
(curl u50) motions. We denote these spectra as follows

Einc~p,t!5
p4f ~p,t!

p2
, Ecomp~p,t!5

p4W~p,t!

2p2
. ~14!
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Numerically it is convenient to solve the equation for t
function g(R,t) that has been Fourier-transformed with r
spect toR and Laplace-transformed with respect tot, which
we denote byg̃(p,s). The DIA equation transformed in thi
manner becomes

g̃~p,s!5H s1Dmp21E
0

`

dqE
21

1

dm E
0

`

dt

3F ~12m2!p2Einc~q,t!

4
1

mp~mp2q!Ecomp~q,t!

2 G
3g̃~ up2qu,t!exp~2st!J 21

, ~15!

where m5p–q/pq is the cosine of the angle between th
vectorsp andq, and g̃(p,t) is the Fourier transform of the
function g(R,t) with respect toR. The sequence of itera
tions of this equation constitutes a rapidly converging co
tinued fraction.

3. DIA EXPRESSIONS FOR THE DIFFUSION COEFFICIENTS

The DIA expressions for the turbulent diffusion coef
cients can be obtained directly from Eqs.~11! and~15! if we
introduce the diffusion approximation, or from the gene
formula ~7! with the exact Green’s functionG(1,2) replaced
by its DIA approximationG(122). As a result we get

DT
~0!5

1

3E0

`

dpE
0

`

dt H @Einc~p,t!1Ecomp~p,t!#g̃~p,t!

1Ecomp~p,t!p
]

]p
g̃~p,t!J . ~16!

Here and in what follows we limit ourselves to calculatin
the stationary values ofDT , assuming all along that the up
per limit in the integrals with respect to timet is equal to
infinity. The term with the derivative of the Green’s functio
describes the effect of the compressibility of the mediu
This term is absent from the formulas in Refs. 17 and 18

To allow for the corrections toDT determined by the
contribution of the irreducible fourth-order correlators13

which are not present in~16!, we write the corresponding
formulas. We have

DT5DT
~0!1D inc

~1!1Dcomp
~1! 1Dmix

~1! 1Dh
~1!1•••.

The additional terms with the corresponding subscripts
note the contributions from the spectra of incompressib
compressible, mixed, and helical motions. In calculating
correction, we allowed for the explicit form of the secon
term of the hierarchy of nonlinear equations for the avera
Green’s function, a term similar in structure to the one us
in Ref. 13 ~the paper is devoted to the study of magnet
field diffusion!. We have assumed that the velocity ensem
is Gaussian, i.e., the odd-order correlators are assumed
equal to zero, while the even-order correlators are assu
to be expressed in terms of all possible pair correlators:
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D inc
~1!5

1

24E0

`

dpE
0

`

dqE
21

1

dmE
0

`

dt1E
0

`

dt2

3E
0

`

dt3 pqm~12m2!Einc~q,t11t2!

3Einc~p,t21t3!g̃~q,t1!g̃~p,t3!g̃~ up1qu,t2!, ~17!

Dh
~1!5

1

24E0

`

dpE
0

`

dqE
21

1

dmE
0

`

dt1E
0

`

dt2

3E
0

`

dt3 ~12m2!Eh~q,t11t2!

3Eh~p,t21t3!g̃~q,t1!g̃~p,t3!g̃~ up1qu,t2!, ~18!

Dcomp
~1! 52

1

6E0

`

dpE
0

`

dqE
21

1

dmE
0

`

dt1E
0

`

dt2

3E
0

`

dt3 mEcomp~q,t11t2!Ecomp~p,t21t3!

3$@2pq1~p21q2!m1pqm2#g̃~q,t1!g̃~p,t3!

3g̃~ up1qu,t2!1pq~q1pm!@ g̃8~q,t1!g̃~p,t3!

3g̃~ up1qu,t2!1mg̃~q,t1!g̃8~p,t3!g̃~ up1qu,t2!

1~q1pm!up1qu21g̃~q,t1!g̃~p,t3!g̃8

3~ up1qu,t2!#%, ~19!

whereg̃8(p,t)5]g̃(p,t)/]p, and

Dmix
~1! 52

1

12E0

`

dpE
0

`

dqE
21

1

dmE
0

`

dt1E
0

`

dt2

3E
0

`

dt3 pEinc~q,t11t2!Ecomp~p,t21t3!

3$2~qm1p!~12m2!g̃~q,t1!g̃~p,t3!g̃~ up1qu,t2!

1pqm~12m2!g̃~q,t1!@ g̃8~p,t3!g̃~ up1qu,t2!

1pup1qu21g̃~p,t3!g̃8~ up1qu,t2!#%. ~20!

In Eqs.~17!–~20!we can use the DIA solutiong̃(p,t) rather
than the solution of the second equation in the hierarchy
nonlinear equations, since the differences between the
solutions~as related to the calculation ofDT) appear only in
the terms that allow for irreducible sixth-order correlators

The above formulas show thatDh
(1).0 and D inc

(1),0.
Here we assumed thatg̃(p,t) is a monotonically decreasin
function of both arguments~this is actually the case in th
diffusion approximation! and that the generalized spectra a
sume their maximum values att50. It seems natural tha
helicity enhances the turbulent diffusion coefficient: its pr
ence means that there is additional regularity in turbul
motions, which ensures that impurities are transported o
greater distances. We recall that by the helicity spectrum
mean

^u~r ,t !–curl u~r ,t1t!&5E
0

`

dp Eh~p,t!, ~21!
f
o

-

-
t

er
e

Eh~p,t!52
p4D~p,t!

p2
.

The DIA Green’s functiong̃(p,t) for p small ~large dis-
tance! andt large becomes the Green’s function of the d
fusion equation with a diffusion coefficientD5DT

(0)1Dm .
On the other hand, large-scale turbulent motions provide
leading contribution to the transport of impurity particle
Hence a good way to estimateDT is to replace the exac
value of g̃(p,t) in ~16! by its diffusion expressiong̃diff

5exp(2Dsp
2t) with an unknown diffusion coefficientDs .

Equation~16! then becomes a nonlinear equation for findi
the self-consistent diffusion coefficientDs . Phythian and
Curtis22 were probably the first to introduce this method.

According to the DIA equation~15!, the average value
^R2(t)& of the spread of the initial point impurity-particl
source (̂R2(t)&52¹p

2g̃(p,t)p50) has the form

^R2~ t !&56Dmt12E
0

`

dpE
0

t

dt ~ t2t!H Einc~p,t!g̃~p,t!

1Ecomp~p,t!F g̃~p,t!1p
]g̃~p,t!

]p
G J . ~22!

For t@t0 this formula becomes the well-known diffusio
expression̂R2(t)&56(Dm1DT

(0))t. Equation~22! can serve
as a tool for checking whether the approximation for t
Green’s functiong̃(p,t) has been chosen correctly.

4. ACOUSTIC TURBULENCE

By acoustic turbulence one usually means a medi
with randomly propagating acoustic waves. For examp
such turbulence is present in the solar corona. If the tur
lence is stationary, and it is this case that we will be study
here, the impurity particles primarily perform periodic osc
latory movements together the main liquid or gas. No dif
sion is present here, provided that we ignore the weak m
lecular diffusion. Three processes, in addition to molecu
diffusion, serve as sources of diffusion. First, molecular d
fusion is stronger if the particles perform oscillatory mov
ments instead of being at rest. Second, the decrease in
amplitude of the acoustic waves~absorption! and the occur-
rence of the random irregularities in the phases caused
instance, by collisions with randomly moving obstacles, le
to shifts in the oscillation centers, which violates the perio
icity of motion of an impurity particle, whose behavior
similar to that of a drunkard from the well-known model
random walk motion examined by Taylor in his famo
paper.2 However, the behavior of the particle is different:
still oscillates most of the time, and particle hopping is a ra
event. Wave absorption due to viscosity23 is small and is
described by the absorption coefficientg5kp2 (s21), where
p is the wave number, andk coincides, in order of magni-
tude, with the molecular diffusion coefficientDm . Probably,
irregularities in the phases occur more easily than true
sorption of the wave’s energy, but they strongly depend
the way in which acoustic turbulence is realized. It is impo
tant to note that functionally the phase irregularities prov
the same contribution to the turbulent spectrum as true
sorption~see the Appendix!.
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Stationary homogeneous, isotropic acoustic turbulenc
described by the correlator18

B̃nk~p,t!5pnpkF~p!cos@v~p!t#exp@2g~p!t#, ~23!

wherev(p)5cp is the wave frequency, withc the velocity
of the wave. Here and in what follows byt we mean the
absolute value of the time difference:t5ut12t2u. The spec-
trum E[Ecomp(p,t) corresponding to~23! has the form

Ecomp~p,t!5
1

2p2
p4F~p!cos@v~p!t#exp@2g~p!t#. ~24!

SinceDT is sure to be small, we assume, as in Ref.
that g̃(p,t).exp(2Dmp2t), but unlike Kazantsevet al.,18

we will not setDT to zero, since the values ofDT are of the
same order as the molecular diffusion coefficientDm . Sub-
stituting this value ofg̃(p,t) into the general formula~16!,
we get

DT
~0!5

1

3E0

`

dp Ecomp~p,0!H g~p!1Dmp2

~g1Dmp2!21c2p2

2
2Dmp2@~g1Dmp2!22c2p2#

@~g1Dmp2!21c2p2#2 J . ~25!

We see that generally the second term in the braces, w
allows for the compressibility of the medium, is of the sam
order as the first term, which is the only term present in R
17 and 18. To make a more specific estimate we assum
in Ref. 18, that the decay of the correlator~23! with the
passage of time is determined by the true absorption of
wave energy,g(p)5kp2, with k'Dm , i.e., we ignore the
contribution of phase irregularities to absorption. We a
allow for the fact that (k1Dm)p/c' l /r !1, wherel is the
mean free path of the molecules. Equation~25! then yields

DT
~0!5 1

3M
2~k13Dm!, ~26!

whereM5u0 /c is the Mach number. We see that ignorin
molecular diffusion reduces the turbulent diffusion coe
cient threefold and that the contribution of compensabi
~more precisely, the second term in~16!!, equal to the term
2Dm in the parentheses, is substantial. In acoustic tur
lence, compressibility enhances the turbulent diffusion co
ficient, in contrast to the case of the purely random succ
sion of compressions and dilations of the medium. Proba
compressibility in this regular wave motion of the mediu
locally ~within one wavelength! enhances the impurity con
centration gradient, and molecular diffusion proceeds m
effectively.

Here we have not mentioned the complicated problem
the accuracy of Eqs.~25! and~26!, which can be fully solved
only by obtaining the exact solution of the DIA equation~15!
and by calculating the correction~19!. Note that the solution
of the DIA equation with a rapidly oscillating function in th
kernel is a complicated mathematical problem. The fact t
these equations are fairly accurate is confirmed~true, indi-
rectly! by two facts. First, the substitution ofg̃m(p,t)
5exp(2Dmp2t) into the DIA equation~15! leads to a diffu-
sion solution, close in magnitude to the initial one, whi
is
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suggests that selectingg̃m(p,t) as the starting approximatio
was a correct step. Second, the use of a self-consistent
cedure for calculatingDT leads to the formula

Ds5S Dm1
1

3
M2k D 1

12M2
, ~27!

which at small Mach numbers yields the same results as~26!
~it will be recalled thatDs is the total diffusion coefficient,
i.e., the sum of the molecular and turbulent diffusion coe
cients!. Note also that~26! can easily be derived from
~15! and ~16! as the first terms in the asymptotic series
powers of 1/(cp)2 by using only the normalization propert
g̃(p,0)51.

5. NONACOUSTIC TURBULENCE

By nonacoustic turbulence one usually means a turbu
medium with chaotic incompressible and/or compressi
motions of the liquid or gas without any indications of pe
odicity. Such turbulence can be interpreted as the limit
posite to acoustic turbulence. It is observed, for instance
regions where stars are formed. Of course, there are
various intermediate cases. The spectraEcomp(p,t) and
Einc(p,t) in such turbulence may vary substantially. For t
sake of definiteness, we limit ourselves to spectra that de
exponentially with the passage of timet. What we want to
do is to see how different the turbulent diffusion coefficien
are in the limits of purely incompressible and purely co
pressible~irrotational! turbulent media formally described b
the same generalized spectra:

Einc,comp~p,t!5E~p!expS 2
t

t0
D . ~28!

For our calculations we have chosen several types ofE(p):

E~p!5u0
2d~p2p0!, ~29!

E~p!5 S u0
2

p0
D 0.651 59x4

11x17/3
. ~30!

The spectra~29! and ~30! represent two limits: a peake
spectrum and a broad spectrum~of Kolmogorov form in the
inertial region!. In the spectrum~30! and below,x5p/p0 .
We also considered the following intermediate cases:

E~p!5
8

3Ap

u0
2

p0
x4 exp~2x2!, ~31!

E~p!5
128

3

u0
2

p0
x4 exp~24x!, ~32!

E~p!55
u0

2

p0

x4

~11x!6
. ~33!

The Green’s functionsg̃(p,t) were calculated by the DIA
equation~15! and the diffusion coefficientsDT

(0) , D inc
(1) , and

Dcomp
(1) , by Eqs.~16!, ~17!, and~19!, respectively. The results

of calculations of the dimensionless turbulent diffusion co
ficient D̄T (DT5(u0 /p0)D̄T) are depicted in Figs. 1–5
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Curves1, 2, and 3 represent, respectively, the coefficien
D̄T

(0) , D̄T
(0)1D̄ inc

(1) , andD̄s for the case of an incompressib
medium. HereD̄T

(0) yields a somewhat overestimated val
of the turbulent diffusion coefficient, while the negative co
rection D̄ inc

(1) reduces it slightly. In the limitj0→`, all the
curves tend to finite limits12 corresponding to what is know
as frozen turbulence, determined by long-lived vortices. T
monotonic rise of the turbulent diffusion coefficients corr
sponds to this increase in the lifetime of turbulent vortice

Curves4, 5, and6 representing the case of compressib
~irrotational! turbulence have quite a different shape. T
striking feature here is thatD̄T

(0) assumes negative values f
j0>3 for sharp spectra and forj0>5 for broad spectra
Does this mean that there is negative diffusion, i.e., a flow
impurity particles into regions with a higher concentratio
The answer is no, for two reasons. The first is a formal:
next approximationD̄comp

(1) is positive in the region where
D̄T

(0) is negative, and the net result is positive. We also
now that forj0>1 the value ofD̄comp

(1) cannot be considere
a correction, i.e., forj0>1 the theory becomes invalid. Th
second reason has a physical explanation and at the s
time explains why the DIA equation does not ‘‘work’’ in th

FIG. 1. The dimensionless turbulent diffusion coefficientD̄T5(p0 /u0)DT

for the case of turbulence with the delta-function energy spectrum~29!.

Curves1, 2, and3 represent, respectively,D̄T
(0) , D̄T

(0)1D̄ inc
(1) , andD̄s for the

case of an incompressible medium. Curves4, 5, and6 represent the similar
quantities for the case of compressible turbulence with the same en

spectrum. The coefficientD̄T
(0) ~curve 4! becomes negative atj05u0p0t0

.3. The inset depicts the initial sections of the curves drawn to a la
scale.
e
-

f

e

e

me

FIG. 2. The dimensionless turbulent diffusion coefficientD̄T5(p0 /u0)DT

for the case of turbulence with the energy spectrum~30!. The notation is the
same as in Fig. 1.

FIG. 3. The dimensionless turbulent diffusion coefficientD̄T5(p0 /u0)DT

for the case of turbulence with the energy spectrum~31!. The notation is the
same as in Fig. 1.
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regionj0>1. The point is that if we consider turbulence
being a chaotic mixture of nonoscillating compressions a
dilations ~our correlators describe just such motion!, it is
meaningless to examine cases withj0>1, since they are no
realized in nature. If long-lived vortices can exist in an i
compressible medium, i.e., if cases withj0@1 exist in na-
ture, bulk nonoscillating compressions and dilations hav
lifetime t0 directly related to the compression~or dilation!
ratio uDVu/V. To estimatet0 we use the well-known rela
tionship

S DV

Vt0
D 2

>^div2 u~r ,t !&[E
0

`

dp p2Ecomp~p!'u0
2p0

2 .

~34!

This leads to the desired expressiont0'^uDV/Vu&/u0p0 and
hence j05u0p0t0'^uDV/Vu&. The value of the averag
relative variation of volume determining the parameterj0

depends on the specific physical conditions of compres
and dilation of the gas. For instance, for adiaba
processes24 we haveuDV/Vu,2g/(11g), where g is the
adiabatic exponent (p5const3rg) @. For a monatomic gas
g55/3 anduDV/Vu,5/4.

Figures 1–5 shows that the compressibility in nonaco
tic turbulence significantly reduces the value of the turbul
diffusion coefficientDT compared to the case of incompres
ible turbulence, which has the same generalized spectru
the j0>0.5 range. This explains the ineffectiveness of co

FIG. 4. The dimensionless turbulent diffusion coefficientD̄T5(p0 /u0)DT

for the case of turbulence with the energy spectrum~32!. The notation is the
same as in Fig. 1.
d
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pressions and dilations in the transport of impurities fro
one point to another in comparison with convective moti
in an incompressible medium. Note that the very occurre
of negative values ofDT in DIA solutions for a compressible
medium is natural, since it is in such a medium that larg
scale turbulent structures become prominent.25

In reality the compressible and incompressible turbul
movements coexist. The above general formulas allow
diffusion coefficients to be calculated in such cases, t
More than that, in a mixed case the convergence of
method of successive approximations in solving the D
equation is better than in purely irrotational turbulence.

6. CONCLUSION

We have derived general formulas for calculating t
turbulent diffusion coefficientDT in a compressible medium
formulas that allow for the contributions of all powers of th
second- and fourth-order velocity correlators. We have a
found that the additional term, ignored by other research
that describes the correlation of divu with the stochastic
Green’s function contributes substantially toDT . For the
first time we have numerically solved the nonlinear D
equation for a number of models of compressible turbule
and have shown that compressibility substantially redu
DT in the case of nonacoustic turbulence in comparison
the value ofDT for incompressible turbulence with the sam
energy spectrum. On the other hand, for acoustic turbule
due to compressibility, the value ofDT is larger than that of
the molecular diffusion coefficientDm , the two remaining
comparable in order of magnitude, as established wit
lower accuracy by other studies.18 We have found that the
DIA equation is quite suitable for findingDT in compressible
media if one keeps to the physically admissible values of
parameterj05u0p0t0 . All the results of this paper are als

FIG. 5. The dimensionless turbulent diffusion coefficientD̄T5(p0 /u0)DT

for the case of turbulence with the energy spectrum~33!. The notation is the
same as in Fig. 1.
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fully applicable to the turbulent diffusion coefficients in th
case of magnetic-field diffusion in a medium without hel
ity.

APPENDIX

We perform a simple derivation of an expression for t
velocity correlator in the case of acoustic turbulence a
show that the decay of the correlator with the passage of t
is due to the random irregularities in the phases. Bearin
mind thatui(r ,t)5¹ iw(r ,t), wherew(r ,t) is the stochastic
potential, we can write the chaotic wave ensemble in
form26

w~r ,t !5(
n

wn~pn ,t !cos@pn–r2vnt1a0n1an~ t !#,

~A1!

wherepn is the wave vector of thenth wave, andvn5cpn is
the wave frequency. Since the waves are absorbed by
medium, the amplitudewn depends on timet, with a0n the
random initial phase of the wave, andan(t) the current
phase as the wave passes through the medium~this quantity
is assumed to change only slightly in the course o
time interval equal to the wave period!. The velocity cor-
relator is Bi j (R,t)52¹ i¹ jW(R,t), where W(R,t)
5^w(r ,t)w(r 8,t8)& is the potential correlator,R5r2r 8,
t5t2t8, and

^w~r ,t !w~r 8,t8!&5
1

2 (
n,m

^wnwm&$cos@pn–r1pm–r 82vnt

2vmt81a0n1a0m1an~ t !1am~ t8!#

1cos@pn–r2pm–r 82vnt1vmt81a0n

2a0m1an~ t !2am~ t8!#%. ~A2!

Averaging with the weight 1/2p over the independent initia
phasesa0n anda0m yields n5m, and averaging the ampli
tudes yields ^wn(t)wn(t8)&52F(pn ,t) in the stationary
case. The expression forW(R,t) becomes

W~R,t!5(
n

F~pn ,t!^cos@pn–R2vnt1an~ t !2an~ t8!#&.

~A3!

If we assume thatan(t) is a stationary Gaussian process, i.
^an(t)an(t1t)&5a0

2a(utu), wherea(t) is equal to unity at
t50 and decays with the passage of time, e.g., as
(2t/t0)512t/t0. It is known26 that

^exp$6 i @an~ t !2an~ t8!#%&

5exp$2a0
2@12a~t!#%.expS 2

a0
2t

t0
D . ~A4!
d
e

in

e

he
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,

p

As a result,~A3! acquires the final form

W~R,t!5(
n

F~pn ,t!cos~pn–R2vnt!expS 2
a0

2t

t0
D . ~A5!

If we pass from the sum to an integral with respect to
wave vectors, we arrive at an expression equivalent to~23!.
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Helicity generation in turbulent MHD flows
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We study turbulent flow of a conducting liquid in a uniform external magnetic field. It is shown
that intense helicity generation is possible in the presence of a mean shear flow. It is noted
that even though the mean helicity of the initial flow can be zero, the presence of internal
topological structure of the flow, for example the presence of helicity of different signs at
different scales, is nevertheless necessary for helicity generation. ©1998 American Institute of
Physics.@S1063-7761~98!01309-2#
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1. INTRODUCTION

Helicity (H5^v–“3v&) has a substantial effect on th
stability and evolution of both laminar and turbulent flows1

Helical cascades, first introduced in Ref. 2 and analyzed
Ref. 3 for various special cases, are closely related to he
turbulence. Two basic limiting cases2 have been identified—
parallel energy and helicity fluxes along the spectrum

E~k!}«̄2/3k25/3, H~k!}h̄«̄21/3k25/3,

which correspond to a Kolmogorov cascade, and a heli
flux without an energy flux

E~k!}h̄2/3k27/3, H~k!}h̄2/3k24/3,

which is a purely helical cascade («̄ and h̄ are the average
dissipation of energy and helicity!.

For a long time, helical cascades were treated as pu
theoretical curiosities irrelevant to existing experimen
data. However, a substantial amount of baggage consis
of experimental laboratory and natural observations of t
27/3 spectrum over a wide range of spatial scales has
been accumulated. Such spectra are observed in labor
MHD flows,4–6 rotating liquids,7 stratified turbulence behind
a grid,8 boundary layers,9 direct measurements of atmo
spheric turbulence at various altitudes,10–12 and the tropical
pre-typhoon atmosphere.13 We note that two scaling region
often exist in both atmospheric and laboratory MHD turb
lence spectra: (25/3) and (27/3).

The existence of a ‘‘helical’’ spectrum raises the pro
lem of the origin of helicity. It is well known that helicity is
an invariant of the ‘‘pure’’ Euler equation~which neglects
the influence of stratification, background rotation, and ot
factors!. Helicity generation in stellar and planetary atm
spheres is probably basically due to the rotation of the pla
and stratification,14–16,3 whereas the nature of the onset
helicity in MDH flows is as yet unclear. The origin of th
helicity observed in laboratory flows is also not obvious.
Ref. 17, where a qualitative analysis of the observed hel
5131063-7761/98/87(9)/5/$15.00
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spectra was performed, it is argued in this regard that refl
tion symmetry is spontaneously broken in three-dimensio
turbulence.

Investigations of MHD turbulence have a long history.
is widely believed that turbulence becomes two-dimensio
under the action of a magnetic field. Many experimen
results6,18 do not fit into the two-dimensional picture and ca
be explained only if three-dimensionality is taken into a
count. Such three-dimensional effects also include the
served helical spectra.4–6 We note that attempts to give
two-dimensional interpretation of the results of laborato
measurements and numerical simulation of MHD turbulen
are not the only possibilities. Spectra that can be explaine
a manifestation of a two-dimensional23 spectrum also cor-
respond, to the same degree of accuracy, to a27/3 spectrum.

The problem of helicity generation in MHD flows wa
first examined in the context of turbulent dynamo theory.19 It
was shown at that time that helicity opposite in sign to t
original helicity is generated, intensifying perturbations
the large-scale magnetic field. Somewhat later this effect
explained from the standpoint of the conservation of
magnetic helicity invariantHm5^¹21h–h&. Helicity was
generated only in fields with (B–“3B)Þ0 ~here B is the
large-scale magnetic field!. In laboratory MHD flows, mag-
netic helicity vanishes, as a rule. Nonetheless, a helical
ergy cascadeE(k)}k27/3 is observed over a wide range o
external magnetic field values. The present paper is dev
to determining a possible mechanism of helicity generat
in turbulent MHD flows.

2. STATEMENT OF THE PROBLEM

We examine turbulent MHD flow of an incompressib
fluid in a uniform magnetic fieldB0 (m51) and with a time-
independent mean component of the mean velocityU0:

] tv2v3curl v1¹
v2

2
52¹P/r

1curlH3H/4pr1nDv, ~1!
© 1998 American Institute of Physics



at

s

a
us
as
cit
ity

la
g
ti
h
o

it

e
re

io

ator
n

bu-
r is

ling

mo
etic
-
an

re
de

the
ffi-
s,
r

of
the

en’s

514 JETP 87 (3), September 1998 Chkhetiani et al.
div v50, ~2!

] tH1~v–¹!H2~H–¹!v5nmDH, ~3!

div H50. ~4!

In what follows, we work in the Alfve´n variables

H85H/A4pr, H5H8.

In the absence of magnetic fields and neglecting kinem
viscosity, hydrodynamic helicity is a conserved quantity:

] t^v–curlv&50. ~5!

The magnetic field leads to the emergence of ‘‘source
in the helicity balance equation:

] t^v–curlv&522n^w• curlw&1M ,

M52^w3 curlh&•B012^h3w&curlB012V0

•^curlh3h&12^~w curlh…3h&. ~6!

Here

v5U01u, ^v&5U0,

curlv5U01w, ^curlv&5V0,

H5B01h, ^h&50.

In the present paper we study the limit of large Alfve´n
velocities (uB0u@uU0u) and neglect in Eq.~6! the corre-
sponding contribution of the mean velocity. We note th
^v–¹3v& is the mean helicity of a flow only in homogeneo
and isotropic turbulence. In the general inhomogenous c
^v–¹3v& corresponds to an ensemble-averaged heli
density. We consider the mean flow with zero helic
(U0

•V0)50. Then

^v•curlv&5^u•curlu&.

The first term in Eq.~6! was first studied by Va�nshte�n
in Ref. 19. Only the anisotropy introduced into the corre
tions of the turbulent velocity field by a quasistationary ma
netic field was taken into account. In a uniform magne
field ¹3B050. In the theory of a nonlinear dynamo wit
¹3B0Þ0, this term is responsible for nonlinear saturation
large-scale instability.

The cubic nonlinearity in Eq.~6! can be approximated in
the spirit of the Orszag approximation as at-relaxing term.
Its influence reduces to redistribution of energy and helic
over both scales and directions~to renormalization of turbu-
lent visocity and magnetic diffusion; see, for example, R
20!. In the present paper we examine in detail the first th
terms on the right-hand side of Eq.~6!.

3. INDUCTION EQUATION IN A SHEAR FLOW

The fluctuation magnetic fieldh excited by a turbulent
velocity field is described by the induction equation

] th2curl @~U01u!3h#5~B0
•¹!u1nmDh. ~7!

Neglecting magnetic viscosity, the solution of this equat
has the form
ic

’’

t

e,
y

-
-
c

f

y

f.
e

n

h~ t !5e2~Â1F̂ !t h~0!1E
0

t

e2~Â1F̂ !~ t2s!~B0
•¹!u~s! ds,

~8!

where

Âh5curl @U03h#, F̂h5curl @u3h#.

Examining the series expansion of the exponential oper
in the integrand in Eq.~8!, it is easy to see that the expansio
of the fluctuation part of the exponential~the F̂ operator!,
starting with the second term~in powers of the velocity!, is
equivalent to taking the higher-order moments of the tur
lent velocity field into account. The expansion paramete
the turbulent Strouhal numberS5uturtcor /l, which is based
on the main characteristics of the turbulent flow.

For small Strouhal numbers (S!1), the term
¹3(u3h) in the magnetic induction equation~7! can be
dropped. This corresponds to so-called first-order sca
theory ~first-order smoothing approximation—FOSA!, em-
ployed in the quasilinear theory of plasma and in dyna
theory.21 In this case there are no restrictions on the magn
Reynolds number Rem . Under ordinary conditions the Strou
hal number is of order 1. But the basic physical effects c
be ‘‘fished out’’ even for small Strouhal numbers. Mo
complicated approximations, which as a rule also inclu
elements of numerical simulation, merely renormalize
specific numerical values of the turbulent transport coe
cients ~diffusion, viscosity, helicity generation coeffiicent
and so on!. Neglecting¹3(u3h) is also correct in anothe
limiting case—low magnetic Reynolds numbers, Rem!1,
and arbitrary Strouhal numbers.21

Henceforth we work in the two-scale approximation

L@l, T@t,

whereL, T and l, t are characteristic space-time scales
mean and fluctuating quantities. In this case we can take
shear of the mean velocity to be constant~uniform! in the
small-scale equations. The magnetic fieldh in a flow with
constant shear can be determined in terms of the Gre
function, first obtained by K.-H. Ra¨dler:21

Gi j ~x,j,t,t!5g i j ~ t2t! G~x2j,t2tuU0!.

Here

g i j ~ t !5d i j 1
]Ui

]xj
t,

G~x,tuU0!5H S 1

4pnmt D
3/2

expH 2
dpqxpxq

4nmt J , t>0,

0, t,0.

For short correlation times the termdpq(t) has the form~see
Ref. 21!

dpq~ t !5dpq2
1

2S ]Up

]xq
1

]Uq

]xp
D t,

andg i j 'd i j . In this case the solution of Eq.~7! is
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h~ t !5E G~x2j,t ! h~j,0! dj1EEG~x2j,t2t!

3~B0
•¹!u~j,t! dj dt. ~9!

For timesT@t the initial values of the fluctuation magnet
field h can be neglected.

4. CALCULATION OF TWO-POINT CORRELATIONS

Taking account of Eq.~9!, we obtain

V0^curlh3h&5V0Ĝ1Ĝ2~B0
•¹1!~B0

•¹2!^wz13uz2&
~10!

and

^w3curlh&•B05Ĝ1^w3~B0
•¹1!wz1&•B0. ~11!

Hereu1andu2 correspond to (x1 ,t1) and (x2 ,t2) respectively.
The following two-point correlations must be determined

~B0
•¹1!~B0

•¹2!^wz13uz2&, ^w3~B0
•¹1!wz1&. ~12!

In homogeneous isotropic turbulence only the te
^w3(B0

•¹1)wz1& is nonvanishing~see Ref. 19!. The effects
of weak anisotropy due to a uniform magnetic field were a
studied in Ref. 22. The presence of a mean shear flow le
to inhomogeneities and additional anisotropy of the corre
tion properties of a turbulent velocity field. The princip
linear terms of the Reynolds stresses have a similar grad
form in the various models of turbulent closure. Small d
ferences are present in the definition of the transport co
cients (K –l , K –« models and others!. Nonlinear generaliza-
tions of Reynolds stresses make sense only for flows w
solid boundaries~rectangular and circular channels, etc.!. In
the FOSA approximation the nonlinearity in the equatio
which governs the anisotropic properties of the turbulen
can be neglected.

Comparing the terms in the equation for the velocity,
see that the main parameter characterizing the degree o
fluence of the magnetic field is the dimensionless comb
tion (B02/U0v tur)S, where B0 ~in Alfvén variables! equals
the Alfvén velocity in magnitude,U0 is the characteristic
mean velocity,v tur is the characteristic turbulent velocity
andS is the Strouhal number. Henceforth we assume tha

B02

U0v tur

S@1. ~12a!

In particular, in the laboratory setup at the Center
MHD Studies at Ben-Gurion University, the typical ma
netic fields were (324)3103 G, the velocity of mercury
flow along a cylindrical pipe 10 cm in diameter was 20 cm
and the typical velocity of the turbulent pulsations was 1
cm/s. Strouhal numbers greater than 531023 are sufficient
to satisfy the criterion~12a!. The prerequisiteS!1 for first-
order smoothing theory is satisfied for these values.

We note that this criterion is also satisfied in the so
plasmasphere.

Accordingly, the effect on two-point correlations o
shear in the mean velocity can be treated as a linear co
tion to the underlying state determined by the magnetic fie
o
ds
-

nt

fi-

th

,
e,

in-
-

r

,
2

r

c-
.

The effect of a uniform magnetic field on the correlatio
characteristics of turbulence was analyzed in Refs. 18,
21, and 23. The main effect is that a uniform magnetic fi
draws energy from turbulent pulsations and reradiates i
the form of Alfvén waves propagating along the magne
field lines. The structure of the two-point correlation tens
remains unchanged in Fourier space; the only change is
the coefficients become dependent on the angle between
wave vector and the magnetic field. Note that the form of
correlation tensor obtained in Refs. 19 and 23 is valid
weak magnetic fields and can be obtained by an approp
expansion of the more general expression obtained in R
21.

We assume that turbulent pulsations of the velocity fi
in the absence of an external magnetic field are homo
neous and isotropic. Then the velocity correlation tenso
Fourier space has the form

Q̂i j
0 ~k,v!5

E~k,v!

4pk2 S d i j 2
kikj

k2 D 1 i
H~k,v!

8pk4
« i jkkk .

~13!

The mean energy and helicity of the turbulent flow are

^u•u&5E E~k,v! dk dv,

^u•curlu&5E H~k,v! dk dv. ~14!

Under conditions in which first-order smoothing theo
~FOSA! is applicable, min(S, Rem)!1, the correlation ten-
sor, taking account of the uniform external magnetic fie
has the form~see Ref. 21!

Q̂i j
h ~k,v!5

Q̂i j
0 ~k,v!

11~B0
•k!2

2nnmk422v21~B0
•k!2

~nm
2 k41v2!~n2k41v2!

. ~15!

The field of turbulent pulsations can provisionally b
separated into homogeneous~neglecting shear! uh and inho-
mogeneous~taking shear into account! unh components. The
inhomogeneous component satisfies the linearized equa

~] t2nD!unh52¹pnh1curlh3B0

2~U0
•¹!uh2~uh

•¹!U0, ~16!

whereh is given by ~9!. In the present case, to obtain th
form of the inhomogeneous Reynolds stresses, one can
glect the effect of the mean velocity on the magnetic fie
induced by turbulent pulsations. Then the equation forunh

has the form

~] t2nD2~B0
•¹!2Ĝ!unh

52¹pnh2~U0
•¹!uh2~u•h¹!U0. ~17!

1. Calculation of (B0
•¹1)(B0

•¹2)^wu13uu2&. Multiply-
ing the equation forw„x1 ,t1) by u„x2 ,t2) and carrying out
the spatial averaging, we obtain



lo

he

ls
tie
he

n

re

l

city

ity
ve
ty,
ean
ro.

can
nd

ag-
pa-

e

ity,

eld,
n
n

516 JETP 87 (3), September 1998 Chkhetiani et al.
~] t1
2nDj2~B0

•¹j!
2Ĝ!^wz13uz2&nh

5^@curl @U03w#1@u3V0#u13uu2#&,

j5x22x1 .

After a number of calculations we obtain

~B0
•¹1!~B0

•¹2!^wu13uu2&u i
nh

5ĜB0
Bu

0Bv
0« i jk« j lm« tpr~d tmdks1d tkdms!

3
]

]xl
1 H ]Up

0

]xu
1 K wr

]us

]jv
L 1Up

0U1K ]wr

]ju

]us

]jv
L

1V r
0U1K ]up

]ju

]us

]jv
L 1

]V r
0

]xu
1 K up

]us

]jv
L J . ~18!

Here

~ ĜB0
v!k,w5F2 iv1nk21

~B0
•k!2

2 iv1nmk2G21

v̂„k,v).

For the homogeneous component of the turbulent ve
ity field we obtain

~B0
•¹1!~B0

•¹2!^wu13uu2&u i
h

5B0mB0nH K ]2ui

]jm]jk

]uk

]jn
L 2 K ]2uk

]jm]j i

]uk

]jn
L J .

After integrating over angles the homogeneous part vanis
For low Strouhal numbers~short correlation times!, the

mean value theorem can be used to calculate the integra
the spatial derivatives of the mean and turbulent veloci
can be removed from the integrand and set equal to t
average~local! values. Taking the scalar product ofV0 with
Eq. ~19! we obtain

MA5x1~V02
B02

2~V0
•B0!21V0~B0

•¹!~B03U0!!

1x0~V0
•¹!~B0

•¹!~B0
•V0!

1«1~V0
•¹!~B0

•¹!~B0
•U0!1«2~2B02

~V0
•DU0!

2~V0
•~B0

•¹!2U0!2~V0
•¹!~B0

•¹!~B0
•U0!!. ~19!

Here

x0.
2

3
tA

3^u–w&, x1.
2

15
tA

3^w•curlw& ~20!

«1.
1

3
tA

3^w•w&, «2.
2

15
tA

3^curlw•curlw& ~21!

are proportional to the turbulent helicity, superhelicity, e
strophy, and superenstrophy, respectively, and

tA
3.E G~x2x1 ,t2t1!G~x2x2 ,t2t2!ĜB0

3~x12x22x* ,t12t* !g~x* ,t* !

3dx1 dx2 dx* dt1 dt2 dt* . ~22!

Here g(x* ,t* ) is the space-time dependence for the cor
sponding correlation function.
c-

s.

—
s
ir

-

-

2. Calculation of ^w3(B0
•¹1)wz1& . Multiplying the

equation forw„x,t) by w„x1 ,t1) and carrying out the spatia
averaging, we obtain

~] t2nDj2~B0
•¹j!

2 Ĝ!^w3wu1&nh

5^curl ~U03w1u3V0!3wu1&, j5x2x1 . ~23!

After a number of calculations we obtain

^w3~B0
•¹1!wz1& u i

nh

5ĜB0
Bt

0~dkld im2dkmd i l !~«k f ndmpr

1~dpkd r f 2dp fd rk!dmn!

3H ]Up
0

]xl
K wr

]2un

]j f]j t
L 1

]V r
0

]xl
K up

]2un

]j f]j t
L J . ~24!

For the homogeneous component of the turbulent velo
field we have

MB
05Ĝ1^~w3~B0

•¹1!wz1! &u i
h

.2
1

6
~B02

!t0^w•curlw&, ~25!

where

t0.E G~x,t !g~x,t ! dx dt.

This term is proportional to the turbulent superhelic
^w–¹3w&. In Ref. 19, it was treated only as a dissipati
term. However, since helicity is not a sign-definite quanti
it can be both dissipative and productive. Indeed, a m
helicity of zero does not mean that the superhelicity is ze
Positive and negative helicity density on different scales
be a source of both subsequent redistribution of helicity a
generation of helicity. For large Reynolds numbers the m
netic generation of helicity is much greater than the dissi
tive helicity.

Multiplying Eq. ~24! by B0 and using the mean valu
theorem, we obtain

MB.2«18~B0
•¹!~B0

–V0!1x18~B0
•¹!~B0

•U0!. ~26!

Here

«18.
1

3
tB

2^w–w!&, x18.
1

3
tB

2^w•curlw!&

are proportional to the turbulent enstrophy and superhelic
respectively, and

tB
2.E G~x2x1 ,t2t1! Ĝ B0

~x2x12x* ,t2t* !

3g~x* ,t* ! dx1 dx* dt1 dt* .

Finally, the helicity balance equation takes the form

] t^v•curlv&5MA1MB
01MB22n^w•curlw&.

The new terms in Eqs.~20! and ~26! in the helicity bal-
ance equation are functions of the external magnetic fi
the shear~vorticity! of the mean velocity, and the correlatio
functions of the turbulent velocity field. Helicity productio
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is highly nonlinear. The dependence on the external m
netic field is more complicated because of its influence
the coefficients« andx.

Hence, turbulent flow with nonuniform shear of th
mean velocity and a uniform external magnetic field can g
erate hydrodynamic helicity.

5. CONCLUSIONS

We have derived a balance equation for hydrodyna
helicity in turbulent MHD flow. A direct analysis reveals th
the shear of the mean velocity and the resulting anisotrop
the correlation properties of the random velocity field a
sufficient conditions for helicity generation. We emphas
that helical spectra have been observed in laboratory M
flows only with a grid~honeycomb! placed in the flow, re-
sulting in the emergence of abrupt spatial gradients of
mean velocity. We note especially that under these circu
stances, either a regular mean or turbulent velocity com
nent in the main flow should have internal~hidden! topologi-
cal structure—specifically, nonvanishing superhelic
^w–¹3w&.

Superhelicity is responsible for the well-known dissip
tive mechanism of helicity generation, first demonstrated
Ref. 24. For large Reynolds numbers this effect can be
main mechanism for the emergence of helicity. Nonzero
perhelicity is a common property of systems with helic
fluctuations. The helicity balance equation contains ter
that are related to other similar topological characterist
We stress that we are talking not only about the mean tu
lent superhelicity~or some other similar quadratic combin
tion!, but also about superhelicity of the mean flow. In oth
words, the presence of hidden topological properties
large- and small-scale helical motions under the action o
external magnetic field is the principal source leading to
generation of mean hydrodynamic helicity. An external ma
netic field serves as the trigger for helicity generation.

In our view, helicity generation is based on the follow
ing. We assume that in the absence of an external magn
field a balance of left- and right-handed regular~random!
motions exists. In an external magnetic field, random Alfv´n
modes propagate, their spatial spectrum reflecting the sp
structure of the unperturbed regular and random motio
However, the frequency of the Alfve´n waves depends o
their scale, i.e., these modes now enter with differ
‘‘weight,’’ which ultimately breaks the symmetry betwee
the left- and right-handed helical motion. This effect is sim
lar to the mechanism of dissipative helicity generation24,
where the difference in dissipation at different scales li
wise leads to breaking of the initial reflection symmetry.
g-
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As we have already emphasized, the helicity growth r
depends on the correlation characteristics of the main s
which in turn decrease with increasing magnetic field
}(11aB02

1bB04
)21. Accordingly, helicity generation

goes as}(B02
/(11aB02

1bB04
) and clearly has critical val-

ues of the magnetic field with maximum rate of growth. T
magnitude of the critical magnetic field depends on the p
cipal average characteristics of the turbulent flow. Such
havior has been observed in the experiments performe
the Center for MHD Studies~Beersheba, Israel!: As the ex-
ternal magnetic field increases, the stably observed27/3
spectrum is replaced by a two-dimensional24 spectrum.
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19S. I. Va�nshte�n, Zh. Éksp. Teor. Fiz.61, 612~1971! @Sov. Phys. JETP34,

327 ~1972!#.
20E. Golbraikh, O. G. Chkhetiani, and S. S. Moiseev, Zh. E´ ksp. Teor. Fiz.

114, 171 ~1998! @JETP87, 95 ~1998!#.
21F. Krause and K.-H. Ra¨dler,Magnetic Hydrodynamics of Mean Fields an

Dynamo Theory@Russian translation#, Mir, Moscow ~1984!.
22L. L. Va�nshte�n and S. I. Va�nshte�n, Geomagn. Aeron.13, 149 ~1973!.
23W. H. Matthaeus, Phys. Rev. A24, 2135~1981!.
24J. C. Andre and M. Lesieur, J. Fluid Mech.81, 207 ~1977!.

Translated by M. E. Alferieff



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 3 SEPTEMBER 1998
The temperature jump and slow evaporation in molecular gases
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We set up model transport equations that describe the behavior of molecular~diatomic and
polyatomic! gases with a molecule collision rate proportional to the molecular velocity. In deriving
these equations we allow for the internal~rotational! degrees of freedom, while the vibrational
degrees of freedom are assumed ‘‘frozen.’’ We also set up an exact equation for the
problem of the temperature jump with allowance for slow evaporation from the liquid surface
into the saturated vapor atmosphere. Finally, we derive explicit formulas for calculating
the coefficients of the temperature jump and gas-density jump above a flat surface and do the
necessary numerical calculations. ©1998 American Institute of Physics.
@S1063-7761~98!01409-7#
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1. INTRODUCTION. DERIVATION OF THE BASIC
EQUATIONS AND STATEMENT OF THE PROBLEM

The Smoluchowski problem~the problem of the tem-
perature jump! has been attracting much attention for a lo
time ~the history of this problem can be found in Refs. 1 a
2!. For a simple gas this problem has been solved by ana
methods involving the use of model equations3 and by ap-
proximate and numerical methods for the Boltzmann tra
port equation.4–7 In addition to the Smoluchowski problem
the behavior of a gas when there is slow evaporation fro
surface is also of interest.8–11

The work we have just mentioned deals with a mo
atomic gas. At the same time, it would be interesting to stu
the behavior of a molecular gas in such processes ne
surface. As is known, transport processes in a molecular
are much more complicated than in a simple gas.12 This
places more emphasis on the role of model collision integ
in describing transport processes, since the elastic and in
tic cross sections that enter into the Boltzmann collision
tegral have yet to be well enough studied to be used fo
detailed quantitative description of the processes.

The structure of model collision integrals can in pri
ciple depend on the nature of the phenomena that play
most important role in the given problem. In what follow
we consider a temperature range in which the vibratio
degrees of freedom are effectively ‘‘frozen,’’ while the rot
tional degrees of freedom can be described by a class
approach. The temperature range in which these condit
are met extends from tens to thousands of kelvins.13

There are many approaches to setting up model trans
equations for molecular gases~see, e.g., Refs. 14–17!. Some
of these incorporate the discrete structure of the levels of
internal energy of molecules. Allowance for such a struct
is important at low temperatures, while at high temperatu
the discrete level structure does not manifest itself and
superfluous, not to mention the fact that allowing for th
structure is inconvenient for practical applications. In th
connection we will use an approach, proposed in Ref.
5181063-7761/98/87(9)/9/$15.00
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that is based on the possibility of using the semiclass
approximation to describe the rotational degrees of freed
at high temperatures~a similar but somewhat different ap
proach is developed in Refs. 14 and 15!.

In Ref. 17 we discussed a model of a molecular diatom
gas with a constant rate of molecular collisions~this rate is
assumed independent of the velocity of the molecules!. An-
other interesting model is that with a constant mean free p
of the molecules, which is close to the model of a gas of h
spheres.2,11 The fact that the mean free path is consta
means that the collision rate is proportional to the velocity
the molecules.

In the present paper we use a model Boltzmann trans
equation of the Bhatnagar–Gross–Krook~BGK! type to de-
scribe molecular gases~diatomic and polyatomic! in which
the molecular collision rate is proportional to the molecu
velocity. On the basis of this model we set up analytic so
tions for the Smoluchowski and slow evaporation problem

The collision integral for a simple gas with a collisio
rate proportional to the speed of molecules has the form2,11

J@ f #5
w

l0
~ f eq2 f !. ~1!

Herel0 is the characteristic mean free path of the molecu
w5uv2u0(r )u is the speed of a gas molecule in a referen
frame in which the gas at the given pointr is at rest, i.e., has
the mass-weighted mean velocity, which is zero;v is the
molecular velocity of the gas in the laboratory referen
frame, andu0(r ) is the mass-weighted mean velocity of th
gas at pointr in the laboratory reference frame. The functio
f eq can be written

f eq5neqS m

2pkTeq
D 3/2

expF2
m

2kTeq
~v2ueq!

2G ,
where m is the mass of a molecule, andk is Boltzmann’s
constant.

The quantitiesneq, Teq, andueq can be found from the
condition that the collision integral~1! conserve the numbe
© 1998 American Institute of Physics
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of molecules, the momentum, and the energy. These req
ments can be written in the form of an equation:

E wM1f eqd3v5E wM1f d3v, ~2!

whereM151, mv, or mv2/2.
The collision integral for a diatomic gas can also

written in a form similar to~1!. Here f eq is given by

f * 5n* S m

2pkT*
D 3/2

J

2kT*

3expF2
Jv2

2kT*
2

m

2kT*
~v2u* !2G ,

whereJ is the total moment of inertia of a molecule, andv is
the frequency of the molecule’s rotation.

The quantitiesn* , T* , andu* can also be found from
conservation laws that are generalizations of~2!:

E wM2f * v d3v dv5E wM2v d3v dv, ~3!

whereM251, mv, or mv2/21Jv2/2.
For molecular gases whose molecules contain more

two atoms~below we call such gases polyatomic!, the func-
tion f eq can be written

f * 5n* S m

2pkT*
D 3/2

~J1J2J3!1/2

~2pkT* !3/2

3expF2
m

2kT*
~v2u* !2 2

J1v1
21J2v2

21J3v3
2

2kT*
G ,

whereJ1, J2, andJ3 are the principal moments of inertia o
a molecule, and (v1 ,v2 ,v3) is the vector of the angula
velocity of rotation of a molecule.13,18

The quantitiesn* , T* , andu* can be found from con-
servation laws, which is this case can be written

E wM3f * d3v d3v5E wM3f d3v d3v, ~4!

whereM351, mv, or mv2/21(J1v1
21J2v2

21J3v3
2)/2.

The concentrationn, velocity u, and temperatureT of
the gas are given by the relationships1,13

n5E f v d3v dv, u5
1

n E f v d3v dv,

T5
2

5n E f F1

2
m~v2u!21

1

2
Jv2Gv d3v dv

for a diatomic gas, and

n5E f d3v d3v, u5
1

n E f v d3v d3v,

T5
1

3n E f F1

2
m~v2u!2 1

1

2
~J1v1

21J2v2
2

1J3v3
2!G d3v d3v

for a polyatomic gas.
re-

an

Now let us suppose that in the region under consid
ation the gas temperatureT changes slowly, i.e., the relativ
variation of the temperature over the mean free pathl of
molecules of the gas is small:

l u¹ ln Tu!1. ~5!

Below we study the interaction of the gas and the surf
of the condensed phase. We assume that in the refer
frame in which the condensed phase is at rest, the spee
the gasu is much less than the speed of sound, i.e.,

A m

2kT
u!1. ~6!

It can be shown1,2 that the conditions~5! and ~6! yield

A m

2kT
u* !1. ~7!

The condition~5! makes it possible to isolate a region of th
volume occupied by the gas whose size is much larger t
the mean free path and in which the relative temperat
variations are small, i.e.,

uT2T0u
T0

!1. ~8!

HereT0 is the temperature of the gas at a certain point of t
region.

If conditions ~7! and ~8! are met, the transport equatio
can be linearized. Here the absolute value of a molecu
velocity,w, on the right-hand side of Eq.~1! can be replaced
in the linear approximation byv. The distribution functionf
can be writtenf 5 f 0(11w), where

f 05n0S m

2pkT0
D 3/2 J

2kT0
expF2

mv2

2kT0
2

Jv2

2kT0
G

for a diatomic gas, and

f 05n0S m

2pkT0
D 3/2 ~J1J2J3!1/2

~2pkT0!3/2

3expF2
mv2

2kT0
2

J1v1
21J2v2

21J3v3
2

2kT0
G

for a polyatomic gas.
If the conditions~5!, ~7!, and~8! are met, the functionw

is small, i.e.,uwu!1. Note that according to the definition o
T0, there is a certain ambiguity in selecting this temperatu
In point of fact, instead ofT0 and n0 we can take other
parametersT08 and n08 such thatuT02T08u!max(T0,T08) and
un02n08u!(n0 ,n08). Here the entire linearization procedu
remains valid. Onlyw changes, but the linearization cond
tion (uwu!1) remains valid.

The steady-state linearized Boltzmann transport equa
with a model collision integral in the BGK form for a mo
lecular gas can be written
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~v–¹w!1
vw

l0
5

v
l0

Fdn

n0
1

dT

T0
S mv2

2kT0
1

@Jv2#

2kT0
2 l D

1
m

kT0
u* –vG . ~9!

Here dn5n* 2n0, dT5T* 2T0, and w5w(r ,v,v), with
l 53 and @Jv2#5Jv2 for a diatomic gas, andl 57/2 and
@Jv2#5J1v1

21J2v2
21J3v3

2 for a polyatomic gas.
In the Smoluchowski and slow evaporation proble

there is a flat boundary~interface! separating the gas from
the condensed phase. At the surface there may be eva
tion and condensation. Let us examine a region occupied
the gas that is adjacent to the surface. The sizeL of this
region must be much larger than the mean free path of
gas molecules, but at the same it must small enough
condition ~8! to be met. The condition~5! guarantees tha
such a region exists. We assume that there is a heat
normal to the surface. Then far from the surface~outside the
Knudsen layer whose thickness is of order of the mean
path! in this region there exists a linear temperature grad
perpendicular to the surface.1,19 We introduce a Cartesia
coordinate system with its origin at the surface and with itx
axis perpendicular to the surface, so that the region~half-
space! filled by the gas corresponds to the positive part of
x axis. ThenT5Te1Ax, l !x!L, whereA5(dT/dx)as is
the asymptotic value of the temperature gradient. We den
the surface temperature byTs and the concentration of th
saturated vapor at the surface temperature byns . Then Te

2Ts and ne2ns are called the jumps in temperature a
concentration, where in the second case it is assumed
evaporation or condensation takes place at a vanishing

In the linear approximation these two jumps are prop
tional to the temperature gradient. The temperature jum
equal to the difference between the gas temperature line
extrapolated to the surface, and the surface temperatur
self. In other words, the temperature jump is the differen
between the ‘‘hydrodynamic’’~without allowance for the
Knudsen layer! gas temperature and the surface temperat
Our goal is to calculate the relative values of the tempera
and concentration jumps,«T5Te /Ts21 and«n5ne /ns21,
which in the linear approximation are proportional to t
relative temperature gradient, i.e.,«T5ctK and «n5cnK,
with K5A/Ts .

Far from the surface the gas can move toward or aw
from the surface, which corresponds to condensation
evaporation. We denote the evaporation or condensation
by U ~note that it is perpendicular to the surface!. In this
case, in the linear approximation the relative jumps in
temperature and concentration of the gas are proportion
U: «T5st(2U) and«n5sn(2U).

The quantitiesct , cn , st , andsn must be found by solv-
ing the transport equation.

The statement of the problem implies that the distrib
tion function depends on only one spatial variable,x. It is
convenient to introduce the dimensionless variables

x* 5
x

l0
, j5A m

2kT0
v, v* 5A@Jv2#

2kT0
v,
s

ra-
by

e
or

ux

e
t

e

te

at
te.
-
is
rly
it-
e

e.
re

y
or
te

e
to

-

m5
vx

v
, U* 5A m

2kT0
U.

Below we write the variablesx* and v* and the quantity
U* without the asterisk. Then, if we combine~3!, ~4! and
~9!, we obtain

m
]w

]x
1w~x,m,j,v!5E

21

1 E
0

`E
0

`

exp~2j822v82!k

3~m,j,v;m8,j8,v8!w~x,m8,j8,v8!

3dm8 dj8 dv8, ~10!

where

k~m,j;m8,j8!5
2r

p~r 21!/2 F11
3

2
mjm8j81

r

4r 21

3S j21v22
4r 21

r D
3S j821m822

4r 21

r D G ,
with r 51 for a diatomic gasr 52 for a polyatomic gas, and
v is the absolute value of the angular velocity of rotation
a molecule in both cases.

Far from the wall the functionw has the form

was~x,m,j,v!5«n1«TS j21v22
7r 22

2r D
1S 2U2

2K

3Ap
D mj1K~x2m!

3S j21v22
9r 22

2r D .

Generally, the boundary condition problem for a m
lecular gas at the surface is extremely complicated.20 Below
we limit ourselves to the case in which the accommodat
of the molecules by the surface is total.1,2 Then the boundary
condition at the surface takes the simple form

w~0,m,j,v!50, 0,m,1, ~11!

while far from the wall (x→1`) we have

w~x,m,j,v!5was~x,m,j,v!1o~1!, 21,m,0.
~12!

2. DIATOMIC GAS

We examine the boundary value problem~10!–~12! for a
diatomic gas, i.e., we putr 51 in these equations. We ex
pand the functionw in three orthogonal directions:

w5was~x,m,j,v!1h1~x,m!1jh2~x,m!

1~j21v223!h3~x,m!. ~13!

Orthogonality is understood in the sense that the scalar p
uct
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~ f ,g!52E
21

1 E
0

`E
0

`

exp~2j22v2!j3v f ~m,j,v!

3g~m,j,v! dm dj dv ~14!

is zero. Plugging~13! into ~10!, we obtain a set of transpor
equations:

m
]h1

]x
1h15~1,h1!14a~1,h2!, ~15a!

m
]h2

]x
1h253m@2a~m8,h1!1~m8,h2!1a~m8,h3!#,

~15b!

m
]h3

]x
1h35

2

3
a~1,h2!1~1,h3!. ~15c!

The scalar product~14! becomes simpler if the inner inte
grals can be calculated, and in relation to the set of equat
~15! it means the following:

~mk,hl !5
1

2 E
21

1

m8khl~x,m8! dm8, k50,1, l 51,2,3.

Now we use the conservation laws~3!. Conservation of
the number of particles and energy makes it possible to s
plify the set of equations~15!. These laws yield (m,w)50
and (m(j21v2),w)50. Substituting~13! into ~15!, we get

~m8,h1!524a~m8,h2!, ~m8,h3!52
2

3
a~m8,h2!.

Then Eq.~15b! simplifies:

m
]h2

]x
1h253cm~m8,h2!, ~16!

wherec51239p/128.
Equations~15a! and~15c! imply that instead of the func

tion h3 it is more convenient to study the differenceh̃3

5h126h3, for which we have

m
]h̃3

]x
1h̃35~1,h̃3! ~17!

with the boundary conditions

h̃3~0,m!50, 0,m,1,

and, asx→`,

h̃3~x,m!5«n2
11

2
«T2

13

2
K~x2m!, 21,m,0.

We write the set of equations~15a!, ~16!, and ~17! in
vector form:

m
]h

]x
1h~x,m!5

1

2 E
21

1

K~m,m8! h~x,m8! dm8. ~18!

Here h is a vector with elements~components! h1, h2, and
h̃3, while K(m,m8)5K013 cmm8K1 is the kernel of Eq.
~18!, with
ns

-

K05F 1 4a 0

0 0 0

0 0 1
G , K15F 0 0 0

0 1 0

0 0 0
G .

The boundary conditions~11! and ~12! for Eq. ~18! can be
written

h~0,m!52has~0,m!, 0,m,1, ~19!

h~`,m!5F 0

0

0
G , 21,m,0, ~20!

where

has~x,m!5F «n1«T/22K~x2m!/2

~2U22K/3Ap !m

«n211«T/2213K~x2m!/2
G .

We now turn to the solution of the boundary value pro
lem ~18!–~20! Separation of variables in Eq.~18! immedi-
ately yields the particular solutions

hh~x,m!5expS 2
x

h D F~h,m!,

with F(h,m) the eigenvector function of the characteris
equation

~h2m!F~h,m!5 1
2h@K0n0~h!13cmK1n1~h!#, ~21!

where

nk~h!5E
21

1

mkF~h,m! dm, k50,1. ~22!

We seek a solution of Eqs.~21! and ~22! for hP
(21,1) in the space of the generalized functionsF(h,m)
5F(h,m)n0(h) ~see Ref. 21!, where

F~h,m!5
1

2
hK~mh!P

1

h2m
1L~h!d~h2m!. ~23!

HerePx21 denotes the principal value of the integral ofx21,
d(x) is the Dirac delta function, andL(z) is the dispersion
matrix function

L~z!5E1
1

2
z E

21

1

K~mz!
dm

m2z
,

whereE is the identity matrix, orL(z)5lc(z)K(z2)1K2,
with

K25F 0 24a 0

0 1 0

0 0 0
G ,

lc~z!511zt~z!, t~z!5
1

2 E
21

1 dt

t2z
;

lc(z) is Case’s dispersion function~see Ref. 22!.
According to Ref. 22, the dispersion functionl(z) is the

determinant of the dispersion matrix function:

l~z![detL~z!5lc
2~z! v~z!, ~24!
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wherev(z)5113cz2lc(z).
Using the argument principle from the theory of analy

functions,23 we see thatv(z) has two real zeros6h0, where
according to Ref. 2, pp. 358–359,h0511«, with
«'1028. Expandingl(z) in a series in the neighborhood o
the point at infinityz5`, we see that this point is a zero o
order 4. Hence the discrete spectrum of the character
equation, being the set of zeros of the dispersion funct
consists of a point of order 4 and the two points6h0. There
are six discrete solutions of Eq.~18! corresponding to thes
zeros:

h~1!~x,m!5F 1

0

0
G , h~2!~x,m!5F 0

0

1
G ,

h~ i !~x,m!5~x2m!h~ i 22!~x,m!, i 53,4,

h6h0
~x,m!5

1

2

6h0K~6mh0!

6h02m
expS 2

x

6h0
Dn~6h0!.

Plugginghh0
(x,m) into Eq. ~18!, we find that the vector

n(h0) satisfies the homogeneous equation

L~h0!n~h0!5F 0

0

0
G , ~25!

with L(h0)50. The vector equation~25! is equivalent to
three scalar equation, from which we find that

n~h0!5F 4ah0t~h0!

2lc~h0!

0
G .

Let us show that the solution of the boundary val
problem~18!–~20! can be expressed as an expansion in
eigenvectors~solutions!,

h~x,m!5A0hh0
~x,m!1E

0

1

expS 2
x

h D F~h,m! A~h! dh,

~26!

whereA0 is an unknown constant~called the discrete spec
trum coefficient!, andA(h) is an unknown vector function
~called the continuous spectrum coefficient!. The expansion
~26! satisfies the condition~20! automatically. Using condi-
tion ~19!, we obtain a singular integral equation with
Cauchy kernel:

1

2 E
0

1

hK~mh!A~h!
dh

h2m
1L~m!A~m!1A0hh0

~0,m!

1has~0,m!5F 0

0

0
G , 0,m,1. ~27!

We introduce the auxiliary vector function

N~z!5
1

2 E
0

1

h K~zh! A~h!
dh

h2z
, ~28!
tic
n,

e

whose boundary values above and below the cut from~0 to
1! are related by the Sochozki–Plemelj formulas:

N1~m!2N2~m!5p im K~m2! A~m!,

N1~m!1N2~m!5E
0

1

h K~mh! A~h!
dh

h2m
, 0,m,1.

We can also write similar formulas for the dispersion mat
function:

L1~m!2L2~m!5p im K~m2!,

L1~m!1L2~m!52L~m!.

Using these formulas, we reduce Eq.~27! to the vector
Riemann–Hilbert boundary value problem

L1~m!@N1~m!1A0hh0
~0,m!1has~0,m!#

5L2~m!@N2~m!1A0hh0
~0,m!1has~0,m!#, 0,m,1,

~29!

with the matrix coefficient

G~m!5@L1~m!#21L2~m!

5K~m2!~L1~m!!21L2~m!K21~m2!,

whereL(z)5K(z2) L(z) K21(z2). We now have the prob-
lem of factoring the coefficientsG(m):

G~m!5X1~m!@X2~m!#21, 0,m,1, ~30!

whereX(z) is an unknown matrix function analytic in th
complexz plane with a cut along the segment@0,1#. Equa-
tion ~30! is the homogeneous problem corresponding to
inhomogeneous problem~29!. The method of Eq.~30! was
developed by the present authors in Ref. 17; here we sim
write the solution:

X~z!5FU~z! 4a~U~z!2V~z!! 0

0 V~z! 0

0 0 U~z!
G .

In this matrix,

U~z!5z exp~2u~z!!,

u~z!5
1

p E
0

1

@u~t!2p#
dt

t2z
, u~t!5arg lc

1~t!,

and

V~z!5z exp~2v~z!!,

v~z!5
1

p E
0

1

@«~t!2p#
dt

t2z
, «~t!5arg v1~t!,

whereu(t) and «(t) stand for the continuous branches
the arguments of the functionslc

1(t) andv1(t), specified
by the conditionsu(0)50 and «(0)50. We establish the
asymptotic behavior of the functionsU(z) and V(z) in the
neighborhood of the point at infinity:

U~z!5z2U11o~1!, uzu→`;

V~z!5z2V11o~1!, uzu→`.
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Here

U152
1

p E
0

1

@u~t!2p# dt, V152
1

p E
0

1

@«~t!2p# dt

are the Laurent coefficients ofz21 in the expansions ofU(z)
and V(z) in the neighborhood of the point at infinity. Inte
gration by parts transforms the formula forU1 into the well-
known formula~4.21! of Ref. 2, p. 334:

U15
1

2 E
0

1 dt

~12t2!@lc
2~t!1~pt/2!2#

.

Hence the asymptotic behavior of the matrixX(z) in the
neighborhood of the point at infinity is given by

X~z!5zE2FU1 4a~U12V1! 0

0 V1 0

0 0 U1

G1o~1!, uzu→`.

We now return to the solution of the inhomogeneous pr
lem ~29!. Using ~30!, we transform~29! into the problem of
determining the analytic vector functionN(z) from a zero
jump:

@X1~m!#21@N1~m!1A0hh0
~0,m!1has~0,m!#

5@X2~m!#21@N2~m!1A0hh0
~0,m!1has~0,m!#,

~31!

where 0,m,1. Allowing for the behavior of the vector
and matrices in the problem~31! and their asymptotic behav
ior at the point at infinity, we find the general solution of th
problem:

N~z!52has~0,z!2A0hh0
~0,z!1X~z!F B

z2h0
1CG ,

~32!

whereB andC are arbitrary vectors with elementsbi andci

( i 51,2,3).
The solution~32! has simple poles at the pointsh0 and

z5`. On the other hand, the vector functionN(z) intro-
duced earlier in~28! is analytic at the pointh0, and at the
point z5` its first ~upper! and third~lower! elements vanish
and its second element has a finite limit. To remove th
singularities we pass to the solvability conditions and e
ploy the fact that the solution~32! has constant parameter
To this end we write the solution~32! in the explicit form

FN1~z!

N2~z!

N3~z!
G52F «n1«T/21Kz/2

~2U22K/3Ap !z

«n211«T/2113Kz/2
G

2
1

2

A0

h02zF 24ah0

z

0
G

1FU~z! 4a~U~z!2V~z!! 0

0 V~z! 0

0 0 U~z!
G

-

e
-

3H 1

z2h0
F b1

b2

b3

G1F c1

c2

c3

G J . ~33!

The expressions~32! and ~33! suggest that the pole at poin
h0 can be removed by a single vector condition

1

2
A0 h0K~h0

2! n~h0!1X~h0!B5F 0

0

0
G ,

which is equivalent to three scalar conditions:

U~h0!b114a~U~h0!2V~h0!!b352ah0A0 ,

V~h0!b252
1

2
A0h0 , b350.

We use these equations to set up the vectorB:

B5
1

2

h0A0

V~h0! F 4a

21

0
G .

The pole atz5` can be removed by the conditions

c15
1

2
K, c252U2

2K

3Ap
, c35

15

2
K.

Next we equate the constant terms in the expansions of
general solution and the auxiliary functionN(z) introduced
by ~28!. This yields a set of three equations:

«n1
1

2
«T5b12c1U124a~U12V1!c2 , ~34!

3c

2 E
0

1

h2A2~h! dh52
1

2
A02b21c2V1 , ~35!

«n2
13

2
«T52c3U1 . ~36!

To calculate the integral in~35!, we take the functionN2(z)
from Eq. ~28!,

N2~z!5
3c

2
zE

0

1

h2A2~h!
dh

h2z
,

so that the general solution~33! yields

N2~z!52S 2U2
2K

3Ap
D z2

1

2

A0z

h02z
1V~z!S b2

z2h0
1c2D .

From the Sochozki–Plemelj formula forN2(z) and the
above equalities we find that

3c

2 E
0

1

h2A2~h! dh5
1

2p i E0

1

@V1~h!2V2~h!#

3S b2

h2h0
1c2Ddh

h
.
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To calculate this integral we use contour integratio
with a complicated contour that encloses the cut@0,1# and
the point at infinity. Omitting the proof, we simply write

3c

2 E
0

1

h2A~h! dh

5
b2

h0

1

2p i E0

1

@V1~h!2V2~h!#
dh

h2h0

1S c22
b2

h0
D 1

2p i E0

1

@V1~h!2V2~h!#
dh

h

5
b2

h0
~V~h0!2h01V1!1S c22

b2

h0
D ~V~0!1V1!

5
b2

h0
~V~h0!2h02V~0!!1c ~V~0!1V1!.

Plugging this into~35! yields

b2

h0
~V~h0!2V~0!!1c2V~0!52

1

2
A0 ,

from which we get

A0522c2V~h0!522S 2U2
2K

3Ap
D V~h0!,

so that

b1524ah0c2524ah0S 2U2
2K

3Ap
D .

Combining Eqs.~34! and ~36!, we find that

«T5KU12
2a

3 S 2U2
2K

3Ap
D ~U12V11h0!,

«n5
11

2
«T2

13

2
KU1 ,

or, with the notationb522a(U12V11h0)/3, we obtain
«T52Ub1K(U122b/3Ap ) and «n52U(11b/2)1K
(2U1211b/3Ap ). Making use of the results of numerica
calculations, (U150.71045 andV150.98340), we have the
final formulas for the jumps in temperature and concen
tion:

«T52U~20.16330!1K~0.77187!,

«n52U~20.89815!1K~20.37263!.

3. POLYATOMIC GAS

Now we examine the boundary value problem~10!–~12!
for a polyatomic gas, i.e., we putr 52 in these equations
We obtain a boundary value problem that entails solving
transport equation
,

-

e

m
]w

]x
1w~x,m,j,v!5

4

Ap
E

21

1 E
0

`E
0

`

exp~2j822v82!

3k~m,j,v;m8,j8,v8!

3w~x,m8,j8,v8!

3dm8 dj8 dv8 ~37!

with boundary conditions

w~0,m,j,v!50, 0,m,1, ~38!

and, asx→`,

w~x,m,j,v!5was~x,m,j,v!1o~1!, 21,m,0.
~39!

Here

k~m,j,v;m8,j8,v8!511
3

2
mjm8j81

2

7S j21v22
7

2D
3S j821v822

7

2D
is the kernel of Eq.~37!, and

was~x,m,j,v!5«n1«T~j21v223!1S 2U2
2K

3Ap
D mj

1K~x2m!~j21v224!

is the asymptotic part of the distribution function.
Next we expand the functionw in three orthogonal di-

rections:

w5h1~x,m!1jh2~x,m!1S j21v22
7

2Dh3~x,m!

1was~x,m,j,v!.

Here orthogonality is understood in the sense that the sc
product

~ f ,g!5
4

Ap
E

21

1 E
0

`E
0

`

exp~2j22v2! j3v2f ~m,j,v!

3g~m,j,v! dm dj dv

is zero. Plugging the decomposition ofw into Eq. ~37!, we
obtain the transport equations

m
]h1

]x
1h15~1,h1!14a~1,h2!, ~40!

m
]h2

]x
1h253m@2a~m8,h1!1~m8,h2!1a~m8,h3!#,

~41!

m
]h3

]x
1h35

4

7
a~1,h2!1~1,h3!, ~42!

where, as before,a53 Ap/16.
The set of equations~40!–~42! can be simplified if we

take advantage of two conservation laws, for the numbe
molecules and the energy:
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TABLE I.

Monatomic Diatomic Polyatomic
Problem Coefficient gas gas gas

Smoluchowski ct 0.79954 0.77187 0.76269
problem cn 20.39863 20.37263 20.37092

Slow evapora- st 20.23687 20.16330 20.13888
tion problem sn 20.82905 20.89815 20.90272
nd

i-

i

d

fo

f

a-

ted
r a

ra-
e
lly

f
ni-
a

a
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as is
de-
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by

the

r of
0 %

ave
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es
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ms

us-
E exp~2j22v2! j3v2m w~x,m,j,v! dm dj dv50

and

E exp~2j22v2! j3v2~j21v2!

3m w~x,m,j,v! dm dj dv50.

Plugging the decomposition of the functionw into these re-
lationships, we obtain two equations, from which we fi
that (m8,h1)524a(m8,h2) and (m8,h3)
52(4/7)a(m8,h2). Hence Eq.~41! simplifies:

m
]h2

]x
1h253 cm~m8,h2!,

wherec512135p/448. We make a linear substitution sim
lar to the one in the diatomic case:h127h3→h3. As a result,
instead of~42! we have the equation

m
]h3

]x
1h35~1,h3!.

The resulting set of transport equations can be written
vector form:

m
]h

]x
1h~x,m!5

1

2 E
21

1

K~m,m8!h~x,m8! dm8, ~43!

whereh is a column vector with elementsh1, h2, and h3,
while K(m,m8) is the same matrix as in Sec. 2. The boun
ary conditions now assume the form

h~0,m!52has~0,m!, 0,m,1, ~44!

h~`,m!5F 0

0

0
G , 21,m,0, ~45!

where

has~x,m!5F «n1«T/22K~x2m!/2

~2U22K/3Ap !m

«n213«T/2215K~x2m!/2
G .

Formally, the problem~43!–~45! is the same as problem
~18!–~20!. Hence we can simply write the expressions
the jumps in temperature and concentration:

«T52Ub1K~U122b/3Ap !,

«n52U~13b/2!1K~2U1213b/3Ap !.
n

-

r

Here b524a(U12V11h0)/7, and h0 is the zero of the
function v(h)5113cz2lc(z). Again taking advantage o
numerical calculations (V150.97915 andU150.71045), we
write the final formulas for calculating the jumps in temper
ture and concentration:

«T52U~20.13888!1K~0.76269!,

«n52U~20.90272!1K~20.37092!.

The results for diatomic and polyatomic gases are lis
in Table I. In the same table we also list the results fo
monatomic gas taken from our earlier paper.11

Note that in the Smoluchowski problem of the tempe
ture jump, which is the most important problem from th
standpoint of applications, the boundary condition is usua
written1,2 in the formTe2Ts5CTlA. Herel has the sense o
a mean free path, and various authors give different defi
tions of this quantity. Here we use the definition that in
monatomic gas coincides with Cercignani’s definition:2 l
5PrxApm/2kT wherex is the thermal diffusivity, and Pr
is the Prandtl number. Then at Pr52/3 we have CT

51.99885 for a monatomic gas,CT51.86763 for a diatomic
gas, andCT51.82963 for a polyatomic gas. Clearly, when
monatomic gas is replaced by a diatomic gas, the jump
temperature decreases by 6.6 %, and when a diatomic g
replaced by a polyatomic gas, it decreases by 2 %. This
crease in the rate of variation of the jump in temperature
related to the fact that when we replace a monatomic gas
a diatomic gas, the number of degrees of freedom of
molecule changes by 67 %~from 3 to 5!, and when a di-
atomic gas is replaced by a polyatomic gas, the numbe
degrees of freedom of the molecules changes by only 2
~from 5 to 6!.

In conclusion, we note that in the present paper we h
for the first used a consistent analytic approach to solve
fundamental Smoluchowski problem for molecular gas
with differing numbers of atoms in a molecule, and have a
solved the slow evaporation problem. The two proble
have been examined in the same setting.
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This paper is a field theoretic description of the critical dynamics of spin systems with frozen
nonmagnetic impurities. For three-dimensional systems the dynamical critical exponent
is found directly by employing the three-loop approximation with the Pade´–Borel summation
technique. The results are compared with those obtained by calculating the dynamical
exponent for homogeneous systems in the four-loop approximation, and with the values obtained
by computer simulation of the critical dynamics by Monte Carlo methods. Calculations of
the dynamical exponent for the two-dimensional Ising model in the four-loop approximation are
also presented. ©1998 American Institute of Physics.@S1063-7761~98!01509-1#
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As is known, only for Ising magnetic materials do pha
transitions in homogeneous spin systems change when
domly distributed frozen nonmagnetic impurities are int
duced into such systems.1 The«-expansion method makes
possible to calculate the values of the critical exponents
dilute magnetic materials.2 However, the asymptotic conver
gence of the«-expansionseries in this case is even slow
than for homogeneous systems.3 The renormalization group
approach to the description of slightly disordered spin s
tems, applied directly to three-dimensional systems
Mayer et al.,4,5 has made it possible to obtain static critic
exponents in the four-loop approximation. However, no c
culations of equal accuracy exist for the description of
dynamics of disordered systems, the reason being that
computational load is extremely large even in the low
perturbation-theory orders.

The present paper is a field theoretic description of
critical dynamics of slightly disordered three-dimension
spin systems in the three-loop approximation. The adop
model is a classical spin system with the nonmagnetic im
rity atoms frozen at the lattice sites. The system Hamilton
is

H5
1

2 (
i j

Ji j pipjSi–Sj ,

whereSi is an n-component spin variable,Ji j are the cou-
pling constants of the translation-invariant short-range fe
magnetic interaction, andpi is a random variable describe
by the distribution function

P~pi !5pd~pi21!1~12p!d~pi !

with p512c ~here c is the concentration of the
nonmagnetic impurity atoms!. Thermodynamically
this model is equivalent to the O(n)-symmetric
Ginzburg–Landau–Wilson model, which has the Ham
tonian

H@w,V#5E ddx H 1

2
@ u¹wu21r 0w21V~x!w2#1

g0

4!
w4J , ~1!
5271063-7761/98/87(9)/7/$15.00
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wherew(x,t) is then-componentorder parameter,V(x) is the
potential of the random impurity field,r 0;T2T0c(p), with
T0c the system’s critical temperature determined in t
mean-field theory,g0 is a positive constant, andd is the
number of dimensions of the system. We assume that
impurity potential is specified by a Gaussian distribution:

PV5AV expF2 ~8d0!21E ddx V2~x!G ,
whereAV is a normalization constant, andd0 is a positive
constant proportional to the impurity concentration and
square of the impurity potential.

The dynamical behavior of the system in the relaxat
regime near the critical temperature can be described by
Langevin transport equation for the order parameter:6

]w

]t
52l0

dH

dw
1h1l0h, ~2!

wherel0 is the transport coefficient,h(x,t) is the Gaussian
random force, which is a measure of the effect of the h
reservoir and is specified by the distribution function

Ph5Ah expF2~4l0!21E ddx dt h2~x,t !G
with normalization constantAh , andh(t) is an external field
thermodynamically conjugate to the order parameter. T
temporal correlation functionG(x,t) of the order paramete
can be found by solving Eq.~2! for w@h,h,V#, with H@w,V#
given by~1!, averaging the result over the Gaussian rand
force h via Ph and over the random potentialV(x) of the
impurity field via PV , and isolating the part of the solutio
that is linear inh(0), i.e.,

G~x,t !5
d

dh~0!
–^w~x,t !& impuh50 ,

where

^w~x,t !& imp5B21E D$h%D$V%w~x,t !PhPV ,
© 1998 American Institute of Physics
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B5E D$h%D$V%PhPV .

Significant difficulties are encountered when the st
dard renormalization group method is applied to this d
namical model. However, as shown by De Dominicis7 for
inhomogeneous systems in the absence of disorder in
duced by impurities, in describing the critical dynamics t
model based on the Langevin equation is equivalent to
standard Lagrange system8 with the Lagrangian

L5E ddx dt H l0
21w2 1 i w* –S l0

21 ]w

]t
1

dH

dw D J ,

where we have introduced the auxiliary fieldw* . Here the
correlation functionG(x,t) of the order parameter for a ho
mogeneous system is given by

G~x,t !5^w~0,0!–w~x,t !&

5V21E D$w%D$w* %w~0,0!–w~x,t !exp(2L@w,w* #),

where

V5E D$w%D$w* %exp~2L@w,w* # !.

A generalization of the given field theoretic approach and
details of applying such an approach to the critical dynam
of disordered spin systems with frozen point impurities a
extended defects are discussed in the context of
«-expansion in a paper by one of the present authors.9

Instead of examining the correlation function proper,
is convenient to study its vertex part, which in the context
the Feynman diagram approach can be written in the th
loop approximation as follows:

G~2!~k,v;r 0 ,g0 ,d0 ,l0!5r 01k22
iv

l0
24d0D1

2
n12

18
g0

2D21
4~n12!

3
g0d0D3216d0

2~D41D5!

1
~n12!~n18!

108
g0

3S (
i 56

8

Di D 2
2~n12!2

9

3g0
2d0S (

i 59

18

Di D 1
16~n12!

3

3g0d0
2S (

i 519

31

Di D 264d0
3S (

i 532

39

Di D . ~3!

The diagrams corresponding to theDi are depicted in Fig. 1
The Feynman diagrams containd-dimensional integrals with
respect to momenta and are characterized near the cr
point by an ultraviolet divergence at high momentak with
pole singularities. To remove these poles one usually
ploys a dimensional regularization scheme, which involv
introducing renormalized quantities.10 We define the renor-
malized order parameter asw5Z21/2w0. Then the renormal-
ized vertex functions have the generalized form
-
-

o-

e

e
s
d
e

t
f
e-

al

-
s

GR
~m!~k,v;r ,g,d,l,m!5Zm/2G~m!~k,v;r 0 ,g0 ,d0 ,l0! ~4!

with the renormalized coupling constantsg andd, tempera-
ture r , and transport coefficientl:

g05m42dZgg, d05m42dZdd,

r 05m2Zrr , l0
21 5 m2Zll21 , ~5!

where the scaling parameterm is introduced so that the quan
tities reduce to dimensionless form. In Eq.~4!, G (2) corre-
sponds to the reciprocal correlation function of the order p
rameterG(k,v), andG (4) corresponds to the four-leg verte
functionsGg

(4) andGd
(4) for the coupling constantsg andd,

respectively; theZ-factors can be found from the requireme
that the renormalized vertex functions be regular, which
expressed in the normalization conditions

Z
]G~2!~k!

]k2 U
k250

51, Z2Gg
~4!uki505m42dg,

FIG. 1. Diagrammatic representation of the contributions to the vertex fu
tion G (2)(k,v)5G21(k,v) in the three-loop approximation. The solid line
correspond toG0(k,v)5(r 01k22 iv/l0)21, the solid lines with a circle
correspond toC0(k,v)52l21((r 01k2)21(v/l0)2)21, a four-leg vertex
3 corresponds tog0 , and an impurity four-leg vertex&–^ corresponds to
d0d(v).



529JETP 87 (3), September 1998 Prudnikov et al.
TABLE I. Values of the derivatives of the diagrams depicted in Fig. 1,Di85
]Di

](2 iv/l)
uk50,v50 .

D18/J 21.000 000 D148 /J3 20.032 279 D278 /J3 20.666 667
D28/J

2 20.130 768 D158 /J3 0.061 515 D288 /J3 0.584 625
D38/J

2 20.666 667 D168 /J3 0.004 666 D298 /J3 20.092 766
D48/J

2 22.000 000 D178 /J3 20.333 557 D308 /J3 20.074 202
D58/J

2 21.000 000 D188 /J3 0.042 034 D318 /J3 20.194 407
D68/J

3 20.104 778 D198 /J3 22.053 736 D328 /J3 22.053 736
D78/J

3 20.032 835 D208 /J3 22.053 736 D338 /J3 22.053 736
D88/J

3 20.032 835 D218 /J3 21.142 275 D348 /J3 21.000 000
D98/J

3 20.519 431 D228 /J3 20.396 553 D358 /J3 0.666 667
D108 /J3 20.519 431 D238 /J3 21.142 275 D368 /J3 0.666 667
D118 /J3 20.276 601 D248 /J3 20.396 553 D378 /J3 22.053 736
D128 /J3 20.468 697 D258 /J3 20.396 553 D388 /J3 20.074 202
D138 /J3 20.032 279 D268 /J3 0.226 932 D398 /J3 0.000 000
ou
he
n

di
fr

riv

a
11

s

o

e

-

Z2Gd
~4!uki505m42dg, Z

]G~2!~k,v!

]~2 iv!
U

k2,v50

5 l21 . ~6!

This regularization of the vertex functions can be carried
in the three-loop approximation. To this end we write t
values of the vertex functions in the normalization conditio
as follows:

Gg
~4!uki505g0 (

i , j 50

3

Ai j g0
id0

j ,

Gd
~4!uki505d0 (

i , j 50

3

Bi j g0
id0

j ,

]G~2!

]k2 U
k250

5 (
i , j 50

3

Ci j g0
id0

j ,

]G~2!

]~2 iv/l!
U

k50,v50

5 (
i , j 50

3

Di j g0
id0

j , ~7!

where the coefficients are sums of the corresponding
grams or their derivatives at zero external momenta and
quencies. For instance, the numerical values of the de
tives of the diagrams~Fig. 1!,

Di85
]Di

]~2 iv/l!
U

k50,v50

,

which comprise the coefficientsDi j and are obtained as
result of applying the calculation method adopted in Ref.
are listed in Table I, where

J5E ddq

~q211!2
5

Sd

2
GS d

2DGS 22
d

2D
is the one-loop integral withSd52pd/2/(2p)dG(d/2); G(x)
is the gamma function. We write the expansion ofg0 , d0 , Z,
andZl in powers of the renormalization coupling constantg
andd,

g05g (
i , j 50

3

ai j g
id j , d05d (

i , j 50

3

bi j g
id j ,
t

s

a-
e-
a-

,

Z5 (
i , j 50

3

ci j g
id j , Zl5 (

i , j 50

3

di j g
id j , ~8!

where the unknown expansion coefficientsai j , bi j , ci j , and
di j can be expressed in terms ofAi j , Bi j , Ci j , andDi j via
the normalization conditions.

The next step in the field theoretic approach amounts t
determining the scaling functionsbg(g,d), bd(g,d),
g r(g,d), gw(g,d), and gl(g,d) that specify the renormal-
ization group differential equation for the vertex functions:

Fm ]

]m
1bg

]

]g
1bd

]

]d
2g r r

]

]r
1gll

]

]l
2

m

2
gwG

3G~m!~k,v;r ,g,d,l,m!50.

For the discussion of the dynamical behavior that follows w
will need only the functionsbg and bd and the dynamical
scaling functiongl determined by the following relation-
ships:

42d1bg

] ln gZg

]g
1bd

] ln gZg

]d
50,

42d1bg

] ln dZd

]g
1bd

] ln dZd

]d
50,

gl5bg

] ln Zl

]g
1bd

] ln Zl

]d
. ~9!

The explicit form of the functionsbg andbd in the four-loop
representation was obtained by Mayer,5 who introduced the
coupling constantsv and u, related tog and d by v5(n
18)Jg/6 andu5216Jd. Next we specify the functionsb
andgl :

bv5v (
i , j 50

3

b i j
~v !v iuj , bu5u (

i , j 50

3

b i j
~u!v iuj ,

gl5 (
i , j 50

3

g i j v
iuj ; ~10!

the values of the expansion coefficients for a three
dimensional Ising model (n51) are listed in Table II. The
nature of the critical point for each value ofn andd is fully
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specified by the stable fixed point (v* ,u* ) for the coupling
constants, which is fixed by the requirement that the fu
tions b vanish, i.e.,

bv~v* ,u* !50, bu~v* ,u* !50.

The order of the quantitiesv* and u* is 42d, so that the
expansion series inv and u for the scaling functions are
asymptotically convergent ifd53.

These series are normally summed using the the Pa´–
Borel method.12 Numerical analysis of the equations for d
termining the fixed points and of the stability conditio
shows that in contrast to the«-expansion of Khmel’nitski�2

and Jayaprakash and Katz,3 for d53 there is no accidenta
degeneracy of the fixed points atn51. Only two of the four
fixed points are of interest here: the fixed point for homo
neous systems, (v* Þ0,u* 50), and the impurity fixed point
(v* Þ0,u* Þ0), which specifies new critical properties o
disordered systems. The impurity fixed point is stable onl
n51, while for n>2 the presence of disorder related to t
presence of frozen-in impurities is unimportant for critic
behavior. The impurity fixed point for the three-dimension
Ising model in the three-loop approximation is given byv*
52.256938 andu* 520.728168.

By plugging the values of the coupling constants at
fixed point into the scaling functiongl(v,u) we can deter-
mine the dynamical critical exponentz, which is the measure
of the critical retardation of relaxation processes,

z521gl~v* ,u* !. ~11!

However, the expansion ofgl(v* ,u* ) in powers ofv* and
u* at d53 is asymptotically convergent at best, and su
ming the series directly does not yield reasonable values
sum the series one can employ the generalized Pade´–Borel
method, which amounts to applying the Borel transformat
to the series

gl~v,u!5(
i , j

g i j v
iuj5E

0

`

e2tGl~vt,ut! dt,

Gl~x,y!5(
i , j

g i j

~ i 1 j !!
xiyj , ~12!

and using the Pade´–Chisholm approximants

TABLE II. Values of the coefficients in the expressions for the scal
functions.

( i , j ) b i , j
(u) b i , j

(v) g i , j

(0,0) 21 1 0
(1,0) 1 3/2 20.25
(0,1) 2/3 1 0
(2,0) 295/216 2185/216 0.053 240
(1,1) 250/81 2104/81 0.030 862
(0,2) 292/729 2308/729 0.008 400
(3,0) 0.389 922 0.916 667 20.049 995
(2,1) 0.857 363 2.132 996 20.152 964
(1,2) 0.467 388 1.478 058 20.044 167
(0,3) 0.090 448 0.351 069 20.012 642
-

e

-

if

l
l

e

-
o

n

@M ,N/K,L#5(
i 50

M

(
j 50

N

ai j v
iuj S (

p50

K

(
q50

L

bpqv
puqD 21

.

The resulting expansion forgl(v,u) in powers ofv andu in
the three-loop approximation allows using approximants
the form@1,1/1,1# and@2,2/1,1#. Application of the approxi-
mants@1,1/1,1# corresponds to the description of the critic
dynamics of disordered magnetic materials in the two-lo
approximation,13 and yields a dynamical exponentzimp

(2)

52.169849. Using the approximants@2,2/1,1# makes it pos-
sible to obtain the exponentz in the form

z521
a1u

b
1

b21

b2
~a2u21a3uv1a4v2!

1
2b22b11

b3
~a5u2v1a6uv2!2

1

b Fa1u1
1

b
~a2u2

1a3uv1a4v2!1
1

b2
~a5u2v1a6uv2!G 2F0~1,1,b!,

~13!

where2F0(1,1,b) is the confluent hypergeometric function
and

a15g1,0, a25
g2,0

2
2

g1,0g3,0

3g2,0
,

a35
g1,1

2
2

g0,1g0,3

3g0,2
, a45

g0,2

2
,

a55
g2,1

6
2

g1,1g3,0

6g2,0
2

g2,0g0,3

6g0,2
,

a65
g1,2

6
2

g1,1g0,3

6g0,2
2

g0,2g3,0

6g2,0
,

b5b1u1b2v, b152
g3,0

3g2,0
, b252

g0,3

3g0,2
.

Using the values of the coupling constants at the im
rity fixed point,v* 52.256938 andu* 520.728168, we ob-
tain a dynamical exponent

zimp
~3! 52.165319. ~14!

The fact that the difference in the values ofzimp calculated in
the three- and two-loop approximations is small suggests
allowing for higher-order corrections can lead only to neg
gible changes in this value. At the same time, the calcu
tions in Ref. 13 using ane-expansion in the two-loop ap
proximation yieldedzimp

(2) 52.336, which justifies the use o
the renormalization group procedure in describing the criti
behavior of dilute magnetic material for the case whe
d53.

To establish the effect of impurities on dynamical cri
cal behavior we must compare the values ofz for disordered
and homogeneous systems. As is known,6 fluctuation correc-
tions to the mean-field value of the dynamical expon
z(0)52 emerge in homogeneous systems only in the tw
loop approximation, while in disordered systems the dyna
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cal effects of scattering of magnetization fluctuations by i
purities show up by the first-order approximation.

The effectiveness of summation methods for asympt
cally convergent series is largely determined by the num
of known terms in the series. Therefore, when the summa
methods are applied to the dynamical scaling function,
accuracy of the three-loop approximation for the exponez
of a disordered system can only correspond to the four-l
approximation forz in a homogeneous spin system. With th
mind, we calculated the dynamical critical exponent for h
mogeneous three-dimensional spin systems in the four-
approximation. The expressions for the vertex functions
~7! for homogeneous systems become much simpler, an
the four-loop approximation assume the form

Gv
~4!uki505v01A1v0

21A2v0
31A3v0

4 ,

]G~2!

]k2 U
k250

511B1v0
21B2v0

31B3v0
4 ,

]G~2!

]~2 iv!
U

k50,v50

511C1v0
21C2v0

31C3v0
4 , ~15!

where v05(n18)Jg0/6. The values of the coefficients a
n51 are listed in Table III. The four-loop diagrams th
producezx the coefficientC3 are shown in Fig. 2. Carrying
out the calculations, these diagrams split into 48 4d-fold
integrals, whose numerical values are listed in Table IV.
describe the dynamical behavior we require only the fu
tions b(v) andgl(v):

b~v !52~42d!F] ln Zvv
]v G21

, gl~v !5b~v !
] ln Zl

]v
.

~16!

The explicit form of the first function in the six-loop
approximation was obtained by Bakeret al.12 By consis-
tently applying the above field theoretic approach, we w
able to derive an expression for the dynamical scaling fu
tion gl(v) in the four-loop approximation:

gl~v !52~42d!v@2~B12C1!1~3B223C224A1B1

14A1C1!v1~4B324C329A1B219A1C2

110A1
2B1210A1

2C124A2B114A2C1

28B1D116B1
222C1

2!v2#. ~17!

TABLE III. Values of the coefficients in the expressions for the vert
functions.

Coefficient d53 d52

A1 21.0 21.0
A2 1.222 2222 1.375 0699
A3 21.705 3479 22.305 4548
B1 0.005 4869 0.008 4916
B2 20.007 0112 20.011 6591
B3 0.010 1430 0.017 9966
C1 0.009 6865 0.015 2547
C2 20.012 6257 20.021 3740
C3 0.016 9420 0.035 2450
-

i-
er
n
e

p

-
p

n
in

o
-

e
c-

Inserting the values of the coefficients listed in Table III f
d53 andn51, we obtain

gl~v !50.008399v220.000045v310.020423v4. ~18!

In accordance with Ref. 12,

b~v !52v1v220.422497v310.351069v420.376527v5.
~19!

To calculate the values of the coupling constantv* at
the fixed point and the dynamical critical exponentz, we
used the Pade´–Borel summation method with the approx
mants@4/1# and @3/1#, respectively. As a result, ford53
andn51 we obtained

v* 51.4299, zpure
~4! 52.017.

Comparison of the results revealed a significant differe
between the values of the dynamical exponentz for the ho-
mogeneous and disordered Ising models. This makes it
sible to study the effect of impurities on the dynamical cri
cal behavior in a real physical experiment and via Mon
Carlo simulation.

Let us compare our value of the dynamical exponentzimp
(3)

with computer simulations of the dynamical critical behav
of a disordered Ising model.14–16 In Refs. 14 and 15, critica
magnetization relaxation was numerically simulated for
system with dimensions of 483 and impurity concentrations
0.4<p<1. Janet al.17 combined the Monte Carlo metho
with the dynamical renormalization group method to det
mine the dynamical critical exponentz. The following val-
ues of the critical exponent were obtained for the homo
neous system and two slightly disordered systems withp
50.95 and 0.8:

z~1.0!51.9760.08, z~0.95!52.1960.07,

z~0.8!52.2060.08,

which are in good agreement with the numerical resu
Heuer16 obtained the values ofz by analyzing the asymptotic
properties of the dynamical autocorrelation function for

FIG. 2. Four-loop diagrams contributing to the vertex functionG (2)(k,v).
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TABLE IV. Values of four-loop diagrams.

No. d53 d52 No. d53 d52 No. d53 d52

1 0.104 869 0.165 307 17 0.001 108 0.004 131 33 0.002 527 0.007
2 0.004 166 0.009 670 18 0.000 923 0.003 307 34 0.014 580 0.029
3 0.008 180 0.022 921 19 0.000 932 0.003 343 35 0.039 776 0.070
4 0.029 674 0.059 714 20 0.019 410 0.034 609 36 0.002 378 0.006
5 0.003 264 0.003 943 21 0.019 189 0.034 135 37 0.004 691 0.012
6 0.015 354 0.010 076 22 0.004 177 0.011 294 38 0.003 820 0.007
7 0.014 330 0.028 777 23 0.001 928 0.004 644 39 0.011 650 0.027
8 0.011 627 0.016 314 24 0.000 706 0.005 891 40 0.005 377 0.013
9 20.002 506 20.006 853 25 0.003 421 0.010 167 41 0.003 981 0.007 4
10 0.000 823 0.002 744 26 0.000 862 0.003 535 42 0.003 314 0.010
11 0.003 444 0.009 238 27 0.000 551 0.002 471 43 0.009 470 0.023
12 0.003 745 0.010 685 28 0.003 898 0.011 209 44 0.003 866 0.010
13 20.004 883 20.012 280 29 0.001 077 0.003 405 45 0.023 730 0.038 4
14 20.004 883 20.012 280 30 0.003 815 0.011 007 46 0.033 485 0.062 9
15 0.007 527 0.017 1805 31 0.007 379 0.012 666 47 0.007 121 0.021
16 20.005 471 20.014 199 32 0.004 177 0.009 667 48 0.004 760 0.011 6
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system that is in a state of equilibrium and exhibits stro
magnetization fluctuations. For instance, it was found tha

z~1.0!52.09560.008

for the homogeneous system

z~0.95!52.1660.01, z~0.9!52.23260.004,

z~0.8!52.3860.01,

for slightly disordered systems, and

z~0.6!52.9360.03

for a system withp50.6. Believing that the fixed point o
the critical behavior of a slightly disordered system, which
independent of the impurity concentration, is also such
point for any impurity concentration, Heuer16 estimated the
asymptotic value of the dynamical exponentz to be 2.4
60.1. The value ofz for a homogeneous system obtained
Heuer16 differs drastically from the results of the field the
retic approach, while for a system withp50.95 the agree-
ment is unexpectedly good. Our view on the universality
the critical behavior of disordered systems has been
plained in Refs. 14 and 15, where we proposed separa
the universal critical behavior of slightly disordered syste
from that of highly disordered systems and hypothesized
the critical exponents of three-dimensional disordered s
tems exhibit stepped universality.

The predictions of the theory concerning the effect
impurities on the dynamical critical behavior of magne
materials ~a higher value ofzimp(d53) compared to the
value ofzpure(d53)) can be corroborated by several expe
mental methods: inelastic neutron scattering~the linewidth
vw}uT2Tcuzn at q50 and vw}qz at T5Tc), EPR and
NMR ~the resonance linewidthDv}uT2Tcu(d221h2z)n,
whereh is the Fisher exponent!, measurements of the dy
namic susceptibility in an external high-frequency magne
field (x(v)}v2g/zn at T5Tc , whereg is the susceptibility
exponent!, and ultrasound measurements~the sound absorp
tion coefficient a(v)}uT2Tcu2(a1zn)v2g(v/uT2Tcuzn)
and the acoustic dispersion C2(v2C2(0)}uT
2Tcu2a f (v/uT2Tcuzn)). Unfortunately, we know of no ex
g

s
a

f
x-
ng
s
at
s-

f

-

c

perimental work in which the dynamical critical behavior
slightly diluted Ising-like magnetic materials is studied.

The critical dynamics of a slightly disordered two
dimensional Ising model in the relaxation regime does
differ from the dynamics of the homogeneous model.13 An
analysis of the critical dynamics of the two-dimension
Ising models shows that the valuesz span a broad range
2.08<z<2.24. For instance,z52.1460.02 ~Ref. 18!, 2.13
60.03 ~Ref. 19!, 2.07660.005 ~Ref. 20!, 2.2460.04 ~Ref.
21!, 2.2460.07 ~Ref. 22!, and 2.1660.04 ~Ref. 23! in com-
puter simulation;z52.126 ~Ref. 24! in the field theoretic
approach in the two-loop approximation with the interpo
tion of the results of the 11«- and 42«-expansions; andz
52.18360.005~Ref. 25! in the same approach with interpo
lation of the results of the high-temperature expansion.

We calculated the dynamical exponentz for a homoge-
neous two-dimensional Ising model in the four-loop appro
mation in the context of the field theoretic approach. T
corresponding values of the coefficients in the expressi
~15! for the vertex functions and the numerical values of t
four-loop diagrams for the two-dimensional model are list
in Tables III and IV. As a result we arrived at the followin
expressions for the scaling functions:

gl~v !50.027053v220.004184v310.022130v4,

b~v !52v1v220.716174v310.930766v4

21.582388v5. ~20!

Summing by the Pade´–Borel method, we found the values o
the coupling constantv* at the fixed point and ofz:

v* 51.8836, z~4!~d52!52.093.

We see that the exponentz is at the lower edge of the rang
mentioned earlier. The adopted procedure of calculating
exponents is assumed to be the most accurate, so tha
expect the calculated values to be the benchmarks for c
puter simulations of homogeneous systems and to be use
developing simulation methods for disordered systems.
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d -symmetry superconductivity due to valence bond correlations
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It is shown thatd-symmetry superconductivity due to valence bond correlations is possible.
Valence bond correlations are compatible with antiferromagnetic spin order. In order to explictly
construct a homogeneous state with the valence bond structure in the two-dimensional
Hubbard model for an arbitrary doping, we have used the variational method based on unitary
local transformation. Attraction between holes in thed-channel is due to modulation of
hopping by the site population in course of the valence bond formation, and corresponding
parameters have been calculated variationally. An important factor for the gap width is the increase
in the density of states on the Fermi level due to antiferromagnetic splitting of the band.
The gap width and its ratio to theTc are 2D.0.1t and 2D/kTc.4.5 –4 for U/t.8. The
correspondence between the theoretical phase diagram and experimental data is discussed.
The dependence ofTc on the dopingd5un21u and the Fermi surface shape are highly sensitive
to the weak interactiont8 leading to diagonal hoppings. In the case oft8.0 andp-doping,
the peak on the curve ofTc(d) occurs at the dopingdopt, when the energy of the flattest part of
the lower Hubbard subband crosses the Fermi level atk;(p,0). In underdoped samples
with d,dopt, the anisotropic pseudogap in the normal state corresponds to the energy difference
uE(p,0)2mu between this part of the spectrum and the Fermi level.
© 1998 American Institute of Physics.@S1063-7761~98!01609-6#
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1. INTRODUCTION

In recent years, a lot of useful information about electr
spectra of high-temperature superconductors~HTSC! has
been obtained through high-resolution angle-resolved ph
emission spectroscopy~ARPES!,1,2 neutron scattering
experiments,3 and phase-sensitive measurements.4,5 The lat-
est results are concerned with the discovery of the ‘‘sma
Fermi surface6 and anisotropic pseudogap in excitation sp
tra of ‘‘underdoped’’ HTSC in the normal state.7,8 The ap-
proach based on the energy band model, which is a na
language for describing these experiments, should nece
ily take into account all types of correlations whose role
expected to be significant, as indicated by analysis in
localized limitU→` or numerical calculations in the mode
of small clusters.

The aim of all theoretical investigations is to answer t
most important questions, such as whether the attrac
among charge carriers and pairing mechanism are contro
by correlations, and what is the role of antiferromagne
correlations and valence bond correlations.9–12 The idea that
the superconducting pairing is controlled by correlation w
put forth and developed by Zaitsev.13

The aim of the present work is to investigate these qu
tions using a variational approach and a representation
correlated state in an explicit form. We hope to elucidate
role of specific types of correlations, in particular, those
the valence bond type. Our analysis is based on the cla
model of strongly correlated systems, namely, the Hubb
two-dimensional model:
5341063-7761/98/87(9)/12/$15.00
n

o-

’
-

ral
ar-

e

n
ed
c

s

s-
a

e
f
sic
rd

H52t (
^nm&,s

~cns
† cms1H.c.!1(

n
Unn↑nn↓ . ~1!

Its adequacy to the electronic structure of the CuO2 plane
and its basic parameters have been established with a
degree of certainty.14,15

The states of resonant valence bonds~RVB!, which were
introduced by Anderson,16,17 implied that the system con
figuration was composed of singlet components of sta
with two particles localized at sites connected by a vale
bond. Later18–20 variational functions were constructed fo
the Hubbard model, which are the band analogues of st
with a structure of periodic dimers and homogeneous st
of valence bonds.20 In these solutions, unlike RVB, forma
tion of singlet states leads to changes in the charge state
sites connected by the bonds. Some features of such
have also been investigated, such as their compatibility w
antiferromagnetism, the spectrum of hole-like excitatio
and its impact on photoemission spectra, etc. The problem
the superconducting ordering has not been addressed. M
while, the method of unitary local transformations,19,20 un-
like nonunitary transformations, such as the Gutzwil
ansatz,21 allows one not only to construct a correlated fun
tion, but also to derive an explicit expression for the effect
Hamiltonian, and hence to check whether a superconduc
ordering of thedx22y2 symmetry is feasible. A lot of experi
ments using various techniques10 have indicated that this
symmetry really takes place in some cupra
(YBa2Cu3O72d , Bi2Sr2CaCu2O81d). For this reason and
because the one-site repulsion suppresses thes-symmetry or-
© 1998 American Institute of Physics
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dering but does not affectd-symmetry correlations, we wil
consider only the latter type of symmetry.

The attraction between holes is often associated w
correlated ~or modulated! hopping interactions, first de
scribed by Hirsch.22 In contrast to this model22 and similar
interactions in thet2J model,12 in this paper the form and
amplitude of such interactions are determined using a va
tional method by solving an appropriate self-consist
problem.

2. CONSTRUCTION OF A HOMOGENEOUS VALENCE
BOND STATE AND SELF-CONSISTENT SOLUTION OF
THE PROBLEM

A wave functionC with valence bond correlations i
derived from the functionF of the uncorrelated state using
unitary transformation:

C5Ŵ~a!F, Ŵ~a!5exp~aZ!, Z5 (
^nm&

Znm . ~2!

The local anti-Hermitian operatorZnm acting on the bond
^nm& of neighboring sites is defined by the formula

Znm5@gnm,s
† gnm,2s

† unm,2sunm,s2H.c.#

[2
1

2 (
s

j nmsDnm,2s , ~3!

j nms5cns
† cms2cms

† cns , Dnm,2s5nn2s2nm2s ,

gnm,s~unm,s!5
cns6cms

A2
. ~4!

Here g and u denote the even and odd combinations of
bitals of neighboring centers. The operatorZnm acts only on
singlet components with two particles at neighboring sites
the full wave functionF. It includes various configuration
of singlet pairs of neighboring sites, similarly to the RV
state.16 But in our model, unlike the RVB, the charges
sites connected by a bond are changed~optimized!. The
transformation~2! may be expected to be effective becau
in the case of two sites with two holes localized on them,
wave functionC(nm)5exp(aZnm)F, which is derived from
the uncorrelated functionC5ug↑

†g↓
†& ~for t,0), is an exact

singlet function of the system for optimala5
20.5 tan21(U/4t).

Since the transformation in Eq.~2! is unitary, the initial
Hubbard Hamiltonian in the basis of correlated statesC is
exactly equivalent to the transformed Hamiltonian

H̃~a!5W†~a!HW~a! ~5!

in the basis of functionsF. The variational parametera in
W(a) is, in essence, an order parameter for the structur
valence bonds. By analyzing the new problem~5! in the
mean-field approximation, one can investigate states w
correlations of this type for an arbitrary doping.

Unlike the periodic structures of valence bonds with is
lated dimers discussed above,19 in the case of a homoge
neous state~2! the local operatorsZnm do not commute each
other. Therefore we cannot determine the effective Ham
h

a-
t

-

n

,
e

of

th

-

l-

tonian in all orders ina. We can, however, find an exac
expression forH̃(a) in terms of Fermi operators to within
terms;a2:

H̃~a!'H1a@H,Z#1
a2

2
@@H,Z#,Z#

5H ~0!1aH ~1!1
a2

2
H ~2!, ~6!

and derive a self-consistent solution of the new problem
the mean-field approximation. Unlike the case of an isola
dimer in a 2D lattice, each site is involved in four bond
Therefore, as will be shown below, the optimala in the
transformation remains small even for largeU/t (a<0.22
for U/t<8), which enables us to use the expansion~6!. In
addition to the smallness ofa, there is another circumstanc
which justifies the use of the Hamiltonian~6! which is sec-
ond order ina. Specifically, the optimala depends largely
on U/t and changes little with doping. This means that f
fixed a Hamiltonian~6! can be treated as a rough approx
mation, or, if you will, as an empirical Hamiltonian for
new model, which may provide better understanding of
real situation. The full expression forH̃(a) is rather lengthy.

Let us analyze in greater detail the contributionH (1) to
the effective Hamiltonian~6! which is of first order ina. It is
expressed in terms of fermion operators as

H ~1!5@H,Z#5HU
~1!1T~1!, ~7!

HU
~1!52

U

2 (
^nm&,s

tnmsDnm,2s
2 , ~8!

T~1!5t (
^nm&,s

H @DnmsDnm,2s1 j nms j nm,2s#

1 (
miP^mmi &

A~n,m,mi ,s!

1 (
niP^nni &

A~m,n,ni ,s!J . ~9!

In the last two three-site terms we havemiÞn and niÞm,
respectively. The operatorsj nms andDnms are defined in Eq.
~4!, and the operatorsA and tnms are defined by the expres
sions

A~n,m,mi ,s!52
1

2
@ tnmis

Dmmi2s1 j nms j nmi2s#, ~10!

tnms5~cns
† cms1H.c.!. ~11!

The term in Eq.~6! which is second order ina contains
contributions from two, three, and four sites. Its exact e
pression is given in the Appendix@Eqs.~32!–~40!#.

Let us investigate the most general class of uncorrela
BCS states with anomalous averages of thed-symmetry and
a double magnetic unit cell in order to test the possibility
the antiferromagnetic spin ordering anddx22y2-type super-
conducting ordering. For a functionF of this general
form and an effective Hamiltonian~5!, the mean energy
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H̄(yi)5^CHC&5^FH̃F& is calculated exactly. This is a
function of the following one-electron normal and anom
lous averages with respect toF:

$yi%5$r 0 ,r 1 ,r A2 ,r 2 ,r A5 ,r 3 ,d0 ,dA2 ,d2 ,w1 ,w2 ,wA5 ,w3% i ,
~12!

where

r l5
1

2 (
s

^cns
† cn1 l ,s&, ~13!

dl5
1

2 (
s

s

usu ~21!n^cns
† cn1 l ,s&, ~14!

wl5
1

2 (
s

s

usu
sign~ l x

22 l y
2!^cns

† cn1 l ,s
† &5wl* . ~15!

Let us take into account all symmetry types of the stud
state, namely the translational symmetry, the invariance w
respect to reflectionx→2x or y→2y, the equivalence be
tween the odd and even sublattices whens→2s. Thus, the
parameters defined by Eqs.~13!–~15! are real, in additionr l ,
dl , and uwl u are functions ofu l u only; wl50 at l x56 l y ;
dl50 for oddl x1 l y . According to Eq.~15!, only the sign in
front of wl depends on the direction ofl. Any 2n-fermion
operator averaged overF is exactly expressed in terms o
the one-electron averagesr l , dl , andwl .

In calculating the mean energy, we took only terms of
the second order in the anomalous averageswl by virtue of
the smallness of bothTc and superconducting gap in com
parison with the total band width;t and the antiferromag
netic gap;Ud0. As a result, the energy averaged over t
most general uncorrelated state taking into acount the do
magnetic cell and anomalous averages of thed-symmetry is
expressed in terms of one-electron averages~12!. The mean
energy per site is

H̄~yi !5H~r i ,di !1H SC~wi ,r i ,di !, ~16!

H~r i ,di !5$U~r 0
22d0

2!28tr 1%1a$28r 1U@r 0~12r 0!

1d0
21r 1

2#116t@d0
212d0dA21d0d2!#%

1
1

2
a2$H U

~2!1T ~2!%, ~17!

H SC5(
i j

ki j wiwj528aUr 1w1
21a2(

i j
ki j

~2!wiwj .

~18!

Here we have shown explicitly only the terms of zeroth a
first orders ina. The expressions forH U

(2) andT (2), which
are of second order ina, and a full expression forH SC are
given in Eqs.~42!, ~44!, and ~45!–~47! in Appendix. All
arguments inH̄ are given in~12!. One can easily check tha
H̄ is invariant with respect to each of replacementsr l

→d l ,02r l ,t→2t), or dl→2dl , or wl→2wl taken sepa-
rately. The first of these corresponds to the electron–h
symmetry of the Hubbard model.

It is worthwhile to discuss in detail the origin of th
terms with anomalous averages in Eq.~18!. Consider the
-

d
th

le

d

le

contribution of the termaH (1) of first order in a to the
effective Hamiltonian@Eqs. ~7!–~9!#. The calculation indi-
cates that terms with anomalous averages are absen
^aT(1)&. This is quite natural because neither the transform
tion W(a) nor the superconducting ordering can lower t
energy of noninteracting particles. But the average^aHU

(1)&
is a function of anomalous order parameters. Specifica
expression~8! for the operatorHU

(1) contains terms like

cns
† cms~nn,2s1nm,2s!22cns

† cmsnn,2snm,2s . ~19!

These terms describe versions of the correlated hopping
teraction modulated by the populations of the lattice sit
The first term in Eq.~19! has the form of the interaction
suggested by Hirsch.22 The term with anomalous averages
this operator is zero,

^cnscms~nn,2s1nm,2s!&522w0wun2mu
~s! ,

since the s-type superconductivity is forbidden (w0

5^cn↑
† cn↓

† &50). The occurrence of ans-symmetry supercon-
ducting ordering (w0Þ0) in the desired stateF would in-
crease the energy byDH̄5Uw0

2 per lattice site. The contri-
bution of d-symmetry anomalous parameters is due
operators like the second term in Eq.~19!. This decisive
contribution is defined explicitly by Eq.~18!. In reality, we
have used in our calculations the exact expression~45!–~47!
for the contribution of anomalous averages to the me
energy.

The presence of the term linear ina in H̄ indicates that
a minimum of H̄(a) corresponds to a nonzero value ofa.
We can determine signs of some parameters fort.0 in Eq.
~1! using Eqs.~16!–~18!:

tr 1.0, r 1.0, ar 1.0, a.0, k11.28ar 1U,0.
~20!

Thus, the requirement that the energy should be lowered
result of formation of valence bonds determines the sign
the transformation parameter, which gives rise to the mi
sign in front of the main constantk11 in the d-symmetry
superconducting ordering in Eq.~18!, hence implies the pos
sibility of d-symmetry superconductivity.

The one-determinant uncorrelated functionF which
minimizes the energyH̄2mN̄ is a product of one-particle
eigenfunctionsxkls

† of the linearized Hamiltonian

H̃L5(
n

]H̄

]yn
~ ŷn2yn!1H̄~yi !5(

k

Fĥk1const. ~21!

Operatorsŷi , which correspond to the averagesyi @Eqs.
~12!–~15!# are given by

r̂ l5
1

2nl
(
l ,s

cn,s
† cn1 l ,s ,

d̂l5
1

2nl
(
l ,s

~21!n
s

usu
cn,s

† cn1 l ,s ,

ŵl5
1

4nl
(
l ,s

sign~ l x
22 l y

2!
s

usu @cn,s
† cn1 l ,2s

† 1H.c.#. ~22!
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Here nl is the number of all vectorsl of length l 5u lu, over
which the sum is performed.

As a result, the linearized Hamiltonian~21! in the mo-
mentum operator basis

bk, j
† 5$ck↑

† ,ck̃↑
† ,c2k↓ ,c2 k̃↓% j , j 51, . . . 4, k̃5~p,p!1k,

~23!

is expressed as

HL5(
k

F ĥk1const, ĥk5 (
i , j 51

4

Li j bki
† bk j . ~24!

Here we have setk̃5k1(p,p), and the superscriptF on the
summation sign indicates that the sum overk is performed
inside the magnetic Brillouin zoneukx6kyu,p. The matrix
Li j is defined by the formula

Li j 5S ek2m Dk Wk 0

Dk e k̃2m 0 Wk̃

Wk 0 2~ek2m! Dk

0 Wk̃ Dk 2~e k̃2m!

D , ~25!

ek5
1

2 (
l

]H̄

]r l
gl~k!, Dk5

1

2 (
l

]H̄

]dl
gl~k!,

Wk5
1

2 (
l

]H̄

]wl
ql~k!. ~26!

In the sums overl for ek , Dk , andWk , the subscriptl runs
through allr l , or dl , or wl of the full set~12! of one-electron
averages, which determineH̄. Equations~25! and ~26! in-
clude the following notations:

gl~k!5
1

nl
(

l
coskxl x coskyl y ,

ql~k!5
1

nl
(

l
sign~ l x

22 l y
2!coskxl x coskyl y . ~27!

Here nl is the number of all vectorsl of length l 5u lu, over
which the sum is performed in Eq.~27!, and the functions
defined by Eq.~27! have the following symmetry properties

gl~ k̃!5~21! l x1 l ygl~k!, ql~ k̃!5~21! l x1 l yql~k!.

The one-electron eigenfunctionsxkl and spectrum
El(k) of the linearized Hamiltonian are calculated by diag
nalizing the matrix~25!:

xkl
† 5(

j
bk j

† Sj ,l , (
j

L i j Sj ,l5Si ,lEl , ~28!

for each k within the magnetic Brillouin zone. Given th
eigenfunctions and spectrum, we can complete the s
consistent procedure, i.e., calculate the desired averageyi

5^ ŷi&F by the formulas

r l5
1

2N (
k

F @gl~k!~U11112U33!1gl~ k̃!~U22112U44!#,
-

lf-

dl5
1

2N (
k

F gl~k!@U121U211U341U43#,

wl5
1

2N (
k

F @ql~k!~U131U31!1ql~ k̃!~U241U42!#,

~29!

where

Ui j 5(
l

Sil* Sj l f F~El /kT!,

and f F(x) are Fermi distribution functions;g and q are de-
fined in Eq.~27!.

The self-consistent procedure described above m
mizes the energy with respect toF. Then minimization with
respect toa yields the desired variational correlated state~2!
and the optimal effective Hamiltonian~6! in the basis on
uncorrelated states. Self-consistent calculations of two ty
which were matched to one another, were performed:
complete calculation involving all normal and anomalous a
erages, which yielded the superconducting gap 2D0(U,d,T)
for states of valence bonds with both the antiferromagn
and superconducting ordering~AF 1 VB 1 SC!, and the
calculation of the critical temperatureTc(U,d) based on
equations linear inwl using similar states~AF 1 VB! with-
out anomalous averages. In the latter case, the critical t
perature of the superconducting transition was obtained
ing the standard equations of the perturbation theory in te
of incipient anomalous order parameters:

DetuDi j 2d i j u50, Di j 5]wi /]wj uwl50 . ~30!

The matrixDi j was calculated using Eqs.~48! and~49! given
in Appendix.

An independent test of the procedure~or the basis for an
alternative iteration procedure! is the relationshipa5

2H̄ (1)(yi)/H̄
(2)(yi) between the optimal parametera and

the averages of the contributions to the effective Hamilton
~6! with self-consistent values ofyi . The coincidence of all
physical parameters for equal levels ofp- andn-doping was
also checked. In the presence of antiferromagnetic orde
(d0Þ0), the results of numerical diagonalization of matr
~28! and the approximate solution forSi j @Eq. ~52! in Appen-
dix# coincide. This means that states of only the lower~up-
per! Hubbard subband participate to any great extent in
perconducting pairing in the case ofp(n)-doping.

3. DISCUSSION OF RESULTS

The regionU/t<9 studied in the present work is limite
by the condition that the optimal parametera should be
small. The description of the CuO2 plane based on the
single-band Hubbard model suggests thatU/t;8.14,15 In this
region, valence bond correlations actually lead to a low
system energy and the homogeneous state of valence b
is lower than the similar state with a periodic dimer structu
and both these states are compatible with antiferrom
netism.

The characteristic energy effect is shown by Fig. 1 fo
system withU/t58. The points in this graph are results
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an exact diagonalization for 434 clusters.23 The main nega-
tive contribution to the energy difference between the sim
Hartree–Fock paramagnetic state and the Hubbard sta
the limit n→1 is due to the alternation of spin orientation
The region of antiferromagnetic ordering on the diagr
plotted in coordinates of interaction constant and doping
shown in Fig. 2a. The critical dopingdc5unc21u at which
the antiferromagnetic ordering disappears isdc;0.26–0.3
for U/t56 –8. These values are lower than the result of
generalized Hartree–Fock method without valence bond
relations,dc;0.4–0.45, but they are higher than the critic
doping dc;0.05 at which antiferromagnetic ordering
available HTSC crystals is destroyed. The valuedc;0.05 in
the diagram of Fig. 2a would corresponds to a very sm
parameterU/t<2.

Several explanations of this discrepancy can be p
posed.

The simplest hypothesis suggests that the region of a
ferromagnetic ordering is too large because the Hubb
model does not take into account those interactions
break perfect nesting. Meanwhile, the presence of the h
ping interaction t8 between non-nearest neighbors in c

FIG. 1. Average energies per lattice site for antiferromagnetic and param
netic states with valence bond correlations~the solid curves AF1 VB and
VB!, and for similar uncorrelated Hartree–Fock states~curves AF and HF,
respectively!. The dashed curve AF1 DM corresponds to a periodic dime
structure of valence bonds. The squares plot the results of exact Hamilto
diagonalization for a 434 cluster.22
e
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prates is supported by various investigations, in particu
by details of the one-band mapping14 of the Emery three-
band model, by empirical tight-binding models,24 which re-
produce the shapes of the Fermi surface and energy b
obtained from the ARPES data, and by calculations of lev
in finite clusters based on thet2t82J model and LDA
calculations.25 The empirical value24,25 of the diagonal hop-
ping parametert8/t;0.2 is larger than theoretical estimates14

and is different for different HTSC ceramics.26 Note, how-
ever, that the empirical values were obtained by fitting
ARPES data to a single band without a splitting between
upper and lower Hubbard subbands. Under the condition
antiferromagnetic splitting and flat bands, the sensitivity
the Fermi surface shape and other characteristics tot8 is
greater, so the actual values oft8/t may be lower. Our cal-
culations, however, indicate that the interactiont8 has little
effect on the doping corresponding to the boundary betw
the antiferromagnetic and paramagnetic states.

One might think that the mean-field approximation@in

this case, applied to the effective HamiltonianH̃(a)# cannot
describe antiferromagnetic correlations with a large but fin
correlation length. Meanwhile, the slave-boson techniq
yields two phases of spin ordering near the transition to
paramagnetic state, one with a short-range and another w
long-range antiferromagnetic ordering,27,28 and the boundary
of the true paramagnetic state is very close to that show
Fig. 1. There are other independent arguments in favor of
hypothesis of a large area of antiferromagnetic spin orde
in separate CuO2 planes, in contrast to the narrow area
bulk antiferromagnetism observed in experiments.10,29 The
most spectacular facts are the transformation of the Fe
surface to a small Fermi surface in the underdoped regio
Bi2Sr2CaCu2O81d detected by the ARPES technique6 and
observation of ‘‘shadow’’ pieces of the Fermi surface ce
tered around the pointG(0,0) using the scanning version o
the ARPES technique.30 There are other arguments in favo
of a wide area of antiferromagnetic ordering in CuO2

planes,31 and they have been used as a basis for the m
recent superconductivity theory.32

In the mean-field approximation, we can calculate n
ther the radiusRAF of the area in which the antiferromagnet
quantization axis has a constant direction, nor the dynam
of fluctuations of this direction. But the energy parameters
the process~see Fig. 1! lead us to a conclusion that thi

g-

ian
al
alculated at
FIG. 2. ~a! Phase diagram for solutions with valence bond correlations in the‘‘doping versus interactionU/t ’’ plane. The solid curve corresponds to the critic
doping, at which antiferromagnetic ordering disappears. The dashed line is the boundary of the existence of an anisotropic superconducting gap c
kT50.002t. The lower part of this line is shown schematically~short dashes! because of the small gap width and poor convergence nearTc . ~b! Optimal
transformation parametera versusU/t for an undoped system (n51) and at a dopingun21u50.1 ~solid and dashed lines, respectively!.
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radius is much larger than the lattice constant (RAF@a).
Therefore, from the standpoint of short-range valence bo
correlations and attraction between holes due to formatio
valence bonds between neighboring sites, we cannot end
the hypothesis of the reality of ‘‘two-dimensional antiferr
magnetism’’ in CuO2 planes over a wide range of dopin
contrary to the assumption about the narrow region of b
antiferromagnetism in cuprates.

Figure 2b shows characteristic values of the optim
transformation parametera. It depends largely onU/t and
changes little withn. The curve ofa(U) indicates that the
expansion~6! can be used down toU/t<8.

Now let us proceed to the main task of this wor
namely, the investigation of the feasibility ofd-symmetry
superconducting ordering. Given the fast drop of anomal
averageswl with increasingl , even the sign and absolut
value of factork11 in the main contribution@k11w1

2# to the
superconducting component~18! of the average energy~16!
are quite significant. Figure 3 shows the factork11 as a func-
tion of the doping for several values ofU/t for antiferromag-
netic or paramagnetic states of valence bonds. The data
paramagnetic states, whose energy is considerably hig
are given only to demonstrate that the cause of attrac
between holes (k11,0) is not long-range antiferromagnet
correlations, but valence bond correlations. In particu
k1150 for a50. In paramagnetic states, the factork11 is also
negative, and its absolute value is even larger. Nonethe
owing to the difference in the densities of states on the Fe
surface, only in the antiferromagnetic state is there a su
ciently wide range of the doping in which the system ha
wide superconducting gap and high critical temperatureTc .

The critical temperatureTc(U,d) of the superconducting
transition is determined using Eq.~30! as a point at which
anomalous averageswl occur superposed on the normal sta
AF 1 VB. TheTc value coincides with temperature at whic
the superconducting gap 2D(T) and anomalous averages
the self-consistent calculations turn to zero. Figure 4 sho

FIG. 3. The main constantk11 of thed-symmetry superconducting orderin
in the average of the effective Hamiltonian~10!, ~11! versus doping for
antiferromagnetic and paramagnetic states of valence bonds atU/t54, 6,
and 8. The dashed lines correspond to paramagnetic solutions in re
where the antiferromagnetic states has a lower energy.
d-
of
rse
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the logarithm logTc(n) as a function of the doping forU/t
58 and 6. The entire domain of the superconducting stat
within the antiferromagnetic ordering region, i.e., below t
boundarydc(U/t) between the states AF1 VB and PM 1
VB in Fig. 2a.

At the same time, similar functions logTc(n) for para-
magnetic states drop rapidly asTc→0 even at low doping.
The cause is that the density of one-electron states of
corresponding effective linearized version of the problem
high only in a narrow region about the Van-Hove singular
at k5(0,6p), (6p,0). On the contrary, in antiferromag
netic states the splitting of the initial band into two subban
leads to a considerable widening of the region with a h
density of states near the point (0,p). As a consequence, th
region of high critical temperatures also broadens~see the
plateau on curves of Fig. 4!.

There is a problem that cannot be solved in the me
field approximation, namely, whether there is, in addition
the antiferromagnetic doubling of the unit cell, an alternat
mechanism of splitting the initial band into upper and low
Hubbard subbands, which could widen flat parts of the sp
trum near the Fermi level. Essentially, the same problem
to be solved in discussing the difference between bounda
of the ‘‘two-dimensional’’ antiferromagnetic ordering in ou
calculations and the bulk antiferromagnetism in real c
prates.

Let us reconsider properties of the superconducting s
with the dx22y2 symmetry due to valence bond correlation
Figure 5 shows the superconducting gap 2D(T) as a function
of temperature for several model parameters. The ratij
52D(0)/kTc ranges between 3.9 and 4.5 forU/t58 instead
of the BCS value 3.5. Our calculations ofj are smaller than
j52D(0)/kTc;10–12 obtained using approximations lik
self-consistent techniques of spectral functions33–35 or
Green’s functions.36 The ratioj measured in various exper
ments is highly anisotropic and depends on thez-component
of quasimomentum, whereas the value for theab-plane of
cuprates varies in the rangej;5 –7.29,37

ns

FIG. 4. Logarithm of the critical temperatureTc versus doping. The solid
and dashed lines correspond to the antiferromagnetic and paramag
states of valence bonds, respectively. Curves 1, 2, and 3 correspon
U/t58, 6, and 4.
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Thus, according to mean-field calculations ofH̃(a), the
region of thed-symmetry superconductivity is within the re
gion of the ‘‘two-dimensional’’ ~or hidden! antiferromag-
netic spin ordering determined in the same approximat
As was noted above, in our approach, this region projecte
real objects can become a region of long-range spin corr
tions, but not necessarily of a real long-range ordering. T
dashed line in Fig. 2a is the boundary of the superconduc
ity region in terms of the doping at temperaturekT
50.002t. Note that atU/t58 the maximum critical tempera
ture iskTc50.023t. The corresponding gap width is 2D(0)
50.107t, which makes 2D(0)553 meV andkTc5133 K
for t;0.5 eV ~Ref. 14!.

An unexpected result of our calculations is the lar
width of the anisotropicd-symmetry superconducting ga
extending down to very small valuesd5un21u;0.03–0.04
for U/t56 –8. In the initial Hubbard model, the transition
the dielectric state withTc50 asn→1 occurs only for very
small doping, when the chemical potential is slightly high
than the edge of the lower Hubbard subband andd5un
21u is determined by the tail of the distribution function.
the regiond.0.05 the valuesTc and 2D(0) are constant or
even increase with decreasingd. This contradicts the phas
diagram of real cuprates,10 whereTc(d) drops rapidly in the
range of doping smaller than the optimal parameterdopt cor-
responding to the maximum ofTc .

This contradiction can be interpreted in various ways
One can appeal to the arguments of Refs. 38 and

They suggested the presence of states with nonzero an
lous averages and anisotropic gaps, but without super
ducting properties owing to quantum fluctuations. This h
pothesis was put forth in attempts to reconcile the absenc
superconductivity and the presence of an anisotro
pseudogap in the normal state of underdoped sample
seems, however, more constructive to search for real in
actions that suppress superconducting ordering at
doping.

Suppose that we have come to this discrepancy as a
sult of using an ideal model~1!, more specifically, the initial

FIG. 5. Superconducting gap 2D(T) versus temperature atU/t58 ~solid
curves! andU/t56 ~dashed curves!. Curves 1, 2, and 3 correspond to do
ing valuesun21u50.1, 0.15, and 0.2.
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Hubbard model did not take into account interactions d
rupting the perfect nesting. For example, we did not ta
account of hopping interactiont8 between non-nearest neigh
bors ~diagonal neighbors!. We also neglected the simila
Coulomb interaction between particles at different sites. O
attention is focused on thet8 interaction for several reasons
First, it does not disrupt the perfect nesting in underdop
systems, but has a considerable effect on the Fermi sur
shape owing to the very flat bands. Second, the value
even the sign oft8 depend on the composition of the mater
because of the competition between two channels of s
diagonal hoppings in the CuO2 plane, namely, through direc
interactiontpp with oxygen orbits and through the process
second order in thep2d hybridization. Therefore compara
tive analysis of the effect oft8 in different cuprates can be o
great importance.26

In connection with the arguments given above, we ha
performed self-consistent calculations of the phase diag
and several system characteristics with an extended effec
Hamiltonian:

Heff~a!5H̃~a,U,t !1V (
^nm&

nnnm

1t8 (
^^nm&&

(
s

~cns
† cms1H.c.!, ~31!

i.e., we added to the initial effective Hamiltonian~6! the
Coulomb-like interactionV between the nearest neighborin
cells and hopping interactiont8 between the nearest diagon
sites^^nm&& with un2mu5A2. For simplicity, we have in-
cluded only terms of zeroth order ina for these interactions
in our approximate estimates.

Figure 6 plots Tc as a function of the doping fo
V5~0–0.25!t. The Coulomb interaction between neighbo
ing centers really destroys the superconducting ordering
low doping and at the same time decreases the maxim
critical temperatureTc . In particular, atV50.2t, U/t58,
and un21u50.1, the critical temperature drops toTc

50.0057t. Assumingt;0.5 eV,14 we haveTc;30 K, which

FIG. 6. Logarithm of the critical temperatureTc versus doping for the
extended Hubbard model~31! at U/t58, t850, and various values of pa
rameterV characterizing interaction between particles at neighboring si
Solid curves 1, 2, 3, and 4 correspond toV/t50, 0.1, 0.2, and 0.25. The
dashed line shows calculations forU/t510, V/t50.2, andt850.
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is lower than the experimental dataTc
max;100 K. The latter

value could be obtained forU/t;10 andV/t50.2 ~see the
dashed curve in Fig. 6!, but with these parameters the tran
formation parametera;0.27 is not small. The decrease
Tc with V is understandable. A positive constant (Dk11

54V) is added to the main superconducting parameter,
factor k11 in front of w1

2 in the expression for the averag
energy. The destruction of the superconducting ordering
low doping can be attributed to the weakening of the cor
lation interaction constantk11'28aUr 114V with decreas-
ing r 1 when antiferromagnetic localization of holes tak
place asn→1.

Figure 7 demonstrates a strong effect of diagonal h
ping interactiont8 on the shape ofTc(d). This effect is
clearly seen when the sign oft8 is varied.

For t8.0 the curve ofTc(d) is like the curve of experi-
mental data, namely,Tc drops rapidly on both sides of th
optimal dopingdopt. As t8 increases, the peak positiondopt

shifts toward higher values without changing the maxim
value Tc(dopt). This behavior is understandable if we ta
into account that fort8Þ0 the energyE1(k) of the lower
Hubbard subband is not constant along the boundaryukx

6kyu5p of the magnetic Brillouin zone:

E1~k!2E1~p,0!54t8~coskxcosky11!.

Note that, although the boundary of the Brillouin zone
dielectric undoped materials is just a line of the minimu
dielectric gap, it is seen in ARPES spectra as a blurred Fe
boundary since the intensities of photoemission in the fi
and extended Brillouin zones are different, notwithstand
the equal energies of bands after the antiferromagnetic d
bling of the unit crystal cell.

It is remarkable that, in the case oft8.0 andp-doping,
the flattest part of the lower Hubbard subband crosses
Fermi surface at the optimal doping~at the maximumTc):

E1~p,0!2m50 at d5dopt, n,1.

FIG. 7. Effect of parametert8 on the phase diagramTc(d) for the extended
model ~31! at U/t58 andV/t50.1. Curves 1, 2, and 3 correspond tot8/t
50, 0.05, and 0.1, curves 4 and 5 to negative values oft8/t520.05
and20.1.
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Figure 8 shows the band energyE1(k)2m with respect
to the chemical potential at two pointsk5(p,0) and k
5(p/2,p/2) on the boundary of the magnetic Brillouin zon
At t850 these energies are almost equal, so the ‘‘larg
Fermi surface centered atG(0,0) and the correspondin
‘‘shadow’’ piece aboutY(p,p) emerge as a result of doping
For t8Þ0 the evolution of the Fermi surface with doping
radically different. Fort8.0 we have

E1~p/2,p/2!2E1~p,0!;4t8.0.

This means that for low dopingd,dopt the ‘‘small’’ Fermi
surface emerges in the form of pockets about the po
(p/2,p/2), whereas the part of the spectrum fork;(p,0),
where the density of states is the highest, are below
Fermi level. Only at the optimal doping,d5dopt, the spec-
trum crosses the Fermi level at (p,0), after which the
‘‘large’’ Fermi surface emerges. Given that parts of the ma
netic Brillouin zone boundary, i.e., the dielectric parts, a
seen in the ARPES experiments as blurred Fermi bounda
the ARPES data can be interpreted at low doping in term
a generalized ‘‘large’’ Fermi boundary composed of the
electric parts of the boundary and real~non-shadow in terms
of intensity! metallic parts of the ‘‘small’’ Fermi surface.

In this interpretation, the pseudogap detected in rec
years7,8 in the normal state of underdoped samples
Bi2Sr2CaCu2O81d is nothing but the energyuE1(p,0)2mu
needed to eject electrons from partsk;(p,0), where the
density of states is the highest. In underdoped samples, t
parts of the spectrum are below the Fermi level, hence t
are populated. In overdoped samples,d.dopt, these parts of
the spectrum are above the Fermi level and unpopula
More accurate calculations and interpretation of photoem
sion spectra should become goals of a dedicated inves
tion.

Systems with the opposite sign of interaction,t8,0,
demonstrate a radically different behavior of the phase d
gramTc(d) ~Fig. 7! and Fermi boundary. The region of th
d-symmetry superconductivity remain sufficiently wide wi

FIG. 8. Band energyE(k)2m measured with respect to the chemical p
tential at two point of the magnetic Brillouin zone boundary, namelyk
5(p,0) ~solid curves! andk5(p/2,p/2) ~dashed lines! for the model with
U/t58, V/t50.1, and varioust8. Curves 1, 2, and 3 correspond tot8/t
50, 0.05, 0.1, and phase curves 1, 2, and 3 in Fig. 7.
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the increase inut8u and shifts to the region of low doping. A
the same time, the maximum critical temperature decrea
with increasingut8u. This shift of the superconducting regio
and decrease in the maximalTc for t8,0 demands an inter
pretation. The simplest hypothesis is that the region of
‘‘two-dimensional’’ antiferromagnetism becomes more n
row, consequently, the superconducting region shifts. T
assumption, however, is not true: actually, the region of
tiferromagnetic ordering changes little ast8 varies between
20.1 and 0.1. This can be seen in Fig. 9, which shows
sults for the alternating spin densityd0 in the case of self-
consistent AF1 VB solutions. Therefore, let us turn again
features of Hubbard subbands and Fermi boundaries.

For t8,0, the part of the spectrum in the lower Hubba
subband with the smallest slope,k;(p,0), does not cross
the Fermi level, but only approaches it~Fig. 10!. The in-
crease in the slope]E1(k,d)/]duk5(p,0) with ut8u leads to a
decrease in density of states andTc . Figure 10 also demon
strates that fort8,0 and a certain dopingd* 5d* (t8) the
spectrum crosses the Fermi level at the pointk5(p/2,p/2).
But the region near this point does not contribute to

FIG. 9. Alternating spin densityd0 as a function of doping forU/t54, 6, 8,
V50, andt850 ~solid curves!. The dashed curve and points correspond
U/t58, V/t50.1, t8/t50.1 and20.1.

FIG. 10. Same as in Fig. 8, but witht8<0: curves 1, 4, and 5 correspond t
t8/t50, 0.05,20.1, and phase curves 1, 4, and 5 in Fig. 7.
es

e
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e

dx22y2-symmetry superconducting ordering since the gap
zero on lineskx56ky . Therefore the parameterd* at which
E1(k)2m50 at the pointk5(p/2,p/2) is in no way related
to the maximum ofTc for t8,0. The Fermi surface also ha
a radically different shape fornegativet8. At low doping d
,d* , the generalized Fermi boundary consists of the diel
tric parts of the magnetic Brillouin zone boundary aboutk
;(p/2,p/2) and metallic parts of the ‘‘small’’ Fermi bound
ary around points (p,0). The results discussed in this pap
are concerned with the state with a definite structure of
lence bonds, in particular, with valence bonds betwe
neighboring sites, which leads to superconductivity with t
dx22y2 symmetry. Fort8.0 this model provides a reason
able interpretation of the phase diagramTc(d) and aniso-
tropic pseudogap. Fort8,0, however, the calculated an
measured phase diagrams are different, although there
good reason to suppose that this case is realized
La22xSrxCuO4. This is supported by the interpretation of in
elastic neutron scattering forv→0.40,41 This discrepancy
raises the question of whether alternative structures of
lence bonds and/or other symmetry types of superconduc
pairing are possible.

4. CONCLUSIONS

In conclusion, note the following.
1. The unitary transformation taking into account v

lence bond correlations yields a model Hamiltonian in wh
hoppings are modulated by site population, similarly to t
Hirsch model.22 It is this modulation of hoppings which
leads to attractive interaction between holes in thed-channel,
but, unlike the Hirsch model,22 the interaction parameters ar
calculated by variational techniques. In contrast to thet2J
model, which excludes double filling of sites, the resulti
effective Hamiltonian can be processed in the mean-field
proximation.

2. The gain in the energy at low doping leads to doubli
of the unit cell owing to alternation of spin orientations, a
also to formation of valance bonds between neighbor
sites. The problems of the small difference between the
culated energy and the results of simulations of small s
tems, and of the efficiency of other possible correlation typ
not included in our model have remained unsolved.

3. The mechanism of attraction between holes due
modulation of hoppings by site population cannot be redu
to exchange of antiferromagnetic fluctuations, which h
been discussed intensely42,43as a cause of this attraction. Th
effective attraction constants have been calculated variat
ally and found to be close for both antiferromagnetic a
paramagnetic states of valence bonds. At the same tim
turned out that the density of states near the Fermi leve
high enough to produce substantial values of the superc
ducting gap and critical temperature@2D(0)'4.5 andkTc

<0.023t at U/t58# only in the case of antiferromagneti
splitting of the initial energy band.

4. In the classical Hubbard model,H(U,t), the
dx22y2-symmetry superconducting ordering occurs over
wide range of doping extending ton→1 within the range of
‘‘two-dimensional’’ or hidden antiferromagnetism. This fa
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is in contradiction with the phase diagram of real cuprate
5. The calculations based on the generalized Hubb

model have shown that the phase diagramTc(d) and Fermi
surface shape are very sensitive to the magnitude and sig
the hopping interactiont8 between the non-nearest neig
bors. The optimal dopingdopt for t8.0 is the doping at
which the flattest part of the lower Hubbard subband cros
the Fermi level fork;(p,0). In this case, the anisotropi
pseudogap of the normal state in underdoped samples sh
be associated with the energy differenceuE(p,0)2mu be-
tween the lower subband atk;(p,0) and the Fermi level.

The reported investigation has been possible thank
support from the Russian Fund for Fundamental Rese
~projects 7-03-33727A and 96-15-97492!. The authors are
indebted to V. Ya. Krivnov for helpful discussions and R.
Za�tsev for constructive and useful criticism.

APPENDIX A:

With the effective Hamiltonian~6! the operatorH (2) at
a2/2 is

H ~2!5HU
~2!1T~2!, ~32!

HU
~2!52U (

^nm&
H R~n,m!1(

mi

Q~n,m,mi !

1(
ni

Q~m,n,ni !J . ~33!

In the latter three-site terms, the sums are performed o
miP^mmi&, miÞn, andniP^nni&, niÞm, and the operators
R andQ are defined by

R~n,m!5Dnm↑Dnm↓1 j nm↑ j nm↓ , ~34!

Q~n,m,mi !52
1

4(s $tnmis
Dnm,2s

2 Dmmi ,2s

1~cns
† cmscm,2s

† cmi ,2s1H.c.!

2tnmstmmi ,2s~nn,2s1nmis
22nn,2snmis

!%,

~35!

T~2!52t (
s,^nn8&

$@2cns
†~1!cn8s

~1!
1cns

†~2!cn8s1cns
† cn8s

~2!
#1H.c.%,

~36!

cns
~1!52

1

2 (
mP^nm&

~cns j nm,2s1cmsDnm,2s!, ~37!

cns
~2!5 (

mP^nm&
H L~n,m!1(

mi

M ~n,m,mi !1(
ni

N~n,m,ni !J .

~38!

In the three-site terms the sums are performed overmi

P^mmi&, miÞn, andniP^nni&, niÞm, and the operators in
Eq. ~38! are given by

L~n,m!52
1

2
@cms~122nns!tnm2s1cnsDnm2s

2 #,
.
rd

of

es

uld

to
ch

.

er

M ~n,m,mi !5
1

4
@cns j mmis

tnm2s1cmis
Dnm2sDnmi2s

1cnsDmmis
j nmi2s1cmsDnm2s j mmi2s

1cmsnmis
tmmi2s#, ~39!

N~n,m,ni !5
1

4
@cnis

j nm2sDnni2s1cnis
nnstnm2s

1cns j nm2s j nni2s1cnsnnis
j mni2s

1cmsDnnis
tnni2s#. ~40!

The operatorsj nms , Dnms , andtnms are defined by Eqs.~4!
and ~11!.

The averaging of expressions~33! and ~36! per lattice
site yields

^H ~2!&5@H U
~2!1T ~2!#uw501(

i j
ki j

~2!wiwj , ~41!

H U
~2!54U$2d0

213r 1
2@~122r 0!224d0

2#1~r n22fn0!

3@r 0~12r 0!1d0
216r 1

2#1@dnd018r 1
2fn

1r nfn22fnfn0#%, ~42!

f05r 0
22d0

22r 1
2 , f l5r l

22dl
2 , f0l5r 0r l2d0dl ,

f 05r 0
21d0

2 , f l5r l
21dl

2 , f l ,l 85r l r l 82dldl 8 .

~43!

Any of the symbolsAn5$r n,dn,fn,f0n, f n,r nfn,fnf0n%
denotes

An52AA21A2 .

In this notation, we have

T ~2!524t$r 1@251r 0~12r 0!293~d0
212r 1

2!218~r n

22f0n!15 f n16 f A212~4fA214f2,A21f2!

16~r n!212~dn!228d0dn#1~r 316r A5!@2r 0

3~12r 0!27d0
2210r 1

2#16r A5f n13r 3f 2%. ~44!

The contribution of anomalous order parameters to
average energy~16! per lattice site calculated to second ord
in wl is

H̄SC5@28aUr 1#w1
21a2@SU1ST#, ~45!

SU5U$4w1
2@2r 0~12r 0!1r n~122r 0!12d0dn14dA2

2

22d2
2#18w1w2@r 1~122r 0!#12w2

2@r 2~122r 0!

18r 1
222d0d2#%, ~46!

ST522t$w1
2@234r 1218r A523r 3#1w2

2@r 118r A5

13r 3#1wA5
2 @26r A5#1w3

2@2r 3#1w1w5@4r 1#

1w1w3@2r 1#%. ~47!
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The matrixDi , j5]wi /]wj at wl50 in Eq. ~30! is cal-
culated using solutions AF1 VB:

Di j 5Binkn j ,

where kn j are coefficients of the quadratic formH SC

5kn jW2nwj with anomalous averages~18!, and elements
of matrix Bi j are expressed in terms of energiesE1(2)(k) of
the upper and lower Hubbard bands with an antiferrom
netic gap 2Dk between them:

Bn j52N21(
k

F

R~ l n ,l j ,k!, l j5$1,2,A5,3% j , ~48!

R~ l ,l 8,k!5qlql 8S 122 f 1

2E1
1

122 f 2

2E2
D , l ,l 8Þ2, ~49!

R~2,2,k!5q2
2Fcos2gkS 122 f 1

2E1
1

122 f 2

2E2
D

1sin2gk2
12 f 12 f 2

E11E2
G ,

R~2,l ,k!5R~ l ,2,k!5qlq2 cosgkS 122 f 1

2E1
2

122 f 2

2E2
D ,

lÞ2.

Here f 1(2) are the Fermi distribution functions for the ban
energies~measured with respect to the chemical potentia!:

E1~2!~k!5~ek1e k̃!/27A~ek2e k̃!
2/41Dk

22m, ~50!

the parametersgk , ek , andDk are determined by the equa
tion tangk5(ek2e k̄)/Dk and Eq.~26!, respectively. In the
absence of antiferromagnetism and with only one anoma
order parameter, the equation forTc goes over to the stan
dard BCS equation, the only difference being the weight f
tor q1

2(k) in all sums overk to reflect thed-symmetry of the
superconducting ordering. In this case, the two contributi
due toE1 andE2 with summation overk in the halved Bril-
louin zone are equivalent to summation over the entire B
louin zone with the unsplit energy band. In ap- or n-doped
system with antiferromagnetic splitting, only one of theE1

andE2 subbands determinesTc and determinant~30!.
Since the superconducting gap is small in compari

with both the total band width and antiferromagnetic sp
ting, in solving the full problem AF1 VB 1 SC, without
loss of accuracy one can use approximate expressions fo
eigenvaluesEl and eigenfunctions~28! of the linearized
Hamiltonian ~24!. They are determined by the approxima
solutions of Eq.~28!:

El5$E1 ,E2 ,2E1 ,2E2%l , ~51!

E i52A~Ei2m!21Wi
2, i 51,2,
-

us

-

s

l-

n
-

the

Sil~k!5S cw sw 0 0

2sw cw 0 0

0 0 cw 2sw

0 0 sw cw

D
i j

3S c1 0 2s1 0

0 c2 0 2s2

s1 0 c1 0

0 s2 0 c2

D
j l

. ~52!

Here

sw5sinw, cw5cosw, ci5cosu i , si5sinu i

tan 2w5
2Dk

ek2e k̃

, tan 2u i5
2Wi

Ei2m
, i 51,2,

W1~2!5
1

2
@Wk1Wk̃1cos 2w~Wk2Wk̃!#.

The parametersek , Dk , Wk , and E1(2) are determined by
Eqs.~26! and ~50!.
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Dipolar Zeeman mixing in weak magnetic fields: An experiment with ice protons
N. V. Zavaritski †) and I. S. Solodovnikov* )

P. L. Kapitza Institute for Physical Problems, Russian Academy of Sciences, 117973 Moscow, Russia
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The evolution of the longitudinal magnetization of nuclear spins in a cw high-frequency
magnetic field has been measured using a SQUID magnetometer at liquid-helium temperatures in
magnetic fieldsH0 of up to 57 Oe. The timeTm for thermal mixing of the Zeeman and
dipolar systems has been found to range between 0.05 and 43102 s. ForTm.1 s the function
Tm(H0) is exponential. The proton NMR spectra near the fundamental and twice the
Larmor frequency have been obtained. The shift in the resonance with respect to the Larmor
frequency is close to the theoretical prediction. ©1998 American Institute of Physics.
@S1063-7761~98!01709-0#
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1. INTRODUCTION

The state of a spin system in a solid can be character
by a single temperature in a weak magnetic field compara
to the local field.1 In magnetic fields substantially great
than the local field, the spin system is usually characteri
by the temperatures of the Zeeman reservoir and the dip
reservoir, the latter being related to the secular part of
dipole–dipole interaction. The time required for the syst
to relax to the ‘‘quasi-equilibrium’’ state with two tempera
tures is of order of the spin–spin relaxation timeT2 ~Ref. 1,
Ch. 4!. In magnetic fields comparable to the local field, t
temperatures of these two subsystems equilibrate owin
the nonsecular part of the dipole–dipole interaction. T
process is called thermal mixing or dipolar Zeeman cr
relaxation@Ref. 1~Ch. 6! and Ref. 2#. When the mixing time
is relatively short,Tm&105T2, it is described by a Gaussia
function of the magnetic field:Tm(H0);T2exp(H0

2/M2* ),
whereM2* is near the second momentM2 of the resonance
line ~Ref. 1, Ch. 6!. Measurements of longer timesTm are
usually hampered by spin–lattice relaxation.3 In the case of
cross relaxation between different spin systems in a rota
reference frame,Tm is usually an exponential function of th
effective magnetic field~Ref. 4, Ch. 1!. Zobov and Lundin5

concluded that the exponential shape of the strong-fi
asymptotic form of the cross relaxation rate is a univer
feature of spin dynamics. The related issue of the expon
tial shape of NMR line edges was studied both theoretic
and experimentally.6 Therefore it seemed interesting to te
the conclusions of Ref. 5 in the case of the dipolar Zeem
cross relaxation in a system of spins of one type, namely
measure the functionTm(H0) over the widest possible tim
interval.

A suitable object of such an investigation is ice: the co
centration of nuclei with nonzero spin other than protons
negligible, namely 131022% of deuterium and 431022%
of 17O. The long spin–lattice relaxation time7 T1*10 h mea-
sured in a strong magnetic field (H057 kOe! at T'150 K
holds out the possibility of measuring long cross relaxat
times. In the present workT1 was measured at liquid-helium
5461063-7761/98/87(9)/7/$15.00
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temperatures in weak magnetic fieldsH0,55 Oe. The im-
pact of residual oxygen~gas dissolved in water from which
ice crystals were grown! on the spin–lattice relaxation ha
been investigated.

The shape of the proton NMR line in ice has been e
perimentally studied by many researchers.7–11 These experi-
ments used both cw NMR measurements in which exte
magnetic field was scanned7,8,10 and Fourier transforms o
decaying nuclear induction signals.9,11 The experiments were
performed with both polycrystalline samples and single cr
tals. A technique for calculatingM2 in the conventional hex-
agonal lattice with a configuration of disordered proton loc
tions was suggested.9,10 In these experiments we hav
obtained the proton resonance line shape in ice by measu
the rates of spin heating by hf magnetic field and compa
our results with published data. It is also of interest tthat
‘‘forbidden’’ line at twice the NMR frequency, which was
observed in some materials12–14in weak magnetic fields, was
detected.

2. EXPERIMENTAL

A diagram of the experimental chamber is given in F
1. The inside volume defined by an outside shell in the fo
of a 7-mm tube fabricated from a Mylar film and epox
cement is insulated from the copper cold conductor by
Mylar ring. Two coils of niobium–titanium wire are woun
on top of the Mylar tube and fastened with epoxy ceme
One of them is the SQUID reception coil, the other is
heater designed to generate a temperature gradient du
crystal growth. Four copper wires of diameter 0.2 mm coa
with lead–tin soldering alloy are cemented on top of the
coils for heat-sinking from the inside volume of the devic
Similar wires are used for cooling a coil for excitation
NMR, which is wound with the Nb–Ti wire on a Mylar core
Two small pieces of Nb foil cemented to the lower part
the outer surface of the device serve as a capacitive dete
~driven at 0.2 MHz! of the crystallization onset. The tem
perature in the cell is measured by a copper resistive t
mometer mounted on the cold-conductor. The cell is shiel
© 1998 American Institute of Physics
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by tubes welded from copper and niobium foils. A flexib
plastic tube is cemented to the upper lid of the cell, and ab
1.2 cm3 of distilled water is fed through this tube via a T
flon capillary. The filling tube is connected to the vacuu
container~jacket! via a trap designed to collect water dro
and thus limit the quantity of vapor escaping from the ce

The magnetometer incorporating a high-frequen
SQUID used to measure the longitudinal magnetic mom
under conditions of NMR excitation was describ
elsewhere.15 The dc magnetic fieldH0 is generated by a
short-circuited superconducting solenoid. The fieldH0 is de-
termined accurately using measurements of NMR in3He16

performed with this solenoid and a similar experimental c
The output signal from the SQUID is recorded by a co
puter, which also switches on and off the hf magnetic fie

FIG. 1. Diagram of the experimental chamber:~1! filling pipe; ~2! outer
shell of the cell;~3! heater;~4! reception coil of the SQUID magnetomete
~5! coil generating hf field;~6! detector of crystal growth onset;~7! electro-
magnetic shield from copper and niobium foil and Mylar film;~8! cold
conductor;~9! heat-sinking wires;~10! polyethylene trap.
ut

y
nt

l.
-
.

In these experiments we have used linearly polarized hf fi
perpendicular to the dc field. The valueH1 of the rotating
component of the hf magnetic field was calibrated using
area of the obtained NMR line.

Before the device was cooled, the vacuum container
been filled with the selected gas. When a small amoun
liquid nitrogen was poured into the nitrogen Dewar of t
device, the cell cooled down at a rate of 0.25–0.4 °C/min.
t53°C a power of 0.2 W was fed to the heater~the power
was derived from the 10°C rise in the temperature of the h
conductor!. The crystallization onset was detected using
signal from the capacitor and briefly heating the cold co
ductor, whose temperature just prior to this time ranged
tween 27°C and212°C owing to the overcooling of the
water. At t'230°C the heater was turned off, the vacuu
jacket of the device was pumped off and filled with helium
a pressure of about 10 Torr, which was used as the h
exchange gas in further cooling. Measurements were usu
performed at a fixed value ofH0 in one experimental run
The vacuum container was usually filled with the selec
gas at the end of the run atT'100 K.

The cooling rate while the ice crystal was growing in o
experiments was close to that chosen by Evtushenkoet al.,17

who reported that their samples were composed of rando
oriented single-crystal grains of hexagonal ice with a typi
size of about one millimeter. Pictures of the polycrystalli
ice structure obtained at a growth rate of;1023 cm/s are
given in Hobbs’s book.18

3. SPIN–LATTICE RELAXATION

In measurements of the spin–lattice relaxation timeT1,
we used the conventional technique of NMR saturation b
resonant hf field with subsequent monitoring of the mag
tization recovery after the hf field was turned off. An e
ample of the SQUID output versus time with two pulses
the resonant hf field is shown in Fig. 2a. The amplitude
the step generated by the hf pulse is proportional to
sample magnetizationMZ before the pulse. Figure 2b show
the step amplitude as a function of the time intervalDt that
has passed after the previous pulse. By approximating th
measurements using the formula

MZ5M0@12exp~2Dt/T1!#, ~1!

one can determine the equilibrium magnetizationM0 ~in
relative units of the SQUID output! and the longitudinal re-
laxation time. Under the conditions of our experiments,
spin–lattice relaxation time is controlled by oxygen whi
f

e
a

o

e

FIG. 2. ~a! Trace of SQUID output with two pulses o
hf magnetic field at the resonant frequency;H0544.7
Oe,T54.2 K, H1526 mOe; the duration of each puls
is 4 s.~b! Amplitude of steps caused by hf pulses as
function of time interval between two pulses for tw
types of residual gas in the cell: (s) air, H0544.7 Oe;
(3) nitrogen,H0550.9 Oe. The solid curve shows th
fit of Eq. ~1! to the experimental points.
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probably is trapped in the crystal when water is frozen w
air dissolved in it. When the vacuum jacket was filled w
air at a pressure of 1 atm, the timeT1 at T54.2 K ranged
between 10 and 20 min in different experiments, but w
independent of the dc magnetic field in the range of 10 to
Oe whenT1 was measured in one experiment. When
jacket was filled with helium or nitrogen instead of air,T1

was considerably longer: estimates ofT1 using Eq.~1! and
measurements atDt,30 min yield in this caseT1.10 h. In
the temperature range of 1.3–4.2 K the timeT1 increases
with decreasing temperature, approximately following t
law T1}T21.

4. HEATING OF THE SPIN SYSTEM BY AN HF FIELD

The evolution of the longitudinal magnetization in an
magnetic field with a frequency close to that of NMR can
described by the Provotorov equations~Ref. 1, Ch. 4, and
Ref. 19!. In a magnetic fieldH0 comparable to the local field
the rate of temperature equilibration between the dipolar
Zeeman reservoirs in the laboratory reference frame sh
also be taken into account@Ref. 1 ~Ch. 6! and Ref. 2#. If the
spin–lattice relaxation is neglected,

ȧ52~W11W2!a1S D

v0
W11W2Db,

ḃ5D22~v0DW11v0
2W2!a2D22~D2W11v0

2W2!b. ~2!

Here a and b are the inverse temperatures of the Zeem
and dipolar subsystems in the laboratory frame, and the
gitudinal magnetization satisfiesMZ}a. The parameterW1

5pg2H1
2g(v) determines the rate at whichav0 /D and b

are equalized by the hf field@this process is usually treate
~Ref. 1, Ch. 4! as equilibration~mixing! of the Zeeman and
dipolar reservoirs in the reference frame rotating with the
field#; g(v) is the shape function of the resonance line, a
D5v02v is the hf field detuning from the resonant fr
quencyv0. In a weak magnetic fieldH0 the resonant fre-
quencyv0 is shifted from the Larmor frequencygH0 be-
cause of the nonsecular part of the dipole–dip
interaction.2 In Eq. ~2! D5gHL8 is the local frequency re
lated to the local field in the rotating frame, which is dete
mined by the secular part of the dipolar interaction. T
terms with W1 on the right-hand side of Eq.~2! yield the
conventional Provotorov equations, which apply to the c
of H1!HL8 ~Ref. 1, Ch. 4!. The parameter W2

5Tm
21D2/(v0

21D2) describes the rate at whicha and b
equilibrate in weak magnetic fields owing to the nonsecu
part of the dipolar interaction.

When an intense hf field, albeit smaller thanHL8 , is
turned on, the temperatures of the Zeeman and dipolar
systems in the rotating frame rapidly equilibrate in the tim
tF
0'D2@W1(D21D2)#21, then the inverse temperatur

~which is unique in this reference frame! tends to zero at the
rate determined byW2. In this section, we consider the ca
of an hf field which is strong in this sense. Equation~2! with
the initial conditiona(0)5b(0) has a solution describin
the longitudinal magnetization as a sum of two decreas
exponential functions when the hf field is on:
s
5
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MZ~ t !

MZ~0!
5CF

0expS 2
t

tF
0 D 1~12CF

0 !expS 2
t

tS
0D . ~3!

In the case of a strong magnetic field, when the condit
W1@(1/Tm)(11D2/D2)21 holds,

CF
0'CF2

tF
0

tS
0

2v0

v

D2

D21D2
,

tS
0'tS1tF

0 S v0D1D2

vD D 2

. ~4!

The second terms in the right-hand sides of Eqs.~4! are
corrections to the values

CF5
D2

D21D2

v

v0
, tS5Tm

D21D2

D2

v0
21D2

v2
, ~5!

which determine the ‘‘weight’’ of the initial fast relaxation
stage and the time constant in the second, slow stage ofMZ

decay in the limit of a strong hf field.
Traces of the SQUID output as a function of time, whi

show how the longitudinal magnetization changes in an
field, are given in Fig. 3a. The signal due to the cell wa
and coil holder was about 0.04M0 and was probably cause
by protons in the Mylar and epoxy cement. The spin–latt
relaxation time under the conditions of our experiments
about 1–10 s. In order to get rid of this signal, we perform
two cycles of measurements at each frequency of the hf fi
At the end of each cycle, we turned on the hf field at t
resonant frequencyv0 to achieve full saturation of the
nuclear spin system. The time before the second cycle
about one minute was sufficient for the spins in the walls
relax. The recorded SQUID signals of the first and seco
cycle were differenced numerically~Fig. 3b!. The resulting
curves were approximated using Eq.~3! on the time interval
with the hf field on. One can see in Fig. 3b that the weight
the initial stage,CF

0 , and the time constant of the slowe
stage,tS

0 , are independent ofH1 at higher hf field intensities.
With due account of the finite value of the hf field,CF andtS

0

were calculated by Eq.~4! using measurements ofCF
0 andtS

0 .
These parameters as functions of the frequency are plotte
Fig. 4a, alongside the curves obtained by fitting Eq.~5! to
experimental data. The timeTm was obtained by extrapolat
ing tS to the resonant frequency.

If the hf field is tuned to the resonance, the contributi
of the second~slow! stage is zero, and the evolution of th
longitudinal magnetization is described by the single tim
constanttF

051/W1, because the hf field pumps energy on
to the Zeeman subsystem and does not affect the dip
subsystem. When an hf field at frequency 2v0 is applied, we
also measuredMZ(t) described by one decreasing expone
tial function. When the frequency is detuned from 2v0, the
measured weightCF of the initial stage and time constanttS

of the second stage under a strong hf field~Fig. 4b! are
described by equations similar to Eq.~5!, but with D re-
placed byv02v/2:

CF'D2@D21~v02v/2!2#21,
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FIG. 3. ~a! Records of SQUID output in which the hf field is turned on in two successive cycles. The arrows mark moments when the hf fieldH1511 mOe
~the output attenuator was set to 26 dB! at frequencyv/2p5180 kHz, hf resonant fieldH158.6 mOe at 193 kHz were turned on, and when the hf fields w
turned off. The record of curve 2 was started in 62 s after the end of the record of curve 1. The signal due to the walls can be seen after the hf field
off. ~b! Difference between curves 1 and 2 at various hf fields~attenuator settings are given at the curves!. The arrows mark times when the resonant hf fie
was turned on. The shift of each curve with respect to the previous one along the ordinate axis is one unit.
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tS'Tm@D21~v02v/2!2#D22. ~6!

The values ofD, which were fitting parameters fo
curves ofCF andtS versus frequency, around the fundame
tal NMR line were found to be independent ofH0 within the
experimental uncertainty, and we obtainedD/g53.760.2
Oe. This value corresponds1 to (M2/3)1/2, whereM2 is the
second Van Vleck moment of the NMR line. Measureme
of v0, which is also a fitting parameter, are plotted in Fig.
The difference betweenv0 and the Larmor frequencygH0 is
in agreement with the formula2 v02gH0}1/H0

2.
The timeTm derived from measurements around the fu

damental NMR line is plotted in Fig. 6. In all experimen
Tm was within 0.2T1. The measurements ofTm were inde-
pendent of the temperature and composition of the resid
gas. This indicates that the spin–lattice relaxation is not
portant for the mixing of the Zeeman and dipolar subsyste
under these conditions. In order to check whether deuteri
whose nucleus has spin 1 and a quadrupole splitting in
ice lattice of 0.2 MHz,11 has an impact on this process, w
experimented with samples containing ten times as m
deuterium as natural ice. We have not detected an effec
deuterium concentration on the dipolar Zeeman cross re
-

s
.

-

al
-
s
,
e

h
of
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ation rate. It seems that17O nuclei, whose quadrupole split
ting is about 1.7 MHz in ice20 and considerably higher tha
the proton NMR frequencies in our experiments, are a
unimportant for the dipolar Zeeman mixing in the proto
spin system. The curve ofTm(H0) ~Fig. 6! for Tm.1 s
(H0.35 Oe! can be approximated by the formula

Tm5T* exp~H0 /H* !, T* 5631025s, H* 53.6 Oe.
~7!

These measured value ofTm was obtained in polycrys-
talline samples and, apparently, is a value averaged over
ferent orientations of grains. Let us estimate the width
their distribution assuming thatH* }M2

1/2 and taking the data
concerning the second-moment anisotropy9: without the
maximum of M2 for H0 aligned with the hexagonal axis
M2

max/M2
min51.2. ThenTm5400 s is a value averaged over

distribution with Tm
max/Tm

min.5. This estimate clearly show
that single crystals should be used in measurements of lo
times of thermal mixing between Zeeman and dipolar s
systems.
FIG. 4. ~a! ParametersCF and tS versus fre-
quency obtained using Eq.~4! and curves calcu-
lated by Eq. ~5! fitted to these data: (s) T
54.2 K; (d) T51.3 K. Measurements were
performed atH0544.7 Oe,H1517 mOe. ~b!
Measurements atv about 2v0 under the same
conditions, but atH15120 mOe. The curves are
calculations by Eq.~6! with D and Tm derived
from curves ofCF andtS versus frequency plot-
ted in the left panel.
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5. NMR LINE SHAPE

In magnetic fieldsH0,30 Oe the time for the tempera
tures of the Zeeman and dipolar subsystems to equilibra
Tm,0.1 s, and the temperatures of these two reservoir
the laboratory frame remain equal in the presence of a w
hf field. The heating of the spin system by a weak hf field
characterized by a single time constant.13,14 For H0,30 Oe
this time constant can be much shorter thanT1*10 min.
This case is considered in this section. The time of the s
heating by a weak hf field, in accordance with Eq.~2! is

t5
1

pg2H1
2g~v!

v0
21D2

v2
, ~8!

provided thatt@Tm(11D2/D2). Measurements of the spi
heating by an hf field were performed in two cycles in ord
to get rid of the signal due to the walls, as was described
the previous section. The hf field values were chosen to h
t'10 s near the resonant frequency and twice the reso
frequency andt.100 s on the edges of these lines. In th
case, one can neglect the spin–lattice relaxation. Plot
1/t}v2g(v) for H0529.6 Oe are given in Fig. 7a. Let u

FIG. 6. Time for mixing of the Zeeman and dipolar subsystems at var
temperatures and residual gas compositions: (1) 4.2 K, helium; (s) 4.2 K,
air; (d) 1.3 K, air; (3) 4.2 K, nitrogen;~black triangles! 0.15% D2O
doping, 1.3 K, air. The straight line is a calculation by Eq.~7!.
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separate the lines around the fundamental and twice
NMR frequency:g(v)5g11g2. Given the shape of the fun
damental line,g1, we calculated the resonant frequency

v05E vg1dvY E g1dv,

its shift with respect to the Larmor frequency,gM15v0

2gH0, and the second moment~in units of s22)

g2M25E v2g1dvY E g1dv2v0
2 .

Integration was performed only over frequenciesv.0.
The shift of the NMR line with respect to the Larmo

frequency is caused by the nonsecular part of the dipo
dipole interaction. This shift can be ascribed2 to an increase
in the effective field acting on the spin owing to local field
perpendicular toH0. For a polycrystalline sample with ran
dom orientation of grains~‘‘powder’’ !21

M15
2

3

M2

H0
. ~9!

The measured line shift is close to the calculation by Eq.~9!
~Fig. 5!. Equation ~9! also accounts for the resonant fr
quency shiftv02gH0 derived from measurements in stron
hf fields.

s

FIG. 5. Resonance shift (d) with respect to the Larmor frequency mea
sured in strong hf fields. (s) Values of (g/2p)M1 derived from NMR line
shapes. The solid curve is calculated by Eq.~9!.
y

,

et
FIG. 7. ~a! Rate of spin system heating b
the hf field transformed to a single hf field
value H1518 mOe; H0529.6 Oe,T54.2
K. ~b! Shape of the fundamental NMR line
H0529.6 Oe, (1, 3) measurements ob-
tained in two different runs. The solid line
shows the convolution of the Pake doubl
with the Gaussian.
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The measurements ofM2 and relative line intensity nea
twice the Larmor frequency are summarized in Table 1. O
measurements ofM2 are close to the valueM2533.8 Oe2

obtained in samples of polycrystalline hexagonal ice.11 The
relative total intensity of the line about twice the frequen
calculated for a powder by Cheng22 is

*g2dv

*g1dv
5

2

3

M2

H0
2

. ~10!

The calculations of this intensity by Eq.~10! are given in
Table 1. Measurements of this intensity are in agreem
with calculations by Eq.~10!. Note that, within the experi-
mental uncertainty, the relative total intensity of this lin
near twice the Larmor frequency equals the ratio between
peaks ofg2 and g1, which was determined experimental
also in a stronger magnetic fieldH0.

The hf fieldH1 was calibrated using the area under t
curve of (tv2)21 versus frequency for the fundament
NMR line using Eq.~8! and the normalization condition
*g1dv51, which is valid to within.M2 /H0

2 ~see Ref. 14!.
The shape of the fundamental NMR line~Fig. 7b! can be

approximated~Ref. 23, Ch. VII! by a convolution of the
Pake doublet, which describes a spectrum of a powder c
taining pairs of spins with a fixed internuclear distance, an
Gaussian exp@2(v2v0)

2/(2b2)#. This approach is used in de
scribing shapes of proton resonance lines in crystal hydra
where the effective~with due account of molecular vibra
tions! interproton distances in the water molecule is tak
equal toRPP51.58 Å.24 The second moment of the Pak
doublet for this distance is

9

20

g2\2

RPP
6

523 Oe2.

The parameterb can be derived from the measurement
M2: b/g'3.3 Oe. Thus, the intramolecular contribution
the second moment is about 0.7M2. All in all, the results
concerning the fundamental NMR line obtained in measu
ments of the heating rate of the spin system by an hf m
netic field are in fair agreement with the data by Ripmees
et al.11

Barnaal and Lowe9 considered the effect of water mo
ecules undergoing tunneling rotations through an angle
180° around the bisector of theH–O–H angle on the shape
of the NMR line in ice and concluded that the frequency
such tunneling transitions is smaller than the dipolar f
quency;104 Hz. The frequency of the tunneling rotation

TABLE I.

*g2dv/*g1dv

H0, Oe

gH0

2p
, kHz

M 2 , Oe2
Calculations
by Eq. (10) Measurements

g2~2v0!

g1~v0!

21.8 93 33.0 0.048 0.039 0.057
29.6 126 34.6 0.026 0.021 0.027
44.7 190 2 0.011 2 0.012
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can be estimated, assuming a sine-wave shape of the cur
potential energy versus angle, using the following relatio
ship:

n t.n l exp~22A2IU /\!, ~11!

where n l.1013 Hz is the frequency of librationa
oscillations,24 andI is the moment of inertia of the molecule
The barrier heightU can be equated to the activation ener
in the temperature dependence of protons’T1 in undoped ice
measured by Kume7 in the region of thermally induced rota
tions for t.240°C: U50.44 eV. The calculation by Eq
~11! yields n t;1021 Hz. It seems that such low frequencie
of tunneling rotations are also unimportant for dipolar Ze
man cross relaxation.

6. CONCLUSIONS

We have measured the times for cross relaxation
tween the Zeeman and dipolar subsystems for protons in
in magnetic fields ranging between 30 and 57 Oe. The cr
relaxation timeTm as a function of a dc magnetic field in th
interval between 1 s and 43102 s is adequately described b
Eq. ~7!. This result supports the theoretical prediction5 that
the functionTm(H0) should be exponential in the limit o
largeTm for the dipolar Zeeman cross relaxation in a syst
of spins of one type.

Our measurements of the second moment are clos
the data by Ripmeesteret al..11 The measured shift of the
fundamental NMR line position and the intensity of the lin
near twice the resonant frequency are in agreement with
oretical estimates.21,22
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Magnetically induced spatial dispersion in the cubic magnetic semiconductors
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In the transverse geometry we have detected birefringence that is linear in the magnetic fieldB
and the light wave vectork in the cubic magnetic semiconductors Cd12xMnxTe (0<x<0.52).
The effect was found to be large,;1 (deg cm21 T21), and highly anisotropic, in contrast
to the Faraday and Voigt effects. The phenomenon is represented by terms of typeg i jkl Bkkl in
the permittivity tensor« i j and can be described by two parameters,A andg. Spectral
studies have shown that the normalized parametersA/x andg/x are independent ofx, i.e., the
effect can be related to the Mn21 ions. Below the edgeEg of the forbidden band, the
dispersion ofA is described by a (Eg2E)21.4-dependence, while the dispersion ofg is nil.
Theoretical analysis has shown that the spectral curves forA andg can be explained by the special
features of the dispersion laws for electrons and holes~features related to the fact that there
is no inversion center! and by the dependence of the parameters of the exchange interaction on the
electron wave vector. ©1998 American Institute of Physics.@S1063-7761~98!01809-5#
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1. INTRODUCTION

In the past decade the magnetic, optical, and magnet
tic properties of magnetic semiconductors have been un
intensive study. The interest in these crystals is due, in
ticular, to the huge values of the magnetooptic Farad
Voigt, and Kerr effects, circular dichroism, etc.1–3 These
phenomena have been studied by many researchers, but
microscopic nature in many cases remains open to dis
sion. For instance, the interpretation of the contribution
band-to-band transitions to the Faraday effect meets with
rious difficulties,4,5 since the observed spectral curves dif
substantially from those predicted by the theory.6,7

The Faraday, Kerr, and other effects, which are linea
the magnetic fieldB, can be described phenomenologica
by an axial tensor of rank 3, which is allowed in crystals
all classes and in disordered media. However, many m
netic semiconductors, such as Cd12xMnxTe, crystallize into
a noncentrally symmetric cubic structure of the zinc-blen
type (4̄3m), and when a magnetic fieldB is applied, the
phenomenon of magnetically induced spatial dispersion
lated to the bilinear terms of theD« i j 5g i jkl kkBl type in the
permittivity tensor« i j ~k is the wave vector of the light! is
permitted. One example is nonreciprocal birefringence~the
kB-effect!. One characteristic of any noncentrally symmet
crystal is that the axial tensorg i jkl is symmetric in the indi-
ces i and j ~Refs. 8–10!. Since thekB-effect is a spatial
dispersion effect linear ink, far from excitonic resonances
has an additional~in relation to the Faraday effect! small
parametera/l, wherea is the interatomic distance, andl is
the wavelength in the medium.

We know of only a few publications that report detecti
5531063-7761/98/87(9)/10/$15.00
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optical phenomena associated with magnetically indu
spatial dispersion in nonmagnetic semiconductors at
temperatures. Among these is the effect of magnetic fi
inversion11,12 and the bleaching, by a transverse magne
field, of a crystal placed between crossed polarizers.13,14

These phenomena were observed in CdS, CdSe, and Ga
the exciton absorption region. Up to now theoretical stud
of the microscopic mechanisms have been limited to allo
ing for terms in the exciton or polariton dispersion law th
are linear ink and B ~Refs. 13–15!. It is known, however,
that the action of an external magnetic field in magne
semiconductors is substantially enhanced by thesp–d ex-
change interaction, which leads to anomalously high val
of the Faraday effect~linear in the magnetic field!1,2 and of
the Voigt effect~quadratic in the magnetic field!.3 One can
assume that the size of thekB-effect in magnetic semicon
ductors is somewhere in the middle between the size of
effect in dia- or paramagnetic materials, where it is sm
and that in magnetically ordered crystals, where it is de
mined by strong internal exchange fields and is theref
sufficiently large to study in experiments.16–18Below we also
show that thekB-effect is more sensitive to the electro
structure of magnetic semiconductors than the Faraday
fect, which suggests that by studying the dispersion of
kB-effect we can extract detailed information concerning
band structure, especially the asymmetry of the bands.

These and other ideas served as a basis for our pre
research, in which we study, both theoretically and exp
mentally, optical phenomena associated with magnetic
induced spatial dispersion in the magnetic semiconduc
Cd12xMnxTe. Since the experiments of Ivchenkoet al.13 and
© 1998 American Institute of Physics
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FIG. 1. Cross section of the indicatrix in th
laboratory system of coordinatesXYZ for
ki@110# andBi@001# ~a!, and its variation under
180° rotations of the crystal about theX axis
~b!, theY axis ~c!, and theZ axis ~d!.
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Gogolin et al.,14 based on measurements of the intensity
the light that has traveled through crossed polarizers, can
strictly speaking, conclusively prove that the observed p
nomenon is odd ink and B, in this work we pay specia
attention to substantiating a method that makes it possibl
obtain direct proof that this is indeed the case. In this met
the measured quantity is determined directly by the prod
kiBj , and a change in sign of either of the vectors chan
the sign of the effect. We present the results of measuring
field, angular, spectral, and concentration curves for biref
gence linear in the magnetic field and for the Voigt and F
aday effects. The experimental data on thekB-effect are in-
terpreted by a theory that takes into account the spe
features of the dispersion laws for the conduction a
valence-band electrons, and the dependence of the exch
parameters on the electron wave vector.

2. PHENOMENOLOGICAL APPROACH

The permittivity tensor for a dia- or paramagnetic crys
in an external magnetic fieldB, with allowance for terms up
to the second order inB andk, can be written8–10

D« i j 5« i j
0 1a i jkBk1b i jkkk1g i jkl Bkkl

1n i jkl kkkl1m i jkl BkBl , ~1!

where« i j
0 is the permittivity tensor in zero magnetic field an

without spatial dispersion. Hereb i jk , n i jkl , and m i jkl are
polar tensors anda i jk andg i jkl are axial tensors. In the trans
parent region the tensora i jk describes the Faraday effec
b i jk the optical activity,g i jkl the effect of magnetically in-
duced spatial dispersion~the kB-effect!, n i jkl the Lorentz
birefringence, andm i jkl the quadratic Voigt effect. The com
ponents of the tensorsa i jk , n i jkl , andm i jkl can be nonvan-
ishing in crystals with any symmetry, while the compone
of b i jk can only be nonvanishing in non-centrosymmet
crystals with optical activity. The tensorg i jkl is nonzero in
any non-centrosymmetric crystal.

Let us examine the change in the optical properties o
crystal of the 4̄3m class induced by a magnetic field. Optic
activity is forbidden, so that changes in the optical proper
are determined by the tensorsa i jk , m i jkl , andg i jkl The ten-
sor a has only one component,m has three components,19

andg has two:A5gxxyy andg5gxyxy ~Ref. 15!. In longitu-
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dinal geometry (kiB), the Faraday effect is present, and
transverse geometry (k'B), the Voigt effect. The contribu-
tion of magnetically induced spatial dispersion~or the
kB-effect! to the permittivity tensor has the form

D« i j
g 5g i jkl Bkkl

5S A~Byky2Bzkz! g~Bxky2Bykx! g~Bzkx2Bxkz!

g~Bxky2Bykx! A~Bzkz2Bxkx! g~Bykz2Bzky!

g~Bzkx2Bxkz! g~Bykz2Bzky! A~Bxkx2Byky!
D ,

~2!

where thex, y, andz axes correspond to the directions@100#,
@010#, and @001# in the crystal. This contribution leads t
birefringence linear in the magnetic field, which occurs bo
in the Faraday geometry and in the Voigt geometry. Ob
ously, in the Faraday geometry the linearly induced birefr
gence, being a higher-order effect, leads to a relatively sm
ellipticity compared to the Faraday rotation of the polariz
tion plane. In the Voigt geometry there is no Faraday effe
and thekB-effect and the quadratic Voigt effect are of se
ond order and lead to birefringence that can be accura
separated~as shown below! into individual contributions by
using their differing symmetry properties and differing ma
netic field dependence.

Below we analyze the most important cases of variat
of the optical indicatrix when« i j

g is taken into account.

2.1. ki†110‡ and B i†001‡

The tensor« i j
g can be reduced to principal axes by a 4

rotation about thez axis (x8ik) and a 45° rotation about th
x8 axis. The principal directions of the indicatrix ellipse a
oriented at 45° to the direction of the magnetic fieldB ~Fig.
1a!. The amount of birefringenceDn5gBk/n, i.e., it de-
pends only on the parameterg. Let us assume that in th
laboratory system of coordinatesXYZ, k points in theX
direction andB in the Z direction. Using the transformation
properties of« i j

g , we can show that a 180° rotation about t
X andY axes results in a 90° rotation of the principal dire
tions of the indicatrix~Figs. 1b and 1c!, while a rotation
about theZ axis does not alter these directions~Fig. 1d!.
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FIG. 2. Cross section of the indicatrix in th
laboratory system of coordinatesXYZ for
ki@110# and Bi@11̄0# ~a!, and its variation un-
der 180° rotations of the crystal about theX axis
~b!, theY axis ~c!, and theZ axis ~d!.
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2.2. ki†110‡ and B i†11̄0‡

The tensor« i j
g can be reduced to principal axes by

single 45° rotation about thez axis. One of the principa
directions proves to be parallel to the magnetic fieldB, and
the other is perpendicular toB ~Fig. 2a!. The amount of
birefringenceDn5(3A12g)Bk/4n is determined by the pa
rametersA andg. A rotation of the crystal about theX andZ
axes leads to a rotation of the principal directions of
indicatrix ~Figs. 2b and 2d!, and a rotation about theY axis
does not change these directions~Fig. 2c!. Note that the
above changes in the orientation of the indicatrix are due
the linearity of the tensorD« i j

g in k and B, and can be in-
voked as experimental proof that the effect is odd ink. The
reversal of the sign of the effect upon reversal of the sign
B proves that the effect is also odd inB.

A 90° rotation in the~110! plane from the@001# axis to
the @11̄0# axis forces the principal directions of the indic
trix to rotate by 45°. The dependence of the rotation anglw
of the principal directions of the indicatrix on the directionu
of the magnetic field is given by

cot 2w5Q tanu, ~3!

whereQ5(3A12q)/4g; this is depicted in Fig. 3 for vari-
ous values ofQ. At Q561 the principal directions of the
indicatrix rotate through half the deviation of the magne
field from the direction@001#. The ellipticity of the indicatrix

FIG. 3. Dependence of the azimuthal anglew of the principal indicatrix
direction on the direction~angleu) of the magnetic fieldB for ki@110#. The
values ofw andu are measured from the@001# direction.
e

to

f

does not change atQ51. For QÞ61, the rotation of the
indicatrix is nonlinear with respect to field rotations, and t
ellipticity depends on the direction ofB.

2.3. ki†111‡ and B'†111‡

In this case the principal directions are oriented at
angle of 45° when the magnetic fieldB is parallel to the
@112# direction. WhenB is parallel to@110#, one of the prin-
cipal directions is parallel toB and the other is perpendicula
to B. In both casesDn5(A12g)kB/A6 n.

The presence of symmetry elements can lead to a si
tion in which an effect is forbidden in certain geometries. F
instance, thekB-effect is forbidden ifk is parallel to a four-
fold symmetry axis, say of the@100# type. If B lies in a
reflection plane perpendicular to the crystal surface, the
dicatrix axes will be oriented at an angle of 45° to the fie
If B is perpendicular to this plane, one of the principal dire
tions of the indicatrix will be parallel toB, and the other will
be perpendicular toB.

In the presence of the quadratic Voigt effect, variatio
of the optical indicatrix induced by the field are more com
plicated. Nevertheless, as we show in Sec. 3, thekB-effect
and the Voigt effect can be separated.

3. MEASUREMENT METHODOLOGY

The optical layout of the experimental setup is depic
in Fig. 4. Light from the source~a helium–neon laser with
l50.633mm or an Al2O3:Ti laser with l50.720.83mm)
travels through a polarizer, through the sample in the gap
an electromagnet in whichB'k, a quarter-wave plate, a Fa
aday modulator, and an analyzer, anending up at a phot
ode. Such a layout is commonly used to meas
birefringence,20 and the polarization of the light after th
polarizer must be parallel to one of the axes of the quar
wave plate and form an angle of 45° with the principal d
rections of the cross section of the indicatrix. The angle
rotation of the analyzer corresponding to extinction is det
mined by birefringence and is half the phase shift betwe
linearly polarized normal waves.

Two geometries were used in our experiments,EiB and
EB̂545° ~Figs. 4a and 4b!. In the EiB geometry~Fig. 4a!,
the input polarizationE1 is parallel toB and the principal
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FIG. 4. Experimental setup for measuring th
kB-effect. The mutual orientations of the magnet
field B, the input polarizationE1 of the light, the
principal directionsO1 andO2 of the quarter-wave
plate, and the output polarizationE2 of the light are
depicted in the lower half of the figure in the geom
etriesEiB ~a! and Ê B545° ~b!.
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directionsO1 of the quarter-wave plate. In this case there
no quadratic Voigt effect, since its principal directions a
parallel and perpendicular toB, but birefringence induced by
thekB-effect is present. In theEB̂545° geometry~Fig. 4b!,
the input polarization and the axis of the quarter-wave p
is oriented at 45° toB. In this case we have both the Voig
effect and thekB-effect, in whose geometry the axes a
parallel and perpendicular toB. What is measured in both
geometries is the rotationa of the output polarizationE2 of
light that has traveled through the crystal sample and
quarter-wave plate.

The crystal could be rotated in the gap of the elect
magnet about an axis in the direction ofk, with its azimuthal
angle varying in the 0,u,360° range. It could also be ro
tated 180° about an axis perpendicular toB andk and about
an axis parallel toB. The magnetic field could be varie
between21.5 T and11.5 T. The magnitude of the linea
birefringence due to internal stresses in the crystal and L
entz birefringence was determined in zero magnetic fie
The sensitivity in measuring the rotation of the polarizati
plane was 109. The measurements were carried out
T5294 K. We found it important to eliminate the Farad
effect and magnetic circular dichroism resulting from slig
misalignments of the magnetic field relative tok, since these
phenomena are also linear in the magnetic field and can
stantially exceed thekB-effect. To this end, in both geom
etries we measured the field dependence ofa(B) without the
quarter-wave plate. The fact that there was no rotation of
polarization plane indicated thatB and k were strictly per-
pendicular.

We studied the spectral dependence of the Faraday e
and the absorption spectra for all crystal samples. The
persion of the refractive index was investigated in the tra
parency region by measuring the rotation of the polarizat
plane of light reflected by the surface of the crystal for d
s

e

e
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e
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ferent angles of incidence. The refractive indexn was calcu-
lated by the Fresnel formulas.

The parameters of Cd12xMnxTe single crystals (x50,
0.25, 0.35, 0.42, and 0.52) used in our experiments are li
in Table I. Eg was calculated using the formulas given
Ref. 1, with the values of the cell parameters taken fr
Table I. The samples were cut in the~100!, ~110!, and~111!
planes and polished down to 23330.7 mm3 plates. The ori-
entation of the samples was determined radiographically
the Bragg reflection method. To check for crystal defects a
the presence of twinning and aggregates, we studied
Laue diffraction patterns in reflected light. Note that sin
the kB-effect is anisotropic, the presence of twins or agg
gates can weaken the observed effect and distort the na
of the anisotropy~e.g., the effect can show up in forbidde
geometries (ki@100#)!. Spontaneous birefringenceDn of all
samples was at most roughly 531026.

4. EXPERIMENTAL RESULTS

For samples of type~110! with EiB geometry, the ob-
served birefringence was linear in the magnetic field. A
result of azimuthal rotation of the crystal about theX axis,
which was parallel tok, the slope of the lineara (B) curves
was found to vary substantially. Figure 5a depicts the fu
tion a(B) at various azimuthal anglesu for a crystal with

TABLE I. Parameters of the Cd12xMnxTe samples.

x Cell parameter, Å Eg ~300 K!, eV

0.25 6.449(1) 1.86
0.35 6.435 1.99
0.42 6.423 2.08
0.52 6.409 2.21
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FIG. 5. Magnetic-field dependence o
the kB-effect in Cd12xMnxTe(x50.42)
for various directions of the magnetic
field in the geometriesEiB ~a! and EB̂
545° ~b!.
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x50.42 withl50.633mm. The angle dependence of]a/]B
under a rotation of the crystal about theX axis is shown in
Fig. 1a. A 180° rotation about theX axis changes the sign o
the derivative, and the]a/]B (u) dependence can be de
scribed by a combination of first- and third-order harmon
cosu and cos3u. The effect disappears atBi@110#, when the
magnetic field is perpendicular to the symmetry plane n
mal to the sample’s surface. The slope of thea (B) curve
changes sign when the crystal is rotated 180° about thY
axis, and does not change when the rotation is about thZ
axis.

In theEB̂545° geometry, thea(B) field dependence fo
crystals of the~110! type are asymmetric with respect to th
valueB50 and are described by the sum of the contribut
quadratic and linear in the magnetic field. Figure 5b dep
the functiona(B) at different values of the azimuthal ang
u for a crystal sample withx50.42. In all crystal samples th
contribution quadratic in the magnetic field is, within expe
mental error, independent of the direction ofB, which indi-
cates that the Voigt effect is isotropic. This is certainly no
trivial result since cubic symmetry allows for an anisotrop
Voigt effect. The contribution toa(B) that is linear in the
magnetic field depends on the orientation ofB. Figure 6b
depicts the angular dependence of]a/]B. The effect disap-
pears when the magnetic field is perpendicular to the s
s

r-

n
ts

-

metry plane normal to the surface. A 180° rotation of t
crystal about theZ axischanges the sign of]a/]B, while a
180° rotation about theY axisdoes not.

For samples of the~111! type, the angular dependence
the slope of thea (B) curve, i.e., the]a/]B (u) dependence,
whose contribution is linear inB, is described in both geom
etries,EiB andEB̂545°, by the third harmonics.

Note that the observed patterns, which are linear in
magnetic field, cannot be linked to the Faraday effect
magnetic circular dichroism, even in conjunction with spo
taneous linear birefringence. There are several facts that
gest this:

1. The Faraday effect and magnetic circular dichroism
a cubic crystal are isotropic. Indeed, it has been establis
in experiments that in Cd12xMnxTe crystals the size of the
Faraday effect is independent of the direction ofk with re-
spect to the crystallographic axes. Hence all possible sp
ous effects associated with a combination of the Fara
effect and spontaneous birefringence are described by
even harmonics of the angleu and do not change sign whe
the crystal is rotated 180° about theX axis.

2. Rotations of the polarization plane due to the Farad
effect, which are related to the fact thatB is not exactly
perpendicular tok, cannot lead to a rotation of the polariza
tion plane after the light has traveled through the quar
ce.
FIG. 6. Rotational anisotropy of the
kB-effectin Cd12xMnxTe (x50.42) in the
geometriesEiB ~a! andEB̂545° ~b!. Solid
curves correspond to calculated dependen
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wave plate. Such rotations lead to changes in elliptic
which do not show up in the adopted measuring method
ogy.

3. It has been established in experiments that rotation
the magnet through angles of about 1°, which lead to a F
aday effect, have an extremely small influence on thea (B)
dependence in both geometries.

Figures 7a and 7b depict the normalizedkB-effect
(]a/]B)/x as a function ofEg2E in both geometries,EiB
andEB̂545°, whereEg is the band gap andE is the phonon
energy. The measurements were made at anglesu corre-
sponding to the extrema of the angular dependence of
kB-effect ~see Figs. 6a and 6b!. The inset in Fig. 7 depicts
the concentration dependence of thekB-effect, a(x), at Eg

2E50.45 eV, including data on undoped CdTe (x50). The
refractive indexn of Cd12xMnxTe in the transparent regio
is close to 3, and was found to vary by 10 %in the spec
range being investigated~see Table II!.

5. DISCUSSION

Our results clearly show that Cd12xMnxTe crystals ex-
hibit a nonreciprocalkB-effect, which is described by th
tensorg i jkl in ~1!. This is suggested by:~1! the linear depen-

FIG. 7. NormalizedkB-effect (]a/]B)/x as a function ofEg2E at extrema
of the angular dependence in the geometriesEiB ~a! andEB̂545° ~b!. The
inset depicts the concentration dependence of (]a/]B)/x for (Eg2E)
50.45 eV.
,
l-

of
r-

he

l

dence ofa on the magnetic field;~2! the specific behavior of
the optical indicatrix when the crystal is rotated 180° abo
an axis perpendicular to bothB and k and about an axis
parallel to B; and ~3! the azimuthal dependence ofa(B)
when the crystal is rotated about theX axis, which is parallel
to k ~in particular, the change in the sign of the effect
u→u1180°). The behavior of the indicatrix under a rotatio
of the crystal about theX, Y, andZ axes is in full agreemen
with the conclusions of the symmetry study in Sec. 2, a
proves that the effect is odd ink.

The angular dependence of thekB-effect was demon-
strated by two different approaches. The first, based on
Jones matrix method, made it possible to calculate the an
lar and field curves fora(B) in the geometriesEiB and
EB̂545° in the ~110! and ~111! planes with allowance for
the Voigt effect and spontaneous birefringenceDn of about
531026. The calculations showed that in this case, over
range of field strengths used in the experiments, this dep
dence on field and angle has no effect on contributions
a(B) linear in the magnetic field. This provided an easy w
to separate the effects linear in the magnetic field from
quadratic effects. The second approach, based on app
mate expressions, made it possible to calculate the ang
and field curves fora(B) with allowance for spontaneou
birefringence and the Voigt effect for an arbitrary directio
of k. In the ~110! and ~111! planes both approaches we
found to yield the same result. For an arbitrary direction ofk,
the]a(u)/]B dependence is described by first and third h
monics inu, whose amplitudes are determined byA and g
and the direction cosines ofk.

We can calculate the dispersion of the parametersA and
g by using the]a(Eg2E)/]B dependence at the anglesu
corresponding to the extrema of angular curves forA andg
in the geometriesEiB andEB̂545°. The spectral curves fo
the normalized parametersA/x andg/x calculated from the
]a/]B vs. (Eg2E) curves in Figs. 7a and 7b are depicted
Fig. 8a. The spectral curves forA/x andg/x indicate that the
dispersion of the parameterQ describing the anisotropy o
the kB-effect is large: Q changes from 2.1 atEg2E
51.1 eV to 11.8 atEg2E50.1 eV. The anisotropy of the
kB-effectincreases as the differenceEg2E decreases, and a
we move away fromEg thekB-effect approaches the isotro
pic caseQ51.

Figure 8b depicts the spectral curves for the normaliz
values of the Faraday effect (FR/x) and the Voigt effect
(VB/x2). The curves in Figs. 8a and 8b are remarkable
cause they make it possible for the first time to compare
value and dispersion of three different magnetooptic effe
)

TABLE II. Refractive index of Cd12xMnxTe crystals.

E, eV
x 1.96 1.71 1.67 1.63 1.56 1.50

0* 3.05 3.00
0.25 3.22(2) 3.13(2) 3.11(2) 3.08(1) 3.00~1!
0.42 3.26(5) 3.05(2) 3.00(3) 2.99(2) 2.93(2
0.52 2.97(2) 2.99(2) 2.85(5) 2.86(5)

*Note.Values ofn for CdTe from Ref. 30.
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across a group of crystals that have differing concentrati
x. The Voigt effect is approximately a thousand times larg
than thekB-effect. Near the edge of the forbidden band in
magnetic fieldB51 T, thekB-effect and the Voigt effect are
approximately of the same size, but as we move away fr
the edge, the Voigt effect decreases much faster than
kB-effect and atEg2E50.3 eV can be ignored. Eunsoo
et al.3 studied the behavior of the Voigt effect at low tem
peratures. As the temperature decreases, the size of the
effect increases, and atT.10 K it is approximately a hun-
dred times larger than atT5294 K.

The dependence of the normalized parametersA/x and
g/x on Eg2E for crystals with different manganese conte
‘‘fit’’ universal, i.e., x-independent, curves~Fig. 8a!. Univer-
sal curves are also a characteristic feature of the normal
Faraday effectFR/x and the normalized Voigt effectVB/x2

~Fig. 8b!. The existence of universal curves indicates that
a fixed difference Eg2E the Faraday effect and th
kB-effectare linear inx and the Voigt effect is quadratic inx.
The fact that thekB-effect is a linear function ofx and the
fact thekB-effect in undoped CdTe is tens times smaller th
in crystals with manganese are indications that the Mn21

ions provide the leading contribution to thekB-effect.
The dispersion of the three magnetooptic effects in

different samples can be described by the functiond1t(Eg

2E)2t, whered, t, andt are parameters. For the normalize
componentA/x we have t51.4, for the Faraday effec
t51.5, and for the Voigt effectt53.5. The off-diagonal
componentg/x depends very weakly on the frequencyt
50). For A/x we haved.2.031027 mm T21 and for g/x
we haved.1.131027 mm T21, while for the Faraday and
Voigt effects we haved50.

Note that the overall sign of thekB-effect is undefined
even if we know the type of plane from which the crystal h
been cut, the direction ofk, and the direction of the magneti

FIG. 8. Normalized parametersA/x andg/x and the normalized values o
the Faraday effect (FR/x) and the Voigt effect (VB/x2) as functions of
(Eg2E). Solid curves correspond to calculated dependence.
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field B. The sign of thekB-effect can be determined only fo
an unambiguously fixed orientation of the unit cell in th
laboratory system of coordinates. Note that this is a diffic
task for both radiographic and neutron-diffraction metho
In principle, thekB-effect can be employed in orienting
crystal if we use a standard sample.

6. THEORY

The early theoretical work on thekB-effectanalyzed the
microscopic mechanisms involved in the excitonic13,14 or
intraband21,22 transitions, so that these results cannot be u
to analyze our data. In accordance with the experime
conditions (E,Eg), here we theoretically analyze th
kB-effect that is the result of transitions from the valen
bandG8 to the conduction bandG6.

Equation~1! shows that the tensorg i jkl is the derivative
of the permittivity tensor« i j (w,k,B) ~Ref. 9! with respect to
kl andBk :

g i jkl 5
4p\2

E2V

]

]kl ]Bk
(
r ,s,q

FJsq,rq1k
i ~k!Jrq1k,sq

j ~2k!

Erq1k2Esq2E

1
Jrq2k,sq

i ~k!Jsq,rq2k
j ~2k!

Erq2k2Esq1E GU
k,B→0

, ~4!

whereV is the crystal volume,r 561 ands561,63 label
the states of the bandsG6 andG8, respectively, andJ(k) is
the Fourier transform of the current operator.

To calculate the tensorĝ we must take into account th
noncentral nature of the crystal’s symmetry and the exte
magnetic field. However, if we allow only for the secon
factor, we can calculate the spectrum and wave function
the electrons only numerically.23 When we calculateĝ, the
problem becomes even more complicated because in a
tion to the magnetic field we must take into account t
noncentral symmetry of the crystal. Nevertheless, the m
important characteristic ofĝ, the frequency behavior ofĝ
nearEg , can be determined knowing only the dependence
the electron energy and the matrix elements of the cur
operator onq near the center of the Brillouin band.

We take into account only the first term in~4!, since the
second term yields only a contribution toĝ that is weakly
frequency-dependent and therefore is negligible near the
sorption edge. For the same reason we calculate only
most rapidly varying contributions~with frequency! to ĝ
nearEg , which emerge in the process of differentiation wi
respect tokl andBk . In particular, we ignore the dependen
of the matrix elements of the current operator on the m
netic field, i.e., in~4! only the energy denominator is differ
entiated with respect toBk . Here we use the dependence
the band energiesErq1k andEsk on B in the limit whereB is
small. Under such conditions the magnetic field leads to
isotropic splitting of the bands of light holes (lh) and heavy
holes (hh) and to isotropic splitting of the conduction ban
~c! ~see Refs. 23 and 24!:

DElh~q,B!56bA423 cos2 u, ~5!

DEhh~q,B!563b cosu, ~6!
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DEc~q,B!563a, ~7!

whereu is the angle between the electron wave vectorq and
the average spin vector of Mn21 ions, or ^SMn&. The con-
stantsa andb are proportional toSz

Mn (^SMn&iz) and describe
the exchange interaction of Mn21 ions and band electrons:24

a52N0a^Sz
Mn&x, b52N0b^Sz

Mn&x, ~8!

whereN0 is the number of unit cells per unit volume, anda
andb are the exchange integrals for the conduction and
lence bands.

As for differentiation with respect tokl , in addition to
allowing for the dependence of the electron energy in
conduction band,Ec q1k , we must also allow in~4! for the
k-dependence of the matrix elements of the current opera
i.e., we must differentiate with respect tokl not only the
denominator but also the numerator. Let us consider
problem in detail.

In crystals with a zinc-blende structure there is noq-
linear splitting of the conduction band; the effect of the no
central symmetry of the crystal, which manifests itself on
when one allows for spin–orbit coupling, is described
terms starting with the one that is cubic inq.25 Furthermore,
there is noq-linear splitting of the band in a magnetic fie
either, i.e., the dispersion law for the conduction electro
does not contain a term bilinear inq and B ~see, e.g., Ref.
26!. The derivative]Ec(q)/]q, which appears in~4! when
we differentiate the energy denominator with respect tok,
has the form

]Erq

]q
5

\2q

mc
1rd0f~q!, ~9!

wheref is a quadratic function ofq, andd0 is the inversion
asymmetry parameter, responsible for the spin splitting
the conduction band. Integrating, we see that the contribu
to gxxyy5A proportional to d0 varies nearEg as (Eg

2E)21/2, while gxyxy5g50. Note that the valence electro
energy in~4! does not depend on the photon momentumk.
For this reason the derivative]Esq(q)/]ql does not appea
when we differentiate with respect tokl in ~4!. Nevertheless,
the q-odd splitting of the valence band determines the or
of the singularity of the integrand in~4! and has a profound
effect on the corresponding contribution toĝ. This splitting
of the G8 band can be described by terms linear inq ~see,
e.g., Ref. 27! thanks to the term

DHv5
4

A3
C0@qx$Jx~Jy

22Jz
2!%1c.p.# ~10!

in the effective valence-band Hamiltonian~hereJ is the ma-
trix of the angular momentum operator in the baseG8, c.p.
stands for cyclic permutation, and the braces indicate s
metrization!. In estimating the contribution of the linea
splitting of the valence band, we must allow only for the fi
term in ~9!. Calculatingĝ in the same approximation as b
fore, i.e., keeping only the most rapidly varying terms~with
frequency!, we find that the contribution of theq-linear split-
-

e

r,

e

-

s

f
n

r

-

t

ting of the valence band exhibits the same frequency dep
dence as the corresponding contribution from the conduc
band.

The lack ofq-linear splitting of theG6 band means tha
we must take into account theq-linear terns in the matrix
elements of the current operator in~4!. For the band-to-band
transitions considered here, the electron velocity operatov,
which enters into the current operatorJ(k)5e(ve2 ik–r

1e2 ik–rv)/2, has the form

v i5A3/\@PRi1 iBsinmqnRm#, ~11!

whereR is the polar vector operator in theCG6
,CG8

basis,
sinm is a completely symmetric tensor, andP andB are the
Kane parameters, withB representing the fact that the 43̄m
group has no center of inversion. An estimate of the con
bution to ĝ of the second term on the right-hand side of E
~11! yields a frequency dependence of the components oĝ
similar to the one obtained earlier. Note that since there is
linear splitting of the conduction band, we must allow for t
q-linear terms in the velocity operator~11!.

The fact thatg50 is obviously the result of ignoring the
weakly frequency-dependent terms in~4!. At the same time,
it agrees qualitatively with our experimental data, accord
to whichg is weakly frequency-dependent and is small co
pared toA, especially nearEg .

Note that thanks to the term~10!, the effective Hamil-
tonian of an exciton coupled to the valence band and
conduction band containsq-linear terms and terms bilinea
in q andB. This leads to the same frequency dependenc
A and g (;(E–Eex)

22) in the excitonic part of the
spectrum.14

The frequency dependenceA;(Eg2E)21/2 calculated
above proves to slower than that obtained in the experim
A;(Eg2E)21.4. A similar situation emerges in the interpre
tation of Faraday-rotation experiments in Cd12xMnxTe ~Ref.
4!, where the dependence of the rotation angle observed
Eg , f;(Eg2E)23/2, proves to be much more rapid tha
that given by theory,f;(Eg2E)21/2 ~Ref. 6!, and observed
in cubic nonmagnetic semiconductors~see, e.g., Ref. 7!.

Hugonnard-Bruye`re et al.4 show that this discrepanc
between theory and experiment can be removed if one all
for the dependence of the exchange integralsa andb in ~8!
on the wave vector.28 The extent to which this factor influ
ences the magnetooptic effects depends on the sizeq0 of the
region near the center of the Brillouin zone, wherea andb
do not change substantially. If in the above estimates of
tensor ĝ we allow for the dependence ofa and b on q,
assuming as in Ref. 4 that

a,b;
q0

2

q0
21q2

, ~12!

then over the range of photon energies specified by the
that the parameterk5mchEg/\2q0

2(12E/Eg);1 is of order
unity, with mch

215mc
211mhh

21 , the behavior of the function
A(E) changes fromA;(Eg2E)21/2 for k!1 to A;(Eg

2E)23/2 for k@1.
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Note that the contribution of light holes to the magn
tooptic effects in Cd12xMnxTe can be ignored.4 For
Cd12xMnxTe, the parametermchEg /\2q0

2 is roughly 50~see
Ref. 4!, which in our experiment corresponds tok@1. If we
adopt this assumption, we obtain the dependence

A;~Eg2E!23/21d~E!, ~13!

whered(E) is a slowly varying function of the photon en
ergy, which takes into account the contribution of the te
dropped in~4!. This dependence is in good agreement w
the result of our experiment. What is important is that t
dependence ofa andb on the wave vector alters the beha
ior of the parameterA over a broad range of energiesE not
too close toEg . This sets it apart from the influence of th
electron–hole Coulomb interaction on dispersion effect29

which in theE<Eg range shows up only nearEg , where the
energy deficitEg2E is comparable to the exciton bindin
energyR.10 meV.

Note that despite the fact that nearEg the frequency
dependence of Faraday rotation coincides with that of
kB-effect, microscopically they are quite different. O
analysis shows that the spectral behavior of thekB-effect is
sensitive to the nature of the dispersion of the electron ba
while Faraday rotation is only weakly dependent on the d
persion law.

Since the magnitude of thekB-effect is linear in the
inversion asymmetry parameters, it can be used to determ
these parameters. However, solving this problem requ
calculating dispersion laws and matrix elements, and
outside the scope of the present paper.

7. CONCLUSION

The principal results of the present investigation are
symmetry analysis of the phenomenon of magnetically
duced spatial dispersion in non-centrosymmetric cubic c
tals of the 4̄3m group, the experimental study of nonreci
rocal birefringence of light~the kB-effect! in Cd12xMnxTe
crystals (0<x<0.52), and the development of a microscop
theory of the phenomenon. We have found that in magn
semiconductors this effect is large even at room temperat
which is related to the strong splitting of electron states d
to the sp–d exchange interaction. Although in magnet
semiconductors thekB-effect is several orders of magnitud
weaker than the Faraday effect, it is comparable in mag
tude to typical values of the Faraday effect in many dia- a
paramagnetic materials.

On the other hand, nearEg the Voigt effect and the
kB-effect are comparable in magnitude, while far fromEg

the kB-effect may substantially exceed the Voigt effect.
characteristic feature of the observed birefringence is
strong anisotropy with respect to the directions ofB andk,
which sets it apart from such well-known magnetooptic p
nomena as the Faraday effect and the Voigt effect. The s
tral curves for the parametersA and g describing the
kB-effect exhibit different dispersion asEg is approached,
which suggests that the corresponding microscopic me
nisms are different. The anisotropy parameterQ of the
-
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kB-effect has a very large dispersion, with the anisotropy
the effect decreasing as we move away from the band e

We have shown that the spectral curves forA obtained in
our experiments can be interpreted if we simultaneously
low for direct band-to-band transitions between the hea
hole band and the conduction band, the dependence o
current operator on the wave vector, and the dependenc
the exchange parameters on the electron wave vector.
parameterg is zero in the adopted approximation and r
quires other mechanisms for its interpretation. Since inh
ently thekB-effect is due to the non-centrosymmetric natu
of the crystal, it can be used to determine the param
describing the linear dispersion of electrons in semicond
tors.
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Rigorous three-dimensional theory of the parametric excitation of space-charge waves
in semiconductors

B. I. Sturman,* ) A. I. Chernykh, and E. A. Shamonina
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We analyze the stability against parametric excitation of space-charge waves of the space-charge
field induced in a semiconducting crystal by a traveling light grating. We show that when
the grating velocity is low, an important element of the analysis is the allowance for higher Fourier
harmonics of the field. By combining analytic and numerical methods we study the stability
against an increase in the amplitude of small three-dimensional perturbations of a general type. We
find that instability is possible only within a single range of light-pattern velocities and that
it leads to selective excitation of one-dimensional perturbations. Finally, we use the results of our
analysis to interpret experiments on the generation of spatial subharmonics in sillenite
crystals. © 1998 American Institute of Physics.@S1063-7761~98!01909-X#
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1. INTRODUCTION

The existence of lightly damped low-frequency spa
charge waves in semiconductors was predicted about a q
ter of a century ago.1,2 However, at the time the predictio
was not directly corroborated by experiments and was s
forgotten. Real interest in space-charge waves emerged
expectedly in connection with studies of photorefractive p
nomena in cubic crystals of the sillenite family Bi12RO20,
where R5Si, Ge, and Te. Experiments revealed3–6 that when
the crystal is exposed to a traveling intensity grating,

I 5I 0@11m cos~K–r2Vt !#, ~1!

under certain conditions~e.g., in the presence of an extern
field parallel to the lattice vectorK ! there emerges a spac
charge field characterized not only by a period that coinci
with that of the external field, 2p/K, but also by fractional
spatial frequencies,K /2, K /3, andK /4, i.e., double, triple,
and quadruple periods. An alternative way to exc
subharmonics7,8 is to apply an alternating electric field at
zero frequency offsetV between the light beams forming th
interference pattern~1!. The subharmonics are detected w
the usual photorefractive scheme: due to the Pockels ef
the space-charge field induces a change in the refractive
dex, and diffraction of the pump waves by the refractiv
index grating generates additional light beams~Fig. 1!.

An explanation of subharmonic generation was given
Refs. 9–11. There it was shown that the decaying~paramet-
ric! nonlinear process determined by the resonance co
tions

V5vk1
1vk2

, K5k11k2 ~2!

can lead to instability in the initial periodic state against
increase in the amplitude of a space-charge wave with w
vectorsk1,2 and natural frequenciesvk1,2

. The requirement
that the damping of the wave be light, which is needed
overcome the parametric instability threshold, is guarant
by the large value of the productmt (m is the mobility of the
5631063-7761/98/87(9)/7/$15.00
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photoelectrons andt is their lifetime! and the high strength
E0 of the applied field. The parametric-resonance conditio
~2! is satisfied by proper selection of the detuningV. Since
in a space-charge wavevk}(k–E0)21, the conditions~2! are
met only if V>4vk .

The parametric instability theory linear in the spac
charge wave amplitudes and the contrastm of the light pat-
tern has provided an explanation for a broad range of
served laws of subharmonic generation and has made ce
predictions.12–14Among such predictions is the possibility o
longitudinal splitting of the fundamental subharmonicK /2
and the broadening of the spatial frequency spectrum~see
Refs. 15 and 16 and Figs. 1b and 1c!. The foundations of the
nonlinear theory of parametrically excited space-cha
waves were laid down in a recent paper.17 In some respects
the theory is similar to the well-known theory of excitatio
of spin waves in ferromagnets.18

Parallel to theoretical studies, experiments on the exc
tion of space-charge waves in sillenite crystals have b
conducted. An intriguing experimental result was the det
tion of transverse splitting of the fundamental subharmo
K /2 ~see Fig. 1d! in the scheme with a traveling intensit
grating.19,20 Such splitting is inconsistent with the linea
theory of parametric excitation of space-charge waves, wh
predicts a reduction in instability as the transverse~with re-
spect toK ! component of the wave vectorsk1,2 increases.

Recently, Pedersen and Johansen21,22 have attempted to
explain the transverse splitting. They focused on
frequency-offset rangeV,4vK , and in describing the ini-
tial periodic state limited themselves, as before,10,11 to an
approximation linear in the contrastm of the light pattern.
This approximation yields a one-dimensional harmonic d
tribution of the space-charge field,

E5EK exp@ i ~Kz2Vt !#1c.c.,

with an amplitude
© 1998 American Institute of Physics
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EK5
m

2

E0

«21211 iQK
21

, ~3!

where«5vK /V is a dimensionless parameter varied in t
experiment, andQK is theQ-factor of a space-charge wav
with a wave vectorK ~Ref. 11!. Under these assumptions,
V.vK ~i.e., at «[vK /V.1) andm51, a new region of
instability against parametric excitation of space-cha
waves was found, and it was shown that in this region
most easily excited waves are those with nonzero transv
components of the wave vectors. This made it possible
interpret the results of experimental observations of
transverse splitting of theK /2 subharmonic.

Clearly, the approximation employed by Pedersen a
Johansen21,22~which is linear in the contrastm) breaks down
when «.1 and m.1. Indeed, in this caseuEKu.E0QK /2
@E0 , which defies common sense because the total fi
inside the crystal,E01E(z), proves to be alternating an
much higher than the applied field. Actually, the contra
linear approximation is applicable as long asuEKu&E0 ; at
V.vK ~i.e., in the linear-resonance case! this is equivalent
to the constraintm&QK

21!1. At higher values ofm, which
always play a significant role in experiments, higher Four
harmonics of the fieldE with the spatial frequencies 2K,
3K, . . . become important, while the amplitudeEK rapidly
decreases due to the nonlinear coupling with th
harmonics.11,23 At «.1 andm.1 the number of significan
Fourier harmonics in the initial state can be estimated to
QK ; in sillenite crystals this usually amounts to 6–8~Refs.
10 and 11!.

A comment on the results of Pedersen and Johansen21,22

is in order. What the two researchers examined atV,4vK

~i.e., at «.0.25) was a first-order nonresonant parame
process. The increase in the minimum~in k! relative distance
to a parametric resonance, (vk2vK2k2V)min /V54«21,
with increasing« was balanced by a rapid increase in t
amplitudeEK(«) due to the approach of linear resonance

FIG. 1. ~a! Experimental setup used to generate subharmonics of a trav
light pattern, and the patterns of light on the screen placed behind the cr
corresponding to the generation of~b! the unsplit subharmonicK /2, ~c! the
longitudinally split subharmonic, and~d! the transversely split subharmonic
e
e
se
to
e

d

ld

-

r

e

e
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t

is this increase that gives rise to a new instability region
«.1.

In actual fact,EK(«) reaches a plateau when«.0.25
due to excitation of higher spatial harmonics, which redu
the efficiency of the of the parametric process. Moreov
higher-order parametric processes specified by the condit
for synchronism,sV5vk1vsK2k with s52,3, . . . ,greatly
affect the evolution of weak perturbations. In particula
these nonlinear processes may be resonant. Thus, the p
cal situation in the offset rangeV&4vK proves to be much
more complicated than the situation forV>4vK . At the
same time, the increase inEK(«) and the effective genera
tion of higher harmonics of the space-charge field at«'1
leaves some hope that the theoretical results of Pedersen
Johansen21,22 and their interpretation of the transverse sp
ting of the K /2 subharmonic are meaningful, at least qua
tatively.

In this paper we give a consistent analysis of the stabi
of the initial periodic solution for a space-charge field ov
the full range of the most important frequency offsets. O
analysis takes into account the higher Fourier harmonic
the initial periodic state and allows for three-dimension
small perturbations of a general type. Such an approac
necessary not only for an explanation of transve
splitting—it plays an important role in determining the acc
racy of the analytic linear theory of parametric excitation10,11

built for V*4vK , which forms the basis of the nonlinea
theory of photorefractive subharmonics.17

A purely analytic or numerical study of the instability i
the general case is extremely difficult. However, a combi
tion of analytic and numerical methods can make the pr
lem much simpler. The main idea of our analysis is as f
lows. First we numerically solve the one-dimension
problem of findingN Fourier harmonics of the space-char
field, which to high accuracy may be taken as the init
periodic solution. Next we analytically find the characteris
2N-by-2N matrix that links the Fourier components of
three-dimensional perturbation. The elements of this ma
contain the instability growth rateG, the Fourier harmonics
of the initial space-charge field, and the longitudinal a
transverse components of the wave vector of the pertu
tion. The condition that the determinant of this matrix vani
yields a characteristic equation of degree 2N for G. We
solve this equation numerically to find the branch of t
solution corresponding to the maximum value ofG85Re G
and to study the dependence of this maximum value on« and
the wave vector of the perturbation.

Before analyzing instability we examine the properti
of the initial dynamical equation for the space-charge fi
potential. We conclude the paper by discussing the res
and the conclusions that follow.

2. INITIAL RELATIONSHIPS

Our study~and, for that matter, the analysis of Refs. 2
and 22! is based on the scalar dynamical equation for
potentialw defined by

E52¹w.

ng
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That equation, derived in Ref. 11, describes processes
volving photoexcitation of electrons from deep traps, t
drift of electrons in the fieldE01E, diffusion, and recombi-
nation, and has the form

¹2wzt2
v0

l s
¹2w2

1

l 0
¹2w t1v0¹2wz1

l D
2

l 0
¹4w t

52
4pe

e0
dgz1

4pe

e0

1

E0
¹–~dg ¹w!1

1

E0
¹–~¹2w t¹w!,

~4!

where¹2 is the Laplacian,v05g0 /Nt is the characteristic
frequency,Nt is the effective trap concentration,g0 is the
spatially homogeneous part of the electron photoexcita
rate ~this quantity can easily be expressed in terms of
light’s absorption coefficient and intensityI 0), dg
5mg0 cos(Kz2Vt) is the spatially oscillating part of the
electron photoexcitation rate,e0 is dc dielectric constant o
the crystal,l 05mtE0 is the photoelectron drift length,l D

5AkBTmt/e is the diffusion length,kB is Boltzmann’s con-
stant,T is the absolute temperature,l s5e0E0/4peNt is the
screening length, and the subscriptsz and t indicate deriva-
tives with respect to the longitudinal coordinate and time

The first two terms on the left-hand side of Eq.~4! de-
scribe nondissipative propagation of space-charge wa
and the third, fourth, and fifth describe the damping of
waves. The terms on the right-hand side characterize the
citation of space-charge waves and nonlinear interaction
fects. If we drop these terms and assume thatw}exp(ik–r
2 ivkt2gkt), we can easily find the natural frequencyvk
and the damping constantgk of a wave with wave vectork
~Ref. 11!:

vk5
4peg0

e0E0kz
,

gk5g0S 1

Nt
1

4pe

e0mtE0
2

1

kz
2

1
4pkBT

e0E0
2

k2

kz
2D . ~5!

We see thatvk and gk are proportional toI 0 , i.e., theQ-
factor of the wave,Qk5uvku/gk , is independent of the ligh
intensity. The maximum value ofQk ~as a function ofk and
E0) is Qk

max5ApeNtmt/e0. In the numerical estimates an
calculations that follow, we assume that«0556 and Nt

51016cm23, while mt is varied over the range (4 – 8
31027 cm2/V21. The adopted values agree with the data
sillenites taken from Refs. 24 and 25 and yieldQk

max56 – 8.
The values of Qk close to Qk

max are reached atE0

*627 kV cm-1, k'50 (k' is the transverse compone
of the wave vector!, and the wave’s period 2p/kz

.15225mm. Note that according to~5! an increase ink'

always leads to an increase ingk and a decrease inQk .
If we ignore the terms that are nonlinear inw and dg,

Eq. ~4! becomes the expression~3! for the time-independen
amplitude of the space-charge field. Elementary estim
show that nonlinear terms are negligible whenuEKu!E0 .
Equation ~3! shows that if«&0.25, the above inequality
holds up tom'1.
in-
e

n
e

s,
e
x-
f-

n

es

3. PERIODIC SOLUTION

Equation~4! admits of the one-dimensional steady-sta
solutionw (0)(Kz2Vt) with the periodicity of the light pat-
tern ~1!. The corresponding space-charge field has onl
z-component. To satisfactory accuracy this field can be r
resented by a truncated Fourier series:

E5E0 (
s5220

sÞ0

20

ese
isj, ~6!

wherej5Kz2Vt, andes is the sth dimensionless Fourie
harmonic of the field. By solving Eq.~4! numerically we
found a set$es(«)% and proved that this set corresponds to
unique physical solution. The latter is done by comparing
results obtained via reduction of Eq.~4! to an algebraic sys-
tem of nonlinear equations for the amplitudeses and via
temporal evolution of the fieldE52wz to a stationary state
The solid curve in Fig. 2 depicts theue1u («) dependence
calculated for m51, E057 kV/cm21, a lattice constant
2p/K520mm, and mt5631027/V cm21. The dashed
curve corresponds to~3! obtained in an approximation that i
linear in the contrastm for the same values of the paramete
We see that for«&0.3 the curves are essentially identical.
the same time, for«*0.6 the linear approximation yield
gross overestimates ofue1u. In actuality, ue1(«)u reaches a
plateau when«*0.4. Interestingly, near«50.4 the solid
curve lies above the dashed curve, i.e., the allowance
higher harmonics leads to an increase in the fundame
amplitudeEK .

We also note the presence of hysteresis at«.0.39. Such
behavior and the fact that the maximum is shifted fro
«51 to «.0.4 are due to the positive nonlinear frequen
shift for a space-charge wave.9,11,25 As the productmt in-
creases, the hysteresis and the shift of the maximum bec
more prominent.

Figure 3 depicts the dependence ofuesu on the numbers
for different values of« and the previous values of the ex
perimental and material parameters. Clearly, the numbe
significant harmonics rapidly increases as« varies from 0.35
to 0.4. When«&0.25, the higher harmonics are extreme

FIG. 2. Comparison of the exact solution for the amplitudeue1u ~solid curve!
with the results obtained in an approximation that is linear in the cont
~dashed line!.
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small. Figure 4 depicts the dependence of the total fieldE0

1E(j) for m51 and several values of« ~the curves were
obtained by summing the Fourier series~6!!. At «50.25 the
distribution of the field is similar to that of the light intensit
~1!. The increase in the contribution of the higher harmon
with « is accompanied by an increase in the asymme
of the field’s profile and a shift of the maximum in th
positive direction. Note that when« is very large, the
total field approaches zero near the right endpoint of
interval.

4. CHARACTERISTIC EQUATION

To study the stability of the periodic solution found ea
lier we write the potential asw5w (0)1w (1), where w (1)

is a small perturbation that generally depends on the v
ables j, r'5(x,y), and t. Linearization of the original
dynamical equation~4! with respect tow (1) leads to a homo-
geneous partial differential equation. It is significant
that the coefficients of this equation depend onj ~through
w (0)(j)) but not onr' or t. Hence in this equation we ca
put

w~1!5u~j!exp~ ik'–r'1Gt !1c.c.,

FIG. 3. Dependence of the amplitudeuesu on the numbers for different
values of«. The curves have been drawn for better perception.

FIG. 4. Spatial profile of the electric field within a single period for seve
values of«.
s
y

e

i-

wherek'5(kx ,ky) is the transverse component of the wa
vector of the perturbation, andG is the instability growth
rate. Thus, we arrive at a homogeneous differential equa
for u(j), with the coefficients of this equation containin
w (0)(j), G, andk' .

The amplitudeu(j) can be written

u5eikj (
s852N

N21

us8e
is8j, ~7!

where k is the dimensionless longitudinal wave numbe
which takes values in the range@0,1#, and N<20 is the
number of Fourier harmonics in the initial state that we w
to take into account. The expansion~7! is similar to the rep-
resentation for the Bloch function of an electron in a on
dimensional periodic potential. In fact, it signifies that b
taking into account the perturbation of the initial state w
allow for spatial frequenciesK (2N1k)6k' , . . . , K (N
211k)6k' . The absolute values of the longitudin
components of these vectors are les thanNK. When
k51/2, the perturbation is the fundamental subharmon
unsplit or transversely split depending on whether
not the transverse projectionk' of the wave vector is
zero.

By using the representation~7! and the Fourier series~6!
we finally reduce the differential equation foru(j) to a linear
matrix equation forus :

~Csdss82Ass8!us850. ~8!

Heredss8 is the Kronecker delta, and the coefficientsCs and
Ass8 are

Cs5@~s1k!21u2#H 2 i ~s1k!n2~s1k!21«2 i«~s1k!

3Kl s1
1

Kl 0
@n2 i ~s1k!#1

Kl D
2

l 0
@~s1k!21u2#

3@n2 i ~s1k!#J , ~9!

Ass852«
m

2
~ds s8111ds s821!@~s1k!~s81k!1u2#

1es2s8$~s2s8!2@~s1k!~s81k!1u2#1~s1k!

3@~s81k!21u2#~s81k1 in!%,

wheren5G/V, and u5uk'u/K is the dimensionless trans
verse wave number. Note that the 2N-dimensional wave vec-
tor Cs comes from the left-hand side of Eq.~4!, while the
matrix Ass8 , comprising the numerically determined amp
tudeses2s8 , comes from the right-hand side.

The system~8! has a solution if

det~Csdss82Ass8!50, ~10!

which is the desired characteristic equation for the instabi
growth rate. This equation has 2N branches of solutions fo
G as a function of«, k, andu. Generally, these branches ca
be found only numerically. An analytic solution of the cha
acteristic equation is possible only forN51. A simplifying

l
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assumption of this kind is only justified when«&0.25, and
leads to the well-known analytic results on parametric ex
tation of space-charge waves.10,11

5. STUDY OF STABILITY

We solved the characteristic equation~10! numerically.
For each numberN and each set of parameters«5vK /V, k,
and u5uk'u/K, we sought the branch of solutions with th
maximum possible rate of exponential growth of perturb
tions, GN8 5@Re G#max, i.e., the branch with the highest in
stability. What follows is the result of our analysis.

We start by investigating instability against generati
of the unsplit harmonicK /2, i.e., instability against period
doubling. In this case we limit ourselves to the on
dimensional case (u50) and putk51/2. Figure 5 depicts
the GN8 («) dependence atmt5631027 cm2/V21 and m
51 for several values ofN. As expected, when«&0.25~i.e.,
V*4vK), reasonable results are achieved even in the c
text of the analytic theory (N51). An increase inN, i.e., the
allowance for higher spatial harmonics, yields only neg
gible corrections to the growth rate.

The situation changes dramatically when«*0.28. Here
the analytic model withN51 breaks down and the growt
rate GN8 («) rapidly decreases as the numberN8 of spatial
harmonics taken into account grows. Significantly, wh
«*0.37 andN>6, the growth rateGN8 becomes negative
Thus, there is only one frequency offset range~the range of
values of«) in which excitation of an unsplit subharmon
K /2 is possible. The statement of Pedersen and Johanse
there is a second instability region at large values of« is a
consequence of the unjustified assumptions made in Refs
and 22. Figure 5 clearly shows how the nonphysical reg
disappears asN increases. Note that the model withN54
provides an extremely accurate description of the gro
rate’s behavior over the entire subharmonic instability
gion, 0.22&«&0.37.

Figure 6 depicts the dependence ofG208 («) at m51, k
51/2, andu50 for different values ofmt. Clearly, an in-
crease inmt facilitates instability but does not alter our co
clusion that there is only one instability region. Neith
do variations of the applied fieldE0 and the lattice constan
2p/K in the vicinity of the values 7 kV/cm21 and 20mm
considered earlier lead to new qualitative results.

FIG. 5. GN8 («) at k51/2, u50, andm51 for different values ofN.
i-
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substantial decrease inE0 or a substantial change inK
leads to suppression of instability. AtE057 kV/cm21 and
2p/K520mm instability disappears if mt&3
31027 cm2/V21.

Note that each curve in Fig. 6 consists of two sectio
corresponding to the different branches of the solution of
characteristic equation. The transition from one branch to
other occurs in the vicinity of«50.38. Actually, the right
~stable! sections of the curves are in no way related to s
harmonic generation. They describe the damping of per
bations with high spatial frequencies, which are only wea
coupled to the pump wave. However, these sections s
that at«*0.4 subharmonic perturbations have even sma
negative values ofG8.

We now examine the dependence of the instabi
growth rate on the longitudinal wave numberk. Figure 7
depicts theG208 (k) dependence atu50 for various values of
«. For «*0.224 the curves have a single maximum
k51/2, while for «,0.224 the curves have two maxim
symmetric with respect tok51/2. Such bifurcation agree
with the analytic theory10,11 and suggests that there may b
symmetric longitudinal splitting of the fundamental subha
monic K/2 as« decreases.

Curve1 in Fig. 8 represents the dependence of the d
tance between the maxima on the parameter« and was ob-
tained numerically atN520 andm51, while curve2 corre-

FIG. 6. G208 («) at m51, k51/2, andu50 for different values ofmt.
Curves 1, 2, and 3 correspond, respectively, tomt5431027 cm2/V21,
631027 cm2/V21, and 831027 cm2/V21.

FIG. 7. G208 as a function of the longitudinal wave numberk at m51,
u50, andmt5631027 cm2/V21 for different values of«.
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sponds to the result obtained by the analytic theory,A124«.
The basic distinction lies in the shift of the bifurcation poi
from «50.25 to«.0.224, due to the effect of higher ha
monics. The difference between the analytic and numer
values is within the uncertainty of the analytic theory.

Since the maximum in theG8 (k) dependence does no
generally correspond tok51/2, it would be interesting
to calculate the maximum~in k) value ofG8 as a function of
the external parameter«. The Gmax8 («) dependence
is the most important characteristic of instability in th
one-dimensional case. The solid curve in Fig. 9 repres
the Gmax8 («) dependence in the important«-range. The
dot on the curve corresponds to the appearance of longit
nal splitting. The growth rate reaches its maximum value
«.0.265. The dashed curve represents theG8 («) depen-
dence atk51/2 in the splitting region. Clearly, allowanc
for splitting substantially shifts the left instability limit to
ward larger offsets~smaller values of«).

By comparing the results of our calculations with tho
of the analytic theory,10,11 we see that the latter yields qual
tatively ~or even semiquantitatively! correct results for
«&0.25. In the«*0.25 range, where the consistent analy
theory breaks down and instability may still be very hig
numerical results are important in and of themselves. Re
that allowance for 20 spatial harmonics is not necessar
the instability region: evenN54 is sufficient for the above
results to be accurate. Note that as the percent modulatiom

FIG. 8. The«-dependence of the longitudinal splitting obtained numerica
~curve1! and analytically~curve2!.

FIG. 9. The solid curve represents the dependence of the maximum~in k)
value of the growth rate on« at N520 andu50. The dashed curve corre
sponds tok51/2.
al
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decreases, the role of higher harmonics diminishes sig
cantly, the accuracy of the analytic theory grows acco
ingly, and instability weakens.

Finally, let us study the dependence ofG8 on the dimen-
sionless transverse wave numberu5uk'u/K. This is impor-
tant if we want to interpret the transverse splitting of t
subharmonicK /2. Figure 10 depicts theG208 (u) dependence
at m51 andk51/2 for different values of«. The laws that
follow from the diagrams are very simple. WhenG8(u50)
is positive~or even slightly negative!, an increase inu leads
to a decrease inG8, i.e., does not facilitate instability; the
rate of decrease ofG8(u) grows with « in the positive
growth rate region. Whenu(«) is large, i.e., when the
growth rate becomes negative, the decrease inG8(u) sud-
denly becomes saturated. For«*0.385,G8 is essentially in-
dependent ofu. The constant~stable! sections of the curves
in Fig. 10 are unrelated to the parametric excitation of s
harmonics. As the right~negative! sections of the curves in
Fig. 6, these sections represent the damping of perturbat
with high spatial frequencies, which are only weakly coupl
to the pump wave. The possibility ofG8 increasing withu on
the lower branches of the solution of the characteristic eq
tion ~8! cannot be ruled out, but for these branchesG8,0.
Variation of the longitudinal wave numberk and ofmt does
not lead to an increase inG8(u).

6. DISCUSSION

We believe that there are two basic aspects of the pre
work that may be of interest. First, we have developed a n
method for studying the stability of high-contrast photor
fractive lattices in semiconducting crystals against thr
dimensional perturbations. The method is capable of prov
ing a solution for the problem when a purely analytic
numerical approach is fraught with difficulties. Undoubted
it can be used to study the stability of photorefractive lattic
excited by an alternating external field. This case is imp
tant for applications of the photorefractive effect,25,26and the
higher spatial harmonics are no less important than w
traveling grating techniques are employed.

Second, it has become clear that Pedersen and Joh
en’s interpretation of transverse splitting21,22 is incorrect. A
consistent linear theory of parametric excitation of spa

FIG. 10. G208 as a function of the transverse wave numberu at m51,
k51/2, andmt5631027 cm2/V21 for different values of«.
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charge waves~which incorporates the higher harmonics
the space-charge field! suggests that there is no addition
instability region and no preferential excitation of tran
versely split subharmonics.

The inability of the linear theory to explain the tran
verse splitting of subharmonics does not necessarily m
that this interesting effect cannot be studied. Furtherm
the results shed light on the nature of the effect. As poin
out in Ref. 17, the bias toward transverse splitting over l
gitudinal splitting ought to show up in the nonlinear stage
instability. On the basis of the results obtained in Ref. 17
has been established in a recent paper27 that for the trans-
versely split subharmonicK /2 of a finite amplitude there
exists a region that is stable against small perturbatio
while the unsplit and longitudinally split subharmonicsK /2
are always modulation-unstable. The results obtained in
present paper indicate that the interpretation of transv
splitting in the context of the nonlinear theory given in Re
27 is the only possible one.

In all fairness, there is another aspect of the above pr
lem that must be mentioned. Experiments usually prod
values of the higher harmonics of the space-charge fi
E2K , E3K , . . . , that are much smaller than the calculat
values. An obvious reason for this discrepancy is that
experimental conditions are not perfect; in particular, ther
necessarily a broadening of the Fourier spectrum of
light’s intensity distribution. From general considerations
is clear that such broadening most directly affects precis
the higher spatial harmonics of the space-charge field.
still unknown how parametric instability is affected by su
broadening.

7. CONCLUSIONS

The higher harmonics of the space-charge field play
important role in the stability analysis of high-contrast ph
torefractive lattices induced in semiconducting crystals b
traveling interference light pattern in the frequency-offs
rangeV&4vK . A combination of analytic and numerica
methods is capable of providing a complete analysis of
stability of these photorefractive lattices against small thr
dimensional perturbations.

The interpretation of the transverse splitting of the su
harmonicK /2 reported in Refs. 21 and 22 is in error. Th
consistent theory of parametric excitation of space-cha
waves that incorporates the higher spatial harmonics s
gests that there is only one instability region. It also provid
a quantitative modification of the analytic results of Refs.
and 11 in this region.
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We study the collective oscillations in two-band superconducting systems with all possible intra-
and interband interactions for arbitrary values of carrier densityN0, including low carrier
densities, whenm;D. Allowance for processes of scattering of an interband Cooper pair into an
intraband pair leads to the emergence of a new excitonic mode in addition to the
Bogolyubov–Anderson acoustic mode and an excitonic mode of the Leggett type. The presence
of a new order parameterD12, in addition toD11 andD22, and the asymmetric cutoff of
integrals lead to the mixing of fluctuations of the phases and amplitudes of the order parameters
of different bands. This mixing and the dependence of the order parameters onN0 result
in a strong dependence of these two excitonic modes on the carrier densityN0. © 1998 American
Institute of Physics.@S1063-7761~98!02009-5#
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1. INTRODUCTION

After the discovery of high-Tc superconducting com
pounds, many models for describing the broad spectrum
magnetic and superconducting properties of such compou
were proposed. Studies have been carried out within the
text of the phonon mechanism of superconductivity1–5 as
well as the excitonic,6 hole,7 plasmon,8,9 magnetic,10 and
other mechanisms~see the review in Ref. 11!.

In addition to this, the model with two bands overla
ping at the Fermi surface has been widely used to desc
the superconducting properties of high-Tc superconduc-
tors.12,13 The thermodynamic, electromagnetic, and transp
properties of two-band superconductors have been desc
in two monographs14,15 and in the review in Ref. 16. This
model and its various generalizations to anisotropic syst
with singular points in the momentum space, which lead
topological electron transitions, makes it possible to desc
a large body of experimental data on high-Tc supercon-
ductors.17–24

An important feature of the two-band model is the fa
that the superconducting transition temperatureTc is inde-
pendent of the sign of the effective electron–electron in
actionsVi j ( iÞ j ). The theory can be applied to the ordina
phonon mechanism of superconductivity and to a nonpho
mechanism. More than that, it has been established that
if there is repulsion between charge carriers, both lowTc

superconductivity~Ref. 14! and high-Tc superconductivity
~Refs. 25 and 26! are possible, provided thatV11V222V12

2

,0.
Numerous calculations~see, e.g., Refs. 27 and 28! cor-

roborate the results of multiband theory and show that s
eral energy bands can indeed cross at the Fermi surfac
high-Tc superconductors. For instance, in YBa2Cu3O72d

~Ref. 28! the number of energy bands crossing at the Fe
surface increases with oxygen content.

It is important to note that the overlap of energy bands
the Fermi surface leads to results that differ not only qu
5701063-7761/98/87(9)/11/$15.00
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titatively but also qualitatively from those for a single ener
band. For instance,Tc studies done on the basis of the tw
band model with allowance for topological transitions21,23

and on the basis of the three-band model29 provide an expla-
nation from the stepped dependence of this quantity on o
gen content in YBa2Cu3O72d observed in experiments.

Another interesting phenomenon characteristic only
multiband superconductors is the emergence of collective
cillations of the excitonic type due to fluctuations of th
phases of the order parameters of different bands.30,31

Leggett30 was the first to detect this phenomenon. He fou
that in two-band superconductors with the ordinary phon
mechanism of superconductivity there emerges, in addi
to a Bogolyubov–Anderson acoustic mode, a collect
mode of the excitonic type.

Collective oscillations in the three-photon model wi
the phonon mechanism of superconductivity have been s
ied by one of the present authors in Ref. 31. In contras
Leggett’s two-band model,30 two excitonic modes and on
acoustic mode were found to emerge. Collective oscillatio
in two-band low-dimensional superconductors have b
studied in Ref. 32, with both the phonon and the nonphon
mechanisms investigated. These two-band systems als
vealed the presence of an excitonic mode in addition to
Bogolyubov–Anderson acoustic mode in quasi-on
dimensional and two-dimensional superconductors.

A nonmagnetic impurity in two-band impurity
superconductors33–35 does not lead to a decay of the colle
tive modes, but it facilitates the increase in the collect
oscillation frequency with impurity concentration.

Collective oscillations in a two-band system with loc
pairs in a Bose-condensate state have been studied in
36. A single excitonic mode, in addition to a Bogolyubov
Anderson acoustic mode, was detected in the system. H
ever, in contrast to Refs. 30–35, where it is assumed that
collective oscillations are due to fluctuations of the phase
the order parameters of different bands, here these mode
determined by the mixing of fluctuations of the phases a
© 1998 American Institute of Physics
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amplitudes of the order parameters of different bands.
We also note that the multilayer model of hig

Tcsuperconductivity37,38 is equivalent to the multiband
model. For instance, in studies of collective oscillations
bilayered superconductors39–41 a Leggett mode of the exci
tonic type was also detected. This mode is induced by fl
tuations of the phases of the order parameters of diffe
layers.

As is known, in high-Tc superconductors the carrier de
sity may be of any value, including small values (m;D,Tc

and m,vD , where m is the chemical potential,D is the
order parameter, andvD is the Debye frequency!. When the
carrier density is low (m;D), in the two-band model we
must allow for all possible electron pairings,42 in contrast to
Refs. 12 and 14, where only intraband pairings and tra
tions of a Cooper pair as a whole from one band into ano
are taken into account. Here were must discard the diag
approximation in band indices, since in this model42 D12

;D11,D22. In such systems all observable physical quan
ties become strongly dependent on the carrier density.
temperature dependence of the chemical potential exhib
break atT5Tc ~Refs. 43 and 44!. Finally, the overlap of the
energy bands in such a model lowers the upper limit at wh
this break disappears by a factor of two to thr
(;5 –6 meV!,42 which facilitates detection of this phenom
enon.

In this paper we examine the collective oscillations in
two-band superconductor~with two inequivalent layers; se
Sec. 4! with allowance for an arbitrary carrier density, in
cluding the case of low carrier density (m;D). This two-
band system can be effectively described as a pseudo-th
band model~with the order parametersD12, D11, andD22)
with an arbitrary carrier density.

The paper is organized as follows. In Sec. 2 we write
system Hamiltonian, the basic equations for the vertex fu
tions and the order parameters, and the equation for the
lective oscillation frequency. In Sec. 3 we study collecti
oscillations at low frequencies (v2/4D i

2!1) and k50. In
Sec. 4 we discuss the main conclusions. Appendices A
deal with the fine aspects of the calculations.

2. SYSTEM HAMILTONIAN AND BASIC EQUATIONS

The two-band system is described by t
Hamiltonian12–14

H5(
nks

@«n~k!2m#anks
† anks2

1

V (
m1•••m4

(
kk8

Vm1m2

m3m4

3~k,2k8,2k,k8!am1k↑
† am2 2k↓

† am3 2k8↓am4k8↑ , ~1!

whereanks
† andanks are the creation and annihilation oper

tors for annth-band electron with spins and a qausiwave
vectork, andVm1m2

m3m4 are the intra- and interband interactio

constants. The expression~1! is a generalization of the BCS–
Bogolyubov Hamiltonian to the two-band case. Account
taken here of all possible methods of electron pairing wit
each band and of pairing of electrons belonging to differ
bands. Ifm15m2 andm35m4, the Hamiltonian~1! is equal
to that of the Moskalenko model12–14 ~applicable only to
c-
nt

i-
er
al

i-
he

a

h

ee-

e
c-
ol-

D

s
n
t

systems with a high carrier density!, which considers only
intraband pairing and transitions of a Cooper pair as a wh
from one band to another.

We introduce the two-particle Green’s function descr
ing a density–density correlation:

K~xayb!5^Tca
†~x!ca~x!cb

†~y!cb~y!&. ~2!

The operatorca(x) is defined as follows:

ca~x!5(
nk

cnk~x!anka , cnk~x!5Unk~x!e2 ik–x, ~3!

where cnk(x) is a Bloch function in thenth band, and
Unk(x) is the amplitude of that function.

Perturbation-theory reasoning45 suggests that for the su
perconducting state the two-particle Green’s functi
K(xayb) is defined by sixteen vertex functions, which ca
be found by solving four independent systems of equatio
We start with the system of equations for the four vert
functions

G
12
12, G

22
22, G

12
22, G

22
12. ~4!

The ‘‘plus’’ and ‘‘minus’’ correspond to situations in which
an arrow points away from a vertex and toward a vert
respectively.

We can show that the functionsGg(g522
12 , 12

22) in the
nkV-representation enter into the system of equations~A3!
~see Appendix A! with a total momentum far removed i
value from the Fermi surface. This fact makes it possible
ignore these terms in~A3! in the BCS approximation
considered.46,14

If we now replace the remaining vertex functionsGa(a
512

12 , 22
22) with their values on the Fermi surface,

Gm1m2m3m4

a ~k!5Gm1m2m3m4

a S pF1
k

2
,2pF1

k

2
,p3 ,p4D ,

~5!

we arrive at the following system of equations:

Ĝ
12
12~k!52V̂1V̂Â~k!Ĝ

12
12~k!1V̂B̂~k!Ĝ

22
22,

G
22
22~2k!5V̂Â~2k!Ĝ

22
22~2k!1V̂B̂~2k!Ĝ

12
12~k!, ~6!

where

Ĝa5S G1111
a ~k! G1122

a ~k! G1112
a ~k!

G2211
a ~k! G2222

a ~k! G2212
a ~k!

G1211
a ~k! G1222

a ~k! G1212
a ~k!

D ,

V̂5S V1111 V1122 V1112

V2211 V2222 V2212

V1211 V1222 V1212

D . ~7!

Here the matricesÂ(k) and B̂(k) are built in the same way
as the matricesĜa(k), with

Am1m2m3m4
~k!5

1

b (
q

Gm1m2S q1
k

2DGm3m4S 2q1
k

2D , ~8!
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Bm1m2m3m4
~k!5

1

b (
q

Fm1m2S q1
k

2DFm3m4S 2q1
k

2D .

The definitions of the one-particle Green’s functio
Gm1m2

(k) and Fm1m2
(k)(k5(k,v)) are given in Appen

dix B.
Note that in two-band superconducting systems with l

carrier density (m;D) ~see Refs. 42–44! one must allow for
the mean-field renormalization of the chemical potential:

m→mn5m1Sn , ~9!

where

Sn5(
km

~2Vmnnm2Vmnmn!^amk↑
† amk↑&. ~10!

Moreover, the fact that such systems possess an addit
order parameterD12;D11,D22 gives rise to off-diagona
one-particle Green’s functions,G12, F12;G11, andF22 ~see
Ref. 42!.

For the new vertex functionsĜph and Ĝa,

Ĝph5Ĝ
12
12~k!1Ĝ

22
22~2k!,

Ĝa5Ĝ
12
12~k!2Ĝ

22
22~2k!, ~11!

we have

Ĝph52V̂1V̂ĵ1Ĝph1V̂Î 2Ĝa,
~12!

Ĝa52V̂1V̂Î 1Ĝph1V̂ĵ2Ĝa,

where

ĵ l
6~k!5

Âl~k!2Âl~2k!

2
6

B̂l~k!1B̂l~2k!

2
,

Î l
6~k!5Âl~k!2Âl~2k!6@B̂l~k!2B̂l~2k!#. ~13!

Introducing the matrixÛ, the inverse of the interaction
matrix V̂ defined in~7!, we can write

S Û2 ĵ1 2 Î 2

2 Î 1 Û2 ĵ2D S Ĝph

Ĝa D 52S 1̂

1̂
D , ~14!

where 1̂ is the 333 identity matrix. Note that the verte
functionsĜph and Ĝa are divergent when the 636 determi-
nant of the system of equations~14! vanishes:

UÛ2 ĵ1 2 Î 2

2 Î 1 Û2 ĵ2U50. ~15!

Here for an arbitrary matrixÂ we have introduced the nota
tion uAû[detiAî .

If we now replace the ‘‘imaginary’’ Matsubara frequen
cies iv→v with the real frequenciesv, we arrive at an
equation for the collective oscillation frequency,

UÛ2 ĵ1 2 Î 2

2 Î 1 Û2 ĵ2U5U R̂1 2v Ĵ2

2v Ĵ1 R̂2 U50. ~16!
nal

The formulas for the quantities inĵ6 and Ĵ6 are given in
Appendix C.

Using~14! to calculate the ratios of vertex functions~see
Appendix D!, we obtain a formula for the collective oscilla
tion frequency:

UÛ2 ĵ1 2v Ĵ2

2v Ĵ1 Û2 ĵ2U50, ~17!

where

ĵ65S j1
6 0 0

0 j2
6 0

0 0 j3
6
D , Ĵ65S J1

6 0 0

0 J2
6 0

0 0 J3
6
D ,

j1
65j1111

6 1j1212
6

G2211
1

G1111
1

12j1112
6

G1211
1

G1111
1

,

j2
65j2222

6 1j1212
6

G1111
1

G2211
1

12j2212
6

G1211
1

G2211
1

,

j3
65j1122

6 1j1221
6 1j1112

6
G1111

1

G1211
1

1j2212
6

G2211
1

G1211
1

. ~18!

The quantitiesJi
6 are constructed fromJm1m2m3m4

6 in the

same way as thej i
6 .

Equation~17! gives us the frequency of collective osci
lations for a two-band system with an arbitrary carrier de
sity, including the case of low carrier density (m;D andm
,vD) at arbitrary temperatures. Actually, this is an equat
for determining the collective oscillation frequency for a
ordinary three-band system with order parametersD11, D22,
andD12 and reduced carrier density (m,vD).31,42,47

In ordinary superconductors (m@vD), Î 650. Equation
~17! separates into two independent equations, which de
mine the collective oscillations caused by fluctuations of
phases,uR̂1u50 ~the poles of the vertex functionsĜph de-
fined in Eq.~11!!, and amplitudes,uR̂2u50 ~the poles of the
vertex functionsĜa defined in Eq.~11!!, of the order param-
eters of the different bands.

In superconductors with low carrier density,Î 6Þ0. In
this case the collective oscillations mix and cannot be se
rated. This leads to results that differ from those for ordina
superconductors.30,31

3. COLLECTIVE OSCILLATIONS

Reducing the rank of the determinant in~17! from six to
three by using the theory of partitioned matrices,48 we can
write Eq. ~17! for the collective oscillation frequency in th
form

R2uR̂12v2Ĵ2~R̂2!21Ĵ1u5R1R22DZ, ~19!

where

DZ5v2Tr~ Ĵ1 tẐ1Ĵ2 tẐ2!

2v4Tr~R̂1 tT̂1R̂2 tT̂2!1v6J1J2. ~20!
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HereJ65deti Ĵ6i , Ẑ6 andT̂6 are the matrices of the cofac
tors of the elements of the matricesR̂6 andĴ6, respectively,
and (tẐ6) ik5(Ẑ6)ki .

Equation~19! is symmetric with respect tok→2k and
v→2v since R̂6(2k)5R̂6(k) and Ĵ6(2k)52 Ĵ6(k).
This fact leads to a situation in which only even powers ofv
andk are present in the series expansion of Eq.~19! in pow-
ers of small values of these quantities.

Let us examine Eq.~19! for the collective oscillation
frequency in the case wherev is small (v2/4D i

2!1) andk
50 at T50. To this end we expand Eq.~19! in a power
series in this small parameter, keep only terms up to q
dratic, and integrate with respect toV. We obtain

j i
15j i

01v2u i
1 , ~21!

whereu i are the components of the matrixû:

û5Q̂
D11D22

D12
2

a1 û̄1, û5S u1

u2

u3

D ,

û̄15S ū1
1

ū2
1

ū3
1
D , Q̂5S D12

2 /D11
2

D12
2 /D22

2

21
D . ~22!

Both ū22 i 1 and a are defined in Appendix D, andj i
0 is

defined in~30!.
Consider the simple dispersion law

« i~k!5z i1
kx

21ky
21kz

2

2mi
. ~23!

We replace the sum with respect tok with the integral with
respect to energy« and truncate the integrals~22!, ~30!, and
~C4!–~C6! ~see Appendix C! in accordance with the disper
sion law ~23!, assuming that the carrier density is low (m
,vD):

1

V (
k

F~« i2m i !52NiE
2D̄i

v̄Di d« F~«2Si !

52NiE
2Di

vDi
d« F~«!, ~24!

where v̄Di
is the phonon cutoff frequency in thei th band,

andNi5mipFi /4p2 is the density of electronic states in th
i th band. Here

D̄ i5H v̄Di
if v̄Di

,m2z i ,

m2z i if v̄Di
.m2z i ,

andSi is the mean-field renormalization term in the chemi
potential~see Eq.~10!!. The need to allow for this renorma
ization stems from the fact thatSi is of the same order o
magnitude as the phonon cutoff frequencyv̄Di

and the
chemical potential~see also Refs. 42–44!.
a-

l

Here we do not write the explicit expressions for t
integralsu i , Ji

6 , and j i
2 because of their complexity. In

stead we note thatJi
6Þ0 because the limits of integration i

~24! are asymmetric andD12Þ0, in contrast to the case o
ordinary superconductors, whereJi

650. The presence of the
additional order parameterD12 even when the limits of inte-
gration in ~24! are symmetric results in a situation in whic
Ji

6Þ0.
At low frequenciesv ~more precisely,v2/4D i

2!1),
R2Þ0 and Eq.~19! can be written as

R1~ û !5
DZ

R2
. ~25!

Reasoning on the basis of the definition~21! of j i
1 , we

can conclude that when the effective constants of intrab
interactions (V1111 andV2222) and interactions characterizin
the transitions of an interband pair into an interband p
(V1212) are much larger than the constants of interactio
characterizing the transitions of an intraband pair into
interband pair (V1112 andV2212) and into an intraband pair,

V1111,V2222,V1212@V1112,V2212,V1122, ~26!

the equation for the collective oscillation frequency has
form

R1~ û̄ !50, ~27!

where

R1~ û̄ !5R0
12v2Tr~ û̄ tẐ0

1!1v4Tr~R̂0
1Q̂!2v6ū,

û̄5S ū1 0 0

0 ū2 0

0 0 ū3

D , ū5det i û̄i , ū i5u i1
Ji

1Ji
2

2Bi
. ~28!

Here tẐ0
1 and Q̂ are the matrices of the cofactors of th

elements of the matricesR̂0
1 and û̄, respectively. When the

carrier density is low (m;D and m,vD), the presence of
the additional order parameterD12.D11,D22 and the asym-
metric cutoff in~24! lead not only to an explicit dependenc
on the chemical potential via the functionsu i

1 of ~22! and
~D4! but also to the mixing of fluctuations of the phases a
amplitudes of the order parameters of different ban
( Ĵ6,DZÞ0). With the approximation~26!, the effect of such
mixing reduces tou i being replaced byū i ~see Eqs.~28!! (or
u→̂ û1 Ĵ2(R̂2)21Ĵ1; see Eq.~19!).

In addition to examining the system of equations~14! for
the vertex functionsĜph and Ĝa, we consider the system o
equations for the order parameter of a two-band system w
low carrier density:42

D i i 5(
j 51

2

Vii j j j i
0D j j , ~29!

where
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j1
05H 1

dF«1
21D11

2 2«2
22D22

2 12D12
2 S 11

D22

D11
D G11J

3
1

E1
2H 1

dF«1
21D11

2 2«2
22D22

2 12D12
2

3S 11
D22

D11
D G21J 1

E2
, j2

05H 1

dF«2
21D22

2 2«1
2

2D11
2 12D12

2 S 11
D11

D22
D G11J 1

E1

2H 1

dF«2
21D22

2 2«1
22D11

2 12D12
2

3S 11
D11

D22
D G21J 1

E2
, j3

052H S 1

d
@~«12«2!2

1~D111D22!
2#11D 1

E1
2S 1

d
@~«12«2!2

1~D111D22!
2#21D 1

E2
J . ~30!

Both Ei andd are defined in Appendix B.
The compatibility condition for this system yields th

equation

det iÛ2 ĵ0i50. ~31!

In view of this,R0
1 of ~28! vanishes.

Allowing for Eqs. ~29! for the order parameters, calcu
lating the traces of the matrices and the determinants in~27!
and ~28!, and doing simple algebraic transformations,
arrive at an equation for the collective oscillation frequen
(k50):

v6ū1ū2ū32
v4

detuV̂u
~ ū1ū2B121 ū1ū3B131 ū2ū3B23!

1S v

detuV̂u
D 2S ū11 ū2

D2
2

D1
2

1 ū3

D3
2

D1
2 D P150. ~32!

Here

P15~V1212V22112V2212V1211!

3~V2222V12112V2211V1222!
D1

2

D2D3

1~V1212V22112V2212V1211!~V1111V12222V1122V1211!

3
D1

D3
1~V1111V22122V1112V2211!

3~V2222V12112V2211V1222!
D1

D2
,

B125~V2222V12112V2211V1222!
D1

D3

1~V1111V12222V1122V1211!
D2

D3
. ~33!
y

The coefficientB12 can be obtained fromB12 by subscript
interchange 22↔12, whileB23 can be obtained fromB12 by
subscript interchange 11↔12.

Equation~32! has a trivial solution,v50. There are also
two nontrivial solutions, which can be found by solving th
equation

v4ū1ū2ū32
v2

detuV̂u
~ ū1ū2B121 ū1ū3B131 ū2ū3B23!

1S 1

detuV̂u
D 2S ū11 ū2

D2
2

D1
2

1 ū3

D3
2

D1
2 D P150, ~34!

whose solutions are

v6
2 5

ū1ū2B121 ū1ū3B131 ū2ū3B236AD

2 detuV̂uū1ū2ū3

, ~35!

where

D5@ ū1ū2B121 ū1ū3B131 ū2ū3B23#
224P1ū1ū2ū3

3S ū11 ū2

D2
2

D1
2

1 ū3

D3
2

D1
2 D . ~36!

In the approximation~26!, the two solutions~35! of Eq.
~34! are positive and real. This suggests that we are dea
with two excitonic modes,v1 andv2 .

In addition to the conditions specified in~26!, we assume
that transitions of an intraband pair entirely into another ba
are stronger than transitions into an interband pair (V1122

@V1112,V2212). Then the excitonic modes assume the for

v1
2 5

ū1V2211D11/D221 ū2V1122D22/D11

ū1ū2~V1111V22222V1122V2211!
1g, ~37!

v2
2 5

V2222V1211D11/D121V1111V1222D22D12

V1212ū3~V1111V22222V1122V2211!

3
ū1D11

2 1 ū2D22
2 1 ū3D12

2

ū1D11
2 1 ū2D22

2
, ~38!

where

ū i5~ ū i
11Qi ū3

1 !gi ,

gi511
~ Ĵ2~R̂2!21Ĵ1! i i 1Qi~ Ĵ2~R̂2!21Ĵ1!3

ū i
11Qi ū3

1
, ~39!

g contains terms proportional toV1112 and V2212, and the
definitions ofĴ6 and R̂6 are given in Appendix D.

From ~37! it immediately follows that the collective
modev1 is a generalized Leggett mode30 for the case of low
carrier density. The mode corresponds primarily to the int
ference of the scattering of an electron pair as a whole fr
the first band to the second and the scattering of an interb
pair into an interband pair~the first term in~37!!, with a
small contribution from the scattering of an interband p
into an intraband pair. If we ignore the latter process
(V11125V221250), we arrive at a collective Leggett mode30
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for the case whereV1212Þ0 (D12Þ0). In the more genera
case there are two collective modes,v1 of ~37! and v2

of ~38!.
These excitonic modes depend on the chemical pote

~or the carrier density! through the functionsū i and the co-
efficientsBi j andP1 of ~33!.

What is important is that the system of equations~14! for
the vertex functions and the order parameters~29! must be
augmented by the law of conservation of the number
charge carriers:

N05
2

bV (
kv

@G11~k,v!1G22~k,v!#eiv01
. ~40!

The self-consistent system of equations~14!, ~17!, ~29!,
and ~40! determines the vertex functions~the collective os-
cillation frequency!, the order parametersD i j , and the
chemical potentialm for a given carrier densityN0 for the
ground state (T50). A characteristic feature of the groun
state of a system with low carrier density is that the posit
of the Fermi level changes substantially when the superc
ducting gap is formed. The order parameters are of the s
order of magnitude as the chemical potential (mÞD i j ). This
leads to an anomalous temperature dependence of the ch
cal potentialm ~see Refs. 42–44! and the emergence of
break in them vs.T curve atm.6 meV ~Ref. 42!. The value
of the chemical potential exceeds the values obtained in
single-band BCS model43 and the Hubbard model44 by a fac-
tor of three. On the other hand, the low carrier densitym
;D i j ) leads not only to a shift of the generalized Legg
mode30 ~becauseD12Þ0) and the emergence of an addition
excitonic mode~becauseV1112,V2212Þ0) but also to the ap-
pearance of a dependence in the acoustic mode and two
citonic collective modes on the carrier densityN0.

4. CONCLUSION

In this paper we have developed a unified approach
the study of collective oscillations in superconducting s
tems with two energy bands that overlap at the Fermi surf
at any~including low! carrier densities (m;D andm,vD).
Formally this system is equivalent to a three-band superc
ducting system with order parametersD11, D22, andD12 and
reduced carrier densityN0 given by Eq.~40!. A two-band
superconducting system withm;D (m,vD) produces a
Bogolyubov–Anderson collective mode corresponding to
acoustic spectrum. This mode has been observed in sin
band superconductors and in two- and three-b
superconductors.31,32 Two collective modes of the excitoni
type also emerge. One is a modification of a Leggett mod30

shifted because of the presence of an additional order pa
eter,D12. The reason why such a mode emerges lies in
interference of the scattering of a Cooper pair as a wh
from the first energy band to the second and the scatterin
an interband pair into an interband pair. The second col
tive is due to the scattering of an interband Cooper pair i
an intraband pair, and vice versa.

Note that when the carrier density is low (m;D andm
,vD), the frequencies of collective oscillations~acoustic
ial
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and excitonic! acquire a substantial dependence on the c
rier densityN0. Three factors contribute to this:

1! the explicit dependence onN0 of the functionsū i ,
which enter into the definition of the collective-oscillatio

frequencies ~Eqs. ~35! and ~37!! via the functions ū i
1

1Qi ū3
1 of ~39!;

2! the mixing of fluctuations of the phases and amp

tudes of the order parameters of different bands (Ĵ,DZÞ0)
via the functionsgi of ~39!;

3! the strong dependence of the order parametersD i on
N0 ~see Refs. 25 and 42!.

The first two factors are due to the presence of the ad
tional order parameterD12 and the asymmetric cutoff of the
integrals~24! in systems with low carrier density (m;D and
m,vD). By analogy with the three-band model,47 these
facts weaken each other in such systems. In systems
reduced carrier density (D,m,vD) and in ordinary super-
conductors (m.vD) the two factors balance each other a

we have ū i'Ni /2D i i
2 ( i 51,2). Thus, in systems with low

(m;D) and reduced (m,vD) carrier densities, a simila
dependence of the order parameters provides the lea
contribution to the dependence of the collective-oscillat
frequencies on the carrier densityN0. Note that when dealing
with systems with low (m;D and m,vD) and reduced
(m,vD) carrier densities, we must take into account t
mean-field renormalization of the chemical potential42–44and
the law of conservation of the number of charge carrie
which lead to a peak in the dependence of the order par
eters onN0. These peaks emerge in the range of reduced~not
small! values ofN0, whereD,m,vD . For instance, for a
Leggett excitonic modev1 of ~37!, these facts lead to the
emergence of peaks in thev1 vs. N0 dependence and to
strong dependence of the ratiosv1

2 /4D i
2 ( i 511, 22, and 12!

on the carrier densityN0.
When D1250, only one excitonic mode remains,v1 .

This mode acquires a strong dependence on the carrier
sity only via a similar dependence of the order parameter
different bands and their ratios.

Thus, an increase in the number of order parame
from two to three (D12Þ0) in a two-band superconductin
system with low carrier density leads to the emergence o
additional excitonic mode and to a strong dependence of
collective modes~acoustic and excitonic! on the carrier
density.

Note that in this paper we have studied collective os
lations in a two-band system by using the mean-field
proximation ~the ladder approximation for the vertex fun
tions!, whose applicability depends on the carrier dens
For high carrier densities~the radius of an electron pair i
much larger than the average interparticle distance!, the de-
scription is exact. For very low carrier densities~the radius
of an electron pair is much smaller than the average inter
ticle distance! the approximation yields a qualitatively co
rect picture.49 The casem;D is intermediate and require
abandoning the mean-field approximation. The results
tained in the mean-field approximation for this case may
considered a qualitative interpolation of between the ab
limits.
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It is important to note that the two-band system stud
in this paper is similar to a system with two inequivale
layers. By diagonalizing the Hamiltonian of such a syst
we can easily show that

V11115
1

4
~V11V224J12Y14W!,

V22225
1

4
~V11V214J12Y14W!,

V11225
1

4
~V11V214J22Y!,

V22115
1

4
~V11V224J22Y!, ~41!

and

V11125V11215V22125V22215V1211

5V21115V12225V21225
~V22V1!

4
,

im
a

ua
d
t V12125V21215

1

4
~V11V222Y!,

V12215V21125
1

4
~V11V212Y24W!. ~42!

HereV1 andV2 are the intralayer coupling constants andY
and W are the interlayer coupling constants. Systems w
two equivalent layers (V15V25V) have been studied earlie
in Ref. 50, 37, and 39.

Thus, the inequivalence of the layers (V1112Þ0) leads to
the emergence of a new excitonic modev2 of ~35! and~38!.
The strong dependence of the collective-oscillation frequ
cies on the carrier densityN0 is due to the presence of laye
coupling constants, which yields a finite order parame
D12, and the asymmetry of the integration limits in~24!.

APPENDIX A:

The equation for the vertex functionG
12
12has the form
~A1!
The other three vertex functions can be constructed in a s
lar manner without the first absolute term. The hatched p

in Eq. ~A1! corresponds to the vertex functionG
012
21 in the

zeroth approximation.
Summing over the spin variables in the system of eq

tions ~A1! and passing to thenkV-representation for the
vertex functionsGa (n1•••n4 ,m1•••m451,2), we obtain
(p31p45k)

Gm1m2m3m4

12
12 S p1

k

2
,2p1

k

2
,p3 ,p4D

52Vm1m2m3m4
1

1

b (
q

(
n1•••n4

Vm1m2n1n3

3H Gn1n2S q1
k

2DGn3n4S 2q1
k

2DGn2n4m3m4

12
12

3S q1
k

2
,2q1

k

2
,p3 ,p4D1Fn1n2S q1

k

2D
3Fn3n4S 2q1

k

2DGn2n4m3m4

22
22 S 2q2

k

2
,q2

k

2
,p3 ,p4D
i-
rt

-

2Gn1n2S q1
k

2DFn3n4S 2q1
k

2DGn2n4m3m4

12
22

3S q1
k

2
,q2

k

2
,p3 ,p4D1Fn1n2S q1

k

2DGn3n4

3S 2q1
k

2DGn2n4m3m4

22
12 S 2q2

k

2
,2q1

k

2
,p3 ,p4D J ,

Gm1m2m3m4

22
22 S p1

k

2
,2p1

k

2
,p3 ,p4D

5
1

b (
q

(
n1•••n4

Vm1m2n2n4H Gn1n2S q1
k

2D
3Gn3n4S 2q1

k

2DGn1n3m3m4

22
22 S q1

k

2
,2q

1
k

2
,p3 ,p4D1F̄n1n2S q1

k

2D F̄n3n4S 2q1
k

2D
3Gn1n3m3m4

12
12 S 2q2

k

2
,q2

k

2
,p3 ,p4D2Gn1n2S q1

k

2D
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3Fn3n4S 2q1
k

2DGn1n3m3m4

22
12 S q1

k

2
,q2

k

2
,p3 ,p4D

1F̄n1n2S q1
k

2DGn3n4S 2q1
k

2D
3Gn1n3m3m4

12
22 S 2q2

k

2
,2q1

k

2
,p3 ,p4D J . ~A2!

In the BCS approximation, for the vertex functionsGa of
Eq. ~11! we arrive at the system of equations~6! in matrix
form.

APPENDIX B:

For superconducting systems with low carrier dens
the one-particle Green’s functions have the following fo
(z5 iv):42

G11~k,z!5
1

D~z!
@~z1 «̄1!~z22j2

2!2D12
2 ~z1 «̄2!#,

G12~k,z!5
D12

D~z!
@D11~z1 «̄2!2D22~z1 «̄1!#,

F11~k,z!52
D11

D~z!S z22j2
21D12

2 D22

D11
D ,

F12~k,z!52
D12

D~z!
@D11D222D12

2 1~z1 «̄1!~z1 «̄2!#.

~B1!

The functionsG22, G21, F22, andF21 can be obtained from
G11, G12, F11, and F12 by interchanging the subscripts
1↔2. Here

«̄n5«n2m2Sn , jn
25 «̄n

21Dnn
2 ,

D~z!5~z22j1
2!~z22j2

2!12D12
2 ~ «̄1«̄22z2!

1~D11D222D12
2 !22D12

4 , ~B2!

and Sn has been defined in~10!. The definitions~B1! and
~B2! lead to the following symmetry properties (k5k,z):

Gnm~k!5Gmn~k!, Fnm~2k!5Fmn~k!5F̄nm~k!. ~B3!

To integrate the functionsjn1n2n3n4

6 and I n1n2n3n4

6 with

respect toV, we write the normal and anomalous Green
functions in the form

Gi j 5
ai j

v2E11 id
1

bi j

v2E21 id
1

ci j

v1E12 id
1

di j

v1E22 id
,

Fi j 5
l i j

v2E11 id
1

mi j

v2E21 id
1

ki j

v1E12 id
1

ni j

v1E22 id
,

F̄ j i 5Fi j , ~B4!

where

aii 5pi11qi1 , bii 52~pi21qi2!,

cii 5pi12qi1 , dii 52~pi22qi2!,
y,

s

pi j 5
Ej

22j32 i
2 2D12

2

2d
, qi j 5

~21! iD12h1« iai j

Ej
,

h52D12

«12«2

2d
, c5D12

D111D22

2d
,

a125a215c1r 1 , b125b2152~c1r 2!,

c125c215c2r 1 , d125d2152~c2r 2!,

r i5
«1«22D22h

Ei
, si52D12

Ei
22D12

2 1D11D222«1«2

2Eid
,

l i i 52kii 5t i1 , 2mii 5nii 5t i2 , t i j 52
D i i aii 1D12c

Ei
,

l 1252k215s11h, 2m125n215s21h,

k1252 l 215s12h, 2n125m215s22h. ~B5!

APPENDIX C:

Integratingj̃n1n2n3n4

6 (k) and Ĩ n1n2n3n4

6 (k) with respect to

V (T50), we obtain

j̃ lrnm
1 5Ãlrnm

1 1B̃lrnm
1 , j̃ lrnm

2 5Ãlrnm
1 2B̃lrnm

1 ,

where

Ãlrnm
1 ~k!

5
1

2 (
p

H alr
1anm

2 1amn
1 alr

21clr
1cnm

2 1cnm
1 clr

2

~E1
11E1

2!22v2
~E1

11E1
2!

1
alr

1bnm
2 1amn

1 blr
21clr

1dnm
2 1cnm

1 dlr
2

~E1
11E2

2!22v2
~E1

11E2
2!

1
blr

1anm
2 1bmn

1 alr
21dlr

1cnm
2 1dnm

1 clr
2

~E2
11E1

2!22v2
~E2

11E1
2!

1
blr

1bnm
2 1bmn

1 blr
21dlr

1dnm
2 1dnm

1 dlr
2

~E2
11E2

2!22v2
~E2

11E2
2!J ,

B̃lrnm
1 ~k!

5
1

2 (
p

H l lr
1l nm

2 1 l nm
1 l lr

21klr
1knm

2 1knm
1 klr

2

~E1
11E1

2!22v2
~E1

11E1
2!

1
l lr

1mnm
2 1 l mn

1 mlr
21klr

1nnm
2 1knm

1 nlr
2

~E1
11E2

2!22v2
~E1

11E2
2!

1
mlr

1l nm
2 1mmn

1 l lr
21nlr

1knm
2 1nnm

1 klr
2

~E2
11E1

2!22v2
~E2

11E1
2!

1
mlr

1mnm
2 1mmn

1 mlr
21mlr

1mnm
2 1mnm

1 mlr
2

~E2
11E2

2!22v2

3~E2
11E2

2!J . ~C1!
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The quantities on the right-hand side of Eq.~C1! are func-
tions of p6k/2, i.e.,

alr
65alr S p6

k

2D , Ei
65Ei S p6

k

2D . ~C2!

Similarly, for Ĩ n1n2n3n4

6 (k) we have

I lrnm
1 5Ãlrnm

2 1B̃lrnm
2 5vJlrnm

1 ,

I lrnm
2 5Ãlrnm

2 2B̃lrnm
2 5vJlrnm

2 ,

where

Ãlrnm
2 ~k!

5
v

2 (
p

H alr
1anm

2 1amn
1 alr

22~clr
1cnm

2 1cnm
1 clr

2!

~E1
11E1

2!22v2
~E1

11E1
2!

1
alr

1bnm
2 1amn

1 blr
22~clr

1dnm
2 1cnm

1 dlr
2!

~E1
11E2

2!22v2
~E1

11E2
2!

1
blr

1anm
2 1bmn

1 alr
22~dlr

1cnm
2 1dnm

1 clr
2!

~E2
11E1

2!22v2
~E2

11E1
2!

1
blr

1bnm
2 1bmn

1 blr
22~dlr

1dnm
2 1dnm

1 dlr
2!

~E2
11E2

2!22v2
~E2

11E2
2!,

B̃lrnm
2 ~k!

5
v

2 (
p

H l lr
1l nm

2 1 l mn
1 l lr

22~klr
1knm

2 1knm
1 klr

2!

~E1
11E1

2!22v2
~E1

11E1
2!

1
l lr

1mnm
2 1 l mn

1 mlr
22~klr

1nnm
2 1knm

1 nlr
2!

~E1
11E2

2!22v2
~E1

11E2
2!

1
mlr

1l nm
2 1mmn

1 l lr
22~nlr

1knm
2 1nnm

1 klr
2!

~E2
11E1

2!22v2
~E2

11E1
2!

1
mlr

1mnm
2 1mmn

1 mlr
22~mlr

1mnm
2 1mnm

1 mlr
2!

~E2
11E2

2!22v2

3~E2
11E2

2!J . ~C3!

The quantities on the right-hand side of Eq.~C3! are func-
tions of p6k/2 ~see~B2!!.

When k50, the expressions~C1! and ~C3! for Ã6 and
B̃6 are much simpler:

Ãlrnm
1 5(

p
H 2E1

alr anm1clr cnm

4E1
22v2

12E2

blr bnm1dlr dnm

4E2
22v2

1~E11E2!
alr bnm1amnblr 1clr dnm1cnmdlr

~E11E2!22v2 J ,
B̃lrnm
1 5(

p
H 2E1

l lr l nm1klr knm

4E1
22v2

12E2

mlr mnm1nlr nnm

4E2
22v2

1~E11E2!
l lr mnm1 l mnmlr 1klr nnm1knmnlr

~E11E2!22v2 J .

~C4!

Similarly, for Ã2 and B̃2 we have

Ãlrnm
2 5vAlrnm , B̃lrnm

2 5vBlrnm , ~C5!

where

Alrnm5(
p

H alr anm2clr cnm

4E1
22v2

1
blr bnm2dlr dnm

4E2
22v2

1
alr bnm1amnblr 2~clr dnm1cnmdlr !

~E11E2!22v2 J ,

Blrnm5(
p

H l lr l nm2klr knm

4E1
22v2

1
mlr mnm2nlr nnm

4E2
22v2

1
l lr mnm1 l mnmlr 2~klr nnm1knmnlr !

~E11E2!22v2 J . ~C6!

APPENDIX D:

From the system of equations~14! we obtain an equation
for finding the ratios of the vertex Green’s functions:

S R̂1 2v Ĵ2

2v Ĵ11 Î 1
1 R̂2 D S Ĝ1

Ĝ2D 5S 2R̂I
1

v ĴI
1 D , ~D1!

where

R̂15S 1 R12
1 R13

1

0 R22
1 R23

1

0 R32
1 R33

1
D , R̂25S R11

2 R12
2 R13

2

R21
2 R22

2 R23
2

R31
2 R32

2 R33
2
D ,

R̂I
15S R11

1

R21
1

R31
1
D , Ĵ15S 0 J33

2 2J13
2

0 J22 2J23
1

0 2J23
2 2J12

D ,

Ĵ25S J11 J33
1 2J13

1

J33
2 J22 2J23

2

2J13
2 2J23

1 2J12

D , ĴI
15S J11

J33

2J13
1
D ,

Ĝ15S 1/G1111
1

G2211
1 /G1111

1

G1211
1 /G1111

1
D , Ĝ25S G1111

2 /G1111
1

G2211
2 /G1111

1

G1211
2 /G1111

1
D ,

Î 1
15S 1 0 0

0 0 0

0 0 0
D . ~D2!

To within terms of orderv2 we have



’’

d.

n-

.

579JETP 87 (3), September 1998 F. G. Kochorbé and M. E. Palistrant
Ĝ15S 0

D22/D11

D12/D11

D 1v2â, ~D3!

where

â5~R̂1!21S ũ1

ũ2D22/D11

2ũ3D12/D11

D ,

~R̂1!215
1

Z11
1S Z11

1 Z21
1 Z31

1

0 R33 2R23

0 2R32 R22

D ,

Ĵ15S J̄11

J̄22D22/D11

2J̄12D12/D11

D ,

ū i5 ū i
11~ Ĵ2~R̂2!21! i1J̄111~ Ĵ2~R̂2!21! i2

3
D22

D11
J̄2212~ Ĵ2~R̂2!21! i3

D12

D11
J̄12,

ū1
15u11

1 1
D22

D11
u33

1 12
D12

D11
u13

1 ,

J̄115J111
D22

D11
J33

2 12
D12

D11
J13

2 ,

ū2
15u22

1 1
D11

D22
u33

1 12
D12

D22
u23

1 ,

J̄225J221
D11

D22
J33

1 12
D12

D22
J23

1 ,

ū3
15u12

1 1
D11

D12
u13

1 1
D22

D12
u23

1 ,

J̄125J121
D11

D12
J13

1 1
D22

D12
J23

2 . ~D4!

In notation ~D2!–~D4! we have used the ‘‘pseudoband
representation,42

11→1, 22→2, 12→3. ~D5!

For instance,

J115J1111, J335J1212, J125J11221J1221,

R115U112j1111
0 , R125U122j1212

0 .

Representing the ratios of the vertex functions as

G2211
1

G1111
1

5
D22

D11
~11v2a12!,

G1211
1

G1111
1

5
D12

D11
~11v2a13!,

~D6!

we arrive at an expression fora of Eq. ~22!:
a5~a1222a13!j33
0 5

j33
0

Z11
1 F S R32

D22

D12
2R31

D11

D12
D ũ2

1S 4R21

D11

D22
12R23

D12

D22
D ũ3G . ~D7!

In the approximation~26!, for the ratios constructed
from the Ĝ2 of Eqs.~11! we have

G2211
2

G1111
2

5
Z12

2

Z11
2

,
G1211

2

G1111
2

5
Z13

2

Z11
2

. ~D8!

J1
25J111

Z12
2

Z11
2

J33
2 12

Z13
2

Z11
2

J13
2 , J2

25J221
Z11

2

Z12
2

J33
1 12

Z13
2

Z12
2

J23
1 ,

J3
25J121

Z11
2

Z13
2

J13
1

Z12
2

Z13
2

J23
2 . ~D9!

Similarly, for Ji
1 of Eqs.~18! we have

J1
15J111

D22

D11
J33

1 12
D12

2

D11
J13

1 ,

J2
15J221

D11

D22
J33

2 12
D12

D22
J23

2 ,

J3
15J121

D11

D12
J13

2
D22

D12
J23

1 . ~D10!

The quantitiesj i
2 of ~18! and Bi of ~28! are constructed in

the same manner asJi
2 of ~D9!.
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5A. S. Éliashberg, Zh. E´ ksp. Teor. Fiz.38, 966 ~1960! @Sov. Phys. JETP
11, 696 ~1960!#.

6A. C. Aleksandrov, JETP Lett.46, S107~1987!.
7J. E. Hirsch and F. Marsiglio, Phys. Rev. B39, 11 515~1989!.
8V. Z. Kresin, Phys. Rev. B35, 8716~1987!.
9J. Ruvalds, Phys. Rev. B35, 8869~1987!.

10P. W. Anderson, Science235, 1196~1987!.
11V. M. Loktev, Fiz. Nizk. Temp.22, 3 ~1996! @Low Temp. Phys.22, 1

~1996!#.
12V. A. Moskalenko, Fiz. Met. Metalloved.8, 503 ~1959!.
13H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett.3, 552~1959!.
14V. A. Moskalenko, L. Z. Kon, and M. E. Palistrant,Low-Temperature

Properties of Metals with Band-Spectrum Singularities@in Russian#,
Shtiintsa, Kishinev~1989!.

15V. A. Moskalenko,Electromagnetic and Kinetic Properties of Superco
ducting Alloys with Overlapping Energy Bands@in Russian#, Shtiintsa,
Kishinev ~1976!.

16B. T. Ge�likman, Usp. Fiz. Nauk88, 327 ~1973! @Sov. Phys. Usp.9, 142
~1973!#.

17D. H. Lee and J. Ihm, Solid State Commun.62, 811 ~1987!.
18V. A. Moskalenko, M. E. Palistrant, and V. M. Vakalyuk,Mechanisms of

High-Temperature Superconductivity@in Russian#, JINR, Dubna~1988!.
19V. A. Moskalenko, M. E. Palistrant, and V. M. Vakalyuk, Fiz. Nizk

Temp.15, 378 ~1989! @Sov. J. Low Temp. Phys.15, 213 ~1989!#.



re,

.,

k

0

0

rch

580 JETP 87 (3), September 1998 F. G. Kochorbé and M. E. Palistrant
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Radiation breakdown in silicon wafers
V. A. Vo tenko and S. E. Mal’khanov

St. Petersburg State Technical University, 195251 St. Petersburg, Russia
~Submitted 12 August 1997!
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Radiation breakdown in silicon slabs is observed and studied as revealed in anomalous behavior
of the dose characteristics of their radiation defects when the radiative intensity is varied.
A theory is constructed for reversible radiation breakdown due to the bistability which develops
in a gas of radiation vacancies when the gas can be regarded as quasi-two-dimensional. In
order to explain the exponential saturation of the dose characteristics as the irradiation intensity
is increased, scenarios are proposed in which different forms of the constituent radiation
defects develop. Some parameters of the bistable gas of primary vacancies are estimated, including
diffusion coefficients, dimensions of inhomogeneity regions, and the rate of movement of
the stratification line. On the whole, satisfactory agreement with experiment is obtained.
Discrepancies between the diffusion coefficient for neutral vacancies obtained here and
in the literature are attributed to the role of interband recombination accompanying radiation
defect formation during electron bombardment. ©1998 American Institute of Physics.
@S1063-7761~98!02109-X#
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1. INTRODUCTION

The problem of radiation defect formation, especially
silicon, is currently of high interest, both experimentally a
theoretically.1–5 The well-known simplicity and high sym
metry of the silicon crystal structure, the exhaustive stud
that have been made of the possible radiation defects i
and the development of industrial methods for wafer fab
cation have made silicon the most appropriate material
studying various models of defect formation. Silicon irrad
ated by fast electrons is also under study in radiation te
nology.

Because of the particular way radiation defects are p
duced during irradiation, they customarily include V vaca
cies or W divacancies. The latter are also formed indep
dently. Thus, in describing the kinetics of primary radiati
defects~interstitial atoms and vacancies!, it is of prime im-
portance to include vacancies.

In this paper we obtain the dependence of the concen
tion N for various types of radiation defects on the irrad
tion doseF for various irradiation intensitiesI , and an ex-
ponential saturation of the dose characteristics is observe
theory is constructed for the radiation breakdown of se
conductor surfaces and wafers that occurs when the indu
crystal lattice vacancies merge. It is shown that the d
dependences found as a result of certain approximations
the same as the theoretical results obtained in a radia
breakdown picture. This breakdown mechanism is based
the bistable kinetics of the nonequilibrium fluctuations whi
develop in the primary vacancies during irradiation. The s
sequent evolution of these fluctuations leads to bifurcatio
familiar from hydrodynamics, which can develop, for e
ample, according to the scenario in which Landau turbule
develops.6 As a result of the formation of secondary radi
tion defects, the bifurcation pattern is fixed, and this lead
5811063-7761/98/87(9)/7/$15.00
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a breakup of the spatial period of the modulation in the
sulting structures with the passage of time. Scenarios inv
ing formation and immobilization of secondary radiation d
fect structures are compared and substantiated.

The accord between theory and experiment on the sh
of the dose characteristicsN(F) and the good agreement o
our estimates of the kinetic parameters of the system of
mary vacancies with earlier work7,8 suggest that radiation
breakdown of the wafers, induced by a two-dimensional
dering of certain secondary radiation defects, has been
served. The saturation of the exposure characteristics is
accompanied by the formation of a sulfide film durin
S-passivation of Ge~Ref. 9! and GaAs during processing i
various sulfide solutions,10 and of a ferrous film on passi
vated surfaces of these semiconductors.11 Various geometric
patterns are then formed on the surfaces; they can be
served visually on metallic electrodes durin
electropolishing.12 Thus, the variety of reconstructed quas
two-dimensional systems lends credence to the fundame
nature of the saturation in the dose characteristics obse
here.

2. KINETICS OF A BISTABLE SYSTEM OF VACANCIES

The first attempts3,13 to interpret the dependence of th
radiation defect concentration on electron irradiation inte
sity and dose were based on the idea of uniform-rate q
sichemical lattice reactions with an exhaustible supply
reagents. Neither the observed form of these depende
nor the correlation between them were explained: the e
tence of a dependenceN(I ), of saturation inN(F) for cer-
tain radiation defects and their absence for other centers,
the effect of radiation defects of shallow impurity-level typ
on these and several other14 characteristics.
© 1998 American Institute of Physics
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In this paper we show that these processes mus
treated as Belousov–Zhabotinski� reactions; see, for ex
ample, Sec. 10.3 of Ref. 15. They involve an extended c
lyst, with the crystal lattice itself acting in this capacity.
this case, lattice inhomogeneities relax self-consistently
ing to diffusion and convective field transport.15 We shall
treat single V vacancies as transporters of the diffus
fluxes, filling the same role as holes in the electron theory
semiconductors.

An independent and closed diffusion–kinetic equatio
which combines the continuity condition and the diffusi
equation, can be formulated for the vacancy concentra
n(t):

]n

]t
1div~nbF2D¹n!5G~n!2

n

tV
, ~1!

where G(n) is the rate of vacancy generation,tV is their
lifetime, the field termj 15nbF in the vacancy flux is deter
mined by the elastic forceF and mobility b,16 and the dif-
fusion term j 252D¹n is determined byD, the diffusion
coefficient. The direction of the vectorF is determined by
the preferred direction that emerges within the crystal a
result of irradiation. For example,F can be directed along
the line of intersection of the plane of incidence of the be
with the plane of the wafer surface. Strictly speaking, Eq.~1!
alone is insufficient; a contribution toG can arise during the
breakup of component radiation defects, such as W divac
cies. In addition, the forceF can also depend on the conce
tration of all radiation defects.

However, for the high-intensity and high-energy electr
and proton beams that we used~see Sec. 3!, the main con-
tribution to G(n) is the external interaction, so that the co
tribution from the decay of constituent radiation defects c
be neglected.

We also assume thatF depends only on the concentr
tion n of primary vacancies. The uniform quasichemical l
tice reactions studied previously3,13 obey the balance equa
tion

G~n!5n/tV . ~2!

By taking the planar geometry of the test wafers into
count, the limited depth to which the beam penetrates
some of the radiation experiments, and the known tende
of vacancies to drift toward the surface,17 it is possible to
consider a quasi-two-dimensional model for solving Eq.~1!.
In this case it turns out to be important that at high enou
intensities and radiation doses there is a change in the c
neling of the incident particles accompanied by a substan
number of large-angle scattering events on preexis
defects.18 This is reflected by the fact that the generation r
G(n) becomes a nonlinear function of the concentration, a
as will be shown below, this leads to stratification of t
vacancy gas. In fact, it is clear from Fig. 1 that Eq.~2! can
have three solutions whenG(n) is nonlinear. Of the solu-
tions shown in Fig. 1, which correspond to the initialnl ,
metastablenc , and densenh phases, only two are stable:nl

and nh . This means that the system of vacancies can
made bistable.
be
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The kinetics of the stratification that takes place fornl

,n,nh is described by the time-dependent diffusion
kinetic equation~1!. In the linear approximation we write th
functionsG(n) andF(n) as expansions in the small fluctua
tions dn of the concentration:

F~n!5Cdn, G~n!5S 1

tV
1n D dn, ~3!

where C is a phenomenological coefficient determined
the projection, parallel to the wafer, of the external for
produced by the bombarding beam; the frequencyn, given
by

n5
]G

]n
2

1

tV
. ~4!

plays the role of a negative differential conductivity in th
linearized equation~1!; see Sec. 7.6 of Ref. 15.! Taking thex
axis to be in the plane of incidence perpendicular to
wafer surface and taking the Fourier transform, with resp
to positiony and time, of Eq.~1! as linearized using Eqs.~3!
and ~4!, we obtain

@2 i ~v2kVD!1k2D2n#dn5D
]2dn

]x2 . ~5!

Herek andv are the two-dimensional wave vector and fr
quency of the fluctuations, and the productVD5nCb serves
as a drift velocity. According to Eq.~5!, for a constant gra-
dient of the concentration of the primary radiation defe
inside the wafer, i.e.,dn/dx5const, a longitudinal wave

dn5A~ t !exp$ i ~ky2vt !% f ~x! ~6!

with frequencyv5kVD and dampingg5k2D2n develops
there. For the range ofn characterized by a sufficiently stee
slope of theG(n) curve ~Fig. 1!, we haven.k2D, so that
Eq. ~6! describes an exponential rise in the amplitudeA(t).

An averaged equation for the square of the abso
value of the amplitudeA(t), which describes its saturation
can be obtained by the Landau method6 if we restrict our-
selves to a nondegenerate system. For these systems, th
tual stability boundary is determined by the unique form
the perturbations and the frequencyv(k) that yield zero

FIG. 1. A schematic plot of the sourceG(n) ~smooth curve! and sinkn/tV

~dashed line! terms of the diffusion kinetic equation~1! as functions of the
concentrationn. The solutions of the stationary homogeneous equation~2!
are indicated on the horizontal axis.
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damping,g50. In this regard, it is possible to expand th
time derivative ofuAu2 in A, where for the reasons given i
Ref. 6 it is sufficient to retain only a few of the nearest ter
that fail to vanish upon averaging. A natural average can
taken over the time~and energy! required to produce second
ary radiation defects. Terms of odd order in the amplitudeA
necessarily contain a periodic factor and drop out upon
eraging. Even-order terms like the fourth correspond to te
like A2A* 25uAu4 that do not drop out on averaging.

The time derivatives likê duAu2/dt& are direct math-
ematical analogs of the ‘‘transition probabilities per u
time’’ that can be calculated using perturbation theory ba
on the time-dependent Schro¨dinger equation of quantum
mechanics.19 In this case, we are interested in the square
the absolute valueuAu2 because the statistical weight of th
vacancy pairs formed per unit volume, which yieldW diva-
cancies as they merge, equals the number of combinat
Cn

25n(n21)/2, which is quadratic inn. Thus, the rate of
divacancy production

dNW

dt
5

1

2 K duAu2

dt L ~7!

is given by an average derivative of this type. In princip
our expansion can begin with a constant term of zeroth o
in A corresponding to a source of divacancies, owing to
decay of other radiation defects. Divacancies, however, h
a lower annealing temperature than the K-centers obta
from them~C1O1W; see Ref. 1!. This means that this con
stant source of divacancies is insignificant, so it is suffici
to limit ourselves to terms of second and fourth order inA.
Expressing the Landau constant6 a in terms of the limiting
divacancy concentrationN0W, we obtain

dNW

dt
5

NW

t I
S 12

NW

N0W
D , ~8!

where t I is the characteristic time for the evolution of
divacancy structure. Solving Eq.~8! yields a dose character
istic of the form

NW5
N0W

11exp@~F02F!/I t I #
. ~9!

The only constant that arises as a result of the integrat
denoted by exp(F0 /ItI) in Eq. ~9!, along with the other pa-
rameterst I and N0W , can be expressed in terms of the e
perimental parameters, given the scaling consideration
Sec. 4.

The stability loss regime characterized by plane symm
try corresponds to Poiseuille flow.6 The other regime, isotro
pic turbulence, occurs in hydrodynamics during Couette fl
~in the space between two cylinders6!. It is well known that
in order to describe it, linear representations must be avo
~Ref. 6, Sec. 30!, and that the solution leading to zero dam
ing corresponds to purely imaginaryv(k) ~Ref. 6, Sec. 27!,
so thatg50 whenv50. This stability loss regime arises i
Eq. ~1! for a beam normally incident upon a high-symme
surface of a silicon wafer, whereuponF(n) of Eq. ~3! van-
ishes andC50.
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Neglecting elastic forces, we consider stationary axisy
metric solutions of Eq.~1! that are uniform inx, with the
concentrationn0(r ) taken per unit, area and the nonline
function G(n) shown in Fig. 1~r is the radial coordinate in
the plane of the wafer!. Transforming to cylindrical coordi-
nates in Eq.~1! and integrating with respect tor with weight
dn0 /dr instead of taking the Fourier transform, we obtain

DE
0

`S dn0

dr D 2 dr

r
5E

nl

nhFG~n!2
n

tV
Gdn. ~10!

An estimate of the thicknessDr of the transition layer be-
tween the competingnl andnh phases can be obtained fro
Eq. ~10!:

ADh

nh
&Dr &ADl

n l
, ~11!

where the frequencies and diffusion coefficientsnh , Dh and
n l , Dl refer to the dense and rarefied phases, respectiv
The principal contribution to the integral in Eq.~10! comes
from the transition layer:Rc2Dr<r<Rc1Dr , whereRc is
the critical nucleus radius. The scale lengthRc is therefore
roughly

Rc5
D

J E
0

`S dn0

dr D 2

dr, ~12!

where the degree of supersaturation in the vacancy gas,J, is

J5E
nl

nhFG~n!2
n

tV
Gdn. ~13!

According to Eqs.~12! and~13!, in the two-dimensional case
Rc can vary continuously over wide limits, depending on t
degree of supersaturationJ. As a lower bound for the critica
nucleus size, we can take a value ofDr that is independen
of I and that obeys Eq.~11!. According to the experimenta
data given below, this size is measured in fractions o
micron.

Applying the procedure discussed above for integrat
Eq. ~1! to nonstationary, two-dimensional, axisymmetric s
lutions, we find the nucleus rate of growthv(R) of the dense
phase. We seek a wave solution of Eq.~1!:

n5n0~r 2v~R!t !. ~14!

Proceeding as in the derivation of Eq.~12!, we obtain from
Eq. ~1!

v~R!5v`~12Rc /R!. ~15!

Here the quantity

v`5JF E
0

`S dn0

dr D 2

drG21

~16!

represents the rate of displacement of an interphase wa
small curvature for a given supersaturationJ. During a phase
transition, attainment of critical size by a nucleus is usua
the longest stage.20 Thus, the characteristic timet I in Eq. ~9!,
which will be found below by comparing Eq.~9! with ex-
periment, is approximately

t I;Rc /v` . ~17!
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Depending on the angle of incidence of the irradiati
beam, the secondary radiation defect structures obtained
time t I inherit either a plane texture of filaments wi
CÞ0, or an axisymmetric texture of points of radiusRc from
Eq. ~12! in the opposite case. The various techniques
processing crystal surfaces10–12also provide examples of th
practical realization of both possibilities.

3. EXPERIMENTAL RESULTS

We have studied radiation defect formation in 532
30.2 mm3 silicon wafers fabricated from KE´ F-7.5 and KÉF-
1.0 silicon ~with electron concentrations of 531014 and
431015 cm23, respectively! and from KDB-10 silicon~with
a hole concentration of 1.331015 cm23!. Ohmic contacts
were made on opposite sides of the wafer surfaces by de
iting low-resistancen1- or p1-layers by ion implantation~of
phosphorus or boron, respectively! to a depth of 0.2–0.3mm.
To recover the amorphous layer the samples were anne
in a neutral medium.

The intensity of the RTE´ -1V accelerator with which the
silicon wafers were bombarded with electrons can be va
over wide limits. We used a rangeI 51013– 1014 cm22 s21,
dictated by the method for measuring the concentrationN
available to us. The NG-200U neutron generator w
equipped with a special attachment for producing and ac
erating a proton beam. The protons penetrated the wafe
a depthL;1 mm, while the electrons passed right through
The beams were normally incident upon the^111& surface.

The concentrationN was measured by a photocapa
tance method. The optimum for this method is cancellat
of half the original dopant. The lower limit of the concentr
tion measurements~the variation inI and F! was directly
related to the instrumental sensitivity, while the upper lim
was dictated by the large dark currents resulting from c
cellation, which increases the resistance of the inner reg
of the wafer to the that of the reverse-biasedp–n junction in
the surface layer, which produces the capacitance. Additio
details of the experimental procedures and results are a
able elsewhere.8,21,22

Experimental dose plotsN(F) obtained by us for two
constant values ofI differing by a factor of two are shown
for several types of radiation defects as different points
Figs. 2 and 3. All the dose characteristics share an alm
linear rise, which reflects a constant rate of defect format
dN/dt5I (dN/dF), at low doses. The essential differenc
associated with the behavior of the dose characteristic
high doses and variableI make it possible to separate radi
tion defects into three groups.

K-centers, withEV510.35 eV~C1O1W; see Ref. 1!,
are characterized by a quadratic dependence21 N5aI 2. The
corresponding dose curves1 and3 in Fig. 2 have a linear rise
followed by a saturation region. The same sort of linear r
followed by saturation in the dose curveN(F) was recorded
for radiation defects withEV510.37 eV ~curves2 and 4!,
as well as for radiation defects obtained by proton irradiat
~curve 5!. The microscopic structure of the defects cor
sponding to curves 2, 4, and 5 have yet to be fully explain
This structure is discussed in Sec. 4.
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For the divacancies, either a linearN5bI ~KÉF-7.5,
with Ec520.4 eV! or a quadraticN5aI 2 ~KÉF-1.0, with
Ec520.4 eV; KDB-10, with EV510.29 eV! variation
N(I ) is observed. The dose dependenceN(F), as for the
K-centers at the lower intensityI 5631013 cm22 s21, re-

FIG. 2. The dose curvesN(F) reflecting the rate of accumulation of variou
radiation defects in KDB-10 silicon irradiated by 1-MeV electrons and 10
keV protons. The points are experimental data and the smooth cu
theory. Curves1–5 have been constructed from Eq.~20! and curves6 and7,
from Eq. ~9!: 1, 3 ~n, L! — K-centers;2, 4 ~s, d! — radiation defects
with EV510.37 eV;5 ~l! — radiation defects obtained by proton irradia
tion ~upper horizontal scale!; 6, 7 ~h, j! — divacancies;1, 2, 6 ~n, s, h!
— intensity I 5631013 cm22 s21; 3, 4, 7 ~L, d, j! — intensity I 51.2
31014 cm22 s21.

FIG. 3. Dose curvesNA(F) reflecting the buildup of A-centers in KE´ F-7.5
silicon bombarded by 1-MeV electrons at intensities~1! ~d! — of 1.2
31014 cm22 s21 and ~2! ~s! — 6.031013 cm22 s21. The inset shows the
concentrationNA of A-centers as a function ofI for a constant doseF
57.231015 cm22.
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tains a nearly linear rise over the entire range~curve 6!.
However, there is a tendency toward saturation at the hig
intensity I 51.231014 cm22 s21 ~curve7!.

For A-centers (V1O), the defect concentrationN is in-
dependent of intensity, i.e.,N(I )5const. Here the dose curv
N(F) retains an almost linear rise over the entire range oF
and for allI attainable in our experiments~see Fig. 3, curves
1 and2, and the inset!. Thus, there is a palpable relationsh
between the dose characteristics of the radiation defects
the intensity dependence ofN: when N(I ) is quadratic or
linear, the dose curve goes to saturation.

Our measurements also suggest a more or less shar
pendence of the defect formation probability on the type
shallow impurity levels. Thus, K-centers are observed o
in p-silicon, while A-centers are observed only inn-silicon.
For divacancies inn-type crystals, both linear and quadrat
N(I ) curves are possible, while inp-type crystals only a
quadratic dependence is observed. More subtle differen
exist as well.14

4. DISCUSSION OF EXPERIMENTAL RESULTS

All these features of the experimental data can be
plained in terms of the idea, described in Sec. 2, of an in
bility of the solutions of Eq.~1! that leads to bistability of the
system of primary radiation defects. Bifurcation causes fr
tionation over time~i.e., as the doseF5It increases! in the
spatial modulation period of the primary radiation defects
the medium. The different stages of this process ‘‘free
out’’ as secondary radiation defects of the different gene
tions develop.

The conditions for applicability of the theoretical do
characteristic~9! extend only to the component radiation d
fects in the first generation, i.e., the divacancies. The c
stant of integration in Eq.~9! can be expressed in terms
the characteristic delay timet05F0 /I for onset of divacancy
formation. This time is required to build up enough kine
energy for the appropriate instability to develop. This ene
goes into the phonon excitation that precedes the onset o
breakaway of atoms from lattice sites. In any event, the de
t0 is determined by details of the preparation of the qua
two-dimensional unstable system, in this case by the dis
sion of the phonon interaction. Thus,t0 can be regarded a
independent of the intensity of the external interaction.

The maximum numberN0W of divacancies is determine
by the crystalline structure of silicon and is also independ
of I . Ultimately, the only one of the three constants in E
~9! that depends onI is the evolution timet I . All the dose
characteristics shown in Fig. 2, as well asN(I ), can be in-
terpreted in terms of Eqs.~9! and ~20!, using the standard
relation for the reciprocal timet I

215j1hI 1zI 2 and choos-
ing the constantsj, h, andz. For example, for curve7 we
obtaint I51.7 min and for curve6, which was taken at hal
the intensity,t I is accordingly longer.

The elementary process of forming K-centers ultimat
reduces to a reaction of the form13

@V2O#21Ci
15K0, ~18!
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where@V2O# is a divacancy–oxygen complex, Ci represents
interstitial carbon, and the signs indicate charge states.
crystal lattice participates in reaction~18! as a catalyst be-
cause of the Debye correlation that builds up during the
vacancy formation stage.23 If, given this correlation, the en
tire surface of the wafer is covered by ordered Deb
spheres, then Eq.~18! leads to random filling of some o
these spheres with K-centers. The resulting fluctuation
gregations of K-centers then become mesoscopic nuclea
centers. They accelerate the stratification of the vacancy
into nl andnh phases in accordance with Sec. 2.

The probability of such aggregations can be estima
using an Ising model.24 It is considerably greater than th
probability of spontaneous formation of a critical nucleus20

This process is sustained by localization of the aggregat
along dislocation lines, in accordance with electron micr
copy data.25 The emerging nuclei of the dense phase vac
cies, in turn, begin to sustain the formation of new K-cent
within themselves, so that their formation in other plac
becomes unlikely. This leads to the chaining of K-centers
the direction of the radiation flux. Ultimately, stable line
structures of K-centers, extending from one surface of
wafer to the other, in effect cause it to undergo radiat
breakdown, which becomes irreversible and can be rega
as a structural phase transition. Because the appearan
new K-centers outside the structure becomes essentially
possible, the expansion6 for their rate of formation
I (dNK /dF) must be in terms of the number of remainin
free sites in the already formed structure,N0K2NK , i.e.,

I
dNK

dF
5

N0K2NK

t IK
, ~19!

where the timet IK corresponds to a K-center. The dose ch
acteristic

NK5N0KF12expS 2
F

I t IK
D G , ~20!

which is confirmed experimentally by curves1 and3 of Fig.
2, is a solution of Eq.~19!.

Note that Eq.~19! results from the expansion of the ra
diation defect formation rate, including a zeroth-order te
for a constant source owing to synthesis from other cent
The dose curves2, 4, and 5 constructed using Eq.~20!
suggest that the corresponding radiation defects~with
EV510.37 eV! and the defects induced by proton bomba
ment also belong to an older generation, after the divac
cies. Measurements ofN at different intensities21 show that
they can be obtained from divacancies. TheEV50.37 eV
level may turn out to be another component of a multiplet
K-centers, while hydrogen dimers probably predomin
among the defects produced by proton irradiation.26

A lower-bound on the distance along the wafer betwe
chains of radiation defects can be estimated from their a
age two-dimensional concentrationn5NL, where
N;1014 cm23 ~see Fig. 2!. As an example, for proton bom
bardmentL;1 mm. This implies a lower bound for the in
homogeneity ofRc;1/An, which yields a lower limit on the
size of the two-dimensional nuclei of fractions of a micro
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with Rc;0.5 mm. The rate of growth of the radiation defec
enriched two-dimensional region is then of the order ofn`

5Rc /t I;0.1 mm/min. Note that this rate is of the sam
order for both proton and electron bombardment.

In order for two-dimensional structures of this type
develop, the vacancies must be able to traverse the m
transverse dimension of the problem, the distanceL to the
wafer surface, within the time~17!. The timet I obtained by
integrating curve5 of Fig. 2, which coincides with Eq.~17!,
is of the order of one hour. Given this and the required
cape of the vacancies to the surface, for the diffusion co
ficient we obtain the estimateD5L2/t I , whereupon
D;10212 cm2/s. This value is the same, to within the me
surement errors, as theD51.2310212 cm2/s previously
obtained8 for positively charged divacancies. This agreem
in the values ofD found by different methods tends to co
firm the existence of a structural phase transition in an at
sphere of radiation defects.

On the other hand, the 1 MeV electrons we have used
right through the wafer. In this case, theL for estimatingD
must be the full width of the wafer, i.e.,L50.2 mm. This
value is several orders of magnitude greater than for prot
while the timet I , on the other hand, is an order of magn
tude shorter. This leads to huge valuesD;1027 cm2/s for
the diffusion coefficient of the neutral vacancies obtained
this case. This strong predominance of diffusion processe
electron-irradiated silicon compared to proton-irradiated s
con appears to be due to a larger contribution from interb
recombination, which induces momentum transfer to the
tice.

Silicon wafers grown by the Czochralski method we
used in our experiments. These crystals contain oxygen
oms at overwhelming concentrationsN0;(6 – 7)
31017 cm23 compared to other impurities. Thus, the oxyg
impurity is present in sufficient amounts and cannot limit t
probability of A-center formation processes, whose rate
therefore determined by the deficit of vacancies. Any s
nario for the formation of A-centers must, above all, the
fore address the question of why their dose characteris
N(F) ~see Fig. 3 and the inset! differ radically from the
analogous dependences for divacancies and K-centers~Fig.
2!, whose formation probabilities are also limited by a defi
of vacancies.

These differences are related to the fact that oxyge
not an isoelectronic impurity in silicon, so it interacts on
with charged~but not neutral! vacancies. The number o
such vacancies is determined by the donor concentra
which does not depend on the external irradiation. U
mately, the concentration of A-centers is independent of
total vacancy concentrationn, i.e., it is also independent o
I , which is determined solely by the rate of a reaction of
form V1O5A. This scenario is confirmed by the fact th
the concentration of A-centers is always rigidly tied to~on
the order of, but slightly smaller than! the donor concentra
tion ~see Fig. 3!. Accordingly, the linear rise in their dos
characteristic does not saturate, owing to the maintenanc
a large diffusion coefficientD throughout irradiation.

In conclusion, we note that the observed coupling of
saturation in the dose characteristics of radiation defects
jor
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the formation of self-organized structures of the latter,
expressed by Eqs.~9! and ~20!, is a promising result. Thus
in the future, radiation defect formation can likely become
test model for studying the principles of self-organization
discrete two-dimensional systems. This model can poss
the creation and use of mathematical lattice techniques
solving the corresponding class of nonlinear kinetic eq
tions.

Efforts in this area offer promise, as they are capable
supplementing, at the level of microscopic scale lengths,
isting work on self-organization of lateral structures in t
physics of superlattices.27

On the other hand, the formation of self-organized def
structures during proton, electron, and possibly neutron i
diation is an indication of the colossal radiation vulnerabil
of planar semiconductor devices. Inp-Si, with the mediation
~capture! of mobile holes, divacancy formation predom
nates, forming a correlated extended ‘‘lattice getter.’’ Th
structure entrains the predominant oxygen and then, acc
ing to Eq. ~18!, carbon.A-centers lose out in terms of the
rate of formation and are present in negligible amounts.
n-Si, A-centers are formed and compete with the divac
cies. The latter are chaotic; they do not have a Deb
correlated structure. Thus, an extended getter does not e
and there are no K-centers, as they lose out to the A-cen
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Charge states of atoms in the lattices of the high-temperature superconductors
Tl2Ba2Can 21CunO2n 14 and Bi 2Sr2Can 21CunO2n 14

V. F. Masterov, F. S. Nasredinov, N. P. Seregin,* ) and P. P. Seregin

St. Petersburg State Technical University 195251 St. Petersburg, Russia
~Submitted 12 November 1997; resubmitted 4 February 1998!
Zh. Éksp. Teor. Fiz.114, 1079–1088~September 1998!

To determine the charges of atoms in the lattices of the compounds Tl2Ba2Can21CunO2n14 and
Bi2Sr2Can21CunO2n14 (n51,2,3), the parameters of the electric field gradient tensor at
the copper sites of the indicated lattices were found by emission Mo¨ssbauer spectroscopy on the
isotopes61Cu(61Ni) and 67Cu(67Zn), and a calculation of these parameters was performed
in the point-charge approximation. A comparison of the resulting values and the published data
on 63Cu nuclear quadrupole resonance showed that agreement between the experimental
and computed values of the parameters obtains for models in which the holes resulting from a
reduction in the valence of some of the thallium~bismuth! atoms are localized
predominantly at oxygen sites located in the same plane as the copper atoms~for the compounds
Tl2Ba2Ca2Cu3O10 and Bi1.6Pb0.4Sr2Ca2Cu3O10—at oxygen sites in the same plane as the
Cu~2! atoms!. © 1998 American Institute of Physics.@S1063-7761~98!02209-4#
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1. INTRODUCTION

The compounds Tl2Ba2Can21CunO2n14 ~TlBaCaCuO!
and Bi2Sr2Can21CunO2n14 ~BiSrCaCuO! (n51,2,3) have
high superconducting transition temperaturesTc . This ex-
plains the interest in the investigation of their properties
pressing problem for the TlBaCaCuO and BiSrCaCuO
tices is to determine the charge states of the oxygen ato
which are responsible for superconductivity in these co
pounds.

For this reason, to us it seemed sensible to employ em
sion Mössbauer spectroscopy on67Cu(67Zn) to determine the
charge state of the atoms in TlBaCaCuO and BiSrCaC
compounds. The essence of the method, which we prop
in Ref. 1, consists in using a67Zn21 probe to measure th
parameters of the electric field gradient tensor produce
the copper sites by the lattice ions, calculating these par
eters in the point-charge approximation, and determining
effective charges of the atomic centers by comparing
experimental and computed values of the parameters of
tensor of the crystal gradient of the electric field. The effe
tive charges give a good picture of the valence states of
ions at the lattice sites and substantial deviations from
standard valence states. We have demonstrated the effe
ness of this method for typical high-temperature superc
ductors~HTSCs!—the compounds RBa2Cu3O7 ~where R is a
rare-earth metal!.2

However, the number of available experimental para
eters for TlBaCaCuO and BiSrCaCuO compounds is m
smaller than the number of charges to be determined.
this reason, in the present work the correlation between
quadrupole interaction constantsC(Cu) and C(Zn) of
63Cu21 centers (63Cu nuclear quadrupole resonance~NQR!
and nuclear magnetic resonance~NMR! data! and 67Zn21

centers (67Cu(67Zn) emission Mo¨ssbauer spectroscopy dat!
in copper metal oxides~hereC5eQUzz/h, whereQ is the
5881063-7761/98/87(9)/6/$15.00
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quadrupole moment of the probe nucleus,Uzz is the principal
component of the tensor of the total electric field gradien
the probe, andh is Planck’s constant! was used to limit the
number of possible combinations of these charges.3

Moreover, a high defect rate is typical of TlBaCaCu
and BiSrCaCuO compounds, even for materials with h
values ofTc . In consequence, the experimental results
tained for nominally identical compounds by differe
groups of investigators are not reproducible. For exam
obvious inconsistencies in the values of the63Cu NQR fre-
quencies are found for the compounds Tl2Ba2Ca2Cu3O10

4,5

and Bi1.6Pb0.4Sr2Ca2Cu3O10.5–9 The correlation indicated
above makes it possible not only to advance reasons for
discrepancy in the63Cu NQR data but also to assess t
validity of the models proposed for the charge distributio
An investigation of TlBaCaCuO and BiSrCaCuO com
pounds via 61Cu(61Ni) emission Mössbauer spectroscop
confirms the conclusions drawn on the basis of the data
tained by this method on67Cu(67Zn).

2. EXPERIMENTAL PROCEDURE AND RESULTS

The Mössbauer sources were prepared by diffusion d
ing of the compounds Tl2Ba2Ca2Cu3O10 @Tl~2223!# (Tc

'120 K), Bi1.6Pb0.4Sr2Ca2Cu3O10 @Bi~2223!# (Tc'108 K),
Tl2Ba2CaCu2O8 @Tl~2212!# (Tc'60 K), Bi2Sr2CaCu2O8

@Bi~2212!# (Tc'80 K), Tl2Ba2CuO6 @Tl~2201!# and
Bi2Sr2CuO6 @Bi~2201!# ~for the latter twoTc,4.2 K) with
radioactive61Cu and67Cu isotopes using the procedure d
scribed in Ref. 10.

The Mössbauer spectra of67Cu(67Zn) were measured a
4.2 K with 67ZnS as the absorber~surface density
1000 mg/cm2 of 67Zn), while the 61Cu(61Ni) spectra were
measured at 80 K with Ni0.86V0.14 as the absorber~surface
density 1500 mg/cm2 of nickel!. The spectra of the67Cu and
61Cu sources~in metallic copper! with the indicated absorb
© 1998 American Institute of Physics
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FIG. 1. 67Cu (67Zn) ~a! and 61Cu (61Ni) ~b!
Mössbauer spectra of the compounds Tl~2201!
~1!, Tl~2212! ~2!, and Tl~2223! ~3!. The position
of the components of the quadrupole triplets~a!
and multiplets~b! corresponding to67Zn21 ~a!
and 61Ni21 centers at Cu~1! and Cu~2! sites of
the compound Tl~2223! and at the copper sites
of the compounds Tl~2201! and Tl~2212! is
shown.
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ers had widths at half-height 2.7(4)mm/s and 0.95~5! mm/s,
respectively. Typical spectra of all TlBaCaCuO compoun
are presented in Fig. 1. The spectra of the compounds B
CaCuO have a similar structure. The results of the anal
of all spectra are summarized in Table I.

Since the copper atoms in the~2201! and~2212! lattices
occupy a unique position,11–13 it was expected that the61Cu
(61Ni) and 67Cu (67Zn) Mössbauer spectra of these com
pounds would correspond to a unique state of the Mo¨ssbauer
probes61Ni21 and 67Zn21. In actual fact, as one can se
from Fig. 1~curves1 and2!, the67Cu (67Zn) and61Cu (61Ni)
spectra for both ceramics, Tl~2201! and Tl~2212!, are quad-
rupole multiplets corresponding to a single state of
probes67Zn21 and61Ni21.

More complicated spectra consisting of three quadrup
triplets were obtained for the~2223! compounds. As an ex
ample, the67Cu (67Zn) spectrum of the compound Tl~2223!
is shown in Fig. 1a~curve 3!. Since the copper atoms occup
two crystallographically inequivalent positions in the~2223!
lattices,14,15 one of the three quadrupole triplets in the spe
trum should correspond to67Zn21 centers at copper sites o
an additional phase. The parameters of the spectra of
phase are close to those of the spectrum of the compo
Tl~2212!. Quadrupole triplets corresponding to67Zn21 cen-
ters at Cu~1! and Cu~2! sites in the Tl~2223! lattice ~their
intensity ratio is close to 1:2!, and a quadrupole triplet cor

TABLE I. Parameters of61Cu (61Ni) and 67Cu (67Zn) emission Mo¨ssbauer
spectra.

TlBaCaCuO BiSrCaCuO
Compound Site C(Ni) C(Zn) C(Ni) C(Zn)

~2201! Cu 248(3) 113.3(3) 251(3) 112.4(3)
~2212! Cu 243(3) 114.5(3) 246(3) 113.4(3)
~2223! Cu~1! 230(4) 119.5(3) 235(3) 119.0(3)

Cu~2! 243(3) 114.3(3) 244(3) 113.8(3)

Note. C~Ni! and C~Zn!—quadrupole interaction constants~in MHz! for
61Ni21 and 67Zn21 probes, respectively; for all probes the asymmetry p
rameter of the electric field gradient tensorh,0.2; the widths of the com-
ponents of the quadrupole multiplets were 5.8~2! mm/s for 67Zn and 1.15~5!
mm/s for61Ni.
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responding to67Zn21 centers at copper sites of the Tl~2212!
phase~its relative intensity is approximately 0.8!, are shown
in Fig. 1a~curve3!.

Obviously, the61Cu (61Ni) spectra of the~2223! com-
pounds should also consist of a superposition of three m
tiplets. The61Cu (61Ni) spectra of the~2223! compounds
were analyzed taking this into account. Quadrupole mul
lets corresponding to61Ni21 centers at Cu~1! and Cu~2! sites
in the Tl~2223! lattice and a quadrupole multiplet corre
sponding to61Ni21 centers at the copper sites of the Tl~2212!
phase are shown in Fig. 1b~curve3!. The position of the line
of the latter multiplet was based on the spectrum of
~2212! compound, while the ratio of the areas under t
spectral curves was held at1:2:0.8. As one can see from th
table, the components of the quadrupole multiplets of67Zn
and67Ni are broadened, compared with the natural widthGnat

of the nuclear levels (2Gnat50.32mm/s for 67Zn and 2Gnat

50.77 mm/s for61Ni), and compared with the spectra of th
67Cu and61Cu sources in metallic copper. The broadening
the67Cu (67Zn) and61Cu (61Ni) spectra, though not so grea
has also been observed in other HTSCs.16 The broadening in
TlBaCaCuO and BiSrCaCuO compounds can probably
explained by the inhomogeneity of the experimen
samples, which is also observed in63Cu NQR spectra4–9 of
these compounds. The broadening of the67Zn spectra is
more pronounced due to the narrower spectral line~for 67Zn
substantial broadening is typical even for the absorpt
spectra17!.

3. EXPERIMENTAL RESULTS

3.1. 67Zn21 probe

In the general case the measured quadrupole interac
constantC is a sum of two terms

C5eQ~12g!Vzz/h1eQ~12R0!Wzz/h, ~1!

whereVzz andWzz are the principal components of the te
sors of the crystal and valence electric field gradients, ang
andR0 are the Sternheimer coefficients of the probe atom
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The contribution of the valence electrons to the to
electric field gradient tensor can be neglected for the pr
67Zn21. Therefore

C~Zn!'eQ~12g!Vzz/h. ~2!

Thus, the experimental data obtained on the parame
of the electric field gradient tensor using the67Zn21 probe
can be correlated with calculations of these parameters b
on an ionic model of the crystal lattice~point charge model!.

The applicability of this model to copper metal oxid
has frequently been discussed in the literature. Numer
attempts to compare the parameters of the electric field
dient tensor, calculated for oxygen and copper lattice site
the basis of the point-charge model, with the values of
parameters determined experimentally by17O and63Cu NQR
and NMR, must probably be deemed unsuccessful~see, for
example, the review in Ref.16!. In no case was satisfactor
agreement obtained between the computed and meas
values. This can be explained by the fact that the vale
contribution to the electric field gradient at17O22 and
63Cu21 probe nuclei is substantial. However, such agreem
is achieved using probes at whose nuclei the electric fi
gradient is produced predominantly by the lattice io
for example, 139La31 and 137Ba21 in La22xBaxCuO4 or
RBa2Cu3O72x ,16 as well as the67Zn21 probe, which we
used earlier, at copper sites in a number of HTSCs.1,2 On this
basis, the point-charge model can be expected to be sui
for the TlBaCaCuO and BiSrCaCuO compounds that we
vestigated.

We calculated the tensors of the crystal electric fi
gradient at the copper sites of the TlBaCaCuO a
BiSr–CaCuO lattices based on the point-charge model. In
doing, following the x-ray crystallographic and neutro
diffraction data,11–15the lattices were represented as a sup
position of the following sublattices:

Tl2Ba2CuO(1)2O(2)2O(3)2 ,
Tl2Ba2CaCu2O(1)4O(2)2O(3)2 ,
Tl2Ba2Ca2Cu~1!Cu~2!2O(1)2O(2)4O(3)2O(4)2 ,
Bi2Sr2CuO(1)2O(2)2O(3)2 ,
Bi2Sr2CaCu2O(1)2O(2)2O(3)2O(4)2 ,
(Bi1.6Pb0.4)Sr2Ca2Cu~1!Cu~2!2O(1)2O(2)2O(3)2

-O(4)2O(5)2 .
The components of the electric field gradient tens

were calculated as sums of products of fixed lattice su
with the charges of the sublattices.1

For subsequent developments, it is significant that
O~1! sites for Tl~2201!, Bi~2201!, and Tl~2212! compounds
are located in the copper–oxygen plane, for Bi~2212! the
O~3! sites are located in the strontium–oxygen plane,
Tl~2223! the O~2! sites are located in the Cu~2!–O~2! plane,
and for Bi~2223! the O~2! and O~3! sites are located in the
Cu~2!–O~2,3! plane. Structural data from Refs. 11–15 we
used in the calculations.

If the valuesQ50.17 b ~Ref. 17! and g5212.2 ~Ref.
18! are taken for the67Zn21 centers, then model A, corre
sponding to the standard valence states of atoms in
Tl~2223! lattice (Tl31, Ba21, Ca21, Cu21, O22), yields
eQ(12g)Vz1578 MHz for Cu~1! sites andeQ(12g)Vz2

568 MHz for the Cu~2! sites.
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These values differ considerably~by a factor of 4–4.5!
from the experimental values ofC(Zn) at Cu~1! (C(Zn1))
and Cu~2! (C(Zn2)) sites; see Table I. A similar situation
also observed for other compounds. Such discrepancies
be due to erroneous values ofg andQ, an incorrect choice
of model for the charge distribution, or a strong depende
of the crystal structure of the samples on their past histo
The latter reason can probably be ruled out, since despite
many structural investigations of TlBaCaCuO and BiS
CaCuO compounds, all experimental data for specific co
pounds agree satisfactorily with one another.19 The existing
neglible discrepancies in the structural parameters canno
explained by the observed differences in the values
C(Zn).

To eliminate inaccurate values ofg andQ ~or more ac-
curately, their product! from the analysis, instead of studyin
the magnitude of the quadrupole interaction constants
Tl~2223! and Bi~2223! compounds, the experimental rat
S5C(Zn1)/C(Zn2) can becompared with the calculate
value ofs5Vzz1 /Vzz2 . Specifically, for Tl~2223! the values
S51.36(4) ands51.15 were obtained. The large differenc
betweens and S shows that at the very least, the char
distribution was incorrectly modeled, i.e., the charges of
ions at the lattice sites deviate from their standard value

To simplify the problem we took advantage of the co
relation between the quadrupole interaction constantsC(Cu)
obtained by63Cu NQR andC(Zn) obtained by67Cu (67Zn)
emission Mo¨ssbauer spectroscopy for the same copper s
As shown in Ref. 3, for a series of divalent copper me
oxides the experimental data forC(Cu) andC(Zn) fall on
the curve

C~Cu!5197211.3C~Zn!, ~3!

whereC(Cu) andC(Zn) are given in MHz.
The linear dependence~3! is a consequence of the fac

that in the copper metal oxides that were investigated,
valence component of the electric field gradient for Cu21 is
the same, while the decrease inC(Cu) with increasing
C(Zn) suggests that the valence and crystal contribution
C(Cu) have opposite signs and thatu(12R0)Wzzu.u(1
2g)Vzzu for the 63Cu21 probe. The points for monovalen
copper (Cu2O, Cu~1! state in YBa2Cu3O6) were found not
to lie on the straight line~3!. This can be explained by th
loack of a valence contribution to the electric field gradie
at the nucleus for the Cu1 probe. Thus, theC(Cu) –C(Zn)
diagram makes it possible to select copper positions wh
the copper is not divalent: the deviation of theC(Cu) and
C(Zn) values from the straight line~3! for a specific com-
pound indicates that the copper valence in that compoun
other than12.

As shown in Ref. 3, information about the charges of t
lattice atoms can be obtained from theC(Cu) –Vzz diagram,
whereVzz is the principal component of the crystal electr
field gradient tensor at the copper sites, calculated in
point-charge model for the specific copper compound, wh
C(Cu) is the quadrupole interaction constant determined
this compound by the63Cu NQR method. For divalent
copper metal oxides this dependence has the form~Fig. 2b!3
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C~Cu!51792191.4Vzz, ~4!

whereC(Cu) is given in MHz andVzz in e/Å3.
Just as in Fig. 2a, in Fig. 2b the points for the monov

lent copper compounds do not lie on the straight line~4!.
However, if the copper is divalent, i.e., the correspond
point lies on the straight line~3! in the C(Cu) –C(Zn) dia-
gram, then a deviation from the straight line~4! in the
C(Cu) –Vzz diagram indicates that the ionic charge distrib
tion was incorrectly modeled in calculatingVzz. Such an
analysis makes it possible to choose possible alterna
charge distributions in the lattices.

The 63Cu NQR data for the compounds Tl~2201!,20

Tl~2212!,21 Tl~2223!,4 Bi~2201!,22 Bi~2212!,5,7,23 and
Bi~2223!6, together with our67Cu (67Zn) emission Mo¨ss-
bauer spectroscopy data, are presented in theC(Cu) –C(Zn)
diagram~Fig. 2a!. One can see that all points satisfactor
correspond to the relation~3!, i.e., the copper is divalent in
TlBaCaCuO and BiSrCaCuO compounds.

It is clear from Fig. 2b, however, that the data from Re
4–7 and 20–23 are inconsistent with the linear depende
~4! in theC(Cu) –Vzz diagram ifVzz is calculated for mode
A, again confirming the shortcomings of this model. To re
oncile the data with the dependence~4! for the Tl~2201!,
Bi~2201!, and Tl~2212! compounds, lesser charges of t
oxygen ions located in the Cu–O planes must be used,
holes must be inserted into the corresponding sublattices
the Bi~2212! compound, the holes must be inserted into
O~3! sublattice. Finally, for the Tl~2223! and Bi~2223! com-
pounds, the holes must be positioned at the oxygen ions
cated in the same plane of the Cu~2! atoms. The correspond

FIG. 2. a! C(Cu) –C(Zn) diagram for divalent-copper compounds~solid
line!. b! C(Cu) –Vzz diagram for divalent-copper compounds~solid straight
line!. The open squares show data for TlBaCaCuO:1—Cu in Tl~2201!;20

2—Cu in Tl~2212!;21 3—Cu~1! in Tl~2223!;4 4—Cu~2! in Tl~2223!.4 The
filled squares show data for BiSrCaCuO:5—Cu in Bi~2201!;22 6—Cu in
Bi~2212!;5,7,237—Cu~1! in Bi~2223!;6 8—Cu~2! in Bi~2223!.6 The indices A
and B denote the model used to calculateVzz ~the calculation and the model
themselves are described in the text!. The citations refer toC(Cu) data for
TlBaCaCuO and BiSrCaCuO compounds. The values ofC(Zn) for these
compounds were taken from Table I.
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ing hole concentrations are 0.20~2!, 0.10~1!, 0.10~1!, 0.15~2!,
0.12~1!, and 0.20~2! per oxygen site.

The hole distribution indicated here is not, strictly spea
ing, the only possible one. However, the substantial dev
tions of the points from the straight line~4! in the
C(Cu) –Vzz diagram require that corrections to the standa
charges in model A be made for ions located in the near
neighbor environment of the copper sites. The contributio
made by the rest of the sublattices to the electric field gra
ent are at least an order of magnitude smaller than the c
tributions of the designated oxygen sublattices, and an o
of magnitude larger deviations of the charges from the st
dard values would be required to reconcile the compu
values of Vzz with Eq. ~4!. Such deviations are scarce
physically meaningful. Thus, the foregoing hole distributi
in the oxygen sublattices is probably necessary in the mo
adopted.

Holes in the oxygen sublattices require introducing a
ceptor centers into the model in concentrations correspo
ing to neutrality. For the reason discussed above, th
charges have virtually no effect on the value ofVzz at the
copper sites. For TlBaCaCuO compounds, holes can re
from a transition of some of the thallium atoms to a monov
lent state. This is supported, specifically, by205Tl NMR data
for Tl~2212! and Tl~2223!.24 One can see from Fig. 2b tha
satisfactory agreement with the linear dependence~4! is ob-
served for models B, which take account of the appeara
of holes at the oxygen sites, as well as a transition of 10~1!%
of the thallium atoms in the compounds~2210! and ~2223!
and 12~1!% in the compound Tl~2212! to an monovalent
state.

Direct experimental data on the nature of the accep
do not exist for BiSrCaCuO compounds. The origin of ho
in their oxygen sublattices can be explained, for example
the defect rate in the material. Figure 2b shows agreem
with the dependence~4! of models B, according to which the
charge of holes at oxygen sites is balanced~to make the
discussion specific! by a decrease in the charge of the b
muth sublattice. For Bi~2223! such a charge decrease do
occur, due to the substitution of Pb for Bi.

For Tl~2223! and Bi~2223! compounds, there exist othe
experimental63Cu NQR data~in Ref. 5~Tl!, and Refs. 5 and
7–9 ~Bi!! that differ appreciably from the data in Refs. 4 an
6. We see from Fig. 3a that the data from Refs. 5 and 7
leave the points for the Cu~2! sites on the straight line~3!,
confirming the divalence of Cu~2! in both cases, but lead to
considerable deviation of the Cu~1! points from the straight
line ~3!. Such a deviation can be explained by a reduc
valence contribution inC(Cu) due to the partial filling of
holes in the 3d shell of Cu~1!. On the basis of Ref. 3, the
observed deviation from the straight line~3! corresponds to a
Cu~1! charge of11.8e in Tl~2223! and between11.85e
and 11.7e in Bi~2223!. This could mean that~2223!
samples with partially reduced copper in the Cu~1! positions
were used in Refs. 5 and 7–9, and the degree of reduc
depended on uncontrolled material fabrication conditions

One can see from Fig. 3b that when the models A a
the data of Refs. 5 and 7–9 are used, the Cu~1! and Cu~2!
points for both compounds deviate from the straight line~4!.
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The deviation of the Cu~1! points can be explained by th
aforementioned deviation of the copper valence from12 at
these sites. The deviation of the Cu~2! points must be attrib-
uted to the appearance of holes at the oxygen sites, locat
the same plane as the Cu~2! atoms. To explain their pres
ence, it is necessary to take account of the additional so
of holes due to reduction of the Cu~1! charge. Specifically, if
it is assumed that the Cu~1! charge in Tl~2232! is 11.8e,
then the Cu~2! point falls on the straight line~4! with 0.11
holes in the O~2! sublattice and 6% monovalent thallium
Similarly, if it is assumed that the Cu~1! charge in Bi~2232!
is 11.7e, then with due account of the divalence of th
lead, the presence of 0.16 holes at each O~2! and O~3!
site, which is necessary in order that the Cu~2! point fall
on the straight line~4!, does not require additional accept
centers. These models are marked with the letter C in
3b.

The models constructed for the charge distribution
~2223! lattices describe the67Cu (67Zn) emission Mo¨ssbauer
spectroscopy data in conjunction with a variety of63Cu NQR
data. The improved charge distribution models not only r
oncile the measured63Cu quadrupole interaction constan
with the computed crystal electric field gradients, they a
reconcile the values ofS and s ~for Tl~2223! compound,s
51.34 for the B model ands51.38 for the C model; for a
Bi~2223! compound,s51.41 for the B model ands51.43
for the C model!. The B and C models presuppose the pr
ence of holes at oxygen sites in the Cu~2!–O plane, but they
differ with respect to the degree of filling of the hole in th
3d shell of copper at the Cu~1! sites. The choice betwee
alternative models can be made only by eliminating the d
crepancies in the experimental63Cu NQR data. It cannot be
ruled out that the difference in the values ofC(Cu) for the

FIG. 3. a! C~Cu!–C~Zn! diagram for divalent-copper compounds~solid
line!. b! C~Cu!–Vzz diagram for divalent-copper compounds~solid line!.
The open squares1 show data for Cu~1! and Cu~2! in the compound
Tl~2223!;5 the filled symbols show data for Cu~1! and Cu~2! in the com-
pound Bi~2223!: 2—Ref. 8;3—Ref. 7;4—Ref. 9;5—Ref. 5. The letters A
and C denote the models used to calculateVzz ~the calculation and the
models themselves are described in the text!. The citations refer to the
values ofC~Cu! for the compounds Tl~2223! and Bi~2223!. The values of
C~Zn! for these compounds are taken from Table I.
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Cu~1! sites might be due to the difference in the technolo
used to prepare the~2223! samples, i.e., the charges of th
Tl, Bi Cu~1!, O~2!, and O~3! atoms in the~2223! lattices can
be controlled.

3.2. 61Ni21 probe

To obtain additional information about the charge dist
bution in the lattices of copper metal oxides and to check
accuracy of the67Cu (67Zn) emission Mo¨ssbauer spectros
copy data, data obtained by this method on61Cu (61Ni) can
be used. Figure 4 displays theC(Cu) –C(Zn) diagram con-
structed from the61Cu (61Ni) and 67Cu (67Zn) emission
Mössbauer spectroscopy measurements of theC(Ni) and
C(Zn) quadrupole interaction constants for61Ni21 and
67Zn21 probes, respectively, at the copper sites of
same copper metal oxides.25 For 61Ni21 the electric field
gradient is produced both by the lattice ions and the vale
electrons of the probe itself. Since theC(Ni) – C(Zn)
diagram in Fig. 4a is a straight line, according to the relat
~1! this means that the valence contribution toC(Ni) is con-
stant. Points for TlBaCaCuO and BiSrCaCuO compoun
are also plotted in Fig. 4a, and one can see that good ag
ment obtains with the existing data for other copper me
oxides.

Just as in theC(Cu) –Vzz diagram, the validity of the
charge-distribution models can be checked using
C(Ni) – Vzz diagram ~Fig. 4b! ~here Vzz are the computed
principal components of the tensor of the crystal gradi
of the electric field for copper positions at whichC(Ni)
was measured!.25 TheC(Cu) –Vzz diagram is a straight line
The deviation from this straight line migiht be due to a
incorrect calculation of the electric field gradient tens

FIG. 4. a! C(Ni) – C(Zn) diagram for divalent-copper compounds~solid
line!. b! C(Ni) – Vzz diagrams for divalent-copper compounds~solid line!.
The open squares show the data for TlBaCaCuO:1—Cu in Tl~2201!; 2—Cu
in Tl~2213!, 3—Cu~1! in Tl~2223!; 4—Cu~2! in Tl~2223!. The filled squares
show the data for BiSrCaCuO:5—Cu in Bi~2201!; 6—Cu in Bi~2212!;
7—Cu~1! in Bi~2221!; 8—Cu~2! in Bi~2223!. The letters A and B designate
the model to calculateVzz ~the calculation and the models themselves a
described in the text!.
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because of an incorrect choice of atmoic charges. Fig
4b shows our results for two models for calculati
the tensor of the crystal gradient of the electric field in T
BaCaCuO and BiSrCaCuO lattices. The results are incon
tent with the linear dependence in the diagramC(Ni) – Vzz,
if Vzz is calculated for the A model. Satisfactory agreem
with the linear dependence obtains for the B models, wh
take account of the appearance of holes at the oxy
atoms.

4. CONCLUSIONS

The parameters of the electric field gradient tensor
copper sites in the lattices of TlBaCaCuO and BiSrCaC
compounds were determined by61Cu (61Ni) and67Cu (67Zn)
emission Mo¨ssbauer spectroscopy, and these parame
were calculated in the point-charge approximation. T
quadrupole interaction constants for67Zn21 centers (67Cu
(67Zn) emission Mo¨ssbauer spectroscopy data!, 61Ni21 cen-
ters (61Cu (61Ni) emission Mössbauer spectroscopy data!,
and63Cu21 centers~published63Cu NQR data! as well as the
computed values of the principal component of the crys
electric field gradient tensor at the copper sites in these c
pounds were analyzed. To reconcile the experimental
computed values of the parameters of the electric field g
dient tensor, it must be assumed that holes are present i
oxygen sublattices of all TlBaCaCuO and BiSrCaCu
compounds. These holes are located predominantly
oxygen sites located in the same plane as the Cu at
~Tl~2201!, Tl~2212!, and Bi~2201!!, Cu~2! atoms
~Tl~2223! and Bi~2223!!, or strontium atoms~Bi~2212!!. The
presence of holes in the oxygen sublattices is probab
typical feature of HTSCs and related compounds. T
sources of these holes, at least for the compounds~2223!,
might be intrinsic atoms~Tl, Bi, Cu~1!! whose charge state
depend on the technology used to fabricate the~2223!
samples.

This work was supported by the Russian Fund for F
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Using an approach based on the density functional, we show that the exchange-correlation
contribution to the system energy can be bigger than the sum of the kinetic energy and the Hartree
contribution due to redistribution of carriers over the quantum wells in doped composite
superlattices at low temperatures and moderate impurity densities. As a result, the ground state
of the system can correspond to an inhomogeneous electron distribution over the quantum
wells. Conditions when the homogeneous state is stable against small and finite density fluctuations
are determined, and a phase diagram is plotted. A nonlinear theory of the inhomogeneous
state is considered. ©1998 American Institute of Physics.@S1063-7761~98!02309-9#
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1. INTRODUCTION

Direct measurements of the conductivity in the vertic
direction in GaAs/GaAlAs superlattices uniformly dope
with silicon have revealed some unexpected features.1 In par-
ticular, structures without artificially introduced disorder b
with a relatively low doping level demonstrated at high
temperatures a transition from the quasi-metallic to acti
tion conductivity with an activation energy comparable to
even higher then the minigap width. It was suggested1 that
this anomaly, which could not be interpreted in terms of
standard theory, might be caused by effects of Coulomb
teraction.

It is well known that the role of the Coulomb interactio
in structures of low dimensionality~in particular, both the
exchange and correlation contribution to the total energy
system! is especially important. It seems that these energ
are responsible for the observed band gap reduction at
carrier densities in quantum wells. It has been noted1 that the
exchange-correlation effects can lead to distributions of
electron density varying in the vertical direction, which m
be a cause of the observed anomalies in the conductivit
doped superlattices.

The fact that the ground state of a system may be in
mogeneous when the interaction between electrons is im
tant ~Wigner crystallization2! has been actively discussed
the literature. Accurate calculations of the Wigner crysta
zation parameters, however, are difficult because the dif
ence between the important energies to be compare
small; therefore calculations of the threshold electron den
differ considerably. For example in the three-dimensio
case numerical Monte Carlo calculations produced a Wig
sphere with a radius measured in units of the Bo
radius, a05«h2/me2, equal to r s

(3)5100620 @r s
(3)

5(4pn0
(3)/3)21/3/a0, n0

(3) is the average electron densit
and « is a permittivity of the material#, and for two-
dimensional systemsr s.26, wherer s5(pn0)21/2/a0 andn0

is the two-dimensional electron density.3,4 In recent years,
Wigner crystallization has been described using the den
functional approach,5,6 which was previously successfull
5941063-7761/98/87(9)/6/$15.00
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applied to analyzing crystallization of simple liquids. In pa
ticular, a modified density functional theory6 has yielded
threshold values ofr s , in fair agreement with numerical cal
culations.

Experimental observation of Wigner crystallization
also very difficult because conditions for this process
quite restrictive. It seems that no Wigner crystallization h
ever been detected in three dimensions. Only crystalliza
of two-dimensional electrons over a liquid helium surfa
was observed in experiments.7,8

Quasi-two-dimensional systems offer new opportunit
for spontaneous symmetry breaking owing to electron d
sity distributions that vary in the vertical direction because
specific features of the electron spectrum size quantiza
conditions.1,9 Earlier9 a mechanism giving rise to states wi
inhomogeneous carrier distributions among quantum well
superlattices with a specially designed potential profile o
ing to delocalization of carriers in the second size quanti
tion subband was discussed.

The present study shows that, generally speaking, a
cially designed potential is unnecessary for generating in
mogeneous electron distributions in doped compositional
perlattices. They can be created by a different mechanism
the presence of exchange-correlation interaction betw
quasi-two-dimensional electrons in quantum wells even
only the lowest subband of size quantization is importa
We will see that the conditions for creating an electron
superstructure are less restrictive in this case than the co
tions for Wigner crystallization, and they can be realized
conventional doped superlattices.

2. PROBLEM STATEMENT

Here we study the possibility of spontaneous symme
breaking in a system of interacting electrons in doped co
positional superlattices~note that this model can be applie
to modulation-doped superlattices, which are composed
periodicp–n junctions!.

It is convenient to use an approach based on the den
functional theory. Let us consider electrons in a homo
© 1998 American Institute of Physics



b

-

an
th

he
d

n
he
th

he
e

on
ty

ct-
c-
on
si
le

e

e
n
r

-

a
t

io
s
e
um
ow
a
he
b

te
n

ar
n

as
t
th

is

m-
ron
wn
less
us
a

to
ant
me
ent
te
the
the
ting
,

as

c-
s
is

he
:

al
t
eg-

e

e-

he
e
ed
-
he
d as

595JETP 87 (3), September 1998 I. P. Zvyagin
neously doped compositional superlattice characterized
the Hamiltonian

H5T1Vee1Vei1Vconf1Vext, ~1!

whereT is the kinetic energy operator,Vee is the operator of
electron–electron interaction,Vei is the operator of interac
tion between electrons and positively charged ions,Vconf is
the operator describing interaction between electrons
confining potential of the superlattice, which determines
spatial profile of the conduction band edge, andVext is the
operator of interaction with an external electric field.

The theory of the density functional is based on t
Hohenberg–Kohn theorem, which asserts that a thermo
namic potential~such as free energy! of a system of interact-
ing particles can be expressed in terms of a universal fu
tional of one-particle density, which is independent of t
external field and has a maximum corresponding to
ground state for an equilibrium density distributionn(r ).10,11

In what follows, we limit our discussion to the case of t
ground state atT50 and consider extremal points of th
total system energyE@n#. In a general case, the expressi
for energy,E@n#, considered as a functional of the densi
can be written as follows:

E@n#5T@n#1EH@n#1Exc@n#1Econf@n#1Eext@n#, ~2!

whereT@n# is the kinetic energy of a system of nonintera
ing electrons,EH@n# is the energy of interaction among ele
trons calculated in the classical Hartree approximati
which also includes the energy of interaction with the po
tive background compensating for the average negative e
tron charge,Econf@n# is the energy of interaction with th
confining potential, andEext@n# is the energy of interaction
with external fields; the remaining part of the energy is d
noted byExc@n# and is called the exchange-correlation co
tribution ~note that all the energies are measured per unit a
of the superlattice!. The major difficulty of the density func
tional theory is that the exact form of the functionalExc@n#
is unknown, and it is calculated using various approxim
tions, such as the local density approximation based on
gradient expansion of the energy.10–12

A remarkable feature of the system under investigat
is that the potentialVconf is not a small parameter, but i
largely responsible for forming electron states in the sup
lattice. We consider the case of sufficiently narrow quant
wells, when the populations of all subbands, except the l
est one, is negligible, and the overlap between electron w
functions of neighboring wells is small. In this case, t
tight-binding approximation applies, and the problem can
formulated in terms of electron states localized in isola
quantum wells. In this approximation, the compone
Econf@n# is taken into account when the basis functions
defined. Neglecting the overlap between electron wave fu
tions of neighboring quantum wells~this condition will be
discussed in Sec. 6!, we can consider the electron density
a function of the discrete argument described as a se
points i corresponding to isolated quantum wells, and
energy~2! as a functional defined on set$r,i %, wherer is the
continuous radius-vector in the quantum well plane, andi is
y
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the well number. Since the functional~2! is known, the prob-
lem of the electron density is solved by minimizing th
functional.

3. ENERGY AS A FUNCTIONAL OF THE ELECTRON
DENSITY IN A SUPERLATTICE

Our goal is to study the possibility of spontaneous sy
metry breaking associated with different average elect
densities in different quantum wells. Since, as will be sho
below, conditions for the existence of such states are
restrictive than the conditions for creating inhomogeneo
continuous distributions of the electron density, like that in
two-dimensional Wigner crystal, we limit our discussion
inhomogeneous distributions of electrons with a const
density in each quantum well. In other words, we assu
that the electron density distribution function is independ
of the coordinater, i.e., the function is defined on a discre
set of points corresponding to different quantum wells in
superlattice. For simplicity, we consider the case when
electron density is concentrated in narrow layers intersec
with the z-axis, which is aligned with the vertical direction
at zi5 id, wherei is the quantum well number andd is the
superlattice period. Hence the density can be expressed

n~r !5(
n

n id~z2zi !,

wheren i is the two-dimensional electron density in thei-th
well, so that the three-dimensional distribution of the ele
tron density is determined by the set of electron densitien
5$n i% in all quantum wells, and the density functional
equivalent to a simple function of many variables$n i%.

Let us write expressions for different components of t
energy~2!. It is obvious that the kinetic energy is additive

T@n#5(
i

T~2!~n i !, ~3!

whereT(2)(n i) is the kinetic energy of the two-dimension
electron gas in thei-th well. In the case when only the lowes
subband is important and tunneling through barriers is n
ligible, we have

T~2!~n i !5n i
2/2r0 , ~4!

where r0 is the two-dimensional density of states in th
quantum well. The Hartree energyEH@n# for narrow quan-
tum wells can be expressed in the form

EH@n#5(
i , j

Vi j n in j2(
i

n iNdV* , ~5!

where Vi j is the potential of the Coulomb interaction b
tween electrons of thei-th andj-th wells,V* is the Coulomb
potential integrated over the entire volume, andNd is the
density of positively charged dopants. It is known that t
last term on the right of Eq.~5! exactly compensates th
interaction with the background charge of negatively charg
carriers. For simplicity, we use the ‘‘jellium’’ model, assum
ing that the positive charge is uniformly spread over t
space. In this case, the Hartree energy can be expresse
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EH@n#5
1

2 (
i , j

~ iÞ j !

Vi j ~n i2n0!~n j2n0!, ~5a!

where

Vi j 52~2pe2/«!uzi2zj u, ~6!

« is the permittivity, andzi andzj are the coordinates of th
i-th and j-th wells. Given the homogeneous distribution
electrons within one well, the average electron density
unit arean0 is related to the three-dimensional densityNd of
dopants by the formulan05Ndd.

Let us analyze separately the exchange and correla
contributions to the energyExc@n#. The exchange contribu
tion Ex@n# is additive if the overlap between wave functio
of neighboring wells is negligible, i.e.,

Ex@n#5(
i

Ex
~2!~n i !, ~7!

where Ex
(2)(n i) is the exchange energy of the two

dimensional electron gas in theith quantum well. We
have13,14

Ex
~2!~n i !52Cx~e2/«!n i

3/2, ~8!

where Cx.0.81. In addition, corrections due to the fini
quantum well width and finite temperature15 can be easily
included.

The correlation contributionEc@n# is due to a decreas
in the spin-independent pair correlation function at sm
separations between electrons in the presence of Coul
correlations~formation of a Coulomb hole around an ele
tron!. It is clear that the correlation contributionEc@n# is also
additive if the Coulomb hole size is smaller than the sepa
tion between quantum wells:

Ec@n#5(
i

Ec
~2!~n i !, ~9!

where Ec
(2)(n i) is the correlation energy of the two

dimensional electron gas with densityn i . With due account
of ring diagrams forEc

(2)(n) at n,2a0
22 , we have13

Ec
~2!~n!5

e2

2«a0
3H 21.29~na0

2!4/311.20~na0
2!3/2

20.14~na0
2!5/31OS ~na0

2!2ln
1

na0
2D J . ~10!

Note, however, that additivity fails when the Coulom
hole radius is larger than the separation between neighbo
wells. If the Coulomb hole radius is much larger than t
superlattice period~i.e., n0

21/2@d), the effect of the correla-
tion contribution on the redistribution of electrons amo
quantum wells is negligible in comparison with that of t
exchange interaction. Hence, choosing the expression fo
exchange-correlation energy in the form

Exc@n#5(
i

Exc
~2!~n i !
r

on

ll
b

-

ng

he

and settingExc
(2)(n).Ex

(2)(n), we obtain a lower bound for
the absolute value of the exchange-correlation energy
more accurate estimate isExc

(2)(n).Ex
(2)(n)1lEc

(2)(n),
where 0,l,1. A more accurate account of the correlatio
energy leads to some~insignificant forn0

1/2d!1) weakening
of conditions for an electronic superstructure, so in our e
mates we use the approximationExc

(2)(n).Ex
(2)(n).

Finally, in the presence of an external field the energy
its interaction with electrons in this approximation has t
form

Eext@n#5(
i

Vi
~ext!n i , ~11!

where Vi
(ext) is the energy of electron interaction with a

external field~which is assumed to depend only onz) at
z5zi .

4. STABILITY OF THE HOMOGENOUS STATE AGAINST
SMALL VARIATIONS IN THE ELECTRON DENSITY

It is known that Wigner crystallization in a homoge
neous electron gas proceeds via a spin-polarized state c
sponding to Stoner ferromagnetic ordering of electr
spins.4,5 An analysis of conditions for ferromagnetic orderin
of band electrons at low electron densities similar to t
performed by Shimizu16 can be based on the expressions
the energy functional given above. Concentrations of el
trons with spins up and down can be expressed asn↑
5(n/2)(11x) and n↓5(n/2)(12x), where n is the two-
dimensional electron density in the layer anduxu<1. Thus,
we can derive from Eqs.~4! and ~8! the energy difference
between the polarized and nonpolarized states in a t
dimensional layer:

DspE~x!5
n2

4r0
x22Cx

e2n3/2

2A2 «
$~11x!3/21~12x!3/222%.

~12!

It is clear that, in addition to the extremum atx50 at suffi-
ciently small n (An,2A2(3/2)Cxe

2r0 /«), the function
DspE(x) has a local minimum atuxu51; when

An,
2A2 ~A221!Cxe

2r0

«
, ~13!

the differenceDspE(1) is negative, i.e., the ground state co
responds to a fully spin-polarized electron gas in the lay
Finally, at An,(3A2/2)Cxe

2r0 /« the nonpolarized state i
unstable against small fluctuations in the spin polarizatio

In the region of ferromagnetic ordering in isolated qua
tum wells, a quasi-one-dimensional system similar to a o
dimensional chain of one-electron atoms with a small ov
lap between wave functions of nearest neighbors
considered. For homogeneous doping, if the finite over
integral between the electron wave functions in nearest qu
tum wells ~interlayer exchange! is taken into account, the
spin-dependent interaction between electrons in the supe
tice should lead to ferromagnetic ordering of electron sp
in neighboring quantum wells. Note the difference betwe
the superlattice and a chain of one-electron atoms, bec
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the analogue of the Hubbard energy in the superlattice~the
change in the Coulomb energy when one additional elec
is introduced to a quantum well! vanishes, so the Hubbar
gap also goes to zero.

Next we prove that the spin-ordered state with eq
electron densities in the layers is unstable againstz-
dependent variations of the electron density in a certain
of the density range defined by Eq.~13!. Consider the con-
ditions under which a transition from a spin-ordered state
an inhomogeneous state with different electron densitie
different wells lowers energy. To this end, we study the
pansion of the functionalE@n# in terms ofdn i5$n i2n0% in
the absence of an external field (Vi

(ext)50) about the homo-
geneous staten i5n0, which always corresponds to an extr
mum of E@n#. With terms of up to the second order indn,
we have

DE@n#5(
i

S 1

r0
2Cx

3e2

4«An0
D dn i

2

1
1

2 (
i , j

~ j Þ i !

Vi j dn idn j . ~14!

Let us denote byN the total number of quantum wells in th
superlattice and introduce normal coordinates using the
pansion

dn i5
1

AN
(

k
@Qkexp~ ikzi !1Qk* exp~2 ikzi !#, ~15!

where the sum is performed over all wave numbersk. As-
suming periodic boundary conditions ondn i , the parameter
k runs through the valuesk5(2p/Nd)n within the first Bril-
louin zone:2p/d,k<p/d, so the integersn belong to the
interval 2N/2,n<N/2. By substituting Eq.~15! in expan-
sion ~14!, we obtain

DE@n#5
1

2 (
k

F 1

r0
2

3Cxe
2

4«An0

1V~k!G uQku2. ~16!

Here

V~k!5(
i

V~zi !exp~2 ikzi !, ~17!

and we have taken into account that the parametersVi j

5V(zi2zj ) depend only on the differences between coor
nateszi2zj . FunctionsV(k) are periodic in the reciproca
one-dimensional lattice with periodb52p/d.

It follows from Eq. ~16! that the homogeneous state
the system is stable against small fluctuations only if all f
tors

W~k!5
1

r0
2

3Cxe
2

4«An0

1V~k!

are positive. If at least one of them vanishes or becom
negative at a certaink0, the system becomes unstable agai
a wave with wave numberk0. For the system under invest
gation, the functionV(k) can be calculated explicitly. We
have
n

l

rt

o
in
-

x-

-

-

s
t

W~k!5
1

r0
1

e2d

«sin2~kd/2!
2

3Cxe
2

4«An0

. ~18!

It is clear that the functionW(k) has a minimum atk5k0

5p/d, i.e., at the Brillouin zone boundary. If

1

r0
1

2pe2d

«
2

3Cxe
2

4«An0

,0, ~19!

a uniform distribution of electrons over the quantum we
becomes unstable, and the instability first appears for sm
harmonic variations in the electron density withk5k0, i.e.,
for a wavelength double the superlattice period.

Condition ~19! can be transformed to

Nd,Nd1* , ~20!

where

Nd1* 5
A1

d~d1d* !2
, A15S 3Cx

8p D 2

, d* 5
«

2pe2r0

.

The boundary of the region of instability of the spin-order
homogeneous state against small spatial fluctuations
shown schematically in Fig. 1 by the dotted line 18. The
dash-dotted line 4 in Fig. 1 defines the region in which t
spin-ordered state is the ground state.

Thus, Eqs.~13! and ~19! demonstrate that the transitio
to the electronic superstructure at lower electron densi
proceeds through a spin-ordered state. The reason is tha
Coulomb interaction between charges in different layers
scribed by the positive termEH@n# makes a transition to a
state with an inhomogeneous distribution of electrons o
the quantum wells more difficult. Moreover, when a sp
ordered state is formed in a layer, the two-dimensional e
tron density is half the density at which all electrons trans
to one of the two neighboring quantum wells.

FIG. 1. Domain of electronic superstructure~hatched!. Curves1–3 define
domains of ground states with periods 2d, 3d, and 4d, respectively. The
dotted line18 is the boundary of the instability region for the homogeneo
distribution of electrons over the quantum wells of a superlattice, and
curve 19 limits the domain of the metastable inhomogeneous state.
curve4 defines the region in which the spin-ordered state is the ground s
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5. PROPERTIES OF THE ELECTRONIC SUPERSTRUCTURE

One can investigate the inhomogeneous state of the
tem by minimizing the functionalE@n# in the absence of an
external field under the additional condition

(
i

n i5NdL,

where L is the system size in the vertical direction. It h
been shown in the previous section that, at the point wh
stability is lost, the system becomes unstable against elec
density fluctuations with the period which is double the s
perlattice constant. Therefore, let us first consider as an il
tration the nonlinear theory of inhomogeneous states wit
period twice as large as the superlattice period. Denote
electron density in even and odd quantum wells asn1,25n0

6Dn, respectively. After introducing the parameteru
5Dn/n0, we can express the energy change per one su
lattice period with respect to that in the homogeneous s
as

DE~u!5
1

2S 1

r0
1

2pe2d

« D n0
2u22Cx

e2n0
3/2

2«
$~11u!3/2

1~12u!3/222%. ~21!

It is obvious that the homogeneous solutionu50 to equation
dDE(u)/du50 exists for alln0, but, if condition~19! holds,
it is unstable against small variations in the electron dens
Curves ofDE(u) for variousn0 are plotted in Fig. 2. One
can see that, at small electron densitiesn0, the energy has
minima atu5Dn/n0561, i.e., when the density distribu
tion is such that all electrons go to even~odd! quantum
wells. The range of electron densities corresponding to
inhomogeneous state stable against small fluctuations is
termined by the condition

dDE~u!

du U
u51

,0. ~22!

It can be transformed to

FIG. 2. Energies of inhomogeneous states versusDn/n0 at different values
of n05Ndd ~the shapes of the curves are shown schematically!. The param-
etern0 decreases when the number labeling the curves increases.
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3Cx~A221!

4

e2

«An0

,0

or

Nd,Nd2* , ~23!

where

Nd2* 5
A2

d~d1d* !2
, A252S 3Cx

8p D 2

.

The region of the inhomogeneous state stable against s
fluctuations is bounded in Fig. 1 by dotted curve19.

The energy of the inhomogeneous distribution becom
lower than that of the homogeneous distribution wh
DE(u)uu51,0. This condition can be expressed as

Nd,Nd3* , ~24!

where

Nd3* 5
A3

d~d1d* !2
, A35

~322A2 !Cx
2

p2
.

Equation~24! determines the range of the dopant dens
in which the ground state is spatially nonuniform, i.e.,
electronic superstructure with a period that is double the
perlattice constant exists. This region~it is hatched in Fig. 1!
is bounded by curve1. An important point is that conditions
~21!, ~23!, and~24! are not identical. In the region

Nd1* ,Nd,Nd3* ~25!

the homogeneous state is stable against small fluctuati
but unstable against relatively large fluctuations. In the
gion

Nd3* ,Nd,Nd2*

the inhomogeneous state is stable against small fluctuati
but is metastable.

Now let us address a more general case and suppose
a periodic structure with a period that iss-fold of the super-
lattice constant is formed, such that all electrons from
well labeled by (n21) go thesth well, son15sn0 and n i

50 for i 22, . . . ,s. Then the change in the energy per o
superlattice period with respect to the homogeneous state
be expressed as

DE~s!5
pe2d

2«
n0

3/2H F ~s21!d* 1
s221

3
dGn0

1/2

2
Cx

p
~s1/221!J . ~26!

It is clear that forNd,Nd
(s) , where

Nd
~s!5$s1122s1/2%

Cx

p

A~s!

d@~s21!d* 1~s221!d/3#2
,

and A(s)5(s1122s1/2)(Cx /p)2, the ground state corre
sponds to the periodsmind, wheresmin is the value ofs cor-
responding to the minimum of energy~26!. Thus, at low
electron densities inhomogeneous states with periods la
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than twice the superlattice constant can form. The region
which the ground state periods are 3d and 4d are defined in
Fig. 1 by curves2 and 3. Note, however, that such state
have lower stability than those with the double superlatt
period at intermediate densities because the gain in en
DE(s) is smaller at lowern0.

6. DISCUSSION

Thus, in superlattices with sufficiently small periods
low densities of charge carriers, states with nonuniform c
rier distributions over the quantum wells or electronic sup
structures can exist. Note that the mechanism for spont
ous symmetry breaking in the vertical direction is differe
from that of Wigner crystallization. Although the problem
formally one-dimensional, multidimensional aspects are a
important in this problem, because the resulting inhomo
neous distribution essentially depends on the exchange
correlation interactions within quasi-two-dimensional qua
tum wells. The conditions for the spontaneous symme
breaking in this case are less restrictive for the followi
reasons. It is known that the local density approximat
yields considerably lower critical densities than more ac
rate methods, such as those based on numerical calculati3

The reason is that corrections deriving from the gradient
pansion of the density functional are important. The criti
density in the system under investigation is lower than i
homogeneous electron gas because overlap integrals, w
play the role of gradient corrections, are small. They can
easily taken into account, but they produce only an ad
tional term in equations that determine the domains of
superstructure existence and stability. Note that the ove
integrals depend on positions of energy levels in the we
and they become smaller in the inhomogeneous state w
the energy levels are shifted by the Coulomb fields due to
carrier redistribution between quantum wells.

A transition to an inhomogeneous state leads to shifts
size quantization subbands in neighboring wells. Henc
gap can appear in the spectrum of elementary excitat
associated with electronic transitions between neighbo
wells. These are the excitations that determine the vert
conductivity in superlattices at finite temperatures.

One can easily estimate the dopant density at wh
electronic superstructures are possible. By taking for an
in
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timater05331013 eV21 cm22, «512.7, andd59 nm, we
obtain d* '4.7 nm andNd1* '8.231016cm23 ~this corre-
sponds to an average two-dimensional densityn0'7
31010cm22). As was stated above, inclusion of the corre
tion energy leads to an increase in constantCxc , hence in the
critical densityNdi* . This estimate indicates a possibility o
inhomogeneous electronic states under conditions which
less restrictive than those for Wigner crystallization@at the
parameters given above,r s.26 ~see Ref. 4! corresponds to a
critical two-dimensional densityn0'33108 cm22 for
Wigner crystallization#. On the other hand, it follows from
our estimate that formation of an electronic superstruct
~and, consequently, of a gap in the spectrum of electro
excitations! could be expected in the range of dopant den
ties where anomalies in the superlattice vertical conductiv
have been detected.1
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New intensity magneto-optical effect in materials exhibiting giant magnetoresistance
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The change in the reflectivity of a metallic magnetic multilayer that exhibits giant
magnetoresistance for a monochromatic electromagnetic plane wave with polarization along
the magnetization (s polarization! in response to a change from the antiferromagnetic magnetic
configuration of the multilayer to the ferromagnetic configuration is investigated. This
magneto-optical effect is treated in the effective-medium approximation, in which the dielectric
constant needed is found analytically with consideration of the interface roughness
scattering of electrons. It is shown in the example of an Fe/Cu multilayer that the effect amounts
to ;0.7%. The representation found for the complex conductivity is convenient in a
special case for investigating the magnetoresistive effect. ©1998 American Institute of Physics.
@S1063-7761~98!02409-3#
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1. INTRODUCTION

Since the discovery of giant magnetoresistance in me
lic magnetic multilayer films~multilayers!, significant ad-
vances have been made in explaining its nature.1–13 The
model most frequently used for it is associated with rou
ness of the interfaces between the layers, on which the e
trons comprising the macroscopic current are scattered
ferently, depending on which of the two possible orientatio
of the spin along a fixed direction of the magnetization in
plane of the multilayer they have. An external magnetic fi
H can change the configuration of the magnetization
tween neighboring magnetic layers separated by a layer
nonmagnetic metal from an antiparallel, or, as it may
termed, antiferromagnetic, configuration~when H50) to a
parallel, or ferromagnetic, configuration. As a result, t
symmetry in the scattering of electrons with different sp
orientations changes, and a pronounced magnetoresistiv
fect consequently appears. It can exceed 50%, as, for
ample, in the case of Co/Cu and Fe/Cr multilayers with
specific combination of parameters characterizing the tra
port properties of electrons in the multilayers.7 The theory
developed not so long ago on the basis of this idea7,8 is a
major generalization of the Fuchs–Sondheimer theory
describing the size effect of a single metallic layer14 and
yields results that are close to experiment. Other approa
to the problem based on the Kubo–Greenwood formula
Chambers and Pipard’s method were considered, for
ample, in Refs. 12 and 13 and the references cited the
Apart from the giant magnetoresistance of the multilaye
their optical properties, which vary in response to change
their magnetic configuration, i.e., the magneto-optical
fects, can be of considerable interest. Sufficient attention
not heretofore been focused on their investigation.

In this paper we shall examine the change in the refl
6001063-7761/98/87(9)/8/$15.00
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tivity for a wave polarized along the magnetization (s polar-
ization!. This change is, in fact, a new magneto-optical
fect, which is caused by the spin-dependent scattering
electrons~see Ref. 15!.1! A method for obtaining a micro-
scopic description of the optical properties of a meta
multilayer in the approximation of an effective homogeneo
anisotropic medium will be demonstrated in the example
the determination of the diagonal element«xx of the dielec-
tric tensor«̂, which is needed to find the dependence of t
new intensity magneto-optical effect on the parameters of
multilayer.

2. EFFECTIVE MEDIUM AND REFLECTIVITY

When magneto-optical effects are considered in laye
structures, it is usually assumed that each layer is chara
ized by its own dielectric tensor, which is the same as tha
the corresponding bulk medium. Then the characteristic m
trix of each layer and the parameters of the reflected or tra
mitted wave of interest are found from Maxwell’s equatio
and the boundary conditions.19,20 In metallic multilayers ex-
hibiting giant magnetoresistance the electron mean free p
should exceed the thicknesses of the individual layers.
this reason, the use of the tensor of the corresponding b
medium for each layer becomes unacceptable.

However, a multilayer can be treated as a homogene
anisotropic medium2!, for which the dielectric tensor«̂ must
be determined. Moreover, such an effective medium can
regarded as a semi-infinite medium filling the half-spacez
.0 in order to demonstrate the occurrence of a magn
optical effect consisting of a change in the reflectivityR for
an s-wave in response to a change in the magnetic confi
ration of the multilayer.

It follows from the wave equation
© 1998 American Institute of Physics
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FIG. 1. a! Antiferromagnetic superlattice con
figuration; b! potential energy of electrons with
spin up~solid line! and spin down~dashed line!,
W250; WF is the Fermi energy.
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¹2E1k0
2~11 im0c2v21ŝ !E50 ~2.1!

that the element of the dielectric tensor needed to determ
R is

«xx511 im0c2v21sxx , ~2.2!

wherec is the speed of light,v is the frequency of the wave
m0 is the magnetic constant, andsxx is the conductivity~a
diagonal element of the tensorŝ), which relates the longi-
tudinal currentJx averaged over a period of the structure
the external wave field inducing it. If the value of«xx

5Re«xx1 i Im «xx is known, the solution of the correspond
ing boundary-value problem for Eq.~2.1! gives20

R5Un0 cosw2An22n0
2 sin2 w

n0 cosw1An22n0
2 sin2 w

U2

, ~2.3!

where

Ren, Im n5
1

A2
AA~Re«xx!

21~ Im «xx!
26Re«xx

are the real and imaginary parts of the refractive index of
effective medium,w is the angle of incidence, andn0 is the
refractive index in the regionz,0. It is henceforth assume
that n051. Thus, the problem reduces to determiningsxx in
~2.2! with consideration of the features of the behavior of t
conduction electrons in the multilayer.

3. DISTRIBUTION FUNCTION OF ELECTRONS AND
CONDUCTIVITY

In the effective-medium approximation the value of«xx

must be found under the following obvious condition: t
multilayer ~Fig. 1a! is an infinite periodic~along thez axis!
structure~a one-dimensional magnetic superlattice!. The pe-
riods of its antiferromagnetic and ferromagnetic configu
tions consist of four and two layers, respectively, and
specified by the mean coordinates of the rough interface3!

The wave

Eext5E0 exp@2 ivt1 ik0~x sinw1z cosw!#,

which is polarized along the magnetization in the layerss
polarization!, leads to the existence of a longitudinal curre
Jx j(z) in eachj th layer of the superlattice, and the value
sxx in ~2.2! is found from the condition

Jx5sxxE0 . ~3.1!

The conductivitysxx can be determined using the k
netic theory, which is usually used to investigate the mag
toresistive effect in multilayers.7,8,23–25 In this theory elec-
trons are regarded as classical particles having a coordinr
and a quasimomentump. The nonequilibrium distribution
ne

e

-
e
.

t

e-

e

function f j of the electrons in eachj th layer must satisfy the
Boltzmann equation, which, in the relaxation-time appro
mation, has the form

] f j

]t
1~vj ,¹ r f j !1e~Eext,¹pf j !52

f j2 f 0

t0 j
, ~3.2!

wherevj is the mean velocity of electrons characterized
the relaxation timet0 j , e51.6310219 C is the charge of an
electron, andf 0 is the Fermi–Dirac distribution function. I
the usual representationf j5 f 01c(v,t) is used, the devia-
tion from Ohm’s law is neglected, allowance is made for t
fact that f 0 depends only on the energy of the electronsW
and that¹pf 05vj] f 0 /]W, it is assumed thatc j}exp(2ivt
1ik0xsinw), and the relationuvut j k0!1 ~the electron mean
free path is much shorter than the wavelength of the light! is
taken into account, then Eq.~3.2! is simplified:

]c j

]z
1

1

t jvz j
c j52eE0

vx j exp~ ik0z!

vz j

] f 0

]W
. ~3.3!

Here vx j and vz j are the projections of the velocityvj onto
thex andz axes, and the parametert j5t0 j (12 ivt0 j )

21 can
be called the frequency-dependent relaxation time. The fu
tion

c j~z!5eE0

] f 0

]WFCj expS 2
z

t j uvz ju
D2

t jvx j exp~ ik0z!

11 ik0t jvz j
G ,

which is a general solution of Eq.~3.3!, can be separated int
two equations:

c j
1~z!5eE0

] f 0

]W FCj
1 expS 2

z

t j uvz ju
D2t jvx jG , vz j.0,

c j
2~z!5eE0

] f 0

]W FCj
2 expS z

t j uvz ju
D2t jvx jG , vz j,0,

~3.4!

with consideration of the approximationt j
211 ik0vz j5t0 j

21

2 iv(122pvz jc
21)'t j

21 , which can be made in view o
the conditionuvz ju,vF j!c, wherevF j is the Fermi velocity.
The functionsc j

1 andc j
2 have the same form as they wou

have, if there were a uniform electric field along thex axis in
the superlattice instead of a plane wave~Fig. 1a!. Therefore,
there should be periodicity in the electron distribution f
such symmetry, i.e., it is sufficient to determine only t
functions c1

6 , . . . ,c4
6 for the antiferromagnetic configura

tion.
The arbitrary constantsCj

1 andCj
2 in ~3.4! can be found

from the boundary conditions:7

c1
1~2a2b!5P10c1

2~2a2b!1Q01c0
1~2a2b!,

c1
2~2a!5P12c1

1~2a!1Q21c2
2~2a!,
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c2
1~2a!5P21c2

2~2a!1Q12c1
1~2a!,

c2
2~0!5P23c2

1~0!1Q32c3
2~0!,

c3
1~0!5P32c3

2~0!1Q23c2
1~0!,

c3
2~b!5P34c3

1~b!1Q43c4
2~b!,

c4
1~b!5P43c4

2~b!1Q34c3
1~b!,

c4
2~a1b!5P45c4

1~a1b!1Q54c5
2~a1b!, ~3.5!

wherePjk is the transparency factor, which is equal to t
probability of the specular reflection of an electron from t
interface between layersj and k ~Fig. 1a!, and Qjk is the
transmission coefficient, which characterizes the passag
electrons through this interface. The roughness of each in
face is assumed to be a random functionz jk(x,y), but it is
such that its average value in a plane is equal to z
^z jk(x,y)&50. The roughness can be characterized by
parameterh5A^z jk

2 (x,y)&, which will henceforth be as-
sumed to be identical for all the interfaces. The explicit re
resentations ofPjk and Qjk in terms ofh and the electron
parameters are known as the generalized Ziman–So
formulas:23

Pjk5Rjk expF2S 2h

\
mjv j cosu j D 2G ,

Qjk5~12Rjk!expF2
h2

\2
~mjv j cosu j2mkvk cosuk!

2G ,

Rjk5S v j cosu j2vk cosuk

v j cosu j1vk cosuk
D 2

, ~3.6!

wheremj is the effective mass andv j is the absolute value o
the velocity.

When electrons pass through an interface, which act
a potential barrier, the anglesu j and uk must satisfy the
refraction law
of
r-

o:
e

-

er

as

sinu j

sinuk
5

mkvk

mjv j
. ~3.7!

For the possible total internal reflection of electrons, wh
their angle of incidenceu j exceeds a certain critical value
the reflectivityRjk51, and the transmission coefficientQjk

50.
The boundary conditions~3.5! become periodic, if

P105P54, Q015Q45, c0
1~2a2b!5c4

1~a1b!,

c5
2~a1b!5c1

2~2a2b!.

This gives~in the case of the antiferromagnetic configur
tion! a matrix equation forC1

6 , . . . ,C4
6 . The dimensionality

of the matrix (838), however, is halved, if the following
relations for thePjk andQjk and the limiting values of thec j

within a period of the superlattice, which are obvious in vie
of the symmetry, are used:

c1
1~2a2b!5c1

2~2a!, P105P12, Q015Q21,

c0
1~2a2b!5c2

1~2a!,

c1
1~2a!5c1

2~2a2b!, c1
1~2a!5c1

2~2a2b!,

c3
2~0!5c3

1~b!.

Thus, it is sufficient to have only four boundary condition
viz.,

c1
2~2a!5P12c1

2~2a2b!1Q21c2
2~2a!,

c2
1~2a!5P21c2

2~2a!1Q12c1
2~2a2b!,

c2
2~0!5P23c2

1~0!1Q32c3
1~b!,

c3
1~0!5P32c3

1~b!1Q23c2
1~0!, ~3.8!

in order to determine the distribution functions needed. T
substitution of~3.4! into ~3.8! leads to the equation
3
expS 2

a

j1
D F12P12expS 2

b

j1
D G 0 2Q21expS 2

a

j2
D 0

2Q12expS 2
a1b

j1
D expS a

j2
D 2P21expS 2

a

j2
D 0

0 2P23 1 2Q32expS 2
b

j3
D

0 2Q23 0 12P32expS 2
b

j3
D 4

3FC1
2

C2
1

C2
2

C3
1

G5F t1vx1~12P12!2t2vx2Q21

t2vx2~12P21!2t1vx1Q12

t2vx2~12P23!2t3vx3Q32

t3vx3~12P32!2t2vx2Q23

G , ~3.9!
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wherej j5t j uvz ju. A direct calculation of the inverse matri
for ~3.9! gives

C1
25D21 expS a

j1
D H t1vx1F ~12P12!S 12P32expS 2

b

j3
D D

2expS 2
2a

j2
D ~~12P12!P211Q12Q21!S P232~P23P32

2Q23Q32!expS 2
b

j3
D D G2t2vx2Q21S 12expS 2

a

j2
D

3F S 12P32expS 2
b

j3
D D S 11P23expS 2

a

j2
D D

1Q23Q32expS 2
b

j3
2

a

j2
D G2t3vx3Q21Q32

3expS 2
a

j2
D S 12expS 2

b

j3
D D J ,

C2
25D21H 2t1vx1Q12expS 2

a

j2
D S 12expS 2

b

j1
D D

3S P232~P23P322Q23Q32!expS 2
b

j3
D D1t2vx2

3F S 12P12expS 2
b

j1
D D S ~12P23!S 12P32

3expS 2
b

j3
D D2Q23Q32expS 2

b

j3
D D

1S P232~P23P322Q23Q32!expS 2
b

j3
D D S ~12P21!

3S 12P12expS 2
b

j1
D D2Q12Q21expS 2

b

j1
D D

3expS 2
a

j2
D G2t3vx3Q32S 12expS 2

b

j3
D D

3S 12P12expS 2
b

j1
D D J ,

C2
15D21 expS 2

a

j2
D H 2t1vx1Q12S 12expS 2

b

j1
D D

3S 12P32expS 2
b

j3
D D1t2vx2F S 12P32expS 2

b

j3
D D

3S ~12P21!S 12P12expS 2
b

j1
D D2Q12Q21

3expS 2
b

j1
D D1S P212~P12P212Q12Q21!

3expS 2
b

j1
D D S ~12P23!S 12P32expS 2

b

j3
D D

2Q23Q32expS 2
b

j3
D DexpS 2

a

j2
D G2t3vx3Q32
3expS 2
a

j2
D S 12expS 2

b

j3
D D S P212~P12P21

2Q12Q21!expS 2
b

j1
D D J ,

C3
15D21H 2t1vx1Q12Q23expS 2

a

j2
D S 12expS 2

b

j1
D D

2t2vx2Q23S 12expS 2
a

j2
D D F S 12P12expS 2

b

j1
D D

3S 11P21expS 2
a

j2
D D1Q12Q21expS 2

b

j1
2

a

j2
D G

1t3vx3F ~12P32!S 12P12expS 2
b

j1
D D2expS 2

2a

j2
D

3~~12P32!P231Q23Q32!S P212~P12P21

2Q12Q21!expS 2
b

j1
D D G J ,

D5S 12P12expS 2
b

j1
D D S 12P32expS 2

b

j3
D D

2expS 2
2a

j2
D S P212~P12P212Q12Q21!expS 2

b

j1
D D

3S P232~P23P322Q23Q32!expS 2
b

j3
D D . ~3.10!

The remaining constants are related to the constants alr
found in the following manner:

C1
15C1

2 expS 2
2a1b

j1
D , C3

25C3
1 expS 2

b

j3
D ,

C4
15C2

2 expS 2
b

j2
D , C4

25C2
1 expS 2

b

j2
D .

After substituting~3.10! into ~3.4!, we obtain the distribution
functions.

If it is assumed that the Fermi surface is spherical,
velocity

v j5A2~W2Wj !

mj
, ~3.11!

whereWj is the potential energy of the electrons in layerj .
The potential energy of the electrons~Fig. 1b! depends on
the orientation of their spin.7 Therefore, the distribution
functions also depend on spin. Then, the currentJx induced
by the wave can be regarded as the sum of the two curr
caused by electrons with spins whose orientations along
magnetization can be called by convention up (↑) and down
(↓), respectively, as is shown in Fig. 1b. The distributi
functions found can clearly be used to calculate each of th
two currents in all the layers of a superlattice within a perio
For this purpose, the known values of the potential energy
electrons with an assigned spin orientation must be sub
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tuted into ~3.11!. In spherical coordinates the velocityvj

5vj (W)(cosw sinuj , sinw sinuj , cosuj). Then the defini-
tion of the current in layerj has the form24,25

Jx j~z!5
e

4pE0

`

r jv j dWE
0

2p

cosw dw

3F E
0

p/2

c j
1sin2u j du j1E

p/2

p

c j
2sin2u j du j G ,

~3.12!

wherer j is the density of states. The currentsJx1 , Jx2 , Jx3 ,
andJx45Jx2 are found from~3.12! with consideration of the
approximation] f 0 /]W52d(W2WF), where WF is the
Fermi energy. After averaging the current within a perio
we obtain the following necessary result:

sxx5
1

2~a1b!
@bs1g112as2g21bs3g3#, ~3.13!

where

s j5
1

3
e2rF jt jvF j

2 5
e2mj

2t jvF j
3

6p2\3

is the bulk conductivity of thej th layer.7 The Fermi velocity
vF j5A2(WF2Wj )/mj must be substituted forv j in ~3.6!,
~3.7!, and ~3.10!, which are needed to calculate the para
eters

g1512
3

2bE0

p/2S 12expS 2
b

l 1cosu1
D D H l 1 sinu1

3F ~12P12!S 12P32expS 2
b

l 3 cosu3
D D

2expS 2
2a

l 2 cosu2
D S P23S 12P32expS 2

b

l 3 cosu3
D D

1Q23Q32expS 2
b

l 3 cosu3
D D ~~12P12!P211Q12Q21!G

2 l 2 sinu2Q21S 12expS 2
a

l 2 cosu2
D D F S 12P32

3expS 2
b

l 3 cosu3
D D S 11P23expS 2

a

l 2 cosu2
D D

1Q23Q32expS 2
b

l 3 cosu3
2

a

l 2 cosu2
D G

2 l 3 sinu3Q21Q32expS 2
a

l 2 cosu2
D

3S 12expS 2
b

l 3 cosu3
D D J D21 sin2 u1 cosu1 du1 ,
,

-

g2512
3

4aE0

p/2S 12expS 2
a

l 2 cosu2
D D H F l 2 sinu2

3S ~12P21!S 12P12expS 2
b

l 1 cosu1
D D2Q12Q21

3expS 2
b

l 1 cosu1
D D2 l 1 sinu1Q12

3S 12expS 2
b

l 1 cosu1
D D GF S 12P32expS 2

b

l 3 cosu3
D D

3S 11P23expS 2
a

l 2 cosu2
D D1Q23Q32

3expS 2
a

l 2 cosu2
2

b

l 3 cosu3
D G1F l 2 sinu2S ~12P23!

3S 12P32expS 2
b

l 3 cosu3
D D2Q23Q32

3expS 2
b

l 3 cosu3
D D2 l 3 sinu3Q32

3S 12expS 2
b

l 3 cosu3
D D GF S 12P12

3expS 2
b

l 1 cosu1
D D S 11P21expS 2

a

l 2 cosu2
D D

1Q12Q21expS 2
a

l 2 cosu2
2

b

l 1 cosu1
D G J

3D21 sin2 u2 cosu2 du2 ,

g3512
3

4aE0

p/2S 12expS 2
b

l 3 cosu3
D D H 2 l 1 sinu1Q12

3Q23expS 2
a

l 2 cosu2
D S 12expS 2

b

l 1 cosu1
D D

2 l 2 sinu2Q23S 12expS 2
a

l 2 cosu2
D D F S 12P12

3expS 2
b

l 1 cosu1
D D S 11P21expS 2

a

l 2 cosu2
D D

1Q21Q12expS 2
a

l 2 cosu2
2

b

l 1 cosu1
D G1 l 3 sinu3

3F ~12P32!S 12P12expS 2
b

l 1 cosu1
D D

2expS 2
2a

l 2 cosu2
D S P21S 12P12expS 2

b

l 1 cosu1
D D

1Q12Q21expS 2
b

l 1 cosu1
D D ~~12P32!P23

1Q32Q23!G J D21 sin2 u3 cosu3 du3 , ~3.14!

which take into account the interface roughness and the
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effect, or, more specifically, the fact that the thicknesses
the layers can be much smaller than the electron mean
pathl j5t jvF . The anglesuk in ~3.6! are related to the angl
over which the integration in~3.14! is carried out by Eq.
~3.7!, from which it follows that the angle of total interna
reflection of the electrons

u j max5arcsinAmk~WF2Wk!

mj~WF2Wj !
, if Wk.Wj .

It is important to note that since the spatial dispers
could be neglected, the difference betweensxx5sxx

↑ 1sxx
↓ in

~3.1! and the conductivity in the static case is related only
t j (v). Therefore, the magnetoresistive effect of a magn
superlattice can be investigated using~3.13! asv→0.

For the antiferromagnetic configuration, we clearly ha
sxx
↑ 5sxx

↓ , and the conductivitysxx , which is denoted by
sAF , is

sAF5
1

a1b
@bs1g112as2g21bs3g3#, ~3.15!

where the parameterss andg are calculated using~3.14! for
electrons with spin up or spin down.

Reversal of the direction of the magnetization in t
third layer of the superlattice period~Fig. 1a! gives a ferro-
magnetic configuration, for which~3.13! remains valid, since
the potential energyW3 was assumed to be an arbitrary p
rameter during its derivation. In this caseW35W1 for elec-
trons with a certain spin orientation. Then, in~3.14! vF3

5vF1 , m35m1 , and, according to~3.7!, u35u1 . It follows
from ~3.6! that P325P12, P235P21, andQ325Q12, and in
~3.13! s35s1 and g35g1 . However, sxx

↑ Þsxx
↓ . When

these relations are taken into account, the conductivity
the ferromagnetic configuration has the form

sFM5
1

a1b(↑↓ ~bs1g11as2g2!. ~3.16!

If the conductivities of the second and fourth layers~Fig. 1a!
within a period are set equal to zero, it follows from~3.14!–
~3.16! that

sAF5sFM5
b

a1b
~s1g11s3g3!.

The expressions forg1 andg3 are similar to the expressio
for the parameter

g512
3l

2b

3E
0

p/2~12P!@12exp~2b/ l cosu!#

12Pexp~2b/ l cosu!
sin3 u cosu du,

which takes into account the size effect~for a layer of thick-
nessb) in the Fuchs–Sondheimer theory.14 If all the layers
are identical (Wj50, s j5s) and there is no roughness (h
50), it follows from ~3.14!–~3.16! that sAF5sFM5s.
f
ee

n

o
ic

e

r

4. MAGNETORESISTIVE EFFECT

The expressions obtained for the conductivitiessAF and
sFM in the special case wherev50 clearly enable us to se
how the magnetoresistive effect, which is characterized
the quantity (sFM2sAF)/sFM , depends on the thicknesse
of the layers (a andb), the interface roughness parameterh,
and the relaxation time.

As an example, we shall examine an Fe/Cu superlatt
for which the potential-energy distribution of the electrons
known ~Fig. 1b!:7 WF2Wj58.23, 8.54, and 5.73 eV (j
51,2,3). The effective masses are assumed to be ident
mj54m0 , wherem0 is the rest mass of the electron. Ift
510213 s, then the Fermi velocities for electrons with sp
up ~Fig. 1b! are vF j58.513105, 8.673105, and 7.1
3105 m/s, and the corresponding mean free paths are m
greater than the thicknesses of the layers.

It follows from ~3.14!–~3.16! that the conductivitiessAF

andsFM decrease with increasingh and that the magnetore
sistive effect increases to a certain maximum value and t
decreases~Fig. 2!. If all the relaxation timest0 j are identical,
the effect is not observed for ideal superlattice interfa
(h50). Differences between the relaxation times in the la
ers produce a relatively small effect whenh50. In particu-
lar, if t153310214 s, t2510214 s, and t355310214 s,
for a5b510 Å the effect amounts to 3.2% whenh50,
whereas it amounts to 37% in the case ofh51 Å. The
greater is the relaxation timet0 j , the stronger is the effect
but it decreases as the thicknesses of the layers decrease~Fig.
2!. A similar numerical analysis for an Fe/Cr multilaye
gives a dependence of the effect onh that coincides exactly
with one of the results in Ref. 7.

5. NEW INTENSITY MAGNETO-OPTICAL EFFECT

As follows from~3.14! and~3.15!, the dielectric constan
~2.2! of the effective medium for the antiferromagnetic s
perlattice configuration has the form

«AF512
1

a1b F bvp1
2 g1

v~v1 ivt1!
1

2avp2
2 g2

v~v1 ivt2!
1

bvp3
2 g3

v~v1 ivt3!
G ,

~5.1!
where

vp j5
ecmj

p
Am0vF j

3

6\3

FIG. 2. Dependence of the magnetoresistive effect onh for a5b510 Å
~solid lines! anda5b520 Å ~dashed lines!.



-

606 JETP 87 (3), September 1998 Kubrakov et al.
FIG. 3. Real~a! and imaginary~b! parts of the re-
fractive indices~for the antiferromagnetic and fer
romagnetic superlattice configurations! as functions
of \v; t0 j510213 s, h52 Å, a5b510 Å ~solid
lines! anda5b520 Å ~dashed lines!.
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is the plasma frequency of layerj and vt j5t0 j
21 . The pa-

rametersg j in ~5.1!, as in ~3.15!, are defined for electron
with the same spin orientation. In the case of the ferrom
netic configuration, the dielectric constant is given by t
expression

«FM512
1

a1b (
↑↓

F bvp1
2 g1

v~v1 ivt1!
1

avp2
2 g2

v~v1 ivt2!
G .

~5.2!

For a homogeneous nonmagnetic metal (j j50, h50, g j

51, and 2vp1
2 52vp2

2 5vp
2) both formulas transform into the

familiar expression

«512
vp

2

v~v1 ivt!
.

The parametersg j in ~5.1! and ~5.2! are integrals, which
depend on all the parameters of the superlattice and con
the frequencyv of the wave, the thicknesses of the magne
(b) and nonmagnetic (a) layers, the interface roughnessh,
the effective masses of the electrons (m1 , m2 , and m3),
their mean free paths (l 1 , l 2 , and l 3), the relaxation times
(t1 , t2 , and t3), and the potential-energy distribution fo
spin-up or spin-down electrons~Fig. 1b!.

The difference betweeng j for the antiferromagnetic su
perlattice configuration andg j for the ferromagnetic configu
ration is the only reason why«AFÞ«FM . Thus, according to
~2.3!, the reflectivities for a plane wave with polarizatio
along the magnetization of the multilayer~the intensity of the
reflected wave! will also differ. This can be called a
magneto-optical effect, which was apparently not previou
considered. It is convenient to characterize this new effec
the change in reflectivity (RFM2RAF)/RFM . The effect is
caused mainly by the interface roughness of the multilay
-
e

in
c

y
y

r.

If there is no roughness, purely specular reflection of
electrons takes place, all the relaxation times are identi
the effect is not observed.

The dependence of the real and imaginary parts of
refractive indices of an Fe/Cu superlattice~for the antiferro-
magnetic and ferromagnetic configurations! on the energy
\v is shown in Fig. 3. Plots of the dependence of t
magneto-optical effect on\v and the roughness parameterh
are shown in Fig. 4.

The maximum of the magneto-optical effect for differe
values of the parameters characterizing the multilayer
achieved at normal incidence. The magneto-optical effec
considered here in reference to the configuration which
hibits the Kerr magneto-optical effect, which consists o
change in the intensity of the reflected wave upon magn
zation of the medium and is governed by off-diagonal e
ments of the magnetic permeability tensor. The off-diago
elements of the dielectric tensor do not make any contri
tion. As was demonstrated experimentally in Refs. 16 a
18, the Kerr magneto-optical effect has a value of;1025,
which is at least two orders of magnitude smaller than
new magneto-optical effect in magnetic multilayers exhib
ing giant magnetoresistance. As the angle of incidence
creases, the Kerr effect decreases, and it vanishes at no
incidence, while the angular dependence of the n
magneto-optical effect has the opposite character.

6. CONCLUSION

The change in the reflectivity of a metallic multilaye
that exhibits giant magnetoresistance for a monochrom
plane wave of light at normal incidence and with polarizati
along the magnetization in the plane in response to a cha
al
FIG. 4. Dependence of the magneto-optic
effect on\v ~a! for t0 j510213 s, h52 Å,
and a5b510 Å ~solid line! and a5b
520 Å ~dashed line! and on h ~b! for a
5b510 Å andt0 j510213 s.
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from the antiferromagnetic magnetic configuration of t
multilayer to the ferromagnetic configuration under the
tion of an external field has been investigated. This reflec
ity change is a new magneto-optical effect since the defi
tion of a ‘‘magneto-optical effect’’ includes any change
any characteristic of a wave in response to a change in
magnetization of the medium from which the wave is
flected. It has been shown in the example of an Fe
multilayer that the effect~which is defined as the relativ
change in the reflectivity of a semi-infinite medium! amounts
to ;0.7%.

Because the mean free path significantly exceeds
thicknesses of the individual layers, the conventional
proach, in which the dielectric tensor of each metal comp
ing the multilayer is assumed to be known, cannot be e
ployed to study the effect. The possible, more corr
analysis performed in the present work involves the use
the approximation of an effective medium, whose dielec
tensor is determined with consideration of the transport pr
erties of the conduction electrons already in a magnetic
perlattice, i.e., an infinite periodic medium consisting of
ternating magnetic and nonmagnetic metallic layers. Then
study the magneto-optical effect under consideration, i
sufficient to assume that the medium is semi-infinite.

Since the Fermi velocity is much smaller than the velo
ity of light, in the present work it was possible to determi
the complex conductivity of the effective medium~corre-
sponding to an assigned polarization of the wave! according
to almost the same scheme which was previously used in
theory of giant magnetoresistance. The important fac
here are: 1! the refraction law for electrons passing throu
an interface acting as a potential barrier and the existenc
angles for total internal reflection; 2! the means for taking
into account the interface roughness~modified Ziman–Soffer
formulas! in the boundary conditions for the nonequilibriu
distribution functions of the electrons in the layers; 3! the
dependence of the potential energy of electrons on the or
tation of their spins relative to the magnetization of the la
ers.

Utilization of the symmetry properties of the distributio
functions within a superlattice period has enabled us to
analytical expressions for these functions, as well as for
currents induced by the wave field, which are convenient
numerical experiments. The analytical representations of
complex conductivity for the antiferromagnetic and ferr
magnetic superlattice configurations~besides being neede
to calculate the corresponding dielectric constants! can be
used in a special case to study giant magnetoresistanc
particular, testing of the computer program developed de
onstrated complete agreement with the known theoretica
sults for an Fe/Cr multilayer.7

It has been shown within the theoretical model used t
the interface roughness is mainly responsible for both
intensity magneto-optical effect and giant magnetoresista
If the interfaces are ideal~if there is purely specular reflec
tion of electrons! and the relaxation times in all the layers a
identical, the effects are not observed.
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1!It differs from the known Kerr magneto-optical effects, including the i

tensity effects,16 in that the conventional effects~see, for example, Refs
16–18! are determined by the magneto-optical parameterQ ~for an opti-
cally isotropic mediumQ5«xy /«xx , where«xx and«xy are, respectively,
diagonal and off-diagonal elements of the dielectric tensor«̂), while the
effect discussed in this paper does not depend onQ ~it is manifested in the
zeroth order with respect toQ). It can also be stated that the convention
Kerr magneto-optical effects are a consequence of the magnetic gyrot
of the medium, whereas the effect considered in this paper is not gyro
pic, i.e., it is determined by the diagonal elements of«̂. It also clearly
differs from the quadratic~anisotropic! magneto-optical effects manifeste
in the second order with respect toQ.

2!The spatial dispersion will be ignored. This is justifiable, since the wa
length of the electromagnetic wave significantly exceeds the thickness
the individual layers.

3!Here we shall disregard the effects associated with the existence of su
magnetic structures of the fan type.9,21,22
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Energy relaxation and transport of indirect excitons in AlAs/GaAs coupled quantum
wells in magnetic field
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The evolution of indirect exciton luminescence in AlAs/GaAs coupled quantum wells after
excitation by pulsed laser radiation has been studied in strong magnetic fields (B<12 T! at low
temperatures (T>1.3 K!, both in the normal regime and under conditions of anomalously
fast exciton transport, which is an indication of the onset of exciton superfluidity. The energy
relaxation rate of indirect excitons measured in the range of relaxation times between
several and several hundreds of nanoseconds is found to be controlled by the properties of the
exciton transport, specifically, this parameter increases with the coefficient of excitonic
diffusion. This behavior is qualitatively explained in terms of migration of excitons between
local minima of the random potential in the plane of the quantum well. ©1998 American
Institute of Physics.@S1063-7761~98!02509-8#
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Owing to their long lifetime, indirect excitons in couple
quantum wells~CQWs! can cool down to temperatures clo
to that of the crystal lattice. Therefore, condensation of
citons similar to the Bose–Einstein condensation is poss
at low lattice temperatures.1 It has been shown in some the
oretical investigations that the critical conditions for excit
condensation can be greatly improved by applying a m
netic field perpendicular to the quantum well plane, mai
because of the full quantization of the electron and hole
ergy spectra2 and lifting of the spin degeneracy. In rece
investigations of indirect excitons contained in AlAs/GaA
CQWs, effects indicating condensation of excitons in stro
magnetic fields have been detected, namely, an anoma
increase in the diffusion coefficient3 and radiative decay rate4

of excitons, which have been interpreted in terms of ex
tonic superfluidity and superluminescence of the excito
condensate, together with anomalously large fluctuation
the total intensity of exciton photoluminescence interpre
as critical fluctuations in the region of the phase transit
associated with instability of condensate domains.5

In the reported work, we have investigated the evolut
of indirect exciton luminescence in AlAs/GaAs CQWs aft
termination of a laser pulse in both the normal regime a
the regime of anomalously fast transport and high radia
decay rate of excitons, i.e., in the regime of the sugges
condensation of excitons. We have studied the energy re
ation of indirect excitons in the time interval from sever
nanoseconds to several hundreds of nanoseconds and i
lation to exciton transport.

The n12 i 2n1 heterostructures with AlAs/GaA
CQWs tuned by a gate voltageVg are similar to those stud
ied in earlier experiments.3–5 The i-layer consists of two
quantum wells: an AlAs well with thickness 40 Å and
GaAs well 30 Å thick between Al0.48Ga0.52As barriers. In the
indirect regime (Vg&0.5 V!, electrons are confined in th
AlAs quantum well and holes in the GaAs quantum w
6081063-7761/98/87(9)/4/$15.00
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~Fig. 1a!. The electron state in AlAs is constructed fro
states of the Xz minima in the conduction band, which en
sures that the indirect excitons have long lifetimes. Carri
were generated in the GaAs well by a semiconductor la
(\v51.85 eV! operated in the pulsed mode. The laser pu
had an approximately rectangular shape with a duration o
ns and rise and decay times of about 1 ns. The time res
tion of the light detecting system was 0.3 ns.

Photoluminescence decay in magnetic fieldsB50, 4, 6,
and 12 T atVg50 andT51.3 K is illustrated by Fig. 2a~the
signal was detected in a spectral range with a width of 3 m
centered at the photoluminescence line peak!. These curves
are similar to those measured in previous experiments.3–5 In
the indirect regime, the radiative lifetime of excitons is mu
longer than the nonradiative timetnr , and the total lifetime
t'tnr .5 In narrow CQWstnr is determined by the exciton
transport toward the centers of nonradiative recombinatio6

Direct time-of-flight measurements of exciton transport
the AlAs/GaAs CQWs studied3,4 indicate that an increas
~decrease! in t really corresponds to a decrease~increase! in
indirect exciton diffusion coefficient.

Thus, in magnetic fieldsB&7 T the diffusion coefficient
monotonically increases with the temperature and decre
with the increasing delay time and magnetic field~Fig. 2a
and 2c!. This behavior can be well described in terms
one-exciton transport in random potential~the random poten-
tial in narrow quantum wells is largely controlled by inte
face roughness!: ~i! the increase in the diffusion coefficien
with the temperature is due to thermal activation of excito
from local potential minima;~ii ! the diffusion coefficient
drops with the increasing delay since more and m
strongly localized excitons dominate in the luminescen
spectra~those which have not had enough time to travel
centers of nonradiative recombination and recombine the!;
~iii ! the decrease in the diffusion coefficient with the incre
© 1998 American Institute of Physics
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FIG. 1. ~a! Band diagram of AlAs/GaAs CQWs; the
solid ~dashed! line represents energies ofG (X) ex-
trema in the Brillouin zone.~b! Scheme of a photoge-
nerated exciton energy relaxation in the presence
random potential in the CQW plane.
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ing field can be qualitatively explained by the increase in
magneto-exciton mass.7

For B&7 T andT&5 K, we have detected anomalou
increase in the diffusion coefficient with the increasing ma
netic field and a decrease in the diffusion coefficient with
increasing temperature at initial decay times~Fig. 2a and 2c!.
This behavior can not be explained in terms of one-exci
transport and is interpreted as the onset of exciton supe
idity owing to their condensation.3 The fast decay of the
exciton photoluminescence, which corresponds to fast e
ton transport, is observed until the exciton density drops s
eralfold; the subsequent decay is slow and correspond
slow exciton transport~Fig. 2a!. The transition from the ini-
tially fast to the subsequent slower transport correspond
elimination of excitonic superfluidity when the exciton de
sity drops below the critical value, which is determined
e

-
e

n
u-

i-
v-
to

to

the temperature, magnetic field, and random potential. In
general case of excitonic condensation in the presence
random potential, domains of condensed~superfluid! exci-
tons alternate with normal regions in a random manner,
the boundaries between these regions are determined b
potential relief. A superfluid domain may include several m
crodomains connected by weak bonds, which should lea
a coherence across the entire domain~it is an analogue of a
network of the Josephson junctions in superconducto!.
Measurements of the photoluminescence decay time y
the parameters of the exciton transport averaged over no
and superfluid regions in the laser excitation spot.

Evolution of indirect exciton photoluminescence spec
with time and spectra integrated with respect to time at ty
cal values of temperature and magnetic field are shown
Fig. 3. In integrated spectra, one can see a line of low
-
se

r-
FIG. 2. ~a,c! Decay and~b,d! photoluminescence
line positions of indirect excitons atVg50, B50,
4, 6, and 12 T,T51.3 and 4.2 K. The dashed ver
tical line shows the position of the 50-ns laser pul
end. The positions of the luminescence line~b,d!
were derived from spectra measured in time inte
vals 1–8 shown at the bottom of the graph.
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intensity on the low-energy side of the dominant line~Fig. 3b
and 3d–f!. The magnitudes of the shifts of these lines towa
lower energy with the gate voltageVg indicate that both of
them are due to recombination of indirect excitons. The re
tive intensity of the low-energy line increases with the de
time ~Fig. 3!. Therefore, we associate this line with the r
combination of strongly localized indirect excitons, who
nonradiative recombination rate is small owing to their low
mobility ~it is likely to be smaller than their radiative recom
bination rate!. The high-energy line is due to recombinatio
of indirect excitons with a higher mobility~even though the
localization radius of such excitons is finite, we dub the
mobile for definiteness!. These are the excitons which dem
onstrate the variations in the diffusion coefficient and rad
tive decay rate4 with the magnetic field and temperature d
cussed above.

The observed changes in the ratioI m /I l between the
intensities of the mobile and strongly localized exciton lum

FIG. 3. Evolution of photoluminescence spectra of indirect excitons w
time. Spectra 1–8 were recorded in time intervals shown in Fig. 2b and
The positions of the photoluminescence line of mobile excitons are ma
by ticks. Spectra integrated over time are shown at the tops. The spectr
normalized so that have almost the same peak intensities.
d

-
y

r

-

-

nescence lines with the magnetic field and temperature
related to variations in both the diffusion coefficient and
diative decay rate of mobile excitons. For example, in fie
below 7 T the radiative decay rate of mobile excitons dro
with the increasing temperature,4 whereas the diffusion coef
ficient grows~Fig. 2c!. Both these effects lead to a decrea
in I m /I l ~Fig. 3c and 3d!. This effect of temperature indicate
that the distribution of excitons between localized and m
bile states is nonequilibrium. The effect would have an o
posite sign if there were equilibrium between these sta
namely, the relative intensity of higher energy mobile ex
tons would increase with temperature. The time of expe
ment ~about 1ms!, which is limited by the necessity of de
tecting the decaying luminescence signal, is insufficient
establishing equilibrium between the mobile and localiz
indirect excitons.

As the delay time increases, one can see a shift of
mobile exciton luminescence line, which reflects energy
laxation of excitons~Fig. 2b and 2d and Fig. 3!. In order to
determine the spectral position the line shape was appr
mated by a Gaussian. In magnetic fieldsB&7 T, the energy
relaxation rate of mobile excitons gradually drops with t
delay; in addition, it decreases with the field and grows w
the temperature at all delay times~Fig. 2b and 2d!. In mag-
netic fieldsB*7 T the energy relaxation rate of mobile e
citons is considerably higher at smaller delays; in addition
increases with the magnetic field and drops with the temp
ture at small delays, whereas it decreases with the field
rises with the temperature at longer delays~Fig. 2b and 2d!.
Thus, the energy relaxation of mobile excitons is faster,
higher the diffusion coefficient throughout the entire range
experimental parameters studied~magnetic field, tempera
ture, and delay!.

After photoexcitation, electron–hole pairs are rapid
bound in excitons and lose their kinetic energy by emitti
phonons. In this ‘‘fast’’ relaxation stage,G2X electron
transfer from GaAs to AlAs takes place and indirect excito
are formed. The times of these processes are consider
shorter than the lifetime of indirect excitons, and they are
revealed in our measurements. The ‘‘slow’’ energy rela
ation, which is observed in the range between several na
seconds and hundreds of nanoseconds~Fig. 2b and 2d!, is
controlled by excitons migrating between local minima
the random potential in the plane of the CQWs~Fig. 1b!.
This migration of excitons in the random potential is chara
terized by a large spread of relaxation times,8 and the long
lifetime of indirect excitons allows us to trace the transp
and energy relaxation of excitons in the range of long de
times. The speed of exciton transport to deeper local min
increases with the their mobility, which leads to a faster e
ergy relaxation of excitons. The relationship between the
ergy relaxation and exciton transport persists with the on
of exciton superfluidity, when superfluid domains of exc
tonic condensate are formed at some local minima.

The diffusion coefficient and radiative decay rate of i
direct excitons are sensitive to the bath temperature dow
1 K, which indicates that excitons in local minima thermali
down to;1 K. The recombination line of indirect exciton
of each local minimum cannot be much wider than the ex

d.
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611JETP 87 (3), September 1998 L. V. Butov and A. I. Filin
ton temperature (;1 K!, so the measured line width of abo
50 K ~Fig. 3! indicates that the laser excitation spot cover
lot of local minima, and the distribution of excitons amon
them is nonequilibrium. The measurement time~about one
microsecond! is insufficient for establishing equilibrium
among all local minima of the random potential. The co
densation of excitons should result in a narrowing of lum
nescence line from the condensate domain owing to the m
roscopic filling of state with the lowest energy. In o
experiments, we have not detected a narrowing of the e
ton luminescence line in strong magnetic fields and at
temperatures when the diffusion coefficient and radiative
cay rate of indirect excitons increased anomalously~Fig. 3!.
This can be explained by the presence of a large numbe
condensate domains in the laser excitation spot with a n
equilibrium distribution of excitons among them.

We are grateful to G. Abstreiter, G. Bo¨hm, G. Weimann,
M. Hagn, and A. Zrenner for their contribution on the earl
stage of studies of indirect excitons in CQWs, and to V.
Kulakovski� and S. G. Tikhodeev for helpful discussion
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We study the effective parameters of a three-component plane dielectric medium with a doubly
periodic arrangement of circular inclusions. The problem is solved in the one-dipole
approximation. The computational results are compared with a two-component Rayleigh model.
The general structure of the formulas for the effective parameters is discussed and the
reciprocity relations for a three-component matrix system are determined. Explicit expressions
are given for the dielectric permittivity when the concentration of circular inclusions is
low, and their domain of applicability is determined. Under certain polarization conditions, the
effective conductivity in a three-component medium is exactly equal to the dielectric
permittivity of the matrix. © 1998 American Institute of Physics.@S1063-7761~98!02609-2#
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1. INTRODUCTION

Of the many problems that arise during the study
physical transport processes in inhomogeneous media, d
mining the macroscopic~effective! characteristics and pa
rameters occupies a central place; it is simple to formu
and is often invoked to account for various phenomena
composite materials. In solving this problem, however, o
encounters serious mathematical difficulties that must
overcome when calculating and averaging inhomogene
physical fields. The situation is especially complicated wh
calculating three-dimensional fields in multicomponent s
tems. two-dimensional systems are in a more favorable
sition, especially two-component matrix media, which can
studied using the powerful mathematical machinery of co
plex variable theory. A number of important results ha
thus been obtained for two-component systems, includ
the Keller–Mendelson theorem for the reciproc
relations,1,2 the Dykhne symmetry transform,3 and exact so-
lutions of boundary value problems for several matrix s
tems with a doubly periodic arrangement of regularly sha
inclusions.4–6

Multicomponent systems in which the main phase c
tains, not one, but several forms of inclusions with differi
physical properties and dimensions have yet to be stu
adequately. Multiphase systems can have rather complic
structure, and their macroscopic characteristics are more
verse. The difference between the structures of tw
component and multicomponent systems is in some resp
similar to the difference between black-and-white and co
images of the textures of real multicolored materials.

In this paper we determine the effective parameters o
three-component dielectric medium. A matrix system with
doubly periodic arrangement of two types of parallel cyl
ders is considered. In transverse cross section, the syste
two-dimensional and can be subdivided arbitrarily in
square cells, with periodically alternating circular inclusio
of two different types and sizes at their centers.

Periodic lattice models were introduced by Rayleigh
calculate the refractive index of highly nonuniform media7
6121063-7761/98/87(9)/9/$15.00
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In his model, circular cylinders of one kind were arrang
doubly periodically at the centers of rectangular cells; in
three-dimensional analog of this system, spherical inclusi
were placed in cubic cells. For systems with this sort
structure it is possible to formulate a boundary value pr
lem for a harmonic equation and completely calculate
field in a single cell with a single isolated inclusion, takin
the effect of all surrounding inclusions into account. T
method proposed by Rayleigh yields formulas for the eff
tive parameters of the system he examined to any requ
accuracy, and this is important for evaluating the vario
approximations. Unfortunately, this method cannot be
plied directly to multicomponent systems. Calculating t
fields in these systems involves the formulation of comp
cated matching boundary value problems in multip
connected regions, requiring new approaches for th
solution.

The solution for two dielectric cylinders located in a
external uniform electric field is invoked below to calcula
the characteristics of a three-component matrix system. T
problem has an exact analytic solution under general
sumptions about the radii of the cylinders, their respect
locations in the external field, and the relationship betwe
the dielectric permittivities of the matrix and the inclusio
materials.8 These results show that the mutual effect of t
inclusions in a multicomponent system can be taken i
account through dipole–dipole interactions. In the followi
sections, we investigate an inhomogeneous medium wi
low concentration of inclusions; the calculations can be s
plified by restricting attention to the one-dipole approxim
tion. In this case, of the infinite number of dipoles determ
ing the electric field of the interacting inclusions, only th
first dipoles located at the center of circular inclusions
taken into account. The accuracy of the calculations is t
evaluated in terms of the small parameters characterizing
system and by comparison with calculations based on
Rayleigh formula under equivalent conditions.

The expressions for the dielectric permittivity of the sy
tem under study can be generalized naturally to a quas
tionary electric field by introducing the complex dielectr
© 1998 American Institute of Physics
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613JETP 87 (3), September 1998 Yu. P. Emets
permittivity. The physical interpretation of the results b
comes more convincing in this case upon examination
equivalent electrical circuits with periodically alternatin
complex impedances.

The general properties of three-component systems
similar in many respects to the properties inherent in tw
component systems. They also obey reciprocity relatio
which now take a form reflecting their dependence on t
additional phases. In addition, three-component dielec
media can acquire characteristics that do not exist in t
component materials.

Of the many possible ways of arranging circular inc
sions in the plane, an isotropic system with a square struc
is studied below. The method for calculating the fields us
here, however, is entirely applicable to systems with ot
structures, such as hexagonal.

The solution is presented in terms of the dielectric p
mittivity. In light of the well known analogies, these resu
can also be used to examine the macroscopic character
of other physical media.

2. THE ELECTRIC FIELD IN THE SYSTEM

Let two types of circular dielectric cylinders with pe
mittivities «2 and «3 and radii r 1 and r 2 , respectively, be
located in doubly periodic alternating order in an unbound
dielectric medium with permittivity«1 . In transverse cross
section, the long unidirectional cylinders form a plane s
tem with circular inclusions located at the centers of squ
cells with sides of lengthl ~Fig. 1!. Systems of this type
serve as a convenient theoretical model for the macrosc
characteristics of various multicomponent heterogene
structures, for example, periodic lattices, composite mat
als, thin films with topological structure, and so on. Abo
all, systems with a low concentration of heterogeneous in
sions (pr 1

2 ,pr 2
2! l 2) are of practical interest. In terms o

computation, they are simpler to study, but they do prese
many of the basic properties inherent in three-compon
media.

To determine the effective dielectric constant of the s
tem under study, it is first necessary to calculate the fi
inside the inclusions and in the matrix medium. Because
the regular structure of the system, the field pattern rep
doubly periodically; thus, it suffices to calculate the field
one cell with two individual, dissimilar inclusions. Here
must be borne in mind that the formation of an electric fie
in each inclusion depends on the presence of all other in
sions in the system. This interdependence of the inclus
can be represented by the sum of the pairwise interactio
an individual inclusion with every other inclusion in the sy
tem. To determine the electric field in the system, it is the
fore necessary to solve for the interaction of two dissim
dielectric cylinders in an external electric field. This is t
key problem in calculating the field. The solution is known8

and is given in the Appendix for reference. According to E
~A1!, the electric field is given by an infinite sum of linea
dipoles, whose moments and positions depend on the rad
the cylinders, the distance between them, their proper
and the external electric field in the system.
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Given the above assumption of a low concentration
inclusions, we can use an approximate expression for
electric field that accounts only for the first, principal dipol
located at the inclusion centers. These dipoles have the l
est moments and are the main contributors to the elec
field at low concentrations of the inclusions (pr 1

2 ,pr 2
2

! l 2). If a square cellabcd containing an inclusion with
dielectric constant«2 are radiusr 1 is singled out in Fig. 1,
then according to Eqs.~A1!, in the approximation taken here
the electric field in the cell will be

E1~z!5E02Ē0H D12r 1
2z221 (

m51

`

(
n51

`

@D12r 1
2

3~z2amn!
221D13r 2

2~z2bmn!
22#J ~1!

outside the inclusion and

E2~z!5~11D12!H E02Ē0 (
m51

`

(
n51

`

@D12r 1
2~z2amn!

22

1D13r 2
2~z2bmn!

22#J ~2!

inside. HereEk(z)5Ekx2 iEky (k51,2) is the complex elec-
tric field function,z5x1 iy is a complex variable,E05E0x

2 iE0y is the external uniform electric field, the bar overE0

denotes the complex conjugate,D1p is the relative dielectric
constant,

D1p5
«12«p

«11«p
~21<D1p<1! p52,3, ~3!

amn are the coordinates of the dipoles in all inclusions of t
same type with parameters«2 andr 1 except the one located
in the cell abcd centered at the origin, andbmn are the
coordinates of the dipoles in all the inclusions of the oth

FIG. 1.
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614 JETP 87 (3), September 1998 Yu. P. Emets
type, with parameters«3 andr 2 ~see Fig. 1!. The coordinates
amn and bmn are also the coordinates of the centers of
circular inclusions in the system. We have

amn562ml, bmn56 l ~2m21!

on thex axis,

amn562inl , bmn56 i l ~2n21!

on they axis, and

amn562l ~m1 in !, bmn56 l @2m1 i ~2n21!#,

amn562l ~m2 in !, bmn56 l @2m2 i ~2n21!#,

amn56 l @2m211 i ~2n21!#, bmn56 l @2m2112in#,

amn56 l @2m212 i ~2n21!#, bmn56 l @2m2122in#,

m,n51,2,... ~4!

off the axes.
If the electric field is to be determined in a cell with a

inclusion that has parameters«3 andr 2 , then the same Eqs
~1! and ~2! can be used with the replacementsE2(z)
→E3(z), D12↔D13, r 1↔r 2 , andamn↔bmn . Here the co-
ordinate origin has been shifted to the center of the inclus
in the newly selected cell.

Equations~1! and~2! yield a first approximation for the
interaction of inclusions in the system. If there is no intera
tion among them, then the double sums in Eqs.~1! and ~2!
must be dropped, and the electric field at the inclusions
then be uniform and, for each type

E2~z!5~11D12!E0 , E3~z!5~11D13!E0 ,

as appropriate for isolated cylinders in an external, unifo
field.

When the concentration of the additional phases
creases, the mutual effect of inclusions becomes greater
the expressions for the electric field must account for
next dipoles, refining the interaction intensity of the incl
sions. The number of dipoles to be additionally included
pends on the required accuracy. Fundamentally, this
proach to refining the calculations does not pose
problems, but the expressions for the electric field beco
messier, and the computational load increases significan

Since the interaction among inclusions is proportiona
the inverse square of their separation, in practical calc
tions the infinite sums in Eqs.~1! and~2! can be replaced by
finite, low-order sums. The interaction among widely se
rated inclusions can thereby be neglected.

3. EFFECTIVE DIELECTRIC CONSTANT

By definition, the effective dielectric constant relates t
displacement and electric field vectors averaged over the
gion, i.e.,
e

n

-

ll

-
nd
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-
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y
e
.

o
a-

-

e-

^D&5«eff^E&. ~5!

The averages are taken over a region whose characte
dimensions are equal to or greater than those of the sys

For the medium with a periodic structure being cons
ered here, it is sufficient to calculate the average fields i
single square cell of sizel . It is convenient, for example, to
choose the unit cellOUWV shown in Fig. 2. If the externa
electric field vector is directed along thex axis, i.e., E0

5E0x , then the segmentsOV andUW coincide with equi-
potentials and the segmentsOU and VW lie on lines of
force. This property of the cellOUWV makes it possible to
reduce the averaging procedure to a determination of
average fields by calculating the corresponding contour in
grals on the segmentsOU andOV:

^Ex&5
1

l F E
0

r 1
Ex2~x!dx1E

r 1

l /2

Ex1~x!dx1E
l /2

r 2
Ex1~x!dx

1E
r 2

l

Ex3~x!dxG ,
^Dx&5

«1

l F«2

«1
E

0

r 1
Ex2~y!dy1E

r 1

l /2

Ex1~y!dy

1E
l /2

r 2
Ex1~y!dy1

«3

«1
E

r 2

l

Ex3~y!dyG . ~6!

In calculating the integrals of Eqs.~6!, recall that the
electric fieldE1(z) in the matrix is given by different expres
sions in regions abutting dissimilar cells; this was discus
in Sec. 2.

Finally, after calculating the integrals of Eq.~6! using
Eqs.~1!, ~2!, and~4!, we obtain the following expression fo
the effective dielectric constant of the three-component s
tem under consideration:

FIG. 2.
«eff5«1

12D12s1/22D13s2/21D12
2 A11D13

2 A21D12D13~B11B2!

11D12s1/21D13s2/21D12
2 A11D13

2 A21D12D13~B11B2!
. ~7!
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Here

sk5
pr k

2

l 2 5pr k*
2 , r k* 5

r k

l
~k51,2! ~8!

are the concentrations of the inclusions with dielectric c
stants«2 and «3 , respectively. The parametersAk and Bk

(k51,2) are functions of the radii of the inclusions,

Ak52r k
2H 2r k

3 (
m51

`
1

r k
4216m4 1 (

n51

`

(
m51

` F r k22m

~r k22m!214n2

1
r k12m

~r k12m!214n2 1
r k22m11

~r k22m11!21~2n21!2

1
r k12m21

~r k12m21!21~2n21!2G J .

Bk52r 32k
2 H 2r k

3 (
m51

`
1

r k
42~2m21!4

1 (
n51

`

(
m51

` F r k22m

~r k22m!21~2n21!2

1
r k12m

~r k12m!21~2n21!2 1
r k22m11

~r k22m11!214n2

1
r k12m21

~r k12m21!214n2G J . ~9!

In Eqs.~9! the radii of the inclusions can be written in rel
tive units, r r* 5r k / l , with the asterisks omitted for brevity
Using Eqs.~8!, Ak andBk can be represented as functions
the concentrationss1 ands2 of the inclusions. In actual cal
culations the infinite sums can be replaced by finite su
and sufficient accuracy for practical calculations is ensu
by including a relatively small number of terms (m,n
510– 100). The coefficients of the first-order paramet
D12 andD13 in Eq. ~7! can be determined when calculatin
the corresponding integrals in Eq.~6!, which yields

A0k5r k
2~21A111B11!, k51,2, ~10!

where

A1154H 2 (
m51

`
1

12256m4 1 (
m51

`

(
n51

` F 124m

~124m!2116n2

1
114m

~114m!2116n2 1
122~2m21!

@122~2m21!#214~2n21!2

1
112~2m21!

@112~2m21!#214~2n21!2G J 50.09644,

B1154H 2 (
m51

`
1

1216~2m21!4

1 (
m51

`

(
n51

` F 124m

~124m!214~2n21!2

1
114m

~114m!214~2n21!2 1
122~2m21!

@122~2m21!#2116n2
-

f

s,
d

s

1
112~2m21!

@112~2m21!#2116n2G J 520.52562. ~11!

In Eq. ~10! the expression in parentheses is exactly eq
to p/2, so thatA015s1/2 andA025s2/2, as shown in Eq.~7!.

4. PROPERTIES OF THE EFFECTIVE DIELECTRIC
CONSTANT

The effective dielectric constant defined by Eq.~7! de-
pends on the concentrationss1 ands2 of the inclusions~or,
equivalently, on the radii of the differing inclusions,r 1 and
r 2! and on the parametersD12 andD13, which characterize
the relationship between the dielectric constants of the
trix and inclusions.

For weakly inhomogeneous media, in which the qu
dratic termsD12

2 andD13
2 can be neglected, Eq.~7! takes the

especially simple form

«eff5«1

12~D12s11D13s2!/2

11~D12s11D13s2!/2
. ~12!

Equation~12! describes exactly the macroscopic characte
tics of a system with inclusions whose dielectric consta
differ little from that of the matrix. It also holds for system
with very low concentrations of inclusions, i.e.,s1 ,s2!1,
where the parametersD12 and D13 can then take arbitrary
values within their applicable domains,21<D12, D13<1.
Equation ~12! is, in fact, valid for media characterized b
small values of the parameter combinationsD12s1/2 and
D13s2/2.

If the concentrations of the additional phases are eq
(s15s25s), i.e., all inclusions have the same radius (r 1

5r 25r ), then Eq.~12! takes the form

«eff5«1

12s~D121D13!/21A~D12
2 1D13

2 !12BD12D13

11s~D121D13!/21A~D12
2 1D13

2 !12BD12D13
,

~13!

where A15A25A and B15B25B. If all inclusions also
have the same dielectric constant~«25«3 , or D125D13!,
then the expression for the effective dielectric constant s
plifies further to

«eff5«1

12D12s12D12
2 ~A1B!

11D12s12D12
2 ~A1B!

. ~14!

Equation~14! now defines the effective dielectric con
stant of a two-component system that is the same as
Rayleigh model,7 in which unidirectional circular cylinders
with identical characteristics form a doubly periodic lattic
This agreement makes it possible to compare the pre
results with the more accurate calculations obtained by
Rayleigh in a different manner,7 and therefore to establis
the domain of applicability of Eq.~14! and, indirectly, the
more general Eqs.~12! and ~13!.

For weakly inhomogeneous media, where the parame
D12 ands are very small (D12,s1!1), the effective dielec-
tric constant for the Rayleigh model in the first approxim
tion is ~in the notation of the present paper!



rs
le
b

w
th

th
e

e

e
;
t

e

the
f

tric
nent
the
be-

ns
all

lu-
s

616 JETP 87 (3), September 1998 Yu. P. Emets
«eff5«1

12D12s

11D12s
. ~15!

This corresponds to Eq.~14! in the linear approximation
in D12.

In the general case, if we restrict attention to the fi
three approximations, the expression for the effective die
tric constant corresponding to the Rayleigh model can
written in the form

«eff5«1

12D12s2 f j~D12,s!

11D12s2 f j~D12,s!
~ j 51,2,...!, ~16!

where for the first approximation

f 150,

which leads to Eq.~15!, for the second approximation

f 250.306D12
2 s4 ~17!

for the second approximation, and to

f 35
f 2

121.403D12
2 s8 10.0134D12

2 s8 ~18!

for the third.
A comparison of Eqs.~14! and ~16! ~the latter for the

case of f 3!, obtained by two independent methods, sho
that they yield the same results for concentrations of
inclusionss,0.4, for all values of the parameterD12, and
for arbitrary concentrations of the inclusions 0<s<p/4 if
D12,0.5. This can be seen from Figs. 3–5 for«eff(D12) with
s50.25, 0.5, and 0.75, respectively. In these figures
dashed curves correspond to the Rayleigh model and w
plotted using Eqs.~16! and ~18!, while the smooth curves
correspond to Eq.~14! derived here.

A number of interesting special solutions can be deriv
from the general equation~13! for the effective dielectric
constant.

For example, let one of the additional phases—the s
ond, with permittivity «3—be eliminated from the system
then, setting«35«1 (D1350), we have a two-componen
medium for which

«eff5«1

12D12s/21AD12
2

11D12s/21AD12
2 . ~19!

FIG. 3.
t
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If one of the two types of inclusion, for example th
second, is a metal~«3→`, D13521!, then Eq.~13! be-
comes

«eff5«1

11s/21A2D12
2 ~s/212B!1AD12

2

12s/21A1D12
2 ~s/212B!1AD12

2 . ~20!

The latter two cases can also be examined using
general expression~7! for «eff with unequal concentrations o
the inclusions.

5. COMPOSITE MEDIUM WITH CHARACTERISTIC
PROPERTIES

Of all the possible relationships among the geome
parameters and physical characteristics of a three-compo
medium, it is necessary to distinguish the case in which
dielectric constant of the matrix has some average value
tween those of the inclusions.

Let us first consider a system with equal concentratio
of the additional phases, and therefore equal radii for
inclusions, i.e.,s15s25s (r a5r 25r ). Then, for

D1252D13, ~21!

Eq. ~13! implies that

«eff5«1 . ~22!

Using Eq.~3!, Eq. ~21! can be rewritten in the form

«15A«2«3. ~23!

Thus, if the dielectric constant« of the matrix equals the
geometric mean of the constants of the two dissimilar inc
sions, «2 and «3 , the effective dielectric constant of thi

FIG. 4.

FIG. 5.
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inhomogeneous medium will equal that of the matrix. Phy
cally, this characteristic of the medium is explained by t
fact that the dielectric polarization vectors in the dissimi
inclusions are equal in magnitude and and opposite in di
tion. Here the electric field in the composite material
highly nonuniform: the displacement vector is squeezed
of the inclusions whose permittivity is below«1 and drawn
into the others, whose permittivity exceeds«1 .

If a system with these properties is interpreted in ter
of equivalent electrical circuits withRLC components, then
Eq. ~23! means that the circuit has the characteristic re
tance

R5ALC. ~24!

It must be borne in mind that Eqs.~21!–~23! were de-
rived for a system with equal concentrations of the additio
phases. However, systems in which the dissimilar cylindr
inclusions have different radii, and therefore unequal conc
trations of the two phases in the matrix, can be studied
tirely analogously. In this case, it is necessary to turn to
general formula~7! for the effective dielectric constan
Setting

D12s152D13s2 ~25!

in Eq. ~7!, we again obtain«eff5«1. In explicit form, Eq.~25!
becomes

«15
Ds

2
~«22«3!1ADs

2

2
~«22«3!21«2«3, ~26!

whereDs5(s12s2)/(s11s2).
For equal concentrations of the additional phas

i.e., s15s2 , Eq. ~25! transforms to Eq.~21!, and Eq.~26!
to Eq. ~23!.

In a system with unequal concentrations of the phas
the dielectric polarization vectors are also oppositely direc
in the dissimilar inclusions, but unlike the previous case,
magnitudes of the dielectric polarization vectors in t
phases are not equal—they depend on the transverse c
sectional area of the cylinders. In order for the conditi
«eff5«1 to be met, the polarization of the dielectric in th
cylinders with smaller radii must be larger, andvice versa.
The quantitative relationships among the parameters of
medium are then established by Eq.~25!. As before, the di-
electric constant of the matrix,«1 , has a value intermediat
between those of the inclusions,«2 and«3 . But now, accord-
ing to Eq.~26!, «1 also depends on the ratio of the conce
trations of the additional phases.

The approach proposed here to calculate the effec
parameters can be extended to matrix systems with m
than three components, and therefore the conditions tha
termine the compensation of polarization phenomena in m
ticomponent systems can be obtained.

6. RECIPROCITY RELATIONS

Keller’s theorem occupies an important place in t
theory of two-dimensional, two-component matrix system1

This theory establishes a relationship among the compon
of the effective dielectric permittivity tensor:
i-
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«eff xx~«1 ,«2!«eff yy~«2 ,«1!5«1«2 , ~27!

where thex component is determined for a medium in whic
the matrix and inclusions have the parameters«1 and «2 ,
respectively, while they component corresponds to the p
rameters of a medium in which the dielectric constant of
matrix is «2 and that of the inclusions is«1 . Equation~27!
establishes the most general property characterizing t
component, two-dimensional systems, independent of t
specific structure. At a practical level, it often makes it po
sible to simplify the analysis of systems by reducing t
volume of analytic and numerical calculations.

To prove Eq.~27!, Keller considered a medium with
circular cylindrical inclusions, which are parallel to one a
other and form a doubly periodic rectangular lattice in th
transverse cross section. This is the same system as that
ied by Rayleigh,7 and it can be shown that Eqs.~15!–~18!,
obtained by him for the effective dielectric constant, satis
Eqs.~27!.

Subsequently, Eqs.~27! were extended to more gener
structures for two-component inhomogeneous med
Dykhne found a symmetry relation for media of this type3

Developing Dykhne’s method, Balagurov showed that E
~27! are valid for arbitrary concentrations, shapes, and dis
butions of the inclusions in a medium.9 To prove the reci-
procity relations, Mendelson used tensor analysis and
tained extremely general results.2 Schulgasser proposed
persuasive interpretation of the reciprocity relations empl
ing a combination of geometry, algebra, and mathemat
analysis.10 Note that in the papers cited above, as well as
many others, the reciprocity relations are usually discus
in terms of electrical conductivity~sometimes thermal con
ductivity, as in Ref. 10!; this is in fact of no fundamenta
significance and, in accordance with the familiar analogy,
results obtained here are completely applicable to the st
of magnetic, diffusion, electric, and other processes in in
mogeneous systems.

The reciprocity relation takes a slightly different form
for three-component systems. In accordance with the pre
ing investigation, it is convenient to write it in a form usin
the parametersD12 andD13, which arise naturally in solving
the field problem~1! and~2! and are present in the average
formulas. The main result can be formulated as a theorem
a dielectric medium with permittivity«1 contains parallel
dielectric cylindrical inclusions of two varieties with con
stants«2 and «3 , and the inclusions are distributed wit
doubly periodic ordering and a step size equal to the side
the square cell, then the effective dielectric constant of t
medium will satisfy

«eff~D12,D13!«eff~D21,D31!5«1
2, ~28!

where, according to the definition~3!, D1p52Dp1 (p
52,3). If rectangular cells are considered, the system a
whole will be anisotropic, and

«eff xx~D12,D13!«eff yy~D21,D31!5«1
2. ~29!

The concentrations of the inclusions can differ. As
special case, Eqs.~28! and~29! yield the reciprocity relation



o-

th
d

d
n-
u-

-
e

a
en

ell
ch

the

.
nt;
o

le
eld
we
cit
e

d

nt
tra-

hat

618 JETP 87 (3), September 1998 Yu. P. Emets
for a two-component medium upon setting«35«1 (D13

50). In the form taken here, it can be written

«eff~D12!«eff~D21!5«1
2, ~30!

for an isotropic system, and

«eff xx~D12!«eff yy~D21!5«1
2 ~31!

for an anisotropic system.
It can be shown that the reciprocity relation for tw

component systems in the form~30! is indeed satisfied by the
known exact solutions. This is the case, for example, in
Rayleigh model~15!–~18!. It is also valid for a checkerboar
system, for which3,5

«eff5A«1«25«1A12D12

11D12
. ~32!

It also corresponds to the exact solution for a doubly perio
distribution in a matrix of rectangular inclusions with co
centrations50.25.4 In the special case of the square incl
sions from Ref. 4, some simple calculations yield~in terms
of the dielectric constant!

«eff5«1A22D12

21D12
. ~33!

The reciprocity relation~31! is also applicable to one
dimensional structures and stratified media, for which, wh
the concentrations of the phases are equal,

«eff xx5
2«1«2

«11«2
5«1~12D12!,

«eff yy5
1

2
~«11«2!5

«1

11D12
. ~34!

The reciprocity relations for three-component media c
be proven by directly solving the field problem in the giv
p
s
a

er
r-

nt

th

ic
e

ic

n

n

periodic system and averaging the electric field in a unit c
with two dissimilar inclusions. We have taken this approa
here.

In the general case, the formula for the parameter has
structure

«eff5«1

F~D12,D13,s1 ,s2!

F~D21,D31,s1 ,s2!
, ~35!

where we recall thatD2152D12 andD3152D13 ~in accor-
dance with Eq.~3!! andF(...) is afunction of its parameters
This is an implicit expression for the dielectric consta
it holds for arbitrary concentrations of inclusions from tw
additional phases.

For high concentrations of the inclusions, multidipo
interactions must be taken into account in solving the fi
problem. In the special case of low concentrations, where
can limit ourselves to one-dipole interactions, an expli
expression forF(D12,D13,s1 ,s2) has been obtained in th
present paper ~Eqs. ~7!–~11!!. In Eq. ~35!,
F(D21,D31,s1 ,s2) determines the electric field average
over the length of the unit cell along thex axis, ^Ex&, and
coincides with the direction of the external fieldE05E0x in
the system. Thus, the function«1F(D12,D13,s1 ,s2) gives
the average value of the electric displacement^Dx& in the
cell. Here the average fields^Ex& and^Dx& are given by the
integrals~6!.

Equations~35! yield the reciprocity relations~28! for
square cells, and~29! for rectangular cells.

Clearly the reciprocity relation for a three-compone
system is satisfied by stratified media with equal concen
tions of the phases~one-dimensional periodic structures!, for
which the effective parameters are given by formulas t
generalize Eq.~34!:
«eff xx5
3«1«2«3

«1«21«1«31«2«3
53«1

~12D12!~12D13!

~12D12!~11D13!1~11D12!~12D13!1~12D12!~12D13!
,

«eff yy5
1

3
~«11«21«3!5

«1

3

~11D12!~12D13!1~12D12!~11D13!1~11D12!~11D13!

~11D12!~11D13!
. ~36!
sed

las

th
, all
e-
The reciprocity relation~29! has been written in the form
of a general algebraic expression: it no longer has the sim
physical appeal characteristic of the two-component ca
The main advantage of writing the reciprocity relation in
form containing the product of functions of the paramet
D12 and D13, however, is that it admits of a natural gene
alization to systems with an arbitrary number of compone

Thus, if the matrix of a composite dielectric containsn
dissimilar inclusions, then the reciprocity relation takes
form

«eff xx~D12,D13,...,D1n!«eff yy~D21,D31,...,Dn1!5«1
2. ~37!

The validity of Eq.~37! can be tested by examining period
le
e.

s

s.

e

structures with the aid of the computational technique u
here. In particular, it is clear that Eq.~37! is satisfied by
multicomponent one-dimensional structures with formu
that are generalizations of Eq.~36!.

7. COMPLEX EFFECTIVE DIELECTRIC CONSTANT

In the quasistationary approximation with a waveleng
that exceeds the characteristic dimensions of the system
three components of the dielectric constant of a given m
dium can be regarded as complex:

«̂ j5« j82 i« j9 ~ j 51,2,3!. ~38!
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An imaginary part of the complex dielectric constant sig
fies losses in the dielectric medium.

In this case the complex effective dielectric constant
an inhomogeneous system,«̂eff5«eff8 2i«eff9 , is given by Eq.
~7!, in which scalar quantities must be replaced by comp
values of the dielectric constant~38!. Here we use the com
plex parameters

D̂1k5
«̂12 «̂p

«̂11 «̂p
~p52,3!. ~39!

Losses in an inhomogeneous dielectric medium are
general due to displacement currents and conduction
rents; they depend in a complicated fashion on the relat
ships among the components of the system and on the
quency of the external electric field.

In this case, in the original expression~15! and Eqs.
~13!, ~19!, and~20! it is necessary to make the substitutio
«eff→«̂eff , «1→ «̂1 , andD1p→D̂1p . Then, for

D̂1252D̂12 ~40!

we have

«̂eff5 «̂1 , ~41!

with

«̂15A«̂2«̂3. ~42!

Equations~40!–~42! are generalizations of the correspondi
Eqs. ~21!–~23!. Equations~24!, ~32!, and ~33! can also be
written in complex form.

If the inclusions have low dielectric losse
tand2,tand3!1 ~d2 and d3 are the dielectric loss angles i
the differing cylinders!, then using the approximate expa
sion of the root, Eq.~42! can be written

«̂15A«28«38F12
i

2
~ tan d11tan d2!G .

In low-loss media, the dielectric constant of the matrix
obviously close toA«28«38.

8. CONCLUSION

Three-component systems have heretofore not been
equately studied due to difficulties in calculating the physi
fields in such systems. Techniques for boundary value p
lems in the theory of analytic functions can be invoked
two-dimensional systems with an ordered distribution of d
similar inclusions; this has been done here for a med
with circular inclusions, where we took advantage of t
solution for a pair of inclusions.

Three-component matrix systems share many of
properties of two-component systems. They also obey r
procity relations expressible as a product of functions of
parameters that determine the relative values of the diele
constants of the inclusions. In addition, polarization pheno
ena are more varied in three-component systems. In s
cases, it has been shown that the dielectric polarization
tors in dissimilar inclusions can have opposite directions a
under certain conditions, they can cancel one another.
effective dielectric constant of such a system will be equa
-

f
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the permittivity of the matrix. For two-component system
these conditions cannot be realized, even in principle.

APPENDIX

Here we give the exact analytic solution for two circul
dielectric inclusions in a uniform external electric field; th
is then used to study the given three-component system

Let two circular dielectric cylinders that are parallel
one another and have radiir 1 andr 2 and dielectric constants
«2 and «3 , respectively, lie in an dielectric medium wit
permittivity «1 . The axes of the cylinders are separated b
distanceh (h.r 11r 2). The external electric fieldE0 is uni-
form and perpendicular to the axes of the cylinders, which
along thex axis. The coordinate origin lies on the axis of th
cylinder with radiusr 1 . Under these conditions, the solutio
of the problem is

E1~z!5E02~x12x2!2(
k51

` H DkH Ē0F 1

D13
S g1k

z2z1k
D 2

1
1

D12
S g2k

z2z2k
D 2G2E0F S g3k

z2z3k
D 2

1S g4k

z2z4k
D 2G J J

~A.1!

outside the cylinders,

E2~z!5~11D12!H E02~x12x2!2

3 (
k51

` H DkF Ē0

D12
S g2k

z2z2k
D 2

2E0S g3k

z2z3k
D 2G J J

in the first cylinder, and

E3~z!5~11D13!H Ē02~x12x2!2

3 (
k51

` H DkF Ē0

D13
S g1k

z2z1k
D 2

2E0S g4k

z2z4k
D 2G J J

in the second.
HereEj (z)5Ex j2 iEy j ( j 51,2,3) are the complex elec

tric field functions;z5x1 iy is the complex variable,x1 and
x2 are symmetry points on thex axis, with coordinates

x15br1 , x25
r 1

b
,

b5
1

2r 1h
@h21r 1

21r 2
22A~h21r 1

21r 2
2!224r 1

2h2#,

the gvk (v51,...4) are parameters given by

gvk5
av

12av
2 , g4k52g3k ,

a15a4S h2x1

h2x2
D 1/2

, a25
1

a4
S x1

x2
D 1/2

,

a35
1

a4
, a45S x1h2r 1

2

x2h2r 2
2D k/2

;
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the zvk are coordinates of the dipoles on thex axis,

zvk5
x12x2av

2

12av
2 ;

D is a parameter given by

D5D12D13, 21<D<1;

the bar overE0 denotes the complex conjugate.
These expressions have been obtained by solving

corresponding boundary value problem. This solution is d
cussed in detail in Ref. 8, where a constructive solution
also obtained using the inversion method.
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show that the Fermi surface in this compound consists of a slightly corrugated cylinder
with its axis perpendicular to the conducting plane. The cross section of the cylinder in this plane
is a perfect circle of radiuskF.33107 cm21. The effective carrier mass associated with
this cylinder ism* 5(1.65–2.0)m0 in the conducting plane, while the Dingle temperature is
TD53 –4 K. © 1998 American Institute of Physics.@S1063-7761~98!02709-7#
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1. INTRODUCTION

The compound (BO)2Clx(H2O)y belongs to the class o
quasi-two-dimensional organic metals. The major structu
material in this compound, which forms the conducting la
ers, is the organic molecule BO5~BEDO-TTF!
~bis~ethylenedioxy!-tetrathiofulvalene!, an analog of the well
known ET molecule used as a basis for synthesizing
overwhelming majority of quasi-two-dimensional organ
metals and superconductors.1 Unlike the ET molecule, in the
BO molecule the peripheral atoms of sulfur are replaced
oxygen atoms. Since overlap of the orbitals of these su
atoms is responsible for the high conductivity in a lay
made up of ET molecules, one might expect substan
changes in the conducting properties on going to me
based on BO.
6211063-7761/98/87(9)/7/$15.00
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The first report on the synthesis, structure, and proper
of the metallic chloride of BO contained the chemical fo
mula of this compound, (BO)Cl(H2O), a simple salt.2 The
simple salt is characterized by a 1:1 ratio of the BO cation
the Cl(H2O) anion, which corresponds to the transfer of
electron from each BO molecule to an anion and implie
half-filled metal band. This report was of great interest, sin
before then no organic metals with a half-filled conducti
band were known.

The next paper3 showed that the chemical formula of th
BO chloride was more properly written in the form of th
complex salt (BO)2Cl(H2O)3. In this case, one electron a
rives at an ion from every two BO molecules, and the co
duction band is then one-quarter full. A comparison of th
oretical calculations of the structure of BO chloride with t
© 1998 American Institute of Physics
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FIG. 1. Shubnikov–de Haas oscillations:u50°, T
51.45 K, I 'ab. The inset shows the FFT amplitude o
these oscillations as a function of the frequencyF of the
quantum oscillations.
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parameters of the quantum mechanical oscillations first
served in this compound3 confirms this level of filling of the
band.

Data from an analysis of the composition and struct
corresponding to the formula (BO)2Cl(H2O)3 were later
presented,4 along with some results from a study of the r
luctance of this complex that were consistent with the p
posed formula.

Nevertheless, the chemical composition of BO chlor
is still under discussion. A chemical formula of the for
(BO)2Cl1.28(H3O)0.28(H2O)2.44 has been proposed,5 while
fully retaining the structural motif proposed before.3,4 This
difference in the description of the chemical compositi
does not, however, lead to a change in the degree of fillin
the band, since the excess negative charge on the anion~as-
sociated with the chlorine! beyond that implied by the for
mula (BO)2Cl(H2O)3, is balanced by the positive charge o
the H3O.

In this paper we offer a more detailed investigation
the Shubnikov–de Haas and de Haas–van Alphen osc
tions and semiclassical angular oscillations in the reluctan
These studies provide a more detailed idea of the size
shape of the Fermi surface in BO chloride, and make it p
sible to estimate the parameters of its electron system.
possible effect of the chemical composition of the anion
the behavior of these oscillations is not discussed here.

2. EXPERIMENT

Single crystal samples of (BO)2Clx(H2O)y obtained in
two chemical groups under differing synthesis condition4,5

were used in the experiments. Nevertheless, the sam
were shown to be identical by x-ray structural analysis. T
samples consisted of irregular slabs with average dimens
of 13130.1 mm3. The plane of the samples coincided wi
the crystallographicab plane, which contains the conductiv
layers. These layers alternate along the short dimensio
the samples, which coincides with thec* axis.

The reluctance was measured by the standard four
tact method using a 330 Hz alternating current. Here
measurement currentI could be directed either in theab
b-
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plane or perpendicular to it. A magnetic field was crea
either by a superconducting solenoid with a maximum fi
of 15 T or by a resistive magnet with a field of up to 20
and the minimum temperature was 0.45 K. In the relucta
measurements the orientation of the sample was varied u
a two-axis gimbal mount, which made it possible to rota
the sample in declination and in the azimuthal angle.

The de Haas–van Alphen effect was studied in terms
the dependence of the torque on the magnetic field.6 Here the
maximum magnetic field was 14 T and the minimum te
perature lay below 0.48 K.

3. RESULTS OF MEASUREMENTS

The average conductivity of the test samples at ro
temperature in the conducting plane is 50V21 cm21. All the
samples are characterized by a metallic variation in the
luctance as a function of temperature: as the temperatu
reduced from room temperature to liquid nitrogen tempe
ture, the reluctance decreases on average by a factor of a
dozen.

Figures 1 and 2 show the Shubnikov–de Haas and
Haas–van Alphen oscillations for a magnetic field direc
almost perpendicular to the conducting plane. For this fi
direction there is a single fundamental frequency for
quantum oscillationsF0.4900 T ~see insets to Figs. 1 an
2!. When the field deviates significantly from this directio
beats become appreciable in the fundamental frequency~see
Figs. 3 and 4!. Analysis of the quantum oscillations and fa
Fourier transforms reveal the complex nature of these be
which result from the mixing of three oscillations with sim
lar frequencies~insets to Figs. 3 and 4!, at least for some
directions of the field.

The angular dependence of these frequencies for th
Haas–van Alphen oscillations is shown in Fig. 5. There,
each direction of the field, different symbols correspond
different frequencies. This curve fit well by the formula

F~u!5
4900

cosu
@T#, ~1!
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FIG. 2. De Haas–van Alphen oscillations:u54.7°,
T50.5 K. The inset shows the FFT of these oscillation
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whereu is the angle between the field and the normal to
conducting plane. Here, recording several frequencies
each angle has essentially no effect on the curve, since
difference between the frequencies is never greater tha
few percent and does not exceed the average scatter. T
we can assume that Eq.~1! yields the fundamental frequenc
to high accuracy.

Figure 6 illustrates the angular dependence of the am
tude of the de Haas–van Alphen oscillations. As in the c
of the angular variation of the frequency, the amplitudes c
responding to oscillations at differing frequencies are in
cated by different symbols. Despite the complicated ang
dependence of the amplitude of the oscillations at differ
frequencies, the common zeroes in the amplitude
u5641 and 657° are evident. The amplitude null atu
e
at
he
a

us,

li-
e

r-
-
ar
t

at

50° is nonphysical and is related to the method for obse
ing the de Haas–van Alphen oscillations.6 The amplitude
nulls at
u5641° andu5657° are probably related to the fact th
the decreasing spin factor in the Lifshitz–Kosevich formu7

vanishes in those directions, i.e.,

Rs5cos~ppgm/2!50, ~2!

where p is the harmonic number,g is the g-factor,
m5m* /m0, m* is the effective electron mass, andm0 is the
free electron mass.

The effective carrier mass was estimated on the basi
the temperature dependence of the amplitude of the quan
oscillations. Here the decreasing temperature factor
taken to have the form
il-

FIG. 3. Shubnikov–de Haas oscillations:u523°,
T51.45 K, I 'ab. The inset shows the FFT of these osc
lations.
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FIG. 4. De Haas–van Alphen oscillations:u534.7°,
T50.5 K. The inset shows the FFT of these oscill
tions.
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apmT/H

sinh~apmT/H !
,

where a52p2kBm0 /e\514.7 T/K, T is the temperature
and H is the magnetic field. The mass in the conducti
plane determined in this way for several of the samples ha
substantial scatter and lay within the intervalm* 5(1.65–
2.0)m0.

The Dingle temperature was determined from the fie
induced variation in the amplitude of the quantum oscil
tions using a Dingle reducing factor of the form

RD5exp~2apmTD /H !.

The Dingle temperature lies in the rangeTD53 –4 K for
all samples measured.
a

-
-

Figure 7 shows the angular variation in the reluctan
for a constant field of 14.3 T. The maxima of the pronounc
angular oscillations are periodic in tanu. In Fig. 8, the period
of these oscillations is plotted in polar coordinates as a fu
tion of the azimuthal anglew in the conducting plane
Clearly the period is essentially independent of the azimu
angle, and isD'0.5.

4. DISCUSSION

The crystal lattice parameters of BO chloride were fi
given in Ref. 2 and confirmed in Refs. 4 and 5. The ba
structure of this material was calculated on the basis of th
data and found to be in agreement with preliminary obser
tions of quantum oscillations.3 According to this calculation,
de
FIG. 5. Angular dependence of the frequency of
Haas–van Alphen oscillations;T50.5 K. The smooth
curve corresponds toF(u)54900/cosu @T#.
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FIG. 6. Angular dependence of the amplitude of th
de Haas–van Alphen oscillations;T50.5 K.
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the Fermi surface~Fig. 9! in (BO)2Clx(H2O)y is a cylinder
with its axis oriented in thec* direction. The cross section o
this cylinder in theab plane coincident with the plane of be
conductivity is a perfect circle whose area is roughly h
that of the corresponding cross section of the Brillouin zo

For all the BO chloride crystals studied here, the f
quency of the quantum oscillations isF0'4900 T for a field
H'ab, which corresponds to 50% of the area transected
the first Brillouin zone, and agrees well with theoretical c
culations. The angular dependence of the frequency of th
oscillations is fit well by Eq.~1! and corresponds to a cylin
drical Fermi surface oriented alongc* .

The angular oscillations in the reluctance, with pea
periodic in tanu ~Fig. 7!, are also related to the motion o
carriers over the cylindrical Fermi surface, and the cylind
must be weakly corrugated along its axis.8,9 The period of
oscillations in the reluctance is independent of azimut
f
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angle in BO chloride crystals~Fig. 8!, so the cross section o
the cylinder can be represented as a perfect circle in theab
plane. In this case, the Fermi momentumkF is related to the
period D of angular oscillations in the reluctance by th
simple formula8

D5p/kFd,

whered is the distance between conducting planes. The
timated cross sectionS5pkF

2.331015cm22 is in good
agreement with theoretical calculations and the quantum
cillation data. Thus, the quantum and semiclassical osc
tions in the organic metal (BO)2Clx(H2O)y correspond to a
weakly corrugated cylindrical Fermi surface with a perfec
circular cross section of radius.33107 cm21 in the ab
plane.

The slight corrugation in the cylindrical sheet of th
Fermi surface must result in the existence of several sim
FIG. 7. Angular dependence of the reluctance;T50.5 K,
H514.3 T, I 'ab.
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extremal cross sections~in the case of simple corrugation
there should be two!, and this may show up as beats in t
fundamental frequency. In the compound studied here, b
are observed for field directions not coincident withHic*
~Figs. 3 and 4!. These beats, however, have a complex sha
since they result from combining more than two oscillatio
at differing frequencies. We might assume a complica
corrugation with several differing extremal cross sectio
but one would then scarcely expect the pronounced ang
oscillations in the reluctance observed in the sample crys
In addition, there is still no explanation for the lack of an
beats whatsoever for a field withHic* .

The beats might be related to crystal imperfections of
samples, such as twinning, intergrowth, etc. This expla
tion, however, can be ruled out by direct x-ray analysis of
test samples, which confirms that they are high-quality sin
crystals.

The distorted form of the quantum oscillations~includ-
ing beats! might arise through magnetic interaction,7 but the
latter is only significant when the absolute amplitude of
cillations in the magnetic momentmBM is comparable to the
periodH2/F of the oscillations. In the test samples,

mBM'2.5 G!200 G'H2/F,

wheremBM'2.5 G is the maximum attainable absolute a
plitude in the experiments with a 10 T field, so magne
interaction can be neglected.

Finally, there is yet another possible reason for the be
The calculated Fermi surface in Ref. 5 differs somew
from that in Fig. 9. The cylindrical sheet intersects t
boundary of the Brillouin zone near the pointX, rather than

FIG. 8. The period of angular oscillations in the reluctance as a functio
the azimuthal anglew in polar coordinates.
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being tangent to it, forming very small pockets at this si
This can lead to the coexistence of a small orbit with t
main orbit, which corresponds to the fundamental frequen
We can then expect sum and difference frequencies to
pear, including some near the fundamental. This latter s
nario would seem to be the most plausible, but it is obviou
very vulnerable at present and requires more convincing c
firmation and additional study.

The condition~2! for the appearance of ‘‘spin nulls’’ a
u'641 and657° is satisfied by the first harmonic, assum
ing that the effective mass and angle of inclination are
lated by the characteristic formula for a cylindrical Ferm
surface,m(u)5m(0)/cosu. Here the splitting factor isSs

5gm(0)/2'1.85. Given the spread in the estimate of t
effective mass obtained from the temperature dependenc
the amplitude of the quantum oscillations,m5(1.65–
2.0)m0, the g factor becomesg51.85–2.23. Theg-factor
determined in this way usually includes corrections owing
many-particle interactions, which makes it different from t
free electrong-factor, g052.7 The closeness ofg and g0

argues for the weakness of these interactions. In the
samples, any assumptions regarding the influence of ma
particle interactions would be incorrect because of the exc
sive error in determining theg-factor due to the spread in th
value of the effective mass. More detailed experiments w
be required to make the latter more accurate.

5. CONCLUSION

We have studied the behavior of the magnetic mom
and reluctance of a group of samples of the organic m
(BO)2Clx(H2O)y . Shubnikov–de Haas and de Haas–v
Alphen quantum oscillations and semiclassical angular os
lations in the reluctance were observed. An analysis of th
data indicate that the Fermi surface of this compound i
cylinder weakly corrugated along its axis, and is a perf
circle of radiuskF.33107 cm21 perpendicular to the axis
These results agree with theoretical calculations. Com
cated beats involving the fundamental frequency of the qu
tum oscillations were observed, but their nature is as
unclear.

We thank L. P. Rozenberg for the x-ray structural da
and E. B. Yagubski� and R. P. Shibaeva for useful discu
sions. This work was supported by the Russian Fund
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FIG. 9. The energy band structure~a! and Fermi surface
~b! in the organic metal (BO)2Cl(H2O)3.3
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