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Abstract—The dynamics of a modified logistic mapping are considered for a system with the order parameter
modulated by an external signal. It is shown that the Kolmogorov–Sinay entropy changes with changing mod-
ulation depth, while the harmonic signals and white noise can be used as a modulating signal. The conditions
for the excitation of regular and strange nonchaotic attractors in the phase space are established. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

At present, random oscillations have been observed
in a great variety of objects, starting with crude
mechanical systems and ending with highly organized
biological systems. In the theoretical and applied stud-
ies of determinate chaos, one can distinguish a number
of priorities such as the elaboration of new scenarios for
the transition from regular to chaotic motion, methods
of generating dynamic chaos, the study of the interac-
tions between chaotic systems and the possible types of
their collective behavior, unconventional dynamics and
informational processes, and entropy control in contin-
uous- and discrete-time dynamic systems. The latter
area is caused by the needs for both the excitation and
suppression of chaotic oscillations in the same dynamic
system [1–6].

Apart from the purely theoretical interest, the con-
trol of the degree of motion ordering is also of great
applied importance. Dynamic systems with chaotic
oscillations can be used in the design of systems for
radio camouflage and electronic countermeasures,
noise radiolocation systems, confidential communica-
tion systems, and systems for nonstandard action on
biological objects [7–9]. However, in some cases, the
appearance and development of the determinate chaos
regime are highly undesirable.

The purpose of this work is to examine one of the
possible methods of controlling the degree of motion
ordering, namely, through the modulation of the order
parameter by an external signal in the form of a har-
monic oscillation or white noise.

MATHEMATICAL MODEL 
AND ITS ANALYTIC INVESTIGATION

As the object for investigation, we chose a discrete-
time system representing a modified logistic mapping
[10]. After the addition of a multiplier describing the
1063-7842/04/4907- $26.00 © 20805
modulation of the order parameter, this mapping takes
the form

(1)

Here, α0 ≥ 1 is the order parameter; 0 ≤ m ≤ 1 is the
order-parameter modulation depth (control parameter);
T and ϕ0 are, respectively, the period and initial phase
of the external force; and n = 0, 1, 2, …, N is the discrete
time. Mapping (1) models a nonautonomous dynamic
system subjected to the parametric action of an external
periodic force. In the autonomous case m = 0, the order
parameter α0 determines the degree of randomness of
the motion {xn}, when the Kolmogorov– Sinay entropy
can be calculated exactly to give K =  [10].

Piecewise linear mapping (1) represents two rays
that emanate from the point (x = 0, Φ(x) = 1) at the
angle θ and go to –∞. As the discrete time n varies at
fixed α0 and m, the angle θ varies from θmin = π –
2 α0(1 + m)] to θmax = π – 2 α0(1 – m)]
with the period T, resulting in a periodic variation of the
Lyapunov characteristic index.

Indeed, the local Lyapunov index λn is calculated
analytically according to the relation

(2)

whence it follows that it is a 2π-periodic function of the
discrete phase τn = 2πn/T + ϕ0. During the action of the
external force, λn takes both positive and negative val-
ues. Consequently, a strong dependence on the initial
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conditions for different τn values may either take place
or be absent; i.e., the phase trajectories may either mix
or not.

Due to the periodicity of λn, the Lyapunov charac-
teristic index Λ defined as its mean along the time real-
ization of {xn},

(3)

may be calculated only on the interval [0–2π]. Passing
from the discrete to a continuous τn phase, one gets

(4)

If Λ < 0, the motion in the attractor is, on average,
ordered and, conversely, it is chaotic if Λ > 0. For this
reason, by setting the right-hand side of expression (4)
equal to zero, one can determine the critical value 
that separates the chaotic and nonchaotic regimes,

(5)

It is significant that neither the period of the external
force nor its initial phase appears in this relation.
Because of this, the motion type in the system is deter-
mined only by the parameters αo and m. This implies
that only the force and energetic relations play the dom-
inant part. The external action does not affect the crude-
ness property that is inherent in an autonomous system
[10], and, hence, the main properties of model (1) do
not change if the variations of its parameters are small.

According to the familiar theorem in [11], the Kol-
mogorov–Sinay entropy (hereinafter entropy) for map-
ping (1) is defined by the relation

where ρ(x) is the invariant probability measure of a
dynamic system. Since the dynamics of the mapping
under consideration proceed in a restricted phase-space
domain, the probability measure always exists for the
time series generated by this mapping [12]. In our case,
Λ is independent of x, so that, with allowance for the
normalization condition, K ≡ Λ. In what follows, we
will not distinguish between these two notions and
identify the Lyapunov characteristic index of model (1)
with its entropy.

So far, we dealt with the properties of a discrete-
time system, and nothing was said about the way of
constructing model (1). At the same time, it is well
known that many of the discrete-time systems can be

Λ 1
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∞

∫=
related to a certain flow system, and this applies, in full
measure, to the mapping of interest. Model (1) can
identically be transformed to a set of two autonomous
mappings

(6)

which now describe the dynamics of a nonlinear con-
tinuous-time system subjected to an external bihar-
monic excitation with periods T1 and T.

Indeed, the first of the equations in (6) is obtained
from the stroboscopic sections (with the period T1) of
the motion of the original flow system, while the first
action by itself is excluded. One iteration in the discrete
time n corresponds to the period T1 of the first harmonic
action.

Since the relation

holds for the phase of eternal action, the rotation num-
ber Θ is defined as

(7)

If T is an irrational number, the external action is
quasi-periodic; otherwise it is periodic. Thus, the
results obtained for model (1) can be extended in full
measure to continuous-time systems of the indicated
type.

This completes the analytic study of models (1) and
(6). In the subsequent sections, the results of numerical
experiments are presented.

HARMONIC EXTERNAL ACTION

In this section, we analyze the influence of the con-
trol parameter m on the dynamics of models (1) and (6)
with various values of the order parameter α0. Calcula-
tions were carried out by formula (4) and numerically
using algorithm [13] with quite a long realization of the
time series {xn}. Both methods gave identical results
(Fig. 1a). For any value of the order parameter, there
exists the  value which separates the chaotic and non-
chaotic oscillation types. Since the function Λ(m, α0)
decreases monotonically, one can assert that the control
parameter “smoothly” changes the entropy of the sys-
tem and, hence, the degree of motion ordering in it. The
character of the motion is fundamentally different for
rational and irrational, even if close, rotation numbers.
If the modulation period is rational, the time series is
periodic (Fig. 1b), otherwise the periodicity is absent
(Fig. 1c). At the same time, one can see that the motions
share some common traits. At the instants the local
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ψn 1+ ψn
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Fig. 1. (a) The Lyapunov characteristic index Λ as a function of the controlling parameter m for different values of order parameters
αo of system (1). (b, c) The fragments of time realizations of xn calculated for m = 0.95. The period of modulating signal is

(b) rational, T = 50, and (c) irrational, T = 20/(  – 1) ≈ 48.284271.2
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Fig. 2. (a) Phase portrait and (b) Fourier spectrum of system (6) calculated for αo = 1.5, m = 0.95, and rational rotation number Θ =
0.02. (c) Phase portrait and (d) Fourier spectrum calculated for the same values of αo and m = 0.95, but irrational rotation number

Θ = (  – 1)/20 ≈ 0.020711. The attractor dimensions were as follows: attractor capacity (fractal dimension) DC ≈ 1.478, infor-
mational dimension DI ≈ 1.251, and correlational dimension Dcor ≈ 1.077.

2

Lyapunov index is negative, the variable xn is a smooth
function with a period coinciding with the modulation
period. If the local Lyapunov index becomes positive,
the character of the motion changes qualitatively; its
characteristic time scale no longer correlates with the
period of the external field, the local phase trajectories
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
diverge exponentially, although, on average, no mixing
occurs at the attractor.

A more comprehensive idea of the character of
motion at m >  can be obtained by analyzing its phase
portraits and Fourier spectra (Fig. 2). The phase por-
traits were constructed on a unit square with equal

m̂



808 VLADIMIROV, SHTRAUKH
sides, which is topologically equivalent to a two-
dimensional torus.

For a rational value of the external force, the trajec-
tory is an unsmooth closed curve (Fig. 2a), indicating
that the motion is periodic. The unsmooth character of
the trajectory is due to the unsmooth character of the
generating mapping. The line Fourier spectrum consist-
ing of a set of equidistant harmonics separated by the
frequency interval ∆f = 1/T is also indicative of the
motion periodicity.

For an irrational rotation number, the mapping
attractor is qualitatively different from the preceding
case (Fig. 2c). The dimensions calculated by algorithm
[14, 15] proved to be fractional values. The noninteger
dimensions, in conjunction with the negative Lyapunov
index, are evidence for the presence of a strange non-
chaotic attractor. In this case, the motion in the system
is rather intricate and aperiodic; although the geometric
structure of the attractor is irregular, the motion is
asymptotically stable. The disparity between the
dimensions is caused by the fact that the attractor
capacity is a purely geometric measure, whereas the
informational dimension takes into account the fre-
quency with which the points {xn} visit different sec-
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Fig. 3. (a) The Lyapunov characteristic index Λ as a func-
tion of the white-noise variance σ2 for system (8) and
(b) the bifurcation diagram, as calculated for αo = 1.2. The
critical value of the variance separating the chaotic and reg-

ular motions is  ≅  0.275.σ̂2
tions of the attractor. The Fourier spectrum (Fig. 2d)
has a line continuous character; i.e., it is intermediate
between discrete and continuous spectra. The compo-
nents at the frequency of external action and its har-
monics are seen against a continuous background. In
addition, the spectrum contains many harmonic com-
ponents whose frequencies are unrelated to the external
action, which is quite typical of strange nonchaotic
attractors [16].

In closing this section, we note that the origination
of a strange nonchaotic attractor upon quasi-harmonic
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Fig. 4. (a) Fragment of the time realization of xn, (b) the
phase portrait, and (c) the Fourier spectrum, as calculated
for αo = 1.2 and σ2 = 0.3. The attractor capacity DC ≈ 1.839,
the informational dimension is DI ≈ 1.837, and correlational
dimension Dcor ≈ 1.744.
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excitation was observed earlier only in smooth dynamic
systems, such as circle mapping, Eno mapping, logistic
mapping, and Grebogy–Pelican–York mapping. Our
study allows the results of previous works to be
extended to unsmooth systems.

WHITE NOISE ACTION

It is pertinent to pose the nontrivial question of the
possibility of entropy control in a dynamic system sub-
jected to random external action and, specifically, to its
limiting form of white noise. To answer this question,
we consider the dynamic system

(8)

where ξn is white noise with a smooth and symmetric
distribution about the point x = 0, zero mean, and vari-
ance σ2; the white-noise variance is chosen as the con-
trolling parameter.

First we examine how the controlling parameter
influences the dynamics of the model. The results of
calculation are shown in Fig. 3. Analysis of this figure
suggests that the entropy of the system changes with
changing σ2; it decreases with increasing variance
(Fig. 3a) and becomes negative at a certain critical

value of . The disorder creates order. The critical
value of the variance cannot be determined visually
from the bifurcation diagram (Fig. 3b). Consequently,
the geometric structure of the attractor changes only

slightly in the vicinity of .
As in the case of harmonic external action, we ana-

lyze below the dynamics and Fourier spectrum of the

model, restricting ourselves to the case σ2 > . The
computational results are presented in Fig. 4. The time
realization of {xn} (Fig. 4a) is a finite aperiodic process
with a complex geometric structure in the phase space
(Fig. 4b). The fractal and informational dimensions are
larger than in the case of harmonic external action and
approach their limiting possible value of 2. The nega-
tive Lyapunov index and the fractional dimensions are
evidence that white noise excites a strange nonchaotic
attractor in the system. The Fourier spectrum (Fig. 4c)
is smooth, and its structure is close to the white noise
spectrum and has no regular harmonic components,
except for a constant component. This overturns the
usual ideas about the line continuous spectrum inherent
in the strange nonchaotic attractor. That is why we
spoke above about the typical character of this spec-
trum rather than about its universality.

CONCLUSIONS

In this work, nonautonomous discrete- and continu-
ous-time dynamic systems have been considered. It has

xn 1+ 1 α0 1 ξn+( ) xn ,–=

σ̂2

σ̂2

σ̂2
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been shown that the Kolmogorov–Sinay entropy of
these systems and the degree of their motional ordering
can be controlled not only by a harmonic action but also
by white noise. Since action of the first type is regular,
while that of the second type is completely disordered,
the results obtained are quite general. It has been dem-
onstrated for the first time that the strange nonchaotic
attractor can also be excited in smooth dynamic sys-
tems in the absence of a quasi-periodic action.
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Abstract—A mathematical model is constructed of a nonautonomous dynamic system containing a nonlinear
capacitance and possessing a four-dimensional phase space. A numerical investigation is performed of branch-
ing processes and phenomena accompanying variations in the frequency and amplitude of an external force.
The existence of complex dynamic processes that are a combination of a nonlinear force resonance and a para-
metric resonance is demonstrated. It is found that both a strange chaotic and a strange nonchaotic attractor exist
in the phase space. It is shown that, in the case of a single-frequency external force, the latter attractor exhibits
the property of roughness. The results of numerical calculations are confirmed by the results of laboratory
experiments. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the classical theory of nonlinear oscillations, the
treatment of a nonlinear force resonance is usually arti-
ficially separated from that of a nonlinear parametric
resonance [1–3]. From the methodological standpoint,
such a separation seems to be quite natural and reason-
able, because it enables one to employ simple means
for a mathematical description of models and to ana-
lyze these models self-consistently. In this way, the
basic characteristic features of nonlinear systems and
their fundamental distinctions from linear systems were
revealed. This is quite sufficient for the formation of a
scientific paradigm for those beginning to study the the-
ory of oscillations.

However, this approach involves a number of prob-
lems. One of these problems was very clearly outlined
by Migulin et al. [2]: “It is not quite correct to treat the
case of a direct force action without simultaneously
affecting the system parameters; if we take into account
the fact that a forced periodic process caused by a direct
action in turn causes periodic variations in the parame-
ters of a nonlinear system, then it becomes clear that the
resultant resonance phenomena may have a very com-
plex pattern; this fact rules out the possibility of a com-
plete separation of the above two types of resonance
phenomena for nonlinear systems.” We also note that, if
the motion in an oscillating system is far from periodic,
then the difficulties increase manyfold.

No less an important problem is that the classical
theory of nonlinear oscillations deals with motions that
occur, as a rule, in dynamic systems with a small
dimension of the phase space. The motion in these sys-
tems is usually close to periodic. The present-day the-
1063-7842/04/4907- $26.00 © 200810
ory of oscillations is characterized by the ever increas-
ing interest in stochastic (for Hamiltonian systems) and
chaotic (for dissipative systems) motion. By now it has
become evident that such motions of dynamic systems
are as natural as, e.g., the state of rest or limiting cycles.
Note that the study of deterministic chaos not only
attracts researchers from the standpoint of obtaining
new theoretical results, it is also becoming more and
more applied [4–6].

Another interesting problem is that of identifying
attractors of dynamic systems exhibiting nonconven-
tional behavior. The concept of the strange attractor
was first introduced by Ruelle and Takens [7] and has
been repeatedly refined since that time (see, e.g., [8]).
Special interest is aroused by a strange nonchaotic
attractor. Some researchers believe that processes simi-
lar to the processes of evolution and data processing
may occur at the boundary between regular and chaotic
motion [9]. As a rule, the presence of a strange noncha-
otic attractor is identified with the biharmonic effect
produced by oscillations with an irrational frequency
ratio.

The objective of this study is to construct and
numerically investigate a mathematical model of a
dynamic system with a small number of degrees of
freedom and continuous time, in which all of the phe-
nomena and processes listed above could be observed
when varying the system parameters. The model should
be physically feasible and, furthermore, should repre-
sent a reasonable combination of components tradition-
ally employed in radiophysics and electronics. The
results of numerical experiments should be compared
with those of laboratory experiments.
04 MAIK “Nauka/Interperiodica”
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1. CONSTRUCTION OF A GENERAL 
MATHEMATICAL MODEL

Let us consider the nonautonomous nonlinear elec-
tric circuit shown in Fig. 1. The circuit contains a
source of an external harmonic signal of the form
Acos pt; linear dissipative elements R1, R2, and RS; a
nonlinear capacitance CN; two linear inductances L1
and L2; and a source of the bias voltage E. The elements
serve the following functions: The dissipative elements
R1, R2, and RS determine the losses of energy in the
reactive elements L1, L2, and CN, respectively; the
inductance L1, along with the nonlinear capacitance,
serves to tune the circuit to resonance with the fre-
quency of the external signal p; and the inductance L2
forms the bias circuit of the nonlinear capacitance.

We use Kirchhoff’s laws to write the set of equations
for the currents and voltages in the circuit under study:

(1)

This set of equations is of the third order. The pres-
ence of an external force increases the order by unity;
therefore, the resultant dimension of the phase space
is 4, which proves to be sufficient to ensure a highly
diverse dynamics of the model.

The last equation in the set of Eqs. (1) may be
rewritten as

(2)

where CD is the dynamic capacitance of the nonlinear
element.

Let us specify the volt–farad characteristic of the
nonlinear capacitance. We will take this characteristic
to be as close as possible to the respective characteristic
of real varicaps with an abrupt p–n junction [10],

(3)

Here, E is the bias voltage, ϕ0 is the contact potential
difference, and C0 is the capacitance of the junction at
the working point with the bias E.

After the performing necessary transformations, we
will write Eq. (2), in view of the chosen form of nonlin-
earity (3), in the form

(4)

L1

di1

dt
------- A ptcos R1i1– RS i1 i2–( ) uC––=

L2

di2

dt
------- uC RS i1 i2–( ) R2i2–+=

d
dt
----- CNuC( ) i1 i2.–=











CD

duC

dt
--------- CN uC

dCN

duC

----------+ 
  duC

dt
--------- i1 i2,–= =

CN C0
g

g uC–
--------------, g E ϕ0.+= =

C0m uC( )
duC

dt
--------- i1 i2,–=
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where the factor

(5)

is the modulation factor of the nonlinear capacitance at
the working point.

The model described by Eqs. (1), (4), and (5) is suit-
able for numerical analysis with arbitrary values of the
parameters of dissipative and reactive elements, pro-
vided that the only additional inequality uC < g is valid.
The branching phenomena and processes observed dur-
ing variations in these parameters are so multiple and
diverse that it does not appear possible to examine them
within a single journal paper. Therefore, we will restrict
ourselves to treating the resonance case.

2. MATHEMATICAL MODEL 
IN THE RESONANCE CASE

Let, in the low-signal case (m(uC) ≈ 1), the dynamic
system under study have a resonance frequency ω0 on
the side of the pump oscillator. This enables one to
introduce the dimensionless time τ = ω0t and, because
d/dt = ω0d/dτ, to transform the set of Eqs. (1) into the
form

(6)

where X1 = ω0L1 and X2 = ω0L2 are the reactances of the
inductive elements, YC = ω0C0 is the static conductivity
of a varicap at the low-signal resonance frequency, and
Ω = p/ω0 is the normalized frequency of the external
signal. Since YC, as well as RS, is a rated quantity for a

m uC( ) g
g uC–
--------------

g 0.5uC–
g uC–

----------------------=

X1

di1

dτ
------- A Ωτcos R1i1– RS i1 i2–( ) uC––=

X2

di2

dτ
------- uC RS i1 i2–( ) R2i2–+=

YCm uC( )
duC

dτ
--------- i1 i2,–=











R2

E
CN

RS

i2i1

uC

A cos pt

R1 L1 L2

Fig. 1. Schematic diagram of a nonautonomous electric cir-
cuit with a nonlinear capacitance.
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given type of varicap, it makes sense to find convenient
expressions for the remaining reactances by expressing
them in terms of this particular quantity.

Let us write the expression for the circuit impedance
at the frequency ω0 on the side of the pump oscillator,

(7)

The losses in reactive elements are usually insignif-
icant and may be ignored in a first approximation. This
approximation is further justified for the reason that the
anharmonic and nonisochronous properties of a nonlin-
ear system will necessarily show up as the amplitude of
the external signal increases, so that the resonance fre-
quency will inevitably change. In our case, the nonlin-
earity of CN is “soft”; hence, one can expect a leftward
slope of the resonance curve and a decrease in the res-
onance frequency [2]. As a result, expression (7) may
be simplified to

(8)

It is clear that the efficient utilization of the pumping
voltage with a frequency p ≈ ω0 requires the absence of
a pole of decay at this frequency. Therefore, we will
assume that X2 ≠ XC and set X2 = αXC (α ≠ 1). In addi-
tion, in view of the condition that the imaginary part
Z(jω0) is equal to zero, it follows from Eq. (8) that X1 =
αXC/(α – 1) (α > 1). From this, we derive the sought
correlations between the parameters of the set of
Eqs. (6),

(9)

The parameter α has a simple physical meaning. In
a low-loss approximation, an analysis of the behavior
of the impedance Z(jω) in a certain frequency range
(we omit the latter as being irrelevant to the problem
under consideration), has revealed that, in addition to

the resonance frequency ω0 = ,

there is a pole of decay at the frequency ω∞ = 1/ .
These frequencies are related through the parameter α
as follows: α = (ω0/ω∞)2.

Now, the set of Eqs. (6) complemented with rela-
tions (9) enables one to finally formulate the mathemat-

Z jω0( ) = R1 jX1
R2RS X2XC j RSX2 R2XC–( )+ +

R2 RS j X2 XC–( )+ +
----------------------------------------------------------------------------+ + ,

XC
1

YC

------, j 1– .= =

Z jω0( ) j
X1X2 XC X1 X2+( )–

X2 XC–
-------------------------------------------------.=

X1 α 1
YC

------, X2
α

α 1–
------------ 1

YC

------.= =

L1 L2+( )/C0L1L2

C0L2
ical model:

(10)

The results of numerical analysis of this model are
given in the next section. In conclusion of this section,
we will prove the existence of an attractor for flow (10),
i.e., a limiting attracting set in phase space. The attrac-
tor exists if and only if the flow divergence D is nega-
tive. Indeed, in this case any initial volume of phase
space V0 behaves with time τ as

(11)

This means that, if D < 0, then all phase trajectories
that start from V0 “settle” with time on a closed attract-
ing set of zero volume, i.e., an attractor [1, 11].

For flow (10), the phase flow divergence (Lie deriv-
ative) has the form

(12)

In these expressions, the term D1 is negative for any
values of the quantities entering in it, and the factor D2
is always positive. In the general case, the term D2(i1 –
i2) is alternating-sign, is a function of time, and is obvi-
ously limited (if only by virtue of the finite power of the
pumping source). Therefore, V(τ) =
V0exp(D1τ)exp[D2(i1 – i2)τ]  0 as τ  ∞, which
proves the existence of an attractor for flow (10). How-
ever, the properties and structure of this attractor may
only be judged by the results of numerical analysis and
laboratory experiments.

3. RESULTS OF NUMERICAL ANALYSIS

The set of differential equations (10) was integrated
by the eighth-order Dorman–Prince method with auto-
matic control of the integration step [12]. The local
error of integration in numerical experiments was no
larger than 10–8; in some special cases (e.g., when
investigating the vicinity of a branching point), this
error was decreased to 10–12. The resultant time series
were stored and then processed. The maximum charac-

di1

dτ
-------

α 1–
α

------------YC A Ωτcos R1i1– RS i1 i2–( )– uC–[ ]=

di2

dτ
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YC

α
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m uC( )YC
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teristic Lyapunov exponent was calculated by the algo-
rithm suggested by Benettin et al. [13]. The attractor
capacity and the informational and correlational dimen-
sions of the attractors were estimated using the
approaches described in [14, 15].

The results given in this section were obtained for
the following values of the parameters of model (10):
E = 6 V, ϕ0 = 0.8 V, R1 = 1 Ω , R2 = 2 Ω , R3 = 0.2 Ω , YC =
2 × 10–3 S, and α = 10.

We will start with the construction of a one-param-
eter bifurcation diagram that enables one to qualita-
tively estimate the types of motion and their transfor-
mations while using simple means. In the general case,
the bifurcation diagram represents the dependence of
the maxima of some process on the control parameter.
If the process under analysis exhibits a harmonic
behavior, then its maxima are periodically repeated and
the bifurcation diagram is a point when the control
parameter has a fixed value and it is a line when this
parameter varies. However, if the diagram lines are dif-
fuse or the points fill up entire regions of the diagram,
the process exhibits a limited aperiodic behavior, and it
is quite safe to talk about the strangeness of the attractor
of the dynamic system under study.

The bifurcation diagram presented in Fig. 2 shows
the dependence of the current maxima i1 on the relative
frequency of the external signal Ω = p/ω0 for a normal-
ized pumping amplitude B = A/g of 0.5. Eight nonlinear
resonances numbered from 1 to 8 are observed in the
chosen frequency range of the external signal. The fre-
quency is varied from low to high values, hysteretic
phenomena are observed in the vicinities of the reso-
nance frequencies, and the resonance curves are
inclined to the left. When the frequency of the external
signal is varied from high to low values, the pattern of
the diagram is qualitatively the same; however, the hys-
teresis phenomena are observed at lower frequencies
than in the previous case. We will regard the half-sum
of the frequencies at which hysteretic jumps in the cur-
rent amplitude i1 take place as nonlinear resonance fre-
quencies. These frequencies are Ω1 ≈ 0.228, Ω2 ≈
0.304, Ω3 ≈ 0.373, Ω4 ≈ 0.42, Ω5 ≈ 0.593, Ω6 ≈ 0.757,
Ω7 ≈ 1.446, and Ω8 ≈ 1.877.

It is known from the classical theory of nonlinear
oscillations [2, 3] that the frequencies of nonlinear
force resonances are defined by relations of the form
Ωn = 1/n, and the frequencies of nonlinear parametric
resonances, by relations Ωm = 2/m (where n and m are
integers). In addition, higher order force resonances are
possible [1] at frequencies of Ωnm = n/m.

The first and seventh resonances observed in the
bifurcation diagram may be identified with the fifth-
order nonlinear force resonances at n/m = 1/4 and n/m =
3/2, respectively. The third, fifth, and eighth resonances
are manifestations of the nonlinear parametric reso-
nances with m = 5, 3, and 2. Finally, the second (n = 3,
m = 6), fourth (n = 2, m = 4), and sixth (n = 1, m = 2)
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
resonances are results of the simultaneous manifesta-
tion of force and parametric phenomena. We note that
force resonances at the frequencies Ωn = 1/n do not
show up in pure form and are always accompanied by
nonlinear parametric resonances, because Ωm = 2Ωn,
with n = m.

Note the blurriness of the lines in the bifurcation
diagram. As was mentioned above, this corresponds to
the complex internal dynamics at the chosen amplitude
of the pumping voltage. It is interesting to investigate
how the system properties depend on this amplitude.
We will fix the frequency of the external force in the
vicinity of the most pronounced (sixth) resonance
assuming that Ω = 0.8 and use B as a control parameter.
The behavior of the highest characteristic Lyapunov
exponent Λmax as a function of the external force ampli-
tude is shown in Fig. 3. It follows from this figure that
there exists the critical (bifurcation) value of the pump-

ing voltage amplitude  = 0.2358…, which separates

qualitatively different types of motion. At B < , the
highest Lyapunov exponent is negative, Λmax ≈ –4.4 ×
10–5, which indicates that the system is insensitive to
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initial conditions and that the mixing of trajectories in
phase space is absent.

It is expedient to clarify what is meant by the highest
Lyapunov exponent. An N-dimensional dynamic sys-
tem possesses N Lyapunov exponents. Their signs
make up the so-called signature of the exponent spec-
trum, which is conventionally written as 〈+, +, …, 0, –,
–〉 . The presence of a zero exponent in flow (10) is
obligatory and is caused by the effect of an external
periodic force. Indeed, the set of Eqs. (10) may be
transformed into a fourth-order autonomous system by
adding the equation dφ/dτ = Ω , which is equivalent to
the introduction of a new variable φ = Ωτ. It is obvious
that the variations in the distances between trajectories
in phase space are zero along the φ axis, which results
in the emergence of the zero exponent in the signature.
This fact is rigorously proven by the well-known Haken
theorem [16]. The exponent that is defined only by the
internal dynamics of a system, even when it is less than
zero, will be referred to as the highest Lyapunov expo-
nent.

1.2
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Dcor

DI

DC

(a)

0.02

0.03

0.233 0.234 0.235 0.236 B

(b)

0.01

m
ax

[i
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Fig. 4. (a) Attractor capacity DC and its informational, DI,
and correlational, Dcor, dimensions as functions of the
external force amplitude; (b) a fragment of the bifurcation
diagram plotted in the vicinity of the bifurcation point.
When the pumping amplitude exceeds the critical
value, the highest Lyapunov exponent changes its sign
and assumes a value of Λmax ≈ 4.8 × 10–2. As a result, a
mode corresponding to dynamic chaos arises. The
modes change stepwise; in thermodynamic systems,
this corresponds to a first-order phase transition. The
highest Lyapunov exponent increases nonmonotoni-
cally as B increases further, and no regularity windows

are present. The latter means that, at B > , a single
chaotic attractor exists, which does not contain stable
regular attractors and retains its properties as the con-
trol parameter varies. According to the existing classifi-
cation, such an attractor must be assigned to the quasi-
hyperbolic type [8].

Let us investigate the fractal properties of the attrac-
tor in the vicinity of the bifurcation point. We will turn
to Fig. 4a, which presents the attractor capacity (fractal
dimension) DC and the informational DI and correla-
tional Dcor dimensions as functions of the external force
amplitude. These dimensions differ from one another,
with the necessary relations Dcor ≤ DI ≤ DC retained, and
undergo a greater or smaller jump at the point of transi-
tion to the chaotic mode. The fractal dimension
increases by approximately 11%, and the informational
and correlational dimensions increase by approxi-
mately 5 and 0.8%, respectively. It is especially impor-
tant that all the dimensions are fractional both before
and after bifurcation. Consequently, a strange noncha-
otic attractor exists in the system before the bifurcation
point, and a strange chaotic one exists after the bifurca-
tion point. At present, the existence of a strange chaotic
attractor appears to be as usual as the existence of, e.g.,
a limiting cycle. Up to now, it was believed that the
external action of two harmonic signals with an irratio-
nal frequency relation was an obligatory condition for
the existence of a strange nonchaotic attractor in a
dynamic system [17, 18]. It was demonstrated in [19]
that it is not necessary that the frequency ratio be
always irrational, and it has now become clear that
sometimes even a one-frequency external action is suf-
ficient. The results obtained indicate that the strange
nonchaotic attractor mode is not a rare and exotic phe-
nomenon but is a fairly typical manifestation of the
nonlinear properties of dynamic systems.

Let us now turn to Fig. 4b, which shows a fragment
of a one-parameter bifurcation diagram plotted in the
vicinity of the parameter region where the characteris-
tic Lyapunov exponent changes its sign. To the right of

point , the attractor is arranged rather simply and rep-
resents a closed, weakly diffuse double-turn curve. To

the left of point , in spite of the fact that the highest
Lyapunov exponent is negative, the bifurcation diagram
is much more complicated. Here, a nonperiodic oscilla-
tory mode with a rather complicated geometric struc-
ture (strangeness) is realized, but without both the

B̂

B̂

B̂
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exponential divergence and mixing of phase trajecto-
ries (the absence of chaos), which is determined by the
negative sign of the Lyapunov exponent. It is these
properties that are typical of strange nonchaotic attrac-
tors.

It is no less important that the observed strange non-
chaotic attractor is structurally stable, because its
dimension and bifurcation diagram remain almost the
same as the external force amplitude varies within a
fairly wide range. Consequently, this attractor retains
its structure in the presence of perturbations.

In conclusion of this section, we will consider
another important problem associated with the possibil-
ity of estimating the fractal dimension of an attractor by
the calculated Lyapunov dimension. This problem is
nontrivial and has long been under discussion in the lit-
erature. For example, the results of tests performed for
Eno, Kaplan-Yorke, and Zaslavskii mappings and for
the Rabinovich–Fabrikant equations showed that the
Lyapunov dimension is very close to the fractal one
[20]; however, for higher order mappings and flow sys-
tems, this is generally not the case. At present, a number
of examples are known that point to an overestimated
value of the dimension obtained by the Kaplan–Yorke
procedure [21].

Young [22] rigorously proved the validity of the
relation

(13)

which relates the number of the positive Lyapunov
exponents k+ and the fractal and Lyapunov (DL) dimen-
sions. Therefore, the Lyapunov dimension is the upper
limit of the possible values of the attractor capacity.
However, the question remains open as to the closeness
of this limit to the fractal dimension for each particular
dynamic system. We will try to find an answer to this
question for flow (10).

The concept of the Lyapunov dimension originates
from the hypothesis of Kaplan–Yorke [21], who pro-
posed to use DL to calculate the informational dimen-
sion of attractors of dynamic systems. The calculation
algorithm is as follows:

(14)

Here, k is an integer for which the relations Λ1 + Λ2 +
… + Λk > 0 are valid, but Λ1 + Λ2 + … + Λk + 1 < 0. In
principle, two signatures of the Lyapunov spectrum are

possible for flow (10) at B > , namely, 〈+, 0, –, –〉  and
〈+, +, 0, –〉 . No other signatures are possible, because
the sum of the Lyapunov exponents of a dissipative sys-
tem must be negative. Note that, in the case of a signa-
ture with two positive exponents, the attractor dimen-
sion cannot be less than 3 according to relation (14),
which contradicts the results of numerical calculations

k+ DC DL,≤ ≤

DL k

Λ i

i 1=

k

∑
Λk 1+
--------------.+=

B̂
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(Fig. 4). Therefore, for the parameters used in our
numerical experiment, the hyperchaotic mode cannot
occur and a signature of the form 〈+, 0, –, –〉 must take
place. However, for this signature too, k as a function of
the absolute value of Λ3 may assume values of 2 or 3.
Therefore, in the most favorable case (k = 2), the
Lyapunov dimension cannot be less than 2, which
exceeds the fractal dimension by almost 60% and the
informational dimension by 66%.

Thus, it has been found that neither the informa-
tional dimension nor the attractor capacity can be even
approximately estimated using the Lyapunov dimen-
sion for flow (10).

4. LABORATORY EXPERIMENT
In order to check the results of numerical analysis

and the agreement between the constructed mathemat-
ical model and real physical systems, we carried out a
laboratory experiment. To eliminate various side
effects, the experiment was performed at low frequen-
cies.

The experimental setup was designed in accordance
with the basic diagram given in Fig. 1, except for two
modifications that did not affect the operation of the
device. These unimportant modifications consisted in
the fact that the elements L1 and R1 were interchanged,
and the common wire was connected to the junction
between the elements R1 and L2. This modification
made it possible to use R1 as a sensor of the current i1;
however, this involved the need for galvanic decoupling
of the pumping source from the experimental setup. For
this reason, the pumping source was provided with a
standard-signal generator, to the output of which a
matching source voltage follower and a wideband
transformer were additionally connected.

The nonlinear capacitance consisted of ten varicaps
connected in parallel (the experimental development of
the Research Institute of Semiconductor Devices,
Tomsk), each having a capacitance at the working point
C0 of about 500 pF. In view of the condition of reaching
a value of YC = ω0C0 = 2 × 10–3 S, employed in the
numerical experiment, the low-signal resonance fre-
quency f0 = ω0/2π was chosen to be f0 ≈ 65 kHz. We per-
formed a series of experiments with this setup; how-
ever, in this section, we present only the results pertain-
ing to the subject of this paper.

First of all, the resonance characteristic of the device
(i.e., the dependence of the mean-square value of the
current i1 on the pumping frequency) was measured.
With a varicap bias voltage of E = 6 V and a pumping
voltage amplitude of A ≈ 3.5 V, the resonance character-
istic corresponded to the bifurcation diagram shown in
Fig. 2 with a high degree of accuracy. The second
(19.6 kHz), third (23.4 kHz), fourth (26 kHz), fifth
(39 kHz), sixth (50 kHz), and eighth (120.2 kHz) reso-
nances were reliably observed. Since the resonance
peaks were curved, the resonance frequencies were
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determined as the half-sums of the frequencies at which
hysteretic phenomena corresponding to the change of
the variation direction of the pumping frequency were
observed. The first and seventh resonances were not
observed experimentally; this fact may be associated
with a certain difference between the volt–farad charac-
teristics of the employed varicaps and the adopted
approximation (3).

The shape of the current i1 was observed on the
oscilloscope display. At the resonance frequencies, this
current had the shape of a diffuse strip that was not syn-
chronized with the oscilloscope scan signal; this points
to the random character of the system behavior.

Phase portraits on the (i1, uC) plane were investi-
gated at the frequency of the main nonlinear parametric
force resonance (50 kHz). This made it possible to
judge the structure of attractors of a nonlinear system.
These portraits are presented in Fig. 5. At low pumping
amplitudes on the order of fractions of a volt, the limit-
ing cycle is the attractor (Fig. 5a). As the pumping
amplitude increases, the attractor assumes a diffuse
shape (Fig. 5b). The results of the numerical analysis
allow us to conclude that this is a strange nonchaotic
attractor. The first bifurcation occurs at A ≈ 1.65 V. At
this point, the attractor abruptly transforms into the
form shown in Fig. 5c. Now, the attractor shape resem-
bles a double-turn limiting cycle; however, its blurri-
ness points to the random character of motion (cf.
Fig. 4b). As the pumping amplitude increases further,

(a) (b)

(c) (d)

Fig. 5. The sequence of transformations of the attractor of
the system under investigation on the (i1, uC) plane,
observed in the laboratory experiment with an increasing
amplitude of the external force.
the attractor assumes a form close to a flat strip
(Fig. 5d), which agrees well with the fractal dimension
calculated in the numerical experiment.

Thus, the results of laboratory experiments are in
good agreement with the results of numerical analysis.
This indicates that the constructed model (10) fits
actual physical systems well.

CONCLUSIONS

The proposed mathematical model of a dynamic
system makes it possible to investigate complicated
dynamic modes that arise when nonlinear force and
parametric resonances manifest themselves simulta-
neously. The increase in the phase space dimension to
4 significantly enriches the system dynamics and
makes it possible to observe various types of motion
such as deterministic chaos and the excitation of a
strange nonchaotic attractor by a single-frequency
external force.

We have investigated the effect of the external force
amplitude on the value of the highest Lyapunov expo-
nent and different types of attractor dimensions.

Using the system studied as a prototype, we are now
completing the development of a source of broadband
noiselike signals in the eight-millimeter wavelength
range.
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Abstract—The theory of thermophoresis of a large solid spherical sublimating aerosol particle with a coordi-
nate-dependent thermal conductivity is elaborated. The expression for the thermophoresis rate is derived and
analyzed. © 2004 MAIK “Nauka/Interperiodica”.
FORMULATION OF THE PROBLEM

Let us consider a large solid spherical aerosol parti-
cle suspended in a one-component gas where a constant
temperature gradient is sustained far from the particle.
The phase transition that takes place on the surface of
the particle in the form of evaporation (sublimation) of
the the particle material leads to the formation of a vis-
cous binary mixture around the particle. The interaction
between the binary mixture and the nonuniformly
heated particle surface results in thermal slip of the
mixture over the surface. It is known that the appear-
ance of a local inhomogeneity in the concentration of a
binary mixture entails diffusion slip of the gas mixture
over the particle surface. These conditions generate a
momentum acting on the particle and propelling its
accelerated motion. Simultaneously, the particle expe-
riences the action of the viscous resistance of the binary
mixture. When the resultant of these forces turns to
zero, the particle begins to move in a straight line at a
constant velocity, which we intend to determine and
analyze in this study.

Let us take the coordinate system with the origin at
the center of the particle. Thus, we have a problem on
the flow past a sphere with velocity v∞ that is constant
in magnitude and direction at infinity. The positive
direction of the x axis is chosen along the temperature
gradient (∇ Te)∞, which is also constant at infinity. If the
velocity of the particle relative to the center of gravity
of the external medium is denoted by U, we have v∞ =
−U = Ui, where U is the length of vector U. Turning to
the spherical coordinate system, where the angle θ is
measured from the positive direction of the x axis, and
considering the steady-state motion of the binary mix-
ture relative to the particle at small Reynolds numbers
in the absence of the external forces, we obtain [1] the
following equations of motion and the boundary condi-
tions at infinity:

(1)η∇ 2v ∇ p, divv 0,= =
1063-7842/04/4907- $26.00 © 20818
(2)

where η is the dynamic viscosity of the binary mixture;
v and p describe the distributions of velocity and pres-
sure, respectively; p∞ is a constant; and vϕ = 0.

Let n1 and n2 be the numbers of molecules of the first
component (evaporating particle substance) and the
second component (one-component gas) of the binary
mixture per unit volume, respectively; c1 and c2 repre-
sent their respective relative concentrations; and n =
n1 + n2. Then,

(3)

As follows from (3), it is sufficient to find c1. Since
we are dealing with low velocities (the Reynolds num-
ber Re ! 1), function c1 satisfies [1] the following
equation and the condition at infinity:

(4), (5)

where c∞ is a constant.

From this point on, we will express the boundary
conditions in terms of quantities n01, n02, n0, ρ0, T0e, and
T0i. The point is that, strictly speaking, the values of n1,
n2, n, ρ, Te, and Ti (ρ and Te are the density and the tem-
perature of the binary mixture, respectively, and Ti is
the temperature inside the particle) depend on r and θ.
However, an external perturbation induced by the tem-
perature gradient (∇ Te)∞ is only a small addition to the
unperturbed parameters [1]: n1 = n01 + , n2 = n02 +

, n = n0 + n', ρ = ρ0 + ρ', Te = T0e + , and Ti = T0i +

, where the first terms on the right-hand sides are
equal to the corresponding unperturbed values of the
corresponding quantities and the second terms are the
deviations from the mean values due to the presence of

v r U θ, v θcos U θ, psin– p∞= = =

at   r ∞,

c1

n1

n
-----, c2

n2

n
-----, c1 c2+ 1.= = =

∇ 2c1 0, c1 c∞,= =

n1'

n2' Te'

Ti'
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the temperature gradient (∇ Te)∞. In our case, these devi-
ations are small as compared to the mean values [1] and
are disregarded in the boundary conditions (i.e., the
boundary conditions are linearized).

The surface of a drop is assumed to be impermeable
for the second component of the binary mixture [1]:

(6)

where

(7)

a is the particle radius, m1 is the molecular mass of the
evaporating substance, and D is the coefficient of inter-
diffusion of the mixture components.

Using formulas (3), we can rewrite condition (6) in
the form

(8)

Taking into account the thermal and diffusion slip of
the binary mixture over the particle surface yields the
following condition for the velocity vθ [1]:

(9)

where  and Ksl are the thermal and the diffusion
slip factors of the binary mixture, respectively.

We now consider heat transfer in the system includ-
ing the particle and the medium. Let us assume that this
process is quasi-stationary. If the distribution of tem-
perature T in a nonuniformly heated medium is main-
tained only by external heat sources that are constant in
time, the heat conduction equation appears as [2]

(10)

where ρ is the density, cp is the heat capacity at constant
pressure, v is the velocity, and κ is the thermal conduc-
tivity.

In our case, Eq. (10) becomes [1, 2]

(11)

(12)

where Ti and κi are the temperature and the thermal
conductivity inside the particle, respectively.

The temperature Te meets the following condition at
infinity [1]:

(13)

We consider that the thermal conductivity κe of the
external medium is constant [1] and the thermal con-
ductivity κi at each point inside the particle is a function

n02v r Dβ1

∂c2

∂r
--------– 0 at r a,= =

β1 n0
2m1

ρ0
------,=

v r

Dβ1

n02
----------

∂c1

∂r
-------- at r– a.= =

v θ
KTsl

e( )

aT0e

-----------
∂Te

∂θ
--------

KslD
a

------------
∂c1

∂θ
-------- at r+ a,= =

KTsl
e( )

ρcp v ∇ T,( ) div κ∇ T( ),=

∇ 2Te 0,=

div κ i∇ Ti( ) 0,=

Te T0e ∇ Te( )∞ r θ at r ∞.cos+=
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of the radius vector of this point. It is assumed that the
particle radius is much larger than the free paths of the
molecules of the binary mixture components (the
Knudsen number is small) and the following condition
is met at the particle surface (the corrections propor-
tional to the Knudsen number are neglected) [1]:

(14)

Phase transition occurring on the particle surface
provides for the boundary conditions in the form [1]

(15)

(16)

where

(17)

m2 being the molecular mass of the second component;
α is the evaporation coefficient (α ∈  [0, 1]); and ν =

, s1, and L are one-fourth of the absolute
thermal velocity of the evaporating molecules (k is the
Boltzmann constant), the saturating relative concentra-
tion, and the specific heat of the phase transition of the
first component of the binary mixture, respectively.

Based on expressions (8), (15), and n01m1 + n02m2 =
ρ0, we obtain Eq. (16) in the form

(18)

where s1(Ti) = s + δ(Ti – T0i) at 

(19)

(20)

(21)

From the equations and boundary conditions listed
above, we must find Ti, Te, and c1 (thermal and diffusion
parts); v and p (hydrodynamic part); and the velocity U.

SOLUTION TO THE THERMAL AND DIFFUSION 
PARTS OF THE PROBLEM

Let us pass from the variables r and θ to the vari-
ables R and θ such that

(22)

Te Ti at r a.= =

n01v r Dβ2

∂c1

∂r
--------– n0αν s1 c1–( ) at r a,= =

–κ e

∂Te

∂r
-------- κ i

∂Ti

∂r
--------+  = Lm1n0αν s1 c1–( ) at r–  = a,

β2 n0
2m2

ρ0
------;=

kT0e/ 2πm1( )

–κ e

∂Te

∂r
-------- κ i

∂Ti

∂r
--------+

Lm1Dn0
2

n02
--------------------

∂c1

∂r
-------- at r a,= =

Ti T0i–
c1 s–

δ
-------------

Dn0

n02ανδ
-----------------

∂c1

∂r
-------- at r– a,= =

s s1 at Ti T0i,= =

δ
∂s1

∂Ti

-------- at Ti T0i.= =

R r/a.=



820 YALAMOV, KHASSANOV
Since r = a(r/a), we can consider κi as a function
of R:

(23)

Assume that

(24)

(25)

(26)

(27)

Then, Eqs. (12), (11), (4), (14), (18), (19), (13), and
(5) correspond to the following conditions:

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

where κi1 is the value of κi on the particle surface; f ', ,

, and  are the derivatives with respect to R (in
Laplacians ∇ 2gi, ∇ 2ge, and ∇ 2c1, the variable r is also
replaced by R); and the dimensionless constants k1 and
k2 are defined by

(36)

(37)

We begin from Eq. (28). Let us seek the function
gi(R, θ) in the form

(38)

Then function M(R) can be derived from the differ-
ential equation

(39)

We assume that the function f(R) is given and can be

κ i f
r
a
--- 

  f R( ).= =

T1 ∇ Te( )∞ a,=

ge R θ,( ) Te T0e– T1R θcos–( )/T1,=

gi R θ,( ) Ti T0i–( )/Ti,=

c1 R θ,( ) c1 c∞–( )/ δT1( ).=

∇ 2gi
f '
f

----gi',–=

∇ 2ge 0,=

∇ 2c1 0,=

gi ge– θ T0e T0i–( )/T1 at R+cos 1,= =

κ i1

κ e

------gi' ge'– k2c1'– θ at Rcos 1,= =

c1 k1c1' gi–– s c∞–( )/ δT1( ) at R 1,= =

ge 0 at R ∞,=

c1 0 at R ∞,=

gi'

ge' c1'

k1

Dn0

ανn02a
------------------,=

k2

Lm1Dn0
2δ

n02κ e

-----------------------.=

gi R θ,( ) M R( ) θ.cos=

R2M '' 2 R
f '
f

----+ 
  RM ' 2M–+ 0.=
represented in terms of the power series

(40)

where ft is the expansion coefficient.
From the expansion of function f(R), one can gain

the coefficients of expansion of function 2 + Rf '/f, for
example, by the method of undetermined coefficients.
Let us suppose that

(41)

where bt are undetermined coefficients.
To find these coefficients, note that

(42)

(κi = f(R) > 0 for R ≤ 1).
Deriving from (40) that

(43)

and using expressions (42) and (43), we can represent
Eq. (41) as

(44)

Multiplying the series in the right-hand part of
Eq. (44) and comparing the coefficients at the same
powers of R, we obtain

(45)

(46)

where t ≥ 2.
Now, when the coefficients bt are determined,

Eq. (39) becomes

(47)

We seek the particular solution M1 of this equation
in the form [3]

(48)

where ρ is an undetermined exponent.

f R( ) f tR
t,

t 0=

∞

∑=

2 R
f '
f

----+ btR
t,

t 0=

∞

∑=

b0 2=

f ' R( ) t f tR
t 1– ,

t 1=

∞

∑=

t f tR
t

t 1=

∞

∑ f tR
t

t 0=

∞

∑ 
 
 

btR
t

t 1=

∞

∑ 
 
 

.=

b1

f 1

f 0
-----,=

bt

t f t f jbt j–
j 1=

t 1–

∑–

f 0
------------------------------------,=

R2M '' btR
t

t 0=

∞

∑ 
 
 

RM ' 2M–+ 0.=

M1 Rρ α tR
t,

t 0=

∞

∑=
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Since we seek a particular solution, we may take
α0 = 1. It follows from (48) that

(49)

(50)

Substituting formulas (48)–(50) into Eq. (47), we
have

(51)

This relation suggests that, at any t ≥ 0,

(52)

Since α0 = 1 and b0 = 2, Eq. (52) at t = 0 yields the
following equation with respect to ρ:

(53)

From two roots of this equation, only the root ρ = 1
is valid. Let us suppose that t ≥ 1. We write Eq. (52) in
the form

(54)

Since ρ = 1, it follows from Eq. (54) that coefficients
αt can be found for any t ≥ 1 by using the recurrent for-
mula

(55)

where α0 = 1.
Thus, we have obtained a particular solution M1(R)

to Eq. (39). It is known [3] that, from a particular solu-
tion y1(x) to the differential equation

(56)

we can construct another solution, which is linearly
independent of the first one, by the formula

(57)

RM1' α t ρ t+( )Rρ t+ ,
t 0=

∞

∑=

R2M1'' α t ρ t+( ) ρ t 1–+( )Rρ t+ .
t 0=

∞

∑=

ρ t+( ) ρ t 1–+( )α t∑
t 0=

∞

∑

+ ρ t j–+( )α t j– b j 2α t–
j 0=

t

∑ Rρ t+ 0.=

ρ t+( ) ρ t 1–+( )α t ρ t j–+( )α t j– bj 2α t–
j 0=

t

∑+  = 0.

ρ ρ 1–( ) 2ρ 2–+ 0.=

ρ t+( ) ρ t 1–+( )α t ρ t+( )α tb0 2α t–+

+ ρ t j–+( )α t j– b j

j 1=

t

∑ 0.=

α t

t 1 j–+( )α t j– b j

j 1=

t

∑
t t 3+( )

------------------------------------------------,–=

y'' p x( )y' q x( )y+ + 0,=

y2 x( ) y1 x( ) p τ( ) τd

x0

x

∫–
 
 
  xd

y1
2 x( )

-------------.exp∫=
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
Equation (39) can be readily reduced to the form
(56). With the use of formula (57), we derive the second
particular solution M2 to Eq. (39):

(58)

Thus, the general solution to Eq. (39) has the form

(59)

where C1 and C2 are indeterminate coefficients.

It is easy to see that, in the case under study, we must
choose C2 = 0. Therefore, M(R) = C1M1(R) and, on the
strength of Eq. (38),

(60)

In general, function M1(R) is constructed on the
basis of the recurrent formulas presented above; how-
ever, in two limiting cases, this function can be found
directly from differential equation (39). If the thermal
conductivity varies only slightly (i.e., κi = const), then
f(R) = const and the sought particular solution to
Eq. (39) can be readily found:

(61)

In the opposite case of a strongly varying thermal
conductivity, for example,

(62)

where C and k are certain constants, the desired partic-
ular solution to Eq. (39) is given by the function

(63)

Let us turn to Eqs. (29) and (30) and seek functions
ge and c1 in the form

(64)

(65)

where µ1, ϕ, and µ2 are indeterminate coefficients.

From conditions (31)–(33), one obtains six equa-
tions for the four coefficients C1, µ1, ϕ, and µ2 and the
two quantities T0e and c∞. Solving this system, we find
Te, Ti, and c1. We write only the expression for µ2:

(66)

M2 R( ) M1 R( ) td

t2 f t( )M1
2 t( )

-----------------------------.

1

R

∫=

M C1M1 R( ) C2M1 R( ) td

t2 f t( )M1
2 t( )

-----------------------------,

1

R

∫+=

gi R θ,( ) C1M1 R( ) θ.cos=

M1 R.=

κ i C kR( ),exp=

M1 R( ) 6

k3R2
----------- kR–( )exp 1– kR

k2R2

2
-----------–+ 

  .–=

ge

µ1

R2
----- θcos

ϕ
R2
-----,+=

c1

µ2

R2
----- θ,cos=

µ2 = 3 2 1 2k1+( ) 2k2 1 2k1+( )
κ i1

κ e

------
M1' 1( )
M1 1( )
---------------+ +

1–

.
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SOLUTION TO THE HYDRODYNAMIC PART 
OF THE PROBLEM

As in [1], we look for a solution to the Stocks equa-
tion in the form

(67)

(68)

(69)

From boundary conditions (8) and (9), one finds Ae

and Be. Here, we present only the expression for Be:

(70)

Substituting the values of Ae and Be into Eqs. (67)–
(69), we obtain the expressions for v r, vθ, and p. The
flow exerts on a particle the force [1]

(71)

where prr and prθ are the components of the stress tensor
on the particle surface S.

Calculating integral (71) yields the following
expression for force F:

(72)

In order to find the velocity of rectilinear and uni-
form motion, we impose the condition

(73)

Hence, it follows that Be = 0. Using formulas (70)
and (66), we arrive at

(74)

DISCUSSION

In what follows, we consider some particular cases
of formula (74). The absence of a phase transition at the
surface of a particle implies that α = 0, k1 = ∞ (see for-

mula (36)), and  = KTslη/ρ [1], where KTsl, η, and ρ
are the coefficient of thermal slip, the dynamic viscos-
ity, and the density of the one-component gas, respec-

v r

Ae

R3
-----

Be

R
----- 1+ + 

  U θ,cos=

v θ
Ae

2R3
---------

Be

2R
-------– 1– 

  U θ,sin=

p p∞ ηU
a
----

Be

R2
----- θ.cos+=

Be
3
2
---–

DδT1

aU
-------------

β1

n02
-------

KTsl
e( ) 1 2k1+( )
δT0eD

-------------------------------- Ksl+ + µ2.+=

F prr θcos prθ θsin–( ) sd

S

∫∫ 
 
 

i,=

F 4πηUaBei.–=

F 0.=

U
2KTsl

e( )

T0e

-------------
2Dδ

1 2k1+
-----------------

β1

n02
------- Ksl+ 

 +–=

× 2
2k2

1 2k1+
-----------------

κ i1

κ e

------
M1' 1( )
M1 1( )
---------------+ +

1–

∇ Te( )∞.

KTsl
e( )
tively. In this case, formula (74) becomes [4]

(75)

If, in addition, the particle is homogeneous in ther-
mal conductivity, then κi ≡ const, M1(R) = R (see for-
mula (61)), and (1)/M1(1) = 1, and expression (75)
in its turn is transformed into a well-known expression
for the rate of thermophoresis [1].

In the case when the phase transition does occur on
the surface of a particle and the particle is homoge-
neous in thermal conductivity, κi ≡ const, M1(R) = R,
and (1)/M1(1) = 1, and we derive from (74) the
expression [5]

(76)

Using formula (76), we can write (74) in the form

(77)

The second multiplier on the right-hand side of
expression (77) is a correction factor and depends on
both the evaporation factor and the inhomogeneity in
thermal conductivity. It is reasonable to consider the
case when the first multiplier in formula (77) depends
on the evaporation factor and the second multiplier is
almost independent of the evaporation factor and char-
acterizes only the influence of the varying conductivity.
Let us denote

(78)

(79)

Formula (78) suggests that

(80)

The latter expression indicates that, if the value of
2κe(1 + k2)/κi1 is small, the correction factor in Eq. (77)
only slightly depends on the evaporation factor α and
closely approximates the effect of varying conductivity
on the rate of thermophoresis. By way of illustration, let
the ice on the particle surface melt and evaporate into
the air. Since [6] κe = 2.38 × 10–4 W/(m deg) and κi1 =

U
KTslη
ρT0e

-------------2κ e 2κ e κ i1

M1' 1( )
M1 1( )
---------------+

1–

∇ Te( )∞.–=

M1'

M1'

U0
2KTsl

e( )

T0e

-------------
2Dδ

1 2k1+
-----------------

β1

n02
------- Ksl+ 

 +–=

    2
2k2

1 2k1+
-----------------

κ i1

κ e

------+ +
1–

∇ Te( )∞.×

U U0 1
M1' 1( )
M1 1( )
--------------- 1– 

 +




=

× 1
2κ e

κ i1
-------- 1

k2

1 2k1+
-----------------+ 

 +
1–





1–

.

γ1 1
2κ e

κ i1
-------- 1

k2

1 2k1+
-----------------+ 

  ,+=

γ2

M1' 1( )
M1 1( )
---------------.=

1 γ1 1
2κ e

κ i1
-------- 1 k2+( ).+≤ ≤
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5.69 × 10–1 W/(m deg), we have 2κe/κi1 = 8.36 × 10–4.
The coefficient k2 can be calculated from (37). The spe-
cific heat of the phase transition of the first component
in the binary mixture is determined as the sum L = q +
r, where q is the specific heat of the ice melting and r is
the specific heat of evaporation: q = 3.4 × 105 J/kg, r =
2.50 × 106 J/kg, and L = 2.84 × 106 J/kg. The value of
n02 is approximately equal to n0, and n0 = 2.65 ×
1025 1/m3. The remaining values required for the calcu-
lation of k2 are as follows: m1 = 2.99 × 10–26 kg, D =
2.5 × 10–5 m2/s, and δ = 1.67 × 10–3 1/deg. Hence, the
calculation results in k2 = 3.95 and 2κe(1 + k2)/κi1 =
4.14 × 10–3. Therefore, the correction factor on the
right-hand side of (77) only slightly depends on α. This
particular dependence on α can be easily plotted for a =
10–5 m (k = 1.38 × 10–23 J/deg, T0e = 273 K, m1 = 2.99 ×
10–26 kg, and ν = 1.42 × 102 m/s):

(81)

To reveal the influence of changes in thermal con-
ductivity on the motion of a sublimating particle, it is
reasonable to consider particles with strongly pro-
nounced inhomogeneity, i.e., particles with an appre-
ciable difference in the thermal conductivities at the
center and on the surface. For example, we take as the
model the exponential function (62),

(82)

Assume that a change in κi(R) (variation within one
particle radius) is subjected to the condition

(83)

U U0 1 γ2 1–( ) 100α 352+
100.4α 352.3+
-------------------------------------+

1–

.=

κ i R( ) κ i 0( ) kR( ).exp=

0.1
κ1 1( )
κ i 0( )
------------- 10.≤ ≤
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From inequality (83), we obtain

(84)

As was mentioned above, if κi(R) is defined by for-
mula (82), then M1(R) is defined by (63). From (63), it
follows that

(85)

The latter expression together with condition (84)
yields γ2 in the range [0.59, 1.81]. Since the correction
factor in (81) is almost independent of α, it varies from
0.6 to 1.6 when γ2 changes from 0.59 to 1.81. This
example indicates that the inhomogeneity in the ther-
mal conductivity of a sublimating particle can produce
a substantial effect on its velocity irrespective of the
value of the evaporation factor α.
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Abstract—Analytical expressions are derived for the shape generatrix of an ideally conducting drop immersed
in an incompressible dielectric medium as well as for nonlinear corrections to the frequencies of the oscillations
of the drop. The solutions are obtained in an approximation of the third order of smallness with respect to the
amplitude of the initial deformation of the equilibrium spherical shape of the drop. It is shown that the presence
of the ambient liquid results in a reduction of the absolute magnitudes of corrections both to the oscillation fre-
quencies and the self-charge critical for the development of instability of the drop. © 2004 MAIK “Nauka/Inter-
periodica”.
1. The problem of nonlinear oscillations of a
charged drop in an ambient dielectric medium is of
interest in connection with numerous scientific, techni-
cal, and technological applications [1, 2]. Therefore,
this problem has already become a subject of theoreti-
cal analysis in the second order of smallness both in the
cases of incompressible [3] and compressible ambient
media [4]. However, the issue of nonlinear corrections
to the oscillation frequencies, manifesting themselves
only in the third order of smallness, has remained
beyond the scope of research [5–7]. The present study
is performed in connection with the above.

2. Let us consider a spherical drop of an ideal
incompressible and ideally conducting liquid with a
density ρ(i) and surface tension coefficient σ. The drop
having a radius R and bearing a charge Q is immersed
in an ideal incompressible liquid with a density ρ(e) and
permittivity εd under the zero-gravity condition. The
liquid motion both inside the drop and in the ambient
medium is assumed to be potential with velocity poten-
tials ψ(i) and ψ(e), respectively. Denote the electric field
potential in the drop vicinity by φ. The drop shape will
be assumed to be axisymmetric both at the initial
instant and at all subsequent ones. The interface equa-
tion in nondimensional variables such that ρ(i) = 1, R =
1, and σ =1 at any time instant t can be written in the
form

(1)

where ϑ  is the polar angle of a spherical coordinate sys-
tem. The initial deformation of the spherical surface of
the drop we take in the form

(2)

r 1 ξ ϑ t,( ),+=

t 0: ξ ξ 0P0 ϑcos( ) ε hmPm ϑcos( )
m Ω∈
∑+= =
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with the additional condition

(3)

where ε is an arbitrary small parameter characterizing
the amplitude of the initial perturbation; Pm(cosϑ) is
the Legendre polynomial of the mth order; ξ0 is a con-
stant chosen in such a way that the volume of the drop
at the initial instant coincides with the volume of the
equilibrium sphere; ∂t means a partial derivative with
respect to variable t; Ω is the set of indices of modes ini-
tially excited; hm are constants allowing for the contri-
bution of the mth mode to formation of the initial shape
of the drop such that  = 1. The complete
mathematical formulation of the problem on capillary
oscillations of a charged drop, in addition to the drop
surface equation (1) and boundary conditions (2) and
(3), includes the Laplace equations for the potentials of
the liquid velocity and electric field,

(4)

conditions of boundedness of the potentials,

(5)

(6)

the kinematic and dynamic boundary conditions,

(7)

(8)

t 0: ∂tξ 0,= =

hmm Ω∈∑

∆ψ i( ) 0; ∆ψ e( ) 0; ∆φ 0;= = =

r 0: ψ i( ) 0;

r +∞: ψ e( ) 0; ∇φ 0;

r 1 ξ ϑ t,( ): ∂tξ+ ∂rψ i( )
1

r2
----∂ϑψ i( )∂ϑξ–= =

=  ∂rψ e( )
1

r2
----∂ϑψ e( )∂ϑξ ,–

∂tψ i( )
1
2
--- ∇ψ i( )( )2 ρ e( ) ∂tψ e( )

1
2
--- ∇ψ e( )( )2+ 

 –+

=  p0 p∞– pq pσ;–+
04 MAIK “Nauka/Interperiodica”
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the condition of invariability of the volume of the drop,

(9)

where

the condition of constancy of the total charge,

(10)

where 

and the condition of constancy of the electric potential
over the interface between the drop and ambient liquid,

(11)

In expressions (4)–(11), p∞, p0, pq, and pσ are the
pressures of the ambient medium at infinity, of the liq-
uid at the center of the drop, of the electric field, and the
capillary pressure, respectively; n is a unit vector nor-
mal to the surface of the drop; and φS is the electric
potential of the surface of the drop.

3. We solve the problem (1)–(11) by a multiscale
method [8, 9]. In particular, all potentials and the equa-
tion of the generatrix of the drop’s surface we assume
to be functions of three time scales Tm = εmt; m = 0, 1, 2,
and present them in the form of series with respect to
small parameter ε,

(12)

(13)

(14)

(15)

(16)

where φ(0) = Q/(εdr) and  = Q/εd are the solutions of
the problem of the zeroth order of smallness, that is, for
an equilibrium spherical surface of the drop. Substitut-
ing expressions (12)–(16) into Eqs. (1)–(11) gives
problems of different orders of smallness that, for the
sake of briefness here, are presented in Appendix A.

r2 ϑsin rd ϑd ϕd

V

∫ 4π
3

------,=

V r ϑ ϕ 0, , r 1 ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤ ≤ ≤+≤ ≤{ } ;=

n ∇φ Sd⋅
V

∫ 4– πQ,=

S r ϑ ϕ r, , 1 ξ ; 0 ϑ π; 0 ϕ 2π≤ ≤ ≤ ≤+={ } ;=

r 1 ξ ϑ t,( ): φ+ φS t( ).= =

φ r ϑ t, ,( ) εmφ m( ) r ϑ T0 T1 T2, , , ,( )
m 0=

3

∑ O ε4( );+=

φS r t,( ) εmφS
m( ) r T0 T1 T2, , ,( )

m 0=

3

∑ O ε4( );+=

ψ i( ) r ϑ t, ,( ) = εmψ i( )
m( ) r ϑ T0 T1 T2, , , ,( )

m 1=

3

∑ O ε4( );+

ψ e( ) r ϑ t, ,( ) = εmψ e( )
m( ) r ϑ T0 T1 T2, , , ,( )

m 1=

3

∑ O ε4( );+

ξ ϑ t,( ) εmξ m( ) ϑ T0 T1 T2, , ,( )
m 1=

3

∑ O ε4( );+=

φS
0( )
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Since the Laplace equation (4) is linear, the potentials
of the liquid velocity and electric field in each order of
smallness are solutions of Laplace equations (1A),
(10A), and (19A). Solutions of these equations with
regard for the boundedness conditions (2A), (3A),
(11A), (12A), (20A), and (21A) can be written in the
form

(17)

(18)

(19)

Note that in expression (17), the summation begins at
n = 1 because the potential is determined to an accuracy
of an arbitrary function of time which allows one to set

 = 0. A function describing the deviation of the
drop’s surface from a spherical shape we represent in
the form of an expansion in the Legendre polynomials,

(20)

Note that the solution of the problem formulated in
the third order of smallness in ε allows one to reveal the
dependencies of coefficients of the first order of small-
ness (m = 1) in expansions (17)–(20) on three time
scales, T0, T1, and T2; coefficients of the second order
of smallness (m = 2) on two time scales, T0 and T1; and
coefficients of the third order of smallness (m = 3) only
on time scale T0. Substituting expressions (17)–(20)
into Eqs. (4A)–(9A), we find the explicit dependencies
of all coefficients of the first order of smallness on time
scale T0:

(21)

(22)

ψ i( )
m( ) r ϑ T0 T1 T2, , , ,( )

=  rnD i( )n
m( ) T0 T1 T2, ,( )Pn ϑcos( );

n 1=

∞

∑
m 1 2 3;, ,=

ψ e( )
m( ) r ϑ T0 T1 T2, , , ,( )

=  
D e( )n

m( )

rn 1+
----------- T0 T1 T2, ,( )Pn ϑcos( );

n 0=

∞

∑
m 1 2 3;, ,=

φ m( ) r ϑ T0 T1 T2, , , ,( )

=  
Fn

m( ) T0 T1 T2, ,( )
rn 1+

--------------------------------------Pn ϑcos( );
n 0=

∞

∑
m 1 2 3., ,=

D i( )0
m( )

ξ m( ) ϑ T0 T1 T2, , ,( )

=  Mn
m( ) T0 T1 T2, ,( )Pn ϑcos( );

n 0=

∞

∑
m 1 2 3., ,=

Mn
1( ) T0 T1 T2, ,( )

=  an
1( ) T1 T2,( ) ωnT0 τn

1( ) T1 T2,( )+( );cos

D i( )n
1( ) T0 T1 T2, ,( ) ∂T0

Mn
1( ) T0 T1 T2, ,( )/n;=
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(23)

(24)

In expression (21), functions (T1, T2) and

(T1, T2) depend only on time scales T1 and T2 and
meet initial conditions (9A),

(25)

where δn, m is Kronecher’s delta. Substituting expan-
sions (17)–(20) and solutions (21)–(24) into
Eqs. (13A)–(18A) and eliminating secular terms, we

find that functions (T1, T2) and (T1, T2) are inde-
pendent of time scale T1 and depend only on time scale

T2. The explicit dependencies of coefficients ,

, , and  in expansions (17)–(20) on time
scale T0 subject to conditions (25) can be written in the
form

(26)

(27)

(28)

(29)

D e( )n
1( ) T0 T1 T2, ,( ) ∂T0

Mn
1( ) T0 T1 T2, ,( )/ n 1+( );–=

Fn
1( ) T0 T1 T2, ,( ) QMn

1( ) T0 T1 T2, ,( ).=

an
1( )

τn
1( )

t 0: an
1( ) hnδn m, , τn

1( ) 0, m Ω,∈= = =

an
1( ) τn

1( )

D i( )n
2( )

D e( )n
2( ) Fn

2( ) Mn
2( )

M0
2( ) T0( )

am
1( )( )2 ωmT0( )cos

2

2m 1+
--------------------------------------------;

m Ω∈
∑–=

Mn
2( ) T0 T1,( ) an

2( ) T1( ) ωnT0 τn
2( ) T1( )+( )cos=

+
al

1( )am
2( )

2
---------------- λ lmn

+( ) ωl ωm+( )T0( )cos(
l m, Ω∈
∑

+ λ lmn
–( ) ωl ωm–( )T0( )cos ), n 1,≥

F0
2( ) 0: Fn

2( ) T0 T1,( ) QMn
2( ) T0 T1,( )= =

+ Q lKlmnal
1( )am

1( ) ωlT0( ) ωmT0( );coscos
l m, Ω∈
∑

D i( )n
2( ) T0 T1,( ) 1

n
--- ∂T0

Mn
2( ) T0 T1,( )∫




=

+ l 1–( )Klmn

α lmn

l
----------– 

  ωlal
1( )am

1( )

l m, Ω∈
∑

--× ωlT0( ) ωmT0( )cossin




, n 1;≥

D e( )n
2( ) T0 T1,( ) 1

n 1+( )
----------------- ∂T0

Mn
2( ) T0 T1,( )∫




–=

+ α lmn/ l 1+( ) l 2+( )Klmn–( )ωlal
1( )am

1( )

l m, Ω∈
∑

where , , Klmn, and αlmn are the coefficients

defined in Appendix B, and (T1) and (T1) are
functions of time scale T1 meeting initial conditions
(18A),

(30)

Substituting expressions (17)–(20) and solutions
(21)–(24), (26)–(29) into the set of equations (22A)–
(27A) and eliminating secular terms from it, we find

that functions (T2), (T1), and (T1) are inde-
pendent of time scales T1 and T2; therefore, their mag-
nitudes are entirely determined by initial conditions

(25) and (30), and for function (T2) the following
expression is true:

(31)

Coefficients , , , and  of expan-
sions (17)–(20) are defined by the expressions

× ωlT0( ) ωmT0( )cossin




, n 0,≥

λ lmn
+( ) λ lmn

–( )

an
2( ) τn

2( )

t = 0: an
2( ) = 

hlhm

2
---------- λ lmn

+( ) λ lmn
–( )+( ), τn

2( )

l m, Ω∈
∑–  = 0.

an
1( ) an

2( ) τn
2( )

τn
1( )

τn
1( ) T2( ) T2bn

T2

2ωn

---------
hn

2 Ξn
0 2ωn

2 Ξn
1 2Ξn

2–( )+( )
4 2n 1+( )

----------------------------------------------------------




= =

+
hk

2Ξn
0

2 2k 1+( )
-----------------------

k Ω∈
∑ hk

2

4
----- Hnkkn

1 –( ) +( ) Hknkn
2 +( ) +( )+[

k Ω∈
∑–

+ Hknkn
2 –( ) –( ) 1 δkn–( ) Hkknn

1 –( ) +( ) Hkknn
2 +( ) +( )

Hnkkn
2 –( ) –( )+ +( )]+





.

D i( )n
3( ) D e( )n

3( ) Fn
3( ) Mn

3( )

M0
3( ) T0( )

2Mk
2( ) T0( )

2k 1+
------------------------hk ωkT0( )cos

k Ω∈
∑–=

–
Kkmlhkhmhl

3 2l 1+( )
-------------------------- ωkT0( ) ωmT0( ) ωlT0( );coscoscos

k m l, , Ω∈
∑

Mn
3( ) T0( )

hnhk
2 Ξn

0 2Ξn
1ωnωk– 4Ξn

2ωk
2–( )

8 2k 1+( )ωk ωn ωk+( )
------------------------------------------------------------------------

k Ω∈
∑–=

× ωn ωk+( )T0( ) ωkT0( )sinsin

–
hnhk

2 1 δnk–( ) Ξn
0 2Ξn

1ωnωk 4Ξn
2ωk

2–+( )
8 2k 1+( )ωk ωn ωk–( )

---------------------------------------------------------------------------------------------
k Ω∈
∑

× ωn ωk–( )T0( ) ωkT0( )sinsin
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(32)

(33)

(34)

–
hkhmhl λ lmg

+( ) λ lmg
–( )+( )

4
-----------------------------------------------

k m l, , Ω∈
∑

g 1=

∞

∑

×
Hkgn

0 +( ) ωk ωg+( )T0( )cos ωnT0( )cos–( )
ωn

2 ωk ωg+( )2–
--------------------------------------------------------------------------------------------





+
Hkgn

0 –( ) ωk ωg–( )T0( )cos ωnT0( )cos–( )
ωn

2 ωk ωg–( )2–
--------------------------------------------------------------------------------------------





+
hkhmhl

4
---------------

Hkmln
1 +( ) –( ) ψklm

+( ) +( )T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl ωm+ +( )2–

--------------------------------------------------------------------------------------




k m l, , Ω∈
∑

+
Hkmln

1 –( ) +( )Dlm
kn Dkm

ln ψklm
+( ) –( )T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl ωm–+( )2–

------------------------------------------------------------------------------------------------------------

+
Hkmln

2 +( ) +( )Dkl
mnDkm

ln ψklm
–( ) –( )T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl– ωm–( )2–

-------------------------------------------------------------------------------------------------------------

+
Hkmln

2 –( ) –( )Dkl
mnDml

kn ψklm
+( ) –( )T0( )cos ωnT0( )cos–( )

ωn
2 ωk ωl– ωm+( )2–

------------------------------------------------------------------------------------------------------------




,

n 1;≥

F0
3( ) T0( ) Q

k 1+
2l 1+
-------------- α kml

k k 1+( )
2

--------------------Kkml– 
 

k m l, , Ω∈
∑=

× hkhmhl ωkT0( ) ωmT0( ) ωlT0( );coscoscos

F0
3( ) T0( ) QMn

3( ) T0( )=

+ k 1+( )KkmnFk
2( ) T0( )hm ωmT0( )cos

k 1=

∞

∑
m Ω∈
∑

+ Q k 1–( )KkmnMm
2( ) T0( )hk ωkT0( )cos

m 0=

∞

∑
k Ω∈
∑

– Q
k k 3+( )

2
--------------------KkmgKglnhkhmhl

k m l, , Ω∈
∑

g 0=

∞

∑
× ωkT0( ) ωmT0( ) ωlT0( ), n 1;≥coscoscos

D i( )n
3( ) T0( ) 1

n
---∂T0

Mn
3( ) T0( )

1 δ1n–
n

----------------hnbn ωnT0( )sin–=

–
1
n
--- k k 1–( )Kkmn α kmn–( )Dk

2( ) T0( )hm ωmT0( )cos
k 1=

∞

∑
m Ω∈
∑

+
1
n
--- k k 1–( ) α kmn–( )Mm

2( ) T0( )ωkhk ωkT0( )sin
m 0=

∞

∑
k Ω∈
∑
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(35)

where , , , , , , ,

, , and  are the coefficients given in
Appendix B; δkn is Kronecher’s delta. Substituting rela-
tion (20) into Eq. (1), we obtain an expression for the
generatrix of the drop’s shape in the form

(36)

4. Analyzing expressions (26), (32), and (36), we
note that the amplitudes of deviation of the drop’s shape
from spherical in the second and third orders of small-
ness, similar to the case with no ambient medium, are
proportional to the expressions

where coefficients Kkmg differ from zero only if |k – m| ≤
g ≤ |k + m| and k + m + g is an even number. Thus, the
presence of the ambient does not result in broadening of
the spectrum of the modes forming the surface of a
charged drop. From expressions (21) and (31) it is seen
that any initially excited mode of the first order of
smallness has a frequency shift proportional to the
square of amplitude ε2 of the initial perturbation of the
drop’s surface. This frequency shift depends apprecia-
bly on set Ω of the initially excited modes and on the
ambient density ρ(e). From (36), it is seen that correc-

+
1
n
--- k k 1–( )

2
-------------------Kkmg α kmg– 

  k 2–( )
g 0=

∞

∑
k m l, , Ω∈
∑

× Kglnωkhkhmhl ωkT0( ) ωmT0( ) ωlT0( ), n 1;≥coscossin

D e( )n
3( ) T0( ) 1

n 1+
------------∂T0

Mn
3( ) T0( )–=

+
1 δ0n–( ) 1 δ1n–( )

n 1+
------------------------------------------hnbn ωnT0( )sin

+
1

n 1+
------------ k 2+( )Kkmn

α kmn

k 1+
------------– 

  Mm
2( )ωkhk ωkT0( )sin

m = 0

∞

∑
k Ω∈
∑

–
1

n 1+
------------ αkmn m 1+( )m 2+( )Kkmn–( )Dm

2( )hk

m = 0

∞

∑
k Ω∈
∑

× ωk T0( )cos
1

n 1+
------------

α kmg

k 1+
------------

k 2+
2

------------Kkmg– 
  k 3+( )

g = 0

∞

∑
k m l, , Ω∈
∑+

× Kglnωkhkhmhl ωkT0( ) ωmT0( ) ωlT0( ),coscossin

n 0;≥

Ξn
0 ξn

1 Ξn
2 βkmgln

1 ±( ) βkmgln
2 ±( ) Hkgn

0 ±( ) Hkmln
1 ±( ) ±( )

Hkmln
2 ±( ) ±( ) ψkml

±( ) ±( ) Dlm
kn

r ϑ T0 T2, ,( ) 1 ε Mn
1( ) T0 T2,( )Pn ϑ( )cos( )

n Ω∈
∑+=

+ ε2 Mn
2( ) T0( ) εMn

3( ) T0( )+( )Pn ϑ( )cos( ).
n 0=

∞

∑

Mg
2 Kkmg, Mn

3( ) KkmgKgln,
k m l, , Ω∈
∑

g 0=

∞

∑∼
k m, Ω∈
∑∼
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tions to the frequencies proportional to bn are of the sec-
ond order of smallness in ε, and the denominators in the
expressions for these corrections include factors
becoming zeros for certain ratios between the frequen-
cies of various modes (in such cases, the resonant char-
acter of the corresponding corrections [9] is usually
assumed). For example, when the fourth mode is
excited at the initial instant, a correction to the fre-

quency corresponds to the resonance at  – 4  = 0,
while when the fifth mode is excited, the resonance is

ω6
2 ω4

2

40

20

0

–20

–40

0 0.7 1.4 2.1 2.8 W

(a)
b 4 4

3

2

1

1 2

34

40

20

0

–20

–40

0 0.7 1.4 2.1 2.8 W

(b)

4
3

2

1

2 3 4

b 5

Fig. 1. Coefficient bn characterizing the frequency shift of
the nth mode as a function of the Rayleigh parameter W at
the initial excitation of this mode for different density mag-
nitudes of the ambient liquid. ρ(e): (1) 0, (2) 1, (3) 10,
(4) 100; n: (a) 4, (b) 5.
realized at  – 4  = 0. Away from the resonant posi-
tions, the corrections bnε2 to the frequencies decrease in
absolute magnitudes with increasing density ρ(e) of the
ambient liquid (see Fig. 1). Making allowance for cor-
rections to the frequencies of capillary drop oscillations
results in a change in the critical Rayleigh parameter
Wcr at which instability of the nth mode with respect to
the self-charge is realized [6]. The instability condition
for the nth mode subject to the nonlinear correction to
the frequency can be written in the form

The influence of the ambient medium on the critical
instability conditions manifests itself in an insignificant
increase in the critical Rayleigh parameter with
increasing density of the ambient liquid ρ(e) (due to a
decrease in coefficient bn in absolute magnitude) [7]

ω8
2 ω5

2

ωn ε2bn+( )2 ωn
2 2ε2ωnbn O ε4( )+ + 0.= =

1.5

1.0

0.5

0

–0.5

–1.0

–1.5
–1.5 –1.0 –0.5 0 0.5 1.0 1.5

13 223
1

(a)

1.5

1.0

0.5

0

–0.5

–1.0

–1.5
–1.5 –1.0 –0.5 0 0.5 1.0 1.5

13 223

1

(b)

Fig. 2. The generatrix contour of a drop at the initial excita-
tion of the seventh and eighth modes when h7 = h8 = 0.5,
W = 3, ε = 0.3. (a) ρ(e) = 0; t: (1) 0.01, (2) 0.075, (3) 0.22;
(b) ρ(e) = 5; t: (1) 0.02, (2) 0.14, (3) 0.525.
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and in a very noticeable reduction of the interphase sur-
face tension coefficient compared with the surface ten-
sion coefficient of a drop in vacuum [10]. Eventually, in
the presence of the ambient medium, the critical self-
charge magnitude from the standpoint of the instability
development decreases. The mode amplitudes of the

second, , and third, , orders are also depen-
dent on the density of the ambient liquid, which results
in a certain change in the surface shape of a drop (local
decrease of its surface curvature) when the drop is in
the ambient medium as compared with a drop in vac-
uum (see Fig. 2). The presence of the ambient medium
influences the surface shape of the drop most notice-
ably in the vicinity of points moving at the greatest
velocity.

CONCLUSION

Magnitudes of nonlinear corrections to the oscilla-
tion frequencies of a charged drop of an ideal incom-
pressible conducting liquid immersed in a dielectric
incompressible ambient medium appreciably depend
on the ratio between the densities of the media and
decrease with increasing density of the ambient
medium. The influence of the ambient medium (which
is assumed to be incompressible) on the stability of the
drop with respect to the self-charge manifests itself in
two ways: on the one hand, the nonlinear oscillation
frequency shift leads to a weak growth of the critical
charge; on the other hand, an appreciable decrease in
the interphase surface tension coefficient (as compared
with a drop in vacuum) causes a very noticeable
decrease in the critical charge.

APPENDIX A

Division of the Problems according to the Order 
of Smallness

The problem of the first order of smallness obtained
after substitution of relations (12)–(16) into Eqs. (1)–
(11) has the form

(1A)

(2A)

(3A)

(4A)

(5A)

Mn
2( ) Mn

3( )

∆ψ i( )
1( ) 0; ∆ψ e( )

1( ) 0; ∆φ 1( ) 0;= = =

r 0: ψ i( )
1( ) 0;

r +∞: ψ e( )
1( ) 0; ∇φ 1( ) 0;

r 1: ∂T0
ξ 1( ) ∂rψ i( )

1( ) ∂rψ e( )
1( );= = =

∂T0
ψ 1( ) ρ e( )∂T0

ψ e( )
1( )–

1
4πεd

-----------∂rφ
0( )=

× ∂rφ
1( ) ξ 1( )∂rrφ

0( )+( ) 2ξ 1( ) ∆Ωξ 1( );+ +
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(6A)

(7A)

(8A)

(9A)

The problem of the second order of smallness has
the form

(10A)

(11A)

(12A)

(13A)

(14A)

(15A)

(16A)

ξ 1( ) ϑcos( )d

1–

1

∫ 0;=

∂rφ
1( ) ξ 1( ) ∂rrφ

0( ) 2∂rφ
0( )+( )+{ } ϑcos( )d

1–

1

∫ 0;=

φ 1( ) ξ 1( )∂rφ
0( )+ φS

1( ) t( );=

t 0: ξ 1( ) ε hmPm ϑcos( ); ∂T0
ξ 1( )

m Ω∈
∑ 0.= = =

∆ψ i( )
2( ) 0; ∆ψ e( )

2( ) 0; ∆φ 2( ) 0;= = =

r 0: ψ i( )
2( ) 0;

r +∞: ψ e( )
2( ) 0; ∇φ 2( ) 0;

r 1: ∂T0
ξ 2( ) ∂T1

ξ 1( )+ ∂rψ i( )
2( ) ξ 1( )∂rrψ i( )

1( )+= =

– ∂ϑξ 1( )∂ϑψ i( )
1( ) ∂rψ e( )

2( ) ξ 1( )∂rrψ e( )
1( ) ∂ϑξ 1( )∂ϑψ e( )

1( );–+=

∂T0
ψ i( )

2( ) ∂T1
ψ i( )

1( ) ξ 1( )∂rT0
ψ i( )

1( ) 1
2
--- ∂rψ i( )

1( )( )2
+ + +

+
1
2
--- ∂ϑψ i( )

1( )( )2 ρ e( ) ∂T0
ψ e( )

2( ) ∂T1
ψ e( )

1( ) ξ 1( )∂rT0
ψ e( )

1( )-+ +
–

+
1
2
--- ∂rψ e( )

1( )( )2 1
2
--- ∂ϑψ e( )

1( )( )2
+ 

  = 
1

8πεd

----------- 2ξ 2( )∂rφ
0( )∂rrφ

0( ){

+ ξ 1( )( )2 ∂rrφ
0( )( )2 ∂rrrφ

0( )∂rφ
0( )+( )

+ ∂ϑφ 1( )( )2 ∂rφ
1( )( )2

2∂rφ
2( )∂rφ

0( )+ +

+ 2ξ 1( ) ∂rrφ
0( )∂rφ

1( ) ∂rrφ
1( )∂rφ
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+ 2ξ 2( ) ∆Ωξ 2( ) 2 ξ 1( )( )2
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2( ) ξ 1( ) ∂rrφ

1( ) 2∂rφ
1( )+( ) ξ 2( ) ∂rrφ

0( ) 2∂rφ
0( )+( )+ +
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0( )++ 
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(17A)

(18A)

The problem of the third order of smallness has the
form

(19A)

(20A)

(21A)

(22A)

φ 2( ) ξ 1( )∂rφ
1( ) ξ 2( )∂rφ

0( )+ +

+
1
2
--- ξ 1( )( )2∂rrφ

0( ) φS
2( ) t( );=

t 0: ξ 2( ) hmP0 ϑcos( )
2m 1+

------------------------------;
m Ω∈
∑–= =

∂T0
ξ 2( ) ∂T1

ξ 1( )+ 0.=

∆ψ i( )
3( ) 0; ∆ψ e( )

3( ) 0; ∆φ 3( ) 0;= = =

r 0: ψ i( )
3( ) 0;

r +∞: ψ e( )
3( ) 0; ∇φ 3( ) 0;

r 1: ∂T0
ξ 3( ) ∂T1

ξ 2( ) ∂T2
ξ 1( )+ + ∂rψ i( )

3( )= =

– ∂ϑξ 2( )∂ϑψ i( )
1( ) ∂ϑξ 1( )∂ϑψ i( )

2( )– ξ 2( )∂rrψ i( )
1( )+

+ ξ 1( ) ∂ϑξ 1( ) 2∂ϑψ i( )
1( ) ∂rϑψ i( )

1( )–( ) ∂rrψ i( )
2( )+( )

+
1
2
--- ξ 1( )( )2∂rrrψ i( )

1( ) ∂rψ e( )
3( ) ∂ϑξ 2( )∂ϑψ e( )

1( )–=

– ∂ϑξ 1( )∂ϑψ e( )
2( ) ξ 2( )∂rrψ e( )

1( )+

+ ξ 1( ) ∂ϑξ 1( ) 2∂ϑψ e( )
1( ) ∂rϑψ e( )

1( )–( ) ∂rrψ e( )
2( )+( )

+
1
2
--- ξ 1( )( )2∂rrrψ e( )

1( );

∂T0
ψ i( )

3( ) ∂T2
ψ i( )

1( ) ∂T1
ψ i( )

2( ) ξ 1( )∂rT1
ψ i( )

1( )+ + +

+ ∂ϑψ i( )
1( )∂ϑψ i( )

2( ) ∂rψ i( )
1( )∂rψ i( )

2( ) ξ 2( )∂rT0
ψ i( )

1( )+ +

+ ξ 1( ) ∂rT0
ψ i( )

2( ) ∂ϑψ i( )
1( ) ∂rϑψ i( )

1( ) ∂ϑψ i( )
1( )–( )+(

+ ∂rψ i( )
1( )∂rrψ i( )

1( ) ) 1
2
--- ξ 1( )( )2∂rrT0

ψ i( )
1( )+

– ρ e( ) ∂T0
ψ e( )

3( ) ∂T2
ψ e( )

1( ) ∂T1
ψ e( )

2( ) ξ 1( )∂rT1
ψ e( )

1( )---+ + +


+ ∂ϑψ e( )
1( )∂ϑψ e( )

2( ) ∂rψ e( )
1( )∂rψ e( )

2( ) ξ 2( )∂rT0
ψ e( )

1( )+ +

+ ξ 1( ) ∂rT0
ψ e( )

2( ) ∂ϑψ e( )
1( ) ∂rϑψ e( )

1( ) ∂ϑψ e( )
1( )–( )+(

+ ∂rψ e( )
1( )∂rrψ e( )

1( ) ) 1
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--- ξ 1( )( )2∂rrT0

ψ e( )
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(23A)

(24A)

(25A)

(26A)

=  
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8πεd
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0( )∂rφ
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–
1
2
--- ∂ϑξ 1( )( )2∆Ωξ 1( );

3ξ 3( ) 6ξ 1( )ξ 2( ) ξ 1( )( )3
+ +( ) ϑcos( )d

1–

1

∫ 0;=

∂rφ
3( ) ξ 3( ) ∂rrφ

0( ) 2∂rφ
0( )+( )+{

1–

1

∫
+ ξ 2( ) ∂rrφ

1( ) 2∂rφ
1( )+( )

+ ξ 1( )( )3 1
6
---∂rrrrφ
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2
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1( )+ + 
 

+ ξ 1( ) ξ 2( )∂rrrφ
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0( ) 2∂rφ
0( )+ +( )

+ 2∂rφ
2( ) ∂rrφ

2( ) ∂ϑξ 1( )∂rϑφ 1( ) )–+
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d ϑcos( ) 0;=
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2( ) ξ 2( )∂rφ
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(27A)

where Kkln = ( )2 and  are the Clebsch–Gor-
dan coefficients.

APPENDIX B

Expressions for the expansion coefficients:

t 0: ξ 3( ) hkhmhl

3 2l 1+( )
----------------------KkmlP0 ϑcos( );

k m l, , Ω∈
∑–= =

t 0: ∂T0
ξ 3( ) ∂T1

ξ 2( ) ∂T2
ξ 1( )+ + 0,= =

Cm0l0
n0 Cm0l0

n0

Hkmln
1 +( ) –( ) βkmgln

1 +( ) λ lmg
+( ) µkmgln

1 –( )+( )
g 1=

∞

∑ µkmgln
0 –( ) ;

g 0=

∞

∑+=

Hkmln
1 –( ) +( ) βkmgln

1 –( ) λ lmg
–( ) µkmgln

1 +( )+( )
g 1=

∞

∑ µkmgln
0 +( ) ;

g 0=

∞

∑+=

Hkmln
2 +( ) +( ) βkmgln

2 +( ) λ lmg
+( ) µkmgln

1 +( )+( )
g 1=

∞

∑ µkmgln
0 +( ) ;

g 0=

∞

∑+=

Hkmln
2 –( ) –( ) βkmgln

2 –( ) λ lmg
–( ) µkmgln

1 –( )+( )
g 1=

∞

∑ µkmgln
0 –( ) ;

g 0=

∞

∑+=

Hmgn
0 +( ) = Πmgn

0 Πmgn
1 ωmωg– Πmgn

2 ωg
2–( ) λmmg

+( ) λmmg
–( )+( );

Hmgn
0 –( ) = Πmgn

0 Πmgn
1 ωmωg Πmgn

2 ωg
2–+( ) λmmg

+( ) λmmg
–( )+( );

βkmgln
1 +( )  = Πkgn

0 Πkgn
1 ωk ωl ωm+( )– Πkgn

2 ωl ωm+( )2– ;

βkmgln
1 –( )  = Πkgn

0 Πkgn
1 ωk ωl ωm–( )– Πkgn

2 ωl ωm–( )2– ;

βkmgln
2 +( )  = Πkgn

0 Πkgn
1 ωk ωl ωm+( ) Πkgn

2 ωl ωm+( )2;–+

βkmgln
2 –( )  = Πkgn

0 Πkgn
1 ωk ωl = ωm( ) Πkgn

2 ωl ωm–( )2;–+

µkmgln
1 –( ) Λkmgln

1 Γ kmgln
1 ωmωk;–=

µkmgln
1 +( ) Λkmgln

1 Γ kmgln
1 ωmωk;+=

µkmgln
0 –( ) Λkmgln

0 Γ kmgln
0 ωmωk;–=

µkmgln
0 +( ) Λkmgln

1 Γ kmgln
0 ωmωk;+=

Λkmgln
0 n 1+( )χnωk

2Kgln α kmg k 2–( )/k(=

+ k 1–( ) n k– 2+( )Kkmg/2 )

+ ρ e( )nχnωk
2 g 1 n–+( )Kgln αgln/ g 1+( )–( ) k 2+( )Kkmg((

– α kmg/ k 1+( ) ) k 3+( )α kmg/ k 1+( )(+

+ k 2+( ) n 2– k–( )Kkmg/2 )Kgln ) n n 1+( )χn+
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× WKgln k3 2 m 1+( ) m 2+( ) k2 n 9–( )∫––












– k 2m m 3+( ) 3n 22–+( ) )Kkmg 2 k 2+( )α kmg )/2–

– 3k k 1+( ) 2–( )Kkmg l l 1+( )α kmg/2 )Kgln–(

+ α kmg l2Klgn 2l 4ν– 1+( )Kl 2ν– g n, ,

ν 1=

l/2[ ]

∑–
 
 
 





;

Λkmgln
1 n n 1+( )χnWkKkmg=

× g 1+( ) l 2– g– n+( )Klgn α lgn+( )
+ n 1+( )χn α lgn/g n 1 g–+( )Klgn+( )(

× αkmg/m 1 m–( )Kkmg+( ) )ωm
2 ;

Γ kmgln
0  = n 1+( )χn k 2–( )Kgln k 1–( )Kkmg/2 α kmg/k–( )( )

+ Kmgn k 1–( )Kklg/2 α klg/k–( ))

– n k 1–( )Kgln α kmg/ mk( ) Kkmg+( ))

– ρ e( )nχn g 2+( )Kkmg αmgn/ g 1+( )–( ) k 2+( )Kklg((

– α klg/ k 1+( ) ) k 3+( )Kmgn α klg/ k 1+( )(+

– k 2–( )Kklg/2 ) g 2+( )Kgln αgln/ g 1+( ) )–(+

× k 2+( )Kkmg α kmg/ k 1+( )–( )

+ k 3+( )Kgln α kmg/ k 1+( ) k 2+( )Kkmg/2–( )
– n 1+( ) αmgn/ m 1+( ) g 1+( )( ) Kmgn+( ) k 2+( )Kklg((

– α klg/ k 1+( ) ) Kgln k 2+( )Kkmg α kmg/ k 1+( )–( )+

– α kmg/ k 1+( ) m 1+( )( ) Kkmg+( ) k 2+( )Kgln ) );

Γ kmgln
1  = n 1+( )χn α lgn/g n 1 g–+( )Klgn+( )(

× m 1–( )Kkmg α kmg/m–( ) k n+( )α kgn/ gk( )(+

+ n 1 g–+( )Kkgn ) m 1–( )Kmlg αmlg/m–( ) );

Πkmn
0  = n 1+( )χn nKkmn 2 k 1–( ) k 2+( ) m m 1+( )+( )((

+ W k 1–( ) n 5– k–( )) α kmn/k n 1 k–+( )Kkmn+( )ωk
2 )+

– ρ e( )nχnωk
2 n 1– k–( )Kkmn α kmn/ k 1+( )+( )

+ n n 1+( )χnW m 1+( ) k n m– 2–+( )Kkmn α kmn+( );

Πkmn
1 n 1+( )χn k m n– 2–+( )Kkmn(=

– n k m+ +( )α kmn/ mk( ) )
+ nρ e( )χn n k– m– 3–( )Kkmn(

+ k m n 3+ + +( )α kmn/ m 1+( ) k 1+( )( ) );

Πkmn
2 n 1+( )χn m n– 1–( )Kkmn α kmn/m–( )=

+ nρ e( )χn n m– 1–( )Kkmn α kmn/ m 1+( )+( );
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Ξn
0 ωn

2 n n 1+( )χn n 1–( ) 4 2n 5W–+( );+=

Ξn
1 = n 1+( ) n 1–( ) 3nρ e( )–( )χn; Ξn

2 = ρ e( )n n 1–( )χn;

ψkml
+( ) +( ) ωk ωm ωl; ψkml

+( ) –( )+ + ωk ωm ωl;–+= =

ψkml
–( ) –( ) ωk ωm– ωl; Dlm

kn– 1 δlmδkn;–= =

λmln
±( ) γmln ωmωlηmln±( )/ ωn

2 ωm ωl±( )2–( );=

αmln Cm0l0
n0 Cm 1–( )l1

n0 m m 1+( )l l 1+( );–=

γmln n 1+( )χnKmln ωm
2 n m– 1+((=

– ρ e( )n n m– 1–( )/ n 1+( ) ) 2n l l 1+( ) 1–( )+

+ l m 1+( ) m 2m 2n– 7+( )– 3+( )nW/2) n 1+( )χnαmln+

× 1/m nρ e( )/ n 1+( ) m 1+( )( )–( )ωm
2 nW /2+( );

ηmln n 1+( )χnKmln n/2 m– 1+(=

+ ρ e( )n 2m 3 n–+( )/ 2 n 1+( )( ) )
+ n 1+( )χnαmln 1 n/ 2l( )+( )/m(

– nρ e( ) n 2l 3+ +( )/ 2 m 1+( ) l 1+( ) n 1+( )( ) );

χn 1 n 1 ρ e( )+( )+( ) 1– ;=

ωn χn n 1–( )n n 1+( ) n 2 W–+( ).=
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Abstract—A longitudinal dc electric discharge in a submerged high-pressure supersonic air jet is described.
Photographs of the discharge are provided. The experimental voltage across the discharge gap and the discharge
current are given for two resistances of the resistor that limits the discharge current over a certain range of the
discharge channel length along the air flow. The current–voltage discharge characteristic is provided at a con-
stant discharge length. The main discharge characteristics are obtained from a comparison of the experimental
and theoretical results calculated on the basis of the simplest model. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The so-called dc discharge fed by a dc source is
widely used for generating nonequilibrium plasma,
especially in laboratory conditions, mostly because of
the simplicity of its technical realization. The electric
circuit diagram of the setup consists of only a high-volt-
age source; a ballast resistor R, which limits the dis-
charge current; and the gas discharge gap connected in
series. However, at a comparatively high gas pressure p
(in air, at p > 100 Torr), problems arise with feeding the
required amount of energy to the discharge plasma.
Due to the instability of the plasma, which causes
pinching of the discharge channel, its impedance
becomes so small that most of the energy taken from
the source is dissipated on the source resistance Rin and
the ballast resistance R. Igniting the discharge in a high-
velocity gas flow is one of the techniques to overcome
this difficulty.

Experiments with a dc discharge in a gas flow are
reported, for example, in [1] and in the literature cited
therein. Most of these experiments used flows of a sub-
sonic velocity V. Longitudinal discharges, in which the
electric current J is parallel to V, and transverse dis-
charges, in which the line connecting the electrodes is
perpendicular to V, were studied.

One of the first experiments on igniting the trans-
verse discharge in a wind tunnel with a supersonic flow
are described in [2]. Studies of a similar discharge in a
submerged supersonic jet are also reported in [3]. It was
shown that such a discharge can be realized in its stable
form only when the electrode spacing d is smaller than
0.1–0.2 cm. At a longer d, the discharge becomes essen-
tially nonstationary. After the electrical breakdown in
the gap, the discharge channel drifts away and is torn by
the flow, and the cycle recurs. In this process, signifi-
cant fluctuations in the voltage U across the discharge
gap and in the discharge current J are observed. An
experimental scheme, which makes it possible to obtain
1063-7842/04/4907- $26.00 © 20833
a stable combined transverse–longitudinal discharge in
the paraxial region of the wind tunnel, feeding it with a
power of Pdis ≈ 1 kW, is described in [4, 5]. This result
was obtained due to a significantly extended length of
the discharge channel in the supersonic flow versus that
in immobile air. The electrodes had such a shape that
the discharge first occurs in the transverse field. Then
the current channel is carried away by the air flow and
remains stable actually along V during the entire further
discharge time. In the stable stage of the discharge, the
maximum transverse distance from the current channel
to the downstream electrode is no longer than 0.1–
0.2 cm, the total discharge length l being about a few
centimeters.

Processes in this transverse–longitudinal discharge
are analyzed in [6] under the assumption that the elec-
tric field E is constant over the main part of the current
channel and equal to U/l. However, it is stated in [6] that
this assumption leads to results that disagree with the
experiment.

An experiment that demonstrates combustion of
propane injected into a supersonic air flow excited by
the transverse–longitudinal discharge is described in
[7]. This experiment showed that the gas temperature T
in the discharge region is high enough (about 800–
1000 K) to ignite a propane–air mixture [8].

This paper describes the results of experiments with
a longitudinal dc discharge in a supersonic high-pres-
sure air flow. The discharge is created by the scheme
developed in [4] with the difference that it occurs in a
submerged jet and is longitudinal on its stable stage.
Experimental and theoretical results are compared.

EXPERIMENTAL SETUP

The circuit diagram of the setup is given in Fig. 1.
The electrodes of the discharge gap are in a sealed
chamber placed in a submerged supersonic air jet. The
004 MAIK “Nauka/Interperiodica”
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grounded anode is made of a 5.7-cm-long aluminum
bar 0.45 cm in diameter. Its ends are sharpened. The
anode is installed along the jet on a streamlined support
fabricated with it as a single whole. The support is 1 cm
long along V and its maximum thickness is 0.2 cm. The
cathode has the complex configuration shown in Fig. 1.
It is made of a 0.2-cm-thick aluminum sheet. Its edges
facing the flow are streamlined. The electrodes are
designed so that the cathode can be moved along the
flow in order to change the distance l between its verti-
cal part and the downstream end of the anode. At a con-
stant l, the transverse distance d between the electrodes
can also be changed.

A high-voltage wire that feeds the cathode is con-
nected to the negative terminal a of a high-voltage
source through the resistor R. The output voltage of the
source is Uex, its equivalent voltage is Uin, and the inter-
nal resistance is Rin. The positive terminal b of the
source is grounded through a 1-Ω resistor. A signal pro-
portional to J is picked off from this resistor and applied
to an oscilloscope. The voltage Uex is monitored with a
high-voltage voltmeter, which also uses a voltage

b
J

RJ

Uin Rin a R k

Uex

V

d

+

_

U

l

Fig. 1. Circuit diagram of the setup for a longitudinal dc dis-
charge in a supersonic flow.

(a)

(b)

(c)

Fig. 2. Longitudinal dc discharge in a supersonic air flow.
divider to measure the signal proportional to U. The cir-
cuits used to measure J and U contain filters, which
smooth ripples in the signals being monitored. The
main series of experiments was carried out with two
values of R: R1 = 7.42 kΩ and R2 = 4.12 kΩ .

The chamber with the electrodes is preliminarily
evacuated to 100 Torr. When a signal is applied to the
control valve, atmospheric air starts penetrating into the
chamber through an axisymmetric Laval nozzle. An
ultrasonic air jet with a diameter of 3 cm, a static pres-
sure of pout = 97 Torr, a temperature of Tout = 150 K, a
molecule concentration of nout = 6 × 1024 m–3, and a
Mach number of M = 2 at a flow velocity of Vout =
507 m/s is formed in the exit section of the nozzle.
Behind the electrodes, the jet enters the confuser, which
connects the chamber to the receiver. The confuser and
receiver reduce the pressure in the chamber to p =
97 Torr at the instant the valve is opened and on. This
pressure remains unchanged for about 1 s and only after
that starts growing. It is during this second, as long as
p = pout, that the high voltage is applied to the electrodes
with the help of the key k.

EXPERIMENTAL RESULTS

In the first experiments, the parameters of the high-
voltage source (Uin and Rin) were determined. To do
this, the source was disconnected from the electrodes,
and resistors of known resistances were connected to its
output terminals. The experiments gave Uin = 7 kV and
Rin = 0.54 kΩ .

The experiment with the discharge shows that, when
values of d and l are such that a stable discharge is sus-
tained, the air breakdown initially occurs in the gap d.
Subsequently, the current channel is carried away by
the supersonic flow with one of its ends being fixed at
the downstream end of the anode, while the other end
moves along the lower edge of the horizontal part of the
cathode. The discharge channel is stabilized in the hor-
izontal position, its length becoming equal to l.
Figure 2 shows typical photographs of the discharge for
R = R2, d = 0.8 cm, and l = 6 cm. The photograph in
Fig. 2a was obtained with an exposure time of 0.1 s;
photographs in Figs. 2b and 2c (in an inverted form)
were obtained for a 0.1-ms exposure. It can be assumed
from these photographs that the plasma pinch of diam-
eter 2r = 0.1–0.2 cm continuously bends following non-
stationary lines of the gas flow; therefore, the integral
photograph (Fig. 2a) displays a relatively wide region.

At the above values of R and d and l > lmax ≈ 4.5 cm,
the discharge is no longer stable. Its current channel
tosses about between gap d and the vertical part of the
cathode, sweeping the region between the lower edge
of the horizontal part of the cathode and the anode. In
this case, the intermittent transverse discharge [3] is
observed. The length lmax follows the variation of d. At
l < lmax, a stable longitudinal discharge evolves by the
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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above scheme even when the horizontal part of the
cathode is electrically insulated. In the steady dis-
charge, U and J are almost constant when the gap
length d is varied. Naturally, the maximum gap length
must be such that the initial gas breakdown is possible
in the gap. It was shown [4] that, at V ≤ 500 m/s, the gas
flow does not affect the intensity of the minimum criti-
cal breakdown field Ecr. In this case, as in immobile gas,
Ecr is determined by the concentration n of gas mole-
cules alone. The breakdown interelectrode voltage Ubr
in the supersonic flow also depends on the electrode
shape and becomes significantly lower when the elec-
trodes are sharpened [9].

In the process of discharge, the cathode suffers from
gradual thermal sputtering (see also [4]); i.e., the tem-
perature of the plasma that contacts it is at least higher
than the aluminum melting temperature Tm Al = 932 K [9].

Figure 3 shows the values of U measured at different
l. The experimental data obtained at R = R1 are shown
by circles; at R2, by crosses. It is seen that, up to a cer-
tain value of l, the experimental functions U(l) at a con-
stant R also increase with l. Their derivatives change
their signs at large values of l due to the above-men-
tioned discharge instability at l > lmax. Figure 4 shows
experimental dependences J(l). As in Fig. 3, the results
obtained at R = R1 are shown by circles; at R2, by
squares. These functions slowly decrease with l.

It follows from Figs. 3 and 4 that, for example, at
R = R2 and l = 5 cm, the energy is supplied to the dis-
charge with a power of Pdis = UJ = 1.69 kW, which is
about 20% of the high-voltage source power P = UinJ =
8.75 kW.

Finally, Fig. 5 shows an experimental discharge cur-
rent–voltage characteristic at a constant length of l =
3 cm with R varied from 4.12 to 12.4 kΩ . The current–
voltage characteristic of the longitudinal dc discharge
in the supersonic flow is seen to be a decreasing func-
tion. This fact is also corroborated by results shown in
Figs. 3 and 4.

DISCUSSION

We will interpret the experimental results in the
framework of the simplest model. First of all, we can
write Ohm’s law for the discharge circuit in Fig. 1,
which relates the current J in it to the voltage U across
the discharge gap:

(1)

This relation makes the simultaneous measurements
of U and J in a certain sense redundant. In fact, if volt-
age U is measured, current J can be calculated from (1)
and vice versa. However, a comparison of the experi-
mental and theoretical results confirmed that the mea-
surements were correct.

Another equation that relates U and J can be
obtained from the local energy balance in the discharge

U in J Rin R+( ) U .+=
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channel. Let us write it under the following assump-
tions.

(1) The discharge is a stationary azimuthally sym-
metric plasma channel. Its local parameters (molecule
concentration n, temperature T, electron concentration
ne, field strength E, and current density j) vary versus
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Fig. 3. Voltage U across the discharge gap versus its length l.
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Fig. 5. Current–voltage characteristic of a longitudinal dc
discharge in a supersonic air flow.
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the x coordinate along the channel, but are constant in
its cross sections of radius r (of area S).

(2) The discharge evolves under isobaric conditions,
i.e., at p(x) = const. Therefore, in an arbitrary cross sec-
tion,

(2)

It also follows from this assumption that the longi-
tudinal molecular velocity V in the discharge is constant
and coincides with Vout [10].

In this assumption, we disregard the processes that
evolve in the anode part of the discharge, where the
assumption may be incorrect. The length of this region
and the discharge parameters in it can only be obtained
from a complete aerodynamic model, in which the air-
flow of a supersonic jet about the anode and the adja-
cent energy-release region is considered. The length of
the anode region can be evaluated from Fig. 2a as 0.2–
0.3 cm by the change in the rate of increase in the cross-
sectional area of the discharge channel. Let us use index
0 to denote the discharge parameters in the section (that
is, at this distance from the anode downstream) and use
this point as an origin for the distance x to the section
being analyzed, in which the discharge parameters will
have no indices; in the section x = l, the parameters will
be marked by index l.

(3) In any cross section of the discharge channel
downstream from the zero section, we have

(3)

This assumption differs significantly from the one
accepted in [6], where it is assumed that E = const along
the discharge channel.

(4) The number of air molecules brought by the flow
to the zero cross section of the discharge channel also
remains constant over the length of the channel:

(4)

This relation together with (2) implies that, along
the discharge channel, we have

(5)

Under the above assumptions, the equation of local
energy balance has the form

(6)

where k is the Boltzmann constant and the coefficient Ψ
shows the part of the electric energy absorbed in the
discharge that is spent on increasing the gas tempera-
ture T in it.

Replacing j by J/S, with (2)–(4), we obtain

Integration by parts with respect to x from 0 to the
current position x and with respect to T from T0 to T

n nout Tout/T( ).=

E0/n0 E/n ξ const.= = =

n0S0 nS const.= =

T0/S0 T /S const.= =

7/2( )k∆Tn ΨjE ∆x/V( ),=

3.5kS0VTdT ΨJξT0dx.=
yields

(7)

where the characteristic length is

(8)

From this expression, with (2) and (4), we obtain

(9)

These formulas give functional dependencies of the
discharge parameters over the discharge length but do
not give their absolute values. Theoretically, these val-
ues can only be obtained using a full-scale model of
ionization and aerodynamic processes in the discharge
channel, including its near-electrode regions. The abso-
lute values of these parameters can also be estimated
from the experiment. Further comparison of theoretical
dependences U(l), J(l), and U(J) with the experimental
results will validate or disprove the above assumptions.

By multiplying the left- and right-hand sides of (9)
by dx and integrating the result from 0 to l, we obtain

(10)

As follows from the experimental data in Fig. 3, at
R = const, on the discharge region that is regular in l,
values of U measured at two arbitrary l are related by

(11)

In particular, at R = R1 and electrode spacings of lA =
4 cm and lB = 2 cm, the corresponding voltages are UA =
1.5 kV and UB = 1 kV; i.e., relation (11) is satisfied to
within 6%. At R = R2, this relation is valid within an
even higher accuracy of 4%.

Relation (11), which follows from the experiment,
can be derived from (10) if

(12)

According to relation (8), parameter l0 is inversely
proportional to J so that, with decreasing R, condition
(12) can be fulfilled to a higher degree of accuracy.

Under condition (12) with (8), Eqs. (10) and (7) can
be simplified so that solving these equations for ξ and
ψ yields

(13)

(14)

The values U, p, and l appearing in (13) are mea-
sured; only T1 is unknown. However, it follows from
our experiments that Tl ≈ TmAl. Let Tl = 103 K. Then, set-
ting T0 ≈ Tout, we derive from Eq. (7) that condition

T T0 x/l0 1+ ,=

l0 3.5VS0kT0( )/ 2ΨJξ( ).=

S S0 x/l0 1+ or r r0 x/l0 1+4 ,= =

n n0/ x/l0 1+ ,=

E ξn0/ x/l0 1+ E0/ x/l0 1+ .= =

U 2E0l0 l/l0 1+ 1–( ).=

UA/UB lA/lB.=

l/l0 @ 1.

ξ UkTl( )/ 2 pl( ),=

ψ 7/2( ) Tl/T0( ) VpS0( )/ UJ( ).=
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(12), which follows from the experiments, is satisfied:

To be specific, taking l = 3 cm and R = R1 in Figs. 3
and 4, we obtain U = 1.25 kV and J = 0.75 A, which
yields ξ = 2.2 × 10–20 V m2 from (13).

In Eq. (14), the ratio Tl/T is to some extent uncertain
and the value S0, or the initial current channel diameter
2r0, is also unknown. We can obtain it from the follow-
ing considerations. The calculated value of ξ is approx-
imately five times smaller than its critical value ξcr =
1.2 × 10–19 V m2 [6, 11]. Quantities ξ and ψ are related
in a known manner [6, 11]. In the discharge plasma, the
energy of the electric field is first taken by its electrons
and, with ξ evaluated above, not more than 5% of this
energy is immediately taken away by translation
degrees of freedom of air molecules. The rest of the
energy is initially stored in the intramolecular vibra-
tions. The molecule transit time τl = l/V ≈ 0.1 ms is not
enough for this energy to relax into heat (even at T ≈
103 K [6]). By setting ψ = 5 × 10–2 in formula (14) and
using the quantities specified above, we obtain 2r0 =
0.63 mm. This value is approximately the same as the
diameter of the current channel, which can be estimated
from Figs. 2b and 2c.

Similar calculations based on formulas (13) and
(14) at R = R2 also give ξ < ξcr: ξ = 1.7 × 10–20 V m2 and
ψ = 3.5 × 10–2.

The conclusion that the discharge is subcritical also
agrees with the following considerations. The main
mechanism of electron extinction in air plasma at a high
p is their dissociative adhesion to molecules O2 [1, 6].
The characteristic time of this process is τa = 1.8 ×
1018/n s [11]. The plasma electrons drift in a constant
field with velocity Vdr = µeE, where their mobility is
µe = 1.1 × 1024/n m2/(V s) [11]. Therefore, the adhesion
length is la = τaVdr = 1.9 × 1042ξ m. For the experiment
at R = R1 with ξ estimated above, the length is la = 4.4 ×
10–2m ≈ l. As follows from this result, the field does not
have to sustain the ionization process over the main
length of the plasma channel, maintaining the same
number of electrons generated near the cathode. It can
be weaker than Ecr and must only provide their drift
velocity Vdr determined by the current.

Note that, in our experiments, at the estimated
parameter ξ, the velocity is Vdr = 1.1 × 1024ξ = 2.5 ×
104 m/s @ V and the air flow in the discharge channel
does not affect the electron drift in the field.

From the measured current J and estimated velocity
Vdr, we can calculate the scale ne in the discharge
plasma. In particular, at l = 3 cm, the concentration is
ne0 = J/(VdrqeS0) = 1020 m–3, where qe is the electron
charge, or the degree of air ionization is 10–4. This is a
typical value for the low-temperature nonequilibrium
air plasma at a relatively high p.

l/l0 Tl/T0( )2 1– 6.5.≈=
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Under condition (12), with (1), the analytical depen-
dence U(l) has the form

(15)

Dependences (15) with the parameters estimated
and calculated above and for R = R1 and R = R2 are plot-
ted in Fig. 3. They are seen to actually coincide with the
experiment in the range of l that corresponds to a steady
discharge. The functions J(l) and U(J) calculated from
Ohm’s law are plotted in Figs. 4 and 5. The curves also
actually pass through the experimental points.

CONCLUSIONS

Thus, a longitudinal dc discharge in a supersonic
high-pressure air jet several centimeters long was real-
ized. In the experiments, the electric energy was sup-
plied to the discharge with a power of up to 1.7 kW, the
efficiency of the high-voltage source being approxi-
mately 20%. The energy introduced into the discharge
grows with its length, while the voltage across the dis-
charge gap increases and the discharge current insignif-
icantly decreases. The discharge current–voltage char-
acteristic is a decreasing function.

The comparison of experimental data with calcula-
tions based on the simplest model allowed us to analyze
the main properties of this type of discharge. Specifi-
cally, assumptions were proved to be true that (i) the
process of heating the air along the longer side of the
discharge channel is isobaric; (ii) discharge parameters
vary along the channel as a result of heating by the cur-
rent, but are constant in cross sections of the plasma
channel; (iii) the number of air molecules that flow in
the plasma channel is constant; and (iv) the ratio of
electric field intensity to air molecule concentration is
constant over the longer side of the discharge channel.

The analysis has shown that the electric field along
the plasma discharge channel is subcritical. As a result,
the energy supplied to the discharge is predominantly
spent not on heating the air, but on excitation of vibra-
tional degrees of freedom of its molecules. Neverthe-
less, the gas temperature in the discharge has a scale of
1000 K.

Our discharge model, although it yields correct
functional dependencies, is not closed. Some of its
parameters are taken from the experiment and cannot
be obtained directly from the model. A full-scale model
must allow for ionization and aerodynamic processes,
primarily in the anode and cathode discharge regions.

Such discharges can be used in devices that require
high translational, as well as high vibrational, molecu-
lar temperatures.
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Abstract—Spatial parameters of the X-ray radiation produced by a high-voltage nanosecond discharge evolv-
ing in air under atmospheric pressure in the rod (cathode)–plane electrode system with a 10-cm electrode spac-
ing are studied experimentally. A ~170-ns voltage pulse with an amplitude of ~200 kV and 10-ns rise time is
applied to the cathode. The photoelectronic method is used to study, under the same conditions, the integrated
(over the gap) characteristics of the radiation, in particular, the duration of its generation. It is found that, when
the size of the X-ray source is not smaller than that of the discharge region of diffusive luminescence, radiation
from the cathode region of the gap is primarily observed (i.e., from the region where the electric field distribu-
tion is sharply inhomogeneous). The X-ray generation is usually observed after the bridging of the discharge
gap, the X-ray pulse having a rise time of ~3 ns, a duration of ~10 ns, and an effective radiation energy of
~6 keV. © 2004 MAIK “Nauka/Interperiodica”.
The high-voltage nanosecond discharge that occurs
in a high-pressure (≤105 Pa) gaseous medium across
long (≥10 cm) gaps with a strongly nonuniform electric
field distribution is of interest due to the application of
this type of discharge in a number of devices [1–3] and
from the viewpoint of deepening fundamental knowl-
edge about the nature of the gas discharge. The diffu-
sive discharge that evolves in the classical rod–plane
electrode geometry is not yet clearly understood. The dis-
charge mechanisms are not completely clear, several ques-
tions concerning the emission of ionizing radiation that
accompanies the discharge persist, and there are almost no
data on the discharge radiation characteristics in the X-ray
range. The change in the discharge configuration observed
from pulse to pulse (from the single-channel volumetric
luminescence shape to more complex multichannel
shapes) is characterized by a significant variation of elec-
tric and emission discharge parameters, which stimu-
lates experimental research.

This paper reports on volumetric parameters of
X-ray radiation produced by a diffusive discharge that
evolves in air under atmospheric pressure in a rod (cath-
ode)–plane electrode system with a 10-cm-long elec-
trode spacing. The effective discharge radiation energy
in the X-ray range is estimated. Integrated time charac-
teristics of the radiation over the gap are studied (the
instant when the emission begins and its duration are
determined). The amplitude of the voltage across the
gap was ~200 kV at a ~10-ns pulse rise time and
~170-ns total pulse duration. The maximum discharge
current was 600 A.
1063-7842/04/4907- $26.00 © 20839
A circuit diagram of the setup is shown in Fig. 1. As
a source 1, a BING-6 modular pulsed nanosecond gen-
erator [4] loaded by a Lewis transformer [5] is used.
The transformer consists of six 17-cm-long coaxial
cables whose output ends are connected in series in the
upper part of discharge chamber 2. The body of the
chamber is a metal cavity 60 cm in diameter and 60 cm
high. The maximum voltage is applied to the center of
the chamber where a stainless steel rod cathode 19 cm
long and 1 cm in diameter is fixed on the chamber axis.
On the anode side, the cathode end face has a bullet
shape: it has the form of a surface of revolution of a cir-
cular arc ~30 mm in radius mated to the cylindrical sur-
face of the rod (in a number of experiments, a cathode
with a hemispherical end was used instead). The anode
(aluminum current-collecting plate 18 cm in diameter)
is placed symmetrically with respect to the cathode at
the bottom of the chamber and geometrically is a part
of its planar grounded base, which renders a highly uni-
form electric field distribution on the surface of this
electrode.

1
2

A
C

S

D
BING-6

Fig. 1. Circuit diagram of the setup.
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In the experiments, the voltage across the discharge
gap and the discharge current were measured using
low-inductance resistive divider D and shunt S. The
integrated discharge radiation over the gap length in the
optical (300–600 nm) and X-ray ranges were also mea-
sured with a high-speed photomultiplier. When measur-
ing the X-ray radiation, the photomultiplier was sup-
plied with a plastic scintillator (3% n-phenyl biphenyl +
0.06% POPOP in polystyrene with a de-excitation time
of <1 ns); the protection against optical radiation was
provided by a two-layer 20-µm-thick aluminum filter.
Along with the photoelectric method, the X-ray radia-
tion parameters were studied with the help of photo-
emulsions.

Electric signals were recorded by a digital oscillo-
scope with a pass band of 500 MHz. The oscillograms
were matched with allowance for the distance between
the X-ray sensor and the discharge, the length of the
instrument cables, and the transit time through the pho-
tomultiplier. This time was determined in special exper-
iments in which the pulse from a nitrogen laser (wave-
length of 337 nm and duration of ~10 ns) was simulta-
neously recorded by the photomultiplier being
calibrated and a detector with an almost zero transit
time. The time resolution of electric signals was not
lower than 0.5 ns for the current and voltage and ~2 ns
for the X-ray pulse. In the experiments, we also visually
monitored and photographed the discharge.

It was found that, at the same gap geometry, the dis-
charge is realized in various forms of diffusive lumines-
cence. The forms observed can be divided into three
main morphological types: volumetric, multichannel,
and transient. A discharge of the volumetric type
(which occurs with a probability of ~0.7 with the bullet-
shaped cathode) has the form of a bright central chan-
nel, which significantly differs from other channels in
its size and intensity. For the gap studied, the lumines-
cence region of this discharge visually has the form of
two cones with a common base 5 cm in diameter near
the middle of the gap; the vertex of one cone coincides
with the cathode tip, while the vertex of the other cone
is truncated by the anode plane so that the discharge
diameter in this plane does not exceed 2 cm. As rule, the
multichannel discharge (which occurs most frequently
with a hemispherical cathode) consists of 4 to 60 chan-
nels of commensurate luminescence diameters and
intensities uniformly distributed in the anode plane in a
circle 6 to 16 cm in diameter. Relatively rare transient
discharges include all remaining (usually asymmetric)
diffusive luminescence forms. The change in the lumi-
nescence form is accompanied with a change in the
electric and radiative discharge characteristics. Also,
for discharges of the same luminescence form, a statis-
tical spread in these parameters is observed. As a result,
pulse-to-pulse variations in the discharge current under
constant conditions are within 170 to 340 A for the vol-
umetric discharge form (bullet-shaped cathode) and
370 to 600 A for the multichannel form (hemispherical
cathode). This paper primarily focuses on the volumet-
ric discharge form, because it exhibits a higher stability
in a number of electric and spatial parameters as com-
pared to other discharge luminescence forms. This cir-
cumstance simplifies the analysis of experimental data
and helps us to reveal mechanisms of the discharge evo-
lution that are common to all discharge types.

It was found by the photoelectron method that, for
the volumetric luminescence form, X-ray radiation is
observed on average in one-third of discharge pulses.
The amplitude of an X-ray pulse varies within the
dynamic range of our experimental technique by a fac-
tor of approximately 10. As a rule, correlation is simul-
taneously observed between the amplitude of the dis-
charge current and intensity of the radiation produced
by the discharge in the ultraviolet, visible, and X-ray
ranges. For other forms of diffusive luminescence, a
correlation is also on average observed between the dis-
charge current and its radiation.

It was found by the photographic method that the
X-ray radiation emitted by several discharge pulses is suf-
ficient to reliably produce a uniform blackening of
unmasked regions of a photographic film placed in the
anode plane, as well as on the side of the discharge, and
exposed through a 10- to 20-µm-thick aluminum foil. The
effective energy of X-ray radiation from the discharge esti-
mated from absorption in a nine-stage aluminum wedge
with a thickness of up to ~40 mg/cm2 [6, 7] is ~6 keV.

The spatial distribution of X-ray sources was stud-
ied by the photographic method with the help of spe-
cially designed cassettes installed in two mutually
orthogonal planes. An isochromatic (with a spectral
sensitivity of up to 640 nm) film was used as the X-ray
sensitive material in the experiment. Cassettes of two
designs were mostly used: one of the cassettes was
placed at a distance of ~9 cm on the side of the dis-
charge axis (Fig. 2), while the other was installed under
the anode (Fig. 3).

Figure 2 is a diagram of the setup used to study the
distribution of X-ray sources along the discharge axis.
Photographic film 1 was placed with emulsion facing
the discharge in lighttight cassette 2 made of 2 mm
thick electrical pressboard. The electrode spacing was
conventionally divided into five ~2-cm-thick layers
perpendicular to the discharge axis. Due to planar col-
limators included in the cassette, radiation of these lay-
ers acted upon five 50 × 3-mm horizontal film regions.
The outer ends of the collimators were covered with
~10-µm-thick aluminum foil strips. This design elimi-
nated discharges sliding over the cassette surface even
when it is placed at a rather small distance from the
chamber axis, which allowed us to reduce the number
of discharge pulses required to blacken the film so that
it can be analyzed to 50–150. A typical blackening pro-
file of the image obtained on the film is shown in Fig. 2
(on the left). It is seen that the radiation dose of the
source of the X-ray radiation that accompanies the dis-
charge is nonuniformly distributed along the gap. As
the observation point approaches the cathode region,
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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the intensity of X-ray radiation increases in a nonlinear
manner, as we see from the behavior of the blackening
density upon a change in the distance from the cathode.

The X-ray radiation from the discharge in the sec-
tion transverse to the discharge axis was studied by the
shadow technique (Fig. 3). As a rule, the experiment
involved 10 to 50 discharge pulses. Under the anode,
there was a lighttight metal container 1 (16 cm in diam-
eter and ~2 cm high) covered with a 20-µm-thick alu-
minum foil 2 from above. The foil was used as a filter
to cut off radiation in the visible and ultraviolet ranges
and served as an anode, which freely passed the dis-
charge current. Under the foil, with its emulsion facing
the discharge, a photographic film 3 was pressed to the
container bottom by a 0.5-mm-thick and 18-mm-high
copper knife 4, which was impenetrable for the X-rays
studied. The knife vertically divided the internal cas-
sette cavity into two halves. The X-ray shadow of the
knife takes part in forming the image on the film. Near
the knife, the X-ray radiation produced by one half of
the discharge gap cannot reach the film exposed to the
radiation produced by the other half if only the whole
of the radiation source is not localized along the dis-
charge axis at a distance comparable with the knife
thickness (~1 mm).

A picture of the integral shadow image of the X-ray
source obtained in one of the experiments and the
respective film darkening density profile perpendicular
to the knife are shown in Fig. 3 (bottom). An almost
zero darkening level near the knife shows that, on aver-
age, the distribution of X-ray sources in the section per-
pendicular to the discharge axis is not localized near the
axis. As the observation point moves away from the
knife, the radiation that acts on the film does not imme-
diately increase the darkening to a constant level, where
radiation produced by both parts of the discharge are
actually added together. Consequently, the knife affects
the sources of radiation that are at a distance from the
discharge axis determined by angle α (Fig. 3). For a
10-cm-long gap, α is typically not smaller than 34°,
which corresponds to an X-ray source whose transverse
size is not smaller than the visible region of the diffu-
sive discharge luminescence and to the emitting points
located, according to the above experiments, predomi-
nantly in the upper part of the discharge gap (near the
cathode). The decrease in the darkening level with a
further increase in the distance from the discharge axis
along the profile curve is attributed mostly to the effect
of the bottom of the discharge chamber. Analysis of the
darkening density distribution suggests that the X-ray
source may have a shape whose boundary is within
curves 5 and 6 shown in Fig. 3 against the background
of the boundary of the volumetric discharge shape.

In a special series of experiments, the spatial density
distribution of the X-ray source in hardness was studied
with the help of the above shadow technique comple-
mented with a nine-step aluminum wedge, which
allowed us to estimate the effective energy of radiation
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
from the absorption in layers of a material of different
thicknesses [6, 7]. The wedge was placed between
knife 4 (Fig. 3) and photographic film 3 so that the steps
of the wedge were perpendicular to the knife. The
image obtained on the film after it was exposed to radi-
ation produced by the discharge in this arrangement
had the form of nine stripes of different darkening den-
sities. The darkening density distribution in the direc-
tion perpendicular to the knife is formed in a manner
similar to the one described above; the distribution
along the knife is determined by the portion of the radi-
ation that has passed through the corresponding step of
the wedge. The thicker the aluminum layer, the higher
the degree to which the image is determined by the
high-energy part of the X-ray spectrum. The analysis of
the experimental image darkening density profiles in
the direction perpendicular to the knife for different
wedge steps has shown that they are similar to the pro-

1 2

9 cm

Anode

Cathode

10
 c

m

Fig. 2. Diagram of the setup used to study X-ray radiation
along the discharge axis.

6 cm

12

3 4

5

6

7

Anode

Cathode

Airα

Fig. 3. Diagnostics of spatial characteristics of X-ray radia-
tion by the shadow technique: (1) boundary of the volumet-
ric discharge shape and (2, 3) expected boundaries of the
X-ray source.
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file shown in Fig. 3 and exhibit an almost identical
behavior. In particular, for all wedge steps, the distance
from the knife to the maximum of the darkening density
is the same. This gives us a reason to assume that, on
average, the hardness spatial distribution of the X-ray
source is uniform. Indeed, if the radiation hardness
monotonically varied from the discharge axis to its
periphery, this would displace the peaks of the image
darkening density along the wedge.

Oscillograms of the X-ray pulse, discharge current,
and voltage across the gap typical of the volumetric dis-
charge form are shown in Fig. 4. It should be noted that
the amplitude–time parameters of X-ray radiation
noticeably vary from pulse to pulse. Nevertheless, the
analysis of oscillograms of several thousand discharge
pulses allowed us to derive certain general regularities.
As a rule, the X-ray pulse duration measured at the half-
intensity points, which was 6 to 30 ns, increases with
discharge current amplitude. The rise time of an X-ray
pulse (between 0.1 and 0.9 points) is about 3 ns, which
is close to the time resolution of our diagnostics tech-
nique. Consequently, the real rise time does not exceed
this value. The beginning of an X-ray pulse as a rule
coincides with the beginning of the discharge conduc-
tion current, which is detected from a sharp increase in
the signal on the oscillogram of current (approximately
between the 16th and 17th nanoseconds in Fig. 4). For
a number of pulses, a delay (of up to 4 ns) is observed
in X-ray radiation with respect to the beginning of the
conduction current. There were no X-ray pulses
detected ahead of the conduction current. Note that the
beginning of the conduction current varies from pulse
to pulse with respect to the beginning of the voltage
derivative within 13 to 24 ns.

Thus, it was found that time parameters of the X-ray
pulse are correlated with the discharge conduction cur-
rent: the beginning of emission coincides with the end
of the phase of discharge gap bridging and corresponds
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Fig. 4. Typical oscillograms of the voltage, current, and
X-ray radiation pulses.
to the beginning of the conduction current; i.e., the
X-ray radiation is close in its time parameters to the
radiation observed in the multichannel diffusive dis-
charge in the wire–plane electrode system [8]. This fact
may serve as evidence that X-ray radiation in our exper-
iments and in [8] is of a similar origin.

It was also found that the probability of generation
and the intensity of X-ray radiation are related to the
discharge stages that precede the conduction. In the
near future, we plan to publish results of detailed statis-
tical studies of X-ray radiation versus parameters of ini-
tial discharge stages.

Thus, we have found in our experiments that the
high-voltage diffusive discharge that evolves in atmo-
spheric air under normal pressure in the rod (cathode)–
plane electrode system is accompanied by a pulse of
X-ray radiation. The region where X-ray radiation is
generated usually occupies almost the entire discharge
gap and is characterized by a nonuniform irregular
intensity distribution along the gap. The size of the
region with the highest radiation intensity (near the
cathode) is at least not smaller than the visible dis-
charge luminescence size. The effective energy of the
radiation is the same over the entire generation region
and is about 6 keV. The X-ray pulse is observed not in
the phase when streamer channels propagate in the gap,
but after its bridging, which is typical of diffusive high-
voltage discharges formed in gaps with sharply nonuni-
form electric field distributions.
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Abstract—Electrical explosion of aluminum and tungsten microwires in water was studied both experimen-
tally and numerically. The experimental range of currents through the wire was 0.1–1 kA for explosion times
of 40–300 ns and current densities up to 1.5 × 108 A/cm2. The experimental results were interpreted on the basis
of magnetohydrodynamical simulation with various metal conductivity models. A comparison of the experi-
mental and numerical results allows the conclusion to be drawn that the metal conductivity models used in this
work are adequate. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Wire electrical explosion (WEE) has drawn the
attention of researchers for a long time [1]. On the one
hand, WEE is of interest as an object of basic research,
because the thermodynamic parameters in the explod-
ing wire substance reach their extreme values. On the
other hand, exploding wires are widely used in various
technical applications, e.g., for sharpening electrical
power in a high-voltage pulse technique [2]; for prepar-
ing nanopowders [3]; and as high-power sources of soft
X-rays in multiwire liners [4, 5]. Traditionally, the
WEE process is simulated using magnetohydrody-
namic (MHD) approximation. Numerical calculations
in this approximation require preliminary knowledge of
the equations of state (EOS’s) for a substance over a
wide range of thermodynamic parameters, as well as
knowledge of the transport coefficients, of which the
electrical conductivity is the most important. Whereas
the thermodynamic properties of metals can be
described by a variety of semiempirical models and
using various databases, the problems associated with
the transport coefficients in the region of metal–insula-
tor transition and in the vicinity of the critical point are
less well understood. On the one hand, the WEE exper-
iments and the MHD simulation of explosion provide
information about the conductivity of a substance of
interest and, on the other, they allow one to judge the
adequacy of a particular conductivity model. From this
point of view, of greatest interest is the WEE in a liquid
1063-7842/04/4907- $26.00 © 20843
dielectric, in particular, in water, rather than in vacuum,
where WEE is accompanied by such phenomena as
stratification, gas desorption from wire surface, etc.,
which are not directly related to the transport properties
of a conductor [6].

As is known [2], at the initial (heating) WEE stage,
the parameters of a metal substance move along the liq-
uid branch of a binodal, i.e., along the boundary
between the condensed and two-phase (vapor–liquid
mixture) states. As for the wire explosion, it happens in
the vicinity of a critical point, i.e., a point where dis-
tinction between the liquid and gas phases disappears.
For this reason, knowledge of the dependence of metal
conductivity near the critical point on the energy input
rate into the wire substance is of prime importance in
the WEE simulation. Indeed, the substance in this two-
phase region of the phase diagram is a mixture of vapor
and the drop fraction of liquid metal, while it is the
energy input rate which determines the size of the drop
fraction. Moreover, metal in this region can be in the
metastable state, i.e., be a superheated liquid, whose
conductivity may strongly differ from the conductivity
of the vapor–drop mixture. The relaxation times in the
transition of a superheated metal to the vapor–drop
mixture lie in the range 1–10 ns. For this reason, we
used the same conductivity models in the WEE simula-
tion both for the microsecond current- growth regime,
where the metastable metal states do not play any sig-
nificant role, and for the nanosecond regime.
004 MAIK “Nauka/Interperiodica”



 

844

        

ORESHKIN 

 

et al

 

.

                                       
In this work, an electrical explosion of aluminum
and tungsten wires in water was studied experimentally
and numerically for different energy-input regimes and
different current-growth times. The purpose of this
work was to estimate the metal conductivity in the
vicinity of the critical point. The experimental results
were compared with the results of MHD simulation,
which was carried out using different methods for the
description of the thermophysical properties of the
medium. Agreement between the experimental results
and the results of MHD simulation of the microwire
electrical explosion is taken as a criterion for the valid-
ity of the estimates obtained for metal conductivity near
the critical point.

EXPERIMENTAL

Experiments were carried out with a current gener-
ator schematically illustrated in Fig. 1. It was an LC cir-
cuit consisting of a capacitor bank with capacity C =
0.067 µF assembled from IKCh-50-0.035 capacitors.
The bank discharged into a load trough a controlled
gas-filled gap and inductance L. The inductance L was
a plug-in solenoid; in the experiments, it had either of
two values 2.25 and 0.73 µH, allowing the wire explo-
sion to be carried out in various current-growth

Switch

C

R

Cw

L 65 nH

731 Ω
To scope

0.25 nH

1.42 Ω

To scope

Wire

Fig. 1. Electric scheme of the experimental setup.
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Fig. 2. Voltage oscillograms of wire explosions for different
stray capacitances.
regimes. The circuit resistances R in these two regimes
were 0.47 and 0.35 Ω , respectively (without regard for
the microwire resistance). The load unit was placed
inside the generator operating chamber. Six rods with a
diameter of 1 cm uniformly arranged along a circle of
diameter 10 cm were used as a return wire. A rodlike
return wire was chosen to minimize the stray capaci-
tance of the load unit. The water resistivity in the exper-
iments was no worse than 150 kΩ cm. After each shot,
water was renewed, purified, and deionized.

The following electrophysical diagnostics were
used in the experiments: a high-ohmic divider, an
inductance loop placed on the side of a high-voltage
electrode (anode), and a shunt placed on the side of a
grounded electrode (Fig. 1).

The load impedance is the sum of the microwire
impedance consisting of the ac ohmic and inductive
wire resistances and the reactance of the interelectrode-
gap stray capacitance Cw. Upon an abrupt change in the
bias on the gap, a portion of current goes to charging the
stray capacitor. As a result, the time dependence of cur-
rent measured on the side of high-voltage electrode dif-
fers from the time dependence of current measured on
the grounded electrode. Since the voltage derivative at
the instant of wire explosion can be very high, the pres-
ence of a stray capacitance of several picofarads can
result in a considerable current loss and a decrease in
the detected peak voltage. Such a measurement error
may lead to an incorrect interpretation of the results
obtained. We performed several test microwire explo-
sions with different values of stray capacitance (Fig. 2).
It becomes clear from the oscillograms shown in this
figure that the gauge indications are related to the stray
capacitance. In our experiments, the capacitance of the
interelectrode gap was minimized to Cw = 55 pF. This
value of stray capacitance was included in the scheme
of the electric circuit used in our calculations.

MAGNETOHYDRODYNAMIC MODEL

The electrical explosion process was simulated
within the framework of a single-temperature magneto-
hydrodynamic approximation. For the cylindrical
geometry, the MHD equations have the form

(1)
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(4)
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(6)

where

is the substantial derivative; ρ and T are the substance
density and temperature, respectively; v  is the velocity
radial component; p and ε are the pressure and the inter-
nal energy, respectively; Bϕ is the azimuthal component
of magnetic field; Ez is the axial component of electric
field; jz is the axial component of current density; and
κ and σ are the thermal conductivity coefficient and the
conductivity, respectively.

Equations (1)–(6) were solved numerically using a
one-dimensional MHD code [7] written in the
Lagrange coordinates. With this code, hydrodynamical
Eqs. (1)–(3) were solved using the explicit difference
scheme “cross” [8] with a combined pseudoviscosity
(linear and quadratic) introduced for the calculation of
shock waves. Maxwell Eqs. (4) complemented by
Ohm’s law (5) and the heat conduction equation were
solved using implicit difference schemes based on the
data-flow sweep method [9]. In the numerical simula-
tion of the WEE in water, the computational grid con-
sisted of two regions: the conducting substance and
water. It was assumed that the water conductivity is
zero, so that the current flows only in metal, while the
shock wave propagates in water.

The boundary condition for the Maxwell equations
was written as

(7)

where R is the wire outer radius and In is the current
flowing through the wire.

The current flowing through the wire was deter-
mined from the joint solution to the Maxwell equations
and the system of equations of electric circuit presented
in Fig. 1. The stray capacitance in the electric circuit
was also taken into account.

The system of MHD equations is closed by the EOS
(6) for the substance. The wide-range EOS’s [10, 11]
obtained on the basis of a semiempirical model [10]
were used for metal. The EOS model [10] allows for the
high-temperature melting and evaporation effects, and
the special form [1] of the EOS tables can take into
account the metastable states of the liquid and gas
phases on the phase diagram. The EOS’s were used for
water [12].

The electrical conductivity of aluminum was calcu-
lated by two methods. In the first of them, it was deter-
mined from the conductivity tables [13] compiled by
M. Desjarlais at the Sandia National Laboratories
(USA) on the basis of the model [14] modified with
allowance for the experimental data. In the second
method, the conductivity was determined by the com-
bined computational and experimental procedure [15],

ε f ρ T,( ); p f ρ T,( ),= =

d
dt
----- ∂

∂t
----- v

∂
∂r
-----+=

Bϕ R( )
2In

cR
-------,=
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in which the conductivity is considered as a certain
empirical function of the density and specific energy
deposited in a substance. With this method, the conduc-
tivity parametrically depends on the particular form of
the EOS.

The conductivity tables in this method are con-
structed using the following initial data: (1) the tabu-
lated normal-density dependence σ1(T, δ = 1) and
(2) the conductivity in the gas–plasma region calcu-
lated by the classical formulas [16]. In the transition
region near the critical point, the conductivity is taken
in the parametric form [15], which we have modified by
the introduction of a new parameter γ that was set equal
to unity in [15]:

(8)

where σcr is the conductivity at the critical point; δ =
ρ/ρ0 is the relative density of the substance; ρ0 is its nor-
mal density; δcr is the relative density at the critical
point; and Φ(T, δ) is a function, on the order of unity,
depending on the position of the interface in a mixture
of phases.

When constructing the conductivity tables, the value
of σcr is a variable parameter, and it is assumed to be
independent of temperature. The critical conductivity is
chosen in such a way as to provide the best agreement
between the results of MHD simulation and the totality
of experimental data.

A comparison of the tables of aluminum conductiv-
ity [13] with the corresponding tables constructed using
the procedure in [15] demonstrates a good agreement
between them, both qualitative and quantitative. Since
we lacked data on the electrical conductivity of tung-
sten like those for aluminum in [13], the MHD calcula-
tions were carried out using tables constructed by the
computational and experimental procedure described
in [15]. In this case, the value of parameter γ was cho-
sen to be 2.2, in contrast to aluminum, for which we
took γ = 1, as in [15].

COMPARISON AND DISCUSSION 
OF THE EXPERIMENTAL 

AND COMPUTATIONAL RESULTS

The experiments on electrical explosion and the
MHD calculations were carried out for aluminum and
tungsten microwires of different diameter. In the exper-
iments, the current through the wire and the voltage on
the wire were measured; the same quantities were cal-
culated in the numerical simulation of electrical explo-
sion. The current through the load unit was also calcu-
lated as the sum of the current through the wire and the
displacement current flowing through the water stray
capacitance. The comparison of the computational and
experimental time dependences of current and voltage

σ T δ,( )
σ1 T δ, 1=( )
------------------------------log Φ T δ,( )

σcr

σ1
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δcrlog
-------------- 
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suggests that the conductivity models and the EOS used
in the calculations were adequate.

In Fig. 3a, the experimental oscillograms of the cur-
rent through the sample and the voltage on it are pre-
sented for the explosion of an aluminum wire 15 µm in
diameter and 2.6 cm in length in a circuit with parame-
ters L = 2.25 µH and U0 = 10 kV. One can see in this fig-
ure that the current through the wire drops virtually to
zero almost immediately after the voltage maximum. In
other words, the discharge channel disappears. The
oscillations detected by the current and voltage gauges
are caused by the recharging of the stray capacitance
Cw. The calculated time dependences of the current
through the microwire and the voltage on the interelec-
trode gap are shown in Fig. 3b. For this case, the calcu-
lations were carried out using the EOS from [10] and
conductivity tables from [13]. One can see in this figure
that the experimental and calculated curves coincide
well with each other. Both the instants of explosion and
the voltage amplitudes coincide. In addition, the instant
of wire melting is seen at ~60 ns in both figures. The
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Fig. 3. (a) Experimental and (b, c) calculated time depen-
dences of current and voltage for the explosion of aluminum
wire in the regime L = 2.25 µH and U0 = 10 kV. Calculations
with the electrical conductivity from (b) [13] and (c) [15].
voltage maxima after the explosion are caused by the
recharging of the stray capacitance Cw.

The current and voltage time dependences calcu-
lated for the same regime using the EOS from [10] and
the conductivity tables constructed by the procedure
[15] are shown in Fig. 3c. One can see from a compar-
ison of Figs. 3a and 3c that the agreement between the
experimental and calculated curves is good in this case
as well. As in the case with the use of the conductivity
tables from [13], the instant of explosion and the volt-
age amplitude are described here with rather good
accuracy. This is caused by the fact that both the char-
acter of the change in metal conductivity and its abso-
lute value in models [13] and [15] approximately coin-
cide in the time interval from the condensed state to the
critical density. For example, the aluminum critical
conductivity determined using the procedure [15] is
σcr = 2.8 × 103 Ω–1 cm–1. The difference between this
value and the values of conductivity in table [13] does
not exceed 40% in the temperature range from room to
~3 eV (which is almost fivefold higher than the critical
temperature). At higher temperatures, the discrepancy
is greater, and, at temperatures on the order of 100 eV,
the critical conductivity acquires a plasma character.
However, for wire explosions in the region of near-crit-
ical densities, temperatures as high as those are not
achieved.

Notice that the calculations were carried out both
with and without allowance for the possible occurrence
of the metastable metal states. However, the inclusion
of such states had only a small effect on the current–
voltage characteristics of the wire electrical explosion.
The distinction between the results proved to be equal
to tenths of one percent (the experimental accuracy was
appreciably worse). The effect of liquid-phase super-
heating on the density distribution along the wire radius
proved to be considerably stronger, as was already
pointed out in [11].

The experimental data and their comparison with
the calculations are summarized in Table 1. The five-
shot-averaged values of maximal current, maximal
voltage, and the explosion time measured as the time
interval from zero to the voltage maximum are given in
the table. The calculations were carried out with the
values of conductivity obtained using the computa-
tional and experimental procedure [15]. One can see
that the error of calculation comprises about 20% over
a rather wide range of parameters.

When simulating the electrical explosion of tung-
sten wires, we used the conductivity tables constructed
by procedure [15]. The tungsten critical parameters are
appreciably different from those of aluminum. For
instance, ρcr = 4.85 g/cm3 and Tcr = 1.36 eV for tungsten
and ρcr = 0.64 g/cm3 and Tcr = 0.67 eV for aluminum.
At the same time, the critical conductivities of these
substances differ only slightly; for tungsten, σcr = 2.6 ×
103 Ω–1 cm–1.
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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Table 1.  Comparison of the experimental and calculated parameters for the explosion of aluminum wires with a diameter of
15 µm and a length of 2.6 cm

Inductance, 
nH

Charging
voltage, kV

Explosion time, ns Explosion voltage, kV Maximal current, A

experiment calculation experiment calculation experiment calculation

2251 10 124 20.7 24.7 200 230

2251 20 80 81 42 54.8 273 305

730 20 48 45.1 28.9 39 383 450

Table 2.  Comparison of the experimental and calculated parameters for the explosion of tungsten wires with a diameter of
30 µm and a length of 2 cm

Inductance, 
nH

Charging
voltage, kV

Explosion time, ns Explosion voltage, kV Maximal current, A

experiment calculation experiment calculation experiment calculation

2251 10 471 434 15.5 12 417 482

2251 20 239 230 33.3 37.3 607 671

2251 30 167 175 44 60 805 853

730 10 369 389 10.8 10.1 541 646

730 20 169 160 26.5 25.6 735 832

730 30 113 105 41 51 970 1100
In Fig. 4a, the oscillograms of the current through
the wire and the voltage on it in the explosion regime
are shown for a tungsten wire with a diameter of 30 µm
and a length of 2 cm in a circuit with L = 0.73 µH and
U0 = 20 kV. The corresponding calculated time depen-
dences are shown in Fig. 4b. The agreement between
the experimental and calculated curves in the case of
tungsten wires is seen to be somewhat worse than for
aluminum. In particular, the first maximum corre-
sponding to metal melting is more pronounced in the
calculated voltage curve than in the experimental curve.
However, the absolute value and the time of the second
maximum, which we assign to the instant of explosion,
coincide rather well. At the instant of explosion, the
resistance increases drastically, and the thermodynamic
parameters of the wire substance are close to their val-
ues at the critical point; i.e., the temperature is 1–1.5 eV
and the density is 2–6 g/cm3.

The experimental data on the explosion of tungsten
wires and the comparison with the corresponding cal-
culations are summarized in Table 2. As before, five
shots were made for each set of parameters. The calcu-
lations were carried out with the conductivities
obtained by the computational and experimental proce-
dure [15]. One can see that the error of calculation is no
worse than for aluminum and does not exceed 20% over
a rather wide range of parameters.

To check the applicability of the tables of tungsten
conductivity for the description of wire explosions in
the microsecond current-growth regime, the explosion
of tungsten wire was simulated for the experimental
conditions described in [17]. In those experiments, the
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
current generator was also an LC circuit with parame-
ters C = 6 µF, L = 4.5 µH, and U0 = 20 kV. The wires
were 0.35 mm in diameter and 8.7 cm in length, and
they were also exploded in water. The results of the
simulation are presented in Fig. 5. The solid curves are
for the calculated time dependences of current and volt-
age, and the marks are the experimental values of these
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quantities. One can see that, although the tables of tung-
sten conductivity were constructed on the basis of the
experiments on wire explosion in the nanosecond cur-
rent-growth regimes, they satisfactorily describe wire
electrical explosion in regimes with current-growth
times longer by almost three orders of magnitude. The
calculated curves coincide well with the experimental
ones both in explosion time and in voltage amplitude;
the discrepancy between the calculated and experimen-
tal quantities is less than 10%. This is evidence that the
tungsten conductivity in the electrical explosion is
independent of the rate of energy input into the sub-
stance.

CONCLUSIONS

Thus, a wire electrical explosion in water can be
described rather well within the framework of magnetic
hydrodynamics. The experimental data on WEE in liq-
uid dielectrics are the source of information on the
metal conductivity near the critical point. The coinci-
dence of the experimental data with the results of MHD
simulation of the WEEs with substantially different
current-growth times suggests that metal conductivity
near the critical point is a function of the state of the
substance (temperature and density) and is independent
of the energy-input rate.
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Abstract—Commercial CFDRC software (http://www.cfdrc.com/~cfdplasma) is used to self-consistently sim-
ulate the plasma of the positive column (PC) of a medium-pressure dc discharge in argon. The software allows
simulations in an arbitrary 3D geometry by using Poisson’s equation for the electric potential and fluid equa-
tions for the heavy components and by solving a nonlocal kinetic equation for electrons. It is shown that, in
calculating the electron distribution function, the local approximation is almost always inapplicable not only at
relatively low pressures (pR < 1 cm Torr), but also at relatively high pressures (pR < 10 cm Torr), i.e., under the
real conditions of a diffuse PC usually met in practice. The use of the local approximation in solving the kinetic
equation for electrons leads to significant errors in determining the main parameters of the PC. A paradoxical
effect has been revealed: the peaks of the profiles of the excitation rates shift from the discharge axis toward the
periphery as the pressure increases from low to medium values (1 cm Torr < pR < 10 cm Torr). It is shown that
the effect is related to the nonlocal character of the electron distribution function. © 2004 MAIK “Nauka/Inter-
periodica”.
When simulating gas-discharge plasma with the
help of, e.g., a Bolsig package [1] or the Lookup Tables
technique [2], the electron distribution function (EDF)
is usually calculated in the local approximation. This
means that terms with both spatial gradients and a
radial field are omitted in the kinetic equation and the
EDF is factorized as

(1)

In this approximation, the electron distribution over
the kinetic energy w at a fixed point r depends on the
local values of the reduced longitudinal field E/p and
other parameters (the gas temperature, the density of
excited particles, etc.). This method is applicable if the
characteristic diffusion length, which is equal to R/2.4
for a cylindrical discharge, exceeds the electron energy
relaxation length λε (R/2/4 @ λε) [3]. When terms with
spatial gradients cannot be omitted in the kinetic equa-
tion, the EDF is referred to as a nonlocal EDF [3, 4],
because it depends on the values of the physical param-
eters (primarily, the field strength) in the region defined
by the inequality λε @ λ (where λ is the electron mean
free path) rather than on their values in a given point. In
terms of the total energy

(2)

(the kinetic energy plus the potential energy), the non-
local EDF can be either dependent on or independent of

f 0 w r,( ) ne r( ) f 0
0 w E/ p,( ).=

ε w eϕ r( )+ mV2/2 eϕ r( )+= =
1063-7842/04/4907- $26.00 © 20849
the radius [3, 4] (cf., e.g., [5, 6], where the concept of a
nonlocal EDF was considered in a narrower sense and
only the functions f0(ε, r) that were independent of the
radius were referred to as nonlocal EDFs).

For λε > R/2.4, the use of the local model in calcu-
lating the EDF is not justified [3] and, as was demon-
strated in [7, 8], leads to crude errors in determining the
parameters of the positive column (PC) of a low-pres-
sure (pR ≤ 1 cm Torr) glow discharge. It was shown in [4]
that the local approximation is almost always inapplica-
ble up to relatively high pressures (pR ≤ 10 cm Torr),
i.e., under the real conditions of a diffuse PC usually
met in practice. In this context, we recall that in calcu-
lations it is desirable to use computational elements that
are known with equal accuracy, because the reliability
of self-consistent models is restricted by a “bottleneck,”
i.e., by the most uncertain element of the model. There-
fore, even if the most advanced and reliable methods
are used in some computational blocks of a code,
whereas its other elements are known poorly (or insuf-
ficiently), the use of these methods does not enhance
the accuracy of the results obtained. In particular, this
means that it is necessary to carefully verify the appli-
cability of the local approximation when determining
the parameters of a gas-discharge plasma not only at
low but also at medium pressures.

In this paper, we continue the studies begun in [4].
We consider the influence of the nonlocal character of
004 MAIK “Nauka/Interperiodica”
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Table 1.  The set of reactions used for the three-level scheme of terms of an argon atom

# Reaction ε, eV Constant Commentary

1 e + Ar  e + Ar – Cross section [14] Elastic scattering (momentum transfer)

2 e + Ar  e + 11.5 Cross section [16] Excitation and deexcitation of the
metastable level5

3 e + Ar  2e + Ar+ 15.9 Cross section [14] Direct ionization from the ground state

4 e +   2e + Ar+ 4.35 Cross section [16] Step ionization from the metastable level

5 e +   e + 0.07 kq = 2 × 10–13 m3 s–1 [17] Quenching of the metastable level via the tran-
sition to the resonance level (11.67 eV)

6 e + Ar  e + Ar 11.5 Cross section [14] Total excitation by electron impact

5

7   Ar + "v – AR = 105 s–1 Resonance emission with allowance
for self-absorption (λ = 106.4 nm)

8 – kp = 6.2 × 10–16 m3 s–1 [17] Penning ionization

Arm
*

Arm
*

Arm
* Arr

*

Arr
*

2Arm
*

e Ar+ Ar+ +

e Ar2
+ Ar+ +




the EDF on the parameters of the PC of a medium-pres-
sure (1 cm Torr ≤ pR ≤ 10 cm Torr) dc discharge. It is
shown that the application of the local model to solving
the kinetic equation for electrons leads to significant
errors in determining the main parameters of the PC.
A paradoxical effect related to the nonlocal character of
the EDF is revealed: the peaks of the profiles of the exci-
tation rates shift from the discharge axis toward the periph-
ery as the pressure increases. The object of our studies was
the plasma of the PC of a dc discharge in argon.

The parameters of the PC were calculated with the
help of commercial software developed in the CFD
Research Corporation, Huntsville, AL, USA [2, 9]. As
was shown in [4], the results obtained with the CFDRC
code agree well with test calculations, and the code can
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Fig. 1. Normalized EDFs f0(w, r) at different radii r as func-
tions of the kinetic energy w: r = (1) 0, (2) 0.2R, (3) 0.4R,
(4) 0.6R, and (5) 0.8R.
be used for comprehensive self-consistent simulations.
A detailed description of the self-consistent model of a
discharge plasma, the iteration numerical scheme, and
the methods for solving the set of equations is given in
[2, 9]. The self-consistent electric field was found from
Poisson’s equation. Heavy particles were described in
the fluid model. The nonlocal EDF was determined by
solving the kinetic equation for electrons in a uniform
longitudinal field and a nonuniform transverse field
with allowance for the radial inhomogeneity of the
plasma (we recall that the EDF in the calculation of
which terms with spatial gradients in the kinetic equa-
tion play an important role is here referred to as nonlo-
cal). For comparison, we could also solve the kinetic
equation in the conventional local approximation, in
which the radial electric field and the radial gradients in
the kinetic equation were ignored.

In the first stage, we performed self-consistent sim-
ulations of a PC in a tube of radius R = 1 cm at p =
6 Torr. We used a three-level model of an argon atom
with one metastable state (index m), taking into account
the eight main reactions listed in Table 1. The constants
of the processes with the participation of electrons were
calculated by convoluting the corresponding cross sec-
tions with the calculated EDF.

It can be seen from Fig. 1 that, even at a relatively
high pressure, the EDF f0(w, r) is not factorized in form
(1): the normalized EDF plotted as a function of the
kinetic energy is different at different radii r; i.e., it is
nonlocal. At the same time, the EDFs f0(ε, r) plotted as
functions of total energy (2) at different radii coincide
at ε < ε* (where ε* is the threshold energy for inelastic
processes), without any shift related to normalization
and the spatial dependence of the potential; however,
they differ in the inelastic energy range ε > ε* (Fig. 2).
It is well known that, in practice, the fact that the EDF
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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f0(ε, r) of trapped electrons with ε ≤ eΦw (where Φw is
the wall potential) does not depend on the radius clearly
indicates the nonlocal character of the EDF [3] (in con-
trast, the EDF of transit electrons with ε > eΦw depends
on the radius). A comparison of the calculated EDF
with the results of the local model shows that the local
approximation gives a significant error (Fig. 3). Note
also that, the population of the fast component of the
EDF is substantially enhanced due to impacts of the
second kind (superelastic collisions) with metastable
atoms, because a slow electron participating in the reac-
tion Ar* + e  Ar + e additionally acquires the thresh-
old excitation energy ε* and instantaneously becomes
fast. These processes substantially influence the calcu-
lated values of the constants for the excitation reactions
with high threshold energies and, accordingly, the den-
sities of highly excited states (see [4] for details). To
illustrate this effect, Fig. 2 shows a wider range of f0 and
ε as compared to Figs. 1 and 3. As was shown in [4] and
also can be seen from Fig. 2, the fast components of the
EDF (ε > ε*) can be represented as a sum f0 = f0t + f0h.
If the density nm of metastable atoms is high enough,
then the part of the EDF that corresponds to nm = 0 and
sharply decreases at energies above the threshold
energy (ε > ε*),

(3)

is supplemented with a gently sloping pedestal

(4)

replicating the shape of the slow component (the body)
of the EDF (here, N0 is the density of atoms in the
ground state). Because of the low effective temperature
of the fast electrons,

(5)
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Fig. 2. EDFs f0(ε, r) at different radii r as functions of the
total energy ε: r = (1) 0, (2) 0.2R, (3) 0.4R, (4) 0.6R, and
(5) 0.8R.
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where DE = 2(eEλ)2ν/3 is the coefficient of diffusion
over energy in the electric field (see, e.g., [9, 10], for
details), the EDF f0t (3) falls rapidly at higher energies
and, as early as at energies of a few electronvolts above
the threshold ε*, it is considerably less than the EDF f0h

(4) (Fig. 2). Since f0h is proportional to nm/N0 and its
energy dependence is close to that of the EDF of slow
electrons (ε < ε*), the spatial profiles of the frequencies
and rates of the processes that are determined by these
parts of the EDF can also be close to one another. This
is illustrated by Fig. 4. It can be seen that the spatial
profile of the direct-ionization frequency

ν idir = ν idir w( ) f 0 w( ) w wd

εi

∞

∫
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Fig. 3. Comparison of the EDF at the discharge axis (r = 0)
with calculations in the local model (the dashed line).
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almost coincides with the profile of the step-ionization
rate

in spite of the large difference in the thresholds (εi =
15.76 eV and εst = 4.35 eV, respectively). We emphasize
that this result is a consequence of the self-consistent
simulation of a discharge. In this case, the frequency of
direct ionization (Ar + e  Ar+ + e + e) is governed
by EDF component (4), which is formed by impacts of
the second kind. For this reason, the νidir(r) profile is
similar to the nm(r)νst(r) profile, although the step-ion-
ization and direct-ionization processes themselves are
unrelated. Accordingly, the density of the fast electrons
with energies w > εi (it is these electrons that produce
direct ionization),

is governed by the EDF that is described by Eq. (4) and
is proportional to nm(r)ne(r) (Fig. 4).

The data presented in Figs. 1–3 show that the local
approximation is inapplicable to calculating the EDF
even at relatively high pressures (pR = 6 cm Torr); i.e.,
it is almost always inapplicable under the real condi-
tions of a diffuse PC usually met in practice. We note
that, the applicability of the local approximation at
medium pressures has not previously been examined in
detail. The consideration was usually restricted to the
case of low pressures (pR ≤ 1 cm Torr) [5–8], where the
electron energy balance was governed by inelastic col-
lisions. In this case, the electron energy relaxation
length is equal to several electron mean free paths, so
that the inequality λε @ R/2.4 holds only for pR ≤
1 cm Torr. It will be shown below that the applicability
limit of the local approximation corresponds to pR val-
ues that are one order of magnitude higher.

To explain the results obtained and to refine the cri-
teria for the applicability of the local model, we recall
the specific features of the EDF formation in a plasma
that is bounded in the direction transverse to the exter-
nal current (see [3, 11, 12] for details). It is well known
that, in this case, the situation depends largely on the
type of collisions that govern the electron energy bal-
ance. These may be elastic (quasi-elastic) collisions, in
which one collision event results in a small energy loss
(in atomic gases, δ = 2m/M), or inelastic collisions, in
which an electron instantaneously loses almost all of its
energy (~ε*) [3]. The role these processes play in the
total electron energy balance depends on the value of
the longitudinal heating field E/p, supplying energy to
electrons. At a given pressure and geometry, this field

nmνst nm νst w( ) f 0 w( ) w w,d

εst

∞

∫=

nef εi( ) f 0 w( ) w w,d

εi

∞

∫=
cannot be specified arbitrarily but should be found from
the condition that a discharge is steady:

(6)

where νi is the ionization frequency and τa is the char-
acteristic time of ambipolar diffusion.

Since the diffusive losses of electrons and ions
depend on the parameter pR, the field E/p, determining
the rate of the ionization process, also depends on this
parameter [3, 4]. In other words, the field in a plasma is
always equal to that required to maintain this plasma. It
follows from Eq. (6) that, as the pressure (the parameter
pR) increases, the increase in the characteristic time of
diffusive losses τa leads to a decrease in the ionization
rate. Consequently, the value of E/p should decrease,
which is confirmed by many experiments and calcula-
tions [13].

The kinetic equation for an axially uniform PC in
the case of rare electron–electron collisions is a two-
dimensional diffusion equation with the radial diffusion
coefficient Dr = λV/3, the coefficient of diffusion over
energy DE = (eE)2Dr), and the dynamic friction Vea =
wδν due to quasi-elastic collisions [3]:

(7)

The right-hand side of Eq. (7) includes sources and
sinks due to inelastic processes. Here, ν* =  is the
total excitation frequency to all of the electronic states
with energies εk, and νex is the excitation frequency of the
metastable level. For a low-pressure (pR ≤ 1 cm Torr) gas-
discharge plasma, the fields given by Eq. (6) are such
that the electron energy balance is usually determined
by inelastic collisions. This means [11] that an electron
diffuses relatively rapidly through the energy range
(0, ε*), corresponding to the body of the EDF. The
characteristic diffusion time is

(8)

and the corresponding length is

(9)

Over the time τE given by Eq. (8), quasi-elastic
energy losses are small: τE < 1/(δν) = τε. Electrons that
gain energy from the field in the range (0, ε*) merely
provide the required electron energy flux to the tail of
the EDF; i.e., the EDF at ε < ε* acts merely as a peculiar
kind of “pipeline” from a source in the low-energy
region to a sink in the tail region ε > ε*. Such a pipeline

ν iτa 1,=

1
r
--- ∂

∂r
----- r wDr

∂ f 0

∂r
-------- 

  ∂
∂ε
----- w DE

∂ f 0
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-------- Vea. f 0+ 

 
 
 +

=  ν* w( ) w f 0 ε( ) νk w εk+( ) w εk+ f 0 ε εk+( )
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EDF, introduced in [11], depends weakly on the field
and is primarily determined by the energy dependence
of the cross section for elastic collisions σ(w) [3, 11]:

(10)

In the energy range ε > ε*, which corresponds to
inelastic collisions, an electron has time to cover the
distance

(11)

over its characteristic lifetime ~1/ν* (here, λ* is the
electron mean free path in inelastic processes).

The length  depends on the ratio between the
cross sections for elastic and inelastic processes
(σ/σ* . 10–100) and is equal to several electron mean
free paths.

Thus, the pipeline EDF determined by inelastic
energy losses is characterized by two very different
energy scales. The average energy 〈ε〉 of distribution
(10) can be taken as the energy scale of the body of the
EDF (w < ε*). This energy is equal to a fraction of the
first excitation energy ε* and depends on the shape of
the function σ(w). In the tail region (w > ε*), the EDF
falls rapidly over energy scale (5): T* ! ε*, so that the
electrons with w > ε* + T* are almost absent. These two

energy scales correspond to the frequencies  (8) and

ν* and the lengths λE (9) and  (11).

Because of the presence of two very different energy
scales, the nonlocal character of the EDF manifests
itself in different ways in its different parts [12]. For

 > R/2.4, both the body and the tail of the EDF at
ε ≤ eΦw depend on the total energy ε (2). However, for
λE > R/2.4 > , the body of the EDF is a function of
ε, whereas the tail ε > ε* depends on both ε and r.

It follows from expression (11) that the EDF
depends on the total energy ε only at low pressures
(pR < 1 cm Torr), which agrees with the results of [5–
8]. So, it might seem that, in the opposite case (pR >
1 cm Torr), one can use the local approximation in cal-
culating the EDF. However, as the pressure (the param-
eter pR) increases, the characteristic time of diffusive
losses τa increases, while the ionization rate decreases
(see Eq. (6)). The value of E/p in this case decreases,
and the contribution from elastic collisions to the elec-
tron energy balance increases. If, during the character-
istic time of diffusion over energy from 0 to ε*, an elec-
tron loses all of its energy (δν > νE), then elastic pro-
cesses are dominant in the electron energy balance. In
this case, the energy and spatial scales of the tail of the
EDF are also given by Eqs. (5) and (11) and the time

f 0 w( ) . const
wd
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scale is 1/ν*, whereas for the body of the EDF, the time
scale is τε = (δν)–1 and the spatial scale

(12)

is more than two orders of magnitude larger than the
electron mean free path. In this case, the body of the
EDF is determined by the balance between the heating
of electrons in the electric field and elastic energy
losses and is described by the Druyvesteyn–Davydov
distribution [11, 13]

(13)

For this EDF, the diffusive flux over the energy
(Joule heating) is almost completely balanced by the
drift energy flux (opposite in sign to the diffusive flux)
due to elastic electron–atom collisions, so that at ε < ε*,
the EDF falls exponentially over the characteristic
energy scale DE/Vea . eEλε. The energy flux outflowing
into the inelastic region is equal to the difference of
these two large fluxes and is much smaller than each of
them. The balance between Joule heating and elastic
losses takes place almost throughout the energy range
(0, ε*) except for a narrow region near the threshold ε*.

Figure 5 schematically shows how the characteristic
frequencies depend on the field E/p. The solid line cor-
responds to the energy-relaxation frequency of the
body of the EDF. The part of this line on the left of point
A corresponds to the Druyvesteyn–Davydov EDF (13),
whereas the part on the right of this point corresponds
to the pipeline EDF (10). The fast relaxation of the tail
of the EDF is described by the dashed line ν*/p. At
point B, the characteristic decay scales of the body and
tail of the EDF coincide, so that the difference between
them disappears. On the right of this point, the field is
so large that collisions in which the energy ~ε* is lost
can be considered quasi-elastic.

λε Dr/ δν( ) . λ / δ 100λ>=

f 0 w( ) cn
wd

T w( )
-----------

0

w–

∫–
 
 
 

exp∼  = cn
3mδv 2

eE( )2
----------------- wd

0

w
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.exp

ν*/p

δν/p

E/p

A

B

νE/p

Fig. 5. Diagram illustrating the dependence of the charac-
teristic relaxation frequencies of the EDF on the reduced
field E/p.
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In atomic gases at λE ~ R, when the body of the EDF
would become local, EDF (10) changes to EDF (13).
Since in this case energy relaxation length (12) for the
body of the EDF increases significantly, the range of
applicability of the local approximation shifts toward

Table 2.  Comparison of the results of simulations of the
plasma parameters at the discharge axis with calculations in
the local model for p = 6 Torr, R = 1 cm, and I = 3 mA.

Local approximation Full simulation

ne, cm–3 2.9 × 1010 1.5 × 1010

2〈ε〉 /3, eV 3.3 3.5

Φw, V 68.5 18.5

nm, cm–3 1.7 × 1011 5.4 × 1010

νm, s–1 4.4 × 104 1.2 × 104

νex, s–1 1.4 × 105 3.1 × 105
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Fig. 6. Radial profile of the electric potential for p = 6 Torr
and I = 3 mA. The dotted line corresponds to the local
approximation.
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Fig. 7. Radial profile of the electric field for p = 6 Torr and
I = 3 mA. The dotted lines correspond to the local approxi-
mation. The horizontal lines show the corresponding values
of the longitudinal electric field E.
higher pressures (pR > 10 cm Torr). From our calcula-
tions and the data of other authors (see, e.g., [10]), it
follows that, for argon, elastic processes dominate over
inelastic ones when E/p ≤ 3 V/cm. Such fields (see, e.g.,
[13, 15]) correspond to medium pressures such that
pR > 1 cm Torr. Hence, roughly speaking, the body of
the EDF at medium pressures depends only on the total
energy ε, while the tail depends on both ε and r.

As was shown in [7, 8], the use of the local approx-
imation leads to significant errors in determining the
parameters of the PC at low pressures. It follows from
Table 2, which presents the parameter values at the dis-
charge axis at p = 6 Torr and R = 1 cm, and from
Figs. 6–14, which show the corresponding radial pro-
files, that the parameters calculated in the local and
nonlocal models differ significantly at medium pres-
sures. The profiles of the radial field in Fig. 7 show that
this field exceeds the axial field in most of the plasma
column. This fact indicates that the local approximation
is inapplicable to calculating the EDF [13]. This is also
confirmed by a decrease in the mean electron energy
with radius (Fig. 8). We also note that the electron den-
sity profiles can be narrower or broader than the con-
ventional (Bessel) profiles calculated in the fluid model
[10]. The reason is a competition between two effects
[4]. First, the ionization is nonuniform over the cross
section, and the density is maximum at the tube axis
(Fig. 4). Second, the average electron density decreases
toward the periphery (Fig. 8), which results in a lower
coefficient of ambipolar diffusion there. At low pres-
sures, the first effect is dominant and the electron den-
sity profiles decrease almost linearly with radius [4, 7,
8]. In the case under consideration, the second mecha-
nism turns out to be more efficient, which results in the
opposite effect—the broadening of the profiles in com-
parison to the local model (Fig. 9).
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1.0

〈ε
〉/

3,
 e

V

0 0.2 0.4 0.6
r, cm

3.0

0.8

0.5

1.5

2.5

3.5

1.0

Fig. 8. Radial profile of the mean electron energy for p =
6 Torr and I = 3 mA. The dotted line corresponds to the local
approximation.
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Next, we consider the radial profile of the excitation
rate for the metastable level,

(14)

which is presented in Fig. 10. It can be seen from this
figure that the peak of this profile (as well as the peak
of the rate constant kex = Wex/Nane (Fig. 11)) can be sub-
stantially displaced from the PC axis.1

Since the excitation rates are determined by fast
electrons, there is a strong correlation (Fig. 10) between
the profiles of nef (r) (the dashed line in Fig. 10) and
Wex(r). We will clarify this effect by the example of the
excitation of high-lying levels with the excitation
energy εk > ε* + T*. To the best of our knowledge, this
effect has not previously been observed for a diffuse PC.

It is well known [3, 7, 8] that, if the body and tail of
the EDF depend only on the total energy ε (low pres-
sures such that  > R/2.4, then the excitation rates and
constants are maximum at the tube axis. Our simula-
tions for pR = 0.3 cm Torr also indicate that the excita-
tion rates (constants) decrease toward the periphery at
low pressures (Figs. 10, 11; curves 2).

However, if the inequality λE > R/2.4 >  holds, so
that the body of the EDF depends only on ε, whereas its
fast component depends on ε and r (Fig. 2), then the
position of the peak of the excitation rate depends on
both the shape of the radial profile of ϕ(r) and ν*(w)
[14]. If the profile ϕ(r) is rather steep (Fig. 6), then the
excitation rate at the axis is low. Electrons in the axial

1 We note that it is reasonable to use the rate constant kex in the
local case when the EDF can be factorized in form (1) and the
excitation rate is proportional to the electron density. In this case,
kex is constant throughout the entire cross section (the dashed line
in Fig. 11). In the nonlocal case, however, Wex is not proportional
to ne and, therefore, the use of kex seems to be unreasonable.

Wex r( ) Na f 0 ε w,( )ν* w r,( ) w w,d

ε*

∞

∫=

λε*

λε*
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0.8

0.8
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0.4

1.0

1.0

Fig. 9. Radial electron-density profile for p = 6 Torr and
3 mA. The dotted line corresponds to the local approxima-
tion.
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Fig. 10. Radial profiles of the excitation rate (1) for p =
6 Torr and I = 3 mA and (2) for p = 300 mTorr and I =
100 mA. The dotted lines show the density profiles of the
fast electrons with kinetic energies of w ≥ 12 eV.
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Fig. 11. Radial profiles of the excitation constant (1) for p =
6 Torr and 3 mA and (2) for p = 300 mTorr and I = 100 mA.
The dashed line shows the results of calculations in the local
model for p = 6 Torr and I = 3 mA. Curve 1 is plotted in
absolute units. For better visualization, the results obtained
in the local model (the dashed line) are multiplied by 0.2
and the simulation results shown by curve 2 are multiplied
by 5 × 10–4.
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Fig. 12. Comparison of the radial profile of metastable
argon atoms for p = 6 Torr and I = 3 mA with that calculated
in the local model (the dotted line).
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Fig. 13. Profiles of the excitation rates (normalized to their
maximum values) of different levels of argon atoms k =
(1) 1, (2) 3, (3) 5, (4) 17, and (5) 25 with energies of εk =
11.55, 11.72, 12.91, 14.01, and 15.2 eV, respectively, calcu-
lated (a) without and (b) with allowance for impacts of the
second kind; r0 is the coordinate of the peak of the excita-
tion rate profile.
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Fig. 14. Coordinate r0 of the peak of the excitation rate pro-
file for the kth level as a function of the energy εk of this
level. Curves A and B show the results of calculations with
and without allowance for impacts of the second kind,
respectively. The dotted line corresponds to the energy of
the metastable state.
region cannot gain energy ε > εk in the electric field if
they previously do not undergo inelastic collisions with
lower levels because εk – ε* > T*. On the other hand,
they cannot reach the axis due to radial diffusion
because  ! R. In other words, an electron with
energy ε can most easily reach the region with w > εk as
follows: First, the electron diffuses over energy up to
ε > εk at the periphery of the plasma column, where the
kinetic energy is low (ε – eϕ(r) < ε*) and the electron
does not undergo inelastic collisions. Then, this elec-
tron diffuses in the radial direction toward the axis over
a distance ~ . For this reason, the maximum excita-
tion rate (and the corresponding rate constant) of the
level εk is shifted from the curve r = rk(ε) (where ε –

eϕ(rk(ε)) = εk) by  toward the axis. It can be seen
from Figs. 10 and 11 that this effect takes place for the
first excited (metastable) level with energy ε*. Since the
deexcitation rate of metastable atoms (which is deter-
mined by the mixing to a neighboring resonance level)
is a smooth function of r, the nonmonotonic behavior of
the production rate of these atoms leads to nonmono-
tonic nm(r) profiles (Fig. 12).

It follows from the above discussion that the higher
the level, the larger the shift of the peak of the excitation
rate profile toward the periphery (Fig. 13a). In a real sit-
uation, when the density nm is fairly high, this shift is
superimposed by the above effect of the replication of
the slow (nonlocal) part of the EDF in its fast part (see
[4] and Fig. 2). Therefore, for energies ε > εh at which
the EDF f0h (4) is larger than f0t (3), the effect of the shift
of the peak of the excitation rate profile disappears.
This is illustrated by Fig. 13b. For comparison, Fig. 14
demonstrates the position of the coordinate r0 corre-
sponding to the peak of the excitation rate profile for
the kth level as a function of the energy εk of this level.
The EDF was calculated with (curve A) and without
(curve B) allowance for impacts of the second kind. It
can be seen that curve B increases monotonically, while
in curve A, this effect is absent because of the increase
in the tail of the EDF due to superelastic collisions at
high energies.

In summary, self-consistent simulations of the PC of
a dc discharge in argon has been performed. It is shown
that the local approximation is almost always inapplica-
ble to calculating the EDF under the real conditions of
a diffuse PC usually met in practice. When the pressure
was increased from low (pR < 1 cm Torr) to medium
(1 < pR < 10 cm Torr) values, the calculations have
shown that the peak of the excitation rate profile shifts
from the axis of a discharge toward the periphery due to
the nonlocal character of the EDF under these condi-
tions.

λε*

λε*

λε*
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Abstract—Axisymmetric pulsed ejection of a dense plasma into a gas is studied within a wide range of the
parameters of the gas and the plasma jet generator. Using experimental data and the equation describing the
momentum variation of the plasma jet, similarity criteria are obtained for axisymmetric pulsed ejection of a
dense plasma. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The character of plasma ejection into a gas depends
on the electrodynamic processes in the plasma genera-
tor (plasma accelerator, plasma jet generator, etc.)
[1−19]. From the practical point of view, two limiting
regimes in which plasma ejection is completely deter-
mined by either electrodynamic or gas-dynamic pro-
cesses are of interest for the acceleration of plasma
flows, the creation of high-power radiation sources, and
the formation of long-living currentless plasma
bunches. The former regime has been thoroughly stud-
ied for different types of plasma accelerators [1–4]. The
latter regime, which occurs, e.g., in plasma jet genera-
tors, has still been inadequately investigated in spite of
numerous experimental studies [5–19]. The process of
gas ejection into the ambient medium was considered
theoretically, e.g., in [20–23]. At present, however, it is
still impossible to take into account a number of impor-
tant experimental factors in theoretical analysis. Exper-
iments have shown that the gas-dynamic structure of
the plasma jet is affected by the outflow currents behind
the nozzle edge. The magnitude of these currents is
determined by the design features of a plasma jet gen-
erator. In [3, 5–19], the pulsed ejection of a dense
plasma into an atmospheric-pressure gas (air, xenon,
argon, krypton, nitrogen, etc.) was studied under condi-
tions at which the outflow currents were low (<10% of
the total current). In [7, 13], the initial gas pressure in
the discharge chamber of a plasma jet generator was
(5–50) × 105 Pa, whereas in [3, 5, 6, 8–12, 14–19] it did
not exceed 105 Pa. The regimes of pulsed plasma ejec-
tion into a gas (air, nitrogen, xenon, or krypton) were
studied in [18, 19], where, based on the experimental
data, a similarity criterion characterizing the regime of
pulsed plasma ejection was offered that included one
dimensionless parameter θ = q/p∞, where q is the spe-
cific energy deposition in a discharge and p∞ is the gas
pressure of the ambient medium. For example, the case
θ > θ0 corresponds to the regime of supersonic plasma
1063-7842/04/4907- $26.00 © 20858
ejection characterized by the formation of shock-wave
structures (so-called “barrels”), whereas the case θ < θ0
corresponds to the regime of subsonic ejection.

For pulsed plasma jets, the criterion parameter θ
cannot account for the unsteady (pulsed) character of
ejection. So far, no similarity criterion characterizing
the unsteady character of plasma ejection into a gas has
been found. This paper is devoted to the search for such
a criterion.

1. EXPERIMENTAL SETUP

The experiments on the pulsed ejection of a dense
plasma into a gas were carried out at three different
facilities. The necessity of creating three facilities was
related to the need for studying the dynamics of pulsed
plasma ejection in a wide range of experimental param-
eters: the specific energy q deposited in a discharge, the
initial pressure in the discharge chamber of a plasma jet
generator, the diameter of the generator nozzle d, the
gas pressure p∞, the duration of pulsed plasma ejection
∆tej, and the ionization potential W of the gas in the dis-
charge chamber.

1.1. In the first facility, a modified unipolar voltage
source taken from an EV-45 standard high-power radi-
ation source was employed [9]. The modification of the
source enabled variations in the output unipolar voltage
from 3 to 5 kV and discrete variations in the voltage
pulse duration ∆tej from 75 to 150 µs. The experiments
were performed for different values of the discharge
chamber volume V and the diameter of the plasma gen-
erator nozzle d: V = 0.1, 0.56, 1.12, and 5 cm3 and d =
2, 4, and 10 mm. The ambient gas was atmospheric-
pressure air. The plasma pressure in the discharge
chamber of the plasma jet generator was determined by
the method described in [9]. The maximum plasma
pressure (pp = 5 × 107 Pa) was achieved for the dis-
charge chamber volume V = 0.1 cm3.
004 MAIK “Nauka/Interperiodica”
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1.2. The second facility consisted of two discharge
circuits with energy-storage capacitances of C1 = 20
(30) µF and C2 = 120 µF and working voltages of U1 =
5–25 kV and U2 = 8–45 kV. Two plasma generators
with disc metal electrodes [18] were used as plasma jet
generators. The discharge chamber (an insulating cylin-
der made of caprolan with a conical (or cylindrical)
axial through hole) was placed tightly between these
electrodes. The ends of the discharge chamber were
hermetically sealed. In the top electrode, there was an
axial opening (nozzle), which was hermetically cov-
ered with a metallized Mylar (or another dielectric) film
(diaphragm) of thickness ~50 µm. The film withstood a
static pressure of up to 0.4 MPa. The discharge cham-
ber of the plasma jet generator was evaluated via a
metal nipple in the bottom electrode down to a pressure
of 0.5 × 102 Pa. The chamber volume of the plasma jet
generator was varied (using dielectric inserts) in the
range V1 = 1–12 cm3 for the discharge circuit with the
capacitance C1 and V2 = 20–160 cm3 for the discharge
circuits with the capacitance C2. Special measures were
undertaken to significantly reduce (to 3–5% of the total
discharge current) the outflow discharge currents
behind the generator nozzle. The nozzle diameters were
varied within the ranges d1 = 5–12 mm and d2 = 8–
65 mm.

The pressure pp in the discharge chamber of the
plasma jet generator was measured with calibrated
piezoelectric gauges [24], which were hermetically
inserted through the insulator.

The ejection chamber designed to study the process
of plasma ejection into a gas consisted of two sections.
The first section was a metal cylinder (400 mm in diam-
eter and 500 mm in length) with four side flanges
(300 mm in diameter), to which hermetically sealed
view windows were attached. One end of this cylinder
was tightly attached to the top flange of the plasma jet
generator, while the other end was attached to the sec-
ond section of the ejection chamber. The second section
was a 1.5-m-long 250-mm-diameter stainless-steel cyl-
inder with a wall thickness of 2 mm and with a view
window at its free end. The ejection chamber was
pumped out and filled with a working gas through a
system of nipples and valves. The chamber was filled
with Xe, Kr, Ne, N2, or air at pressures of 102–105 Pa.

The discharge voltage and current in the plasma jet
generator were measured with a noninductive voltage
divider and Rogowski coil, respectively [24, 25]. The
energy Q deposited in a discharge was determined from
the discharge current–voltage characteristic by a stan-
dard technique [18, 25]. The waveforms of the dis-
charge current and voltage were damped sine waves
with damping factors of 0.84–0.87. The maximum dis-
charge current was J0 ≈ 450 kA and 50 kA for the dis-
charge circuits with the capacitances C2 and C1, respec-
tively. The quasi-period of the discharge current was
varied from 65 to 110 µs by adjusting the capacitance
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
and inserting an additional inductance in series with the
plasma jet generators. Accordingly, the duration of
plasma ejection varied from 120 to 540 µs, whereas the
average (over time) specific energy deposition in a dis-
charge varied in the range q1 ≈ 105–109 J/m3 and q2 ≈
105–108 J/m3.

1.3. The discharge circuit of the third facility had a
multisection air spark gap and a capacitor bank with a
capacitance of C3 = 1.0 µF and charging voltage of U3 =
100 kV. The quasi-period of the discharge current was
6 µs, and the duration of plasma ejection was 28 µs. The
plasma jet generators of the second facility were used
as plasma generators.

The shape and characteristic size of the glowing
regions of the ejected plasma were recorded using an
SFR-2M high-speed streak camera [18, 25].

The gas-dynamic structure of the plasma flow was
studied using the shadow technique [18, 24], which
incorporated a Maksutov lens (300 mm in diameter)
and a high-speed streak camera. In studying the ejec-
tion of a glowing plasma, an EV-45 high-intensity
pulsed radiation source with a radiation temperature of
39 000 K [9] was used as an illumination source for
shadow measurements.

The Mach number M of the supersonic plasma flow
was determined from the angle of the characteristics at
a thin rod with a sharp front edge [18, 26]. The velocity
of the ejected plasma flow was calculated from the
measured velocity of acoustic perturbations in the
plasma flow (the glowing tracks on the streak images
of the pulsed jet) and from the angle of the characteris-
tics [18].

2. EXPERIMENTAL RESULTS

First of all, we note that, in all three facilities, the
electron density and temperature of the ejected dense
plasma at the nozzle edge of the plasma jet generator
were ~(1–8) × 1018 cm–3 and (1–4) × 104 K, respec-
tively. Under these conditions, the optical thickness of
the plasma across the jet was larger than unity, to say
nothing of the optical thickness in the axial direction.
Hence, this dense plasma jet emitted in the visible and
near UV regions as a black body. In this case, the inte-
gral (both over the spectrum and time) radiation energy
can be as high as 10–40% of the energy Q deposited in
a discharge [9, 18, 19]. Note that the EV-45 standard
high-intensity radiation source [9] with a radiation tem-
perature of 39 000 K is in fact a pulsed plasma jet
ejected in two opposite directions into atmospheric-
pressure air from a through hole in a textolite sample,
whose wall is evaporated in the course of ejection. The
data presented below refer to such radiating plasma
jets.

Under our experimental conditions, the flow in the
boundary layer surrounding the plasma jet was highly
turbulent (the Reynolds number was Re = upd/ν ≈ 105–
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106, where up is the velocity of plasma flow at the noz-
zle edge of the plasma jet generator and ν is the kine-
matic viscosity of the gas). For this reason, the study of
the shock-wave structures in the plasma jet by the
shadow technique was rather difficult to perform. How-
ever, since the gas in the boundary layer was transpar-
ent to the jet radiation, the most preferable method for
studying the ejection of a glowing plasma turned out to
be measurements of the plasma glow in combination
with the shadow technique.

An analysis of the experimental data showed that
the character of the pulsed ejection of a dense plasma
into a gas was determined by the independent parame-
ters q, p0, and p∞. Variations in some of these parame-
ters could be balanced by variations in the others, so
that the gas-dynamic structure of the ejected dense
plasma jet remained nearly self-similar. This allowed us
to determine the similarity criterion for plasma ejection
into a gas. Experiments showed that the same gas-
dynamic structure of the plasma jet could be obtained
by either increasing q and p0 in the discharge chamber
of the plasma jet generator or decreasing the pressure
p∞ of the ambient gas so that the ratio pp/p∞ was kept
constant. Hence, the dimensionless parameter Π =
pp/p∞ is one of the similarity criteria for the ejection of
a dense plasma into a gas. Since the plasma (or gas) is
ejected only at pp > p∞, we have Π > 1.

The process of plasma ejection proceeds in three
characteristic stages: the initial stage, the stage of for-
mation of the quasi-steady gas-dynamic structure of the
plasma jet, and the late stage. The initial ejection stage
lasts for a time period of ∆t1 (from the beginning of
ejection to the instant at which the sphericity of the

CS

SW

SW2

PF

Fig. 1. Gas-dynamic structure of the ejected plasma in the
initial stage of ejection for Π ≥ Π0: (SW) shock wave, (CS)
contact surface, (SW2) secondary shock wave, and (PF)
plasma flow.
ejected flow breaks), whereas the late stage corre-
sponds to the times after ejection has terminated (t ≥
∆tej). The experiments show that ∆t1 ≈ 3d/up. At t ≥ ∆t1,
the sphericity of the ejected plasma flow breaks and a
directed plasma flow is formed.

Let us consider each stage separately.

2.1. Initial Stage

It was shown experimentally that the formation of
the gas-dynamic structure of the ejected plasma flow
depends on the value of the first criterion parameter Π.
There are two characteristic regimes one of which cor-
responds to a finite value of the parameter Π and
another corresponds to Π  ∞.

2.1a. Dimensionless parameter P is finite. In this
case, plasma ejection is accompanied by the formation
of a contact surface separating the surrounding gas and
the ejected plasma flow (Fig. 1). For any Π value, if the
velocity of the contact surface uc exceeds the sound
speed in the ambient gas c∞ (uc ≥ c∞), then the propaga-
tion of the contact surface is accompanied by the for-
mation of a shock-compressed layer of the ambient gas.
The leading edge of this layer is confined by a shock
wave behind which there are the shock-compressed
plasma layer and the ejected plasma flow (Fig. 1). The
plasma flow, which is ejected with a relatively high
velocity, is decelerated by the shock-compressed layer
of the ambient gas. In the initial stage of ejection, this
deceleration is mainly related to the setting into motion
of the ambient gas by the plasma flow. The deceleration
of the high-speed flow by the ambient gas results in the
excitation of acoustic perturbations at the leading edge
of the flow, in particular, those propagating upstream
the flow. In the case of supersonic ejection (Π > Π0),
these perturbations do not reach the nozzle and, due to
the increase in the temperature at the leading edge of
the decelerated flow, the subsequent perturbations over-
take the preceding ones. As a result, the so-called sec-
ondary shock wave propagating upstream the flow is
formed. In the case of subsonic ejection (Π < Π0), per-
turbations do reach the nozzle and no secondary shock
wave is formed.

If uc < c∞, then compressed layers and compression
waves (rather than shock-compressed layers and shock
waves) arise in both the plasma flow and the ambient
gas. In this case, the ejected plasma flow is also decel-
erated and the velocity of the leading edge of the
plasma jet is somewhat lower than the velocity of the
ejected flow. Consequently, the deceleration efficiency
is lower than for Π > Π0.

2.1b. The case P  •. This case corresponds to
either p∞  0 or q  ∞, and the ejection is similar
to ejection into vacuum; i.e., the ejected plasma flow is
not decelerated and, therefore, no wave structures are
formed in it. Streak images of the ejected plasma flow
show that the plasma glow decreases monotonically
with increasing distance from the nozzle edge. The case
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2. Typical images of a dense supersonic plasma jet ejected into a gas for Π ≥ Π0 and τ1 + τ2 + τ3 < ∆tej < τ1 + τ2 + τ3 + τ4
(∆tej ≈ 250 µs) at times (a) 20, (b) 30, (c) 50, (d) 65, (e) 85, (f) 100, (g) 120, (h) 135, (i) 155, (j) 185, (k) 220, and (l) 250 µs.
Π  ∞ can be accomplished by either decreasing the
pressure p∞ of the ambient gas (by pumping out the gas
from the ejection volume) or increasing the specific
energy deposition q in the discharge chamber of the
plasma generator. A significant increase in the plasma
pressure was achieved only with a sufficiently small
volume (V = 1 cm3) of the discharge chamber.

2.2. The Stage of Formation of Quasi-Steady 
Hydrodynamic Structures

After the onset of a preferential direction of plasma
motion along the axis of the pulsed jet, the leading part
of the plasma jet begins to expand in the direction per-
pendicular to the axis due to the deceleration of the
ejected flow.

The experiments showed that, at t > ∆t1, the further
dynamics of plasma ejection is determined by the dura-
tion of ejection ∆tej (or the energy deposited in the
working chamber of the plasma generator) and the for-
mation time τi of various gas-dynamic plasma struc-
tures. In other words, the quantities ∆tej and τi are deci-
sive independent parameters determining the dynamics
of plasma ejection into a gas. Therefore, according to
the theory of similarity and dimensionality [27], one
can compose a single dimensionless parameter βi =
τi/∆tej from these two decisive independent physical
quantities. This parameter can be regarded as the sec-
ond similarity criterion for plasma ejection.
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Let us consider the effect of the βi value on the gas-
dynamic plasma structures formed in different regimes
of plasma ejection.

2.2a. Supersonic ejection (P ≥ P0). In the case of
supersonic ejection, shock-wave structures—the so-
called “barrels” consisting of a barrel shock, a Mach
disc, and a reflected shock wave—are formed [20, 21,
26]. The number of such barrels is determined by the
relation between the duration of plasma ejection ∆tej
and the characteristic times of the barrel formation τi

(where i is the order number of a barrel). In fact, τ1 is
the time during which strong plasma-flow perturbations
excited at the nozzle edge reach the jet axis, while τ2 is
the time between the instant of reflection of these per-
turbations from the jet axis and their next convergence
at the jet axis after their reflection from the jet bound-
ary. Similar reflections of these strong perturbations
determine the characteristic time τ3 of the formation of
the third barrel number, etc.

When ∆tej < τ1 (β1 > 1), whatever the value of the cri-
terion parameter Π, no barrel is formed (see Figs. 2a–
2d). When ∆tej > τ1 (β1 < 1), one should distinguish
between two cases, Π @ Π0 and Π ≥ Π0.

For Π @ Π0, only the first barrel is formed in the
vicinity of the nozzle, whereas the plasma flow in the
rest of the pulsed jet remains subsonic (Fig. 3). A fur-
ther increase in ∆tej (β1 ! 1) leads to an increase in the
length of the subsonic part of the pulsed plasma jet.

When Π ≥ Π0 and the duration of ejection satisfies
the inequalities τ1 < ∆tej < τ2 + τ1 (where τ2 is the for-
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mation time of the second barrel), only the first barrel is
formed in the jet (Figs. 2e–2g). When τ1 + τ2 < ∆tej <
τ1 + τ2 + τ3, two barrels are formed (Figs. 2h–2j). Gen-
erally, if the duration of plasma ejection satisfies the

condition  < ∆tej < , then j barrels

(sections) are formed.

In the experiments, we succeeded in producing a
supersonic plasma jet with a three-section shock-wave
structure (Fig. 2k). Structures with one and two barrels
were observed in [3, 5, 6, 14, 16–19] when ejecting
supersonic pulsed plasma jets into atmospheric-pres-
sure air. In [14], a dense plasma jet ejected into in atmo-
spheric-pressure air was studied. The fragments of
streak images presented in that paper correspond to the
ejection stage shown in Fig. 2c for Π ≥ Π0 and ∆tej < τ1.

τ ii 1=
j∑ τ1i 1=

j 1+∑

Fig. 3. Fragment of a dense supersonic plasma jet ejected
into a gas for Π @ Π0 and ∆tej > τ1.

Fig. 4. Mushroomlike plasma cloud produced at Π < Π0 and
∆tej > τv.
Note that similar underexpanded supersonic pulsed
plasma jets with a one-section shock-wave structure
was obtained using a laser plasma generator [3] and by
irradiating the surface of a solid target with high-power
laser radiation [28]. In those experiments, the plasma
was formed due to the absorption of laser radiation by
either the plasma-forming substance of the plasma gen-
erator [3] or the target surface [28]. In the latter case,
the plasma is ejected from a crater that is formed on the
solid surface after irradiating it with laser radiation.
According to the above, supersonic plasma jets with a
one-section shock-wave structure are produced when
Π = (p0 + q)/p∞ @ Π0 and ∆tej > τ1 (β1 < 1). Here, by q
and ∆tej, we mean the thermal energy density of the
plasma produced under the action of high-power laser
radiation and the laser pulse duration, respectively.

2.2b. Subsonic ejection (P < P0). In this case, a
mushroomlike cloud (Fig. 4) similar to that accompa-
nying a high-power conventional or nuclear explosion
is formed at β = τv/∆tej < 1 (where τv is the formation
time of a toroidal plasma vortex). When β > 1, a plasma
cloud is formed whose shape is close to a hemisphere.

2.2c. Plasma ejection at P  •. Let the criterion
parameter Π correspond to subsonic ejection (Π < Π0).
Then, as Π increases, a supersonic regime first occurs
(Π ≥ Π0), with the number of barrels depending on the
value of the second similarity criterion β. As Π
increases further (Π @ Π0) and ∆tej  ∞, only one
barrel is formed in the supersonic jet (Fig. 3). An
increase in Π leads to an increase in the characteristic
size of the barrels. At low pressures of the ambient
medium (p∞  0), an increase in Π leads to the blur-
ring of the barrels and the plasma ejection becomes
similar to the ejection into vacuum, when no shock-
wave structures are formed (in this case, the ambient
medium cannot be regarded as a continuous medium).

Thus, when Π  ∞, the supersonic regime with a
single barrel can be regarded as a limiting regime
before a transition to the regime of ejection into vac-
uum. In [9], the criterion parameter Π was equal to
~500; hence, no pronounced shock-wave structure was
observed.

2.3. Late Stage of Pulsed Ejection (t > ∆tej)

In the late stage of supersonic ejection (Π ≥ Π0), if
∆tej ≤ ∆t1 or ∆tej ≤ τ1, then the shock-compressed layers
of both the ejected plasma and the gas of the ambient
medium begin to expand. After this expansion comes to
an end, a spherical cloud is formed (Fig. 5). A similar
cloud is also formed in the regime of subsonic (Π < Π0)
ejection, provided that ∆tej ≤ ∆t1 or ∆tej ≤ τv.

In the case of supersonic (Π ≥ Π0) ejection, if the
duration of ejection satisfies the condition ∆tej > τ1,
then, at t > ∆tej, a plasma cloud is formed whose shape
is close to spherical. In this case, a circular vortex
comes off from the leading part of the cloud; however,
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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this vortex rapidly decays. In the regime of prolonged
supersonic ejection, a cigarlike jet is formed after the
ejection comes to an end (Fig. 2l).

In the late stage of subsonic (Π < Π0) ejection, if
∆tej ≥ τv, then a toroidal plasma vortex—a glowing
plasma ring (Fig. 6)—and a plasma globe that is not
involved in the vortex motion are formed from the
remaining “mushroom cap.” Eventually, the glowing
ring detaches from the plasma cloud (Fig. 7).

The formation of a toroidal plasma vortex was
observed in [8, 11, 12, 14, 15, 18, 19, 29–31]. In [29–
31], a pulsed plasma jet was produced by the electric
explosion of a round metal diaphragm in atmospheric-
pressure air.

In [15, 18, 19], the following characteristic feature
of the toroidal plasma vortex and the plasma globe was
noted: the globe and the toroidal vortex emit in the vis-
ible region over time periods that are longer than the
duration of energy deposition by factors of 70 and 500,
respectively. A further investigation showed that the
plasma vortex emit in the IR region (λ = 3.2–4.2 µm)
for 1 s, whereas the duration of energy deposition in a
discharge (Q ≈ 20 kJ) is ∆tej ≈ 200–250 µs. In [31], it
was shown experimentally that the afterglow duration
for such a vortex is a function of the discharge current.
Such an anomalously long glow of the plasma toroidal
vortex in air has not yet been adequately explained.

When evaluating βi, the characteristic formation
times of gas-dynamic plasma structures, τi and τv, were
determined experimentally. So far, adequate theoretical
predictions of these times (especially τv) are still lack-
ing.

We note two characteristic features of the plasma jet
generators based on a high-current discharge supplied
from a capacitor bank (the second and third experimen-
tal facilities). The first feature is the possibility of con-
trolling the duration ∆tej of energy deposition in a dis-
charge in generators using a multisection air spark gap
connected in parallel to the plasma generators. After
illuminating this gap with UV radiation, the main dis-
charge circuit gets closed through the spark gap. The
jitter of such a spark gap is ~2 µs. An EV-45 high-inten-
sity standard radiation source was used for UV illumi-
nation. This source was triggered by a GZI-6 delay gen-
erator from the control panel of the experimental facil-
ity. By varying the GZI-6 delay, one could control the
time at which the discharge in the plasma generator ter-
minated, i.e., the duration of energy deposition in the
discharge. In particular, for Π ≥ Π0 or Π @ Π0, if the
spark gap was switched on at the instant t ≈ τ1, then the
first barrel did not have time to form, which corre-
sponds to the images of a pulsed jet in Figs. 2a–2d, i.e.,
to the case ∆tej ≤ τ1 (β1 ≥ 1). If the spark gap was
switched on at t ≈ τ3, then two barrels were formed,
which corresponds to the case τ1 + τ2 < ∆tej < τ1 + τ2 + τ3
(Figs. 2a–2j), where a cigarlike jet is formed in the late
stage of ejection. In the case of subsonic ejection (Π <
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
Π0), the experiments with various durations of plasma
ejection showed that a mushroom cloud was formed at
t ≥ τv, whereas at t < τv, such a cloud was not formed. In
the late stage of plasma ejection, the same gas-dynamic
plasma structures were formed as those described in
Section 2.3.

Fig. 5. Spherical plasma cloud.

Fig. 6. Toroidal plasma vortex produced at Π < Π0 and t >
∆tej > τv. The top and bottom photographs show the longi-
tudinal (along the plasma jet axis) and side views of the vor-
tex, respectively. The bright central core on the top photo-
graph is the generator nozzle.
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The other feature is related to the way in which
energy is deposited in a discharge. For a unipolar-volt-
age plasma jet generator (the first facility), the rate of
plasma ejection remains almost constant during energy
deposition. Therefore, the characteristic size of gas-
dynamic plasma structures remains unchanged during a
discharge. When a generator is supplied with a damped
sine-wave voltage (the second and third facilities), two
regimes of the plasma generator operation can be dis-
tinguished: the erosion regime and the gas filling
regime. In the experiments, the rate of plasma ejection
from the nozzle of the plasma generator with gas filling
remained nearly constant during a discharge in spite of
the oscillations in the power dQ/dt deposited in a dis-
charge (Fig. 8).

In the erosion mode of the generator operation, the
rate of plasma ejection follows the time evolution of the
power deposited in a discharge (Fig. 8). Hence, at Π @
Π0 or Π > Π0, the characteristic size of the gas-dynamic
plasma structures varies with almost the same period as
the deposited power does. At Π < Π0, two (sometimes
even three) toroidal plasma vortices are formed in the
late stage of ejection (t > ∆tej). Obviously, the formation

Fig. 7. Streak images of a toroidal plasma vortex and a
spherical plasma cloud that is not involved in vortex motion
for Π < Π0 and t > ∆tej > τv. The frame exposure is 40 µs
and the time interval between the frames is 40 µs.
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Fig. 8. Time evolution of the power deposited in a discharge
in a plasma jet generator for C2 = 120 µF and U2 = 30 kV.
The quasi-period of the discharge current is 55 µs.
of several plasma vortexes is related to the modulation
of the plasma ejection rate.

In the case of a plasma jet generator with a damped
sine-wave current, the deposited power varies substan-
tially during a discharge (Fig. 8), so that both regimes
of plasma ejection can occur during one shot. First, the
supersonic ejection regime occurs, which is followed
by the subsonic regime. According to the above, such
behavior is related to a decrease in Π, i.e., a decrease in
the plasma pressure in the discharge chamber of the
plasma generator at a constant p∞. The formation of
gas-dynamic plasma structures is determined by the
parameters βi = /∆tej and βv = τv/∆tej.

3. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

To determine the criteria for plasma ejection, we
reduce the equation for the plasma jet momentum to a
dimensionless form. Let us assume that the plasma jet
is produced by a plasma generator with gas filling. A
change in the jet momentum at the nozzle edge dI over
the time dt in the reference frame related to the genera-
tor occurs under the action of the resultant force

where

is the jet momentum at the instant t, up and ρp are the
velocity and density of the plasma flow at the nozzle
edge, pp is the static pressure in the plasma flow at the
nozzle edge, and Sn is the cross-sectional area of the
plasma generator nozzle.

Direct measurements of pp in the discharge chamber
showed that it was proportional to the specific energy
deposition q(t) in a discharge:

(1)

where Q(t) is the energy deposited in a discharge by the
time t, b is the proportionality factor, and J(t) and U(t)
are the discharge current and the voltage between the
generator electrodes.

Then, the equation for the momentum of the plasma
jet at the nozzle edge is

(2)

τ ii 1=
j∑

dI
dt
----- pp t( )Sn p∞Sn–[ ] ,=

I Snρp t( )up
2 t( ) td

0
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pp p0 bq t( )+≈  = p0
bQ t( )

V
-------------+  = p0

b J t( )U t( ) td

0

t

∫
V

-------------------------------,+

dI
dt
----- p0 bq t( )+[ ] Sn p∞Sn.–=
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Dividing both sides of Eq. (2) by (Snp∞), we obtain

(3)

where

The fact that the plasma (gas) is ejected into the sur-
rounding gas means that

consequently, we have Π > 1.
Next, it is easy to show [20, 21, 26] that, at a definite

magnitude of the dimensionless parameter

the velocity of plasma ejection into a gas becomes
equal to the speed of sound. As the distance from the
nozzle edge increases, the plasma flow becomes super-
sonic, M > 1, where M = u/c is the Mach number of the
plasma flow (here, u and c are the plasma flow velocity
and the local sound speed in a plasma, respectively).
The criterion parameter θ introduced in [18, 19] is a
particular case of the dimensionless criterion parameter Π.

For plasma jet generators, other parameters describ-
ing plasma can be proposed instead of the criterion
parameter Π. Indeed, after substituting the expression
for the pressure of an ideal plasma in the generator dis-
charge chamber

(4)

(where ne, ni, na, Te, Ti, and Ta are the densities and tem-
peratures of electrons, ions, and neutrals, respectively;
B is the average magnetic field induced by the current
inside the discharge chamber; and k is the Boltzmann
constant) into Eq. (2) and dividing both sides of Eq. (2)
by Snp∞, we obtain

(5)

where n0 = ne + na and α = ne/(ne + na) is the degree of
plasma ionization.

Expression (5) is obtained with allowance for the
magnetic pressure B2/4π in the discharge chamber of a
plasma generator because the design of the discharge
chamber in most generators is such that the plasma is
electrodynamically accelerated (in one way or another)
under the action of the magnetic pressure [3−19].

Thus, the criterion parameter Π for plasma ejection
is a generalized parameter because it can be composed
of the ratio of the plasma pressure to the pressure of the

d
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ambient gas (n0kTa)/p∞; the degree of plasma ionization
at the nozzle edge α; the parameter Te/Ta, characterizing
the degree to which the plasma is nonisothermal; and
the ratio of the magnetic pressure in the discharge
chamber to the pressure of the ambient gas B2/4πp∞. In
turn, the parameter α is a function of another dimen-
sionless parameter—the ratio of the ionization energy
W of the gas in the discharge chamber to the electron
thermal energy, W/kTe—and the degree of dissociation
χ of the gas molecules in the discharge chamber: α =
ϕ(W/kTe, χ).

When there is no plasma in the generator discharge
chamber (α = 0, W = 0, and B = 0) or the degree of ion-
ization is low (α ! 1), the pressure is produced only by
the neutral gas (pp  p0, where p0 is the initial gas
pressure in the discharge chamber). Then, as α  0,
the dimensionless parameter Π converts into the
dimensionless parameter N = p0/p∞ (the degree of
expansion for stationary gas jets [20, 21, 26]).

Even under identical initial conditions of the dis-
charge circuits, the proportionality factor b between q
and pp can differ because of the difference in the ele-
ments of the circuit (e.g., the design features of plasma
jet generators, different types of spark gaps, different
methods for supplying energy to the generators, etc.).
Hence, for each particular experiment on plasma ejec-
tion, one needs to evaluate the value of the threshold
criterion parameter Π0. With this in mind, we simulta-
neously measured the discharge current J(t), the voltage
between the electrodes of the plasma generator U(t),
the plasma flow velocity up, and the speed of sound c in
plasma at the nozzle edge.

3.1. Initial Stage

To find other similarity criteria for plasma ejection,
the momentum of the plasma flow I(t) should be written
with allowance for the unsteady character of plasma
ejection and the plasma structures arising in the course
of ejection. Pulsed plasma ejection is characterized by
its duration ∆tej and the characteristic time τ during
which gas-dynamic structures (discontinuity surfaces,
shock-wave structures, toroidal plasma vortices, etc.)
form. In what follows, time is normalized as t ' = t/∆tej.

The processes in the initial stage of ejection will be
described in spherical coordinates whose origin resides
at the center of the nozzle edge. Then, taking into
account that the momentum of the ejected flow is con-
served, the left-hand side of Eq. (2) takes the form
(Fig. 1)

(6)
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where m1 and m2 are the masses of the shock-com-
pressed layers of the ambient gas and plasma at the time
t, respectively; rc is the coordinate of the contact sur-
face; r2 is the coordinate of the secondary shock wave;
and u is the velocity of the plasma flow behind the noz-
zle edge.

The masses m1 and m2 can be found from the mass
conservation law [32]:

(7)

In the initial stage, assuming ρ ≈ ρp and taking into
account that r2 = ucτs, Eq. (3) reduces to the form

(8)

where τs is the formation time of the secondary shock
wave.

It follows from Eq. (8) that the ejection dynamics
depends, besides the criterion parameter Π, on the ratio
between the formation time of the secondary shock
wave and the duration of plasma ejection, τs/∆tej; the

Euler number (ρp )/p∞; the ratio of the velocity of the
contact surface to the velocity of the plasma flow at the
nozzle edge, uc/up; and the ratio between the momen-
tum of the shock-compressed layer of the ambient gas
and the impulse of force produced by the plasma flow,

(2πρ∞uc )/(3Snρp ∆tej).

3.2. Supersonic Ejection (Π ≥ Π0)

The experiments showed that, in this case, the mass
of the shock-compressed layer of the ambient gas in the
leading part of the jet is small compared to that in the
initial stage of ejection because of the existence of a
preferential direction of the plasma flow. Hence, the
momentum of a supersonic plasma flow in cylindrical
coordinates whose origin resides at the center of the
nozzle edge (Fig. 1) is

(9)

where j is the number of barrels in the plasma jet, Zi and
Zi + 1 are the coordinates of the ith and (i + 1)th Mach
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discs in the jet, mi is the plasma mass in the ith barrel,
and S(z, t) is the jet cross-sectional area.

For i = 0, we have Z0 = 0. Using the expression
Zi + 1 – Zi = τi and the theorem of the mean over the r
and z coordinates, we calculate the total momentum of
the jet,

(10)

where τi is the formation time of the ith barrel;  and
 are the spatially averaged density and velocity of the

plasma flow, respectively; and  is the jet cross-sec-
tional area averaged over z.

Substituting Eq. (10) into Eq. (2) and taking into
account that t = t'∆tej, we obtain the dimensionless
equation

(11)

It follows from Eq. (11) that, for Π > Π0, the dynam-
ics of plasma ejection into a gas depends, besides the
criterion parameter Π, on the ratio between the sum of
characteristic times and the duration of plasma ejection,
( )/∆tej; the geometrical factor (t)/Sn; and the
ratio of the average dynamic pressure of the plasma
flow to the static pressure of the ambient gas,

[ (t) (t)]/p∞.

3.3. Subsonic Ejection (Π < Π0)

In this case, as in the case Π > Π0, the mass of the
compressed layer of the ambient gas is relatively small
and the total momentum of the plasma jet I(t) is equal
to the sum of the momenta of the toroidal plasma vortex
and the jet particles that are not involved in vortex
motion:

(12)

where uv is the velocity of the toroidal plasma vortex as
a whole and τv is the characteristic time of vortex for-
mation.

After substituting Eq. (12) into Eq. (3), we obtain
the equation

(13)
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It follows from Eq. (13) that, for Π < Π0, the dynam-
ics of plasma ejection into a gas depends, besides the
criterion parameter Π, on the ratio between the average
dynamic pressure and the static pressure of the ambient

gas, ρp(t) (t)/p∞; the ratio between the characteristic
time of vortex formation and the duration of plasma
ejection, τv/∆tej; and the ratio uv/up, which characterizes
the relative velocity of the toroidal plasma vortex.

Thus, the formation of various gas-dynamic plasma
structures in a dense pulsed plasma flow ejected into a
gas is determined by the criterion parameters Π and βi,
characterizing the regimes of plasma ejection.
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Abstract—The saturation magnetization, the perpendicular and rotational anisotropy constants, and the coer-
citivity of Ni75Fe16Cu5Mo4 thin magnetic films produced by rf sputtering are measured in the initial state and
after annealing. A relation between the presence of perpendicular anisotropy and the “transcritical” state in the
films is established. It is shown that, after additional thermal treatment, the magnetic softness of the films can
be improved. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, the soft magnetic alloy
Ni75Fe16Cu5Mo4 (so-called µ-metal) has once again
attracted attention of researchers in connection with the
possibility of using it in electronic devices based on the
effect of giant magnetic impedance (GMI). The essence
of the GMI effect lies in the variation of impedance Z
obtained from ac (at a frequency of ω) measurements
(i.e., the impedance of a conductor made of a soft mag-
netic ferromagnet and subjected to an external mag-
netic field): Z(ω) = R(ω) – iX(ω) [1, 2]. For such
devices, the conductors are fabricated, as a rule, in the
form of wires, tapes, foils, or film structures [3–5].
Today, the results of investigations of µ-metal samples
in the form of foil [6] and films produced by magnetron
sputtering [7] are available. These results show that
these materials are suitable for GMI sensors. However,
it should be noted that certain corrections accounting
for the film state must be introduced and the properties
of films can differ from those of a bulk sample made of
the same material. The features of magnetic film pro-
duction by sputtering can give rise to an induced per-
pendicular magnetic anisotropy in the samples. The
emergence of such an anisotropy may be related to the
columnar structure in the films, stresses existing in the
films, the anisotropic distribution of atom pairs, etc. In
each particular case, this anisotropy seems to be deter-
mined by the film material, as well as by the method
and conditions under which the film is produced [8, 9].
The presence of the perpendicular anisotropy in a film,
in its turn, can give rise to a “transcritical” state in it.
This state is characterized by a specific hysteresis loop,
enhanced coercitivity Hc, rotational magnetic in-plane
anisotropy in the sample, and a fine strip domain struc-
ture when spontaneous magnetization in domains is
1063-7842/04/4907- $26.00 © 20868
oriented at an angle to the film surface [10, 11]. In this
study, we investigate the “transcritical” state in
Ni75Fe16Cu5Mo4 films produced by rf ion-plasma depo-
sition.

EXPERIMENTAL

The films were deposited on water-cooled glass sub-
strates in an argon atmosphere at a pressure of 1 ×
10−3 Torr. The fore vacuum was 5 × 10–7 Torr. As a tar-
get, we used a plate 10 cm in diameter and made of
Ni75Fe16Cu5Mo4 alloy. The composition of the depos-
ited films was assumed to be the same as that of the tar-
get. The films were deposited in an external magnetic
field parallel to the substrate surface to form anisotropy
with an easy magnetization axis (EMA) in the plane of
the sample. The magnitude of the field was about
100 Oe. The film thickness was measured by the Tolan-
sky interference method. The hysteresis loops were
measured by using the magnetooptical Kerr effect in a
field range of ±100 Oe (the frequency of field variation
was 50Hz) and by a vibrating-coil magnetometer in a
field range of ±500 Oe. Saturation magnetization Ms

and the perpendicular anisotropy constant Kp were
determined by using a torquemeter according to the
method described in [12]. The rotational anisotropy
constant Krot was found from the torque curves (TC)
measured in various fields from 10 to 500 Oe, with the
field direction varying in the film plane. The domain
structure was observed with the help of the powder fig-
ure method. The samples were annealed in vacuo under
a pressure of 1 × 10–6 Torr.
004 MAIK “Nauka/Interperiodica”
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RESULTS AND DISCUSSION

In this study, we present the results of investigation
of two kinds of samples: 0.1 µm thick (sample 1) and
0.31 µm thick (sample 2). Figures 1a and 1b show the
hysteresis loops measured by using a vibrating-coil
magnetometer for samples 1 and 2 in the initial state,
respectively. The field was applied parallel to the film
surface. For the first (thin) film, a low-coercitivity rect-
angular loop typical of in-plane magnetized films is
observed. The thicker sample has a loop typical of the
films in the “transcritical” states. Such a state appears
when the film thickness L exceeds a certain critical

value Lc = 2π(A/Kp)1/2 and the Q factor is Q = Kp/2π  <
1, where A is the exchange interaction parameter.
Assuming that, for this alloy, A = 2 × 10–6 erg/cm [11]
and using the values of the quantities Ms and Kp

obtained for this sample (see table), we find that Lc =
0.1 µm. For the thin sample, a similar estimate gives
Lc = 0.1 µm. Note that the values of Lc are given within
an accuracy of 0.1 µm and with allowance for the
approximate nature of the used value of the exchange
interaction parameter. Nevertheless, a comparison of
the results of these estimates with the sample thickness
makes it possible to assume that the probability of the
second sample being in the transcritical state is higher
than for the first sample.

One more argument in favor of this assumption is
the observation of a microstripe domain structure in
this sample (Fig. 2), which we failed to detect in the
first film. It is the rearrangement of this domain struc-
ture during the magnetization reversal in the film that is
responsible for the higher coercitivity and saturation
field as compared to those for the first sample (see
Fig. 1).

The third indication of the transcritical state in the
thick sample is the presence of the rotational magnetic
in-plane anisotropy in the film whose easy magnetiza-
tion axis (EMA) is determined by the applied strong
magnetic field. This field is capable of changing the
strip domain orientation, which defines the position of
the EMA. During the rotation of a weak magnetic field
parallel to the film surface, the orientation of the strip
domains remains unchanged, while the direction of
magnetization in the domains is changed [10, 11]. Man-
ifestations of the rotational anisotropy can be seen on
the magnetooptical hysteresis loops and TCs.

Figure 3 shows schematically the magnetooptic hys-
teresis loops measured in the plane of sample 1 along
(Fig. 3a) and perpendicularly to (Fig. 3b) the EMA.
These loops are typical of the films characterized by in-
plane anisotropy and in-plane magnetization. The same
figure shows the magnetooptical hysteresis loop mea-
sured in the plane of sample 2 in any direction after a
strong magnetic field (≥100 Oe) was applied in this
direction. The field oriented in this direction the strip
domains that determined the EMA position. However,
if we rotate the sample (after the action of a strong field)

Ms
2
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Fig. 1. Hysteresis loops measured with the vibrating-coil
magnetometer for samples 1 (a) and 2 (b, c) in the initial
state (a, b) and after annealing for 1 h at T = 420°C.

10 µm

Fig. 2. Microstrip domain structure observed in sample 2 in
the initial state.



 

870

        

SVALOV 

 

et al

 

.

             
in its plane through 90° and measure the hysteresis
loop, gradually increasing the field, we find that, in low
fields, we have a zero-coercivity loop characteristic of
measurements perpendicularly to the EMA. After
exceeding a certain value of the field, the loop acquires
a width and becomes a typical loop measured along the
EMA (Fig. 3c). Such a procedure can be repeated for
any direction of the initial application of a high mag-
netic field to the sample. Such a character of magne-
tooptical hysteresis loops indicates that, in this sample,
the value of rotational anisotropy exceeds that of the
induced anisotropy.

Figure 4 shows the scheme of the TCs measured for
sample 2 by using a torquemeter (the field direction
varied in the film plane). Prior to measurements, the
sample was in-plane magnetized in a field of 1 kOe. In
low fields, the film still does not experience magnetiza-
tion reversal and the TC obeys the law L ~ sinθ
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Fig. 3. Scheme of the magnetooptical hysteresis loops mea-
sured for samples 1 (a, b) and 2 (c) in the initial state along
the EMA (a), perpendicularly to the EMA (b), and in any
direction in the film plane after applying a high magnetic
field (c).
(Fig. 4a). In higher fields, the curve is described by the
law L ~ sin2θ that is typical of uniaxial anisotropy
(Fig. 4b). With increasing field, the shape of the TC
indicates that the EMA rotation follows the external
field (Fig. 4c). With a further increase in the field, the
TC transforms into a curve described by the law L ~
sin2θ with a small amplitude independent of the field
magnitude (Fig. 4d). If we apply a constant field of
1 kOe in the direction perpendicular to the initial direc-
tion, the phase of curve in Fig. 1b changes by 90°, while
the phase of curve in Fig. 1d remains unchanged. This
indicates that curve in Fig. 1d describes induced uniax-
ial anisotropy existing in the film and curve in Fig. 1b,
rotational magnetic anisotropy.

The samples under investigation were subjected to
successive stepped annealing at temperatures of 320
and 420°C. The duration of the thermal treatment at
each temperature was 1 h. At higher temperatures, the
annealing was not performed due to the limited thermal
stability of the glass substrate.

The thermal treatment affected slightly the proper-
ties of the thin film: the character of the hysteresis loops
remained unchanged, while the coercitivity Hc and Kp

insignificantly decreased (see table). For the thicker
sample, more noticeable changes were observed. After
annealing, the hysteresis loops measured with the
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Fig. 4. Scheme of the TCs measured in the film plane (sam-
ple 2). Magnitudes of the measurement field: 10 (a), 50 (b),
100 (c), and 500 Oe (d); L is measured in arbitrary units.

h
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Table

L, µm Ms, G Hc, Oe Kp, erg/cm3 Krot, erg/cm3 Lc, µm

Sample 1 0.1

Initial state 600 4 4 × 105 – 0.1

After annealing at 320°C for 1 h 600 3 3 × 105 – 0.2

After annealing at 420°C for 1h 600 3 1 × 105 – 0.3

Sample 2 0.31

Initial state 600 20 5 × 105 1.8 × 104 0.1

After annealing at 320°C for 1 h 600 14 2 × 105 1.2 × 104 0.2

After annealing at 420°C for 1h 600 10 8 × 104 – 0.3
vibrating-coil magnetometer retained their transcritical
shape, but the coercitivity and the saturation field
decreased (Fig. 1c). For the TCs measured with the help
of the torquemeter in the plane of sample 2 after anneal-
ing at 420°C, the character of transformation of the TCs
was modified as the measurement field was increased.
It was observed that the curve of the type shown in
Fig. 4a transforms at once into a curve of the type in
Fig. 4d omitting stages depicted in Figs. 4b and 4c. This
is associated with the fact that a decrease in Kp due to
annealing leads to a decrease in the angle of emergence
of the magnetization in strip domains [11]. This, in
turn, makes the domain walls and the EMA given by the
walls follow a field lower than in the initial state. In this
case, the determination of Krot becomes impossible. The
estimates of Lc indicate that, after annealing at 420°C,
sample 2 is on the verge of transition into the transcrit-
ical state. Analysis of the available data leads to the
conclusion that a decrease in the level of transcriticality
as a result of the annealing of the Ni75Fe16Cu5Mo4 film
is associated with a decrease in the value of perpendic-
ular anisotropy, which, in its turn, can be caused by
either the destruction of the columnar structure or
relaxation of internal stresses in the film.

CONCLUSIONS

In this study, we have shown for the first time that a
realization of the so-called transcritical state in
Ni75Fe16Cu5Mo4 films is possible for a certain combina-
tion of the values of perpendicular anisotropy and size
parameters of the films. Annealing decreases the value
of perpendicular anisotropy that results in a decrease in
the degree of transcriticality of the films and enhances
their magnetic softness. Since the magnetic properties
of thin films in the transcritical state, which are
intended for applications in the regime of high-fre-
quency magnetization reversal, are noticeably worse
than those in the films with in-plane anisotropy, under-
standing the mechanism and conditions under which
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
the transcritical state is formed is important from the
standpoint of their possible use in electronic devices.
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Abstract—Stimulated Mandelstam–Brillouin scattering (SMBS) is experimentally studied in a fiber-optic
communication line at a high power of the transmitted signal. The SMBS threshold is not observed at a power
of up to 400 mW, which is due to an alternative nonlinear effect (self-phase-modulation (SPM)). An analytical
model of SMBS in a single-mode fiber is developed with allowance for SPM. The theoretically estimated power
of spontaneous scattering is substantially lower than the power obtained in the absence of SPM. The SMBS
efficiency is plotted versus the spectral width of the signal at the input of the communication line. It is demon-
strated that the SMBS effect is negligibly weak when the initial spectral width of the signal exceeds a certain
threshold level. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In modern optical fiber communication lines
(OFCLs), an increase in the transmission range is
achieved by using erbium amplifiers working at wave-
lengths of about 1.5 µm. However, the increase in the
power of the transmitted signal gives rise to various
nonlinear effects (stimulated Raman scattering, self-
phase modulation, cross-phase modulation, stimulated
Mandelstam–Brillouin scattering (SMBS), and four-
wave mixing) [1, 2]. In this work, we study the limita-
tions imposed by SMBS on the transmission range of
optical fibers.

SMBS is light scattering by acoustic vibrations of
the medium. SMBS exhibits a very narrow gain spec-
trum (Γ ≈ 20 MHz). At a certain critical level of the
input signal power, an intense backward scattering can
be induced. This scattering leads to a deterioration in
the transmission quality. Therefore, the power of the
transmitted signal must always be lower than the
threshold level.

Smith [3] defines the SMBS critical power Pcrit

(SMBS radiation serves as the pumping for the back-
ward Stokes radiation) in the approximation disregard-
ing the signal depletion. This power is defined as the
input pump power, at which the SMBS power at the
beginning of the fiber equals the input pump power. For
typical parameters of a single-mode fiber, the critical
power is given by

(1)Pcrit 21
αA
g0
-------.≈
1063-7842/04/4907- $26.00 © 20872
Quantities entering formula (1) and their values for
a conventional single-mode coupled fiber and a wave-
length of about 1.5 µm are presented in the table.

The SMBS threshold depends on both the parame-
ters of the fiber and the signal linewidth [4–6]. If the
gain g(ν) and pump spectra can be approximated using
Lorentzian curves, the threshold power is still given by
formula (1), but the peak gain is represented as

(2)

where Γp is the pump linewidth and Γ is presented in
table.

g0
eff Γ

Γ Γ p+
---------------g0,≈

Values of parameters

Parameter Value

Fiber loss coefficient, α 5 × 10–5 m–1

Nonlinear coefficient, γ 1.621 × 10–3 W–1 m–1

Number of the fiber transverse 
modes, M

2

Temperature, T 300 K

Total SMBS spectral width 2 × 107 Hz

Gain at half-maximum, Γ
Peak SMBS gain, g0 4 × 10–11 W–1 m

Effective area of the fiber
transverse cross section, A

5 × 10–11 m2

Acoustic phonon frequency, νB 1.11 × 1010 Hz

Pump radiation frequency, νp 1.93 × 1014 Hz
004 MAIK “Nauka/Interperiodica”
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Thus, if Γp @ Γ, the SMBS gain decreases by a fac-
tor of Γp/Γ.

In the general case, the SMBS gain and, hence, the
threshold power depend on a convolution of the SMBS
spectrum and the pump radiation spectrum [4, 5]. In
this connection, the type of modulation (amplitude,
phase, or frequency) also plays an important role. Cot-
ter [7] analyzes in details various types of modulation
of the transmitted signal. The dependences of the gain
on the data rate in the optical fiber are obtained in [5, 8]
for the amplitude, phase, and frequency modulation.
The threshold powers of the input signals with the
amplitude modulation calculated using these depen-
dences for various data rates (622, 1000, 1250, and
2500 Mbit/s) are about 15 dBm.

EXPERIMENT

We measured the SMBS threshold in a single-mode
fiber with a length of 200 km. An unmodulated laser
diode with a distributed feedback, a wavelength of
1550 nm, and a spectral width of 50 MHz served as a
source of radiation. The solid curve in Fig. 1 shows the
dependence of the signal power at the fiber exit on the
input power. The experimental data are in good agree-
ment with the calculated values of the threshold. For a
cw signal, the calculated threshold power is about
9.7 dBm.

The dashed line in Fig. 1 shows a similar depen-
dence corresponding to the transmission of a bit chain
at a rate of 2500 Mbit/s. In the presence of a direct mod-
ulation of the laser diode, the SMBS threshold is not
reached when the input power ranges from 1 to
400 mW. This fact contradicts the theoretical estimates
(18–19 dBm). In our opinion, the reason for this is the
spectral broadening of the transmitted signal that is
related to the self-phase modulation (SPM).

SPM emerges owing to the dependence of the
refractive index of the nonlinear medium on the radia-
tion intensity. SPM leads to the spectral broadening of
optical pulses [6]. Figure 2 shows the spectral profiles
of the signals having passed through the 200-km-long
fiber. The results were obtained using an optical ana-
lyzer. The curves correspond to the input power ranging
from 3 to 25.5 dBm. It is seen that the increase in the
input power results in a substantial broadening of the
base of the central peak. The broadening of the central
peak is within the analyzer resolution (0.1 nm).

The existing calculations of the SMBS threshold do
not take into account the SPM effect. We propose an
analytical model of SMBS evolution that takes into
account the SPM effect and is used to theoretically cal-
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
culate the critical power in long (L @ α–1) communica-
tion lines.

ANALYTICAL MODEL

We assume that the pump and Stokes waves propa-
gate along the positive and negative directions of the z
axis, respectively, in a fiber with the length L. In accor-
dance with the results from [3, 8], the differential equa-
tion for the spectral density of the number NS of the
Stokes photons is written as

(3)

where Pp(z, ν) is the spectral power density of the pump
radiation, g(ν) is the SMBS gain spectrum, and the
symbol ⊗  denotes the convolution of the spectral func-
tions.

d
dz
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Fig. 1. Plot of the output optical power Pout vs. the input
optical power Pin for the optical fiber with a length of
200 km.
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In the absence of the signal at the fiber exit, the solu-
tion of Eq. (3) is represented as

(4)

Then, the total power of the Stokes radiation at the
beginning of the fiber is represented as

(5)

where kB is the Boltzmann constant.
It is demonstrated in [9, 10] that, at a high pump

power, the SMBS spectrum can be approximated using
a linear combination of the Lorentzian and Gaussian
curves. To simplify the calculations, we assume that the
SMBS gain spectrum is approximated with the Gauss-
ian function

(6)

We also assume that the pumping is a series of
Gaussian pulses with the peak power Pp(ξ) and the rep-
etition period τ. It can easily be demonstrated that the
pump power spectrum is given by

(7)

where 〈ν 2〉ξ is the mean-square spectral width of a sin-
gle pulse.

It is demonstrated in the Appendix that the main
contribution to the integral in expression (5) is related
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× 1
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Fig. 3. Plot of pump-to-SMBS transformation efficiency vs.
the normalized mean-square width of the pump spectrum at
the beginning of the fiber.
to the values that Pp(z, ν) and g(ν) take in the vicinity
of the corresponding maxima. Therefore, the specific
types of spectral functions are not important. For sim-
plicity, we choose the Gaussian profiles.

In the absence of the pump depletion related to
SMBS, the pump power is given by Pp(z) =
Pp(0)exp{−αz}. The pump spectral width increases
with fiber length owing to SPM [6]:

(8)

Here, 〈ν 2〉0 is the mean-square spectral width of the
pump radiation at the beginning of the fiber.

In the Appendix, we perform a calculation using for-
mula (5) with allowance for expressions (4) and (6)–
(8). The final result is

(9)

where the pump-to-Stokes transformation efficiency is
given by

(10)

Here, χ = 〈ν 2〉0τ/Γ is the normalized mean-square width
of the pump spectrum and

Figure 3 shows the dependence Ψ(χ). In calcula-
tions, we employ the parameters presented in the table.

Let us use the definition of the critical SMBS power
from [3]: Pcrit = Pp(0) = PS(0). Taking into account the
power balance, we can use this definition only for the
solution derived disregarding the pump depletion
related to the backscattering. At Ψ = 1, the mean-square
width of the pump spectrum corresponding to the
threshold is χcr = 4.8 and the bit rate is Bcr = 680 Mbit/s.
The increase in the data rate leads to a sharp decrease in
the pump transformation efficiency, so that the SMBS
threshold cannot be reached at an arbitrary high power.
In this case, the nonlinear broadening of the pump spec-
trum dominates over the SMBS process. Thus, at a data
rate of greater than 1 Gbit/s and a relatively high power
of the signal (expression (10) is obtained at Pp(0) @
35 mW), we can neglect the Mandelstam–Brillouin
scattering in OFCS.

Squares in Fig. 3 show the values of Ψ calculated for
various bit rates of the data transmission in OFCS. To
estimate the mean-square spectral width of the Gauss-
ian pulsed pump radiation, we used the following for-

mula from [6]: 〈ν 2〉0 ≈ 2 ln2. Note that we overes-

timated the SMBS efficiencies owing to the following
reasons. First, the leading edges of the transmitted
pulses are steeper than the leading edge of the Gaussian
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pulse especially at low data transmission rates. Second,
in the case of a direct modulation of the laser diode
(source of the signal), its emission line exhibits a
chirped structure resulting in additional spectral broad-
ening. Therefore, even at a data transmission rate of
about 622 Mbit/s, the SMBS effect is relatively weak.

CONCLUSIONS

We propose an analytical model of SMBS in OFCS,
which takes into account the SPM effect, and present
the results of theoretical calculations. We demonstrate
that the power of the Stokes scattering substantially
decreases owing to the SPM-induced spectral broaden-
ing of the signal. Consequently, the pump transforma-
tion efficiency decreases with increasing width of the
radiation spectrum at the fiber entrance. We estimate
the upper limit of the efficiency for a conventional sin-
gle-mode fiber and a wavelength of about 1.5 µm for
various bit rates of data transfer. If the mean-square
spectral width χ = τ〈ν 2〉0/Γ is greater than 6 and the bit
rate is higher than 622 Mbit/s, SMBS is negligibly low
(the efficiency is less than 6.6%). In this case, the SPM-
induced nonlinear broadening dominates over the
SMBS process. The results obtained can be helpful in
developing modern fiber-optic systems for long-range
communications.

APPENDIX

Substituting expressions (4) and (6)–(8) into for-
mula (5) and changing variables (x = 1 – exp{–αξ}, y =

1 – exp{–αη}, and f = ν/ ) with allowance for

h(νp – νB)  ≈ kBT, 1 – exp{–αL} ≈ 1, and

 @ Γ/  ≈ 8.5 MHz, we find that

(11)
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We assume that the peak value of the exponent of
the second exponential function is much greater than
unity:

This condition is satisfied for the parameters pre-
sented in the table at χ = τ〈ν 2〉0/Γ ! 75. In this case, we
can use the Laplace method to estimate the integrals
with respect to variables f and x. At G @ 1, the main
contribution to the integral

corresponds to the points where the positive function
h(f, x) reaches maximum (i.e., in the vicinity of f = 0
and x = 1). We expand function h(f, x) into a Taylor
series in the vicinity of the maximum points and retain
the terms f 2 and x – 1. Then, we integrate with respect
to f and x. The final result (expression (9)) is written for
the case
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Abstract—The bleaching effect induced by a short microsecond laser pulse in a fluid layer is studied. In the
first approximation, the refractive and absorption indices are assumed to be linearly dependent on the fluid den-
sity. The similarity parameters are derived, the characteristics of the bleaching channel are studied as functions
of the heat-release parameter and Euler number, and the results are interpreted in terms of physical variables.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The increase in the transparency of strongly absorb-
ing fluids (including water) under the action of a short
laser pulse was first observed in [1] and studied experi-
mentally in [2–7]. Giant pulses with duration τ = 1.2–
1.3 µs, pulse trains (with total duration ∆t ~ 1 µs), and
single short pulses with duration τ ~ 10–10 s, wave-
lengths λ = 2.94 [3] and 2.79 µm [4], and an energy up
to 20 mJ have been studied. The transparency increased
by a factor of 20 in the experiments with a giant pulse,
by a factor of 40 for a single short pulse, and by a factor
of 540 for a pulse train [6]. It was shown in [8] that, for
τ ~ 1 µs (giant pulse) and λ = 2.94 µm, the hydrody-
namic mechanism (expansion of a strongly heated sub-
stance from the center of a laser spot and a decrease in
the absorption coefficient because of a decrease in the
density of irradiated substance) explains the experi-
mental data on water bleaching. This work is devoted to
the study of the characteristics of the bleaching channel
and ambient fluid (extreme velocities, densities, tem-
peratures, and pressures and width of the bleaching
channel) as functions of the parameters of the laser
pulse (its energy, transverse size, and duration) and
medium.

STATEMENT OF THE PROBLEM

A thin layer of a strongly absorbing fluid with thick-
ness L ≤ α–1 ~ 1 µm ! r0 (α is the absorption coefficient
and r0 is the pulse transverse size) is placed between
two ~1-mm-thick quartz plates [1, 6]. A radiation pulse
with the transverse intensity distribution g(r), the time
shape f(t), wavelength λ ~ 3 µm, and energy Ein on the
order of 1–10 mJ is incident perpendicularly on one of
the plates. A photodetector behind another plate mea-
sures the radiation intensity I and energy Eout transmit-
ted through the layer. The bleaching effect consists in
an increase in the medium transparency (transmittance)
1063-7842/04/4907- $26.00 © 20876
Ttr = Eout/Ein by one or more orders of magnitude with
an increase in the pulse energy. We assume that the
quantum-mechanical properties of water molecules
remain unchanged. It follows from the Lorentz–Lorenz
relation [9; 10, p. 67] that, in the leading approxima-
tion, the absorption coefficient and refractive index
depend linearly on the medium density; i.e., α ≈ α0ρ/ρ0
(Fig. 1).

Using the Maxwell equation for a nonlinear strongly
absorbing medium [11–14] and taking into account that
the pulse transverse size r0 far exceeds the layer thick-
ness L, one can obtain ordinary differential equations
for the radiation intensity I = EE*, and phase Φ (E =

exp(ikΦ) is the perpendicular component of aI

1

n,
 κ

0 1000
ρ, kg/m3

Fig. 1. Refractive n and absorption κ indices (lower curves,
absorption coefficient α = 4πκ/λ) as functions of medium
density ρ. The dashed lines are linear approximations n =
n0ρ/ρ0 and κ = κ0ρ/ρ0.
004 MAIK “Nauka/Interperiodica”
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slowly varying electric-vector component [13] and k =
2π/λ is the wave number)

(1)

The initial conditions are

(2)

where I0, α0 = 2kκ0, and n0 are, respectively, the inten-
sity, absorption coefficient, and refractive index at the
medium input z = 0.

We have found that, when obtaining the numerical
solution, the radiation intensity decay in the absorbing
medium obeys the exponential law at each z step; i.e.,
I(z + ∆z, r, t) = I(z, r, t)exp(–α(ρ)∆z). The resonance
phenomena are disregarded in this work. The density
perturbation can be found from the hydrodynamical
equations [15]. In our case, these are the complete
Navier–Stokes equations in the cylindrical coordinates.
An important role belongs to the equation of state for
water [16, 17], which was chosen here as a relationship
between the pressure p, density ρ, and internal energy ε
using the Helmholtz free energy F(ρ, T), where T is
temperature [18],

(3)

The equations for the medium were solved numeri-
cally by the large-particle method [19], which allowed
continuous computation without considering the dis-
continuity surfaces and lines for the required functions
(shock waves). The initial and boundary conditions for
the hydrodynamic parameters are

(4)

(5)

(6)

It follows from the law of conservation of the longi-
tudinal momentum component that, if L ! r0, the pres-
sure is constant along the longitudinal coordinate z and,
in the main approximation, the longitudinal velocity
component is identically equal to zero (w ≡ 0). Next we
consider a one-dimensional nonstationary problem
with two independent variables: coordinate r and time t.

Let us introduce the dimensionless parameters
through normalizing the time t to the pulse duration τ;
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the coordinate r to the exponential radius r0; the coordi-
nate z to the path length (layer thickness) L; the inten-

sity I to its characteristic value I00 = Ein/(π τ); the den-
sity ρ, pressure p, and temperature T to their critical val-
ues ρ∗  = 317.763 kg/m3, p∗  = 221.15 × 105 Pa, and T∗  =
647.27 K (water), respectively; the internal energy ε to
ε∗  = 2.026 MJ/kg; the velocity u to its characteristic
value u0 = r0/τ; and the dynamic viscosity µ to its value
µ0 = 6.44 × 10–5 kg/(m s) at the near-critical tempera-
ture T = 644 K. On the pulse time scale τ ~ 10–6 s, the
fluid undergoes acoustic turbulization (in a time on the
order of the time τa ~ L/a ~ 10–9 s of perturbation pas-
sage across the layer, where a ~ 1.5 × 103 m/s is the
sound velocity in fluid), and its transport parameters,
such as viscosity, diffusivity, and heat conductivity,
increase substantially. A comparison of the theoretical
and experimental dependences of transparency showed
that the coefficients of turbulent viscosity and heat con-
ductivity are several orders greater than the correspond-
ing molecular transport parameters. The dimensionless
equations include the following similarity parameters
(in addition to the initial ρ0/ρ∗ , p0/p∗ , and ε0/ε∗ ):

Here, Eu is the Euler number; Q is the heat-release

parameter; I00 = Ein/(π τ) is the characteristic radia-
tion intensity; Re and Pe are the Reynolds and Peclet
numbers, respectively; Pr = ν/χ is the Prandtl number;
ν is the kinematic viscosity coefficient; and χ is the
temperature conductivity coefficient of the medium (we
take Pr ≈ 1 for a turbulent medium). In the dimension-
less variables, the rate of heat release in the layer can be
written as

(7)

where Nα is the absorption parameter or optical thick-
ness of the layer, f(t) is a Gaussian pulse time shape [1]
(Fig. 2, curve II) or a linear shape up to τ/n (n = 2–5)
followed by a Gaussian decrease (Fig. 2, curve I), ∆z is
the layer effective thickness (introduced to take into
account the radiation absorption in an optically thick
medium).

Consider the initial Gaussian radiation transverse
distribution g(r) = exp(–r2). A numerical solution was
constructed using a step ∆r of 0.05r0 and the time step
∆t = 0.002–0.000125τ. The grid points covered the
region –0 ≤ r/r0 ≤ 400∆r/r0 = 20 and 0 ≤ t/τ ≤ 3.
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SOLUTIONS FOR A GIANT PULSE: OPTICALLY 
THIN LAYER

We first consider an optically thin layer with the ini-
tial transparency Ttr, 0 = 0.9, thickness L =
(1/α0)ln[1/Ttr, 0] = 0.0823 µm, and absorption parame-

1.0

0.5

f(
t)

0 3
t, µs

I

II

Fig. 2. Pulse time shape f(t) (dots and dashes are for the time
integrals (t)dt: (I) f(t) = C1t/τ at 0 ≤ t ≤ t1 = τ/n (n = 2–5,

C1 = 2n/[1/n + ], C2 = ln2/[1 – 1/2n]2 and f(t) =

0.5C1exp[–C2((t – t1)/τ)2] at t > t1; (II) f(t) = Cexp[–Ci((ti –

t1)/τ)2], where C = 2/[ (1/  + 1/ )], Ci = ln2/((t –

t1)/τ)2, i = 2 and t2 = 0.848τ for 0 ≤ t ≤ t1 = 1.273τ, and i =
3 and t3 =1.848τ for t > t1 [1, 6].
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π/C2( )

π C2 C3

1000

500ρ,
 k

g/
m

3

0 3
r, mm

1 2 3

Fig. 3. Water density ρ(r, t) at different instants of time: t =
(1) 0.72, (2) 1.08, and (3) 1.9 µs. The similarity parameters
are: Q = 47.47 (Ein = 15 mJ), Euler number Eu = 1.578,
absorption parameter Nα = 0.0334 (Ttr, 0 = 0.9), Reynolds
number Re = 5.222, Prandtl number Pr = 1, and pulse shape
f(t) I.
ter Nα = 0.0334 (absorption coefficient α0 = 1.28 ×
106 m–1 for λ = 2.94 µm). Let the area of laser spot be

s = π  = 2 × 10–7 m2 (r0 = 0.252 mm) and the pulse
duration τ = 1.2 µs. We are interested in the medium
and bleaching-channel parameters as functions of the
heat-release parameter in the range Q = 0–47.47 (Ein =
0–15 mJ) with fixed remaining parameters. The heating
process is characterized by a rapid rise in temperature T
and internal energy ε in the irradiated region and a
sharp maximum at the center. The fluid density in this
strongly heated region decreases monotonically (by
more than two orders of magnitude) up to t ~ 10τ ~
10−5 s. The pressure at the initial stage increases rapidly
to ~1 GPa (Table 1) to initiate fluid motion from the
center with a velocity on the order of u0 = 219 m/s.
After the velocity at the front of the perturbed fluid
region increases to ~10r0 in a time ~τ and exceeds the
sound velocity, a bow shock wave arises. A low-density
region formed by the pulse leading edge, where the
absorption coefficient decreases by more than an order
of magnitude, is a bleaching channel through which the
tail of the pulse energy passes [8]. The bleaching chan-
nel (transverse distributions ρ(r, t)) is shown in Fig. 3
for different instants of time in the interval 0–1.9 µs. In
Table 1, the transparency Ttr and the maximal values of
temperature Tm, pressure pm (at the center r = 0), veloc-
ity um = max[u(r, t)], and sound velocity am (r = 0) are
given as functions of pulse energy Ein or heat-release
parameter Q. The minimal values of density (at the cen-
ter at t = 1.9 µs) and the channel width on a level of
0.5α0 toward the pulse end ∆1 (t = 1.9 µs), and at the
middle of the pulse ∆2 (at t = 0.78 µs, when the energy
E(t) of emitted radiation is equal to one-half of the total
energy E = 0.5Ein) are also given in the table.

The densities ρ(r, t) at the pulse end (t = 1.9 µs) are
shown in Fig. 4 for the heat-release parameters Q =
3.17, 9.495, 28.48, and 47.47 (curves 1–4, respec-
tively). The bleaching channel expands and deepens
with an increase in Q. The interval ∆Q = 1.58–3.165 is
the threshold of the effect relative to the parameter Q
(absorbed laser energy αEin). The transparency Ttr
increases almost threefold (from 0.01 to 0.028),
whereas it changes by only a factor of 2.3 in the main
range of heat-release parameter Q from 3.165 to 47.47.
In the heat-release range considered, the channel width
increases severalfold, and the growth rate decreases
from ~100% (Q = 1.58) to almost zero (at Q = 47.47).

Note that the results presented in Table 1 can be con-
sidered, in physical variables, as functions obtained at a
fixed pulse energy Ein = 15 mJ for different absorption
coefficients in the range α0 = 4.267 × 104 m–1–1.28 ×
106 m–1, λ = 2.94 µm (Ein = 37.2 mJ, α0 = 1.720 ×
104 m–1–0.516 × 106 m–1, λ = 2.79 µm), and different
layer thicknesses L = [ln(1/Ttr, 0)]/α0 = 2.47–0.0823 µm
(L = 6.125–0.204 µm for λ = 2.79 µm). Another possi-
ble interpretation of the results in Table 1 is the follow-

r0
2
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Table 1.  Transparency Ttr; maximal temperature Tm, pressure pm, sound velocity am (at the center r = 0), and velocity um =
max[u(r, t)]; minimal density (at t = 1.9 µs and r = 0); the transverse size (radius) of the bleaching channel at the end ∆1 (t = 1.9 µs)
and middle ∆2 (t = 0.785 µs) of the pulse. Similarity parameters: heat-release parameter Q = 1.58–47.47 (Ein = 0.5–15 mJ); Euler
number Eu = 1.578; absorption parameter Nα = 0.0334 (Ttr, 0 = 0.9); Reynolds number Re = 5.222; Prandtl number Pr = 1; and pulse
shape f(t) I (absorption coefficient α0 = 1.28 × 106 m–1, wavelength λ = 2.94 µm, L = 0.0823 µm, r0 = 252 µm)

Ein, mJ 0.5 1 3 5 9 13 15

Q 1.58 3.165 9.495 15.82 28.48 41.14 47.47

Ttr 0.91 0.928 0.949 0.956 0.961 0.9637 0.9645

Tm, K 750 1345 3604 4370 4475 4552 4580

t, µs 1.427 1.536 1.438 1.267 1.382 1.421 1.751

pm, GPa 0.078 0.1953 0.5799 0.8233 1.142 1.362 1.468

t, µs 0.3714 0.3696 0.3024 0.2808 0.2554 0.2406 0.2400

am, m/s 1667 1748 1882 1943 2008 2044 2154

t, µs 0.311 0.247 0.178 0.149 0.122 0.118 0.264

um, m/s 99.5 187 338 418 520 591 624

t, µs 1.739 1.082 0.648 0.523 0.444 0.406 0.408

ρmin, kg/m3 208.2 90.66 42.79 39.31 39.24 37.39 34.56

∆1, mm 0.246 0.442 0.706 0.824 0.943 1.00 1.003

∆2, mm 0 0.134 0.362 0.451 0.542 0.599 0.619
ing: at a fixed absorption coefficient α0 = 0.516 ×
106 m–1 (λ = 2.79 µm) and water layer thickness L =
0.204 µm, pulse energy varies in the range Ein = 1.24–
37.2 mJ.

Let us fix the heat-release parameter Q = 47.47 and
absorption parameter Nα = 0.0334 and vary the Euler
number Eu in the range 0.1–10. In physical variables,
this test series can be interpreted as a variation of the
pulse transverse size r0 = 1.001–0.1001 mm with a
simultaneous change in the pulse energy Ein from 2.361
to 236.1 mJ or as a change in the pulse duration τ =
0.302–3.02 µs (r0 = 0.252 mm, Ein = 15 mJ). In Table 2,
the medium and bleaching-channel parameters are
given for various Euler numbers Eu = 0.1–10 and fixed
heat-release (Q = 47.47) and absorption (Nα = 0.0334)
parameters.

The channel relative radius at the middle ∆2 of the
pulse and at its end ∆1 are shown in Fig. 5 as functions
of the Euler number (curves 1, 2; parameters Q = 47.47,
Nα = 0.0334, Re = 5.222). A bleaching channel pro-
duced by a pulse with Gaussian transverse intensity dis-
tribution is wider than the initial pulse size by a factor
of two to three even at the middle of the pulse duration
(for Eu = 0.5–10). If a second (even wider) pulse is
emitted at the subsequent time interval, its transmit-
tance can be close to unity. The particular value of the
transparency function for the second pulse clearly
depends on its transverse size, duration, and on the
medium absorption coefficient (radiation wavelength).
As the Euler number decreases from 0.5 to 0.1, the
bleaching effect weakens drastically and disappears as
Eu  0.
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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We next consider the situation where the initial
transparency is low, Ttr, 0 = 0.02 (Fig. 3 in [6]), τ =
1.2 µs, r0 = 0.252 mm, α0 = 1.28 × 106 m–1 (λ =
2.94 µm), L = 3.056 µm, and the pulse time shape has
the form II. In [8], a satisfactory agreement (~10%)
with the experimental data was attained for this variant
in a model of a one-dimensional (thin) layer with Q =
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Fig. 4. Water density ρ(r, t) for different values of similarity
parameters: Q = (1) 3.17, (2) 9.5, (3) 28.5, and (4) 47.5
(Ein = 1, 3, 9, and 15 mJ, respectively) for time t = 1.9 µs.
Euler number Eu = 1.578, absorption parameter Nα =
0.0334 (Ttr, 0 = 0.9), Reynolds number Re = 5.222, Prandtl
number Pr = 1, and pulse shape f(t) I.
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Table 2.  The extreme values of the medium parameters: maximal temperature Tm, pressure pm, density ρm, sound velocity
am (at r = 0), and fluid velocity um = max[u(r, t)] at the corresponding instants of time t; the transverse size of the bleaching
channel at the end ∆1 (t = 1.5 µs) and middle ∆2 (t = 0.785 µs) of the pulse; the integrated layer transparency Ttr = Eout/Ein;
and the minimal density ρmin (t = 1.5 µs) as functions of the Euler number Eu = p*/ρ*u0 = 0.1–10 for the heat-release parameter

Q = αEin/(ρ0ε*π ) = 47.47 (I00 = 6.25 × 1011 W/m2) and absorption parameter Nα = 0.0334 (Ttr, 0 = 0.9); pulse shape f(t) I

Eu 0.1 0.5 1.578 3 5 10

r0, µm 1001 447.7 252 182.8 141.6 100.1

Ein, mJ 236.1 47.2 15 7.87 4.72 2.36

Ttr 0.9326 0.9536 0.9645 0.9720 0.9760 0.9795

Tm, K 4600 4571 4563 4511 4487 4458

t, µs 1.627 1.378 1.103 1.090 0.9672 0.8484

pm, GPa 3.860 2.483 1.468 1.071 0.8388 0.5956

t, µs 0.288 0.2856 0.2400 0.2160 0.192 0.180

ρm, kg/m3 1315 1252 1182 1176 1151 1121

t, µs 0.9120 0.8736 0.7176 0.4776 0.3120 0.2760

am, m/s 2630 2466 2154 2036 1987 1820

t, µs 0.288 0.262 0.264 0.276 0.288 0.288

um, m/s 975.4 720 624 534 481 410

t, µs 0.624 0.454 0.408 0.371 0.336 0.300

ρmin, kg/m3 230.1 126.4 52.02 31.45 17.75 13.33

∆1, mm 2.11 1.33 0.90 0.735 0.615 0.525

∆1/r0 2.108 2.970 3.571 4.020 4.343 5.25

∆2, mm 0 0.851 0.619 0.501 0.421 0.330

∆2/r0 0 1.90 2.456 2.740 2.973 3.30

r0
2

0–18.96 (Ein = 0–6 mJ, Eu = 1.578, Nα = 0.318). The
heat source was taken to be q = Qg(r) f (t). The agree-
ment can be improved by the introduction of an effec-
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Fig. 5. Relative (on a level of 0.5α0) radius of the bleaching
channel at the (1, 3) end (∆1/r0) and (2, 4) middle (∆2/r0) of
the pulse: (1, 2) optically thin water layer with Ttr, 0 = 0.9
(Nα = 0.0334) and (3, 4) optically thick layer with Ttr, 0 =
0.02 (absorption parameter Nα = 0.318).
tive absorption layer ∆z, q = Qg(r) f (t)exp[−Nαρ(r,
t)∆z], to take into account the variation of heat-release
intensity with absorption-layer depth. In Fig. 6, the
experimental (+ signs in [6]) and theoretical (curve 1)
results are presented for the effective thicknesses of
absorbing layer ∆z = ∆zphys/L = 0, 0.13, 0.28, 0.30, and
0.35 (Q = 1.6, 3.17, 9.5, 15.8, and 22.2, respectively;
Ein = 0.5–7 mJ). The discrepancy with the experimental
data is ~1%. In the range Q ≈ 16–48, the heat-source
function q(r, t) = Qg(r) f (t){1 – exp[–Nαρ(r, t)]}/Nαρ(r, t)
(Fig. 6, curve 2) provides a good agreement (~1%) with
the experimental data. The expression for q(r, t) was
obtained by integrating the heat-source function over
the whole layer thickness under the assumption that the
density was constant. Therefore, the density in this case
is a certain effective quantity averaged over the width of
the strongly absorbing layer. Note that the pulse time
shape has little effect on the transparency (Fig. 6,
curve 3). The difference between the functions f(t) I and
II, whose maxima are separated by τ, i.e., by the char-
acteristic pulse duration, is less than 10% in the range
Q = 9.5–50. The extreme parameters of the medium,
maximal temperature Tm and pressure pm, minimal den-
sity ρmin at the corresponding instants of time t (µs);
integrated layer transparency Ttr = Eout/Ein; and the
bleaching-channel width are given in Table 3 for differ-
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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ent values of heat-release parameter Q = 1.6–50 (Eu =
1.6; Nα = 0.318; Ttr, 0 = 0.02). The medium and channel
parameters as functions of the Euler number Eu = 0.1–
10 are given in Table 4 for a fixed Q = 47.47 (Nα =

0.4

0.2

T t
r

0 0.008
Ein, J

1 3

2

3
2

Fig. 6. Transparency Ttr of a water layer vs. heat-release
parameter Q (i.e., pulse energy Ein). The initial transparency
Ttr, 0 = 0.02 (absorption parameter Nα = 0.318), Euler num-
ber Eu = 1.578, Reynolds number Re = 5.222, and the
Prandtl number Pr = 1. Notation: (+) experimental data,
(1) heat-source function q = Qexp[–r2] f (t)exp[–Nαρ(r,

t)∆z] with the pulse shape f(t) II; (2) q = Qexp[–r2] f (t){1 –
exp[–Nαρ(r, t)}/Nαρ(r, t) with f(t) II; and (3) the same with
f(t) I.
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0.318; Ttr, 0 = 0.02). The transverse sizes of the bleach-
ing channel at the end and middle of the pulse are given
as functions of the Euler number in Fig. 5 (curves 3, 4).
At the second half of the pulse, the transverse size of the
channel exceeds the transverse size of the bleaching
pulse by a factor of 1.3–2.5 (in the range Eu = 0.5–10).
The transverse size of the bleaching channel increases
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Fig. 7. The p–ρ trajectories of different points in fluid dur-
ing the process of heating: r = (1) 0, (2) 63, (3) 252 (r0),
(4) 315, and (5) 378 µm; (6) binodal and (*) critical point.
Parameter Q = 3.17 (Ein = 1 mJ, τ = 1.2 µs), time t = 3.2 µs,
Euler number Eu = 1.578, pulse shape f(t) II, and initial
transparency Ttr, 0 = 0.02 (absorption parameter Nα =
0.318).
 
Table 3.  The maximal temperature Tm, pressure pm, and the minimal density ρmin at the corresponding instants of time
t (µs); the transparency Ttr = Eout/Ein; the width of bleaching channel at the end ∆1 (t = 2.5 µs) and middle ∆2 (t = 1.62 µs)
of the pulse for the heat-release parameters Q = 1.58–47.47. The Euler number Eu = 1.578; the absorption parameter Nα =
0.318 (initial transparency Ttr, 0 = 0.02); the heat-release function q(r, t) = Qexp[–r2] f(t)exp[–Nαρ(r, t)∆z] for Ein = 0.5–7 mJ;
q(r, t) = exp[−r2] f(t)[1 – exp(–Nαρ(r, t))]/Nαρ(r, t) for Ein = 9–15 mJ; f(t) has the form II

Ein, mJ 0.5 1 3 7 9 13 15

Q 1.58 3.165 9.495 22.15 28.48 41.14 47.47

Ttr 0.063 0.102 0.218 0.333 0.369 0.431 0.449

Tm, K 797 1100 2273 4251 4329 4435 4469

t, µs 2.203 2.347 2.352 2.119 2.143 2.107 2.131

pm, GPa 0.0862 0.1326 0.260 0.3985 0.4198 0.489 0.515

t, µs 1.675 1.723 1.536 1.387 1.363 1.291 1.246

ρmin, kg/m3 213 140.1 68.4 53.96 55.38 54.02 56.2

t = 2.5 µs

∆1, mm 0.260 0.315 0.475 0.610 0.655 0.760 0.765

∆2, mm 0 0 0.181 0.310 0.345 0.415 0.441

um, m/s 117.9 164.4 261 329.6 344.2 383.7 397.7

t, µs 2.419 2.203 1.872 1.651 1.627 1.531 1.529

am, m/s 1600 1604 1616 1711 1711 1712 1858

t, µs 1.056 1.008 0.912 1.723 1.627 1.435 1.361
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Table 4.  The maximal temperature Tm, pressure pm, and the minimal density ρmin (t = 2.5 µs) at the corresponding instants
of time t; the integrated layer transparency Ttr = Eout/Ein; the width of bleaching channel at the end ∆1 (t = 2.5 µs) and middle
∆2 (t = 1.62 µs) of the pulse for the Euler numbers Eu = 0.1–10. The heat-release parameter Q = 47.47; the absorption param-
eter Nα = 0.318 (initial transparency Ttr, 0 = 0.02); the heat-release function q(r, t) = exp[–r2]f(t)[1 – exp(–Nαρ(r, t))]/Nαρ(r,
t); f(t) has the form II

Eu 0.1 0.5 1.6 3 5 10

Ein, mJ 236.1 47.2 15 7.87 4.72 2.36

Ttr 0.118 0.2864 0.449 0.5316 0.608 0.6866

Tm, K 4442 4473 4469 4465 4491 4462

t, µs 2.419 2.314 2.131 2.269 2.119 1.976

pm, GPa 1.881 0.8842 0.515 0.381 0.2954 0.2158

t, µs 1.507 1.344 1.246 1.219 1.152 1.104

ρmin, kg/m3 279.5 119.8 56.2 32.68 20.08 9.922

r0, µm 1001 447.7 252 182.8 141.6 100.1

∆1, mm (2.5 µs) 1.725 1.10 0.765 0.610 0.50 0.40

∆1/r0 1.723 2.457 3.036 3.336 3.531 4.00

∆2, mm (1.62 µs) 0.365 0.582 0.441 0.364 0.310 0.2455

∆2/r0 0.3646 1.30 1.75 1.991 2.189 2.450
as the Euler number increases for the optically thin and
thick layers. At Eu  0, the bleaching effect vanishes.

After the pulse (or at its end stage with a relatively
low energy), the fluid curve in the p–ρ–ε phase dia-
grams intersects a binodal (fluid–vapor equilibrium
curve) and a spinodal (absolute-instability curve, after
which the state of a superheated fluid or supercooled
vapor is impossible). The situations corresponding to
the onset of vapor–fluid bubble formation are shown in
the p–ρ diagram in Fig. 7: (1–3) droplets start to con-
dense in a supercooled vapor, and the density increases;
(4) fluid completely transforms into vapor after reach-
ing the critical point, and the density decreases; and
(5) vapor bubbles appear in a superheated fluid, and the
density decreases. The temperature corresponding to
curves 1–3 may slightly increase (more precisely, the
decrease in temperature is decelerated) after intersect-
ing the binodal (or spinodal), while, for curves 4 and 5,
it is accelerated. Subsequently, the pressure and tem-
perature in the perturbed vapor–fluid region continue to
decrease, and the density increases. Fluid returns to the
state that is close to its initial state.

Analysis showed that, for a single short pulse (τ ~
10–10 s), the hydrodynamic bleaching mechanism is of
little importance; the density variations are small,
although the variations of pressure and internal energy
(temperature) are significant. As in the case of a giant
pulse (τ ~ 10–6 s), the evaporative mechanism is inoper-
ative. The bleaching mechanisms based on the absorp-
tion saturation, band broadening, and line shift are also
discussed in the literature ([6, 7]). Future studies will
reveal which of these effects is dominant for single
pulses.
CONCLUSIONS

The bleaching channel expands and deepens (as
regards the transverse distribution of density or absorp-
tion coefficient) as the value of heat-release parameter
Q increases when the remaining similarity parameters
are fixed. The increase in the channel width slows down
with increasing Q.

The transverse size of the bleaching channel
increases with increasing Euler number Eu (at fixed
values of the heat-release parameter Q and other
parameters) for both the optically thin (small absorp-
tion parameter, Nα ! 1, and initial transparency Ttr, 0 ~
1) and thick (Nα ~ 1, Ttr, 0 ! 1) layers. In the second half
of the pulse, the bleaching channel is several times
wider than the transverse size of the laser pulse. As the
Euler number Eu decreases from 0.5 to 0.1, the bleach-
ing effect rapidly vanishes.

For single short pulses (τ ~ 10–10 s, Eu ! 1), the den-
sity perturbations are much smaller than for a giant
pulse (τ ~ 10–6 s, Eu ~ 1). The hydrodynamic bleaching
mechanism is inoperative in this case.
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Abstract—The effect of the selective wet chemical etching of the emitting surface on the directivity pattern of
radiation in the plane normal to the p–n junction is studied for InGaP/GaAs lasers with InGaAs quantum wells.
It is found by atomic-force microscopy that the cylindrical lens (converging or diverging, depending on the type
of etchant) is self-formed on the emitting surface due to the different etching rate of wide-gap layers (InGaP)
and active layers (GaAs, InGaAs) of the lasers. By adjusting the corresponding etching time, the aperture angle
of the laser radiation pattern in the plane normal to the p–n junction can be changed in the range of 57°–82° at
the initial aperture angle at the half maximum level of 6°. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Semiconductor laser diodes (LDs) are now widely
used in different electronic and optoelectronic applica-
tions [1]. Since the size of the emitting surface of LDs
in the direction normal to the p–n junction is compara-
ble with the emission wavelength, the divergence of LD
radiation in this plane is quite large. The reduction of
beam divergence is a vital problem because it deter-
mines the efficiency of coupling of a LD with various
optical devices. To date there are different ways for
changing the aperture angle of the radiation pattern.
Usually, different collimator units based on cylindrical
lenses are employed to focus LD radiation, as well as
for its injection into optical fibers, which complicates
the design of optoelectronic devices and makes their
adjustment difficult.

In general, the divergence of LD radiation in the
plane normal to the p–n junction is determined by a dif-
fraction limit and, hence, by the thickness of the optical
waveguide. In the methods of directivity-pattern modi-
fication described in [2–6], the aperture angle decrease
is attained by increasing the total thickness of the
waveguide layer. There are also methods for the modi-
fication of the directional radiation pattern in the plane
normal to the p–n junction without increasing the laser-
structure thickness. In these methods, the radiation
injected into the substrate through the bottom thin con-
fining layer is used as the output laser radiation [7, 8].

In this paper, we suggest a simple and practically
feasible way to modify the directivity pattern of LDs
using the selective etching of the LD emitting surface in
the solution, which etches the materials of confining
waveguide layers and active layers of the lasers at dif-
ferent rates, which results in self-formation of the cylin-
1063-7842/04/4907- $26.00 © 20884
drical lens (converging or diverging, depending on the
type of etchant) on the emitting surface. We have stud-
ied experimentally the effect of selective chemical etch-
ing on the morphology of the emitting surface of
InGaP/GaAs LDs with InGaAs quantum wells (QWs)
and the LD directivity pattern in the plane normal to the
p–n junction by adjusting the corresponding time of
etching.

EXPERIMENTAL

We studied GaAs LDs with two In0.49Ga0.51P
waveguide-confining layers and two In0.2Ga0.8As QWs.
The schematic representation of the heterostructure is
shown in Fig. 1. The structures were grown using atmo-
spheric pressure metal–organic chemical vapor deposi-
tion (AP-MOCVD) [9]. These structures were used for
fabrication of multimode LDs with a stripe width of
100 µm. In order to make possible the modification of
the emitting area by wet chemical etching, no antire-
flection coating was deposited onto the LD faces. The
radiation wavelength of laser diodes was 0.987 µm at
300 K, and the aperture angle of the directivity radia-
tion pattern at the half-maximum level was 66°. The
LDs under study have the following characteristics:
power 0.38 W at a pumping current of 1 A, a threshold
current of 0.24 A, and a quantum efficiency of 41%.

In order to form the cylindrical converging lens on
the front face of the LD, the selective etchant HCl +
KMnO4 (1000 : 3) (A) was used.

The etching rate of InGaP with this etchant was
0.4 µm/min. Etching rate calibration was carried out by
a standard method using etching of the step in a uni-
form InGaP/GaAs epitaxial layer 0.6 µm thick. Part of
004 MAIK “Nauka/Interperiodica”
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the structure was covered by chemically stable varnish,
and the sample was immersed in the etchant for a cer-
tain specified time so that the height of the etched step
was about 100 nm according to preliminary estima-
tions. After that, the varnish was removed by boiling in
acetone, and the height of the etched step was measured
by atomic-force microscopy (AFM). It was found that
this etchant does not affect GaAs; in particular, after
sample exposure in the solution for 0.25 min, no step on
the sample surface was found by AFM.

LDs were completely immersed in the solution for a
preset time and then were rinsed with distilled water. It
should be noted here that LDs continued to lase after
etching and their parameters specified above were prac-
tically unchanged if the etching time did not exceed a
certain limit, whereupon LDs degraded (their lasing
was not observed any longer).

In order to form a cylindrical diverging lens on the
front laser face, the selective etchant (B) H3PO4 +
H2O2 + H2O (1 : 8 : 1) was used. In this solution the
etching rate for GaAs was 4 µm/min, while for InGaP it
was an order of magnitude lower.

The morphology of the etched surface of LDs was
studied with an atomic-force microscope TopoMetrix
TMX-2100 Accurex in a contact mode. V-shaped Si3N4
cantilevers with pyramidal probes were used with a
radius of the tip curvature of about 50 nm and a ratio of
probe height to the base width (aspect ratio) of 1 : 1.

The aperture angle of the directivity radiation pat-
tern of LDs in the plane normal to the p–n junction was
measured using a motorized goniometric setup. An LD
was installed on a goniometric head, which was rotated
using a stepping motor. The aperture angle of the detec-
tor was 0.5°. The intensity of LD radiation was mea-
sured by a Si photodiode using the lock-in technique
with lock-on detection. Modulation of LD radiation
intensity was accomplished by modulating the pump-
ing current with rectangular pulses.

RESULTS AND DISCUSSION

The profiles of the emitting surface of LDs after
selective etching are shown in Fig. 1. Etched wave-
guide cladding layers and the active region of LDs are
clearly seen in these profiles. Selective chemical etch-
ing was previously used to determine the layer thick-
ness of the laser structure by AFM [10]. It is evident
from Fig. 1 that the thickness of the cladding
waveguide and active layers of LDs are in a good agree-
ment with the values specified before growth of the het-
erostructure.

On the emitting surface, the profile in the shape of
either a converging or a diverging lens is formed
depending on the type of etchant used. Imperfections
observed in the surface profiles are related to etching
nonuniformities and irregularities, because the etchants
used possess no polishing effect. The etchant (A) is
more selective than (B), as follows from data of mea-
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
surement of the etching rates for different materials
presented in the previous section. It is confirmed by the
AFM data shown in Fig. 1: the steps corresponding to
InGaP/GaAs heterojunctions in the profiles 1–3 are
more steep than in the structure treated with etchant (B)
(curve 4). In this case, the less selective etchant is pref-
erable since the smoother profile 4 is closer to the
desired result, i.e., formation of the cylindrical surface.

As is evident from Fig. 1, after etching for 7.5 s, the
height difference at the InGaP/GaAs interface is equal
to 600 nm. Further etching results in an insignificant
change in the height difference, which is due to the hin-
dering of mass transport in the groove at the site of the
etched InGaP layer that causes equalization of the etch-
ing rates of GaAs and InGaP.

The angular dependencies of the intensity of LD
radiation are shown in Fig. 2 for different times of etch-

Z,
 n

m

0
1000

X, nm

500

1000

1500

2000

0 500 1500 2000 2500

1

2

3

4

InGaP
680 nm

GaAs
780 nm

InGaP
680 nm

QWS

Fig. 1. Surface profiles of the emitting area of the laser
diodes in the direction normal to the p–n junction after
selective etching (1–3) in etchant (A) and (4) in etchant (B).
Etching time te = (1) 7.5, (2) 15, (3) 30, and (4) 3 s.
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Fig. 2. Distribution of the intensity of the far-field radiation
over the plane normal to the p–n junction at different times
of etching of the laser diode (1–4) in etchant (A) and (5) in
etchant (B). Etching time te = (1) 0, (2) 7.5, (3) 15, (4) 30,
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ing. After etching for 7.5 s, the aperture of the directiv-
ity pattern at the half-maximum level decreased by 7°
(Fig. 3). Further etching causes only a negligible
change in the aperture angle. As follows from Fig. 1,
the greatest change in the emitting area configuration is
observed after the first etching; further etching negligi-
bly affects the configuration of the active area and, cor-
respondingly, the directivity pattern. After etching for
30 s, the aperture angle of the directivity pattern was
reduced by approximately 10°. After etching for 45 s,
no lasing was observed in LDs, which is probably
related to degradation of the laser structure.

After the treatment of the laser structure in the
etchant (B), a broadening of the directional radiation
pattern to 82° was observed (Fig. 2). Thus, selecting the
appropriate etchant, the aperture of the directivity pat-
tern can be both broadened and narrowed. The narrow-
ing of the directivity pattern is of the most practical
interest. Further optimization of the etchant composi-
tion and etching procedure can probably result in more
substantial narrowing of the directivity radiation pat-
tern of LDs in the plane normal to the p–n junction.

The special feature of the approach described here
for modification of the directivity pattern of LDs is that
the required shape of the emitting surface is obtained as
a result of self-formation. If the external cylindrical
lens is used for LD radiation focusing, the axis of the
lens should be aligned with the emitting surface of the
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Fig. 3. Dependence of the aperture angle of the directivity
radiation pattern on the time of etching.
LD, and the planes of the lens axis and the p–n junction
should be parallel, which requires fine adjustment. If
selective etching is used, the specified alignment is pro-
vided automatically, which is undoubtedly an advan-
tage of this method.

CONCLUSION

Thus, in this paper we showed that it is possible to
control the aperture of the directional radiation pattern
of the semiconductor laser by formation of the cylindri-
cal lens on their emitting surface using selective wet
etching.
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Abstract—An efficient and rigorous numerical method is developed for numerical analysis of resonators of
coaxial gyrotrons used for plasma heating, drag current generation, and for other purposes in controlled ther-
monuclear fusion facilities with magnetic confinement. Results obtained may be used to simulate operation of
coaxial gyrotrons, to optimize their resonators, and to develop efficient software intended for studying the phys-
ics of coaxial gyrotrons and for their design. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Current progress in controlled thermonuclear fusion
(CTF) largely depends on advances in modern techni-
cal physics and technology. In particular, the develop-
ment of high-power millimeter-wave sources is very
important for the improvement of systems of electron
cyclotron resonance heating (ECRH) of plasma in mag-
netic plasma confinement installations. Millimeter-
wave radiation can be used not only for additional heat-
ing of the plasma, but also for generating drag currents,
for igniting the thermonuclear reaction and controlling
its stability, and so on [1–3]. Millimeter-wave radiation
will be widely used for many purposes in the most sig-
nificant project today in the CTF field—the Interna-
tional Thermonuclear Experimental Reactor (ITER).

ECRH systems employ gyrotrons as sources of mil-
limeter-wave radiation. To make them simpler and to
reduce their cost to an admissible level, it is necessary
for one gyrotron to produce about 2 MW of continuous-
wave (cw) power (pulses longer than 10 s) at a fre-
quency in the range from 140 to 200 GHz, frequency
tuning being very desirable [4].

Gyrotrons with traditional resonators in the form of
a cylindrical waveguide that are being developed under
the ITER project have attained levels of 1 MW at
170 GHz in the cw mode [5, 6]. However, increasing
the power in this type of gyrotrons faces significant
engineering problems mostly due to overheating of res-
onator walls, too high competition between modes, and
the effect associated with the space charge of the elec-
tron beam. These difficulties can successfully be over-
come in new-generation gyrotrons, which use coaxial
resonators with a corrugated inner conductor [7–9].

Presently, the most extensive experimental and the-
oretical research into gyrotrons with coaxial resonators
is being conducted at the Karlsruhe Research Center
1063-7842/04/4907- $26.00 © 20887
(Germany) [8, 9], Institute of Applied Physics (Nizhni
Novgorod, Russia) [10], and Massachusetts Institute of
Technology (United States) [11]. A record-high output
power of about 2.2 MW attained in gyrotrons of this
type with an efficiency of 28% has been reported in
[12]. The pulse length was 0.8 ms at a pulse repetition
rate of 1 Hz. The coaxial gyrotron operated in the
TE31, 17 mode at a frequency of about 165 GHz. High-
frequency and low-frequency spurious oscillations
were also found. The main tasks in the development of
coaxial gyrotrons for CTF installations are to increase
the pulse length, decrease the heat load on the inner
conductor, and improve the mode purity. To efficiently
cope with these challenges, the designer needs new reli-
able information about the mode competition scenarios
and about the loss in the inner conductor.

Until recently, the parameters of coaxial gyrotron
resonators were calculated in terms of a simplified
impedance model of the corrugated inner conductor
[13–15]. This model replaces the corrugated inner con-
ductor of the coaxial resonator (Fig. 1) with an equiva-
lent circular impedance smooth conductor. The equiva-
lent surface impedance depends on the corrugation
parameters, which accounts for the effect of corruga-
tion. The methods for defining the equivalent imped-
ance and the corresponding expressions can be found in
[13–15]. The impedance model is simple and conve-
nient for calculations. It was used to assess and opti-
mize a number of experimental versions of coaxial
gyrotrons. However, it is difficult to outline the applica-
bility limits of this model. A commonly used validity
criterion for the impedance approximation in the theory
of coaxial gyrotrons is the condition s < πRi/m, where
s = 2πRi/N, N is the number of corrugations on the inner
conductor, m is the azimuthal index of the fundamental
space harmonic, and Ri is the radius of the inner con-
004 MAIK “Nauka/Interperiodica”
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ductor [13–15]. This condition requires that the corru-
gation period be smaller than the azimuthal period of
the fundamental space harmonic. Approximate calcula-
tions were compared with the rigorous electrodynamic
analysis for a rectangular waveguide structure with a
periodic array on one side [16, 17]. It was shown that,
under the above condition, the impedance model yields
a propagation constant with a good relative accuracy
(~1%), although it is far from providing small ampli-
tudes of higher-order spatial harmonics, which are dis-
regarded in the framework of the impedance approxi-
mation. As a result, the field near the corrugated sur-
face, calculated within the impedance approximation,
may significantly differ from the true one. Another seri-
ous drawback of the impedance model is that it is inap-
plicable for describing degenerate modes and reso-
nance conditions. For example, for a mode with azi-
muthal index m = N/2, the impedance approximation
may predict incorrect field values not only near the cor-
rugated surface, but also far from it, because radial field
distributions of the fundamental and first spatial har-
monics in this case are identical.

The above drawbacks of the impedance model may
cause serious mistakes in optimizing the resonators of
coaxial gyrotrons. Selective properties of the coaxial

Ri

R0 d

ϕL

ϕS

Fig. 1. Cross section of a coaxial gyrotron resonator.

~3°
~1.5°

~1°
R0(z)

Z

1

0

Ri(z)

Fig. 2. Typical geometry of a coaxial gyrotron resonator
(1 is the critical cross section).
resonator rely on the difference in behavior of the
eigenvalues χ of different modes versus the resonator
external-to-internal conductor radius ratio C = R0/Ri. If
C varies along the resonator (Fig. 2), the values of
dχ/dC are different for different modes, which is used
for their selection. Because the operating modes of
high-power gyrotrons are characterized by high azi-
muthal and radial indices, the total relative longitudinal
eigenvalue variations ∆χ/χ that provide the mode selec-
tion are very small (about 0.1 to 0.3%). Thus, the error
(~1%) of the impedance approximation does not guar-
antee that the value of dχ/dC calculated for competing
modes is sufficiently accurate to keep the relative error
in the estimated eigenvalue much smaller than the total
relative eigenvalue variation ∆χ/χ along the resonator.
Such an accuracy (<0.01%) can only be attained in the
framework of a rigorous electrodynamic approach.

A rigorous method for analyzing coaxial azimuth-
periodic structures was developed in [18] for designing
magnetron resonators. Later, it was further developed
and applied to coaxial gyrotrons [19]. This method pro-
vides a significantly higher accuracy, especially for
modes with moderately high azimuthal and radial indi-
ces. However, its error increases with the radial and azi-
muthal indices. The idea to develop and apply stable
direct numerical methods for solving a system of inte-
gral equations (SIE) of the first kind to microwave
radiophysics problems was proposed and mathemati-
cally substantiated in [20–24]. A rigorous electrody-
namic analysis of a coaxial resonator with a corrugated
inner conductor, which is proposed in this paper, relies
on direct numerical methods for solving the SIE of the
first kind, to which the corresponding boundary value
problem is equivalently reduced [25]. In our opinion,
this approach provides a reasonable trade-off between
the complexity of analytical transformations on the one
hand and the convergence and stability of numerical
solutions on the other. A similar rigorous electrody-
namic approach was earlier applied to analyze a rectan-
gular waveguide array [16, 17], finite-length open over-
size arrays [26–28], and microstrip lines [29, 30]. In all
these cases, the numerical results exhibited good con-
vergence and stability for a sufficiently short machine
time.

The paper is arranged as follows. Section 1 formu-
lates the initial boundary value problem for the Helm-
holtz equation and equivalently reduces it to an integral
equation of the first kind with a logarithmic singularity.
Section 2 equivalently reduces the integral equation of
the first kind with the logarithmic singularity to a SIE
of the first kind under an additional condition and devel-
ops direct numerical methods for the SIE. Section 3 pro-
vides examples of practical calculations. The results are
compared with those obtained within the impedance
approximation. It is shown that the error in the esti-
mated dχ/dC or ∆χ/χ along the resonators of coaxial
gyrotrons that are being designed for heating plasma in
the ITER and other magnetic confinement facilities
may be as high as 50% or above, which may cause seri-
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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ous errors in predicting the mode competition scenario
and in optimizing parameters of resonators of coaxial
gyrotrons (also see [31]). The conclusion summarizes
results of the study.

1. FORMULATION OF THE PROBLEM 
AND DERIVATION OF THE BASIC INTEGRAL 

EQUATION

The resonator of a coaxial gyrotron has the form of
a segment of a tapered waveguide. Its cross section is
illustrated in Fig. 1. Simulations usually represent the
field in each cross section as a superposition of several
modes whose characteristics locally depend on the
parameters of the cross section, thus disregarding the
interaction between different modes due to the longitu-
dinal nonuniformity. Therefore, the field structure in
each cross section of the resonator is calculated inde-
pendently under the assumption that it is the same as in
an infinite waveguide of the same cross section. This is
a traditional and rather efficient approach for tapered
waveguides [32]. Simulation of one resonator usually
requires from 300 to 400 cross sections. These results
are further used in solving the problem of excitation of
the resonator by an electron beam.

Thus, the key problem in simulating resonators of
coaxial gyrotrons is the calculation of the propagation
constants and the field structure of natural waves of an
infinite waveguide whose cross section is the same as
that of the coaxial resonator.

As is known, natural waves of a regular hollow
waveguide of an arbitrary cross section can be repre-
sented as a superposition of TE and TM modes. We will
further consider the TE modes, because they are either
the operating modes or the most dangerous spurious
modes in the coaxial gyrotron.

All components of an arbitrary TE mode can be
expressed in terms of one function Ψ(r, ϕ) (membrane
function) [32], which is proportional to Hz:

where r and ϕ are the cylindrical coordinates; R0 is the
radius of the outer conductor; k = 2π/λ is the wave num-
ber; λ is the wavelength; kz is the transverse wave num-

ber; and χ = R0  is the normalized transverse
wave number, which depends on the cross section
geometry alone (we will further call it the eigenvalue in
keeping with the common terminology of coaxial
gyrotrons); phase factor exp[i(kzz – ωt)] factor is omit-
ted.

Er ikR0
2/r( )∂Ψ/∂ϕ , Eϕ ikR0

2∂Ψ/∂ϕ ,–= =

Ez 0,=

Hr ikzR0
2∂Ψ/∂r, Hϕ ikzR0

2/r( )∂Ψ/∂ϕ ,= =

Hz χ2Ψ,=

k2 kz
2–
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The membrane function for TE modes satisfies the
equation

(1)

where ∆⊥  = (1/r)(∂/∂r)(r∂/∂r) + (1/r2)∂2/∂ϕ2, under the
Dirichlet boundary condition

(2)

on the cross section boundary.
Let us introduce the notation C = R0/Ri and C ' =

R0/(Ri – d). Here, Ri is the radius of the corrugated inner
insert and d is the corrugation depth. In the region
above the corrugations (Ri < r < R0), the membrane
function can be represented as a superposition of space
harmonics

(3)

where Gn = (a, b, c) = ( (a)Yν(c) –

(a)Jn(c))/( (a) (b) – (a) (b)); kn = m + nkS;
kS = 2π/ϕS = N; ϕS = 2π/N is the angular corrugation
period; m is the azimuthal index of the mode; Jν(x) and
Yν(x) are the Bessel and Neumann functions, respec-
tively; and the angle ϕ is measured from the center of
the groove.

Representation (3) automatically satisfies boundary
condition (2) on the surface of the outer conductor.

Since representation (3) is quasi-periodic, it is con-
venient to restrict the analysis to one period in ϕ:
−ϕS/2 < ϕ < ϕS/2. Let us represent the membrane func-
tion in a groove (Ri – d < r < Ri, –ϕL/2 < ϕ < ϕL/2) as a
truncated Fourier series 

(4)

where ξn = πn/ϕL.
We introduce a new unknown function F(ϕ) =

(R0/χ)∂Ψ+/∂ , for which the following representa-

tion follows from (3):

(5)

Due to boundary condition (2), we have

(6)

Using relations (5) and (6), we can represent coeffi-
cients An in terms of F(ϕ) as

(7)

∆⊥ χ/R0( )2+[ ]Ψ 0,=

∂Ψ/∂n 0=

Ψ Ψ+≡ AnGkn
χ χ /C χr/R0, ,( ) iknϕ( ),exp

n ∞–=

∞

∑=

Jν'

Yν' Jν' Yν' Yν' Jν'

Ψ Ψ–≡  = XnGξn

χ
C '
----- χ

C
---- χr

R0
-----, , 

  ξn ϕ ϕ L/2+( )( ),cos
n ∞–=

∞

∑

r r Ri=

F ϕ( ) An iknϕ( ).exp
n ∞–=

∞

∑=

F ϕ( ) 0, ϕ ϕ S/2– ϕL/2–,[ ] ∪ ϕ L/2 ϕS/2,[ ] .∈=

An
1
ϕS

----- F θ( ) iknθ–( )exp θ.d

ϕL/2–

ϕL/2

∫=
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The field must comply with the continuity condi-
tions at r = Ri, –ϕL/2 < ϕ < ϕL/2:

(8)

(9)

Using formulas (4) and (9), we represent coeffi-
cients Xn in terms of F(ϕ): 

(10)

where

With (3) and (4), the first continuity condition (8)
yields the relation

(11)

where Wν(a, b) = (1/b)Gν(a, b, b).
Substituting relations (7) and (10) into (11) and

interchanging the order of summation and integration,
we arrive at the initial integral equation of the first kind
on an interval:

(12)

where

Integral equation (12) is equivalent to the two-
dimensional boundary value problem (1), (2). It allows
for the contribution of all spatial and Fourier harmonics
of the field. The kernel of integral equation (12) can
easily be shown to contain a logarithmic singularity at
ϕ = 0: H(ϕ, θ) = (2/π)ln|ϕ – θ| + Hr(ϕ, θ), where
Hr(ϕ, θ) is a smooth function in the interval (–ϕL/2,

Ψ+ Ri ϕ,( ) Ψ– Ri ϕ,( ),=

R0

χ
-----∂Ψ–

∂r
---------- Ri ϕ,( ) F ϕ( ).=

Xn

2εn

ϕL

-------- F θ( ) ξn θ ϕL/2+( )( )cos θ,d

ϕL/2–

ϕL/2

∫=

εn

1/2, n 0=

1, n 0.≠



=

AnWkn
χ χ /C,( ) iknϕ( )exp

n ∞–=

∞

∑

=  XnWξn
χ/C ' χ/C,( ) ξn ϕ ϕ L/2+( )( ),cos

n 0=

∞

∑
ϕL/2– ϕ ϕ L/2,< <

H ϕ θ,( )F θ( ) θd

ϕL/2–

ϕL/2

∫ 0, ϕL– /2 ϕ ϕ L/2,< <=

H ϕ θ,( ) G1 ϕ θ–( ) G2 ϕ θ–( ) G2 ϕ θ ϕ L+ +( ),+ +=

G1 x( ) 1/ϕS( ) Wkn
χ χ /C,( ) iknx( ),exp

n ∞–=

∞

∑=

G2 1/ϕL( ) εnWξn
χ/C ' χ/C,( ) ξnx( ).cos

n 0=

∞

∑–=
ϕL/2) in both variables. Many problems of microwave
radiophysics can be reduced to an equation of the form
(12) [20–30, 33]. Therefore, knowledge of certain
issues of the theory of these equations is useful and may
significantly help in the development of efficient
numerical methods. It is known that integral equations
with a logarithmic singularity are very similar in their
properties to the Fredholm equations and are often
referred to as quasi-Fredholm equations. Direct solu-
tion of these equations may not be stable enough. This
observation is corroborated by numerous results of
solving such problems by using the mode matching
method or the moment method. The integral equations
are often not written explicitly; instead, equations like
(11) are used to obtain infinite systems of linear alge-
braic equations (SLAE) with respect to unknown coef-
ficients An or Xn (see, e.g., [18, 19]). If these SLAE are
truncated directly, the numerical solution may exhibit
poor stability and be dependent on the scheme used to
truncate coefficients An and Xn, because the truncated
SLAE is equivalent to a Fredholm equation of the first
kind. The truncation procedure eliminates the singular
part of the kernel of Eq. (12), which appears due to the
contribution of an infinite number of spatial harmonics.

The next section proposes certain rigorous numeri-
cal methods for finding the unknown function F(ϕ) and
eigenvalue χ from Eq. (12), which accurately allow for
the kernel singularity.

2. RIGOROUS NUMERICAL ANALYSIS 
METHODS FOR THE INITIAL INTEGRAL 

EQUATION

Differentiating Eq. (12) with respect to ϕ, we obtain
a SIE of the first kind: 

(13)

where the first integral should be understood as the
principal value in the sense of Cauchy and K(ϕ, θ) =
−(π/2)∂H(ϕ, θ)/∂ϕ – 1(θ – ϕ) is a smooth function of
both variables.

For the solution to Eq. (12) to be unique, an addi-
tional condition is necessary, which can be obtained by
integrating (12) with respect to ϕ: 

(14)

where L(θ) = (ϕ, θ)dϕ is a smooth function. For

convenience, let us introduce the dimensionless vari-
ables t = 2ϕ/ϕL and τ = 2θ/ϕL. In terms of the new vari-

F θ( ) θ/ θ ϕ–( )d

ϕL/2–

ϕL/2

∫ K ϕ θ,( )F θ( ) θd

ϕL/2–

ϕL/2

∫+ 0,=

ϕ ϕ L/2– ϕL/2,( ),∈

L θ( )F θ( ) θd

ϕL/2–

ϕL/2

∫ 0,=

HϕL/2–

ϕL/2∫
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ables, (13) and (14) take the form

(15)

(16)

where ν(τ) = F(ϕLτ/2), K1(t, τ) = (ϕL/2)K(ϕLt/2, ϕLτ/2),
and L1(τ) = L(ϕLτ/2).

Equations of type (15) under additional condition
(16) are often met in aerodynamics [34], elasticity the-
ory, electrostatics, etc. A number of direct numerical
methods, called the discrete singularity method [20, 22,
34], have been developed and mathematically substan-
tiated for these equations. The key feature of these
approaches is that they replace singular integrals with
quadrature formulas. The accuracy of these quadrature
formulas can be estimated analytically. As a result, SIE
(11) under additional condition (12) is reduced to a
SLAE. The unknown eigenvalues are obtained by
equating the determinant of this SLAE to zero. Two dis-
cretization methods for Eqs. (11) and (12) are provided
in the Appendix.

It should also be noted that significant difficulties
associated with the calculation of Bessel functions of
high orders and large arguments are met when the ker-
nels of the SIE are calculated for parameters of real
coaxial gyrotrons. Direct calculation of Bessel func-
tions with the help of standard embedded programs is
only possible for a few first terms of the series in
Eq. (10). Because these series converge slowly
(Wν(a, b) ~ (|b – a|/(b – a))/|ν| + O(|ν|–3), ν  ±∞),
one has to apply dedicated convergence acceleration
techniques when calculating functions G1(x), G2(x),
and the Bessel functions, which do not lead to error
accumulation. Otherwise, it is impossible to provide the
required accuracy (<0.01%) of calculating the eigenval-
ues. One of such convergence-acceleration techniques
is described in [25].

ν τ( )fτ / τ t–( )

1–

1

∫ K1 t τ,( )ν τ( ) τd

1–

1

∫+  = 0, t 1– 1,( ),∈

L1 τ( )ν τ( ) τd

1–

1

∫ 0,=

Table 1.  Comparison of diffraction Q factors of competing
modes calculated within the impedance approximation and
by using the rigorous approach for the TE31, 17 coaxial
gyrotron [12]

Mode QIMP QSIE ∆Q, %

TE31, 17 1866 1892 1.39

TE28, 18 1275 1419 11.29

TE29, 18 1518 1647 8.5

TE29, 17 1602 1671 4.31

TE30, 17 1752 1797 2.5

TE30, 18 1731 1831 5.78

TE32, 17 1951 1965 0.07
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
3. NUMERICAL EXAMPLES

Particular numerical calculations were performed
for resonators of two coaxial gyrotrons. One of them is
the coaxial gyrotron operating in the TE31,17 mode,
which has been experimentally realized in Karlsruhe,
Germany [12]. The geometry of the TE31,17 resonator of
the coaxial gyrotron is qualitatively the same as that
illustrated in Fig. 2. The inner conductor carries 72 rect-
angular grooves. The grooves are 0.35 mm wide and
0.45 mm deep. In this gyrotron, the most dangerous
spurious modes are TE28,18, TE29,18, TE29,17, TE30,17,
TE32,17, and TE30,18. The Q factors of these modes cal-
culated using the rigorous approach (QSIE) and the
impedance approximation (QIMP) summarized in Table 1.

As we see from the table, more rigorous calculations
yield higher Q factors for all modes without exception.
However, the excess is different for different modes.
For modes with a lower Q factor, the excess is higher as
a rule. An insignificant exception is the TE30,18 mode
alone. As an illustration, Fig. 3 shows the eigenvalue of
the TE29,18 mode versus the longitudinal coordinate for
the TE31,17 resonator of a coaxial gyrotron, χ29, 18(z),
calculated (thick curve) by rigorous electrodynamic

Table 2.  Calculations by quadrature formulas based on Che-
byshev polynomials

n χ

2 94.646576961

3 94.645294198

4 94.645102862

5 94.645022786

10 94.644937760

20 94.644923566

30 94.644921730

40 94.644921225

95.6

95.5

95.4

95.3

0 10 20

χ 2
9,

 1
8

30 40 50 60 70
z, mm

1

2

Fig. 3. Comparison of eigenvalues of the TE29,18 mode of
the TE31,17 resonator of a coaxial gyrotron calculated ver-
sus longitudinal coordinate (1) within the impedance
approximation and (2) by using the rigorous approach.
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analysis and (thin curve) within the impedance approx-
imation. As is seen from the plots, the true value of χ is
smaller than the one given by the impedance approxi-
mation. The relative error of the impedance approxima-
tion is not very high (~0.01%). However, it amounts to
as high as 50% of the total variation of χ29, 18(z) along
the resonator, which may significantly corrupt the pre-
dictions of selective properties of coaxial resonators
derived from the impedance approximation. Similar
plots for the eigenvalues of other modes of this resona-
tor are qualitatively the same as those given in Fig. 3. It
should be noted that the error of the impedance approx-
imation is more significant for modes with lower Q fac-
tors.

The results obtained for another resonator (operat-
ing in the TE34,19 mode [35]) of the coaxial gyrotron,
which is presently in the design stage and is intended to
be used in the ITER project, have shown very similar
differences [31]. The TE34,19 resonator of the coaxial
gyrotron is qualitatively the same as that illustrated in
Fig. 2; it is described in greater detail in [35]. In addi-
tion to Q factors and eigenvalues, the mode competition
scenario was predicted for both resonators [31]. It was
shown that, for the TE34,19 gyrotron, more accurate cal-
culation of eigenvalues based on the rigorous electro-
dynamic approach predicts more significant changes in
the mode competition scenario than that based on the
impedance approximation. For the TE31,17 gyrotron, the
mode competition scenario proved to be less sensitive
to errors produced by the impedance model. A detailed
comparative analysis of the mode competition can be
found in [31].

In conclusion, note that the calculations were per-
formed independently on the basis of two algorithms
that use different discretization schemes and different
formulas for the matrix elements. The results agreed to
a high accuracy, which removes any doubts concerning
their authenticity. The convergence of the eigenvalues
is illustrated in the Appendix. The results allow us to
conclude that the eigenvalues are calculated with an
absolute error not higher than 5 × 10–7, which is quite
sufficient for adequately predicting the mode competi-

Table 3.  Calculations by quadrature formulas based on
Jacobi polynomials

n χ

2 94.645055902

3 94.644915529

4 94.644907864

5 94.644912573

6 94.644917864

7 94.644918747

8 94.644919839

9 94.644920050
tion scenario in spite of its high sensitivity to the error
in the calculated eigenvalues.

CONCLUSIONS

Calculations performed for coaxial gyrotrons based
on the rigorous electrodynamic approach revealed sig-
nificant differences from the results obtained within the
approximate impedance model, which gives overesti-
mated eigenvalues of coaxial resonator modes, espe-
cially near the entrance to the resonator. The excess is
on the order of the total variation of the eigenvalue
along the length of the resonator and depends on the
radial and azimuthal mode indices. The analysis of Q
factors of competing modes for two gyrotrons operat-
ing in the TE31,17 and TE34,19 modes allows us to con-
clude that the results calculated using the impedance
model are in the most part underestimated. The error
increases with the radial index and decreases with
increasing azimuthal index. At the same time, its effect
on the mode competition scenario increases with both
radial and azimuthal indices. For the TE31,17 gyrotron,
the average error in the Q factor is significantly higher
than that for the TE34,19 gyrotron; however, the mode
competition scenario qualitatively differs little from
that predicted within the impedance approximation. At
the same time, for the TE34,19 gyrotron, the mode com-
petition scenario predicted on the bases of the rigorous
approach significantly differs from that predicted
within the impedance approximation [31]. Taking into
consideration the fact that resonators of coaxial
gyrotrons evolve towards higher azimuthal and radial
indices of the operating and competing modes, the use
of the impedance model for predicting selective proper-
ties of coaxial resonators with a corrugated inner con-
ductor seems to be more and more doubtful. The rigor-
ous electrodynamic approach proposed in this paper
based on SIE is an efficient alternative to the impedance
approximation. The relatively low machine time due to
its improved algorithm makes it possible to use this
approach for optimizing parameters of coaxial
gyrotrons and for perfecting the geometry of their res-
onators.

APPENDIX

Using interpolation-type quadrature formulas with
nodes at zeros of the Chebyshev polynomials, Eqs. (15)
and (16) can be reduced to a SLAE without any addi-
tional analytical transformations. This approach was
proposed and elaborated in [22, 36]. It represents the
unknown function ν(τ) in the form

(17)

where ϑ0(τ) is a bounded function.

ν τ( )
ϑ 0 τ( )

1 τ2–
-----------------,=
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Let us seek an approximation (τ) to the new
unknown function ϑ(τ) in the form of a polynomial of
degree (n – 1) from the approximate SIE

(18)

under the approximate additional condition

(19)

Here, the kernels are replaced with the Lagrange inter-
polation polynomials:

Here, interpolation nodes are at zeros of the Chebyshev
polynomial of the first kind, Tn(τ),

in variable τ and at zeros of the Chebyshev polynomial
of the second kind, Un – 1(t), in the variable t,

As follows from the properties of an integral opera-
tor with the Cauchy kernel, the left-hand side of
Eq. (18) contains a polynomial of degree n – 2. There-
fore, for Eq. (18) to be satisfied, it is sufficient that it is

satisfied at the points t = ; j = 1, 2, …, n – 1. By
calculating the integrals that enter into Eqs. (18) and
(19) with the help of Gauss quadrature formulas, we

obtain an SLAE for ( ):

(20)

SLAE (20) is completely equivalent to problem
(18), (19).

ϑ 0
n( )

ϑ 0
n( ) τ( )

τ t–
---------------- τd

1 τ2–
-----------------

1–

1

∫ K1
n( ) t τ,( )ϑ 0

n( ) τ( ) τd

1 τ2–
-----------------

1–

1

∫+ 0,=

t 1 1,–( )∈

L1
n( ) τ( )ϑ 0

n( ) τ( ) τd

1 τ2–
-----------------

1–

1

∫ 0.=

K1
n( ) t τ,( ) K1 t j

2 n,( ) tk
1 n,( ),( )

j 1=

n 1–

∑
k 1=

n

∑=

×
Tn τ( )

τ tk
1 n,( )–( )Tn' tk

1 n,( )( )
----------------------------------------------

Un 1– t( )
t t j

2 n,( )–( )Un 1–' t j
2 n,( )( )

---------------------------------------------------,

L1
n( ) τ( ) L1 tk

1 n,( )( )
Tn τ( )

τ tk
1 n,( )–( )Tn' tk

1 n,( )( )
----------------------------------------------.

k 1=

n

∑=

tk
1 n,( ) 2k 1–( )π

2n
-----------------------; kcos 1 2 … n,, , ,= =

t j
2 n,( ) jπ

n
-----; jcos 1 2 … n 1.–, , ,= =

t j
2 n,( )

ϑ 0
n( ) tk

1 n,

π
n
--- ϑ 0

n( ) tk
1 n, )( ) 1

tk
1 n,( ) t j

2 n,( )–
--------------------------- K1 t j

2 n,( ) tk
1 n,( )–( )+

k 1=

n

∑ 0;=
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n( ) tk
1 n ),( )L1 tk
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n
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The convergence can be accelerated if we use
another representation of the unknown function, which
is more adequate for the physics of the problem:

(21)

Let us describe the discretization method used in
this case. Let {Pn(t)} be a system of Jacobi polynomi-
als, which is orthogonal on the interval [–1, 1] with the
weight (1 – t2)–1/3, and {Qn(t)} be the system of adjoint
Jacobi functions

Let us seek the approximation (τ) to function
ϑ r(τ) in the form of a polynomial of degree n – 1 from
the approximate SIEs and an additional condition in
which the kernels are replaced with interpolation poly-
nomials. Let the interpolation nodes be at zeros of the

polynomial Pn(t) ( ; k = 1, 2, …, n) in variable τ

and at the points that lie between them (  =

(  + )/2; j = 1, 2, …, n – 1) in variable t.

Taking Eq. (15) at the points ; j = 1, 2, …, n –
1 and using the interpolation-type quadrature formula
to calculate the singular integral [37] and the Gaussian
formula to calculate the remaining integrals, we obtain

a system of linear algebraic equations for ( );
k = 1, 2, …, n:

Here,

are the Christoffel coefficients [38]. Due to the Meixner
edge condition for the rectangular wedge, function
ϑ0(τ) in Eq. (17) behaves as (1 – τ2)1/6 near the ends of
the integration interval. Therefore, its derivative tends
to infinity as τ  ±1. The function ϑ r(τ) defined in
(21) is smoother ( (τ) is a bounded function); there-

ν τ( )
ϑ 0 τ( )

1 τ2–3
-----------------.=

Qn t( )
Pn τ( )
τ t–

------------- τd

1 τ2–3
-----------------.

1–

1

∫=

ϑ r
n( )

xk
1 n,( )

x j
2 n,( )

x j
1 n,( ) x j 1+

1 n,( )

x j
2 n,( )

ϑ r
n( ) xk

1 n,( )

ϑ r
n( ) xk

1 n,( )( )
Qn xk

1 n,( )( ) Qn x j
2 n,( )( )–

Pn' xk
1 n,( )( ) xk

1 n,( ) x j
2 n,( )–( )

---------------------------------------------------------
k 1=

n

∑

+ λ k
n( )K1 x j

2 n,( ) xk
1 n,( ),( ) 0; j 1 2 … n 1,–, , ,= =

ϑ r
n( ) xk

1 n,( )( )L1 xk
1 n,( )( )

k 1=

n

∑ 0.=

λ k
n( ) Pn τ( )

Pn' xk
1 n,( )( ) τ xk

1 n,( )–( )
------------------------------------------------

2 τd

1 τ2–3
-----------------

1–

1

∫=

ϑ r'
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fore, it can be interpolated by polynomials more suc-
cessfully. However, to apply this approach, it is neces-

sary to calculate , , P'( ), Qn( ),

and Qn( ); k = 1, 2, …, n and j = 1, 2, …, n – 1.

Tables 2 and 3 illustrate the accuracy and conver-
gence rate of the eigenvalue χ of the operating TE31,17
mode of the gyrotron resonator at the section z = 0 (R0 =
26.38425, Ri = 7.71946), where the error of the imped-
ance approximation, as well as the sensitivity of the
results to errors, are the highest.
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Abstract—A betatron on the leakage flux from two windings connected oppositely and laid around a closed
magnetic circuit is considered. The governing magnetic field in the interpole gap is created by a leakage mag-
netic flux between the windings, while the accelerating magnetic flux is generated by the difference of the
ampere-turns of the windings in a closed magnetic circuit. Results are presented that were obtained by exam-
ining the proposed scheme and by comparing it with the classical betatron scheme. It is shown that the use of
a closed magnetic circuit, with the demagnetization of steel, makes it possible to implement, in the most eco-
nomical way, the potential of the induction method of acceleration. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In a classical scheme, fulfillment of the 2 : 1 beta-
tron relation is realized owing to magnetic gaps in the
interpole space and in the central part (disk-coil unit),
which ensure the required relationship between the
magnetic-field inductions at the radius of the equilib-
rium orbit and within the circle of the orbit that are cre-
ated by the magnetization coil [1, 2]. With increasing
radius, the magnetic-field energy grows according to a
quadratic law, while the kinetic energy of electrons is
proportional to the radius; that is,

(1)

where 〈β〉  is a mean relative velocity, γ = 1 + Ek/E0 is a
relativistic factor, c is the speed of light, and B is the
magnetic-field induction at the equilibrium radius R0.

With respect to the energy of an oscillatory circuit,
the electromagnet weight, and the kinetic energy, the
most elaborate constructions of betatrons—a small-size
betatron with R0 = 6 cm and a high-current betatron
with R0 = 30 cm [2], which are characterized by the
same ratio of the chamber height to the radius, H/R0 =
0.7, and by identical values of the magnetic-field induc-
tion in steel—are in the ratios 62/302–120 J/3 × 103 J –
90 kg/2.7 × 103 kg–6 MeV/30 MeV.

There are many approaches aimed at reducing the
electromagnet weight owing to the demagnetization of
steel and an increase in the magnetic-field-induction
variations in it. However, a practical implementation of
these approaches in [5] for a model of a 300-MeV beta-
tron revealed that acceleration is unstable from one
cycle to another and that the resulting intensity proves
to be much lower than its calculated counterpart. A sim-
pler scheme of the demagnetization of an electromag-

Ek β〈 〉 cBR0, β〈 〉 1 1

γ2
-----– γ,d

1

γ

∫= =
1063-7842/04/4907- $26.00 © 20895
net was proposed in [6]. This scheme ensured the cal-
culated acceleration of a charge, but it required a con-
siderable interval between pulses in order to
demagnetize the electromagnet core. In the classical
scheme featuring air gaps, the nonlinearity of the hys-
teresis loop has virtually no effect on the behavior of
the radius of the equilibrium orbit at the beginning of
the acceleration cycle, but, in the case of a closed mag-
netic circuit, it requires the application of dedicated
correction circuits. For this, use was made of a satura-
ble-core choke coil (weight about 20% of the magnet
weight) in [5] and of an additional circuit with an inde-
pendent power-supply unit in [6, 7]. The connection of
windings in parallel and, as a consequence, the appear-
ance of equating currents in response to a change in the
Q factor of the windings because of heating, as well as
the requirement of a high precision in synchronizing
the operation of high-voltage power supply units,
reduced the effect of harnessing the demagnetization of
steel and hindered its application in practice.

1. ENERGY RELATIONS IN A LEAKAGE-FLUX 
BETATRON

The leakage flux in a transformer is determined by
the loading current and is localized in the air gap
between the primary and the secondary winding. The
strength of the leakage-flux magnetic field is governed
by the magnetization current in the primary winding.
Together with the electric-field strength, this magnetic-
field strength forms the Poynting vector [8] responsible
for energy transfer from the primary to the secondary
circuit.

An electron beam in the orbit in the electromagnetic
field of a betatron plays the role of a winding and a load
simultaneously and interacts with the energy flux com-
ing from the capacitance storage device in a magnetic
004 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Electromagnet of a leakage-flux betatron: (W1, W2) magnetization and compensation windings, (1) central core, (2) back-
ward magnetic circuit, (3) poles, (4) injector, and (5) contour of the vacuum chamber; (b) circuit of the betatron power-supply unit:
(B) rectifier, (C0) capacitance storage device, (T1–T4, D1, D2) thyristors and diodes of the high-voltage circuit, (Tk) thyristor of the
R, Ck, Rk circuit of equilibrium-radius correction, (T) discharge thyristor, (C, L0) capacitor and inductance choke of the filter, and
(Tc) thyristor of the stabilization and control of energy; and (c) magnetic characteristics of the electromagnet and the air gap: [Bc(H),
B0(H)] dependence of the magnetic-field induction in steel and in the air gap on the magnetic-field strength and (1–6) characteristic
points on the magnetic curves matched in time with the values of the current in the windings (Fig. 2).

M

IW2

∆Bc
field. The electric-field strength is determined by the
derivative of the magnetic flux and is therefore indepen-
dent of its absolute value; it follows that part of the
increment of the magnetic flux in the central region of
the orbit can be changed from negative to positive val-
ues of the magnetic induction, and this circumstance is
used in a leakage-flux betatron [9, 10] (see Fig. 1).

In the initial state, the thyristors T, T3, and T4 are
switched on and the capacitance storage device C0 and
the capacitor C are preliminarily charged through the
choke coil from the rectifier B. In the steady-state
regime (see Fig. 2), the magnetic state of the magnetic
circuit is determined by the magnetic flux of the wind-
ing W1 carrying the current I0 and is given by

(2)

where L1 is the inductance of the winding on a closed
magnetic circuit, Br is the residual magnetic-field

B– Br L1I0/W1Sc,–=
induction in the steel of the magnetic circuit with allow-
ance for the technological gap ∆, and Sc is the cross-sec-
tional area of steel in the segment being considered.

In Fig. 1c, the initial magnetic state of the core is
characterized by point 1 and the magnetic-field induc-
tion B. The thyristors T1, T2, and Tk are switched on at
the instant t1. The current discharging the capacitance
storage device C0 flows in the windings W1 and W2 con-
nected in series and oppositely, and the formation of the
magnetic fields Bc(t) and B0(t) occurs there (see Fig. 2).
As to the magnetic field in the interpole gap (leakage
flux), it is determined by the ampere-turns of the wind-
ing W2 and is dependent on the height H of the interpole
space, so that

(3)B0 t( )
µ0i2 t( )W2K

H
-----------------------------,=
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[B0(t)]; and time profile of the equilibrium-orbit radius [R(t)], Ri being the radius of injection.

UC0

t

B
.

where µ0 is a magnetic permeability, H is the gap
height, and K is a coefficient that takes into account the
curvature of lines of force.

The central core undergoes magnetic reversal under
the effect of the ampere-turn difference I(t)(W1 – W2).
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For the 2 : 1 betatron relation to be satisfied, it is neces-
sary that

(4)
∆Bc〈 〉 t( )
B0 t( )

---------------------- 2
U2 t( ) R0

2 R1
2–( )

UC0
t( )R1

2
------------------------------------.≈=
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Since (t) = U1(t) – U2(t) (see Fig. 2), the ratio of

the voltages across the windings serves for monitoring
the behavior of the equilibrium-orbit radius. If the thy-
ristor Tk is not switched on, the voltages U1 and U2 will
exhibit dips at the beginning of the accelerator cycle,
with the result that the equilibrium radius R(t) will
begin to change from values less than R0. In Fig. 2,
these dependences are represented by dotted lines; they
are determined by the nonlinearity of the hysteresis
loop. Specifying the required initial voltage across the
capacitor Ck, one can control the behavior of the radius
R(t). At the instant ti, an injection of electrons and
acceleration of the beam occur. At the instant tc (point 3
on magnetic cycles), the thyristor T is switched on, with
the result that the charged capacitor is connected to the
winding W2, which begins to be de-energized. Concur-
rently, the central core undergoes magnetic reversal
faster and is saturated, which is accompanied by an
additional acceleration of the beam and by a sharp
increase in the equilibrium-orbit radius; touching the
target mounted within the injector, the beam generates
gamma radiation (at the instant tγ). The capacitor C is
completely discharged, its energy being transferred to
the oscillatory circuit; the diode D2 is switched on,
while the thyristor T and the diode D1 are switched off.
The capacitor C is charged anew by the current I0,
while the magnetic circuit recovers its initial magnetic
state (point 1 in Figs. 1 and 2). The next acceleration
cycle begins from the switching on of the thyristors T3,
T4, and Tk.

In the central part of the orbit, the magnetic flux
traverses the closed core, and the magnetic-field energy
per unit volume, which is proportional to B2/2µµ0,
decreases by the relative magnetic permeability µ of
steel. Therefore, an increase in the acceleration radius
R0 and in the central-core radius R1 leads to a reduction
of the oscillatory-circuit energy. At a given value of the
final electron energy (1) and a given value of the cross-
sectional area S of the interpole gap (vacuum chamber),
the energy stored in the circuit (energy of the capaci-
tance storage device C0) is given by

(5)

where Qc is the energy in the volume of the magnetic
circuit; this energy, which decreases at the beginning of
the acceleration cycle, is accumulated again by its end.

In contrast to what occurs in the classical scheme,
the oscillatory-circuit energy in a leakage-flux betatron
decreases in inverse proportion to the radius of the
facility, while a nearly twofold change in the magnetic-

UC0

Q K
πE2S

µ0 β〈 〉 c( )2
------------------------ 1

R0
----- Qc,+=
field induction in steel leads to a considerable reduction
of the electromagnet weight.

2. SOME SPECIAL FEATURES OF ELECTRON 
MOTION IN THE ELECTROMAGNETIC FIELD 

OF A BETATRON

In the region of acceleration, the magnetic field of a
betatron is characterized by a damping index [4]

(6)

which determines the ratio of the radius R of the orbit
of electron motion about the Z axis to the radius RB of
curvature of the magnetic line of force at the point of
measurement. Figure 1a shows the profile of the inter-
pole space for n = –0.5. In the region Ri where the injec-
tor is installed, n ≤ –1 because of the curvature of the
lines of force, but we arrive, along the field lines of
force, at n = –0.5 in the vicinity of the poles. This con-
figuration of a magnetic field is characteristic of open-
type magnetic traps [3], which have a loss-cone open-
ing angle α given by

(7)

where B0 is the magnetic-field induction in the symme-
try plane (median plane); BZ is the magnetic-field
induction in the vicinity of the poles along the line of
force; and V⊥  and V|| are the components of the total
electron velocity that are, respectively, orthogonal and
parallel to the lines of force of the magnetic field in the
median plane.

The motion of an electron in the electromagnetic
field of a betatron is based on the equality of the
Lorentz force and the force of the centripetal accelera-
tion [4],

(8)

under the conditions

(9)

where e and m are the electron charge and the relativis-
tic electron mass, respectively; mV is the total particle
momentum; E is the electric-field strength; and Bc is the
mean value of the magnetic-field induction within a cir-
cle of radius R0.

Since V × B/E > 104 even at the stage of injection,
then, in the relativistic notation, we find from (1) and
(8) at V = V⊥  that the magnetic potential—that is, the

n
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Fig. 3. Equilibrium-orbit radius R(E), relative velocity β, mean relative velocity 〈β〉 , and magnetic potential BR versus the electron
kinetic energy.
product of the magnetic-field induction and the radius
of revolution—is given by

(10)

where Ek is the electron kinetic energy.
For the case where the governing magnetic field

B0(t) grows linearly (see Fig. 2), which is valid at the
beginning of the acceleration cycle, Fig. 3 shows the
magnetic potential BR, the relative velocity β, the mean
relative velocity 〈β〉 , and the radius of revolution versus
kinetic energy. In the regime of low-voltage (Ui ≤
80 kV) injection (see Fig. 3), contractors efficiently
operate in classical betatrons [1], and the lower the volt-
age Ui, the higher the efficiency of their operation. In
high-current betatrons [2], the application of a contrac-
tor does not lead to a positive effect since Ui > 200 kV
there. In a leakage-flux betatron, an appropriate choice
of the time constant for the Ck, Rk correction circuit and
of the initial voltage across the capacitor Ck makes it
possible to ensure the behavior of the radius R(t) (see
Fig. 2) according to Eq. (10) and to achieve the maxi-
mum possible capture of charge into the accelerated
beam [10].

BR
2EkE0 Ek

2+
e

-------------------------------
m0c

e
--------- γ2 1– ,= =
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The kinetic energy of a rectilinearly propagating
laminar beam of electrons is

(11)

where t0 is the time it takes for N particles to travel a
given distance (length of the orbit in a betatron) and I =
Ne/t0 is the beam current.

The kinetic energy of an electron beam in the form
of a torus with radii R0 and r in a magnetic field,

(12)

is given by (11), while the period of electron motion
along the orbit is t0 = 2π/ωc, where ωc = eB/γm0.

According to the Ampère law, a force proportional
to gradB associated with the magnetic potential BR acts
on a ring current, with the result that, for an electron
traveling along the orbit of equilibrium radius, the orbit
plane acquires the moment of momentum

(13)

Jk EkIt0 NeEk Nm0c2 γ 1–( ),= = =

Jk
N R2 r2+( ) eB( )2

γm0
----------------------------------------,=

M
gradBr
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Fig. 4. (a) Electron trajectories in a magnetic trap upon the completion of injection and (b) interpole space of a leakage-flux-betatron
model.
The gradient associated with BR must be of alternat-
ing sign and must be an integral multiple of the fre-
quency of revolution, and its integral over the time of
motion must be equal to zero. Concurrently, it should
be borne in mind that the law of electromagnetic induc-
tion for an electron moving in a constant magnetic field
is the following: the magnetic flux swept out along the
trajectory of motion with time and divided by the
period of revolution at the Larmor frequency is equal to
kinetic energy. By way of example, we indicate that, in
the model considered below for a leakage-flux betatron,
it follows from (1), (11), and (12) that the kinetic
energy of an electron at R = 6 × 10–2 m, B = (0.361 ±
5 × 10–4) T, γ = 12.74, β = 0.9969, 〈β〉 = 0.9243, ωc =
eB/γm0 = βc/R = 4.985 × 109 rad/s, and t0 = 1.264 ×
10−9 s is

The law of electromagnetic induction is satisfied at
ω = ωc/2〈β〉—that is, for γ  ∞ and 〈β〉   β 
1—and we have the Larmor circular frequency ω =
ωL = ωc/2. In the process of acceleration, an additional
magnetic flux traverses the electron orbit (2 : 1 condi-
tion), and the conversion from electric to kinetic energy
occurs at the cyclotron frequency.

In the injection of electrons, flat beams of small
angular divergence are used in betatrons. The injection
voltage Ui and the magnetic-field induction at the injec-

Ek

m0c2

e
----------- γ 1–( ) β〈 〉 cRB

β〈 〉 eR2B2

γm0
------------------------= = =

=  
2 β〈 〉πR2B

t0
-------------------------- 6 106×  eV.=
tion radius are related by the equation

(14)

Upon closing a circle, electrons that have the veloc-
ity Vi = V⊥  = eBiRi/γim0 hit the back side of the injector
(zero electrons). Electrons for which the angle at which
they escape from the injector with respect to the tangent
to the circle of radius Ri is nonzero will execute beta-
tron oscillations. If there are deviations only from the
median plane, an electron does not have a chance to
miss the injector. Electrons having an angle +α and
going to radii larger than Ri and electrons having an
angle –α and going to radii smaller than Ri are deflected
from the median plane in opposite directions. In the
course of their motion, they sweep out different mag-
netic fluxes since the magnetic field as a function of
radius exhibits the power-law behavior given by B(r) =
B0(r/R0)n, and the vector of the injected-electron veloc-
ity acquires the component V||, the velocity component
V⊥  decreasing concurrently without any change in Vi =

. The change in the kinetic energy of elec-
trons in the capture process can be disregarded. The
decrease in V⊥  for electrons injected at the initial angle
+α will lead to a decrease in the radius of revolution;
for electrons having the initial angle –α, this will lead
to an increase in the radius of revolution, and they will
traverse the projection of the orbit of radius Ri prior to
making half of a full turn. The velocity component V||
will begin to decrease, while the component V⊥  will
increase; it follows that, in their subsequent turns, elec-
trons will tend to traverse the median plane, having a

Ui BiRi( )2 e
2γim0
--------------.=

V ⊥
2 V ||

2+
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maximum value of V||, a minimum value of V⊥ , and a
minimum radius Rmin of the orbit. In the steady-state
regime, the trajectories of electrons that escaped from
the injector at angles ±α are displayed in Fig. 4a, while
the phase space (PS) occupied by the beam upon the
completion of capture is shown Fig. 4b. Such a trajec-
tory makes it possible to ensure the equality of three
frequencies: the mechanical frequency V/R, the cyclo-
tron frequency ωc, and the Larmor frequency ωL. The
beginning of the radius vector associated with an indi-
vidual electron precesses by ∆r with respect to the sym-
metry axis Z,

(15)

the loss-cone opening angle being at V⊥  = V||. From (7),

we have sinα = (V⊥  = V||)/Vi = 1/  = (Bi/BZ)–1/2 fm and
the value of Bi/BZ = 0.8409 at the injection radius along
a line of force. This value is obtained from magnetic
measurements in the median plane M0 and at the pole
surface Mα (see Fig. 4a) in the interpole space of beta-
trons involving a maximum charge in the acceleration
process. For the condition V⊥  = V|| to be satisfied, the
height of the chamber under the injector and the injec-
tion radius must be related here by the equation

(16)

The critical angle of divergence of the injected
beam, 2α (±α), can be estimated on the basis of the
condition sinα ≤ ∆r/Ri. Because of matching with the
lines of force of the magnetic field in the radial direc-
tion, the electron moves along the surface that is the
mirror reflection of the pattern of lines of force in space
with respect to the surface of a cylinder of radius Ri, and
its orbit precesses with respect to the Z axis with the cir-
cular frequency

(17)

where P is the periodicity of the weakly focusing mag-
netic field of a betatron (equal to two).

The application of an azimuthal variation, which is
an element of strong focusing, increases the periodicity
and decreases the amplitudes of radial and vertical
oscillations, the cross-sectional area of the phase space,
and (as a consequence) the number of particles
involved in the acceleration process. Under the condi-
tion Hi = 0.25πRi, fulfillment of the relation V⊥  = V|| =

Vi/  is ensured, and the maximum values of the
amplitudes of radial and vertical oscillations are in the
ratio 1 : 4 (0.5∆r : 0.5Hi) at n = –0.5. Considering that
the electric-field strength at the phase-space surface is
E = Vi × Bi and taking into account the charge-density
distribution over the cross section (the charge density in
the median plane is twice as high as that at the edges,
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since an electron intersects M0 two times over the
period of revolution), we can estimate the number of
particles captured into the magnetic trap of the betatron
as

(18)

where the values of V, γ, and β correspond to the
injected beam; the magnetic-field induction at the
injection radius is Bi = βγm0c/eRi; and the coefficient

1/  takes into account the redistribution of the
electric field of a moving electron with respect to that
which is generated by an electron at rest.

The current circulating in the magnetic flux

(19)

is distributed over the phase space and, in the accelera-
tion process, is contracted into the M0 plane (see
Fig. 4a).

If the beam has a round cross section, which deter-
mines the vertical size of the focused spot, we have

(20)

where Bk and βk are, respectively, the magnetic-field
induction and the relative velocity at the end of the
acceleration cycle.

The number of particles involved in the acceleration
process must be related in some specific way to the
number of injected particles. The repulsive electric field
of zero electrons, which complete their revolution
within the first turns, efficiently distributes electrons
over the phase-space cross section, with the result that
the orbit plane acquires a moment of momentum for n ≤
–1 (a spherical surface of the lines of force of the field
B), which is transformed into n = –0.5 at the poles. Con-
sequently, there exists an optimum injection-current
value [1, 2] above which the number of particles
involved in the acceleration process does not increase.
The application of inflector systems removes the cur-
rent of zero electrons to the injector in high-current
betatrons [2], improving the efficiency of capture. In an
iron-free betatron for obtaining electron rings [11], the
efficiency of capture is quite high, about 0.8 of the num-
ber of injected electrons at an injection-pulse duration
of 15 × 10–9 s. At Ei ~ 1.5 MeV, Im = 800 A (the mean
value is about 400 A), and Ri = 0.3 m, about 2.6 × 1013

particles are captured [β/(1 – β2) = 15.5], which corre-
sponds to (18). In a high-current betatron [2] at Ei =
300 kV, Ri = 0.28 cm (which is the radius at which an
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electrostatic inflector is installed), and Hi/Ri = 0.7, the
cycle of acceleration was completed for 2 × 1012 parti-
cles, and the result obtained by measuring, upon the
passage of an injection pulse, the charge involved in the
acceleration process was about 3 × 1012 [β/(1 – β2) =
1.92], which is also in accord with (18). In an industrial
small-size betatron (ISSB-6) [12], the vertical size of
the focused gamma-radiation spot at Bi = 0.88 × 10–2 T,
Ri = 7.8 cm, Hi = 4.6 cm, Ui = 40 kV, and Bk = 0.36 T is
about 2.2 mm, while the spot radius at the end of the
acceleration cycle is 1.1 × 10–3 m according to (20). The
horizontal size of the focused spot is determined by the
geometry of the target. In the ISSB-6 chamber, the

phase-space volume is 0.5π Ri = 2.6 × 10–4 m3, and
about 1.2 × 1010 particles are involved in the accelera-
tion process at a current of 0.55 A circulating along the
orbit, the optimum phase-space volume being about

 = 4.75 × 10–4 m3.

The results of experiments in which the cross sec-
tion of the betatron acceleration chamber was covered
by 30 MeV in the vertical and the radial direction at
Hi/Ri = 7/30 were given in [1, p. 168]. In the first case,
the intensity of radiation disappeared when the vertical
chamber size became equal to the injector height of
about 1 cm. As the vertical size was increased, the
intensity of radiation grew approximately in proportion
to the cube of the chamber height. A multiplier-photo-
tube signal that appeared at an energy of 1.5 MeV (Ui =
24 kV) when the wire intersected the equilibrium radius
of R0 = 27 cm and when there remained a distance of
about 2.5 cm to the injector, ∆r/Ri = 2.5/30 and 2(±α) <
5°, was monitored in the second case. An experiment
devoted to determining the charge captured into the
acceleration process within a short time after the pas-
sage of the injection pulse (2, 10, 20, 50, …, 300) ×
10−6 s was performed in [13] for an acceleration cycle
of duration 5 × 10–1 s discharged onto a segmented ver-
tical collector. After 2 × 10–6 s, the charge distribution
over the chamber height was greater at the center than
at the edges by a factor of 2 and corresponded to the
model represented in Fig. 4. The number of particles
according to (18) was 1.3 times greater than that which
was measured after 2 × 10–6 s (Ri = 29 cm, Hi = 4.5 cm,
Ui = 24 kV, and N0 = 1.25 × 109), but, with allowance
for the dynamics of losses (N1 = 109 at 2 × 10–6 s, N2 =
0.3 × 109 at 10 × 106 s, N3 = 0.2 × 109 at 20 × 10–6 s, and
N4 ≈ 108 at 300 × 10–6 s), the experimental result is in
agreement with that calculated on the basis of (18). The
dynamics of the adiabatic compression of the phase
space by the increasing magnetic field was satisfied
(Bi = 0.15 × 10–2 T, βi = 0.296]; at 300 × 10–6 s (Bk =
0.045 T, βk = 0.98]), and the entire accelerated charge
arrived at the central collector in the median plane of
height 5 mm; according to (20), the beam radius
decreased to 1.8 mm at this instant. These direct and

Hi
2

Ri
3

reliable experiments confirm the validity of the pro-
posed model of electron capture by the betatron electro-
magnetic field (open magnetic trap).

3. EXPERIMENTAL INVESTIGATIONS 
OF A LEAKAGE-FLUX BETATRON

A model of a leakage-flux betatron was manufac-
tured on the basis of an ISSB-6 device [12] by using a
sealed-off vacuum chamber of internal diameter
74 mm. The central disk-coil unit with a total air gap of
11 mm was replaced by a continuous ferromagnet core
of diameter 60 mm with a winding W2 formed by
56 turns of a wire having a cross-sectional area of
6 mm2. The magnetization winding W1 contained
60 turns, 30 turns in each half, the technological gap
being ∆ = 0.1 mm. The power-supply circuit is dis-
played in Fig. 1b, while the interpole space of the leak-
age-flux betatron is shown in Fig. 4b. In the ISSB-6
device, an oscillatory-circuit energy of 120 J was
required to obtain an electron kinetic energy of 6 MeV.
In our leakage-flux betatron, an identical electron
energy was achieved at an energy of 87 J in the capaci-
tance storage device C0, and this value was reduced by
an energy of 33 J stored in the disk-coil unit, this corre-
sponding to the energy calculated by formula (5). Con-
currently, the power consumed from the power-supply
system was reduced by a factor of 2 owing to a reduc-
tion of losses in the circuit and to the elimination of dis-
charge circuits and a contractor. The maximum inten-
sity of radiation was obtained in the case where the cir-
cuit intended for correcting the equilibrium-orbit radius
ensured the behavior of the radius according to (10)
(see Fig. 3) at Ui = 40 kV. The resulting intensity was
not less than in well-elaborated betatrons employing a
contractor (0.1 mGy/s at a distance of 1 m from the tar-
get at 100 pulse/s). Upon an increase in the oscillatory-
circuit energy to 120 J, the electron kinetic energy
reached 6.9 MeV, while at 150 J, it amounted to about
8 MeV. As to the range of the magnetic-field-induction
variation, it was ∆Bc = 2.75 T in steel and 2.15 T in the
backward magnetic circuit (see Fig. 1c).

Unfortunately, available vacuum chambers gave no
way to increase the diameter of the central core to
75 mm, which would permit taking full advantage of
employing the backward magnetic circuit of the ISSB-
6 electromagnet of weight about 80 kg, whereby one
could reach an electron energy of about 11 MeV.

In order to test mirror ratio (7) for the magnetic trap
of the betatron and to study the behavior of the beam at
the instant of capture at the pole radius of R = 8.2 cm at
Ri = 7.8 cm, one turn was laid in each winding, these
two being similarly connected. The windings were con-
nected in parallel to the diode D2 through the circuit
formed by a 0.1-µF capacitor and a variable resistor.
When the direction of the current pulse in the winding
was identical to that which is associated with the
ampere-turns W1I, the field exponent at the poles in the
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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plane Mα (see Fig. 4a) changed from –0.5 to –1. In the
vicinity of the poles, the lines of force that traversed the
injector formed the spherical surface RB = Ri. In the
case where the direction of the current in the windings
was opposite to that which is associated with W1I, the
field exponent at the poles approached zero, so that the
field became uniform in the region above the injector,
RB  ∞.

In the first case and at a current of I(ti) ~ 0.5 A in the
windings (at the instant of injection, W1I(ti) ~ 350 A ×
turn), the intensity of radiation increased by 15%,
whereupon it began to decrease monotonically with
increasing current in the windings. At a current of 6 A
in the windings, it was about 60% of the initial value,
while at a current of 10 A, it fell short of 20%. In this
case, the field exponent was close to –1, and the elec-
trons were lost at the upper and lower walls of the
chamber because of the moment of momentum of the
orbit plane Mα. In the second case, where the direction
of the current in the windings was opposite to that
which is associated with the ampere-turns W1Ii, the
intensity of radiation began to decrease with increasing
current, by 10, 50, and more than 90% at a current of
0.2, 0.5, and 6 A, respectively, in the windings. In this
case, the electron-orbit planes developed translational
motion in a uniform field with respect to the median
plane M0, with the result that electrons settled on the
upper and lower parts of the chamber, as in the preced-
ing case. Our experiment clearly demonstrates that, at
the instant of capture, the electromagnetic field of a
betatron can be treated as an open magnetic trap and
that the theory of adiabatic invariant processes [3],
which takes into account the energy of rotational
motion, the moment of inertia of electrons in an orbit
[see Eq. (12)], and gyroscopic effects associated with
this, can be used in this case.

With allowance for all of the aforesaid, the extrac-
tion of an electron beam from the acceleration chamber
through an inlet window in it was implemented in a
leakage-flux betatron. The height Hi above the injector
was about 30 mm. The gamma-radiation intensity
obtained with this chamber was one-half as high as that
for the Hi = 46 mm chamber, all other conditions being
the same, and this corresponded to (18). In order to cre-
ate a magnetic-field gradient in the plane M0, use was
made of two sector windings laid along the lateral sur-
face of the chamber, each having an azimuthal length of
about 30°. The common axis of these windings was
orthogonal to the radius of the injector. The windings
were connected in series and oppositely in the circuit of
the thyristor T (Fig. 1b, points a, b). In response to a
displacement of the beam in a leakage-flux betatron of
the design being considered, the expansion of the orbit
radius proceeds at a rate Vr = ∆r/∆t ~ 104 m/s. During
the expansion of an orbit, the current increased in the
windings, creating an additional magnetic field that
enhanced the field in the region where the beam
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
approached the injector and reduced it upon passing
this region. The magnetic-field gradient caused a drift
of the center of the expanding orbit at the velocity

(21)

where K . 10–2B+/B0, B+ being the additional field gen-
erated by the windings in the region of the injection
radius.

At V+ ≈ 10–3B0, the equality of the velocities Vr and
Vd was ensured, the loss of electrons at the injector was
negligible, and the segment within which electrons tra-
versed the release orbit was in front of the injector. The
last circumstance made it possible to match the axis of
the extracted beam in controlling energy. At a distance
of 0.3 m from the Z axis of the betatron, the intensity of
electron-beam emission was 1.6 Gy/s at Ek ~ 5 MeV
and N = 50 pulse/s. At this distance, the cross section of
the beam had the shape of an ellipse contracted along
the Z axis to a size of 4 × 1.5 cm2, the density being
approximately uniform over the cross section. It should
be noted that, if a filter (iron 4 mm thick) was arranged
on the trajectory of the beam, the gamma-radiation-flux
density determined by recording gamma radiation with
a dosimeter at a distance of 1 m was approximately
identical to that in the case of a target at a distance of
1 m. It is worthy of note that, by merely shorting out
points at which the windings are connected (leads a and
b in Fig. 1b), the leakage-flux betatron could be
switched to the gamma-radiation mode.

At energies above 6 MeV, the orbit was found to be
contracted at the end of the acceleration cycle for N ≤
50 pulses/s because of a decrease in the demagnetiza-
tion current. In this regime, use was made of an addi-
tional circuit formed by an inductance coil and a thyris-
tor and connected in parallel to the thyristor T, which
was switched on at the end of the acceleration cycle,
ensuring a slow transfer of energy to the oscillatory cir-
cuit. Here, the radius of the equilibrium orbit did not
decrease. It was maintained at a level of about 7 cm to
the beginning of the dumping of electrons on the target.
By applying, instead of the inductance coil in the addi-
tional circuit, a parallel LC circuit whose natural fre-
quency was much higher than the frequency of the beta-
tron high-voltage circuit, an oscillatory character of the
motion of the equilibrium-orbit radius was ensured; as
a result, the beam could repeatedly touch the target,
generating pulses of gamma radiation with a frequency
equal to that of the LC circuit.

CONCLUSIONS

The main flaw in the classical scheme of the beta-
tron—a quadratic dependence of the magnetic-field
energy and of the electromagnet weight on the radius of
injection—is removed in a leakage-flux betatron [see
Eq. (5)]. An increase in the radius of injection in a beta-

Vd K
βc( )2γm0

eB0Ri

-----------------------,=
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tron is advantageous in all respects: this increases the
beam energy (1) and the number of beam particles (18)
and reduces problems associated with synchrotron radi-
ation at energies above 300 MeV. In a leakage-flux
betatron, the control of the equilibrium-orbit radius in
the process of capture, acceleration, and dump is imple-
mented by varying the derivative of the magnetic flux in
steel without introducing additional windings in the
interpole space (this would distort the structure of the
magnetic field of a magnetic trap) or additional power-
supply units. The power-supply system developed for
the betatron is multipurpose; the commuting equipment
does not have limiting values of di/dt and dU/dt, and the
frequency potential of the circuit is very high, which
makes it possible, by means of an appropriate choice of
materials, to improve the Q factor of the betatron oscil-
latory circuit and to reduce the energy loss per acceler-
ation cycle, pushing it down to that which is described
by Eqs. (11) and (12).

We will now present a derivation of formula (1) for
the kinetic energy of electrons in a betatron. The mean
voltage across the turn of the radius of revolution
(increment of the magnetic-field induction per unit time
interval) is 〈U〉  = πR2∆Bc/∆t; the time of one revolution

is t0 = 2πR0/V = 2πR0/βc, where V = c . Within
the time over which the magnetic-field induction
changes in the circle of radius R (the acceleration time
is t0), an electron acquires the potential Ek = 〈U〉∆t/t0
with respect to the walls of the vacuum chamber; in the
acceleration process, the relativistic factor changes
from γi to γ. Taking into account the relations in (9), we
then have

In the case of low-voltage injection, γi tends to unity,
and we arrive at Eq. (1).

1 1/γ2–

Ek c 1 1/γ2– γ∆BcR0/2d

γi

γ

∫ β〈 〉 cBR0.= =
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Abstract—A heated Na/Au surface alloy film grown on gold substrate is found to be an efficient thermal des-
orber of polyatomic positive ions produced from organic molecules and oxygen falling on its surface. The ion-
ization of diethylamine molecules at this thermal emitter is studied by mass-spectrometry means. Special fea-
tures of the heterogeneous formation of polyatomic complexes and the thermal desorption of cluster ions are
revealed. A model explaining the efficient thermal desorption of ions from the surface of an alloy which is a
wide-gap semiconductor is proposed. © 2004 MAIK “Nauka/Interperiodica”.
For a long time, surface alloys that result from the
adsorption of alkali metals (Cs, Rb, K, Na) on gold
have been the objects of numerous comprehensive stud-
ies. It is shown that these alloys greatly differ in their
properties from other intermetallic compounds. For
example, the alloy CsAu is an electron semiconductor
with a band gap of ≅ 2.6 eV, its crystal structure being
similar to that of CsCl [1].

We investigate the vacuum interaction between
alkali metals and metal gold in the conditions when the
atomic flows with ν = 1011–1013 cm–2 s–1 are directed to
the Au substrate heated to T = 700–1250 K. It is known
that, at T ≤ 300 K, the initiation of the reconstruction of
the metallic gold surface and the formation of the sur-
face alloy Alk/Au (where Alk is the atom of an alkali
metal) requires an initial accumulation of adsorbate
with surface concentration Θ within several tenths of
the monolayer thickness [2]. At elevated substrate tem-
peratures T, the lifetime of Alk adatoms at the Au sur-
face is short and the reverse flow of thermal desorption
of particles from the surface into vacuum leads to a sub-
stantial reduction of the equilibrium value of Θ. How-
ever, we observed the formation of AlkxAuy alloys on
the Au surface and a number of special effects that are
determined by the electronic properties and the struc-
ture of these alloys. For example, the presence of the
AlkxAuy alloy on the Au surface considerably decreases
the rate of Au sublimation and increases the diffusion
coefficient of Alk atoms in the alloy compared to these
values for the pure metal [3, 4]. Photostimulation of the
diffusion of Alk atoms in the alloy was observed in
[5−7]. In systems of NaxAuy [4] and KxAuy [8], the for-
mation and destruction of surface alloys were studied
by means of surface ionization mass spectrometry. It is
1063-7842/04/4907- $26.00 © 20905
shown that NaxAuy and KxAuy feature the properties of
wide-gap semiconductors with the band gap between
2.6 and 2.8 eV [7], which is close to that of CsAu.

In this study, we present experimental data indicat-
ing that the interaction between the amine molecules
and the oxygen-activated heated surface of Na/Au alloy
results in the thermal ionization of the formed poly-
atomic particles and the desorption of positive ions. In
this case, the efficiency of ion formation approaches the
value obtained by mass spectrometry of alkylamines
ionized on the surface of thermal emitters from oxi-
dized refractory metals.

We used the experimental setup previously
described in [4]. After the substrate surface (a gold tape
99.99%) was cleaned of the initial impurities and
reconstructed by the method presented in [5], we
obtained a homogeneous structure with a work function
ϕAu = 4.7 ± 0.1 eV. The technique for the formation of
surface alloy NaxAuy on gold is described in [4, 5]. As
a test organic compound, we chose diethylamine
[(C2H5)2NH]. The purity of the initial substance was
confirmed by comparing the experimental electron ion-
ization mass-spectra to the reference mass-spectra of
diethylamine (DEA) [9]. The surface ionization of
DEA, as well as of other alkylamines, on emitters from
pure and oxidized refractory metals has been thor-
oughly studied [10, 11]. The main components in the
surface ionization mass spectrum of DEA are the ion-
ized products of the heterogeneous thermal decomposi-
tion of molecules (M) with a detachment of hydrogen
(M–H)+ or of the methyl radical (M–CH3)+. With a
decrease in temperature, protonated ions (M + H)+ are
observed.

In our case, the alkali metal atoms were ionized on
the surface of pure gold, which was heated to T = 1000–
1250 K; the temperature dependences of the positive-
004 MAIK “Nauka/Interperiodica”
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ion currents coincided with those predicted by the sur-
face ionization theory [12] in the form of the relation
(eU – ϕ)/kT, where eU is the ionization energy per par-
ticle. The inflow of oxygen to a pressure of  ≤ 5 ×
10–6 Torr had little or no effect on the magnitude or the
temperature dependence of currents; i.e., the Au emitter
retained its thermoemission properties in O2. In the
temperature range considered, the incidence of DEA
molecules (P ~ 1–2 × 10–7 Torr) on the emitter did not
lead to the emergence of new lines in the ionization
mass spectrum within the achieved experimental accu-
racy; i.e., no thermal ionization of DEA was observed.
The products of DEA heterogeneous dissociation on
metals are characterized by high ionization energies
(eU > 7 eV) [10] compared to the values of ϕ in metals;
therefore, to obtain measurable ion currents, an
increase in the emitter temperature far above the Au
melting point is required.

We judged the dynamics of the multilayer surface
alloy formation by detecting the change in the resistiv-
ity R of the tape upon the deposition of Na atoms at T =
const. Estimating the resulting NaAu film thickness, we
concluded that the deposition provides for surface coat-
ings with a thickness of ~2–3 µm.

Upon heating the Au tape coated with the NaAu film
to temperatures 1000 ≤ T ≤ 1250 K, we detected the
thermally stimulated desorption of Na+ ions related to
the thermal destruction of the alloy. At T ≤ 1100 K, the
intrinsic thermal emission current of Na+ is small.
When Na atoms from an external source were directed
onto the alloy-coated emitter surface, the increase in the
Na+ current was considerably smaller than that in the
current obtained under same conditions (emitter tem-
perature, alkali atom flow density ν) from a pure gold
surface. This fact might suggest that ϕNaAu ! ϕAu under
the assumption that the surface ionization is the only
process resulting in the ion production. However, this
statement contradicts the results of our measurements
[3] of the change in the work function of Au during the
formation NaAu alloy. According to the measurements
of ϕ carried out by the contact potential difference
method [12] in the course of the aforementioned exper-
iments, the formation of the alloy is accompanied by a
gradual increase in the minimal work function ϕmin by
∆ϕmin ≈ 0.4 eV to the instant when a stable alloy coating
of the metal is attained.

No new mass lines appeared in the spectrum of ther-
mionic emission from the NaAu surface after an inflow
of DEA molecules into the working chamber.

A considerable change in the thermoemission and
catalytic properties of the alloy was observed for the
inflow of oxygen with  ~ 2–3 × 10–6 Torr to its sur-
face. At the initial stages of the alloy formation, the
combined inflow of Na and O2 to the substrate led, first,
to a complete cessation of the thermal emission of Na+

and, then, to a gradual increase in the ionic current to

PO2

PO2
values much higher (by up to 300 times at T = 1100 K)
than those obtained before the emitter exposure to oxy-
gen. With the assumption that the thermal desorption of
Na+ is governed by surface ionization, the observed
increase in the ion emission points to an increase in
ϕmax by ∆ϕmax ≈ 0.5–0.6 eV. Such an increase in ϕ
should provide for the thermal desorption of sodium in
the form of Na+ ions with an almost 100% probability.
However, this current was smaller than that initially
obtained as a result of ion emission from pure gold. In
the case of the formation of a multilayer coating of
NaAu, the presence of oxygen on the surface decreased
the thermoemission current of Na+ ions. Apparently, a
considerable change in the emitter composition and
properties under the exposure to O2 affects both the
emitter surface and the near-surface layers (an oxygen-
induced destruction of the AlkAu alloy surface is well
known [13]).

As a consequence of the oxygen-induced change in
the properties of the alloy surface, the heated tape
became an efficient thermal ionizer of organic com-
pounds that come to the surface from an external
source. Thus, a part of the products of DEA heteroge-
neous thermal catalysis was desorbed on the emitter
surface in the form of ions. Similar to the case of sur-
face ionization of DEA on oxidized tungsten [14], the
mass spectrum of its thermal ionization on the alloy
included the lines of ionized radicals that resulted from
the initial molecule (M = 73 u) after the loss of a H atom
(m = 72 u) and the CH3 radical (m = 58 u). However,
unlike the emitters from oxidized refractory metals
[15], the emitter studied here efficiently ionized numer-
ous products of the association reactions that take place
on its surface. These reactions include the decay prod-
ucts of the initial DEA molecule, the oxygen atoms that
are present in the emitter surface layer, and sodium
either ionized or neutral. First, we detected the current
of ions with mass m = 86 u, which were formed in the
process of substitution H  CH3 in the radical (M–H).
In addition, we detected the products of the association
[(C2H5)2N(CH2)nNa]+, as well as the series of ions
[C2H5(CH2)nNHONa]+ and [C2H5(CH2)nNHNa]+ ·
H2O, where factor n varies in the range 1 ≤ n ≤ 8. The
associative ionic currents decrease with increasing n.
The thermal desorption of ionized complexes from the
alloy surface takes place at high temperatures T >
1100 K as well. In the case of surface ionization on oxi-
dized refractory metals, associative ions, which are the
products of heterogeneous reactions of protonation, are
observed only at low emitter temperatures 550 K < T <
900 K.

The relative intensities of ionic currents and their
temperature behavior strongly depend on the experi-
mental conditions (the presence or absence of the O2
and Na inflows to the surface). Table lists the main lines
in the mass spectrum of the thermal desorption of ions
related to the DEA adsorption on the oxygen-activated
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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surface of NaAu alloy heated to T = 1100 K in various
experimental conditions. A change in the values of
mass lines can be traced upon variation of experimental
conditions: (1) the oxygen-activated alloy surface was
exposed to DEA molecules (P ~ 1 × 10–7 Torr), and the
mass spectra were obtained after two-hour-long inflow
of organic molecules; (2) the same in O2 (  ~ 2 ×
10−6 Torr); and (3) the surface is exposed to Na atomic
flow (ν ~ 1011 cm–2 s–1).

It is seen that the oxygen flow to the surface
increases the intensities of all mass lines. It seems pos-
sible that the presence of O2 promotes surface cleaning
from carbon coating, which lowers work function ϕ of
the emitter and reduces its catalytic activity. According
to the theory [12], if the surface ionization were the
only process leading to the emission of ions, the growth
of current would correspond to an increase in the value
of ϕ of the alloy surface by ~0.2 eV. However, the ther-
mal desorption of ionized clusters at high temperature
points to the radical difference of the emitter studied
here from the surface-ionization emitters mentioned
above. The participation of Na atoms, as well as H2O
molecules, in the formation of the associative products
substantiates the conclusion that the clusterization and
ionization processes are connected with the presence of
active centers on the emitter surface, which are respon-
sible for both the formation and the emission of poly-
atomic ions. Note that, at T < 1050 K, the emission of
Na+ ions is almost undetectable, though sodium atoms
appear in the composition of the surface layer and are
present in cluster ions, whose current is detected at T <
800 K. The inflow of Na atoms to the surface has only
a slight influence on the ionized cluster yield in com-
parison to that of oxygen. Apparently, at a considered
density, the Na flow results in only a slight change in
the concentration of the alkali metal in the surface layer
of the alloy. Moreover, one should note that the alloy
film features the properties of a wide-gap semiconduc-
tor and permits the thermal ionization of alkali metal
ions at the alloy–metal gold interface with the subse-
quent emergence of ions at the surface [8]. It is not
improbable that the ions emerging at the surface from the
bulk of the layer are active charged centers and participate
in the electron exchange with the particles occurring
within the range of their action. The results of electron
transitions manifest themselves in the formation of rad-
icals and clusters, as well as in their ionization.

Note that the ionization efficiency of M–H and
M−CH3 radicals in the system considered above is
close to that obtained for the same products of DEA
decomposition on the efficient surface-ionization emit-
ters from oxidized tungsten [10, 11]. However, these
two types of emitters differ in the temperatures corre-
sponding to the maximal efficiency of ion formation;
specifically, the efficiency of Alk/Au emitter peaks at
T > 1000 K, while the efficiency of oxidized refractory
metals is maximal in the range 650 < T < 750 K.

PO2
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
Thus, a highly efficient thermal emitter of organic
ions is realized on the basis of a wide-gap semiconduc-
tor alloy Alk/Au. The emitter is capable of cluster for-
mation from the initial molecule decay products with
the participation of alkali atoms; the clusterization pro-
cess occurs at high temperatures.

Heterogeneous processes resulting in cluster forma-
tion and ion thermal emission call for further investiga-
tion since these processes are responsible for the selec-
tivity of the ionization of individual organic com-
pounds.
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Abstract—The problem of designing high-resistivity soft magnetic materials based on 3d-metal nanocrystal-
line films is discussed. To increase the electrical resistivity, nanogranular composites are proposed; they consist
of superparamagnetic particles embedded into a dielectric matrix. To obtain the required soft magnetic proper-
ties in such composites, it is necessary to realize magnetic ordering due to the effects of magnetic interaction
between nanoparticles. As an example, magnetic films that exhibit good high-frequency properties in a range
up to several hundreds of megahertz are presented. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The nanocrystalline state of materials is a topical
cross-disciplinary scientific problem involving materi-
als science, solid-state physics, and solid-state chemis-
try [1–4]. During the last 15 years, the interest in this
problem has been substantially increased due to the fact
that a decrease in the grain size (primarily, in metals) to
D < 10 nm results in significant changes in the proper-
ties of nanoparticles. To study the parameters of nano-
crystalline materials, it is necessary to take into account
not only the properties of nanoparticles but also the
interaction between them.

Nanocrystalline composites are applied in various
fields of modern engineering for creating soft and hard
magnetic materials [1, 5] and data media for magnetic-
memory devices [6]. We already discussed the problem
of data media in [7], and, in this work, we study the
problems dealing with the development of soft mag-
netic nanocrystalline materials.

One may question the expediency of designing new
materials if amorphous alloys have excellent soft mag-
netic properties. The point is that 3d metal-based amor-
phous alloys have high electrical conductivity and can-
not be used at frequencies above the kilohertz range.
Nanoparticles consist of a core and a shell—phases
having different physical properties, which should nat-
urally increase the resistivity of such nanocomposites.
Therefore, soft magnetic nanocrystalline materials
open opportunities for their application in high-fre-
quency devices.

STRUCTURE–COERCIVITY CORRELATION 
IN NANOCRYSTALLINE MAGNETIC 

MATERIALS

In the mid-1960s, the soft magnetic properties of
nanocrystalline materials were described in a number
of reviews [5, 8]. It was noted in [5] that the authors of
1063-7842/04/4907- $26.00 © 20909
[9, 10] were the first to study the effect of annealing on
the magnetic properties of amorphous tapes. The
annealed samples consisted of magnetic grains sepa-
rated by an amorphous phase, whose volume fraction in
the composite was ~20%. To decrease the sizes of the
magnetic particles, Cu and Nb were added to the alloy;
an interesting dependence of the coercive force on the
diameter of the magnetic particles was discovered.

However, to be more exact, it was shown in the mid-
1970s that a decrease in the crystallite size in permalloy
films caused a sharp decrease in the coercive force [11].
The magnetic properties of FeNi(SiO) films were stud-
ied depending on the dielectric concentration (Figs. 1, 2).
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Fig. 1. Dependence of the coercive force in (Fe–Ni)–SiO
films on the volume fraction of silicon monoxide. The film
thickness is (1) 100, (2) 200, (3) 300, (4) 400, and (5) 500 nm.
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In this case, dielectric serves as a source of impurity
states in the band structure of a metal and, on the other
hand, increases the number of nucleation centers during
condensation. In the former case, the introduction of a
dielectric impurity modifies the electron spectra and,
hence, changes the fundamental properties of the mag-
net [12]. In the latter case, it favors the formation of a
nanocrystalline structure.

Experiments show that the composition range of
permalloys for which relative changes in the magneti-
zation and Faraday rotation are positive coincides with
the range where these alloys have the properties of a
strong ferromagnet. The concentration dependences of
the saturation magnetization and the Curie temperature
were simulated in [13]. An impurity (Si–O complexes)
was assumed to penetrate into the permalloy lattice and
to create a Coulomb potential that is caused by unsatur-
ated valence bonds and is different from the potential of
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in Fe-based nanocrystalline films. T = 300 K [8].
the unperturbed matrix. The screening of this charge by
electrons of the d band, which has a higher density of
states at the Fermi level, leads to changes in the funda-
mental magnetic parameters. However, the significant
decrease in the coercive force Hc at ~2 vol % impurity
(Fig. 1) was not explained. Electron-microscopic anal-
ysis shows that the crystallite size decreases to the val-
ues when a single-domain state is formed in crystal-
lites. In this case, the main magnetization-reversal
mechanism is rotation of the magnetic moment, which
should increase the threshold magnetization-reversal
fields [14].

These results, along with the data obtained in
[9, 10], were explained in 1990 [15]. In the model pro-
posed, the key factor of the dependence of the coercive
force on the microstructure of a magnet is magnetic
anisotropy and the possibility of controlling its value.
The value of magnetic anisotropy mainly depends on
the crystalline magnetic anisotropy K1, which is deter-
mined by lattice symmetry. For 3d metals, K1 is too
high to reach low values of Hc. However, the effective
contribution of K1 can substantially be decreased by
decreasing the grain size and taking into account the
exchange interaction between grains.

According to the model of random anisotropy pro-
posed to describe the properties of amorphous ferro-
magnets [16], the effective anisotropy Keff in an ensem-
ble of disoriented magnetic particles is determined by
the ratio of the grain size D to the exchange-interaction
radius

where A is the interparticle exchange parameter.
At D > L0, we have Keff = K1N1/2, where N = (L0/D)3.

At D < L0, Keff = K1N–1/2. Therefore, the dependence of
Hc on the grain size has the form shown in Fig. 3 [8].
Three regions can be distinguished in this curve: in
region I, where D > L0, Hc ~ 1/D; that is, Hc increases
with decreasing grain size; in region II, where D = L0,
Hc = 2K1/Ms, where Ms is the saturation magnetization;
and, in region III, where D < L0, Hc ~ D6. Figure 3 also
shows the experimental data for Fe-based nanocrystal-
line materials, which confirm the calculation results.

Thus, we can assume that the model proposed cor-
rectly describes the experimental dependence of the
coercive force on the particle size in nanocrystalline
materials produced by annealing of amorphous sam-
ples. A specific feature of these materials is a particle
size as small as ~10 nm. These materials can be applied
at frequencies as high as several hundred kilohertz [5].
To use these materials at higher frequencies, their resis-
tivity ρ must be increased.

One of the methods for solving this problem is the
use of nanogranular condensates in which magnetic
nanoparticles are embedded into a dielectric matrix.

L0
A
K1
------ 

  1/2

,=
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However, the fraction of a dielectric layer should be
low enough to retain good soft magnetic properties
(high Ms). Therefore, the potential of this approach is
limited by the probability of conduction-electron tun-
neling through a grain boundary [17]. To further
increase ρ, one can use the dependence of the carrier
density on the particle size. The authors of [18] showed
that, when the particle size was smaller than the elec-
tron mean free path, some carriers were localized. The
localization was found to affect the electrical conduc-
tivity more strongly than an increase in the scattering
by boundaries, defects, and impurities. This effect was
detected for 3d-metal nanoparticles with a size D <
7 nm.

Thus, to create high-resistivity nanocrystalline
materials, one has to apply composites with a particle
size <10 nm. Based on the model described above [8],
the coercivity of such composites should be Hc ≈
10−3 Oe. However, other values of Hc were detected
experimentally. For example, in nanocrystalline Fe
films with a particle size D < 10 nm, researchers found
that Hc = 30 Oe in the films with D = 6 nm [19] and Hc =
3–5 Oe in the films with D < 4 nm [20].

Such a significant deviation from the calculated data
can be due to the fact that the model assumed the inde-
pendence of the main magnetic parameters of nanopar-
ticles of their sizes. However, experiments show that
the situation is different. As the value of D decreases,
changes in the structure of nanoparticles increase the
anisotropy constant and decrease Ms and A. For exam-
ple, in the Fe films with D = 6 nm, K = 2.5 ×
106 erg/cm3, Ms = 850 G, and A = 10–7 erg/cm [19].
Thus, the exchange-interaction radius in these samples
decreases as compared to the films with a particle size
D > 10 nm and is equal to L0 = 5 nm; i.e., L0 ≈ D. Then,
to calculate Hc, we have to use the formula Hc = 2K/Ms;
in this case, we obtain Hc > 103 Oe. This value is also
inconsistent with the experimental data. This discrep-
ancy indicates that a specific magnetic order is formed
in 3d-metal films having a particle size <10 nm.

MAGNETIC HYSTERESIS IN NANOGRANULAR 
SYSTEMS WITH SUPERPARAMAGNETIC 

PARTICLES

To analyze the magnetic state of 3d-metal nanocrys-
talline films, let us turn to the results of [21], where the
effects of thermal magnetization relaxation were stud-
ied in an ensemble of noninteracting single-domain
particles having a uniaxial anisotropy. If this system is
magnetized in a field H and the field is then removed,
the remanent magnetization obeys the law

(1)

where t is the time after the field removal and τ is the
relaxation time to the state of thermodynamic equilib-
rium.

Mr Ms t/τ–( ),exp=
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The relaxation time is described by the expression

(2)

where K is the uniaxial anisotropy constant; V is the
particle volume; f0 is the frequency factor, which is
equal to the precession frequency of the magnetic
moment of a particle ( f0 = 109 s–1) in a first approxima-
tion; kB is the Boltzmann constant; and T is the temper-
ature. This exponential dependence results from the
fact that the uniaxial-anisotropy energy of a particle
depends on the angle between its magnetization and the
easy axis. At τ/t ≤ 1, the system changes to a superpara-
magnetic state (Mr = 0, Hc = 0).

Equation (2) can be used to determine the critical
size Vcr of a particle at which it becomes superparamag-
netic at T = const or the temperature TB of transforma-
tion of a particle into a superparamagnetic state at Vcr =
const.

At τ = 100 s, which is the relaxation time character-
istic of induction methods of measuring Mr, we find

(3), (4)

At H = 0, the threshold for the transformation of the
system to a superparamagnetic state is E = KV. At H ≠
0, the threshold decreases and is given by

(5)

The coercive force of a particle at T ≠ 0 is equal to
the field at which the magnetization-reversal threshold
E(H) decreases to a value at which magnetization rever-
sal occurs due to thermal effects in the experimental
time t. Using Eqs. (3)–(5), we obtain [22]

(6)

(7)

where  is the coercive force of the particle at T = 0.

As follows from Eq. (6), the value of Hc decreases
significantly as the nanoparticle size approaches Dcr.
This dependence can be applied to produce nanocrys-
talline materials with a low coercive force. To this end,
it is necessary to determine Dcr for 3d-metal nanoparti-
cles.

Using the parameters of bulk materials, the authors
of [21] obtained Dcr ≈ 20 nm for α-Fe particles at T =
300 K. However, more recent studies showed that, as
the particle size decreases, the particle structure
changes to yield a core–shell system. As a result of
restructuring, the uniaxial-anisotropy energy increases
and Dcr decreases correspondingly. The experimental
dependence of Hc on the core diameter of α-Fe nano-

τ f 0 KV /kBT–( ),exp=

Vcr
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particles is given in [23]; at T = 300 K, particles with a
core diameter of ~4 nm were found to transform into a
superparamagnetic state (Hc = 0). An oxide shell
around the core is ~2 nm thick. Therefore, for α-Fe
nanoparticles, the critical diameter of the transforma-
tion to a superparamagnetic state at room temperature
decreases to Dcr ≈ 6 nm.

Thus, the data given above indicate that thermal
effects cause a strong dependence of the coercive force
on the magnetic-particle size. It should be noted that
numerous experimental results obtained upon studying
the properties of nanogranular magnetic materials
formed by superparamagnetic particles have not been
completely understood. For example, the appearance of
magnetic hysteresis and magnetic ordering in an
ensemble of superparamagnetic particles in the high-
temperature limit (T > TB) has not been interpreted [24].
Such effects are explained using several factors, such as
a large scatter of particle sizes, the presence of a set of
structurally or magnetically different phases, local
anisotropy, and magnetic interaction between particles
[25].

Therefore, one has to determine a factor that is pre-
dominant in the magnetic behavior of a nanogranular
system in a certain particular case. In this respect, the
experiments [26] on studying the effect of the interpar-
ticle distance on the magnetic properties of an ensem-
ble of 3d-metal clusters placed in a nonmagnetic matrix
are of interest. The authors provided constant nanopar-
ticles sizes and structures and showed that, as the con-

FM ISP SP PM

D = const

TB Tp Tc T

Fig. 4. Temperature dependence of the diagram for the mag-
netic state of an ensemble of nanoparticles (D = const).

600

500

400

300

200

100

0 50 100 150 200 250 300
T, K

H
c,

 O
e

Fig. 5. Temperature dependence of the coercive force of Fe
nanocrystalline films [19].
tent of a magnetic phase decreased, the system is trans-
formed from a magnetically ordered to a superpara-
magnetic state. This experiment indicates that the
interparticle interaction substantially affects the mag-
netic state of the system.

Allia et al. [27] studied the effects of interparticle
interaction and proposed a diagram of the magnetic
state of an ensemble of nanoparticles depending on the
particle size and temperature. The temperature depen-
dence of this diagram is shown in Fig. 4.

At T < TB, the system is in the ferromagnetic state.
At T > TB, the particles become superparamagnetic and
the magnetic order remains unchanged (ISP region).
According to [27], the magnetic energy of the ith parti-
cle that interacts with its neighbors can be written as

(8)

where the first term on the right-hand side characterizes
the uniaxial-anisotropy energy of the particle; the sec-
ond term describes the energy of interaction between
the particle and the nearest neighbors; Mi and Mj are the
magnetization vectors of the ith and jth particles,
respectively, and summation is carried out over all

neighboring jth particles; and  is the interparticle
magnetic coupling constant.

Using the mean field theory, we can write

(9)

The temperature of transition from region FM to
region ISP is TB = KV/25kB (Fig. 5). At T > TB, magnetic
ordering in the system is formed due to the effects of
magnetic interparticle interaction. In this case, the tem-
perature of transition to the region of a superparamag-
netic (SP) state is

(10)

Region II on the diagram (TB < T < Tp) has various
names: the region of interacting superparamagnetic
particles (ISP) [27] or the region of superferromagnetic
ordering [28]. Since the contributions from the dipole–
dipole and exchange interactions have not been exactly
estimated, we prefer the name ISP. At T > Tp, the system
transforms to the superparamagnetic state, and, at T >
TC, to the paramagnetic state (TC is the Curie tempera-
ture). We now consider the behavior of the coercive
force for the transitions described above. Figure 5
shows the experimental dependence Hc = f(T) for α-Fe
nanocrystalline films with a particle size of D = 6 nm
[19]. Recall that, at T = 300 K, nanoparticles of this
diameter should be paramagnetic. As is seen from
Fig. 5, Hc = const in a wide temperature range (T = 70–
300 K), and, at T < 70 K, this dependence obeys Eq. (7);
that is, TB = 70 K for these films. Similar results were

E KV αsin
2

Km
ij Mi T( )M j T( ),∑+=
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E KV KmM2 T( )V .+=
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KmM2 T( )
3kB

-----------------------.=
TECHNICAL PHYSICS      Vol. 49      No. 7      2004



MAGNETIC PROPERTIES OF 3d-METAL NANOCRYSTALLINE FILMS 913
obtained for Fe–SiO2 films with a mean particle size of
D = 6 nm [29].

To explain the unusual behavior of the Hc = f(T)
dependence in the ISP region (at T > TB), we assume
that magnetization only weakly depends on tempera-
ture here; hence, the interparticle magnetic interaction
energy is constant. Therefore, Hc = const.

Thus, a magnetic order can be created in a system of
interacting superparamagnetic particles; this order is
characterized by a low coercive force and a weak tem-
perature dependence of the coercive force. Since the
3d-particle size in this system is D < 7 nm, this system
can have a high electrical resistivity.

MAGNETIC PROPERTIES 
OF HIGH-RESISTIVITY NANOGRANULAR 

FILMS

The idea of increasing resistivity in nanocrystalline
materials by creating a dielectric layer between mag-
netic nanoparticles was realized in [30]; the authors
studied the structure and magnetic properties of Fe–
Sm–O films. The films were produced by reactive rf
sputtering of an Fe target with Sm2O3 pellets on its sur-
face in an Ar + O2 atmosphere. The oxygen pressure
was varied in the range 0–10% to produce films of var-
ious compositions. The structure, phase composition,
and magnetic and electric properties of these films were
studied (see table).

The film thickness was d = 1 µm. Electron-micro-
scopic analysis showed that the films consisted of two
phases: α-Fe nanocrystallites (D = 10 nm) and samar-
ium oxide particles (D = 3 nm). The most interesting
results were obtained for the Fe83.5Sm3.5O13 film. The
study of the frequency dependence of the quality factor
(Q = µ1/µ2 is the ratio of the real to the imaginary com-
ponent of magnetic permeability) showed that Q
remained high up to f = 40 MHz.

The high-frequency magnetic properties of granular
Co–Al–O films were studied in [31]. The films were
produced by the same methods as in [30]; they consist
of fcc Co particles with D = 5 nm surrounded by a
dielectric Al–O layer. The properties of these films are
the following: d = 1.7 µm, Ms = 800 G, Hc = 5 Oe, and
ρ = 1100 µΩ cm. The frequency dependence of the
magnetic permeability of the films was studied. The
real part µ1 of the magnetic permeability remains virtu-
ally constant up to f = 500 MHz and coincides with the
calculated data. The high resistivity in these films is
caused by a decrease in the size of magnetic nanoparti-
cles to D < 7 nm and by the presence of a dielectric
layer between them. The films produced represent a
new class of high-frequency magnetic materials, which
have a high value of µ1 and a low value of µ2 in a fre-
quency range up to 200 MHz. A higher resistivity was
realized in nanogranular Co–Sm–O films produced by
the pulse-plasma evaporation of a Co5Sm target in a
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
vacuum of 10–6 Torr. This method of film deposition
was described in [7].

In the initial state, the films are superparamagnetic
(TB ≈ 80 K) and consist of Co particles ~2 nm in size
surrounded by Sm2O3 layers. Annealing in a vacuum of
10–6 Torr changes the structure and properties of the
films. Figure 6 shows the dependences of the resistivity,
coercive force, and saturation magnetization on the
annealing temperature. In the initial state, resistivity ρ
of the films is equal to 5 × 10–2 Ω cm, which is about
four orders of magnitude higher than the values charac-
teristic of the corresponding metallic samples having a
polycrystalline structure. The sharp decrease in ρ at
Tann > 600°C is caused by the destruction of the separat-
ing Sm2O3 interlayers and the formation of a galvanic
contact between the metallic particles.

The variation of the coercive force with the anneal-
ing temperature is complex (Fig. 6b). Three regions
with different values of Hc can be distinguished on this
curve. Hysteresis loops that are typical of these regions
are shown in Fig. 7. In region I, the loop becomes open
only at T < 80 K, which indicates a superparamagnetic
state of the samples. In region II (Tann = 200–350°C),
the loop becomes open at room temperature and has
small values of Hc (Hc = 0.1–2 Oe, Fig. 7b). At Tann >
400°C, Hc exhibits two specific features: it first
increases jumpwise to 250 Oe and then increases to
450 Oe as a result of the second jump. Electron-micro-
scopic analysis shows that, at these annealing tempera-
tures, a polycrystalline structure is formed in the films
and the sizes of Co particles increase by an order of
magnitude. Note that, over the whole range of anneal-
ing temperatures, the saturation magnetization
increases virtually threefold (Fig. 6c). Apparently, this
effect is caused by not only structural factors but also
phase transformations [32].

Figure 8 shows the temperature dependence of the
coercive force for two films annealed at Tann = 250 and
350°C in a constant magnetic field. Two segments can
be distinguished on these curves: at low temperatures,
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Hc exhibits a strong dependence, while at high temper-
atures, Hc is virtually unchanged. Performing dM/dH =
f(T) measurements, Zhao et al. [33] determined the
blocking temperature. The transition between the first
and second segments on the Hc = f(T) dependence in
Fig. 8 coincides with the TB temperature. This result
repeats the data given in Fig. 5. This finding allows the
conclusion that the films annealed at Tann = 250–350°C
undergo the transition from the superparamagnetic
state to the state of magnetic ordering of superparamag-
netic particles (ISP region).

These results indicate that, indeed, an ensemble of
interacting superparamagnetic particles can provide
good magnetic properties at a high electrical resistivity.
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CONCLUSIONS
Analysis of the correlation between the microstruc-

ture and physical properties of nanocrystalline materi-
als shows that 3d-metal granular films with a grain size
<10 nm can provide a high resistivity, which offers the
prospect of their application in microwave devices. The
required soft magnetic properties in these materials can
be ensured by the magnetic interaction between nano-
particles. The most interesting technological approach
consists in the deposition of a film having a high con-
tent of a superparamagnetic phase at T = 300 K. Upon
further annealing, the initial composite transforms into
a specific state where magnetic ordering is realized but
the particles remain superparamagnetic. The variation
of the annealing temperature and the residual-gas pres-
sure and the application of a constant magnetic field
allow one to control the physical properties of such
nanocrystalline films over a wide range.
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Abstract—The influence of potassium deposition on the emission characteristics of field tip emitters with
fullerene coatings is studied. It is shown that a three- to fourfold reduction of the typical voltage U1 required
for the given emission current can be attained by rapid deposition of potassium layer with a thickness exceeding
a monolayer. The deactivation of emitters at room temperature in the absence of electric field is observed and
studied. Presumably, the deactivation is caused by potassium redistribution within the coating and/or the for-
mation of bonds between potassium atoms and fullerene molecules. Deactivation of this type actually comes to
an end in one or two days. The deposition of potassium on fullerene coating results in an appreciable (up to
50%) decrease in U1 of the field emitters even after their long-term (about five days) deactivation. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Field emitters are attractive electron sources for vac-
uum electron devices. The advantages of these emitters
include fast response, compactness, the absence of
heating, and the possibility of attaining high current
densities. Their disadvantages are also well known: one
can readily obtain current densities of up to 103–
104 A/cm2 from a micrometer or submicrometer tip, but
it is extremely difficult to obtain high current values
even with the use of much larger emitting areas. The
problem is that the field value of ≥107 V/cm, which is
necessary for autoemission, is practically unattainable
near smooth surfaces. At moderate voltages, only the
emission from field-enhancing surface irregularities
occurs. However, it is extremely difficult to form a large
number of small protrusions that are required for the
emission to be uniform over the surface. Another prob-
lem is the short durability of field emitters because of
the instability of protrusions to ion bombardment in the
conditions of technical vacuum, as well as to the effect
of high electric fields.

It is considered that coatings from carbon-contain-
ing materials are highly resistant to ion bombardment
and to operation in the conditions of technical vacuum
(see, e.g., [1]). Efforts are made to search for the carbon
materials and to elaborate the technologies of the pro-
duction of special coatings for field emitters on their
basis. Several lines of the search can be identified. For
example, attempts are being made to fabricate ordered
structures from graphite, diamond films, and nano-
tubes. In recent years, we concentrated on the investiga-
tion of potential of fullerene coatings from C60 mole-
cules [2–7]. These spherical molecules seem to be a
convenient structural material for the formation of
1063-7842/04/4907- $26.00 © 20916
field-enhancing microstructures on the surface of tip
field emitters. Previous experiments showed that indi-
vidual microprotrusions produced on a tungsten emitter
surface ensured fairly high current densities of up to
approximately 107 A/cm2 from an area with a diameter
of 10–15 nm. Such “point” high-intensity sources are
of considerable interest for analytical instrument-mak-
ing applications. Along with this, we developed the
technology of the formation of so-called “distributed
fullerene structures,” which consist of a number (sev-
eral tens) of nearly similar microprotrusions on the sur-
face of the tip. Such distributed structures showed sta-
ble operation in the static regime up to a current of
about 100 µA from a single tip with the characteristic
top tip radius ranging from 0.3 to 0.5 µm. The corre-
sponding limiting currents, which initiated the destruc-
tion of the tip, were Imax ~ 120–150 µA. Hence, the
results of studying fullerene coatings favored our
choice of C60 molecules as material for the formation of
microstructures with required parameters on the emitter
surface. Also, the main mechanism of growth of the
system of microprotrusions was established. This
mechanism is related to the polarization and transport
of large fullerene molecules in highly nonuniform elec-
tric fields in the surface region.

An obvious disadvantage of field emitters with car-
bon-containing coatings, including fullerene ones, is
associated with the fact that the work function of these
coatings is about 5 eV, which is even greater than that
of tungsten. Because of this circumstance, the collec-
tion of large currents from such emitters requires the
application of high potential differences between the
emitter and the anode. The work function of carbon-
containing coatings and of carbon emitters can be low-
004 MAIK “Nauka/Interperiodica”
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ered using special activating additives. For example,
the implantation of cesium ions into the bulk planar
graphite samples and samples from carbon fiber
resulted in the reduction of their work function [1] by a
factor of 1.5–2. However, in this case, the emission cur-
rent was unstable and rapidly decreased during the
operation. According to [1], the situation can be
improved by an optimal choice of the energy of cesium
ions during the implantation.

A decrease in the work function of the fullerene
coatings studied by us can be attained by a combined or
subsequent deposition of fullerene and the molecules of
the activating substance. Principally, the deposition
procedure admits gaining a predetermined distribution
of the activating additive over the coating thickness. We
investigated the addition of potassium atoms for the
feasibility of activating the fullerene coating. The first
studies on the matter were described in [2]. Here, we
continued the studies and report the latest results. We
studied the coatings obtained by the deposition of
fullerene molecules and potassium atoms on a tungsten
tip and on a tungsten tip with a ribbed crystal (RC)
[2−5] of tungsten carbide on its surface [8].

EXPERIMENTAL

The measurements were carried out in a multipur-
pose vacuum chamber with an autoemission micro-
scope with up to 106 magnification. From patterns
appearing on the screen under the exposure to the elec-
tron flux from cathode, we determined the distribution
of the emission-current density and revealed flow inho-
mogeneities with characteristic sizes of ≥2 nm on the
cathode surface. Due to continuous pumping, the pres-
sure in the chamber was no higher than 10–9 Torr.

A cross-section view of the chamber is shown in
Fig. 1. The scheme includes the tip cathode (tungsten
emitter) mounted on a movable support, phosphor-cov-
ered screen, fullerene and potassium sources, and the
screen viewing window. Characteristics of tip emitters
with top tip radii 0.3 µm ≤ Rt ≤ 1 µm were measured.
The emitter can be rotated on its mounting and face
subsequently either of the sources and the screen. The
possibility of moving the sources, first, facilitates their
degassing far away from the cathode and, second,
makes it possible to choose the optimal for deposition
distance from a source to cathode (~1–2 cm).

The deposition rate of coating layers was varied in a
wide range by changing the source temperature. The
emitter can be heated to approximately 2800 K by pass-
ing a current through the tungsten mounting bow. A
ribbed crystal was formed on the tungsten surface as a
result of the decomposition at T ≥ 1000 K of prelimi-
nary deposited fullerene coating.

In various experiments, the distance between the
screen and the emitter ranged from 3 to 5 cm. With the
power-supply systems available, negative voltages of
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
up to 30 kV relative the grounded screen and the metal
case of the chamber were applied to the emitter.

We characterize the cathode emissivity by voltage
UI that is required for obtaining a given current I. In
order to minimize the influence of strong fields on the
coating structure, the values of UI were measured at
currents that were substantially lower than the limiting
values for the cathode considered. Usually, we chose
I = 0.002 µA in such measurements; i.e., the values
U0.002 were detected. For the sake of control over the
potassium and fullerene deposition rates, as well as
over the deposited layer thickness θ, we measured the
“deposition parameters” (the dependences of UI versus
the deposition time td) [3, 5]. Typical curves U0.002(td)
obtained during the deposition of potassium and
fullerene on the tungsten tip C1 with a top tip radius
Rt ≈ 0.3 µm are shown in Figs. 2a and 2b. The time
instants when monolayer thickness is attained are indi-
cated.

Note that the coatings were deposited in the absence
of electric field. In this case, the resulting coatings were
almost homogeneous and remained without structural
rearrangement after the measurements at U0.002. The
field-enhancing microstructures were formed on the
fullerene surfaces with the use of the thermal and the
field processing methods elaborated previously [2–7].

RESULTS AND DISCUSSION

The expected result of activation was obtained when
a small amount of potassium was deposited on the field
emitters. Figure 3 shows the typical deposition curves
U0.002(td). The deposition of coating with a thickness
from two to six monolayers resulted in a threefold or
fourfold reduction of U0.002. The activation degree

12

3

4

5

6

7

Fig. 1. Cross section of the experimental chamber: (1) tip
emitter on a movable support (2), (3) screen, (4) potassium
source, (5) fullerene source, (6) screen viewing window,
and (7) additional window for viewing the microscope com-
ponents.
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depended on the composition and structure of the pre-
liminary coating. This is clearly seen from the compar-
ison of the dependences U0.002(td) plotted in Figs. 3a and
3b. The curve in Fig. 3a was obtained in the case when
potassium was deposited on the tungsten tip C2 after
the preliminary deposition of five monolayers of potas-
sium and subsequent deposition of ten-monolayer-
thick fullerene coating. For such coatings, which were
not subjected to the field treatment, the voltage U0.002
measured before the subsequent deposition of potas-
sium exceeded 4 kV. Minimal values of U0.002 were
attained when potassium was deposited on an opti-
mized distributed fullerene structure, which appeared
on the emitter with a ribbed crystal formed on its top
(Fig. 3b). In our opinion, the predictability of the results
in the case of rapid deposition of comparably thin
potassium layers can be attributed to the fact that, in
this case, the surface profile and, consequently, an elec-
tric field enhancement are controlled by the initial
structure of fullerene coating. It seems that the deposi-
tion of thin potassium layer affects this structure only
slightly and results in the lowering of the surface work
function.

The results of measurements indicate that the prop-
erties of a potassium-activated surface appreciably
change in time when it is held at room temperature in
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Fig. 2. The curves U0.002(td) of (a) potassium and
(b) fullerene deposition on the tungsten tip C1 with top tip
radius Rt ≈ 0.3 µm.
the absence of electric field. The time dependence of
U0.002 is sensitive to both the surface characteristics of
the initial coating and the amount of potassium depos-
ited. Figure 4 shows the typical dependences of U0.002

on the exposition time t for the cathode C2 with two
coatings that differ greatly in characteristics. Curve 1
(Fig. 4) was measured after ten monolayers of potas-
sium were deposited on the preliminarily formed mul-
tilayer coating W–K–C60 with ten monolayers of
fullerene molecules on the surface. Curve 2 was
obtained after 30 monolayers of potassium were sput-
tered on the fullerene coating with a thickness of four
monolayers deposited on top of the ribbed crystal.

For the cathodes studied, time dependences U0.002(t)
turned out to be similar. A characteristic increase in
voltage U0.002 corresponding to the rapid initial deacti-
vation of emitter during the first hours is observed.
Then, after the exposition for one to two days, the
dependences U0.002(t) level off and the further deactiva-
tion nearly cease. The initial rapid increase in U0.002(t)
might be associated with the gas adsorption at the emit-
ter surface. However, the subsequent emitter heating to
350–450 K, which should lead to the gas desorption,
resulted in only an insignificant (by 10–15%) lowering
of U0.002. Apparently, the considered increase in U0.002
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Fig. 3. The curve of potassium deposition on the surface of
different emitting systems: (a) cathode C2 with top tip
radius Rt ≈ 0.7 µm and the initial coating W–K–C60 and
(b) cathode C1 with top tip radius Rt ≈ 0.3 µm and the dis-
tributed fullerene structure of microprotrusions on the sur-
face of the initial W–RC–C60 coating.
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has a different origin. In our opinion, the cathode deac-
tivation is related to a greater extent to the redistribution
of potassium in the tip coating, for example, to the
potassium migration from the field-enhancing micro-
structures into the valleys between them. Along with
this redistribution over the surface, potassium can also
migrate into the bulk of the fullerene layer or form
bonds with fullerene molecules (for example, of exohe-
dral type).

So far, the complete understanding of mechanisms
behind the evolution of the emitting characteristics of
cathodes with multilayer coatings is still a challenge
and requires further investigation. However, even the
available data bear evidence of the activation effect
resulting from the introduction of potassium into the
fullerene coatings. An important practical point is that
the voltages established after a long-term exposition are
lower than those typical of the emitters before the
potassium deposition. For some types of emitters, this
lowering amounted to at least 50%.

CONCLUSIONS

The most important results of this study are listed
below. Up to a threefold or fourfold reduction of char-
acteristic voltages UI required for the given currents is
obtained after the rapid deposition of potassium atoms
in an amount exceeding a monolayer.
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Fig. 4. Evolution of the characteristic voltage U0.002 for
cathode C2 with top tip radius Rt ≈ 0.7 µm and with (1) W–
K–C60–K and (2) W–RC–C60–K coatings.
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
The phenomenon of the emitter deactivation at room
temperature in the absence of electric field is observed
and studied. Possible causes of the deactivation are the
potassium redistribution within the coating and/or for-
mation of bonds between potassium atoms and
fullerene molecules.

It is also established that the potassium deposition
on fullerene coating allows a noticeable (to 50%)
reduction of UI in the field emitters considered, even
after their long-term (five days) deactivation.
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Abstract—Gradient heat flux sensors produced on the basis of anisotropic single crystals of 99.99% pure
bismuth are described. Their response time is estimated at 0.05 ms. A method of control over the nonstationa-
rity of temperature, which is measured by means of the sensors, is proposed. © 2004 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

The majority of thermal processes are characterized
by time-dependent temperatures and heat fluxes with a
typical variation frequency ranging from a few hertz to
several kilohertz. Even in common “stationary” heat
transfer problems, the thickness of the boundary layer
is subjected to fluctuations, which is manifested in the
oscillations of temperature and heat flux at the surface.

As a rule, the most important information on the
physics of a process is associated with the nonstation-
ary component; therefore, the measurements (with
minimal distortion) of the heat flux pulsations present
an interesting and significant problem. The main obsta-
cle that hinders its solution is a limited nomenclature
and the insufficient operation speed of the presently
available heat flux sensors.

The classification of sensors proposed by Gerash-
chenko [1] includes, as a separate group, so-called
“supplementary wall sensors.” Such devices have the
form of a plate placed on the surface of an object or
introduced into a heat-conducting medium so that the
vector of the heat flux is normal to the working planes
of the sensor.

In essence, the majority of these sensors are a mul-
tijunction thermocouple (Fig. 1a); the thermal e.m.f.
and heat flux vectors appear to be collinear. In terms of
the Mitiakov representation [2], these sensors can be
classified as the longitudinal type. It is the longitudinal
sensors, the best of which were elaborated in the
1960s–1970s at the Institute of Applied Thermal Phys-
ics, Academy of Sciences of the Ukr. SSR (at present,
IATP NAS), which are the most often studied in Russia.
The majority of their foreign analogues realize the
same principle idea and have no noticeable advantages.

To improve the sensitivity of longitudinal-type sen-
sors, one has to increase their thickness (up to 1–
2 mm), which leads to two principally unavoidable
drawbacks: the first is the thermal resistance of an order
1063-7842/04/4907- $26.00 © 20920
of 10–3 m2K/W, which considerably distorts the temper-
ature field in the region of measurement and, as a con-
sequence, introduces a systematic error whose value is
difficult to determine; and the second is that the high
sensitivity is attained at the cost of the operation speed,
so that the response times can reach 10–100 s and
longer.

At St. Petersburg State Technical University, in
1996–2003, we developed a fundamentally new
approach. The sensors, which were called gradient sen-
sors, also are “supplementary-wall” devices, but the
principle of their operation is quite different and they
outperform longitudinal sensors in many respects.

Gradient heat flux sensors (GHFSs) are based on the
transverse Seebeck effect, which consists in the appear-
ance of thermal e.m.f. in the direction perpendicular to
the vector of the heat flux; therefore, GHFSs should be
considered as transverse-type sensors (Fig. 1b).

(a)

(b)

q E

E
q

Fig. 1. Heat flux sensors of (a) longitudinal and (b) trans-
verse types.
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THEORY AND CONSTRUCTION OF GHFS

As was mentioned above, the operation principle of
GHFSs involves the transverse Seebeck effect (i.e., the
appearance of thermal e.m.f. with the strength vector
normal to the vector of the heat flux) in media where
both the thermal and electrical conductivities, as well as
the thermoelectric coefficient, are anisotropic. The ele-
mentary theory of GHFSs is generalized in [3–5].

For the transverse thermal e.m.f. to appear, the heat
flux vector should be off the principal axes of a crystal
that is anisotropic in thermal conductivity and thermo-
electric coefficients. Bismuth is an example of such a
material.

Figure 2 shows a rectangular parallelepiped cut
from a bismuth single crystal. The parallelepiped repre-
sents an anisotropic thermoelement, and the hatched
plane is called a trigonal plane.

Because of the thermal conductivity anisotropy of
the thermoelement, the heat flux vector deviates from
the Z axis in any section with the exception of the 1–2–
3–4 plane. This means that the difference in tempera-
tures appears not only along the Z axis but also along
the X axis and the heat flux vector in each section
rotates by a certain angle with respect to the initial
direction.

An external heat flux through the thermoelement
gives rise to a transverse electric field with the strength

which is proportional to the projection of the gradient
or, in accordance with the Fourier law, to the heat flux
density

(1)

Here, ε11 and ε33 are the components of the differential
thermal e.m.f. tensor, λ11 and λ33 are the components of
the thermal conductivity tensor, F = lb is the in-plane
area of the element, and qZ is the mean density of the
external heat flux. Thus, the thermal e.m.f. eX is a linear
function of both the heat flux density qZ and the element
area F and is defined by the choice of angle θ (for bis-
muth, the optimal value is θopt = 53.4°).

The main characteristic of such a thermoelement is
its volt–watt sensitivity (V/W)

(2)

A single bismuth plate has a thickness of 0.1–
0.2 mm; its in-plane area F and signal eX appear to be
small. Because of this circumstance, thermoelements
are connected in series (similar to thermocouples in

eX ε33 ε11–( ) θ θl
∂T
∂z
------,cossin=

eX

ε33 ε11–( ) θ θcossin

λ33
2 θsin

2 λ11
2 θcos

2
+

----------------------------------------------------FqZ.=

S0

eX

qZF
---------.=
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longitudinal sensors). The resulting stack presents the
principle construction of the GHFS.

Figure 3 shows the schematic of a GHFS assembled
from bismuth plates 1. Spatial orientation of the trigo-
nal planes in two adjacent elements is chosen so that the
finite thermal e.m.f.s of these elements are added.

The sensors are mounted on mica substrates 5.
Plates 1 are insulated from each other by thin (5 µm)
Dacron spacers (2) and stuck to the mica substrate 5 by
BF-2 glue. Junctions 3 are made with the use of pure
bismuth and connect plates 1 to form a series circuit.
The extreme plates are supplied with current leads 4.

The resulting thermal e.m.f. from thus so con-
structed GHFS is

(3)

where n is the number of elements (plates 1) composing
the sensor.

With a thickness reduced to 0.1–0.2 mm, which is
one or two orders of magnitude smaller than that of lon-
gitudinal sensors, the GHFS has a thermal resistance of
10–5 m2K/W at an effective thermal conductivity close
to 7.45 W/(m K).

In our experiments, GHFSs were fabricated on the
basis of 99.99% pure bismuth single crystals, for which
S0 = 5–20 mV/W; the operation temperature ranges
between 20 and 540 K (the upper limit is close to the

E qZES0n,=

1 2

34

0

C1

l

b

Xh

θ

C3
Z

90°

Fig. 2. Anisotropic thermoelement of size l × b × h; C1 and
C3 are the principal crystallographic axes; θ is the angle at
which the element is cut out of a single crystal.

1
2

3

4

5

Fig. 3. Schematic of a GHFS: 1, a plate of anisotropic bis-
muth; 2, spacers; 3, junctions; 4, current leads; 5, substrate.
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bismuth melting point). The technique developed in [3]
enables one to graduate GHFSs with reference to the
Joule–Lenz heat flux with an accuracy of no worse than
1%; dependence (1) appears to be linear within 5% over
the entire temperature range under pressures of up to
30 MPa. The level of thermal noise in bismuth GHFSs
is comparable to that in sensors produced from other
pure metals. The resistance of conventional battery-
type GHFSs falls within 0.1–10 Ω , which makes it pos-
sible to detect a signal by means of devices that are typ-
ically supplied in a set with standard thermal convert-
ers.

THE DYNAMICAL CHARACTERISTICS 
OF GHFS

Equation (1) is obtained under the assumption that
the thermal conductivity problem is stationary and the
heat flux density qZ is time-independent. However, con-
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Fig. 4. Test bench for dynamical studies of GHFSs: 1, laser;
2, beam; 3, optical system; 4, mirror; 5, photodiode;
6, GHFS; 7, laser radiation detector; 8, massive aluminum
substrate; and 9, oscilloscope.
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Fig. 5. Dynamical characteristics of bismuth GHFSs:
(1) calculation by an improved model of a compound body
with a defect layer, (2) experiment, and (3) calculation by
the homogeneous body model.
sidering nonstationary processes, one has to deal with
the dynamic characteristics of the sensor, first of all,
with its response time τmin.

The experiments were carried out on a specially
designed test bench (Fig. 4) based on a pulsed
Q-switched Delta-201 laser operating at a wavelength
of 1.06 µm with a pulse duration of 0.15 ms, an output
power of 1250 KW/m2, and an interval between pulses
of 60 ms.

Laser 1 generates beam 2 with an initial diameter of
0.1 mm; passing through optical system 3 and mirror 4,
the beam broadens to a diameter of 15 mm. Then,
beam 2 strikes photodiode 5, GHFS 6, and laser radia-
tion detector 7, which are mounted on substrate 8 by
means of a heat-conducting paste and connected to
storage oscilloscope 9. Fast-response (about 1 µs) pho-
todetector 5 was used for synchronizing the oscillo-
scope circuit with the laser pulse. For the independent
measurement of radiation power, fast-response (1 µs)
film photodetector 7 was placed near GHFS 6.

In the first experiments, we used a GHFS with a size
of 4 × 7 × 0.2 mm and a sensitivity of 9.3 mV/W. The
sensor surface was coated with a special composition to
a degree of blackness of 0.98. As a result, we obtained
the time dependence of the GHFS signal under the irra-
diation by a pulsed heat flux of a constant density. Then,
we considered the GHFS dynamics with a thicknesses
of 0.5, 1.0, 1.5, 2.0, 2.5, and 4.0 mm; the same in-plane
size (4 × 7 mm); and the same blackness degree. The
results turned out to be nearly the same for all the sen-
sors. Thus, we have obtained the first evidence of the
principal difference between transverse- and the longi-
tudinal-type sensors.

The response time of longitudinal sensors is deter-
mined by their effective thermal diffusivity a and thick-
ness h,

which has a simple physical explanation: the material
structure is “almost homogeneous,” and the signal for-
mation is based on the difference in the temperatures at
the opposite sides of the sensor.

We assumed that a GHFS signal is determined by a
thin near-surface layer of anisotropic material sepa-
rated from the surface by only a 30-µm-thick region of
technological etching.

Figure 5 shows the experimental (2) and calculated
(3) dynamical characteristics of GHFSs obtained in [6];
the calculation implies that the GHFS is “ideal,” i.e.,
free from the etched layer. In principle, an ideal sensor
can be fabricated growing separate single-crystalline
elements from melt; the response time of a such sensor
presents the ultimately attainable value for anisotropic
bismuth.

τmin
4

π2
-----h2

a
-----,=
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The calculation was carried out under the assump-
tion that the heat flux with density qmax acts on the sur-
face of semi-infinite mass. In this case, the linear theory
of heat conduction gives the heat flux at depth δ0 in the

form q(δ0, τ) = qmaxerfc0.5(aτ/ )–0.5. The response
time can be determined from the relation [qmax –
q(τ)]/qmax = 1/exp(1) ≈ 0.368.

Let us find the point with ordinate (1 – 0.368)qmax on
the experimental curve 2; the abscissa of this point
defines the response time τmin = 0.05 ms. The same pro-
cedure in the case of an ideal GHFS yields the limiting

value  = 0.01 ms.

The above discussion leads one to the following
conclusions: (1) the sensitivity of a GHFS is divorced
from its thickness (and response time); (2) in turn, the
thickness is defined by only the production technology
and practically lies within 0.1–0.4 mm; (3) the response
time is independent of the sensor thickness and is gov-
erned by only the physical properties and the thickness
of the surface (“working”) layer; and (4) the thermal
resistance (and the induced distortion in the tempera-
ture field) is usually lower than that in the sensors of the
longitudinal type.

THERMOMETRY OF TRANSIENT 
PROCESSES

Our group is concerned with the thermometry on the
basis of GHFSs since 1996. The results obtained for
free-convective heat transfer on a vertical plate [7],
stimulated convective heat transfer in a flow past a
smooth cylinder, a cylinder with turbulence stimulators
[8], and a spherical hole [9], as well as for complex heat
transfer in the combustion chamber of a Diesel engine
[10], allowed us both to verify the workability of the
method in classical cases and to gain a number of prior-
ity results.

Figure 6 shows the results of GHFS measurement of
the heat flow pulsations  on the cylinder surface
streamed by a transverse air flow with the heat flux den-
sity q = qϕ + . The cylinder is heated by saturated
water vapor, its surface temperature being close to
100°C; the air temperature is about 20°C; and the angle
ϕ between the flow velocity vector and the radius vector
to GHFS is 150°.

Of considerable interest are the measurements of
heat flux in such highly nonstationary systems as waves
in shock tube wind tunnels [11].

The experiments with shock tube wind tunnels were
carried out at the Ioffe Physicotechnical Institute (PTI),
of Russian Academy of Sciences, and at St. Petersburg
State Technical University (SPSTU); both groups used
GHFSs with a size of 4 × 7 × 0.2 mm and with a volt–
watt sensitivity ranging from 9.4 to 9.8 mV/W.

δ0
2

τmin
calc

qϕ'

qϕ'
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In the experiment performed at the PTI, xenon was
heated by a shock wave with the Mach number M = 6.
In the tube, the sensor was flush-mounted with the
internal wall of the cylindrical channel at cross sections
spaced 100 and 425 mm from the closed end of the
tube. A piezoelectric pressure sensor with the sensitive
element 4 mm in diameter was positioned in the same
sections.

The results of the measurements in the cross section
at 100 mm from the tube end are shown in Fig. 7. A
steep rise of the sensor signal (dashed curve) is seen at
the instants when the incident (τ = 0.15 ms) and
reflected (τ = 0.55 ms) shock waves cross the section of
measurement. Changes in the heat flux (solid curve)
display close correlation in time with the signal of the
pressure sensor. The heat flux density in the region
behind the reflected shock wave (gas temperature T ~
7000 K) attains 1.4 MW/m2. Both sensors were prelim-
inarily calibrated: the heat flux was accurate to ~2%;
the pressure, no worse than 10%.

At SPSTU, the experiment took place in a shock
tube wind tunnel with air (M = 1.9) according to the
same scheme. GHFSs were positioned at the internal
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Fig. 6. Heat flux pulsation on the surface of a transversely
streamlined cylinder (ϕ = 150°, Reynolds number Re = 5 ×
104).
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of the shock tube wind tunnel at 100 mm from its end.
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cylindrical wall at a distance of 3 m from the closed end
and at the center of the end plug. Similar to the experi-
ments described above, the pulse start coincides with
the arrival of a shock wave at the sensors. The sensor at
the lateral wall (curve 1 in Fig. 8) detects the initial
increase in the heat flux induced by the incident wave
with a temperature of 460 K behind its front and the fol-
lowing drop as soon as the cold gas from behind the
contact surface reaches the cross section of measure-
ment.

At the instant of incidence (and reflection) of the
shock wave, the sensor at the end surface (curve 2) is
immediately brought into the region of stationary gas at
a temperature of 900 K. In approximately 1.5 ms after
the shock wave reflection, the heat flux stabilizes and
remains nearly constant for up to 7 ms, when the con-
tact surface arrives at the end surface of the tube. Atten-
tion is drawn to the more than twofold excess of the
maximal heat flux to the cylindrical wall (solid curve)
over that to the end (dashed curve) of the channel. This
fact bears evidence of different mechanisms underlying
the heat transfer at the lateral and end surfaces. Indeed,
the heat transfer at the end surface occurs similar to that
between two semi-infinite rods, while the heat transfer
at the cylindrical wall is predominantly convective.
This conclusion is confirmed by the results of measure-
ments of the heat flux behind the reflected shock wave
in the above experiments at the PTI (Fig. 7). In that
study, the sensor was in the boundary layer, which was
produced by the cocurrent flow behind the incident
shock wave, and the reflected shock wave interacted
with this layer on its way towards the cocurrent flow.
Therefore, in contrast to the situation at the end of the
tube, gas near the wall was not in the state of rest, thus
making possible the convective heat transfer in this
region.

200

250

100

50

0

q,
 k

W
/m

2

t, ms

150

300

350

1 2 3 4 5 6 7 8 9

1

2

Fig. 8. Time variation of the heat flux behind the shock
wave in air detected (1) on the lateral wall 3 m from the tube
end and (2) on the end surface.
THERMOMETRIC POTENTIAL OF GHFS

In view of the nearly linear temperature dependence
of the ohmic resistance, GHFSs can be classified as
resistance thermometers and used in the bridge or other
standard thermometry circuits, when the thermometer
as a whole is immersed in the medium being studied to
avoid the effect of the transverse thermal e.m.f. In this
case, the inertia of a GHFS (shaped as a plate with the
thickness h) is defined by the Fourier number Fo =
aτ/h2. This type of thermometry is referred to as
“active,” since one has to pass current from an external
supply through the thermometer.

However, the ability of a GHFS to form a signal
under the action of a heat flux suggests another, “pas-
sive,” thermometric scheme: since the sensor itself pro-
duces a thermal e.m.f., one needs only to measure the
current and the voltage drop in the circuit and to calcu-
late the resistance by Ohm’s law

(4)

where I is the current, R is the load resistance (shunt),
R0 is the resistance of the GHFS at the initial tempera-
ture (for example, at 0°C), and χ is the temperature
coefficient of resistance for the GHFS material (to be
determined by the calibration in the thermostat).

Thus, it will suffice only to mount the GHFS in a
required position, to run wires to the place of detection,
and to determine the thermal flux and the temperature
by formulas (3) and (4), respectively.

Finally, we can realize a circuit for nonstationary
temperature measurements. In terms of nonstationary
thermometry, the true temperature in a medium is
defined by

(5)

where T(τ) is the reading of the inertial thermometer
with the response time .

Let two GHFSs, D1 and D2, with thickness h each,
be mounted on a massive substrate as shown in Fig. 9.
We calculate temperature T from formula (4). The con-
stant  can be determined either from experiment or
again with the use of the heat conduction theory; all that
remains is to calculate the derivative dT/dτ. Let us use
the explicit finite-difference Schmidt scheme, which
suggests

(6)

where ∆x is the thickness of the nth layer (in our case,
∆x = h) and (∆T/∆x)+ and (∆T/∆x)– are the finite-differ-
ence analogues of the derivatives dt/dx to the right and
to the left from the middle plane of the layer, respec-
tively (Fig. 10).
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Assume a linear relation of the values (∆T/∆x)+ and
(∆T/∆x)– to the signals E1 and E2 of sensors D1 and D2,
respectively. In this case,

(7)

where λ, ρ, and c are the thermal conductivity, density,
and the mass specific heat of the “material” of the
GHFS, respectively. Finally, we calculate temperature
Tf(τ) using expressions (4) and (7) in the form

Thus, GHFSs provide the possibility of control over
both the heat flux and the time-dependent temperature
of the material.

GHFS IN COMPARISON 
TO WORLD ANALOGUES

In the related literature, the data on technical char-
acteristics of present-day heat flux sensors are scarce
and, what is more, the reliability of the available data is
not irreproachable. The data that we managed to derive
from Internet sites are conveniently presented in
Fig. 11. The characteristics of our bismuth GHFS are
also shown.

It is seen that GHFSs are two or more orders of mag-
nitude ahead of longitudinal-type sensors in response
time and are second only to Vatell sensors in heat resis-
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Fig. 9. The scheme of nonstationary thermometry.
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Fig. 11. (a) The sensitivity, the response time, and (b) the
operation temperature range of the present-day heat flux
sensors: (1) GHFS, sensor produced at (2) ITTP NAS
(Ukraine), (3) Vatell (United States), (4) Wuntronic (Ger-
many), (5) Captec (France), (6) Hukseflux (Holland),
(7) Physical Electronics Laboratory (Switzerland),
(8) Newport (United States), (9) TNO (Holland), and
(10) FORTECH HTS (Germany).
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tance. Note also that the GHFS in-plane size can be 1 ×
1 mm or larger, the upper limit being placed only by the
laboriousness of fabrication.

CONCLUSIONS
We proposed, developed, and elaborated to the sta-

ble technological and satisfactory technical level gradi-
ent heat flux sensors, which are measuring tools free
from the principal disadvantages of longitudinal-type
sensors. The experimentally determined GHFS
response time was 50 µs, regardless of the device thick-
ness, and permitted a further reduction to 10 µs. This
ensures the detection of heat flux pulsations at frequen-
cies of up to 20 kHz.

GHFSs were used in various heat exchange prob-
lems, including substantially nonstationary ones (e.g.,
the processes in shock tube wind tunnels). The reliabil-
ity of measurements is confirmed in the standard mod-
els, and a number of priority results are obtained.

Apart from heat flux measurements, GHFSs hold
promise for thermometry. The application of GHFSs
allows one to avoid the use of external power supplies
and provides for a correct measurement of substantially
nonstationary temperatures.

In most operation parameters, GHFSs display
higher performance than their present-day analogues
and open new prospects in the experimental technique.
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Abstract—The effect of nonuniform thermal action of a light beam on the parameters of a diffraction peak for
a calcite crystal is studied. It is shown that the spatial intensity distribution in an X-ray beam can be corrected
by controlling the thermally induced mismatch between Bragg reflections from local areas in a crystal. © 2004
MAIK “Nauka/Interperiodica”.
One of the important problems of X-ray diffraction
optics is the development and design of optical ele-
ments for controlling and correcting hard X-ray radia-
tion. Such elements are important since they are applied
in X-ray diffraction lithography, medicine, microelec-
tronics, and other fields of engineering. This problem is
difficult, since it is difficult to produce X-ray optical
elements that meet certain requirements. Therefore, it is
often necessary to correct the wave front of an X-ray
beam. In this work, the (228) X-ray diffraction peak of
a calcite (CaCO3) crystal is used to study the possibility
of correcting crystal parameters by the thermal effect of
a light beam on the crystal surface. The experiment was
performed on a two-crystal X-ray spectrometer with a
high angular resolution (∆d/d = 10–4) according to the
scheme (n, –n). As a source of X-ray radiation, we
applied a BSV-29 X-ray tube (CuKα1 radiation, 0.4 ×
8-mm focal spot). As a monochromator, we used (511)
Ge cut along the (111) plane. A sample to be studied
was a 20 × 15 × 4-mm plate cut at an angle of 35° to the
(228) crystallographic plane; it was fixed with a sealant
on the surface of the attachment, which also served as a
cooler. A cooler temperature of 22°C was maintained
with a thermostat. The crystal surface was heated from
the diffraction side by the radiation of a projector lamp
and was controlled with a thermocouple. The scheme of
illumination of the sample is illustrated in Fig. 1a.

Figure 1b shows the family of rocking curves
recorded at different temperatures of the left part of the
sample surface. Initial rocking curve 1 (recorded with-
out illumination) consists of two peaks, whose posi-
tions are determined by the initial disorientation of
coherent domains in the crystal. The initial positions of
the disoriented domains in the crystal are determined
topographically (Fig. 1c, topogram 1). Figure 1c also
shows topograms 3 and 5 of the sample surface, which
were taken during the illumination of the left part of the
surface. When the temperature of the left part of the
sample surface, which coincides with one of the two
1063-7842/04/4907- $26.00 © 20927
domains, increases, the rocking curve shifts as a whole
toward smaller angles and the distance between the
peaks on the curve decreases. The position of the light
beam with respect to the disoriented domains (see
Fig. 1a) was determined from the maximum change in
the intensities of the rocking curves. At t = 49°C, both
peaks in the rocking curve merge (curve 5).

The changes in the shape of the rocking curve
shown in Fig. 1b can be explained by a thermally
induced mismatch in the angular displacement of the
diffraction peak, which is caused by the nonuniform
illumination of the sample surface, and by a change in
the divergence of the X-ray beams that is related to tem-
perature gradients [1, 2]. This dependence shows that
the mismatch between the Bragg reflections from dis-
oriented domains in the crystal can be compensated in
some cases by a light beam, thus decreasing the rock-
ing-curve width. The detected change in the shape of
the rocking curve depends on the energy and geometri-
cal position of the light beam on the crystal surface. For
example, when the right part of the sample is irradiated
and the light–shade boundary is retained on the sample
surface, the mismatch between the Bragg reflections
increases with respect to the initial mismatch.

The angular position of a diffraction peak taken
from a local uniform region in a crystal that is subjected
to a temperature gradient depends on the temperature of
this region and its temperature gradient. The tempera-
ture dependence (without making allowance for the
temperature gradient) of a Bragg reflection angle θij for
the point on the crystal surface with coordinates ij is
written as

(1)

where θij is the Bragg reflection angle for the (hkl)
planes at the point with the coordinates ij, tij is the tem-
perature of the crystal surface at the point with the coor-
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Fig. 1. (a) Schematic of the illumination of the sample surface: (1) sample and (2) diffraction area. The dotted line shows the illu-
mination region (L). (b) Rocking curves recorded upon heating the left side of the sample surface to (1) 22, (2) 28, (3) 30, (4) 43,
(5) 49, (6) 58, and (7) 72°C. (c) Topograms of a part of the sample surface taken under the illumination conditions of recording
curves 1, 3, and 5.
dinates ij, λ is the wavelength, α is the thermal expan-
sion coefficient of the crystal along a reciprocal lattice
vector, dij = d0ij + ∆dij, d0ij is the interplanar spacing at
the point on the crystal surface at a temperature t0, t0 is
the temperature of the unexposed area in the crystal,
and ∆dij is the change in the interplanar spacing at the
point with the coordinates ij that is caused by the tem-
perature gradient ∆tij at this point.

Using Eq. (1), we can qualitatively explain the dis-
appearance of the splitting of the peaks from the two
domains. To perform a quantitative estimation, it is nec-
essary to take into account many factors, such as the
thermal conductivity of the sample, heat-removal con-
ditions, domain shapes, and the X-ray optical scheme
of the experiment. Therefore, to quantitatively estimate
the conditions of disappearance of the peaks from two
(or several) domains, one has to introduce certain cor-
rections related to the experimental conditions.

Thus, using the thermal effect of a light beam on the
surface of a diffracting crystal, one can locally correct
its parameters and control the spatial intensity distribu-
tion in an X-ray beam. The thermal effect of a light
beam on the surface of a crystal can also change the
angular divergence of X-ray beams within the width of
a rocking curve.

This method of correcting the parameters of a dif-
fracting crystal can be applied in X-ray diffractometry
in the cases when the width of the rocking curve of the
monochromator should be changed in a given manner.
With this method, one can, for example, change a dif-
fraction region in a crystal to be studied. The possibility
of creating the required profile of thermal deformation
at the surface of a crystal or in a multilayer structure
with the help of a light beam makes it possible to con-
trol their dispersion properties, which is important in
focusing optical systems.
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Abstract—The one-dimensional walk of a particle executing instantaneous jumps between the randomly dis-
tributed “atoms” at which it resides for a random time is considered. The random distances between the neigh-
boring atoms and the time intervals between jumps are mutually independent. The asymptotic (t  ∞) behav-
ior of this process is studied in connection with the problem of interpretation of the generalized fractional dif-
fusion equation (FDE). It is shown that the interpretation of the FDE as the equation describing the walk
(diffusion) in a fractal medium is incorrect in the model problem considered. The reason is that the FDE implies
that the consecutive jumps (fractal walk) are independent, whereas they are correlated in the case under consid-
eration: a particle leaving an atom in the direction opposite to the preceding direction traverses the same path
until arriving at the atom. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The term “anomalous diffusion” or, synonymously,
“strange kinetics” has emerged in the last decade and
been actively used in the description of the processes in
which a diffusion packet spreads following the law dif-
ferent from the standard expression ∆(t) ∝  tγ. The
approximation ∆(t) ∝  t1/γ with γ differing from 1/2 is
used most frequently. Among these processes are
charge transfer in amorphous semiconductors and dif-
fusion in polymeric and porous materials, turbulent and
circulatory flows, the interstellar medium, rocks, etc.
[1–3].

Such processes are often described analytically
using the generalized diffusion equation with fractional
derivatives (fractional diffusion equation (FDE)). In the
one-dimensional case, it has the form

(1)

Here, Γ(z) is the Euler gamma function,

is the Riemann–Liouville derivative of fractional order
β, and (–∂2/∂x2)α/2 is the fractional power of the second-
derivative operator [4]. The exponents α and β are
related to the distributions of the particle random paths
R and residence times Θ on the trap atoms by the
asymptotic expressions
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and

These characteristic properties are usually inter-
preted in terms of medium fractality (i.e., the presence
of large voids on any scale) and particle memory (i.e.,
the probability of a particle leaving an atom per unit
time depends on the time it arrived at the atom). This
work is devoted to the refinement of the first (fractal)
interpretation.

ONE-DIMENSIONAL FRACTAL GAS

In [5], the random distribution {Xj} = …, X–2, X–1,
X0, X1, X2, … of pointlike atoms on a line, with (1) X0 =
0, (2) Xi < Xj for i < j, and (3) Xj – Xj – 1 = Rj being mutu-
ally independent similarly distributed random variables
with the common distribution function F(x), was called
one-dimensional Lorentz gas. One can readily see that
the probability distribution for the number of atoms
N+(x) on the interval (0, x] is expressed through the
multiple convolutions of the F(x) distribution as

A similar relation holds for the distribution of the
number of particles N–(x) on the interval [–x, 0). The
total number of atoms on a closed interval [–x, x] is the
sum

Various models of a random medium can be
obtained by choosing various distribution functions

P Θ r>{ } r β– , r ∞.∝

W n x,( ) P N+ x( ) n={ }≡ Fn x( ) Fn 1+ x( ).–=

N x( ) N+ x( ) N– x( ) 1.+ +=
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F(x). For instance, the Heaviside step function

gives a one-dimensional determinate lattice, while the
exponential distribution

leads to independently distributed atoms (Poisson
model).

In any case, if the mathematical expectation of the
random variable R is a finite value, 〈N(x)〉 ∝  x and the
relative fluctuation ∆(x)/〈N(x)〉   0 for asymptoti-
cally large x. This implies that, if f(N(x), x) is a smooth
function of random variable N, f(N(x), x)  f(〈N(x)〉 ,
x) at x  ∞; i.e., the self-averaging

(2)

occurs as the layer thickness x increases.
Let now

(3)

In this case, the average interatomic distance is infi-
nite, while the actual distances are finite for any realiza-
tion of a random medium. Due to the infinite value of
the mathematic expectation for R, the voids will occur
alternately with concentrations (clusters) on any scales)
(this property is referred to as intermittency) (Fig. 1).
The use of the generalized limit theorem based on the
theory of stable laws [6] gives

(4)
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Fig. 1. (Left) regular and (right) fractal (α = 0.75) atomic
distributions on line in different scales.
where z = n/〈N(x)〉  and

Here, g+(z, α) is the probability density at the positive
semiaxis z > 0. The Laplace transform of this function
is

One can readily see that the Lorentz gas satisfying
condition (3) has the following properties: (1) all atoms
are equivalent and all processes N(Xj, Xj + x) are statis-

tically equivalent N(Xj, Xj + x)  N(x); the symbol 
indicates that all distributions of the related random
variables are identical; (2) the ensemble-averaged num-
ber of atoms shows a power-law increase with increas-
ing layer thickness counted from one of these atoms,

and (3) relative fluctuations of the number of atoms in
this layer do not decrease with increasing its thickness
but remain constant.

These properties give grounds to refer to this struc-
ture as a stochastic fractal (or fractal gas), i.e., as a self-
similar, in the probabilistic sense, set with fractal
dimensionality α. Instead of (2), one has the following
relation for the fractal gas:

(5)

at x  ∞. Expression (5) implies that self-averaging
does not occur on the fractal structures, and this is the
main cause for the distinction between the walk on frac-
tals and the walk on a regular medium.

FRACTAL MEMORY

In a similar manner, we construct the random point
set {Tj} = T1, T2, T3, … on the positive time semiaxis; it
characterizes the random instants of time at which a
particle executes jumps from one atom to another. As
above, we assume that the random variables Θ1 = T,
Θ2 = T2 – T1, Θ3 = T3 – T2, … are mutually independent
and distributed alike with the distribution function
Q(t) = P{Θ < t}. If Q(t) = 1 – e–µt (µ > 0), the random
set {Ti} forms a uniform Poisson flow. This means that
the probability of a particle executing jump in the inter-
val (t, t + dt) is independent of the time of its preceding
jump; in other words, the particle does not possess
memory. In all other cases, the particle is said to have

wα z( ) z–1 1/α–

αΓ 1 α+( )
--------------------------g+ z 1/α–

Γ 1 α+( )
--------------------- α, 

  .=

g+ z α,( )e λ z– zd

0

∞

∫ e λα– .=

=d =d

N x( )〈 〉 N1xα , 0 α 1;< <∼

f N x( ) x,( )〈 〉 f N1xαz x,( )wα z( ) zd

0

∞

∫∼
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memory, and, if

one speaks about a particle with fractal memory. All the
aforesaid for the {Xi} ensemble is also true for the {Ti}
ensemble, including averaging rule (5). If K(t) is the
random number of jumps within a fixed interval (0, t],
the function h(K(t), t) averaged over the statistical
ensemble {Ti} satisfies the asymptotic relation

(6)

WALK ON FRACTAL

Let us now consider a one-dimensional walk along
the x axis. At zero time, a particle is at the origin of
coordinates. After a lapse of random time T1 = Θ1, it
undergoes jump with the same probability to one of the
two neighboring atoms, where it resides for a random
time Θ2, after which it again jumps to one of the neigh-
boring atoms (among which may be the original atom
from which the particle started to move).

If we use the atom number i instead of the coordi-
nate x and the jump number j instead of time t, we
obtain, according to the central limit theorem,

(7)

This result is a consequence of the ensemble averag-
ing of the random particle trajectories with fixed nodes
and instants of jumps [7]. To obtain the desired distri-
bution function, it is necessary to average expression
(7) over two statistically independent ensembles {Xi}
and {Ti}, i.e., over the random values I and J of indices
i and j, respectively,

This averaging can be accomplished using formulas
(4) and (5) to give, after some transformations,

where C = const,

and Ψ(2, β)(x) is the subdiffusional distribution derived
in [8].

1 Q t( )–
B

Γ 1 β–( )
---------------------t β– , t ∞, β 1,<∼

h K t( ) t,( )〈 〉 h K1tβz t,( )wβ z( ) z, t ∞.d

0

∞

∫∼

P I i J< j={ } 1

2πj
------------ e x

2/2 j– x, j ∞.d

∞–

i

∫∼

F x t,( ) P I i J i=<{ }〈 〉〈 〉 .=

F x t,( ) Ξ α β,( ) Ct( ) β/ 2α( )– x( ), t ∞, x ∞,∼

Ξ α β,( ) x( ) Ψ 2 β,( ) x/yα( )g+ y α,( ) y,d

0

∞

∫=
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The corresponding relation for the densities has the
form

(8)

As α  1, g+(y, α)  δ(y – 1) and

At β  1, the distribution Ψ(2, β) becomes normal.
If these two conditions are met simultaneously, one
arrives at the Gaussian form for the density f(x, t) cor-
responding to the conventional diffusion in a regular
medium.

CONCLUSIONS

To answer the question that was posed at the begin-
ning of the article, we present the solution to FDE (1)
describing the fractal walk, i.e., a walk for which parti-
cle paths have the same distribution as the interatomic
intervals in the medium considered but are independent
of each other (even in the case where the walker
changes its movement direction). This solution is writ-
ten as

(9)

where Ψ(α, β) is the density, whose particular form is
used in expression (8).

A comparison of spatial distribution (8) for the walk
on fractal with the solution to FDE (9) (Fig. 2) suggests
that, generally, the latter cannot be interpreted as the
equation describing the walk on fractals; in the first
case, the diffusional packet spreads following the law
~tβ/(2α), while, in the second case, it spreads as ~tβ/α, i.e.,
much faster. For the walk on fractals, the exponent γ =

f x t,( ) Ct( ) β/ 2α( )–=

× Ψ 2 β,( ) Ct( ) β/ 2α( )– y α–( )g+ y α,( ) y.d

0

∞

∫

f x t,( ) Ct( ) β2– Ψ 2 β,( ) Ct( ) β/2–( ).=

f x t,( ) Ctβ( ) 1/α– Ψ α β,( ) Ctβ( ) 1/α–
x( ),=

0.01

0.001

1E–4

Ψ(x)

1 10 100 x

1

2

0 x

1000

1 2t

Fig. 2. Spatial distributions for a particle in the case of
(1) walk on fractal and (2) fractal walk. Inset: time evolu-
tion of the width of respective diffusional packets. Expo-
nents α = 0.5 and β = 0.25.
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β/(2α) changes within the interval (0, 1/2), so that the
superdiffusion regime (γ > 1/2) never arises. The reason
for this distinction can be seen from Fig. 3; in the case
of fractal walk, a particle can move far away after it
leaves an atom, whereas, in the walk on fractal, it may
be blocked between neighboring clusters to undergo
many transitions between them.

The density distributions ξ(α, β) and ψ(α, β) are also
different in these cases.

To summarize, it is worth noting that these conclu-
sions are valid for a statistical ensemble of one-dimen-
sional “frozen” atomic arrangements. With a multidi-
mensional walk, the correlation between the consecu-
tive paths may be weaker, so that the aforementioned
distinction may be less pronounced. Moreover, the sit-
uation may radically change if the atomic arrangement
changes during the characteristic residence time on one
of the atoms (as is the case for the diffusion in a turbu-
lent medium; superdiffusion has the same origin).

Nevertheless, the facts established in this work seem
to be useful in the adequate understanding of the role of

00 x x

tt

Fig. 3. Particle trajectories in the case of (left) walk on frac-
tal and (right) fractal walk. Exponents α = 0.5 and β = 1.
equations with fractional derivatives in the problem of
diffusion on fractals with traps.
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Abstract—The mechanism of the Coulomb explosion of a metal in an external pulsed electric field is dis-
cussed. In the case of a low-frequency field, when its frequency is lower than the frequency of electron colli-
sions, it is impossible to reach the conditions of the Coulomb explosion of a metal if the field pulse duration is
shorter than the time of electron energy relaxation upon elastic collisions, and the electron temperature is well
above the Fermi energy and the work function. In the case of a high-frequency field, e.g., in a powerful pulse
of ultraviolet laser radiation, the Coulomb explosion can occur if the field strength is well above the intraatomic
field strength (i.e., when the laser power density is ≥1019 W/cm2). © 2004 MAIK “Nauka/Interperiodica”.
1. Interest in the so-called micropinches, i.e., pow-
erful pulsed high-current discharges through thin
metallic wires, has recently grown [1–3]. Such pinches
can be applied in various fields, e.g., for initiating ther-
monuclear reactions or for creating sources of X-ray
radiation and a dense hot plasma. Micropinches have
attracted our attention due to the possibility of experi-
mental observation of a very interesting phenome-
non—the Coulomb explosion of a metal. This phenom-
enon consists in the electric explosion of a positively
charged crystal when conduction electrons are rapidly
removed from the bulk of the metal without significant
heating of the lattice [4].

To understand the feasibility of the Coulomb explo-
sion during electrical breakdown in a metallic wire, we
conduct simple estimations. Let a voltage pulse dura-
tion τ satisfy the inequality

(1)

where νe ≈ 1014 s–1 is the frequency of elastic electron
collisions in a metal with an electron density ne ≈
1022 cm–3 and a conductivity σ ≈ 1016 s–1, and δ ≈ 10–4

is the fraction of energy transferred from an electron to
the lattice during an elastic collision.

Note that the electron mean free path in a metal is on
the order of L ≈ vFe/v e ≈ 10–6 cm and the Debye screen-
ing length is rD ≈ vFe/ωLe ≈ 2 × 10–8 cm, where vFe ≈

108 cm/s is the Fermi velocity and ωLe ≈  is
the electron Langmuir frequency.

Let a pulsed discharge current with a density j pass
through a wire of radius r0. Under condition (1), when
cooling of electrons can be neglected, the electron tem-
perature Te (which is considered to be well above the

10 14–  s νe
1–
 ! τ  ! δν( ) 1– 10 10–  s,≈ ≈

3 109ne×
1063-7842/04/4907- $26.00 © 20933
Fermi energy εFe = m /2 ≈ 1–2 eV) over the pulse
duration τ reaches the value

(2)

and the magnetic field of the current at the wire surface
turns out to be

(3)

where E is the electric field strength in the discharge
and c is the velocity of light in vacuum.

It follows from Eqs. (2) and (3) that, if r0 ≤ 10–3 cm,
the gas-kinetic pressure of the heated electron gas in the
metal exceeds the pressure of the magnetic field of the
current irrespective of its value even at τ > 10–11 s. Note
also that, at this pulse duration, the electric current
completely penetrates the conductor. Indeed, the time it
takes for the current to penetrate a wire of radius r0 is
about

(4)

For the metal parameters given above, we have τ1 ≈
10–11 s. Thus, at τ > 10–11 s, the current pulse completely
penetrates the conductor. At shorter current pulses, the
current experiences the skin effect, to say nothing of the
compression of the electron gas in the metal by the
magnetic field of the current.1

We now estimate the temperature of electrons when
they are heated by a current pulse with a density j ≈
1 Earlier [5], we showed that the Coulomb explosion of a metal

cannot be realized in the stage of compression of electrons by the
magnetic field of a current.

v Fe
2

Te
j2

neσ
--------τ≈ σE2

ne

---------τ ,=

B2

8π
------

π
2c2
-------- j2r0

2 π
2c2
--------σ2E2r0

2,= =

τ1

σr0
2

c2
--------.≈
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1010 A/cm2 (or in an electric field E ≈ 107 V/cm at a

total current I ≈ π j ≈ 30 kA) over a time τ ≈ 10–11 s.
From Eq. (2), we have Te ≈ 100 eV. Electrons having
this energy can easily leave the wire in a time of about
10–11 s, which “bares” the crystal lattice and results in
the Coulomb explosion of the metal. Note that all esti-
mates agree with the experimental data [1–3]; we think
that the Coulomb explosion of a metal was likely to be
observed in these experiments, which dealt with the
study of the X pinch, as a phenomenon called as a mini-
diode in [1].

2. Another possibility of realization of the Coulomb
explosion is to irradiate a thin metallic wire by a pow-
erful femtosecond pulse of ultraviolet radiation. If the
energy of electron oscillation in the laser-radiation field
is well above the Fermi energy under these conditions,
the electron velocity distribution is a narrow function
with a peak at a velocity that is equal to the electron
oscillation velocity in the laser-radiation field [6].

However, certain conditions should be met in this
case.

First, the metal must be transparent for a laser radi-
ation with a frequency ω0; i.e.,

(5)

For metals, this condition is met for radiation in the
ultraviolet region at λ < 300 nm.

Second, the electron oscillation amplitude rE in the
laser field should exceed the half-thickness d of the
metallic film:

(6)

where E0 is the amplitude of the electric field of the
laser radiation and vE is the amplitude of the electron
oscillation velocity.

At ω0 ≈ 1016 s–1 (λ0 ≈ 200 nm) and d ≈ 10–6 cm, we
have from (6) vE ≥ 1010 cm/s and E0 ≥ 1010 V/cm, which

r0
2

ω0 ωLe> 3 109ne×  @ νe.≈

rE

eE0

mω0
2

----------
v E

ω0
------= = d ,>
corresponds to a laser power density of P0 = c /4π ≥
1019 W/cm2. This power density of ultraviolet laser
radiation has already been surpassed.

Under these conditions, the laser field penetrates a
metal without attenuation and sets the electrons of the
beam in oscillatory motion at an amplitude rE > d;
therefore, the electrons have an energy well above the
work function and can easily leave the metallic foil in a
time of 2π/ω0. The crystal lattice becomes free of elec-
trons, and heating of the metal is insignificant because
of the right-hand inequality in (5). Note also that, at
E0 ≈ 1010 V/cm, the electron oscillation energy in the
laser wave field is well above the Fermi energy but is
still nonrelativistic (it is about 30 keV).
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Abstract—It is shown using 28 gases as an example that the Van der Waals equation in the form

correctly expresses quantitative relations between parameters P, V, and T for real gases. Here, a, b, and c
are constants; k is a number close to 2; and m varies in the range 0.2–2.17 for different gases. The critical param-
eters of most gases calculated by this formula are found to be close in value to the experimental parameters.
© 2004 MAIK “Nauka/Interperiodica”.

P
a

V c+( )kTm
---------------------------+ V b–( ) RT=
The Van der Waals equation is believed “to be just a
qualitative equation expressing quantitative relations
between parameters P, V, and T of real gases only
approximately” [1, p. 177]. Hence, a large number of
more complicated and intricate expressions were pro-
posed as an equation of state for real gases [1, 2]. We
have investigated the Van der Waals equation

(1)

for various temperature and volume dependences of
coefficients A and B. The investigations show that if
such a dependence is chosen properly, Eq. (1) is in
much better agreement with the experiment than it is
generally accepted. The following form of the Van der
Waals equation provides the best agreement with
experiment:

(2)

Here, a, b, c, k, and m are constants.
The reduced equation [1, p. 150] for Eq. (2), satisfy-

ing conditions of thermodynamic stability in the critical
point, is expressed by

(3)

where the notation

is introduced. Here, π = P/Pc, ϕ = V/Vc, and τ = T/Tc are
the reduced parameters; Pc, Vc, and Tc are the critical
parameters; and ν is the quantity appearing in Eq. (3)

P
a

V2
------+ 

  V B–( ) RT=

P
a

V c+( )kTm
--------------------------+ V b–( ) RT .=

π α
ωkτm
------------+ αω 1–( ) 4k

k 1–( )2
------------------τ ,=

α k 1+
k 1–
------------, ω ϕ ν+

1 ν+
-------------= =
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instead of constant c entering Eq. (2). The quantities
appearing in Eq. (3) are related as

The constants a, b, and c from Eq. (2) are related to
the quantities entering Eq. (3) by the expressions

In this paper, Eq. (3) was used to determine con-
stants Pc, Vc, Tc, k, m, ν by experimental data. To do
that, the indicated constants were chosen in such a way
that the value of P calculated by Eq. (3) was in the best
agreement with the tabulated value for preset values V
and T (borrowed from reference books [3–5]). Values of
P, V, T were taken from reference books [3] for water,
[4] for four inert gases, and [5] for other gases. The
parameters for 28 gases are listed in the table. A com-
parison between calculated critical and experimental
parameters indicated in the mentioned reference books
shows that the calculated parameters are close in value
to the experimental ones for most gases. The maximum
difference is found for the critical volumes. This can
partially be associated with the fact that an experimen-
tal critical volume is determined with the least accuracy
because the substance volume changes drastically at the
critical point. A considerable difference between the
calculated critical and experimental parameters was
obtained for three polar substances: water (of two
kinds) and ammonia. The average relative deviations δ

PcVc

RTc

-----------
k2 1–

4k 1 ν+( )
-----------------------.=

a
k 1+( )2

4k
------------------- 1 ν+( )k 1– RTc

m 1+ Vc
k 1– ,=

b
k 1– 2ν–

k 1+
------------------------Vc,=

c νVc.=
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Table

Gas Pc, bar Vc, 10–3 m3/kg Tc, K k m ν δ, %

Helium 2.3 15.45 5.36 2 0.2 0.175 0.35

Neon 26 2.51 45 2 0.42 0.065 0.37

Argon 50 2.23 153 1.96 0.39 0.036 0.17

Krypton 55 1.32 210 1.96 0.37 0.043 0.18

Xenon 59 1.08 292 1.93 0.33 0.032 0.25

Hydrogen 13 35 33 2 0.3 0.118 0.57

Nitrogen 35 3.8 128 1.91 0.36 0 0.3

Oxygen 52 2.75 156 1.91 0.33 –0.012 0.23

Air 33 3.98 129 1.95 0.35 0.017 0.35

Carbon monoxide 37 3.74 134 1.8 0.28 –0.091 0.63

Carbon dioxide 72 2.74 304 1.92 0.56 0.03 0.37

Methane 47 7.46 191 1.87 0.21 –0.043 0.23

Ethane 52 5.52 312 1.91 0.55 0.056 0.26

Propane 43 5.42 373 1.95 0.65 0.09 0.3

Ethylene 51 5.49 284 2.02 0.63 0.146 0.12

Acetylene 62 4.39 309 2 1.03 0.36 0.07

Benzene 50 4.22 566 2 0.46 0.071 0.05

Freon-11 44 2.09 473 2.08 1.15 0.244 0.2

Freon-12 43 1.79 385 2.03 0.94 0.322 0.42

Freon-13 42 1.97 309 1.96 0.73 0.082 0.3

Freon-21 53 2.24 455 2.02 1.08 0.18 0.12

Freon-22 54 2.01 375 2.01 1.13 0.257 0.13

FS-318 27 2.05 388 1.96 0.9 0.059 0.2

Fluorine 54 2.18 147 1.9 0.59 –0.049 0.35

Chlorine 76 2.15 418 2.02 0.52 0.144 0.2

Ammonia 203 2.61 452 1.93 1.62 0.484 0.4

Water 396 2.59 735 1.93 1.42 0.17 0.23

Heavy water 400 1.68 719 2.04 2.17 0.722 0.15
of pressures calculated by Eq. (3) are listed in the last
column in the table, where

(4)

Here, Pexp are the experimental pressures; Pcalc are the
calculated pressures; and n is the number of values of P,
V, and T used in Eq. (4). The values were taken in the
range covering all the temperatures and pressures listed
in the table, where the gas volume was 1–2.5 times
larger than the experimental critical volume (Vc, exp).
The smaller volume in this range relates to high pres-
sures, while the difference between liquid and gas
becomes smoothed in highly compressed medium.
When calculating δ, we took n = 50. The value of δ

δ 1
n
--- Pexp Pcalc–

Pexp
------------------------- .

n

∑=
gives an estimate of the agreement between calcula-
tions and experiments.

The calculated critical parameters may differ from
experimental ones for yet another reason apart from the
errors. It is seen from the tables of temperature and
pressure dependence of viscosity given in reference
books [3–5] that, at pressures higher than the critical
pressure, the liquid viscosity first decreases with
increasing temperature (which is typical of liquids) and
then increases starting with some temperature (which is
inherent in gases). Thus, a liquid is gradually trans-
formed into a gas as the substance volume increases.
When such a transformation of a “real” liquid into a
“real” gas occurs, an intermediate region, where the
medium is neither a liquid nor a gas yet, should exist.
The presence of such a region is supported by the fol-
lowing fact. The volume of a medium increases drasti-
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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cally at the critical point, which suggests the transfor-
mation of the medium to a new state. Simultaneously,
the medium viscosity continues decreasing beyond the
critical point. It is well seen from the table for the vis-
cosity of carbon dioxide in the critical region [5, p.
207]. Thus, the medium has not taken all the gas prop-
erties yet above the critical point in a certain tempera-
ture range.

The boundaries of the intermediate region can be
estimated using the formulas which express the temper-
ature and pressure dependence of any physical property
of the medium. The formula for the water viscosity was
obtained in [6]. The calculations by this formula show
that the calculated viscosity of liquid water starts con-
siderably deviating from the experimental viscosity at
all the tabulated pressures when the liquid volume
approaches 0.5Vc, exp. On the other hand, Eq. (3) of this
paper is verified for a volume of water vapor of V >
(1.3–2.5)Vc, exp. It follows from the aforementioned that
the critical point is in the intermediate region; hence,
the experimental parameters Pc, Vc, Tc at this point may
not completely obey the equation of state for the gas.
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
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Abstract—We offer a method of producing composite coatings based on carbon–nitrogen compounds modi-
fied by titanium nitride clusters. The structure of the material obtained is studied by transmission electron
microscopy. A comparison between electron diffraction patterns from carbon–nitrogen and titanium-nitride
modified coatings reveals the presence of a hexagonal syngony in the carbon–nitrogen condensate. The mech-
anism of the modification effect on the structure and properties of the obtained coating is discussed. © 2004
MAIK “Nauka/Interperiodica”.
Methods of vacuum ion-plasma sputtering find
extending applications in industry since they permit the
synthesis of strengthening and protective coatings on
the surface of parts operating in complex technological
conditions. In this connection, diamond, diamond-like,
and analogous films characterized by high hardness,
mechanical strength, and chemical resistance are of
considerable interest. Production of diamond and dia-
mond-like coatings on steel substrates is often associ-
ated with considerable difficulties due to the impossi-
bility of solid-phase reaction of carbon–iron bonding
[1] that does not ensure the required bond strength. The
problem of improving the adhesion still persists
because of the high concentration of carbon in carbon–
nitrogen films.

Improving the adhesive properties of the coating
and homogeneity of its structure can be achieved by
modifying carbon–nitrogen condensate by introducing
titanium nitride. Titanium nitride is known to have a
good adhesion and a rather high hardness due to
strongly pronounced asymmetry of the localized elec-
tron distribution [2]. In addition, titanium nitride is
characterized by a low resistivity, reducing the effect of
charge accumulation during ion-stimulated sputtering.
The formation of a titanium–carbon bond [1, 3] will
decrease the probability of formation of graphitelike
structures. In this case, the bombardment of the film
surface by noncarbonic ions also promotes etching of
SP2-hybridized carbon [4]. Shiryaev et al. [3] earlier
reported on a three-component coating obtained by
magnetron sputtering of a titanium target with carbon
insets by a mixture of Ar+ and N+ ions. However, no
information on the structure and properties of this coat-
ing was given. The authors of [5] described a composite
coating which is a sandwich structure of sequentially
deposited layers of titanium nitride and carbon nitride.
1063-7842/04/4907- $26.00 © 20938
For this reason, it radically differs from the coating sug-
gested by us [6].

In this work, a technique for producing coatings on
low-carbon steel is described. The coating is a compos-
ite based on carbon–nitrogen compounds modified by
titanium nitride clusters. The results of structure inves-
tigation are also presented.

The composite films were deposited with the use of
a composite cathode made of graphite and titanium in a
ratio of 7 : 3. The ratio was chosen for the following
reasons. At a higher content of titanium, the phase of
titanium nitride will dominate, while at lower content,
no improvement of the coating adhesion properties is
expected.

The films were deposited on the polished surface of
samples using a VNP-350-02 vacuum setup equipped
with a sputter arc source. The samples made of St40
steel were of a cylindrical shape with a diameter of
5 mm and a height of 6 mm. The cathode surface was
nitrided in the atmosphere of a high-energy nitrogen
plasma of the arc discharge and CNx + TiN clusters
sputtered by ions could be deposited on a substrate.
Extra bias (negative relative to the chamber) was
applied to the substrate for providing regimes of ion
precleaning and ion-stimulated deposition of a conden-
sate.

The method for fixation of the graphite cathode
plays an important role in the process of coating depo-
sition in the setup of vacuum arc-discharge deposition.
Cathode overheating increases the amount of the
microdrop fraction (graphite microparticles) contami-
nating the condensate and leading to the formation of
punctures, scabs, and other defects. Simultaneously, the
vacuum in the chamber deteriorates. Methods of firm
fixation of a cathode to the water-cooled base are usu-
ally used in commercial setups. However, they are not
effective enough due to the difference in the thermal
004 MAIK “Nauka/Interperiodica”
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expansion coefficients of the materials of cathode and
structure parts. We developed the method of fixation [6]
in which the cathode could thermally expand freely.
The cathode was made in the form of a truncated cone
installed at the butt-end of the water-cooled metallic
base. The centering lug prevented a radial shift. Springs
provided clamping of the cathode to the base, which
guaranteed a stable regime of heat removal in the con-
tact area.

The amount of nitrogen in carbon–nitrogen conden-
sates is known to decrease with increasing substrate
temperature [7]. Hence, preliminary heating of sub-
strates was not used. To study the structure, the samples
were separated from the substrate by electrochemical
etching. The composite microstructure was investi-
gated by transmission electron microscopy (JEM 200).
The microhardness of the composite was measured
using a PMT-3 device.

The electron-diffraction patterns of local areas of
the film modified by titanium nitride are found to con-
sist of a halo and diffraction rings (Fig. 1), which indi-
cates the presence of amorphous and crystalline com-
ponents. The crystalline component of the film gives
diffraction patterns corresponding to the cubic (Fig. 1a)
and hexagonal (Fig. 1b) syngonies. A comparison of
interplanar spacing of the cubic syngony of the com-
posite obtained (see table) with the corresponding spac-
ing for titanium nitride shows that they are rather close.
The parameters of the crystal lattice of the composite
calculated for the hexagonal syngony were a = 5.27 Å
and c = 4.87 Å.

(a)

(b)

Fig. 1. CNx + TiN coating: electron-diffraction pattern of
the composite with (a) cubic and (b) hexagonal syngony.
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
The expected low content of titanium in the modi-
fied condensate suggests that similar crystalline struc-
tures can exist in unmodified carbon–nitrogen conden-
sate as well. Earlier, we obtained samples of carbon–
nitrogen films under the same processing conditions.
The main part of the electron-diffraction pattern for a
local area of the carbon–nitrogen condensate (Fig. 2)
can be classified as a cubic syngony with a lattice con-
stant of a = 4.12 Å. Its interplanar spacing (see table) is
close to the corresponding one for the structure of the
titanium-modified composite. Some difference in dhkl is
probably due to the three-component structure of this
composite. It would be difficult to identify other rings
of the electron-diffraction pattern of carbon nitride, but
interplanar spacing of the rings was found to corre-
spond exactly to interplanar spacing of the hexagonal
syngony of the composite (see table). Similar hexago-
nal crystalline structure was earlier observed in the car-
bon–nitrogen condensate in [7], where only one lattice
parameter was given (a = 5.3 Å). It coincides with the
parameter determined by us.

Fig. 2. CNx coating: electron-diffraction pattern of the local
film area.

Table

CNx + TiN CNx

hexagonal
syngony cubic syngony

d, Å

hexag-
onal cubic

d, Å hkl d, Å hkl hkl hkl

4.48 100

2.61 110

2.45 111 2.39 111

2.19 102 2.19 102

2.082 200 2.062 200

1.71 210 1.718 210

1.516 103

1.483 220 1.452 220

1.322 220 1.305 220

1.21 222
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To summarize, modification of the carbon–nitrogen
compound by titanium nitride clusters resulted in some
changes in the lattice parameters of the crystalline com-
ponent of the obtained condensate. Parameter d111 of
the cubic syngony was found to be two times less than
the lattice constant c of the hexagonal syngony (d111 =
2.455 Å, c = 4.87 Å). Since plane {111} has hexagonal
symmetry, the size and orientation correspondence is
possible between the cubic and hexagonal syngonies.

Modification of the carbon–nitrogen condensate by
titanium nitride clusters makes it possible to obtain
coatings of more than 1 µm in thickness. Since in the
case of carbon–nitrogen coatings we could not exceed
a thickness of 0.45 µm, this fact indirectly confirms the
improvement of adhesive properties of this material as
a result of its modification. Microhardness was mea-
sured on different parts of the film surface. The average
value of microhardness was 17.3 GPa. Only small devi-
ations from the average value were registered, indicat-
ing a high structural homogeneity of the obtained con-
densate. The obtained value of microhardness is rather
high, although optimization of the process of synthesis
has not been carried out. This fact allows us to consider
the new composite as a promising material from the
viewpoint of its application as a protective coating.

REFERENCES
1. V. G. Aleshin, A. A. Smekhnov, G. P. Bogatyreva, et al.,

Chemistry of Diamond Surface (Naukova Dumka, Kiev,
1990).

2. G. V. Samsonov, Microhardness Test Method (Nauka,
Moscow, 1965).

3. S. A. Shiryaev, M. V. Atamanov, M. I. Guseva, et al., Zh.
Tekh. Fiz. 72 (2), 99 (2002) [Tech. Phys. 47, 238
(2002)].

4. E. G. Spenscer, P. H. Schmidt, D. C. Joy, et al., Appl.
Phys. Lett. 29, 118 (1976).

5. Dong Li, Xi Chu, Shang-Cong Cheng, et al., Appl. Phys.
Lett. 67, 203 (1995).

6. B. E. Shkuratov, V. A. Beloshenko, and V. N. Varyukhin,
Ukr. Patent No. 60013 A, Byull. Izobret., No. 9 (2003).

7. M. B. Guseva, V. G. Babaev, V. V. Khvostov, et al., in
Proceedings of the 6th International Symposium “Thin
Films in Electronics,” Kherson, 1995, Vol. 2, pp. 63–69.

Translated by M. Astrov
TECHNICAL PHYSICS      Vol. 49      No. 7      2004



  

Technical Physics, Vol. 49, No. 7, 2004, pp. 941–943. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 74, No. 7, 2004, pp. 134–136.
Original Russian Text Copyright © 2004 by Ugryumov, Shaposhnik, Voishchev.

                                                                    

BRIEF
COMMUNICATIONS
Spectral and Static Noise Characteristics 
of Semiconductor Gas Sensors 
in Equiresistance Conditions

R. B. Ugryumov, A. V. Shaposhnik, and V. S. Voishchev
Glinka State Agricultural University, Voronezh, 394043 Russia

e-mail: asb@agrochem.vsau.ru
Received November 4, 2003

Abstract—The extent to which the resistance fluctuations in semiconductor gas sensors can be considered sta-
tionary and Gaussian, as well as the noise spectrum of these sensors in equiresistance conditions, are studied.
It is shown that the extent to which the noise is stationary and Gaussian depends on gas phase composition. It
is found that the spectrum of the sensor noise is qualitatively distinct in different media. On the basis of these
results, it is concluded that it is possible in principle to increase the selectivity of the gas sensors by combined
measurements of their resistive and noise characteristics. © 2004 MAIK “Nauka/Interperiodica”.
Chemical adsorption substantially affects the sys-
tem of the surface-state energy levels. The random
character of trapping and release of charge carriers
results in fluctuations of their concentration and/or
mobility and, hence, in conductivity fluctuations. Mod-
ification of the energy-level system causes changes in
the mean lifetime of the charged and neutral state of the
surface centers and thus affects the dynamics of carrier
trapping and release and, therefore, the noise in the
semiconductor. Experimentally, this circumstance
manifests itself in the change in the spectral and static
characteristics of the current noise as the gas phase
composition is changed [1, 2].

This study is concerned with the evaluation of the
fundamental possibility of determining gas phase com-
position from noise measurements. To this end, a set of
experiments was performed to measure relative noise
spectral density S(f) and to estimate the degree ξ to
which the noise can be considered stationary and Gaus-
sian in equiresistance conditions. The essence of the
equiresistance method consists in the selection of such
proportions of the oxidized and reduced components in
the gas mixture at which the resistance of the sensor
would be the same. This is possible because the donor
effect of the reducing gases (hydrogen, carbon oxide,
ethanol, etc.), which results in the decrease in the resis-
tance, is balanced by the acceptor effect of oxygen from
the air (the acceptor effect causes the increase in the
resistance of an n-type semiconductor). In this case, the
variation of the absolute noise power can be equalized
due to the change in the resistance.

In order to perform the experimental part of the
study, a special automated laboratory setup was assem-
bled which allowed investigation of both sensor and
noise characteristics of the gas-sensitive structures in
different gas mixtures [3]. To estimate the noise spec-
1063-7842/04/4907- $26.00 © 20941
trum, we used digital spectrum analysis. The study of
the extent to which the noise was Gaussian and station-
ary was carried out using the technique based on the
measurement of the noise intensity at the output of the
bandpass filter [4, 5]. A null hypothesis that the noise is
stationary and Gaussian is assumed. Then, the theoret-
ical error of the noise power measurement is deter-

mined by the relationship  = 1/(t∆fx), where ∆fx is the
effective width of the filtered noise spectrum and t is the
observation period. In the measurements, the experi-

mental error, Ee = s/(p ), is estimated, where s is the
noise intensity dispersion, p is the mean value of the
noise power, and N is the number of uncorrelated inten-
sity readings. The half-width ∆E of the confidence
interval for the confidence probability of 95% is calcu-
lated as the doubled relative error Et. Then, the value
ξ = Ee/Et – 1 is evaluated. If |ξ| ≤ ∆E, we assume that the
input noise is stationary and Gaussian. Otherwise, at
least one constraint is not fulfilled: the stationary or/and
Gaussian character of the noise is violated.

The gas sensors of interest were fabricated by chem-
ical deposition [6]. The sensor resistance in a neutral
medium (argon gas) at 180°C was equal to 150 kΩ and
served as a standard resistance of the gas sensor. The
noise was measured in a neutral medium, as well as in
air + ethanol vapor and air + CO mixtures. The CO or
ethanol vapor content was adjusted so that the sensor
resistance was equal to 150 kΩ . Figure 1 shows the rel-
ative noise spectral density of sensors in three media at
equiresistance conditions. The relative noise spectral
densities in different media at equal resistance and tem-
perature evidently not only differ quantitatively but
have qualitatively different form as well. The frequency
dependence of the noise spectral density in a neutral

Et
2

N
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medium is perfectly approximated by the reciprocal
power-law dependence with the exponent close to
unity. It can be seen that in a neutral medium the sensor
exhibits “classical” flicker noise over almost five
decades of frequency. After chemical adsorption, an
appreciable nonlinearity of the frequency dependence
of the noise-power spectral density appears and, more-
over, its increase with frequency is observed (curve 2).
Such an increase in the noise-power spectral density
cannot be explained on the basis of the model approxi-
mations where the noise is considered originating from
the capture of charge carriers by traps. Such models
reduce the resulting spectrum to the sum of Lorentzian
spectra of independent noise-generating centers, but it
is impossible to obtain the increase in the noise-power
spectral density with frequency by summing these
spectra. In the alcohol vapor medium (curve 3), several
broad peaks at the multiple frequencies of 0.08, 0.24,
and 0.56 Hz are noticeable. The occurrence of the broad
peaks in the frequency dependences of the noise-power
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Fig. 1. Noise-power spectral density of the sensor in differ-
ent gas media at a temperature of 180°C: (1) in argon, (2) in
air + CO mixture (0.45%), and (3) in air + ethanol vapor
mixture (0.33%).
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Fig. 2. Estimation of the extent to which the sensor noise is
Gaussian and stationary in different gas media: (1) in air at
25°C, (2) in argon at 180°C, (3) in air + CO mixture (0.45%)
at 180°C, and (4) in air + ethanol vapor mixture (0.33%) at
180°C.
spectral density can be related to the initiation of some
self-oscillating processes, which are hardly resolved in
the wideband 1/f noise signal. We may assume the
existence of several noise-generation mechanisms that
are independent of one another and give uncorrelated
contributions to the total noise. These contributions can
depend on such external parameters as the temperature
and concentration of the active gas. The experimental
data suggest the occurrence of some optimal combina-
tions of temperature and gas concentration at which the
self-oscillating processes have the highest intensity.

Figure 2 shows the dependence of estimated extent
ξ (5) to which the noise is stationary and Gaussian in
equiresistance conditions at different values of the filter
passband. The observation period was 84 s, and the cen-
ter of the filter passband was at 146 Hz. Two curves that
are symmetric about zero in Fig. 2 show the confidence
interval corresponding with the Gaussian stationary
noise.

Curve 1 in Fig. 2 is the sensor characteristics mea-
sured in air atmosphere at room temperature. Obvi-
ously, at room temperature the estimation of ξ for the
sample is close to the confidence interval; therefore,
with some conditionality, it can be considered as Gaus-
sian and stationary. Some deviation from the Gaussian
and stationary character is evident as the pass-band
exceeds 40 Hz. Curves 2–4 in Fig. 2 are calculated for
the same conditions as curves 1–3 in Fig. 1. It is clear
that, at the same resistance, the estimation for ξ is dif-
ferent in these three media.

The measurement of the noise-power spectral den-
sity and estimation of the extent to which the noise is
Gaussian and stationary ξ in equiresistance conditions
show that is basically possible to determine qualitative
gas composition, which is unattainable using the con-
ventional resistive measurements. For instance, at tem-
perature of the sensor surface of 180°C, the alcohol
with a vapor concentration of 0.33% and CO with a
concentration of 0.45% cause equal relative change in
conductivity and thus are indistinguishable. In contrast,
the measurement of the noise characteristics makes
possible the qualitative determination of the gas phase
composition, since the noise characteristics depend to a
greater extent on individual features of the adsorbate
chemical interaction with the surface. Thus, it may be
concluded that the selectivity of the gas sensors can be
principally enhanced using the joint measurement of
their sensor and noise characteristics.
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Abstract—The main advantage of fission reactors with neutron illumination is that, owing to the neutron illu-
mination, they operate in the subcritical mode and, hence, are safe. Neutrons required for the illumination are
generated during nuclear fragmentation in a target irradiated by 1–2 GeV protons. A substantial disadvantage
of this method for energy generation is the severe restriction imposed on the power of a plant. This restriction
is due to the restriction imposed on the intensity of an accelerated-proton beam by the tolerances for the acti-
vation of accelerator structural elements. The substitution of heavier nuclei (from carbon to argon) for protons
is shown to substantially increase the intensity of an accelerated-ion beam and to provide a commercially rea-
sonable thermal power of ~4–6 GW. © 2004 MAIK “Nauka/Interperiodica”.
1. In the electronuclear method of energy generation
[1–3], protons are ordinarily used as ions to be acceler-
ated, whereas the application of the nuclei of heavier
atoms instead of protons can have substantial advan-
tages. When comparing the efficiencies of using vari-
ous nuclei, we take into account that the parameters of
electronuclear power plants are determined by two
effects: a positive effect—neutron generation under the
action of accelerated ions on a target—and a negative
effect—the activation of accelerator structural elements
because of the illumination of the walls of a vacuum
chamber in an accelerator with part of a beam. Hereaf-
ter, we assume that the mass A of accelerated ions falls
in the range 1 < A < 40, where A is the ion mass number.
The ion range R in a target is determined from the
expression R ~ E/z2, where z is the ratio of the ion
charge to the electron charge and E is the ion energy.
Note that a neutron-generating target is made of the
heaviest atoms, whereas accelerator structural elements
are made of materials with substantially lighter nuclei,
such as copper, iron, or graphite. In the energy range
under study (~1 GeV/nuc.), the inelastic interaction
cross sections for all ions with relatively light nuclei are
virtually the same. So, we can assume that the activa-
tion of the accelerator walls induced by a single ion is
proportional to the ion range ~R ~ E/z2. Hence, the opti-
mal particle flux Ii turns out to be proportional to z2/E ,
and the relation for the optimal ion flux can be written as

(1)

where Ip is the proton flux, Ei is the ion energy, and Ep is
the proton energy.

2. In a generating target, nuclear fragmentation is
caused by high-energy ions, and the generated neutrons

Ii I pz2Ep/Ei,=
1063-7842/04/4907- $26.00 © 20944
leave the target and then, according to the standard
scheme of an electronuclear power plant, enter into a
subcritical nuclear reactor. The flux of the neutrons
generated in the target is determined by the ion flux and
the ion energy:

(2)

where ξ(E) is the energy per neutron.
Combining Eqs. (1) and (2), we obtain an expres-

sion for the relative power of an electronuclear power
plant in the form

(3)

In Eq. (3), function χi is the energy per neutron for a
certain ion with respect to proton; i.e.,

(4)

For simplicity of comparing ions with protons, we
assume that protons always have an energy of 1 GeV, at
which the energy per neutron is minimum and equal to
36 MeV. As follows from the data [4, 5] shown in the
figure, the relation

(5)

holds true rather accurately for D1+ and He2+ ions and,
with small errors, for C6+ ions in a rather wide energy
range.

We can assume that Eq. (5) is valid for heavier ions
as well. In this case, χi can be represented as
≈36 MeV/ξp(E). According to the data obtained in
[6, 7], this function weakly depends on the ion energy
in the ion energy range from 5 to 20 GeV and falls in
the range 1.5 ≤ χi ≤ 2.5. Two important conclusions can

In IiEi/ξ E( ),=

P Ppz2/χ i.=

χ i ξ i Ei( )/ξ p Ep( ).=

ξ i E( ) ξ p E( )≈
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be drawn from this finding: the power of a plant
depends on the charge of a chosen ion as z2 and rather
weakly depends on the potential of an ion accelerator,
since this dependence is realized only through the func-
tion χi.

The parameters of electronuclear power plants for
various ions are given in the table, where the potential
of an accelerator for all ion types is taken to be the same
(1 GV).

3. At a reactor safe subcritical level of ≈0.95, the
reactor power increases by a factor of ≈20. When recal-
culating the thermal power of an electric power station,
PT, into the electric power, PE, we used the coefficient
0.4. Note that the ratio PL/PE of the beam power to the
electric power of an electric power station for all ion
types is small and lies in reasonable limits (≤5%), vary-
ing from 2.2 to 4.8%. As an ion accelerator, we propose
to apply a linear accelerator with an efficiency of
energy transformation from the supply line to the beam
power of ≈50%. As ion sources at the head of an accel-
erator, we propose to use sources [8] operating at a
direct current of up to 20 mA for ions with a charge of
+1, which are well known in ion implantation. After
being preliminarily accelerated to ~10–40 MeV, ion
beams can easily be transformed into the beams of the
bare nuclei of the corresponding elements through a
charge transfer in a thin target. Since this transforma-
tion can occur almost without decreasing the beam cur-
rent, the limiting ion current can be Ie ≤ z20 mA.

4. It follows from the table that the parameters are
the best when nitrogen, oxygen, or neon ions are used.
Indeed, the thermal powers of the plants easily fall in
the optimum range 3–6 GW; the potential of a linear ion
accelerator can be relatively low (≈1 GV); the powers
of accelerator generators (120–200 MW) are available;
and the coefficient χ, which determines the power loss
as compared to the limiting gain (which is equal to z2),
is relatively low (in the range from 1.7 for nitrogen to
1.9 for neon).

Since the neutrons generated in the target have a
rather high average energy (En ≥ 1 MeV), as a fission
reactor, one can apply a fast reactor (e.g., a Brest-type
reactor) that operates on a mixture of 238 uranium and
plutonium. Broadly speaking, the reactor type is of lit-
tle importance.
TECHNICAL PHYSICS      Vol. 49      No. 7      2004
5. The main results of this work can be derived from
two theorems: (1) to a first approximation, the activa-
tion of accelerator structural elements is only deter-
mined by the accelerated-ion range in the materials of
these elements and (2), to a first approximation, the
neutron yield from a heavy multiplying target per inci-
dent high-energy ion is only determined by the ion
energy.

However, taking into account that the conclusions
following from these statements are very important for
the development of nuclear power engineering, it is
necessary to perform theoretical and experimental stud-
ies on light-ion beams before designing new electronu-
clear power plants. Note that such studies can be con-
ducted on the novel TVN–ITEF accelerator–storage
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Table

Element Ip, mA Ie, mA E, GeV ξ(E), MeV In, A PT, GW PE, GW χ PL, MW PL/PE, %

Proton 1 1 1 36 0.03 0.11 0.045 1.0 1 2.2

Carbon 6 36 6 59 0.61 2.44 0.98 1.7 36 3.7

Nitrogen 7 49 7 59 0.83 3.32 1.33 1.7 49 3.7

Oxygen 8 64 8 61 1.05 4.20 1.68 1.7 64 3.8

Neon 10 100 10 67 1.49 5.97 2.39 1.9 100 4.2

Argon 18 324 18 77 4.21 16.83 6.73 2.2 324 4.8
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ring plant [9, 10], which has proper parameters and has
recently been put into operation.
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Abstract—A nonlinear integral equation that describes the time evolution of the amplitude of a nonlinear
unstable wave on the flat uniform charged surface of an ideal incompressible liquid has been derived and solved.
The characteristic time for the realization of instability is found to be determined by the initial amplitude of a
virtual wave initiating the instability and the supercritical increment in the Tonks–Frenkel parameter. At a zero
supercritical increment, the characteristic time for the realization of instability is only determined by the initial
amplitude and can be rather long (up to eight hours). This effect is characteristic of a flat charged liquid surface
and does not occur in charged drops. © 2004 MAIK “Nauka/Interperiodica”.
1. Studying the physical laws of the realization of
instability on the charged flat surface of a liquid is of
interest due to numerous academic, technical, and tech-
nological applications [1, 2]. However, despite a signif-
icant interest in this phenomenon, the physical mecha-
nism of the formation of Taylor cones has not been yet
studied. The cones are protrusions at the charged sur-
face of a liquid that are formed in the nonlinear stage of
the realization of its instability; an excess charge is shed
from the peaks of these protrusions through the emis-
sion of highly dispersed and strongly charged droplets
[1–4]. A quantitative model for the formation of such
protrusions was proposed in [5]. Allen [6] tried to
numerically calculate them; however, this attempt only
slightly contributes to the understanding of this phe-
nomenon. Nobody has tried to estimate the characteris-
tic time for the formation of the Taylor cones from the
onset of the realization of instability on the charged sur-
face of a liquid. In this work, we study this problem
using the scheme applied earlier to analyze the nonlin-
ear stages of the development of a strongly charged
drop [7, 8] and an uncharged drop in an external high
uniform electrostatic field [9].

2. Let an ideal incompressible conducting liquid
with a density ρ fill the half-space z ≤ 0 in the system of
Cartesian coordinates (nz is the unit vector of the z axis)
in the gravity field g || –nz. Let the equilibrium flat sur-
face of a liquid (coinciding with the xy plane) unper-
turbed by the wave motion be subjected to the action of
surface tension forces with a coefficient γ and carry a
uniformly distributed electric charge with a density σ. 

In the context of the linear model [10, 11], the criti-
cal conditions for the realization of instability on this
surface have the form

(1)W* αk* αk*( ) 1– , k*+ α 1– ,= =
1063-7842/04/4907- $26.00 © 20947
where W is the dimensionless Tonks–Frenkel parameter
characterizing the stability of the free liquid surface

with respect to the surface charge, W = 4πσ2/ ;
k is the wave number; and α is the capillary constant of

the liquid, α = .

Taking into account a nonlinear correction to the
frequency that appears when the profiles of nonlinear
capillary waves are calculated in the third order in a
small parameter ε ≡ (a/α), which is the ratio of the wave
amplitude a to the capillary constant α, results in the
appearance of the dependence of the critical value of
parameter W on wave amplitude a (small parameter ε)
[12]

(2)

We now follow the time evolution of the capillary–
gravitational wave with k∗  = α–1 that has lost its stabil-
ity when condition (1) is met (i.e., at W = W∗  = 2), tak-
ing into account the fact that, according to relation (2),
the critical value of the Tonks–Frenkel parameter
decreases with increasing wave amplitude.

The flat charged liquid surface that is unperturbed
by capillary wave motion is stable at W = 2. Instability
appears if the flat liquid surface contains a virtual wave
with an arbitrary small amplitude a0. In this case, the
existing value of the Tonks–Frenkel parameter (W = 2)
is supercritical for the wave, and, in accordance with
the theory [5, 7–10], the amplitude of this wave begins
to increase with time according to the exponential law
a(t) = a0exp(χt) with an increment χ that is proportional
to the square root of the difference between the existing
value W = W∗  = 2 and the critical value for the virtual

ρgγ

γ/ρg

W* 2 βε2–≈ 2 β a0/α( )2, β–≡ 11/8.=
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wave, which is determined by Eq. (2); that is,

(3)

This exponential growth of the wave with the incre-
ment proportional to the initial amplitude occurs only
for a short time, until the increment in the initial ampli-
tude ∆a goes beyond the value determined by the con-
dition ∆a ! a0. Then, a0 in Eq. (3) for the increment
should be replaced by a0 + ∆a and the exponential
growth of the amplitude should be considered on the
next short time interval, and so on. As a result (detailed
derivation of the formula is given in the works [7–9]
dealing with the study of the time evolution of drops
unstable with respect to self-charges or polarization
charges), we obtain the nonlinear integral equation

(4)

to find the amplitude of the unstable wave. Its solution
has the form

(5)

It is seen from Eq. (5) that, although the entire pro-
cess is essentially nonlinear, the characteristic time for
the realization of instability t∗ , which is defined as the
characteristic time it takes for the denominator in
Eq. (5) to infinitely approach zero, is completely char-
acterized by the instability increment at the initial
instant of the realization of instability, t∗  = χ–1. Note
that the meanings of χ in the nonlinear increase in the
amplitude of the unstable wave with time and in the
exponential increase characteristic of the linear theory
are different. In the linear theory, the wave amplitude
increases ~2.73 times over the time χ–1, whereas it
becomes infinitely high within the same time interval in
the nonlinear process. The fact that law (5) of increase
in the wave amplitude with time provides a higher rate
of growth as compared to the exponential growth can
easily be seen if we expand Eq. (5) and exp(χt) at χt <
1 into a power series in χt and then compare the results. 

The minimum possible value of a0 is specified by
the amplitude of the capillary waves induced by the

thermal motion of molecules in the liquid, a0 ≈ ,
where k is the Boltzmann constant and T is the absolute
temperature of the liquid. The amplitude of such waves
for the majority of real liquids at reasonable (from the
standpoint of their existence) temperatures is about half
an angstrom and, hence, the characteristic time for the
development of instability is rather long. For example,
at a0 = 10–8 cm, the characteristic time t∗  for the realiza-
tion of instability on a charged water surface that bor-
ders on a vacuum is about eight hours. As the initial
amplitude a0 increases, the characteristic time t∗

χ a0/α( ) βg/α( ).=

a t( ) a0
a t( )
α

--------- βg
α
--- td

0

t

∫ 
 
 

,exp=

a t( )
a0

1 a0/α( ) βg/α t–
--------------------------------------------

a0

1 χt–
--------------.≡=

kT /γ
decreases as ~  and reaches several seconds even at
a0 ≈ 10–3 cm. As a result, we find that, for the character-
istic time for the realization of instability on the order
of several seconds, in experiment at W = W∗  = 2, virtual
waves with kα = 1 that initiate the instability should be
created artificially.

This fact means that the characteristic waiting time
for the realization of instability in experiments for
checking the validity of the instability criterion for a
charged liquid surface [13, 14] should depend on the
method of defining a virtual wave. Since this circum-
stance was not noted in [13, 14], we have to assume that
the virtual waves in the experiments appeared because
of either molecular thermal motion (in this case, the
waiting time for the realization of instability should be
rather long) or random vibrations of the device at
uncontrolled amplitudes. However, direct evidence for
the duration of the linear stage of charge preparation is
given in [3]: the author noted that the event of throwing
a liquid jet during the realization of instability was fixed
in only one shot in about 15 m of the film used to record
the experiment from the instant of voltage application.
A discharge delay time was not mentioned in [14].
These facts can have another explanation: the voltage in
the experiments [13, 14] exceeded the critical value,
and the experiments were performed in the presence of
a supercritical increment ∆W in the Tonks–Frenkel
parameter as compared to the critical value W = W∗  = 2
determined by Eq. (1), which affected the characteristic
time for the realization of instability.

3. Let the Tonks–Frenkel parameter exceed the crit-
ical value for the flat liquid surface by ∆W at the initial
time instant and be equal to W∗  + ∆W. Then, the incre-
ment of instability at the initial instant of its realization
depends on both the initial amplitude of a virtual wave,
a0, and the supercritical increment ∆W and, according
to the traditional concepts [1, 7–10], is specified by the
relation

The time dependence of the amplitude of the unsta-
ble wave is determined as a solution to the nonlinear
integral equation

whose solution has the form

a0
1–

χ g
α
--- ∆W β

a0

α
----- 

 
2

+ .=

a t( ) a0
g
α
--- ∆W β a t( )

α
--------- 

 
2

+ td

0

t

∫ 
 
 

,exp=

a t( ) 2 g∆W /α t( ) 1 δ+( )exp

1 δ+( )2 a0/α( )2 2 g ∆W /α( )t( )exp–
-------------------------------------------------------------------------------------------,=

δ 1
β

∆W
--------- 

  a0

α
----- 

 
2

+ 
  .≡
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The characteristic time for the realization of insta-
bility that is determined by this dependence can be
obtained from the condition of vanishing of the denom-
inator in a(t):

(6)

As is seen from expression (6), the characteristic
time for the realization of instability depends mainly on
the supercritical increment ∆W in the Tonks–Frenkel
parameter, and the effect of the initial amplitude a0 of
the virtual wave is weak (see figure). Taking into
account the fact that the capillary constant α for most
liquids amounts to several millimeters, we can find
from Eq. (6) that the characteristic time for the realiza-
tion of instability is several seconds even at ∆W ≈ 10–3

irrespective of a0. As applied to the experiments
[13, 14], this behavior suggests that they were per-
formed under the dominating effect of the supercritical
increment in the Tonks–Frenkel parameter on the char-
acteristic time for the realization of instability.

4. It is interesting to note that, when the realization
of instability in drops with respect to self-charges or
induced charges was studied in [7–9], the dependence
of the characteristic time for the realization of instabil-
ity on the amplitude of initial perturbation in an equilib-
rium drop shape ζ0P2(cosθ) (here, P2(cosθ) is a Leg-
endre polynomial) is masked by its strong dependence
on the drop radius R, which has the form t∗  ~ (R4/ζ0).
At R ≈ 10–2 cm (the stability of drops having this radius
with respect to their surface charge was experimentally
studied in [2]) and ζ0 ≈ 10–8 cm, we have (R4/ζ0) ~ 1.
Therefore, the strong dependence of the characteristic
time for the development of instability on the initial
amplitude at the critical threshold of the Tonks–Frenkel
parameter, which has been found in this work, is inher-
ent in the flat charged surface of a liquid.

t* α /g∆W( ) δ α/a0( )[ ] .ln=

10
8
6
4

t*

0.0002

0.0006

0.0010

∆W

0.0006

0.0002

a0

Dependence of the characteristic time for the realization of
instability t∗  on the initial wave amplitude a0 changing from
10–4 to 10–3 cm and the supercritical increment in the
Tonks–Frenkel parameter ∆W changing from 10–4 to 10–3.
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CONCLUSIONS

The characteristic time t∗  for the realization of insta-
bility on the flat charged surface of an ideal incom-
pressible conducting liquid is determined by the initial
amplitude a0 of a virtual wave initiating the instability
and the extent of exceeding the Tonks–Frenkel param-
eter that is critical for the wave with a given wavelength
(i.e., the supercritical increment ∆W). The effect of the
supercritical increment ∆W on t∗  is predominant at
∆W ≠ 0. At ∆W = 0, the characteristic time t∗  is
inversely proportional to a0 and, at sufficiently small a0,
can reach high values because of a slow increase in the
amplitude at the linear stage of instability. For example,
if the virtual wave is induced by molecule thermal
motion in the liquid and a0 ≈ 10–8 cm, t∗  for water
approaches eight hours.
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