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Abstract—The preliminary stage of the formation of carbon nanotubes by the vapor–liquid–drop mechanism
is considered as applied to the condensation of drops from carbon and metal vapors. The problem of the con-
densation of molten drops is solved for a wide concentration range for both vapors at a condensation tempera-
ture. It is shown that, at very high concentrations of the metal vapor (1018–1019 cm–3) and high temperatures
(about 0.3 eV), peculiar heterogeneous condensation of the drops can occur at huge supersaturation of the car-
bon vapor and the saturated metal vapor. This problem of the condensation of the binary vapor is of methodical
interest. This condensation is shown to be unrealizable in real experiment at the parameters of the carbon and
metal vapors; it virtually merges with the homogeneous condensation of the metal vapor. The maximum con-
centration of the carbon vapor below which carbon condenses into drops and above which carbon condenses
into amorphous soot particles is calculated. The calculation makes it possible to propose a new approach to the
controlled growth of carbon nanotubes. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This work is a continuation of the study [1] dealing
with the condensation of carbon molten drops in a cat-
alytic metal. This problem is associated with the search
for an optimum method for producing fine metallic
drops that can serve as nucleation centers for carbon
nanotubes (NTs) during further supersaturation of the
drops with carbon.

A binary gas mixture of metal–carbon vapors is
assumed to cool during its expansion from the source of
the vapors (arc discharge or a laser target) in a buffer-
gas flow. It is also assumed that the concentration of
metal vapor NK is significantly higher than the carbon
concentration NC so that the carbon–metal clusters
being formed acquire the properties of metallic drops.
The opposite case (NC @ NK), which is usually occurs
upon the arc production of NTs, is not considered, since
this method cannot provide controlled growth of high-
quality NTs.

We assume that, in an arc or laser method for syn-
thesizing NTs, the initial stage of condensation of vapor
drops is explosive [2, 3]. For the case of condensation
of drops of a pure substance, this term has the following
meaning. Upon cooling, the vapor goes through the
point S = 1, where supersaturation (S > 1) or undersat-
uration (S < 1) is defined as the ratio of the concentra-
tion of atomic vapor N1 to the concentration of satu-

rated vapor . The number of clusters (nucleation
centers) is small because of the very strong dependence

N1
S( )
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of the steady-state nucleation rate J (or the flux of drops
in the space of the number of atoms in a drop or in the
space of sizes) on S:

(1)

where β = 16πσ3/3 T3; the parameters σ, m, and Arot

and the critical drop size g∗  were determined in [1].

When S reaches a certain threshold value, the flux J
increases by many orders of magnitude as compared to
the before-threshold value and the drops that are
formed begin to rapidly absorb vapor. This condensa-
tion stage is called explosive condensation. Vapor
absorption causes a decrease in J and, simultaneously,
supersaturation; however, the former factor is more
pronounced than the latter. After the termination of the
explosive stage and the “disappearance” of the source
of drops, the supersaturation decreases due to the
growth of the formed drops. This stage is called rapid
growth [4].

In the case of the condensation of carbon molten
drops in a metal, the process of explosive condensation
has certain peculiar features.

When a metal is introduced into the vaporized elec-
trode in the form of a sintered carbon–metal powder,
the electrode temperature under the conditions of arc-
ing is between the temperatures of purely metallic and
purely graphite vaporized electrodes. According to the
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reasons given in [1], it is more reasonable to start con-
sideration from the case of an “almost metallic” elec-
trode with a small addition of carbon. In this case, the
initial concentration of carbon vapor over the electrode
is substantially higher than the concentration of the sat-
urated vapor at the vaporization temperature and the
metal-vapor concentration is close in order of magni-
tude to the concentration of the saturated vapor at an
electrode temperature of 1500–1800 K.

The carbon vapor has a higher evaporation heat qC

than the metal vapor (qK), and, when moving from the
arc, it reaches saturation much earlier than the metal
vapor. However, at a high concentration of the metal
vapor, carbon cannot condense according to the
“fullerene path,” since metal–carbon molten drops may
begin to condense when the metal vapor reaches its sat-
uration. By this time, the carbon vapor is strongly
supersaturated. This condensation should have charac-
teristics other than those of the condensation of a purely
metal vapor and is, hereafter, called heterogeneous con-
densation, although it is not heterogeneous in the clas-
sical sense [1].

Heterogeneous condensation can occur if the size
and concentration of the drops formed in the explosive
stage are sufficiently large. Then, the drops can effec-
tively absorb the metal vapor and stop the growth of its
supersaturation. Otherwise, the heterogeneous conden-
sation is followed by secondary condensation, which is
similar to homogeneous condensation of a purely metal
vapor. The criterion of the fact that heterogeneous con-
densation can stop an increase in the supersaturation of
the metal vapor SK and form a spectrum of drop sizes
has the form

(2)

where SK = NK/  and NK and  are the actual con-
centration and the concentration of the saturated metal
vapor, respectively. The derivative is calculated for the
end of the explosive condensation stage.

Apart from criterion (2), we also impose the condi-
tion that, at the end of the explosive condensation stage,
the number of carbon atoms in a drop g = gd is substan-
tially higher than the initial drop size g∗ : gd/g∗  @ 1;
e.g.,

(3)

CALCULATION OF THE EXPLOSIVE STAGE
OF HOMOGENEOUS CONDENSATION

(1) Formulation of the Problem

When considering the explosive condensation, we
specify the following parameters: the temperature T0 at
the instant of saturation of the carbon vapor (saturation
temperature); the spatial velocity V of the gas flow; the
spatial scale L of the decrease in the carbon–vapor tem-

dSK

dt
--------- 0,>

NK
S( ) NK
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gd/g* 10.=
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perature for the linear dependence T = T0(1 – y/L) of
temperature T on the space coordinate y (V = dy/dt); and

the undersaturation of the metal vapor  at T0.

In calculation, we determine the condensation tem-
perature T1, the effective time of explosive condensa-
tion δt, the initial supersaturation of the metal vapor

 at which condensation can occur, the supersatura-

tion  of the carbon vapor at this time instant (or at
this space point), and the maximum supersaturation of

the carbon vapor  during explosive condensation.
In addition, we determine the following parameters of
the drops being formed: the drop concentration Nd; and
the total (gd and g∗ ) and the partial (cd, kd, c∗ , and k∗ )
numbers of carbon and catalyst atoms in a drop at the
end and beginning of explosive condensation, respec-
tively.

Our calculation shows that, as  decreases, the

values of  and  increase (Fig. 1); however, the
maximum supersaturation of explosive condensation

 (Fig. 1, curves 1, 2) increases faster than 
does (Fig. 1, curves 1', 2'). At a certain critical level of

undersaturation, the initial supersaturation 

becomes greater than . This means that, at the
beginning of condensation, the supersaturation of the
carbon vapor is already at its maximum and is known.

Therefore, the calculations of condensation at  >

 (“delayed condensation”) and at  < 
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Fig. 1. Effect of the initial undersaturation of the metal
vapor on (dotted curves) the maximum supersaturation of
the carbon vapor in the stage of explosive condensation

 and (solid curve) the initial supersaturation  at

which the explosive condensation begins. The saturation
temperature of the carbon vapor is (1, 1') 0.32 and (2, 2')
0.3 eV.

SC
max( )

SC
1( )

101

0 0.1

SC

SK
(0)

0.3 0.4 0.5 0.60.2

102

103

1'

2'

1

2



1006 ALEKSEEV
(“overdelayed condensation”) are completely different.

We first describe the procedure of calculation at  <

, which is used to understand whether this ine-
quality is valid in reality.

(2) Calculation of the Explosive Condensation: 
The Case of Delayed Condensation

The optimum composition of a critical drop is deter-
mined by the fact that, at SC @ SK, the mole fraction of
carbon X is close to X = γXsat, where γ = 0.7 [1].

Unlike a pure substance, the transition of a drop
through the critical size does not cause the subsequent
rapid growth of the drop in any direction in the (c, k)
plane, where k and c = kX/(1 – X) are the numbers of
metal and carbon atoms in the drop (g = c + k), respec-
tively. Apart from an increase in the total number of
atoms, the Gibbs free energy must decrease along the
trajectory of the drop in the (c, k) plane. The boundary
trajectories at which the Gibbs energy of a subcritical
drop is equal to this energy at the critical size of the
drop are shown in Fig. 2 for carbon-depleted (curve 3)
and carbon-saturated (curve 4) drops. Curves 3 and 4
are seen to be rather close to each other; that is, the
mole fraction of carbon in a supercritical drop, as in a
subcritical one, can vary over rather narrow limits. In
the nearest supercritical region, none of the drop com-
ponents can be evaporated so that the drop is simulta-
neously saturated with the other component.
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Fig. 2. Possible trajectories for a subcritical drop in the
(c, k) space of the number of atoms in the drop: (1) trajec-
tory of the drop saturated with carbon (X = XSat); (2) trajec-
tory of the drop saturated with the optimum ratio of the
components (X = γXSat); and (3, 4) trajectories of the drop
with a carbon content such that G(X, g(X)) = Gm, where Gm
is the potential condensation barrier. C is a critical point.
At NK @ NC, the optimal mole fraction of carbon is
retained during the explosive condensation due to the
fact that the metal vapor component balances at the sat-
uration level and that the carbon vapor can be strongly
supersaturated. Therefore, the carbon and metal fluxes
to the drop turn out to be of the same order of magni-
tude. If the concentrations of the vapors are compara-
ble, the rates of increase in the number of carbon and
metal atoms in the drop,

(4)

and

(5)

should be connected during the explosive condensation
by the relation

(6)

The activities aC and aK relate the equilibrium con-
centrations of the vapor components over the melt to
the concentrations of the saturated vapors of the pure

substances:  = aC  and  = aK . As
follows from [1], at the optimal carbon content in the
drop, the activities are equal to the corresponding mole
fractions, aC = X and aK = 1 – X, just as in an ideal solu-
tion. Then, it follows from Eqs. (4) and (5) that, at the

beginning of condensation, the supersaturation  is

(7)

The saturation temperature T0 and the undersatura-

tion  determine the concentrations NC and NK,
which are taken to be constant in the following calcula-
tion. This means that the actually specified quantities
are the concentrations of the vapors at the instant of
condensation. Explosion conditions (7) along with the
temperature dependence of saturation [1]

(8)

(for iron, η = 0.112 and ψ = 0.8635) and the condition
X = γXsat allow us to determine the temperature of
explosive condensation T1 < T0 and the quantity X using
an iteration procedure. The initial saturation of the car-
bon vapor is

(9)

For the following calculation, we use the technique
that was proposed by Raizer to solve the problem of
vapor expanding into vacuum [2] and then developed in

dk
dt
------ 4πrL

2 VTg2/3NK 1 aK/SK–( ),=

dc
dt
------ 4πrL
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[3] as applied to the condensation of a slag in the chan-
nel of an MHD generator.

We assume that, during the explosive condensation,
drops grow so fast that the size distribution of the drops
in the near-critical region is insignificant. Then, the bal-
ance equation for the number of carbon atoms in the
drops and gas [2],

(10)

can approximately be integrated by expanding the
exponent in J(t') into a series in powers of the difference
ζ – ζmax (where ζ = lnS and ζmax = lnSmax) in the vicinity
of the logarithm of the maximum saturation ζmax, which
is reached at a certain time instant tmax, and then, the dif-
ference (ζ – ζmax) into a power series

(11)

As follows from the results obtained in [1], when the
size effects are ignored, the flux J has the form

(12)

and the role of the logarithm of the effective supersatu-
ration is played by the quantity

(13)

Since the supersaturation of the metal vapor
increases much more slowly than that of the carbon
vapor, the procedure for the subsequent solution is
identical to that for the case of a pure substance. We
doubly differentiate Eq. (10) and reject the integrated
terms on the right-hand side in both cases; then, we
have

(14)

An increase in the number of carbon atoms in a drop
is described by Eq. (5). If the mole fraction of carbon in
the drop only weakly depends on the drop size, we can
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use the identity dX/dt = (1/g)dc/dt – (X/g)dg/dt = 0 to
obtain the equation for the rate of increase in the total
number of atoms in the drop:

(15)

At X = const, the solution to Eq. (15) is

(16)

where 

Taking into account Eq. (14), at the instant tmax, we
can easily find

(17)

(18)

On the other hand, from the definition of the super-
saturation and the relation between the saturated-vapor
pressure and the temperature through the evaporation
heat, it follows that

(19)

(20)

In Eqs. (19) and (20), we took into account the fact

that ζmax = X  – µmax/T and αmax = X .

Finally, the set of two equations with two unknowns
(αmax and ζmax) that follows from Eqs. (17)–(20) has the
form

(21)

(22)

As noted above, we assumed that, after the point of
saturation of the carbon vapor was reached, the temper-
ature T decreased linearly with the spatial scale L. The
value of L and the flow velocity, which specifies the
relation between the derivatives T ' = dT/dt and dT/dy,
were varied.
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The set of equations (21) and (22) was solved by an
iteration procedure. The only technical difference in
solution from the problem of the homogeneous conden-

sation of vapor was that we took eX  and not e as the
initial approximation to calculate the unknown value of

the maximum supersaturation .

The values of αmax and ζmax allow us to determine
changes in the concentrations of the vapors by the end
of the explosive condensation. By analogy with the
expression

we can easily obtain

(23)

for the case of the condensation of a pure substance
from the solution.

The total concentration of the drops formed during
the explosive condensation, which is

in the case of a pure substance, is now defined by the
expression

(24)

All the formulas given above are written for the case
when the size effects are neglected, which is due to the
fact that the condition of the delayed condensation

 >  sets a high condensation temperature and
a large critical drop size.

(3) The Case of Overdelayed Condensation

At  > , the maximum supersaturation is
reached at the beginning of condensation and is
unknown. Two variants can occur in this case.

(a) The second derivative is

and, when expanding the supersaturation ζ(t') into a
power series of the difference t' – tmax in Eqs. (10) and
(11), we have to take into account both the first and sec-
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ond derivatives. Then, Nd is calculated in the same
approximation that for the delayed condensation:

(25)

where

Numerical estimations show that, as  decreases,
the drop size and the number of atoms in the drops vary
identically to the case of delayed condensation. There
are no qualitatively new results in this case.

(b)  ! 1, the supersaturation  is very high,

the derivative  > 0, and it is sufficient to take into
account only the term with the first derivative in
exp(−β/ζ2). In this case, the condensation parameters
are as follows: the drop concentration is

(26)

the reciprocal condensation time is Γ = 1/δt, Γ =

β / ; the change in the concentration of the car-
bon vapor after completion of the explosive condensa-
tion is

(27)

and the number of atoms in the drop is

(28)

In cases (a) and (b), the calculation can give any val-
ues of Nd and gd. A qualitative conclusion about the pos-
sibility of heterogeneous condensation can only be
drawn using criterion (2), which can be rewritten as
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where 

CALCULATION RESULTS 
AND THEIR DISCUSSION

Figure 3 shows the dependence of the critical drop
size g∗  on the temperature T0. The relative role of the
size effects is seen to decrease with increasing T0
(Fig. 3, curves 1, 2); however, these effects become
weak (about 20%) only at T0 ≥ 0.3 eV, where the Fren-
kel model can be applied.

Figure 4 shows the analogous dependence for the
drop concentration Nd. The dependence on the initial

undersaturation  is seen to be insignificant. For the

curves given in Fig. 4, we have  = 0.1. The drop
concentration is very high (Nd ~ (1010–1012) cm–3), and
the characteristic size is small and decreases sharply
with temperature. This circumstance gives the mini-

mum temperature  at which the heterogeneous
condensation can become noticeable (Fig. 5). As a con-
centration criterion, we chose condition (3). When con-

structing the velocity dependence of , we chose the
velocity range from the typical values of the velocity of
a buffer gas under the conditions of a fullerene arc at
temperatures near T0 [5].

These calculations indicate that the delayed conden-
sation occurs only at a high temperature T0 and, corre-
spondingly, at a very high concentration of the metal
vapor (NK ~ (1019–1020) cm–3). It is virtually impossible
to provide such a concentration by the evaporation of an
electrode at any ratios of carbon and metal in the elec-
trode. In a nearly graphite electrode, at T ~ 4000 K, the
concentration NK cannot exceed fractions of the con-
centration of carbon vapor, which is NC ~ (1017–
1018) cm–3. On the contrary, the concentration over a
fusible metal electrode with a melting temperature of
less than 2000 K cannot exceed 1015–1016 cm–3. There-
fore, of practical importance is the case of overdelayed

condensation (  > ), i.e., the case of a rela-
tively high carbon concentration and a relatively low
metal concentration.

We calculated the maximum concentration 
of a catalyst at which conditions (2) and (3) were met.

Figure 6 shows the  versus T0 dependence, and

Fig. 7 shows the  versus NC dependence. Curve A

(with a vapor concentration ) meets condition (2),

and curve D (with a concentration ) meets the con-
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dition  > 0. Formally, curve D indicates infinite
supersaturation of the metal vapor.

Curve A bounds the metal-vapor concentration from
above, and curve D bounds this concentration from
below. It is seen that, at low condensation temperatures,
the curves are very close to each other (the case of low
NK). This means that the region of heterogeneous con-
densation virtually disappears. The condensation devel-
ops as the homogeneous condensation of the metal
vapor from the very beginning.

At NC > , the heterogeneous condensation is
impossible. In this case, the formation of lumps of
amorphous carbon is most probable. However, the con-
centration of free metal, which can condense, is
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Fig. 3. Dependence of the critical drop size on T0. The flow

velocity is V = 104 cm/s. (1) The melt without regard for the
size effects, (2) the melt with allowance for the size effects,
and (3) purely metal vapor.
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strongly decreased. Therefore, the metal vapor can con-
dense only at a very low temperature, and the drops
formed contain much amorphous carbon long before
the stage of nanotube growth.

Based on the considerations given above, we can
conclude that the pulse evaporation of a metallic elec-
trode or an electrode with a low carbon content can pro-
vide the required concentration of metallic drops on a
substrate. For a proper pulse duration, metal vapor
exists in the discharge for the time it takes for the cre-
ation of nucleation centers for the nanotube growth.

The time of evaporation of an electrode, τ, should be
chosen so that the number of drops that diffuse toward
the substrate in the time τ does not exceed one mono-
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Fig. 5. Minimum temperature at which condition (3) of the
heterogeneous condensation is met, depending on the flow
velocity. The scale L is (1) 8 and (2) 5 cm.
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Fig. 7. The same as in Fig. 6 but depending on the carbon-
vapor concentration. The flow velocity V = 3 × 103 cm/s.
layer; that is, the surface per drop of radius Rg should be
about π(2Rg)2. Correspondingly, the pulse duration can
be determined from the relation

(30)

where D is the coefficient of diffusion of drops toward
the surface and ∇ Nd is the radial gradient of the drop
concentration from the flux axis toward the substrate.

The diffusion of heavy particles in a light buffer gas
with a concentration NB is determined by the relation [6]
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2∇ Nd,∼
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Fig. 6. Maximum catalyst concentration  at which

condition (2) of the heterogeneous condensation is met. V =
3 × 103 cm/s. Curve A corresponds to condition (2), and
curve D is the minimum metal concentration at which the
heterogeneous condensation is possible.
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Fig. 8. Concentration of the metallic drops formed during
the homogeneous condensation of the metal vapor. V = 3 ×
103 cm/s.
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where the thermal velocity of a particle of the buffer gas
with a mass mB is VT = (2T/mB)1/2.

Then, the pulse duration is estimated as τ =
(R/3VT)(NB/Nd), where R is the chamber radius, which
coincides with the characteristic distance to the sub-
strate.

The concentration Nd of the metal drops formed dur-
ing homogeneous condensation is plotted as a function
of the saturation temperature T0 in Fig. 8.

The value of τ is on the order of milliseconds; how-
ever, generally speaking, it can vary over wide limits
and should be determined experimentally.

CONCLUSIONS
An arc with a low concentration of metallic-catalyst

vapor as compared to carbon vapor cannot provide the
controlled growth of high-quality NTs; therefore, we
have considered the kinetics of condensation of car-
bon–metal molten drops at arbitrary ratios of the con-
centrations of the vapors. The result is as follows.

If the concentration of the metal vapor is signifi-
cantly higher than the carbon concentration, peculiar
heterogeneous condensation of the drops can occur in
theory. It begins under the conditions where the carbon
vapor is strongly supersaturated and the metal vapor
has just reached saturation. However, this condensation
cannot be realized in practice because of a large differ-
ence in the concentrations of the saturated vapors. This
is due to the fact that the possibility of heterogeneous
condensation puts upper and lower limits on the car-
bon-vapor concentration. The upper limit is determined
by the flux of carbon atoms to a drop, at which the drop
composition is optimal for condensation. Under an
intense carbon flux, condensation is impossible and a
cluster can develop only as an amorphous soot particle.

The lower limit is related to the fact that the amount
of vapor condensed in the explosive stage of the heter-
ogeneous condensation is determined by the concentra-
tion of the carbon rather than the metal vapor. If this
amount is negligible, the heterogeneous condensation
is impossible.
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
The actual condensation temperature of the metal
vapor is limited by the temperature of an electrode and
cannot be high. Under these conditions, the upper and
lower limits virtually merge. Therefore, at any relation
between carbon and metal, the metal vapor condenses
homogeneously.

The calculation shows that, at a relative carbon con-
centration below the upper limit, the most portion of
carbon should enter into molten drops rather than soot
particles. Therefore, when drops are used as nucleation
centers for NTs, which are preliminarily deposited onto
a substrate, the material of the evaporated electrode can
contain a small amount of carbon (e.g., conventional
stainless steel).

Thus, the process of production of NTs can contain,
as the first stage, the formation of metallic drops on a
substrate as a result of the evaporation of a metallic tar-
get with a laser beam or of a metallic electrode with an
arc discharge.

The calculation of the concentration of the drops
that are formed during the homogeneous condensation
of the metal vapor allows us to determine the time of
arcing in the pulse mode.
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Abstract—A new technology for forming the structures in semiconductor crystals using plastic deformation in
an electric field is suggested. A setup making it possible to implement the suggested method and study the idea
of self-organization of dislocation-related dissipative structures is described. © 2004 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

Practical use of the high strength of atomic semicon-
ductors is restricted owing to brittleness of these mate-
rials at low temperatures [1]. Germanium belongs to the
class of materials with the largest values of theoretical
breaking and shear strength, which is caused by a high
degree of directivity of covalent bonds that link atoms
and gives rise to a high resistance of the lattice to the
dislocation glide [2]. Because of this consideration and
other reasons, a search for various methods for increas-
ing the plasticity at the lowest possible temperatures
and a study of interrelation between the structure and
properties of semiconductor crystals is a task that is
extremely important from both theoretical and applica-
tion-oriented standpoints [3].

It is well known that a single crystal is an example
of structural organization, i.e., a process that carries no
information on the evolution of the crystal structure as
a whole. The criterion for a transition from organization
to self-organization amounts to the requirements that
conditions under which the process occurs are far from
equilibrium and that there are indications of instability
and openness [4].

In this study, we use a synergistic method for affect-
ing a crystal; this method ensures the nonequilibrium
conditions by providing the natural gradients of pres-
sure, temperature, and concentration. These conditions
are satisfied in a plastically deformed solid in which a
constant current flows (in an electric field) and elec-
trodiffusion of atoms occurs simultaneously with
deformation. The energy spectrum of electrons in semi-
conductor crystals can be easily affected by applying a
constant or variable electric field to the crystal with
ensured simultaneous interaction of the lattice and
impurity atoms with generated dislocations. Moving
dislocations interact with the atomic and electronic
1063-7842/04/4908- $26.00 © 21012
subsystems in single crystals and, as a result, change
the dynamics of their glide and affect the characteristics
of plastic strain in the crystal. The combined multipa-
rameter effect on the crystal in the presence of a catalyst
reveals unique characteristics of this phenomenon [5].

EXPERIMENTAL

Germanium crystals were deformed using three
methods. These included (i) thermoplastic deformation
(TPD) that occurred under conditions of external heat-
ing of the sample in a resistance furnace; (ii) electro-
plastic deformation (EPD) that was accomplished
under conditions of a high-density current flowing
through the sample; and (iii) the electrotransport–plas-
tic deformation (ETPD) conducted in the situation
where the sample was deformed with simultaneous
electrotransport of the lattice and impurity atoms in the
anode–cathode regions of the sample [6].

The samples were deformed in a pressure chamber,
which made it possible to attain all kinds of strains in
the dynamic and static conditions and record the results
using a plotter. The forces were recorded using a tenso-
dynamometer as the sensor, and displacements were
recorded using an inductive transducer. The setup also
made it possible to deform the crystals in a wide range
of temperatures, forces, and loading rates both in the
dynamic and static conditions. The main objective of
experiments was to determine the dependence of plastic
properties of germanium single crystals on the methods
of deformation and clarify the trends in variation of
these properties under various strain rates. The new
methods of plastic deformation of the material made it
possible to reveal important differences in the results
obtained using different methods and conditions of
deformation. The new EPD and ETPD methods have a
004 MAIK “Nauka/Interperiodica”
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number of advantages compared to the well-known
TPD method. First, the possibility of contaminating the
sample with impurities released by structural compo-
nents and the furnace material is reduced appreciably.
Second, it is well known that electrons acquiring direc-
tional motion in a constant electric field can affect the
motion of dislocations and their interaction with impu-
rities. A new complex consideration of an impurity–
electron–dislocation system can give rise to the effects
of practical interest. Another important advantage of
the new method is the possibility of studying and com-
bining several (previously developed) methods using
the same setup and the same sample. There are indica-
tions that other advantages of the new approach to
structure formation in crystalline solids will be found,
including a controlled coherent rearrangement of parti-
cles at the microlevel, which would offer very high
energy gains.

We studied Ge single crystals that were compen-
sated with Au to the concentration of 1 × 1015 cm–3;

were oriented along the [ ], [001], and [110] crys-
tallographic axes; and had dimensions of 5 × 10 ×
15 mm.

The density of current flowing through the sample
was varied in the range of 2.0 × 106–2.5 × 106 A/cm2,
depending on the deformation temperature. The voltage
drop across the sample was 1.0–0.6 V. The power
released in the sample was as high as 100 W.

RESULTS

In this paper, we report the results of studying the
dependences of the strengthening coefficient, the strain,
the strain rate, and the elastic-strain region on the load-
ing rate of the crystal under deformation in dynamic
and static conditions of loading. In Figs. 1 and 2
(curves 1–3), we show the stress–strain σ(ε) and strain–
time ε(t) dependences for three samples of single-crys-
tal p-Si for three different loading rates. As can be seen
from Figs. 1 and 2 (curves 1–3), not only the duration
of overcoming the elasticity region but also the yield
stress itself decrease as the loading rate increases. The
deformation-process parameters calculated from
curves 1–3 (Figs. 1, 2) are listed in the table. Analyzing
the run of the curves in the dynamic loading region
(Fig. 1), we can find the dependence of the strengthen-
ing coefficient on the loading rate. At low loading rates,
the strengthening coefficient is largest in the first por-
tion of its steplike behavior and is smallest in the sec-
ond portion of softening. It is worth noting that there
are no strengthening–softening portions in curve 3
(Fig. 1) obtained at the highest loading rate. The
strengthening in this case is characterized by the coef-
ficient that is intermediate between those correspond-
ing to two portions in curves 1 and 2.

It is noteworthy that the absence of steplike behavior
in curve 3 (Fig. 1) can be also related to two factors
other than those mentioned above. First, the dynamic-

110
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loading time (t = 150 s) was short, and, second, the
force (σ = 1.7 kg/mm2) was small. We note a high pli-
ability of the sample among other special features of
such samples deformed with a high rate. As can be seen
from Fig. 1 (curve 3), the strain ε = 1% at a force σ =
1.5 kg/mm2, whereas ε = 0.5% for curves 1 and 2.

In Fig. 2, we show the dependences ε(t) recorded
using a plotter and encompassing all three deformation
regions in the sequence: elastic, dynamic, and static.
The dynamic region is characterized by the force that
varies in time, whereas the force in the static region of
deformation is time-independent. It can be seen from
Fig. 2 (curves 1–3) that, despite small values of force,
incompleteness of the deformation process is observed
in all cases. It also follows from Fig. 2 (curves 1–3) that
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Fig. 1. Dependences of the shear stress on the strain σ(ε) at
TD = 650°C and the loading rates equal to (1) 71, (2) 150,
and (3) 590 g/s.
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the strain is affected greatly by external factors. In the
dynamic region, the strain rate  = ∂ε/∂t is equal
approximately to  = 1.5 µm/s in absolute units and to

 = 1.3 × 10–4 s–1 in relative units at both low and high
loading rates. True, the loading rates in the dynamic
region do not differ to the same extent as in the elastic
region (see table). A variation in the inclination with
respect to the time axis characterizes the steplike char-
acter (discontinuity) of the process and confirms the
fact that strengthening is replaced with softening. Even
in the static region, for which small forces and long

ε̇
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Fig. 3. Dependences of the shear stress on the strain σ(ε) for
several methods and conditions of deformation of p-Ge sin-
gle crystals at T = 750°C: (1) thermoplastic deformation,
(2) thermoplastic deformation with simultaneous In diffu-
sion, (3) electroplastic deformation, (4) electroplastic defor-
mation with simultaneous In diffusion, and (5) plastic
deformation with electrotransport.
deformation times are characteristic, two steps with dif-
ferent strain rates are observed (see table and Fig. 2,
curve 1).

In Fig. 3, we show the characteristic curves σ(ε) for
germanium single crystals deformed using different
methods: the TPD method (curves 1, 2), the EPD
method (curves 3, 4), and the ETPD method (curve 5).
As can be seen from Fig. 3 (curve 2), the elasticity
region is characteristic of the TPD method, although
the deformation temperature in this case is higher than
that in the EPD method since the crystal is not practi-
cally deformed in the case of TPD at lower tempera-
tures. Curves 2, 4, and 5 obtained in the case of simul-
taneous diffusion of nickel represent a clear illustration
of differences in the methods and conditions of defor-
mation. As can be seen from Fig. 3 (curve 5), the ETPD
method is found to be the best for deformation; in this
method, the deformation and electrodiffusion processes
occur simultaneously. In the conditions of steady-state
creep, the strain rate at the TPD method differs from
that at the ETPD method by several orders of magni-
tude.

Summing up the above-listed special features of the
behavior of mechanical properties of germanium single
crystals, we note that the structure formation in these
crystals is affected by any external factor, especially if
this factor is multiparameter (synergistic). In our exper-
iments, a high-density electric current flowing through
the sample, electrodiffusion of the lattice and impurity
atoms, and various loading rates were additional factors
that perturbed the dislocation system.

DISCUSSION

The application of unconventional new technologi-
cal method to the plasticity problem in the studies of
interrelation between the structure, composition, and
Table

Sam-
ple no.

Loading rate in the 
regions (VH, g/s)

Shear stress in the 
regions (σ, g/mm2)

The deformation time 
in the regions (t, s)
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1 71 180 0.87 2.8 2.8 360 360 540 1.9 1.1 Curve 1: Curve 1: Curve 1: 

 2.48  1  1.55

Curve 2: Curve 2: Curve 2:

 0.66  0.42  0.12

2 150 162 0.74 2.1 2.1 195 340 480 1.12 0.4 Curve 1: Curve 1: Curve 1:

 2.43  0.42  0.1

Curve 2:

 0.92

3 590 220 0.5 1.7 1.7 60 150 510 1.4 0.3 Curve 1: Curve 1: Curve 1:

 0.804  2  0.093

γ dσ
dξ
------=
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properties of diamond-like semiconductors made it
possible to obtain results that differed appreciably from
those obtained by the thermoplastic method of defor-
mation. In particular, the EPD and ETPD methods
made it possible to significantly decrease the deforma-
tion temperature, starting stresses, and the upper yield
point and also led to an increase in the total magnitude
of plasticity at much smaller values of external factors.
We observed the appearance of steplike behavior in the
deformation process and also the appearance of new
regions of strengthening and softening. The diversity of
the structures formed in nonequilibrium conditions is
greater than that of the structures formed in equilibrium
conditions, especially in the case of a multiparameter
(synergistic) approach to the deformation processes. In
discussing the results obtained, we must give special
attention to an appreciable difference between the com-
pression curves shown in Figs. 1–3. Naturally, this dif-
ference is related to special features of the loading con-
ditions and, possibly, to resulting special features of the
defect structure in the crystals subjected to loading. The
results obtained are qualitative and do not allow for
direct quantitative comparison of theoretical results
with experimental data. In our experiments, we
observed the combined effect of two competing mech-
anisms that affected the origination of internal stresses
in the crystal. The first mechanism is temperature-
related and tends to decrease the internal stresses,
whereas the second mechanism tends to increase these
stresses as a result of an increase in the strain rate. As a
result, the velocity of a group of dislocations exceeds
that of an individual dislocation, which can give rise to
collective kinetic effects. In our experiments, an ather-
mal method of overcoming the obstacles to the motion
of dislocations was predominant. It should be empha-
sized that the static mode of loading was implemented
simultaneously with the dynamic mode. The electron–
phonon and electron–dislocation interactions are
present in the course of thermoplastic deformation of
semiconductor crystals as independent factors, whereas
all structure carriers rearrange into dynamic fluxes and
forces with certain directions. If crystals are deformed
in an electric field, an additional force (along with
stresses) affects charged dislocation; this force is equal
to F = e*E, where e* is the effective charge of disloca-
tion and E is the electric-field strength [7]. If the afore-
mentioned experimental conditions are realized, the
following situation apparently takes place: dislocations
are charged and acquire a preferential direction of
motion with a mobility higher than that of neutral dis-
locations [8]. If there is a diffusive electrotransport, a
redistribution of impurity ions can occur in the vicinity
of dislocations and can affect the dynamics of disloca-
tions owing to preferential location of the above ions
near the anode [9]. At high densities of current flowing
through the samples subjected to deformation (j > 1.5 ×
106 A/m2) that stimulate the motion of charged defects,
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
the strain rate can easily increase, which is observed
experimentally. Finally, at certain intensities of the
energy and material fluxes (in the case of a dopant
impurity), the processes that support the active modes
of self-consistent autocatalytic or coherent collective
motion can occur in the crystals deformed by the ETPD
method [10].

CONCLUSIONS

It is established as a result of studies performed that
it is impossible to attain a significant plasticity magni-
tude in the TPD process in the same conditions load and
temperature as in the EPD and ETPD modes. We found
that it was possible experimentally to reduce the start-
ing shear stress appreciably by decreasing the extent of
the elasticity region in relation to the size-related fac-
tors and the degree of compensation. We showed that
indications of softening appeared in compensated ger-
manium crystals in the situation where a high-density
electric current flowed through these crystals at con-
stant values of the shear stress and temperature. We
studied experimentally trends in the effect of various
conditions of deformation (dynamic or static) on elastic
properties of germanium in relation to the loading and
strain rates. The simplicity of control and small value of
energy expenditure make highly nonequilibrium sys-
tems very promising for future technologies.
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Abstract—A nonlinear interaction of moving space-charge and photoconductivity gratings is experimentally
investigated. In the presence of a dc electric field, a crystal is irradiated with an oscillating interference pattern
with a spatial frequency K and an oscillation frequency ω. An ac electric field with a frequency Ω is also applied
to the sample. At certain frequencies ω and Ω , the crystal exhibits two types of interacting oscillations: the
space-charge grating moving with velocity |ω – Ω|/K and the photoconductivity grating moving with velocity
–ω/K. The effect is studied using the method of the nonstationary photoelectromotive force in a photorefractive
Bi12SiO20 crystal. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The dynamics of photoelectric processes determines
the working principles and technical characteristics of
the majority of optoelectronic devices (photoresistors,
photodiodes, adaptive interferometric sensors, and pat-
tern recognition and holographic memory devices
based on photorefractive materials). In this connection,
the study of relaxation processes in semiconductors
remains one of the most important problems of solid-
state physics.

In semiconductors, the evolution of photoinduced
charges consists of two stages: the buildup of the pho-
toconductivity distribution and the formation of the
space charge [1, 2]. In the presence of an external elec-
tric field, the photoconductivity and space-charge dis-
tributions can exhibit oscillating relaxation. The exist-
ence of two types of oscillations in semiconductors
(moving photoconductivity gratings and the waves of
the space recharging of traps) was predicted in [3]. For
the first time, the oscillations of an optically induced
space charge representing moving holograms were
experimentally observed in Bi12SiO20 photorefractive
crystals [4, 5]. Later, the time-of-flight method was
used in [6] to study the moving photoconductivity grat-
ings in the same crystal. Similar methods were used to
study the waves of space charge and photoconductivity
in [7−13]. One of these is the method of the nonstation-
ary photoelectromotive force (PEMF) [14, 15].

The nonstationary PEMF (or the nonstationary
holographic photocurrent) manifests itself as an ac cur-
rent emerging in a semiconductor illuminated by an
oscillating interference pattern. The photocurrent is
induced by relative periodic displacements of the pho-
toconductivity and electric field distributions. This
mechanism for signal excitation makes it possible to
use this method to study both photoconductivity and
1063-7842/04/4908- $26.00 © 21016
space charge. Specifically, the frequency response
function of the signal emerging in crystals in the pres-
ence of an electric field exhibits two resonance max-
ima, one of which is related to the excitation of space
charge waves and another is determined by the excita-
tion of moving photoconductivity gratings [15].

In spite of a large number of works devoted to the
aforesaid problem, it is still unclear if it is possible to
simultaneously excite two types of the above natural
oscillations and to observe their interaction. In the
existing methods (including the nonstationary PEMF
technique), the interference pattern with the spatial fre-
quency K and the oscillation frequency ω induces either
a space charge wave or a moving photoconductivity
grating. The reason for this is the fact that the natural
oscillation frequency of the space charge grating in
high-resistance crystals (e.g., Bi12SiO20) is ωsc/2π = 10–
100 Hz, whereas the oscillation frequency of the photo-
conductivity grating with the same spatial period is as
high as ωpc/2π = 0.01–1 MHz. The phenomenon is sim-
ilar to the light scattering by acoustic waves involving
the particles with comparable momenta (wave vectors)
and substantially different energies (frequencies). To
simultaneously excite the space-charge grating (ωsc, K)
moving along the dc electric field with the velocity
ωsc/K and the electron photoconductivity grating (ωpc,
–K) moving in the opposite direction with the velocity
−ωpc/K, and to effect their interaction, we need the third
oscillation (Ω, 0) ensuring the conditions similar to the
energy and momentum conservation laws: ωsc + ωpc =
Ω and K – K = 0. As the third oscillation, we use an
external electric field with frequency Ω. In our experi-
ment, the space charge wave is excited owing to the
nonlinear interaction of the moving photoconductivity
grating and an ac electric field. To observe the effect,
004 MAIK “Nauka/Interperiodica”
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we employ the modified nonstationary PEMF tech-
nique.

EXPERIMENTAL SETUP

Figure 1 demonstrates the scheme of the experimen-
tal setup. A helium–cadmium laser (λ = 442 nm and
Pout . 3 mW) serves as a coherent light source. The
laser beam is split into two beams, one of which is
phase-modulated using an ML-102A electrooptical
modulator. A sine voltage with frequency ω is applied
to the modulator. The phase modulation depth is ∆ =
0.8. The laser beams are expanded and directed to the
surface of the crystal. The resulting interference pattern
exhibits the mean intensity I0 = 84 W/m2, contrast m =
0.92, and spatial frequency K = 25 mm–1. A combina-
tion of dc and ac voltages is applied to the crystal:
Uext = U0 + UAcosΩt. The dc voltage U0 is needed for
the excitation of moving gratings. The ac voltage with
an amplitude UA and frequency Ω makes it possible to
effect the interaction between the moving charge and
photoconductivity gratings. A nonstationary holo-
graphic photocurrent emerging in the sample causes a
corresponding voltage drop at load resistance RL =
18 kΩ . Then, the signal is amplified, filtered out, and
measured using a Unipan-232B lock-in nanovoltmeter.
To measure the harmonic of the nonstationary photo-
current at the difference frequency |ω – Ω|, we form a
reference voltage with the same frequency. To do so, we
multiply the voltages applied to the electrooptic modu-
lator and the crystal in a balanced mixer based on a
K174PS1 chip. The harmonics of the reference voltage
at frequencies ω, Ω , and ω + Ω are suppressed using a
low-pass filter.

For the conventional excitation of the nonstationary
PEMF in the crystal, we use only the dc voltage U0 and
detect the signal at the phase modulation frequency ω
[15]. For the measurements, we employ an SK4-56
spectrum analyzer and a Unipan-232B lock-in nano-
voltmeter.

Experiments employ a photorefractive Bi12SiO20
crystal. The sample represents a single crystal with the
sizes 10 × 3 × 1 mm. The front and back surfaces (10 ×
1 mm) are polished to optical quality. Using a silver
paste, we deposit electrodes (3 × 3 mm) on the side sur-
faces. The interelectrode distance is L = 1 mm. The
crystal is mounted between two Styrofoam layers that
serve as mechanical vibration dampers (mechanical
vibrations are induced owing to the piezoelectric
effect).

EXPERIMENTAL RESULTS

Prior to analyzing the nonlinear interaction of the
space-charge and photoconductivity gratings, we
briefly outline the results on the nonstationary holo-
graphic photocurrent measured using the conventional
method for the signal excitation. Figure 2 shows the fre-
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
quency response functions of the nonstationary PEMF
signal measured in Bi12SiO20 crystal at three values of
the dc field E0 = U0/L. The increase in the field leads to
the growth of the signal amplitude. At the lowest field
strength, the frequency response function exhibits a
maximum at low frequencies (ω/2π ~ 100 Hz). When
the field increases to E0 . 6 kV/cm, we observe a shoul-
der at the frequency ω/2π ~ 3 kHz. The further increase
in the field gives rise to the second maximum. It follows
from the frequency dependences that the increase in the
external field results in the shift of the first (second)
maximum towards lower (higher) frequencies. Specifi-
cally, at a dc field strength of E0 = 10 (14) kV/cm, the
resonance frequencies are ωsc/2π . 25 (20) Hz and
ωpc/2π . 5.6 (9.1) kHz. It is demonstrated in [15] that
this evolution of the signal is related to the resonant

=
~

~

~~~

~~~

He–Cd laser (442 nm)

|ω – Ω| ω

Ω
BM

LPF Ω

UA

U0

Bi12SiO20

ω

E
O
M

RLA&RF

Lock-in
voltmeter

Fig. 1. Experimental setup for the study of the nonstationary
holographic photocurrent excited at the difference (hetero-
dyne) frequency: EOM electrooptic modulator, BM bal-
anced mixer, LPF low-pass filter, and A&RF preamplifier
with a rejector filter.
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Fig. 2. Frequency response functions of the nonstationary
holographic photocurrent excited in Bi12SiO20 with the
conventional method: E0 = (1) 6, (2) 10, (3) 14 kV/cm
(EA = 0).
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excitation of moving space charge and electron photo-
conductivity gratings. The corresponding dispersion
relations are written as

(1)

(2)

where τM is the Maxwell relaxation time, L0 = µτE0 is
the drift length, µ is the mobility, and τ is the electron
lifetime.

Apparently, the significant broadening of the first
maximum is related to the nonlinearity of the holo-
graphic recording observed at a high contrast of the
interference pattern [16]. The broadening of the reso-
nance maximum can also be caused by the illumination
nonuniformity: at high absorption coefficients (α ~
30 cm–1 [2]), the space-charge grating relaxation time
in the surface layer is significantly shorter than the
relaxation time in deep layers.

It is known that the nonstationary PEMF technique
is a unique method enabling one to directly measure the
drift mobility of carriers. Indeed, knowing the fre-
quency of the second resonance maximum at the given
K and E0, we can easily estimate the mobility: µ .
0.015 cm2/Vs. This value is in agreement with the value
µ = 0.016 cm2/V s measured at a wavelength of 458 nm
in [15].

Consider the results on the nonlinear interaction of
the moving space-charge and photoconductivity grat-
ings obtained with the modified nonstationary PEMF
method. In experiments, the frequency of the external
ac field must be approximately equal to the second res-
onance frequency: Ω/2π = 5.9 (8.8) kHz for E0 =
10 (14) kV/cm. The frequency Ω of the external field

ωsc τMKL0( ) 1– ,=

ωpc KµE0,=

5

–103 –102

|Jω–Ω|, nA

(ω – Ω)/2π, Hz

15

–101 102 103101
0

10

1
2

Fig. 3. Frequency response functions of the nonstationary
holographic photocurrent excited in Bi12SiO20 at the differ-
ence (heterodyne) frequency: (1) E0 = 10 kV/cm and
Ω/2π = 5.9 kHz and (2) E0 = 14 kV/cm and Ω/2π = 8.8 kHz
(EA = 3.5 kV/cm).
can slightly (by approximately 300 Hz) differ from the
resonance frequency ωpc, since the width of the second
resonance peak is 5–10 kHz (Fig. 2). The amplitude
EA = UA/L = 3.5 kV/cm of the external ac field is sub-
stantially less than the dc field. Therefore, the possible
shifts of the resonance frequencies must be insignifi-
cant.

Figure 3 demonstrates the frequency response func-
tion of the nonstationary holographic photocurrent
excited at the difference (heterodyne) frequency ω – Ω .
For E0 = 10 (14) kV/cm, we observe maxima at the neg-
ative and positive frequency differences: (ω – Ω)/2π .
–100 (–80) Hz and (ω – Ω)/2π = 50 (30) Hz. When the
external dc field increases, the signal amplitude
increases and the maxima shift towards lower frequen-
cies. This is typical of space-charge waves [2]. The res-
onance peaks are relatively broad. Note that the
strongly broadened and distorted maximum at ω – Ω < 0
is characterized by a higher resonance frequency. As in
the case of the conventional measurements, possible
reasons for this are the nonlinear limitations on the
amplitude of the space-charge grating observed at high
contrasts of the interference pattern and the nonunifor-
mity of illumination with respect to the depth in the
crystal.

In addition, note that the amplitude of the maximum
at ω – Ω < 0 is greater than the amplitude of the maxi-
mum at ω – Ω > 0. This is a consequence of the funda-
mental difference between the mechanisms for the pho-
tocurrent excitation at the frequencies under consider-
ation. At a negative frequency difference (ω – Ω < 0), a
space-charge wave emerges owing to the interaction of
the external field and the photoconductivity grating that
moves in the direction opposite to the external electric
field. When the motion of the interference pattern is
matched with the motion of electrons in the conduction
band, we observe a resonant enhancement of the photo-
conductivity wave. Thus, we observe the simultaneous
excitation and interaction of two types of oscillations
(the moving space-charge and photoconductivity grat-
ings). At the positive frequency difference (ω – Ω > 0),
the space-charge wave is related to the interaction of the
external field and the photoconductivity grating that
moves along the external field. In this case, the photo-
conductivity grating does not represent natural oscilla-
tions of the semiconductor. This grating nonresonantly
reproduces the motion of the oscillating interference
pattern along the external field. For clarity, consider the
diagram illustrating the interaction of the space charge
wave, the photoconductivity wave, and the external
field (Fig. 4). It is seen that in the first case, the ac elec-
tric field is involved in the coupling of two types of nat-
ural oscillations in the semiconductor and the following
relationships are satisfied: ωsc + ωpc = Ω and K – K = 0.
In the second case, only one type of the natural oscilla-
tions (the space-charge wave) is excited. Evidently, the
signal amplitude is higher when the conditions of the
resonant excitation are satisfied for both the space-
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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charge grating and the photoconductivity grating.
Apparently, the difference between the amplitudes of
the resonance peaks must be determined by the factor
KL0 characterizing the Q factor of the space-charge and
photoconductivity oscillations. In our experiment, this
difference is relatively small owing to the aforemen-
tioned nonlinear limitations on the grating of the space-
charge field appearing at high contrasts of the interfer-
ence pattern.

Figure 5 shows the dependences of the resonance
amplitudes on the amplitude of the external ac field. For
the range of external field amplitudes under study, these

(ωpc, –K)

(Ω, 0)

0 K

ω

(ω, K)

(Ω, 0)

(ωsc, K)

Fig. 4. Diagram of the interaction of the moving space-
charge and photoconductivity gratings and the external ac
electric field. Arrows show the space charge grating (ωsc, K)
moving at the velocity ωsc/K along the dc electric field, the
photoconductivity grating (ωpc, –K) moving at the velocity
–ωsc/K in the direction opposite to the dc electric field, the
photoconductivity grating (ω, K) moving at the velocity ω/K
along the dc electric field, and the ac electric field (Ω , 0)
with the frequency Ω . Halftone lines show the dispersion
relations of the space-charge waves ωsc(K) and photocon-
ductivity ωpc(–K).
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EA, kV/cm

15

2 43
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2

Fig. 5. Plots of the amplitude of the nonstationary holo-
graphic photocurrent |Jω – Ω| vs. the external field ampli-
tude: (1) (ω – Ω)/2π = –20 Hz and (2) (ω – Ω)/2π = +20 Hz
(E0 = 14 kV/cm and Ω/2π = 8.8 kHz).
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dependences are virtually linear. The limitations on the
signal amplitude can be observed at an ac field strength
EA corresponding to KLA ~ 1 (LA = µτEA is the electron
drift length). For µτ ~ 10–10 m2/V [17] and K = 25 mm–1,
this limitation must be observed at EA ~ 4 kV/cm.

CONCLUSIONS

We report the first study of the simultaneous excita-
tion and interaction of the moving space-charge and
photoconductivity gratings, which represent two types
of natural oscillations in a semiconductor. A new
method for the excitation of the nonstationary PEMF at
the difference (heterodyne) frequency makes it possible
to detect a space-charge wave related to the nonlinear
interaction of the moving photoconductivity grating
and the ac electric field. A distinctive feature of the
method proposed is the difference between the spatial
and temporal characteristics of the space-charge wave
and the corresponding characteristics of the external
action on the crystal (illumination and electric field). In
this sense, the effect under study is similar to another
interesting effect consisting in the excitation of the spa-
tial harmonics of the space charge field in photorefrac-
tive crystals [10, 11].

The nonlinear interaction of the moving space-
charge and photoconductivity gratings and the modi-
fied nonstationary PEMF method based on this effect
can be used to study fast processes in high-resistance
semiconductors. One of the problems involving the
detection of high-frequency signals is the measurement
of the true drift mobility of carriers in wide-band-gap
semiconductors with a complex structure of impurity
levels. For Bi12SiO20 crystals, the resonance frequency
of the photoconductivity grating used to estimate the
true electron mobility can be as high as 100 MHz [18].
At such frequencies, it is extremely difficult to match a
high-resistance crystal with the input circuits of mea-
suring devices. Since the nonstationary holographic
photocurrent at the difference frequency ω – Ω depends
on the amplitude of the moving photoconductivity grat-
ing excited at the high frequency ω, we can assume that
the frequency response function Jω – Ω(ω) measured
using the modified method will be similar to the fre-
quency response function Jω(ω) measured using the
conventional method. Therefore, we will be able to
determine the same material parameters. In the method
under consideration, the high-frequency signal is trans-
formed into a low-frequency signal in the crystal rather
than in the measuring device.

Apparently, the nonlinear interaction of the moving
space charge and photoconductivity gratings cannot be
comprehensively characterized using the results pre-
sented. We need to theoretically analyze the effect in
details, to perform additional experimental investiga-
tion using similar methods, and to analyze the pros-
pects for practical applications.
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Abstract—We consider radiation of moving oscillating electric and magnetic dipoles, whose moments are ori-
ented along their velocity. We have derived general expressions for field components and radiation power,
which are valid for isotropic homogeneous nonabsorbing media. Special cases of a nondispersive medium and
a cold plasma are considered. In these cases, the dependences of energy spectral distributions and radiation
powers are analyzed as a function of the velocity of the sources and the parameters of media. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Radiation of sources moving in homogenous
steady-state media has been actively investigated for
many decades. The main attention has been paid to
analysis of radiation of charged particles and their flows
as well as of sources having any multipole moments.
The results have been widely published (see, for exam-
ple, [1–10] and references therein). However, it should
be noted that in the problems considered earlier a
source was usually assumed to be static in the intrinsic
reference system (i.e., it had no eigenfrequency). If
nonuniformity of the source movement can be
neglected, the radiation at a preset frequency occurs
only in the case when the velocity of the source is
higher than the phase velocity of electromagnetic
waves of this frequency (Cherenkov radiation).

In the case of a moving source oscillating in its qui-
escence system, the situation changes radically. Natu-
rally, such a source emits at any velocity but radiation
characteristics essentially depend on the velocity. Sim-
ilar problems are of interest to theory as well as to var-
ious experiments. An emitting moving atom is an
example of sources of this kind. Another example is
antennas of space vehicles, which can be influenced by
the flow of the ambient plasma.

Problems with moving oscillators were seldom con-
sidered (see, for example, [1, 2, 11–15]). For example,
the Doppler effect was studied in [1, 11, 12]; the case of
a moving oscillating electric dipole was partly consid-
ered in [11, 13]; and radiation of moving sources in
chiral media was studied in [15]. In some works, simi-
lar problems were considered in a different formula-
tion: a harmonic source was assumed to be fixed, while
the medium was moving [16–19]. However, in such a
formulation, which is undoubtedly of independent
interest, the spectral characteristics of radiation are
automatically not considered: in a quiescence system of
1063-7842/04/4908- $26.00 © 21021
a harmonic source, the field is also a harmonic function
of time. Meanwhile, when considering the problem in
the quiescence system of the medium, the spectral dis-
tribution of radiation power is one of the key factors. In
addition, the solution of the problem of the total radia-
tion power of a source of one kind or another also
essentially depends on the choice of a reference system;
this was mentioned in [16].

This paper is devoted to analysis of energy charac-
teristics in problems with oscillating dipoles, which
move in some isotropic homogenous media. As was
mentioned above, a number aspects of the theory of
radiation of moving oscillators was studied in the scien-
tific literature; however, some important questions were
not considered or considered only fragmentarily.
Among them are questions concerning the behavior of
spectral energy distributions in media with various dis-
persion properties, the dependence of radiation power
on the dipole kind and dipole velocity in different
media, and others.

Section 1 of the paper presents some general expres-
sions valid for a medium with any frequency depen-
dence of the refractive index. We note that these expres-
sions were obtained for an electric dipole in [13], but
there are no similar results for a magnetic dipole in the
available literature. Hence, it seems reasonable to write
out the corresponding formulas for both sources with
minimum comments only. The special cases of nondis-
persive medium and cold plasma are studied in Sec-
tions 2 and 3.

1. GENERAL EXPRESSIONS FOR FIELDS 
AND RADIATION POWERS IN AN ISOTROPIC 

HOMOGENOUS MEDIUM

Let a source having an electric or magnetic dipole
moment in the intrinsic reference system move with
004 MAIK “Nauka/Interperiodica”
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velocity v = vez relative some isotropic medium with
permittivity ε and permeability µ. We do not define
concretely the properties of the medium so far. The
medium is just assumed to be homogenous, stationary,
and without spatial dispersion and absorption. Let us
suppose that a dipole moment of one kind or another is
oriented along the velocity vector of the source. In the
source quiescence system, we write the densities of the
electric and magnetic dipole moments, respectively, in
the form

(1)

where δ(ξ) is the delta function. Here and below, the
values and operators related to the intrinsic reference
system of a source are designated with prime. The vol-
ume current densities are expressed by

(2)

where the superscript indicates the source type (every-
where below, the values marked with superscripts p and
m are related to the electric and magnetic dipoles,
respectively).

The charge density ρ' is determined by the charge
conservation law (for a magnetic dipole, ρ'm = 0).

We substitute each of Eqs. (1) into the correspond-
ing formula from (2) and pass on to a “laboratory” ref-
erence system (quiescence system of the medium). To
do that, one should apply the Lorentz transformations
for derivatives, as well as for current and charge density
[20, 21]. As a result, we obtain for nonzero current den-
sity components

(3)

where β = v /c and ω0 =  is the frequency of
the source in the laboratory system (cylindrical coordi-
nate system r, ϕ, z is used here).

An expression for the electrical dipole charge den-
sity can easily be obtained using the equation of conti-
nuity. We stress that, in the case considered (dipole
moments are parallel to their velocity vector), a source
having only an electric (or only magnetic) dipole
moment in its quiescence system is characterized also
by the moment of the same kind in the laboratory sys-
tem (values of the moments are linked through the rela-

tions p0 = , m0 = ).

A further course of solution is standard for the prob-
lems with moving sources (see, for example, [1–5, 7, 8,
13]). In this case, one can use either Hertz vectors (elec-
tric or magnetic) or vector A and scalar Φ potentials
introduced in the standard way. The solution is sought
in the form of Fourier integrals. When the expressions

P' p0' ez' iω0' t'–( )δ x'( )δ y'( )δ z'( ),exp=

M' m0' ez' iω0' t'–( )δ x'( )δ y'( )δ z'( ),exp=

j'p ∂P'/∂t', j'm ccurl'M',= =

jz
p p0' 1 β2–

∂
∂t
----- e

iω0t–
δ z v t–( )[ ]δ x( )δ y( ),=

jϕ
m cm– 0' 1 β2– e

iω0t–
δ z v t–( )δ x( )δ y( ),=

ω0' 1 β2–

p0' 1 β2– m0' 1 β2–
for potentials are found, the formulas for field compo-
nents can easily be obtained. Omitting all the interme-
diate transformations, we give straightaway the expres-
sions for nonzero components of electric and magnetic
fields in the cylindrical coordinate system:

(i) in the case of an electric dipole, we have

(4)

(ii) in the case of a magnetic dipole, we have

(5)

Here, the following notation is introduced,

(6)

where,

(7)

and the radical in the formula for s(ω) is positive for the
positive radicand; if, however, it is negative, we have
s = i|s|. Such a fixation of the root branch is caused by
the fact that, at a long distance form the z axis, the Fou-
rier component of the field has to be either a wave prop-
agating away from the z axis or a nonhomogenous wave
exponentially decreasing with increasing r.

Let us now obtain general expressions for the power
of sources averaged over a radiation period. To do that,
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we calculate the averaged energy flux Σ through an infi-
nitely large cylindrical surface, which surrounds the
source trajectory. The surface radius R can be arbitrary
(including infinitely large values) since there is no
absorption in the medium. This method leads to evalu-
ation of the integral

(8)

We note that other ways can also be used [1, 4]. A
widespread method among them involves the calcula-
tion of the work done by field over a source.

The calculation technique of integrals like Eq. (8)
was developed in investigating the Cherenkov radiation
(CR) [1–5, 7, 8]. Omitting intermediate steps, we give
the final expressions for the power of sources

(9)

where 

(10)

(11)

As is seen, integration is performed over part of the
real axis, where

(12)

and, hence, the value of s(ω) is real. We emphasize that
the corresponding expression for an electric dipole was
obtained in [13], where integration was carried out only
over the positive part of the frequency axis. It is easy to
show that the expression for Σp is equivalent to that
given in [13]; for this purpose, it is sufficient to replace
ω with –ω in the integral along a negative semiaxis and
to take into account the evenness of the functions ε(ω)
and µ(ω) (the latter is valid due to the absence of
absorption in the medium).

The results obtained turn into the formulas for CR of
nonoscillating (i.e., static in the intrinsic reference sys-
tem) dipoles [1–4] if we set ω0 = 0 and replace the aver-

aged value of dipole moment /  by the static

moment  ( /  by , respectively). We stress
that, as in the case of nonoscillating dipoles, Eq. (10) is
not transformed into Eq. (11) when changing  

, ε  µ (extra multiplier µ2 appears in Eq. (11)).
As is known from the theory of CR of nonoscillating
dipoles [1], this asymmetry is caused by the asymmetry
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of the sources: the electric dipole is a model of the
Hertz dipole, while the magnetic dipole is associated
with a small current loop. Symmetric expressions for
fields and energy characteristics could be obtained if
the so-called “true” magnetic dipole designed using
hypothetical magnetic charges by analogy with the
Hertz dipole were taken instead of the current loop.

2. RADIATION OF OSCILLATORS 
IN A NONDISPERSIVE MEDIUM

Let us apply the results obtained to the case of a non-
dispersive medium. In this case, inequality Eq. (12) has
the following solutions: (i) if nβ < 1, we have ω1 < ω <
ω2; (ii) if nβ > 1, we have ω < ω2 and ω > ω1, where

ω1, 2 = (1 ± nβ)–1. Obviously, a correct
expression for radiation power can be obtained in case
(i) only (“subluminal” regime of source movement),
since the radiation spectrum in case (ii) becomes unlim-
ited and integrals (9) diverge (it should be recalled that
this paradox also takes place for moving nonoscillating
sources, which do not emit electromagnetic waves at
nβ < 1, while at nβ > 1, the radiation power is infinitely
large). For this very reason, we consider only the case
of “subluminal” velocity of the dipoles.

For convenience of further analysis, it is reasonable
to introduce the dimensionless frequencies normalized
to the source eignefrequency, 

(13)

Taking into account this notation, we express
Eqs. (9)–(11) as

(14)

(15)

The dimensionless values ,  were introduced
in such a way that they become 1 at ε = µ = 1 and β = 0
(however, as will be shown below, these values equal 1
even at ε = µ = 1 regardless of the source velocity).

Let us emphasize the main features of the obtained
expressions. First of all, we stress that the dependence
of radiation power on the velocity of the medium
becomes apparent only when the values quadratic in β
are taken into account; i.e., it is a relativistic effect. The
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Fig. 1. Frequency distributions of the radiation power in the
case of (a) a nondispersive medium with n = 0.7; β = 0.3 (1),
0.5 (2), 0.7 (3), 0.8 (4); (b) vacuum: β = 0.3 (1); 0.5 (2),
0.7 (3), 0.8 (4); 0.9 (5); (c) a nondispersive medium with n =
1.3; β = 0.1 (1), 0.3 (2), 0.5 (3), 0.6 (4), 0.65 (5).
dependence of the spectral density of the radiation
power σp on the frequency Ω is shown in Figs. 1a–1c
(for σm, the corresponding dependences are of the same
form since these quantities differ only by the constant
multiplier n2). It is taken throughout that µ = 1:
(a) belongs to a case of n = 0.7, (b), to a case of vacuum
(n = 1), and (c), to n = 1.3. The curves for several values
of the velocity are shown in Figs. 1a–1c.

As is seen, the width of the radiation spectrum is
defined as

(16)

For n > 1 the width increases monotonically as the
velocity increases from zero at β = 0 to infinity at β 
1/n. However, if n < 1, this regularity is violated: it is
easy to show that the spectrum width is maximal at β =
(2 – n2)–1/2 and equal to zero at β  0 and β  1.

For n = 0.7, the maximum value of the spectral
power density decreases with increasing velocity for
both considered sources (Fig. 1a). We note that the
position of the maximum depends on the velocity only
slightly if the latter is not too close to 1. For n = 1, with
increasing velocity, the maximum value σp also
decreases and its position is appreciably shifted
towards higher frequencies. For n > 1, the behavior of
σp is more complicated (Fig. 1c). For a small velocity,
the maximum of the frequency distribution of power
decreases with increasing β but, starting with some
value of the velocity, the decrease is changed by the
increase and the value of the maximum approaches
infinity at β  1/n.

The total radiation powers of the considered sources
can easily be determined calculating integrals (14):

(17)

We note that for an electric dipole in nonmagnetic
medium, the corresponding result was first obtained
in [11].

The dependence of the radiation power on the veloc-
ity of the source is shown in Fig. 2. As before, we

assume that µ = 1; the values of n =  are given in the
figure caption. For n < 1, the radiation power is a mono-
tonically decreasing function of the source velocity,
while for n > 1, it is a monotonically increasing func-
tion and at β  1/n it becomes infinitely large. We
emphasize that in vacuum the radiation powers of both

sources do not depend on their velocities  =  = 1
(although, as has been shown above, even in vacuum
the radiation spectrum substantially changes with
velocity).
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3. RADIATION OF OSCILLATORS 
IN A COLD PLASMA

Let us pass to analysis of radiation of longitudinal
moving oscillating dipoles in the cold plasma charac-

terized by permittivity ε = 1 – /ω2 and permeability
µ = 1. In such a situation, the solution of inequality (12),
determining the range of frequencies of the emitted
waves, has the form

(18)

Radiation occurs only when ω1, 2 are real-valued;
i.e., the source eigenfrequency  is higher than the
plasma frequency ωp (it should be stressed that the
source frequency in the laboratory system, ω0 =

, may be lower that the plasma frequency).
It is easy to see that the width of the radiation spectrum
increases with the source velocity and decreases with
increasing plasma frequency.

As before, we introduce dimensionless frequencies
normalized to the source eigenfrequency,

(19)

Taking into account these designations, the integrals
for the total powers can be expressed in the form (14),
and the spectral distributions of power are written as

(20)

Thus, the spectral distribution of power for an elec-
tric dipole is the ratio of fifth- and second-degree poly-
nomials, while for a magnetic dipole this distribution is
a third-degree polynomial. The frequency dependences
of normalized spectral densities are shown in Figs. 3a
and 3b for different values β and Ωp: (a) for Ωp = 0.7
and (b) for Ωp = 0.95. The curves with identical num-
bers relate to the same velocity given in the caption to
Fig. 3a. Comparing Figs. 3a and 1b, we see that for
small plasma frequencies the spectral distributions are
similar to that in vacuum. An important difference is
that values σp and σm are somewhat less than that in
vacuum. If Ωp ≈ 1 (Fig. 3b), the frequency distributions
of power acquire an interesting feature: for a rather high
velocity, the radiation spectrum of any source is within
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the range Ω > 1; i.e., an observer will record only fre-
quencies higher than the oscillator eigenfrequency.

Let us pass to analysis of total radiation powers of
the oscillators moving in a plasma. Calculating analyt-
ically integrals (14) with integrands (20), we obtain

(21)

(22)

It is interesting to note that the total radiation power
of a magnetic oscillator does not depend on its velocity
regardless of the substantial dependence of spectral
composition of radiation. On the other hand, it can be
shown that the radiation power of an electric oscillator
is a monotonically decreasing function of the oscillator
velocity as well as of the plasma frequency. For small
velocities, this power coincides with the radiation
power of a fixed source with an accuracy on the order
of β2,

(23)

In the ultrarelativistic regime, when 1 – β2 ! 1, one
can obtain

(24)
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Fig. 2. Velocity dependences of the power of an electric
dipole at µ = 1: n = 0.7 (1), 0.97 (2), 1.03 (3), 1.1 (4), 1.3 (5).
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As velocity β increases from 0 to 1, the value of 
decreases monotonically from the value given by
Eq. (23) to a value following from Eq. (24), while the

value of  remains constant. Thus, for equal dipole
moments and eigenfrequencies, an electric dipole is
found to be a more effective oscillator than a magnetic

dipole (equality  =  is reached only in the limit
β  1).

The velocity dependences of the radiation power of
an electric dipole are shown in Fig. 4 for several values
of a plasma frequency, while the dependences of the
radiation power of both sources on the plasma fre-
quency are shown in Fig. 5 for various values of veloc-
ity. As is seen, even for the electric dipole, the velocity
dependence of radiation power is weak if the plasma
frequency ωp is not too close to the source eigenfre-
quency . We emphasize that, in spite of this fact, the
radiation spectra of both sources change substantially
with the velocity, as has been mentioned.

CONCLUSIONS

This paper considers radiation of moving oscillating
dipoles of the electric and magnetic kinds in certain
media. It was assumed that the corresponding dipole
moments are oriented along the velocity of the source.
The main results are as follows.

(1) We analyzed the energy characteristics of the
radiation fields of dipoles moving in a medium without
dispersion with a velocity smaller than the velocity of
light in the medium. In particular, it is shown that for
n > 1, an increase in the source velocity results in the
following effects: the width of the radiation spectrum
increases monotonically and unlimitedly; the peak in
the radiation spectrum first decreases, reaching the
minimum value, and then increases; and the radiation
power monotonically increases. For n < 1, the behavior
of the corresponding regularities changes: the width of
the radiation spectrum reaches maximum at a certain
velocity, while for β  1 this width equals zero; and
the maximum in the radiation spectrum and total radia-
tion power are monotonically decreasing functions of
β. All the mentioned regularities are valid for both elec-
tric and magnetic dipoles.

(2) We analyzed the energy characteristics of the
radiation fields of dipoles moving in a cold plasma. In
particular, we showed that the radiation is emitted only
in the case when the oscillator eigenfrequency  is
higher than the plasma frequency (but the oscillator fre-
quency in the laboratory system, ω0, may be lower than
the plasma frequency). The radiation spectra are similar
to those in vacuum if the plasma frequency is not too
close to the oscillator eigenfrequency. If, however,
these frequencies are close, for a high velocity the radi-

Σ̃p

Σ̃m

Σ̃m Σ̃p

ω0'

ω0'
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ation spectrum is within the range higher than . The
radiation power of an electric dipole is a monotonically
decreasing function of its velocity, while the radiation
power of a magnetic dipole is independent of the veloc-
ity (although, the radiation spectrum changes substan-
tially with the velocity). In a cold plasma, an electric
dipole is a more effective oscillator than a magnetic
dipole if their dipole moments, eigenfrequencies and
velocities are equal in value.
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Abstract—Transition radiation produced when a charged particle successively crosses two anisotropically
conducting planes is considered. The first plane has the form of a two-dimensional array (grating) made of thin
metal wires parallel to the x and y axes. The second plane is a one-dimensional array whose wires are parallel
to the y axis. The planes are parallel to each other and perpendicular to the particle trajectory. Transition radia-
tion is shown to be elliptically polarized, the degree of ellipticity and rotation direction being dependent on the
direction of radiation, the distance between the arrays, and the particle velocity. © 2004 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Transition radiation in isotropic media is known to
be linearly polarized [1]. At the normal incidence of a
particle onto the interface, the polarization vector lies in
the plane that passes through the particle trajectory and
the wave vector of the emitted wave. Transition radia-
tion on an anisotropically conducting plane is also lin-
early polarized [2]. The anisotropically conducting
plane was modeled in [2] by a system of thin parallel
wires perpendicular to the particle trajectory. It is clear
that, if the distance between the wires is much smaller
than the radiation wavelength, this system of wires can
be regarded as a plane whose conductance is high along
the wires and low in the orthogonal direction. It was
assumed in [2] that the conductance of the plane is infi-
nitely high along the wires and is equal to zero in the
orthogonal direction; an exact solution to the problem
under these conditions was obtained. In this case, the
electric vector of the transition radiation lies in the
plane that passes through the wave vector and the wires.

It is of practical interest to obtain elliptically or cir-
cularly polarized radiation. Transition radiation pro-
duced when a relativistic charged particle successively
crosses two parallel one-dimensional arrays was con-
sidered in [3]. The arrays were assumed to consist of
parallel metal wires. The array planes were parallel to
each other and perpendicular to the charged particle tra-
jectory. The wires of one array were perpendicular to
the wires of the other array. It was shown that transition
radiation produced in this case is elliptically polarized,
the ellipticity and rotation direction being dependent on
the direction of the radiation, the distance between the
arrays, and the particle velocity.

In this paper, we also consider the radiation pro-
duced by a relativistic charged particle successively
crossing two anisotropically conducting planes (Fig. 1).
However, in contrast to the case considered in [3], the
1063-7842/04/4908- $26.00 © 21028
first plane has the form of a two-dimensional array
(grating) made of thin metal wires and its conductance
is infinitely high in two mutually orthogonal directions
(in the x and y directions), and not in one direction. The
second plane is a one-dimensional array whose conduc-
tance is infinite in the y direction as in [3]. The charged
particle moves perpendicular to the array (along the z
axis) and crosses the first array, producing transition
radiation. This radiation can be regarded as the radia-
tion of currents induced in the array by the charged par-
ticle flying through it. Because each wire of the array is
parallel to the x or y axis, the induced currents are also
parallel to these axes. Consequently, the vector poten-
tial that describes radiation of the induced currents also
has components parallel to the x and y axes. Let us place
the second diffraction grating at a distance d from the
first one. Planes of the two gratings are parallel and the
wires of the second grating are parallel to the y axis.
Incident on the second grating are the field of the
charged particle and the field produced by the currents
induced in the first grating. The currents induced on the

x
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z

n

d

R

θ

ϕ

Fig. 1. Geometry of the problem.
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second grating by these fields are parallel to the y axis
and the radiation produced by these currents is
described by the vector potential, which is polarized
parallel to the y axis. Thus, after the charge passes
through the two gratings, two waves are emitted whose
phase difference depends on distance between the grat-
ings and the transit time. Below, we will determine the
parameters of these waves. We will show that radiation
produced when a charged particle successively crosses
the planes is elliptically polarized. The polarization
characteristics depend on the particle energy and the
distance between the planes.

RADIATION PRODUCED BY A CHARGE 
WHEN IT CROSSES THE FIRST PLANE

As is known, the field produced by a moving particle
is determined by the vector A and scalar ϕ potentials,
which can be found from the equations [4]

(1)

(2)

Let us calculate the field produced after the charge
crosses the first array, which lies in the xy plane. The
conductance of the z = 0 plane in the x and y directions
will be assumed to be infinitely high. The conductance
in the z direction will be assumed to be zero. Let the
charge q move alone the z axis with a velocity v. As fol-
lows from Eq. (1), the direction of the vector potential
coincides with the direction of the particle motion.
Therefore, the vector potential of a particle that moves
along the z axis has only one component Az. The current
corresponding to the moving charge is described by

(3)

Using the Fourier integral expansion of the δ func-
tion,

(4)

we rewrite Eq. (1) as

(5)

where kx, ky, and kz are the projections of the wave vec-
tor onto the coordinate axes.
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The solution to Eq. (5) is

(6)

where β = v /c is the reduced particle velocity.
For a uniformly moving charge, the projection of the

wave vector onto the direction of motion is kz = ω/v,
where ω is the radiation frequency. Therefore, expres-
sion (6) can be written as

(7)

The term in the brackets in the integrand is the spec-
tral density Azω (Fourier expansion) of the vector poten-
tial Az. Expansions of Azω and ϕω in plane waves
expi(kxx + kyy + kzz) have the form

(8)

(9)

The field defined by formulas (8) and (9) is incident
on the array and induces currents on the wires. Since
the wires of the first array are parallel to the x and y
axes, the currents are induced by the Ex and Ey compo-
nents of the electric field of the uniformly moving
charge. Let us write the Exω and Eyω components. The
spectral density components Axω and Ayω of the vector
potential are equal to zero. Therefore, the electric field
components can be obtained by taking derivatives of
the scalar potential ϕω with respect to the correspond-
ing coordinates:

(10)

(11)

The superscript indicates that these formulas refer to
the first array. The fields induce currents in the wires.

We denote the densities of these currents as (x, y)

Az = 
qv

2π2c
-----------

i kxx kyy kz z v t–( )+ +[ ]exp

kx
2 ky

2 kz
2

1 β2–( )+ +
--------------------------------------------------------------------∫ dkxdkydkz,

Az = 
q

2π2c
-----------

i kxx kyy ω/v( ) z v t–( )+ +[ ]exp

kx
2 ky

2 ω/v( )2
1 β2–( )+ +

----------------------------------------------------------------------------dkxdkydω∫

=  
q

2π2c
-----------

i kxx kyy ω/v( )z+ +[ ]exp

kx
2 ky

2 ω/v( )2
1 β2–( )+ +

-------------------------------------------------------------dkxdky∫∫
× iωt–( )dω.exp

Azω
q

2π2c
-----------

i kxx kyy ω/v( )z+ +[ ]exp

kx
2 ky

2 ω/v( )2
1 β2–( )+ +

-------------------------------------------------------------dkxdky,∫=

ϕω
q

2π2v
-------------

i kxx kyy ω/v( )z+ +[ ]exp

kx
2 ky

2 ω/v( )2
1 β2–( )+ +

-------------------------------------------------------------dkxdky.∫=

Exω
1( ) ∂ϕω

∂x
---------–=

=  
iq

2π2v
-------------

kx i kxx kyy ω/v( )z+ +[ ]exp

kx
2 ky

2 ω/v( )2
1 β2–( )+ +

------------------------------------------------------------------dkxdky,∫–

Eyω
1( ) ∂ϕω

∂y
---------–=

=  
iq

2π2v
-------------

ky i kxx kyy ω/v( )z+ +[ ]exp

kx
2 ky

2 ω/v( )2
1 β2–( )+ +

------------------------------------------------------------------dkxdky.∫–

jx
1( )
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and (x, y). Let us also represent the currents in the
form of the Fourier expansion,

(12)

(13)

where (kx, ky) and (kx, ky) are to be determined
from boundary conditions on the array surface.

Let us calculate vector potentials  and  of

the radiation field produced by currents  and .

Equations for the vector potentials  and  have
the following form:

(14)

(15)

Solutions to these equations can be represented as

(16)

(17)

Denominators of integrands in Eqs. (16) and (17)
can be written in the form

which shows that the integrands have poles at the points

kz = ± . Let us integrate with respect

jy
1( )

jx
1( ) x y,( ) 1

2π( )2
-------------=

× jxω
1( ) kx ky,( ) i kxx kyy+( )exp kxd ky,d

∞–

∞

∫

jy
1( ) x y,( ) 1

2π( )2
-------------=

× jyω
1( ) kx ky,( ) i kxx kyy+( )exp kxd ky,d

∞–

∞

∫

jxω
1( ) jyω

1( )

Ax
' 1( )

Ay
' 1( )

jx
1( ) jy

1( )

Ax
' 1( )

Ay
' 1( )

∆ 1

c2
---- ∂2

∂t2
-------– 

  Ax
' 1( ) 4π

c
------ jx

1( ) 2
c
---–= =

× i kxx kyy kzz ωt–+ +( ) jxω
1( ) kx ky,( )exp kxd kyd kzd ω,d∫

∆ 1

c2
---- ∂2

∂t2
-------– 

  Ay
' 1( ) 4π

c
------ jy

1( ) 2
c
---–= =

× i kxx kyy kzz ωt–+ +( ) jyω
1( ) kx ky,( )exp kxd kyd kzd ω.d∫

Ax
' 1( ) 2

c
---=

×
i kxx kyy kzz ωt–+ +( )exp

kx
2 ky

2 kz
2 ω/v( )2

–+ +
---------------------------------------------------------------- jxω

1( ) kx ky,( ) kxd kyd kzd ω,d∫

Ay
' 1( ) 2

c
---=

×
i kxx kyy kzz ωt–+ +( )exp

kx
2 ky

2 kz
2 ω/v( )2

–+ +
---------------------------------------------------------------- jyω

1( ) kx ky,( ) kxd kyd kzd ω.d∫

kx
2 ky

2 kz
2 ω/v( )2

–+ +

=  kz ω/v( )2 kx
2– ky

2––( ) kz ω/v( )2 kx
2– ky

2–+( ),

ω/v( )2 kx
2– ky

2–
to kz, passing around the poles of the integrands in com-
pliance with the radiation condition (i.e., the solutions
must consist of waves that travel away from the array).
Then, we obtain

(18)

(19)

Knowing  and , we can determine the

 and  components of the electric field pro-
duced by the first array:

(20)

(21)

The x and y electric field components must turn to
zero on the array surface:

If we take expressions (10) and (11) for  and

 and expressions (20) and (21) for  and ,
the following system of two equations will be obtained:

(22)

Axω
' 1( )

i
2π
c

------ i kxx kyy+(exp∫=

+ ω/c( )2 kx
2– ky

2– z ωt– )

× jxω
1( ) kx ky,( )

dkxdkydω

ω/c( )2 kx
2– ky

2–
-----------------------------------------,

Ayω
' 1( )

i
2π
c

------ i kxx kyy+(exp∫=

+ ω/c( )2 kx
2– ky

2– z ωt– )

× jyω
1( ) kx ky,( )

dkxdkydω

ω/c( )2 kx
2– ky

2–
-----------------------------------------.

Axω
' 1( )

Ayω
' 1( )

Exω
' 1( )

Eyω
' 1( )

Exω
' 1( )

2π i kxx kyy ω/c( )2 kx
2– ky

2– z+ +( )exp∫–=

× ω/c( )2 kx
2–[ ] jxω

1( ) kx ky,( ) kxky jyω
1( ) kx ky,( )–{ }

×
dkxdky

ω ω/c( )2 kx
2– ky

2–
----------------------------------------------,

Eyω
' 1( )

2π i kxx kyy ω/c( )2 kx
2– ky

2– z+ +( )exp∫–=

× ω/c( )2 ky
2–[ ] jyω

1( ) kx ky,( ) kxky jxω
1( ) kx ky,( )–{ }

×
dkxdky

ω ω/c( )2 kx
2– ky

2–
----------------------------------------------.

Exω
' 1( )

Exω
1( )+ 0, Eyω

' 1( )
Eyω

1( )+ 0, z 0.= = =

Exω
1( )

Eyω
1( ) Exω

' 1( )
Eyω

' 1( )

iq

2π2v
-------------

kx

kx
2 ky

2 ω/v( )2 1 β2–( )+ +
-----------------------------------------------------------–

=  
ω/c( )2 kx

2–[ ] jxω
1( ) kxky jyω–

ω ω/c( )2 kx
2– ky

2–
---------------------------------------------------------------,
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(23)

from these equations, we can determine the Fourier

components  and  of currents induced in the
array. By solving this system, we obtain

(24)

(25)

By substituting the expressions for  and  into
expressions (18) and (19), we obtain the vector poten-
tials

(26)

(27)

Formulas (26) and (27) determine the radiation pro-
duced by a charge passing through the array located in
the plane z = 0. The total field in the space between the
first and second arrays (i.e., in the space between the
planes z = 0 and z = d) is a superposition of radiation

 and  and the fields  and  produced
by the uniformly moving charge. This total field is inci-
dent on the second array and excites currents on it.

Let us consider the field at a long distance from the
array. The electric field is related to the vector potential
as [4]

After some transformations, we obtain the follow-

iq

2π2v
-------------

ky

kx
2 ky

2 ω/v( )2 1 β2–( )+ +
-----------------------------------------------------------–

=  
ω/c( )2 ky

2–[ ] jyω
1( ) kxky jxω–

ω ω/c( )2 kx
2– ky

2–
---------------------------------------------------------------,

jxω
1( ) jyω

1( )

jxω
1( ) iq

4π3v
-------------–=

×
ωkx

kx
2 ky

2 ω/v( )2 1 β2–( )+ +[ ] ω/c( )2 kx
2– ky

2–
----------------------------------------------------------------------------------------------------------,

jyω
1( ) iq

4π3v
-------------–=

×
ωky

kx
2 ky

2 ω/v( )2 1 β2–( )+ +[ ] ω/c( )2 kx
2– ky

2–
----------------------------------------------------------------------------------------------------------.

jxω
1( ) jyω

1( )

Axω
' 1( ) q

2πcv
--------------–=

×
kxω i kxx kyy ω/c( )2 kx

2– ky
2– z+ +( )exp

kx
2 ky

2 ω/v( )2 1 β2–( )+ +[ ] ω/c( )2 kx
2

– ky
2–( )

------------------------------------------------------------------------------------------------------- kxd ky,d∫

Ayω
' 1( ) q

2πcv
--------------–=

×
kyω i kxx kyy ω/c( )2 kx

2– ky
2– z+ +( )exp

kx
2 ky

2 ω/v( )2 1 β2–( )+ +[ ] ω/c( )2 kx
2

– ky
2–( )

------------------------------------------------------------------------------------------------------- kxd ky.d∫

Axω
' 1( )

Ayω
' 1( )

Axω
1( ) Ayω

1( )

Eω
c

iω
------ k kAω[ ][ ] .=
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ing formulas for the electric field components:

(28)

(29)

(30)

Let us calculate the integrals in expressions (26) and
(27) by the stationary phase method. This method for
evaluating integrals of rapidly oscillating functions
yields the formula [5]

(31)

where ξ0, η0 is the root of equation df(ξ, η) = 0 and α1 =
, α2 = , and α3 =  at ξ = ξ0 and η = η0.

After calculating the vector potentials and substitut-
ing them into expressions (28)–(30), we obtain the fol-
lowing formulas for the electric field components

(32)

(33)

(34)

here, R is the distance from the origin to the observation
point, x = Rsinθcosϕ, y = Rsinθcosϕ, z = Rcosθ,
θ is the angle between the wave vector and the z axis,
and ϕ is the azimuth angle.

A comparison of expressions (32)–(34), which
describe the angular spectrum distributions of the elec-
tric field of transition radiation, with the results
obtained earlier [6], shows that the field produced by a
particle that crosses the two-dimensional array (grat-
ing) is the same as the field excited by a particle emitted
from a conducting plane. Further calculations are there-
fore also valid for the case when the first plane is a
metal foil whose conductance is independent of direc-
tion.

Exω
' 1( ) c

iω
------ ω/c( )2 kx

2–[ ] Axω
' 1( )

– kxkyAyω
' 1( )

+{ } ,=

Eyω
' 1( ) c

iω
------ ω/c( )2 ky

2–[ ] Ayω
' 1( )

– kxkyAxω
' 1( )

+{ } ,=

Ezω
' 1( ) c

iω
------ ω/c( )2 kx

2– ky
2– kx Axω

' 1( )
kyAyω

' 1( )
+{ } .=

F ξ η,( ) if ξ η,( )exp ξd ηd

∞–

∞

∫

=  
2πi

α1α3 α2
2–

----------------------------F ξ0 η0,( ) if ξ0 η0,( ),exp

f
ξ2'' f ξη'' f

η2''

Exω
' 1( ) q

c
---β θ θ ϕcoscossin

1 β2 θcos
2

–
----------------------------------------

i
ω
c
---- 

  Rexp

R
-------------------------,=

Eyω
' 1( ) q

c
---β θ θ ϕsincossin

1 β2 θcos
2

–
---------------------------------------

i
ω
c
---- 

  Rexp

R
-------------------------,=

Ezω
' 1( ) q

c
--- β θsin

2

1 β2 θcos
2

–
----------------------------

i
ω
c
---- 

  Rexp

R
-------------------------;=
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RADIATION PRODUCED BY CURRENTS 
ON THE SECOND PLANE

Because the conductance of the second array is non-
zero only in the y direction, the induced currents have

the  component alone. In turn, currents  produce
the field, which can be described by the vector potential

,

(35)

This formula is completely similar to formulas (18)
and (19) for the field excited by the first array with the
only difference that, in the first case, the field is pro-
duced by the currents that flow in the first array in the
x and y directions and the vector potential has the com-

ponents  and , while in the second case, the
field is produced only by the current that flows in the y
direction and, hence, the vector potential has the com-

ponent  alone. Recall that the second array lies in
the plane z = d.

On the surface of the second array, the y component
of the total electric field must turn to zero; i.e., the fol-
lowing equality must be valid:

This condition makes it possible to determine the
currents induced on the array. Indeed, if the currents
induced in the second array have only one Fourier com-

ponent , the electric field  excited by these
currents can be written as

(36)

Let us also write the y component of the electric
field excited by the field of the uniformly moving
charge and by the field of the first array. The superposi-

jy
2( ) jy

2( )

Ay
' 2( )

Ayω
' 2( )

i
2π
c

------=

× i kxx kyy ω/c( )2 kx
2– ky

2– z d–+ +( )exp∫
× jyω

2( ) kx ky,( )
dkxdky

ω/c( )2 kx
2– ky

2–
-----------------------------------------.

Axω
' 1( )

Ayω
' 1( )

Ayω
' 2( )

Eyω
' 1( )

Eyω
1( ) Eyω

' 2( )
+ + 0, z d .= =

jyω
2( ) kx ky,( )

Eyω
' 2( )

Eyω
' 2( )

2π–=

× i kxx kyy ω/c( )2 kx
2– ky

2– z d–+ +( )exp∫
× jyω

2( ) kx ky,( )
ω/c( )2 ky

2–[ ] dkxdky

ω ω/c( )2 kx
2– ky

2–
-------------------------------------------------.
tion of these fields can be written as

(37)

Here, the first term in the brackets refers to the field of
the uniformly moving charge, and the second term, to
the field of the first array. Clearly, a sum of expres-
sions (36) and (37) must turn to zero at z = d. This con-
dition yields the currents induced in the second array:

(38)

By substituting expression (38) into (35), we find
the vector potential of the radiation field produced by
the second array:

(39)

The field in the space behind the second array con-
sists of three components: the field produced by the uni-
formly moving charge; the field produced by charges
on the second array, which is described by the vector

potentials  and ; and the field excited by cur-
rents flowing in the second array, which is described by

the vector potential .

Let us consider the field at long distances (z @ d)
from the array. We consider the distances at which the
field of the uniformly moving charge does not interfere
with the fields radiated by the arrays. We calculate the
potentials by the stationary phase method and use
expressions (28)–(30) for the electric field components
to obtain

(40)

Eyω
' 1( )

Eyω
1( )+

q

2π2v
-------------

ky i kxx kyy+( ) kx kyddexp

kx
2 ky

2 ω/v( )2 1 β2–( )+ +[ ]
----------------------------------------------------------------∫–=

× i
ω
v
----z

– ω/c( )2 kx
2 ky

2+ +

kz
2

-----------------------------------------+exp

---× i ω/c( )2 kx
2– ky

2– zexp .

jyω = 
q

4π3v
-------------

iky ω/c( )2 kx
2– ky

2–

kx
2 ky

2 ω/v( )2 1 β2–( )+ +[ ] ω/c( )2 ky
2–( )

-----------------------------------------------------------------------------------------–

× i
ω
v
----dexp i ω/c( )2 kx

2– ky
2– dexp– .

Ayω
' 2( ) q

2πcv
--------------–=

×
kyω i kxx kyy ω/c( )2 kx

2– ky
2– z d–+ +( )exp

kx
2 ky

2 ω/v( )2 1 β2–( )+ +[ ] ω/c( )2 kx
2–( )

---------------------------------------------------------------------------------------------------------------∫

× i
ω
v
----exp d i ω/c( )2 kx

2– ky
2– dexp– dkxdky.

Axω
' 1( )

Ayω
' 1( )

Ayω
' 2( )

Exω
' 1 2+( ) q

c
---β θ θ ϕcoscossin

1 β2 θcos
2

–
----------------------------------------=

× 1
θ ϕsin

2
sin

2

1 θ ϕsin
2

sin
2

–
-----------------------------------C+ 

 
i
ω
c
----R 

 exp

R
-------------------------,
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(41)

(42)

Expressions (40)–(42) describe a spherical wave.
The components of this wave are seen to be inversely
proportional to (1 – β2cos2θ); i.e., when the charge
moves at a relativistic velocity, radiation is concen-
trated in a narrow range of angles θ, approximately 1/γ

wide, where γ = 1/ . The second array exerts no
influence on the amplitude of the angular spectrum dis-
tribution of the Ey field component, but shifts its phase
by α = (ω/v)d(1 – βcosθ). As the distance d between
the arrays decreases, the effect of the second array on
the field distribution becomes weaker. In the limiting
case of d = 0, the field described by expressions (40)–
(42) is the same as the transition radiation field excited
by the particle when it crosses the first array.

In the relativistic case, when γ @ 1 and radiation is
considered at angles θ ≤ 1/γ, the terms proportional to
sin2θ in the expressions for the field can be neglected.
In this case, expressions (40)–(42) are transformed to

(43)

(44)

These expressions show in particular that, at the azi-
muth angle of ϕ = ±(π/4) and ±(3π/4), fields Ex and Ey

are equal in magnitude and shifted in phase relative to
each other by α = (ω/v)d(1 – βcosθ). Radiation is cir-
cularly polarized when the field Ex is shifted in phase
with respect to the field Ey by α = (π/2) + πn (where n =
0, 1, 2, …) and is linearly polarized when α = π + πn.
At other phase shifts, radiation is polarized elliptically.

At ϕ = 0 or π, the electric field of radiation lies in the
xz plane; at ϕ = ±π/2, this field lies in the yz plane. At
these azimuth angles, the radiation field is linearly
polarized at any distance between the arrays.

Eyω
' 1 2+( ) q

c
---β θ θsinϕcossin

1 β2 θcos
2

–
--------------------------------------=

× i
ω
v
----d 1 β θcos–( )

i
ω
c
----R 

 exp

R
-------------------------exp ,

Ezω
' 1 2+( ) q

c
--- β θsin

2

1 β2 θcos
2

–
----------------------------=

× 1
θ ϕsin

2
cos

2

1 θ ϕsin
2

sin
2

–
-----------------------------------C+ 

 
i
ω
c
----R 

 exp

R
-------------------------.

1 β2–

Exω
' 1 2+( ) q

c
---β θ θ ϕcoscossin

1 β2 θcos
2

–
----------------------------------------

i
ω
c
----R 

 exp

R
-------------------------,=

Eyω
' 1 2+( ) q

c
---β θ θ ϕsincossin

1 β2 θcos
2

–
---------------------------------------=

× i
ω
v
----d 1 β θcos–( )

i
ω
c
----R 

 exp

R
-------------------------.exp
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Because the phase shift between the fields Ex and Ey

depends on angle θ, at given electron energy γ =

1/ , distance d between the arrays, and wave-
length λ, circularly polarized transition radiation will
be observed at the angles

1 β2–

ϕ π/4( ), 3π/4( ),±±=

1

0 45
ϕ, deg

90

(c)

Ex

Ey

1

0 45 90

(b)
Ex

Ey

1

0 45 90

(a)
Ex

Ey

E, arb. units

Fig. 2. Electric field intensities Ex and Ey of the wave versus
azimuth angle ϕ at the angle θ = 1/γ = (a) 6°, (b) 45°, and
(c) 60°. The reduced particle energy is γ = 10.
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As follows from expressions (40) and (42), at large
observation angles θ @ 1/γ, a significant contribution to
the electric field intensities Ex and Ey comes from the
second terms. Figure 2 plots Ex versus azimuth angle ϕ
calculated from formula (40) for various angles θ at a
reduced particle energy of γ = 10. For the sake of com-
parison, the figure also plots the sine curves Ey(ϕ). Fig-
ures 2a–2c refer to θ = 1/γ = 6°, 45°, and 60°, respec-
tively. As the angle increases, the difference between
the Ex(ϕ) curve and the cosine function is seen to
become more and more pronounced.

CONCLUSIONS
Expressions that describe the field produced by a

relativistic particle when it crosses two anisotropically
conducting planes are obtained. The field of radiation
emitted when the particle crosses the plane with a
higher conductance in two mutually perpendicular
directions is found. At certain wavelengths, this field

θ γ

γ2 1–
------------------

λ
2d
------ 1

2
--- n+ 

 – .arccos=

coincides with the field of transition field emitted by a
charged particle that exits from a metal foil, which has
an isotropic conductance. In the case when the second
plane has an anisotropic conductance, transition radia-
tion is polarized elliptically.
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Abstract—Solid-phase destruction of the silicon surface under the action of submicrosecond laser pulses in the
atmosphere of various active (oxygen, nitrogen, carbon dioxide) and inert gases (helium, argon, krypton) is
studied. It is found that the surface destruction threshold (the threshold of formation of inhomogeneities in the
surface relief) is lowest in helium atmosphere and highest in krypton atmosphere. A mechanism for inhomoge-
neity growth and relaxation is proposed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that the action of high-power laser
radiation on semiconductors leads to a substantial
increase in the diffusion coefficients of atoms [1]. Two
aspects (thermal and athermal) can be singled out in the
effect of laser radiation on diffusion. The thermal effect
is associated with the possibility of creating huge tem-
perature gradients and thermal stresses; according to a
number of authors [2–7]), this is the reason for
enhanced diffusion. The athermal effect of laser radia-
tion is associated with the excitation of electronic states
such as excitons and electron–hole plasmas localization
of excitations of these states at an impurity may sub-
stantially increase the impurity diffusion rate [8–12].
Some authors associate high diffusion rates during laser
annealing with local melting of the surface [13].

In spite of the fact that laser-stimulated diffusion
was studied by many authors, the nature of anomalous
enhancement of diffusion is not quite clear. The effect
of laser-induced nonequilibrium structural defects on
the diffusion rate of impurities has been studied insuffi-
ciently. The high concentration of laser-induced vacan-
cies and interstices (~1021–1022 cm–3) attained at the
instant of action of a laser pulse may noticeably change
the diffusion of impurity atoms, which is governed by
the vacancion or interstitial mechanism. It is also
known [14, 15] that dislocations (grain and phase
boundaries) are the routes for enhanced diffusion for
intrinsic defects and impurity atoms. The coefficients
Dd of diffusion over dislocations may exceed the bulk
diffusion coefficients by several orders of magnitude.

Solid-phase destruction of the silicon surface under
the action of submicrosecond laser pulses in air was
studied in [16]. It was found that a laser pulse initiates
a jump in the intensity of scattered radiation from a
1063-7842/04/4908- $26.00 © 21035
probe laser. The duration (at half-amplitude) of the
anomalous scattering signal was ~0.5 s, which is six
orders of magnitude higher than the duration of the act-
ing laser pulse. However, it was shown in [17] that the
action of solitary pulses on a sample in vacuum does
not lead to visible (according to the results of diagnostic
methods used) structural changes of the surface. Sur-
face destruction is observed only in the case of action
of many pulses, is of accumulation type, and is associ-
ated with the generation and growth of dislocations.

The results of these experiments unambiguously
indicate that the presence of the surrounding gas atmo-
sphere stimulates the formation of scattering inhomo-
geneities in the silicon surface layer under the action of
laser pulses.

In this study, we analyze the effect of the ambient
atmosphere and the type of the gas on the threshold of
intense defect formation and destruction of the silicon
surface under the action of laser pulses. The anomalies
observed in the scattering of probe radiation are associ-
ated with the formation of local inhomogeneities (scat-
tering centers) in the silicon surface layer, which repre-
sent the system dislocation + cloud of impurity atoms.

EXPERIMENTAL RESULTS AND DISCUSSION

The experiments were carried out on the setup
shown in Fig. 1. A sample of monocrystalline disloca-
tion-free silicon with a mirror-polished surface oriented
along the (100) crystallographic axis was placed into a
vacuum chamber in which the pressure could be varied
from 10–2 Torr to 1 atm. The experiments were made in
vacuum and in the atmosphere of various gases, both
active (oxygen, nitrogen, or carbon dioxide) and inert
(helium, argon, and krypton), and the gas pressure was
004 MAIK “Nauka/Interperiodica”
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P1 ≈ 1 atm. The sample surface was exposed to pulses
from a Nd : YAG laser with a pulse energy of E ≈ 0.5–
1.0 mJ and a pulse duration of τ ≈ 3 × 10–7 s. Laser radi-
ation was focused as a spot d ≈ 0.3–1.0 mm in diameter
at the sample surface. Irradiation was carried out by
pulses with a power density below the surface-melting
threshold. Probing of the exposed area was carried out
by a He–Ne probe laser beam. Scattered radiation from
the probe laser was detected at an angle α ≈ 45° sample
surface.

By way of example, Fig. 2 shows oscillograms
describing the variation of the radiation intensity of the
He–Ne probe laser scattered by the silicon surface
exposed to the Nd : YAG laser pulses in atmospheres of
helium and krypton. It can be seen from the figure that,
the action of a laser pulse results in a jumpwise increase
in scattering intensity Is; the duration of the scattering
signal amounts to t ≈ 0.2–0.5 s, which is almost six

1

2

3

5

6

7

8

4

Fig. 1. Block diagram of experimental setup: (1) Nd : YAG
laser, (2) He–Ne probe laser; (3) sample, (4) photodetector,
(5) monochromator, (6) vacuum chamber, (7) oscilloscope,
and (8) computer.
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20
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Fig. 2. Variation of scattering of a probe beam emitted by a
He–Ne laser at the silicon surface, caused by the action of a
Nd : YAG laser pulse (I = 2.25 × 106 W cm–2, P ≈ 1 atm): in
helium atmosphere (1) and in krypton atmosphere (2).
orders of magnitude larger than the duration of a
Nd : YAG laser pulse acting on the surface. The peak of
the scattering signal is attained t+ ≈ 0.1–0.2 s after the
termination of the Nd : YAG laser pulse. The pulse
decay time is t– ≈ 0.2–0.3 s after the termination of the
Nd : YAG laser pulse. According to [16], each next
exposure of the same area of the surface leads to a rapid
decrease in the amplitude of the scattered radiation sig-
nal. With decreasing pressure in the chamber, the inten-
sity of scattered radiation also decreases rapidly and the
signal disappears almost completely at P ≈ 10–1 Torr
[16].

The enhancement of scattering indicates the emer-
gence of inhomogeneities in the surface relief (which
was initially flat and mirror finished) as a result of
action of the Nd : YAG laser pulse. The main reason for
the change in the surface relief in the solid phase can be
associated with thermal deformation and deformation
due to generation of a considerable concentration of
structural defects in the surface layer. Thermal defor-
mation is due to heating of the surface layer; since the
temperature of the surface rapidly decreases (the cool-
ing time t1 ~ α–2χ–1 ≈ 10–7 s, which is much smaller than
the duration of the scattering signal) after the termina-
tion of a laser pulse, the thermal deformations must also
rapidly decrease after the termination of the laser pulse.
Consequently, the existence of such a long scattering
signal is difficult to explain by thermal deformations of
the surface. The changes in the surface relief associated
with the generation of defects and their subsequent
slow recombination in all probability cannot be a rea-
son for the observed effect since no scattering jump is
observed in vacuum, while heating and generation of
defects take place. It was noted in [17] that an increase
in the intensity of radiation scattered from the silicon
surface in vacuum is observed only in the case of mul-
tiple action of laser pulses and is associated with the
generation and growth of dislocations. Consequently,
the jump in the scattering intensity under the action of
a solitary pulse in air is probably associated with the
diffusion of gas atoms to the surface layer. For this rea-
son, it is interesting to study the effect of various gases
(such as oxygen, nitrogen, and carbon dioxide) con-
tained in air and capable of forming chemical com-
pounds with silicon at high temperatures as well as inert
gases (such as helium, argon, and krypton), which do
not form any compounds.

Figure 3 shows the variation of the scattered radia-
tion amplitude as a result of irradiation of the silicon
surface with submicrosecond laser pulses in the atmo-
sphere of different gases. According to the data from
the literature, all the gases chosen here (except nitro-
gen) occupy interstitial positions in silicon and diffuse
in accordance with the direct interstitial mechanism. It
is known that interstitial atoms in silicon are character-
ized by a high mobility.

It can be seen that, the irradiation conditions being
the same, the scattering amplitude in the helium atmo-
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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sphere is 3–4 times higher than in the remaining gases.
For other gases, a tendency of the scattering amplitude
to decrease is observed in the following sequence: O2,
N2, CO2, Ar, and Kr. Figure 4 shows the thresholds Ith.las
for the emergence of scattering signals in increasing
order. It can be seen from the figure that the value of
Ith.las in the helium atmosphere is much lower (by 25–
35%) than in the remaining gases. It should be recalled
that the chosen gases differ from one another in atomic
size (by a factor of several units), chemical activity, sol-
ubility (by several orders of magnitude), and diffusion
coefficient (by several orders of magnitude).

The above results show that the threshold for the
formation of inhomogeneities in the surface relief and
the “scattering” properties of these inhomogeneities
depend on the type of surrounding gas. The most prob-
able reason for the growth of inhomogeneities may be
diffusion of the surrounding gas to the surface layer
enriched in defects. We can propose the following
model to explain the observed phenomenon. The action
of a laser pulse leads to heating of the surface layer. Gas
diffusion to the surface layer and intense generation of
structural defects (vacancies and interstices) are acti-
vated simultaneously. At the same time, generation and
growth of dislocations and gas diffusion along disloca-
tion tubes to the bulk of the crystal take place. Thus, as
a result of action of laser radiation, an elevated concen-
tration of defects (impurities, vacancies, and inter-
stices) is formed in the surface layer of thickness ∆z as
well as the corresponding gradients of temperature and
concentration directed to the bulk of the crystal.

The heating and high concentration of point defects
lead to a deformation (bulging) of the surface. In addi-
tion, the formation and growth of macrodefects (pores,
dislocations, and microcracks) are also possible. Con-
sequently, the scattering of probe radiation in this case
can be caused by both the bulging of the surface as a
result of joint action of heating and accumulation of
point defects and the growth of local inhomogeneities
in the surface layer, viz., macrodefects of diameter d ~
λ, where λ = 0.63 µm is the wavelength of the probe
laser. However, in our detection geometry (α ≈ 45°),
scattered radiation from the bulged surface is not
detected since the scattering angles ϕs ~ αh(t)∆T/r0
(α represents the thermal expansion coefficient, ∆T is
the temperature of the surface, and h and r0 are the
thickness and the radius of the heated area, h ! r0) are
much smaller than the detection angle; i.e., ϕs ! ϕ ≈
45°. It is important to note that, irrespective of the object
scattering the probe beam, a jump in scattering is observed
only in the presence of an ambient atmosphere, indicating
the decisive role of diffusion of gas atoms to the surface
layer. In our opinion, the elevated concentration of intrin-
sic defects in the surface layer is a factor of fundamental
importance, which facilitates an increase in the flux of
diffusing gas (impurities) to the surface layer.

After the termination of the laser pulse, the temper-
ature of the surface rapidly decreases; as a result, the
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
surface layer is supersaturated with impurity (gas)
atoms and structural defects. The relaxation of density
of defects begins due to their mutual annihilation and
well as their flow to dislocations and to the surface. It
can be seen from Fig. 2. That the scattering signal con-
tinues to increase for a certain time period following the
laser pulse and then decreases. Such an increase in scat-
tering supports the opinion that local inhomogeneities
grow and serve as scattering centers for radiation. Dis-
locations may serve as centers for nucleation of inho-
mogeneities, while the growth of inhomogeneities can
be caused by the flow of impurity atom and defects to
them. It is well known that a dislocation possesses
long-range forces and interacts with impurity atoms
and defects located in its neighborhood. For this reason,
the concentration of impurity and, hence, local defor-
mations are higher in the vicinity of the dislocation,
especially in the part of the dislocation that is closer to
the surface (or emerges at the surface). An increase in
the concentration of impurity atoms leads to an increase
in elastic stresses that may either relax via the forma-
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Fig. 3. Variation of the amplitude of scattered radiation in
the atmosphere of various gases at a constant power density
of a Nd : YAG laser pulse.
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Fig. 4. Variation of the threshold for the emergence of radi-
ation of a probe He–Ne laser beam scattered from the sili-
con surface in the atmosphere of various gases.
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tion of new dislocations or stimulate the growth of the
initial dislocation. We can assume that it is the system
“dislocation + impurity atmosphere” that determines
local inhomogeneity (local deformation) in the surface
layer, where scattering of probe laser radiation takes
place. Conditionally, we can assume that local inhomo-
geneity is a result of deformation of the medium
induced by the dislocation and impurity atoms; i.e., ε =
εd + εim.

If we assume that scattering occurs at the local inho-
mogeneities described above, the decrease in the scat-
tering intensity indicates the relaxation of these inho-
mogeneities. It should be noted that the above-men-
tioned relaxation processes occur in the surface layer
cooled practically to room temperature, in which the
diffusion coefficients for impurities, vacancies, and
interstices are negligibly small; for this reason, the
observed changes in the scattering intensity can hardly
be explained by relaxation of the defect density due to
conventional diffusion. This gives grounds to assume
that low-threshold diffusion channels exist in the
defect-saturated silicon layer in question. It was noted
above that such channels might be dislocations. It was
found [14] that the energy of migration Emd of impurity
atoms over dislocations in semiconductors amounts to
Emd ≈ (0.4–0.6)Ev, where Ev is the vacancy migration
energy and the diffusion coefficient is 3–5 orders of
magnitude higher than in the bulk of the crystal. Then
the size of inhomogeneities decreases as a result of dif-
fusion of impurity atoms over dislocations, which in
turn must be manifested in a decrease in the amplitude
of scattered radiation. The experimentally observed
changes in the intensity of scattered radiation com-
pletely agree with the model of formation, growth, and
relaxation of scattering inhomogeneities proposed
above. Since the surface initially contains a large num-
ber of various defects and experiences the highest
stresses under the action of a laser pulse, the generation
of dislocations begins in all probability at the surface.
Subsequently, their growth in the direction to the bulk
of the crystal takes place; in this way, the low-threshold
accelerated diffusion of impurity atoms occurs via dis-
locations. At the instant when a laser pulse is acting,
diffusion of impurity atoms proceeds to the bulk of the
crystal via dislocation tubes. The fraction of impurity
having diffused in this way may be as high as 10–15%
of the total mass of diffused impurity [14, 15].

After the termination of a laser pulse, the reverse
flow of impurities along a dislocation tube to the sur-
face takes place; simultaneously, impurities flow
towards dislocations. At the initial instant after the ter-

mination of the laser pulse, the inflow  of impurity

atoms to a dislocation exceeds the outflow  to the
surface via dislocation cores; as a result, impurities are
accumulated in the upper part of a dislocation core and
the local inhomogeneity increases. With increasing
impurity concentration in the area surrounding an inho-

JΣ
+

JΣ
–

mogeneity, the outflow of impurities begins to prevail

over the inflow; i.e.,  > , and the size of the inho-
mogeneity decreases.

The decrease in the amplitude of scattered radiation
under multiple irradiation can then be explained by the
fact that new dislocations are generated in the surface
layer after each pulse; as a result of flow of impurities
to these dislocations according to the mechanism
described above, they also become scattering centers.
In addition, a part of impurity atoms is accumulated
after each pulse in the surface layer. Thus, after several
irradiation pulses, a high density of dislocations is
formed in the surface layer, leading to averaging of the
amplitude of local inhomogeneities, i.e., “homogeniza-
tion” of the surface layer and, hence, to a suppression
of diffuse scattering. As a result, the action of a laser
pulse leads to uniform bulging of the surface. Scatter-
ing from this surface occurs at small angles and cannot
be detected in the experimental geometry of scattered
radiation detection.

According to experimental results, an increase in the
intensity of diffuse scattering of a probe laser beam is
observed during the time interval t+ ≈ 0.1–0.2 s after
termination of the action of the main (pump) laser
pulse, while a decrease is observed during time t– ≈ 0.2–
0.3 s. The characteristic relaxation time for dislocations
estimated in [17] at τr ≈ 1.2 s was obtained as a fitting
parameter from a comparison of the experimental
results with the estimates of the growth of dislocation
loop as a result of laser action. It can be seen that t– <
τr; i.e., the time of decrease in anomalous scattering is
shorter than the dislocation relaxation time. This means
that the relaxation of scattering inhomogeneities in this
case is determined in all probability by the emergence
of impurity atoms at the surface via dislocation cores
rather than by the decrease in the dislocation size.

CONCLUSIONS

(1) It is found that the action of a submicrosecond
laser pulse on silicon in the atmosphere of an ambient
gas initiates the emergence of an anomalously pro-
tracted spike in the scattering of the probe beam by the
surface. The duration of the anomalous scattering is
~0.5 s, which is almost six orders of magnitude longer
than the acting laser pulse. 

(2) It is shown that the threshold (in I) of the emer-
gence of the anomalous peak of scattering by silicon
depends on the type of the ambient gas: the lowest
threshold is observed in the atmosphere of helium and
the highest threshold takes place in the krypton atmo-
sphere. The observed anomalies in the scattering of
probe radiation are associated with laser-induced accel-
erated diffusion of atoms of the ambient gas (impurity
atoms) to the surface layer and the formation of unsta-
ble local inhomogeneities (scattering centers) in the
surface layer, which form the system “dislocation +

JΣ
– JΣ

+
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cloud of impurity atoms,” which slowly relaxes after
the termination of the laser pulse due to the emergence
of impurity atoms to the surface via dislocation cores
(low-threshold diffusion).
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Abstract—Field evaporation of a carbonized molybdenum crystal is studied using an atomic probe. In the flow
of ions being evaporated, various radical ions containing Mo and C, as well as pure Mo ions, are observed. Anal-
ysis of mass spectra of field evaporation and corresponding accumulation curves leads to the conclusion about the
composition and complex ordering of the surface layers of the crystal. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Molybdenum is a chemical analogue of tungsten,
actively interacting with hydrocarbons (as well as with
atomic carbon) and forming various crystallographic
forms of carbon-containing chemical compounds com-
pletely analogous to W. When Mo points are heated in
a vacuum containing hydrocarbons (methane, benzene,
etc.) in residual gas, sharp faceting of a previously
rounded crystal without a change in their symmetry is
observed. These “ribbed” crystals differ only slightly
from similar crystals in the case of carbonized molyb-
denum. Field evaporation of carbidized tungsten was
thoroughly studied in at least three publications [1–3].
As regards molybdenum, which is chemically more
active than tungsten, no such studies have been carried
out, although such experiments (as well as any experi-
ments on field evaporation of non-one-component sur-
faces) are of considerable interest. Ribbed tungsten
crystals did not correspond to a stable chemical com-
pound and were distinguished by a varying composi-
tion, which was measured in the direction from the sur-
face to the bulk [2, 3]. The same behavior could be
expected for carbonized Mo points. As usual, the fol-
lowing two aspects of the experiment were of special
interest: the composition of the flow of evaporating ions
and the composition of the surface being evaporated as
well as its physical and chemical processes. The goal of
this first publication devoted to the field evaporation of
carbonized molybdenum is to study the phenomenon,
bearing in mind these two aspects.

EXPERIMENTAL TECHNIQUE

A method adequate to the posed problem was the
time-of-flight atomic probing technique [4]. We used a
probe with a low mass-spectrometric resolution [5, 6]
but with a high luminosity. A resolution of about 30
made it possible to determine the elemental (but not
isotopic) composition of ions, while the high luminos-
ity provided for a large number of detailed mass spectra
from the same point prior to its rounding. A distinguish-
1063-7842/04/4908- $26.00 © 21040
ing feature of our atomic probe was the fixation of its
point to a bracket heated by electric current. This
enabled us to carry out the thermal and temperature-
field treatment of the object, to analyze field emission
images in the cold and hot states, and also to obtain
mass spectra at elevated temperatures in the cases when
the useful signal was considerably stronger than the
noise mainly generated by evaporation under a constant
base voltage Vb. The base voltage could be varied from
0 to 20 kV, while the pulsed evaporating voltage Vp var-
ied from 3 to 6.2 kV.

The system of experimental data processing enabled
us not only to obtain the field-evaporation mass spectra,
but also to plot the curves of successive accumulation
of ions from their entire aggregate (integral accumula-
tion curves) as well as ions belonging to selected mass
peaks (differential curves). These curves provided
important information on the evaporation rate, the
sequence of ion evaporation, etc.

The object was a carbonized Mo crystal prepared
according to the following technology. A Mo point
etched in a dilute solution of NaOH and thoroughly
washed was fixed in the probe chamber in a vacuum of
10–7–5 × 10–8 Torr and was heated to a temperature T of
2200–2500 K for a few seconds. To prevent the sharp
point from blunting, heating was carried out under a
positive potential of 1.5 kV applied to the point. The
residual gases in the chamber contained methane and
other hydrocarbons formed during the operation of
pumps: an electric discharge NORD pump and an oil-
vapor pump TsVL-100. As a result of such a standard
treatment, a ribbed crystal was formed at the tip of the
point. The typical field emission patterns of the point
are shown in Fig. 1. The diaphragm of an atomic probe
3 mm in diameter (circular aperture in a microchannel
plate, a screen, and a mirror at a distance of 100 mm
from the point) was directed at one of the bright ribs
between the {001} and {110} faces (Fig. 1b). In the
course of obtaining the spectrum, the crystal rib
became blunted. On the electron pattern, the rib
appeared blurred and a higher voltage (1.3–1.8 times
004 MAIK “Nauka/Interperiodica”
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the previous value) was required to observe the emis-
sion pattern of the previous brightness. After several
cycles of crystal growth and obtaining of the spectrum,
the point was blunted (in spite of the application of a
“backward” voltage of 1.5 kV) and the base voltage Vb
had to be increased for obtaining subsequent spectra (in
our work, this increase was from 4 to 15 kV at Vp =
6.2 kV). At the same time, as a result of intense heating
cycles required for the formation of the crystal, the
amount of carbon on its surface and in the surface
region decreased down to complete purification, when
the spectrum of virtually pure Mo was obtained for Vb +
Vp = (15 + 6.2) kV with a clearly manifested Mo3+
peak. This spectrum was used for the additional calibra-
tion of the probe parameters. All spectra were obtained
for the point at room temperature.

EXPERIMENTAL RESULTS 
AND DISCUSSION

In all, we obtained eight satisfactory spectra. The
conditions for obtaining some of these spectra were the
same as in the previous measurement (the spectra were
obtained twice for Vb + Vp = (7 + 6.2) kV and thrice for
Vb + Vp = (10 + 6.2) kV), demonstrating good reproduc-
ibility. The initial situations (naturally prior to complete
purification from carbon) corresponded to the crystals
whose emission images are shown in Fig. 1. As in the
case of carbonated W [3], the spectra exhibited notice-
able peaks of Mo–C and purely Mo ions with charges
+4, +3, and (less frequently) +2. The approximate list
of these ions in the decreasing order of frequencies at
which the ions appear in the spectrum is Mo4+, MoC4+,

Mo , Mo , Mo , Mo2C3+, Mo3+, Mo2+, and
Mo2C2+. These ions were accumulated during evapora-
tion from the same area (crystal rib; see Fig. 1b). After
purification from carbon, Mo3+ ions mainly evaporated
from the central face {110}. As small impurities,

Mo2C2+, (MoC3 , etc., ions were also encountered in
the latter case.

Let us consider one of the most interesting field
evaporation mass spectra shown in Fig. 2. The crystal
was grown by heating to 2500 K for 30 s under a poten-
tial of +1.5 kV at the point. In such a regime, a rather
sharp rib to which the diaphragm was directed was
formed. At a voltage of (10 + 6.2) kV, only 234 ions
accumulated as a result of 10 000 evaporating pulses.
Figure 2 reflects the main part of the spectrum for val-
ues of the m/q ratio (of the ion mass to the ion charge)
to 150, although ions were detected up to m/q = 2000.
However, a large number of peaks of single and double
frequency were detected for high values of this ratio; a
part of these peaks should be attributed to noise (in gen-
eral, we identified peaks with a height starting from
three, although many peaks with a height of two ions
corresponded to a quite probable composition). The
spectrum depicted in Fig. 2 contains an intense peak at

C3
4+ C3

3+ C2
2+

)2
3+
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m/q ≈ 24, which corresponds to the Mo4+ ion. A sharp
individual peak corresponding to m/q of about 27 is

identified with MoC4+; the peaks representing Mo ,

Mo , and Mo  can also be clearly seen. All the
clearly pronounced peaks in Fig. 2 were successfully
reproduced in the next two spectra for the same value of
Vb + Vp = (10 + 6.2) kV, the only difference being that
the point was blunted and the number of ions
decreased. For the peaks corresponding to Mo4+,

MoC4+, Mo , and Mo , the differential accumu-
lation curves were plotted. Such curves for the first two
ions are shown in Fig. 3a. The “antiphase” nature of
data collection is obvious, especially for the first half of
collection (to be more precise, up to 6000 pulses): when
Mo4+ ions appear, there are no MoC4+ ions, and vice
versa. After the 6000th pulse, the same tendency per-
sists, but is pronounced less clearly. This may be for
two reasons. The process of evaporation decays and
proceeds at a lower rate since the area of the sharp rib
is rapidly blunted. In addition, the amount of carbon

C3
4+

C3
3+ C2

2+

C3
4+ C3

3+

(‡) (b)

Fig. 1. Autoemission images of a carbonized molybdenum,
obtained after heating at T = 2400 K for 10 s under a positive
potential of 1.2 kV at the point: (a) room temperature, V =
–1.9 kV; (b) room temperature, V = 1.7 kV. The aperture of
the diaphragm is directed to the central part of the lower
“bracket.”
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Fig. 2. Mass spectrum obtained for a ribbed Mo crystal for
Vb + Vp = (10 + 6.2) kV. The number n of detected ions and
the ratio m/q of the mass of the ion to its charge are laid
along the ordinate and abscissa axes, respectively.



 

1042

        

LOGINOV, SHREDNIK

                                                       
decreases as a result of “digging.” In our case (in con-
trast to many cases described for W [2, 3]), the car-
bidized crust is very thin. For this reason, we did not
observe a negative image [1, 2] of “brackets” after an
evaporation cycle. The indisputable obviousness of the
emergence of ions can be explained by evaporation of
Mo with accumulation of carbon to a certain critical
state, after which it is removed in the form of MoC or
by layer-by-layer evaporation, when the layers of Mo
and C atoms alternate in the structure of the crystal
itself. In the former case, the “antiphase” nature of the
process should not be manifested so clearly (for con-
stant Vb and Vp). Along with Mo ions, MoC ions could
also evaporate since these ions evaporate in the same
field. The pattern would be such as if the numbers of
ions of both species increase synchronously (e.g., as
shown in Fig. 3b). The peak of Mo4+ is split and we
decided to analyze separately the increase in the num-
ber of ions on both branches of this peak. It was found
(see Fig. 3b) that the ions from both branches accumu-
late synchronously (with a statistical spread), which
confirms the same physical nature of ions correspond-
ing to the peak at m/q ≈ 24. The spread and separation
of ions into two thin subpeaks are explained primarily
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Fig. 3. Differential curve of ion accumulation (the number
n of detected ions as a function of the number N of supplied
pulses) (a) for Mo4+ peaks (solid curve) and MoC4+ peaks
(dashed curve); (b) for two branches of the Mo4+ peak:
m/q = 24 (solid curve) and 24.5–25.5 (dashed curve).
by the ionization not only at the top of a bell-shaped
pulse, but also on its slopes. To a lesser extent (due to a
low mass resolution), this can also be associated with a
wide set of stable isotopes of Mo (from 92 (15.1%) to
100 (9.7%) with a maximum at 98 (24%) [7]). By the
way, a thin (one-channel) peak like that corresponding
to MoC4+ with 10 ions in a channel of the analyzer indi-
cates ionization precisely at the top of the pulse (i.e., for
the maximal possible field).

Thus, we must assume that Mo ions lie at the top of
a rib of the ribbed crystal prepared in the standard way;
it is these ions that are the first to evaporate. A layer of
C atoms is located in an orderly way under the Mo
layer. As soon as this layer outcrops, carbon atoms
escape, each C atom entraining a Mo atom. Such evap-
oration is obviously more advantageous from the
energy standpoint. It is well known that evaporation of
carbon from carbon (e.g., in graphite) requires
extremely high fields [8]. The next layer is again a layer
of Mo atoms, and it is only under this layer that a layer
of C atoms (insufficiently thick in our case) may lie. We
also plotted the accumulation curves for not very high,
but still noticeable peaks of (triply and quadruply
charged) MoC3; these curves indicated the instants of
time (measured in the number of pulses supplied to the
point) when such ions appear (these times are not
shown in Fig. 1a). According to their emergence, these
ions were found to be statistically distributed over the
regions of increase in the number of Mo4+ and MoC4+

ions. In the first region, six MoC3 ions appeared (4 qua-
druply charged and 2 triply charged ions). In the second
region (i.e., for increasing number of MoC4+), seven
MoC3 ions were produced (3 quadruply charged and 4
triply charged). No regularity can be observed in this
case. The emergence of MoC3 ions is apparently asso-
ciated with the nonideal character of the layered struc-
ture of carbon atoms, whose number is slightly greater
and which may also be located in a layer of Mo atoms.
Apparently, the evaporation of a Mo atom with three
carbon atoms is also advantageous from the energy
point of view. These ions reflect fluctuations in the
composition of the carbidized surface region. If we take
into account only the ions corresponding to the first
four peaks in the spectrum (it is these ions that play the
leading role), it will turn out that the layers enriched by
molybdenum contain 40 Mo atoms and 18 C atoms,
which is close to the composition of Mo2C; the layers
rich in carbon contain 17 Mo atoms and 31 C atoms,
which is close to the composition of MoC2. On the
average, over all four peaks, we can count 57 Mo atoms
and 49 C atoms; taking into account a large number of
small peaks containing more C atoms than the number
of Mo atoms, we can assume that the average composi-
tion of the surface region is close to MoC.
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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CONCLUSIONS

(1) The surface region of a carbonized ribbed Mo
crystal is close in composition to monocarbide MoC.

(2) However, a detailed analysis of the peaks in the
mass spectra and the differential accumulation curves
reveals a tendency to an atomic ordering in the crystal
(grown in the standard way), so that a Mo layer is at the
surface, followed by a carbon layer under which at least
two Mo layers are located (this is observed to within
certain fluctuations in the arrangement of C atoms).

(3) Taking into account the aforementioned fluctua-
tions, the layered structure is preserved, but we must
ascribe a composition of Mo2C and MoC2 to the alter-
nating layers.

(4) The ion flow contains both pure Mo ions (Mo4+,
Mo3+, and sometimes Mo2+) and various radical ions
containing Mo and C atoms (first of all, MoC4+,

Mo , Mo , Mo , etc.).
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Abstract—Simultaneous action of strong electric fields and high temperatures on point field emitters made of
the Mo–15%Hf alloy is studied by field emission methods. Such alloys enriched with an emission-active com-
ponent and containing the Mo2Hf intermetallide exhibit basically the same stages of temperature- and field-
induced changes in their form as for pure metals, although a number of peculiarities associated with the surface
segregation of Hf also exist. Thermal-field processing of emitters was accompanied with high-temperature field
evaporation and emission of predominantly Hf (both atomic and cluster-type) ions. Thermal-field processing
also enhances emission localization, but to a smaller extent as compared to that in alloys with a low Hf concen-
tration. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The thermal-field effect, i.e., the simultaneous
action of strong electric fields F from tenths of V/Å to
several V/Å and high temperatures T sufficient for an
intense surface diffusion of the emitter atoms is an
effective tool for a controlled change in the shape of a
point field emitter of electrons and ions. The main
stages of such a change have been comprehensively
studied for pure (mainly refractory) metals [1–3] and
have been reduced to the following. First, at the lowest
values of T and F, the initial point rounded by heating
is transformed into a ribbed polyhedron with a notice-
able expansion of densely packed faces of the pointed
single crystal; this is the rearrangement stage of the
point. Subsequently, for higher values of T and F, the
next stages of the field-induced crystal growth are
observed. At first, small outgrowths (microprotrusions)
appear at the edges and vertices of the rearranged point,
which facilitate the formation (mainly in the densely
packed faces) of large outgrowths (macroprotrusions)
whose vertices and edges are covered with micropro-
trusions. However, in contrast to pure metals, such
experiments have not been carried out at full scale with
alloys and only an insignificant number of alloys
among the huge variety of modern alloys have been
studied.

In this study, we analyzed the Hf–Mo alloy (15 wt%
Hf). This alloys was studied previously only in [4, 5],
where field evaporation was analyzed with the help of
an atomic probe and a considerable segregation of Hf at
the surface was demonstrated; however, the morphol-
ogy of the surface was not studied at all. In our previous
publication [6], we considered in detail the effect of
1063-7842/04/4908- $26.00 © 21044
temperature and field on the allied Hf–W alloy, which
contained, however, a very small amount of Hf (less
than 3%). For this reason, it would undoubtedly be of
interest to study the change in the form of the present
alloy rich in emission-active adsorbate. The diagram of
states of this alloy is not available to our knowledge;
however, the known diagrams of allied Hf–W and
Zr−Mo alloys [7, 8] indicate that the solubility of Hf in
the bulk of Mo is not less than 3–5%; at higher concen-
trations of Hf, the intermetalide Mo2Hf is formed. Such
alloys containing components like Zr and Hf are char-
acterized by a much smaller work function of the sur-
face. In addition, the emission of electrons is localized
in a narrow solid angle, which leads to the formation of
small brightly emitting islands, e.g., on W in the vicin-
ity of the {001} faces even in the case of heating in zero
field [9, 10]. Such alloys are very promising as regards
the obtaining of point sources of electrons and ions.
Alloys rich in an active adsorbate are of special impor-
tance since these alloys can ensure a long working life
of the ion source due to continuous evaporation of the
adsorbate from the emitter surface, as well as electron
sources used in the Schottky cathode regime (i.e., with
cathode heating [10]), and require a large volume con-
centration of the emission-active element.

EXPERIMENTAL TECHNIQUE

Experiments were made using the classical methods
of field emission spectroscopy. We used as the objects
of investigation small bars made of the bulk
Mo−15%Hf alloy, from which point emitters with a
radius r equal to a fraction of a micrometer were pre-
pared by electrolytic etching. The values of field F and
004 MAIK “Nauka/Interperiodica”
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work function ϕ were determined by the conventional
method from the slopes of the Fowler–Nordheim char-
acteristics under the assumption that a change in the
slope corresponds to a change in either F or ϕ. The ini-
tial value of ϕ for the Hf–Mo alloy with the given com-
position is unknown and its absolute value cannot be
correctly determined in this particular case; for this rea-
son, we used as the initial value ϕ = 3.70 eV, which is
equal to the value of ϕ for the Mo–15%Zr alloy
obtained by the thermoemission method and is given in
[11]. As regards the experimentally determined values
of F, the shape of the emitter changes under the action
of heat and field at a constant applied voltage U; conse-
quently, the field F also changes. We must distinguish
between the initial field Ftr of treatment, which is deter-
mined relative to the initial rounded shape of the point,
and the final field Ffin emerging at the surface after vari-
ation in the emitter shape and the attainment of steady
state.

EXPERIMENTAL RESULTS

Figure 1a shows the electron field image of the ini-
tial surface of a point single crystal made of the given
alloy and rounded by prolonged heating in vacuum at
T = 2000 K in zero external field (so-called annealing
shape). Extended brightly emitting regions near the
{001} faces of the cube and weakly emitting regions
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
near the {111} faces can be clearly seen. The formation
of such regions around {001} is not surprising since Hf
may form a densely packed square lattice in these
regions [12] since the atomic diameter of Hf (3.18 Å
[13]) is close to the atomic spacing on the {001} face of
Mo (3.15 Å). The formation of such brightly emitting
regions is also typical of the adsorption of Zr and Hf at
W [9, 10]. The thermal and field effect exerted on the
emitter up to T = 1700 K does not lead to any apprecia-
ble change in its shape even for high values of Ftr =
0.6 V/Å; the field factor β slightly increases from the
initial value of β = 5800 to 6300 cm–1. Figure 1b corre-
sponds to treatment at T = 1700 K and Ftr = 0.6 V/Å. It
can be seen that the regions near the cube have been
slightly rearranged and have become smaller in area;
the regions near the {111} faces have vanished in the
images. Regions near {001} are noticeably rearranged
with the formation of acute angles along the contour of
the emitting narrow ring only when the temperature
increases to T = 1750 K and Ftr = 0.43 V/Å (Fig. 1c).
The value of β increases to 9520 cm–1 and the field
increases as a result of treatment to Ffin = 0.76 V/Å.
Finally, for the maximal possible treatment field Ftr =
0.65 V/Å (point emitters had a fairly large radius of cur-
vature r ~ 0.6–0.7 µm and a voltage U required for
attaining high values of Ftr exceeded 15 kV, which
could cause a breakdown); at the same temperature T =
1750 K (Fig. 1d), the regions with cubes were trans-
(‡) (b)

(c) (d)

Fig. 1. Field electron images of the surface of an emitter made of the Mo–15%Hf alloy under the thermal effect in the field. The
initial stages of change in the emitter shape: (a) after heating the emitted at T = 2000 K in zero field; (b) after heating the emitter at
T = 1700 K and Ftr = 0.60 V/Å; (c) after heating the emitter at T = 1750 K and Ftr = 0.43 V/Å; and (d) after heating the emitter at
T = 1750 K and Ftr = 0.65 V/Å.
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(‡) (b)

(c) (d)

(e) (f)

Fig. 2. Field electron images of the surface of the same emitter at the stage of the field-induced crystal growth: (a) after heating the
emitter at T = 1800 Kand Ftr = 0.58 V/Å; (b) after heating the emitter at T = 1800 K and Ftr = 0.65 V/Å; (c) after heating the emitter
at T = 1850 K and Ftr = 0.38 V/Å; (d) after heating the emitter at T = 1850 K and Ftr = 0.58 V/Å; (e) after heating the emitter at T =
1850 K and Ftr = 0.65 V/Å; (f) after heating the emitter in state (d) at T = 1600 K in zero external field.
formed into a polyhedron with lobes protruding at
angles of approximately 45°; the field factor in this case
increased to its maximal value of β = 12 740 cm–1,
while the value of Ffin attained a value of 1.27 V/Å. It
should be noted that only Hf-enriched regions near
{001} experienced noticeable changes, while the
remaining crystallographic regions of the point do not
exhibit any noticeable rearrangement even upon an
increase in the applied voltage.

If the treatment temperature T is increased to
1800 K at Ftr = 0.58 V/Å, the initial stage of the typical
field-induced rearrangement takes place, which is man-
ifested in the formation of a large number of atomic
steps around the poles of {001}; this can be seen in
Fig. 2a and even better in Fig. 2b at the same tempera-
ture T, but at Ftr = 0.65 V/Å. The field factor increases
insignificantly: β = 7470 cm–1 for the structure shown
in Fig. 2a and β = 8147 cm–1 for the structure shown in
Fig. 2d. Such a stage of rearrangement was observed
for the first time at high values of Ftr and low values of
T in W [14]; in our earlier work [15], this type of rear-
rangement of the point was also observed for Re. A fur-
ther increase in T to 1850 K leads to Ftr = 0.38 V/Å and
to the formation of noticeable rings of steps around
{001} (Fig. 2c). At F = 0.58 V/Å, four faces of the type
of {510} and {310} can be seen on the rearranged faces
of the cube in the direction of faces {011}; such faces
have never been observed on a rounded point (Fig. 2d),
for which the value of β is 8697 cm–1. It is only for Ftr =
0.65 V/Å that a large number of microprotrusions is
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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(‡) (b)

Fig. 3. Field electron images of the same emitter after the ion current takeoff: (a) the state of the surface after takeoff of the ion
current i = 2 nA at T = 1930 K. Ftr = 0.65 V/Å, and Ffin = 1.20 V/Å; microprotrusions can be seen on the surface; (b) after the
reduction of the value of Ftr to 0.55 V/Å at the same T = 1930 K; microprotrusions and ion current are absent.
observed on the entire surface of the point at a given
temperature T (Fig. 2e); however, the value of β in this
case decreases to 7434 cm–1 and the value of Ffin
becomes equal to 1.12 V/Å. The heating of the structure
shown in Fig. 2e at T = 1600 K in zero external field
reveals a large number of macro-outgrowths on various
faces of the point (both densely packed and loose);
microprotrusions grow just at the vertices and edges of
such faces (Fig. 2f).

Such emitters (both initially rounded and modified)
may serve as effective sources of electrons as well as
ions. Electron currents i on the order of several micro-
amperes can easily be attained for a current density of
j ~ 103–104 A/cm2 for the initial annealing shape and j ~
106–107 A/cm2 for modified shapes. Ion currents are
produced only in the presence of microprotrusions on
the emitter surface. Atoms evaporate in the form of ions
from the vertices of such microprotrusions, while mod-
ified shapes do not produce ion currents (at least at a
level of i ~ 10–11 A, which can be reliably detected). At
T = 1850 K and Ftr = 0.65 V/Å, the values of ion cur-
rents were in the range of i = 0.3–0.5 nA and were as
high as i = 1–2 nA at T = 1930 K and at the same value
of Ftr. Emission patterns in Fig. 3 illustrate this situa-
tion. Figure 3a shows the state of the emitter surface
after takeoff of ion current i = 2 nA at T = 1930 K and
Ftr = 0.65 V/Å, Ffin = 1.20 V/Å, and surface “freezing”
by an abrupt stoppage of emitter heating. It can be seen
that the surface of the point has a large number of
microprotrusions. If the field is reduced to Ftr =
0.55 V/Å after attaining this value of the ion current,
the current ceases and the microprotrusions also disap-
pear after subsequent “freezing” of the surface
(Fig. 3b).

Another property of emitters made of the given alloy
is worth noting. The emissive properties of the emitter
surface are weakly sensitive to adsorption of residual
gases as compared to emitters made of pure metals.
Holding of an emitter at room temperature T in a vac-
uum of ~10–10 Torr (in the atmosphere of mainly hydro-
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
gen and nitrogen) for 1 h virtually does not change the
work function: ϕ = 3.68 ± 0.05 eV vs. initial ϕ =
3.70 eV, although a monolayer of residual gases is
adsorbed over this time interval at the surface. Even
after holding for 6 days, when adsorbed gases may even
corrode the surface, the work function still changes
insignificantly as compared to, for example, pure W
(ϕ = 4.40 ± 0.05 eV). Such a weak variation of ϕ under
the action of residual gases can be explained either by a
decrease in the adhesion coefficient of gas molecules,
or by the weak effect of these molecules on the surface
atoms of this alloy. This phenomenon is typical of emit-
ters with the initial annealing shape as well as emitters
subjected to the effect of temperature and field.

DISCUSSION

First of all, we note that the same stages of temper-
ature- and field-induced form changes (rearrangement
in the field and field-induced crystal growth with the
formation of microprotrusions and macro-outgrowths)
are observed for the given strongly enriched alloy
(which is no longer a solid solution, but an intermetal-
lide) as for pure metals; i.e., such changes in the shape
of crystalline field emitters are universal. On the other
hand, typical differences from the case of pure metals
are determined by noticeable segregation of Hf at the
point surface in crystallographic regions near {001}.
Temperature- and field-induced form changes occur
when the pressure PF = F2/8π exerted by ponderomo-
tive forces of electric field exceed the Laplace pressure
Pγ = 2γ/r of surface tension forces (γ is the surface ten-
sion). Hafnium segregated at the surface in the vicinity
of {001} reduces the values of γ and Pγ and creates con-
ditions for preferential form changes precisely in these
regions.

It was noted above that emitters made of the Hf–Mo
alloy of the given composition may produce electron
currents for values of U noticeably lower than in the
case of pure metals due to a lower value of ϕ as well as
ion currents from fractions of a nanoampere to several
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nanoamperes. Ion currents are mainly formed by Hf
ions with different charges. It was shown in [5], where
high-temperature field evaporation of precisely this
alloy was studied with the help of an atomic probe, that,
for example, the mass spectrum recorded at T = 1400 K

in fields F = 0.6–0.8 V/Å revealed only Hf3+ and 
ions; at a higher temperature T = 1850 K, the mass
spectra showed, apart from these ions, small amounts
of cluster ions of intermetallide Mo2Hf3+ as well. Con-
sequently, using the method of temperature and field
action on emitters made of alloys and the effect of high-
temperature field evaporation (atomic and cluster) ion
currents of various charge and composition can be
obtained for elements from which point emitters cannot
be made, or can be made but with difficulty.

Another important aspect is also worth noting. The
obtaining of point sources of electrons and ions is very
important for nanotechnology as well as for other
branches of emission electronics. For this purpose,
emitters localizing emission in a narrow solid angle are
required. A conventional point autoemitter emits elec-
trons in a solid angle α from 1 to 2 sr. Such emitters can
be regarded as point emitters in many fields of applica-
tion, but are not effective in nanotechnology in view of
strong beam divergence. It is well known that such
adsorbates as Hf and Zr at W localize emission in a
small solid angle in the vicinity of {001}, forming
small strongly emitting regions even in zero external
field; the values of α in this case amount to 0.01–
0.03 sr. Thermal and field treatment of such emitters
may considerably reduce the values of α; for example,
for a Hf–W alloy with a low concentration of Hf (below
3%), extremely small values of α = 0.001–0.002 sr
were obtained by growing solitary microprotrusions
precisely in the regions of small spots of Hf [6]. Exper-
iments with the alloy Mo–15%Hf prove that such a
point localization and growth of individual micropro-
trusions cannot be obtained, although a localization of
emission is undoubtedly observed during heating of the
emitter in a field and even in zero field. Microprotru-
sions appear on the entire surface of the point emitter.
Although each individual microprotrusion exhibits a
pronounced localization with α = 0.003–0.005 sr and
can produce ion currents on the order of 10–11 A (which
is quite sufficient for purposes of nanotechnologies) the
situation in this case does not differ in principle from
the case of pure metals. Thus, the alloys containing
emission-active components such as Zr and Hf and
strongly enriched with these components are advanta-
geous as regards their long working life, but are appar-
ently less promising for attaining extremely high local-
ization of emission.

CONCLUSIONS

We have studied the temperature and field effect on
the emitters made of the Mo–15%Hf alloy in a wide
range of values of T and F. It is shown that this alloy,

Hf2
3+
which is strongly enriched with Hf and contains an
intermetallide, exhibits the same stages of form modifi-
cation as pure metals.

Peculiarities of temperature- and field-induced
changes in the form are associated with surface segre-
gation of Hf, which is enhanced when high tempera-
tures and fields act simultaneously.

Under the thermal and field effect, high-temperature
field evaporation takes place, leading to predominant
evaporation of Hf ions (both atomic and cluster-type)
with different charges. In this case, ion currents from a
solitary microprotrusion may reach values of i ~ 10–11 A,
while the currents from the entire surface of the emitter
can be on the order of i ~ 10–9 A.

With the help of thermal action in the field, emission
can be localized in a solid angle of α ~ 0.003–0.005 sr;
however, such Hf-enriched alloys are inferior to alloys
in the form of solid solutions with a small Hf concen-
tration as regards the obtaining of extremely strong
localization, although the former have much longer
working life.

The emissive properties of such emitters with the
annealing shape and with the shape resulting from the
temperature and field effect are such that they possess a
quite low sensitivity to adsorption of residual gases; the
work function during adsorption changes insignifi-
cantly as compared to that of emitters made of pure
metals.
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Abstract—The charges of adatoms and the work function variation ∆φ caused by the deposition of submono-
layer films of alkali metals on the (100) surface of silicon is calculated in the framework of a model that takes
into account the dipole–dipole repulsion of adatoms and metallization of the adsorbate layer. Good agreement
with the experimental data is achieved. Variation of the model parameters in the sequence Li  Cs is ana-
lyzed. © 2004 MAIK “Nauka/Interperiodica”.
1. Work function φ and desorption energy Ed are the
main macroscopic characteristics of the adsorption sys-
tem [1, 2]. The study of the dependences of these char-
acteristics on the surface coverage by adsorbed atoms
Θ = Na/NML (Na is the actual density of adatoms, NML is
the density of adatoms corresponding to the monolayer)
is of the utmost interest, since it enables one to establish
the character of adatoms interaction in the adsorption
layer by using the corresponding theory [3, 4].

Nowadays, submonolayer metallic films on semi-
conductor substrates are extensively studied. The
model system for such investigations is AM/Si(100),
where AM is an alkali metal (which is clear since AM
is the simplest metal atom containing only one electron
in the outer shell), whereas the silicon (100) surface has
been studied most thoroughly [5–7]. Numerous studies
have shown that upon a coverage variation from zero to
a monolayer in the system AM/Si(100), a number of
structural transitions occurs, which are accompanied in
addition by metal-semiconductor transitions (see [8]
and references therein). So, it is clear that the theoreti-
cal description of such a system is an extremely com-
plex problem.

However, the work function variation ∆φ(Θ) is a
smooth function of coverage Θ and as a rule does not
exhibit noticeable kinks or sudden changes. Moreover,
the behavior of work function variation caused by the
adsorption of metals on semiconductors is similar to
that caused by the adsorption of metals on metals; in
particular, a sharp decrease under small coverage is
retarded as the coverage Θ increases and sometimes is
even accompanied by an increase in φ under high cov-
erage that is close to monolayer. Therefore, the theoret-
ical models developed previously to account for the
adsorption of metals on metals can in principle be
applied for metal–semiconductor systems in spite of
the distinction between the electronic structures of the
1063-7842/04/4908- $26.00 © 21050
substrates. We undertook the first attempt of this kind
[9], where the Anderson–Newns model [10] adopted
generally for adsorption on metallic substrates was
reformulated for adsorption on semiconductors. The
adatom film was considered as structureless, and only
the increase of its density with Θ was taken into
account. Such a simplification of the actual pattern (i.e.,
disregard of structural transitions) is possible because
the main channel of the interaction of adatoms is the
dipole–dipole repulsion [11], which depends primarily
on the distance between nearest neighbors rather than
on the details of the adsorbed layer geometry (see [12]
and references therein). Since in addition to the dipole–
dipole interaction the direct and indirect electronic
exchange takes place between atoms in the film [11],
the broadening of the quasi-level of the adatom Γ was
taken into account in the model [9],

(1)

where Γ0 is the quasi-level halfwidth at zero coverage
and γ is the dimensionless coefficient.

It must be emphasized that here Γ0 accounts for all
processes including Auger transitions as opposed to
adsorption on a metallic substrate, where Γ0 describes
the probability of electron tunneling from an isolated
adatom to the conduction band of the substrate (or
back). The density of states at the isolated adatom is
equal as before to

(2)

where ω is the energy variable and Ω is the energy of
the adatom quasi-level relative to the Fermi level of the
substrate.

In this study, we will calculate the variations of
charge and work function in the Li, Na, K, Rb,

Γ Θ( ) Γ0 1 γΘ+( ),=

ρ0
1
π
---

Γ0

ω Ω–( )2 Γ0
2+

---------------------------------,=
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Cs/Si(100) in the framework of the model [9] and dis-
cuss the results of these calculations.

2. Let us present the design equations of the model
[9]. The adatom charge Z = 1 – n (n is the occupation
number of the s orbital) can be determined from the
self-consistent equation

(3)

Here, I is the ionization potential; ∆ is the Coulomb
shift due to the interaction of the adatom’s electron with
the electrons in the substrate, which we calculate disre-
garding the dielectric correction (ε0 – 1)/(ε0 + 1), where
ε0 is the static dielectric constant; ξ is the constant of
the dipole–dipole repulsion of adatoms; 2λ is the shoul-
der of the surface dipole formed by an adsorbed atom
and its image in the substrate; A ≈ 10 is the dimension-
less coefficient weakly dependent on the geometry of
the adatom geometry, which has a similar meaning as
the Madelung constant for the bulk crystal. Work func-
tion variation ∆φ is determined as follows:

(4)

The scheme of choice of the model parameters was
described in [9] as follows. In all cases, we assume the
density of adatoms in the monolayer equal to 1 ML =
6.78 × 1014 cm–2 (it is the density of silicon atoms on the
nonreconstructed (100) surface) and set the work func-
tion φ for the clean surface φ = 4.9 eV [13] (for some

Z Θ( ) 2
π
--- Ω ξθ3/2Z Θ( )–

Γ Θ( )
-----------------------------------arctan ,=

ξ 2e2λ2NML
3/2 A, Ω φ I– ∆,+= =

∆ e2/4λ .=

∆φ Θ( ) ΦΘZ ,–=

Φ 4πe2NMLλ .=

–2.0

0 0.2

∆φ, eV

Θ

0

0.60.4 0.8 1.0
–2.5

–1.5

–1.0

–0.5

Li

Fig. 1. Work function variation ∆ϕ as a function of coverage
Θ of the silicon (100) surface by lithium atoms. Solid
curve—theory, +—experiment [14].
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strange reason, experimentalists in their papers almost
never present values for the work function of a clean
surface). The λ value is assumed to be equal to half the
sum of the ionic ri and atomic ra radii (their values, as
well as the ionization potential values I, are taken from
[13]), since with increasing Θ, depolarization of the
adatom takes place and the radius of the adatom shell
should increase as a result [4]. The charge value Z0 ≡
Z(Θ  0) we determine by adjusting the theoretical
value (dφ/dΘ)Θ → 0 to the slope ∆φ(Θ) determined from
the experiment in the limit of zero coverage. Hence it
follows that

(5)

Then we determine the parameter γ using the exper-
imental value of ∆φML ≡ ∆φ(Θ = 1), or (see below)
∆  ≡ ∆φ(Θ = Θ*). In recent years, it has become cus-
tomary among experimentalists to present data on the
work function variation as a function of exposure time
τ (time of deposition of adatoms on the substrate sur-
face) even without attempts to assign a specific value of
Θ to the measured value of ∆φ. From the point of view
of the theory, this involves certain difficulties, since a
theorist should take some value of τ as τML, which cor-
responds to monolayer coverage.

3. The results of calculations of ∆φ(Θ) in compari-
son with experimental data are presented in Figs. 1–5,
and the calculated function Z(Θ) is shown in Fig. 6. The
values of the parameters calculated and obtained from
the fitting to the experimental data are listed in the
table.

Γ0
Ω
π
2
---Z0 

 tan

-----------------------.=

φML*

–2.0

0 0.1

∆φ, eV

Θ

0

0.30.2 0.4 0.5
–2.5

–1.5

–1.0

–0.5

Na

Fig. 2. Same as Fig. 1, but for sodium adatoms. Solid
curve—theory; experiment: +—[18], d—[19].
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Now we come to the discussion of the results.

Lithium. The work function of the Li/Si(100) system
in the range of submonolayer coverages was measured
in [14] (see also [15], where the range of small Θ was
studied). In our calculations, we assumed τML = 10 min.
The agreement with experiment can be admitted as
quite satisfactory. The sudden changes in ∆φ at Θ ≈ 0.3
and 0.45 are related to the structural transitions (2 × 2)

to (2 × 1) and to (3  × )R45°, respectively.
Clearly, our structureless model cannot account for
these peculiarities of the dependence ∆φ(Θ).

2 2

–3

0 0.1

∆φ, eV

Θ

0

0.30.2 0.4 0.5
–4

–2

–1

K

–3

0 0.1

∆φ, eV

Θ

0

0.30.2 0.4 0.5
–4

–2

–1

Cs

Fig. 3. Same as Fig. 1, but for potassium adatoms. Solid
curve—theory, +—experiment [19].

Fig. 5. Same as Fig. 1, but for cesium adatoms. Solid
curve—theory; experiment: +— [19], d—[23], j—[24].
Sodium. The results of ∆Φ(Θ) measurements are
presented in [16–19] also as a function of τ and not of
Θ. We established the correspondence between the τ
and Θ values using [16], where the characteristic drop
of the work function was assigned to the coverage Θ =
0.5. The fitting was carried out using the data of [18],
the value of Θ = 0.5 was attributed to the exposure time
τ0.5 = 7 min. The results are presented in Fig. 2. There
is a reasonable agreement between calculated and
experimental data.

Potassium. Adsorption of potassium on Si(100) was
studied in [19]. Because the data on adsorption of Na

–3

0 0.2

∆φ, eV

Θ

0

0.60.4 0.8 1.0
–4

–2

–1

Rb

0.2

0 0.2

Z

Θ

0.8

0.60.4 0.8 1.0

0.4

0.6

1
2
3
4
5

Fig. 4. Same as Fig. 1, but for rubidium adatoms. Solid
curve—theory, +—experiment [22].

Fig. 6. Variation of the adatom charge Z as a function of
coverage Θ of the silicon (100) surface by lithium (1),
sodium (2), potassium (3), rubidium (4), and cesium (5)
atoms.
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(and Cs) are also presented in this paper, relating again
the sudden change in the work function in the system
Na/Si(100) to the coverage Θ = 0.5 [16], we find that
the relative coverage θ* = 0.9 adopted in [19] corre-
sponds to the half-monolayer coverage of the surface
by potassium. Figure 3 demonstrates good agreement
between theory and experiment. Note that essentially
the same ∆φ(Θ) dependence is typical of the adsorption
on the (111) silicon surface [20, 21].

Rubidium. The results of the ∆φ(Θ) calculation are
presented in Fig. 4 in comparison with the experimental
data of [22], where τML = 10 min. Here, the discrepancy
between the calculated and experimental data is rather
strong under high coverage. Better agreement could be
obtained by changing the scenario of parameter fitting.
However, we did not do this, assuming that additional
experimental data are necessary to make final conclu-
sions.

Cesium. Cesium adsorption on the surface of semi-
conductors is the most thoroughly studied in the con-
text of the negative electron affinity problem. Fitting of
the parameters was performed in [19], assuming again
that θ* = 0.9 corresponds to Θ = 0.5. The results of cal-
culations are compared to the data of experiments [19,
23, 24] in Fig. 5. Here, we also assume that a good
agreement with the experiment is achieved.

The charge of adatoms Z(Θ) is shown in Fig. 6. This
is a very important parameter that determines the band
bending of the semiconductor and, hence, the height of
the Schottky barrier formed at the metal-semiconductor
interface [25].

4. Let us now discuss model parameters and con-
sider their variation in the sequence Li  Cs. In
accordance with the increase of the adsorption bond
length λ in this sequence, Φ, i.e., the work function
variation at Θ = Z = 1, increases linearly, whereas the
constant of the dipole–dipole interaction ξ increases
quadratically as we pass from lithium to cesium. The
position of the adatom quasi-level Ω changes insignifi-
cantly (from here on, Na is an exception) in spite of the
fact that the ionization energy in the sequence Li 
Cs decreases from 5.39 eV for lithium to 3.89 eV for
cesium (see Eqs. (3)). This is because the Coulomb
shift ∆ of the quasilevel decreases due to an increase in
λ. Thus, the two trends balance each other. The charge
Z0 of an isolated adatom also changes insignificantly
and the quasi-level width Γ0 defined by relation (5)
remains approximately constant as a result (again with
the exception of Na). And finally, the band-broadening
parameter γ decays drastically in going from lithium to
cesium and the γ value for Li seems to be too high (note
that in the case of Rb, we had to set γ = 0, since our
scheme for determining the parameters gave a value of
γ < 0; unfortunately, we have found no experimental
data on rubidium adsorption besides [22]).
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
As shown in [26, 27], the band broadening of the
quasi-level can be described by the parameter

(6)

where TML is the effective integral of the electron tran-
sition between the neighboring adatoms in the mono-
layer.

Since Ω and Γ0 change only slightly in going from
Li to Cs, it can be assumed that TML decreases in going
from lithium to cesium. If the distance between alkali
metal adatoms in the monolayer on the silicon (100)
surface were equal to the distances d between the near-
est neighbors in bulk crystals (d = 3.02, 3.66, 4.53,
4.84, 5.24 Å [28] for Li, Na, K, Rb, Cs, respectively),
assuming that TML ~ d–2 [29], we obtain for (d/dCs)–4 the
following values in the sequence Li  Cs:
9 : 4.2 : 1.8 : 1.4 : 1. From the table we have for (γ/γCs):
46.5 : 15.8 : 11.6 : 0:1. These series are similar with the
exception of the case of Rb adsorption. Here, it should
be stressed that parameter γ describes both the direct
tunneling of the electrons between neighboring ada-
toms and their indirect exchange through the substrate,
whereas the integral TML conforms to the direct
exchange only [30]. Therefore, the presented estimates
for TML are rather crude.

Thus, in the framework of the simple model, the
alkali metal adsorption on the silicon (100) surface has
been adequately described using only two fitting
parameters (Z0 and ZML) determined from experiment.
The fact that our results agree with the experimental
data during intermediate coverage 0 < Θ < 1 indicates
the feasibility of the proposed model.
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Abstract—Self-organization processes in biological fluids and aqueous solutions containing protein and salt
in various ratios have been studied in drops drying on the surface of a solid substrate. Morphological and his-
tochemical data show that the salt solution exhibits the phase transition in an organic jelly matrix formed in the
system. The physical properties of this matrix influence the kinetics of salt crystallization and the morphologi-
cal features of the observed salt patterns. Controlled UV-radiation-induced protein damage in protein–salt solu-
tions violates the formation of a regular gel and introduces chaotic features into the salt pattern. A new method
of investigation of the self-organization processes in drying drops is developed based on acoustomechanical
impedance measurements. It is suggested that the dynamic parameters of salt crystallization in drying drops
bear information on the composition of the whole biological fluid. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, there has been increasing interest in
the investigation of processes in drying drops of liquids
[1–5]. On the one hand, this is related to the develop-
ment of technologies involving such processes (e.g.,
spray application of lacquer and paint coatings on vari-
ous substrates), equipment (e.g., jet printers), and meth-
ods of predicting atmospheric phenomena. On the other
hand, a drying drop is an interesting object for basic
physics: it offers a natural model of self-organizing sys-
tems with a rich set of possible scenarios determined by
the liquid composition, substrate properties, and ambi-
ent conditions [6–8]. The character of salt pattern for-
mation in drying drops of biological fluids is an impor-
tant auxiliary criterion in medical diagnostics [9]. The
knowledge of laws governing the spatiotemporal
dynamics of events in drying drops is important in
selecting their integral evaluation criteria and in devel-
oping methods and techniques for the investigation of
such processes.

This paper reports on the results of investigation of
the sequence of phase transitions in drying drops of bio-
logical fluids and model protein–salt solutions. The
obtained data elucidate some causal relations between
the solution composition and the character of salt crys-
tallization.

MATERIALS AND METHODS

The experiments were performed with samples of
biological fluids taken from ten healthy donors (saliva,
urine, and blood serum) and from ten patients suffering
from various liver disorders (saliva and blood serum).
1063-7842/04/4908- $26.00 © 21055
In each experiment, six to eight 5-µl drops of a given
fluid were placed onto a separate glass substrate and
allowed to dry for one day at room temperature. In
some experiments, the drops on glass slides were dried
in a microscope (MBS-10) equipped with a TV camera
linked to a computer. By means of the Fly Video pro-
gram, the process of structure formation was studied
using digitized images recorded every minute into the
computer’s memory.

The spots of drops that dried on a substrate were
fixed for 10 min in methanol at 4°C and stained either
with cyanine blue to reveal glycosaminoglycans and
acid mucopolysacchcarides, or with periodic acid
(Schiff’s reagent) to reveal glycoproteins (periodic
acid–Schiff reaction) [10]. The stained spots were stud-
ied in a LUMAM-I3 microscope.

In a separate series of experiments, 5-µl drops of
blood serum were sequentially applied onto glass slides
with a time interval of 1 min (a total of 40 drops). One
minute after application of the last drop, all glasses
were simultaneously blotted with one layer of a sterile
bandage. As a result, the remaining liquid was absorbed
and it was possible to trace the development of pro-
cesses at the drop–substrate interface.

We have also studied the character of NaCl crystal-
lization in drying drops of a model protein solution
(0.5 mg/ml carboanhydraze in physiological solution)
before and after exposure to XeCl excimer laser radia-
tion (λ = 308 nm) [11]. The extent of the UV-radiation-
induced protein damage was evaluated by fast protein
liquid chromatography (FPLC system, Pharmacia Bio-
tech). The effect of protein concentration on the
dynamics of salt crystallization was studied using 7, 8,
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Phase transitions in drying drops of (a–c) urine, saliva, and blood serum, respectively, of a healthy donor and (d) blood serum
of a patient with hepatitis: (1) beginning of drying; (2) gel matrix formation; (3) phase transition in the salt solution (magnification, ×5).
and 9 wt % solutions of dry bovine serum albumin
(BSA) in physiological NaCl solution.

The dynamical characteristics of phase transitions in
drying drops were determined by measuring the acous-
tomechanical impedance (AMI) using a computer-con-
trolled setup described elsewhere [12]. The idea of this
method is essentially as follows. When a 5-µl liquid
drop is drying on the surface of a quartz resonator plate
oscillating at a constant frequency (equal to the reso-
nance frequency of the unloaded resonator, 60 kHz),
there arises a shear wave highly sensitive to the forma-
tion and growth of a new phase at the liquid–quartz
interface. The experimental setup measures a change in
the complex electric conductivity of the liquid–quartz
system, calculates the parameters of the AMI dynamics
in the drying drop, and displays their variation on a
monitor in the real time scale.

RESULTS AND DISCUSSION

Previously [12, 13], we reported that the first stage
of drying in the drops of biological fluids is accompa-
nied by flattening of the initial dome. The mechanism
of this flattening is related to the drop attachment to the
substrate surface along the boundary of three phases
[7, 14]. The process of dome flattening gives rise to
centrifugal flows carrying particles of the solid phase to
the periphery [7, 8]. A common feature for the drops of
all biological fluids studied was the formation of an
organic jelly matrix in the initial stage of solution con-
densation, which is followed by a phase transition in
the salt solution in this matrix (Fig. 1). Therefore, the
kinetics of salt crystallization may bear information
about peculiarities of the gel structure and, hence, on
the whole fluid structure. In order to check for this
assumption, the first series of experiments was devoted
to investigation of the kinetics of a phase transition in
the salt solution depending on the protein content in
this solution.

Figure 2 shows the AMI curves reflecting the
dynamics of structure formation in the drops of 7, 8,
and 9 wt % BSA solutions in physiological salt solution
(0.9 wt% NaCl). We divide each curve into five regions
corresponding to various stages of the process. Let us
consider these stages as manifested in curve 3 of Fig. 2.
With the onset of drying, a drop adheres to the sub-
strate, which is accompanied by flattening of the dome
and the formation of a protein ring (region ab). The next
stage (region bc) corresponds to the gel formation.
Region cd reflects the phase transition (crystallization)
in the salt solution. This stage is followed by evapora-
tion of the remaining free water (region de). The final
region ef corresponds to the weight of a dry residue
containing weakly bound and immobilized water. Thus,
measurement of the AMI dynamics (Fig. 2) shows var-
ious stages in the structure formation and reveals differ-
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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Fig. 2. The dynamics of AMI signal (Y axis, arb. units) variation with time (X axis, min) in drying drops of (1) 7, (2) 8, and (3) 9 wt % BSA
solutions in 0.9% NaCl (physiological solution): arrows indicate the boundaries a–f of regions corresponding to different stages of
the process (see the text for explanation).
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Fig. 3. The dynamics of AMI signal (Y axis, arb. units) variation with time (X axis, min) in drying drops of blood plasma (black
curve) and serum (bright curve) prepared from the same sample of donor blood.
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Fig. 4. Structure formation in drying drops of 0.5 mg/ml carboanhydraze solution in physiological solution (1) before and (2, 3)
after UV irradiation to a dose of 20 and 200 J/m2, respectively: (a) molecular mass distribution; (b) the pattern of light scattering
during the first six minutes of drying; (c) micrographs of the dry spot; (d) micrographs of salt patterns in the central zone indicated
by arrows in (c) (magnification, ×140).
ences between solutions with various protein concen-
trations. The observed distinctions can be related to dif-
ferent densities of the gel: an increase in the protein
content leads to slower rate of water evaporation in the
salt crystallization stage (region cd), which limits the
rate of crystallization.

Analogous results were obtained in a comparative
study of the dynamics of structure formation in the dry-
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ing drops of plasma and serum prepared from blood of
the same donor. Indeed, the partial removal of protein
from the liquid blood fraction accelerated the phase
transition in the salt solution (Fig. 3).1

The next series of experiments was devoted to the
kinetics of structure formation in drying drops of the
model protein–salt solutions with different extent of the
UV-radiation-induced protein damage.2 In the intact
model protein solution (0.5 mg/ml carboanhydraze in
physiological solution), the protein was present in the
form of monomers (Fig. 4a, curve 1). Exposure to XeCl
excimer laser radiation to a dose of 20 J/m2 led to the
appearance of dimers and molecular fragments
(curve 2). Upon a tenfold increase in the radiation dose,
protein mostly occurred in the form of dimer, trimer,
and polymer fractions with a considerable amount of
fragments (curve 3).

A change in the state of protein in solution was indi-
cated by the light-scattering ability of drops within the
very first minutes of drying (Fig. 4b). The drops of unir-
radiated solution retained a homogeneous structure up
to the moment of salt crystallization. The relief of dry
spots exhibited a central zone of the salt pattern
(Fig. 4c), representing a regular NaCl crystal, sur-
rounded by concentric scalloped structures (Fig. 4d).

Irradiation of the protein solution to a dose of
20 J/m2 led to a significant increase in the light scatter-
ing from drying drops as a result of protein aggregation
and was accompanied by the formation of a coarse pro-
tein matrix with an admixture of protein aggregates
(Fig. 4b, series 2). the central zone of the spot appeared
disordered (Fig. 4c, image 2) and consisted predomi-
nantly of coarse salt crystals with distorted shapes and
rare patterns with broken symmetry (Fig. 4d, image 2).

An increase in the radiation dose to 200 J/m2 was
accompanied by very rapid aggregation of the damaged
protein: massive aggregates precipitated on the sub-
strate within one minute and did not take part in subse-
quent events. As a result, the content of protein in the
liquid part of the irradiated drop was much lower than
in the initial solution. Apparently, the remaining protein
formed a more homogeneous medium than that in the
drop irradiated to a lower dose. For this reason, the dry
spot relief again exhibited a clear central zone with salt
patterns. The patterns also represented centrosymmet-
ric figures, but their shapes were different from those
observed in the case of unirradiated solutions: each pat-
tern comprised a salt crystal surrounded by radial
arrowlike structures (Fig. 4d, image 3).

Figure 5 shows the AMI signal dynamics reflecting
the aforementioned peculiarities in the process of struc-
ture formation in drying drops of the model protein
solution. Acceleration of the protein aggregation and its
precipitation on the quartz crystal surface upon irradia-

1 Blood serum differs from plasma by the absence of protein fibrin-
ogen (which amounts to 4–5 wt % in the blood plasma).

2 These results were obtained in the joint investigation [11].
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tion are manifested in the radiation-dose-dependent
leftward shift of the ascending part of the curve. The
chaotic structure formation in the drops irradiated to a
dose of 20 J/m2 corresponds to a higher peak, which can
be explained by a greater amount of water immobilized
in the drying gel. Broadening of the AMI curve and the
appearance of secondary peaks upon irradiation to a
dose of 200 J/m2 is evidence of violated spatiotemporal
synchronicity of the process of salt crystallization.

Thus, the degree of protein damage influences the
kinetic parameters of salt crystallization in protein–salt
solutions. The dynamics of AMI signals measured in
the drying drops reliably reflects physicochemical fea-
tures of the structure formation related to both the con-
centration and qualitative state of the protein.

The events in drying drops of blood plasma and
serum are characterized by more complicated patterns.
To the best of our knowledge, the first description of the
dynamics of structure formation in drying drops of pro-
tein solutions was presented by Rapis [15]. According
to [15], various protein solutions (including blood
serum) exhibit the following sequence of events: (i) the
formation of rings at the periphery of drops; (ii) the
appearance of radial arclike cracks; (iii) the formation
of the central zone free of the rings. The dry spots of
various protein solutions exhibited the characteristic
“rosette,” formed as a result of the radial cracking, and
blocks resembling “cages with balls” formed as a result
of the transverse cracking. In [15], the observed phe-
nomena were attributed for the first time to the process
of self-organization in a protein solution occurring
under nonequilibrium conditions. These investigations
were continued in [9], where a considerable body of
experimental data was collected for the structure for-
mation in the drops of human biological fluids in appli-
cation to medical diagnostics. In [9], morphological
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Fig. 5. Dynamics of the AMI signal variation in the drying
drops of 0.5 mg/ml carboanhydraze solution in physiologi-
cal solution measured (1) before and (2, 3) after UV irradi-
ation to a dose of 20 and 200 J/m2, respectively.
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Fig. 6. Sequential stages of structure formation in drying drops of blood serum at the liquid–substrate interface revealed via removal
of the liquid part of drops at various moments of time after the beginning of drying: (a) images of the solid phase formed in the
drops (magnification, ×5); (b) gel structure (magnification, ×140).
description was provided for the drying drops of blood
serum and the morphological features of salt and pro-
tein structures were studied depending on the concen-
trations of these components in biological fluids. Our
observations coincide with the previously reported data
on the sequence of morphological patterns observed in
drying drops of blood serum under a microscope. How-
ever, some published data and the new results obtained
in our investigations allow the process to be interpreted
from a somewhat different standpoint.
We have traced the sequence of structures formed in
the drying drops of blood serum by terminating the pro-
cess via removal of the liquid part of drops at various
moments of time after the beginning of drying. The
results presented in Fig. 6 illustrate the development of
processes at the liquid–substrate interface. Figure 7
shows the dynamics of structure formation as reflected
by the AMI data for the drying drop of the same blood
serum.

As early as in one minute after placing a drop onto
the glass substrate, a solid ring appeared indicating the
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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line of drop attachment to the substrate. The same phe-
nomenon was observed in suspensions of polystyrene
microspheres in deionized water and related to centrif-
ugal hydrodynamic flows arising in drying drops [7].
For this reason, we believe that a certain role in the pro-
cess is played by the aggregation of protein, which is
manifested by gradually increasing light scattering. A
part of protein aggregates are transferred to the periph-
ery to form the attachment line, while the other are pre-
cipitated onto the substrate and involved in the gel for-
mation in the course of condensation (Fig. 6).
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Fig. 7. The AMI signal dynamics in a drying drop of blood
serum used in the experiment presented in Fig. 6.
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Thus, the front of structure formation in the liquid
part of the drop propagates simultaneously with the gel
layer formation at the liquid–substrate interface: the
liquid drop “moves” over the gel surface leaving con-
centric circles behind (Fig. 8a).

The nature of this front motion in drying drops, as
described in detail by Geguzin [14], is related to a peri-
odic jumplike restoration of the most equilibrium drop
shape corresponding to the minimum ratio of the sur-
face area to volume. As the drop boundary moves
toward the center, the ratio of protein to salt changes in
favor of the latter component. As is known [16, 17], the
presence of salts significantly influences the process of
gel formation in solution by modifying both the solu-
tion structure and the polymer properties. It was dem-
onstrated [18] that increasing salt concentration in pro-
tein–salt solutions inhibits the gel formation. Probably,
it is this circumstance that accounts for the typical con-
cave shape of a drying drop of blood serum or plasma.
An increase in the concentration of salts leads to a
decrease in the coefficient of water diffusion through
the gel [19]. For this reason, the front of salt crystalli-
zation propagates from the periphery to the center
(Figs. 8c and 8d). If the gel is loose, it cannot hold the
drop on the surface [20]. The front of structure forma-
tion in the gel is difficult to distinguish under an optical
microscope (Fig. 1d). In some cases, it is possible to
observe the formation and separation of a rather dense
gel, with residues of the liquid phase of the blood serum
drying on a hydrophobic surface of this gel (Figs. 8e
and 8f).
(‡) (b) (c)

(d) (e) (f)

Fig. 8. Propagation of the structure formation front in drying drops: (a–d) the beginning of salt crystallization in a drop of the blood
serum of a healthy donor (the arrow indicates traces of the front propagation); (e, f) liquid phase on the surface of a dense gel in a
drop of the blood serum of a patient suffering from chronic liver disorder.
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Thus, the process of gel formation in a drying drop
of blood serum or plasma precedes the phase transition
in the salt solution. Some aspects of this process were
considered in our previous paper [21]. The cooperative
character of processes involved in the structure forma-
tion in drying drops is reflected in the dynamics of the
AMI signal variation.

In the above considerations, the main attention was
devoted to the events at the drop–substrate interface.
However, transformations observed at the drop–air
interface are sometimes no less interesting. These phe-
nomena, originally described in [9], were repeatedly
observed in our experiments. During the first minutes
of drying, the surface adsorption layer features the for-
mation of quasi-opposite “cords” capable of moving
within the near-surface layer (Fig. 9a) and eventually
vanishing from the visual field. We believe this to be a
manifestation of the polymerization of macromolecules
and the onset of framework formation in the drop from
above. This process may involve such macromolecules
as glycoproteins, glycolipids, and glycoaminoglycans.
Indeed, histochemical staining of the dry spots shows
that the protein framework comprises a multilevel net-
work (Figs. 9b–9d). Although the salt components are
washed out during this treatment, it is obvious that the
framework structure can influence the kinetics of water
evaporation and, hence, salt crystallization in this sys-
tem.

The process of self-organization in drying drops of
liquid media having complex compositions is highly

(c) (d)

(‡) (b)

Fig. 9. Micrographs of the surface of a drying drop of blood
serum showing the formation of (a) “cords” (magnification,
×10) and (b–d) a multilevel fiber network revealed in the dry
spot by a procedure of fixation and staining (magnification,
×140): (b) cracked surface; (c) peripheral region; (d) central
region.
rich in events and by no means exhaustively studied so
far. Many years of research and great effort of research-
ers will be required for elucidating this phenomenon
step by step in detail. Nevertheless, the known physical
phenomena and the results of our investigations allow
some key points to be outlined in concluding remarks.

CONCLUSIONS

A liquid drop on a solid substrate acquires the equi-
librium shape corresponding to the minimum surface
area for a given volume and the degree of substrate wet-
ting. The process of self-organization in drying drops of
protein–salt solutions begins with the formation of pro-
tein adsorption layers at the phase boundaries. Conden-
sation of the material stimulates the aggregation of pro-
tein and the polymerization of macromolecules, thus
leading to the development of a multilevel gel structure.
The formation of a solid phase ring at the periphery
determines the line of attachment to the substrate and
forces the drop to flatten so that its shape deviates from
equilibrium.

If the surface energy exceeds the force of adhesion
at the boundary of three phases, the drop exhibits a jum-
plike decrease in diameter and acquires the equilibrium
shape again. This process can be repeated, leaving con-
centric circles of solid phase corresponding to the drop
attachment lines. As the front approaches the center, the
drop mass decreases and the salt concentration
increases.

If the gel density is low, the residual liquid phase
does not form a drop on the gel surface. In this case, the
drying proceeds inside the gel.

The final stage of drying involves the phase transi-
tion in the salt solution. Special features of this stage
are determined by the gel structure. The kinetics of
water evaporation during the phase transition is deter-
mined by physical properties of the gel, which depend
on the concentration and characteristics of macromole-
cules and the concentration of low-molecular-weight
organic components in the medium. In other words, the
kinetics of the final stage of drying (i.e., of the phase
transition in the salt solution) contains integral informa-
tion about the composition and state of the whole
liquid.

It was established that the dynamics of AMI signal
variation reflects the sequential stages of structure for-
mation in a drying drop and can be used for their char-
acterization.
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Abstract—Protective α-Al2O3 coatings on the surface of a graphite article have been obtained by method of
electric-arc metallization with aluminum and microarc oxidation (anodic spark process). Investigation of the
obtained coating by scanning electron microscopy (SEM), X-ray diffraction (XRD), and proton elastic recoil
detection analysis (ERDA) showed good quality of the Al and α-Al2O3 coatings on graphite. The proposed
technology can be used for obtaining protective coatings in low-accessible sites of graphite articles. © 2004
MAIK “Nauka/Interperiodica”.
Articles made of carbon-based composites are
widely used in various technologies. However, carbon
is subject to oxidation in oxygen-containing media at
high temperatures, which decreases the working life of
such materials. This paper presents the results of evalu-
ation of a new technology developed for protecting the
surface of articles made of carbon-containing materi-
als, which is based on a combination of two methods:
electric-arc metallization with aluminum and microarc
(anodic spark) oxidation.

The process of electric-arc metallization is one of
the most effective coating technologies, characterized
by high output and low consumption of energy and
materials. This method is based on arc melting of a wire
and gas spraying of the melt and allows using both
compact and powdered coating materials. The main
disadvantage of coatings obtained by this method is
porosity of the deposit. Using aluminum wire for the
surface metallization provides for the formation of
coatings characterized by high plasticity and low poros-
ity. The protection of an aluminum-coated article is
provided by a layer of an aluminum oxide, which is
formed using the anodic spark process conducted in an
aqueous electrolyte [1, 2]. This technology is also char-
acterized by low consumption of energy and materials
and by relatively simple equipment. A partly oxidized
aluminum layer forms a heat-resistant film of α-Al2O3.

In order to protect the surface of graphite-based
composite materials from high-temperature oxidation,
a complex technology has been developed that includes
metallization of the surface of articles with aluminum,
followed by partial oxidation of this metal coating. This
study was aimed at the development of equipment for
the microarc (anodic spark) oxidation of extended arti-
cles made of carbon-containing composites, after pre-
liminary metallization by electric arc spraying. The ini-
1063-7842/04/4908- $26.00 © 21064
tial metallization was performed using a wire of techni-
cal-purity aluminum, which allows subsequent
formation of aluminum oxide.

The technology of formation of a protective oxide
layer was as follows. First, the article was coated with
an aluminum-based alloy by means of electric arc wire
spraying. This method ensured a rather dense alumi-
num coating with porosity not exceeding 4%. The pores
are of the closed type and do not influence the subse-
quent oxidation stage.

A special feature of the anodic spark or microarc
oxidation (MAO) process is that this treatment utilizes
the energy of electric microarc discharges initiated at
the surface of an article immersed in electrolyte.
Numerous investigations [1–6] describe the formation
of oxides at potentials corresponding to the breakdown
of a continuous material. The thickness of the oxide
layer formed on the surface of a continuous material
depends on the electric field strength and can vary from
5 to 1000 µm [3, 4].

In the course of electrolysis, oxygen that has
evolved on the anode and has been activated by electric
discharge oxidizes the base metal. In order to maintain
the required electrical regime in the course of oxidation
(increasing the oxide thickness), it is necessary to
increase the applied electric voltage so as to provide
stabilization of microarc discharge. The MAO process
has a decaying character and the electric field has to be
maintained on a level ensuring breakdown of the oxide
layer and the formation of arc discharge. The discharge
lifetime varies within 0.1–0.001 s. The onset of the
oxide breakdown has an avalanche character and is
accompanied by a sharp increase in the electric current
density up to 10 A/cm2. Then, the discharge gradually
decays with time as the oxide thickness grows and the
electric strength of the oxidized layer increases.
004 MAIK “Nauka/Interperiodica”
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Oxidation of the surface layer of a metallized article
by means of the MAO process ensures the formation of
a uniform oxide film as a result of high-temperature
transformations in oxygen-containing electric dis-
charge at the metal surface. Electric discharges occur
on the surface areas possessing higher conductivity,
thus ensuring the formation of a dense oxide layer with
closed porosity. During the working life of an article
bearing such a protective coating, pores reduce thermal
conductivity of the surface layer and serve as compen-
sators for stress release, which favors the protection of
this article against high-temperature oxidation.

We have developed an experimental setup for the
MAO processing of extended articles such as tubes
(Fig. 1). The experiments were performed with graph-
ite cylinders (tubes) having an external diameter of
5 cm, an internal diameter of 3 cm, and a length of
about 65 cm. The setup for MAO processing of
extended articles (tubes) comprises base 1, case 2, and
container 3 with electrolyte 4. Article 5 is driven by
mechanism 6 via closed ring cathodes 7. The electro-
lyte, supplied by pump 8 into cathode cavities 9 with
holes, fills a ring-shaped gap between the tubular article
(anode) and cathodes 10. The flow of electrolyte pre-
vents the article-anode from overheating and allows the
process to be conducted at a high energy density.

The setup operates as follows. The electrolyte is
supplied to cathodes 7 and the article 5 is driven by
mechanism 6 through the cathodes occurring at a preset
electric potential. The applied potential gradually is
increased from 150 to 380 V in the course of article
propagation, which ensures a smooth increase in the
thickness of oxide layer formed on the surface of met-
allized article (Fig. 2).

The drive mechanism also serves as a current-carry-
ing electrode in contact with the aluminum-coated arti-
cle. The electric potential is applied by connecting this
electrode to a special converter using leads passing
through holes in the case.

The experiments were performed with technical
graphite of a grade using for manufacturing electrodes.
This material has elongated grains and certain porosity.
Metallization was provided by method of electric arc
spraying of a wire made of technical-purity aluminum.
The initial graphite exhibits certain open porosity, with
the pore size being comparable to the size of sprayed
metal drops. As a result, material deposited on the sur-
face of graphite was partly incorporated into pores of
the graphite base. The aluminum layer thickness
reached 250–350 µm (Figs. 3a and 3b). Arrows in
Fig. 3a indicate the boundary of an Al2O3 layer with
dopants and inclusions and the boundary of the Al met-
allization layer.

The surface of metallized articles was processed by
MAO in the setup schematically depicted in Fig. 1. The
process was conducted for 15 min using a KOH solu-
tion as electrolyte, with the applied voltage gradually
increased from 150 to 380 V. Oxidation takes place
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
only on the surface in contact with electrolyte, which
allows the protective coating to be formed on local
areas of the article.

The results of metallographic examination showed
that the oxide layer has a thickness exceeding 120 µm
and possesses a higher density at the boundary with alu-
minum substrate (Fig. 3b). The oxide surface is highly
porous and exhibits numerous fused areas in the form
of microcraters and droplets formed as a result of par-
tial melting of the oxide layer. An analysis of the met-
allographic data showed that MAO process extends
inside the pores, where the traces of microarc localiza-
tion (fused craters) are also present. Thus, it should be
noted that the oxide layer grows not only from the outer
surface, but from the inner pore surface as well, which
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Fig. 1. Schematic diagram of the experimental setup for
MAO processing of extended articles made of carbon com-
posites with metallized (Al-coated) surface (see the text for
explanations).
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Fig. 2. SEM image of the surface of a metallized graphite
article upon MAO processing.
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results in the formation of a developed oxide surface
incorporated deep into the metallization layer [7–10].

The proposed setup allows the MAO process to be
conducted for an interelectrode gap width of 20–
30 mm, which reduces the electric energy losses and
ensures the formation of oxide with a thickness of up to
150 µm at an applied voltage of ~340 V. It was found
that the optimum electrolyte temperature for the MAO
process (50–60°C) is provided by heating due to the
electric energy losses in the interelectrode gap filled
with electrolyte. Articles can have arbitrary thickness
and a length of 1 m or more.

(‡)

(b)

Al2O3 Al2O3AlC

Fig. 3. SEM images showing (a) a general view of the
traverse section of a graphite article with (Al, Al3O3) coat-
ing and (b) the same section at a greater magnification for
examination of Al2O3 coating.

100 µm×800 20.0 kV

Al2O3

500 µm×100 20.0 kV
The X-ray diffraction (XRD) analysis of the coating
(Fig. 4) showed that the oxide layer consists predomi-
nantly of a heat-resistant phase of aluminum oxide
(α-Al2O3), aluminum, and, probably, about 9% of a
chromium oxide phase (CrO3). Particles of a finely dis-
perse powder (e.g., chromium oxide) introduced into
the electrolyte are incorporated into the coating and
fused into aluminum oxide. The high-temperature form
of the oxide is formed predominantly at the oxide–
metal interface. The energy spectra obtained by proton
elastic recoil detection analysis (ERDA) of α-Al2O3
coating formed on the surface of metallized graphite
showed that the oxide film contains the metal compo-
nent of electrolyte (potassium), the metal of cathode
(iron), and, probably chromium (Fe and Cr are difficult
to distinguish by this analytical method).

The density of the upper layer of the oxide coating,
having the phase composition (Al2O3; Al; CrO3),
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Fig. 4. X-ray diffraction pattern from the surface of alumi-
num alloy upon MAO processing.
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Fig. 5. The energy spectra obtained by ERDA of Al2O3
coating obtained by MAO on the metallized (Al-coated)
graphite surface. Points show experimental data; the solid
curve shows the results of theoretical fitting.
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amounts to 3.74 g/cm3, which is close to the density of
α-Al2O3 (ρ = 3.98 g/cm3) [5]. The adhesion of the oxi-
dized layer formed on the surface of aluminum (deter-
mined by scribing with a diamond pyramid) varies
within 42–67 MPa on various areas. The surface hard-
ness on some areas of the oxide coating (at the dark
spots representing inclusions of the CrO3 phase) varies
from 1.36 × 104 to 1.72 × 104 N/mm2.

The process of oxidation involves the formation of
mixed oxides of aluminum and metals contained in the
complex anion of electrolyte. Metal anions can be
introduced into electrolyte via dissolution of an elec-
trode (cathode) or the corresponding alloy. In a oxida-
tion steady-state regime, the current density amounts to
0.1–0.5 A/cm2. The main parameters for controlling the
MAO process and the properties of oxide layers are the
electrolyte concentration, the applied voltage and cur-
rent, the process duration, the alloy composition, and
the thermal treatment conditions.

Preliminary tests performed for the articles coated
by the proposed complex technology (graphite, Al,
Al2O3) and exposed in atmosphere at high humidity and
elevated temperature (600–900°C) showed good resis-
tance and sufficiently high working properties of the
articles.

CONCLUSIONS

(1) We have developed experimental equipment for
obtaining protective coatings on the surface of articles
made of carbon-containing composites (in particular,
tubes having an external diameter of 5 cm, an internal
diameter of 3 cm, and a length of about 65 cm). The
setup ensures high quality of the local oxide coating in
low-accessible sites of articles. The articles made of
graphite can be protected by oxide coatings containing
several components such as Al2O3, CrO3, etc., and
doped with elements contained in the electrode (e.g.,
Fe) and electrolyte (e.g., K).

(2) The obtained coatings can provide protection of
articles made of carbon-containing composites,
intended for operation under high-temperature oxida-
tion conditions.
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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Abstract—We demonstrate the possibility of melting thin (0.1–0.5 µm) InSb films directly in atmosphere under
the protective layer of native oxides to obtain high mobility of majority carriers (up to 25 000 cm2/V s). The
features of the film synthesis process based on thermal pulsed evaporation of InSb powder in vacuum are stud-
ied experimentally. Such a technique makes it possible to provide necessary compositional inhomogeneity of
the deposited film for subsequent melting in air. © 2004 MAIK “Nauka/Interperiodica”.
The increase in the number of problems solved by
functional electronics stimulates continuous interest in
one of the III–V compounds (semiconductors), indium
antimonide, since it has a small band gap (0.165 eV)
and an extremely high electron mobility (up to
78 000 cm2/V s in a single crystal at room temperature)
[1]. The effective mass of electrons in InSb is 0.014 of
the free electron mass. The outlined properties distin-
guish this compound from other III–V materials to the
extent that just InSb films are appropriate for use in
such information processing devices as magnetoresis-
tors, Hall transducers, amplifiers, detectors, and sur-
face-acoustic-wave convolvers [1].

It is well known [1] that fabrication of thin InSb
films, which are interesting due to the necessity of
increasing the sample impedance without changing the
carrier mobility, is an extremely difficult task. Most
studies on thermal film deposition pose the problem of
obtaining the deposited material with the stoichiomet-
ric composition and subsequent deposition of the pro-
tective layer to preserve stoichiometry after annealing
or remelting. However, these operations are poorly
reproducible; in particular, it is difficult to ensure sto-
ichiometry and especially to preserve it when the sub-
strate is heated to its melting temperature because of the
high antimony vapor pressure. Nevertheless, this
approach has found many technological implementa-
tions, although in most cases no reproducibility of the
parameters has been achieved so far [1].

We propose a new technique for film deposition that
ensures compositional nonuniformity over the film
thickness (having the percentage of In and Sb in mind),
which makes it possible subsequently to melt the film
under the native oxide layer. Thermal evaporation of
the InSb powder and film deposition onto the Polikor
substrate was carried out using the pulsed method [1, 2]
in the quasi-closed tantalum crucible. Preliminary sub-
1063-7842/04/4908- $26.00 © 21068
strate degassing was performed at 500°C for 5 min.
Contrary to the discrete technique, in which the InSb
powder from a vibrobunker falls onto the preheated
crucible, the evaporation from the quasi-closed crucible
does not ensure compositional uniformity over the
whole area of the substrate [1]. Film stoichiometry is
preserved only in the substrate region located against
the crucible nozzle, as shown schematically in Fig. 1,
and strongly depends on the time of crucible run-up
[2, 3]. The method of pulsed evaporation is simple,
reproducible, and ensures the constancy of the follow-
ing two parameters: the mass of the loaded powder
(20 mg in our case) and the time of crucible heating to
complete evaporation, which determined our choice of
film deposition technique. The substrate was positioned
at a distance of 40 mm from the crucible nozzle. The
nozzle edges were turned through an angle of 20°–30°
towards the sample surface. The direction of the flux of
the evaporated substance, which results in spatial com-
positional nonuniformity (Fig. 1), ensured the initial
excessive antimony content at the film surface. The cru-

1

2
3

4 5

Fig. 1. Schematic representation of the In and Sb distribu-
tion over the substrate. (1) Polikor substrate; (2) In, Sb;
(3) Sb; (4) InSb powder; (5) crucible cross section.
004 MAIK “Nauka/Interperiodica”
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cible was heated to 2000°C for 1–2 s using a current
pulse with an amplitude of 150 A. The crucible config-
uration, the distance to the substrate, and the tilt of the
nozzle were adjusted empirically via the continuous
monitoring of the film composition by Auger spectros-
copy. Then the fact was taken into account that, in addi-
tion the method of deposition, the substrate temperature
also affects the film composition. Figure 2 shows the
dependences of In and Sb contents at the film surface
(measured by Auger spectroscopy and using Hall
mobility measurements before and after melting,
respectively) on the substrate temperature at the instant
of deposition. The Hall mobility was measured by the
van der Pauw four-contact technique [4]. Note that the
composition of the film surface became stoichiometric
after melting, which explains the drastic increase in
mobility.

The dependence of the carrier mobility in a plasma
on the substrate temperature at the instant of evapora-
tion gives a clear idea of the character of the processes
involved. As the substrate temperature is about 200°C,
the surface composition of the film is determined in fact
by the crucible geometry and the heating mode. It was
impossible to melt films obtained at these temperatures
(Fig. 2, zone I). Globulation of In (i.e., the formation of
semispherical droplets with base diameter of several
micrometers) is observed at the surface. The mobility is
several tens of cm2/V s in this case. These features are
observed at temperatures up to 270–280°C. Only in the
narrow temperature range (280–290°C, zone II), where
the antimony content is four times higher than that of
indium, the oxidation of the upper surface of the film is
observed with the change of its color and subsequent (at
560–580°C, zone III) formation of the liquid phase.
The homogeneous melting itself, as in [1, 5], was
observed visually in reflected light due to the difference
in reflections from the surfaces of solid and liquid
phases, which were diffuselike and mirrorlike, respec-
tively. The melting occurred in air; the substrate with
the melt was rapidly removed from the heater so that
the film was in the liquid phase for a fraction of a sec-
ond only. As the residence time of the film in the molten
state increased, the oxide layer was destroyed and the
film was reevaporated.

One can assume that the excess antimony at the sur-
face is partially oxidized during the heating, which is
manifested as a change in film color at 300–350°C. On
further heating, the remaining antimony passes into the
melt under the protective layer formed during oxida-
tion; therefore, it is of interest to elucidate how the oxi-
dation of the upper layer affects the film properties,
which was actually performed in this study. It was
found that this layer is indeed formed from the oxidized
antimony, since it is reevaporated at 660°C (the evapo-
ration temperature of indium oxide is about 2000°C),
and successfully protects the film during melting. The
considerable increase in the mobility (Fig. 2) in relation
to the results obtained in [1] can be associated with the
elimination of the donor centers formed by the excess
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
antimony [1]. In our case, the excess antimony proba-
bly passes into the oxide or melt. Such an interpretation
of the processes occurring during melting enables us to
explain the high values of the Hall mobility in the
formed films as compared to the results obtained by
other research groups [1], when special protective lay-
ers were used.

This series of experiments on obtaining films using
the aforesaid technique showed a high extent of repro-
ducibility (more than 90%) of the Hall mobility values.

Such technology makes it possible to synthesize
with high reproducibility films 0.1–0.5 µm in thickness
with a mobility of 25000–30000 cm2/V s.
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Fig. 2. (a) Dependence of the composition ratio In/Sb at the
substrate surface on the substrate temperature; (b) depen-
dence of the Hall mobility on the substrate temperature.
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It is the authors’ opinion that the results may form
the basis for developing technologies for the synthesis
of thin films with reproducible electrophysical parame-
ters.

The results on the Hall mobility values at such small
film thicknesses (down to 0.1 µm) can become a basis
for experiments on quantum size effects as well as
radio- and acoustoelectric effects.
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Abstract—An analytic expression in the third order of smallness in the amplitude of the initial deformation of
an equilibrium, spherical, charged, ideally conducting drop in an incompressible dielectric medium is derived
for its generatrix and for nonlinear corrections to oscillation frequencies. It is shown that the presence of the
ambient liquid reduces the absolute values of the corrections to frequency and of the self-charge critical for the
realization of drop instability. © 2004 MAIK “Nauka/Interperiodica”.
1. The problem of nonlinear oscillations of a
charged drop in a dielectric medium is of interest in
connection with numerous academic, technical, and
technological applications [1, 2]. For this reason, this
problem has been analyzed in the second order of
smallness in the case of both an incompressible [3] and
a compressible ambient medium [4]. However, nonlin-
ear corrections to oscillation frequencies appearing
only in the third order of smallness have not been stud-
ied [5–7]. This stimulated the present study.

2. Let us suppose that we have a spherical drop (hav-
ing a radius R and bearing a charge Q) of an ideal,
incompressible, perfectly conducting liquid of density
ρ(i), which is placed in an ideal incompressible liquid of
density ρ(e) with permittivity εd and interface surface
tension σ. A complete mathematical formulation of the
problem on nonlinear capillary oscillations of a drop in
a medium can be found in [3, 8]; for this reason, we will
not consider this problem here for lack of space.

Solving the problem of the shape of a nonlinearly
oscillating drop by a multiscale method (as was done in
[3, 5–7]), we can find an analytic expression for the
generatrix of the axisymmetric drop at any instant to
within third-order terms. In dimensionless variables, in
which ρ(i) = R = σ = 1, this expression has the form
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Fig. 1. Dependence of coefficient bn characterizing the fre-
quency shift of the nth mode on the Rayleigh parameter W
for the initial excitation of the nth mode for various values
of density ρ(e) of the surrounding medium: 0 (1), 1 (2),
10 (3), and 100 (4); n = 4 (a) and 5 (b).
where ε is a small parameter defining the amplitude of
the initial deformation; Pn(cosϑ) is the nth order Leg-
endre polynomial; ϑ is the polar angle of the spherical
system of coordinates; t is the time; Ω is the set of indi-
ces of initially excited modes; hm are constants taking
into account the contribution of the mth mode to the for-
mation of the initial shape of the drop (  = 1);

ωn = (χn(n – 1)n(n + 1)(n + 2 – W))1/2 is the frequency
of capillary oscillations of the drop; W = Q2/(4π)εd is
the Rayleigh parameter; δkn is the Kroneker delta; and

χn , Klmn, , , , , ,

, , and  are the coefficients defined
in the Appendix.

3. It can be seen from relations (1) that the frequency
corrections proportional to bn have the second order of
smallness in ε and contain in their denominators factors
vanishing for certain relations between the frequencies
of different modes (in this case, we are talking about the
resonance nature of the corresponding corrections [9]).
If the fourth mode is excited at the initial instant, the

frequency correction has a resonance at  – 4  = 0;
if the fifth mode is excited, the resonance takes place

for  – 4  = 0. Away from resonance positions, cor-
rections to frequencies bnε2 decrease in absolute value
with increasing density ρ(e) of the ambient medium
(Fig. 1).

The allowance for nonlinear corrections to the fre-
quencies of capillary oscillations of a drop leads to a
change in the critical value Wcr of the Rayleigh param-
eter at which instability of the nth mode to self-charge
takes place [6]. The condition for the emergence of
instability of the nth mode with allowance for a nonlin-
ear correction to frequency can be written in the form

The effect of the ambient medium on the critical
conditions of instability boils down to an insignificant
increase in the critical value of the Rayleigh parameter
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upon an increase in the density ρ(e) of the ambient
medium (due to a decrease in the absolute value of
coefficient bb) [7] and to a substantial decrease in the
interface surface tension coefficient as compared to the
surface tension coefficient for a drop in vacuum [10].
As a result, the value of self-charge critical for realiza-
tion of instability in the presence of the ambient
medium decreases.

The amplitudes of the second- and third-order

modes  and  also depend on the density of the
ambient liquid, which leads to a certain change in the
shape of the surface of the drop (a local decrease in the
curvature of the drop’s surface) in a medium as com-
pared to a drop in vacuum (Fig. 2). The presence of an
external medium produces the most noticeable effect
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Fig. 2. Contour of the generatrix of a drop in the case of ini-
tial excitation of the seventh and eighth modes for h7 = h8 =
0.5, W = 3, and ε = 0.3. (a) ρ(e) = 0, t = (1) 0.01, (2) 0.075,
and (3) 0.22; (b) ρ(e) = 5, t = (1) 0.02, (2) 0.14, and (3) 0.525.
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on the shape of the drop’s surface in the vicinity of
points with the highest velocity.

CONCLUSIONS
The values of nonlinear corrections to the oscillation

frequencies of a charged drop of an ideal incompress-
ible conducting liquid in a dielectric incompressible
external medium substantially depend on the ratio of
the densities of the media and become smaller with
increasing density of the surrounding medium. The effect
of the ambient medium simulated by an incompressible
liquid on the stability of the drop to the self-charge is a
combination of the following two factors: on the one hand,
a nonlinear shift in the frequency of oscillations slightly
increases the critical charge; on the other hand, a sub-
stantial decrease in the interface surface tension coeffi-
cient (as compared to that for a drop in vacuum) leads
to a noticeable decrease in the critical charge.

APPENDIX

Expressions for Coefficients
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 and  being the Clebsch–Gordan coeffi-
cients.

ACKNOWLEDGMENTS
This study was supported by the Russian Founda-

tion for Basic Research (project no. 03-01-00760).

REFERENCES
1. A. I. Grigor’ev, Zh. Tekh. Fiz. 70 (5), 22 (2000) [Tech.

Phys. 45, 543 (2000)].
2. A. I. Grigor’ev and S. O. Shiryaeva, Izv. Ross. Akad.

Nauk, Mekh. Zhidk. Gaza, No. 3, 3 (1994).
3. V. A. Koromyslov, S. O. Shiryaeva, and A. I. Grigor’ev,

Zh. Tekh. Fiz. 73 (9), 44 (2003) [Tech. Phys. 48, 1124
(2003)].

4. A. R. Gaibov and A. I. Grigor’ev, Zh. Tekh. Fiz. 73 (7),
13 (2003) [Tech. Phys. 48, 813 (2003)].

5. A. N. Zharov, A. I. Grigor’ev, and S. O. Shiryaeva,
Pis’ma Zh. Tekh. Fiz. 29 (9), 75 (2003) [Tech. Phys.
Lett. 29, 388 (2003)].

6. A. N. Zharov, S. O. Shiryaeva, and A. I. Grigor’ev, Zh.
Tekh. Fiz. 73 (6), 36 (2003) [Tech. Phys. 48, 697
(2003)].

7. A. N. Zharov, S. O. Shiryaeva, and A. I. Grigor’ev, Zh.
Tekh. Fiz. 73 (12), 9 (2003) [Tech. Phys. 48, 1511
(2003)].

8. S. O. Shiryaeva, A. I. Grigor’ev, V. A. Koromyslov, and
A. N. Zharov, Zh. Tekh. Fiz. 73 (9), 60 (2003) [Tech.
Phys. 48, 1141 (2003)].

9. A.-H. Nayfeh, Perturbation Methods (Wiley, New York,
1973; Mir, Moscow, 1976).

10. R. C. Reid and T. K. Sherwood, The Properties of
Glasses and Liquids (McGraw-Hill, New York, 1966;
Khimiya, Leningrad, 1971).

Translated by N. Wadhwa

Γ kmgln
1 n 1+( )χn α lgn/g n 1 g–+( )Klgn+( )(=

× m 1–( )Kkmg α kmg/m–( ) k n+( )α kgn/ gk( )(+

+ n 1 g–+( )Kkgn ) m 1–( )Kmlg αmlg/m–( ) );

Πkmn
0  = n 1+( )χn nKkmn 2 k 1–( ) k 2+( ) m m 1+( )+( )((

+ W k 1–( ) n 5– k–( )) α kmn/k n 1 k–+( )Kkmn+( )ωk
2 )+

– ρ e( )nχnωk
2 n 1– k–( )Kkmn α kmn/ k 1+( )+( )

+ n n 1+( )χnW m 1+( ) k n m– 2–+( )Kkmn α kmn+( );

Πkmn
1 n 1+( )χn k m n– 2–+( )Kkmn(=

– n k m+ +( )α kmn/ mk( )) nρ e( )χn n k– m– 3–( )Kkmn(+

+ k m n 3+ + +( )α kmn/ m 1+( ) k 1+( )( ) );

Πkmn
2 n 1+( )χn m n– 1–( )Kkmn α kmn/m–( )=

+ nρ e( )χn n m– 1–( )Kkmn α kmn/ m 1+( )+( ),

Cm0l0
n0 Cm 1–( )l1

n0
TECHNICAL PHYSICS      Vol. 49      No. 8      2004



  

Technical Physics, Vol. 49, No. 8, 2004, pp. 1075–1078. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 74, No. 8, 2004, pp. 120–123.
Original Russian Text Copyright © 2004 by Buyanov, Stishkov.

             

BRIEF
COMMUNICATIONS

         
Peculiarities in the Structure of Electrohydrodynamic 
Through Flow in a Symmetric Electrode System

A. V. Buyanov and Yu. K. Stishkov
Research Institute of Physics, St. Petersburg State University, St. Petersburg, 198504 Russia

e-mail: stishkov@paloma.spbu.ru
Received November 25, 2003

Abstract—The patterns of velocity and acceleration distribution in an electrohydrodynamic through flow in a
symmetric system of electrodes have been experimentally studied. Analysis of the main features in the kine-
matic and dynamic flow structures provides information on the distribution of space charge and the course of
events in the recombination zone. It is established that the recombination zone extends beyond the interelec-
trode space. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Previously [1, 2] we described the zone structure of
electrodynamic through flows in an asymmetric (wire–
plane, sheet–plane) electrode system and performed a
comparative analysis of such flows and counterflows in
symmetric (wire–wire) electrode systems. One distin-
guishing feature of the flows in symmetric electrode
systems is the presence of long lateral streams featuring
charge recombination [3]. As is known, the structure of
electrodynamic flows in symmetric electrode systems
is determined by the ratio of the rates of ion formation
at the cathode and anode. If these rates are equal, the
flow has the form of two streams of equal intensity. In
the lateral streams, the fluid moves perpendicularly to
the line connecting the centers of electrodes. If the ion
formation rates are different, the flow structure is dis-
torted and the flow from a more “active” electrode
(characterized by a higher rate of charge production)
dominates over the counterflow and the boundary
between these flows shifts toward the “passive” elec-
trode (characterized by a lower rate of charge produc-
tion). The case of a through flow is essentially a limit-
ing case of counterflow, whereby the flow from the
active electrode is much more intense than that from the
passive one. The angle of lateral streams relative to the
initial direction is very small, and the streams go far
beyond the interelectrode space [1]. For this reason,
such electrodynamic through flows in electrode sys-
tems are most promising for practical applications.

This paper addresses the kinematic and dynamic
structures of an electrohydrodynamic through flow in a
symmetric system of electrodes. The flows were
imaged using fine (several dozen microns) air bubbles
and the images were recorded with a TV camera. The
recorded data were processes on a computer using a
special program package described elsewhere [2, 5].
The results provide data on the fields of electrohydro-
dynamic flow velocity and acceleration vectors, surface
1063-7842/04/4908- $26.00 © 21075
diagrams, and maps of the velocity and acceleration
isolines.

KINEMATIC STRUCTURE 
OF ELECTRODYNAMIC FLOW

Figure 1 shows a map of velocity isolines for an
electrohydrodynamic through flow in a symmetric sys-
tem of electrodes. The lengths are measured in units of
the interelectrode distance. The maps are normalized to
the maximum velocity. A stream from the active elect-
grode (cathode) is indicated by arrow 1, while streams
going beyond the passive electrode (anode) are indi-
cated by arrow 2. The centers of electrodes occur at the
points with the coordinates (0, 0) for the cathode and (0,
1) for the anode. As can be seen, the velocity field struc-
ture in the electrohydrodynamic flow significantly dif-
fers from that in a system of the “wire over plane” type
[2]. The main distinctions (similar to the case of coun-
terflows) refer to the zones where the fluid flow exhibits
drag (deceleration). In a through flow, the zone of
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Fig. 1. A map of velocity isolines in an electrohydrody-
namic through flow in a symmetric electrode system.
Arrows indicate (1) a stream behind the active electrode
(cathode) and (2) a stream protruding behind the passive
electrode (anode).
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deceleration protrudes beyond the interelectrode space:
in the region behind the passive electrode, the fluid
velocity decreases by half at a distance equal to the
electrode spacing L. In this region, the field direction is
opposite to the direction of fluid motion. However, the
deceleration effect is quite small. This feature makes
the electrohydrodynamic through flow in the electrodes
especially attractive from a practical standpoint. How-
ever, these prospects require thorough investigation on
the flow structure.

Figure 2 shows the maps of velocity (a) and force (b)
isolines for a through flow in the region between elec-
trodes. The front edges of the active and passive elec-
trode occur at (0, 0) and (0, 1), respectively. As can be
seen, the zone structure characteristic of the flows in
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Fig. 2. Maps of (a) velocity isolines and (b) acceleration iso-
lines in an electrohydrodynamic flow within the interelec-
trode space.
asymmetric electrode systems (wire–plane, sheet–
plane) is retained on the whole, except for the deceler-
ation zone. Longitudinal dimensions of the acceleration
zone amount to 0.3–0.4L, while the analogous zones
for counterflows and flows in the wire–plane system do
not exceed 0.2L. The maps clearly reveal the zone of
uniform flow, which begins at a distance of 0.3L from
the active electrode and terminates at 0.8L, thus cover-
ing most of the interelectrode space. The zone of decel-
eration of the through flow begins at 0.8L and extends
far beyond the interelectrode space.

THE STRUCTURE OF ACCELERATION 
AND DECELERATION ZONES

In order to study the acceleration zone structure in
the through flow regime in more detail, we have pro-
cessed the video recordings of the electrohydrody-
namic flow in this zone near the passive electrode. The
recordings were made at large magnification, which
allowed the zone of interest to be studied with signifi-
cantly higher resolution. The results of such data pro-
cessing are presented in Fig. 3. As can be seen, the cur-
rent lines of the electrohydrodynamic flow exhibit sig-
nificant concentration at the active electrode and form a
narrow central stream. The acceleration zone has a fun-
nel-like shape with relatively small dimensions (2–4D
in length and about 2D in the cross section, where D is
the electrode diameter). This zone is localized immedi-
ately at the surface of the active electrode (cathode). In
the acceleration zone, the electrohydrodynamic flow
velocity significantly increases. Similar to the case of
flows in an asymmetric electrode system, the kinetic
energy of the flow is accumulated due to the energy
supplied by electric current. As can be seen in Fig. 3b,
a strong volume electric force is operative near the
active electrode. At a distance of 1–2D from the elec-
trode, the acceleration acquires a component directed at
a sharp angle relative to the central axis. This effect is
probably related to the electric charge present in the
central stream of the electrohydrodynamic flow.

The magnitude of acceleration before the electrode
edge (0, 0) is significantly smaller than in the interelec-
trode space, whereas in an asymmetric electrode sys-
tem and in counterflows [3] the fluid is noticeably
accelerated even in the region in front of the active elec-
trode. Another peculiarity of the electrohydrodynamic
through flow in the symmetric electrode system is a rel-
atively small width (1–2D) of the central stream
(Fig. 3).

Figures 4 and 5 show the results of high-resolution
investigation of a zone near the passive electrode. The
front edge of the passive has the coordinates (0, 1). In
the case of the usual streamlining of a cylinder by a
fluid under such conditions, the current lines go around
the surface in the so-called creeping flow regime and
the current line configuration is symmetric with respect
to the system axis [6]. An increase in the flow velocity
leads to the appearance of flow detachment behind the
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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cylinder. An analysis of the electrohydrodynamic
through flow in the electrode system under consider-
ation showed that detachment of the flow behind the
electrode takes place at lower velocities. Moreover, the
flow structure in this system exhibits a characteristic
feature: the flow separates into two streams not con-
necting over a large distance downstream from the elec-
trode (Fig. 4). Thus, the flow exhibits a “loop” inside
which the hydrodynamioc stability of the electrohydro-
dynamic flow is broken: the current lines change their
direction, the flow exhibits the first signs of turbuliza-
tion, and the line trajectories change with time.

As can be seen from Fig. 2, the rate of acceleration
(deceleration) in the drag zone is significantly lower
than that in the acceleration zone and only slightly
higher than in the zone of uniform flow. Figure 5 shows
that most pronounced changes in the flow velocity
occur in the vicinity of the passive electrode. This
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Fig. 3. Maps of (a) current lines and (b) velocity isolines
near the active electrode. Arrows show the acceleration vec-
tor field.
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region contains a small wedge-shaped stagnation zone
in front of the electrode. As can be seen from the image
of the acceleration vector field (Fig. 5b), the region in
front of the passive electrode features rather large drag
forces. The presence of this zone is related to the injec-
tion of charge from the passive electrode, which is car-
ried away by the main flow to the region behind the
electrode. In this case, the injection is much less intense
than in the case of counterflows and is incapable of
forming an opposite stream. Nevertheless, a bipolar
structure of the recombination zone is retained,
although the zone is displaced to the region behind the
electrode. In this region, the inner layers of the stream
are charged so that the sign of this charge is the same as
that of the passive electrode, while the outer layers
carry the opposite charge.

This bipolar structure is precisely what accounts for
the hydrodynamic structure observed in the region
behind the passive electrode, comprising two streams
resembling the structure of lateral streams characteris-
tic of the electrohydrodynamic counterflows [7]. In the
case of counterflow, the streams bearing opposite
charges separate at the point of merging to form lateral
streams in which the fluid is moving in parallel jets
without intermixing. Since the bipolar structure of the
lateral streams in counterflows is evident, it is reason-
able to assume that this bipolar structure is retained on
the passage from counterflow to through flow. By the
same token, the region of active charge recombination
is also retained but displaced beyond the intgerelec-
trode space. Under this assumption, the flow structure
observed behind the electrode can be explained. The
charge supplied from the active electrode is equilib-
trated on the whole in the region behind the passive
electrode by the charge injected from the latter elec-
trode. Behind this electrode, the stream (possessing a
bipolar structure) as a whole is not subjected to the
action of electric forces and the flow velocity decreases
predominantly under the action of viscous forces. As
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Fig. 4. A map of current lines near the passive electrode.
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Fig. 5. (a) Structure of the acceleration vector field and
(b) map of the acceleration isolines near the passive elec-
trode.
the flow propagates, the opposite charges attract and
recombine. This process is hindered by the molecular
surrounding of ions. Because of the mutual attraction of
ions and rather slow recombination process, the trans-
verse dimensions of the flow behind the electrode
remain almost constant, as can be clearly seen in Fig. 1.

CONCLUSIONS

The properties of the electrohydrodynamic through
flow in the symmetric electrode system are highly
attractive from the standpoint of various electrohydro-
dynamic devices. Such a flow provides optimum condi-
tions for the conversion of electric energy into hydrody-
namic energy, which can be of considerable practical
value, opening a new direction in the design of electro-
hydrodynamic systems. The new approach is character-
ized by rational selection of the properties of the elec-
trode–fluid interface and by making allowance for a
particular zone structure of the electrohydrodynamic
flow.
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Abstract—It is proposed to use centimeter microwaves to enhance the interaction of laser radiation with metal
targets. © 2004 MAIK “Nauka/Interperiodica”.
It is well known [1] that high-power laser radiation
can produce high-density heat fluxes through a small
area of the target surface and, thus, makes it possible to
heat, melt down, and evaporate almost all the materials.
All the above processes are governed by the thermal
effect of radiation absorption by solids. However, when
a target is made of metal, optical radiation is well
reflected from its surface. In particular, for tungsten, the
reflection coefficient for a CO2 laser is about 0.9; i.e.,
the absorption coefficient of a cold target is no higher
than 10% [1].

When the radiation intensity is ~1010 W/cm2, an
optical breakdown of air occurs over the target surface
and a plasma is produced with a temperature of a few
tens of thousands of kelvins [2]. Depending on the
experimental conditions, the generation of a plasma
near the target can significantly change the character of
the interaction of laser radiation with the target: this
interaction can either be weakened or enhanced.

For short (τ ~ 1 µs) pulses, the interaction is
enhanced when the plasma has no time to move away
from the target during the laser pulse. In this case, the
efficiency of energy transfer increases due to the
increase in radiation absorption with a subsequent heat
transfer to the target by either heat conduction or short-
wavelength (optical or UV) radiation that is emitted by
the plasma and is absorbed by the target more effi-
ciently than the original long-wavelength CO2 laser
radiation.

The effective absorption coefficient of the target α is
maximum when the radiation intensity reaches the
breakdown intensity. As the radiation intensity
increases further, the value of α decreases rapidly,
because the plasma propagation velocity increases and
the plasma has time to move away from the target dur-
ing the laser pulse. There is an obvious contradiction:
on the one hand, the initial breakdown requires a high
intensity of optical radiation; on the other hand, the
1063-7842/04/4908- $26.00 © 21079
energy deposition is more efficient at a lower radiation
intensity. This contradiction is usually eliminated by
specially shaping the laser pulse. For this purpose, a
laser pulse is formed that consists of a narrow peak with
a duration of ~200 ns (which is intended for break-
down) and a long tail comprising most energy of the
pulse (which is intended for energy deposition in a
plasma).

In this paper, we point out to the fact that the above
problem can also be solved by simultaneously applying
laser and microwave radiation to the target. In this case,
laser radiation produces an air breakdown over the tar-
get surface, whereas microwave radiation provides effi-
cient energy deposition. Let us consider both these pro-
cesses in more detail.

The reflection of microwaves from the conducting
surface of the target is accompanied by the formation of
a standing wave. According to the boundary conditions,
the tangential component of the electric field of the
incident wave vanishes at the conductor surface. The
first maximum of the standing wave is located at a dis-
tance of about l = λ/4 from the target surface (here, λ is
the microwave wavelength). Obviously, to achieve the
maximum energy deposition in the plasma, it is neces-
sary that l  0. In practice, the centimeter wavelength
range is optimal from the standpoint of energy deposi-
tion, because the power of the generated microwave
radiation decreases sharply when passing to shorter
(millimeter) microwaves [3]. For λ = 3 cm, we find that
l ≈ 0.75 cm.

Our measurements show [4] that, for a relative air
humidity of ~70% and a temperature of T = 292.5 K,
the velocity of the front of an expanding plasma pro-
duced by a CO2 laser (λ = 10.6 µm, I = 108–1010 W/cm2,
and τ = 100 ns) depends on the time passed from the
instant of breakdown. In the initial stage, the plasma
velocity decreases linearly over time. However, 3.5 µs
after the breakdown, the time dependence of the veloc-
004 MAIK “Nauka/Interperiodica”
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ity shows a steep inflection and the plasma velocity
becomes lower than (or comparable to) the speed of
sound. The average velocity at the descending segment
of the curve V = f(t) is about 3 × 103 m/s. Assuming
3.5 µs to be the time the laser plasma takes to move
away from the target, it is easy to calculate that, at this
time, the plasma is located a distance of ~1 cm from the
target surface; i.e., it is at a distance nearly equal to λ/4
for the microwave radiation that provides the necessary
energy deposition in the plasma. Therefore, the plasma
bunch falls into the first (counted from the target) max-
imum of the electric field of the standing wave, as is
seen in the figure.

λ/4

3

l d

2
1

Schematic diagram of the combined action of laser and
microwave radiation: (1) target, (2) laser plasma, and
(3) standing wave.
To provide the maximum energy deposition in the
plasma, it is necessary that the condition [5]

(1)

be satisfied (here, d is the plasma diameter).
In our case, this condition means that d ~ 0.8 cm;

i.e., the plasma radius d/2 turns out to be smaller than
the distance to the target l. Since the microwave energy
absorption is resonant in character, the plasma size
becomes stabilized. As a result, the efficiency with
which the plasma acts on the target in the course of
microwave absorption increases. Since λ > 1 cm, the
structure of the standing wave is only slightly distorted
throughout the microwave pulse. Model experiments
performed in a standing wave with a probing body
whose dimensions are close to the plasma diameter also
showed that the field structure is distorted only slightly.

Hence, it follows from the above consideration that
the combined action of laser and microwave radiation
provides a new method for making holes in metal tar-
gets.
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Abstract—A concise proof is given for the expansion of the reciprocal distance between two points in
spheroidal harmonics. The proof is given for an oblate and a prolate spheroid. © 2004 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

The expansion of the reciprocal distance D–1

between two arbitrary points in spheroidal harmonics
plays the decisive role in the representation of solutions
to the Laplace and Poisson equations in spheroidal
coordinates. The corresponding general formula is
derived in [1], but the proof is rather cumbersome. An
analogous derivation was later given in the handbook
[2]. Another proof was given in [3], but it is still indirect
and based on surface integrals.

Here, we show how at least the axisymmetric part of
the expansion of D–1 can be obtained in a concise and
direct manner. In all probability, the asymmetric part
can also be obtained in a similar way using the deriva-
tion proposed here as an example. This will facilitate
the construction of a more elegant theory of potential in
spheroidal coordinates (apart from the aforementioned
handbooks, a concise description of this theory can be
found in [4]).

COORDINATES OF AN OBLATE SPHEROID

We will use the Cartesian coordinates x1, x2, x3 and
spheroidal coordinates t, τ, ϕ connected via the well-
known relations

(1)

(the x3 axis is the polar axis).

We presume the existence of a certain reference
spheroid with semiaxes a1(=a2) and a3, where a1 > a3
(i.e., we consider an oblate spheroid for the time being).
The parameter c introduced in relations (1) is defined as

x1 R ϕ , x2cos R ϕ ,sin= =

R c 1 λ2+( ) 1 µ2–( ),=

x3 cλµ , ϕ
x2

x1
----- 

 arctan= =
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the focal length c = . We proceed from the
well-known identity [5]

(2)

(Pn and Qn are the standard notation for associated Leg-
endre functions of the first and second kind, respec-
tively).

Substituting –ic for c in relation (2), we obtain

(3)

To apply the theorem of addition of spherical func-
tions ([6], vol. II), we will use the representation t =
−ic(cosθcosψ + sinθsinψcosϕ) (angles θ, ψ, and ϕ
vary from 0 to 2π). This gives

Integration with respect to ϕ from 0 to 2π gives

(4)

We assume that cosψ is purely imaginary (cosψ =
iη); thensinψ > 1). Canceling out 2π in relation (4), we
obtain on the left-hand side

a1
2 a3

2
–

1
h t–
----------

1
c
--- 2n 1+( )Pn

t
c
-- 

  Qn
h
c
--- 

 
n 0=

∞

∑=

c– t c, h c>< <( )

1
h t–
----------

i
c
-- 2n 1+( )Pn

it
c
--- 

  Qn
ih
c
----- 

  .
n 0=

∞

∑=

Pn
it
c
--- 

  Pn θcos( )Pn ψcos( )=

+ 2
n m–( )!
n m+( )!

--------------------Pn
m θcos( )Pn

m ψcos( ) nϕ .cos
m 1=

n

∑

2π

h ic θ ψcoscos+( )2 c2 θ ψsin
2

sin
2

+
-----------------------------------------------------------------------------------------

=  
2πi
c

-------- 2n 1+( )Qn
ih
c
----- 

  Pn θcos( )Pn ψcos( ).
n 0=

∞

∑
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1/  (i.e., the reciprocal
distance between the test point with coordinate z = h on
the one hand and the attracting point with the cylindri-
cal coordinates R = csinθsinψ, z = cηcosθ on the other
hand). A comparison of these relations with (1) gives

(5)

The real-valued solution of Eqs. (5) has the form

(6)

To unify notation, we denote the spheroidal coordi-
nates of the test point by λ and µ, but with prime. As
long as we consider the position of this point on the
axis, the following conditions must be satisfied: µ' = 1
and λ' = h/c.

With allowance for these remarks and the definition
of function q adopted in [6], we obtain from expres-
sion (4)

(7)

This relation was obtained for the test point on the
axis. In the remaining space, if we take the rotationally
symmetric part and mark it by angle brackets, we must
replace, in accordance with the general rule, qn(λ') by
the harmonic function Pn(µ')qn(λ'); this leads to the
sought formula

(8)

Naturally, this formula coincides with those given in
[1–3].

COORDINATES OF PROLATE SPHEROID

In some physical problems, the coordinate system is
based on a prolate spheroid. Instead of relations (1)
slightly different relationships operate:

(9)

In this case, we substitute t = c(cosθcosψ +
sinθsinψcosϕ) into relation (2), which gives

h cη θcos–( )2 c2 θ ψsin
2

sin
2

+

1 λ2+( ) 1 µ2–( ) θ ψ, λµsinsin η θ.cos= =

λ η , µ θ.cos= =

1
D
----

i
c
-- 2n 1+( )Qn iλ'( )Pn µ( )Pn iλ( )

n 0=

∞

∑=

=  
1
c
--- 2n 1+( )qn λ'( )Pn µ( )pn λ( ).

n 0=

∞

∑

1
D
---- 1

c
--- 2n 1+( )Pn µ'( )qn λ'( )Pn µ( )pn λ( ).

n 0=

∞

∑=

R cλµ , z c 1 λ2+( ) 1 µ2–( ).= =

Pn
t
c
-- 

  Pn θcos( )Pn ψcos( )=

+ 2
n m–( )!
n m+( )!

--------------------Pn
m θcos( )Pn

m ψcos( ) nϕ .cos
m 1=

n

∑

Integration of Eq. (2) with respect to ϕ gives

(10)

A comparison with relationships (9) leads to

(11)

After simple transformations, we obtain

(12)

i.e., sinψ must be purely imaginary and cosψ > 1 must
be greater than unity.

As a result, we obtain the relation

(13)

with its sought generalization to an arbitrary point

(14)

This formula is also known from the literature (to
within the notation).

CONCLUSIONS

Most of the problems associated with separation of
variables in the theory of potential were solved by the
beginning of the 20th century. However, various details
and the structure of the theory itself continue to be
improved [7]. We hope that our approach will be help-
ful since it reveals a logical relationship between vari-
ous formulas and can hence facilitate the derivation of
new relation of practical interest for problems in astron-
omy, electrostatics, theory of elasticity, and other
aspects of mathematical physics.
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2π

h c θ ψcoscos–( )2 c2 θ ψsin
2

sin
2

–
---------------------------------------------------------------------------------------

=  
2π
c

------ 2n 1+( )Qn
h
c
--- 

  Pn θcos( )Pn ψcos( ).
n 0=

∞

∑

R ic θ ψ, hsinsin c λ'2 1+ ,= =

z c θ ψ.coscos=

λ i ψ, µsin θ,sin= =

1

h z–( )2 R2+
----------------------------------

1
c
--- 2n 1+( )Qn

h
c
--- 

 
n 0=

∞

∑=

× Pn 1 µ2–( )Pn 1 λ2+( )

1
D
---- 1

c
--- 2n 1+( )Qn 1 λ'2+( )Pn 1 µ'2–( )

n 0=

∞

∑=

× Pn 1 µ2–( )Pn 1 λ 2
+( ).
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Abstract—The effect of annealing by electric current passing through a sample prepared from the amorphous
metallic alloy Vitrovac 6025 Z of the composition Fe4Co67Mo1.5Si165B11 on the form of the dependence of the
sample impedance on the external magnetic field is investigated. The results are explained on the basis of the
concepts concerning the change in the preferred direction of the sample magnetization. © 2004 MAIK
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This communication is devoted to the analysis of the
effect of annealing by an electric current passing
through the sample on the form of the dependence of
the sample impedance on a constant external magnetic
field. The experiments were made on the samples pre-
pared from the ribbons of amorphous metallic alloy
Vitrovac 6025 Z of the composition
Fe4Co67Mo1.5Si165B11 in the form of 20-mm-long strips
1mm in width and 25 µm in thickness. The saturation
magnetostriction of the alloy was λs ≈ –3 × 10–7, while
the saturation induction was Bs ≈ 0.55 T. The samples
for studying the influence of annealing on the magne-
toimpedance effect were cut along the initial ribbon.

Annealing was carried out by an ac current of f =
50 Hz passing through the sample by gradually increas-
ing the current from 0.5 to 1.3 A with a step of 0.1 A for
20 s.

The magnetoimpedance effect was studied in mag-
netic fields of up to 9600 A/m with an ac current fre-
quency varying from 0.1 to 10 MHz. During all mea-
surements, the external magnetic field was oriented
along the sample.

The magnetoimpedance effect was measured using
a circuit consisting of a series-connected high-resis-
tance resistor and the sample. The magnetoimpedance
effect ∆Z/Z was determined using the expression

where Z0 is the sample impedance for H = 0, ZH is the
sample impedance in a magnetic field H, U0 is the volt-
age across the sample at H = 0, and UH is the voltage
across the sample in field H.

The Z(H) dependence obtained in the initial sample
has two characteristic segments. The first is observed in
weak magnetic fields and impedance Z on this segment
is independent of the value of field H. The second seg-

∆Z
Z

-------
ZH Z0–

Z0
------------------

UH U0–
U0

--------------------,= =
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ment corresponds to a monotonic decrease in Z with
increasing H and the attainment of saturation in the
Z(H) dependence (curve 1 in Fig. 1). The maximal
value of the negative magnetoimpedance effect in this
case amounts to 62%.

During annealing at the first stage, the sample
impedance Z0 in field H = 0 increases, but the form of
the Z(H) dependence is preserved (curve 2). In the
course of further annealing by increasing current, the
value of Z0 decreases, but the Z(H) dependence
acquires a segment on which Z > Z0 (curves 2–9). Ini-
tially, upon an increase in the annealing current, the
positive magnetoimpedance effect increases (curves 3
and 4), its maximum observed value being 59%. Subse-
quent annealing at higher values of the current leads to
a decrease in the sample impedance Z+, corresponding

2
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Fig. 1. Dependence of impedance Z of the sample on the
external magnetic field H at various annealing stages.
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to the maximum positive effect (curves 6–9) and
reduces the value of the maximal positive and negative
magnetoimpedance effect.

It should also be noted that the widths of the peaks
on the Z(H) curves increase in the course of annealing
and the peaks are shifted towards stronger magnetic
fields.

The dependence of the sample impedance on the
constant magnetic field Z(H) is determined by the
mutual orientation of the easy magnetization axis on
the sample surface, the direction of the constant applied
magnetic field H, and the direction of the rf current I
and is determined by various mechanisms of magneti-
zation reversal process [1, 2]. It should be noted that in
Co-based amorphous metallic alloys obtained by fast
quenching (e.g., in Vitrovac 6025 Z), the easy magneti-
zation axis on the sample surface coincides with the
rolling axis of the ribbon [3]. This is confirmed by the
results of investigation of magnetic hysteretic proper-
ties.

If the easy magnetization axis of the sample is par-
allel to the direction in which the constant external
magnetic field H and high-frequency current I are
applied, processes of domain wall displacement pre-
dominantly occur in the samples with increasing H. In
relatively weak magnetic fields, sample impedance Z
remains unchanged. With a further increase in H, sam-
ple impedance Z decreases monotonically until the
Z(H) dependence attains saturation (curve 1 in Fig. 2).

If the easy magnetization axis of the sample is per-
pendicular to the direction in which the constant exter-
nal magnetic field H is applied, magnetization reversal
takes place in the samples upon an increase in H so that
the magnetization rotates in the direction of magnetic
field H. The sample impedance Z in this case first
increases, attains its maximal value Z+, and then mono-
tonically decreases until the Z(H) dependence attains
saturation (curve 2 in Fig. 2).

It follows hence that the change in the Z(H) depen-
dence during annealing can be caused by the following
factors. During annealing by a current passing through
the sample, the sample is heated by the current and the
sample experiences the action of the magnetic field
induced by the current passing through it. Under the
action of this magnetic field, a domain structure is
formed with a preferred direction of magnetization
(and, hence, the direction of the easy magnetization
axis) lying in the plane of the sample perpendicular to
its length. This is confirmed by the matching forms of
the Z(H) dependences in Fig. 1 (curves 3–8) and Fig. 2
(curve 2). The increase in the peak widths on the Z(H)
curves observed as a result of sample annealing and the
displacement of the peaks towards stronger magnetic
fields may stem from an increase in the coercive force
and the anisotropy field during sample crystallization.

Thus, the following facts were established as a result
of our experiments.
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
(1) As a result of annealing by a current passing
through the sample, the form of the dependence Z(H) of
the sample impedance on the external constant mag-
netic field changes, which can be due to the formation
of a domains structure during annealing with the pre-
ferred direction of magnetization in the plane of the
sample perpendicular to its length.

(2) During annealing, the widths of the peaks on the
curves describing the dependence of the sample imped-
ance on the external magnetic field increase and the peaks
are displaced towards stronger magnetic fields, which
may be due to an increase in the coercive force and the
anisotropy field during the sample crystallization.

(3) Annealing is completed by a gradual decrease in
the sample impedance to its value in the saturating mag-
netic field; i.e., the sample impedance becomes indepen-
dent of the external magnetic field and, accordingly, the
magnetoimpedance effect becomes equal to zero.
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Fig. 2. Dependence of sample impedance Z on external
magnetic field H, obtained on samples of composition
Fe4Co67Mo1.5Si165B11, which were cut in the form of
10-mm-long ribbons 1mm in width and 25 µm in thickness
along (1) and across (2) the rolling axis of the amorphous
ribbon. The directions of application of the constant exter-
nal magnetic field and the rf current coincide with the long
side of the sample.
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Abstract—It is shown that hydrodynamic and electrohydrodynamic waves excited in two-layer dissipative sys-
tems due to shear instabilities experience resonant absorption of two types: at the rotational frequency of particles
of the medium and the frequency of their collision with the lattice. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It was proved long ago by Helmholtz and Kelvin
that the interface between two different liquids flowing
with different velocities is unstable. Vortices formed in
the vicinity of the velocity discontinuity surface propa-
gate in the form of two hydrodynamic waves. One of
these waves is directed along the vector of the relative
velocity of the liquids, while the other propagates in the
opposite direction in the case of long-wave perturba-
tions, but can be reversed by the flow if the wavelength
does not exceed a certain critical value for which the
real part of the perturbation frequency Reω is equal to
zero. It was shown in [1] that in the presence of viscos-
ity, the region of such instability (convective instability
or the Kelvin–Helmholtz instability) is observed in the
entire range of wave numbers k; the hydrodynamic
wave reversed by the flow carries a negative energy and
is enhanced at the expense of the flow energy.

One of the authors (R.A.B.) took part in investiga-
tions of an electrohydrodynamic analogue of such
instability [2, 3] in semiconducting n–n+ and p–p+ junc-
tions with a longitudinal drift current in one of the lay-
ers. The dispersion equation describing the evolution of
instabilities in question has the universal form [1–3]

(1)

Here, a = ρ/ρ2 is the ratio of the densities of the upper
and lower liquids in the case of the hydrodynamic prob-
lem or the ratio of the free charge carrier concentrations
in the high- and low-resistivity layers of the junction in the
case of the electrohydrodynamic problem and U is the
velocity of the upper liquid relative to the stationary lower
liquid or the drift velocity of charge carriers in the high-
resistivity layer; w denotes the acceleration due to grav-
ity or the mean value of acceleration of charge carriers
in the contact electric field of the junction, respectively.
The kinematic viscosity of the conventional or electron
(hole) liquid is taken into account only in the lower
(low-resistivity) layer and is denoted by ν2.

a ω Uk–( )2 ω2 1 a–( )kw–+ 4iν2ωk2.–=
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The problem considered here can be extended to the
case of collisional flow of the corresponding liquids.
Let us imagine a situation when small spheres playing
the role of atoms or ions in the crystal lattice of a semi-
conductor are arranged periodically in the lower layer
(including the interface). On account of this circum-
stance, the equation of motion of the lower (low-resis-
tivity) liquid acquires a term directly proportional to the
velocity of particles and inversely proportional to the
time of particle momentum relaxation [4, 5], while dis-
persion equation (1), as was shown by the authors,
assumes the form

(2)

We will study below the dispersion characteristics
derived from this equation and above all the possibility
of resonant absorption and amplification of waves with
positive and negative energy, which was disregarded
earlier.

RESONANCES ON DISPERSION 
CHARACTERISTICS

The solution of dispersion equation (2) has the form

(3)

Here, as in [3], the following notation has been

a ω Uk–( )2 ω2 1 a–( )kw–+

=  –4iν2ωk2 2ν2
k2

τ2
----– i

ω
τ2
----.–

ω1 2, ω*
k

k*
------ 1 iν2r

k
k*
------– i

1
τ2r

------k*
k

------– D± 
  ,=

D
1
a
--- k*

k
------ 1– 

  ν2r
2 k

k*
------ 

 
2

– 2iν2r
k

k*
------–=

–
1

τ2r
2

------ k*
k

------ 
 

2

2i
1

τ2r

------k*
k

------– 2aν2r
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Fig. 1. Dispersion characteristics for waves with positive (1) and negative (2) energy in a flow system in the presence of viscosity
and in the absence of collisions with the lattice (a = 0.2, ν2r = 10, τ2r  ∞). Dashed curves correspond to ν2r = 0.
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introduced:

and the dimensionless viscosity and relaxation time are
given by

The dispersion characteristics defined by expres-
sion (3) are shown in Figs. 1 and 2. Branches 1 corre-
spond to hydrodynamic (electrohydrodynamic) waves
directed along the flow, while branches 2 correspond to
waves counterpropagating relative to the flow for
Reω < 0 and reversed by the flow for Reω > 0. Positive
values of the imaginary part of frequency (Imω > 0)
correspond to amplification of negative-energy waves
which attenuate with increasing dissipation [3], while
its negative values indicate the absorption of positive-
energy waves, which is the stronger, the higher the dis-
sipation.

However, on the long-wave segments of the disper-
sion characteristics, we can see the segments corre-
sponding to strong absorption of the waves counter-
propagating relative to the flow (Fig. 1) and to attenua-
tion of absorption (which is equivalent to amplification)
of the waves directed along the flow (Fig. 2). In our
opinion, these segments indicate the presence of two
types of resonances for the waves considered here: at
the frequency of rotation of hydrodynamic particles and
at the frequency of their collisions with the lattice.

Let us begin with the first resonance, taking into
account the model assumptions concerning hydrody-
namic particles as spheres of radius r touching one
another. In the wave processes analyzed here, the tra-

k*
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aU2
--------------ω, ω*

aU
1 a+
------------k*,= =

ν2r

2ν2

aU
--------k*, τ2r 2τ2aUk*.= =
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jectories of these particles are circles of radius R = η0/2,
where η0 is the wave amplitude. Rotation in a circle
occurs at a velocity v  = Rω, where ω is the wave fre-
quency. In the case of synchronism with the phase
velocity v ph of the wave, its resonant absorption takes
place.

The torque M that should be applied to a sphere to
set it in rotation in a viscous medium in a circle of
radius R @ r is given by [6]

(4)
and the power spent for this is

(5)
This power can be equated to the expenditures of the

kinetic energy of the sphere during the energy relax-
ation time τE,

(6)

From relations (4)–(6), we obtain

which leads to the resonance frequency for a “rotational
resonance”

(7)

where k = ω/νph is the wave number.
The mass of the sphere is

where the density ρs of the sphere is equal to 12 times
the value of the density ρ of the liquid since the critical
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Fig. 2. Dispersion characteristics for waves with positive (1) and negative (2) energy in the collisional regime; a = 0.1, ν2r = 0, and
τ2r = 1.0.

–1

Re(ω)/ω*
3

1.2 1.6

–2

0

2

1

k/k*

1

2

0.4 0.8

–2

Im(ω)/ω*
4

1.2 1.6

–4

0

2

k/k*

1

2

0.4 0.8
volume for which the gas becomes indistinguishable
from the liquid is Vc = 3b and the van der Waals con-
stant b is equal to four time the volume of all molecules
in the gas [7]. In this case, we have

(8)

and in dimensionless variables,

(9)

The second (collisional) resonance is shifted rela-
tive to the collision frequency 1/τ2 due to the Doppler
effect and is observed at a frequency

(10)

or, in the dimensionless form,

(11)

A distinguishing feature of the dispersion character-
istics in the collisional regime is the attenuation of wave
propagating along the drift flow in the long-wave limit
(k = 0). This is due to the fact that the waves of this type
“surge” towards the crystal lattice together with the
flow and give away their total energy to the lattice at
any frequency. At the resonance frequency, this attenu-
ation is suppressed.

QUANTITATIVE RELATIONS 
AND CONCLUSIONS.

In the case represented in Fig. 1, rotational reso-
nance occurs at k0/  = 0.3, The value of the relative

ω0rot
ηk0
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resonant frequency calculated by formula (9) is
ω0rot/ω* = 0.5, This correlates well with the value
obtained from the curve for Reω/ω*.

Collisional resonance for the case represented in
Fig. 2 occurs at k0/  = 0.15. The expected relative res-
onant frequency calculated by formula (11) is
ω0col/ω* = 0.6, which is also very close to the value
obtained from the graph.

Thus, the hydrodynamic and electrohydrodynamic
waves excited in two-layer dissipative systems due to
shear instabilities experience resonant absorption of
two types: at the rotational frequency of the particles of
the medium and at the frequency of their collisions with
the lattice.
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Abstract—A scanning tunneling microscope is used to establish that nanostructures with characteristic dimen-
sion 30–40 nm are contained in germanium films deposited on copper substrates in an atmosphere of atomic
hydrogen. Local conductance, photoconductivity, and nonequilibrium chemiconduction of the films are stud-
ied. Etching of germanium and silicon films and also of fullerene soot by atomic hydrogen is observed. © 2004
MAIK “Nauka/Interperiodica”.
In planning this research, we hypothesized that
atoms bonded weakly to the surface would be driven off
in the form of volatile hydrides in the course of deposi-
tion of carbon, germanium, or silicon atoms onto the
substrate in an atmosphere of atomic hydrogen; this cir-
cumstance would set the stage for formation of stable
carbon, germanium, or silicon nanoparticles or nano-
structures that do not contain amorphous inclusions.

Undoped germanium or silicon crystals or graphite
were milled; the powder was then put into a current-
heated boat that was installed in a flow-through reactor
through which an atomic–molecular hydrogen mixture
(  = 50 Pa, nH = 1014 cm–3) was pumped through con-
tinuously. The impurity content in hydrogen amounted
to 5 × 10–3%. Hydrogen atoms were obtained using a
radio-frequency discharge in molecular hydrogen. The
boat temperature was measured using a thermocouple
and was equal to 800 K. A polished copper substrate, a
glass substrate, and a sensor for the piezoresonance
quartz balances with a sensitivity of 4.4 × 10–9 g were
mounted near the boat. Two aluminum contacts spaced
5 mm apart were preliminarily deposited onto the glass
substrate. Electrical conductance of the film during its
deposition onto the glass substrate and the mass of
deposited material were monitored in the course of
experiments. All substrates were at a temperature of
295 K during deposition of the films. It is established
that, under the same conditions, the rate of deposition
of atoms onto the glass substrate and a silver strain gage
decreases rapidly in the following sequence of sput-
tered targets: germanium, silicon, graphite.

The surface structure of germanium films that had
various values of thickness and were deposited on cop-
per substrates was studied using a scanning tunneling
microscope (STM) in the mode I0 = const (where I0 is

PH2
1063-7842/04/4908- $26.00 © 21089
the specified and stabilized tunneling current); we per-
formed the STM measurements in atmospheric air and
used discrete measurement steps that ranged from
0.036 to 7 nm (over the scanned area with sizes from
5 nm to ~1 µm). We also studied electrical properties of
the films. We found that the surface profile of the films
replicated the surface profile of the copper substrate; in
a number of sites where the germanium coating was not
continuous, we observed properties that corresponded
to those of the oxidized copper surface. If magnification
was high, we observed almost smooth regions with the
least pronounced nanoprofile. In Figs. 1 and 2, we show
typical results for two samples with the smallest (sam-
ple 1) and largest (sample 2) thickness of germanium
film.

The STM image of sample 1 (Fig. 1a) over the
scanned area of 109.90 × 111.32 nm2 has the largest
height of 8.75 nm; a clearly pronounced nanoprofile is
not observed (the average height difference is 1 nm).
Nanodefects of the type of scratches can be recognized
on the right-hand side of the STM image. Local mea-
surements of the dependences of the tunneling current
It on tunneling voltage Ut indicate multiple distortions
in the curves It(Ut); namely, electrical breakdown and
temporary suppression of conduction are observed and
are attributed to blocking properties of the surface cop-
per oxide. This anomalous shape of the It(Ut) curves is
also observed for the reference copper sample; the
appearance of this anomaly depends on the sweep
swing of the tunneling voltage. The It(Ut) curves have a
normal shape in other (“not anomalous”) surface areas
as can be seen from Fig. 1b, where the results of mea-
suring the local current–voltage characteristics for a
fragment of the above STM image obtained with the
highest resolution are shown. The STM tip was moved
over the sample along a line that contained 18 sites with
004 MAIK “Nauka/Interperiodica”
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a step of 0.0044 nm. Processing of the corresponding
spectra made it possible to recognize that the local
(unperturbed by electric field) tunneling conductance
G0 for four sites with anomalous conductance was as
high as 1–3 µS, whereas this conductance was equal to
7.3 ± 1.6 nS for other sites. Taking into account that ini-
tial STM-supporting conductance was equal to G1 =
8.42 nS, we find that the ratio G0/G1 is close to unity. In
Fig. 1c, we show the values of G0 and the z coordinates
of corresponding points measured by STM. The total
spread in the heights in this image did not exceed
3.5 nm. The coefficient α that accounts for an asymme-
try in the electron transport through the tunneling gap
was equal to 0.42 ± 0.03 for the experiment under con-
sideration; this finding indicates that donor properties
of the surface are enhanced owing apparently to a heavy
doping of germanium with copper in the course of
forming the coating.
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Fig. 1. The results of studying a germanium film that was
deposited on the substrate in the atmosphere of atomic
hydrogen and had the smallest thickness; the results were
obtained using a scanning tunneling microscope.
The STM image of sample 2 a fragment of which is
shown in Fig. 2a exhibits the largest height of 40 nm
over an area of 552 × 550 nm2; an irregular profile that
corresponds to hills with a height of about 5 nm and an
average diameter of 30–40 nm is observed. Local mea-
surements of the tunneling current–voltage characteris-
tics for this sample using a linear scanning with the
points spaced by 5.817 nm indicate that the shape of the
It(Ut) curves is fairly regular; some of these curves (a
quarter of the total number) exhibit a noticeably
increased slope, which indicates that the tunneling con-
ductance at the corresponding sites is increased. In con-
trast, the conductance at the site that neighbors the site
with the highest conductance is almost unobserved
(G0 = 0.001 nS, points 15 and 16). Processing of these
31 spectra made it possible to find that the local tunnel-
ing conductance was G0 = 12.605 ± 2.748 nS with the
STM-supporting conductance G1 = 8.42 nS (the same
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Fig. 2. The results of studying a germanium film that was
deposited on the substrate in the atmosphere of atomic
hydrogen and had the largest thickness.
TECHNICAL PHYSICS      Vol. 49      No. 8      2004



        

SELF-ORGANIZATION DURING DEPOSITION 1091

                                                         
as in Fig. 1); i.e., the value of G0 is larger than that for
sample 1 by a factor of 1.5 (if the sites with anoma-
lously high conductance are disregarded). In Fig. 2c,
we show both the z coordinates of all relevant sites
(curve 1) and the values of G0 (curve 3); it can be seen
which sites exhibit an increased local conductance. The
total spread in the heights for this spectrum did not
exceed 15 nm with the difference in heights in the STM
image equal to that mentioned above. The average
value of the coefficient α was equal to 0.530 ± 0.018
(curve 2) for the experiment under consideration,
which indicates that donor properties of the surface
were enhanced (probably owing to a lowered concen-
tration of free charges in Ge).

Thus, the results of measurements in the scanning
tunneling microscope show that there are significant
differences between the samples with different thick-
ness of deposited germanium. These differences indi-
cate that a nanostructure appears on the thicker film
(sample 2) and that the copper substrate is completely
isolated by this film; this behavior is not observed in the
case of sample 1 with thinner germanium coating. The
tunneling conductance and donor–acceptor properties
of the surface depend on the germanium film thickness.

We studied the nonequilibrium electrical conduc-
tance observed in the deposited germanium films and
caused by formation of electron–hole pairs as a result of
interaction between atomic hydrogen and the film sur-
face. Relatively slow variations in electrical conduc-
tance are observed after switching on and switching off
of the source of H atoms. The nonequilibrium electrical
conductance increases with increasing temperature that
is varied by heating the reactor walls (Fig. 3). Similar
data were obtained in the studies of the film photocon-
ductivity. These results are indicative of the hopping
mechanism of the film conductivity caused by tunnel-
ing of charge carriers between inhomogeneities in the
film.

We also studied sputtering of the germanium and
silicon films by atomic hydrogen. To this end, we used
the piezoresonance quartz balances to monitor the mass
of the film that was deposited preliminarily onto one or
both surfaces of the strain gage. We observed etching of
the germanium and silicon films by hydrogen atoms;
the etching rate increased with increasing temperature
(Fig. 4).

We observed an intense etching of fullerene soot by
atomic hydrogen; this soot is a product of condensation
of graphite vapors and represents an amorphous residue
that does not contain fullerenes. In Fig. 5, we show the
kinetic curve for a decrease in the mass of fullerene soot
placed in the atmosphere of atomic hydrogen and also
the simultaneously measured temperature dependence
of the dynamic effect of the reaction H + H  H2; this
reaction proceeds at the surface of fullerene soot F(t) =
GJ(t), where J is the rate of this reaction and G is a coef-
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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ficient that depends on the momentum distribution of
the gas particles in the surface plane.

Thus, we established that germanium films depos-
ited on the substrate in the atmosphere of atomic hydro-
gen are inhomogeneous and contain nanostructures
with a characteristic dimension of 30–40 nm. We found
that the films of germanium, silicon, and fullerene soot
are sputtered by the flux of atomic hydrogen. Appar-
ently, by choosing the appropriate technological
parameters, one can enhance the self-organization pro-
cesses in the germanium, silicon, or graphite layers
deposited in the atmosphere of atomic hydrogen.

We thank A.V. Kulikov (Institute of Problems of
Chemical Physics, Russian Academy of Sciences) for
his kindly providing us with fullerene soot for our
studies.
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Abstract—In terms of the dynamic approach, the collection of light in optical systems and the influence of
determined chaos on the photometry and fluctuations of regular and chaotic collection are considered. The pho-
tometric relationships generalizing the formula of the integrating sphere as applied to chaotic collection are
obtained. A universal law for noise in the regular light collection is predicted and found to be in good agreement
with the available experimental data. The relationships studied can find use in the elaboration of a new-design
detectors, light guides, light-emitting diodes, etc., for the enhancement of their efficiency and the reduction of
noise. © 2004 MAIK “Nauka/Interperiodica”.
The physical phenomenon of light collection plays
an important role for many optical systems [1–4]. The
elimination of light trapping (which stems, for exam-
ple, from total internal reflection) and the related
increase in light output allows one to enhance signifi-
cantly the efficiency of light-emitting diodes and laser
resonators, to enlarge the light guide apertures, and to
increase the efficiency of scintillation detectors. The
suppression of collection fluctuations (noise) enhances
the intrinsic energy resolution of detectors, increases
the threshold sensitivity of photoelectron multipliers,
improves the contrast–frequency characteristic of the
fiber-optic elements, etc.

Optimization of light collection implies the estab-
lishment of the general laws of this process. This will
make the choice of the required design of optical sys-
tems more expedient. In our opinion, the key role here
is played by the prevalence of either chaotic or regular
dynamics of light beams. For this purpose, it is conve-
nient to use the dynamic approach. However, the prop-
agation of light beams should be considered not in the
common (configuration) space but in the phase space of
one-valued states of the corresponding dynamic sys-
tem, which is described by billiards [5–7]. As the phase
coordinates of beams, it is possible to take, for exam-
ple, the canonically conjugate variables, i.e., the spatial
coordinate and the momentum (direction) of the beam.
Then, the characteristics of collection are determined
by the summation of light fluxes in the phase space.
Note that this approach provides the most complete
spatial–angular description of the light field in an opti-
cal system.

Let us derive the general expression for the coeffi-
cient of light collection τ (the ratio of the output light
flux to the initial one). In contrast to the techniques
developed previously for numerical simulations, com-
1063-7842/04/4908- $26.00 © 21093
puter codes, etc. (see, e. g., [8–12]), our method is
based on the calculations in the phase space rather than
in the configuration space. Each particular beam is rep-
resented as a point in the phase space Φ. It is essential
to note that not every beam emerges from the system.
Therefore, one can separate from the entire space Φ a
set ΦL of initial beams that ever reach the output win-
dow. The “light collection” ΦL depends on the “input”
Φin and the “output” Φout, where Φin corresponds to
scintillations (detector, optical cavity, light emitting
diode) or input light (optical fiber) and Φout accounts for
the beams incident on the output window. The beams
are absorbed as they propagate through the system. The
intensity loss depends exponentially on the (discrete)
number of the reflection events. For this reason, it is
convenient to turn to discrete summation of light fluxes
(thus, ensuring a rapid convergence of the appearing
analytical expansions). To do this, one should separate
from Φin the beams that reach the output window
immediately after one, two, or more reflections, i.e., to
divide the total flux into the fluxes corresponding to
multiple reflections. As a result, we have

(1)

where τ0 = q0T0 defines direct light and T0 and T are the
respective mean losses for direct and multiply reflected
light (between two successive reflections) under the
assumption of insignificant loss, 1 – T ! 1.

The amplitude of multiple scattering S = S[q] =
 depends on the sequence {qm} of the partial out-

put apertures in the phase space. Each value qm repre-
sents the fraction of light (in the phase space) that out-
comes at the mth step of multiple reflections with

τ  = τ0 1 q0–( )T0 TnSn; Sn

m 1=

+∞

∑+  = qn 1 qm–( ),
m 1=

n 1–

∏

Snn∑
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respect to that at the previous step. In other words, qm

defines the rate of the light outcome, with m playing the
part of discrete time. The straight-propagating light
permits an independent control: for example, it can be
completely eliminated, as in the case of the Ulbricht
sphere. This is the distinction of factor q0 from the oth-
ers. Replacing the summation of fluxes by their multi-
plication and regrouping the terms of the series leads
one to the expression

(2)

In the absence of absorption (T ≡ 1), the collection
of light depends only on S, τ = S + τ0(1 – S).

In the general case, the phase space of billiards con-
tains a regular (single or several) and a chaotic compo-
nent [5–7]. Accordingly, one can distinguish the regu-
lar, chaotic, and the mixed types of the light collection.
By controlling the chaos, it is also possible to control
the light collection. Its dynamic characteristics are best
pronounced in the absence of loss. Using representa-
tion (2), one can easily decide which distribution of
fluxes yields the maximal collection. The ultimate
τmax = 1 corresponds to Π = 0. An infinitely large prod-

uct Π is zero when the series  = ∞ diverges. In
the opposite case, it its multipliable. Product Π ≠ 0 if
this series converges and its common term tends to
zero, qm  0 at m  ∞. The latter condition can be
satisfied only at a sufficiently rapid decrease in the par-
tial contributions of the multiply reflected fluxes. Then,
τ < 1 (the contribution of direct light, τ0 < 1, is always
incomplete unless the entire surface is radiating). The
first case takes place for a chaotic collection. The sec-
ond is typical of a collection in the presence of the reg-
ular component of light beams. The related examples
indicate that, here, the rate of the light outcome usually
decreases as a power function, qm ∝  m–γ (γ > 1).

Chaotic dynamics involves the mixing of phase tra-
jectories [5, 6]. A chaotic collection takes place in mir-
ror-reflecting systems with the geometry of chaotic bil-
liards: “stadium,” “dumb-bell,” “star,” etc. The chaotic
billiards also describe the collection in diffuse systems
with the scattering indicatrix close to the cosine. From
outside, such diffusivity can be provided by the produc-
tion of a special dull finishing, grooving, or painting of
the reflecting surface. From inside, such scattering
results from the presence of inhomogeneities, impuri-
ties, and structural defects or can be attained by the
deliberate introduction of light-scattering centers in the
initial optical material. Mixing is related to the follow-
ing property:

(3)

S 1 Π , Π– 1 qm–( ).
m 1=

+∞

∏= =

qmm∑

q1 q2 … q∞≈ ≈ ≈ q;=

q 1/N( ) qm

m 1=

N

∑ .
N ∞→
lim=
This means that the multiply reflected fluxes are
almost uniformly distributed (mixed) in the phase space
and the correlation (difference between qm) is retained
only for a number of first orders. It follows from condi-
tion (3) that  = ∞; i. e., the chaotic collection is
complete, τmax = 1. Taking into account absorption, the
summation of the geometrical progression in formula
(1) yields a collection in the form

(4)

This is a generalization of the well-known formula
of an Ulbricht sphere (FUS) [1]. It is of principal impor-
tance that the mean aperture q (probability of outcome
after one reflection) is defined here in the phase space
rather than in the configuration space. This improves
the accuracy of the formula and extends the range of its
applicability. Aperture q can be determined either
numerically or analytically from a given scattering
indicatrix of the reflecting surface. Thus, for the azi-
muth-symmetrical indicatrix

(fk are the amplitudes normalized so that  = 1 and
θ is the polar angle), the calculation yields

(5)

where n is the relative refractive index and Sout and S are
the areas of the output window and the entire surface,
respectively.

The product of the angular f and the geometrical g
apertures defines the total output aperture q. In the
absence of total internal reflection, when n = 1, the
aperture becomes purely geometrical, f = 1 and q = g.
Note that in the previous applications of FUS, either
solely f (the mean spatial angle, at which the output
window is seen from an arbitrary point inside the opti-
cal system) or solely g was considered as the aperture,
but not their total product.

For systems with comparable sizes, q0 ≈ q and T0 ≈
T and formula (4) is reduced to

(6)

This is a universal dependence, since the light out-
come is defined by one and the same expression for sys-
tems with different geometry, but only under the condi-
tion of their highly chaotic character; i.e., the chaotic
collection features photometrical generality. The
“transparency” T = exp(–lBIL/lBAL) depends on the mean
length lBIL of the beam path between two reflections (in
the billiards theory, lBIL = 4V/S, where V is the volume

qmm∑

τ q0T0 1 q0–( ) 1 1 T–( )/qT+[ ] –1.+=

f θ( ) 2π( ) 1– k 1+( ) f k θcos
k

k 0=

+∞

∑=

f kk∑

q fg, f f k 1 1 n 2––[ ] k 1+( )/2
–{ } ,

k 0=

+∞

∑= =

g Sout/S,=

τ τ chaos qT / 1 1 q–( )T–[ ] .= =
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of system) and the length of the bulk absorption of pho-
ton, lBAL. In the first order of the expansion in terms of
lBIL/lBAL ! 1, formulas (5) and (6) lead to the light out-
come for the cosine indicatrix f(θ) = π–1cosθ

(7)

where leff = lBIL/g is the effective length of the path.
The formula obtained can be used, for example, to

estimate the efficiency of light emitting devices
depending on light collection. In these devices, the
radiation brightness is almost uniform over the layer
surrounding the semiconductor element (g = 1). As the
refractive index n grows, the light outcome abruptly
drops. To compensate for this loss, one should either
increase the transparency of the system or decrease its
size. Both ways lead to an increase in ratio lBAL/lBIL. As
a result, a sort of a highly rarified “gas of light beams”
is formed. The outcome of radiation from such a gas is
maximal. For example, at n . 2 and lBAL/lBIL . 16, the
light outcome attains 80%.

The presence of beam chaos in a system is a neces-
sary condition for the FUS to be applicable. Any loss of
stochastic character, for example, deterioration of the
diffusivity of the scattering surface of the Ulbricht
sphere, considerably lowers the accuracy of the FUS-
based measurements. In approximation (3), this accu-
racy is defined by the dispersion

The closer the mean aperture to zero, q ! 1 (the out-
put window is small as compared to the size of the sys-
tem or the total internal absorption is pronounced), or
to unity, 1 – q ! 1 (in the optical contact, the entire sur-
face of the system is emitting), the better the accuracy,
Dq ! 1. Using formulas (1) and (6), one can readily
estimate the relative (root-mean-square) fluctuations of
the chaotic collection,

(8)

where Dτ is the dispersion of the light collection coef-
ficient.

These fluctuations (noise) of light collection are
caused by the dependence of the collection coefficient
on the position of the initial light sources (scintilla-
tions). At the same time, the chaotic trajectories appear
indistinguishable only within one and the same system
whereas the trajectories of different systems have a
number of essentially different characteristics (for
example, the Lyapunov index). This is due to the expo-
nential sensitivity of chaotic systems to a change in the
initial or external conditions. As a result of variations
(inhomogeneity) of the output apertures, the values of
δq are substantially dependent on the type and geome-
try of a system, as well as on the reflection character.
Therefore, no universal relation (similar to that existing

τ 1 n2 leff/lBAL( )+[ ] 1–
,=

Dq 1/N( ) qm q–( )2

m 1=

N

∑ .
N ∞→
lim=

δτ Tδq, δτ Dτ( )1/2/τ , δq Dq( )1/2/q,= = =
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for, say, the statistical Poisson noise) between fluctua-
tions and the light outcome can exist in this case.

Regular light collection is possible only in systems
with mirror light fluxes. As a rule, these are systems of
regular geometry: rectangular, cylindrical, spherical, or
polyhedral (polyhedrons with rationally commensura-
ble angles). Mixed collection occurs in the systems
characterized by billiard geometry with mixed dynam-
ics (both the chaotic and the regular components are
present) or in diffusive systems with an appreciable
contribution of the regular component of mirror-
reflected light (for example, in a colored cylindrical
fiber). For the regular or mixed collection, the terms qm

decrease fairly fast. For example, in a long cylinder
with an axis-positioned light source, the output window
at its end, and mirror reflection from its boundaries,
qm ∝  m–2. The convergence of the sum  < ∞
leads to τmax < 1. From the physical point of view, this
occurs because of the partial “light trapping” of beams
that belong to the regular component of the motion. For
the chaotic component, such trapping is absent since it
is hindered by the mixing of beams. Due to the mixing,
any “unfavorable” beam sooner or later gets into the
region of the light outcome Φout, whereas a large num-
ber of regular beams can always remain beyond this
region.

When light is trapped, the mean aperture is neces-
sarily zero:

The light output is sensitive to the distribution of
multiply reflected fluxes. Therefore, in this case there is
no universal dependence similar to that described by
formula (4). For comparison, Fig. 1 shows the plots for
the chaotic and the regular light outcomes. The regular
collection is considered only for systems of regular
geometry, in optical contact with the receiver. As the
aperture, we take the geometrical aperture; i.e., q = g =
Sout/S. Let us omit here the calculations for qm. Figure 1
indicates not only the qualitative but also the quantita-
tive difference between the regular and the chaotic col-
lections. It is seen that, at high transparency, the chaotic
collection dominates over the regular one. As the
absorption grows, they exchange their parts (the chaotic
collection becomes lower than the regular one). This
behavior can be attributed to the diffusive slowing-
down of the chaotic beam (note for comparison that, in
the case of a Brownian particle, only the squared dis-
placement of the particle is proportional to the time of
its motion). As a result, the chaotic beam appreciably
attenuates before the moment when it is expected to
leave the system.

Concerning the fluctuations of the regular collec-
tion, in contrast to those of the chaotic collection, they
do obey the general law. This fact reflects the similarity

qmm∑

qreg 1/N( ) qm

m 1=

N

∑
N ∞→
lim 0.= =
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of the phase portraits of the regular collection in sys-
tems with different geometry. It is known that regular
trajectories are characterized by zero Lyapunov indices.
In appropriate coordinates, the phase portrait of the reg-
ular collection appears as a set of parallel hypersur-
faces. Analytically, using the expansion in terms of a
small parameter α ! 1 in the phase space, where T =
exp(–α), one can deduce the fluctuations of the regular
collection in the form

(9)

where the dots denote the higher corrections and δN is
the relative (root-mean-square) variance of the number

δτ α δN …+[ ] ,=

10

0 2

δτ, %

ξ3

80

4 6 8 10

70
60
50
40
30
20

Fig. 1. Theoretical light outcome coefficient η in an optical
system with (1) chaotic and (2) regular collection ((2) cyl-
inder and (3) hemisphere) vs. optical transparency T. The
cylinder base or the diameter section of the sphere serves as
the output window. In all cases, the output aperture is the
same; q = 1/4 (the diameter of the output window is equal
to the cylinder height and is smaller than the hemisphere

diameter by a factor of  ≈ 1.2).1.5

0.2
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T
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Fig. 2. Universal dependence of the relative fluctuations of
the light outcome (δτ) on the dissipative factor (ξ) for vari-
ous detectors with regular collection. The solid line is the
theory and the symbols represent the data of real and
numerical experiments. Possible spread of values within
10% is also shown.
of reflections before the beam emerges from the sys-
tem.

Changing the variables yields

(10)

where parameter ξ is the dissipative factor indicating
the extent to which the light loss reduces the collection
coefficient relative its peak value τmax = τ (α = 0).

The latter relation has a regular character. To con-
firm this, we compared this dependence to the experi-
mental and analytical data for fluctuations of light col-
lection in scintillation detectors [4]. We considered var-
ious scintillators (NaI(Tl), CsI(Tl), BWO, and CWO),
different geometries (a cylinder and a right prism), a
wide range of volumes (from 1 to 1000 cm3) and size
ratios, as well as the presence or absence of optical con-
tact. A total of 200 points were involved in the calcula-
tion, the results of which are presented in Fig. 2. With
an accuracy of no worse than 10% (which is typical of
such a type of measurements), all of them fall on a the-
oretical straight line. The constant in the dependence
δτ = Cregξ3 appears to be ≈ 7.77.

Thus, using the dynamical approach, we have elab-
orated a unified description of light collection in optical
systems. Special features of the collection are closely
related to the type (regular or chaotic) of the dynamics
inherent to the corresponding billiard. The chaotic col-
lection obeys a universal photometrical law described
by formulas (4), (5) or (6), (7). This universal character
can be of use, for example, for designing the white light
emitting diodes, since it ensures independent control
over the proportion in which the colors from various
light sources should be mixed. The light outcome of the
regular collection (with the characteristic light localiza-
tion) strongly depends on the system geometry and
does not feature the universal character. A rapid
decrease in its partial output apertures qm with increas-
ing multipolarity m signifies that the main fraction of
the light energy is carried here by beams that experi-
ence only a few reflections before the outcome from the
system. Therefore, the regular light collection is useful
for systems where a high-speed transmittance of optical
signals is required. The universal law (10) has been
established for the fluctuations (noise) of the regular
collection. In contrast, the chaotic collection is devoid
of such generality. The photometric and fluctuation
behavior of the regular and chaotic collections can be
considered as counterparts in some sense. The noise
universality of the regular collection is important for
applications. For example, it allows one to predict the
detector noise (energy resolution) from the measure-
ments of the light outcome alone. Further advances in
this approach imply deeper analysis of the results
obtained, as well as the study of other special features
related to the dynamics of light beams. This way is
likely promising for the elaboration of new highly effi-
cient detectors, optical fibers, light emitting diodes,
laser cavities, etc.

δτreg ξ3; ξ∝ 1 τ /τmax–( )1/2,=
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Abstract—A new formula that relates the acoustic Grüneisen parameter to the Poisson ratio is suggested on
the basis of the previously derived expression for this parameter. © 2004 MAIK “Nauka/Interperiodica”.
Belomestnykh [1] suggested a relation between the
average value of the Grüneisen parameter γ that charac-
terizes the degree of anharmonicity of interatomic
forces and the velocities of sound (longitudinal vL and
transverse v t) in an isotropic, spatially unbounded elas-
tic medium; i.e.,

(1)

The Grüneisen parameter γ1 defined by (1) was
referred to as the corresponding acoustic parameter. In
this study, the above approach was developed and led to
a new and very important relation between the Grü-
neisen parameter and the Poisson ratio σ (the lateral
strain coefficient) that characterizes the tendency of
material towards retaining its initial volume in the
course of elastic deformation and is defined as

(2)

where ε' = (∆d/d) is the lateral contraction ratio of the
sample with transverse size d and ε = (∆l/l) is the rela-
tive longitudinal extension of the sample that has length
l and is subjected to loading.

We use the well-known formulas that relate the
quantities vL and v t to Young’s modulus E, the density
of the material ρ, and the Poisson ratio σ [2]; i.e.,

(3)

We now modify formulas (1) and (3) and express γ
and σ in terms of the quantity x2(x = vL/v t); as a result,
we obtain

(4)
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9
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We then derive a simple expression that relates the
Grüneisen parameter γ to the Poisson ratio (in this case,
we refer to the Grüneisen parameter as the correspond-
ing elastic parameter and denote it by γ2); i.e.,

(5)

A formal analysis of expression (5) shows that (i) at
values of the Poisson ratio of σ = 0.05–0.46 for actual
polycrystalline materials [3], the Grüneisen parameter
γ2 is in the range from 0.85 to 3.53, which is consistent
with experimental data (see table); (ii) if the Cauchy
relation is valid (central forces act between homoge-
neously deformed regions of a cubic lattice), i.e., if
c12 = c44 and σ = 0.25, we have γ2 = 1.5; (iii) the lower
limit of the values of the Poisson ratio (σ = –1) corre-
sponds to a “harmonic” solid (γ2 = 0); (iv) the largest
possible positive value of the Poisson ratio σ tends to
0.67, so that the anharmonicity would be infinitely
large in a material with this σ; (v) the case of interest
σ = 0 (a change in the transverse size of the sample is
not accompanied with lateral deformation) corresponds
to γ2 = 0.75; and (vi) in the case of σ = 0.5 (the volume
of the solid remains unchanged in the course of elastic
deformation), we have γ2 = 4.5, and this value can be
treated as the actual limiting value of the Grüneisen
parameter.

We test the practical validity of formula (5) by com-
paring γ2 with thermodynamic (Debye) value γD of the
Grüneisen parameter considered as experimental [4]
(this comparison was also performed previously [1]);
we have

(6)

where β is the temperature coefficient of the volume
expansion, BS is the adiabatic modulus of uniform com-

γ2
3
2
--- 1 σ+

2 3σ–
--------------- 

  .=

γD
βBsµ
Cpρ
------------,=
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pression (of volume elasticity), µ is the molar mass, and
Cp is the molar heat capacity at constant pressure.

The results of this comparison for metals and for
binary, ternary, and quaternary compounds are listed in
the table. The values of the Poisson ratio are taken from
available publications (books and original reports)
[4−11]; in some cases, we used the limiting values of σ
according to different publications. The values of the
thermodynamic parameter γD (except for those with an
asterisk) can be found in numerous publications
[12−18].

For the majority of materials listed in the table, there
is good agreement between γ2 and γD, which indicates
that the formula (5) is valid in practice. Since the Pois-
son ratio can be determined both directly from mea-
surements of the longitudinal and lateral strains and
indirectly [not using formula (3)] from elastic moduli
(for example, in terms of the Young and shear moduli
[2]), the range of applicability of new expression (5)
can be much wider than that of previous formula (1).
Evidently, if formula (5) is valid, the Poisson ratio σ
can be determined in terms of the presumably known
Grüneisen parameter of the material as

(7)

The domain of applicability of formula (5) requires
additional investigation. Still, we may already state that
a calculation using formula (5) (for example, for lan-
thanides, or rare-earth metals) without corrections
yields values of γ2 that differ considerably from those of
the thermodynamic Grüneisen parameters γD. It is con-
ceivable that the causes of this discrepancy are related
to a mismatch between the true values of the Poisson
ratio and the values obtained from indirect measure-
ments (according to Ivanov and Lebedev [19], the dis-
crepancies can amount to as large as one hundred per-
cent). It is also not inconceivable that the determining
role in this discrepancy can be played by the extent to
which the relation between the Poisson ratio and the
exponents m and n is clarified; these exponents specify
the attraction and repulsion potentials for atoms in the
Mie equation for the dependence of the potential
energy U of particles in a solid on the distance r; i.e.,

Since original Grüneisen’s studies (1910s), the rela-
tion between the bulk modulus (compressibility),
atomic volume, and the energy U expressed using the
exponents m and n has been analyzed repeatedly [5, 13,
20]; a relation between the shear modulus and the Pois-
son ratio was analyzed by Nemilov [21]. As a result of
this analysis, it was suggested that the Mie equation is
invalid for materials with an anomalously large ratio of
lattice constants c/a. However, Oshcherin [22] used the
kinetic theory to account for the multiplicity of empiri-
cally determined coefficients in the above relations for
crystals with different structures.

σ 4/3γ 1–
2γ 1+

-------------------.=

U –Ar m– Br n– .+=
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Comparison of the elastic and thermodynamic Grüneisen
parameters (standard conditions: T = 298.15 K and p = 1.013 ×
105 Pa)

Elements and 
compounds

Poisson 
ratio

Grüneisen parameters
γ2/γDγ2 γD

Ag 0.379 2.40 2.4 1.00
Al 0.340 2.01 2.11 0.95
Au 0.420 2.88 2.8 1.03
Cu 0.350 2.13 2.06 1.03
Ni 0.277 1.64 1.73 0.95

0.33 1.98 2.2 0.90
Pd 0.374 2.35 2.4 0.98
Pb 0.405 2.68 2.92 0.92
W 0.283 1.67 1.7 0.98
Be 0.034 0.82 0.83 0.99
Co 0.357 2.16 2.1 1.03
Mg 0.270 1.60 1.41 1.13
Fe 0.292 1.72 1.68 1.02
Pt 0.390 2.51 2.54 0.99
Ta 0.337 2.03 1.73* 1.17
Th 0.254 1.52 1.40* 1.09
Y 0.245 1.48 1.25* 1.18
U 0.230 1.41 1.62* 0.87
LiF 0.214 1.35 1.34 1.01
LiCl 0.245 1.48 1.52 0.97
LiBr 0.256 1.53 1.70 0.90
LiI 0.265 1.81 2.22 0.82
NaF 0.240 1.45 1.72 0.84

0.234 1.43 1.57 0.91
NaCl 0.243 1.47 1.46 1.01
NaBr 0.270 1.60 1.56 1.03
NaI 0.274 1.62 1.90 0.85

0.250 1.50 1.59 0.94
KF 0.274 1.62 1.73 0.94
KCl 0.259 1.54 1.60 0.96
KBr 0.283 1.67 1.68 0.99
KI 0.265 1.57 1.63 0.96
RbF 0.276 1.63 1.41 1.16
RbCl 0.268 1.59 1.53 1.04
RbBr 0.267 1.59 1.50 1.06
RbI 0.309 1.83 1.73 1.06
CsF 0.318** 1.89 1.49 1.27
CsCl 0.264 1.57 1.98 0.80
CsBr 0.270 1.60 1.93 0.83
CsI 0.265 1.57 2.00 0.79
AgCl 0.409 2.73 2.02* 1.35
AgBr 0.396 2.56 2.33* 1.10
NH4ClO4 0.271 1.54 1.81* 0.85
NaClO3 0.270 1.60 1.37* 1.17
NaClO4 0.278 1.64 1.56* 1.05
KClO4 0.296 1.75 1.64* 1.07
NaNO3 0.257 1.53 1.31* 1.17
KNO3 0.331 1.98 1.95* 1.02
CaF2 0.224 1.38 1.55* 0.89

0.301 1.78 1.63* 1.09
Al2O3 0.223 1.38 1.34* 1.03

Note: We calculated the Grüneisen parameters with an asterisk

 using formula (6). We determined the Poisson ratio for

CsF (σ**) from the elastic constants of a CsF single-crystal
(measured by Haussühl [18]) using the Voigt–Reuss–Hill
method [5].

γD
*
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We now summarize the results. The simple formula
that unambiguously relates two important characteris-
tics of solids was derived. Good agreement between
elastic (according to our terminology) and thermody-
namic Grüneisen parameters is generally observed.
Formula (5) yields realistic limiting values of γ and σ.
Additional studies of the domain of applicability of for-
mula (5) are needed.
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Abstract—Mathematical and mechanical models of a heating device based on periodic nonisentropic compres-
sion are constructed; the fields of application of these models are outlined. An expression for the minimal period
of eigenmodes is deduced and special features of the behavior of such a nonlinear system are revealed. The phe-
nomenon of self-organization leading to the definite quasi-linear behavior of the system is considered. © 2004
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The general principle of operation of the so-called
HS systems is the nonisentropic heating of gas upon its
periodical to-and-fro forcing between the two volumes.
This phenomenon is employed, in particular, by ballis-
tic heating devices, such as multistage plasmatrons [1].
Ballistic plasmatrons are of great importance for vari-
ous applications, such as the quenching and thermal
hardening of tools, the pumping of solid-state lasers
[2, 3], and plasma- and photochemistry [4].

A nonisentropic periodic heater can either be
applied as a separate unit or be incorporated into a laser
pump system. Elaboration of such a system opens wide
possibilities for the application of inexpensive, service-
able lasers in processing technologies (cutting, weld-
ing, thermal hardening of parts, etc.). It is well known
that the laser-treated surfaces feature a number of
unique advantageous properties, which ensures high
quality of the final product.

The simplest and most evident application of the HS
systems is air-heating systems. The heat sources pres-
ently available are based on either heating elements
with a high working temperature (which leads to the
burning of oxygen and gives rise to the fumes smell in
the air) or low-temperature heat-transfer media (in oil
heaters), which fail to rapidly drive the device to its rat-
ing duty. In the system proposed here, the heating of air
is effected via the direct transfer of thermal energy to
the gas, without resorting to a heat-transfer agent.

The basic element of such systems is a cylinder and
a piston with a nozzle. In one way or another, recipro-
cating motion is imparted to the piston. Gas is warmed
as it flows through the nozzle [5].

The principle of operation of an open system is as
follows. An external gas comes into the cylinder, where
its temperature increases due to the periodic motion of
the piston. Then, the gas partially leaves the cylinder (a
new portion comes in) and further heating occurs
(Fig. 1).
1063-7842/04/4908- $26.00 © 20951
Let the notation HS-1 refer to HS systems with a
fixed amplitude of the piston motion, while the devices
of HS-2 type are HS systems where periodic excitation
is imparted to a free piston capable of vibrations with a
varying amplitude.

MATHEMATICAL MODEL

By making use of the polysectional theory [6], it is
feasible to construct a mathematical model of device
operation and to integrate the obtained system of non-
linear differential equations by numerical methods.
However, taking into account some special features of
the HS system operation, one can also apply the analyt-
ical approach. Let us split the system into three sec-
tions: the volumes to the left and right from the piston
comprise sections I and II, respectively; the external
volume is referred to as section III. The initial system
of equation has the form

(1)

(2)

(3)

dρ1

dt
--------

1
V1
------ G12 G13+( )

ρ1

V1
------

dV1

dt
---------,–=

dρ2

dt
--------

1
V2
------ G21 G23+( )

ρ2

V2
------

dV2

dt
---------,–=

ρ3
1

V3
------ m01 m02 m03 ρ2V2– ρ1V1–+ +( ),=

1

2

35 I II

4

2

Fig. 1. Scheme of the device: (1) piston, (2) outlet, (3) noz-
zle, (4) cylinder, and (5) rod.
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(4)

(5)

(6)

(7)

where t is time; a is the velocity of sound; γ is the adia-
batic exponent; S is the area of the opening; ρ, p, T, and
m are the density, the pressure, the temperature, and the
mass of the gas, respectively; R0 is the universe gas con-
stant; µ is the molar mass; α' is the heat-transfer coeffi-
cient; S' is the heat-transfer surface; V is the volume of
a section; subscript 0 relates to the initial values of the
parameters; and subscripts 1–3 indicate the section
number. In Eqs. (4) and (5), one should also take into
consideration the heat removal through the cylinder
walls.

For a sufficiently high-power engine, one can
assume a harmonic change in the coordinate of the pis-
ton center of mass. Otherwise, the periodic motion of
the center-of-mass coordinate can be represented as a
Fourier series.

dT1

dt
---------

1
V1
------ 1

ρ1
-----

γT1 T1–( )G12, p1 p2>
γT2 T1–( )G21, p1 p2≤








=

+
1
ρ1
-----

γT1 T1–( )G13, p1 p3>
γT3 T1–( )G31, p1 p3≤








γ 1–( )
T1

V1
------

dV1

dt
---------,–

dT2

dt
---------

1
V2
------ 1

ρ2
-----

γT2 T2–( )G21, p2 p1>
γT1 T2–( )G12, p2 p1≤








=

+
1
ρ2
-----

γT2 T2–( )G23, p2 p3>
γT3 T2–( )G32, p2 p3≤








γ 1–( )
T2

V2
------

dV2

dt
---------,–

dT3

dt
---------

1
V3
------ 1

ρ3
-----

γT3 T3–( )G31, p3 p1>
γT1 T3–( )G13, p3 p1≤








=

+
1
ρ3
-----

γT3 T3–( )G32, p3 p2>
γT2 T3–( )G23, p3 p2≤






 α3 T3 T0–( )S3'

cv ρ3V3
----------------------------------,–

Gml Smlρmaml–=

×

2
γm 1+
--------------- 

 
γm 1+

2 γm 1–( )
-----------------------

, pl pmkm,<

2
γm 1–
-------------- 1

pl

pm

------ 
 

γm 1–

γm
---------------

–
 
 
 
  pl

pm

------ 
 

1
γm
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, pmkm pl pm,<≤










km 1
γm 1–
γm 1+
---------------– 

 
γm

γm 1–
---------------

, aml

pm pl–
pm pl–

------------------- γm

R0

µm

------Tm,= =

m l,
i j, pi p j>,
j i, pi p j,≤,




=

Immediately after the switching on the system, one
observes a transient regime in which the position of the
point at which the gas flow changes its direction
migrates from the middle of the piston to a certain sta-
ble value, which is characteristic of the steady opera-
tion of the device. An advance with respect to switching
to the reverse direction of the flow and, accordingly, to
the other branch of Eqs. (1)–(7) is formed. After the
completion of the transient stage, two stable positions
appear, in which of the reversal of velocity u takes
place. These positions are spaced by the distance ψ to
the left and right from L0/2 (L0 is the cylinder length)
and correspond to the equality of pressure in the sec-
tions, p1 = p2. This phenomenon takes place because the
moving piston heats up the gas behind it and, during the
reverse motion, has to compress the previously heated
gas. This gas is characterized by a higher pressure;
hence, the condition p1 = p2 is met before the piston
passes through the point L0/2. Since the gas heating
within one passage is not large, the displacement of the
reversal point from the equilibrium position is insignif-
icant and its coordinate can be taken at x = L0/2 in the
calculations of temperature.

MECHANICAL MODEL OF THE GAS HEATER 
OPERATION

A mechanical analogy is considerably helpful in the
case under study. The periodic compression of gas dur-
ing operation can be represented by the action of two
springs with variable rigidity (1 and 2 in Fig. 2). The
presence of a nozzle with the diameter dn in the piston
results in the gas heating, i.e., in the energy scattering.
At dn = 0, no temperature growth occurs (the loss by
friction between the parts of the system is negligibly
small as compared to the effect considered). This
makes convenient the introduction of a nonconservative
force of quasifriction that accounts for the effect of dn
and causes the energy dissipation. Thus, the mechanical
model of the device appears as a body of mass mp (the
piston mass) with two springs of variable rigidity fixed
to it at the distance L0 from each other. In addition, the
body experiences the action of the friction force R
(Fig. 2).

Assume that the eigenfrequency of oscillation is
independent of the nozzle diameter. This assumption is
valid for narrow nozzles (dn < D). Then, the eigen-
modes of the mechanical system are described by the
equation

(8)

where x is the coordinate of the piston center of mass
and σ is the cylinder cross-sectional area.

Let us set x = 0 in the equilibrium position. In this
case, the gas pressure can be calculated from the adia-

mp
d2x

dt2
-------- F x( )+ 0, F x( ) p2σ p1σ,–= =
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bat equation

where lp is the piston length; subscript 0 on the gasdy-
namic parameters corresponds to the equilibrium posi-
tion; and subscripts 1 and 2 point to the section number
(Fig. 1).

The reduced length of the system is L = L0 – lp. Then,
the function F(x) in Eq. (8) can be expressed as

Integrating Eq. (8) yields the law of the piston
motion in the form

Taking into consideration the symmetry of the prob-
lem (A is the oscillation amplitude), we obtain for the
oscillation period

(9)

Let us introduce three dimensionless parameters:
the relative coordinate l = x/A, the outflow factor λ1,
and the geometrical factor λ2, such that

where ω is the stimulated oscillation frequency.

Then, the free oscillation period appears in the form

(10)

Thus, the oscillation period turns out to be ampli-
tude-dependent and attains its maximum at A  0. In
order to find the peak value, we expand function F(x)
into a power series in terms of x and, bearing in mind
that x  0 at A  0, retain the first term of the
series. Substituting it to Eq. (9) and integrating, we

p1

p0
-----

V01

V1
-------- 

 
γ L0/2 lp/2–

L0/2 x lp/2–+
----------------------------------- 

 
γ
,= =

p2

p0
-----

L0/2 lp/2–
L0/2 x– lp/2–
---------------------------------- 

 
γ
,=

F x( ) = k L/2 x–( ) γ– L/2 x+( ) γ––( ), k = p0σ L/2( )γ.

t
xd

2
mp
------ C F ζ( ) ζd

0

x

∫–
 
 
 

±

---------------------------------------------------, C∫ const.= =

Tp 4
xd

2
mp
------ F ζ( ) ζd

x

A

∫
--------------------------------.

0

A

∫=

λ1
uS

σAω
------------, λ2

L
2A
-------,= =

Tp 4A
1 γ+

2
------------ mp γ 1–( )

2k
-----------------------=

× ld

λ2 1+( )1 γ– λ2 1–( )1 γ– λ2 l+( )1 γ– λ2 l–( )1 γ–
––+

------------------------------------------------------------------------------------------------------------------------.

0

1

∫
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obtain the maximal period of free oscillations:

(11)

We now consider the periodic motion of the system
under the external action. Assuming the harmonic per-
turbing force, we employ the harmonic balance method
[7]. At a sufficiently high power of the engine, the pis-
ton center-of-mass coordinate x is also described by a
harmonic function. Any other periodic motion of the
piston can be described with the help of a Fourier
series.

The equation of motion has the form

(12)

where R is the pseudoforce of friction; N is the reaction
of the support; and P0 and ϕ are the stimulating force
amplitude and phase, respectively.

For an HS system of the second type, N = 0, while
for the first type, the reaction of the support compen-
sates the forces defined by the properties of the system
N = –F(x) – R(x, dx/dt).

We seek the solution to Eq. (12) in the form x =
Acosωt.

Equation (12) includes the nonconservative forces
R(x, dx/dt); the work done by these forces increases the
temperature of the system. The mechanical analogy is
insufficient to elucidate the dependence of these forces
on the parameters of the system. For this purpose, the
thermodynamic approach based on the mathematical
model (1)–(7) is required. This system of nonlinear dif-
ferential equations was numerically integrated, and the
temperature and pressure in sections were calculated.
The character of friction is determined by the shape of
the hysteresis curve [7]. The effect of the drag forces is
defined by the value σ(p2 – p1) = R(x, dx/dt) + F(x).

As is seen from Fig. 3, the behavior of pseudofric-
tion has a complex character. When the nozzle diameter
is much smaller than the piston diameter D (Fig. 3a),
the work done by these forces per period is not large
and the curve repeats the contour of the F(x) curve.

Tp( )max π
mpL
kγ

---------- L
2
--- 

 
γ
.=

mp
d2x

dt2
-------- F x( ) R x

dx
dt
------, 

  N+ + + P0 ωt φ+( ),cos=

x

R

1 2

lp
L0

Fig. 2. Mechanical model.
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With the nozzle diameter providing for the maximal
heating (as before, dn ! D) (Fig. 3b), the loop shape is
close to elliptical.

According to [7], the liquid friction in a linear sys-
tem (F(x) ~ x) corresponds to an elliptical hysteresis
loop.

It follows from the energy estimation of the drag
forces [7] that, despite the completely different shape of
the hysteresis loop, the general character of attenuation

800

0 0.02

σ(p2 – p1), N

x, m

4000

0.100.06–0.02–0.06–0.10

2400

–2400

–4000

(b)

200

0 0.02

σ(p2 – p1), N

x, m

1000

0.100.06–0.02–0.06–0.10

–1000

(a)

–600

600

Fig. 3. Hysteresis loops in the steady-state mode for differ-
ent nozzle diameters: (a) dn ! D and (b) dn is close to the
optimal one.
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4000
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Fig. 4. The amplitude–frequency characteristic of a nonlin-
ear system of the HS-2 type.
is often similar. The friction emerging during oscilla-
tions is mainly governed by the absorption factor [7],
while the shape of the hysteresis loop plays only a
minor part. This is the first remark on the character of
pseudofriction. The second is that, in the most impor-
tant case of the optimal nozzle diameter, the operation
mode corresponds to the motion in the presence of liq-
uid friction (Fig. 3b). Third, from the aspect of calcula-
tions, an arbitrary friction function R(x, dx/dt) can be
approximated by an equivalent viscous friction with the
same absorption factor. This is due to the fact that, in
terms of the harmonic balance method, any periodic
function R(x, dx/dt) can be represented in the form of a
Fourier expansion. Retaining only the first term R1(A,
ω)sin(ωt) leads to the case of the liquid friction [7].

These three arguments allow us to confine our anal-
ysis to the case of liquid friction R = α(dx/dt), α = const
(coefficient α depends on the parameters λ1 and λ2).
Then, taking the solution to Eq. (12) in the form x =
Acos(ωt) and using the harmonic balance method, for
the second-type systems, we obtain [7]

where α/mp = 2n and ω0(A) = 2π/Tp is the eigenfre-
quency of oscillations.

Eliminating the phase shift from the above expres-
sions, we arrive at the following relationship between
the frequency of the perturbing force and the amplitude
of the stimulated oscillations in an HS-2 system:

(13)

Figure 4 shows the amplitude–frequency character-
istic A(ω2) calculated from formula (13). Here, the skel-

eton curve (A) is plotted by using the exact solution
(10). The system is seen to be highly nonlinear: the res-
onance frequency depends on the oscillation amplitude.
Note the existence of the minimal resonance frequency
whose value corresponds to the period (11).

In HS-2-type systems, one can also consider such
nonlinear effects as the free piston “drift,” the spontane-
ous transition upon an increase in frequency from low-
amplitude oscillations to oscillations with A ≈ L/2 and
attainment of resonance, and the appearance of subhar-
monic oscillations.

Thus, the mechanical model of a heat-energy device
enables one to determine the resonance modes and to
reveal special features in the operation of the nonlinear
system. This approach makes it possible to omit the
integration of the polysectional system and to pass
directly to the engineering calculation of the energy
parameters.

ω0
2 A( ) ω2–[ ] A

P0

mp
------ φ, 2nωAcos

P0

mp
------ φ,sin= =

ω2 ω0
2 A( ) 2n2–

P0

mpA
---------- 

 
2

4n2ω0
2 A( )– 4n4+± .=

ω0
2

TECHNICAL PHYSICS      Vol. 49      No. 8      2004



A NONISENTROPIC COMPRESSION HEATER 955
NUMERICAL CALCULATION: ATTRACTORS 
IN THE NONISENTROPIC-COMPRESSION 

HEATING SYSTEMS

In the absence of heat removal, the system of equa-
tions (1)–(7) permits an analytical solution under the
condition that the function of the piston periodic
motion is known. In the approximation of a constant
velocity of sound, this solution has already been found.
In this case, a change in the gas temperature in sections
is described by the geometrical progression

(14)

where the coefficients ci = const in the given geometry
and operation mode and m is the period number.

However, when carrying out the numerical integra-
tion of the system, it turned out that the solution to sys-
tem (14) is valid in a limited region. The nonlinear seg-
ment determined by this formula is followed by a linear
temperature rise in the system (Fig. 5). At first glance,
this result may seem unexpected; the more so as the
system is initially nonlinear (see Eqs. (1)–(7)). The
geometrical progression, which describes the initial
temperature growth, gives way to the arithmetical pro-
gression.

On closer examination, it was found that a change in
the character of the solution should be attributed to the
temperature dependence of the velocity of sound. When
searching for (14), this fact can be disregarded within
only a certain temperature range. In reality, the velocity
of sound slowly grows with temperature (as the square
root of the temperature). It is precisely this dependence
that forms the feedback responsible for the self-organi-
zation of the system.

In a more general case, the feedback can be estab-
lished from the dependences of the dimensionless com-
plexes λ1 and λ2 on the thermodynamic parameters of
the system rather than from the temperature depen-
dence of the sound velocity. This circumstance shows
up in numerical solution of system (1)–(7). If any quan-
tity entering these complexes depends on the thermody-
namic functions of state (temperature, pressure, etc.),
the system is “tuned” to the external action and passes
to the mode of a linear temperature growth. According
to numerical results, the particular form of the depen-
dence of values in complexes λ1 and λ2 on the function
of state is of no importance (at least, in the case of a
monotonic continuous function). In any case, self-orga-
nization occurs and the distribution of the parameters of
the system in space and time is attracted to a certain sta-
ble solution (attractor). The shape of the attractor is
governed by the geometrical and thermodynamic
parameters of system (Figs. 6 and 7). In the absence of
feedback, no attraction occurs.

T1
m 1+〈 〉 T1

m c4 c5+( ) c4' c5
'+( ) c3c6'+( )=

+ T2
m c4' c5'+( )c6,

T2
m 1+〈 〉 T1

m c4 c5+( )c3 T2
mc6c3,+=





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In actual conditions of operation, this effect is less
pronounced because of the influence of the heat loss. Its
presence gives rise to the energy balance, and the sys-
tem passes to a stationary mode with a constant mean
temperature. This is true for both linear and nonlinear
temperature growth. For this reason, we disregarded the
heat loss when considering the special features of these
modes.

It has been demonstrated that, irrespective of the
particular form of feedback, its presence gives rise to
stable solutions. The fact of the presence of feedback is
decisive. In this case, we are dealing with the phenom-
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1500
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Fig. 5. Variation of temperature in the first (T1, solid curve)
and second (T2, dot-and-dash curve) sections in the absence
of heat removal.
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Fig. 6. Temperature difference vs. the piston coordinate x.

Fig. 7. Pressure difference vs. the piston velocity.
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enon of self-organization, which leads to a definite qua-
silinear behavior of a nonlinear system.

By using various approaches complementing each
other, one can obtain a detailed insight into the process
and reveal a great number of special features in the
behavior of the system.
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Abstract—A jet of an ideal incompressible conducting liquid with a uniformly charged surface is considered.
The jet moves at a constant velocity along the symmetry axis of its unperturbed cylindrical surface. An analyt-
ical expression for the jet shape is derived as a function of time for the excitation of nonaxisymmetric modes at
the initial instant. The solution is found in the second order of smallness with respect to the amplitude of cap-
illary oscillations of the jet. In the same approximation, the liquid velocity field in the jet and the distribution
of the electric field in the jet region are determined. Second-order corrections to the analytical expressions for
the jet shape and potentials of the liquid velocity field in the jet and the electrostatic field around the jet have
resonant forms determined by the conditions of their interaction with the solutions of the first order of small-
ness. © 2004 MAIK “Nauka/Interperiodica”.
1. Investigations of capillary oscillations and stabil-
ity of a charged cylindrical jet is of interest in connec-
tion with numerous scientific, technical and technolog-
ical applications of this phenomenon (see, for example,
monograph [1], which includes a detailed review of
publications concerning the issue discussed up to the
1990s). In view of the problem’s relevance, this issue
has repeatedly become a subject of theoretical studies
in linear and nonlinear formulations in recent years
[2−9]. However, in all of the works devoted to nonlinear
oscillations, only axisymmetric jet oscillations were
considered because researchers were mainly interested
in the mechanisms of disintegration of a jet into drops
inasmuch as in due time Rayleigh showed that disinte-
gration of an uncharged jet into separate drops occurs
due to excitation of an axisymmetric wave [10]. At the
same time, it is shown [11,12] that for highly charged
jets (with a surface or volume charge), the instability
growth rates of nonaxisymmetric waves may exceed
that of an axisymmetric wave. Therefore, in the present
paper, we conduct an analytical asymptotic investiga-
tion of nonlinear oscillations in nonaxisymmetric
waves at the surface of a charged ideally conducting jet
in the frame of a method of many scales. This method
was earlier employed in [13] to study nonlinear oscilla-
tions of an uncharged jet.

2. Let us consider an infinite jet of an ideal incom-
pressible ideally conducting liquid with a density ρ and
a surface tension coefficient σ. The jet has a constant

radius R and moves at a constant velocity . Assume
that the ambient medium is absent; however, in the
ambient space, an electrostatic field directed normally

U0
1063-7842/04/4908- $26.00 © 20957
to the jet axis is produced. For this reason, a charge is
distributed over the jet surface with the surface density
χ in the equilibrium state (that is, in the absence of any
perturbations of the cylindrical jet shape).

We conduct the analysis in a cylindrical coordinate

system with the origin moving at velocity  and with
the z axis codirectional with the jet so that nz || U0. It is
obvious that in such a system the liquid velocity field in
the jet is entirely governed by capillary oscillations of
the jet surface.

Let us track the evolution with time of a nonaxisym-
metric wave with the wave number k, propagating over
the jet surface in the positive direction of z axis. The
wave amplitude is assumed to be small as compared
with the jet radius.

The analysis will be conducted in dimensionless
variables with basic units of R, ρ, and σ (that is, we
assume that R = ρ = σ = 1). In this case, the equation of
the free jet surface perturbed by a capillary wave
motion is written in the form

(1)

where r, ϕ, and z are the cylindrical coordinates; t is
time; and ξ is a function describing the perturbation of
the equilibrium cylindrical jet shape.

In the frame of the model of a potential flow, the
mathematical statement of the problem on calculating
of the time evolution of a virtual wave perturbation of
the jet surface includes the following equations and
conditions the Laplace equations for potential Ψ of the

U0

r 1 ξ ϕ z t, ,( ); ξ  ! 1,+=
004 MAIK “Nauka/Interperiodica”
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liquid velocity field in the jet and electrostatic potential
Φ around the jet,

(2)

the conditions of boundedness of the solutions at the jet
axis and at infinity,

(3)

the boundary conditions at the free jet surface (1),
namely, kinematic condition

(4)

and the dynamic condition

(5)

and the condition of equipotentiality of the jet surface,

(6)

In expression (5), ∆P is the difference between the
pressures inside and outside the jet in equilibrium (ξ =
0, Ψ = 0); the next to last and last terms are the pres-
sures of the electric field and the forces of surface ten-
sion, respectively; n is a vector normal to the jet surface
(1); n = —F/|—F|.

Boundary value problem (1)–(6) should be supple-
mented with the conditions of conservation of the
charge and volume of a jet segment with a length equal
to the wavelength λ = 2π/k,

(7)

(8)

For complete closure of the set of equations (2)–(8),
it is also necessary to formulate the initial conditions.
However, the initial conditions of an arbitrary form
may lead to an extremely cumbersome solution; there-
fore, in nonlinear problems of determining periodic
wave profiles of the surface of an ideal liquid, the initial
conditions are usually formulated in such a way that the
solution would take the simplest form [14, 15]. Pre-

∆Ψ 0, ∆Φ 0;= =

r 0: —Ψ 0; r ∞: —Φ 0;

r 1 ξ : 
∂F
∂t
------ —Ψ —F⋅+ + 0;= =

F r ϕ z t, , ,( ) r 1 ξ ϕ z t, ,( )+[ ] ;–≡

r 1 ξ : ∆P
∂Ψ
∂t

--------–
1
2
--- —Ψ( )2–+=

+
1

8π
------ —Φ( )2 —– n⋅ 0=

r 1 ξ : Φ+ ΦS t( ).= =

1
4π
------ n —Φ⋅( )rdϕdz

S

∫°– 2πχλ;=

S

r 1 ξ ϕ z t, ,( )+=

0 ϕ 2π≤ ≤
z0 z z0 λ ;+≤ ≤






=

r rd ϕd zd

V

∫ πλ; V

0 r 1 ξ ϕ z t, ,( )+≤ ≤
0 ϕ 2π≤ ≤
z0 z z0 λ .+≤ ≤






= =
cisely this approach will be employed in the following
analysis.

We shall seek the solution of problem (2)–(8) in the
form of an expansion in a small parameter ε equal to the
ratio of the wave amplitude to the jet radius. Using a
method of many scales and confining ourselves to an
accuracy up to and including the second order of small-
ness, we represent the sought functions ξ, Ψ, and Φ in
the form of power series in ε. Simultaneously, we
assume that variation of these functions with time is
determined by two time scales: the main scale T0 = t and
a slower one T1 = εt,

(9)

Inasmuch as we assume that the wave propagates
over the jet surface in the positive direction of the z axis,
the shape of the free liquid surface can be represented
in the form

where θ ≡ kz – ωm(k)T0, where ωm(k) is the frequency of
a wave with the wave number k and azimuthal number
m; f(ϕ) is a real function describing the jet cross sec-
tion; A(T1) is an as yet unknown function that depends
on slow time T1; and the vinculum means complex con-
jugation.

It is obvious that f(ϕ) is a periodic function with
period 2π and, consequently, it can be expanded into a
Fourier series:

To simplify the following calculations, we confine
ourselves to the case when the jet cross section shape is
determined by a single harmonic; that is, we assume
that

Now, changing the notation of coefficients (ζ(+)(T1) =

CmA(T1), ζ(–)(T1) = A(T1)) in the proper way allows
us to write the expression for the free jet surface in the

ξ ϕ z t, ,( ) = εξ 1( ) ϕ z T0 T1, , ,( ) ε2ξ 2( ) ϕ z T0, ,( ) O ε3( );+ +

Ψ r ϕ z t, , ,( )

=  εΨ 1( ) ϕ z T0 T1, , ,( ) ε2Ψ 2( ) ϕ z T0, ,( ) O ε3( );+ +

Φ r ϕ z t, , ,( ) Φ 0( ) r( ) εΦ 1( ) r ϕ z T0 T1, , , ,( )+=

+ ε2Φ 2( ) r ϕ z T0, , ,( ) O ε3( ).+

r = 1 ε f ϕ( ) A T1( ) iθ( )exp A T1( ) iθ( )exp+( ) O ε2( ),+ +

f ϕ( ) Cm imϕ( )exp Cm imϕ–( )exp+( );
m 0=

∞

∑=

Cm
1

2π 1 δm 0,+( )
------------------------------ f ϕ( ) imϕ–( )exp ϕ .d

π–

π

∫=

f ϕ( ) Cm imϕ( )exp Cm imϕ( ).exp+=

Cm
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form

(10)

Here and below, abbreviation (c.c.) means terms that
are complex conjugate to the preceding ones. We shall
consider expression (10) as the initial condition which
is necessary for closure of the boundary value prob-
lem (2)–(8).

3. The substitution of expansions (9) into Eqs. (2)–
(8), the calculation of the derivative with the help of the
operator

and the expansion of conditions (4)–(8) into Taylor
series in the vicinity of the equilibrium cylindrical sur-
face r = 1 allow us to find and sum the terms with the
same powers of ε. Equating the factors multiplying var-
ious powers of ε to zeros leads to problems of various
orders of smallness instead of the initial boundary value
problem.

(a) In the zeroth approximation, an equilibrium state
takes place which corresponds to an immovable (in the
moving coordinate system) cylindrical liquid column
with a constant surface charge density χ. The electric
field in the vicinity of a charged unperturbed homoge-
neous cylindrical column is determined by the potential

(11)

When writing (11), we assume that the surface
potential of a cylindrical jet unperturbed by the wave

motion is equal to zero (  = 0). The dynamic bound-
ary condition in the zeroth approximation allows one to
determine the equilibrium pressure differential at the jet
surface

(b) Due to the linearity of Eqs. (2), boundedness
conditions (3), and expansions (9), functions Ψ(j) and
Φ(j) (j = 1, 2) in the first approximation are solutions to
the equations for them that are entirely analogous to (2)
and (3).

The set of boundary and additional conditions (4)–
(8) in the first order of smallness takes the form

(12)

(13)

r 1 ε ζ +( ) T1( ) imϕ( )exp([+=

+ ζ –( ) T1( ) imϕ–( ) ) iθ( )expexp c.c.( )+ ] O ε2( ).+

∂
∂t
----- ∂

∂T0
--------- ε ∂

∂T1
---------,+=

Φ 0( ) r( ) 4πχ r( ).ln–=

ΦS
0( )

∆p 1 2πχ2.–=

r 1: 
∂Ψ 1( )

∂r
------------- ∂ξ 1( )

∂T0
-----------– 0;= =

∂Ψ 1( )

∂T0
-------------–

1
8π
------ 2

∂Φ 0( )

∂r
-------------∂Φ 1( )

∂r
------------- ∂

∂r
----- ∂Φ 0( )

∂r
------------- 

 
2

ξ 1( )+
 
 
 

+

+ ξ 1( ) ∂2ξ 1( )

∂ϕ2
------------- ∂2ξ 1( )

∂z2
-------------+ + 0;=
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(14)

(15)

(16)

On the basis of Eqs. (1), (9), and (10), we can obtain
the following expression for the function of correction
ξ(1) of the first order of smallness to the wave profile:

(17)

The explicit form of functions ζ(+)(T1) and ζ(–)(T1)
can be revealed only when analyzing the problem of the
next order of smallness. It can readily be verified that
function ξ(1) in the form (17) meets the condition of
invariability of the jet volume (16).

Taking into account the fact that corrections of the
first order of smallness to the potential of the velocity
field Ψ(1) and electrostatic potential Φ(1) are related to
function ξ(1) by kinematic boundary condition (12) and
condition of equipotentiality (14), we shall seek expres-
sions for Ψ(1) and Φ(1) by a method of separation of vari-
ables, taking them in the form

(18)

Substituting Eqs. (18), as well as (17) and (11), into
Eqs. (12) and (14) and equating the coefficients of the
exponents with the same powers, we obtain

(19)

Here and below, the prime denotes a derivative with
respect to the argument calculated at the unperturbed
jet surface.

Corrections to potentials Ψ(1) and Φ(1) as functions of
coordinate r are determined from Laplace equations (2)
that, after substitution into them of Eqs. (18) and (19),

Φ 1( ) dΦ 0( )

dr
-------------+ ξ 1( ) ΦS

1( ) t( );=

∂Φ 1( )

∂r
-------------

∂
∂r
----- r

∂Φ 0( )

∂r
------------- 

  ξ 1( )+
r 1=

ϕd zd

0

2π

∫
z0

z0 λ+

∫ 0;=

ξ 1( ) ϕd zd

0

2π

∫
z0

z0 λ+

∫ 0.=

ξ 1( ) ϕ z T0 T1, , ,( ) ζ +( ) T1( ) imϕ( )exp[=

+ ζ –( )
T1( ) imϕ–( )exp ] iθ( )exp c.c.( ).+

Ψ 1( ) r ϕ z T0 T1, , , ,( ) = A T1( )B r( )D ϕ( ) iθ( )exp c.c.( );+

Φ 1( ) r ϕ z T0 T1, , , ,( )

=  S T1( )C r( )W ϕ( ) iθ( )exp c.c.( )+[ ] Φ S
1( )

t( ).+

A T1( )D ϕ( ) iω–
B' 1( )
------------- ζ +( ) T1( ) imϕ( )exp[=

+ ζ –( ) T1( ) imϕ–( )exp ] ;

S T1( )W ϕ( ) 4πχ
C 1( )
------------ ζ +( ) T1( ) imϕ( )exp[=

+ ζ –( ) T1( ) imϕ–( )exp ] .
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are easily reduced to the ordinary differential equations
for functions B(r) and C(r) of the same form:

Here, G(r) ≡ B(r) or G(r) ≡ C(r). Solutions to this equa-
tion are modified Bessel functions Im(kr) and Km(kr).
Taking into account the fact that corrections to poten-
tials Ψ(1) and Φ(1) must meet boundedness conditions (3),
we can write B(r) = Im(kr) and C(r) = Km(kr). Eventu-
ally, the expressions for corrections to potential Ψ(1) of
the velocity field and electrostatic potential Φ(1) take the
final form

(20)

When deriving the expression for Φ(1), we took into
account the fact that the condition of conservation of
the charge implies that the first-order correction to the
electrostatic potential at the jet surface is equal to zero

( (t) = 0).

Note that dynamic boundary condition (13) entering
into the set of boundary and additional conditions (12)–
(16) has remained unemployed. Substituting into it
solutions (11), (17), and (20) gives the dispersion equa-
tion relating wave number k and azimuthal number m to
oscillation frequency ω,

(21)

(c) In the second order of smallness, using set (4)–
(8), we obtain an inhomogeneous equation for second-
order corrections ξ(2), Ψ(2), and Φ(2) (see Appendix A).
The right-hand sides of these equations play the role of
inhomogeneity functions and can be expressed in terms
of solutions of the zeroth (11) and first order of small-
ness (17) and (20). After substitution of these solutions,
boundary and additional conditions (A.1)–(A.5) take
the form

(22)

d2G r( )
dr2

-----------------
1
r
---dG r( )

dr
--------------- k2 m2

r2
------+ 

  G r( )–+ 0.=

Ψ 1( ) r ϕ z T0 T1, , , ,( ) iω
Im kr( )
kIm' k( )
---------------- ζ +( ) T1( ) imϕ( )exp[–=

+ ζ –( ) T1( ) imϕ–( )exp ] iθ( )exp c.c.( );+

Φ 1( ) r ϕ z T0 T1, , , ,( ) 4πχ
Km kr( )
Km k( )
---------------- ζ +( ) T1( ) imϕ( )exp[=

+ ζ –( ) T1( ) imϕ–( )exp ] iθ( )exp c.c.( ).+

ΦS
1( )

ωm
2 k( ) Gm k( ) k2 m2 1– W 1 Hm k( )+( )+ +[ ] ;=

Gm k( )
kIm' k( )
Im k( )

----------------; Hm k( )
kKm' k( )
Km k( )

------------------; W 4πχ2.≡ ≡ ≡

r 1: 
∂Ψ 2( )

∂r
------------- ∂ξ 2( )

∂T0
-----------–

∂ζ +( )

∂T1
----------- imϕ( )exp= =

+
∂ζ –( )

∂T1
---------- imϕ–( )exp iθ( )exp i X1 ζ +( )( )2

i2mϕ( )exp([+

+ ζ –( )( )2
i2mϕ–( )exp ) X22ζ +( )ζ –( )+ ] i2θ( )exp c.c.( );+
(23)

(24)

(25)

(26)

All missing notation is given in Appendix B. When
deriving Eq. (25), we used the recurrent relation

Let us obtain a second-order partial solution of the
problem satisfying Eqs. (2) and (3) for functions Ψ(2)

and Φ(2), as well as the set of equations (22)–(26). The
form of inhomogeneity functions in Eqs. (22)–(24)
determines the character of dependence of the sought
solution on coordinate ϕ and argument θ. On this basis,
we assume that

(27)

(28)

∂Ψ 2( )

∂T0
-------------– χ ∂Φ 2( )

∂r
------------- 4πχξ 2( )+– ξ 2( ) ∂2ξ 2( )

∂ϕ2
-------------

∂2ξ 2( )

∂z2
-------------+ + +

=  iω 1
Gm k( )
--------------- ∂ζ +( )

∂T1
----------- imϕ( )exp

∂ζ –( )

∂T1
----------- imϕ–( )exp+–

× iθ( )exp Y1 ζ +( )( )2 i2mϕ( )exp ζ –( )( )2 i2mϕ–( )exp+( )[+

+ Y22ζ +( )ζ –( ) ] i2θ( )exp Y32ζ +( )ζ –( ) i2mϕ( )exp+

+ Y4 ζ +( ) 2 ζ –( ) 2
+( ) c.c.( )+ ;

Φ 2( ) 4πχξ 2( )– ΦS
2( ) L ζ +( )( )2

i2mϕ( )exp[{+=

+ ζ –( )( )2
i2mϕ–( )exp 2ζ +( )ζ –( ) ] i2θ( )exp+

+ 2ζ +( )ζ –( ) i2mϕ( )exp ζ +( ) 2 ζ –( ) 2
+( ) c.c.( )+ + } ;

∂Φ 2( )

∂r
------------- ϕd zd

0

2π

∫
z0

z0 λ+

∫

=  –4π2λχ k2 m
2

4Hm k( )–+[ ] ζ +( ) 2 ζ –( ) 2
+( );

ξ 2( ) ϕd zd

0

2π

∫
z0

z0 λ+

∫ πλ ζ +( ) 2 ζ –( ) 2
+( ).–=

Km'' k( ) 1 m2

k2
------+ 

  Km k( ) 1
k
---Km' k( ).–=

ξ 2( ) ϕ z T0, ,( ) = A0 A1
+( ) imϕ( )exp A1

–( ) imϕ–( )exp+[ ]+

× iθ( )exp A2 A2
+( ) i2mϕ( )exp A2

–( ) i2mϕ–( )exp+ +[ ]+

× i2θ( )exp A3 i2mϕ( )exp c.c.( );+ +

Ψ 2( ) r ϕ z T0, , ,( ) B0F0 r( ) B1
+( )F1

+( ) r( ) imϕ( )exp[+=

+ B1
–( )F1

–( ) r( ) imϕ–( )exp ] iθ( )exp B2F2 r( )[+

+ B2
+( )F2

+( ) r( ) i2mϕ( )exp B2
–( )F2

–( ) r( ) i2mϕ–( )exp ]+

× i2θ( )exp B3F3 r( ) i2mϕ( )exp c.c.( );+ +
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(29)

The form of functions Ψ(2) and Φ(2) of coordinate r
we find from the Laplace equations. Substituting
Eqs. (28) and (29) into relations (2) and equating the
sums of coefficients of exponents with various powers
to zero, we obtain ordinary differential equations for

each of functions (r) and (r); j = 0, 1, 2, 3.
Solutions to these equations, subject to conditions of
boundedness (3), allows one to render expressions (28)
and (29) for the potentials in the form

(30)

(31)

Coefficients , , and  are determined
from the set of equations (22)–(26). Note that B0 may
be a function of time chosen in a convenient form for
writing the solution since this function has no physical
meaning. From the condition of conservation of the
volume (26) and charge (25), it is not difficult to find

(32)

Substituting (27) and (30) into kinematic boundary
condition (22) and equating the coefficients of the same
exponents on the left- and right-hand sides of the equal-
ity to each other, we obtain

(33)

Φ 2( ) r ϕ z T0, , ,( ) D0C0 r( ) D1
+( )C1

+( ) r( ) imϕ( )exp[+=

+ D1
–( )C1

–( ) r( ) imϕ–( )exp ] iθ( )exp D2C2 r( )[+

+ D2
+( )C2

+( ) r( ) i2mϕ( )exp D2
–( )C2

–( ) r( ) i2mϕ–( )exp ]+

× i2θ( )exp D3C3 r( ) i2mϕ( )exp c.c.( ).+ +

F j
±( ) C j

±( )

Ψ 2( ) r ϕ z T0, , ,( ) = B0 B1
+( ) imϕ( )exp B1

–( ) imϕ–( )exp+[ ]+

× Im kr( ) iθ( )exp B2I0 2kr( ) B2
+( ) i2mϕ( )exp(+[+

+ B2
–( ) i2mϕ–( ) )I2m 2kr( )exp ] i2θ( )exp

+ B3r2m i2mϕ( )exp c.c.( );+

Φ 2( ) r ϕ z T0, , ,( ) = D0 rln D1
+( ) imϕ( )exp[+

+ D1
–( ) imϕ–( )exp ]Km kr( ) iθ( )exp

+ D2K0 2kr( ) D2
+( ) i2mϕ( )exp(+[

+ D2
–( ) i2mϕ–( ) )K2m 2kr( )exp ] i2θ( )exp

+ D3r 2m– i2mϕ( )exp c.c.( ).+

A j
±( ) B j

±( ) D j
±( )

A0
1
2
--- ζ +( ) 2 ζ –( ) 2

+( );–=

D0 2πχ k2 m2+( ) ζ +( ) 2 ζ –( ) 2
+( ).–=

kIm' k( )B1
±( ) iωm k( )A1

±( )+
∂ζ ±( )

∂T1
-----------;=

2kIm' 2k( )B2
±( ) i2ωm k( )A2

±( )+ iX1 ζ ±( )( )2
;=

2kI0' 2k( )B2 i2ωm k( )A2+ iX22ζ +( )ζ –( );=

B3 0.=
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Analogously to the above, employing Eqs. (27) and
(31), from condition (24) of equipotentiality of the jet
surface, we obtain the following set of equalities:

(34)

Let us note that when deriving the expression for the

second-order correction to surface potential , we
used expressions (32).

Lastly, substituting Eqs. (27), (30), and (31) into
dynamic boundary condition (23) subject to (32) gives

(35)

Finding the form of function B0 (see the last equali-
ty (35)) is only of theoretical importance because the
potential is determined to an accuracy of an arbitrary
additive function depending only on time [17].

Solving the set of equations (33)–(35) simulta-
neously allows one to determine the sought coeffi-
cients. Consider the first equalities in the sets written.

Expressing coefficients  using (33) and coefficients

 using (34), and substituting the result into (35), we
obtain

Km k( )D1
±( ) 4πχA1

±( )– 0;=

K2m 2k( )D2
±( ) 4πχA2

±( )– L ζ ±( )( )2
;=

K0 2k( )D2 4πχA2– L2ζ +( )ζ –( );=

D3 4πχA3– L2ζ+ζ–;=

ΦS
2( ) 4πχ 1 Hm k( )+( ) ζ +( ) 2 ζ –( ) 2

+( ).=

ΦS
2( )

1 k2– m2– 4πχ2–( )A1
±( ) iωm k( )Im k( )B1

±( )+

– χkKm' k( )D1
±( ) i

ωm k( )
Gm k( )
---------------∂ζ ±( )

∂T1
-----------;–=

1 4k2– 4m2– 4πχ2–( )A2
±( ) i2ωm k( )I2m 2k( )B2

±( )+

– χ2kK2m' 2k( )D2 Y1 ζ ±( )( )2
;=

1 4k2– 4πχ2–( )A2 i2ωm k( )I0 2k( )B2+

– χ2kK0' 2k( )D2
±( ) Y22ζ+ζ–;=

1 4m2– 4πχ2–( )A3 2mχD3+ Y32ζ +( )ζ –( );=

∂B0

∂T0
--------- = Y4

1
2
--- 2πχ2 k2 m2 1+ +( )–+ ζ +( ) 2 ζ –( ) 2

+( ).–

B1
±( )

D1
±( )

1 k2– m2– 4πχ2 1 Hm k( )+( )–
ωm

2 k( )
Gm k( )
---------------+ A1

±( )

=  i2
ωm k( )
Gm k( )
---------------∂ζ ±( )

∂T1
-----------.–
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Fig. 1. Surface shape of nonlinearly oscillating jets at sub-
critical magnitudes of the surface density of the self-charge
in the sense of jet stability. The calculations are conducted
at ε = 0.3, k = 2; (a) W = 0.5, m = 0; (b) W = 1, m = 1; (c)
W = 1, m = 2; (d) W = 1, m = 3; (e) W = 1, m = 4.
It is not difficult to notice that with regard for disper-
sion relation (21), the expression in brackets in front of

 becomes zero. Consequently, we obtain

(36)

Equation (36) means that complex amplitudes ζ(±)

are independent of time scale T1 and are constants in the
solution of the problem considered to an accuracy of
the second order of smallness.

Coefficients  have remained undetermined.
Their values can be found only from the initial condi-
tions. Inasmuch as we have to find a solution of the sim-
plest form by choosing the initial conditions in the

proper way, we can choose them so as to obtain  =
0. In this case, according to Eqs. (33) and (34), we have

 = 0 and  = 0.

Finding from set (33)–(35) all remaining
coefficients, we write the second-order solution in final
form:

(37)

A1
±( )

∂ζ ±( )

∂T1
----------- 0.=

A1
±( )

A1
±( )

B1
±( ) D1

±( )

ξ 2( ) ϕ z T0, ,( ) 1
2
--- ζ +( ) 2 ζ –( ) 2

+( )–=

+ 2a3ζ
+( )ζ –( ) i2θ( )exp a1 ζ +( )( )2

i2mϕ( )exp([+

+ ζ –( )( )2
i2mϕ–( )exp ) 2a2ζ

+( )ζ –( ) ] i2θ( )exp c.c.( );+ +

Ψ 2( ) r ϕ z T0, , ,( ) b0 ζ +( ) 2 ζ –( ) 2
+( )T0–=

– i b1 ζ +( )( )2
i2mϕ( )exp ζ –( )( )2

i2mϕ–( )exp+( )[

× I2m 2kr( ) 2b2ζ
+( )ζ –( )I0 2kr( )+ ] i2θ( )exp c.c.( );+

Φ 2( ) r ϕ z T0, , ,( ) 2πχ k2 m2+( ) ζ +( ) 2 ζ –( ) 2
+( ) rln–=

2λ
3λ/2

λ
λ/2

0
0

1

–1

–1

0

1

(e)
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all newly introduced notation is given in Appendix C.
Thus, the solutions of the problem considered to the

second order of accuracy are defined by expressions
(1), (9), (11), (17), (20), (21), (36), and (37).

4. According to the above arguments, the jet shape
as a function of time is defined by the expression

Calculations with the help of Matematica program
package for analytical calculations with the use of the
above equation at ε = 0.3 and subcritical values of
parameter W ≡ 4πχ2 in terms of development of insta-
bility with respect to the surface charge is illustrated by
Fig. 1. For the first five modes (m = 0, 1, 2, 3, 4), three-
dimensional images of the surfaces of nonlinearly
oscillating jets are presented for t = 0.5T, where T is the
period of waves (the critical magnitude of W for a fixed
m is found from the requirement of vanishing of the
square of the frequency in dispersion equation (21)
[11, 12]). In Fig. 1, it is seen that monodisperse disinte-
gration of jets is the most probable for axisymmetric
jets (m = 0). As for excitation of the whip-shaped
motion of jets [11, 12], the odds are that it is associated
with instability of the mode with m = 1. When instabil-
ity of nonsymmetrical waves with m ≥ 2 develops, the
probability of polydisperse disintegration of a jet
increases precisely as it is observed in natural condi-
tions upon spontaneous disintegration of strongly
charged jets (the latter is a necessary condition for
ensuring the instability of nonaxisymmetric modes)
[11, 12]. How an increase in the surface charge density
in a jet influences its shape is illustrated in Fig. 2, where
the shapes of the surfaces of nonaxisymmetric jets with
m = 1, 2, 3, 4 are shown for t = 0.5T at ε = 0.3 when the
surface charge density is close to the critical value for
the mode considered. It is seen that the wave ampli-
tudes grow with increasing surface density of electric
charge, and the probability of precisely polydisperse
disintegration at m ≥ 2 becomes more obvious. A large
magnitude of small parameter ε = 0.3 employed in the
calculations for plotting Figs. 1 and 2 is chosen for bet-
ter visualization.

From the above equation for the jet shape, it is
readily seen that, in addition to a wave with wave num-
ber k existing at the initial instant, a wave with the dou-
ble wave number 2k is also excited. Between these two
waves resonance interaction takes place, which is deter-
mined by the denominators of coefficients a1 and a2 that
vanish under certain conditions [18–20]. Studying the

+ d1 ζ +( )( )2
i2mϕ( )exp ζ –( )( )2

i2mϕ–( )exp+( )[

× K2m 2kr( ) 2d2ζ
+( )ζ –( )K0 2kr( )+ ] i2θ( )exp

+ 2d3ζ
+( )ζ –( ) i2ϕ( )exp c.c.( );+

r z ϕ t, ,( ) 1 ε mϕ( ) θ( )coscos+=

–
ε2

4
---- 1

2
--- a1 2mϕ( )cos a2+( ) 2θ( )cos– a3 2ϕ( )cos– .
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Fig. 2. Surface shape of nonlinearly oscillating jets at ε =
0.3 and k = 2 in the case when the surface density of the jet
self-charge is close to critical for a given mode: (a) W =
2.456, m = 1; (b) W = 3.329, m = 2; (c) W = 4, m = 3; (d)
W = 5.25, m = 4.
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resonant interaction of cylindrical waves is a subject of
a separate investigation; here, it is interesting to note
that under the resonant interaction of nonlinear oscilla-
tions and waves, the total energy exchange between
them is possible [20, 21].In addition, it is remarkable
that the resonant interaction occurs between waves with
different wave and azimuthal numbers (that is, with dif-
ferent symmetries) as is seen from the expression for
coefficients a1 and a2. How surface density χ of the
electric charge at a jet affects the mechanism of devel-
opment of resonant interaction is reduced to variation
of the resonance position (to changes in the wave num-
bers and azimuthal parameters of the interacting waves
with variation of χ). Away from the resonant positions,
the influence of the electric charge at the jet surface is
reduced to a possibility of development of instability of
nonaxisymmetric modes at sufficiently high charge
densities (at 4πχ2 ≥ 1) [11, 12]. It should be recalled
that with zero charge (at χ = 0), all nonaxisymmetric
modes are stable [1]; this follows from dispersion equa-
tion (21). The influence of the (surface or volume)
charge on the jet shape is manifested in dependences of
coefficients aj on charge density χ. These coefficients
determine the second-order deviation of the jet shape
from a cylindrical one.

There are no corrections to the frequencies in the
second approximations with respect to the wave fre-
quency analyzed above; these corrections may appear
only in the next, third approximation [20, 22, 23].
Therefore, in the present analysis, the critical condi-
tions of instability development of a nonaxisymmetric
jet in the sense of its disintegration into separate drops
are determined in the frame of a linear approximation
by the condition of the square of frequency (21) passing
through zero into the region of negative values, as
described in [11, 12]. However, it should be noted that
corrections to the critical conditions of instability
development associated with nonlinear interaction of
waves cannot be important and cannot lead to a notice-
able change in the existing concepts on the develop-
ment of instability of the jet surface because these cor-
rections are of the second order of smallness (see, for
example, nonlinear analyses of the third order of small-
ness conducted earlier for charged spherical drops and
a charged plane liquid surface [22, 24, 25]).

CONCLUSIONS

The solution of the problem on calculating nonlin-
ear oscillations of a charged jet even in the second order
of smallness with respect to the amplitude of deforma-
tion of an unperturbed cylindrical jet reveals the reso-
nant interaction between the wave determining the ini-
tial virtual deformation and the wave with the double
wave number, which emerges as a result of nonlinearity
of equations of hydrodynamics. Conditions for the
emergence of the resonant situations are dependent on
the surface density of the electric charge of a jet.
APPENDIX A

The set of boundary and additional conditions of the
second order of smallness

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

r 1: 
∂Ψ 2( )

∂r
------------- ∂ξ 2( )

∂T0
-----------– ∂ξ 1( )

∂T1
-----------

∂2Ψ 1( )

∂r2
---------------ξ 1( )–= =

+
∂Ψ 1( )

∂ϕ
-------------∂ξ 1( )

∂ϕ
----------- ∂Ψ 1( )

∂z
-------------∂ξ 1( )

∂z
-----------;+

∂Ψ 2( )

∂T0
-------------–

1
8π
------ 2

∂Φ 0( )

∂r
-------------∂Φ 2( )

∂r
------------- ∂

∂r
----- ∂Φ 0( )

∂r
------------- 

 
2

ξ 2( )+
 
 
 

+

+ ξ 2( ) ∂2ξ 2( )

∂ϕ2
------------- ∂2ξ 2( )

∂z2
-------------+ + ∂Ψ 1( )

∂T1
-------------

∂2Ψ 1( )

∂r∂T0
---------------ξ 1( )+=

+
1
2
--- ∂Ψ 1( )

∂r
------------- 

 
2 ∂Ψ 1( )

∂ϕ
------------- 

 
2 ∂Ψ 1( )

∂z
------------- 

 
2

+ +

–
1

8π
------ 2

∂
∂r
----- ∂Φ 0( )

∂r
-------------∂Φ 1( )

∂r
------------- ξ 1( ) 1

2
--- ∂2

∂r2
------- ∂Φ 0( )

∂r
------------- 

 
2

ξ 1( )( )2
+





+
∂Φ 1( )

∂r
------------- 

 
2 ∂Φ 1( )

∂ϕ
------------- 

 
2 ∂Φ 1( )

∂z
------------- 

 
2





ξ 1( )( )2
+ + +

+
1
2
--- ∂ξ 1( )

∂ϕ
----------- 

 
2 ∂ξ 1( )

∂z
----------- 

 
2

– 2ξ 1( )∂2ξ 1( )

∂ϕ2
-------------+ ;

Φ 2( ) ∂Φ 0( )

∂r
-------------ξ 2( )–

=  ΦS
2( ) t( ) ∂Φ 1( )

∂r
-------------ξ 1( )–

1
2
---∂2Φ 0( )

∂r2
--------------- ξ 1( )( )2

;–

∂Φ 2( )

∂r
-------------

∂
∂r
----- r

∂Φ 0( )

∂r
------------- 

  ξ 2( )+ ϕd zd

0

2π

∫
z0

z0 λ+

∫

=  
∂
∂r
----- r

∂Φ 1( )

∂r
------------- 

  ξ 1( ) ∂Φ 1( )

∂ϕ
-------------∂ξ 1( )

∂ϕ
-----------–

0

2π

∫
z0

z0 λ+

∫–

–
∂Φ 1( )

∂z
-------------∂ξ 1( )

∂z
----------- 1

2
--- ∂2

∂r2
------- r

∂Φ 0( )

∂r
------------- 

  ξ 1( )( )2
+

–
∂Φ 0( )

∂r
------------- ∂ξ 1( )

∂ϕ
----------- 

 
2 ∂Φ 0( )

∂r
------------- ∂ξ 1( )

∂z
----------- 

 
2

– dϕdz;

ξ 2( ) ϕd zd

0

2π

∫
z0

z0 λ+

∫ 1
2
--- ξ 1( )( )2 ϕd z.d

0

2π

∫
z0

z0 λ+

∫–=
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APPENDIX B

Expressions for the coefficients in boundary and
additional conditions (22)–(26)

X1

ωm k( )
Gm k( )
--------------- 2 k2 m2+( ) Gm k( )–[ ] ;=

X2

ωm k( )
Gm k( )
--------------- 2k2 Gm k( )–[ ] ;=

Y1 = 1 1
2
--- k2 5m2–( )

ωm
2 k( )

2 Gm k( )( )2
----------------------- k2 m2 3 Gm k( )( )2–+[ ]+ +

+ 2πχ2 3k2 3m2 3– 4Hm k( )– Hm k( )( )2–+[ ] ;

Y2 = 1
1
2
--- k2 3m2–( )

ωm
2 k( )

2 Gm k( )( )2
---------------------- k2 m2 3 Gm k( )( )2––[ ]+ +

+ 2πχ2 3k2 m2 3– 4Hm k( )– Hm k( )( )2–+[ ] ;

Y3 = 1 – 1
2
--- k2 5m2+( )

ωm
2 k( )

2 Gm k( )( )2
---------------------- k2 m2 Gm k( )( )2––[ ]+

+ 2πχ2 k2 3m2 3– 4Hm k( )– Hm k( )( )2–+[ ] ;
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APPENDIX C

Notations used when deriving the solution of the
second order of smallness

Y4 = 1 – 1
2
--- k2 3m2+( )

ωm
2 k( )

2 Gm k( )( )2
---------------------- k2 m2 Gm k( )( )2–+[ ]+

+ 2πχ2 k2 m2 3– 4Hm k( )– Hm k( )( )2–+[ ] ;

L 2πχ 1 2Hm k( )+[ ] .–=

a1

G2m 2k( ) Y1 χLH2m 2k( )+[ ] 2ωm k( )X1+

4ωm
2 k( ) ω2m

2 2k( )–
-------------------------------------------------------------------------------------------------;≡

a2

G0 2k( ) Y2 χLH0 2k( )+[ ] 2ωm k( )X2+

4ωm
2 k( ) ω0

2 2k( )–
-------------------------------------------------------------------------------------------;≡

a3

Y3 2mχL–

1 2m–( ) 1 2m 4πχ–+( )2
-------------------------------------------------------------;≡

b0 Y4
1
2
--- 2πχ2 k2 m2 1+ +( );–+≡
b1

2ωm k( ) Y1 χLH2m 2k( )+[ ] 4k2 4m2 1– 4πχ2 1 H2m 2k( )+( )+ +[ ] X1+

I2m 2k( ) 4ωm
2 k( ) ω2m

2 2k( )–[ ]
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------;≡

b2

2ωm k( ) Y2 χLH0 2k( )+[ ] 4k2 1– 4πχ2 1 H0 2k( )+( )+[ ] X2+

I0 2k( ) 4ωm
2 k( ) ω0

2 2k( )–[ ]
---------------------------------------------------------------------------------------------------------------------------------------------------;≡

d1

G2m 2k( ) 4πχY1 4k2 4m2 1– 4πχ2+ +( )L–[ ] 2ωm k( ) 4πχX1 2ωm k( )L+[ ]+

K2m 2k( ) 4ωm
2 k( ) ω2m

2 2k( )–[ ]
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------;≡

d2

G0 2k( ) 4πχY2 4k2 1– 4πχ2+( )L–[ ] 2ωm k( ) 4πχX2 2ωm k( )L+[ ]+

K0 2k( ) 4ωm
2 k( ) ω0

2 2k( )–[ ]
---------------------------------------------------------------------------------------------------------------------------------------------------------------------;≡
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Abstract—A method for determining the kinetic coefficients of ion transfer in gases, viz., mobility K and lon-
gitudinal (DL) and transverse (DT) diffusion coefficients, as functions of the electric field E and gas temperature
T is described. The method is based on the measurement of the increments to the ion mobility coefficients as
functions of the electric field at a parametrically specified temperature. The kinetic transport coefficients
K(E, T) and DL, T(E, T) are determined for positive ions of aniline, pyridine, benzene, orthotoluidine, dimethyl
methyl phosphonate, N-methyl aniline, N,N-dimethyl aniline, N,N-diethyl aniline, and diphenyl amine (DPA)
formed as a result of β-ionization in air. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The main kinetic transport coefficients for ions in a
gas in an electric field are the coefficients of mobility K
and diffusion D for ions, which depend on the effective
temperature, the increment of the coefficient of mobil-
ity, and the collision integral. The experimental values
of these quantities, especially their dependence on the
gas temperature T and on the electric field reduced to
the number density of particles (E/N) may provide
information on the potential of interaction between an
ion and a gas particle as well as on the cross sections of
elastic, inelastic, and reaction-induced collisions of
particles. Information about the mobility and diffusion
of ion is essential for a qualitative description of elec-
tric gas discharges, for calculating the ion–ion recom-
bination coefficients, and for analyzing the results of
experiments on plasma chemical reactions [1, 2]. In
addition, information on the dependences K(E/N, T)
and D(E/N, T) is required for solving applied problems
(e.g., for determining analytic characteristics and fields
of application of ion mobility increment spectrometers
[3]). In the latter devices, ions are separated according
to the dependence of the mobility coefficients on the
electric field strength at the temperature and pressure of
ambient air.

To calculate the kinetic transport coefficients for
ions, the moments method is used, in which these coef-
ficients are determined in terms of the expansion coef-
ficients and the moments of the ion distribution func-
tion as well as the integrated scattering cross sections
for particles. As a test function, the Maxwell distribu-
tion function shifted by the ion drift velocity in the
direction of the electric field is used; in this case, the
longitudinal and transverse temperatures of ions are
1063-7842/04/4908- $26.00 © 20967
variable parameters. This approach is known as the
three-temperature theory of ion mobility.

This research is aimed at analysis of the increment
of the mobility coefficients as a function of the gas tem-
perature and the electric field reduced to the number
density of particles, α(E/N, T), for positive ions of
aniline, pyridine, benzene, orthotoluidine (o-TLD),
dimethyl methyl phosphonate (DMMP), N-methyl
aniline (MA), N,N-dimethyl aniline (DMA), N,N-
diethyl aniline (DEA), and diphenyl amine (DPA)
formed as a result of β-ionization in air. These depen-
dences are used to determine the collision integrals,
mobility coefficients, and longitudinal and transverse
diffusion coefficients of ions as a function of the elec-
tric field and gas temperature.

EQUATIONS AND PARAMETRIC COEFFICIENTS 
FOR CALCULATING THE KINETIC TRANSPORT 

COEFFICIENTS FOR IONS

The equations for calculating the mobility coeffi-
cients as functions of parameters E, N, and T [1] have
the form

(1)

(2)

(3)

(4)

K E/N( ) V /E≡ K 0( ) 1 α E/N( )+( ),=

K 0( ) 3e
16N
---------- 2π/µkTeff( )1/2 1

Ω 1 1,( )
Teff( )

--------------------------,=

3/2kTeff 3/2kT 1/2M KE( )2,+≈

K0 K
p

760
---------273.15

T
---------------- K

N
N0
------,+=
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(5)

where V is the drift velocity of ions, associated with the
action of the electric field; K(0) is the coefficient of ion
mobility in a “weak” field (E/N < 6 Td is the
“townsend,” 1 Td = 10–17 V cm2); α(E/N) is the incre-
ment of the mobility as a function of parameter E/N;
e is the ion charge; N is the number density of neutrals
in the gas; µ = mM/(m + M) is the reduced mass; m is
the ion mass; M is the mass of a neutral gas particle; k
is the Boltzmann constant; Teff is the effective tempera-

ture; (Teff) is the collision integral in the transport
theory [1]; T is the gas temperature; p is the pressure;
K0 is the coefficient of mobility reduced to normal con-
ditions (T = 273.15 K, p = 760 mmHg, and the
Loschmidt number N0 = 2.687 × 1019 cm–3); and α2n are
the expansion coefficients in the power series.

The equations for calculating the longitudinal and
transverse diffusion coefficients DL and DT as functions
of parameters E, N, and T were derived using the gen-
eralized Einstein equations [1]. Since the ion diffusion
coefficients depend on the number density of gas parti-
cles via the ratio 1/N, it is more convenient to use the
product NDL, T. In practical units, these expressions
have the form [1]

(6)

(7)

α α 2n E/N( )2n,
n 1=

∞

∑=

Ω 1 1,( )

NDL 2.32 1015K0T L 1 1 ∆L+( )K'+( ),×≈

NDT 2.32 1015K0TT 1 ∆TK'/ 1 K'+( )+( ),×≈

K'
d Kln

d E/N( )ln
------------------------,=

kT L T, kT γL T, M KE( )2 1 βL T, K '+( ), βT+≈ 0,=
(8)

TYPES OF IONS

When the substances being studied are ionized
under atmospheric pressure, a protonated molecule
(m + H)+ (H is the hydrogen atom) formed in the pro-
ton-transfer reaction [4, 5]

is the main type of ions.
Table 1 contains the molecular mass of these sub-

stances, the coefficients of mobility K0(0) in a weak
field [4, 6–8]; the collision integrals calculated with the
help of Eq. (2) at T = 294 K; and the values of paramet-
ric coefficients ∆L, ∆T, βL, depending on the relation
between masses m and M and determined in terms of
the collision integrals of the kinetic theory [1].

METHOD FOR DETERMINING DEPENDENCES 
K(E/N, T) AND D(E/N, T)

To find the dependences K(E/N, T) and D(E/N, T),
we must have information on the behavior of functions

(Teff) and α(E/N). Combining Eqs. (1)–(4), we
obtain

(9)

γL
4m 2m M–( )A*–

4m 3MA*+
--------------------------------------------,=

γT
m M+( )A*

4m 3MA*+
-----------------------------, A* 0.9.≈=

H2O( )nH+ m m H+( )+ nH2O+ +

Ω 1 1,( )

1

Ω 1 1,( )
Teff( )

--------------------------
1

Ω 1 1,( )
T( )

----------------------=

× 1
M
3T
------ N0K0 0( ) 1 α+( ) E

N
---- 

 
2

+ .
Table 1.  Molecular mass, reduced coefficients of mobility K0(0) in a weak field, collision integrals , and dimensionless
parametric coefficients ∆L, ∆T, and βL

Substance m, amu K0(0), cm2/Vs  (T), 10–14, cm2 ∆L ∆T βL

Benzene 78.11 1.94 1.235* 0.088 0.098 0.92

DMMP 124.08 1.95 1.14 0.056 0.064 0.964

o-TLD 107.15 1.75 1.315* 0.065 0.076 0.954

MA 107.15 1.74 1.3 0.065 0.076 0.954

Pyridine 79.1 1.7 1.376 0.087 0.096 0.922

Aniline 93.13 1.81 1.232 0.074 0.086 0.941

DMA 121.18 1.81 1.23 0.057 0.065 0.963

DEA 149.23 1.7 1.287 0.045 0.043 0.972

DPA 169.22 1.54 1.407 0.04 0.031 0.979

* Tg = 283 K.

Ω 1 1,( )

Ω 1 1,( )
TECHNICAL PHYSICS      Vol. 49      No. 8      2004



DETERMINATION OF KINETIC TRANSPORT COEFFICIENTS 969
The only unknown in this equation is function
α(E/N, T).

The method for determining the increment of the
mobility coefficient α(E/N) with the help of a varying
periodic solution that is asymmetric in the electric field
polarity is described in detail in [9]. Under the action of
such a field Ed(t) = Ed f(t) (Ed is the field amplitude and
f(t) is the form of the field) described by the conditions

(10)

(n ≥ 1 is an integer), ions of a definite type in the gas,
which perform rapid vibrations with period P, drift
along the field lines with the characteristic velocity 〈V〉
proportional to α(E/N). This velocity can be compen-
sated (〈V〉  = 0) by a constant electric field Ec; in this
case, the expression for the compensating field with
allowance for expansion (5) has the form [10]

(11)

Having obtained the dependences Ec(Ed/N) from
experiments with various values of T and solving the
inverse problem of Eq. (11), we obtain expansion coef-
ficients α2n and dependences α(E/N, T) from Eq. (5).

Using α(E/N, T), we find (Teff) and determine
dependences K(E/N, T) and NDL, T(E/N, T) using
Eqs. (1) and (6) and the data compiled in Table 1.

EXPERIMENTAL

The block diagram of the experimental setup shown
in Fig. 1 contains heated ionization chamber 1
(β-source was 63Ni, Ti = 80°C); drift chamber 3 formed
between two coaxial cylindrical electrodes and venti-
lated with a carrier gas (purified dry air with a water
vapor concentration of less than 100 ppm, a flow rate of
Qg = 30 cm3/s, a temperature of T = 21 ± 1°C, and a
number density of N = (2.5 ± 0.1) × 1019 cm–3); system
of electrodes 2 ensuring the transport of ions from the
ionization chamber to the drift chamber; compensating
voltage source 4; generator 5 of periodic ac voltage
asymmetric in polarity, connected to the coaxial elec-
trodes; collector 6; and electrometric amplifier 7 (with
a noise amplitude of 2 × 10–14 A).

The generator parameters were as follows: the form
of voltage is given by function f(t) (Fig. 1),

f t( ) td

t

t P+

∫ 0,
1
P
--- f 2n 1+ t( ) td

t

1 P+

∫ f 2n 1+〈 〉 0≠≡=

Ec Ed α2n

Ed

N
----- 

 
2n

f 2n 1+〈 〉
n 1=

∞

∑ 
 
 

/≈

1 + 2n 1+( )α2n

Ed

N
----- 

 
2n

f 2n〈 〉
n 1=

∞

∑ 
 
 

.

Ω 1 1,( )

f t( ) π t bP–( )/τ[ ]sin 2τ /πP–( )/ 1 2τ /πP–( )=

for   bP t bP τ+( ),≤ ≤
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
(12)

(b ≥ 0 is an integer); the range of voltage amplitude
variation was Ud = ±(1000–4000) V; period P = 6 µs;
and pulse duration τ = 2 µs. The margins of permissible
errors of measurements were δUc = ±2% for the com-
pensating voltage, δUd = ±10% for the amplitude of ac
voltage asymmetric in polarity, and δt = ±7% for time
intervals.

The samples of the above-mentioned substances
were prepared at the Institute of Organic Chemistry,
Siberian Division, Russian Academy of Sciences
(Novosibirsk). The sample composition was deter-
mined using an HP5890 gas-liquid chromatograph; the
concentration of the main component was at least
98.5%. Vapor–air mixtures of the studied substances
were obtained by passing purified air through a cell in
which diffusion tubes containing the samples of the
substances were placed. Then the mixture was fed to
the ionization chamber.

DETERMINATION OF DEPENDENCES 

A(E/N) AND (Teff)

The signal detected in the experimental setup is a
spectrum representing the dependence of the ion cur-
rent on the compensating voltage (I(Uc)). Each type of
ions is detected as an ion peak on the spectrum. The val-
ues of Uc corresponding to the tops of the peaks are
observed when relation (11) holds for each ith type of
ions; the relation between the electric field strength and
the applied voltage is defined by the equation

(13)

f t( ) 2τ /πP( )– / 1 2τ /πP–( )=

for   bP τ+( ) t b 1+( )P≤ ≤

Ω 1 1,( )

U Er r2/r1( ), r r1 r2+( )/2.≈ln=

1 2 3

4

5

67

I, A

Uc, V

P

τ Ud

Fig. 1. Block diagram of experimental setup.
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Figure 2 shows experimental dependences Uc(Ud)
for ions of the substances being studied. A negative
value of Uc for positive ions indicates that α(E/N) > 0
and the coefficient of mobility K increases with Ud. For
ions of o-TLD, the curves Uc(Ud) were obtained for var-
ious temperatures of the carrier gas (T = 10, 20, 30, and
40°C). It can be seen from the figure that the depen-
dence Uc(Ud) decreases with increasing temperature of

–30

–20

–10

0

U
c,

V

1 2 3 4
Ud, kV

1
2
3
4
5
6
7
8
9
10
11
12

Fig. 2. Experimental dependences Uc(Ud) (symbols) for
ions of pyridine (1), benzene (2), DMMP (3), MA (4), ani-
dine (5), o-TLD at T = 10, 20, 30, and 40°C, respectively
(6–9), DMA (10), DPA (11), and DEA (12).

Table 2.  Values of coefficients α2n for ions of the substances
studied

Substance α2, 10–6, Td–2 α4, 10–10, Td–4 α6, 10–14, Td–6

Benzene, a 12.9 –9.36 2.22

Benzene, b 13.4 –12.4 4.86

Benzene, c 13.4 –13.4 5.74

Benzene, d 13.8 –16.2 9.13

DMMP 9.6 –2.58 2.26

o-TLD, a 7.94 –5.38 1.61

o-TLD, b 7.91 –5.36 1.53

o-TLD, c 7.96 –5.67 1.59

o-TLD, d 8 –5.93 1.44

MA 10.9 –6.87 1.29

Pyridine 15.1 –11.1 2.65

Aniline 10.8 –8.19 3

DMA 9.05 –9.25 3.6

DEA 4.51 –4.9 1.76

DPA 5.22 –3.96 4.76
the carrier gas. Similar dependences were also obtained
for benzene ions at T = 10, 20, 30, and 40°C (not shown
in the figure).

Coefficients α2n given in Table 2 were calculated by
solving the inverse problem of Eq. (11) and using the
experimental data (Fig. 2) expressed in units of field
strength with the help of Eq. (13). Coefficients 〈 f 2n〉  =
0.23, 0.13, 0.1 and 〈 f 2n + 1〉 = 0.12, 0.11, 0.1 were deter-
mined earlier for n = 1, 2, 3, respectively [9]. The values
of α2n were calculated using a polynomial approxima-
tion by the least squares method (polynomial regres-
sion). Notation a, b, c, and d in Table 2 for benzene and
o-TLD ions corresponds to T = 10, 20, 30, and 40°.

Figure 3 shows the dependences α(E/N) calculated
using relation (5) and coefficients from Table 2. It can
be seen that, at the initial stage, the increment of α
increases in proportion to the square of parameter E/N,
the rate of this increase decreasing in accordance with
the sequence pyridine > benzene > MA = aniline =
DMMP > DMA ≈ o-TLD > DPA > DEA. With increas-
ing E/N, the power of the α dependence decreases and
the dependence is transformed to a linear dependence.
As parameter E/N increases further, the curve for α
becomes even more gently sloping and decreases after
attaining a peak value for benzene, DMMP, and DPA.
For ions of benzene and o-TLD, the dependences

0.01

0 20
α

E/N, Td
40 60 80 100

0.02

0.03

0.04

0.05

0.06

0.07
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6c
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Fig. 3. Dependences α(E/N) for ions of the substances
being studied: pyridine (1), benzene at T = 10, 20, 30, and
40°C, respectively (2a–2d), aniline (3), MA (4), DMMP
(5), o-TLD at T = 10, 20, 30, and 40°C, respectively (6a–
6d), DMA (7), DPA (8), and DEA (9).
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α(E/N) obtained at different temperatures of the carrier
gas (T = 10, 20, 30, and 40°C) decrease upon an
increase in the temperature, and the positions of the
peaks of ion mobility are displaced towards smaller val-
ues of parameter E/N.

Figure 4a shows the dependences (Teff) calcu-
lated using Eq. (9) as well as the dependences α(E/N)
for ions of pyridine, aniline, MA, DMMP, DMA, DPA,
and DEA obtained at T = 20°C, while Fig. 4b shows the
same dependences of ions of benzene and o-TLD
obtained at T = 10, 20, 30, and 40°C. In can be seen that

the value of parameter  decreases with increasing
effective temperature Teff, while an increase in the gas
temperature T from 283 to 313 K shifts the dependence

(Teff) as a single entity towards higher values of
Teff by less than 0.8% (see Fig. 4b).
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Fig. 4. Dependences (Teff) for ions of the substances
being studied: (a) DPA (1), pyridine (2), MA (3), DEA (4),
aniline (5), DMA (6), DMMP (7); (b) o-TLD (1a–1d), ben-
zene at T = 10, 20, 30, and 40°C, respectively (2a–2d).

Ω
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DETERMINATION OF REDUCED KINETIC 
TRANSPORT COEFFICIENTS AS FUNCTIONS 

OF ELECTRIC FIELD AND TEMPERATURE 
K0(E/N, T), ND(E/N, T)

Figure 5 shows the dependences K0(E/N, T) calcu-
lated using Eqs. (1), (2) and Table 1. These depen-
dences were calculated for T = 10, 20, 30, and 40°C for
ions of benzene and o-TLD and for T = 20°C for ions
of the remaining substances. The form of the depen-
dences K0(E/N) is determined by the potential of the
ion–neutral gas particle interaction. If the thermal
energy of particles in the gas is much smaller than the
depth of the well in the ion–neutral particle interaction
potential, the ion mobility will increase with the field
strength until the mean energy becomes on the order of
the depth of the well. After this, the mobility must
decrease in an increasing field since it is now deter-
mined by the short-range repulsive part of the interac-
tion potential. In this case, the peak of the mobility as a
function of the field is displaced upon an increase in the
gas temperature towards lower values of the field
strength.

Figures 6 and 7 show the dependences of longitudi-
nal and transverse reduced diffusion coefficients
NDL(E/N, T) and NDT(E/N, T), respectively. It is inter-
esting to note some features in the behavior of these
curves. It can be seen from the figures that the diffusion
coefficient increase with the field; it is shown using
benzene ions as an example that an increase in the gas
temperature leads to an increase in the absolute value of
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Fig. 5. Dependences K0(E/N, T) for ions of DMMP (1); ben-
zene at T = 10, 20, 30, and 40°C, respectively (2a–2d);
aniline (3), DMA (4); MA (5); o-TLD at T = 10, 20, 30,
and 40°C, respectively (6a–6d); pyridine (7), DEA (8), and
DPA (9).



972 BURYAKOV
coefficients NDL and NDT for small values of E/N; the
rate of increase in these coefficients decreases substan-
tially upon an increase in parameter E/N. As expected,
a decrease in the mobility coefficient K0 produces a
stronger effect on the decrease in the dependence of
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Fig. 6. Dependences of longitudinal reduced diffusion coef-
ficients NDL(E/N, T) for ions of DMMP (1); benzene at T =
10, 20, 30, and 40°C, respectively (2a–2d); aniline (3);
DMA (4); MA (5); o-TLD (6); pyridine (7), DEA (8), and
DPA (9).
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Fig. 7. Dependences of transverse reduced diffusion coeffi-
cients NDT(E/N, T) for ions of benzene at T = 10, 20, 30, and
40°C, respectively (1a–1d); DMMP (2); aniline (3); DMA
(4); MA (5); o-TLD (6); pyridine (7), DEA (8), and
DPA (9).
NDL for large values of E/N (see Fig. 5). The numerical
values of the growth rate for the coefficients are as fol-
lows: the rate of growth of DL with parameter E/N in the
range of values 0–100 Td increases in the following
sequence: DPA (by a factor of 2.13), DEA (by a factor
of 2.41), MA (by a factor of 2.71), o-TLD (by a factor
of 2.72), DMA (by a factor of (2.76), pyridine (by a fac-
tor of 2.79), benzene (by a factor of 2.82), DMMP (by
a factor of 3), and aniline (by a factor of 3.07). The
growth rate of DT increases with parameter E/N in the
following sequence: DPA (by a factor of 1.54), DEA
(by a factor of 1.65), o-TLD (by a factor of 1.78), MA
and DMA (by a factor of 1.81), pyridine (by a factor of
1.84), aniline (by a factor of 1.93), benzene (by a factor
of 1.97), and DMMP (by a factor of 2).

CONCLUSIONS

It is shown that the kinetic transport coefficients for
ions can be determined as function of electric field and
temperature using a periodic ac electric field of asym-
metric polarity. For ions of the substances studied here,
an increase in parameter E/N from 0 to 100 Td leads to
an increase in the mobility coefficients K by 1.4–6.7%;
the longitudinal and transverse diffusion coefficients
DL and DT increase thereby by a factor of 2–3 and 1.5–
2, respectively.
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Abstract—The gasdynamic parameters of nonsteady expansion of He, Ar, N2, and SiH4 from a sonic nozzle
into a space with reduced background gas pressure were experimentally studied for moderate values of n
(103−106) and the Reynolds number (ReL ~ 100–102). The jet set times necessary for the formation of pulsed
jets of a given finite duration are determined. The results are generalized in terms of dimensionless similarity
parameters. The laws of motion of the leading and trailing fronts in pulsed jets of various gases are established.
The leading front of a pulsed jet propagates at a velocity significantly smaller than the limiting steady value.
The jet expansion dynamics is determined by the ratio of the momentum of the expanding gas to that of the
background gas displaced from the flow region. The length of the steady flow region in a pulsed jet monotoni-
cally decreases downstream from the source and drops with increasing background gas pressure because of the
loss of jet particles in the trailing rarefaction wave; this length increases with the initial momentum because the
background gas is more intensively displaced from the flow region. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Pulsed jet sources (nozzles) are successfully used in
experiments with colliding beams [1, 2], in investiga-
tions of relaxation processes in free jets [3, 4], in
molecular spectroscopy and photochemistry [5–8], for
pulsed gas admission into high-vacuum nuclear setups
[9, 10], for semiconductor film deposition in modern
electronic device technologies [11, 12], and for solving
many other basic and applied problems [13]. The main
advantage of pulsed jet nozzles for continuous flow
devices is the high economic efficiency of the former’s
sources, explained by their relatively smaller dimen-
sions, less stringent requirements on pumping systems,
and lower consumption of high-cost materials. With
pulsed sources, it is possible to obtain gas jets with
parameters (gas flow rate, local beam density, etc,)
hardly achievable in steady flows.

The main spatiotemporal characteristics of a pulsed
jet are the set time and the duration (length) of a steady
flow region. The set time of a nonsteady jet is defined
as the time interval from the moment of opening of the
source to the moment of establishment of steady flow
parameters at a given distance from the nozzle. Within
this steady flow region, the jet parameters remain
unchanged during a certain finite period of time and are
determined by the adiabatic exponent γ of the expand-
ing gas and the gasdynamic parameters in the source,
including the stagnation pressure P0 and the stagnation
temperature T0. The total set time of a nonsteady jet
includes the time required for the gas flow to establish
itself at the nozzle exit (nozzle set time) and the time
1063-7842/04/4908- $26.00 © 20973
required for the flow to reach a steady state in the free
jet.

The problem of determining the minimum time
∆tmin for which the pulsed nozzle valve must be open in
order to provide for the steady flow parameters at the
nozzle output was considered by Saenger [14]. It was
found that ∆tmin is proportional to the square root of the
molecular mass and increases linearly with the nozzle
diameter d, provided that the product P0d is fixed. For
example, the minimum pulse duration necessary for
obtaining steady flow jet parameters at the nozzle out-
put for P0d = 1.33 kPa mm according to [14] is ~4 µs
for helium, ~15 µs for argon, and ~18 µs for nitrogen.

The set time of a free jet is determined by motion of
the front part of the nonsteady flow, which depends on
the interaction of the expanding gas with the back-
ground gas. We may distinguish three principal expan-
sion regimes, whereby the gas leaving a nozzle enters
(i) a region of very low background pressure (with the
theoretical limit of expansion into vacuum), (ii) a con-
tinuous medium (flooded space), and (iii) a region with
reduced background gas pressure (intermediate case).
The diagram in Fig. 1 shows conditional boundaries
between these regimes in coordinates of P0/Pb versus
Pb, where Pb is the residual (background) gas pressure.

When a supersonic jet expands into the space with
low background gas pressure (Fig. 1, region A), the
leading front of the expanding gas (left-hand inset to
Fig. 1, curve 1) is followed by a primary (initial) rar-
efaction wave, the rear boundary of which (curve 2)
coincides with the leading front of a steady flow region.
In practice, this regime is observed for very large n
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Supersonic expansion regimes and jet structure for the gas expansion into (A) vacuum, (B) flooded space, and (C) a space
with reduced background pressure (see the text for explanations).
(>106) and small background gas pressures Pb <
10−3 Pa. It was shown theoretically [15–17] and con-
firmed by experiments [18, 19] and model calculations
[20] that the motion of the leading front of the expand-
ing gas jet is independent of the background gas pres-
sure and is determined by the limiting velocity vmn of
the nonsteady flow,

(1)

where a∗  is sound velocity in the critical cross section
of the nozzle. The velocity of motion of the leading
front of the steady flow region is determined by the
maximum velocity vms of the steady flow of the given
gas, which is determined by the total enthalpy h0 of this
gas:

(2)

Thus, the jet set time for a gas expanding into the space
with very low background gas pressure is determined
by the vms value. As the gas jet propagates downstream
from the source, the length of the primary rarefaction
wave increases.

Another limiting case is nonsteady expansion into a
flooded space with high background gas pressure (Pb ~
10 Pa and above) at small n (~100–102), illustrated by
region B in Fig. 1. A typical example is offered by
expansion of a shock-wave-heated gas from sonic and

v mn
γ 1+
γ 1–
------------a*,=

v ms 2h0
γ 1+
γ 1–
------------a*.= =
supersonic nozzles. In this case, the drag in the back-
ground gas is so large that a shock wave structure is vir-
tually immediately formed at the leading front of the
expanding gas jet. This structure consists of com-
pressed layers of the expanding gas (right-hand inset to
Fig. 1, curve e) and the background gas (curve b) dis-
placed from the flow region, separated by the contact
interface (curve k). Here, the leading front of the steady
flow region is the secondary shock wave (e) whose prop-
agation determines the jet set time. Velocities of the char-
acteristic surfaces, fine vortex structures of the flow, and
gas density distributions at various moments of time and
various distances from the source were studied in [21–
23]. It was found that the motion of characteristic dis-
continuities could be described in terms of the radial
instantaneous steady-flow source (RISS) model [15].

For practical applications, the most important con-
ditions correspond to region C intermediate between A
and B, where the working gas expands into the space
with reduced background gas pressure (Pb ~ 10–2–
10−0 Pa) at moderate n ~ 103–106). Such conditions are
most frequently encountered in experiments with non-
steady gas jets and molecular beams. The relatively
high background gas pressure level allows the nozzle to
operate at a sufficiently large gas flow rate and form
supersonic jets featuring developed relaxation pro-
cesses. However, no detailed experimental investiga-
tions under such, or close to such, experimental condi-
tions have been reported so far.

Most of the published data refer to processes at the
leading front of a nonsteady flow, that is, to the jet set
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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regime of a steady source. However, the notion of a
pulsed jet implies that the source operates for a finite
time and then is switched off (in the ideal case, instan-
taneously). Under real conditions, the gas expansion is
significantly complicated by transient phenomena
involved in the process of source switching on and off.
At the switch on moment, there arises a trailing (sec-
ondary) rarefaction wave characterized by nonsteady
flow. Propagation of this secondary rarefaction wave
downstream from the nozzle determines the trailing
front of the steady flow region (Fig. 1, curve 3). There-
fore, a question naturally arises as to what is the time of
existence (or the spatial length) of the steady flow at a
given distance from a pulsed jet source.

According to the theoretical RISS model [15], the
time of existence of the steady state in a pulsed gas jet
expanding into vacuum (Fig. 1, region A) decreases
downstream from the nozzle. The gas pulse exhibits
dissipation caused by the loss of particles in the leading
and trailing rarefaction waves. As a result, a situation is
possible where the flow at a finite distance from the
source does not attain a steady state even despite the
fact that the necessary nozzle set conditions are satis-
fied. It was shown [15] that the length of the steady flow
region for a gas expanding into vacuum depends on the
adiabatic exponent γ of the gas. We may suggest that the
presence of a residual (background) gas will signifi-
cantly influence the steady flow duration, but the corre-
sponding experimental data are unavailable.

In this context, we have studied the gasdynamics of
pulsed jets formed upon expansion of a gas for moder-
ate values of n (103–106) and the Reynolds number
(ReL ~ 100–102) and determined the laws of motion of
the leading and trailing fronts and the formation of a
quasi-steady region in the pulsed jet. The region corre-
sponding to the conditions of our experimental mea-
surements is depicted by the dash-dot line in Fig. 1.

EXPERIMENTAL

The investigation was performed on the LEMPUS
complex gasdynamic setup created at Novosibirsk State
University [24], in which the gas jet is produced by a
special electromagnetic valve. The source design and
the valve control system allow pulsed supersonic jets to
be generated with a pulse duration of 0.3–3 ms and a
repetition rate of up to 10 Hz [25]. The valve and the
nozzle are mounted in the expansion chamber on a
positioning mechanism, which allowed the distance
from the source to the point of measurement to be con-
trolled.

The measurements were performed for the most part
by method of molecular beam mass spectrometry using
an MS 7303 quadrupole mass spectrometer with elec-
tron impact ionization. The gasdynamic molecular
beam was formed from a pulsed jet using a skimmer
(dS = 0.53 mm) and a collimator (dC = 6 mm). The dis-
tance from the skimmer to the ionization site (i.e., the
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
time-of-flight base of the molecular beam) was
690 mm. Source operation and data acquisition and
processing were performed using a computer-con-
trolled system of pulsed signal registration and display
[26]. In some experiments, the pulsed jet was studied
by method of electron-beam diagnostics with response
signal recording in the visible spectral range [27],
which allowed measurements to be performed at small
distances from the source.

We have studied the expansion of helium (He),
argon (Ar), nitrogen (N2), and monosilane (SiH4) from
sonic nozzles with a diameter of d = 1 and 0.55 mm.
The stagnation pressure was controlled within P0 =
100–103 kPa and the distance from the pulsed nozzle
was varied within 10–225d. The background gas pres-
sure in the expansion chamber was maintained at a level
of Pb = 0.1–1 Pa. We determined the following charac-
teristics of pulsed gas jets: the time of arrival of the
leading (Ti1) and trailing (Ti2) fronts (measured at half
the height of a gas pulse) and the full width at half-max-
imum (FWHM) Di = Ti1 – Ti2 of the pulse. The methods
of measurements and experimental data processing are
described in detail elsewhere [24]. 

RESULTS
The main dimensionless parameters characterizing

the gas expansion regimes studied are presented in
Table 1. The values of n show that the jets were strongly
underexpanded (n @ 1) for all gases in the entire range
of stagnation pressures P0. The Reynolds numbers at
the nozzle exit aperture (Rea > 102) corresponded to the
continuous expansion regime. According to estimates,
Re values in the jet in all experimental regimes were
ReL < 102. Under these conditions, the gasdynamic
structure and the steady flow parameters are affected by
the rarefaction, whereby the characteristic barrel-
shaped shock wave structure is smeared and the back-
ground gas diffusion into the jet core becomes possible
[28]. Thus, all the experimentally studied regimes are
of the intermediate type with significant influence of
the background gas. The pulsed jets are additionally
characterized by homochronicity expressed in terms of
the Struchal number. Under the conditions of our exper-
iments with an initial gas pulse duration of ~1.5 ms, this
value was Sh > 102, which corresponds to the regime of
long pulses.

Figures 2 and 3 show the typical gas density profiles
measured at the jet axis in the course of the gas pulse
propagation. These data were obtained by means of
molecular beam mass spectrometry in a helium jet
behind the nozzle with d = 0.55 mm. The measurements
were performed at a fixed distance from the nozzle to
skimmer (x/d = 100) under the conditions of variable
stagnation pressure (Fig. 2) or at a fixed P0 and variable
distance from the source (Fig. 3). The signal amplitude
is normalized to maximum, while the abscissa axis
shows the time measured from the moment of nozzle
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Table 1.  Calculated dimensionless parameters of pulsed jets expanding from a nozzle with a diameter of d = 1 mm

P0, Pa Pb, Pa
n Rea = ρavad/µa

He, Ar N2 He Ar N2

1.0E+03 5.0E–02 9.4E+03 1.1E+02 5.2E+02 1.5E+02 1.4E+02

1.0E+04 8.0E–02 5.9E+04 6.3E+04 5.2E+02 1.5E+03 1.4E+03

1.0E+05 1.3E–01 3.6E+05 3.9E+05 5.2E+03 1.5E+04 1.4E+04

1.0E+06 3.0E–01 1.6E+06 1.7E+06 5.2E+04 1.5E+05 1.4E+05

P0, Pa Pb, Pa
ReL = Rea/N

0.5 Sh = Dva/d

He Ar N2 He Ar N2

1.0E+03 5.0E–02 6.0E–01 1.7E+00 1.6E+00 8.8E+02 2.8E+02 2.4E+02

1.0E+04 8.0E–02 1.9E+00 5.3E+00 5.0E+00

1.0E+05 1.3E–01 6.0E+00 1.7E+01 1.6E+01

1.0E+06 3.0E–01 1.9E+01 5.3E+01 5.0E+01
valve opening. As can be seen, the gas pulse has a lead-
ing front width of about ~180–200 µs, a flat region on
the top with a duration of ~500 µs, and a trailing front
with a long slowly decaying “tail” whose length is
determined by the instrumental function of the ionizing
source of the mass spectrometer.

At a fixed distance from the source, the leading
fronts of gas pulses shift toward shorter times with
increasing P0 (Fig. 2), while the position of the trailing
front remains virtually unchanged. As the source–skim-
mer distance is increased, both the leading and trailing
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Fig. 2. Gas density profiles for a pulsed molecular beam of
helium formed using a sonic nozzle with d = 0.55 mm and
measured at a nozzle–skimmer distance of x/d = 100 for
various stagnation pressures P0 = 80 (1), 250 (2), 140 (3),
and 300 kPa (4).
fronts shift toward longer times. The shape of the gas
pulse always remains the same, being determined by
the time at which the valve opens. Similar behavior was
also observed for other gases, provided that cluster for-
mation in the jet could be ignored.

Figure 4 shows the effect of variation of the stagna-
tion pressure P0 on the time of arrival of the leading
(Ti1) and trailing (Ti2) pulse fronts. The measurements
were performed for various distances from the source
to the skimmer in a jet of helium expanding from a
1-mm nozzle. As can be seen, the character of variation
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Fig. 3. Gas density profiles for a pulsed molecular beam of
helium formed using a sonic nozzle with d = 0.55 mm and
measured at a stagnation pressure of 100 kPa for a nozzle–
skimmer distance of x/d = 40 (1), 80 (2), 100 (3), and
150 (4).
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in the front arrival times is the same for all distances:
when P0 grows up to 150 kPa, Ti1 monotonically
decreases and Ti2 remains virtually unchanged. Accord-
ingly, the pulse halfwidth Di monotonically increases.
As the P0 value (and, hence, the gas flow rate through
the nozzle) is increased further, the leading front exhib-
its retardation and the pulse halfwidth begins to
decrease.

Figure 5 presents data on the halfwidth Di of pulsed
helium, nitrogen, and argon jets for the same initial
pulse duration and several fixed stagnation pressures.
The measurements were performed by molecular beam
mass spectrometry at various distances from the nozzle
output to the skimmer. These data are supplemented by
the results of electron-beam diagnostics for relatively
small source–skimmer distances within x/d = 14–100.
As can be seen, the pulsed jet halfwidth (and, hence, the
length of the steady region) decreases downstream the
flow for all gases. Since the pulsed jet halfwidth mea-
sured by the electron-beam technique at the skimmer
entrance is close to the value measured by the molecu-
lar beam mass spectrometry, we may conclude that the
main changes in the pulse halfwidth take place in the
region between the nozzle exit and the skimmer.

Figure 6 shows a plot of the pulsed jet halfwidth Di

versus stagnation pressure P0 for various gases. The
measurements were performed under nearly identical
conditions, including the same geometry and initial
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Fig. 4. Effects of the stagnation pressure P0 on the times of
arrival of the (1–3) leading pulse front (Ti1) and (4–6) trail-
ing pulse front (Ti2) in a molecular beam of helium formed
using a sonic nozzle with d = 1 mm and measured at various
source–skimmer distances x/d = 125 (1, 4), 150 (2, 5), and
175 (3, 6).
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pulse duration, close background gas pressures in the
expansion chamber, and the same nozzle–skimmer dis-
tance (x/d = 175). As can be seen, the Di values for all
gases at the same P0 are equal to within the experimen-
tal error, except for the regions at high stagnation pres-
sures, where Di exhibits a sharp growth and the flow is
accompanied by condensation [29].
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Fig. 5. A plot of the pulsed jet halfwidth Di versus the dis-
tance to the skimmer entrance (for molecular beam mass
spectrometry, 1–11) or to the point of measurement (for
electron-beam diagnostics, 12–14) for various gases
expanding from a nozzle with d = 1 mm at various fixed
stagnation pressures: (1–5) He at P0 = 28 (1), 70 (2),
100 (3), 225 (4), and 460 kPa (5); (6–8) Ar at P0 = 5 (6),
15 (7), and 30 kPa (8), (9–14) N2 at P0 = 5 (9), 50 (10),
100 (11, 12), 180 (13), and 350 kPa (14).
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Fig. 6. A plot of the pulsed jet halfwidth Di versus stagna-
tion pressure P0 for various gases expanding from the 1-mm
nozzle and measured at x/d = 175: (1) He; (2) Ar; (3) N2;
(4) SiH4.
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The velocity of the leading front of an expanding
gas jet was determined by measurements at various dis-
tances from the source. Table 2 presents data on the
leading front velocities measured in helium, argon,
nitrogen, and monosilane at a background gas pressure
of Pb ~ 10–1 Pa, together with the maximum velocities
of steady (vms) and nonsteady (vmn) flows in these gases
calculated using formulas (1) and (2). A comparison of
the calculated and experimental values shows that the
leading front of a pulsed jet in all studied gases propa-
gates at a velocity significantly smaller than the limit-
ing value vms of steady expansion.

It should be noted that the leading front velocities
reported in various papers for nonsteady jets are at first
glance rather contradictory and disagree with our data.
Indeed, the leading front velocities obtained in [18] for
argon and nitrogen jets expanding into a space with low
background gas pressure (Pb ~ 10–4 Pa) were close to
the limiting nonsteady flow velocity. The results of
measurements for the pulsed jets of helium [30] per-
formed at Pb ~ 10–2 Pa showed that the leading front
propagates at a velocity equal to the limiting value for
steady expansion. On the other hand, the values
obtained in [31] for the pulsed expansions of helium
under conditions close to those used in our experiments
(Pb ~ 10–1 Pa) were close to our results for this gas.

DISCUSSION

Analysis of the experimental results obtained in this
study leads to the following conclusions concerning the
influence of the main flow parameters on the character-
istics of pulsed gas jets:

(i) the length of the steady flow region decreases
with increasing distance from the source;

(ii) under the conditions of fixed stagnation pres-
sure, background gas pressure, and distance from the
source, the length of the steady flow region is indepen-
dent of the adiabatic exponent γ of the expanding gas;

(iii) as the stagnation pressure grows, the leading
front velocity initially increases, passes through a max-
imum, and then decreases at a rate correlated with the
increase in the background gas pressure;

Table 2.  Comparison of the calculated steady (vms) and
nonsteady (vmn) gas expansion velocities and the experimen-
tal leading front propagation velocities (xexp) for helium,
argon, nitrogen, and monosilane expansions

He Ar N2 SiH4

vms, m/s 1770 560 790 970

vmn, m/s 3060 970 1770 2930

vexp, m/s 1230 380 420 440
(iv) the leading front velocity in the expanding gas
jet is significantly smaller than the limiting steady flow
velocity;

(v) the low value of the leading front velocity in the
expanding gas jet and the fact that the width of this
front depends neither on P0 nor on the distance from the
source indicate that no primary rarefaction wave is
formed in the pulsed jet (therefore, the front boundary
of the steady flow region under the conditions studied
is determined by the leading front of the expanding gas
jet).

When a supersonic jet expands into the space with
low residual pressure, the expanding gas acts like a pis-
ton displacing the initially quiescent background gas.
The energy of the expanding gas is spent predominantly
for setting the displaced background gas into motion.
Therefore, the law of motion of the leading front of the
expanding gas is determined by the equality of the
momentum flux densities of the expanding and back-
ground gases at the contact interface. Chekmarev [15]
showed within the framework of the RISS model that
the mechanism of pulsed jet expansion is determined
by the ratio of masses of the expanding gas (me) and the
displaced background gas (mb). The case of expansion
into vacuum corresponds to the condition (mb/me)1/2 !
1, while nonsteady expansion into a flooded space is
described by the relation (mb/me) @ 1. Let us estimate
this ratio for the conditions under consideration.

The mass of the displaced gas can be evaluated
under certain assumptions. Evidently, the background
gas in the expansion chamber prior to measurements
consists predominantly of residual nitrogen. However,
under the conditions of a considerable rate of gas flow
from the nozzle and a large number of pulses in exper-
imental series, the composition of the background
atmosphere changed: nitrogen was replaced by the
expanding gas. In addition, the background gas compo-
sition could be influenced by selective pumping. For
this estimation, it was assumed that expanding and
background gas compositions are the same.

As is known [28], the angle of expanding current
lines θm relative to the jet axis in the case of axisymmet-
ric free expansion is determined by the adiabatic expo-
nent γ of the expanding gas and the Mach number Ma at
the nozzle aperture. For a monoatomic gas expanding
from a supersonic nozzle (Ma = 1) into vacuum, the lim-
iting expansion angle is θm ~ 85°; for diatomic and tri-
atomic gases, the corresponding values are θm ~ 130°
and 165°, respectively. However, the main fraction of
the expanding gas flows through a paraxial region
within an angular interval of 0.5θm [28]. Apparently, the
expansion angles of polyatomic gases in a pulsed jet are
also greater than those of monoatomic gases. For this
reason, the mass of a displaced background gas was
determined as a product of the mass density ρb of the
background gas at the known background pressure Pb
and the volume of a cone with an apical angle of 0.5θm.
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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The estimates were obtained for a background pressure
of 0.1 Pa, typical of our experimental conditions.

The mass of the expanding gas was estimated as
me = ρavast, where ρa is the gas density at the nozzle
exit, va is the gas velocity in this cross section, s = πd2

is the area of the nozzle exit aperture, and t is the gas
expansion time. The gas parameters at the nozzle exit
were determined using isentropic relations. In order to
compare the masses of the expanding gas and the gas
displaced by the expanding jet, it is necessary to deter-
mine how the former mass gas varies in the course of
gas expansion downstream from the nozzle. This varia-
tion was evaluated using the leading front velocity
determined in the experiment (Table 2). Calculations
were performed for the sonic nozzles with d = 0.55 and
1 mm and a stagnation pressure of P0 = 100 kPa.

Figure 7 shows variation of the ratio of masses of the
dispaced background gas (mb) and the expanding gas
(me) downstream from the nozzle for the pulsed jets of
He, Ar, and N2. At small distances from the source, the
mass of the expanding gas is considerably greater than
that of the displaced background gas, but the latter
value rapidly grows for all gases as the jet propagates
downstream from the nozzle. As a result, for x/d > 100
(i.e., for most regimes studied in our experiments), the
mass of displaced background gas is comparable to the
mass of expanding gas. Therefore, the background gas
must significantly influence the expansion dynamics.

Our analysis suggests the following mechanism of
pulsed jet expansion into the space with reduced back-
ground gas pressure. Since the density of the back-
ground gas is small, the velocity of expanding gas par-
ticles in the initial stage may reach the limiting value
for the nonsteady flow. Interaction between the pulsed
gas jet and the background gas leads to the formation of
a continuous leading front separating the expanding gas
and the displaced background gas. As this leading front
propagates downstream from the nozzle, the mass of
the displaced gas grows much faster than the mass of
expanding gas. As a result, the expanding gas exhibits
retardation at the leading front of the jet. However, the
retarding effect of the background gas is not as large as
in the case of expansion into a continuous medium and
does not lead to the formation of shock waves at the jet
front. Nevertheless, the velocity of propagation of the
leading front of the expanding gas becomes signifi-
cantly lower than the limiting steady flow velocity.

As a result, no primary rarefaction wave is formed
in the course of expansion in front of the steady flow
region under these conditions and the leading front
determines the rear boundary of the steady flow region.
Thus, the set time of a pulsed jet is determined by the
motion of the leading front of the expanding gas. Note
that a transition from the “shock” to “shockless” expan-
sion regime was observed [23] during the investigation
of nonsteady flows of shock-wave-heated gases in a
flooded space under the condition of n ~ 103.
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In the final stage of expansion, the leading front
slows down and reaches the limiting jet size L deter-
mined (as well as in the steady flow) by the ratio of
stagnation and background pressures. The expanding
gas retarded at the slowly propagating leading front
forms the secondary rarefaction wave representing par-
ticles moving in the reverse direction. The existence of
the reverse flow directed toward the source in a pulsed
jet expanding into vacuum was demonstrated by the
results of Monte Carlo simulations [20]. The intensity
of this flow increased with the pulse duration. In our
case, the presence of a slowly moving leading front
must lead to an increase in the reverse flux of retarded
particles.

An increase in the stagnation pressure leads to an
increase in the density of the momentum flux from the
source and, hence, to more intensive displacement of
the background gas and accelerated propagation of the
leading front of expanding gas. As a result, the length
of the steady flow region increases (at a fixed initial
pulse duration and the distance from the source).

As the pulsed jet propagates downstream from the
source, an increasing fraction of expanding gas parti-
cles passes to the trailing rarefaction wave. This leads
to a decrease in the length (duration) of the steady flow
region with increasing distance from the source. At a
fixed initial pulse duration and the same expanding and
background gas compositions, the steady flow region
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Fig. 7. Plots of the ratio of masses of the expanding (me) and
displaced background (mb) gases versus x/d for (1, 2)
helium and argon and (3, 4) nitrogen expanding from the
nozzles with d = 0.55 (1, 3) and 1 mm (2, 4) at a stagnation
pressure of P0 = 100 kPa and a backgropund pressure of
Pb = 0.1 Pa.
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length is independent of the adiabatic exponent γ of the
expanding gas and is determined by the ratio of stagna-
tion and background pressures.

In order to generalize the experimental spatiotempo-
ral data, it is necessary to use dimensionless parameters
including characteristics of the expanding gas and the
expansion regimes. The dimensionless parameters
introduced by Chekmarev [15] play the role of similar-
ity criteria for the surfaces of strong discontinuity in the
case of a pulsed gas expansion into a flooded space. For
an axisymmetric flow, the dimensionless parameters
are defined by the formulas

(3)

where ρa is the density of the expanding gas at the noz-
zle exit and ρb is the density of the background gas.

Figure 8 presents data on the set times of pulsed jets
obtained in our experiments with He, Ar, N2, and SiH4
using molecular beam mass spectrometry (upper array
of points) and electron-beam diagnostics (lower array
of points). In plotting the results of molecular beam
mass spectrometry, we used an assumption based on the
following considerations. As was noted above, the
time-of-flight base for the pulsed flow behind the skim-
mer was significantly greater than the distance from the
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Fig. 8. Generalized plot of the jet set times in dimensionless
coordinates for several gases measured in this study using
(7–17) molecular beam mass spectrometry and (18–24)
electron-beam diagnostics methods in comparison to pub-
lished theoretical data for (1) Ar and (2) N2 [15] and exper-
imental data for (3) Ar [6], (4) N2 [9], (5) He [30], (6) He [31].
Our data for He: (7) P0 = 10 kPa, d = 1 mm; (8) 100 kPa,
0.55 mm; (9) 800 kPa, 1 mm; (18) 40 kPa, 0.55 mm;
(19) 800 kPa, 0.55 mm; for Ar: (10) P0 = 40 kPa, d = 1 mm;
(11) 10 kPa, 0.55 mm; (12) 100 kPa, 1 mm; (20) 11 kPa,
0.55 mm; (21) 220 kPa, 0.55 mm; for N2: (13) P0 = 40 kPa,
d = 1 mm; (14) 100 kPa, 1 mm; (22) 100 kPa, 1 mm;
(23) 400 kPa, 0.55 mm; (24) 800 kPa, 0.55 mm; for SiH4:
(15) P0 = 10 kPa, d = 1 mm; (16) 40 kPa, 1 mm;
(17) 100 kPa, 1 mm.
nozzle to skimmer. However, the background pressure
on the molecular beam path is much lower than that in
the expansion chamber: the pressure behind the skim-
mer was ~10–5 Pa and that in the detector was ~10–6 Pa
against ~10–1 Pa in the expansion chamber. Obviously,
the pressure behind the skimmer is sufficiently low and
its effect on the pulsed jet can be ignored. In addition,
estimates of the Knudsen number for the skimmer, KnS,
showed that our measurements were performed mostly
for KnS > 1. Therefore, the skimmer input aperture is
the surface of last collisions of molecules in the flow.
Under these conditions, the velocity of the leading front
of the pulsed jet in the molecular beam region is deter-
mined by the leading front velocity at the skimmer
entrance.

As can be seen, Fig. 8 generalizes the experimental
data obtained for various stagnation pressures, back-
ground pressures, and nozzle diameters. However, the
points corresponding to gases possessing different adi-
abatic exponents γ exhibit separation: the data for He
and Ar are lying below those for N2, while the data for
SiH4 are lying still higher (the results of electron-beam
diagnostics are less scattered because of a lower accu-
racy of these measurements).

For the comparison, Fig. 8 shows the results of cal-
culations for the moving contact interface in Ar and N2
according to the RISS model [15]. Similar to the exper-
imental data, the calculated jet set time increases with
the γ value of the expanding gas. However, the theory
[15] gives overstated estimates for the leading front
velocity at small τ and ξ values (this discrepancy was
explained by the author as being related to the use of a
nonviscous gas model). Figure 8 also shows the exper-
imental data for the leading front velocities reported by
other researchers for the expansion of argon into vac-
uum [18], for a shock-wave-heated nitrogen jet [21],
and for the free expansion of helium [30, 31]. As can be
seen, these experimental data well agree with our
results.

CONCLUSIONS

We have experimentally studied nonsteady expan-
sion of gases into the space with reduced background
pressure. It is established that the expansion dynamics
is determined by the ratio of the momentum of the
expanding gas to that of the background gas displaced
from the flow region.

The jet set times were experimentally determined
for the pulsed jets of helium, argon, nitrogen, and
monosilane. It was found that, under the conditions
studied, the leading front of a pulsed jet propagates at a
velocity significantly smaller than the limiting steady
value for a given gas. In contrast to the case of expan-
sion into vacuum, the retarding action of the back-
ground gas leads to the absence of a primary rarefaction
wave and makes the leading front of the expanding gas
the boundary of a steady flow region.
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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Using the dimensionless similarity parameters, we
obtained generalized data on the pulsed jet set times for
various gases and expansion regimes. It is established
that the length (duration) of the steady flow region in a
pulsed jet at a fixed distance from the source is indepen-
dent of the ratio of heat capacities of expanding gases
and is determined by the pulse duration at the nozzle
exit and the ratio of stagnation and background pres-
sures. The length of the steady flow region in a pulsed
jet monotonically decreases downstream from the
source and drops with increasing background gas pres-
sure because of the loss of jet particles in the trailing
rarefaction wave; this length increases with the initial
momentum because the background gas is more inten-
sively displaced from the flow region.

The results of our experiments show that pulsed gas
jets and molecular beams with a finite steady flow
region can be successfully obtained for ReL < 100 in the
presence of a background gas.
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Abstract—Conditions are studied under which an electron beam and a volume discharge with a subnanosecond
rise time of a voltage pulse are produced in air under atmospheric pressure. It is shown that the electron beam
appears in a gas-filled diode at the front of the voltage pulse in ~0.5 ns, has a half-intensity duration of ≤0.4 ns
and an average electron energy of ~0.6 of the voltage across the gas-filled diode, and terminates when the volt-
age across the gap reaches its maximum value. The electron beam with an average electron energy of 60 to
80 keV and a current amplitude of ≥70 A is obtained. It is assumed that the electron beam is formed from elec-
trons produced in the gap due to gas ionization by fast electrons when the intensity of the field between the front
of the expanding plasma cloud and the anode reaches its critical value. A nanosecond volume discharge with a
specific power input of ≥400 MW/cm3, a density of the discharge current at the anode of up to 3 kA/cm2, and
specific energy deposition of ~1 J/cm3 over 3 to 5 ns is created. © 2004 MAIK “Nauka/Interperiodica”.
Generation of accelerated electrons and X-rays in
gas-filled diodes under elevated pressure was studied
by many research groups (see, e.g., review [1] and
monograph [2] and references cited therein). However,
amplitudes of the electron beam currents obtained in
molecular gases were no higher than a few fractions of
an ampere [1]. Also, the parameters of the electron
beam, the conditions for its formation, and the interpre-
tation of this phenomenon were substantially different
in different works. For example, the critical field
reported in [1], which is sufficient for runaway of elec-
trons in air under atmospheric pressure, differs from
that attained in [2, 3] by a factor of 2 or more. The aver-
age energy of electrons in the beam in air under atmo-
spheric pressure in [1] exceeds the maximum voltage
across the gap by a factor of 1.5, while it is almost half
the maximum voltage in [4, 5]. The effect of appear-
ance of accelerated electrons in the discharge under ele-
vated pressure and their influence on the discharge
characteristics has not been adequately investigated and
was disregarded in many monographs [6].

It was shown in 2002 [4, 5] that the amplitude of the
electron beam produced in a diode filled with helium
[4], molecular gases (air, nitrogen), or a CO2–N2–He
mixture [5, 7] under atmospheric pressure can be sub-
stantially increased. In [4], an electron beam was
obtained at average values of parameter E/p (E is the
electric field strength and p is the gas pressure) that
were above the critical values sufficient for creating the
effect of electron runaway as well as at relatively small
average values of parameter E/p, which were substan-
tially lower than the critical values.
1063-7842/04/4908- $26.00 © 20982
The purpose of this work is to determine the condi-
tions under which a gas-filled diode produces an elec-
tron beam with the highest amplitude and to produce a
volume discharge with a high specific power input in air
under atmospheric pressure.

We used two RADAN-type nanosecond pulse gen-
erators, detailed in [8, 9]. Generator 1 (RADAN-303)
had a wave impedance of 45 Ω and produced 50- to
170-kV pulses (with an open-circuit voltage of up to
340 kV) with a half-intensity width of ~5 and ~1-ns rise
time under matched termination [8]. The voltage across
the gas gap could be gradually changed by varying the
width of the main discharge gap.

Generator 2 (RADAN-220) had a wave impedance
of 20 Ω and formed a ~220-kV pulse with a half-inten-
sity width of ~2 ns at an ~0.3-ns rise time across the dis-
charge gap [9]. The design of the gas-filled diode was
the same for both generators. As in the majority of
works that study X rays and fast electrons in gas-filled
diodes, we used a planar anode and a rod cathode. This
gas gap geometry ensured field amplification near the
cathode. The cathodes of both generators were
designed as a tube made of a 50-µm-thick steel foil
6 mm in diameter, which was fixed on a metal rod of the
same diameter, or had the form of a graphite rod 6 mm
in diameter with rounded ends. The planar anode,
through which the electron beam was extracted, was
made of a 45-mm-thick AlBe foil, or a 10-mm-thick Al
foil, or a grid with a 50–70% transparency to light. The
distance between the cathode and the anode was varied
from 13 to 20 mm.
004 MAIK “Nauka/Interperiodica”
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Signals picked off from a capacitance voltage
divider, collectors, and shunts were observed on a TDS-
684B oscilloscope with a bandwidth of 1 GHz and a
5-GS/s (5 samples per 1 ns) sampling rate. The glow of
the discharge was photographed by a digital camera.

Based on the variation of voltage pulses across the
gas-filled diode and the electron beam current and also
on observations of the form of the discharge in the gap
as a function of the anode-to-cathode gap length, the
cathode type, and the voltage across the gas-filled
diode, the following features were discovered.

The electron beam appears on the leading edge of
the voltage pulse, its half-intensity duration being no
longer than 0.4 ns (Fig. 1). The maximum of the beam
current is usually observed after the voltage across the
gap attains its maximum. Under optimal conditions, the
amplitude of the current behind the foil is higher than
40 A for generator 1 and 70 A for generator 2 (Figs. 1b
and 1c). As the voltage amplitude increases, the beam
current maximum is displaced towards the beginning of
the voltage pulse (Fig. 1a) and the beam terminates on
its leading edge at maximal voltages. A decrease in the
voltage increases the delay of the electron beam to
~1 ns, and the beam is observed at the beginning of the
quasi-stationary phase of the voltage pulse, which is,
however, accompanied by a substantial decrease in the
beam current amplitude. Figure 2 plots the depen-
dences of the beam current amplitude, the amplitude of
the voltage across the gap at the first maximum, and the
amplitude of the discharge current at the first maxi-
mum. At a fixed distance between the electrodes, the
rise time of the voltage pulse, and the gas type and pres-
sure (in our case, air at 1 atm), a rather narrow optimal
generator voltage interval exists, in which the maximal
amplitudes of the electron beam current behind the foil
are observed. The dependences of the voltage across
the gap and of the discharge current under these condi-
tions are almost linear (Fig. 2, curves 2 and 3) despite a
noticeable variation in the beam current amplitude. The
discharge current appears with a short delay after the
voltage is applied to the gap and is 0.3 to 1 ns ahead of
the electron beam current observed behind the foil. The
magnitude and duration of the discharge current signif-
icantly exceed the amplitude and duration of the beam
current: for example, for the first generator, at an open-
circuit voltage of ~270 kV and a 17-mm-long gap, the
current amplitudes are 2400 and 40 A, respectively.
After the pulse of the electron beam current terminates,
the discharge usually continues in its quasi-stationary
phase and has a volume character. Photographs of the
discharge glow (Fig. 3) are taken looking from the end
for the mesh anode and from the side for the anode
made of foil. It is seen that the discharge is of the vol-
ume type and bright spots are only seen near the cath-
ode. With increasing generator voltage, bright filamen-
tary channels appear against the background of the vol-
ume discharge and a dip in the voltage oscillogram
(approximately to half the initial value) is observed
(Fig. 1a, curve 2). In generator 1, when the discharge
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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Fig. 1. (a) Oscillograms of (1, 3) current pulses in an elec-
tron beam behind a 45-µm-thick AlBe foil and (2, 4) of volt-
age pulses across the gas-filled diode produced by generator
1 at a diode gap width of d = 16 mm and a generator open-
circuit voltage of (1, 2) 260 and (3, 4) 155 kV; (b, c) oscil-
lograms obtained on generator 2 at a diode gap width of d =
16 mm and a collector diameter of (b) 20 and (c) 50 mm.
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retains its volume character for 3 ns, the current density
at the anode becomes as high as ~3 kA/cm2, the specific
energy deposition to the gas is ~1 J/cm3, and the spe-
cific power input is ~400 MW/cm3. At a volume phase
duration of 5 ns, the current density at the anode
reaches ~1.5 kA/cm2, the specific power input is
~200 MW/cm3, and the specific energy deposition to
the gas is also ~1 J/cm3. At the maximum voltage pro-
duced by generator 1, the average value of parameter
E/p after the termination of the beam current is
~0.08 kV/cm Torr in the quasi-stationary phase. Note
that, in the quasi-stationary phase of the volume dis-
charge, which is observed after the breakdown of the
gas gap, the voltage across the gap is typically lower
than that in the course of the breakdown [2, 10]. Under
the conditions of this experiment, a self-sustained dis-
charge was observed in which the voltage across the
gap is maximal in the quasi-stationary discharge phase
operating in the single pulse mode without preliminary
ionization (Fig. 1a, curves 2 and 4).

Based on the experimental data obtained and an
information about familiar processes in gas discharges
[1, 2, 6], we believe that, under the conditions of our
study, the gas discharge in the gap evolves as follows.

When a high-voltage pulse is applied, the process of
avalanche electron multiplication must start on its lead-
ing edge, in which the electron concentration grows as
N = N0exp(αd), where α is the volume ionization coef-
ficient and d is the gap between the electrodes. The
number of electrons in the avalanche can increase from
a single initial electron by a factor of ~108 without
forming a streamer [6]. Accordingly, the critical num-
ber of electrons in one avalanche is Nc ≈ 108. To create
a volume-discharge current of a few kiloamperes,
which corresponds to the conditions of Fig. 1a, it is nec-
essary to produce ~1014 electrons in the gap in 1 ns.
Accordingly, the number N0 of initial electrons must be
~106 or greater. However, the distance xc at which the
avalanche reaches the critical size in air under atmo-
spheric pressure at an electric field strength of
~100 kV/cm, according to the formula xc = (lnNc)/α, is
only 0.2 mm [2], which is substantially smaller than the
length of the gap in the gas-filled diode used in the
experiment. At the same time, using the method of
interrupted discharge, we observed the entire gap glow-

(‡) (b)

Fig. 3. Discharge glow in the gap photographed from the
(a) end and (b) side for generator 2, the mesh size being
1 mm.
ing over ~1 ns. In the process of discharge formation
over the entire gap in ~1 ns under the above conditions,
amplification of the electric field at the cathode, which
had the form of a rod with a sharp edge, plays the most
important role. When a high-voltage pulse is applied,
the electric field at the cathode is noticeably amplified
and a part of the initial electrons, in our opinion, gain
an energy of ~1 keV. The velocity v e of an electron with
an energy of ~1 keV will be ~1.9 × 109 cm/s. It is
known [6] that v e = 5.93 × 107(ε)1/2, where ε is the elec-
tron energy. Then, if the energy loss of electrons mov-
ing in the gas with an energy of ~1 keV is compensated
by the increasing electric field, the electrons will fly
through the gap in ~0.8 ns, which corresponds to the
rise time of the current through the gap. It was shown
[11] that fast electrons can cover long distances in gas
gaps at a weak electric field as well. For this situation to
occur, the electron energy must be higher than the
energy corresponding to the maximum inelastic cross
section for the gas that fills the gap. Moreover, it was
shown [12] that the Paschen curve contains an addi-
tional upper branch, which describes the absence of the
self-sustained discharge at strong electric fields.

The initial electrons are produced under these con-
ditions at the cathode due to the electric field amplifica-
tion and explosive electron emission. In experiments
with an interrupted discharge, we observed a multitude
of small bright points on the cathode at the beginning of
the voltage pulse. The number of these points decreased
with increasing operating time lag of the chopping gap,
while their size and brightness increased. We think that
part of the initial electrons are accelerated to an energy
of ~1 keV due to the electric field amplification near the
cathode. Further, as they move towards the cathode,
these electrons ionize the gas in the gap and produce
initial electrons, from which more and more avalanches
evolve and contribute to the increase in the current
across the gap. In this way, a plasma cloud is formed,
which expands towards the anode with the velocity of
electrons, which acquire an energy of ~1 keV. The elec-
trons whose energy is substantially higher than 1 keV
cross the discharge gap in fractions of a nanosecond
and possess a lower ionizing power. As the plasma
cloud expands, on the one hand, the space charge
screens sharp edges of the cathode and, on the other
hand, the positive charge of the ions, which remain at
rest after the departure of electrons to the anode, ampli-
fies the electric field near the cathode. To accurately
account for the contribution of these processes and also
to find the electron velocity distribution function and
determine the dynamics of the electron distribution
over the gap, a theoretical modeling is necessary. To
cover the gap upon reaching the anode in ~1 ns under
the conditions of this experiment, the plasma cloud
must expand towards the anode at a rate of ~1.6 ×
109 cm/s. Because the region occupied by the plasma
expands towards the anode and its conductance is
higher than that of the remaining part of the gap, the
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
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electric field between the plasma boundary and the
anode will continuously grow. As a result, the expan-
sion of the region occupied by the plasma will give rise
to the field between the plasma cloud and the anode,
which exceeds the critical value (equal to 0.8 to
3.5 kV/cm Torr high in air according to [2, 3]) so that
an electron beam will be formed with an amplitude of a
few tens of amperes. Since the field between the front
of the moving plasma and the anode is strong, the gap
will be “bridged” in a very short time (in fractions of a
nanosecond) after the critical field is reached, which is
precisely the circumstance that determines the duration
of the beam current. Clearly, the energy of the electrons
will be lower than that of the electrons accelerated in
vacuum at the same voltage across the gap, because part
of the voltage drops across the expanding plasma,
which has a nonzero resistance. Figure 4 shows the
energy distribution of electrons, where I is the number
of electrons in a particular energy interval. The distribu-
tion was obtained from the amplitudes of the maximum
current behind a set of Al foils with different thick-
nesses. One foil was 10 µm thick. The average energy
of the electrons in the mode under study was 65 keV. If
we take a number of electrons that comprise half the
number of electrons with the average energy, their
energy will be 30 to 95 keV. This mode of formation of
the beam current in a gas under an increased pressure
substantially differs from that described in [1], where
the beam current under similar conditions was two
orders of magnitude lower and the average electron
energy was 1.5 times higher than the maximum voltage
across the gap. Note that, when the avalanches grow,
the plasma front consists of electrons. Due to this fact,
the space charge of the electron cloud imparts an addi-
tional acceleration towards the anode to part of the elec-
trons that are near the boundary of the electron cloud.
The energy of some of the electrons may be higher than
the voltage across the diode [1]. It is clear that the num-
ber of electrons in the beam must be much smaller than
the number of electrons in the avalanches and the num-
ber of electrons with an energy higher than the voltage
applied must be much smaller than the number of elec-
trons with the average energy in the beam. The inter-
ruption of the beam current at the maximum voltage
across the gap is due to the fact that, after the beam
electrons reach the anode, the electric field in the gap
becomes more uniform and the field gradient is insuffi-
cient for electron runaway. In the experiment (Fig. 1a),
the beam current behind the foil on the flat part of the
voltage pulse is observed only at the beginning of the
flat top of the pulse.

The volume character of the discharge in the gap is
preserved during the whole length of the voltage pulse
(Fig. 1, curve 4) due to the avalanche nature of the dis-
charge in the gap in the first stage and to the preionization
of the gap by fast electrons produced near the cathode. Sta-
bilization of the discharge current amplitude at high aver-
age fields in the gap (E/p ~ 0.05–0.08 kV/cm Torr) is
apparently due to the increase in energy loss of the elec-
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
trons when they pass through the plasma produced in
the course of the discharge evolution on the leading
edge of the voltage pulse and also due to the recombi-
nation process. To our knowledge, the discharge mode
studied has not been described in the literature [1, 2].

In conclusion, note that the experimental data
obtained allow us to improve the understanding of the
physics of the pulsed breakdown processes in gas gaps
under high overvoltages. This mode of generating
ultrashort electron beams in gas-filled diodes should
find application in designing simple compact accelera-
tors of subnanosecond electron beams and sources of
subnanosecond X-ray pulses, while the space charge
would be widely used in pulsed dense gas lasers and
pulsed sources of high-power spontaneous radiation. At
present, the Institute of High-Current Electronics of the
Russian Academy of Sciences (Siberian Division) has
an electron accelerator that forms an electron beam in
air at atmospheric pressure with a beam current higher
than 70 A, a half-intensity duration of ~0.3 ns, and an
average electron power of ~70 keV. A small-size CO2
laser with a radiation energy of 18 mJ, in which preion-
ization is performed by a beam produced in the same
gas mixture, was also developed.
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Abstract—Optical characteristics of the plasma of nanosecond volume discharges in air, nitrogen, krypton,
argon, neon, and Ar/N2 and Ar/Xe mixtures at elevated pressures are investigated. The discharges are excited
in a gap with a cathode of small curvature radius. The waveforms and spectra of plasma emission from dis-
charges in different gases in the 230- to 600-nm spectral range are measured. Optical generation in an Ar/Xe
mixture is achieved at an active length of 1.5 cm. A comparison is performed of the spectral characteristics of
the emission from nitrogen, krypton, argon, and neon excited by a volume discharge in a nonuniform electric
field, by a nanosecond electron beam, and by a pulsed volume discharge in a uniform electric field at a high
initial voltage. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Volume discharges in atomic and molecular gases at

elevated pressures are usually excited by preionizing
the discharge gap with a source of ionizing radiation
[1]. The plasma of volume discharges is widely used in
pulsed lasers [2]. It is well known [3, 4] that an atmo-
spheric-pressure volume discharge in a nonuniform
electric field can also be excited without preionization,
by applying a nanosecond voltage pulse with a steep
front (fractions of a nanosecond) to the discharge gap.
In [5, 6], X-ray emission from nanosecond atmo-
spheric-pressure discharges in air [5] and helium [6]
was observed in a system with a point cathode and plain
anode. Later, accelerated electron beams with energies
from several tens to hundreds of kiloelectronvolts were
observed under similar conditions [4, 7–12].

In systems with a cathode of small curvature radius,
pulsed nanosecond volume discharges excited in
atomic and molecular gases at elevated pressures in a
nonuniform electric field have unique features and find
wide application. In particular, such discharges are
used for preionization in lasers pumped by a self-sus-
tained discharge at an elevated pressure [13, 14] and for
the generation of electron beams in gas diodes [9–12].

In [15], this type of volume discharge in nitrogen
was used to create a UV radiation source with a short
pulse duration (below 3 ns), and a total (into a solid
angle of 4π) emission power of ~10 kW in the wave-
length range of 340–400 nm (the second positive sys-
tem of nitrogen) was achieved. However, the estimated
efficiency of this source, which was obtained by us
from the waveforms of the current and voltage pre-
sented in [15], turned out to be very low. The efficiency
of converting the excitation power into spontaneous
1063-7842/04/4908- $26.00 © 20987
emission of the second positive system of nitrogen
(C3Πu–B3Πg transitions) is lower than 0.01%, i.e., more
than one order of magnitude lower than the efficiency
of an electric-discharge nitrogen laser [16], usually
radiating at a single wavelength of 337.1 nm. It is well
known that the total (into a solid angle of 4π) efficiency
of spontaneous radiation sources is usually higher than
the laser efficiency. Thus, the power and efficiency of
the spontaneous emission of the second positive system
of nitrogen in a pulsed source [17], excited by a trans-
verse discharge with UV preionization, is more than
one order of magnitude higher than the efficiency of the
gas-discharge source described in [15].

The aim of this study was to investigate the optical
characteristics of the plasma of a nanosecond volume
discharge excited in a nonuniform electric field in air,
nitrogen, krypton, argon, neon, and Ar/Xe and Ar/N2
mixtures at elevated pressures and to compare the
experimental data with the known optical characteris-
tics of the plasma generated by a nanosecond electron
beam [18–20], by a self-sustained discharge with UV
preionization [18, 20], and by an RF discharge [21]
with a duration from a few nanoseconds to a few tens of
nanoseconds.

2. EXPERIMENTAL FACILITY 
AND TECHNIQUE

In experiments, we used two RADAN generators of
nanosecond voltage pulses (see [22, 23] for details).
The first generator (RADAN-303) with a wave resis-
tance of 45 Ω generated 50- to 170-kV pulses at a
matched load (the open-circuit voltage was up to
340 kV). The full width at half-maximum (FWHM) of
004 MAIK “Nauka/Interperiodica”
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the voltage pulses was ~5 ns, the voltage rise time being
~1 ns [22]. The voltage across the discharge gap could
be varied smoothly by varying the length of the main
spark gap.

A second generator (RADAN-220) with a wave
resistance of 20 Ω generated voltage pulses with an
amplitude of up to 220 kV across the discharge gap.
The FWHM of the voltage pulses was ~2 ns, the voltage
rise time being ~0.3 ns [23]. The design of the gas diode
was the same for both generators [24] (Fig. 1). As in
most studies devoted to the generation of X rays and
fast electrons in gas diodes, we used a plane anode and
a cathode with a small curvature radius; this ensured an
additional amplification of the field near the cathode.
For both generators, we usually used a cathode shaped
as a 6-mm-diameter tube made of a 50-µm steel foil.
The tube was mounted on a metal rod of the same diam-
eter. The plane anode, through which the electron beam
produced in the gas diode was output [9–12, 24], was
made of either a 45-µm AlBe foil or a grid with an opti-
cal transmittance of 20–70%. The distance between the
cathode and anode was varied from 13 to 20 mm. When
measuring the waveforms and spectra of plasma emis-
sion and photographing the discharge in the transverse
direction to the cathode axis, the gas diode was
extended by 3 cm toward the foil, which was also dis-
placed by 3 cm. For this purpose, the cathode holder
and the casing of the gas diode were lengthened and
diagnostic holes were made in the side wall of the latter.
In some experiments, the discharge gap was placed
inside a gas chamber with windows or mirrors; this
allowed us to pump out the gas and to vary the compo-
sition and pressure of the working gas in the gap.

To measure signals from capacitive voltage dividers,
collectors, and shunts, we used a TDS-684B oscillo-
scope with a bandwidth of 1 GHz and time resolution
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Fig. 1. Design of the high-voltage output of the generator
and the gas diode: (1) cathode, (2) foil or grid, (3) gas diode,
(4) insulators, (5) potential electrode of the generator, and
(6) capacitive voltage divider.
of 5 GS/s (five spots per 1 ns) or a TDS-334 oscillo-
scope with a bandwidth of 0.3 GHz and time resolution
of 2.5 GS/s (five spots per 2 ns). The discharge glow
was photographed with a digital camera. The emission
spectra were recorded on the RF-3 film with the help of
an ISP-30 spectrograph.

3. EXPERIMENTAL RESULTS
The observations of the discharge glow and the mea-

surements of the emission spectra, the discharge cur-
rent, and the voltage pulses across the gas diode show
the following:

Over a wide range of experimental conditions, a vol-
ume discharge in the form of diffuse cones or jets is
excited between the anode and the sharp edge of the
tubular cathode (Fig. 2). It can be seen that an atmo-
spheric-pressure discharge is volume in character;
bright spots are usually observed only near the cathode.
When the length of the discharge gap was decreased, a
point cathode was used, or the pressure was varied, we
observed individual channels against the background of
a diffuse discharge (Fig. 2b) and hot spots at both the
cathode and the anode. Under nonoptimal conditions

(‡) (b)

(c) (d)

(e) (f)

Fig. 2. Discharge glow from discharges in (a, b) argon,
(c, d) krypton, and (e, f) air. Photographs (a–e) are taken in
the transverse direction and photograph (f) is taken along
the discharge axis (through the grid anode). The gas pres-
sure is (a, c, e, f) 1, (b) 0.75, and (d) 0.25 atm. The second
generator with an extended gas diode is used; the length of
the discharge gap is 16 mm.
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(e.g., at short gaps), the volume discharge can trans-
form into a spark. As the generator voltage is increased
at the optimal gap length, lighter filamentous channels
also appear against the background of the volume dis-
charge and a step appears in the waveform of the volt-
age pulse. However, a characteristic feature of a dis-
charge excited in a nonuniform electric field in different
gases at atmospheric pressure is that it is volume in
character. Figures 2e and 2f show the photographs of
the glow of a discharge in air. In the photographs, which
were taken along the discharge axis in the case of a grid
anode and in the transverse direction in the case of a foil
anode, one can see characteristic volume jets.

Figure 3 shows the waveforms of the voltage and the
beam current behind the foil (the time resolution is
~0.3 ns). The conditions for the formation of an elec-
tron beam in the gas diode are described in detail in
[9−12, 24]. The discharge current signal appears at the
leading edge of the voltage pulse with a very short time
delay with respect to the instant at which the voltage is
applied to the gap (the available equipment did not
allow us to exactly measure this time delay). In some
operating regimes, a capacitive spike in the waveform
of the discharge current appeared at the leading edge of
the voltage pulse during the charging of the interelec-
trode gap. The magnitude and duration of the discharge
current depend on the pressure and the sort of the work-
ing gas, the interelectrode gap length, and the type and
output voltage of the generator. The maximum dis-
charge current is as high as a few kiloamperes in the
case of a volume discharge. Thus, for the first generator,
the current amplitude was ~4.7 kA at an open-circuit
voltage of ~340 kV. With this generator, provided that a
volume discharge lasts for 3 ns, the current density at
the anode reaches 3 kA/cm2, the specific energy depos-
ited in a discharge is ~1 J/cm3, and the specific depos-
ited power is 400 MW/cm3. When the volume stage of
the discharge lasts for 5 ns, the current density at the
anode reaches ~1.5 kA/cm2, the specific deposited
power is ~200 MW/cm3, and the specific energy depos-
ited in a discharge is ~1 J/cm3. At the maximum voltage
of the first generator, the mean value of the parameter
E/p after the end of the beam current was
~0.08 kV/(cm torr) in the quasi-steady phase. Note
that, for the quasi-steady phase of a volume discharge
(which is established after the breakdown of the gas
gap), the voltage across the gap is usually lower than
before breakdown [16, 25]. In the case of a cathode
with a small curvature radius, the discharge operated in
a self-sustained regime. In this regime, in the case of
single pulses and without gas preionization, the gap
voltage was maximum in the quasi-steady phase of the
discharge (Fig. 3). In [11], it was proposed to call this
type of discharge the volume avalanche discharge initi-
ated by an electron beam (VADIEB). When discussing
the results obtained, we will explain the mechanism for
the formation of a volume discharge.
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
Figure 4 shows a typical waveform of the discharge
current and the waveforms of the emission pulses in the
200- to 650-nm spectral range. The emission was
recorded by an FÉK-22 photodiode for different gases
at a pressure of ~1 atm. Figure 5 shows the depen-
dences of the emission intensity on the gas pressure. An
increase in the pressure results in an increase in the
maximum emission power in all gases. Figure 5 (curve 5)
also shows the FWHM of the emission pulse as a func-
tion of the nitrogen pressure. The most powerful
(Fig. 4d) and the shortest (Figs. 4, 5; curve 5) emission
pulses were observed in pure nitrogen. However, the
efficiency of spontaneous emission from a VADIEB in
the 200- to 600-nm spectral range both in nitrogen and
other gases or gas mixtures was rather low. When nitro-
gen at a pressure of 1 atm was excited by the second
generator, the emission power was ~36 kW, which was
four times higher (due to the higher power of the gen-
erator) than in [15]. In this case, however, the emission
efficiency of the second positive system of nitrogen
(~0.01%) did not increase. In mixtures of nitrogen with
argon, the duration of the emission pulses of the second
positive system of nitrogen was substantially larger than in
pure nitrogen, whereas the emission intensity was more
than one order of magnitude lower (Figs. 4d, 4e).

Our spectral measurements (as well as those in [15])
show that, in nitrogen, the second positive nitrogen sys-
tem is most intense (within this system, the most
intense are the 337.1- and 358-nm bands). In
argon/nitrogen mixtures, the second positive nitrogen
system is also dominant and the less intense emission at
a wavelength of 308 nm can be attributed to the emis-
sion of OH molecules and OH+ ions.

In neon, the 600-nm emission, which is related to
atomic transitions, is dominant. The wide near-UV

200 mVΩCh1 Ch2 1.00 VΩ M 1.00 ns Ch1 –80 mV
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Fig. 3. Waveforms of (1) the voltage pulses at the gas diode
and (2) the current of an electron beam behind the foil. The
voltage scale is 45 kV/division, the current scale is
20 A/division, and the time scale is 1 ns/division. The first
generator is used; the length of the discharge gap is 16 mm.
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Fig. 4. Waveforms of (a) the discharge current (upper curve) and the emission intensity from a discharge in (a) neon (lower curve),
(b) krypton, (c) argon, (d) nitrogen, and (e) the Ar : N2 = 100 : 1 mixture at a pressure of ~1 atm: (a) the current scale is 3.4 kA/divi-
sion, the voltage scale is 0.2 V/division, the time scale is 10 ns/division; (b, c) the voltage scale is 0.2 V/division and the time scale
is 10 ns/division; (d) the voltage scale is 20 V/division and the time scale is 10 ns/division; and (e) the voltage scale is 0.5 V/division
and the time scale is 20 ns/division. The second generator with an extended gas diode is used; the length of the discharge gap is
16 mm.
emission band that is clearly seen when neon is excited
by an electron beam [19], a self-sustained discharge at
high initial voltages [20], or an RF discharge [21] was
not observed in a VADIEB at the same total deposited
energies. We also observed no wideband emission from
discharges in krypton and argon [18, 19]. The experi-
ments show that the intensity of wideband emission
from a VADIEB in krypton, argon, and neon is substan-
tially lower than from discharges excited by an electron
beam. The same follows from the comparison of the
VADIEB emission spectrum with the emission spec-
trum of a self-sustained atmospheric-pressure dis-
charge in neon with UV preionization at high initial
voltages. Note that, in krypton and argon excited by a
self-sustained discharge with UV preionization at high
initial voltages, the discharge contracts at a pressure of
1 atm [18] and the emission of the third continua is not
observed.

4. DISCUSSION OF THE RESULTS

An analysis of the measured VADIEB parameters
allows us to answer the two main questions: (i) why is
the volume discharge generated at elevated pressures
and in the presence of cathode spots and (ii) why are the
emission efficiency of the second positive nitrogen sys-
tem in a VADIEB and the intensity of the wideband
emission of the third continua in inert gases low?

We believe that, in the case of a cathode with a small
curvature radius, the process of the formation of a vol-
ume discharge can be described as follows. When a
high-voltage pulse is applied to the discharge gap, the
electric field near the cathode is amplified as early as at
the leading edge of the voltage pulse. The electric field
is also amplified after cathode spots are formed from
plasma bunches produced by explosive electron emis-
sion. In experiments with chopped discharges, we
observed a lot of small plasma objects at the cathode
during the leading edge of the voltage pulse. The num-
ber of these objects decreased as the time delay of the
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Fig. 5. Emission intensity from a discharge in (1) nitrogen,
(2) neon, (3) krypton, and (4) argon as a function of the
pressure and (5) the FWHM of the emission pulse as a func-
tion of the nitrogen pressure. The second generator with an
extended gas diode is used; the length of the discharge gap
is 16 mm.
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operation of the chopping spark gap decreased,
whereas their size and brightness increased. It is well
known [1] that cathode spots can provide electron emis-
sion from the cathode that is sufficient to achieve dis-
charge currents of 1–10 kA and higher.

Because of the field amplification and the rapid
increase in the gap voltage at the leading edge of the
voltage pulse, a fraction of electrons in the cathode
region pass into the runaway regime; i.e., the electrons
gain an energy that is larger than the energy corre-
sponding to the maximum ionization cross section.
Moving toward the anode, these electrons preionize the
gas. Note that the fact that the amplification of the elec-
tric field at the point cathode and the high growth rate
of the voltage lead to the generation of high-energy
electrons was pointed out by us in [21]. Thus, the for-
mation of a volume discharge in a nonuniform electric
field is caused by the preionization of the working gas
by fast electrons produced due to the field amplification
at the cathode and cathode spots and by the overlap of
the electron avalanches, whose density is maximum
near the cathode. In this case, due to a rather intense
preionization by fast electrons (by an electron beam),
the gap voltage is maximum in the quasi-steady phase
of a discharge (E/p ~ 0.05–0.08 kV/(cm torr)). A com-
parison of the quasi-steady values of the parameter E/p
with the E/p values observed in a volume discharge at
high initial overvoltages and high current densities [25]
shows that they differ only slightly.

The low emission efficiency of the second positive
system of nitrogen and the third continua in the case of
excitation by a VADIEB in comparison to the excitation
by a pulsed volume discharge with a high initial gap
voltage is related to the lower maximum values of the
reduced field, E/p ~ 0.05–0.08 kV/(cm torr), whereas a
value of E/p ~ 0.1–0.2 kV/(cm torr) is needed for the
efficient excitation of the second positive nitrogen sys-
tem. Even higher values of E/p and higher electron
energies are required to efficiently excite the upper lev-
els that determine the emission of the third continua of
noble gas ions [19].

Nevertheless, the electron temperature that is
achieved in a VADIEB can be optimal for some pulsed
lasers operating with dense gases, as well as for sources
of spontaneous emission. In particular, it can be optimal
for lasers operating on atomic xenon transitions; in this
case, there is a channel of populating the upper laser
level by step excitation and ionization [26]. To check
this assumption, mirrors were placed in the chamber.
The reflection coefficients of the mirrors at a wave-
length of 1.73 µm were 99 and 98%. Accordingly, the
transmittance of the second mirror was ~2%. The
length of the active region was ~1.5 cm, which, how-
ever, was insufficient to achieve stable generation in an
Ar/Xe mixture at a pressure of ~1 atm. Figure 6 shows
waveforms of the discharge current and the emission
pulses.
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Note that, in noble gases excited by an electron
beam, it is easy to observe the emission of the third con-
tinua [19, 20]. This is explained by the fact that, in the
case of excitation by an electron beam generated by a
standard accelerator, the number of fast electrons in a
plasma (at the same specific deposited energies) is sub-
stantially greater than in a VADIEB.

5. CONCLUSIONS

The results of our experiments allow us to draw the
following conclusions:

(i) The optical characteristics of the plasma of a
VADIEB differ substantially from those of a plasma
produced in the same gases and gas mixtures excited by
either an electron beam or a volume discharge with a
high initial voltage (overvoltage) across the gap. The
average electron temperature in a VADIEB is relatively
low; this results in the low emission efficiency of the
second positive system of nitrogen and the third con-
tinua of noble gases.

(ii) The quasi-steady phase of a VADIEB is estab-
lished at relatively low initial voltages; this is caused by
the generation of fast electrons near the cathode. The
number of these electrons is sufficient to preionize the
gap and to excite a volume discharge. However, at the
same specific deposited energies, the number of fast
electrons in a VADIEB is substantially smaller than in
a plasma produced by an electron beam generated by a
standard accelerator. As a result, the efficiency of the
wideband emission of the third continua of krypton,
argon, and neon is substantially lower.

(iii) VADIEBs can be used to achieve lasing in
active media and to create spontaneous radiation

(1) [TDS-3032] CH1
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10 V 200 ns
(2) [TDS-3032] CH2 50 V 200 ns

T

Fig. 6. Waveforms of the discharge current (upper curve)
and the emission intensity (lower curve) in the Ar : Xe =
240 : 1 mixture at a pressure of ~1.2 atm. The time scale is
200 ns/division. The second generator with an extended gas
diode is used; the length of the discharge gap is 16 mm.
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sources that do not require too high average electron
temperatures, e.g., radiation sources for pumping
Ar/Xe lasers.

(iv) An important characteristic of the VADIEB is
the possibility of achieving high specific deposited
powers (up to 400 MW/cm3), high current densities (up
to 3 kA/cm2 near the anode), and high specific depos-
ited energies (~1 J/cm3 over 3–5 ns). Note that these
parameters are not limiting and can be increased.

In conclusion, we propose to use the term VADIEB
for the regime of a pulsed volume discharge in a non-
uniform electric field at elevated pressures. VADIEB is
characterized by the high deposited energy and the high
deposited pulsed power, which can be varied by varying
the quasi-steady value of the parameter E/p and the dis-
charge current density.
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Abstract—Solubility of substitutional impurities in decomposing alloys with a cubic structure is calculated.
The effect of elastic lattice vibrations on the decomposition and solubility is taken into account. It is shown that
the temperature that corresponds to the peak in the decomposition curve is increased and the range of the
biphase states is widened if the phonon effects are taken into consideration. The dependence of solubility on
the decomposition parameter is determined; several particular cases of this dependence are analyzed. © 2004
MAIK “Nauka/Interperiodica”.
At present, there is a well-developed theory of solu-
bility of substitutional impurities in ordering alloys [1];
in terms of this theory, the dependences of the solubility
on the temperature, the alloy composition, the degree of
the long-range order, the value of spontaneous magne-
tization, and other parameters, were established. It is of
interest to generalize this theory to the case of decom-
posing alloys, i.e., the systems in which precipitation of
several phases (in the simplest case, of two phases)
occurs with decreasing temperature.

In this study, we calculate the solubility of the sub-
stitutional impurity C in a binary decomposing alloy A–
B with the cubic structure. We consider the simplest
model: the A–B alloy is in contact with a donor crystal
C that has the same structure as the solvent; the interac-
tion is taken into account only within the first coordina-
tion sphere; it is assumed that the solubility of atoms C
is not high, i.e., the content of atoms C in the phases is
much smaller than unity; and is also assumed that two
phases with the composition changed in comparison
with the initial concentration of atoms A and B precipi-
tate in the course of decomposition.

We represent the free energy of the entire system as
the sum of the configuration-related (F1) and phonon-
related (F2) terms, i.e.,

(1)

Designating the number of atoms of the α type in the

ith phase (i = 1, 2) by  (α = A, B, C), the total num-
ber of the lattice sites in the ith phase by Ni, and the neg-
ative energies of the pair of the nearest neighbors α–β
by vαβ, we obtain
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(2)

Here, vCC is the energy of interaction between the pairs
of nearest neighbors C–C in the crystal, z is the coordi-
nation number in the lattice, and N is the total number
of atoms of type C. We use the following well-known
high-temperature approximation for the phonon-
related component of the free energy [2]:

(3)

Here, N0 is the number of particles in the crystal and 
is the squared frequency averaged over the spectrum.

In the case under consideration, formula (3) yields

(4)

In this formula,  and  are the spectrum-aver-
aged squared frequencies of crystal C and the ith phase
of the A–B–C alloy, respectively.

In order to calculate the latter quantity, we use the
isotopic approximation and assume that the force con-
stants of elastic interaction between the atoms in the
alloy A–B–C are independent of composition. In this
case, according to [3], vibrations of atoms in the alloy
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can be described assuming that lattice sites are occu-
pied by effective atoms with masses  equal to

where mα and cα are the mass and concentration of
atoms α in the alloy.

At the same time,  = (1/2)A [2], where m is the
mass of the crystal atom and A is the quantity expressed
in terms of parameters of the elastic binding. Since A is
independent of composition in the isotopic approxima-
tion and m = , we immediately obtain the following

expression for :

(5)

We use the quantities  as thermodynamic vari-
ables. They satisfy two evident conditions; i.e.,

(6)

where Nα (α = A, B) is the total number of atoms of the
type α in the system.

In this case, the equilibrium values of  are deter-
mined from the condition for an extremum of the func-
tion

(7)

where λ1 and λ2 are the Lagrangian multipliers.

The equilibrium equations are written as

(8)

Using Eqs. (8) and taking into account conditions
(6), we can, in principle, determine first the equilibrium

values of  and then the solubility

(9)

We now write the equations obtained as a result of

differentiation of Φ with respect to :
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(10)

Since the case of low solubility is considered (  !

1), we solve Eqs. (10) discarding all terms with 
except for logarithmic terms. As a result, we obtain

(11)

where

(12)

Expression (11) can be simplified if  ≈ , i.e.,
if the masses of atoms A and B are close to each other.

Assuming that  =  = , we obtain the following
expression instead of (11):

(13)

It can be seen from (11) that only a small addition to

 results from consideration of the effect of dissolved
atoms on the concentration of components A and B in

the phases. Therefore, we calculate  (i = 1, 2) in the

zeroth approximation with respect to ; however, we
take into account the effect of the phonon contribution.

The equations obtained as a result of differentiation

of Φ with respect to  and  have the following
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form if the terms that contain  are discarded:

(14)

(15)

If the two last terms in Eqs. (14) and (15) are dis-
carded, these equations transform into the well-known
equations of the decomposition theory, which disre-
gards the effect of elastic vibrations of atoms [4]. Sub-
tracting (15) from (14), we obtain

(16)

where w = 2vAB – vAA – vBB is the ordering energy (w <
0 in decomposing alloys).

Assuming that the difference  –  is small, we
can represent the last term in (16) as

(17)

Substituting (17) into (16) and subtracting the
resulting equality taken at i = 1 from that taken at i = 2,
we obtain
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where

(19)

Equation (18) has exactly the same form as the
equation in the static version of the decomposition the-
ory [4] if w is replaced by w'. Consequently, we may

introduce the decomposition parameter µ =  – ;
the equation for this parameter is written as

(20)

Let us study a variation in the shape of the decom-
position curve due to elastic vibrations.

The value of µ is small if the initial-state composi-
tion is nearly equiatomic. Expanding the left-hand side
of Eq. (20) into a series in terms of powers of µ, we
derive the following expression for the temperature that
corresponds to the peak of the decomposition curve:

(21)

Thus, the highest decomposition temperature
increases if lattice vibrations of atoms are taken into
account.

We now calculate variations in the width of the
biphase region. Assuming that µ = µ0 + ∆µ (∆µ ! µ0),
where µ0 is the decomposition parameter in the static
variant, we use Eq. (20) to obtain
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which yields
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in the vicinity of T0; i.e., the region of biphase states
widens.

At temperatures below that of decomposition, we
have
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and, correspondingly,

(25)

where  = NA + NB.
Formulas (24) and (25) make it possible to write the

expressions for the number of atoms C dissolved in the
first and second phases, respectively; i.e., we have

(26)

(27)

Here,

(28)

(29)

It is easy to show that E1 = wBC – wAC, where wBC and
wAC are the energies of the ordered systems B–C and A–

C. Substituting the obtained expressions for  and

 into formula (10), we obtain the following expres-
sion for solubility:

(30)

where

(31)

It can be easily shown by direct calculation that R0
is the solubility in the monophase state in an alloy with
equiatomic composition.

Let us consider the behavior of solubility in several
particular cases. For an alloy with equiatomic composi-
tion (cA = 0.5), we have
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In the vicinity of the decomposition temperature T0
(i.e., at small values of µ), we use formula (32) to obtain

(33)

As can be seen, a variation in solubility as a result of
decomposition is governed by the ratio between the
energies E1 and w: the solubility increases as a result of
decomposition if |E1/w| > 1 and decreases if |E1/w| < 1.

We now study how the solubility changes as a result
of decomposition of an alloy whose composition differs
from stoichiometric. The smallest width of the biphase
region in an alloy with cA ≠ 0.5, is equal to

(34)

In the monophase state, the solubility in the alloy
under consideration is given by

(35)

It follows from formulas (30) and (35) that the ratio
of solubilities in the biphase and monophase states can
be written as

(36)

On transition to the biphase state, the value of µ0
changes by –2δcA, where –δcA is the variation in the
concentration of component A in the first phase (δcA >
0). In the vicinity of the decomposition temperature,
δcA ! 1. Expanding then the right-hand side of (36) into
a series in terms of powers of δcA and retaining only the
terms of the first order of smallness, we obtain
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In the region where δcA is small, we can replace T by
the decomposition temperature Td of an alloy with the
composition cA; according to (20), this temperature is
given by
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which finally yields

(39)

Expression (37) can be simplified appreciably if
E1/w ! 1. In this case,

(40)

It follows from this formula that solubility is
expected to increase as a result of decomposition.

There are binary systems that form a continuous
series of solid solutions at high temperatures and
decompose into two phases with the bell-shaped
decomposition curve (the Au–Ni, Au–Pt, Ir–Pd, Ir–Pt,
and W–Cr systems) [5]. As far as we know, experimen-
tal data on the solubility of substitutional impurities in
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the biphase state of aforementioned systems are lacking
at present. The relevant experiments would make it pos-
sible to compare the results reported in this paper with
experimental data.
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Abstract—Carbon molten drops in a metallic catalyst are known to be nucleation centers for carbon nanotubes.
The problem of the kinetics of condensation of such drops in wide concentration ranges of carbon and metal
vapors is considered. The equilibrium distribution of the drops over the size and mole fraction of the compo-
nents is obtained. The main result is the calculation of the quasi-steady-state rate of condensation of the molten
drops in a supersaturated carbon vapor. This result forms the basis for the calculation of the characteristics of
explosive and rapid condensation of the vapor upon its cooling. This calculation is performed in the next part
of this work. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Although carbon nanotubes (NTs) can be applied in

many fields, none of the existing methods of their man-
ufacture can produce them on an industrial scale.
Advanced modifications of the chemical vapor decom-
position (CVD) of hydrocarbons provide oriented high-
quality multiwall NTs (bundles [1]); however, the qual-
ity of single-wall NTs produced by CVD is still low
(apparently, CVD single-wall NTs produced using the
catalytic decomposition of alcohol have the highest
quality [2]). In many cases, this technique is sufficient
to provide mass production; however, for a number of
applications (primarily, in electronics) it is important to
produce high-quality single-wall NTs. Moreover, CVD
requires long-term and labor-consuming preparation of
a substrate. Therefore, arc and laser methods for the
deposition of NTs are still interesting despite their high
energy consumption [3].

The disadvantages of both methods are related to the
uncontrolled condensation of vapor, which initially
consists of carbon and metal atoms, when it moves
from its source and cools in the atmosphere of a buffer
gas. During the condensation, NT nuclei (i.e., the drops
of a metallic catalyst or a carbon melt in the catalyst)
are formed. Then, in the cases of both arc and laser
evaporation of a graphite target, NTs grow on these
drops, which continue to move in a gas flow, as they are
supersaturated with carbon [4–6]. Uncontrolled con-
densation results in the uncontrolled growth of chaoti-
cally oriented NTs. In this work and its continuation
[7], we consider the condensation of a binary carbon–
metal vapor when it cools, depending on the ratio of
vapor concentrations. We discuss the possibility of con-
trolled separation of the stages of NT growth, namely,
1063-7842/04/4908- $26.00 © 20998
the condensation of the drops and their deposition on a
substrate and the growth of NTs from these drops. For
definiteness, hereafter, we will discuss the arc method
for the production of carbon nanotubes.

2. QUALITATIVE ANALYSIS

In the arc method of production of NTs, a metallic
catalyst is introduced in a vaporized electrode (anode)
in amounts of several fractions of a percent. As the
metal content increases, the number of NTs produced
decreases. However, taking into account that the mod-
ern arc method cannot be a commercial technology, it
is important to analyze the variation of condensation
with the component ratio.

When the metal content in the bulk of the anode is
low (a few percent or several fractions of a percent), the
vaporization temperature of the anode should be equal
to that in a fullerene arc with a graphite electrode (about
4000 K) [8]. Under these conditions, the concentration
of the carbon vapor over the surface can reach 1017 cm–3,
and that of the metal vapor, 1015–1016 cm–3. This con-
centration corresponds to a saturation temperature of
1700–1900 K for the metal vapor (Fig. 1).

On the contrary, when the metal content is high, the
anode temperature is close to the melting temperature
of the fusible catalytic metal (1600–1700 K). Then, the
amount of the vaporized metal can even be smaller than
in the case of an almost purely graphite electrode.

The temperature over the surface of the vaporized
anode can be used to estimate the condensation temper-
ature, i.e., the temperature in a certain region outside of
004 MAIK “Nauka/Interperiodica”
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the arc, where the real concentration of the metal vapor
becomes equal to the concentration of saturated vapor.

(1) At a very low relative concentration of the metal,
carbon clusters develop according to the “fullerene
path” [9, 10]: condensation consists in the formation of
dimers–chains–rings–fullerenes. The absence of more
complex structures is due to the fact that the clusters
that are formed upon coagulation are annealed in the
time between collisions. An additional analysis shows
that metal atoms trapped by clusters of the rings–chains
type are at the periphery and, thus, can freely evaporate.
This behavior ensures a relatively high concentration of
free metal vapor and a high condensation temperature.
The time it takes for condensed drops moving in a gas
flow to become NT nuclei is found to be sufficient, and
the yield of NTs is high.

(2) As the metal content in the anode increases, such
evolution of carbon clusters is hindered. Frequent colli-
sions between carbon clusters and metal atoms destroy
the cluster structure. Such clusters can effectively trap
and retain metal atoms inside them. Therefore, the con-
centration of free metal atoms, which can be condensed
into drops, decreases. The condensation temperature
also decreases. Then, the solubility of complex carbon
structures in the drops formed is also low. As a result,
neither fullerenes nor nanotubes are formed; however,
a large quantity of amorphous carbon appears.

It is difficult to estimate the transition from case 1 to
case 2, since (a) to the best of our knowledge, an arc
discharge with a vaporizing graphite–metal anode in
the vapor of a buffer gas has not been calculated; (b) it
is extremely difficult to calculate the thermodynamics
of clusters having a small amount of carbon and metal
atoms.

(3) As the metal concentration increases further, the
fullerene path becomes closed. Therefore, small iron–
carbon clusters should have a topology that is similar to
the topology of metallic clusters and acquire the prop-
erties of metallic drops when the number of atoms
increases. This scenario can occur if we take into
account the fact that the pressure of the saturated metal
vapor is higher by four to five orders of magnitude
(Fig. 1) and that the evaporation heat is half that of car-
bon. The temperature decreases with increasing dis-
tance from the source of arc, and the actual concentra-
tions of metal and carbon vapors decrease according to
what is approximately the same law. Therefore, the car-
bon vapor reaches saturation when the metal vapor is
strongly undersaturated. In this case, condensation is
delayed: it is prepared by carbon supersaturation but
begins only at the instant when the metal vapor
becomes saturated. According to the classic definition,
the condensation is neither homogeneous nor heteroge-
neous, since the characteristics of each component of
the material being condensed change with the environ-
mental conditions.

A drop formed during the condensation is rapidly
saturated with carbon and can become a nucleation cen-
TECHNICAL PHYSICS      Vol. 49      No. 8      2004
ter for a NT, provided the drop temperature at the con-
densation instant is sufficiently high and the NT has
time to grow.

The condensation should be delayed at a low rela-
tive carbon concentration such that heterogeneous con-
densation terminates. Indeed, if the concentration and
size of the drops that appear during this condensation
are small, these drops cannot stop an increase in the
supersaturation of the metal vapor, and, in a certain
time, “secondary” condensation, which is similar to the
homogeneous condensation of the metal vapor, takes
place.

The considerations given above indicate that, in
agreement with experiment, there is a certain optimal
relative metal content in the electrode (less than one
percent) above which the formation of NTs deterio-
rates.

However, there is another method to increase the
efficiency of nanotube growth: vaporization of an elec-
trode with a high metal content (e.g., an electrode made
of conventional stainless steel). In this case, the arc
serves only as the means for the formation of metallic
nucleation centers during a given time. NTs can be
grown on them but under different conditions. In prin-
ciple, this approach is similar to that for the preparation
of substrates in CVD techniques, and the realization of
this approach can be simpler.

This approach raises the problem of the condensa-
tion of a binary carbon–metal gas mixture having a rel-
atively high metal content and a low carbon content.
The purpose is to answer the question: Is the presence
of a metal an advantage or disadvantage from the stand-
point of further growth of NTs? Moreover, it is of inter-
est to consider the condensation of the gas mixture with
various properties of its components.

0.16

1016

0.20 0.24 0.280.12

1020

1012

108

0.08

Ni

Fe

C

T, eV

nSat, cm–3

Fig. 1. Concentration of saturated vapors over the surfaces
of iron, nickel, and graphite.
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The first stage of solving this problem is to obtain
thermodynamic relations for a two-component cluster-
(nucleus) of the liquid phase.

3. THERMODYNAMICS OF METAL–CARBON 
SOLUTION DROPS

In the classical Frenkel theory of condensation [11],
a cluster of g @ 1 atoms is considered as a drop with
constant surface tension σ0. In the case of a pure sub-
stance, the chemical potential of such a cluster is deter-
mined by the relation

(1)

where Ng and Rg are the cluster concentration and
radius, respectively; λ = (h2/2πmgT)1/2 is the thermal
wavelength of the cluster and λ1 is the similar quantity
for an individual atom in the gas phase; m is the metal

atom mass;  = (8π2IgT/h2)3/2 is the rotational parti-

tion function of the cluster; Ig = 2gm /5 is the

moment of inertia of the cluster; µL = Tln(NS ) is the
chemical potential of an atom in the liquid phase; and
NS is the concentration of saturated vapor.

Using the law of mass action in the reaction of for-
mation of a cluster, we have µg = gµ1 = (g – 1)µ1 + µ1;
then, the number of atoms distribution function for
clusters takes the form [11]

(2)

where S = N1/NS is the vapor supersaturation; Arot =

(16π2m T/5h2)3/2; ρL is the liquid-phase density; and
rL = (3m/4πρL)1/3 has the meaning of the size of the cell
per one particle, the drop radius being equal to Rg =
rLg1/3.

Relations (1) and (2) can easily be generalized to the
case of a melt. The free energy of the melt containing g
atoms (hereafter, the Gibbs free energy) is defined by
the relation [12]

(3)

where Gmix is the free energy of mixing; X = c/(k + c) is
the mole fraction of carbon; c and k are the numbers of
carbon and metal atoms in the drop, respectively (g =

c + k); and  and  are the free energies corre-
sponding to pure carbon (subscript C) and a pure metal
(subscript K) in the liquid phase.

In the case of carbon, we consider the energy of a
hypothetical supercooled substance, as is usually done
in the theory of alloys [12]. We neglect the effect of
“separation” of the components of the binary mixture in
Eq. (3); it is taken into account as a change in the sur-
face tension. This problem is analyzed below in more
detail.

µg T Ngλg
3( )ln g 1–( )µL Zrot

g( )ln 4πσ0Rg
2,+ + +=

Zrot
g( )

Rg
2

λ1
3

Ng N1g4Sg 1– Arot 4πσ0Rg
2/T–( ),exp=

rL
2

Gg Gmix XGC
0( ) 1 X–( )GK

0( ),+ +=

GC
0( ) GK

0( )
As follows from the law of mass action, the chemi-
cal potential of an atom in the melt (µg = Gg/g) is µg =
kµK, 1 + cµC, 1, where µK, 1 and µC, 1 are the chemical
potentials of the metal and carbon vapors, respectively.

By introducing the free energy of mixing per atom
(µmix = Gmix/g) and repeating the considerations given
above, we can easily obtain

(4)

where

 and  are the concentrations of the saturated
metal and carbon vapors, respectively; and AK and AC =
12 are the atomic masses of the metal and carbon,
respectively.

Except the multiplier AKC, Eq. (4) can be written by
analogy with Eq. (2) only from the considerations of
the dimensions and symmetry of the solvent and solute.

Thus, the difference in the size distribution of the
drops of the binary solution from the similar distribu-
tion of the pure drops consists in the energy of mixing
µmix and the surface tension σ0, which is a nontrivial
quantity even for large drops because of a nonuniform
component distribution in them. However, scarce
experimental data on melts [13] indicate that, e.g., for
liquid iron, the value of σ0 varies from ~1800 erg/cm2

for pure iron to ~1650 erg/cm2 for the saturated melt
(T = 1600°C), i.e., by less than 10%. Therefore, the
dependence of σ0 on the mole fraction can be assumed
to be insignificant as compared to the size effects,
which are of fundamental importance for the condensa-
tion of small drops.

The µmix(X) dependence that enters into Eq. (4) is
unknown for almost all carbon–metal alloys, which is
due to the fact that the alloys were mainly studied for
metallurgy, where the heat of formation rather than the
free energy is important. In the literature, we were able
to find such data for a wide range of carbon concentra-
tion in the melt only for nickel [14], for which this
dependence is close to the ideal dependence

(5)

up to X ~ (0.7–0.8)XSat.
For other materials, data on the correction to Eq. (5)

are only available for low carbon concentrations; this
case is described by the theory of regular solutions [12].
The regular correction has the form (1 – X)Q12; how-
ever, the data on the interchange energy Q12 are contro-
versial. The most complete data on Q12 for various
alloys are given in [15]. In this work, the regular correc-

Ng ArotNK
1 X– NC

Xg9/2AKC SC
XSK

1 X–( )g 1–
=

×
g 1–( )µmix

T
--------------------------–

4πσ0rL
2 g2/3

T
--------------------------– 

  ,exp

AKC

ACX AK 1 X–( )+

AC
X AK

1 X–
------------------------------------------

3/2

,=

NK
S( ) NC

S( )

µmix T X Xln 1 X–( ) 1 X–( )ln+( )=
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tion was taken into account; however, for the sake of
simplicity, all the formulas are written as if the drop is
an ideal solution, at least, at X ≤ (0.7–0.8)XSat. On the
other hand, at X > XSat, we have

(6)

The curves of dependences (5) and (6) intersect at
X ~ 0.75XSat (Fig. 2, curves 1, 3). Therefore, taking into
account the fact that the exact µmix(X) dependence is
unknown, we assume that the potential of mixing has a
minimum at Xm = γXSat (γ = 0.75), is determined at X <
Xm from Eq. (5), and is not considered to the right of
point Xm.

The XSat(T) dependences for iron-group metals are
available in the literature [16]. In this work, as an
XSat(T) dependence for iron, we use the dependence
XSat = exp(–0.112/T – 0.8635), where the temperature T
is expressed in eV.

The critical drop size g∗  that is required for the onset
of condensation depends on X and is determined from
the condition ∂Ng/∂g = 0:

(7)

which is analogous to the result for a pure material [11]:

The behavior of the drop distribution function Ng(X)
can easily be analyzed numerically by setting µmix/T in
the form (5) up to the XSat point and, then, in the form
(6), at X > XSat.

The result is as follows. At large supersaturation of
the carbon vapor (SC @ SK), the carbon saturation of
drops with X = X(1) ~ γXSat becomes thermodynamically
favorable. Otherwise, at SK @ SC, optimum drops have
a low carbon content, X = X(2) ≠ 0. The difference of X(2)

from zero is caused by the fact that the derivative
dµmix/dX behaves logarithmically at X  0. There-
fore, the dissolution of a very small amount of carbon
in the drops is always favorable, even in the case of
vapor almost free of carbon.

The curves that separate the first and second cases
are plotted in the SC, SK coordinates for various temper-
atures (Fig. 3). The region with optimum drops having
X = X(1) adjoins the SC axis, and the region with opti-
mum drops having X = X(2) adjoins the SK axis. Along
the boundary curves, Ng(X) is almost independent of X;
that is, the size distribution of the drops has a large dis-
persion.

µmix T X/XSat( ).ln=

g*
1/3 8

3
---

πrL
2 σ

T
------------=

× 1
X SCln 1 X–( ) SK µmix/T– 9/2g+ln+
------------------------------------------------------------------------------------------,

g*
1/3 8

3T
------

πrL
2 σ

Sln 4/g*+
--------------------------.=
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In the case of heterogeneous condensation, SC @ SK,
since, as noted in the Introduction, the evaporation heat
of carbon (qC ~ 7.2 eV) is almost twice as large as the
evaporation heat of metals qK. Therefore, as the gas
mixture expands from the region where carbon and
metal exist only as vapor, the concentration of the satu-
rated carbon vapor

(8)

decreases much faster than the analogous function for
the metal vapor, and the partial supersaturation of the
carbon vapor increases much faster.

NC
S( ) NK

S( ) T0( )
qC

T
----- 1

T
--- 1

T0
-----– 

 –exp=
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Fig. 2. Free energy of mixing per atom of a carbon melt in
a metal as a function of the mole fraction of carbon: (1) the
dependence used in the calculation (bold curve), (2) the
case of an ideal solution (dashed curve), and (3) the depen-
dence at X > XSat.
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Fig. 3. Boundary curves for the regions with predominantly
metallic drops and drops with a high carbon content for var-
ious temperatures T: (1) 0.12, (2) 0.16, and (3) 0.20 eV.
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4. SIZE EFFECTS

As was shown in [7], the critical cluster size
required for the onset of condensation under typical arc
conditions can consist of only a few tens of atoms.
Under these conditions, the Frenkel theory is formally
invalid and we have to estimate the effect of cluster
sizes on the growth of NTs.

Small clusters of a pure substance (g ≤ 30) seem to
have been described most accurately in [17, 18]. For
small clusters formed by atoms interacting through an
additive pair potential, the partition function over inter-
nal degrees of freedom was related in [17, 18] to the
equilibrium constant K2 for the reaction of formation of
a dimer:

(9)

so that µg = Tln(Ng ) + (g – 1)Tln( K2) + Tln .

For clusters that are intermediate between the small
clusters and drops, the authors of [17] used the extrap-
olation

(10)

which is an analogue of Eq. (1), where the number of
surface atoms g0 is introduced. The relation of g0 to the
number of “bulk” atoms g1 = g – g0 has the form

(11)

The dimensionless parameter ω connects the macro-
scopic (surface tension) and microscopic (equilibrium
constant K2) characteristics,

(12)

and the dimensionless length Λ has the meaning of the
thickness of a surface atomic layer in units of rL.

In this approach, the equilibrium distribution func-
tion of clusters with a small number of atoms takes the
form

(13)

For the group of metals studied in [18], we have ω ~
0.8 and Λ ≈ ω/2 ≈ 1.6. However, the difference δ = Λ –
2ω, which makes it possible to take into account the
size effects in the approach proposed, is a small differ-
ence of large numbers and cannot be estimated from
general considerations even for a pure substance.
Therefore, we have to vary the value of δ for the melt.

In the two-component case, the generalization of
partition function (9) should take into account possible
arrangements of unlike atoms in a given virtual chain.
Such a calculation is similar to the calculation of the

Zg λ1
3K2( )g 1–

,=

λg
3 λ1

3 Zrot
g( )

µg T Ngλg
3( )ln g 1–( )µL+=

+ Zrot
g( )ln g0 1–( ) T K2λ1

3( )ln µL–[ ]+

g0 3ωg1
2/3 3ωΛg1

1/3 ωΛ2.+ +=

ω 4π
3

------
σ0rL

2

T K2N1
S( )( )ln

------------------------------,=

Ng Arotg
4N1Sg 1– 4πσrL

2

3ω
--------------- g0 1–( )– 

  .exp=
configuration integral in lattice models [19], and the
result can be written as

(14)

where KKK, KCC, and KKC are equilibrium constants for
dimers consisting of catalyst–catalyst, carbon–carbon,
and carbon– catalyst atoms, respectively.

At g = c (X = 1) or g = k (X = 0) (a single-component
drop), Eq. (14) is transformed into Eq. (9).

The expression for the chemical potential now has
the form

(15)

The constants KKK and KKC should be calculated
from the interatomic interaction potentials with the par-
ticipation of transition-metal atoms. These potentials
are extremely complex, and a calculation result cannot
be sufficiently reliable. On the other hand, if we assume
that the parameters ω and Λ remain universal for alloys,
then the generalization of Eq. (4) as a drop distribution
function has the form

(16)

Apart from simpler formula (4), we used Eq. (16) to
calculate the rate of explosive condensation of molten
drops in [7].

5. STEADY-STATE CONDENSATION RATE

The steady-state condensation rate for drops can be
calculated by Eqs. (4) and (16). The condensation rate
is defined as the drop flux through the narrow site of
condensation, namely, the neighborhood of the point
(c*, k*) of the critical cluster size in the space of the
number of atoms (c, k). The mole fraction of carbon in
the subcritical region of the space of the number of
atoms remains optimal and is several or even several
tens of a percent, depending on temperature. In the case
of condensation of the drops on neutral atoms, the flux
of nucleating drops through the narrow region (Gibbs
energy maximum) is determined, just as in the case of
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a pure substance, by the relation

(17)

where Ω = π g2/3 is the cross section of the reaction of
addition of an atom to the cluster and y is the relative
population of clusters with the number k of catalyst
atoms. If g is assumed to be a continuous quantity, y and
J can be determined from the steady-state diffusion
equation

and has the form

(18)

If the size effects are not taken into account, after
substituting Eq. (4), this result leads to the equations

(19)

(20)

(21)

The multiplier ( )–1 in Eq. (19) is similar to
the Courtney correction S–1 to the classic result of cal-
culation of the condensation rate [20].

Making allowance for the size effects in Eqs. (19)–
(21), we should perform the substitution
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CONCLUSIONS

The main result of the work is the derivation of
expressions for the steady-state rate of condensation of
molten drops in a supersaturated carbon vapor. These
expressions form the basis for the calculation of the
characteristics of explosive and rapid condensation to
be performed in the next part of this work.
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