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Polarization of spin-1/2 particles in an axisymmetric magnetic field
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The present paper shows that the nature of the polarization of charged spin-1/2 particles moving
in a uniform magnetic field changes dramatically in a relatively weak transverse
axisymmetric magnetic field. The direction along which the spin projection is quantized has a
fixed orientation with respect to the axes of a cylindrical coordinate system and can
form a substantial angle with the direction of the uniform magnetic field. The presence of spin
quantization is proved both by the fact that the commutator of the Hamiltonian operator
and the projection of the polarization operator in the direction of quantization is zero and by
analyzing the Bargmann–Michel–Telegdi equation for this given case. Finally, the
possibilities of detecting this effect and utilizing it are discussed. ©1998 American Institute of
Physics.@S1063-7761~98!00110-3#
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1. INTRODUCTION

It is known that charged particles moving in a unifor
magnetic field in a plane perpendicular the field’s vectorH(1)

have a fixed~quantized! value of the spin projection in the
direction of the field. In this paper we will show that fo
spin-1/2 particles the nature of polarization changes dram
cally in the presence of even a relatively weak transve
axisymmetric magnetic field whose field vectorH(2) is per-
pendicular toH(1). Such a field is generated by a straig
current collinear withH(1) or by the current flowing in a
toroidal solenoid whose axis is collinear withH(1). The prob-
lem in this case is axisymmetric, and the symmetry axis
parallel to H(1) and coincides with the direction of th
straight conductor or the axis of the toroidal solenoid. A
result, the total magnetic field is nonuniform. Notwithstan
ing this fact, however, if a particle is moving in a plan
perpendicular toH(1) along a circular path whose center
on the symmetry axis, the projection of the particle’s spin
quantized. In the given case the direction along which
projection of spin has a fixed value does not coincide wit
single Cartesian axis but retains a constant orientation w
respect to the axes of the cylindrical system of coordinate
which the moving particle is at rest. For electrons, positro
and muons this direction may form a significant angle w
H(1) even if uH(2)u!uH(1)u.

In this paper we will use the weak-field approximatio
which amounts to a condition that is usually met:

uH~1!1H~2!u!H0 , H05m2c3/ueu\ 54.4131013Oe.

Throughout the work we use the relativistic system of un
\5c51.

2. PARTICLE POLARIZATION IN QUANTUM THEORY

For the sake of convenience we will adopt a cylindric
system of coordinates. Thez axis of this system coincide
with the symmetry axis of the problem, and the origin co
6291063-7761/98/87(10)/5/$15.00
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cides with the center of the circular path of the particle~Fig.
1!. In this geometry particles never move along thez axis
and the vectorH(2) of the additional magnetic field is alway
directed along the tangent to the particle path.

Even if we use quantum mechanics to examine part
polarization, particle motion can be described semicla
cally, which means we can speak of a particle path~see Refs.
1–3!. The accuracy of such a description can easily be
termined via the Heisenberg uncertainty principle. Class
theory makes it possible to find particle momentum with
relative error

udpu
p

;
1

rp
5

1

l
,

wherel is the orbital angular momentum of the particle, a
r is the characteristic size of the region in which a parti
moves~the radius of the circular orbit in our case!. The ra-
dius of the circular orbit is given by the formula

r 52
pf

eHz
, ~1!

wherepf is the projection of the particle momentum. Hen
the relative error acquired in the process of going over to
semiclassical description is of order

udpu
p

;
ueuHz

p2
5

Hz

H0~g221!
, ~2!

where g is the Lorentz factor. In most cases of practic
interest, this ratio is very small (Hz /H0'5310210 for
Hz523104 Oe). Equation~2! also yields the error acquire
when one ignores the commutators of the operators of
namical variables, since the absolute value of the comm
tor of the operators of positionr and momentump[ i¹ is 3
(u@r ,p#53u) and the ratio u@r ,p#u/rp is of order
Hz /@H0(g221)#, which means that the ordering of th
given operators in quantum mechanical expressions ca
© 1998 American Institute of Physics
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630 JETP 87 (4), October 1998 A. Ya. Silenko
assumed arbitrary. Note that particle polarization has a v
small effect on particle motion in a magnetic field.2

We will study particle polarization without imposing re
strictions on the particle energy and will use the Fold
Wouthuysen~FW! representation, whose merit is the sim
plicity in describing polarization effects. The polarizatio
operator in this representation reduces to the ma
P5bS ~Refs. 3 and 4!, where

P5S s 0

0 2s
D , b5S 1 0

0 21D , S5S s 0

0 s
D ,

with s the Pauli matrix, and 0 and61 the respective 2-by-2
matrices. If to describe the state of a particle we use only
upper spinor, which is always possible in the FW repres
tation, the polarization operator is proportional to the s
operator.

Spin motion is essentially quantum because the op
tors S i andS j do not commute ifiÞ j .

The projection of the polarization vector in a certain d
rection is conserved if the corresponding projection of
polarization operator commutes with the Hamiltonian ope
tor. The Hamiltonian operator in the FW representation
relativistic spin-12 particles with an anomalous magnetic m
ment ~AMM ! that are in motion in an electromagnetic fie
was found in Ref. 5–7. In Refs. 5 and 7 this operator w
obtained for relativistic particles~in Ref. 5 without allowing
for derivatives of the external field strengths, and in Ref
with allowance for such derivatives!. A Hamiltonian that al-
lows for relativistic corrections, including corrections th
take into account the derivatives of field strengths, was
rived in Ref. 6. The results of Refs. 5–7 agree with o
another.

The expression found in Refs. 5 and 7 for t
Hamiltonian of relativistic particles moving in a magnet
field without allowance for terms with derivatives of fie
strengths has the form

H5be2S m0m

e
1m8DP–H1

m8

e~e1m!
~P–p!~H–p!,

~3!

where e5Ap21m2 is the kinetic energy operator,p5p
2eA and p are the kinetic momentum and momentum o
erators, withA the vector potential of the field, andm0

5e/2m andm85m2m0 are the Dirac and anomalous ma

FIG. 1. Particle polarization in an axisymmetric magnetic field:r is the
radius of the orbit,ef andez are the unit vectors of the cylindrical coordina
system,H(1) andH(2) are the vectors of the uniform and transverse nonu
form magnetic fields,p is the particle momentum,a is the vector that speci-
fies the direction of the spin’s orientation, andu is the angle betweena and
the z axis.
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netic moments, withm the total magnetic moment. Goin
over to an arbitrary ordering of the operators in~3! is equiva-
lent to ignoring the commutators of these operators. For
axisymmetric magnetic field

u@pi ,H#u5U]H

]xi
U; uH~2!u

r
. ~4!

Combining this with~1!, we get

u@pi ,H#u
upiHu

;
ueH~2!u

p2
5

uH~2!u

H0~g221!
.

The ratio u@pi ,H#u/upiHu specifies the relative error in
troduced by a permutation of noncommuting operators in~3!,
and the fact that this ratio is small makes it possible to use
arbitrary ordering of the operators.

The corrections to the Hamiltonian containing terms l
ear in the field with field strength derivatives are given by t
formula7

H85b
m8

4e~e1m!
$2~curl H!–p1S–~curl curl H!%.

At e'm this expression becomes the formula derived in R
6.

Since in our case curlH50, we haveH850, which
means that the Hamiltonian operator contains no correct
corresponding to the nonuniformity of the field.

We write the Hamiltonian~1! as a sum of two terms:

H5H11H2 , H15be2
m0m

e
P–H, ~5!

H252m8P–b, b5H2
~H–p!p

e~e1m!
,

whereH1 is the Hamiltonian of a Dirac particle. Next w
calculate the commutators ofH and the operatorsPf5
2Px sinf1Py cosf andPz . For sinf and cosf we must
take into account only the commutators with the opera
be. The following commutation relations hold~here
$•••,•••%1 stands for an anticommutator!:

@p2,Pf#5 ibH pf ,
Sr

r J
1

, ~6!

@Pz ,Pf#522iSr , ~7!

whereSr5Sx cosf1Sy sinf.
The operatorspf andr are defined on the class of func

tions that are the eigen-wave-functions ofH. Hence, with
allowance for the semiclassical nature of the motion and
possibility of ignoring the noncommutativity of dynamica
variables, we can introduce an approximation in which
operatorspf andr are replaced by the values of the partic
momentumpf and the radiusr of the orbit, respectively.
Then

@p2,Pf#'2ib
pf

r
Sr .

If we allow for the expression forr , the above equation
reduces to

-
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@p2,Pf#'22ibeHzSr .

Following a method similar to the one used in Ref. 2,
arrive at the relationship

@p2,Pf#5@e2,Pf#5$e,@e,Pf#%1'2e@e,Pf#,

so that

@e,Pf#'
1

2e
@p2,Pf#'2 ib

eHz

e
Sr .

SinceP–H5PfHf1PzHz , we use formula~4! and get

@H1 ,Pf#50. ~8!

Since the vectorsp andef are collinear, the fact that th
commutator ofH1 andPf is zero agrees with the fact tha
the projection of the polarization operator in the direction
the momentum of Dirac particles is conserved~the latter has
been proved for the Dirac representation by Sokolovet al.8!.

Note thatHf is independent off but may depend onr
andz. However, the commutator@p,Hf# is small compared
to pHf .

Combining Eqs.~5!, ~7!, and ~8!, we arrive at the fol-
lowing relationships:

@H,Pf#5@H2 ,Pf#'22im8S–~b3ef!

52im8HzSr , ~9!

@H,Pz#522i
m0m

e
HfSr22im8S–~b3ez!

522i
m

g
HfSr .

We now introduce a vectora in such a way that the
projection of the polarization operator on this vector,Pa ,
assumes a quantized value. Hence the commutator ofH and
Pa is zero:

@H,Pa#50. ~10!

Equations~9! imply that a can be written as follows:

a5afef1azez ,

whereaf andaz are scalar operators. Since

Pa5
P–a

uau
5

Pfaf1Pzaz

uau

and since we ignore the fact that the operators of dynam
variables do not commute, the condition~10! yields

m8Hzaf5
m

g
Hfaz .

Using the standard notation

g5
m

s

2m

e
5

4mm

e
,

we can transform the above relationship to

af

az
5

g

~g22!g

Hf

Hz
. ~11!
f

al

The angleu between the direction ofa and thez axis
~see Fig. 1! is specified by the formula

tanu5
g

ug22ug UHf

Hz
U. ~12!

Since the operatorPa commutes with the Hamiltonian
in stationary states it has definite valuesl. Since

PaPa5~P–a!~P–a!/a2 51, PaPac5l2c,

we havel561. The projection of the spin operator~in the
FW representation, the spin operator is proportional to
polarization operator! in the direction ofa takes quantized
values61/2. Since the vectora has constant projections o
the axes of the cylindrical coordinate system, it rotates w
an angular velocity

v52
e

e
H~1!,

which is equal to the angular velocity of particle rotation
the magnetic field. In stationary states, the average value
the projections of the polarization and spin operators on
rections perpendicular toa are equal to zero.

3. RELATION TO THE BARGMANN–MICHEL–TELEGDI
EQUATION

Let us now establish how the above results are relate
the Bargmann–Michel–Telegdi~BMT! equation,9 which de-
scribes spin motion in an electromagnetic field. A charac
istic feature of this motion is that the polarization vectorj
varies, and in our case this variation is given by the equa

dj

dt
5S dj

dt D
BMT

5
e

2mS g221
2

g D @j3H#

1
e

2m
~g22!

g

g11
~v–H!~@v3j# !. ~13!

This equation can be derived not only semiclassica1

but also by methods of quantum theory.4 It can be shown that
in our case the corrections to Eq.~13! obtained by Good10

and Nyborg11 have a negligible effect on spin motion. The
corrections amount to adding to the right-hand side of E
~13! the term1)

S dj

dt D
GN

5
mg

m~g11!

3@j3~v3¹!#Fj•H2
g

g11
~j•v!~v•H!G .

~14!

Using Eqs.~1! and ~4!, we find that the ratio
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US dj

dt D
GN
UY US dj

dt D
BMT

U
does not exceed, in order of magnitude,

gvuH~2!u
rmH

5
puH~2!u

rm2H
;

uH~2!u
H0

!1.

Thus, when we examine spin motion in an axisymme
magnetic field, the corrections to the BMT equation given
~14! can be ignored.

From Sec. 2 it follows that the projection of the pola
ization vector in the direction ofa remains constan
(dja /dt50). Equation~13! can be written as follows:

dj

dt
5V3j, ~15!

V52
e

2mS g221
2

g DH1
e

2m
~g22!

g

g11
~v–H!v.

The unit vectora05a/uau rotates with an angular veloc
ity v:

daa

dt
5v3a052

e

e
H~1!3a0 . ~16!

Note that the equation of particle motion, which yiel
v, is valid both in classical theory and in quantum theory.2,13

Since

dja

dt
5

d

dt
~j–a0!5~V3j!–a01j3~v3a0!

5@~V2v!3j#–a050,

the vectorsa0 anda are collinear with the vectoro5V2v,
which is the angular velocity of spin precession in the ref
ence frame in which the moving particle is at rest. Equatio
~15! and ~16! imply that

o52
e

2m Fg

g
Hfef1~g22!HzezG . ~17!

This formula describes spin motion in a cylindrical c
ordinate system. Sincea05o/uou, formula ~11! fully agrees
with ~17!. Thus, the results obtained via a rigorous quant
mechanical method coincide with those obtained via
BMT equation, which also holds in quantum theory.

4. DISCUSSION AND CONCLUSIONS

At present it is believed that quantization of spin proje
tion is possible only in a uniform field. The present pap
shows that the spin projection of particles moving in an a
symmetric magnetic field in a plane perpendicular to
symmetry axis also has a fixed~quantized! value. Here par-
ticle polarization exhibits a number of characteristic featur
What sets this case apart from that of a uniform field is t
the direction along which the spin projection is quantized
c
y

-
s

e

-
r
i-
e

s.
t
s

a fixed orientation with respect to the axis of a cylindric
coordinate system in which the particle moving along a c
cular orbit is at rest, rather to a Cartesian coordinate syst
Note that this direction forms a fixed angle with the partic
momentum vector. The fact that there is spin quantizat
can be proved either by calculating the commutator of
Hamiltonian operator and the projection of the polarizati
operator in the direction of quantization~the direction ofa!
and finding that this commutator is zero, or by the fact th
the corresponding projection of the polarization vector
conserved~which follows from the BMT equation!.

In our case the corrections due to the nonuniformity
the magnetic field are small and have no effect on part
polarization.

Of special interest is the fact that for electrons, positro
and muons the change in the nature of quantization of spi
the presence of a transverse magnetic field is extrem
strong. For these particles the ratio of the total magne
moment to the anomalous is

m

m8
5

g

g22
'

2p

a
;103.

Since already atHf;1023Hz the particles are polarized at
substantial angle to thez axis, and atHf51022Hz , g51.2,
for electrons we haveu582°, i.e., the direction in which the
electrons are polarized is almost perpendicular to the di
tion of the uniform field. Due to the huge value of the effe
its observation in experiments becomes much easier.

The change in the nature of polarization affects the e
lution of the particle polarization vector. By measuring t
temporal variation of this vector we can determine the dir
tion along which the spin projection is quantized, sincea is
collinear with the vectoro of the angular velocity of spin
precession in the reference frame in which the particle is
rest. The orientation of the polarization vector of the parti
beam remains unchanged only when it is collinear witha.

Another method used in studying the effect of a tran
verse axisymmetric magnetic field on particle polarization
stationary states is related to radiative polarization of p
ticles in a magnetic field~the Sokolov–Ternov effect14!. In a
uniform magnetic field the degree of polarization of partic
in a beam is as high as 92.4 %. Naturally, radiative polari
tion also occurs when there is a transverse magnetic field
stationary states, the particles are polarized either paralle
antiparallel toa. The probability of a transition with spin flip
depends on the value of the spin projection in the direction
a, which leads to partial polarization of the beam. The dire
tion of polarization collinear witha forms an angle with the
z axis, and by measuring this angle we can determine
extent to which the theory agrees with the experiment.

Note that the characteristic features of radiative polari
tion in the presence of a transverse magnetic field can
practical applications in forming beams of electrons and p
itrons partially polarized at a given angle to the direction
particle momentum. This angle, equal top/22u, depends on
the strength of the transverse field and can be calculate
Eq. ~12!.
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Of course, a transverse magnetic field makes the mo
of particles along circular paths somewhat unstable. Ho
ever, since the components of the particle velocity along
r andz axes are small, this factor has only a small effect
the particle polarization, although actually the particles mo
not along a circle but along the surface of a very thin a
narrow ring~its shape may differ from that of a toroid!.

Another possibility of utilizing a transverse axisymme
ric magnetic field is related to the geonium quasiatom. T
configuration of fields in the geonium quasiatom~a uniform
magnetic field and a quadrupole electric field!, which speci-
fies a Penning trap, makes it possible to attain a reco
breaking accuracy in measuring the electron magnetic
ment. Measuring polarization in the presence of a transv
magnetic field leads to a shift in the energy levels of g
nium and makes it possible to select a configuration of
levels that enhances the accuracy of measuring the mag
moments of the particles inside the Penning trap. This pr
lem requires a separate investigation.

1)The corrections to the BMT equation yielded by~14!

~which was derived by classical methods! are not identical to
the correction derived in quantum theory.12
n
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Concentration of lithium vapor in a high-temperature sapphire capillary based on light-
induced drift

O. A. Vostrikov, K. A. Nasyrov, S. P. Pod’yachev, and A. M. Shalagin* )

Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences,
630090 Novosibirsk, Russia
~Submitted 14 January 1998!
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The accumulation of atomic lithium vapor in a sapphire capillary based on light-induced drift is
experimentally investigated. To suppress lithium adsorption on the walls of the capillary
and prolong the life of the atomic state, the capillary was heated to high temperatures. The
phenomenon of an ‘‘optical piston’’ was observed, indicating a high degree of
concentration of atomic lithium vapor. The experimental results are consistent with theoretical
ideas, and they suggest that heated cells hold some promise for efficient isotope separation
and the detection of atomic micro-impurities. ©1998 American Institute of Physics.
@S1063-7761~98!00210-8#
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1. INTRODUCTION

Light-induced drift was first predicted in 1979~Ref. 1!.
In that same year it was experimentally observed in ato
gases,2 and soon thereafter in molecular gases.3 Since then,
light-induced drift has been vigorously investigated, both
perimentally and theoretically~a review of the literature can
be found, for example, in Refs. 4–6!. Recently, interest ha
grown in the question of separating and accumulating
topes of various chemical elements in their atomic sta
with the help of light-induced drift. In this regard, it is wort
noting Refs. 7–9, which report separation of Na isotopes
accumulation of a radioactive Na isotope in a heated ca
lary, and also Ref. 10, which examines the separation o
isotopes under conditions in which the walls are far from
sample itself.

The major impediment to the accumulation of one
another chemical element with the help of light-induced d
is adsorption on the walls of the cell or capillary, whe
accumulation properly takes place. To eliminate or at le
reduce the influence of adsorption, it is necessary eithe
specially coat the walls of the cell11–13 or heat the cell.7–9

The second alternative is preferable due to its universal s
ability for many chemical elements.

The present paper investigates the accumulation
atomic Li vapor with the help of light-induced drift in
heated sapphire capillary.

2. EXPERIMENT

For the purpose of this study, we assembled an exp
mental setup~see Fig. 1! similar to the one used in Ref. 9
Radiation from a dye laser2 ~an Ar1 laser1 was used as the
pump! was focused by a collecting lens3 (F51 m) into the
working cell4 and directed into a sapphire capillary5, which
was closed at one end. The length of the capillary was 10
and its inner diameter was 1.5 mm. The capillary was pla
inside a tantalum coil6 with a pitch of 1 mm. Leads were
connected to the coil through windows in the cell. A volta
6341063-7761/98/87(10)/5/$15.00
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from the power supply7 was applied to the coil through th
leads, which made it possible to heat the capillary. Typi
temperatures reached 1300–1600 K. The temperature
monitored by a remote pyrometer.

The necessary lithium vapor concentration was produ
with the help of an electrically heated lithium container10.
A diaphragm11 separated the region of the cell where t
lithium vapor was generated from the region housing
heated sapphire capillary.

The working cell4 was connected to a vacuum statio
for inlet and outpumping of the buffer gas. The vacuum w
1025 Torr or better. We used argon as the buffer gas~pres-
sure 20 Torr!.

DCM dye was used as the working medium in the d
laser. The laser frequency was tuned with the help of
intra-cavity Fabry–Perot interferometer. The laser linewid
was'1.5 GHz. The power of the dye laser ranged from
to 150 mW.

To record the accumulation of lithium vapor we used
camera9 mounted on a tripod 60 cm from the working ce
To separate the fluorescence radiation from the backgro
of the incandescent coil, we used an interference filter8.

The experiment consisted in the following. The laser f
quency was tuned to theD2 line of 7Li ~note that for such
tuning under the conditions of our experiment only the giv
isotope is excited!. The offset from exact resonance was ch
sen to be such that the7Li isotope migrated in the direction
of laser beam propagation. Figure 2 plots the dependenc
the fluorescence intensity on the frequency of the excit
radiation. The6Li line is enhanced because the spectrum w
recorded above the saturation intensity. The vertical l
shows the experimental laser frequency. The offset was c
sen to maximize light-induced drift.

At the initial instant, just after turning the laser on, on
the characteristic glow of the sapphire capillary and c
were observed~Fig. 3a! and fluorescence of the lithium va
por was absent. After some time a luminous region appea
at the closed end of the capillary~Fig. 3b!. With the passage
© 1998 American Institute of Physics
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of time, the size and brightness of this region increa
~Figs. 3c and 3d, respectively!. With the passage of time, th
brightest part of the luminous region clearly shifts toward
open end of the capillary. After some time, the lumino
region ‘‘breaks away’’ from the closed end of the capilla
~Fig. 3e!. The luminous region then moves toward the op
end of the capillary~Fig. 3f!.

The typical timet for the process to develop from sta
to finish~Figs. 3a and 3f! depended on the temperature of t
sapphire capillary and the vapor concentration at the entra
to the capillary. The latter was chosen to be such that
lithium diffusing into the capillary did not produce any a
preciable visible luminescence~Fig. 3a!. As a result, at
T'1500 K the timet was several minutes.

These observations can be explained by invoking id
about the phenomenon of light-induced drift in the followin
way. Lithium atoms initially move in the direction of th
wave vector toward the closed end of the capillary as a re
of light-induced drift. The greater the number of lithium a

FIG. 1. Experimental setup:1 — Ar1 laser ~pump laser!, 2 — dye laser,
3 — focusing lens,4 — cell, 5 — sapphire capillary,6 — tantalum wire,
heated by a current from the power supply7, 8 — interference filter,9 —
camera,10 — lithium vapor source,11 — diaphragm.
d

e

n

ce
e

s
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oms that accumulate there, the more the light absorption
gion migrates in the opposite direction: radiation is ess
tially completely absorbed over a distancel eff'2 cm along
the capillary. Thus emerges the well-known ‘‘light piston
effect ~see Refs. 14–17!.

3. THEORY

We consider a two-component gaseous medium,
which one component can interact resonantly with radiati
and the second component serves as a buffer gas. U
conditions in which the concentration of the absorbing co
ponent gas is much less than that of the buffer gas, i
possible to neglect collisions of atoms of the first compon
with one another. We also assume that a two-level mo
describes the internal states of the atoms of the first com
nent; the model takes only two quantum states of the a
into account~the ground state and the first excited stat!,
with resonant absorption taking place between them. We
note the lower and upper states byn andm, respectively.

The equations for the velocity distribution functionsrm

andrn for the atoms in the indicated states have the form4

S ]

]t
1v

]

]r
1GmD rm5Np~v!1Sm ,

FIG. 2. Lithium fluorescence spectrum. Vertical line indicates position
the laser frequency in the experiment on concentrating lithium vapor.
f
-

FIG. 3. Time evolution of accumulation o
lithium vapor in a sapphire capillary and for
mation of an ‘‘optical piston.’’
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S ]

]t
1v

]

]r D rn2Gmrm52Np~v!1Sn , ~1!

Np~v!5
2uGu2G

G21~V2k–v!2
~rn2rm!.

Here we have introduced the following notation:V5vL

2vmn is the frequency offset of the laser radiationvL from
the center of the absorption line at the transition freque
vmn ; Gm is the spontaneous decay rate of the atom from
upper to the lower state;G is the uniform half-width of the
absorption line for the transitionn2m; G5Edmn /\ is the
Rabi frequency;N is the concentration of resonant atom
andSi is the collision integral of the atoms in the statei . The
first term on each right-hand side in Eqs.~1! describes the
excitation of an atom by monochromatic radiation, whe
p(v) is a probability of absorption of radiation per unit tim
by an atom with velocityv. To describe collisions of the
atoms with the buffer gas, we adopt the model of stro
elastic collisions, in which the collision integral has the for

Si~v!52n ir~v!1n iW~v!Ni , ~2!

wheren i is the collision frequency for an atom in statei ,
W(v) is the Maxwellian velocity distribution, and

Ni5E r i~v!dv ~3!

is the population of thei th state. The sense of this model
that after its first collision, an atom finds itself in an equili
rium velocity distribution.

Next we bring in the fluxesjm,n of the atoms in statesm
andn and the total fluxj of absorbing atoms

j i5E vr i~v! dv, j5 jm1 jn . ~4!

To analyze the experimental situation in the pres
case, it is sufficient to consider the steady-state solution
system~1!. On the basis of~1! we compose equations for th
fluxes jm and j . To this end, we multiply each of the equ
tions byv and integrate overv. As a result, we arrive at the
following equations~see also Ref. 4!:

jm5
N

Gm1nm
E v p~v! dv, ~5!

j5 jdr2D ¹N, jdr5
nn2nm

nn
jm , ~6!

D5vT
2/2nn , vT5A2kBT/M .

Here jdr is the atom flux due to light-induced drift.
In deriving these equations, we have assumed that

radiation-perturbed velocity distribution function does n
deviate too much from its equilibrium value. Hence it fo
lows, in particular, that the spatial inhomogeneity scale
the concentration of absorbing particles substantially exce
the mean free path. We can therefore neglect the spatia
rivative term in the equation forjm .

Under the stated conditions, we can also start out w
the steady-state, spatially homogeneous system of equa
y
e

;

e

g

t
of

he
t

f
ds
e-

h
ns

~1! in the calculation ofp(v). Their solution in the strong
collision model does not entail any difficulties.4,18 As a result
we obtain

p~v!5N
Y~v! W~v!

t11t2^Y&
, ~7!

Y~v!5
G2x

G2~11x!1~V2k–v!2
, ^Y&5E Y~v! W~v! dv,

x5
2t1uGu2

G
, t15

nn1nm

nn~Gm1nm!
, t25

2

Gm
2t1 .

We call the quantityx the saturation parameter.
Substituting Eq.~7! into Eq. ~5!, and then substituting

Eq. ~5! into Eq. ~6!, we obtain

jdr5NvT

k

k

nn2nm

nn

t1^Y1&
t11t2^Y&

, ~8!

^Y1&5E k–v

kvT
Y~v! W~v! dv.

Equation~8! holds for any ratio of the homogeneous a
inhomogeneous linewidths. For the important case in wh
Doppler broadening dominates (GA11x!VD) and the off-
setV is bounded by the Doppler linewidthVD5kvT , which
corresponds to our experimental conditions, Eq.~8! admits
of the following simplification:

^Y1&5
V

VD
^Y&, ~9!

^Y&5
Ap G

VD

x

A11x
exp@2~V/VD!2#.

The conditionVD@GA11x implies that ^Y&!1, and
instead of~8! we may use the relation

jdr5
k

k

nn2nm

nn1nm

V

k
N^Y&. ~10!

We also introduce into consideration the light-induced d
speedudr5 j dr /N, whereupon

udr5
nn2nm

nn1nm

V

k
^Y&. ~11!

We now apply these results to the process of accum
tion assisted by light-induced drift in a long, thin capilla
closed at one end. Let the radiation enter through the o
end of the capillary and propagate along its axis~thez axis!.
Under steady-state conditions, we should setj50 in Eq.~6!.
This leads to the form

D
]

]z
N5udr N. ~12!

Accumulation of particles near the closed end of the c
illary can produce an optically dense medium, in which t
radiative intensity varies substantially over the length of
capillary. As a consequence, the quantityudr becomes a
function of the spatial coordinatez. Under the given condi-
tions, it is necessary simultaneously to take into acco
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variation of both the particle concentration and the radiat
intensity, i.e., together with Eq.~12! it is necessary to con
sider the equation describing the radiative intensityI of the
propagating beam:

d

dz
I 52P, P5\vLNE p~v! dv. ~13!

HereP is the radiative energy absorbed per unit time per u
volume. In the approximation of large Doppler broadenin

P5\vLN
^Y&
t1

. ~14!

Taking Eqs.~14! and~9! into account, Eqs.~12! and~13!
have the integral

N2N05
t1V

k

nn2nm

nn1nm

I 02I

D\vL
. ~15!

HereN0 and I 0 are the concentration of resonant atoms a
the radiative intensity before the light enters the capillary.
a buffer gas of argon, (nn2nm)/nn is known19 to be approxi-
mately 20.2 for lithium. Consequently, for the regime o
accumulation and storage of resonant atoms, it is neces
to choose the ‘‘redshifted’’ offset of the radiation frequenc
V,0.

It is clear from ~15! that for prescribed values of th
offsetV and initial radiative intensityI 0 there exists a maxi-
mum possible concentration of accumulated atoms:

Nmax5
t1V

k

nn2nm

nn1nm

I 0

D\vL
. ~16!

Note that in the present approximation the maximum p
sible concentration of accumulated atoms is directly prop
tional to the radiative intensity.

Utilizing relation ~15!, it is possible to obtain the radia
tive intensity in closed form, which is most convenient
written as an equation for the saturation parameter:

d

dz
x52

1

l

~x02x! x

A11x
. ~17!

Here l is some length that characterizes the scale on wh
absorption takes place:

l 5
D~nn1nm! VDk exp@~V/VD!2#

Ap G V~nn2nm!
. ~18!

As a function of the offsetV, this length reaches its mini
mum atV52VD /A2:

l min5
A2 D~nn1nm! kAe

Ap G unn2nmu
. ~19!

In Fig. 4, we have plotted the dependence of the radia
intensity and the fluorescence intensity on the spatial coo
natez with scale lengthl ; these were obtained by solving E
~17! numerically with x05100. As can be seen from thi
solution, the size of the fluorescence region is determined
the scale lengthl .
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Using these results, we can proceed to a consideratio
the quasisteady situation, which is realized forN0!Nmax. In
this case it may be assumed that the spatial distribution
accumulated atoms corresponds at any given momen
steady-state conditions (N0→0), except that the region oc
cupied by the accumulated atoms with concentrationNmax

slowly expands toward the open end of the capillary at sp
S, with

S5udrN0 /Nmax. ~20!

4. DISCUSSION

The present experiment was carried out under the
lowing conditions: the pressure of the argon buffer gas w
p520 Torr, the laser power was 100 mW, corresponding
an intensityI 510 W/cm2 at the entrance to the capillary
The diffusion coefficient of lithium in argon at the indicate
pressure and withT51500 K is taken to beD'400 cm2/s
~Ref. 19!. It is possible to estimatenn from the value ofD.
The homogeneous half-width of the line under these con
tions isG'33108 s21, and the Doppler half-widthVD52
31010 s21. For the indicated parameters we findx0.100.
Thus, we are working under conditions of large Doppler li
broadening with field broadening taken into account. T
maximum possible concentration of accumulated atoms,
culated with Eq. ~16! for V52VD /A2, is Nmax.1.7
31013 cm23. An estimate ofl min based on Eq.~19! yields
l min.2 cm. We therefore estimateudr.33103 cm/s for the
maximum possible light-induced drift rate.

It can be seen that the theoretical estimatel min.2 cm
and the value estimated from the experimental data~in the
photograph! l eff.2 cm coincide.

The onset of the ‘‘optical piston’’ regime suggests tha
high concentration of resonant atoms is produced beyond
fluorescence region at the closed end of the capillary. If
suppose that the concentration of resonant atoms just ou
the capillary entrance isN051010 cm23 ~most likely it is
significantly less!, and if we takeNmax to be our estimate of
the concentration of resonant atoms at the closed end o
capillary, then the degree of concentration of the reson
atoms achieved using light-induced drift is at least 103. Such
high degrees of concentration are extremely promising
the separation and concentration of weakly represented

FIG. 4. Distribution of the radiative intensity (I rad), fluorescence intensity
(I fl), and lithium vapor concentration (N) inside the capillary. Numerical
solution of Eq.~17! for x05100.
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topes from a natural mixture of any chemical element, a

also for concentration of micro-impurities of atomic gase

Furthermore, in the experiment we noted that after tu

ing off the lithium vapor source, the lifetime of the optic

piston, or of the accumulated atoms in the capillary, is so

tens of minutes. This suggests that chemical loss of lithi

atoms is largely suppressed in a heated capillary. It also

gests the feasibility of using high-temperature cells for

aforementioned purposes.

At present, our laser stabilization and detection syste

do not permit more detailed measurements. In particular,

lack experimental information on the quantitiesN0 andNmax

and on residual adsorption on the capillary walls. We inte

to improve the overall system so that it will be possible

perform such measurements, and also accumulate the

isotope of lithium to the same level of concentration a

reach a coefficient of separation of at least 103, and a degree

of concentration greater than 103. The results of the presen

experiment suggest that these goals are attainable.

This work was carried out with the support of the Ru

sian Fund for Fundamental Research~Grant No. 96-02-

19556! and the State Scientific–Technical Program ‘‘Las

Physics’’ ~Grant No. 7.41!.

In this work we used the ‘‘AMETIST’’ cw dye lase
built by the Laser Systems Laboratory of Novosibirsk St
University ~http://www.cnit.nsu.ru/nwww/lls/

english/dlt.htm !.
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Recently published optical experiments which investigate the effect of ‘‘quantum teleportation’’
are analyzed. It is shown that the occurrence of teleportation~copying! of the polarization
of one photon onto another requires that an optical shutter be added to the experimental setup,
opening automatically only upon the occurrence of certain favorable events. An instructive
model is proposed, along with a classical analog of the effect, and various treatments are discussed.
It is emphasized that the concepts of ‘‘reduction of the wave function’’ and ‘‘quantum
nonlocality’’ are not necessary for a quantitative description of the effect: the standard formalism
proves to be sufficient. ©1998 American Institute of Physics.@S1063-7761~98!00310-2#
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1. INTRODUCTION

The unexpected possibility of irreversibly copying
quantum state from one individual system onto another s
tem isomorphic with the first was recently described by B
nett et al.1 The idea received further development in Re
2–8. In contrast to the reversible exchange of states betw
two-level atoms and a cavity field~transfer of a qubit of
information! observed in Ref. 9, here part of the informatio
is irreversibly converted into a classical form. In essen
Ref. 1 proposed a method of preparing an individual qu
tum system in a prescribed statec with the important feature
that the information about which state in particular has b
prepared is of a quantum nature, i.e., it is written down in
form of the state of another system and remains unkno
The first optical experiments along these lines were
scribed recently.7,8 The interpretation of the effect adopted
Refs. 1–8, as well as its name, is based on the widely h
notion that the instantaneous reduction~collapse! of the
wave function as a result of a measurement leads to quan
nonlocality.

Figure 1 presents a simplified experimental setup.7 Three
quasi-monochromatic stationary beams of lightA, B, andC
are incident upon the optical system, where the phot
~black dots! arrive simultaneously in groups of three. TheA
photons are completely polarized. TheB andC photons are
depolarized; however, there is a unique correlation betw
their polarizations. A 50% nonpolarizing semitranspar
mirror ~beamsplitter! BS mixes theA and B photons. As a
result of the initial correlation between theB andC photons
and the action of the beamsplitter, all three photons are
related. Under these conditions, informationeA about the po-
larization of anA photon turns out to be encoded in th
probabilities of three-way coincidences. This effect is inv
tigated using two polarization convertersTA and TC , a po-
larizing prismPC in beamC, three photodetectorsDZ , and
a scheme of three-way coincidencesCC. The experiment7

entails observing the dependence of the number of three-
coincidencesN3 ~during a certain fixed time interval! on the
parametersTA andTC and on the time delayt in one of the
6391063-7761/98/87(10)/9/$15.00
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three channels~ast increases, the degree of the polarizati
interference, as always, decreases!. Thus, the scheme is in
essence a kind of polarized intensity interferometer opera
in photon-counting mode.

The three-photon interference observed in the sche
and depicted in the figure should possess a remarkable p
erty: the number of coincidencesN3 depends on the convert
ers TA and TC in the same way as if they were set up
sequence in one beam or as if the polarization of photonA at
the output ofTA were transferred to photonC at the entrance
to TC : eA→eC . In other words, the phase and degree of
polarization observed in the three-way coincidences are
termined by the product of the Jones matricesTCTA . If TC

performs the inverse transformation toTA (TCTA51), then
N3 will depend on neitherTA nor TC , and the degree of the
interference will be zero.

The detectorsDCx andDCy , and the converterTC , can
be considered to be a device for measuring the polariza
of theC photons, but unconditional readings inDC j will not
detect any polarization because theC photons are not polar
ized. However, conditional readings inDC j , i.e., those tak-
ing place simultaneously with readings inDA and DB , ex-
hibit complete polarization. For example, from th
dependence ofN3 on TC it is possible to measure the pola
ization vectoreA5(ax ,ay) of the A photons~or, equiva-
lently, the Stokes vector̂SA&). However, 75% of the time
both photonsA andB fall on the same detector,DA or DB .
Such ‘‘unfavorable’’ events do not exhibit a polarizatio
copying effect.

PhotonsB andC are prepared in an entangled EPR st
giving complete correlation in the polarization. The me
frequencies of the fields in theA andB beams should be the
same~so that they can interfere in the beamsplitterBS), but
the frequency of the field in theC beam can be arbitrary. Al
three photons should also be correlated in their time of
rival at the beamsplitter with an accuracy determined by
coherence time and timing resolution of the coinciden
scheme.5 To this end, Ref. 7 used foursomes of photo
emitted during type-II parametric scattering~Ref. 10! in the
second order of the pump intensity~one of the four photons
© 1998 American Institute of Physics
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was superfluous!; this setup utilized pumping of a nonlinea
crystal by short pulses and additional filtering of the sp
trum of the scattering field to increase the coherence tim

The present paper contains a formal analysis of
scheme depicted in Fig. 1, and draws attention to the fact
to demonstrate the teleportation effect~instead of an interfer-
ence effect! it is necessary to replace the scheme of thr
way coincidences by a scheme of two-way coincidences
add an optical shutter~modulator! to beamC. The shutter
should control the scheme of two-way coincidences at
detectorsDA and DB and let throughC photons only upon
the occurrence of a certain subset of ‘‘favorable’’ events
these detectors—simultaneous readings inDA andDB . Thus,
teleportation, i.e., copying the polarization of theA photons,
is only feasible using a nonunitary transformation of t
field C.

An elementary instructive model of the polarizatio
copying effect is also proposed, along with the correspo
ing classical analog. It is also emphasized that for a qua
tative calculation of the teleportation effect the concept
reduction of the wave function is superfluous, as it proba
also is for a quantitative description of all the known ph
nomena of quantum physics observed to date~possible ex-
ceptions are discussed in Ref. 11!. Recall in this regard that a
critical stance vis-a`-vis a literal understanding of reductio
as a ‘‘real’’ process has been taken more than once;
Refs. 12–16.

Section 2 examines an instructive model and a class
analog of the effect. Section 3 calculates the operation of
scheme depicted in Fig. 1, and some variations of it in
Heisenberg picture. Section 4 briefly repeats these calc
tions in the Schro¨dinger picture and analyzes some metho
ological issues inherent in the transition from the one pict
to the other in problems of quantum optics. Section 5 co
pares two possible approaches to the description and in

FIG. 1. Simplified layout of the experiment in Ref. 7 and an instruct
model for copying polarization vectorseA→eC . Only one photon~circles! is
present at the entrance to each of the beamsA, B, and C. PhotonA has
arbitrary polarizationeA . The basis vectorsex andey are chosen such tha
ex5eA . Simultaneous detection of the photons by detectorsDA and DB

implies that photonsA and B did not interfere in the beamsplitter; conse
quently, they have orthogonal polarizations,eA'eB ~otherwise they would
have fallen onto the same detector!. PhotonsB andC were prepared in state
with orthogonal polarizations,eB'eC ; thereforeeC5eA . TA and TC are
polarization converters,PC is a polarizing prism,DZ are detectors,CC is a
triple coincidence counter,N3 is the number of triple coincidences during
certain time interval, andx andy are polarization indices.
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pretation of the effect—the generally accepted approach1–8

and the approach proposed in the present paper.

2. ELEMENTARY MODEL OF THE EFFECT AND CLASSICAL
ANALOGY

The polarization copying effecteA→eC has an instruc-
tive ~but nonrigorous! explanation~Fig. 1! that suggests a
very similar classical experiment. This explanation is a dir
consequence of two well-known effects—anticorrelation
photons with identical polarization at the output of a bea
splitter and correlation of photons with orthogonal polariz
tion of EPR–Bohm type. Indeed, the detection of two ph
tons in the output beamsA8 and B8 ~i.e., the lack of
anticorrelation between the photons! implies that the initial
photons in theA andB beams did not interfere in the beam
splitter and consequently had orthogonal polarizat
eA'eB . From here on, the polarization of theB andC pho-
tons can be taken to be orthogonal:eB'eC . FromeA'eB and
eB'eC it follows that eA5eC .

Let us dwell on this conclusion in more detail. Let th
field in theB andC beams be described by the state1

uc&BC5~ uBx ,Cy&2uBy ,Cx&)/A2. ~2.1!

Here uBx ,Cy&[bx
1cy

1u0&, bx
1 and cy

1 are photon creation
operators in thex mode in beamB and in they mode in beam
C, andx andy are indices of two arbitrary orthogonal type
of polarization (ej* ek5d jk).

One peculiarity of this state is its invariant form und
any transformation of the polarization basis. Indeed, let

uBx&5t* uB1&2r uB2&, uCx&5t* uC1&2r uC2&,

uBy&5r * uB1&1tuB2&, uCy&5r * uC1&1tuC2&, ~2.2!

where 1 and 2 are indices of the new basis and the trans
mation coefficientst andr satisfy utu21ur u251. Substituting
Eq. ~2.2! into Eq. ~2.1! gives

uc&BC5~ uB1 ,C2&2uB2 ,C1&)/A2 .

It is easy to convince oneself that in the state~2.1! the
three components of the Stokes vectorsSB andSC have op-
posite signs~regardless of basis!:

^cuSBnSCnuc&521. ~2.3!

Here

SB1[bx
1bx2by

1by , SB2[bx
1by1bxby

1 ,

SB3[~bx
1by2bxby

1!/ i , ~2.4!

and similarly forSCn . At the same time,̂SBn&5^SCn&50,
and theB andC photons are completely depolarized.

For the sake of clarity, we assume that all three phot
A, B, and C have arbitrary prescribed polarizationseZ and
corresponding Stokes vectorsSZ , which vary randomly from
trial to trial ~we stipulate at once that this assumption
incompatible with quantum theory; see Sec. 5!. In this case,
property ~2.3! can be interpreted to mean that the Stok
vectors point in opposite directions,SC52SB , i.e., that the
polarization vectors are orthogonal,eB'eC . We choose a
basis in whichex5eA , and assume, in line with~2.1!, that
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there are only two equiprobable possibilities: eithereB5ex

5eA and eC5ey , or eB5ey and eC5ex5eA . But the first
case should exhibit anticorrelation of the readings of de
tors DA and DB : the two photons can only be foun
together—either both are found atDA , or both are found at
DB ; see~3.8! below. This is the photon anticorrelation effe
~or two-photon interference effect!, first observed in Ref. 17
It has a simple classical analog, the anticorrelation of int
sity fluctuations at the output of the beamsplitter as a re
of energy conservation18. Consequently, when taking read
ings with both detectorsDA and DB the latter case occurs
i.e., eC5ex5eA ~heavy lines in Fig. 1!.

Let us consider the analogous classical method of co
ing the polarization of one light beam onto another witho
measuring it. Let there be three ideal lasersA, B, and C,
emitting polarized beams of light, where the intensitiesI 0

and frequenciesv0 of beamsA andB are identical. Polariza-
tion converters are placed in beamsB andC, both controlled
by a common random number generator such that the
beams are always orthogonal:eB(t)'eC(t). As a result, the
points mapping the polarization onto the Poincare´ sphere
cover it uniformly—any polarization of beamsB and C is
equiprobable, but their Stokes vectors are always oppos
directed ~i.e., the polarizations are completely correlate!.
We have thus obtained an analog of property~2.3! of the
state~2.1! ~here averaging using the wave functionuc& has
been replaced by classical averaging over time or over
ensemble!.

Next, beamsA andB are mixed in the beamsplitter, an
the light intensitiesI A8 (t) and I B8 (t) in the output beamsA8
and B8 are monitored by two analog detectors. Because
fluctuations of the polarization vectoreB(t) the intensities
I A8 (t) and I B8 (t) also fluctuate, but always with opposi
phase, so their total intensity is preserved,I A8 (t)1I B8 (t)
52I 0 . At those times whenI A(t) is equal toI B(t) ~with
some prescribed errorDI /I 0), the beams entering the beam
splitter do not interfere, and consequently their polarizatio
are orthogonal,eA'eB . But in this caseeB'eC as well, so
thateA5eC . At these times, the shutter that otherwise bloc
beamC opens automatically. As a result, we obtain lig
pulses~with random intervals and duration! at frequencyvC

and polarizationeA . The important difference between th
model and the quantum model is the bounded copying a
racy, which is inversely proportional toDI and the relative
opening time of the shutter~i.e., its duty cycle!. In the quan-
tum domain, copying in the ideal case is perfect.

3. HEISENBERG PICTURE

In using the Heisenberg picture, it is assumed that
elements of the optical channel alter the wave function of
initial field: c→c85Uc. HereU is the evolution operato
of the field, describing the action of the beamsplitters,
polarization converters, etc.~without sources and detectors!;
the primes denote quantities belonging to the output mo
of the channel. The superfluousness of the reduction con
for the calculation becomes evident when we make use of
equivalent Heisenberg picture, in which the operation of
scheme is described by the variation of the field operato
c-
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ak→ak85U1akU.

This transformation can also be represented in the form

ak85(
m

Tkm* am

~see Refs. 18 and 19!. HereT is a phenomenological trans
formation matrix~spectral Green’s function!, which enables
one to find linear relations between the outputmn8 and input
mn moments of the same ordern; symbolically

mn→mn85Tnmn .

As a result, the observed output momentsmn8 or the associ-
ated probabilitiesp8 can be defined in terms ofT and the
initial ~input! state vectoruc& of the incident optical field.
The relation between the classical matrixT and the evolution
operatorU will be spelled out below; see Eq.~4.6!. This
formalism is also applicable in the presence of dissipati
whereupon the matrixT is nonunitary,TkmÞTmk* ~Refs. 18
and 19!.

In radio engineering terms, the optical system is a m
tiport network. The matrixT coincides with the analogou
matrix in classical optics, so the descriptions of the line
transformation of the statistics of the field by the optic
system in the quantum theory and in the classical theory
identical, differences being manifested only in the relat
values of the input moments. Thus, the quantum details
they exist at all, are already embedded in the light sou
and the optical system together with the detectors can
considered a measuring instrument for studying the statis
of the source. However, this classification loses meaning
feedforward and feedback optoelectronic circuits that us
light-modulator. For example, the layout in Fig. 1, when o
gates beamC under the control of detectorsDA andDB , is
transformed from a measurement system to a prepara
system.

We assume the components of our scheme, including
detectors, to be ideal. Actual experiments can be descr
using so-called one-photon wave packets, i.e., quasista
ary states

uc~ t !&15E dk f ~k!exp~2 ivkt !ak
1u0&,

but for our purposes it is sufficient to restrict the discuss
to the single-mode approximation. Granted, we then lose
possibility of tracking the sequence of events in time, but
multimode description5 only ensures that the requirements
the special theory of relativity are met and enables us
specify the simultaneity requirements for the emission of
three photons~the wave packets at the beamsplitter sho
overlap!. Note that it is precisely the generation of thre
photon light~in contrast to two-photon light, used in Ref. 8!
that is the main impediment to implementing an experim
of the type described in Ref. 7.

The detectors—photon counters—are situated in the
put modes behind the beamsplitterBS and polarization con-
verter TC . They can be used to measure the probabilit
p8(n1 ,n2 , . . . )5p8($nk%) of finding specific numbers o
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photons $nk% in the output modes. We denote the corr
sponding Fock states for the output modes by the sym
u . . . ):

un1 ,n2 , . . . )[un1) ^ un2) . . .

[~n1!n2! . . . !21/2~a81
1!n1~a82

1!n2 . . . u0).

~3.1!

We assume the vacuum vectors of the two bases to be i
tical: u0&[u0). The matrixT governs the relationship be
tween the two bases; for example,m^1u1)k5Tkm . This fol-
lows from

u1)k[a8k
1u0)5(

m
Tkmam

1u0&5(
m

Tkmu1&m . ~3.2!

According to the Born postulate, the probabilityp85uq8u2 is
defined by the inner productq8 of the corresponding Fock
bra vector (n1 ,n2 , . . . u and the initial ket vector of the field
uc&:

q8~n1 ,n2 , . . . !5~n1 ,n2 , . . . uc&

5~n1!n2! . . . !21/2^0ua81
n1a82

n1 . . . uc&.

~3.3!

In what follows, the primes onp and q, which serve to
remind us that the detectors are situated in the output mo
will be omitted. All operatorsak8 in ~3.3! commute, and the
order in which they are written is irrelevant.

We assume that to facilitate a complete analysis, po
izing prismsPA andPB have been inserted in beamsA8 and
B8 behind the beamsplitter~see Fig. 1!, and accordingly in
front of the corresponding detectors. We denote and o
the six considered modes as follows:Ax , Ay , Bx , By , Cx ,
Cy ; for example,p(100110)[p(Ax ,By ,Cx). Herex and y
are the indices of two arbitrary orthogonal polarizations; i
possible, in particular, to chooseex[eA .

In the case of one-photon states the probabilities
identical to the corresponding moments, for example

p~Ax ,By ,Cx!5^cuNAx8 NBy8 NCx8 uc&5u^0uax8by8cx8uc&u2.

Hereai8 , bj8 , ck8 are the photon annihilation operators in t
corresponding output modes, andNj8[a8 j

1aj8 . Indeed, the
substitution

a1a→a1Ia5a1~ u0&^0u1u1&^1u1u2&^2u1 . . . ! a

yields

^N&5^1ua1au1&5^1ua1u0&^0uau1&u5u^0uau1&u2.

TheT matrix of our optical system~see Fig. 1! ~neglect-
ing TA) is defined by the unitary transformation

aj85~aj1bj !/A2, cx85tC* cx1r C* cy ,

bj85~2aj1bj !/A2, cy852r Ccx1tCcy , ~3.4!

wheretC andr C are elements of the~classical! Jones matrix
TC of the converterTC (utCu21ur Cu251). Substituting~3.4!
into ~3.3! yields the probability amplitudes of all elementa
events observed in the experiment (n1 , . . . ,n6), which sat-
isfy (ni53.
-
ol

n-

es,

r-

er

s

re

For example, the probability amplitude for detecting o
photon in the output modesAx , By , Cx is

q~Ax ,By ,Cx!5^0u~ax1bx!~2ay1by!~ tC* cx1r C* cy!uc&/2.
~3.5!

The effect under discussion takes place when only two of
eight matrix elements here are nonzero. Let one photon
present in each beam at the system input. Then

^0uaxaycj uc&5^0ubxbycj uc&50.

Also let

^0u~axbycy!uc&5^0uaybxcxuc&50.

Then Eq.~3.5! takes the form

q~Ax ,By ,Cx!5^0u~ tC* axbycx2r C* aybxcyuc!&/2. ~3.6!

According to this expression, the converterTC affects the
polarization of the photons in beamsA andC in an identical
way.

On the other hand, the probability amplitude for dete
ing two photons in the output modeuAx) and one photon in
the output modeuCx) under the same conditions is

q~2Ax ,Cx!5~2Ax ,Cxuc&5^0u~ax8!2cx8uc&/A2

5^0u~ax1bx!
2~ tC* cx1r C* cy!uc&/2A2

5^0uaxbx~ tC* cx1r C* cy!uc&/A2

5^0ur C* axbxcyuc&/A2. ~3.7!

These events do not depend ontC , i.e., they do not exhibit
the required effect, and therefore must be eliminated usin
coincidence or shutter scheme.

Note that neither of the coincidences (Ax ,Bx ,*) and
(Ay ,By ,*) takes place; the operator

aj8bj85~aj1bj !~2aj1bj !5bj
22aj

2 , ~3.8!

acting on the one-photon statesuAj ,Bj&, yields zero. This is
again a manifestation of the photon anticorrelation effect.17,18

Let us now specify the input state. Let1

uc&5uc&Auc&BC5@axuAx&1ayuAy&]

3@ uBx ,Cy&2uBy ,Cx&]/A2 . ~3.9!

This state possesses the required properties:

bxcyuc&BC52bycxuc&BC5u0&BC ,

bxcxuc&BC5bycyuc&BC50.

Hence, using Eq.~3.5! and analogous expressions, we find

q~Ay ,Bx ,Cx!52q~Ax ,By ,Cx!5~ tC* ax1r C* ay!/A8,

q~Ax ,Ay ,Cx!52q~Bx ,By ,Cx!5~2tC* ax1r C* ay!/A8,

q~2Ax ,Cx!52q~2Bx ,Cx!5r C* ax/2,

q~2By ,Cx!52q~2Ay ,Cx!5tC* ay/2. ~3.10!

Probability amplitudes of the formq(*,*, Cy), according to
~3.4!, can be found by making the substitutionstC*→2r C ,
r C*→tC , where
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p~*,*, Cx!1p~*,*, Cy!51.

From ~3.10! we obtain probabilities of all 16 observab
events:

p~Ax ,By ,Cx!5p~Ay ,Bx ,Cx!

5@ utCaxu21ur Cayu212Re~ tCr C* ax* ay!#/8,

p~Ax ,By ,Cy!5p~Ay ,Bx ,Cy!

5@ ur Caxu21utCayu222Re~ tCr C* ax* ay!#/8,

~3.11!

p~Ax ,Ay ,Cx!5p~Bx ,By ,Cx!

5@ utCaxu21ur Cayu222Re~ tCr C* ax* ay!#/8,

p~Ax ,Ay ,Cy!5p~Bx ,By ,Cy!

5@ ur Caxu21utCayu212Re~ tCr C* ax* ay!#/8,

~3.12!

p~2Ax ,Cx!5p~2Bx ,Cx!5ur Caxu2/4,

p~2Ax ,Cy!5p~2Bx ,Cy!5utCaxu2/4,

p~2Ay ,Cx!5p~2By ,Cx!5utCayu2/4,

p~2Ay ,Cy!5p~2By ,Cy!5ur Cayu2/4. ~3.13!

The sum of all elementary probabilities of the for
p(*,*, Cx) defines the marginal probability of detecting aCx

photon~in the absence of modulators!:

p~Cx!5^NCx8 &52@p~Ax ,By ,Cx!1p~Ax ,Ay ,Cx!

1p~2Ay ,Cx!1p~2Bx ,Cx!#5~ utCaxu2

1ur Cayu21ur Caxu21utCayu2!/251/2. ~3.14!

Analogously,p(cy)51/2, i.e., theC photons, as expected
remain completely depolarized: the convertersTA and TC

have no effect on the unconditional readings in detectorsDC j

of beamC.
However, conditional readings inDC j detect a definite

polarization. According to~3.11!, the converterTC acts on
the four eventsp(Ax ,By ,*) and p(Ay ,Bx ,*) ~occurring in
1/4 of all trials! in exactly the same way as if it were locate
in beamA at the entrance to the system afterTA . The joint
effect of TA and TC on these events is described by t
product of the Jones matricesTCTA . This also furnishes an
operational definition for the effect observed in Ref. 7.
repeating the procedure repeatedly for differentTC , it is pos-
sible to measure the polarizationeA of the A photons im-
posed by their source and the converterTA .

It is possible to make the dependence of all four eve
p(Ax ,Ay ,*) and p(Bx ,By ,*) on TA and TC the same. To
this end, when these events occur it is necessary accordi
~3.12! to include an additional controllable converterTC8 with
Jones matrixsz beforeTC ~which is equivalent to changing
the sign ofay).

1 Such a device ‘‘corrects’’ the polarizatio
of the C photons in~3.12! by increasing the fraction of fa
vorable events from 1/4 to 1/2.

At the same time, the eight events represented by~3.13!
with two photons incident on one detector~which occurs in
ts

to

50% of the trials! do not exhibit the polarization copying
effect. The influence of such events can be eliminated
using an optical shutter that opens automatically when ‘‘
vorable’’ events like~3.11! occur~and~3.12! in the presence
of TC8 ). The shutter is also needed to block beamC in the
absence of readings in both detectorsDA andDB due to their
nonideality or due to losses in the channel. Finally, a cor
sponding delay should be introduced before the shutte
beamC.

The shutter in essence replaces the scheme of three
coincidences. All of the photons that have passed through
shutter and the converterTC8 will have polarization identical
to that of theA photons, and copying takes place:eA→eC . In
this case, the device will in fact prepare single photons
beamC having known~but random! creation times and un
known polarization copying the polarization of theA pho-
tons. The polarization analyzer for theC photons, consisting
of the prismPC and detectorsDC j , is now autonomous and
can be position d anywhere along beamC.

Let us find the Stokes parameters^SCn& and the degree
of polarization of beamC using the controllable converte
TC8 , but without the shutter for eliminating events~3.13!.
Taking the change of sign ofay in ~3.12! into account, we
have

p~Cx!54p~Ax ,By ,Cx!12p~2Bx ,Cx!12p~2Ay ,Cx!.
~3.15!

Now, Eqs.~3.11!–~3.13! yield

p~Cx!5
1

2
@112Re~ tCr C* ax* ay!#,

p~Cy!5
1

2
@122Re~ tCr C* ax* ay!#, ~3.16!

instead of~3.14!. To determine the Stokes parameters^SC1&,
^SC2&, and^SC3&, it is necessary to measure the differenc

p~Cx!2p~Cy!52Re~ tCr C* ax* ay! ~3.17!

for

1) tC51, r C50; 2) tC5r C51/A2;

3) tC51/A2, r C5 i /A2.

Hence,

^SC1&50,

^SC2&5Re~ax* ay!5
1

2
^SA2&,

^SC3&5Im ~ax* ay!5
1

2
^SA3&. ~3.18!

Noting that

^SC0&5p~Cx!1p~Cy!51,

we find the degree of polarization of beamC:

PC[~^SC1&
21^SC2&

21^SC3&
2!1/2/^SC0&

5uax* ayu5
1

2
sinuA , ~3.19!
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where uA[2arctanuay /axu is the polar angle of the poin
mapping the state of theA photon onto the Poincare´ sphere.
For example, if theA photons are linearly polarized
uA5p/2 andPC51/2, and for circular polarization,uA50
or p and PC50. Thus, even in the case of ideal circu
elements and detectors, a controllable unitary converterTC8 ,
giving the transformationeC8 5szeC for the two-way coinci-
dences (Ax ,Ay) and (Bx ,By), is insufficient for exact copy-
ing of the polarization of theA photon; a shutter is stil
needed to absorb theC photons upon the occurrence of an
one of the events (2Ax), (2Ay), (2Bx), and (2By).

Another variant of mixing and analysis of theA and B
beams is possible, in which the polarizing prisms are loca
not behind the beamsplitterBSbut in front of it. In this case,
it is possible to use two independent beamsplitters to mix
beamsAx2Bx andAy2By or Ax2By andAy2Bx , and two
detectors at the outputs of the beamsplitters.2 However, as
can easily be seen by repeating the above calculation, in
case events in which two photons are incident on one de
tor again make it necessary to use a shutter~see Eqs.~3.7!!,
and limit the maximum efficiency of the scheme to 1/2.

We now consider a simplified version of the experime
tal setup in Fig. 1, with no polarizing prismsPA or PB , and
only one detector each in theA and B output beams~this
scheme is used in the experiments in Ref. 7!. In this case it is
not necessary to use the correcting unitary transforma
TC8 . According to~3.11!–~3.13!, the probability of detecting
one photon in beamA and one in beamB regardless of their
polarizations, as well as a third photon in modeCx , is

p~A,B,Cx!52p~Ax ,By ,Cx!

5@ utCaxu21ur Cayu212Re~ tCr C* ax* ay! #/4.

~3.20!

These events manifest the copying effect, in contrast
events in which the two photons wind up in the same out
beam—eitherA or B—with probability

p~2A,Cx!5p~2B,Cx!52@p~2Ax ,Cx!1p~2Ay ,Cx!

1p~Ax ,Ay ,Cx!#5@11ur Caxu2

1utCayu222Re~ tCr C* ax* ay!#/4. ~3.21!

To eliminate these events a shutter is again necessary.
maximum fraction of favorable events is now

p~A,B,Cx!1p~A,B,Cy!51/4.

Thus, the above scheme with additional analysis of the
larization of beamsA and B and use of the modulatorTC8
enables one to increase the maximum efficiency of copy
from 1/4 to 1/2.

In the case of ideal photon counters, an even simp
scheme is possible, in which there is only one detector in
output of the beamsplitter. Two photons from beamsA andB
after the beamsplitter can both wind up in either theA output
channel or theB output channel, or one can wind up in theA
output channel and one in theB output channel~see Fig. 1!.
The detection of just one photon in beamA means that the
latter event occurred. Its probability is given in Eq.~3.20!:
d
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p~A,Cj !5p~A,B,Cj !.

4. SCHRÖDINGER PICTURE

To go to the Schro¨dinger picture it is necessary to rep
resent the initial state~3.9! in the basis of output mode
~3.1!. In general, an arbitrary initial state of the field can
represented in the formuc&5F(a1)u0&, whereF(x) is some
analytic function and the operatorsa[(a1 ,a2 , . . . ) pertain
to the input modes of the channel. We define the operator
the channel output using the unitary transformation matr

a815Ta1~TT15I !.

Substituting the inverse transformation

a15T21a815T1a81

into the functionF(a1), we find the state of the field in the
basis of Fock states of the output modes defined in~3.1!:

uc&5F~a1!u0&5F~T21a81!u0&. ~4.1!

In the case under consideration the form of the funct
F(a1) can be found from Eq.~3.9!:

uc&5221/2~axax
11ayay

1!~bx
1cy

12by
1cx

1!u0&. ~4.2!

Inverting ~3.4! yields

aj
15~a8 j

12b8 j
1!/A2, cx

15tC* c8x
12r Cc8y

1 ,

bj
15~a8 j

11b8 j
1!/A2, cy

15r C* c8x
11tCc8y

1 ~4.3!

( j 5x,y). Substituting these expressions into Eq.~4.2!, we
find the state of the fielduc& at the system output in the form
of a superposition of Fock states of the output modesunj ).
For simplicity, letTC51. Then

uc&5$@ uAy ,Bx!2uAx ,By!] @axuCx!1ayuCy)] 1@ uBx ,By!

2uAx ,Ay)] @axuCx!2ayuCy) ] 1A2@ u2By!

2u2Ay) ]ayuCx)1A2@ u2Ax!2u2Bx) ]axuCy)%/A8 .

~4.4!

Here u2Ax)5(a8x
1)2u0&/A2 is the state with two photons in

the output modeAx .
The experiment measures the probabiliti

p(n1 ,n2 , . . . )5p$nk% of detecting certain sets of photo
numbers$nk% in the output modes. According to the Bor
postulate~3.3!, the probability amplitudeq(n1 ,n2 , . . . ) of
these events is equal to the product of the bra vec
(n1 ,n2 , . . . u and the ket vector~4.4!. For example,

q~Ay ,Bx ,Cx!5~Ay ,Bx ,Cxuc&5ax /A8.

To consider the dependence ofq(Ay ,Bx ,Cj ) on TA and
TC , it is convenient to first find the projection ofuc& onto
the subspace describing the detection of photons only in
modesAy andBx :

~Ay ,Bxuc&5@axuCx!1ayuCy)]/A8[uc&C e f f /A8 .
~4.5!

This quantity is an unnormalized vector in the spaceC. Here
we have also introduced the normalized effective vec
uc&Ceff for the fieldC, which describes the effect ofTA and
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TC on the probability of the subset of events (Ay ,Bx)
[(0110**). The vector uc&Ceff has the same form as th
initial state vectoruc&A for beamA, so the convertersTA and
TC affect p(Ay ,Bx ,Cx) in the same way.

At the same time, according to Eq.~4.4!, the events
(Ax ,Ay) and (Bx ,By) yield the effective vectoraxuCx)
2ayuCy) with the wrong signay ~which can be corrected b
the transformationTC8 5sz , Ref. 1!, and the events (2Aj )
and (2Bj ) generally do not exhibit the copying effect.

Above we assumed that~3.9! and ~4.4! are one and the
same vectoruc& represented in different basesun& and un).
This is the so-called passive viewpoint regarding the tra
formation of the vector space. From the active point of vi
there is only one basis,un)[un&, and as the field propagate
along the channel~or, equivalently, with the passage of tim!
its state vector varies under the action of the evolution
erator, uc&→uc&85Uuc& ~here uc&8 coincides with the
right-hand side of~4.4! upon replacingun) by un&). We now
express the effect of the evolution operatorU on uc& in terms
of the transformation matrixT. To this end, we make the
following substitution inuc&5F(a1)u0&:

u0&→U1Uu0&5U1u0&

~assuming that there are no external forces producing p
tons from the vacuum!. Now

uc&85UF~a1!U1u0&5F~Ua1U1!u0&.

The operatorUa1U1 can be transformed in the followin
way, using the relationTa15U1a1U:

Ua1U15U@T21~U1a1U !#U15T21a1.

As a result,

uc&85Uuc&5F~T21a1!u0&. ~4.6!

This expression coincides with~4.1! upon making the sub
stitution a1→a81. The mean value of an arbitrary operat
G(a) observed at the output is given in the Heisenberg
Schrödinger pictures by

^G~a!&858^cuG~a!uc&85^cuG~a8!uc&. ~4.7!

5. DISCUSSION

Two basic approaches to the explanation and interpr
tion of the effect under discussion are possible. We call th
‘‘metaphysical’’ and ‘‘minimalist.’’

1. It is customarily assumed1,2,5,7 that during the course
of the experiment, it is possible, using an observation
photonsA andB, to measure the Bell operator, which has t
four eigenvectors

uC~6 !&AB5221/2@ uAx ,By&6uAy ,Bx&],

uF~6 !&AB5221/2@ uAx ,Bx&6uAy ,By&]. ~5.1!

The inverse transformation enables one to express
Fock states with one photon in each mode in terms of
Bell operators:

uAx ,By&5@ uC~1 !&AB1uC~2 !&AB]/A2,

uAx ,Bx&5@ uF~1 !&AB1uF~2 !&AB]/A2,
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uAy ,Bx&5@ uC~1 !&AB2uC~2 !&AB]/A2,

uAy ,By&5@ uF~1 !&AB2uF~2 !&AB]/A2. ~5.2!

Substituting these expressions into the initial state vec
~3.9!, which can be represented in the formuc&
5uc&AuC (2)&BC , we obtain an expansion in the Bell bas
for the A andB beams~Ref. 1!:

uc&5
1

2
$uC~2 !&AB@2axuCx&2ayuCy&] 1uC~1 !&AB

3@2axuCx&1ayuCy&] 1uF~2 !&AB@ayuCx&1axuCy&]

1uF~1 !&AB@2ayuCx&1axuCy&] %. ~5.3!

According to the reduction hypothesis, as a result
such a measurement of the Bell operator the initial thr
photon stateuc& is projected onto one of the four vecto
uC (6)&AB , uF (6)&AB . According to Eq.~5.3!, uc& thereupon
collapses to one of the states~compare equations~4.4! and
~4.5!!

uc&C152axuCx&2ayuCy&, uc&C252axuCx&1ayuCy&,

uc&C35ayuCx&1axuCy&, uc&C452ayuCx&1axuCy&,
~5.4!

where the numbern labeling the stateuc&Cn is known. Thus,
the act of measuring the Bell operator brings about the
stantaneous collapse of the initial three-photon state to on
the one-photon states:uc&ABC→uc&Cn , whereupon the po-
larization vector of theC photon eCn acquires the compo
nents (6ax ,6ay). The field or detectors in beamC ‘‘find
out’’ about this as the result of superluminal interactio
embodying ‘‘quantum nonlocality.’’

Classical information about the numbern51 – 4 label-
ing the stateuc&Cn can be used to automatically ‘‘correct
the polarization of theC photons using the polarization con
verterTC8 , whose Jones matrixTn is equal toI , sz , sx , or
2 isy . In this case

eCn→TneCn5eC15eA .

As a result, information about the polarization of theA pho-
ton eA is instantaneously transferred to theC photon, as if it
were not located some distance away.7

In this approach, the Born postulate~3.3! is artificially
divided into two successive steps~compare equation~4.5!!
and the mathematical procedure of projecting onto some s
space is put in correspondence with a ‘‘real’’ event
instantaneous reduction. The possibility of both photonsA
and B falling into one mode and the necessity of using
shutter are not mentioned in the cited works.

2. The second approach to the description of the effec
based on the standard calculation~see Ref. 18! of the effects
of an actual optical system~of beamsplitters and polarizatio
converters! on the operators~Sec. 3! or the wave function
~Sec. 4! of the field, and calculation of actually measure
quantities, i.e., probabilities~see Ref. 18!. According to the
Born postulate ~3.3! and the theory of photodetection
the probabilities of all events observed with photon count
DA andDB are determined by the projections ofuc& onto the
Fock states of the output modesuAj ,Bk), u2Aj ), u2Bk).
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These states, represented by means of the transformation
trix in the basis of input modesu . . . & ~see~3.2!!, differ from
the Bell states~5.1! on account of additional components,
that the Bell states do not correspond to real observation~at
least, not in the scheme of the experiment in Ref. 7!.

The set of elementary probabilities found above in
one-photon approximation~3.11!–~3.13! for all possible
combinations of readings of the photon counters describe
principal features of the observed phenomena. This appro
also facilitates an instructive description of the effect
terms of a prescribed polarization and photon correlation~see
Sec. 2!.

According to the ‘‘minimalist’’ interpretation, the effec
is considered to be a manifestation of quantum correla
between the three light beams, which is not in need of ‘‘e
planation’’ using the mysterious,ad hocconcept of ‘‘quan-
tum nonlocality,’’ which implies a peculiar interaction be
tween remote devices akin to telepathy. Recall t
analogous controllable correlations are also possible in c
sical models, with the difference between these correlati
and quantum correlations of EPR–Bohm type being qu
subtle.20

More consistent is the ‘‘non-Kolmogorov’’ concept o
quantum mechanics,21 which captures in a unified way a gen
eral property of quantum probabilistic models,namely
lack of elementary joint probabilities for noncommuting o
servables in the presence of marginal probabilities.20,21 For
example, it is possible to measure or calculate three p
abilities pm(sm) for the Stokes operatorsSm of a plane wave
(m51,2,3). In the one-photon state,

sm561, pm~61!5~16^Sm&!/2.

However, one can neither measure nor calculate the j
distribution p(s1 ,s2 ,s3)>0, which according to the Kol-
mogorov axiom of additivity defines the marginal distrib
tions

p1~s1!5 (
s2 ,s3

p~s1 ,s2 ,s3!.

Consequently, quantum models describing experiments
single photons ~or particles with spin 1/2! are non-
Kolmogorov, and assigning a photon a set of definite,a pri-
ori properties$sk% in a single trial~i.e., the polarization vec-
tor e! does not make sense within the traditions of ‘‘na’ı´ve
realism.’’

A similar conclusion about the non-Kolmogorov beha
ior of two or more photons~or other systems! belonging to
several different beams and described, in particular, by E
states of the type~2.1! follows from a consistent approach t
the resolution of a number of quantum paradoxes and t
‘‘minimalist’’ resolution.21 Such an approach seems to be
reasonable alternative to an appeal to nonlocality, as it
compasses several regularities in one fell swoop: the lac
joint distributions for noncommuting operators~to which
physicists have for a long time acquiesced under the ru
of ‘‘dualism’’ !, violation of the Bell inequalities, and othe
manifestations of ‘‘quantum nonlocality’’~recall that the
simplest proof of the Bell inequalities is based on the ex
tence of a joint distribution for four observables—like th
a-
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distribution of two Stokes parameters for two photons20,21!.
The lack of nonnegative joint distributions also follows d
rectly from the properties of sets of quantum moments
certain states~regardless of the criteria of the sort repr
sented by violations of the Bell inequality!, i.e., the quantum
moment problem does not always have a solution.20,21

When using a coincidence scheme~instead of a shutter
see Fig. 1!, the consistency of detecting events in time
three detectors is irrelevant. The detectors in the three be
are equivalent, and separating the appearance of coun
them into two stages—first, the appearance of two count
DA and DB bringing about reduction of the wave function
which then, on account of quantum nonlocality, influenc
the behavior of the third detector—is justified by neither
consistent theory nor experiment. We are equally justified
assuming that reduction takes place first in the detectorsDC

~in the absence of a shutter they can be located closer to
three-photon light source than the detectorsDA andDB). If
DA is much closer to the source thanDB , then one can ask a
what instant reduction takes place: upon readout ofDB or
DA? It may well be that a chain of successive reductio
takes place:

uc&ABC→uc&BC→uc&C .

Clearly these questions are of rhetorical significance, si
the events are separated by spacelike intervals and con
of it earlier and it later do not apply.

From a ‘‘minimalist’’ standpoint, reduction of the wav
function is an extraneous hypothesis: as was shown ab
the observable effects are completely described by the s
dard formalism in the Heisenberg and Schro¨dinger pictures
by the Born postulate; see Eqs.~4.7!. Accordingly, one is
free to choose the carrier of information about the polari
tion vectoreA from one end of the optical system to the oth
to be the wave function of the field (c→c8) or the field
operators (ak→ak8), just as in the case of a single polarize
beam. Of course, not all observable events violate spe
relativity ~if only because the quantum Green’s functions
the free field have the same form as the classical!.

The equivalence of the three detectors breaks dow
modulators are used, that is, a shutter and/or an additi
converterTC8 . The shutter controls pulses from the detecto
DA and DB , and in essence replaces the triple-coinciden
scheme by blocking photons in the output beamC in ‘‘unfa-
vorable’’ cases. In this case, the device in fact serves
prepare single photons with the~unknown! polarizationeC ,
which copy the polarization of theA photonseA . Classical
signals controlling the shutter, which now and then lets p
tons through, take part in the copying processeA→eC . Note
that the action of the shutter can be described by a non
tary transformation of the field~in contrast to phase plate
and beamsplitters!, so that the fieldC behind the shutter mus
be described by a mixed state.18,19 Information is ‘‘tele-
ported’’ in at most 50% of the trials. Due to nonideality o
the detectors and other system elements, their real frac
will in fact be much less.7

We may point to a similar but more primitive device
which prepares single polarized photons with known creat
times ~but without the copying effect! using a two-photon
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source and a shutter;22–24 in this case the detection of on
photon in beamA causes the shutter along the path of
twin photon in beamB to open.

6. CONCLUSION

The aforementioned necessity of adding a shutter to
periments demonstrating quantum teleportation is a pu
technical problem, easily solved by present-day technolo
At the same time, from a conceptual point of view, only t
absence or presence of the shutter differentiates three-ph
interference observed using a triple-coincidence schem
Ref. 7 from teleportation, by which we mean the product
of photons that mimic the polarization of the incident ph
tons. The unitary transformationsTC8 5sn ~see Ref. 1! in the
optical case are not of fundamental significance—they o
enable us to double the efficiency with which copies
produced.

In a quantitative description of experiments like tho
described in Refs. 7 and 8, the concepts of instantane
reduction of the wave function and quantum nonlocality
superfluous; they are merely a traditional auxiliary means
interpreting quantum theory and obtaining an instructi
graphic picture of what ‘‘really’’ happens. Of course, th
choice between the ‘‘metaphysical’’ and ‘‘minimalist’’ inter
pretations described in Sec. 5 is a matter of taste~which of
course distinguishes interpretation from theory!. Favoring
our approach are an instructive correlation model and
analogous classical effect~see Sec. 2!, the deduced need fo
a shutter~see Sec. 3!, and Occam’s Razor. Whatever one
choice, it would be well to remain mindful of the existen
of alternative points of view.

At present, all experimental data known to the author
accurately described by the standard algorithms of quan
theory and Born’s postulate. An actual need for the reduc
postulate arises only in an attempt to provide a quantita
description of a narrow class of ‘‘time-of-flight’’ correlatio
experiments, in which repeated observations of a single
tem are made in succession with high temporal resolut
where because of interactions the observed operators do
commute.11
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Effective permittivity of a discrete random medium with anisotropic inclusions
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We use the method of substitution of field variables in the bilocal approximation to find the
effective permittivity of a two-phase composite random medium in the form of an ensemble of
small, arbitrarily anisotropic spherical inclusions distributed inside an isotropic matrix. To
illustrate the results we calculate the damping of the plane waves of the mean field in such a
medium. © 1998 American Institute of Physics.@S1063-7761~98!00410-7#
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1. INTRODUCTION

The stochastic method of describing material med
which is aimed at explaining the space–time structure o
real medium and the chaotic variation from point to point
with the passage of time of the properties of the medium
widely used in the theory of propagation of electromagne
waves in the turbulent ionosphere,1 in the microwave prob-
ing of the Earth’s solid surface,2,3 in the radio-wave moni-
toring of polymeric composite materials,4,5 in analyzing the
electromagnetic properties of polycrystalline materials6,7

and in the theory of artificial media.8,9 In all these applica-
tions, electromagnetic anisotropy is a characteristic featur
the medium in which the waves propagate.

As is known,10–13the propagation of a statistically mea
field through a random medium with properties undergo
chaotic spatial variations is described by equations chara
istic of a deterministic medium with spatial dispersion. T
material parameters of this deterministic, or effective, m
dium characterize the properties of the random medium
relation to the mean field and are called the effective par
eters of the latter medium.

A method for calculating the effective permittivity of
medium with permittivity fluctuations was proposed by L
shitset al.6 Note that this method was later ‘‘rediscovered
by Bourret14 and Keller and Karal,15 although earlier it had
been used in Refs. 6, 16, and 17. Bearing in mind the di
tion of our investigation, which takes into account the effe
of the electromagnetic anisotropy of the medium on
propagation and scattering of electromagnetic waves,
note the various papers18–22 in which the method of Lifshits
et al.6 is used to find and study the effective permittivity
uniaxial18–20 and gyrotropic21,22 random media, whose per
mittivity tensors in a certain system of coordinates hav
form that is typical of a uniaxial crystal or a magnetica
active plasma and are characterized, respectively, by t
~diagonal! or five ~three diagonal and two off-diagonal! non-
vanishing components.

The method adopted in this paper for calculating
effective permittivity may be called the ‘‘ordinary’’ theor
of multiple scattering for an electromagnetic field, ordina
in the sense that it is similar to the theory of multiple sc
tering for a scalar~acoustic! field in a random medium.10–13
6481063-7761/98/87(10)/7/$15.00
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In this method, the effective permittivity is represented by
series expansion in powers of a certain parameter, which
an acoustic field proves to be small even for strong fluct
tions of the properties of the medium, provided that the
fluctuations are small-scale.10–13 Because of the strong sin
gularity ~of the Dirac delta-function type! of the electric
Green’s function at the point occupied by the source,23,24 the
characteristic parameter in this theory for an electromagn
field proves to be proportional to the intensity of th
fluctuations.25,26 To complete the picture, we note that th
bilocal approximation proper was introduced by Lifshits a
Rozentsve�g,27,28who used it to find the effective paramete
of a microheterogeneous elastic medium.

To calculate the effective permittivity of media wit
strong fluctuations of their properties, one usually uses
method of substitution of field variables~or renormalization!,
proposed by Finkel’berg29,30 and developed in Refs. 31–43
It amounts to isolating the singular component~of the Dirac
delta-function type! in the electric matrix Green’s function
and introducing equations for a new field variable for whi
the Green’s function coincides with the regular part of t
electric matrix Green’s function. Note that the singular a
regular parts of the electric Green’s function can be int
preted~and this is a convenient feature of the Green’s fun
tion! as generalized functions generated by, respectively,
nondecreasing and vanishing-at-infinity parts of the spec
matrix Green’s function.31,39,44As in the above approach, th
adopted method does not provide simple and at the s
time exact expressions for the effective permittivity, i.e., t
effective permittivity is still represented by a perturbatio
theory expansion, but at least in our case the character
parameter remains small even for strong fluctuations of
material properties, provided that the spatial scale of s
fluctuations is small.31,32,35

In view of our interest in random media with electro
magnetic anisotropy, we note that the method of substitu
of field variables has been used in calculations of the eff
tive permittivity of an electrically isotropic random medium
with anisometric perturbations and fixed32,35or random38 ori-
entation of the statistical-symmetry axes, of a gyrotropic m
dium of the type of a magnetically active plasma31 or a ro-
tating medium,37 and of an arbitrarily anisotropic random
medium with fixed or randomly directed statistical-symme
© 1998 American Institute of Physics
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axes.39 The results of Zhuck39 can only be applied to the
special model of a continuous medium considered in t
paper, while the other, canonical, model of a discrete rand
medium was ignored in Ref. 39. We would like to note
this point that there exists a well-known technique45,46 that
makes it possible to incorporate a discrete random med
into the class of models that can be analyzed by the me
of substitution of field variables. From this the goal of t
present investigation follows naturally, i.e., to calculate
effective permittivity of a microheterogeneous compos
that consists of small anisotropic particles distributed wit
an isotropic medium and to study the dissipative proper
of such a composite.

Below we use the results of Refs. 29–39 to describ
method for calculating the effective permittivity of a stati
tically homogeneous continuous random medium with an
bitrary anisotropy of the electrical and statistical propert
and strong but small-scale~in comparison to the wavelength!
fluctuations. The method is then applied to a model o
discrete random medium obtained by uniformly distributi
an ensemble of chaotically oriented small spherical inc
sions of an arbitrarily anisotropic homogeneous insulato
an isotropic matrix. As a result we find the effective perm
tivity of the two-phase composite mentioned earlier. The f
mulas can be interpreted as generalizations of similar for
las in Ref. 45, which deals with electrically isotrop
inclusions. Using the formula for the effective permittivi
and the method of contour integration, for a random comp
ite without dissipative losses we calculate the real and im
nary parts of this quantity and the ‘‘diffraction’’ correction t
the propagation constant for the mean field. The imagin
part of this correction describes the damping of the m
field due to scattering by the random inclusions.

2. THE METHOD OF CHANGING THE FIELD VARIABLES
FOR AN ANISOTROPIC RANDOM MEDIUM

2.1. Statement of the effective permittivity problem

Consider the equations

curl curlEr2k0
2«̂ ~r !Er5

4p ik0

c
J, ~1!

Hr5
1

ik0
curlEr ~2!

for a random electromagnetic fieldEr and Hr generated by
extraneous electric sourcesJ in an infinite dielectric medium
with permittivity «̂ (r ). We assume that the permittivity ten
sor «̂ (r ) of the medium has all of its nine componen
«mn

(r ) , which are random functions of the radius vect
x5(x1 ,x2 ,x3).

The effective permittivity operator«̂ (e) is defined by the
identity25,26

^«̂~r !Er~x!&[«̂~e!^Er~x!&. ~3!

Having this operator, we can easily show, on the basis
Eqs. ~1! and ~2!, that the mean-field excitation is describe
by the equations
t
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curl curl̂ Er&2k0
2«̂ ~e!^Er&5

4p ik0

c
J, ~4!

^Hr&5
1

ik0
curl̂ Er&, ~5!

which are a characteristic feature of a spatially dispers
medium with nonlocal permittivity«̂ (e).

In a statistically homogeneous medium, extraneo
sources in the form of a spatial harmonic,

J~x!5J~k!eik•x, ~6!

generate a mean field of the same form:39

^Er~x!&5E~k!eik•x, ^Hr~x!&5H~k!eik•x, ~7!

where k is an arbitrarily specified three-dimensional wa
vector, andJ(k), E(k), andH(k) are the vector amplitude
of the sources and the electromagnetic field, respectively

Applying the operator«̂ (e) to the mean-electric-field vec
tor, we get

«̂ ~e!^Er~x!&5eik•x«̂ ~e!~v,k!E~k!, ~8!

where «̂ (e)(v,k) is the effective permittivity tensor in the
spectral region; the dependence onv and k points to the
frequency and spatial dispersions of the effective mediu
The characteristic scaleDk of variation of this tensor as a
function of the spectral parameterk is of order 1/L, whereL
is the correlation interval for the perturbations of the m
dium. Combining this fact with~8!, we find that in the long-
wavelength mode, wherekL!1 ~or in other words, for
small-scale perturbations!, the properties of the random me
dium in relation to the mean field in the spatial-harmon
form ~7! or in the form of a linear combination of such ha
monics, are described by the effective permittivity tensor«̂ (e)

~Refs. 25, 26, and 39!:

«̂ ~e!~v!5 lim
k→0

«̂ ~e!~v,k!. ~9!

Setting up the effective permittivity tensor of a medium wi
small-scale perturbations is a very important problem of
theory of multiple scattering of electromagnetic waves in
random medium.

2.2. Renormalized scattering equation

In the first stage of constructing the effective permittivi
tensor we follow the well-known pattern developed in Re
35, 36, and 39, which amounts to transforming the stocha
differential equation~1! into an integral equation for a new
field variable F. To this end we introduce an anisotrop
reference medium, or a comparison medium, which fills
entire space and has a constant deterministic permittivity
sor «̂. ~Below this tensor is defined as the solution of E
~23!.! Let Eb(x) be the electric vector of the field generate
by the extraneous sourcesJ(x) in the reference medium, an
let Ĝ(x2x8) be the electric matrix Green’s function of th
medium. In our case we can assume that the Green’s fu
tion is a fixed inverse Fourier transform:
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Ĝ~x2x8!5 ~2p!23 E d3k exp@ ik ~x2x8!# Ĝ~k!, ~10!

whereĜ(k) is the spectral Green’s function, which can
found by solving the equation

@k@kĜ~k!##1k0
2«̂Ĝ~k!52 Î ~11!

with Î the identity matrix. Note that the singularities~poles!
of the integrand in~10!, which coincide with the zeros o
D(k) of Eq. ~16! below, are assumed to lie in the comple
plane because of dissipative losses~possibly negligible
losses! in the reference medium. The same interpretation
not stated otherwise, can be applied to other integrals~e.g.,
~30!! whose integrands have nonintegrable singularities.

Using the Green’s functionĜ(x2x8), we can employ a
standard procedure for replacing the differential equation~1!
by the integral equation

Er~x!5Eb~x!1k0
2E d3x8 Ĝ~x2x8!

3@ «̂~r !~x8!2 «̂ #Er~x8!. ~12!

The solution of Eq.~11! in coordinate-free form47 is

Ĝ~k!52
k ^k

k0
2z~k!

1Ĝ~1!~k!. ~13!

Here and in what follows the Cartesian product signifi
by ^ is a tensor of the simplest form: for a vect
k5(k1 ,k2 ,k3),

k ^k5F k1k1 k1k2 k1k3

k2k1 k2k2 k2k3

k3k1 k3k2 k3k3

G ,

Ĝ~1!~k!5
D̂~k!

z~k!D~k!
, ~14!

D̂~k!5~z Î 2k ^k«̂ !~z Î 2 «̂k^k!

1k0
2~k ^k det «̂2z adj«̂ !, ~15!

D~k!5k2z1k0
2~k«̂ «̂k2z Tr «̂ !1k0

4 det«̂, ~16!

z~k!5k«̂k. ~17!

In these expressions, det«̂ and adj«̂ denote the determinant
of the matrix«̂ and the adjoint of«̂ ~Ref. 47!.

Now we introduce a~constant! renormalization matrixŜ,
defined in Eq.~31! below, and specify the spectral functio
Ĝ(2)(k) according to the following expression:

Ĝ~2!~k!5Ĝ~k!1
Ŝ

k0
2

52
k^k

k0
2z~k!

1
Ŝ

k0
2

1Ĝ~1!~k!, ~18!

while the corresponding spatial Fourier transform is defin
as

Ĝ~2!~x2x8!5Ĝ~x2x8!1
Ŝ

k0
2

d~x2x8!, ~19!
if

d

where d(x2x8) is the three-dimensional Dirac delta fun
tion. Plugging~19! into ~12! and performing simple algebrai
transformations, we obtain

F~x!5Eb~x!1k0
2E d3x8 Ĝ~2!~x2x8!ĵ~x8!F~x8!, ~20!

where

F5@ Î 1Ŝ~ «̂~r !2 «̂ !#Er , ~21!

ĵ5~ «̂~r !2 «̂ !@ Î 1Ŝ~ «̂~r !2 «̂ !#21. ~22!

Equation ~20! is the sought integral equation for the ne
field variableF with a random perturbationĵ. At Ŝ50 this
equation obviously becomes the initial equation~12!.

To ensure that the random perturbationĵ is small at least
on the average, we require that^ĵ&50. In view of ~22!, this
requirement can be transformed into39

^~ «̂~r !2 «̂ !@ Î 1Ŝ~ «̂~r !2 «̂ !#21&50. ~23!

From Eq. ~34! below it follows thatŜ[Ŝ( «̂). This means
that ~23! is actually an equation for determining the perm
tivity tensor of the reference medium,«̂.

2.3. Effective perturbation operator and effective
permittivity

Iterating and averaging Eq.~20! in the bilocal
approximation,6,14,15we arrive at the equation

^F~x!&5Eb~x!1k0
2E E d3x8 d3x9 Ĝ~2!~x2x8!ĵ~e!

3~x82x9!^F~x9!&, ~24!

where

ĵ ~e!~x82x9!5k0
2^ĵ~x8!Ĝ~2!~x82x9!ĵ~x9!&. ~25!

Comparing~24! with the averaged version of Eq.~20!, we
find that

^ĵ~x!F~x!&[ĵ~e!^F~x!&, ~26!

where ĵ (e) is an integral operator acting onx and having a
kernel ĵ (e)(x2x8). Combining~8! with Eqs. ~21! and ~22!,
we get

^F&5@ Î 1Ŝ~ «̂~e!2 «̂ !#^Er&, ^ĵF&5~ «̂~e!2 «̂ !^Er&. ~27!

If we now plug these expressions into Eq.~26!, we obtain a
relationship that links the operators«̂ (e) andĵ (e). In the spec-
tral domain this relationship becomes

«̂ ~e!~v,k!2 «̂5 ĵ ~e!~v,k!1 ĵ ~e!~v,k!Ŝ@ «̂~e!~v,k!2 «̂ #, ~28!

where ĵ (e)(v,k) is the Fourier transform ofĵ (e)(x2x8). In
the long-wavelength approximation~ask→0) we have

«̂ ~e!~v!2 «̂5 ĵ ~e!~v!1 ĵ ~e!~v!Ŝ@ «̂~e!~v!2 «̂ #. ~29!

The elements of the matrixĵ (e)(v)5 limk→0ĵ (e)(v,k) can be
found from ~18! and ~25! via the formula
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jmn
~e!~v!5E d3k Bmpqn~k!F2

kpkq

z~k!
1Spq1k0

2Gpq
~1!~k!G , ~30!

which contains the spectral functionsBmpqn(k) of the ran-
dom perturbationĵ(x):

Bmpqn~k!5 ~2p!23 E d3x exp@2 ik•~x2x8!#

3Cmpqn~x2x8!. ~31!

Here

Cmpqn~x2x8![^jmp~x!jqn~x8!& ~32!

are the correlation functions of the random perturbatio
jmn . For our further discussions it is convenient to den
the value of the correlation function~32! at x5x8 by

Gmpqn5E d3k Bmpqn~k!. ~33!

Now that we haveĵ (e)(v) we can define the effective
permittivity tensor«̂ (e)(v) as the solution of Eq.~29!. To
ensure that the expressions we derive are valid in the cas
strong fluctuations, it is advisable to select the matrixŜ in
such a way that

GmpqnSpq5E d3k Bmpqn~k!
kpkq

z~k!
. ~34!

Actually this is a system of nine equations for determini
the nine unknown quantitiesSpq as functions of«mn . To
obtain an equation for the unknown quantities«mn , we plug
Spq5Spq( «̂) into ~23!. According to~22! and~31!–~33!, the
quantitiesGmpqn andBmpqn are related to the unknown quan
tities Spq throughjmn . Hence Eqs.~34! are generally non-
linear in Spq . Combining Eqs.~34! with ~30! and ~14!, we
arrive at the final expression forjmn

(e) :

jmn
~e!~v!5k0

2E d3k Bmpqn~k!
Dpq~k!

z~k!D~k!
. ~35!

If we assume that thejmn
(e)(v) are small ~the condition

needed for this assumption to be true is analyzed below!, we
arrive at an approximate solution of Eq.~29! for «mn

(e)(v), the
components of the effective permittivity tensor found by p
turbation techniques:

«̂ ~e!~v!5 «̂1 ĵ ~e!~v!. ~36!

A combination of this formula and~35! solves the problem
of the effective permittivity of a random anisotropic medium

When the frequency dispersion of the random medi
can be ignored, the last term on the right-hand side of
~36!, in accordance with~35!, tends to zero with frequency a
v2, while the first term, the permittivity of the referenc
medium, remains unchanged. Hence the permittivity of
reference medium,«̂, can be interpreted as the value of t
effective permittivity of the random medium in the stat
limit, while the additional termĵ (e)(v) can be interpreted a
the ‘‘diffraction’’ contribution to this quantity due to the
scattering of the field by random perturbations.25,35
s
e

of

-

.

q.

e

2.4. Strong perturbations of the properties of the medium

The limits of applicability of the above results can eas
be found.35 First, however, we must establish the parame
used in the perturbation expansion in the calculation of
effective permittivity and make this parameter small. If w
do this, we can be sure that truncating the expansion at
first two terms~the right-hand side of Eq.~36!! is justified.
To find the perturbation-theory parameter, we need only
timate the ratio of any two consecutive term in the expa
sion, say, the terms on the right-hand side of Eq.~36!. In
order to arrive at such an estimate it is convenient to int
duce a positive determinate quantitys« , equal to the char-
acteristic value of permittivity fluctuations. Then we can a
sume that approximatelyBmpqn(k) is equal to s«

2L2 for
k,1/L andBmpqn(k)'0 for k.1/L, whereL is the charac-
teristic spatial scale of the fluctuations. According to wh
has been said earlier, the domain of integration in~35! is
limited by the spherek,1/L, so that the characteristic valu
of the integration variablek is 1/L. For small-scale fluctua-
tions (k0L!1) this value is much larger thank0, which we
can ignore in the integrand in~36! in comparison to the large
value k;1/L. The resulting integral is equal, in order o
magnitude, tos«

2(k0L)2. Since on the scale of the paramete
s« andk0L the order of the first term on the right-hand sid
of Eq. ~36! is unity, the ratio of the second term on th
right-hand side of Eq.~36! to the first is approximately
s«

2(k0L)2. Hence the right-hand side of Eq.~36! is a section
of the series expansion in powers of the parameter we h
found here, and the smallness of this parameter,

s«
2~k0L !2!1, ~37!

justifies the truncation of this perturbation series after a fin
number of terms; namely, after the first two terms, as in~36!.
A remarkable feature of the condition~37! is that it is an
indication that~35! and~36! can be used in the case of stron
fluctuations of the properties (s«@1), provided that the fluc-
tuations are small-scale (k0L!s«

21!1). This positive fea-
ture of the method of substitution of field variables
well-known.25,26,35

In conclusion of this section we note that for the spec
case of statistically isometric perturbations Eq.~34! provides
an explicit way for finding the renormalization matrixSpq

~see Refs. 25, 26, and 39!. Clearly, if we allow for the fact
that the correlation functions of isometric perturbations~Eq.
~32!! depend only on the distance12

R5ux2x8u ~38!

between the pointsx andx8 and the spectral functions~31!
depend only on the absolute valuek of the spectral paramete
k, then, plugging into~34! the expression forGmpqn from
~33! and going over to integration with respect to the sphe
cal coordinatesk, u, andw, we can write Eq.~34! as

E
0

`

dk k2Bmpqn~k!F4pSpq2E dV
npnq

n«̂n
G50, ~39!

where dV5sinu dw du is the solid-angle element, an
np5kp /k is the pth component of the unit vector alongk.
The solution of Eq.~39! for Spq can be found explicitly:
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Spq5
1

4p E dV
npnq

n«̂n
. ~40!

We see thatSpq5Sqp , i.e., in our case the renormalizatio
matrix is symmetric:ŜT5Ŝ, where the superscript ‘‘T’’ in-
dicates transposition.

3. EFFECTIVE PERMITTIVITY OF A TWO-PHASE
COMPOSITE

3.1. Description of model

We will now use the tools developed in Sec. 2 to analy
a discrete random medium obtained by immersing a stat
cal ensemble of identical homogeneous anisotropic in
sions in a homogeneous isotropic enclosing medium, the
trix. We denote the permittivity of the medium by« (1) and
the permittivity tensor of an inclusion in the reference fram
comoving with the inclusion, by«̂ (c), with the elements of
the latter tensor being« jk

(c) .
Let u (r )(x) be the indicator, or characteristic, functio

~see Ref. 46, p. 79! of the ensemble of the random inclu
sions; the function is unity ifx belongs to an inclusion an
zero for all otherx. The inclusions are thought to be distrib
uted in space on the average uniformly and isotropically,
that their concentration~relative volume occupied by the in
clusions!,

^u~r !~x!&5v2 , ~41!

is independent of the pointx, while the two-point indicator
function

^u~r !~x!u~r !~x8!&5p~R! ~42!

depends only onR. Strictly speaking, the latter assumption
true only for spherical inclusions,45,46 so that below we as
sume that the inclusions are spherical.

The statistical topology of the composite is determin
by the dimensionless two-point correlation function~see Ref.
46, p. 74!

w~R!5
p~R!2v2

2

v2~12v2!
, ~43!

whose Fourier transformw̃(k) is defined in the same way a
in ~31!. Note thatw̃(k) defined as the spectral density of th
correlation function@u (r )(x)2v2#/Av2(12v2) of a real ran-
dom process assumes, for realk, only real nonnegative
values.10

The components of the permittivity tensor«̂ (r )(x) of the
random medium in the laboratory~absolute! reference frame
x1 ,x2 ,x3 are given by the expressions

« lm
~r !~x!5«~1!d lm ~44!

if x is in the enclosing medium, and

« lm
~r !~x!5a l j

~r !amk
~r !« jk

~c! ~45!

if x is within an inclusion. Hered lm is the Kronecker delta
anda lm is the cosine of the angle between thel th axis of the
laboratory reference frame and themth axis of the comoving
reference frame of a separate inclusion~a random quantity!.
e
ti-
-
a-

o

d

Although all inclusions are thought of as being identic
they differ in position and orientation. We assume that
possible orientations of the inclusions are equiprobable
that the orientation of a separate inclusion does not dep
on the inclusion’s position or on the orientation and positi
of any other inclusion.

For this model of a discrete random medium, it is on
logical to select the reference medium as being electric
neutral with a scalar permittivity« ~the dielectric constant!.
The same conclusion can be drawn from Eqs.~23! and~40!.
The latter equation suggests that the renormalization ma
Ŝ is proportional to the identity matrix:

Ŝ5
1

3«
Î . ~46!

If we allow for this fact, the random perturbation matrix~22!
within the isotropic matrix-medium is also proportional
the identity matrix:

ĵ~x!5j~1! Î , ~47!

where

j~1!53«
«~1!2«

2«1«~1!
. ~48!

But if point x is within an inclusion, to calculate the compo
nents of the random perturbation matrix~22! in the labora-
tory reference frame it is convenient to represent these c
ponents in terms of the components of the same matrix in
reference frame comoving with the inclusion:

j lm
~r !~x!5a l j

~r !amk
~r !j jk

~c! . ~49!

The elementsj jk
(c) , which form the matrixĵ (c), are given by

an expression that follows from~22! written in the reference
frame comoving with the particular inclusion:

ĵ ~c!53«~«̂~c!2« Î !~2« Î 1 «̂ ~c!!21. ~50!

We see that the matrixĵ (c) and its elementsj jk
(c) are deter-

ministic quantities.
Averaging ĵ(x) over the ensemble with allowance fo

~47! and ~49! yields

^j lm
~r !~x!&5d lm@v1j~1!1v2j~2!#, ~51!

where

j~2!5Tr ĵ ~c!5jpp
~c! , ~52!

v1512v2 is the relative volume occupied by the enclosi
medium, and over repeated indices there is summat
Combining this with~23!, we arrive at a nonlinear equatio
for the dielectric constant« of the reference medium:

v1j~1!1v2j~2!50. ~53!

As for the perturbation correlation functions, for th
adopted model we can write~see Ref. 46, Chap. 4! these
functions in terms of the dimensionless two-point correlat
function ~43!:
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Cmpqn~x2x8!5v1v2w~R!Dmpqn, ~54!

Dmpqn5j~1! 2dmpdqn1^am japkaqsant&orj jkst
~c! 2dmpj

~1!

3^aqsant&orjst
~c!2dqnj

~1!^am japk&orj jk
~c! . ~55!

Here the subscript ‘‘or’’ indicates averaging over the orie
tations of a scatterer~the averaging is done, say, by emplo
ing the proper probability densities for the Euler angles
termining the orientation of the axes of the comovi
reference frame!. Note that here is the place where the a
sumption that the inclusions are homogeneous is nee
More precisely, the dependence of the correlation functi
~54! only on the difference of spatial arguments, which is
characteristic feature of statistically homogeneous media10,12

and which is needed if we want the method of substitution
field variable to work, is present only for spatially homog
neous inclusions.

Note that the above theory, on which our reasoning
based, presupposes that the spatial wave is small:k0L!1. In
view of ~54!, L coincides with the correlation length of th
dimensionless two-point correlation function~43!, which in
turn is larger than the diameter of a single inclusion or eq
to that diameter. Thus, for our reasoning and the res
given by formulas~58! and ~61! to be valid, the spherica
inclusions must be small on the scale of the wavelength

The physics of the problem implies that, in view of th
uniform distribution of the random orientations of the sc
terers, the effective medium must be isotropic and that
mula ~45! actually has a much simpler structure correspo
ing to this assumption, i.e.,

jmn
~e!5dmn d«, ~56!

where

d«5
1

3
jmm

~e! . ~57!

Calculatingjmm
(e) by ~35! and writing the expressions~15! and

~16! explicitly for the case of an isotropic reference mediu
we get

d«5
8p

3
v1v2Dk0

2 E
0

`

w̃~k!
k2 dk

k22k0
2«

, ~58!

D5j~1! 21
1

3
jnp

~c!jpn
~c!2

2

3
j~1!j~2!. ~59!

According to ~36!, the effective permittivity of the discrete
medium being discussed can be written as follows:

«̂~e!~v!5«~e!~v! Î , ~60!

«~e!~v!5«1d«. ~61!

The effective medium proves to be electrically isotropic a
is characterized by the scalar permittivity« (e)(v). For the
special case of an isotropic enclosing medium and isotro
inclusions, Eq.~53! and the expression~58! become the well-
known results of Ref. 45.
-

-
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3.2. Mean-field damping

Let us analyze the effective permittivity~61! for a situ-
ation in which there are no dissipative losses in the rand
composite. In this case the permittivity of the enclosing m
dium, « (1), is real:« (1)5(« (1))* , and the permittivity tensor
« (c) of the anisotropic inclusion in the comoving referen
frame is Hermitian ~but not necessarily real!: « (c)

5(« (c))T* ~here and in what follow the asterisk stands f
complex conjugation!. Under these conditions, as can eas
be verified,D5D* , and the quantityD of ~59! proves to be
real.

It is natural to expect, then, that in the absence of dis
pation in the random medium, the quasistatic value of
effective permittivity also describes a dissipation-free m
dium. Indeed, in the absence of losses in the random
dium, the only reason for the mean field to get weaker is
transfer of energy of the medium to the scattered compon
of the field due to diffraction on inclusions. However, in th
quasistatic limit, the contribution of the diffraction phenom
ena to the effective permittivity disappears~as noted earlier!,
and the quasistatic value of the effective permittivity~which
« is! must describe a medium without losses. Hence in
case at hand the permittivity« of the reference medium is
real quantity.~A indirect indication of this is the fact that, a
Eqs.~48! and ~52! imply, if « obeys Eq.~53!, the complex-
valued quantity«* obeys the same equation. Here, howev
we postulate a stronger statement; namely, we say that t
two roots,« and«* , coincide.!

Note that, strictly speaking, the final expression~58! in
Sec. 3.2 refers to the dissipative random medium and a
erence medium, while in the absence of dissipation the re
must be obtained from~58! by passage to a limit in which
the losses of the reference medium tend to zero. The inte
on the right-hand side of Eq.~58! has poles of the first orde
at the pointsk5k0A« and k52k0A«, where the first pole
‘‘lands’’ on the positive half of the real axis from above a
the losses get smaller (Im«→10; everywhere in this pape
we use the branch of the square root of a complex numbZ
for which 0<argAZ,p). Using the half-residue lemma t
calculate the limiting value of the integral in~58!, we have
the following expressions in the absence of dissipation in
random and reference media:

d«5d«81 id«9, ~62!

d«85
8p

3
v1v2Dk0

2 E
0

`

w̃~k!
k2 dk

k22k0
2«

'
8p

3
v1v2Dk0

2 E
0

`

w̃~k! dk, ~63!

d«95
~2p!2

3
A« v1v2w̃~0!k0

3D, ~64!

whered«8 andd«9 are real values, and the integral in~63! is
calculated as a principal-value integral at pointk5k0A« .

Thus, the ‘‘diffraction’’ correctiond« to the quasistatic
value of the effective permittivity and hence the permittivi
proper are complex-valued. The real part of the ‘‘diffra
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tion’’ correction is given by the integral over the wave num
bers and therefore is formed by scattering into the continu
wave spectrum. The imaginary part of the effective perm
tivity, coinciding with d«9, is given by the half-residue o
the integrand in~58! at the polek5k0A« corresponding to
the propagation constant of the plane wave in the refere
medium.

Let us now find the propagation constantk(e) of the
plane wave of the mean field in the effective medium with
permittivity « (e)(v). The quantity we are interested in
specified by the expressions

k~e!5k0A«~e!~v!5k0A« ~11g~e!!, ~65!

g~e!' d«/2« , ~66!

Re g~e!5
4p

3«
v1v2Dk0

2 E
0

`

w̃~k! dk, ~67!

Im g~e!5
2p2

3A«
v1v2w̃~0!k0

3D. ~68!

Obviously, the real part of the dimensionless quantityg (e)

determines the shift in the phase velocity of the wave w
respect to the phase velocity in the reference medium du
multiple scattering by random particles. The imaginary p
of g (e) describes the emergence of damping of the mean fi
due to scattering by the same particles. Equation~65! clearly
shows that the imaginary part of the effective propagat
constant depends on frequency asv4, which is typical of
field damping as a result of Rayleigh scattering48 and agrees
with the adopted model of small inclusions.
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Formation of two-dimensional current sheets under high initial pressure conditions
S. Yu. Bogdanov,* ) V. B. Burilina, and A. G. Frank
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The possibilities of current-sheet formation in two-dimensional magnetic fields with a null line as
well as the characteristic features of the plasma dynamics under high initial pressure
conditions~helium, P0'300 mtorr! are investigated for the first time. It is shown that current-
sheet formation and efficient compression of the plasma into a sheet require that the
magnetic field gradient be sufficiently large. A brightly emitting compact region with electron
densityNe;931016 cm23, an order of magnitude higher than the gas atom density,
was observed to form at the center of the layer. ©1998 American Institute of Physics.
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1. INTRODUCTION

Magnetic reconnection is a fundamental physical proc
which is the basis for various phenomena in plasma phy
and astrophysics.1–6 Flares on the sun and other stars, su
storms in the magnetospheres of the Earth and planets,
ruptive instability in toroidal magnetic confinement syste
~tokamaks! that result in a loss of hot plasma, as well
many time-dependent phenomena in plasma focus anZ-
and Q-pinch high-current discharges are associated w
magnetic reconnection. In all these phenomena, as a rule
stored magnetic field energy is converted rapidly and e
ciently into thermal and kinetic plasma energy and into
celerated particle fluxes and radiation of various wa
lengths.

Magnetic-field line reconnection can occur in regions
space where oppositely~or differently! directed field lines
come close to one another. These regions are characte
by high electric current density and small scales, so that
sipative processes are very influential here even under
conditions of high plasma conductivity. Here one of the m
properties of a highly conducting plasma can break dow
the freezing-in of the magnetic field in matter. Magnetic-fie
line reconnection can change the topology of the magn
field. For this reason, even if the reconnection process it
occurs in relatively small regions of space, the changes
curring in the topology of the magnetic field as a result
reconnection can radically alter the behavior and dynam
of the entire system as a whole.

Regions with high electric current density, which sep
rate oppositely~or differently! directed magnetic fields an
which accumulate excess magnetic energy, ordinarily t
the form of quasi-one-dimensional current sheets.1,6–8 In
other words, the distribution of the electric current density
any cross section perpendicular to the direction of the cur
is characterized by two considerably different scales. T
largest scale~the width of the sheet! determines the amoun
of stored magnetic energy, while the smallest scale~the
thicknes of the sheet! determines the characteristic dissip
tion time.1 Magnetic reconnection processes, in which a s
6551063-7761/98/87(10)/8/$15.00
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stantial portion of the excess magnetic energy is rapi
transformed into plasma energy and accelerated-particle
ergy, can occur precisely within current sheets. In this c
nection, the study of the conditions and possibilities of t
formation of spatially localized current sheets in highly co
ducting magnetized plasma is of fundamental importance

From the standpoint of the localization of current she
the so-called singular magnetic field lines,1,6,9 along which a
nonzero electric field can exist in the plasma coordinate s
tem, merit serious attention. It is natural to expect that el
tric current in plasma can concentrate near singular lines
result of the formation of current sheets.

The best known example of a singular line is the n
line of a two-dimensional~2D! magnetic field~Fig. 1!. The
spatial dependence of the field can be represented near
line (x50, y50) in the form

B52h$y;x;0%, uBu5hur u, ~1!

whereh is the radial gradient of the magnetic field.
The dynamics of plasma in magnetic fields containi

null lines has been actively investigated for many years, b
theoretically1–9 and experimentally.10–12 As a result, it has
been established that a flat current sheet, which accumu
the magnetic energy released in flare-type processes ac
panying explosive breakdown of the sheet,1,10,12 can indeed
form near a null line.

At the same time, efficient compression of plasma int
sheet,13 where the electron density is 10 or more times high
than in the initial plasma,14 has been observed experime
tally. Typically, the gas-kinetic pressure of plasma conc
trated in a sheet is ordinarily balanced by the magnetic p
sure outside the sheet, i.e., the parameter

b5 8pNek~Te1Ti /Z̄i !/B
2 ~2!

reaches its maximum valueb̄.1 ~here Ne is the electron
density,Te andTi are the electron and ion temperatures,Z̄i is
the effective ion charge!. The formation of quasi-one
dimensional sheets containing a dense current-carry
© 1998 American Institute of Physics
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plasma is also of great interest for various applicatio
simulation of astrophysical phenomena, such as solar fl
~see Refs. 1 and 10!, under laboratory conditions; develop
ment and construction of fundamentally new systems
controlled thermonuclear fusion;15 development of new
sources of visible- and ultraviolet-range radiation; genera
of directed supersonic plasma flows; and so on.

Theoretical treatments devoted to the problem of m
netic reconnection have usually employed the strong m
netic field approximation, in which the gas-kinetic pressu
of the initial plasma is assumed to be negligibly low.16,7,1

Similar conditions were also chosen for most experimen
investigations, so that the plasma dynamics at the sheet
mation stage was determined predominantly byj3B
forces.10–14 It was observed that current sheets in whi
dense plasma is concentrated are formed in both linear17 and
nonlinear18 regimes, which differed primarily by the ratio o
the initial magnetic field and the field of the electric curre
in the plasma~see also Ref. 12!. In all cases the maximum
electron density in a sheetNe

max5(0.822)31016cm-3 was
much higher than the density of both the initial plasma a
the plasma surrounding the sheet.

In the present paper we report the results of experime
in which the possibilities of producing current sheets in tw
dimensional magnetic fields with a null line~1! under con-
ditions of comparatively high initial gas pressure~helium,
P05300 mtorr! were investigated for the first time.

It could be anticipated that the increase by a factor
5–20 in the initial pressure compared with previo
work10,12,17,18 and the corresponding higher initial plasm
density can have several effects. In the first place, hydro
namic processes play a relatively larger role in relation

FIG. 1. Diagram~section! of the experimental setup for studying the form
tion and evolution of current sheets in two-dimensional magnetic fields w
a null line: 1 — Conductors with currents~straight quadrupole!, 2 — field
lines of the two-dimensional vacuum magnetic field with a null line,3 —
vacuum chamber,4 — u-discharge loop,5 — current sheet,6 — magnetic
probes.
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magnetohydrodynamic processes. Indeed, the size of th
gion near the null line of the magnetic field, where the sou
velocity vs is greater than the Alfve´n velocity vA , is

r s.A4pgNkT/h ~3!

and increases with the initial plasma density. In other wor
under these conditions the strong magnetic field approxi
tion, which holds forr @r s , can be satisfied only at an ap
preciable distance from the null line.

The second obvious effect is that the sheet format
process slows down. This is due to an increase in the c
acteristic Alfvén time

tA5A4pNiMi /h. ~4!

Finally, the relative role of dissipative processes can
crease as a result of the increase intA ~4!. This can be de-
scribed quantitatively, for example, as a decrease in the m
netic Reynolds number

Rem5ts /tA , ~5!

where

ts.4psL2/c2 ~6!

is the ohmic dissipation time in a volume of characteris
sizeL.

These considerations all indicate that the question of
formation of a sheet of dense plasma under conditions
high initial pressure is very nontrivial and apparently r
quires a special choice of initial and boundary conditions19

At the same time, if the plasma compression efficiency
assumed to remain the same as before,10,12,14,17,18then elec-
tron density in the sheet should increase considerably, re
ing valuesNe;1017 cm23. Such a plasma would have se
eral advantages from the standpoint of both plas
diagnostics and various applications, especially since the
sition of the sheet is fixed and does not change with tim
which distinguishes such a sheet from, for example, rap
moving plasma shells inZ- andQ-pinch systems.

If it is assumed thatb̄.1 holds for the sheet as before
then the expected increase in plasma density should decr
Ti andTe—the electron and ion temperatures~for close val-
ues of the magnetic field gradienth and plasma curren
I p)—and equalize them. The longitudinal electron therm
conductivity, which was the main channel for energy loss
of a sheet in previous experiments,20 should play a lesser role
under conditions such thatNe increases andTe decreases,
while other loss channels, for example, losses due to ra
tion, can become dominant.

2. EXPERIMENTAL SETUP AND DIAGNOSTICS METHODS

The possibilities of current-sheet formation under hi
initial helium pressure conditions were studied in the st
dard experimental arrangement for such investigations~see
Refs. 10 and 11!. The quasistationary two-dimensional qua
rupole magnetic field~1! possessed a gradienth equal to 280
or 570 G/cm and the null line lay on the axis of a cylindric
quartz vacuum chamber 18 cm in diameter~Fig. 1!. The
initial plasma was produced using aQ discharge with strong

h
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FIG. 2. Diagram of experimental setup~side
view!: 1 — Conductors of the quadrupole
magnetic field,2 — vacuum chamber,3 —
grid electrodes,4 — controllable discharger,
5 — current sheet,6 — Rogowski loop,7 —
image tube,8 — photomultiplier ~FÉU!, 9
— He–Ne laser,10 — mirrors, 11 — light
filters, 12 — diaphragms,13 — achromatic
objective lenses.
th

g
ce
y
en

he
n-

t
io

ec
a

ith

tra
um
th
fe

tio
ze
-

w
fo
th
th
e
de
a
u
e

on
i-

gh
te

f

of a
he

t
-
e
-
s

tic
e
the

ion
he

ded

e,

the
he
t
er

ani-
ar-
ast
red

the

t (
his
-

3c
be

nes
an-
to
preionization; helium at pressureP05300 mtorr served as
the working gas; the initial plasma density was close to
atomic density of the neutral gasNe

0<Na
0.1016 cm23. Elec-

tric current was excited in the plasma by a pulsed volta
applied between two grid electrodes which were introdu
into the chamber at both ends~Fig. 2! and were separated b
a distance of 60 cm. The half-period of the plasma curr
was T/255 ms, and the maximum current was 60 kA~see
Fig. 4a!.

Magnetic probes positioned on the outside of t
vacuum chamber~Fig. 1! were used to determine the co
figuration of the electric current in the plasma as well as
determine the thickness of the current sheet and its variat
in time ~see Fig. 4b and Ref. 21!.

Two-dimensional images of the plasma in different sp
tral emission lines at successive times were obtained with
image tube~gain.400, exposure time.80 ns! in combina-
tion with narrow-band spectral interference filters w
Dl1/2.121.2 nm~Fig. 3; see also Ref. 22!.

The temporal variations of the intensities of the spec
lines He I 587.6 nm and He II 468.6 nm and the continu
emitted from a region 0.4 cm in diameter near the axis of
vacuum chamber were obtained using appropriate inter
ence filters and a FE´ U-79 photomultiplier ~Fig. 4c!. The
spectral composition of the characteristic plasma radia
which passed through the filters was additionally analy
with a MDR-3 monochromator~see Ref. 22 for a more de
tailed discussion!.

In the present work the refraction ofl5632.8 nm laser
radiation by a flat sheet of dense plasma produced in a t
dimensional magnetic field with a null line was detected
the first time. A He–Ne laser beam was directed along
null line, i.e., along the length of the plasma sheet in
direction of thez axis~Fig. 2!. A system of diaphragms mad
it possible to record only the laser radiation that was
flected by small angles relative to the initial direction. In
number of cases the intensity of the laser radiation was s
stantially diminished after passing through the plasma sh
~Fig. 4d!. This made it possible to determine the electr
density gradient in thexy plane and to estimate the max
mum value of the density.

3. PRINCIPAL RESULTS

The possibility of a flat plasma sheet forming under hi
initial helium pressure conditions was clearly demonstra
e
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using plasma images obtained in different spectral lines~see
Fig. 3 as well as Ref. 22!. Immediately after the onset o
excitation of an electric current in the plasma (t'0.220.4
ms!, the distribution of the radiation intensity in thexy plane,
perpendicular to the current direction, acquired the shape
sheet with a local intensity minimum at the center of t
sheet. At subsequent times (t>1 ms! the width of the sheet
increased, reaching values 2Dx'12 cm, when the shee
thickness 2Dy,1 cm, while the radiation intensity was vir
tually uniform over the width, for example, in the He I lin
~Fig. 3a!. Hence it follows that in a two-dimensional mag
netic field with gradienth5570 G/cm a plasma sheet wa
formed in 1–1.5ms, i.e., essentially during the characteris
Alfvén time tA ~4!. For smaller gradients the formation tim
of the plasma sheet was much longer, so that during
entire first half-period of the current the plasma emiss
varied along thex axis and possessed a local minimum at t
center of the sheet.

We note also that the sheet thickness 2Dy was 2–3
times smaller than 2r s ~see Eq.~3!!, i.e., the diameter of the
region near the null line where the sound velocity excee
the Alfvén velocity.

In contrast to plasma images obtained in the He I lin
the images in the He II 468.6 nm line~Fig. 3b! showed a
substantial variation along the surface of the sheet and
formation of a bright compact object at the center of t
sheet—the core (t50.6, 2.5 ms!. We emphasize that mos
images presented in Fig. 3b were obtained with much low
exposures than the images in Figs. 3a and 3c; this was m
fested specifically in the fact that the emission of the ne
wall continuum, as a rule, was absent in Fig. 3b, in contr
to Figs. 3a and 3c. The images in the He II line also acqui
the shape of a flat sheet as exposure increased, while
central region was overexposed.

A flat plasma sheet was observed clearly att51.2, 1.5,
and 2.1ms in the spectral lines of N II~Fig. 3c!. The appear-
ance of a dark band in the central plane of the sheet
52.1, 3.0ms! attested to a higher electron temperature in t
region and ‘‘burnout’’ of the N II lines, similarly to the ob
servations in Refs. 23 and 24.

Comparing the images presented in Figs. 3a, 3b, and
and obtained at closely spaced intervals in time, it can
concluded that the plasma radiation in different spectral li
originated in different spatial regions separated from one
other. Thus, the radiation in the He II line corresponded
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FIG. 3. Plasma images obtained at successive times in different spectral lines: a — He I ~587.6 nm!, b — He II ~468.6 nm!, c — N II ~567.6–568.6 nm!.
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FIG. 4. Time dependence of: a — total electric current
I p in the plasma; b — half-width ubu of the current sheet
calculated from the results of magnetic measureme
for different values of the magnetic field gradienth
5570 ~1! and 280~2! G/cm; c — intensities of plasma
radiation in the spectral lines for He II~468.6 nm! —1
and He I ~492.2 nm! — 2; continuum intensity,l
.480.6 nm,Dl1/251.5 nm — 3; d — intensity of
He–Ne laser (l5632.8 nm) after passage of the las
beam along the plasma sheet for different values of
magnetic field gradient:h5570 ~1!, 280 ~2! G/cm.
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the central plane of the sheet (y.0), while the He I and N II
lines were emitted predominantly from regions displaced
the y direction on both sides of the central plane.

As follows from the magnetic measurements, the elec
current distribution in thexy plane, perpendicular to the cu
rent direction, also acquired the shape of a sheet whose w
was much greater than its thickness. Figure 4b shows
time dependence of the half-widthubu of the current sheet fo
two gradients of the initial magnetic field,h5570 and 280
G/cm. One can see thatubu increased ash decreased, since a
h5280 G/cm the lateral ends of the sheet came right
against the walls of the vacuum chamber, i.e.,ubu.Rc . For
h5570 G/cm the width of the current sheet 2ubu<12 cm
,2Rc . In this case the sheet typically was formed duri
both the first and second half-periods of the current in
plasma, and the orientation of the sheet in thexy plane
changed by 90° in accordance with the change in the di
tion of the current. The half-widthubu of the current sheet
obtained on the basis of magnetic measurements co
sponded, to within the accuracy of the measurements, to
half-width of a neutral current sheet7

b5A4I p /ch . ~7!

This fact makes it possible to employ other relations wh
are valid for neutral current sheets.7,10,12 Specifically, it is
possible to estimate the magnetic field at the surface of
sheet:

Bx~x.0!.3.4 kG.

Since, as noted above,b̄.1 typically holds for current
sheets~see Eq.~2!!, the energy content of the plasma can
estimated hence as

Ne~Te1Ti /Z̄i !.2.831017 eV/cm3.

Thus, it can be concluded from magnetic measureme
and by analyzing plasma images obtained in different sp
tral lines that the formation of a current sheet and effici
compression of plasma into a sheet can also occur under
initial gas pressure conditions, provided only that the gra
enth of the initial two-dimensional magnetic field with a nu
line is large enough. Apparently, it is important to satisfy t
conditiontA,T/4, whereT is the period of the current in th
plasma. Under otherwise identical conditions, increasing
n
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gradienth substantially increases the intensity of the rad
tion from the plasma concentrated in the sheet. This indica
more efficient plasma compression.

Of great interest is a characteristic feature of the plas
sheet observed in the form of a bright compact core with
dimensions 2dx.3.3 cm and 2dy.1.1 cm in the central
region ~see Fig. 3b,t52.5 ms!. As noted above in the dis
cussion of plasma images in different spectral lines, the
tensity of the core radiation in the He II line was muc
higher than the intensity of radiation from neighboring se
tions of the sheet. The time dependence of the intensitie
the spectral lines of He I and He II and the continuum inte
sity, which came from the region near the axis, is presen
in Fig. 4c. The signal strengths reflected the intensity ra
qualitatively; the radiation in the He II 468.6 nm line was
to 6 times more intense than the radiation in the He I 58
nm line and in the continuum. The large increase in the H
line intensity in the interval from 2 to 3.4ms is interesting;
the intensity of the continuum increased at the same ti
while the radiation in the He I line remained unchanged
the interval;1.025.5 ms. It could be inferred that the ob
served increase in the intensity of the He II spectral line w
due predominantly to an increase in the electron densityNe

in the central region of the current sheet within the brig
core. To check this hypothesis an experiment probing
plasma sheet with 632.8 nm laser radiation was perform

Direct measurements of the spatial distributions of
electron density, performed previously by holograph
interferometry,14,17,18 showed that for plasma sheets whic
developed in two-dimensional magnetic fields at compa
tively low initial pressure,P<50 mtorr, sharp density gradi
ents in a direction perpendicular to the surface of the sh
are typical and reach values

]Ne

]y
.531016 cm24.

The plasma radiation distributions in thexy plane, which are
presented in Fig. 3, indicated the existence of quite sh
gradients of the luminosity of the sheet and also, apparen
of the electron density under high initial pressure conditio
It was natural to assume the plasma sheet to be uniform
the direction of thez axis, as was observed in previou
experiments.10,12
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If a narrow light beam is directed along thez axis, then
as a result of passing through the plasma sheet the beam
be deflected from the initial direction. In visible radiation th
plasma is a transparent phase nonuniformity, so that the
flection angledc is determined by the gradient of the refra
tive index in a direction perpendicular to the propagat
direction of the beam:25,26

dc5
1

n Ez1

z2
¹'ndz. ~8!

Heren is the refractive index, andz1 andz2 are the bound-
aries of the plasma along the propagation path of the be
The refractive index of plasma for visible-range radiati
which depends mainly on the electron densityNe ~with de-
gree of plasma ionization exceeding;5%!

n5A12
vpe

2

v2
.12

1

2

vpe
2

v2
5121.8310222Ne.1, ~9!

where vpe is the plasma frequency andv is the angular
frequency of the probe radiation. The red line of the He–
laser satisfiesv.331015 s21 and the refractive index is
essentially 1 for any reasonable values ofNe . Correspond-
ingly, the deflection angle of the laser beam from the init
direction is very small, so that the relation~8! can be written
as

dc5L¹'n521.08310220¹'Ne . ~10!

Here L5z22z1560 cm is the length of the interelectrod
gap where the plasma sheet was formed.

In practice the experiment ismounted as follows: T
He–Ne laser beam was directed strictly along the null line
the magnetic field, and after passing through the plas
containing region the beam was passed through a sp
diaphragm, which cut off radiation with deflection angl
relative to the system axis greater thanw.1.831023 rad.
Next, the laser radiation was directed through a system
diaphragms and filters and was detected with a FE´ U-79 pho-
tomultiplier ~Fig. 2!. Let the signal level in the absence
plasma be 1. In some cases the laser radiation was obse
to be considerably attenuated as a result of the formatio
the plasma sheet, as one can see from Fig. 4d. If the in
gradient was equal to 280 G/cm, then an approximately 3
intensity decrease was seen only'728 ms after the onse
of the current in the plasma, during the second half-per
However, for a large magnetic-field gradient, for examp
h5570 G/cm, the attentuation of the laser radiation beca
much stronger, reaching'90%, and was even observed du
ing the first half-period of the current, att.1.524 ms. We
note that the maxima of the plasma radiation in the He II l
and in the continuum~Fig. 4c! were correlated with the
maximum attenuation of the laser radiation which has pas
through the plasma sheet~Fig. 4d!.

A very important point is that the decrease in the inte
sity of the laser radiation was observed only with the use
a special diaphragm which did not pass radiation with ang
of deflection relative to the system axis greater than the a
w. In the absence of such a diaphragm, the intensity of
laser radiation which passed through the plasma sheet did
can
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change. Hence it can be concluded that the attenuation o
signal shown in Fig. 4d was due predominantly to the defl
tions of the light beam away from the initial direction b
anglesdc>1.831023 rad, i.e., refraction of the laser radia
tion by the plasma sheet. According to Eq.~10!, such angles
corresponded to an electron density gradient]Ne /]y>1.7
31017 cm24. This means that when a plasma sheet form
under high initial pressure conditions the electron dens
gradient was at least three times greater than the maxim
gradient obtained previously.14,17

As noted above, the greatest attenuation of the laser
diation was observed in the regimes and at times whe
region of maximum brightness of the He II line radiatio
with transverse size 2Dy.1.1 cm was clearly observed a
the center of the plasma sheet. Assuming that

]Ne

]y
'

Ne
max

Dy
,

the maximum electron density can be estimated asNe
max

'0.931017 cm23. This value was 5 to 10 times greater tha
the maximum densitiesNe recorded for lower initial
pressure,12,14,17,18and it was almost an order of magnitud
greater than the initial density of the neutral gasNa

0.1016

cm23. We emphasize that a tenfold increase of the elect
density compared with the initial value~as noted above,Ne

0

<Na
0) was observed in the central region of the sheet wit

the bright core. In other sections of the sheet the density
apparently lower. Note that the value obtained forNe

max is
only approximate. However, this estimate was substantia
using specially performed spectral measurements~see Ref.
27!.

Therefore it can be concluded from the character of
temporal variations of the intensity of the plasma radiation
the spectral line He II 468.6 nm~Fig. 4c! and the attenuation
of the He–Ne-laser radiation which has passed through
plasma sheet~Fig. 4d! that the electron density in the centr
region of the sheet gradually increased and reached'0.9
31017 cm23.

The plasma temperature was estimated first accordin
the average conductivity and second on the basis of the p
sure balance, i.e., from the relationb̄.1. When averaged
over the spatial region where the electric current was c
centrated and over a time interval equal to a half-period
the current, The plasma conductivity wass̄<1014 s21,
which for Spitzer conductivity corresponded toTe.4 eV.
Pressure balance gives

Te1Ti /Z̄i>3 eV,

i.e., it can be assumed that the electron temperature in
case did not exceed 5 eV, and the effective ionization w
Zi.1, as indicated, specifically, from the fact that the em
sion in the He II line essentially did not burn out~see Figs.
3b and 4c!. For Ne.531016 cm23 Te<5 eV the frequency
of Coulomb collisionsne>231011 s21, and the electron and
ion mean free path lengthsl e. l i.1023 cm, i.e., much less
than the half-thicknessDy of the plasma sheet~see Fig. 3!.
The equalization time of the electron and ion temperatu
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under these conditions is very short,tE<231028 s, i.e., the
temperatures should be essentially the same,Ti.Te .

The characteristic time due to the thermal conductiv
of the plasma in the absence of~or along! the magnetic field
can be estimated as28

tk
e9
;L2Ne /ke9 , ~11!

whereke9 is the thermal conductivity

ke9.3.16
NekTe

mne
. ~12!

Coulomb collisions sayisfyne;NeTe
23/2, so that whenNe

increases and at the same timeTe decreases, the quantitytk
e9

increases considerably:

tk
e9
;L2NeTe

25/2. ~13!

AssumeL.1 cm, which corresponds to the thickne
~less than the transverse size! of the plasma sheet as well a
the characteristic size of the core at the center of the sh
Then, for the above plasma parameters we havetk

e9
;10 ms,

which is greater than, for example, the half-period of t
plasma current, i.e., the plasma temperature could have
substantially different in different sections of the sheet se
rated in space by distances greater than;1 cm. It is natural
to infer that this effect is responsible for the formation of
bright core in the central region of the sheet. It is also ob
ous from the estimates presented that energy losses d
heat conduction could not balance the energy released in
current sheet by ohmic dissipation. In all probability, t
main channel for energy losses of the sheet formed un
high initial pressure conditions were radiation losses.

4. CONCLUSIONS

In the present work we investigated the possibility
principal of forming flat current sheets in two-dimension
magnetic fields with a null line and studied them under h
initial gas pressure conditions~helium, P05300 mtorr!. The
characteristic properties of the high-pressure regime are
first, the plasma is not magnetized in a comparatively w
spatial region; second, the gas-kinetic pressure plays a la
role than electrodynamic forces, which in the previous
periments completely determined the plasma dynamics;
finally, increasing the initial pressure slows down the sh
formation process.

Magnetic measurements and analysis of the plasma
ages obtained in different spectral lines show that the for
tion of a current sheet and efficient compression of plas
into a sheet can also occur under high initial pressure co
tions, provided that the gradient of the initial two
dimensional magnetic field with a null line is large enough
was established that the sheet formation time is of the o
of the characteristic Alfve´n time. It was shown that increas
ing the magnetic-field gradient increases considerably the
tensity of the radiation from the plasma concentrated in
sheet, i.e., it leads to more efficient plasma compress
et.
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These results support the idea that the character of curr
sheet formation in plasma in nonuniform magnetic fields
universal~see also Ref. 29!.

The refraction of laser radiation with wavelengthl
5632.8 nm as a result of passage along a flat sheet of d
plasma was detected for the first time. This made it poss
to determine the gradient of the electron density in the sh
as ]Ne /]y>1.731017 cm24 and to estimate the maximum
density asNe

max'931016 cm23. The maximum electron
density at the center of the plasma sheet exceeded the in
electron density and also the gas density by approximatel
order of magnitude, attesting to the effectiveness of plas
compression under these conditions.

Of great interest is a characteristic feature of the plas
sheet observed in the form of a bright compact core, wh
He II line radiation was much more intense than the radiat
from neighboring sections of the sheet.

The increase in the electron density was accompanied
a decrease in the plasma temperature, which resulted
large decrease in the electron heat conduction along the
face of the sheet. The formation of a bright compact core
the center of the sheet is apparently linked to the decreas
heat conduction, while losses to radiation can be assume
be the main channel for energy losses of the current s
formed under high initial pressure conditions.
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Dynamics of thin exploded-wire plasma with a cold dense core
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Zh. Éksp. Teor. Fiz.114, 1215–1229~October 1998!

Ideas are put forward regarding the possibility of a cold dense core, surrounded by a plasma
corona, forming near the axis at the initial stage of a nanosecond electric explosion of metal wires,
and the influence of such a radial structure on the plasma compression dynamics is
discussed. Experimental evidence supporting these suppositions is presented. It includes both
indirect confirmations, based on optical and x-ray diagnostics data, and direct
observations of the core by new means of x-ray probing employing an X pinch as a source of
radiation. © 1998 American Institute of Physics.@S1063-7761~98!00610-6#
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1. INTRODUCTION

The development of powerful high-voltage generat
such as PBFA Z, SATURN, PROTO II, GAMBLE II
BLACKJACK-5, ANGARA-5, and GIT-4, now makes i
possible to produce up to 10 MA and higher current puls
introducing multiterawatt power into the diode in.100 ns.
This has opened up wide prospects for using such gener
in diverse experiments with hot radiating dense Z-pin
plasma. The standard load for these generators consis
different configurations of thin metal wires—single- an
multiwire liners and X pinches. In such generators, after
electric explosion is completed and after the subsequ
rapid radial expansion, accompanied by a strongly p
nounced skin effect, the current-carrying plasma is co
pressed by the self-magnetic field. The hot spots formed
result of the sausage instability contain dense, hot pla
with high parameters (ne.1022 cm23, Te.1 keV, Z up to
51!. Powerful bursts of radiation open up the possibility
using these objects as sources of hard ultraviolet and so
radiation in multicharged ion spectroscopy, in x-ray opt
and lithography investigations, and as media with a popu
tion inversion in the short-wavelength region. There are a
prospects for using them in controlled thermonuclear fus
and for laboratory simulation of the action of powerful x-ra
pulses accompanying an atmospheric nuclear explosion.
problems arising in the path toward the realization of th
goals are often of a general-physical significance for inv
tigations of dense plasma and condensed phases of mat
well as for the development of new diagnostics methods
ing x-ray optics and spectroscopy.

2. FORMULATION OF THE PROBLEM

Dense exploded-wire plasmas harbor many myste
despite efforts to investigate them. For example, direct
6631063-7761/98/87(10)/9/$15.00
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servation of the initial stage of an electrical explosion s
encounters difficulties requiring apparatus with very high d
namic range. However, this is the stage where the transi
of the matter from a metallic into a plasma state occurs
the conditions are established for subsequent developme
a dense plasma column. There is absolutely no informa
about the distribution of the parameters or even the natur
the physical state of the matter formed in the process. At
same time it was noted in Ref. 1 that the explosion of thi
1 cm long, aluminum wires with diameter.50 mm could
have been incomplete, and a dense cold core of lo
conductivity matter was observed directly in the x-ray im
ages of the plasma. Actually, here the process only just
gan ~surface explosion, expansion of coronal plasma, s
effect!, and there was not enough time for it to evolve in
the pinch stage: Instead of hot spots and thermal x-ray em
sion lines, only a surface plasma emission reminisc
of skin-layer emission was observed in the continuo
spectrum.

Even more complicated is the case2 in which an explod-
ing copper wire 20mm in diameter and 4 cm long exhibite
both hot spots and extended emitting structures, whose t
mal emission included characteristic soft x-ray lines. T
regions with the two types of emission of could be clea
distinguished over quite a long distance, and in Ref. 2 it w
suggested that in this situation a core surrounded by a co
is present. However, this structure was not observed direc
and the question of its universality remained unclear fo
long time. Recently,3,4 evidence of the existence of a radi
structure appeared in the form of sharp increase in
plasma density near the axis and in teh immediate vicinity
the hot spots for typical wire dimensions, diameter 20mm
and length 1 cm. This effect becomes stronger as the w
material becomes heavier, and it is manifested as the app
ance at the initial location of the wires of dense and c
© 1998 American Institute of Physics
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FIG. 1. Examples of laser interferograms~a!
and schlieren images~b! of the plasma from
exploded metal wires.
he

x
d
s
e
n-
te
ch
n

ia
ea
s
er
im
n
t

so

e
.
rp
of
in
nt
me
ef.

ap-
ing a
the
ce-
of

ion
the
sent
‘‘bodies’’ having diameters five to six times greater than t
initial diameter and surrounded by hotter plasma.

For the present it is difficult to assert that such near-a
formations are the same in experiments performed using
ferent facilities. It can only be concluded that there exist
more complicated distribution of the matter of an explod
wire than the distribution ordinarily used for simulation, i
cluding numerical modeling. Analysis of the stationary sta
of emitting Z pinches5 leads to the same conclusion. Su
states also include heterogeneous equilibria—a cold de
central region, from which heat is removed mainly by rad
tion, and a hot corona surrounding it with conductive h
transfer in the direction of the axis predominating. The
solutions, which exist only for quite heavy substances, w
obtained under the assumption, which does not strongly l
them, that the dissipation parameters are power-law fu
tions of temperature. More importantly, the paths leading
the formation of such equilibria are still unclear, as is al
is
if-
a
d

s

se
-
t
e
e
it
c-
o
,

incidentally, the possibility of using them to analyze th
strongly time-dependent states in experiments with wires

It is simplest to assume that the formation of a sha
radial nonuniformity of matter is related to the completion
the initial stage of the explosion, when by virtue of the sk
effect in the expanding and rapidly ionizing vapor curre
flows out of the central part, which has not had enough ti
to vaporize. Estimates and qualitative analysis, made in R
6 for the wires of diameter 10–50mm ordinarily used in
experiments, lead to this conclusion. They attest to the
pearance of a high-resistance core of dense matter, hav
temperature of the order of tenths of the Fermi energy, in
rapidly current-heated metallic load. The subsequent s
nario differs from the standard one through the interaction
the core with the shock wave resulting from the compress
of the coronal plasma. This effect and its influence on
ultimate compression are some of the subjects of the pre
paper.
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FIG. 2. Optical self-emission of exploded wires~W, 16 mm! at different times during the discharge.
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3. EXPERIMENTAL RESULTS

Most data on wire explosion dynamics are currently o
tained from optical measurements. Deep layers of the pla
column are inaccessible to optical measurements becau
the long wavelength of the laser radiation: The actual den
limit reached by such probing is determined by the nonu
formity of the plasma and the aperture angles of the opt
scheme employed and is only (122)31020 cm23, which is
much lower than the critical density.(122)31021 cm23.
For this reason, in the present work we employed, toge
with the optical method, x-ray probing, which is applicab
for plasma with density up to 1023 cm23 with essentially any
values of the gradient.

The experiments were performed on different devic
the ‘‘Don’’ ~170 kA, 200 kV, 80 ns! and BIN ~280 kA, 400
kV, 150 ns! high-voltage generators at the Lebedev Instit
and XP ~480 kA, 200 kV, 100 ns! at Cornell University.
Diagnostics allowing the plasma to be studied in both
optical and x-ray ranges were used. In what follows, only
new x-ray probe method used in experiments on the
setup are described. The other diagnostic systems have
described in detail in previous works.1,7

3.1. Optical measurements

We point out indirect evidence of the existence of a co
An unstable plasma shell, whose shape is the same as th
the initial wire and which acquires with time the typic
structure of a sausage instability, can be seen in the interf
grams and schlieren photographs presented in Fig. 1.
overall character of the process is essentially independen
the material and the initial diameter of the wire, but som
times ejecta of low-density plasma, in some cases reac
distances of several millimeters from the axis, are observ
At the same time, the form of the plasma column depe
strongly on the state of the wire surface: When it is clean
immediately prior to a shot by heating with a constant c
rent, the plasma ‘‘coat’’ becomes more dense and sta
-
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~specifically, there are no transverse ejecta! and the resulting
structure of the sausage instability becomes more reg
~Fig. 1b!. The main result obtained by comparing these i
ages is that the variations of the column shape in both ca
are superposed on massive and immobile base of the s
type.

Another interesting fact which we shall present is that
the optical range of the characteristic radiation a thick lum
nous column with.0.5 mm is observed throughout virtuall
the entire time of current growth (.70 ns for the BIN ma-
chine! ~Fig. 2!, after which the column rapidly disintegerate
Since the corona, whose ions are stripped of outer electr
is optically transparent, it can be inferred that the source
emission is a central fairly cold object.

3.2. X-ray measurements

A characteristic feature of the x-ray pinhole photograp
of exploded-wire plasma is the presence of bright region
so-called ‘‘hot spots,’’ which are arranged along the d
charge axis near the initial position of the wires. The pictu
becomes much more regular when the wire surfaces
cleaned. For\v.0.821.3 keV a luminous cylindrical struc
ture with characteristic diameter.1502300 mm, several
times greater than the initial size of the wire~Fig. 3!, is
observed in the image obtained with quite good spatial re
lution .50 mm. The overall character of the emission
essentially unrelated with the wire material~Fig. 3a!, but the
diameter of the cylindrical formation depends on the init
conductivity of the wire~Fig. 3b!: It is much larger for met-
als with good conductivity~Al, Cu, Au! than for metals with
low conductivity ~Ni, Pd, W!.

Moreover, there is the fact that wires with a low initia
conductivity, under otherwise the same conditions, e
more intense x-ray radiation in the hard region (l,5 Å!.
Besides the large-scale structure of the hot spots with a c
acteristic dimension 0.5–2 mm along the axis observed
pinhole images with spatial resolution 50–100mm by many
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FIG. 3. Time-integrated x-ray pinhole
image of exploded wires.
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investigators, a small-scale substructure was observed in
present work. It follows from the data obtained with a pi
hole camera with resolution 4–30mm that in many cases th
hot spots have a fine structure. Specifically, they consis
groups of two or three ‘‘subdots,’’ smaller than the pinho
diameter, which are separated by 20–100mm along the wire
axis~Fig. 4!. A similar result was also obtained using a tran
mission diffraction grating produced in the opening of a
mm in diameter pinhole~Fig. 5!.

3.3. X-ray probing

The dense regions of exploded wires were investiga
by the x-ray schlieren photography. An X pinch located
the diode gap parallel to the load investigated~Fig. 6! served
as the source of radiation. The diode anode was separate
a slit into two parts, which were mounted on return-curre
half-cylinders, which made it possible to measure separa
he

of

-

d

by
t
ly

the currents flowing through the source and the load. Mo
Pd were chosen as the wire material for the X pinch, sin
preliminary investigations showed that forZn.40245 the
region of the X-pinch emission has minimum size and a
equate brightness in the wavelength range 2–5 Å having
acceptable level of hard radiation withl,2 Å. For compari-
son, we note that in an X pinch from heavy elements (Zn

.70) hard radiation is generated by an electron beam, a
ing in the process of compression of the plasma,8 and is
emitted from a region of size.1 mm, which is unacceptable
for obtaining an image with high spatial resolution. In o
experiments the spatial resolution was at a level of sev
microns with an exposure duration of 1–3 ns. The plas
images with a magnification of 7–8 were recorded on Kod
RAR 2497 or Kodak GWL photographic films, screen
from the visible light by beryllium or titanium filters.

Figure 7 displays an image of the explosion of a 40mm
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FIG. 4. Fine structure of a hot spot obtained with a high-resolution pinhole camera.
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in diameter tungsten wire 50 ns after current onset. A de
core, completely screening the source radiation, can be s
The diameter of the core is three to seven times greater
the initial diameter. The variations of the diameter of t
core with periodicity 0.7–2 mm as well as the sharpness
the boundary of the core are interesting. The smearing of
edge of the image was les than 7–10mm. Disturbances of
the more rarefied and unstable corona with characteristic
0.3–0.5 mm, corresponding to nonuniformities of the plas
column in the optical images in Fig. 1, were also observ
The uniformity with which material was distributed in th
core along the axis depended on the purity of the wire s
face, indicating that the origin of the core is related with t
process of the initial electrical explosion of the conducto

Quantitative analysis of such an image is a diffic
problem, requiring careful calibration of the photograph
materials and precise measurement of the spectral com
tion of the probing radiation in each experiment. Such
analysis was not performed in the present work, but sim
estimates of the radiation absorption in the corona, tak
account the transmission of the filters and the sensitivity
the photographic film, gave a corona densityni.(4220)
31019 cm23 near the core and.(124)31018 cm23 near its
visible boundary. These values, in principle, agree with
results of optical measurements for distances.0.5 mm from
the wire axis, but they show that the core is essentially in
cessible to optical probing. Assuming that the core conta
most of the initial material, we obtain an approximately 10
fold drop in density at the core–corona boundary.

The image shown in Fig. 7 of the explosion correspon
to the stage before the formation of the hot spots observe
this experiment.70 ns after the start of the current pulse.
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is interesting to make the generate the probe radiation at
time when the hot spots form. This was done by varying
linear mass of the load by varying its diameter or using s
eral closely spaced wires. Figure 8 shows an image of
explosion of a pair of close, 13mm in diameter tungsten
wires separated by 20–40mm. X-radiation from such a load
was observed both before and after the probe pulse, bu
core is noticeable only in part of the image. Such a com
cated form indicates that the core evolves during the d
charge process. Evidently the core has its own internal st
ture. Figure 9 shows an image of a Ti (Zn522) wire 40 ns
after the start of the current pulse. Because of the weak
sorption of radiation in titanium the corona is not visib
here, but the internal structure of the core, which is differ
for different sections of the wire, does reveal itself. To i
vestigate this structure the spatial resolution must be
proved to a level of order 1–2mm. Here we state only the
fact that it exists. The choice of a titanium filter played
important role in obtaining this image: Near theK absorption
edge Ti possesses a transmission window 2.5–4.0
precisely in the range of the minimal dimensions of the em
ting region of the X pinch.

The results presented show that x-ray schlieren pho
raphy yields much more data on the deep layers of de
plasma than the standard optical laser probing. In our exp
ments we also used a spherically curved crystal spectrog
~mica, 10 cm radius of curvature, 100mm beryllium filter!,
making it possible to obtain soft x-ray spectra in the wav
length range of the order of several angstroms. The sh
and form of the spectra, just as the plasma parameters fo
from them, fell into the typical range for such measureme
~see, for example, Ref. 7!.
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FIG. 5. Observation of the explosion of a copper wire using a transmission diffraction grating. The numbers in the diagram~b! show:1 — plasma object,2
— screen with a 50mm in diameter diaphragm,3 — substrate,4 — tungsten diaphragm and grating,5 — image.
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4. QUALITATIVE ANALYSIS AND HYPOTHESES

The formation of a core can be related to the proper
of the electrical explosion of the wire. Estimates6 show that
for fast (.10 ns! application of voltage.100 kV the vapor-
ization front can penetrate to the axis only if the diamete
very short,,5 mm. On the other hand, the skin effect
important only of the wire diameter is quite large~50 or
moremm!. For this reason, the nonvaporized central part
the metal is superheated above the boiling temperature,
the phase trajectory reaches the critical point via volume
ullition.

The somewhat idealizedP2V phase diagram, presente
in Fig. 10 (V is specific volume,C is the critical point!,
illustrates these processes. In this diagram the curveABC
describes the path of ohmic heating of the matter on the w
axis, crossing the binodal at the pointB. On account of the
monotonic nature of the heating, each pointB8 on this curve
corresponds to a definite time, andB8B9D8E8 describes the
corresponding change in the thermodynamic parameter
the radial direction from the axis to the surface, where
porizationB9D8 occurs, and farther—into the vapor regio
s

s

f
nd
b-

re

in
-
FIG. 6. Diagram of x-ray schlieren photography using an X pinch:1, 2 —
anodes,3 — source~X pinch!, 4, 7 — Rogowski loop,5 — half-cylindrical
return-current conductor,6 — cathode,8 — load.
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FIG. 7. X-ray schlieren image of the structure of the core-corona of an exploded tungsten wire.
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expansion. When the pointB lying below the critical point is
reached, surface vaporization stops and the isothermBDE
separates the region of expanding vapor from the cen
which continues to heat up.

Naturally, a separate diagram is associated with e
point on the axis of the system. In the critical range of t
parameters the conductivity of the matter at the center is v
low ~the resistance to the current reaches several kV/cm!,
and the vapor, which ionizes in the course of breakdo
starts to overtake the current. This, as well as the confi
ment of the current to the skin layer during the subsequ
expansion of the plasma formed, stop further heating of
center, and the center remains relatively cold right up to
arrival of the shock wave arising during compression. U
mately, the distribution of material over the cross sect
becomes hetereogeneous—a central core surrounded
plasma corona.

If the optical self-emission is related to the core~Fig. 2!,
then the core must have formed no later than during the
10 ns after current onset and existed throughout the en
phase of current growth. The well understood behavior o
shock wave in plasma will serve as the starting point
understanding what follows.9 Since the paramete
(me/mi)

1/2 is small, the structure of the shock wave is d
termined by slowe–i energy exchange processes and ioni
tion on the one hand and the high electron mobility on
other. As a result, on the shock front the electron tempe
ture, which undergoes a jump.meD

2 (D is the velocity of
the front!, lags behind the ion temperature (DTi.miD

2).
Subsequent relaxation requires (mi /me)

1/2 times more
time than momentum and energy transfer to ions in a visc
shock. This, as well as multiple repetition of this effect in t
process of multiple ionization, determine the structure of
front. Heating of the plasma in front of the viscous shock
hot electrons and photons penetrating in front of it must a
be added here. Under our conditions the dimensions of
front and zone of electronic and radiation heating reach t
of mm against the background of a plasma corona wit
radius of .100 mm. As it approaches the core, this wid
front starts to interact with the sharp drop in the density
the matter in its path, while its precursor—the wave of el
tronic and radiative heat conduction — slowly heats the m
r,
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FIG. 8. Explosion of a pair of close wires in an x-ray pulse from anX pinch:
a — currents through the diode and signals from the x-ray photodiodes~1 —
X pinch, 2 — current through the wire,3 — X-pinch radiation intensity,4
— intensity of the radiation from the wires!, b — photograph, c — densi-
tometer traces in different sections.
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FIG. 9. X-ray schlieren image of the explosion of a titanium wire with visible internal structure of the core.
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sive core. The durations of these processes are.10 ns.
Here it is possible to make use of a similar problem fro

gas dynamics — the analogy with one version of the de
of an arbitrary discontinuity,9 where instead of a shock wav
arriving from the corona, new shock waves — a transmitted
wave moving to the core and backward reflected wave –
formed at the interface, and the interface becomes a con
discontinuity moving toward the axis. This process is pro
ably observed in the form of extended double-emiss
structures in the pinhle photographs in Fig. 3. On accoun
the characteristic features of the plasma compression wa
wave of radiative and electronic heat conduction propag
first into the interior of the dense core, and the shock~which
is much narrower in the dense core medium than in the
rona! is at first still too weak and slow to be at all visible
the overall picture. However, over the long time duri
y

re
ct

-
n
f
, a
es

o-

which the transformation of waves occurs the continu
growth of the current has an effect on the boundary, a
because of nonlinearity the refracted wave forms more r
idly. This shock wave, entraining and heating the core m
ter, is gradually focused on the axis. The shock wave is
sisted in this process by the reflected wave in the plas
corona, which in turn compresses the plasma behind it. A
result of this focusing, the maximum ofTe moves onto the
axis, while the heated core becomes the main carrier of
current flowing through the plasma and continues to hea
even more as it grows.

Here it is necessary to recall how the instabilities gro
Evidently, we observe them in Fig. 9. As the corona plas
is compressed, as usual, the sausage instability respon
for the formation of constrictions appears. The existence o
fairly sharp core–corona boundary makes the buildup of
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associated hydrodynamic instabilities of the Rayleig
Taylor, Richtmeier–Meshkov, Kelvin–Helmholtz, and oth
types possible. The first of these instabilities is due to
accelerated motion, occurring under the conditions of curr
growth, of the matter near the boundary located between
transmitted and reflected shock waves. The form of
fronts of these waves is modulated by the sausage instab
and focusing of the compression wave on the axis of
core occurs nonsimultaneously in accordance with
modulation.

If the nonlinear development of Rayleigh-Taylor inst
bility is sufficiently strong, jets of coronal plasma are d
rected toward the axis. This effect should be most hig
developed near the maximum of the current in the regi
where the shock front reaches the axis. Here the flow of
hot plasma in the jets relative to the less mobile core ma
can give rise to Kelvin–Helmholtz instability, whose deve
opment in turn engenders growing vortices and bursts
hydrodynamic turbulence. As a result, spots of mixed ma
of core and corona matter are formed and cluster inside
constrictions of the plasma corona. This affects the abo
described concentration of current in the core region near
axis. Thus, in the process of the evolution of the miniat
clusters of hot, dense plasma the dynamo effect can be
pected to engender near them a series of induction loop
intense magnetic fields. Ultimately, the large constrictio
will fragment into groups of small luminous spots, forming
fine structure similar to that observed in Figs. 5 and 6.

The observed facts presented above support the a
ments made, but the picture drawn here still contains m
that is hypothetical. The numerical simulation results p
sented in Ref. 10 provide additional confirmation of this p
ture. The observation of hydrodynamic instability of th
core–corona boundary was reported in a recent work.11

5. CONCLUSIONS

The results presented reveal the specific nature of
explosion of wires, which sharply distinguishes such exp
sions from other types of fast Z pinches—vacuum spark,
leak-in, pinching of laser plasma, capillary discharge. It w
determined that the characteristic features are due to
presence of a dense, cold core which is formed in the pro
of incomplete vaporization of the wire material in the cour
of the electrical explosion and exists for a long time duri
the discharge. It was shown experimentally not only tha
core exists but also that a dynamical structure arises
-

e
nt
he
e
ty,
e
is

y
s
e

er

f
r

he
e-
e

e
x-
of
s

u-
h
-
-

e
-
s

s
he
ss

a
nd

influences the formation of the fine structure of the hot spo
As a result, the standard models that ignore the hetero
neous distribution of matter over the cross section of
plasma column are hardly capable of describing correctly
complicated dynamics of exploding wires and need to
modified.
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Three-particle recombination of non-hydrogen-like ions in the presence of plasma
microfields
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The effect of electric and magnetic plasma microfields on three-particle electron–ion
recombination via the highly excited states of a hydrogen-like ion is studied. It is shown that
electric microfields impede this process, and at some electron temperature it ceases for
sufficiently high plasma density. Magnetic microfields speed up recombination via low-lying
states only negligibly. The rate of such recombination into non-hydrogen-like ion states is
comparatively higher than for the equivalent hydrogen-like ion states. ©1998 American
Institute of Physics.@S1063-7761~98!00710-0#
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1. INTRODUCTION

There are two types of three-particle electron–ion
combination. The first process, which is related to imp
ionization by the principle of detailed balance, consists of
ion capturing a free electron directly into a low-lying sta
~including the ground state!. The second process occurs
follows:1 An ion captures a free electron into a highly e
cited ~Rydberg! state. It is obvious that the probability o
such a process is high, but ionization of this electron fr
the highly excited state likewise occurs very rapidly. Ho
ever, the probability of a transition of an electron weak
bound in a Rydberg state downward along the energy s
~i.e., into more strongly bound states! under the action of
impacts from free electrons is still higher than the probabi
of a transition upwards.1 The process is reminiscent of di
fusion along the spectrum of Rydberg states or diffusion
energy, since the density of Rydberg states is high and
can switch to a continuous variable~energy!. This second
kind of three-particle recombination was studied initially
Pitaevski� for recombination in weakly ionized plasma1 and
later extended2 to the case of a relatively cold dense plasm
~only hydrogen-like ions were studied!.

These two types of three-particle recombination are
lated as follows: For\vT /e2.1 ~where e is the electron
charge andvT is the average electron thermal velocity! the
rate of the first process in plasmas with electron density u
1018 cm23 is higher, which corresponds to an electron te
perature of approximately 30 eV. At lower temperatures
second process predominates. This is why the rate of
latter recombination process enters in all calculations,
example, of the recombination scheme of an x-ray lase3,4

The problem is, however, that as the plasma density
creases, the random amplitudes of the electric and magn
microfields increase. The latter have a weaker effect on
combination, and in plasma they are usually weaker than
electric microfields. The electric microfields simply destr
the structure of highly excited levels of ions in plasma~the
Inglis–Teller effect! and the channel for such three-partic
recombination closes. The problem is to investigate how
6721063-7761/98/87(10)/6/$15.00
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rate of this three-particle recombination process decrease
a function of the electric microfields and the fields~or
equivalently, the plasma densities! for which the channel for
three-particle recombination via highly excited states can
regarded as closed.

Another interesting problem is to analyze recombinat
in non-hydrogen-like ions~this problem has not previousl
been investigated systematically5!. It is obvious that a recom-
bining electron should ‘‘feel’’ the presence of a strong
charged nucleus because the electron wave function is
zero at the location of the nucleus. For this reason, subs
tial differences should be expected from three-particle
combination into hydrogen-like ion states.

2. EFFECT OF ELECTRIC AND MAGNETIC MICROFIELDS
ON THREE-PARTICLE ELECTRON–ION RECOMBINATION
VIA HIGHLY EXCITED STATES

The Pitaevski� theory must be extended to the case of
electric field ~see the similar extension for radiative6 and
dielectronic7–9 recombinations!. Since the recombination
process is quite slow, only the ion component of the m
crofield influences it, while the electron component is av
aged. It is obvious that only the electron component can g
a magnetic microfield of any significant magnitude, so th
one would think that the effect of this field on recombinati
can be neglected. However, in a nonequilibrium plasma
electron magnetic microfield can be quite pervasive, so
we shall still analyze its effect.

First, we shall find the laws governing the dependence
the three-particle recombination rate on the comparativ
weak microfields. The field strength at which the ra
changes substantially~for example, vanishes, although th
field in this case falls outside the limits of the initial approx
mation!, and hence the value of the plasma density, w
critically separate the two recombination processes—o
the channel by means of which free electrons are captu
into low-lying states will remain in a high-density plasma

Therefore the quantities determining recombination
highly excited states must be modified for the case whe
© 1998 American Institute of Physics
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673JETP 87 (4), October 1998 M. Yu. Romanovski 
field is present. There is only one such quantity, the me
squared energy that a recombining electron gives up to
electrons per unit time. It can be calculated by two metho
purely classically10 or quantum-mechanically.11 The latter
method gives a somewhat higher value.11 However, we do
not need to determine the absolute value of the recomb
tion rate; it is sufficient to find the relative value~as a func-
tion of the field!. Thus, at first glance both computation
methods are suitable, since the classical calculation of
state of a highly excited electron is completely correct~here
the quasiclassical approximation is very close to the pu
classical approximation!.

In the classical approach the mean-square energy w
a recombining electron gives up to free electrons per u
time can be calculated as follows:

K ]~dE!2

]t L
0

5E ne~DE!2uv2v1u f 0~E!F1~E1!

3dG ds dE1 . ~1!

Herev is the velocity of a ‘‘finite’’ ~recombining! electron,
v1 is the velocity of a free electron with which the finit
electron collides and to which it gives up energy,ne is the
electron density,m is the electron mass,DE5m(v22v1

2)/2,
ds is the Rutherford differential scattering cross sectio
dG5dvxdvydvzdxdydz is the differential phase volume,

F1~E1!5S m

2pT D 3/2

expS 2
E1

T D
is the Boltzmann distribution function over energyE1, and
f 0(E) is the energy distribution function of the finite ele
tron. If the latter function is normalized to one electron,2 then

f 0~E!5AdS E1
Ze2

r
2

mv2

2 D , ~2!

whereZ is the ion charge (A is introduced below!. The quan-
tity ~1! is very simply modified for the case of an electr
microfield ~similarly for a magnetic field!: The Stark term
e(E•r ), whereE is the electric microfield~it enters only in
the expression forf 0(E)), must be inserted in thed function
and the expression obtained must be expanded in powe
the field and the first nonvanishing term taken.

It is found, however, that this first nonvanishing term
quadratic in the field and does not describe a linear S
effect ~the same is true for the Zeeman effect with the m
netic microfield!. This is physically correct only for an elec
tron microfield which is rapidly time-averaged, but for a s
tionary ~on the scale of the problem! ion microfield this is
incorrect and such linear effects are present~for example, in
the hydrogen atom!. Therefore the effect of the microfield
on the three-particle recombination process cannot be ca
lated classically, and quantum calculations must be used

As is well known~see, for example, Refs. 12 and 13! the
Schrödinger equation for a hydrogen-like ion in a consta
electric field admits separation of variables in parabolic
ordinates and introduction of parabolic quantum numbersn1

andn2 such that their sum gives a principal quantum num
n which is the same as the principal number in spher
n-
e

s:

a-

e
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,

of
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r
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coordinates. Then, in the case of a transition from a s
with principal quantum numbern11 to a staten,

DE5En2En215
I HZ2

n2
2

I HZ2

~n11!2
2

3Er Be

2Z
n~n12n2!

1
3Er Be

2Z
~n11!~n12n221!. ~3!

Here I H is the ionization potential of hydrogen andr B is the
Bohr radius. Forn2@n1 ~this condition always holds in suf
ficiently strong microfields! the expression~3! can be simpli-
fied:

dE.
2I HZ2

n3
2

3Er Be

2Z
n. ~3a!

The second negative term shows that the energy differe
decreases in the presence of a field. We obtain for the sq
of DE

~dE!25
4I H

2Z4

n6 S 12
3ZEe3

2E2 D . ~3b!

The rate of change of this quantity can be expressed in te
of the collisional transition rate between the levelsn11 and
n.11 It is easy to see that

K ]~dE!2

]t L 5 K ]~dE!2

]t L
0
S 12

3Ze3E

2E2 D . ~4!

The recombination rateb is determined by the expression2

b5F ~2pmT!3/2E
2`

0 2AeE/T

^]~dE!2/]t&
dEG21

. ~5!

HereA is the normalization constant of the functionf 0. Just
as for the classical calculation of^](dE)2/]t&, the coeffi-
cient A contains terms which are proportional only to th
square ofE :

A~E , E!5E5/2/A2 p3Z3m3/2@11O~Ze3E /E2!2#. ~5a!

Therefore it is sufficient to use the expression given in Re
or 10 for A. Using ^](dE)2/]t&0 we now obtain

b5Z3p3/2e6ne
2H 4T3/2E

2`

0

eE/TF K ]~dE!2

]t L
0

3S 12
3ZEe3

2E2 D G21

dEJ 21

. ~5b!

Performing the elementary integration we obtain

b5b0~122Ze3E /T2!. ~6!

Hereb0 is the recombination rate from Ref. 2, i.e., the ra
that is always used in calculations of three-particle electro
ion recombination.

Now, knowing the physical principles by means
which electric microfields influence the rate of three-parti
recombination via highly excited states, we can extend
perturbation theory to the case of arbitrary fields. In view
what was said above the classical approach cannot be
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here.1,2 Therefore we shall use a quantum analysis, determ
ing the recombination rate as the electron flux density, du
collisional deactivation transitions~into highly excited
states!, into the ion. This approach was demonstrated in R
11. We shall employ immediately an expression determin
the dependence of the flux densityj n through the leveln on
the population densitynn of this level. Treating the principa
quantum numbern as a continuous variable, we have,
account of the high density of highly excited states,11

j n52an21,nneF]nn

]n
1S bn,n21

an21,n
21DnnG . ~7!

Herean21,n is the rate of collisional excitation of an electro
from level n21 to leveln, bn,n21 is the rate of the revers
process~i.e., the desired recombination rate; for the tran
tions n→n22, n→n23, and so on, see Ref. 11; their tot
contribution is less than the factor 1.08!. The principle of
detailed balance holds for such an elementary transi
n→n21. The Rydberg levels satisfy the requirement

dE5En2En21!T, n@1.

In this approximation, with the exception of the restrictio
indicated above, there are no restrictions on the magnitud
the fieldE . Therefore

bn,n21

an21,n
5

nn21

nn
5

~n21!2

n2
edE/T

.11
2I HZ2

Tn3
2

2

n
2

3Er Be

2ZT
n

~see Eq.~3a!!. Substituting this expression into Eq.~7! we
obtain a linear differential equation fornn :

]nn

]n
1F2I HZ2

Tn3
2

2

n
2

3Er Be

2ZT
nGnn52

j n

an21,nne
. ~8!

Let

F52
I HZ2

Tn2
2 ln~n2!2

3Er Be

4ZT
n2

52
En

T
2 ln~n2!2

3EZe3

8EnT
.

The solution of Eq.~8! is

nn5e~2F !FC12E
n0

n j n

an21,nNe
e~F !dnG .

The constantsC1 and n0 must be determined from th
boundary conditions. For largen ~in the presence of a field
there is a maximum bound statenmax; the numbernmax must
satisfy only the condition which was imposed above,nmax

@1) the Boltzmann–Saha condition is satisfied:11

nn→n2 expS En

T D S \2

2pmT D 3/2

neni .

Hereni is the ion density. ThenC150 and
n-
to

f.
g

-

n

of

expS 3EZe3

8TEnmax
D E

n0

nmax j n

an21,nNen
2

expF2
I HZ2

Tn2

2
3Er Be

4ZT
n2Gdn52S \2

2pmTD 3/2

neni . ~9!

The numbern0 can be set equal to zero, just as in Ref. 1
since the integral obtained here is a typical integral that
be calculated by the steepest-descent method. The pree
nential expression in the integrand can be removed from
integral for values ofn determined by the maximum of th
argument of the exponential function. In our case this ma
mum is reached forn5nmax, and it is sufficient to remove
the quantityj nmax

from the integral~for largen the quantity
an21,nn2 does not depend onn ~Ref. 11!!. For sufficiently
large nmax it can likewise be replaced in the upper limit o
integration by infinity, since the error so introduced will b
exponentially small because of the second term in the ex
nential in Eq.~9!. Now, switching from integration over the
quantum number to integration over energy, we can retur
the form ~5! ~see Refs. 1 and 2!:

nej nmax
5b5b0 expS 2

3EZe3

8TEnmax
D E

2`

0

uEu3/2expS E

T

1
3EZe3

8ET DdEF E
2`

0

uEu3/2expS E

TDdEG21

. ~10!

Finally, the expression obtained must be averaged over
distribution of the energyEnmax

, for which, just as forEn ,
the Boltzmann law is valid. Settingq53ZEe3/8T2 and cal-
culating the required integrals we have

b5b0

2Aq K1~2Aq !exp~2Aq !

112Aq14q/3
, ~11!

whereK1(x) is a modified Bessel function of order 1. Th
expression is limited with respect to the magnitude of
field only in the sense that the conditionn@1 holds, i.e., its
applicability is wider than that of the expression~5! ~we
recall that the latter expression is applicable only
ZEe3/T2!1). As E→0 the quantityq also approaches zer
and 2AqK1(2Aq).11O(q), so that when the numerato
and denominator in Eq.~11! are expanded in a series th
term of orderAq cancels, and the leading term of the expa
sion in powers of the field will be~essentially! linear, just as
in Eq. ~6!,

b.b0$12q@ ln~1/q!117/622g#%. ~11a!

Hereg is the logarithm of the Euler constant. However, i
stead of the 2 multiplying the expressionZEe3/T2 in Eq. ~6!,
the same coefficient of proportionality in the expansion
the general expression becomes logarithmic; it depe
weakly on the field.

We shall now make some estimates for hydrog
(Z51). Let the electron density equal the ion densi
ne5ni51018 cm23, T51 eV; we take forE the average ion
microfield for the Holtsmark distributionEH58.8eni

2/3.
Then q50.0626 andb.b0(120.279)50.721b0. We note
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that a calculation using the simple formula~6! gives a some-
what lower valueb.0.665b0. Therefore the recombinatio
rate decreases by almost a factor of 1.5 even for such de
ties! Let us now estimate the decrease in the recombina
rate for the experimental conditions of Ref. 14 and Ref.
for which recombination occurred into a state of hydroge
like lithium, Z53, ni.1.6731018 cm23, and the average
electron temperatureT was estimated as 3 eV. Thenb
5b0(120.153)50.847b0, i.e. approximately 15% lower
The formula~6! gives virtually the same result forb: b0(1
20.157).0.843b0.

In the limit q→` we have

2Aq K1~2Aq !exp~2Aq !→ApAq,

b→3b0Ap ~3ZEe3/8T2!23/4/4.

If a decrease of the three-particle electron–ion recombina
rate by a factore is taken as the condition for closure of th
channel, then closure occurs when

Ze3EH /T2.1.034. ~12!

It is easy to see that it corresponds to the criter
G5Z2e2/Tdi.1 for a noniedal plasma (di is the average
distance between ions:EH58.8eni

2/353.88e/di
2 , so that

Ze3EH /T2.3.277G2>1 or G>0.55. Therefore the three
particle recombination channel~according to Pitaevski�! un-
der discussion is essentially closed in a nonideal plasma

Let us now examine briefly the effect of a magnetic m
crofield on this recombination rate. The Rydberg levels
split by the Zeeman effect. In this case an electron is m
more likely to be captured into states with negative energy
smaller absolute magnitude. The analog of the expression~3!
for the energy difference between neighboring statesn11
andn will be1

DE.
2I HZ2

n3
1

\eH

mc
5

2I HZ2

n3 S 11
\n3eH

2Z2I Hmc
D

5
2I HZ2

n3 S 11
ZAI H eH\

2mcuEu3/2 D . ~13!

HereH is the microfield produced by the plasma electro
in which recombination corresponds to the conditions
quasistationariness. The expression for the relative chang
energy as a function of the microfield actually does not c
tain \, i.e., it is a classical number:

ZAI H eH\

2mcuEu3/2
5

Ze3H

2A2m cuEu3/2
.

Therefore the relative increment in the energy is less by
factor AuEu/32mc2 than the corresponding increment for a
electric microfield even if both microfields have the sam
amplitude, which happens only under certain~extreme! con-
ditions. The recombination rate in a magnetic microfield c
be written exactly by analogy to the electric microfield:
si-
n

5
-

n

n

e
h
f

,
f
in
-

e

n

b5Z3p3/2e6H 4T3/2E
2`

0

eE/TF K ]~dE!2

]t L
0

3S 11
Ze3H

2A2m cE3/2D G21

dEJ 21

. ~14!

After integrating we obtain

b5b0S 11
A2 Ze3H

3Apmc2T3 D . ~15!

We shall now make estimates for hydrogen (Z51) in the
case that the plasma is produced by a short intense l
pulse. The electron temperatureTe of the plasma reache
1 keV. Then we haveH55.2HH , the average magneti
microfield for the Holtsmark distribution, wher
HH58.8eni

2/3A2Te /mc2, ne5ni51018 cm23, and finally
b5b0(110.376310210), i.e., the changes induced in th
recombination rate by the magnetic microfield are very sm
~since we assumed the electron temperature to be high!. At
low temperatureTe51 eV andH5HH the increment is
four orders of magnitude larger but still small compared w
the decrease in the electric microfield.

In summary, the magnetic microfield in itself cann
strongly influence three-particle electron ion recombinat
via highly excited states. However, it can~somewhat!
speed-up this recombination for high electron temperatu
in the plasma. The electric microfield, on the other hand,
substantially decrease the rate of three-particle electron–
recombination via highly excited states of the ion even w
charge densities in the plasma;1018 cm23 and compara-
tively low temperatures of the order of several electron vo
In a nonideal plasma this three-particle recombination ch
nel closes completely.

3. THREE-PARTICLE RECOMBINATION IN STATES
OF NON-HYDROGEN-LIKE IONS

One would think that as soon as diffusion of the reco
bining electron along highly excited states becomes
bottleneck that determines the rate of the recombination p
cess under study the non-hydrogen-like nature of the
should be of no consequence, since the arrangement o
Rydberg levels of any ion is very close to the arrangemen
the levels of the equivalent hydrogen-like ion. However, t
difference still exists, the recombining electron should fe
the presence of the strongly charged nucleus simply bec
the electron wave function at the location of the nucleus
different from zero. An electron is seemingly additional
~compared with the situation in the equivalent hydrogen-l
ion! attracted to the nucleus, i.e., the recombination rate
non-hydrogen-like ion should be higher than the recombi
tion rate in the equivalent hydrogen-like ion.

Thus, we must take account of the influence of t
nucleus on the shift of the energy levels. This can be done
the Thomas–Fermi method modified for ions.16,17

Let the nuclear charge in the problem at hand beN, and
let the ion charge once again beZ. The Thomas–Fermi equa
tion for ions is



r

ng
m

en
el

.

th

ke
o

ly

with

For

rge

as

ed
m

ere

is
udy

n-
he

y

676 JETP 87 (4), October 1998 M. Yu. Romanovski 
D~f2B!5
4e

3p\2
@2me~f2B!#3/2. ~16!

Heref is the desired potential, the constantB is determined
from the boundary conditions~for a neutral atomB50).
Switching to dimensionless quantitiesF andx

e~f2B!5
Ne2F

r
, r 5

xrB~3p!2/3

2•42/3N1/3
, ~17!

we obtain the Thomas–Fermi equation in the standard fo

Ax F95F3/2 ~17a!

with boundary conditions (r 5R, x5x0)

F~x0!50, F~0!50, x0F8~x0!52N/~N2Z!.
~18!

We now perform Bohr–Sommerfeld quantization, treati
the difference between the real potential in which the reco
bining electron moves and the potential of the equival
hydrogen-like ion as a correction. The Bohr–Sommerf
conditions are

p\S nr1
1

2D5A2m E
b

a

dr

3A2uEu1
ew~r !

r
2

\2l ~ l 11!

2mr2
. ~19!

Here w(r )5ZeF(r ) and l is the orbital quantum number
We rewrite w(r ) in the form w(r )5(N2Z)@11 f (r )#,
where

f ~r !5H Z/~N2Z!, r 50,

0, r 5R,

a andb are classical turning points

a,b5
e2~N2Z!

uEu F16A12
2uEu\2l ~ l 11!

me4~N2Z!2 G .

For a@R andb!R we can simplify the radicand in Eq.~19!
as

A~a2r !~r 2b!→Aar .

In this case the Bohr–Sommerfeld conditions reduce to
expression

AI H
N2Z

E
5nr1

1

2
1Al ~ l 11!

2
Am e2~N2Z!

p\A2buEu
E

b

Rf ~r !dr

Ar
, ~20!

and for the inner turning point

b. l ~ l 11!r B
N2Z .

Herer B
N2Z is the Bohr radius of the equivalent hydrogen-li

ion, r B
N2Z5r B /(N2Z). Collecting all quantum numbers int

a single principal quantum number we obtain from Eq.~20!
m

-
t

d

e

AI H
N2Z

E
5n2

1

2p\Ar B
N2Z E

r B
Z2N

R f ~r !dr

Ar
. ~21!

Finally, we make a decisive simplification, taking on
the first nonzero term in the Taylor series expansion off (r )
at r .R. It is obvious that on account of Eq.~17! or ~17a! the
second derivative here equals zero and this series starts
the cubic terms:

f ~r !5aZ2~R2r !3/~N2Z!b2.

Here b5(3p/4)2/3r B/2.0.8853r B . The formula~1! makes
it possible to obtain an expression for quantum defects.
the S states we havel 50 and

AI H
N2Z

E
5n02

16A0.8853

35p
AN2Z N5/6x0

7/25n02d0 .

~22!

If the ion charge is taken to be half the nuclear cha
Z5N/2, thenx052.75 holds~see Fig. 1! and the quantum
defectd0 of these states will depend on the nuclear charge

d0.0.161N1/3.

For example, let us examine how the theory develop
above describes the ionization potential of the heliu
atom—the standard test for all such calculations. H
N52 and the ionization energy is

I He5I H /~12d0!2.22.8 eV, ~23!

which is 1.8 eV less than the true value. This accuracy
adequate for our purposes, since we did not intend to st
deep-lying states.

We shall study recombination into a state of a no
hydrogen-like ion just as we did above, introducing t
quantitiesA and ^](dE)2/]t& and calculating their incre-
ments:

A5A01DA,

K ]~dE!2

]t L 5 K ]~dE!2

]t L
0

1D K ]~dE!2

]t L .

The normalization condition is now

FIG. 1. Solutions of the Thomas–Fermi equation~17a! for two types of ions
~curves1, 2! and a neutral atom~curve3!: 1 — Z50.5N; 2 — Z50.21N.
The tangents to the curves atF50 intercept on the ordinate the quantit
Z/N.12
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A~E!E d F2uEu2
p2

2m
1~N2Z!e2

11 f ~r !

r GdG51, ~24!

or after expanding in a series in powers ofErB /e2

1

A
5

1

A0
14p2A~2m!3~N2Z!e2E

0

R
Ar 3 f ~r !dr

.
1

A
F110.026Ax0

11Z~ErB /e2!5

N2Z
G . ~24a!

For transitionsD l 51 we obtain from Eq.~22!

K ]~dE!2

]t L 5 K ]~dE!2

]t L
0

~11d l2d l 21!

.K ]~dE!2

]t L
0
F11

N

p~Z2N! G . ~25!

For Z,N2Z the final expression for the recombination ra
of a non-hydrogen-like ion, taking account of the therm
velocity distribution of the electrons, is

b5b0F11
Z

p~N2Z!
10.265Ax0

11N~TrB /e2!5

N2Z
G . ~26!

Here b0 is the recombination rate for the correspondi
equivalent hydrogen-like ion. The second term in bracket
the leading-order correction. For sufficiently strong ioniz
tion ~but for Z,N2Z) the recombination rate of a real io
can be tens of percent higher than the recombination rat
the corresponding equivalent hydrogen-like ion. This is i
portant for interpretation of experiments on recombinat
pumping of x-ray lasers, especially when the plasma is p
duced by short pulses of a strong electromagnetic field.14,15,18

4. CONCLUSIONS

In summary, the random electric microfield of a plasm
decreases the rate of three-particle electron–ion recomb
tion via highly excited states of a hydrogen-like ion ev
with charge densities;1018 cm23 in the plasma and com
paratively low temperatures on the order of several elec
volts. As plasma density increases further with the plas
temperature remaining constant, this microfield essenti
closes this recombination channel completely, and recom
nation into strongly bound states of the ion becomes the o
possibility. The criterion determining whether or not the fi
process is forbidden is approximately the same as the c
rion for a nonideal plasma, i.e., in a nonideal plasma only
latter three-particle recombination process remains.

The magnetic microfield in itself cannot strongly influ
ence the process of three-particle electron–ion recomb
tion via highly excited states. However, it can speed-up
l

is
-

of
-
n
-

a-

n
a
ly
i-
ly
t
e-
e

a-
is

recombination somewhat at high electron temperatures in
plasma.

The recombination rate for a real ion can be tens
percent higher than that of the corresponding equiva
hydrogen-like ion. This is important for the interpretation
experiments on recombination pumping of x-ray lasers,
pecially when the plasma is produced by a short pulse o
strong electromagnetic field.
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Using experimental data on compression and heating of dense metallic plasma by powerful
shock waves, we have analyzed the effect of strong Coulomb interaction on both discrete and
continuum bands of energy spectrum, the role of short-range repulsion, and the effect of
degeneracy on the equation of state for a dense, nonideal metallic plasma. Explosive devices have
been used to produce plasma for which the degree of ionization, nonideal parameter, and
degeneracy varied over wide ranges. In order to increase effects of irreversible energy dissipation,
metal targets of low densities have been used. Thermodynamic measurements have been
compared to theoretical models taking into account Coulomb interaction, short-range repulsion,
and degeneracy of electrons. The plasma models have been shown to be applicable to the
equilibrium properties of multiply ionized plasma in a wide region of the phase diagram
characterized by extremely high parameters@T>104 K, P>10 GPa, andr
5(0.1– 1)r0], which is beyond the traditional domain of plasma physics. ©1998 American
Institute of Physics.@S1063-7761~98!00810-5#
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1. INTRODUCTION

To date it has been found that the physical properties
plasmas can be described theoretically in the limiting ca
of high temperatures and/or ultrahigh densities, when the
teraction between plasma particles is weak, which allo
researchers to use classical~Boltzmann statistics!1 or quasi-
classical~Fermi statistics! self-consistent field methods.2 The
region of intermediate parameters is characterized by hig
uncertain theoretical predictions, whereas it is of great pr
tical interest3 in view of applications to power generatio
~inertial thermonuclear synthesis, MHD generators, etc.!, as-
trophysics~structure of giant planets, brown dwarfs, etc!,
and other applications to specific areas. For this reason,
of the most interesting and complicated problems of mod
plasma physics is the investigation of plasma properties
der conditions of strong interparticle interaction, whi
makes difficult application of conventional theoretical tec
niques ~such as the perturbation theory, computer simu
tions, etc.! and requires extremely thermal energy high de
sities to be generated in physical experiments.4 The
experimental search for phase transitions in nonideal pla
predicted by heuristic models and detected recently in d
and colloidal plasmas5 is of special interest.

Until now the bulk of experimental data concernin
properties of strongly nonideal plasma has been obtained
ing dynamic techniques,4,6 when materials are compresse
and irreversibly heated by powerful shock waves. Explos
6781063-7761/98/87(10)/13/$15.00
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devices and pneumatically driven projectiles in such exp
ments allow researchers to test and analyze theoretical m
els describing thermodynamic, electrodynamic, and opt
properties of nonideal plasma composed of cesium, no
gases, and hydrogen under highly collisional conditio
(GD5A4p(e2/kBT)3(naZa50.1– 5 is the Coulomb inter-
action parameter!, when ne|e

3<0.1 holds ~here |e

5A2p\2/mekBT is the electron de Broglie wavelength!, the
electron gas statistics is Boltzmann, and the ionization
gree of such a plasmaa5ne /(na1ni) is within 1–2. Plasma
beyond this region, namely, a multiply ionized and par
degenerate plasma, can be described by using experim
data on compression of solid and porous materials by sho
with pressure amplitudes of hundreds of thousands to m
lions of atmospheres. Thus far a considerable amount of
perimental data concerning dynamic compression of me
~see the compendia in Refs. 7–9 and references therein! by
shocks generated by chemical6,10,11and nuclear12 explosives,
pneumatically driven projectiles,13 and in recent time by con
centrated laser,14 X-ray,15 and ion16 beams has been accum
lated.

The data on shock compression, supplemented w
measurements of unloading adiabats in shock-compre
metals, form the basis for constructing equations of stat17

which is done by selecting optimal constants in function
thermodynamic relationships derived from simplified the
modynamic models. At the same time, even under mode
pressures of 100 to 200 GPa metals melt, and under an
© 1998 American Institute of Physics
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creasing pressure they are sequentially ionized by temp
ture and pressure. Thus a dense, disordered system of m
ply ionized particles, i.e., an electron–ion plasma with
complicated spectrum of intense interactions among its
ticles, is generated.

For this reason, the shock-compressed metal plasma
pears to be of interest for testing theoretical models
plasma, in view of both the search for phase transitions
plasma18 and the analysis of various models of nonideal fe
tures of plasmas in discrete and continuum bands of t
energy spectra, and the effects of bound electrons and
statistical properties on plasma thermodynamics at high
ergy densities. The aim of these studies is, in reality, to
tend the application domain of plasma models19 to the region
of densities corresponding to condensed states and
megabar pressures, which has not been studied by tradit
methods of plasma physics until recently and where the
searchers have used either semiempirical approximate e
tions of state17 or far-fetched extrapolations of quasiclassic
approximations.20 Moreover, thermodynamic measuremen
of this kind in the region of the metal–dielectric transitio
might be used in testing the hypothesis21 of a relation be-
tween metallization and the first-order phase transition
disordered materials.

This paper presents experimental data on generatio
nonideal plasma of copper, nickel, and iron through co
pression and irreversible heating of porous samples exp
to powerful shock fronts in either plane or converging co
figuration. Measurements of shock velocities in tested
reference samples allow us to calculate, using conserva
of mass, momentum, and energy, thermodynamic parame
of shock-compressed plasma and compare them to resu
theoretical models of multicomponent nonideal plasmas.

2. GENERATION AND DIAGNOSTIC OF PLASMA

The interesting range of parameters of strongly nonid
plasmas corresponds to material densities lower than
densitiesr0 of solids and energies per particle higher th
the binding energies of atoms and molecules in solid
(;1 eV per particle!. In generating such states of metals, w
used shock compression of finely dispersed~porous! metals,
which enhanced the effects of irreversible energy dissipa
on the shock discontinuity front and in higher plasma ov
heats. Powders of metals containing at least 99.5% of
host material were tested. The samples were cylindrical
lets with a diameter-to-thickness ratio higher than 2.5 and
required density. They were pressed from powders or fa
cated from metal hydrides using a dedicated technique.
high diameter-to-thickness ratio was needed to limit effe
of perturbations generated on the sample side surface on
shock front.

Samples of relatively low porosities, 1,m5r0 /r00,4
~wherer0 is the initial density of the solid metal andr00 is
the density of a sample!, were manufactured by pressin
powders in special molds or, form>4, immediately in a
measuring cell. The powder particles were smaller th
100mm and in some experiments were varied to estimate
effect of the grain size, which proved to be negligible in o
ra-
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experiments. A higher porosity (4,m,8) was achieved in
samples fabricated from hydrides of these metals and su
quently dehydrated. Samples of the highest porositym
.8) were fabricated from fine powders with grain sizes
several~2–3! hundreds of angstro¨ms obtained by stripping
very fine particles from surfaces of melted metals by a hi
speed helium jet. The oxide content in the powders w
checked. In all cases it was a fraction of one percent. T
size of powder particles was selected taking into account
condition of their uniform heating. This circumstance a
some technological conditions limited the porosity in o
experiments tom<20.

The dynamic diagnostic methods of shock-compres
states rely on the conservation of mass, momentum, and
ergy on the front of a plane stationary discontinuity10:

V5r215
D2U

r00D
, P5r00DU, E5E01

U2

2
. ~1!

Measurements of shockD and particleU velocities in experi-
ments allow the researchers to calculate thermodyna
quantities, namely, the pressureP, specific volumeV, and
specific internal energyE of a shock-compressed material.

Shock velocities in porous targets shaped as pellets
thickness 3–4 mm were measured using electrical contac
detect shock fronts. At pressures beyond 10 GPa, we u
electrically insulated pins with a diameter of 0.14 mm fab
cated from the PE´ L-14 enamel-coated wire. At lower pres
sures, when such shock detectors are not reliable, mea
ments were performed using piezoceramic probes.
explosive measuring devices and configuration of shock
tectors placed on samples allowed us to measure the s
velocity with an uncertainty of 1–1.5%, moreover, we cou
check the shock front symmetry in samples using the ti
differences among signals from different probes placed
the same level~on the same plane of a sample!.

In our experiments, we used explosive generators
three types. The first includes so-called contact device22

shown schematically in Fig. 1, which were used in expe
ments at low compression. After the plane detonation fr
emerges at the free surface of an explosive, explosion p
ucts ‘‘softly’’ expand across an air gap, hit against a meta
striker plate, and generate a quasi-stationary shock wav
it. In this process, the striker velocity becomes appro
mately constant. By varying the composition and thickne
~mass! of the explosive charge, one can measure parame
of shock-compressed porous materials over a fairly w
pressure range.

Shocks in shields of devices of another type were g
erated by hitting them with relatively thin metal~aluminum,
iron! plates of thickness 1.5–4.0 mm accelerated to velo
ties of 4.0 to 6.5 km/s. A diagram of such a device is giv
in Fig. 2. In this device, explosion products drive an alum
num striker23 of thickness 4 mm pressed into a steel disk
the same thickness. A detonation wave arriving on the m
surface generates in the steel disk a pressure higher tha
aluminum, thereby generating an additional thrust on
edges of the aluminum disk and equalizing the flying strik
In other devices of this type, steel plates with thicknesse
1.5 to 2.2 mm were used. The pressure in such device
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approximately twice that in plane contact devices~Figs. 1
and 2!. The highest pressures could be generated in facili
with spherical converging strikers~‘‘shells’’ ! accelerated by
explosion products of a converging detonation wave.12,24

Figure 3 shows a diagram of such a cumulative device.
striker in this case is a steel shell about 3 mm thick, wh

FIG. 1. Diagram of the facility with contact striker:1 — high-explosive
lens;2 — inertial equilibrating support;3 — cylindrical explosive charges
4 — striker;5 — shield;6 — tested samples;7 — electric pins;8 — 5-mm
air gap.

FIG. 2. Diagram of the projectile generator of shock waves:1–7 — the
same as in Fig. 1;8 — steel disk.
s

e
e

velocity gradually increases as it converges to the center
placing targets with the sample to be tested at various
tances from the center, one can generate various pressur
them. The specific feature of these devices is the time dep
dence of the propagating shock wave parameters owin
the spherical symmetry. This circumstance impelled us
introduce small~about 1%! corrections due to the differenc
between the shock convergence parameters in the shield
sample.

In all the devices discussed above, the shields were m
from aluminum. This material was selected because
Hugoniot inP–U coordinates~where the problem of deca
of the discontinuity at the shield–sample interface is solv
by the reflection technique25! is close to those of porous me
als and, as was shown by Bugaevaet al.,26 the specular im-
age of the shock Hugoniot in theP2U plane can be used in
calculating compression parameters in such powders. T
makes calculation of the particle velocity behind the sho
front and other shock compression parameters notably ea
more reliable, and less uncertain. In accordance with our d
reduction routine, each value of the shock velocity measu
in each experiment is the mean of three to eight independ
measurements~the number of experiments at lower pressu
was larger!. Therefore the relative rms error of the sho
velocity in all sets of measurements was less than 1–1.
The uncertainty of the particle velocity in the sample ma
rials was in the same range. The error in the determining
amount of compression

Ds5D~r/r00!5s~ms21!~ uDD/Du1uDU/Uu!

increases withm ands and is considerably higher at max
mum m, although this error was partially compensated
this region because the compression satisfieds,1.

Nonetheless, judging by the good agreement among
merous measurements for various materials, the most p
able experimental values were found with fair precision. T
is also true for the region of lowest pressures, where m
surements are especially susceptible to errors inD andU.

3. EXPERIMENTAL DATA AND THEIR ANALYSIS

The purpose of our measurements was to determine
perimentally the compressibilities of porous samples in
region of plasma states that had not been investigated ea
in metals: for nickel, we have studied the region of high
possible porosities (m515 and 20! and shock pressure be
yond 50 GPa, which are considerably higher than in ear
experiments;27,28 for copper, we have obtained data at poro
ity m510, which is also higher than in earlier publ
cations.27,29In addition, we have studied samples with poro
ity m57.2 and particle sizes of 100 Å for comparison
previous measurements27 performed at particle sizes of abou
100mm. The measurements of iron compression atm55,
10, and 20 have been compared to and analyzed in com
nation with the earlier data.27

Before proceeding to the analysis of the experimen
results, we recall that calibrations were performed earlier27,28

in order to check whether the experimental data are affec
by the sample humidity, thickness, presence of air ins
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FIG. 3. Diagram of the cumulative shoc
generator of spherical geometry:1 — hemi-
spherical high-explosive charge;2 — steel
shell; 3 — aluminum shield;4 — tested
samples;5 — electric pins.
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them, and particle sizes. In those experiments, data obta
on different samples were compared: powders baked in
lation from the atmosphere and powders fabricated in
samples from which air was pumped out; samples wh
thicknesses differed by an order of magnitude; samp
whose particle dimensions varied by a factor of 20 to 30
was found that the data obtained in testing experiments w
equal to those obtained in the main series of experime
within the measurement error. Keeping in mind these resu
we limited our testing experiments to the investigation of
grain size effect. All new data are listed in Table I. The d
for nickel and copper are compared to earlier measu
ments27,28 in the D2U coordinates in Fig. 4.

The comparison between different experiments sho
that measurement data for a copper plasma obtained fo
samples with grain sizes differing by a factor of 10000~at
m57.2) coincide. Hence follows the conclusion that t
shock front width, which depends, possibly, on the gr
size, has little effect on measurements, and their interpr
tion is straightforward. The new experimental points f
nickel are located on extrapolations of Hugoniots obtaine
lower pressures, which is quite natural. The set of meas
ments given in the graphs support the conclusions give
Ref. 28, which apply, as one can see, not only to nickel,
also to copper, iron, and, possibly, to all the materials st
ied.
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The common properties are the following:
1. The initial sections of the Hugoniots form fans

straight lines with different slopes converging to points~or a
narrow intervalDD) on the ordinate (U50) at a distance of
100–200 m/s from the origin. This value may correspond
the speed of sound in air reduced by the presence of m
particles, which is plausible for Hugoniots in the case of hi
porosity. This hypothesis runs into difficulties when we an
lyze HugoniotsD(U) in the case of low porosity, whos
initial sections interpolated towards the ordinate also h
this property.

2. The slopedD/dU of initial sections of Hugoniots
varies over a wide range between approximately 3~nickel,
m51.1) and 1.1 (m520). The slope of the Hugoniot sec
tions corresponding to higher pressures changes two ti
~this was observed in experiments with Cu and Ni atm
510 and 20!: first in the regions of relatively small shoc
velocitiesD,8 km/s ~in nickel it changes from 1.7 for low
s to 1.4 for higher values!, then the slope becomes approx
mately equal to the theoretical value of 1.2–1.3 calculated
the Thomas–Fermi self-consistent field model.20

3. The change in thedD/dU slope on the initial section
means, physically, that in the process of compression
pores have been filled, and the sample density is close~for
the given porosity! to the crystal density of the material. A
further increase in the pressure should compress the mat
FIG. 4. D –U Hugoniots of copper, nickel, and iron.
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TABLE I.

Experiment Theory@Eqs.~15!–~24!#

M D, km/s U, km/s P, kbar r, g/cm3 H, kJ/g r, g/cm3 T, K H, kJ/g

Nickel

15 11.5 9.36 637 3.18 56.65 3.08 53300 56.9
20 11.9 9.74 516 2.42 61.6 2.48 54000 61.3

Copper

7.2 1.21 1.00 15 7.15 24.57 9.61 4680 24.6
7.2 1.88 1.58 37 7.86 23.55 8.71 5796 23.58
7.2 2.3 1.92 55 7.58 22.7 8.03 6803 22.72
7.2 2.91 2.40 87 7.08 21.158 6.99 8835 21.15
7.2 3.40 2.75 120 6.49 0.482 6.18 11248 0.5
7.2 5.25 4.04 263 5.38 7.767 5.27 19616 7.8
7.2 6.33 4.79 376 5.09 1.36 5.26 24511 1.3
7.2 7.09 5.31 467 4.94 18.3 5.27 28065 18.0
10 1.21 1.01 10.9 5.30 24.57 9.57 4680 24.61
10 1.90 1.64 28 6.36 23.5 8.52 5880 23.55
10 2.30 2.00 41 6.92 22.69 7.78 6860 22.72
10 2.91 2.52 65 6.66 21.15 6.58 8900 21.15
10 3.40 2.90 88 6.01 0.379 5.68 11150 0.4
10 4.15 3.44 127 5.21 3.05 4.86 14830 3.1
10 5.35 4.29 205 4.51 8.47 4.47 20462 8.4
10 6.58 5.08 293 3.92 14.9 4.39 25800 14.5
10 8.02 6.10 437 3.73 25.1 4.35 32880 24.2
10 11.33 8.69 880 3.83 55.5 4.26 51700 54.9

Experiment Theory@Eqs.~2!–~14!#

M D, km/s U, km/s P, kbar r, g/cm3 H, kJ/g r, g/cm3 T, K H, kJ/g

Iron

5 4.16 3.09 202 6.10 0.662 6.09 11640 0.6
5 5.38 3.81 322 5.38 5.82 5.41 17400 5.70
10 4.18 3.50 115 4.83 1.09 4.68 13530 1.1
10 5.35 4.39 184 4.37 6.4 3.87 19940 6.67
10 6.62 5.20 270 3.66 13.5 3.59 25900 13.5
10 8.12 6.23 397 3.38 23.7 3.50 33150 23.5
20 1.15 1.03 4.6 3.58 26.78 6.35 4860 26.81
20 1.90 1.73 13 4.44 25.63 7.54 5740 25.68
20 2.36 2.19 20 5.37 24.7 6.89 6700 24.73
20 2.93 2.73 31 5.60 23.2 5.91 8290 23.22
20 3.40 3.15 42 5.33 21.68 5.00 9990 21.66
20 5.45 4.79 102 3.24 7.14 2.68 19920 7.4
20 6.75 5.73 152 2.59 14.9 2.38 26290 15.1
20 8.44 6.89 228 2.13 27.0 2.25 35150 26.7
d

wi

t
In
i-
le
en
ri

n-
ideal
etc.,

ion
-

ully
ate-
le to
ea-
od-
a.
is
along low-compressibility branches of Hugoniots. Depen
ing on the porosity, the slopedP/ds of the compression
curves should change from positive values~for m,2)
through zero~at m52 – 3) to negative values (m.3). All
these types of Hugoniots were observed in experiments
iron, copper, and nickel.

4. THERMODYNAMICS OF NONIDEAL METALLIC
PLASMAS: COMPARISON WITH EXPERIMENTAL DATA

Before proceeding to the analysis of experimental da
note that their physical interpretation is rather difficult.
dynamic experiments3,6 the thermodynamic characteristic d
rectly derived from measurements is typically the so-cal
caloric equation of state which determines the internal
ergy as a function of thermodynamically conjugated va
-

th

a,

d
-

-

ables, namely the pressure and specific volume,E(P,V). On
the other hand, the traditional physical interpretation of no
ideal plasma is based on the temperature and related non
parameters, electron degeneracy, degree of ionization,
thus it requires the knowledge of functionT(P,V). The tem-
perature can be derived from the empirical caloric equat
of state using Zel’dovich’s idea.30 This procedure was previ
ously performed for cesium plasma.31,32 Although this ap-
proach shows promise at the present time, it cannot be f
implemented in the case of shock-compressed porous m
rials discussed in this paper. Therefore it seems reasonab
separate the two stages: the first is analysis of directly m
sured quantities without calculations based on physical m
els, the second is analysis using specific models of plasm

In characterizing experimental results as a whole, it
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FIG. 5. Density–energy diagram for nickel plasma.34 The
graph shows isotherms and experimental points derived fr
shock compression measurements of solid and porous ni
samples.4,28 Lines of constant Coulomb collisionality param
eter@GD5A4p(e2/kBT)3(naZa

2 # and electron degeneracy pa
rameterne|e

3 are given in the diagram.
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useful to consider the internal energyE–densityr diagram
supplemented with isotherms of the material calculated us
a specific model.33 Figure 5 shows theE–r diagram for
nickel.34 It clearly shows that the entire phase diagram of
material ~diagrams for other materials are similar! can be
divided into two regions with radically different shapes
thermodynamic functions. The major part is the region
relatively low-density (r!r0) ‘‘gaseous’’ plasma, which is
characterized by two properties, namely, the gradual
crease in the energy in the process of isothermal compres
and clearly seen so-called ‘‘shell oscillations’’ of all therm
dynamic functions over wide intervals of densities~see for
details Ref. 35!. For r.r0 the system is characterized by a
abrupt increase in the energy and generalized compressib
factor Z(nnucl,ne ,T)5P/Pideal, which is traditionally inter-
preted as ‘‘ionization by pressure.’’ In the high-density lim
the compression leads to the region of states adequately
scribed by the model of mobile nuclei in a weakly nonide
gas of degenerate electrons. The thermodynamics in this
gion has been fairly accurately described using the well
veloped technique of cell representations.2,36–38

Between the two regions described above, there is a t
sitional region characterized by minimal values of the int
nal energy and compressibility factor, and by maximal d
viation from the ‘‘weakly nonideal’’ condition. The depth
and positions of minima on the curves determined by
thermal and caloric equations of state characterize the re
where the uncertainty of our knowledge of thermodynam
properties of hot compressed matter is the greatest.
unique feature of shock-compressed porous samples is
they allow us to obtain information about dense, highly no
ideal plasma in this interesting region, which is most diffic
for interpretation.

The chemical model1,39–43is based on the representatio
of the free energy of a quasi-neutral mixture of electro
ions, atoms, and molecules as a sum of ideal-gas termsFi ,e

0

for all components and the terms responsible for all types
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interaction among plasma particles, which are treated se
rately in this model:

F[( Fi
01Fe

01Fii ,ie,ee, . . .* . ~2!

The statistics of atoms and ions is Boltzmann, and their c
tribution is

Fi
05(

j
NjkBTS ln

nj| j
3

Qj
21D . ~3!

Here kB is the Boltzmann constant,Qj is the full partition
function of atoms or ions of thej th sort,| j is the thermal de
Broglie wavelength of particles of speciesj

4.1. Electron degeneracy

The effects of electron degeneracy are important in t
region of the phase diagram since the degeneracy param
of electrons can be up to several units:

ne|e
3'1, |e

2[2p\2/mekBT.

In the quasi-chemical representation, which separates e
trons into two types, namely free and bound, the effect
degeneracy is manifested primarily in the ideal-gas te
since it radically changes the density dependence of the p
sure and chemical potential. The main effect of the elect
degeneracy on the mechanism for nonideal behavior is th
reduces the electrostatic screening by electrons as their
generacy factor increases. In the limiting case, when
compression is extremely high,2 electrons are excluded from
this mechanism, and the screening of ion charges is
scribed by the so-called ion mixture model, a version of
one-component plasma model. In this study, the electron
generacy is taken into account mostly by including this eff
in the ideal-gas term of the free energy:
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Fe
05

2VkBT

|e
3Ap

F me

kBT
I 1/2S me

kBTD2
2

3
I 3/2S me

kBTD G , ~4!

Pe
0

nekBT
5

2

3

Ee
0

NekT
5

2

3

I 3/2~me /kBT!

I 1/2~me /kBT!
. ~5!

Here the electron densityne and chemical potentialme are
related by the equation

ne|e
35

2

Ap
I 1/2S me

kBTD , I t~x!5E
0

` ytdy

11exp~y2t !
. ~6!

In the chemical model of plasma, electron degener
mainly causes an effective shift of the ionization equilibriu
toward low ionization, and also generates an additional te
in the equation of state describing an effective repulsion

4.2. Nonideal effects

The analysis of nonideal effects in this study was p
formed in two stages. On the first stage, we employed
SAHA-3 computer code, which had been extensively use
applications.1,34,44–48 It involves the minimum number o
steps consistent with achieving satisfactory agreement wi
experimental uncertainty with data on shock compression
various materials, such as noble gases, cesium, high-por
metallic samples, etc. Some simplifications of this appro
are needed in order to calculate the equation of state toge
with the gasdynamic calculations, which require a lot of au
iliary calculations.

This simplified approach relies on the following approx
mations:

1. The effect of electron degeneracy is included only
the ideal-gas term.

2. The effect of the Coulomb nonideal behavior is d
scribed by the so-called Debye~ring! approximation for a
large canonical ensemble.44,49

3. In the calculation of excitation partition functions fo
atoms and ions, only their ground states are taken into
count.

4. The intense short-range repulsion among atoms
ions is taken into account through the approximation of h
spherical shells with essentially different sizes of atoms
ions with different ionization numbers.

5. Atoms and ions are assumed to be ‘‘permeable’’
electrons, i.e., the latter are not affected by the approxi
tion of hard spheres and their density is not affected by
total volume of ions and atoms.

6. The approximation takes into account an additio
short-range attraction among atoms and ions, which ef
tively describes the binding energy of condensed materia

One advantage of the suggested simplified approac
terms of numerical calculations is that in principle it does n
require taking into account the Coulomb nonideal behav
and the partition functions of the excitation, and the syst
cannot spontaneously lose its thermodynamic stability~the
matrix i]m i /]nj i is positive definite at all compression fa
tors of plasma1,44!. Special calculations taking into accou
the ion nonideal behavior described by the ion mixtu
model50 and the electron nonideal behavior by the model
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interacting electron51 ~it was described by Iosilevskii52 as a
coupled model of a one-component plasma and app
to the thermodynamics of mixed hydrogen and heliu
plasma53! showed that the range of parameters achieved
shock compression of porous samples of most metals ar
the region of an anomaly similar to a phase transition~van
der Waals loops! predicted by this approximation. The shap
and position of this feature essentially depend on the m
mum ionization degree allowed by the calculation techniq
Such sensitivity of the equation of state to the choice of
approximation selected for describing the Coulomb co
sionality is typical for most of the Coulomb collision mode
suggested in literature for this region of parameters.

4.3. Coulomb interaction

The Coulomb interaction was taken into account in t
Debye approximation for a macrocanonical ensemble49 ~in
the case of multiple ionization, see Ref. 44!:

V

VkBT
[

F2(Njm j

VkBT
[

P

kBT

5(
a

na2
k̃D

3

24p
5(

a
Fna2

G̃

6

naza
2

11za
2 G̃D/2

G . ~7!

Here the modified Coulomb collision parameterG̃D ex-
pressed in terms of activities is given by the equation

G̃D
2 5S e2

kBTr̃D
D 2

54pS e2

kBT D 3

(
a

za
2na

11za
2 G̃D/2

, ~8!

where r̃ D51/k̃D is the modified Debye screening radiu
Note that the collision parameter is different from the co
ventional Debye collision parameterGD :

GD
2[4p~e2/kBT!3( naza

2 .

This approximation is equivalent to the classical Deby
Hückel approximation in the limitGD→0 and differs by the
notably smaller corrections in the region of moderate a
strong nonideal behavior (GD>1).

4.4. Short-range repulsion among ions and atoms

The effect of overlap between electron shells of ato
and ions at high compression degrees leads to a strong s
range repulsion among heavy particles. This effect is ta
into account by the model of a mixture of hard spheres.
our numerical calculations, we used the Mansoori formul54

DFHSM

( iNikBT
[ f HSM~n!5X

n

~12n!2
13Y

n

12n

1~X11!ln ~12n!, ~9!

n[
4p

3
nr 3, r k[(

i
ni r i

kY ( ni , k51,2,3,

X5~r 2!3 ~r 3!22, Y5r 2r̄ ~r 3!21. ~10!
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The contributions of this repulsion to the pressure, ene
and chemical potential derive from Eqs.~9! and ~10!:

DPHSM

( inikBT
5

] f HSM~n!

]n
,

Dm i

kBT
5 f HSM~n!1(

j
nj

] f HSM~n!

]ni
,

DEHSM[0. ~11!

In calculating the radiir j of particles, we used two pro
cedures. The first is based on the so-called confined a
approximation.1,41 An atom ~or ion! is placed in a spherica
cell with hard walls, and its electronic structure is calcula
by the Hartree–Fock method55 at a variable cell radius.56,57

Calculations by this model are given in Fig. 6, which sho
energy shifts for the ground states of copper atoms and
as functions of the cell radius.

Further, the ‘‘effective’’ cell radius is calculated usin
the relation

DE~r i !5const•I i ,

whereDE(r i) is the ground state energy shift,I i is the cor-
responding ionization potential, andr i is the atom cell ra-
dius.

A simpler procedure48,58,59 is based on the assumptio
that the atom’s structure is hydrogen-like. In this case, e
ion is characterized by a size related to the ionization po
tial:

r i'r 0@~Zi11!I 0#/I i , ~12!

wherer 0 and I 0 are the atomic radius and ionization pote
tial, r i and I i are these parameters for thei th ion, andZi is
the ion charge.

In real calculations, both these procedures were u
only in determination of the ratios between the atomic rad
and those of ions, whereas the basic atomic radius was
termined using the Ashcroft–Lekner rule,60 which prescribes

FIG. 6. Shifts of the ground state energies of copper atoms and ions c
lated by the Hartree–Fock method.56,57
y,

m

d

s
ns

h
n-

d
s
e-

determination of the optimum radius of hard spheres co
sponding to the normal density from a fixed packing para
eter

n[ 4p( nir i
3/3.0.45. ~13!

The radius calculated in this manner leads to the best ag
ment between the first maximum of the pair correlation fun
tion for the system of hard spheres and experimental d
obtained for a set of normal metals.60

4.5. Additional attraction

Calculations based on the approximatio
~2!–~13!34,48,58,59produced satisfactory agreement with e
perimental Hugoniots for metals at relatively high shock v
locities, i.e., at high pressures and temperatures. The sh
range repulsion is of fundamental importance for th
agreement between theory and experiment. Our calculati
however, demonstrate that there is a region of relatively l
pressures58,59 corresponding to low shock velocities whe
the approximation~2!–~13! cannot yield solutions of the
Rankin–Hugoniot equation~1! for D(U) with any set of
radii $r i%. The reason is that the approximation~2!–~13!
does not take into account the binding energy responsible
the existence of condensed states of materials. In orde
improve the accuracy of extrapolation to the region of lo
shock velocities, we supplemented Eqs.~2!–~13! with terms
effectively taking into account this binding energy in th
form

DF5DE52AS ( Ni D 11d

V2d, DP5d~DE/V!,

~14!

Dm i52~11d!V2dS ( Ni D d

, A,d5const.

FIG. 7. Hugoniots of porous nickel:1 — calculations by Eqs.~2!–~14! with
the sum in Eq.~14! performed over all heavy particles;2–11 — experimen-
tal data:2 — Ref. 62;3 — Ref. 63;4 — Ref. 64;5 — Ref. 29;6 — Ref. 27,
m52; 7 — Ref. 27,m52.32; 8 — Ref. 27,m55.62; 9 — Ref. 65;10 —
Ref. 28;11 — this work.u-
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These corrections are independent of temperature.
choice ofd51 corresponds to the traditional van der Wa
approximation. It is generally accepted thatd51/3 best de-
scribes the ‘‘metallic’’ ~plasma! type of chemical bond in
condensed materials. In this case, the sum is performed
all heavy particles, so that corrections~14! do not shift equi-
librium ionization parameters. According to Likalter,61 this
value of d corresponds to the form of attraction in ‘‘ex
tended’’ metals, i.e., metals at intermediate densities co
sponding to the critical point on the gas–liquid line in t
phase diagram.

4.6. Comparison between experimental data and
calculations

Hugoniots of porous nickel, copper, and iron calcula
using the model described by Eqs.~2!–~14! are plotted in
Figs. 7–10. Figure 7 shows Hugoniots of porous nickel c
culated earlier34,48,58,59and compared to experimental da
available at that time.4 These data have been supplemen
with our recent measurements at porositiesm515 and 20. It
is noteworthy that our results are in good agreement w
previously available calculations. Figure 7 also compa

FIG. 8. Hugoniots of porous nickel atm510. Calculations by several ver
sions of the model are compared:1 — experimental data;2 — ideal plasma
with atoms in ground states;3 — same as2 — plus Coulomb interaction;4
— same as3 — plus partition functions calculated by the Planck–Lark
method;5, 6, 7 — same as2, 3, 4 — plus effects of hard spherical shells;8
— calculations by Eqs.~2!–~14! at d51, but sums over atoms are pe
formed in Eq.~14!; 9 — same as8, but shell radii 20% larger.
he

er

e-

d

l-

d
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Hugoniots for materials of low porosity~including the Hugo-
niot of the solid material!. All these data have been summ
rized in one graph in order to demonstrate that, even in
simplified form given above, the chemical model of plasm
provides a satisfactory description of the entire set of exp
mental data for nickel Hugoniots.

Figure 8 shows testing calculations performed with t
aim of illustrating the effect of various components tak
separately on the thermodynamic calculations based on
model ~2!–~14!. We stress once again that the shapes
Hugoniots in the range of relatively low shock velocitie
indicate the necessity of taking into account both the inte
repulsion and effective attraction between heavy particle
the chemical model.

Calculations are compared with new experimental d
for iron plasma in Fig. 9. Note that the choice of repulsi
~inherent particle dimensions! and attraction parameters o
the model was based on the same scheme as previo
Table II lists radii of atoms and ions for copper, nickel, a
iron used in our calculations. Our results clearly indica
that, whereas the agreement between experiment and th
is satisfactory for both nickel and iron at high porosities~and
the largest achievable porosity factors of condensed met!,
it degrades gradually as the plasma density increases in
periments with samples of lower porosity.

Calculations and experimental data for copper plas
are compared in Fig. 10. The results of earlier expe
ments34,48,58,59 are supplemented with new measuremen
One can clearly see that the agreement between theory
experiment is satisfactory. At the same time, the discrepa
between calculations and shock measurements of the H
niot atm510 in its upper section is remarkable. In analyzi
this discrepancy, one should take into account the fact
the theoretical model describing interactions in the system
obviously, oversimplified, and its results are highly sensit
to changes in the set of particle sizes selected in our ca

FIG. 9. Hugoniots of porous iron:1 — calculations by Eqs.~1!–~14!, sum-
mation over all heavy particles in Eq.~14!; 2 — experimental data from Ref
27 (m52.9); 3 — experimental data from Ref. 27;4 — this work.
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FIG. 10. Hugoniots of porous copper:1 — calculations by
Eqs. ~1!–~14!, summation over all heavy particles in Eq
~14!; 2 — experimental data from Ref. 27;3 — experimental
data from Ref. 27;4 — experimental data of this work.
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lations. This is supported by additional calculations p
formed with slightly changed~increased! particle radii,
which are also plotted in Fig. 10.

These supplementary calculations indicate that the
crepancy between the experimental data and previous ca
lations is within the natural uncertainty of the chemic
model in the range of plasma parameters under consi
ation. At the same time, if we take into account the featu
of copper Hugoniots measured atm53 andm54, which can
be described only by using a model equation of state with
effectively higher ‘‘rigidity’’ than in the model with a set o
fixed particle sizes selected in earlier studies34,48,58,59~these
features were detected earlier46,48 and analyzed in detail66!,
we can conclude that the model description of thermo
namic properties of shock-compressed plasmas is far f
universal, and individual properties of specific metals sho
be taken into account more accurately than is suggeste
the simplified calculation technique described in this pap

4.7. Comparison with pseudopotential calculations

Along with the approximation~2!–~14!, in our calcula-
tions of thermodynamic parameters of plasmas generate
shock compression of porous samples we also used a m
taking into account collisional effects and based on one v
sion of the pseudopotential method~for details see Ref. 52!.
Its underlying idea is to describe the effects of Coulom
collisionality in terms of free charges interacting throu
certain effective potentials. This approach was used w
success in various studies~Refs. 40, 67, and others!. The

TABLE II.

Zi 0 1 2 3 4 5 6 7

Cu 2.00 1.700 1.55 1.40 1.25 1.10 0.95 0
Ni 2.00 1.684 1.27 1.10 1.00 0.84 0.80 —
Fe 2.27 2.00 1.58 1.18 1.075 0.978 0.904 —
-
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basic postulates of one version of this approach, which
been used in our work, are formulated as follows.

1. The depth of the electron–ion pseudopotential
pends on the position« of a conventional boundary, which
is, generally speaking, variable and separates free and b
states of each electron–ion pair. At the same time,
boundary limits the bound states taken into account in ca
lating the excitation partition function of atoms and ions. T
ion–ion and electron–electron interactions are still descri
using the Coulomb shape of potential:

F ie* ~r !52
Zie

2

r
~12e2r /s ie !,

s ie[s ie~n,T!, Faa* ~r !5
ZaZae2

r
, a5 i ,e. ~15!

2. The approximation is constructed on the level of p
correlation functionsFab(r ), whose form68,69 at long dis-
tances is the same as in the high-temperature limit of w
collisionality for a system with interaction potential~15!:70

Fei~r !511Cei

e2pi r2e2kr

r
. ~16!

3. At short distances, the ion–ion and electron–elect
correlation functions are modified in order to get rid of t
flaw inherent in linearized~‘‘ring’’ ! approximations70 ~like
the Debye–Hu¨ckel approximation!, namely, the so-called
negative probabilities~herei and j are ion indices!:

Fi j 512Bi j

e2kr

r
, r>Ri j , Fi j .0, r<Ri j . ~17!

4. The parameters of correlation functions~16! and~17!
as functions of interparticle interaction potentials are de
mined with due account of the local electric neutrality co
dition ~18!,71 which is unrelated to weak collisionality. In
addition, an approximate relation between the amplitude
electron–ion correlations~screening cloud! and pseudopo-
tential depthFei* (r 50) ~19! is introduced:
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E Hneie@Fei~r !21#1( ni j eZj@Fi j ~r !21#J dr52Zi ,

~18!

Fei~0![11Cei~0!'bFei* ~0!, Fii ~0!'0. ~19!

5. The calculation of the screening parameterk should
take into account gradual exclusion of electrons from scre
ing as their degree of degeneracy increases, so that in
limit of their full degeneracy the screening is fully controlle
by the ion–ion correlations:

k254pe2S ]me
0

]ne
1(

i

]m i
0

]ni
D . ~20!

6. Corrections to thermodynamic quantities should
clude the shiftDEkin of the mean kinetic energy of fre
charges derived from the virial theorem:

DPV5 ~1/3! ~2DE2DEpot!5 ~1/3! ~2DEkin1DEpot!,
~21!

DE5VE H(
i

nineFei~r !Fei* ~r !

1(
i , j

ninjFi j ~r !F i j* ~r !J dr , ~22!

DEpot52VE H(
i

nineFei~r !
Zie

2

r

2(
i , j

ninjFi j ~r !
ZiZje

2

r J dr , ~23!

Dm i5E H neFei~r !Fei* ~r !1(
j

njFi j ~r !F i j* ~r !J dr

~24!

~hereDEpot andDE are corrections to the potential and fu
internal energies,m i and me are chemical potentials of fre
charges!. Note that in the regionGD;1 the approximation
~15!–~24! is incompatible with the traditional relationshi
between corrections to the pressure and internal energ
free charges,DE53DPV. In comparison with many Cou
lomb approximations suggested in literature, this approxim
tion leads to an effect that is equivalent to an additio
electron–ion repulsion,72 which is a function of the collision-
ality parameterGD .

Calculations of shock compression parameters for c
per and nickel based on model~15!–~24! are listed in Table
I for comparison with direct experimental measuremen
Specific calculations were performed with the help of a co
plicated procedure in which the boundary« separating free
and bound states of electron–ion pairs was selected.
boundary corresponds to the limit of2kBT at high tempera-
tures and at the average distance between heavy particl
moderate temperatures and high compression factors.
energy «, as was noted above, marked the boundary
bound states taken into account in calculations of excita
partition functions for atoms and ions.
n-
he

-

of

-
l

-

.
-

is

at
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The problem of taking into account bound states un
conditions of partially ionized strongly nonideal plasma h
a long history, and it has not been fully resolved by this tim
Results of a set of earlier experiments32,45,73–75led the re-
searchers to a conclusion~see a detailed discussion in Ref.
Ch. 4! about an unexpectedly small contribution of excit
states to the caloric equation of state in comparison w
results of some models that had been set forth by that ti
There are publications which theoretically justify the lo
contribution of excited states.76 A comparison between ex
perimental results discussed here and calculations by the
models does not help in resolving this issue because, g
the real accuracy of our measurements, it is difficult to se
rate and estimate the effect of excited states of atoms
ions on the full equation of states for the plasmas studied
the reported work.

Another problem on which the theory of nonide
plasma is traditionally focused is the existence of the
called plasma phase transition different from the conv
tional gas–liquid transition in metals.18,40 Our experiments
have not detected any gas-dynamic anomalies that coul
associated with an unknown phase transition in
system.6,3,39 It is noteworthy that both approximations,~2!–
~14! and ~15!–~24!, used in our calculations also have n
produced any indications of such anomalies.

5. CONCLUSION

Using porous samples of copper, nickel, and iron w
densities a factor of 10 to 20 lower than their normal den
ties and recently developed generators of shock wave
spherical configurations, we could penetrate into the reg
of high temperaturesT.104 K, densitiesr5(0.1– 1)r0 ,
and pressures of several tens of gigapascal, which had
little investigated until recently.

It seems interesting to measure in future the compre
ibility of superporous metallic samples with initial densitie
(0.05– 0.1) g/cm3. Such conditions can be created usi
metal vapors. Although this experiment is technically dif
cult, it seems quite feasible.

The chemical model of plasma is sufficiently versatile
provide a satisfactory description of metal plasmas in
regions of condensed matter densities nontraditional for
model and megabar pressures, when we have to deal
several mechanisms of strong correlations among pla
particles at the same time, which are caused by both de
eracy and strong collisionality due to numerous modes
effective interactions among plasma particles.

Our results indicate that the plasma equation of sta
derived from the chemical model can have sufficient ac
racy even if we use such an approximation that does
adequately take into account details of the electronic str
ture and the character of electron localization in the plas

The work was supported by the Russian Fund for F
damental Research~Grants 95-02-03886, 97-02-17339, 9
02-17340, and 96-02-18832!.
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We solve the equations for the collisionless spin dynamics of a normal Fermi liquid, which
describe structures resembling spin vortices coherently precessing in a uniform magnetic field. We
examine their stability and relaxation, and consider various regimes of stationary
magnetization transport along a channel. ©1998 American Institute of Physics.
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1. INTRODUCTION

A two-domain spin structure precessing coherently in
weakly nonuniform magnetic field has been predicted1 in the
collisionless region in a normal Fermi liquid and observ
experimentally.2 The lifetime of this structure, in which the
orientation of the magnetization varies smoothly from par
lel to antiparallel to the external magnetic field, significan
exceeds the precession dephasing time in a nonuniform fi

Similar coherently precessing, inhomogeneous distri
tions of the magnetization have previously been found
superfluid 3He-B,3,4 where coherently precessing quantu
spin vortices were also discovered along with them, and
flow of spin currents along a channel accompanied by p
cession phase slippage has been investigated.5–10 The devel-
opment of a theory for the analogous phenomena in a nor
Fermi liquid would be of unquestionable interest. T
present paper examines solutions of the equations for
collisionless spin dynamics of a normal Fermi liquid, whi
describe stationary spin flows.

Coherently precessing structures in the form of spin v
tices are found in a uniform magnetic field. The vortex w
thickness is determined not only by the field strength and
parameters of the Fermi liquid, but also by the absolute
ference of the precession and Larmor frequencies. W
these frequencies are equal, the distribution of spin in a v
tex corresponds to the familiar Belavin–Polyakov skyrmi
solution.11

In addition, the steady flow of a spin current along
channel is investigated in this paper.

The present paper is organized as follows. The equat
for the collisionless spin dynamics of a normal Fermi liqu
are written out in a form convenient for subsequent disc
sion in Sec. 2. The vortex solutions of these equations
found, and their stability and relaxation are investigated
Sec. 3. Section 4 is devoted to the flow of a spin curr
along a channel. The principal results are briefly discusse
the Conclusion.

2. BASIC EQUATIONS

A complete set of equations for the spin dynamics o
normal Fermi liquid in a magnetic fieldH(r ,t) in terms of
macroscopic quantities, viz., the quasiparticle spin den
6911063-7761/98/87(10)/9/$15.00
a

l-

ld.
-

n

e
-

al

he

-
l
e

f-
n

r-

ns

-
re
n
t
in

a

ty

S(r ,t) and quasiparticle spin current densityJi(r ,t), was ob-
tained by Leggett12 from the kinetic equation for the spin
vector part of the quasiparticle distribution functionnk(r ,t).
These equations have the form

S ]

]t
1vL3 DS1¹ iJi50, ~1!

S ]

]t
1vL3 D Ji1

w2

3
¹ iS S2

xn

g2
vLD 1k

g2

xn
S3Ji52

Ji

t1
.

~2!

Herexn is the magnetic susceptibility of the Fermi liquid,g
is the gyromagnetic ratio for3He nuclei,vL(r ,t)5gH(r ,t)
is the Larmor frequency,w25vF

2(11F0
a)(11F1

a/3), k
5(F1

a/32F0
a)/(11F0

a), F0
a andF1

a are the coefficients of the
expansion of the antisymmetric part of the Fermi-liquid qu
siparticle interaction in spherical harmonics,vF is the Fermi
velocity, t15t/(11F1

a/3), and t is the quasiparticle free
flight time.

The parentheses in the first terms of Eqs.~1! and ~2!
contain the total time derivative in the local coordinate s
tem, which rotates about the direction of the external m
netic field at the Larmor frequency. The special role play
by this frame derives from the free spin’s fixed orientati
relative to it. The second term in Eq.~2! describes a torque
proportional to the gradient of the deviation of the spin de
sity from the local equilibrium valuexnvL /g2. The third
term in ~2! is specific to Fermi liquids. Its relative contribu
tion is not small compared to the Fermi-liquid interactio
force. The latter is represented in the equation byk, which
subsumes the constantsF0

a and F1
a . Physically, this term

represents an additional torque, which acts on the cur
owing to the molecular magnetic field, even in a coordin
system rotating at the local Larmor frequency.

The domain of applicability of Eqs.~1! and ~2! is re-
stricted by the requirement of sufficiently slow spatial var
tion of the quasiparticle distribution. If the characteris
scale of the spatial inhomogeneity ofnk(r ,t) is denoted byj,
this condition~see Ref. 12! can be written in the form

j@minH l ,
vF

vm
J . ~3!
© 1998 American Institute of Physics
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Here l 5vFt is the quasiparticle mean free path, a
vm5vLk/(11F1

a/3) is the frequency corresponding to th
molecular field.

Apart from the hydrodynamic regionj@ l for l
,vF /vm , the equations describing the evolution of the sp
density and the current density, i.e., the equations for
zeroth and first spherical harmonicsnk(r ,t), also split off
from the equations for the higher harmonics in the c
j@vF /vm with l .vF /vm ~which is equivalent to
vmt.1). The latter circumstance enables us to use them
investigate the spin dynamics of normal Fermi liquids in t
collisionless regimevLt.1. We note that the proportiona
ity coefficient between the molecular fieldvm and the exter-
nal field vL is k/(11F1

a/3)'2 for normal3He and'0.036
for a saturated3He–4He solution at zero pressure~see Ref.
2!. In the collisionless region the unusual third term in E
~2! becomes significant. The results of the present work p
tain specifically to this region.

The boundary condition usually chosen for Eqs.~1! and
~2! is that no spin current flow through the wall of the ves
containing the Fermi liquid:

Jini50, ~4!

where ni is the i th component of the unit normal to th
vessel surface.1! To fix ideas, let the external field be parall
to the ẑ axis. Under such a boundary condition, it follow
from the continuity equation~1! that the total longitudinal
magnetization*Sz dr is conserved.

To simplify the equations, we adopt a system of units
which xn5g2. We consider a homogeneous external fie
¹vL50, and assume motions in the reference system, w
rotates at the precession frequency, to be fairly slo
tdv;t1dv!1. Then the time derivative in this system
approximately zero, and the first term in Eq.~2! can be dis-
carded. Solving the resulting equation forJi , we obtain an
expression for the spin current:

Ji.2
w2t1/3

11~kSt1!2
@¹ iS1kt1¹ iS3S1~kt1!2S~S¹ iS!#.

~5!

In the collisionless region each successive term in squ
brackets iskvLt1 times its predecessor. However, the la
term is anomalously small. In fact, it is exactly zero for
homogeneous spatial distribution of the absolute value of
magnetization. At the same time, as the estimate in Sec.
Ref. 13 shows, the characteristic time to smooth out the
homogeneity of theS2 distribution is of orderj2/w2t1. This
time is small compared to the reciprocal characteristic
quencydv21, since in our casej2;w2/kvLdv ~see below!.
We therefore assume thatS2 is constant. Thus, the first tw
terms are important. As we have already mentioned, the
term describes the ordinary diffusion current, while the s
ond is a nondissipative current. Moreover, unless the sec
term is anomalously small, the first term can be neglec
Then the expression for the current takes the form

Ji.
w2

3kS2
S3¹ iS. ~6!
e

e
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Substituting this expression into Eq.~1! for the evolution
of the spin, a single vector equation remains:

]S

]t
5S3vL2

w2

3kS2
S3¹2S. ~7!

This is the equation of interest to us. Along with the alrea
mentioned total longitudinal magnetization*Sz dr , the abso-
lute value of the magnetizationS is also its integral. There-
fore, in solving it, we use the natural parametrization ofS in
terms of the spherical coordinatesa andb: S5SŜ

Ŝ5S sinb cosa

sinb sina

cosb
D . ~8!

We are interested in the coherently precessing soluti
of this equation. However, it is more convenient to transfo
to spherical coordinates not directly in~7!, but by noting~see
Ref. 13! that ~7! is actually the Landau–Lifshitz equatio
with a negative coefficient of the gradient term~when k
.0). As we know, this equation is the Hamilton–Jaco
equation obtained from the Hamiltonian

H5E drF ~S2vL!2

2
2

w2

6kS2
~¹ iS!2G ~9!

with the usual commutation relation for the spin:

@Sa~r !,Sb~r 8!#5 ieabgSg~r !d~r2r 8!.

Introducing the Lagrange multipliervPi ẑ, which takes the
conservation of the total longitudinal magnetization into a
count ~equivalent to transforming to a reference system t
precesses at that frequency!, and bearing in mind the fixed
absolute value of the spin~to within constant terms!, we have

H5E drF ~vP2vL!S2
w2

6kS2
~¹ iS!2G , ~10!

or in spherical coordinates

H5E dr F ~vP2vL!Scosb2
w2

6k
~~¹ ib!21~¹ ia!2sin2b!G .

~11!

The equations fora andb, which specify spin distributions
that are time-independent in the reference system preces
at vP , are found by varying this Hamiltonian. We note th
uvP2vLu plays the role of the frequencydv of motion in
the Larmor system.

3. SPIN VORTEX

We seek axisymmetric solutions

b5b~r!, a5a~w!.

Setting the variational derivative of the functional~11! with
respect toa equal to zero yields

a950, ~12!
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whereupon

a~w!5Nw1a0 ~13!

with the integer circulation quantum numberN5a85const,
which follows from the single-valuedness ofa(w) modulo
2pN under a rotation~variation ofw) by 2p. In this case the
gradient ofa is

¹ ia5
N

r
ŵ i . ~14!

Here and belowŵ, r̂, and ẑ are the unit vectors of a cylin
drical coordinate system.

Varying the Hamiltonian~11! with respect tob yields a
differential equation forb(r),

2~vP2vL!Ssinb1
w2

3kS ¹b2
N2

r2
sinb cosb D 50,

~15!

which, after rewriting the Laplacian in cylindrical coord
nates, can be brought to the form

b91
b8

r
2

N2

r2
sinb cosb2

sgn~vP2vL!

j2
sinb50,

~16!

where we have introduced the characteristic length of
problemj,

j5A w2

3kSuvP2vLu
. ~17!

The boundary conditions on Eq.~16! can be obtained a
follows. In the axisymmetric case the expression for the c
rent ~6! takes the form

Ji5
w2

3kF b8S 2sina

cosa

0
D r̂ i1

N

r S 2sinb cosb cosa

2sinb cosb sina

sin2 b
D ŵ i G ,

~18!

where we puta85N. We make the simplifying assumptio
that the vessel containing the Fermi liquid is a circular c
inder with generatrix parallel to thez axis and a base o
radiusR. The condition~4! of vanishing current~6! through
the vessel walls holds identically in this case at the ends
the cylinder, and it yields a boundary condition on the late
surface:

b8ur5R50. ~19!

WhenN50, from ~13! we obtaina5a0, i.e., all spins
lie in a single plane parallel to theẑ axis. Thez axis is the
only preferred axis in the problem, so it follows from sym
metry arguments that the functional~11! can only have a
local extremum whenb(r)[0 or b(r)[p. The former
value is stable, the latter is not.

Now considerNÞ0. We are interested in solutions wit
no singularities atr50. For this to occur whenNÞ0, b(0)
must equal 0 orp. Equation~16! is clearly invariant under
the transformations
e

r-

-

of
l

~vP2vL!→2~vP2vL!,
~20!

b→p2b.

Instead of the two asymptotesb(0)5$0,p%, we can consider
one. Specifically, we assume that the boundary condition
r50 has the form

b~0!50. ~21!

Thus, the problem has been reduced to solving the
ferential equation~16! with boundary conditions~19! and
~21!. The problem containsN only in the formN2, andN can
be assumed to be a positive integer.

We first consider an infinite vessel:R→`. In this case
the boundary condition~19! can be replaced by

b8→0ur→` . ~198!

When j5` (vP5vL), Eq. ~16! has a gauge-invarian
solution, which satisfies the conditions~198! and~21! and is
identical to the Belavin–Polyakov skyrmion,11 and the topo-
logical mapping index turns out to equal the circulati
quantum number:

b~r!5arccos
12Ar2N

11Ar2N
;H ArN, r→0,

p2Ar2N, r→`,
~22!

where A.0 is an arbitrary constant. As can be seen,
skyrmion is characterized by a spin flip from the equilibriu
direction with respect tovL at zero to the antiequilibrium
direction at infinity.2!

If j is finite, it is possible to obtain analytically only th
asymptotic dependence ofb(r) as r→0 andr→`, which
must be matched numerically in the intermediate region. T
feasibility of matching the two asymptotes implies the ex
tence of the corresponding solution.

When jÞ` (vPÞvL), the differential equation~16!
can be reduced by the replacementr 5r/j to an equation for
b(r ) of the form

b91
b8

r
2

N2

r 2
sinb cosb2sgn~vP2vL!sinb50. ~23!

The expansion of this equation near zero yields the lineari
equation

b91
b8

r
2S N2

r 2
1sgn~vP2vL!D b50, ~24!

which is the ordinary~when vP,vL) or modified ~when
vP.vL) Bessel equation. Its solution is a linear combin
tion of two linearly independent functions, which can b
chosen so that~for NÞ0) one of them diverges asr 2N when
r→0, while the other tends to zero asr N. Since b is
bounded,

bP@0,p#, ~25!

only the nondivergent term must remain, and for the so
tions of interest we obtain the asymptote

b;ArNur→0 , ~26!

whereA.0.
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Numerical solution of the differential equation~23! with
initial condition ~26! shows that, depending on the value
A, the functionb(r ) asymptotically approaches either ze
or p at infinity ~we discard the asymptotesb
→2p, 3p, . . . ,which do not satisfy the constraint~25!!. An
analogous examination of the linearized equations shows
nondivergent asymptotes are feasible asr→`:

b;H Be2r /Ar , vP.vL ,

p2Be2r /Ar , vP,vL ,
~27!

where B.0. The constantsA in ~26! and B in ~27!, of
course, can be determined only from the matching condi
~26! to ~27!. As the numerical solution shows, matching
possible forvP,vL , but not for vP.vL .3! Thus, when
vP,vL , there can be structures with spin flip in the interv
from zero to infinity and the asymptotes

b~r !;H ArN, r→0,

p2Be2r /Ar , r→`.
~28!

This structure resembles the skyrmion~22!, but is character-
ized by an exponential approach to a spatially homogene
distribution asr→`. For N51 it takes the form shown in
Fig. 1. For comparison, the dashed line depicts the skyrm
~22! with the same asymptote at zero.

Apart from the asymptote~27!, the theory of Besse
functions tells us that other asymptotes forr→` take the
form of damped oscillations about 0,p, 2p, . . . , which of
course do not satisfy the constraint~25! and should be dis-
carded. The numerical solution shows that whenvP.vL ,
the asymptote~26! approaches a solution that oscillat
aboutb5p for all A.

The situation is more complicated whenvP,vL . For a
certainA5A0 the solution approaches the exponential dam

FIG. 1. Dependence of the deviation angle of the magnetization on
dimensionless distance to the axis for three spin vortices with circula
quantum numberN51 ~light solid lines!: upper line — the vortex~28!;
lower line — ‘‘standing wave’’ with vanishing total longitudinal compone
of the magnetization direction; middle line — ‘‘standing wave’’ correspon
ing to the minimum effective radius of the vessel; heavy line — locus
points for the value ofb at the vessel boundary for vortex solutions wi
N51; dashed line — the Belavin–Polyakov skyrmion~22! with the same
value of the derivative at zero as the vortex~28!.
at

n

l

us

n

-

ing ~27!, for A.A0 it approaches oscillations about 2p, and
for A,A0 it approaches oscillations about zero. Thus, th
are no solutions forA.A0. For A,A0, however, a size ef-
fect is possible: the functionb(r ), upon leaving the origin,
reaches the pointr 0 of the first maximum,b(r 0)P(0,p),
then decreases to the first minimum,bP(2p,0), and finally
oscillates about zero, successively passing though max
and minimum of decreasing absolute value. If a wall is
cated atr 0, i.e., if r 05R/j, such a solution will satisfy the
boundary conditions~19! and ~21! and not violate the con-
straint ~25!. Such a structure is a standing wave.

As A→A0, the positionr 0 of the first maximum tends to
infinity, and asA→0 the solution of Eq.~23!, which deviates
only slightly from zero everywhere, transforms, as we ha
already mentioned, into the Bessel function~of the first kind!
of order N, and accordingly the pointr 0 of the first maxi-
mum tends to a root of the derivative of the Bessel functi
the numerical value is 1.84118 for vortices withN51,
3.05424 forN52, and 4.20119 forN53. The value ofb(r )
at the point r 0 of the first maximum varies fromp for
A5A0 to 0 for A50. The set of pointsb(r 0) obtained by
numerical methods is depicted in Fig. 1 by the thick line. T
figure also shows two standing wave structures.

As can be seen from the figure, the set of pointsb(r 0)
describes the continuous transformation of a spin vortex
the effective size of the vesselR/j decreases from infinity.
There is a minimum valuer 0m'0.84, which determines the
minimum vessel radius required to produce a similar str
ture. The value ofb(r 0m) is roughly 2.93 rad. Thus, the spi
vortex ~28! is the limiting case of a ‘‘standing wave’’ in a
vessel of infinite size. From here on, we therefore call b
structures spin vortices without distinguishing between the

The initial conditions of an experiment set the total lo
gitudinal magnetizationS* dr cosb, which subsequently
does not vary, in accordance with Leggett’s equations. E
spin vortex is uniquely characterized by one of two quan
ties: 1! the total longitudinal component of the magnetizati
direction * dr cosb, or 2! the angleb(R/j) that the spins
make with the vessel boundary. The initial absolute value
the magnetizationS can be assumed to be the equilibriu
value ofvL . Thus, the initial conditions fix the final value o
b(R/j) ~see Fig. 1!. For the structure depicted in Fig. 1 wit
b(R/j)'2.10, the total longitudinal component of the ma
netization direction*drcosb vanishes. For vortices with
b(R/j),2.10, the total longitudinal component of the ma
netization direction is greater than zero, while f
b(R/j).2.10 it is less than zero.

As we have already noted, whenvP.vL , all structures
shown in Fig. 1 can be mapped symmetrically about
straight lineb5p/2.

Note that the existence of a minimum valuer 0m implies
that for a given real vessel radiusR, the formation of a spin
vortex is possible for an arbitrary value of the differen
uvP2vLu greater than its minimum value, which, as follow
from the definition ofj, is

uvP2vLumin5
w2

3kvL
S r 0m

R D 2

.

Since the applicability of the present theory is restricted

e
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the conditionuvP2vLut1!1, in this approximation the only
legitimate claim is that such a structure exists at la
enoughR.

3.1. Stability

In the axisymmetric case the Hamiltonian~11! can easily
be brought to the form

H52
w2

3k E
0

R/j

rdr E
0

2p

dwF b82

2
1

1

2S a8

r D 2

3sin2 b2sgn~vP2vL!cosb G . ~29!

Its second variation is

d2H52
w2

3k E rdr E dwF ~db8!21S a8

r D 2

3cos 2b~db!212
a8da8

r 2
sin 2bdb1S da8

r D 2

3sin2 b1sgn~vP2vL!cosb~db!2 G . ~30!

Integrating by parts, we write

E dw a8da852E dw a9da,

E rdr ~db8!252E dr ~rdb8!8db

52E rdr ~db91db8/r !db.

The structures found above are described by the differen
equations~12! and ~23!. Varying the second equation an
substituting it into the expression for the second variation
the energy, we finally obtain

d2H52
w2

3k E d2r S da8

r D 2

sin2 b. ~31!

Here*d2r 5*r dr *dw. Thus, all structures described are l
cal maxima ~when k.0 and, accordingly, local minima
whenk,0) of the energy functional. Therefore, by virtue
energy conservation they are all stable.

3.2. Relaxation

It was shown in Ref. 1 for the functions ‘S and ‘Ji ,
which are solutions of Leggett’s equations, that the collis
term for the spin current in Eq.~2! leads to relaxation behav
ior in a closed volume of a Fermi liquid:

d

dt E drF ~S2vL!2

2
1

3Ji
2

2w2G52
3

w2t1
E dr J i

2 . ~32!

Because of the conservation of the total longitudinal mag
tization, the derivatived*(vLS) dr /dt on the left-hand side
of this equation vanishes~as of course doesdvL

2/dt).
e

ial

f

n

e-

For a qualitative discussion of the relaxation of the stru
ture it is sufficient to substitute the forms ofS(r ) andJi(r )
obtained under the assumption of stationarity, i.
S(r )5const and the expression~6!, into this equation. Some
relatively simple calculations show that this yields

3

w2
Ji

25
w2

3k2S2
~¹ iS!2,

i.e., the current term is proportional to the inhomogene
energy of the distribution ofS. This quantity can be esti
mated from the definition~17! of the characteristic scalej to
be;w2/3k2j2;uvP2vLuS/k. Therefore, because the abs
lute value of the magnetization at the start of relaxation
approximately the equilibrium value (S;vL) and, in addi-
tion, kvLt1@1 ~the collisionless regime! and uvP2vLut1

!1, the current term on the left-hand side can be neglec
in comparison toS2. Thus, the bulk relaxation reduces
damping of the absolute value of the magnetization, which
given by the small right-hand side:

dS2

dt
52

2w2

3k2t1

1

pR2 E d2r ~¹ iŜ!2. ~33!

Next, plugging in known dependences, we write

E d2r ~¹ iŜ!25E
0

R

r drE
0

2p

dw ~b821a82sin2b!

52pE
0

R/j

rdr S b821
sin2b

r 2
N2D ,

where we have transformed fromr to r 5r/j. With allow-
ance for the fact thatb850 at the vessel boundary, integra
ing b82 by parts and then substituting the expression~23!
finally yields

dS

dt
52

2uvP2vLu
kt1

C, ~34!

whereC is a dimensionless integral that depends only on
actual form taken by the vortex:

C5
1

p~R/j!2 E0

R/j

2prdr F N2

r 2
sinb~sinb2b cosb!

2b sgn~vP2vL!sinbG . ~35!

Here, in the limitb→0 we can expand in the small angleb.
The expansion up to the quadratic term can be expresse
terms of the total longitudinal component of the magneti
tion direction averaged over the vessel:

C'
E b2 dr

E d2r

'221

2E d2r cosb

E d2r

,

which is compared tob.
It can therefore be assume thatC is negligible in the

general case, so that it does not disrupt the slowness o
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relaxation process, i.e., the time during whichS decreases
linearly to zero:kvLt1/2uvP2vLu@t1. We note that this
time is large by virtue of the conditionuvP2vLut1!1 for
applicability of the theory under consideration. Since the
tal longitudinal magnetizationS* dr cosb is an integral of
Leggett’s equations, a slow decrease inS leads to an increas
~also slow! in the absolute value of the total longitudin
component of the magnetization direction* dr cosb.

The stability of the family of vortex solutions and th
slowness of their relaxation enable us to advance the i
itively simple hypothesis that the overall form of the soluti
does not vary during relaxation. Specifically, the vortex d
tribution in the class of solutions consisting of the family ju
indicated transforms during the relaxation process, so th
distribution specified by the instantaneous value of the t
longitudinal component of the magnetization direction is
alized at any given time. Since, however, a vortex with
fixed total longitudinal component of the magnetization
rection can form only if the effective radius of the vesselR/j
is fixed, variation of the total component of the magnetiz
tion direction during relaxation among the solutions of t
family must lead to fine tuning of the precession frequen
vP in such a manner that the characteristic scalej ~17!
maintains the ‘‘correct’’ effective radius.

Figure 1 depicts a vortex withb(R/j)'2.10 and a van-
ishing total longitudinal component of the magnetization
rection. This vortex structure is a limiting structure in th
sense that vortices withb(R/j),2.10~and a total longitudi-
nal component of the magnetization direction greater t
zero! relax in such a case with a decrease inb(R/j), i.e., to
the spatially homogeneous distributionb[0, while vortices
with b(R/j).2.10 ~and a total longitudinal component o
the magnetization direction less than zero! relax with an in-
crease inb(R/j), i.e., to the limiting distribution~28!. In the
former case the effective radiusR/j;uvP2vLu1/2 increases
to '1.84 ~the precession frequencyvP decreases4!, and in
the latter case the effective radius first decreases to'0.84
and then increases (vP , accordingly, first increases and the
decreases!.

When vP.vL the behavior is different: for vortice
with a total longitudinal component of the magnetization
rection greater than zero the frequencyvP first decreases an
then increases, while for vortices with a total longitudin
component of the magnetization direction the frequencyvP

increases monotonically.

4. ONE-DIMENSIONAL FLOW

We consider the stationary flow of spin along a lo
(L@j), thin ~transverse dimensiona!j) channel of con-
stant cross section oriented perpendicular to a magnetic fi
In such a geometry it can be assumed that flow is o
dimensional and thata and b vary only in the direction
parallel to the channel length:

b5b~y!, a5a~y!.

Variation of the functional~11! with respect toa yields
(a8 sin2 b)850, whence we have

a8 sin2 b5h5const. ~36!
-

u-

-
t
a

al
-
a
-

-

y

-

n

-

l

ld.
-

It can be seen from this expression that ifa8(y)50 or
sinb(y)50 at some point, thenh50 and a8(y)[0 or
sinb(y)[0. The casea8[” 0 is of interest; therefore, we con
clude from~36! that either sinb(y)[0 or sinb(y)Þ0 at anyy
and

a85h/sin2 b. ~37!

Variation of the functional~11! with respect tob yields

b92~a8!2sinb cosb2
sgn~vP2vL!

j2
sinb50. ~38!

The case sinb(y)[0 is a solution of the problem, and give
~37!, substitution of the expression fora8 yields an equation
that describesb(y) ~and a(y) by virtue of ~37!! along the
channel:

b92
h2 cosb

sin3 b
2

sgn~vP2vL!

j2
sinb50. ~39!

This is Newton’s equation of motion for a particle of un
mass in the potential

U~b!5
h2

2 sin2 b
1

sgn~vP2vL!

j2
cosb, ~40!

in which the coordinatey plays the role of time. This poten
tial is depicted forj51 andh251/2 in Fig. 2. Its minimum
is at cosb52sgn(vP2vL)sin4b/(hj)2. Introducing the no-
tation sin2b5z and (hj)45b, we obtainz45b(12z), which
has only one root for anyb.0 in the intervalzP(0,1).
Equation~39! is invariant under the transformation~20!. For
definiteness, we takevP<vL .

The expression~6! for the nondissipative current in th
one-dimensional case~the only nonvanishing orbital compo
nent is directed along the channel, so we omit the subsc!
takes the form

FIG. 2. Effective Newtonian potential for the deviation angle of the ma
netization in one-dimensional spin transport, and the period of motion
that potential: light solid line — potential forvP5vL , i.e., the first term in
~40!; heavy solid line — potential forvPÞvL ~for the special casej51,
h251/2); dashed line — dependence of the period on the initial turn
point ~in arbitrary units!.
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J5
w2

3kF S 2sina

cosa

0
D b81S 2sinb cosb cosa

2sinb cosb sina

sin2 b
D a8 G .

~41!

It can be seen from this expression that

Jz5
w2

3k
a8sin2 b5

w2

3k
h5const,

J[uJu5
w2

3k
Ab821a82 sin2 b.

We assume that the ends of the channel are connect
two reservoirs containing a Fermi liquid. We further assu
that the spins are oriented at the same angleb to the mag-
netic field in the two reservoirs. In addition, the value ofb
does not depend ony in the reservoirs, so the boundary co
dition for Eq. ~39! has the form

b~0!5b~L !, b8~0!5b8~L !50. ~42!

With this boundary condition the analogy to classical mot
acquires the simplest possible meaning: the initial devia
angleb0 can be determined experimentally, and by virtue
~42!, the initial ‘‘kinetic energy’’b82 is zero, i.e., ‘‘motion’’
starts from the turning point of the potentialU(b0), and by
virtue of ~42! should also end at it. In other words, an integ
number of ‘‘periods’’ ofb(y) should fit into lengthL.

We first consider vP5vL (j5`). Then U(b)
5h2/2 sin2 b andb85A2@U(b0)2U(b)#. We can write

dy5
db

b8
5

sinb0 sinb db

hAx0
22x2

52
sinb0

h

dx

Ax0
22x2

, ~43!

wherex5cosb andx05cosb0. The half-period of motion in
this case is

T5E dy5
sinb0

h
arcsin

x

x0
U

2x0

x0

5p
sinb0

h
. ~44!

The phase difference accrued during this time is

DaT5E a8 dy5sinb0E
2x0

x0 dx

~12x2!Ax0
22x2

5p, ~45!

i.e., the phase difference does not depend onh.
Consequently, the condition~42! leads to L52nT,

wheren51,2, . . . ,hence

Jz[
w2

3k
h5

w2

3k

2pn sinb0

L

for a phase differenceDa52pn between the ends of th
channel. As can be seen from the solution, in such a prob
with the boundary condition~42! no stationary current-
carrying states appear for any other phase difference.
note that in this caseJ5h/sinb05const.

When vPÞvL (jÞ`) the equationU(b)5U(b0) (b
Þb0) for the turning points reduces to the quadratic eq
tion x21ax1ax02150 with roots
to
e

n
f

r

m

e

-

x1,25
2a6Aa224ax014

2
, where a5

h2j2

2~12x0
2!

.

~46!

If x0P(21,1), these roots satisfyx1P(21,1), x2,21.
Then x15x0, as it should, ifb0 yields the minimum of
U(b). We assume everywhere below thatx1,x0, i.e., that
b0 is located to the right of the minimum, and integrate ov
the range fromx1 to x0. Otherwise, the replacementx1↔x0

must be made in all formulas.
Thus, we can write

dy5
db

b8
52

jdx

A2~x02x!~x2x1!~x2x2!
, ~47!

and the formulas for the period and the phase difference
be reduced by the replacementt5A(x02x)(x02x1) to com-
plete elliptic integrals in the canonical Legendre form~see,
for example, Ref. 14!:5!

T5jE
x1

x0 dx

A2~x02x!~x2x1!~x2x2!
5A 2

x02x2
K~k!,

~48!

DaT5hjE
x1

x0 dx

~12x2!A2~x02x!~x2x1!~x2x2!

5
hj

A2~x02x2!
F 1

11x0
P~k,m!1

1

12x0
P~k,p!G ,

~49!

whereP(k,p)[P(p/2,k, p) and

k5Ax02x1

x02x2
, p5

x02x1

12x0
, m52

x02x1

11x0
.

We note that in this notation the absolute value of the curr
is J5(w2/3k)3(A2/j)Ax2x3, where we have introduced
the additional notationx35x02a, and that the incoming cur
rent ~the current at the entrance to the channel! and the out-
going current~the current at the exit from the channel!, i.e.,
whenx5x0, are bothh/sinb0. The mean absolute value o
the current flowing through the channel in this case is

^J&5
w2

3k

2n

L E
x1

x0 Ax2x3 dx

A~x02x!~x2x1!~x2x2!

52
w2

3k

2n

L

2~x12x3!

A~x02x3!~x12x2!

3PSAx02x1

x02x3

x32x2

x12x2
,

x02x1

x02x3
D . ~50!

Although we cannot write an explicit expression f
h(Da) in this case, the basic features of current flow rem
the same as whenvP5vL . Specifically, as can be seen fro
Fig. 3a, the conditionL52nT for fixed L yields a discrete
series of possible values ofh, each of which corresponds t
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FIG. 3. a! Multiples of the half-period of motionT in the potential~40! as a function ofh for n51,2, . . . and thefixed initial angleb05p/2; b! dependence
of the half-period onb0 for several values ofh. It is assumed thatj51. The dependence onb0 is sinusoidal for largeh, as whenvP5vL , and tends to zero
as 1/h; at smallh the half-period has a local minimum at the minimum of the potential~40! and two local maxima, one of which tends to zero, while the oth
tends top with decreasingh. As can be seen in~a!, if the channel lengthL is fixed, thenL52nT holds for an infinite sequence of values ofh, and byh
.3 T(h) is faithfully described byT5psinb0 /h ~the corresponding multiples are shown as dashed lines in~a!! andh52pnsinb0 /L, as whenvP5vL .
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its own numbern of complete periods that fit into the chan
nel length, and its own phase differenceDa between the
channel ends.

In the limit hj@1, the second term in the potenti
U(b) can clearly be neglected. Then the problem reduce
the simpler case withvP5vL .

The situation in which the value ofb is constant along
the channel, i.e.,b850, is special. Such a situation arises
b corresponds to the minimum of the potential~40! ~this
point is special, because motion starting there is aperiod!.
In this case it follows from~37! that the derivativea85g
5const is constant along the channel. Accordingly, the ph
difference between the ends isDa5gL.

The condition for a potential minimum in this notatio
takes the form

cosb52
sgn~vP2vL!

~gj!2
.

It follows from the range of the cosine that such a solut
exists only whengj>1. Otherwise, only sinb[0 is pos-
sible. Thus, the current depends on the gradientg of the
azimuthal anglea:

Jz5H 0, gj<1,

w2

3k
gS 12

1

~gj!4D , gj.1,
~51!

uJu5H 0, gj<1,

w2

3k
gA12

1

~gj!4
, gj.1.

~52!

This dependence is shown in Fig. 4.
For any value of the gradient, the spins in the chan

are oriented at a fixed angleb0 to the magnetic field; tha
angle is 0 forgj,1 and tends top/2 asgj→`:

b05H 0, gj<1,

arccos
1

g2j2
, gj.1.

~53!
to

se

l

5. CONCLUSION

In this paper, we have investigated axisymmetric a
one-dimensional quasisteady solutions of the equations
the spin dynamics of a normal Fermi liquid in a unifor
magnetic field in the collisionless regime. Structures rese
bling a spin vortex with an integer circulation number th
are stable against small perturbations show up in the axis
metric case. In each such structure, magnetization paralle
antiparallel to the field at the vortex axis deviates smoot
with increasing distance from the axis, up to some angle
the vessel boundary. This angle, as well as the exact de
dence of the deviation of the magnetization on the dista
to the axis, are determined by the total longitudinal comp
nent of the magnetization direction*drcosb. The initial con-
ditions of the experiment determine the total longitudin
magnetizationS*drcosb, whose value does not vary durin
further evolution of the system, in accordance with Legge
equations. At the beginning of the experiment,S can be as-
sumed to take the equilibrium valuexnvL /g2.

The requirement that no spin current flow through t
chamber walls~when its size is fixed! maps every deviation
angle at the lateral surface of the vessel to a value of
difference between the precession frequency and the Lar

FIG. 4. Dependence of the current through the channel~in units ofw2/3kj)
on the phase difference at the channel ends when the deviation of the
netization corresponds to the minimum of the potential~38!: light line —
absolute value of the current, heavy line — component along the field
large values of the phase gradientgj, both dependences become asympto
cally linear.
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frequency in such a manner that the required effective~i.e.,
in units of the characteristic lengthj) vessel radius is en
sured. The effective vessel radius needed to form a vo
has a lower bound'0.84~for a vortex with circulation num-
ber N51). As the effective radius tends to infinity, the d
viation angle at the lateral surface tends top, and equal
precession and Larmor frequencies correspond to the ma
tization distribution described by the Belavin–Polyak
skyrmion solution.

We seek solutions in the quasistationary approximati
with slow motion relative to the Larmor reference frame, i.
in the limit in which the absolute value of the differenc
between the precession frequency and the Larmor freque
is small.

The collision integral in Leggett’s equation for the sp
current leads to relaxation of the absolute value of the m
netizationS. The quasistationary approximation can then
equivalently reformulated as the condition that this rela
ation be slow. The latter circumstance in conjunction w
the stability of the entire family of vortex solutions sugge
in this case that relaxation will be described by solutions
this family, i.e., the distribution of spin in the system at a
instant will correspond to a vortex with a value of* dr cosb
such thatS* dr cosb remains constant, as required by Le
gett’s equations. Since, however, each vortex is uniqu
characterized not only by the total longitudinal componen
the magnetization direction, but also by the difference
tween its precession frequency and the Larmor freque
~see above!, in this case relaxation should lead to variation
the precession frequency with time.

Stationary magnetization transport along a thin chan
connecting two reservoirs with a Fermi liquid has also be
investigated. It has been found that the dependence of
polar angle on distance along the channel is described in
case by Newton’s equations of motion for a particle in
potential well with a single minimum. Distance along th
channel plays the role of time. The spin current through
channel, the ‘‘phase’’ difference~i.e., the difference betwee
the azimuthal angles! at the ends of the channel, as well
the exact form of the potential well, depend on the sin
parameterh. When there are definite fixed boundary con
tions at the ends of the channel, the parametric depend
of the current through the channel on the phase differe
between the ends is obtained.

The boundary conditions chosen in this paper cor
spond to a situation in which motion in the potential w
must begin and end at the same turning point. In this cas
integer number of periods of motion fit into the chann
length. Therefore, if the polar angleb0 in the reservoirs is
fixed, current-carrying states can appear only at certain
crete values of the phase difference, which form an infin
sequence, each with its own value of the current. In the g
eral case the current cannot be expressed analytically a
explicit function of the phase difference. However, the qua
tative features of this function are the same as in the sim
case~which is also the limiting case for largeh) of equal
precession and Larmor frequencies, in which a phase dif
ence that is a multiple of 2p is needed for current to flow. In
this case
x
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Jz[
w2

3k
h5

w2

3k

2pn sinb0

L
.

Only when b0 corresponds to the potential minimum
~for a givenh) is there no such approach. In this case t
motion is aperiodic, i.e., the polar angle is constant along
channel ~and coincides with the polar angle in the rese
voirs!. It also turns out in this case that the production o
current-carrying state is possible only for phase gradie
greater than the reciprocal of the characteristic scalej21.
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from the Statistical Physics Program of the Ministry of S
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1!Vectors in spin space are denoted by bold letters, and the componen

vectors in orbital space are denoted by a subscript.
2!By virtue of ~20!, there clearly also exists an inverse structure, i.e.

skyrmion for whichb varies fromp ~at 0) to 0 ~at `).
3!Of course, because of invariance under the transformation~20!, it is clear

for vP.vL that the asymptote~27! at infinity matches the asymptotep
2ArN near zero.

4!Recall that we assumevP,vL .
5!Because of the various existing definitions ofp, we write out the integral

of the third kind in explicit form:

P~w,k,p!5E
0

sinw dt

A12t2A12k2t2~11pt2!
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4I. A. Fomin, Zh. Éksp. Teor. Fiz.88, 2039 ~1985! @Sov. Phys. JETP61,
2039 ~1985!#.

5A. S. Borovik-Romanov, Yu. M. Bun’kov, V. V. Dmitrievet al., JETP
Lett. 45, 124 ~1987!.

6A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitrievet al., Jpn. J.
Appl. Phys., Part 126, Suppl. 26-3, 175~1987!.

7A. S. Borovik-Romanov, Yu. M. Bun’kov, A. de Vaardet al., JETP Lett.
47, 478 ~1988!.

8A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitrievet al., Physica
B 165–166, 649 ~1990!.

9I. A. Fomin, JETP Lett.45, 136 ~1987!.
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Continuum description of anomalous diffusion on a comb structure
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Anomalous diffusion on a comb structure consisting of a one-dimensional backbone and lateral
branches~teeth! of random length is considered. A well-defined classification of the
trajectories of random walks reduces the original problem to an analysis of classical diffusion on
the backbone, where, however, the time of this process is a random quantity. Its distribution
is dictated by the properties of the random walks of the diffusing particles on the teeth. The
feasibility of applying mean-field theory in such a model is demonstrated, and the equation
for the Green’s function with a partial derivative of fractional order is obtained. The characteristic
features of the propagation of particles on a comb structure are analyzed. We obtain a
model of an effective homogeneous medium in which diffusion is described by an equation with
a fractional derivative with respect to time and an initial condition that is an integral of
fractional order. ©1998 American Institute of Physics.@S1063-7761~98!01010-5#
ge
m

a

l
s
i

la
on

te
d
ra
he
th
tic

ch
io
a
b

ith
aw
a

a

es
la
nd

be

n-

-
out
he

ld,
s.
ld
b-
ut

n-

if-
ed

the
lks
om

he
ti-
ith
m

ith
t is

uc-
1. INTRODUCTION

Diffusion in heterogeneous media containing inhomo
neities of various scales, particularly on fractals, has ano
lous properties~for reviews see Refs. 1–3!. For example, in
such media without a preferred direction, the mean-squ
displacement of a Brownian particlêx2& depends on the
time t as ^x2&}ta, whereaÞ1. A self-consistent, genera
description of anomalous transport is presently lacking,
various models of inhomogeneous media are investigated
dividually. Typical examples of such media include perco
tion clusters and clusters that emerge during diffusi
controlled aggregation.

From the standpoint of diffusive transport, such a clus
can be represented as consisting of an infinitely exten
backbone and a large number of lateral branches. The
dom walk of a diffusing particle on the backbone of t
cluster largely determines its movement in space, while
lateral branches serve as specific traps where the par
spends most of its time~see, for example, Refs. 1–3!. The
degree of branching of the backbone is small,4 so the model
of a comb structure with lateral branches~teeth! of random
length ~Fig. 1! was proposed to describe diffusion in su
systems in Refs. 5 and 6. If the properties of percolat
clusters are taken into account, distributions for which
moments of the tooth length distribution diverge can also
considered.

Diffusion along the backbone of a comb structure w
teeth of identical length is described by the classical l
^x2&}t, if the length of the branches is small, and is anom
lous,^x2&}t1/2, if their length is infinite.7,8 For a comb struc-
ture with teeth of random length it is natural to expect th
the function^x2(t)& will also be a power function with an
exponentaP(1/2,1). In fact, in Refs. 9 and 10 the properti
of anomalous transport were in fact investigated in the c
sical mean-field approximation. In particular, it was fou
7001063-7761/98/87(10)/14/$15.00
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that a5g/2 for a power-law distributionf ( l )} l 2g of the
tooth lengthl , with g in the range 1,g,2. If all moments
of f ( l ) converge, diffusion on the comb structure can
described by classical laws.11 The properties of such diffu-
sion under the influence of a topological drift field were i
vestigated in a similar approximation in Refs. 12 and 13.

The value ofa for exponential and power-law distribu
tions of the lengths of the lateral branches with and with
a drift field along the backbone was found by isolating t
leading terms with respect tot in the lattice description of
Refs. 14 and 15. In particular, in the presence of a drift fie
a5g for such a power-law distribution of the tooth length
This problem was studied in the presence of a drift fie
along the teeth in Ref. 16. The Green’s function in the a
sence of a drift field was also found for the lattice model, b
without any justification for the modification of the mea
field approximation.17

In this paper we develop a continuum description of d
fusive transport on a comb structure. Using a well-defin
classification of random-walk trajectories, we reduce
original problem to a classical description of random wa
on the backbone, where, however, the time of each rand
walk is a random quantity. Its distribution is dictated by t
random walks of diffusing particles on the teeth. We ul
mately obtain a model of a homogeneous medium w
anomalous properties. In particular, diffusion in this mediu
is described by an equation with a fractional derivative w
respect to time and a corresponding initial condition tha
an integral of fractional order.

2. MODEL

Let thex axis represent the backbone of the comb str
ture under consideration~Fig. 1!. The teeth$i% ( i PZ) are
attached perpendicularly to it~parallel to they axis!. They
© 1998 American Institute of Physics
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are separated by a distanceD, and their lengths$ l i% are in-
dependent random quantities. Their distributionf ( l ) is de-
scribed by the power law

f ~ l !5~g21!
l 0
g21

l g
, ~2.1!

with exponentgP(1,2), andl 0;D is the minimum tooth
length. The function~2.1! satisfies the following normaliza
tion and divergence conditions for all moments:

E
l 0

`

f ~ l ! dl51, E
l 0

`

l nf ~ l ! dl5`, n51,2, . . . .

As will be seen below, these conditions ensure the feasib
of describing anomalous diffusion in terms of a homog
neous medium.

The diffusion law for Brownian particles on such
structure is given by the following equations: for the bac
bone, away from the points of tooth attachment$xi5 iD%,
i.e., atxÞxi ,

]c

]t
5D

]2c

]x2
2mE

]c

]x
, ~2.2!

and for thei th tooth

]Ci

]t
5D

]2Ci

]y2
. ~2.3!

Herec(x,t) is the concentration of diffusing particles on th
backbone,Ci(y,t) is their concentration on toothi , D is the
diffusion coefficient,m is the mobility, and, in addition, we
assume that a uniform fieldE acts along thex axis. At the
points of attachment$xi% the concentration of particles an
their fluxes along the backbone and the teeth

j 52D
]c

]x
1mEc, Ji52D

]Ci

]y
,

respectively, satisfy the continuity equations

c~xi ,t !5Ci~0,t !, j ux5xi205 j ux5xi101Juy510 . ~2.4!

The condition on the reflection of particles at the ends of
teeth is

FIG. 1. Model of a comb structure:E—drift field; points—the ‘‘observation
line’’ y5e; xi—tooth coordinates;l i – tooth lengths.
ty
-

-

e

]Ci

]y U
y5 l i

50. ~2.5!

Equations~2.2!–~2.5! comprise a complete microscop
description of diffusion on a comb structure.

To justify going to the continuum limit,D must be a
small quantity. Specifically, we assume that

D2!Dt and mED!D. ~2.6!

The first inequality means that the characteristic diffus
length at timest considered here significantly exceeds t
distance between teethD, and the second means that th
influence of the drift fieldE is small on scales of lengthD.

3. GREEN’S FUNCTION. CLASSIFICATION
OF THE TRAJECTORIES OF DIFFUSING PARTICLES

For simplicity, we analyze the diffusion of particles o
the backbone when all particles are localized on the ba
bone with densityc0(x) at the initial timet50. In this case
the solution of the problem~2.2!–~2.5! reduces to finding the
Green’s functionG(x,x8ut), which specifies the concentra
tion c(x,t) at time t:

c~x,t !5E
2`

`

G~x,x8ut !c0~x8! dx8. ~3.1!

The Green’s function

G~x,x8ut !5G~x,y,tux8,0!uy50

is the solution of the problem under consideration with
d-function initial condition, and can be interpreted as t
probability density of finding a diffusing particle atx at time
t given that it was atx8 at the initial timet50. All possible
particle trajectories that begin atx8 and reachx after a timet
contribute to this probability. In addition, they are indepe
dent because of the linearity of the system of equati
~2.2!–~2.5!. This enables us to represent the Green’s funct
as an integral over the trajectories

G~x,x8ut !5E
x~0!5x8
y~0!50

x~ t !5x
y~ t !50 D$x~ t8!,y~ t8!%P tr , ~3.2!

where P tr is the statistical weight of the trajector

$x(t8),y(t8)% t850
t85t andD$x(t8),y(t8)% is its Wiener measure

Let us construct the following classification of traject
ries ~Fig. 2!. We introduce an ‘‘observation line,’’ the hori
zontal straight liney5e, wheree satisfies

D; l 0!e!ADt,DS D

mED D 2/g

~3.3!

~the meaning of the latter bound one will shortly become
clear!. The first segment of a trajectory,Pin$x8,i 1 ,t1%, be-
gins at x8 and corresponds to random walks of a partic
within the regionGe5$(x,y):yP@0,e)%, i.e., without cross-
ing the observation line. It ends at (xi 1

,e) at timet1, when
the particle first crosses the observation line. The next s
ment of the trajectory,Pout$ i 1 ,t1%, corresponds to random
walks of the particle on toothi 1 without touching thex axis.
It ends at timet1, when the particle first arrives atxi 1

. The
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subsequent structure of the trajectory is composed ofN21
successive repetitions of this pair of segments represen
random walks on the comb structure within the regionGe

and on teeth without touching the backbone:

Pin$ i 1 ,i 2 ,t2%; Pout$ i 2 ,t2%; . . . ;

Pin$ i N21 ,i N ,tN%; Pout$ i N ,tN%

(Pin$ i k21 ,i k ,tk%[Pin$xi k21
,i k ,tk%), with the exception of

the last segmentPlast$ i N ,x,tN11%. The last segment begin
at xi N

and represents a random walk of durationtN11 within
the regionGe , which ends atx on thex axis.

This classification enables us to perform the integrat
in ~3.2! first, assuming that the parameters

N,$ i k ,tk ,tk%k51
k5N , tN11

are given, and then to integrate the result over these pa
eters~summing overi k andN). We thereby obtain

G~x,x8ut !5g~x,x8ut !1 (
N51

` E
0

t

dt i N11 (
i N52`

`

g~x,xi N
ut i N11

!

3FN~xi N
,x8ut2t i N11

!, ~3.4!

where

FIG. 2. Characteristic segments of the trajectory of a random walker
was atx8 at time t850 and arrived atx at time t: a — schematic represen
tation of this trajectory in the space$x,y%; b — the corresponding diagram
For simplicity, a trajectory containing five characteristic segments fo
random walker on the backbone and on the teeth of a comb structu
shown.
ng

n

m-

FN~xi N
,x8ut !5 (

i 152`

`

••• (
i N52`

` E
0

`

•••E
0

`

)
k51

N

dtk dtk

3dF t2(
j 51

N

~t j1t j !GW~xi k
,xi k21

utk!

3F~ i k ,tk!. ~3.5!

Hereg(x,x8ut) is the probability of arriving atx from x8 in
time t without touching the observation line. The analogo
functiong(x,xi N

utN11) describes the last segment of the tr
jectory forN>1. The factorW(xi k

,xi k21
utk) is the probabil-

ity of first arriving at (xi k
,e) on the observation line in time

tk if the particle was atxi k21
at the initial time. In

W(xi 1
,xi 0

ut1) the symbol xi 0
formally denotes the initial

point of the trajectory:xi 0
5x8. The factorF( i k ,tk) is the

probability of first arriving at thex axis in timetk during a
random walk on toothi k for a particle that was aty5e at the
initial time. These factors and trajectory segments are co
pared in Fig. 2a. Figure 3 presents Eqs.~3.4! and ~3.5! in
diagrammatic form.

Since the problem under consideration is translationa
invariant with respect to time, it is convenient to tak
Laplace transforms:

~ . . . !~s!5E
0

`

dt8 e2st8~ . . . !~ t8!,

where we assume that the arguments;1/t. This enables us
to rewrite ~3.4! and ~3.5! in the form

G~x,x8us!5g~x,x8us!

1 (
N51

`

(
i N52`

`

g~x,xi N
us!FN~xi N

,x8us!, ~3.6!

FN~xi N
,x8us!

5 (
i 152`

`

••• (
i N2152`

`

)
k51

N

W~xi k
,xi k21

us!F~ i k ,s!. ~3.7!

To complete this description we need relations that spe
the principal factors in~3.6! and~3.7!; these form the subjec
of the remainder of this section.

at

a
is

FIG. 3. Diagrams of Eqs.~3.4! and ~3.5! for the Green’s functionG(x,x8)
and diagrammatic representation ofF(xi ,x) ~the relations~3.5! and ~3.7!!.
The bracket denotes the convolution$W* F% of N factors.
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3.1. Green’s function for the elementary segment Pout

The general expression for the Laplace transformF( i ,s)
of the probability of first arriving at thex axis in time t
during a random walk on toothi for a particle that was ini-
tially at y5e is derived in Appendix A. Given the con
straints one ~see~3.3!!, to first order in the small quantity
eAs/D this expression reduces to

F~ i ,s!512eA s

D
tanhS l iA s

D D , ~3.8!

which is the expression desired in this part of the paper.

3.2. Green’s function for the elementary segment Pin

We first consider the Laplace transformg(x,x8us) of the
probability of a particle arriving atx from x8 in time t during
a random walk within the regionGe . Such a random walk is
accompanied not only by displacement of the particle alo
the backbone, but also by visits to points on nearby te
This process is described by~2.2!–~2.5! and the vanishing
boundary conditionCi(e,s)50 at y5e for teeth whose
length l i.e. In Appendix B ~see Eq.~B10!! we use this
description ofg(x,x8us) to obtain

sg5D
]2g

]x2
2mE

]g

]x
2h~x!g1d~x2x8!, ~3.9!

where

h~x!5AsDF (
i 52`

`

bid~x2xi !G ~3.10!

describes the rate of escape of the random walkers from
backbone, and the coefficientsbi are random numbers give
by ~B8!, which can be rewritten in the limit~3.3! as

bi55 l iA s

D
, l i<e

1

e
AD

s
1

e

3
A s

D
, l i.e.

~3.11!

Finally, to complete the problem we need an express
for the probabilityW(xi ,x8ut) of first arriving at toothi on
the observation liney5e in time t when the particle starts o
the backbone atx8. As shown in Appendix B~see B12!!, the
Laplace transform of this function in the limit~3.3! is

W~xi ,x8us!5
D

e S 12
e2s

6D Dg~xi ,x8us!u i
e , ~3.12!

whereu i
e51 for l i.e andu i

e50 for l i<e.
The relations~3.6!–~3.9! and~3.12! comprise a complete

description of the present diffusion problem on a comb str
ture for a given distribution of the tooth lengths$ l i%. Subse-
quent analysis will be given over to investigating typic
properties of such diffusion with ensemble averag
over $ l i%.

As can be seen from the expressions obtained,
Green’s functiong(x,x8us) plays a significant role in the
approach described here. Therefore, before proceedin
further derivations, we consider some salient properties.
g
h.

he

n

-

l

e

to

We separateg(x,x8us) into a regular~i.e., averaged over
the ensemble$ l i%) part ḡ(x,x8us) and a random componen
dg(x,x8us):

g~x,x8us!5ḡ~x,x8us!1dg~x,x8us!. ~3.13!

In the zeroth approximation with respect toD/e the function
ḡ(x,x8us) satisfies Eq.~3.9! after the replacement ofh(x) by
its averaged valueh̄ and neglect of the small-amplitud
variations ofḡ(x,x8us) over the distanceD, due to the dis-
crete positions of the teeth. In this approximation~see Ap-
pendix B! for ḡ(x,x8us) we have

sVeḡ5D
]2ḡ

]x2
2mE

]ḡ

]x
2

2D

l e
2
ḡ1d~x2x8!, ~3.14!

where

Ve511
~2g21! l 0

3~22g! D S e

l 0
D 22g

~3.15!

is the dimensionless capacity of the layerGe , and

l e5A2D l 0 S e

l 0
D g/2

~3.16!

is the rms length of the elementary segmentPin. It also fol-
lows from ~3.14! that the mean durationte of Pin and the
corresponding mean residence timete

b of a particle on the
backbone are

te5
Vel e

2

2D
.

2g21

3~22g!

e2

D
, te

b5
l e

2

2D
5

AD l 0

A2D
S e

l 0
D g/2

. ~3.17!

In this approximation the random componentdg(x,x8us)
is given by the expression~Appendix B, Eq.~B29!!

dg~x,x8us!52AsD (
i 52`

`

dbi ḡ~x2xi us! ḡ~xi2x8us!,

~3.18!

wheredbi5bi2^b& is the random component of the coeffi
cient bi . Then the ratio of the Fourier componentsdgk and
ḡk of the functionsdg and ḡ can serve as a measure of th
influence of random inhomogeneities of the geometry of
comb structure on the random walks of particles within t
layer Ge . According to Eq.~B33!,

^udgku2&

uḡku2
;S l 0

e D ~22g!/2

!1, ~3.19!

and thus wheng,2 and e@ l 0;D, dg(x,x8us) is small
compared to the regular partḡ(x,x8us), and in the first ap-
proximation the Green’s functiong(x,x8us) can be consid-
ered identical to its regular part. We note that this statem
in fact follows from the condition that there be a large nu
ber of teeth with lengthl i.e over a characteristic length o
Pin. Specifically, the number of such teeth

Ne;
l e

D
Pe;S e

l 0
D ~22g!/2

@1, ~3.20!

where
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Pe5E
e

`

dl f ~ l !5S l 0

e D g21

~3.21!

is the probability of finding a tooth of lengthl i.e.
By virtue of ~3.3! and ~3.17!, a typical trajectory of a

random walk of a diffusing particle includes a large numb
N@1, of the elementary segmentsPin and Pout. Thus, after
appropriate regularization, the Green’s functionFN(xi ,x8us)
varies little in response to variations of the argumentsxi and
x8 on scales not only of orderD, but also of orderl e . This
enables us to regard the regularized Green’s func
FN(xi ,x8us) as a continuous function of its arguments, ma
ing it possible to model diffusion on a comb structure
terms of an effective homogeneous medium with anomal
properties. The next section is devoted to devising this re
larization procedure and deriving the corresponding differ
tial equation for the regularized Green’s function.

4. FOKKER–PLANCK EQUATION FOR THE GREEN’S
FUNCTION FN„x ,x 8zs …

Let us write ~3.7! as a Smoluchowski–Kolmogoro
equation, which relates the functionsFN11(x,x8us) and
FN(x,x8us):

FN11~xi ,x8us!5F~ i ,s! (
j 52`

`

W~xi ,xj us!FN~xj ,x8us!,

~4.1!

which corresponds to the diagram in Fig. 4. We next c
sider large values of the argumentN@1. In this case it is
natural to expect that the functionsFN11(xi ,x8us) and
FN(xi ,x8us) will differ only slightly, in which case we can
consider the argumentN to be continuous and put

FN11~xi ,x8us!2FN~xi ,x8us!5
]FN~xi ,x8us!

]N
.

However, spatial fluctuations ofFN(xi ,x8us) remain signifi-
cant when the coordinatexi varies on scales of lengthD,
sinceFN(xi ,x8us)[0 when l i,e by virtue of ~3.12!. Nev-
ertheless, these fluctuations do not play an appreciable
since the relationship between the desired Green’s func
G(x,x8us) andFN(xi ,x8us) is given by the integral relation
~3.6!, and the kernelg(x,x8us) of that relation has a local
ization region whose width is of orderl e . The function
g(x,x8us) varies weakly as a function of the argumentx8 on
scales of lengthD, and its localization region contains a larg
number of teeth of lengthl i.e ~see~3.20!!. It would there-

FIG. 4. Diagram of Eq.~4.1! for the Green’s functionFN(xi ,x8). The large
points on the diagram denote summation and integration over the c
sponding arguments.
,

n
-

s
u-
-

-

le,
n

fore be reasonable to smooth the functionFN(xi ,x8us) with
respect toxi on scales smaller thanl e and treat it as a con
tinuous function ofx5xi , x8, andtb[Nte

b :

FN~xi ,x8us!→F~x,x8utb ,s!.

The use of the argumenttb is justified because it is the mea
residence time of a random walker on the backbone of
comb structure.

A Fourier transform-based smoothing procedure is
vised in Appendix C for wave numbersk!1/l e . It is also
shown there that by following Pontryagin’s method,18 the
Smoluchowski–Kolmogorov equation~4.1! for FN(xi ,x8us)
can be reduced to the following Fokker–Planck equation
F(x,x8utb ,s):

te
b ]F

]tb
5

]2

]x2
@De~x!F#2

]

]x
@q~x!F#2y~x,s!F. ~4.2!

The kinetic coefficients in this equation are

De~x!5
1

2 (
j 52`

`

~xj2x!2W~xj ,xu0!5DE
2`

`

dx̃ g~ x̃,xu0!

1mE E
2`

`

dx̃ ~ x̃2x!g~ x̃,xu0!, ~4.3!

q~x!5 (
j 52`

`

~xj2x!W~xj ,xu0!5mEE
2`

`

dx̃ g~ x̃,xu0!,

~4.4!

y~x,s!5eA s

D (
i 52`

`

tanhS l iA s

D DW~xj ,xu0!. ~4.5!

For N51, to a first approximation we can put

F1~xi ,x8us!'W~xi ,x8u0!.

In this case the width of the localization region
F1(xi ,x8us) is of the order ofl e , and by virtue of~B17!,

(
i 52`

`

F1~xi ,x8us!'1.

This enables us to supplement Eq.~4.2! with the formal ini-
tial condition

F~x,x8utb ,s!u tb505Dd~x2x8!, ~4.6!

since in going over to the continuum limit we make th
replacement

(
i 52`

`

→
1

D E
2`

`

dxi .

The ensuing analysis will be based on the solution of E
~4.2!, using the mean values of its kinetic coefficients b
cause of the small magnitude of their random inhomo
neous perturbations. However, a comb structure is a l
dimensional system, so in general the mean-fi
approximation for Fokker–Planck type equations can br
down under even the smallest of perturbations~see, for ex-

e-
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ample, Ref. 19!. Therefore, use of the mean-field approxim
tion to describe a given system requires special justificat
which we provide in the next section.

4.1. Mean-field approximation

We can show that the influence of random fluctuatio
of the kinetic coefficients~4.3!–~4.5! is negligible under the
strictures of~3.3!. We apply the mixed Laplace and Fouri
transformations

~ . . . !~s!5E
0

`

dtb e2stb~ . . . !~ tb!,

~ . . . !~k!5E
2`

`

dx e2 ikx~ . . . !~x!

to Eq. ~4.2!. From ~4.2! we then obtain the following equa
tion for the transformF* (k,x8us,s) of the Green’s function
F(x,x8utb ,s):

Lk* Fk* 52
1

2p E
2`

`

dp dLk,k2p* Fp* 1De2 ikx8, ~4.7!

where

Lk* 5te
bs1Dek

21 iqk1y ;

dLk,p* 5k2dDe~p!1 ikdq~p!1dy~p!;

De , q, andy are the mean values of the corresponding
netic coefficients, anddDe(p), dq(p), and dy(p) are the
Fourier transforms of their fluctuation components.

It can be seen from~4.7! that in the zeroth approxima
tion with respect to the fluctuation operatordLk,p* , the regu-

lar part F̄k* of the transformF* (k,x8us,s) of the Green’s
function is

F̄k* 5
De2 ikx8

Lk*
~4.8!

and that in the first approximation its fluctuation compon
dFk* is

dFk* 52
eikx8

2pD
F̄k* E

2`

`

dp dLk,k2p* F̄p* . ~4.9!

When tb@te
b (N@1), the widthl F of the localization

region ofF(x,x8utb ,s) significantly exceeds the scale leng
l e , i.e., the width of the localization region ofg(xi ,xus):
l F@ l e . Therefore, forFk* the significant values of the
wave numbers lie in the rangeuku&1/l F!1/l e . As can be
seen from~4.3!–~4.5!, the characteristic correlation length o
the kinetic coefficientsDe(x), q(x), and y(x) is of order
l e . Therefore, in~4.9! it can be assumed that the rando
fluctuations dDe(x), dq(x), and dy(x) are d-correlated.
From ~4.9! we can then assess the influence of random in
mogeneities of comb structure geometry on the Gree
function F(x,x8utb ,s):
-
n,

s

-

t

-
’s

K UdFk*

F̄k*
U2L 5

L

2p E
2`

`

dp
1

Lp* L2p*
, ~4.10!

where

L5E
2`

`

dx8^dLk* ~x!dL2k* ~x8!&, ~4.11!

dLk* ~x!5k2dDe~x!1 ikdq~x!1dy~x!. ~4.12!

The integral ~4.10! is evaluated in Appendix D~see Eq.
~D17!!, and yields the estimate

K U dFk*

F̄k*
U2L &S l 0A s

D D ~22g!/2

!1, ~4.13!

if the wavelength 1/k of the perturbationdFk* is not much
greater than the typical thickness of the localization region
F(x,x8utb ,s).

By virtue of ~4.13!, to a first approximation the trans
form Fk* of the Green’s functionF(x,x8utb ,s) is given by
~4.8!, i.e., we can use the mean-field approximation in so
ing Eq. ~4.2!. In other words, replacing the kinetic coeffi
cientsDe(x), q(x), andy(x,s) by their mean valuesDe , q,
andy in this equation is justified. This enables us, first, to
longer distinguish between the Green’s functi
F(x,x8utb ,s) and its regular part. Second, using the expr
sions~D2! and~D7! obtained in Appendix D forDe , q, and
y along with Eq.~3.17!, we can write Eq.~4.2! in the form

]F

]tb
5D

]2F

]x2
2mE

]F

]x
2n~s!F, ~4.14!

where

n~s!5I g

D

D l 0
S l 0A s

D D g

, ~4.15!

I g is a constant of order unity, which is specified by~D6!,
and 1/n(s) plays the role of the characteristic lifetime of
diffusing particle on the comb structure backbone during
random walk over a time periodt;1/s.

Equation~4.14! with initial condition ~4.6! is the princi-
pal result of this section. Therefore, before moving on to
concluding portion of this paper, we give a qualitative exp
nation for the validity of the mean-field approximation in th
system under consideration. We assume for simplicity t
the drift field is weak. As follows from the results in Appen
dix D, random fluctuations of the kinetic coefficienty(x,s)
determine the spatial fluctuations of the Green’s funct
F(x,x8utb ,s) and are associated mainly with random wal
of a particle on teeth whose length is of orderl s5AD/s.
These fluctuations are small if the random walker encoun
a large numberNs of such teeth during a timet;1/s. By
virtue of ~2.1!, the fraction of teeth with length of orderl s is

Ps;E
l s

`

f ~ l ! dl;S l 0A s

D D g21

,

and as follows from Eq.~4.14!, the characteristic thicknes
l F of the localization region ofF(x,x8utb ,s) is
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l F;A D

n~s!
;DS l 0A s

D D 2g/2

.

Hence, forNs we have

Ns;Ps

Ls

D
;S l 0A s

D D 2~22g!/2

@1,

which is in fact the same condition as~4.13!.

5. CONTINUUM DESCRIPTION OF DIFFUSION
ON THE BACKBONE OF A COMB STRUCTURE

Returning to the original problem of calculating th
Green’s functionG(x,x8us) of random walks on a comb
structure, we see that the results obtained above enable
transform Eq. ~3.6! in the following manner. First, we
change from summation overN and i to integration over
tb5Ntb

e , and letx̃→xi N
:

(
N51

`

→
1

tb
e E0

`

dtb , (
i N52`

`

→
1

D E
2`

`

dx̃.

Sinceg(x,xi N
us) and the smoothed functionF(xi N

,x8utb ,s)
scarcely vary on scales of lengthD, the main contribution to
G(x,x8us) comes fromN;tb

e /n(s);(eAs/D)2g@1, and by
virtue of ~4.6!, the first term on the right-hand side of E
~3.6! can be written

g~x,x8us!5
1

D E
0

`

dx̃ g~x,x̃us!F~ x̃,x8u0,s!.

We then puts50 in g(x,xi N
us) and integrate overx̃, ignor-

ing the variations ofF( x̃,x8utb ,s).F(x,x8utb ,s) in a
neighborhood of thicknessl e aboutx; l e is small in com-
parison to the thicknessl F of the localization region of
F( x̃,x8utb ,s) itself. Finally, also taking into account~3.17!
and ~D1! and the fact that under the present assumptio
G(x,x8us) andF(x,x8utb ,s) depend only on the differenc
x2x8, we can write

G~x2x8us!5
1

D E
0

`

dtb F~x2x8utb ,s!. ~5.1!

The relation~5.1!, together with Eq.~4.2! and the bound-
ary condition ~4.6!, shows that the Green’s functionG(x
2x8us) satisfies

n~s!G5D
]2G

]x2
2mE

]G

]x
1d~x2x8!, ~5.2!

which is indeed a general solution of the present problem
The latter equation yields a continuum description

anomalous diffusion along the backbone of a comb struct
We next analyze the specific properties of such diffusion
greater detail.

5.1. Continuum equation for anomalous diffusion

The set of relations that we have constructed, toge
with ~3.1!, enables us to write for the Laplace transfor
cL(x,s) of the concentration of diffusing particlesc(x,t)
to

s,

f
e.
n

er

n~s!cL5D
]2cL

]x2
2mE

]cL

]x
1c0 , ~5.3!

where, as in Sec. 3,c0(x) is the concentration of particles a
the initial time t50. Using the concepts of fractional inte
grals and derivatives,20 an analogy can be drawn, by virtue o
~4.15!, between this equation and the following equation
anomalous diffusion:

I g

l 0

DS D

l 0
2D ~22g!/2

]ac

]ta
5D

]2c

]x2
2mE

]c

]x
. ~5.4!

Here the operator for a fractional derivative of degr
a5g/2 ~for 0,a,1) is given by20

]ac~ t !

]ta
5

1

G~12a!

]

]t E0

t

dt8
c~ t8!

~ t2t8!a
, ~5.5!

whereG( . . . ) is thegamma function. Equation~5.4! must
be supplemented by an ‘‘initial’’ condition, which describe
the behavior of the concentrationc(x,t) at smallt. However,
the formal limiting transitiont→10 in Eq. ~5.4! is impos-
sible, since this equation was obtained under the assump
that t@D2/D.

Nevertheless, there is a possibility for determining so
limiting behavior of the concentrationc(x,t) while adhering
to the adopted description.1! Specifically, in the model unde
consideration it is natural to assume that the initial distrib
tion c0(x) varies only slightly on scales of lengthD. There-
fore, after a timet*D2/D has elapsed, the concentratio
c(x,t) will vary mainly as a consequence of the diffusion
particles along teeth, rather than along the backbone. In
dition, its spatial fluctuations on scales of lengthD will also
be insignificant despite the structural inhomogeneity of
system of teeth, as in fact follows from the estimates c
cluding Sec. 4.1. Such behavior ofc(x,t) at t*D2/D can be
described by Eq.~5.3! if the first two terms on its right-hand
side are discarded, i.e., ifn(s)cL.c0. The latter can also be
written in terms of the integral of fractional orderĴ12a:

I g

l 0

DS D

l 0
2D ~22g!/2

Ĵ12a$c~x,t !%.c0~x!, ~5.6!

wheret*D2/D, and the operatorĴ12a ~for 0,12a,1) is
given by20

Ĵ12a$c~x,t !%5
1

G~12a!
E

0

t

dt8
c~x,t8!

~ t2t8!a
.

The relation ~5.6! describes particle conservation. I
other words, it states that after a timet*D2/D, the total
number of particles~per unit length of the backbone! located
on the backbone and the nearby teeth is equal to their in
concentration on a tooth. Of course, this condition is actua
independent oft for t*D2/D, and can serve as a forma
initial condition for solving Eq.~5.4! in the continuum de-
scription:

I g

l 0

DS D

l 0
2D ~22g!/2

Ĵ12a$c~x,t !%u t→105c0~x!. ~5.7!



en

o

u
s
ti-

in
e

rip
i

lk
ce
e-
By

s-

-
er

for

rift
ng
In

the
ed
a

d
ion

ith
n
m-
s for
r a

ing
ith

-
e

e
ion

s
be-
his
pli-

es

if-
is-
sen-

at

707JETP 87 (4), October 1998 I. A. Lubashevski  and A. A. Zemlyanov
It is noteworthy that with such an approach the conc
tration c(x,t) does not tend toc0(x) as t→10, but instead,
by virtue of ~5.7!, it is given by

c~x,t !;
D

I gG~g/2!l 0
S l 0

2

Dt D
~22g!/2

c0~x!, ~5.8!

which has a singularity ast→10. The latter, however, is no
more than a formality, since in calculating specific values
c(x,t) we should at least taket*D2/D. In that event~5.8!
yields a reasonable result. In other words, in the continu
description of diffusion on a comb structure, scales lengthD
and timesD2/D should be regarded as infinitesimal quan
ties, and in this case the limitt→10 does not imply viola-
tion of the conditiont*D2/D.

Equation~5.4! with the initial condition~5.7! also com-
prises a continuum description of anomalous diffusion
terms of equations with fractional partial derivatives. W
note that direct application of the trap model to the desc
tion of anomalous transport also leads to an equation w
fractional derivatives,21,22 which differs in form, however,
from the present one.

5.2. Dispersion relations

To analyze the propagation properties of random wa
ers on a comb structure, we calculate the time dependen
the mean displacement^x(t)& and the mean-square displac
ment^x2(t)& of the random walkers along the backbone.
definition

^x~ t !&5
*2`

` dx x G~x,t !

*2`
` dx G~x,t !

, ^x2~ t !&5
*2`

` dx x2 G~x,t !

*2`
` dx G~x,t !

.

~5.9!

Equation~5.2! makes it possible to find the Laplace tran
forms of the given factors directly. Integrating~5.2! with
weighting functions 1,x, andx2, taking the inverse Laplace
transform of the results, and substituting them into~5.9!, we
have

^x~ t !&5
mEl2

D S Dt

l 0
2 D g/2

, ~5.10!

^x2~ t !&52l2S Dt

l 0
2 D g/2

1~11x!^x~ t !&2, ~5.11!

where

l25
G~g/2!

I gG~g!
D l 0 ,

x5
2G2~g!

G~g/2!G~3g/2!
21'0.27~22g!,

the latter estimate being good to within 0.004 for 1,g,2.
It follows, in particular, from~5.10! and~5.11! that for a

fixed process durationt, the first or second term in the ex
pression for ^x2(t)& dominates, depending on wheth
E!Ec(t) or E@Ec(t), where
-

f

m

-
th

-
of

Ec~ t !5
D

mlS l 0
2

Dt D
g/4

. ~5.12!

In weak fields (E!Ec(t)), we havê x2(t)&}tg/2 with an
exponent in the range 1/2,g/2,1, i.e., in this limit particle
propagation on the comb structure is subdiffusive~in the
terminology of Refs. 1–3!. In addition, we have

^x~ t !&

^x2~ t !&
5

mE

2D
, ~5.13!

which can be regarded as a generalized Einstein equality
the relationship between regular and random motions.

In strong fields (E@Ec(t)),

^x2~ t !&2^x~ t !&2

^x~ t !&2
5x;1, ~5.14!

which demonstrates that in anomalous diffusion, the d
field results not only in regular displacement of the diffusi
particles, but also to somewhat efficient random motion.
this range of fields the latter effect is commensurate with
former, and can be regarded provisionally as field-induc
diffusion. Such diffusive transport is characterized by
spreading of the ensemble of particles^x2(t)&2^x(t)&2}tg

with an exponent in the range 1,g,2, and can be relegate
on the basis of this phenomenon to the superdiffus
class.1–3

We note that superdiffusion is usually associated w
the Lévy flight model, and can be described by a diffusio
equation with fractional spatial derivatives, rather than te
poral, as a consequence of the divergence of the moment
the distribution of jumping distances of the particles afte
single displacement event to neighboring sites~Ref. 21!.2!

We also note that field-induced diffusion also appears dur
grain-boundary diffusion in polycrystals and in crystals w
dislocations.23–25

As might be expected, in the present case with 1,g
,2, the asymptote~5.10! and the leading term in the asymp
tote ~5.11! are consistent with the results of lattic
models14,15 in formal mean-field theories.9,10 For g.2
~where, for example, all except the first moments diverg!,
we encountered violation of the mean-field approximat
for the Green’s functionsg(x,x8us) andFN(x,x8us). In other
words, wheng.2, the distribution of the diffusing particle
along the backbone can become highly inhomogeneous
cause of the random geometry of the comb structure. T
case must therefore be examined in isolation, and the ap
cability of specific varieties of mean-field theory requir
separate investigation.

To better describe the physical import of anomalous d
fusion, we conclude with a qualitative derivation of the d
persion relations using simple estimates, which are es
tially akin to the approach in Ref. 9. Letl̄ (t) be the mean
penetration depth of particles diffusing along the teeth
time t:

l̄ ~ t !;E
l 0

ADt
dl l f ~ l !;

Dt

l 0
S l 0

ADt
D g

.
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Then the mean timetb that a random walker spends on th
backbone is

tb;
D

l̄
t;

D l 0

D S Dt

l 0
2 D g/2

.

At that time, the mean distance^x(t)& and the mean-squar
distancê x2(t)& traversed by the particles along a tooth a

^x~ t !&;mEtb;
mEAD l 0

D S Dt

l 0
2 D g/2

,

^x2~ t !&;Dtb1~mE!2tb
2;D l 0S Dt

l 0
2 D g/2

1D l 0S mEAD l 0

D D 2S Dt

l 0
2 D g

,

which are the same, in order of magnitude, as the rigor
results~5.10! and ~5.11!.

This work was carried out with partial support from th
Russian Fund for Fundamental Research~Grant No. 96-02-
17576!.

APPENDIX A: GREEN’S FUNCTION FOR FIRST ARRIVING
AT THE BACKBONE DURING RANDOM WALKS
ON A TOOTH

As follows from the general properties of random wal
~see, for example, Ref. 26!, the Laplace transformF( i ,suy)
of the probability of first arriving at the backbone, given th
the random walker was initially located aty on toothi , sat-
isfies

sF5D
]2F

]y2
~A1!

with boundary conditions

Fuy5051,
]F

]yU
y5 l i

50. ~A2!

Hence,

F~ i ,suy!5
cosh@~ l i2y!As/D#

cosh~ l iAs/D !
. ~A3!

The desired factor isF( i ,s)5F( i ,sue). As can be seen
from ~3.3!, wheny5e the parameteryAs/D can be assumed
to be small. Then, to terms linear iny, from ~A3! we find

F~ i ,suy!512yA s

D
tanhS l iA s

D D 1O~y2!, ~A4!

which leads directly to~3.8! for y5e.

APPENDIX B: GREEN’S FUNCTION OF RANDOM WALKS
WITHIN THE REGION Ge

1. General relations

The random walks of a diffusing particle on a com
structure can be characterized by two types of functions i
s

t

s

trajectory is localized in the regionGe . One is the probabil-
ity densityg(x,tux8,0) at timet of finding the particle on the
backbone atx after starting atx8. The second is the set o
probability densities$w i(y,t)% of finding it on the teeth$i% at
time t. These functions are interrelated by Eqs.~2.2!–~2.5!,
so their Laplace transforms satisfy the following equatio
For the functiong(x,x8us) not at the points$xi% of attach-
ment of the teeth to the backbone, i.e., atxÞxi ( i 50,61,
62, . . . ), wehave

sg5D
]2g

]x2
2mE

]g

]x
1d* ~x2x8!, ~B1!

whered* (x2x8) is an ordinaryd function for x8Þxi , and
for x85xi we take the following regularization rule:

d* ~x2xi !5 lim
x8→xi20

d~x2x8!.

The Laplace transforms$w i(y,s)% of the probabilities of
finding a random walker on the teeth$i% satisfy

sw i5D
]2w i

]y2
~B2!

in the range 0,y,min(e, li), with boundary conditions

]w i

]y U
y5 l i

50, l i<e ~B3!

w i uy5e50, l i.e. ~B4!

We note that the latter vanishing boundary condition on
functions$w i(y,s)% reflects the fact that we are considerin
particle trajectories that do not leave the regionGe during
random particle walks on the teeth. The following continu
conditions hold at the points of attachment of the teeth to
backbone$(xi ,y50)%:

w i~0,s!5g~xi , x8us!, ~B5!

Ji uy505 j ux5xi202 j ux5xi10 , ~B6!

where

Ji52D
]w i

]y
, j 52D

]g

]x
1mEg.

The solution of Eq.~B2! with boundary conditions
~B3!–~B5! is

w i~y,s!5g~xi ,x8us!FcoshS yA s

D D 2bi sinhS yA s

D D G ,
~B7!

where

bi5b~ l i !5H tanh~ l iAs/D !, l i<e,

coth~eAs/D !, l i.e.
~B8!

The expression~B8! enables us to represent the bounda
condition ~B6! in the form

j ux5xi102 j ux5xi205D
]w i

]y U
y50

52AsDbig~xi ,x8us!. ~B9!
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The relation~B9! shows that Eq.~B1! can be continued with-
out singularities over the entirex axis provided that
d-function power sinksAsDbig are introduced at the point
$xi%. In other words, for the Green’s function we can wr
the following equation, which is defined over the entirex
axis:

sg5D
]2g

]x2
2mE

]g

]x
2AsDF (

i 52`

`

bid~x2xi !Gg

1d* ~x2x8!. ~B10!

In this equation there is no reason to distinguish betw
d* (x2x8) and the ordinary delta functiond(x2x8). Hence
Eq. ~3.9! follows directly.

The random walk of a particle within the regionGe can
also be characterized by the probability of first arriving at
boundary, i.e., the observation liney5e. For the theory pre-
sented here we need the Laplace transformW(xi ,x8us) of
the probability density of a random walker first arriving
the observation line at toothi and timet after starting atx8
on the backbone. As follows from the general properties
random walks ~see for example, Ref. 26!, the function
W(xi ,x8us) and the probability flux densityJi are related by

W~xi ,x8us!5Ji uy5e52D
]w i

]y U
y5e

, ~B11!

of course, under the conditionl i.e. Substituting~B7! into
~B11!, we obtain the desired expression,

W~xi ,x8us!5AsDFsinhS eA s

D D G21

g~xi ,x8us!u i
e , ~B12!

whereu i
e51 for l i.e andu i

e50 for l i<e.
The quantityeAs/D can be considered a small param

eter in the limit~3.3!. Then, retaining the first two terms o
the expansion ineAs/D in ~B12!, we obtain~3.12!.

Some general identities, which establish the relations
betweeng(xi ,x8us) andW(xi ,x8us), will also be useful be-
low. To derive them, on the right-hand side of Eq.~B10! we
distinguish between contributions of lateral teeth w
lengthsl i<e and l i.e, and allowing for~B12!, we rewrite
this equation in the limite!AD/s :

(
i 52`

`

d~x2xi !W~xi ,x8us!

5D
]2g

]x2
2mE

]g

]x
2sF11 (

i 52`

`

d~x2xi !

3S 1

2
eu i

e1 l i~12u i
e! D Gg1d~x2x8!. ~B13!

Integrating this relation overx from 2` to ` with the
weighting functions 1, (x2x8), and (x2x8)2, we obtain
n

f

ip

(
i 52`

`

W~xi ,x8us!

512sF E
2`

`

dx g~x,x8us!

1 (
i 52`

` S 1

2
eu i

e1 l i~12u i
e! Dg~xi ,x8us!G , ~B14!

(
i 52`

`

~xi2x8!W~xi ,x8us!

5mEE
2`

`

dx g~x,x8us!2s

3F E
2`

`

dx ~x2x8!g~x,x8us!1 (
i 52`

`

~xi2x8!

3S 1

2
eu i

e1 l i~12u i
e! Dg~xi ,x8us!G , ~B15!

(
i 52`

`

~xi2x8!2W~xi ,x8us!

52DE
2`

`

dx g~x,x8us!12mE

3E
2`

`

dx ~x2x8!g~x,x8us!2sF E
2`

`

dx ~x

2x8!2g~x,x8us!1 (
i 52`

`

~xi2x8!2S 1

2
eu i

e1 l i~1

2u i
e! Dg~xi ,x8us!G . ~B16!

In particular,~B14! yields the useful identity

(
i 52`

`

W~xi ,x8u0!51, ~B17!

which reflects the fact that a particle starting on the backb
must eventually cross the boundaryy5e of the regionGe .

In the next part of this appendix we examine spec
statistical properties of random walks within the regionGe .

2. Statistical properties of the Green’s function g „x ,x 8zs …

We separate the regular and fluctuation component
the Green’s functiong(x,x8us):

g~x,x8us!5ḡ~x,x8us!1dg~x,x8us!. ~B18!

In accordance with the ensuing results, the fluctuation co
ponentdg is a small perturbation. It enables us to solve E
~3.9! ~or ~B10!! using perturbation theory. In this case, ave
aging ~3.9! over the ensemble$ l i%, we find
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sḡ5D
]2ḡ

]x2
2mE

]ḡ

]x
2AsDb

3 (
j 52`

`

ḡd~x2xj !1d~x2x8!, ~B19!

whereb is the mean value of$bj%:

b5E
l 0

`

dl f ~ l !b~ l !

5
2g21

3~22g!
A s

D
l 0
g21e22g1AD

s
l 0
g21e2g ~B20!

by virtue of ~2.1!, ~B8!, and the inequality~3.3!. To trans-
form the discrete description of the influence of the teeth
random walks within the regionGe into a continuum descrip
tion, we take Fourier transforms in Eq.~B19!. Then, for the
Fourier transformḡk of ḡ(x,x8us) we have

ḡk~x8us!5E
2`

`

dx ḡ~x,x8us!e2 ikx, ~B21!

Eq. ~B19! takes the form

Lkḡk1AsD
b

D ( 8
n52`

`

ḡk1Kn
5e2 ikx8, ~B22!

where

Lk5s1Dk21 imEk1AsD
b

D
, ~B23!

the Kn52pn/D are Brillouin numbers~the n are integers!
and the prime on the summation sign means that the t
with n50 has been omitted. In the present problem we
interested in scale lengths much greater thanD. This enables
us to restrict attention to wave numbersk that are small com-
pared to 1/D. It then follows from~B22! that the correction
dḡk to the zeroth approximation forḡk in the small param-
eterkD!1 is

Udḡk

ḡk
U&

AsDb

LK1
D

!1

in the limit ~3.3!. We can thus disregard the second term
the left-hand side of Eq.~B22!, and thereby obtain

Lkḡk5e2 ikx8. ~B24!

Hence, in particular, we find that in the present approxim
tion the regular partḡ(x2x8us) of the Green’s function de
pends only on the difference betweenx andx8, and that its
Fourier transform is

ḡk5
e2 ikx8

s1Dk21 imEk1AsDb/D
. ~B25!

Taking the inverse Fourier transforms, we obtain

sḡ5D
]2ḡ

]x2
2mE

]ḡ

]x
2AsD

b

D
ḡ1d~x2x8!. ~B26!
n

m
e

n

-

Substituting~B20! into ~B26! yields Eq.~3.14!. In particular,
this form of the equation turns out to be useful whens50.
By virtue of ~B8! and ~B20! we have

D

D l 0
S l 0

e D g

ḡ1mE
]ḡ

]x
2D

]2ḡ

]x2
5d~x2x8!. ~B27!

In this same approximation for the fluctuation comp
nentdg(x,x8us), Eq. ~3.9! ~or ~B10!! takes the form

S s2D
]2

]x2
1mE

]

]x
1AsD

b

D D dg~x,x8us!

52AsD (
i 52`

`

dbid~x2xi !ḡ~xi2x8us!, ~B28!

wheredbi5bi2b. Transforming Eq.~B28! and allowing for
~B26!, we obtain~3.18!:

dg~x,x8us!52AsD (
i 52`

`

dbi ḡ~x2xi us!ḡ~xi2x8us!, ~B29!

or for the Fourier transformdgk ~which can be specified by
the same relation as~B21!!,

dgk~x8us!52
AsD

Lk

1

2pE2`

`

dp
1

Lp
(

j 52`

`

dbj

3exp@2 i ~k2p!xj2 ipx8#. ~B30!

In particular, an estimate of the fluctuation componentdg
follows from ~B30!. Specifically, considering only small val
ues of the wave numberuku!1/D, we find

^udgku2&

ugku2
5

sD

2pD
~db!2E

2`

`

dp
1

uLpu2
, ~B31!

where (db)2 is the variance of the random componen
$dbj%, i.e.,

~db!25E
l 0

`

dl f ~ l !@b~ l !2b#2.b2S e

l 0
D g21

~B32!

in the zeroth approximation with respect to the small para
etereAs/D. Then, settingLp5LpuE50 in ~B31! ~making the
right-hand side an overestimate! and allowing for~B20! and
~B32!, we have

^udgku2&

ugku2
.

1

4
AD

l 0
S l 0

e D ~22g!/2

, ~B33!

whence follows the estimate~3.19!.

APPENDIX C: PROCEDURE FOR SMOOTHING
THE FUNCTION FN„x j ,x 8zs … AND DERIVATION
OF THE FOKKER–PLANCK EQUATION „4.2…

Using the periodic Born–Ka´rmán conditions, we write
the Fourier transform ofFN(xj ,x8us) in the form

FN~km!5
1

AM
(

j 52M/2

M/221

FN~xj ,x8us!exp~2 ikmxj !,

~C1!
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whereM→` is the ~even! integer number of teeth, and th
wave numberk takes valueskm52pm/DM for m50,61,
62, . . . , 6(M/221),2M/2. Then the inverse transform i

FN~xj ,x8us!5
1

AM
(

m52M/2

M/221

FN~km!exp~ ikmxj !. ~C2!

We define the procedure for smoothing the Gree
function

FN~xj ,x8us!→F~x,x8uN,s!

by the condition that only values of the wave numberkm that
do not exceed 1/l e , i.e., ukml eu&1, are taken into accoun
in ~C2!:

F~x,x8uN,s!5
1

AM
(

ukml eu&1
FN~km!exp~ ikmxj !. ~C3!

As will be seen in the ensuing analysis, the immediate sou
of random fluctuations ofFN(xj ,x8us) corresponds to wave
numberskm@1/l e , and the width of the localization regio
of F(x,x8uN,s) is estimated to bel eAN. Random perturba-
tions can be interpreted asd-correlated sources. Hence it als
follows that in ~C3! it is in fact sufficient to consider the
region ukml eu!1.

We obtain the equation forF(x,x8uN,s) from ~4.1!, fol-
lowing Pontryagin’s method.18 Specifically, taking Fourier
transforms of the right- and left-hand sides of Eq.~4.1!, we
have

FN11~k!5
1

AM
(

j 52M/2

M/221

exp~2 ikxj !F~ j ,s!

3 (
j 852M/2

M/221

W~xj ,xj 8us!FN~xj 8 ,x8us!,

whence, by virtue of~C2!,

FN11~k!5
1

AM
(

m52M/2

M/221

P~k,k2pm!FN~pm!, ~C4!

where

P~k,k2pm!5
1

AM
(

j , j 852M/2

M/221

exp@2 ik~xj2xj 8!2 i

3~k2pm!xj 8#F~ j ,s!W~xj ,xj 8us!. ~C5!

Since the localization region ofW(xj ,xj 8us) is the same as
the localization region of the Green’s functiong(xj ,xj 8us)
~see~B12!!, if we expand the exponential factor in powers
k(xj2xj 8) in the limit ukl eu!1, we can rewrite~C5! in the
form

P~k,k2pm!.12y F~k2pm!2 ikqF~k2pm!

2k2De
F~k2pm!, ~C6!

where
s

ce

y F~k2pm!512
1

AM
(

j , j 852M/2

M/221

exp@2 i ~k

2pm!xj 8#F~ j ,s!W~xj ,xj 8us!, ~C7!

q F~k2pm!5
1

AM
(

j , j 852M/2

M/221

~xj2xj 8!exp@2 i ~k

2pm!xj 8#F~ j ,s!W~xj ,xj 8us!, ~C8!

De
F~k2pm!5

1

2AM
(

j , j 852M/2

M/221

~xj2xj 8!
2exp@2 i ~k

2pm!xj 8#F~ j ,s!W~xj ,xj 8us! ~C9!

are in fact the Fourier transforms of the functions

y~xj 8us!512 (
j 52M/2

M/221

F~ j ,s!W~xj ,xj 8us!, ~C10!

q~xj 8us!5 (
j 52M/2

M/221

~xj2xj 8!F~ j ,s!W~xj ,xj 8us!, ~C11!

De~xj 8us!5 (
j 52M/2

M/221
1

2
~xj2xj 8!

2F~ j ,s!W~xj ,xj 8us!.

~C12!

As can be seen from the following, the values of t
kinetic coefficientsyF(k), qF(k), andDe

F(k) are small when
uku@1/l e . Therefore, first, in Eqs.~C10!–~C12! the argu-
ment xj 8 can be considered continuous. Second, in~C4! it
can be assumed thatupmu&1/l e , since FN(pm) is appre-
ciable when eitherupmu!1/l e or upmu@1/l e . Noting that
we have the Fourier transform of a product of functions,
can go from Eq.~C4! to the equation for the smoothe
Green’s functionF(x,x8uN,s). Then, taking~C6! into ac-
count and setting

F~x,x8uN11,s!2F~x,x8uN,s!.
]F~x,x8uN,s!

]N
,

we obtain for F(x,x8uN,s) an equation of the Fokker–
Planck type:

]F

]N
5

]2

]x2
@De~xus!F#2

]

]x
@q~xus!F#2y~xus!F. ~C13!

As can be seen from the structure of Eq.~C13!, the be-
havior ofF(x,x8uN,s) as a function ofs is dominated by the
last term on the right-hand side. The dependence of the
netic coefficientsqF and De on s merely leads to a minor
renormalization of the width of the localization region of th
Green’s functionF(x,x8uN,s), while the dependence ofy on
s determines the typical numberN of elementary segment
$Pin,Pout% of the trajectory of a random walker at tim
t;1/s. This enables us to sets50 in ~C11! and ~C12!,
which by virtue of~B15! and ~B16! yields
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De~xj 8u0!5(
2`

1`
1

2
~xj2xj 8!

2W~xj ,xj 8u0!

5DE
2`

`

dx g~x,xj 8u0!1mE

3E
2`

`

dx ~x2xj 8!g~x,xj 8u0!, ~C14!

q~xj 8u0!5(
2`

`

~xj2xj 8!W~xj ,xj 8u0!

5mEE
2`

`

dx g~x,xj 8u0!. ~C15!

The expression~C10! can also be simplified by virtue o
~B14! and ~3.8!. It can be shown that the dependence
F( j ,s) on s is stronger than the corresponding dependenc
W(xj ,xj 8us) by a factor (D/se2)(22g)/2@1. Hence

y~xj 8us!.eA s

D (
i 52`

`

tanhS l iA s

D DW~xj ,xj 8u0!.

~C16!

The relations~C14!–~C16! yield the desired general ex
pressions~4.5!–~4.3! for the kinetic coefficients of Eq.~4.2!.

APPENDIX D: MEAN VALUES AND INTENSITY OF THE
RANDOM FLUCTUATIONS OF THE KINETIC COEFFICIENTS
De , q, AND y

We first calculate the mean valuesDe , q, andy(s) of
the kinetic coefficientsDe(x), q(x), andy(x,s). By virtue
of Eq. ~B27! and the definitions~3.16! and ~3.21! for the
regular part of the Green’s functionḡ(x,x8)[ḡ(x,x8u0), we
have

E
2`

`

dx ḡ~x,x8!5
l e

2

2D
,

E
2`

`

dx ~x2x8!ḡ~x,x8!5mES l e
2

2D D 2

. ~D1!

These relations, along with~4.3!, ~4.4!, and the inequality
~3.3!, yield the mean values of the kinetic coefficients:

De.
l e

2

2
, q5

mEl e

D

l e

2
. ~D2!

To calculate the mean value ofy(x,s), we denote the se
of teeth whose length exceedse by $ i %e5$ i : l i.e%. Then
we treat a realization of the set of tooth lengths that exceee,
$ l i%e[$ l i : l i.e%, as a realization of given specific value
given the occurrence of event$ i %e . In other words, we rep-
resent the probabilityf ( l ) of the eventl .e as the product of
the probabilityPe that the tooth length exceedse and the
conditional probabilityf e( l ) of the realization of that value

f ~ l !5Pe f e~ l !. ~D3!

Hence, with Eq.~2.1! and ~3.21!,
f
of

f e~ l !5~g21!
eg21

l g
. ~D4!

Then to calculatey(s) we can first average over the cond
tional distribution of tooth lengths and then with respect
the realization of the condition that the teeth under consid
ation are longer thane. In the first step Eq.~4.5! yields

^y ~xus!&1

5eA s

DK tanhS lA s

D D L
e

(
i 52`

`

W~xj ,xj 8u0!,

sinceW(xj ,xj 8u0) does not depend on the actual values
$ l i.e%. Here^ . . . &e denotes averaging over the condition
realizations of the tooth lengths$ l i%e , particularly in the
limit eAs/D!1:

K tanhS lA s

D D L 5E
e

`

dl f e~ l !tanhS lA s

D D
.S eA s

D D g21

I g , ~D5!

where~see, for example, Ref. 27!

I g5~g21!E
0

`

dj
tanhj

jg

5~g21!2g~2g21!G~12g!z~12g!, ~D6!

and z( . . . ) is theRiemann zeta function. By virtue of th
identity ~B17!, this yields the desired expression,

y~s!5I gS eA s

D D g

, ~D7!

since^y(xus)&1 is independent of the specific realization
the event$ i %e .

Furthermore, using these relations, we obtain for the
tegral

E
2`

`

dp
1

uLp* u2
.

p

2I g
3/2AD l 0

S l 0

e D g/2

3S eA s

D D 23g/2S 11
E2

Ec
2D 21/2

, ~D8!

whereLp* 5k2De1 ikq1y(s) and

Ec52AI g

D

AD l 0m
S l 0A s

D D g/2

~D9!

is the critical value of the drift field, which for a given valu
of s ~i.e., for a given duration of the diffusion proces
t;1/s) divides the possible values of the drift field into wea
(E!Ec) and strong (E@Ec). ~The definition of Ec and
~5.12! are essentially identical.!

Proceeding to a calculation of the total amplitudeL of
random fluctuations of these kinetic coefficients, we note t
the preceding property enables us to treat the fluctuat
dDe(x) and dq(x) of two of the coefficients and the fluc
tuationsdy(x,s) independently of one another, sincedDe(x)



th

of

f

de-
over

sion

,

al

ys.

ev.

s,

e-
–

of

713JETP 87 (4), October 1998 I. A. Lubashevski  and A. A. Zemlyanov
anddq(x) likewise do not depend on the actual values of
lengths$ l i%e . Therefore,~4.11! can be rewritten in the form

L5Lg1Ly , ~D10!

where

Lg5E
2`

`

dx8 ^@k2dDe~x!1 ikdq~x!#

3@k2dDe~x8!2 ikdq~x8!#&, ~D11!

Ly5E
2`

`

dx8 ^dy~x!dy~x8!&. ~D12!

Taking ~3.18!, ~D1!, and~D2! into account, we can write

k2dDe~x!1 ikdq~x!52
D

e (
j 52`

`

du i ḡ~xi2x!$Dek
2

1q@ ik1k2~xi2x!!%.

Then, substituting this expression into~D11! and integrating,
we find

Lg5DI g
2S eA s

D D 2gS e

l 0
D g21

C~k!, ~D13!

where

C~k!5
~klF!2

114~E/Ec!
2F ~klF!2

114~E/Ec!
2

14~E/Ec!
2G ~D14!

andl F is the characteristic width of the localization region
the Green’s functionF(x,x8utb ,s), which is defined to be
half the corresponding standard deviationA^x2&; specifically,

l F
2 5

De

y
1

q2

y2
. ~D15!

We note that in the range of wave numbersk&1/l F that
dominate the Green’s functionF(x,x8utb ,s), the factor
C(k)&1. Substituting~4.5! into ~D12! and averaging first
with respect to the conditional realization of the values$ l i%e

and then over the random quantitiesu i
e and over the varia-

tions of the Green’s functiong(x,x8), we obtain

Ly5D Ĩ gS eA s

D D g11S e

l 0
D g21

, ~D16!

where

Ĩ g5~g21!E
0

`

dj
tanh2j

jg
.

The relations~D8!, ~D13!, and~D16! lead to the follow-
ing estimate for the relative intensity~4.10! of the random
fluctuations of the Green’s functionF(x,x8utb ,s):

K U dFk*

F̄k*
U2L 5

1

4
Ĩ gI g

23/2AD

l 0
S l 0A s

D D ~22g!/2S 11
E2

Ec
2D 21/2

3F11
I g

2

Ĩ g
S eA s

D D g21

C~k!G , ~D17!
eyielding the estimate~4.13! for small to moderate values o
klF .

* !E-mail: ialub@fpl.gpi.ru
1!Note that a different approach to assigning the initial conditions was

veloped in Refs. 21 and 22. It is based on constructing the cross
between a small neighborhood oft50 and the domain of applicability of a
partial differential equation with respect to time.

2!Superdiffusive transport is also encountered in problems on the diffu
of a passive scalar during the laminar motion of fluids~see, for example,
Refs. 22!.
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Kinetics of crystal growth in superfluid helium at high temperatures
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The growth rate of4He crystals from superfluid is measured in the temperature range 1.2–1.75 K
at supersaturations up to 40 mbar. The growth rate is observed to decrease at high
supersaturations: above 5 mbar in the bcc phase and above 20 mbar in the hcp phase. The
temperature dependence of the kinetic growth factorK is measured in the low-supersaturation
limit. In the vicinity of the superfluid transition the kinetic growth factor exhibits critical
behavior:K}(Tl2T)« with the exponent«50.74360.123. A jump in the growth factor is
observed at the bcc–hcp transition point. The crystal growth kinetics problem is solved
in the hydrodynamic approximation, explaining both the temperature behavior ofK and the
existence of the jump in the modification of the crystal structure. ©1998 American Institute of
Physics.@S1063-7761~98!01110-X#
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1. INTRODUCTION

The growth kinetics of4He crystals has been the obje
of intensive research ever since Andreev and Parshin1 theo-
retically predicted the quantum state of atomically rough s
faces of helium crystals and since Keshishev, Parshin,
Babkin2 experimentally observed one of the consequence
this phenomenon: crystallization waves. So far the kine
growth factorK has been measured over a broad range
temperatures from 1.6 K to 0.05 K~Refs. 3–5!. Of primary
interest are low temperatures, at which the surface mob
is governed by the scattering by quasiparticles by elemen
surface defects, or steps. Phonons are prevalent below 0
and the kinetic growth factorK obeys a power law:K
}T24. Rotons play the dominant role at higher temperatu
and the kinetic growth factor follows an exponential la
K } exp(Dr /T), whereD r is the roton gap.1,6 However, the
experimental work of Bodensohn, Nicolai, and Leiderer3 has
shown that a departure from a simple exponential dep
dence is observed above 1.4 K. For example, accordin
data at a temperature of 1.6 K, the growth rateV is approxi-
mately 2.5 times lower than the value expected from
extrapolation of high-temperature data. In our experimen7

we have found that the growth rate at 1.746 K is alread
factor of seven smaller than the extrapolated value. Bod
sohnet al.3 have advanced the hypothesis that the depar
is caused by the dependence of the roton gap on the pre
and the temperature.8

In this paper we report an experimental investigation
the growth of 4He crystals in the high-temperature ran
~1.2–1.75 K! at supersaturations up to 40 mbar, which e
ceeds the previously investigated range by three order
magnitude. We have measured the kinetic growth factor
the first time in the vicinity of the superfluid transition poin
0.03 K<Tl2T<0.2 K, and have found the correspondin
crystal critical index. By extending the supersaturation int
val we have been able to detect nonlinearity in the dep
dence of the growth rate on the supersaturation, i.e., the
7141063-7761/98/87(10)/9/$15.00
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tivation of a new dissipative channel in crystal growth.
To account for the experimentalK(T) dependence, we

solve the problem of quasistationary crystal growth in t
hydrodynamic approximation. Local equilibrium is at th
crystal-liquid interface is rapidly established in this tempe
ture range, while in the immediate vicinity of the interfac
the chemical potentialm of the liquid is equal to the chemi
cal potential m8 of the crystal ~throughout the article
unprimed symbols refer to the liquid, and primed symb
refer to the crystal!, and the Kapitza jump is small,T.T8. In
these boundary conditions we find the main departure fr
the low-temperature~below 0.6 K! case treated by the theor
developed in Andreev and Knizhnik’s work.9 Andreev and
Knizhnik have calculated the kinetic growth factorK in the
low-temperature range, where crystallization waves
slightly damped. According to experimental data, this te
perature range lies below 0.6 K. At such temperatures
factor K exhibits strong dispersion, and its poles specify t
spectrum and damping of crystallization waves.

The growth of a crystal as a whole is dictated by t
long-wavelength limit. If the crystal radiusR is smaller than
the mean free pathl, as is the case at temperatures below
K, the factorK is described by the equations for the ballis
regime~Sec. 3 in Ref. 9!. In the limit l!R the equations in
the first two sections of Ref. 9 must be used. The followi
boundary condition on the surface of the crystal is used
Ref. 9:vn5V (vn is the velocity of the normal component!,
which is invalid at high temperatures. At temperatures
1.2–1.7 K the crystal growth rate is limited by slow hea
conduction processes and viscosity in a finite surface laye
the liquid above the crystal boundary, where relaxation
quasistationary equilibrium of the supercooled superfluid
supercritical pressure takes place@m(`)Þm, T(`)ÞT8#. It
can be shown@see~22!# that the mean free paths of eleme
tary excitations are small in comparison with the thickness
this layer. The problem of calculating the kinetic growth fa
tor K can therefore be solved on the basis of superfl
hydrodynamics10 with boundary conditions stipulating loca
© 1998 American Institute of Physics
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equilibrium on the surface of the crystal. In Sec. IV we d
rive an expression@Eq. ~33!# for the factorK in terms of the
thermal conductivity and viscosity of the superfluid. Th
expression satisfactorily describes the salient features o
experimental results.

2. EXPERIMENTAL PROCEDURE

The procedure is based on measurement of the pres
in the container during the growth of a crystal after its nuc
ation in a metastable liquid. The container is cooled a
constant rate until a critical solid-phase nucleus forms in
liquid. As the crystal grows, the pressure in the contai
drops from the maximum value to the phase-equilibriu
pressure. The pressure drops at a rate proportional to the
of change of the volume of the crystal and is related to
kinetic growth factorK. Consequently, the growth rateV can
be calculated by measuring the time variation of the press
p(t), and the factorK can be determined whenV}Dp.

This procedure can extend the range of supersaturat
by three orders of magnitude from the characteristic val
for previous experiments, 0.01–0.1 mbar, to values of 1
40 mbar. The pressure is recorded with high time resolut
i.e., it is possible to investigate the growth kinetics in tim
periods from seconds to fractions of a millisecond. The p
cedure is subject to limitations, first, by the probabilistic n
ture of the way in which a critical nucleus is formed.
emerges on the inner surface of the container when the
persaturation reaches a level determined by the propertie
the surface at the nucleation site. In other words, the star
pressure is a property of the container surface and canno
altered in the course of the experiment. We treated the c
tainer with hydrogen to maximize the supersaturation~see
Ref. 11 for details!.

A second limitation is associated with the supersatu
tion technique. The pressure was measured by means
capacitative transducer formed by the container wall and
electrode. The transducer was used to measure pressure
the crystal when the growth timetgr was much greater tha
the transit timet1 of first sound in the container,tgr@t1

;30ms. It will be shown below that the calculation of th
kinetic growth factor requires that the helium temperature
measured during the growth process. Based on the follow
considerations, we chose not to measure the temperatur
rectly: Like the pressure sensor, a thermometer shows
temperature at the boundary of the crystal when the cry
growth time is much greater than the transit timet2 of sec-
ond sound,tgr@t2;0.5ms. The simultaneous satisfaction
these two conditions implies that the helium pressure
temperature are constant throughout the volume of the c
tainer and that crystal growth is quasistationary. It has b
shown11 that the temperature variation in this case is rela
one-to-one to the pressure variation and can be calcul
from the functionp(t), so that the measurements can
confined to the pressure only. These two conditions plac
lower temperature limit on the applicability of the given pr
cedure,T>1.2 K.

The helium crystals were grown in a stainless steel c
tainer having an internal volumeV 052 cm3; see Fig. 1. The
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container consists of an outer casing 8 with a sealed-in c
per cold conductor11, which leads to a3He reservoir, and a
flange 4, which forms the base of the capacitative press
transducer. The helium temperature is monitored by a re
tance thermometer12 soldered to a copper cold conduct
10, which is in direct contact with superfluid helium. A
indium seal7 maintains the vacuum tightness of the co
tainer casing and the flange.

The capacitative pressure transducer is formed by
web of the flange and an electrode5. The resulting capacitor
is connected to an induction coil mounted in a supercond
ing baffle to reduce radiation losses and to raise theQ of the
circuit. This circuit is weakly coupled~1:100! by means of a
coaxial lead to a self-excited oscillator located on the lid o
cryostat at room temperature. TheQ of the circuit at helium
temperature is;1000, which ensures frequency stabili
within limits of the order of 1 Hz during a measurement tim
of 1 s at an oscillator frequency of approximately 7 MH
This procedure can be used to measure the pressure in
tive frequency units, i.e., it is necessary to calibrate the m
surement system against a pressure standard. Our stan
was a manometer, whose calibration in the range of 2
30 atm was verified on the helium solidification curve. It w
be shown below that the deviation of the pressure in
container during crystal growth from the phase-equilibriu
pressure was less than 0.05 atm, which is much lower t
the phase-equilibrium pressure'25 atmper se; it was there-
fore sufficient to determine the transducer sensitivityd f /dp
at the measurement site. For this purpose the functionf (p)
was measured in each series of experiments in the pres
range 1–30 atm at a temperature'2.5 K, and the result was
used to determine the differential sensitivity of the tran

FIG. 1. Structure of the container. The numbers are explained in the te
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ducer. This procedure had to be performed after every re
sitioning of the transducer electrode5 ~see below!. The trans-
ducer sensitivity was determined within approximately 3
error limits.

The superfluid helium was cooled at a constant rate u
a critical nucleus formed and crystal growth began. The c
tainer was connected to the outer volume by a capillary t
6 ~see Fig. 1! having a length'2 m and an inside diamete
of 0.15 mm. The total volume of the filling capillary tube
('0.03 cm3) was much smaller than the volume of the co
tainer. The first series of measurements was performed
this capillary tube and a pressure transducer whose web
a thickness of 0.55 mm at a diameter of 10 mm. The tra
ducer sensitivity was equal to 4.1 kHz/bar. The measu
ments were performed at time increments of 1.024 ms.
relaxation time of the pressure in the system wast rel52.76 s.
It will be shown below that this time is comparable with th
crystal growth time at temperatures close to the superfl
transition line, so that corrections must be introduced to
just to the flow of liquid along the capillary tube.

To diminish the influence of this effect, in the seco
series of experiments a choke9 was inserted in the helium
feed line to increase the pressure relaxation time in the
tem to 37 s. In addition, the sensitivity of the transducer w
enhanced by decreasing the thickness of the flange we
0.27 mm and accurately positioning the electrode at a m
mum distance from the web. In assembling the device, it w
difficult to set the optimum web-electrode gap at room te
perature on account of, for example, heat shrinkage du
cooling and deformation of the web as the pressure requ
for crystallization was created in the container. For the
reasons the optimum gap was set directly in the experim
at helium temperature. The transducer electrode
mounted on a cylindrical ring3 ~see Fig. 1!, which was in-
serted in the channel of the flange4 and was held fast agains
its surface by a spring2. Two symmetrical slots were forme
in the upper part of the ring for the insertion of a yoke1,
which was connected to the stem of a piezoelectric dri
~not shown in the figure!. Piezoelectric drivers of this kind
are used in a tunneling microscope to move a specime
0.1–1-mm steps~Ref. 12!.1!

Once the necessary pressure had been established
container, prior to the beginning of a series of experime
the electrode was positioned just short of contact with
web of the flange. The direction of motion of the piezoele
tric driver stem was then reversed, and the necessary gap
set, having been determined from the oscillator frequen
The yoke was then moved forward to eliminate mechan
contact between the container and the piezoelectric dri
thereby significantly reducing the influence of mechani
vibrations on the transducer. The time resolution was
proved to 0.25 ms in the second series of experiments.

3. PROCESSING OF THE MEASUREMENT RESULTS

To calculate the kinetic growth factorK, it is necessary
to know the growth rateV and the difference in the chemica
potentialsDm5m2m8:

V5KDm. ~1!
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The difference in the chemical potentials is given by t
expression

Dm52~s2s8!DT1
r82r

rr8
Dp, ~2!

wheres is the entropy per unit mass,Dp5p2p0 and DT
5T2T0 are the deviations of the pressure and the temp
ture from their equilibrium valuesp0 andT0. In our experi-
ments the mass of the helium in the container was cons
during crystal growth. In this case, as mentioned, the te
perature variation during growth is related to the variation
the pressure by an equation derived in Ref. 12:

DT52Dp
kdp/dT2b

rCp2bdp/dT
, ~3!

wheredp/dT is the slope of the phase-equilibrium curve,b
is the coefficient of thermal expansion,k is the compressibil-
ity, andCp is the heat capacity at constant pressure. Tak
Eq. ~3! into account, we write Eq.~2! in the form

Dm5
r82r

rr8
Dp, Dp5a~T!Dp,

a~T!511
dp

dT

kdp/dT2b

rCp /T2bdp/dT
, ~4!

where the measure of nonequilibriumDp is expressed in
units of pressure. The correction for temperature variation
a maximum at high temperatures and can attain a valua
'1.25. We note that the absolute temperature variation
the liquid helium during crystal growth did not excee
;1 mK.

The volume of the crystalV crys is related to the pressur
drop during growth by the equation

V crys5V 0

r

Dr
k@p~ t50!2p~ t !#, ~5!

where t50 is the crystal nucleation time. For initial supe
saturationsDpinit515–40 mbar the final volume of the crys
tal was 2–4 mm3, i.e., the final radius of the crystal wa
approximately one millimeter. To relate the rate of change
the volume to the linear growth rate of the crystal, we ne
to make an assumption about the shape of the crystal, w
is determined by the anisotropy of the kinetic growth fac
and the contact of the crystal with the container wall. T
hydrostatic pressure gradient does not introduce a signifi
contribution, because the pressure difference over the w
of the crystal ('0.02 mbar! is much smaller than the supe
saturations investigated in the present study. The pres
increment due to the curvature of the crystal surface is a
much smaller than the supersaturation.

The kinetic growth factor is isotropic in the region whe
the cubic phase exists. In the hexagonal phase, on the o
hand, Bodensohnet al.3 have observed anisotropy of th
growth factor at T51.35 K with rate ratios
V(1120& :V^1010& :V^0001&52.8:2.5:1. However, these resul
are contradicted by reported measurements of the kin
growth factor13,14 using crystallization waves, where suc
pronounced anisotropy of the growth of atomically rou
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surfaces has not been observed~the linear decay ofK along
the @0001# face is a geometrical effect15!. One of the presen
authors16 has conducted a special investigation of the grow
anisotropy on the basis of the from of crystal growth, i.e.,
a procedure similar to that of Bodensohnet al.3 In all experi-
ments with a freely growing helium crystal~see the series o
photographs of a growing crystal atT51.285 K in Ref. 16,
Fig. 2!, the large~1:3! anisotropy between the direction o
the C6 axis and the perpendicular direction was not not
whereas the small~;10%! anisotropy in the basal plane ob
served by Tsymbalenko16 and also by Bodensohnet al.,3 can
also be seen. It is therefore justified to regard the kine
growth factor as being almost isotropic in the hcp phase
well.

During isotropic growth the crystal is in the shape of
spherical segment at the wall, and its volume is related to
radius of the segmentR by the equation

V crys5
p

3
R3~223 cosu1cos3 u!, ~6!

whereu is the contact angle. With allowance for Eqs.~5! and
~6! the crystal growth rate is given by the equation

V5
dR

dt
5gS V 0

r

r82r
kDpinitD 1/3 d

dt S pinit2p~ t !

Dpinit
D 1/3

,

~7!

g5F 3

p~223 cosu1cos3 uG1/3

.

The geometrical factorg for a sphere (u5p) is approxi-
mately equal to 0.62. According to visual observations,
contact angle between solid helium and stainless steel
values in the interval 90–120°, which corresponds to val
of the geometrical factor 0.66–0.78. If the crystal forms
corners of the container, the expression for the geometr
factor is enormously complicated, but its value is still clo
to that given by Eq.~7! for large contact angles. We note th
for a crystal of finite radius;1 mm the area near the angle
amounts to'8% of the total inside area of the containe
i.e., the probability of crystal formation in the corners
small.

The error of determination of the volume is a maximu
at the beginning of growth, when the pressure differs v
little from the initial pressure. The relative error of determ
nation of the supersaturation increases at the end of gro
In view of these considerations we have chosen to proc
the part of the pressure-drop curve in the interval (0.0
0.95)Dpinit . The total error of the growth rate in the firs
series of experiments was 10–20% and increased to 50
the lowest temperatures. The error was almost halved in
second series of experiments.

4. RESULTS OF THE MEASUREMENTS AND DISCUSSION

In both series of measurements the initial saturationDp0

in the cubic phase was 15–18 mbar. In the hexagonal ph
we found Dp058 –10 mbar in the first series of measur
ments, andDp0530–40 mbar in the second series. Typic
experimental curves of the pressure drop in the container
shown in Fig. 2. Clearly, the crystal growth time near t
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superfluid transition line is of the order of 0.5 s and decreases
rapidly as the temperature drops to values of the order of a
few milliseconds. The results of processing these curves ac
cording to Eqs.~4! and ~7! are shown in Fig. 3. The kinetic
growth factor is determined from the initial part of the
V(Dp) curve, where the growth rate is proportional to the
supersaturation within the known error limits.

Temperature curves ofK obtained in both series of ex-
periments with the parameterg51.2 are shown in Fig. 4. We
see that the values of the kinetic growth factor obtained in
different series for various initial supersaturations agree
within the error limits. The temperature variation ofK agrees
with the results of Refs. 3 and 16. Also visible in Fig. 4 is the
previously noted3,7 deviation of the temperature variation of
K from a simple exponential law above 1.5 K. And it is evi-
dent from Fig. 4 that up to temperatures of the order of
1.65 K the slope of ln(K) as a function of 1/T in the bcc
phase does not deviate too noticeably from the slope in the
hcp phase. Above this temperature the slope increases con
siderably, probably by virtue of proximity to thel transition.
Figure 5 shows the behavior of the kinetic growth factor in
this temperature range. Within the error limits the tempera-
ture dependence ofK agrees satisfactorily with the relation
K}(Tl2T)«, where «50.74360.123. We emphasize that
this equation merely serves to illustrate the temperature be
havior in the interval close to the superfluid transition in the
measured temperature range and does not purport to describ

FIG. 2. Experimental plots of the pressure drop in the container during
crystal growth: a! bcc phase; b! hcp phase.
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FIG. 3. Growth rate versus supersaturation: a! bcc
phase; b! hcp phase. The graphs clearly reveal t
reduction of the growth rate above 5 mbar in th
cubic phase; in the hexagonal phase the growth r
is proportional to the supersaturation up to 25 mb
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the temperature dependence ofK beyond the limits of this
interval.

The extrapolation ofK to the bcc-hcp transition poin
yields 1/Kbcc59.960.86 m/s on the cubic phase side a
1/Khcp511.862.09 m/s on the hexagonal phase side. T
transition from the bcc to the hcp phase is therefore acc
panied by a jump of the kinetic growth factor.

In the bcc phase~see Fig. 3!, beginning with supersatu
rations '5 mbar, a deviation from linearity is observe
whereas in the hexagonal phase the nonlinearity is m
weaker, and the deviation becomes appreciable ab
'25 mbar. To take nonlinearity into account, we add to E
~1! the next term of the expansion of the functionV(Dp) in
powers ofDp in the form

V5K
r82r

rr8
DpS 12

Dp

G D . ~8!

In the bcc phase the parameterG has the valueG538.6
62.7 mbar and does not depend on the temperature.
means that the form of the functionV(Dp) remains invariant

FIG. 4. Kinetic growth factor vs temperature. The light circles represent
results of Ref. 3, and the light triangles give data from Ref. 16. The d
triangles and squares represent our results in the first and second ser
experiments, respectively. The dashed vertical lines separate the regio
the regions of the bcc and hcp phases.
e
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when the growth rate increases by an order of magnitu
For the hcp phase, increasing errors make it difficult to dr
a straightforward conclusion.

The kinetics of the growth of a4He crystal is attributable
to two processes: 1! a fast, microscopic mechanism of tran
fer of an atom from the liquid to the solid phase across
atomically rough surface; 2! slow mass and heat transfe
through the surrounding medium.

The total difference in the chemical potentialsDm @see
Eq. ~1!# is the sum of the jump of the chemical potential
the boundary of the crystal and its change in the bulk of
liquid. The total reciprocal of the kinetic growth factor ca
then be written as the sum of the reciprocals of the surf
and bulk factors:

1

K
5

1

Ksurf
1

1

Kbulk
. ~9!

Inasmuch as surface processes are much faster than
processes, we haveKsurf@Kbulk , so that crystal growth is
governed by transport in the liquid. Experimental facts su
as the isotropy of the growth factor and the closeness of
numerical values in both phases imply that the influence
crystal structure on the growth kinetics is weak at low sup
saturations. Consequently, the main dissipative proce
governing crystal growth take place in the liquid. The kine
growth factor will be calculated Sec. 5 below on this a
sumption. There the calculations, which are carried out in

e
k
s of

ofFIG. 5. Temperature behavior of the kinetic growth factor near the su
fluid transition.
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linear approximation, cannot reflect the experimentally o
served behavior of the growth rate at high supersaturatio

We have therefore inquired into the legitimacy of disr
garding squared terms in the exact superfluid hydrodyna
equations. Numerical estimates show that the squared te
are small over the entire temperature range at all gro
rates, i.e., the observed nonlinear effect cannot be descr
by including them. Moreover, in experiment we see that
nonlinearity is related to the crystal structure of the so
phase. This relationship supports the hypothesis that
slowing of the growth rate is associated with the microsco
structure of the sample surface and, as a consequence,
nonlinear processes of the step kinetics on the atomic
rough surface. Hence it follows thatKsurf plays an important
role at high supersaturations. The theory of crystal growth
high supersaturations will not be discussed in the pres
article.

5. CALCULATION OF THE KINETIC GROWTH FACTOR

We consider one-dimensional, quasistationary cry
growth in a coordinate system attached to the crystal-liq
interface. At high temperatures, contrary to the lo
temperature case, the heat of crystallizationq plays an im-
portant role:

q5T~s2s8!5T
r82r

rr8

dp

dT
. ~10!

The liberation of heat on the atomically rough surface of
crystal (x50) during its growth induces rapid relaxation
local equilibrium between the crystal and the boundary la
of the liquid:

T85T~0!, p85p~0!, m85m~0!. ~11!

We therefore disregard the Kapitza jump; according to
perimental data,17 it is very small on an atomically rough
surface at high temperatures. Local equilibrium at the bou
ary of the crystal upsets thermal equilibrium in the spa
between the surface of the crystal and the walls of the c
tainer:

dp5p~0!2p, dT5T~0!2T, dm5m~0!2m, ~12!

From now onT, p, andm denote the values of the the
modynamic variables far from the crystal nucleus. Here
addition to the unavoidable flow of liquid as a whole, w
also encounter relative viscous flow of the liquid compone
and heat flux away from the boundary of the crystal. Th
dissipative fluxes limit the crystal growth rate and, in t
final analysis, determine its value. The temperature and p
sure differences~12! can be related to the degree of noneq
librium ~2! by the equation

Dm5
r82r

rr8 S dp

dT
dT2dpD . ~13!

Here Dm5m(T, p)2m8(T, p) is the degree of nonequilib
rium of the system.

The process of crystal growth can be regarded as qua
tationary when the transit times of first and second so
from the crystal to the container wall are much shorter th
-
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the crystal growth time. This condition is consistent with t
domain of applicability of our measurement procedure a
confines the given investigation to the temperature ra
1.2 K,T,Tl51.763 K.

In a coordinate system affixed to the crystal bound
the growth kinetics is described by the system of static eq
tions of superfluid hydrodynamics10 linearized with respect
to small deviations from equilibrium:

d j

dx
50, j 5rsvs1rnvn , ~14!

dp

dx
5S 4

3
h1z22rz1Dd2vn

dx2 . ~15!

dQ

dx
50, Q5m j 1T rsvn2k

dT

dx
, ~16!

dm

dx
5~z12rz3!

d2vn

dx2 . ~17!

We recall thatrs , rn and vs , vn are the densities and ve
locities of the superfluid and normal components (r5rs

1rn), j andQ are the mass and energy flux densities of
liquid h, z1, z2, andz3 are the corresponding viscosity co
efficients, andk is the thermal conductivity of the liquid
The thermal conductivity of the crystal on the melting cur
is small18 and will be disregarded. This assumption will b
justified by estimates below.

We note that the trivial solution of the system~14!–~17!
when all the gradients are zero does not satisfy the boun
conditions, which state that the values of the pressure, t
perature, and chemical potential on the crystal surface an
the depth of the liquid differ and are related by Eq.~13!. To
find a nontrivial solution, we invoke the thermodynamic r
lation

dm52sdT1dp/r ~18!

and then use~15! and~17! to relate the temperature gradie
to the second derivative of the velocity of the normal co
ponent:

dT

dx
5z0

d2vn

dx2 , z05
4

3
h1z21r2z322rz1 . ~19!

From Eqs.~16! and~19! we find an equation for the velocity
of the normal component:

T rsvn2
kz0

rs

d2vn

dx2 5Q2m j . ~20!

It follows from the laws of conservation of mass~14! and
energy~16! that the right-hand side of Eq.~20! is constant.
From this result we obtain the law governing the decay of
velocity of the normal component:

dvn

dx
5C expS 2

x

L D , L5
AkTz0

T rs
. ~21!

The thickness of the transition layer in this temperatu
range is of orderL;1026 cm. The radius of the crystal is
much greater than the thickness of the transition layer, ju
fying a one-dimensional approach to the problem. For
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hydrodynamic approach to be valid, it is necessary to sat
the inequalityl,L, wherel is the mean free path of el
ementary excitations in the superfluid. Rotons play the p
cipal role in the given temperature range.10 Determining the
roton mean free path from the viscosity,10 we obtain the
following expression for the ratiol/L:

l

L
<

15

A20/3

T rs

rsv rvc
, ~22!

wherev r is the roton thermal velocity, andvc is the critical
velocity in helium. In the temperature interval 1.2–1.7 K w
have the numerical relationl/L<0.1–0.2, i.e., the inequality
is satisfied, and the hydrodynamic approach is legitimate

Substituting Eq.~21! into ~15! and ~19!, we determine
the behavior of the pressure and the temperature in the
sition layer:

dp~x!5h0C expS 2
x

L D , h05
4

3
h1z22rz1 , ~23!

dT5
z0

rs
C expS 2

x

L D . ~24!

The factorC is readily determined from Eq.~13!:

C5ADm, A215
r82r

rr8 S dp

dT

z0

rs
2h0D . ~25!

The coefficientA is positive at high temperatures. Th
means, as should be expected, that the temperature an
pressure in the liquid layer around a nucleus are higher t
near the container walls. However, the magnitude of t
effect is small when the derivativedp/dT is large:

dp~0!

Dp
5

ah0

~dp/dT!~z0 /sr!2h0
!1. ~26!

Thus, Eqs.~21!–~25! give the dependence ofdp, dT,
anddvn /dx on the degree of nonequilibriumDm. The fluxes
j andQ are obtained form the law of continuity of the ma
and energy fluxes at the crystal-liquid interface:

j 52r8V5rsvs1rnvn ,
~27!

Q5 j ~Ts81m8!5m j 1T srvn2k
dT

dx
,

Q2m j 5 jTs8.

From Eqs.~14!, ~16!, and~27! we readily find the velocities
of the superfluid and normal components as functions oV
andDm at the interface:

vn52
s8r8

sr
V2LC expS 2

x

L D ,

~28!

vs5V
r8

rs
S s8rn

sr
21D1

rn

rs
LC expS 2

x

L D .

Additional considerations must be brought into the picture
determine howdp, dT, and dvn /dx are related to each
other.
fy
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It has been shown9 that the energy dissipated per un
time and per unit surface area for a planar crystal bound
growing with velocityV is given by

dE

dt
5r8DmV5r8K~Dm!2. ~29!

On the other hand, the energy dissipated in a supercond
ing fluid is given by the integral of the dissipation function:10

dE

dt
5E R dx, R5S z02

4

9
h D S dvn

dx D 2

1
k

T S dT

dxD 2

. ~30!

With allowance for Eqs.~21! and ~24! the integral of the
dissipation function is

E R dx5LC2z0S 12
2h

9z0
D . ~31!

Equating~29! and ~31!, we find

K5LA2
z0

r8 S 12
2h

9z0
D . ~32!

Here we substitute Eq.~25! and reduce the result to a form
suitable for analysis:

K215
1

Tsrr8 S T
r82r

r D 2S dp

dT
2sr

h0

z0
D 2

3A z0

Tk S 12
2h

9z0
D 21

. ~33!

It is evident from this expression that in this approxim
tion the kinetic growth factor is governed by the thermod
namic parameters of the liquid and solid phases and by
dissipation factors of the superfluid. The growth rate var
approximately as the inverse of the square of the hea
crystallization.

We now estimate the contribution of the thermal condu
tivity of the crystal to the kinetic growth factor. When th
crystal grows at a constant rate at constant supersaturatio
is evident from Eq.~24! that the solid phase forms at th
same temperature and, accordingly, there are no heat fl
or additional dissipation associated with the thermal cond
tivity of the crystal. In a real experiment the supersaturat
varies from the maximumDp0 at the instant of nucleation o
the crystal to zero at the end of the growth period. Inasm
as the temperature of the newly formed solid-phase la
according to Eqs.~3! and ~24!, depends on the supersatur
tion, the crystal acquires a temperature gradient and, a
consequence, additional dissipationEcrys associated with the
thermal conductivity, which lowers the crystal growth ra
According to Eq.~29!, the total energy dissipationEsum dur-
ing the growth timetgr is

Esum;r8KDm2R2tgr;S Dr

r D 2 1

r8
KR2Dp0

2tgr ,

where R is the radius of the crystal. It follows from th
experimental supersaturations and Eq.~5! that R;1 mm.
Equations~3! and ~24! can be used to show that the initia
temperature at the start of growth is higher than the fi
temperature by the amountDTcrys;Dp0 /(dp/dT). The dis-
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sipationEcrys associated with the thermal conductivity of th
crystal can then be estimated from the expression

Ecrys;tgr

k8

T E ~¹T!2dV;tgr

k8

T

Dp0
2

~dp/dT!2 R.

The ratio ofEcrys to the total dissipation is

Ecrys

Esum
;S r

Dr D 2 k8

T S dp

dTD 22

r8K21
1

R
;1024,

which can be disregarded, as indeed we have assumed i
analysis.

We now analyze the contribution of the parameters
the kinetic growth factor. In Eq.~33! the last factor lies in the
interval 1–1.2, because the inequality 2h/9z0,1/6 holds.
The ratioh0 /z0 is of order unity. In light of these remark
we rewrite Eq.~33! in the form

K21'
1

Tsrr8 S T
r82r

r D 2S dp

dT
2sr D 2A z0

Tk
. ~34!

The first three factors characterize the variation ofK due to
variations of the thermodynamic variables of helium. Th
values on the melting curve are well known. The last fac
is associated with the kinetic coefficients of the superflu
Unfortunately, experimental data are unavailable on
quantitiesh, z1, z2, z3, andk on the melting curve in the
given pressure and temperature ranges. The second visc
z2 is known to be one and a half orders higher than the fi
viscosity at the saturated vapor pressure. As the pres
increases, the first viscosity increases,19 and measurement
of the damping of first sound20 imply that the second viscos
ity z2 decreases. It follows from the Onsager relations for
kinetic coefficients10 that the combination of the second vi
cosity coefficients inz0 is positive. Summing up this infor
mation and making use of the expressions for the ther
conductivity and the viscosity in the roton domain, we inf
that the factor associated with the dissipation factors of
liquid satisfy the inequality

A z0

Tk
.A4h/3

Tk
5

2

A15

1

vc
. ~35!

We calculate the temperature dependence of the cri
velocity at p;25 atm from the values of the roton gap a
the position of the roton minimum from Ref. 8. With allow
ance for the approximations and simplifications of our ana
sis Eq.~34! describes the temperature behavior ofK, and the
numerical value close in order of magnitude should be
pected. We introduce a scale factor,Kapp5mKtheor, to ap-
proximate the data. The result of the approximation us
m50.2 is shown in Fig. 6. Satisfactory agreement betwe
calculations and experiment is observed. The decreaseK
as the temperature increases is associated primarily wit
increase in the slope of the phase-equilibrium curve. T
variation of the roton gap, as postulated by Bodenso
et al.,3 also contributes to the temperature dependence oK,
but to a lesser degree, being proportional to the decreas
the critical velocity@see~35!#. At the bcc-hcp transition poin
our
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the ratio of the growth factors is determined by the therm
dynamic parameters and is equal to

Kbcc

Khcp
5

rbcc8

rhcp8 S rhcp8 2r

rbcc8 2r D 2F ~dp/dT!hcp2sr

~dp/dT!bcc2sr G2

'1.48. ~36!

It is evident from Fig. 6 that the sign of the jump agrees w
the experimental, and its magnitude is in satisfactory agr
ment with the experimental value.

We emphasize that the values ofK have been calculated
using the equations for the roton contribution to the kine
coefficients and, for this reason, cannot describe the beha
of crystal growth in the critical region.

6. CONCLUSION

We have determined the temperature dependence o
kinetic growth factor by measuring the growth rate of a h
lium crystal at high temperatures. We have detected a ju
of K at the bcc-hcp transition point and have determined
critical index in the behavior of the functionK(T) in the
vicinity of the superfluid transition point. To explain thes
experimental results, we have analyzed the problem of q
sistationary crystal growth in the hydrodynamic approxim
tion. This model, based on the hypothesis that mass and
transfer in the liquid play the principal role in the cryst
growth kinetics, satisfactorily explains both the temperat
behavior of the kinetic growth factor and the presence of
jump at the bcc-hcp transition point. The extension of t
range of supersaturations to 40 mbar has exhibited the n
linear character of the growth kinetics at high supersatu
tions.

This work has been supported by the Russian Fund
Fundamental Research~Grant N96-02-18511a! and the
Netherlands Scientific Research Organization~Grant NWO-
07-30-002!.

FIG. 6. Comparison of experimental data and the results of calculat
according to Eq.~34!.
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The structure of the photon states and dispersion of cavity polaritons in semiconductor
microcavities with two-dimensional optical confinement~photon wires!, fabricated from planar
Bragg structures with a quantum well in the active layer, are investigated by measuring
the angular dependence of the photoluminescence spectra. The size quantization of light due to
the wavelength-commensurate lateral dimension of the cavity causes additional photon
modes to appear. The dispersion of polaritons in photon wires is found to agree qualitatively
with the prediction for wires having an ideal quantum well, for which the spectrum is
formed by pairwise interaction between exciton and photon modes of like spatial symmetry. The
weak influence of the exciton symmetry-breaking random potential in the quantum well
indicates a mechanism of polariton production through light-induced collective exciton states.
This phenomenon is possible because the light wavelength is large in comparison with
the exciton radius and the dephasing time of the collective exciton state is long. ©1998
American Institute of Physics.@S1063-7761~98!01210-4#
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1. INTRODUCTION

Semiconductor microcavities with imbedded quantu
wells are currently stimulating a growing interest among
searchers. They are intersting in connection with the fe
bility of monitoring and investigating the modification o
exciton properties as a result of the mixing of exciton sta
with cavity optical modes. In particular, exciton-photon i
teraction leads to Rabi splitting and modification of the d
persion of exciton and photon modes.1–5 The bulk of the
experimental papers report the interaction of light and ex
tons in cavities that imbed one or more quantum wells s
ated at antinodes of the optical electromagnetic field in
active layer of thicknessl or (3/2)l contained between two
Bragg mirrors.6–8 This geometry can be regarded as tw
dimensional~2D! both for excitons in a well and for light in
a Fabry–Perot cavity. In a planar microcavity optical m
mentum is not conserved in the direction perpendicular to
planes of the mirrors, whereas in a plane parallel to the m
rors the quasimomentum is a ‘‘good’’ quantum number, a
the photon mode has a completely defined dependence o
energyE on k. This dependence can be measured by reco
ing the reflection, transmission, or luminescence signa
various anglesf relative to the plane of the sample.7 The
planar quasimomentumk is related to the light momentum i
vacuumq by the equation

k5q sinf. ~1!
7231063-7761/98/87(10)/8/$15.00
-
i-

s

-

i-
-
n

-

-
e
r-
d
the
d-
at

Here the dispersion of light in the empty microcavity is d
scribed by the expression5,7

Ek5AEv
21ak2 , ~2!

whereEv is the energy of the vertical cavity mode, and t
coefficienta depends on the effective dielectric permittivit
In a microcavity containing quantum wells the energy of t
photon and exciton modes is modified by the interaction
excitons in the wells with light. In the presence of stro
exciton–photon coupling the exciton and photon dispers
branches are repulsive and can be described on the bas
the polariton model. The dispersion of a cavity polariton w
first measured in Ref. 7 from an analysis of the angular
pendence of the energies of the luminescence peaks at
excitation densities.

Papers have also been published very recently, desc
ing investigations of three-dimensionally~3D! optically con-
fined semiconductor microcavities, i.e., photon dots.9,10 In
these structures, with dimensions of the order of a few
crometers, light has been quantized in one dimension
means of Bragg mirrors and in the other two dimensions
a large difference in the refractive indices at t
semiconductor–vacuum boundary. The localization of lig
in such structures produces a discrete photon spectr
where the energy distance between modes increases a
size of the dot decreases. The dispersion of photon mo
does not occur in such a cavity.
© 1998 American Institute of Physics
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In this paper we report an investigation of the dispers
of polaritons and the role of exciton–photon interaction
microcavities with 2D light quantization. Such cavities a
aptly called photon wires. In photon wires 3D light confin
ment leads to the additional quantization of cavity pho
states over and above the quantization in planar cavities
in contrast with photon dots, all modes exhibit on
dimensional dispersion along the axis of the wire~x axis!.

A diagram of the size-quantization levels in a microca
ity of width Ly containing an ideal quantum well is shown
Fig. 1a. To simplify the diagram, only three exciton quan
zation levels (m50, 1, 2) and three photon state
(M0,M1,M2) situated below the exciton energy are sho
in the figure. Under conditions such that the light wavelen
is commensurate with the transverse dimensions of the
ity, the photon quantization energies attain several milliel
tron volts; on the other hand, owing to the large translatio
mass of the exciton, the energies of exciton states with
ferent numbersm (m5n21, wheren is the number of the
size-quantization level! differ only very slightly. Figure 1a
also shows the exciton and photon wave functions co
sponding to levels with different quantum numbers. T
wave functions of excitons and photons with identicalm
have the same symmetry.

Exciton–photon interaction in one-dimensional micr

FIG. 1. a! Diagram of the exciton and photon states in photon wires with
ideal quantum well; b! the same with quantum-well localization of exciton
by a random potential; c! schematic view of the sample, showing the plan
in which the anglesF andQ are plotted.
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cavities with an ideal quantum well will necessarily lead
the mixing of photon and exciton states having the sa
spatial symmetry. This means that as the wave vectorkx

increases, all photon modes whose energy at zero qu
momentum was lower than the exciton energy must make
anticrossing with an exciton mode of the same symmetr1!

For the case illustrated in Fig. 1a strong exciton–photon c
pling results in the formation of three lower (MmL) and
three upper (MmU) polariton modes.

In real quantum wells the localization of excitons by
random potential breaks the symmetry of the exciton sta
~Fig. 1b!. The influence of a random potential on the form
tion and radiative properties of polaritons in planar micr
cavities has been a topic of debate up to this point.11–13,15In
a system with broken spatial symmetry of the exciton sta
a light wave interacts with all excitons. In this case the pro
erties of the polariton states depend on the dephasing tim16

In photon wires, as opposed to planar microcavities, there
optical modes with different spatial symmetries. For this re
son the investigation of polariton phenomena in lo
dimensional microcavities offers deeper insight into t
mechanism underlying the interaction of light with excito
in a system with disorder. The experimental results obtai
in the present study suggest that the dispersion of polari
in the investigated one-dimensional microcavities coincid
with the expected dispersion for a resonator having an id
quantum well. The reasons for the weak influence of exci
localization in quantum wells will be discussed below.

The article is organized as follows: In Sec. 2 we descr
the method of preparation and the structure of the pho
wires, along with the experimental technique; in Sec. 3
discuss the structure, measured at high excitation density
the optical states in photon wires in the presence of w
exciton–photon interaction; in Sec. 4 we describe the va
tion of the exciton–photon interaction as the density of e
citons varies, along with the transition from the quantizati
of photon states to the quantization of polariton states
Sec. 5 we discuss the dispersion of polaritons in pho
wires in the presence of strong exciton–photon coupling
determined experimentally at low excitation densities.

2. THE SAMPLE AND EXPERIMENTAL TECHNIQUE

For the measurements we used a microcavity struc
grown by molecular-beam epitaxy. The active element of
microcavity comprises an In0.14Ga0.86As quantum well of
width 70 Å contained in a GaAsl-layer between two Bragg
mirrors. The active GaAs layer is wedge-shaped, makin
possible~by exciting luminescence at different points of th
sample! to vary the energy distance between the Fabry–P
mode and the exciton level. The Bragg mirrors, having be
than 99% reflectivity, consist of 17 and 21 AlAs/GaAs pa
~above and below the active layer, respectively!, where each
layer has a width equal tol/4. Arrays of photon wires hav-
ing widths from 4.2mm to 6.2mm were prepared by
electron-beam lithography and ion-beam etching. A poly
ethyl methacrylate PMMA 950 K electronic resist of thic
ness 1.5mm was deposited on the sample, and windows
the form of wires were opened in the resist by electron-be

n
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lithography. Next, an Al layer of thickness 1mm was
sprayed onto the entire sample, and explosion lithogra
was applied. The stenciled Al pattern then served as a m
for ion-beam etching. Etching was performed with 500-
Ar ions at a current density of 0.1 mA/cm2. Oblique low-
temperature etching is known to have the potential benefi
reducing radiation damage to structures.14 During etching,
therefore, the sample was tilted at a 75° angle relative to
direction of the ion beam and was precisely oriented in s
a way as to align the direction of incidence of the ions w
the wires. The sample was kept at a temperature of 7
during etching. Only the upper mirror of the microcavi
etched, leaving two or three pairs of AlAs/GaAs layers b
tween the untouched surfaces of the photon wires. A diag
of the sample is shown in Fig. 1c. Also shown in the figu
are the planes in which were measured the anglesQ andF
used in our description of the experimental results.

The dispersion of cavity polaritons was investigated
analyzing the angular dependence of the luminescence s
tra. The sample was placed in an optical cryostat in heli
vapor at a temperatureT55 K. Luminescence was excite
by a HeNe or Ar1 laser and was recorded by means o
0.5 m monochromator and a nitrogen-cooled CCD camera
laser beam modulator was used to avoid overheating of
sample at high excitation power.

3. PHOTON MODES IN A ONE-DIMENSIONAL MICROCAVITY

The quantization of light in a one-dimensional cav
causes a photon mode to split into states that have dispe
only in the direction of the axis of the wire~x axis!. The
photon mode energyMm can be described by th
expression9

Em~kx!5AEv
21

\2c2

«eff
Fkx

21
~m11!2p2

Ly
2 G . ~3!

Herem50, 1, . . . ,Ly is the width of the wire, and«eff is the
effective dielectric constant.9 Calculations also show that th
intensity maxima of the excited states of the one-dimensio
photon system are detected at nonzero anglesQ because of
the different symmetries of the field distribution in the cav
interior for different mode orders. In addition, it follow
from these calculations that forQ50° mode M0 has an
intensity maximum, and modeM2 has a local maximum.15

It has been shown8 that for high excitation densities th
mixing of exciton and photon modes in the cavity tends to
suppressed and does not influence the type of dispersio
the photon modes when the carrier density in the quan
well corresponds to the onset of an electron–hole plas
Consequently, the energies and dispersion of the cavity p
ton modes fork50 can be measured by analyzing the em
sion spectra recorded in the presence of a sufficiently h
excitation density.

Figure 2 shows luminescence spectra recorded for w
of width 4.2mm atF50° and at various detection anglesQ
for a high excitation density (P51600 W/cm2). For this ex-
citation density the carrier density created in the quant
well is greater than 1011cm22. At this density screening
plays a significant part, while exciton effects and, acco
y
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ingly, exciton–photon interaction tends to be suppressed
Fig. 2 photon modes with different quantum numbers
seen in all the spectra as strong, narrow lines. The ene
positions of the photon modes are indicated by vertical
rows. The wide line with a maximum in the vicinity o
1.413 eV, labelede2h, corresponds to a recombination pe
of a dense exciton system. As expected, the quantizatio
the system in a direction perpendicular to the axis of the w
renders the energies of the photon modes independent o
angleQ. At Q50° only odd mode orders (M1,M3, . . . ) are
strictly forbidden. Consequently, in addition to the grou
photon stateM0, a feature corresponding to modeM2 is
also visible in the luminescence spectrum atQ50°. As Q
increases, states corresponding to mode ordersm.0 succes-
sively appear and disappear~as the angle is further in
creased! in the luminescence spectra. It is evident from t
figure that optical modes up toM4 are clearly visible in the
spectra forQ<23°.

The inset to Fig. 2 shows the splittingsDEm05Em

2E0 between optical modes, measured for photon wires
various widths. The triangles in the inset correspond to sp

FIG. 2. Photoluminescence spectra for wires withLy54.2mm, recorded for
a high excitation density atF50° and various anglesQ. The vertical ar-
rows indicate the positions of modes with different quantum numbersm.
The electron–hole recombination peak is labelede-h. Inset: splitting
DEm05Em2E0 as a function of the mode orderm for wires of various
widths. The triangles correspond to splitting for a wire of width 4.2mm, the
diamonds correspond to 5.2mm, and the circles correspond to 6.2mm. Dark
symbols, which are joined by smooth curves to aid visualization, repre
the results of calculations according to Eq.~3! atkx50. Effective wire width
deff used for curve fitting:1! 5.2mm; 2! 6.4mm; 3! 7.6mm.
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726 JETP 87 (4), October 1998 Tartakovski  et al.
tings for a wire of width 4.2mm, the diamonds correspond t
5.2mm, and the circles correspond to 6.2mm. It is evident
from the figure that the splitting of the photon modes d
creases as the width of the wire increases. We use Eq~3!
with kx50 to describe the splitting between optical mod
The role of the fitting parameter in this case is taken by
effective width of the wiredeff . In the inset to Fig. 2 the
calculations ofDEm0 according to~3! are represented b
dark symbols joined by solid lines. The value ofdeff used in
the calculations is given for each curve. It is evident from
figure that the behavior of the experimentally measured
pendence of the splitting on the width of the wire is quali
tively consistent with the calculations according to~3!. How-
ever, the values ofdeff are found to be greater than the tru
widths of the photon wires. We identify this discrepan
primarily with the fact that the Bragg mirrors left unetched
the very end in the regions between the photon wires pe
light to penetrate beyond the limits of the wires, and t
process, in turn, causes the effective width of the cavity
increase.

In photon wires light is not quantized in the direction
the wire axis. The energy of the photon modes is therefo
monotonic function of the quasimomentumkx . Figure 3
shows the luminescence spectra in wires of width 4.2mm,
recorded atQ518° for various anglesF. The spectra were

FIG. 3. Photoluminescence spectra for wires withLy54.2mm, recorded for
a high excitation density atQ518° and various anglesF. The vertical
arrows indicate the mode positions forF50°. The dashed curves represe
the positions of modesM0, M1, andM2, as functions of the angleF.
-
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e
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recorded at a high excitation densityP51600 W/cm2, such
that exciton–photon interaction is suppressed. AtF50° two
strong, narrow lines corresponding to modesM1 andM2 are
visible in the spectrum against the background of the broa
electron–hole recombination line. All other modes are see
as weak features in the spectrum. The mode energies
F50° are indicated by vertical arrows. AsF increases, all
the photon modes shift toward the violet end. The dashe
curves in Fig. 3 represent the positions of modesM0, M1,
and M2 as the angleF is varied. Particularly noticeable in
the figure is the absence of anomalies in the behavior of t
energies of the optical modes when they intersect thee2h
recombination peak. This behavior is characteristic of th
suppression of interaction between light and carriers in qua
tum wells. The dispersion of photon modesM02M4 is
shown in Fig. 4. It is extracted from the luminescence spe
tra measured atQ50° and 18° over a wide range of angles
F. The large open circles indicate the energy of thee2h
recombination peak. As expected, its energy does not depe
on the quasimomentum. Dark symbols represent the me
sured dispersion of the photon modes. The energy of mo
M3 is shown only forkx,103 cm21, because for large
anglesF this line has poor resolution against the backgroun
of the rather strong, broade2h recombination line. The
solid curves represent the photon mode dispersion calcula

FIG. 4. Dispersion of photon modes of a wire withLy54.2mm for a high
excitation density. Dark symbols represent the measured photon mode
sitions. The light circles represent the position of the electron–hole recom
bination peak. The solid curves are calculated from Eq.~3!.
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from Eq. ~3!. The only fitting parameter used in the calcul
tions is the dielectric permittivity. It is evident form the fig
ure that the experimental curves are well described for«eff

510.9. As expected, this value differs markedly from« in
the GaAsl layer and is close to the average of the dielec
constants of AlAs~8.8! and GaAs~12.5!. Indeed, owing to
the low reflection coefficient at the boundary of the act
layer, light penetrates the Bragg mirrors to a depth of sev
GaAs/AlAs layers.

4. VARIATION OF EXCITON–PHOTON INTERACTION AS
THE DENSITY OF EXCITONS IS VARIED

Effects associated with exciton–photon interaction
comes more significant as the excitation density decrea
To illustrate the transition from the weak to the strong co
pling regime, we refer to Fig. 5. It shows the luminescen
spectra measured atQ510° andF50° in wires of width
6.2mm for various excitation densities. The angleQ510° is
chosen to achieve good resolution in the spectra simu
neously for all four optical modesM12M4, which are situ-
ated below the exciton energy of 1.413 eV. In Fig. 5 all fo
modes are seen as strong, narrow lines against the b
ground of the weaker, broad exciton line. As the excitat
density is decreased, all modes shift toward lower energ
The shifting of the peaks is reflected by the dashed curve

FIG. 5. Luminescence spectra of wires withLy56.2mm, recorded for vari-
ous excitation densities atQ510° andF50°. The dashed lines indicate th
variation of the photon mode positions. Inset: energies of photon modes
the exciton peak~light circles! as functions of the excitation density.
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the figure. The inset to the figure shows the dependenc
the mode energies on the excitation density.2! The repulsion
of the cavity modes from the exciton term is evidence of
repulsion of exciton and photon states, i.e., strong coup
between excitons and photons in the microcavity.3! The most
pronounced variation of the energy with decreasing exc
tion density is observed forM4, the mode closest to th
excitation level. As the distance between the photon m
and the exciton peak increases, the degree of repulsion
sides considerably~from 1 meV forM4 to 0.5 meV forM1).

The experimental pattern of states in photon wires c
be described in terms of quantized microcavity polarito
The formation of polariton states in photon wires is illu
trated in Fig. 6. We first consider a planar microcavity.
excitons and photons do not interact, they have a parab
dispersion law. The dashed curve in Fig. 6 shows the pho
dispersion, and the dashed curve represents the exciton
ergy level. The exciton energy depends weakly onk by vir-
tue of the large effective exciton massmex relative to the
photon massM p : mex;105M p ~Refs. 12 and 13!. Exciton–
photon interaction results in the production of a cavity pol
iton with a dispersion law described by the expression
two intersecting, interacting levels:16

EU,L
2 ~k!5

S26AS424Eex
2 ~k!Ep

2~k!

2
. ~4!

nd

FIG. 6. Diagram of the quantization of polaritons in a photon wire~see the
text!.
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Here EU,L(k) denotes the energies of the upper and low
branches of the polariton dispersion curve~with the plus or
minus sign, respectively!, Ep(k) and Eex(k) are the photon
and exciton mode energies without interaction,S25Eex

2 (k)
1Ep

2(k)1V2, andV is the splitting between the upper an
lower branches at resonance. The dispersion of polariton
represented by solid curves in Fig. 6. Far from resonance
lower branch of the polariton dispersion curve exhibits p
dominantly photon behavior for smallk and predominantly
exciton behavior for largek. The opposite pattern is encoun
tered for the upper branch. For largek its dispersion is close
to the dispersion of the photon mode without interaction. I
planar microcavity the dispersion of excitons, photons, a
polaritons is independent of direction in thexy plane.

The confinement of light in they direction by the
semiconductor–vacuum boundaries (LY is of the order of a
few mm! leads to quantization of the photon cavity mod
The lower quantized states (m50; 1, 2) without exciton–
photon interaction are represented by dashed horizontal
in Fig. 6. The splitting of the exciton levels due to size qua
tization is very small and is therefore not shown in Fig. 6

Polariton states corresponding to pair-interacting exci
and photon states with identical numbersm are formed in the
strong exciton–photon coupling regime. In this case eacm
corresponds to two polariton states, one for the lower bra
and one for the upper branch of the dispersion curve~solid
horizontal lines labeledMmU,L) in Fig. 6.

It is evident from Fig. 6, consistent with experiment, th
photon states situated below the exciton level (m50, 1 in the
figure! are shifted downward on the energy scale~indicated
by arrows in the figure!. The shift decreases when the num
ber m increases. Figure 6 shows that the more pronoun
decrease of the energy level withm52 is readily explained
within the context of polariton quantization by an increase
the effective mass of the polaritons as the exciton leve
approached. It is also evident from Fig. 6 that lateral qu
tization of the lower polariton branch in photon wires shou
produce a large number of levels in the vicinity of excit
resonance. These levels, in contrast with those w
m50, 1, are excitonlike; the smallness of the splitting mak
them spectrally unresolved.

We now consider the quantization of the upper polari
branch. It is evident from the figure that the energy of t
polariton stateM2U , which is situated far from the excito
level, differs only slightly from the energy of the photo
level with m52 in the noninteracting system. The latter r
sult is attributable to the large contribution of the phot
component to this polariton state. States near the bottom
the upper polariton branch (M0U , M1U) are shifted slightly
relative to the plateau as a result of the large polariton m
for smallk. This behavior is explained by the large contrib
tion of the exciton component to the polariton state. T
smallness of the splitting makes it impossible to reso
statesM0U and M1U in the luminescence spectrum fo
k50, but it will be shown in the next section that they can
distinguished by analyzing the polariton behavior for lar
kx .
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5. DISPERSION OF POLARITONS IN PHOTON WIRES IN THE
PRESENCE OF STRONG EXCITON–PHOTON COUPLING

To investigate the dispersion of polaritons in phot
wires we have conducted a series of luminescence meas
ments at a low excitation densityP5300 W/cm2 in wires of
width 4.2mm at various anglesF. Since different mode or-
ders are dominant in the spectra for different anglesQ, we
carried out the series of measurements at three angleQ
50°, 10°, 15°. One series is represented in Fig. 7, wh
shows luminescence spectra recorded atQ510° and several
anglesF. As in the case of high excitation density, the ph
ton modes shift toward higher energies asF increases. At
low excitation densities, however, the photon modes
through an anticrossing with the exciton peak. This feat
differs qualitatively from the high-density case~Fig. 4!,
which does not have any anomalies in the region of inters
tion of the photon modes and the exciton level. Moreover
is evident from Fig. 7 that the branches of modesM0 and
M1 situated below the exciton energy tend to the exci
level. For largeF a new line appears above the exciton pe
it can be ascribed to the upper branch of the polariton m
M1. The exciton peak~1.413 eV! scarcely alters its position
asF increases, but this is not too surprising in view of t
major contribution of excitons in the regions between wir

FIG. 7. Photoluminescence spectra for wires withLy54.2mm, recorded at
Q510° and various anglesF. The dashed lines indicate the positions
modesM0 andM1. The subscriptsL and U signify the lower and upper
branches of polariton dispersion.
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FIG. 8. Dispersion of polaritons in wires withLy54.2mm, ob-
tained from the luminescence spectra for a low excitation dens
The subscriptsL and U signify the lower and upper branches o
polariton dispersion. Dark symbols represent the polariton m
energies. The solid curves are calculated from Eq.~4!. The dashed
curves represent the photon mode dispersion determined f
measurements at a high excitation density.
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to the luminescence signal. The formation of the polari
modesM0U , M0L , andM2L is also observed in the othe
series of measurements atQ50° and 15°.

The observed anticrossing of exciton and photon sta
indicates the formation of microcavity polaritons. The pola
iton mode dispersion determined from an analysis of the
ergies of the spectral peaks in Fig. 7 is shown in Fig. 8. T
corresponding mode energies measured at high excita
density, when the interaction of light with excitons is su
pressed, are also shown~dashed curves! for comparison. A
comparison of the mode energies at low and high excita
densities shows that exciton–photon mixing has the effec
shifting cavity modes withE,Eex toward lower energies
and shifting modes withE.Eex toward higher energies. Thi
behavior is natural when each mode interacts with the e
ton state corresponding to it in terms of spatial symme
Consequently, to describe the experimental results for e
pair EmU,L(k) we have used Eq.~4!, replacing Ep(k),
Eex(k), andV by their counterparts for the givenmth mode:
Em(kx), Eex,m(kx), and Vm . We obtain the photon mod
energiesEm(kx) from the spectra at high energy density. W
then disregard the exciton quantization energies, i.e., we
sume thatEex,m5Eex51.413 eV for allm50, 1, 2. For low
mode ordersm (m5022) the splittingVm in wide photon
wires should not depend too strongly on the photon m
order, i.e., we can setV05V15V25V. We are thus left
with only the one fitting parameterV to describe severa
polariton branches in Eq.~4!. Better agreement between th
calculated curves and the experimental points is attained
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V53 meV. The corresponding fitted curves are shown
solid curves in Fig. 8. The magnitude of the interaction in t
case of photon wires is found to be slightly lower than in t
original planar microcavity. It has been determined fro
similar measurements of the luminescence spectra in a pl
microcavity thatV54 meV. The reduction ofV in wires is
most likely attributable to lowering of theQ of the structure
in etching of the planar microcavity.

The better agreement of the experimental polariton d
persion curves with those calculated on the assumption
interaction between exciton and photon states of like spa
symmetry indicates that exciton–photon interaction reta
essentially the same character as in a microcavity with
ideal quantum well, despite the fact that potential fluctu
tions in a real quantum well lead to the localization of ex
tons and induce breaking of the symmetry of their states
the structures we studied the localization range for excit
in a quantum well does not exceed 0.120.2mm, whereasLy

is an order of magnitude higher: 426 mm. To explain the
weak influence of a random potential for the indicated ra
of the characteristic dimensions, it must be assumed that
photon wire an optical mode induces a collective coher
state of excitons of like symmetry. This state is construc
from a large number of localized and free exciton states. T
interaction of light with such exciton modes results in t
formation of coherent polariton states. This kind of intera
tion mechanism is possible by virtue of the fact that the lig
wavelength is much greater than the exciton radius, so th
great many exciton states are excited coherently at the s
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time. It is obvious that the coherent state has a finite lifetim
owing to the scattering of excitons by the random poten
and phonons and because of exciton–exciton collisions.
polariton dispersion observed by us in photon wires indica
that the dephasing time of polariton states is at least gre
than the Rabi oscillation period (;0.4 ps!. This conclusion is
consistent with a measurement of the dephasing time of
citon states by the four-wave mixing method,17, where a
dephasing time of 12 ps has been determined for a l
density exciton system. The dephasing time decreases a
exciton density increases, accounting for our experiment
observed suppression of exciton–photon interaction at h
excitation densities.

6. CONCLUSION

In 2D optically confined semiconductor microcavitie
we have investigated the structure of the states of the pho
system and the dispersion of cavity polaritons in the prese
of strong exciton–photon coupling. Light is spatially co
fined in one dimension by a system of Bragg mirrors and
the other dimension by the semiconductor–vacuum bou
ary. The lateral confinement of the cavity leads to quanti
tion of the vertical cavity mode. The additional photon sta
have a maximum in the luminescence spectrum at var
values of the angleQ. At low excitation densities exciton–
photon coupling is fairly strong and results in the formati
of cavity polaritons. The experimental polariton dispersi
curves are in good agreement those calculated on the
sumption that interaction takes place only between pho
and exciton states of like spatial symmetry. Fluctuations
the random potential in the quantum wells break the spa
symmetry of the excitons but have little influence on t
dispersion of polaritons. Consequently, polaritons are p
duced in microcavities through collective coherent exci
states induced by the optical electromagnetic field. T
dephasing time of such states is much longer than the R
oscillation period. As the excitation density increases,
screening of exciton states and shortening of the depha
time have the effect of suppressing the strong excito
photon coupling regime.
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1!In reality, the boundary conditions on the side walls of the cavity differ

excitons and light, so that orthogonality is lost between the wave funct
of exciton and photon modes having different orders. As a conseque
the interaction of even~odd! exciton modes with all even~odd! photon
modes is allowed. However, interaction between modes of like orders m
be dominant.

2!The photon mode energies and the position of the exciton recombina
peak, which is not resolved as a distinct band in the spectra of Fig. 5, h
been determined by the application of a program for deconvolution of
spectral positions of peaks by fitting of the line shape.

3!The position of the exciton peak does not change, because the main
tribution to the exciton luminescence signal is from excitons that reco
bine in the region between the wires. In fact, the dimensions of th
regions exceeds the area of the photon wires, and the essentially
pletely etched Bragg mirrors are two or three orders of magnitude m
transparent both to the exciting laser beam and to exciton radiation.
obvious that exciton–photon interaction is not intensified by the cavity
the regions between wires, and the position of the exciton peak there
remains unchanged in transition from the weak to the strong excit
photon coupling regime.
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The spin density wave model in a quasi-one-dimensional itinerant antiferromagnet with staggered
potential at finite temperature is studied. Only short-range ordering exists in this system
above the Ne´el temperature. The local-band theory of spin fluctuations is developed to calculate
the spin density wave amplitude and the effective exchange integral. The one-electron
spectrum and magnon spectrum are obtained in the short-range ordering regime. ©1998
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1. INTRODUCTION

In the modern theory of itinerant magnetism it is a
sumed that the destruction of long-range magnetic order w
increasing temperature is mainly due to spin dens
fluctuations,1 which determine the phase transition tempe
ture, changes in magnetic structure parameters below
transition point and short-range order. One of the m
physically illustrative methods to account for spin fluctu
tions, known as the local band theory,2,3 was developed for
itinerant ferromagnets. In this theory, the magnetic mom
of the unit cell is formed at a temperature considera
higher than the temperature for the onset of long-range or
Amplitude excitations of the spin density have characteri
frequencies of the order of the Stoner exchange splitting,
do not determine the temperature of the phase transit
Accordingly, transverse long-wavelength fluctuations of
spin density with low~of order of the spin-wave! frequencies
play the dominant role in the production of ferromagne
order. Thus, both the exchange~Stoner! splitting of elec-
tronic subbands and short-range ferromagnetic order~but not
long-range! are conserved above the transition point.

In Ref. 4 local band theory was applied to investigate
thermodynamics of itinerant antiferromagnets with spin d
sity waves~SDW!. In the vicinity of the Ne´el point TN , the
thermally excited state of an antiferromagnet is formed
the electronic Bloch states with energies within;TN of the
Fermi level«F , whereTN!D ~D is the SDW amplitude!.
This assumption strongly reduces the configuration field
spin fluctuations, i.e., the wave packets are formed by Bl
functions with wave vectorsK close toG/2 ~G being the
reciprocal lattice vectors!. As a result, long-wavelength
transverse fluctuations of the magnetization with wave v
tors q close to the vector of antiferromagnetic structureQ
5G/2 ~that is, the transverse spin density waves! will be the
most relevant. Nevertheless, short-range order band stru
similar ~but not identical! to the long-range order structure
preserved. The quasimomentum and spin of a quasipar
are ‘‘almost good’’ quantum numbers, at least as long
7311063-7761/98/87(10)/10/$15.00
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uK2G/2u l .1, wherel is the characteristic correlation lengt
of SDW fluctuations (l→`, whenT→TN).

It is well known that band structure properties play
important role in the formation and properties of SD
antiferromagnets.5 In nesting-type models6 the first well-
known mechanism what leads to the suppression of SDW
the ground state is doping. Indeed, in this case, when
ticles are added to~or removed from! the system, the perfec
nesting of the Fermi surface at the wave vectorQ5G/2, of
the antiferromagnetic structure, is spoiled. Another ba
structure mechanism responsible for the destruction of
SDW state is associated with the deformation of the el
tronic spectrum as a consequence of the onset of a ch
density wave. It may be shown that in the absence of dop
spin and charge density waves can not coexist.

However, a SDW state can exist in an external stagge
potential introduced into the system as so-called ‘‘chemi
dimerization’’.7 This system is of great interest, as it d
scribes some real physical situations. For example, this is
case for reconstructed Si~111! and C~111! surfaces in which
the crystal field of the bulk induces chemical dimerization
the surface, and SDW ordering appears in the surface b
of itinerant electrons along the so-calledp-chain.8

The ground-state properties of the SDW system w
chemical dimerization are investigated in Ref. 7. Below
consider the thermodynamics of such a system in the sh
range ordering~SRO! regime. We examine the influence of
staggered potential on the parameters of effective excha
correlation length, electronic spectrum, and collective ex
tations of SDW phase with short-range order.

In Sec. 2 we introduce the model and briefly recall so
results of Ref. 7 about the phase diagram of the system in
ground state. In Sec. 3 we introduce the techniques of
‘‘local-band’’ spin-fluctuation theory specialized to the pro
lem of itinerant antiferromagnets.

In Sec. 4 we calculate the effective exchange integ
and the Ne´el temperature for our model. In Sec. 5 we d
velop the single-particle Green’s function approach to cal
© 1998 American Institute of Physics
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late the electronic spectrum and renormalization of the SD
amplitude in the SRO state.

In Sec. 6 we develop the two-particle Green’s functi
approach to calculate the dynamical transverse susceptib
of the system.

In Sec. 7 we calculate the spectrum of low-frequen
excitations~paramagnons! in the SRO state. Concluding re
marks are found in Sec. 8.

2. SELF-CONSISTENCY EQUATION FOR THE SDW
AMPLITUDE IN THE GROUND STATE IN THE
HARTREE–FOCK APPROXIMATION

We consider the single-band model with Hamiltonian

H5H01H int , ~1!

H05(
i j s

t i j Cis
1 Cj s1I(

j s
exp~ iQRj !nj s , ~2!

H int5U(
j

S nj↑2
n̄ j

2 D S nj↓2
n̄ j

2 D , ~3!

whereCis
1 , Cis are fermionic operators,t i j is the nearest-

neighbor hopping parameter,I is the amplitude of a stag
gered local potential produced by the crystal field,Q5G/2,
andR, is a lattice site. This form of the interaction termH int

is discussed in Ref. 7. Introducing the unit vectorei , which
specifies the local orientation of the quantization axis at
i th site, we rewrite the termH int in the equivalent form:

H int5U(
j

F S nj2n̄ j

2 D 2

2~ejSj !
2G , ~4!

wherenj5nj↑1nj↓ andSjz5(1/2)(nj↑2nj↓) are the charge
and spin densities, respectively. The representation~4! en-
ables us, by means of the Hubbard-Stratonovich transfor
tion, formally to reduce the initial many-particle problem~1!
to a single-particle problem that involves the motion of
electron in the arbitrary scalarxj (t) and vector yj (t)
5ej (t)yi(t) fields conjugate to the charge and spin den
ties, respectively.1 In the ‘‘static’’ approximation, i.e., ne-
glecting the dependence ofxi andyi on the timet, the par-
tition function corresponding to the Hamiltonian~1! has the
form

Z5Z0E Dx dy expH 2p(
j

~xj
21yj

2!1Tr ln~12gV!J ,

~5!

where

gi j
ss8~v!5

1

N (
k,p

exp~ i ~kR i2pRj !!

3
~ ivn1«k!dkp1Idk,p1Q

~ iv1m!22Ek
2 dss8 ~6!

is the Green’s function of the noninteracting electrons w
dispersion Ek56(«k

21I 2)1/2, k is the quasimomentum
vn5pT(2n11) is the frequency,m is the chemical poten
tial,

Vj ss85~pTU!1/2~ ix jdss81sss8yj ! ~7!
ity

y

e

a-

i-

is a random potential, andZ0 is the partition function of the
noninteracting electrons. In expression~5! and in what fol-
lows, the symbol Tr denotes the sum over spin indexj, and
the frequency variablen.

We neglect fluctuations of the charge densityxj . In the
saddle-point approximation for the variablexj , one can ob-
tain

^xj&;^nj2n̄ j&50.

Thus, in the Hamiltonian~1!, there is no renormalization o
the chemical potentialm and the staggered potentialI ~see
Ref. 7!.

We now turn to the problem of SDW antiferromag
netism in the model~1!. We propose that the ground state
the system has a Ne´el structure. ForI 50 we assume that the
electronic spectrum has the ‘‘nesting’’ property:

«k52«k1Q . ~8!

We distinguish two alternating magnetic sublattices, for o
of these we take the local quantization axisej to coincide in
direction with the local magnetization of the siteSj , while
for the other we assume that the vectorsej andSj , are anti-
parallel.

Thus,

ejSj5Sjz exp~ iQRj !.

The vector fieldyj is normalized in energy units:

Dj5~pUT!1/2yj exp~ iQRj !5USj exp~ iQRj !. ~9!

In the Hartree–Fock approximation we can write the st
dard expression for the one-particle Green’s function in
lineary polarized SWD structureDi5Dez :

Gkp

0ss8
~vn!5

~ ivn1«k1m!dk,p1~Dsss8
z

1Idss8!dk,p1Q

~ ivn1m!22Eks
2 .

~10!

The spectrum of one-particle excitations has the form

vs56Eks , Eks5@«k
21~ I 1sD!2#1/2. ~11!

It consists of four branches which-differ in their band indic
~6 sign on the radical in~11!! and their spin projections
along the vectorez.

The self-consistency equation for the spin density am
tude is found as a saddle-point condition for the fieldyi , and
has the standard form:

D5
U

2
T(

n

1

N (
k

(
ss8

sss8
z Gk,k2Q

ss8 ~vn!. ~12!

We analyze Eq.~12! at zero temperature and in the a
sence of doping (m50). We restrict attention to the case o
a one-dimensional chain, for which«k522t cos(ka) ~a is
the chain period!. We can then rewrite~12!:

D

U
5

1

4pt (
s561

sksK~ks!~ I 1sD!, ~13!

whereK(ks) is the complete elleptic integral of the first kin
with modulus
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ks~D!5
2t

A~2t !21~ I 1sD!2
. ~14!

Integrating Eq.~13! with respect toD, one can obtain the
thermodynamic potentialV~D! per site. The energy differ
ence between the antiferromagnetic and paramagnetic p
~per lattice site! is

E~D!5V~D!2V~D50!

5
D2

U
2

2t

p (
s561

E~ks!

ks
1

4t

p

E~k0!

k0
, ~15!

whereE(ks) is the complete elliptic integral of the secon
kind, andk05ks(D50).

In the weak-coupling limit (I 2,D2!(2t)2), we can use
the well-known expansions of the functionsK(ks) and
E(ks) near ks51 ~the so-called logarithmic approxima
tions!. For I !D0 , where

D05D~ I 50!58t exp@22pt/U#

we obtain that

~D~ I !2D0!/D052~ I /D0!2.

It can easily be shown that forI ,I c5D0 /e, there exists
only one nontrivial solution of Eq.~9!, which is a decreasing
function of I. However, forI .I c a second solution appear
which increases withI. In the vicinity of I c the dependence
D(I ) is given by

D2~ I !56I c~ I 2I c!.

The numerical solution of Eq.~13! is obtained in Ref. 7 and
plotted in Fig. 1 ~solid line!. It is clear that two nonzero
solutions of Eq.~13! exist in the intervalI c,I ,I 0 , the first
corresponding to a local minimum of the thermodynam
potential, and the second to a local maximum. The poinI
5I eq is the AFM-PM phase equilibrium point in the firs
order phase transition, andI 0 andI c are ‘‘superheating’’ and
‘‘supercooling’’ points for the AFM state.

Some analytic relations can be also obtained in
strong-coupling regime (I ,U@t), whenks→0, as well nu-
merical calculations forD(I ) ~see Ref. 7!. Thus, mean field
analysis shows that in a dimerized chain with a stagge

FIG. 1. D̄(I ) dependence for large~solid line! and short~dashed line! range
order phases; limits of stability regionI c,I ,I 0 ~dash-dotted lines!.
ase

e

d

potential, the transition to the AFM phase is of first order
both the weak-coupling and strong-coupling limits.

3. TRANSVERSE SDW FLUCTUATIONS AND THE
EFFECTIVE HAMILTONIAN OF THE SHORT RANGE ORDER
ANTIFERROMAGNET

According to current ideas in the theory of itinera
magnetism based on the spin-fluctuation approach, the t
peratureTN

0 determined by Eq.~12! is not the actual tempera
ture at which antiferromagnetic long-range order is est
lished~the Néel point!. The quantityTN

0 gives some nomina
upper bound on the temperature below which long wa
length SDW fluctuations with amplitude weakly depende
on T are formed. Long-range order~i.e., the onset of mean
magnetization of the sublattices! is described not by Eq.~12!,
but by other relations that can be derived in the context
the spin-fluctuation approach forT,TN

0 . Below we will be
oriented to the simply and physically visual scheme,2,3 in
which the formation and breakdown of long-range order
associated mainly with transverse long wave length therm
dynamic fluctuations.

Let us briefly recall a familiar series of techniques fro
the theory of spin fluctuations in itinerant antiferromagne
These constitute a ‘‘local band’’ method used earlier4,9 for
antiferromagnets. We assume that forTN,T!TN

0 , short-
range order is present in the system, and the main contr
tion to the partition function comes from SDW configur
tions $Di% of Eq. ~9! for which Di5eiD, and the vectorei

changes direction slightly between nearest-neighbor site
the latticeI and j: uei2ej u!1. We introduce a local coordi
nate system defined by the angles$u i ,F i%, which specify the
direction of the local quantization axisei relative to the labo-
ratory quantization axis. We introduce also the anglebi ,
which describes the rotation of the spin-density vector ab
the ei axis.

In the local coordinate system, the Hamiltonian~1! can
be rewritten in the form2

H loc5H01H11H21H int , ~16!

H152 i(
i j

(
ss8

t̃ i j
ss8Cis

1 Cj s8 , ~17!

t̃ i j
ss85t i j @sss8

1 ai j* 1sss8
2 ai j 2sss8

z gi j #, ~18!

H25( t5 i j
ss8Cis

1 Cj s8 , ~19!

t5 i j
ss85t i j di j dss8 . ~20!

The matrix elementsai j , gi j and di j can be written in
the form

ai j '
1

2
exp~2b̄i j !~F i j sin~Q̄ i j 2 iQ i j !!, ~21!

gi j '
1

2
~bi j 1F i j cosQ̄ i j !, ~22!

di j '2
1

2
~ uai j u21gi j

2 !, ~23!
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whereQ i j 5Q i2Q j , Q̄ i j 5(1/2)(Q i1Q j ), and analogously
for the anglesF i and bi . In Eqs. ~16!–~20!, it is assumed
that the operatorsCis and Cis

1 act in the local coordinate
system, and the HamiltoniansH0 and H int have the same
form as in ~1!. The matrix elements~21!–~23! have been
written with allowance for the conditionuei2ej u!1 for near-
est neighbors. In the local coordinate system, the free en
of the systemF can easily be represented as

F52T ln Tr expS 2
1

T
H locD5F0@D̄#1FSF@D̄,$ej%#,

~24!

where the functionalF0@D̄# can be reconstructed by integra
ing the self-consistency equation for the mean SDW am
tudeD5D̄. It is formally independent of the$ei% directions,
so F0@Ā# is the free energy of the homogeneous SDW w
some amplitudeD̄. The termFSF@D̄,ei # is an additional ex-
change energy of the antiferromagnet, associated with t
modynamic orientational disorder. The large-scale SD
configurations$ei% in the functionalFSF can be represente
as an expansion in the anglesQ i j , F i j , bi j . Let us write the
explicit expression for the functionalFSF to second order in
H1 andH2 :

FSF5F'1F i , ~25!

F'52
1

4
T(

n
F(

i j
(
s

Gi j

0ss8
t i j uai j u2

1(
i j lm

(
sabg

Gi j

0sa

t j l ~sab
1 ajl*

1sab
2 ajl !Glm

0bg

tmi~sgs
1 ami* 1sgs

2 ami!G , ~26!

F i52
1

4
T(

n
F(

i j
(
s

Gi j

0ss

t i j gi j
2

1(
i j lm

(
sabg

Gi j

0sa

t j l sab
z gi j Glm

0bg

tmisgs
z gmiG , ~27!

whereG
0

is the Green function~10!, but D̄ is not defined by
Eq. ~12! ~see Sec. 5 below!. It is noted in Ref. 2 that the
structure of the termgi j ~22! is such that it leads to contri
butions to the energyFSF of fourth and higher order inF i j .
In the long-wave limit, the first nonvanishing terms in th
energy expansion ofFSF are of second order inF i j andQ i j

and are proportional toai j* alm . We now take into accoun
that in accordance with~21!,

ai j* alm5
1

4
~ei2ej !~el2em!. ~28!

Thus, in this limit the spin-fluctuation contribution to the fre
energy of the itinerant antiferromagnet has the form of
effective Heisenberg Hamiltonian for classical spinsS51,
gy

i-

r-

e

FSF52(
i j

Ji j eiej . ~29!

In the next section, we analyze in detail the structure
the exchange integralJi j . Here we emphasize that the ca
culation of the partition function reduces to an integrati
over the orientations of the random vector field$ei%, uei u
51:

Z5Z0 exp~2E0 /T!ZSF , ~30!

ZSF5E exp~2FSF /T!D$ei%, ~31!

whereFSF is given in the form~29!.
To find any physical characteristic of an itinerant an

ferromagnet in the SRO region, it is necessary to aver
over the ensemble of SDW fluctuations, restricted in our
proach to the set of configurations$ei%. If the quantity
A@$ei%# corresponds to any configuration$ei%, then the ther-
modynamic averagêA& is calculated as a functional integra

^A&5ZSF
21E A@$ei%#exp~2FSF@D̄,$ei%#/T!D$ei%. ~32!

We calculatêA& in the ordinary Gaussian approximatio
for the distribution$ei% of the vector orientation, whose ef
fective Hamiltonian is of the quadratic form~29!. In this
approximation, all even spin correlators decouple into pr
ucts of the pairwise correlatorŝei ...ej&→^eiel&...^emej&,
and all odd correlators into products of pairwise correlat
and mean valueŝei&. In what follows we restrict our discus
sion solely to paramagnetic phase for which^ei&50 holds,
and all odd correlators vanish.

To calculate any averagêA&, it is thus necessary to de
termine the amplitude and the pairwise correlatorf i j

5^eiej& and it is necessary, strictly speaking, to have a s
tem of self-consistency equations for these quantities. M
qualitative results, however, can by obtained on the basi
general assumptions about the spatial and temperature
pendence off i j . Thus, it is natural to assume that in th
short-range order regime, withTN,T!TN

0 , the Fourier com-
ponentf q has a sharp maximum at small values of the wa
vectorsq!a21, corresponding to the maximum of the sp
correlator^SqS2q& at wave vectorsq near the antiferromag
netic structure vectorQ5G/2. The spin correlation radius
l (T) and the temperature dependence off q(T) can be
estimated4 on the basis of well-known results for the class
cal Heisenberg Hamiltonian.

4. EFFECTIVE EXCHANGE INTEGRAL AND THE NÉ EL
POINT

The exchange integral in~29! is given by

Ji j 5
1

N2 (
pp8

Jpp8 exp~ i ~pRi2p8Rj !!, ~33!

Jpp85I pdpp81Kpdp,p81Q , ~34!
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I p52
T

8N (
nk

@«k2p~Ak
↑1Ak

↓!

1~«k2«k2p!2~Ak
↑Ak2p
↓ 2Bk

↑Bk2p
↓ !#, ~35!

Kp52
T

8N (
nk

@«k2p~Bk
↑1Bk

↓!

1~«k
22«k2p

2 !2~Ak
↑Bk2p
↓ 2Bk

↑Ak2p
↓ !#, ~36!

Ak
s5

ivn1m1«k

~ ivn1m!22Eks
2 , Bk

s5
I 1sD

~ ivn1m!22Eks
2 . ~37!

Below, we analyze only the caseT50 andm50 to ob-
tain explicit expressions forJi j . We also assume that to ze
roth order in (a/ l )21!1, D̄'D from Eq. ~12! and (D6I )2

@(a/ l )2t2. In this case we can convince ourselves that
ferromagnetic componentKp50 ~sincem50), and that to
calculate the Ne´el temperature we need the quantityMp
5I p502I p . After some transformations, the latter can
written in the form

Mp5
D2

8N (
k

~«k2«k2p!2

Ek↑Ek2p↓~Ek↑1Ek2p↓!
, ~38!

where the summation over the wave vectork extends over
the first Brillouin zone. For the classical Heisenberg mo
with S51, mean-field theory yields the phase-transition te
perature

TN
MF5

2

3

1

N (
p

Mp . ~39!

The self-consistent contribution of magnetization fluctu
tions, evaluate 1 by means of the spin Green’s functi
method, reduces the Ne´el temperature in comparison wit
~39!:

TN
SF5

2

3 S 1

N (
p

Mp
21D 21

. ~40!

Equation~40! was derived previously~for example, see Refs
10 and 11!. The difference betweenTN

MF and TN
SF becomes

sizable in low-dimensional systems. To illustrate this fa
we specify the dispersion relation in the form

«k52(
a

2ta cos~kaaa!, a5x,y,z.

Above all, we consider the formal limit of strong interactio
U,I @t. If ( D2I )2@(2t)2, the reduced exchange integr
acquires the simple form

Mp5
D

2~D22I 2! (
a

ta
2 sin2S paaa

2 D . ~41!

The Néel temperature in the mean-field approximation is

TN
MF5

D

6~D22I 2! (
a

ta
2 ~42!
e

l
-

-
s

,

and remains finite for all effective dimensions of the ele
tronic system. Thermodynamic fluctuations lead to differe
behavior of the Ne´el point. For example, if (ty /tx)

2!1,
(tz /ty)

2!1, we obtain

TN
SF5TN

MFp
ty

tx
S ln

8ty

tz
D 21

. ~43!

Recall that for an isotropic situation (tx5ty5tz), TN
SF

5TN
MF/1.51. The dependence of the temperatureTN

SF on the
anisotropy parameter for a quasi-two-dimensional itiner
antiferromagnet was calculated in Ref. 4 in the casety[tx

@tz ~see Eq.~43!!. In the limit t/U!1, the temperature a
which of the SDW amplitudeD appears~given by Eq.~12!!
is formally TN

0 ;U, i.e., much higher thanTN
SF . Thus, over a

wide range of temperatures above the Ne´el point, short-range
magnetic order can be described by a model with fixed~in-
dependent ofT! SDW amplitude (TN

SF,T!TN
0 ). This order

is characterized by the correlation lengthl (T) of transverse
fluctuations of the spin density. For the classical Heisenb
Hamiltonian in the one-dimensional case, the expression
l (T) can be obtained by means of the renormalization-gro
method. ForT!J,

l ~T!.aJ/T.

In the strong-coupling regime (D6I )2@(2t)2, the ex-
change integral is

J;
Dt2

uD22I 2u
;

t2

U
!t. ~44!

For t!I !U we can write the explicit expression

J~ I !5J01
8t2I 2

U3 , J05
2t2

U
.

Thus, the staggered potential leads to an increase in
relation length. When the ratioU/t is not large, calculation
of the functionMp is very complicated. However, only th
behavior of the exchange integral at small values ofp
(paaa!1) is of importance. Therefore, to estimate the tra
sition temperature, we make use of a piecewise linear
proximation to the functionMp . For the one-dimensiona
chain we take

Mp
~1!5H M ~pxax!

2, upxu,p0 ,

M̃ , upxu.p0 ,
~45!

where

M52
Dtx

8pI (
s

s
K~ks!2E~ks!

ks
, ~46!

M̃52
Dtx

2pI (
s

s
E~ks!2~12ks!2K~ks!

ks
,

~p0a!25M̃ /M!1. ~47!

For the quasi-one-dimensional case, up to the first-or
terms in the overlap integral between chains, for wh
D2,tx

2@ty
2@tz

2, we have
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Mp
~2!5Mp

~1!1
ty
2 sin2~pyay/2!1tz

2 sin2~pzaz/2!

8tx
2 ~M̃14M !.

~48!

In the weak-coupling limit, whereuI 6Du2!(2t)2, one can
obtain

TN
MF5

D2

3pt
ln

8t

AuD22I 2u
, t5tx , ~49!

TN
SF5F ~TN

MF!211
12&I ln~8ty /tz!

Dty lnu~D1I !/~D2I !uG
21

. ~50!

Thus, long-range antiferromagnetic order appears at
temperatureTN

SF . With increasing temperature (TN
SF,T

,TN
0 ), the system passes over the region of short-range

der with the correlation lengthl (T);aJ/T, where for the
weak-coupling case (U!t) we can estimate

J;
D2

t
ln

8t

AuD2I uuD1I u
;

D2

U
!D. ~51!

This estimate holds for allI ,I c in the stability region of
the phase diagram~see Fig. 1 and Ref. 7!, where 1@uD
6I u/t@a/ l . Note thatTN

0 !U for weak-coupling case, an
TN

MF andTN
SF are also small compared withTN

0 . The situation
I c,I ,I 0 ~the metastable region! is more difficult to analyze,
since the ratiouD2I u/t may be of ordera/ l . Thus, the renor-
malization ofD̄(T) takes an important role in this case, a
a J(T) dependence arises. We are not interested here in
detailed expressions forJ(T) and TN

SF in this special case
For I !D0 can easily obtain from~51! the dependence ofJ
on the staggered potentialI:

J~ I !5J02
4p

U
I 2, J05

4pD0
2

U
.

Thus, the correlation lengthl (I ) decreases with increasingI.

5. SINGLE-PARTICLE EXCITATIONS AND
RENORMALIZATION OF SDW AMPLITUDE IN THE LOCAL
HARTREE–FOCK APPROXIMATION

The scattering of itinerant electrons by a certain SD
fluctuation$ei% above the Ne´el point TN.TN

SF is character-

ized by the single-particle Green’s functionGi j
ss8($ei%,t):

G5G
0

1G
0

~H11H2!G. ~52!

Thermodynamic disorder enters into Eq.~52! through

the HamiltoniansH1 andH2 , andG
0

has the form~10!.
The foregoing configurational integration procedu

makes it possible to express the propagator^Gkp
ss($e%,v)&

averaged over the$ei% configurations; in the lowest order o
perturbation theory,

^G21&5^ G
021

&2S, S5^H2&1^H1G
0

H1&. ~53!

The self-energy partS is
e

r-

he

Skp
ss52

1

4
dss8H dkp(

q
@ f q~«k2«k2q!1 f q~«k2«k2q!2

3Ak2q
s #2dk,p1Q(

q
f q~«k2«k2q!2Bk2p

2s J . ~54!

Since the structure factor of the spin correlationsf q is
assumed to be nonzero in the small interval of quasimome
nearq50, the slowly varying factors~in comparison tof q)
on the right-hand side of Eq.~54! can be expanded in serie
near the pointq50. Retaining the lowest-order terms in th
expansion inq, we obtain an expression for the averag
Green’s function:

^Gkp
ss8~v!&5$dkpdss8@v1«k2nk2Fk

2Ak1Q
s %

1dk,p1Qdss8@~D̄s1I !2Fk
2Bk

2s#%/Dk
s~v!,

~55!

Dk
s~v!5@v2«k1nk2Fk

2Ak
s#@v1«k2nk2Fk

2Ak1Q
2 #

2@~D̄s1I !2Fk
2Bk

2s#2, ~56!

where

nk52
1

8 (
a

]2«k

]2ka
2 l a

22, ~57!

Fk
25

1

4 (
a

S ]«k

]ka
D 2

l a
22, ~58!

andl a is the transverse correlation length of the spin-dens
fluctuations in theath direction. The poles of the average
Green’s function ^G& determine the spectrum of single
particle excitations in a short-range-order antiferromagne

The zeroes of the denominator~56! of the function~55!
are given by the dispersion relation

~v22Eks
2 !31~2«knk22 Fk

22nk
2!~v22Eks

2 !2

1Fk
2~Fk

224Eks
2 12«knk14I 214IsD̄!

3~v22Eks
2 !14IsD̄Eks

4 50. ~59!

Thus, there are twelve branches of energy dispersion
order (a/ l )2, we see that

~v0
s!25Eks

2 1
sD̄IF k

2

Eks
2 2I ~ I 1sD̄!

, ~60!

~v1,2
s !25Eks

2 6@4Fk
2~Eks

2 2I ~ I 1sD̄!!#1/2

1Fk
22«knk2

sD̄IF k
2

2~Eks
2 2I ~ I 1sD̄!!

. ~61!

Note that to first order ina/ l , with (v0
s)25Eks

2 , only
eight new branches6v1,2

s found. It is not hard to show tha
the parameterFk associated with the HamiltonianH1 ~19!
corresponds to the scattering of a quasiparticle by a s
fluctuation with spin flip. Thus, in the short-range-ord
phase, the motion of an electron with ‘‘right’’ or ‘‘wrong’’
spin direction is possible in each of the two antiferroma
netic sublattices if they are in part randomly oriented. As
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consequence, the dispersion branches are ‘‘split’’ and
gap for single-particle excitations is reduced. For exam
~see Fig. 2!,

Eg'2S uI 2D̄u2
a

l
tS D̄

uI 2D̄u
D 1/2D ~62!

for the one-dimensional system. Note that the reduction
Eg and the spin amplitudeD̄, as compared with the long
range-order state (a/ l 50), is due exclusively to the spin-flip
scattering HamiltonianH1 . The scattering process withou
spin flip is described by the HamiltonianH2 and the corre-
sponding parameternk . This process leads to effective na
rowing of the energetic band«̃k5«k2nk , where

«̃k52(
a

2taF12
1

8 S aa

l a
D 2Gcos~kaaa!. ~63!

We now address the influence of spin fluctuations on
mean SDW amplitudeD̄. Since the order parameterD̄(T)
has very weak temperature dependence in the temper
rangeTN,T!TN

0 due to the Fermi statistics of the quasipa
ticles, we use the self-consistency equation~local Hartree-
Fock approximation!, in which the Fermi function is re-
placed by the step function:

D̄5
U

2 E dv

2p i

1

N2 (
kp

(
ss8

sss8
z ^Gk,p1Q

ss8 &. ~64!

The amplitude is temperature-dependent only becaus
the transverse spin fluctuations with correlation len
$ l a(T)%. We substitute the average Green’s function~55!
into Eq. ~64!, and after some manipulations we obtain t
following equation to second order ina/ l :

D̄5
U

4N (
k

(
s

s

Eks
F ~ I 1sD̄!S 11

«knk

Eks
2 D

1
IF k

2

Eks
2 S 12

3~ I 1sD̄!2

2Eks
2 D G . ~65!

Note that in the absence of a staggered potential (I 50),
renormalization of the SDW amplitude is due to the proc
without spin flip (nk), since the term proportional toFk

2

FIG. 2. Eg(I ) dependence for large~solid line! and short~dashed line! range
order phases.
e
,

in

e

ure

of
h

s

vanishes on the right-hand side of~65!. As a consequence o
the above mentioned narrowing of the band«k ~63! the re-
sulting change in the mean spin density per siteD̄ is positive,
i.e., it increases compared withD. For a one-dimensiona
chain one can take Eq.~65! in the form

D̄5
U

4pt (
s

ksFsK~ks!~ I 1sD̄!

1
D̄

8 S a

l D
2

@K~ks!2E~ks!#G , ks5ks~D̄ !. ~66!

The temperature dependence ofD̄ is due only to the
dependence ofl (T). If, in agreement with our estimates i
Sec. 3, we express the correlation lengthl (T) in terms of the
model parameters, it becomes clear that the contribution
transverse spin fluctuations to the renormalization of
SDW amplitude significantly exceeds the corresponding c
tribution arising from the temperature dependence of
Fermi function. It can be shown from~66! that D̄(T)2D
;@a/ l (T)#2, but to calculate the exchange integralsJi j in
Sec. 3 it was assumed for simplicity thatD̄(T)'D, whereD

is defined by Eq.~13!. An explicit expression forD̄ can be
obtained in the limitI !D:

D̄~ I !'D̃0~12 Ĩ 2/D̃0
2!, D̃058t expF2

2pt

U~11l!G ,
Ĩ 25

I 2

11l
, l5

1

8
~a/ l !2. ~67!

Omitting the detailed analysis of Eq.~66! we note that in the
phase diagramD(I ), the metastable region (I c,I ,I 0) is
shifted to the right as compared with the casea/ l 50. This
tendency is shown qualitatively in Fig. 1 by the dashed li

6. TRANSVERSE DYNAMICAL SUSCEPTIBILITY IN
RANDOM-PHASE APPROXIMATION

A general theory of the dynamical susceptibility of itin
erant magnets with short-range order was developed in
12. A calculation scheme~the socalled ‘‘RPA with ex-
change’’! was proposed to draw some qualitative conc
sions about the nature of the response to an external m
netic field. In Ref. 13, a method for the calculation of th
dynamical susceptibility that is somewhat different from R
12 was proposed, based on the spin-fluctuation approac2,3

The two-particle Green’s function for itinerant antiferroma
nets without a staggered potential was calculated.9,13 This
method enables one to describe SDW antiferromagn
above the Ne´el point.

According to Ref. 12 one introduces a spin-density c
relator for each fluctuation$ei%:

xqq8
ab

~ t,$ei%!5
i

2N
~TSq

a~ t !S2q8
b

~0!!$ei %
. ~68!

Parentheses on the right-hand side of Eq.~68! denote
averaging over quantum states for the fixed set of vec
$ei% that specify the SDW configuration: the symbolT de-
notes time ordering int. The complete response to an exte
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nal variable magnetic field~the magnetic susceptibility a
frequencyV! is defined as the average over the SDW co
figurations:

xqq8
ab

~V!5E
0

`

exp~ iVt !^xqq8
ab

~ t,$ei%!&dt. ~69!

We now discuss the calculation of the averages in~69!.
The two-particle Green’s function of the system with fluct
ating spin density can be usefully represented as an infi
series of ‘‘ladder’’ diagrams that take into account electr
scattering by randomly oriented magnetic moments at s
One of the simplest diagrams is shown in Fig. 3. The so

line denotes the unperturbed functionG
0

given by Eq.~10!,
the dashed line denotes the Coulomb repulsion of parti
with opposite spinsU, the cross represents the matrix e
ment ai j for processes with spin flipH1 , and the arrows↓
and↑ correspond to the projections of electron spin.

Let us turn our attention to the alternation in the arran
ment of matrix elementsai j , ai j* and spin indices. In the
diagrammatic language, the averaging procedure~69!
amounts to taking into account all the possible ways of jo
ing the crosses pairwise by wavy lines. A graphical elem
consisting of a pair of crosses joined by a wavy line cor
sponds to the spin correlatorf i j . Figure 4 displays some
typical diagrams that contribute to the average two-part
Green’s function to first order inU, and to fourth order in the
disorderai j . Below we consider only diagrams of type
assuming that diagrams b, c and d have already been t
into account in the renormalization of the interactionU. Note
that U is not renormalized to second order inai j . In Fig. 3
and Fig. 4, processes without spin flip corresponding toH2

are omitted, since their direct average^uai j
2 u& in the single-

particle channel is not needed in any additional explanatio
Thus, calculation of the susceptibility of an antiferr

magnet in the short-range-order phase reduces to the m
fied RPA with quasiparticles ‘‘dressed’’ by disorder. In oth
words, it reduces to summation of the infinite sequence
‘‘ladder’’-type diagrams shown in Fig. 5, where the doub
line represents the average single-particle Green’s funct

FIG. 3. Diagram for process with spin flipH1 .
-
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The first diagram in the series in Fig. 5, which does n
explicitly contain the interactionU, corresponds to the fol-
lowing function of the two quasimomenta:

x̄qq8
12

~V!5
1

N2 E (
kk8

^Gk,k2q8
↓↓

~v!&^Gk,k1q
↑↑ ~v2V!&

dv

2p i
.

~70!

Apart from the function̂ G&, the expression for the re
sponsex̄12 contains boths diagonal and off-diagonal cont
butions in the quasimomentum space, each of which depe
on just one quasimomentum:

x̄qq8
12

~V!5dqq8x̄0
12~q,V!1dq,q81Qx̄Q

12~q,V!. ~71!

Summing the geometric series in Fig. 5~in fact, solving
the Dyson equation!, we obtain the response function

x̄qq8
12

~V!5(
q1

x̄q,q1

12 ~V!@12Ux̄q1 ,q8
12

~V!#21. ~72!

where

@12Ux̄qq8
12

~V!#21

5
@12Ux̄0

12~q1Q,V!#dqq81Ux̄Q
12~q,V!dq,q82Q

Det~q,V!
,

~73!

Det~q,v!5@12Ux̄0
12~q,V!#@12Ux̄0

12~q1Q,V!#

2U2x̄Q
12~q,V!x̄Q

12~q1Q,V!. ~74!

The structure of the denominator of the transverse
namical susceptibility~72! determines the spectrum of mag
netic excitations of the system. We now proceed to so
detailed calculations.

FIG. 4. Diagrams for average two-particle Green’s function to fourth or
in ai j .
rse
FIG. 5. Ladder diagrams to calculate the transve
susceptibility.
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7. SPECTRUM OF LOW-FREQUENCY EXCITATIONS

We first calculate the irreducible susceptibilityx̄qq8(V).
We substitute the function̂G& ~55! into Eq. ~70! sum over
the quasimomentumk8, and integrate over frequencyv. We
restrict ourselves to lowest-order terms in the fluctuatio
i.e., terms of order of (a/ l )2.

To determine the spectrum of the long-wave length a
low-frequency excitations, we expand function that en
into the expression for the susceptibility~72! in low frequen-
cies V(uVu!D̄) and the quasimomentad5q2Q(da

!1,da!D̄/t). We also drop corrections generated by ter
of order (a/ l )2(V/D̄)2 or (a/ l )2(da)2. Omitting some
lengthy algebraic transformations, we write the series exp
sions for the irreducible components of the respon
x̄0

12(q,V) and x̄Q
12(q,V) for the one-dimensional case:

x̄0
12~0,0!5x, ~75!

x̄0
12~Q1d,V!5

1

U
1aS v

2D D 2

2BS da

2D D 2

1S a

l D
2

g,

~76!

x̄Q
12~0,V!5x̄Q

12~Q,V!5
V

2D
a, ~77!

where

x5
1

2N (
k

1

Ek
↑1Ek

↓ S 12
«k

21I 22D2

Ek
↑Ek
↓ D , ~78!

a5
1

2N (
k

2D2

Ek
↑Ek
↓~Ek

↑1Ek
↓! S 12

4I 2

~Ek
↑1Ek

↓!2D , ~79!

B5
1

2N (
k

2~«k!2a22

Ek
↑Ek
↓~Ek

↑1Ek
↓!

3F12
4I 2«k

2

Ek
↑Ek
↓ S 1

Ek
↑Ek
↓1

1

~Ek
↑1Ek

l !2D G , ~80!

g5
1

2N (
k

~«k!2a22

16D2 F «k
2

ID S 1

Ek
↑2

1

Ek
↓D

1
1

Ek
↑1

1

Ek
↓2I S I 1D

Ek
↑3 1

I 2D

Ek
↓3 D G . ~81!

In all of these expressions we assumeD̄'D since we
need only the second order in thea/ l expansion. Note tha
the self-consistency equation~64! is taken into account to
obtain ~75!–~81!, but only after this we can writeD̄'D,
whereD is given by Eq.~12!.

Inserting the expressions~75!–~81! into Eq. ~72!–~74!,
we obtain the dynamical susceptibility in the low-frequen
limit:

x̄qq8
12

~V!5dqq8 /Det~d,V!, ~82!

Det~d,V!52U2FaS V

2D D 2S 11
a

1/U2x D
2BS da

2 D 2

1
ga2

l 2 G . ~83!
s,

d
r

s

n-
s

The poles of the response~82! determine the paramag
non spectrumV~d! in the short-range-order phase. The equ
tion Det(d,V)50 can only be solved numerically, so w
consider the case of a weakly-dimerized chain (I !D) for
qualitative analysis, where

a5x5D2w32
5D2I 2

2
~w52D2w7!, ~84!

B52w11@~2t !21D2#w31
I 2

2
$13w3215D2w5

1@~2t !21D2#@15D2w7213w5#%, ~85!

1

U
5w12

3I 2

2
~w32D2w5!, ~86!

8g52w11@~2t !21D2#w31
I 2

2
@2w325D2w5

1@~2t !21D2#@w515D2w7##, ~87!

wn~D!5
1

2N (
k

1

~«k
21D2!n12 . ~88!

Finally, after some calculations, we obtain the excitati
spectrum of paramagnons, taking into account the dep
denceD(I ) from Eq. ~2!. For U@t,

V5
~2t !2

U F ~ad!2S 122S 2t

U D 2

1
8I 2

U2 D
2

1

2 S a

l D
2S 122S 2t

U D 2

1
16I 2

U2 D G1/2

; ~89!

for U!t,

V52tF ~ad!2S 12
U

2pt
1

1

3 S I

D0
D 2 U

2pt D
2

1

2 S a

l D
2S 12

U

2pt
1

1

3 S I

D0
D 2S 62

5U

2pt D D G
1/2

.

~90!

FIG. 6. Paramagnon spectrumvRe5(VRe/2t)( l /a), v Im5(2VIm /t)(l /a) for
I 50 ~solid line! and IÞ0 ~dashed line!.
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Note that in the paramagnetic phase with finite corre
tion length, the collective excitations~89! and ~90! have a
very different character ford,dc and d.dc , wheredc is
the critical quasimomentum~see Fig. 6!. For U!t ~weak-
coupling limit! the value ofdc is determined qualitatively by
the equation

& ldc'11S I

D0
D 2

, I !D0 . ~91!

For t!I !U ~strong-coupling limit!, the equation fordc has
the form

& ldc'11S I

U D 2

. ~92!

Whend.dc , a weakly decaying spin-wave mode exis
with a quasi-Goldstone spectrumV'vd for (d l )2.1, where
v is the spin-wave velocity. The decay of paramagnons
sults from thermal excitations of electrons through the a
ferromagnetic gap (ImV;exp(2Eg/2T)). Here we com-
pletely neglect this effect. In the region of strong magne
disorder (d,dc), a diffusive mode exists and the frequen
V is imaginary. The effect of the staggered potential~at least
in the caseI !D) on paramagnon dynamics amount to
increase in the critical quasimomentumdc , and in the spin-
wave velocityv as compared with the caseI 50 ~see Ref. 9!.
The staggered potential also leads to an increase in diffu
frequency. In the cased50, Eqs.~89! and ~90! yield

iV~d50!52V Im'
~2t !2

U

a

l

1

&
S 11

8I 2

U2 D , t!I !U,

~93!

iV~d50!52V Im'
2t

&

a

l S 11
I 2

D0
2D , U!t, I !D0 .

~94!

Note also that the decrease inl (T) in Eq. ~94! ~see Sec.
4! is very small (;I 2/U) as compared with the termI 2/D0

2,
sinceU@D0 in the weak-coupling limit.

Our analysis confirms the tendency ofV Im and dc to
increase for allI in the stability region of the phase diagra
D(I ).

8. CONCLUSION

In the SDW model with a staggered potential, we ha
shown that short-range antiferromagnetic order exists in
-

-
i-

c

on

e
is

system far above the Ne´el point. We have calculated th
dependence of the SDW amplitude on correlation len
l (T) and the staggered potentialI. We have also obtained th
renormalization of the Ne´el temperatureTN and effective
exchange integralJ on l (T) and I, which both increase with
l (T)21 and I in the weak-coupling regime.

In the short-range-order regime, the dielectric type
electron spectrum is preserved and the singularities in
density of states are smeared out. There exist twe
branches of this spectrum«(I ,l (T)), and the energy gapEg

narrows with increasingI and l (T)21. Finally, we have ob-
tained parameters of the magnon spectrum that dependI
and l (T).

It would be very interesting to extend our analysis
other models of itinerant magnets, for example thet2J
model in the weak-coupling regime.14
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The elastic properties of C60 fullerite samples synthesized under pressureP513.0 GPa at high
temperatures were investigated using acoustic microscopy. The velocities of longitudinal
(cL517226 km/s) and transverse (cT57.229.6 km/s) elastic waves in the samples were
measured. It was established that the longitudinal sound velocity of ultrahard fullerites
is higher than that of any other known solid. The bulk modulus of these ultrahard samples is
higher than that of diamond and reaches a value greater than 1 TPa. The high bulk
modulus, the relatively large shear moduli, and the substantial Poisson ratio indicate that the
structure of the ultrahard fullerites is fundamentally different from that of diamond. ©1998
American Institute of Physics.@S1063-7761~98!01410-3#
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It has been established during the last few years
under high pressures and temperatures C60 fullerene mol-
ecules form a large number of previously unknown phas
extending to super- and ultrahard fullerites, obtained fr
the initial fcc fullerite under high pressuresP>18 GPa at
room temperature1–3 and P>8 GPa at high temperature
T>700 K.4–12 The phases obtained in this manner rem
metastable under normal conditions, forming new allotro
forms of carbon. We were the first to establish that the thr
dimensionally polymerized fullerites form a new class of s
perhard materials.6 The actual structure of these materials
distinguished by great diversity as a function of the synthe
conditions—from crystalline phases of various symmetry
disordered, x-ray amorphous modifications. Figure 1 sho
the P2T diagram of the synthesis of super and ultraha
structures from the initial fcc C60. This diagram was refined
on the basis of the latest data on the state of car
phases.8–10 Ultrahard fullerites as fundamentally new carb
materials are studied in Refs. 11 and 12 .

The anomalous hardness of fullerites~50–300
GPa4–9,13,14! makes it of great interest to investigate the
elastic characteristics. The elastic properties of the ini
crystalline C60 have been investigated quite well, includin
measurements of the complete matrix of the elastic mo
by the ultrasonic method.15 Just as all molecular crystals
crystalline C60 is characterized by low sound velocitie
7411063-7761/98/87(10)/6/$15.00
at

s,

n
c
e-
-

is
o
s

d

n

l

li

cL53.023.4 km/s for longitudinal waves andcT51.6
22.0 km/s for transverse waves. In the present work
velocities of longitudinal and transverse acoustic waves w
measured and the elastic moduli of samples of super-
ultrahard fullerites were determined for the first time. T
measurements show that these materials are characteriz
uniquely high velocities of longitudinal elastic waves and
wide range of these values from 11 km/s to 26 km/s, depe
ing on the structure of the materials, which is determined
the synthesis conditions. The valuecL526.0 km/s measured
for one of the fullerite phases is a record; it is almost 20
higher than the velocity of longitudinal waves in graph
along the atomic layers (cL521.6 km/s— until this work the
highest value among known substances16! and 40% higher
than the corresponding velocity in diamond (cLmax

518.6 km/s~Ref. 17!!. The velocities of transverse waves
solid fullerite phases are also high, with the values ofcT

ranging from 7 km/s to 9.7 km/s. Nonetheless, they are low
than in diamond (cT511.6212.8 km/s~Ref. 17 !!, which
remain the highest among known substances as before.
on the densities and sound velocities have made it possib
determine the complete set of elastic characteristics of u
hard fullerites—the bulk modulusK, the shear modulusG,
Young’s modulusE, and the Poisson ratios—to determine
the characteristic features of their elastic properties, and
© 1998 American Institute of Physics
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FIG. 1. P2T diagram of the synthesis of meta
stable phases of carbon from C60 fullerite. The thick
dashed line separates the hard and ‘‘soft’’ states~for
T,1000 K) and semimetallic and semiconduct
states~for T.1000 K).
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make an attempt to relate the observed features with
structure of the materials.

1. FORMULATION OF THE PROBLEM AND DESCRIPTION
OF THE METHOD

The standard methods for measuring sound velocities
difficult to use for solid fullerite phases because of the sm
sizes and considerable heterogeneity of the samples. Fo
reason, we employed a modification of the echo-pu
method, using the focusing system of an acoustic mic
scope. The sample was placed in the region of the wais
the focused ultrasonic beam, produced in an immersion
uid by an acoustic lens~Fig. 2!. We employed ultrashor
probe pulses, which made it possible to detect individ
signals due to the reflection of a pulse from the sam
walls.18,19 Measurements of the time intervals between
echo pulses made it possible to calculate the velocities of
sound waves in a sample from the known sample thickn
d.

The method requires long-focus systems with small
ertures 2um . In this case the probe beam can be treated
narrow column of radiation with an almost planar wa
front. Echo signals from the sample are formed by
paraxial rays propagating in the sample at small angles w
respect to the beam axis. The path length traversed by
rays between two successive interactions with the bounda
of the sample equals, to adequate accuracy, the sample t
nessd. Despite the small angular apertures, beams focu
in solid samples with high sound velocities excite not on
longitudinal but also transverse waves on account of m
conversion in the case of oblique incidence of a wave on
interface. As a result, the output signal of the acoustic foc
ing system includes signals corresponding to reflection
both longitudinal and transverse waves.19
e
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The measurements are performed on the reliable ide
fication of the echo signals. Here not only the distance
tween the signals but also their polarity are important. T
base signalB, due to reflection of the incident beam from th
front boundary of the sample, is always present in the os
lograms. When the focal point of the lens is shifted into t
interior of the sample, anL pulse due to single passage of
pulse of longitudinal waves through the sample and reve
passage back through the sample after reflection from
back wall appears in the echogram. In our measurements

FIG. 2. Diagram of the acoustic microscope:1 — transducer;2 — wave
guide with a spherical refracting surface;3 — sample;4 — immersion
liquid.
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polarity of the L pulse must be opposite to that of theB
pulse. The time intervaltL between the echo pulses is dete
mined by the velocitycL of the longitudinal ultrasonic wave
in the sample and by the sample thickness. The measure
of this interval makes it possible to calculate the velocity
longitudinal sound ascL52d/tL .

For certain positions of the lens anLT signal due to
successive mode conversion on the front and back bou
aries of the sample is observed. A longitudinal wave in
liquid is converted on the front surface of the sample int
transverse modeT, reaches the back surface of the samp
and as a result of conversion there a longitudinal wave fo
once again and reaches the front face of the sample, pa
through it into the liquid. TheLT signal can be formed by a
alternative path: A longitudinal wave enters the sample
is converted on the back surface into a transverse w
which reaches the front surface of the sample and once a
is converted here into a longitudinal wave in the liquid. T
delay of the echo signal is the same in both cases, and thLT
pulse itself is inverted with respect to the mainB pulses. The
LT signal is used to determine the velocity of transve
sound from the relationcT5d/(tLT20.5tL), wheretLT is
the time interval between theLT pulse and the mainB sig-
nal.

In principle, it is possible to observe the weakerT signal
that arises as a result of the double conversion of wave
the front boundary of the sample: The incident signal en
the sample in the form of aT wave, which is reflected by the
back face of the sample and is converted into a longitud
wave in the liquid on the front boundary of the sample. T
time delay of theT signal with respect to theB signal is
determined by twice the propagation time of a pulse of tra
verse waves through the sample:tT52d/cT . TheT signal, if
observed, has the same sign as the mainB signal.

2. SAMPLES

Ultrahard fullerite samples were synthesized under p
sureP513 GPa at different temperatures ranging from 15
K to 1870 K. The procedure for synthesizing super- a
ultrahard fullerites is described in Ref. 6 . Pressure calibra
tion of the synthesis chamber was done with respect to
phase transition in Pb (P513 GPa). Sample No. 1 was syn
thesized atP512.5 GPa andT51000 K. The size of the
synthesized samples reached�334 mm3 and their mass
reached 80 mg. The densityr of the samples was measure
by the method of submersion in liquids of different dens
obtained by mixing diiodomethane (r53.32 g/cm3) with ac-
etone. The structure of the samples was investigated by x
diffraction and Raman scattering spectroscopy.7,8 Sample
No. 1 possesses a disordered structure with residues of
polymerized crystal phases of C60. No traces of crystal
phases were observed in the structure of samples Nos.
The x-ray diffraction patterns and Raman scattering spe
of the samples are different from those of other known
perhard amorphous carbon materials.

For the acoustic measurements, the samples were g
inside openings in plane-parallel steel rings and ground w
diamond pastes in a manner so that the working surface
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the samples also became plane-parallel and the thickne
the ground samples was the same as that of the steel
(1,d,2 mm). The surfaces of ultrahard samples can
ground with diamond pastes but cannot be polished, beca
they are harder than diamond. After grinding the surfaces
all samples possessed a sparse network of shallo
(,1 mm) and narrow (,25 mm) grooves; their dimension
are small compared with the size of the ultrasonic spot on
sample surface. The presence of such defects had virtuall
effect on the output signal of the acoustic microscope. D
fects in the volume of the samples could scatter a portion
the energy of the ultrasonic beam, but they could not prod
the ‘‘false sample bottom’’ effect.

3. MEASUREMENTS

The measurements were performed in a WFPAM pul
scanning acoustic microscope~working frequency f 550
MHz, frequency bandD f 520 MHz). The ultrasonic beam
was introduced into the sample volume through an imm
sion liquid~water or mercury! from a small-aperture acousti
lens (um511°). The duration of the ultrasonic probe puls
was '30 ns. The beam diameter on the irradiated sam
surface was'100 mm. Together with recording oscillo
grams of the echo signals, the acoustic microscope was
in the B and C scanning modes. AB scan consists of a
display of an oscillogram produced by scanning the acou
lens along one direction~Figs. 3 and 4!. The signal level at
the scan points is conveyed by different degrees of brig
ness.B scans display both the topological features of t
samples~geometry of the front and back surfaces, the pr
ence of voids, cracks, and other defects! and the nonunifor-
mity of the distribution of elastic properties~sound veloci-
ties! through the sample. We employedB scans to monitor
the geometry of the sample and the uniformity of its elas
properties. Ordinary acoustic images (C scans! were used to
visualize the sample surface and to select measurem
points on it.

4. RESULTS

The main results of the measurements and calculat
of the elastic characteristics of ultrahard fullerites along w
the standard errors are presented in Table I. For compari
the data on synthetic polycrystalline ‘‘carbonado’’ diamo
~sample No. 5!, which we obtained in the same measur
ments, as well as published data on single-crystal diamo
graphite, and the initial C60 fullerite are also displayed.

We shall discuss in greater detail the results obtained
specific samples.

Sample No. 1.The sample possessed only one grou
surface because of the small sample size. For this reason
sound velocities in the sample were measured by the me
of V(z) curves, which is used in acoustic microscopy
measure the velocity of surface acoustic waves.20 The Ray-
leigh wave velocitycR was measured using water as t
immersion liquid; mercury was used as the immersion liq
to measure the velocity of longitudinal sound~skimming
wave!. The results arecL517.060.9 km/s andcR58.6
60.5 km/s. It should be emphasized that because of
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small sample sizes and surface defectiveness, the c
spondingV(z) curves contained only several damped os
lations. For this reason, the results for sample No. 1
approximate.

Sample No. 2. A series of measurements was perform
with the ultrasonic beam focused on different points of
sample surface. At all points values oftL and tLT close to
one another were obtained:tL5(13067) ns andtLT5(219
66) ns. This attests to the fact that the elastic propertie
the sample are of adequate uniformity. For sample thickn
d51.1160.01 mm the measured time intervals correspo
to velocitiescL517.060.9 km/s for longitudinal waves an
cT57.260.4 km/s for transverse waves.

Sample No. 3.The sample was quite uniform with re
spect to all elastic properties. This is demonstrated by thB
scan presented in Fig. 3a: TheL signal reflected from the
sample bottom consists of an even line parallel to the maB
signal. To determinecL a series of measurements was p
formed at different points, givingtL5(17767) ns. An
acoustic transformer~a steel hemisphere, which decreas
the refraction and reflection losses but did not change
structure of the ultrasonic beam entering the sample! was
used to obtain an oscillogram containing three peaks,B, L,
and LT ~Fig. 3b!, separated by intervalstL5(180610) ns

FIG. 3. B scan ~a! and oscillogram of the echo-signals of the acous
microscope~b! for sample No. 3. In theB scan on each side of the imag
there are echoes reflected from the steel holder; upperB is caused by reflec-
tion at the face, two lower ones are due to reflection from the bottom w
mode conversion~LT signal! and without it~L signal!. The echoses cause
by reflection from the specimen are seen in the central region of theB scan
~only the basic signalB and the signalL due to the round-trip of the longi-
tudinal wave pulse through the speciman!.
re-
-
re

d
e

of
ss
d
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d
e

and tLT5(280610) ns. For sample thicknessd51.66
60.01 mm the velocities arecL518.461.0 km/s andcT

58.760.7 km/s.
Sample No. 4.The B scan shown in Fig. 4a shows tha

the sample is divided into at least two parts with differe
values of the longitudinal ultrasonic wave velocity—the s
nal due to the pulse reflected from the sample bottom
located at a different distance from the main signal in
left- and right-hand parts of the sample. This circumstan
could be due only to heterogeneity of the elastic propertie
the sample, it cannot be due to defects of the sample shap
nonparallelism of the faces. The latter was checked visu
in an optical microscope and using an acoustic microsc
with the sample inverted. Accordingly, the oscillogram
measured in different parts of the sample give different v
ues for the velocity of longitudinal waves. Some oscill
grams give tL5(130610) ns, which corresponds tocL

522.361.7 km/s. Figure 4b shows an oscillogram taken in
different, stiffer part of the sample. This oscillogram giv
the time intervalstL5(10368) ns andtLT5(189610) ns.
For sample thicknessd51.33560.005 mm they correspond
to cL52662 km/s andcT59.761.0 km/s. Inclusions of a
third phase were also observed in the sample. This ph
corresponds to the time intervaltL5(190610) ns and lon-
gitudinal wave velocitycL515.260.8 km/s.

Our data on the sound velocities and the measured
ues of the density~average! made it possible to calculate fo
each sample a complete set of elastic characteristics: the

h

FIG. 4. B scan~a! and oscillogram of the measuring signal~b! of an acoustic
microscope for sample No. 4.



745JETP 87 (4), October 1998 Blank et al.
TABLE I.

No. P, GPa/T, K r, g/cm3 cL , km/s cT , km/s K, GPa G, GPa E, GPa s

1 12.5/1000 3.1060.05 17.060.9 9.460.5 540660 270630 7006170 0.2860.04
2 13/1670 3.10 17.060.9 7.260.4 690670 160620 4506100 0.3960.06
3 13/1770 3.30 18.461.0 8.760.7 790670 250640 6806180 0.3660.04
4 13/1870 3.15 2662 9.761.0 17006250 300660 8506300 0.4260.08
5 Synt. diamond

‘‘carbonado’’
3.74 1660.5 9.660.3 490630 340620 8506120 0.2260.04

Diamond17 3.51 17.5– 18.6 11.6– 12.8 417– 586 354– 535 884– 1144 0.1
Graphite16 2.27 4.0– 21.6 0.3– 14.0

Cryst. C60
15 1.68 3.0– 3.4 1.6– 2.0 10.8* 4.85* 12.6* 0.31*

* Calculation for a polycrystal.15
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modulusK, the shear modulusG, Young’s modulusE, and
the Poisson ratios.

5. DISCUSSION

Ultrahard fullerites possess very high longitudinal sou
velocities. Until the present work the highest values ofcL

were observed in diamond, 17.5–18.6 km/s depending
direction,17 and in crystalline graphite in a direction alon
the atomic planes:cL521.6 km/s from direct measuremen
of the elastic moduli by the ultrasonic method16 and
cL522.6 km/s, according to data on low-temperature s
cific heat and thermal expansion of natural graphite.21 In the
case of the fullerites investigated in the present work, lon
tudinal wave velocities close to the values in diamo
~samples Nos. 1–3! or much higher valuescL522.3 km/s
and 26.0 km/s~sample No. 4! are observed. The latter valu
is 20% higher than the value ofcL measured in graphite an
is the current record. The large range of variation ofcL both
from sample to sample and in different parts of the sa
sample is interesting. Sample No. 4 was found to consis
regions with considerably different values ofcL ; the varia-
tions reached 40%.

There is essentially no correlation between the den
~averaged over the sample! and the observed values ofcL .
For media with a local isotropy, this fact is quite interesti
and possibly indicates partial ordering and pronounced e
tic anisotropy at the atomic level, similarly to quasicryst
line graphite ~HOPG!—parallel alignment of the atomic
planes results in the highest known value ofcL in the direc-
tion of these planes. A variant with a nonuniform distributi
of the local density in the sample is also possible.

The observed values of the transverse wave veloc
are also found to be very high~7.2–9.6 km/s! in ultrahard
fullerites, but their values are still 25–40% lower than
single-crystal diamond.

The elastic moduliK and G of ultrahard fullerites, cal-
culated from the measured values ofcL , cT , andr, and their
relative values differ substantially from the same values
diamond. The behavior of the bulk modulus for samples s
thesized at high temperatures is especially interesting;
value of the bulk modulus increases to teh highest kno
high values. This result requires further investigations, b
theoretical and experimental. Elastic anisotropy or textur
of the sample could serve as a possible explanation. In
case, the anomalously high value ofcL will determined by
d

n
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e
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s

n
-
e
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g
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one component~or a set of components! of the elastic con-
stants tensor, similarly to the componentC11 in crystalline
graphite,16 while the bulk modulusK of a temerpature-and
pressure treated sample~ceramic! should be calculated by
averaging the components of this tensor according to ex
ing models. On the other hand, the existing data on the p
sure dependence of the compressibility of diamond a
graphite show22 that at high pressures the bulk modulus
graphite at first becomes equal toK in diamond ~at
P'10 GPa) and then exceeds it by a factor of 1.5–2
P'20 GPa.

As a result of the large difference between the longi
dinal and transverse sound velocities, for fullerites a Pois
ratio (s50.3620.42) close to the maximum values50.5 is
typical, while the values of Young’s modulus (E5450
2850 GPa) are appreciably less than the value of the b
modulus K. Sample No. 1 (s50.28; E5660 GPa) is an
exception. The structure of this sample is different from th
of the samples synthesized at higher pressures. The synt
conditions for this sample are the boundary conditions
obtaining super- and ultrahard materials~Fig. 1!.

The unusually high value of the bulk modulus, its val
relative to Young’s modulus, and the high value ofs all
indicate that the structure of ultrahard fullerites is fundam
tally different from that of diamond. The bulk modulusK for
samples synthesized in the temperature range 1000–16
corresponds to the value 600–650 GPa calculated in Ref
theoretically for the dense fcc structure of C60. The existence
of higher values ofK has not been discussed in the literatu
but further growth ofK could correspond to a transition from
a material consisting of 3D-polymerized C60 molecules to
fullerite based on clusters of much smaller size. Specifica
as the 2D-polymerized$111% planes of fcc fullerite come
closer to one another, C22228 clusters~where all carbon at-
oms are in thesp3 state, whereas some atoms of the C60

molecules retainsp2 hybridization13! can form at the loca-
tion of the tetrahedral voids in the fcc C60 lattice. As tem-
perature increases further~for P.12.5 GPa) fragments o
C60 molecules probably form a three-dimensional netwo
with conjugate bonds between carbon atoms with differ
types of hybridization.

As follows from the relation for estimating the bul
modulus of spherical carbon moleculesK'2h/3(S11

1S12)R (h is the interlayer spacing in graphite,R os the
radius of the molecule, andS11 and S12 are components o
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the compressibility tensor!,23 the value ofK increases as the
radius of the molecules~clusters! decreases. The type of in
teratomic bonds (sp2 or sp3) has virtually no effect on this
quantity, since the corresponding components of the c
pressibility tensor, which appear in the denominator of t
expression, are almost equal for graphite and diamond.
sible triple bonds (sp hybridization!, which have a much
higher energy compared with other types of bonds, co
also strongly influence the elastic properties of fullerites. A
ditional investigations are required to establish the existe
of such bonds.

Theoretical calculations have been performed of
elastic properties of hypothetical carbon polymers a
composite materials based on nanotubes with Youn
modulus of the order of 1300–1800 GPa and den
3.0– 3.3 g/cm3.24,25 Calculations of the bulk modulus wer
not performed in these studies.

In Refs. 26 and 27 the possibility of obtaining materia
based on C60 fullerite with hardness exceeding that of di
mond is disputed. The results of investigations of the str
ture and some properties of samples of polymerized ful
ites, obtained by heating C60 fullerite powder under a
pressure of 12.5 GPa at temperatures from 20 to 900 °C
presented as experimental proof. In Ref. 26 values
Young’s modulus are presented for three samples. The m
mum valueE5700 GPa was obtained for a sample w
density 3.15 g/cm3 ~the measurement method and the valu
of the ultrasonic velocities and the other moduli are not p
sented in this work!. The maximum hardnessHv587 GPa
was obtained for a sample synthesized at temperature 90
(r53.0 g/cm3). The Raman scattering spectra of t
samples presented in these works correspond to the Ra
scattering spectra which we published earlier for fuller
samples synthesized under a pressure of 9.5 GPa.6,7 The x-
ray data of these works likewise correspond better to the
which we obtained on samples synthesized atP59.5
211 GPa.5,7,9 Comparison of the experimental data in Re
26 and 27 and the results of the present work~Fig. 1! shows
that ultrahard fullerites were not obtained in Refs. 26 and

6. CONCLUSIONS

The acoustic measurements performed in this w
made it possible to determine the elastic moduli of ultrah
fullerites and to compare them with the corresponding val
for single-crystal and polycrystal diamonds. It was sho
that ultrahard fullerites are characterized by record high v
ues of the bulk modulus, quite high shear moduli, and
substantial Poisson ratio. The elastic characteristics of u
-
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hard fullerites indicate that the structure of these material
fundamentally different from that of diamond. The meth
developed for synthesizing the samples allows materials w
uniquely high hardness and bulk modulus to be made fr
C60.
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Semiclassical energy levels of electrons in metals with band degeneracy lines
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We show that in calculating the semiclassical energy levels of electrons in metals located in a
magnetic field, one must determine whether or not the corresponding electron paths in
the space of wave vectorsk are attached to a band degeneracy line. Calculations in the two
possible cases, i.e., with and without such attachment, differ byueu\/2m* c, wheree is the electron
charge andm* is the cyclotron mass of the electron. This shift in the energy levels is of a
topological nature, and its existence depends neither on the specific form of the electron dispersion
relation«(k) near the electron path nor on the shape or size of this path. The reason for
this shift lies in the fact that the electron orbit is attached to the band degeneracy line, which is
the line of singular points of the Bloch wave functions. In many respects this effect is
similar to the Aharonov–Bohm effect if the band degeneracy line is considered an infinitely thin
‘‘solenoid.’’ This shift in energy levels should become apparent in studies of oscillation
phenomena in metals. We give examples of metals in which the conditions for observing the
shift is probably the most favorable. ©1998 American Institute of Physics.
@S1063-7761~98!01510-8#
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1. INTRODUCTION

The degeneracy of electron energy states along the l
of the Brillouin zone is a fairly widespread phenomenon
crystals. In addition to the natural degeneracy, very of
along the symmetry axes of the crystal there is an accide
contact of bands either along certain closed lines in the B
louin zone or on curves that terminate at the zon
boundaries.1 The possibility of such accidental degeneracy
bands for crystals with a center of inversion~most metals
belong to this class of crystals, and only these are consid
in this paper! follows from the assertion that if there is
point of accidental contact of bands on a symmetry axis o
crystal, and the band-to-band matrix element of the velo
operator is nonvanishing at that point, the line of degener
of the bands is sure to pass through that point.1 This also
leads to a statement about the abundance of such lines,
a frequent outcome of numerical calculations of the ba
structure of metals is the discovery of points of acciden
degeneracy on a symmetry axis of the Brillouin zone~see,
e.g., Ref. 2!. Here, knowing the representations of the wav
vector group by which the wave functions of the correspo
ing bands are transformed, we can immediately estab
whether or not the band-to-band matrix element of the
locity operator vanishes. Examples of crystals with lines
accidental band contact are aluminum, beryllium, mag
sium, zinc, cadmium, and some others. Strictly speaking,
cidental degeneracy of the bands exists only if spin–o
coupling is neglected, i.e., allowing for this coupling lifts th
degeneracy. However, if the coupling is weak, there is s
strong attraction of the bands near the line of band contac
the absence of spin–orbit coupling. Thus, physically the i
of a band degeneracy line is justified even if spin–orbit c
7471063-7761/98/87(10)/9/$15.00
es

n
tal
l-
s
f

ed

a
y
y

nce
d
l

-
-
h
-
f
-

c-
it

ll
in
a
-

pling is taken into account, provided that the typic
coupling-induced energy splittingD of the degenerate elec
tron states is much less thanE0, the band gap in a crysta
(E0;1210 eV).

The semiclassical quantization of the electron energy
a metal in the presence of an external magnetic fieldH has
been examined by many researchers.3–12 The semiclassica
electron path in the space of wave vectorsk is the curve
along which the constant-energy surface«5const intersects
a plane perpendicular to the magnetic field, whose direc
we select as thez axis. The quantization rule for closed ele
tron orbits with no self-intersection is

S~«,kz!52p
ueuH
\c S n1g6

gm*

4m D , ~1!

whereS the area of the constant-energy surface in the pl
kz5const; n is a large positive integer;g is a constant
(0<g,1); g is the electrong factor, equal to 2 if we neglec
spin–orbit coupling~and Fermi-liquid effects!; e and m are
the electron charge and mass; andm* is the electron’s cy-
clotron mass. In this case, when in analyzing a physical
fect we can neglect not only spin–orbit coupling but al
electron spin, the last term on the right-hand side of Eq.~1!
can be dropped, i.e., we setg50 ~by definition, theg factor
characterizes the energy splitting of the states of a particl
a magnetic field due to the particle’s spin!. If the semiclas-
sical path ink space passes far from the singular points
the function«(k)—the dispersion relation of an electron
the crystal—and nowhere near the path is the semiclass
ity condition violated~e.g., thex and y projections of the
electron velocity do not vanish!, the constantg has the uni-
versal value5,13
© 1998 American Institute of Physics
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g51/2, ~2!

which is commonly used in formulas that describe osci
tory effects in metals~the de Haas–van Alphen an
Shubnikov–de Haas effects, among others!.14

The foregoing constraints on a semiclassical path, un
which Eq.~2! holds, can be given an instructive geometric
form. In addition to the natural requirement on the size of
cross-sectional area,

ueuH
\cS

'
1

n
!1, ~3a!

the foregoing conditions amount to the requirement that
semiclassical orbits that pass too close to other pathsk
space belonging to either the same or different bands be
cluded. The condition that the paths not be too close to
another means that the probability of magnetic breakdo
~both intraband and band-to-band! is low, i.e.,

ueuH
\cdS

!1, ~3b!

wheredS;(dk)2, with dk the minimum distance betwee
paths~or between segments of a single orbit! in the Brillouin
zone, anddS the characteristic area of the ‘‘neck’’ separatin
the paths. At energies or values ofkz where ~3b! breaks
down, the set of semiclassical orbits in the space of w
vectors is close to altering its topology, andg will depend
heavily on« andkz ~Refs. 6, 7, and 10!. We do not consider
such cases here and always assume that conditions~3a! and
~3b! are met.

In the present paper we show that when electron spin
be completely neglected (g50), we have, as an alternativ
to ~2!, another condition:

g50, ~4!

provided that the electron path encloses either a line of a
dental contact of two bands or a threefold symmetry axis
which there is natural degeneracy of the band under con
eration and some other band. This is a topological result
depends neither on the specific form of the electron disp
sion relation«(k) near the electron’s semiclassical path n
the shape of the path or on how far it is from the line of ba
contact. It is related to the fact that this path is attache15

~Fig. 1! to the band degeneracy line, which is the line
singular points of the Bloch electron wave functions~and the
function «(k)). Without such an attachment we have~2!.
When weak spin–orbit coupling is turned on and we all
for electron spin on those paths for which~4! holds, condi-
tion ~2! is restored, but now theg factor differs substantially
from 2:

g'262
m

m*
, ~5!

where the sign on the right-hand side is determined by
electron states on the line of band contact. Note that if
plug the second~purely orbital! term in this expression into
~1!, we obtain the same energy spectrum as in the simp
spinless, case~bearing in mind that the valuesg50 andg
-
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51 are equivalent!. Thus, although allowance for spin–orbit
coupling generally lifts the degeneracy of bands on a lin
the result~4! is stable when that coupling is turned on, a
long as it is not too strong,D!E0 ~note that the requisite
weakness of spin–orbit coupling is equivalent to the cond
tion under which the very notion of the band degeneracy lin
has meaning!.

In Sec. 2 we present equations that can be used to findg
and theg factor for any closed path without self-intersection
that meets condition~3!. These equations are used in Secs.
and 4 to analyze the case in which a metal has a band d
generacy line. To get to the heart of the problem, in Sec.
we examine the simplest case~spin–orbit coupling and elec-
tron spin are neglected!. In Sec. 4 we take spin–orbit cou-
pling and electron spin into account. The Conclusion is de
voted to a discussion of possible experimental evidence f
the results.

2. THE PARAMETER g AND THE g FACTOR

We employ the following method to derive the energy
quantization rule~1! and the equations forg and theg factor.
Using the appropriate Hamiltonian, we can find the electro
wave function to second order in the small parameter~3a!.
We then impose the constraint that the wave function b
single-valued~the phase change of the wave function over
closed semiclassical path can only be 2pn), which yields the
required results. The equations that make it possible to c
culateg and theg factor for closed orbits with and without
allowance for spin–orbit coupling were derived in Ref. 91!

on the basis of the effective one-band Hamiltonian of
Bloch electron in a magnetic field.16,17 What is important is
that if condition~3! is met, this Hamiltonian can be used in
the case of band degeneracy.17 Below we repeat the results
of Roth9 and Blount17 that will be needed in our analysis.

We expand the effective one-band Hamiltonian of
Bloch electron in a magnetic field in powers ofH ~see Ref.
17!. To find g and theg factor we need only keep the two
first terms in the expansion. Then, in theK representation,
the Hamiltonian is

FIG. 1. Relative disposition of semiclassical paths~curves1–4! and band
degeneracy lines~dashed curves! for a! simply connected, b! multiply con-
nected, and c! self-intersecting Fermi surfaces. Paths3 and4 are attached to
a band degeneracy line, while paths1 and2 are not.
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H5«0
~s!~ k̂!1

e

c
Hm0

~s!~ k̂!, ~6!

where«0(k) is the electron dispersion relation in the ba
being investigated, which hereafter we denote by the s
script 0. The ‘‘S’’ on the functions«0( k̂) andm0( k̂) means
that these functions are completely symmetrized in the c
ponents of the operatork̂5K2(e/\c)Â–( i ]/]K ), where
A(r ) is the vector potential of the magnetic field. The fun
tion m0(k) can be written

m0~k!5 iz–~v3V!1
\

2i (
lÞ0

~vx!0l~vy! l02~vy!0l~vx! l0

« l~k!2«0~k!
,

~7!

where iz is the unit vector in the direction of the magnet
field, v5(1/\)(]«0 /]k), (v)0l is the band-to-band matrix
element of the velocity operator calculated atk, andV is the
part of the position operator that is periodic ink:

V~k!5 i E
v
uk0* ~r !

]

]k
uk0~r ! dr . ~8!

Here ukl(r ) is a periodic factor that is present in the Bloc
wave function of an electron belonging to thel th band, and
integration is over the volumev of a cell of the crystal lat-
tice.

These equations can be used immediately if electron
is neglected. If it is not, all electron states in a crystal with
center of inversion are doubly degenerate, and the band
dex now consists of the band indexl and the spinor indicesr
(r51,2). Accordingly, the periodic Bloch factorukl(r ) be-
comes a periodic spinoruklr(r ), and the quantities in~7! and
~8! are two-dimensional matrices inr. Moreover, in~7! we
must add a purely spin contribution to the Hamiltonian:

\

m
srr852

\

2mE
v
uk0r* ~r !s3uk0r8~r ! dr , ~9!

wheres3 is a Pauli matrix.
As already noted,g50 in the simplest case, i.e., whe

electron spin can be completely neglected. Here, if~3a! and
~3b! hold, semiclassical energy quantization leads to9

g2
1

2
52

1

2p R
G

m0~k!

v'~k!
dk, ~10!

where the integral is calculated along a closed semiclass
path G in k space, i.e., along the line of intersection of t
surface«05const and the planekz5const (dk is the element
of arc length on this path!, andv' is the absolute value of th
projection ofv on the (kx ,ky) plane. Usually it is assume
that m50 in a crystal with a center of inversion, so thatg
51/2. However, in Sec. 3 we show that generally, whe
crystal has a band degeneracy line, the second term on
right-hand side of Eq.~6! is nonvanishing.

When electron spin is taken into account,m0 is a two-
dimensional matrix, which can be conveniently written a
linear combination of the Pauli spin matricess i ~see Ref.
18!:
b-

-

-

in

in-

al

a
the

a

~m0!rr852
\

4m (
i 51

3

Gzis i , ~11!

where, generally speaking, the coefficientsGzi depend onk
and are given by

\

4m
Gzx52Re~m0!12,

\

4m
Gzy5Im ~m0!12,

\

4m
Gzz52~m0!11.

The fact that~11! contains no identity matrix follows from
the behavior of the matrixm0 under the transformationU
5( is2)KI ~see Ref. 18!, whereI , K, andis2K are the spa-
tial inversion, complex conjugation, and time reversal ope
tors. Here we have also takenukl25Uukl1. The vanishing
trace of matrix~11! yields g51/2, andm0 contributes only
to theg factor. The latter then becomes~see Eq.~64! of Ref.
9!

g5
\

2pm*
R

G

dk

v'

@Gzz1Gzy Im t1Gzx Ret#, ~12!

where the cyclotron massm* is given by the well-known
formula

m* 5
\2

2p

]S~«,kz!

]«
5

\

2p R
G

dk

v'

.

The complex functiont(k) is defined on the semiclas
sical pathG, and specifies the direction of the unit vectore in
the spinor space,

e5
1

A11utu2 S 1

t D ,

which is a factor in the electron wave function (csc}
3exp(2i\cS/eH) e). The function t(k) can be found by
solving the equation

i
4m

\
v'

dt

dk
1@G2t212Gzzt2G1#50 ~13!

~which can be derived from Eq.~52! of Ref. 9!, where
G6[Gzx6 iGzy . The boundary condition for Eq.~13! is

t~0!5t~k0!, ~14!

wherek0 is the length of a semiclassical path ink space.
It can be shown~although we will not do so here! that

the complex Riccati equation~13! with boundary condition
~14! has a solution for anyk0. However, for arbitraryGzi(k)
it is impossible to reduce the solution to quadratures, wh
means we cannot find an explicit expression for theg factor.
In the special case in which allGzi can be assumed
constant,18 the solutions of Eq.~13! with boundary condition
~14! are

t52
Gzz6AGzz

2 1G1G2

G2
.

Inserting this expression into~12! yields g25Gzz
2 1G1G2 ,

which coincides with the result obtained in Ref. 18.
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3. THE SIMPLEST CASE

In this section we use the results of Sec. 2 to determ
the admissible values ofg in the simplest case in which
spin–orbit coupling and electron spin are completely
glected. General considerations would seem to imply t
crystals with an inversion center havem050. Indeed, in the
absence of spin, the operatorU introduced in Sec. 2 is simply
the product of the spatial inversion and complex conjugat
operators.19 This operator transforms an electron state w
wave vectork into itself, so that a suitable choice of wav
function phases ensures that

Uukl~r !5ukl~r !. ~15!

With such phases, all matrix elements of the velocity vec
are real quantities andV50.19,20 Then ~7! immediately
yields m050.

We now see howm0 depends on the choice of phases
the Bloch functions. If these phases are changed in su
way that

ukl→ukl8 5ukl exp@ iw l~k!#, ~16!

where w l(k) are arbitrary smooth functions specified ov
the entire Brillouin zone, we have

vl l 8→vl l 8
8 5vl l 8 exp$ i @w l 8~k!2w l~k!#%,

and the sum overl in ~7! remains equal to zero. The firs
term on the right-hand side of Eq.~7!, which is the contri-
bution the electron orbital angular momentum that is co
pletely diagonal in the band numbers, is not invariant un
~16!. Indeed, according to~8!, for such a transformation we
have

V→V85V2
]w0

]k
. ~17!

Hence, the new value ofV and the corresponding valu
of m0 will generally be nonzero. However, such noninva
ance ofm0 has no effect on measurable variables. To sh
that this is so forg, we write~10! with allowance for the fact
that the sum overl in ~7! is zero. As a result we have

g2
1

2
52

1

2p R
G

V–dk, ~18!

wheredk[dk ( iz3v)/v' , and integration is along a sem
classical pathG ~since the electron velocity in ordinary spa
is orthogonal to that ink space, the vectordk is directed
along the orbit element ink space!. The invariance ofg
under~16! follows directly from ~17! and ~18!.

Actually, the foregoing argument thatm0 can be made to
vanish by properly selecting the phases of the wave funct
is true only for a nondegenerate band. We now examine
case in which the crystal has a line along which the ba
with l 50 is in contact with another band, for example t
one withl 5l. It turns out~see Ref. 20! that in this case it is
impossible to choose the phases of the Bloch factors in s
a way that~15! holds on the one hand, while on the oth
these factors are continuous ink in the Brillouin zone.

This claim can be made more specific. If~15! holds,
there will be a surface ink space with an edge on whichukl
e
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at

n

r

f
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ns
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ch

anduk0 experience a discontinuity andV is singular, and the
edge coincides with the band degeneracy line. To show t
we select a pointO on the band degeneracy line as the orig
of k and write the Hamiltonian of an electron in the absen
of a magnetic field in the Luttinger–Kohn representation21

i.e., we use the

eik–ru0l~r !,

as basis functions. These functions differ from the Blo
functions only in the factorsukl , which are evaluated atk
50 ~at which point the two sets of functions coincide!. In
this representation the Hamiltonian is not diagonal inl . So as
not to overburden our discussion with technical details, o
two bands will be taken into account by the Hamiltonianl
50 andl 5l. The Hamiltonian then becomes

Ĥ5S E00 E0l

E0l* Ell
D , ~19!

where

Ei j 5\k–vi j ~0!1 d i j \
2k2/2m , i , j 50,l,

whered i j is the Kronecker delta, and thevi j (0) are the ma-
trix elements of the velocity vector calculated atk50. We
reckon the energy from the energy of band degeneracyk
50. The transformation matrix from the Luttinger–Koh
representation to the Bloch representation is

Si j ~k!5^u0i uuk j&5E
v
u0i* uk j~r ! dr . ~20!

This unitary matrix diagonalizes the Hamiltonian~19!,
whose eigenvalues determine the electron dispersion r
tions in the Bloch representation for bands 0 andl:

«0,l5 1
2~E001Ell!6A1

2~E002Ell!21uE0lu2. ~21!

If ~15! holds, then both theEi j andSi j (k) will be real,
which means thatS will be an orthogonal matrix. For the
Hamiltonian~19!, the orthogonal matrixS can be calculated
directly ~the extent to which we are free to selectS is dis-
cussed below!:

S5S cos~f/2! 2sin~f/2!

sin~f/2! cos~f/2!
D , ~22!

where

sin f5 E0l/d« , cosf5 E002Ell/2d« , ~23!

d«5A 1
4~E002Ell!21E0l

2 ,

with 2p<f<p. Using this matrix, we can easily find th
dependence of the Bloch factorsukl on k since, according to
~20!

uki5~S8! i0u001~S8! ilu0l , ~24!

whereS8 is the transpose ofS.
We can now easily justify the foregoing stateme

ThroughO we pass a plane that intersects the line of ba
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contact. In this plane there are two straight lines that p
throughO, on one of whichE0l vanishes, whileE002Ell

vanishes on the other~Fig. 2!. In the plane we consider
closed contourAA8 that encirclesO, and study the behavio
of the Bloch factors as a point travels along the conto
From ~23! we see that in this processf varies from2p to
p. Here all the elements ofS and hence all theuki are
smooth functions ofk. However, according to~22! and~24!,
as a result of this process we obtainuki uA852uki uA .

Thus, on the rayOA the functionuki(k) experiences a
discontinuity. Clearly, there exists a surface of discontin
ties of the functionsuk0 and ukl , while the ray is the line
along which this surface intersects the plane we have
lected.

Note that there still is a certain arbitrariness in calcul
ing the matrixS, since for anyk the signs of the eigenvector
of Ĥ are undetermined. This corresponds to the possib
of replacinguki by 2uki in a certain region of the Brillouin
zone, which obviously does not violate~15!. Such a transfor-
mation can be used to deform the discontinuity surface~for
Eqs. ~20! and ~23! this means specifying a new range
admissible values off:f0<f<f012p, where f0 is a
fixed angle!. However, the very fact that the functionsuki

experience discontinuities when~15! holds is independent o
the gauge of the wave functions~the edge of the discontinu
ity surface always coincides with the band degeneracy lin!.
Everywhere that the functionsuki are continuous we can
apply the line of reasoning developed at the beginning of
section, andV50. However,V is singular on the disconti
nuity surface, as the definition~8! implies, and the integral in
~18! is nonzero.

Strictly speaking, the two-band Hamiltonian~19! ad-
equately describes electron states only near the band de
eracy line, as long asu«0(k)2«l(k)u!E0, whereE0 is the
energy scale characterizing energy gaps in the electron s
trum of the crystal. To extend the foregoing claims to
values ofk, we must allow for other bands in the Luttinger
Kohn Hamiltonian. The matrixS can then be written as
product of two orthogonal matrices,S1 and S2. The first
forces theE0l andEl l with lÞ0, l to zero, i.e., reduces th
Hamiltonian to block form. Here the Hamiltonian block o
interest will have the same form as~19!, but now theEi j

( i , j 50,l) in it are complicated functions ofk. What is im-
portant, however, is that theEi j and the elements ofS1 are

FIG. 2. Lines of intersection of the surfacesE0l50 andE002Ell50 with
a plane passing throughO ~straight lines1 and2, respectively!. The plus and
minus sign on line1 represent the sign of the productk–v0l(0) on either
side of 1, while the plus and minus on line2 represent the sign of the
productk–@v00(0)2vll(0)# on either side of2.
ss
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smooth single-valued functions of the wave vector~on the
band degeneracy line in particular!,19 and thek–vi j (0) are
simply the first terms in the series expansions ofEi j . The
line of band contact is now the line of intersection of tw
surfaces,

E0l~k!50 ~25!

and

E00~k!2Ell~k!50. ~26!

S1 is also a block matrix, and the part of interest can
described by the same equations~22! and ~23!. The forego-
ing conclusion about the existence of a surface of disco
nuities of the functionsuki is based on the fact that on
circuit around the band degeneracy line changesf by 2p.
This property still holds in the general case, since it is n
related to the explicit form of theEi j but is determined only
by the fact that the surfaces~25! and ~26! intersect. This
means that another assertion still holds, i.e., in the prese
of a band degeneracy line,V can vanish in the neighborhoo
of any point not belonging to this line, but not simulta
neously at all the points on a closed curve that encircles
line. We also note that when there is no band degeneracy~the
surfaces~25! and ~26! do not intersect!, following a closed
contour changesf by less than 2p, and it ultimately returns
to its original value. In such a situation it is possible to ma
the functionsuki continuous ink ~provided that~15! holds!,
andV50 over the entire Brillouin zone.

We now examine the case of natural degeneracy of
bands on a symmetry axis of the Brillouin zone. If it is
fourfold or sixfold symmetry axis, the series expansions
the left-hand sides of Eqs.~25! and ~26! in powers of k
contain no linear terms; one of the series then begins w
k1k2, and the other withk1

22k2
2 (k3 along the symmetry

axis!.19 Now each of the equations,~25! or ~26!, determines
two surfaces that intersect along the straight linek15k250.
An analysis similar to the one carried out above shows thaf
changes by 4p around a closed contour that encircles su
an axis, which means that if~15! holds, we can choose th
uki to be continuous functions ofk. Note that Eq.~21! imply
that in this special case, as the wave vector moves away f
the axis, the band energies split quadratically ink'

5Ak1
21k2

2 . But if natural degeneracy occurs on a threefo
symmetry axis, then, as in the case of accidental band c
tact, the series expansions of the left-hand sides of Eqs.~25!
and~26! start with terms linear ink ~Ref. 19!, and all of the
foregoing results still hold. One typical feature of this case
band splitting that is linear ink' .

SinceV can vanish in the neighborhood of any point n
located on the band degeneracy line by a suitable choic
the phases of the wave functions,

curlV50 ~27!

at such a point~the curl is calculated ink space!. Here, due
to the invariance of curlV under the transformation~17!, Eq.
~27! actually holds for any selection of the phases of t
wave functions. On the other hand, on the band degene
line the value of curlV is undefined. This follows from the
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fact that such a line is a line of the singular points of t
Bloch factoruk0 if the factor is considered a function ofk
~see Ref. 19 and Eqs.~21!–~24!!.

The integral ofV around a closed contour encircling th
line of band contact is invariant under transformation~16!,
and furthermore, according to~27!, it is also independent o
the size and shape of the contour. To evaluate the inte
we remove the constraint~15! and choose the phases of th
Bloch factors only on the basis of the requirement thatukl be
continuous ink space~as was taken for granted in derivin
the energy quantization rule!. To do so, we need only se
w l5qf/2 at l 50, l and transformukl in a manner similar
to ~16!. Generally,q is any odd number here, but allowanc
for spin–orbit coupling shows~see below! that we must limit
ourselves to q561. Then the new quantity V
56(1/2)]f/]k, and

R V–dk56p, ~28!

where integration is along any contour that encircles
band degeneracy line, and the sign of the right-hand sid
determined by the direction in which the contour is travers
~and the sign ofq!. When there is natural degeneracy on
fourfold or sixfold symmetry axis, the integral vanishes.

These results suffice to findg for any relative position of
the path and the line of band contact. If the semiclass
path is attached to the line of accidental band degenerac~or
to a threefold symmetry axis, on which there is natural
generacy!, then, according to what was said earlier,g21/2
561/2. Bearing in mind that a simple change of notation
~1! from n to n21 transformsg51 into g50, in the case at
hand we obtain~4!. But if there is no attachment, then a
cording to a well-known theorem15 there is sure to be a sur
face whose edge coincides with the path, i.e., a film stretc
over the path and does not intersect the line of band con
~in Fig. 1, for such a film for the paths1 and2 we have taken
a section of the depicted constant-energy surface!. Using
Stokes’ theorem to transform the integral in~18! into an
integral over the specified surface and then using~27!, we
obtain ~2!.

To conclude this section we note a certain analogy
tween our result and the Aharonov–Bohm effect.22 In 1962,
Blount20 pointed out a similarity betweenV and the vector
potential of a magnetic field~see Eqs.~16! and ~17!!. Then
Eqs. ~27! and ~28! make it possible to think of the ban
degeneracy line as an infinitely thin ‘‘solenoid’’ carrying
certain flux that is generated by the ‘‘field’’ curlV. As soon
as this is done, the analogy becomes clear. Indeed, altho
an electron moving along a semiclassical path enclosing
band degeneracy line does not enter the region with
‘‘field,’’ it experiences effects of the ‘‘vector potential’’V,
which cannot be made equal to zero over the entire path.
semiclassical steady state of an electron with energy g
by ~1! is a standing wave produced by two waves traveling
opposite directions. The presence of a band degeneracy
i.e., a ‘‘solenoid,’’ inside the path shifts the interference p
tern relative to its position when there is no such line. T
shift shows up as a change ing. We also note that this shif
is the same as that induced by introducing a real solen
al,
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with a flux equal to the magnetic-flux quantump\c/ueu, into
the orbit of an electron in real coordinate space.

4. ALLOWANCE FOR SPIN AND SPIN–ORBIT COUPLING

We start by allowing only for electron spin, i.e., we st
neglect electron–orbit coupling. Now all the bands are d
bly degenerate in the projection of the spin on an axis, a
the Bloch factorsuklr are products of the previously derive
functionsukl for a spinless particle and constant spinorssr ,
i.e., ukl15ukls1 and ukl25Uukl15(KIukl)s2, where s2

5 is2s1 ~it is in this manner that the specified quantityukl2

is obtained in the weak spin–orbit coupling limit!. The or-
thogonality ofs1 ands2 implies that the orbital parts ofGzx

andGzy vanish. If we put

s15S 1

0D ,

the same is true of their spin parts, so that on the wh
Gzx5Gzy50. Then, if we allow for the fact that the sum i
~7! vanishes, formula~12! becomes

g52
2m

pm*
R

G

dk

v'

~m0!11522
2m

pm*
R

G
V–dk.

Here the first term on the right-hand side comes from
pure spin contribution~9! to m0, and the integral in the sec
ond term coincides with the integral in~18!. Taking condi-
tion ~28! into account, we obtain~5!. The sign in~5! remains
undefined, since without spin–orbit coupling, electron s
and electron orbital motion are uncorrelated.

Allowance for spin–orbit coupling leads to a situation
which the Bloch factorsuklr cannot be reduced to the prod
uctsuklsr , but are instead linear combinations of the fun
tions ukl 8sr8 with different l 8 and r8. The size of the ‘‘ad-
mixture’’ of these functions in theuklsr is estimated to be
D/d«(k), whered«(k) is of the order of the~energy! dis-
tance of the nearest neighboring band from the band in q
tion. The corrections to theg factor due to spin–orbit cou
pling are of the same order. WhenD!E0, these corrections
are small (;D/E0) for semiclassical orbits far from the ban
degeneracy line. However, these corrections can be large
paths that are close to that line. Hence, to estimate the siz
the corrections to~5!, we must calculate theg factor for the
most ‘‘dangerous’’ orbits. Here we use the two-band mo
of the electron energy spectrum~19!, in which the strongest
mixing of the functionsuk0sr and uklsr8 ~related to spin–
orbit coupling! is accounted for exactly, while the ‘‘admix
ture’’ of the wave functions of the other bands is neglect
This ensures an accuracy of calculations of theg factor of
orderD/E0, which is quite sufficient for analyzing large co
rections.

After spin–orbit coupling has been taken into accou
we obtain a new Hamiltonian, which in the Luttinger–Koh
representation replaces the Hamiltonian~19!:

Ĥ5S Ẽ00 Ẽ0l

Ẽ0l
1 Ẽll

D , ~29!

whereẼi j are the two-dimensional matrices
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Ẽ005@D1 1
2~E001Ell!#1̂,

Ẽll5@2D1 1
2~E001Ell!#1̂, ~30!

Ẽ0l5E0l1̂1
i

2
~E002Ell!~b–s!.

Here 2D is the spin–orbit splitting of the bands atk50 ~for
the sake of definiteness we assume thatD is positive, i.e., the
specified band withl 50 is higher on the energy scale tha
the band withl 5l), 1̂ is the identity matrix,s i are the Pauli
spin matrices, andb is a constant real vector of unit lengt
characterizing the spin–orbit mixing of the wave functio
of the specified bands atk50. We assume that a semicla
sical path is attached to the band degeneracy line~deter-
mined without allowance for spin–orbit coupling!, and for
the origin ofk we take the point at which the line intersec
the orbital plane~the planekz50). We also assume that a
k50, ~15! holds and the elementE0l is real. Moreover, in
~30! we have neglected the term\2k2/2m, since this term
becomes important only in the range of wave vectors
which the two-band model provides a poor description of
energy spectrum. Finally, we introduce the notation

2a5\@v00~0!1vll~0!#,

2a85\@v00~0!2vll~0!#,

t5\v0l~0!.

Then Eqs.~29! and ~30! imply that the electron dispersio
relation«0(k) is

«0~k!5a–k1AD21~a8–k!21~ t–k!2, ~31!

and the corresponding formula for«l(k) merely has the op-
posite sign for the radical.

We now discuss a way to calculatem0. Knowingm0, we
can calculate theg factor with the equations of Sec. 2. Bea
ing in mind the definitions~8! for V and ~20! for S and the
well-known relationship between the band-to-band matrix
ements of the velocity and position operators,13 we obtain the
relationship

S S1
]S

]k D
0r,lr8

52 id0lVrr8~k!

2~12d0l !\
v0r,lr8~k!

«0~k!2« l~k!
, ~32!

which makes it possible, knowing the matrixS(k), to find
Vrr8 andv0r,lr8 at any point of the Brillouin zone, and thu
the orbital part ofm0(k). We can calculate the spin contr
bution ~9! to m0 using

srr85~S1s~0!S!0r,0r8 ,

wheres(0) is the matrix describing this contribution in th
Luttinger–Kohn representation, with s(0)52(1/2)
3^u0lrs3u0l 8r8&. This matrix can be found together with th
Hamiltonian~29!, and in the given case is

s~0!5 2
1

2S bz~b–s! ~s3b!z

~s3b!z bz~b•s!
D .
t
e

l-

Thus, calculatingm0(k) amounts to determining the trans
formationS that diagonalizes the Hamiltonian written in th
Luttinger–Kohn representation. Below we list the final r
sults of calculating theg factor in the two-band model of the
energy spectrum~29!, ~30!.

Ignoring the spin contribution~9! to m0, we first analyze
the orbital part of theg factor. In this case we can find anS
such thatm0 becomes a diagonal matrix in the spin inde
and accordinglyGzx5Fzy50. ForGzz we obtain

Gzz5
2m

\2

~ iz–~a83t!!~«1D!

d«~d«1D!
, ~33!

where

d«[AD21~a8–k!21~ t–k!2.

The result for theg factor can be represented by two term

g5g11g2 ,

whereg1 is the intraband contribution tog due to the first
term on the right-hand side of Eq.~7!, and the band-to-band
contributiong2 is given by the sum overl in the expression
for m0. For g1 andg2 we have

g152 sign~ iz–n!
m

m* S 12
D

A«22«min
2 1D2D , ~34!

g252 sign~ iz–n!
m

m*

D

A«22«min
2 1D2

,

where signx51 if x.0, signx521 if x,0, n[(a83t),
and «min is the minimum value of~31! at kz50. Such a
minimum value must exist for a closed orbit («min}D and
0,«min /D<1). The equations in~34! suggest that although
the contributions tog1 andg2 related to spin–orbit coupling
are of orderg(D/«) and may be large, they balance ea
other perfectly. Thus, not only for orbits that are far from t
band degeneracy line but also for semiclassical orbits p
ing close to this line, spin–orbit coupling provides only
relatively small correction overall~of order D/E0) to the
orbital part of theg factor considered here. We also note
connection with Eqs.~34! that the resultugu52m/m* of Co-
hen and Blount18, who used the two-band model of the ele
tron energy spectrum, has been known for rather a long ti
However, the semiclassical paths examined in Ref. 18 w
those that pass near the extrema of the electron disper
relation~i.e., as«→«min), and only the band-to-band contr
bution to theg factor was taken into account, sincev and
henceg1 are zero at«5«min . Equations~34! generalize the
Cohen–Blount result to orbits with energies within the ran
«min<«!E0, with the intraband contribution to theg factor
being the principal one when«@D. We also note that the
exact electron spectrum for the Hamiltonian~29!, ~30! ob-
tained without taking into account the direct interaction
electron spin and a magnetic fieldH was obtained in Ref. 23
Equations~34! together with~1! and ~2! determine the elec-
tron energy levels, and the result coincides with the ex
result for alln, includingn50.
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If in addition to the orbital part we allow for the spi
contribution~9! to m0, then

dGzz52bz , ~35!

is added to the right-hand side of Eq.~33!, and furthermore
Gzx andGzy are nonzero:

Gzx2 iGzy52~by1 ibx!@~ t–k!1 i ~a8–k!#/d« . ~36!

In theg factor there appears a spin partgs ~in addition to the
orbital contribution ~34!!, which can be calculated usin
~12!, whereGzz must be replaced bydGzz. Direct calcula-
tions show that atD50 the function

t05
12bz

by1 ibx

~ t–k!1 i ~a8–k!

d«
,

specified on the semiclassical pathkz50, «0(k)5«, is an
exact solution of Eq.~13! with the boundary condition~14!.
Substituting this function into the formula forgs yields
gs52, as expected. From~33!, ~35!, and~36! it follows that
for DÞ0 the solution of Eq.~13! differs from t0 by a quan-
tity of order t0(D/«). Accordingly, the correction togs is
dgs;D/«. Bearing in mind thatg;m/m* ;E0 /«, we ob-
tain the estimatedgs /g;D/E0, which suggests that in th
adopted approximation spin–orbit coupling has no effect
the spin contribution to theg factor.

If we now take ~34! into account, we obtain the fina
expression

g5212 sign~ iz–n!
m

m*
. ~37!

Note that by allowing for spin–orbit coupling we were ab
to determine the sign with which the orbital part enters in
the g factor ~and also justify our choice ofq in deriving
~28!!. Here, although Eq.~37! was derived for«!E0, the
continuity of the functiong(«) suggests that the sign of th
orbital part is the same outside that range. Hence~37! holds
for semiclassical paths far from the line of band contact.

The properties of the vectorn, on which the aforemen
tioned sign depends, can be established by analyzing
two-band Hamiltonian~19! with allowance for Herring’s
result.1 These properties reduce to the following stateme
The vectorn is directed along the tangent to the band deg
eracy line, determined without allowance for spin–orbit co
pling. It is independent of the choice of basis functionsu00

andu0l at k50, and in that sense is an invariant charact
istic of degenerate electron states. The vectorn vanishes only
at the points of intersection of the given line of band cont
with a different line of this type~if such points exist!, so that
in the intervals between the points of intersection its ori
tation does not change. The dot productiz–n is nonzero for
the paths considered here, which are attached to the lin
band contact~the product vanishes only for orbits of type2
in Fig. 1!.

In closing, we again dwell on the relationship betwe
the results obtained in this section and in Sec. 4. When sp
orbit coupling is neglected, the wave functions of an elect
in a magnetic field can be represented as products of con
spinorssr and purely orbital wave functions of a spinle
n

he

s.
-
-

-

t

-

of

–
n
ant

particle. Naturally, such states correspond tog50 and g
52. In essence, this is simply a different classification of
electron states in a magnetic field that emerge in the li
D→0. Although such an approach is approximate wh
spin–orbit coupling is taken into account, for«@D it pro-
vides a good description not only of the energy spectrum
also of the matrix elements of operators. Only when«;D
must the matrix elements be calculated by the rigorous
proach used in this section.

5. CONCLUSION

The substantial difference between the real value of
g factor and 2~or a change ing) predicted in the presen
paper should become manifest in oscillatory effects. For
sake of definiteness we discuss magnetization oscillation
the de Haas–van Alphen effect. The amplitude of thepth
harmonic of this quantity is proportional to the factor14

cosS pp
g

2

m*

m D , ~38!

which depends on theg factor. Substituting~5! into ~38!, we
find that for paths attached to the band degeneracy line,
sign of this factor for the fundamental harmonic (p51) is
opposite that expected for the case withg52. Methods of
measuring the absolute value and sign of the cosine~38!
have been described in a monograph by Shoenberg.14 Shoe-
nberg’s analysis shows that finding the sign of~38! is sim-
plest when small extremal cross sections of the Fermi sur
are involved. In this connection we point to several metals
which the semiclassical paths corresponding to such c
sections are attached to the line of band contact and in w
spin–orbit coupling is weak, namely beryllium,24

magnesium,25 and graphite26,27 ~the latter is a semimetal!. In
beryllium and magnesium, which have a hexagonal clo
packed crystal structure, the line of accidental degenerac
the second and third bands lies in the basal plane of
crystal and passes through the multiply connected hole
face of the second band, the so-called monster~Mg! or
crown ~Be!. If the magnetic field lies in the same plane, th
~5! holds for orbits that correspond to the minimum cro
sections of this surface~on its ‘‘necks’’!. Neglecting a small
amount of ‘‘openness’’ of the monster in certain direction
since this feature plays no role in our discussion, we can
that qualitatively the situation is similar to that depicted
Fig. 1b. Note that in zinc and cadmium, which are isovale
with beryllium and magnesium and have the same cry
structure, the line of accidental degeneracy of the second
third bands land inside the electron ‘‘lens’’ of the thir
band28 and is not attached to semiclassical paths~see Fig.
1a!. In beryllium, magnesium, and graphite there is natu
band degeneracy on the threefold symmetry axis~the vertical
edge HKH of their Brillouin zone, which is a hexagona
prism!. When there is a magnetic field directed along th
axis, ~5! holds for an extremal orbit that enclosesK. In be-
ryllium and magnesium this orbit is located on the so-cal
‘‘cigar’ of the third band. Note, however, that in magnesiu
with such an orientation of the magnetic field, even a we
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field leads to magnetic breakdown between the cigar and
monster, i.e., to a violation of~3b!. There is no such diffi-
culty with graphite, whose Fermi surface has a se
intersecting shape similar to that depicted in Fig. 1c~the path
4 corresponds to the orbit of interest in the vicinity ofK).
Hence this semimetal is probably the most convenient ob
for experimental studies of this effect in the case of natu
band degeneracy. Note finally thatm* !m on all the paths
we have mentioned here, and that atp51 the cosine in~38!
is close to21.

One could scarcely hope to distinguish between case
which there are orbits in the metal that are attached to
band degeneracy line and those in which there are no s
paths by studying theg factor via the EPR method. Indee
the results of Sec. 4 show that if we neglect spin–orbit c
pling, excitation of the spin degrees of freedom by a varia
magnetic field has no effect on the orbital state of an e
tron. In other words, resonance will be observed at a
quency corresponding tog52. Only if spin–orbit coupling
is strong enough will resonance emerge at frequencies
responding to values given by~37!, which are extrema inkz .
However, resonance in such metals is possible even with
a band degeneracy line.29

In conclusion, we discuss our reasons for arguing t
Eqs. ~4! and ~5!, which were obtained in the one-electro
approximation, probably do not change when we allow
the Fermi-liquid interaction of electrons~not counting the
well-known renormalizations of the spin part of theg factor
and the cyclotron massm* ). Sincedg, which we define to
be the difference ing for paths attached and unattached
the band degeneracy line, changes sign whenH is replaced
by 2H ~see~18!!, the invariance of the semiclassical spe
trum under such a transformation of the field immediat
implies that 2dg must be an integer. In other words,udgu is
either 0 or 1/2. At the same time,dg depends only on the
electron states on the Fermi surface, and in the spirit of L
dau’s Fermi-liquid theory we would expect that the value
dg can change only gradually when the interaction betw
electrons is ‘‘turned on.’’ Bearing in mind that~2! still holds
even when this interaction is taken into account,13 we ulti-
mately obtain the foregoing assertion.
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1!The method used in by Roth9 to derive the appropriate equations diffe
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Limits of applicability of the Kramers–Kronig relations in the presence of an additional
light wave
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We analyze the possibility of applying the Kramers–Kronig relations to media with substantial
spatial diffusion of the permittivity, in which case additional light waves of the Pekar
type emerge. The calculations are done within a broad range of values of the exciton damping
constantG with and without a ‘‘dead layer’’ at the crystal surface. We establish the
condition in which the use of the Kramers–Kronig relations in calculating the optical constants
of the substance yields correct results. ©1998 American Institute of Physics.
@S1063-7761~98!01610-2#
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1. INTRODUCTION

In his pioneering work,1 Pekar examined the interactio
of light and media that have substantial spatial dispersion
the permittivity«(v,K ) in the excitonic region of the spec
trum. He was the first to predict the existence of additio
light waves and suggested new ideas concerning the e
tonic absorption of light. According to Refs. 1 and 2, ‘‘a
sorption is due to transitions of the system from the exci
states generated by the light to other states~i.e., with the
exception of the initial state!. If these transitions are accom
panied by luminescence, we have Raman scattering of
initial light. If these transition are thermal and there is ex
tation of thermal vibrations, we have ordinary light abso
tion.’’ Thus, absorption is due to the finiteness of the exci
lifetime in relation to nonradiative transitions. If there are
such transitions, there is no absorption, no matter how h
the oscillator strength.

Thus, one prediction of the theory was that there can
large dispersion of the refractive index if exciton–phot
coupling is strong~when oscillator strength of the transitio
is high!, and yet the absorption of energy may be very low
exciton–photon coupling is weak~for weak nonradiative
transitions!. Hence Pekar repeatedly stated that if the spa
dispersion of« is substantial, the oscillator strength of th
excitonic transition should be determined not from the a
under the absorption curve but from the curvature of
dispersion curve of the refractive index. This actually mea
that the classical Kramers–Kronig relations break down.

These relations establish the integral relationship that
ists between the real and imaginary parts of the permittiv
«5«81 i«9 ~Ref. 3!:

«8~v!215
1

p «2`

` «9~x! dx

x2v
, ~1!

«9~v!5
1

p «2`

` «8~x!21

x2v
dx. ~2!
7561063-7761/98/87(10)/8/$15.00
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Here the integral from2` to 1` is understood in the
principal-value sense. The Kramers–Kronig relations w
derived on the basis of the causality principle for a loc
relationship between the exciting electromagnetic wave
the response of the crystal. This means that the mediu
polarizationP at a given point in space is determined by t
electric fieldE at a given moment in time and at all prece
ing moments in time at the same point in space. As shown
Landau and Lifshitz,3 in the entire upper half of the comple
plane of the variableṽ, the function«(ṽ) is single-valued
and does not become infinite, i.e., has no singular points.
for such a function that Kramers4 and Kronig5 obtained their
relations~1! and ~2!.

If we allow for the fact that«8(v) is an even function of
v and«9(v), an odd function, formulas~1! and ~2! can be
reduced to a form convenient for comparison of experim
tal and theoretical data, i.e., for real positivev:

«8~v!511
2

p «0

` x«9~x! dx

x22v2
, ~3!

«9~v!52
2v

p «
0

` «8~x!

x22v2
dx. ~4!

As is known, permittivity can be expressed in terms
the square of the complex-valued refractive indexñ5n
1 ik as follows:

«5ñ2, «85n22k2, «952nk.

The real and imaginary parts ofñ, i.e., the refractive indexn
and the absorption coefficientk, are also linked by integra
relationships:6–8

n~v!511
2

p «0

`xk~x! dx

x22v2
, ~5!

k~v!52
2v

p «
0

` n~x!

x22v2
dx. ~6!
© 1998 American Institute of Physics



of

n

757JETP 87 (4), October 1998 M. I. Strashnikova and E. V. Mozdor
FIG. 1. a! The experimentally measured dispersion
the refractive indexn(v) ~curve 2! and the curve ob-
tained through calculations involving the absorptio
spectrumk(v) ~curve1! by ~5! ~curve3!. b! The func-
tions «8(v) and «9(v) obtained from experimentally
measuredn(v) andk(v) ~curves1 and2! and calcu-
lated by~3! and~4! ~curves3 and4!. The abscissa is the
wave numbern51/l5v/2pc.
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By measuring the absorption spectrum of a substance
can, in principle calculate the dispersion of its refractive
dex, and vice versa.

There are also integral formulas, widely used in sp
troscopy, that relate the reflection coefficientR(v) and the
variation of the phase of the light wave in scattering,u(v)
~see Ref. 6!:

u~v!52
2v

p «
0

` lnAR~x!

x22v2
dx, ~7!

lnAR~v!511
2

p «0

` xu~x! dx

x22v2
, ~8!

whereR5 r̃ r̃ * , with r̃ 5ur ũexp(iu ) the amplitude reflection
coefficient. Using these formulas and the Fresnel formu
which expressR andu in terms of the optical constantsn and
k, and knowing the reflection spectrum from measureme
one can calculate the optical constants of the substance w
measuring these constants directly is difficult. In the simp
case of normal incidence, the Fresnel formulas are

R5
~n21!21k2

~n11!21k2
, ~9!

tan u5
2k

n21k221
. ~10!

When spatial dispersion of the permittivity is significan
the relationship between excitation and response is nonlo
i.e., the medium’s polarizationP at a given point in space i
determined by the electric field vectorE not only at that
point but also in the entire infinite space. Strictly speaking
this case we can use only the notion of a ‘‘polarizabil
core,’’ which is determined by the integral relationship b
tween the polarization of the medium and the electric fie
Here the permittivity~or dielectric constant! « proves to be
dependent not only on the frequency but also on the w
vectorK5ñ v/c of the light wave in the crystal. As show
by Pekar,1,2 in this case additional light waves, or Pek
waves,9 emerge, and«(v,K (v)) becomes a multivalued
function of frequency, since for each value ofv there are
two values of «(v,K (v)) corresponding to two wave
propagating in the crystal. Here it is impossible to use
e
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relations~1! and ~2! even formally, since it is unclear wha
values of«8 and«9 or their combination should be plugge
into these relations.

The first to generalize the Kramers–Kronig relations
the case of media with spatial dispersion and with indep
dentv andK was Leontovich.10 Later the problem was stud
ied by Davydov,11 Mead,12, and Ginzburg, Me�man, and
Agranovich.13,14 An important stage in these studies was t
publication of a series of papers by Solov’evet al.,15–19who
derived additional dispersion relations~see below!.

The goal of the present investigation is to establish
limits of applicability of the Kramers–Kronig relations~3!–
~8! to media in which spatial dispersion of« is significant. In
our investigation we show to what extent the values of
optical constants calculated by~3!–~8! for a crystal in which
Pekar’s additional waves play a significant role can be e
neous. We also establish the characteristics of the med
that correspond to the quantities calculated by the Krame
Kronig relations. Finally, we determine the values of t
parameters of the theory and the experimental conditions
der which these relations become valid.

2. COMPARISON OF THE EXPERIMENTALLY MEASURED
n VS. v AND k VS. v CURVES WITH THOSE
CALCULATED BY THE KRAMERS–KRONIG RELATIONS

The fact that the Kramers–Kronig relations do not wo
in the excitonic absorption region at low temperatures w
first discovered for molecular crystals20 and for the CdS
crystal.21,22 These papers compare the span of the disper
curve for the refractive indexn(v) and the maximum value
of the absorption coefficient,kmax, which according to the
Kramers–Kronig relations are approximately equal. Ho
ever, in experiments the span ofn(v) is always larger than
kmax ~in Ref. 22, by a factor of almost ten!. Besides~as
shown in Ref. 23!, according to the Kramers–Kronig rela
tions, the absorption band always contains an anomalous
persion section. At the same time, direct measurement
dispersion in the 1A-exciton region of the CdS crystal a
4.2 K, first done by Brodinet al.,24 showed that there is no
such section. In the present paper we do a more detailed
thorough comparison of the experimental curves with
curves calculated by the Kramers–Kronig relations in a sp
tral range most suitable for observations.

The experimentally measured spectrum of the absorp
coefficientk(v) in the regions of 1A-, 1B-, and 2A-exciton
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states of the CdS crystal at 4.2 K is depicted by curve1 in
Fig. 1a.~The measurements of this spectrum for a CdS sin
crystal 0.18-mm thick have been reported in Ref. 25.! Using
this spectrum and the relation~5!, we calculated the disper
sion of the refractive indexn(v) in the same spectral range
In these calculations we replace the 1 in~5! by the back-
ground refractive indexn0, which allows for the contribu-
tions of all other resonances, i.e., with the exception of
one considered here, ton. The resulting curve is curve3 in
Fig. 1a. In the same figure, curve2 represents the dispersio
of the refractive indexn(v) measured in the experimen
Here we draw the average curve, i.e., a curve obtained
different researchers in different experiments:~1! via a Jamin
interferometer crossed with a spectrograph a
birefringence;24,26 ~2! via a very thin wedge-shaped sing
crystal;27–29 and ~3! via a Fabry–Perot interferometer.30

Figure 1a clearly shows that the calculated functio
contain a section of anomalous variation ofn(v) in the half-
width interval of the absorption bands and that the span
this section is approximatelykmax. At the same time, the
curves measured in the experiments have no such section
their span is much larger thankmax. Moreover, the experi-
ment established that there are two waves transmi
through the crystal simultaneously and that the waves h
different values ofn, while ~5! implies that there can be onl
one wave. Thus, Fig. 1a proves that the dispersion of
refractive indexn(v) calculated by the Kramers–Kronig re
lations differs from the dispersion measured experiment
in the case where the spatial dispersion«(v,K ) is substan-
tial.

The measured values ofn(v) andk(v) can be used to
calculate the real and imaginary parts of permittivity. T
frequency dependence of these quantities is depicted in
1b by curves1 and2, respectively~the solid curves!. In our
calculations, for each frequency we took only one measu
value of n(v): the value ofn of the wave whose intensity
was the highest. Hence, starting with the longitudinal f
quency vL520 600 cm21, the values ofn of the second
wave were discarded. At the same time, knowing«9(v) we
can calculate«8(v) by ~3!, while knowing «8(v) we can
calculate«9(v) by ~4!. The results of these calculations a
depicted in Fig. 1b by curves3 and4. We see that curves1
and3 ~and2 and4! differ significantly, which illustrates the
fact that the relations~3! and~4! must not be used when th
spatial dispersion«(v,K ) is substantial.

Note that the conditions formulated in Ref. 14 und
which the Kramers–Kronig relations are valid have not be
violated. According to Ref. 14, the tensor« i j (v,K ) ‘‘prob-
ably acquires a singularity in the upper half-plane of t

complex variableṽ only if the conditionKa!1, wherea is
the lattice constant or some other characteristic size, is
lated.’’ ~At n510 we haveaK50.063, while atn520 we
haveaK50.126.! Hence it is the presence of an addition
light wave ~and not the above conditions! that is the reason
the Kramers–Kronig relations break down.
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3. COMPARISON OF THE DISPERSION AND ABSORPTION
CURVES CALCULATED IN PEKAR’S THEORY WITH
THOSE CALCULATED BY THE KRAMERS–KRONIG
RELATIONS

We have verified the applicability of the relations~5!
and~6! ~and hence~3! and~4!! to dispersion and absorptio
curves calculated by Pekar’s theory in the 1A-exciton region
of the CdS crystal for different values of the damping co
stantG. The other parameters of the theory were selected
such a way so as to ensure the best agreement betwee
calculated and experimentally measured curvesn(v) and
k(v) in the 1A-exciton region at 4.2 K. To achieve the be
approximation we were forced to allow explicitly for th
effect of the nearest 1B- and 2A-excitons on the frequency
dependence of the background permittivity«0(v) in the
1A-exciton region. The spatial dispersion effects in the 1B-
and 2A-exciton regions were not taken into account a
«(v) was written as follows:

«~v!5«0~v!1
DLT

1A«0

v0
1A1\K2/2M1A2v2 iG1A

, ~11!

where

«0~v!5«0S 11
DLT

1B

v0
1B2v2 iG1B

1
DLT

2A

v0
2A2v2 iG2AD .

~12!

Here «057.74, the longitudinal–transverse splitting
DLT

1A516 cm21, the resonant frequency isv0
1A520 584

cm21, G1A52 cm21, M1A50.8me , DLT
1B512 cm21, v0

1B

520 707 cm21, G1B56 cm21, DLT
2A52 cm21, v0

2A520 770
cm21, andG2A58 cm21.

The solution of the dispersion equation with the perm
tivity « specified by~11! is given by Pekar’s formula1

ñ6
2 5

1

2
@m1«0~v!#6A1

4
@m2«0~v!#21b , ~13!

where

m5a~v2v0
1A1 iG1A!, b5aDLT

1A«0 , a5
2M1Ac2

\~v0
1A!2

.

Pekar’s double-wave crystal optics becomes the class
single-wave optics starting from a certain critical value of t
damping constant,Gcr ~Refs. 31 and 32!. Note that the func-
tion ñ6

2 has a branch point in the complexṽ5v81 iv9
plane, whose position can be found if we zero out the ra
cand in~13!. Below we present an analysis of the moveme
of the branch point in the complexṽ5v81 iv9 plane asG
increases, an analysis done by V. N. Piskavo� ~in Ref. 33 the
position of the branch point in the complexṽ5v81 iv9
plane remains fixed!:

v85v01 «0/a, v95ADLT«0/a 2G. ~14!

At G5Gcr5ADLT«0 /a we havev950, and the branch
point is on the real frequency axis atv85vcr5v01«0 /a.
Here ñ1(vcr ,Gcr)5ñ2(vcr ,Gcr), and the dispersion curve
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FIG. 2. The Pekar functionsn(v) ~curve 1! and
k(v) ~curve2! and similar functions calculated by
~5! and ~6! ~curves3 and4, respectively! for a! the
‘‘plus–minus’’ wave, and b! the ‘‘minus–plus’’
wave;G.Gcr .
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intersect at real values ofṽ ~for the sake of simplicity we
will write v instead ofv8). WhenG,Gcr , the branch point
is in the upper half-plane of the complex-valued frequen
ṽ, and whenG.Gcr , the branch point is in the lower half
plane. Hence forG,Gcr the integration contourC, which
passes along the real axes and is closed at infinity, encl
the singular point, which means that the ordinary Krame
Kronig relations~3! and ~4! break down. ForG.Gcr the
branch point lies outside the integration contour and
Kramers–Kronig relation may be valid. However, only t
wave that has classical limits and the classical shape sati
these relations, while the other wave, in whichn tends to
infinity as v→`, cannot satisfy the finiteness condition f
the function, and so it does not satisfy the Kramers–Kro
relations.

These facts are illustrated by the results of calculati
depicted in Figs. 2a and 2b, where for the sake of comp
son we have depicted the Pekar curvesn(v) andk(v) and
similar curves calculated by~5! and~6! at G58 cm21, which
is larger thanGcr55.64 cm21. Figure 2a depicts the result
of calculations done for the classical wave. Forv,vcr this
is a Pekar ‘‘plus’’ wave, which corresponds to the positi
values of the root in~13!, while for v.vcr it is a ‘‘minus’’
wave, which corresponds to the negative values of the r
Below we call such a classical wave a ‘‘plus–minus’’ wav
In Fig. 2b a similar comparison can be done for the nonc
sical wave, which forv,vcr is a ‘‘minus’’ wave and for
v.vcr , a ‘‘plus’’ wave. Below we call such a nonclassic
wave a ‘‘minus–plus’’ wave. The comparison shows that
functionsn(v) and k(v) calculated by~5! and ~6!, which
are depicted by dashed curves, are in good agreement
the corresponding initial curves~solid curves! in the case of
a classical wave and differ entirely from the correspond
curves in the case of a nonclassical wave. When the cryst
excited by light, the amplitude of the nonclassical wa
tends to zero.32

As noted in Ref. 11, if two types of wave differing in th
values ofn(v) andk(v) propagate in a medium, then ‘‘to
each wave we can assign a value of«(v).’’ Bearing this in
mind, we compared the curves«8(v) and«9(v) for each of
these waves, with their frequency dependence calculate
the relations~3! and~4!. We found that for the classical wav
y

es
–

e

es

g

s
i-

t.
.
s-

e
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by

these relations are satisfied and for the nonclassical w
they are not.

In this connection we believe it is appropriate to quote
passage from Davydov’s paper:11

‘‘When there is spatial dispersion, the refractive ind
and the absorption coefficient for ordinary transve
waves satisfy the usual Kramers–Kronig relations. F
additional transverse waves, in some frequency ran
the quantitiesn, k, and « assume infinite values, i.e
lose their physical meaning as macroscopic characte
tics of the medium. Hence the function«(v) is not ana-
lytic in the upper half-plane of the complex-valued fr

quency ṽ, including the real axis, and no integra
relation of the Kramers–Kronig type can be written f
it.’’

Figure 2 shows that this is indeed the case whenG.Gcr , i.e.,
when we can speak of principal and additional waves
existing in the entire frequency range. We note once m
that here the amplitude of the additional wave tends to ze
The situation is much more complicated whenG,Gcr ,
since, depending on the frequency range, each of the
waves may be a principal wave~with a higher amplitude! or
an additional wave~with a lower amplitude!, or the ampli-
tudes of the two waves are the same and there is no wa
tell which wave is the principal one and which is the ad
tional.

We did a series of calculations for the case whe
G51 cm21,Gcr . First we calculated the Pekar curvesn(v)
and k(v). Then we applied the Kramers–Kronig relation
~5! and ~6! to these curves. Finally, we compared the res
with the initial functions. Such comparison was done for
‘‘plus’’ wave, a ‘‘minus’’ wave, a ‘‘minus–plus’’ wave, and
a ‘‘plus–minus’’ wave. We also considered the case o
compound wave, where the transition from the ‘‘plus
branch to the ‘‘minus’’ branch takes place at the frequen
v l . The last variant of calculations was selected on the b
of the results of Akhmediev’s paper,33 in which such a wave
was used to achieve a good approximation for the integ
absorption contour for the 1A-exciton of the CdS crystal.

We found that there is not a single case where the ini
and calculated functions coincide. Figure 3 illustrates the
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FIG. 3. The same as in Fig. 2 atG,Gcr for ~a!
the ‘‘plus’’ wave, and ‘‘plus–minus’’ wave with
the solutions matched atv l ~b!.
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sults of two variants of calculation. Similar results were o
tained for«8(v) and«9(v).

Thus, the Kramers–Kronig relations work well if th
additional wave becomes insignificant. If, however, the a
plitudes of the two waves are roughly the same, the relati
operate neither for each wave separately nor for a comb
tion of the waves, including the classical one.

4. ANALYSIS OF THE REFLECTION SPECTRA CALCULATED
IN PEKAR’S THEORY

According to Pekar’s theory,1,2,34–36the reflection spec-
trum R(v) and the spectrum of variations in the phase of
light wave in reflection,u(v), are described by the classic
Fresnel formulas~9! and~10! if instead ofn andk we plug in
the ‘‘effective’’ valuesneff andkeff, where

ñeff5neff1 ikeff5
ñ1

12q̃
1

ñ2

121/q̃
[

«01ñ1ñ2

ñ11ñ2

, ~15!

q̃5uqueiF52
E2

E1
5

«02ñ1
2

«02ñ2
2

.

Figure 4a depicts the spectral curvesneff(v) andkeff(v)
in the 1A-exciton region of the CdS crystal~curves1 and2!.
These curves were calculated with the same values of
parameters of the theory as in Sec. 3. After that we used~6!
and ~5! to calculate the conjugate quantities~in the sense of
-

-
s

a-

e

he

the Kramers–Kronig relations! ~curves3 and4!. Clearly, the
curves1 and 3 agree very well, as do the curves2 and 4.
Thus, we can assume that Eqs.~5! and ~6! are valid if they
are applied to the ‘‘effective’’ quantitiesneff andkeff.

Note that bothneff andkeff differ dramatically from the
refractive indices for the ‘‘plus’’ and ‘‘minus’’ waves, which
play an important role in the passage of light through a cr
tal plate, a result corroborated by experimental measu
ments~cf. Figs. 1 and 4a!. Hence using these values in ca
culations of such fundamental optical characteristics as«8
and«9 results in an error. If formally, i.e., by analogy wit
the one-wave theory, we write («9)eff52neffkeff, there is no
way in which this quantity can describe energy losses in
crystal. For instance, in theG50 limit, there is no light
absorption, while the value of («9)eff is finite and large. Nev-
ertheless, the relationship between («8)eff5(neff)22(keff)2

and («9)eff is still described by~3! and ~4!.
Next we used Pekar’s theory and the ‘‘effective’’ qua

tities neff andkeff to calculate the reflection spectrumRP(v)
and the spectrum of variations of the reflected-wave pha
uP(v) ~curves1 and2 in Fig. 4b!. We applied the Kramers–
Kronig relations~8! and ~7! to these spectra and calculate
RK(v) anduK(v), respectively~curves4 and3!. The good
agreement of both pairs of curves in Fig. 4b is an indicat
that Eqs.~7! and ~8! are valid if they are applied to the
spectraR andu calculated withneff andkeff.

However, as discovered in Refs. 37–39, the shape
FIG. 4. a! The Pekar functionsneff(v) ~curve 1!
and keff(v) ~curve 2! and similar functions calcu-
lated by~5! and ~6! ~curves3 and4!. b! The Pekar
functionsR(v) ~curve 1! and u(v) ~curve 2! and
the same functions calculated by~7! and~8! ~curves
3 and4!. The crystal surface has no dead layer.
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FIG. 5. Curves representing the function
uP(v) ~curves2! and the phase spectrauK(v)
calculated on the basis ofRP(v) ~curves1! by
~7! ~curves3! or by the modified dispersion re
lation ~16! ~curve 4!: a! G.G lim, and b! G
,G lim. The crystal surface contains a dea
layer.
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experimental phase curves of reflection,u(v), differs from
that in Fig. 4b. The reason for this is the presence of a e
tonless ‘‘dead layer’’ at the surface of the crystal. In this ca
the curve representingu(v) is eitherS-shaped orN-shaped,
depending onG ~cf. the curves in Figs. 5b and 5a!. A de-
tailed analysis of the applicability of the Kramers–Kron
relations ~7! and ~8! to reflection spectra can be found
Refs. 15–19. There it was shown that for small values oG
~low temperatures! one should use not the ordinary dispe
sion relations but dispersion relations with additional term

u~v!5
v

p «0

` ln@R0 /R~x!#

x22v2
dx12 arctan

G lim2G

v lim2v
1a,

~16!

ln
R~v!

R0
5

4

p «0

` x@u~x!2a#

x22v2
dx12 ln F11S G lim2G

v lim2v
D 2G .

~17!

HereR0 is the reflection coefficient far from resonance;G lim

is what is known as the damping-constant limit, at whi
S-shaped phase curves become, with increasingG, N-shaped;
v lim is the frequency at which the additional term in~16!
becomes equal to6p; anda50 for v,v lim anda52p for
v.v lim. When G.G lim, the additional terms in~16! and
~17! should be discarded, which automatically leads to~7!
and ~8!.

As in the previous case~see Fig. 4b!, we carried out
comparative calculations of the spectra in the 1A-exciton re-
gion of the CdS crystal with allowance for the dead lay
~Fig. 5!. The thickness of the dead layer was set to 70
which is close to the value expected from theoretical cal
lations and the values obtained in Refs. 37–39. By varyinG
we found the values ofG lim andv lim from the transition from
S- shaped curves toN-shaped. The other parameters in t
theory are the same as in Fig. 4. First we calculated
spectraRP(v) and uP(v) in Pekar’s theory with a dead
layer. Then, on the basis of the reflection spectrumRP(v)
we calculated the corresponding phase curveuK(v) either
by ~7! or by ~16! and compared the results with Peka
phase curveuP(v).

The results of such comparison for two values ofG, one
larger thanG lim51.21 cm21 and the other smaller thanG lim
i-
e

:

r
,
-

e

51.21 cm21, are depicted in Figs. 5a and 5b, respective
We see that when there is a dead layer andG.G lim, the
relationship between the phase and amplitude curves are
scribed fairly well by the ordinary Kramers–Kronig relatio
~7!. However, here theN-shaped dependence has a negat
section due to the interference of the waves reflected fr
the crystal surface and the boundary of the dead layer, so
the optical constantsn andk defined by the ordinary formu
las ~9! and~10! prove to be incorrect. First, thek vs.v curve
in this case automatically also acquires a negative sect
which has no physical meaning. Second, the absolute va
obtained are incorrect.

When G,G lim, the dispersion relations derived b
Moskovski� and Solov’ev are satisfied fairly well, since th
S-shaped phase curves2 and4 coincide. But determining the
optical constants and the spectrum of the phase of the
flected wave may lead to even greater errors. More precis
if formula ~7! is applied to the reflection spectrum of a
unknown substance in order to calculate the optical const
of this substance, a method widely used in physics, not o
the values ofn, k, «8, and«9 prove to be incorrect, but also
the phase curve3 differs substantially from the true curve2.

A remark is in order at this point. The phase curve c
culated from the reflection spectrum by~7! ~curve3 in Fig.
5b! is N-shaped and has a negative section. On the o
hand, sometimes in experiments involving the calculation
u(v) from R(v), sections with negative values of the pha
curve also emerge. We believe that this is an indication t
there is either a dead layer at the crystal surface or simpl
ordinary layer with modified optical constants. The pha
curve should not be ‘‘lifted up’’ arbitrarily to extinguish th
region with negative values, as is sometimes done.

5. ANALYSIS OF THE REFLECTION SPECTRUM IN THE
OSCILLATORY MODEL

Since the frequency curves of the effective optical ch
acteristics of Pekar’s theory, used to calculate the spe
R(v) andu(v), are similar to those of a classical oscillato
we did the necessary calculations for this case, too. The
culation parameters were the same as in Secs. 3 and 4
the exciton mass was assumed infinite. It was found t
G lim53.21 cm21 in this case. We calculated the energy a



th

th

s

to

h

er

ti

i
ye
su
-

ys
n

e
el

i
ic

um
io
th
ca
st

at
fa
Å

be
en

r-
t-

e

iv
d
i-

of

he
-

en
at
true
The
ry
,
bi-

f the

red
f
ju-
the
re

o
-

the

ssed

he

the

762 JETP 87 (4), October 1998 M. I. Strashnikova and E. V. Mozdor
phase reflection spectra with and without a dead layer at
surface of the hypothetical crystal. It appeared thatS- and
N-shaped phase curves are also obtained for an ordinary
cillator in the case where there is a dead layer. Thus, it is
dead layer~rather than spatial-dispersion effects! that is re-
sponsible for the shape of theu vs. v curves.

As shown in Ref. 15, the reasonN-shaped phase curve
becomeS-shaped is the presence of a zero point in theR(v)
spectrum. In the complexṽ5v81 iv9 plane this is a singu-
lar point, and in integrating along the contourC with
G,G lim the contour must encircle this point, which leads
an additional term in~7! and the need to add 2p at frequen-
cies v.v lim. Thus, the Kramers–Kronig relation~7! be-
comes the additional dispersion relation~16!. At the fre-
quencyv lim with G5G lim the R vs. v curve passes throug
zero.

When there is absorption in the medium, only an int
ference effect may be the reason for theR vs. v curve pass-
ing through zero. Such an effect may occur when there
spatial dispersion in the medium or when there is no spa
dispersion, as in the case of an oscillator. HenceN-shaped
phase curves with a negative section are possible even w
out spatial dispersion, but in the presence of a dead la
i.e., at high temperatures and in media where there are
to be no spatial-dispersion effects.S-shaped curves are pos
sible only at low temperatures and smallG,G lim, while the
presence of spatial dispersion in« is not obligatory.

6. ANALYSIS OF THE EXPERIMENTALLY MEASURED
REFLECTION SPECTRUM

To conclude our investigation, we use the above anal
in applying the Kramers–Kronig relations to the experime
tally measured spectrumRe(v) in the 1A-excitonregion of
the CdS crystal at 4.2 K. The literature devoted to such sp
tra is vast, and the results have been generalized by Kis
et al.40 Different crystal samples of the same substance
similar conditions may have diverse reflection spectra, wh
differ in additional structures~spikes! and in the span of the
R vs. v curve. We selected a typical structureless spectr
which was used in Ref. 23 to compare with the reflect
spectrum calculated by the Fresnel formula. In Ref. 23
spectrum was approximated fairly well by a dependence
culated in Pekar’s theory without a dead layer at the cry
surface. In the present paper we used Eq.~7! for a better
approximation and found that the phase curve has a neg
section. This is proof that there is a dead layer at the sur
of this crystal. By setting the thickness of this layer to 70
and by varying the damping constant we achieved the
possible agreement between the calculated and experim
R vs. v curves~Fig. 6!.

In our approximation we found that it is highly impo
tant to allow for the 1B-exciton, since it changes the shor
wavelength limit behavior of the dispersionn(v). One stage
in the fitting was the search for the best agreement betw
the phase curves calculated by~7! from Re(v) and from
RP(v). Our goal was to match the spans of the negat
sections in the phase curves, and this was achieve
G50.7 cm21. It is important to note that the two theoret
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cally calculated curves correspond to no real variation
phase in scattering, since at this value ofG, which is much
smaller thanG lim, the phase curve must be calculated by t
modified relation~16! and beS-shaped, a case actually ob
served with samples used by Solov’ev and Babinski�

37 and
Pevtsovet al.39

Thus, the crucial information that can be obtained wh
~7! is applied to the reflection spectrum is the indication th
there is a dead layer at the crystal surface. However, the
phase curve cannot be obtained without additional study.
reader will recall that finding the parameters of the theo
only from the spectrumR(v) is an ambiguous procedure
since very close curves can be obtained for different com
nations of the parameters~see also Ref. 40!. Only by finding
G from other data and comparing it withG lim andGcr can we
be sure that the phase curve and the optical constants o
substance are really the true ones.

7. CONCLUSION

1. We have compared the experimentally measu
curvesn(v) andk(v) for a CdS crystal within the range o
the ground exciton states at 4.2 K with the respective con
gate quantities calculated on the basis of these curves by
Kramers–Kronig relations. The two groups of curves a
shown to be very different.

2. We have found that the relations~5!, ~6! and ~3!, ~4!
are true only whenG.Gcr and only for a classical wave~a
‘‘plus–minus’’ wave!. In all other cases these relations d
not hold: whenG.Gcr , the relations do not hold for a non
classical wave~a ‘‘minus–plus’’ wave!, and whenG,Gcr ,
the relations do not hold for a ‘‘plus’’ or ‘‘minus’’ wave
separately or for a combination of such waves, including
classical one.

3. All the Kramers–Kronig relations,~3!–~8!, hold if
they are applied to the effective quantitiesneff and keff,
which are parameters in Pekar’s theory and can be expre
in a complicated way in terms of the quantitiesn6(v) and
k6(v) of true waves propagating in the crystal. Here t
formally written quantity («9)eff52neffkeff does not reflect
the real energy losses in the medium.

FIG. 6. The experimentally measured reflection spectrum~curve1! and the
reflection spectrum calculated in Pekar’s theory with a dead layer at
crystal surface~curve2!.
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4. When there is a dead layer at the crystal surface,
relationship between the reflection phase and energy cu
are described well either by the ordinary relation~7! when
the phase curve isN-shaped(G.G lim) or by the additional
dispersion relation~16! when the phase curve is S-shap
(G,G lim). However, the optical constants of a substance
tained from the spectraR(v) andu(v) by ordinary calcula-
tion methods~without allowing for a dead layer or spatia
dispersion! will have incorrect values.

5. We have shown thatS- and N-shaped phase curve
can be obtained even if there is no spatial dispersion o«,
i.e., for a classical oscillator, if there is a dead layer at
crystal surface.

6. Finally, on the basis of Pekar’s theory via th
Kramers–Kronig relation~7! we have approximated the ex
perimentally measured reflection spectrumR(v) in the
1A-exciton region of the CdS crystal at 4.2 K.
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Photoinduced phase transitions in a Peierls system
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A theory is constructed that explains photoinduced phase transitions in a Peierls system being
irradiated by light with a finite width of the optical spectrum and a central frequency
close to the upper van Hove singularity of the first kind in the combined density of electron
states. The electron spectrum and the matrix elements of the dipole-moment operator are calculated
by Bogolyubov’s method of canonical transformations. The interaction with the light is
described by the Liouville equation for the density matrix of the electron subsystem in the dipole
approximation. The light field is considered a quasimonochromatic time-independent
random process with a Lorentzian spectrum. The derived equations are analyzed for two limits:
~1! when the width of the optical spectrum tends to zero~a monochromatic light field!,
and ~2! when the width of the optical spectrum is close to the upper limit~a bifurcation point! at
which a photoinduced phase transition can still be observed. An existence criterion for such
a transition is obtained, and the main parameters of the transition~the critical points and the size
of the hysteresis loop! are calculated. The broadening of the optical spectrum of the
incident light is shown to narrow the range of values of the central frequency of the light field
and to reduce the size of the hysteresis loop. Finally, near the phase transition point,
cavityless optical bistability sets in in the system, with light absorption increasing in the process.
© 1998 American Institute of Physics.@S1063-7761~98!01710-7#
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1. INTRODUCTION

The Peierls system examined in this paper is a o
dimensional chain of atoms each of which contains one o
electron. In the high-temperature metallic phase, the atom
the chain are positioned equidistantly and the conduc
band is half-filled. When the system is cooled and the te
perature reaches a critical valueT0 , the metallic phase be
comes unstable and a metal–semiconductor phase trans
occurs. As a result the chain atoms move closer together
pairwise fashion.1

The theoretical results obtained in the Peierls model
used to describe the experimentally observed propertie
many quasi-one-dimensional materials: complex platin
compounds,1 TaS3 compounds,2 organic conductors,3 oxide
vanadium bronzes,4 NbSe3 and materials.5–7 In particular,
this model makes it possible to explain the effect on
metal–semiconductor transition in vanadium dioxide of su
factors as uniaxial pressure,8 alloying,9,10 phonon–phonon
coupling,8,11 cohesion of a vanadium dioxide film and th
substrate,12 adsorption, and other factors.13

As is known, in a constant electric field with a certa
threshold field strengthEt the low-temperature phase of th
Peierls system undergoes a thermodynamically nonequ
rium phase transition to a state with a traveling charge d
sity wave.5 Depending on the conditions, the transition
either first-order or second-order. For instance, the curre
voltage characteristic of NbSe3 at T526.5 K has a hysteresi
dependence characteristic of first-order phase transiti
while at T534 K there is no hysteresis dependence.5

The behavior of the low-temperature phase of the Pei
7641063-7761/98/87(10)/7/$15.00
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system in a light field that excites nonequilibrium electron
hole pairs in the system has been studied both theoretica14

and experimentally~in vanadium dioxide!.15,16 It was found
that because of strong electron–phonon coupling, as
electron–hole pair concentration increases the band gap
rows, and at high excitation levels there occurs
semiconductor–metal phase transition.6

Note that the narrowing of the band gap in the electr
spectrum and the decrease of the frequency of one or se
phonon modes down to zero as the concentration of none
librium light-excited electrons grows is a fairly general pro
erty of a broad class of material media of various dime
sionalities.17–23 Here, near the point of the photoinduce
semiconductor–phase transition accompanied by change
the crystal lattice stricture, one can observe spatial17–19 and
temporal20–22 periodic modulation of the parameters of th
system.

This paper studies the behavior of the low-temperat
phase of the Peierls system in a quasimonochromatic l
field whose frequency is somewhat lower than the upper
Hove singularity of the first kind,24 at which the combined
density of electron states in direct optical band-to-band tr
sitions becomes infinite~see Fig. 1 below!.

Thanks to the strong electron–phonon coupling, the f
quency that corresponds to the van Hove singularity
creases as the electron–hole pair concentration increase9 In
such conditions, when the irradiation intensity increas
there may be a sudden narrowing of the band gap in
system’s spectrum~a photoinduced semiconductor–sem
conductor phase transition!. The reason for this is positive
feedback. The light field drives the electron–hole pair co
© 1998 American Institute of Physics
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765JETP 87 (4), October 1998 A. L. Semenov
centration up and, as a result, the frequency correspondin
the van Hove singularity of the first kind decreases,
proaching the light frequency. Thus, the electron–hole p
generation rate increases dramatically, which leads to a
ther decrease of the frequency of the van Hove singula
This positive feedback reduces the stability of the system
the positive feedback becomes strong enough, stability
be lost, with a sudden transition to a new state of equilibri
~a phase transition!.

Thus, thanks to the strong coupling between the elec
subsystem and the static phonon mode in the Peierls mo8

one of the mechanisms causing a photoinduced phase tr
tion and cavityless optical bistability with increasing abso
tion comes into play.25 Generally, the given type of bistabil
ity is due to the nonlinear dependence of the absorp
coefficient on the incident radiation intensity and may
brought on by different causes:25 atomic correlations within a
small volume, the temperature dependence of the band
renormalization of the band gap due to electron–pho
coupling,25,26and variations in the frequency of transitions
an ensemble of two-level atoms due to local-field effects
electron–phonon coupling.27 However, the author knows o
no mechanism, similar to that considered in this paper, o
photoinduced phase transition and cavityless optical bista
ity in the Peierls system irradiated by light field whose ph
tons have an energy somewhat lower than the width of
total Peierls band.

2. ELECTRON SPECTRUM AND DIPOLE MOMENT OF THE
SYSTEM

Consider a chain of atoms each of which has one o
electron. The Hamiltonian of the electron subsystem in
tight-binding approximation can be written as follows:1

H5(
n

Bn,n11~an
†an111an11

† an!, ~1!

FIG. 1. Dependence of the densityn of electron states of the Peierls syste
on the energyE ~Eq. ~27!!. The vertical arrow designates the optical ban
to-band transitions~considered in this paper! with a frequency somewha
lower than that corresponding to the upper van Hove singularity of the
kind, where the combined density of electron states for direct optical t
sitions becomes infinite.
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wheren is the number of the atom in the chain,Bn,n1-- is
the overlap integral of the wave functions of neighbori
electrons, andan

† and an are the operators of electron cre
ation and annihilation at thenth atom.

For narrow-gap systems, e.g., for the Peierls model,
separation of adjacent atoms,r n,n11 , exceeds the effective
radiusR of the atomic wave function of an electron sever
fold. In this caseBn,n11}exp(2rn,n11 /R) ~Ref. 28!. The
separationr n,n11 can be written

r n,n115r 01~21!n11Rj, ~2!

with r 0 the atomic separation in the metallic phase, andj the
period-doubling parameter for a one-dimensional crystal
we allow for ~2!, the overlap integralBn,n11 assumes the
form

Bn,n115b exp@~21!nj#, ~3!

where b is the overlap integral in the metallic phas
(j50). With the Hamiltonian~1!, the phases of the atomi
wave functions are selected in such a way thatb in ~3! is a
real quantity.

By employing Bogolyubov’s method of canonica
transformations29 we reduce the Hamiltonian~1! to the diag-
onal form

H5(
k

«kak
†ak , ~4!

where

«k52b sign~cosk!Acos2k1sinh2j, ~5!

ak andak
† are new collective second-quantization Fermi o

erators, andk50,62p/N, . . . ,6p, ak12p5ak , with N the
number of atoms in the chain.

Equation~5! shows that forjÞ0 the spectrum of«k has
two bands, with the lower band in the ground state co
pletely occupied and the upper band vacant~the semicon-
ducting phase!. At j50 the spectrum~5! consists of one
half-filled band~the metallic phase!.

In the tight-binding approximation, the dipole mome
operator of the Peierls system is

d5(
n

~dn,n11an
†an111dn,n11* an11

† an!, ~6!

where the dependence ofdn,n11 on j is similar to ~3!:

dn,n115~d11 id2!exp@~21!nj#

52eE
v
cn* ~r !rcn11~r ! dv. ~7!

Herecn(r ) is the atomic wave function of the electron at th
nth site, ande is the electron charge. By selecting the phas
of the wave functionscn(r ) in such a way that the overla
integral ~3! is real we ensure that bothd1 andd2 in ~7! are
uniquely defined.

By introducing the Fermi operatorsak andak
1 into ~6!

we obtain

st
-
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d5(
k

H Fd1«k

b
2

2d2

11wk
2 @~12wk

2!coshj sin k

12wk sinh j cosk#Gak
†ak1 i

2d2

11wk
2 @~12wk

2!

3sinh j cosk22wk coshj sin k#ak
†ak2pJ , ~8!

where

wk5
coshj cosk2sign~cosk! Acos2k1sinh2j

sinh j sin k
. ~9!

Note the formal similarity of the operators~1! and~6! at
d250. The operators~4! and ~8! are also formally similar.

Suppose that in the absence of an external electric fi
the total dipole moment of the system is zero. Then Eqs.~8!
and~5! imply thatd150. Thus, the fact that we have chos
the phases of the wave functionscn(r ) in such a way that the
integralBn,n11 in ~1! is real ensures, in the present case, t
the interstitial dipole-moment matrix elementdn,n11 in ~6! is
imaginary. The case ofd1Þ0 can probably be observed i
systems exhibiting ferroelectric properties, but we will n
consider such systems here. Asj→0, as Eq.~9! indicates,
wk→0 for all kÞ6p/2, with the result thatdk,k2p→0 in ~8!
and all dipole transitions are forbidden. IfjÞ0, then
dk,k2pÞ0 in ~8!, and the corresponding dipole transitio
are allowed. Since in this case the intervalkP(2p/2,p/2) is
the first Brillouin zone, the given transitions in the spectru
~5! are vertical band-to-band transitions.

3. EQUILIBRIUM EQUATION OF A THERMODYNAMICALLY
NONEQUILIBRIUM PEIERLS SYSTEM

In describing the behavior of the Peierls system in a li
field we assume that the electron intraband relaxation tim
much shorter than the band-to-band relaxation timet ~Ref.
30!. In this case, following the approximation adopted
Refs. 14 and 24, we can assume that the electron statisti
each band is described by a Fermi distribution with a spec
Fermi quasilevel. Then, allowing for the symmetry of~5!, we
arrive at an expression for the concentrationn of electron–
hole pairs in a light field:

n5
N

2
2 (

uku<p/2
tanh

«k2m

2kBT
, ~10!

wherem is the Fermi quasilevel of the conduction band~in
view of the symmetry of the dispersion law~5! the Fermi
quasilevel of the valence band has the opposite value!, and
kB is Boltzmann’s constant.

Treating the parameterj as a generalized coordinate, w
can write the equilibrium equation for the Peierls syst
~within each band the electron gas is in thermodynamic e
librium, but thermodynamic equilibrium between the ban
is violated!:

S ]F1

]j D
T,N1

1S ]F2

]j D
T,N2

1S ]Fph

]j D
T

50, ~11!
ld

t

t

t
is

in
c

i-
s

where

F j5m jNj2kBT(
k

lnF11expS m j2«k

kBT D G , ~12!

Fph5
A

2
j2,

with F j , m j , and Nj the electron free energy, the Ferm
quasilevel, and the number of electrons belonging to thej th
band (j 51,2), andA the coefficient in the expansion of th
free energy of the phonon subsystem,Fph, in powers ofj
~see Ref. 1!. Summing overk in ~12! must be done within the
j th band of the spectrum~5!.

Plugging ~12! into ~11! and performing the necessar
transformations, we finally get

22 (
uku<p/2

]«k

]j
tanh

«k2m

2kBT
1Aj50. ~13!

The expansion coefficientA can be expressed in terms o
the critical temperatureT0 of a thermodynamically equilib-
rium metal–semiconductor transition~in the absence of a
light field! and other characteristics of the system:8,11

A5
4bN

p F ln
pb

2kBT0
11G . ~14!

Thus we have obtained an equation~Eq. ~10!! expressing
the dependence of the concentrationn of electron–hole pairs
on the Fermi quasilevelm and a parameterj, and an equi-
librium equation~Eq. ~13!! describing the relationship be
tween the parameterj of the Peierls system andm. The
Fermi quasilevelm is determined in turn by the degree
which light affects the system. An equation describing t
effect must depend on the specific mechanism of interac
of the radiation and the electron subsystem.

4. INTERACTION WITH RADIATION

The interaction between the system and the light field
described by an operatorV, which in the dipole approxima-
tion can be written as

V52d–E~ t !52d–E Ev exp~2 ivt ! dv, ~15!

whereEv andv are the amplitude and frequency of a spe
tral component of the light field. We assume the incide
radiationE(t) to be a quasimonochromatic time-independe
random process linearly polarized along the crysta
axis.31,32

Using Liouville’s equation33

i\
]r

]t
5@H1V, r#, ~16!

and allowing for Eqs.~5! and ~15!, we arrive at a kinetic
equation for the concentrationn52( uku<p/2rkk of the
electron–hole pairs in second-order perturbation theory:

]n

]t
5

4p

\2 (
uku<p/2

dk
2 tanhS «k2m

2kBT D GS 2«k

\ D2
n2n0

t
,

~17!
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where n05n(m50) is the concentration of electron–ho
pairs in the absence of a light field,

dk5
2d2

11wk
2

u~12wk
2!sinh j cosk22wk coshj sin ku,

~18!

andG(v) is the spectral density of the light field, which fo
a quasimonochromatic signal can be written as follows:31

G~v!5Ig~ uvu2v0!, ~19!

with v0 the carrier frequency, andg(x) a bell-shaped func-
tion, with its maximum atx50, satisfying the normalization
condition *g(x) dx51. The width Dv of the spectrum
G(v) satisfies the inequalityDv!v0 . The quantity I
5 1

2*G(v) dv is the intensity of the light field~in the Gauss-
ian system of units, to within a factorcn/2p, wherec is the
speed of light, andn is the medium’s refractive index!.

The last term on the right-hand side of Eq.~17!, which
has been introduced phenomenologically, allows for band
band relaxation with a relaxation timet. Equation ~17!
shows that the variation in the electron–hole pair concen
tion is due to the interaction of the electron subsystem
the spectral components of the light field with frequenc
vk52«k /\.

Combining~19! with Eq. ~17!, in the steady-state mod
(]n/]t50) we finally arrive at an expression for the inte
sity:

I 5
~n2n0!\2

4pt F (
uku<p/2

dk
2 tanhS «k2m

2kBT DgS 2«k

\
2v0D G21

.

~20!

Equations~10!, ~13!, and ~20! constitute a complete se
of equations with respect to the internal parametersm, n,
andj of the Peierls system with given external parametersT,
I , v0 , etc.

5. DEPENDENCE OF THE CONCENTRATION OF
ELECTRON–HOLE PAIRS ON THE BAND GAP

Let us analyze Eqs.~10! and~13! for the case where the
Peierls system is a nondegenerate semiconductor:

«/22m

kBT
.2, ~21!

where « is the band gap. Physically, the condition~21!
means that~a! 4kBT,«, and~b! the concentration of excited
electrons is so low that the Fermi quasilevel of the cond
tion band is in the band gap. Then, taking exp@2(«/2
2m)/kBT# as a small parameter, we can approximat
transform Eq.~10! for the concentrationn of electron–hole
pairs into

n5
N

2
A«kBT

pb2
expS 2

«/22m

kBT D . ~22!

We write the equilibrium equation~13! in the following
form:
o-

a-
d
s

-

y

expS 2
«/22m

kBT D5A «

4pkBT Farcsin
p

4
1 ln

2pb

«
2

pA

4bNG .
~23!

Here in addition to assuming that condition~21! is met we
assume thatj<0.5. This is justified because such values oj
are realized in most materials described by the Pei
model.1,6,8

Plugging~23! into ~22! and allowing for~14!, we arrive
at a relationship linking the concentrationn of electron–hole
pairs to the band gap«:

n5
N«

4pb
ln

«0

«
, ~24!

where«0 is the band gap in the absence of light (m50) for
kBT!«,

«054kBT0 exp@arcsin~p/4!21#. ~25!

Equation~24! is valid whenD«[«02« is small, and the
reason for this lies in the adopted approximation~21!, which
with allowance for~23! and ~25! can be written in the more
convenient form

D«[«02«, A«0kBT/2 , ~26!

where, as in~25!, it is assumed thatT,T0/2.
An analysis of the equilibrium equations~11!–

~13!shows that the solutionn(«) given by ~24! is stable if
]n/]« is negative, i.e., if«P(«0 /e,«0#.

6. A PHOTOINDUCED PHASE TRANSITION IN A
MONOCHROMATIC LIGHT FIELD

We will begin our analysis of Eq.~20! and~24! with the
case of a monochromatic light field, with the form fact
g(x)5d(x). In ~20! we replace the sum by an integral wit
respect toE, bearing in mind that the density of electro
statesn(E) corresponding to the spectrum~5! has the form
~Fig. 1!

n~E!5
2NE

pA~4b2cosh2j2E2!~E224b2sinh2j!
, ~27!

and that, according to~18!, ~5!, and~9!, the matrix element
of the dipole-moment operator,dk , at «k5E is given by the
formula

d~E![dk~«k5E!5
4bd2 coshj sinh j

E
. ~28!

Then at tanh@(\v0/22m)/2kBT#51 andn050 we have the
following I vs. « dependence

I 5
\2v0b ln~«0 /«! A@16b21«22~\v0!2#@~\v0!22«2#

8td2
2«~16b21«2!

.

~29!

We will assume that the initial~at n50) offset DE of
the energyA16b21«0

2 of the van Hove singularity of the firs
kind from the incident-photon energy\v0 is small:
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0,DE[A16b21«0
22\v0!\v0 . ~30!

In this case Eq.~29! can be approximately written as follows

I 5
b2 ln~«0 /«! A«2«2

A2«0 tv0d2
2

, ~31!

where

«25A~\v0!2216b2. ~32!

An analysis of the kinetic equation~17! shows that for the
solution ~31! to be stable]I /]« must be negative.

Figure 2 schematically representsI vs. « for physically
realizable systems. As the light intensity increases, a poin
the graph moves along the curve 0→1→3, while as the
intensity decreases the point moves along the curve 3→2
→0. The jumps in the value of« in the 1→3 and 2→0
sections corresponds to direct and inverse photoindu
phase transitions. The intervalI ,I 1 constitutes the bistabil
ity region.

The curve 0→1 is described by~31!. At the point

«15~«012«2!/3 ~33!

the solution ~31! becomes unstable~since ]I /]«50) and
there is a transition to the states«'«2 in which the fre-
quencyv0 exceeds the frequency corresponding to the
Hove singularity of the first kind by a small quantity, com
parable to the spectral linewidth of the light field; it is a
sumed that for a monochromatic field the spectral linewi
is an extremely small~but finite! quantity compared to the
other characteristic parameters of the problem.

This state is stable for allI .0, sincen(E)5` at the van
Hove singularity. Indeed, under a fluctuation increase in«
the frequency corresponding to the van Hove singularity
the first kind also increases, approaching the frequencyv0 of
the light field. As a result the electron–hole pair concent
tion grows, which leads to a decrease in«. Thus, negative
feedback sets in in this case, and this ensures the stabili
the system.

Plugging~33! into ~31! and allowing for~32! and ~30!,
we find the valueI 1 of the intensity of the light field at which
the phase transition occurs~see Fig. 2!:

FIG. 2. Inverse dependence of the band gap« on the intensityI of a mono-
chromatic light field;«15(«012«2)/3.
n

ed

n

h

f

-

of

I 15I ~«1!5A 2

27

b2\3/2v0
1/2~DE!3/2

td2
2«0

5/2
. ~34!

Thus, the intensityI 1 is proportional to (DE)3/2, which
means that in experiments the intensity can be fairly low,
that there is no overheating of the sample.

7. PHOTOINDUCED PHASE TRANSITION IN A LIGHT FIELD
WITH A FINITE WIDTH OF THE OPTICAL SPECTRUM

The possibility of observing a photoinduced phase tr
sition at low light intensity means that we can use nonla
sources of light, which do not emit monochromatic ligh
This means we must allow for the finiteness of the width
the optical spectrum of the incident radiation. Note tha
separate investigation of the effect of nonmonochromatic
on the way in which a phase transition proceeds would a
be of interest.

To solve Eq.~20! we must know the functiong(v) char-
acterizing the spectral density of the light field. To this e
we assume theg(v) has the Lorentzian form32

g~v!5
t0

p@11~vt0!2#
, ~35!

wheret0 is the reciprocal of the spectral halfwidth.
In ~20! we replace the sum with an integral with respe

to E, allowing for ~24!, ~27!, ~28!, and~35! and the approxi-
mate relationships tanh@(\v0/22m)/2kBT#51 and n050.
Here, as in Sec. 6, we limit ourselves to the case specifie
~30!, where the carrier frequencyv0 of the light field is close
to the initial frequency, which corresponds to the van Ho
singularity of the first kind. Doing the necessary transform
tions, we arrive at an approximateI vs. « dependence:

I 5
\5/2b3/2ux0uz

pt0
3/2td2

2«0
2

, ~36!

where

z~x!5S 12
x

x0
DA~11x2!~x1A11x2 !, ~37!

x5x~«!5t0S v02
A16b21«2

\ D , ~38!

with x05x(«0),0 the initial dimensionless offset of th
light-field frequencyv0 from the frequency corresponding t
the van Hove singularity of the first kind.

Equations~36!–~38! describe the relationship betwee
the light-field intensityI and the band gap« of the Peierls
system in a stationary state of equilibrium. An analysis of
kinetic equation~17! shows that for the state to be stab
]I /]« must be negative, which in a form more convenie
for analysis can be expressed as

]z

]x
, 0. ~39!

Let us study thez vs. x dependence~37! in the range
uxu<1. To this end we expand~37! in a Taylor series up to
terms cubic inx:
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z~x!511a1x1a2x21a3x3, ~40!

where

a15
x022

2x0
, a25

5x024

8x0
, a35

3x0210

16x0
. ~41!

The pointsx1 andx2 corresponding to the loss of stabi
ity in the system can be found by solving the equat
]z/]x50. Combining this with~40! yields

x1,25
2a27Aa2

223a1a3

3a3
. ~42!

We see that the behavior of the system is critical
a2

223a1a3.0. Combining this fact with~41! and allowing
for the inequalityx0,0, we arrive at the necessary conditio
for a phase transition, a condition that imposes a constr
on the initial offset of the light-field carrier frequency from
the frequency corresponding to the van Hove singularity
the first kind,x0,29.55, or, in the original notation,

A16b21«0
22\v0.9.55\/t0 . ~43!

If condition ~43! is met, an analysis of Eqs.~36!–~38!
shows that schematically theI vs. « graph has the form de
picted in Fig. 3. As the light intensity increases, a point
the graph moves along the curve 0→4→1→3, while as the
intensity decreases the point moves along the curve 3→2
→4→0. The jumps in the value of« in the 1→3 and 2
→4 sections correspond to direct and inverse photoindu
phase transitions. The rangeI 2,I ,I 1 constitutes the bista
bility region.

Analyzing Eq. ~40!, we can find the pointsx3 and x4

corresponding to the new positions of equilibrium for t
direct and inverse photoinduced phase transitions,

x3,45
2a262Aa2

223a1a3

3a3
, ~44!

and the dimensionless valueDx of the jump in the band gap
in a phase transition:

Dx5
Aa2

223a1a3

a3
. ~45!

FIG. 3. Inverse dependence of the band gap« on the intensityI of a light
field with a finite width of the optical spectrum.
f

nt
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d

It then turns out thatDx is the same for direct and invers
photoinduced phase transitions. The jump in the band g
D«, correspond toDx of ~45! can be approximately written
as follows:

D«52
\DxA16b21«2

«t0
, ~46!

where we have allowed for~38! and the fact thatD«!«.
Using ~40!, we can also derive an expression for t

width of the hysteresis loop in a photoinduced phase tra
tion ~the size of the region of cavityless optical bistability
terms of the dimensionless light-field intensity!:

Dz5z~x1!2z~x2!5
8~a2

223a1a3!3/2

27a3
2

. ~47!

At the bifurcation point, where~43! becomes an equal
ity, x0529.55. In this case, in accordance with~41!, ~42!,
~44!, and ~47!, x15x25x35x45xb>20.89 andDx5Dz
50. Thus, within the present approximationuxu<1 we are
able to describe the behavior of the Peierls system near
threshold valuex0529.55, below which there are critica
singularities.

The above analysis shows that to observe a phot
duced phase transition and cavityless optical bistability o
must ensure that the light-field intensityI is higher thanI b ,
the light-field intensity at the bifurcation point (x0529.55,
x520.89). Here is a numerical estimate ofI b . If in ~36! we
put d2'10218esu ~Refs. 27 and 32!, t'10210s ~Ref. 30!,
1/t0'102 s21 ~Ref. 34!, and «0'2b'0.5 eV ~Refs. 6 and
8!, we find thatI b;10212esu, which corresponds to an in
tensity I bc/2p;1023 esu;10210W cm22. When thin-film
or thin-filament samples with good heat-removal charac
istics are irradiated by light of such or even higher intens
overheating can be avoided.

8. CONCLUSION

Our theory thus suggests that when the Peierls syste
irradiated with light whose frequency is somewhat low
than the frequency corresponding to the upper van Hove
gularity of the first kind, a photoinduced phase transition a
cavityless optical bistability can be observed in such a s
tem, with light absorption increasing in the process. Th
phenomena occur when condition~43! is met, i.e., when the
light-field frequencyv0 and the halfwidth 1/t0 are limited
from above. The fact that such a condition exists can
explained by competition of two feedback mechanism
Positive feedback is reflected by the first term on the rig
hand side of Eq.~17!, and the mechanism has been describ
in detail in the Introduction. Negative feedback consists
the following: as the concentrationn of the nonequilibrium
electrons in the conduction band grows, the recombina
rate increases, which drivesn down. This process is repre
sented by the second term on the right-hand side of Eq.~17!.
If negative feedback is stronger than positive feedback,
equilibrium state of the system is stable, and slow variatio
in the external parameters lead to smooth variations in
internal parameters. But if positive feedback is domina
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then, in accordance with~17!, there is a sharp increase
fluctuations, which leads to a sudden variation in the inter
parameters of the system.

Broadening of the optical spectrum of the incident rad
tion ~an increase in the halfwidth 1/t0) reduces the possibil
ity of observing the critical singularities of the system: t
condition ~43! imposed on the frequencyv0 becomes more
stringent and dimensions of the hysteresis loop,Dx of ~45!
andDz of ~47! decrease, as Eqs.~41! imply.

The final expressions~22!–~47! obtained in this pape
hold if the initial offsets ofv0 from the frequency corre
sponding to the van Hove singularity of the first kind a
small:

A16b21«0
22\v0,A«0kBT/2 . ~48!

The present theory is unable to examine the frequency ra
where the offsets are large, i.e., where the condition~48! is
not met, since the approximation~26! of a weak optical ex-
citation is invalid in this range. At temperaturesT'100 K
(kBT'8.631023 eV) and a band gap«0'0.5 eV this con-
dition imposes a constraint on the range of possible value
«:

0,«02«,0.033 eV.

In conclusion it must be noted that the phenomenon
cavityless optical bistability with increasing absorption sim
lar to that studied in the present paper~but caused by othe
mechanisms! was observed in experiments involving zin
selenide,35 the amorphous semiconductor GeS2 ~Ref. 36!,
amorphous GeSe2 films,25 CdS plates, and othe
materials.25,26However, the author knows of no such expe
ments involving materials whose electronic properties can
described by the Peierls model.

* !E-mail: semenov@quant.univ.simbirsk.su
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Microstructure of pair centers of Cr 31 –Cr21 ions in the KZnF 3 crystal
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Studies involving the piezospectroscopy method have shown that the symmetry of the pair
centers of Cr31 –Cr21 ions in the KZnF3 crystal is tetragonal. In this paper we develop a
microscopic model of a pair center. We use the temperature dependence of the integrated
intensity of the absorption line to find the effective hopping integral for aneg electron,tss5205
610 cm21, and the polaron reduction factor, equal to 0.11. By analyzing the selection
rules for exchange-induced electric dipole transitions under double-exchange conditions we
identify all the absorption lines of Cr31 –Cr21 pairs. © 1998 American Institute of Physics.
@S1063-7761~98!01810-1#
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1. INTRODUCTION

Thanks to the recent discovery in La12xAxMnO3 com-
pounds, where A is a bivalent cation, of gia
magnetoresistance1 and a huge isotopic effect,2 experimental
and theoretical studies of mixed-valence perovskites h
become highly important. The microscopic theories of th
compounds are based on the notions of double exchange
strong electron–phonon coupling.3,4 One of the main diffi-
culties encountered in these theories is the problem of e
mating the microscopic parameters, such as the electron
ping integral and the Jahn–Teller coupling energy.
possible way of finding the parameters of the interaction
tween Mn31 and Mn41 ions or their isoelectronic analogs
to study the pair centers of these ions in dielectric crys
with a low pair-center concentration. In this case a la
number of methods is available, e.g., optical spectrosco
whose use in the case of concentrated compounds wi
large conductivity is highly problematic.

In Ref. 5 we reported that the optical absorption sp
trum of KZnF3 :Cr31, Cr21 crystals has three groups of rel
tively narrow lines in the 500-nm, 580-nm, and 600-n
ranges~Fig. 1!, in addition to the characteristic lines fo
single Cr31 and Cr21 ions. The experimental values of th
transition energies are listed in Table I. The intensity of th
absorption lines is proportional to the product of concen
tions of the Cr31 and Cr21 ions, which made it possible to
interpret them as lines related to the pair centers of the C31

and Cr21 ions. It was assumed that Cr31 and Cr21 occupy
positions in neighboring unit cells and are coupled by
double-exchange mechanism, which arises through the in
mediate fluorine ion~a double 180° exchange!. The goal of
the present investigation is an experimental verification
this assumption, an estimate of the electron hopping integ
and an identification of the transitions corresponding to
observed absorption lines.

The main condition for dynamic electron hopping b
tween ions that are in different valence states~in our case
these are ions of bivalent and trivalent chromium ions! is the
total equivalence of the crystallographic positions occup
7711063-7761/98/87(10)/5/$15.00
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by these ions. When KZnF3 crystals are activated, Cr31 ions
replace Zn21 ions. Here, because of heterovalent subst
tion, centers of Cr31 ions of cubic, trigonal, tetragonal, an
monoclinic symmetries are formed.6,7 Hence we may assum
that pair centers of the Cr31 and Cr21 ions form either with-
out local balance of charge~pairs coupled by the double
exchange mechanism! or with local balance of the exces
charge of the Cr31 ion. In the latter case the mechanism
superexchange interaction with virtual electron transfer is
alized. Thus, finding the symmetry of a pair center may le
to conclusions concerning the center’s microstructure.

2. EXPERIMENTAL RESULTS

KZnF3 crystals have a perovskite cubic structure~the
space group Pm3m!, so that in the presence of anisotrop
centers there is orientational degeneracy. It is known that
most effective method of determining the symmetry of a
isotropic centers in cubic crystals in experiments is the o
that employs external fields. To solve the problem we ch
the piezospectroscopy method.8

The samples for our investigations were grown by t
Bridgman–Stockburger method. For the initial materials
took potassium fluoride, pre-dried to exclude the possibi
of hydrolysis, and zinc fluoride, purified by recrystallizatio
from the melt. For alloying the crystals we used chromiu
fluorides CrF3 and CrF2, whose concentration in the mixtur
was about 1 percent by weight.

For piezospectroscopy studies, the grown single crys
were cut into samples in the form of rectangular parallele
peds in such a way that the normal to two opposite face
parallel either to the C4 axisor the C2 axis of the crystal. The
observation of the piezodichroism spectra was done alon
axis parallel to the long face of the parallelepiped, with th
direction corresponding to the tetragonal axis of the crys
The samples were oriented along the perfect cleavage
KZnF3 single crystals in~100! planes, and the accuracy o
orientation was checked on the DRON-2 x-ray diffract
meter and was found to be62°.
© 1998 American Institute of Physics
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The splitting of the absorption lines due to the lifting
orientational degeneracy can be observed in the follow
cases: only under pressure along the C4 axis if the symmetry
of the centers is tetragonal, and only under pressure along
C2 axis if the symmetry is trigonal. If the symmetry of th
centers is lower, the lines will split under pressure along
C2 axis and along the C4 axis.

When nondestructive pressures are appliedP
'20–25 kgf mm22), the size of the splitting of the spectra
lines may be much smaller than the width of these lin
Such splitting was detected by measuring the linear dich
ism signal with a highly sensitive spectral polarimeter sim
lar to the one used by Zaslavski� and Natadze;9 the measure-
ments were done atT577 K.

The absorption and linear dichroism spectra for grou
of lines in the 500-nm and 600-nm ranges~where the absorp
tion lines of a pair center are the strongest! are depicted in
Figs. 2 and 3 for two directions of applying axial pressu
parallel to the C4 axis and parallel to the C2 axis, respec-
tively. To make the picture more graphic, we have dra
only the absorption lines of pair centers isolated in the sp
trum of the KZnF3:Cr31,Cr21 crystal. In both cases the axia
pressure was about 15 kgf mm22. Figures 2 and 3 show tha
in the uniaxial deformation field the linear dichroism sign
which indicates that both groups of lines are split, can
observed only when the pressure is applied parallel to the4

FIG. 1. The absorption spectrum of the KZnF3:Cr31,Cr21 crystal; T
5300 K.
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axis. These results clearly suggest that the pair centers
tetragonally symmetric and that the piezospectroscopy ef
is due solely to the lifting of orientational degeneracy.

The results obtained in the experiments suggest that
chromium ions forming a pair center occupy neighbori
positions of the Zn21 ions on the tetragonal axis of the cry
tal. Of course, if the excess charge of the Cr31 ion were to be
locally balanced by a crystal lattice defect on the tetrago
axis, the symmetry of a center would also be tetragon
However, it is unclear why this way of excess charge bala
has preference to other possible variants of local balanc
charge, e.g., as those for single Cr31 ions.6,7 On the basis of
all this reasoning we concluded that an observed pair ce
of Cr31 –Cr21 ions in the KZnF3 crystal is formed with non-
local balance of charge similar to that for centers of sin
Cr31 ions with cubic symmetry.

All the observed absorption lines of a pair center
Cr31 –Cr21 exhibit strong temperature dependence. Wh

FIG. 2. Absorption~a! and piezodichroism~b,c! spectra of the KZnF3:Cr31,
Cr21 crystal in the 500-nm range;T577 K.
TABLE I. Probabilities of electric dipole transitions and the positions of the levels of a Cr21 –Cr31 pair center
in the KZnF3:Cr31,Cr21 crystal (F(S)5(S19/2)(7/22S) anda2@b2).

Wavelength, nm Excited Transition Calculated
~energy, cm21) state probability energy, cm21

598 Cr21(3Eu)Cr31(4A2) a2 1
16(dv,v

ee (z))2F(S) 16 730

~16 722!

580 Cr21(3Ev)Cr31(4A2) b2 1
16(dv,v

ee (z))2F(S) 17 290

~17 241!

503 Cr21(3T1(y,x))Cr31(4T2) 1
8(dy,y

tt (z))2F(S) 22 090

~19 881!

492 Cr21(3T1(z))Cr31(4T2) 1
8(dz,y

tt (z))2F(S) 22 510

~20 325!
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the temperature is lowered below 150 K, the intensity
these lines decreases, and at 10 K the absorption lines o
pair centers disappear completely. Since these lines are
served against the background of the broad absorption b
of single Cr31 ions, we used the following method to an
lyze their behavior under temperature variations quant
tively. The absorption spectrum of the Cr31 ions was deter-
mined from the spectrum of a crystal activated only by Cr31

ions and was then subtracted from the absorption spec
of the samples with a coefficient that depended on the r
of the concentration of Cr31 ions in the sample to that in th
KZnF3:Cr31 crystal. Since the shape of the electro
vibration absorption bands of the Cr31 ions is also
temperature-dependent, the spectra of the KZnF3:Cr31 crys-
tal were measured at the same temperatures as the abso
spectra of KZnF3:Cr31,Cr21 crystals. The temperature de
pendence of the integrated intensity of the absorption
with lmax5598 nm is depicted in Fig. 4. An interpretation
the observed variations in the spectrum of pair center
given below, in the discussion of the experimental result

FIG. 3. Absorption~a! and piezodichroism~b,c! spectra of the KZnF3:Cr31

Cr21 crystal in the 600-nm range;T577 K.

FIG. 4. Temperature dependence of the integrated intensity of the ab
tion line with lmax5598 nm of a Cr21 –Cr31 pair center and its approxima
tion by the Boltzmann distribution.
f
the
b-
ds

-

m
io

-

tion

e

is

3. STRUCTURE OF THE ADIABATIC POTENTIALS OF
MIXED-VALENCE PAIRS AND VIBRONIC REDUCTION
OF THE HOPPING INTEGRAL

We examine the adiabatic potential in a pair in t
ground state, Cr21(t2

3 ,e; 5E) –Cr31(t2
3 ; 4A2), where the

Cr31 ion is in positionA and the Cr21 ion, in positionB. In
the KZnF3 crystal, the triply charged ion Cr31 replaces the
doubly charged Zn21 ions. In view of this it is natural to
expect that the nearest neighbors of the fluorine ions m
closer to the Cr31 ion. The corresponding term of the adia
batic potential for the4A2 state has the form

UA5VAQA1
mvA

2

2
QA

2 , ~1!

whereQA is the normal component of the respiratory mo
of an octahedron with a frequencyvA . According to the
existing theory of the Jahn–Teller effect, for the ground st
5E of Cr21 ions we have an adiabatic potential of the form10

UB5VBQB1
mvB

2

2
QB

21VE~UuQu1U«Q«!1
mvE

2

2

3~Qu
21Q«

2!1NEF 1

A2
~Q«

22Qu
2!Uu1A2 QuQ«U«G

1V3Qu~Qu
223Q«

2!, ~2!

whereQu andQ« are the normal coordinates of the octah
dron, which form the basis of the irreducible representat
of type E. It is natural to assume thatVB!VA . Pointing the
z axes at the centersA andB along the axis of the pair and
bearing in mind that in the Cr21 –F2 –Cr31 fragment the
fluorine ion is common to the two chromium ions, we arri
at the adiabatic potential depicted in Fig. 5. In the sa
figure we give the diagram of the displacement of the flu
rine ions from their equilibrium positions in thexz plane. In
both minima, the pair centers of Cr21 –Cr31 have a tetrago-
nal symmetry axis along thez axis. According to~1!, the
ambient structure of the fluorine ions surrounding Cr31 is
compressed along thez axis, while, according to~2!, the
ambient structure of the fluorine ions surrounding Cr21 is
stretched along thez axis.

rp-

FIG. 5. Schematic of the adiabatic potential of the ground state o
Cr21(5E) –Cr31(4A2) pair center and the microstructure of distortions at t
potential’s minimum in thexz plane; q is the normal coordinate of the
coordinated displacements of fluorine ions.
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An important feature of the microstructure of the Cr21 –
Cr31 center is that the bridge fluorine ion is displaced from
crystal lattice site, which is significant if we want to expla
the electric dipole transitions.

Near each minimum the adiabatic potential can be
proximated by the expression

Veff~q2q0!1
mveff

2

2
~q2q0!2,

where Veff and veff
2 can even be larger thanVA and vA

2 ,
respectively.

In the ground state of the pair the potential wells a
equivalent~Fig. 5!. The Hamiltonian of polaron hopping is

(
a,b

tab~aa
†bb1bb

†aa!, ~3!

wheretab is the effective hopping integral. Representing t
wave functions by products of electron and nuclear~oscilla-
tory! functions and integrating with respect to the coordin
q, we easily find that

tab5tab
~0! expS 2

Veff
2

\veff
D , ~4!

wheretab
(0) is the electron hopping integral in the absence

local deformations of the lattice. The value of this integr
tss
(0) , along the (3z22r 2)-orbitals for the Mn21 –F2 –Cu21

pairs in the KMnF3 crystal is known11 and amounts to
roughly 1800–2000 cm21. For the case of pairs with differ
ent valencies, the operator~3! is known as the double
exchange operator. Anderson and Hasegawa12 have calcu-
lated eigenvalues of this operator. In our case we have

E~S!56 1
4utssu~S11/2!, ~5!

whereS is the total spin of the pair, which in the ground sta
Cr21(5E) –Cr31(4A2)takes the values 7/2, 5/2, 3/2, and 1/
the state withS57/2 is the ground state.

In the excited state of the pair Cr21(3E) –Cr31(4A2)
corresponding to the absorption line withlmax5598 nm~the
identification of the absorption line will be done in Sec. 4!,
the allowed values of the total spinS* are 5/2, 3/2, and 1/2
To analyze the temperature dependence of the integrate
tensity of this absorption line~Fig. 4!, we note that the ex-
cited state of the pair does not contain the state withS*
57/2. Hence the absorption line withlmax5598 nm must be
assigned to theS(5/2)→S* (5/2) transition, and the Boltz
mann distribution should explain the temperature dep
dence of this line. A good approximation to the experimen
temperature dependence below 150 K is the Boltzmann
tribution ~Fig. 4!. The effective hopping integral determine
from the temperature dependence of the line withlmax

5598 nm istss5205610 cm21, which is nine to ten times
smaller than the value oftss

(0) for Mn21 –F2 –Cu21 pairs.
Assuming that this difference is due primarily to the em
gence of the vibronic reduction factor in~4!, we arrive at a
rough estimate,

expS 2
Veff

2

\veff
D 50.1020.11. ~6!
-

e

f
,

;

in-

-
l

is-

-

For the sake of comparison we note that to explain the h
isotopic effect in La0.8Ca0.2MnO3 ~Ref. 2! the polaron factor
~6! should be set to 0.18.

4. SELECTION RULES FOR ELECTRIC DIPOLE
TRANSITIONS AND IDENTIFICATION OF THE ABSORPTION
LINE OF A PAIR CENTER OF Cr 21–Cr31

In the second quantization representation, the operato
the effective dipole moment of a pair of similar ions with
mixed valence is

Deff5( ^audub&aa
†bb1H.c., ~7!

where a and b are the sets of quantum numbers of on
electron states at the centersA and B, respectively, and
^audub&5dab are the matrix elements of the electric dipol
moment operator calculated with one-electron functions.

The matrix elements corresponding to transitions o
pair center accompanied byeg-electron transport, i.e., matrix
elements of the typedv,v

ee (z)5^r A
223zA

2 udzur B
223zB

2& and
^y22x2udzuy22x2& ~the p-polarization!, are nonzero, since
the bridge fluorine ion F2 ~Fig. 5! is displaced from a crysta
lattice site. Transitions in thes-polarization are forbidden.

When there ist2g-electron transport, the one-electro
matrix elements that are finite aredy,y

tt (z)5^xzAudzuxzB&
5^yzAudzuyzB& and ^xyudzuxy& in the p-polarization and
dz,y

tt (y)5^xyudyuxzB&5^xyudxuyzB& in the s-polarization.
The matrix elements of the effective dipole mome

were calculated by the formula

^SAGAQA ,S̄BḠBQ̄B ;SMS

3U( dabaa
†bbUS̄AḠAQ̄A ,SBGBQB ;SMS&

5( ~21!nA1nBK ḠA gA GA

Q̄A qA QA
L K ḠB gB GB

Q̄B qB QB
L

3dgaqa ,gbqb
AnAnB@SA#@SB#@GA#@GB#

3~ l A
nASAGA$u l A

nA21S̄AḠA!~ l B
nB21SAGA!u% l B

nBS̄BḠB)

3~21!SA1SB1S̄BH SA S̄B S

SB S̄A 1/2J , ~8!

whereS is the total spin of the ion pair, and the other not
tion coincides with that used in Ref. 13. The 6j -symbol in
the above formula implies that in an electric dipole transiti
of a pair center, the spin quantum numbers of the initial a
final states of the ionsA and B can differ only by 1/2. The
results of calculations of the probabilities of allowed elect
dipole transitions from the ground state of the pair,

cu
~0!5

1

A2
@Cr21~ t2

3 4A2 ,e; 5Eu!Cr31~ t2
3 4A2!

1Cr31~ t2
3 4A2!Cr21~ t2

3 4A2 ,e; 5Eu!#,
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are listed in Table I. In calculating the transition probabiliti
we accounted for the splitting of levels in the tetragonal cr
talline field and allowed for the orientational degeneracy
the pair centers in the crystal.

We associate the absorption line withlmax5598 nm
with the transition to the excited antisymmetric state of
pair,

cu
~1!5

1

A2
@Cr21~ t2

3 4A2 ,e; 3Eu!Cr31~ t2
3 4A2!

2Cr31~ t2
3 4A2!Cr21~ t2

3 4A2 ,e; 3Eu!#.

The transition to the statecv
(1) corresponds to the weak ab

sorption line withlmax5580 nm. The relative intensity o
this transition is low since the transition is underresolv
only because of the mixing of the statescv

(1) andcu
(1) due to

spin–orbit coupling. The second-order effect leading to s
mixing has been discussed by Fujiwara and Tanabe.14 The
absorption lines withlmax5503 nm andlmax5492 nm are
associated with the transition to the excited state

C~2!5
1

A2
@Cr21~ t2

4 3T1!Cr31~ t2
2 3T1 ,e; 4T2!

2Cr31~ t2
2 3T1 ,e; 4T2!Cr21~ t2

4 3T1!#,

which is split by the tetragonal crystalline field. The ratio
the values of the splitting of statesc (1) andc (2) is 1.2 and is
in good agreement with the calculated value if one assu
that the main source of the tetragonal field at the Cr21 ion is
the displacement of the bridge fluorine ion from the equil
rium position toward Cr31. The estimated values of the tran
sition energies~see Table I! are in satisfactory agreemen
with the experimental data. The calculations were done w
the following set of parameters:Dq51480 cm21, B
5785 cm21, and C53280 cm21 for Cr31 ~these values
were found from the spectra of single Cr31 ions!, and Dq
51190 cm21 ~from the absorption line corresponding to th
5E–5T2 transition!, B5800 cm21, and C53200 cm21 for
Cr21, in accordance with the data from the literature,15 and
the tetragonal field parameter C2

tetr was set to 970 cm21.

5. CONCLUSION

Thus, we have used the piezodichroism method to sh
that the absorption lines of the KZnF3:Cr31,Cr21 crystal in
-
f

e

d

h

es

-

h

w

the 500-nm, 580-nm, and 600-nm ranges correspond to
pair centers of Cr21 –Cr31 ions positioned along the tetrag
onal axis of the crystal. We have developed a microsco
model of a pair center. The minima of the adiabatic poten
of the pair correspond to compression of the ambient str
ture of the fluorine ions surrounding Cr31 and coordinated
Jahn–Teller stretching of the fluorine octahedron near Cr21.
The strong vibronic interaction of the chromium ions and t
crystal lattice substantially reduces the double-exchange
rameter. The polaron reduction factor, determined from
temperature dependence of the total intensity of the abs
tion lines, proved to be about 0.11. We have also discus
the selection rules for exchange-induced electric dipole tr
sitions under double-exchange conditions, and on the b
of this have identified all the observed absorption lines
Cr21 –Cr31 pairs.
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Hysteresis of the characteristics of magnetostatic waves in ferrite films with stripe
domains whose magnetization vectors are oriented close to the plane of the film

A. V. Vashkovski ,* ) É. G. Lokk, and V. I. Shcheglov
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~Submitted 7 April 1998!
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The propagation of zero-exchange spin waves~magnetostatic waves! is investigated in yttrium
iron garnet films having a regular stripe domain structure with almost in-plane orientation
of the domain magnetization vectors. The characteristics of the waves are studied for
magnetizations of the film parallel and perpendicular to projections of the@111#
crystallographic axes onto the plane of the film. It is established, in contrast with films having
the domain magnetization vectors oriented close to the normal to the plane of the film,
that both the propagation of magnetostatic waves and the variation of the parameters of the domain
structure exhibit a distinctly pronounced hysteretic character as the magnetizing field is
varied. The hysteresis of the amplitude–frequency response, equiphase, and dispersion curves of
the magnetostatic waves is investigated. The authors examine how the hysteresis of these
parameters is related to the hysteresis of the domain structure. The spectrum of magnetostatic
waves is found to have an interval of wavelengths~wave numbers! that are not excited
in the unsaturated film when the applied field is close to the saturation value, and this phenomenon
as well exhibits hysteresis. ©1998 American Institute of Physics.@S1063-7761~98!01910-6#
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1. INTRODUCTION

Investigations of the excitation spectra of ferromagn
with a domain structure have been reported in a great m
papers,1–18 including studies of spin-wave excitatio
spectra1–16 and domain-wall excitation spectra,17,18 the latter
having disclosed both low-frequency~1–10 MHz, Ref. 17!
and high-frequency~0.8–1.5 GHz, Ref. 18! resonances
Spin-wave excitations, or spin waves, in magnetic films a
wafers have been investigated for the cases of regula1–13

and irregular14,15 stripe domain structures. In the majority o
theoretical papers the propagation of spin waves has b
treated on the assumption that the wavelengthl and the
thicknesss of the ferrite layer are much greater than t
domain widthd ~Refs. 1 and 3–6!, whereas experimenta
studies, usually involving yttrium iron garnet~YIG!, have
been concerned with the cased.s, d!l ~Refs. 5, 10–12,
14, and 15!.

As a rule, the experiments have been carried out on
tangular samples of small dimensions,5,14,15 resulting in
strong edge distortions of the domain structure and the
currence of irregularities in it.14,15 The orientation of the
crystallographic axes in the plane of a film is often not mo
tored or is chosen arbitrarily.10,14,15The films used in experi-
mental work customarily have domains whose magnetiza
vectors are oriented in a direction almost perpendicular to
plane of the film, facilitating visual observation of the d
main structure through the Faraday effect. As a rule, ho
ever, the cause of this orientation of the magnetization ve
inside the domains has never been discerned, and the
netic anisotropy has not been measured. These shortcom
make it difficult to compare experiment with theory or
7761063-7761/98/87(10)/12/$15.00
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compare results obtained by different authors, so that gen
functional relations cannot be discerned either in the beh
ior of the domain structure of the films or in the nature of t
propagation of spin waves.

Previously,11,12 using samples of large dimension
~greater than 30330 mm2), we have succeeded in elimina
ing the influence of the edges of the sample and obtainin
definite picture of the peculiarities of domain structure fo
mation in YIG films and also of the propagation of lon
wavelength (l.50mm! spin waves in these structures. B
monitoring the orientation of the crystallographic axes in t
plane of the film we have been able to reveal sharp ani
ropy in the behavior of magnetostatic waves~MSWs! due to
significant differences in the modification of the doma
structure and in the character of its phase transitions
should be noted, however, that the results set forth in R
11 and 12 are far from exhaustive. For example, in our
periments we have discovered a large class of YIG films
which the behavior of MSWs differs significantly from tha
described in Refs. 11 and 12.

The cause of the disparity is the equilibrium orientati
of the magnetization vector of the domains close to the pl
of the film, a situation that is strongly mirrored in all th
MSW characteristics: Their field and orientation depe
dences acquire a previously unnoticed, very pronounced
teresis, where the hysteretic properties are governed bot
the crystallographic anisotropy and by the induced anis
ropy of the films. The term ‘‘hysteretic properties of magn
tostatic waves’’ has been used previously in Ref. 15, wh
the minimum static magnetic field at which MSWs begin
be excited in a film has been observed to vary by.4 Oe
upon magnetization reversal of the film relative to zero fie
© 1998 American Institute of Physics
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In this paper we interpret ‘‘hysteresis’’ in the convention
sense as a significant change in the parameters and ch
teristics of these waves in an identical static magnetic fi
H0, depending on how the latter has varied in the past. H
we report an experimental study of the propagation of lo
spin waves through an ensemble of domains forming a re
lar structure over the entire area of the film.

2. EXPERIMENTAL ARRANGEMENT AND PARAMETERS OF
THE MAGNETIC FILMS

The experiments were carried out on an apparatus s
lar to that described in Refs. 11 and 12. The investiga
ferrite films were magnetized in-plane by a homogene
field H0, which could be varied over the range 0–100 O
Magnetostatic waves in the frequency range 100–3000 M
were generated and received by moving arrays of gold-pla
tungsten wire transducers of length 3.5 mm and thickn
12mm. The MSW wave number was measured by the flo
ing probe method. Simultaneously with the measuremen
the characteristics of these waves the domain structure o
samples was monitored by a magnetooptical technique
lizing the Faraday effect with the film illuminated by a ligh
beam perpendicular to the plane of the film.

The investigated YIG films were grown by liquid-pha
epitaxy on gadolinium gallium garnet substrates cut in
crystallographic~111! plane. The thickness of the films wa
5–20mm, and their diameter was 75 mm. Measurements
the film parameters by the method described in Ref. 19
vealed that the films had cubic as well as uniaxial anisotr
with the axis almost normal to the plane of the film
The following, most characteristic values of the film para
eters were obtained: saturation magnetization 4pM051750
650 G; cubic anisotropy fieldHc58065 Oe; uniaxial an-
isotropy field less than or equal to 200 Oe. The angleu of
deviation of the uniaxial anisotropy axis from the normal
the plane of the film was less than 4°. The orientation of
cubic anisotropy axes in the plane of the film were det
mined within 60.5° error limits, and the orientation of th
projection of the uniaxial anisotropy axis onto the plane
the film was determined within63° limits ~The latter error
was greater on account of the extremely small angleu). The
values of the static magnetic fields sufficient for tangentia
magnetizing a film to saturation along or perpendicular to
projection of a@111# axis onto the plane of the film wer
Hsat

i 530–40 Oe andHsat
' 514–25 Oe, respectively. The hal

width of the ferromagnetic resonance line for all the film
was less than 0.6 Oe.

Clearly, these values of the film parameters do not dif
at all significantly from those used in previous work.10–12On
the other hand, as will be described below, the behavio
MSWs in them differs considerably from anything know
before and exhibits very distinct hysteresis. In the course
the investigations it has been established that the princ
difference in the selected films is the orientation of the m
netization vector of the domains close to the plane of
film, whereas in previously investigated films, which ha
not exhibited hysteretic properties, the magnetization ve
of the domains was oriented close to the normal to the pl
l
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of the film.11,12We have discovered that films of both grou
possess uniaxial anisotropy with the axis perpendicular to
plane of the film, and the field is at most 150–200 Oe; in t
case, as a rule, the magnitude of the anisotropy field in fi
having nearly in-plane magnetization is 20–70 Oe sma
than in films with the domains magnetized close to the n
mal. This does not mean that the uniaxial anisotropy fi
suddenly changes upon transition from films of one group
films of the other group. Only the orientation of the magn
tization vector makes an abrupt change, as is entirely p
sible during a smooth variation of the anisotropy field a
generally characteristic of orientational phase transitions
magnets.20

The arrangement of the crystallographic axes in
plane of a YIG film and the corresponding choice of refe
ence frame for the angles are shown in Fig. 1~the plane of
the film coincides with the plane of the figure!. The projec-
tion of the uniaxial anisotropy axis onto the plane of the fi
is represented by a heavy line and is labeled with the letteA.
It is obvious that all the in-plane projections of@111# axes
shown in the figure are exactly equivalent in the crystal
graphic sense; hence, the number1 labels the projection ori-
ented closest to directionA, and the other two are numbere
clockwise in increasing order. The angles between directi
1 and A is denoted byw ~we read all angles from axis1,
positive in the counterclockwise direction!.

The most general laws~observed in all the investigate
films! characterizing the nature of MSW propagation and
domain-wall parameters are described below in the exam
of YIG film No. 1, which has the parameterss517.9mm,
4pM051780 G, DH50.54 Oe, DH5280.5 Oe, u51.3°,
w529°,Hsat

i 533.5 Oe, andHsat
' 519.1 Oe. In addition to this

film, we have also investigated YIG films No. 2 of thickne
18.5mm with w5222°, Hsat

i 539 Oe, andHsat
' 523 Oe and

No. 3 of thickness 12.6mm with w527°, Hsat
i 536 Oe, and

Hsat
' 514 Oe. However, essentially all the laws of MSW

propagation can be described in the example of film No. 1
will be done below.

FIG. 1. Positions of special directions in the plane of an yttrium iron gar
film. 1–3! Directions defined by the projections of@111# axes onto the plane
of the film; A! direction defined by the projection of the uniaxial anisotro
axis.
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3. PROPAGATION OF MAGNETOSTATIC WAVES:
METHODS OF INVESTIGATION AND GENERAL
CHARACTERISTICS

The objective of the present study is to investigate
behavior of MSWs in the films described above with a d
main structure, magnetized tangentially by a static magn
field H0 parallel or perpendicular to one of the projections
a @111# axis onto the plane of the film. In our experiments w
have investigated the amplitude-frequency and pha
frequency responses of the MSW transmission coeffic
with a spacing of 15 mm between transducers and we h
used the results to plot frequency–field curves in the regi
where these waves exist, along with the equiphase cu
and dispersion curves of MSWs in these regions. T
method used to plot these curves is similar to the one
scribed in Ref. 12.

The experiments show that with the transducers orien
along the direction of the fieldH0 magnetostatic surfac
waves propagating perpendicular to the direction ofH0 are
efficiently generated in films having a domain structure a
any crystallographic orientation. The surface character
these waves is confirmed by the form of the dispers
curves and the substantial variation of the wave attenua
as the direction of wave propagation changes. Here the
citation frequency intervals, the nature of the dispersion,
the character of the hysteresis depend strongly on the c
tallographic orientation of the films relative to the field.
fields H0 strong enough to magnetize the film to saturat
magnetostatic surface waves are excited in all the inve
gated films, in perfect agreement with theory,21 and hyster-
esis phenomena are not observed.

We note that when the MSW transducers are orien
perpendicular to the direction of the fieldH0 ~backward-
traveling volume magnetostatic waves are excited in s
rated films in this case!, waves are not excited in any of th
investigated films, regardless of their crystallographic ori
tation.

We now examine in detail the above-mentioned prop
ties of magnetostatic surface waves for various crysta
graphic orientations of the films.

4. PROPAGATION OF MAGNETOSTATIC SURFACE WAVES
IN YTTRIUM IRON GARNET FILMS MAGNETIZED
ALONG THE PROJECTION OF A †111‡ AXIS ONTO THE
PLANE OF THE FILM

When films are magnetized by a field parallel to one
the projections of@111# axes onto the plane of the film, thre
characteristic fields can be distinguished according to the
havior of the MSWs:Hmin1

i , Hmin2
i , and Hsat

i . In fields
H0.Hsat

i YIG films are magnetized to saturation, and MS
propagation in them complies with theory.21 When the field
is decreased from a value greater thanHsat

i to .0 ~from now
on we briefly characterize such a variation of the field a
decrease ofH0 from Hsat

i 1d to .0, whered is a small field
increment of the order of 2–3 Oe!, the excitation of MSWs is
observed untilH0 decreases to the valueHmin1

i ~MSWs are
not excited forH0,Hmin1

i ). The value ofHmin1
i falls between

the limits 1–3 Oe for all the investigated films. When t
e
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field is increased from.0 to a value greater thanHsat
i ~from

now on we briefly characterize such a variation of the field
an increase ofH0 from .0 to Hsat

i 1d) the excitation of
MSWs does not begin untilH0 exceeds the valueHmin2

i . The
value ofHmin2

i for all the investigated films falls within the
limits 2–5 Oe, i.e.,Hmin2

i .Hmin1
i by 1–4 Oe, a fact that ha

been noted earlier15 in an investigation of the magnetizatio
reversal of YIG films. As the fieldH0 varies from.0 to
Hsat

i 1d and back again, the behavior of the MSWs exhibit
distinct hysteretic character, which we propose to desc
below for the magnetization of the YIG film No. 1 alon
axis 1 in Fig. 1. For film No. 1 we haveHmin1

i 51 Oe,
Hmin2

i 52.5 Oe, andHsat
i 533.5 Oe.

We first consider the onset of hysteresis in the variat
of the amplitude-frequency response of the MSW transm
sion coefficient from the exciting transducer to the receiv
transducer. Figure 2 shows the response curves forH0 in-
creasing from.0 to Hsat

i 1d ~graphs1–4! and for H0 in-
creasing between the same limits~graphs5–8!. It is evident
from the figure that whenH0 is equal to, for example, 4.5 O
and the field is increasing, MSWs are excited in the f
quency interval 160021900 MHz~Fig. 2, graph1!, whereas
in the case of a decreasing field MSWs are excited in
significantly different frequency interval, 850–1900 MH
for the same value ofH0 ~Fig. 2, graph8!. A pairwise com-
parison of the amplitude-frequency response curves co
sponding to higher values ofH0 ~graphs2 and7, 3 and6, 4
and5 in Fig. 2! shows that in both cases these curves gra
ally broaden and atH05Hsat

i ~when the film is saturated!
become identical, occupying the frequency interval 70
2400 MHz, consistent with theory21 ~see graphs4 and 5!.
Consequently, like values of the fieldH0 correspond to dif-
ferent frequency intervals occupied by the MSW amplitud
frequency response curves, depending on the direction
which H0 varies, i.e., on the history of the process, this be
the most characteristic general feature of hysteresis phen
ena. Obviously, if an increase of the fieldH0 from Hsat

i 1d to
.0 is followed byH0 once again beginning to increase fro
.0 to Hsat

i 1d, MSWs having ceased to be excited atH0

,Hmin1
i begin to be excited again~at H0.Hmin2

i ) in the in-
terval 1600–1900 MHz~graph1 in Fig. 2!, i.e., all the peaks
repeat.

We also note a special property observed on
amplitude-frequency response curves of the MSW spectr
As the field H0 decreases fromHsat

i 1d to .0, the
amplitude-frequency response acquires an attenuation d
which shifts from low frequencies to high frequencies as
field decreases, traversing the entire spectrum of magn
static waves. Inasmuch as the phase-frequency respons
the dispersion of MSWs~described below! remain essen-
tially continuous in the vicinity of the drop, the attenuatio
drop is not a place where two different spectra of the
waves merge~even though the form of the amplitude
frequency response curve might suggest such an interp
tion!, but rather is attributable to resonance factors, wh
will be discussed below in Sec. 9. In Fig. 2 this drop
conspicuous on graph6 near frequency 1600 MHz and o
graph 7 near 1900 MHz. As the drop shifts from the low
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FIG. 2. Amplitude-frequency response curves of t
MSW transmission coefficient for YIG film No. 1 mag
netized along axis1 in Fig. 1 with various applied
fields: 1, 8! H054.5 Oe; 2, 7! 17 Oe; 3, 6! 24 Oe;
4, 5! 33.5 Oe; curves1–4 are plotted for a monotoni-
cally increasing fieldH0; curves5–8 are plotted for a
monotonically decreasing fieldH0 ~the high-frequency
part of the amplitude-frequency response described
curve6 is not shown!.
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frequency part to the high-frequency part of the MSW sp
trum, its magnitude gradually varies from.1 dB to .9 dB.

We now consider the onset of hysteresis phenomen
the example of the equiphase curves for magnetos
waves.

The frequency–field regions of excitation of MSWs a
labeled in Fig. 3a, which also shows equiphase curves
tained for film No. 1. The values of the wave numberk ~in
cm21) corresponding to the equiphase curves are sho
alongside each curve in the figure. The heavy lines dis
guish equiphase curves corresponding to the initial freque
of the MSW spectrum withk.0 or to homogeneous ferro
-

in
tic

b-

n
-

cy

magnetic resonance. It is evident from the figure that as
field H0 decreases fromHsat

i 1d to .0, two regions of wave
excitation are observed, indicated by solid curves: a hi
frequency regionSh1

i and a low-frequency regionSl1
i . On

the other hand, whenH0.0 increases from.0 to Hsat
i 1d,

two different regions of MSW generation~dashed curves!
appear in the same field interval: a high-frequency regionSh2

i

and a low-frequency regionSl2
i . It is evident from Fig. 3a

that, for example, in regionSh1
i ~decreasing field! at H0

.4.5 Oe MSWs withk550 cm21 are excited at a frequenc
of 1150 MHz, whereas in regionSh2

i ~increasing field! at the
e-
se

e
f

rre-

s.
of
vy
FIG. 3. Frequency–field regions in which magn
tostatic surface waves exist and their equipha
curves for YIG film No. 1 ~the values ofk in
cm21 are given alongside each equiphase curv!:
a! field H0 applied along one of the projections o
@111# axes onto the plane of the film~along axis1
in Fig. 1!; b! field H0 applied perpendicular to the
same projection of a@111# axis. The equiphase
curves corresponding to an increasing fieldH0 are
shown as dashed curves, and the curves co
sponding to a decreasing fieldH0 and the satu-
rated state of the film are shown as solid curve
The low-frequency boundaries of the regions
existence of MSWs are represented by hea
lines.
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same value ofH0 waves withk550 cm21 are excited at a
much higher frequency, 1680 MHz. It is evident from t
equiphase curves that for any fieldH0 MSWs with any wave
numberk are excited at significantly different frequencies
each of the regionsSh1

i andS,h2
i , where the higher the valu

of H0, the smaller is the difference in the frequencies.
H05Hsat

i ~when the field is saturated! the equiphase curve

of the two high-frequency regionsSh1
i and Sh2

i converge,
pass through a kink, and make a continuous transition
equiphase curves of ordinary magnetostatic surface wa

from the saturation regionSsat
i , in which the behavior of the

MSWs is fully consistent with theory.13,21 Consequently,
conspicuous hysteresis of the MSW equiphase curves fo
high-frequency regions is observed in the field inter

.0,H0,Hsat
i . As the fieldH0 varies from.0 to Hsat

i 1d
and back again, MSWs fromSh1

i described by the solid

curves are generated instead of the waves fromSh2
i described

by the dashed curves. A repeated variation of the field
tween the same limits is accompanied by repetition of
entire cycle, i.e., once again waves fromSh2

i and then from
Sh1

i are generated~if the increasing field does not attainHsat
uu ,

MSWs from Sh2
i are generated, and if the decreasing fie

does not attainHmin1
i , waves fromSh1

i are generated!. It is
obvious that the equiphase curves for regionSh1

i correspond
to the amplitude-frequency response curves represente
graphs5–8 in Fig. 2, and the equiphase curves for regionSh2

i

correspond to the response curves represented by graph1–4
in Fig. 2. Along with the equiphase curves, Fig. 3a a
shows theH0 dependence of the frequencyf p at which a
drop in the attenuation of the signal is observed on
amplitude-frequency response curve~Fig. 2, graphs6 and7!.
It is evident from Fig. 3a that the graph off p(H0) is close to
a straight line and atH05Hsat

i passes through the kink of th
equiphase curve withk.0.

The variation of the MSW equiphase curves in the lo
frequency regionsSl1

i andSl2
i does not exhibit as pronounce

a hysteretic behavior; in the behavior of these equiph
curves there is a noticeable trend toward convergenc
H0.0, and the dashed equiphase curves lie below the s
curves~the opposite of the situation in the high-frequen
regions!. Magnetostatic waves with small wave numbe
(k,20 cm21) are always excited in regionsSl1

i andSl2
i , and

the excitation efficiency is not very high~the attenuation is
.250 dB!. The excitation of waves inSl1

i ceases for
H0.17 Oe, and inSl2

i it ceases forH0.26 Oe.
We now demonstrate the onset of hysteretic propertie

magnetostatic waves in the example of the dispersion cur
The MSW dispersion curvesf (k) measured at variou

fixed values of the fieldH0 for regionsSh2
i ~the field increas-

ing from .0 to Hsat
i 1d), Ssat

i ~at H05Hsat
i ), and Sh1

i ~the
field decreasing fromHsat

i 1d to .0) are shown in Fig. 4
~curves1–3, 4, and5–8, respectively; curves1–3, like their
corresponding region, are dashed, and curves4–8, by anal-
ogy, are solid!. It is evident from a pairwise comparison o
curves1 and7, 2 and6, 3 and5 measured for the same field
that thef (k) curves for regionSh2

i is situated much higher on

the frequency scale than the analogous curves forSh1
i ; the
t
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e
at
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dispersion curvef (k) for H05Hsat
i ~curve 4! occupies an

intermediate position. All the dispersion curves are char
teristic of surface-type magnetostatic waves. We also note
appreciable change in the slopes of the indicated curves
responding to different fields and a change in the interva
excited wave numbers, which is especially noticeable for
gion Sh2

i , in which waves with smallk appear only when the
field is close toHsat

i . The hysteretic behavior of the dispe
sion of MSWs is manifested in the fact that as the fieldH0

varies from.0 to Hsat
i 1d and back again, the MSW dispe

sion also makes a gradual transition from curve1 to curve8,
after which waves are no longer excited~at H0,Hmin1

i ), and
at the beginning of a new cycle (H0.Hmin2

i ) their dispersion
is again described by curve1.

We also discuss briefly the description of hysteresis p
nomena for cases in which the fieldH0 is applied along two
other projections of@111# axes onto the plane of the film
~axes2 and3 in Fig. 1!. We note at once that the hysteret
behavior of the amplitude-frequency response, equiph
and dispersion curves for these two cases do not differ qu
tatively in any way from those described above for mag
tization of the film along axis1 ~Fig. 1!, but there are sig-
nificant quantitative differences. The differences are b
described by comparing the hysteresis of the equiph
curves for all three cases. We note at the outset that eac
the fieldsHmin1

i , Hmin2
i , andHsat

i is approximately identical
in all three cases~differing at most by61 Oe!. All the MSW
characteristics are also exactly the same in the part of
hysteresis cycle whereH0 decreases fromHsat

i 1d to .0
~this part of the cycle is described by the solid equipha
curves in Fig. 3a!. But when the field decreases from.0 to
Hsat

i 1d, the slopes of the equiphase curves~represented by
dashed lines in Fig. 3a! differ substantially in all three film
magnetizations. For example, the slope of the das
equiphase curve withk598 cm21 in Fig. 3a is equal to
S98

1 529.7 MHz/Oe~the dashed equiphase curves can be
garded approximately as straight lines!, while the slopes of
the analogous equiphase curves for magnetizations a
axes 2 and 3 ~Fig. 1! have the respective value

FIG. 4. Dispersion curvesf (k) of magnetostatic surface waves for YIG film
No. 1 magnetized along one of the projections of@111# axes onto the plane
of the film ~along axis1 in Fig. 1! for regionsSh1

i ~curves1–3!, Ssat
i ~curve

4!, andSh2
i ~curves5–8!. The curves are the results of measurements for

following values of the magnetic fieldH0: 1, 7! 4.7 Oe; 2, 6! 11.0 Oe;
3, 5! 21.7 Oe;4! 33.5 Oe;8! 2.5 Oe.
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FIG. 5. Amplitude-frequency response curves of t
MSW transmission coefficient for YIG film No. 1 mag
netized perpendicular to axis1 in Fig. 1 with various
applied fields:1! H057.2 Oe;2! 11.2 Oe;3! 18.4 Oe;
4! 18.8 Oe;5, 6! 19.1 Oe;7! 17.8 Oe;8! 15.2 Oe;9!
11.2 Oe; curves1–5 are plotted for a monotonically
increasing fieldH0; curves6–9 are plotted for a mono-
tonically decreasing fieldH0 ~to aid visualization of the
figure, the amplitude-frequency responses described
curves1, 2, and4 are not shown in their entirety!.
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2 5213.1 MHz/Oe and S98

3 510.7 MHz/Oe. Conse-
quently, the smallest hysteresis loop of the equiphase cu
is observed when the film is magnetized along axis3, the
hysteresis loop of the equiphase curves is a maximum
magnetization along axis2, and for the case described
detail above, i.e., magnetization along axis1, the size of the
hysteresis loop of the equiphase curves is intermediate
tween the other two. The other MSW characteristics for
three cases described here also differ appreciably when
field increases from.0 to Hsat

i 1d. For example, a compari
son of the amplitude-frequency responses has revealed
for each of the three film magnetizations~along axes1, 2,
and 3! at H054.5 Oe the frequency intervals in whic
MSWs are generated are 1600–1900 MHz, 1850–2020 M
and 1500–1800 MHz, respectively. Only the dashed MS
dispersion curvesf (k) exhibit any changes; for magnetiza
tion along axis3 these curves shift closer in frequency to t
dispersion curve for the saturated film~curve 4 in Fig. 4!,
and for magnetization along axis2 they are situated farthe
along the frequency scale from the dispersion curve for
saturated film.

5. PROPAGATION OF MAGNETOSTATIC SURFACE WAVES
IN YTTRIUM IRON GARNET FILMS MAGNETIZED
PERPENDICULAR TO THE PROJECTION OF A †111‡ AXIS
ONTO THE PLANE OF THE FILM

When the film is magnetized by a fieldH0 perpendicular
to one of the projections of@111# axes onto the plane of th
film, the situation is analogous to the preceding case in
three characteristic fields can be distinguished accordin
the behavior of the MSWs:Hmin1

' , Hmin2
' , andHsat

' . In fields
H0.Hsat

' YIG films are magnetized to saturation, and t
propagation of MSWs in them conforms to theory.21 As the
field decreases fromHsat

' to .0, the excitation of MSWs is
observed untilH0 decreases to the valueHmin1

' ~waves are
es

or
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he

hat
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not excited forH0,Hmin1
' ). For all the investigated films the

value ofHmin1
' lies in the interval 7–16 Oe. As the field in

creases from.0 to Hmin2
' 1d, MSWs are excited only for

H0.Hmin2
' . For all the investigated films the fieldHmin2

' lies
in the interval 5–12 Oe, i.e., its position differs from the ca
of the film magnetization described in Sec.
Hmin2

' ,Hmin1
' . As the fieldH0 varies from.0 to Hsat

' 1d
and back again, the behavior of the MSW characteris
again exhibits hysteresis, which we describe below for
magnetization of film No. 1 perpendicular to axis1 ~Fig. 1!.
For film No. 1 we haveHmin1

' 510.2 Oe,Hmin2
' 57 Oe, and

Hsat
' 519.1 Oe.

As in Sec. 4, we begin our analysis by comparing t
amplitude-frequency responses of the MSW transmission
efficient. Figure 5 shows the amplitude-frequency respo
curves corresponding to the cases ofH0 increasing from.0
to Hsat

' 1d ~graphs1–5! and of H0 decreasing within the
same limits~graphs6–9!. It is evident from the figure that a
the fieldH0 increases, the frequency interval in which wav
are excited broadens from 1400–1900 MHz atH057.2 Oe
~Fig. 5, graph1! to 1200–2100 MHz atH0511.2 Oe~Fig. 5,
graph 2!. At H0516.9 Oe on the spectral curve a loss
MSW excitation efficiency takes place in the vicinity o
1100 MHz and the frequencyf p852000 MHz, but in the vi-
cinity of 1100 MHz this loss of efficiency vanishes
H0518.4 Oe. In the vicinity of the frequencyf p8 at
H0518.4 Oe, conversely, a total lack of MSW generation
observed in the frequency band.100 MHz~Fig. 5, graph3!,
but excitation gradually resumes with a further increase
the fieldH0 ~Fig. 5, graphs4 and5!. We also note that in the
interval 17.7 Oe,H0,18.2 Oe a degradation of MSW exc
tation is observed over the entire spectrum, appearing
change.212 dB in the signal attenuation over the enti
amplitude-frequency response curve~to preserve clarity in
the figure, the corresponding graphs are not shown!. As H0



l
y o
l
–

e-
re
e
o

at
e
n-

n-
fo

of
d

It

t

o

e
se

to

th
d
ow
st
th
ri

o
b

so
st
he
t

h
ll

be
s of

the
cy
the

ude-

SW

ity
-

l
id

a
po-
i-
al
nse

he-
resis
w-
e

the

ag-

782 JETP 87 (4), October 1998 Vashkovski  et al.
decreases fromHsat
' 1d to .0, the variation of the spectra

curve is simpler than in the preceding case: The efficienc
wave excitation decreases, and the frequency interva
which MSWs are excited gradually shrinks from 550
2300 MHz at H0519.1 Oe ~Fig. 5, curve 6! to 1750–
2000 MHz atH0511.2 Oe ~Fig. 5, curve9!. It is evident
from Fig. 5 that the behavior of the MSW amplitud
frequency response for the cases of increasing and dec
ing fields differs significantly, as is typical of hysteresis ph
nomena. These characteristics become identical for b
cases atH05Hsat

' 519.1 Oe. We note, in addition, that ifH0

is decreasing fromHsat
' 1d, but this decrease is halted

H0.Hmin1
' 510.5 Oe, andH0 begins to increase, the sam

degradation of MSW excitation will be observed in the i
terval of fields 16.9 Oe,H0,19.1 Oe as on graphs3 and4
in Fig. 5 for the case of the field increasing from.0 to
Hsat

' 1d.
We now turn our attention to the equiphase curves.
The frequency–field regions of MSW excitation are i

dicated in Fig. 3b, which also shows the curves obtained
film No. 1. It is evident from the figure that two regions
wave excitation, represented by solid curves, are observe
the fieldH0 decreases fromHsat

' 1d to .0: a high-frequency
region Sh1

' and a low-frequency regionSl1
' . On the other

hand, whenH0 increases from.0 to Hsat
' 1d, a different

high-frequency region of MSW excitationSh2
' , represented

by dashed curves, appears in the same field interval.
evident from Fig. 3b that for any fieldH0 a wave with a
definite wave numberk is excited at substantially differen
frequencies in each of the regionsSh1

' andSh2
' ~e.g., forH0

511 Oe a magnetostatic wave withk5158 cm21 is excited
at a frequency of 1880 MHz in regionSh1

' and at 1650 MHz
in regionSh2

' ), where the higher the value ofH0, the smaller
is the frequency difference. The equiphase curves in b
regionsSh1

' andSh2
' converge atH05Hcr

' 518.1 Oe, and the
equiphase curves inSh2

' acquire a kink in this case. In th
interval 18.1 Oe,H0,19.1 Oe the behavior of the equipha
curves is the same inSh1

' and Sh2
' , and for H05Hsat

'

519.1 Oe theequiphase curves of both regions, acquiring
kink, join with the equiphase curves of ordinary magne
static surface waves in the saturation regionSsat

' , in which
the behavior of the MSWs is fully consistent with theory.13,21

Consequently, as the fieldH0 varies from.0 to Hsat
' 1d and

back again, hysteresis is observed on the part of
equiphase curves for the high-frequency regions: Instea
the waves inSh2

' described by the dashed curves we n
have waves inSh1

' described by the solid curves; in contra
with the film magnetization described in Sec. 4, here
dashed curves lie below the solid curves. A repeated va
tion of the field from.0 to Hsat

' 1d and back again leads t
repetition of this cycle, i.e., once again waves described
the dashed curves and then waves described by the
curves are excited. It is important to note a characteri
feature inherent in the dashed equiphase curves. T
curves, shown in Fig. 3b, represent a certain average of
process actually observed, i.e., asH0 is varied continuously,
the phase-frequency response changes in small jumps, w
occur after the field changes by 0.3–0.8 Oe, and to faithfu
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reproduce the equiphase curves in the figure, it would
necessary to draw something like a stepladder with step
width 0.3–0.8 Oe and a height that can vary from.1 MHz
to 20 MHz. In the case of the solid equiphase curves, on
other hand, asH0 varies continuously, the phase-frequen
response also changes continuously. It is obvious that
dashed equiphase curves correspond to the MSW amplit
frequency responses represented by graphs1–5 in Fig. 5, and
the solid equiphase curves corresponds to the M
amplitude-frequency responses represented by graphs6–9 in
Fig. 5. The observable lack of wave excitation in the vicin
of the frequencyf p8 on the MSW amplitude-frequency re
sponse curves~graph3 in Fig. 5! corresponds to the regionN
in Fig. 3b ~outlined by a dashed line! wherein the dashed
equiphase curves with wave numbers 190 cm21,k
,230 cm21 ~or wavelengths 270mm,l,330mm) suffer a
discontinuity, i.e., MSWs with these values ofk are not ex-
cited. We note that regionN is observed in the field interva
18.1 Oe,H0,19.1 Oe, in which the dashed and sol
equiphase curves coincide. Moreover, it is evident from
comparison of Figs. 3a and 3b that the frequency–field
sition of regionN coincides with the frequency–field pos
tion of the f p(H0) curve describing the behavior of the sign
attenuation drop on the MSW amplitude-frequency respo
curve~regionN begins just above this curve!. The latter fact
can most likely be interpreted as evidence that the two p
nomena have a common cause. We also note that hyste
of the MSW equiphase curves is not observed in the lo
frequency regionSl1

' , owing to the strong attenuation of th
MSW signal~more than 50 dB! asH0 decreases from.0 to
Hsat

' 1d; this fact has made it impossible to measure
MSW parameters.

We now demonstrate the hysteretic behavior of the m
netostatic wave dispersion curves.

The MSW dispersion curvesf (k) measured for various
fixed fieldsH0 in the regionsSh2

' ~field increasing from.0
to Hsat

' 1d) and Sh1
' ~field decreasing fromHsat

' 1d to .0)
are shown in Fig. 6~curves1–8!. As in Fig. 3b, the dashed

FIG. 6. Dispersion curvesf (k) of magnetostatic surface waves for YIG film
No. 1 magnetized perpendicular to one of the projections of@111# axes onto
the plane of the film~perpendicular to axis1 in Fig. 1! for regionsSh1

i

~curves1–4!, Ssat
i ~curve 5!, and Sh2

i ~curves4, 6–8!. The curves are the
results of measurements for the following values of the magnetic fieldH0:
1! 8 Oe;2, 8! 10.5 Oe;3, 6! 15.1 Oe;4! 18.1 Oe;5! 19.1 Oe;7! 12.8 Oe
@the initial part off (k) described by curve5 in the frequency interval 500–
1000 MHz is not shown.
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curves correspond to regionSh2
' ~curves1–3!, and the solid

curves correspond toSh1
' ~curve6–8!. For H0.18.1 Oe the

f (k) curves for both regions, like the equiphase curves
Fig. 3b, coincide, so that thesef (k) curves are also repre
sented by solid lines in Fig. 6~curves4 and5!. It is evident
from Fig. 6, in contrast with Fig. 4, that the dashed disp
sion curves corresponding to an increasing field are far lo
on the frequency scale than the solid curves correspondin
a decreasing field. All the dispersion curves are character
of surface-type magnetostatic waves. We also note an ap
ciable change in the slopes of the indicated curves co
sponding to different fields, along with a variation of th
interval of excited wave numbers both inSh1

' and in Sh2
'

~low-k MSWs occur only for fields close toHsat
' ). The hys-

teretic behavior of the MSW dispersion is manifested in
fact that as the fieldH0 varies .0 to Hsat

' 1d) and back
again, the dispersion also gradually changes in accorda
with curves1–8, after which waves are no longer excite
~for H0,Hmin1

' ), and at the beginning of a new cycle~for
H0.Hmin2

' ) their dispersion is again described by curve1.
When the YIG film No. 1 is magnetized perpendicular

other projections of@111# axes onto the plane of the film
~perpendicular to axes2 or 3 in Fig. 1!, we do not observe a
significant difference, either qualitatively or quantitative
in the hysteretic character of the amplitude-frequency
sponse, equiphase, and dispersion curves from the cas
film magnetization described above. Small differences
observed only for an increasing fieldH0. They are attributed
mainly to a variation ofHmin2

' ~within 62-Oe limits! and a
certain decrease in the average slope of the equiphase c
~by approximately 3 MHz/Oe! relative to the case describe
above.

6. DOMAIN STRUCTURES OF THE INVESTIGATED FILMS;
GENERAL CHARACTERIZATION

It is evident from the preceding sections that hystere
behavior of the MSWs is observed only in fields insufficie
for the saturation of YIG films, i.e., when a domain structu
exists in the sample. The significant influence of domains
MSW propagation has been noted previously.1–15 To discern
the nature of this influence in our case, we have measured
parameters of the domain structure of the films simu
neously with measurements of the MSW characteristics.
have performed parallel measurements of the domain st
ture and MSW parameters in an effort to exhibit an inter
lationship between the hysteretic behavior of MSWs and
variation of the domain structure. We consider it appropri
to summarize the essence of this interaction right at the
set: As the fieldH0 varies from 0 to a level above saturatio
and back again, hysteretic behavior of the MSW parame
is observed in parallel with hysteresis variation of the d
main structure parameters. We emphasize that hysteres
the domain structure has always been linked to a chang
the orientation of the domain walls. The factors respons
for the change in orientation of the domain walls can
exposed by analyzing the behavior of the domain structur
the field H0 varies from 0 toHsat1d and back again. Fol-
lowing is a brief description of this behavior.
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We note at the outset that, in contrast with the film
described in Refs. 11 and 12, a regular, symmetric str
domain structure is established atH050 in the majority of
the investigated films, irrespective of the magnetization h
tory, the walls of this structure being oriented somewh
between the two directions defined by those projections
@111# axes onto the plane of the film, between which lies t
projection of the uniaxial anisotropy axis onto the plane
the film ~axes1 and2 in Fig. 1!. The pattern of the observe
domain structure has high contrast, like the films describ
in Refs. 11 and 12, implying that the domain magnetizatio
are oriented close to the normal to the plane of the film.
YIG film No. 1 the period of this domain structure was foun
to be T0523.1mm, and the anglew0 at which the domain
walls were tilted relative to axis1 in Fig. 1 was equal to
(1663)°.

When a fieldH05Hs50.5 Oe is applied in any crystal
lographic direction of the tangent plane of a film, the contr
of the observed pattern of the domain structure decrea
abruptly, i.e., the magnetizations of the domains are orien
close to the plane of the film. When the domain structu
evolves into this low-contrast form, the domain walls pro
ably also acquire the property of relative mobility~in com-
parison with the domain structure of the films described
Refs. 11 and 12, so that the walls can change their orie
tion as the energy advantage of the directions changes. S
the fieldH0 has a strong influence on the depth of the ene
minima corresponding to the four axes~1–3 andA in Fig. 1!,
asH0 increases in the intervalHs,H0,Hmin2, the domain
walls change their orientation from the direction specified
the anglew0 to some other direction, which depends on t
crystallographic orientation of the film relative toH0. As a
rule, the reorientation of the domain walls takes pla
through the emergence of a block domain structure in
field interval Hs,H0,Hmin2, wherein the domains inside
each block are in the form of straight stripes of identic
width, and the domain walls are parallel to one of t
energy-favorable directions. The value ofHmin2 for all the
investigated films lies in the interval 2–12 Oe~in isolated
cases, which will be described below, a block domain str
ture does not occur forH0,Hmin2, and atH05Hmin2 the
domain structure changes from one regular type to ano
regular type!.

When the field is further increased fromHmin2 to the
value Hsat at which the film is magnetized to saturation,
regular or quasiregular domain structure exists in the fi
We apply the term ‘‘quasiregular’’ to a domain structure th
is almost regular except for small distortions~e.g., the walls
are not strictly straight lines, but are almost straight, or
casional dead-end domains might be encountered!. We as-
sume that this domain structure should be distinguished f
other irregular domain structures, because when a quasir
lar domain structure is present in the film, the efficiency
excitation of MSWs is essentially the same as when a t
regular domain structure is present, whereas MSWs are
excited when an irregular domain structure exists in the fi
~i.e., in essence, a wave does not sense infrequent and
small — of a scale much smaller than the wavelength
distortions of the domain structure!. A quasiregular domain
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structure usually occurs in films as the fieldH0 increases
from 0 to H0.Hmin2.

The process ofH0 decreasing fromHsat1d to values
smaller thanHsat induces a new domain structure in the film
Since the external fieldH0 for the formation of a domain
structure in this case is much higher than for the formation
a domain structure in the case of an increasing field,
influence ofH0 on the orientation of the walls dominates th
new domain structure: The walls are always straight and
ented either along the direction ofH0 or deviate from this
direction at most by630°. This domain structure exists i
the film as long asH0 is smaller than a certain valueHmin1.
For H0,Hmin1 a block domain structure similar to the on
described for the caseH0,Hmin2 is established in the films
The values ofHmin1 lie in the interval 1–3 Oe for all the
investigated films.

Consequently, as the fieldH0 varies from 0 toHsat1d
and back again, hysteresis of the orientation of the dom
walls occurs in the films.

It is important to note that a high-contrast domain stru
ture does not occur atH050 in some of the investigate
films. A low-contrast block domain structure exists in su
films at H050, but in all other cases its variation corr
sponds exactly to that described above.

We also call attention to the following general prope
of the investigated domain structures, which will not be me
tioned in the discussion that follows. In the field interva
Hmin1,H0,Hsat andHmin2,H0,Hsat a drastic reduction in
contrast of the pattern of the domain structure has alw
been observed for values ofH0 close toHsat, so that the
domain structure could only be distinguished in the init
part of these field intervals. Moreover, the behavior of
structures forH0,Hmin1 and forH0,Hmin2 ~MSWs are not
excited in these cases! will also be ignored below, becaus
by and large it has already been discussed above.

Now, when describing the behavior of the domain stru

FIG. 7. Graphs of the periodsT of the stripe domain structure and th
narrow-domain widthsdn of the asymmetric domain structure versus t
magnetic fieldH0 for YIG film No. 1 magnetized along~curves1 and2! and
perpendicular to~curves3–6! one of the projections of@111# axes onto the
plane of the film~axis1 in Fig. 1!: 1, 3, 4, *) T(H0) for an increasing field
H0 ~dashed curves;4 coincides with 5 in the interval 10 Oe,H0

,16 Oe);2, 5, s) T(H0) for a decreasing fieldH0 ~solid curves!; 6, 1!
narrow-domain widthDn versus fieldH0 for a domain structure whose
period is described by curve5.
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ture in general terms, we consider specifically how the o
entation of the domain walls changes for the YIG film No.
is magnetized in different crystallographic directions.

7. DOMAIN STRUCTURES FOR MAGNETIZATION OF THE
FILM ALONG PROJECTIONS OF †111‡ AXES ONTO
THE PLANE OF THE FILM

As shown in Fig. 1, three projections of@111# axes~1, 2,
and3! lie in the plane of the film. When film No. 1 is mag
netized by a fieldH0 that increases from 0 to the saturatio
valueHsat

i along one of these projections, a quasiregular
main structure appears in the film forH0.Hmin2 (Hmin2

52.5 Oe andHsat
i 533.5 Oe for film No. 1!. The anglea

between the domain walls and the direction ofH0 depends
on the specific@111# projection~Fig. 1! along which the field
is applied:

1! a5(14063)° for magnetization of the film along
axis 1;

2! a5260° or a5160° for magnetization of the film
along axis2 ~the MSW characteristics do not differ for dif
ferent absolute values ofa);

3! a5(1763)° for magnetization of the film along
axis 3.

As the field decreases fromHsat
i 1d, whereHsat

i corre-
sponds to the kink of the MSW equiphase curves~Fig. 3a!,
the domain walls in the field intervalHmin1

i ,H0,Hsat
i are

always oriented parallel toH0 (a50), no matter which pro-
jection of a@111# axis the field is applied along (Hmin1

i 51 Oe
for film No. 1!.

In none of the above-described domain structures did
orientation of the walls~i.e., the values ofa) change when
H0 was varied within the field intervalsHmin1

i ,H0,Hsat
i and

Hmin2
i ,H0,Hsat

i ~at least not for values ofH0 such that
domain structure could be distinguished in the microscop!.

The dependence of the periods of the domain structu
on the field,T(H0), is shown in Fig. 7 for film No. 1 mag-
netized along axis1 in Fig. 1 ~the propagation of MSWs for
this case is described in Sec. 3!. Curve1 corresponds to the
field increasing from 0 toHsat

i 1d , and curve2 corresponds
to the field decreasing within the same limits. For magne
zation of the film along axes2 and 3, on the whole, the
T(H0) curves are similar to curves1 and2 in Fig. 7 ~only the
curves corresponding to an increasing field differ slightly!.

Consequently, the hysteresis properties of the dom
structure are seen in the way the fieldH0 varies from 0 to
Hsat

i 1d and back again, first of all, the orientation of th
domain walls changes~e.g., the anglea5140° changes to
a50) and, second, the dependence of the period of the
main structure onH0 changes~see Fig. 7, curves1 and2!. In
a repeated variation ofH0 from 0 to Hsat

i 1d and back again
the cycle of variation of the walls and the period of th
domain structure is repeated.
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8. DOMAIN STRUCTURES FOR MAGNETIZATION OF THE
FILM PERPENDICULAR TO PROJECTIONS OF †111‡
AXES ONTO THE PLANE OF THE FILM

We first describe the modification of the domain stru
ture when film No. 1 is magnetized along axis1 in Fig. 1 ~the
propagation of MSWs for this case is described in detai
Sec. 4!.

As the fieldH0 increases from 0 toHsat
' 1d, the high-

contrast, regular, symmetric stripe domain structure p
duced atH050 ~see Sec. 6! becomes a low-contrast struc
ture at H05Hs50.5 Oe, and this new regular, symmetr
domain structure exists in the field intervalHs,H0

,Hmin2
' , whereHmin2

' 510.2 Oe. The anglea between the
walls of the domain structure and the fieldH0 remains con-
stant and equal toa5284° in the transition from the high
contrast to the low-contrast domain structure and in the
terval Hs,H0,Hmin2

' . The field dependence of the perio
of the low-contrast domain structure in this field interval
shown in Fig. 7~curve3!. Magnetostatic waves are not e
cited in the film in the field intervalHs,H0,Hmin2

' . At
H05Hmin2

' a phase transition takes place in the film in co
nection with a change in the orientation of the domain wa
The anglea changes abruptly from284° to 230°. As H0

increases in the field interval Hmin2
' ,H0,Hsat

'

(Hsat
' 519.1 Oe for film No. 1!, the domain structure abruptl

changes the orientation of the domain walls by a small an
after every increment of 0.2–0.5 Oe, so that the orienta
of the walls gradually approaches the direction of the fi
H0. At H0515.9 Oe, above which domain structure is und
tectable, the anglea is equal to221.5°. This discontinuous
modification of the domain structure is attributable to t
abrupt variation of the dashed equiphase curves in Fig. 3b
mentioned in Sec. 4. The dependence of the period of
domain structure onH0 for H0.Hmin2

' is described by curve
4 in Fig. 7. We also note that forH0.15 Oe the domain
structure begins to transform from symmetric to asymme
~the analogous transformation for the case of a decrea
field is described more in detail below!.

As the fieldH0 decreases fromHsat
' 1d to 0, a regular

stripe domain structure is established in the film with
angle a5230° ~or a5130°) between the domain wall
andH0. The anglea remains constant~at least for fieldsH0

such that domain structure is discernible! for variation of the
field in the intervalHmin2

' ,H0,Hsat
' . As H0 decreases, the

domain structure gradually transforms from its asymme
pattern for fields close toHsat

' to a symmetric structure. Th
gradual nature of this transformation can be judged from F
7, which shows the period of the domain structure and
width of the narrow domains as functions of the fieldH0

~curves5 and6, respectively!.
When the film is magnetized perpendicular to one of

other two projections of@111# axes~axes2 and3 in Fig. 1!,
the behavior of the domain structure asH0 increases in the
interval 0,H0,Hmin2

' differs from the above-described be
havior: In both cases the disappearance of the high-con
domain structure is followed in this interval by the eme
gence of a low-contrast block structure, the values ofHmin2

'

themselves differ only slightly~within 2-Oe limits!. The be-
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havior of the domain structures in the field interv
Hmin2

' ,H0,Hsat
' is analogous, differing slightly as a resu

of a difference in the values ofHmin2
' .

Consequently, the domain structure also manifests h
teresis properties in this situation: As the fieldH0 varies
from 0 to Hsat

i 1d and back again, different types of doma
structures~block or regular! appear in the film for the sam
values ofH0, and the orientation of the domain walls and t
dependence of the period of the domain structure onH0 vary
altogether differently~see Fig. 7, curves3–6!. If the varia-
tion of H0 from 0 toHsat

i 1d and back again is repeated, th
cycle of variation of the walls and the period of the doma
structures is repeated.

9. ANALYSIS OF THE RESULTS

We now analyze the interrelationship between the h
terestic behavior of magnetostatic waves and the modifi
tion of the domain structure.

We first consider magnetization of the film along th
projection of a@111# axis onto its plane. The analysis of th
behavior of MSWs and domain structures in Secs. 3 an
leads to the conclusion that the hysteresis of the MSW ch
acteristics~see Figs. 2, 3a, and 4! is associated with hyster
etic variation of the orientation of the domain walls. Me
surements of the MSW parameters for a film magnetiz
along three different projections of@111# axes onto its plane
show that the more the orientations of the domain walls d
fer between an increasing fieldH0 and a decreasing field
~i.e., the greater the absolute value of the difference in
anglesa corresponding to increasing and decreasingH0),
the greater will be the spread of the hysteresis loop obse
on the MSW equiphase curves. Inasmuch as all three pro
tions of @111# axes onto the plane of the film are crystall
graphically equivalent, the cause of such striking quantitat
differences in the hysteresis of the equiphase curves~and
other MSW characteristics! is, in the final analysis, uniaxia
anisotropy~probably induced or of magnetoelastic origin!,
which introduces asymmetry into the plane of the film a
whose axis is tilted, usually just a few degrees, relative to
plane of the film.

Consequently, when the film is magnetized along
projection of a@111# axis onto the plane of the film, a nec
essary condition for MSWs and the domain structure to
hibit hysteresis is the presence of a slight uniaxial anisotr
in the film, its axis deviated somewhat from the normal
the plane of the film.

We now consider magnetization of the film perpendic
lar to the projection of a@111# axis onto its plane. The analy
sis of the behavior of MSWs and domain structures in Se
and 8 leads to the conclusion that the hysteresis of the w
characteristics in the given situation~see Figs. 3b, 5, and 6!
is also associated with hysteresis in the variation of the
entation of the domain walls. When the field decreases,
walls of the domain structure are oriented at a fixed angla
relative to the fieldH0 ~at least for values ofH0 such that a
domain structure is distinguishable;uau530° holds as a rule,
and only occasionally isuau slightly smaller than 30°).
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When H0 increases, the walls of the domain structu
change their orientation in small 0.5° –2° jumps every 0.
0.8 Oe fromuau530°, in all likelihood, down to 0°. Unfor-
tunately, low contrast makes the domain structure indis
guishable in near-saturation fields, and in realityuau has
actually been observed to vary from 30° to.20°. This un-
observability of the domain structure also makes it imp
sible to draw definite conclusions to the effect that MSW
with wavelengths 270mm,l,330mm are not excited in
the frequency–field regionN ~Fig. 3b!, although the follow-
ing hypothesis is tenable: If the field dependence of the
riod of the domain structure~curve 4 in Fig. 7! is extrapo-
lated to H05Hsat

' 519.1 Oe, it is evident at once that th
widths of the broad domains in this case are fully capable
attaining 67282mm, i.e., are exactly equal to one quarte
wavelength for the MSWs not observed in the regionN.

It appears, therefore, that for the first time we are w
nessing the nongeneration of MSWs through a lattice
quarter-wave domain resonators. It is entirely conceiva
that the attenuation drop on the MSW amplitude-freque
response curve~see Fig. 2, graphs6 and7! is also of similar
origin; the field dependence of the frequencyf p(H0) at
which the drop occurs, shown in Fig. 3a, occurs in
frequency–field region that coincides with the frequenc
field region N @this explanation is valid, of course, if w
assume that theT(H0) curve ~curve2 in Fig. 7! in the field
interval 9 Oe,H0,33.5 Oe begins to rise like curve4 or 5!.

We can conclude from the sum-total of these consid
ations that the hysteretic properties of MSWs are determi
entirely by the hysteretic properties of regular and quasire
lar domain structures. Magnetostatic waves are not exc
when block domain structures are present in the film.

Apart from its purely physical appeal, the hysteretic b
havior of MSWs as described in the present study can b
useful tool for the investigation of magnetization proces
and oriented phase transitions and for measurements o
parameters of a material. Indeed, the majority of such inv
tigations are carried out at the present time by magnetoo
cal methods involving the observation of domain struct
through the Faraday effect.20,22However, in situations where
the magnetization vector is oriented close to the plane of
film the accuracy of magnetooptical methods is reduced
the weakness of the Faraday effect in this case. On the o
hand, the application of MSWs for determining certain p
rameters of a film and monitoring its domain structure is s
reasonably effective. For example, in the present study
film saturation fieldsHsat

i and Hsat
' could not be determined

by the magnetooptical method, but they have been de
mined quite accurately from the minimum of the MS
equiphase curves. In addition, the application of MSWs
the only way the hysteretic behavior of the magnetizat
vector can be assessed in the immediate vicinity of the s
ration field, where domain structures are not visible.

Consequently, not only is the application of magne
static waves a useful adjunct to the magnetooptical meth
in some cases it can even supersede the latter by virtue o
greater sensitivity.
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10. CONCLUSIONS

We have investigated experimentally the propagation
zero-exchange spin waves~magnetostatic waves! in tangen-
tially magnetized yttrium iron garnet films with domains
which the magnetization is oriented close to the plane of
film. Waves propagating perpendicular to the direction of
applied field, observed in the range 500–2500 MHz,
similar to magnetostatic surface waves in saturated films.
the applied field varies from 0 to a value above saturat
and back again, hysteresis is observed in the variation of
characteristics of these waves, most likely due to the hys
esis observed in the variation of the orientation of the d
main walls. The more pronounced the hysteresis of
domain-wall orientation, the greater is the difference in t
characteristics and parameters of the waves in increasing
decreasing fields: Waves of identical wavelength can be
cited at frequencies that differ by as much as 700 MHz as
field increases or decreases, or waves whose wavelen
differ severalfold can be excited at the same frequency.
difference in the wave parameters measured in increa
and decreasing fields decreases as the applied field
proaches saturation. In the spectrum of observable MSWs
observe an interval of wavelengths 270mm,l,330mm ~or
wave numbers 190 cm21,k,230 cm21) in which waves do
not propagate for an applied field below, but close to, sa
ration. We have established the fact that waves are not
cited along the direction of the applied field~when
backward-traveling volume magnetostatic waves are exc
in a saturated film!.

In addition, we have observed a spectrum of lo
frequency excitations~100–500 MHz!, which are probably
associated with collective resonance vibrations of the dom
walls. For these excitations we have also observed hyste
in the variation of the parameters, where the closer the
plied field is to zero, the smaller is the difference between
parameters of these excitations in increasing and decrea
fields.
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on Ref. 19 and to V. I. Zubkov for assistance in preparing
bibliographic references.

This work has received financial support from the Ru
sian Fund for Fundamental Research~Project 96-02-17283a!.

* !E-mail: svg318@ire216.msk.su

1I. A. Gilinski� and R. G. Mints, Zh. E´ ksp. Teor. Fiz.59, 1230~1970! @Sov.
Phys. JETP32, 673 ~1971!#.

2I. A. Gilinski� and K. A. Ryazantsev, Fiz. Tverd. Tela~Leningrad! 16,
3008 ~1974! @Sov. Phys. Solid State16, 1944~1975!#.

3D. D. Stancil, J. Appl. Phys.56, 1775~1984!.
4I. V. Zavislyak and V. V. Danilov, Pis’ma Zh. Tekh. Fiz.8, 72 ~1982!
@Sov. Tech. Phys. Lett.8, 31 ~1982!#.

5S. A. Vyzulin, S. A. Kirov, and N. E. Syr’ev, Vestn. Mosk. Univ. Fiz
Astron.24, 92 ~1983!.

6S. A. Vyzulin, S. A. Kirov, and N. E. Syr’ev, Vestn. Mosk. Univ. Fiz
Astron.25, 70 ~1984!.

7S. A. Kirov, A. I. Pil’shikov, and N. E. Syr’ev, Fiz. Tverd. Tela~Lenin-
grad! 16, 3051~1974! @Sov. Phys. Solid State16, 1970~1975!#.

8L. V. Mikha�lovskaya and I. V. Bogomaz, Fiz. Tverd. Tela~Leningrad!
19, 1245~1977! @Sov. Phys. Solid State19, 725 ~1977!#.

9V. I. Kostenko and M. A. Sigal, Phys. Status Solidi B170, 569 ~1992!.
10G. T. Kazakov, A. G. Sukharev, and Yu. A. Filimonov, inAbstracts of the



k-

ets

ka

787JETP 87 (4), October 1998 Vashkovski  et al.
Fifth All-Union School on Spin-Wave Microwave Electronics@in Russian#
~Zvenigorod, 1991!, p. 83.
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The problem of exciton light absorption in quasi-two-dimensional inhomogeneous systems in a
strong transverse magnetic fieldH is analyzed. We assume that a random Gaussian field
~‘‘white noise’’! acting separately on an electron and a hole is due to~1! fluctuations in the
quantum well thickness or~2! fluctuations in the concentrations of the solid solution
components. The problem of a magnetoexciton in a random Gaussian white noise field has been
reduced to the problem of the motion in anH-dependent effective field of a single particle
with the effective magnetic mass of the exciton, which is a function of the magnetic field and
parameters of the quantum wells, in a field characterized by ‘‘colored noise,’’ whose
correlation function is different from that of the white noise field. In this approximation, the
problem of a magnetoexciton in isolated and coupled quantum dots is considered. In the coherent-
potential approximation, the exciton absorption in random fields of the first and second type
in single and coupled quantum wells has been calculated. The absorption decreases asH increases
in the range of strong magnetic fields, which is in agreement with experimental data.
© 1998 American Institute of Physics.@S1063-7761~98!02010-1#
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1. INTRODUCTION

Recently electron–hole (e–h) systems in low-
dimensional semiconducting structures have attracted a lo
attention1–9 in connection with the substantial effects
electron–hole interactions on optical and transport proper
of quantum dots, wires, wells, and superlattices, which
hibit very interesting collective phenomena. For example,
superfluidity of e–h pairs in a system of quantum wel
separated in space has been predicted, and this effect c
seen in persistent electric currents flowing in coup
wells.10 Interesting effects involving the entrainment of qu
siparticles in one layer by those in the other also take pl
in such systems~see Ref. 11 and references therein!. The
attraction between electrons and holes of different quan
wells gives rise to spatially indirect excitons. The probabil
of tunneling recombination of an indirect exciton can be ve
low owing to the small overlap between the electron a
hole wave functions. An electric field applied normally
quantum layers and drawing an electron and a hole a
reduces the overlap between their wave functions, ther
further reducing the recombination probability. The lifetim
of an indirect exciton depends sensitively on the magn
field,3 and in the region of low temperatures (T,1 K) and
strong magnetic fields (H.7 T) it is determined by scatter
ing of excitons on the terraces of quantum well interface12

In this region, change in the magnetic field leads to a c
siderable drop in the exciton photoluminescence p
intensity.3 The phase diagram and superfluidity in syste
7881063-7761/98/87(10)/8/$15.00
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with indirect excitons and magnetoexcitons were studied p
viously in Ref. 13~see also references therein!.

The present work is aimed at analyzing optical prop
ties of a composite particle~an exciton! in random two-
dimensional static fields in a strong magnetic field applied
the vertical direction. Such random fields are generated
quantum wells mostly near interfaces and can be cause
~1! fluctuations in the quantum well width or~2! fluctuations
in the 2D concentration of solid solution components. T
problem of exciton absorption in the absence of a magn
field H was analyzed in Refs. 14–16, and localization
excitons in random fields in Ref. 16. The problem of abso
tion by magnetoexcitons, however, becomes considera
more complicated even in the absence of random fields
cause the equations do not separate in the center-of-mas
relative coordinates. We have bypassed this difficulty
constructing an effective Schro¨dinger equation for a magne
toexciton in a slowly changing external field.

The effective Schro¨dinger equation for a magnetoexcito
moving as a whole in an external potential will be derived
Sec. 2. In Sec. 3 this approximation will be applied to
magnetoexciton in isolated and coupled quantum dots
Sec. 4, we will calculate the optical absorption by magn
toexcitons in an single quantum well in the coherent pot
tial approximation. Similar methods will be used in calcula
ing magnetoabsorption in coupled quantum wells~Sec. 5!. In
Sec. 6 we will consider spectral properties of a magneto
citon interacting with a random field due to local fluctuatio
in the concentrations of a III–V solid solution components
a single quantum well.
© 1998 American Institute of Physics
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2. MOTION OF A MAGNETOEXCITON IN AN EXTERNAL
MAGNETIC FIELD „EFFECTIVE MAGNETIC MASS
APPROXIMATION …

The Schro¨dinger equation describing motion of a ma
netoexciton in an external potentialV(re ,rh)5Ve(re)
1Vh(rH) has the form

F 1

2me
S \

i
“e1

e

c
AeD 2

1
1

2mh
S \

i
“h2

e

c
AhD 2

1Ve~re!1Vh~rh!2
e2

eAD21~re2rh!2G
3C~re ,rh!5EC~re ,rh!, ~1!

where re,h are the two-dimensional vectors of the electr
(e) and hole (h) positions~the electron and hole are locate
in a single quantum well or two spatially separated we
corresponding to direct and indirect excitons respective!;
A5H3r /2 is the vector potential of the magnetic field in th
symmetric gauge;D is the distance between the quantu
wells containing electrons and holes; and we have writ
e5(e11e2)/2, wheree1,2 are the permittivities of the mate
rials around the electron and hole quantum wells. We w
look for the wave functionC expanding in a series eigen
functionsFnmp(R, r) describing a magnetoexciton in an o
dered system:17–19

C~R,r !5(
nmp

anmpFnmp~R,r !, ~2!

whereR5(mere1mhrh)/M , M5me1mh , and r5re2rh ;
P is the exciton quasimomentum in the magnetic field, wh
is an integral of motion in homogeneous systems, andn and
m are magnetoexciton quantum numbers. In the case
strong magnetic field, we neglect in Eq.~2! transitions be-
tween different Landau levels in the magnetoexciton due
scattering by the slowly changing potentialV(re ,rh) and the
nondiagonal matrix elements of the Coulomb interacti
multiply both sides of Eq.~1! by Fp* (Fp is the magnetoex-
citon wave function on the lowest Landau level!, and inte-
grate it with respect toR and r ; thus we obtain

apE~P!1(
p8

Vpp8ap85Eap , ~3!

whereE(P) is the magnetoexciton spectrum on the low
Landau level.17–19 The magnetoexciton dispersionE(P) at
sufficiently small magnetic momenta is quadratic, as follo
from the effective Hamiltonian invariance with respect
rotations and the analytical property ofE(P) at P50.20

Moreover, the pointP50 is the minimum ofE(P). For
Pl/\!1 we have

E~P!5
1

2
\vc2E~0, D !1

P2

2Mexc
, ~4!

wherel 5A\c/eH is the magnetic length,vc5eH/mc is the
cyclotron frequency,m5memh /(me1mh) is the exciton re-
duced mass in the quantum well plane,E(P,D) is the mag-
netoexciton dispersion on the lowest Landau level, andMexc

is the magnetoexciton effective mass, which is a function
,

n

ll

h

a

o

,

t

s

f

magnetic fieldH and distanceD between the quantum wells
Mexc;23/2e\2/e2lAp for D! l and Mexc;D3e\2/e2l 4 for
D@ l .17–19

The matrix element of the potentialV(re,h) connecting
the stateŝn5m50,Pu and ^n5m50,P8u has the form

^P8uVe,h~r !uP&5
1

S
expS 2

l 2

4\2
~P82P!2D Ve,h~P82P!

3expS 6
i l 2

2\2H
H•P3P8D

5
1

S
Ṽe,h~P82P!expS 6

i l 2

2\2H
H•P3P8D ,

~5!

whereS is the area of the quantum well. Let us introduce t
operatorE(2 i\¹) such that

E~2 i\¹!expS i

\
P•RD5E~P!expS i

\
P•RD . ~6!

We multiply Eq. ~3! by exp@(i/\)P•R# and sum with
respect toP. Equation~3! transforms to

E~2 i\¹!F~R!1
1

S (
P1 ,P2

ap2
expS i

\
P1•RD F Ṽe~P12P2!

3expS i l 2

2\2H
H•P23P1D 1Ṽh~P12P2!

3expS 2
i l 2

2\2H
H•P23P1D G5EF~R!, ~7!

where

F~R!5(
p

apexpS i

\
P•RD . ~8!

Using the ansatzP→2 i\¹, it is convenient to rewrite
the second term on the left of Eq.~7! as

(
p

apFexpS l 2

2\H
H•P3¹ D Ṽe~R!expS i

\
P•RD

1expS 2
l 2

2\H
H•P3¹ D Ṽh~R!expS i

\
P•RD G . ~9!

The summation overP transforms Eq.~9! to

lim
R8→R

FexpS 2
i l 2

2H
H•¹R83¹RD Ṽe~R!

1expS i l 2

2H
H•¹R83¹RD Ṽh~R!GF~R8!. ~10!

For P!\/ l the operator~6! can be expressed, with du
account of Eq.~4!, as a power series in2 i\¹:

E~2 i\¹!5
1

2
\vc1E~0, D !2

\2

2Mexc
D. ~11!
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By substituting Eqs.~10! and ~11! in Eq. ~7!, we obtain
the effective Schro¨dinger equation for the magnetoexciton

2
\2

2Mexc
DF~R!1 lim

R8→R

FexpS 2
i l 2

2H
H•¹R83¹RD Ṽe~R!

1expS i l 2

2H
H•¹R83¹RD Ṽh~R!GF~R8!5EF~R!, ~12!

whereE5E2\vc/22E(0,D) andF(R) is the magnetoex-
citon envelope function in the effective potential. The app
cation region of Eq.~12! for the envelope functionF is de-
fined, as in the case of Eq.~3!, by the inequalities

\vc@Eexc, \vc@A^Ve,h
2 &av,

whereEexc is the magnetoexciton binding energy in an ide
system as a function of magnetic field and thicknessD of the
barrier between electron and hole quantum wells:Eexc

;e2/ l eAp/2 for D! l andEexc;e2/eD for D@ l ;17–19 here
^ . . . &av denotes averaging over random field fluctuations

The characteristic wavelength of the envelope and ef
tive potential Ṽe,h is the correlation lengthL of potential
V(re ,rh). In this paper we consider the caseL!r exc, where
r exc is the exciton mean size, i.e., the case of a smooth
face potential, which is realized, as was shown using a s
ning tunneling microscope, on interfaces in AlGaAs—Ga
structures discussed here. A more rigorous condition of
smoothness of random potential can be expressed as22

r excA^¹V2&av!Eexc. ~13!

Given that the correlation length of the random potentia
larger than the magnetoexciton mean sizel , exponential
functions in Eq.~10! can be expanded in series. In this ca
expression~10! takes the form

~Ṽe~R!1Ṽh~R!!F~R!1
i l 2

2H @H,¹R~Ṽe~R!2Ṽh~R!!#

3¹RF~R!2
l 4

8 S ]2F~R!

]X2

]2~Ṽe~R!1Ṽh~R!!

]Y2

1
]2F~R!

]Y2

]2~Ṽe~R!1Ṽh~R!!

]X2

22
]2F~R!

]X]Y

]2~Ṽe~R!1Ṽh~R!!

]X]Y D 1••• ~14!

In the approximation of the exciton effective magne
mass, the second term in Eq.~14! acts as a dipole interactio
between a magnetoexciton and external electric field, wh
is a random function of coordinates in this case. Specifica
the exciton dipole moment on the lowest Landau level
determined by the expression
-

l

c-

r-
n-
s
e

s

,

h
,

s

^d&5e^r &5e(
p

uapu2
l 2

\H
H3P5

c

SH2 (
p1 ,p2

ap1
* ap2

3E expS 2
i

\
P1•RD\

i
~H3“ !expS i

\
P2•RDdR

5E F* ~R!
c\

iH 2
H3“F~R!dR, ~15!

i.e., (c\/ iH 2)H3¹ acts as an effective dipole moment
the space of envelope functionsF(R). Similarly, one can
easily show that the diagonal matrix element of the sec
term in Eq.~14! for the envelope functionF(R) under the
condition that V(r r ,rh)5e(re2rh)E is identical to the
quantum-mechanical average of the dipole interaction
tween an exciton and quasi-homogeneous electric fieldE for
the initial wave functions~2! @on the scale of the exciton
size; see Eq.~13!#. The role of the second term is clear
illustrated by the example of an exciton in a quantum d
discussed in the next section. In a random field, the m
value of the exciton dipole momentd at zero magnetic qua
simomentum is zero@for an exciton atP50, whereE(P) has
a minimum#.

By retaining terms of zero order inl /L, we obtain the
Schrödinger equation in the form

S 2
\2

2Mexc
D1Veff ~R! DF~R!5EF~R!, ~16!

where

Veff~R!5
1

p l 2E expS 2
~R2r !2

l 2 D @Ve~r !1Vh~r !#dr . ~17!

The effective Schro¨dinger equation~16! for the magne-
toexciton is invariant under the substitutiont→2t,
F→F* , unlike Eqs.~1! and~12! ~for mhÞme). In fact, Eq.
~16! treats the magnetoexciton as an electrically neutral co
posite particle. Since the particle is neutral, it does not
rectly interact with the magnetic field, which breaks t
time-reversal symmetry in Eqs.~1! and~12!. The interaction
with the magnetic field can be seen indirectly through
renormalization of the exciton effective mass and modifi
tion of the correlation function of the random field. The i
clusion of terms of the first and higher orders inl /L in strong
magnetic fields, which describe the effect of scattering of
magnetoexciton as a whole on its internal degrees of fr
dom, breaks the symmetry with respect to the substitut
t→2t, F→F* at mhÞme ~this circumstance must be take
into account when we study the weak localization of mag
toexcitons, cf. Ref. 16!. In the next section, we will show
that inclusion of the terms linear and quadratic inl /L leads to
a renormalization of the exciton effective mass and gener
in the Hamiltonian terms responsible for exciton polarizati
in an external field.

Thus, the Schro¨dinger equation~16! applies to magne-
toexcitons in weak external fieldsVe(r ) and Vh(r ) whose
correlation lengths are considerably larger than the exc
size.
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3. SPECTRA OF DIRECT AND INDIRECT
MAGNETOEXCITONS IN QUANTUM DOTS

In order to clarify the nature of the approximation~16!
used in this paper, let us consider a magnetoexciton con
ing an electron and a hole in one quantum dot and two s
tially separated dots. This problem, of course, is interest
irrespective of the issues discussed here, in connection
experimental studies of excitons in quantum dots in a m
netic field.23

Assume that the electron and hole are confined in qu
tum dots by parabolic potentialsVe,h(r )5ae,hr 2. In calcu-
lating the exciton spectrum we use Eq.~12!. It holds under
the condition that the interaction between the exciton a
quantum dot potential does not induce transitions betw
exciton levels due to quantization of internal motion.

Using Eq.~12! and taking into account confining poten
tials, we obtain

S 2
\2

2M̃
D1~ae1ah!R21

c~ah2ae!

eH2
H•L̂ D F~R!

5E8F~R!, ~18!

where L̂52 i\R3¹ is the exciton angular momentum op
erator,

1

M̃
5

1

Mexc~D/ l !
1

l 4

2\2
~ae1ah!, ~19!

whereE85E2 l 2(ae1ah)/2. Note that the confining poten
tials reduce the exciton effective mass. The parameterM̃
monotonically increases withH. Note that Eqs.~18! and~19!
have been derived from the ‘‘exact’’ equation~12! @but not
from the approximate equation~16!# without expanding in
powers of the ratio between the magnetic length and lo
ization radiusL;a0 ~see below!. If we used Eq.~16!, we
would not obtain the third term on the left of Eq.~18!, which
describes the exciton polarization by external field, and
exciton effective mass would not be renormalized.

Thus, we obtain the following expression forF(R):

Fnm~R!5A n!

2p~n1umu! !

eimf

a0
S R

A2a0
D umu

3Ln
umuS R2

2a0
2D expS 2

R2

4a0
2D , ~20!

where

a05S \2

2M̃ ~ae1ah!
D 1/4

~21!

is the exciton localization radius in quantum dots, andLn
m are

Laguerre polynomials. The exciton localization region b
comes smaller with increasingD/ l and magnetic fieldH.

The spectrum~18! is fully discrete:

Enm8 5ml2~ah2ae!14\Aae1ah

2M̃
S n1

umu11

2 D . ~22!
in-
a-
g,
ith
-

n-

d
n

l-

e

-

IncreasingH decreases the distance between the levels
fined by Eq.~22!, i.e., leads to finer structure for magnetoe
citon absorption due to the internal motion of the exciton
the lowest Landau level. This narrowing of the spectrum
caused by the increase in the exciton effective mass~19! and
the decrease in the magnetic lengthl with the increasing
magnetic field~a similar effect is the narrowing of the exc
ton band in quantum wells in stronger fields19!. Such prop-
erties of the exciton absorption were detected in absorp
spectra of natural quantum dots.23

Up to this point we have discussed the exciton spectr
around the lowest Landau level. Similarly, the entire excit
spectrum in coupled quantum dots in a strong magnetic fi
consists of fine features around higher Landau levels.
merely note that in spectra around higher levels one sho
also take into account features corresponding to excit
formed at ‘‘roton’’ minima.17–19 At D50, our results are in
good agreement with numerical calculations of magneto
citon spectra in quantum dots.24

If we haveae5ah , the levels defined by Eq.~22! are
degenerate in the quantum numberN52n1umu. Each level
except (0,0) isN11-fold degenerate.

The approximation~18! is valid under the condition

ae1ah!vc
2m. ~23!

As follows from this inequality, the applicability of our re
sults is wider in stronger magnetic fields.

The probability of generating an exciton is known to
determined25,26 by the parameter

E uC~R,r !u2d~r !dRdr , ~24!

i.e., the probability of detecting an electron and a hole at
same point. Here we consider either an isolated quantum
or generation of an exciton in coupled quantum dots. Us
Eq. ~2!, we transform Eq.~24! to

1

2p l 2(p
uapu2expS 2

P2l 2

2\2 D . ~25!

The factorap is a Fourier transform of function~20!, and at
n5m50 it is determined by the equation

ap5A2p

S
2a0expS 2

P2a0
2

\2 D . ~26!

By substituting Eq.~26! in ~25!, we find that the magnetoex
citon absorption in a quantum dot is proportional to

1

2p2S a0

l D 2 1

4a0
21 l 2

, ~27!

which increases monotonically withH in the region of strong
magnetic fields because the wave functions are compre
as the magnetic field intensity increases. The rate of
growth is lower at higherae1ah .



he
th
is
ffi

th

io
-
th
en
n

s
n

d
s
in

in

r
ns
p
si

,

zed
in

uld
the

x-

ve
on
ld

r

. It

792 JETP 87 (4), October 1998 Yu. E. Lozovik and A. M. Ruvinski 
4. MAGNETOEXCITON LIGHT ABSORPTION IN A SINGLE
QUANTUM WELL

Fluctuations in the quantum well width generated in t
process of its fabrication result in a random potential in
well. Provided that the amplitude of such fluctuations
smaller than average quantum well width and they are su
ciently smooth, the interaction between an exciton and
random field is described by the potential12,27,28

V~re ,rh!5ãe@j1~re!2j2~re!#1ãh@j1~rh!2j2~rh!#, ~28!

whereãe,h5]Ee,h
(0)/]d, d is the quantum well width,Ee,h

(0) are
the lowest levels of the electron and hole in the conduct
and valence bands, andj1,2(r ) are fluctuations in the coordi
nates of the upper and lower interface. Let us assume
fluctuations on different interfaces are statistically indep
dent and characterized by a Gaussian correlation functio

^j i~r1!j j~r2!&5gid i j d~r22r1!, ~29!

wheregi is proportional to the squared amplitude of thei th
interface fluctuation.12,27,28

The exciton absorption factor can be expressed aa
5a0A(E),15,25 where a0 is a factor weakly depending o
the frequencyv5E1Eg1Eexc ~here Eg is the band gap
width and\51), andA(E) is given by the equation

A~E!52
1

p
Im G1~0, E!, ~30!

where G1(0,E) is the Fourier transform of the retarde
Green’s function atk50. Using the replica technique, let u
express the Green’s function in the form of a functional
tegral over boson field:16,29

G1,2~E,R1 ,R2!5 lim
N→0

E Dfa
pf1

1,2~R1!f1
1,2~R2!eL,

L5
isp

2 E fa
p~r !FEp2

¹R
2

2Mexc
2Veff~R!Gfa

p~r !dr . ~31!

Herefa
p(r ) are real fields and summation over repeated

dices is implied; the replica indices area51, . . . ,N,
p51, 2, s152s251, Ep5E1 isph, h→0. By performing
Gaussian averaging in Eq.~31! over j i(r ) we obtain

L5
isp

2 E fa
p~R!S Ep2

¹R
2

2M Dfa
p~R!d2r2

1

8E dR1dR2fa
p

3~R1!fa
p~R1!spB~R1 ,R2!fb

q~R2!fb
q~R2!sq , ~32!

whereB(R12R2)5^Veff(R1)Veff(R2)&av, and the effective
potentialVeff is given by Eq.~17!. As a result the correlato
of the random field, which determines properties of excito
unlike that of the fields acting on the electron and hole se
rately, corresponds to a colored rather than white Gaus
noise:

B~R12R2!5
g11g2

2p l 2
~ ãe1ãh!2expS 2

~R12R2!2

2l 2 D . ~33!

Note that we havel→0 in the limit of strong magnetic fields
whence B(R2R2);(g11g2)(ãe1ãh)2d(R11R2), i.e.,
e

-
is

n

at
-

:

-

-

,
a-
an

the random field acting on an exciton is again characteri
by the white noise spectrum. The time-reversal symmetry
Schrödinger equation~16! and elimination of the long-range
property of the random field rule out all causes that co
lead to a difference between transport coefficients in
cooperon and diffuson.30

Owing to the translation symmetry and isotropy, the e
citon correlation function depends only onuRu5uR12R2u.

To derive an effective potential describing long-wa
fluctuations it is convenient to decouple the interacti
part of the Lagrangian by introducing a bilocal fie
Q(R1 ,R2):16,29

exp~L int!5E DQ̂expF i

2E dR1dR2AspsqQab
pqfa

p~R1!

3fb
q~R2!2

1

2E dR1dR2Tr Q̂~R1 ,R2!

3B21~ uR12R2u!Q̂~R1 ,R2!G ,
L int52

1

8E d2R1dR2fa
p~R1!fa

p~R1!spB~R1 ,R2!

3fb
q~R2!fb

q~R2!sq . ~34!

Let us introduce a generating functional

Z@J#5E DQ̂Dfa
pexpS L@Q̂,f#

1E Jab
pq~R1 ,R2!fa

p~R1!fb
q~R2!dR1dR2D , ~35!

where Jab
pq(R1 ,R2)5Jba

qp(R2 ,R1). Then the expression fo
the Green’s function is

dZ@J#

dJ11
pp U

J50

5 ispGp~R1 ,R2!, ~36!

or16

^Gp~R12R2!&av522B21~R12R2!^Q11
pp~R1 ,R2!&, ~37!

where^ . . . & denotes the functional integral over fieldQ.
The Lagrangian in Eq.~35! is quadratic infa

p , so direct
integration yields

L@Q̂#52
1

2
Tr lnF ŝS E2

¹R
2

2Mexc
D d~R12R2!1Q̃G

2
1

2E dR1dR2TrQ̃~R1 ,R2!B21~R1 ,R2!Q̃~R1 ,R2!,

~38!

whereŝab
pq5spdpqdab , Q̃ab

pq5Aspsq Q̂ab
pq .

Let us calculate the stationary path of the Lagrangian
should satisfy the equation

dL

dQ
50. ~39!

We seek a solution of this equation in the form
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Q̃ab
pq5dpqdabQa

p . ~40!

The equation forQa
p in the saddle approximation is

Gp
0~R1 ,R2!522B21~ uR12R2u!Qa

p~R1 ,R2!, ~41!

where

Gp
0~R1 ,R2!5K R1U 1

E2¹R
2/2Mexc1Qa

pUR2L . ~42!

Equations~41! and ~42! determine the Green’s function i
the saddle approximation. The saddle approximation
known to be equivalent to the coherent potential approxim
tion. It allows one to determine the scattering potential2Q
using a self-consistent procedure described by Eqs.~41! and
~42!. The coherent potential approximation not only yiel
qualitatively good results, but also quantitative calculatio
of spectra.31

Owing to the translation symmetry and isotropy, the s
lution of the integral equation with respect toQp depends
only on uR12R2u. By taking the Fourier transform of Eq
~41!, we obtain

Qp~k!52
1

2E Gp
0~q!B~ uk2qu!

dq

~2p!2
. ~43!

In the limit gi→0 the parameter ImQp is small; hence, as in
Refs. 16 and 29, we can use the ansatz

Im Gp
0~q!→2pdS E2

q2

2Mexc
D . ~44!

By substituting the expression~44! in Eq. ~43! and express-
ing the imaginary part of the Green’s function in the coh
ent potential approximation, we obtain

Im Gp
0~k!52

Im Qp~k!

~E2k2/2Mexc!
21@ Im Qp~k!#2

, ~45!

where

Im Qp~k!5
p

2E dS E2
q2

2Mexc
DB~ uk2qu!

dq

~2p!2
,

or

Im Qp~k!5
1

2
B0Mexcp l 2expS 2

1

2
k2l 22MexcEl2D

3I 0~kl2A2Mexc E !, ~46!

whereB0 is the pre-exponential factor~33!.
After turning to Eq.~30!, we obtain the expression fo

the exciton absorption in the coherent potential approxim
tion:

A~E!5
1

2p

MexcB0p l 2exp~2MexcEl2!

E21~MexcB0p l 2/2!2exp~22MexcEl2!
. ~47!

The absorption peaks in the range of low energiesMexcEl2

!1. Under the conditiond2!ae,hl , whereae,h are effective
Bohr radii of the electron and hole in the quantum w
plane, the coefficient in the size quantization energy exp
is
-

s

-

-

-

l
n-

sion in terms of the quantum well width fluctuations, obv
ously, has the formãe,h52p2/me,hd3, whered is the mean
quantum well width.27 Therefore the parameterB in Eq. ~47!
@the amplitude of the random field correlator; see Eq.~33!# is
proportional to 1/d6. As a result, the absorption coefficient
E50 is

A~0!5
4

p5

d6mz
2

~g11g2!Mexc
, ~48!

wheremz5mzemzh /(mze1mzh). The absorption coefficien
falls off with increasingH as 1/AH since the exciton effec-
tive massMexc increases withH asAH. The FWHM of the
absorption line increases with the random field amplitudeg.

Let us calculateA(E) in the region of large negative
energiesE. In this band, the density of states is nonzero o
due to relatively rarely occurring configurations of the ra
dom field. By virtue of the macroscopic homogeneity con
tion, regions of large negative potential fluctuations sho
be separated by distances considerably larger than thei
mensions, and, moreover,*Veffdr50. Thus, typical realiza-
tions ~optimal fluctuations! responsible for the spectrum i
the range of large negative energiesE should have the shape
of relatively deep wells separated by regions with typic
values of the potential.

^Veff&av6A^Veff
2 &av2^Veff&av

2 56A^Veff
2 &av.

The density of states in the limitE→2` can be calculated
by the method of optimal fluctuations32 or the saddle point
method33 applied to the functional integral~32!. In the saddle
point method the main contribution depending on the para
eter 1/MexcEl2 to the functional~32!, which determines the
Green’s function, is due to instantons. The instanton con
bution to the density of states for largeE is asymptotically
exact, and in one-dimensional systems it is identical to
result obtained by the optimal fluctuation method. This co
tribution is determined by the behavior of functionB(R) in
the regionR! l . Thus, retaining only the lowest-order com
ponent in the expansion ofB(R) in powers ofR, we obtain

B~R!'B0S 12
R2

2l 2D . ~49!

Using the expression for the Green’s function in the inst
ton approximation,33 we derive the exciton absorption coe
ficient:

A~E!5
E2l

~ ãe1ãh!3~g11g2!3/2
expS 2

2p l 2E2

~ ãe1ãh!2~g11g2!
D .

~50!

5. MAGNETOEXCITON LIGHT ABSORPTION IN COUPLED
QUANTUM WELLS

The interaction between an exciton whose electron
hole are in spatially separated quantum wells and a rand
field due to fluctuations in widths of electron and hole qua
tum wells has the form12

V~re ,rh!5ãe@j1~re!2j2~re!#1ãh@j3~rh!2j4~rh!#, ~51!
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where ãe,h5]Ee,h
(0)/]de,h , de,h are average widths of th

electron and hole quantum wells,j1 andj2 (j3 andj4) are
fluctuations in the widths of the electron~hole! wells on the
upper and lower interfaces, respectively@the applicability
condition for Eq.~51! is similar to that of Eq.~28!#.

We still assume that fluctuations of different interfac
are statistically independent, whereas fluctuations of a s
cific interface are described by a Gaussian correlation fu
tion ~29!. This is possible if the distanceD between the elec
tron and hole quantum wells is larger than the amplitude
fluctuations on the nearest interfaces~the opposite case oc
curs in double quantum wells!.

The correlation function of the effective potential has t
form

B~R12R2!

5
ãe

2~g11g2!1ãh
2~g31g4!

2p l 2
expS 2

~R12R2!2

2l 2 D . ~52!

The absorption coefficient atE50 is

A~0!5
4

p5M ~D !
S g11g2

mze
2 de

6
1

g31g4

mzhdh
6 D 21

, ~53!

where

M ~D !5
23/2e\2

e2lAp

3F ~11D 2!expS D 2

2 DerfcS D

A2
D 2DA2

pG21

~54!

is the effective mass of the indirect exciton in the st
n5m50 in a coupled quantum well18,19 and D5D/ l . For
the reasons discussed in Sec. 4,A(0) drops with the mag-
netic field as 1/AH for D!1, and 1/H2 for D@1 in agree-
ment with the experimental data.3 The peak intensity drops
with D .

In the instanton approximation forM (D) l 2uEu@1, the
magnetoexciton absorption has the form

A~E!5
E2l

@ãe
2~g11g2!1ãh

2~g31g4!#3/2

3expS 2
2p l 2E2

@ãe
2~g11g2!1ãh

2~g31g4!#
D . ~55!

Note that the parameterM (D) l 2 is a nonmonotonic function
of H and D since the effective mass~54! increases and the
magnetic lengthl decreases with the increasing magne
field. So, this parameter increases withH for D.0.7a* (a*
is the exciton Bohr radius! in the strong-field range an
drops for D,0.7a* . Therefore, an increase inH at
D,0.7a* can lead to a transition from the absorption ty
~55! to ~53!, and the energyuEu above which the instanton
approximation holds decreases with increasing magn
field for D.0.7a* .
e-
c-

f

e

ic

6. MAGNETOEXCITON LIGHT ABSORPTION
IN TWO-COMPONENT SOLID SOLUTIONS

The potential of interaction between an exciton and r
dom fieldj(r ) due to local fluctuations in the concentratio
of the solid solution components can be expressed as14–16

V̂~re ,rh!5bej~re!2bhj~rh!, ~56!

where

be5
1

N

]Ec

]x
, bh5

1

N

]Ev

]x
,

x is the mean concentration of sites occupied by atoms A,Ec

is the energy of the conduction band bottom,Ev is the energy
of the valence band top,N is the density of lattice sites wher
atoms of species A or B can be located, andj(r ) is the
excess concentration of one solid solution component.
random Gaussian functionj(r ) satisfies the relationship15

^j~r1!j~r2!&5Nx~12x!d~r12r2!. ~57!

Using Eqs.~17! and~57!, we obtain the correlation function
of the effective potential

B~R12R2!5
~be2bh!2

2p l 2
gexpS 2

~R12R2!2

2l 2 D , ~58!

where g5Nx(12x). At be5bh the correlation function
vanishes. Including deviations of the random field fro
Gaussian of the form22

(
a,b5x,y

bab

]2d~r12r2!

]r 1a]r 2b

in Eq. ~57! does not change this result@B(R)50 holds at
be5bh]. A weak interaction occurs only when virtual tran
sitions to other Landau levels are taken into account.34

The absorption coefficient atE50 is

A~0!5A2

p

e2l

e\2g

1

~be2bh!2
. ~59!

This coefficient drops with increasingH as 1/AH.
The magnetoabsorption coefficient in a III–V quantu

well in the instanton approximation has the form

A~E!5
E2l

ube2bhu3g3/2
expS 2

2p l 2E2

~be2bh!2g
D . ~60!

7. CONCLUSIONS

We have calculated the coefficient of magnetoexci
absorption in a single quantum well and in coupled quant
wells taking into account quasi-two-dimensional rando
fields due to fluctuations in the widths of quantum wells
fluctuations in the concentrations of substitutional solid
lution components. An increase in the random field disp
sion results in a lower amplitude and a larger width of t
absorption peak. Similar changes in the absorption spe
occur when the distance between coupled quantum w
containing electrons and holes increases. In the region
high magnetic fields, the peak amplitude drops with the
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creasing magnetic field, in agreement with the experime
data.3 The spectra of direct and indirect excitons in sing
and coupled quantum dots have been calculated.
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Non-Fermi-liquid tunneling mechanisms in a quantum structure with its own two-dimensional
continuum doped with transition metal impurities are considered. New physical
realizations of the two-channel Kondo orbital model with mechanisms different from those
previously described in literature occur in such quantum structures. The tunneling transparency is
anomalously high owing to new channels generated by multiparticle Fermi-liquid resonances
near the edge of the two-dimensional energy band in the process of tunneling. The widths of new
edge resonances can be much smaller than the width of the ‘‘bare’’ non-Fermi-liquid
resonance at the Fermi level in the banks. The additional scattering due to tunneling induces a
transition from the non-Fermi-liquid to the Fermi-liquid state as the separation between
the Fermi level in the banks and the two-dimensional band edge in the quantum well varies.
© 1998 American Institute of Physics.@S1063-7761~98!02110-6#
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1. INTRODUCTION

The importance of many-body effects in tunnelin
mechanisms in quantum structures is well known.1–4 They
not only lead to essential renormalization of tunneling p
rameters, but also generate new tunneling channels. S
effects were probably first reported in Refs. 1 and 2 for
case of Kondo scattering in the presence of strong Coulo
repulsion on a localized level.

Quantum structures with a negative differential res
tance, which find important applications, often have an
ergy profile shaped like a double-barrier quantum well. T
type includes GaAlAs/GaAs/GaAlAs heterostructure
whose inner GaAs layer forms a quantum well with its ow
two-dimensional continuum of space-quantized band sta
Previously the role of the two-dimensional continuum w
considered to be trivial, so the mechanisms of tunneling v
quantum well5 and a localized level below a barrier6 were
deemed identical.

Tunneling mechanisms in which the two-dimension
continuum in a double-barrier quantum well is of fundame
tal importance were first investigated in our earlier work.7–19

An exponential growth in the transparency due to an elem
tary tunneling event was predicted using the single-part
approach. The competition between multiparticle and sing
particle resonances in the process of tunneling for the cas
one-channel Kondo scattering of electrons from the ba
via an orbitally nondegenerate impurity state was c
sidered.8,9 Conditions under which the main contribution
the tunneling transparency comes from single-particle re
nances were determined.

However, the state of a real transition metal impurity
usually orbitally degenerate. In this case,11 the multichannel
exchange between conduction electrons and an impurity s
for S,2n, whereS is the impurity spin andn is the number
of orbital channels, results in formation of a non-Ferm
liquid ~NFL! spectrum of elementary excitations on t
7961063-7761/98/87(10)/11/$15.00
-
ch
e
b

-
-

s
,

s.
s
a

l
-

n-
le
-
of
s
-

o-

te

-

Fermi level~see also Refs. 12 and 13!. The tunneling mecha-
nisms in quantum structures with an NFL continuum in th
banks have not been sufficiently studied heretofore. The t
perature dependence of the conductance was estimate
solving the problem of resonant tunneling via a qua
localized state.14 These calculations were undertaken with
view to interpreting experimental data,15 which probably in-
dicated a cross-over between non-Fermi-liquid and Fer
liquid states in an external magnetic field.

This paper suggests a new multiparticle tunneli
mechanism in a double-barrier quantum well, containing
two-dimensional continuum of electron band states, a
doped with transition metal impurities. The multichannel o
bital or spin Kondo scattering of conduction electrons fro
the banks via impurity states in the well is taken into a
count. Although the multi-channel Kondo spin model w
proposed almost two decades ago, the researchers took a
interest in non-Fermi-liquid states after the emergence
physical realizations of the two-channel orbital Kondo mod
in heavy-fermion systems and high-temperature sup
conductors.17

For this reason, the problem of tunneling through
double-barrier quantum well containing a two-dimension
continuum of band states and doped with transition me
impurities is of fundamental importance. First, it allows us
design new physical realizations of the two-channel orb
Kondo model with mechanisms different from those su
gested previously,17–19and second, such realizations may a
low investigators to directly observe non-Fermi-liquid e
fects.

In this paper, the mechanism generating a two-chan
exchange~in terms of the impurity quadrupole momen!
scattering is breaking of the axial symmetry of spac
quantized states in the quantum well due to virtual transiti
between states in the banks and in the well.

The key role in the tunneling mechanisms suggested
the paper is played by the two-dimensional continuum in
© 1998 American Institute of Physics
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quantum well. Multiparticle resonances with widths mu
smaller than those of the ‘‘bare’’ non-Fermi-liquid resonan
at the Fermi level can be formed near the two-dimensio
band edge in the process of tunneling through a doped q
tum well. The width of edge resonances is a power funct
of the tunneling parameters. The edge resonances are d
additional scattering of quasi-two-dimensional electrons
the well by non-Fermi-liquid excitations from the Ferm
level, which is caused by tunneling processes. These r
nances are multiparticle Fermi-liquid states, since they c
respond to simple poles in electron Green’s functions in b
the banks and the quantum well instead of a power-law
gularity corresponding to non-Fermi-liquid excitations wit
out tunneling. The edge resonance make the principal co
bution to the transparency and determine the Fermi-liq
regime of tunneling till the separation between the Fe
level and the edge of the two-dimensional band is sma
than the width of the bare non-Fermi-liquid resonance in t
region. If the gap between the Fermi level and tw
dimensional band gap is larger than the width of the b
non-Fermi-liquid resonance, the latter make the main con
bution to the transparency, so it determines the non-Fe
liquid regime of tunneling.

To sum up, when the Fermi level in the banks a
proaches the two-dimensional band gap in the well, a cro
over between the non-Fermi-liquid and Fermi-liquid tunn
ing modes takes place.

2. TUNNELING HAMILTONIAN AND TUNNELING
PROBABILITY

1. We consider the situation when a transition metal i
purity generates a deep level with energyEd in the band gap
of the inside layer of the double-barrier quantum well. T
spectrum in this layer also contains a two-dimensional c
tinuum with dispersion«k' . In solving this specific problem
we focus on the case when the Fermi level in the bank
near the bottom of the conduction band of the inside lay
Given that the five-fold degenerated level is split by the
crystal field into the doubly degenerateeg level and the
three-fold degeneratet2g level, the eigenfunctions of an elec
tron on thed level are the cubicd functions proper, and the
quantum numbers are the numbersm of columns of the irre-
ducible representation of the point group:meg

561,
m t2g

50,61, Ed5Eeg ,t2g
. In a bulk semiconductor, thes

states are not hybridized with the conduction band state20

In a quantum well, however, the situation is different. A
was shown previously,10 the eg and t2g levels can hybridize
with the conductance band states owing to the lowering
their symmetry. The Hamiltonian of a tunneling system w
the Ed level in the quantum well has the form

H5H001Ht1H int , ~1!

whereH005H00
n 1H00

d 1H00
c is the Hamiltonian of the non

interacting banks and quantum well:
al
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H005 (
k,n5L,R,s

«k
naksn

1 aksn1(
ms

Eddms
1 dms

1(
k's

«k'
ck's

1 ck's , ~2!

Ht is the tunneling Hamiltonian:

Ht5Htd1Htc5 (
knms

~Tkd
nmakns

1 dms1H.c.!

1(
kns

(
k'8

~Tkk
'8

n
akns

1 ck
'8 s1H.c.!. ~3!

The operatorsakns describe electron states in the left-ha
(n5L) and right-hand (n5R) banks of the tunneling junc
tion. The operatorsds andck' correspond to the wave func
tions of hybridized localizedcdm(r ) and bandC(k' ,k)
states.10,20

The tunneling matrix elements in Eq.~3! are8

Tkd
nm5Bm~k'!Td

n~kl !, Tk,k
'8

n
5T0

n~kl !dk'k
'8

1Tkc
n B~k'8 !,

Tkc
n 5Tc

n~kl !B~k'!, B~k'!5(
m

Bm~k'!. ~4!

HereBm(k')5vk'd /(Edm2«k'
), andVk'd

m is the hybridiza-

tion matrix element in the quantum well:10

Vk'd
m 5E drwdm~r !U~r !C~k' ,r !

5E drwdm~r !U~r !c~k' ,r!w~z!. ~5!

In Eq. ~4! we have writtenk5(k' ,kl), and we assume tha
the electron motion in the vertical and lateral directions
decoupled:«k5«k'

1«kl
; hence the impurity contribution to

Tk,k
'8

v is separable, which is essential in solving the tunnel

problem. The difference between the matrix eleme
T0

n(kl), Td
n(kl), andTc

n(kl) is that they contain different fac
tors composed of normalization constants, but all three
rameters are proportional to the matrix elements of the t
neling potential between vertical components of the wa
functions in the banksn and in the doped layer:

Tn~kl !5E cn* ~kl ,z!V~z!w~z!dz.

In addition to the standard termHtd ~which exists, how-
ever, owing to the presence of the ‘‘Bloch tail’’ of the im
purity wave function!, the tunneling Hamiltonian contain
the second termHtc . This is the term responsible for the ne
resonance states near the edge of the 2D band.8

Before proceeding to the solution of the problem of tu
neling via impurity states, we should take into account
restructuring of the band spectrum in the well due to
tunneling between the banks and well described by te
with T0

n(kl) in Tk,k
'8

n
. It was shown previously8 that, since

the tunneling takes place between bands of different dim
sionalities~the 3D bands in the banks and the 2D band in
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well!, evanescent states with complex wave vectorsk' and
complex energies«̃k'

such that Rek''Im k' are created
near the bottom of the 2D band. These states exist in
region «2«c,g!Wc and are described by the density
states

rc~«!5
r0c

p Farctan
«2«c

g0
2arctan

«2Wc

g0
G . ~6!

Herer0c is the density of states at the unperturbed 2D ba
edge,«c andWc;r0c

21 are the edge position and width of th
2D band, respectively;g0;(nuT0

n(«c)u2r0n , r0n;Wa
21 is

the corresponding tunneling width, andWa is the width of
the conduction band in the banks.

Thus, the only impurity term in the tunneling Hami
tonianHtc in the interesting range of energies is that prop
tional toTc

n(kl) in Eq. ~4!, but the density of states in the 2
continuum is given by Eq.~6!.

The tunneling HamiltonianHt can be transformed to th
‘‘single-band’’ form, which is convenient for analyzing in
teractions. To this end, let us introduce, instead ofakns ,
wheren5L,R, the new operatorsaks andbks defined by the
linear transformation:

aks5ukakLs1vkakRs , bks5ukakRs2vkakLs ,

uk5
Tkd

Lm

@~Tkd
Lm!21~Tkd

Rm!2#1/2
, uk

21vk
251. ~7!

One can check directly that, in the new representation, q
siparticles of only one sort described by the operatorsaks are
hybridized with both the localized states and those of
two-dimensional continuum. The HamiltoniansH00, Ht ,
andH int are replaced in accordance with the formulas

H00→H00
a 1H00

b , Ht→Ht
~a! , H int→H int

~a! . ~8!

If the electron spectra in both banks are identical,ek
L5ek

R

5eka , we have

H00
~a!1H00

~b!5(
ks

ekaks
1 aks1(

ks
ekbks

1 bks .

The HamiltonianHt
(a) is derived fromHt in Eq. ~3! using the

substitutions

akns
1 →aks , Tkd

nm→Tkd
am5@~Tkd

Lm!21~Tkd
Rm!2#1/2,

Tkk
'8

n →Tkk
'8

a
5Tkk

'8
L

uk1Tkk
'8

R vk .

Since the tunneling Hamiltonian acts only on the statesaks ,
the interaction HamiltonianH int is defined only for these
states.

2. In calculating the elastic tunneling probability, we u
a formula similar to the Landauer formula, which expres
the probability in terms of the scattering matrix:

W~k,«k
L ;k8,«k8

R
!52puT ~k,«k

L ;k8,«k8
R

!u2d~«k
L2«k8

R
!,

~9!

whereT 5HtGHt and G5 Î (z2H)21 is the Green’s func-
tion (Î is the unit matrix!. The matrixT describes tunneling
via both band and localized impurity states with due acco
e

d

-

a-

e

s

t

of all elastic scattering processes within the quantum w
which determine the Green’s functionG. The general ex-
pression forT in a double-barrier quantum well has the for

T ~k,«k
L ;k8,«k8

R
!5^akLuHtud&^duGud&^duHtuak8R&

1(
pp8

^akLuHtucp&^cpuGucp8&

3^cp8uHtuak8R&1(
p

^akLuHtucp&

3^cpuGud&^duHtuak8R&1(
p

^akLuHtud&

3^duGucp&^cpuHtuak8R&. ~10!

Here the spin indices are omitted. Assuming that the m
contribution to the tunneling amplitude comes from the m
trix element containing the Green’s function,^cpuGucp8&
[Gcc(k'k'8 ;«k

L), we obtain an expression for the tunnelin
probability via the band channel:

W~k' ,k'8 ,«k
L!5 (

p' ,p'8
GL

c~k' ,p' ;«k
L!GR

c ~k'8 ,p'8 ;«k8
R

!

3Ud«k8

dkl8
UuGcc~p' ,p'8 ;«k

L!u2d~«k
L2«k8

R
!. ~11!

For one-dimensional states near the Fermi level, which w
be used in what follows, the tunneling widths are determin
by the expression

Gn
c~p' ;«!5Gn

c~p' ;«k
n!5(

q
^aqnuHtcucp'

&^cp'
uHtcuaqn&

5(
k

uTkp'

n u2d~«2«k
n!. ~12!

By expressingakL,R in Eq. ~10! in terms of ak and bk

through Eq.~7!, we obtain a formula which will be usefu
hereafter:

GL,R
c 5Ga

c
GL,R

c0

GL
c01GR

c0
, ~13!

whereGL,R
c0 are tunneling widths without interaction:

(
n

G0n~«F!5(
n

uT0
n~«F!u2rn~«F!;g0 ,

and the arguments of all the functions are the same as in
previous formula.

The Green’s functionGcc in Eq. ~11! describes propaga
tion of a tunneling electron through a quantum well with d
account of all resonant and potential scattering proces
within the well which are caused by the HamiltonianHt .
The character of elementary excitations in the banks, wh
scatter quasi-two-dimensional electrons in the well, is de
mined by interactions inH int

a . The latter interactions, to
gether with Htc , generate singularities in the interestin
range of energies near the two-dimensional band edge. T
in solving the tunneling problem, the main thing is to dete
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mine the Hamiltonian of the interaction in Eq.~8! coupling
the states within the well andaks states, which are symmetr
cal linear combinations of those in the right- and left-ha
banks.

3. MECHANISMS OF TWO-CHANNEL ORBITAL KONDO
SCATTERING

1. Physical realizations of the two-channel orbital Kon
model in heavy-fermion and HTSC systems,17 along with
metallic glasses doped with two-level impurities,18,19 are
well known.

This paper describes quantum structures in which n
physical realizations of the two-channel orbital Kondo mo
take place.

The interactions between conduction electrons in
banks and an orbitally degenerate impurity state in the w
is due to the Hubbard repulsion between electrons on
deep level. It is described by the following term inH int of
Eq. ~1!:

HU5 (
m,m8;s,s8

Umm8ndmsndm8s8~12dmm8dss8!. ~14!

By applying the Schrieffer–Wolff transformation to th
generalized Anderson Hamiltonian

HA5H00
a 1Htd

a 1H00
d 1HU , H00

d 5(
ms

Eddms
1 dms ,

we find that, in the general case, the effective interact
between an impurity state in the well and electrons in
banks has the form

H int5(
kk8

(
mm8s i

Vkk8
mm8aks1

1 ak8s2
dms3

† dm8s4
,

Vkk8
mm852Tdk

amTk8d
am8S 1

Ed2«k
a

2
1

Ed1Umm82«k8
a D . ~15!

The new physical mechanism leading to multichannel
change scattering is breaking of the axial symmetry of spa
quantized states in the quantum well. Specifically, if the
pendence of the 2D wave continuum wave functions in
~5! on the transverse space coordinates is taken into acco
the matrix elementsVk'd

m are nonzero for all components o

the d state withmeg
561, m t2g

50,61, and the terms with
meg

Þ11 are nonzero only when the axial symmetry
quantized states in the well is broken. Accordingly, the tu
neling matrix elementsTkd

am are nonzero for allmeg
561 and

m t2g
50,61. As follows from the definition~4!, the direct

consequence of the axial symmetry breaking is the mom
tum k direction dependence of the tunneling matrix eleme
Tkd

m ~the spatial nonlocality ofTkd
m ).

The matrix elements of interaction withmÞm8 in Eq.
~15! are nonzero owing to the mechanism of axial symme
breaking in the quantum well described above.

Of all interactions in Eq.~15!, we will consider only
those which have the exchange form with respect to ei
the orbital or spin index.
w
l

e
ll
e

n
e
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.
nt,

-

n-
s

y

er

The interaction

H int5(
kk8

(
mm8s

Vkk8
mm8aks

1 ak8sdm
1dm8 , ~16!

which describes exchange with respect to the orbital ind
can be dominant in the following cases:~1! the spin degen-
eracy is fully lifted owing to the combined action of cryst
fields ~they have been taken into account previously! and
exchange interaction within thed shell ~the Hund rule!; ~2!
both spin degenerate levels are below the Fermi level;~3! the
temperature under consideration is much smaller than all
ergy parameters of the problem, except the Kondo temp
ture in the problem with the spin exchange. The latter c
dition can be satisfied when the exchange constants
sufficiently small, since the ‘‘spin’’ Kondo temperature is a
exponential function of the exchange parameters, whe
the orbital exchange energies are power functions of the
change parameters~see Refs. 13 and 26, and also Eqs.~32!
and ~33! in this paper!. Let us rely on the fact that, usually
the gap between theeg andt2g states is sufficiently large~in
comparison with the energy scales of the problem!, so their
mixing in the interaction matrix elements can be neglect
Suppose also that the deep level nearest to the 2D band
is the eg doublet. We expand the operatorsaks and matrix

elementsVkk8
mm8 in Eq. ~16! for the eg doublet in terms of

cubic harmonicsKGg(Vk), where G5eg , g561 is the
number of the line in the point group irreducible represen
tion:

aks5(
g

KGg~Vk!akgs ,

Vkk8
mm85(

gg8
KGg* ~Vk!KGg8~Vk8!Vgg8

mm8~kk8!, ~17!

andVk is the solid angle. The interaction nondiagonal mat
elements withgÞg8 are nonzero since the expansion of tu
neling matrix elements contains both of the terms w
g561 by virtue of their dependence on the momentumk
direction:

Tkd
m 5 (

g561
KGg~Vk!Tdg

am~k!. ~18!

Note that in the simplest case, when 2D continuum states
described by plane waves, we haveg5m and g85m8 in
Eqs.~17! and~18!. By substituting Eq.~17! in ~16! and using
the normalization properties of the cubic harmonics, we
tain an expression for the orbital exchange Hamiltonian
the case of theeg doublet:

Hex
m 5 (

kk8s
(

gg8561
(

mm8561

Vgg8
mm8~kk8!akgs

1 ak8g8sdm
1dm8 .

~19!

The doubly degenerateeg level containing one electron
~or hole! is conveniently described in terms of the pse
dospin variablet̂d , whose projection on thez-axis has two
values:
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t̂d
z5

1

12
@3Lz

22L~L11!#56
1

2
, ~20!

corresponding to the occupation of thedz2 orbital (Lz50)
anddx22y2 orbital (uLzu52), whereL̂ is the angular momen
tum operator. The operatort̂d

x;Lx
22Ly

2 inverts the pseu-
dospin. Note that the operatorst̂d

z and t̂d
x are components o

the quadrupole moment tensor. Thus, the two values of
quantum numberm561 in Hamiltonian~19! correspond to
two projections~20! of the quadrupole moment on thez-axis,
i.e., the interaction~19! is quadrupole exchange scatterin
By defining the pseudospin operator in Eq.~19! as

t̂d
i 5 (

mm8561

dm
1tmm8

i dm8 , (
m561

dm
1dm51

and assuming that

Vkk8
mm85 (

i 5x,y,z
Vkk8

i
~ t̂d

i !mm8 , m,m8561,

we can rewriteHex
(m) as

Hex
~m!5 (

kk8s
(

i 5x,y,z
(

g,g8561

Vi~kk8!akgs
1 t̂gg8

i ak8g8st̂d
i .

~21!

Equations~19! and~21! describe the Hamiltonian which cor
responds to the two-channel quadrupole exchange, wher
scattering channel number~‘‘color’’ ! is determined by one o
the two projections of the conduction electron real spin.

The tunneling matrix elements in Eq.~15! are complex
in the general case, so that Eq.~21! contains, along along
with the term withtd

x , a term withtd
y . Below we will con-

sider the caseVx5VyÞVz. Interactions determined by th
productstd

i td
j , iÞ j are beyond the scope of this paper.

The difference between the model with the quadrup
exchange described by Eq.~21! and those discussed earlier17

is in the physical exchange mechanism. We stress once a
that the physical cause of the ‘‘quadrupole exchange’’ is
axial symmetry breaking in space-quantized states in
quantum well owing to virtual transitions, hence the spa
nonlocality of the tunneling matrix elements.

2. It is noteworthy that the momentum dependence of
matrix elements is also a cause of the two-channel inte
tion exchanging the spins. Considering again only theeg

doublet and expanding the operators and matrix elemen
Eq. ~15! ~those withs15s, s25s8 and dms3

1 [ds
1 , dms4

[ds8) in terms of cubic harmonics, we obtain a two-chann
Hamiltonian with spin exchange, in which the channel nu
ber is determined by the orbital quantum number:

Hex
~s!5 (

kk8ss8
(

i 5x,y,z
(

m561
Jm

i ~kk8!

3akms
1 t̂ss8

i ak8ms8ds
† t̂ss8

i ds8 . ~22!

This is a particular case of the multichannel Kondo s
model suggested by Nozieres and Blandin11 ~see also
Ref. 30!.
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When the initial interaction Hamiltonians~15! are trans-
formed to the two-channel form, terms with the ‘‘magnetic
field turn up:

Hh5ht̂d
z . ~23!

In the case of spin exchange,h is the applied magnetic field
and in the case of the ‘‘quadrupole exchange’’h is the dou-
blet splitting due to the local symmetry breaking at an imp
rity site, first, in accordance with the mechanism discus
above, second, owing to Jahn–Teller distortions. Below,
consider the case when the magnitude of the Jahn–T
effect is smaller than all energy parameters of the proble

To conclude this section, we note that, in addition to t
Hubbard repulsion~14!, there is another mechanism of inte
action between electrons in the banks and impurity state
this system. This is renormalization of the interactions with
the doped layer due to tunneling between the banks and
quantum well described by the first term on the right of t
second line of Eq.~4! containing the matrix elementT0

a(kl).
The ‘‘bare’’ interactions within the well are given by

H int
W5 (

k'k'8 s i

(
mm8

Wk'k
'8

mm8 ck's1

1 ck
'8 s2

dms3

1 dm8s4
, i 51,2,3,4.

~24!

Physically, these are interactions within a partially fille
shell of an impurity atom20, which includes a ‘‘kernel’’ and a
‘‘Bloch tail.’’ The tunnelingT0

a(kl) renormalizes the interac
tions in Eq.~24!, as a result, we have an interaction betwe
the banks and well of the form

H int5 (
kk8s i

W̃kk8
mm8aks1

1 ak8s2
dms3

1 dm8s4
, ~25!

W̃kk8
mm85Wk'k

'8
mm8

3
T0

a* ~pl !T0
a~pl8!

@ «̃k'
2«a~k'!2«a~pl !#@ «̃k

'8
2«a~k'8 !2«a~pl8!#

.

All the interactions obtained in the previous calculatio
generate non-Fermi-liquid excitations at the Fermi level
the banks similar to boson-type excitations in the Lutting
liquid16 in the case of Coulomb interaction21,22 or bound
states ofn electrons~heren is the number of orbital chan
nels! for the case of multichannel exchange scattering.12,13,23

It is convenient to first solve the problem of the intera
tion between electrons in the banks and localized states u
one of the techniques developed for the problem with tw
channel Kondo scattering13,24 and then use this solution as
basis for solving the tunneling problem. In other words, t
solution of the problem with HamiltonianH05H001H int

should yield non-Fermi-liquid states at the Fermi level a
the corresponding state at the impurity level. The inclus
of the tunneling termHtc leads to additional scattering of 2D
electrons in the doped layer by states in the banks and
purity levels, which is obtained when interaction is tak
into account. This scattering fully determines the probabi
of elastic tunneling through the quantum well@see~11!#.
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4. GREEN’S FUNCTIONS AND DENSITY OF STATES
IN THE BANKS

1. In the case of a level doubly degenerate in eith
orbital or spin variables, when the dominant effect of int
action is generation of a multiparticle resonance at the Fe
level, the Green’s functions for conduction electrons can
calculated using the equation-of-motion technique:24,25

G0b
a ~kk 8;z!5dkk8G00b

a ~k;z!1G00b
a ~k;z!Tkd

ab*

3Gdb~z!Tk8d
ab G00b

a ~k8;z!. ~26!

Here b5@s,m# for the spin or orbital exchange, respe
tively, and G00b

a (k;z) is the Green’s function for noninter
acting electrons.

In the case of single-channel Kondo scattering,

Gds~z!5
1

z2eds2 igd2SK~z!
, eds2 igd5(

k

uTkd
a u2

z2ek
a

,

and for uzu close to the Fermi level we have

SK~z!5(
k

uTkd
a u2f ~«k

a!

z2ek
a

;gdln
Wa

z2«F
, Gds'

ZK

z2EK
.

~27!

Here EK5«F1 igK , gK is of order of the Kondo tempera
ture TK , TK;(Wagd)1/2ZK . It is noteworthy that in the
single-channel case the density of charged states has no
gularity at the Fermi level. In the ‘‘resonance-level’’ forma
ism employed in Eq.~27!, this is seen through the sma
residueZK which determines the pole contribution and
controlled by the small number of charged excitations at
Fermi level.

2. In order to determineGdb(z) in the case of two-
channel exchange, let us use the resonance-level model
gested by Emery and Kivelson.13 Rewrite the Hamiltonians

H00
a 5(

kms
ek

aakms
1 akms , Hex

~m!1Hh , ek
a5~k2kF!vF ,

@see Eqs.~21! and ~23!# as

H00
a 5 ivF(

ms
E

2`

`

cms
1 ~x!]xcms~x!,

Hex
~m!5

1

2 (
s,m51,2

(
i 5x,y,z

Vicms
1 ~0!ŝmm8

i cm8s~0!t̂d
i 1htz,

~28!

where

cms~x!5E
2`

`

dk eikxakms ,

and t̂ andŝ are Pauli matrices. The one-dimensional kine
energy

ivF(
ms

E
0

L

dr@c1ms
1 ~r !] rc1ms~r !2c2ms

1 ~r !] rc2ms~r !#,

wherec1ms
1 (r ) andc2ms

1 (r ) are operators creating electron
moving to the right and left at the pointr , respectively,
transforms to the expression in Eq.~28! via the substitution
r
-

i
e

in-

e

ug-

c2ms(r )→c2ms(2r ). This transformation makes sense f
interactions in which operatorsc and c1 are independen
of x.

Emery and Kilverson13 transformed the Hamiltonian
~28! to that in the resonance-level model by the followin
operations:

~1! Introduction of a boson representation of the fo
fermion fields:

cms~x!5ĥ
exp@2 iFms~x!#

A2pa
, ĥ251,

Fms~x!5ApF E
2`

x

dx8Pms~x8!1wms~x!G . ~29!

The operatorĥ is introduced to satisfy the anticommutatio
relations,a is the lattice constant,wms(x) is the boson field,
Pms(x) is the canonically conjugate momentum
@fms(x),Pm8s8(x8)#5 id(x2x8)dmm8dss8 .

~2! Introduction of collective variables by means of th
canonical transformation of the fieldswms(x) andPms(x):

wc, f5
1

2
@~w111w12!6~w211w22!#,

ws,~s f!5
1

2
@~w112w12!6~w212w22!#, ~30!

and likewise with the conjugate fieldsPms(x), m,s51,2.
The collective variables described by Fourier components
boson fields k1/2w l(k) correspond to densitiesr l(k) of
charge (l 5c), spin (l 5 f ), pseudospin (l 5s), pseudospin–
spin (l 5s f).

~3! Transition to spinless fermion fields~‘‘refermioniza-
tion’’ !:

c l~x!5
exp@2 iF l~x!#

A2pa
, l 5c, f ,s,~s f!. ~31!

As a result of these operations, the charge (c) and color (f )
fields are separated and the HamiltonianH0 takes the form

H05H00
a 1Hs f1Hs ,

where

H00
a 5 ivF (

l 5s,~s f!
E

2`

`

c l
1~x!]xc l~x!,

Hs f5
Vx

A2pa
@cs f

1~0!1cs f~0!#~d12d!1hS d1d2
1

2D ,

Hs52~Vz2pvF!cs
1~0!cs~0!S d1d2

1

2D . ~32!

Here we have used the Majorana representation of spin
erators:t̂15d1ĥ, whered1 is the fermion operator andĥ
is the Majorana~real! fermion operator.

The Hamiltonian defined by Eq.~32! corresponds to the
resonance-level model, which yields a multiparticle res
nance at the Fermi level. A remarkable feature of the mo
is that the hybridization and interaction are performed
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different channels. This is its essential difference from
resonance-level model27,28 for the single-channel Kondo
scattering, in which both of them are in the same channe

Since there is no conservation of the number of fermio
in the model described by Eq.~32!, the Green’s function
Ĝd(z) contains, besides the normal components;^dd1&,
anomalous components;^dd& and;^d1d1&. Without the
interaction in thes channel (Vz5pvF), the Green’s function
Ĝd

0(«) obtained by Emery and Kilverson13 at h50 assumes
the form

Ĝd
0~«!5

1

2

t̂02 t̂x

«1 iGK sign«
1

1

2

t̂01 t̂x

«1 id sign«
,

d→0, GK;
Vx

2

«F
~33!

The form of the Green’s function corresponds to t
situation when only half the impurity degrees of freedom
coupled to conduction electrons. The multiparticle resona
of width GK at the Fermi level is generated by a mixe
pseudospin–color (s f) model, which has a charge due to th
pseudospin contribution, and for this reason the Gree
function does not contain a small residue@cf. Eq. ~27!#.

For the tunneling problem discussed in this paper, ho
ever, the form ofGd(z) for a finite interaction constant in th
s channel, i.e., forVz2pvFÞ0, is important. As will be
shown below, there is a certain critical coupling constan
which the character of the scattering operator radica
changes.

In order to obtain a solution for this case, let us use
technique that was previously applied to the well-kno
problem of x-ray absorption in metals.21 First the Hamil-
tonianH00

s 1Hs of Eq. ~32! is diagonalized. To this end, w
introduce boson operators

bsk5k21/2rs~k!, bsk
1 5k21/2rs~2k!,

wherers(k) are density operators:

rs~k!5
1

N1/2 (
q50

kD2k

cs
1~q!cs~q1k!,

rs~2k!5
1

N1/2 (
q5k

kD

cs
1~q!cs~q2k!, k>0,

cs(k) are Fourier components of fieldscs(x), and the cut-
off takes place atkD;a21. Using operatorsbsk andbsk

1 , we
write the HamiltonianH00

s 1Hs as

H00
s 1Hs5vF(

k.0
kbsk

1bsk1lzS d1d2
1

2D (
k.0

k1/2~bsk
1 1bsk!.

~34!

Herelz[2(Vz2p«F)/N21/2. This Hamiltonian is diagonal-
ized to becomevF(k.0kbsk

1bsk by the canonical transforma
tion

U5expH lzr0aS d1d2
1

2D (
k.0

k21/2~bsk2bsk
1 !J ,

r0a;vF
21 .
e

s

e
e

’s

-

t
y

e

In this operation, the HamiltonianHs f is transformed to

H̃s f5
Vx

A2pa
@cs f

1~0!1cs f~0!#~ d̃12d̃!

1~h2«U!S d̃1d̃2
1

2D ,

d̃15Ud1U21

5expH lzr0a(
k.0

k21/2~bsk2bsk
1 !J d1[U0d1, ~35!

«U5lz
2r0a is the ‘‘polaron shift.’’ With due account of Eq

~35!, the Green’s functionĜd(t) of the resonance level is

Ĝd~ t !5Ĝd
0~ t !^U0

1~ t !U0~0!&D , ~36!

U0(t) is derived from U0(0) using the substitutionbsk

→bskexp(i«kt). Here ^ . . . &D denotes averaging over th
states of the diagonalized HamiltonianH00

s 1Hs , Ĝd
0(t) is

the Fourier transform of the function given by Eq.~33!. The
averaging is performed in the conventional manner21 using
the relationships

eÂeB̂5eÂ1B̂1~1/2![ Â,B̂] , ^e[F~b1,b!]&5e~1/2!^F2~b1,b!&,

whereF is an arbitrary linear combination of boson oper
tors. As a result, we find that, at large times«Ft@1, the
function in Eq.~36!

Ĝd~ t !;Ĝd
0~ t !t2ad.

Consequently, we obtain in the energy representation the
pression

Ĝd~z!5AF t̂02 t̂x

z2E2K
S z2E2K

«F
D ad

1
t̂01 t̂x

z S z

«F
D adG , ~37!

A5exp~ ip~1/22ad!!G~12ad!,

ad5(d/p)2, d is the phase shift,E2K5«F1 iGK , G(x) is
the gamma-function. The cut-off parameter in the first te
on the right ;«F since the velocity of excitations in th
collective channels isvF , as follows from the Hamiltonian
~32!. The interaction in the pseudospin channel has
screening nature and leads to an effective broadening of
resonance level.

The logarithmic behavior of thermodynamic quantiti
in Refs. 13 and 26 takes place, first, in the region where
perturbation theory with respect toad applies and, second, a
very large times,GKt@1. In this study, we will discuss only
the region of power-law energy dependences.

3. By expressing Eq.~26! in terms of partial statesakgs

from Eq. ~17! and taking into account that only componen
diagonal inb in the second term ofG0b

a (kk 8;z) contribute to
the density of states, we obtain

r~«!5r0~«!1
1

p(
b

Im Tr Ĝdb~«!(
kg

u f gb~k;«!u2, ~38!

where
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f kb~z![Tkd
a G00b

a ~k;z!5(
g

f gb~k;z!Kg~Vk!.

The sum overk in the second term on the right can be es
mated as

(
kg

u f gb~k;«F!u2;gdr0a .

With the help of Eq.~37!, we derive from Eq.~38! the
density of states at the Fermi level:

ra~«!5r0a1A~gdr0a! (
i 51,2

sin@~12ad!tan21~G i /«!#

«F
ad~«21G i

2!~12ad!/2
,

«.0, gd;g0uBu2. ~39!

The widths G1[d→0 and G2[GK corresponds to the
‘‘free’’ and ‘‘bound’’ contributions to the spectral function
@see Eq.~33!#, A;1.

5. SCATTERING MATRIX AND ITS POLES

1. Let us reconsider the tunneling problem described
the Hamiltonian in Eq.~1!. Let us take into account the ad
ditional scattering of quasi-two-dimensional electrons with
the quantum well by excitations at the Fermi level in t
banks due to the tunneling termHtc

a . In this case, the elec
tron states at the Fermi level and impurities are described
Green’s functions~26! and~37!, respectively. The scatterin
matrix T s

cc(k' ,k'8 ;z) for the well electrons derives from th
Green’s functionGs

cc(k' ,k'8 ;z):

Gs
cc~k' ,k'8 ;z!5^ck'

u Î ~z2Ĥ !21uck
'8
&5dk' ,k

'8
G0k'

~z!

1G0k'
~z!T s

cc~k' ,k'8 ;z!G0k
'8
~z!,

G0k'
~z!5@z2 «̃k'

#21, ~40!

T s
cc~k' ,k'8 ;z!5

T0~z!

12T0~z!Jc~z!
B~k'!B* ~k'8 !, ~41!

T0~z!5uSdc~z!u2Gds~z!1Scc~z!, ~42!

Scc~z!5(
k

uTkc
a u2

z2«ka

, Sdc~z!5(
km

Tkc
a* Tkd

am

z2«ka

,

Jc~z!5(
k'

uB~k'!u2

z2 «̃k'

.

For a deep level

B~k'!'B~«c![(
m

Bm~«c!.

As follows from definition~41! of the scattering matrix, the
function T0(z) plays the role of an effective scattering p
tential for 2D electrons. The first term inT0(z) describes
resonant scattering due to virtual transitions with amplitu
Sdc(z) between the 2D continuum and impurity state in t
-

y

y

e

well via electron states in the banks. The second term
T0(z) describes potential scattering of quasi-tw
dimensional electrons.

The integralJc(z) is a Hilbert transform of the quasi
two-dimensional density of statesrc(«) given by Eq.~6!.
For uz2«cu/g0!1, this integral has a logarithmic singularity

Jc~z!5E d«
rc~«!uB~«!u2

z2«
52

1

2
r̃0cln

z2«c

g0
,

r̃0c5r0c~«c!uB~«c!u2. ~43!

FunctionsScc(z) andSdc(z) in the absence of interac
tion are Hilbert transforms of the three-dimensional dens
of states in the banks ‘‘weighted’’ with the tunneling inte
grals. In the interesting spectral range near the gap e
these are smooth functions of energy, as compared w
Jc(z). In this case, the poles of the scattering matrix a
determined by the logarithmic singularity inJc(z) and have
the shape of exponentially narrow resonances8 near the 2D
band edge with the width

g r
~0!5g0expS 2

«c2edm

L8
D , ed5ReĒd,

Ēd5Ed1Sd[ed1 igd , ~44!

L85ReL5ReF uSdcu22~Ēd2«c!Scc

2~«c2Ēd!
r̃0cG ,

Sd5(
km

uTkd
amu2

z2«k
n

.

The values of all self-energy functions are taken atz5«c .
The functionsScc(z) and Sdc(z) of an interacting sys-

tem in the interesting energy region near the 2D band e
can be conveniently expressed as spectral expansions of
duction electron Green’s functions:

Scc~z!5(
kgs

uTkcg
a u2f ~«ka!

~z2«c!2~«ka2«c!

5(
g

uTkFcg
a u2E

2`

0

d«
ra~«!

~z2«c!2«
, ~45!

ra(«) is given by Eq.~39!, and f («) is Fermi’s distribution
function. The energies are measured with respect
«F→«c . This is the region where one-particle@like those
described by Eq.~44!# and multiparticle resonances hav
strong effect on each other.

It follows from Eq. ~45! that Scc(z) and Sdc(z) in an
interacting system are Hilbert transforms of the multiparti
density of states, consequently, they have at the Fermi l
features corresponding to non-Fermi-liquid peaks in the d
sity of states.

By substituting Eq.~39! in ~45!, we obtain the contribu-
tion of the resonance levelE2K to the self-energy functions
Scc,dc(z):
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Scc,dc
int ~z!5A1,2gd

2 ~z1 iGK!12ad2~z2 iGK!12ad

«F
ad~z21GK

2 !~12ad!
~46!

(uA1,2u;1). In this calculation, we have used the formula

tan21x5~1/2i !ln@~11 ix !~12 ix !# .

This formula holds only for thosead at which the function in
Eq. ~37! is a power function of energy.

The logarithmic behavior of the self-energy partJc(z)
means that it generates one-particle resonances in the en
band of the multiparticle resonance, which determines pr
erties of the effective scattering potentialT0(z). For this rea-
son, low-energy poles of the scattering matrix are determi
by the self-consistent equation

12T0~z!Jc~z!50. ~47!

2. By analyzing Eqs.~43! and~46!, one can easily check
out that Eq.~47! has a solution of the type of an edge res
nance with energyzr5«c1 ig r . This resonance is largel
due to the resonance componentT0(z), which is much larger
than the potential one:

uScc
int~zr !u!uSdc

int~zr !u2uGd~zr !u.

This relationship is easily derived, taking into account t
following estimates of the quantities in Eq.~45!:

uScc,dc
0 ~zr !u!uScc,dc

int ~zr !u, uScc,dc
0 u;gd .

For g r!GK

uScc,dc
int ~zr !u;

gd
2

GK
S GK

«F
D ad

;«FS gd

«F
D 2ad

, GK;
gd

2

«F
.

~48!

It follows from Eq. ~46! that for uGK2g r u!GK the self-
energy functions have power-law singularities in the intere
ing range of energies.

Taking into account the foregoing, we derive from E
~47! the following expression for the widthg r of the edge
resonance:

g r5Ar1«FuBu2/~12ad!S r0c

r0a
D 1/~12ad!S gd

«F
D 4/~12ad!

,

ug r u!GK , ~49!

g r'GK2Ar2«FuBu2/3~12ad!S r0c

r0a
D 1/3~12ad!

3S gd

«F
D 4/3~12ad!

, uGK2g r u!GK , ~50!

Ar1 ,Ar2;1. An edge resonance exists when

uBu2~6ad21!,S Wc

Wa
D S g0

«F
D 2~123ad!

, ad.
1

6
, ~51!

i.e., only for a finite interaction constantlz and sufficient
depth of thed level.

At all other values of the parameters, includinglz50,
the scattering matrix has no poles near the 2D band edg

3. Tunneling widthsGa
c(p' ;«) in Eqs.~12! and~13! can

be expressed as
rgy
p-

d

-

e

t-

.

.

Ga
c~p' ;«F!5

1

p
uB~p'!u2Im Scc~z2«c!, Rez5«F .

~52!

In the absence of an edge resonance, one can find, using
~48!, that the tunneling widths are

Ga
c~«F!5AGuBu2

gd
2

GK
S GK

«F
D ad

;g0S «F

g0
D 122ad

uBu2~112ad!,

AG;1. ~53!

In the presence of an edge resonance, the tunne
widths in Eq.~52! are cut off atg r and determined by the
expressions

Ga
c~«F!5A1Gg0S «F

g0
D 122ad

uBu2~112ad!, g r!GK , ~54!

Ga
c~«F!5A2Gg0S «F

g0
D 1/3

uBu2/3), ug r2GKu!GK , ~55!

A1G ,A2G;1. Note that for all widths in Eqs.~53!–~55! the
conditionGa

c!g0 holds.
All the cases discussed above satisfy the condit

Gc
a(zr)!uT0(zr)u. This condition means that the character

tic tunneling timest t
int;Gc

a21(zr) in an interacting system
are much shorter than the characteristic scattering timestsc

int

;uT0(zr)u21, so that the lifetime of an electron in the qua
tum well is large enough to form resonances due to sca
ing caused by the HamiltonianHt . Thus, the existence o
multiparticle edge resonances is provided by the conditio

t t
int@tsc

int .

Note also that, if condition~51! holds, edge resonance
exist as long asu«F2«cu,GK . The dominant contribution to
the tunneling probability~11! is due to the resonance term
the Green’s functionGcc(z) @see Eq.~40!#. This corresponds
to the Fermi-liquid~or, which is the same, resonance! tun-
neling mode.

There are no edge resonances in the case of sha
impurities, when condition~51! fails ~although u«F2«cu
,GK), or at u«F2«cu.GK and arbitrary energies of the im
purity level. In this case, the dominant contribution to t
tunneling probability comes from the non-Fermi-liquid res
nance at the Fermi level. This resonance controls the tun
ing widths in Eq.~11! @as follows from their definition~52!#.
The corresponding tunneling mode will be dubbed no
Fermi-liquid.

One can see that the additional scattering of electr
from the neighborhood of the two-dimensional band edge
non-Fermi-liquid excitations about the Fermi level due to t
tunneling HamiltonianH t

a generates a Fermi-liquid reso
nance at the 2D band edge since it corresponds to a sim
pole of the Green’s function. If the scattering due to tunn
ing is not taken into account, the non-Fermi-liquid state
electrons in the banks corresponds to power-law singular
in Green’s functions~26! and ~37!, density of statesra(«),
and, hence, in the tunneling widths.

Thus, when the Fermi level in the banks approaches
2D band edge, a cross-over between the non-Fermi-liq
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and Fermi-liquid tunneling regimes is possible. The cro
over conditions are identical to the conditions when solutio
of Eq. ~47! exist.

6. TUNNELING TRANSPARENCY

1. The tunneling transparency is given by the express

s~«F!52e2E dEd~E2«F! (
k' ,k'8

W~k' ,k'8 ;E!.

It contains the non-Fermi-liquid and resonance contributio

s~«F!5s0~«F!1s r~«F!.

The non-Fermi-liquid contributions0(m) is determined by
the equation

s0~«F!5
e2

p

GL~«F!GR~«F!

GL~«F!1GR~«F!
rc~«F!.

By expressingGL,R
c in terms ofGc

a using Eq.~13!, we have in
the case of equal widthsG0L,0R

c

s0~«F!5
e2

4p
Gc

a~«F!rc~«F!. ~56!

The tunneling widths in Eq.~53! are larger than these param
eters in the absence of interaction, which are approxima
equal togd . This means that the non-Fermi-liquid contrib
tion to the transparency is larger than the nonresonant
tribution in the absence of interaction.8

By substituting Eq.~40! in ~11!, we find that the genera
expression for the resonance contribution to transparency
the form ~at G0L

c 5G0R
c )

s r~«F!5
e2

4p
Ga

c2~zr !
uT̃0~zr !u2

uD8~zr !u2@~e r2«F!21g r
2#

I 2~zr !. ~57!

Here

D~z!512T0~z!Jc~z!, D8~z![~d/dz!D~z!,

I ~zr !5(
k'

uB~k'!u2uG0k'
~zr !u2'r̃0c

1

2g r

wheng0@g r@u«F2«cu.
One can easily show that, under these conditions,

D8~zr !'
T0~g r !r̃0c

g r
Fr ,

whereFr is the function of the parameters of order of unit
The factorI 2(zr) cancels out the small factorg r

2 in the nu-
merator on the right of Eq.~57! due to the residue at th
scattering matrix pole atz5zr .

2. By substituting the expressions for the tunnelingGc
a

and resonanceg r widths, we obtain the maximum contribu
tion of edge resonances to the transparency at« r5«F :

s r
max~«F!5F1r

e2

4pS Ga
c

g r
D 2

[
e2

4p
S~«F!, ~58!

whereS(«F), which is the enhancement factor due to tu
neling, can be written as
-
s

n

s:

ly

n-

as

-

S~«F!5F2r S g0

g r
D 2S «F

g0
D 2~122ad!

uBu4~112ad!@1, g r!GK ,

~59!

S~«F!5F3r S g0

g r
D 2S «F

g0
D 2/3

uBu4/3@1, ug r2GKu!GK , ~60!

F2r ,F3r;1. The widthg r is determined by Eqs.~49! and
~50!. In both limiting cases, the following inequality holds

s r
max~«F!@s0

max~«F!.

In the absence of interaction, the enhancement factor
to exponentially narrow resonances at the 2D band edge8

S0~«F!;S g0

g r
~0!D 2

where the widthg r
(0) is determined by Eq.~44!. It turns out

that this is the largest enhancement factor due to an elem
tary tunneling event among all results that have been kno
thus far. In fact, the enhancement factor due to tunneling
a quasi-localized level in single-channel Kondo scattering1 is
about unity. When the Coulomb interaction between el
trons at impurity levels and in the banks is taken in
account,4 the enhancement factor is of order of («F /g0)a.

Equations~56!, ~58!–~60! determine the transparenc
enhancement due to tunneling via the two-dimensional c
tinuum with due account of interactions generating no
Fermi-liquid excitations at the Fermi level. It is clear that,
all the cases discussed above, the enhancement factor
fies the conditions

S0~«F!@S~«F!@1. ~61!

The enhancement factor is lower than in the case of o
particle resonances for two reasons:~1! multiparticle edge
resonances exist only when impurity levels are sufficine
deep~at least atuBu!1), whereas this limitation is not im
posed on one-particle resonances, and the peak enhance
factor takes place in the case of a resonance due to relat
shallow levels withuBu;1; ~2! all multiparticle resonances
are broader than one-particle@compare Eqs.~49! and ~50!
with Eq. ~44!#, and this effect is stronger than that of th
larger tunneling width.

Here we must emphasize that the anomalous trans
ency enhancement withS(«F)@1 in the quantum structure
with a two-dimensional continuum is caused, in addition
the small edge resonance width, by its proximity to the
band edge, which yields the additional factorI 2(zr).

Equations~56!, ~58!–~60! determine the transparenc
enhancement due to an elementary~microscopic! tunneling
event. The total contribution to the quantum well transp
ency is known to bes im5cims r , wherecim is the impurity
concentration. As follows from our equations,s im@s0 holds
for reasonable values of impurity concentration.

7. CONCLUDING REMARKS

The results reported in this paper permit a direct exp
mental observation of a non-Fermi-liquid state using featu
on current–voltage characteristics~CVC! at zero tempera-
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ture. It seems feasible to detect changes in these featur
tunneling structure parameters are varied. The most esse
property of such structures may be the cross-over betw
the non-Fermi-liquid and Fermi-liquid tunneling modes
the Fermi level approaches the 2D band edge. The impu
level energy and interaction constantlz are determined by
Eq. ~51!. While u«F2«cu.GK holds, the tunneling transpar
ency and CVC are controlled by the non-Fermi-liquid res
nance at the Fermi level. The transparency in this cas
given by Eq.~56! with tunneling widthsGc

a from Eq. ~53!.
When the Fermi level and band edge are so close
u«F2«cu,GK , the transparency and CVC are controlled
Fermi-liquid edge resonances, and the transparency is d
mined by Eqs.~58! and~59!, which contain the characteristi
‘‘Fermi-liquid factor’’ ( g0 /g r)

2 ~compare with the expres
sion for S0).

But if the Fermi level is fixed near the band edge so t
u«F2«cu,GK , the cross-over between the Fermi-liquid a
non-Fermi-liquid tunneling modes takes place when eit
the impurity level is ‘‘refined’’ or the interaction constantlz

is reduced. In the latter case, changes in the transparency
CVC are caused by changes in the thickness~or height! of
barriers around the quantum well. In fact, as follows from
definition of the interaction matrix elements in Eq.~16!, they
are proportional tog0

2, i.e., they are exponential functions o
the barrier thickness. Therefore, insignificant changes in
barrier thickness can lead to a cross-over between the
Fermi-liquid and Fermi-liquid tunneling modes.

Finally, let us make two comments. The two-chann
model of GaAlAs/GaAs/GaAlAs heterostructures discus
in this paper applies, most likely, to the case of light imp
rities, such as V21, in the GaAs inner layer. As was show
previously,10 the level closest to the two-dimensional ba
edge in this system is theeg doublet. It follows from our
results, however, that the equations can be also applied q
tatively to the multichannel tunneling (n.2).

The results concerning the two-channel Kondo mo
reported above are valid in the case when the magnitudeh of
Jahn–Teller distortions in an impurity center in Hamiltoni
~23! is smaller than all energy parameters of the problem
is known, however, that the non-Fermi-liquid state is sta
against such perturbations, which lift the pseudospin deg
eracy of the impurity state.17,31It seems that the formation o
electron states at the Fermi level and population of orb
as
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states of the impurity center should be treated in a s
consistent manner. This problem deserves a separate co
eration.
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An explicit expression for the excitation spectrum of the stationary solutions of a nonlinear wave
equation is obtained. It is found that all branches of many-valued solutions of a nonlinear
wave equation between the (2K11,2K12) turning points~branch points in the complex plane
of the nonlinearity parameter! are unstable. Some parts of branches between the (2K,2K
11) turning points are also unstable. The instability of the latter is related to the possibility that
pairs of complex conjugate eigenvalues cross the real axis in thek plane. © 1998
American Institute of Physics.@S1063-7761~98!02210-0#
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1. INTRODUCTION

In the Refs. 1–5 it was found that for a transverse el
tromagnetic wave~Fig. 1! propagating in a nonlinear me
dium, many states are possible for a given amplitude of
incident wave. The nonlinear medium was taken in the fo
of a slab. The reflection and transmission coefficients in
case are functionals of the state. In a linear medium, th
exists only one state for a given incident wave, and this s
is stable against small perturbations. In a nonlinear medi
some of the states are stable and some are unstable ag
small perturbations. This property is very important for pra
tical purposes. In this paper we study the problem of stab
for all states. The main result is as follows: all solutions
the nonlinear problem can be parametrized by one param
r1 , which is equal to the transparency of the nonlinear m
dium. This parameterr1 is a multivalued function of the
effective nonlinearitym. The graph ofr15r1(m) has turning
points ~see Fig. 2!. All branches between the 2K11 and
2K12 (K50,1,2,...) turning points are unstable, and so
parts of branches between the 2K and 2K11 turning points
are unstable against small perturbations. In thermodynam
it is also possible to find many solutions for given extern
conditions. Some of them are stable, some are not. But t
always exists a state that yields the absolute minimum of
free energy. All other stable states can be considered m
stable. Only quantum or thermal fluctuations can lead
transitions between different metastable states. In a dyna
cal problem, on the other hand, there is no general princ
that distinguishes one solution from all other local sta
states. Which state will be realized after a transition from
unstable state is still an unsolved problem.

2. FORMULATION OF STABILITY PROBLEM

We investigate the stability of solutions of the wa
equation

]2E

]x22
1

2c2

]2

]t2

]

]E
~eE2!50, e5n2~11m0E2! ~1!

in a slab of lengthd. In Eq. ~1!, n is the refractive index and
c the speed of light. In the general case,m0 is a function of
8071063-7761/98/87(10)/7/$15.00
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positionx. In real materialsm0;E0
22, whereE0 is the elec-

tric field on the atomic scale. Hence, in real materi
m0uEu2!1. Only such a case will be considered below. W
investigate the stability of solutions of Eq.~1!, that take the
form

E05Re~e2 ivtc0~x!! ~2!

for an incident wave given by

A expS iv

c
xD . ~3!

It is convenient to use the dimensionless variables

y5
vn

c
x, m5

3

4
m0uAu2, c0→Ac, b5

vn

c
d.

~4!

Then Eq.~1! takes the form5 ~inside the slab!

~112mucu2!c1
]2c

]y2 50, ~5!

with boundary conditions

c~0!511R, c~0!8 5
i

n
~12R!,

c~b!5Teib/n, c~b!8 5
i

n
Teib/n. ~6!

The unknown coefficientsR and T can be eliminated from
Eq. ~5!, and we obtain

c~0!2 inc~0!8 52, c~b!1 inc~b!8 50. ~7!

We representc in the form5

c5Areia. ~8!

The value of the functionr (y) at point b (r15r(b)) com-
pletely determines the modulus of the transmission and
flection coefficients:

uTu25r1 , uRu2512r1 . ~9!

Equation~1! for the stationary solutions of type~7! can
be reduced to a functionr only,5 and its solutions in the
© 1998 American Institute of Physics
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general case are elliptic functions. The conditionumE2u!1
drastically simplifies the investigation of solutions of typ
~8!.5

The qualitative dependence ofr1 on the effective non-
linearity is shown in Fig. 2~see also Eq.~48!!.

We are able now to formulate the stability problem f
solutions of type~8!. We seek a solution of Eq.~1! in the
form

E5E01Ẽ, ~10!

whereE0 is given by Eqs.~2!, ~8!, and

E15Re@e2 ivt~E1ekvt1E2ek* vt!#. ~11!

The boundary conditions for the functionẼ correspond
to the outgoing wave:

S E18

E1
D

0

52
i

n
~11 ik!, S E18

E1
D

b

5
i

n
~11 ik!,

S E28

E2
D

0

52
i

n
~11 ik* !, S E28

E2
D

b

5
i

n
~11 ik* !. ~12!

Inserting Eq.~11! into Eq. ~1!, we obtain

]2E1

]y2 1~11 ik!2$~112mucu2!E1

12m~ ucu2E11c2E2* !%50,

]2E2

]y2 1~11 ik* !2$~112mucu2!E2

12m~ ucu2E21c2E1* !%50. ~13!

Note that c is the solution of Eq.~5! with boundary
conditions given by~6!. The system of equations~13! with
boundary conditions~12! can be considered an eigenval
problem for the symmetric operatorL̂. The explicit form of
operatorL̂ is given by Eq.~13!. We easily obtain for the firs
line

FIG. 1. Geometry of wave propagation.
r

L̂115
]2

]y2 1~114mucu2!, L̂1250,

L̂1352m cos~2a!ucu2, L̂1452m sin~2a!ucu2. ~14!

As a trivial fact, we note that ifk is an eigenvalue, then so is
k* .

3. STABILITY IN LINEAR MEDIUM

Consider as a starting point the linear case (m50). In
the linear case, the system of equations~13! decouples into
two independent subsystems for the quantitiesE1 and E2 .
Solution of the first of Eqs.~13! yields

E15A1 cos~~b2y!~11 ik!!1A2 sin~~b2y!~11 ik!!.
~15!

From the boundary conditions~12!, we obtain

A252
i

n
A1 , tan~b~11 ik!!52

2in

n211
. ~16!

Solution of the second of Eq.~16! yields

k52
1

b
ln

n11

n21
1 i S 12

pN

b D , N50,61,62... ~17!

The second of Eqs.~13! yields

k52
1

b
ln

n11

n21
2 i S 12

pN

b D ; N50,61,62... ~18!

Hence the full spectrum of the operatorL̂ in the linear case is
given by Eqs.~17! and~18!. The real part of all eigenvalues
is negative, hence the unique solution of~5! is stable in the
linear case.

If the lengthb of the slab is given by

b5pN01«, u«u!1, ~19!

then for n@1, two eigenvalues of the linear problem ar
closer to zero than all others:

k1,252
1

b
lnS n11

n21D6
i«

b
. ~20!

As we will see below, these two eigenvalues play a sp
cial role in the nonlinear problem.

4. STABILITY PROBLEM IN NONLINEAR MEDIUM

Points where]m/]r150 are turning points. It is easy to
show from Eqs.~5! and ~7! that the function]c/]r1 is a
solution of the system of equations~13! for k50. This
FIG. 2. Dependence ofr1 on m; the number of solutions for givenm.
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means that of the two branches entering at the turning po
one is unstable, because in the vicinity of the turning po
k;dr1 . We prove this statement below.

We use the following simple expression5 for r anda :

r5r1H 1

n2 1S 12
1

n2D cos2S ~y2b!

123mr1~111/n2!/4D J ,

~21!

a5a~0!

1
1

n E
0

y dy1

1/n21~121/n2!cos2S b2y1

123m~111/n2!r1/4D
5a~0!1S 12

3m

4 S 11
1

n2D r1D
3FarctanH 1

n
tanS y2b

123m~111/n2!r1/4D J
1arctanH 1

n
tanS b

123m~111/n2!r1/4D J G .
In Eq. ~21!, a (0) is the phase ofc at the pointy50:

a~0!5arctanF n]r/]y

2~r11r!G
y50

. ~22!

Equations~5! and~21! enable us to represent the functionc
in a form that yields an explicit physical picture of nonline
wave propagation. Inserting the expression~21! into Eq. ~5!,
we find thatc can be represented in the form

c5eil1~b2y!~Aeig~b2y!1Be2 ig~b2y!!1eil2~b2y!

3~Ceig~b2y!1De2 i ~g2l!~b2y!!, ~23!

where

g5
1

123mr1~111/n2!/4
.

Equation~5! leads to the following expression for the qua
tities l1,2:

l1,256l, ~24!

wherel5mr1/2n. From the same Eq.~5!, we also obtain
two equations for the quantitiesA,BandC,D. As a result, we
have

c5BF S 11
1

nDexp~2 i ~g2l!~b2y!!1S 12
1

nD
3exp~ i ~g1l!~b2y!!G1CF S 11

1

nDexp~ i ~g2l!

3~b2y!!1S 12
1

nDexp~2 i ~g1l!~b2y!!G . ~25!

Now from the boundary condition~7! at y5b, we obtain
one equation forB andC

C5B
mr1

4 S 1

2
1

3

2n2D . ~26!
t,
t
Finally, recalling thatuc (b)u5Ar1, we have

c5
Ar1

2 F S 11
1

nDexp~2 ig~b2y!!1S 12
1

nD
3exp~ ig~b2y!!Gexp~ i w̃c1 il~b2y!!, ~27!

wherew̃c is some constant, that is simply related to the ph
a0 given by Eq.~22!.

Equation~27! means that the speed of light is slight
different for waves moving in opposite directions; and this
one of the main effects of nonlinearity.

Below, we use expressions~21! and ~27! to solve the
stability problem.

5. DERIVATION OF THE EQUATION OF THE SPECTRUM k

The spectral pointsk, defined by Eqs.~13! with bound-
ary conditions~12!, are the roots of some equation that is
analytic function ofk and the associated parameterr1 . Near
the turning points, there exists a region where the two eig
values are real. This enables us to consider only real-va
k. The equations fork obtained under the assumption thatk
is real can be analytically continued into the complexk
plane. The roots of this equation also yield the complex v
ues ofk of the initial eigenvalue problem, given by Eqs.~12!
and ~13!.

For real values ofk, we obtain the following eigenvalue
problem:

]2E1

]y2 1~11 ik!2$~112mucu2!E1

12m~ ucu2E11c2E1* !%50, ~28!

E1~0!8

E1~0!
52

i

n
~11 ik!,

E1~b!8

E1~b!
5

i

n
~11 ik!, ~29!

where ucu is given by Eq.~21! and c is given by Eq.~27!.
Equation ~28! has four linearly independent solutions. W
seek them in the form

Ẽ15Aei ~g1b!~b2y!1Bei ~g2b* 1mr1 /n!~b2y!

1Ce2 i ~g2b!~b2y!1De2 i ~g1b* 2mr1 /n!~b2y!, ~30!

whereA, B, C, D andb are complex numbers. We omitted i
expression~30! higher harmonics with small amplitudes o
orderO(Am). We also put

E15ei w̃cẼ1 . ~31!

Inserting expression~30! for quantity Ē1 in to Eq. ~28!, we
obtain the following system of equations for theA,B,C,D:

ÂS A
B*
C
D*
D 50, ~32!

where the matrixÂ is
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Â5S 1

4 S 11
1

n2D1
ik2b

mr1

1

4 S 12
1

nD 2 1

2 S 12
1

n2D 1

2 S 12
1

n2D
1

2 S 12
1

n2D 1

2 S 12
1

n2D 1

4 S 11
1

n2D1
ik1b

mr1

1

4 S 11
1

nD 2

1

2n
1

ik2b

mr1

1

2n
1

ik2b

mr1
0 0

0 0 2
1

2n
1

ik1b

mr1
2

1

2n
1

ik1b

mr1

D . ~33!
a
o

nt
The values ofb are solutions

det Â50. ~34!

A simple calculation of detÂ yields

S 1

2n
1

ik2b

mr1
D 2S 2

1

2n
1

ik1b

mr1
D 2

50. ~35!

We see that each eigenvalueb is doubly degenerate. As
result, we obtain only two linearly independent solutions
Eq. ~28! of the form ~30!:

Ẽ15 i @A exp~ i ~g1mr1/2n1 ik!~b2y!!

1C exp~2 i ~g2mr1/2n2 ik!~b2y!!#, ~36!

whereA andC are real numbers.
Two other solutions of the system of equations~28! can

be found in the form

Ẽ15~ iy1A1!exp~ i ~g1mr1/2n1 ik!~b2y!!

1C1 exp~2 i ~g2mr1/2n2 ik!~b2y!! ~37!

for b5mr1/2n1 ik, and

Ẽ15~ iy1C2!exp~2 i ~g2mr1/2n1 ik!~b2y!!

1A2 exp~ i ~g1mr1/2n2 ik!~b2y!! ~38!

for b5mr1/2n2 ik.
Inserting expressions~37! and ~38! into Eq. ~28!, we

obtain the following system of equations for the coefficie
A1,2 andC1,2:

~A11A1* !
mr1

4 S 12
1

nD 2

1
mr1

n

3S 12
1

n2D ~C11C1* !1150,

~C11C1* !
mr1

4 S 11
1

n2D1~A11A1* !

3
mr1

2 S 12
1

n2D12ikC150, ~39!

and
f

s

~C21C2* !
mr1

4 S 11
1

n2D1
mr1

2

3S 12
1

n2D ~A21A2* !2150,

~A21A2* !
mr1

4 S 12
1

nD 2

1
mr1

2

3S 12
1

n2D ~C21C2* !12ikA250. ~40!

The solutions of the system of equations~39!, ~40! are

A152
2

mr1~121/n!2 , C152
i

k

111/n

121/n
, ~41!

A25
i

k

121/n

111/n
, C25

2

mr1~111/n!2 . ~42!

Hence, the general solution of the system of Eqs.~28! is

Ẽ15 i S A expS i S g1
mr1

2n
1 ik D ~b2y! D1B

3expS 2 i S g2
mr1

2n
1 ik D ~b2y! D D1Ce2k~b2y!

3F S 2 iy1
2

mr1~121/n!2DexpS i S g1
mr1

2n D ~b2y! D
1

i

k

111/n

121/n
expS 2 i S g2

mr1

2n D ~b2y! D G1Dek~b2y!

3F S iy1
2

mr1~111/n!2DexpS 2 i S g2
mr1

2n D ~b2y! D
1

i

k

121/n

111/n
expS i S g1

mr1

2n D ~b2y! D G . ~43!

In Eq. ~41!, A, B, C andD are real numbers.
The boundary conditions~29! at y5b yield the first pair

of equations for the coefficientsA, B, C, D. In the leading
approximation for the parameterm, we have

C5DS 121/n

111/nD 3

,
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AS 111/n

121/nD2B2CS 111/n

121/nD S b1
1

k D1DS 2b1
1

k D50.

~44!

The second pair of equations for the coefficientsA, B, C, D
we obtain from the boundary conditions~29! at y50:

AS 12
1

n2De2kb cos~g1b!2BS 11
1

nD 2

ekb cos~g2b!

1Ce2kbS 111/n

121/nD S 2 sin~g1b!

mr1
2

1

k S 11
1

nD 2

3cos~g2b! D1DekbS 2 sin~g2b!

mr1

1
1

k S 12
1

nD 2

cos~g1b! D50,

AS 12
1

n2De2kb sin~g1b!1BekbS 11
1

nD 2

sin~g2b!

1Ce2kbS 111/n

121/nD S 2
2 cos~g1b!

mr1
1

1

k S 11
1

nD 2

3sin~g2b! D1DekbS 2 cos~g2b!

mr1

1
1

k S 12
1

nD 2

sin~g1b! D50, ~45!

where

g65g6
mr1

2n
. ~46!

The condition that the system of Eqs.~44! and~45! has non-
trivial solutions leads to an algebraic equation for the sp
trum k of the eigenvalue problem, given by Eq.~28! with
boundary conditions~29!. To obtain this equation, it is con
venient to eliminate the coefficientC from the system of
equations~44!, ~45!, and to calculate the determinant of thi
order. The result of this calculation is

sin~2gb!

k S e2kbS 11
1

nD 2

2e22kbS 12
1

nD 2D
2

4

mr1
cos~2gb!1

2

mr1
S e2kbS 111/n

121/nD 2

1e22kbS 121/n

111/nD 2D1FbS S 11
1

nD 2

1S 12
1

nD 2D
2

1

k S S 11
1

nD 2

2S 12
1

nD 2D Gsin~2gb!50. ~47!

To simplify Eq. ~47!, we use the equation5 for r1

12cos~2gb!5
8~12r1!

r1

n2

~n221!2 . ~48!

Inserting the expression for cos(2gb) from Eq. ~48! into Eq.
~47!, we obtain the following equation for the spectru
pointsk:
-

32n2

mr1
2b~n221!2 1

sin~2gb!

kb F ~e2kb21!S 11
1

nD 2

2~e22kb21!S 12
1

nD 2G1sin~2gb!S S 11
1

nD 2

1S 12
1

nD 2D1
2

bmr1
F ~e2kb21!S 111/n

121/nD 2

1~e22kb21!S 121/n

111/nD 2G50. ~49!

As noted above, Eq.~49! solves the general eigenvalu
problem given by Eqs.~12! and ~13!.

Near the turning points, Eq.~49! has two real solutions
If n@1, then both are in the rangeukbu!1. In the range
ukbu!1, we obtain from Eq.~49! the quadratic equation

F 16n2

mr1
2b~n221!2 13

n211

n2 sin~2gb!G1kbF 16n~n211!

mr1b~n221!2

1
4

n
sin~2gb!G14k2b2F 1

mr1b

n416n211

~n221!2

1
n211

3n2 sin~2gb!G50. ~50!

The first term in Eq.~50! vanishes at the turning points
because the equation for the turning points is precisely
free term in Eq.~50!:

16n2

mr1
2b~n221!2 13

n211

n2 sin~2gb!50. ~51!

The last statement immediately follows from Eq.~48!.
The coefficients of the termskb and (kb)2 in Eq. ~50! are
both positive at the turning points, becauser1 is bounded
from above and below:

4n2

~n211!2 , r1<1. ~52!

The inequality~52! is a consequence of Eq.~48!. Hence,
near the turning points the two eigenvalues are real. On
them can be found from Eq.~50! for any value of the refrac-
tive indexn; it changes sign at the turning points. The seco
eigenvalue is also small (ukbu!1) near the turning points
only if n@1. For all other eigenvaluesukbu*1.

We are able now to give a qualitative picture of th
movement of these two ‘‘lowest’’ eigenvalues. It is pr
sented in Fig. 3. At some values ofm, the two conjugate
eigenvalues reach the real axis in thek plane~point ~1,1! in
Fig. 2!. After collision, they become real. One of the
moves along the real axis towards the origin, and reache
at point 2~turning point, branch point in them-plane!. After
that, one branch is unstable~see Fig. 1!. At point 3, both
eigenvalues reach their extreme values and start to decr
in absolute value. At point 4 we go to the next turning poi
Note that in the limitm→0, Eq.~49! yields for k the values
of the linear problem~Eqs.~17!, ~18!!.
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To complete our investigation, we need to prove the p
sibility of the complex eigenvalues~with Im kÞ0) crossing
the real axis Rek50 when the nonlinearity parameterm
changes from zero to some finite value.

Suppose that for some value of the paramet
(bmr1 ,gb) a purely imaginary solution of Eq.~47! exists
with k5 i k̃ (k̃ is real!. Then from Eq.~47!, we obtain two
equations:

4

gr1b
52sin~2gb!

tan~ k̃b!

k̃b

~n221!2

n2~n211!
, ~53!

and

sin~2gb!
2~n211!

n2 S 11
sin~2k̃b!

k̃b D
2

4

mr1b Fcos~2gb!2cos~2k̃b!
n416n211

~n221!2 G50.

~54!

Inserting the expression formr1b from Eq.~53! into Eq.
~54!, we find one equation forgb and k̃b

2~n211!

n2 S 11
sin~2k̃b!

k̃b D1
tan~ k̃b!

k̃bn2~n211!
@~n221!2

3cos~2gb!2cos~2k̃b!~n416n211!#50. ~55!

The function on the left-hand side of Eq.~55! is an even
function of the parameterk̃b. Hence, we can investigate ju
the regionk̃b>0. Consider firstk̃b in the range

k̃bP
p

2
@2K1,2K11#, K50,1,... ~56!

That is,

k̃b5pK1X, 0,X,p/2. ~57!

In the range given by Eq.~57!, we have

f ~X!5
2~n211!

n2 S 11
sin~2X!

k̃b D1
tan X

k̃bn2~n211!

3@~n221!2 cos~2gb!2cos~2X!

3~n416n211!#50, ~58!

0,X,p/2.

It is easy to prove that the function on the left-hand side
Eq. ~58! is positive for 0<X,p/2. To check this, we chang
the cos(2gb) to 21 and find

FIG. 3. Trajectory of two «conjugate» eigenvalues, one of them pas
through zero.
-

s

f

f ~X!>
2~n211!

n2 S 11
sin~2X!

2k̃b D1
8 tanX

k̃b~n211!
sin2 X,

0,X,p/2. ~59!

In the range 0,X,p/2, the expression on the right
hand side of the inequality~59! is positive, and hence in the
range

k̃bP
p

2
@2K,2K11#,

Eq. ~55! does not have a solution.
Consider now the range

k̃bP
p

2
@2K11,2K12#, ~60!

that is,

k̃b5pK1p/21X; 0,X,p/2. ~61!

In the range~61!, we obtain from Eq.~55!

f̃ ~X!5
2~n211!

n2 S 12
sin~2X!

k̃b D2
cot X

k̃bn2~n211!

3@~n221!2 cos~2gb!1cos~2X!~n416n211!#50.

~62!

For any value of the parametergb, the functionf̃ (x) given
by Eq. ~62! varies from2` to 2(n211)/n2 when x goes
from zero to p/2. Hence, there exists a minimum of on
solution of Eq.~55! in the range

k̃bP6
p

2
@2K11,2K12#, K50,1,2. ~63!

Taking Eq.~53! into account, we find, that new unstab
modes~with Im kÞ0) always appear outside some neighb
hood of the turning points, because the quantitym sin(2gb)
is negative at all turning points (m sin(2gb),0). The system
of Eqs. ~48!, ~53!, ~62! can have a solution only ifumbu is
sufficiently large, so we find that all branches between
turning points (2K11,2K12; K50,1,2,...) are unstable. Fo
umbu greater than some critical valuebmcr(n), some parts of
branches between the turning points (2K,2K11, K51,2...)
become unstable. The instability of these branches is rel
to pairs of conjugate eigenvalues crossing the real a
Rek50. The crossing points are given by Eqs.~53! and~55!.

6. LIMITING CASE OF WEAK NONLINEARITY zmzB !1

In the caseumub!1, the turning point can exist only i
the refractive indexn@1, soumubn*1. In the vicinity of the
turning points,gb is close topN, whereN is an integer:

gb5pN1e1
3mr1

4
b. ~64!

In the range of parameters considered here, Eq.~48! can be
reduced to the cubic equation

Y31YS 42
e2n2

3 D2S 2e2n3

27
1

8en

3
13mbnD50, ~65!

g
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where

Y5
2en

3
1

3mbnr1

4
. ~66!

From Eq.~65! we find that at the turning points,Y is given
by

Y56~e2n2212!1/2/3. ~67!

From Eq.~51!, it follows that the turning points exist only i
me,0.

Between the turning points, all three solutions of E
~65! are given by

Yk5
2

3
~n2e2212!1/2 coswk , ~68!

where

wk5
2pK

3
1

1

3
cos21S e3n3136en181mbn/2

~n2e2212!1/2 D ,

K50,1,2. ~69!

Equation ~50! for k can be substantially simplified in thi
case

k2b21
4kb

n
1

1

n2 F413Y22
n2e2

3 G50. ~70!

The solutions of this equation are

~kb!1,252
2

n
6

1

n
An2e2

3
23Y2. ~71!

It is easy to see that between the turning points, one m
has positive values ofkb, hence the branch between th
turning points is unstable.

7. CONCLUSIONS

In this paper we formulate an algebraic equation for
excitation spectrumk that solves the problem of the stabilit
.

de

e

of the solutions of a nonlinear wave equation in a slab. I
found that all branches between the (2K11, 2K12) turning
points are always unstable. Some parts of branches betw
the (2K,2K11) turning points are also unstable. The ins
bility of the latter is associated with the possibility that pa
of complex conjugate eigenvalues cross the real axis in
k-plane. Such a phenomenon can take place only if the
fective nonlinearity is sufficiently strong (umu.mcr(n)). In
that event, the temporal behavior of transitions between
tionary states, when the amplitude of the incident wave v
ies, can be very complicated.

It was possible to obtain an explicit expression for t
excitation spectrum, but only by virtue of the weak nonli
earity of the coefficient in the wave equation. Strong nonl
ear effects result from the large length of the nonlinear m
dium compared to the wavelength scale.
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Two-component model for the growth of porous subsurface layers
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This paper studies a kinetic model that describes the interaction of two fluctuating densities. The
model makes it possible to stably reproduce the growth of dense, porous, and fractal
structures near the surface of solids placed in an active medium. The solutions of local and
nonlocal equations of the model are studied, and the results are used to comment on the possible
scenarios of the evolution of systems whose behavior can be reduced to such a model.
Finally, the exponents of the growth of the front width in a steady-state regime are calculated for
various values of the parameters. © ©1998 American Institute of Physics.
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1. INTRODUCTION

In recent years the studies of the growth and morphol
of porous layers that form near a variety of flat surfaces h
been attracting an ever growing interest from the pract
and theoretical standpoints~see, e.g., Refs. 1–5 and the li
erature cited therein!.

In many cases, irrespective of the specific features of
system under investigation, the evolution of the surface la
proceeds in a fairly universal manner. First, in the immedi
vicinity of the smooth~flat! interface of the two media in
contact there emerges, as a result of a chemical reactio
dense layer of one or more reaction products. In the proc
of growing this layer becomes more and more poro
Gradually an essentially inhomogeneous but, as a rule, sc
invariant structure is formed, and the laws governing
growth of this structure are characterized by fractal dim
sion and growth exponent.

For instance, a smooth to fractal transition of the cor
sion front has been directly observed by Bala´zs1 in studies of
two-dimension corrosion of thin aluminum films sputter
on optically transparent substrates and placed in an ele
lyte containing active components: Fe2(SO4)3 , HCl,
Na2SO4, and NaCl. A sequence of micrographs shows h
an initially perfect round pit, perforated in the aluminu
surface, expands, with characteristic dendritic structu
forming at the boundary. With the passage of time
growth of the front becomes self-similar with fractal dime
sion D f51.3360.01.

The effect of buildup of the front length may manife
itself even stronger. For instance, in the device describe
Ref. 2, when a weak current (J50.2 mA/cm2) is sent
through a copper electrode, ‘‘runaway’’ growth of the fro
develops, i.e., the front moves only along initially small pr
tuberances of the smooth surface of the electrode, while
other sections of the front remain essentially unchange
the process. As a result there forms a characteristic dend
structure consisting, in contrast to an ordinary fractal s
face,1 of a collection of essentially isolated ‘‘trees.’’
8141063-7761/98/87(10)/9/$15.00
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In addition to arousing purely scientific interest, th
study of corrosion-front growth attracts attention because
its importance from the standpoint of practice, since in so
applications the problem is closely linked to that of raisi
the efficiency of electric batteries.3,4 For instance, when a
lithium anode is placed into an electrolyte containing SOC2

as an additive, due to the exceptionally high reactivity
lithium, a porous two-component layer of LiCl and SO2 is
formed at the surface of the anode. The presence of su
layer leads to what is known as the lag effect4 when the
element is stored for a long time. Micrographs of the surfa
layer show that the layer can be considered a combinatio
a relatively dense initial layer with a subsequent transition
a fractal structure with an ever increasing porosity.

The highly universal properties manifested by differe
systems suggest that one can use universal growth mo
based on a combination of the ideas of continuum fi
theory and kinetic equations with a random source.5,6

Being fairly common in the theory of phase separati
and fluctuation phenomena in phase transitions,7–20 the ki-
netic equations with a source of noise should be used c
tiously in describing front growth, the reason being that,
contrast to phase transitions, where generation of the o
parameter occurs in the bulk of the system, a random so
cannot be considered additive. The generation of a finite d
sity of the components forming the front occurs only in t
immediate vicinity of the already existing boundary. Th
means that in the case at hand the corresponding sourc
the equation must be multiplicative~i.e., at least contain the
density as a factor!. However, in recent publications devote
to theoretical studies of phase diagrams and transition
systems with multiplicative noise,21–24 it was noted that the
presence of such strong noise can have a dramatic effec
the ordered structure and on the phase diagram, and may
to the emergence of new nontrivial phases. In our case
means that the model equation should be written in suc
way so as to exclude additional difficulties associated w
this noise.
© 1998 American Institute of Physics



ta
t

wo
lic
m
o
e
n

ity

ro
te
y

la
ic
e

n
it

g
de
f a
ic

ic
s
on

p

n

m

at
f

t
n

e
le

p-
c

ul-

t

s

-
-

h
s
s

nt

ded

uc-
er-

e-
al-

t

ef-

can

r of
at-
d-

815JETP 87 (4), October 1998 A. É. Filippov
From an experimental standpoint, the study of frac
corrosion structures is convenient since the corrosion fron
observed directly in micrographs and the corresponding t
dimensional distributions of density can be studied exp
itly. At the same time, the processes involved are very co
plex, and notwithstanding the continuing efforts, the the
retical models still remain extremely simple, although th
presuppose a numerical analysis of the kinetic equatio
Usually only the density of a single distributed quant
considered the most important in each specific case
involved.5,10

This is generally not the case in physicochemical p
cesses, since usually two or more components participa
the reactions. No matter how subtle the description of a s
tem by the single-component approach, it is sure to rep
the study of the system by an analysis of purely theoret
models. Given contemporary computer modeling techniqu
any attempt to reduce the problem to a single equatio
more a tribute to the analytic tradition than a real necess
The present paper demonstrates the feasibility of movin
this direction by the example of a two-component mo
formulated for the description of growth and corrosion o
broad class of porous surface layers initiated by chem
reactions.

2. FORMULATION OF THE MODEL

Following the work of Parisi and Zhang Yi-Cheng,5 we
will formulate the model in the form of the field-theoret
continuum variant of a model of growth with self-suppre
sion, which in the case of a single component is the c
tinuum version of the well known Eden model.6 To put it
briefly, Eden’s model amounts to the following. Let us su
pose that a particle source ind-dimensional space~we will
limit ourselves to the case whered52) generates, with a
certain probability, new particles at neighboring vaca
points of the space, etc.

Following Ref. 5, we define a sequence of order para
eters at any stage of generationn by the following quantities:

r~1!~r ;n!; r~2!~r1 ,r2 ;n!; r~3!~r1 ,r2 ,r3 ;n!; . . . ;

r~ j !~r1 ,r2 , . . . ,r j ;n!, ~1!

with the first being the probability of finding a particle
point r in space at timen, the second being the probability o
finding two particles, one at pointr1 and the other at poin
r2 , and so on. Then an Eden process with self-suppressio
described by the formula

r~1!~r ;n11!2r~1!~r ;n!

5D(
m

r~1!~r1m;n!1r~1!

3~r2m;n!/2dn2Cr~2!~r1 ,r2 ;n!, ~2!

where D and C are constants, the sum is over the near
neighbors in thed-dimensional space, and the two-partic
probability density in the lowest-order multiplicative a
proximation becomes a product of two single-particle fun
tions,
l
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r~2!~r1 ,r2 ;n!5r~1!~r1 ;n!r~1!~r2 ;n!, ~3!

while the corresponding hierarchy of equations for the m
tiparticle functionr j (r1 ,r2 , . . . ,r j ;n) turns out to be trun-
cated.

Inserting~3! into Eq. ~2!, passing to the continuum limi
for the Laplacian,

(
m

@r~1!~r1m;n!1r~1!~r2m;n!#/2dn→¹2r~1!~r ;n!, ~4!

and defining the time variable via the substitutiont5 ln n, we
arrive at the simplest continuum version of the equation:

]r~r ;t !/]t 5D¹2r~r ;t !1Cr~r ;t !@12r~r ;t !#. ~5!

Here and in what follows, by the densitiesr(r ;n) we mean
single-particle functionsr (1)(r ;n), so that the upper indice
are dropped. Clearly, if the bare functionr(r ;t) is equal to
zero,r(r ;t) will remain zero at later moments in time. Gen
eration of a moving frontr(r ;t) emerges at such initial con
ditions that att50 the value ofr(r ;0) is finite along one of
the system boundaries.

Note that formally the structure of Eq.~5! is such that at
negative values of the variabler its solutionsr(r ;t) become
unstable asr→2`. In the theory of phase transitions suc
instability is removed by higher-order nonlinearitie
;r3(r ;t) in the equation and, accordingly, by term
;r4(r ;t) in the free-energy generating functional. In fro
growth models, the bare functionr(r ;0) is positive and
terms of orderr4 are generally not needed.5 Here, however,
one must bear in mind that the initial~and boundary! condi-
tions always belong to the attracting basin of stable boun
solutionsr(r ) as t→`.

The rate of generation of the reaction components fl
tuates. In Ref. 21 it was shown that this leads to the em
gence of a multiplicative source of noisez(r ,t) with a cer-
tain intensityD:

^z~r ,t !&50, ^z~r ,t !z~r 8,t !&5Dd~r2r 8!d~ t2t8!.
~6!

This source is more likely to model the participation in r
actions of those components that have been explicitly
lowed for in the equation~or equations! rather than the effec
of thermal fluctuations.21

The structure of the local term in Eq.~5! shows that it
corresponds to the variations of an appropriately chosen
fective energyV(r(r ;t)):

dV~r~r ;t !!/dr~r ;t ! 52Cr~r ;t !@12r~r ;t !#. ~7!

We haveV(r(r ;t))52Cr2(r ;t)@1/22r(r ;t)/3# and hence
there is no generation barrierr(r ;t)Þ0. It is important that
the noise be multiplicative, since it guarantees that there
be no such process in which a fluctuationr(r ;t)Þ0 at an
arbitrary point inside the system becomes a generato
r(r ;t), which would lead to spontaneous generation of m
ter far from the contamination front. However, a simple a
dition to Eq.~5! of a source proportional to density,

]r~r ;t !/]t 5D¹2r~r ;t !1Cr~r ;t !@12r~r ;t !#

1r~r ;t !z~r ,t !, ~8!
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leads to strong side effects~even to a complete transforma
tion of an ordered steady state!, which are undesirable for a
application model~these effects are described in Refs. 2
24!. Qualitatively, the nature of the strong effect of noi
proportional tor(r ;t) on a steady state is clear. As the fro
passes a given point in space, the density behind the f
takes an equilibrium value:r(r ;t)51. The reaction that
leads to front movements dies out. However, the damp
process is hindered by noise, whose intensity is at its m
mum in this region.

The fluctuations should be the strongest in the reg
occupied by the front, i.e., where the combinationr(r ;t)@1
2r(r ;t)# is finite, and tends to zero far from this region.
the simplest case this assumption can be used by postul
the form of the equation,

]r~r ;t !/]t 5D¹2r~r ;t !1r~r ;t !

3@12r~r ;t !#@C1z~r ,t !#. ~9!

Despite the presence of self-suppression,2Cr2(r ;t),
Eq. ~9! yields a fairly trivial pattern of motion of a dens
front with a gradually expanding boundary~due to random
walks related to the noisez(r ,t)). The formation of a real-
istic porous structure is closely related to the fact that
problem is multicomponent. Below we examine the simpl
two-component case, assuming, by way of an example,
we are dealing with chemical reactions that proceed i
system with a contaminated lithium anode~see Refs. 3 and 4
and the literature cited therein!.

The complete picture of the reactions in such a system
fairly complicated and can be expressed as follows:

Li→Li11e2, ~10!

4Li114e212SOCl2→4LiCl1SO21S.

Actually, however, we are interested only in the formation
a front consisting of lithium chloride LiCl contaminated b
the reaction product SO2 that concentrates near the surfac
Bearing all this in mind, we can interpret the bare equat
~9! as the initial equation for the evolution of the density
LiCl, which we denote byr1(r ;t).

The corresponding coefficients and the source of no
will be labeled by the index ‘‘1.’’ Byr2(r ;t) we denote the
density of SO2. We model the local repulsion of the reactio
products LiCl and SO2 by a fixed-sign additional term in th
effective energy of the system,V12(r1 ,r2), which in the
lowest order can be writtenV12(r1 ,r2)5Br1

2r2
2/2. Equation

~9! becomes

]r1/]t 5D1¹2r11r1~12r1!

3~C11j1~r ,t !!2Br1r2
2 . ~11!

This equation must be augmented with an equation
scribing the evolution of the second component,r2(r ;t). To
do this we resort to the line of reasoning that resulted in E
~1!–~5!, where we must bear in mind, however, that the s
ond componentr2(r ;t), just like the first, is generated as
result of the same reactions~10! near the free~i.e., not con-
taminated by SO2) LiCl surface. This means that for]r2 /]t
we must use the same generating term as for]r1 /]t:
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]r2/]t 5D2¹2r21r1~12r1!

3~C21j2~r ,t !!2r2r1
22F~r2!. ~12!

Here we have allowed for the fact that although both den
ties,r2 andr1 , emerge as a result of the same reaction,
rate of formation of the dense components inr1 andr2 may
differ, so that generallyC2 /C1[vÞ1. Below, in a physi-
cally interesting case, we will actually use the quant
m>1 ~assuming, however, thatm.1).

Obviously, the terms linear inr2 cannot ensure that th
increase inr2 is stopped and is stabilized (r2→1) in the
static limit. We must also bear in mind that far from the fro
there is no spontaneous generation ofr2 , and hence the ef-
fective energy, whose variation yields the functionF(r2),

dV2~r2~r ;t !!/dr2~r ;t ! 52F~r2~r ;t !!, ~13!

contains a barrier that separates the two similar minima
r250 andr251. In the lowest-order nontrivial approxima
tion we have

V2~r2!5Br2
2~12r2

2!/2, ~14!

so that the sought equation forr2(r ;t) assumes the form

]r2/]t 5D2¹2r21r1~12r1!~C21j2~r ,t !!

2r2r1
22r2~0.52r2!~12r2!. ~15!

The transition to the continuum approximation, wi
only the lowest harmonics in the energy and hence the te
¹2r1,2 retained in the equations, leads to the well known lo
of information about the restriction imposed on the minimu
amount of LiCl in a neighborhoodur2r 8u<s of a given
point r , an amount needed for the reactions~10! to proceed.
Formally, such a restriction is equivalent to requiring that t
state withr1,250 be stable under small perturbations in t
~integrated! density

E
ur2r8u<s

dr 8 r1~r 8!.

Within the continuum approach, such stability can be e
sured only by introducing essentially nonlocal terms in
Eqs.~11! and~15!. Note that the transition to the continuum
limit does not eliminate the need to allow for higher-ord
gradients@with respect to (¹r(r ))2# and nonlocal forms of
the type

E
ur2r8u<s

dr 8 r1~r 8!V~r2r 8!r1~r 8!

in the generating functional. In the theory of phase tran
tions, similar nonlocal terms in the free energy are activ
used to describe inhomogeneous ordering of the order
rameter, critical behavior, blocking of new-phase nuclei, e
~see, e.g., Refs. 16–20!.

In the Monte Carlo method, where the quantityr1 is
discrete and equal in each location to 0 or 1, the reactio
‘‘turned on’’ when there is at least one LiCl molecule in
least one location closest to the location considered.4 In the
continuum model, the generation terms in both equations
]r1,2/]t must contain essentially nonlocal factors, in ad
tion to the local factorsr1(12r1)(C1,21j1,2(r ,t)). The
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generation ofr1 andr2 is ‘‘turned on’’ when the total den-
sity in a neighborhoodur2r 8u<s of the given pointr ex-
ceeds a certain threshold,

E
ur2r8u<s

dr 8 r1~r 8!.a.

The generating term must contain a cutoff factor

Q~r !5qS E
ur2r8u<s

dr 8 r1~r 8!2aD ~16!

such thatQ(r )→1 when* ur2r8u<sdr 8 r1(r 8).a and Q(r )
50 when * ur2r8u<sdr 8 r1(r 8),a. When the threshold is
sharp enough, the functionq(x) degenerates into a ste
function.

If we now use the factor~16!, the system of equation
becomes essentially nonlocal and assumes the final form

]r1/]t 5D1¹2r11r1~12r1!

3~C11j1~r ,t !!Q~r !2r1r2
2 ,

]r2/]t 5D2¹2r21r1~12r1!~C21j2~r ,t !!

3Q~r !2r2r1
22r2~0.52r2!~12r2!. ~17!

In the nearest neighbor approximation we havea51,
and the integral condition* ur2r8u<sdr 8 r1(r 8).a can be re-
duced to the~discrete! Laplacian, which simply means tha
higher-order gradients are included in the equations.

3. SOLUTION OF EQUATIONS AND DISCUSSION

The system of equations~17! is complicated and can
only be solved numerically. It is a modification of kinet
equations that have been widely used in recent years,
variety of guises, to model the kinetics of phase transitio
~see Refs. 9–20! and critical phenomena17,18 on the basis of
the generalized Landau–Khalatnikov equation7 or the Cahn
equation,8 and phase separation in a system consisting
interacting subsystems.14,15,18Note that~17! contains essen
tially all ‘‘irritating factors’’ that can be encountered in ki
netic equations of this type, including nonlocality, multip
cative noise, and interaction of the subsystems.

In addition to all this, in contrast to the theory of pha
transitions, the system~17! can be solved under specific in
tial conditions, when ordering and phase separation oc
not in the form of growth of nuclei over the entir
volume9–17,19,20but by the motion of the front starting from
one of the boundaries of the system and followed by ord
ing and phase separation of both interacting fieldsr1,2(r ;t)
behind the front.

Since even a numerical solution of such a system
quires at least an idea about the possible scenario of
process so that the parameters can be fixed, it is advisab
start with a simpler local version of the equations. In a c
tain sense this version must describe the system in the
gions where the densitiesr1,2(r ;t) are approximately equa
and the gradient terms, as well as the cutoff factorsQ(r ),
can be dropped.

In this case we simply have a system of two different
equations for ther -independent variablesr1,25r1,2(t):
a
s
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]r1/]t 5C1r1~12r1!2B1r1r2
2 , ~18!

]r2/]t 5C2r1~12r1!2B2r2r1
2

2B2r2~0.52r2!~12r2!.

The fixed points and the isoclines of the vertical and ho
zontal lines of this system can be found directly by solvi
the algebraic equations

]r1* /]t 5C1r1* ~12r1* !2B1r1* r2*
250,

]r2* /]t 5C2r1* ~12r1* !2B2r2* r1*
2

2B2r2* ~0.52r2* !~12r2* !50. ~19!

In addition to the three obvious fixed points,

m0* : r1* 50, r2* 50,

m1* : r1* 51, r2* 50,

m2* : r1* 50, r2* 51, ~20!

there can be a pair of nontrivial points, which can be fou
by solving the system of equations~19! with r1,2Þ0 and
r1,2Þ1.

In particular, in the symmetric caseC1 /B15C2 /B2

[C we have

r1* 512 r2*
2/C ,

~12 r2*
2/C!@r2* 2~12 r2*

2/C!#

2~0.52r2* !~12r2* !50, ~21!

and for example atC55, this yields

m3* : r1* 50.53~9!, r2* 51.51~83!,

m4* : r1* 50.87~2!, r2* 50.8. ~22!

Here it can be verified thatm4* is a saddle point, while the
stability of the pointm3* depends on the position of the poin
in relation tom2* ~specifically,m3* is a stable point if at it
r2* .1).

It is expected, however, that the stable fixed points of
local system~18! determine, in the limitt→`, the steady-
state solution for both densitiesr1,2. Bearing in mind the
physical meaning ofr1,2, we conclude that one of the fol
lowing points corresponds to such a solution,m1* : r1* 51,
r2* 50, or m2* : r1* 50, r2* 51, or at least the point at which
r1* 1r2* 51.

The fixed pointm3* , which us stable whenr2* .1, does
not satisfy this requirement. At this point, in addition
r11r2 being greater than unity, the densityr1* is finite, so
that the point is obviously a nonphysical one. The physi
point m2* , however, is unstable under the same condit
(r2* .1 at pointm3* ). The phase trajectories leave the neig
borhood of this point in the direction ofm3* . In the limit
r2*→1, point m3* approachesm2* , and atr2* 51 the two
merge. In the process, pointm2* becomes stable.

The requirement thatm2* be a stable point imposes re
strictions on the physical range of the parameter in numer
modeling of the nonlocal system. In particular, atC1 /B1

5C2 /B2[C the bifurcation of the pointsm2* andm3* for the
local equations occurs atC51. As a result of diffusion
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FIG. 1. Structure of the phase portrait for the local syste
~the caseB/C.(B/C)cr is depicted!. The phase trajectories
of the local system of equations, depicted by solid curv
are associated with the projections of the points of the
rays $r1(x,y;t);r2(x,y;t)% onto the (r1* ,r2* ) plane ~de-
picted by a gray area!, which constitute the numerical so
lution of the complete system of nonlocal equations w
noise.
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(¹2r1,2Þ0) and ‘‘fading’’ of the smaller of the two densi
ties, r1 , to zero, this limit for the nonlocal system shifts
the direction in which the corresponding constraint is we
ened, so that the~calculated! bifurcation of the pointsm2*
andm3* occurs atCcr'1.4.

The global structure of the phase portrait is depicted
Fig. 1, which presents a physically interesting realization
the portrait forC,Ccr . The fixed pointsm3* andm4* for the
case whereC.Ccr can be obtained by numerically solvin
the equation

f ~r2* !5~12 r2*
2/C!@r2* 2~12 r2*

2/C!#

2~0.52r2* !~12r2* !50.

The system of equations~18! actually describes the evo
lution of the densitiesr1,2* at each point in space withou
allowing for interaction between different points. In this a
proximation the interaction is taken into account only via t
initial conditions. Specifically, as the front arrives at a po
in space, both densitiesr1,2* begin to be generated at th
point, so that the physical scenario in the phase portrai
Fig. 1 corresponds to the trajectories that emerge in
neighborhood of the trivial pointm0* .

The separatrix connecting this point and the saddle p
m4* divides the plane (r1* ,r2* ) into attracting basins for the
stable fixed pointsm1* andm2,3* . Studying the behavior of the
trajectories that start near the separatrix, we can predict
eral results of numerically modeling the complete equati
and, in the final analysis, the properties of real systems
particular, we can easily predict the role of the source
noisej1,2(r ,t). If the noise is strong, the phase trajector
can pass both above and below the separatrix, irrespectiv
the scenario according to which the front arrives at the gi
point.

Within a certain time interval after the arrival of th
front, both densitiesr1,2* increase essentially simultaneous
and very fast, to which the first maximum in the evolutio
rate

W~ t !5@~]r1* /]t !21~]r2* /]t !2#2 ~23!
k-

in
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depicted in Fig. 2 corresponds. Near the saddle pointm4*
there can be no further increase inr1,2* . The rateW(t) rap-
idly decreases.

At the same time there is phase separation in the sys
with one of the densities,r1* or r2* , expelled from the given
region in space. This is followed by a sharp increase inW(t)
accompanied by a rapid buildup of the remaining comp
nent, a process that is slowed down near one of the st
fixed states,m1* : r1* 51, r2* 50 or m2* : r1* 50, r2* 51.

The characteristic double-humped curves represen
the evolution rate are indeed observed when the comp
system of equations is solved numerically. In accorda
with the physics of the problem, the initial condition is s
lected in the form of a narrow strip of density,r1(x,y;t
50)Þ0, near one of the boundaries of the two-dimensio
system. Here the process of generation and separation o
densitiesr1,2(r ,t) is accompanied by the formation of cha
acteristic dendritic spatial distributions of both densities.

The two densities are generated simultaneously in
vicinity of the front. However, in the absence of nois
j1,2(r ,t)50, the initial distribution,r1(x,y;t50)Þ0 and
r2(x,y;t50)50, leads to the formation behind the front of
completely filled region,r1(x,y;t)Þ0, and tor2(x,y;t) re-
maining equal to zero in the inner part of the system. F
patches withr2(x,y;t)Þ0 to appear in the steady-state di
tribution behind the front,r2(x,y;t) must be larger than
r1(x,y;t) at least in some regions of space near the fr
~where both densities are small!. This condition is met if
j1,2(r ,t)Þ0.

At first the distribution r1(x,y;t50)Þ0 behind the
front is essentially homogeneous. The regions w
r2(x,y;t).r1(x,y;t) not only generate patches wit
r2(x,y;t)Þ0 but, more importantly, stop the generation
both densities at the point of the front. Active growth occu
only within fragments where

Q~r !5qS E
ur2r8u<s

dr 8 r1~r 8!2aD .0.
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FIG. 2. Two peaks in the rate of variation of both concentratio
r1* (x,y;t) andr2* (x,y;t), at a fixed point (x,y) in the evolution in
front of and behind the neighborhood of the fixed saddle pointm4* .
The dots depict the results of a computer experiment. For the s
of comparison, we depict a similar curve~the solid curve! pre-
dicted on the basis of an analysis of the local system with a tra
tory close to a physical one. The inset depicts the phase portra
the local system, where such a trajectory is represented by a h
solid curve.
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The front becomes discontinuous, and in time the expand
ordered region is transformed into a fractal.

In Fig. 3a we use a gray scale to show a characteri
fragment of the system~consisting of 5123512 computa-
tional points! with a distribution of the total density
r(x,y;t)5r1(x,y;t)1r2(x,y;t) that emerges at the inter
mediate stage in the transition from homogeneous growt
fractal growth. Contaminated regions and regions of ac
growth are clearly visible. These are characterized by in
mediate values of the densities,r1(x,y;t)>r2(x,y;t)<0.8,
which correspond to sections in Fig. 3 with intermedia
shades of gray.

The phase trajectories of the local system of equatio
depicted by solid lines in Fig. 1, are associated with
projections of the points of arrays$r1(x,y;t);r2(x,y;t)%
onto the (r1* ,r2* ) plane ~depicted by a gray area!, which
constitute the numerical solution of the complete system
nonlocal equations with noise. Note that such associatio
necessary in the given case since the effect of multiplica
noise may, in principle, be far from trivial.21–24

The good agreement observed in Fig. 1 is achieved
cause of a special combination of the source of noisej1(r ,t)
and the densityr1 in Eqs.~17!, which was written above in
the formr1(12r1)(C11j1) derived from physical consid
erations.

In Fig. 2 there are two peaks in the rate of variation
both concentrations,r1(x,y;t) andr2(x,y;t), with the data
obtained in a computer experiment depicted by dots. We
that the data are in good agreement with the results predi
earlier by the analysis of the local system of equations~the
solid curve!. This is an indirect indication that the interpre
tation of the model and the results is correct, since s
agreement exists only for special trajectories~close to physi-
cal trajectories!, which emerge in the neighborhood of poi
m0* . The inset in Fig. 2 depicts the phase portrait of the lo
system, where such a trajectory is represented by a he
solid curve.

One novel property of the system~in comparison to
studying growth processes with models with only one flu
tuating variable4! consists in the possibility of the emergen
of voids behind the front, i.e., regions filled with neither
the two components. When there is only one field, i
r1(x,y;t)[r(x,y;t), such lacunae must be thought of
being filled with the other, ‘‘contaminating,’’ component o
g
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density, r2(x,y;t), which in this case is not explicitly
present in the equations. The model~17! contains additional
information about the second fieldr2(x,y;t), which makes it
possible to distinguish between the regions occupied
r2(x,y;t)Þ0 and the voids.

The mechanism of void formation is clearly seen in F
3b, which for a small fragment of the front depicts a typic
growth sequence forr(x,y;t). Three characteristic moment
in time are singled out: the emergence of a dense in
layer, the emergence of the first dendritic protuberances,
the collapse of the first internal pores in a structure with
total densityr(x,y;t). Well-formed voids are clearly visible
in Fig. 3a. Void formation is closely related to the ability o
the ‘‘contaminant’’r2(x,y;t) to block the active sections o
the frontr1(x,y;t) and, at least in principle, to terminate th
growth process.

As the pores collapse, the front usually continues
move in both directions. Naturally, the outer bounda
r1(x,y;t)Þ0 is almost insensitive to the presence of a po
blocked somewhere inside the system and continues its
ward motion. The inner boundaryr1(x,y;t)Þ0 surrounding
a pore is qualitatively similar to the outer boundary and c
move ‘‘back,’’ up to the point where it is completely blocke
by sections withr2(x,y;t)Þ0.

The scenario of the evolution of the system turns out
be exceptionally multifaceted and under a slight variation
the coefficients of the model makes possible a reproduc
of very realistic configurations of the densitiesr1(x,y;t) and
r2(x,y;t). In this respect the strongest effect is accompan
by a variation of theC1-to-C2 ratio, which reflects the pos
sible difference between the local rates of formation of
componentsr1(x,y;t) andr2(x,y;t) in the reaction.

When C2@C1 , the separatrix connectingm0* and m4*
lies much lower than most phase trajectories, and in
steady-state limit a large part of the (x,y) plane becomes
ordered in such a way thatr1(x,y;t)→0 and r2(x,y;t)
→1. Here the active sections of the front are rapidly co
taminated by a density layerr2(x,y)51, and growth stops
Obviously, in the opposite limit,C2!C1 , the front moves
off to infinity. There is a critical value of the ratio
vcr5(C2 /S1)cr , which leads to the first blocking of the fron
Computer experiments show that this ratio is close to un
and amounts tov'1.03.

As v→vcr , the front ceases to grow because the fract
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FIG. 3. Typical spatial configura-
tions of the total densityr(x,y;t)
5r1(x,y;t)1r2(x,y;t) with the ra-
tio of parametersC1 andC2 close to
the critical value. Fragments of the
system of 5123512 computational
points are depicted. a! The density
distributionr(x,y;t) that emerges at
the intermediate stage in the trans
tion from smooth growth to fractal
growth. b! A typical sequence of
growth of r(x,y;t) for a small seg-
ment of the front depicted at three
representative moments in time: th
emergence of a dense layer, th
emergence of the first dendritic pro
tuberances, and the collapse of th
first internal pores in a structure with
a total densityr(x,y;t).
be
ge be-

the
of the space (x,y) in which r1(x,y;t)Þ0 turns out to be too
small. A quantitative characteristic of this fraction can
found by calculating the values of the two densities avera
over the entire sample,

h1,2~ t ![^^^r1,2~x,y;t !&V&&5K K E
V

dx dyr1,2~x,y;t !L L ,

~24!
d

the total average densityh5h11h2 , and the ratiosh1,2/h.
The temporal evolution of the averagesh1,2 and h as
v→vcr is accompanied by changes in the relationship
tween thehj as the system goes from the initial regime~in
which h1.h2) to the steady-state regime ast→`, the latter
characterized by preferential growth of ther2(x,y;t) com-
ponent.

Note that because the characteristic dimensions of
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FIG. 4. Construction of the functions
ln(s ln t) needed to determine the fractal d
mensions of the front: a! for a subcritical
regimev<1,vcr , and b! for a regime close
to the critical,v.vcr . The big dots corre-
spond tos and the small dots, tos1,2.
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structures increase with the passage of time and the ar
are finite, the fluctuationsdh1,2(t) for a specific realization of
the computer experiments become substantial against
background of the averagesh1,2(t) for t@1. The monotonic
asymptotic curves representingh1,2(t) are obtained by aver
aging the results over several~about ten! realizations. This
averaging is denoted in~24! by double angle brackets
^^•••&&.

Such calculations show that the front stops growing
h1 /h.1/3 andh1,2/h.2/3. These relationships appear to
fairly ‘‘universal’’ and are probably due to the universal law
that govern ‘‘percolation’’ along the continuous clust
r1(x,y;t)Þ0. However, establishing the possible relatio
between the properties of the model and percolation theo
a problem in its own right and lies outside the scope of
present paper.

It is extremely difficult to study the fractal properties
the structures that form in the model. The presence of in
acting subsystems and several spatial scales in the in
equations can, at least in principle, lead to a time-varying
multifractal behavior of the solutions.25 Moreover, for the
continuum model, even a static distribution of the densit
r1,2(x,y;t→`) far behind the front contains values of th
densities that vary in space, 0<r1,2(x,t)<1, which intro-
duces an arbitrariness into the problem of finding the fra
dimensions.

Bearing in mind the above definition of averages,

h1,2~ t !/V [^^^r1,2~x,y;t !&V&&

5K K E
V

dx dy r1,2~x,y;t !/VL L ,

and allowing for the fact that, except for the vicinity of in
terphase boundaries, the densitiesr1,2(x,y;t→`) are close
to the constant valuesr1,2(x,y)50 or 1, we find the widths
of these boundaries for each component via the relations
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s1,2~ t !5K K H E
V

dx dy

V Fr1,2~x,y;t !

2E
V

dx dy

V
r1,2~x,y;t !G2J 1/2L L

[ K K H 1

V K Fr1,2~x,y;t !2
h1,2~ t !

V G2L J 1/2L L , ~25!

for the partial densitiesr1,2, and

s~ t !5K K H E
V

dx dy

V Fr~x,y;t !

2E
V

dx dy

V
r~x,y;t !G2J 1/2L L

[ K K H 1

V^@r~x,y;t !2 h~ t !/#2& J 1/2L L ~26!

for the total densityr. Here averaging over the set of rea
izations, denoted by double angle brackets^^•••&&, is nec-
essary for the same reason as in the calculations ofh1,2(t).

Figure 4 depicts the behavior of the functionss(t) on a
log–log scale for two typical cases,v<1,vcr and v>vcr .
In both cases, after the initial transient process, ast→` the
scaling behavior sets in ins(t), or

s~ t !;ta, ~27!

with a50.75 forv<1,vcr anda50.5 for v.vcr .
The reason the exponenta decreases toa50.5 as

v→vcr lies in the fact that the active sections of the fro
rapidly become contaminated from sections withr2(x,y)
51, where the increase of both densitiesr1,2(x,y) gradually
stops. As a result we have a more rapid buildup of the wi
than forv<1,vcr :

s~ t !5^^$^@r~x,y;t !2 h~ t !/V#2&/V%1/2&&



lin

he

f
it
e

th

th
li

a
o

uc
io
h

o-
w

t-
ty

h

on
the

th-

Rev.

822 JETP 87 (4), October 1998 A. É. Filippov
in the early stage with a subsequent slowdown in the sca
limit t→`.

In the opposite limit,v!vcr, the front moves off to in-
finity, while regions with the densityr2(x,y) have essen-
tially no effect on the formation ofs(t). In the process the
model degenerates into the Eden model witha51/3 ~Refs. 5
and 6!. Thus, our model leads to a situation in which t
front is heavily incised in the intermediate rangev<1
,vcr , where the effects of the interaction ofr1(x,y) and
r2(x,y) are most clearcut.

The fact that the system of equations~17! degenerates
into a one-component model in the limitv!vcr , where gen-
eration ofr2(x,y) is negligible, provides an obvious way o
verifying the model. At the same time, as is the case w
phase transitions in critical-phenomena theory, the low
symmetry of the system with interacting fields makes
model unstable against leaving the~universality! class of a
scalar model. There is also a similar instability related to
lowering of the symmetry of the propagator when nonloca
ties are taken into account.

All these factors are the formal reason the scaling beh
ior of s changes. It is still unclear to what extent the size
a depends on the structure of the terms in Eqs.~17!. The
study and enumeration of the universality classes of s
models constitute an interesting problem, whose solut
however, lies outside the scope of the present paper, whic
devoted primarily to the construction of a workable tw
component model capable of stably reproducing the gro
of porous surface layers with a scale-invariant structure.
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High-precision measurement of separatrix splitting in a nonlinear resonance
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We present the results of numerical modeling and a theoretical analysis of the splitting of a
nonlinear-resonance separatrix in the intermediate asymptotic region for the standard-map model.
Direct measurements of the splitting anglea(K), whereK is the small parameter of the
system, have been carried out over a huge range, 0.1*a*102208 (1>K>0.0004), with a relative
accuracy greater than one part in 10225 and an average accuracy of roughly one part in
10230. This made it possible to compare in detail our results with those of the existing asymptotic
theory and to detect a number of new effects. We find a relatively simple empirical
expression for thea vs. K dependence in the intermediate asymptotic region, and this region
proves to be surprisingly broad:K&1022. We also study the effect of noise, in particular,
errors in measuring the angle, which proved to be much more significant and complicated than
expected. Finally, we point out unresolved questions and possible directions of research
involving this problem. ©1998 American Institute of Physics.@S1063-7761~98!02410-X#
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1. INTRODUCTION

The dynamics of Hamiltonian~nondissipative! systems
is governed by the interaction of nonlinear resonances, wh
are the basic structural elements of the modern theory
nonlinear oscillations.1–4 The Hamiltonian of such a system
can be written

H~ I ,u,t !5H0~ I !1«(
n,m

Vnm~ I !exp~ inu1 i tmV!, ~1.1!

where « is the small perturbation parameter,I and u are
action–angle variables,V is the vector of the frequencies o
the external perturbation with harmonicsmV, and n labels
the harmonics of natural oscillations with the unperturb
frequencies

v~ I !5
]H0~ I !

]I
. ~1.2!

Each perturbation term in~1.1! defines a primary resonanc

vnm[nv~ I !1mV'0. ~1.3!

When the oscillations are linear, the frequencies are par
eters of the system, which either does or does not wind u
resonance regardless of the initial conditions of motion. T
most important feature of nonlinear oscillations is the f
that the oscillation frequencies change in the process of
tion because of their dependence on the action variab
Below we examine the case of strong nonlinearity, i.e., wh
such dependence is present even for the unperturbed freq
cies:

]v~ I !

]I
5

]2H0

]I 2
Þ0. ~1.4!
8231063-7761/98/87(10)/9/$15.00
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In this broad class of dynamical systems, the description
nonlinear resonances and the interaction of such resona
proves to be universal and relatively simple.2

In numerical models it is more convenient to repla
differential equations in terms of the continuous time va
able by a discrete map.1–4 One model of this type that is
simple and yet rich in content is the so-called standard m2

~for a history of the model and related physical applicatio
see Ref. 5!:

p̄5p1K sinx, x̄5x1 p̄, ~1.5!

wherep and x are action–angle variables.K!1 is the sole
parameter in the model, which characterizes the effect of
perturbation over a single map period, which is taken to
unity. In terms of the continuous time variable, this mode
described by the Hamiltonian~cf. ~1.1!!

H~p,x,t !5
p2

2
1K (

m52`

`

cos~x2mVt !, ~1.6!

whereV52p is the fundamental frequency of the extern
perturbation. The model comprises an infinite set of hig
nonlinear resonances (]2H/]p251), with the motion near
each of these resonances being identical to within a shif
the action variable:p2pm→p, wherepm5mV is the reso-
nant value of the action. The frequency of small natural
cillations in any resonance isv05AK!1. Although all the
resonances have the same amplitude (K), all except the fun-
damental, which is governed by the initial conditions, co
stitute an extremely weak perturbation. This is explained
the high perturbation frequency compared to the natural
cillation frequency at the main resonance:

l5
V

v0
5

2p

AK
@1. ~1.7!
© 1998 American Institute of Physics
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Interaction among the these resonances is adiabatic, an
effect of such interaction is exponentially small in the lar
adiabaticity parameterl.

Neglecting weak nonadiabaticity, we can use the pen
lum Hamiltonian

H1~p,x!5
p2

2
1K cosx ~1.8!

to describe an isolated resonance, say, the one withm50
~see~1.6!!. Such a simple form of the resonance Hamiltoni
proves to be universal in the case of strong nonlinearity.2 The
most important feature of this problem, which characteri
the nonlinear resonance~1.8!, is the presence of a separatri

ps562v0 sin ~x/2!, H1
~s!5v0

25K, ~1.9!

a special trajectory that separates phase oscillations~in reso-
nance! from phase rotation~out of resonance!. Clearly, near
the separatrix the motion of the system specified by~1.8! is
highly unstable, since almost any arbitrarily small perturb
tion changes the nature of the motion dramatically~from
rotation to oscillation and vice versa!. It is here that chaos
can emerge in nonlinear oscillations. As far as we know,
was first observed via numerical modeling,6 and was subse
quently studied by many researchers~see, e.g., Refs. 1–4 an
7!.

A simple example of such weak nonadiabaticity is t
interaction of just two nonlinear resonances, say, withm
50 andm51, which can be described by the Hamiltonia
~see~1.6!!

H2~p,x,t !5
p2

2
1K cosx1e cos~x2Vt !, ~1.10!

wheree is the amplitude of the perturbing resonance. Moti
near the separatrix of the main resonance (m50) can be
approximated by the so-called separatrix map, which w
first introduced~implicitly ! by Zaslavski� and Filonenko.7

We write this map in the form used in Ref. 2~see also Ref.
4!:

w̄5w1W sinf, f̄5f1l ln
32

uw̄u
. ~1.11!

Here w5H2 /K21 is the dimensionless~energy! deviation
from the unperturbed separatrix,f5Vt is the perturbation
phase at the instant when the ‘‘pendulum’’ passes the p
tion of stable equilibrium (x5p), andW is the nonadiaba-
ticity amplitude. If the perturbing resonance is much wea
than the main resonance (e!W), the amplitudeW can be
calculated relatively simply by the Mel’nikov method8 ~see
also Refs. 2–4!, and forl@1 we can write

W'8p f
e

K
l2e2pl/2. ~1.12!

Note that this problem cannot be solved by perturbat
techniques, because the dependence of this~or in fact any
other! nonadiabatic effect (W(K)) on the initial perturbation
parameter (K) is not analytic atK50. However, after this
effect has been isolated, we can employ perturbation-the
techniques, and this has been successfully done for app
the

u-

s

-

is

s

i-

r

n

ry
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mate equations of motion of the separatrix-map type. T
first to solve this problem was probably Poincare´.9 Equation
~1.12! also shows that in the given model~1.6! the contribu-
tion of other resonances (umu.1) is negligible (lm5ml).
In this model, however, all the resonance amplitudes are
same,e5K ~see Eq.~1.6!!. This leads to the emergence o
an additional factorf ;1 in ~1.12!. A qualitative explanation
of the emergence of this factor as an effect of higher-or
approximations of perturbation theory can be found in R
2, where the value of this factor obtained from numeric
models is also given:

f 52.1560.04. ~1.13!

The low accuracy of the measurements~which in fact turned
out to be an overestimate! can be explained by the insuffi
ciently small values ofK (K50.121) and by the approxi-
mate nature of the separatrix map itself.

Considerable progress in solving this problem was m
only relatively recently~in 1984! by Lazutkinet al.10,11 The
value of the correction factorf 52.2552 . . . wasobtained by
numerically solving an auxiliary equation from which th
exponential factor had been eliminated. In contrast to
general expression~1.12!, the factor f is not universal as
assumed in Ref. 10 but depends on the specific set of in
acting resonances.12

In their mathematical work, Mel’nikov,8 Poincare´,9 La-
zutkin et al.,10 and Gelfreichet al.11,12 and others calculated
not the effect of nonadiabaticity in~1.11!, which was later
studied by physicists,1–7 but an auxiliary quantity, the sepa
ratrix splitting anglea. Although this quantity alone is in-
sufficient for reproducing the detailed dynamics near
separatrix,a is an important characteristic of resonance
teraction and, in contrast toW, is rigorously defined and can
be calculated to any precision.

Separatrix splitting can be approximately described
the map~1.11! as follows. When there is no perturbatio
(W50), each of the branches of the separatrix~1.9! is an
asymptotic trajectory with an infinitely long period, a traje
tory that leaves (w50, t→`) the position of unstable equi
librium, x50 mod 2p, and returns to it (w̄50, t→1`).
When a perturbation is turned on (WÞ0), two intersecting
trajectories emerge: one still originates atx5p50 (w50,
t→2`) but never returns to that point (w̄Þ0, t→`), and
the other behaves as the first would under time reversat
→2t). The free ends of the split separatrix form an infin
number of loops with unboundedly increasing lengths8,9

which, however, fill a limited and narrow region along th
unperturbed separatrix, forming a so-called chaotic layer1–7

One important characteristic of such a layer is the layer h
width ws'lW'4a/v0 ~see Ref. 2!, which is directly re-
lated to the separatrix splitting angle~see~1.15!!. These lay-
ers are the universal, ultimate source of chaos in nonlin
oscillations.

The two branches of the split separatrix intersect, in p
ticular, atx5p and a certainps(p)'p052v0 ~see~1.19!!.
It is at this intersection that the anglea is usually studied,
and this is also true of the present work. The intersection
separatrices corresponds to the valuef(p)50 in ~1.11!.
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Near the intersection point the deviation of the two branc
of the separatrix from the unperturbed separatrix is descr
by a simple approximate formula:

q6~y!5p6~x!2ps~x!'6W
v0

4
sin

ly

2
, ~1.14!

where y5x2p, and we have employed the fact th
dw/dp52/v0 and f5Vt5Vy/p05Vy/2v0. Moreover,
the variation ofw at the intersection point is half the tota
variation of w in ~1.11!, since the latter is symmetric abou
x5p ~see Ref. 2!. As a result, for the total separatrix spli
ting angle we have

a~l!'2
dq

dy
'

v0lW

4
52p f v0l3

e

v0
2

e2pl/2

5~2p!4f
e2pl/2

K
, ~1.15!

where we have used the standard-map parametere5v0
25K

andV52p. Note that this simple and important relationsh
holds only for the separatrix splitting angle atx5p.

The quantityL introduced in Refs. 10 and 11, which w
call the Lazutkin constant, is related to the correction fac
f :

L516p3f 51118.82770595 . . . . ~1.16!

According to our data, the most accurate value ofL is given
below, in ~4.14!. Note that the factorf !L more correctly
characterizes the order of the effect of the finite amplitude
a perturbing resonance.

The last term in~1.15!, with an exact value ofL or f ,
yields the asymptotic value~asl→`) of the separatrix split-
ting angle:a`5a(`). In Ref. 10 there is also an estimate
the correction toa` in the intermediate asymptotic regio
0,K!1:

ca~l!5
a~l!

a`
21*K1/8. ~1.17!

Our preliminary numerical models have shown, howev
that the correction decreases withK much faster:ca;K1/2.

We immediately note that this ‘‘correction’’ describe
the intermediate asymptotic region of separatrix splitting t
is of present interest, and hence the formation of a cha
layer. Solving this problem is the principal goal of our inve
tigation.

The best-developed theory of the standard map sep
trix splitting11 predicts not only a rapid decrease in this co
rection, but also makes it possible to calculate the first te
in the power-series expansion by numerically solving au
iary equations. We believe that to a large extent the suc
of this theory can be attributed to the felicitous change
variables (K,a)→(h,s), where

h~K !5 lnS 11
K

2
1AK1

K2

4 D'AK ~1.18!

is the positive characteristic index of the tangential~linear-
ized! map ~1.5! at the unstable fixed pointx5p50,
s
d

r

f

r,

t
ic
-

ra-
-
s
-
ss
f

s~h!5n~h! sin a ~1.19!

is the simplectic invariant, andn(h) is a certain norm of the
tangent vectors.

Gelfreich et al.11 found an approximate solution to thi
problem that can also be written as a correction~similar to
~1.17!! to the invariant:

cs~h!5
s~h!

s`
215 (

m51

`

as~m!h2m, ~1.20!

wheres`54a` . Actually, Gelfreichet al.11 calculated only
the first four terms in the series~see Table II below!. The
main limitation of this solution is the implicit functions(a),
which can be found only numerically because of the ad
tional unknown functionn(h).

In the present paper we present the first results of di
measurements of the splitting angle of the separatrix of
standard map~1.5!, carried out over a broad range of th
parameterK: 1>K>0.0004 (1*h*0.02). Herea is 0.1
*a*102208, with a relative accuracy of better than one pa
in 10225 and an average accuracy of roughly one part
10230. In order to solve this problem we developed a spec
method for measuring and processing the results that u
fully portable software13 with arbitrary-precision arithmetic
In fact, the accuracy of the numerical model was as high
one part in roughly 102300.

In addition to measuring the anglea, which is directly
related to the nonadiabaticityW, we measured the invarian
s ~Eq. ~19!! it order to compared to the theoretical valu
The functionn(h), which is needed if we wish to calculates
but whose analytic expression is not known, was calcula
using a special program kindly furnished by V. G. Gelfreic
to whom we are sincerely grateful. All this has made it po
sible to compare our results with those of the analytic the
of Gelfreichet al.11 in detail, which was fully substantiated
and to detect new effects. We found a relatively simple e
pirical expression for theK dependence ofa in the interme-
diate asymptotic region, which proved to be surprising
broad:K&1022. We also studied the effect of noise—ang
measurement errors, in particular—which turned out to
much more significant and complex than expected.

2. MEASURING THE SEPARATRIX SPLITTING ANGLE

The main difficulty in measuring the separatrix splittin
angle a relates to its extremely small magnitude. For i
stance, when the perturbation parameterK in ~1.5! is 0.0004,
a amounts to roughly 4.23102208rad. As noted in the Intro-
duction, this problem could only be solved thanks to
special-purpose software package13 that implements all stan
dard FORTRAN capabilities in arbitrary-precision arit
metic, where one can specify the numberN c of significant
figures in the mantissa of the decimal representation of a
number.

We calculateda in the following manner. First and fore
most, for any given value of the perturbation parameterK,
the ordinateps(p) of the point of intersection of the separa
trix branches was found on the linex5p. The unperturbed
theoretical valuep(p)5p052AK ~Eq. ~1.9!! was taken as
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the initial ordinate, and the behavior of the phasex ~rotation
or oscillation! was established for the orbit starting
(p,p(p)). Depending on the result, the value ofp(p) was
successively increased or decreased by a certain step
until the counterpart phase behavior emerged. This mad
possible to initially localize the intersection point, with th
upper boundpr(p) corresponding to rotation of the phasex,
and the lower boundpl(p) to phase oscillations independe
of the direction of time. Recall that each split branch of t
separatrices remains a boundary between oscillations an
tations of the phase for its own particular direction of tim
~see the Introduction!. The step size in momentum was a
ways chosen larger than the expected width of the cha
layer ('4a), so that the width of this initial interval
dp(p)5pr(p)2pl(p), turned out to be much greater tha
the required valuedps(p), which, in contrast, was alway
chosen to be much less than the width of the layer~see be-
low!. For example, for our smallest value of the perturbat
parameter,K50.0004, the width of the chaotic layer wa
approximately 23102207, while the multiple-precision leve
N c and the precision required to yielddps(p)5102N a in
locating the ordinateps(p) were set atN c5300 ~corre-
sponding to a precision of about one part in roughly 102300)
andN a5280, respectively.

After establishing the initial interval@pl(p),pr(p)#, we
used the bisection method to get to the pointdp(p)
<dps(p), and then calculated the desired ordinate of
intersection point, takingps(p)5@pr(p)1pl(p)#/2. We
note in passing that this stage of the calculations accou
for most of the computing time~see below!: as the interval
shrank, the orbit moved closer to the unstable fixed po
and the period of motion~the number of iterations of the
map! increased substantially.

After the central point of intersection of the separat
branches was established, it was adopted as the origin
new coordinate system (y5x2p, q5p2ps(p)), in which
all subsequent steps in calculating the anglea were taken.
For two values of the phase,y56dy, udyu!1, to the right
and left of the new origin (y5q50) we found~to the same
accuracydps(p)5102N a) the boundaries between oscilla
tions and rotations~with time increasing toward the future!.
This made it possible to approximate a section of the stra
branch of the separatrix by a second-degree polynomiaq
5Q2(y) and, by determining its coefficients, to find th
angle of the slope of the separatrix. Repeating the ab
procedure with time progressing into the past, we were a
to find the slope of the reverse branch of the separatrix
take the difference of the two, yielding the desired inters
tion anglea2.

Special measures were taken to ensure the feasibilit
this approach.

For the full range of the parameterK we strove to obtain
a relative measurement accuracy ina no worse than one par
in 10225. To this end we were forced to choose values for
the multiple-precision parameters mentioned above:
number of significant figuresN c , the roundoff error
dps(p)5102N a incurred in locating the ordinateps(p), and
the phase offsetdy needed to set up the approximating po
nomials, with proper selection of the third parameter be
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the most critical. According to~1.14!, the phase separatio
Dy between the central and neighboring intersection po
is Dy'2p/l5AK, and it is convenient to choose as a pha
offset some fraction of this distance,

dy5hAK , ~2.1!

with the value ofh for all numerical alternative usually rang
ing from 10216 to 10212.

Above all, it was necessary to understand whether
desired relative accuracy of one part in 10225 in the calcu-
lated value ofa2 had been achieved~clearly, this accuracy
must in no event be identified with the number of significa
digits N c). To this end we repeated the above calculatio
for one more pair of double phase values,y562dy, for
both senses of time. Using the results for the two pairs
points, we were able to construct fourth-degree approxim
ing polynomialsq5Q4(y) and obtain an improved value o
a4.

Generally, some of theN a of the leading significant
digits ~with allowance for round-off! in the expressions for
a2 anda4 are the same, but then these values diverge.
always achievedN a>25, which yielded a relative angle
measurement accuracy no worse than one part in 10225. Cal-
culations with higher-degree polynomials and higher pre
sion only supported this criterion. In actual fact, the relat
accuracy turned out to be higher, and on the aver
amounted to roughly one part in 10230 ~see Sec. 3!.

Note that there is no need to calculate the points of
separatrix branches time proceeding into the past. The s
dard map~1.5! is symmetric, and this symmetry makes
possible to reconcile any point (xf ,pf) on the forward
branch of the separatrix with the corresponding po
(xb ,pb) on the backward branch via the simp
relationship11

xb52p2xf , pb5pf1K sinxf . ~2.2!

Thus, the approximating polynomials for both branches
constructed simultaneously, so that there is no need for
ditional computer time. However, to verify our results we d
check calculations of some of the values of the perturba
parameter with time progressing into the past. These ca
lations validated the numerical scheme describe above.

The major difficulty is to find the coefficients of th
polynomials that approximate the segments of the sep
trices that pass through the intersection pointy5q50:

q5a1y1a2y21a3y31a4y4. ~2.3!

Using four reference points, we obtain a set of linear eq
tions represented in matrix form as

S dy ~dy!2 ~dy!3 ~dy!4

2dy ~dy!2 2~dy!3 ~dy!4

2dy 4~dy!2 8~dy!3 16~dy!4

22dy 4~dy!2 28~dy!3 216~dy!4

D . ~2.4!

The elements of this matrix differ by many orders of mag
tude ~in view of the smallness of the phase offset,dy, ac-
cording to ~2.1!!, and its determinant is close to comput
zero, which makes it impossible to invert the matrix.
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The problem was solved through a change of variab
of the form (y,q)→(Y5Sy, Q5Sq). In terms of the new
variables the polynomial was

Q5a1Y1b2Y21b3Y31b4Y4. ~2.5!

We see that the only coefficient of interest to us isa1

5tan a4, which remains constant for any value of the sc
ing factorS. This is obvious, since our change of variabl
amounts only to magnifying the entire pictureS-fold. We
usually setS51/dy, which balanced the orders of magnitud
of the matrix elements and resolved all difficulties with pr
cessing such a matrix.

We used the above scheme to finda(K) for sixty values
of the perturbation parameterK in the range 1>K>0.0004.
The angle was represented to 35 significant digits, wh
provided more than the minimum~one part in 10225; see
above! and average~one part in roughly 10230; see Sec. 3!
relative accuracy needed to determine the angle.

The minimum perturbation parameter that we cou
work with, K50.0004, was limited by the time per ru
~about 24 hours!. This time rapidly increases asK gets
smaller primarily because of an increase in the numbe
necessary iterations of the map~Eqs. 1.5!. The latter is the
product of the period of motion near the separatri
(;u ln dps(p)u/AK;N a /AK ; see Ref. 2! and the number of
successive approximations at the intersection poin
(;u ln dps(p)u;N a). Moreover, the time it takes to calcula
~1.5! is proportional toN c ~in the range of moderate accu
racy N c&300 that we are interested in!. As a result, we
estimate the total processing timeT with this approach to be

T'T0

N cN a
2

AK
, ~2.6!

where the empirical value of the parameterT0 is roughly 2
31028 h.

3. PROCESSING THE MEASUREMENTS

The initial empirical data used our analysis ofa(K) de-
pendence consisted of 60 measured values of the unkn
function ~Sec. 2!. In the first stage of processing, to calcula
the correctionsca we used the most accurate value ofL

~1.16!.10 In order to compare our result with the theoretic
result of Ref. 11, we processed in a similar way the empir
dependence of the correctioncs to the invariants calculated
by ~1.19!.

In accordance with the theory developed in Ref. 11, b
corrections were sought in the form of a finite series exp
sion in even powers ofh.

c̃~h!5a~0!1 (
m51

M

a~m!h2m, ~3.1!

with least-squares interpolation~see, e.g., Ref. 14!. Although
formally the coefficienta(0) is zero~see~1.17! and~1.20!!,
incorporating it into~3.1! makes possible a considerable im
provement in the parameterL in comparison to its known
value ~1.16!.
s

-

h

f

wn

l
l

h
-

The main difficulty in the interpolation of the empirica
data via the series~3.1! lies in the fact that the various term
of this series differ by many orders of magnitude. For e
ample, in the typical case whereh;0.05 andM510, the
ratio (a10/a1)h18 is of order 10227. Hence, despite the spe
cial methods used in processing the data, even in the in
stage the processing was done with quadruple precision,
in the final stages the required precision amounted to
part in roughly 102100. But even this was not enough. As i
the interpolation of the separatrix branches~Sec. 2!, the ma-
trix of the system of linear equations that was so high
inhomogeneous usually became singular during numer
processing. The solution to this problem was found in
same way as in Sec. 2, i.e., by scaling the variables of
problem: (h,c̃)→(H5Sh, C5Sc̃), with the scaling factorS
much larger than unity. In contrast to the problem of Sec
the coefficients of the polynomial~3.1! are not invariants
under such a transformation, and must be restored afte
terpolation in the new variables: A(m)→a(m)
5A(m)S2m21.

The number of terms in the series~3.1!, M;10, is
bounded above by errors in the calculation of the coefficie
a(m) primarily because of ‘‘noise’’ resulting from the finite
precision of the empirical data ona(h). If M is increased
beyond 10, we obtain no new coefficients—we even lo
some of the old ones. This is especially evident in Fig
from the sharp break ina(m) dependence. We chose th
optimum valueM510 by trial and error~see also Fig. 3
below!.

The accuracy of the empirical formula~3.1! can be char-
acterized by the root-mean-square~rms! error

Dc5^@c~h!2 c̃~h!#2&1/2, ~3.2!

where the angle brackets denote averaging over the e
interpolation interval. The latter does not necessarily inclu
all 60 values ofc(h). Furthermore, attempts to use the ent
empirical interval have revealed the extremely low accura
of such ‘‘global’’ interpolation:Dc(h)*1026 ~cf. Fig. 2!.
This is quite natural, since the theoretical power-la
dependence11 ~3.1! characterizes only the intermedia
asymptotic region. For this reason, the deviation

FIG. 1. An example of the dependence of the expansion coefficient
~3.1!, found by interpolation of the empirical data, on the total numberM of
terms in the series for the angle~open triangles! and the invariant~open
circles!.
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dc~h!5c~h!2 c̃~h! ~3.3!

contains the most valuable and interesting information ab
additional nonadiabatic effects not in the theory. Thus, in
given set of empirical data, it was also necessary to cho
an interpolation range (h1–h2), whereh150.02 is the mini-
mum value in the original data. The basic criteria here w
the smallest value ofDc ~see Eq.~3.2!! and the precision of
the derived coefficients of the series~3.1! ~see Tables I and
II !.

The quality of interpolation decreases not only ash2

increases~as noted earlier!, but also as it decreases, becau
of the small contribution of high powers ofh for small values
of h, and also due to the decreasing number of pointsNp

participating in the interpolation. The interpolation is be
when h2'0.063 (Np519) andDca'2310231, and when
h2'0.12 (Np536) andDcs'2310231, but other values of
Np close to those just mentioned were also used~see Sec. 4!.
Note that the eventual interpolation accuracy yields a ro
estimate of the average accuracy of the measured value
a(K).

The basic results were obtained through standard in
polation by minimizing the variance (Dc)2 ~see ~3.2! and
~3.1!!. To control the procedure, we used forward interpo
tion, in which for the zeroth-order unknown coefficienta(0)

FIG. 2. Interpolation of the empirical data on the separatrix splitting an
~open triangles! and the invariant~open circles!; dc(h) is the deviation from
the intermediate asymptotic behavior specified by~3.1!. The oblique straight
lines represent the first term of the remainder~4.7!, and the curves represen
the exponential deviation~4.6!. The lines at the top represent the total co
rectionsc(h) for the angle and invariant, respectively.
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in expressions of type~3.1! we took the total value of the
Lazutkin constant. Relative interpolation was also carr
out, and with it we minimized the relative variance

~Dc!2

c2
5K F12

c̃~h!

c~h!
G2L . ~3.4!

The results of all three interpolation schemes are in go
agreement with one another.

The results of processing the data are depicted in Fig
and listed in Tables I and II.

The accuracy of the coefficients was established in t
different ways. First, we calculated the standard rms inter
lation error14 ~columns headed̂d& in Tables I and II!. This
quantity characterizes the expected error in calculations
the coefficients for a random rms error in the empirical da
Actually, however, the total error is almost never purely ra
dom but contains a systematic error, which leads to a s
~additional variation! in the values of the coefficients. This i
clear in Fig. 2, where the accuracy of interpolation is mu
greater than the remainder in the series~1.20!, which is not
included in the interpolation of~3.1!. This is why another
method was used. The values of the coefficients were de
mined by averaging over several interpolations with vario
amounts of initial data:Np514220 for the angle andNp

533238 for the invariant. These values are listed in Tab
I and II ~columns headedaa(m) and bs(m), respectively!.
The relatively weak dependence of the averages onNp

served as the main criterion in selecting these two grou
For the error we took the rms errors of the coefficients in
group~columns headedD in the tables!. We see that the two
estimates are of the same order, although the error in a g
is the greatest, and hence dominant, in all cases excep
one withb(10). The difference between the two rms erro
which is especially appreciable for the angle, definitely su
gests that there is a systematic error. The values of the
error in a group determine the number of valid significa
figures in the coefficients~in our opinion!. In the columns
headedaa(m) andbs(m), we have left two or three ‘‘super
fluous’’ digits for comparison with future more accurate em
pirical and/or theoretical values.

e

l

TABLE I. Coefficientsaa(m) in the series~3.1! for the angle.

m aa(m) D ^d&

1 20.23337 64288 64381 61062 76396 19 0.239310224 0.118310224

2 20.29081 81551 24688 86036 776 0.101310220 0.453310221

3 20.01482 49555 34894 05088 4 0.240310217 0.973310218

4 0.04318 21901 48643 630 0.357310214 0.130310214

5 20.04151 92394 77208 0.348310211 0.115310211

5 20.13137 33101 9 0.227310208 0.673310209

7 20.31916 9504 0.983310206 0.261310206

8 21.06063 5 0.273310203 0.647310204

9 24.3613 0.439310201 0.923310202

10 224.02 0.312310101 0.579310100

Note: Here and in Table II,D is the rms error in the group, and^d& is the average rms error in an individua
interpolation.
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TABLE II. Coefficientsb(m) in the series~4.1! for the invariant.

m bs(m) D ^d&

1 18.59891 19582 09297 35881 71520 0.101310222 0.343310223

2 24.34114 12705 68162 53678 60 0.369310219 0.125310219

3 24.18326 37590 91894 112 0.971310216 0.345310216

4 24.93413 95907 30929 0.186310212 0.735310213

5 210.64548 64427 41 0.263310209 0.121310209

6 235.86008 1765 0.276310206 0.151310206

7 2177.60356 0.212310203 0.139310203

8 21239.507 0.114310100 0.894310201

9 211766.0 0.386310102 0.362310102

10 2163000 0.627310104 0.693310104

Note: The underlined figures are the values of the coefficients obtained in Ref. 11.
io
d

im
tly

ly
t
ts
ib

the
ee

is a

,
ant

ly
,

lly,
ard
m
ctly:

ns
r a

the

effi-
er
ce

tion,
nly

sed

nd
no

f the
tly,

io
4. DISCUSSION

We start by examining the behavior of the expans
coefficients in~3.1! on the basis of the data in Tables I an
II. We use the representation of the coefficient in the s
plest form~3.1! except when we compare our results direc
with those of Ref. 11, where the coefficientsb(m) are rep-
resented by the Taylor series~cf. ~1.20!!

s

s`
L5L1 (

m51

`
b~m!

m!
h2m, b~m!5a~m!m! L.

~4.1!

First and foremost, we were able to find a relative
simple extrapolation ofa(m) outside the range of direc
measurements of the separatrix splitting angle. The resul
this extrapolation are depicted in Fig. 3 and can be descr
by the approximate expressions

aa~m!'Aa

egm

mp
~4.2a!

for the angle, and

as~m!'
As

mp
~4.2b!

FIG. 3. Variation of the coefficients in the intermediate asymptotic reg
specified by~3.1! for the angleaa(m) ~filled triangles!, the invariant~filled
triangles!, the invariantas/(m) ~filled triangles!, and theiraa/as ratio ~as-
terisks!. The solid curves represent the empirical formulas~4.2a! and~4.2b!.
The open triangles and circles represent the errors in the coefficients.
n

-

of
ed

for the invariant.
These empirical relationships were built according to

following reasoning. From Fig. 2 and Tables I and II we s
that the positive correctioncs(h).0 is much smaller in ab-
solute value thanca(h),0 over the entire range ofh studied
here, and the two corrections have opposite signs. This
consequence of the behavior of the normn(h)5n`(1
1cn(h)) (n`54 and cn(h).0) in ~1.19!. This yields the
following relationship between the coefficients:

as~m!5an~m!1 (
k51

m

aa~k!an~m2k!. ~4.3!

All the norm coefficientsan(m) are positive, while almost
all aa(m) and as(m) are negative~with the exception of
aa(4) andas(1); seeTables I and II!. On the other hand
Fig. 3 shows that the coefficients for the angle and invari
behave quite differently. The latter decrease relatively slow
with increasingm, approximately as power-law functions
while the former increase very rapidly, almost exponentia
as the norm coefficients do. This is corroborated by forw
interpolation and directly follows from the fact that the nor
balances the large correction for the angles almost perfe
cs!ucau.

This, then, is the key to building the empirical relatio
~4.2a! and ~4.2b!. Indeed, such balance does not occur fo
purely exponential dependence ofaa(m)'an(m). One can
easily verify, however, that this becomes possible for
combined dependence~4.2a!, provided thatp.1 andm@1.
Figure 3 also depicts the dependence ofaa /as on m, which
is perfectly fit by an exponential~see~4.4! below!. This is all
the more remarkable since the last two or even three co
cients of the invariant clearly deviate from the simple pow
law ~4.2b!. The same is true of the combined dependen
~4.2a! for the angle.

The nature of these anomalies remains an open ques
and requires further study. Note that anomalies appear o
in the highest-order coefficients, which cannot be increa
in number without a catastrophic increase in the errors~Fig.
1!. Furthermore, the ratio of the coefficients of the angle a
invariant in the intermediate asymptotic region contains
obvious anomalies. Of course, the exact dependence o
coefficients, provided that it can be expressed explici
hardly has the simple form of~4.2a! and ~4.2b! even when

n
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m@1. This is clear, if only from the fact that the accuracy
the empirical relations can in no way be compared to
precision of the coefficients themselves~see Tables I and II
and Eqs.~4.4! below!. Nevertheless, even the approxima
formulas~4.2a! and~4.2b! help in interpreting the characte
istic features of the intermediate asymptotic region and
further studies of this problem. In this paper, however,
have limited ourselves to this approximation.

The parameters of the empirical relations can be
tained by interpolating data on the ratio of the coefficie
with m57210 on a semilogarithmic scale, and data on
invariant withm5426 on a log–log scale. The results are
follows:

g51.35860.0059, p53.5160.17,
~4.4!

Aa520.0174~160.28!, As520.0233~160.27!,

where the accuracy is given in terms of absolute and rela
rms errors. Note that interpolation with just three coefficie
(m52,3,4), obtained in Ref. 11, yields similar values of t
parameters in~4.2b!:

As520.0216~160.45!, p53.3860.41. ~4.5!

The accuracy of the empirical relations~4.2a! and~4.2b!
can also be characterized by the relative rms error of
extrapolation itself (Da/uau for the values ofm specified
above!, which amounts to60.029 for the angle and60.028
for the invariant. Note that the relative smallness of the r
errors themselves, compared to the rms errors in the co
cients~4.4!, can be explained in terms of the strong corre
tion of the latter. In both cases the anomalies of the coe
cients are much larger than the reduced errors in the va
of ~4.2a! and ~4.2b! and the two errors of the coefficien
themselves in Tables I and II~see Fig. 3!.

Using ~4.2a! and ~4.2b!, we can set up an approxima
model of the intermediate asymptotic behavior, taking for
initial coefficients, which clearly do not obey~4.2a! and
~4.2b!, their exact values from Tables I and II. Prelimina
experiments along these lines show that the model ind
reproduces the shift of all~and especially the last! coeffi-
cients. However, this shift lies within the limits of error~see
Tables I and II and Fig. 3! and does not explain the anom
lies discussed earlier. Furthermore, even turning on a
tional noise that is uniform inh and simulates the errors i
angle measurements does not help.

The approximate relationships~4.2a! and ~4.2b! also
make it possible to perceive global behavior in the interm
diate asymptotic region. Above all, the series~4.2b! for the
invariant is convergent over the entire rangeh<1 up to glo-
bal chaos limit, although it does not describe the actual
havior of the invariant forh*0.14. Here the presence of a
exponential is clear~see Fig. 2!:

udc~h!u'63e2p2/h. ~4.6!

This function exceeds the remainder~4.7! and describes the
perturbation of the separatrix by a distant resonance wi
frequency 2V54p ~see~1.6!!. The simple theory in Ref. 2
predicts a numerical factor of 8, i.e., smaller by a factor
almost 10. Such a discrepancy can easily be explained
e

n
e

-
s
e

e
s

e

s
fi-
-
-
es

e

ed

i-

-

e-

a

f
by

another~unknown! value of the factorf in ~1.12! and a sys-
tem of resonances of higher-order approximations, which
much more complicated.15

The situation for the separatrix splitting angle is mu
more interesting, since the series~4.2a! diverges whenh
.hcr'exp(2g/2)'0.507, i.e., within the range under inve
tigation ~15 leftmost points in Fig. 2!. At the same time, no
singularities or anomalies in the behavior of the functi
ca(h) or its deviationdca(h) from interpolation has been
observed in this range. Furthermore, the deviation can
described perfectly well by the remainder term in~4.7!,
which, incidentally, is represented in Fig. 2 only by its fir
term. This clearly shows that there is a significant change
the behavior of both the angle and the invariant at largeh
;1 as compared with the intermediate asymptotic region

The approximate relations~4.2a! and~4.2b! make it pos-
sible to more accurately~than in Ref. 11! estimate the re-
mainder in the series~1.20!, which is not included in the
interpolation~3.1!:

R~h,M !5 (
m5M11

`

a~m!h2m'a~M11!h2M12. ~4.7!

Figure 2 shows that even the first term inR provides a fairly
good description of the behavior of the angle deviation o
the entire range under investigation. The same can be sa
the exponential function~4.6! for the invariant. However, an
attempt to add both expressions to the polynomial~3.1! cata-
strophically reduces the interpolation accuracy:Dc;1026.
This again demonstrates that the structure of the reg
whereh;1 is extremely complicated. In view of the impo
tance of this region in many applications, this problem d
serves further study.

Finally, we focus on the most precise and accurate w
of finding the Lazutkin constantL. We introduce the correc
tion

dL i5~L i2L0!31023, ~4.8!

wherei labels the various ways of obtainingL, and

L051118.82770 59409 00778 41514 639 ~4.9!

is the zeroth-order value, which we already obtained in p
liminary numerical modeling~cf. ~1.16!!. Formally, the high-
est accuracy is achieved in individual interpolation withNp

514 andM510:

dLa50.32356060.000017,
~4.10!

dLs50.32357260.000017.

Since the intermediate asymptotic series~4.2! differ substan-
tially in these two cases, such good agreement is a ser
argument favoring the reality of this accuracy.

In view of the importance of this constant, we also us
other methods to determine it. First we isolated a group
variants of interpolation schemes with the same valueM
510 but different valuesNp512220 andNp513238 for
the angle and invariant, respectively~35 cases in all!. The
group was chosen to be as broad as possible, the only l
tation being thatdL i was supposed to decrease rapidly a
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monotonically for reasons discussed earlier. For the ave
value and the rms error in this group we found

^dL i&3550.32336860.0017. ~4.11!

We see that the error has increased significantly. Howeve
histogram of the distribution ofdL i in the group~Fig. 4!
shows that the main peak is much narrower. If we discard
wings of the distribution~two cases to the right and six to th
left!, we obtain

^dL i&2750.32365460.00029. ~4.12!

Finally, leaving only the nine cases in the rightmost cell
the histogram, we find that

^dL i&950.32366060.000021. ~4.13!

Weighing the pros and cons, we conclude that the m
accurate value of the Lazutkin constant and the error are

L51118.82770 59409 00778 41514 63932 356663310227.
~4.14!

We have underline the value ofL previously obtained with
the approximate theory of Lazutkinet al.10

The results of the present work corroborate the theory
Gelfreichet al.11 both qualitatively~the form of the interme-
diate asymptotic series~3.1!! and quantitatively~Table II!.
Furthermore, we have found the intermediate asymptotic
gion directly for the separatrix splitting angle, which is im

FIG. 4. Bar diagram of the correction~4.8! of the value of the Lazutkin
parameter~4.9!: n is the number of different values of the correction in a b
with a width of 1024.
ge
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e

f
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portant in and of itself, and which has made it possible, wh
combined with the data on the invariant, to obtain appro
mate empirical relations~4.2! in this region that are not lim-
ited by the number of directly derived coefficients.
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