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The present paper shows that the nature of the polarization of charged spin-1/2 particles moving
in a uniform magnetic field changes dramatically in a relatively weak transverse

axisymmetric magnetic field. The direction along which the spin projection is quantized has a
fixed orientation with respect to the axes of a cylindrical coordinate system and can

form a substantial angle with the direction of the uniform magnetic field. The presence of spin
quantization is proved both by the fact that the commutator of the Hamiltonian operator

and the projection of the polarization operator in the direction of quantization is zero and by
analyzing the Bargmann—Michel-Telegdi equation for this given case. Finally, the

possibilities of detecting this effect and utilizing it are discussed19®8 American Institute of
Physics[S1063-776098)00110-3

1. INTRODUCTION cides with the center of the circular path of the partidteay.
1). In this geometry particles never move along thaxis
and the vectoH(® of the additional magnetic field is always
directed along the tangent to the particle path.

Even if we use quantum mechanics to examine particle
Eolarization, particle motion can be described semiclassi-
cally, which means we can speak of a particle gate Refs.
3—3). The accuracy of such a description can easily be de-
termined via the Heisenberg uncertainty principle. Classical
theory makes it possible to find particle momentum with a
relative error

It is known that charged particles moving in a uniform
magnetic field in a plane perpendicular the field’s veéto?
have a fixed(quantized value of the spin projection in the
direction of the field. In this paper we will show that for
spin-1/2 particles the nature of polarization changes dramat

axisymmetric magnetic field whose field vectdf?) is per-
pendicular toH). Such a field is generated by a straight
current collinear withH™™ or by the current flowing in a
toroidal solenoid whose axis is collinear witH). The prob-
lem in this case is axisymmetric, and the symmetry axisis  |sp|] 1 1
parallel to H®) and coincides with the direction of the o T T
straight conductor or the axis of the toroidal solenoid. As a

result, the total magnetic field is nonuniform. Notwithstand-wherel is the orbital angular momentum of the particle, and
ing this fact, however, if a particle is moving in a plane r is the characteristic size of the region in which a particle
perpendicular tdH) along a circular path whose center is moves(the radius of the circular orbit in our cas&he ra-

on the symmetry axis, the projection of the particle’s spin isdius of the circular orbit is given by the formula

guantized. In the given case the direction along which the

projection of spin has a fixed value does not coincide witha . _ _ Py 1)
single Cartesian axis but retains a constant orientation with eH,’

respect to the axes of the cylindrical system of coordinates in h is th aci fth ficl i H
which the moving particle is at rest. For electrons, positrons}'r\: erelptd? IS the projec _|or:j(_) the particie mcfjme_n um. ?n(t:ﬁ
and muons this direction may form a significant angle with € refative error acquired in the process of going over to the
H® even if [H®)|<|H®) semiclassical description is of order

In this paper we will use the weak-field approximation, 1op|  |elH H
which amounts to a condition that is usually met: ~ 2= z

[HY+H@|<H,, Ho=m?c%|e|h =4.41x10%0e.
P . Where vy is the Lorentz factor. In most cases of practical

;irgu:grout the work we use the relativistic system of umtsinterest, this ratio is very smallH,/Ho~5x10"10 for
' H,=2X 10" Oe). Equation(2) also yields the error acquired
when one ignores the commutators of the operators of dy-
namical variables, since the absolute value of the commuta-
tor of the operators of positionand momentunp=iV is 3

For the sake of convenience we will adopt a cylindrical (|[r,p]=3|) and the ratio |[r,p]|//rp is of order
system of coordinates. Theaxis of this system coincides H,/[Hq(y?—1)], which means that the ordering of the

with the symmetry axis of the problem, and the origin coin-given operators in quantum mechanical expressions can be

— 2
p P2 Ho(y?—1)’ @

2. PARTICLE POLARIZATION IN QUANTUM THEORY
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FIG. 1. Particle polarization in an axisymmetric magnetic figlds the
radius of the orbitg, ande, are the unit vectors of the cylindrical coordinate
systemH™®) andH® are the vectors of the uniform and transverse nonuni-
form magnetic fieldsp is the particle momenturna is the vector that speci-
fies the direction of the spin’s orientation, afds the angle betweea and

the z axis.

A. Ya. Silenko

netic moments, withu the total magnetic moment. Going
over to an arbitrary ordering of the operatorg3is equiva-
lent to ignoring the commutators of these operators. For an
axisymmetric magnetic field

H)
- r

oH
&Xi

[pi HIl= 4

Combining this with(1), we get
I[pi HI| [eH®]  [H?)
|piH| P2 Ho(y2-1)

The ratio|[ p; ,H]|/|piH| specifies the relative error in-
troduced by a permutation of noncommuting operatof8jn
and the fact that this ratio is small makes it possible to use an

assumed arbitrary. Note that particle polarization has a vergrbitrary ordering of the operators.

small effect on particle motion in a magnetic fiéld.
We will study particle polarization without imposing re-

The corrections to the Hamiltonian containing terms lin-
ear in the field with field strength derivatives are given by the

strictions on the particle energy and will use the |:o|dy_f0rmula7

Wouthuysen(FW) representation, whose merit is the sim-
plicity in describing polarization effects. The polarization

operator in this representation reduces to the matrix

I1= 8% (Refs. 3 and % where
R S P S P
o -a/" P70 - =l o)

with ¢ the Pauli matrix, and 0 andt 1 the respective 2-by-2

0
-1

11

matrices. If to describe the state of a particle we use only the
upper spinor, which is always possible in the FW represen-
tation, the polarization operator is proportional to the spin

operator.

Spin motion is essentially quantum because the opera-

tors; and; do not commute if #j.
The projection of the polarization vector in a certain di-

!

o
e(er ) 12(curl H)-p+3-(curl curl H)}.
At e~m this expression becomes the formula derived in Ref.
6.

7'=p

Since in our case cull=0, we have.7’ =0, which
means that the Hamiltonian operator contains no corrections
corresponding to the nonuniformity of the field.

We write the Hamiltoniar(1) as a sum of two terms:

Mom
H =T+ Ty, FHy=Be=——IIH, )
I ., (H-pp
=T IlD DERT

rection is conserved if the corresponding projection of thevhere.7; is the Hamiltonian of a Dirac particle. Next we
polarization operator commutes with the Hamiltonian operacalculate the commutators of and the operatorsl ;=
tor. The Hamiltonian operator in the FW representation for— Ilx sin ¢+1I, cos¢ andIl,. For sing and cosp we must

relativistic spins particles with an anomalous magnetic mo-

take into account only the commutators with the operator

ment(AMM ) that are in motion in an electromagnetic field B€. The following commutation relations holdhere

was found in Ref. 5-7. In Refs. 5 and 7 this operator wad "

obtained for relativistic particleén Ref. 5 without allowing

for derivatives of the external field strengths, and in Ref. 7

with allowance for such derivativesA Hamiltonian that al-
lows for relativistic corrections, including corrections that

take into account the derivatives of field strengths, was de-

}+ stands for an anticommutajor

3
[112,11¢]=i,8[ %,?"} : (6)

+

[I,,I1,]=-2i3,, (7)

rived in Ref. 6. The results of Refs. 5-7 agree with onewhereX =2, cos¢+3, sin .

another.

The expression found in Refs. 5 and 7 for the
Hamiltonian of relativistic particles moving in a magnetic
field without allowance for terms with derivatives of field
strengths has the form

!

M

-H+ e(e+m)

(IL-p)(H-p),
)

where e= @2+ m? is the kinetic energy operatorr=p

m

—eA andp are the kinetic momentum and momentum op-

erators, withA the vector potential of the field, and,
=e/2m and ' = u— uq are the Dirac and anomalous mag-

The operatorsr, andp are defined on the class of func-
tions that are the eigen-wave-functions.@f. Hence, with
allowance for the semiclassical nature of the motion and the
possibility of ignoring the noncommutativity of dynamical
variables, we can introduce an approximation in which the
operatorsr,, andp are replaced by the values of the particle
momentump,, and the radiug of the orbit, respectively.
Then

[ﬂZ,Hqs]%zig%zp.

If we allow for the expression for, the above equation
reduces to
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[#,H¢]~—2iﬁeszp, The angle#d between the direction cd and thez axis

. o . (see Fig. 1is specified by the formula
Following a method similar to the one used in Ref. 2, we

arrive at the relationship g H
¢
) tano= _—‘— . 12
[72 11 ,]=[€11,]={e e I1,]}, ~2€[€,IT,], lg—2]y|H,
so that Since the operatofl, commutes with the Hamiltonian,
1 eH in stationary states it has definite valuesSince
[ey]~[# 1, ]~—iB—3,. ,
2e € ,I1,=(Il-a)(IT-a)/a® =1, I, Il,4=\2y,

Sincell-H=TI,H,+1I.H,, we use formuld4) and get o o e\ =+ 1 The projection of the spin operattn the

[.#1,114]=0. (8 FW representation, the spin operator is proportional to the
polarization operatgrin the direction ofa takes quantized
values* 1/2. Since the vectoa has constant projections on
the axes of the cylindrical coordinate system, it rotates with
an angular velocity

Since the vectorp ande, are collinear, the fact that the
commutator of7; andIl, is zero agrees with the fact that
the projection of the polarization operator in the direction of
the momentum of Dirac patrticles is conservéue latter has
been proved for the Dirac representation by Sokabal®).

e
Note thatH 4 is independent ofp but may depend op w=— ;H(l).
andz. However, the commutatgrm,H ;] is small compared
tomH,. o ) which is equal to the angular velocity of particle rotation in
Combining Egs.(5), (7), and (8), we arrive at the fol-  {he magnetic field. In stationary states, the average values of
lowing relationships: the projections of the polarization and spin operators on di-
(7,01 5)=[ 75 11 4]~ —2i n' 3+ (bX &) rections perpendicular ta are equal to zero.
=2ip'H2,, 9)

. Mom - 3. RELATION TO THE BARGMANN-MICHEL-TELEGDI
['%1H2]:_2|TH¢Ep_2|/~L E(bxez) EQUATION

u Let us now establish how the above results are related to
=—2i—H,2,. the Bargmann—Michel-TelegBMT) equatior® which de-
v scribes spin motion in an electromagnetic field. A character-
We now introduce a vectoa in such a way that the istic feature of this motion is that the polarization vecgor
projection of the polarization operator on this vecthr,, varies, and in our case this variation is given by the equation
assumes a quantized value. Hence the commutater ahd

I1, is zero: d_§:<d_§>
[.7,11,]=0. (10 dt 1dt/gy,
Equations(9) imply thata can be written as follows: € 2
quations(9) imply =ﬁ(g—2+—[§><H]
a=aue;tase,, Y
wherea, anda, are scalar operators. Since + %(9_2)%1(\,.,4)([\0( £). (13

I-a Il a,+11,a,
T~ El This equation can be derived not only semiclassiéally

) ) ~ but also by methods of quantum thedrj.can be shown that
and since we ignore the fact that the operators of dynamical, or case the corrections to E€.3) obtained by Gootf

variables do not commute, the condititt0) yields and Nyborg! have a negligible effect on spin motion. These
uw corrections amount to adding to the right-hand side of Eq.
M’Hzaq;:;Hqsaz. (13) the ternt)
Using the standard notation (d_§> __ MY
M 2m 4,u,m dt GN m(7+1)
Tee e [EX(vXV)]| & H= — = (£-V)(v-H)
X[EX (VX “H-— ) (v-H) L
we can transform the above relationship to y+1
a, g Hy (14

= —. 11
a, (9-2)yH, (1) Using Egs.(1) and(4), we find that the ratio
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dé dé a fixed orientation with respect to the axis of a cylindrical
‘(a) / ‘(a) coordinate system in which the particle moving along a cir-
GN BMT cular orbit is at rest, rather to a Cartesian coordinate system.
does not exceed, in order of magnitude, Note that this direction forms a fixed angle with the particle
momentum vector. The fact that there is spin quantization
yo[H®|  p[H?@| |H®?) can be proved either by calculating the commutator of the
mA rmen Hg <1 Hamiltonian operator and the projection of the polarization

operator in the direction of quantizatigthe direction ofa)
Thus, when we examine spin motion in an axisymmetricand finding that this commutator is zero, or by the fact that
magnetic field, the corrections to the BMT equation given bythe corresponding projection of the polarization vector is

(14) can be ignored. conservedwhich follows from the BMT equation

From Sec. 2 it follows that the projection of the polar- In our case the corrections due to the nonuniformity of
ization vector in the direction ofa remains constant the magnetic field are small and have no effect on particle
(d¢,/dt=0). Equation(13) can be written as follows: polarization.

Of special interest is the fact that for electrons, positrons,
d—§=ﬂ>< £ (15) and muons the change in the nature of quantization of spin in
dt ' the presence of a transverse magnetic field is extremely

strong. For these particles the ratio of the total magnetic
€ 2 € Y moment to the anomalous is
=——g—2+—|H+ -—(g—2) ——(vV-H)v.

Q Zm(g 2 5 H 2m(g 2)y+1(v H)v

The unit vectoray=a/|a| rotates with an angular veloc- r_ 9 2_7T~103
ity w: uw 972 «a '

da, e , , :

a9t WwXay=— p H'Y X ay. (16) Since already atl ,~ 10" 3H, the particles are polarized at a

substantial angle to theaxis, and aH ,= 1072H,, y=1.2,
Note that the equation of particle motion, which yields for electrons we havé=82°, i.e., the direction in which the
w, is valid both in classical theory and in quantum thedty. electrons are polarized is almost perpendicular to the direc-

Since tion of the uniform field. Due to the huge value of the effect,
its observation in experiments becomes much easier.
déa d The change in the nature of polarization affects the evo-

dt a(g-ao)=(ﬂx§)-ao+§><(w>< %) lution of the particle polarization vector. By measuring the

temporal variation of this vector we can determine the direc-
=[(Q= @)X £]-3=0, tion along which the spin projection is quantized, sicis
the vectorsa, anda are collinear with the vectaw=Q—w,  collinear with the vectoo of the angular velocity of spin
which is the angular velocity of spin precession in the refer;Precession in the reference frame in which the particle is at

ence frame in which the moving particle is at rest. Equationg®St. The orientation of the polarization vector of the particle
(15) and (16) imply that beam remains unchanged only when it is collinear with

Another method used in studying the effect of a trans-
g verse axisymmetric magnetic field on particle polarization in
~5m ;H¢e¢+(g—2)HZeZ : (17 stationary states is related to radiative polarization of par-
ticles in a magnetic fieldthe Sokolov—Ternov effetd. In a
This formula describes spin motion in a cylindrical co- uniform magnetic field the degree of polarization of particles
ordinate system. Sinca,=0/|0|, formula (11) fully agrees in a beam is as high as 92.4 %. Naturally, radiative polariza-
with (17). Thus, the results obtained via a rigorous quantumjon also occurs when there is a transverse magnetic field. In
mechanical method coincide with those obtained via thestationary states, the particles are polarized either parallel or
BMT equation, which also holds in quantum theory. antiparallel toa. The probability of a transition with spin flip
depends on the value of the spin projection in the direction of
a, which leads to partial polarization of the beam. The direc-
4. DISCUSSION AND CONCLUSIONS tion of polarization collinear witla forms an angle with the
z axis, and by measuring this angle we can determine the
At present it is believed that quantization of spin projec-extent to which the theory agrees with the experiment.
tion is possible only in a uniform field. The present paper  Note that the characteristic features of radiative polariza-
shows that the spin projection of particles moving in an axi-tion in the presence of a transverse magnetic field can find
symmetric magnetic field in a plane perpendicular to thepractical applications in forming beams of electrons and pos-
symmetry axis also has a fixéduantized value. Here par- itrons partially polarized at a given angle to the direction of
ticle polarization exhibits a number of characteristic featuresparticle momentum. This angle, equalt®2— 6, depends on
What sets this case apart from that of a uniform field is thathe strength of the transverse field and can be calculated by
the direction along which the spin projection is quantized hassq. (12).

o=
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The accumulation of atomic lithium vapor in a sapphire capillary based on light-induced drift is
experimentally investigated. To suppress lithium adsorption on the walls of the capillary

and prolong the life of the atomic state, the capillary was heated to high temperatures. The
phenomenon of an “optical piston” was observed, indicating a high degree of
concentration of atomic lithium vapor. The experimental results are consistent with theoretical
ideas, and they suggest that heated cells hold some promise for efficient isotope separation
and the detection of atomic micro-impurities. 98 American Institute of Physics.
[S1063-776(198)00210-9

1. INTRODUCTION from the power supply was applied to the coil through the

Light-induced drift was first predicted in 197®Ref. 1). leads, which made it possible to heat the capillary. Typical
In that same year it was experimentally observed in atomi(t,emperatures reached 1300-1600 K. The temperature was

gase< and soon thereafter in molecular gad&ince then, mon_ll_trc])red by a rerr:_ct)rt](_a pyrometer. rati duced
light-induced drift has been vigorously investigated, both ex- € necessary lithium vapor concentration was produce

perimentally and theoreticallia review of the literature can W'th_ the help of an electrically hea}ted lithium contairjx
be found, for example, in Refs. 4%-@Recently, interest has A diaphragm11l separated the region of the cell where the

grown in the question of separating and accumulating iso!th!um vapor was generated from the region housing the

topes of various chemical elements in their atomic stateg'ea'“er:j sappl?_lre caﬁnlary. ,
with the help of light-induced drift. In this regard, it is worth "€ working cell4 was connected to a vacuum station

noting Refs. 7—9, which report separation of Na isotopes anfP' inlet and outpumping of the buffer gas. The vacuum was

—5
accumulation of a radioactive Na isotope in a heated capilt0 ~ TOrT or better. We used argon as the buffer gares-

lary, and also Ref. 10, which examines the separation of Lpure 20 Tory.

isotopes under conditions in which the walls are far from the ~DCM dye was used as the working medium in the dye
sample itself. laser. The laser frequency was tuned with the help of an

The major impediment to the accumulation of one orintra-cavity Fabry—Perot interferometer. The laser linewidth

another chemical element with the help of light-induced driftWas~1.5 GHz. The power of the dye laser ranged from 50
is adsorption on the walls of the cell or capillary, where © 150 mw. ) o

accumulation properly takes place. To eliminate or at least 1© récord the accumulation of lithium vapor we used a
reduce the influence of adsorption, it is necessary either tg@merad mounted on a tripod 60 cm from the working cell.
specially coat the walls of the cEI3 or heat the ceil To separate the fluorescence radiation from the background

The second alternative is preferable due to its universal suif the incandescent coil, we used an interference féter
ability for many chemical elements. The experiment consisted in the following. The laser fre-

The present paper investigates the accumulation ofiuency was tuned to _t_h2 line of "Li (n_ote that for suc_h
atomic Li vapor with the help of light-induced drift in a tuning under the conditions of our experiment only the given
heated sapphire capillary isotope is excited The offset from exact resonance was cho-

sen to be such that thé.i isotope migrated in the direction
of laser beam propagation. Figure 2 plots the dependence of
the fluorescence intensity on the frequency of the exciting
For the purpose of this study, we assembled an experiadiation. Thé’Li line is enhanced because the spectrum was
mental setugsee Fig. 1 similar to the one used in Ref. 9. recorded above the saturation intensity. The vertical line
Radiation from a dye lasé¥ (an Ar' laserl was used as the shows the experimental laser frequency. The offset was cho-
pump was focused by a collecting leds(F=1 m) into the  sen to maximize light-induced drift.
working cell4 and directed into a sapphire capill&ywhich At the initial instant, just after turning the laser on, only
was closed at one end. The length of the capillary was 10 cnthe characteristic glow of the sapphire capillary and coll
and its inner diameter was 1.5 mm. The capillary was placeavere observedFig. 33 and fluorescence of the lithium va-
inside a tantalum coib with a pitch of 1 mm. Leads were por was absent. After some time a luminous region appeared
connected to the coil through windows in the cell. A voltageat the closed end of the capillaffig. 3b. With the passage

2. EXPERIMENT

1063-7761/98/87(10)/5/$15.00 634 © 1998 American Institute of Physics
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§CD FIG. 2. Lithium fluorescence spectrum. Vertical line indicates position of
the laser frequency in the experiment on concentrating lithium vapor.
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FIG. 1. Experimental setut — Ar* laser(pump laser, 2 — dye laser, O0ms that accumulate there, the more the light absorption re-

3 — focusing lens4 — cell, 5 — sapphire capillarys — tantalum wire,  gion migrates in the opposite direction: radiation is essen-

heated by a current from the power supfly8 — interference filter9 — tiaIIy completely absorbed over a distariq,q~2 cm along

camera,10 — lithium vapor sourcell — diaphragm. . " . "
the capillary. Thus emerges the well-known “light piston
effect (see Refs. 14-17

of time, the size and brightness of this region increased
(Figs. 3c and 3d, respectivelywith the passage of time, the 3. THEORY

brightest part of the luminous region clearly shifts toward the  \we consider a two-component gaseous medium, in

open end of the capillary. After some time, the luminous, hich one component can interact resonantly with radiation,
region “breaks away" from the closed end of the capillary 5ng the second component serves as a buffer gas. Under
(Fig. 3. The luminous region then moves toward the openongitions in which the concentration of the absorbing com-
end of the capillary(Fig. 3f). ponent gas is much less than that of the buffer gas, it is
_The typical timer for the process to develop from start ,ssiple to neglect collisions of atoms of the first component
to finish (Figs. 3a and 3fdepended on the temperature of thewith one another. We also assume that a two-level model
sapphire capillary and the vapor concentration at the entranGgsscribes the internal states of the atoms of the first compo-
to the capillary. The latter was chosen to be such that thﬁent; the model takes only two quantum states of the atom
lithium diffusing into the capillary did not produce any ap- jntg account(the ground state and the first excited State
preciable visible luminescenceFig. 33. As a result, at  ith resonant absorption taking place between them. We de-

T~1500 K the timer was several minutes. e the lower and upper states bgndm, respectively.
These observations can be explained by invoking ideas  The equations for the velocity distribution functiops

about the phenomenon of light-induced drift in the following andp,, for the atoms in the indicated states have the form
way. Lithium atoms initially move in the direction of the

wave vector toward the closed end of the capillary as a result ( J

17
of light-induced drift. The greater the number of lithium at- vt

HETHIII TN

FIG. 3. Time evolution of accumulation of
lithium vapor in a sapphire capillary and for-
mation of an “optical piston.”
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d (1) in the calculation ofp(v). Their solution in the strong
2t PV [ Pnm Pmpm= —Np(V) + Sy, (1) collision model does not entail any difficultié<® As a result
we obtain
2|G|2F Y(v) W(v
Np(V) F2+(Q_k'V)2(pn pm) p(V):NTJ(.%;Y;, (7)
Here we have introduced the following notatiof:= w 2
— onpp is the frequency offset of the laser radiatiop from v (y)= X , <Y>:f Y (v) W(v) dv,
the center of the absorption line at the transition frequency T2(1+x)+(Q—k-v)?
omn: I'm is the spontaneous decay rate of the atom from the 27,|G? N 5
upper to the lower statd; is the uniform half-width of the ,—<™20 ~  _ *n"Pm 2
absorption line for the transition—m; G=Ed,,,/% is the r Vn(I'm+ vm) 'm
Rabi frequencyN is the concentration of resonant atoms; e call the quantityy the saturation parameter.
ands§; is the collision integral of the atoms in the statéThe Substituting Eq.(7) into Eq. (5), and then substituting

first term on each right-hand side in Ed4) describes the Eq. (5) into Eq. (6), we obtain
excitation of an atom by monochromatic radiation, where
p(v) is a probability of absorption of radiation per unit time j4r=No E v~ vm  T(Y1) )
by an atom with velocityv. To describe collisions of the dr Tk vy, 7YY
atoms with the buffer gas, we adopt the model of strong Koy
elastic collisions, in which the collision integral has the form (v )= f WY(V) W(V) dv.
T

Si(V)=—vip(V) + riW(V)N;, 2 . .
_ N _ _ Equation(8) holds for any ratio of the homogeneous and
where v; is the collision frequency for an atom in stdte  jnhomogeneous linewidths. For the important case in which

W(V) is the Maxwellian VelOCity diStribUtion, and Dopp|er broadening dominate§</1+X<QD) and the off-
set(} is bounded by the Doppler linewid®,=kv, which
Ni:J pi(v)dv (3)  corresponds to our experimental conditions, ER).admits

of the following simplification:
is the population of théth state. The sense of this model is

that after its first collision, an atom finds itself in an equilib- (Y1)= £<Y>, 9
rium velocity distribution. Qp
Next we bring in the fluxes, , of the atoms in states J7T
andn and the total flu§ of absorbing atoms =" X e~ (0/0p)2).
Qo 1+x
Ji:f vpi(V) Av,  j=jmtin- (4) The conditionQp>T 1+ y implies that(Y)<1, and

) o ) instead of(8) we may use the relation
To analyze the experimental situation in the present

case, it is sufficient to consider the steady-state solution of . K vp— vy Q
system(1). On the basis ofl) we compose equations for the J‘“_F vt FN<Y>'
fluxesj,, andj. To this end, we multiply each of the equa-
tions byv and integrate ovev. As a result, we arrive at the
following equationgsee also Ref. 4

(10

We also introduce into consideration the light-induced drift
speeduy,=jq4, /N, whereupon

N V= vy ) 11
P Udr_ 5 .
Jm_rm+ me vp(v) dv, 5 vnt vy K
We now apply these results to the process of accumula-
i=ig—DVN, | :Vn_”mj 6) tion assisted by light-induced drift in a long, thin capillary
dr Coddr ey M closed at one end. Let the radiation enter through the open
o _ end of the capillary and propagate along its d#fie z axis).
D=v3/2vy, vr=V2kgT/M. Under steady-state conditions, we shouldjsed in Eq. (6).
Herejq, is the atom flux due to light-induced drift. This leads to the form
In deriving these equations, we have assumed that the 9
radiation-perturbed velocity distribution function does not D—N=ug4, N. 12

deviate too much from its equilibrium value. Hence it fol-

lows, in particular, that the spatial inhomogeneity scale of  Accumulation of particles near the closed end of the cap-

the concentration of absorbing particles substantially exceedBary can produce an optically dense medium, in which the

the mean free path. We can therefore neglect the spatial deadiative intensity varies substantially over the length of the

rivative term in the equation fqgp,. capillary. As a consequence, the quantity, becomes a
Under the stated conditions, we can also start out witHunction of the spatial coordinate Under the given condi-

the steady-state, spatially homogeneous system of equatiotiens, it is necessary simultaneously to take into account
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variation of both the particle concentration and the radiative R
intensity, i.e., together with Eq12) it is necessary to con- !
sider the equation describing the radiative intensitf the i ;
. !
propagating beam: i
i
—|=-P, P=ﬁwLNf p(v) dv. (13 !
"%,
HereP is the radiative energy absorbed per unit time per unit I,"“\
volume. In the approximation of large Doppler broadening VA ) .
) 0 2 4 6 8 10
Z, cm
(14
FIG. 4. Distribution of the radiative intensityl {), fluorescence intensity
(l4), and lithium vapor concentratior\| inside the capillary. Numerical

P:ﬁ(l)LN_
T1

Taking Egs(14) and(9) into account, Eqg12) and(13) solution of Eq.(17) for yo— 100.

have the integral

71Q vo—vy lo—| . . .
"7 "m0 Using these results, we can proceed to a consideration of

N—Np= . (15 . - _ L :
kK vptvm Dhop the quasisteady situation, which is realized Kpr< N p4x- IN
HereN, and|, are the concentration of resonant atoms andniS case it may be assumed that the spatial distribution of
the radiative intensity before the light enters the capillary. InAccumulated atoms corresponds at any given moment to
a buffer gas of argon i, — v,)/ v, is known® to be approxi- steady-state conditiondNg— 0), except that the region oc-
for the regime of cupied by the accumulated atoms with concentratigg,
lowly expands toward the open end of the capillary at speed

mately —0.2 for lithium. Consequently,

accumulation and storage of resonant atoms, it is necessa ith
, Wi

(20)

to choose the “redshifted” offset of the radiation frequency,
S= udrNO/Nmax-

0<O0.
It is clear from (15) that for prescribed values of the
offsetQ) aqd initial radlatn{e intensity, there exists a maxi- , 5,scussion
mum possible concentration of accumulated atoms:
The present experiment was carried out under the fol-
N — 1Q vp—vm o (16) lowing conditions: the pressure of the argon buffer gas was
mX Kk yytvy, Dhwp p=20 Torr, the laser power was 100 mW, corresponding to
N hat in th L h . an intensityl =10 W/cnt at the entrance to the capillary.
.ote that in t € present approximation t € MaxiMum PoS=pq jitfusion coefficient of lithium in argon at the indicated
sible concentration of accumulated atoms is directly propor—pressure and WitlT = 1500 K is taken to bd®~400 cn?/s
tional .tc.) Fhe radlqtlve mte_ns_,lty. . . . (Ref. 19. It is possible to estimate, from the value oD.
Utilizing relation (15), it is possible to obtain the radia- The homogeneous half-width of the line under these condi-
tive intensity in closed form, which is most conveniently tions isT~3x10° s 1, and the Doppler half-widtlf, =2
x 10 s, For the indicated parameters we figg=100.

written as an equation for the saturation parameter:
Thus, we are working under conditions of large Doppler line
broadening with field broadening taken into account. The

17
maximum possible concentration of accumulated atoms, cal-

d 1o xx
N N TV
Herel is some length that characterizes the scale on whicl"fm""tegd V!igh Eq.(16) for O=—0p/\2, is Npg=17
absorption takes place: X 10" cm™3. An estimate ofl ., based on Eq(19) yields
| min=2 cm. We therefore estimatg,,=3x 10> cm/s for the
D(vp+ vy) Qpkexd (Q/Qp)?] maximum possible light-induced drift rate.

= : (18 It can be seen that the theoretical estimbtg=2 cm
and the value estimated from the experimental dateahe

Vr T Q(vy= v
As a function of the offsef), this length reaches its mini- Photographl.4=2 cm coincide.
The onset of the “optical piston” regime suggests that a
high concentration of resonant atoms is produced beyond the

fluorescence region at the closed end of the capillary. If we
suppose that the concentration of resonant atoms just outside

mum atQ=—Qp/2:

2D(vy+ v, kye

V2D (vt vy) ke 19
the capillary entrance i®o=10 cm 2 (most likely it is

" T v
In Fig. 4, we have plotted the dependence of the radiativeignificantly lesg and if we takeN,,, to be our estimate of
intensity and the fluorescence intensity on the spatial coordithe concentration of resonant atoms at the closed end of the

natez with scale length; these were obtained by solving Eq. capillary, then the degree of concentration of the resonant
(17) numerically with yo=100. As can be seen from this atoms achieved using light-induced drift is at least. 1Buch

solution, the size of the fluorescence region is determined biligh degrees of concentration are extremely promising for
the separation and concentration of weakly represented iso-

the scale length.
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Recently published optical experiments which investigate the effect of “quantum teleportation”

are analyzed. It is shown that the occurrence of teleportd&tiopying of the polarization

of one photon onto another requires that an optical shutter be added to the experimental setup,
opening automatically only upon the occurrence of certain favorable events. An instructive

model is proposed, along with a classical analog of the effect, and various treatments are discussed.
It is emphasized that the concepts of “reduction of the wave function” and “quantum

nonlocality” are not necessary for a quantitative description of the effect: the standard formalism
proves to be sufficient. €998 American Institute of Physids$51063-776(198)00310-2

1. INTRODUCTION three channelgas 7 increases, the degree of the polarization
interference, as always, decregséghus, the scheme is in
The unexpected possibility of irreversibly copying a essence a kind of polarized intensity interferometer operating
guantum state from one individual system onto another sysin photon-counting mode.
tem isomorphic with the first was recently described by Ben- ~ The three-photon interference observed in the scheme
nett et al* The idea received further development in Refs.and depicted in the figure should possess a remarkable prop-
2-8. In contrast to the reversible exchange of states betweedtty: the number of coincidencés depends on the convert-
two-level atoms and a cavity fieltransfer of a qubit of ersT, and T¢ in the same way as if they were set up in
information observed in Ref. 9, here part of the information sequence in one beam or as if the polarization of phétan
is irreversibly converted into a classical form. In essencethe output ofT 5, were transferred to photdd at the entrance
Ref. 1 proposed a method of preparing an individual quanto T.: es—ec. In other words, the phase and degree of the
tum system in a prescribed stagewith the important feature polarization observed in the three-way coincidences are de-
that the information about which state in particular has beemermined by the product of the Jones matrided 5. If T¢
prepared is of a quantum nature, i.e., it is written down in theperforms the inverse transformationTq (TcTa=1), then
form of the state of another system and remains unknowrN; will depend on neithe , nor T, and the degree of the
The first optical experiments along these lines were deinterference will be zero.
scribed recently:® The interpretation of the effect adopted in The detector®¢, andDc,, and the convertefc, can
Refs. 1-8, as well as its name, is based on the widely helde considered to be a device for measuring the polarization
notion that the instantaneous reducti¢eollapse of the  of the C photons, but unconditional readingsiv; will not
wave function as a result of a measurement leads to quantudetect any polarization because figphotons are not polar-
nonlocality. ized. However, conditional readings Dy, i.e., those tak-
Figure 1 presents a simplified experimental sétlipree  ing place simultaneously with readings b, andDg, ex-
guasi-monochromatic stationary beams of light8, andC  hibit complete polarization. For example, from the
are incident upon the optical system, where the photongependence dfl; on T it is possible to measure the polar-
(black dots arrive simultaneously in groups of three. TRe ization vectore,=(ay,a,) of the A photons(or, equiva-
photons are completely polarized. TBeand C photons are lently, the Stokes vectofS,)). However, 75% of the time
depolarized; however, there is a unique correlation betweehoth photonsA andB fall on the same detectoR 5 or Dg.
their polarizations. A 50% nonpolarizing semitransparentSuch “unfavorable” events do not exhibit a polarization
mirror (beamsplitter BS mixes theA and B photons. As a  copying effect.
result of the initial correlation between tigeand C photons PhotonsB andC are prepared in an entangled EPR state
and the action of the beamsplitter, all three photons are comgiving complete correlation in the polarization. The mean
related. Under these conditions, informatenabout the po-  frequencies of the fields in th& andB beams should be the
larization of anA photon turns out to be encoded in the same(so that they can interfere in the beamsplifes), but
probabilities of three-way coincidences. This effect is investhe frequency of the field in th€ beam can be arbitrary. All
tigated using two polarization convertefg and T, a po-  three photons should also be correlated in their time of ar-
larizing prismP¢ in beamC, three photodetectof3,, and rival at the beamsplitter with an accuracy determined by the
a scheme of three-way coincidenc8€. The experimerit  coherence time and timing resolution of the coincidence
entails observing the dependence of the number of three-waschemé. To this end, Ref. 7 used foursomes of photons
coincidencedN; (during a certain fixed time intervabn the  emitted during type-Il parametric scatterifigef. 10 in the
parameter§ , and T and on the time delay in one of the  second order of the pump intensityne of the four photons

1063-7761/98/87(10)/9/$15.00 639 © 1998 American Institute of Physics
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T e D cc pretation of the effect—the generally accepted apprbach
E &g 4 BS 4 ] and the approach proposed in the present paper.
J y x
R 2. ELEMENTARY MODEL OF THE EFFECT AND CLASSICAL
y: x D ANALOGY
=> N, L . .
)/ y The polarization copying effea,— e has an instruc-
tive (but nonrigorous explanation(Fig. 1) that suggests a
e T 1A D, very similar classical experiment. This explanation is a direct
y c * consequence of two well-known effects—anticorrelation of
B .
D

— photons with identical polarization at the output of a beam-
splitter and correlation of photons with orthogonal polariza-
FIG. 1. Simplified layout of the experiment in Ref. 7 and an instructive tion O_f EPR—Bohm type. Indeed, the dgtectlon of two phO-
model for copying polarization vectoes— e. . Only one photorfcircles is tons in the output beam#’ and B’ (i.e., the lack of
present at the entrance to each of the beams, andC. PhotonA has  anticorrelation between the photgrimplies that the initial
arbitrary polarizatiore, . The basis vectors, ande, are chosen such that phOtOI’lS in theA andB beams did not interfere in the beam-

e, =e,. Simultaneous detection of the photons by detecidgsand Dg . P
implies that photon#A and B did not interfere in the beamsplitter; conse- splltter and Consequently had OrthOgonal polarlzatlon

quently, they have orthogonal polarizatioms,. e, (otherwise they would €L €s. From here on, the polarization of tfezand C pho-
have fallen onto the same detegtd?hotonsB andC were prepared in states  tons can be taken to be orthogonall e-. Frome, L ez and
with orthogonal polarizationsgs L ec; thereforeec=e,. T, and T¢ are egl e it follows thate,=e.
polarization convertersd) is a polarizing prismD, are detectorsCC is a Let us dwell on this conclusion in more detail. Let the
triple coincidence counteN; is the number of triple coincidences during a . . . )

b Na P 92 field in theB andC beams be described by the state

certain time interval, and andy are polarization indices.
|#)8c=(|Bx.Cy) =By, C)/2. 2.

was superfluoys this setup utilized pumping of a nonlinear Here |B,,Cy)=b, c,|0), b, andc, are photon creation

crystal by short pulses and additional filtering of the specoperators in th& mode in beanB and in they mode in beam

trum of the scattering field to increase the coherence time. C, andx andy are indices of two arbitrary orthogonal types
The present paper contains a formal analysis of th@f polarization € g.= &j).

scheme depicted in Fig. 1, and draws attention to the fact that One peculiarity of this state is its invariant form under

to demonstrate the teleportation efféicistead of an interfer- any transformation of the polarization basis. Indeed, let

ence effegt it is necessary to replace the scheme of three- IB)=t*|By)—r|By), |CJ=t*|C1)—r|Cy),

way coincidences by a scheme of two-way coincidences and

add an optical shuttefmodulatoy to beamC. The shutter |By)=r*|B1)+1|By), [Cy)=r*|C)+t|Cp), (2.2

should control the scheme of two-way coincidences at thgypere 1 and 2 are indices of the new basis and the transfor-
detectorsD, and D and Igt throughC photons only upon ._mation coefficients andr satisfy|t|?+]|r|2= 1. Substituting
the occurrence of a certain subset of “favorable” events inc ; :
. ; : g. (2.2 into Eq.(2.1) gives
these detectors—simultaneous reading3 jrandDg . Thus,
teleportation, i.e., copying the polarization of tAehotons, |¢>Bc=(|Bl,CZ>—|Bz,Cl>)/\/§.
is only feasible using a nonunitary transformation of the
field C. : . ... three components of the Stokes vectSgsand Sc have op-
An elementary instructive model of the polarization o :
. . ) posite signgregardless of basis
copying effect is also proposed, along with the correspond-
ing classical analog. It is also emphasized that for a quanti-  {#|SgnScal /)= —1. 2.3
tative calculation of the teleportation effect the concept ofqe
reduction of the wave function is superfluous, as it probably
also is for a quantitative description of all the known phe-  Sei=by by—byby, Sgy=b, b,+b.by,
nomena of quantum physics observed to datessible ex- Saa= (b by—b, b /i 2.4)
ceptions are discussed in Ref.)1Recall in this regard that a BIT 1 By ExEy T ’
critical stance vis-ais a literal understanding of reduction and similarly forSc,. At the same time{Sg,,)=(Scn) =0,
as a “real” process has been taken more than once; seend theB and C photons are completely depolarized.
Refs. 12-16. For the sake of clarity, we assume that all three photons
Section 2 examines an instructive model and a classica\, B, and C have arbitrary prescribed polarizatioag and
analog of the effect. Section 3 calculates the operation of theorresponding Stokes vectdss, which vary randomly from
scheme depicted in Fig. 1, and some variations of it in therial to trial (we stipulate at once that this assumption is
Heisenberg picture. Section 4 briefly repeats these calculancompatible with quantum theory; see Seg. 5 this case,
tions in the Schidinger picture and analyzes some method-property (2.3) can be interpreted to mean that the Stokes
ological issues inherent in the transition from the one picturevectors point in opposite directionSz=—Sg, i.e., that the
to the other in problems of quantum optics. Section 5 comypolarization vectors are orthogonad; L ec. We choose a
pares two possible approaches to the description and intebasis in whiche,=e,, and assume, in line witf2.1), that

It is easy to convince oneself that in the sté®el) the
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there are only two equiprobable possibilities: eitiege e, a—a,=U"aU.
=e, andec=¢,, or eg=g, and ec=g,=¢€,. But the first . ) )
case should exhibit anticorrelation of the readings of detec! NiS transformation can also be represented in the form
tors D, and Dg: the two photons can only be found
together—either both are found Bt , or both are found at ar=2>, Tiulm
Dg; see(3.8) below. This is the photon anticorrelation effect m
(or two-photon interference effgcfirst observed in Ref. 17. (see Refs. 18 and 19HereT is a phenomenological trans-
It has a simple classical analog, the anticorrelation of intenformation matrix(spectral Green’s functionwhich enables
sity fluctuations at the output of the beamsplitter as a resulyne to find linear relations between the outptftand input
of energy conservatidh Consequently, when taking read- w, moments of the same ordar symbolically
ings with both detector®, and Dy the latter case occurs, "
i.e.,ec=g=e, (heavy lines in Fig. L Mn— mp=T ",

Let us consider the analogous classical method of copy- ,
ing the polarization of one light beam onto another without”S @ result, the observed output momepfsor the associ-
measuring it. Let there be three ideal lasérsB, andC, ated probabilitiegp’ can be defined in terms af and the

emitting polarized beams of light, where the intensitigs initial (input) state vector¢) of the incident optical field.
and frequencies, of beamsA andB are identical. Polariza- The relation between the classical maffixand the evolution

tion converters are placed in beaB®ndC, both controlled  °Peratoru will be spelled out below; see Eq4.6). This

by a common random number generator such that the twiprmalism is also ap.pllc.able in t.he presencs of dissipation,
beams are always orthogonal(t) L ec(t). As a result, the whereupon the matriX is nonunitary,T,,# Tr, (Refs. 18
points mapping the polarization onto the Poincaghere and 19. i i . . .

cover it uniformly—any polarization of bean® andC is !N radio engineering terms, the optical system is a mul-
equiprobable, but their Stokes vectors are always oppositeljPort neétwork. The matrixr coincides with the analogous
directed (i.e., the polarizations are completely correlated fmatrix in classical optics, so the descriptions of the linear
We have thus obtained an analog of prope@® of the transformation of the statistics of the field by the optical
state(2.1) (here averaging using the wave functipf) has system in the quantum theory and in the classical theory are

been replaced by classical averaging over time or over thidentical, differences being manifested only in the relative
ensemblg values of the input moments. Thus, the quantum details, if

Next, beamsA andB are mixed in the beamsplitter, and they exist at all, are already embedded in the light source,
the light intensitied 4(t) and14(t) in the output beama’ and the optical system together with the detectors can be
andB’ are monitored by two analog detectors. Because ofonsidered a measuring instrument for studying the statistics
fluctuations of the polarization vectag(t) the intensities ©f the source. However, this classification loses meaning in
I1(t) and I4(t) also fluctuate, but always with opposite feedforward and feedback optoelectronic circuits that use a
phase, so their total intensity is preserved(t)+14(t) light-modulator. For example, the layout in Fig. 1, whe_n one
=2l,. At those times wher A(t) is equal tolg(t) (with gates beanC under the control of detectof3, andDg, is '
some prescribed erraxl/1,), the beams entering the beam- transformed from a measurement system to a preparation

splitter do not interfere, and consequently their polarization$YSte™- . '
are orthogonalg,l e;. But in this casesgl ec as well, so We assume the components of our scheme, including the

thate,=e; . At these times, the shutter that otherwise blocksde_teCtorS’ to be ideal. Actual experiments can be de_scriped
beamC opens automatically. As a result, we obtain light using so-called one-photon wave packets, i.e., quasistation-
pulses(with random intervals and duratipat frequencywc ary states
and polarizatiore, . The important difference between this
model and the quantum model is the bounded copying accu- |t//(t)>1=f dk f(k)exp(—iwyt)ay |0),
racy, which is inversely proportional tal and the relative
opening time of the shuttdr.e., its duty cycle. In the quan- but for our purposes it is sufficient to restrict the discussion
tum domain, copying in the ideal case is perfect. to the single-mode approximation. Granted, we then lose the
possibility of tracking the sequence of events in time, but the
multimode descriptiohonly ensures that the requirements of
the special theory of relativity are met and enables us to
In using the Heisenberg picture, it is assumed that thespecify the simultaneity requirements for the emission of the
elements of the optical channel alter the wave function of thehree photongthe wave packets at the beamsplitter should
initial field: ¥— ' =Uy. HereU is the evolution operator overlap. Note that it is precisely the generation of three-
of the field, describing the action of the beamsplitters, thephoton light(in contrast to two-photon light, used in Ref. 8
polarization converters, et@without sources and detectrs that is the main impediment to implementing an experiment
the primes denote quantities belonging to the output modesf the type described in Ref. 7.
of the channel. The superfluousness of the reduction concept The detectors—photon counters—are situated in the out-
for the calculation becomes evident when we make use of thput modes behind the beamsplit®8 and polarization con-
equivalent Heisenberg picture, in which the operation of theverter To. They can be used to measure the probabilities
scheme is described by the variation of the field operators:p’(n;,n,, ...)=p’({ny}) of finding specific numbers of

3. HEISENBERG PICTURE
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photons{n,} in the output modes. We denote the corre- For example, the probability amplitude for detecting one
sponding Fock states for the output modes by the symbgphoton in the output modes,, B, C, is

) Ad(Ax,By,Cx) =(0|(ax+by)(—ay+by)(tgcx+recy)|p)/2.
|n1,n2,...)E|n1)®|n2)... (35)
=(n;'nyl ... )‘1’2(a’1+)“1(a’2+)”2 ...]0). The effect under discussion takes place when only two of the
(3.1 eight matrix elements here are nonzero. Let one photon be

present in each beam at the system input. Then
We assume the vacuum vectors of the two bases to be iden- _ _

tical: |0)=|0). The matrixT governs the relationship be- (Olaayc;| ) =(0lbubyc| ) =0.
tween the two bases; for examplg,1|1),=Tym. This fol-  Also let

lows from
(0| (aubycy)|4) =(0layb,c,|#)=0.
1) =a'f10)=2 Tumam|0)=> T L)m. (3.2 Then Eq.(3.5 takes the form
m m
a(Ax,By,Cy)=(0|(tgabyc,—riayb,c |y))/2.  (3.6)

According to the Born postulate, the probabiliiy=|q’|? is
defined by the inner product’ of the corresponding Fock According to this expression, the converfgs affects the

bra vector (1,n,, .. .| and the initial ket vector of the field polarization of the photons in beamsandC in an identical
[): way.
, _ On the other hand, the probability amplitude for detect-
a'(ny,ng, ...)=(Ng,N, . ..[4h) ing two photons in the output modé,) and one photon in
=(ny'n,! ... )—1/2<0|a121a1'211 ). the output modéC,) under the same conditions is
(3.3 A(2A,C) = (2A,Cl )= (0l(ay) ey )12

In what follows, the primes omp and ¢, which serve to =(0|(a,+ bx)z(técx+r’5cy)|¢>/2\/§
remind us that the detectors are situated in the output modes, . .
will be omitted. All operatorsa;, in (3.3 commute, and the = (0laby(tEc+ricy)) w2

order in which they are written is irrelevant. _ .
We assume th);t to facilitate a complete analysis, polar- —<O|rcaxbxcy|z/;>/\/§. @7

izing prismsP, andPg have been inserted in beash$ and  These events do not depend gn i.e., they do not exhibit

B’ behind the beamsplitteisee Fig. ], and accordingly in  the required effect, and therefore must be eliminated using a

front of the corresponding detectors. We denote and ordesoincidence or shutter scheme.

the six considered modes as follows;, A, By, By, Cy, Note that neither of the coincidences,(B,,*) and

Cy; for example,p(100110)=p(A,,By,Cy). Herex andy (A, ,B,,*) takes place; the operator

are the indices of two arbitrary orthogonal polarizations; it is

'h! = —a+b)=b%2—a°
possible, in particular, to choosg=e, . ajbj=(aj+bj)(—aj+bj)=bj—aj, (3.8
_ Ir_1 the case of one-ph_oton states the probabilities ar@cting on the one-photon staﬂe‘ﬁ ,B;), yields zero. This is
identical to the corresponding moments, for example again a manifestation of the photon anticorrelation effé¢t.
PN N Pt ot Let us now specify the input state. Let
p(AxvByaCx):<¢/|NAxNByNCx| ¢>:|<O|axbycx|‘/">|2- P fy P
Herea/, b;, c; are the photon annihilation operators in the [ =1)al lec=[axlAg+aylA))]
corresponding output modes, ahqza’faj’. Indeed, the X[IBX,Cy>—|By,CX>]/\/§. (3.9

substitution
a‘a—a’la=a’(|0)(0[+[1)(1|+|2)(2[+ .. .)a
yields

b,c =h,C =0.
(N)=(1]a"al 1)= (1|a* 0)(0la|1)|=|(Ola[) % Ol ¥)ec=by6,|¥ac
Hence, using Eq(3.5 and analogous expressions, we find

This state possesses the required properties:
bey| Pypc=— bny| #)sc=|0)sc,

The T matrix of our optical systensee Fig. 1 (neglect-

ing T,) is defined by the unitary transformation a(Ay,By,Cy)=—q(A,,B, ,Cx)=(t’éax+r§ay)/\/§,
aj=(a;+b)/\2, c =tgctricy, A(ALA, . Co) = —q(By By . C) = (—thay+rEay)/ V8,
bj’=(—aj+bj)/\/§, Cy=—TcCxttcCy, (3.9 0(2A,,Cy) = —q(2By,Cy) =r&a,/2,

wheretc andr¢ are elements of théclassical Jones matrix
Tc of the convertec (|te|?+|rc|?=1). Substituting3.4)
into (3.3) yields the probability amplitudes of all elementary Probability amplitudes of the form(*,*, C,), according to
events observed in the experiment, ( . . . ,ng), which sat-  (3.4), can be found by making the substitutiorfs— —rc,
isfy =n;=3. re—te, where

q(2B,,C,)=—0q(2A,,C,) =tEa, /2. (3.10
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p(*,*, C) +p(*,*, Cy)=1. 50% of the trial$ do not exhibit the polarization copying
effect. The influence of such events can be eliminated by

From (3.10 we obtain probabilities of all 16 observable using an optical shutter that opens automatically when “fa-

events: vorable” events likg(3.11) occur(and(3.12) in the presence
P(Ax,By,C)=p(A,,Bx,Cy) of T¢). The shutter is also needed to block be@nin the
) ) . % absence of readings in both detectBrsandDg due to their
=[ltcax/*+Ircay|*+2Re(tcrgax ay)1/8, nonideality or due to losses in the channel. Finally, a corre-
p(A.By,C,)=p(A,,B,.C,) sponding delay should be introduced before the shutter in
beamC.
=[|rcayl®+|tcay|?—2Re(tcrE ax ay)1/8, The shutter in essence replaces the scheme of three-way

(3.11 coincidences. All of the photons that have passed through the
shutter and the convertdi; will have polarization identical
P(Ax.Ay,Cy) =p(By,By,Cy) to that of theA photons, and copying takes plagg—ec. In
this case, the device will in fact prepare single photons in

_ 2 2_ * _*
=[ltcay|*+[rcay|*—2Re(tcrg oy ay)1/8, beamC having known(but randon) creation times and un-

p(A,.A,,Cy)=p(By,B,,Cy) known polarization copying the polarization of tiepho-
) ) . tons. The polarization analyzer for tizphotons, consisting
=[[rcayl®+[tcay|“+2Re(tcrg ax ay)1/8, of the prismP¢ and detector®;, is now autonomous and

(3.12 can be position d anywhere along be@n
Let us find the Stokes paramet€iS;,) and the degree

P(2A,,C,)=p(2B,,Cy)=|rca,|?/4, of polarization of beanC using the controllable converter
P(2A,,C,)=p(2B,,C,)=|tca,|2/4 T¢, but without the shutter for eliminating event3.13.
oy oy o Taking the change of sign af, in (3.12 into account, we
P(2A,,C,)=p(2B,,C,) =tcay|?/4, have
P(2A,,Cy)=p(2By,Cy)=|rcay|?/4. (3.13 D(Cx)=4p(Ax,By,Cx)+2D(25x,Cx)+2p(2Ay,233)()-5)
Ad

The sum of all elementary probabilities of the form .
p(*,*, C,) defines the marginal probability of detectinga ~ Now, Egs.(3.1)—(3.13 yield
photon(in the absence of modulatgrs

P(Cyx) =(N¢=2[p(A,By,Cy) +p(As,Ay,Cy)
+p(2A,,C,) +p(2By,Co) 1= ([tcay/?
+rcay|®+rcay®+tcay|H/2=1/2.  (3.14

Analogously,p(c,)=1/2, i.e., theC photons, as expected,
remain completely depolarized: the convertérs and T

1
p(Cy) = §[1+ 2Re(tcréay ay)l,

1
p(Cy)zi[l—ZRe(tCr’éa;‘ ay)], (3.1

instead of(3.14). To determine the Stokes paramet€ss, ),
(Sca), and{Sc3), it is necessary to measure the difference

have no effect on the unconditional readings in deteddgs P(Cy) —P(Cy)=2Re(tcrg oy ay) (3.19
of beamC.

However, conditional readings iD¢; detect a definite for
polarization. According td3.11), the converteiT: acts on 1)te=1,rc=0; z)tczrczl/\/f;

the four eventg(A,,By,*) and p(Ay,By,*) (occurring in _

1/4 of all trial9 in exactly the same way as if it were located ~ 3) tc= N2, re=ily2.
in beamA at the entrance to the system affgr. The joint  pence,

effect of T4, and T¢ on these events is described by the

product of the Jones matricds T, . This also furnishes an (Sc1)=0,
operational definition for the effect observed in Ref. 7. By 1
repeating the procedure repeatedly for differéat it is pos- (Sco)=Re(ay ay)= §<SA2>!

sible to measure the polarizatien of the A photons im-
posed by their source and the converter. 1
It is possible to make the dependence of all four events ~ (Sca) =M (ax @y) =5 (Sas)- (3.18
P(Ax,Ay,*) and p(By,By,*) on To and T the same. To _
this end, when these events occur it is necessary according ipting that
(3.12 to include an additional controllable conver with (Sco)=P(C)+p(Cy) =1,
Jones matrixor, beforeT (which is equivalent to changing _ o
the sign ofa,).! Such a device “corrects” the polarization We find the degree of polarization of bedtn
of the C photons in(3.12 by increasing the fraction of fa- Pe=((Sc1)?+(Sc2)?+(Sc3)?) Y (Sco)
vorable events from 1/4 to 1/2.
At the same time, the eight events represented3nid

1
. o i . =|ak a,|==sin A
with two photons incident on one detectevhich occurs in | ay| SINOa (319

2
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where ¢,=2arctane, /e, is the polar angle of the point p(A,C;))=p(A,B,C)).

mapping the state of th& photon onto the Poincasphere.

For example, if theA photons are linearly polarized, 4 SCHRODINGER PICTURE

0= /2 andP-=1/2, and for circular polarizatiorj,=

or m and Pc=0. Thus, even in the case of ideal circuit ~ To go to the Schrdinger picture it is necessary to rep-
elements and detectors, a controllable unitary convdiger resent the initial stat¢3.9) in the basis of output modes

giving the transformatio®. = o,€e: for the two-way coinci- (3.1). In general, an arbitrary initial state of the field can be
dences A ,A,) and B, ,B,), is insufficient for exact copy- represented in the forfiy)=F (a*)|0), whereF () is some

ing of the polarization of theA photon; a shutter is still analytic function and the operatoas=(a;,a,, . ..) pertain

needed to absorb th@ photons upon the occurrence of any to the input modes of the channel. We define the operators at

one of the events (&), (2A,), (2B,), and (B,). the channel output using the unitary transformation matrix
Another variant of mixing and analysis of tieand B T =Tat(TT =1).

beams is possible, in which the polarizing prisms are located

not behind the beamsplitt&S but in front of it. In this case, Substituting the inverse transformation

it is possible to use two independent beamsplitters to mix the g+ -1+ T+ +

beamsA,— B, andA,—B, or A,— B, andA,—B,, and two

detectors at the outputs of the beamspllt?eH;)wever as into the functionF(a*), we find the state of the field in the
can easily be seen by repeating the above calculation, in thigasis of Fock states of the output modes define(8i):

case events in which two photons are incident on one detec- ly)=F(a*)|0)=F(T a'*)|0). (4.1)

tor again make it necessary to use a shugee Eqs(3.7)), _ _ )

and limit the maximum efficiency of the scheme to 1/2. In the case under consideration the form of the function
We now consider a simplified version of the experimen- F(a") can be found from Eq(3.9):

tal setup in Fig. 1, with no polarizing prisni#, or Pg, and |9)=2" YA wa; +ayay)(byc) —byc;)|0). (4.2)

only one detector each in th& and B output beamgthis ) _

scheme is used in the experiments in Refli this case itis  Inverting (3.4) yields

nc,Jt necessary to use the correcting uni'Fa-\ry transformation aJ*:(a’ b’*)/\/— ¢! —téc’*—rcc’;
T¢& . According to(3.11)—(3.13), the probability of detecting
one photon in beam and one in bearB regardless of their bf=(a'[+b')IN2, cf =r&c'S+tcc'y 4.3

y
larizati Il hird ph i [ . . .
polarizations, as well as  third photon in mddg, is (j=x,y). Substituting these expressions into E4.2), we

P(A,B,Cy)=2p(A,,By,Cy) find the state of the fielfiy) at the system output in the form
) ) - of a superposition of Fock states of the output mog}.
=[ltcax*+[rcey|*+2Re(tergay ay) 114, For simplicity, letTe=1. Then

(3-20 | ‘/’> =1l |Ay By — |Ax ) By)] [ax|Cx) + a’y|Cy)] +[|Bx vBy)
These events manifest the copying effect, in contrast to _ _ n
events in which the two photons wind up in the same output A AL C = [ Cy) ] vl 128y)

beam—eitheA or B—with probability —[2A)) 1ay|Cy) + V2[ [2A)—2B,) ] ax|Cy)}/\/§ :
P(2A,Cyx) =p(2B,Cy) =2[ p(2A4,Cy) +p(2A,Cy) (4.4
2
+P(AgAy C=[1+]rcar? Here|2A,)=(a’;)?|0)/ 2 is the state with two photons in
the output modeA
+|tcay|*— 2Re(tcr g o ay)1/4. (3.21 The experiment measures the  probabilities

1,N5, ... )=p{n} of detecting certain sets of photon

mbers{nk} in the output modes. According to the Born

postulate(3.3), the probability amplitudey(n,,n,, ...) of
P(A,B,C,)+p(A,B,C,)=1/4. these events is equal to the product of the bra vector

(nq1,n5, .. .| and the ket vecto4.4). For example,

Thus, the above scheme with additional analysis of the po-

larization of beamsA and B and use of the modulator A(Ay,By,.C)=(Ay By, Cil¢h) = ax/ V8.

enables one to increase the maximum efficiency of copying To consider the dependenceafA, ,B,,C;) on T, and

from 1/4 to 1/2. Tc, it is convenient to first find the projection o)) onto

In the case of ideal photon counters, an even simplethe subspace describing the detection of photons only in the
scheme is possible, in which there is only one detector in thmodesA andB,:

output of the beamsplitter. Two photons from beairendB

after the beamsplitter can both wind up in either #eutput (Ay.Byl#h) =[ax|Cy) + a|C)/ \/§E|¢>C et/ V8.

channel or thd3 output channel, or one can wind up in the (4
output channel and one in tieoutput channe(see Fig. L~ This quantity is an unnormalized vector in the sp&ceHere
The detection of just one photon in beakmeans that the we have also introduced the normalized effective vector
latter event occurred. Its probability is given in E§.20): | ) cers for the fieldC, which describes the effect df, and

To eliminate these events a shutter is again necessary. TIE%
maximum fraction of favorable events is now
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Tc on the probability of the subset of event#,(B,) |Ay!Bx>:[|qf(+)>AB_|\I’(_)>AB]/\/E:
=(0110*). The vector |)cer has the same form as the
initial state vectof ) for beamA, so the converter§, and |A,,B)=[|® ) \g—| D) aal/ V2. (5.2)

Tc aﬁeCtp(Ay’BX’,Cx) in the Same way. Substituting these expressions into the initial state vector
At the same time, according to E@4.4), the events (3.9, which can be represented in the forry)

(AcAy) and B,,B,) yield the effective vectora,|C,) =|y)al¥()gc, we obtain an expansion in the Bell basis
— a,|C,) with the wrong sign, (which can be corrected by for the A and B beams(Ref. 1):

the transformationTc=o0,, Ref. 1), and the events (®))

and (2B;) generally do not exhibit the copying effect. B E (=) _ _ (+)
Above we assumed th#8.9) and (4.4) are one and the )= 2{|\P Iael — @l Cx) — ey I +[W ) g

same vectot ) represented in different basés) and|n).

This is the so-called passive viewpoint regarding the trans- X[~ ay|Cy+ay|Cy)] +|¢(7)>AB[0‘y|CX>+“x|Cy>]
formapon of the vect(_)r space. From the act_lve point of view +| D) apl — ay|C)+ a|CHI}. (5.3
there is only one basi$n)=|n), and as the field propagates ) _ )

along the channdbr, equivalently, with the passage of time According to the reduction hypothesis, as a result of

its state vector varies under the action of the evolution opSuch a measurement of the Bell operator the initial three-
erator, |#)—|¢)' =U|y) (here |¢)’ coincides with the pho}on state @ is projected onto one of the four vectors
right-hand side of4.4) upon replacingn) by [n)). We now |V as, [®())as. According to Eq(5.3), 1) thereupon
express the effect of the evolution operatbon | ) in terms collapses to one of the statésompare equationgt.4) and

of the transformation matri¥. To this end, we make the (4.9)

following substitution inj/) =F(a")[0): 1=~ alCh=a|C)).  [#)ca=—alC+a|Cy),
+ —_1+
|O>HU U|O>_U |0> |¢>C3: ay|Cx>+ax|Cy>- |¢>C4:_ay|cx>+ax|cy>v
(assuming that there are no external forces producing pho- (5.4
tons from the vacuuin Now where the numben labeling the stat)c, is known. Thus,
|4)’ =UF(a*)U*|0)=F(Ua"U")|0). the act of measuring the Bell operator brings about the in-

- . ~ stantaneous collapse of the initial three-photon state to one of
The operatota™U™ can be transformed in the following the one-photon state$y)agc—|#)cn, Whereupon the po-

way, using the relatioa™ =U"a"U: larization vector of theC photon e, acquires the compo-
UaU*=U[T YU a"u)Jur=T 1a". nents (- a,,* ). The field or detectors in bea@ “find
out” about this as the result of superluminal interactions
As a result, embodying “quantum nonlocality.”
ly)' =U|y)=F(T 'a")|0). (4.6) Classical information about the number1—4 label-

ing the statd ¢/)c, can be used to automatically “correct”

This expression coincides witf#.1) upon making the sub-  he polarization of the photons using the polarization con-
stitutiona* —a’ *. The mean value of an arbitrary operator verter T, whose Jones matriX,, is equal tol, o,, oy, Or

(a)__ qbserveq at the output is given in the Heisenberg and_my. In this case
Schralinger pictures by
€n— Th€cn=€c1=€n-

(G(a)'="(ylG(a)|y)’ =(¢|G(a")|¥). (4.7) _ _ o
As a result, information about the polarization of #hgho-
5. DISCUSSION ton g, is instantaneously _transferred to t@ephoton, as if it
were not located some distance away.
Two basic approaches to the explanation and interpreta- In this approach, the Born postula§g.3) is artificially
tion of the effect under discussion are possible. We call thendivided into two successive stegsompare equatiot4.5))
“metaphysical” and “minimalist.” and the mathematical procedure of projecting onto some sub-
1. It is customarily assuméd®’ that during the course space is put in correspondence with a ‘“real” event—
of the experiment, it is possible, using an observation orinstantaneous reduction. The possibility of both photéns
photonsA andB, to measure the Bell operator, which has theand B falling into one mode and the necessity of using a
four eigenvectors shutter are not mentioned in the cited works.
. _ 2. The second approach to the description of the effect is
(W) ae=2" 1 |AcBy) = Ay By, based on the standard calculati@ee Ref. 180f the effects
|D N ap=2"17|A,,By) = A,,B)]. (5.  of an actual optical systegof beamsplitters and polarization
) ] convertery on the operatorgSec. 3 or the wave function
The inverse transformation enables one to express th@Sec. 4 of the field, and calculation of actually measured

Fock states W_ith one photon in each mode in terms of thgantities, i.e., probabilitietsee Ref. 18 According to the
Bell operators: Born postulate (3.3 and the theory of photodetection,
|Ax:By>:[|lP(+)>AB+ R, {2, the probabilities of all _events observc_ad vy|th photon counters
D andDg are determined by the projections|gf) onto the
|AL B =&)Y pg+| P ) asl/ V2, Fock states of the output modeés;,By), [2A;), |2By).
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These states, represented by means of the transformation ndistribution of two Stokes parameters for two photdrs.

trix in the basis of input modss. . . ) (see(3.2), differ from  The lack of nonnegative joint distributions also follows di-

the Bell stateg5.1) on account of additional components, so rectly from the properties of sets of quantum moments for
that the Bell states do not correspond to real observafi@mins certain stategregardless of the criteria of the sort repre-

least, not in the scheme of the experiment in Ref. 7 sented by violations of the Bell inequaljty.e., the quantum
The set of elementary probabilities found above in themoment problem does not always have a solutftt.
one-photon approximatior(3.11)—(3.13 for all possible When using a coincidence scheiffiestead of a shutter;

combinations of readings of the photon counters describe theee Fig. 1, the consistency of detecting events in time in
principal features of the observed phenomena. This approadhree detectors is irrelevant. The detectors in the three beams
also facilitates an instructive description of the effect inare equivalent, and separating the appearance of counts in
terms of a prescribed polarization and photon correlasee them into two stages—first, the appearance of two counts in
Sec. 2. D, and Dy bringing about reduction of the wave function,
According to the “minimalist” interpretation, the effect which then, on account of quantum nonlocality, influences
is considered to be a manifestation of quantum correlatiothe behavior of the third detector—is justified by neither a
between the three light beams, which is not in need of “ex-consistent theory nor experiment. We are equally justified in
planation” using the mysteriougd hocconcept of “quan- assuming that reduction takes place first in the dete@ers
tum nonlocality,” which implies a peculiar interaction be- (in the absence of a shutter they can be located closer to the
tween remote devices akin to telepathy. Recall thathree-photon light source than the detectdrsandDg). If
analogous controllable correlations are also possible in clad3 5 is much closer to the source thBr, then one can ask at
sical models, with the difference between these correlationg/hat instant reduction takes place: upon readoubDgfor
and quantum correlations of EPR—Bohm type being quitedD,? It may well be that a chain of successive reductions

subtle?® takes place:
More consistent is the “non-Kolmogorov” concept of
quantum mechanicg,which captures in a unified way a gen- [#)asc—¥)ec—¥)c-

eral property of quantum probabilistic models,namely theClearly these questions are of rhetorical significance, since
lack of elementary joint probabilities for noncommuting ob- the events are separated by spacelike intervals and concepts
servables in the presence of marginal probabil#feS.For  of it earlier and it later do not apply.
example, it is possible to measure or calculate three prob- From a “minimalist” standpoint, reduction of the wave
abilities pm(sy) for the Stokes operatofs;, of a plane wave  function is an extraneous hypothesis: as was shown above,
(m=1,2,3). In the one-photon state, the observable effects are completely described by the stan-

Sn=%1, Pm(*1)=(1%(Sp))/2. dard formalism in the Heisenberg and Sﬂir@er picturgs

by the Born postulate; see Eq&l.7). Accordingly, one is

However, one can neither measure nor calculate the joirfee to choose the carrier of information about the polariza-
distribution p(s;,sz,83)=0, which according to the Kol- tjon vectore, from one end of the optical system to the other
mogorov axiom of additivity defines the marginal distribu- 1o pe the wave function of the fieldy— ¢') or the field

tions operators §,—a;), just as in the case of a single polarized
beam. Of course, not all observable events violate special
p1(s1)= > p(s1,S2,S3)- relativity (if only because the quantum Green'’s functions for
S5,S3

the free field have the same form as the clasgical

Consequently, quantum models describing experiments with The equivalence of the three detectors breaks down if
single photons (or particles with spin 1/2 are non- modulators are used, that is, a shutter and/or an additional
Kolmogorov, and assigning a photon a set of defirit@yi-  converterT-. The shutter controls pulses from the detectors
ori properties{s,} in a single trial(i.e., the polarization vec- D, andDg, and in essence replaces the triple-coincidence
tor e) does not make sense within the traditions of ‘n&'t  scheme by blocking photons in the output be@rim “unfa-
realism.” vorable” cases. In this case, the device in fact serves to

A similar conclusion about the non-Kolmogorov behav- prepare single photons with tHanknown polarizatione.,
ior of two or more photongor other systemsbelonging to  which copy the polarization of thA photonse, . Classical
several different beams and described, in particular, by EPRignals controlling the shutter, which now and then lets pho-
states of the typ€2.1) follows from a consistent approach to tons through, take part in the copying procegs-e:. Note
the resolution of a number of quantum paradoxes and thethat the action of the shutter can be described by a nonuni-
“minimalist” resolution.?* Such an approach seems to be atary transformation of the field@in contrast to phase plates
reasonable alternative to an appeal to nonlocality, as it erand beamsplittejsso that the fieldC behind the shutter must
compasses several regularities in one fell swoop: the lack dfe described by a mixed stdfe!® Information is “tele-
joint distributions for noncommuting operatofto which  ported” in at most 50% of the trials. Due to nonideality of
physicists have for a long time acquiesced under the rubrithe detectors and other system elements, their real fraction
of “dualism”), violation of the Bell inequalities, and other will in fact be much lesg.
manifestations of “quantum nonlocality’(recall that the We may point to a similar but more primitive device,
simplest proof of the Bell inequalities is based on the exiswhich prepares single polarized photons with known creation
tence of a joint distribution for four observables—like the times (but without the copying effeftusing a two-photon
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where because of interactions the observed operators do no
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We use the method of substitution of field variables in the bilocal approximation to find the
effective permittivity of a two-phase composite random medium in the form of an ensemble of
small, arbitrarily anisotropic spherical inclusions distributed inside an isotropic matrix. To
illustrate the results we calculate the damping of the plane waves of the mean field in such a
medium. © 1998 American Institute of Physid$§1063-776(98)00410-7

1. INTRODUCTION In this method, the effective permittivity is represented by a
series expansion in powers of a certain parameter, which for
The stochastic method of describing material mediaan acoustic field proves to be small even for strong fluctua-
which is aimed at explaining the space—time structure of aions of the properties of the medium, provided that these
real medium and the chaotic variation from point to point orfluctuations are small-scal® 13 Because of the strong sin-
with the passage of time of the properties of the medium, igyularity (of the Dirac delta-function typeof the electric
widely used in the theory of propagation of electromagneticGreen’s function at the point occupied by the sodft# the
waves in the turbulent ionospherén the microwave prob-  characteristic parameter in this theory for an electromagnetic
ing of the Earth’s solid surface’ in the radio-wave moni- field proves to be proportional to the intensity of the
toring of polymeric composite materidls,in analyzing the fluctuations?®2® To complete the picture, we note that the
electromagnetic properties of polycrystalline materfdls, bilocal approximation proper was introduced by Lifshits and
and in the theory of artificial medf® In all these applica- Rozentsvég?"?who used it to find the effective parameters
tions, electromagnetic anisotropy is a characteristic feature ajf a microheterogeneous elastic medium.
the medium in which the waves propagate. To calculate the effective permittivity of media with
As is known!®~13the propagation of a statistically mean strong fluctuations of their properties, one usually uses the
field through a random medium with properties undergoingmethod of substitution of field variablésr renormalizatioh
chaotic spatial variations is described by equations characteproposed by Finkel'bef§*°and developed in Refs. 31-43.
istic of a deterministic medium with spatial dispersion. Thelt amounts to isolating the singular componéoit the Dirac
material parameters of this deterministic, or effective, me-delta-function typg in the electric matrix Green'’s function
dium characterize the properties of the random medium irand introducing equations for a new field variable for which
relation to the mean field and are called the effective paramthe Green’s function coincides with the regular part of the
eters of the latter medium. electric matrix Green’s function. Note that the singular and
A method for calculating the effective permittivity of a regular parts of the electric Green’s function can be inter-
medium with permittivity fluctuations was proposed by Lif- preted(and this is a convenient feature of the Green'’s func-
shitset al® Note that this method was later “rediscovered” tion) as generalized functions generated by, respectively, the
by Bourret* and Keller and Karal® although earlier it had nondecreasing and vanishing-at-infinity parts of the spectral
been used in Refs. 6, 16, and 17. Bearing in mind the direcmatrix Green’s functioi>3%4*As in the above approach, the
tion of our investigation, which takes into account the effectadopted method does not provide simple and at the same
of the electromagnetic anisotropy of the medium on thetime exact expressions for the effective permittivity, i.e., the
propagation and scattering of electromagnetic waves, weffective permittivity is still represented by a perturbation-
note the various papéfs2?in which the method of Lifshits theory expansion, but at least in our case the characteristic
et al® is used to find and study the effective permittivity of parameter remains small even for strong fluctuations of the
uniaxiaf®=2° and gyrotropié'?? random media, whose per- material properties, provided that the spatial scale of such
mittivity tensors in a certain system of coordinates have dluctuations is smaff*323°
form that is typical of a uniaxial crystal or a magnetically In view of our interest in random media with electro-
active plasma and are characterized, respectively, by thremagnetic anisotropy, we note that the method of substitution
(diagonal] or five (three diagonal and two off-diagonalon-  of field variables has been used in calculations of the effec-
vanishing components. tive permittivity of an electrically isotropic random medium
The method adopted in this paper for calculating thewith anisometric perturbations and fixéd®or randoni® ori-
effective permittivity may be called the “ordinary” theory entation of the statistical-symmetry axes, of a gyrotropic me-
of multiple scattering for an electromagnetic field, ordinarydium of the type of a magnetically active plasthar a ro-
in the sense that it is similar to the theory of multiple scat-tating mediunt’ and of an arbitrarily anisotropic random
tering for a scalafacoustig field in a random mediurt®™*®*  medium with fixed or randomly directed statistical-symmetry

1063-7761/98/87(10)/7/$15.00 648 © 1998 American Institute of Physics
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axes™ The results of Zhuck can only be applied to the . 4rikg
special model of a continuous medium considered in that curl curkE,) — ke 9(E,) =
paper, while the other, canonical, model of a discrete random

medium was ignored in Ref. 39. We would like to note at 1

this point that there exists a well-known techni¢fi® that (H)= ikq curkE,), ®)
makes it possible to incorporate a discrete random medium , . . , ) )
into the class of models that can be analyzed by the metho\Hh'Ch are a characteristic featu[e of a spatially dispersive
of substitution of field variables. From this the goal of the medium with nonlocal permittivity: .

present investigation follows naturally, i.e., to calculate the In @ statistically homogeneous medium, extraneous
effective permittivity of a microheterogeneous compositeSources in the form of a spatial harmonic,

J, 4

that consists of small anisotropic particles distributed within J(x)=J(k)ekx, (6)
an isotropic medium and to study the dissipative properties ,
of such a composite. generate a mean field of the same foi:

Below we use the results of Refs. 29-39 to describe a  (E.(x))=E(k)e'**, (H,(x))=H(k)e'kX, 7)

method for calculating the effective permittivity of a statis- . o o . .
g b y wherek is an arbitrarily specified three-dimensional wave

tically homogeneous continuous random medium with an ar Wk E(k dH(K h litud
bitrary anisotropy of the electrical and statistical propertiesveCtor’ and)(k}, E(k), andH(k) are the vector amplitudes

and strong but small-scale comparison to the wavelength of the sources and the eJectromagnetic field, respectively.
fluctuations. The method is then applied to a model of a  APPlying the operatoe(® to the mean-electric-field vec-
discrete random medium obtained by uniformly distributingtor, we get

an ensemble o_f chaoticglly orignted small sphe_rical incIL_J— S©O(E, (X)) =% 5 (w,k)E(K), )
sions of an arbitrarily anisotropic homogeneous insulator in

an isotropic matrix. As a result we find the effective permit-where £(®(w,k) is the effective permittivity tensor in the
tivity of the two-phase composite mentioned earlier. The for-spectral region; the dependence enand k points to the
mulas can be interpreted as generalizations of similar formufrequency and spatial dispersions of the effective medium.
las in Ref. 45, which deals with electrically isotropic The characteristic scaldk of variation of this tensor as a
inclusions. Using the formula for the effective permittivity function of the spectral parameteiis of order 1L, whereL
and the method of contour integration, for a random composis the correlation interval for the perturbations of the me-
ite without dissipative losses we calculate the real and imagidium. Combining this fact witti8), we find that in the long-
nary parts of this quantity and the “diffraction” correction to wavelength mode, wher&L<1 (or in other words, for
the propagation constant for the mean field. The imaginargmall-scale perturbationsthe properties of the random me-
part of this correction describes the damping of the meamlium in relation to the mean field in the spatial-harmonic
field due to scattering by the random inclusions. form (7) or in the form of a linear combination of such har-

monics, are described by the effective permittivity tens6r

(Refs. 25, 26, and 39
2. THE METHOD OF CHANGING THE FIELD VARIABLES
FOR AN ANISOTROPIC RANDOM MEDIUM e®(w)=lime®(w,k). 9

k—0
2.1. Statement of the effective permittivity problem

Setting up the effective permittivity tensor of a medium with
small-scale perturbations is a very important problem of the
Ak theory of multiple scattering of electromagnetic waves in a
J, @ random medium.

Consider the equations

curl curlg, —k3e "E, =

1
H,==—curlE, 2
iko
for a random electromagnetic field, andH, generated by In the first stage of constructing the effective permittivity
extraneous electric sourcésn an infinite dielectric medium  ansor we follow the well-known pattern developed in Refs.
with permittivity (. We assume that the permittivity ten- 35, 36, and 39, which amounts to transforming the stochastic
sor ¢ of the medium has all of its nine components differential equation(1) into an integral equation for a new

¢! which are random functions of the radius vectorfield variable F. To this end we introduce an anisotropic

2.2. Renormalized scattering equation

X=(X1,X5,X3). reference medium, or a comparison medium, which fills the
The effective permittivity operataz(® is defined by the entire space and has a constant deterministic permittivity ten-
identity?>2 sor &. (Below this tensor is defined as the solution of Eq.
~(r) _ e (23).) Let E,(x) be the electric vector of the field generated
(e"VE(x))=8""(E(x)). ©) by the extraneous sourcédéx) in the reference medium, and

Having this operator, we can easily show, on the basis ofet G(x—x’) be the electric matrix Green'’s function of this
Egs. (1) and (2), that the mean-field excitation is described medium. In our case we can assume that the Green'’s func-
by the equations tion is a fixed inverse Fourier transform:
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" ) 3 5 ) A where §(x—X') is the three-dimensional Dirac delta func-
G(x—x")= (2m) j d kexdik (x=x")]G(k), (100  tion. Plugging(19) into (12) and performing simple algebraic
R transformations, we obtain
where G(k) is the spectral Green’s function, which can be
found by solving the equation F(x)=Eb(x)+k§j d3x’ G (x—x ) EX)E(X), (20)

[K[kG(K)]]+k2eG(k)=—1 (12) where

with | the identity matrix. Note that the singularitigsoles P ~
of the integrand in(10), which coincide with the zeros of F=[1+S(e"~e)E, (2D)
A(k) of Eq. (16) belovy, are _assumed to Iig in the c_or_nplex E=(e0 -1 +86M—8)]L (22)
plane because of dissipative lossgsossibly negligible

losse$ in the reference medium. The same interpretation, ifEquation (20) is the sought integral equation for the new
not stated otherwise, can be applied to other integeaty., field variableF with a random perturbatiod. At S=0 this
(30)) whose integrands have nonintegrable singularities.  equation obviously becomes the initial equatid2).

Using the Green’s functiofs(x—x'), we can employ a To ensure that the random perturbatipis small at least
standard procedure for replacing the differential equation  on the average, we require th@)=0. In view of (22), this
by the integral equation requirement can be transformed ifito

Er(x):Eb(x)Jrkgf d3x’ G(x—x") (eM=&)[1+S(eM-e)] ) =0. (23

A A From Eq.(34) below it follows thatS=S$(¢). This means
X[eM(x")—&]E(X"). (12 that(23) is actually an equation for determining the permit-

The solution of Eq(11) in coordinate-free forf is tivity tensor of the reference mediun,

- kek .

G(k)=—— +GB(k). (13

kog (k) 2.3. Effective perturbation operator and effective
Here and in what follows the Cartesian product signifiedP®MtVity
by ® is a tensor of the simplest form: for a vector Iterating and averaging EQq.20) in the bilocal
k=(ky,kz,k3), approximatiorP*®we arrive at the equation

kiky  kiko  kikg

F =E +k2fJ’d3 /dS /IG(Z) I\ e
kok=| koki Koky Kokg |, (F(x))=Ep(x)+kp X' d3x" G (x—x")E

k3k1 k3k2 k3k3 X (XI _XN)<F(XN)>, (24)
. D(k) where
GYK) =, (14 . A s .
Z(k)A(k) EO (X —X")=K3(E(X")GPD (X' —x")E(X")). (25)
D(k)= ({1 —k®ke) (1 —ek®k) Comparing(24) with the averaged version of E(O), we
. ~ find that
+k3(kok dete — f adje), (15) | A A
. . . (EOF(X))=E9(F(x)), (26)
A(k)=k2Z+k3(keek— ¢ Tre) +kg dete, (16) aa _ _ _
where £® is an integral operator acting onand having a
L(k)=kek. (170 kernel &®(x—x’). Combining(8) with Egs. (21) and (22),
we get

In these expressions, deand ad§ denote the determinants o A A A A
of the matrixe and the adjoint of (Ref. 47. (F)=[1+S(=9~e)(E), (&F)=(c®—&)(E). (27
Qeﬁned in Eq(31) below, and specify the spectral function relationship that links the operatc®) and©. In the spec-
G®)(k) according to the following expression: tral domain this relationship becomes

. . S kek S a(e) _a=3e e ga© _:

G(Z)(k)zg(k)+_2:_ 5 +—2+G(1)(k), (18) &' w,k)—e=§0,k)+ & w,k)Fe'(w k) —e], (28
Ko kodk) kg where £®(w,k) is the Fourier transform of(®(x—x’). In
while the corresponding spatial Fourier transform is definedhe long-wavelength approximatidask—0) we have

as @ (w)—e=E(w)+E)(w)Fe®(w)—¢]. (29

,\ A S A A
G (x=x")=G(x=x")+ — 8(x—x"), (199  The elements of the matri&® (o) =lim,_ ,£®(w,k) can be
kg found from (18) and (25) via the formula
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kpkq 2 (D) 2.4. Strong perturbations of the properties of the medium
3 +SpqtkaGpg(K) |, (30)

which contains t[le spectral functiols, (k) of the ran-
dom perturbatiorg(x):

)= | @K B

The limits of applicability of the above results can easily
be found®® First, however, we must establish the parameter
used in the perturbation expansion in the calculation of the
effective permittivity and make this parameter small. If we

do this, we can be sure that truncating the expansion at the
Bmpqd k)= (27) 73 f d*xexgd —ik- (x=x")] first two terms(the right-hand side of Eq36)) is justified.
To find the perturbation-theory parameter, we need only es-
X Cpgd X—=X"). (31  timate the ratio of any two consecutive term in the expan-

sion, say, the terms on the right-hand side of E§). In
order to arrive at such an estimate it is convenient to intro-
Crnpgrd X=X )=(&mp(X) €gn(X")) (320 duce a positive determinate quantity, equal to the char-

. . . ristic val f permittivity fl ions. Then wi n as-
are the correlation functions of the random perturbatlonsacte stic value of permittivity fluctuations. Then we can as

. . o . sume that approximatelB,,,q{(k) is equal to a§L2 for
&mn- For our further dls_cussmns. it is con\/_en)ent to denotek< 1L andBy,pq(k)~0 for k> 1/L, whereL is the charac-
the value of the correlation functiaf32) at x=x' by I . . .
teristic spatial scale of the fluctuations. According to what

3 has been said earlier, the domain of integration3B) is
1“mpqn:j d°k Brpgr(k)- (33 limited by the spheré&<<1/L, so that the characteristic value
) of the integration variablé is 1. For small-scale fluctua-
Now that we havet®(w) we can define the effective tions (koL<1) this value is much larger thag, which we
permittivity tensore(®(w) as the solution of Eq(29). To  can ignore in the integrand i36) in comparison to the large
ensure that the expressions we derive are valid in the case wélue k~1/L. The resulting integral is equal, in order of

strong fluctuations, it is advisable to select the maBiin ~ magnitude, tar3(koL)2. Since on the scale of the parameters

Here

such a way that o, andkgL the order of the first term on the right-hand side
of Eg. (36) is unity, the ratio of the second term on the
TmparSy :f d3k B n(k)% (34) right-hand side of Eq(36) to the first is approximately
mpamha mPATTT (k) o2(koL)?. Hence the right-hand side of E€®6) is a section

of the series expansion in powers of the parameter we have

Actually this is a system of nine equations for determiningfound here, and the smallness of this parameter

the nine unknown quantitieS,, as functions ofe,,. To
obtain an equation for the unknown quantitigg,, we plug ai(koL)2< 1, (37
Spq=Spq(#) into (23). According to(22) and (31)—(33), the
quantitiesl", ,qnandBy,,qnare related to the unknown quan-
tities Spq through &,,,. Hence Eqs(34) are generally non-
linear in S,q. Combining Eqs(34) with (30) and (14), we
arrive at the final expression fatc):

justifies the truncation of this perturbation series after a finite
number of terms; namely, after the first two terms, ak3i).

A remarkable feature of the conditioi37) is that it is an
indication that(35) and(36) can be used in the case of strong
fluctuations of the propertiesr(>1), provided that the fluc-

) D pq(K) tuations are small-scalédl. <o *<1). This positive fea-
555%((0):‘(0[ d’k Bmpad®) 7 AT (39  ture of the method of substitution of field variables is
{(k)A(k) 25,26,35
well-known:
If we assume that thegﬁﬁ'?,(w) are small (the condition In conclusion of this section we note that for the special

needed for this assumption to be true is analyzed belew  case of statistically isometric perturbations E3f)) provides
arrive at an approximate solution of EQ9) for efne%(w), the  an explicit way for finding the renormalization matrg,,
components of the effective permittivity tensor found by per-(see Refs. 25, 26, and BXlearly, if we allow for the fact

turbation technigues: that the correlation functions of isometric perturbatigBs.
. . . (32)) depend only on the distane
e®(w)=e+E®(w). (36
R=|x—x’| (39

A combination of this formula and35) solves the problem ] , ]

of the effective permittivity of a random anisotropic medium. Petween the points andx” and the spectral function$1)
When the frequency dispersion of the random mediunfiepend only on thg absolute valkef the.spectral parameter

can be ignored, the last term on the right-hand side of Eqf: then, plugging inta(34) the expression for g, from

(36), in accordance witki35), tends to zero with frequency as (33 and going over to integration W|tr_1 respect to the spheri-

2, while the first term, the permittivity of the reference €&l coordinates, ¢, and¢, we can write Eq(34) as

medium, remains unchanged. Hence the permittivity of the " nn
reference mediumg, can be interpreted as the value of the f dk szmpqr(k) 47rSpq—f dQ 21| =0, (39
effective permittivity of the random medium in the static 0 nen

limit, while the additional tern(®)( ) can be interpreted as where dQ =sinfdedéd is the solid-angle element, and
the "diffraction” contribution to this quantity due to the n,=k,/k is the pth component of the unit vector alorig
scattering of the field by random perturbatiGis® The solution of Eq(39) for Sy, can be found explicitly:
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Although all inclusions are thought of as being identical,

Soq= 7= J’ dQ (40 they differ in position and orientation. We assume that all

possible orientations of the inclusions are equiprobable and
We see thaB, =S, i.e., in our case the renormalization that the orientation of a separate inclusion does not depend
matrix is symmetric:S"=38, where the superscript “T" in- ©ON the |ncIu3|_0n's posmon or on the orientation and position
dicates transposition. of any other inclusion. .

For this model of a discrete random medium, it is only
logical to select the reference medium as being electrically
neutral with a scalar permittivitg (the dielectric constant
The same conclusion can be drawn from EGS) and (40).

3.1. Description of model The latter equation suggests that the renormalization matrix

We will now use the tools developed in Sec. 2 to analyzeS is proportional to the identity matrix:
a discrete random medium obtained by immersing a statisti- 1
cal ensemble of identical homogeneous anisotropic inclu- 3= _—_1. (46)
sions in a homogeneous isotropic enclosing medium, the ma- €

trix. We denote the permittivity of the medium k") and | e allow for this fact, the random perturbation mat(a2)
the permittivity tensor of an inclusion in the reference frame,yithin the isotropic matrix-medium is also proportional to
comoving with the inclusion, by (®, with the elements of the identity matrix:
the latter tensor belngl(c) . R R

Let 90)(x) be the indicator, or characteristic, function ~ &(x)= &1, (47)
(see Ref. 46, p. 79of the ensemble of the random inclu-

3. EFFECTIVE PERMITTIVITY OF A TWO-PHASE
COMPOSITE

sions; the function is unity ik belongs to an inclusion and where

zero for all otherx. The inclusions are thought to be distrib- JREDIS

uted in space on the average uniformly and isotropically, so ¢ =3¢ —- (48)
that their concentratiofrelative volume occupied by the in- 26+

clusions, But if point x is within an inclusion, to calculate the compo-

(6(x))=v,, (41 nents of the random perturbation mat(@?) in the labora-
tory reference frame it is convenient to represent these com-
ponents in terms of the components of the same matrix in the
reference frame comoving with the inclusion:

0 =allal&r . (49)

is independent of the poin¢, while the two-point indicator
function

(0(x) 60 (x")y=p(R) (42)

depends only oR. Strictly speaking, the latter assumption is R

true only for spherical inclusior$;* so that below we as- The elementg), which form the matrixt®), are given by

sume that the inclusions are spherical. an expression that follows froif22) written in the reference
The statistical topology of the composite is determinedframe comoving with the particular inclusion:

by the dimensionless two-point correlation functisee Ref.

46, p. 74 £9=3¢(s@—¢l)(2eT+&©) L. (50)
p(R)—v3 We see that the matrig(® and its elementsgy) are deter-
¢(R)= va(1=0) (43 ministic quantities.

Averaging g(x) over the ensemble with allowance for
whose Fourier transforrp(k) is defined in the same way as (47) and (49) yields

in (31). Note thate(k) defined as the spectral density of the

correlation functiorf 60 (x) —v,1/\v,(1—v,) of a real ran- (ER(0)= 8l 016D +0,£2], (51)
dom process assumes, for rdal only real nonnegative
10 where
values.
The components of the permittivity tensef¥)(x) of the ED=Tr gO=¢), (52)
random medium in the laboratofgbsolute reference frame . _ . _
- " medium, and over repeated indices there is summation.
Eim(X) =" dm (44 Ccombining this with(23), we arrive at a nonlinear equation
if x is in the enclosing medium, and for the dielectric constard of the reference medium:
sin(0=al afiie (45) 018 +v,¢?=0. (53
if X is within an inclusion. Herej,,,, is the Kronecker delta, As for the perturbation correlation functions, for the

anday, is the cosine of the angle between tie axis of the  adopted model we can writesee Ref. 46, Chap.)4hese
laboratory reference frame and tinth axis of the comoving functions in terms of the dimensionless two-point correlation
reference frame of a separate inclusianrandom quantity ~ function (43):
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Cmpqn(X_X'):U1vz¢(R)Dmpqm (54) 3.2. Mean-field damping
Let us analyze the effective permittivifpl) for a situ-
— g2 ) () _ (1) . . L .
Dinpan= &' “Ompdan { @mjatpreqstnordjicst ~ ompé ation in which there are no dissipative losses in the random
X(aqsant>or§(sct)— 5qn§<1)<amjapk>or§}|§) (55) composite. In this case the permittivity of the enclosing me-

dium, e, is real:e W= (¢M)*, and the permittivity tensor

Here the subscript “or” indicates averaging over the orien-&(© of the anisotropic inclusion in the comoving reference
tations of a scatterdthe averaging is done, say, by employ- frame is Hermitian (but not necessarily real &(©
ing the proper probability densities for the Euler angles de= (&)™ (here and in what follow the asterisk stands for
termining the orientation of the axes of the comovingcomplex conjugation Under these conditions, as can easily
reference frame Note that here is the place where the as-be verified,D=D*, and the quantityo of (59) proves to be
sumption that the inclusions are homogeneous is needeteal.
More precisely, the dependence of the correlation functions It is natural to expect, then, that in the absence of dissi-
(54) only on the difference of spatial arguments, which is apation in the random medium, the quasistatic value of the
characteristic feature of statistically homogeneous ntédfa effective permittivity also describes a dissipation-free me-
and which is needed if we want the method of substitution ofdium. Indeed, in the absence of losses in the random me-
field variable to work, is present only for spatially homoge-dium, the only reason for the mean field to get weaker is the
neous inclusions. transfer of energy of the medium to the scattered component

Note that the above theory, on which our reasoning iof the field due to diffraction on inclusions. However, in the
based, presupposes that the spatial wave is skplk<1. In  quasistatic limit, the contribution of the diffraction phenom-
view of (54), L coincides with the correlation length of the ena to the effective permittivity disappedes noted earligr
dimensionless two-point correlation functié3), which in  and the quasistatic value of the effective permittiviishich
turn is larger than the diameter of a single inclusion or equat is) must describe a medium without losses. Hence in the
to that diameter. Thus, for our reasoning and the resultsase at hand the permittivity of the reference medium is a
given by formulas(58) and (61) to be valid, the spherical real quantity.(A indirect indication of this is the fact that, as
inclusions must be small on the scale of the wavelength. Egs.(48) and(52) imply, if ¢ obeys Eq.53), the complex-

The physics of the problem implies that, in view of the valued quantite* obeys the same equation. Here, however,
uniform distribution of the random orientations of the scat-we postulate a stronger statement; namely, we say that these
terers, the effective medium must be isotropic and that foriwo roots,e ande*, coincide)
mula (45) actually has a much simpler structure correspond-  Note that, strictly speaking, the final expressi®d) in

ing to this assumption, i.e., Sec. 3.2 refers to the dissipative random medium and a ref-
erence medium, while in the absence of dissipation the result
Eeh= Omn O€, (56)  must be obtained front58) by passage to a limit in which
where the losses of the reference medium tend to zero. The integral
on the right-hand side of E§58) has poles of the first order
1 at the pointsk=kg\/e andk=—kg/e, where the first pole
6s=§§§§,)n. (57)  “lands” on the positive half of the real axis from above as

the losses get smaller (ka-+0; everywhere in this paper

Calculating&($), by (35) and writing the expression@5) and ~ We use the branch of the square root of a complex nurdber
(16) explicitly for the case of an isotropic reference medium,for which O<argyZ<). Using the half-residue lemma to

we get calculate the limiting value of the integral {®8), we have
the following expressions in the absence of dissipation in the
8 » [~ k? dk random and reference media:
58:?1)11}2Dk0 f o(k) 5 , (58
0 k“—koe Se=205e' +i8e", (62)
D= <1>2+3 (©£0)_ 2 £1) 22 59 87 , [*~ k2 dk
=§ 3§np§pn 3§ & ( ) 58’:—01U2Dk0 j o(k) >
3 0 k2_k08
According to(36), the effective permittivity of the discrete 87 "
medium being discussed can be written as follows: ~ ?vlszkg fo ZD(k) dk, (63)
~(e) =@\
e w)=e'"%w)l, 60
(@) (@) (60) (2w o
8(8)(w)=8+ Se. (61) oe"= 3 \/;vlvzgo(O)koD, (64)

The effective medium proves to be electrically isotropic andwhereds’ andde” are real values, and the integral(88) is

is characterized by the scalar permittivity®(w). For the  calculated as a principal-value integral at pdirtkye .
special case of an isotropic enclosing medium and isotropic  Thus, the “diffraction” correctionds to the quasistatic
inclusions, Eq(53) and the expressiof®8) become the well-  value of the effective permittivity and hence the permittivity
known results of Ref. 45. proper are complex-valued. The real part of the “diffrac-
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The possibilities of current-sheet formation in two-dimensional magnetic fields with a null line as
well as the characteristic features of the plasma dynamics under high initial pressure
conditions(helium, Py~ 300 mtory are investigated for the first time. It is shown that current-
sheet formation and efficient compression of the plasma into a sheet require that the

magnetic field gradient be sufficiently large. A brightly emitting compact region with electron
densityN,~9x 10'® cm™3, an order of magnitude higher than the gas atom density,

was observed to form at the center of the layer. 1@98 American Institute of Physics.
[S1063-776(98)00510-1

1. INTRODUCTION stantial portion of the excess magnetic energy is rapidly
transformed into plasma energy and accelerated-particle en-

Magnetic reconnection is a fundamental physical procesergy, can occur precisely within current sheets. In this con-

which is the basis for various phenomena in plasma physicgaection, the study of the conditions and possibilities of the

and astrophysick:® Flares on the sun and other stars, sub-formation of spatially localized current sheets in highly con-

storms in the magnetospheres of the Earth and planets, diducting magnetized plasma is of fundamental importance.

ruptive instability in toroidal magnetic confinement systems  From the standpoint of the localization of current sheets

(tokamaks that result in a loss of hot plasma, as well asthe so-called singular magnetic field line$? along which a

many time-dependent phenomena in plasma focus Znd nonzero electric field can exist in the plasma coordinate sys-

and ®-pinch high-current discharges are associated wittiem, merit serious attention. It is natural to expect that elec-

magnetic reconnection. In all these phenomena, as a rule, thec current in plasma can concentrate near singular lines as a

stored magnetic field energy is converted rapidly and effiresult of the formation of current sheets.

ciently into thermal and kinetic plasma energy and into ac- The best known example of a singular line is the null

celerated particle fluxes and radiation of various wavedine of a two-dimensiona{2D) magnetic field(Fig. 1). The

lengths. spatial dependence of the field can be represented near this
Magnetic-field line reconnection can occur in regions ofline (x=0, y=0) in the form

space where oppositelfor differently) directed field lines

come close to one another. These regions are characterized B=—h{y;x;0}, |B|=h]|r|, Q)

by high electric current density and small scales, so that dis- ) ) ) o

sipative processes are very influential here even under th@herehis the radial gradient of the magnetic field.

conditions of high plasma conductivity. Here one of the main ~ 1he dynamics of plasma in magnetic fields containing

properties of a highly conducting plasma can break down—null'lines has been actively investigated for many years, both

: -9 : 0-12 H
the freezing-in of the magnetic field in matter. Magnetic-fieldtheoret'ca"j and experimentally”™** As a result, it has
line reconnection can change the topology of the magneti?ee“ established that a flat current sheet, which accumulates

field. For this reason, even if the reconnection process itseff’® magnetic energy released in flare-type processes accom-
occurs in relatively small regions of space, the changes od?@nying explosive breakdown of the shéét? can indeed

curring in the topology of the magnetic field as a result ofform near a null line.

reconnection can radically alter the behavior and dynamics Atgthe same time, efficient compression of plasma into a
of the entire system as a whole. sheet:®> where the electron density is 10 or more times higher

Regions with high electric current density, which sepa_than in the initial plasmzl\f,1 hqs been observed experimen-
rate oppositely(or differently) directed magnetic fields and t@lly- Typically, the gas-kinetic pressure of plasma concen-
which accumulate excess magnetic energy, ordinarily tak&ated in a sheet s ordinarily balanced by the magnetic pres-
the form of quasi-one-dimensional current shéde In  Sure outside the sheet, i.e., the parameter
other words, the distribution of the electric current density in _
any cross section perpendicular to the direction of the current 8= 8mNek(Te+T;/Z;)/B? v
is characterized by two considerably different scales. The _
largest scaléthe width of the shegtdetermines the amount reaches its maximum valug=1 (here N, is the electron
of stored magnetic energy, while the smallest soghe  density,T, andT; are the electron and ion temperaturésis
thicknes of the shegtetermines the characteristic dissipa-the effective ion charge The formation of quasi-one-
tion time! Magnetic reconnection processes, in which a subdimensional sheets containing a dense current-carrying

1063-7761/98/87(10)/8/$15.00 655 © 1998 American Institute of Physics
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magnetohydrodynamic processes. Indeed, the size of the re-
gion near the null line of the magnetic field, where the sound
velocity v is greater than the Alfwevelocity v, is

re=+\4myNKkT/h ()

and increases with the initial plasma density. In other words,
under these conditions the strong magnetic field approxima-
tion, which holds forr>rg, can be satisfied only at an ap-
preciable distance from the null line.

The second obvious effect is that the sheet formation
process slows down. This is due to an increase in the char-
acteristic Alfven time

ta= V4mN;M;/h. (4)

Finally, the relative role of dissipative processes can in-
crease as a result of the increase jn(4). This can be de-
scribed quantitatively, for example, as a decrease in the mag-
netic Reynolds number

Re,=t,/tx, 5
. . . , where
FIG. 1. Diagram(section of the experimental setup for studying the forma-
. ! . e ! e ! _ 2, 2
tion and evolution of current sheets in two-dimensional magnetic fields with t,=4molL/c (6)

a null line: 1 — Conductors with currentsstraight quadrupo)e 2 — field
lines of the two-dimensional vacuum magnetic field with a null liRe— is the ohmic dissipation time in a volume of characteristic
vacuum chambe# — #-discharge loop5 — current sheet6 — magnetic sizel.
probes. These considerations all indicate that the question of the
formation of a sheet of dense plasma under conditions of
plasma is also of great interest for various applicationshigh initial pressure is very nontrivial and apparently re-
simulation of astrophysical phenomena, such as solar flaréiires a special choice of initial and boundary CO”F"_“%S- .
(see Refs. 1 and }0Qunder laboratory conditions; develop- At the same time, if the plasma compression efficiency is
ment and construction of fundamentally new systems fo@SSumed to remain the same as befdré!41" ?then elec-
controlled thermonuclear fusidi; development of new tron density in the sheet should increase considerably, reach-
sources of visible- and ultraviolet-range radiation; generatiodd ValuesNe~ 10" cm™°. Such a plasma would have sev-
of directed supersonic plasma flows; and so on. eral advantages from the standpoint of both plasma
Theoretical treatments devoted to the problem of magdiagnostics and various applications, especially since the po-
netic reconnection have usually employed the strong magition of the sheet is fixed and does not change with time,
netic field approximation, in which the gas-kinetic pressureVhich distinguishes such a sheet from, for example, rapidly
of the initial plasma is assumed to be negligibly I8t ~ moving plasma shells i@- and ®-pinch systems.
Similar conditions were also chosen for most experimental  If it is assumed thap=1 holds for the sheet as before,
investigations, so that the plasma dynamics at the sheet fothen the expected increase in plasma density should decrease
mation stage was determined predominantly pyB  T; andTe—the electron and ion temperaturésr close val-
forcesi®* It was observed that current sheets in whichues of the magnetic field gradieht and plasma current
dense plasma is concentrated are formed in both fhead  1p)—and equalize them. The longitudinal electron thermal
nonlineat® regimes, which differed primarily by the ratio of conductivity, which was the main channel for energy losses
the initial magnetic field and the field of the electric currentof a sheet in previous experimerifshould play a lesser role
in the plasmasee also Ref. 12 In all cases the maximum under conditions such tha, increases and, decreases,
electron density in a she®=(0.8—2)x10'*%cm?® was  While other loss channels, for example, losses due to radia-
much higher than the density of both the initial plasma andion, can become dominant.
the plasma surrounding the sheet.

. In_ the present paper we report.the results of EXPErMeNts oy oeRIMENTAL SETUP AND DIAGNOSTICS METHODS
in which the possibilities of producing current sheets in two-

dimensional magnetic fields with a null lifd) under con- The possibilities of current-sheet formation under high
ditions of comparatively high initial gas pressuffeelium, initial helium pressure conditions were studied in the stan-
P,=300 mtor) were investigated for the first time. dard experimental arrangement for such investigatices

It could be anticipated that the increase by a factor ofRefs. 10 and 1)1 The quasistationary two-dimensional quad-
5-20 in the initial pressure compared with previousrupole magnetic fieldl) possessed a gradigmequal to 280
work!?121718and the corresponding higher initial plasma or 570 G/cm and the null line lay on the axis of a cylindrical
density can have several effects. In the first place, hydrodyguartz vacuum chamber 18 cm in diametéig. 1). The
namic processes play a relatively larger role in relation tanitial plasma was produced usingBadischarge with strong



JETP 87 (4), October 1998 Bogdanov et al. 657

C=74 uF, 15KV 4 6
| e
' IAY
g

magnetic field2 — vacuum chambei3 —
grid electrodes4 — controllable discharger,
5 — current shees — Rogowski loop,7 —
image tube,8 — photomultiplier (FEU), 9
— He—Ne laser]10 — mirrors, 11 — light
filters, 12 — diaphragms 13 — achromatic
objective lenses.

3 10 FIG. 2. Diagram of experimental set(gide
& view): 1 — Conductors of the quadrupole
—

preionization; helium at pressui®,=300 mtorr served as using plasma images obtained in different spectral liseg
the working gas; the initial plasma density was close to thd=ig. 3 as well as Ref. 22 Immediately after the onset of
atomic density of the neutral gmgs Ngz 10 cm 3. Elec-  excitation of an electric current in the plasmia=(Q.2— 0.4
tric current was excited in the plasma by a pulsed voltageus), the distribution of the radiation intensity in tlg plane,
applied between two grid electrodes which were introducegerpendicular to the current direction, acquired the shape of a
into the chamber at both en@sig. 2) and were separated by sheet with a local intensity minimum at the center of the
a distance of 60 cm. The half-period of the plasma currensheet. At subsequent timesX1 us) the width of the sheet
was T/2=5 us, and the maximum current was 60 K&ee increased, reaching valuesA2~12 cm, when the sheet
Fig. 4a. thickness Ay<1 cm, while the radiation intensity was vir-
Magnetic probes positioned on the outside of thetually uniform over the width, for example, in the He I line
vacuum chambe(Fig. 1) were used to determine the con- (Fig. 38. Hence it follows that in a two-dimensional mag-
figuration of the electric current in the plasma as well as tonetic field with gradienthh=570 G/cm a plasma sheet was
determine the thickness of the current sheet and its variatiortdrmed in 1-1.5us, i.e., essentially during the characteristic
in time (see Fig. 4b and Ref. 21 Alfvén timet, (4). For smaller gradients the formation time
Two-dimensional images of the plasma in different specof the plasma sheet was much longer, so that during the
tral emission lines at successive times were obtained with asntire first half-period of the current the plasma emission
image tube(gain =400, exposure time=80 ng in combina-  varied along the axis and possessed a local minimum at the
tion with narrow-band spectral interference filters with center of the sheet.

ANyp=1-1.2 nm(Fig. 3; see also Ref. 22 We note also that the sheet thicknes&y2was 2-3
The temporal variations of the intensities of the spectratimes smaller than 2 (see Eq(3)), i.e., the diameter of the
lines He 1 587.6 nm and He 1l 468.6 nm and the continuunmregion near the null line where the sound velocity exceeded

emitted from a region 0.4 cm in diameter near the axis of thehe Alfven velocity.
vacuum chamber were obtained using appropriate interfer- |n contrast to plasma images obtained in the He | line,
ence filters and a RE79 photomultiplier (Fig. 40. The  the images in the He Il 468.6 nm lin&ig. 3b showed a
spectral composition of the characteristic plasma radiatiogybstantial variation along the surface of the sheet and the
which passed through the filters was additionally analyzedormation of a bright compact object at the center of the
with a MDR-3 monochromatofsee Ref. 22 for a more de- sheet—the coret&0.6, 2.5 1s). We emphasize that most
tailed discussion images presented in Fig. 3b were obtained with much lower
In the present work the refraction af=632.8 nm laser  exposures than the images in Figs. 3a and 3c; this was mani-
radiation by a flat sheet of dense plasma produced in a tWggsted specifically in the fact that the emission of the near-
dimensional magnetic field with a null line was detected foryya|| continuum, as a rule, was absent in Fig. 3b, in contrast
the first time. A He—Ne laser beam was directed along thgg Figs. 3a and 3c. The images in the He Il line also acquired

null line, i.e., along the length of the plasma sheet in thgpe shape of a flat sheet as exposure increased, while the
direction of thez axis (Fig. 2). A system of diaphragms made central region was overexposed.

it possible to record only the laser radiation that was de- A f|at plasma sheet was observed clearlyatl.2, 1.5,
flected by small angles relative to the initial direction. In a g 2.1us in the spectral lines of N (Fig. 39. The appear-
number of cases the intensity of the laser radiation was subynce of a dark band in the central plane of the sheet (
stantially diminished after passing through the plasma sheet 5 1 3 0,5 attested to a higher electron temperature in this
(Fig. 4d. This made it possible to determine the electronregiOn and “burnout” of the N Il lines, similarly to the ob-
density gradient in they plane and to estimate the maxi- gervations in Refs. 23 and 24.

mum value of the density. Comparing the images presented in Figs. 3a, 3b, and 3c

and obtained at closely spaced intervals in time, it can be
concluded that the plasma radiation in different spectral lines

The possibility of a flat plasma sheet forming under highoriginated in different spatial regions separated from one an-
initial helium pressure conditions was clearly demonstrateather. Thus, the radiation in the He Il line corresponded to

3. PRINCIPAL RESULTS
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FIG. 4. Time dependence:a — total electric current

I, in the plasmab — half-width|b| of the current sheet
calculated from the results of magnetic measurements
for different values of the magnetic field gradiemt
=570(1) and 280(2) G/cm; ¢ — intensities of plasma
radiation in the spectral lines for He (#68.6 nm —1

and He 1(492.2 nm — 2; continuum intensity,\
=480.6 nm,A\N;,=1.5 nm —3; d — intensity of
He—Ne laser X =632.8 nm) after passage of the laser
beam along the plasma sheet for different values of the
magnetic field gradienth=570(1), 280 (2) G/cm.

the central plane of the shest=£0), while the He l and N Il gradienth substantially increases the intensity of the radia-
lines were emitted predominantly from regions displaced irntion from the plasma concentrated in the sheet. This indicates
they direction on both sides of the central plane. more efficient plasma compression.

As follows from the magnetic measurements, the electric  Of great interest is a characteristic feature of the plasma
current distribution in thexy plane, perpendicular to the cur- sheet observed in the form of a bright compact core with the
rent direction, also acquired the shape of a sheet whose widtfimensions 2x=3.3 cm and 3y=1.1 cm in the central
was much greater than its thickness. Figure 4b shows theegion (see Fig. 3btf=2.5 us). As noted above in the dis-
time dependence of the half-width| of the current sheet for cussion of plasma images in different spectral lines, the in-
two gradients of the initial magnetic fielth=570 and 280 tensity of the core radiation in the He Il line was much
G/cm. One can see thHt| increased ah decreased, since at higher than the intensity of radiation from neighboring sec-
h=280 G/cm the lateral ends of the sheet came right ugions of the sheet. The time dependence of the intensities of
against the walls of the vacuum chamber, ilb|=R.. For  the spectral lines of He | and He Il and the continuum inten-
h=570 G/cm the width of the current sheefbf<12 cm sity, which came from the region near the axis, is presented
<2R.. In this case the sheet typically was formed duringin Fig. 4c. The signal strengths reflected the intensity ratios
both the first and second half-periods of the current in thequalitatively; the radiation in the He Il 468.6 nm line was 5
plasma, and the orientation of the sheet in the plane to 6 times more intense than the radiation in the He | 587.6
changed by 90° in accordance with the change in the direaam line and in the continuum. The large increase in the He Il
tion of the current. The half-widthb| of the current sheet, line intensity in the interval from 2 to 3.4s is interesting;
obtained on the basis of magnetic measurements corréhe intensity of the continuum increased at the same time,
sponded, to within the accuracy of the measurements, to thehile the radiation in the He | line remained unchanged in

half-width of a neutral current shéet the interval~1.0—5.5 us. It could be inferred that the ob-
Y served increase in the intensity of the He Il spectral line was
b=valy/ch. @) due predominantly to an increase in the electron dersity

This fact makes it possible to employ other relations whichin the central region of the current sheet within the bright
are valid for neutral current sheét¥!? Specifically, it is core. To check this hypothesis an experiment probing the
possible to estimate the magnetic field at the surface of thplasma sheet with 632.8 nm laser radiation was performed.
sheet: Direct measurements of the spatial distributions of the

B(x~0)~3.4 KG _electron density, performed previously by holographic

X ' ' interferometry**”*® showed that for plasma sheets which

Since, as noted aboved=1 typically holds for current developed in two-dimensional magnetic fields at compara-
sheetgsee Eq(2)), the energy content of the plasma can betively low initial pressureP<50 mtorr, sharp density gradi-
estimated hence as ents in a direction perpendicular to the surface of the sheet
N(To4 T, 17 =28 107 eviend, are t}:\;l)lcal and reach values

Thus, it can be concluded from magnetic measurements E:5>< 10 cm™4.
and by analyzing plasma images obtained in different spec-
tral lines that the formation of a current sheet and efficienfThe plasma radiation distributions in tkg plane, which are
compression of plasma into a sheet can also occur under higitesented in Fig. 3, indicated the existence of quite sharp
initial gas pressure conditions, provided only that the gradigradients of the luminosity of the sheet and also, apparently,
enth of the initial two-dimensional magnetic field with a null of the electron density under high initial pressure conditions.
line is large enough. Apparently, it is important to satisfy thelt was natural to assume the plasma sheet to be uniform in
conditiont,<<T/4, whereT is the period of the current in the the direction of thez axis, as was observed in previous
plasma. Under otherwise identical conditions, increasing thexperiments%1?
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If a narrow light beam is directed along tkeaxis, then  change. Hence it can be concluded that the attenuation of the
as a result of passing through the plasma sheet the beam caignal shown in Fig. 4d was due predominantly to the deflec-
be deflected from the initial direction. In visible radiation the tions of the light beam away from the initial direction by
plasma is a transparent phase nonuniformity, so that the denglessy=1.8x 102 rad, i.e., refraction of the laser radia-
flection angledys is determined by the gradient of the refrac- tion by the plasma sheet. According to Efj0), such angles
tive index in a direction perpendicular to the propagationcorresponded to an electron density gradieéNt/dy=1.7

direction of the bear>2® X 10" cm™“. This means that when a plasma sheet formed

1 (2 under high initial pressure conditions the electron density

Sy= _f ZVlndz (8) grad?ent was at least three times greater than the maximum
nJz gradient obtained previoush:'

As noted above, the greatest attenuation of the laser ra-
nQiation was observed in the regimes and at times when a
region of maximum brightness of the He Il line radiation
with transverse size 2y=1.1 cm was clearly observed at
the center of the plasma sheet. Assuming that

Heren is the refractive index, and, andz, are the bound-
aries of the plasma along the propagation path of the bea
The refractive index of plasma for visible-range radiation
which depends mainly on the electron dendity (with de-
gree of plasma ionization exceedings%)

2 2 PN Nmax
B _ Wpe . lope ooy —~
n= 1 ?—1 E?_l 1.8X10 “N=1, (9 ay Ay

where ,, is the plasma frequency and is the angular the maximum electron density can be estimatedNgs™
frequency of the probe radiation. The red line of the He—Ne~0.9X 10'" cm™ 2. This value was 5 to 10 times greater than
laser satisfiesn=3x10'® s™* and the refractive index is the maximum densitiesN, recorded for lower initial
essentially 1 for any reasonable valuesNyf. Correspond-  pressuré?***"**and it was almost an order of magnitude
ingly, the deflection angle of the laser beam from the initialgreater than the initial density of the neutral gég~10'°

direction is very small, so that the relatié8) can be written ~ cm °. We emphasize that a tenfold increase of the electron
as density compared with the initial valias noted aboveNS
s sNg) was observed in the central region of the sheet within
SY=LV,n=—-1.08<10"*V N,. (10 the bright core. In other sections of the sheet the density was
Here L=z,—z,=60 cm is the length of the interelectrode apparently lower. Note that the value obtained Kdf** is
gap where the plasma sheet was formed. only approximate. However, this estimate was substantiated
In practice the experiment ismounted as follows: Theusing specially performed spectral measuremésee Ref.
He—Ne laser beam was directed strictly along the null line o7)-
the magnetic field, and after passing through the plasma- Therefore it can be concluded from the character of the
containing region the beam was passed through a specit@mporal variations of the intensity of the plasma radiation in
diaphragm, which cut off radiation with deflection anglesthe spectral line He I 468.6 niffFig. 40 and the attenuation
relative to the system axis greater thar-1.8x10 2 rad.  Of the He—Ne-laser radiation which has passed through the
Next, the laser radiation was directed through a system oblasma sheeffig. 4d that the electron density in the central
diaphragms and filters and was detected with &0 pho-  region of the sheet gradually increased and reach€dd
tomultiplier (Fig. 2). Let the signal level in the absence of X 10" ecm™3,
plasma be 1. In some cases the laser radiation was observed The plasma temperature was estimated first according to
to be considerably attenuated as a result of the formation dhe average conductivity and second on the basis of the pres-
the plasma sheet, as one can see from Fig. 4d. If the initisdure balance, i.e., from the relatig¢=1. When averaged
gradient was equal to 280 G/cm, then an approximately 30%ver the spatial region where the electric current was con-
intensity decrease was seen orlyf —8 us after the onset centrated and over a time interval equal to a half-period of

of the current in the plasma, during the second half-periodihe current, The plasma conductivity was<104 s 1,

However, for a large magnetic-field gradient, for examplewhich for Spitzer conductivity corresponded Ta=4 eV.
h=570 G/cm, the attentuation of the laser radiation becameressure balance gives

much stronger, reachirrg 90%, and was even observed dur-

ing the first half-period of the current, 8&=1.5-4 us. We T+ T, /Z>3 eV,

note that the maxima of the plasma radiation in the He Il line

and in the continuumFig. 49 were correlated with the i.e., it can be assumed that the electron temperature in any

maximum attenuation of the laser radiation which has passecase did not exceed 5 eV, and the effective ionization was

through the plasma sheéfig. 40). Z;=1, as indicated, specifically, from the fact that the emis-
A very important point is that the decrease in the inten-sion in the He Il line essentially did not burn oigee Figs.

sity of the laser radiation was observed only with the use oBb and 4¢. For N.>5x 10 cm™3 T.<5 eV the frequency

a special diaphragm which did not pass radiation with anglesf Coulomb collisionsy,=2x 10" s™1, and the electron and

of deflection relative to the system axis greater than the anglien mean free path lengtig=1;=10"3 cm, i.e., much less

¢. In the absence of such a diaphragm, the intensity of théhan the half-thicknesAy of the plasma shedsee Fig. 3.

laser radiation which passed through the plasma sheet did ndhe equalization time of the electron and ion temperatures
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under these conditions is very short<2x10 8 s, i.e., the These results support the idea that the character of current-

temperatures should be essentially the safwe,T,. sheet formation in plasma in nonuniform magnetic fields is
The characteristic time due to the thermal conductivityuniversal(see also Ref. 29
of the plasma in the absence (of along the magnetic field The refraction of laser radiation with wavelenghh
can be estimated 45 =632.8 nm as a result of passage along a flat sheet of dense
) ) plasma was detected for the first time. This made it possible
te~L Ne/Ke, (1D to determine the gradient of the electron density in the sheet

as INg/dy=1.7x 10" cm * and to estimate the maximum
density asNJ®~9x10'® cm™3. The maximum electron
Nk T, density at the center of the plasma sheet exceeded the initial
Kg”=3-16v- (12 electron density and also the gas density by approximately an
€ order of magnitude, attesting to the effectiveness of plasma
Coulomb collisions sayisfyw,~N,T;*?, so that wherN,  compression under these conditions.

where kg, is the thermal conductivity

increases and at the same timedecreases, the quantiltyé Of great interest is a characteristic feature of the plasma
increases considerably: sheet observed in the form of a bright compact core, whose
He Il line radiation was much more intense than the radiation

tKg’VLZNeT;w- (13 from neighboring sections of the sheet.

The increase in the electron density was accompanied by

AssumelL=1 cm, which corresponds to the thickness 5 gecrease in the plasma temperature, which resulted in a
(less than the transverse sizef the plasma sheet as well as |5rge decrease in the electron heat conduction along the sur-
the characteristic size of the core at the center of the sheglce of the sheet. The formation of a bright compact core at
Then, for the above plasma parameters we figve 10 uS,  the center of the sheet is apparently linked to the decrease in
which is greater than, for example, the half-period of theheat conduction, while losses to radiation can be assumed to
plasma current, i.e., the plasma temperature could have bede the main channel for energy losses of the current sheet
substantially different in different sections of the sheet sepaformed under high initial pressure conditions.
rated in space by distances greater thah cm. It is natural We are deeply grateful to G. M. Batanov, N. P. Kiri
to infer that this effect is responsible for the formation of aand H.-J. Kunze for fruitful discussions and V. S. Markov
bright core in the central region of the sheet. It is also obvi-for assisting in the experiment.
ous from the estimates presented that energy losses due to This work was supported by the Russian Fund for Fun-
heat conduction could not balance the energy released in ttdamental ResearctGrant No. 96-02-18546aand INTAS
current sheet by ohmic dissipation. In all probability, the (Grant No. INTAS-96-45k
main channel for energy losses of the sheet formed under
high initial pressure conditions were radiation losses. *)E-mail: bogdanov@fpl.gpi.ru
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Ideas are put forward regarding the possibility of a cold dense core, surrounded by a plasma
corona, forming near the axis at the initial stage of a nanosecond electric explosion of metal wires,
and the influence of such a radial structure on the plasma compression dynamics is

discussed. Experimental evidence supporting these suppositions is presented. It includes both
indirect confirmations, based on optical and x-ray diagnostics data, and direct

observations of the core by new means of x-ray probing employing an X pinch as a source of
radiation. © 1998 American Institute of Physid$§1063-776(98)00610-9

1. INTRODUCTION servation of the initial stage of an electrical explosion still

The development of powerful high-voltage generatorsencounters difficulties requiring apparatus with very high dy-

such as PBFA Z, SATURN, PROTO Il, GAMBLE I, namic range. However, this is the stage where the transition

BLACKJACK-5. ANGARA-5. and GIT-4. now makes it °f the matter from a metallic into a plasma state occurs and

possible to produce up to 10 MA and higher current pulsest,he conditions are established for subsequent development of

introducing multiterawatt power into the diode #1100 ns. a dense plasma column. There is absolutely no information

This has opened up wide prospects for using such generato‘??om thg distribution of the parameters.or even the nature of
in diverse experiments with hot radiating dense Z-pinchthe physical state of the matter formed in the process. At the

plasma. The standard load for these generators consists B M€ time it was noted in Ref. 1 that the explosion of thick,
different configurations of thin metal wires—single- and 1'em long, aluminum wires with diameter50 um could

multiwire liners and X pinches. In such generators, after thd'@V€ been incomplete, and a dense cold core of low-

electric explosion is completed and after the subsequerﬁc’r'cmmi\’ity matter was observed directly in the x-ray im-

rapid radial expansion, accompanied by a strongly pro_ages of the plasma._ Actually, he_zre the process only just b_e-
nounced skin effect, the current-carrying plasma is comdan (surface explosion, expansion of coronal plasma, skin

pressed by the self-magnetic field. The hot spots formed as &fféct. and there was not enough time for it to evolve into
result of the sausage instability contain dense, hot plasmi'€ Pinch stage: Instead of hot spots and thermal x-ray emis-
with high parametersn>10% cm™3, T,=1 keV, Z up to sion !mes, only a lsurface plasma emission remmlscent
51). Powerful bursts of radiation open up the possibility of O Skin-layer emission was observed in the continuous
using these objects as sources of hard ultraviolet and soft PECrUM. _ , o

radiation in multicharged ion spectroscopy, in x-ray optics, EVen more complicated is the case which an explod-
and lithography investigations, and as media with a popula'-ng copper wire 2Qum in dlamete_r gnd 4 cm long exhibited
tion inversion in the short-wavelength region. There are als@oth hOt_ SF_’OtS _and extended emlt_tln_g structures, vyhose ther-
prospects for using them in controlled thermonuclear fusiod@l emission included characteristic soft x-ray lines. The
and for laboratory simulation of the action of powerful x-ray '€910ns with the two types of emission of could be clearly
pulses accompanying an atmospheric nuclear explosion. THlistinguished over quite a long distance, and in Ref. 2 it was

problems arising in the path toward the realization of thes(:_’,c,uggested that in this situation a core surrounded by a corona

goals are often of a general-physical significance for inves!S Present. However, this structure was not observed directly,

tigations of dense plasma and condensed phases of matterd¥! the question of its universality remained unclear for a

- l4 - . .
well as for the development of new diagnostics methods us°nd time. Recently;* evidence of the existence of a radial
ing x-ray optics and spectroscopy. structure appeared in the form of sharp increase in the

plasma density near the axis and in teh immediate vicinity of

the hot spots for typical wire dimensions, diameter 2®

and length 1 cm. This effect becomes stronger as the wire
Dense exploded-wire plasmas harbor many mysteriematerial becomes heavier, and it is manifested as the appear-

despite efforts to investigate them. For example, direct obance at the initial location of the wires of dense and cold

2. FORMULATION OF THE PROBLEM

1063-7761/98/87(10)/9/$15.00 663 © 1998 American Institute of Physics
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FIG. 1. Examples of laser interferograrfas
a 7 and schlieren image®) of the plasma from
[ 7z, mm exploded metal wires.

Jins Jins
Unheated wire Heated wire

“bodies” having diameters five to six times greater than theincidentally, the possibility of using them to analyze the
initial diameter and surrounded by hotter plasma. strongly time-dependent states in experiments with wires.

For the present it is difficult to assert that such near-axis It is simplest to assume that the formation of a sharp
formations are the same in experiments performed using difradial nonuniformity of matter is related to the completion of
ferent facilities. It can only be concluded that there exists ahe initial stage of the explosion, when by virtue of the skin
more complicated distribution of the matter of an explodedeffect in the expanding and rapidly ionizing vapor current
wire than the distribution ordinarily used for simulation, in- flows out of the central part, which has not had enough time
cluding numerical modeling. Analysis of the stationary statego vaporize. Estimates and qualitative analysis, made in Ref.
of emitting Z pinche3 leads to the same conclusion. Such6 for the wires of diameter 10-5am ordinarily used in
states also include heterogeneous equilibria—a cold densxperiments, lead to this conclusion. They attest to the ap-
central region, from which heat is removed mainly by radia-pearance of a high-resistance core of dense matter, having a
tion, and a hot corona surrounding it with conductive heatemperature of the order of tenths of the Fermi energy, in the
transfer in the direction of the axis predominating. Theserapidly current-heated metallic load. The subsequent sce-
solutions, which exist only for quite heavy substances, wer@ario differs from the standard one through the interaction of
obtained under the assumption, which does not strongly limithe core with the shock wave resulting from the compression
them, that the dissipation parameters are power-law funoef the coronal plasma. This effect and its influence on the
tions of temperature. More importantly, the paths leading tailtimate compression are some of the subjects of the present
the formation of such equilibria are still unclear, as is alsopaper.
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Unheated wire Heated wire
Anode
Z, mm
qr
Cathode
gL i
77 ns 20 ns 70 ns 20 ns

FIG. 2. Optical self-emission of exploded wir@#/, 16 xm) at different times during the discharge.

3. EXPERIMENTAL RESULTS (specifically, there are no transverse ejgetad the resulting
structure of the sausage instability becomes more regular
(Fig. 1b. The main result obtained by comparing these im-

| ) ible t tical s b es is that the variations of the column shape in both cases
column are inaccessivle 1o optical measurements because bj, superposed on massive and immobile base of the same
the long wavelength of the laser radiation: The actual densit

L N . .¥ype.
If|m|t {eacfht?]d b3|’ such prgbtlrr:g IS dettermme? by ]tchtﬁ nomtjlm- Another interesting fact which we shall present is that in
or;m yo el P azma(j‘f‘ Ie ag)zerxu;%zgmg ?i ° hi ehqp 3he optical range of the characteristic radiation a thick lumi-
scheme employed and is only {2) em = WRIC IS hous column with=0.5 mm is observed throughout virtually

- : _ 1 a3
?uc?h_lower than_thte; critical d(:n5|t9]e((1 2)><}02 gmt ' h the entire time of current growth={70 ns for the BIN ma-

or this reason, In he present work we employed, toge e(Ehine) (Fig. 2), after which the column rapidly disintegerates.
with the optical method, x-ray probing, which is applicable

for ol ith densit to 2Bem- 2 with tall Since the corona, whose ions are stripped of outer electrons,
or plasma with density up to tocm =with essentially any s optically transparent, it can be inferred that the source of
values of the gradient.

? . . emission is a central fairly cold object.
The experiments were performed on different devices: y ]

the “Don” (170 kA, 200 kV, 80 nsand BIN (280 kA, 400 3.2. X-ray measurements
kV, 150 n9 high-voltage generators at the Lebedev Institute ™
and XP (480 kA, 200 kV, 100 nsat Cornell University. A characteristic feature of the x-ray pinhole photographs
Diagnostics allowing the plasma to be studied in both theof exploded-wire plasma is the presence of bright regions—
optical and x-ray ranges were used. In what follows, only theso-called “hot spots,” which are arranged along the dis-
new x-ray probe method used in experiments on the XRharge axis near the initial position of the wires. The picture
setup are described. The other diagnostic systems have belegcomes much more regular when the wire surfaces are
described in detail in previous workg. cleaned. Fofi w>0.8—1.3 keV a luminous cylindrical struc-
ture with characteristic diameter150—300 um, several
times greater than the initial size of the wifEig. 3), is

We point out indirect evidence of the existence of a coreobserved in the image obtained with quite good spatial reso-
An unstable plasma shell, whose shape is the same as thatlafion =50 pwm. The overall character of the emission is
the initial wire and which acquires with time the typical essentially unrelated with the wire materi&ig. 33, but the
structure of a sausage instability, can be seen in the interferaliameter of the cylindrical formation depends on the initial
grams and schlieren photographs presented in Fig. 1. Theonductivity of the wire(Fig. 3b): It is much larger for met-
overall character of the process is essentially independent afls with good conductivityAl, Cu, Au) than for metals with
the material and the initial diameter of the wire, but some-How conductivity (Ni, Pd, W).
times ejecta of low-density plasma, in some cases reaching Moreover, there is the fact that wires with a low initial
distances of several millimeters from the axis, are observed:onductivity, under otherwise the same conditions, emit
At the same time, the form of the plasma column dependsnore intense x-ray radiation in the hard region<(5 A).
strongly on the state of the wire surface: When it is cleanedesides the large-scale structure of the hot spots with a char-
immediately prior to a shot by heating with a constant cur-acteristic dimension 0.5—2 mm along the axis observed in
rent, the plasma “coat” becomes more dense and stablpinhole images with spatial resolution 50—1Gén by many

Most data on wire explosion dynamics are currently ob-
tained from optical measurements. Deep layers of the plas

3.1. Optical measurements
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investigators, a small-scale substructure was observed in thke currents flowing through the source and the load. Mo and
present work. It follows from the data obtained with a pin- Pd were chosen as the wire material for the X pinch, since
hole camera with resolution 4—30m that in many cases the preliminary investigations showed that fa@r,=40—45 the

hot spots have a fine structure. Specifically, they consist ofegion of the X-pinch emission has minimum size and ad-
groups of two or three “subdots,” smaller than the pinhole equate brightness in the wavelength range 2-5 A having an
diameter, which are separated by 20—10@ along the wire  acceptable level of hard radiation with<2 A. For compari-
axis (Fig. 4). A similar result was also obtained using a trans-son, we note that in an X pinch from heavy elemerfs (
mission diffraction grating produced in the opening of a 20 70) hard radiation is generated by an electron beam, aris-

um in diameter pinholéFig. 9. ing in the process of compression of the plaheamd is
_ emitted from a region of size-1 mm, which is unacceptable
3.3. X-ray probing for obtaining an image with high spatial resolution. In our

The dense regions of exploded wires were investigate@xperiments the spatial resolution was at a level of several
by the x-ray schlieren photography. An X pinch located inmicrons with an exposure duration of 1-3 ns. The plasma
the diode gap parallel to the load investiga(Edy. 6) served images with a magnification of 7—8 were recorded on Kodak
as the source of radiation. The diode anode was separated RAR 2497 or Kodak GWL photographic films, screened
a slit into two parts, which were mounted on return-currentfrom the visible light by beryllium or titanium filters.
half-cylinders, which made it possible to measure separately Figure 7 displays an image of the explosion of a;4f
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FIG. 4. Fine structure of a hot spot obtained with a high-resolution pinhole camera.

in diameter tungsten wire 50 ns after current onset. A densis interesting to make the generate the probe radiation at the
core, completely screening the source radiation, can be seetime when the hot spots form. This was done by varying the
The diameter of the core is three to seven times greater thdmear mass of the load by varying its diameter or using sev-
the initial diameter. The variations of the diameter of theeral closely spaced wires. Figure 8 shows an image of an
core with periodicity 0.7—2 mm as well as the sharpness oéxplosion of a pair of close, 1&m in diameter tungsten
the boundary of the core are interesting. The smearing of theires separated by 20—40m. X-radiation from such a load
edge of the image was les than 7—&@n. Disturbances of was observed both before and after the probe pulse, but the
the more rarefied and unstable corona with characteristic sizeore is noticeable only in part of the image. Such a compli-
0.3-0.5 mm, corresponding to nonuniformities of the plasmaated form indicates that the core evolves during the dis-
column in the optical images in Fig. 1, were also observedcharge process. Evidently the core has its own internal struc-
The uniformity with which material was distributed in the ture. Figure 9 shows an image of a Y,(=22) wire 40 ns
core along the axis depended on the purity of the wire surafter the start of the current pulse. Because of the weak ab-
face, indicating that the origin of the core is related with thesorption of radiation in titanium the corona is not visible
process of the initial electrical explosion of the conductor. here, but the internal structure of the core, which is different
Quantitative analysis of such an image is a difficultfor different sections of the wire, does reveal itself. To in-
problem, requiring careful calibration of the photographicvestigate this structure the spatial resolution must be im-
materials and precise measurement of the spectral compogiroved to a level of order 1-gm. Here we state only the
tion of the probing radiation in each experiment. Such arfact that it exists. The choice of a titanium filter played an
analysis was not performed in the present work, but simplémportant role in obtaining this image: Near teabsorption
estimates of the radiation absorption in the corona, takingdge Ti possesses a transmission window 2.5-4.0 A—
account the transmission of the filters and the sensitivity oprecisely in the range of the minimal dimensions of the emit-
the photographic film, gave a corona dengity=(4—20) ting region of the X pinch.
X 10'° cm™2 near the core ang (1—4)x 108 cm™2 near its The results presented show that x-ray schlieren photog-
visible boundary. These values, in principle, agree with thaaphy yields much more data on the deep layers of dense
results of optical measurements for distaneés5 mm from  plasma than the standard optical laser probing. In our experi-
the wire axis, but they show that the core is essentially inacments we also used a spherically curved crystal spectrograph
cessible to optical probing. Assuming that the core containgmica, 10 cm radius of curvature, 1Q0m beryllium filter),
most of the initial material, we obtain an approximately 100-making it possible to obtain soft x-ray spectra in the wave-
fold drop in density at the core—corona boundary. length range of the order of several angstroms. The shape
The image shown in Fig. 7 of the explosion correspondsand form of the spectra, just as the plasma parameters found
to the stage before the formation of the hot spots observed iftom them, fell into the typical range for such measurements
this experiment=70 ns after the start of the current pulse. It (see, for example, Ref.)7
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FIG. 5. Observation of the explosion of a copper wire using a transmission diffraction grating. The numbers in the @ipgham: 1 — plasma object?
— screen with a 5Qum in diameter diaphragn — substrate4 — tungsten diaphragm and gratirfg— image.

4. QUALITATIVE ANALYSIS AND HYPOTHESES

The formation of a core can be related to the properties
of the electrical explosion of the wire. Estimdtehiow that
for fast (=10 ng application of voltage>100 kV the vapor- 1o detector
ization front can penetrate to the axis only if the diameter is ~——
very short,<5 um. On the other hand, the skin effect is
important only of the wire diameter is quite largg0 or
more wm). For this reason, the nonvaporized central part of
the metal is superheated above the boiling temperature, ar
the phase trajectory reaches the critical point via volume eb
ullition.

The somewhat idealizeld—V phase diagram, presented
in Fig. 10 (V is specific volume,C is the critical point,
illustrates these processes. In this diagram the c&B& /
describes the path of ohmic heating of the matter on the wire 7
axis, crossing the binodal at the polt On account of the
monotonic nature of the heating, each pdéiton this curve
corresponds to a definite time, aBdB"D'E’ describes the 5
corresp_ondi_ng ghange in the thermOdynamiC parameters iHG. 6. Diagram of x-ray schlieren photography using an X pirigt2 —
the radial direction from the axis to the surface, where vaznodes3 — source(X pinch), 4, 7— Rogowski loop5 — half-cylindrical
porizationB”D’ occurs, and farther—into the vapor region return-current conducto — cathode8 — load.
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FIG. 7. X-ray schlieren image of the structure of the core-corona of an exploded tungsten wire.

expansion. When the poiBtlying below the critical point is
reached, surface vaporization stops and the isotrRi
separates the region of expanding vapor from the center
which continues to heat up.

Naturally, a separate diagram is associated with eact
point on the axis of the system. In the critical range of the
parameters the conductivity of the matter at the center is ven
low (the resistance to the current reaches sevefHck),
and the vapor, which ionizes in the course of breakdown,
starts to overtake the current. This, as well as the confine
ment of the current to the skin layer during the subsequen
expansion of the plasma formed, stop further heating of the
center, and the center remains relatively cold right up to the
arrival of the shock wave arising during compression. Ulti-
mately, the distribution of material over the cross sectionp
becomes hetereogeneous—a central core surrounded by
plasma corona.

If the optical self-emission is related to the c@Fég. 2),
then the core must have formed no later than during the firs
10 ns after current onset and existed throughout the entir
phase of current growth. The well understood behavior of a

shock wave in plasma will serve as the starting point for |

understanding what follow. Since the parameter
(me/m;)*? is small, the structure of the shock wave is de-
termined by slowe—i energy exchange processes and ioniza-
tion on the one hand and the high electron mobility on the |
other. As a result, on the shock front the electron tempera:
ture, which undergoes a jumpm,D? (D is the velocity of
the frony, lags behind the ion temperaturd T;=m;D?).
Subsequent relaxation requires,(my)Y? times more
time than momentum and energy transfer to ions in a viscou
shock. This, as well as multiple repetition of this effect in the

process of multiple ionization, determine the structure of the

front. Heating of the plasma in front of the viscous shock by
hot electrons and photons penetrating in front of it must alsc
be added here. Under our conditions the dimensions of the
front and zone of electronic and radiation heating reach ten:
of um against the background of a plasma corona with a

a i g
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4 /J( ‘ wn
Z '/‘j: H '.:l-'T's":
J " Laden
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radius of =100 um. As it approaches the core, this wide FIG. 8. Explosion of a pair of close wires in an x-ray pulse fronmXgpinch:

front starts to interact with the sharp drop in the density o

a— currents through the diode and signals from the x-ray photodiddes
X pinch, 2 — current through the wire3 — X-pinch radiation intensity4

the matter in its path, while its precursor—the wave of elec-_intensity of the radiation from the wirksb — photographc — densi-
tronic and radiative heat conduction — slowly heats the mastometer traces in different sections.
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FIG. 9. X-ray schlieren image of the explosion of a titanium wire with visible internal structure of the core.
sive core. The durations of these processes=al8 ns. which the transformation of waves occurs the continuing

Here it is possible to make use of a similar problem fromgrowth of the current has an effect on the boundary, and
gas dynamics — the analogy with one version of the decaypecause of nonlinearity the refracted wave forms more rap-
of an arbitrary discontinuity,where instead of a shock wave idly. This shock wave, entraining and heating the core mat-
arriving from the corona, new shock wave- a transmitted ter, is gradually focused on the axis. The shock wave is as-
wave moving to the core and backward reflected wave — arsisted in this process by the reflected wave in the plasma
formed at the interface, and the interface becomes a contacbrona, which in turn compresses the plasma behind it. As a
discontinuity moving toward the axis. This process is prob-result of this focusing, the maximum df, moves onto the
ably observed in the form of extended double-emissioraxis, while the heated core becomes the main carrier of the
structures in the pinhle photographs in Fig. 3. On account o€urrent flowing through the plasma and continues to heat up
the characteristic features of the plasma compression wave,even more as it grows.
wave of radiative and electronic heat conduction propagates Here it is necessary to recall how the instabilities grow.
first into the interior of the dense core, and the shekich  Evidently, we observe them in Fig. 9. As the corona plasma
is much narrower in the dense core medium than in the cois compressed, as usual, the sausage instability responsible
rona is at first still too weak and slow to be at all visible in for the formation of constrictions appears. The existence of a
the overall picture. However, over the long time during fairly sharp core—corona boundary makes the buildup of the
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associated hydrodynamic instabilities of the Rayleigh-
Taylor, Richtmeier—Meshkov, Kelvin—Helmholtz, and other
types possible. The first of these instabilities is due to the
accelerated motion, occurring under the conditions of current
growth, of the matter near the boundary located between the
transmitted and reflected shock waves. The form of the
fronts of these waves is modulated by the sausage instability,
and focusing of the compression wave on the axis of the
core occurs nonsimultaneously in accordance with this
modulation. v
If the nonlinear development of Rayleigh-Taylor insta-
bility is sufficiently strong, jets of coronal plasma are di- \/—‘—
rected toward the axis. This effect should be most highly
developed near the maximum of the current in the regiongg. 10. p—v diagram of a rapid electric explosion of a metal.
where the shock front reaches the axis. Here the flow of the

hot plasma in the jets relative to the less mobile core matter ) )
can give rise to Kelvin—Helmholtz instability, whose devel- influences the formation of the fine structure of the hot spots.

opment in turn engenders growing vortices and bursts of'S @ result, the standard models that ignore the heteroge-
hydrodynamic turbulence. As a result, spots of mixed matteP€0US distribution of matter over the cross section of the
of core and corona matter are formed and cluster inside th&lasma column are hardly capable of describing correctly the
constrictions of the plasma corona. This affects the abovecomPplicated dynamics of exploding wires and need to be

described concentration of current in the core region near thE'odified. , _ _

axis. Thus, in the process of the evolution of the miniature  11iS Work was supported in part by the Sandia National

clusters of hot, dense plasma the dynamo effect can be ek@Poratory(Albuquerque, USAunder contract AJ-6400.

pected to engender near them a series of induction loops of
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intense magnetic fields. Ultimately, the large constrictions = Mal- ivanenkv@sci lebedev.ru
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The effect of electric and magnetic plasma microfields on three-particle electron—ion
recombination via the highly excited states of a hydrogen-like ion is studied. It is shown that
electric microfields impede this process, and at some electron temperature it ceases for
sufficiently high plasma density. Magnetic microfields speed up recombination via low-lying
states only negligibly. The rate of such recombination into non-hydrogen-like ion states is
comparatively higher than for the equivalent hydrogen-like ion states19€@8 American

Institute of Physicg.S1063-776(98)00710-0

1. INTRODUCTION rate of this three-particle recombination process decreases as
a function of the electric microfields and the fieldsr
There are two types of three-particle electron—ion re-equivalently, the plasma densitiésr which the channel for
combination. The first process, which is related to impacthree-particle recombination via highly excited states can be
ionization by the principle of detailed balance, consists of anegarded as closed.
ion capturing a free electron directly into a low-lying state ~ Another interesting problem is to analyze recombination
(including the ground stateThe second process occurs asin non-hydrogen-like iongthis problem has not previously
follows:* An ion captures a free electron into a highly ex- been investigated systematicd)lyit is obvious that a recom-
cited (Rydberg state. It is obvious that the probability of bining electron should “feel” the presence of a strongly
such a process is high, but ionization of this electron fromcharged nucleus because the electron wave function is not
the highly excited state likewise occurs very rapidly. How-zero at the location of the nucleus. For this reason, substan-
ever, the probability of a transition of an electron weaklytial differences should be expected from three-particle re-
bound in a Rydberg state downward along the energy scaleombination into hydrogen-like ion states.
(i.e., into more strongly bound stajesnder the action of

impacts from free electrons is still higher than the probability
2. EFFECT OF ELECTRIC AND MAGNETIC MICROFIELDS

of a transition upward$.The process is reminiscent of dif-
fusion along the spectrum of Rydberg states or diffusion i ON THREE-PARTICLE ELECTRON-ION RECOMBINATION
"VIA HIGHLY EXCITED STATES

energy, since the density of Rydberg states is high and one
can switch to a continuous variablenergy. This second The PitaevsKitheory must be extended to the case of an
kind of three-particle recombination was studied initially by electric field (see the similar extension for radiativand
Pitaevski for recombination in weakly ionized plasmand  dielectroni¢=® recombinations Since the recombination
later extendetlto the case of a relatively cold dense plasmaprocess is quite slow, only the ion component of the mi-
(only hydrogen-like ions were studigd crofield influences it, while the electron component is aver-
These two types of three-particle recombination are reaged. It is obvious that only the electron component can give
lated as follows: Forhvr/e?>>1 (wheree is the electron a magnetic microfield of any significant magnitude, so that
charge andt is the average electron thermal velogithe  one would think that the effect of this field on recombination
rate of the first process in plasmas with electron density up tean be neglected. However, in a nonequilibrium plasma the
108 cm 2 is higher, which corresponds to an electron tem-electron magnetic microfield can be quite pervasive, so that
perature of approximately 30 eV. At lower temperatures theve shall still analyze its effect.
second process predominates. This is why the rate of the First, we shall find the laws governing the dependence of
latter recombination process enters in all calculations, fothe three-particle recombination rate on the comparatively
example, of the recombination scheme of an x-ray I&8er. weak microfields. The field strength at which the rate
The problem is, however, that as the plasma density inehanges substantiallifor example, vanishes, although the
creases, the random amplitudes of the electric and magnetiield in this case falls outside the limits of the initial approxi-
microfields increase. The latter have a weaker effect on remation), and hence the value of the plasma density, will
combination, and in plasma they are usually weaker than theritically separate the two recombination processes—only
electric microfields. The electric microfields simply destroythe channel by means of which free electrons are captured
the structure of highly excited levels of ions in plasftlze  into low-lying states will remain in a high-density plasma.
Inglis—Teller effect and the channel for such three-particle Therefore the quantities determining recombination via
recombination closes. The problem is to investigate how théighly excited states must be modified for the case when a

1063-7761/98/87(10)/6/$15.00 672 © 1998 American Institute of Physics
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field is present. There is only one such quantity, the meanecoordinates. Then, in the case of a transition from a state
squared energy that a recombining electron gives up to frewith principal quantum numbear+1 to a staten,
electrons per unit time. It can be calculated by two methods:

2 2 o
purely classicalll’ or quantum-mechanicalff}. The latter AE=E.—E 1:|HZ A _ 37Tge
n n—

method gives a somewhat higher valdeHowever, we do n2  (n+1)? 2Z nns=nz)
not need to determine the absolute value of the recombina- §

tion rate; it is sufficient to find the relative valas a func- n 3“{‘rBe(n+l)(n —n,—1) 3)
tion of the field. Thus, at first glance both computational 2Z v '

methods are suitable, since the classical calculation of thﬁereIH is the ionization potential of hydrogen angdis the
state of a highly excited electron is completely corr@®re g radius. Fon,>n; (this condition always holds in suf-

the quasiclassical approximation is very close to the purel¥iciently strong microfieldsthe expressiof3) can be simpli-
classical approximatign fied:

In the classical approach the mean-square energy which
a recombining electron gives up to free electrons per unit 21,22 3Zrge
time can be calculated as follows: oE= -

n3 2Z
<a( SE)?

n. (3a)

The second negative term shows that the energy difference
decreases in the presence of a field. We obtain for the square
of AE

ot > :f Ne(AE)?|v—vy|fo(E)F1(Ey)
0
xdI'do dE; . (1)
. _ . N 41fz'(  3z7e
Herev is the velocity of a “finite” (recombining electron, (6E)?= . \ 1- 5
v, is the velocity of a free electron with which the finite n 2E
electron collides and to which it gives up energy,is the  The rate of change of this quantity can be expressed in terms

electron densitym is the electron mass\E=m(v?~v})/2,  of the collisional transition rate between the levels 1 and
do is the Rutherford differential scattering cross section,n 1 |t is easy to see that

dI'=dv,dv,dv,dxdydzis the differential phase volume,
., <a( 5E)2> <a( 6E)2> (1 3Ze325’> @
m E, = - .
I _ 1 ot ot 2E?2
F1(Eq) (ZWT) eXF{ T) 0

is the Boltzmann distribution function over energy, and
fo(E) is the energy distribution function of the finite elec-

(3b)

The recombination ratb is determined by the expressfon

-1

— 32 s
tron. If the latter function is normalized to one electfathgn b=| (27mT) f_x (o 5E)2/o7t> dE ®)
f (Ev=Asl E+ E_ mo? 5 HereA is the normalization constant of the functibgn Just
o(E)= r 2 ) @ as for the classical calculation ¢B(SE)?/ ot), the coeffi-

) ] o cient A contains terms which are proportional only to the
whereZ is the ion chargeA is introduced below The quan- square of%:

tity (1) is very simply modified for the case of an electric ) 7
microfield (similarly for a magnetic field The Stark term A(Z,E)=EY4\2 °2°m¥q 1+ O(2*#IE?)?]. (58

b:ZS,n_S/ZeGnZ 4T3/2f0 eE/T
e

e(#-r), whereZ is the electric microfieldit enters only in  therefore it is sufficient to use the expression given in Ref. 2
the expression fc_)fO(E)), _must be inserted in thé fl_mcnon or 10 for A. Using(4(SE)2/dt), we now obtain
and the expression obtained must be expanded in powers of
the field and the first nonvanishing term taken. d(5E)?

It is found, however, that this first nonvanishing term is <T>
guadratic in the field and does not describe a linear Stark 0
effect (the same is true for the Zeeman effect with the mag- 3zze3\ 17t 71
netic microfield. This is physically correct only for an elec- X( - > ) dE] . (5b)
tron microfield which is rapidly time-averaged, but for a sta- 2E
tionary (on the scale of the problenion microfield this is  Performing the elementary integration we obtain
incorrect and such linear effects are pregémt example, in o
the hydrogen atojn Therefore the effect of the microfields b=bo(1-2ZeIT?). ©)
on the three-particle recombination process cannot be calcidere b, is the recombination rate from Ref. 2, i.e., the rate
lated classically, and quantum calculations must be used. that is always used in calculations of three-particle electron—

As is well known(see, for example, Refs. 12 and)IBe  ion recombination.
Schralinger equation for a hydrogen-like ion in a constant  Now, knowing the physical principles by means of
electric field admits separation of variables in parabolic cowhich electric microfields influence the rate of three-particle
ordinates and introduction of parabolic quantum numimgrs recombination via highly excited states, we can extend the
andn, such that their sum gives a principal quantum numbeiperturbation theory to the case of arbitrary fields. In view of
n which is the same as the principal number in sphericalvhat was said above the classical approach cannot be used
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herel? Therefore we shall use a quantum analysis, determin- 3EZE n i |72
: S . max In H
ing the recombination rate as the electron flux density, due tex;{ 8TE ) f > i
collisional deactivation transitionginto highly excited Mmax/ /Mo @n-1nNen n
stateg, into the ion. This approach was demonstrated in Ref. . 2 \ap
. . . - 34rge f
11. We shall employ immediately an expression determining  — —_—"n2?|dn=—|——| n.n;. 9)
the dependence of the flux densjtythrough the leveh on a4zt 2mmT

the population density,, of this level. Treating the principal
guantum numben as a continuous variable, we have, on
account of the high density of highly excited states,

o"ﬂn +(:8n,n—l

an

The numbemg can be set equal to zero, just as in Ref. 11,
since the integral obtained here is a typical integral that can
be calculated by the steepest-descent method. The preexpo-
nential expression in the integrand can be removed from the
: (7)  integral for values oh determined by the maximum of the
argument of the exponential function. In our case this maxi-

Herea,_,, is the rate of collisional excitation of an electron mum is reached fon=n,,, and it is sufficient to remove
from leveln—1 to leveln, B, ,_; is the rate of the reverse the quantityj, _from the integral(for largen the quantity
process(i.e., the desired recombination rate; for the transi—anflynn2 does not depend on (Ref. 11). For sufficiently
tionsn—n—2,n—n-3, and so on, see Ref. 11; their total |arge n,,,, it can likewise be replaced in the upper limit of
contribution is less than the factor 1)08he principle of integration by infinity, since the error so introduced will be
detailed balance holds for such an elementary transitiogxponentially small because of the second term in the expo-
n—n—1. The Rydberg levels satisfy the requirement nential in Eq.(9). Now, switching from integration over the

_ qguantum number to integration over energy, we can return to

OB=En=Eny<T, n>1. the form(5) (see Refs. 1 and)2

—1)nn

jn=— ap_1nNe
An—_1n

In this approximation, with the exception of the restrictions 35763\ (0 E
indicated above, there are no restrictions on the magnitude of n_j, =b=b, exp( - ) J |E|3’2exr{?

the field #. Therefore 8TEn
—1)2 3726 0 E -1
Bun-1_ My (N7D7 e + )dE f |E|3’2exp(— dE| . (10
@n_1n Ny n2 8ET —o T
2172 2 3sr.e Finally, the expression obtained must be averaged over the
SO et el P~ A distribution of the energy, . for which, just as forE,,

3
Tn® n 27T the Boltzmann law is valid. Setting=3Z#€*/8T2 and cal-

(see Eq.(33). Substituting this expression into E7) we  culating the required integrals we have

obtain a linear differential equation faor, :
a " L p 28 K2\ exp2\a) an
any | 21,22 2 3Ztge in ® ®  1+2Jq+4q/3
- == nin,=———.
| Tn® n 22T @n-1nMe whereK,(x) is a modified Bessel function of order 1. This
Let expression is limited with respect to the magnitude of the
field only in the sense that the conditios1 holds, i.e., its
| Z2 ,. 3Tge applicability is wider than that of the expressi¢s) (we
F=-—=—In(n%)— 2z7 " recall that the latter expression is applicable only for
Tn ZE€¥/T?<1). AsE—0 the quantityq also approaches zero
E, , 3776 and 2\/aK1(_2\/a)z_1+O(q), so that when the numerator
=———In(n%) - and denominator in Eq1) are expanded in a series the
T 8E,T :
term of ordery/q cancels, and the leading term of the expan-
The solution of Eq(8) is sion in powers of the field will b¢essentially linear, just as
. in Eq. (6),
—e(-F) " e
np=e"") Cy— | ———5-edn). b=bo{1—q[In(1/q)+17/6—2y]}. (119
no®n—1n'Ne

Here y is the logarithm of the Euler constant. However, in-
stead of the 2 multiplying the expressi@#e®/ T2 in Eq. (6),
the same coefficient of proportionality in the expansion of
the general expression becomes logarithmic; it depends
weakly on the field.

We shall now make some estimates for hydrogen
#2 )3/2 (Z=1). Let the electron density equal the ion density,

Neh; .

The constantsC; and n, must be determined from the
boundary conditions. For large (in the presence of a field
there is a maximum bound statg,,,; the numben,,,, must
satisfy only the condition which was imposed abowgg,

>1) the Boltzmann—Saha condition is satisfféd:
2 En .
N—n"exp || 57 ne=n;=10"% cm~3, T=1 eV; we take forZ the average ion
microfield for the Holtsmark distribution”,,=8.8en?>.
Heren; is the ion density. The®;=0 and Then q=0.0626 andb=by(1—-0.279)=0.72Db,. We note
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that a calculation using the simple formyB gives a some- 0 ( 5E)?
what lower valueb=0.66%,. Therefore the recombination b=23773/266[ 4T3’2f ef/m < >
rate decreases by almost a factor of 1.5 even for such densi- o oy
ties! Let us now estimate the decrease in the recombination 3., 1 -1
. " zeew
rate for the experimental conditions of Ref. 14 and Ref. 15 X ( 14— dE] ) (14
for which recombination occurred into a state of hydrogen- 2\2m cE¥"?
like lithium, Z=3, n;j=1.67x 101_8 cm™3, and the average afior integrating we obtain
electron temperaturd was estimated as 3 eV. Thenm
=by(1—0.153)=0.84h,, i.e. approximately 15% lower. b( N 2ze87 15
The formula(6) gives virtually the same result fdy: by(1 — Yo —/7—3 .
—0.157)=0.84,. 3ymmeT
In the limit g—o we have We shall now make estimates for hydrogen=(1) in the
case that the plasma is produced by a short intense laser
2\q Kl(z\/a)exgz\/a)_)\/ﬁa, pulse. The electron temperatuie of the plasma reaches
1 keV. Then we haveZz=5.27%,, the average magnetic
b—>3b0\/;(32?§e3/8T2)’3’4/4. microfield for the Holtsmark distribution, where

Ty=8.8r#3\2T./m, ne=n,=10" cm~2, and finally

_ -10) i - :
If a decrease of the three-particle electron—ion recombinatioR — Po(1+0.376<10 ), i.e., the changes induced in the

rate by a factoe is taken as the condition for closure of this "€combination rate by the magnetic microfield are very small
channel. then closure occurs when (since we assumed the electron temperature to be).high

low temperaturelT,=1 eV and.7Z=.77, the increment is
7637, /T?=1.034. (12) four orders of magnitude Igrger but_ still small compared with
the decrease in the electric microfield.

It is easy to see that it corresponds to the criterion In summary, the magnetic microfield in itself cannot
['=72e%Td,>1 for a noniedal plasmad( is the average Strongly influence three-particle electron ion recombination
distance between ionsZ,=8.8en?°=3.88/d?, so that Via highly excited states. However, it catsomewhat
Ze37,,/T?2=3.271%=1 or ['=0.55. Therefore the three- SPeed-up this recombination for high electron temperatures
partic'e recombination Channéiccording to Pitaevsﬁi un- in the plasma. The electric miCI‘Ofield, on the other hand, can
der discussion is essentially closed in a nonideal plasma. Substantially decrease the rate of three-particle electron—ion
Let us now examine br|eﬂy the effect of a magnetic mi- recombination via h|gh|y excited states of the ion even with
crofield on this recombination rate. The Rydberg levels ar€harge densities in the plasmal0'® cm™ and compara-
split by the Zeeman effect. In this case an electron is mucfively low temperatures of the order of several electron volts.
more likely to be captured into states with negative energy ofn @ nonideal plasma this three-particle recombination chan-
smaller absolute magnitude. The analog of the expreg8jon Nnel closes completely.
for the energy difference between neighboring statesl

andn will be*
3. THREE-PARTICLE RECOMBINATION IN STATES
) 5 3 OF NON-HYDROGEN-LIKE IONS
c 21w2% | he 21.Z { hinde
n3 mc n3 \ 2721,mc One would think that as soon as diffusion of the recom-

bining electron along highly excited states becomes the
21 HZZ/ Z\\ et bottleneck that determines the rate of the recombination pro-
=— \ 5 |- (13)  cess under study the non-hydrogen-like nature of the ion
n 2mgE| should be of no consequence, since the arrangement of the

- L Rydberg levels of any ion is very close to the arrangement of
_Here.Z Is the mlgrofl_eld produced by the plasma e!e_:ctrons,the levels of the equivalent hydrogen-like ion. However, this
in which recombination corresponds to the conditions of

o . ) . difference still exists, the recombining electron should feel
guasistationariness. The expression for the relative change .
. o e presence of the strongly charged nucleus simply because
energy as a function of the microfield actually does not con;

. R, . ) the electron wave function at the location of the nucleus is
tainf, i.e., itis a classical number: different from zero. An electron is seemingly additionally
. 3, (compared with the situation in the equivalent hydrogen-like

Z\/Ee.]ﬁi _ zer ion) attracted to the nucleus, i.e., the recombination rate in a
2mdE|*?  2\2m ¢E|¥? non-hydrogen-like ion should be higher than the recombina-
tion rate in the equivalent hydrogen-like ion.
Therefore the relative increment in the energy is less by the  Thus, we must take account of the influence of the
factor \/|E|/32mE2 than the corresponding increment for an nucleus on the shift of the energy levels. This can be done by
electric microfield even if both microfields have the samethe Thomas—Fermi method modified for iofis’
amplitude, which happens only under certémtreme con- Let the nuclear charge in the problem at hand\hend
ditions. The recombination rate in a magnetic microfield carlet the ion charge once again BeThe Thomas—Fermi equa-
be written exactly by analogy to the electric microfield: tion for ions is
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o
A(¢—B)= ——[2me(¢—B)]*2 (16 Lo
3 ﬁ2
0.8
Here ¢ is the desired potential, the constéhis determined i
from the boundary conditiong¢for a neutral atomB=0). 06
Switching to dimensionless quantitids andx 04}
Ne?d xrg(3m)%3 0f
e(¢—B)=— W (17 .

we obtain the Thomas—Fermi equation in the standard form

\/;q),, P32 (173 FIG. 1. Solutions of the Thomas—Fermi equatitia for two types of ions
(curvesl, 2) and a neutral atonficurve3): 1 — Z=0.5N; 2 — Z=0.21N.

with boundaw conditionsr(= R, X=X0) The tangents to the curves @=0 intercept on the ordinate the quantity

ZIN22
D(xg)=0, P(0)=0, xo®'(Xg)=—N/(N—2Z).
(18
We now perform Bohr—Sommerfeld quantization, treating N2 R f(r)dr
the difference between the real potential in which the recom- =n-— f . (21
bining electron moves and the potential of the equivalent E th\/r’g' -

hydrogen-like ion as a correction. The Bohr—Sommerfeld

o< Finally, we make a decisive simplification, taking only
conditions are

the first nonzero term in the Taylor series expansiofi(oj
atr=R. It is obvious that on account of E(L7) or (173 the
+ 5| = \/ﬁf dr second derivative here equals zero and this series starts with
b the cubic terms:

(19

r 2mr? Here B=(37/4)%% 3/2=0.8853 5. The formula(1) makes
Here ¢(r)=Ze®d(r) and| is the orbital quantum number. it possible to obtain an expression for quantum defects. For
We rewrite ¢(r) in the form e(r)=(N-2z)[1+f(r)], theSstates we have=0 and

2 = — —
X\/—|E|+e¢(r)—ﬁl(l+l)_ f(r)_az2(R r)3/(N Z),Bz.

where N—Z
[ 16,/0.8853
B \ e =ng— oo N=Z N872= ;- 5.
ZI(N-=2), r=0, E 357
=14 (—R (22

If the ion charge is taken to be half the nuclear charge

aandb are classical turning points Z=N/2, thenxy=2.75 holds(see Fig. 1 and the quantum

e2(N-2) \/ 2|E|#2I(1+1) defects, of these states will depend on the nuclear charge as
ab=———1x\/1-—————
|E| me*(N—2)2 8o=0.16IN*3,
Fora>R andb<R we can simplify the radicand in E¢L9) For example, let us examine how the theory developed
as above describes the ionization potential of the helium
atom—the standard test for all such calculations. Here
V(a=r)(r—b)— ar. N=2 and the ionization energy is
In this case the Bohr—Sommerfeld conditions reduce to the |, =1,/(1-5,)%2=22.8 eV, (23
expression

which is 1.8 eV less than the true value. This accuracy is

IH’Z 1 adequate for our purposes, since we did not intend to study
- Nt HVld+D) deep-lying states.
We shall study recombination into a state of a non-
Jm&(N-2) (Rf(r)dr 20 hydrogen-like ion just as we did above, introducing the
— .. 2 . . .
5 2blEl Job r quantitiesA and (J(SE)“/dt) and calculating their incre-
4 €] e ments:

and for the inner turning point

b=I(1+1)ry 2

A=Ay+AA,
( 5E)2> <a( 5E)2> <a( 5E)2>
= +A .
a at

Herer§~“ is the Bohr radius of the equivalent hydrogen-like < at
a single principal quantum number we obtain from E2{) The normalization condition is now

ion, ry “=rg/(N—2). Collecting all quantum numbers into
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p? 1+f(r) recombination somewhat at high electron temperatures in the
A(E)f ) —|E|—m+(N—Z)92—}dF=1, (24 plasma.
The recombination rate for a real ion can be tens of
or after expanding in a series in powersEif /e® percent higher than that of the corresponding equivalent
1 1 R hydrogen-like ion. This is important for the interpretation of
N A—0+4772\/ 2m)§(N—Z)e2J'0 \/r_gf(r)dr experiments on recombination pumping of x-ray lasers, es-

pecially when the plasma is produced by a short pulse of a

1 \/W strong electromagnetic field.
=—1+0.026\| —————|. (249 | thank W. Ebeling, A. Foster, D. Beule, and V. P.
A N=2 Shevel'ko for valuable discussions of the results obtained.
For transitionsAl=1 we obtain from Eq(22) This work was supported by INTASGrant 94-193Y, the
o(S5E)? o(5E)? Russian Fund for Fundamental Research jointly with the
< > :< > (1+8—8_1) German Scientific and Technical Socidtgrant No. 98-02-
Jt at [, 04116, and the A. Humboldt Foundation.

(25

J(SE)?
= 1+ .
at m(Z—N) ) )
0 *)E-mail: slon@kapella.gpi.ru

For Z<N-Z the final expression for the recombination rate YMost transitions taken into account in the calculations occur, just as in Ref.

of a non-hvdrogen-like ion. takina account of the thermal 11, with a unit change of the magnetic quantum number and with the
ydrog ! 9 orbital quantum number decreasing by unigsee Ref. 18 so that the

velocity distribution of the electrons, is energy difference in the presence of a magnetic field increases and the

1T N recombination rate in a magnetic microfield increases.
1+ 4 0265 [Xg'N(Trg/e®)
m(N—2) ' N—Z
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Using experimental data on compression and heating of dense metallic plasma by powerful
shock waves, we have analyzed the effect of strong Coulomb interaction on both discrete and
continuum bands of energy spectrum, the role of short-range repulsion, and the effect of
degeneracy on the equation of state for a dense, nonideal metallic plasma. Explosive devices have
been used to produce plasma for which the degree of ionization, nonideal parameter, and
degeneracy varied over wide ranges. In order to increase effects of irreversible energy dissipation,
metal targets of low densities have been used. Thermodynamic measurements have been
compared to theoretical models taking into account Coulomb interaction, short-range repulsion,
and degeneracy of electrons. The plasma models have been shown to be applicable to the
equilibrium properties of multiply ionized plasma in a wide region of the phase diagram
characterized by extremely high paramet¢&=10* K, P=10 GPa, andp

=(0.1-1),], which is beyond the traditional domain of plasma physics. 1898 American

Institute of Physicg.S1063-776(98)00810-3

1. INTRODUCTION devices and pneumatically driven projectiles in such experi-
ments allow researchers to test and analyze theoretical mod-
To date it has been found that the physical properties oéls describing thermodynamic, electrodynamic, and optical
plasmas can be described theoretically in the limiting casegroperties of nonideal plasma composed of cesium, noble
of high temperatures and/or ultrahigh densities, when the ingases, and hydrogen under highly collisional conditions
teraction between plasma particles is weak, which allow§I' =47 (e’/kgT)*=n,Z,=0.1-5 is the Coulomb inter-
researchers to use classi¢Bbltzmann statistios or quasi-  action parametg¢r when nex§$0.1 holds (here .
classicalFermi statisticsself-consistent field methodsThe = V27h2%ImgkgT is the electron de Broglie wavelengthhe
region of intermediate parameters is characterized by highlglectron gas statistics is Boltzmann, and the ionization de-
uncertain theoretical predictions, whereas it is of great pracgree of such a plasma=n./(n,+n;) is within 1-2. Plasma
tical interest in view of applications to power generation beyond this region, namely, a multiply ionized and partly
(inertial thermonuclear synthesis, MHD generators,)eés-  degenerate plasma, can be described by using experimental
trophysics(structure of giant planets, brown dwarfs, &tc. data on compression of solid and porous materials by shocks
and other applications to specific areas. For this reason, ornith pressure amplitudes of hundreds of thousands to mil-
of the most interesting and complicated problems of modertions of atmospheres. Thus far a considerable amount of ex-
plasma physics is the investigation of plasma properties unperimental data concerning dynamic compression of metals
der conditions of strong interparticle interaction, which (see the compendia in Refs. 7—9 and references thengin
makes difficult application of conventional theoretical tech-shocks generated by chemit¥l*and nucled? explosives,
niques (such as the perturbation theory, computer simulapneumatically driven projectileS,and in recent time by con-
tions, etc) and requires extremely thermal energy high den<entrated lasef* X-ray,*® and iort® beams has been accumu-
sites to be generated in physical experimént$he lated.
experimental search for phase transitions in nonideal plasma The data on shock compression, supplemented with
predicted by heuristic models and detected recently in dusheasurements of unloading adiabats in shock-compressed
and colloidal plasmass of special interest. metals, form the basis for constructing equations of state,
Until now the bulk of experimental data concerning which is done by selecting optimal constants in functional
properties of strongly nonideal plasma has been obtained uthermodynamic relationships derived from simplified ther-
ing dynamic techniquet® when materials are compressed modynamic models. At the same time, even under moderate
and irreversibly heated by powerful shock waves. Explosivegressures of 100 to 200 GPa metals melt, and under an in-

1063-7761/98/87(10)/13/$15.00 678 © 1998 American Institute of Physics
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creasing pressure they are sequentially ionized by temperaxperiments. A higher porosity €m<8) was achieved in
ture and pressure. Thus a dense, disordered system of mulamples fabricated from hydrides of these metals and subse-
ply ionized particles, i.e., an electron—ion plasma with aquently dehydrated. Samples of the highest porosity (
complicated spectrum of intense interactions among its par>8) were fabricated from fine powders with grain sizes of
ticles, is generated. several(2—-3 hundreds of angstros obtained by stripping
For this reason, the shock-compressed metal plasma apery fine particles from surfaces of melted metals by a high-
pears to be of interest for testing theoretical models ofpeed helium jet. The oxide content in the powders was
plasma, in view of both the search for phase transitions irchecked. In all cases it was a fraction of one percent. The
plasma® and the analysis of various models of nonideal fea-size of powder particles was selected taking into account the
tures of plasmas in discrete and continuum bands of theicondition of their uniform heating. This circumstance and
energy spectra, and the effects of bound electrons and thesiome technological conditions limited the porosity in our
statistical properties on plasma thermodynamics at high erexperiments tan< 20.
ergy densities. The aim of these studies is, in reality, to ex- The dynamic diagnostic methods of shock-compressed
tend the application domain of plasma mod@ts the region  states rely on the conservation of mass, momentum, and en-
of densities corresponding to condensed states and &gy on the front of a plane stationary discontintfity
megabar pressures, which has not been studied by traditional D_U U2
methods of plasma physics until recently and where the re- v=p"1=——  pP=p, DU, E=E,+ —. (1)
searchers have used either semiempirical approximate equa- PooP 2

tions of staté’ or far-fetched extrapolations of quasiclassical Measurements of shod and particlel velocities in experi-
approximation$? Moreover, thermodynamic measurementsments allow the researchers to calculate thermodynamic
of this kind in the region of the metal—dielectric transition quantities, namely, the pressue specific volumeV, and
might be used in testing the hypothésisf a relation be-  specific internal energ§ of a shock-compressed material.
tween metallization and the first-order phase transition in Shock velocities in porous targets Shaped as pe||ets of
disordered materials. thickness 3—4 mm were measured using electrical contacts to
This paper presents experimental data on generation Qfetect shock fronts. At pressures beyond 10 GPa, we used
nonideal plasma of copper, nickel, and iron through comelectrically insulated pins with a diameter of 0.14 mm fabri-
pression and irreversible heating of porous samples exposeted from the PE-14 enamel-coated wire. At lower pres-
to powerful shock fronts in either plane or converging con-sures, when such shock detectors are not reliable, measure-
figuration. Measurements of shock velocities in tested anghents were performed using piezoceramic probes. The
reference samples allow us to calculate, using conservatiogxplosive measuring devices and configuration of shock de-
of mass, momentum, and energy, thermodynamic parametefsctors placed on samples allowed us to measure the shock
of shock-compressed plasma and compare them to results gélocity with an uncertainty of 1—1.5%, moreover, we could
theoretical models of multicomponent nonideal plasmas. check the shock front symmetry in samples using the time
differences among signals from different probes placed on
the same leve(on the same plane of a sample
In our experiments, we used explosive generators of
The interesting range of parameters of strongly nonideaihree types. The first includes so-called contact devites,
plasmas corresponds to material densities lower than thehown schematically in Fig. 1, which were used in experi-
densitiesp, of solids and energies per particle higher thanments at low compression. After the plane detonation front
the binding energies of atoms and molecules in solids emerges at the free surface of an explosive, explosion prod-
(~1 eV per particle In generating such states of metals, weucts “softly” expand across an air gap, hit against a metallic
used shock compression of finely dispergpdrous metals, striker plate, and generate a quasi-stationary shock wave in
which enhanced the effects of irreversible energy dissipatioiit. In this process, the striker velocity becomes approxi-
on the shock discontinuity front and in higher plasma over-mately constant. By varying the composition and thickness
heats. Powders of metals containing at least 99.5% of thémas$ of the explosive charge, one can measure parameters
host material were tested. The samples were cylindrical pelef shock-compressed porous materials over a fairly wide
lets with a diameter-to-thickness ratio higher than 2.5 and theressure range.
required density. They were pressed from powders or fabri- Shocks in shields of devices of another type were gen-
cated from metal hydrides using a dedicated technique. Therated by hitting them with relatively thin met@luminum,
high diameter-to-thickness ratio was needed to limit effectgron) plates of thickness 1.5-4.0 mm accelerated to veloci-
of perturbations generated on the sample side surface on tlies of 4.0 to 6.5 km/s. A diagram of such a device is given
shock front. in Fig. 2. In this device, explosion products drive an alumi-
Samples of relatively low porosities,<Im=py/pge<4 num strikef® of thickness 4 mm pressed into a steel disk of
(wherepy is the initial density of the solid metal angyis  the same thickness. A detonation wave arriving on the metal
the density of a sample were manufactured by pressing surface generates in the steel disk a pressure higher than in
powders in special molds or, fan=4, immediately in a aluminum, thereby generating an additional thrust on the
measuring cell. The powder particles were smaller tharedges of the aluminum disk and equalizing the flying striker.
100 um and in some experiments were varied to estimate thén other devices of this type, steel plates with thicknesses of
effect of the grain size, which proved to be negligible in our1.5 to 2.2 mm were used. The pressure in such devices is

2. GENERATION AND DIAGNOSTIC OF PLASMA
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FIG. 1. Diagram of the facility with contact strikel: — high-explosive
lens; 2 — inertial equilibrating support3 — cylindrical explosive charges;
4 — striker; 5 — shield; 6 — tested samples, — electric pins;8 — 5-mm
air gap.

approximately twice that in plane contact devidésgs. 1

Gryaznov et al.

velocity gradually increases as it converges to the center. By
placing targets with the sample to be tested at various dis-
tances from the center, one can generate various pressures in
them. The specific feature of these devices is the time depen-
dence of the propagating shock wave parameters owing to
the spherical symmetry. This circumstance impelled us to
introduce smallabout 1% corrections due to the difference
between the shock convergence parameters in the shield and
sample.

In all the devices discussed above, the shields were made
from aluminum. This material was selected because its
Hugoniot inP-U coordinategwhere the problem of decay
of the discontinuity at the shield—sample interface is solved
by the reflection techniqd®d is close to those of porous met-
als and, as was shown by Bugaeataal.,?® the specular im-
age of the shock Hugoniot in tHe— U plane can be used in
calculating compression parameters in such powders. This
makes calculation of the particle velocity behind the shock
front and other shock compression parameters notably easier,
more reliable, and less uncertain. In accordance with our data
reduction routine, each value of the shock velocity measured
in each experiment is the mean of three to eight independent
measurementéhe number of experiments at lower pressures
was large). Therefore the relative rms error of the shock
velocity in all sets of measurements was less than 1-1.5%.
The uncertainty of the particle velocity in the sample mate-
rials was in the same range. The error in the determining the
amount of compression

and 2. The highest pressures could be generated in facilities Ao=A(plpog) = o(ma—1)(|AD/D|+|AUIUY|)

with spherical converging strikef§shells”) accelerated by

explosion products of a converging detonation W&

increases withm and o and is considerably higher at maxi-

Figure 3 shows a diagram of such a cumulative device. Théum m, although this error was partially compensated in
striker in this case is a steel shell about 3 mm thick, whoséhis region because the compression satisfied].

FIG. 2. Diagram of the projectile generator of shock waves? — the
same as in Fig. 18 — steel disk.

Nonetheless, judging by the good agreement among nu-
merous measurements for various materials, the most prob-
able experimental values were found with fair precision. This
is also true for the region of lowest pressures, where mea-
surements are especially susceptible to errof® endU.

3. EXPERIMENTAL DATA AND THEIR ANALYSIS

The purpose of our measurements was to determine ex-
perimentally the compressibilities of porous samples in the
region of plasma states that had not been investigated earlier
in metals: for nickel, we have studied the region of highest
possible porositiesni=15 and 2 and shock pressure be-
yond 50 GPa, which are considerably higher than in earlier
experiments$?8for copper, we have obtained data at poros-
ity m=10, which is also higher than in earlier publi-
cations?’?°In addition, we have studied samples with poros-
ity m=7.2 and particle sizes of 100 A for comparison to
previous measuremen{performed at particle sizes of about
100um. The measurements of iron compressiomat5,

10, and 20 have been compared to and analyzed in combi-
nation with the earlier dat3.

Before proceeding to the analysis of the experimental
results, we recall that calibrations were performed eafif&r
in order to check whether the experimental data are affected
by the sample humidity, thickness, presence of air inside
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0.3mm ! 0.2-0.4 mm
FIG. 3. Diagram of the cumulative shock
generator of spherical geometd/— hemi-
spherical high-explosive charg@;— steel
shell; 3 — aluminum shield;4 — tested
samples5 — electric pins.
Fe
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them, and particle sizes. In those experiments, data obtained The common properties are the following:

on different samples were compared: powders baked in iso- 1. The initial sections of the Hugoniots form fans of
lation from the atmosphere and powders fabricated in airstraight lines with different slopes converging to poifds a
samples from which air was pumped out; samples whosearrow intervalAD) on the ordinatey =0) at a distance of
thicknesses differed by an order of magnitude; sample400—200 m/s from the origin. This value may correspond to
whose particle dimensions varied by a factor of 20 to 30. Ithe speed of sound in air reduced by the presence of metal
was found that the data obtained in testing experiments wengarticles, which is plausible for Hugoniots in the case of high
equal to those obtained in the main series of experimentporosity. This hypothesis runs into difficulties when we ana-
within the measurement error. Keeping in mind these resultdyze HugoniotsD(U) in the case of low porosity, whose
we limited our testing experiments to the investigation of theinitial sections interpolated towards the ordinate also have
grain size effect. All new data are listed in Table I. The datathis property.

for nickel and copper are compared to earlier measure- 2. The slopedD/dU of initial sections of Hugoniots
ment$”?8in the D—U coordinates in Fig. 4. varies over a wide range between approximatel§nigkel,

The comparison between different experiments showsn=1.1) and 1.1 fn=20). The slope of the Hugoniot sec-
that measurement data for a copper plasma obtained for th®ns corresponding to higher pressures changes two times
samples with grain sizes differing by a factor of 100@® (this was observed in experiments with Cu and Ninat
m=7.2) coincide. Hence follows the conclusion that the=10 and 2@: first in the regions of relatively small shock
shock front width, which depends, possibly, on the grainvelocitiesD <8 km/s(in nickel it changes from 1.7 for low
size, has little effect on measurements, and their interpretas to 1.4 for higher values then the slope becomes approxi-
tion is straightforward. The new experimental points formately equal to the theoretical value of 1.2—1.3 calculated by
nickel are located on extrapolations of Hugoniots obtained athe Thomas—Fermi self-consistent field motfel.
lower pressures, which is quite natural. The set of measure- 3. The change in thdD/dU slope on the initial section
ments given in the graphs support the conclusions given imeans, physically, that in the process of compression all
Ref. 28, which apply, as one can see, not only to nickel, bupores have been filled, and the sample density is dlfise
also to copper, iron, and, possibly, to all the materials studthe given porosityto the crystal density of the material. A
ied. further increase in the pressure should compress the material

D, km/s D, km/s D, km/s

12

10

FIG. 4. D—U Hugoniots of copper, nickel, and iron.
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TABLE I.
Experiment TheoryEgs.(15—(24)]
M D, km/s U, km/s P, kbar p, glcn? H, kd/g p,glen®  T,K H, kd/g
Nickel
15 11.5 9.36 637 3.18 56.65 3.08 53300 56.97
20 11.9 9.74 516 2.42 61.6 2.48 54000 61.3
Copper
7.2 1.21 1.00 15 7.15 —4.57 9.61 4680 —4.6
7.2 1.88 1.58 37 7.86 -3.55 8.71 5796 —3.58
7.2 2.3 1.92 55 7.58 —2.7 8.03 6803 —2.72
7.2 291 2.40 87 7.08 —1.158 6.99 8835 -1.15
7.2 3.40 2.75 120 6.49 0.482 6.18 11248 0.527
7.2 5.25 4.04 263 5.38 7.767 5.27 19616 7.81
7.2 6.33 4.79 376 5.09 1.36 5.26 24511 1.35
7.2 7.09 5.31 467 4.94 18.3 5.27 28065 18.0
10 1.21 1.01 10.9 5.30 —4.57 9.57 4680 —-4.61
10 1.90 1.64 28 6.36 -35 8.52 5880 -3.55
10 2.30 2.00 41 6.92 —2.69 7.78 6860 —-2.72
10 291 2.52 65 6.66 -1.15 6.58 8900 -1.15
10 3.40 2.90 88 6.01 0.379 5.68 11150 0.422
10 4.15 3.44 127 521 3.05 4.86 14830 3.14
10 5.35 4.29 205 451 8.47 4.47 20462 8.49
10 6.58 5.08 293 3.92 14.9 4.39 25800 145
10 8.02 6.10 437 3.73 25.1 4.35 32880 24.2
10 11.33 8.69 880 3.83 55.5 4.26 51700 54.9
Experiment TheoryEgs.(2)—(14)]
M D, km/s U, km/is P, kbar p,glen® H, kd/g p, glen®  T,K  H, kg
Iron
5 4.16 3.09 202 6.10 0.662 6.09 11640 0.628
5 5.38 3.81 322 5.38 5.82 541 17400 5.70
10 4.18 3.50 115 4.83 1.09 4.68 13530 1.13
10 5.35 4.39 184 4.37 6.4 3.87 19940 6.67
10 6.62 5.20 270 3.66 13.5 3.59 25900 13.5
10 8.12 6.23 397 3.38 23.7 3.50 33150 235
20 1.15 1.03 4.6 3.58 -6.78 6.35 4860 -6.81
20 1.90 1.73 13 4.44 —5.63 7.54 5740 —5.68
20 2.36 2.19 20 5.37 —-4.7 6.89 6700 —4.73
20 2.93 2.73 31 5.60 —-3.2 5.91 8290 —-3.22
20 3.40 3.15 42 5.33 —1.68 5.00 9990 —1.66
20 5.45 4.79 102 3.24 7.14 2.68 19920 7.47
20 6.75 5.73 152 2.59 14.9 2.38 26290 15.1
20 8.44 6.89 228 2.13 27.0 2.25 35150 26.7

along low-compressibility branches of Hugoniots. Depend-ables, namely the pressure and specific volug{®,V). On
ing on the porosity, the slopdP/do of the compression the other hand, the traditional physical interpretation of non-
curves should change from positive valué®r m<2) ideal plasma is based on the temperature and related nonideal

through zero(at m=2-3) to negative valuesn(>3). All  parameters, electron degeneracy, degree of ionization, etc.,

these types of Hugoniots were observed in experiments witkhys it requires the knowledge of functidifP,V). The tem-

iron, copper, and nickel. perature can be derived from the empirical caloric equation
of state using Zel'dovich’s ide®. This procedure was previ-

4. THERMODYNAMICS OF NONIDEAL METALLIC ously performed for cesium plasm&a®? Although this ap-

PLASMAS: COMPARISON WITH EXPERIMENTAL DATA proach shows promise at the present time, it cannot be fully

Before proceeding to the analysis of experimental datai,mplemented in the case of shock-compressed porous mate-
note that their physical interpretation is rather difficult. In fials discussed in this paper. Therefore it seems reasonable to
dynamic experiment$ the thermodynamic characteristic di- separate the two stages: the first is analysis of directly mea-
rectly derived from measurements is typically the so-callecsured quantities without calculations based on physical mod-
caloric equation of state which determines the internal enels, the second is analysis using specific models of plasma.
ergy as a function of thermodynamically conjugated vari-  In characterizing experimental results as a whole, it is
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useful to consider the internal enerfy-densityp diagram interaction among plasma particles, which are treated sepa-

supplemented with isotherms of the material calculated usingately in this model:

a specific model® Figure 5 shows th&—p diagram for

nickel_.34 It glearly shows that the ent.ire phase_diagram ofthe p=> Foy4 FO+F% e - )

material (diagrams for other materials are simjlazan be

divided into two regions with radically different shapes of The statistics of atoms and ions is Boltzmann, and their con-

thermodynamic functions. The major part is the region ofiipution is

relatively low-density p<<pg) “gaseous” plasma, which is

characterized by two properties, namely, the gradual de- 0 njfijs

crease in the energy in the process of isothermal compression Fi= E NjkgT InT -1

i i

and clearly seen so-called “shell oscillations” of all thermo-

dynamic functions over wide intervals of densitisee for ~Herekg is the Boltzmann constan@; is the full partition

details Ref. 3% For p> p, the system is characterized by an function of atoms or ions of thgth sort, A; is the thermal de

abrupt increase in the energy and generalized compressibilifgroglie wavelength of particles of specips

factor Z(np,e,Ne, T) = P/P'a which is traditionally inter-

preted as “ionization by pressure.” In the high-density limit,

the_ compression leads to the_ region (_)f_ states adequat_ely dg+ Electron degeneracy

scribed by the model of mobile nuclei in a weakly nonideal . o

gas of degenerate electrons. The thermodynamics in this re- The effects of electron degeneracy are important in this

gion has been fairly accurately described using the well detegion of the phase diagram since the degeneracy parameter

veloped technique of cell representatigri&:3® of electrons can be up to several units:

_ Between the two reg?ons descr_ib_ed above, there is atran- NeX3~1, x2=2mh2/mkgT.

sitional region characterized by minimal values of the inter-

nal energy and compressibility factor, and by maximal dedn the quasi-chemical representation, which separates elec-

viation from the “weakly nonideal” condition. The depths trons into two types, namely free and bound, the effect of

and positions of minima on the curves determined by thalegeneracy is manifested primarily in the ideal-gas term

thermal and caloric equations of state characterize the regiogince it radically changes the density dependence of the pres-

where the uncertainty of our knowledge of thermodynamicsure and chemical potential. The main effect of the electron

properties of hot compressed matter is the greatest. The#egeneracy on the mechanism for nonideal behavior is that it

unique feature of shock-compressed porous samples is thegduces the electrostatic screening by electrons as their de-

they allow us to obtain information about dense, highly non-generacy factor increases. In the limiting case, when the

ideal plasma in this interesting region, which is most difficult compression is extremely higtelectrons are excluded from

for interpretation. this mechanism, and the screening of ion charges is de-
The chemical modéf®*3is based on the representation scribed by the so-called ion mixture model, a version of the

of the free energy of a quasi-neutral mixture of electronspne-component plasma model. In this study, the electron de-

ions, atoms, and molecules as a sum of ideal-gas tEtﬁps generacy is taken into account mostly by including this effect

for all components and the terms responsible for all types oin the ideal-gas term of the free energy:

()
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e ue\ 2 e interacting electrott (it was described by losilevskfi as a _
[ha—_l_ll,z(kB—T)—glyz(kB—T”, (4) coupled model of a.one—com_ponent plasma and applled
to the thermodynamics of mixed hydrogen and helium
po o EO 2 1yl o/ KsT) plasma&®) showed that the range of parameters achieved in
e _ £ _Te _232Mel"8 . (5 shock compression of porous samples of most metals are in
NekgT 3 NekT 3 1y pe/ksT) the region of an anomaly similar to a phase transifiean
Here the electron density, and chemical potentigh, are ~ der Waals loopspredicted by this approximation. The shape

o 2VkgT

FO=———
e Kg\/;

related by the equation and position of this feature essentially depend on the maxi-
. mum ionization degree allowed by the calculation technique.

n 7(3=i| (ﬂ) (x)= fx y'dy ©) Such sensitivity of the equation of state to the choice of the
ere \/; vz keT)' ! o 1+expy—t)’ approximation selected for describing the Coulomb colli-

sionality is typical for most of the Coulomb collision models

In the chemical model of plasma, electron degenerac uggested in literature for this region of parameters.

mainly causes an effective shift of the ionization equilibrium
toward low ionization, and also generates an additional term
in the equation of state describing an effective repulsion. 4.3. Coulomb interaction

The Coulomb interaction was taken into account in the
Debye approximation for a macrocanonical ensefiiblin
The analysis of nonideal effects in this study was perthe case of multiple ionization, see Ref.)44
formed in two stages. On the first stage, we employed the Q FSN =
SAHA-3 computer code, which had been extensively used in = iHi_ T
applications:*444-%8 |t involves the minimum number of VkgT VkeT keT

4.2. Nonideal effects

steps consistent with achieving satisfactory agreement within 3 T n.z
experimental uncertainty with data on shock compression of => n,— b _ n,— =———[. (7
various materials, such as noble gases, cesium, high-porosity a 24m 3 6 1+ziFD/2

metallic samples, etc. Some simplifications of this approach B . ~
are needed in order to calculate the equation of state togethEiere the modified Coulomb collision parametfp ex-
with the gasdynamic calculations, which require a lot of aux-Pressed in terms of activities is given by the equation

iliary calculations. N 2 \2 o2 |3 2n
This simplified approach relies on the following approxi- r%: _~) :477(_) S ——— (8)
mations: keTrp keT ) “@ 1+22Tp/2

1. The effect of electron degeneracy is included only in
the ideal-gas term.

2. The effect of the Coulomb nonideal behavior is de-
scribed by the so-called Debyeing) approximation for a
large canonical ensembfté?#®

3. In the calculation of excitation partition functions for
atoms and ions, only their ground states are taken into a
count.

where T p=1/kp is the modified Debye screening radius.
Note that the collision parameter is different from the con-
ventional Debye collision parametEr, :

I2=4m(e¥kgT)%>, n,z2.

QI_'his approximation is equivalent to the classical Debye—

4. The intense short-range repulsion among atoms anHUCkel approximation iq the !imifD—>0 'and differs by the
ions is taken into account through the approximation of hardn'o'[albly sm_aller corrections in the region of moderate and
spherical shells with essentially different sizes of atoms andtong nonideal behaviolp=1).
ions with different ionization numbers.

5. Atoms and ions are assumed to be “permeable” for, 4 gport.range repulsion among ions and atoms

electrons, i.e., the latter are not affected by the approxima-

tion of hard spheres and their density is not affected by the ~The effect of overlap between electron shells of atoms
total volume of ions and atoms. and ions at high compression degrees leads to a strong short-

6. The approximation takes into account an additionaf@nge repulsion among heavy parlticles. This effect is taken
short-range attraction among atoms and ions, which effedNto account by the model of a mixture of hard spheres. In
tively describes the binding energy of condensed materialsOUr numerical calculations, we used the Mansoori foriffula

One advantage of the suggested simplified approach in

F
terms of numerical calculations is that in principle it does not ﬁEfHSM( v)=X i 5 +3Y 1 ”
require taking into account the Coulomb nonideal behavior [ (1-v) 7
and the partition functions of the excitation, and the system +(X+1)In (1—»), )

cannot spontaneously lose its thermodynamic stabitlg
matrix |du;/dn;| is positive definite at all compression fac-
tors of plasm&™). Special calculations taking into account
the ion nonideal behavior described by the ion mixture o o
modef® and the electron nonideal behavior by the model of  X=(r?)3 (r®) 72, Y=r?r(r3) ™. (10)

N

T
3

V=

|
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0 15  p glem®
— FIG. 7. Hugoniots of porous nickel: — calculations by Eq92)—(14) with
e o b e de s o a e o b v b b the sum in Eq(14) performed over all heavy particle®:-11— experimen-
1 2 3 4 5 6 7 .. at units tal data:2 — Ref. 62;3 — Ref. 63;4 — Ref. 64;5 — Ref. 29,6 — Ref. 27,

m=2; 7 — Ref. 27,m=2.32; 8 — Ref. 27,m=5.62; 9 — Ref. 65;10 —
FIG. 6. Shifts of the ground state energies of copper atoms and ions calciRef. 28;11 — this work.
lated by the Hartree—Fock methdtf’

determination of the optimum radius of hard spheres corre-
The contributions of this repulsion to the pressure, energySPonding to the normal density from a fixed packing param-

and chemical potential derive from Ed9) and (10): eter
APuysw  dfusm(v)  Awi Ifsm(v) v=4r> nir33=0.45 (13)
EinikBT_ 2% ! kB_T_fHSM(V)—’_; nj t9ni ' o

The radius calculated in this manner leads to the best agree-

ABusu=0. (11) ment between the first maximum of the pair correlation func-

In calculating the radir; of particles, we used two pro- tion for the system of hard spheres and experimental data
cedures. The first is based on the so-called confined atowbtained for a set of normal metafs.
approximationt** An atom (or ion) is placed in a spherical
cell with hard walls, and its electronic structure is calculated
by the Hartree—Fock methdtiat a variable cell radiu¥>5” 4.5 Additional attraction
Calculations by this model are given in Fig. 6, which shows Calculations based on the approximation
energy shifts for the ground states of copper atoms and ior@)_(13)34~48'58v59produced satisfactory agreement with ex-

as functions of the cell _radius. o ~ perimental Hugoniots for metals at relatively high shock ve-
Further, the “effective” cell radius is calculated using |ocities, i.e., at high pressures and temperatures. The short-
the relation range repulsion is of fundamental importance for this

AE(r;)=const |, agreement between theory and experiment. Our calculations,
however, demonstrate that there is a region of relatively low
whereAE(r;) is the ground state energy shift,is the cor-  pressure®¥>® corresponding to low shock velocities where
responding ionization potential, angl is the atom cell ra-  the approximation(2)—(13) cannot yield solutions of the
dius. Rankin—Hugoniot equatioifl) for D(U) with any set of
A simpler procedur®°**%is based on the assumption radii {r;}. The reason is that the approximatio®)—(13)
that the atom’s structure is hydrogen-like. In this case, eacfoes not take into account the binding energy responsible for
ion is characterized by a size related to the ionization potenthe existence of condensed states of materials. In order to
tial: improve the accuracy of extrapolation to the region of low
r~rol(Zi+ 1)1/, (12) shock velocities, we supplemented E—(13) with terms

) ] o effectively taking into account this binding energy in the
wherer, andl, are the atomic radius and ionization poten- form

tial, r; andl; are these parameters for thé ion, andz; is 1is

the ion charge. AF=AE=—A(E Ni> V=% AP=G8(AEIV),
In real calculations, both these procedures were used

only in determination of the ratios between the atomic radius (14

and those of ions, whereas the basic atomic radius was de-

8
—— -0 . =
termined using the Ashcroft—Lekner ridfwhich prescribes Api==(1+o)V (Z N') , A,d=const.
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1 S it S empatin FIG. 9. Hugoniots of porous irort — calculations by Eq91)—(14), sum-
mation over all heavy particles in E(lL4); 2 — experimental data from Ref.
10tk 27 (m=2.9); 3 — experimental data from Ref. 24;— this work.
Hugoniots for materials of low porosityncluding the Hugo-
L niot of the solid material All these data have been summa-
| rized in one graph in order to demonstrate that, even in the
simplified form given above, the chemical model of plasma

2 4 6 8 p, glem® provides a satisfactory description of the entire set of experi-
FIG. 8. Hugoniots of porous nickel at=10. Calculations by several ver- mentgl data for nickel H_l'lgonIOtS' . .
sions of the model are compareid— experimental data2 — ideal plasma _ F'QU_re 8 ShOWS testing CalCU|at_|0n5 performed with the
with atoms in ground state8;— same a® — plus Coulomb interactiod ~ aim of illustrating the effect of various components taken
— same as3 — plus partition functions calculated by the Planck—Larkin separately on the thermodynamic calculations based on the
method;5, 6 7—same a2, 3,4 — pIEs effects of hard spherical shel&; model (2)—(14). We stress once again that the shapes of
— calculations by Eqgs(2)—(14) at =1, but sums over atoms are per- . N . "
formed in Eq.(14); 9 — same as, but shell radii 20% larger. Hugoniots in the range of relatively low shock velocities
indicate the necessity of taking into account both the intense

repulsion and effective attraction between heavy particles in

These corrections are independent of temperature. Thé&e chemical model.

choice of =1 corresponds to the traditional van der Waals  Calculations are compared with new experimental data
approximation. It is generally accepted thit 1/3 best de-  for iron plasma in Fig. 9. Note that the choice of repulsion
scribes the “metallic” (plasma type of chemical bond in (inherent particle dimensiopsnd attraction parameters of
condensed materials. In this case, the sum is performed ovéfte model was based on the same scheme as previously.
all heavy particles, so that correctiofis) do not shift equi-  Table Il lists radii of atoms and ions for copper, nickel, and
librium ionization parameters. According to Likal®drthis  iron used in our calculations. Our results clearly indicate
value of & corresponds to the form of attraction in “ex- that, whereas the agreement between experiment and theory
tended” metals, i.e., metals at intermediate densities corrg$ satisfactory for both nickel and iron at high porositiaad

sponding to the critical point on the gas—liquid line in the the largest achievable porosity factors of condensed metals
phase diagram. it degrades gradually as the plasma density increases in ex-
periments with samples of lower porosity.
) ) Calculations and experimental data for copper plasma
4.6. Comparison between experimental data and are compared in Fig. 10. The results of earlier experi-
calculations ments$*48585% gre supplemented with new measurements.
Hugoniots of porous nickel, copper, and iron calculatedOne can clearly see that the agreement between theory and
using the model described by Eq®)—(14) are plotted in  experiment is satisfactory. At the same time, the discrepancy
Figs. 7—10. Figure 7 shows Hugoniots of porous nickel calbetween calculations and shock measurements of the Hugo-
culated earlie¥*8°8>%and compared to experimental data niot atm= 10 in its upper section is remarkable. In analyzing
available at that timé.These data have been supplementedhis discrepancy, one should take into account the fact that
with our recent measurements at porosities 15 and 20. It  the theoretical model describing interactions in the system is,
is noteworthy that our results are in good agreement witlobviously, oversimplified, and its results are highly sensitive
previously available calculations. Figure 7 also compareso changes in the set of particle sizes selected in our calcu-
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lations. This is supported by additional calculations per-basic postulates of one version of this approach, which has

formed with slightly changed(increasedl particle radii, been used in our work, are formulated as follows.

which are also plotted in Fig. 10. 1. The depth of the electron—ion pseudopotential de-

These supplementary calculations indicate that the dispends on the positioa of a conventional boundary, which

crepancy between the experimental data and previous calcis, generally speaking, variable and separates free and bound

lations is within the natural uncertainty of the chemicalstates of each electron—ion pair. At the same time, this

model in the range of plasma parameters under consideboundary limits the bound states taken into account in calcu-

ation. At the same time, if we take into account the featuredating the excitation partition function of atoms and ions. The

of copper Hugoniots measuredmt 3 andm=4, which can  ion—ion and electron—electron interactions are still described

be described only by using a model equation of state with amsing the Coulomb shape of potential:

effectively higher “rigidity” than in the model with a set of 7 a2

fixed particle sizes selected in earlier studfé&°8>9(these dE(r)=— Al (1—e ")

features were detected earffet® and analyzed in detAf), © r '

we can conclude that the model description of thermody- 7 7 g2

namic properties of shock-compressed plasmas is far from g .=0(n,T), ®* . (r)= = a=ie. (15

universal, and individual properties of specific metals should r

be taken into account more accurately than is suggested by 2. The approximation is constructed on the level of pair

the simplified calculation technique described in this paper.correlation functionsF,,(r), whose forni®®® at long dis-
tances is the same as in the high-temperature limit of weak

_ _ _ _ collisionality for a system with interaction potentidl5):®
4.7. Comparison with pseudopotential calculations

: N . e P—e ™
Along with the approximatior{2)—(14), in our calcula- Fei(r)zl"'\Peif- (16)

tions of thermodynamic parameters of plasmas generated by
shock compression of porous samples we also used a model 3. At short distances, the ion—ion and electron—electron
taking into account collisional effects and based on one vereorrelation functions are modified in order to get rid of the
sion of the pseudopotential methddr details see Ref. 52 flaw inherent in linearized*ring” ) approximation? (like

Its underlying idea is to describe the effects of Coulombthe Debye—Hukel approximatiopy namely, the so-called
collisionality in terms of free charges interacting throughnegative probabilitiesherei andj are ion indices

certain effective potentials. This approach was used with
success in various studig¢Refs. 40, 67, and othetsThe E

— KT
”::I._BUT, r?Rij, Fijzo, rﬁRij. (17)

4. The parameters of correlation functiofd$) and(17)
as functions of interparticle interaction potentials are deter-
z 0 1 2 3 4 5 6 7 mined with due account of the local electric neutrality con-
o 200 1700 1 1a0 1 110 oo os dition (18),"* which is unrelated to weak collisionality. In
Ni 200 1684 127 110 100 084  0.80 addition, an approxmate relatlo_n between the amplitude of
Fe 227 200 158 118 1075 0978 0904 — electron—ion correlationgscreening cloudand pseudopo-

tential depth®Z,(r=0) (19) is introduced:

TABLE II.
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The problem of taking into account bound states under

f [neie[Fei(r)_1]+E nijezj[Fij(r)_l]]dr: —Zj, conditions of partially ionized strongly nonideal plasma has
(18)  along history, and it has not been fully resolved by this time.

Results of a set of earlier experimetit® >~ led the re-

Fei(0)=1+V(0)~pBP;(0), F;(0)~0. (19 searchers to a conclusi¢see a detailed discussion in Ref. 1,

) ) Ch. 4 about an unexpectedly small contribution of excited

5. The calculation of the screening parameteshould  giates to the caloric equation of state in comparison with
take into account gradual exclusion of electrons from screensgyits of some models that had been set forth by that time.

ing as their degree of degeneracy increases, so that in Hgere are publications which theoretically justify the low

limit of their full degeneracy the screening is fully controlled qntripution of excited statd€. A comparison between ex-
by the ion—ion correlations: perimental results discussed here and calculations by the two

0 0 models does not help in resolving this issue because, given

2402 e 5 M he real f it is difficul i
K2=A4me + —|. (200  the real accuracy of our measurements, it is difficult to sepa

e T I rate and estimate the effect of excited states of atoms and

ions on the full equation of states for the plasmas studied in
“the reported work.

Another problem on which the theory of nonideal
plasma is traditionally focused is the existence of the so-
APV= (1/3) (2AE—AE o) = (1/3) (2AEg+ AEp), called plasma phase transition different from the conven-

(21)  tional gas-liquid transition in metat§:*® Our experiments
have not detected any gas-dynamic anomalies that could be
AE:VJ S o (1™ (r) associated with an unknown phase transition in the
2 MiNeFei ei system?3% |t is noteworthy that both approximation&)—
(14) and (15—(24), used in our calculations also have not
produced any indications of such anomalies.

6. Corrections to thermodynamic quantities should in
clude the shiftAE,;, of the mean kinetic energy of free
charges derived from the virial theorem:

+2 nin,-Fi,-<r)<I>r;<r>}dr, (22)
]

Ze?
AEpo= _VJ (Z nineFei(r)_lr
5. CONCLUSION

iZ;€?

_.2;' ninjFij(r) rJ ]dr, (23 Using porous samples of copper, nickel, and iron with
densities a factor of 10 to 20 lower than their normal densi-
ties and recently developed generators of shock waves of

Aﬂi:f |neFei(r)‘D§i(r)+z njFij(r)q)i*i(r)}dr spherical configurations, we could penetrate into the region

. (24) of high temperatures>10* K, densitie5p=(0.l_—1)oo,
and pressures of several tens of gigapascal, which had been

(hereAEp, and AE are corrections to the potential and full little investigated until recently.
internal energiesy; and u. are chemical potentials of free It seems interesting to measure in future the compress-
charges Note that in the regiod’'p~1 the approximation ibility of superporous metallic samples with initial densities
(15)—(24) is incompatible with the traditional relationship (0.05-0.1) g/cri. Such conditions can be created using
between corrections to the pressure and internal energy ofietal vapors. Although this experiment is technically diffi-
free chargesAE=3APV. In comparison with many Cou- cult, it seems quite feasible.
lomb approximations suggested in literature, this approxima-  The chemical model of plasma is sufficiently versatile to
tion leads to an effect that is equivalent to an additionalprovide a satisfactory description of metal plasmas in the
electron—ion repulsiof? which is a function of the collision- regions of condensed matter densities nontraditional for this
ality parameted’'. model and megabar pressures, when we have to deal with

Calculations of shock compression parameters for copseveral mechanisms of strong correlations among plasma
per and nickel based on moddl5)—(24) are listed in Table particles at the same time, which are caused by both degen-
| for comparison with direct experimental measurementseracy and strong collisionality due to numerous modes of
Specific calculations were performed with the help of a com-effective interactions among plasma particles.
plicated procedure in which the boundaryseparating free Our results indicate that the plasma equation of states
and bound states of electron—ion pairs was selected. Thigerived from the chemical model can have sufficient accu-
boundary corresponds to the limit efkgT at high tempera- racy even if we use such an approximation that does not
tures and at the average distance between heavy particlesatequately take into account details of the electronic struc-
moderate temperatures and high compression factors. Thiare and the character of electron localization in the plasma.
energy e, as was noted above, marked the boundary of The work was supported by the Russian Fund for Fun-
bound states taken into account in calculations of excitatiomlamental ResearcfGrants 95-02-03886, 97-02-17339, 97-
partition functions for atoms and ions. 02-17340, and 96-02-188B32



JETP 87 (4), October 1998

*)E-mail: grvk@ficp.ac.ru
DE-mail: ilios@orc.ru

V. K. Gryaznov, I. L. losilevski, Yu. G. Krasnikov, N. . Kuznetsova, V.
I. Kucherenko, G. B. Lappo, B. N. Lomakin, G. A. Pavlov,EE Son, and

V. E. Fortov, inThermodynamic Properties of Working Media in Gaseous

Phase Nuclear Reactorfsn Russian, ed. by V. M. levlev, Atomizdat,
Moscow (1980.

2D. A. Kirzhnits, Yu. E. Lozovik, and G. V. Shpatakovskaya, Usp. Fiz.

Nauk 117, 3 (1979 [Sov. Phys. Uspl8, 649(1975].

3V. E. Fortov and I. T. Yakubowhysics of Nonideal Plasmélemisphere,
New York, (1990; [Russ. origingl Chernogolovka1984).

4Shock Compression of Condensed Materi@smbridge University Press,
Cambridge(1998; All-Russia Institute for Experimental Physics, Sarov
(1992.

SA. P. Nefedov, O. F. Petrov, and V. E. Fortov, Usp. Fiz. Nd6k, 1215
(1997 [Phys. Usp40, 1163(1997].

8V. E. Fortov, Usp. Fiz. Nauli38 361 (1982 [Sov. Phys. Usp25, 781
(1982].

“Compendium of Shock Wave Dagal. by Van Thiel, Livermore Lawrence
Laboratory Report, UCRL 50-108, Vol. 1+3977.

8LASL Shock Hugoniot Dat&d. by S. P. Marsh, University of California
Press, Berkley-LA-Londor(1980.

SM. V. Zhernokletov, V. N. Zubarev, R. F. Trunin, and V. E. Fortov,

Gryaznov et al. 689

Shchekotov, and I. |. Sharipdzhanov, Ztks. Teor. Fiz69, 1524(1975
[Sov. Phys. JETR2, 5828(1976)].

33, V. Al'tshuler, S. E. Brusnikin, and A. S. Marchenko, Teplofiz. Vys.
Temp.27, 636(1989.

34V, K. Gryaznov, I. L. losilevski, and V. E. Fortov, iRhysics of Strongly
Coupled Plasmased. by W. D. Kraeft and M. Schlanges, World Scien-
tific, Singapore(1996, p. 351.

351, L. losilevskii and V. K. Gryaznov, Teplofiz. Vys. Temf9, 1121
(1981).

38G. V. Sin’ko, Chislennye Metody Mekhaniki Sploshnoi Sret§, 124
(1978; Teplofiz. Vys. Temp21, 1041(1983.

S7A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, iffopics of Nuclear
Sciences and Technology. Methods and Codes for Numerical Solutions of
Problems of Mathematical PhysicNo. 4 (1979, p. 16.

38G. V. Shpatakovskaya, Preprint No. 54, Insitute of Applied Mathematics,
USSR Academy of Sciences MoscddQ79; Teplofiz. Vys. Temp27,
677 (1989.

39va. B. Zel'dovich and Yu. P. RaizePhysics of Shock Waves and High-
Temperature Hydrodynamic Processescademic, New York(1968;
[Russ original Nauka, Moscow(1968.
40w, Ebeling, W.-D. Krét, and D. Kremp,Theory of Bound States and
lonization Equilibrium in Plasmas and Soliddcademie Verlag, Berlin
1976.

41w, Ebeling, A. Faster, V. Fortov, V. Gryaznov, and A. Polishchuiger-

Experimental Data on Shock Compressibility and Adiabatic Expansion of Mophysical Properties of Hot Dense Plasmasubner, Stuttgart—Leipzig

Condensed Materials at High Energy Densitifim Russiad, Cher-
nogolovka(1996.

101, v. Al'tshuler, Usp. Fiz. Naukl5, 197 (1965 [Sov. Phys. Usp8, 52
(1965].

1] v, Altshuler, A. V. Bushman, M. V. Zhemnokletoet al, Zh. Eksp.
Teor. Fiz.78, 741(1980 [Sov. Phys. JETB1, 373(1980].

2| v. Altshuler, R. F. Trunin, K. K. Krupnikov, and N. V. Panov, Usp.
Fiz. Nauk166, 575(1996 [Phys. Usp39, 539(1996].

13A. H. Jones, W. H. Isbell, and C. J. Maiden, J. Appl. Ph§3, 3493
(1966.

143, 1. Anisimov, A. M. Prokhorov, and V. E. Fortov, Usp. Fiz. Nal#2,
395 (1984 [Sov. Phys. Usp27, 181(1984].

15V, Fortov, M. Lebedev, K. Dyabilin, O. Vorobiev, V. Smirnov, and E.
Grabovskij, inShock Compression of Condensed Matter-1936 by S.
C. Schmidt and W. C. Tao, AIP Conf. Prog70, 1255(1996.

16K. Baumung, J. H. Bluhm, B. Goel, P. Hoppe, H. U. Karow, D. Rusch, V.

E. Fortov, G. I. Kanel, S. V. Razorenov, A. V. Utkin, and O. Yu. Vorob-
jev, Laser Part. Beamb4, 181(1996.

A, V. Bushman, I. V. Lomonosov, and V. E. Fortdgguations of State of
Metals at High Energy Densitin Russiar, Chernogolovkg1992.

18G. E Norman and A. N. Starostin, Teplofiz. Vys. Tenf.413(1970.

1%V, E. Fortov and |. T. Yakubowonideal PlasmaEnergoatomizdat, Mos-
cow (1994).

20N, N. Kalitkin and L. V. Kuz’'mina, Preprint No. 35, Institute of Applied
Mathematics, USSR Academy of Sciences, Mos¢a@75.

2!, D. Landau and Ya. B. Zel'dovich, Zh.KSp. Teor. Fiz14, 32 (1944).

22|, v. Al'tshuler, M. N. Pavlovski, L. V. Kuleshova, and G. V. Simakov,
Fiz. Tverd. Tela5, 279 (1965 [Sov. Phys. Solid Stat, 203(1965].

L. V. Al'tshuler, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, Zh.
Eksp. Teor. Fiz.38, 790(1960 [Sov. Phys. JETR1, 573(1960].

24, V. Al'tshuler, R. F. Trunin, K. K. Krupnikov, and N. V. Pavlov, Usp.
Fiz. Nauk15, 197 (1965 [Sov. Phys. Usp8, 52 (1965].

21, V. Al'tshuler, K. K. Krupnikov, B. N. Ledene\et al, Zh. Eksp. Teor.
Fiz. 34, 866 (1958; 34, 874 (1958 [Sov. Phys. JETH, 600 (1958; 7,
606 (1959].

A, V. Bugaeva, A. A. Evstigneev, and R. F. Trunin, Teplofiz. Vys. Temp.

34, 684(1996.

Z'R. F. Trunin, G. V. Simakov, Yu. N. Sutulov, A. V. Medvedev, B. D.
Rogozkin, and Yu. E. Fedorov, ZhkEp. Teor. Fiz96, 1024(1989 [Sov.
Phys. JETR69, 580 (1989].

28R, F. Trunin and G. F. Simakov, ZhkEp. Teor. Fiz.103 2180(1993
[JETP76, 1090(1993].

295, B. Kormer, A. I. Funtikov, V. D. Urlin, and A. N. Kolesnikova, Zh.
Eksp. Teor. Fiz42, 686 (1962 [Sov. Phys. JETRS5, 477 (1962].

30va. B. Zel'dovich, Zh. Kksp. Teor. Fiz32, 1577(1957 [Sov. Phys. JETP
5, 1282(1957].
31B. N. Lomakin and V. E. Fortov, Zh. lsp. Teor. Fiz63, 92 (1972 [Sov.
Phys. JETP36, 48 (1972].

32A. V. Bushman, B. N. Lomakin, V. A. Sechenov, V. E. Fortov, O. E.

(1991).

42N. N. Kalitkin, I. V. Ritus, and A. M. Mironov, Preprint No. 46, Insitute
of Applied Mathematics, USSR Academy of Sciences, Mos¢t983.

43B. N. Bazylev, F. N. Borovik, G. S. Romanov, and G. A. Vergunova,
Kvant. Hektr. 13, 1981 (1986 [Sov. J. Quantum Electroril6, 1308
(1986)].

44V. K. Gryaznov, I. L. losilevski, and V. E. Fortov, Zh. Prikl. Mekh. Tekh.
Fiz., No. 3, 70(1973.

V. K. Gryaznov, M. V. Zhernokletov, I. L. losilevskiV. N. Zubarev, and
V. E. Fortov, Zh. Kksp. Teor. Fiz.78, 573 (1980 [Sov. Phys. JETB1,
288 (1980)].

4y, K. Gryaznov, I. L. losilevski, and V. E. Fortov, Pis'ma Zh. Tekh. Fiz.
22(8), 1376(1982) [sid].

47V, K. Gryaznov and V. E. Fortov, Teplofiz. Vys. Temps, 1208(1987).

48y, K. Gryaznov, |. L. losilevski, and V. E. Fortov, irEquations of State
ed. by V. E. Fortov, Moscow1995, p. 38.

“OA. A. Likal'ter, Zh. Eksp. Teor. Fiz56, 240(1969 [Sov. Phys. JETRS,
133(1969].

50M. Baus and J. P. Hansen, Phys. R&@. 1 (1980.

513, Ichimaru, H. lyetomi, and S. Tanaka, Phys. Rbg0, 91 (1987).

52|, L. losilevskii, Teplofiz. Vys. Temp19, 1121(1981).

53T, Kahlbaum and A. Bster, Fluid Phase Equilibridé, 71 (1992.

54C. F. Mansoori, V. Carnahan, K. E. Starling, and T. W. Leland, J. Chem.
Phys.54, 1523(1972.

5D. Hartree, The Calculation of Atomic Structure®iley, N. Y. (1957).

56y, K. Gryaznov, PhD Thesis, Institute of Chemical Physcis, USSR Acad-
emy of Sciences, Chernogolovk&981).

57A. N. Ivanova and V. K. Gryaznowlartree-Fock Calculations of Atoms
[in Russian, Report of Institute of Chemical Physics, USSR Academy of
Sciences, Chernogolovka975.

%8y, K. Gryaznov, . L. losilevski, and V. E. Fortov, irPhysics and Tech-
nology of PlasmaBelarus State University, Mins{d994, p. 1.

V. K. Gryaznov, I. L. losilevski, and V. E. Fortov, inPhysics of Low-
Temperature Plasma&etrozavodsk1995, p. 105.

60N. W. Ashcroft and J. Lekner, Phys. Rel45, 83 (1966.

1A, A. Likal'ter, Dokl. Akad. Nauk SSSR59, 96 (1981) [Sov. Phys. Dokl.
26, 676(1981)]; Usp. Fiz. Naukl62, 119(1992 [Sov. Phys. Usp35, 591
(1992)].

%2R. G. McQueen and S. P. Marsh, J. Appl. PH%. 1253(1960.

63J. M. Walsh, M. H. Rice, R. G. McQueen, and F. L. Yarger, Phys. Rev.
108 169 (1957.

64, V. Altshuler, A. A. Bakanova, and R. F. Trunin, ZhkEp. Teor. Fiz.
42, 91 (1962 [Sov. Phys. JETRS, 65 (1962)].

%vyu. L. Alekseev, B. P. Ratnikov, and A. P. Rybakov, Zh. Prikl. Mekh.
Tekh. Fiz. No. 2, 10X1971J).

%Shock Waves and Extremal States of Mattelr by R. F. Trunin and V. E.
Fortov (1999 (in press.

67B. V. Zelener, G. ENorman, and V. S. Filinov, Teplofiz. Vys. Tempd,
922 (1973; 12, 267 (1974; 13, 712, 913(1975.



690 JETP 87 (4), October 1998 Gryaznov et al.

88y, K. Gryaznov and I. L. losilevskj Chislennye Metody Mekhaniki “3B. N. Lomakin and V. E. Fortov, Zh'.IEp. Teor. Fiz63, 92(1972 [Sov.

Sploshnoi Sredy, 166 (1973. L.Phys. Ji;R’»G, 43 (1972]. T Tenlof 1979
69| L. losilevskii, Teplofiz. Vys. T 18, 447 (1980. I. Ya. Dikhter and V. Ya. Zeigarnik, Teplofiz. Vys. Temp5, 471(1977).
20 os:evs eploliz. Vys ekn;]p Zh(Ek 9 ) V. E. Fortov, A. A. Leontev, A. N. Dremin, and V. K. Gryaznov, Zh.

A. E. Glauberman and I. R. Yukhnov$kizh. Eksp. Teor. Fiz.22, 562 Eksp. Teor. Fiz71, 225 (1976 [Sov. Phys. JETR4, 116 (1976].

(1952. "8A. S. Kaklyugin and G. ENorman, Teplofiz. Vys. Tem®25, 209(1987.
"1F. stillinger and R. Lowett, J. Chem. Phy, 1991 (1968.

72T, P. Wright and O. Theimer, Phys. Fluids, 895(1970. Translation provided by the Russian Editorial office.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 4 OCTOBER 1998

Spin vortices and stationary spin flows in a normal Fermi liquid
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We solve the equations for the collisionless spin dynamics of a normal Fermi liquid, which
describe structures resembling spin vortices coherently precessing in a uniform magnetic field. We
examine their stability and relaxation, and consider various regimes of stationary

magnetization transport along a channel. 1898 American Institute of Physics.
[S1063-776(98)00910-X

1. INTRODUCTION S(r,t) and quasiparticle spin current densiyr,t), was ob-
A two-domain spin structure precessing coherently in d@ined by Leggett from the kinetic equation for the spin-

weakly nonuniform magnetic field has been preditiedhe vector part o_f the quasiparticle distribution functieg(r,t).

collisionless region in a normal Fermi liquid and observed'N€se equations have the form

experimentally? The lifetime of this structure, in which the

orientation of the magnetization varies smoothly from paral-

lel to antiparallel to the external magnetic field, significantly

—+w|_>< S+ViJi:0, (1)

exceeds the precession dephasing time in a nonuniform field. 5 5

Similar coherentl ing, inh distribuf 7 Xn 14 Ji
' imilar coherently precessing, inhomogeneous distribur — | ;) 5 |3+ —V,| S— 22 @ | + k—SxJj=— —.
tions of the magnetization have previously been found in\ Jt 3 ¥? Xn 71

superfluid ®He-B,>* where coherently precessing quantum (2

spin vortices were also discovered along with them, and thﬁerex is the magnetic susceptibility of the Fermi liquig
flow of spin currents along a channel accompanied by pre- n '

cession phase slippage has been investigatéd:he devel- is the gyromagnetic ratio fotHe nuclei, e (r,t) = yH(r.1)

H 2__ .2 a a
opment of a theory for the analogous phenomena in a normz'ai (;2731‘?2;}?; JE%Uir;Cgr'lV;F_a I;Fréltgelzg())(elff:::iizlr:tss) ,oflt(he
Fermi liquid would be of unquestionable interest. The ‘ 1 0 0/: 70 1

present paper examines solutions of the equations for the Pansion of the antisymmetric part of the Fermi-liquid qua-

o : . PR . Siparticle interaction in spherical harmonieg, is the Fermi
collisionless spin dynamics of a normal Fermi liquid, wh|chv locit — J(1+F¥3) andr is th ivarticle fr
describe stationary spin flows. elocity, 7,=7/( 1/3), and 7 is the quasiparticle free

. : . flight time.
Coherently precessing structures in the form of spin vor The parentheses in the first terms of E®,. and (2)

tices are found in a uniform magnetic field. The vortex wall ontain the total time derivative in the local coordinate sys
thickness is determined not only by the field strength and th . L Y
em, which rotates about the direction of the external mag-

parameters of the Fermi liquid, but also by the absolute dif- "> . .
ference of the precession and Larmor frequencies. Wheﬁet'c field at the Larmor frequency. The special role played

these frequencies are equal, the distribution of spin in a vo Dy this frame derives from the free spin's fixed orientation

tex corresponds to the familiar Belavin—Polyakov skyrmionrelat've. to it. The secon_d term in EqZ).d(.ascnbes a to_rque
solution’t proportional to the gradient of the deviation of the spin den-

In addition, the steady flow of a spin current along afltg/mfzgr(g)t?e Iocai:ci e?U|:;brr|rL:1rin"vailge(r}?Lr/ 7|’ .ti\;rhe tr:]tlrrig i
channel is investigated in this paper. © S speclic to e quids. Tis relative co u

tion is not small compared to the Fermi-liquid interaction

The present paper is organized as follows. The equatio . . : .
for the collisionless spin dynamics of a normal Fermi quuidnf%rce' The latter is represented '2 the equatlonxbyvmch
subsumes the constanE§ and F§. Physically, this term

are written out in a form convenient for subsequent discus: o .
sion in Sec. 2. The vortex solutions of these equations anraepresents an additional torqug, \.Nh'Ch acts. on the cgrrent
found, and their stability and relaxation are investigated inoWing to the'molecular magnetic field, even in a coordinate
Sec. 3. Section 4 is devoted to the flow of a spin currentSyStem rotatlng at the Io_cal I___armor frequency. .

The domain of applicability of Eqsl) and (2) is re-

along a channel. The principal results are briefly discussed in, . . - ; .
the Conclusion. stricted by the requirement of sufficiently slow spatial varia-

tion of the quasiparticle distribution. If the characteristic
scale of the spatial inhomogeneity gf(r,t) is denoted by,
this condition(see Ref. 12can be written in the form

A complete set of equations for the spin dynamics of a
normal Fermi liquid in a magnetic fieldi(r,t) in terms of &> min[l,v—F). 3)
macroscopic quantities, viz., the quasiparticle spin density

2. BASIC EQUATIONS

Wm

1063-7761/98/87(10)/9/$15.00 691 © 1998 American Institute of Physics
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Here |=vgr is the quasiparticle mean free path, and Substituting this expression into Ed) for the evolution
om= o x/(1+F3/3) is the frequency corresponding to the of the spin, a single vector equation remains:
molecular field. 45 5
. . W
Apart from the_z hydrody_ngmlc reglonf_>l for | _ 2 Sxaw - Sx V2S, @)
<vglwy,, the equations describing the evolution of the spin at 3k S?

density and the current density, i.e., the equations for the = ) ) ]
zeroth and first spherical harmonieg(r,t), also split off This is the equation of interest to us. Along with the already

from the equations for the higher harmonics in the casdnentioned total longitudinal magnetizati¢, dr, the abso-
¢>velo, With |>velw, (which is equivalent to lute value of the magnetizatiaBis also its integral. There-
m m

w,7>1). The latter circumstance enables us to use them tfPre: in solving it, we use thg natural parametrizatiorSof
investigate the spin dynamics of normal Fermi liquids in theterms of the spherical coordinatesand 8: S=SS
collisionless regimeo 7>1. We note that the proportional-

. . ) sinB cosa

ity coefficient between the molecular fiedg,, and the exter- . ) ]

nal field w, is x/(1+F2/3)~2 for normal*He and~0.036 S=| singsina |. €S)
for a saturatedHe—*He solution at zero pressufeee Ref. cosp

2). In the collisionless region the unusual third term in Eq.

(2) becomes significant. The results of the present work per- We are |.nterested n the_coherently precessing solutions
tain specifically to this region. of this equation. However, it is more convenient to transform

The boundary condition usually chosen for E.and to spherical coordinates not directly (@), but by noting(see

(2) is that no spin current flow through the wall of the vesseIR.ef' 13 that .(7) IS acf[u.ally the Landau.—Ln‘shltz equation
containing the Fermi liquid: with a negative coefficient of the gradient terfwhen «

>0). As we know, this equation is the Hamilton—Jacobi

Jin;=0, (4) equation obtained from the Hamiltonian
where n; is the ith component of the unit normal to the (S—w)?> w? )
vessel surfac®.To fix ideas, let the external field be parallel H:f dr)| ——- GKSZ(ViS) €)

to the z axis. Under such a boundary condition, it follows
from the continuity equatioril) that the total longitudinal Wwith the usual commutation relation for the spin:
magnetizationf S, dr is conserved. N o

To simplify the equations, we adopt a system of units in [Sa(r),Sp(r)]=1€agySy(r) &(r=r").
which x,=y?. We consider a homogeneous external field,introducing the Lagrange multiplies|z, which takes the
Ve, =0, and assume motions in the reference system, whicBonservation of the total longitudinal magnetization into ac-
rotates at the precession frequency, to be fairly slowcount(equivalent to transforming to a reference system that
Téw~7;6w<1. Then the time derivative in this system is precesses at that frequencand bearing in mind the fixed

approximately zero, and the first term in E@) can be dis-  absolute value of the spiio within constant termswe have
carded. Solving the resulting equation fgr, we obtain an

ion for the spi t: w?
expression for the spin curren H:f dr| (wp— )5 (V972 10
W2r,/3 6«S
~_ 2 . . .
i l+(KS’Tl)2[ViS+ K7 ViSX St (xm)"S(SViS)]. or in spherical coordinates
(5 w2 , 2
In the collisionless region each successive term in squarg_f dr| (wp=w1)Scosp— g ((ViB)™+(Via)'simp) |.
brackets iskw, 7, times its predecessor. However, the last (1)

term is anomalousl_y smal!. In. fact, it is exactly zero for aThe equations for and 8, which specify spin distributions
homogeneous spatial distribution of the absolute value of th?nat are time-independent in the reference system precessing

magnetization. At the same time, as the estimate in Sec. 2 t wp, are found by varying this Hamiltonian. We note that
Ref. 13 shows, the characteristic time to smooth out the inrwp_wd plays the role of the frequenc§w of motion in

homogeneity of the” distribution is of orde&?/w?ry. This 0| armor system
time is small compared to the reciprocal characteristic fre-

quencydw 1, since in our casé?~w?/ kw Sw (See below.

We therefore assume th&t is constant. Thus, the first two

terms are important. As we have already mentioned, the first: SPIN VORTEX
term describes the ordinary diffusion current, while the sec-
ond is a nondissipative current. Moreover, unless the second
term is anomalously small, the first term can be neglected. B=p8(p), a=a(y).
Then the expression for the current takes the form

We seek axisymmetric solutions

Setting the variational derivative of the functior(all) with

w2 respect tae equal to zero yields
5 SXV;S. (6) ,
3«xS a"=0, (12

Jiz
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whereupon (wp—w)— —(wp—w),
a(¢)=Ne+aq (13 Bm—p. (20

with the integer circulatio'n quantum numhiegr= o’ =const,  Instead of the two asymptotg®0)={0,7}, we can consider

which follows from the single-valuedness a{¢) modulo  one. Specifically, we assume that the boundary condition for

27N under a rotatiorfvariation of ) by 27. In this case the =0 has the form

gradient ofa is

B(0)=0. (21)
Via= E(},i . (14) Thus, the problem has been reduced to solving the dif-
p ferential equation(16) with boundary conditiong19) and

(21). The problem containil only in the formN?, andN can
be assumed to be a positive integer.

We first consider an infinite vessdk— . In this case
the boundary conditiofil9) can be replaced by

Here and belowp, p, andz are the unit vectors of a cylin-
drical coordinate system.

Varying the Hamiltonian(11) with respect to3 yields a
differential equation foB(p),

W2 N2 B'—=0[, e (19)
—(wp—w)Ssinp+ ﬁ( VB~ —sinBcosp | =0, When ¢== (wp=w.), EQ. (16) has a gauge-invariant
p (15) solution, which satisfies the conditiofs9’) and(21) and is

identical to the Belavin—Polyakov skyrmidhand the topo-
which, after rewriting the Laplacian in cylindrical coordi- |ogical mapping index turns out to equal the circulation

nates, can be brought to the form guantum number:
BN sgwp—wy) _ 1-Ap™" A p—0,
B +7—?smﬂcosﬁ—TsmB—0, ﬁ(p)—arccom~ a—Ap~N s, (22
(16)

_ o where A>0 is an arbitrary constant. As can be seen, the
where we have introduced the characteristic length of thekyrmion is characterized by a spin flip from the equilibrium

problemé, direction with respect tav, at zero to the antiequilibrium
e direction at infinity?
£= [ (17) If £ is finite, it is possible to obtain analytically only the
3kSwp— o]

asymptotic dependence @f{p) asp—0 andp—oe, which

The boundary conditions on EL6) can be obtained as must be matched numerically in the intermediate region. The
follows. In the axisymmetric case the expression for the curf€asibility of matching the two asymptotes implies the exis-

rent (6) takes the form tence of the corresponding solution.
_ _ When é#© (wp# ), the differential equation(16)
W2 —Sina N —SInB COSpB cosw can be reduced by the replacementp/ £ to an equation for
Ji=3| B'| cosa pi+—| —singcosBsine | ¢; |, B(r) of the form
K
(18 /8”+T——zsin,8 cosB—sgnwp—w,)sSinB=0. (23
r

where we puta’ =N. We make the simplifying assumption ) ) . . . .
that the vessel containing the Fermi liquid is a circular Cy|_The expansion of this equation near zero yields the linearized

inder with generatrix parallel to the axis and a base of €duation

radiusR. The condition(4) of vanishing current6) through B’ N2
the vessel walls holds identically in this case at the ends of 8"+ ——| — +sgr( wp—wL)),B:O, (24
the cylinder, and it yields a boundary condition on the lateral r r

surface: which is the ordinary(when wp<w,) or modified (when

B'|,-r=0. (19) cf)p> ) Bes;el equgtion. Its solution is a Iinee}r combina-
tion of two linearly independent functions, which can be
WhenN=0, from (13) we obtaina= ay, i.e., all spins  chosen so thafor N+ 0) one of them diverges as N when
lie in a single plane parallel to the axis. Thez axis is the r—0, while the other tends to zero a$'. Since 8 is
only preferred axis in the problem, so it follows from sym- bounded,
metry arguments that the iunctlon(all) _can only have a Bel0.7], (25)
local extremum whenB(p)=0 or B(p)=m. The former
value is stable, the latter is not. only the nondivergent term must remain, and for the solu-
Now consideMN# 0. We are interested in solutions with tions of interest we obtain the asymptote
no singularities ap=0. For this to occur whei+0, B(0) B~AMN 26)
must equal 0 orr. Equation(16) is clearly invariant under r—0
the transformations whereA>0.
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ing (27), for A> A, it approaches oscillations aboutr2and
for A<A, it approaches oscillations about zero. Thus, there
are no solutions foA>A,. For A<A,, however, a size ef-
fect is possible: the functio@(r), upon leaving the origin,
reaches the pointy of the first maximum,3(r) e (0,7),
then decreases to the first minimughe (— 7,0), and finally
oscillates about zero, successively passing though maxima
and minimum of decreasing absolute value. If a wall is lo-
cated atr, i.e., if rq=R/¢, such a solution will satisfy the
boundary conditiong19) and (21) and not violate the con-
straint(25). Such a structure is a standing wave.
As A— A, the positiorr y of the first maximum tends to
infinity, and asA— 0 the solution of Eq(23), which deviates
o L i ) only slightly from zero everywhere, transforms, as we have
0 084 128 184 3 4 po 5 already mentioned, into the Bessel functiofithe first kind
of order N, and accordingly the point, of the first maxi-
FIG. 1. Dependence of the deviation angle of the magnetization on thenum tends to a root of the derivative of the Bessel function:
dimensionless distance to the axis for three spin vortices with circulationne numerical value is 1.84118 for vortices witthi=1
quantum numbeN=1 (light solid lineg: upper line — the vortex28); _ _ ’
lower line — “standing wave” with vanishing total longitudinal component 3.05424 fqu— 2,and 4'_20119 fQN— 3. The_ value otG(r)
of the magnetization direction; middle line — “standing wave” correspond- at the pointry of the first maximum varies fromr for
ing to the minimum effective radius of the vessel; heavy line — locus of A=A to O for A=0. The set of point$(r0) obtained by
points for the value of3 at the vessel boundary for vortex solutions with nymerical methods is depicted in Fig. 1 by the thick line. The
N=1; dashed line — the Belavin—Polyakov skyrmi(2?) with the same fiqur | hows two standing wave structur
value of the derivative at zero as the vor{@8). gure also shows two sta g ave structures. .
As can be seen from the figure, the set of poié(s,)
describes the continuous transformation of a spin vortex as

Numerical solution of the differential equati@®3) with the effective size of the vessB/ ¢ decreases from infinity.

initial condition (26) shows that, depending on the value of There is a minimum valueyy,~0.84, which determines the

A, the function(r) asymptotically approaches either zero minimum vessel radius _required to produce a similar struc-
or = at infinity (we discard the asymptotesd ture. The value of3(ry,) is roughly 2.93 rad. Thus, the spin

—.2m,3m, . .., which do not satisfy the constraif25)). An vortex (28) is the limiting case of a “standing wave” in a

analogous examination of the linearized equations shows thygssel of mﬁmte Siz€. Fr(_Jm herg on, we t_herefore call both
nondivergent asymptotes are feasibler aso: structures spin vortices without distinguishing between them.

The initial conditions of an experiment set the total lon-
P { Be '/, wp> o, gitudinal magnetizationS [ dr cosB, which subsequently

7—Be 'I\r, wp<wo, 2D does not vary, in accordance with Leggett’'s equations. Each

spin vortex is uniquely characterized by one of two quanti-
where B>0. The constantsA in (26) and B in (27), of tjes: 1) the total longitudinal component of the magnetization
course, can be determined only from the matching conditionjirection [ dr cosp, or 2) the angleB(R/£) that the spins
(26) to (27). As the numerical solution shows, matching is make with the vessel boundary. The initial absolute value of
possible forop<w, but not for wp>w .¥ Thus, when the magnetizatiors can be assumed to be the equilibrium
wp<w, there can be structures with spin flip in the interval yajue ofw, . Thus, the initial conditions fix the final value of

from zero to infinity and the asymptotes B(R/&) (see Fig. 1 For the structure depicted in Fig. 1 with
ArN r—0, B(R/§)=~2.10, the total longitudinal component of the mag-

Ig(r)w[ , (29 netization directionfdrcos3 vanishes. For vortices with
m—Be '\, o B(R/§)<2.10, the total longitudinal component of the mag-

This structure resembles the skyrmi(@®), but is character- netization direction is greater than zero, while for
ized by an exponential approach to a spatially homogeneou8(R/§)>2.10 it is less than zero.

distribution asr—. For N=1 it takes the form shown in As we have already noted, when>w_, all structures
Fig. 1. For comparison, the dashed line depicts the skyrmioghown in Fig. 1 can be mapped symmetrically about the
(22) with the same asymptote at zero. straight lineg= /2.

Apart from the asymptot€27), the theory of Bessel Note that the existence of a minimum valug, implies
functions tells us that other asymptotes for- take the that for a given real vessel radils the formation of a spin
form of damped oscillations about &, 27, ...,which of  vortex is possible for an arbitrary value of the difference
course do not satisfy the constraii@5) and should be dis- |@p— | greater than its minimum value, which, as follows
carded. The numerical solution shows that whes>w,,  from the definition ofé, is
the asymptote(26) approaches a solution that oscillates W2 [ Fom) 2
aboutg= for all A. |wp—w,_|mm—m(?

The situation is more complicated when<w, . For a
certainA= A, the solution approaches the exponential damp-Since the applicability of the present theory is restricted by
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the condition|wp— w| |7,<1, in this approximation the only For a qualitative discussion of the relaxation of the struc-

legitimate claim is that such a structure exists at largdure it is sufficient to substitute the forms 8fr) and J;(r)

enoughR. obtained under the assumption of stationarity, i.e.,
S(r) = const and the expressi@6), into this equation. Some
relatively simple calculations show that this yields

3.1. Stability
2
In the axisymmetric case the Hamiltoniélil) can easily EJZZW—(V,S)2
be brought to the form w?
w? [RI¢ 27 B'? 1la'\? i.e., the current term is proportional to the inhomogeneity
H=-— 3k rdr d‘P 2 E T energy of the distribution of. This quantity can be esti-

mated from the definitiol7) of the characteristic scaleto
be ~wW?/3k2£%~| wp— w | S/ k. Therefore, because the abso-
lute value of the magnetization at the start of relaxation is
approximately the equilibrium valueSt- w,) and, in addi-
tion, kw_ 7,>1 (the collisionless regimeand |wp— |7,

12 <1, the current term on the left-hand side can be neglected
(5,3')2+(T) in comparison toS?. Thus, the bulk relaxation reduces to

damping of the absolute value of the magnetization, which is

given by the small right-hand side:

X sin? B—sgn wp— w| )COSM |. (29

Its second variation is

2 W2
5H=—§frdrjdgo

X c0s 28(8B)%+2

! !

in286 +(5a,)2
n e
e I’ dSZ_ aw fdz (V:9>2. (33
dt 3k%7; ’7TR2

X sir? B+ sgn wp— w| )cosB(5B)? (30)

Next, plugging in known dependences, we write
. . N R 2w
Integrating by parts, we write f r (V82— fo pdpfo do (8'2+a'?sir?B)

d 15 /:_jd //6 ,
f paod paod RI¢ sirtg
:27TJ rdr| 8’2+ ——N?
0 r

where we have transformed fromto r =p/¢. With allow-

J rdr(5,8’)2=—Jdr(r5,8’)’6,8

. ) ance for the fact thg8’ =0 at the vessel boundary, integrat-
—f rdr (6" +0oB'Ir)Sp. ing B’2 by parts and then substituting the expressia8)
finally yields

The structures found above are described by the differential
equations(12) and (23). Varying the second equation and d_S_ _ 2|wp—w| c (34)
substituting it into the expression for the second variation of  dt KTy '

the energy, we finally obtain

w32
SH=— o f d’r

1 R/
Here [d?r= [rdrfde. Thus, all structures described are lo- C= fo 27rdr

whereC is a dimensionless integral that depends only on the
actual form taken by the vortex:

r\ 2

%“) Sir? 3. 31)

N2

—zsin,B(sin,B— B cospB)
r

2
cal maxima(when x>0 and, accordingly, local minima m(R/§)

whenk<0) of the energy functional. Therefore, by virtue of

energy conservation they are all stable. —Bsgnwp—w )sinB|. (35

Here, in the limit3— 0 we can expand in the small angde

The expansion up to the quadratic term can be expressed in
It was shown in Ref. 1 for the functionsS*and J;,  terms of the total longitudinal component of the magnetiza-

which are solutions of Leggett’s equations, that the collisiontion direction averaged over the vessel:

term for the spin current in E@2) leads to relaxation behav-

3.2. Relaxation

ior in a closed volume of a Fermi liquid: f B2dr Zf d?r cosp
d (S—w)? 34| 3 fd 2. (32 . 2
R e e & A I P J o
Because of the conservation of the total longitudinal magnewhich is compared t¢.
tization, the derivatived [ (@, S) dr/dt on the left-hand side It can therefore be assume th@tis negligible in the

of this equation vanishe@s of course doedwf/dt). general case, so that it does not disrupt the slowness of the
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relaxation process, i.e., the time during whiShdecreases  U(g), T(8)
linearly to zero:xw, 71/2|wp— w |>7;. We note that this

time is large by virtue of the conditiohwp— w |7,<1 for
applicability of the theory under consideration. Since the to- 40
tal longitudinal magnetizatio® [ dr cosg is an integral of
Leggett's equations, a slow decreas&ieads to an increase
(also slow in the absolute value of the total longitudinal
component of the magnetization directifrir cosg.

The stability of the family of vortex solutions and the
slowness of their relaxation enable us to advance the intu-
itively simple hypothesis that the overall form of the solution
does not vary during relaxation. Specifically, the vortex dis-
tribution in the class of solutions consisting of the family just ¢ ;
indicated transforms during the relaxation process, so that & 0.86 72
distribution specified by the instantaneous value of the total
longitudinal component of the magnetization direction is re-FIG. 2. Effective Newtonian potential for the deviation angle of the mag-
alized at any given time. Since, however, a vortex with anetization in one-dimensional spin transport, and the period of motion in
fixed total longitudinal component of the magnetization di-1at potential: light solid ine — potential fapp=w_ , i.e., the first term in
rection can form only if the effective radius of the vesRéf :2’1?;)8.“%/ S%“dd“lhe __pgtem'i: fomp#wa (for the special cas¢=1,
o o . ; dashed line ependence of the period on the initial turning
is fixed, variation of the total component of the magnetiza-point (in arbitrary units.
tion direction during relaxation among the solutions of the
family must lead to fine tuning of the precession frequency
wp in such a manner that the characteristic scalél?)
maintains the “correct” effective radius.

Figure 1 depicts a vortex witB(R/¢)~2.10 and a van-
ishing total longitudinal component of the magnetization di-
rection. This vortex structure is a limiting structure in the
sense that vortices witB(R/¢)<2.10(and a total longitudi-
nal component of the magnetization direction greater than ' — py/sir? . (37)
zerg relax in such a case with a decreaseBifR/¢), i.e., to
the spatially homogeneous distributig=0, while vortices Variation of the functiona(11) with respect to3 yields
with B(R/£)>2.10 (and a total longitudinal component of
the magnetization direction less than Zerelax with an in- B~ (a')?sin B cosf— Sgnwp— ) sing=0.  (39)
crease inB(R/¢§), i.e., to the limiting distributior(28). In the &
former case the effective radild é~|wp— w| |2 increases
to ~1.84 (the precession frequenayp decreaséy and in
the latter case the effective radius first decreases @34
and then increasesvp , accordingly, first increases and then

201

It can be seen from this expression thatdif(y)=0 or
sinB(y)=0 at some point, therh=0 and a'(y)=0 or
sinB(y)=0. The casex’' #0 is of interest; therefore, we con-
clude from(36) that either sirB(y)=0 or sinB(y)#0 at anyy
and

The case siB(y)=0 is a solution of the problem, and given
(37), substitution of the expression fa' yields an equation
that describes3(y) (and a(y) by virtue of (37)) along the

decreases channel:

When wp>w the behavior is different: for vortices h2cosB sgnwp—w,)
with a total longitudinal component of the magnetization di-  g"— — — Pt sing=0. (39
rection greater than zero the frequenaey first decreases and sin® 8 &

then increases, while for .vorjuces'wnh. a total Iong|tud|nal-|-hiS is Newton’s equation of motion for a particle of unit
component of the magnetization direction the frequesagy mass in the potential

increases monotonically.
h? Sgnwp—w)
UB)=— + Cosg,
4. ONE-DIMENSIONAL FLOW 2 SII’F,B §2

(40)

we cqnsider the statipnary.flow of spin along a long;, yhich the coordinatg plays the role of time. This poten-
(L>¢), thin (transverse dimensioa<¢) channel of con- ial is depicted foré=1 andh?=1/2 in Fig. 2. Its minimum

stant cross section oriented perpendicular to a magnetic fiel at cog8= —sgn(p— w,)siMtBI(hd2 Introducing the no-
In SUCh. a geometry it can be assumeo_l that ﬂ(.)W IS ON€ation sifB=zand (¢)*=b, we obtainz*=b(1—2z), which
dimensional and thatr and 8 vary only in the direction has only one root for anp>0 in the intervalze (0,1).

parallel to the channel length: Equation(39) is invariant under the transformati@®0). For

B=pBY), a=a(y). definiteness, we takep<w, .

The expressior6) for the nondissipative current in the
one-dimensional cadghe only nonvanishing orbital compo-
nent is directed along the channel, so we omit the subgcript
a' sirf B=h=const. (36)  takes the form

Variation of the functional(11) with respect tax yields
(a' sir? B)’'=0, whence we have



JETP 87 (4), October 1998 P. L. Krotkov and V. P. Mineev 697

—sina —sinB cosB cosa —a+a’—4dax,+4 h2¢?
2
w , . , , Xy 0= , where a= ———.
\]:a cosa | B'+| —singcos@sina | o’ |. 2 2(1—x9)
sir? B (46)
41 .
“D If Xge(—1,1), these roots satisfx,e(—1,1), x,<-—1.
It can be seen from this expression that Then x;=Xg, as it should, if By yields the minimum of
W2 W U(,[_B). We assume gverywhere pe_low thqt<xc_,, i.e., that
J*=—a'sir? B= —h=const, Bo is located to the right of the minimum, and integrate over
3k 3k the range fronx; to x,. Otherwise, the replacemexf«— X,
> must be made in all formulas.
I=3= ;V_K\/m Thus, we can write
dg &dx
We assume that the ends of the channel are connected to gy= — = — 7 47)
two reservoirs containing a Fermi liquid. We further assume B’ V2(Xo=X) (X—X1) (X—X7)

that the spins are oriented at the same ayt® the mag- ) .
netic field in the two reservoirs. In addition, the value®f and the formulas for the period and the phase difference can

does not depend opin the reservoirs, so the boundary con- P& reduced by the replacement y(xo—X) (xo—Xy) to com-

dition for Eq.(39) has the form plete elliptic integrals in the canonical Legendre fotsee,
for example, Ref. 14°
B0)=p(L), p'(0)=p'(L)=0. (42)
X dx [ 2
With this boundary condition the analogy to classical motion  T= gJ ° = —K(k),
acquires the simplest possible meaning: the initial deviation X1 V2(Xp—X) (X—X1) (X— X2) Xo™ X2
angleB, can be determined experimentally, and by virtue of (48)
(42), the initial “kinetic energy” 8’2 is zero, i.e., “motion”
starts from the turning point of the potentidl 8,), and by Aar=hé X dx
virtue of (42) should also end at it. In other words, an integer x1 (1= X%2)V2(Xg— X) (X—X1) (X—Xy)
number of “periods” of B(y) should fit into lengthL_. »
We first consider wp=w, (£=%). Then U(B) _ . h¢ 1 I1(k,m)+ 1 Ik p)}
=h?/2sirf B and B’ = 2[U(B,) —U(B)]. We can write V2(xg—xp) 1% 1—xo M)
e dB _sinBosing dp  sing, dx 3 (49)
Y B’ hx2—x2 h xZ—x2' wherelII(k,p)=II(/2,k, p) and
wherex= cospB andxy= cosf,. The half-period of motion in Xo— X1 Xo— X1 Xo— X1
this case is k= ‘\/—XO_XZ, 1% m=— Toxg
. . .
T:j dy= sinfo arcsini °_ Trsmﬁo' (44)  We note that in this notation the absolute value of the current
h Xol _y, h is J=(W?/3k) X (\2/£) VX —x3, where we have introduced
) ] o the additional notatiom; =X, —a, and that the incoming cur-
The phase difference accrued during this time is rent (the current at the entrance to the chahmeld the out-
§ q going current(the current at the exit from the chanpdle.,
AaT:J' o dy= Sinﬂof 0 X =, (45 whenx=X,, are bothh/sin3,. The mean absolute value of
~xo(1—x?) \/x(z)—x2 the current flowing through the channel in this case is
i.e., the phase difference doe_s_ not dependhon w2 2n (% \/x—_x3dx
Consequently, the conditiori42) leads toL=2nT, (J)= PR f
wheren=1,2, . .. ,hence K x1 V(Xo=X) (X=X1) (X—X7)
, W2 w?2mnsing, _ W_2 2n - 2(X1—Xg)
T3k 3k L 3k L J(xo—X3) (X1 —Xy)

for a phase differenc& «=2wn between the ends of the [Xo— X1 X3— Xy Xo— X1

channel. As can be seen from the solution, in such a problem <11 Xo— X3 X1— Xy’ Xo_Xs) . (50

with the boundary condition42) no stationary current-

carrying states appear for any other phase difference. We Although we cannot write an explicit expression for

note that in this casé= h/sin By=const. h(A ) in this case, the basic features of current flow remain
When wp# 0w ({#) the equationd(B)=U(By) (B  the same as whenp=w, . Specifically, as can be seen from

# Bo) for the turning points reduces to the quadratic equa¥ig. 3a, the conditiol.=2nT for fixed L yields a discrete

tion x>+ ax+ax,—1=0 with roots series of possible values bf each of which corresponds to
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FIG. 3. @ Multiples of the half-period of motioff in the potential40) as a function oh for n=1,2, ... and thdixed initial angleB,= 7/2; b) dependence

of the half-period orB,, for several values df. It is assumed thai=1. The dependence @8}, is sinusoidal for largd, as wherwp=w, , and tends to zero
as 1h; at smallh the half-period has a local minimum at the minimum of the poteii@l and two local maxima, one of which tends to zero, while the other
tends tosr with decreasindh. As can be seen ifa), if the channel length. is fixed, thenL=2nT holds for an infinite sequence of valuestgfand byh

>3 T(h) is faithfully described byl = 7rsing,/h (the corresponding multiples are shown as dashed linés)jrandh=2ansinG,/L, as whenwp=w, .

its own numbem of complete periods that fit into the chan- 5. CONCLUSION

nel length, and its own phase differengex between the In this paper, we have investigated axisymmetric and
channel ends. one-dimensional quasisteady solutions of the equations for
In the limit h¢>1, the second term in the potential the spin dynamics of a normal Fermi liquid in a uniform
U(pB) can clearly be neglected. Then the problem reduces tghagnetic field in the collisionless regime. Structures resem-
the simpler case witvp= o . bling a spin vortex with an integer circulation number that
The situation in which the value @8 is constant along are stable against small perturbations show up in the axisym-
the channel, i.e 8’ =0, is special. Such a situation arises if metric case. In each such structure, magnetization parallel or
B corresponds to the minimum of the potentidD) (this  antiparallel to the field at the vortex axis deviates smoothly
point is special, because motion starting there is apeniodicwith increasing distance from the axis, up to some angle at
In this case it follows from(37) that the derivativen’=g  the vessel boundary. This angle, as well as the exact depen-
= const is constant along the channel. Accordingly, the phasgence of the deviation of the magnetization on the distance

difference between the endsAsx=gL. to the axis, are determined by the total longitudinal compo-
The condition for a potential minimum in this notation nent of the magnetization directigiir coss. The initial con-
takes the form ditions of the experiment determine the total longitudinal
magnetizatiorS/drcos3, whose value does not vary during
cosB=— Sgnwp— wi) _ further evolution of the system, in accordance with Leggett's
(g€)? equations. At the beginning of the experimeBt;an be as-

sumed to take the equilibrium valygw, /2.

The requirement that no spin current flow through the
chamber wallgwhen its size is fixedmaps every deviation
angle at the lateral surface of the vessel to a value of the
difference between the precession frequency and the Larmor

It follows from the range of the cosine that such a solution
exists only whengé=1. Otherwise, only sig=0 is pos-
sible. Thus, the current depends on the gradigmf the
azimuthal anglex:

0, gé<i, JA
z__ 2
7= w? ( ~ ) ge1, (51)

3K (9é)

0, gé<1,

|9]=1 w2 / 1 (52)
3 VI g 77 1t

This dependence is shown in Fig. 4.

For any value of the gradient, the spins in the channel
are oriented at a fixed angJ@, to the magnetic field; that 0 1 9é
angle is 0 forgé<1 and tends tar/2 asgé—oo:

FIG. 4. Dependence of the current through the chafinalnits ofw?/3«x¢)
0, gé<1, on the phase difference at the channel ends when the deviation of the mag-
netization corresponds to the minimum of the potentgd): light line —
Bo= 1 (53 absolute value of the current, _heavy line — component along the field. _At
arccosﬂ, gé>1. large values of the phase gradigyit, both dependences become asymptoti-
g-é cally linear.
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frequency in such a manner that the required effedinee, w2 w2 27rnsin B,

in units of the characteristic lengt) vessel radius is en- JZE@ 3 L

sured. The effective vessel radius needed to form a vortex

has a lower boune:0.84 (for a vortex with circulation num-

berN=1). As the effective radius tends to infinity, the de-

viation angle at the lateral surface tends#p and equal Only when g, corresponds to the potential minimum

precession and Larmor frequencies correspond to the magn€or @ givenh) is there no such approach. In this case the

tization distribution described by the Belavin—Polyakoymotion is aperiodic, i.e., the polar angle is constant along the

skyrmion solution. channel(and coincides with the polar angle in the reser-
We seek solutions in the quasistationary approximation\,/Oirs)- It also turns out in this case that the production of a

with slow motion relative to the Larmor reference frame, i.e.,current-carrying state is possible only for phase gradients

in the limit in which the absolute value of the difference greater than the reciprocal of the characteristic s¢afe

between the precession frequency and the Larmor frequency This work was performed with partial financial support

is small. from the Statistical Physics Program of the Ministry of Sci-
The collision integral in Leggett's equation for the spin €nces of the Russian Federation, by Grant Nos. 96-02-

current leads to relaxation of the absolute value of the magl6041b and 96-15-96632 from the Russian Fund for Funda-

netizationS. The quasistationary approximation can then bemental ResearcliState Program for Support of Scientific

equivalently reformulated as the condition that this relax-Seminarg and the INTAS PrograniGrant 96-0610

ation be slow. The latter circumstance in conjunction with

the stability of the entire family of vortex solutions suggests

in this case that relaxation will be described by solutions in

this family, i.e., the distribution of spin in the system at any

instant will correspond to a vortex with a value jofir cosg "E-mail: mineev@landau.ac.ru

such thatS [ dr cosp remains constant, as required by Leg- Yvectors _in spi_n space are denoted by bold Ietter;, and the components of
, . . . . vectors in orbital space are denoted by a subscript.

gett's equations. Since, however, each vortex is umquely)By virtue of (20), there clearly also exists an inverse structure, i.e., a

characterized not only by the total longitudinal component of skyrmion for whichg varies from (at 0) to 0 (at ).

the magnetization direction, but also by the difference be?0f course, because of invariance under the transformggion it is clear

tween its precession frequency and the Larmor frequencyfor wNp> o, that the asymptot€27) at infinity matches the asymptote

(see abovk in this case relaxation should lead to variation of 4)§eAC;”':§:I‘: VZVZ“;'S .

the precession frequency with time. ®Because of the variouspex‘i;ti}\ definiti f ite out the int I

. . . . g definitionsmiwe write ou e Integral
Stationary magnetization transport along a thin channel ;¢ yne third kind in explicit form:

connecting two reservoirs with a Fermi liquid has also been fim dt

o v1-t2

investigated. It has been found that the dependence of thdl(ekp=
polar angle on distance along the channel is described in this
case by Newton’'s equations of motion for a particle in a
potential well with a single minimum. Distance along the
channel plays the role of time. The spin current through the
channel, the “phase” differencg.e., the difference between
the azimuthal anglesat the ends of the channel, as well as tv. v. pmitriev and I. A. Fomin, JETP Lett59, 378 (1994.
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Anomalous diffusion on a comb structure consisting of a one-dimensional backbone and lateral

branchegteeth of random length is considered. A well-defined classification of the

trajectories of random walks reduces the original problem to an analysis of classical diffusion on
the backbone, where, however, the time of this process is a random quantity. Its distribution

is dictated by the properties of the random walks of the diffusing particles on the teeth. The
feasibility of applying mean-field theory in such a model is demonstrated, and the equation

for the Green’s function with a partial derivative of fractional order is obtained. The characteristic
features of the propagation of particles on a comb structure are analyzed. We obtain a

model of an effective homogeneous medium in which diffusion is described by an equation with
a fractional derivative with respect to time and an initial condition that is an integral of

fractional order. ©1998 American Institute of Physids$$1063-776(98)01010-5

1. INTRODUCTION that a=vy/2 for a power-law distributiorf (I)e<|~? of the
tooth lengthl, with +y in the range ¥ y<<2. If all moments
Diffusion in heterogeneous media containing inhomoge-of f(I) converge, diffusion on the comb structure can be
neities of various scales, particularly on fractals, has anomadescribed by classical laws$.The properties of such diffu-
lous propertiegfor reviews see Refs. 13.3For example, in  sion under the influence of a topological drift field were in-
such media without a preferred direction, the mean-squareestigated in a similar approximation in Refs. 12 and 13.
displacement of a Brownian partickx?) depends on the The value ofa for exponential and power-law distribu-
time t as (x?)«=t®, wherea#1. A self-consistent, general tions of the lengths of the lateral branches with and without
description of anomalous transport is presently lacking, sa drift field along the backbone was found by isolating the
various models of inhomogeneous media are investigated ileading terms with respect tbin the lattice description of
dividually. Typical examples of such media include percola-Refs. 14 and 15. In particular, in the presence of a drift field,
tion clusters and clusters that emerge during diffusion-w= vy for such a power-law distribution of the tooth lengths.
controlled aggregation. This problem was studied in the presence of a drift field
From the standpoint of diffusive transport, such a clustealong the teeth in Ref. 16. The Green’s function in the ab-
can be represented as consisting of an infinitely extendegience of a drift field was also found for the lattice model, but
backbone and a large number of lateral branches. The ramvithout any justification for the modification of the mean-
dom walk of a diffusing particle on the backbone of the field approximatiort.
cluster largely determines its movement in space, while the In this paper we develop a continuum description of dif-
lateral branches serve as specific traps where the particfgsive transport on a comb structure. Using a well-defined
spends most of its timésee, for example, Refs. 1%:3The  classification of random-walk trajectories, we reduce the
degree of branching of the backbone is sfia@lh the model  original problem to a classical description of random walks
of a comb structure with lateral branch@seth of random  on the backbone, where, however, the time of each random
length (Fig. 1) was proposed to describe diffusion in such walk is a random quantity. Its distribution is dictated by the
systems in Refs. 5 and 6. If the properties of percolatiofandom walks of diffusing particles on the teeth. We ulti-
clusters are taken into account, distributions for which allmately obtain a model of a homogeneous medium with
moments of the tooth length distribution diverge can also b&nomalous properties. In particular, diffusion in this medium
considered. is described by an equation with a fractional derivative with
Diffusion along the backbone of a comb structure withrespect to time and a corresponding initial condition that is
teeth of identical length is described by the classical lawan integral of fractional order.
(x?)et, if the length of the branches is small, and is anoma-
lous, (x?)tY2, if their length is infinite’® For a comb struc-
ture with teeth of random length it is natural to expect that, \/opeL
the function(x?(t)) will also be a power function with an
exponentx e (1/2,1). In fact, in Refs. 9 and 10 the properties Let thex axis represent the backbone of the comb struc-
of anomalous transport were in fact investigated in the clasture under consideratiofFig. 1). The teeth{i} (i eZ) are
sical mean-field approximation. In particular, it was foundattached perpendicularly to {parallel to they axis). They

1063-7761/98/87(10)/14/$15.00 700 © 1998 American Institute of Physics
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E, aC,

- =0. (2.5
y ay y=1,
Equations(2.2—(2.5 comprise a complete microscopic
€ description of diffusion on a comb structure.

To justify going to the continuum limitA must be a
small quantity. Specifically, we assume that

i A%?<Dt and uEA<D. (2.6)
Al l The first inequality means that the characteristic diffusion
_1 - length at timest considered here significantly exceeds the
Tt M B s T Ty Ty K X K=t distance between teeth, and the second means that the

FIG. 1. Model of a comb structur&—drift field; points—the “observation influence of the drift fieldE is small on scales of length.

line” y=e¢; x;—tooth coordinates; — tooth lengths.

3. GREEN’S FUNCTION. CLASSIFICATION
OF THE TRAJECTORIES OF DIFFUSING PARTICLES

are separated by a distande and their lengthgl;} are in- For simplicity, we analyze the diffusion of particles on
dependent random quantities. Their distributiih) is de-  the backbone when all particles are localized on the back-
scribed by the power law bone with densitycy(x) at the initial timet=0. In this case
|71 the solution of_ the problelfQ.Z)—_(Z.S) red_u_ces to finding the
f(hy=(y—1)—~—, (2.7)  Green’s functionG(x,x’[t), which specifies the concentra-
17

tion c(x,t) at timet:

with exponentye (1,2), andly~A is the minimum tooth ® ) . .
length. The functior(2.1) satisfies the following normaliza- c(x,t)= LWG(XM [t)Co(x") dx'. 3.
tion and divergence conditions for all moments:

The Green’s function

fmf(|)d|=l, fw|nf(|)d|:0°, n=12,... . G(x,x’|t)=G(x'y,t|x’,0)|y:O
lo lo

is the solution of the problem under consideration with a
Ys-function initial condition, and can be interpreted as the
“probability density of finding a diffusing particle atat time

t given that it was ak’ at the initial timet=0. All possible
particle trajectories that begin at and reactx after a timet
contribute to this probability. In addition, they are indepen-
dent because of the linearity of the system of equations
(2.2—(2.5). This enables us to represent the Green’s function
Jc J2c Jc as an integral over the trajectories

As will be seen below, these conditions ensure the feasibilit
of describing anomalous diffusion in terms of a homoge
neous medium.

The diffusion law for Brownian particles on such a
structure is given by the following equations: for the back-
bone, away from the points of tooth attachméri=iA},
i.e., atx#Xx;,

=D 2 rEL (2.2 \(O=x
Gxx'[t)= | ¥ =5 AxM),y(t)} 3.2
and for theith tooth y((o);o
aC; #2C; where &, is the statistical weight of the trajectory
WZD&_yZ- (2.3 {x(t"),y(t)}, 25 and Z{x(t"),y(t")} is its Wiener measure.

Let us construct the following classification of trajecto-
Herec(x,t) is the concentration of diffusing particles on the ries (Fig. 2). We introduce an “observation line,” the hori-
backboneCi(y,t) is their concentration on tooth D is the  zontal straight liney= €, wheree satisfies
diffusion coefficient,u is the mobility, and, in addition, we

2ly

assume that a uniform fielf acts along thex axis. At the A~ly<e<Dt,A| — (3.3
points of attachmengx;} the concentration of particles and HEA
their fluxes along the backbone and the teeth (the meaning of the latter bound anwill shortly become

_ Jc aC, cl_earj. The first segment of a trajector?™{x’,i;, 7}, be--

J=—D(?—X+,U,EC, Ji=—DT, gins atx’ and corresponds to random walks of a particle

y within the regionl’ .={(x,y):y €[0,€)}, i.e., without cross-

respectively, satisfy the continuity equations ing the observation line. It ends axig,e) at time 7;, when

c(x ,t)=C;(01), j|x=xi70:j|x=xi+0+‘]|y=+0- (2.4) the particle first crosses the observation line. The next seg-

ment of the trajectoryP°“Yi,,t,}, corresponds to random
The condition on the reflection of particles at the ends of thevalks of the particle on tooth, without touching thex axis.
teeth is It ends at timet;, when the particle first arrives . The



702 JETP 87 (4), October 1998

x4 a
x=x
x=x v \’\ '\/J
xl N
A h h ) ) ]
0
W W W
Pu‘n POW Pill Pout PIa.n‘
y
F(ijty) F(in)
o N\ \

o i
VLt v i
x' \ % \ x \ =
W(x‘.’ , x11) W(x,.’ . xi,l ) g, xi.ltj)

I. A. Lubashevskii and A. A. Zemlyanov

CFLIFY

[P
6 ,. 9 ¥ ye WEWNI
x' x x x x x x x X, xi‘ x
H 1
CFLIFY O DPLIFT
¢ .-‘ .: 'O' .v‘ .o. ': .D. .-'
Y X W 2 B
x' X, ! X, X, X, x
! Y h LY

\ J

v

FIG. 3. Diagrams of Eq93.4) and(3.5) for the Green'’s functiorG(x,x")
and diagrammatic representation®fx; ,x) (the relationg3.5 and(3.7)).
The bracket denotes the convolutipw* F} of N factors.

o

o N
(DN(XiN-X/|t):_ > > Jo "'L kl;[l drcdty

ip=— iN=—%
N
X O t_jzl (Tj+t]) W(Xik’xik,lh-k)
XF (i) (3.5

FIG. 2. Characteristic segments of the trajectory of a random walker thaHere g(x,x’ |t) is the probability of arriving ak from x’ in

was atx’ at timet’=0 and arrived ak at timet: a — schematic represen-
tation of this trajectory in the spada,y}; b — the corresponding diagram.

time t without touching the observation line. The analogous

For simplicity, a trajectory containing five characteristic segments for afunCtlong(X'XiN|TN+l) describes the last segment of the tra-

random walker on the backbone and on the teeth of a comb structure
shown.

subsequent structure of the trajectory is composel 6fL
successive repetitions of this pair of segments representi
random walks on the comb structure within the reglopn
and on teeth without touching the backbone:

Pin{il!inTz}; POUt{iz,tz}; R

Pin{iN_l,iN,TN}; POUt{iN,tN}

(P™ik— 1.1k, 1y =P™x;,__ik,7d), with the exception of
the last segmer®'®{i ,x, 7y, 1}. The last segment begins
atx; and represents a random walk of duratiqn 1 within
the regionI’ ., which ends ak on thex axis.

fectory forN=1. The factor\N(xik,xik71|7-k) is the probabil-
ity of first arriving at (xik,e) on the observation line in time
7 If the particle was atx; , at the initial time. In
W(xil,xio|rl) the symbolxi0 formally denotes the initial
point of the trajectoryxiozx’. The factorF(iy,ty) is the

ngrobability of first arriving at thex axis in timet, during a
random walk on tootln, for a particle that was at= e at the
initial time. These factors and trajectory segments are com-
pared in Fig. 2a. Figure 3 presents E(3.4) and (3.5 in
diagrammatic form.

Since the problem under consideration is translationally
invariant with respect to time, it is convenient to take
Laplace transforms:

(.. .)(s)=f:dt' e sU( .. )(t),

where we assume that the argumentl/t. This enables us

This classification enables us to perform the integration[0 rewrite (3.4) and (3.5) in the form

in (3.2 first, assuming that the parameters

- k=N
N Tiotidk=rs TNt

are given, and then to integrate the result over these param-

eters(summing overi, andN). We thereby obtain

o] t o0
G(X,X’|t)=9(X,X'|t)+N21 fodTiN“i 29X Ty, )
= N——w

xCIDN(xiN,x’|t— ), (3.9

.
IN+1

where

G(x,x'|s)=g(x,x'|s)
+NE=1 [ ;x 9(x,Xi, |S) P (xi, X [S), (3.6

Oy(x;, X'8)

N
1 wxi,xi, |9F(is). (3.7
k=1

5

— oo

)y

i1 iN-1=—
To complete this description we need relations that specify
the principal factors ir{3.6) and(3.7); these form the subject

of the remainder of this section.
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3.1. Green’s function for the elementary segment P! We separatg(x,x’|s) into a regulari.e., averaged over

The general expression for the Laplace transféigihs)  the ensemblél;}) partg(x,x'[s) and a random component
of the probability of first arriving at thes axis in timet  99(X.X |s):
during a random walk on toothfor a particle that was ini- eyl o ,
tially at y=e€ is derived in Appendix A. Given the con- 9(x.x'[s)=g(x.X'|s)+ 5g(x.X'|s). (313
straints one (see(3.3)), to first order in the small quantity In the zeroth approximation with respectAde the function

eys/D this expression reduces to g(x,x’|s) satisfies Eq(3.9) after the replacement af(x) by
S S its averaged valuep and neglect of the small-amplitude
F(i,s)=1—e€ \[Etam{h \@) (3.8 variations ofg(x,x’|s) over the distancé\, due to the dis-

crete positions of the teeth. In this approximati@ee Ap-

which is the expression desired in this part of the paper. pendix B fora(x,xf|s) we have

o

' 1 in
3.2. Greer-l S functlo-n for the elementary segment P! $Q.g=D 3_2 _ ,uEa—g _ 2%9"‘ S(x—x"). (3.14
We first consider the Laplace transfogx,x’|s) of the IX IX /s
probability of a particle arriving at from x’ in timet during ..o
a random walk within the regiohi,. Such a random walk is
accompanied not only by displacement of the particle along L @y=1)lgf € 27y
the backbone, but also by visits to points on nearby teeth. =1t 32—y All, 3.19

This process is described §2.2—(2.5 and the vanishing

boundary conditionC;(e,s)=0 at y=e for teeth whose S the dimensionless capacity of the layér, and

length I;>€. In Appendix B (see Eq.(B10)) we use this ’ e\ 72
description ofg(x,x’|s) to obtain /e=~\2Alg E) (3.19
7°g 79 is the rms length of the elementary segmBfit It also fol-
=D——-uE—-— +8(x—x' ) ¢ .
sg=D Ix? KE oX 70g+ Sx=x"), 3.9 lows from (3.14 that the mean duratiom, of P" and the

corresponding mean residence tim?e of a particle on the

where backbone are
” 2 2
70=+5D| 3 bis(x—x) @10 __9QC 2y-1 & /. JAlle)™® 3.17)
== € 2D 3(2_’}/) D! € 2D \/ED IO . .

describes the rate of escape of the random walkers from the
backbone, and the coefficiertts are random numbers given
by (B8), which can be rewritten in the limi3.3) as

In this approximation the random componeégi(x,x’|s)
is given by the expressiofAppendix B, Eq.(B29))

h\[% li<e 8g(x,x'|s)= =D 2, 8b;g(x=xs) g(xi=x'|$),
b= 1B e Is (3.1) (3.18
;\/;‘f‘ 5\/;, li>e. where 6b;=b; —(b) is the random component of the coeffi-

cientb;. Then the ratio of the Fourier componerfig, and
Finally, to complete the problem we need an expressiog, of the functionssg andg can serve as a measure of the
for the probabilityW(x; ,x'[t) of first arriving at toothi on jnfluence of random inhomogeneities of the geometry of the

the observation ling= e in time t when the particle starts on  comb structure on the random walks of particles within the
the backbone at’. As shown in Appendix Bsee B13), the  |ayerI",. According to Eq.(B33),

Laplace transform of this function in the lim(8.3) is 5
2 (| 59y >~

|
, D €“S , . = 0
W(X; X |s)=; 1—5 g(x;,x'[s) 6, (3.12 |kl

€

(2=y12
) <1, (3.19

wheregf=1 for |;>e and 65=0 for |, <e. and thus wheny<2 and €i|o~A, 89(x,x'|s) is small

The relationg3.6)—(3.9) and(3.12 comprise a complete compared to the regular pag(>_<,x’|s),/and in the first ap-
description of the present diffusion problem on a comb strucProximation the Green’s functiog(x,x’|s) can be consid-
ture for a given distribution of the tooth lengtfis}. Subse- ered identical to its regular part. We note that this statement
quent analysis will be given over to investigating typical " fact follows _from the condition that there b_e a large num-
properties of such diffusion with ensemble averagingber of teeth with lengtht;> € over a characteristic length of

over{l,}. PI". Specifically, the number of such teeth
As can be seen from the expressions obtained, the /., e\ (@272
Green’s functiong(x,x’|s) plays a significant role in the N€~XPE~(I—> >1, (3.20
0

approach described here. Therefore, before proceeding to
further derivations, we consider some salient properties. where
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fore be reasonable to smooth the functibp(x; ,x’|s) with
- F . respect tak; on scales smaller thari, and treat it as a con-
. tinuous function ofx=x;, x', andt,=N7°:
Dy, Dy w J, D (i, X' [8) =P (X,X'|ty,S).
x' X, B x' X, X

The use of the argumeny is justified because it is the mean

_ _ residence time of a random walker on the backbone of the
FIG. 4. Diagram of Eq(4.1) for the Green’s functio \(x; ,x'). The large b struct
points on the diagram denote summation and integration over the corre0MD S ruc_ ure. . .
sponding arguments. A Fourier transform-based smoothing procedure is de-
vised in Appendix C for wave numbeks<1//,. It is also
shown there that by following Pontryagin's methidthe

[ !

" | 71 Smoluchowski—Kolmogorov equatid@.1) for @ y(x;,x’|s)
Pf:f dl f(|)=(—0) (3.2)  can be reduced to the following Fokker—Planck equation for
€ € D(x,X'|ty,S):
is the probability of finding a tooth of length> €. 2
By virtue of (3.3) and (3.17), a typical trajectory of a Tb@: a_[D (X)®]— i[ﬂ(x)(l)]—u(x S)D. (4.2
random walk of a diffusing particle includes a large number, ity gx2 ¢ X ’

N> 1, of the elementary segmer®" and P°". Thus, after
appropriate regularization, the Green’s functbp(x; ,x’|s)
varies little in response to variations of the argumeqtand 1 2 -
x" on scales not only of ordeX, but also of order”,.. This D _(x)= > > (Xj—x)ZW(xj ,x|0)=DJ dxg(x,x|0)
enables us to regard the regularized Green’s function )=z -
®\(x;,x’|s) as a continuous function of its arguments, mak-

The kinetic coefficients in this equation are

ing it possible to model diffusion on a comb structure in +,uEf dx (x—x)g(x,x|0), 4.3
terms of an effective homogeneous medium with anomalous ’°°
properties. The next section is devoted to devising this regu- o

larization procedure and deriving the corresponding differensy(x)= > (X, = X)W(X; ,X|O):MEJOO dxg(x,x|0),
tial equation for the regularized Green’s function. j=—e —o

(4.9
4. FOKKER-PLANCK EQUATION FOR THE GREEN'S _ \ﬁ . \/E _
FUNCTION @ y(x,x'|s) ux.s)=e\ g izz_m ta”"(h 5 | W(x;.x|0). (4.9
Let us write (37) as a SmOIUChOWSki—KC)lmOgorOV ForN=1, to a first approximation we can put

equation, which relates the functiorBy, ,(x,x’|s) and
Dy(x,X'|S): D4(x;,x"|s)=~W(x;,x'[0).

_ * In this case the width of the localization region of
Dpi1(X ,X'|S)=F(I,S)j_§; W(X; ,xj|8)Pn(Xj,X'[8), ®,(x;,x'|s) is of the order o/, and by virtue of(B17),

4.1 *

which corresponds to the diagram in Fig. 4. We next con- iZE_w ®y(x;,x'|s)~1.

sider large values of the argumeNt>1. In this case it is
natural to expect that the function®y,1(x;,x’|s) and This enables us to supplement E4.2) with the formal ini-
®\(x;,x’|s) will differ only slightly, in which case we can tial condition
consider the argumem to be continuous and put , ,
’ P DX [ty ), -0=B5(X—X"), (4.6

IDy(x;,x'[s)
TN since in going over to the continuum limit we make the
replacement

Dy (X, X' [8) = P(Xi X' [8)=

However, spatial fluctuations dy(x;,x’|s) remain signifi-

cant when the coordinate, varies on scales of length, - 1 (=

since®(x; ,x'|s)=0 whenl;<e by virtue of (3.12. Nev- izz_w N f_wdxi :

ertheless, these fluctuations do not play an appreciable role,

since the relationship between the desired Green’s function The ensuing analysis will be based on the solution of Eq.
G(x,x'|s) and®y(x;,x'|s) is given by the integral relation (4.2), using the mean values of its kinetic coefficients be-
(3.6), and the kernef(x,x’|s) of that relation has a local- cause of the small magnitude of their random inhomoge-
ization region whose width is of ordef,. The function neous perturbations. However, a comb structure is a low-
g(x,x’|s) varies weakly as a function of the argumenton  dimensional system, so in general the mean-field
scales of length, and its localization region contains a large approximation for Fokker—Planck type equations can break
number of teeth of length> € (see(3.20). It would there- down under even the smallest of perturbatigese, for ex-
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ample, Ref. 18 Therefore, use of the mean-field approxima- x |2 w
. . ) ; o PR A oby A 1
tion to describe a given system requires special justification, — =— d , (4.10
. . ; . * 2 P * %
which we provide in the next section. D —= LplZy
where
4.1. Mean-field approximation A= Jm dX'(éL’k‘(X) 5Ltk(xl)>’ (4.11
We can show that the influence of random fluctuations -
of the kinetic coefficient$4.3)—(4.5) is negligible under the 5L§(x)=k25DE(x)+ik51‘J‘(x)+ Su(X). (4.12
strictures of(3.3). We apply the mixed Laplace and Fourier ] ) ] )
transformations The integral (4.10 is evaluated in Appendix Dsee Eq.
(D17)), and yields the estimate
Cootor= [ e ), 507 |? 5|22
0 — =|lg\/= <1, (4.13
o D
k

(..)Kk)=1] dxe ™ ...)(x) if the wavelength X of the perturbations®; is not much
- greater than the typical thickness of the localization region of

to Eq. (4.2). From(4.2) we then obtain the following equa- D (x.X'[ty,S).

tion for the transformb* (k,x’|o,s) of the Green’s function By virtue of (4.13, to a first approximation the trans-
D(x,x'|ty,S): form CD;‘ of the Green’s functlorﬂ)_(x,x’|tb,s) is given by
(4.9, i.e., we can use the mean-field approximation in solv-
U S . . ik’ ing Eq. (4.2). In other words, replacing the kinetic coeffi-
Lie®i=—5 f_xdp OLick-pPp HAT, 4.7 cientsD,(x), #(x), andu(x,s) by their mean valued,, 9,
andw in this equation is justified. This enables us, first, to no
where longer distinguish between the Green’s function
« b . ®(x,x’'|t,,s) and its regular part. Second, using the expres-
Ly =70+ Dk +idk+v; sions(D2) and(D7) obtained in Appendix D fob,, ¥, and

v along with Eq.(3.17), we can write Eq(4.2) in the form
8Ly ,=k?8D (p) +ik 39(p) + Su(p); 9 q.3.17 q(4.2)

L A P

D., 9, andv are the mean values of the corresponding ki- T D_z_'“EW_ v(s)P, (4.19
netic coefficients, andD (p), §9(p), and Sv(p) are the b 2
Fourier transforms of their fluctuation components. where

It can be seen front4.7) that in the zeroth approxima-
tion with respect to the fluctuation opera@r’kﬂp, the regu- (9= E(I \/E) Y @15
lar part®} of the transformd®* (k,x’|o,s) of the Green’s g YAlg\ °VD/ ’
function is

I, is a constant of order unity, which is specified (6),
and 1b(s) plays the role of the characteristic lifetime of a
4.9 diffusing particle on the comb structure backbone during a
Lk random walk over a time period- 1/s.
Equation(4.14) with initial condition (4.6) is the princi-
tpal result of this section. Therefore, before moving on to the
concluding portion of this paper, we give a qualitative expla-
ik’ . nation for the validity of the mean-field approximation in the
SP* = — — (D":f dp oL} % . (4.9  system under consideration. We assume for simplicity that
- ' the drift field is weak. As follows from the results in Appen-
dix D, random fluctuations of the kinetic coefficientx,s)
determine the spatial fluctuations of the Green’s function
®(x,x'|ty,s) and are associated mainly with random walks
of a particle on teeth whose length is of order \D/s.
These fluctuations are small if the random walker encounters
a large numbelNg of such teeth during a time~1/s. By
virtue of (2.1, the fraction of teeth with length of ordéy is

o Ae*ikx'
*
Dy

and that in the first approximation its fluctuation componen
5Dy is

Whenty> 72 (N>1), the width/, of the localization
region of®(x,x’ |t ,s) significantly exceeds the scale length
/¢, i.e., the width of the localization region @f(x;,x|s):
/o> /.. Therefore, for®} the significant values of the
wave numbers lie in the randk|<1//,<1// .. As can be
seen from(4.3)—(4.5), the characteristic correlation length of
the kinetic coefficientd .(x), 9(x), and v(x) is of order
/.. Therefore, in(4.9) it can be assumed that the random o s\771
fluctuations 6D (x), 69(x), and Su(x) are 5-correlated. Ps~fl f(|)d|~(|o\/;> :

From (4.9) we can then assess the influence of random inho- °
mogeneities of comb structure geometry on the Green'sind as follows from Eq(4.14), the characteristic thickness
function ®(x, x|ty ,S): | of the localization region ofb (x,x’ |ty ,s) is
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o~ \/—— AI\F_W2 Fo_oc
® v(s) °Vp : V(S)CL:DW_MEW‘FCQ, (5.3

Hence, forNg we have

where, as in Sec. 3y(x) is the concentration of particles at

Ls s\ @ P the initial timet=0. Using the concepts of fractional inte-
N~ PSK ~ ( lo \[5) >1, grals and derivative® an analogy can be drawn, by virtue of
(4.19, between this equation and the following equation of
which is in fact the same condition .13). anomalous diffusion:
o[ D\ * s % ac
5. CONTINUUM DESCRIPTION OF DIFFUSION A 12 e ﬁ_“Ea_x‘ .4

ON THE BACKBONE OF A COMB STRUCTURE

] o ] Here the operator for a fractional derivative of degree
Returning to the original problem of calculating the ,— /2 (for 0<a<1) is given by°

Green’s functionG(x,x’|s) of random walks on a comb
structure, we see that the results obtained above enable us to d“c(t) _ 1 J td . c(t’)
transform Eq.(3.6) in the following manner. First, we gte T(l—a) ot t

o (t—t)e’
change from summation oveM andi to integration over ( )
t,=N7E, and lefx—x; : whereI'( ...) is thegamma function. Equatiofb.4) must
1 |N‘

be supplemented by an “initial” condition, which describes

* 1 (= * 1 (= _ the behavior of the concentratiaiix,t) at smallt. However,
N§=:1 —— L dty, i ;x 3 fodx- the formal limiting transitiont— +0 in Eq. (5.4) is impos-

b N sible, since this equation was obtained under the assumption

Sinceg(x,x; |s) and the smoothed functiok(x; ,x'[t,,S) thatt>A?/D.
scarcely vary on scales of length the main contribution to Nevertheless, there is a possibility for determining some
G(x,x'|s) comes fromN~ 7£/v(s)~(ey/s/D) " 7>1, and by limiting behavior of the concentratior(x,t) while adhering
virtue of (4.6), the first term on the right-hand side of Eq. to the adopted descriptidh Specifically, in the model under

(5.5

(3.6) can be written consideration it is natural to assume that the initial distribu-
1 tion cy(x) varies only slightly on scales of length. There-
o0 —~ _ —~ . 2 .

g(x,x'|s) =~ J dxg(x,X|s)®(%,x'|0,s). fore, aftgr a tlmetle /D has elapsed, the con_cent_rauon

A Jo c(x,t) will vary mainly as a consequence of the diffusion of

particles along teeth, rather than along the backbone. In ad-
N dition, its spatial fluctuations on scales of lengthwill also

ing the variations of ®(x,x’|t,,s)=®(x,X'|t,,S) in a be insignificant despite the structural inhomogeneity of the
neighborhood of thickness, aboutx; /. is small in com-  system of teeth, as in fact follows from the estimates con-
parison to the thicknesg’q, of the localization region of cluding Sec. 4.1. Such behavior ofx,t) att=A?/D can be
d(x,x'|ty,,s) itself. Finally, also taking into accour(8.17) described by Eq(5.93) if the first two terms on its right-hand
and (D1) and the fact that under the present assumptionsside are discarded, i.e., #(s)c_ =co. The latter can also be
G(x,x’|s) and®(x,x’|t,,s) depend only on the difference written in terms of the integral of fractional ord@t—*:

x—x'", we can write

We then puts=0 in g(x,xiN|s) and integrate ovex, ignor-

(2=y)2

D -
I e(x,H}=co(x), (5.9

12
1

I
, 1(= ' IVKO
G(x—x |S):K JO dt, (x—x'[tp,s). (5.9

2 51— a _ ;
The relation(5.1), together with Eq(4.2) and the bound- wheret=A%/D, and the operatoy (for 0<1-a<1)is

i 0
ary condition (4.6), shows that the Green’s functioB(x given by
—x'|s) satisfies - . ftdt St
Ye(xt)}= =—— ! ]
? J F(l—a) 0 (t_t/)a

-G JG
v(s)G=D—2—,uE—+5(x—x’), (5.2 ) ) _ )

oX X The relation (5.6) describes particle conservation. In
other words, it states that after a timzA?/D, the total

fnumber of particlegper unit length of the backbop&cated

anomalous diffusion along the backbone of a comb structuré” the backbone and the nearby teeth is equal to their initial

We next analyze the specific properties of such diffusion inconcentratlon ona tooth.ZOf course, this condition is actually
greater detail. independent oft for t=A</D, and can serve as a formal

initial condition for solving Eq.(5.4) in the continuum de-
5.1. Continuum equation for anomalous diffusion scription:

which is indeed a general solution of the present problem.
The latter equation yields a continuum description o

The set of relations that we have constructed, together (2-y/2
with (3.1, enables us to write for the Laplace transform IVKO( —2) I e, D} +o=Co(X). (5.7)
c.(x,s) of the concentration of diffusing particlegx,t) 15
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It is noteworthy that with such an approach the concen-

tration c(x,t) does not tend te@y(x) ast— +0, but instead,
by virtue of (5.7), it is given by

A ( |g)(2—7)/2

I,T(y/2)l, \ Dt (5.8

c(x,t)~ Co(X),

which has a singularity as— +0. The latter, however, is no
more than a formality, since in calculating specific values of

c(x,t) we should at least take=A?/D. In that event(5.8)

yields a reasonable result. In other words, in the continuum
description of diffusion on a comb structure, scales lengths
and timesA?/D should be regarded as infinitesimal quanti-

ties, and in this case the limit—+ 0 does not imply viola-
tion of the conditiont=A?/D.
Equation(5.4) with the initial condition(5.7) also com-

prises a continuum description of anomalous diffusion in ———————=x~1,
terms of equations with fractional partial derivatives. We
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g vl4
EC(t):M_A(D_t) :

In weak fields E<E(t)), we have(x?(t))oct”? with an
exponent in the range 1#2y/2<1, i.e., in this limit particle
propagation on the comb structure is subdiffusiire the
terminology of Refs. 1-3 In addition, we have

(x(t) _pE
(x*(t)) 2D’

(5.12

(5.13

which can be regarded as a generalized Einstein equality for
the relationship between regular and random motions.
In strong fields E>E_(t)),

(X%(1))—(x(1))?
= 51
x(0)? (549

note that direct application of the trap model to the descripyyhich demonstrates that in anomalous diffusion, the drift

tion of anomalous transport also leads to an equation wit

fractional derivative$>?2 which differs in form, however,

from the present one.

5.2. Dispersion relations

To analyze the propagation properties of random walk-

Hield results not only in regular displacement of the diffusing
particles, but also to somewhat efficient random motion. In
this range of fields the latter effect is commensurate with the
former, and can be regarded provisionally as field-induced
diffusion. Such diffusive transport is characterized by a
spreading of the ensemble of partickee(t))— (x(t))2«t”
with an exponent in the range<ly<<2, and can be relegated
on the basis of this phenomenon to the superdiffusion

ers on a comb structure, we calculate the time dependence g, (1-3

the mean displaceme(wx(t)) and the mean-square displace-
ment(x3(t)) of the random walkers along the backbone. BYthe

definition

7. dx x G(x,t)
[7.dx G(x,t) ’

[ dx ¥ G(x,t)

J7 . dx G(x,t)
(5.9

(x(t)y= (X3(t))=

We note that superdiffusion is usually associated with
Levy flight model, and can be described by a diffusion
equation with fractional spatial derivatives, rather than tem-
poral, as a consequence of the divergence of the moments for
the distribution of jumping distances of the particles after a
single displacement event to neighboring sitgf. 21).?

We also note that field-induced diffusion also appears during

Equation(5.2) makes it possible to find the Laplace trans- grain-boundary diffusion in polycrystals and in crystals with

forms of the given factors directly. Integratin®.2) with

weighting functions 1x, andx?, taking the inverse Laplace

transform of the results, and substituting them i(&®), we
have

wEN2[ Dt "
(x(t))= D |\ z] (5.10
0
Dt "
(X2(t))=2\? Tz + (14 x)(X(1)?, (5.11
0
where
,_I'(¥/2)
L0(y) —
2
21*(7) —1~0.272— ),

X T (y2)T(3712)

the latter estimate being good to within 0.004 fox 3<<2.
It follows, in particular, from(5.10 and(5.11) that for a

fixed process duratioh, the first or second term in the ex-
pression for (x?(t)) dominates, depending on whether

E<E((t) or E>E(t), where

dislocations*-%

As might be expected, in the present case withjl
<2, the asymptot€5.10 and the leading term in the asymp-
tote (5.11) are consistent with the results of lattice
model¢*®S in formal mean-field theories!® For y>2
(where, for example, all except the first moments divgrge
we encountered violation of the mean-field approximation
for the Green’s functiong(x,x’|s) and®\(x,x’|s). In other
words, wheny>2, the distribution of the diffusing particles
along the backbone can become highly inhomogeneous be-
cause of the random geometry of the comb structure. This
case must therefore be examined in isolation, and the appli-
cability of specific varieties of mean-field theory requires
separate investigation.

To better describe the physical import of anomalous dif-
fusion, we conclude with a qualitative derivation of the dis-
persion relations using simple estimates, which are essen-
tially akin to the approach in Ref. 9. Lé{t) be the mean
penetration depth of particles diffusing along the teeth at
time t:

Y
lo

bt

|_(t)~fl‘mo|||f(|)~E
0

lo
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Then the mean timg, that a random walker spends on the trajectory is localized in the regioli,. One is the probabil-

backbone is ity densityg(x,t|x’,0) at timet of finding the particle on the
yi2 backbone ak after starting atx’. The second is the set of

ty~ i - ﬂ E probability densitieg ¢;(y,t)} of finding it on the teetHi} at

I D |g time t. These functions are interrelated by E¢&2)—(2.5),

so their Laplace transforms satisfy the following equations.
For the functiong(x,x’|s) not at the pointgx;} of attach-
ment of the teeth to the backbone, i.e.xatx; (i=0,x1,

At that time, the mean distanga(t)) and the mean-square
distance(x2(t)) traversed by the particles along a tooth are

wEVAL,[ Dt\"? +2,...), wehave
X))~ uEty~———| |
D113 *g g
sg=D——,uE—+6*(x x"), (B1)
’}//2 {9 2
2043\ 22 =
(1) =Dty (uBE) T~ Al |S) where §* (x—x") is an ordinaryé function forx’ #x;, and
for x’ =x; we take the following regularization rule:
R
+A|O(LAIO iy S (x—=x;)= lim &(x—x").
D |2 x'—x;—0
0 i
which are the same, in order of magnitude, as the rigorou$he Laplace transform$e;(y,s)} of the probabilities of
results(5.10 and (5.11). finding a random walker on the teeff} satisfy
This work was carried out with partial support from the 5
Russian Fund for Fundamental ReseafGlnant No. 96-02- -D 9" i (B2)
17576. ay?

in the range 8<y<min(e, I;), with boundary conditions
APPENDIX A: GREEN'S FUNCTION FOR FIRST ARRIVING

AT THE BACKBONE DURING RANDOM WALKS (9§Di
| =0 l=e (B3)
ON A TOOTH ay |
y=lj

As follows from the general properties of random walks _
(see, for example, Ref. 26the Laplace transforrf (i,s|y) ¢ily-=0, li>e. (B4)

of the probability of first arriving at the backbone, given thatwe note that the latter vanishing boundary condition on the
the random walker was initially located wton toothi, sat-  functions{¢;(y,s)} reflects the fact that we are considering

isfies particle trajectories that do not leave the regiop during
2F random particle walks on the teeth. The following continuity
sF=D— (A1)  conditions hold at the points of attachment of the teeth to the
ay? backbone{(x; ,y=0)}:
with boundary conditions ©i(0,5)=g(x;, x'|s), (B5)
Fl,_o=1, % _o. (A2) Jily=0=1lx=x-0=ilx=x+0» (B6)
y=l where
Hence,
J.—_D% '=_D(9_g_|_ E
_ costi(l;—y)Vs/D] e ay’ J ox HEY
F(,sly)= : (A3) _ _ N
coshl;\s/D) The solution of Eq.(B2) with boundary conditions
(B3)—(Bb5) is

The desired factor i&(i,s)=F(i,s|€). As can be seen

from (3.3), wheny = € the parametey/s/D can be assumed S S
to be small. Then, to terms linear in from (A3) we find @i(y,s)=9g(x;,x'|s) cosf(y 5) —b; Sin’"()/ 5) ,
(B7)

F(,sly)=1— y\[tanl'(l \/g

which leads directly tq3.8) for y=e.

+ O(yz), (A4) where

tani(l;ys/D), |i<e,

bi=b(l;)=
' " | coth es/D), Ii>e.
APPENDIX B: GREEN'S FUNCTION OF RANDOM WALKS _
WITHIN THE REGION T, The expressior(B8) enables us to represent the boundary

condition (B6) in the form

(B8)

1. General relations

d
The random walks of a diffusing particle on a comb j|, _ X +0™ ]|X:X_ Dﬁ

structure can be characterized by two types of functions if its y

=—sDhg(x ,x'|s). (B9
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The relation(B9) shows that Eq(B1) can be continued with- =
out singularities over the entirex axis provided that E W(x; ,x'|s)
S-function power sinks/sDb.g are introduced at the points '~~~

{x;}. In other words, for the Green’s function we can write °
the following equation, which is defined over the entire =1—s{f dx g(x,x’|s)
axis: o
+ i (1 o°+1;(1 05)) ( '|s) (B14)
sg:D—gz—,uE—g—\/sD > bs(x—x)|g 2= 12
IX X j=—o
+ 6% (X—X"). (B1O > (x—x")W(x;,x'|s)
|=—o
In this equation there is no reason to distinguish between o
5% (x—x') and the ordinary delta functiof(x—x'). Hence :MEﬁde g(x,x'[s)—s
Eq. (3.9 follows directly.
The random walk of a particle within the regidh can o *
also be characterized by the probability of first arriving at its X f dx(x—x’)g(x,x’ls)f_E (X =x")
boundary, i.e., the observation lige= €. For the theory pre- o T
sented here we need the Laplace transfafifx; ,x’|s) of 1
the probability density of a random walker first arriving at X Esﬁfﬂi(l— af))g(xi X'[s) ], (B15)
the observation line at toothand timet after starting ak’
on the backbone. As follows from the general properties of
random walks(see for example, Ref. 26 the function 2 (x;—x")2W(x; ,x'|s)
W(x; ,x’|s) and the probability flux density; are related by <=« " v
;i =2Df dx g(x,x"[s)+2uE
Wix X|9) =3y =—D | (B11) | Oxgxxs)+2p
oy y—e
of course, under the conditidn> €. Substituting(B7) into X f_xdx(x—x )9(x.X'|s)—s f_mdx(x
(B11), we obtain the desired expression, .
1
. —x')%g(x,x'[s)+ > (xi—X’)Z(geein(l
S ji=—o
W(x; ,X’|s)=/sD sin)—( e\/;” g(x,x'|s)67, (B12)
—05>)g(xi X'|s)|. (B16)
whereg;=1 for|;>¢e and 6;=0 for |;<e.
The quantityeys/D can be considered a small param- In particular,(B14) yields the useful identity
eter in the limit(3.3). Then, retaining the first two terms of
the expansion ireys/D in (B12), we obtain(3.12). o
Some general identities, which establish the relationship Z W(x;,x'|0)=1, (B17)

ji=—o

betweeng(x; ,x'|s) andW(x; ,x’|s), will also be useful be-
low. To derive them, on the right-hand side of EB10) we
distinguish between contributions of lateral teeth with
lengthsl;< e andl;> ¢, and allowing for(B12), we rewrite
this equation in the limit<D/s:

which reflects the fact that a particle starting on the backbone
must eventually cross the boundary: e of the regionl’,.

In the next part of this appendix we examine specific
statistical properties of random walks within the regiop.

©

2 AX—x)W(X;,X'|s)
== 2. Statistical properties of the Green'’s function g(x,x'|s)

9%g a9 * We separate the regular and fluctuation components of
=D —wE— —s 1+ > S(x—x) the Green’s functiory(x,x’|s):
IX X i=—o
1 g(x,x’|s)=a(x,x’|s)+ 59(x,x'|s). (B18)
X 550f+li(1—0f) g+ o(x—x"). (B13

In accordance with the ensuing results, the fluctuation com-
ponentdg is a small perturbation. It enables us to solve Eq.

Integrating this relation ovek from —o« to o« with the (3.9 (or (B10)) using perturbation theory. In this case, aver-

weighting functions 1,X—x’), and k—x’)?, we obtain aging (3.9 over the ensemblf;}, we find
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— P9 g
Sg—DE—MEa—\/S_Db

]

X > ga(x—xj)+ 8(x—x"), (B19)
Jj=—»
whereb is the mean value offb; }:

b= | dIf(h)b(l)
lo
N Iy

= —1y-12-y 1yl -y
32— Dl0 €7+ S|O € (B20)

by virtue of (2.1), (B8), and the inequality3.3). To trans-

form the discrete description of the influence of the teeth on

random walks within the regioh, into a continuum descrip-
tion, we take Fourier transforms in E(19). Then, for the

Fourier transforny, of g(x,x’|s) we have

I. A. Lubashevskil and A. A. Zemlyanov

Substituting(B20) into (B26) yields Eq.(3.14). In particular,
this form of the equation turns out to be useful whenO.
By virtue of (B8) and (B20) we have

D[lg\’—= _adg _ g ,
A—IO(:) E——Dﬁ—é(x—x ) (827)

In this same approximation for the fluctuation compo-
nent5g(x,x’|s), Eg.(3.9) (or (B10)) takes the form

92 d b
—DﬁJr,uE&Jr \/SDX 89(x,x'|[s)

:—@2_ 8b,8(X—x;)g(x;—x'|s), (B28)

wheresb;=b;—b. Transforming Eq(B28) and allowing for
(B26), we obtain(3.198:

59(x,x'|s)==\sD X sbig(x—x[s)g(x—x'|s), (B29)

= lar— | Ay vy v ey anikx
9(x'[s) Jfocdx gxx'[s)e”, (B21) or for the Fourier transforndég, (which can be specified by
the same relation a821)),
Eq. (B19) takes the form .
5G9 (X’ s)————f dp > sb
k9k+\/_D— 2 Oirk,=€ ", (B22) 1 L 2m) "Ly 27
n=—oo
xexd —i(k—p)x;—ipx']. (B30)
where ) ) )
In particular, an estimate of the fluctuation componégt
. b follows from (B30). Specifically, considering only small val-
— 2 _ '
L=s+DK*+iuEk+ \sD A’ (B23 65 of the wave numbék|<1/A, we find
the K,=2mn/A are Brillouin numbergthe n are integers (|5gk|2> sb
and the prime on the summation sign means that the term 9 |2 ob) f dp|L |2’ (B31)

with n=0 has been omitted. In the present problem we are

interested in scale lengths much greater thafhis enables
us to restrict attention to wave numbérthat are small com-
pared to 1A. It then follows from(B22) that the correction
89y to the zeroth approximation fag, in the small param-
eterkA<1 is

& = \/S_Db<1
Ok KlA

where (5b)2 is the variance of the random components
{obj}, i.e.,
o € y—1
(5b)2=J dl f(l)[b(l)—b]zzbz(l—> (B32
in the zeroth approximation with respect to the small param-
etereys/D. Then, settind_,=L|e_¢ in (B31) (making the

right-hand side an overestimaignd allowing for(B20) and
(B32), we have

in the limit (3.3). We can thus disregard the second term on

the left-hand side of EqB22), and thereby obtain

Lige=e"" (B24)

Hence, in partlcular we find that in the present approxima-

tion the regular parg(x—x’|s) of the Green’s function de-
pends only on the difference betwerrandx’, and that its
Fourier transform is

e—ikx’

= . B2
s+Dk2+iuEk+ sDb/A (B29

Taking the inverse Fourier transforms, we obtain

2o
sg D—g—/J,E

\/_D—g+ S(x—x"). (B26)

U35 3 5[l 7"
_4 IO € '

|9ul?
whence follows the estimai@.19.

(B33

APPENDIX C: PROCEDURE FOR SMOOTHING
THE FUNCTION fI)N(X/-,X’|S) AND DERIVATION
OF THE FOKKER-PLANCK EQUATION (4.2)

Using the periodic Born—Kanan conditions, we write
the Fourier transform o \(x; ,X'|s) in the form

mi2—1
72 L On(x; X' [s)expl—ikpx,),
(CY

Ke) = —=
N( ) \/—
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whereMt— oo is the (evern integer number of teeth, and the m2-1
wave numberk takes valuek,,=2m7m/A9t for m=0,+1, vi(k—pp)=1- — 2 exd —i(k
+2,...,2(9M/2—-1),— /2. Then the inverse transform is o j.=-m2
mi2—1 —pm)Xj IF(J,8)W(X; ,X{:S), (C7
Dy (x;,x'|s)= N m:Zmz D (k) expliknx;).  (C2) o1
IFk—pm=—= 2 (x—x)exg—i(k
We define the procedure for smoothing the Green’s \/ﬁ jij'=—m2

function — p)X; TF (1L S)W(X; X1 ]S), (9
D (xj,x'[s)—D(x,X"|N,s)

m/i2—1

by the condition that only values of the wave numkgithat DZ(k—pm)= N A (x;—xj) %ex —i(k
do not exceed ¥, i.e., |k, /<1, are taken into account hiT= e
in (C2): —Pm)Xj JF(J,8)W(X; ,X{:|s) (C9

1 are in fact the Fourier transforms of the functions

DX INS)=— > Dy(kpexpikpx). (CI
M [k d=1 m2—1

As will be seen in the ensuing analysis, the immediate source v(Xj|s)= l_j:ng/z F(1.9)W(X; X [s), (C10
of random fluctuations ofb \(x; ,X'|s) corresponds to wave
numbersk,,>1// ., and the width of the localization region m2—1
of ®(x,x'|N,s) is estimated to be’,./N. Random perturba- 9(xj]s)= > (X;—x;)F(j,s)W(X;,xj[s), (C1D)
tions can be interpreted @scorrelated sources. Hence it also j==m2
follows that in (C3) it is in fact sufficient to consider the "

region |k ] <1.
We obtain the equation fab(x,x’|N,s) from (4.1), fol-

D(xj/|s)= > E(xj—xj,)zF(j,s)W(xj,xl-,ls).
j=—-m/2

lowing Pontryagin’s metho Specifically, taking Fourier (C12
transforms of the right- and left-hand sides of E4.1), we
have As can be seen from the following, the values of the
kinetic coefficientss™ (k), 97 (k), andDF (k) are small when
p et . . |k|>1//.. Therefore, first, in Eqs(C10—(C12) the argu-
D 1(k)= \/_ﬁ ._Zmz exp(—ikx))F(j,s) mentx;, can be considered continuous. Second(QH) it
= can be assumed théw,|<1//., since ®y(p,) is appre-
m2=1 ciable when eithetp,|<1//, or |py|>1// .. Noting that
X WX Xp[S) (X X]s), we have the Fourier transform of a product of functions, we
j'=—mi2 can go from Eq.(C4) to the equation for the smoothed

Green’s function®(x,x’|N,s). Then, taking(C6) into ac-

whence, by virtue ofC2), count and setting

mr2—1
1
) K)=— Ik, k—pn) P , C4 IP(x,x'|N,s
n+1(K) mm;m (kk=Ppm)Pn(Pm),  (CH SO IN+L1,8)— DO [N, = 2 C?Nl )
where we obtain for ®(x,x’'|N,s) an equation of the Fokker—
m2-1 Planck type:
Hkk—pm=— >  exg—ik(x.—x;)—i
S . " 7 DxlebI- L 99P]- w9 (C19
: —=—[DX|5)®]— —=[HX|S)DP]—v(X|s)D.
X (k= pm)Xj IF(j,8)W(X;,X;/|s). (CH) IN  px2 X

Since the localization region ai(X; ,xj,|s) is the same as As can be seen from the structure of EG13), the be-

the localization region of the Green's functigffx; ,X;/|S)  havior of®(x,x’|N,s) as a function o&is dominated by the
(see(B12), if we expand the exponential factor in powers of |55t term on the right-hand side. The dependence of the ki-
k(x;—x;) in the limit [k/ |<1, we can rewritdC5) in the  petic coefficientsd™ and D, on s merely leads to a minor
form renormalization of the width of the localization region of the
: Green'’s functiond (x,x’|N,s), while the dependence ofon
T(k k= pm)=1=v" (k= pp) =ik 9" (k—pm) s determines the typiczlzll numbé¥ of elementary segments
—k2DF (k= pp), (C6) {P", POl of the trajectory of a random walker at time
t~1/s. This enables us to set=0 in (C11) and (C12),
where which by virtue of(B15) and (B16) yields
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y—1

+ oo 1 ,
DE(XJ,|O):ZO¢ E(XJ_XJ') W(Xj 1Xj’|0) fe(|)=(’y—1) (D4)

1
o Then to calculates(s) we can first average over the condi-
=D %dx 9(x.xj:|0) + uE tional distribution of tooth lengths and then with respect to

the realization of the condition that the teeth under consider-
ation are longer thaa. In the first step Eq(4.5) yields

(v(x|s)1

ﬁ(Xj’lo):Zoo(Xj_Xj’)W(Xj,Xj’|0) =e\[§<tam{l\/§)> 2 W(x;,X;s|0),

since W(x; ,xj,|0) does not depend on the actual values of
{li>€}. Here( . . . ). denotes averaging over the conditional

. o , realizations of the tooth lengthd;}., particularly in the
The expressionC10) can also be simplified by virtue of limit eS/D<1:

(B14) and (3.8). It can be shown that the dependence of
F(j,s) onsis stronger than the corresponding dependence of \/E * \/g
W(x; ,x;:|s) by a factor D/se?)?~"2>1. Hence tanh I\ g/ /)= . dif(Dtanfl 1/ 5
s < s S\ 71
U(Xj'|3)—f\[5i_zw ta”*('i\[ﬁ)w(xi X;7[0). :(e\[a . (D5)
(Cle

The relationgdC14)—(C16) yield the desired general ex-
pressiong4.5—(4.3) for the kinetic coefficients of Eq4.2).

X f:dx(x—xj,)g(x,xj,|0), (C19

:,LLEJijdX a(x,%;/0). (C1H

where(see, for example, Ref. 27
tanhé
g?’

= — Y Y— — _
APPENDIX D: MEAN VALUES AND INTENSITY OF THE (y=1)272"-1)I'(1-y){(1-), (D6)
RANDOM FLUCTUATIONS OF THE KINETIC COEFFICIENTS and{( ...) is theRiemann zeta function. By virtue of the

|=(y-1) f:df

D, &, AND v identity (B17), this yields the desired expression,
We first calculate the mean valuBs, 9, andu(s) of \F Y
the kinetic coefficientD (x), ¥(x), and v(x,s). By virtue u(s)=1,| € D/ (D7)

of Eqg. (B27) and the definitiong3.16) and (3.21) for the

regular part of the Green'’s functicE(x,x’)EE(x,x’|0), we since({v(x|s)); is independent of the specific realization of

the event{i},.

have Furthermore, using these relations, we obtain for the in-
foc X ) /2 tegral
Xg(x,X") ===,
o 2D J«w d 1 T / IO) yI2
. B /2\2 - ID||_;§|2 2132JAT,\ €
J dx(x—x")g(x,x")=uE| =] . (D1
— 2D —3y/2 2\ —1/2
\/E E
These relations, along witt4.3), (4.4), and the inequality X\ € 5) (1+ E2 . (D9
(3.3, yield the mean values of the kinetic coefficients: ¢
) whereL} =k?D .+ik 9+ w(s) and
D=l g-tEl<le (D2) 2
=5 U= > - D s
2 D 2 E = 2@__( lo \/:) (D9)
VAlou D

To calculate the mean value ofx,s), we denote the set
of teeth whose length exceedsby {i}.={i: |;>€}. Then s the critical value of the drift field, which for a given value
we treat a realization of the set of tooth lengths that exeged of s (i.e., for a given duration of the diffusion process
{li}={l;:I;>¢€}, as a realization of given specific values, t~1/s) divides the possible values of the drift field into weak
given the occurrence of evefit}. . In other words, we rep- (E<E.) and strong E>E,.). (The definition of E. and
resent the probability(l) of the event> € as the product of (5.12 are essentially identical.
the probability P, that the tooth length exceedsand the Proceeding to a calculation of the total amplitufieof
conditional probabilityf .(1) of the realization of that value: random fluctuations of these kinetic coefficients, we note that

Fh=P_f (1) (D3) the preceding property enables us to treat the fluctuations

e 6D (x) and §9(x) of two of the coefficients and the fluc-
Hence, with Eq(2.1) and(3.2)), tuationsév(x,s) independently of one another, sinéb .(x)
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and §9(x) likewise do not depend on the actual values of theyielding the estimaté4.13 for small to moderate values of
lengths{l;}.. Therefore(4.11) can be rewritten in the form Kkl .

A=Ag+A,, (D10)
where
= fj;dx’ ([K?8D (x) +ik 89(x)]
X[k28D (x")—ik 8(x')]), (b1Y
- f:dx' (50(X) Su(X")). (D12)

Taking (3.18, (D1), and(D2) into account, we can write
. Do . —
k28D (X) +ik 89(X) = — - > 86,9(x—x){D K2
j=—»

+ Oik+k2(x; —x))}.

Then, substituting this expression inf@11) and integrating,
we find

Ag=A|y(6 5) (E) \I’(k), (Dl3)
where
(Klg)? [ (Klg)?
(k)= )
" 1+4(E/EC)2[1+4(E/EC)2+4(E/Ec) (D14

andl is the characteristic width of the localization region of

the Green’s functionb(x,x’|t,,s), which is defined to be
half the corresponding standard deviatigfx?); specifically,

(D15)

We note that in the range of wave numbdrs 1/4 that
dominate the Green’s functiod(x,x’|t,,s), the factor
W(k)<1. Substituting(4.5 into (D12) and averaging first
with respect to the conditional realization of the val§ks,
and then over the random quantiti@S and over the varia-
tions of the Green’s functiog(x,x’), we obtain

~ \F [ARTIAR o
westfeva] [

where

(D16)

(y— 1)f dgtanh’*fn

The relationgD8), (D13), and(D16) lead to the follow-
ing estimate for the relative intensit#.10 of the random
fluctuations of the Green’s functioh (x,x’|t,,S):

-1/2

* |2 (2=y)12 2
el h |‘3’2\/§ ! \/E Y1 E
oF 47 ol °VD E2
2 S y—1
X 1+T—y 6\[5> Wk, (D17)

Y

*)E-mail: ialub@fpl.gpi.ru

YNote that a different approach to assigning the initial conditions was de-
veloped in Refs. 21 and 22. It is based on constructing the crossover
between a small neighborhoodtsf 0 and the domain of applicability of a
partial differential equation with respect to time.

dsuperdiffusive transport is also encountered in problems on the diffusion
of a passive scalar during the laminar motion of fluidee, for example,
Refs. 22.
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The growth rate ofHe crystals from superfluid is measured in the temperature range 1.2-1.75K
at supersaturations up to 40 mbar. The growth rate is observed to decrease at high
supersaturations: above 5 mbar in the bcc phase and above 20 mbar in the hcp phase. The
temperature dependence of the kinetic growth fabtas measured in the low-supersaturation

limit. In the vicinity of the superfluid transition the kinetic growth factor exhibits critical
behavior:Koc (T, —T)? with the exponent=0.743+0.123. A jump in the growth factor is
observed at the bcc—hcp transition point. The crystal growth kinetics problem is solved

in the hydrodynamic approximation, explaining both the temperature behavikraod the

existence of the jump in the modification of the crystal structure.1998 American Institute of
Physics[S1063-776098)01110-X

1. INTRODUCTION tivation of a new dissipative channel in crystal growth.
To account for the experiment&(T) dependence, we

The growth kinetics ofHe crystals has been the object solve the problem of quasistationary crystal growth in the
of intensive research ever since Andreev and Pafshio- hydrodynamic approximation. Local equilibrium is at the
retically predicted the quantum state of atomically rough surcrystal-liquid interface is rapidly established in this tempera-
faces of helium crystals and since Keshishev, Parshin, andire range, while in the immediate vicinity of the interface
Babkir? experimentally observed one of the consequences ahe chemical potentigk of the liquid is equal to the chemi-
this phenomenon: crystallization waves. So far the kineticcal potential u’ of the crystal (throughout the article
growth factorK has been measured over a broad range ofinprimed symbols refer to the liquid, and primed symbols
temperatures from 1.6K to 0.05Refs. 3—-5. Of primary  refer to the crysta) and the Kapitza jump is small,=T". In
interest are low temperatures, at which the surface mobilitgthese boundary conditions we find the main departure from
is governed by the scattering by quasiparticles by elementanhe low-temperaturéoelow 0.6 K case treated by the theory
surface defects, or steps. Phonons are prevalent below 0.6 Heveloped in Andreev and Knizhnik’s wotkAndreev and
and the kinetic growth factoK obeys a power lawK Knizhnik have calculated the kinetic growth factgrin the
« T4 Rotons play the dominant role at higher temperaturesow-temperature range, where crystallization waves are
and the kinetic growth factor follows an exponential law: slightly damped. According to experimental data, this tem-
K = exp(, /T), whereA, is the roton gag:® However, the perature range lies below 0.6 K. At such temperatures the
experimental work of Bodensohn, Nicolai, and Leid&teas  factor K exhibits strong dispersion, and its poles specify the
shown that a departure from a simple exponential depenspectrum and damping of crystallization waves.
dence is observed above 1.4K. For example, according to The growth of a crystal as a whole is dictated by the
data at a temperature of 1.6 K, the growth rdtes approxi- long-wavelength limit. If the crystal radiuR is smaller than
mately 2.5 times lower than the value expected from theahe mean free patR, as is the case at temperatures below 0.5
extrapolation of high-temperature data. In our experindentskK, the factorK is described by the equations for the ballistic
we have found that the growth rate at 1.746 K is already aegime(Sec. 3 in Ref. @ In the limit A <R the equations in
factor of seven smaller than the extrapolated value. Boderthe first two sections of Ref. 9 must be used. The following
sohnet al® have advanced the hypothesis that the departurboundary condition on the surface of the crystal is used in
is caused by the dependence of the roton gap on the pressiRef. 9:v,=V (v, is the velocity of the normal compongnt
and the temperatufe. which is invalid at high temperatures. At temperatures of

In this paper we report an experimental investigation of1l.2—1.7 K the crystal growth rate is limited by slow heat-
the growth of*He crystals in the high-temperature range conduction processes and viscosity in a finite surface layer of
(1.2-1.75K at supersaturations up to 40 mbar, which ex-the liquid above the crystal boundary, where relaxation to
ceeds the previously investigated range by three orders afuasistationary equilibrium of the supercooled superfluid at
magnitude. We have measured the kinetic growth factor fosupercritical pressure takes pldge(©) # w, T()#T']. It
the first time in the vicinity of the superfluid transition point, can be showifisee(22)] that the mean free paths of elemen-
0.03K=T,—T=0.2K, and have found the corresponding tary excitations are small in comparison with the thickness of
crystal critical index. By extending the supersaturation interthis layer. The problem of calculating the kinetic growth fac-
val we have been able to detect nonlinearity in the depertor K can therefore be solved on the basis of superfluid
dence of the growth rate on the supersaturation, i.e., the atydrodynamic¥ with boundary conditions stipulating local

1063-7761/98/87(10)/9/$15.00 714 © 1998 American Institute of Physics
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equilibrium on the surface of the crystal. In Sec. IV we de- 1
rive an expressiofiEg. (33)] for the factorK in terms of the /
thermal conductivity and viscosity of the superfluid. This

expression satisfactorily describes the salient features of the N

. 2
experimental results. \
4

2. EXPERIMENTAL PROCEDURE 6

3

/
/ /
V4

The procedure is based on measurement of the pressure
in the container during the growth of a crystal after its nucle- .
ation in a metastable liquid. The container is cooled at a /

N

N

constant rate until a critical solid-phase nucleus forms in the
liquid. As the crystal grows, the pressure in the container 4 \
drops from the maximum value to the phase-equilibrium ; 5
pressure. The pressure drops at a rate proportional to the rate ; 10
of change of the volume of the crystal and is related to the ? 2
kinetic growth factoiK. Consequently, the growth ratécan POPSISINNANL
be calculated by measuring the time variation of the pressure f ;
p(t), and the factoK can be determined wheviAp. f ;

This procedure can extend the range of supersaturations 11 7 %
by three orders of magnitude from the characteristic values 777, 7777,/ 12

for previous experiments, 0.01-0.1 mbar, to values of 15— 1 em
40 mbar. The pressure is recorded with high time resolution, =
i.e., it is possible to investigate the growth kinetics in time
periods from seconds to fractions of a millisecond. The proFIG. 1. Structure of the container. The numbers are explained in the text.
cedure is subject to limitations, first, by the probabilistic na-
ture of the way in which a critical nucleus is formed. It
emerges on the inner surface of the container when the swontainer consists of an outer casing 8 with a sealed-in cop-
persaturation reaches a level determined by the properties per cold conductol1, which leads to &He reservoir, and a
the surface at the nucleation site. In other words, the startinflange 4, which forms the base of the capacitative pressure
pressure is a property of the container surface and cannot eansducer. The helium temperature is monitored by a resis-
altered in the course of the experiment. We treated the cortance thermometet2 soldered to a copper cold conductor
tainer with hydrogen to maximize the supersaturatisee 10, which is in direct contact with superfluid helium. An
Ref. 11 for details indium seal7 maintains the vacuum tightness of the con-

A second limitation is associated with the supersaturatainer casing and the flange.
tion technique. The pressure was measured by means of a The capacitative pressure transducer is formed by the
capacitative transducer formed by the container wall and aweb of the flange and an electroBeThe resulting capacitor
electrode. The transducer was used to measure pressure neaconnected to an induction coil mounted in a superconduct-
the crystal when the growth timig, was much greater than ing baffle to reduce radiation losses and to raiseQtaf the
the transit timer; of first sound in the containety>7,  circuit. This circuit is weakly coupled:100 by means of a
~30us. It will be shown below that the calculation of the coaxial lead to a self-excited oscillator located on the lid of a
kinetic growth factor requires that the helium temperature beryostat at room temperature. Theof the circuit at helium
measured during the growth process. Based on the followintemperature is~1000, which ensures frequency stability
considerations, we chose not to measure the temperature di4thin limits of the order of 1 Hz during a measurement time
rectly: Like the pressure sensor, a thermometer shows thef 1s at an oscillator frequency of approximately 7 MHz.
temperature at the boundary of the crystal when the crystalhis procedure can be used to measure the pressure in rela-
growth time is much greater than the transit timeof sec-  tive frequency units, i.e., it is necessary to calibrate the mea-
ond soundtgy> 7,~0.5us. The simultaneous satisfaction of surement system against a pressure standard. Our standard
these two conditions implies that the helium pressure anevas a manometer, whose calibration in the range of 26—
temperature are constant throughout the volume of the cor80 atm was verified on the helium solidification curve. It will
tainer and that crystal growth is quasistationary. It has beebe shown below that the deviation of the pressure in the
showrt! that the temperature variation in this case is relateccontainer during crystal growth from the phase-equilibrium
one-to-one to the pressure variation and can be calculatgatessure was less than 0.05 atm, which is much lower than
from the functionp(t), so that the measurements can bethe phase-equilibrium pressuxe25 atmper se it was there-
confined to the pressure only. These two conditions place #ore sufficient to determine the transducer sensitidifydp
lower temperature limit on the applicability of the given pro- at the measurement site. For this purpose the fundt{g)
cedure,T=1.2K. was measured in each series of experiments in the pressure

The helium crystals were grown in a stainless steel conrange 1-30 atm at a temperatur.5 K, and the result was
tainer having an internal volum&j,=2 cn?; see Fig. 1. The used to determine the differential sensitivity of the trans-

YA
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ducer. This procedure had to be performed after every repdrhe difference in the chemical potentials is given by the
sitioning of the transducer electrofiésee beloy. The trans-  expression
ducer sensitivity was determined within approximately 3% ,
error limits. Apu=—(s—s)AT+ 2P ap, 7

The superfluid helium was cooled at a constant rate until pp
a critical nucleus formed and crystal growth began. The conypere s is the entropy per unit masap=p—p, and AT
tainer was conne_cted to the outer volume k_)y a cap_illary tube:-|-_-|-O are the deviations of the pressure and the tempera-
6 (see Fig. 1 having a length=2m and an inside diameter e from their equilibrium valuep, and To. In our experi-
of 0.15mm. The total volume of the filling capillary tube ments the mass of the helium in the container was constant
(~0.03 cnf) was much smaller than the volume of the CON-quring crystal growth. In this case, as mentioned, the tem-

tainer. The first series of measurements was performed witBeratyre variation during growth is related to the variation of
this capillary tube and a pressure transducer whose web hafe pressure by an equation derived in Ref. 12:
a thickness of 0.55mm at a diameter of 10 mm. The trans-

ducer sensitivity was equal to 4.1kHz/bar. The measure-  _ kdp/dT—p
ments were performed at time increments of 1.024 ms. The B ppCp—Ide/dT'
relaxation time of the pressure in the system wgs=2.76 s.

It will be shown below that this time is comparable with the

crystal growth time at temperatures close to the superﬂuidmS the coefﬂ_ment of thermal e_xpanS|dms the compreSS|b|I-_
transition line, so that corrections must be introduced to adly: a1dCp is the heat capacity at constant pressure. Taking

just to the flow of liquid along the capillary tube. Eg. (3) into account, we write E2) in the form

)

wheredp/dT is the slope of the phase-equilibrium cury,

To diminish the influence of this effect, in the second p' —p
series of experiments a choRewas inserted in the helium Ap= FDP, Dp=a(T)Ap,
feed line to increase the pressure relaxation time in the sys-
tem to 37 s. In addition, the sensitivity of the transducer was dp kdp/dT-p
enhanced by decreasing the thickness of the flange web to  @(T)=1+ = pC,IT—Bdp/dT’ 4

0.27 mm and accurately positioning the electrode at a mini-
mum distance from the web. In assembling the device, it wa¥here the measure of nonequilibriubp is expressed in
difficult to set the optimum web-electrode gap at room tem-Units of pressure. The correction for temperature variations is
perature on account of, for example, heat shrinkage during maximum at high temperatures and can attain a value
cooling and deformation of the web as the pressure requirett 1.25. We note that the absolute temperature variations of
for crystallization was created in the container. For theséhe liquid helium during crystal growth did not exceed
reasons the optimum gap was set directly in the experiment 1 mK.
at helium temperature. The transducer electrode was The volume of the crystat’sis related to the pressure
mounted on a cylindrical rin@ (see Fig. 1, which was in-  drop during growth by the equation
serted in the channel of the flang@nd was held fast against
its surface by a spring. Two symmetrical slots were formed 7 crys= ‘7/'0Ai k[p(t=0)—p(t)], 5
in the upper part of the ring for the insertion of a yoke p
which was connected to the stem of a piezoelectric drivefyheret=0 is the crystal nucleation time. For initial super-
(not shown in the flguDe Piezoelectric drivers of this kind saturations\ Pinit=15-40 mbar the final volume of the crys-
are used in a tunneling microscope to move a specimen iyl was 2—4 mr, i.e., the final radius of the crystal was
0.1-1um steps(Ref. 12." approximately one millimeter. To relate the rate of change of
Once the necessary pressure had been established in i@ volume to the linear growth rate of the crystal, we need
container, prior to the beginning of a series of experimentso make an assumption about the shape of the crystal, which
the electrode was positioned just short of contact with thgs determined by the anisotropy of the kinetic growth factor
web of the flange. The direction of motion of the piezoelec-and the contact of the crystal with the container wall. The
tric driver stem was then reversed, and the necessary gap Wh§drostatic pressure gradient does not introduce a significant
set, having been determined from the oscillator frequencycontribution, because the pressure difference over the width
The yoke was then moved forward to eliminate mechanicapf the crystal &0.02 mbay is much smaller than the super-
contact between the container and the piezoelectric drivesaturations investigated in the present study. The pressure

thereby significantly reducing the influence of mechanicalncrement due to the curvature of the crystal surface is also
vibrations on the transducer. The time resolution was immuch smaller than the supersaturation.

proved to 0.25ms in the second series of experiments. The kinetic growth factor is isotropic in the region where
the cubic phase exists. In the hexagonal phase, on the other
3. PROCESSING OF THE MEASUREMENT RESULTS hand, Bodensohret al® have observed anisotropy of the

growth  factor at T=1.35K with rate ratios
V(1129 :V(1010 :V(0o0y = 2.8:2.5:1. However, these results
are contradicted by reported measurements of the kinetic
growth factor** using crystallization waves, where such
V=KAu. (1) pronounced anisotropy of the growth of atomically rough

To calculate the kinetic growth factdt, it is necessary
to know the growth rat& and the difference in the chemical
potentialsA u=pu—u':
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surfaces has not been obsery#te linear decay oK along Dp, mbar

the[0001] face is a geometrical effécl. One of the present a
authors® has conducted a special investigation of the growtr
anisotropy on the basis of the from of crystal growth, i.e., by
a procedure similar to that of Bodensoéinal 2 In all experi-
ments with a freely growing helium cryst@ee the series of
photographs of a growing crystal at=1.285K in Ref. 16,
Fig. 2), the large(1:3) anisotropy between the direction of
the Cg axis and the perpendicular direction was not noted
whereas the smal10%) anisotropy in the basal plane ob-
served by Tsymbalenk®and also by Bodensotet al.® can
also be seen. It is therefore justified to regard the kinetic

growth factor as being almost isotropic in the hcp phase a 0 400 800
well. 5 ms 1, ms

1477 K

10

or
8
oo
(=1

During isotropic growth the crystal is in the shape of a Dp, mbar
spherical segment at the wall, and its volume is related to th
radius of the segmerR by the equation

30f
a

7 oys=3 R3(2—3 cosh+cos 6), (6) 1181 K
whered is the contact angle. With allowance for E¢s)and 20
(6) the crystal growth rate is given by the equation

_ dR p Bq (pinit_p(t))l/3 10+

V=—=9 70——KAPin
dt y( Op" —p Pini Apinit
13 (7)

3
m(2—3 cosf+cos 6

The geometrical factoy for a sphere ¢= ) is approxi- i . . )
telv equal to 0.62. According to visual observations. th FIG. 2. Experimental plots of the pressure drop in the container during
mately eq He g ’ ecrystal growth: abcc phase; bhcp phase.

contact angle between solid helium and stainless steel has
values in the interval 90—-120°, which corresponds to values
of the geometrical factor 0.66-0.78. If the crystal forms insuperfluid transition line is of the order of 0.5 s and decreases
corners of the container, the expression for the geometricahpidly as the temperature drops to values of the order of a
factor is enormously complicated, but its value is still closefew milliseconds. The results of processing these curves ac-
to that given by Eq(7) for large contact angles. We note that cording to Eqs(4) and(7) are shown in Fig. 3. The kinetic
for a crystal of finite radius-1 mm the area near the angles growth factor is determined from the initial part of the
amounts to~8% of the total inside area of the container, V(Dp) curve, where the growth rate is proportional to the
i.e., the probability of crystal formation in the corners is supersaturation within the known error limits.
small. Temperature curves df obtained in both series of ex-
The error of determination of the volume is a maximum periments with the parametgr=1.2 are shown in Fig. 4. We
at the beginning of growth, when the pressure differs verysee that the values of the kinetic growth factor obtained in
little from the initial pressure. The relative error of determi- different series for various initial supersaturations agree
nation of the supersaturation increases at the end of growtlvithin the error limits. The temperature variationkofhgrees
In view of these considerations we have chosen to procesgith the results of Refs. 3 and 16. Also visible in Fig. 4 is the
the part of the pressure-drop curve in the interval (0.05—previously noted’ deviation of the temperature variation of
0.95)Ap;ni. The total error of the growth rate in the first K from a simple exponential law above 1.5K. And it is evi-
series of experiments was 10—20% and increased to 50% dént from Fig. 4 that up to temperatures of the order of
the lowest temperatures. The error was almost halved in the.65K the slope of If) as a function of I¥ in the bcc
second series of experiments. phase does not deviate too noticeably from the slope in the
hcp phase. Above this temperature the slope increases con-
siderably, probably by virtue of proximity to thetransition.
Figure 5 shows the behavior of the kinetic growth factor in
In both series of measurements the initial saturailqny ~ this temperature range. Within the error limits the tempera-
in the cubic phase was 15-18 mbar. In the hexagonal phadare dependence df agrees satisfactorily with the relation
we found Dpy=8-10mbar in the first series of measure-K«(T,—T)?, wheree=0.743£0.123. We emphasize that
ments, andD py=30-40 mbar in the second series. Typicalthis equation merely serves to illustrate the temperature be-
experimental curves of the pressure drop in the container argavior in the interval close to the superfluid transition in the
shown in Fig. 2. Clearly, the crystal growth time near themeasured temperature range and does not purport to describe

1 o [ I

0 20 40 0 5 10 15
t, ms L, ms

fy:

4. RESULTS OF THE MEASUREMENTS AND DISCUSSION
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V, cm/s V, em/s
2r y 1
v
a 1477k, °
7/
P 4 P FIG. 3. Growth rate versus supersaturationbec
i - - phase; b hcp phase. The graphs clearly reveal the
P reduction of the growth rate above 5mbar in the
i cubic phase; in the hexagonal phase the growth rate
S is proportional to the supersaturation up to 25 mbar.
1.740 K
0 5 10
Dp, mbar Dp, mbar

the temperature dependencelkofbeyond the limits of this when the growth rate increases by an order of magnitude.

interval. For the hcp phase, increasing errors make it difficult to draw
The extrapolation oK to the bcc-hep transition point a straightforward conclusion.

yields 1K,.=9.9+0.86 m/s on the cubic phase side and  The kinetics of the growth of #He crystal is attributable

1/Kpp=11.8+2.09m/s on the hexagonal phase side. Theto two processes:)la fast, microscopic mechanism of trans-

transition from the bcc to the hcp phase is therefore acconfer of an atom from the liquid to the solid phase across the

panied by a jump of the kinetic growth factor. atomically rough surface;)2slow mass and heat transfer
In the bcc phasésee Fig. 3, beginning with supersatu- through the surrounding medium.
rations ~5 mbar, a deviation from linearity is observed, The total difference in the chemical potentidlg. [see

whereas in the hexagonal phase the nonlinearity is muckg. (1)] is the sum of the jump of the chemical potential at
weaker, and the deviation becomes appreciable abowuhe boundary of the crystal and its change in the bulk of the
~25mbar. To take nonlinearity into account, we add to Eqliquid. The total reciprocal of the kinetic growth factor can
(1) the next term of the expansion of the functidgDp) in  then be written as the sum of the reciprocals of the surface

powers ofDp in the form and bulk factors:
p'—p Dp 1 1 1
V=K———D (1—— . 8 == + . 9)
pp P G ® K Ksuf  Kpuk (
In the bcc phase the paramei@rhas the valueG=38.6 Inasmuch as surface processes are much faster than bulk

+2.7mbar and does not depend on the temperature. Thjzrocesses, we havég, & Ky,k, SO that crystal growth is
means that the form of the functidf(Dp) remains invariant governed by transport in the liquid. Experimental facts such
as the isotropy of the growth factor and the closeness of the
numerical values in both phases imply that the influence of
K™ mis crystal structure on the growth kinetics is weak at low super-
100: saturations. Consequently, the main dissipative processes
governing crystal growth take place in the liquid. The kinetic
growth factor will be calculated Sec. 5 below on this as-
sumption. There the calculations, which are carried out in the

K, s/m
10} i
0.010t
._!.' +
2 L i 1 i 1
0.6 0.7 0.8
i

FIG. 4. Kinetic growth factor vs temperature. The light circles represent the 0.004 L
results of Ref. 3, and the light triangles give data from Ref. 16. The dark 0.02 0107, -T,K

triangles and squares represent our results in the first and second series of
experiments, respectively. The dashed vertical lines separate the regions BfG. 5. Temperature behavior of the kinetic growth factor near the super-
the regions of the bcc and hcp phases. fluid transition.
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linear approximation, cannot reflect the experimentally ob-the crystal growth time. This condition is consistent with the

served behavior of the growth rate at high supersaturationsdomain of applicability of our measurement procedure and
We have therefore inquired into the legitimacy of disre-confines the given investigation to the temperature range

garding squared terms in the exact superfluid hydrodynamit.2 K<T<T,=1.763 K.

equations. Numerical estimates show that the squared terms In a coordinate system affixed to the crystal boundary

are small over the entire temperature range at all growtlthe growth kinetics is described by the system of static equa-

rates, i.e., the observed nonlinear effect cannot be describeins of superfluid hydrodynamitslinearized with respect

by including them. Moreover, in experiment we see that theo small deviations from equilibrium:

nonlinearity is related to the crystal structure of the solid

phase. This relationship supports the hypothesis that the d_Jzo, i =pUst Pt (14)
slowing of the growth rate is associated with the microscopic dx
structure of the sample surface and, as a consequence, with dp (4 d?,,
nonlinear processes of the step kinetics on the atomically &=<§ n+§2—p§1)W. (15
rough surface. Hence it follows thHt s plays an important
role at high supersaturations. The theory of crystal growth at  dQ . dT
high supersaturations will not be discussed in the present azoy QIﬂJﬂLTPSUn—K&, (16)
article. ,

d d<v

T~ (—plag?- @

5. CALCULATION OF THE KINETIC GROWTH FACTOR

We consider one-dimensional, quasistationary crystajNe recall thatps, pn andus, un are the densities and ve-
i

growth in a coordinate system attached to the crystal-liqu icmes_ of dthe Sufﬁ rfluid and dnormal ‘}fmp;”eﬁf(”sf th
interface. At high temperatures, contrary to the low- pn), ] andQ are the mass and energy flux densities of the

temperature case, the heat of crystallizatipplays an im- I|qg|q 7 L1 L2, gnd £3 are the correspopdmg viscosity co-
portant role: efficients, andk is the thermal conductivity of the liquid.

The thermal conductivity of the crystal on the melting curve
, p'—pdp is smalt® and will be disregarded. This assumption will be
q=T(s=s")=T op’ AT (10 justified by estimates below.
. . . We note that the trivial solution of the systdiv)—(17)
The liberation of heat_ on the ato_m|cally rough surface_ of theWhen all the gradients are zero does not satisfy the boundary
crystal (Xfo? during its growth induces rapid relaxation to conditions, which state that the values of the pressure, tem-
local equnllb_rlum between the crystal and the boundary IayeE)erature, and chemical potential on the crystal surface and in
of the liquid: the depth of the liquid differ and are related by Ef3). To
T'=T(0), p'=p0), wu'=u(0). (11)  find a nontrivial solution, we invoke the thermodynamic re-

We therefore disregard the Kapitza jump; according to ex—Iatlon

perimental datd’ it is very small on an atomically rough du=-—sdT+dp/p (19

surface at high temperatures. Local qul_llb_rlum _at the boundénd then us€15) and(17) to relate the temperature gradient
ary of the crystal upsets thermal equilibrium in the spac

h ivati f th locity of th I -
between the surface of the crystal and the walls of the cor?[—0 the second derivative of the velocity of the normal com

tainer: ponent:
Sp— ST— S 5 dT d?v, 4 5

From now onT, p, andu denote the values of the ther- . . .
modynamic variables far from the crystal nucleus. Here, infFfom Egs.(16) and(19) we find an equation for the velocity
addition to the unavoidable flow of liquid as a whole, we ©f the normal component:
also encounter relative viscous flow of the liquid components ko d?,, _
and heat flux away from the boundary of the crystal. These T psvn——— -7 =Q—puj. (20)
dissipative fluxes limit the crystal growth rate and, in the P
final analysis, determine its value. The temperature and prest follows from the laws of conservation of mags4) and
sure difference$12) can be related to the degree of nonequi-energy(16) that the right-hand side of E¢20) is constant.

librium (2) by the equation From this result we obtain the law governing the decay of the
, dp velocity of the normal component:

Here Au=u(T, p)—u'(T, p) is the degree of nonequilib- dx L Tps

rium of the system. The thickness of the transition layer in this temperature

The process of crystal growth can be regarded as quasisange is of ordel.~10 ®cm. The radius of the crystal is
tationary when the transit times of first and second sounanuch greater than the thickness of the transition layer, justi-
from the crystal to the container wall are much shorter tharfying a one-dimensional approach to the problem. For the
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hydrodynamic approach to be valid, it is necessary to satisfy It has been shownthat the energy dissipated per unit
the inequalityh <L, where\ is the mean free path of el- time and per unit surface area for a planar crystal boundary
ementary excitations in the superfluid. Rotons play the pringrowing with velocityV is given by
cipal role in the given temperature ranjeDetermining the

. . dE
roton mean free path from the viscostfywe obtain the —=p'AuV=p'K(Au)2 (29)
following expression for the ratia/L: dt

On the other hand, the energy dissipated in a superconduct-

ﬁ < i Tps (22) ing fluid is given by the integral of the dissipation functith:
L \V20/3 PsV V¢ ~ ~ 4 dv,, 2, /dT\2
wherev, is the roton thermal velocity, angl. is the critical H_J Rdx  R=|{o- 97\ ax + T\dx/ - (30)

velocity in helium. In the temperature interval 1.2—1.7 K we
have the numerical relatiot/L<0.1-0.2, i.e., the inequality
is satisfied, and the hydrodynamic approach is legitimate.
Substituting Eq.(22) into (15) and (19), we determine 7
. . — 2
the behavior of the pressure and the temperature in the tran- f Rdx=LC"%o| 1— 9%, (31)
sition layer:

With allowance for Eqs(21) and (24) the integral of the
dissipation function is

Equating(29) and(31), we find

X 4
op(x)=mneCexpg — |, =—n+{,— , 23 2
P(X)= 10 F{ L) 0=z 1+ L2 ply (23) K=LA2§—? 1__77)' (32
p 9o
ST= %o C ex;{ — f)_ (24)  Here we substitutg Ed25) and reduce the result to a form
S L suitable for analysis:
The factorC is readily determined from Eq13): L 1 ( p'_p>2( dp ,70)2
1 (TP PSR o
"—p/[d Tspp p dT o
C=AAg, A—1=u(—p@—n0 . (25
pp’ \dT ps \/?o 27\ 1
- . iy . . XA\[—|1-—]| .
The coefficientA is positive at high temperatures. This Tk (1 ggo) 33

means, as shou!d be expected, that the temperature and the It is evident from this expression that in this approxima-
pressure-in the_llqwd layer around a nucleus are higher thf'i{?on the kinetic growth factor is governed by the thermody-
near t_he container walls. I-_|ow_ever, th‘? magnitude: of thlsnamic parameters of the liquid and solid phases and by the
effect is small when the derivativep/dT is large:

dissipation factors of the superfluid. The growth rate varies
5p(0) an - 26 approximately as the inverse of the square of the heat of
= — <l crystallization.

AP (dp/dT)(Co/sp) =m0 We now estimate the contribution of the thermal conduc-
Thus, Egs.(21)—(25) give the dependence afp, 6T, tivity of the crystal to the kinetic growth factor. When the
anddv,/dx on the degree of nonequilibriuu. The fluxes  crystal grows at a constant rate at constant supersaturation, it

j andQ are obtained form the law of continuity of the massis evident from Eq.(24) that the solid phase forms at the

and energy fluxes at the crystal-liquid interface: same temperature and, accordingly, there are no heat fluxes
: , or additional dissipation associated with the thermal conduc-
1= =p'V=psst pavn, tivity of the crystal. In a real experiment the supersaturation
dT (27 varies from the maximurd po at the instant of nucleation of

Q=j(Ts'+u")=uj+Tspv,— Kax the crystal to zero at the end of the growth period. Inasmuch
as the temperature of the newly formed solid-phase layer,
Q—puj=jTs'. according to Eqs(3) and(24), depends on the supersatura-
tion, the crystal acquires a temperature gradient and, as a
From Eqs.(14), (16), and(27) we readily find the velocities  consequence, additional dissipatiBg,s associated with the

of the superfluid and normal components as function¥ of thermal conductivity, which lowers the crystal growth rate.

andAp at the interface: According to Eq.(29), the total energy dissipatioBg,, dur-
s'p’ voLe [{ x) ing the growth timety, is
vp=———V-LCexp ——|, Ap\2 1
sp L ' 2p2 P 2nn2
o (28) Esun~ p' KAu Ry~ 7 ?KR Dpotgr
P [S pn Pn . .
vs=V— —1|+—LCexpg — /. where R is the radius of the crystal. It follows from the
ps\ Sp Ps L

experimental supersaturations and Ef) that R~1 mm.
Additional considerations must be brought into the picture toEquations(3) and (24) can be used to show that the initial
determine howsdp, 6T, and dv,/dx are related to each temperature at the start of growth is higher than the final
other. temperature by the amouA(T .y~ Dpy/(dp/dT). The dis-
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sipationE_,s associated with the thermal conductivity of the K™ mis
crystal can then be estimated from the expression ‘00; $ ' ' ' )
bce hcp

K’ ) K' Dprz)
Ecryswtgr? (VT) dVthr?(dp/T)zR.

The ratio ofEs to the total dissipation is

-2

E 2k’ (d 1
crys L - _p p/K71_~1074’
Esum \Ap) T \dT R
10F
which can be disregarded, as indeed we have assumed in our [
analysis.
We now analyze the contribution of the parameters to
the kinetic growth factor. In Eq33) the last factor lies in the
interval 1-1.2, because the inequality/8,,<<1/6 holds.
The ratio g/ is of order unity. In light of these remarks 2 . .
we rewrite Eq.(33) in the form 0.6 .
T K™
o, 1 p'—p\?/dp e . . .
K™ =~ AN T———| | 5=—5sp _—. (39 FIG. 6. Comparison of experimental data and the results of calculations
Tspp p dT Tk according to Eq(34).

The first three factors characterize the variatiorKaflue to

variations of the thermodynamic variables of helium. Their

values on the melting curve are well known. The last factotthe ratio of the growth factors is determined by the thermo-
is associated with the kinetic coefficients of the superfluiddynamic parameters and is equal to

Unfortunately, experimental data are unavailable on the / ro_ 2 _

quantities, ¢4, £,, {3, and x on the melting curve in the Kbcc: @(ph‘:p p) (dp/dTnepsp
given pressure and temperature ranges. The second viscosity Khep Pr’lcp Pooc— P/ [ (AP/AT)pec—Sp

{> Is known to be one and a half orders higher than the firsit is evident from Fig. 6 that the sign of the jump agrees with
viscosity at the saturated vapor pressure. As the pressuffe experimental, and its magnitude is in satisfactory agree-
increases, the first viscosity incread®snd measurements ment with the experimental value.

of the damping of first sourfflimply that the second viscos- We emphasize that the valueskhave been calculated

ity {, decreases. [t follows from the Onsager relations for the;sing the equations for the roton contribution to the kinetic
kinetic coefficients’ that the combination of the second vis- coefficients and, for this reason, cannot describe the behavior

cosity coefficients infg is positive. Summing up this infor-  of crystal growth in the critical region.
mation and making use of the expressions for the thermal

conductivity and the viscosity in the roton domain, we infer
that the factor associated with the dissipation factors of the ~oncLusion
liquid satisfy the inequality

2
~1.48. (36)

We have determined the temperature dependence of the
[ {o - [Anl3 2 1 35 kinetic growth factor by measuring the growth rate of a he-
Tk Tk J15ve’ (35 lium crystal at high temperatures. We have detected a jump
of K at the bcc-hcep transition point and have determined the
We calculate the temperature dependence of the criticadritical index in the behavior of the functio(T) in the
velocity atp~25atm from the values of the roton gap and vicinity of the superfluid transition point. To explain these
the position of the roton minimum from Ref. 8. With allow- experimental results, we have analyzed the problem of qua-
ance for the approximations and simplifications of our analysistationary crystal growth in the hydrodynamic approxima-
sis Eq.(34) describes the temperature behavioKofand the  tion. This model, based on the hypothesis that mass and heat
numerical value close in order of magnitude should be extransfer in the liquid play the principal role in the crystal
pected. We introduce a scale factélr,,;=MmKyeor, t0 ap-  growth kinetics, satisfactorily explains both the temperature
proximate the data. The result of the approximation usingrehavior of the kinetic growth factor and the presence of the
m=0.2 is shown in Fig. 6. Satisfactory agreement betweejump at the bcc-hcp transition point. The extension of the
calculations and experiment is observed. The decreake in range of supersaturations to 40 mbar has exhibited the non-
as the temperature increases is associated primarily with dimear character of the growth kinetics at high supersatura-
increase in the slope of the phase-equilibrium curve. Theions.
variation of the roton gap, as postulated by Bodensohn This work has been supported by the Russian Fund for
et al. also contributes to the temperature dependend¢, of Fundamental ResearckGrant N96-02-1851)a and the
but to a lesser degree, being proportional to the decrease Metherlands Scientific Research Organizati@mant NWO-
the critical velocity{see(35)]. At the bcc-hep transition point  07-30-002.
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The structure of the photon states and dispersion of cavity polaritons in semiconductor
microcavities with two-dimensional optical confineméphoton wire$, fabricated from planar

Bragg structures with a quantum well in the active layer, are investigated by measuring

the angular dependence of the photoluminescence spectra. The size quantization of light due to
the wavelength-commensurate lateral dimension of the cavity causes additional photon

modes to appear. The dispersion of polaritons in photon wires is found to agree qualitatively
with the prediction for wires having an ideal quantum well, for which the spectrum is

formed by pairwise interaction between exciton and photon modes of like spatial symmetry. The
weak influence of the exciton symmetry-breaking random potential in the quantum well
indicates a mechanism of polariton production through light-induced collective exciton states.
This phenomenon is possible because the light wavelength is large in comparison with

the exciton radius and the dephasing time of the collective exciton state is long99®

American Institute of Physic§S1063-776(98)01210-4

1. INTRODUCTION Here the dispersion of light in the empty microcavity is de-

. _ . o scribed by the expressidh
Semiconductor microcavities with imbedded quantum

wells are currently stimulating a growing interest among re-  E, = \/Ef+ ak?, (2

searchers. They are intersting in connection with the feasi- ) ) )
bility of monitoring and investigating the modification of WhereE, is the energy of the vertical cavity mode, and the

exciton properties as a result of the mixing of exciton state§oefficienta depends on the effective dielectric permittivity.
with cavity optical modes. In particular, exciton-photon in- IN & microcavity containing quantum wells the energy of the
teraction leads to Rabi splitting and modification of the dis-Photon and exciton modes is modified by the interaction of
persion of exciton and photon modes. The bulk of the excitons in the wells with light. In the presence of strong
experimental papers report the interaction of light and exci€Xciton—photon COUP””Q the exciton and.photon dispersipn
tons in cavities that imbed one or more quantum wells sityPranches are repulsive and can be described on the basis of
ated at antinodes of the optical electromagnetic field in arihe polariton model. The dispersion of a cavity polariton was
active layer of thickness or (3/2)\ contained between two first measured in Ref. 7 from an analysis of the angular de-
Bragg mirrors®® This geometry can be regarded as two- pendence of the energies of the luminescence peaks at low
dimensional2D) both for excitons in a well and for light in €Xcitation densities.

a Fabry—Perot cavity. In a planar microcavity optical mo- ~ Papers have also been published very recently, describ-
mentum is not conserved in the direction perpendicular to thé1d investigations of three-dimensionallyD) optically con-
planes of the mirrors, whereas in a plane parallel to the mirfined semiconductor microcavities, i.e., photon dotsin _
rors the quasimomentum is a “good” quantum number, andhese structyres, with dlmen3|ons_ of the order qf a fe.w mi-
the photon mode has a completely defined dependence of tigometers, light has been quantized in one dimension by
energyE on k. This dependence can be measured by record"€ans of Bragg mirrors and in the other two dimensions by
ing the reflection, transmission, or luminescence signal a@ large difference in the refractive indices at the
various anglesp relative to the plane of the samplefhe semiconductor—vacuum boundary. The localization of light

planar quasimomentuknis related to the light momentum in in such structures produces a discrete photon spectrum,
vacuumgq by the equation where the energy distance between modes increases as the

size of the dot decreases. The dispersion of photon modes
k=qsin¢. (1)  does not occur in such a cavity.

1063-7761/98/87(10)/8/$15.00 723 © 1998 American Institute of Physics
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a E b cavities with an ideal quantum well will necessarily lead to
the mixing of photon and exciton states having the same
spatial symmetry. This means that as the wave vekfor
increases, all photon modes whose energy at zero quasi-
momentum was lower than the exciton energy must make an
anticrossing wit