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Abstract—Twenty years ago, in December 2003, the Editorial Board of Technical Physics received a paper
entitled “The New Piezoelectric Material “Langasite” La3Ga5SiO14 with Zero Temperature Coefficient of the
Elastic Vibration Frequency.” This paper marked the beginning of a new stage in the development of piezo- and
acoustoelectronics. During the twenty years following the publication of this paper, langasite crystals have led
to the formation of a new trend in the preparation of materials with preset piezoelectric properties. Such an
achievement in the field of piezoelectric materials science has been unheard of ever since 1921, when piezo-
electric properties of α quartz were used to construct rf oscillators. Various piezoelectric devices, which form
an inseparable part in the progress of modern communication devices, television, radars, and several kinds of
defence technology are being produced by the thousands in developed countries all over the world. It is hard to
overestimate the importance of producing miniaturized wideband filters based on new langasite-type materials
for mobile communication to transmit video images in real time. This review contains a brief description of the
initial stage of discovery and research of the unique piezoelectric properties of a langasite crystal and the fab-
rication of the first devices based on it. © 2004 MAIK “Nauka/Interperiodica”.
The advent of a new material in applied physics is a
rare event. In piezoelectronics, dominated since 1921
until recently by the piezoelectric α-quartz crystal,
which has unique mechanical and thermally stable
properties, but is a weak piezoelectric, four new mate-
rials have appeared, viz., lithium tantalite LiTaO3

(1966), berlinite AlPO4 and fresnoite Ba2Si2TiO8

(1976), and lithium tetraborate Li2B4O7 (1983). These
four crystals have two remarkable properties: (i) they
have crystallographic orientations with a zero (at
~20°C) temperature coefficient of frequency (TCF) of
elastic vibrations excited by a resonance electric field
and (ii) the coefficient of electromechanical (piezoelec-
tric) coupling, which determines the transmission
bandwidth of a piezoelectric filter, is higher in these
crystals than in α-quartz [1].

In the USSR, only lithium tantalite crystals were
being developed in the 1980s to replace quartz in filters
and tunable oscillators. The research was carried out at
the Scientific–Industrial Complex (SIC) “Fonon”; no
significant progress was made because of the techno-
logical problems caused by the ferroelectric properties
of lithium tantalite crystals.

During the same period, leading Russian research
centers started looking for new noncentrosymmetric
crystals with a high optical nonlinearity to control the
radiation frequency of solid-state lasers.
1063-7842/04/4909- $26.00 © 21101
In 1982–1983, two groups of scientists in Kharkov
(SIC “Monokristallreaktiv”) and in Moscow (Moscow
State University) were able to grow independently the
first single crystals of lanthanum gallium silicate
La3Ga5SiO14 for this purpose. Unfortunately, the opti-
cal nonlinearity required for their practical application
could not be detected in these crystals.

Apart from the optical nonlinearity studies of
La3Ga5SiO14 crystals, the elastic and piezoelectric
properties of these materials were also studied at the
Institute of Crystallography of the USSR Academy of
Sciences and simultaneously at the Herzen State Peda-
gogical Institute, Leningrad. The discovery of piezo-
electric properties in a material is not significant as
such. It is well known that all centrosymmetric crystals
possess these properties. The decisive factor for the
practical application of piezoelectric crystal is the exist-
ence of crystallographic orientations along which the
temperature coefficient of frequency of elastic vibra-
tions is equal to zero at temperatures around 20°C. This
is a consequence of the mutual compensation of posi-
tive and negative temperature coefficients of elastic
moduli of the crystal and is observed very rarely in
crystal physics.

The existence of crystallographic orientations with
zero TCF in La3Ga5SiO14 crystals was reported for the
first time in [2]. It was shown experimentally for piezo-
electric resonators with contour shear modes that Y cuts
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of La3Ga5SiO14 plates have parabolic temperature
dependences of elastic vibration frequencies with tem-
perature peaks T0 in the interval 10-40°C, while the
electromechanical parameters of La3Ga5SiO14 are bet-
ter than the analogous parameters for quartz. The lan-
thanum gallium silicate (LGS) crystal was termed lan-
gasite for the first time in this work. This term proved
to be so appropriate that it has been used to denote these
crystals all over the world ever since publication of the
paper.

The first thermally stable orientations of LGS crys-
tals were patented by Andreev and Dubovik, who
received Inventors’ Certificates for these materials on
January 4, 1984, and March 4, 1984 [3, 4]. Since 1985,
research and development of piezoelectric resonators
based on these crystals and operating on bulk acoustic
waves of various types have been carried out at the Spe-
cial Design Office “Morion” (Leningrad). Inventors’
Certificates were received [5–8] for optimal LGS orien-
tations of resonators operating on shear, flexural, and
longitudinal vibrations. A departmental commission of
the Ministry of Electronic Industry, headed by
V.B. Gruzinenko, leading specialist of the SIC
“Fonon,” acknowledged in February 1986 that “cuts
with zero TCF have been obtained for flexural, longitu-
dinal, and shear vibrations in lanthanum gallium sili-
cate for the first time in the world….” Experimental
samples of LGS resonators operating at various fre-
quencies were sent to the Research Institute Dal’nyaya
Svyaz’ and the Television Research Institute, where
they were tested successfully.

Simultaneously with the research and development
of LGS resonators on bulk acoustic waves in the fre-
quency range 50 kHz–20 MHz having a Q factor of up
to 100 000, the first monolithic LGS filters for a fre-
quency of 2.048 MHz (Leningrad Branch of the Com-
munication Research Institute, 1985), the first delay
lines operating on surface acoustic waves (SAWs) at a

γ = Q × K2 × (∆f/f∆Τ)–1
Ca3NbGa3Si2O14

Ca3TaGa3Si2O14
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La3Ga3SiO14 + Al
La3Ga3SiO14 + Ti
La3Ga3SiO14
Li2B4O7

La3Ga5.5Nb0.5O14
La3Ga5.5Ta0.5O14

Temporal dynamics of synthesis of materials with the best
parameters for piezo- and acoustoelectronics.
frequency of 88 MHz (SIC “Avangard,” 1986) and
SAW filters for a frequency of 36 MHz (Leningrad
Institute of Aviation Instrumentation, 1986) were also
developed at various research centers in Leningrad.

All these investigations showed that langasite crys-
tals are promising basic materials for piezo- and acous-
toelectronic devices (see, for example, [9]). It was also
discovered that langasite doped with aluminium (lan-
gosital) or titanium (langositan) have the best piezo-
electric and mechanical properties. These crystals were
used for designing and fabricating resonators of longi-
tudinal contour and thickness oscillations with zero
TCF in the frequency range 130 kHz–1.8 MHz. The
results of these investigations are protected by an
Inventors’ Certificate [10] dated August 10, 1987.

The research activity on LGS was halted at the SDO
“Morion” in January 1987; however, the work in this
field was intensified at SIC “Fonon.”

At present, the research work is aimed at designing
and fabricating piezoelectronic devices, resonators, fil-
ters, and delay lines, operating on bulk and surface elas-
tic modes using langasite crystals and is being carried
out intensely in Russia, France, Japan, the United
States, Taiwan, etc. Apart from pure langasite and lan-
gasite doped with aluminum and titanium, two new
materials (viz., langanite La3Ga5.5Nb0.5O14 and lan-
gatate La3Ga5.5Ta0.5O14), whose characteristics are bet-
ter than or comparable to those of pure langasite have
been developed. Both these materials are superior to
piezoelectric α-quartz as regards piezoelectric commu-
nication, and their mechanical Q factor is comparable
to that of α-quartz [11].

Four new derivatives of langasite have been synthe-
sized quite recently: Ca3NbGa3Si2O14,
Ca3TaGa3Si2O14, Sr3NbGa3Si2O14, and Sr3TaGa3Si2O14

[12]. The electromechanical coupling coefficient of
these materials is four times larger and the acoustic
losses are four times smaller than in α-quartz. Crystal-
lographic orientations with zero TCF at room tempera-
ture have been discovered in Ca3NbGa3Si2O14 and
Ca3TaGa3Si2O14 crystals.

It is expedient to present the dynamics of the forma-
tion of thermally stable piezoelectric single crystals for
acousto- and piezoelectronics, where an arbitrary
parameter γ is used as a quality criterion. This parame-
ter is proportional to the mechanical quality factor Q,
the square of the electromechanical coupling coeffi-
cient K, and is inversely proportional to the temperature
coefficient of the frequency of elastic vibrations (see
figure).

Thus, the parabolic dependence on the frequency of
elastic vibrations with an extremum at room tempera-
ture in LGS plates discovered 20 years ago triggered a
new trend in piezoelectronics, viz., the design,
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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research, and application of nonferroelectric langasite-
type single crystals for rf stabilization and selection.1
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Abstract—Investigation of the dynamics of fluctuations of heat and mass transfer reveals that its crisis and tran-
sient modes exhibit high-energy pulsations with a power spectrum that is inversely proportional to frequency
(flicker or 1/f fluctuations). Such a spectrum suggests energy transfer from high- to low-frequency modes and
the possibility of large-scale catastrophic outbursts in the system being considered. The theory shows that such
fluctuations arise in the system owing to the simultaneous occurrence of interacting phase transitions in the
presence of white noise having a sufficiently high intensity. The distribution of fluctuations for scale transfor-
mations of the set of stochastic equations that describe the generation of 1/f noise is investigated. It is shown
that, under a scale transformation, the Gaussian distribution of a random process having a 1/f spectrum passes
to an exponential distribution, which is characteristic of the statistics of extreme outbursts. The probability of
such outbursts must be taken into account in predicting the stability of various heat-transfer modes. © 2004
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Heat and mass transfer in two-phase systems is
characterized not only by the mean values of the param-
eters of the process being considered but also by cha-
otic fluctuation deviations from the mean values of
these parameters. The enhancement of fluctuations is
especially pronounced in critical and transient modes
of heat and mass transfer [1]. The dynamics and evolu-
tion of random pulsations can be characterized by the
frequency dependence of the spectrum of the fluctua-
tion power. This dependence is determined by the ratio
of the mean square of the noise-signal amplitude (and,
hence, the noise-signal power) in the vicinity of the fre-
quency f to the frequency bandwidth ∆f. The spectrum
where the power is bounded in the region of low fre-
quencies corresponds to stable processes of heat and
mass transfer. Experimental investigation of the
dynamics of fluctuations of heat and mass transfer in
crisis and transient modes [2–4] reveals that the low-
frequency asymptotic behavior of the spectra in ques-
tion is not always such. Low-frequency high-energy
pulsations whose power spectra are inversely propor-
tional to frequency (flicker or 1/f pulsations) are
observed in crisis modes of boiling, in an explosive
boiling of jets in overheated liquids, in vibrational
modes of burning, and in an arc electric discharge. A
feature peculiar to systems involving flicker noise
(1/f noise) is that a considerable part of the energy of
fluctuations is associated with very slow processes;
moreover, formidable catastrophic outbursts are possi-
ble in such systems.
1063-7842/04/4909- $26.00 © 21104
The power spectrum of fluctuations that is inversely
proportional to frequency, S ~ 1/f, occurs in various
physical, chemical, and biological systems [6, 7]. The
1/f behavior persists for fluctuations of power varying
by a few orders of magnitude. By way of example, we
indicate that 1/f pulsations of radiation from quasars
and solar spots are known in astrophysics and that 1/f
spectra are used to describe earthquakes and flooding in
geophysics. In biology, one observes 1/f spectra in vari-
ations of insulin in the blood of diabetics and in cardiac
and cerebral rhythms in the case of some diseases. In
economics, financial flows and variations in the rates of
exchange of shares obey the 1/f spectral dependence;
also, flicker fluctuations occur in variations in the num-
ber of cars in traffic and even in music and speech [8].

In the literature, fluctuation processes characterized
by a power spectrum that is inversely proportional to
1/fα, where the exponent α varies within some range
(0.8 < α < 2), are most often classed with 1/f noise.
A dynamical scaling that is observed at equilibrium
critical points is a well-known property of 1/fα fluctua-
tions. A great number of attempts have been made to
explain a mechanism that could be responsible for the
generation of scale-invariant fluctuations. The self-
organized-criticality concept [9], which is used to
describe complex systems featuring fully developed
fluctuations, provides an outstanding example of this.
In a state of self-organized criticality, the system being
considered has a large number of metastable states in
which it can be. In the process of its evolution, the sys-
tem is self-organized and is tuned to a critical behavior
involving scale-invariant fluctuations. In [9], self-orga-
004 MAIK “Nauka/Interperiodica”
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nized criticality was demonstrated for the “sand pile”
model of cellular automata. In the case of a constant
flux of particles of sand in a sand pile that has reached
self-organized criticality, there arise avalanches of dif-
ferent size or fluctuations, which maintain the critical
state of the system irrespective of the magnitude of
external effects. The theory of self-organized criticality
leads to a spectrum of the form 1/fα (α . 1.4–2) and to
a power-law distribution of fluctuations. An exact
inverse proportionality to frequency (α = 1) is observed
for the spectrum of fluctuations of the voltage in the
case where a current flows through a resistor [6, 10] and
for nonequilibrium phase transitions interacting in
heat- and mass-transfer processes [2–4].

In this article, we give a theory of fluctuation pro-
cesses having a flicker power spectrum. According to
this theory, flicker noise arises upon the superposition
and interaction of nonequilibrium phase transitions.
Along with the interaction, the fully developed fluctua-
tion character of the process is a factor of importance
here, manifesting itself in the generation of noise
whose spectrum is divergent at low frequencies.

DISTRIBUTION OF 1/f FLUCTUATIONS

A theory of 1/f fluctuations in nonequilibrium phase
transitions was proposed in [2]. The simplest stochastic
equations describing the dynamics of fluctuations in a
lumped system have the form

(1)

where φ and ψ are dynamical variables and Γ1 and Γ2
are Gaussian delta-correlated noises (white noise) char-
acterized by identical variances. Owing to the coeffi-
cient λ > 1 of the variable φ in the second equation, the
two equations in (1) are not equivalent. The appearance
of this coefficient can be interpreted as the presence of
macroscopic fluxes in the set of Eqs. (1). Below, we
consider the case of λ = 2. Defining the potential as

(2)

we can recast the set of Eqs. (1) into the form

(3)

In order to obtain deeper insight into the physical
meaning of the potential (2), we make a linear transfor-
mation of our dynamical variables that corresponds to
the rotation of the coordinates of the potential through

dφ
dt
------ φψ2– ψ Γ1 t( ),+ +=

dψ
dt
------- φ2ψ– λφ Γ2 t( ),+ +=

Φ 1
2
---φ2ψ2 φψ,–=

dφ
dt
------ ∂Φ

∂φ
-------– Γ1 t( ),+=

∂ψ
dt
------- ∂Φ

∂ψ
-------– φ Γ2 t( ).+ +=
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an angle of π/4; that is, φ = η – θ and ψ = η + θ. In terms
of the new variables, the potential assumes the form

(4)

which is peculiar to the interaction of a subcritical and
a supercritical phase transition (the order parameters
are η and θ, respectively). The last term in Eq. (4) (it is
proportional to η2θ2) takes into account the interaction
of the order parameters in the most general form.

In order to integrate the set of Eqs. (1) numerically,
we rewrite it at λ = 2 as

(5)

where ξi and ζi are sequences of Gaussian random num-
bers having zero mean value and a standard deviation σ
and simulating external white noise.

A feature peculiar to stochastic equations is that the
time differential in the set of Eqs. (1) is of the second
order of smallness in relation to the differential of a sto-
chastic variable [11]. For this reason, the differentials
ξi∆t0.5 and ζi∆t0.5 in the set of Eqs. (5), which was writ-
ten for the purposes of numerical integration, involve
the time interval raised to a power of 0.5. This ensures
mathematical conveniences in changing the integration
step ∆t: it is not necessary to correct the value of the
standard deviation σ of the Gaussian random numbers
ξi and ζi upon changing the integration step.

The set of Eqs. (1) and its computational version in
(5) feature a noise-induced transition in the probability

density P( ) [5]. The noise-induced transition
means that, upon a change in the intensity of the exter-
nal white noise, there occurs a change in the position of
the extremum of the probability density (see Fig. 1).
This change proceeds as a phase transition. If σ is less
than some critical value σc (0 < σ < σc), the probability

density P( ) has a maximum at some value of the

argument . At an external-noise intensity that

corresponds to σ = σc, P( ) reaches a maximum
at the origin of the coordinates. In response to a further
increase in the intensity (σ > σc), the probability density
behaves as a monotonically decreasing function (see
Fig. 1).

At the external-white-noise intensity corresponding
to the criticality of the noise-induced transition (σ =
σc), the set of Eqs. (1) and, accordingly, the set of
Eqs. (5) generate steady-state stochastic processes φ(t)
and ψ(t) whose power spectra exhibit the 1/f and the
1/f 2 dependence, respectively. If the integration step is
chosen in the interval 0.05 < ∆t < 0.3, the criticality of
the noise-induced transition corresponds to the value of
σc = 0.8; therefore, the spectral powers of the fluctua-

Φ 1
2
---η4 η2–

1
2
---θ4 θ2 η2θ2,–+ +=

φi 1+ φi ψi∆t+( ) 1 ψi
2∆t+( ) 1– ξ i∆t0.5,+=

ψi 1+ ψi 2φi∆t+( ) 1 φi
2∆t+( ) 1– ζ i∆t0.5,+=

φ2ψ2

φ2ψ2

φ2ψ2

φ2ψ2
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tions of φi and ψi follow the above dependences for
intensities in the range 0.7 < σ < 0.9.

The set of Eqs. (5) provides quite accurate results
not only in the immediate vicinity of the critical point
of the noise-induced transition but also over a rather
broad range of the mean intensity of white noise [4].
This is due to a certain kind of consistency between the
variables φi and ψi in the set of Eqs. (1). Even in [2], it
was indicated for a lumped system that the mean value
of the product of these variables is 〈φψ〉 . 1, irrespec-
tive of initial conditions, the length of realization of a

10–2

100

S φ
, S

χ

f

10–1

100

101

10–3 10–2 10–1

Fig. 2. Spectral density of the variables φi and χi. The
dashed line represents a dependence of the form S ~ 1/f.

0 5 10 φ2ψ2

0.1

0.2

P

2

1

3

Fig. 1. Steady-state probability densities P( ) for the
set of Eqs. (5) according to the calculation with an integra-
tion step of ∆t = 0.1: (1) σ < σc, (2) σ = σc, and (3) σ > σc
(σc = 0.8).

φ2ψ2
random process, and controlling parameters; being an
invariant quantity that characterizes the system. There-
fore, it is natural to expect that the inverse function of
ψ also has a flicker power spectrum. In order to avoid a
divergence at zero values of ψi, we specify the inverse

function in the form [12] χi = ψi/(ε + ), where ε is a
small parameter (usually, it is set to ε . 0.01–0.02). The
function χi is close to 1/ψi for the majority of the points
of realization of a random process—only in the regions
where ψi is close to zero is χi also close to zero. In spec-
ifying the inverse function for ψi, one can also use a dif-
ferent method to get rid of the divergence at the origin
of coordinates, but this does not change the main result:
the spectral density of the variable χi is in inverse pro-
portion to the first power of frequency (Sχ ~ 1/f) and is
numerically consistent with the spectral density of the
variable φi. The spectra of the variables χi and φi are
given in Fig. 2. On the scale of the figure, they are indis-
tinguishable and follow a 1/f dependence (dashed line
in Fig. 2). In our calculations, we used 104 to 105 steps
of integration of the set of Eq. (5) and performed aver-
aging over a few tens of realizations. Although the
power spectrum of the variable ψi is inversely propor-
tional to the square of frequency, the power spectrum of
the inverse variable χi is in inverse proportion to its first
power. Thus, not only does the first equation in (1) or in
(5) yield a 1/f spectrum, but the second equation gener-
ates such a spectrum upon passing from ψ(t) to χ(t).

In contrast to the spectra, the distributions of the
variables φi and χi are different. Figure 3 shows the dis-
tribution of the variable φi. This distribution is close to
a Gaussian distribution, but it has long tails of large
amplitude outbursts, these tails being noticeable only in
semilogarithmic coordinates. Our numerical calcula-
tions revealed that the distribution of the variable φi can
be approximated by the expression

(6)

where A and B are constants (A @ B) and σφ = 2σdt0.5 is
the standard deviation of the random process specified
by φ(t). It is the second term in (6) that approximates
the long tails against the background of the Gaussian
distribution.

The distribution P(χi) differs from P(φi) by the pres-
ence of two maxima and a minimum at the origin (see
Fig. 3), long tails being observed in this case just like
for P(φi). However, they can be deformed here, depend-
ing on how one approximates the inverse function
for ψi.

SCALING OF 1/f FLUCTUATIONS

We will now address the question of how the distri-
butions of the variables change upon scaling realiza-
tions of random processes. For this purpose, we form,

ψi
2

P φ( ) A
φ2

2σφ
---------– 

 exp B
φ
σφ
------– 

 exp ,+=
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from a sequence of calculated realizations {x1, x2, …,
xN}, a sequence of roughened realizations {y(τ)} by
means of averaging over some time scale τ in accor-
dance with the equation

(7)

where xi is a stochastic variable (φi, χi, etc.).

The parameter τ is also referred to as the scale-trans-
formation coefficient. For the first scale, the realization
{y(1)} is merely an input realization. The length of each
subsequent roughened realization decreases by a factor
of τ; that is, it contains N/τ points. We note that this
scale transformation does not change the frequency

dependence of the spectrum. In the case of  and

, the spectrum remains inversely proportional to
frequency, S ~ 1/f.

The realizations of the input and roughened random
processes are illustrated in Fig. 4. From this figure, one
can see that, with increasing scale-transformation coef-
ficient, the realizations of the random processes speci-

fied by  and  approach each other (see Fig. 4).
At τ = 32, the coefficient that characterizes the correla-

tion of the realizations of the processes  and  is
greater than 0.9. As the scale-transformation coefficient

grows further, the realizations of  and  tend to
each other.

The variations of the distributions of the variables

 and  are shown in Fig. 5. At τ = 32, the distri-
butions for the two processes in question are nearly
coincident and can be approximated by the formula

(8)

where C is a normalization factor.

The exponential factor on the right-hand side of (8)
describes long-wave outbursts of a random process
having a 1/f power spectrum. This is in accord with the
results of Antal et al. [13], who found that the scaling
function for a roughened distribution of a certain class
of periodic signals having a 1/f spectrum appears to be
the distribution of extreme outbursts [14, 15]. The
results of the present study reveal that, under a scale
transformation, the Gaussian distribution of the sto-
chastic process φ(t) having a 1/f spectrum passes to an
exponential distribution, which is specific to the statis-
tics of extreme outbursts. With increasing scale-trans-
formation coefficient, the distribution of the variable χi

tends to the same distribution at a much higher rate.

y j
τ( ) 1

τ
--- xi, 0 j N /τ ,≤ ≤

i τ j=

τ j 1+( ) 1–

∑=

φi
τ( )

χ i
τ( )

χ i
τ( ) φi

τ( )

χ i
τ( ) φi

τ( )

χ i
τ( ) φi

τ( )

χ i
τ( ) φi

τ( )

P χ( ) Cχ2 χ
σχ
------– 

 exp ,=
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ENTROPY ANALYSIS OF REALIZATIONS

In order to obtain a numerical characterization of the
change in the distribution upon a scale transformation,
we define the quantity

(9)

which has the meaning of information entropy. In [16],
the use of the scale-factor dependence of the entropy
was called a multiscaling entropy analysis of realiza-
tions of random processes. The results obtained by cal-
culating the entropy of roughened realizations are given
in Fig. 6 versus the scale-transformation coefficient τ.
From this figure, one can see that, for the random pro-

cess , the entropy in question is independent of τ

H x( ) p xi( ) p xi( )( ),log
xi

∑–=

χ i
τ( )

1

2

3

4

5
χ(τ

) i

1

2

3

4

5

t t

Fig. 4. Realizations of the input and roughened random pro-

cesses  and  for the scale-transformation coeffi-

cient τ of (1) 1, (2) 4, (3) 8, (4) 16, and (5) 32.

φi
τ( ) χi

τ( )

0

1

P
(φ

i),
 P

(χ
i)

φi, χi

0.01

–2 –1 0 2

1
2

Fig. 3. Distributions of the variables being considered:
(1) P(φi) and (2) P(χi).

φ(τ
) i
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(Fig. 6, points 1), just like the distribution function
itself, undergoing no changes. Nearly from the outset,

the distribution function P( ) is scale-invariant, as in
the process of self-organized criticality. As the scale-
transformation coefficient increases, the random-pro-

cess entropy H( ) decreases, tending to H(χi).

Under a scale transformation, the random-process
entropy may characterize the effect of other controlling

χ i
τ( )

χ i
τ( )

1.1

1.0
0

H
(τ

)

τ

1
2
3
4
5
6

20 40 60

1.2

1.3

1.4

1.5

1.6

Fig. 6. Entropy H(τ) of roughened realizations for the ran-

dom processes (1)  and (2–6)  as a function of the

scale-transformation coefficient τ for various values of the
controlling parameter λ: λ = (2) 4, (3) 3, (4) 2, (5) 1.8, and
(6) 1.5.

χi
τ( ) ψi

τ( )

–2 –1 0 1 2

5

4

3

2

1

φi

P
(φ

i)

–2 –1 0 1 2

5

4

3

2

1

χi

P
(χ

i)

Fig. 5. Distributions of the variables  and  at vari-

ous values of the scale-transformation coefficient τ: (1) 1,
(2) 4, (3) 8, (4) 16, and (5) 32.

χi
τ( ) φi

τ( )
parameters of the system. In particular, an increase in
the coefficient λ at the linear term on the right-hand side
of the second equation in (1) in relation to (2) would
lead to a prolongation of a Gaussian character of the

process  in response to the growth of the scale-
transformation coefficient τ. For λ values smaller than
that corresponding to (2), a scale-invariant distribution

(close to the distribution of ) is obtained at smaller
values of the scale-transformation coefficient. At λ = 2,
the set of Eqs. (1) leads to 1/f fluctuations over the
broadest region of white-noise intensities and integra-
tion steps. This is because of the maximal self-organi-
zation of random processes having a 1/f spectrum: a
Gaussian process and a process characterized by a
scale-invariant distribution function.

CONCLUSIONS

The theory of fluctuation processes having a flicker-
type power spectrum in the presence of nonequilibrium
phase transitions reveals that, at large values of the
scale-transformation coefficient, the roughened distri-
bution becomes exponential, which is peculiar to the
statistics of extreme outbursts. The fully developed
fluctuation character of heat- and mass-transfer pro-
cesses in two-phase systems and the generation of noise
whose spectra are divergent at low frequencies result in
energy transfer from high- to low-frequency vibrations
and may lead to large-scale outbursts in the system
being considered. The possibility of such outbursts
must be taken into account in assessing the stability of
systems featuring fully developed fluctuation pro-
cesses. Along with a spectral analysis, it is useful to
perform a scale analysis of distribution functions.
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Abstract—The motion of the front of crystallization and the growth of a film at the surface of a plate are ana-
lyzed in the case of a laminar and in the case of a turbulent flow mode. Conditions are determined under which
there occurs a transition from a matt inhomogeneous structure to a transparent homogeneous structure of ice.
It is shown that, for a film to be steadily preserved at the plate surface, the film thickness must be larger than a
critical equilibrium-thickness value hb.c, in which case a transparent homogeneous structure of ice is formed.
Otherwise, the film at the plate surface is unstable and disappears in the course of time. The icing of aircrafts
is the most important application of the results obtained in this study. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that, if a body is placed in a flow of
a supercooled water aerosol, a liquid film is formed at
the surface of the body, the character of crystallization
there being dependent on the properties of the aerosol
flow. For example, ice-cover structures of two basic
types—a transparent homogeneous and a matt inhomo-
geneous structure—are observed in the icing of air-
crafts in supercooled clouds [1].

A theory that describes the formation of a layered
structure of ice growing in a supercooled-aerosol flow
was first developed in [1] in considering the problem of
the icing of aircrafts in supercooled clouds. According
to this theory, a film is formed at the surface of a body
placed in a flow of a supercooled water aerosol. Under
the effect of the tangent stress generated by an air flow,
the film begins to move. At realistic values of the air-
flow velocity and of the film thickness, the motion of
the film can be either laminar or turbulent. This in turn
leads to two mechanisms of heat transfer in the crystal-
lization of the film, a molecular and a turbulent mecha-
nism. In the former case (molecular mechanism), the
film proves to be unstable—it disappears, with the
result that drops undergo crystallization without merg-
ing, forming a matt inhomogeneous structure of ice. In
the latter case (turbulent mechanism), crystallization
proceeds under a film of steady-state thickness, with
the result that there arises a transparent homogeneous
structure of ice [2].

In [3–5], the mechanism proposed in [1] was con-
sidered under the assumption that the crystallization-
front temperature T ' is constant and is equal to the sta-
ble-crystallization temperature of T0 = 273 K. This
1063-7842/04/4909- $26.00 © 21110
made it possible to obtain an analytic solution to the
problem of the growth of ice under the film.

The icing of aircrafts is the most important applica-
tion of the results obtained in the present study. In [6],
the theory outlined here was formulated for the case of
a spherical surface and was applied to explain the lay-
ered structure of a hailstone.

1. COEFFICIENT OF TURBULENT THERMAL 
DIFFUSIVITY

Before proceeding to calculate the rate of the growth
of ice, we will preliminarily find an expression for the
turbulent-thermal-diffusivity coefficient kt. According
to [7, 8], we have

(1)

where b = 0.02 is a dimensionless constant that is deter-
mined on the basis of experimental data, z is the dis-
tance (in meters) from the plate to an arbitrary level
within the film, v  is the dynamic velocity (in m/s units),
ν is the water-molecular-viscosity coefficient (in m2/s
units), τ0 is the friction tension at the plate surface (in
N/m2 units), and ρ is the water density (in kg/m3 units).

Taking into account (1), we can find the turbulent-
thermal-diffusivity coefficient kt averaged over the
entire film thickness h = z'' – z'. We have

(2)

kt b
v 2z2

ν
-----------, v τ0/ρ,= =

kt
1

z'' z'–
------------- kt zd

z'

z''

∫ b
2ν
------v 2h2,= =
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where z' and z'' are the distances (in meters) from the
plate to, respectively, the crystallization front and the
film surface, so that h = z'' – z' is the film thickness, m.

The dynamic velocity v  and the characteristic veloc-
ity u∞ of the motion of the film are related by the equa-
tion

(3)

where cf is the drag coefficient, u∞ being defined as the
characteristic velocity (in m/s units) of the motion of
the film at a large distance from the ice–water interface.

According to experimental data, the drag coefficient
for a plate is given by [10]

(4)

where Re = (u∞X)/ν is the Reynolds number, X being
the characteristic size (in meters) of the plate.

With allowance for relations (3) and (4), the expres-
sion for the dynamical velocity in the case of a plate
takes the form [9]

(5)

In order to find a relation between the velocity u∞ of
the flow of the film and the velocity of the air flow, we
assume, according to Prandtl [11], that the turbulent
friction τ0 at the plate surface in the absence of the sep-
aration of drops from the film surface is equal to the
friction F at the film surface; that is,

(6)

where Rea = VX/νa is the Reynolds number for an air
flow, νa is the kinematic-viscosity coefficient for air (in
m2/s units), ρa is the air density (in kg/m3 units), and V
is the air-flow velocity (in m/s units).

From (6), it follows that

(7)

Substituting (7) into (5), we obtain

(8)

Substituting expression (8) for v  into (2), we obtain
the turbulent-thermal-diffusivity coefficient in the form

(9)

where B = 0.15 (m2/s)–1 is a constant.
Having derived expression (9) for the coefficient of

turbulent thermal diffusivity, we now proceed to calcu-
late the rate of the growth of ice under the film.

v
c f

2
-----u∞,=

c f

2
----- 0.0294Re 0.2– ,=

v 0.17
u∞

Re0.1
-----------.=

τ0 0.0294Re 0.2– ρu∞
2 F 0.0294Rea

0.2– ρaV2,= = =

u∞

Re0.1
-----------

ρa

ρ
-----

V

Re0.1
-----------.=

v 5.2 10 3– V

Rea
0.1

-----------.×=

kt BRe 0.2– V2h2,=
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2. GROWTH OF ICE UNDER THE FILM 
IN THE CASE OF A TURBULENT FLOW

The thickness of a film at the plate surface is deter-
mined by the difference of the velocities at which the
crystallization front and the film surface move (dz'/dt
and dz''/dt, respectively). In order to solve the problem
at hand, it is necessary to impose two boundary condi-
tions, that at the crystallization front and that at the film
surface. In the case of a laminar mode of film motion,
the equation of heat balance at the crystallization front
z' has the form

(10)

where Lc is the specific heat of water crystallization
(in J/(kg K) units); c is the specific heat capacity of
water (in J/(kg K) units); λi and λ are the thermal con-
ductivities (in J/(m s K) units) of, respectively, ice and
water; T0 = 273 K is the crystallization-front tempera-
ture; T∞ is the ambient-medium temperature (in Kelvin
degrees); and t is time (in seconds).

Equation (10) is the well-known Stefan condition
[12].

Disregarding the removal of heat through the crys-
tal, we can represent the heat-balance equation at the
crystallization front 

(11)

In a similar way, we can write the heat-balance
equation at the crystallization front for the case of a tur-
bulent mode of the film flow. Specifically, we have

(12)

At the film surface, we impose the condition requir-
ing that the heat flux to the film be equal to the heat
removal from it (quasi-steady-state balance); that is,

(13)

where α is the coefficient of heat transfer between the
film surface and ambient air (in J/(m2 K) units); β is the
coefficient of mass transfer between the film surface
and ambient air (in m/s units); L is the specific heat of
water evaporation (in J/kg units); and ρs and r∞ are the
steam densities (in kg/m3 units) at the film surface and
in the ambient medium, respectively.

The first term on the right-hand side of Eq. (13) rep-
resents the heat removed from the film surface via con-
vective heat transfer, while the second term is the heat
spent into evaporation from the film surface. For the
turbulent mode of film motion, the coefficient λ in (13)
must be replaced by λt = cρkt. Under the condition in

ρ Lc c T0 T∞–( )–[ ] dz'
dt
------ λ i

∂T
∂z
------

z z'=

λ∂T
∂z
------

z z'=

,–=

ρ Li c T0 T∞–( )–[ ] dz'
dt
------ λ∂T

∂z
------

z z'=

+ 0.=

ρ Li c T0 T∞–( )–[ ] dz'
dt
------ cρkt

∂T
∂z
------

z z'=

+ 0.=

λ∂T
∂z
------

z z''=

– α Ts T∞–( ) Lβ ρs ρ∞–( ),+=
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(13), the temperature of the film surface remains con-
stant, Ts = T1.

We assume that a stationary temperature distribu-
tion is established in the film. We then have

(14)

The equation of mass balance at the film surface can
be represented in the form

(15)

where q is the water content in the flux (in kg/m3 units),
E is a coefficient that characterizes the capture of drops
by the film surface (in the calculations, this capture
coefficient was taken to be constant), and kf is the shape
coefficient (kf = 1 for a plate).

In (15), the air-flow velocity is directed along the
plate surface. The capture coefficient specifies the frac-
tion of drops captured by the plate.

Taking into account relations (9), (12), (14), and
(15), we represent the velocity of crystallization-front
motion in the turbulent mode of film motion in the form

(16)

where

(17)

Here, u = dz''/dt has the meaning of the rate of the
growth of the film owing to the influx of drops; at the
values taken here for the velocity of the flow and its
water content, u is constant.

In terms of the variable h = ut – z', Eq. (16) assumes
the form

(18)

The steady-state film thickness he found from the
condition dh/dt = 0 is given by

(19)

Solving Eq. (18), we obtain

(20)

where h0 is the initial film thickness (in meters).
With the aid of (18) and (19), we arrive at

(21)

dT
dz
------ dT

dz
------

z z'=

dT
dz
------

z z''=

T0 T1–
z'' z'–

-----------------.–= = =

dz''
dt
-------

qEV
k f ρ
-----------,=

dz'
dt
------

ut z'–
τ

--------------,=

u
dz''
dt
-------; τ

Lccρ T0 T∞–( )
cBRea

0.2– V2∆T
-----------------------------------; ∆T T0 T1.–= = =

dh
dt
------ h

τ
---+ u.=

he ut
qE Lc cρ T0 T∞–( )–[ ]

cρB∆TRea
0.2– V

-----------------------------------------------------.= =

h h0
t
τ
--– 

 exp he 1 t
τ
--– 

 exp– 
  ,+=

dh
dt
------ u 1 h

he

----– .=
From (21), it follows that, if h < he, then dh/dt > 0,
so that the film grows; but if h > he, then dh/dt < 0, with
the result that the film diminishes. The same can be
seen from the solution in (20). Irrespective of whether
h0 > he or h0 < he, the film thickness tends to he with
time.

Let us introduce the notation w = dz'/dt. Solving
Eq. (16), we obtain

(22)

where w0 is the initial crystallization rate (in m/s units).
From (22), it can be seen that the velocity of crystal-

lization-front motion tends to the velocity of film-sur-
face motion with time, the film thickness remaining
constant.

Thus, we see that, if the motion of the film is turbu-
lent—recall that this mode is realized at Reynolds num-
bers above a critical value (Re ≥ 1500) [1, 2]—the
growth of ice proceeds under a film of steady-state
thickness, this leading to the formation of a transparent
homogeneous structure of ice.

3. GROWTH OF ICE UNDER A FILM 
IN THE CASE OF A LAMINAR FLOW

Let us consider a laminar motion of a film. Taking
into account relations (10), (14), and (15), we can rep-
resent the velocity of crystallization-front motion in the
form

(23)

where

(24)

In terms of the variable h = ut – z', Eq. (23) assumes
the form

(25)

From the condition dh/dt = 0, we find the equilib-
rium film thickness. The result is

(26)

From (25) and (26), we obtain

(27)

From (27), one can see that, if h < hb, then dh/dt < 0,
which means that the film thickness decreases; but if
h > hb, the film thickness increases. Thus, the hb state is
unstable, since an arbitrary small deviation of h from hb

w w0
t
τ
--– 

 exp u 1 t
τ
--– 

 exp– 
  ,+=

dz'
dt
------

k0

ut z'–
--------------,=

k0
λ∆T

ρ Lc c T0 T∞–( )–[ ]
---------------------------------------------.=

dh
dt
------

k0

h
----+ u.=

hb

k0

u
----

λ∆T
qEV Lc c T0 T∞–( )–[ ]
-----------------------------------------------------.= =

dh
dt
------ u 1

hb

h
-----– .=
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triggers changes in h that are directed away from the
equilibrium value.

Solving Eq. (25), we arrive at

(28)

Setting h = 0 in (28), we can find the time t0 within
which a film whose initial thickness satisfies the condi-
tion h0 < hb disappears. The result is

(29)

Thus, the film disappears within the time t0 if h0 <
hb; in this case, drops crystallize without merging
together, whereupon there arises a matt inhomogeneous
structure of ice. But if h0 > hb and if a viscous mode of
film motion is realized (molecular mechanism of heat
transfer), an increase in the film thickness leads to a
transition to a turbulent mode (turbulent mechanism of
heat transfer).

4. CRITICAL FILM THICKNESS
Let us now find the critical film thickness at which

there occurs a transition from a viscous to a turbulent
mode of film motion. From (9) and (26), we obtain

(30)

From here, we find the critical film thickness hc,
which corresponds to the condition λt = λ,

(31)

that is, the critical film thickness hc is the film thickness
at which the coefficient of turbulent thermal conductiv-
ity is equal to the coefficient of molecular thermal con-
ductivity. Although both heat-transfer mechanisms
coexist in a film [7], we will assume, as is done in many
problems of fluid dynamics [10], that the dominant
mechanism is molecular for h < hc and turbulent
for h > hc.

As can be seen from (31), the critical film thickness
is not constant—it is in inverse proportion to the air-
flow velocity. Substituting expression (31) for hc into
Eqs. (18) and (19), we obtain

(32)

From (31) and (32), it follows that three different sit-
uations are possible: (i) hb < hc < he, in which case
(dh/dt)c > 0; (ii) hb = hc = he, in which case (dh/dt)c = 0;
and (iii) hb > hc > he, in which case (dh/dt)e < 0. In the
first case (hb < h < he), the mode of film motion is lam-

h h0– hb
h h0–
h0 hb–
----------------ln+ ut.=

t0

hb

hb

hb h0–
----------------ln u–

u
-----------------------------------------.=

hehb k0τ
λ
λ t

----h2.= =

hc k0τ hehb
λ

cρB
----------

Rea
0.1–

V
-------------,= = =

dh
dt
------

c

u k0/τ– u 1 hb/he–[ ] .= =
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inar, with the result that the film thickness grows to the
value he, at which there occurs a transition to turbulent
mode. After that, the film thickness continues growing
up to the value he. In the second case, the film thickness
is constant, the mode of film motion being turbulent. In
the third case, the film thickness decreases, irrespective
of the mode of film motion.

Thus, there is a critical equilibrium-film-thickness
value hb.c that corresponds to the equilibrium state hb =
hc = he and which can be determined only from experi-
ments. Experiments revealed [1, 2] that hb.c = 1.3 ×
10−3 m for water.

Thus, we see that, if h < hb.c, the mechanism of ther-
mal conductivity is molecular, the film disappears, and
drops crystallize without merging; as a result, there
arises a matt inhomogeneous structure of ice. But if h >
hb.c, the mechanism of thermal conductivity is turbu-
lent, in which case the film thickness decreases, tending
to hb.c; here, crystallization occurs under the film of
constant thickness, this resulting in the formation of a
transparent homogeneous structure of ice.

As can be seen from (18), (25), and (32), some crit-
ical velocity uc of the film surface,

(33)

corresponds to the stable state (dh/dt)c = 0.

If, in (33), c(T0 – T∞) is disregarded in respect to Lc,
the transition from one structure of ice to the other is
determined by the generalized Maclin parameter [13]

(34)

Thus, both the Maclin parameter and the equilib-
rium critical film thickness characterize the transition
from one structure of ice to the other. As to formula
(34), it establishes a relationship between the parame-
ters M and hb.c.

For the water content in the flux, formula (33)
makes it possible to find the critical value qK determin-
ing the transition from one structure of ice to the other.
We have

(35)

We refer to this quantity as Kachurin’s critical water
content. By way of example, we indicate that, at E = 1,
∆T = 1°C, and V = 102 m/s, Kachurin’s critical water
content is qK ≅  3 × 10–4 kg/m3.

With allowance for (11) and (14), the heat-balance
equation at the crystallization front assumes the form

(36)

uc
qEV

ρ
-----------

c

k0

hb.c
-------- λ∆T

ρhb.c Lc c T0 T∞–( )–[ ]
------------------------------------------------------= = =

M
qEV
∆T

-----------
λ

Lhb.c
------------.= =

qK
λ∆T

hb.cEV Lc c T0 T∞–( )–[ ]
-----------------------------------------------------------.=

ρ Lc c T0 T∞–( )–[ ] dz'
dt
------ = α Ts T∞–( ) Lβ ρs ρ∞–( ).+
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Let us consider the particular case where there is no
film at the plate surface and where drops crystallize
without merging together. We then have dz'/dt = dz''/dt.
Substituting (15) into (30), we arrive at

(37)

From this relation, we find the critical water content
,

(38)

which determines the condition under which all drops
that are deposited onto the plate surface crystallize. If
q > , a film is formed on the plate surface. The con-

dition q >  is not sufficient for the formation of a
transparent homogeneous structure of ice, since, for h <
hb, the film at the plate surface is unstable and disap-
pears with time. For the formation of a transparent
homogeneous structure of ice, it is necessary that the
film thickness be larger than the respective equilibrium
value.

5. SEMIEMPIRICAL THEORY 
OF THE FORMATION OF A LAYERED 

STRUCTURE OF ICE

From the phenomenological theory developed in
[1, 2] for describing the formation of a layered structure
of ice, it follows that the layered structure of ice is
determined by the parameter hb, which is the equilib-
rium film thickness. At various values of hb, results
obtained by measuring the density ρi of ice layers on
obstacles streamlined by a water-aerosol flow are well
approximated by the formula [14, 15]

(39)

where ρ0 is the density (in kg/m3 units) of transparent
homogeneous ice.

From (39), it follows that the formation of a trans-
parent homogeneous structure of ice at small hb and the
formation of a matt inhomogeneous structure of ice at
large hb occur. The same conclusion can be drawn from
formula (27). Indeed, we can see that, at small hb, there
is a high probability that h0 > hb, in which case the film
thickness grows, according to (27); crystallization then
proceeds under the film. As a result, there arises a trans-
parent homogeneous structure of ice (wet growth). For
large hb (hb  ∞), there is a high probability that
h0 < hb. According to (27), the film thickness then
decreases; the film disappears, and crystallization pro-
ceeds in the absence of a film. This leads to the forma-
tion of an inhomogeneous structure of ice. On the basis

qEV Lc c T0 T∞–( )–[ ]
=  α Ts T∞–( ) Lβ ρs ρ∞–( ).+

qc'

qc'
α Ts T∞–( ) Lβ ρs ρ∞–( )+

EV Lc c T0 T∞–( )–[ ]
--------------------------------------------------------------,=

qc'

qc'

ρi ρ0 1 0.32
hb

----------– 
 exp– 

  ,=
of this statistical treatment, the parenthetical expression
on the right-hand side of (39),

(40)

can be interpreted as the empirical probability distribu-
tion for the formation of a transparent homogeneous
structure of ice. Indeed, we see that, at hb = 0, P = 1—
that is, the formation of a transparent homogeneous
structure of ice is expected here with the probability of
P = 1. For hb  ∞, we have P = 0; that is, the proba-
bility for the formation of a transparent homogeneous
structure of ice is zero, which is equivalent to the prob-
ability Q = 1 – P of unity for the formation of a matt
inhomogeneous structure of ice. From the above inter-
pretation, it follows that one can introduce the critical
equilibrium-film-thickness value hb.c at which the for-
mation of a transparent homogeneous structure of ice is
expected with a 90% probability, P = 0.9. From (40),
we obtain

(41)

In other words, the meaning of hb.c is as follows:
according to (27), one can expect h0 > hb.c with a prob-
ability of 90%. This will lead to the formation of a
transparent homogeneous structure of ice. In the statis-
tical interpretation, the layered structure of ice does not
depend on the motion of the film. The equilibrium film
thickness hb can be considered as a criterion that speci-
fies the transition from one structure of ice to the other.
It should be noted in addition that, according to [7, 10],
there is no clear-cut boundary between the laminar and
the turbulent motion of the film. In the region of the
critical Reynolds number, there is intermittency, in
which case a laminar mode gives way to a turbulent
mode, and vice versa. The intermittency phenomenon
is quantitatively characterized by the parameter γ that
determines the fraction of time within which the motion
in question is of a turbulent character. From this point
of view, the critical film thickness determining the tran-
sition from laminar to turbulent motion should be inter-
preted as a statistical property. For h > hb, the motion
can be either laminar or turbulent. In the case of a lam-
inar motion, the film thickness grows (h > hc) up to
some value at which drops are stripped off the film sur-
face. But in the case of a turbulent motion, the film
thickness tends to the constant value he, in which case
an arbitrary great water content can be absorbed.

Thus, only within the statistical approach is it possi-
ble to explain satisfactorily the role of the critical equi-
librium film thickness hb.c [see also Eq. (39)]. The phe-
nomenological approach alone discloses the role of the
parameter hb—it is impossible to assess hb.c within this
approach.

P 1 0.32/hb–( ),exp–=

hb.c
0.32

10ln
----------- 1.3 10 3–  m( ).×≈=
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6. CONCLUSIONS
For a film to be preserved at the plate surface

steadily, the film thickness must be larger than the crit-
ical equilibrium thickness hb.c, in which case a transpar-
ent homogeneous structure of ice is formed. Otherwise,
the film at the plate surface proves to be unstable and
disappears with time. This leads to the formation of a
matt inhomogeneous structure of ice.

In just the same way as was done in the present arti-
cle above for a plate and in [6] for the formation of a
layered structure of ice at the surface of a sphere
(growth of hailstones), one can construct a theory that
would describe the formation of a layered structure of
ice at the surface of a cylinder (icing of wires). For this,
it is necessary to take into account the corresponding
expression for the drag resistance cf [10], the corre-
sponding shape coefficient (kf = 2 for a cylinder), and
the corresponding Nusselt and Sherwood numbers
[7, 10] (Nu and Sh, respectively). As to the mechanism
responsible for the formation of a layered structure of
ice, it is identical for a plate, a sphere, and a cylinder.

Thus, Kachurin’s theory [1] has been extended in
this study with allowance for heat and mass transfer at
the film surface. Also, the ways for consistently apply-
ing it to surfaces of various shapes have been indicated.
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Abstract—The possibility of initiating detonation of CH4 + air in a supersonic flow behind an oblique shock
wave under the exposure of the mixture to laser radiation with wavelengths λI = 1.268 µm and 762 nm is ana-

lyzed. It is shown that this irradiation leads to excitation of O2 molecules to the a1∆g and b  states, which
intensifies the chain mechanism of combustion of CH4/O2 (air) mixtures. Even for a small value of the laser
radiation energy absorbed by an O2 molecule (~0.05–0.1 eV), detonation mode of combustion in a poorly
inflammable mixture such as CH4/air can be realized at a distance of only 1 m from the primary shock wave
front for relatively small values of temperature (~1100 K) behind the front under atmospheric pressure. © 2004
MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Considerable attention in recent years toward analy-
sis of detonation burning of various mixtures [1–6] is
not only due to the possibility of studying the kinetics
of combustion in “purely” gasdynamic conditions, but
also due to prospects of designing hypersonic oblique
detonation wave engines and pulse detonation engines
[7–9]. The key problem in realization of detonation
mode of combustion in a hypersonic flow is the reduc-
tion of the length of the induction zone, which is too
large (>25 m) even for hydrogen–air mixtures at tem-
peratures T1 < 850 K behind the shock wave front.

It was shown earlier that preliminary excitation of
H2 and N2 molecular vibrations [10] or O2 molecules to
the a1∆g electronic state [11] makes it possible to ini-
tiate a detonation wave in a supersonic flow of an H2/O2
mixture at a distance of ~1 m from the primary shock
wave front even at moderate temperatures T1 = 600 K
behind the front. This is due to intensification of the
chain combustion mechanism. Since molecular oxygen
is an active oxidizer not only for H2, but also for various
hydrocarbons (including methane), it would be inter-
esting to determine how the excitation of O2 molecules

to the a1∆g or b  state affects the length of the induc-
tion zone during the combustion in the supersonic flow
of CH4/O2 (air) mixtures, induced by an oblique shock
wave.

One of the method for obtaining excited O2(a1∆g)

and O2(b ) molecules is the exposure of the reactive
mixture to laser radiation with a wavelength of λI =

Σ1 +
g

Σ1 +
g
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1.268 µm and 762 nm, respectively. In our recent pub-
lication [12], it was shown that the action of laser radi-
ation with λI = 762 nm on a supersonic flow of the sto-
ichiometric mixture H2 + O2 in front of an oblique
shock wave makes it possible to realize the combustion
at distances shorter than 1 m from the wavefront even
for small values of laser radiation energy flux (~1 J/cm2).
It should be noted that earlier [13], it was proposed that
detonation should be initiated in a supersonic flow due
to thermal action of laser radiation. However, the effi-
ciency of this method is low (see below).

This study is devoted to analysis of the kinetic
mechanisms leading to initiation of combustion in a
supersonic flow of a CH4/O2 (air) mixture by exciting
O2 molecules by radiation with λI = 1.268 µm and
762 nm.

MAIN ASSUMPTIONS AND FORMULATION 
OF THE PROBLEM

Let us consider schematically a flow with a station-
ary shock wave (Fig. 1). Here, a homogeneous mixture
of CH4 + air flowing at supersonic velocity is subjected
to the action of radiation of constant intensity I0 over an
interval δ in front of the shock wave. The radiation fre-
quency νI is in resonance with the frequency of the
bound–bound electron transition m(e', v ', j', K') 

n(e'', v '', j'', K'') in the O2 molecule, where e' = X ,

e'' = a1∆g or b , v ' and v '' are the vibrational and j',
K' and j", K" the rotational quantum numbers in states
e' and e", respectively. The angle of inclination of the

Σ3 –
g

Σ1 +
g
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wavefront to the velocity vector u0 of the unperturbed
flow is β ≤ 30°. In this case, the velocity of the gas
behind the front remains supersonic.

We will treat the electron-excited molecules

O2(a1∆g) and O2(b ) as individual chemical species
with the corresponding enthalpy of formation and
assume that the vibrational, rotational, and translational
degrees of freedom of molecules in the mixture are in
thermodynamic equilibrium, which is not violated in
the case of radiation-induced transitions and chemical
reactions. We assume that the gas is inviscid and non-
heat conducting. Suppose that δ ! Lν, where Lν is the
absorption length for laser radiation. Under these
assumptions, we can write the system of equations
describing the physicochemical processes in the radia-
tion zone and behind the shock wave front in the form

(1)

(2)

Σ1 +
g

u
dNi

dx
--------- QIi Qci Qsi,+ +=

u
du
dx
------ 1

ρ
---dP

dx
-------+ 0,=

dH
dx
------- u

du
dx
------+

kνI0

ρu
---------,=

H
h0i

µ
------γi CpT ,+

i 1=

M

∑=

Cp
R
µ
--- 5

2
--- CR

i γi Cv
i γi

i 1=

S

∑+
i 1=

S

∑+
 
 
 

,=

µ µiγi, P
i 1=

M

∑ ρRT
µ

-----------,= =

Cv
i θij

T
----- 

 
2 θij/T( )exp

θij/T( )exp 1–[ ] 2
------------------------------------------, γi

j 1=

L

∑ Ni

N
-----,= =

N Ni,
i 1=

M

∑=

Qci Siq, Siq

q 1=

M1

∑ α iq
– α iq

+–( ) Rq
+ Rq

––[ ] ,= =

Rq
+ –( ) k+ –( )q N j

α iq
+ –( )

,
j 1=

nq
+ –( )

∏=

QIi liIWI

gn

gm

-----Nm Nn– 
  , WI σmnI/hν I,= =
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Here, P, ρ, T, and u are the gas pressure, density, tem-
perature, and velocity; Ni is the density of molecules
(atoms) of the ith species (i = 1, 2, 3 correspond to

O2(X ), O2(a1∆g), O2(b ); µi is their molecular
mass; h0i is the enthalpy of formation of the ith compo-
nent at T = 298 K; M is the number of atomic and
molecular components in the mixture; S is the number

of molecular components alone;  = 1 for compo-

nents from linear molecules and  = 1.5 for compo-
nents of nonlinear molecules; θij is the characteristic
vibrational temperature of the jth mode for the ith com-
ponent (j = 1, …, L); M1 is the number of reactions lead-
ing to the formation (disappearance) of the ith compo-

nent;  and  are the stoichiometric coefficients for

the qth reaction;  is the number of components
participating in the direct (+) and inverse (–) reaction;
k+(–)q are the rate constants of these reactions; R is the
gas constant; h is the Plank constant; k is the Boltzmann

σmn = 
λmn

2

4πbD

-------------Amn
2ln

π
--------H x a,( ), Qsi = riq

s Aqj
s N j,

j

∑
q

∑

kν σmn

gn

gm

-----Nm Nn– 
  , Nm N1ϕm,= =

Nn Nlϕn, l 2 or 3,= =

ϕm

gmBv '

kT
-------------

θ1v '/T–( )exp
1 θ1/T–( )exp–
-------------------------------------

E j'

kT
------– 

  ,exp=

ϕn

gnBv ''

kT
-------------

θlv ''/T–( )exp
1 θl/T–( )exp–
------------------------------------

E j''

kT
------– 

  .exp=

Σ3 –
g Σ1 +

g

CR
i

CR
i

α iq
+ α iq

–

nq
+ –( )

1

x

3

4
Lνδ

2
T1, P1, u1

CH4 + O2 + N2

T0, P0, u0

Fig. 1. Schematic diagram of a supersonic flow in which
combustion is initiated by laser radiation: (1) induction
zone, (2) laser radiation, (3) combustion front, (4) shock
wave front.
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constant, liI is the number of quanta lost (acquired) by

the ith component for induced transitions;  is the
same for spontaneous transitions; Nm and Nn are the
numbers of molecules in the lower and upper states of
the absorbing transition m  n; gm and gn are the
degeneracies of these transitions, λmn is the wavelength
corresponding to the center of the spectral line of the

absorbing transition; Amn( ) is the Einstein coeffi-
cient; bD is the Doppler width of the spectral line of the
m  n transition; H(x, a) is the Voigt function; Bv is
the rotational constant of the O2 molecule in state v
(v ' ∈  m, v '' ∈  n); and Ej' and Ej'' are the rotational ener-
gies of the O2 molecule in the m and n states. Their val-
ues were calculated taking into account the splitting of

the j'th level in state X  into three components with
j' = K'+ 1, j' = K', and j' = K' – 1.

In numerical integration of system (1)–(3), the
entire calculated domain splits into two subdomains.
The first subdomain corresponds to the zone of expo-
sure to resonance radiation in front of the oblique shock
wave (its length x0 ≤ δ < x1), while the second corre-
sponds to the reaction zone (x > x1). The boundary con-
ditions for the system of equations (1)–(3) for x = x1 are
the parameters behind the shock wave front (these
parameters will henceforth be marked by index 1),
which can be determined by solving the following sys-
tem of equations [14]:

Here, un is the normal and uτ is the tangential compo-
nent of the flow velocity relative to the front and sub-
script 0 corresponds to parameters in front of the shock
wave. Numerical integration of Eqs. (1)–(3) was carried
out in the same way as in [10–12] using the implicit dif-
ference scheme of the second order approximation.

KINETIC MODEL

It is well known that the description of ignition and
combustion of CH4/O2 (air) mixtures in a wide range of
initial temperatures and pressures requires complex
kinetic schemes [15–17]. We used the scheme proposed
in [17] as the basis for describing the reaction of meth-
ane with air in the bulk; this scheme contained

riq
s

Aqj
s

Σ3 –
g

λn1 λn0
1– , H1 H0–

1
2
---
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ρ0
-----
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P0
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χ0eMn0
2–

P1

P0
----- 1– 

  ρ0

ρ1
----- – 1 

  ,=

λn un/
2χeRT
χe 1+( )µ

-----------------------, Mn un/ χe
R
µ
---T ,= =

χe 1
µ
R
---Cp 1–

 
 
 

1–

, u1+ un1
2 uτ1

2+ .= =
433 reversible reactions involving 58 components.
However, not all of these reactions play a significant
role in initiation of combustion behind the shock wave.
To determine the minimal set of processes ensuring a
correct description of the dynamics of ignition and heat
release in the CH4/air mixture behind an oblique shock

wave in the absence of O2(a1∆g) and O2(b ) mole-
cules, an analysis of possible reduction of the total
kinetic scheme [17] was performed.

It was proved earlier that, for the ignition of stoichi-
ometric and fuel-depleted CH4/O2 mixtures in a closed
adiabatic reactor, it is possible to obtain correct values
of the induction period, τin, and the final gas tempera-
ture, Tc, by using a reduced (relative to the complete
scheme [17]) model including 211 reversible reactions
involving 35 components (COx (x = 1, 2), HOx, H2Ox,
Hx, Oy (y = 1, 2, 3), Cx, CHq (q = 1, …, 4), C2Hz (z =
1, …, 6), CHqOx, and C2HqOx). In the presence of N2
molecules in the initial mixture (CH4/air), these reac-
tions should be supplemented with those involving N,
N2, NO, and NO2 (reactions 271–293 from [17]). The
inclusion of processes with other N-containing species
does not lead to a noticeable change in τin and Tc. For
this reason, the given scheme (scheme 1) was treated as
basic. In addition, we considered a scheme from which
reactions with participation of C2, CH2CO, CH3CO,
C2HO, CH3CHO, and CH3O2CH3 were excluded (as
compared to scheme 1), as well as scheme 3, consisting
of 154 reactions with 29 components (excluding addi-
tional reactions with the participation of CH2OH,
CH3OH, CH3O2, and CH3O2H). The results of calculat-
ing the induction zone length Lin and combustion zone
Lc (the quantity Lin was defined as the distance from the
front on which the maximal value of gradient dT/dx is
attained and Lc was defined as the distance at which T =
0.99Tc), the values of Tc, Pc, and Mc at the end of the
reaction zone for the stoichiometric CH4/air mixture
(CH4/O2/N2 = 0.5/1/3.76) with P0 = 104 Pa and T0 =
300 K for various values of M0 and the angle of front
inclination β = 30° proved that reduced scheme 2 pro-
vides a satisfactory accuracy in Lin, Lc, Tc, Mc, and Pc in
the range of variation of the initial flow parameters
under investigation (P0 = 102–105 Pa, T0 = 300 K, and
M0 = 6–10).

This scheme was supplemented with reactions

involving O2(a1∆g) and O2(b ) molecules. All these
reactions are compiled in the table. Since the reaction
with the participation of electron-excited O2 molecules
occur with an energy barrier lower than in reactions

with O2(X ) [12, 18], we supplemented the scheme

with the reactions of N2 with O2(a1∆g) and O2(b ) as
well as those with the participation of these molecules
and N2O, in which chemically active O atoms and O3
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Reactions with participation of excited molecules O2(a1∆g) and O2  included in the kinetic scheme for calculating the
combustion of methane in air

No. Reaction No. Reaction

1 O2(a1∆g) + M = 2O + M 28 O3 + HO2 = OH + O2  + O2

2 O2  + M = 2O + M 29 O3 + O2(a1∆g) = 2O2  + O

3 O2(a1∆g) + H = OH + O 30 O3 + O2  = 2O2  + O

4 O2  + H = OH + O 31 2O2(a1∆g) = O2  + O2

5 H2 + O2(a1∆g) = 2OH 32 CH2O + O2(a1∆g) = HO2 + HCO

6 H2 + O2  = 2OH 33 CH2O + O2  = HO2 + HCO

7 HO2 + M = O2(a1∆g) + H + M 34 HO2 + CO = HCO + O2(a1∆g)

8 HO2 + M = O2  + H + M 35 HO2 + CO = HCO + O2

9 H2 + O2(a1∆g) = H + HO2 36 CH4 + O2(a1∆g) = CH3 + HO2

10 H2 + O2  = H + HO2 37 CH4 + O2  = CH3 + HO2

11 H2O + O2(a1∆g) = OH + HO2 38 CH3 + O2(a1∆g) = CH3O + O

12 H2O + O2  = OH + HO2 39 CH3 + O2  = CH3O + O

13 OH + O2(a1∆g) = O + HO2 40 CH3O + O2(a1∆g) = CH2O + HO2

14 OH + O2  = O + HO2 41 CH3O + O2  = CH2O + HO2

15 2HO2 = H2O2 + O2(a1∆g) 42 CH3 + O2(a1∆g) = CH2O + OH

16 2HO2 = H2O2 + O2 43 CH3 + O2  = CH2O + OH

17 H2O + O2(a1∆g) = H2O2 + O 44 CO + O2(a1∆g) = CO2 + O

18 H2O + O2  = H2O2 + O 45 CO + O2  = CO2 + O

19 O3 + M = O2(a1∆g) + O + M 46 CH + O2(a1∆g) = CO + OH

20 O3 + M = O2  + O + M 47 CH + O2  = CO + OH

21 O3 + H = OH + O2(a1∆g) 48 HCO + O = CH + O2(a1∆g)

22 O3 + H = OH + O2 49 HCO + O = CH + O2

23 O3 + O = O2  + O2(a1∆g) 50 CH2OH + O2(a1∆g) = CH2O + HO2

24 O3 + O = O2  + O2 51 CH2OH + O2  = CH2O + HO2

25 O3 + OH = HO2 + O2(a1∆g) 52 CH3O2 + OH = CH3OH + O2(a1∆g)

26 O3 + OH = HO2 + O2 53 CH3O2 + OH = CH3OH + O2

27 O3 + HO2 = OH + O2  + O2(a1∆g) 54 CH3O2 + CH3O2 = CH3OH + CH2O + O2(a1∆g)

b1Σg
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+( ) X3Σg

–( )
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Table.  (Contd.)

No. Reaction No. Reaction

55
CH3O2 + CH3O2 = CH3OH + CH2O + 

O2
74 C2H2 + O2(a1∆g) = C2H + HO2

56 CH3 + O2(a1∆g) = CH3O2 75 C2H2 + O2  = C2H + HO2

57 CH3 + O2  = CH3O2 76 C2H + O2(a1∆g) = CO + HCO

58 CH3O2 + O = CH3O + O2(a1∆g) 77 C2H + O2  = CO + HCO

59 CH3O2 + O = CH3O + O2 78 N + O2(a1∆g) = O + NO

60 CH3O2 + HO2 = CH3O2H + O2(a1∆g) 79 N + O2  = O + NO

61 CH3O2 + HO2 = CH3O2H + O2 80 NO + O2(a1∆g) = O + NO2

62 CH3O2 + CH3O2 = CH3O + CH3O + O2(a1∆g) 81 NO + O2  =O + NO2

63
CH3O2 + CH3O2 = CH3O + CH3O + 

O2
82 NO + NO + O2(a1∆g) = NO2 + NO2

64 C2H6 + O2(a1∆g) = C2H5 + HO2 83 NO + NO + O2  = NO2 + NO2

65 C2H6 + O2  = C2H5 + HO2 84 O3 + NO = NO2 + O2(a1∆g)

66 C2H5 + O2(a1∆g) = C2H4 + HO2 85 O3 + NO = NO2 + O2

67 C2H5 + O2  = C2H4 + HO2 86 N2 + O2(a1∆g) = N2O + O

68 C2H4 + O2(a1∆g) = C2H3 + HO2 87 N2 + O2  = N2O + O

69 C2H4 + O2  = C2H3 + HO2 88 O3 + N2 = N2O + O2(a1∆g)

70 C2H3 + O2(a1∆g) = C2H2 + HO2 89 O3 + N2 = N2O + O2

71 C2H3 + O2  = C2H2 + HO2 90 O2(a1∆g) + M = O2  + M

72 C2H2 + O2(a1∆g) = HCO + HCO 91 O2  + M = O2(a1∆g) + M

73 C2H2 + O2  = HCO + HCO

b1Σg
+( )

b1Σg
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b1Σg
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+( )

b1Σg
+( )

b1Σg
+( )

b1Σg
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b1Σg
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b1Σg
+( )

b1Σg
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b1Σg
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+( ) X3Σg

–( )

b1Σg
+( )

b1Σg
+( )
molecules are formed (in the presence of unexcited O2

molecules, the rate of formation of O and O3 in these
reactions is low and does not affects the ignition pro-
cess). In addition to chemical reactions with excited O2

molecules, the model also included deexcitation pro-

cesses for a1∆g and b  states. The rate constants of
chemical reactions with the participation of O2(a1∆g)

and O2(b ) molecules were determined using the
technique described in detail in [12], where the temper-
ature dependences k+(–)q(T) are presented for reactions

in the system H2–O2–O2(a1∆g)–O2(b ). In particular,

Σ1 +
g

Σ1 +
g

Σ1 +
g

for the endothermic reactions nos. 32–47, 50, 51, 64–
83, and 86, 87, the activation energy of the processes
involving electronically excited O2 molecules was
determined by the formula

where ∆H is the thermal effect of the reaction,  is the
activation energy of the reaction with nonexcited mole-
cules, and Ee is the energy of an electronically excited
molecule.

Ea
e  =  

1
2
--- ∆H Ee+( )2 4Ea

0 ∆H Ea
0+( )+ ∆H Ee+( )–( ),

Ea
0
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The reaction rate constant itself was calculated from
the known relation

Here, Aq is the coefficient in the Arrhenius dependence
of the rate constant of a reaction with the participation
of a nonexcited molecule and nq is a power coefficient.

As in [12], for barrierless reactions in which an O2

molecule appears in the states X , a1∆g, and b
(reactions nos. 52–55, 58–61, 84, 85, 88, and 89), we
assumed that the probabilities of formation of

O2(X ), O2(a1∆g), and O2(b ) are proportional to
the degeneracy of these states: qX = 0.5, qa = 0.33, and
qb = 0.17. The rate constants to overall processes were
borrowed from [17]. Calculating the rate constants of
direct reactions 48, 49, 62, and 63, we increased the
energy barrier by the energy of the corresponding elec-

tron state (  =  + Ee).

The rate constants of deexcitation (electron-transla-

tional E–T relaxation) of states a1∆g and b  of the O2

molecule (reactions nos. 90 and 91) were taken from
[12] for M = O, O3, O2, H2, H2O, HO2, and H2O2 and
from [18, 19] for M = CO2, CO, and N2. For M = H, C,
and N, we assumed that deexcitation occurs with the
same probability as for M = O; for M = CHq, C2Hq,
CHqO, CH3O2, and CH3O2H the same as for M = H2O;
for M = NO, NO2, and N2O, the same as for M = N2.
The rate constants of reactions occurring in the inverse
direction were calculated on the basis of the principle of
detailed balancing.

INITIATION OF COMBUSTION OF A CH4/O2 
(AIR) MIXTURE IN A SUPERSONIC FLOW 

UNDER THE ACTION OF RADIATION

We will carry out specific analysis for a stoichiomet-
ric CH4/air mixture (CH4/O2/N2 = 0.5/1/3.76) for the
case of radiation absorption in transitions with v ' = v" =
0, j'= 9, j" = K' = K" = 8 (for such rotational quantum
numbers, at T0 = 300 K, the absorption coefficient for

both transitions under investigation, X   a1∆g and

X   b , has the maximal value). The wave-
lengths corresponding to the centers of the lines for
these transitions are 1.268 µm and 762 nm, while the
Einstein coefficients are 2.58 × 10–4 s–1 and 8.5 ×
10−2 s−1, respectively. Calculating the Voigt functions
H(x, a), we assumed, following [12], that the coeffi-
cients of collision broadening of the spectral absorption
line are proportional to the gas kinetic cross sections of
the collision of an O2 molecule with the Mth partner (in
the reaction region, M = CH4, O2, N2).

kq T( ) AqT
nq Eaq

e /T–( ).exp=

Σ3 –
g Σ1 +

g

Σ3 –
g Σ1 +

g

Ea
e Ea

0
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g

Σ3 –
g Σ1 +

g
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At low temperatures of the gas in front of the shock
wave (T0 = 300 K), the chemical reaction rates in the
irradiation zone are substantially lower than the rate of
induced transitions and the E–T relaxation rate for

states a1∆g and b . In this case, the concentration of

molecules O2(a1∆g) and O2(b ) in the irradiation
zone is determined by the relation between the induced

transition time τI = , the E–T relaxation time, and
the time of pulse duration τp = δ/u0. For the flow param-
eters under consideration (P0 = 102–104 Pa and T0 =

300 K), the absorption zone length Lν =  amounts to
2 × 104–600 m for radiation with λI = 1.268 µm and
320–10 m for radiation with λI = 762 nm. For this rea-
son, we always have δ ! Lν and the irradiation of the
gas in front of the shock wave can be performed by
multiple transverse scanning by a laser beam with a
radius of 0.2–1 cm to attain the required value of the
radiant energy absorbed by the gas.

As the gas passes through the front of the shock
wave, its temperature and pressure increase, leading to
an increase in the rate of chemical reactions and to the
ignition of the mixture at a certain distance from the

front. The presence of O2(a1∆g) and O2(b ) mole-
cules in the mixture sharply accelerates this process.
This is illustrated in Fig. 2, showing the variation of the
mole fraction (γi) of the main components responsible
for the development of the chain mechanism of ignition
of the CH4/air mixture in the irradiation zone as well as
behind the shock wave front (Fig. 2a) in the absence of
radiation and (Figs. 2b, 2c) under the action of radiation
with λI = 1.268 µm and 762 nm, respectively, over the
length δ = 50 cm for I0 = 10 kW/cm2, M0 = 8, and β =
30°. It can be seen that, even at a moderate temperature
behind the front (T1 = 1102 K), the action of radiation
with λI = 762 nm leads to the ignition of the CH4/air
mixture at a distance of 8.8 m from the front even at a
relatively low gas pressure of P1 = 1.9 × 105 Pa and at a
moderate value of radiation energy density delivered to
the gas, Ein = I0τp = 1.76 J/cm2 (in the absence of irradi-
ation, Lin = 230 m; i.e., the ignition of the CH4/air mix-
ture does not take place under the given conditions).
Under the action of radiation with λI = 1.268 µm, the
induction zone length Lin is substantially larger and
amounts to 170 m. Such a difference can be explained
by the fact that the radiation energy Es = kνI0τp/N1

absorbed by an O2 molecule with the excited state a1∆g

is much lower (Es = 1 × 10–4 eV/molecule) than the

energy absorbed with the excitation of b  (Es = 3.8 ×
10–2 eV/molecule).

It will be shown below that, for the same value of Es,
the value of Lin in the case of radiation with λI =
1.268 µm is even slightly smaller than for radiation
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g

Σ1 +
g

WI
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kν
1–

Σ1 +
g

Σ1 +
g
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with λI = 762 nm. This is due to the fact that the rate of

relaxation of excited O2(b ) molecules via channel
no. 91 (here and below, the numeration of reactions cor-
responds to that in the table) with the formation of
O2(a1∆g) is much higher than the rate of relaxation of
O2(a1∆g) molecules to the ground electron state (reac-

Σ1 +
g
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Fig. 2. Variation of concentration (mole fraction) of the
components along the flow with M0 = 8 and β = 30° in the

mixture CH4/O2/N2 = 0.5/1/3.76 with P0 = 104 Pa and T0 =
300 K (a) in the absence of irradiation and (b, c) under the
action of radiation with λI = 1.268 µm and 762 nm, respec-

tively, for I0 = 10 kW/cm2 and δ = 50 cm. The vertical
dashed line corresponds to the position of the shock wave
front.
tion no. 90). As a result, the excitation of O2 molecules

to the b  state leads to an increase in the temperature
at the end of the irradiation zone. The temperature
behind the front also increases. For example, for I0 = 0,
the temperature is 1093 K, while for I0 = 10 and
20 kW/cm2, T1 = 1102 and 1110 K, respectively. At the
same time, for the same values of I0, the value of T1 in
the case of excitation of state a1∆g by radiation with
λI = 1.268 µm does not exceed 1093 K.

The same situation is typical of a CH4/O2 mixture.
However, the final temperature of the combustion prod-
ucts in this case is higher than in the CH4/air mixture
due to the fact that the absolute amount of methane in
the stoichiometric mixture CH4/O2 = 0.5/1 is substan-
tially larger than in the CH4/air mixture (CH4/O2/N2 =
0.5/1/3.76). On account of the larger concentration of
O2 molecules, the concentration of O2(a1∆g) and

O2(b ) molecules in the irradiation zone of the
CH4/O2 mixture is higher than in the CH4/air mixture
with the same values of Ein and Es. Consequently, in
spite of the fact that the value of Lin in the absence of
irradiation (Ein = 0) is virtually the same for the CH4/O2
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Fig. 3. Variation of the gas temperature in the irradiation
zone behind the shock wave front (M0 = 8, β = 30°) under
the action radiation with λI = 1.268 µm (dotted curves) and

762 nm (solid curves) with I0 = 0, 10, and 20 kW/cm2 (1–
3), δ = 50 cm on the CH4/O2 = 0.5/1 (a) and CH4/O2/N2 =

0.5/1/3.76 (b) mixtures at T0 = 300 K, P0 = 104 Pa.
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and CH4/air mixtures for the given parameters in the
case of irradiation at λI = 1.268 µm, as well as at λI =
762 nm, the contraction of the induction zone in the
CH4/O2 mixture is noticeably stronger than in the
CH4/air mixture, although the values of T1 for the
CH4/O2 mixture are even slightly lower (in the CH4/O2
mixture, T1 = 993 and 1014 K for I0 = 10 and
20 kW/cm2, respectively). This is illustrated in Fig. 3
where the temperature variation in the irradiation zone
(δ = 0.5 m) and behind the shock wave front (β = 30°)
is shown (Fig. 3a) for the mixture CH4/O2 = 0.5/1 and
(Fig. 3b) for the mixture CH4/O2/N2 = 0.5/1/3.76 with
T0 = 300 K, P0 = 104 Pa, and M0 = 8 under the action of
radiation with λI = 1.268 µm and 762 nm for I0 = 10 and
20 kW/cm2 (Ein ≈ 2 and 4 J/cm2). It can be seen that the
values of Ein required for the ignition of the CH4/air
mixture at admissible distances from the front (~1–3 m)
are considerably higher (by a factor of 2–3) than for the
CH4/O2 mixture. It is important to note that the excita-

tion of O2 molecules to the states a1∆g and b  does
not lead to an increase in concentration of nitrogen
oxides (NO and NO2) in the combustion products.

The main reason for the contraction of the induction
zone is naturally not the increase in T1 under the action
of radiation, but the intensification of the chain mecha-
nism of combustion of the CH4/O2 mixture. It should be
recalled that the main reaction of initiation of the chain
at low temperatures (T < 1300 K) in CH4/O2 (air) mix-
tures is the interaction of CH4 with O2, during which an
active radical CH3 and hydrogen dioxide are formed.
These compounds also interact with O2 in the reactions

CH3 + O2(X ) = CH2O + OH, CH3 + O2(X ) =

CH3O + O and HO2 + O2(X ) = O3 + OH. The reac-
tion products are chemically active radicals CH2O and
OH, as well as O atoms and O3 (which gives atomic
oxygen after dissociation). Oxygen atoms and OH rad-
icals interact with CH4, again forming CH3 and OH
(CH4 + O = CH3 + OH, CH4 + OH = CH3 + H2O). How-
ever, for T < 1100 K, CH3 radicals intensely recombine,
forming passive compounds C2H6 and CH3O2 (2CH3 +
M = C2H6 + M; CH3 + O2 + M = CH3O2 + M). These
reactions occur with energy release and lead to an
increase in T. The rates of these reactions decrease and
the concentration of CH3 in the mixture increases. The

rate of the reaction CH3 + O2(X ) = CH3O + O in
which active O atoms are formed also increases. The
decomposition of CH3O radicals leads to the formation
of CH2O and H; i.e., this is a chain branching reaction.
Hydrogen atoms reacting with O2 yield O and OH (H +

O2(X ) = OH + O). The high concentration of active
centers O, H, OH, and CH3, as well as the formation of
C2H5 radicals as a result of decomposition of passive
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radical C2H6, leads to the ignition of the mixture. How-
ever, in the absence of irradiation at T ≈ 1000 K, all
these processes occur at a very low rate and, hence, the
length of the induction zone exceeds 200 m for M0 = 8,
β = 30°, and P0 = 104 Pa.

For excitation of O2 molecules by radiation with
λI = 1.268 µm as well as with λI = 762 nm, the scheme
of the processes of formation of active atoms and radi-
cals remains basically the same. However, the rates of
all processes with the participation of O2(a1∆g) and

O2(b ) molecules increase by three to four orders of
magnitude. This primarily refers to the chain initiation
and continuation reactions involving O2(a1∆g) and

O2(b ) molecules. Since the concentrations of all
active radicals increase, the rates of even those reac-
tions in which excited O2 molecules are not involved
directly also become higher. The contraction of the
induction zone in this case is determined by the concen-

tration of O2(a1∆g) and O2(b ) molecules at the end
of the irradiation zone (and, hence, on the value of Ein).
The extent of this contraction also depends on the
parameters P0 and T0 of the mixture in front of the
shock wave; along with the value of Ein, these parame-
ters determine the value of radiant energy Es absorbed
by an O2 molecule. Figure 4 shows the dependence of
Lin on P0 for M0 = 8, β = 30°, and T0 = 300 K for various
values of Es under the action of radiation with λI =
1.268 µm and 762 nm. As expected, for the same value
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Fig. 4. Dependence of the induction zone length Lin on the
initial pressure of the stoichiometric CH4/air mixture for
T0 = 300 K, M0 = 8, and β = 30° upon the excitation of O2
molecules by radiation with λI = 1.268 µm (solid curves)
and 762 nm (dotted curves) for various values of the energy
absorbed by an O2 molecule: Es = 0.01, 0.05, 0.1 eV/mole-
cule (1–3). The dashed curve describes the dependence
Lin(P0) in the absence of irradiation.
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of Es, the contraction of the induction zone in the case
of radiation with λI = 1.268 µm is stronger than for radi-
ation with λI = 762 nm. Since the absorption length for
radiation with λI = 1.268 µm is much larger than for
radiation with λI = 762 nm (the values of Lν are equal to
6 × 104 and 610 cm, respectively, for T0 = 300 K and
P0 = 104 Pa), a larger number of passes of a laser beam
across the flow is required for radiation with λI =
1.268 µm to attain the same value of Es. It is important
for practical applications that, even for a high pressure
of the gas mixture (P0 = 105 Pa), the length Lin is
reduced by a factor of 28 for a low value of the energy
Es = 0.05 eV/molecule absorbed by a single O2 mole-
cule (for M0 = 8 and δ = 0.5 m, this value of Es corre-
sponds to the laser radiation flux Ein = 38 J/cm2 for radi-
ation with λI = 762 nm), while the value of Lin itself for
radiation with λI = 762 nm is equal to 0.6 m.

The method based on the excitation of O2 molecules

to the state a1∆g or b  by laser radiation is much
more effective for initiating combustion and detonation
in a supersonic flow than the method considered in
[13, 19, 20], which is based on simple heating of the
medium by laser radiation. Figure 5 shows the depen-
dence Lin(M0) for various values of Es under the action
of radiation with λI = 1.268 µm on a CH4/air mixture,
in which O2 molecules are excited to the state a1∆g and
the entire absorbed energy is spent on heating of the
gas. It can be seen that, in the entire range of variation
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Fig. 5. Dependence of the induction length Lin on the Mach
number for an unperturbed flow of the stoichiometric
CH4/air mixture with T0 = 300 K, P0 = 104 Pa, and β = 30°
in the case of excitation of O2 molecules to the state a1∆g by
radiation with λI = 1.268 µm (solid curves) and in the case
when the entire absorbed energy is spent on gas heating
(dotted curves) for Es = 0.01, 0.05, and 0.1 eV/molecule (1–
3). The dot-and-dash curve corresponds to the absence of
irradiation (Es = 0).
of M0, the value of Lin in the case of excitation of O2
molecules is one to two orders of magnitude smaller
than in the case of purely thermal action of laser radia-
tion even for a small value of Es = 0.05 eV/molecule. To
attain the same value of the length of the induction zone
as in the case of excitation of O2 molecules for Es =
0.1 eV/molecule at M0 = 7, 8 and P0 = 104 Pa (Lin =
1 m), the energy that must be supplied to the gas under
purely thermal action must be ~10 eV/molecule.

CONCLUSIONS

The action of laser radiation with a wavelength of
λI = 1.268 µm or 762 nm on a supersonic flow makes it
possible to initiate detonation mode of combustion in a
CH4/air mixture behind the front of relatively weak
shock waves, when the gas temperature behind the
front does not exceed 1100 K even for a low value of
the absorbed energy (Es = 0.05–0.1 eV/molecule). This
is due to intensification of formation of active atoms O
and H and radicals OH, CH3, and CH2O, which are car-
riers of the chain mechanism of combustion of meth-
ane–oxygen mixtures, due to the formation of O2(a1∆g)

and O2(b ) excited molecules in the irradiation zone.
In CH4/air mixtures even at high values of pressure in
front of the shock wave (P0 = 105 Pa), the induction
zone in the case of excitation of O2 molecules to the

states a1∆g and to the b  contracts by a factor of 25–
30 for a low value of the absorbed energy (Es =
0.05 eV/molecule) as compared to the case without
irradiation. This makes it possible to realize detonation
combustion in a supersonic flow at small distances
(<1 m) from the irradiation zone in the CH4/air mixture
under the atmospheric pressure and at moderate values
of temperature behind the shock wave (T1 ≤ 1100 K).
This method for initiating combustion in the supersonic
flow is much more effective (by hundreds of time) than
the thermal heating of the medium by resonant laser
radiation.
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Abstract—Nonlinear calculations to within the second order of smallness with respect to the initial deforma-
tion of a liquid drop show that a stream of an ideal incompressible dielectric liquid streamlining the charged
ideally conducting drop causes interaction between modes both in the first and second orders of smallness. Both
the linear and nonlinear interactions of the oscillation modes result in the excitation of modes absent in the spec-
trum of the initial drop deformation. The relative motion of the drop and the medium leads to broadening of the
spectrum of modes excited in the second order of smallness. The presence of the flow streamlining the drop and
the intermode interaction result in decreasing the critical magnitudes of the drop charge and the velocity and
density of the medium determining drop instability development. © 2004 MAIK “Nauka/Interperiodica”.
1. Charged drops moving relative to external media
are encountered in various problems of technical phys-
ics and technology [1, 2]. In particular, this system is of
interest in connection with investigations of the physi-
cal mechanism of lighting initiation [3, 4]. According to
existing qualitative concepts, initiation of streak light-
ing is associated with ignition of a corona discharge in
the vicinity of a large drop or water-bearing hailstone
(accompanied by development of instability of the
charged drop surface). However, such concepts have
not found any substantiation in natural measurements
in storm clouds, where maximum measured drop
charges and internal electric fields [5] are much smaller
than the necessary values predicted for the development
of instability of the drop surface with respect to the ini-
tial and induced charges [6]. Apparently, in construct-
ing the physical model of lighting initiation, a certain
important factor (for example, the aerodynamic pres-
sure in the vicinity of a falling drop) is omitted, which
can account for reduction of the critical conditions of
development of instability of a charged surface [7–9].

There are many papers devoted to analysis of the
mechanism of disintegration of drops free falling
through the atmosphere (see, for example, review [2]
and references therein) that are mainly of experimental
character. The rigorous analytical solution of the prob-
lem of oscillations and stability of a charged drop mov-
ing relative to the medium was found only in the linear
approximation with respect to the magnitude of defor-
mation of a spherical drop [7–9].

Analytical investigations of the nonlinear oscilla-
tions and stability of charged drops in a dielectric
medium have been performed only for a drop immobile
relative to the medium [10–12]. Attempts at nonlinear
analysis of the stability of the surface of a charged drop
1063-7842/04/4909- $26.00 © 21126
moving relative to the medium are lacking so far. The
present study attempts to fill this gap.

2. Let an ideal incompressible dielectric medium
with a density ρ2 and permittivity ε∗  occupying infinite
volume move at a constant velocity U0 relative to an
immobile drop of an ideal incompressible ideally con-
ducting liquid with a radius R. Denote the surface ten-
sion coefficient of the interface by σ, and the total
charge of the drop by Q. Let us assume that, at the ini-
tial time instant t = 0, the equilibrium spherical shape of
the drop undergoes a virtual axisymmetric perturbation
of a finite amplitude which is significantly smaller than
the drop radius. The perturbation is assumed to be pro-
portional to one of the modes of capillary oscillations in
the system. Our objective is to study nonlinear oscilla-
tions of the drop at t > 0.

To simplify the following calculations we shall
employ dimensionless variables chosen in such a way
that R = σ = ρ1 = 1. Then, in a spherical coordinate sys-
tem with the origin at the center of mass of the drop, the
equation of the interface disturbed by axisymmetric
wave motion will take the form

Liquid motion in the drop and medium is assumed
to be potential. That is, the velocity fields of the wave
motions in the drop V = —ψ(r, t) and in the medium U =
—ϕ(r, t) are defined by the functions of velocity poten-
tials in the drop ψ(r, t) and in the medium ϕ(r, t).

The mathematical statement of the problem of cal-
culation of the nonlinear oscillations of the drop–
medium interface includes:

r 1 ξ θ t,( ), ξ  ! 1.+=
004 MAIK “Nauka/Interperiodica”
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Laplace equations for the velocity potentials ψ(r, t)
and ϕ(r, t), and electrostatic potential Φ(r, t)

(1)

and the corresponding boundary conditions at the drop
center

(2)

at infinity

(3)

and at the interface:

(4)

including kinematic condition of equality of the normal
liquid velocity components in the drop and medium

(5)

and dynamic condition of constancy of the electric
potential at the drop surface

(6)

(7)

In these relationships, Pin and Pex are the pressures
inside the drop and in the medium, respectively, PE is
the pressure of the electric field of the drop charge at the
interface, Pσ is the Laplace pressure, n is the unit vector
of a positive normal to the drop surface, ΦS(t) is the
electric potential constant at the drop surface, and
ρ2/ρ1 ≡ ρ.

In addition to the boundary conditions listed above,
it is also necessary to take into account the conditions
of constancy of the drop charge

(8)

and constancy of the drop volume

(9)

∆Φ r t,( ) 0; ∆ψ r t,( ) 0; ∆ϕ r t,( ) 0= = =

r 0: ψ r t,( ) 0;

r ∞: Φ r t,( ) 0; —ϕ r t,( ) U0;

r 1 ξ :
∂ξ
∂t
------+ ∂ψ

∂r
-------

1

r2
----∂ψ

∂θ
-------∂ξ

∂θ
------,–= =

∂ψ
∂r
-------

1

r2
----∂ψ

∂θ
-------∂ξ

∂θ
------– ∂ϕ

∂r
------

1

r2
----∂ϕ

∂θ
------∂ξ

∂θ
------–=

∂ψ
∂t
-------–

1
2
--- —ψ( )2– Pin PE Pσ–+ +

=  ρ∂ϕ
∂t
------–

ρ
2
--- —ϕ( )2– Pex;+

PE
ε* —Φ( )2

8π
----------------------; Pσ divn;= =

Φ r t,( ) ΦS t( ).=

ε*
4π
------ n —Φ⋅( )dS

S

∫°– Q; S

r 1 ξ θ t,( )+=

0 θ π≤ ≤
0 ϑ 2π≤ ≤






= =

r2 r θ θ ϑddsind

V1

∫ 4
3
---π; V1

0 r 1 ξ θ t,( )+≤ ≤
0 θ π≤ ≤
0 ϑ 2π.≥≤






= =
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The condition of immobility of the center of mass of
the system, as shown in [12], for sufficiently large lin-
ear scales of the medium is fulfilled automatically;
therefore, calculation of the amplitude of the transna-
tional (fundamental) mode, as well as higher modes,
should be performed on the basis of hydrodynamic
boundary conditions at the interface.

We formulate the initial conditions assuming axi-
symmetric deformation of a spherical drop and zero ini-
tial velocity of the interface motion at the initial instant:

(10)

(11)

Here ε is the amplitude of the initial perturbation,
which is a small parameter of the problem; Pk(cosθ) is
the Legendre polynomial of the kth order; and ξ0 is a
constant defined by condition (9) which in the second
order of smallness takes the form

(12)

3. To solve problem (1)–(12) in the quadratic
approximation with respect to the oscillation ampli-
tude, we employ a multiscale method. For this purpose,
we represent the unknown functions ξ(θ, t), ψ(r, t), ϕ(r,
t), Φ(r, t) in the form of series in powers of the small
parameter ε and series in Legendre polynomials similar
to those described in [10, 11]. In doing so we assume
that these functions are dependent not on the time t as
such, but on different time scales Tm = εmt

(13)

We shall calculate derivatives with respect to time
keeping in mind the complete set of different scales
according to the rule

Substituting expansions (13) into boundary-value
problem (1)–(9) and equating terms of the same order
of smallness in each of the equations, one can obtain a
set of boundary-value problems for successive determi-

ξ θ t, 0=( ) ξ0P0 θcos( ) εPk θcos( ) k 2≥( );+=

∂ξ θ t, 0=( )
∂t

----------------------------- 0.=

ξ0 θ t 0=,( ) ε2 1
2k 1+( )

--------------------– O ε3( ).+=

ξ θ t,( ) εmξ m( ) θ T0 T1 …, , ,( );
m 1=

∞

∑=

ψ r t,( ) εmψ m( ) r θ T0 T1 …, , , ,( );
m 0=

∞1

∑=

ϕ r t,( ) εmϕ m( ) r θ T0 T1 …, , , ,( );
m 0=

∞

∑=

Φ r t,( ) εmΦ m( ) r θ T0 T1 …, , , ,( ).
m 0=

∞

∑=

∂
∂t
----- ∂

∂T0
--------- ε ∂

∂T1
--------- O ε2( ).++=



1128 KOROMYSLOV et al.
nation of the functions ξ(m), ϕ(m), ψ(m), Φ(m), where m =
0, 1, 2, ….

4. In the zeroth order of smallness, problem (1)–(9)
takes the form

(14)

Solutions (14) describing the equilibrium state of
the system have the form

(15)

5. Due to linearity of equations (1)–(3), each of
functions ϕ(m), ψ(m), and Φ(m) in expansions (13) must
satisfy these equations; therefore, we represent these
functions for m ≥ 1 in the form of series in Legendre
polynomials

(16)

In similar form we shall search for successive cor-
rections ξ(m) to the expression defining the drop surface
shape

(17)

∆Φ 0( ) 0; ∆ϕ 0( ) 0;= =
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 
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rd
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π
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0

2π
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ϕ 0( ) θ( ) U r
1
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ΦS
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ε*r
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ψ m( ) r θ T0 T1 …, , , ,( )

=  En
m( ) T0 T1 …, ,( )rnPn θcos( );
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∑

ϕ m( ) r θ T0 T1 …, , , ,( )

=  Gn
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Φ m( ) r θ T0 T1 …, , , ,( )

=  Fn
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ξ m( ) θ T0 T1 …, , ,( )

=  Mn
m( ) T0 T1 …, ,( )Pn θcos( ).

n 0=

∞

∑

To determine unknown coefficients , , ,

 in solutions (16), (17) (for m = 1) in the first order
of smallness with respect to ε, the set of boundary and
initial conditions (4)–(11) subject to (12) should be
transformed to

(18)

Here, ∆Ω is the angular part of the Laplace operator.
Substituting expansions (16) and (17) (at m = 1) as well
as solutions (15) of the zeroth order of smallness into
set (18) makes it possible to obtain an infinite set of
coupled differential equations defining unknown coef-

ficients (T0, T1), (T0, T1), (T0, T1),

(T0, T1)
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(19)

Set (19) allows one to determine the dependence of
the coefficients of the expansions only on time scale T0.
Their dependences on other time scales are determined
in the next orders of smallness.

It is easy to see that at U = 0; that is, in the case of
an immobile medium, the linear interaction of modes
determined by Eqs. (19) vanishes. The set of coupled
differential equations (19) decomposes into a set of
independent differential equations of the second order
with constant coefficients defining harmonic oscilla-
tions of separate modes (as was obtained earlier
[10, 11] for the oscillations of a charged drop of an
incompressible liquid at rest relative to an ideal incom-
pressible dielectric medium). Thus, the reason for the
emergence of the linear interaction of modes with
respect to the small parameter is the motion of the
medium. According to (19), the nth mode interacts with
four nearest modes, namely, with (n – 2)th, (n – 1)th,
(n + 1)th, and (n + 2)th ones. Previously, the interaction
between modes in the linear approximation with
respect to a small parameter was found in the case of a
plane interface between immiscible ideal incompress-
ible media, one of which performed translational
motion parallel to the interface [13], that is, in a situa-
tion when the interface is capable of featuring the
Kelvin–Helmholtz instability. In [7–9], it was shown
that in a case of a drop streamlined by the ideal liquid,
the drop surface is involved in the oscillatory motion
typical of this instability.

Note also one more effect of the interaction between
a drop and the flow of streamlining ideal liquid, found
in the linear approximation. According to [14, 15] the
drop is flattened along the stream into a spheroid with
an eccentricity depending on the flow velocity and the

+
2
3
---U

n
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n
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drop charge. Possible oscillations of the drop will occur
in the vicinity of the equilibrium spheroidal shape.
However, the degree of sphericity at reasonable veloci-
ties (for which the flow of the medium streamlining the
drop can be assumed to be laminar) is usually very
small. According to [14, 15], the amplitude of the sphe-

roidal deformation is given by expression  =

(3ρ2RU2/16σ), and, for example, in calculations of air
flow around a drop with R = 100 µm when ρ2 ≈
0.001 g/cm for any reasonable flow velocities (until
Re = (RU/ν) ≤ 20, where ν is the kinematic air viscos-
ity) the spheroidal deformation can be neglected in the
second order of smallness.

To complete the problem consideration in the linear
approximation with respect to ε, it is possible to assume

the values of (T0, T1) to be independent of the time

scale T1, that is, to represent them in the form (T0,

T1) ≈ (T0) + O(T1). In doing so, we obtain the fol-
lowing estimate for the surface perturbation:

(20)

This expansion is uniformly applicable at t ≤ O(ε–1).
For t ≥ O(ε–1), the given expansion becomes inapplica-
ble. Thus, expression (20) is valid on a time interval t ≤
O(1), and, in this case, the error is on the order of ~ε2.
However, when studying the tendencies of the surface
motion, one can use expression (20) also on a time
interval t ≤ O(ε–1), provided that the solution of the first
order is comparable with the magnitude of the initial
deformation.

6. In order to determine corrections of the second

order of smallness, that is, to find the functions ,

, , and  from the set of boundary condi-
tions (4)–(12), we keep in (13) the terms of the second
order of smallness in ε and obtain the following equa-
tions
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(21)

Substituting expansions (16), (17) (at m = 2), and
solutions (15) and (19) into (21), we write a set of inho-
mogeneous differential equations for determination of

unknown coefficients , , , and . Elim-

inating all terms proportional to (∂ (T0, T1, …)/∂T1)
that cause emergence of secular terms in the solutions,

we find that amplitudes  of the expansion are inde-
pendent of the time scale T1. Thus, in the following we
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can assume that (T0, T1, …) ≈ (T0) + O(T2).
Based on the above considerations, the set of differen-

tial equations for the coefficients , , , and

 is reduced to the following:
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(22)
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where  and  are the Clebsch–Gordan coef-
ficients.

Consideration of the problem in the quadratic
approximation with respect to ε allows one to deter-

mine the dependence of coefficients (T0, T1) only
on the time scale T0. This makes it possible to write

(T0, T1) ≈ (T0) + O(T1) and obtain the follow-
ing estimate for the surface perturbation:

(23)

Expression (23) is valid on a time interval t ≤ O(1)
to an accuracy of ~ε3. On a time interval O(1) ≤ t ≤ O(ε–1),
the error becomes comparable to the second term (with
correction of the second order of smallness); conse-
quently, in expansion (23) only the first term remains
valid that corresponds to the linear approximation.
Thus, the approximate solution of the linear problem
(20) is applicable (uniformly valid) on a time interval
t ≤ O(ε–1).
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7. Numerical solution of the set of differential equa-

tions (19) for (T0) obtained with the aid of the pro-
gram package Mathematika (restricting the consider-
ation to the first five modes, n = 2, 3, 4, 5, 6) is illus-
trated in Figs. 1 and 2. These dependences show that, at
low velocities U of the medium in the sense of the drop
stability with respect to the intrinsic charge, a notice-
able contribution to the spectrum of the capillary oscil-

Mn
1( )
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1 3

(b)
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(c)

t2

Fig. 1. The dimensionless amplitude coefficients (t) of

modes excited in the first order of smallness as functions of
dimensionless time for the initial drop deformation deter-
mined by the fundamental mode (k = 2) when W = 1 and ρ =
0.1. Thick solid curve refers to the second mode; thin
dashed line, to the third mode; dashed line of medium thick-
ness, to the fourth mode; dot-and-dash line, to the fifth
mode; and thin solid line, to the sixth mode. U = 2 (a), 4 (b),
and 4.5 (c).

Mn
1( )
lations is made only by the initially excited mode (n =
k), and (at k ≠ 2) the fundamental mode (which is
excited automatically due to interaction with the flow as
a result of redistribution of the hydrodynamic pressure
at the drop surface [14, 15]). Note that the velocity val-
ues critical for the development of instability are deter-

mined by condition  = 0

The contribution of the other modes (n ≠ k) deter-
mined by the linear intermode interaction, according to
[19], is small. In this case, the drop surface performs
oscillations, which are close to harmonic and corre-
spond to superposition of the kth (initially excited)
mode and the fundamental mode in the vicinity of the
equilibrium shape. If the velocity of the medium is
close to the critical value for which the drop becomes

unstable (  < 0), then the contribution of the other
modes (excited due to the linear interaction) to the drop
shape becomes more noticeable (as seen from the com-
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Fig. 2. Same as in Fig. 1 for the initial deformation deter-
mined by the third mode (k = 3). U = 2 (a) and 4 (b).
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parison between Figs. 1a, 2a and 1b, 2b. In this case,
modes that are closer in number n to the initially
excited kth mode possess greater oscillation ampli-
tudes, which decrease with increasing n.

Note that, in the dimensionless variables employed,

the velocity is normalized to ; that is, a
dimensionless velocity of U = 1 corresponds to the

dimensional velocity U = . For example, at
U = 1, for a drop with radius R = 100 µm in an air flow,
the dimensional velocity is ≈84 cm/s. The Reynolds
number Re = (UR/ν) for such a drop is ≈5, and air flow
in the vicinity of the drop is laminar.

Figures 1a–1c and 2a, 2b present the results of cal-
culations with the use of Eqs. (19), showing the time
variation of the amplitudes of modes excited in the first
order of smallness due to the intermode interaction
when the initial deformation is determined by a virtual
excitation of the fundamental (k = 2) mode (Fig. 1) and
the third (k = 3) mode (Fig. 2). The calculations were
performed for various values of the velocity U of the
medium.

According to Fig. 1, the oscillation amplitudes of
the modes excited due to the linear interaction grow
with increasing velocity. In Fig. 1c, it is seen that, when
the second mode is initially unstable, some nearest
modes coupled to it by the linear interaction according
to (19) become unstable due to the intermode interac-
tion, in spite of the fact that these modes (at the magni-
tudes of U, W, ρ used in the calculations) must retain
stability in the sense of the linear theory because

 > 0. It should be noted that the velocity used in
the calculations (Fig. 1c) only slightly exceeds the
critical value for which the drop becomes unstable (at
W = 1 and ρ = 0.1, this critical value for the fundamen-
tal mode is Ucr = 4.4). It is interesting to note that, with
further growth of the flow velocity (at U = 5), the mag-
nitude of the instability increment of the third mode
exceeds that of the fundamental mode, and the third
mode starts to play the main part in the development of
instability [7].

From the above analysis, it follows that, under oth-
erwise equal conditions and the initial excitation of a
higher (not fundamental) mode, the critical velocity of
the medium from the standpoint of instability develop-
ment exhibits a decrease. For example, calculations
show that, for the initial excitation of the third mode,
the fundamental mode becomes unstable already at U =
4.05. In other words, the presence of the intermode
interaction results in decreasing magnitudes of param-
eters U, W, and ρ for which the drop becomes unstable.

Figure 2 demonstrates the results of calculating the
amplitude coefficients of modes excited due to the lin-
ear interaction in the case when the initial deformation
is determined by the third mode. From a comparison of
Figs. 2a, 2b, 2c with Figs. 1a, 1b it is seen that the
amplitude of the fundamental mode (determined under

σ/ Rρ1( )( )

σ/ Rρ1( )( )

ωn 2≠
2
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these conditions both by the action of the hydrody-
namic pressure and by the interaction with initially
excited third mode) may be comparable with the ampli-
tude of the initially excited mode (Fig. 2a) and may
even exceed the latter (Fig. 2b).
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Fig. 3. The dimensionless amplitude coefficients (t) of

modes excited due to the nonlinear interaction in the second
order of smallness for the initial drop deformation deter-
mined by the principal mode (k = 2) when W = 1 and ρ =
0.1. The solid curve of a medium thickness refers to the
zeroth mode; thin short, dashed line, to the first mode; the
other lines correspond to the legends in Fig. 2. U = 2 (a), 4
(b), and 4.5 (c).

Mn
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Numerical solution of the set of differential equa-

tions (19) and (22) for the amplitudes (T0) of
modes excited in the second order of approximations
due to the nonlinear interaction (for the modes from
zeroth to sixth) shows that, at low velocities U of the
medium, by analogy with the linear approximation, the
largest amplitudes are observed for the modes that
would be excited for the immobile medium [9–11], that
is, for modes with the numbers n = 2j, where j = 0,
1, …, k. The motion of the medium results in exciting
additional modes in the second order of smallness
whose emergence is associated with the presence of
modes in the spectrum of the first order of smallness,
which are different from the initially excited mode and
appear only due to the linear interaction. The ampli-
tudes of such additionally excited modes are very small
and their contribution to the shape of an oscillating drop
is insignificant.

Figures 3a–3c show the time variation of modes
excited in the second order of smallness due to the non-
linear interaction when the initial deformation is deter-
mined by a virtual perturbation of the fundamental (k =
2) mode. The calculations were performed using
Eqs. (22) for various velocities U of the medium. When
the medium is immobile, only the zeroth, second, and
fourth modes would be excited in the second order of
smallness. The presence of motion of the medium
results in additional excitation of the first, third, fifth,
and sixth modes. Nevertheless, it is seen that the ampli-
tudes of the fundamental and forth modes are maxi-
mum.

In Fig. 3, it is also seen that the amplitudes of the ini-
tially excited modes increase with the velocity of the
medium. Figures 1c and 3c demonstrate that, along
with the linear instability of modes, the modes excited
in the second order of smallness also become unstable,
and the instability of modes that are higher than the fun-
damental one exhibit oscillatory character. It is interest-
ing to note that, at n ≥ 3, the amplitudes of the identical
modes in the first and second approximations have
opposite signs.

In the numerical analysis of sets (19) and (22) the
consideration was restricted only to the first several
modes (corresponding to the first several equations in
the infinite sets of equations), the amplitudes of which
most significantly influence the shape of the drop sur-
face, whereas the complete solution must include each
infinite spectrum of modes associated with the interac-
tion according to Eqs. (19) and (22). However, the
amplitudes of higher modes are very small and rapidly
decrease as their numbers become much greater than
the number of the mode excited at the initial moment.

CONCLUSIONS

The presence of an ideal incompressible dielectric
medium streamlining a charged ideally conducting
drop results in the emergence of interaction between

Mn
2( )
oscillation modes both in the first and second orders of
smallness. This interaction leads to the excitation of
modes that are absent in the spectrum of modes deter-
mining the initial deformation of the drop. As the flow
velocity increases, the oscillation amplitudes of the ini-
tially excited modes grow. Relative motion of the drop
and the medium, as well as the mode interaction result
in decrease of the critical magnitudes of the intrinsic
charge of the drop, as well as the velocity and density
of the medium from the standpoint of drop instability
development.
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Abstract—The effect of a longitudinal magnetic field on the electrical and optical properties of negative glow
and the Faraday dark space of a glow discharge in helium is experimentally studied at a discharge current Jd =
11 mA and a pressure of 100–150 Pa in the discharge chamber. An experimental setup is designed and
described. A longitudinal electric field is found to be absent in the region of negative glow and the Faraday dark
space in both the presence and the absence of the magnetic field. The magnetic field is shown to decrease the
voltage of the glow discharge and to increase the total discharge luminosity and the intensities of some spectral
lines by a factor of 10–12. The experimental results are explained. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Although glow discharge has been studied in many
works, the processes that occur in its cathode regions,
which are located between the cathode and the positive
column and include the layers of cathode drop, negative
glow, and Faraday dark space, are still not completely
clear [1–3].

The main feature of the longitudinal structure of a
glow discharge is that the electron energy spectrum in
the region of negative glow and Faraday dark space has
a nonlocal character. As was shown in [4], three elec-
tron groups with mean energies of 2, 22.5, and 150 eV
were detected in a helium discharge. In this case, sim-
ple probe measurements can lead to wrong results.

The most important point is that, in these regions of
negative glow and Faraday dark space, an electric field
is absent (or it is very small). Therefore, the regions of
negative glow and Faraday dark space are most sensi-
tive to an external action on a glow discharge [3]. We
have a plasma free of an electric field; in this case, a
magnetic field affects this plasma in the pure form.

Many experimental studies are dealing with the
effect of a longitudinal magnetic field on a glow dis-
charge. In most of such publications, the positive col-
umn of a discharge was studied in a longitudinal mag-
netic field [5–7]. In these works, however, the optical
characteristics of the positive column of a glow dis-
charge have not been studied.

The related investigations are described in [8, 9].
However, the authors of [8] did not indicate the place of
measurements along the discharge, and Rokhlin [9]
performed optical measurements in the region of the
positive column of a discharge.

The purpose of this work is to study the effect of a
longitudinal magnetic field on the optical characteris-
1063-7842/04/4909- $26.00 © 21135
tics (total emission and the emission of some spectral
lines) of a glow discharge in the region of negative glow
and Faraday dark space.

EXPERIMENTAL

For measurements, we designed an experimental
setup shown schematically in Fig. 1. Discharge quartz
tube 1 had an inner diameter of 45 mm, and the distance
between the anode and cathode was 56 cm. Cathode 2
was made of molybdenum 42 mm in diameter, and the
anode was made of a stainless steel 42 mm in diameter.
The system was continuously evacuated by forepump 6
with a nitrogen trap to maintain a stable discharge pres-
sure and to remove impurities that enter into the dis-
charge from the quartz tube of discharge chamber 3 and
the electrodes. The gas to be studied was supplied from
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Fig. 1. Schematic diagram of the experimental setup:
(8) monochromator, (9) photomultiplier, (10) IP-1,
(11) RNO, (12) IP-2, and (13) IP-3.
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vessel 5 through a needle valve. The pressure in the dis-
charge chamber was measured with a VD-1 elastic ele-
ment pressure gauge.

Magnetic system 4 consisted of two coils and gener-
ated a longitudinal magnetic field up to 0.1 T. To ensure
the observation of a discharge and optical measure-
ments, the coils had a 6-cm-wide gap. The magnetic
field in the gap between the coils had a gradient of less
than 5% of the field at the center of each coil. The mag-
netic system was graduated with an RSh1-10 magne-
tometer. The magnetic induction during experiments
was maintained accurate to 1% by an IP-3 power sup-
ply with a controlled direct current.

The glow discharge was powered by an IP-1 power
supply with a controlled voltage (up to 5 kV). The volt-
age and current were measured with an electrostatic
voltmeter V1 and an ammeter A1 with an accuracy of 1
and 2%, respectively. The total discharge emission was

– +

160 85 60 85 170

Fig. 2. Arrangement of the coils for generating a magnetic
field.

(a)

(b)

(c)

Fig. 3. Photographs of the discharge (a) without a magnetic
field and in a magnetic field of (b) 0.025 and (c) 0.05 T.
measured with an FEU-2 device graduated using a ref-
erence TRU 1100-2350 thermal lamp. Spectral mea-
surements were performed with an MRD-23 mono-
chromator, and signals were applied to an analog-to-
digital converter interfaced with a computer.

For probe measurements, we placed two probes 7,
which were silver wires 0.6 cm in diameter insulated by
a thin quartz capillary, in the discharge chamber. The
working surface of one probe was 2 mm2. The probes
were placed at the center of the discharge chamber. The
interprobe distance was 8 cm; therefore, the tempera-
ture and electron density were averaged over this dis-
tance.

We only applied the two-probe method of measur-
ing the temperature and electron density since it was the
most reasonable method for measurements in a mag-
netic field.

EXPERIMENTAL RESULTS

To correctly estimate the results of visual observa-
tion of the effect of a magnetic field on the glow dis-
charge and to interpret the photographs given below, we
show the scheme of location of the coils generating the
magnetic field with respect to the anode and cathode
(Fig. 2).

In zero magnetic field, all characteristic parts of a
glow discharge were clearly visible in the discharge
tube. At the pressures and discharge currents under
study, the positive column was always stratified, and, at
a pressure of ~150 Pa, its length was about 20 cm. As
the pressure increased, the length of the positive col-
umn increased and it could occupy almost the whole
length of the discharge tube.

When even a very weak magnetic field (~0.005 T)
was applied, the positive column of the discharge dis-
appeared at a pressure less than 100–130 Pa in the dis-
charge tube, and the cathode parts of the discharge,
such as cathode glow, negative glow, and Faraday dark
space, occupied the whole length of the tube. In this
case, the discharge began to contract, and the diameter
of the glowing part decreased with increasing magnetic
field strength. This is clearly visible in Fig. 3, where
photographs of the discharge without a magnetic field
and with a magnetic field of 0.05 T at a pressure of
100 Pa in the discharge tube and a discharge current of
11 mA are given. The dark bands in the photographs are
the tightening studs of the setup, which shade the dis-
charge.

When studying the electrical characteristics of the
discharge, we measured the total voltage U across the
discharge, the voltage between the probe and cathode,
and the electric field strength between the probes.
Within the limits of experimental error, we failed to
detect an electric field between the probes when they
were in the region of negative glow and the Faraday
dark space (at any rate, the field was less than
0.01 V/cm).
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The results of measuring the total voltage across the
discharge and the voltage between the probe and the
anode are shown in Fig. 4. It is seen that, as the mag-
netic field increases, the total voltage across the dis-
charge decreases and the voltage between the probe and
the anode decreases sharply to a certain constant value.
For a discharge current of 11 mA and a pressure of
130 Pa in the discharge chamber, this value is 5.4 V.
This is likely to be the anode drop, and the initial sharp
decrease in the voltage between the probe and the
anode can be explained by the loss of the positive col-
umn, in which an electric field exists, in the discharge
with increasing magnetic field.

It is interesting to note that, if the pressure in the dis-
charge chamber increases to 200–250 Pa at the same
discharge current (11 mA), the magnetic field does not
affect the electrical characteristics of the discharge. The
total voltage across the discharge and the voltage
between the probe and the anode remain constant, the
discharge does not contract, and the length of the posi-
tive column does not change.

Passing to the results of probe measurements, we
have to note that we used only a double probe, since the
application of a single probe for measurements in a
magnetic field causes serious complications during
interpretation of the results obtained.

Double probes can be used in rather strong magnetic
fields [10, 11], which is due to the fact that an ion satu-
ration current plays a decisive role for such a probe.

Figure 5 shows the typical probe characteristics for
a double probe at a discharge current of 11 mA and a
pressure of 130 Pa in the discharge chamber. The probe
characteristics were always recorded so that the probe
nearest to the anode was not in the positive column of
the discharge.

The electron temperature was calculated by the for-
mula [10]

where  is the ion saturation current of the first probe,

 is the ion saturation current of the second probe, and
(dJ/dU)–1 is the derivative of the total probe current.

The measured electron temperature versus the mag-
netic field strength is shown in Fig. 6. Since the probe
characteristics shown in Fig. 5 have a symmetrical
shape up to a certain value of the magnetic field, the
electron temperature in the gap between the probes is
assumed to be constant. This assumption is supported
by visual observations: the discharge column com-
pressed by the magnetic field glows uniformly over the
entire gap between the probes. The probe characteris-
tics at a magnetic field higher than 0.05 T become
asymmetric, since the electron temperatures at each
probe are different. In this case, the mean electron tem-
perature in the gap between the probes is measured. The
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luminosity of the discharge column near each probe is
seen to be different. It is interesting to note that the
authors of [5–7, 9] studied the effect of a magnetic field
on the positive column of a discharge and found that the
electron temperature decreased with increasing field. In
[9], at the same magnetic field strength, the electron
temperature decreased by more than half. This compar-
ison again shows that a glow discharge is nonuniform
along its length.

Let us now consider the results of optical measure-
ments. Figure 7 shows the dependence of the relative
intensity of a discharge glow on the magnetic induc-
tion. Here, J(0) is the intensity of the discharge glow in
zero magnetic field, and J(M) is the same intensity but
at various values of magnetic induction.

A spectral range of 340–1200 nm was chosen in
order to exclude the long-wave radiation of the heated
parts of the setup and the instruments used. To this end,
we applied a water filter. The spectral range of visible
radiation (340–620 nm) was selected by attaching a
CZC23 glass filter to the water filter.

As is seen from Fig. 7, the total discharge luminosity
increases strongly with the magnetic induction. The
curves have a maximum at a magnetic field of 0.02–
0.05 T. The same maximum is detected in the electron
temperature in Fig. 5.

To find out how the magnetic field affects the inten-
sity of some spectral lines, we studied the discharge
spectra in the wavelength range 350–750 nm. Figure 8
shows the spectrum of He in zero magnetic field and in
the presence of a 0.025-T magnetic field. It is seen that,
as the magnetic field increases, the intensities of the
spectral lines increase. Like the total intensity of a dis-
charge glow (Fig. 7), the intensities of the spectral lines
are maximal at 0.02–0.05 T.

The intensities of the He spectral lines in a longitu-
dinal magnetic field increase differently with the wave-
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J(m)/J(0)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
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Fig. 7. Dependence of the relative intensity of the discharge
glow on the magnetic field strength in two spectral ranges:
(1) 320–1200 and (2) 340–620 nm.
length: they increase by a factor of 10–12 in the short-
wave range and by a factor of 8–10 in the long-wave
range.

The lines of hydrogen appear in the He spectrum
due to hydrogen emanation from the cathode. These
impurity lines of hydrogen are clearly visible in Fig. 9.
Taking into account the large difference in the excita-
tion potentials of hydrogen and helium, it is obvious
that even low contents of hydrogen impurities cause the
emergence of hydrogen spectral lines. Figure 9 shows
the helium spectrum at a pressure of 180 Pa in the dis-
charge chamber. In this case, the positive column of the
discharge is seen in the observation region between the
magnetic coils. As follows from Fig. 9, mainly hydro-
gen impurity lines are excited. The effect of the mag-
netic field leads to a decrease in the line intensities. This
result is consistent with the data reported in [9], where
the positive column of a discharge was studied.

An interesting result was obtained when the He
spectrum of the ac discharge was studied. Unfortu-
nately, only a few experiments were performed with an
alternating current. The discharge current and the pres-
sure in the discharge chamber were maintained identi-
cal to those in the case of a direct current.

Figure 10 shows the spectrum of He discharge at an
alternating current of 11 mA in magnetic fields of 0.025
and 0.05 T. Visual observation of the ac discharge dem-
onstrates cathode glow at both electrodes, which trans-
forms into negative glow. At the center of the discharge
tube, only negative glow is observed. At a pressure of
100 Pa, there is no positive column. When a longitudi-
nal magnetic field is applied, the discharge begins to
contract from both electrodes. As the magnetic field
increases, the diameter of the glow discharge filament
decreases. As the pressure increases, a stratified posi-
tive column appears at the center of the tube. When the
pressure is above 150 Pa, the length of the positive col-
umn increases, and, at a pressure of ~300 Pa, it occu-
pies ~80% of the length of the discharge tube.

The behavior of the discharge spectrum is also
unusual. As the magnetic field increases (Fig. 10), some
spectral lines cease to be excited and some lines, on the
contrary, are excited, and so on.

Based on the results obtained, we can assume that,
at a certain pressure in the discharge chamber, a longi-
tudinal magnetic field in the ac discharge exerts a suffi-
ciently strong effect on the electron temperature and the
energy distribution function of electrons.

DISCUSSION OF THE RESULTS

As noted above, the authors of [3–7, 9] studied the
effect of a longitudinal magnetic field on the positive
column. We found that the effect of a longitudinal mag-
netic field on the positive column of the discharge is
very weak at a discharge current of 11 mA, a magnetic
induction up to 0.05 T, and a helium pressure above
180 Pa in the discharge chamber. We did not detect a
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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decrease in the wall current under the action of the
magnetic field. The discharge spectrum shown in Fig. 9
also varies only weakly with the magnetic field. The
voltage measured between the anode and the cathode
and, hence, the electric field strength in this region of
the positive column decrease by 5% under the action of
the magnetic field at a pressure of 200 Pa. As was
shown in [8], at a pressure above 150 Pa in the dis-
charge chamber, a magnetic field as high as 0.08 T did
not affect the diffusion of charged particles.

The main difference between our experiments and
those described in [3–7, 9] is that we studied the regions
of negative glow and the Faraday dark space in the dis-
charge.

Based on the experimental results obtained, we
believe that the principal cause of the effect of a longi-
tudinal magnetic field on the discharge is a decrease in
the diffusion of charged particles toward the wall under
the action of the magnetic field. This decrease leads to
a change in the electrical balance of charge carriers and,
hence, to a change in the electrical and optical charac-
teristics of the discharge.

Based on the results of [8], we assume that ion and
electron diffusion across the magnetic field is expressed
by the ambipolar diffusion coefficient Da,
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Fig. 8. He spectrum at Jd = 11 mA and P = 130 Pa: (a) in
zero magnetic field and (b) in a 0.025-T magnetic field. I is
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where ω = eB/mc is the Larmor frequency, τ is the mean
free time of charge carriers, and the subscripts e and p
designate electrons and positive ions, respectively.

The calculations performed for our experiments by
the formula for the ratio Da(B)/Da(0) show that the
decrease in the ion current to the wall when the mag-
netic field increases to 0.05 T at a pressure of 130 Pa in
the discharge chamber corresponds to the calculated
decrease in the ambipolar diffusion coefficient Da(B).
This result agrees well with the data [8]. When calculat-
ing Da(B), we borrowed the values of ωe, ωp, τe, and τp

from [11].
Thus, the general picture of the effect of a longitudi-

nal magnetic field on negative glow and the Faraday
dark space of the glow discharge is thought to be the
following. The discharge begins to contract near the
cathode. Here, the magnetic field is one-tenth of the
field between the coils. Electrons begin to move along
magnetic lines of force. As the magnetic field increases,
the magnetic lines of force become denser and the dis-
charge contracts further. The calculation of this electron
motion and the explanation of the discharge contraction
are given in [9].

The decrease in the wall loss of charged particles
due to the decrease in the ambipolar diffusion coeffi-
cient leads to an increase in the electron concentration
and temperature in the compressed discharge filament.
The velocity distribution function of electrons becomes
distorted. This results in a sharp increase in the total
luminosity of the compressed discharge and the inten-
sities of some spectral lines (Figs. 7, 8).
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The decrease in the wall loss of charged particles
leads to an increase in the length of negative glow and
the Faraday dark space. In our case, the positive column
disappears at a pressure lower than 130 Pa in the dis-
charge tube when a magnetic field as low as ~0.005 T is
applied. In this case, the whole length of the discharge
tube is occupied by cathode glow, dark cathode space,
negative glow, and the Faraday dark space.

This picture of the effect of a longitudinal magnetic
field on negative glow and the Faraday dark space of the
glow discharge is supported experimentally, when we
placed a screen of an iron sheet near the magnetic coils
from the side of the cathode to shield the magnetic field
toward the cathode. In this case, the discharge began to
be compressed only behind the screen, and the com-
pression was sharp. The filament was compressed
immediately to the diameter required for this magnetic
field. However, in the absence of the screen, the fila-
ment was compressed gradually from the cathode with
increasing magnetic induction. The discharge spectra in
the presence of the shield also differed radically from
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the discharge spectra in the absence of the shield. The
intensities of the spectral lines increased by a factor of
3–4, whereas, in the absence of the screen, the intensi-
ties of the spectral lines increased by a factor of 10–12.
The distortion of the velocity distribution function of
electrons in the region of negative glow and the Faraday
dark space is significant and supported experimentally
at a 50-Hz alternating current. The discharge spectrum
in zero magnetic field contains a small number of
helium spectral lines (Fig. 10). At a magnetic field of
0.025 T, some lines disappear and some lines appear; at
a magnetic field of 0.05 T, some lines again disappear
and some lines appear. This behavior is likely to be due
only to a strong change in the energy distribution func-
tion of electrons.

If we agree with the authors of [12] that atomic exci-
tation for each spectral line is caused only by impacts
of the first kind and that stepwise excitation and
impacts of the second kind can be neglected, we have to
assume that the magnetic field increases the concentra-
tion of “beam” electrons, whose energy can excite an
atom by impacts of the first kind. We think that the
cause of the strong increase in the intensities of the
helium spectral lines in a longitudinal magnetic field is
the fact that, as the temperature of “base” electrons
increases (Fig. 6), the stepwise excitation of the exist-
ing long-living metastable levels of helium atoms
increases sharply. This results in an increase in the
number of excited states that can emit spectral lines.

Note that the authors of [12] also assumed that the
effect of a magnetic field on the discharge emission is
equivalent to an increase in the number of stepwise
excitation acts.

CONCLUSIONS

We have experimentally studied the effect of a lon-
gitudinal magnetic field on the regions of negative glow
and the Faraday dark space of a glow discharge in
helium at a discharge current of 11 mA and a pressure
of 100–200 Pa in the discharge chamber.

Using electric probes, we showed that, at a dis-
charge current of 11 mA and a pressure below 130 Pa,
a longitudinal electric field is absent (at any rate, it is
lower than 0.01 V/cm) in the region of negative glow
and Faraday dark space in both the absence and the
presence of the magnetic field.

The longitudinal magnetic field is found to change
the electrical properties of the discharge: it decreases
the total voltage across the discharge and destroys the
positive column of the discharge at the given length of
the discharge chamber.

When the magnetic field is applied, the wall loss of
charged particles decreases. The departure of charged
particles to the wall decreases monotonically to a field
of ~0.05 T and approximately obeys the law of decreas-
ing of the ambipolar diffusion coefficient (Townsend
law).
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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The effect of the magnetic field on the optical char-
acteristics of the discharge is especially strong. The
total emission of the discharge and the intensities of
some spectral lines increase by a factor of 10–12.

The detected effects of the longitudinal magnetic
field on the glow discharge are explained using the
hypothesis that the magnetic field strongly distorts the
energy distribution function of electrons, with the frac-
tion of high-energy beam electrons in the total spec-
trum increasing.

We failed to reveal the effect of the longitudinal
magnetic field on the electrical characteristics of the
positive column of the discharge at a pressure above
180 Pa in the discharge chamber and a discharge cur-
rent of 11 mA.
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Abstract—A study is made of the possibility of controlling the spatial distribution of the degree of ionization
in a modified Penning cell with a cathode divided into several sections that are at different potentials. It is shown
that an almost uniform plasma can be produced when applying an optimal potential of the control electrode.
This enables the generation of wide ion beams in this system. An ion extraction efficiency of several tens of
percent is achieved, which is substantially higher than in conventional ion sources. © 2004 MAIK
“Nauka/Interperiodica”.
Interest in studies of the characteristics of low-pres-
sure gas discharges and the properties of the plasma
generated in them stems, in many respects, from the
possibility of employing these discharges for develop-
ing sources of charged particle beams. In particular, the
production of a homogeneous plasma in large volumes
is of great interest. Such a plasma can be used to gener-
ate wide beams with a uniform current distribution over
the beam cross section.

In [1], it was shown that, in order to produce a
homogeneous plasma in a low-pressure discharge, it is
necessary that the ionization be nonuniform: the degree
of ionization should be lower at the center of the system
and higher at the periphery. Therefore, the generation
of a homogeneous plasma cannot be achieved if the
ionization in the discharge is produced by the plasma
electrons. However, in high-current glow discharges
with oscillating electrons [2], the greatest contribution
to the ionization is made by the fast particles that are
generated at the cathode as a result of gamma processes
and are accelerated by the cathode voltage drop, which
almost coincides with the discharge voltage. Under
these conditions, the spatial distribution of the degree
of ionization can be controlled by using a nonequipo-
tential cathode, i.e., by dividing the cathode into several
sections that are at different potentials. In such a sys-
tem, the electrons emitted from different cathode sec-
tions gain different energies and, consequently, make
different contributions to ionization. In particular, to
produce a homogeneous plasma, the voltage applied to
the central cathode section should be lower than the
voltage applied to the periphery of the cathode. In addi-
tion, to implement the method proposed, special mea-
sures should be undertaken to prevent the rapid mixing
of the electrons from different energy groups. This can
be achieved by applying an external magnetic field,
which reduces the electron mobility in the radial direc-
1063-7842/04/4909- $26.00 © 21142
tion. This paper presents the results of experiments on
verifying the efficiency of the method proposed.

EXPERIMENTAL SETUP AND THE RESULTS 
OBTAINED

In experiments, we used a well-known Penning sys-
tem with a cold cathode [3]. This system has been
widely used to produce ion beams. However, the ions
were usually extracted through a small emission hole at
the axis and, consequently, the beam diameter was
small. This was because the discharge plasma was
strongly inhomogeneous in the radial direction. In our
experiments, we used a modified Penning system
(Fig. 1) with hollow cylindrical anode 1 and end cath-
ode 2. The second end electrode consisted of peripheral

1

25

6

4 3

Fig. 1. Modified Penning system with a nonequipotential
cathode.
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ring 3 and central disk 4, which was used as a control
electrode. The diameter of the control electrode was
varied from 30 to 70 mm. The diameter of the gas-dis-
charge system was 135 mm, and its length was varied
from 70 to 210 mm. The gas-discharge chamber was
embedded in a magnetic field produced by solenoid 6.
The working gas was injected into the system through
an axial hole in the central disk and was pumped out
through a set of holes in the opposite end cathode. The
radial distribution of the ion emission current was mea-
sured with the help of a set of probes 5, arranged at this
electrode. The gas pressure was measured by a gauge
placed in the vacuum chamber in which the gas-dis-
charge system was installed. In our experiments, the
pressure was varied in the range ~10–4–10–3 torr by
varying the gas flow rate.

We fixed the discharge current Id, gas flow rate Q,
and magnetic field B and measured the radial distribu-
tions of the probe current Ip(N) (where N is the probe
number) at different voltages applied to the central disk
Uc from a control power source. The voltage at the other
cathode sections, which were connected to the negative
pole of the discharge power source, was automatically
established at a level needed to maintain a given dis-
charge current. A study of the influence of the potential
of the central disk on the ion-current distribution
showed that this influence was ambiguous. As the volt-
age applied to the central disk was decreased, the cur-
rent density profile became smoother and, at some opti-
mal voltage, the distribution became almost uniform.
However, a dip in the current density profile then
appeared at the center. Figures 2 and 3 show distribu-
tions obtained at Uc values close to the optimal one for
a disk 30 mm in diameter at two different values of B.
A similar behavior was observed for a disk 50 mm in
diameter. However, when an even larger, 70-mm-diam-
eter, disk was used, the initial smoothing of the current
density profile with decreasing Uc was accompanied by
the formation of a sharp maximum at the center of the
system. This ambiguous change in the current density
profile may be explained as follows: As the voltage Uc

decreased, the voltage at all other cathode sections also
increased; as a result, the conditions for a self-sustained
discharge were satisfied. In this case, however, the
energy of the fast particles generated at the discharge
periphery increased, which resulted in the enhancement
of their transport across the magnetic field toward the
anode. When the discharge voltage reached a certain
critical value, the ionization rate at the periphery began
to decrease because of the increased loss of fast elec-
trons at the anode. At the same time, the ionization rate
at the center of the system increased owing to the fast
electrons emitted from the central disk not only due to
ion-induced electron emission, but also due to the sec-
ondary electron emission caused by the electrons orig-
inated at the opposite end cathode. As a result, the ion-
ization rate again became maximal near the center of
the system. Hence, a uniform plasma density profile
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
could be achieved by decreasing the potential of the
control electrode only if the latter was relatively small
in size.

A comparison of the ion current distributions pre-
sented in Figs. 2 and 3 shows that the ion current den-
sity and, accordingly, the plasma density are lower in a
stronger magnetic field. This contradicts the commonly
accepted opinion that the particle lifetime in a plasma
and, accordingly, the plasma density increase with
increasing magnetic field. In connection with this, we
studied how the magnetic field influences the discharge
conditions. Figure 4 shows the discharge voltage and
the current at the central probe as functions of the mag-
netic field. It turned out that, at a certain critical value
of the magnetic field B1, both the ion emission current
and the discharge voltage dropped abruptly. This means
that, at this critical field, the discharge conditions also
changed abruptly. Oscillograms of the probe current
recorded with the help of a C8-17 digital oscilloscope
showed that, when the magnetic field was higher than
the critical one, the amplitude of the low-frequency
(~104 Hz) modulation of the probe signal reached
nearly 100% (in contrast to the case of a subcritical

250

200

150

100

50

0
1 3 5 7 9 11 13

1

2

3

N

I p
, µ

A

Fig. 2. Radial distribution of the ion current at B = 11.5 mT;
Q = 0.3 cm3/s; Id = 50 mA; and Uc = (1) 95, (2) 100, and
(3) 120 V.
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Fig. 3. Radial distribution of the ion current at B = 14.3 mT;
Q = 0.3 cm3/s; Id = 50 mA; and Uc = (1) 80, (2) 105, and
(3) 115 V.
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magnetic field where this modulation did not exceed
several percent). Hence, in a strong magnetic field, we
observed the onset of a large-scale low-frequency insta-
bility in the gas-discharge plasma. The nature of this
instability seems to be similar to that discussed in [3].

Supercritical magnetic fields cannot be used to gen-
erate wide ion beams in ion sources with ordinary mul-
tiaperture ion optics. A study of the influence of various
factors on the magnitude of the critical magnetic field
showed that the change in B1 was most pronounced
when we changed the length of the gas-discharge sys-
tem L and the gas flow rate Q (Fig. 5). It can be seen
from Fig. 5 that the value of B1 increases with increas-
ing L. At large lengths, in the range of magnetic fields
under study, the instability could be completely absent.
This result can easily be explained taking into account
that the onset of instability is closely related to the fact
that it is difficult to provide the transport of electrons
across the magnetic field onto the anode. It is evident
that, as the length of the discharge chamber and,
accordingly, the anode area decrease, this transport
becomes even more difficult to provide; for this reason,
the onset of instability is observed even in a relatively
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Fig. 4. Discharge voltage Ud and the current Ip at the central
probe as functions of B at Id = 100 mA and Uc = 150 eV.
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Fig. 5. Critical magnetic field B1 as a function of the dis-
charge chamber length L at Id = 50 mA; Uc = 150 eV; and

Q = (1) 0.2 and (2) 0.3 cm3/s.
weak field. In contrast, when the discharge chamber
length (and, accordingly, the anode area) is large, the
transport of electrons to the anode is facilitated and the
onset of instability can take place in much stronger
magnetic fields. Hence, the upper limit of the magnetic-
field operating range increases when using long dis-
charge chambers. When increasing the gas flow rate,
we also enhance the electron transport across the mag-
netic field; as a result, the value of B1 increases. How-
ever, the increase in the gas flow rate in ion sources is
limited because of the increase in the probability of
breakdown of the acceleration gap.

In order to generate ion beams, we replaced end
cathode 2 with an accelerating–decelerating system
consisting of three electrodes, each having 163 holes
8 mm in diameter. The accelerating voltage Ua was var-
ied in the range 10–30 kV, and the discharge current
was varied in the range 30–100 mA. The ion beam cur-
rent Ib increased in proportion to the discharge current
and depended only slightly on the accelerating voltage.
Under the given conditions, this current was 10–30 mA.
Hence, the extraction efficiency α = Ib/Id was indepen-
dent of the discharge current and was nearly equal to
0.3. When we varied the magnetic field and the gas flow
rate, the extraction efficiency also varied only slightly
and depended on the geometrical factor only. The
extraction efficiency can be estimated by the formula

(1)

where Sh is the total area of the emission holes; S is the
cross-sectional area of the discharge chamber; and the
factor 0.5 is introduced because one-half of the ions
produced in a discharge arrives at the upper end,
whereas the other half arrives at the lower end of the
discharge system.

We also carried out experiments on the generation
of low-energy (1–2 keV) ions. Ion beams with this
energy are widely used to clean and etch surfaces. In
these experiments, the ions were accelerated to a cer-
tain prescribed energy by applying a corresponding
voltage to the end cathode, rather than by using an ion-
optical system. This method of generating ion beams
immediately in the cathode sheath was previously used
in ion sources based on high-voltage glow discharges.
These systems, however, did not find wide application.
The reason is that the high pressures required to main-
tain discharges in such systems are unacceptable for
many processes of ion-plasma technology. In addition,
in discharges of this kind, the main characteristics (such
as the current, voltage, and working gas pressure) are
interrelated; as a result, it is difficult to control the ion-
beam parameters. In our system, which is based on the
Penning discharge with a nonequipotential cathode, the
working pressure is several orders of magnitude lower.
Our experiments showed that the discharge did not lose
its stability when an increased voltage corresponding to
the required ion energy was applied to the end cathode.
The current of ions arriving at the end cathode, which

α 0.5Sh/S,=
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served as a workpiece, was controlled by the discharge
power source inserted in the circuit between the anode
and the peripheral ring. Here, we used the circumstance
that, over a wide range of the discharge parameters, the
currents at both cathodes were nearly equal to one
another; therefore, an increase in the discharge current
automatically resulted in an increase in the current at
the target. It should be noted, however, that, in these
experiments, the current in the circuit of the end cath-
ode somewhat increased with increasing accelerating
voltage. This is probably due to an increase in the coef-
ficient of ion-induced electron emission. The radial
profile was controlled, as before, by applying a lower
voltage to the central disk as compared to that applied
to the ring. In these experiments, the voltage Uc was
decreased by connecting the central disk 30 mm in
diameter to the discharge power source through a high-
resistance resistor. Here, we used the circumstance that,
for a disk of this size, the optimal value of the potential
was close to the floating potential. When the accelerat-
ing voltage was increased, we did not observe a sub-
stantial distortion of the radial profile of the ion current.

CONCLUSIONS
The use of a nonequipotential cathode in a Penning

system makes it possible to efficiently control the spa-
tial distribution of the plasma density and to achieve a
nearly uniform distribution of the ion-emission current
in a device with a small-size control electrode. The
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
maximum attainable ratio of the ion-beam current to
the discharge current (~30% with an ion optics and
~50% with the use of acceleration in the cathode
sheath) in this system is several times higher than that
achieved in conventional sources. Accordingly, the
energy efficiency increases substantially. The results of
our studies show that Penning systems with nonequipo-
tential cathodes show promise as plasma emitters in ion
sources generating wide ion beams and also in systems
for ion cleaning and etching.
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Abstract—The schungite structure is shown to be modified in an arc discharge in an inert gas atmosphere. As
a result of the direct effect of the arc discharge, some portion of the schungite material transforms locally into
rhombohedral graphite. The spectral dependence of the optical transmission of the solutions of graphite soot
and schungite soot in toluene is measured. X-ray diffraction patterns of the schungite soot and graphite soot
contain a broad maximum at small scattering angles, which indicates the presence of fullerene molecules.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Schungite is a natural mineral containing from 1 to
98% carbon in a noncrystalline form, microelements, a
mineral component, and a small amount of a bitumi-
nous organic component. Carbon exists in schungites in
the form of micro- and nanoclusters—globules ~10 nm
in size [1, 2]. The similarity of the subspherical graph-
ite-like layers of the schungite carbon and fullerene
structures suggests that fullerenes can rather easily be
produced from this mineral. Moreover, as follows from
some works [3], it contains such structures in its initial
form. Therefore, it is interesting to verify the possibility
of producing fullerenes from schungites by sputtering
them in an arc discharge according to the well-known
technique [4]. The purpose of this work is to study
schungites of two types; samples of one type were pro-
duced from rock containing 70% bound carbon (sam-
ples Sh1), and the other samples were produced from
rock containing 98% C (samples Sh2).

EXPERIMENTAL

Cleaved schungite samples 2–6 mm in thickness
were fixed on a graphite substrate, which was con-
nected to the positive potential of a 0–40 V dc voltage
source. The cathode was a sharp-nosed ChDA graphite
electrode made 6 mm in diameter. As a buffer gas, we
used high-purity argon and helium. An arc was initiated
by resistance heating of the cathode tip during brief
contact with a sample. The interelectrode gap in the
operating mode was varied from 0.5 to 2 mm.

The voltage of arcing in an argon atmosphere was
about 20 V, and that in a helium atmosphere was about
30 V. The arc current was varied in the range 40–100 A,
and the gas pressure, from 1 × 104 to 4 × 104 Pa.
1063-7842/04/4909- $26.00 © 21146
The electrodes were arranged horizontally at the end
faces of a water-cooled cylindrical chamber. One of the
electrodes could be moved along its axis. The chamber
was placed inside a vacuum bell jar having two peep-
holes. This design allowed us to observe arc initiation,
the motion of a cathode spot, the interelectrode gap, and
the arc shape. The chamber was preliminarily evacu-
ated to a residual pressure of p ≅ 1 Pa with a backing
pump.

The sputtering time was varied in the range from 5
to 60 min. Schungite soot was mechanically removed
from the chamber walls and flooded with toluene. After
storing the soot in toluene for several days, we mea-
sured the spectral dependence of the optical transmis-
sion of the mixture with an SF-26 spectrophotometer.
As a reference solution, we used a ruby toluene–graph-
ite soot infusion; the graphite soot was produced under
the same arc conditions after a sample was replaced by
graphite.

X-ray diffraction analysis of the samples was per-
formed on a DRON-4 apparatus with FeKα and CuKα
radiation. As a monochromator, we applied a crystal of
pyrolytic graphite.

RESULTS AND DISCUSSION

Heating of the samples is found to result in their
cleavage into several low-strength plates about 1 mm in
thickness, whose planes are predominantly parallel to
each other. When the temperature increases rapidly,
some plates fly away from a sample, which strongly
changes its dimensions. An arc discharge produces cra-
ters with a depth of 5 mm in the samples; the craters can
go through some plates and, to some extent, can fasten
them together. The graphite cathode is not sputtered; it
even gains weight due to sputtering of the anode mate-
004 MAIK “Nauka/Interperiodica”
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rial. It is seen that, after the electrodes (especially the
cathode tip) heated to a high temperature are moved
apart, the tip acquires a buildup having the same diam-
eter and a length of 1–2 mm. For the electrodes to be
separated, a certain mechanical force must be applied
to them. Obviously, during resistance heating to high
temperatures, some portion of the sample material is
welded to the cathode tip. Thus, in essence, the arc ini-
tiated under these conditions glows between two
schungite electrodes.

Upon the following arcing, especially at a suffi-
ciently small interelectrode gap (d ≤ 0.5 mm, i.e., in the
so-called contact-arc mode) and a low discharge cur-
rent (I ≤ 50 A), the buildup increases in size. Long-term
arcing in this mode results in a buildup in the form of
an irregular hemisphere that has needle branches grow-
ing in all directions and is completely located in the cra-
ter of a sample. Figure 1 shows the X-ray diffraction
pattern of one of such buildups that is taken from sam-
ple Sh2 and the X-ray diffraction pattern of schungite.
X-ray line profile analysis was performed by the tech-
nique [5] using the atomic coordinates of hexagonal
and rhombohedral graphite modifications [6]. The anal-
ysis shows that the lattice parameters of the sample
under study correspond to rhombohedral graphite. In
other words, the buildup of rhombohedral graphite is
formed on the graphite electrode during arc sputtering
of schungite. It should be noted that the cathode mate-
rial was hexagonal graphite.

X-ray diffraction studies of the schungite samples
after the arc discharge indicate that, within the limits of
experimental error, the X-ray diffraction patterns of the
bottom and the lateral surfaces of craters coincide with
the X-ray diffraction pattern of the cylindrical buildup
given in Fig. 1 and correspond to rhombohedral graph-
ite. We assume that the arrangement of graphite net-
works in the initial schungite favors the formation of
this allotropic carbon modification.

Therefore, the high-temperature arc treatment of
schungite results in its graphitization. It is known that
nanostructures should be formed on graphite in the
cathode deposit under these conditions [7, 8]. However,
the X-ray diffraction patterns of the buildup do not
reveal scattering by nanostructures (see Fig. 1).

In the arcing mode with a large interelectrode dis-
tance (d ≥ 1 mm), the buildup does not gain weight
when the discharge current increases to 80–100 A. It is
visually found that, under these conditions, the cathode
can be completely cleaned of the sputtered anode mate-
rial. This finding supports, to some extent, the absence
of nanotubes in our case; these tubes are known to be
very stable structures [7].

Figure 2 shows the results of measuring the optical
transmission of the soot infusions of the samples as
compared to the transmission of pure toluene. Curve 1
corresponds to samples Sh1; curve 2, to samples Sh2;
and curve 3, to ruby toluene–graphite soot infusion. As
is seen from curve 3, the colored infusion has two
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
absorption maxima at λ1 = 470 nm (E1 = 2.6 eV) and
λ2 = 335 nm (E2 = 3.7 eV).

The strong absorption of the fullerene-containing
infusion of toluene at a wavelength coinciding with λ2
was earlier detected in [9]. Therefore, we can assert that
molecules of C60 and C70 fullerenes dissolved in tolu-
ene are present in our samples of graphite soot.

As follows from the energies of the absorption max-
ima at λ1 and λ2, these molecules are unlikely to be
related to, for example, the decomposition of clusters or
dimers of C60 and C70 molecules or the excitation of
any vibrations in these structures. We think that these
molecules can result from electronic processes.

Curve 1 has no specific features near the maxima,
whereas curve 2 has a small “step” at a wavelength that
virtually coincides with λ2. This coincidence may indi-
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Fig. 1. X-ray diffraction patterns of (dashed line) sample
Sh2 in the initial state and (solid line) the buildup on the
graphite cathode and (vertical bars) bar diagram of rhombo-
hedral graphite. I, counts.

80

60

40

20

10001100 900 800 700 600
λ, nm

T,
 %

500 400 300

100

0

λ1

12

3

λ2~ ~

2
1

Fig. 2. Dependence of the optical transmission of the soot
infusion on the wavelength: (1) samples Sh1, (2) samples
Sh2, and (3) ruby toluene–graphite soot infusion.



 

1148

        

ALESHINA 

 

et al

 

.

                                       
cate the presence of structures that are close to
fullerenes in the schungite Sh2 soot. Therefore, we also
studied the X-ray diffraction patterns of the soot depos-
ited onto the chamber walls during arc sputtering of the
schungite samples.

The results of these studies are given in Fig. 3.
Curve 1 corresponds to the initial schungite Sh1 pow-
der; curve 2, to the schungite soot after arc sputtering;
and curve 3, to the graphite soot deposited under the
same conditions. The initial schungite Sh1 sample is
seen to have a broad maximum in an angular range that
virtually coincides with the positions of similar max-
ima for charcoal and anthracite powders [6]; this maxi-
mum differs from them only in the half-width. In the
schungite soot (curve 2), an additional pronounced
symmetric maximum appears in the angular range 2θ =
10°–30°. In the case of the graphite soot (curve 3), this
maximum becomes sharply asymmetric and its inten-
sity almost doubles.

Since the graphite soot (unlike the schungite soot)
contains molecules of C60 and C70 fullerenes, we can
assume that the asymmetric part of the maximum on
curve 3 is caused by the presence of these chaotically
oriented molecules. From this standpoint, the symmet-
ric maximum on curve 2 and the corresponding part of
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Fig. 3. X-ray diffraction patterns of (a) the initial schungite,
(b) the soot deposited during the evaporation of schungite in
an arc, and (c) the soot deposited during the evaporation of
graphite in an arc. I, counts.
the maximum on curve 3 can be related to the presence
of fullerene molecules with a large number of atoms,
e.g., C84, in the schungite soot and graphite soot. In
other words, an increase in the number of atoms in a
fullerene molecule leads to a shift in the maximum
toward smaller scattering angles.

Thus, the soot deposited during the arc-induced
evaporation of graphite contains molecules of heavier
fullerenes apart from C60 and C70 fullerenes. The soot
deposited during the evaporation of schungite in the arc
is likely to have only higher fullerenes.

The results obtained suggest two basic methods of
producing fullerenes in schungite soot. First, they can
be formed as a result of coiling of globular carbon fol-
lowed by the evaporation of the formed molecules
from schungite. Second, they can be assembled in the
arc plasma by one of the mechanisms that are dis-
cussed, in particular, in [8], with the necessary prelim-
inary stage of this processes being the transition of the
schungite carbon into the rhombohedral phase. This
stage can also occur in the case of sputtering of graph-
ite in an arc.

CONCLUSIONS

(1) The structure of schungite has been shown to be
modified in an arc discharge in an inert gas atmosphere.

(2) As a result of the direct effect of the arc dis-
charge, some portion of the schungite material trans-
forms locally into rhombohedral graphite.

(3) X-ray diffraction patterns of the schungite soot
and graphite soot contain a broad maximum at small
scattering angles, which indicates the presence of
fullerene molecules.
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Abstract—A simple mechanism for the propagation of an ionization wave in a dense gas due to the multipli-
cation of background electrons in a nonuniform electric field is proposed. The mechanism does not depend on
the sign of the field projection onto the streamer propagation direction. The streamer propagation is caused by
the enhancement of the electric field at the streamer head. It is shown that, in a prebreakdown field, the intense
multiplication of electrons takes place in both electropositive and electronegative gases. The prebreakdown
multiplication can provide a fairly high density of background electrons; this allows one to treat the background
as a continuous medium when considering streamer propagation as a multiplication wave. The initial ionization
is enabled by the natural background of ionizing radiation and cosmic rays. An analytical expression for the
velocity of the ionization front is obtained based on a simple equation for the multiplication of background elec-
trons. This expression is in good agreement with numerical simulations performed within both a simple model
of background electron multiplication and a more comprehensive drift–diffusion model. In particular, the drift–
diffusion model predicts the propagation of the ionization front from a small-radius anode to the cathode due
to the multiplication of background electrons. The velocity of the ionization wave front is calculated as a func-
tion of the electric field at the streamer head for helium, xenon, nitrogen, and sulfur hexafluoride. It is shown
that some features of streamer propagation (e.g., its jerky motion) can be related to the recently found nonmono-
tonic dependence of ionization frequency on the electric field. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known [1–7] that a streamer forms from an
electron avalanche in a dense gas when the electron
density in an avalanche increases to such high values
that the newly created plasma begins to enhance the
external electric field. The mechanism for streamer
propagation is still poorly understood, although this
issue has long been studied and there are a lot of papers
devoted to numerical simulations of streamers (see,
e.g., [8–14] and the literature cited therein).

The propagation of a streamer toward the anode is
usually attributed to the drift motion of electrons at the
streamer head. However, the existence of cathode-
directed streamers causes surprise. At present, a photon
mechanism proposed by Meek, Loeb, and Raether
[1−7] is usually invoked to describe a cathode-directed
streamer. According to this mechanism, the streamer
head emits photons that ionize the gas in front of it. The
photoionization events give rise to avalanches directed
toward the head. Overlapping with one another, these
avalanches enable the streamer propagation. This the-
ory was further developed by Firsov and Lozanskiœ [6].
In particular, they assumed that the transfer of the line
radiation and the subsequent associative ionization of
the excited states play an important role in the streamer
propagation.

A number of fundamental drawbacks of the photon
theory compel one to search for other mechanisms for
1063-7842/04/4909- $26.00 © 21150
streamer propagation. For example, in [15, 16], a non-
photon mechanism related to Langmuir plasma oscilla-
tions was proposed. However, these ideas did not take
the form of a completed theory. This is why, though
being constantly criticized, the photon hypothesis still
remains the most commonly accepted model. Probably,
this is the only reason that there has not yet been
another clearly formulated model for the propagation
of the ionization region toward the cathode.

In this paper, a rather simple nonphoton mechanism
is proposed that accounts for the streamer propagation
toward both the anode and the cathode. Within this
model, the streamer propagation is explained by the
exponential multiplication of the background electrons
(that are always present in a gas) in a nonuniform elec-
tric field, rather than by the electron drift or radiation
transfer.

DENSITY OF BACKGROUND ELECTRONS 
IMMEDIATELY BEFORE THE STREAMER 

BREAKDOWN

1. Electropositive Gases

It is well known that the natural background of ion-
izing radiation and cosmic rays amounts to ~10 µR/h,
which corresponds to an electron production rate of
Gi ~ 6 cm–3 s–1. In atmospheric-pressure noble gases (i.e.,
at a neutral particle density of N ≈ 2.4 × 1019 cm–3),
004 MAIK “Nauka/Interperiodica”
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atomic ions convert into molecular ones over a time of
~10 ns, whereas the dissociative recombination rate
constant is kd ~ 10–7 cm3/s. Consequently, the back-
ground electron density Ne0 under equilibrium condi-

tions, when Gi = kd , is

(1)

The multiplication of electrons in the external elec-
tric field leads to an increase in their background den-
sity even without breakdown. Let us illustrate this using
a simple model for the electron balance between plane
electrodes:

(2)

Here, νi is the ionization frequency, ud, e is the electron
drift velocity, d is the distance between the electrodes,
and Ne0 is determined by formula (1). It is assumed that
a constant field is instantaneously switched on at the
time t = 0. The solution to Eq. (2) is

where the effective frequency ν ≡ νi – ud, e/d can be
either positive or negative.

The ionization frequency can be written as the prod-
uct νi = αiud, e of the Townsend coefficient αi(E, p) and
the electron drift velocity ud, e(E/p) [7]. The Townsend
coefficient can be expressed as αi(E, p) = pξ(E/p),
where ξ(E, p) is a function characteristic of a given gas,
E is the electric field strength, and p is the gas pressure.
The calculated values of these quantities (taken from
[17–19]) are shown in Fig. 1.

Multiplication takes place when νi > ud, e/d, i.e., at
αid > 1. For plane electrode geometry, when the voltage
between the electrodes is U = Ed, it follows from the
condition αid = 1 that pdξ(Ucr/pd) = 1. The latter equa-
tion determines the “escape curve” that separates the
parameter region corresponding to efficient electron
multiplication from the parameter region where elec-
trons escape from a discharge without multiplication
(see [17–19] for details). Each gas has its own escape
curve. The calculated escape curves for different gases
are shown in Fig. 2.

The condition U > Ucr(pd) is still insufficient for
sustaining a steady-state discharge. According to the
commonly accepted views, the ion density should be
high enough to enable a sufficiently intense electron
production due to secondary electron emission (see,
e.g., [7]). Hence, the occurrence of breakdown corre-
sponds to the Paschen curve whose right branch lies
somewhat above the escape curve (see [17–19] for
details). Nevertheless, at atmospheric pressure, an
intense multiplication of electrons begins under the
condition U > Ucr(pd). In the model under consider-

Ne0
2

Ne0 Gi/kd( )1/2 103 cm 3– .∼=

dNe

dt
--------- ν i

ud e,

d
--------– 

  Ne kd Ne
2, Ne 0( )– Ne0.= =

Ne t( )
Ne0 νt( )exp

1 Ne0kd/ν( ) νt( )exp 1–( )+
-------------------------------------------------------------------,=
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
105

104

103

100

10

1

α, cm–1

He
SF6

SF6

N2
He

Xe

Xe N2

71 89
(a)

(b)

(c)

SF6

N2

Xe

He

1010

109

108

107

106

ud, e, cm/s
10 100 103 104 105

1 10 100 103 104 105

1 10 100 103 104 105

E/p, kV/(cm atm)

1013

1012

1011

1010

109

108

107
N2

He Xe

He

SF6
N2

71 89

SF6

Fig. 1. (a) Townsend multiplication coefficients, (b) elec-
tron drift velocities, and (c) ionization frequencies vs.
reduced electric field E/p for different gases at atmospheric
pressure (by the data from [17–19]).
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ation, the electron density is limited to the value (for
d ≈ 1 cm)

(3)

Actually, under the above conditions, the value
Ne max cannot be reached because the external field is
shielded by the plasma. It is because of the high ioniza-
tion frequency νi ∝  N ∝  p and, accordingly, the high
maximum electron density Ne max that a streamer is
formed at high pressures. Shielding begins to play an
important role at 4πedNe max > E.

It can be seen from Fig. 3 that, at atmospheric pres-
sure and d ≈ 1 cm, the condition αid = 1 (or U = Ucr) is
satisfied at electric fields at which the ionization fre-
quency is already fairly high. Consequently, the back-
ground electron density at which the distance between
the electrons is much less than the size of the streamer
head is reached over a relatively short time.

Indeed, taking, for example, αid = 2 (or νi = ud/2d),
we find that the time required to reach a certain back-
ground electron density Nebg ! Ne max is

It can be seen from Fig. 3 that, for Nebg ~ 106 cm–3

(which corresponds to a mean interelectron distance on
the order of 0.1 mm), we have νi ~ 107 s–1 and, accord-
ingly, τ ~ 1 µs. This estimate corresponds to the mini-
mum fields at which the multiplication of the back-
ground electrons is still feasible. In higher fields, the
background is formed over a much shorter time (before
the formation of a streamer). The reason is that, to
enable the streamer formation, the electron density
must be high enough to ensure the condition νid/ud, e ~
20 [1–3]. To provide a background electron density that
is much less than the electron density in the streamer

Nemax ν i/kd ~ 10
14

 cm 3– .=

τ 2ν i
1– Nebg/Ne0( ).ln=
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Fig. 3. Ionization frequency vs. Townsend multiplication
coefficient for different gases at atmospheric pressure (by
the data from [17–19]).
head, it is sufficient that νid/ud, e ≈ 5. For this reason, the
background is formed at lower fields.

Thus, an increase in the voltage above the escape
curve results in a sharp increase in the background elec-
tron density throughout the entire volume occupied by
the electric field until a plasma bunch shielding the field
forms in a certain spatial region.

2. Electronegative Gases

In electronegative gases in the absence of an electric
field, the electron density is much lower than that deter-
mined by formula (1). Electrons attach to neutrals due
to both pair collisions while degrading over energy
through the energy range of a few electronvolts and
three-body collisions at room temperature. At the same
time, the density of negative and positive ions is
~103 cm–3.

When considering electron multiplication in an
electronegative gas within model (2), it is necessary to
take into account electron attachment and the fact that
the electron density is zero at the initial time:

(4)

Here, in contrast to the case of electropositive gases, the
quantity νi ≡ νmult – νatt accounts for both multiplication
and attachment of electrons (νmult and νatt are the multi-
plication and attachment frequencies, respectively).
The initial stage of multiplication, when Ne ! Ne max, is
considered. The solution to Eq. (4) is

(5)

In electronegative gases, the dependence of νi on the
reduced electric field passes through zero at a certain
E/p value. For example, in SF6, we have νi = 0 at E/p =
71 kV/(cm atm) [19]. It is experimentally shown, how-
ever, that breakdown occurs at a somewhat higher field,
E/p = 89 kV/(cm atm) [7], at which the ionization fre-
quency is substantially increased (Fig. 1).

Taking αid = 2 (or νi = ud/2d), we find that the time
during which a certain electron density Nebg @ Gi/νi is
reached is

Let us take Nebg ~ 106 cm–3 and use the data for SF6
and E/p = 77 kV/(cm atm) from Fig. 3. We then have
νi ~ 2 × 109 s–1; Gi/νi ~ 10–7 cm–3; and, accordingly, τ ~
30 ns.

Thus, as in the case of electropositive gases, rapid
electron multiplication takes place at prebreakdown
electric fields. However, electron multiplication in elec-
tronegative gases begins at significantly higher fields
than in electropositive gases.

dNe

dt
--------- ν i

ud e,

d
--------– 

  Ne Gi, Ne 0( )+ 0.= =

Ne t( )
Gi

ν
----- νt( )exp 1–( ), ν ν i ud e, /d–( ).≡=

τ 2ν i
1– GiNebg/ν( ).ln=
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PROPAGATION OF THE FRONT 
OF BACKGROUND ELECTRON 

MULTIPLICATION IN A NONUNIFORM 
ELECTRIC FIELD

1. Simple Model

Let a small plasma body with a sufficiently high
density (such that the electric field is zero inside it) be
formed between plane electrodes. Let the plasma body
be surrounded by a gas with a very low degree of ion-
ization. In other words, the electron density outside the
plasma body is many orders of magnitude lower than
inside it.

In this paper, we consider an ionization propagation
mechanism related to the exponential multiplication of
the low-density background electrons in a nonuniform
electric field, rather than to the electron drift or radia-
tion transfer. The higher the electric field at a given spa-
tial point, the higher the rate of electron multiplication.
The field is concentrated at the streamer head. There-
fore, electron multiplication is most intense near the
streamer head, where the field is the highest. The
increase in the electron density is accompanied by the
shielding of the electric field and the shift of the plasma
boundary. Hereinafter, this phenomenon will be called
a background multiplication wave.

Let us describe the multiplication wave using the
following simple model. We ignore the electron drift
and define the boundary between the streamer and the
neutral gas as the surface at which the plasma density
reaches a certain critical value Ncr that corresponds to
the complete shielding of the electric field. The electron
density at any spatial point with a radius-vector r is then
given by the expression

(6)

where N0 is the background plasma density. It is clear
that, within model (6), the propagation direction of the
ionization wave does not depend on the sign of the pro-
jection of the field on the propagation direction because
the ionization frequency is determined by the absolute
value of the electric field.

2. Velocity of the Multiplication Front

The coordinates of the front of the multiplication
wave are determined by the points at which the electron
density reaches its critical value. Let us consider how
the coordinate z(t) of one of the front points varies
along the normal to the front. The dependence z(t) is
implicitly determined by the expression

(7)

where E0 = E(z(0)) is the electric field at the front sur-
face.

Ne r t,( )

= 
N0 ν i E r( )( )t[ ] for N0 ν i E r( )( )t[ ]exp Ncr<exp

Ncr for N0 ν i E r( )( )t[ ]exp Ncr,≥



ν i E0 z t( )( )( )t Ln, Ln Ncr/N0( ),ln≡=
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Generally, the quantity Ln, together with Ncr, is a
function of E0. However, we ignore this dependence
because it is logarithmic. Taking the derivative of
expression (7), we obtain

(8)

If we approximate a piece of a surface near the
streamer head with a sphere of radius r0, then we obtain

 = 2/r0. Accordingly, we have

(9)

As was mentioned above, the ionization frequency
can be written as the product of the Townsend coeffi-
cient αi(E, p) = pξ(E/p) and the electron drift velocity
ud, e(E/p): νi = αiud, e. It is important that the most sig-
nificant ionization characteristics are functions of the
reduced electric field E/p. Therefore, the propagation
velocity of the streamer head can be expressed through
the functions of E0/p,

(10)

which are unique for a given gas.

In [17–19], it was found that the dependence νi(E, p)
has a maximum at a certain field strength E/p = (E, p)cr.
This should result in some specific features of the prop-
agation of the ionization front that will be discussed
below.

3. Front Velocity in Helium and Xenon

Let us consider in more detail the propagation of the
ionization front in helium and xenon, because the ion-
ization–drift characteristics of these gases were thor-
oughly investigated numerically and simple approxi-
mations were obtained in [17–19]. For helium [17], we
have

(11)

Substituting expression (11) into formula (10), we
obtain

(12)

where x = (E0/p) V/(cm Torr). For helium, we have
(E0/p)cr ≈ 720 V/(cm Torr). For xenon, the following

ufr
dz
dt
----- ν i

d νln
d Eln
------------ ∇ E–

E
----------- 

 
E E0=

Ln
1–

.= =

∇ E/E– E E0=

ufr ν ir0
d νln
d Eln
------------ 

 
E E0=

2Ln
1–

.=

ufr ν ir0/ζ E0/ p( ),=

ζ E0/ p( ) 2Ln
d ude E/ p( )ξ E/ p( )( )ln

d E/ p( )ln
----------------------------------------------------- 

 
E/ p E0/ p=

,=

ξ x( ) = 5.4 torr( ) 1– 14/x( )1/2– 1.5– 10 3– x×( ),exp

ude 106 cm/s.=

ufr ν ir0/ζ x( ),=

ζ x( ) 2Ln 1 1.87x 1/2– 1.5 10 3–×–+( ),=
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approximation was used [18, 20]:

(13)

(14)

For xenon, we have (E0/p)cr ≈ 7 kV/(cm Torr). The
front propagation velocity as a function of the reduced
electric field in helium and xenon is shown in Fig. 4.

ξ x( )

=  45 torr( ) 1– ud e, 31.1– 1/x( )1/2 1.7 10 4– x×–( ),exp

ud e,

=  1.3x 1.3x6+

1 7.31 1010x5.8×+
-------------------------------------------- 1.3 105 2.2

x
-------– 

 exp×  cm/s( ).+
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105104103100101
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2

Fig. 4. Absolute value of the ionization front velocity |ufr|
(solid curves) and the drift velocity ud, e (dotted curves) vs.
reduced electric field at the streamer head E0/p for

(1) helium and (2) xenon at Ncr = 1014 cm–3, N0 = 10 cm–3,
r0 = 0.5 mm, and p = 1 atm (calculations by formulas (6)–
(9)). The crosses show the computation results by model
(1). Throughout the entire parameter range, αir0 > 10.
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Fig. 5. Propagation of an ionization wave in helium in a
nonuniform electric field for the same parameters as in
Fig. 4 and for E0/p = 15.3 V/(Torr cm): the electron density
profiles at the times t = (1) 1.4, (2) 1.47, (3) 1.55, and
(4) 1.75 ns (calculations by formula (1)).
Formula (12) was verified by numerically simulat-
ing a spherically symmetric plasma bunch. The elec-
tron density distributions at different times were calcu-
lated by formula (11) (see Fig. 5). Using these distribu-
tions, the time evolution of the front radius rfr was
approximated by a linear dependence (Fig. 6), which
determines the front velocity. Some points thus
obtained are shown in Fig. 4.

4. Front Velocity in N2 and SF6

When analyzing the propagation velocity of back-
ground multiplication in N2 and SF6 (see Fig. 7), we
used the values of αi and ud, e from Fig. 1 [19]. The non-
monotonic behavior of the propagation velocity of
background multiplication in SF6 is explained by the
nonmonotonic dependence of the derivative of the ion-
ization frequency with respect to the reduced field. This
is caused by the presence of three threshold ionization
energies (20, 40, and 50 eV) in SF6.

COMPARISON WITH THE COMPUTATION 
RESULTS BY THE DRIFT–DIFFUSION MODEL

1. Drift–Diffusion Model

To confirm the presence of a background multiplica-
tion wave, we performed numerical simulations with
the use of a one-dimensional drift–diffusion model (see
[21] for details). This model accounts for the develop-
ment of ionization between coaxial cylindrical elec-
trodes, r0 < r < r1, where r0 and r1 are the radii of the
inner and outer electrodes, respectively. The plasma
formation and the electric field shielding were
described by the equations for the momentum transfer
and the continuity equations for electrons and ions, as
well as by Poisson’s equation for the electric field. The
field dependences of various quantities entering into the

1.10

1.08

1.06

1.04

1.02

rfr/r0

1.3 1.4 1.5 1.6 1.7 t, ns

Fig. 6. Time evolution of the normalized front radius rfr/r0
for E0/p = 15.3 V/(Torr cm). The crosses correspond to the
data from Fig. 2. The dotted line shows the approximation
rfr/r0 = ufrt/r0 + 0.718, with ufr = 1.1 × 107 cm/s.
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equations of the drift–diffusion model (the ionization
frequencies, drift velocities, and diffusion coefficients)
were specified using the approximations for xenon
from [20]. The voltage between the electrodes was
specified, and the possibility was also ensured of spec-
ifying the initial uniform background plasma density
and a region with an increased degree of ionization in
the form of a Gaussian distribution.

Because of the very large amount of the data
obtained, let us restrict our consideration to the brief
description of some of them.

2. Plane Geometry

In the case of nearly plane electrodes (d = r1 – r0 !
r1), the ionization wave propagated from the cathode
toward the anode only if an excess degree of ionization
was set near the cathode at the initial time. Moreover,
the anode-directed ionization wave was observed only
at low voltages and, accordingly, small Townsend mul-
tiplication coefficients αi & 1/d, i.e., when the electrons
escaped from the discharge gap without significant
multiplication. In the opposite case (when αid @ 1),
volume ionization proceeded faster than the electrons
drifted toward the anode; thus, the region with an
increased initial degree of ionization did not have time
to significantly shift over the time required for the ion-
ization of the entire gas in the gap.

Indeed, the electrons pass through the discharge gap
over a time of d/ud, e. The region with an elevated initial
plasma density begins to expand when the characteris-
tic time of volume ionization Ln(νi)–1 = Ln(αiud, e)–1 is
longer than or on the order of the electron drift time,
Ln/αiud, e < d/ud, e, i.e., when αid < Ln. If there is no
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Fig. 7. Absolute value of the ionization front velocity ufr
(heavy solid curves), drift velocity ud, e (dotted curves), and
ionization frequency νi (light solid curves) vs. reduced elec-
tric field E0/p at the streamer head in (a) N2 and (b) SF6 for

Ncr = 1014 cm–3, N0 = 10 cm–3, r0 = 0.5 mm, and p = 1 atm;
(E0/p)cr ≈ 4.7 kV/(Torr cm) for N2 and (E0/p)cr ≈
23 kV/(Torr cm) for SF6. The data from [20, 21] were used.
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region with an elevated initial plasma density, then,
according to Eq. (10), the velocity of the ionization
front at r0  ∞ is infinitely high and ionization occurs
simultaneously throughout the entire volume.

3. Nonuniform Electric Field

For coaxial cylindrical electrodes with a low-radius
cathode (r1 @ r0), a region with an elevated degree of
ionization is formed near the cathode at both low and
high voltages. This region propagates in accordance to
expression (6) due to the electric field nonuniformity,
rather than due to the electron drift.

To demonstrate the effect of a background multipli-
cation wave, the computations were performed with a
low-radius anode (i.e., a positive potential was applied
to the electrode of radius r0, while a zero potential was
applied to the outer electrode of radius r1). According to
the computation results, the background multiplication
wave propagates from the anode toward the cathode
(Fig. 8). The propagation velocities calculated using
the complete drift–diffusion model and background
multiplication model (6) differ by only 3% (see Fig. 9).

1016
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1 2 3 4
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(b)
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1 2 3 4

5 × 106
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0.026 0.030 0.032 0.036 r, cm
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Fig. 8. Time evolution of the radial profiles of the (a) elec-
tron density and (b) electric field for a small-radius anode
(the case of a cathode-directed background multiplication
wave in xenon at p = 1 atm, r0 = 0.025 cm, r1 = 0.825 cm,
and U = 100 kV): t = (1) 0.012, (2) 0.013, (3) 0.014, and
(4) 0.015 ns (calculations by the comprehensive drift–diffu-
sion model [20]). Curve 5 in Fig. 8b shows the electric field
profile in vacuum.
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DISCUSSION

1. Streamer Propagation Velocity

When E0/p < (E0/p)cr, the velocity of the background
multiplication wave is on the order of the experimen-
tally observed streamer velocity (~107–109 cm/s). A
more precise comparison with the experimental data
calls for two-dimensional computations. Note that, at
certain values of r0 and E0/p, the velocity of the multi-
plication wave is equal to the electron drift velocity and
exceeds it at higher electric fields and large head radii
(see Figs. 4, 7). Hence, at low electric fields, the con-
ventional mechanism for the propagation of the anode
end of a streamer due to the electron drift can prevail in
the initial stage. However, as the degree of ionization
increases, the electric field at the streamer head
increases (due to an increase in the streamer length).
Therefore, in the later stage, the ionization due to back-
ground multiplication should be dominant.

As for the propagation of the cathode end of a
streamer, it obviously cannot be caused by the electron
drift. The propagation of the ionization wave toward the
cathode is apparently related to the above-discussed
background electron multiplication in a nonuniform
electric field.

2. Extension of the Ionization Region

To calculate the streamer shape, it is necessary to
use two- and even three-dimensional models. Some
conclusions can, however, be made based on the above

0.040
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rfr, cm

0.012 0.013 0.014 0.015 0.016 0.017
t, ns

Fig. 9. Time evolution of the front radius rfr. The crosses
show the results of calculations by the comprehensive drift–
diffusion model at the same times as in Fig. 4. The squares
show the results of calculations by the background multipli-
cation model (1). The dotted and the dashed lines show the
linear approximations of the computation results: rfr = ufrt +

const, with ufr = 1.85 × 108 cm/s and const = 6.4 × 10–3 cm

for the drift–diffusion model and ufr = 1.79 × 108 cm/s and

const = 6.06 × 10–3 cm for the background multiplication
model (1).
one-dimensional consideration. The shape of the
streamer head is determined by the competition
between two factors. According to Eq. (11), the front
velocity increases with electric field (if E0/p < (E0/p)cr)
and increases linearly with the radius of curvature r0.
However, the electric field is higher at points where the
radius of curvature is smaller. At moderate electric
fields (E0/p < (E0/p)cr), the dependence on the electric
field is significantly steeper than linear. Therefore, the
very end of the head will propagate faster than its other
parts. Thus, at E0/p < (E0/p)cr, the ionization region will
stretch out.

It should be noted, however, that the minimum
radius of curvature r0 cannot be made arbitrarily small
because the above consideration is valid for αir0 @ 1.

The electric field at the streamer head increases with
the streamer length. Therefore, the propagation veloc-
ity of a streamer should also increase with its length, as
was experimentally observed in [6].

3. Infinite and Negative Velocities

It follows from Eq. (7) that, when E0/p = (E0/p)cr, the
propagation velocity of the background multiplication
wave tends to infinity. Since the multiplication wave
does not transfer information from point to point in the
propagation direction, this velocity can formally be
even higher than the speed of light. However, in some
cases, the delayed shielding of the external field (not
taken into consideration in the above model) should
limit the propagation velocity of the multiplication
wave to the speed of light.

When E0/p > (E0/p)cr, the front velocity of the back-
ground multiplication wave is opposite to the field gra-
dient. Hence, at a certain distance from the front (at the
point where E0/p = (E0/p)cr), an ionization region that
extends in both directions should emerge. In this case,
one should observe a jerky motion of the streamer. A
slightly nonmonotonic dependence of the ionization
frequency on the electric field (Fig. 7b) should also lead
to an unstable streamer propagation.

CONCLUSIONS
Thus, a simple mechanism for the propagation of an

ionization wave in a dense gas has been proposed. The
mechanism does not depend on the sign of the projec-
tion of the electric field on the streamer propagation
direction and is related to the difference in the rates of
electron multiplication in a nonuniform electric field.
The streamer propagation is caused by the enhance-
ment of the electric field at the streamer head.

The multiplication of electrons in both electroposi-
tive and electronegative gases at prebreakdown fields
has been considered. The initial ionization is enabled
by the natural background of ionizing radiation and
cosmic rays. It is shown that prebreakdown multiplica-
tion is capable of providing a sufficiently high density
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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of background electrons. This allows one to treat the
background as a continuous medium when considering
streamer propagation as a multiplication wave.

An analytic expression for the velocity of the ioniza-
tion front is obtained based on a simple equation for the
multiplication of background electrons. This expres-
sion is in good agreement with numerical simulations
performed within both the simple model of background
electron multiplication and a more comprehensive
drift–diffusion model. In particular, it is shown using
the drift–diffusion model that the ionization front can
propagate from the small-radius anode to the cathode
due to the multiplication of background electrons. The
propagation velocity of the ionization wave is com-
puted as a function of the electric field at the streamer
head for He, Xe, N2, and SF6.

Obviously, in this paper, we did not take into consid-
eration a great number of various phenomena related to
the streamer propagation. In particular, preionization
can be provided by the fast electrons emitted from the
anode-directed end of the streamer. Also, it was not
taken into account that a streamer can branch and that
preionization in lightning can be provided by the fast
(precursor) electrons. Nevertheless, even the above
simple analysis shows that the mechanism proposed
can be considered as a good alternative for the photon
hypothesis.
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Abstract—Various ways of specifying the pinning-energy concept for planar vortices in a three-dimensional
cellular Josephson medium are analyzed. It is shown that, for values of the pinning parameter I that are not
small, a universal characteristic of vortex interaction with the lattice cannot be found, since the displacement of
a vortex distorts its shape. At small values of I, the maximum pinning force can be chosen for such a character-
istic. Two equilibrium states of a vortex are analyzed for stability. It is revealed that the state of higher energy
is not inevitably unstable. A correct analysis of stability must be based on exploring a quadratic form that
describes the energy of a current configuration. Such an investigation is performed for the equilibrium state of
a vortex. At small values of the pinning parameter, the vortex state of higher energy is quasistable. © 2004
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Vortex structures play an extremely important role
in processes occurring in superconducting materials.
For this reason, a large number of theoretical and exper-
imental studies have been devoted to examining the
dynamics of vortices, their interaction with one
another, their stability, their pinning on various inho-
mogeneities of a medium, and other relevant phenom-
ena. The strength of pinning is usually characterized by
the pinning energy. However, the meaning of this con-
cept calls for refining. It is the most convenient to con-
sider this issue within a model that admits an exact
mathematical treatment.

Planar (laminar) vortices in a three-dimensional
ordered Josephson medium that has the form of a cubic
lattice consisting of superconducting wires and con-
taining one Josephson contact in each connection were
considered in [1].

The energy of a stationary vortex per 1 m of its
length is given by

(1)

where ϕk are the phase jumps across the contact, I is the
so-called pinning parameter, and E0 is a normalization
constant.

In the following, energies are everywhere expressed
in terms of E0 units. In expression (1), the first term rep-
resents the magnetic energy of a vortex, while the sec-
ond term describes the energy of Josephson contacts.

The equilibrium states of a vortex, which corre-
spond to an extremum of its energy, are described by

E E0
1
2
--- ϕk 1+ ϕk–( )2 I 1 ϕkcos–( )+ ,

k ∞–=

∞

∑=
1063-7842/04/4909- $26.00 © 21158
the set of finite-difference equations

(2)

which are obtained from the condition ∂E/∂ϕm = 0.
A set of equations that is similar to (2) also describes

the behavior of vortices in a long periodically modu-
lated Josephson contact [2, 3].

The set of Eqs. (2) was first obtained by Frenkel and
Kontorova in describing the behavior of edge disloca-
tions in crystals [4]. In view of its discreteness, this set
of equations makes it possible to analyze the behavior
of solitons with allowance of their pinning, which is
controlled by the energy that is required for shifting the
center of a vortex from one cell to another.

For the set of Eqs. (2), solutions of two types corre-
sponding to equilibrium planar vortices were consid-
ered in [1]. In one of these, the symmetry axis passes
through the center of a medium cell. In the other, the
center of a vortex lies on one of the wires. Since the
energy of the second configuration exceeded the energy
of the first configuration, it was concluded in [1] that
the first configuration is stable, but that the second con-
figuration is unstable. In addition, it was tacitly
assumed in [1–3] that a vortex that initially has the first
configuration and which moves to the neighboring cell
traverses half a cell in the coordinate and takes the form
of the second configuration, which is the configuration
that corresponds to the maximum energy of the vortex
at the instant of its passage above the barrier separating
the cells. On the basis of this model, it was deduced that
the pinning energy is precisely the energy difference
between the second and the first configuration of a
vortex.

In the present study, it is shown that both these con-
clusions—that concerning the character of stability and

ϕm 1+ 2ϕm– ϕm 1–+ I ϕm,sin=
004 MAIK “Nauka/Interperiodica”
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that concerning the mode of vortex motion—are incor-
rect and that the concept of the pinning energy requires
refining.

The character of stability is not determined unam-
biguously by the hierarchy of energies of equilibrium
states. The configuration having the lowest energy is
always stable. In general, the second configuration can
also be stable, despite the fact that its energy exceeds
the energy of the first configuration. A configuration of
higher energy must be individually analyzed for stabil-
ity. Prior to clarifying the character of stability, we will
not therefore apply the terms “stable” and “unstable” to
the aforementioned configurations—instead, we will
merely refer to them as the first and the second config-
uration.

At the instant of a transition from one cell to
another, a vortex is not in its second equilibrium state;
therefore, the barrier energy is not equal to the energy
difference between the second and the first configura-
tion. In order to prove this statement, it is convenient to
consider the behavior of the system formed by two iso-
lated vortices.

TWO ISOLATED INTERACTING VORTICES

Let us analyze the set of Eqs. (2) for the case of two
vortices that have identical orientations [5], which are
far off the boundary, and whose centers separated by N
rows occur in rows 1 and (N + 1) (the numbers of the
rows are enclosed by circles in Fig. 1). As one moves to
the left of cell 1 and to the right of cell (N + 1), the cur-
rents Jk decrease, tending to zero at infinity.

At values of the pinning parameter I that are not
small, the values of ϕm off the central cells of the vorti-
ces are small, the set of Eqs. (2) linearizes, and its solu-
tion has the form [5]

(3)

(4)

(5)

where γ = 1 + I/2 –  is a solution to the char-
acteristic equation γ2 – (2 + I)γ + 1 = 0.

We will assume that the distribution of the currents
and phases is symmetric with respect to the midpoint of
the distance between the vortices. For identically ori-
ented vortices that are repelled from each other, we then
have C1 = –C2 = ϕ1/(1 – γN – 1) and

(6)

where k = γ(1 – γN – 3)/(1 – γN – 1).
Substituting (6) into the boundary conditions in the

central cell of the vortex,

(7)

ϕm ϕ 1– γ m– 1– m 1–≤( ),=

ϕm C1γ
m 1– C2γ

N m– 1 m N≤ ≤( ),+=

ϕm ϕN 1+ γm N– 1– m N 1+≥( ),=

I I2/4+

ϕ2 ϕ1k,=

I ϕ1sin ϕ 1– 2ϕ1– ϕ2 2π,+ +=
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(8)

we obtain the following set of equations for determin-
ing ϕ–1 and ϕ1:

(9)

(10)

In Eqs. (9) and (10), only the coefficient k depends
on the distance between the vortices: k(∞) = γ, k(2) = –1,
k(3) = 0, and so on. In Fig. 2, the graphs corresponding
to Eqs. (9) and (10) are given for I = 2.0 at N = 2, 4, and
∞ and for I = 2.9 at N = 3 and ∞. On the basis of these
curves, it is concluded in [5] that, at each value of I, the
set of Eqs. (9) and (10) has a solution in a specific range
of N values—that is, vortices can be separated by dif-
ferent distances from a minimum distance to infinity.
This is the result of pinning, since, in the absence of
pinning, the vortices would go to infinity—that is, there
would be no solutions at finite N values. By determin-
ing the minimum value of N at given I, we will find the
minimum distance at which pinning forces can com-
pensate the mutual repulsion of the vortices. From
Fig. 2a, it can be seen that, at I = 2, Nmin = 2. If the cen-
ters of the vortices lie in neighboring cells (that is, if
N = 1), it follows from (6) that k(1) = ∞; from (9), we
then obtain ϕ1 = 0, which is readily understandable in
view of the symmetry of the picture. The minimum
value of I at which Eq. (10) is still satisfied at ϕ1 = 0 is
2.9. In Fig. 2b, the curve that is tangent to the ϕ–1 axis
at the point of minimum corresponds to this value.

In a similar way, we can also consider the case of
vortices having opposite orientations and attracting
each other. In that case, we set C2 = C1 in (4) and arrive
at Eqs. (9) and (10), the only difference being that, here,
k = γ(1 + γN – 3)/(1 + γN – 1). Figure 3 shows the graphs
for this case at I = 2.16 and N = 3, I = 3.69 and N = 2,
and I = 14.3 and N = 1.

On the basis of the data in Figs. 2 and 3, we can draw
yet another important conclusion. The graphs corre-
sponding to Eqs. (9) and (10) have three or even five
intersection points rather than two, as might have been

I ϕ 1–sin ϕ1 2ϕ 1–– ϕ 2– 2π,–+=

ϕ 1– I ϕ1 2 k–( )ϕ1 2π,–+sin=

ϕ1 I ϕ 1–sin 2 γ–( )ϕ 1– 2π.+ +=

J1 J1 J2 J3 JN – 1JN JN + 1 JN + 2

1 2 3 N N+1

Fig. 1. Distribution of currents in a plane orthogonal to the
vortex axes for two solitary interacting vortices.
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expected in view of the fact that a vortex has two equi-
librium states. This, however, does not indicate that
there are additional equilibrium vortex configurations.
As a matter of fact, there are only two intersection
points, the remaining ones being their copies that cor-
respond to the subtraction of 2π in a different row of
contacts (this does not change the physical situation).

Let us consider in greater detail this statement for
the case of a solitary vortex, which corresponds to N =
∞. We take the central intersection point at –ϕ–1 = ϕ1 =
a. For the vortex to look symmetric in the coordinate,
2π was added in this case to the results obtained on the
basis of (2) in calculating ϕ1. If this had been done in
calculating ϕ2, then ϕ1 would have been equal to (a –
2π)—that is, it would have been negative and would
have been considered as a new phase ϕ–1. In this case,
the former phase ϕ2 = aγ [from (4)] would have become
a new phase ϕ1. These are the values that correspond to

(a) ϕ1

2π

N = ∞
N = 4

N = 2

N = 1
–2π –π 0 ϕ–1

(b)
ϕ1

2π

N = ∞
N = 3

N = 1

–2π –π 0 ϕ–1

Fig. 2. Graphical solution to the set of Eqs. (9) and (10) for
vortices of identical orientations (repulsion) at various val-
ues of the pinning parameter I: (a) 2.0 and (b) 2.9.
the extreme left point of the intersection of the curves
associated with Eqs. (9) and (10). Following a similar
line of reasoning, we find that, if the term 2π had been
added in calculating ϕ–1 rather than ϕ1, then the former

(a)
ϕ1

2π

N = ∞

N = 3

–2π –π 0 ϕ–1

π

(b)
ϕ1

N = ∞

N = 2

–2π –π 0 ϕ–1

π

2π

(c)
ϕ1

N = 1

–2π –π 0 ϕ–1

2π

Fig. 3. Graphical solution to the set of Eqs. (9) and (10) for
vortices of opposite orientations (attraction) at various val-
ues of the pinning parameter I: (a) 2.16, (b) 3.69, and
(c) 14.3.
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phase ϕ–2 = –aγ would have become a new phase ϕ–1,
while the former phase ϕ–1 transformed into (–a + 2π)
would have been a new phase ϕ1. This point corre-
sponds to the extreme right point of the intersection of
the curves in Fig. 2. Thus, both of the extreme intersec-
tions correspond to a physical state that is described by
the central intersection point—that is, to the first vortex
configuration. In a similar way, one can show that the
remaining two intersection points (for ϕ–1 = –π and ϕ1 =
π) both correspond to the second configuration.

For the curves associated with N ≠ ∞—that is, for
the case of two interacting vortices—the situation is
similar, but physically identical intersection points lie
on different curves. Indeed, we recall that, since, in
deriving Eqs. (9) and (10) for repelling vortices, we
assumed the distribution of the phases to be symmetric
(that is, C1 = –C2), the disposition of a new phase ϕ–1 in
terms of the former phase ϕ1 corresponds to a decrease
of 2 in the distance N between the vortices. As identical
intersection points, we then have, for example, the cen-
tral intersection point at N = 4 and the extreme left
intersection point at N = 2, the extreme right intersec-
tion point at N = 4 and the central intersection point at
N = 2, and the second intersection point from the right
at N = 4 and the second intersection point from the left
at N = 2. This can clearly be seen in Fig. 2a, where the
curves specified by Eqs. (9) and (10) are tangent to each
other at N = 4 on the upper right and at N = 2 on the
lower left, this confirming the identity of two pair of
points simultaneously. A similar pattern can be seen in
Fig. 2b, where, at N = 3, the curves touch each other on
the upper right and where, at N = 1, the curve specified
by Eq. (10) touches the abscissa, which, at N = 1, cor-
responds to (9).

Thus, there are only two physically different states.
This conclusion is valid for the case of two attracting
vortices as well (see Fig. 3). Further, states correspond-
ing to the central intersection point in Fig. 2 and the
second intersection point from the left (ϕ–2 = –π for
N = ∞) will be considered as the representative states
for repelling vortices. In the case of attracting vortices,
the curve specified by Eq. (9) deviates in the opposite
direction as the vortices approach; therefore, it is more
convenient to consider the central intersection and the
second one from the right (ϕ1 = π for N = ∞) as the rep-
resentative states in this case.

ENERGY BARRIER

The above analysis of two interacting vortices pre-
sumes a jumplike change in the distance N between the
centers of the vortices. This means that, at some value
of N, points at which the curves in question intersect in
Figs. 2 and 3 still exist, but that there are no such points
at N less than that by unity. Therefore, this approach
gives no way to consider the exact instant of the transi-
tion from one cell to another, this instant corresponding
to the state of maximum energy.
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
Instead of a symmetric configuration of two vorti-
ces, we will now consider one asymmetric vortex char-
acterized by the following values of ϕk across the con-
tacts closest to the center:

(11)

These values correspond to expressions (3) and (4).
Substituting (11) into Eqs. (7) and (8), we arrive at

(12)

(13)

Here, positive (negative) values of d correspond to
repulsion (attraction) on the right, the growth of d lead-
ing to the enhancement of this interaction, with the
result that, at some value of d, the vortex being consid-
ered can no longer occur in a given cell and must jump
into the next one. This is the value of d that corresponds
to the energy barrier.

The set of Eqs. (12) and (13) differs from the set of
Eqs. (9) and (10) only by the presence of the term d(1 –
γ2) in (12). This term shifts the entire curve ϕ–1(ϕ1) at
k = γ to the right (or to the left). Figure 4 shows the
graphs specified by Eqs. (12) and (13) at I = 2.0 and
some values of d for the cases of (curve 1) attraction
and (curve 2) repulsion. It was shown above that there
are only two physically different configurations. The
corresponding points of the intersection of the graphs
associated with Eqs. (12) and (13) are represented by
the closed circles in Fig. 4. One can see that, with
increasing d, these points approach each other, merging
at some value of d, whereupon there are no representa-
tive intersection points. This means that the vortex can
no longer remain in the cell being considered. It is

ϕ 1– a, ϕ 2–– aγ, ϕ1– b dγ,–= = =

ϕ2 bγ d .–=

ϕ 1– I ϕ1sin 2 γ–( )ϕ1 2π– d 1 γ2–( ),+ +=

ϕ1 I ϕ 1–sin 2 γ–( )ϕ 1– 2π.+ +=

ϕ1

2π

N = ∞

1

N = 1

–2π –π 0 ϕ–1

π

2

Fig. 4. Graphical solution to the set of Eqs. (12) and (13) at
I = 2.0 and some values of d for the cases of (1) attraction
and (2) repulsion.
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Energies Eb corresponding to the jump of a vortex to a different cell for the cases of repulsion and attraction and energies E1
and E2 of the equilibrium states of a solitary vortex

No.
Repulsion Attraction

Imin Eb E1 E2 Imin Eb E1 E2

1 2.907 14.85 12.36 13.07 14.30 22.31 17.43 37.86

2 1.947 11.46 10.62 10.99 3.690 15.78 13.36 15.42

3 1.428 9.65 9.28 9.40 2.156 14.13 11.07 11.57
important to note that, in contrast to what was implied
in [1–3], this energy-barrier state is not the second con-
figuration of an equilibrium vortex. Moreover, a vortex
does not assume its equilibrium configurations (neither
the first nor the second one) at any instant while going
over from one cell to another. Even after the transition
to the next cell, d is not equal to zero—that is, the vor-
tex does not assume its first equilibrium configuration.

The aforementioned assumptions were based on the
erroneous analogy between a vortex and a pointlike
object on a potential relief. Indeed, the energy barrier
for a pointlike object going over from one valley to
another corresponds to the position of the point on the
ridge—that is, to its unstable equilibrium. Upon over-
coming the barrier, the point occurs in a state of a stable
equilibrium.

A vortex is not a pointlike object. It is a configura-
tion whose shape depends on the situation.

Let us consider the energy in (1) as a function of the
variables ϕk. This function describes a “mountain sys-
tem” in a multidimensional state. The equilibrium
states described by the set of Eqs. (2) correspond to the
vanishing of all partial derivatives; therefore, they can
be points of a local maximum or a minimum or saddle
points. Each of these points corresponds to an equilib-
rium state, these states involving various numbers of
vortices occurring at various distances from one
another. It is quite obvious that a configuration involv-
ing several vortices has, even in the case of their mutual
attraction, a total energy that exceeds the energy of a
solitary vortex. This means that, among all critical
points of the system (that is, equilibrium states), one
can single out states that possess the lowest energies
and which contain one solitary vortex. The number of
such points is indefinitely great, but all of them corre-
spond to the situation where only two physically differ-
ent configurations, referred to as the first and the second
one, are arranged in various cells of the medium. Obvi-
ously, the first configuration, which has a lower energy,
corresponds to a minimum, since there cannot be a
lower energy at all. Any infinitesimal change in the
combination ϕk leads to an increase in energy; there-
fore, this equilibrium state is stable. In contrast to what
was tacitly assumed in [1–3], the second configuration
does not correspond to a maximum, albeit it has a
higher energy. In fact, this point is surrounded by other
states corresponding to several vortices and having an
energy higher than its energy. Thus, the second config-
uration may correspond either to a minimum or to a
saddle point. This state would be stable in the former
and unstable in the latter case, this being so with respect
to some specific combinations of fluctuations rather
than with respect to all of them. A dedicated investiga-
tion is necessary for revealing the character of stability
of the second configuration, and it will be performed
below.

In analyzing the motion of a vortex from one cell to
another, we cannot consider a vortex as a solitary object
since it changes its shape. We assume that the force
causing the motion of a vortex is due to its interaction
with another vortex. The energies Eb corresponding to
the jump of a vortex to a different cell for the cases of
repulsion and attraction are given in the table along
with the energies E1 and E2 of two equilibrium states of
a solitary vortex. The distances N between the centers
of the vortices are presented in the first column, and the
smallest values of the pinning parameter I at which
these distances may take such values are quoted in the
second and sixth columns. All of these values were
obtained on the basis of a precise numerical solution to
the set of Eqs. (2). The fact that the Imin values are much
less in the case of repulsion than in the case of attraction
is worthy of special note. This indicates that, at the
same distance between the vortices, the force of attrac-
tion between oppositely oriented vortices is much
greater than the force of repulsion between identically
oriented vortices. In this respect, the situation is analo-
gous to that in the electrostatic interaction of charged
spheres having finite dimensions (that is, those that can-
not be considered as pointlike charges): at identical dis-
tances between the spheres and identical absolute val-
ues of the charges, the force of attraction between
unlikely charged spheres is greater than the force of
repulsion between likely charged spheres.

ON THE MEANING OF THE PINNING-ENERGY 
CONCEPT

In the situation being considered, it would be rea-
sonable to define the pinning energy as Eb – E1. From
the table, one can see that, in the case of repulsion, this
quantity exceeds considerably the difference E2 – E1,
which was taken for the pinning energy in [1–3]. In the
case of attraction, Eb – E1 may be either greater or less
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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than E2 – E1. Therefore, the difference Eb – E1 is not a
universal characteristic of pinning either. It depends on
the mechanism that displaces a vortex—in particular,
on whether the vortex being considered is attracted by
its neighbor from one side or is repelled by its neighbor
from the other side. Different mechanisms of action on
a vortex may also exist. In each case, the quantity Eb –
E1 depends on the character of variation of the entire
combination ϕk. In particular, there can arise the ques-
tion of the minimum vortex energy at which the vortex
being considered could move by inertia. The answer to
this question is also ambiguous, because such a motion
can be organized in different ways, depending on the
initial combination of the differences of phases and on
the rates of their variation, an individual energy value
corresponding to each mode of the motion.

The following model is useful in analyzing the con-
cepts of a pinning energy and a pinning force. For the
sake of simplicity, we will treat vortices as interacting
spheres each of which occurs in an individual well sur-
rounded by a barrier. At the instant corresponding to the
escape of a vortex from its well, the energy of this vor-
tex is then equal to the sum of the energy of the solitary
vortex, the energy of its interaction with a neighboring
vortex, and the positive barrier energy. In the case of
repulsion, the vortex-interaction energy is positive.
Therefore, the total energy of the vortex is greater than
the solitary-vortex energy. In the case of attraction, the
interaction energy is negative, whence it follows for the
second configuration that, for a large distance between
the vortices (N = 3), Eb > E2 since the absolute value of
the interaction energy is less than the barrier energy,
but, for N = 1, the hierarchy of the energies in question
is opposite. For the first configuration, however, this
argument does not work, since we always have Eb > E1.
In all probability, this is because a vortex cannot be
considered as a sphere.

Within the model being considered, the well depth
or the barrier height would be the most natural choice
for the pinning energy, because these are precisely the
quantities that characterize the interaction of a vortex
with the “lattice.” The problem to be solved here is that
of separating the energies of vortex interactions with
neighbors and with the lattice. The point is that the
model that treats a vortex as a pointlike object (sphere)
is simplified: it disregards changes in the shape of a vor-
tex, which lead to a change in the energy of its interac-
tion with other vortices and a change in the well depth,
depending on the situation. Thus, this quantity cannot
be a universal characteristic of pinning either.

For the same reason, it cannot be stated that a vortex
will jump from one cell to another as soon as the force
acting on it owing to the interaction with other vortices
exceeds some universal value of the pinning force.
According to its meaning, the former of these forces
must be equal to the gradient of the energy of the inter-
action of this vortex with other vortices, while the latter
is expected to be equal to the gradient of the energy of
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
its interaction with the lattice. In different situations,
however, a vortex has different shapes; therefore, the
separation of these two energies and, hence, of the
respective forces is questionable.

A consideration based on studying the set of equa-
tions describing a vortex for a specific problem is
strictly speaking the only correct approach in this case.
The strength of pinning can be characterized, for exam-
ple, by the minimum possible distance between two
identical isolated vortices, as was done above (see
Figs. 2, 3).

The approach proposed above and the set of Eqs. (9)
and (10) are valid under the assumption that the pinning
parameter I is not small. For I values less than or on the
order of unity, this approach is not legitimate.

At small values of I, pinning was analyzed in [1–3,
5]. In view of the aforesaid, the procedures employed
there seem incorrect for the following reasons. In [1–3],
the energy of a vortex for various displacements of its
center with respect to the center of a cell was calculated
by formula (1) for a vortex having an invariable shape
and moving along a coordinate. However, the shape of
a vortex is not invariable. For a vortex, any position (at
which its center does not lie either at the center of a cell
or on a wire) can be an equilibrium position if a force
generated, for example, by other vortices acts on it.
This means that the vortex shape can no longer be sym-
metric—one of its sides ascends (or descends in the
case of repulsion). The total energy of a vortex must
include the energy of its interaction with other vortices;
therefore, it differs from the results obtained in [1–3],
where attention was given primarily to mathematical
aspects of a calculation of the vortex energy without
taking into account deviations of its shape from a sym-
metric shape. This distinction is confirmed by the cal-
culations performed in [5], where it was tacitly
assumed that, at small values of I, the energies of the
interaction of a vortex with other vortices and with the
lattice, as well as the corresponding forces, can be cal-
culated separately. The former is calculated without
allowance for pinning on the basis of the model of con-
tinuous vortices, while the latter is calculated without
allowance for interaction with other vortices—that is,
for the symmetric case considered in [1–3]. On the
basis of this approach, the minimum possible distances
between planar vortices were calculated in [5] from the
condition that the force generated by the interaction of
neighboring vortices is equal to the maximum pinning
force. It can easily be shown that, under this condition,

the vortex-interaction energy is 2π/  times greater
than the energy difference (E2 – E1) between the two
equilibrium states of a vortex—that is, the energy of its
interaction with the lattice. Thus, we see that, at the
instant corresponding to the transition of a vortex from
one cell to another, the total energy of its interaction
exceeds the difference (E2 – E1) considerably.

Despite these reservations, however, the values
obtained in [5] for the distances between vortices are

I
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2 + IcosϕN … 0 0 0 0 0 … 0 aN … 0 0 0 0 0 … 0

… … … … … … … … … … … … … … … … … …

0 … 2 + Icosϕ2 –1 0 0 0 … 0 0 … a2 –1 0 0 0 … 0

0 … –1 2 + Icosϕ1 –1 0 0 … 0 0 … –1 a1 –1 0 0 … 0

0 … 0 –1 2–I –1 0 … 0 0 … 0 0 2 – I – 2/a1 –1 0 … 0

0 … 0 0 –1 2 + Icosϕ1 –1 0 0 0 0 0 a1 –1 … 0

0 … 0 0 0 –1 2 + Icosϕ2 … 0 0 … 0 0 0 0 a2 … 0

… … … … … … … … … … … … … … … … … …

0 … 0 0 0 0 0 … 2 + IcosϕN 0 … 0 0 0 0 0 … aN

Fig. 5. Matrix of the quadratic form in relation (14) for the second configuration: (a) original matrix and (b) result of reducing it to
a quasidiagonal form.

(a) (b)
close to those that were obtained on the basis of a pre-
cise numerical solution to the set of Eqs. (2). This con-
firms the validity of the assumption that the interaction
of a vortex with other vortices and its interaction with
the lattice can be calculated separately at small I,
whence we draw the following important conclusion: at
small values of the parameter I, pinning can be charac-
terized by a universal value of the maximum pinning
force. It was shown above that, at I values that are not
small, the force confining a vortex depends on how this
vortex is displaced—that is, it is not a universal charac-
teristic.

STABILITY OF THE EQUILIBRIUM STATES 
OF A VORTEX

As was shown above, a vortex is not a pointlike
object. It is a configuration whose shape changes,
depending on the situation. Therefore, one has to con-
sider, instead of the stability of a vortex as a discrete
unit with respect to a displacement (this would be sim-
ilar to what we have in the case of a sphere on a poten-
tial relief), stability with respect to any fluctuations of
the set of ϕk values—that is, with respect to any trans-
formations of the shape.

We will consider the energy as a function of the set
of variables ϕk. The combination of the variables ϕk that
describes the first configuration corresponds to the min-
imum energy of a solitary vortex. This point of a multi-
dimensional space occurs at a local minimum of the
function in (1) and is therefore stable.

Let us investigate the second configuration for sta-
bility. For this, we write the increment of the energy in
(1) for the set of variations δϕk [the first derivatives van-
ish by virtue of Eqs. (2)]. We have

(14)

Further, we assume that those ϕk that are rather far
off the center of the vortex being considered (k ≥ N + 1)

δE
∂2E

∂ϕk∂ϕm

-------------------δϕkδϕm.
k m,
∑=
are equal to zero. The matrix (∂2E/∂ϕk∂ϕm) of the qua-
dratic form in (14) then becomes finite and, for the sec-
ond configuration, assumes the form shown in Fig. 5a.

We add the first row multiplied by 1/(2 + IcosϕN) to
the second row; further, we add the resulting second
row multiplied by 1/(2 + IcosϕN) to the third row and
proceed in this way up to the central row. Diagonalizing
the matrix from the opposite angle, we add the ultimate
column multiplied by 1/(2 + IcosϕN – 1) to the penulti-
mate column and proceed in this way up to the central
column. The resulting matrix, whose elements below
the diagonal are all equal to zero, is given in Fig. 5b.
The diagonal elements are calculated according to the
recursion relations

(15)

Upon performing calculations on the basis of (15)
by using the values of ϕk for the second configuration
that were obtained from a precise numerical computa-
tion in [5], it can be proven that, for all values of I and
rather large values of N (vortex size), the inequality a1 <
2/(2 – I) always holds—that is, the central diagonal ele-
ment (2 – I – 2/a1) is always negative. By way of exam-
ple, we indicate that, at I = 0.5, a1 = 1.3375 for N = 3,
a1 = 1.3316 for N = 4, and a1 = 1.3296 for N = 10, while
2/(2 – I) = 1.3333. At I = 0.2, a1 = 1.1192 for N = 5, a1 =
1.1111098 for N = 15, and a1 = 1.1111088 for N = 40,
while 2/(2 – I) = 1.1111111. It can be seen that, at mod-
est values of I, the calculation of ak must be performed
quite accurately. The fact that, at small values of N, the
condition a1 < 2/(2 – I) does not hold any longer indi-
cates that, at the value of I being considered, the vortex
size is much larger than N, so that it is not legitimate to
set all ϕk to zero for k ≥ N + 1. In this case, N must be
increased; at sufficiently large values of N, a1
approaches saturation; that is, it ceases to change with
increasing N. This is the value of a1 that is true.

The determinant of a matrix whose elements below
the diagonal are all zero is equal to the product of all
diagonal elements. From the fact that at least one diag-

aN 2 I ϕN , an 1–cos+ 2 I ϕncos 1/an.–+= =
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onal element is negative, it follows that the quadratic
form in (14) is not positive definite; that is, the energy
does not have a local minimum at this point. This means
that the second configuration is strictly speaking unsta-
ble at any value of I and that the authors of [1–3] were
right to treat it in this way.

However, the following argument must be taken into
account. The reduction of the quadratic form in (14) to

a strictly diagonal form will lead to δE = δ ,
where the quantities δξi are linear combinations of the
original variations δϕk of the phase jumps. As a result,
all of δξi will be different from zero at a nonzero value
of the variation of any one of the phase jumps ϕk. In this
case, a negative (but small in magnitude) value of one
of the coefficients Ai will be unable to outweigh the
effect of the other terms, which are positive, and to ren-
der δE negative. There is only a small probability that
the set of variations δϕk will accidentally be such that
all of the remaining variations δξi will be so small that
they will not be able to compensate for a negative term.
It is straightforward to understand that the smaller the
negative coefficient in absolute value, the lower the
probability of such an event. This means that the
smaller the pinning parameter I, the less unstable the
second configuration. At small values of I, we can say
that this state is quasistable.

It should be noted that a similar analysis of the first
configuration for stability confirms that this configura-
tion is stable for all values of I. In this case, the central
diagonal matrix element reduces to the form (a1 – 1/a1),
the calculation on the basis of the recursion relations
(15) leading to a1 > 1 for any value of I. This means that
all diagonal elements are positive; that is, the quadratic
form being considered is positive definite.

CONCLUSION

Two equilibrium states of planar vortices in a three-
dimensional Josephson medium have been considered.
The meaning of the concept of the pinning energy with
respect to the transition of the vortex center from one
cell to another has been examined. It has been shown
that, in general, there are no grounds to take the energy
difference between the equilibrium states for the pin-
ning energy.

The possibility of considering, as the pinning
energy, the difference of the energy of a vortex at the
instant of its transition from one cell to another and the
minimum energy of a solitary vortex has been ana-
lyzed. At values of the pinning parameter I that are not

Aii∑ ξ i
2
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small, this quantity is not a universal characteristic of
pinning either, since it depends on the mechanism dis-
placing a vortex. In considering a specific situation, it
should be borne in mind that the energy of a vortex is
the sum of the energy of the solitary vortex, the energy
of its interaction with other vortices, and the positive
energy of its interaction with the lattice. Within this
model, it would be the most natural to take, for the pin-
ning energy, the depth of the well that characterizes the
interaction of a vortex with the lattice. Here, the prob-
lem is that, at values of I that are not small, it is hardly
possible to separate the energy of the interaction of a
vortex with its neighbors and the energy of its interac-
tion with the lattice, since the shape of a vortex changes
as it moves. Therefore, the force confining a vortex is
dependent on how it is displaced—that is, it is not a uni-
versal characteristic.

At small values of I, the energy of the interaction of
a vortex with other vortices and the energy of its inter-
action with the lattice, as well as the respective forces,
can be calculated separately: the calculations for the
interaction with neighboring vortices disregard pinning
and rely on the continuous-vortex model, while the cal-
culations for the interaction with the lattice take no
account of the interaction with other vortices. It follows
that, at small values of the parameter I, pinning can be
characterized by the universal value of the maximum
pinning force.

Two equilibrium states of a vortex have been ana-
lyzed for stability. It has been shown that the state of
higher energy is not inevitably unstable. A correct anal-
ysis of stability must be based on examining a quadratic
form that describes the current-configuration energy.
Such an analysis has been performed for the equilib-
rium states of a vortex. At small values of the pinning
parameter, the vortex state of higher energy is quasis-
table.
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Abstract—A thermodynamic model is developed to describe the growth of carbon nanotubes from a droplet
of supersaturated carbon melt in a metal catalyst. The model employs molecular mechanics and semiempirical
quantum chemistry methods. The results of calculations enable construction of a phase diagram showing the
type of nanotube depending on the melt supersaturation with carbon and the droplet radius. © 2004 MAIK
“Nauka/Interperiodica”.
Extensive application and the development of meth-
ods for the synthesis of carbon nanotubes (NTs) [1]
substantially surpass understanding and theoretical
modeling of the mechanisms determining the formation
of a particular type of NTs. Only the growth of multi-
wall nanotubes (MWNTs) is described by a well-devel-
oped theory using the early model of Tibbets [2] based
on the so-called vapor–liquid–droplet mechanism
(VLD) [3]. According to this mechanism, NTs grow
due to release of carbon from a droplet of metal melt
supersaturated with carbon. The metal belongs as a rule
to well-known chemical catalysts such as Fe, Fe/Ni,
Y/Ni, although it was reported that NTs can be also
grown using gallium as the catalyst [4]. The possibility
of MWNT nucleation without catalyst was never theo-
retically considered.As for the single-wall nanotubes
(SWNTs), there was no concept of nanotube at all when
the original model [2] was proposed and, thus, they
cannot be an object of investigation. The Tibbets model
[2] is directly inapplicable to SWNTs. Meanwhile, the
VLD mechanism is generally the only mechanism con-
sistent with experimental data for such nanotubes.
Alternative mechanisms such as catalyst scooter [5]
and growth from carbon rings [6] were not apparently
observed although they can most probably be realized.

Thus, despite the large body of experimental results,
at present there is only a general notion of the condi-
tions favoring the formation of a particular type of nan-
otubes. It is known that, in some instances, changing of
the catalyst alone can result in the appearance of
MWNTs instead of SWNTs. In addition, there always
appear a certain amount of droplets of the catalyst
encapsulated into fullerene-like cages.

A qualitative description of the formation of differ-
ent types of NTs proceeding from a common standpoint
was proposed by Kanzow and Ding [7]. In particular,
according to a purely kinetic picture of SWNT forma-
1063-7842/04/4909- $26.00 © 21166
tion given in [7], the detachment of a curved monolayer
(pentagon cap) takes place if a carbon atom in the sur-
face layer has a sufficiently high kinetic energy to over-
come adhesion and surface tension of the graphite
layer. The proposed scheme is quite attractive, but pre-
cludes quantitative determination of the type of nano-
structure that appears.

Meanwhile, the combination of thermodynamics
with the molecular mechanics (MM) calculations pro-
posed in this study enables quantitative description of
the conditions for the formation of SWNT and MWNT
and for the encapsulation of catalyst droplets.

1. MODEL OF GRAPHITE ISLAND 
ON THE SURFACE OF DROPLET 

SUPERSATURATED WITH CARBON

The proposed model is restricted to the consider-
ation of NT growth from an individual droplet. We do
not consider the mechanism by which NT grows on the
bridge between a small droplet with high supersatura-
tion and a large droplet with low supersaturation [8].

The model of a nucleus was chosen so as to enable
the formation of various types of NTs. The nucleus rep-
resents a portion of the graphite monolayer, appearing
as an island at the interface between the metal melt and
a half-space filled by an inert buffer gas (Fig. 1a). The
gas acts as a thermostat maintaining equal temperature
in the entire space. The central part of the island is
bounded to atoms of the melt by van der Waals forces.
Carbon atoms occurring at the edge of the island are
connected only by two neighbor atoms of the island and
are chemically bound (bold dashed lines in Fig. 1b) to
metal atoms in the melt (circles in Fig. 1a). Below,
these edge carbon atoms are called “radicals” to reflect
the fact that their bonds to the atoms in the melt are tem-
porary (as bonds in the melt itself). It is assumed that
004 MAIK “Nauka/Interperiodica”
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each radical is bound to two metal atoms in the melt for
most of the time, so that its valence bonds are saturated
(in Fig. 1a each radical is shown bound to only one
atom in the melt for the sake of clarity).

As soon as a carbon atom appears instead of one of
these metal atoms, it can be extracted from the melt
(atom 3 on going from Fig. 2a to Fig. 2b) and the radi-
cal (atom 1) becomes bound to three carbon atoms as in
a graphite cell. If each of two neighboring radicals
(atoms 1 and 2) extracts one carbon atom from the melt
(atoms 3 and 4, respectively), a pentagon is formed
(Fig. 2e). If one more carbon atom (atom 5 in Fig. 2c)
is extracted, then a hexagon is formed (on passing from
Fig. 2c to Fig. 2d). As a result, a pentagon- or hexagon-
shaped ridge develops at the edge of the island.

The total binding energy of a carbon atom bound to
two atoms of the iron group metals is 5–7 eV (Fig. 3a),
which is approximately equal to the binding energy ε0
of carbon in graphite. Therefore, after extraction of the
carbon atom, the gain or loss of its binding energy
∆EMe–C ! ε0 is determined not quite reliably and should
be varied in the course of calculations. The ∆EMe–C
value is determined as

(1)

where ECC and EMe–C are the energies of carbon–carbon
bonds in the graphite lattice and carbon–metal bonds in
the Me–C molecule, respectively.

After formation of the ridge, the behavior of the
island depends on whether the ridge is a pentagon or
hexagon. Two variants are possible if the ridge is a pen-
tagon.

(i) The island “absorbs” a pentagon and it becomes
positioned in the interior of the island. Even one penta-
gon inside the hexagon-packaged plane is a defect that
causes the appearance of substantial stresses. When the
number of pentagons N5 becomes sufficiently large to
form a pentagonal cap (N5 = 6), the accumulated strain
tears the central part of the graphite island from the
melt boundary and the island converts into the pentag-
onal cap.

(ii) The appearance of a pentagon stops the island
growth in the given direction. In other directions, the
island continues to grow until N5 = 6 in the case of flat
melt boundary (or lower value in the case of finite drop-
let).

In order to choose between the two variants, the loss
δE (δE > 0) in the energy of a flat island containing sev-
eral pentagons was calculated and compared to that for
the same configuration of a fragment of a fullerene sur-
face. The island configuration was specified as follows.
It was assumed that, in the absence of pentagons, hexa-
gons are ring-clustered around the central hexagon
(which is a ring with the number n = 0; the island with
n = 1 corresponds to the number of hexagons N6 = 7).
Then, an island with one or several pentagons in the

∆EMe–C 2EMe–C ECC,–≈
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(a)

(b)

Graphite island

Supersaturated melt

Fig. 1. Schematic diagrams showing (a) a graphite island on
the melt surface and (b) its side view (circles indicate atoms
of the melt; dashed lines show chemical bonds between the
island atoms and atoms of the melt; dotted line shows the
van der Waals bonds.
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Fig. 2. The sequence of elementary reactions involved in the
graphite island expansion. Dashed lines denote the bonds
between island atoms and atoms of the melt. The already
formed part of the island, situated to the left of pentagons
and hexagons, is not shown.
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external or in one of the internal rings (Fig. 4a) was
considered.

The results of molecular mechanics (MM) calcula-
tions using the HyperChem 6.3 program package
showed that δE weakly depends on the number of rings,
but drastically increases with N5 (Fig. 4b). At N5 = 1
(one pentagon at the edge of the island), δE ≈ 2.5 eV.
However, when the pentagon is absorbed by the island,
its “price” increases almost up to 10 eV. It means that
the appearance of a stable pentagonal defect forces the
graphite island to be “reflected” from this defect and to
develop in some other direction. The possibilities of
pentagon absorption by the island are not realized.

Thus, the NT emerging at the flat melt boundary
should have a plateaulike cap in which all pentagons
are situated at the edge. There are no “internal” penta-
gons. The number of internal pentagons on the curved
surface of a droplet depends on the radius Rg of the
droplet.

If the formed ridge is hexagon, then the bend of the
rough island edge toward the melt boundary is accom-
panied by considerable loss of energy and formation of
the overstrained structure. Therefore, on further growth
of the island, the ridge should be smoothed and the edge
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Fig. 3. Plots of (a) the binding energy of carbon atom with
atoms from the first full period of the Periodic table (deter-
mined by ZINDO (r) and PM3 (h) methods) and (b) the
van der Waals interaction energy of the atom with infinite
graphite plane versus atomic number of atom.
of the island should take a form mostly closed to a
circle.

Thus, the island expands via the formation of ridges
and their subsequent smoothening. The binding energy
oscillates and is not a convenient basis for consider-
ation. Therefore, the barrier B associated with the for-
mation of a regular ridge was evaluated separately
(MM gives B ~ 5 eV), and the state of the island was
fixed only in the local energy minima corresponding to
round islands. As in the estimation described above, it
was assumed that such an island comprises a system of
rings of hexagons around a certain central element,
such as an atom, bond, or hexagon.

Before the moment of detachment of the island
atoms from the boundary of the melt (and the formation
of a nanotube), the center of the island can move. Under
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Fig. 4. (a) Schematic diagram of a flat graphite island with
the number of rings of hexagons n = 3 and three pentagons
in the second ring and (b) the dependence of the loss of
binding energy δE on the position of the pentagonal defects
relative to the edge of the island surface (L = 0 corresponds
to the pentagon at the edge of the island, L = 1 corresponds
to the pentagon in the first inner ring). The number of rings
of hexagons n = 3; the number of pentagons N5 = (1) 1
and (2) 2.
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certain conditions, the detachment becomes thermody-
namically favorable and the island growth ceases.

Immediately before the separation, a deficient num-
ber of pentagons 6 – N5 is formed at the edge of the
island providing passage to the tubular part of a nano-
tube. Subsequent formation of one more ring of hexa-
gons means the onset of growth of an SWNT.

Since the energetics of the island and SWNT are
very similar, the formation of such NT requires rather
detailed analysis. Apparently, the formation of an
SWNT must occur at a small number n of rings, since
the Gibbs energy gain due to release of extra carbon
atoms in the tubular part of the NT is proportional to n,
whereas the energy of van der Waals bonds breaking is
proportional to n2.

A different situation arises when the formation of a
two-wall nanotube is considered. At a large size of the
island, an almost doubled number of atoms is detached
from the surface in two pentagonal caps, while the van
der Waals bonds should be broken only once—for the
inner wall formed inside the island. Therefore, the
whole process becomes thermodynamically favorable.

2. THERMODYNAMICS OF CARBON ATOM 
RELEASE FROM THE MELT

2.1. Binding Energy Variation in the Case 
of Flat Melt Boundary

Let us begin the consideration with the case of a flat
boundary of a supersaturated catalytic melt and study
the Gibbs free energy variation ∆Gg upon transition of
a given number g of carbon atoms from the melt into the
island or what can originated from it. There are three
possibilities: (i) an expanding island with the number of
rings n and N5 = 0 (this variant is referred to below as
proliferation (PR)); (2) an SWNT including n – 1 rings
of hexagons, pentagons in the nth ring (which provide
subsequent detachment of the island atoms), and the
(n + 1)th ring of hexagons in the tubular part of the
SWNT; (3) a two-wall nanotube with a bend in the
external wall in the nth ring and the tubular part of the
inner wall with one ring of hexagons (the number of
rings comprising the external wall can be easily calcu-
lated). Below, the two-wall nanotube is formally
referred to as an MWNT.

The Gibbs free energy of the melt atoms can be
expressed in terms of the energy of atoms in the melt
occurring in equilibrium with graphite. Then

(2)

where ∆Eg is the loss of binding energy of the graphite
island in comparison to the total energy of the same
number of atoms in infinite graphite, which is deter-
mined as a positive value; ∆Sg is the loss of entropy; w =
lnζ; ζ = X/Xsat(T) is the supersaturation of the melt with
carbon, that is, the ratio of the carbon mole fraction to the
maximal steady-state value at the given temperature T.

∆Gg ∆Eg T∆Sg– gTw,–=
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Numerical simulation of the island at the melt
boundary, especially for the curved droplet surface, is
very cumbersome and rather conceals the physical
essence of the problem. Therefore, the total loss of
energy ∆Eg was approximately divided into several
independent terms introduced “manually,” and direct
optimization of the system consisting of the island and
atoms of the melt by MM methods was performed only
for selecting the model parameters.

(i) In the case of SWNT, ∆Eg can be represented
approximately as the sum

(3)

The term

(4)

accounts for the loss in the binding energy due to dis-
tortion of the valence angles of carbon bonds in the
island. Since the bonds between radicals and atoms of
the melt form a nearly right angle with the melt bound-
ary, the island can be identified with the upper half of
the fullerene in which all pentagons are grouped in two
adjacent rings along the equator, while the rest of the
surface is almost flat. The dependence of the loss of
binding energy in such fullerene, δn, on the number of
rings n in each of its halves is well described for n ≥ 1
by the function

(5)

and has clear physical meaning. For a large number of
atoms, the loss of energy consists of the component α
related to pentagonal distortions and the term describ-
ing the type of edge distortion proportional to the length
of the island edge. The parameters λ and α obtained as
a result of geometry optimization using MM method
are approximately 2λ = 5.0 eV, α = 10.3 eV. The term

(6)

takes into account that the radicals at the island edge are
bound to two metal atoms, rather than to carbon atoms,
ρn is the number of radicals. The topological factors g
and ρn are given by the formulas

(7)

where the parameters βSW, γSW, ϕSW depend on the type
of the island center. For example, if the center is hexa-
gon and the number of rings of hexagons is n = 0, then
βSW = 4, γSW = 0, ϕSW = 0.

The term ∆  accounts for the distortions of the
valence angle of the carbon bonds in the tubular part of
the NT as compared to the graphite. Molecular

mechanics calculations showed that ∆  weakly
depends on the NT diameter and amounts (per ring of

∆Eg ∆Eg
1( ) ∆Eg

2( ) ∆Eg
3( ) ∆Eg

4( ).+ + +=

∆Eg
1( ) δn/2≈

δn 2λn α+=

∆Eg
2( ) ρn∆EMe–C≈

g 6 n2 βSWn γSW+ +( ),=

ρn 6 n ϕSW+( ),=

Eg
3( )

Eg
3( )
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hexagons) approximately to

(8)

The term ∆  stems from the rupture of van der
Waals bonds between island atoms and metal atoms in
the melt and can be expressed through the van der
Waals interaction A > 0 of one metal atom of the given
kind with an infinite graphite plane (Fig. 3)

(9)

where gn – 1 is the number of carbon atoms in the inter-
nal part of the island.

Finally

(10)

(ii) In the case of proliferation (PR), ∆E(1) is similar
to (2), but with replacement of α/2 by a different con-
stant α1 ≈ 4.2 eV (the calculation of α1 is also possible
using some modification of the HyperChem 6.3 pack-
age). The term ∆E(2) is similar to (5), but the values βSW,
γSW, and ϕSW in (7) should be replaced by βPR = 2, γPR =
1, and ϕPR = 1, respectively.

Finally,

(11)

(iii) In the case of the two-wall NT (i.e., MWNT),

∆  is calculated similar to (10) and (11) and is
determined by the relationship

(12)

where ε = h/aΨ is an additional number of rings in the
pentagonal cap and the tubular part of the outer wall of
the NT as compared to the inner one; aΨ is the width of
one ring of hexagons; a ≈ 1.5 Å is the length of the C−C
bond; 0.5 ≤ Ψ ≤ 1.8 is a variable parameter; n2 = n – ε
is the number of rings in the inner wall; ρn = 6n is the
number of radicals in the bend ring of the outer wall.

2.2. Entropy Loss Evaluation

The entropy of the graphite island as an ensemble of
harmonic oscillators is determined by summing over all
oscillators i

(13)

∆Eg
3( ) αVT 0.9 eV.≈=

Eg
4( )

∆Eg
4( ) Agn 1– ,=

∆Gg
SWNT( ) α

2
--- λn 6n∆EMe–C αNT+ + +=

+ 6An2 6n n 4+( )w– T∆Sg.–

∆Gg
PR( ) α1 λn 6 n 1+( )∆EMe–C+ +=

– 6 n 1+( )2w T∆Sg.–

Gg
MWNT( )

∆Gg
MWNT( ) α1 λ n n2+( ) 6 n n2+( )∆EMe–C+ +=

+ 2αNT 6An2
2– 6n2 n2 4+( )(–

+ 6n n 4+( ) 2ρnε )w T∆Sg,–+

Sg 1 hν i/T–( )exp–( ).ln
i

∑–=
At a high temperature, Sg ≈ – hνi/T). Estima-
tions showed that, for the average oscillator frequency
〈ν〉  = 5 × 10–12 s–1 and T = 0.2 eV, we have the ratio
h〈ν〉 /T ~ 0.1. As the binding energy of carbon atoms in
graphite is ε0 = 6 eV, the energy term in Gg is approxi-
mately 9g per atom, whereas the entropy term is ~1g.
Thus, the entropy term is almost one order of magni-
tude lower and can be omitted in rough estimations.

In the approximation of average oscillators fre-
quency, the loss of entropy ∆Sg is

(14)

where ν0 is the average vibrational frequency in
graphite.

The calculation of the vibrational spectrum of the
island requires enormous computational time; for this
reason, the average frequency was estimated as follows.
All atoms were divided into three groups: inner atoms,
atoms at the bend of the island, and radicals. In the
island of PR type consisting of n rings with the total
number of atoms g = 6(n + 1)2, the corresponding num-
bers of atoms are 6n2, 6(2n + 1) ≈ 18n, and 6(n + 1),
respectively. The number of degrees of freedom per
atom is 3(1 – 2/g).

Then the ratio 〈ν〉 /ν0 in (14) can be estimated from
the relationship

(15)

where , νbend are the average frequencies of atomic
vibrations in the flat part of the island and the bend
region, respectively, and νMe–C is the vibration fre-
quency of the bond between radical and metal atom in
the melt.

The second and thirds multipliers in (15) are the
most important. The frequency νbend estimated using
AM1 method was 25–30% higher than the frequency
ν0: νbend/ν0 = 1.3. The frequency νMe–C was estimated
from the vibration frequency of the FeC molecule cal-
culated using ZINDO method: νMe–C/ν0 = 1/1.4.

2.3. Variation of the Binding Energy at the Surface 
of the Melt Droplet

In the case of a melt droplet of finite radius, the inner
part of the island involves pentagons, which can be dis-
tributed in different ways. In this study, we assume that
these pentagons are distributed uniformly and the
island can be considered as a single object. Two
approaches can be applied for the description of such an
island.

(i) It is possible to consider the inner part of the
island as a fragment of spherical fullerene with ele-
ments typical of fullerenes such as pentagons, hexa-
gons, etc., whose numbers are proportional to the rela-

(ln
i∑

∆Sg 3g 6–( ) ν〈 〉 /ν0,ln–≈

ν〈 〉
ν0

-------- 
  3g 6– ν0'

ν0
----- 

  18n
2 νbend

ν0
----------- 

 
36n νMe–C

ν0
------------- 

 
1 2/g–

,=

ν0'
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tive area of the spherical segment of the (n – 1)th ring.
The number of pentagons in the bend ring with the
number n is six in the case of PR and supplement to six
in the SWNT and MWNT cases. With this approach,
the energy loss components related to the bend ring and
inner part of the island are clearly separated.

(ii) It is possible not to divide the island into the
bend ring and inner part, but determine ∆Gg through
interpolation between two extreme cases: small island
(n  0) and very large island, which covers half of the
droplet surface of radius Rg and is bent to its equator
(Fig. 5). The last approach was used due to its simplic-
ity. For the small island, all equations derived above are
valid. The island leaning on the droplet equator (with
the number of rings n = n0) is special: the inner n0 – 1
rings of the island include already almost six penta-
gons, whereas t here are almost no pentagons in the
region of the bend. Therefore, the cases of SWNT and
PR at n = n0 are distinguished only by the presence of
one ring of hexagons in the tubular part of NT for
SWNT.

The loss of energy for SWNT in the bend ring is the
same as for a hypothetical island ABCD of radius RF =
Rg + h (where h ≈ 3.34 Å is the distance from the island
to the melt boundary that is assumed to be equal to the
distance between the basal planes in graphite), which
leans on the AB plane (Fig. 5). Such an island conforms
to the flat melt boundary and its energetic scan be con-
sidered as known.

The loss of binding energy per ring of hexagons in
the tubular part of NT, α, as well as in the NT leaning
on the flat melt boundary, was assumed to be αNT. Thus,
the values ∆E(1), ∆E(2) at n = n0 for SWNT and PA are

(16)

(17)

where nU = RF/aΨ is the number of rings in the island
ABCD (Fig. 5); α' = 9.6 eV is the loss of binding energy
of a round fullerene of radius RF as compared to graph-
ite (which is almost independent of the size of the
fullerene);

(18)

is the number of radicals formed upon cutting fullerene
of radius RF across equator, which is approximately
equal to the number of hexagons in the section.

In the case of PR with n = n0, the number of atoms
is approximately

(19)

where  is the number of atoms in a round
fullerene of radius RF.

∆E 1( ) λnU α'/2 α1,+ +=

∆E 2( ) ρ0∆EMe–C,=

ρ0 2πRF/aΨ=

g0 NF
round( )/2 ρ0,+=

NF
round( )
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The values ∆E(3) and ∆E(4) for SWNT are the same
as in the case of flat melt boundary; the gn – 1 value was
assumed to be equal to gn – 1 = g0 – 2ρ0.

The energy loss components for MWNT with n 
n0 were evaluated in the same manner. The external
wall was identical to SWNT, but the extra number of
rings in the tubular part released on formation of one
tubular ring of the inner ring was taken into account.
Formulas for the inner wall with the number of rings
n0 – ε were obtained by interpolation between the equa-
tions for SWNT with n  0 and n = n0

The form of the function ϑ(n/n0) was varied.

For islands and nanotubes of intermediate size, 0 ≤
n ≤ n0, the components of the loss of binding energy and
the topological factors were also determined by inter-
polation between the formulas for the flat island n 
0 and spherical droplet n = n0.

3. RESULTS AND DISCUSSION

3.1. Flat Melt Boundary

Figure 6 shows the Gibbs free energy as a function
of the number of rings n in the case of formation of PR
graphite islands and the subsequent growth of nano-
tubes. The variable parameter ∆EMe–C was taken equal
to ∆EMe–C = –0.2.

Among the three curves presented in Figs. 6a and
6b, only the PR curve can describe the development of
the island. The actual phase trajectory of the island
before the moment of detachment starts in the PR curve
and moves down gradually as pentagons are formed at
the edge of the island. However, it is impossible to say
how many pentagons are already formed for a given n
and, hence, the form of the real trajectory is not deter-
mined unambiguously. Therefore, it was assumed that
before detachment of the island atoms from the melt

f f n 0( ) 1 J n/n0( )–( )=

+ ϑ n/n0( ) f n0( ) f n 0( )–( ).

RF

A B

C D

h

Rg

Fig. 5. Graphite island leaning on the equator of a droplet
(d) of melt. The dashed line AB denotes the position of the
melt surface on which the imaginary flat island ABCD is
leaning.
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boundary, this island develops along to the PR trajec-
tory. The island cannot move along the SWNT and
MWNT curves. They are necessary only for determin-
ing the type of the growing object.

Obviously, for large n, the MWNT curve is below
the PR curve because at n  ∞ the multiplier at n2 for
the two-wall NT is approximately twice as large as that
for SWNT. Therefore, the point nPR–MW of the intersec-
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Fig. 6. Plots of the Gibbs energy variation ∆Gg versus the
number of rings in the PR, SWNT and MWNT cases for the
carbon supersaturation ζ = 1.3 (a), 1.6 (b).
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 (curves 1 and 2, respectively), nPR–MW (3) and

minimal size of the nanotubes nmin (4) on the supersatura-
tion ζ. The values of parameters α1 – α/2 = 1.8 eV,
∆EMe−C = –0.2 eV.

nPR–SW
1( )

nPR–SW
2( )
tion of PR and MWNT curves always exists. This
means that, for an unlimited time of experiment, an
MWNT always appears, unless an SWNT is formed at
a smaller n.

The SWNT emerges if the corresponding curve is
below the PR curve in a certain range of n, that is, of the
point of intersection nPR–SW exists. Moreover, the possi-
bility of jumping from the PR curve to the SWNT curve
is determined by two additional factors.

(i) As the island (PR) expands by one ring, a barrier
B for the appearance of a hexagonal ridge should be
overcome (Fig. 2). This makes possible the jump from
PR to SWNT even when the SWNT curve is lying
higher, but the barrier that needs to be jumped to reach
it is smaller than B (Fig. 6a, arrow indicating upward).
However, the calculation shows that such a situation is
realized only in a narrow range of supersaturations ζ
and requires detailed additional consideration, which is
beyond the accuracy of the approach developed here.

(ii) The development of an SWNT emerging after
detachment of the island from the melt boundary must
be thermodynamically favorable. Therefore, the gain
achieved when additional atoms are released from each
ring in the tubular part of the NT should exceed the loss
in the binding energy resulting from their getting into
the tubular part of the NT rather than onto the graphite
plane. Thus, the condition ρnTlnζ – αNT > 0 must be
fulfilled, which establishes the minimal nanotube
radius (with allowance for (8)) for each ζ:

(20)

Analysis of the family of curves ∆ , ∆ ,

and ∆  shows that, for small ζ , the PR curve lies
below the SWNT curve (Fig. 6a). This means that the
SWNT curve is forbidden and an MWNT emerges
when the island expands to a size corresponding to the
point of intersection nPR–MW of the PA and MWNT
curves.

As the supersaturation increases to a certain value
ζcrit, the SWNT curve touches the less sloped PR curve
(Fig. 6b), so that at ζ > ζcrit there are two points of inter-

section,  and  > . In the range

 ≤ n ≤ , the jump from PR to SWNT and
the formation of SWNT is possible, provided the con-
dition n > nmin is fulfilled (Fig. 6b, bold arrow pointing
downward). The dependences of the characteristic
points of intersection on ζ are shown in Fig. 7. As can
be seen for the selected parameters of calculation, the
transition through the critical supersaturation is not a
sufficient condition for the SWNT formation: if ζ
exceeds ζcrit, but is lower than ζ(1), then nmin ≥ 
and the jump PR → SWNT is still impossible. At ζ >

ζ(1)  < nmin <  and an SWNT of size nmin

is formed.

nmin αNT/6T ζln .=

Gg
PR( ) Gg

SWNT( )

Gg
MWNT( )

nPR–SW
1( ) nPR–SW

2( ) nPR–SW
1( )

nPR–SW
1( ) nPR–SW

2( )

nPR–SW
2( )

nPR–SW
1( ) nPR–SW

2( )
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Since the parameter ∆EMe–C is variable, the depen-
dence of the results on this value should be checked.
This is especially important for the points of intersec-
tion of the PR and SWNT curves.

If we neglect for simplicity the entropy variation in
(10) and (11), then the expression for PR retains one

term proportional to n2: ∆ (n  ∞) ~ –6wn2. In
the case of SWNT, there appears an additional term
related to the rupture of the van der Waals bonds :

∆ (n  ∞) ~ 6(A – w)n2.

The condition of the intersection of SWNT and PA
curves has the form

(21)
A single solution of the quadratic equation (21)

exists when

(22)

The solution of (22) is

(23)
under the condition that its discriminant is non-nega-
tive. When

(24)

there is no solution for w and, regardless of the super-
saturation, there will apear either only SWNT or only
MWNT.

Since the adhesion A is two orders of magnitude
lower than each of three terms in the right-hand side of
(24), the inequality (24) means in fact that

(25)

If α1 – α/2 + 6∆EMe–C – αNT > 0, then there exists a
certain w for which the formation of an SWNT changes
to the growth of MWNT. For the chosen parameters,
this inequality is fulfilled and this fact determines the
above results. For α1 – α/2 = 1.8 eV, as assumed in cal-
culations, the results are qualitatively valid up to
∆EMe−C ≤ –0.15 eV.

The dependence of the points of intersection

, , nmin, nPR–MW on supersaturation in the
opposite case (i.e., when inequality (25) is fulfilled) is
shown in Fig. 8. The calculation parameters were cho-
sen as α1 – α/2 = 1.8 eV, ∆EMe–C ≤ +0.1 eV. In this case,

 < 0 and is not shown here, whereas nmin <

 < nPR–MW over a wide range of ζ values. There-
fore, an SWNT of size nmin should be formed for any ζ.

Gg
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Gg
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6An2 12nw– α1 α /2– 6∆EMe–C αNT–+( )– 0.=
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6
-------------------------------------------------------------------------------------------------------------
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The maximum of the free energy barrier for NT
nucleation depends on the specific features of the inter-
section of the PA and SWNT curves, but it is close to
the maximum of the SWNT curve, that is,

(26)

Obviously, under otherwise equal conditions, ∆Gmax
decreases with decreasing A. On the other hand, ∆EMe−C
should not be “too negative.” The optimal value of
∆EMe–C is

(27)

The dependence of the binding energy of metal
atoms to carbon and similar dependences of the energy
of the van der Waals interaction of the metal atoms with
the graphite plane (Fig. 3b) show that the transition
metal atoms are optimal from the point of view of
detachment of the island atoms from the melt and NT
formation. Their cohesion with the graphite plane is
minimal and the binding energy is most close to the
value that provides fulfillment of condition (27).

If the melt consists of two metals, M1 (with a mole
fraction of X1) and M2, the barrier ∆Gmax takes the form

(28)

This expression has a minimum at the mole fraction

∆Gmax
α
2
--- αNT

λ 6∆EMe–C+( )2

24 w A–( )
--------------------------------------.+ +≅

∆EMe–C λ /6–∼ 0.3 eV.–=

∆Gmax
α
2
--- αHT+≅

+
λ 6 X1∆EMe–C

1( ) 1 X1–( )∆EMe–C
2( )+( )+( )2

24 w A1X1– A2 1 X1–( )–( )
----------------------------------------------------------------------------------------------.

7

6

5

3

1

1.4
ζ

n

1.5 1.6 1.8

4

2 4

2

0

3

8

1.7

Fig. 8. The same dependencies as in Fig. 7 for the values of
parameters α1 – α/2 = 1.8 eV, ∆EMe–C = +0.1 eV.
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which determines the optimal ratio between the cata-
lysts in the melt.

3.2. Nucleation of NT at the Surface 
of Finite Droplet

On going to the case of a curved melt surface, the
shape of the plots presented in Fig. 6 somewhat
changes quantitatively and a qualitative feature appears
that is indicative of an additional possibility.

Obviously, the SWNT and MWNT curves are
meaningless on the right side from the point n0 corre-
sponding to the equator of the droplet. Therefore, if at
n = n0 an SWNT does not appear and the MWNT curve
is above the PR curve, then the graphite island crosses
the equator and the droplet is encapsulated into a
fullerene-like cage. Below, the same notation PR is
used for the encapsulated droplets of the catalysts as for
the process of island proliferation.

Simple qualitative analysis of the behavior of
MWNT and PR curves for a large size of droplet, anal-
ogous to that presented above for the SWNT and PR
curves, shows that an MWNT cannot be formed at a
level of supersaturation of lnζ < A/T. Higher supersatu-
ration is required to form MWNTs on the droplets of
smaller size.

For very small droplets, the growth of both SWNTs
and MWNTs is impossible and nothing except droplet
encapsulation can take place. Thus, the type of the nan-
otube can be shown in the diagram of Rg plotted against
supersaturation ζ. Figure 9 is plotted for T = 0.15 eV
and ∆EMe–C = –0.2 eV, so that both SWNTs and
MWNTs can appear. As the ordinate axis, it is also pos-
sible to use the product Tlnζ. However, the diagram in
fact depends on ζ and T separately since the tempera-
ture appears not only in the product Tlnζ, but in the
entropy term as well. Nevertheless, there is not much
sense in introducing the third axis taking into account
the qualitative character of the results.
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5
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ζ

10 15
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1
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Fig. 9. Phase diagram of the single-wall nanotubes
(SWNT)—encapsulation (PR)—multi-wall nanotubes
(MWNT) system.
4. DEPENDENCE OF THE NANOTUBE TYPE 
ON EXPERIMENTAL CONDITIONS

Depending on the method of NT fabrication, the
droplet supersaturation with carbon ζ varies with time t
according to a certain law. Let the droplet become sat-
urated at the instant t = 0 (ζ = 1). Then the system
behavior with increasing ζ depends on the droplet size.
At a large radius of the droplet (Fig. 9, dashed line 1),
the number of droplets encapsulated as ζ changes from
the point O1 to A is negligible. An increase in the con-
centration nMWNT of MWNTs with ζ changing from A
to B is described by the equation

where Nd is the concentration of droplets.

The relative amount of MWNTs is

If δNMWNT/Nd ~ 1, then almost all droplets give rise
to MWNTs. If δNMWNT/Nd ! 1, then mainly SWNTs
are generated. For smaller droplets (curve 2), either
substantial number of encapsulated droplets with a
small number of SWNTs, or only SWNT can appear.

5. THE POSSIBILITY OF COMPARISON 
WITH EXPERIMENT

Since the values ∆EMe–C, λ, and α, α1 entering into
Eqs. (4)–(11) are not known with sufficient accuracy,
the barrier ∆Gmax and the growth rate of NT indeed can-
not be calculated. Therefore, comparison of calcula-
tions using Eq. (28) with the experimental data avail-
able is presently impossible.

The most serious verification of the developed
model is related to the calculation of the optimal mix-
ture of catalysts using (29) and comparison of the
results to the behavior of mixtures selected experimen-
tally. Such verification will be performed in a separate
study.

6. CONCLUSIONS

Combination of the methods of thermodynamics
and molecular mechanics enables prediction of the type
of a nanostructure that appears as carbon is released
from a droplet of a metal catalyst supersaturated with
carbon. The type of the structure for a given catalyst
depends on the droplet radius Rg, temperature T and
supersaturation ζ of the melt with carbon.

dnMWNT/dt NaT /"( ) ∆Gg
MWNT( )/T–( ),exp=

δNMWNT

Nd

--------------------
T
"
--- t ∆Gg

MWNT( ) ζ t( )( )/T–( )expd

t A( )

t B( )

∫=

=  
T
"
--- ζ ζ / tdd( ) 1– ∆Gg

MWNT( ) ζ( )/T–( ).expd

ζ A( )

ζ B( )

∫
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Nanostructures appearing when carbon is released
from the melt form the following zones in the Rg – Tlnζ
diagram: single-wall NTs (SWNT)—multiwall NTs
(MWNT)—encapsulation (PR).

Depending on the parameters of the catalyst, the
diagram can include either all three zones, or only
MWNT and PR zones. For the known catalysts (transi-
tion metals) all three zones are realized, and their qual-
itative arrangement corresponds to that depicted in
Fig. 9, in particular, when the droplet radius Rg  ∞
and the supersaturation is small, then MWNTs are
formed, whereas at high supersaturations, SWNTs
appear. For the droplets of finite radius, the zone of
droplet encapsulation into the fullerene-like cage
emerges.
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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Abstract—The dielectric and pyroelectric properties of a typical relaxer ferroelectric, 0.9PbMg1/3Nb2/3O3–
0.1PbTiO3 (PMN–PT), are studied experimentally. Based on the results obtained, the pyroelectric constant and
figure of merit of the material when used in IR detectors are calculated. These parameters are presented as a
function of temperature and external electric field. The current and voltage sensitivities and the detectivity of
PMN–PT-based IR detectors are evaluated. They are compared with the same properties of pyroelectric detec-
tors and dielectric bolometers that use traditional pyroelectric materials as the active element and also of other
uncooled photodetectors. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION
The use of IR radiation in a variety of devices (gas

and flame detectors and analyzers, fine-vision devices,
motion detectors, pyrometers, etc.) is closely related to
the advances in IR radiation detection. Such factors as
cost and possibility of fabricating large-area detectors
are no less important than the radiometric characteris-
tics of the devices and often dictate the choice of the
detector. Among the most important requirements
for these devices is reliable operation without forced
cooling.

Photodetectors are usually compared in terms of
their detectivity D*, which is defined as the reciprocal

of the least detectable signal power PN: D* = /PN,
where A is the photodetector area [1]. Since PN depends
on the sensitivity and noise of the photodetector (the
latter parameter being proportional to the square root of

the photodetector area in most cases), D* = /PN is
independent of the photodetector area and may be used
for comparing the performance of photodetectors of
different dimensions.

Conventional photodetectors intended for the mid-
IR range (up to 10.6 µm), such as semiconductor (InSb
or Hg1 – xCdxTe) photodiodes, offer a detectivity as high
as D* = 1010 cm/(Hz1/2 W) only at cryogenic tempera-
tures. PbSe photoresistors, which are in common use,
have D* on the order of (108–109) cm/(Hz1/2 W) with a
sharp dip near λ = 4.5 µm, which shifts toward shorter
wavelengths with increasing temperature [2]. Photo-
diodes based on III–V compounds (the devices have
been recently developed at the Ioffe Physicotechnical
Institute) operate at room temperature and, according to
our estimates, provide D* in the range (108–5 ×

A

A
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109) cm/(Hz1/2 W). However, they demonstrate a high
sensitivity only in narrow spectral intervals ∆λ (0.5 µm)
between 2.9 and 5 µm [3].

By the principle of operation, uncooled heat detec-
tors based on pyroelectric materials have the same sen-
sitivity throughout the electromagnetic spectrum and
find wide application mostly as infrared detectors. The
energy absorbed by the pyroelectric element changes
its temperature, which, in turn, changes its polarization
and, accordingly, induces surface charge. The pyroelec-
tric effect is observed in all media that possess a prefer-
ential polarization direction. One of the basic factors
limiting the application of pyroelectric materials in
radiation detectors is that the pyroelectric current, by its
physical nature, is the response of the system only to
temperature changes; therefore, for the radiation to be
detected, it must be modulated.

The materials most widely used in this field are trig-
lycinesulfate (TGS) and TGS-based compounds, which
offer the highest sensitivity: their typical detectivity,
5 × 108 cm/(Hz1/2 W) [4], is comparable to that of
uncooled photodiodes. However, TGS crystals are
rather brittle and hygroscopic, as well as have a very
low thermal conductivity.

The pyroelectric effect can also be observed in non-
polarized materials on application of a dc electric field.
In this case, we deal with the so-called field-induced
pyroelectric effect, and detectors made of these materi-
als are called dielectric bolometers. They have a some-
what lower detectivity (D* = (2–5) × 108 cm/(Hz1/2 W)
[5–12]) than standard pyroelectric detectors but are sta-
ble to high levels of illumination and, what is most
important, allow one to replace radiation modulation by
applied field modulation. This stimulates interest in
004 MAIK “Nauka/Interperiodica”
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seeking materials for pyroelectric IR detectors that
operate as dielectric bolometers.

In recent years, attention has been focused on ferro-
electrics with a diffuse phase transition (relaxer ferro-
electrics). The distinctive features of relaxers are the
ferroelectric transition occurring in a wide temperature
range and the possibility of varying this temperature
range within wide limits by modifying the composition
of the material. As a representative of relaxer ferroelec-
trics, one should first mention PbMg1/3Nb2/3O3 (PMN)
and related solid solutions. Note that it is basically
impossible to reach the polarized state in the range of
the diffuse phase transition without a dc electric bias,
because the temperature will break an arising polariza-
tion direction. Thus, the field-induced pyroelectric
effect alone can be observed in these materials. This
effect is still not fully understood. Moreover, the pyro-
electric constant is hard to evaluate adequately in
experiments. The main experimental difficulty is to
pick up the weak induced pyroelectric current from
thermally stimulated and leakage currents, which
appear in the samples exposed to a dc biasing field.
Finally, it is particularly important to study the material
under conditions as close to those under which IR
detectors operate as possible. Among many methods of
measuring the pyroelectric response, the modulation
method (or the Chainovis method) and its modifications
[4–6, 13, 14] meet the requirements to the largest
extent.

The goal of this work is to study the pyroelectric
effect in PMN–PT, a typical relaxer ferroelectric, and
predict the performance of the IR detectors that may be
built around it. To experimentally study relaxer ferro-
electrics, we developed a computerized instrument that
is capable of generating the pyroelectric current in var-
ious regimes, extracting weak currents when a high dc
voltage is applied, controlling the parameters of the
sounding radiation, and varying the sample temperature
from 278 to 350 K [15]. In the experiments, we used the
solid solution of Mg-substituted lead niobate and lead
titanate (PMN–PT). Based on the measured insulating
and pyroelectric properties of these materials, their fig-
ures of merit were calculated and compared with those
of other pyroelectric materials and IR detectors.

EXPERIMENTAL RESULTS

The pyroelectric constant p of a material subjected
to a dc biasing field E is defined as [4, 6, 8]

(1)

where Ps is the spontaneous polarization, ε is the per-
mittivity of the material, E is the electric field intensity,
and T is the temperature.

The first term on the right-hand side of the equation
is the pyroelectric constant of polar materials that is due

p
∂Ps

∂T
-------- ε0

∂ε E T,( )
∂T

--------------------- E,d

0

E

∫+≅
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to the spontaneous polarization Ps, and the second term
describes the so-called induced pyroelectric effect,
which is observed in nonpolarized ferroelectrics in the
presence of an electric bias. If the temperature of a
pyroelectric element exposed to radiation of power
W(t) that is modulated by the law W(t) = W0{1 +
exp(iωt)} changes by ∆T, an expression for the pyro-
electric current density will contain a component with
a frequency ω:

(2)

Thus, measuring the pyroelectric current in the sam-
ple and knowing ∆T, one can calculate the pyroelectric
constant of the material.

It is customary to compare pyroelectric materials in
terms of the following quality factors [5–7]: the current
figure of merit,

the voltage figure of merit,

(3)

and the noise figure of merit,

Here, cV is the heat capacity at constant volume, ε is the
permittivity, and  is the dielectric loss tangent of
the material.

Thus, for the comparative characterization of the
material with its application in IR detectors in mind, we
measured its pyroelectric constant, permittivity, and
dielectric loss tangent over a wide range of tempera-
tures and applied dc voltages. Properly adjusting the
phase relations between the source signal and pyroelec-
tric current, we were able to detect the latter on the
background of parasitics.

The samples of the PMN–PT ferroelectric ceramics
were 400 µm thick and had a diameter of 8 mm. The
electrodes were made by firing-in of silver. As the
source of the modulated radiation, we used an IRS-2-
870-6 light-emitting diode (100 mW at 0.87 µm).

The pyroelectric constant was measured in the tem-
perature range from 278 to 350 K, which is of most
interest for applications. The temperature was kept to
within ±0.1 K. The sample temperature was controlled
with the help of a Peltier element coupled with a tem-
perature-stabilization circuit. The pyroelectric constant
was calculated from the measured pyroelectric current
amplitude by formula (2). In a single measurement, the
pyroelectric constant was calculated with an accuracy
of ∆p ≅  10–2 [10–4 C/(m2 K)] [15].

J ω( ) p
dT
dt
------ piω∆T iωt( ).exp= =

Fi
p
cV

----- m V 1–[ ] ;=

FV
p

cVεε0
------------- V m J 1–[ ] ;=

FD
p

cV εε0 δtan
----------------------------- V m3/2 J 1/2–[ ] , Pa 1/2–[ ] .=

δtan
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Taking the temperature dependences of the induced
pyroelectric current (Fig. 1), we calculated the pyro-
electric constant in PMN–PT ferroelectric ceramics at
various biasing fields. Figure 2 plots the pyroelectric
constant as a function of the applied field at 300 K.
From these dependences, we found the optimum ranges
of temperature (293–325 K) and electric field intensity
(8–12 kV/cm) where the pyroelectric constant achieves
a maximum (up to p = 38 × 10–4 C/(m2 K)). In this tem-
perature range, we also measured the relative permittiv-
ity and dielectric loss tangent of the samples, using the
standard technique [14]. These measurements allowed
us to calculate the figures of merit of the material from
expressions (3) and plot them versus temperature and
external electric field intensity (Figs. 3, 4).
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Fig. 1. Induced pyroelectric constant of PMN–PT versus
temperature for various biasing fields.
DETECTIVITY OF PYROELECTRIC MATERIALS 
AND COMPARATIVE CHARACTERIZATION 
OF UNCOOLED MID-IR PHOTODETECTORS

Table 1 summarizes the highest values of the pyro-
electric constant found experimentally and the values
of other physical parameters of the material. From these
values, we calculated the figures of merit of PMN–PT
ferroelectric ceramics at 300 K. This table also lists the
same characteristics published earlier for other conven-
tional pyroelectric materials, as well as for the materials
used in dielectric bolometers. It should be noted that the
data given in Table 1, especially those for dielectric
bolometers, may only be used for qualitative compari-
son, since the published values of the pyroelectric con-
stants of the materials listed are highly spread. For
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Fig. 2. Induced pyroelectric constant of PMN–PT ceramics
versus electric field intensity at 300 K.
Table 1.  Physical parameters and figures of merit for a number of pyroelectric materials at 300 K

Conventional pyroelectric materials Materials for dielectric bolometers

TGS PZT PVDF BST,
1 V/µm

PST,
15–35 V/µm

PMN–PT,
1 V/µm

p, 10–4 C/(m2 K) 2.8 3.8–4 0.25 8 1.5–4.5…55 38

ε 38 389–558 9 4000 10000 6000

tanδ 0.01 0.012 0.03 0.005 <0.007 0.002

cV, 106 J/(m3 K) 2.3 2.5 2.3 2.5 2.7 2.4

FV, (V m2)/J 0.36 0.028–0.038 0.14 0.01 0.025 0.06

Fi, 1012 m/V 120 – 11 320 2000 1500

FD, 10–5 (V m3/2)/J1/2 (Pa–1/2) 66 18.7–20.3 7 4 1.6–3.6 6

References [9] [12] [9] [6] [8, 10] This work
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example, for Pb(ScTa)0.5O3 (PST) ceramics, the spread
in the pyroelectric constant exceeds one order of mag-
nitude: from 55 × 10–4 [8] to 1.5 × 10–4 C/(m2 K) [10].
In our opinion, the basic reason is incorrect measure-
ments in the presence of an external biasing field: the
pyroelectric current in the samples and, hence, the
pyroelectric constant are usually overestimated. Never-
theless, Table 1 shows that PMN–PT ceramics is com-
parable to, or even surpasses, the other materials,
except for TGS, in performance. PMN–PT has virtually
the same characteristics as PST, which also is a relaxer,
in external fields that are 15 to 30 times weaker. Note
that PMN–PT ceramics maintains high figures of merit
in a wide temperature range of about 50°C, while the
working range of (Ba,Sr)TiO3 (BST) and PST is as
small as several degrees. Also, PMN–PT is more prom-
ising for mass production, because it is much cheaper
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Fig. 3. Figures of merit of PMN–PT relaxer ceramics versus
temperature.
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than PST (PMN–PT is free of relatively expensive
scandium) and single-crystal TGS. The data obtained
experimentally and those given in Table 1 were used to
calculate the current and voltage sensitivities, as well as
the detectivity, of photodetectors that may be designed
around these materials. The calculation results are sum-
marized in Table 2 along with the same characteristics
of the other known detectors (photoresistors, photo-
diodes, conventional pyroelectric detectors, and dielec-
tric bolometers) studied elsewhere.

As follows from Table 2, even in the mid-IR range,
the analytical detectivity of dielectric bolometers is
close to that of photoresistors in order of magnitude.
Furthermore, the voltage sensitivity of the bolometers
is comparable to that of photoresistors and the current
sensitivity of the bolometers is higher. Certainly,
uncooled InAs photodiodes feature a much higher cur-
rent sensitivity and detectivity, but their low dark resis-
tance (hundreds of ohms at λ = 3.4 µm or several ohms
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Fig. 4. Figures of merit of PMN–PT relaxer ceramics versus
electric field at 300 K.
Table 2.  Characteristics of uncooled (300 K) mid-IR detectors

Photoresis-
tors PbSe

Photo-
diodes InAs

Conventional pyroelectric materials Dielectric bolometers

TGS PZT
(thin film) PVDF BST

(thin film) PMN–PT 1 V/µm

Frequency, Hz 500 500 5 60 5 1000 5 1000

Detector dimensions:

    diameter D, mm 2.6 × 2.6 1 × 1 8 2.24 × 0.36 0.4 0.2 × 0.2 8 0.2 × 0.2

    thickness d, µm 400 25 400

Spectral range, µm 2…4.5 3.3 4.3 4.7 Entire 
range

Entire 
range

Entire 
range

Entire 
range

Entire range

RV, V/W 103…102 200 15 4 1440 – 100 1200 151.2 1500

Ri, 10–6 A/W 10–2…10–3 106 0.3 – 0.44 – 3.75 –

D*, 108 cm/(Hz1/2 W) 1…0.2 150…5 15 1.8 0.07 2.9 1.36 4.35

References [2] [3] [1, 9] [12] [9] [7] This work
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at λ = 4.7 µm) makes efficient current-to-voltage con-
version with a high signal-to-noise ratio difficult. As the
radiation wavelength increases, the detectivity of the
photodiodes drops and the characteristics of pyroelec-
tric detectors, which are wavelength independent,
become unattainable for other types of uncooled detec-
tors.

CONCLUSIONS
By the example of 0.9PbMg1/3Nb2/3O3–0.1PbTiO3,

a typical relaxer ferroelectric, it is shown that relaxer
ferroelectrics are promising materials for uncooled
mid-IR detectors, since they combine high figures of
merit and wide working temperature ranges. Moreover,
the material is fairly cheap and opens the possibility of
manufacturing large-area detectors. High values of the
pyroelectric constant, p = 30 × 10–4 C/(m2 K) (the high-
est value is p = 38 × 10–4 C/(m2 K)), and high figures of
merit of PMN–PT are achieved under external fields of
8 to 12 kV/cm in a wide temperature range from 290 to
320 K. As the radiation wavelength increases, the
detectivity of semiconductor photodiodes and photore-
sistors decreases. At the same time, the characteristics
of pyroelectric detectors, being independent of the
wavelength, surpass IR detectors of other types in a
number of parameters. One more advantage of the
detectors based on relaxer ferroelectrics, in which the
field-induced pyroelectric effect is observed, is that
basically they allow for applied bias modulation, rather
than incident light modulation (as in conventional pyro-
electric detectors).
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Abstract—Collected charge originating in a semiconductor detector of the p+–n–n+ type as a result of interac-
tion with a monoenergetic electron beam with energies in the range from 7 to 25 keV is calculated. Generation
of electron–hole pairs (EHPs) is calculated using the Monte Carlo method. In the context of the diffusion–drift
model, an analytic expression for the contribution of generated EHPs to the detected signal is derived. It is
shown that the losses of charge to recombination in the course of transport significantly affect the shape of
detected signal. The comparison of simulated energy spectra with experimentally measured spectra shows good
agreement between theory and experiment. Thus, the basics of a theoretical approach that makes it possible to
calculate the operational characteristics of semiconductor detectors are developed; as a result, the parameters
of these detectors can be optimized in designing the practically important semiconductor proportional detectors
to be used in analytical methods. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Current progress in science and technology requires
the design and development of systems for control and
evaluation of basic phenomena in the field of detection
of various types of radiation. Applications of these
efforts are numerous; they range from ecological mon-
itoring of the state of the environment via the control of
radiation-hazardous works to the problem of ultrafine
tool-related and scientific-analytical instrument mak-
ing and also of diagnostic medical instrumentation.

An important aspect in the aforementioned problem
is exactly the development of detectors of ionizing radi-
ation as the specific product that makes it possible to
implement various physical methods for monitoring
and diagnostics.

Semiconductor proportional detectors (SPDs)
occupy a highly important place among the detectors
based on different physical phenomena. This type of
detector is most promising (compared to gas-filled
detectors, channel multipliers, and scintillation detec-
tors). The advantages of SPDs are following: (i) small
size of the active region; (ii) the possibility of integra-
tion with the detection circuit on the same chip; and (iii)
the possibility of attaining the position sensitivity using
segmented detecting elements and planar silicon tech-
nology.

In particular, special interest is attracted to the use of
SPDs in modern methods of diagnostics of solids, in
which case information about the objects under study is
gained from the analysis of the distribution of electrons
emitted from the sample surface. These methods
include EXAFS/XANES spectroscopy [1], Auger spec-
1063-7842/04/4909- $26.00 © 21181
troscopy and X-ray photoelectron spectroscopy [2], the
method of standing X-ray waves [3], and other diagnos-
tic methods [4–7]. However, until now, only the reports
concerned with success in the use of SPDs in specific
studies have been published [8, 9]; the theory of inter-
action of electrons with actual semiconductor structure
of the microchip itself has hardly been considered at all.
Thus, it is evident that the above-formulated object of
this study is of current interest.

In this paper, we consider and develop the theoreti-
cal concepts of operation of a semiconductor detector
of electrons. Using a rigid specification of the SPD
structure, we find the methods for optimization of oper-
ation of the detectors under consideration. It is shown
that practical optimization of SPD parameters depends
almost to the same extent on the internal structure of the
active component as on the external factors (in particu-
lar, on the applied reverse-bias voltage).

FORMULATION OF THE PROBLEM

Operation of semiconductor detectors is based on
generation of electron–hole pairs (EHPs) within the p+–
n junction and collection of these pairs under the
applied reverse-bias voltage. The energy of detected
electrons is found to be related to the amplitude of the
electric signal that appears at the detector electrodes; in
turn, this circumstance can be used to determine the ini-
tial electron spectrum. In this context, the problem of
clarifying the dependence of the signal on the detector
parameters and the energy of electrons is of current
interest.
004 MAIK “Nauka/Interperiodica”
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In this paper, we pose the problem of numerical sim-
ulation of the signal generation by a monoenergetic
electron beam in a semiconductor detector. This prob-
lem is solved in two stages. In the first stage, the distri-
bution of EHPs generated by an incident electron in the
detector is calculated; in the second stage, the collected
charge arising in the semiconductor structure under the
effect of applied reverse bias is calculated.

The simulated semiconductor detector [10] is a pla-
nar p+–n–n+ semiconductor structure fabricated on the
basis of high-resistivity n-Si (Fig. 1). The thickness of
the p+- and n+-type contact regions ∆ = 1000 Å; the
thickness of the n-type region L = 300 µm. The n- and
n+-type regions were doped with phosphorus, and the
p+-type region was doped with boron. The doping-
impurity concentration was ND ≈ NA ~ 1019 cm–3 in the
n+- and p+-type regions and was ND ~ 1012 cm–3 in the
n-type region. Under operating conditions, the n-type
region is completely depleted of electrons, which cor-
responds to the reverse voltage U = 80 V applied to the
p+–n junction at the aforementioned parameters of the
semiconductor structure. In this case, a dark current
with a density on the order of 1 nA/cm2 flows through
the structure. The n+-type contact serves as the entrance
window for electrons to be detected in the case chosen
for simulation; the electron beam is incident on the
sample surface along the normal.

SIMULATION OF GENERATION 
OF ELECTRON–HOLE PAIRS

In order to calculate the distribution of EHPs in the
detector, we need to know the distribution of electrons
in the incident beam. This distribution can be found
from the kinetic equation
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Fig. 1. The structure of a semiconductor electron detector:
x1 = 0.1 µm, x2 – x1 = 300 µm, and x3 – x2 = 0.1 µm.
(1)

Here, Φ(r, Ω, E) is the differential flux density of elec-
trons with the energy E and the direction of motion Ω
at the point r; and

are the differential reciprocal free paths of electrons
with respect to the elastic and inelastic collisions.
Equation (1) was solved using the Monte Carlo method.
The single-scattering model described previously [11]
was used; according to this model, the result of each
event of interaction between an electron and the mate-
rial is controlled by differential cross sections of the
elastic and inelastic scattering. In order to determine
the results of the elastic scattering, we used the differ-
ential Mott cross section. Inelastic interaction of elec-
trons with the material is described by the doubly dif-
ferentiated reciprocal free path d2win(E, Ω, E',
Ω')/dQdΩ'; i.e., this interaction is controlled by the
probability that an electron with an energy E loses the
energy Q = E – E' and is scattered by the angle θ =

ΩΩ') per unit path length. The doubly differen-
tiated reciprocal free path can be determined from the
data on the permittivity of the material [12–14]. Fle-
gontova et al. [15] described the procedure for calcula-
tion of the above quantity and the algorithm for draw-
ing the results of inelastic scattering; this algorithm
makes it possible to reduce appreciably the computa-
tion time. The data on differential cross sections of elas-
tic and inelastic scattering calculated by us can be
found in the electronic archive [16].

The depth distribution of EHPs generated by the
electron beam was derived in several models. In the first
(most crude) model, it was assumed that all energy lost
in an inelastic collision was spent on the formation of
EHPs. In this case, the EHP distribution was calculated
using the formula

(2)
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where

and ∆Eeh is the average EHP-formation energy.
In the second model, the transport of secondary

electrons generated in the course of inelastic scattering
was taken into account. The trajectory of the entire cas-
cade of secondary electrons was traced for as long as
their energy exceeded the given cutoff energy Ec. It was
also assumed that, at the point of the trajectory cutoff,
the remaining electron energy is completely spent on
the formation of EHPs with the average generation
energy equal to ∆Eeh.

In the third model (as in the second), the trajectories
of all electrons were traced; however, it was assumed
that each inelastic-collision event led to the formation
of a single EHP at the interaction point.

The depth distribution of the generated EHP density
calculated according to different models is shown in
Fig. 2 for incident-electron energies E0 = 7 and 20 keV
and the cutoff energy Ec = 10 eV. It can be clearly seen
that all aforementioned approaches yield the identical
shape of the depth distribution of generated EHPs.

This circumstance means that the detailed allow-
ance for the secondary-electron cascade and the trans-
port of the energy transferred to these electrons is not
necessary in calculation of the distribution of generated
EHPs. In turn, this consideration justifies the use of the
first model in calculations, which makes it possible to
reduce appreciably the computation time.

In addition to the calculation of the EHP depth dis-
tribution, it is also of interest to simulate the distribu-
tion of electrons in the lost energy, since the corre-
sponding dependence is related to the experimentally
studied characteristic of the detector, i.e., the amplitude
distribution of the voltage pulses equivalent to the col-
lected charge. It is well known that this distribution is
equivalent to the energy spectrum of detected electrons
in the situation where the collected charge is propor-
tional to the energy of detected particle.

Assuming that all energy lost by an electron is spent
on the formation of EHPs and all EHPs generated in the
space-charge region (SCR) contribute to the signal, we
can simulate the observed distribution. In order to com-
pare the results of simulation with experimental data,
we convolved the calculated dependences with the
measured instrument-related spread function for the
measurement circuit. The theoretical and experimental
curves are shown in Fig. 3 for several electron-beam
energies. It can be seen that the calculated and experi-
mental dependences practically coincide at high elec-
tron energies; however, a decrease in the energy leads
to a discrepancy in the positions of the peaks in the dis-
tributions. This behavior is related to the inadequacy of
taking into account the contribution of EHPs generated

β E( )
d2win E Ω E Q– Ω', , ,( )

dQdΩ'
------------------------------------------------------Q Qd Ω'd

0

E

∫
4π
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by the electron beam to the signal. In order to take into
account this contribution in more detail, we must con-
sider the transport of charge carriers in the detector.

SIMULATION OF THE CHARGE-CARRIER 
TRANSPORT IN THE DETECTOR

The contribution of an EHP generated at a certain
depth to the detected signal is obtained by solving a
system of equations that describe the transport of
charge carriers in the system under consideration in the
diffusion–drift approximation. This system includes
the Poisson equation for an electric field, continuity
equations for concentrations of electrons and holes, and
expressions for the currents and recombination of
charge carriers.
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Fig. 2. The depth distribution of the energy dissipated by
electrons dQ/dz and the density of generation of electron–
hole pairs ρ(z) for electron-beam energies of 7 and 20 keV.
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We assume that the coordinate axis is normal to the
detector surface and the coordinate origin x = 0 is
located at the interface between the p+-type region and
the metallic electrode. We designate the coordinate of
the interface between the p+- and n-type regions by x1,
the coordinate of the interface between the n- and n+-
type regions by x2, and the coordinate of the interface
between the n+-type region and the metallic electrode
by x3 (see Fig. 1). The distribution of concentrations for
electrons n(x) and holes p(x) is determined from the
continuity equations

(3)

(4)

where the electron and hole fluxes have the conven-
tional form in the diffusion–drift approximation, i.e.,

(5)

(6)

Here, µn, µp, Dn, and Dp are the mobilities and diffusion
coefficients of electrons and holes. The recombination
rate of nonequilibrium charge carriers via a single
recombination level is given by the following expres-
sion in the Shockley–Read–Hall approximation [17]:

(7)

Here, p0 and n0 are the thermodynamically equilibrium
concentrations of electrons and holes; τ0n = 1/αnNt;
τ0p = 1/αpNt; Ln, Lp are the coefficients of electron and
hole capture at the impurity level; Nt is the impurity
concentration; n1 = n0(1 – f0)/f0; p1 = p0f0(1 – f0)/f0; and
f0 is the equilibrium probability of filling the impurity
level with electrons.

We assume that the rate of generation g of electrons
and holes by external radiation is equal to

(8)

where G is the density of generation of charge carriers
in the plane x = x0 (G has the dimension of flux); i.e., we
estimate the contribution of a stationary point source
located at a depth x0 to the signal.

The potential distribution ϕ(x) is described by the
Poisson equation

(9)

where pt is the concentration of positively charged
donors (bound holes) and nt is the concentration of neg-
atively charged acceptors.

1
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In the system under consideration, nt ≈ NA ~
1019 cm–3 and pt ≈ 0 in the p+-type region, pt ≈ ND ~
1012 cm–3 and nt ≈ 0 in the n-type region, and pt ≈ ND ~
1019 cm–3 and nt ≈ 0 in the n+-type region.

The system of Eqs. (3)–(9) under consideration is a
sixth order system and requires six boundary condi-
tions for its solution. We set the fluxes of nonequilib-
rium charge carriers equal to zero at the metal–semi-
conductor interfaces x = 0 and x3 (the interfaces
between the detector and metal electrodes); i.e.,

(10)

We assume that the fluxes of majority charge carri-
ers are small compared to those of thermal emission; as
a result, we have

(11)

where ps and ns are the equilibrium concentrations of
charge carriers at the interfaces with metal electrodes;
these concentrations are related to the contact potential
differences U1 and U4 at the boundaries x = 0 and x3 by
the expressions [18]

(12)

The following boundary conditions should be satis-
fied for the potential:

(13)

Here, U is the applied external voltage and Uk are the
contact potential differences at the regions’ boundaries.

We require the continuity of potential, field strength,
concentrations, and currents at the internal regions’
boundaries x = x1 and x2.

In order to solve the system of Eqs. (3)–(13), we
employ the conventional approach [19]. We divide the
semiconductor into the SCRs (I, III, IV, V, and VII) and
the quasi-neutral regions (II and VI) (see Fig. 1). It is
taken into account in this separation that the n-type
region is completely depleted of electrons if a reverse
external bias voltage U = 80 V is applied.

Assuming that the external generation of charge car-
riers is insignificant and the effect of current on the
potential distribution can be disregarded, we determine
the potential in the approximation of the depleted
(enriched) layer; i.e.,

in region I (0 < x ≤ ), we have

(14)

in region II (  < x ≤ x1 – ),

(15)
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in region III (x1 –  < x ≤ x1),

(16)

in region IV (x1 < x < x2),

(17)

in region V (x2 ≤ x < x2 + ),

(18)

in region VI (x2 +  ≤ x < x3 – ),

(19)

and in region VII (x3 –  ≤ x < x3),

(20)

Here, Ψ(x) is the dimensionless potential related to ϕ(x)
by the expression
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It was assumed in deriving these expressions that the
contact potential difference at the interfaces with metal
electrodes are U1 < 0 and U4 < 0. Estimations show that
these assumptions do not introduce any significant
errors into the final result. It is noteworthy that, in the
remaining system for the concentrations and currents of
charge carriers in the space-charge layers, we can dis-
regard the volume recombination owing to a short tran-
sit time of charge carriers compared to the correspond-
ing lifetime.

We can use the following approximation for the
recombination term in quasi-neutrality region II:

(21)

Here, τn is the lifetime of nonequilibrium electrons and
n0 is the equilibrium electron concentration.

A similar situation also takes place in the quasi-neu-
trality region VI. In this case, the recombination term is
approximated by the expression

(22)

Thus, the system of equations for determination of
currents and concentrations is found to be linear for all
regions.

In what follows, we are most interested in the signal
that appears in the detector as a result of generation of
EHPs; i.e., we are interested in the difference between
the currents through the detector in the presence and in
the absence of generation. Since the system of equa-
tions for currents and concentrations is linear, the dif-
ference between solutions for G ≠ 0 and G = 0 satisfies
the system of Eqs. (3)–(6) with the recombination term

(23)

and homogeneous boundary conditions

(24)

In order to solve this system, we note that, in the
SCRs, the currents jn(x) and jp(x) remain constant. In
the plane x = x0, the generation conditions (8) give rise
to a jump in the currents

(25)

In this case, the distribution of currents can be easily
found by integration of Eqs. (5) and (6); as a result, we
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obtain

(26)

(27)

Here, x varies within each of separate SCRs;  is the

boundary point of a specific SCR; and  and  are the
currents in this region. For the quasi-neutrality
region II, the system of equations for the concentration
n and currents jn of minority charge carriers can be writ-
ten as

(28)

By integrating this system, we obtain the expres-
sions for the concentration and currents of minority
charge carriers in region II; i.e.,

(29)

(30)

The current of majority charge carriers in this region
can be found by integration of Eq. (3); we obtain

(31)

Taking into account that jp(x) and p(x) are related by
Eq. (5), we obtain
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Similar results are also valid for the quasi-neutrality
region VI, which makes it possible to derive the expres-
sions for the concentration and current of holes in forms
similar to those in formulas (29) and (30). In this case,
the concentration and current of electrons are deter-
mined from Eqs. (4) and (6); the resulting expressions
are similar to those in (31) and (32).

The final form of the dependence of charge-carrier
concentrations on x in various SCRs can be obtained by
substituting the potentials (14)–(20) into expressions (26)
and (27). Thus, for example, we have the following
expressions for region I:

(33)

(34)

Here,

(35)

In regions III, IV, and V, the solution has a structure
similar to that in (33) and (34). Calculations yield the
following expressions for region VII:
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In order to determine the constants that appear in the
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n x( ) n d0
+( )

2Lp jn d0
+( )

eDn

-----------------------------F
x d0

+–( )
2Lp

-------------------
 
 
 

+
 
 
 

=

×
x d0

+–( )2

2Lp
2

---------------------
 
 
 

,exp

p x( ) p d0
+( )

2Lp jp d0
+( )

eDp

-----------------------------G
x d0

+–( )
2Lp

-------------------
 
 
 

–
 
 
 

=

×
x d0

+–( )2

2Lp
2

---------------------–
 
 
 

.exp

G x( ) τ2( )exp τ , F x( )d

0

x

∫ τ2–( )exp τ .d

0

x

∫= =

n x( ) n x3 d3
––( )

jn x3 d3
––( )

eDn

-------------------------
x x3 d3

––( )–
2

-----------------------------∫



+




=

+
L

n
+

2 2
---------- 2

x x3 d3
––( )–

L
n

+

-----------------------------
 
 
 

sin






 x x3 d3

––( )–

2L
n

+

-----------------------------
 
 
 

cos
2–

,

p x( ) p x3 d3
––( )

2L
n

+ j p x3 d3
––( )

eDp

-----------------------------------------–




=

×
x x3 d3

––( )–

2L
n

+

-----------------------------
 
 
 

tan


 x x3 d3

––( )–

2L
n

+

-----------------------------
 
 
 

.cos
2

TECHNICAL PHYSICS      Vol. 49      No. 9      2004



THEORETICAL CONCEPTS OF OPERATION 1187
jp(0) = jn(x3); this current is caused by external genera-
tion and represents the sought contribution of charge
carriers generated at x = x0 to the measured signal.

Calculations show that, if the generation point is
located in the n-type region (x1 < x0 < x2), the total cur-
rent of EHPs generated by external radiation is given by

(38)

where
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If the generation point is located within the n+-type

region (x2 +  < x0 < x3 – ), the total current through
the detector is given by

(39)

where

Due to a small thickness of SCRs V and VII, the

contribution of the sources at x2 ≤ x0 < x2 +  and x3 –

 ≤ x < x3 to the total signal is found to be negligible,
so that j(x0) was not calculated in these cases.

We can appreciably simplify expressions (38) and
(39) by using the relations between numerical values of
parameters of the problem. For concentrations n0 ~
1011–1012 cm–3 and a thickness of the n-type region on
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we obtain to a high accuracy

(40)

where

If the detector is irradiated with electrons through
the n+-type contact, i.e., if the source is located in the

vicinity of x2, we have (x0) = 0 and

Similarly, if the source is located within the quasi-
neutral n+-type region, we obtain

(41)
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Fig. 4. The dependence of the total current j(z) on the depth
of generation of electron–hole pairs z and the distribution of
the density of generation of electron–hole pairs over the

depth. p0 =  = 1018 cm–3, n0 = 7 × 1011 cm–3, and

 = 2 × 10–5 cm.
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Since n0/  ! 1 and n0/p0 ! 1, we can derive the
following expressions with an accuracy to the second-
order terms:

Taking into account that Ln ~ 1/ , Lp ~ 1/ ,

and  ~ 1/ , we can easily analyze the depen-

dence of current on equilibrium concentrations of

charge carriers in various regions. The ratio (x0)/
increases with increasing n0 and decreases with

increasing /p0. Naturally, the value of (x0)/  is

affected profoundly by the parameter  that char-
acterizes the losses to recombination in the quasi-neu-

tral n+-type region. An increase in  leads to a

decrease in (x0)/ .

Qualitatively, the dependence of current on the
parameters of the problem can be interpreted in the fol-
lowing way. Thin regions of a strong screening field in
the p+- and n+-type regions in the vicinity of the bound-
aries x1 and x2 impede the diffusion of nonequilibrium
charge carriers into the quasi-neutral regions where
recombination occurs. If the source is located in the
vicinity of the boundary x2, the current is affected only

by the thickness  of the screening region, the poten-

tial-barrier height U(x2 + ) – U(x2), and the diffusion
length of nonequilibrium holes in the n+-type region

. As n0 and p0 increase, the thickness of the
screening region decreases, whereas this thickness is

nearly independent of  (as long as the condition

n0/  ! 1 is satisfied). However, as /p0 increases, the
height of the potential barrier that inhibits the diffusion
of holes into the n+-type region increases. Therefore, an

increase in n0 and p0 and a decrease in  lead to an
increase in the characteristic generation depth within
which the effect of losses to recombination is apprecia-

ble. It is worth noting that a variation in p0 and 

affects only slightly the current if the ratio /p0 is
retained constant.

In our calculations, the parameters of the problem
were varied within approximately an order of magni-

tude around the values of  ~ 1019 cm–3, p0 ~ 1019 cm–3,

n0 ~ 1012 cm–3, and  ~ 10–5 cm.
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range from 7 to 25 keV with the results of simulation with the charge-carrier transport taken into account.
In Fig. 4, we show the dependence of the total cur-
rent j(z) on the generation depth z = x3 – x0 at the values

of the parameters p0 =  = 1018 cm–3, n0 = 7 × 1011 cm–3,

and  = 2 × 10–5 cm; the depth distribution of the
density of generation of EHPs by electrons with ener-
gies of 7 and 20 keV is also shown. It can be seen that,
at the characteristic depth of penetration of electrons
with energies on the order of 10 keV, the form of j(z)
can noticeably affect the detected signal.

The obtained results make it possible to simulate the
experimentally observed amplitude distribution of
charge pulses. By integrating (with respect to the depth)
the distribution of energy lost by an electron along each
trajectory with the function j(z) that accounts for the
contribution of EHPs to the signal, we can find the
amplitude distribution of detected pulses. A variation in
the parameters in the expression for j(z) indicates that
good agreement between experimental and theoretical

dependences is attained if p0 =  ~ 1018–1020 cm–3,

n0 = 7 × 1011 cm–3, and  = 2 × 10–5 cm. A com-
parison of these dependences for electrons with ener-
gies in the range from 7 to 25 keV is shown in Fig. 5. It
is noteworthy that the obtained values of the charge-
carrier concentrations and diffusion lengths are in satis-
factory agreement with the design parameters of the
semiconductor detector.

CONCLUSION

We used the Monte Carlo method to simulate
numerically the depth distribution of generation density
for electron-hole pairs (EHPs) when the semiconductor
structure is irradiated with monoenergetic electrons
with an energy on the order of 10 keV. It is shown that
the form of obtained dependences is governed by the
spatial distribution of the energy-loss density for a pri-

n0
+

Dpτ p

n0
+

Dpτ p
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mary electron and is not affected by specific features of
the EHP generation.

We obtained an analytical solution to a system of
equations that describe the transport of generated EHPs
to electrodes in a planar p+–n–n+ semiconductor struc-
ture with the n-type region depleted completely of
charge carriers. It is shown that the losses to recombi-
nation in the course of transport profoundly affect the
shape of the detected signal.

The results of numerical simulation of the signal for
the detector irradiated with monoenergetic electrons
with energies in the range from 7 to 25 keV were com-
pared with experimental data. The values of some
poorly known characteristics of the semiconductor
structure (such as the diffusion lengths of nonequilib-
rium charge carriers) were used as adjustable parame-
ters. It is shown that one can obtain good agreement
between the results of simulation and experimental data
if the losses of charge due to recombination are taken
into account using the aforementioned analytical
expressions.

Thus, we developed a theoretical procedure that
makes it possible to calculate the operational character-
istics of semiconductor detectors and, consequently,
optimize the detector’s parameters when designing the
promising semiconductor proportional detectors used
in analytical methods.
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Abstract—The sensitivity and resolution of a photoresist composed of a two-layer (polymer–metallic indium)
film are measured. 2D masks used to create nanodimensional metallic and insulating islands on a silicon sub-
strate are prepared by direct laser action. Conditions are found for preparing submicron periodic structures on
TiO2 films that are applied on a glass substrate by the sol–gel technology. Optical properties of these arrays are
measured, and it is shown that they can be used for exciting plane electromagnetic waves. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Interference lithography as a tool for creating large
periodic nanometer arrays with different dimension and
symmetry has recently found increasing favor [1–6].
Basically, using radiation from an F2 laser and achro-
matic interference optics [7, 8], one can localize the
laser energy within an ensemble of 40-nm areas with a
period of 80 nm. A simple scheme incorporates appro-
priate phase structures, which can be prepared with
longer wavelength (e.g., Xe–Cl) lasers. When the laser
radiation diffracts on the phase structure, the period of
variation of the intensity in the standing wave can be
made twice as short as the period of the phase structure.

Localization of laser radiation in such tiny areas
seems promising for creating quantum-size objects,
locally enhancing impurity diffusion, generating
defects (which is sometimes necessary in the micro-
electronic technology [9, 10]), etc. The outlook for
interference lithography is discussed in [11]. The feasi-
bility of producing germanium quantum dots on a non-
planar silicon substrate that is patterned by holographic
lithography combined with reactive ion etching was
demonstrated in [12].

Pulsed interference lithography offers wide potenti-
alities for producing large ensembles of subwavelength
holes in metal films for studying the effect of resonant
plasma oscillations on the optical parameters of the
films [13]. Also, the technique discussed can be used
for production of nanometer SiO2 islands in the SOI
technology, for local gettering of impurities, etc. The
optical properties of the TiO2 films grown by the sol–
gel technology (especially of those doped by various
impurities [18–21]) are of interest for use in fiber-optic
and planar devices (in particular, in Bragg gratings
[14−17]).
1063-7842/04/4909- $26.00 © 21191
EXPERIMENTAL SETUP AND EXPERIMENTAL 
RESULTS

In this work, we study direct modification of the
indium films by four-beam interference, as well as of
the TiO2 films obtained by the sol–gel technology
(interference of two UV beams).

The source of UV radiation was a Xe–Cl laser with
the following characteristics: the radiation wavelength
is 308 nm; the coherence length, more than 30 cm; the
pulse width, 7 ns; and the peak energy, up to 100 mJ.
The divergence was close to the diffraction limit. The
high-power nanosecond UV pulses used in the experi-
ment loosen the requirements for the mechanical stabil-
ity of the optical system and allow for direct modifica-
tion of various materials on the nanometer scale [22].

Indium films are of interest, since they can be used
as a basis for a fairly sensitive photoresist [22] for
which the threshold energy of exposure is virtually
independent of the radiation spectrum. Its essential dis-
advantage is the adverse effect of heat diffusion; hence,
pulses shorter than 10 ns should be applied to achieve
submicron resolution [23].

The samples used in the experiments consisted of a
silicon substrate coated by silicon dioxide (the thick-
ness h ≈ 80 nm), a polymer (h ≈ 50 nm), and an indium
film (h ≈ 10 nm). With an indium film 10 nm thick,
through holes were obtained at a mean energy density
of 20 mJ/cm2 (Fig. 1). Figure 1 shows the AFM image
of a part of the indium film and the section of the hole
marked by the bar. The hole has a steep slope and a flat
bottom. This is associated with the presence of the
polymer underlayer, which features a higher ablation
temperature and a lower optical absorption. From these
measurements, one can estimate the resolution of the
two-layer resist, which turns out to be 100 nm or higher.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. AFM image of the metallic indium film after irradiation by four coherent beams of the Xe–Cl laser radiation.
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Fig. 2. AFM image of the polymer film after indium mask etching.
Then, the pattern was transferred on the surface of the
sample by etching the polymer layer in an oxygen
plasma with the unexposed areas remaining intact. This
process is well controlled: the related AFM image and
the section of the hole are shown in Fig. 2. It is seen that
the slope of the hole has become less steep but the hole
itself has become much deeper. The decrease in the
steepness in this case is probably related to the shape of
the AFM tip.

The mask thus formed has a high height-to-width
ratio and makes it possible to form metallic and insulat-
ing nanofeatures on the silicon surface or apply dry
etching with subsequent lift-off lithography. A large
array of nanometer metallic contacts on the silicon
dioxide surface is shown in Fig. 3. The result of plasma-
chemical mask etching of the silicon dioxide layer (an
array of nanoholes on the silicon surface) is shown in
Fig. 4.

Our next goal was to vary the properties of the TiO2
films obtained by the sol–gel technology. TiO2 films are
viewed as a promising material for various planar
waveguides. The radiation from a Xe–Cl laser and a
TiO2 film interact with a high efficiency, because 308-
nm radiation falls into the interband absorption range.

The TiO2 films were prepared by the chemical
method from a 5% solution of Ti(OC4H9)4 [24]. The
solution was poured over a rotary glass substrate (the
rate of rotation was ≈400 rpm). The films were firmly
attached to the surface by quenching in an air thermo-
stat at 150°C for a day. To reach a desired thickness of
the film, it was applied in several steps, each subse-
quent layer being heated. The final thickness was varied
from 100 to 500 nm. Patterns with periods of 560, 420,
and 330 nm were prepared by means of two-beam inter-
ference. Examples of such patterns are depicted in
Figs. 5 and 6. The threshold energy density of structure
modification was ≈30 mJ/cm2. This allowed us to pat-
tern an area of ≈1 cm2 per laser shot. It should be noted
that if the threshold energy density was exceeded, the
patterns had a period twice shorter than the period of
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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Fig. 3. AFM image of the metal islands on the silicon dioxide surface.
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Fig. 4. AFM image of the structure after etching of the silicon dioxide layer to form nanoholes on the sample surface.
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Fig. 5. Patterned TiO2 film after the action of two coherent UV beams. The period of the standing wave in the plane of the sample
is ≈560 nm; the energy density of exposure, ≈30 mJ/cm2.
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Fig. 6. Patterned of the TiO2 film after the action of two coherent UV beams. The period of the standing wave in the plane of the
sample is ≈330 nm; the energy density of exposure, ≈30 mJ/cm2.
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Fig. 7. AFM image of the TiO2 film surface. The period of the standing wave is ≈330 nm; the energy density of exposure,
≈60 mJ/cm2.
the standing wave of the radiation. This results from the
fact that each of the interference maxima produces two
hillocks on the surface in this case, since the melt slides
down in opposite directions. Figure 7 exemplifies such
a situation. Here, one can see the structure that is com-
posed of two periodic gratings embedded in each other
and arranged nearly symmetrically relative to each
other.

Using a He–Ne laser, we performed tentative exper-
iments on excitation and reradiation of plane waves
through the periodic structures prepared. The samples
(gratings) were mounted on a goniometer, and angles of
incidence of the radiation at which diffraction waves of
different orders arise in the air and in the medium were
measured. Note that, if the diffracted waves in the air
are absent, counterpropagating or copropagating waves
(depending on the angle of incidence and the grating
period) may be excited in the medium. It is also easy to
create a situation where a surface wave is partially rera-
diated into the air as a result of diffraction by the peri-
odic grating in the TiO2. Conditions for increasing the
efficiency of radiation transfer from the air to the film
will be reported in subsequent publications.

CONCLUSIONS

Pulsed interference lithography equipment that is
provided with a variety of optical devices and probe
microscopes to characterize films and their surfaces is
designed. Varying the number of interfering beams,
their polarization, and angles between them, we created
structures with different periods and symmetries. The
polymer was etched through the 2D indium mask
obtained by direct laser action, and then metallic and
insulating nanofeatures were formed on the silicon sub-
strate. Submicron-period gratings were made on the
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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TiO2 film. Such equipment is promising for research in
the field of laser nanotechnology.
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Abstract—It is demonstrated that strong absorption of a TM wave upon grazing incidence on a metal surface
is analogous to total transmission of a TM wave incident on a dielectric surface at the Brewster angle. Vanishing
reflectance of the metal surface leads to increasing attenuation of oscillations propagating in a waveguide. The
ratio κ/k of the transverse wave number κ to the limiting wave number k is on the order of the surface impedance
ζ. The attenuation coefficient of H and E waves in a circular waveguide is calculated for an arbitrary relation
between κ/k and ζ. It is demonstrated that for κ/k ! ζ, the attenuation coefficient is less than that predicted by
the theory based on successive approximations (see, for example, §90 in [1]). © 2004 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

A conventional approach to the calculation of atten-
uation of waves in a waveguide with conducting walls
employs the method of successive approximations
based on the smallness of attenuation of waveguide
modes (see, for example, [1]). In this work, by the
example of a circular waveguide, we demonstrate that
such an approach yields an incorrect result provided
that the wavelength is much less than the radius of the
cross section and that analysis involves modes with a
small transverse wave number. It is demonstrated that
such modes can exhibit a field structure that fundamen-
tally differs from the field structure in a waveguide with
perfectly conducting walls even in the case of low sur-
face impedance that serves as a small parameter in the
method of successive approximations. This phenome-
non is closely related to the effect of total transmission
of an electromagnetic wave incident on an interface
between two media at the Brewster angle (see Section 1).
In Section 2, we discuss the attenuation of waves in a
circular waveguide. The concluding remarks show that
for the major part of applications, the successive
approximation procedure yields correct results. We also
present examples showing when the results of exact
calculations need to be used.

1. REFRACTION AT METAL INTERFACE

Consider the reflection of a plane electromagnetic
wave from a metal surface. The amplitudes E1 and E2 of
refracted and reflected waves can be represented in
terms of the incident wave amplitude E0 using the solu-
tion to a similar problem for an insulator and substitut-
1063-7842/04/4909- $26.00 © 21196
ing the expression

(1)

where σ is the conductivity of the metal.
For a TE wave (Fig. 1a), the Fresnel formulas (§86

in [1]) yield the following expressions:

(2a)

(2b)

The corresponding relationships for a TM wave are
written as

(3a)

ε 4πiσ
ω

------------,=

E1

E0
-----

θcos ε θ2cos–

θcos ε θ2cos+
---------------------------------------,=

E2

E0
-----

2 θcos

θcos ε θ2cos+
---------------------------------------.=

E1

E0
-----

ε θcos θ2cos–

ε θcos θ2cos+
---------------------------------------,=

(a)

E0
H0

k1

E2 H2

E1

H1

k0

θ

(b)

E0H0

k1

E2

H2

E1 H1k0

θ

Fig. 1. Reflection of (a) TM and (b) TE waves from plane
surface.
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Parameters of some metals

σ1, s–1 σ0, s–1 ωp, s–1 τ, s l0, cm δ0, cm , 
arcmin

, 
deg

Ag 6.1 × 1017 5.4 × 1017 1.4 × 1016 3.6 × 10–14 5.0 × 10–6 1.4 × 10–7 1.8 45 10

Al 3.6 × 1017 2.1 × 1018 1.8 × 1016 8.0 × 10–14 1.3 × 10–5 6.1 × 10–8 0.9 33 7.5

Au 4.4 × 1017 3.6 × 1017 1.4 × 1016 2.4 × 10–14 3.4 × 10–6 1.7 × 10–7 2.2 45 10

Cu 5.8 × 1017 1.6 × 1017 1.2 × 1016 1.3 × 10–14 1.7 × 10–6 2.7 × 10–7 3.4 52 11

Fe 1.0 × 1017 2.1 × 1016   5.4 × 10–15 9.2 × 10–15 6.9 × 10–7 1.1 × 10–6 9.1 120 29

Ni 1.5 × 1017 6.2 × 1016 7.4 × 1015 1.4 × 10–14 1.3 × 10–6 5.6 × 10–7 5.4 86 20

Ti 2.1 × 1016 8.6 × 1015 4.5 × 1015 5.3 × 10–15 3.5 × 10–7 1.9 × 10–6 14 160 38

ϑ B FIR, ϑ B
' ϑ B NIR,
(3b)

Here, θ is the angle of incidence and cosθ2 =

.
For metals with high conductivity, |ε| @ 1. There-

fore, with a high accuracy, we have cosθ2 = 1.
It is known that at metal surfaces, the Leontovich

boundary condition (§87 in [1]) must be satisfied for the
tangential components of electric and magnetic fields:

(4)

Here, ζ is the surface impedance and n is the outward
normal to metal surface.

With allowance for the fact that |E| = |H| outside the
metal and using formulas (2) and (3), it can easily be
demonstrated that the surface impedance equals

1/(cosθ2 ) (cosθ2/ ) for a TE (TM) wave. Thus,
under the assumption that cosθ2 = 1, we obtain

(5)

regardless of the polarization of the electromagnetic
field and the angle of incidence. This expression is valid
for the normal skin effect, when the thickness of skin
layer

(6)

is much less than the free path of electrons:

(7)

Since

(8)

we can represent expression (7) as [2]

(9)

where δ0 = c/ωp and ωp = (4πσ0/τ)1/2 is the plasma fre-
quency of conduction electrons.

E2

E0
-----

2 θcos

ε θcos θ2cos+
---------------------------------------.=

1 θ/εsin
2

–

Eτ ζ n Hτ,[ ] .=

ε ε

ζ 1/ ε 1 i–( ) ω/8πσ= =

δ c/2πσω=

l ω( )  ! δ ω( ) .

l ω( ) l0/ 1 iωτ–( ), σ ω( ) σ0/ 1 iωτ–( ),= =

l0/δ0 ! 1 ω2τ2+( )3/4
/ ωτ( )1/2,
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Table shows parameters of several metals. The val-
ues of parameters σ0, τ, ωp, l0, and δ0 are calculated
using the results of optical measurements of the reflec-
tion of CO2 laser radiation with a frequency of f =
28.3 THz (λ = 10.6 µm) from metal surfaces [3]. Being
applied in a wide (from quasi-stationary fields to visible
radiation) frequency range, formulas (8) yield only
rough approximation. For example, the values of σ0
calculated for a few metals substantially differ from the
values of static conductivity σ1 at a temperature of 0°C
from [4] (see table). This difference is quite natural,
since l0/δ0 @ 1 and the low-frequency range, where the
conductivity is close to static, is separated from the IR
range by the region of the anomalous skin effect, where
formulas (5), (6), and (8) cease to be valid (§86 in [5]).

The real part ζ' of the surface impedance ζ = ζ' + iζ''
is positive (§87 in [1]). In the low-frequency range of

the normal skin effect, ζ' = –ζ'' = , since the
static conductivity σ1 is a real quantity. In the high-fre-
quency range of the normal skin effect, starting from
the submillimeter range, where ωτ > 1, the surface
impedance is almost purely imaginary, ζ ≈ (1 –
iωτ)/(ωτ). In the range of the anomalous skin effect,
lying in between the low-frequency and high-frequency
ranges of the normal skin effect, ζ' ~ ζ'' ∝ ω 2/3.

It follows from the above facts that the Leontovich
boundary condition (4) is satisfied at |ζ| ! 1. For the
subsequent analysis, it is important that this condition
can be used at any angles of incidence of radiation on
the conducting surface (including the angles corre-
sponding to glazing incidence). We need the well-
known facts presented above to draw this conclusion.
Inequality |ζ| ! 1 is satisfied if ω ! ωp. It follows from
the data presented in table that the corresponding fre-
quencies can reach the visible range.

We can find the reflection coefficient R = |E1/E0|2 for
metal surface using the Fresnel formulas (2a) and (3a)
assuming that cosθ2 = 1 or directly from the Leontovich
boundary condition (4) representing Eτ and Hτ in terms

ω/8πσ1
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of E0 and E1:

(10a)

(10b)

The reflection coefficient for a TE wave is close to
unity at all angles of incidence (Fig. 2), whereas the
reflection coefficient of a TM wave exhibits a minimum
at θB = π/2 – |ζ|:

At frequencies for which we can neglect the disper-

sion of conductivity, Rmin = (  – 1)/(  + 1) ≈ 0.17.
When the imaginary part ζ'' of the surface impedance
decreases, Rmin tends to zero and the corresponding
angle of incidence tends to the Brewster angle (§86 in
[1]). A TM wave incident on a dielectric (metal) surface
at the Brewster angle is completely transmitted
(absorbed).

For real metals, the difference (equal to |ζ|) between
the Brewster angle θB and the right angle is very small.
Therefore, below, we measure the angle of incidence
from the plane of interface and introduce angle ϑ  =
90° – θ. At frequency f = ω/2π = 1 MHz, the Brewster
angles are about 0.2′′  and no greater than 1′′  for copper
and steel, respectively. The surface impedance
increases with frequency. However, the impedance is
low even in the IR range. For frequency f = 0.3 THz
(λ = 1 mm) corresponding to the boundary of far IR
range, the Brewster angle at metal surfaces ranges from
1′ to 10′. In the near IR range (f = 375 THz and λ =
0.8 µm), the Brewster angle can be as high as a few tens
of degrees. The calculated values of ϑB, FIR and ϑB, NIR
expressed in angular minutes and degrees, respectively,
are presented in the third from last and the last columns
of table. The second from last column shows the values

RTE
ζ θcos 1–
ζ θcos 1+
------------------------

2
,=

RTM
θcos ζ–
θcos ζ+

---------------------
2
.=

Rmin
ζ ζ '–
ζ ζ '+
----------------.=

2 2

0 π/6 π/3 π/2
θ

0

0.2

0.4

0.6

0.8

1.0
ζ' = 0.01

ζ' = 0.1

1
2

R

Fig. 2. Plots of reflection coefficient vs. angle of incidence
for (1) TM and (2) TE waves in the case of real conductivity.
of the Brewster angle for the CO2 laser frequency
(28.3 THz).

2. ATTENUATION IN CIRCULAR 
WAVEGUIDE

A deep valley in the reflectance of a metal surface
leads to a strong absorption of oscillations in a
waveguide at a certain relation between the wavelength,
the linear sizes of the waveguide cross section, and the
surface impedance of walls. Consider a waveguide with
circular (radius a) cross section. In this waveguide, the
fields are given by (§91 in [1])

(11)

where κ = (ω2/c2 – k2)1/2 and Jm is the Bessel function.

Using boundary condition (4), we find the disper-
sion relation [5, 6]

(12)

where functions Jm and  are calculated for argu-

ment κa.
At the given frequency ω, this equation yields the

longitudinal wave number k.
For the ideal conduction of waveguide walls (ζ = 0),

Eq. (12) is split into two equations making it possible to
independently determine amplitudes E0 and H0:

(13a)

(13b)

The former equation corresponds to an E wave with
Hz ≡ 0. The latter equation corresponds to an H wave
with Ez ≡ 0. Note that for m =1, the first three roots κEa
(κHa) of Eq. (13a) (Eq. (13b)) are 3.83171, 7.01559,
and 10.1735 (1.84118, 5.33144, and 8.53632).

At a finite impedance, any waveguide mode exhibits
six components of electromagnetic field (except for the
case m = 0; see below). However, at a low impedance,
one polarization remains dominating. For |ζ| ! κ/k, we
obtain from Eq. (12) the following expression for an E
wave:

E
ik

κ2
----- ∇ ⊥ Ez Ezẑ

iω
cκ2
-------- ∇ ⊥ Hz ẑ,[ ] ,++=

H
ik

κ2
----- ∇ ⊥ Hz Hzẑ

iω
cκ2
-------- ∇ ⊥ Ez ẑ,[ ] ,–+=

Ez E0Jm κr( )eikz imϕ iωl–+ ,=

Hz H0Jm κr( )eikz imϕ iωl–+ ,=

ζ Jm
iω
cκ
------Jm'+ Jm ζ iω

cκ
------Jm'+ ζ ik

κ
---- im

κa
------Jm

2

,–=

Jm'

Jm κa( ) 0 E0 0≠ H0, 0=( ),=

Jm' κa( ) 0 E0 0= H0, 0≠( ).=

Jm κa( ) ζ iω
cκ
------Jm' κa( ).–=
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Using successive approximations, we solve this
equation and find correction δκ related to the finiteness
of impedance:

Here, κE is the root of Eq. (13a). At a fixed frequency ω,
κδκ + kδk = 0. Then, knowing the calculated variation
δκ in the transverse wave vector, we find the attenua-
tion coefficient of an E wave:

(14a)

where Im denotes imaginary part.
A similar approximate equation for an H wave is

written as

Using this expression, we find that

(14b)

where κH is the root of Eq. (13b) such that inequality
κHa > |m| is always satisfied.

Note a distinctive feature of an H wave with m = 0:
at κ/k ! 1, its attenuation coefficient estimated as
(κ/k)2(ζ'/a) is less than the attenuation coefficients for
other waves by a factor of (κ/k)2.

It follows from the definition of attenuation coeffi-
cient that the energy flux of the wave decreases propor-
tionally to exp(–2Imkz). Formulas (14) coincide with
the classical formulas from textbooks on electrodynam-
ics (see, for example Problem 2 from §91 in [1]), where
the dissipation in waveguide walls serves as a small
perturbation. However, these formulas yield incorrect
result if κ/k & |ζ| = κB.

To demonstrate this, we consider the case m = 0. For
an arbitrary relation between ζ and κ/k, Eq. (12) is split
into two independent equations written as

(15a)

(15b)

In the limiting case ζ @ κ/k, we find from these
equations that

(16a)

(16b)

δκ iω
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a
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a
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m2k2 κ H
4 a2+

κ H
2 a2 m2–( )k2

----------------------------------ζ'
a
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J0 ζ iω
cκ
------J0'+ 0 E0 0, H0 0=≠( ),=

ζJ0
iω
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δκ
iκ H

ka
--------1

ζ
---, Imk–

κ H
2

k
2
a
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ζ 2
--------,= =
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κ H
2
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2
a
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for E and H waves, respectively. Note that in both cases,
in the zero approximation, we find κH from one equa-
tion (κHa) = 0. As in the case when |ζ| < κ/k, the E
wave with m = 0 decays faster: the attenuation coeffi-
cient given by expression (16a) is greater than that
given by expression (16b) by a factor of 1/|ζ|2.

For m ≠ 0, we leave in expression (12) only the main
terms in the limiting case |ζ| @ κ/k:

This equation yields only purely real solutions,
since after cancelling out of multiplier ζ, it is indepen-
dent of the conductivity of walls. The equation can also
be split into two independent equations, which can be
further simplified taking into account the approximate
equality ω/c ≈ k and the inequalities κ/k ! |ζ| ! 1:

(17)

Here, two variants to choose the sign correspond to two
equations and the waves with left (upper sign) and right
(lower sign) circular polarizations in the plane of the
waveguide cross section:

(18)

Note that H = ±iE.
Following [6], we name the two solutions (18), cor-

responding to the upper and lower signs, L and R
waves. At the waveguide walls, only the z components
of the electric and magnetic fields of these waves differ
from zero. Therefore, the Poynting vector S = (c/4π)[E,
H] equals zero, and the energy dissipation is absent. L
and R waves represent a generalization of nondiffract-
ing Bessel beams (exhibiting the absence of time aver-
age energy flux from the beam axis) [7] to the case
m ≠ 0. For the case m = 1, the first three roots κLa (κRa)
of equation J2 = 0 (J0 = 0) are 5.13562, 8.41724, and
11.6198 (2.40483, 5.52008, and 8.65373).

A correction to quantity κL, R is calculated as

and the attenuation coefficient is given by

(19)

where κL, R can be found from Eq. (17) with regard to
the sign.
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The maximum attenuation is reached at the common
boundary of domains of applicability for formulas (14)
and (19) at |ζ| ~ κ/k. The corresponding attenuation
length (Imk)–1 ~ a/ζ' can be close to the diffraction
spreading length a2/λ of a wave packet propagating in
an infinite space provided that ζ' ~ |ζ| (recall that ζ' !
|ζ| in the IR range).

By way of an example of waves with m = 1 (Fig. 3),
we can trace the mechanism of transformation of H and
E waves into L and R waves with the variation in the
surface impedance. For simplicity, we plot curves using
the equality ζ = (1 – i)ζ', which is valid at purely real
conductivity coefficient. When ζ' increases from the
limiting value ζ' ! κ/k to ζ' @ κ/k, κ eventually
decreases. If we arrange in ascending order, on the one
hand, κH and κE and, on the other hand, κR and κL, then
the relation between the waves at ζ' ! κ/k and ζ' @ κ/k
can be established using a simple rule: the root from the
first sequence is transformed into the nearest smaller
root from the second sequence. The smallest (in both
sequences) root 1.84118 corresponds to the H11 wave.
Therefore, this wave vanishes (strongly decays) when
the impedance increases. The remaining H waves are
transformed into L waves with the radial number n
decreased by unity. In particular, H12 is transformed
into L11, H13 is transformed into L12, etc. E waves are

0
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E11

E12
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(b)

ζ'

Imκa
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0

Fig. 3. Plots of (a) real and (b) imaginary parts of κa vs ζ' at
κa = 100 and a real conductivity. Hmn, Emn, Lmn, and Rmn
are waves with azimuthal number m and radial number n.

H11
transformed into R waves with the same radial number
(Emn is transformed into Rmn).

CONCLUSIONS

Based on the above analysis, we conclude that the
conventional approach to the calculation of attenuation
of waves in a waveguide may yield incorrect results,
since the finiteness of the resistance of waveguide walls
at |ζ| * κ/k leads to a structural transformation of
waveguide fields. Recall that the conventional approach
is based on successive approximations. In the first
approximation, we neglect the resistance of walls and
find the eigenmodes of a waveguide with perfectly con-
ducting walls assuming that the tangential projection of
electric field equals zero (Eτ = 0) at the surface of the
walls. In the next approximation, we calculate Eτ using
the Leontovich boundary condition (4) and the value of
the tangential projection of magnetic field Hτ at the
walls found at the first stage. Then, we calculate the
energy flux to the walls Sn = (c/4π)[Eτ, Hτ] and find the
attenuation length from the equation for energy balance
in the wave.

Under real conditions, the surface impedance ζ is
low and condition |ζ| ! κ/k is always satisfied. Hence,
successive approximations yield correct results. Never-
theless, we can indicate two phenomena, in which the
above condition can be violated.

Recently, Lotov [8] proposed that microcapillary
tubes could be used to prevent diffraction spreading of
a laser pulse that serves as a driver in the wake acceler-
ation of charged particles. A laser pulse with a power of
tens of terawatts virtually instantaneously ionizes the
walls of a microcapillary, transforms any material into
a highly conducting substance, and propagates in the
capillary as in a waveguide. Using a capillary with
appropriate parameters, we can hypothetically form a
quasi-Bessel beam and substantially increase the length
of spreading.

Another possible application is related to the analy-
sis of the frequency dependence of the longitudinal
impedance in cyclic particle accelerators [9, 10]. This
dependence exhibits resonance character in the vicinity
of frequencies satisfying the condition for time syn-
chronism ω = nω0 (n is integer) involving the frequency
ω of synchrotron modes and the rotation frequency
ω0 = βc/R of a particle in the accelerator (βc is the
velocity of the particle and R is the radius of its orbit).
Synchrotron modes are excited in a toroidal camera by
accelerated particles provided that the phase velocity of
the mode is less than the velocity of light. The last con-
dition leads to the inequality ω > ωmin ~ πcR1/2/a3/2 [11].
The width of an individual resonance is proportional to
the attenuation coefficient Imk of the resonant mode:
∆ω = Imkc. We can estimate the frequency ωmax corre-
sponding to the transition between the attenuation
modes (14) and (19) equating the characteristic propa-
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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gation angle of synchrotron radiation κ ~ (ω0/ω)1/3 (for
the low-frequency part of the synchrotron radiation
spectrum) to the Brewster angle |ζ| ~ ω/ωp. For typical
parameters of sources of synchrotron radiation [12], the

value ωmin ~  falls into the IR range and satis-
fies the condition ωmax > ωmin.
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Abstract—Parameters and ion-emission characteristics of the plasma generated in the anode stage of an ion
source with a hollow glow-discharge plasma cathode are studied. To decrease the minimum operating gas pres-
sure to 5 × 103 Pa, a multipole magnetic system was installed on the surface of the hollow cathode and the
peripheral magnetic field was enhanced in the anode stage of the source. The effect of the gas pressure, the plasma-
cathode current, and the voltage between the electrodes of the anode stage on the value of the ion current extracted
from the plasma is investigated. It is found that the size of the exit aperture of the hollow cathode substantially affects
the efficiency of ion extraction. The potential (1–5 V) and the electron temperature (1–8 eV) of the anode-stage
plasma are measured by the probe method. The conditions are determined that ensure the maximum ion-emis-
sion current from the plasma at low gas pressures. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The use of a two-stage glow discharge (in the first
stage, a plasma cathode is produced and, in the second
stage, a plasma with desired ion-emission characteris-
tics is generated) in a gas-ion source not only ensures
the long lifetime of the source when operating with
chemically active gases, but also makes it possible to
decrease the operating gas pressure and the content of
metal ions in the ion beam [1]. The use of a grid that
separates the cathode from the anode stage of the
source and fixes the position and potential of the plasma
electron emitter allows one to vary the energy of the
electrons injected into the second stage [2]; this offers
an additional possibility of controlling the density of
the emitting plasma, as well as the mass and charge
composition of ions.

In the second stage of the source, various electro-
magnetic traps can be used that ensure the confinement
and efficient energy relaxation of the primary electrons.
Moreover, to generate a wide ion beam in such a trap, a
spatially uniform plasma should be produced. An
important requirement for the confinement system is
the possibility of extracting a substantial fraction of the
ions produced in the plasma. At present, systems with a
multipole magnetic field [3] best meet the above
requirements. These systems ensure higher efficiency
of ion extraction as compared to systems with the elec-
trostatic confinement of electrons in a hollow cathode
[2] and do require special measures for spatially equal-
izing the plasma density, as in Penning systems [4].

The present paper is devoted to studying the param-
eters and ion-emission characteristics of the plasma
generated in the nonmagnetized second stage of a gas-
1063-7842/04/4909- $26.00 © 21202
discharge system with a low-pressure glow-discharge
plasma cathode.

EXPERIMENTAL TECHNIQUE

The electrode system of the ion source (Fig. 1) con-
sisted of a hollow cathode, on the axis of which a rod
igniting electrode was installed, and an anode chamber.
The cathode and anode electrodes were made of stain-
less steel and had the same diameter of 130 mm. An
electrically insulated tungsten wire grid, whose cell
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Fig. 1. Electrode system of the ion source: (1) hollow cath-
ode, (2) igniting electrode, (3) grid, (4) anode chamber,
(5) screening plate, and (6) magnets.
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size was varied from 0.2 to 0.6 mm, was placed in front
of the exit aperture of the hollow cathode. The aperture
diameter was varied from 5 to 20 mm. The ions either
were extracted from the plasma through 5-mm holes in
the screening electrode of a two-electrode ion-optical
system connected electrically to the grid or arrived at a
plate placed instead of the screening electrode. The
main difference between this electrode system and the
system described in [3] is the use of permanent magnets
with a large inductance at the pole surfaces (0.15 T) in
the second stage, as well as the arrangement of magnets
at the surface of the hollow glow-discharge cathode. In
experiments, we used 20 × 10 × 10-mm magnets made
of the KS37 samarium–cobalt alloy. The multipole
magnetic field [5] near the anode surface was generated
by 12 longitudinal rows of magnets. The magnets at the
cathode were placed in eight rows. The multipole mag-
netic field at the cathode made it possible to decrease
both the working-gas pressure and the operating volt-
age of the hollow-cathode glow discharge [6]. As a
result, it was possible to decrease the working-gas pres-
sure in the vacuum chamber to 5 × 10–3 Pa when oper-
ating with the ion source. A stronger magnetic field at
the anode improves the confinement of fast electrons
[7]; this allows one to achieve efficient ion generation
at low pressures.

The cathode cavity was filled with argon. The gas
flow rate was varied from 5 to 20 cm3/min. A hollow-
cathode glow discharge was ignited at a voltage of
2.5 kV supplied from power source PS1. The operating
voltage of the discharge was 350–650 V at a current of
0.1–1 A. Power source PS2, whose output voltage was
varied from 0 to 300 V, ensured the extraction of elec-
trons from the cathode plasma, their acceleration in the
cathode sheath formed near the grid, and the extraction
of ions from the anode plasma.

Plasma parameters were measured with the help of
an emission probe [8], which was a tungsten wire with
a diameter of 30 µm and length of 6–8 mm. The wire
was welded to the current-carrying conductors passing
through channels in a ceramic tube with an outer diam-
eter of 5 mm. In experiments, the probe was placed on
the system axis, halfway between the screening elec-
trode and the grid. The probe was heated by a direct
current up to a temperature ensuring thermionic elec-
tron emission. At an emission current of ~10 mA, the
voltage drop across the probe was no higher than 0.5 V.
The plasma potential was measured from the position
of the inflexion point in the probe characteristic in the
regime of low emission currents [9].

To verify the results of measurements of the plasma
potential and to determine the energy spectrum of the
ions extracted from the plasma, we used a multigrid
electrostatic energy analyzer [10]. The analyzer con-
sisted of an ion collector and three sequentially
arranged grids with a cell size of 0.1 × 0.1 mm. The first
grid was at the potential of the screening electrode of
the ion source, the accelerating voltage was applied to
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the second grid, and the third grid served as an analyzer.
As the potential of the third grid was varied from the
screening-electrode potential to a nearly anode poten-
tial, the ion retarding curve was measured in the collec-
tor circuit. It is well known that the derivative of the
retarding curve determines the ion distribution over the
longitudinal energy and the position of the maximum of
the derivative corresponds to the plasma potential [11].
To improve the accuracy of differentiation and to sim-
plify the measurement procedure, we performed the
electronic differentiation of the retarding curve. Along
with the dc voltage, a ~1-V modulation voltage was
applied to the analyzing grid and the alternating com-
ponent of the signal at the modulation frequency
(2 kHz) was measured in the collector circuit with the
help of a selective amplifier. The electronic differentia-
tion was also used to find the inflection point of the
emission probe characteristic. For this purpose, the
potential applied to the probe was modulated. The dc
probe potential at which the amplitude of the first har-
monic of the periodic signal in the probe circuit was at
maximum was taken as the plasma potential.

The electron temperature was determined from the
slope of the linear segment of the cold probe character-
istic plotted on a semilogarithmic scale. To decrease the
effect of the probe surface contamination on the mea-
surement results, as “cold” probe, we used a heated
probe with a temperature lower than that at which elec-
tron emission takes place.

RESULTS AND DISCUSSION

An analysis of the processes in a gas-discharge sys-
tem with a multipole magnetic field [12–14] shows that
the ratio Ie/Ii of the current of fast electrons to the cur-
rent of the ions arriving at the screening plate should be
a linear function of the reciprocal of the gas pressure p.
The slope of this linear dependence should be inversely
proportional to the confinement time of fast electrons,
and the intersection point of the extension of this
straight line with the ordinate axis determines the ratio
of the total electron energy loss in inelastic collisions to
the electron energy spent on gas ionization. A general
feature of all the experimental results is that an increase
in the magnetic field results in a decrease in the slope of
the Ie/Ii curve. This testifies to the better confinement of
the fast electrons. However, the experimental results
have shown that the above dependences measured over
a wide range of 1/p differ from linear functions.

Figure 2a shows the dependences of the current ratio
Ie/Ii measured for two diameters of the exit aperture of
the hollow cathode: (1–3) 20 and (4–6) 5 mm. The ratio
Ie/Ii, which is inversely proportional to the efficiency of
ion extraction α, decreases monotonically with increas-
ing pressure; however, after the pressure reaches ~5 ×
10–2 Pa, the current ratio sharply increases. The position
of the minimum of the Ie/Ii curve depends on the plasma
cathode current, the electron energy, and the diameter
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of the cathode aperture. The higher the current, the
smaller the value of α and the lower the gas pressure at
the minimum of the curve. In contrast, in the range of
low pressures (curves 1–3), the efficiency of ion extrac-
tion increases with increasing electron current. The
minima of curves 4–6 (not shown in Fig. 2a) are
observed at higher pressures than for curves 1–3. As the
energy of fast electrons increases (Fig. 2b), the slope of
the curves changes and they shift toward smaller values
of Ie/Ii. At low electron energies (≈50 eV), the efficiency
of ion extraction is low and, in the range of high pres-
sures, the Ie/Ii curve has a sharp minimum.

As the diameter of the exit aperture of the hollow
cathode decreases, the efficiency of ion extraction
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Fig. 2. Ratio between the current of fast electrons Ie and the
ion current to the screening plate Ii as a function of the
reciprocal of the gas (argon) pressure in the vacuum cham-
ber. (a) The energy of fast electrons is 150 V; the diameter
of the exit aperture of the hollow cathode is (1–3) 20 and (4–
6) 5 mm; and the current of fast electrons is Ie = (1, 6) 0.6,
(2, 5) 0.4, and (3, 4) 0.2 A. (b) The diameter of the exit aper-
ture of the hollow cathode is 20 mm; the current of fast elec-
trons is Ie = 0.5 A; and the energy of fast electrons is (1) 50,
(2) 100, and (3) 200 eV.
sharply decreases (Fig. 2a). The aperture diameter
determines the value of the gas pressure in the cathode
cavity at a given gas flow rate. For this reason, when the
aperture diameter was increased from 5 to 20 mm, we
had to increase (by ~50 V) the voltage between the elec-
trodes of the cathode stage in order to maintain the
glow-discharge current and the emission current of the
plasma cathode at a constant level. In addition, the ratio
of the effective surface area Sa of the anode (which is
the grid) to the surface area Sc of the hollow cathode
substantially influenced the operating voltage of the
hollow-cathode discharge. When the ratio Sa/Sc became
higher than (me/Mi)1/2 (where me and Mi are electron and
ion masses, respectively), the discharge voltage
increased because the loss rate of fast electrons
increased in the first stage of the discharge [15]. It
should be noted that variations in the voltage between
the electrodes of the second stage do not change the
operating conditions of the hollow-cathode glow dis-
charge in the first stage of the source. The current–volt-
age characteristics of this discharge are shown in Fig. 3.
When operating at a low gas flow rate and a high glow-
discharge voltage, the central region of the grid was
heated to fairly high temperatures; this could result in
the melting of the stainless-steel grid. The reason for
this phenomenon is to be studied. We assume, however,
that this occurs because the electron temperature
increases or the anode potential drop appears as the
cathode sheath length increases and the effective area
of the glow-discharge anode decreases. All the results
presented below were observed in an electrode system
with a 20-mm aperture.

One of the main factors determining the efficiency
of the ion source is the plasma potential φp relative to
the anode. When φp is negative, the ions do not escape
to the anode and the initial energy of the fast electrons
oscillating in the nonmagnetized plasma decreases. At
a positive plasma potential, the ion current at the anode
depends on the electron temperature Te, which (along
with the ion temperature) affects the loss area of the
plasma particles that return along the magnetic field
lines. According to [7], this area is determined by the
product of the total length of the magnetic poles by the
hybrid gyroradius (re/ri)1/2, where re and ri are gyroradii
of the plasma electrons and ions, respectively. Figures 4
and 5 show the dependences of the plasma potential and
the electron temperature on the discharge current at dif-
ferent gas pressures. It can be seem from these depen-
dences that, over a wide range of the discharge param-
eters, the plasma potential relative to the anode remains
positive and varies within 2–5 V and the electron tem-
perature is 1–8 eV. As the pressure increases, both the
plasma potential and the electron temperature decrease.
An increase in the current within 0.2–0.8 A results in a
slight increase in both the electron temperature and the
plasma potential. As the voltage between the electrodes
of the second stage increases by 100 V, the electron
temperature increases by ~2 eV and the plasma poten-
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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tial increases by ~0.5 V. The error in measuring φp from
the inflexion point of the emission probe characteristic
is determined by the potential drop along the filament,
the amplitude of the modulating voltage, and space-
charge effects. To suppress these effects, we had to
decrease both the ratio of the filament emission current
to the electron saturation current from the plasma and
the thickness of the heated filament [9]. Estimates
showed that, in our experiments, the error in measuring
φp was 1–2 V.

It follows from the results obtained that the ions are
not confined electrostatically in the plasma of the second
stage of the ion source; therefore, the ions produced in the
discharge escape from the plasma to the screening elec-
trode, the grid, and the anode. The ion current in the anode
circuit is proportional to the loss area, which was 30–
40 cm2 under our experiment conditions. The area on
the screening plate corresponding to the transverse
dimensions of the nonmagnetized plasma region was
nearly two times larger. The area of the anode hole in
front of the grid was about 30 cm2. Hence, the current
of the ions arriving at the plate is, to a first approxima-
tion, about one-half of the total plasma ion current.

The model used in [12–14] is based on the assump-
tion that the gas is ionized only by fast electrons. A frac-
tion of these electrons arrive at the anode without
energy loss in a time tc and the other electrons relax
over a time tr, losing their energy in inelastic collisions
with gas atoms (a part of this energy is spent on gas ion-
ization). The characteristic ionization time is defined as
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Fig. 3. Current–voltage characteristics of a hollow-cathode
glow discharge. The pressure in the vacuum chamber is
(1) 8.0 × 10–2, (2) 5.3 × 10–2, (3) 2.7 × 10–2, and (4) 0.8 ×
10–2 Pa.
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where n0 is the neutral density, σi is the cross section for
electron-impact ionization, and v e is the velocity of fast
electrons.

The relaxation time tr is defined by a similar rela-
tionship in which the ionization cross section is
replaced with the cross section σt for inelastic electron–
neutral interactions. Using the above characteristic
times, the ratio between the electron and ion currents
can be represented in the form

(2)Ie/Ii ti/tc ti/tr.+=
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Fig. 4. Plasma potential ϕp as a function of the discharge
current. The pressure in the vacuum chamber is (1) 8.0 ×
10–2, (2) 5.3 × 10–2, (3) 2.7 × 10–2, and (4) 0.8 × 10–2 Pa.
The voltage between the electrodes of the second stage is
150 V.
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Fig. 5. Electron temperature kTe as a function of the dis-
charge current. The pressure in the vacuum chamber is
(1) 8.0 × 10–2, (2) 5.3 × 10–2, (3) 2.7 × 10–2, and (4) 0.8 ×
10–2 Pa. The voltage between the electrodes of the second
stage is 150 V.
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It follows from this expression that the increase in
the efficiency of ion extraction α with increasing pres-
sure is caused by a decrease in the ratio ti/tc of the char-
acteristic ionization time to the confinement time of fast
electrons. According to [16], the ionization cross sec-
tion σi and the cross section σt for the total inelastic loss
in the 0.1- to 1-keV energy range depend on energy
almost in the same manner and the ratio σi/σt usually
lies in the range 0.2–0.5. Therefore, the second term in
expression (2) only slightly influences the ratio Ie/Ii as
the energy of fast electrons varies. In [14], it was shown
that as the discharge voltage increases from 40 to 120 V
(and, hence, the electron energy also increases), the
effective loss area at the anode increases and the con-
finement time tc of fast electrons decreases. A substan-
tial increase in the efficiency of ion extraction observed
in our experiments is explained by the fact that the
product σiv e as a function of the electron energy
increases rapidly to a value corresponding to the maxi-
mum of the cross section for electron-impact ioniza-
tion. In the energy range under study, this cross section
can be approximated by the formula [16]

(3)

where ZW is the number of electrons in the outer shell,
K is the electron kinetic energy, and Ei is the ionization
energy.

In the electron energy range of 0.1–0.3 keV, the
product σiv e varies only slightly; this should result in
the saturation of the dependence of the efficiency of ion
extraction on the electron energy.

To explain further increase in the efficiency of ion
extraction, it should be taken into account that the
model under consideration allows only for single ioniz-
ing collision events, whereas the increase in the energy
of fast electrons enables them to make several such col-
lisions. The maximum number of ionizing collisions
can be estimated as (eU/Ei)(σiv e)/(σtv e), where U is the
voltage between the electrodes of the second stage (this
voltage determines the energy of fast electrons). How-
ever, if the time during which electrons escape to the
anode is too short for the total electron energy relax-
ation to occur, then the energy efficiency of the ion
source, which is determined by the ratio of the ion-
beam current to the power deposited in the discharge,
decreases with increasing electron energy.

The effect of the diameter of the exit aperture of the
hollow cathode on the efficiency of ion extraction
(Fig. 2a) (which remains unexplained in the framework
of the above simple model) can be explained by the
nonuniformity of the spatial distribution of the neutrals
and fast electrons in the second stage of the gas-dis-
charge system. The pressure of the gas coming from the
cathode cavity and expanding in the anode cavity is
maximum near the grid. The directed flow of fast elec-
trons enters this elevated-pressure region. As a result,
the ionization frequency near the grid is higher than the

σi ZW 10Ei K Ei–( )/ K K 8Ei+( )[ ] ,[=
average ionization frequency in the anode cavity. A
decrease in the aperture diameter and the correspond-
ing increase in the gas pressure and the density of the
electron flow cause a more strong nonuniformity of the
generated plasma. Since the ions produced near the grid
can escape from the plasma to the grid or return along
the magnetic filed lines to the adjacent part of the
anode, a fraction of the ions arriving at the screening
plate decreases with decreasing aperture diameter.

The results of measurements of the plasma potential
with the help of an electrostatic spectrometer coincide
qualitatively with the results of probe measurements.
The position of the maximum of the energy spectrum of
the ions extracted from the plasma corresponds to a
positive (relative to the anode) plasma potential of a
few electronvolts. The small full width at half-maxi-
mum (FWHM) of the longitudinal energy spectrum
(6.5 eV) indicates that the plasma potential is constant
in the ion generation region and that plasma instabili-
ties are absent. As the pressure increases, the FWHM of
the ion energy spectrum increases; most probably, this
is a consequence of the charge exchange of ions in the
screening-electrode sheath.

CONCLUSIONS

An increase in the multipole magnetic field in the
anode stage of the discharge and the use of a multipole
magnetic field in the hollow cathode of a glow dis-
charge have made it possible to expand the operating
pressure range of an ion source with a cold cathode to
pressures as low as ~5 × 10–3 Pa.

The ratio of the current of the ions extracted from
the plasma to the plasma-cathode current increases
monotonically as the gas pressure and the voltage
between the electrodes of the second stage of the dis-
charge increase. The maximum ion current is close to
the plasma-cathode current. As the pressure increases
higher than ~5 × 10–2 Pa, the efficiency of ion extraction
decreases.

The diameter of the cathode aperture has a substan-
tial effect on the efficiency of ion extraction from the
plasma; this is explained by a change in the spatial non-
uniformity of the plasma produced.

The plasma potential in the anode stage of the dis-
charge remains positive relative to the anode (1–5 V) as
the current varies within the range 0.2–0.8 A, the gas
pressure varies within the range 0.05–0.005 Pa, and the
electron energy varies within the range 100–300 eV.
The plasma electron temperature is 1–8 eV. The mini-
mum FWHM of the energy spectrum of the ions
extracted from the plasma at the minimum operating
pressure is 6.5 eV.
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Abstract—A kinetic equation that describes the transverse dynamics of an axisymmetric paraxial relativistic
electron beam propagating along an external magnetic field in a gas–plasma medium is derived with allowance
for the influence of the self-consistent electromagnetic field on the beam, the effects related to the nonlaminar
motion and rotation of the beam electrons at the exit from the injector, and the scattering and energy loss of the
beam electrons in their collisions with the neutral particles of the background gas. © 2004 MAIK “Nauka/Inter-
periodica”.
1. FORMULATION OF THE KINETIC PROBLEM 
ABOUT THE EVOLUTION OF A RELATIVISTIC 

ELECTRON BEAM TRANSPORTED 
IN A SCATTERING GAS–PLASMA MEDIUM

New areas of application of relativistic electron
beams (REBs) stimulate further investigations of the
dynamics of their transport in gas–plasma media
[1−24]. Since the transport of an REB in a gas–plasma
medium is strongly nonequilibrium in character and is
largely dominated by the collective electromagnetic
field of the beam and plasma charges and currents, a
natural methodological approach to constructing mod-
els of the transport of REBs in gas–plasma media is
based on a mathematical apparatus involving the Vla-
sov–Boltzmann kinetic equations with self-consistent
field and their consequences—the equations for the
moments of the distribution function of the beam parti-
cles.

The kinetic equation describing the transverse
dynamics of azimuthally symmetric paraxial REBs in
dense gas–plasma media was first obtained by Lee [6].

The main goal of the present paper is to derive a
kinetic equation that describes the transverse dynamics
of paraxial REBs propagating along an external mag-
netic field in a dense gas–plasma medium and in a rare
plasma in the ion focus regime.

In the kinetic description, the beam is characterized
by the distribution function Φb(r, p, t), which has the
meaning of the mathematical expectation of the number
of relativistic electrons in a six-dimensional space
whose six coordinates comprise the three spatial coor-
dinates r and the three components of the relativistic
momentum p = m0γv (where m0 is the rest mass of an
1063-7842/04/4909- $26.00 © 21208
electron, v is its velocity, and γ = 1/(1 – v 2/c2)1/2 is the
Lorentz factor).

The evolution of the distribution function of the
beam particles during the transport process is generally
described by the Vlasov–Boltzmann kinetic equation
[22–24]

(1)

Here, E and B are the strength and induction of the
electric and magnetic self-consistent fields, respec-
tively, and the so-called collision integral Isc on the
right-hand side characterizes the effect of a change in
the distribution function due to collisions of the beam
particles with the neutral particles of the background
gas.

Equation (1) should be solved together with Max-
well’s equations for the self-consistent electromagnetic
field:

(2)

(3)

(4)

(5)

Here,

(6)

∂Φb

∂t
---------- v ∇ rΦb e E

1
c
--- v B×( )+ ∇ pΦb+⋅+ Isc.=

∇ E× 1
c
---∂B

∂t
-------,–=

∇ B× 4π
c

------J
1
c
---∂E

∂t
-------,+=

∇ E⋅ 4πρ,=

∇ B⋅ 0.=

ρ ρb ρp, J+ Jb Jp,+= =
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where the charge and current densities of the beam par-
ticles, ρb and Jb, are determined by the corresponding
moments of the distribution function Φb,

(7)

(8)

and ρp and Jp are the densities of the charge and current
that are induced in the plasma.

In what follows, we will restrict ourselves to study-
ing some specific cases of transport of an REB in a gas–
plasma medium, namely, those in which the charge and
current densities of the plasma in the main part
(“body”) of the beam either can be treated as known
functions of the coordinates or can be explicitly
expressed in terms of the charge and current densities
of the beam. Among such cases are the regimes of prop-
agation of a charge- or a current-neutralized beam in a
plasma in which the electron density nΦ is much higher
than the electron beam density nb.

For a charge- and current-neutralized beam, we have

where αc and αm are the degrees of charge and current
(magnetic) neutralization of the beam, respectively.

We will also consider the transport of a high-density
pulsed REB in a rare plasma (nb @ nΦ) in the ion focus
regime [9, 11–13]. The main feature of the ion focus
regime is that the pressure of the background gas–
plasma medium is low enough for the transverse com-
ponent of the electric field excited by the front of the
REB to expel the electrons produced in a preformed
plasma channel from the beam region without produc-
ing additional ionization of the background plasma.
This situation takes place under the condition [9]

where λi is the characteristic scale length on which the
avalanche ionization develops and Rb is the characteris-
tic beam radius.

In addition, the beam pulse duration τb should sat-
isfy the condition τb @ τe, where τe is the characteristic
time during which the electric field of an REB expels
the plasma electrons away from the beam region. Since
the electrons of the background plasma are pushed
away from the beam path by the beam electric field, the
majority of the beam electrons propagate against the
background of the plasma ions, which can be regarded
as being immobile provided that the beam pulse dura-
tion satisfies the additional condition τb ! τi (where τi
is the characteristic bounce period of the ions in the
beam region) [9, 11].

In the above cases, Eqs. (1)–(5) with relationships
(6)–(8) constitute a closed set of equations for the dis-

ρb e Φb r p t, ,( ) p,d∫=

Jb e
p

γm0
---------Φb r p t, ,( ) p;d∫=

ρp 1 α c–( )ρb, Jp 1 αm–( )Jb,= =

λ i @ Rb,
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tribution function Φb(r, p, t) of the beam electrons and
for the self-consistent electric field.

2. SEPARATE FORMULATION 
OF THE PROBLEMS OF THE LONGITUDINAL 

AND TRANSVERSE MOTIONS OF A BEAM 
PARTICLE IN THE PARAXIAL APPROXIMATION

The solution of the problem formulated in Section 1,
i.e., the solution of Eqs. (1)–(5) supplemented with the
corresponding initial and boundary conditions, is gen-
erally a very difficult task. In some particular cases,
however, the solution can be substantially simplified by
making additional assumptions about the properties of
the beam. Thus, in the beam transport problems, the
case of most practical interest is that of a so-called
paraxial beam whose particles move at small angles rel-
ative to a certain axis (the z axis) and, accordingly, sat-
isfy the condition

(9)

where v ⊥  is the transverse (with respect to the z axis)
velocity component of a beam particle.

Let us show that condition (9) greatly simplifies
Eqs. (1)–(5). To do this, we consider the equation of
motion of a single beam electron:

(10)

Here, B* = B + B0; E and B are the strength and induc-
tion of the electric and magnetic collective fields of the
beam–plasma system, respectively; B0 = B0ez is the
induction of the external magnetic field, which is
assumed to be uniform and to be directed along the
z axis; and Gsc is the fluctuating force due to collisions
of the beam electron with the particles of the back-
ground medium.

We introduce the scalar and vector potentials of the
electromagnetic field, ϕ and A*, which are expressed in
terms of the vectors E and B* via the well-known rela-
tionships

(11)

(12)

where A* = A0 + A, A0 is the vector potential of the
external magnetic field, and ϕ and A are the potentials
of the collective electromagnetic field.

Assuming that B0 = const, we substitute expressions
(11) and (12) into Maxwell’s equations (2)–(5) and
impose the Lorentz gauge condition (∇ ⋅ A* +
(1/c)∂ϕ/∂t) = 0 to arrive at the following set of d’Alem-

v ⊥

v z

------ ν  ! 1,≡

dp
dt
------ e E

1
c
--- v B*×( )+ Gsc.+=

E ∇ϕ–
1
c
---∂A*

∂t
-----------,–=

B* ∇ A*,×=
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bert’s equations for the potentials ϕ and A:

(13)

(14)

We treat the problem in a quasi-steady-state formu-
lation under the assumption that the characteristic time
scale on which the beam parameters vary, τb ≈ f(∂f/∂t)–1,
satisfies the condition

(15)

where R⊥  = f/|∇ ⊥ f | is the characteristic transverse scale
of variations of the system parameters.

Taking into account the fact that, in the paraxial
approximation, the longitudinal and transverse gradi-
ents of the quantities associated with the beam satisfy
the relationship |∂f/∂z/∇ ⊥ f | ≈ ν, we see that, to first order
in the parameter ν, Eqs. (13) and (14) can be written as

(16)

(17)

where ∆⊥  is the Laplace operator with respect to the
transverse coordinates.

We substitute expressions (11) and (12) into the
equation of motion (10) and, in the resulting equation,
ignore the motion in the z direction:

(18)

An analysis shows that, to first order in the parame-
ter ν, the parameters of the paraxial beam satisfy the
relationship 1/c(v × ∇ ⊥  × A*) ≈ v z/c∇ ⊥ Az + (v⊥ /c) + izB0
(where iz is a unit vector directed along the z axis) and
that, under quasi-steady state condition (15), the time-
dependent term 1/c(∂A⊥ /∂t) on the right-hand side of
Eq. (18) can be ignored. Consequently, to within first-
order terms, Eq. (18) can be reduced to the equation

(19)

In the paraxial approximation, the law for the longi-
tudinal motion of a beam particle can be determined
from the energy equation

(20)

which, in the case at hand, has the form

(21)

∆ϕ 1

c2
----∂2ϕ

∂t2
---------– 4πρ,–=

∆A
1

c2
----∂2A

∂t2
---------–

4π
c

------J.–=

τb

R⊥

c
------ν

1
2
---–

,>

∆⊥ ϕ 4πρ– O ν( ),+=

∆⊥ A
4π
c

------J– O ν( ),+=

d
dt
----- m0γv⊥( ) e ∇ ⊥ ϕ–

1
c
---

∂A⊥

∂t
----------–=

+
1
c
--- v ∇ A*××( )⊥ Gsc( )⊥ .+

d
dt
-----m0γv⊥  = e ∇ ⊥ ϕ βAz–( )–

v⊥

c
----- izB0+ + Gsc( )⊥ .+

dε
dt
----- vF,=

dε
dt
----- evE vGsc+ ev zEz ev⊥ E⊥ vGsc,+ += =
where ε = m0c2γ is the relativistic energy of the particle.

Using relationship (11) to express Ez and E⊥  in
terms of the potentials and taking into account condi-
tions (9) and (15) (which, respectively, indicate that the
beam is paraxial and is quasi-steady), we can show that
the first term on the right-hand side of Eq. (21) is on the
order of ν1/2, while the second term is on the order of ν.
Therefore, to first order in the small parameter ν, the
field terms on the right-hand side of Eq. (21) can be
ignored. As a result, in the case under consideration,
Eq. (21) may be written approximately as

(22)

Under conditions such that a beam particle loses an
insignificant fraction of its energy in each collision with
a background particle, the energy losses on time scales
∆t @ τsc (where τsc is the mean time between collisions)
can be calculated by approximating the right-hand side
of Eq. (22) by a continuous function (–dε/dt)sc, which is
a known function of the energy of a beam particle for a
given background medium. Hence, under the assump-
tion that the energy losses are continuous, the energy
equation can be written in the form

(23)

Taking into account the fact that, in the paraxial
approximation, the longitudinal component of the
velocity of a beam particle has the form v z = v(1 +
O(ν2)) and that the velocity of the particle is related to
its energy ε by the relationship v  = c(1 – m2c4/ε2)1/2, we
arrive at the equation

(24)

We integrate Eq. (24) with the initial conditions t =
τ and z = 0 to obtain the following law for the longitu-
dinal motion of a beam particle injected at the time τ:

(25)

where the dependence ε(t) is determined from the solu-
tion to Eq. (23),

(26)

with ε0 being the initial particle energy at the exit from
the injector.

It follows from Eqs. (25) and (26) that, in the
approximation in question, the longitudinal motion of
the beam particles is independent of their transverse
motion and is deterministic in character.

dε
dt
----- vGsc.=

dε
dt
----- dε

dt
-----– 

 
sc

.=

dz
dt
----- c 1 m2c4/ε2 t( )–( )1/2

.=

z c 1 m
2
c

4
/ε2 t'( )–( )

1
2
---

t',d

τ

t

∫=

t τ–
ε'd

ε ε'( )/ tdd–[ ] sc
---------------------------------,

ε0

ε

∫=
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Note that one of the assumptions made in deriving
Eqs. (25) and (26), namely, the assumption that the
energy losses are continuous, is generally correct only
when the energy is lost predominantly in ionization and
excitation of the atoms of the medium. For beam elec-
trons of extremely high energies (ε ≥ εcr, where εcr is the
critical energy for a given background medium [23]),
i.e., when the energy is lost mainly in the form of
bremsstrahlung, the assumption that the energy losses
are continuous may turn out to be incorrect because of
strong statistical fluctuations in the energy the high-
energy electrons lose by bremsstrahlung [23].

3. KINETIC EQUATION FOR THE DISTRIBUTION 
FUNCTION OF THE PARTICLES IN A SEGMENT 
OF A PARAXIAL BEAM PROPAGATING ALONG 

AN EXTERNAL MAGNETIC FIELD 
IN A SCATTERING GAS–PLASMA MEDIUM

The above analysis has shown that, in the paraxial
approximation, the longitudinal motion of the beam
particles is deterministic in character. In contrast to the
longitudinal motion, the transverse dynamics of the
beam particles is random, so that the beam state in the
corresponding phase space can be properly described
only statistically.

Let us partition the beam into thin transverse seg-
ments Sτ, each of which is injected at the time t = τ and
contains a fixed number of particles.

We assume that the beam is monoenergetic at the
exit from the injector and propagates through a uniform
medium. Under the above assumptions, Eqs. (25) and
(26) imply that all the particles in the segments Sτ move
in the same manner in the z direction and, at any time,
they have the same energy ε(t) and the same relativistic
mass m* = mγ = ε(t)/c2; moreover, during the beam
propagation, the segments do not overlap.

For each of the segments Sτ, we introduce the func-
tion f τ(r⊥ , p⊥ , t), which describes the distribution of the
particles within the segment over the transverse coordi-
nates r⊥  and transverse momenta p⊥ . The evolution of the
distribution function is described by the kinetic equation

(27)

where v⊥  = dr⊥ /dt = p⊥ /mγ, F⊥  is the transverse compo-
nent of the force exerted by the self-consistent electro-
magnetic field on a beam particle, and Isc is the collision
integral.

Note that, in the case under analysis, Eq. (18) yields
the following expression for the force F⊥ :

(28)

where Ωb = |e|B0/(mγc) is the gyrofrequency of the
beam particles in the external magnetic field.

For conditions dominated by multiple small-angle
elastic scatterings, the collision integral in Eq. (27) can

∂ f τ

∂t
-------- v⊥ ∇ r⊥

f τ F⊥ ∇ p⊥
f τ+ + Isc,=

F⊥ e∇ ⊥ ϕ βAz–( )– Ωbp⊥ iz,×+=
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be written in the form of the Fokker–Planck collision
integral [22–24]:

(29)

Here, the Fokker–Planck coefficients are given by the
expressions

(30)

(31)

where

(32)

(33)

with w(p⊥ , ∆p⊥ , ∆t) being the probability for the trans-
verse momentum p⊥  to change (due to multiple scatter-
ings) by the amount ∆p⊥  during the time interval ∆t.

The coefficients Aα form a vector describing the rate
of transport of the transverse momentum p⊥ . The coef-
ficients Bαβ are the elements of the generalized diffu-
sion tensor. Lee [6] showed that, for an isotropic distri-
bution, the coefficients Aα and the off-diagonal ele-
ments of the tensor Bαβ are zero and the diagonal
elements of the diffusion tensor have the form

(34)

where

In the case of multiple small-angle elastic scatter-
ings, the function S is determined by the magnitude of
the total momentum and is independent of the trans-
verse momentum component p⊥  [25, 26]. Conse-
quently, the assumption that the scattering process is
isotropic and elastic allows us to substantially simplify
collision integral (29):

(35)

We insert expression (28) for the force F⊥  and
expression (35) for the collision integral into Eq. (27)
and also take into account the fact that, in the transport
regimes under consideration, the effective scalar poten-
tial of the transverse electric field satisfies the relation
ϕ – βAz = ϕ0 – βµAz, where ϕ0 is the potential of the
electric field of the neutralizing ion background and the
constant µ is given by the formula

(36)

Isc
∂

∂p⊥α
------------Aα f

∂2

∂ p⊥α ∂ p⊥β
------------------------Bαβ f .

α β,
∑+

α
∑–=

Aα
∆ p⊥α〈 〉
∆t

------------------,
∆t 0→
lim–=

Bαβ
1
2
---

∆ p⊥α ∆ p⊥β〈 〉
∆t

-------------------------------
∆t 0→
lim ,=

∆ p⊥α〈 〉 w p⊥ ∆p⊥ ∆t, ,( )∆p⊥α ∆p,d∫=

∆ p⊥α ∆ p⊥β〈 〉 w p⊥ ∆p⊥ ∆t, ,( )∆p⊥α ∆ p⊥β ∆p,d∫=

Bαα
mγ
2

-------S,=

S
1
∆t
-----

∆ p⊥
2〈 〉

2mγ
---------------.

∆t 0→
lim=

Isc
mγS

2
----------∆p⊥

f τ .=

µ 1
1 α c–( )

β2 1 αm–( )
--------------------------r–=
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As a result, we arrive at the following form of
Eq. (27):

(37)

in which, in accordance with Eq. (17), the potential Az

satisfies the equation

(38)

and the potential ϕ0 is to be regarded as the known solu-
tion to Poisson’s equation

(39)

We introduce the radius Rc at which the self-consis-
tent electromagnetic field of the background plasma is
screened. In other words, we impose the boundary con-
dition

(40)

The solution to Eq. (38) that satisfies boundary con-
dition (40) has the form

(41)

With allowance for relationship (41), Eq. (37) can
be treated as an integrodifferential equation for the dis-
tribution function f τ(r⊥ , p⊥ , t) of the particles in a seg-
ment. This equation should be supplemented with the
initial condition

(42)

where f0(r⊥ , p⊥ , t) is a given distribution function over
transverse coordinates and transverse momenta
that describes the beam particles at the exit from the
injector.

The kinetic equation derived in the present paper
can serve as a basis for numerical simulations of the
transverse dynamics of paraxial REBs in gas–plasma
media in the presence of an external longitudinal mag-
netic field. The consequences of this equation—the
equations for the moments of the distribution function
of the beam particles and for the phase-averaged quan-
tities—can be used to construct simplified models of
the transverse dynamics of an REB.

∂ f τ

∂t
--------

p⊥

γm
------- ∇ r⊥

f τ e∇ ⊥ ϕ0 βµAz–( )–[+ +

+ Ωbp⊥ iz ]× ∇ p⊥
f τ mγS

2
----------∆p⊥

f τ ,=

∆⊥ Az
4π
c

------ 1 αm–( )Jb,–=

∆⊥ ϕ0 4πenΦ.=

ϕ r Rc≥ Az r Rc≥ 0.≡=

Az
2
c
---Jb 1 αm–( ) r⊥'

r⊥ r⊥'–
Rc

-------------------lnd∫–=

× p⊥ f τ r⊥' p⊥ t, ,( ).d∫

f τ r⊥ p⊥ t, ,( ) t τ= f 0 r⊥ p⊥ τ, ,( ),=
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Abstract—Semiempirical computational methods for determining the energy spectrum of bremsstrahlung
from pulsed electron accelerators are proposed. Input information for employing these methods includes the
energy spectrum of electrons in a pulse, the effective angle of their incidence on the target, and the parameters
of the converter target. It is shown that the methods in question can be used in a rapid determination of
bremsstrahlung spectra for an arbitrary angle of the escape of bremsstrahlung, including its escape in the for-
ward direction. Among other things, this provides a solution to the problem of dosimetry in radiation tests of
electron systems. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Semiempirical computational methods developed
for determining angular, flux, and energy features of
electrons in continuous cylindrical and tubular high-
current beams [1, 2] are based on measuring the prop-
erties of bremsstrahlung downstream of the converter
target. These methods created necessary preconditions
for employing numerical methods for determining the
energy spectra of bremsstrahlung in a radiation pulse
for known parameters of the converter target. In the
context of the problem that is addressed here and which
is associated with exploring and identifying the
bremsstrahlung fields in simulating facilities for large-
scale radiation tests of electron systems by monitoring
the features of the field during radiation tests, the
energy spectrum of bremsstrahlung within any interval
of radiation-pulse duration is one of the most important
properties of the bremsstrahlung field and is simulta-
neously an operative factor. The intensity of
bremsstrahlung is also an important parameter of the
operative factor. In calculating the spectral distributions
of bremsstrahlung in a radiation pulse in the sample-
irradiation plane, the form of the description of the
cross section for bremsstrahlung production by elec-
trons plays an important role. It is hardly possible to
perform an exact theoretical analysis of the formation
of a bremsstrahlung photon in the screened field of a
nucleus of converter-target matter. The problem is that
the respective Dirac wave equation cannot be solved in
a finite form, since the wave functions involved are rep-
resented in the form of an infinite series [3]. At the
present time, there is a large number of studies aimed at
deriving analytic expressions for the bremsstrahlung-
production cross section on the basis of various approx-
imations [4, 5]. The best of the currently available ver-
1063-7842/04/4909- $26.00 © 21213
sions of the analytic representation for the bremsstrahl-
ung-production cross section [5] is characterized by an
estimated error of not more than 5%, which is thought
to be quite sufficient for solving a wide range of applied
problems. The spectral distribution of bremsstrahlung
photons originating from thick targets (whose thickness
is larger than the total range of primary electrons) is cal-
culated with allowance for numerous processes of elec-
tron interaction with matter. For this reason, the volume
of the calculations that would ensure an acceptable
accuracy of the results (not poorer than 15%) appears to
be quite large [6]. Such calculations, which are based
on the Monte Carlo method, consume much machine
time even if one employs a powerful PC. This generates
inconveniences and rules out the possibility of an on-
line derivation of information about the energy spec-
trum of bremsstrahlung between the pulses of radiation
from simulating facilities in performing standard radia-
tion tests of electron equipment. Computational proce-
dures known as semiempirical computational methods
are developed for such problems. Such procedures are
based on breaking down the converter target into “thin”
layers and on employing the mean features of an elec-
tron beam in each layer [7]. The measurements per-
formed within the computational procedure from [8]
take into account the ring shape of the beam cross sec-
tion, the angular distribution of electrons entering the
converter target, specific physical parameters of “ele-
mentary” target layers, and so on, making it possible to
develop an express method for determining the energy
spectrum of bremsstrahlung from accelerators produc-
ing electron beams of various shapes [9].
004 MAIK “Nauka/Interperiodica”
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METHODOLOGICAL COMPUTATIONAL 
PART

Let us consider the most general scheme of our
semiempirical computational method. A beam formed
by monoenergetic electrons of kinetic energy E is nor-
mally incident on a target manufactured from a material
characterized by a mass number A, a charge number Z,
and a density ρ. We break down the target, whose thick-
ness is denoted by D, into thin layers (see Fig. 1). We
will dwell at greater length on the thickness of an “ele-
mentary” layer somewhat later. For the time being, we
only require that its thickness be such that the electron
energy loss in a layer is much less than the primary
kinetic energy E.

We denote by ∆d the elementary-layer thickness and
by M the number of elementary layers in the target and
analyze bremsstrahlung-photon production in an arbi-
trary ith layer of the target. The depth at which the
median plane of this layer lays in the target is

(1)

Further, we assume that all electrons that have
reached the ith layer have an identical energy Ei; how-
ever, the number of these electrons have decreased. The
fraction of electrons that have reached the ith layer can
be determined by using empirical equations that relate
the number of electrons to the depth of their penetration
into the target (electron transmission). Because of scat-
tering processes, the velocities of the electrons in the ith
layer have different directions; we denote by U(Θ, Ei)
the respective angular distribution. By using the above
notation, we can specify the probability for an electron
to occur in the ith layer, to undergo scattering in it into
the solid angle sinΘdΘdϕ, and to produce a photon
whose energy lies in the interval between Eγ and Eγ +
dEγ and whose emission angle with respect to the elec-
tron-momentum direction is ω. We have

(2)

where (Nef)i is the effective number of target atoms in
the layer (it depends on the angular distribution of elec-

di ∆d i 0.5–( ).=

d2γ
dEγdΩ1
-------------------

 
 
 

i

Nef( )iτ iUi Θ Ei,( )=

× d2σ
dEγdΩ
----------------- Ei Eγ ω, ,( ) ΘdΘdϕ ,sin

α

Θ

ω

1 2 i
Eγ

M

Pi

D

di

∆d

E, P0

e–

Fig. 1. Scheme of photon production in the target.
trons),

is the differential cross section for bremsstrahlung pro-
duction with respect to the emission angle and photon
energy, and τi is the probability for an electron to reach
the ith layer.

The angle α at which a photon escapes from the tar-
get is related to the azimuthal and polar electron-scat-
tering angles Θ and ϕ and the angle ω between the elec-
tron and bremsstrahlung-photon momenta by the well-
known equation

(3)

Photons produced in the interior of the target are
absorbed in its subsequent layers. This process is taken
into account by introducing the coefficient ηi of
bremsstrahlung self-absorption in the form

(4)

where µ(Eγ) is the mass coefficient of photon absorp-
tion in a target material.

In order to obtain the total number of bremsstrahl-
ung photons of energy between Eγ and Eγ + dEγ that
were emitted at an angle α from the target into the solid
angle dΩ1, it is therefore necessary to integrate expres-
sion (2) over the entire region of the angles Θ and ϕ, to
take into account bremsstrahlung self-absorption, and
to perform summation over all target layers. Eventually,
we have

(5)

An implementation of the semiempirical method
employing expression (5) requires refining the method
for calculating all of the quantities involved in this
expression, but it should be emphasized that the form of
the angular distribution of electrons and the representa-
tion of the cross section for bremsstrahlung production
are of prime importance here.

Among the known representations of the above dou-
ble-differential cross section for bremsstrahlung pro-
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duction, the Schiff formula [3]

(6)

where y = E0Θ0 is the reduced photon emission angle,

E0 is the total energy, E is the scattered-electron energy,
Eγ is the photon energy, and r0 is the classical electron
radius, is characterized by the maximum degree of uni-
versality and is relatively simple over the electron
energy range 1–15 MeV.

In order to describe the angular distribution of elec-
trons in the region of small angles, use is made of the
first two terms of the Molière distribution [10],

(7)

where F1(ϑ) is the tabulated Molière function, B is a
parameter that increases slowly with increasing number
of electron collisions, and

is the reduced angle.
The first two terms of the distribution are quite suf-

ficient here since the inclusion of the third term changes
the total value by not more than 10% for the least favor-
able cases. For large electron-scattering angles (ϑ  >
2.8), we employed the asymptotic formula

(8)

which was proposed by Bethe [11].
With increasing depth of electron penetration into

the target, the angular distribution of electrons broadens
steadily, approaching an isotropic distribution at large
depths [8].

Let us examine the problem of determining the
effective number of target atoms in an elementary layer.
As a rule, the effective number of atoms in a layer was
determined according to [7, 8]—that is, with the aid of
the relation

(9)
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where ∆d is the layer thickness in g cm–2 units,

is the mean square electron-scattering angle in a layer,
and NA is Avogadro’s number.

But in fact, the path traveled by an electron scattered
at an angle Θ in a layer is ∆d/cosΘ, whence it follows
that, in order to deduce the effective number of atoms,
it is necessary to determine the quantity 〈(cosΘ)–1〉 for
the corresponding effective angular distribution of elec-
trons. Since the code for respective calculations would
become very cumbersome upon supplementing the
computational procedure with the calculation of the
effective number of atoms in a layer by evaluating
the mean electron path for the rather complicated
Molière distributions, a correction Rs was introduced in
relation (9). This correction must take into account the dis-
tinction between exact relations and formula (9). The
effective number of atoms was represented in the form

(10)

The correction Rs was preliminarily estimated for
Gaussian distributions, but it was ultimately deter-
mined only upon a thorough comparison with data from
the literature on the spectra and angular distributions of
bremsstrahlung. For the electron-energy range being
considered, the best results were obtained at Rs = 1.5.
Table 1, in which the mean paths for various values of
the mean-square scattering angle according to calcula-
tions based on relations (9) and (10) are given along
with 〈(cosΘ)–1〉  values for the Gaussian representation
of the angular distribution of electrons (first term of the
Molière distribution), is presented here to illustrate the
effect of the chosen correction on the mean path of an
electron in a layer.

From an analysis of the data in Table 1, it follows
that the mean values of the electron path in a layer with-
out the above correction are smaller than the corre-
sponding values determined for the first term of the
Molière distribution and that the inclusion of one more
term in the Molière distribution and the use of the Bethe
asymptotic expression must lead to an increase in the
mean path. In this respect, the mean-path values

Θe
2〈 〉( )i

diB

E0 mc2+( )2
----------------------------=

Nef( )i

∆dNA

A Rs Θe
2〈 〉( )i

1/2[ ]cos
----------------------------------------------.=

Table 1.  Mean path of an electron in an “elementary” layer

Formula (9) Formula (10)
at Rs = 1.5

〈(cosΘ)–1〉  for
a Gaussian
distribution

0.1 1.052 1.079 1.054

0.3 1.171 1.277 1.205

0.5 1.315 1.544 1.474

1 1.85 2.948 2.269

Θe
2〈 〉
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obtained with allowance for the correction Rs provide
quite a good approximation to the most probable values
of the mean path traveled by an electron in an elemen-
tary layer. From the table, it also follows that the mean
path of electrons in an elementary layer increases
quickly with increasing depth of electron penetration

into the target (  ~ di), and this may lead to physi-
cally incorrect results. It is rather difficult to take
exactly into account the effect of scattering processes
on the mean path of an electron in deep layers, and this
is beyond the scope of the developed procedure. In
order to avoid physically meaningless results, the mean
path traveled by an electron in an elementary layer was

required to satisfy the condition cos[( )iRs]1/2 ≥

0.5; if cos[( )iRs]1/2 fell below 0.5, the mean path of
an electron in an elementary layer was taken to be 2∆d.
This limit was found empirically.

In our procedure, it is of importance to correctly
take into account the electron-energy loss in a target
material. In order to avoid encumbering the computa-
tional code with tables of the electron-energy loss, we
made use of simple relations for mean electron-energy
losses by ionization and radiation [12] with allowance
for empirical corrections that make it possible to arrive
at results similar to the computational data obtained in
[13]. The resulting relation has the form

(11)

where (dE/dx)0 is the energy loss given by the formulas
from [12].

The electron-transmission coefficient in terms of the
number of particles is determined by the formulas pre-
sented by Tabato and Ito [14]; that is,

(12)

where E0m is the kinetic energy of electrons in mc2

units.
For the constants bi (i = 1, 2, …, 6), those authors

give the values of b1 = 10.63, b2 = 0.232, b3 = 0.22, b4 =
0.462, b5 = 0.042, and b6 = 1.86. For the extrapolated
electron range Rex, we employed the relation [14]

(13)

where c1 = 0.2325A/Z1.209 g cm–2, c2 = 0.000178Z, c3 =
0.9891–0.000301Z, c4 = 1.468–0.0118Z, and c5 =
1.232/Z0.109.
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In [7], the thickness of an elementary target layer
was set to 0.001X0 (where X0 is the radiation-length
unit), irrespective of the electron energy, although the
upper limit of the elementary-layer thickness is deter-
mined from the condition ∆d[dE/dx(E0)] ! E0, where
dE/dx(E0) is the total electron-energy loss; therefore,
the elementary-layer thickness can be increased for
higher electron energies. With the aim of reducing the
machine time consumed by the code, we tried to find
greater values of the thickness and, on the basis of
experimental results, chose the effective-thickness rep-
resentation of the form

(14)

where Q is the effective angle of electron incidence on
the target.

Specifically, we employed the thickness 0.1∆d for
the first ten layers of the target and the thickness 0.2∆d
for the second ten layers. This way of specifying the
elementary-layer thickness is weakly sensitive to a fur-
ther partition of layers and, at the same time, ensures a
significant economy of the machine time in calculating
the energy spectrum of bremsstrahlung. Since the stage
of calculating the integral of the convolution of the dou-
ble-differential cross section for bremsstrahlung pro-
duction with the angular distribution of electrons deter-
mines the general rate of the program performance, we
used the change of variables

(15)

In performing radiation-resistance tests of electron-
equipment units, it is of particular interest to determine
the energy spectrum of bremsstrahlung in the tested-
sample plane, which is usually normal to the axis of
electron-beam transportation; that is, it is necessary in
this case to find the bremsstrahlung spectrum in a nar-
row angular range around the forward direction. In cal-
culating the bremsstrahlung spectrum by the empirical
computational method developed in [9], one can then
introduce a number of additional simplifications that
reduce the volume of calculations substantially. For the
forward direction, Eq. (3), which relates the photon
emission angle to the electron scattering angle, is sig-
nificantly simplified. Substituting α = 0 into it, we
obtain cosΘ = cosω; that is, ω = Θ. The bulk of the
spectrum of bremsstrahlung in the forward direction is
formed in the first layers of the target. The contribution
of photons to the total bremsstrahlung intensity as a
function of the depth of their production in the target is
shown in Fig. 2 according to the calculation based on
the results presented in [3]. At small depths in the tar-
get, the angular distribution of electrons has a pencil-
like character, so that the bremsstrahlung spectrum is
formed under the condition that the angle between the
photon and electron momenta is small (E ≥ 2 MeV);
therefore, one can disregard the dependence of the
shape of the energy distribution of bremsstrahlung on
the bremsstrahlung-photon emission angle. Thus, it is

∆d 0.005X0 E00.0005X0+( )/ Q,cos=

U Θ2
/ Θe

2〈 〉 i–( )exp .=
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legitimate to factorize the double-differential cross sec-
tion for bremsstrahlung production in the form

(16)

where the factor dσ/dEγ specifies the dependence of the
cross section on the bremsstrahlung energy exclusively
and the factor dσ/dΩ determines the angular depen-
dence of the cross section.

The general expression for the cross section can be
represented in the form

(17)

For the angular distribution of bremsstrahlung, we
selected the approximate expression

(18)

where ( )1/2 = mc2/(Ei + mc2).

Expression (18) describes well the true angular dis-
tribution of bremsstrahlung photons for the region
where the spectrum of bremsstrahlung in the forward
direction is formed. Moreover, the use of the angular
distribution of bremsstrahlung photons in this form
makes it possible to integrate expression (18) readily in
the approximation of small angles—that is, in the
approximation where the first term of the Molière dis-
tribution is used for the angular distribution of electrons
and where sinΘ is replaced by Θ. The result is

(19)

where

The differential cross section for bremsstrahlung
production was taken from [3] for various values of the
screening parameter γ. Specifically, we considered the
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case of γ = 0 (full screening),

(20)

the case of γ < 2 (intermediate screening),

(21)

and the case of 2 ≤ γ ≤ 15 (intermediate screening),

(22)

(23)

The screening functions were taken in an analytic
(rather in a graphical) form with allowance for a Cou-
lomb correction according to the results presented
in [15] and were determined with an error not exceed-
ing 0.5%:

(24)
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Fig. 2. Contribution of the tantalum-target thickness to the
bremsstrahlung spectrum (J is the bremsstrahlung inten-
sity).
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The dependence of the function c on the screening
parameter γ was taken from [3]. For the remaining fac-
tors in expression (19) {(Nef)i, τi, ηi, dE/dx}, we
employed the same formulas as in calculating
bremsstrahlung spectra for an arbitrary photon emis-
sion angle. Since the volume of the calculations
decreased considerably under the forward-direction
conditions, the thickness ∆d of elementary target layers
was chosen to be

(25)

where X0 is the radiation-length unit, in order to sim-
plify the computational code still further.

The above methodological framework is optimal in
calculating the fields of bremsstrahlung from targets
characterized by a high charge number (70 ≤ Z ≤ 85).
The use of total-absorption targets from such materials
(tantalum, tungsten, etc.) is not always economically
justified. By way of example, we indicate that, in a
prompt-action accelerator of the UIN-10 type, a target
becomes disabled after one to three pulses. Therefore,
it is often economically wiser to use targets from
cheaper and lighter materials. The results of the exper-
iments reported in [2] revealed that, if use is made of
targets from iron (Z = 26), the intensity of bremsstrahl-
ung decreases by not more than 30% over the entire
energy range in relation to the corresponding intensity
for a target from tantalum.

In going over to light-atom targets, the determina-
tion of the thickness of elementary layers into which the
converter target is broken down must be refined. The
range of applicability of multiple-scattering theory
determines the maximum value of the elementary-layer
thickness approximately. As was shown in [6], the num-
ber n of collisions in a material characterized by a
charge number Z and a mass number A is given by

(26)

where ∆d is the depth of electron penetration into the
target material and β is the electron speed in units of the
speed of light.

∆d 0.0001X0 E0 10+( ),=

n 108.215 ∆dϕ2

AZ2/3 1.13 3.77φ2+( )
---------------------------------------------------,=

φ Z/ 137β( ),=

Table 2.  Layer thickness for various metals

Z ∆d, g cm–2 ∆d × 103

4 0.00368 0.0538

13 0.00236 0.0988

29 0.00212 0.1656

42 0.00222 0.23

74 0.00298 0.472

82 0.0033 0.569
For various materials, the values calculated by for-
mula (26) for the thickness of a layer where a relativis-
tic electron (β ≈ 1) undergoes 20 collisions are given in
Table 2.

As can be seen from Table 2, the layer thickness
does not change strongly with the charge number of the
material. In considering bremsstrahlung-production
processes, however, it is common practice to make use
of units of the radiation length X0, but, in these units,
the layer thickness is a monotonically increasing func-
tion of the target charge number, this function changing
approximately by an order of magnitude upon going
over from beryllium to lead. In order to calculate the
elementary-layer thickness in various materials, it is
therefore proposed to use the relation

(27)

where Q is the effective angle of electron incidence on
the target and E0 is the total electron energy.

The scheme according to which the thickness of an
elementary layer changes versus its ordinal number is
identical to that in calculating the spectra of
bremsstrahlung in an arbitrary direction. Formula (25)
leads to a charge-number dependence that is weaker
than that in Table 2, but this is quite admissible if one
considers that, in each collision, the mean electron scat-
tering angle is smaller in light- than in heavy-atom
materials. The resulting angular distributions and yields
of bremsstrahlung photons are in good agreement with
experimental data from [3]. On the basis of the above
approaches, we developed a code for computing the
energy spectrum of bremsstrahlung in the forward
direction (LUE). The code makes it possible to com-
pute the energy spectra of bremsstrahlung photons in
the forward direction that are generated by electrons
whose energy spectrum has the form of a set of individ-
ual lines. The thickness and the charge number of a sin-
gle-layer target can have arbitrary values.

EXPERIMENTAL PART

The code for computing the bremsstrahlung spec-
trum for an arbitrary photon emission angle (ANGLE1)
is written in the FORTRAN language. The input data
for the code include target parameters, the angle at
which electrons enter the target, the angle at which pho-
tons escape from it, and the electron energy. As the out-
put information, the code provides the bremsstrahlung
spectrum in photon (MeV sr electron)–1 units and the
total intensity. Calculations at individual stages (that is,
calculations of the extrapolated electron range, of the
electron-transmission coefficient, of the electron-
energy loss, of photon self-absorption, and of the inte-
gral of a spatial convolution of the double-differential
cross section for bremsstrahlung production with the
angular distribution of electrons) are arranged as sub-
routines. For the operation of the code for integration to

∆d Z( )
Z 10+( ) E0 10+( )

84 Qcos
--------------------------------------------0.0001X0,=
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be stable, the preset accuracy must not be higher than
0.05. Integration is performed by the Gauss method,
and the accuracy in calculating the integral in question
is an input parameter of the code. On average, it takes 3
s to compute one bremsstrahlung spectrum at an elec-
tron energy of 10 MeV.

Thus, the time it takes for a fourth-generation PC to
obtain full information about the bremsstrahlung field
by calculating, for example, the spectra for six values of
the photon emission angle is 20 s. In calculations by the
Monte Carlo method, the time required for accumulat-
ing 105 histories of electrons under the same conditions
(these statistics are not very good for large photon
emission angles) is an order of magnitude longer.

The results obtained by calculating the spectra of
bremsstrahlung in the forward direction on the basis of
simplifying the semiempirical procedure for an arbi-
trary photon emission angle were compared with exper-
imental data from [17] for the electron energies of 5 and
10 MeV. These results are given in Fig. 3 for a tungsten
target of thickness D = 0.735 g cm–2. From this figure,
it can be seen that, for the electron energies being con-
sidered, our results are in good agreement with data
from the literature within the experimental errors. Thus,
this comparison with the data from the literature gives suf-
ficient grounds to believe that the results obtained on the
basis of the refined semiempirical procedure employing
the LUE code are quite reliable. In the calculations based
on the LUE code, use is made of some subroutines also
entering into the composition of the ANGLE1 code. The
LUE code is written in the FORTRAN language, and the
results of the calculations are represented in the form of
a table that contains bremsstrahlung spectra in photon
(MeV sr electron)–1 units.

The energy spectrum of bremsstrahlung from a lin-
ear electron accelerator of the LUI-10 type (tubular
electron beam) in the forward direction is displayed in
Fig. 4 according to calculations by the Monte Carlo
method [6] and by the above semiempirical method
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Fig. 3. Energy spectra of bremsstrahlung in the forward
direction.
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(ANGLE1 code) for a tantalum converter target that
were based on the results obtained by determining the
energy spectrum of electrons in a pulse with the aid of
the procedure proposed in [1].
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Fig. 4. Energy spectrum of bremsstrahlung from a LUI-10
accelerator: (1) Monte Carlo results and (2) ANGLE11
results.
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The energy spectra of electrons in radiation pulses
of a UIN-10 accelerator for various modes of its opera-
tion are presented in Fig. 5 according to the results
derived by using the converter-target transfer function
[2, 18]. In the first case, a converter target from steel
was employed to generate bremsstrahlung. A pulse was
formed by using an explosive current interrupter, the
effective pulse duration being τp ≈ 80 ns (short pulse).
A converter target from tantalum was harnessed in the
second case. The mode of a direct discharge of an
inductive storage device to a vacuum diode was real-
ized, the effective pulse duration being τp ≈ 2 µs in that
case (long pulse).

The energy spectra F of bremsstrahlung for these
modes of operation of a UIN-10 accelerator were deter-
mined for the forward direction (Fig. 6), the LUE and
ANGLE1 codes being employed for, respectively, the
short- and the long-pulse mode.

CONCLUSION

The proposed semiempirical methods for determin-
ing the energy spectra of bremsstrahlung from single-
layer converter targets in pulsed electron accelerators
make it possible to reduce the time of calculations by
one (for the ANGLE1 code) or two (for the LUE code)
orders of magnitude in relation to calculations by the
Monte Carlo method [6]. Together with the methods
developed in [1, 2] for measuring the angular and
energy features of electrons in an accelerator radiation
pulse, they make it possible to automate the derivation
of information both in the diagnostics of the accelerator
operation mode and in the dosimetry of the radiation
tests of samples.
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Abstract—An experimental procedure for studying the thermal and electric characteristics of a single-element
thermionic converter under combined heating of the electrodes is proposed (direct heating by thermal radiation
from an electric heater plus heating of the emitter by the reverse currents of the collector). The I–V character-
istics of the converter are studied under various operating conditions and at different lengths of the reverse heat-
ing current pulse. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Heat sources used in direct thermoelectric convert-
ers are nuclear reactors, radioactive isotopes, and
chemical and solar energy [1]. Since these sources are
expensive and difficult to use, they are sometimes inap-
propriate in experimental studies of the physical, elec-
trical, and thermal characteristics of the converters.
Therefore, if possible, designers employ heat source
simulators.

The main techniques of heating the emitter of a ther-
mionic converter (TC) are heating by radiation, the
application of reverse currents from the collector to the
emitter, or a combined technique (radiation plus elec-
tron bombardment). The combined technique is widely
used in testing laboratory TCs. All other things being
equal, it significantly lowers the temperature of the
heating element and, consequently, increases its service
life.

DEVICE PROTOTYPE

As the test object, we used a model single-element
TC shown in Fig. 1. It consists of an emitter, a collector,
a bellows pressure-tight feedthrough, a heat exchanger,
and a thermocouple well. The emitter is a cylindrical
pipe made of a refractory material and covered by a thin
tungsten layer from the outside. Three holes of different
depth (arranged at an angle of 120° relative to each
other) are drilled in the end face of the emitter in order
to fix beryllia-sheathed tungsten–rhenium thermocou-
ples of diameter d = 0.2 mm. The emitting surface of
the collector is also made of tungsten. Chromel–
Alumel thermocouples, which are inserted through the
thermocouple well, are placed on the outside of the col-
lector. The emitting area of the emitter is 10.4 cm2, and
the electrode gap is 0.25 mm. The heat exchanger is
designed in the form of a gas–water cooling jacket. The
gaseous gap is 0.4 mm wide.
1063-7842/04/4909- $26.00 © 21221
The emitter is heated by the main rod-type electric
heater (MEH) inserted into the cavity. Desired thermal
conditions are provided by Nichrome-wire electric
heaters mounted on the heat exchanger and bellows
pressure-tight feedthrough.

EXPERIMENTAL TECHNIQUE AND RESULTS

In the experiments, the electrodes of the single-ele-
ment TC were subjected to combined heating, which
included (i) direct heating of the emitter by thermal
radiation with a resistance heater placed inside the
emitter and (ii) heating by the reverse currents from the
collector, which is heated by an external heater
(“reverse heating”). In the latter case, the emitter is
heated by the kinetic energy of the electron flow from
the arc-discharge plasma.

The electrical performance of the TC under the
combined heating of the emitter, as well comparison of
the characteristics taken under direct and combined
heatings, was studied with the equipment intended for
TC heating and diagnostics by the reverse current tech-
nique [2]. Preparatory to testing the TC, we evacuated

1 2

3 4
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7 8

9
10 11 12 13

14 15 16

Fig. 1. Schematic of the device: (1) emitter, (2) collector,
(3) water jacket, (4) collector thermocouple, (5) spacers,
(6) electrode gap evacuation outlet, (7) bellows, (8) insula-
tor, (9) emitter thermocouple, (10–13) heaters, (14) gas
inlet, (15) water inlet, and (16) water outlet.
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the vacuum–cesium system and degassed the electrodes
using the rod-type MEH. The vacuum–cesium system
was evacuated at a channel temperature of 700–750 K
until a pressure of P1 = 1 × 10–4 Pa (dynamic vacuum)
was established. Under these conditions, the pressure in
the gaseous gap was P1 = (4–6) × 10–3 Pa.

The electrodes were degassed in two steps. First, the
collector was degassed as follows: its temperature was
increased with the help of the MEH to 1100 K at a rate
limited by the pressure in the electrode gap, no more
than 1 × 10–4 Pa, and in the gaseous gap, (5–6) ×
10−3 Pa. These conditions were maintained until the
pressure in the electrode gap was kept at P2 = 1 ×
10−4 Pa for 1 h. After the collector had been degassed,
the gaseous cavity of the TC was filled with helium to a
pressure of 100–260 Pa with the MEH switched off. At
the second step, the emitter was degassed with the
MEH at a temperature of 1900 K and a pressure in the
electrode gap of ~1 × 10–4 Pa. These conditions were
maintained until the pressure P2 ≈ 1 × 10–4 Pa was kept
for 1 h. The reference I–V characteristics (direct heat-
ing) were taken with the electrodes MEH-heated to Te =
1400–1900 K (emitter) and Tc = 950–1100 K (collec-
tor) and the temperature of the working medium
(cesium) varying between 520 and 620 K.

Under the combined heating of the device, the water
jacket of the heat exchanger was connected to the air
delivery system, which made air circulate through the
jacket under a pressure of 110 to 150 kPa and helium
was delivered to the gaseous gap at a pressure of (2–
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Fig. 2. (a) Pulse waveform and (b) I–V characteristic of the
single-element TC under the reverse heating. τ3 is the heat-
ing pulse length, τ4 is the measuring pulse length, τ1 and τ2
are the time delays, and T is pulse repetition period.
5) × 10–3 Pa. The external heater was used to raise the
collector temperature to 770–870 K. A dc accelerating
voltage of –12 V was applied to the lead terminals of
the device, with the emitter terminal charged positively.

The experimental heating equipment provided dis-
charge current stabilization (the current could be varied
between 0 and 300 A); therefore, as the electrodes were
heated, the accelerating voltage was decreased. When
the temperature of the cesium thermostat reached 570–
620 K, the electrode gap was filled with the cesium
vapor. Such a high temperature of the thermostat
excludes stray breakdowns between neighboring ele-
ments that are separated by a distance greater than the
electrode spacing.

To gain information on TC performance from the
I−V characteristics, reverse heating was accomplished
in the pulsed mode. The I–V characteristics were taken
during intervals between the pulses.

Figure 2 shows the time waveform of the heating
and diagnostic pulses and also the reference I–V curve
of the single-element TC under reverse heating. Under
reverse heating, the I–V curve exhibits hysteresis,
which is typical of an arc discharge. This fact evidences
that an arc discharge is initiated and quenched between
the electrodes during the heating pulses. When the elec-
trodes operate under different thermal conditions
(direct heating, reverse heating, and their combination),
the temperature profiles of both vary. If the temperature
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Fig. 3. Temperature distribution along the (a) emitter and
(b) collector under the reverse heating: (1, 1') the powers of
the external heater sections are the same and (2, 2') the
power of the right-hand section is higher.
TECHNICAL PHYSICS      Vol. 49      No. 9      2004



        

THERMAL AND ELECTRICAL CHARACTERISTICS 1223

                             
profile of the collector is changed using the tapped heat-
ers of the heat exchanger and the electric current
through the TC is stabilized, the density of the electric
current from the collector is redistributed under the
reverse heating, which changes the emitter temperature
in the corresponding segment.

Curve 1 in Fig. 3 shows the temperature distribution
along the collector at a cesium pressure Pcs = 4.5 GPa
when the powers of both sections of the heaters of the
heat exchanger are equal. When the power of the right-
hand section of the heater increases, causing a corre-
sponding increase in the collector temperature in this
region by 40 K (curve 2), the change in the emitter tem-
perature in the related segment is ≈100 K.

The experiments confirmed the possibility of con-
trollably initiating an arc discharge at a desired site
under reverse heating by creating a nonisothermal pro-
file of the collector. This allows emitter temperature
profiling under combined and reverse heating and, in
particular, makes it possible to simulate heat generation
at the electrodes of the electric-power-generating chan-
nel in out-of-pile tests.

The electrical performance of the TC was studied
under different conditions of electrode heating.
Figure 4 shows the I–V characteristics taken under
direct and combined heating. The electrode tempera-
tures were Te ≈ 1720 K and Tc ≈ 1030 K, and the cesium
pressure was Pcs = 0.9 GPa. It is seen that, as the reverse
heating component of the heat balance grows under
combined heating, the I–V curve shifts toward higher
voltages approximately by 0.45 V and the converter’s
output increases significantly (by a factor of 2 to 3).
These findings probably indicate that the discharge
with distributed thermionic emission from the emitter
changes to the cathode-spot discharge [3] although the
electrodes are short (L = 20 mm). Similar results were
observed when the characteristics were taken under the

30
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1.20

3

Fig. 4. I–V characteristics of the TC under different heating
conditions at Te = 1720 K, Tc = 1030 K, and Pcs = 0.9 GPa.
(1) Direct heating at W1 = 834 W, (2) combined heating at
W1 = 670 W and W2 = 212 W, and (3) combined heating at
W1 = 350 W and W2 = 528 W.
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same thermal conditions but at higher cesium vapor
pressures.

We also studied the effect of the heating pulse length
(τ3) on the converter’s output parameters. Figure 5
shows the I–V characteristics of the converter that are
taken at different heating pulse lengths. As follows
from Fig. 5, the output parameters measured at τ3 =
46 ms are almost 1.5 times higher than those measured
at τ3 = 18 ms. Specifically, the emf is higher by approx-
imately 0.2 V in the former case.

CONCLUSIONS

(1) A thermal test procedure for single-element
cylindrical TCs under direct and combined electrode
heatings is presented.

(2) Analysis of the converter’s electrical performance
indicates the possibility of controllably initiating an arc
discharge under the reverse heating by producing a
nonisothermal temperature profile over the collector.

(3) It is shown that, under the combined heating, the
output parameters of the converter are considerably
improved as the reverse heating component of the heat
balance grows.

(4) Under the combined heating of electrodes of
such geometry, the heating pulse length τ3 = 46 ms is
found to be optimal.
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Fig. 5. I–V characteristics of the TC for different heating
pulse lengths τ3 at Pcs = 1.9 GPa. (1) τ3 = 46 ms, τ1 = 18 ms,
τ4 = 10 ms, and T = 104 ms and (2) τ3 = 18 ms, τ1 = 40 ms,
τ2 = 26 ms, τ4 = 10 ms, and T = 100 ms. Combined heating
at (1) W1 = 865 W, W2 = 278 W, Te = 1820 K, and Tc =
1110 K and (2) W1 = 997 W, W2 = 264 W, Te = 1820 K, and
Tc = 1110 K.
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Abstract—The paper considers the conditions under which the development of beam instabilities of the after-
glow plasma in inert gases is possible. The validity of assumptions has been experimentally confirmed. © 2004
MAIK “Nauka/Interperiodica”.
A system consisting of a plasma and a beam of
charged particles passing through it is known to
become unstable under certain conditions [1, 2]. It was
shown [3–5] that such instability arises in a plasma
even in the presence of weak anisotropy of the electron
distribution function (EDF) with respect to velocities.
Traditionally, investigations devoted to the EDF of
electrons in decaying plasmas of inert gases [6–8] did
not analyze the process of instability development and
its influence on the form of the EDF.

This paper considers for the first time the possibility
of the development of beam instability of a decaying
afterglow plasma in inert gases, where fast electrons
appear as a result of physical and chemical processes.

Let us consider an afterglow plasma in an inert gas,
where electrons are produced as a result of the chemical
ionization reactions

(1)

and collisions of the second kind between excited
atoms and electrons

(2)

Here, A and A* are atoms in the ground and excited

states; A+,  are atomic and molecular ions; and e (e)
are fast (slow) electrons. The energies of the fast elec-
trons produced during the above physical and chemical
processes in inert gases, ε1 (reaction (1)) and ε2 (reac-
tion (2)), are listed in the table.

The ambipolar electric field in plasma is determined
by the averaged electron energy and weakly influences
the diffusion of fast electrons. Under these conditions,
the preferential motion of fast electrons toward plasma
volume boundaries introduces anisotropy in the EDF,
although the fast electron “source” itself is isotropic.

A* A*
A+ A e+ +

A2
+ e+

+

A* e A e.+ +

A2
+

1063-7842/04/4909- $26.00 © 21224
The degree of anisotropy of the EDF is determined by
the gas pressure, the plasma volume, and the electron
density. When the “critical” electron density is reached,
plasma–beam instability develops. This instability
leads to energy relaxation of the EDF and to smearing
of the EDF peaks near the energies ε1 and ε2 [9].

Let us analyze the results of measurements of the
EDF in an afterglow plasma in helium. The experi-
ments were carried out in a discharge tube with a diam-
eter of 2.7 cm at a gas pressure of 1 Torr [7]. The plasma
was produced by current pulses with an amplitude from
0.1 to 1.0 A, a duration of 10 µs, and a repetition fre-
quency of 2 kHz. The EDF with respect to energies was
measured by the method of probe current modulation
with a time resolution of 10 µs in 200 µs after termina-
tion of the current pulse. The densities of electrons (n)
and metastable helium atoms (M) in the 23S1 state were
simultaneously recorded.

Figure 1 shows the EDF measured in the afterglow
plasma in helium for various values of the electron den-
sity n. As the electron density increases, the Langmuir
wavelength λ decreases and the development of
plasma–beam instability is facilitated [2, 9]. It is seen

Table

Gas ε1, eV ε2, eV

Helium 14.4 19.8

Neon 11.0 16.7

Argon 7.3 11.6

Krypton 6.0 10.0

Xenon 4.3 8.4
004 MAIK “Nauka/Interperiodica”
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that the groups of fast electrons with energies ε1 =
14.4 eV and ε2 = 19.8 eV are actually present in the
energy spectrum. The dispersion of EDF for the first
electron group (∆ε1) is appreciably greater than that for
the second group (∆ε2). This fact is apparently associ-
ated with that the energy ε1 is lower than ε2 and, corre-
spondingly, the excitation cross section of helium
atoms by electrons of the latter group is smaller. This,
in turn, leads to a higher diffusion length L1 > L2 and,
hence, to a higher lifetime for the electrons of this
group.

For a comparative analysis of the transformation of
the shape of the distribution function depending on the
electron density, let us consider the experimental
dependence of the typical lifetime T of fast electrons
shown in Fig. 2 in relative units. The lifetimes T are
proportional to the ratios of amplitudes of the EDF
peaks at energies of 14.4 and 19.8 eV to the correspond-
ing rates of generation of the electrons of these groups.
For the conditions considered (excitation of waves in a
plasma is neglected), this time should be independent
of n (dash line). The rate constants of the corresponding
processes and the rates of generation of fast electrons
were determined using the measured values of densities
n and M [8].

Analysis of the experimental results shows that
appreciable transformation of the shape of the EDF in
decaying helium plasma occurs even for n ≥ 3 ×
1011 cm–3. This result is in good agreement with a
threshold criterion for the development of plasma–
beam instability and the following energy relaxation of
the EDF. This criterion was found for the plasma of
low-voltage beam discharge in inert gases [9]. It should
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Fig. 1. Electron distribution function F(ε) with respect to
energies in afterglow plasma in helium for n = 4.5 ×
1010 cm–3 (1), 1011 (2), 2 × 1011 (3), 3 × 1011 (4), and 4 ×
1011 (5).
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be noted that the observed changes in the form of the
EDF with increasing density n are substantially greater
than the experimental errors, which did not exceed 5%
for relative measurements.

The condition of beam instability development in
decaying afterglow plasma in inert gases can conve-
niently be expressed as

(3)

where ε is the energy of fast electrons [eV], n is the den-
sity of thermal electrons [cm–3], NA is the density of
normal gas atoms [cm–3], and σ(ε) is the cross section
of elastic electron scattering on atoms [cm2].

Substitution of the corresponding values into Eq. (3)
leads to the experimental value of n corresponding to
the onset of energy relaxation of the EDF in a decaying
plasma.

To summarize, the analysis performed leads to the
conclusion that there is beam instability development is
possible in an afterglow plasma in inert gases under
certain conditions. The beam instability changes the
shape of the EDF with respect to energies and, hence,
the properties of inert gas plasma. This circumstance
should be taken into account in technologies using plas-
mas with fast electrons.
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Abstract—Electric and spatial characteristics of a pulse-periodic microsecond barrier discharge are investi-
gated in different geometries—triangular prism, plate, and corrugated electrode—that are in contact with a
dielectric plate and form a dihedral angle with it. It is established that, in the space of the dihedral angle, the
regions of discharge represent alternating cylindrical layers with the axes lying on the contact line. The first con-
ducting layer is formed at some distance from the contact edge of the electrode. The number of layers and their
localization are determined by the angle formed between an electrode and the dielectric plate. A physical model
explaining the main features of the structure formation is proposed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigation of barrier discharge is of special inter-
est due to its wide applications: ozone synthesis,
destruction of detrimental impurities in air, production
of excimers, and organic and inorganic synthesis [1–3].
Recently, a new line of research in medicine —ozone
therapy—is being intensively developed; the techno-
logical equipment in this field requires the creation of
special instrumentation—medical ozonizers [4].

An important requirement specific to medical ozo-
nizers is the stability of ozone production in a wide
range of output concentrations. In this case, a challenge
is presented by accurate stable synthesis of O3 of low
concentrations. To solve this problem, it was necessary
to pass to microsecond pulses for feeding the discharge
and the breakdown stabilization of a gaseous gap in
each pulse [5]. Investigations indicate [5, 6] that, when
feeding microsecond pulses, it is very difficult to satisfy
these requirements in gaps with a uniform field geome-
try, since high voltages, high accuracy of the prepara-
tion of electrode systems, and the introduction of initi-
ating electrodes are needed. These circumstances dic-
tate the passage to discharge chambers with
nonuniform field geometry [6]. At the same time, it
should be noted that, even now, the number of studies
devoted to investigating the barrier discharge excited by
microsecond pulses even with a uniform field distribu-
tion in the gaps is rather limited, and the discharge in
the cells with a nonuniform field distribution has hardly
been investigated at all [5–7].

The aim of this study is to investigate the electric
and spatial characteristics of the discharge excited by
1063-7842/04/4909- $26.00 © 21227
microsecond pulses in barrier–metal gaps with nonuni-
form field geometry.

EXPERIMENTAL GEAR

The discharge was studied in air (at atmospheric
pressure) using a stand (Fig. 1) involving a power sup-
ply (PS), electrode system (ES), and diagnostic instru-
mentation. As a power supply, we used a transistor
oscillator of alternating high-voltage pulses that was
developed to operate with a nonlinear resistive–capaci-
tive load. The oscillator was designed according to the
scheme of a resonance inverter with subsequent mag-
netic front contraction and enhancement of the pulse
amplitude by a high-voltage transformer. Each of the
pulses consisted of two half-waves of opposite polarity.
The parameters of the oscillator are as follows: the
energy in a pulse is 16 mJ, the open-circuit voltage is
22 kV, the pulse rise time is 700 ns, the duration of the
first half-wave at the half-height is 3.5 µs, and the repe-
tition rate of pulses range from a single pulse to 25 Hz.

The electrode system mounted in a chamber (C)
supported by dielectric insulators (D.s) consists of
plane grid 1 and profiled 2 electrodes separated by a
dielectric barrier 3. Electrode 1 is made of a nickel
150 × 150 µm mesh grid (the diameter of wire is
80 µm). The geometric transparency of the grid is 5%.
The grid is welded to the end of a metal ring (outer
diameter, 50 mm) and tightly pressed to the barrier. As
the barrier, we used a quartz plate of 1 mm in thickness
and 60 mm in diameter. We used several configurations
of electrode 2 that provided a nonuniform field distribu-
tion in the gap: triangle prisms, a thin (0.3 mm) rectan-
gular plate, and corrugated electrode. In all the cases,
004 MAIK “Nauka/Interperiodica”
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the electrode edges were in contact with the plate sur-
face, forming a dihedral angle ϕ. The characteristic
sizes of electrodes 2 did not exceed the diameter of the
grid electrode. The range of the angles under investiga-
tion was between 15° and 60°.

The voltage U applied across the discharge gap and
the discharge current I were recorded by using a Tek-
tronix TDS754C oscilloscope having a pass band of
500 MHz. The time resolution of the resistive voltage
divider D and the low-inductive coaxial shunt SH was
no worse than 10 and 1 ns, respectively.

The discharge glow was photographed through the
grid electrode and from the side in the direction of the

PS

Rb

SH

D

C

ES

D.s

1

23

ϕ

Rt Rsh

Fig. 1. Scheme of the laboratory stand.
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Fig. 2. Oscilliograms of voltage U and current I in the dis-
charge (bared prism electrode, ϕ = 15°).
contacting electrode–barrier line. The generator oper-
ated at a frequency of 25 Hz with an exposure time of
0.5–1 min.

To visualize the current distribution, the surface of
electrode 2 was coated with a thin layer of soot (~1 µm).
Under the action of the discharge in the ranges of cur-
rent, the soot evaporated, thereby leaving the electrode
surface bare. During evaporation, a part of the soot was
deposited on the quartz plate. As a result, a photograph
was developed that showed the current distribution on
the plate surface. To obtain a clear picture of the distri-
bution, the electrodes were treated for 1 min at the gen-
erator frequency of 25 Hz.

EXPERIMENTAL RESULTS

Our experiments showed stable discharge formation
in the barrier–metal gaps with a nonuniform field distri-
bution in each pulse, starting from single pulses. After
applying a voltage pulse to the discharge gap, the dis-
charge current appeared on both the leading and trailing
edges of the first half-wave of a voltage pulse. The
breakdown voltage at the leading edge of the pulse of
both polarities varied from pulse to pulse in a range of
4–6 kV.

The electric characteristics were mainly investi-
gated in the experiments with the prism electrodes. Fig-
ure 2 shows typical oscillograms of voltage U and dis-
charge current I. The smooth rise of the current oscillo-
gram on the initial segment is caused by the charging of
the gap capacitance. When the voltage attains its break-
down value, a sharp rise in current occurs. The current
achieves its amplitude value of 0.6–2 A in 5–25 ns,
after which it drops to zero over 400–500 ns. At the
trailing edge of the first half-wave of the voltage pulse,
the current smoothly increases, attains its amplitude
value, and then smoothly drops. The duration of the
current pulse equals 800 ns. This is explained by
recharging of the barrier capacitance.

In our experiments, a detailed investigation of the
dependence of the electric characteristics of the dis-
charge on the angle ϕ was not performed. However, the
analysis of the results obtained indicates that the above
dependence is absent.

It should be noted that the soot deposited on the
electrode surface has a considerable effect on the elec-
tric characteristics of the discharge: the breakdown
voltages decreased (3.2–3.7 kV) and the discharge cur-
rent increased more smoothly, without a pronounced
amplitude step.

The discharge was photographed when operating
with electrode 2 made in the form of a plate. The dis-
charge photographs obtained through the grid electrode
and from the side are presented in Figs. 3a and 3b,
respectively. The crosshatched region in Fig. 3a corre-
sponds to the contact line and, in Fig 3b, the position of
the electrode. In Fig. 3a, one can observe alternating
regions of the discharge glow in the form of strips ori-
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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Fig. 3. Photographs of the discharge and corresponding densitograms (plate, ϕ = 15°).

ϕ = 30º ϕ = 25º ϕ = 20º ϕ = 15º

Fig. 4. Electrodes after treatment in the discharge.
ented in the direction of the contact line. The bending
of the strips is caused by the deformation of the elec-
trode surface.

When photographing from the side (along the con-
tact electrode–dielectric line), the discharge glow aver-
aged over the entire length of the interelectrode gap is
recorded. Therefore, the structure of the discharge in
this projection (Fig. 3b) is less pronounced. Neverthe-
less, one can detect the regions of maximum glowing
that are close in form to the circular arcs with the cen-
ters at the contact point. Comparison of Figs. 3a and 3b
indicates that, for both projections, the structural fea-
tures of the discharge are similar.

The photographs of the soot-coated prism elec-
trodes, after their work surfaces were treated in the dis-
charge, are shown in Fig. 4. As is seen, the erosion
ECHNICAL PHYSICS      Vol. 49      No. 9      2004
region represents a set of strips virtually parallel and
symmetric to the contact line. However, it should be
noted that the structure recorded in our experiments is
macroscopic with respect to the barrier-discharge
microstructure [1, 2, 6], which was not investigated in
this study. The erosion action of the discharge is pro-
portional to the current density; therefore, the light
strips correspond to the regions with higher current
density, whereas the dark strips correspond to the
regions where the discharge current is small or even
absent. Figure 5 shows a photograph of the current dis-
tribution over the dielectric surface. Here, the region of
the discharge also alternate with the regions similar in
structure, where the discharge is absent. Taking into
account the discharge structure photographed from the
side (along the contact line (Fig. 3b)), one can conclude
that, in the bulk of the discharge gap, the current
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regions of the discharge are the cylindrical layers with
axes coinciding with the contact line.

The first erosion strip on the surface of electrode 2
(Fig. 4) and the first light strip on the photographs
(Fig. 3), which correspond to the position of the first
current layer, are located at some distance from the con-
tact line. Consequently, the first conducting region is
formed within the gas gap (at some distance from the
contact line) rather than from the sharp edge of elec-
trode 2, which is in contact with the barrier. The loca-
tion and the number of the current layers depend on the
angle ϕ. With increasing angle ϕ, the layers are shifted
to the line contact and their number decreases. Starting
from an angle of ϕk (50° < ϕk < 60°), only one layer dis-

ϕ = 30° ϕ = 25°

Fig. 5. Dielectric plate surface after treatment in the dis-
charge.

y

x

d

E

0

εϕ

φ = U

φ = 0°

Fig. 6. Model of the electrode system (d is the barrier thick-
ness and ε is the permittivity).

Distances between the contact line and ith strip

ϕ, deg
xi, cm

i = 1 i = 2 i = 3 i = 4 i = 5

15 0.14 0.28 0.5 0.7 0.9

20 0.09 0.23 0.42 0.63 0.92

25 0.08 0.2 0.37 0.55 0.85

30 0.05 0.17 0.37 0.55 –
tant from the electrode edge is left and an incomplete
sliding discharge is observed in the gap (along the
dielectric surface).

The averaged distances xi (i = 1, …, 5) between the
electrode edge and ith current layer, which were
obtained by image processing, are presented in the
table. The dependence of the distances x1, x2, x3, and x4
on ϕ can be approximately described by a hyperbolic
law.

A similar structure was also observed in the experi-
ments with corrugated electrode 2 (see Fig. 1).

FORMATION OF DISCHARGE STRUCTURE 
IN BARRIER–METAL GAPS 

WITH NONUNIFORM FIELD DISTRIBUTION

To analyze the process of structural formation, we
used a model of an electrode system formed by infi-
nitely large metal and dielectric plates (Fig. 6). In such
a model, at small angles ϕ (ϕ < 1), the electric field dis-
tribution in the range of d < y < d + ϕx can be approxi-
mated by the expression

For each particular x, this expression describes the
field inside a plane capacitor with a dielectric plate
coating one of the capacitor plates. The numeric calcu-
lation of the field in the electrode system gives close
values of electric field strength and indicates that the
normal field component significantly exceeds the tan-
gential field component. In this connection, the field
lines we will represent by segments parallel to the 0y
axis.

At the initial stage of the discharge (in the absence
of a space discharge and a charge on the dielectric sur-
face), the motion of electrons in the gap is drift. The
electrons move along electric field lines. The break-
down of the gap is most probable in a region where an
electron produces the maximal number of ionization
events. As a parameter characterizing the ionization
rate at the stage of avalanchelike generation of elec-
trons, we will use the integral multiplication factor [8]

(1)

where

is the Townsend effective ionization coefficient [9] (p is
the gas pressure and A = 15 and B = 365 are constants)
and the integration is performed along the field lines.

E x( ) U

ϕx
d
ε
---+

----------------.=

χ l( ) α E( ) l,d

l

∫=

α E( ) pA
Bp
E

-------– 
 exp=
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Integrating (1), we obtain

With allowance for the experimental data, the graph
of the dependence χ(x) at the time instant of the gap
breakdown (U1 = 5 kV) for different angles is presented
in Fig. 7.

The position of the first current layer is determined
by the region of the gap x1 where the function χ(x)
reaches its maximum:

(2)

It is seen that function χ(x) reaches its maximum at
some distance x1 from the contact line; therefore, the
discharge is initiated in the region that is distant from
the contact line between the metal plate and the dielec-
tric plate. The maximum value of function χmax = χ(x1)
is independent of angle ϕ that testifies to the existence
of a threshold value of χn, which is the criterion of
breakdown in this case [8].

A charge transferred by the conduction current on
the dielectric surface is spread over the plate, thereby
suppressing the electric field near the layer being
formed and hampering the development of conduction
in the adjoining regions. A further increase in voltage U
across the electrodes leads to the formation of a new
conduction region in the bulk of the gas gap (at a dis-
tance x2 from the contact line), where the effect of the
surface charge is insignificant. The process is repeated
as long as the condition U ≥ xnϕEbd is fulfilled (Ebd is

χ x( ) ϕxpA
Bp
U1
------- ϕx

d
ε
---+ 

 – .exp=

x1

U1

pϕB
-----------.=

20

15

10

5

0 0.1 0.2 0.3 0.4 0.5
x, cm

χ(
x)

ϕ = 30°
ϕ = 25°

ϕ = 20°
ϕ = 15°

Fig. 7. Distribution of the integral multiplication factor of
electrons χ(x) at the time instant of the gap breakdown.
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the intensity of the gas breakdown and xn determines
the position of the next conduction region).

The values of the quantities x1 obtained from Eq. (2)
are less than those obtained from the experiment. This
can be explained by the fact that the actual electric
fields near the contact line of the electrode edge and
dielectric plate exceed the model ones.

CONCLUSIONS
Thus, we have investigated the electric and spatial

characteristics of the pulse-periodic discharge excited
in barrier–metal gaps with nonuniform field geometry.

It was found that the discharge arises at some dis-
tance from the contact line between the electrode and
dielectric plate and forms a spatial structure consisting
of cylindrical layers parallel to the contact line.

We proposed a physical model of the discharge for-
mation. The model explains the main experimental
data: the development of the discharge at some distance
from the contact electrode–dielectric line, appearance
of the spatial structure, and hyperbolic character of the
x1 vs. ϕ dependence.
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Abstract—The magnetic properties and micromagnetic structure (equilibrium distribution of magnetization)
of multicomponent Fe61.4Ni3.6Cr3.2Si2.4Nb7.8Mn3.6B18 amorphous ribbons are studied using scanning Kerr
microscopy and a vibrating sample magnetometer. 5-mm-wide and 35-µm-thick ribbons were obtained by hard-
ening of melt in a rapidly rotating drum. Strong difference in the surface and bulk magnetic parameters of the
ribbons is established. Domain walls (DW) parallel to the ribbon length are detected. It is shown that quasistatic
magnetization reversal of ribbons mainly occurs due to the DW displacement. © 2004 MAIK “Nauka/Interpe-
riodica”.
In recent years, considerable attention has been paid
to preparing and studying bulk amorphous materials
[1–3]. The following bulk amorphous and nanocrystal-
line alloys have been recently obtained: Fe–(Al, Ga)–
(P, C, B, Si) [4]; (Fe, Co, Ni)–(Zr, Hf)–B [5, 6]; and
(Fe, Co, Ni)–(Zr, Nb, M)–B (M = Ti, Ta, Mo) [7, 8].
These materials were prepared at a low critical cooling
rate (between 102 and 1 K/s) in the form of rods 1–
6 mm in diameter or 1–3-mm-thick ribbons. The alloys
exhibited a glass-forming ability and excellent soft
properties. It was found that in obtaining bulk amor-
phous materials with the above sizes, it is necessary to
prepare amorphous alloys at a low critical cooling rate
and to have a wide temperature range of glass forma-
tion, which is determined by the difference between the
crystallization (TX1) and glass-formation temperature
Tg (∆TX = TX1 – Tg). Such properties were mainly
obtained for multicomponent systems.

The object of the present study is the alloy
Fe61.4Ni3.6Cr3.2Si2.4Nb7.8Mn3.6B18 proposed in [9] on the
basis of eutectic interaction between glass-forming
phases. The glass-formation range ∆TX determined
empirically for this alloy is equal to 60 K. We will ana-
lyze here the magnetic properties and the micromag-
netic structure (equilibrium distribution of magnetiza-
tion) in Fe61.4Ni3.6Cr3.2Si2.4Nb7.8Mn3.6B18 amorphous
ribbons. This analysis allows to determine the practica-
bility of this composition for obtaining a bulk amor-
phous alloy.

A 5-mm-wide and 35-µm-thick
Fe61.4Ni3.6Cr3.2Si2.4Nb7.8Mn3.6B18 ribbon was prepared
by hardening of melt in a rapidly rotating drum. X-ray
1063-7842/04/4909- $26.00 © 21232
diffraction analysis revealed that the obtained ribbon is
amorphous.

The near-surface magnetic properties of amorphous
ribbons were studied employing a magnetooptical
micromagnetometer, which allows one to measure the
magnetic properties in 15–20-nm thick surface layers
of the sample. A detailed description of the magnetoop-
tical micromagnetometer can be found in [10]. The rib-
bons were cut into 20-mm-long pieces. An ac magnetic
field of frequency f = 80 Hz was applied parallel to the
sample length L. Upon the displacement of a light spot
of diameter 20 µm over the ribbon surface, the distribu-
tions of the near-surface magnetization components,
local magnetization curves, and hysteretic loops were
measured using the equatorial Kerr effect (EKE) δ. In
fact, we determined the dependences δ(L, H)/δs ∝  M(L,
H)/Ms. Here, δ = (I – I0)/I0, where I and I0 are the inten-
sities of light reflected from the magnetized and non-
magnetized samples, respectively; δs is the EKE at M =
Ms; and Ms is the saturation magnetization of the sam-
ple. The above measurements were made in the central
part of the sample to eliminate edge effects (in particu-
lar, the variation of the local demagnetizing factor). The
bulk magnetic characteristics of the sample were mea-
sured using a vibrating sample magnetometer.

Figure 1 shows (a) the bulk hysteretic loop as well
as (b, c) the near-surface hysteretic loops observed on
the free and wheel surfaces of the ribbon under study.
Typical local magnetization curves are shown in Fig. 2.
Analysis of these data leads to the following conclu-
sions.

The ribbon studied here exhibits excellent soft mag-
netic properties. The bulk values of the coercive force
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Bulk hysteretic loop (a) and surface hysteretic loops observed on the free and wheel surfaces of
Fe61.4Ni3.6Cr3.2Si2.4Nb7.8Mn3.6B18 amorphous ribbon ((b) and (c), respectively). The magnetic field is applied along the ribbon
length L.
Hc and saturation field Hs are equal to 0.03 and 6 Oe,
respectively. The near-surface magnetic characteristics
of the sample differ substantially from the bulk charac-
teristics. The difference between the bulk and near-sur-
face values of Hc and Hs can be explained by the pres-
ence of defects (roughness and microstructural
changes) typical of surface layers of materials prepared
by hardening from the melt in a rapidly rotating drum.

The values of Hc and Hs on the free surface of the
ribbon are lower than on the wheel surface (1.6 and
12 Oe against 3.6 and 35 Oe, respectively). Such a dif-
ference in the near-surface magnetic properties is typi-
cal of amorphous materials obtained by hardening from
the melt [10, 11]. It can be explained by the difference
in the residual stresses on the wheel and free sides of
the ribbon, which exists during its preparation, and by
different morphologies of the surface layers.

The local near-surface magnetization curves differ
insignificantly. It was found that the variations in the
local values of Hc and Hs on the free and wheel surfaces
of the ribbon do not exceed 6 and 10%, respectively.
The high homogeneity of the local magnetic characte-
ristics is the result of weak dispersion in the magnetic
anisotropy in the sample, which in turn indicates a high
quality of the multicomponent ribbon studied here.
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
The results of investigation of micromagnetic struc-
tures (equilibrium distribution of magnetization)
deserve special attention. Figure 3 shows typical distri-
butions of the near-surface component of the magneti-
zation parallel to the magnetic field, which are observed
on the free and wheel surfaces of the ribbon during
scanning of a light spot 20 µm in diameter along the
direction perpendicular to the length of the ribbon
(denoted by W), M/Ms(W). Analogous distributions of
magnetization were observed for various values of W.
The results of a more detailed analysis of the depen-
dence M/Ms(W) near the peak denoted by the arrow in
Fig. 3 are depicted in Fig. 4a. Figure 4b shows the
dependences of the maximal values of M/Ms of the
same peak observed during the scanning of a light spot
of diameter 20 µm along the ribbon length L. It can be
seen from Fig. 3 that the dependences M/Ms(W) have
several periodically appearing peaks. The values of
M/Ms increase with increasing H; the peaks are pre-
served, but their width increases (see Figs. 3 and 4a). It

can also be seen that the values of M/  along the
ribbon length L vary insignificantly (see Fig. 4b). Anal-

ogous dependences M/ (L) were also obtained for
other peaks.

Ms
max

Ms
max
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Additional studies of the micromagnetic structure of
the ribbon were performed using the new magnetoopti-
cal effects described in [11]. Generally speaking, the in-
plane magnetization components, both parallel (M||)
and perpendicular (M⊥ ) to the applied magnetic field,
can be measured simultaneously for any microregion
being measured with the help of the EKE δ1 and the
meridional intensity effect (MIE) δ2. The MIE is pro-
portional to the magnetization component parallel to
the plane of incidence of light (M⊥  in the present case)
and odd in the angle θ of deviation of the light polariza-
tion plane from the p component (vector E of the light
wave is parallel to the plane of light incidence) [11].
The measurement of magnetooptical signals at θ =
±40° makes it possible to find the values

(1)

Using this relation, we can find

(2)

(3)

δ 40± δ1 M ||( ) ± δ2 M ⊥( ).=

δ1 M ||( ) δ+40 δ 40–+( )/2,=

δ2 M ⊥( ) δ+40 δ 40––( )/2.=
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Fig. 2. Typical local near-surface magnetization curves
observed on the free and wheel surfaces of the ribbon. The
ac magnetic field was applied parallel to the ribbon length L
((a) and (b), respectively).
Analysis of magnetooptical signals carried out in
[10] proved that δ1(M⊥ ) ≠ 0 if the magnetization rever-
sal of the sample is executed due to rotation of the mag-
netization vector. It was found that the values of δ1(M⊥ )
are equal to zero for any microscopic region of the rib-
bon studied here.

Thus, the above results lead to the conclusion that
the peaks on the dependences M/Ms(W) are observed in
the region of displacement of domain walls; i.e., the
near-surface micromagnetic structure of the studied
ribbon is characterized by the presence of domain walls
parallel to the length of the ribbon. Insignificant

changes in M/  along L are the evidence of slight
distortions of domain walls in this direction. The mag-
netization reversal of the sample in a quasistatic mag-
netic field applied parallel to the ribbon length L is
mainly realized due to displacement of domain walls. It
should be noted that a typical feature of the magnetic-
field dependence of the magnetoimpedance measured
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Fig. 3. Typical distributions of the magnetization compo-
nents parallel to the magnetic field, observed for different
values of the magnetic field (H < Hs) (a) on the free and
(b) on the wheel sides of the ribbon. Measurements were
made upon a displacement of a light spot of diameter 20 µm
along a direction perpendicular the ribbon length (denoted by
W).
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on the ribbon under study in the frequency range from
100 kHz to 1 MHz is the presence of only one peak in
the region of H = 0. In accordance with the results (see,
for example, [12–15]), this fact indicates that the mag-
netization reversal mechanism in the ribbon, which is
associated with DW displacement, is preserved up to
1 MHz.

Thus, we have analyzed the magnetostatic proper-
ties and micromagnetic structure of multicomponent
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Fig. 4. (a) Distributions of the magnetization components
parallel to the magnetic field observed for different values
of the magnetic field (H < Hs) on the free side of the ribbon
upon a displacement of a light spot of diameter 20 µm along
the direction W perpendicular to the ribbon length near the
peak marked by the arrow in Fig. 3a for H = 0.4 (1), 1.6 (2),
2 (3), 3 (4), 4 (5) and 10 Oe (6). (b) Magnetization distribu-
tions of the same component observed for the same peak
along the ribbon length L.
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Fe61.4Ni3.6Cr3.2Si2.4Nb7.8Mn3.6B18 amorphous ribbons. It
is found that such a ribbon is characterized by supersoft
magnetic properties and a high degree of uniformity of
the local surface magnetic parameters. The wide range
of glass formation determined empirically for this alloy
and the observed peculiarities of the magnetic proper-
ties indicate that an amorphous ribbon of this composi-
tion can be used as a precursor for preparing a bulk
amorphous alloy.
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Abstract—Optimal conditions for selective removal of pyramidal germanium nanoislands from the silicon
(001) surface by sequential ion-beam deposition/sputtering of a gold layer with a nanoscale thickness are deter-
mined experimentally; it is important that the sizes of large domelike germanium nanoislands change only
slightly as a result of the ion-beam treatment. © 2004 MAIK “Nauka/Interperiodica”.
Device-oriented semiconductor heterostructures
with germanium nanoislands must have stable proper-
ties, perfect crystal structure, and uniform distribution
of nanoisland sizes [1]. However, the germanium
nanoislands on the silicon (001) surface have the shape
of pyramids with differing sizes or of larger hemispher-
ical domes [2]. In addition, the smallest germanium
islands can be elongated and have irregular shapes
(huts) [3]. The diversity of types of nanoislands is
caused by the effect of a number of controlled and
uncontrolled factors on the conditions of growth of het-
erostructures and on relaxation of stresses. In this con-
text, it appears important to use postgrowth methods in
order to obtain a more uniform distribution of nanois-
land sizes. For example, using the fact that the smallest
domes exceed in size the largest pyramids [2], one
could employ ion-beam sputtering in order to remove
the smallest islands. However, further studies of the
effect of irradiation with ions on the properties of
islands are needed here. It should also be taken into
account that, as a result of sputtering, the germanium
nanoislands can become contaminated with impurity
particles, in particular, those of silicon. Therefore, the
use of the method based on the ion-beam deposi-
tion/sputtering of a nanolayer of material whose sput-
tering rate is comparable to that of hillocks in the pro-
file of the starting surface appears to be more promis-
ing. This method was used previously for
subnanometer-scale polishing of optical surfaces [4]. In
the case under consideration, we are dealing with sur-
face hillocks in the form of germanium nanoislands; as
a result, gold is a suitable material for a smoothening
1063-7842/04/4909- $26.00 © 21236
nanolayer since gold is chemically inert and has the rate
of sputtering by argon ions that almost coincides with
the corresponding rate for germanium [5]. The method
under consideration includes (i) the preferential filling
of valleys in the surface profile at the first stage of ion-
beam deposition of a gold nanolayer on the starting sur-
face and (ii) the ion sputtering of this layer (at the sec-
ond stage) together with germanium nanoislands whose
sizes are smaller than the nanolayer thickness. Since
the rate of argon-ion sputtering of silicon is lower by at
least a factor of 2 than those of germanium and gold [5]
and the gold layer shades the silicon surface from ion
bombardment, contamination of the surface by silicon
can be minimized experimentally.

The setup for combined ion-beam deposition/sput-
tering was similar to that described previously [4]. The
operating gas was argon. The gold flux was normal to
the surface; the deposition rate was 7 nm/min. The
argon ions for sputtering had an energy lower than
350 eV; the ion-beam current density was equal to
0.06 mA/cm2. The sputtering rate for gold was lower
than 1.2 nm/min. The rates of deposition and sputtering
of gold were determined using flat areas of quartz-sub-
strate surface (see [6]). The germanium nanoislands on
the silicon (001) surface were formed by molecular-
beam epitaxy. The method for forming an array of
nanoislands was described in detail by Leifeld et al. [3].
The silicon wafer was kindly placed at our disposal by
D. Grützmacher. The samples were neighboring parts
cleaved from the wafer. We analyzed the surface mor-
phology using a Femtoskan-001 atomic-force micro-
004 MAIK “Nauka/Interperiodica”
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Fig. 1. The AFM images of nanosized germanium islands (a) on the initial silicon surface, (b–d) after deposition of the gold nano-
layer, and (e, f) after sputtering with argon ions.
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scope (AFM) produced by the Center for Promising
Technologies (Moscow State University). The micro-
scope operated in the contact mode; CSC12 silicon can-
tilevers produced by MicroMasch Co. (www.spm-
tis.com) were used; and the scanned area was as large
as 5 × 5 µm2.

In Fig. 1, we show the AFM images of the (a) initial
surface; the surfaces after deposition of the gold layer
for (b) 5, (c) 10, and (d) 20 s; (e) the surface after dep-
osition of the gold layer for 5 s with subsequent sputter-
ing for 4 min; and (f) the surface after deposition of the
gold layer for 10 s with subsequent sputtering for 4 min.
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Fig. 2. Selective sputtering of pyramidal germanium
nanoislands.
Cross sections of characteristic nanosized germanium
islands seen in Fig. 1 are shown in the insets. Evidently,
the AFM data are insufficient for unambiguous consid-
eration of how the surface profile evolves after each
stage of the deposition/sputtering of the gold nanolayer.
However, the set of AFM images as a whole indicates
that gold is deposited in the form of sharp tips on domes
and thin layers over the lateral faces of pyramids; these
layers are thicker at the top and thinner at the pedestal.
Simultaneously, the pyramids are buried as the thick-
ness of the gold layer increases at the surface areas free
from germanium islands (Figs. 1b–1d). Irradiation with
ions for 4 min is found to be sufficient for sputtering off
of the gold layer deposited for 5 s and for the onset of
sputtering of germanium nanoislands (Fig. 1e). At the
same time, the gold layer deposited for 10 s is removed
only partially as a result of irradiation with ions for
4 min (Fig. 1f). This inference is confirmed by the
results of measuring the electrical conductance and
optical absorption in the case of quartz substrates. It can
be also seen from Fig. 1 that the dome-shaped germa-
nium islands broaden as a result of ion sputtering (see
insets to Figs. 1e, 1f). In this case, the processes of dep-
osition and sputtering are characterized by the duration
of the process rather than by the corresponding rates as
a result of variations in these rates at the surface with a
complex profile for the time intervals under consider-
ation. According to Fig. 1, removal of the smallest ger-
manium islands is observed after deposition of the gold
layer for more than 10 s and subsequent sputtering with
argon ions for more than 4 min. In Fig. 2, we show the
AFM images of the surfaces that were sputtered for
8 min after deposition of the gold layer for (a) 10, (b)
20, and (c) 30 s. Figure 2a indicates that the pyramids
are completely sputtered off, the domes are partially
sputtered, and a complex profile is formed in the sur-
face areas free of germanium islands as a result of par-
tial sputtering of the surface after removal of the mask-
ing gold layer. It can be seen from Fig. 2b that only the
traces of pyramids are observed after sputtering,
whereas the dome-shaped germanium nanoislands
remain close in shape and size to the domes on the ini-
tial surface (Fig. 1a). Pyramids and domes seen in
Fig. 2c are found to be partially buried under incom-
pletely removed gold layer. This behavior was to be
expected since the thickest attainable gold layer (about
4 nm thick) was deposited for 30 s.

Thus, the experimentally optimized conditions of
ion-beam deposition/sputtering of the gold nanolayer
make it possible to remove selectively the smallest ger-
manium nanoislands from the silicon surface, including
those with pyramidal shape; larger, dome-shaped
nanoislands remain intact. This circumstance leads to a
substantial increase in the uniformity of size distribu-
tion of germanium nanoislands. The increased unifor-
mity is of much interest with respect to the problem of
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
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formation of smooth surfaces with nanohillocks of cer-
tain sizes.
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Abstract—The possibility of controlling in two dimensions the position of the region of closed magnetic sur-
faces in a helical magnetic confinement system is demonstrated by numerical simulations carried out using a
two-pole model torsatron as an example. The displacement of this region in a direction perpendicular to the
equatorial plane of the torus is provided by the magnetic field produced by a special correcting winding. © 2004
MAIK “Nauka/Interperiodica”.
The first experimental investigations of the mag-
netic field structure in a closed helical magnetic con-
finement system (the Liven’-1 stellarator) by high-res-
olution methods [1] found definite indications that the
region of closed magnetic surfaces is always displaced
in a direction perpendicular to the equatorial plane of
the torus (in the axial direction along the symmetry axis
of the torus). The displacement was explained as being
due to the magnetic field perturbations, which may
result from the imperfect construction and assemblage
of the individual elements of a magnetic coil winding.
In [1], experimental measurements were also carried
out on the amount by which the region of closed mag-
netic surfaces is displaced in the radial direction (i.e.,
along the major radius of the torus in its equatorial
plane) under the action of a comparatively weak uni-
form transverse magnetic field. These measurements
demonstrated that the radial position of the plasma col-
umn in stellarator devices can be controlled by means
of correcting ring coils. However, the question about
the possibility of correcting the axial component of the
displacement of the region of closed magnetic surfaces
was not addressed in that paper and still remains open.
That is why the means for controlling the position of
this region in two dimensions are absent in the existing
helical and helical-like toroidal magnetic confinement
systems and are not considered in the design of the sys-
tems currently under development.

Numerical simulations described in the present
paper demonstrate that the axial displacement of the
region of closed magnetic surfaces in a torsatron can be
controlled by a special correcting winding. The geom-
etry of the winding indicates what kind of imperfection
in the construction of a magnetic coil winding is
responsible for the axial displacement of the region of
closed magnetic surfaces.
1063-7842/04/4909- $26.00 © 21240
The special correcting winding consists of auxiliary
helical coils wound in a certain manner around the torus
carrying the main helical winding of the torsatron. Each
of the l poles of the main helical winding is associated
with one pole of the auxiliary helical winding. Each
point of the auxiliary base helical line along which the
conductor of a pole of the auxiliary winding is wound
on the torus is at a distance S = const from the main base
line for the corresponding pole of the main helical
winding. The distance S = const is measured from the
parallel passing through this point on the torus. In Car-
tesian coordinates such that the z axis is aligned with
the symmetry axis of the torus, the equation of the aux-
iliary line can be written in the following parametric
form, which is convenient for numerical calculations:

(1)

Here, R0 and a are the major and minor radii of the
torus, θ and ϕ are the poloidal and toroidal angles, θ(ϕ)
is the winding law for the main helical winding, and the
sign in the argument of the trigonometric functions is
chosen according to the direction along which the dis-
tance S is measured. Numerical simulations were car-
ried out for a model torsatron shown schematically in
Fig. 1. The torsatron magnetic system includes a two-
pole (l = 2) main helical winding wound along base
helical lines 1 and 2 on a torus whose radii are in the
ratio a/R0 = 0.25. The magnetic system should also
involve at least one pair of compensating ring-shaped
coils 3 with built-in correcting ring-shaped coils (which
are not shown in the figure). The compensating coils are

x R0 a θ ϕ( )( )cos+( ) ϕ S/ R0 a θ ϕ( )( )cos+( )±( ),cos=

y = R0 a θ ϕ( )( )cos+( ) ϕ S/ R0 a θ ϕ( )( )cos+( )±( )sin ,

z a θ ϕ( )( )sin .=
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required to produce the region of closed magnetic sur-
faces 4 within the volume enclosed by the helical wind-
ing. The correcting ring-shaped coils serve to control
the radial position of this region in the equatorial plane
of the torus.

The winding law of base helical lines 1 and 2 is
given by a cylindrical helix: θ(ϕ) = mϕ, where m = 5 is
the number of pitch lengths of each of the lines over the
full length of the torus along the toroidal axis. Base
helical lines 1b and 2b of the auxiliary helical winding
correspond, respectively, to base lines 1 and 2 of the
main helical winding. The points of intersection of lines
1 and 1b (2 and 2b) with the same parallel on the torus
are separated by a distance of S/R0 = 0.35. This distance
is measured from line 1 (2) along the parallel in the
direction in which the toroidal angle ϕ is increasing.

For the model torsatron under consideration, Fig. 2
graphically illustrates the winding laws of main base
line 1 and auxiliary base helical line 1b. The difference
of the “derived” winding law of the auxiliary helical
winding from the “original” linear winding law of the
main helical winding is seen to be highly nonlinear and
is very difficult to describe analytically.

Figure 3 presents the calculated cross sections of the
closed magnetic surfaces in the model torsatron in
question. The cross sections shown in Fig. 3a refer to
the case in which the current in the auxiliary winding is
switched off. These cross sections are characteristic of
a conventional torsatron with a planar magnetic axis:
the region of closed magnetic surfaces is seen to be
symmetric about the equatorial plane of the torus. Fig-
ure 3b refers to the case in which the current in the
poles of the auxiliary winding is equal to 0.03 of the

θ

ϕ R0 a
CC

CC

1b

1

2b

2

3

1
1b2b

2
4

Fig. 1. Schematic of a model torsatron for numerical simu-
lations: top view and view in cross section CC.
TECHNICAL PHYSICS      Vol. 49      No. 9      2004
current in the poles of the main helical winding. In this
case, all the cross sections of the magnetic surfaces are
seen to be displaced upward from the equatorial plane
by an amount of about 0.1a. For an oppositely directed
current in the auxiliary winding, the magnetic surfaces
are displaced downward. The same effect is captured by
calculations for the case in which the current in the aux-
iliary winding is not reversed but the distance S is mea-
sured in the opposite direction (or in the direction oppo-
site to that of the angular coordinate ϕ). Simulations
also show that the magnetic field of the auxiliary helical
winding does not change the radial position of the
region of closed magnetic surfaces in the equatorial
plane of the torus.

Hence, the auxiliary helical winding that has been
considered above is fully capable of functioning as a
special correcting winding for controlling the axial
position of the region of closed magnetic surfaces. In
combination with an ordinary ring-shaped correcting
winding, it can be used, if necessary, to control in two
dimensions the position of the plasma column in closed
magnetic confinement systems of the stellarator type.

In conclusion, it is important to point out the follow-
ing circumstance. If the conductor of a pole of, e.g., a
single-layer main helical winding is wrapped beginning
with the base line on one side of it in a turn-by-turn
fashion, the thickness of the insulator between the adja-
cent turns being constant, then the helical winding law
of the last turn in the layer may be similar to Eq. (1)
with the parameter S = (n – 1)d, where n is the number
of turns in the layer and d is the diameter of the insu-

100
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 d
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φ, deg
40 60 80

200

300
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Fig. 2. Dependence of the poloidal angle θ on the toroidal
angle ϕ along main base helical line 1 and auxiliary base
helical line 1b over one pitch length.
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(a)

(b)

Fig. 3. Cross sections of the magnetic surfaces over a half-period of the magnetic field when (a) the current in the special correcting
winding is switched off and when (b) the current in the special correcting winding is equal to 0.03 of the current in the main helical
winding.
lated conductor. As a result, the calculated position of
the region of closed magnetic surfaces in a magnetic
confinement system can differ from its actual position.
This problem can be partially resolved by using a sym-
metrized pole whose conductor is wrapped beginning
with the base line on both sides of it or the turns of
whose conductors are wound according to the winding
law of the base helical line.
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Abstract—Theoretical grounds for formation of continuous substitutional solid solutions are analyzed taking
into account the generalized moments, the difference in valence, and covalent radii of initial components. On
the basis of these studies, the technology of formation of epitaxial (Si2)1 – x(GaP)x (0 ≤ x ≤ 1) layers on silicon
substrates from the tin solution–melt using forced cooling is developed. The distribution of components over
the thickness of Si–(Si2)1 – x(GaP)x layers, the photosensitivity, and the current–voltage characteristics of the Si–
(Si2)1 – x(GaP)x heterostructures are studied. Analyses of the results of the X-ray studies and photoelectric prop-
erties of obtained solid-solution epitaxial layers indicate that the grown graded-gap (Si2)1 – x(GaP)x layers have
a high structural quality. © 2004 MAIK “Nauka/Interperiodica”.
Research in the field of present-day materials sci-
ence of semiconductors is aimed at production of new
semiconductor materials that have high quality and
exhibit the improved characteristics compared to those
of the materials used currently in photoelectronics.
Therefore, the development of technology and the
study of properties of obtained new semiconductor
materials and solid solutions based on these materials
are of utmost importance in this field. In this context,
heteroepitaxial deposition of GaP onto Si substrates is
of much interest since the lattice parameters of Si and
GaP are almost the same, whereas the band gaps are
radically different. Substitutional solid solutions of Si
and GaP can be formed since the conditions ∆Z = 0 and
|∆r| = (rA + rB) – (rC – rD) ≤ 0.1 [1] are satisfied for these
solutions (here, Z is the valence and r are the covalent
radii of the components).

It was shown for the first time by Alferov et al. [2]
by the example of a (Ge2)1 – x(GeAs)x system that pyro-
lytic synthesis from gaseous phase can be used to form
a continuous sequence of solid solutions. We also pre-
viously showed [3] that it is possible to obtain graded-
gap (Ge2)1 – x(GeAs)x (0 ≤ x ≤ 1) metastable solid solu-
tions on the Ge and GaAs using a Pb solution–melt as
the source. An analysis of solubility of Si and GaP in
liquid metallic solvents show that the use of tin as the
solvent and a relatively low growth temperature (750–
900°C) are conducive to the formation of
(Si2)1 − x(GaP)x solid solutions.

In this paper, we report the results of studies related
to the technology and morphology of Si–(Si2)1 – x(GaP)x

heterostructures obtained from a limited volume of a Sn
solution–melt in the atmosphere of hydrogen purified
with palladium; we also report the results of studying
1063-7842/04/4909- $26.00 © 21243
the certain photoelectric properties of these hetero-
structures. A total of 15 Si–(Si2)1 – x(GaP)x heterostruc-
tures with an area S ≈ 15 mm2 each were fabricated and
studied. Technological processes related to fabrication
of heterostructures from a limited volume of the solu-
tion–melt were described by Saidov et al. [4].

Epitaxial layers with the thickness in the range from
15 to 30 µm had the n-type conductivity. According to
the data on the distribution of components over the
thickness obtained using a Cameca electron-probe ana-
lyzer, the GaP content in the graded-gap epitaxial
(Si2)1 – x(GaP)x layer increases along the growth axis
and is as high as 48% for Ga, 52% for P, and 0% for Si
(Fig. 1a). The raster patterns obtained using a Jeol JSM
5910 LV X-ray microanalyzer (Fig. 1b) show that there
are no macroscopic structural defects and metallic
inclusions of the second phase. The measurement error
was no larger than 2%.

We used a DRON-3M diffractometer to determine
the interplanar spacings dnkl of atoms on the substrate
side and on the side of epitaxial layers. Using the for-

mula a = d , where h, k, and l are the Miller
indices, we determined the lattice constants for Si and
(Si2)1 – x(GaP)x solid solutions: aSi = 5.4290 Å and

 = 5.4293 Å for x ≈ 0.5. The calculated

error in determining the lattice parameters a is equal to
∆a = 0.0004 Å. The smooth and graded-gap
(Si2)1 − x(GaP)x epitaxial layers are obtained using
forced cooling with a rate of 0.5–5 K/min at the dis-
tance δ = 0.75–1.0 mm between two horizontally
arranged Si substrates.

h2 k2 l2+ +

a Si2( )1 x– GaP( )x
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As the GaP content in the epitaxial (Si2)1 – x(GaP)x

layers increases and for certain thicknesses of these lay-
ers, the role of the thermal-expansion coefficient
increases owing to a gradual transition from Si to GaP.
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Fig. 1. (a) The distribution of the GaKα
, PKα

, and SiKα
 com-

ponents over the thickness of Si–(Si2)1 – x(GaP)x structures
and (b) the raster patterns of the cleaved surface of the Si–
(Si2)1 – x(GaP)x structure.
As a result, we do not observe any bends or fractures in
the (Si2)1 – x(GaP)x films.

In the course of forced cooling, the heat removal
from the last crystallizing layers proceeds more rapidly
than that from initial layers as a result of nonuniform
heat removal from different sites. In addition, as the
cooling rate increases, this difference in the heat
removal increases; as a result, thermoelastic stresses
appear. In turn, these stresses give rise to the plastic
strain, formation of cracks, and even destruction of the
film. The causes of formation of similar defects were
outlined previously [5]. In authors’ opinion, the causes
of formation of the defects are related to the following
factors: a difference between the crystal-lattice param-
eters, thermal stresses, the composition gradient over
the epitaxial-layer thickness, and introduction of
defects from the substrate.

Mismatch of lattice parameters for Si–GaP hetero-
structures amounts to 0.36% and, thus, is insignificant.
Therefore, the effect of stresses arising at the interface
between substrate and epitaxial layer owing to the dif-
ference between the lattice constants in the heterostruc-
ture does not exist; it is noteworthy that the fraction of
the GaP chemical component varies gradually from
zero to unity (0 ≤ x ≤ 1). Introduction of defects from
the substrate is eliminated by choosing dislocation-free
Si substrates of high structural quality. The cracking of
Si layers grown on Ge was observed in a Ge–Si struc-
ture [6, 7]; cracking of thick ZnSe layers grown on
GaAs was also observed [8]. Stresses arising in the film
owing to the difference in the thermal-expansion coef-
ficients can be estimated using the formula [9]

where E is Young’s modulus, γ is the Poisson ratio, ∆α
is the difference between the thermal-expansion coeffi-
cients of epitaxial film and the substrate, and ∆T is the
difference between the temperature at which the film is
grown and room temperature.

As temperature decreases, the stress σ∆α increases
linearly, whereas the plasticity increases exponentially.
As a result, the relaxation of thermal stress is hampered,
which leads to the fracture of epitaxial layers [9].

We performed preliminary studies of electrical
properties of fabricated Si–(Si2)1 – x(GaP)x structures.
Ohmic contacts were formed using a Ga–In alloy. The
dark current–voltage (I–V) characteristics of p-Si–n-
(Si2)1 – x(GaP)x heterojunctions were measured at both
forward and reverse bias voltages Vb at the temperature
T = 290 K (Fig. 2a). There are numerous theories that
describe the I–V characteristics for homojunctions and
heterojunctions [10]. It is well known that electrical
characteristics of a forward-biased p–n junction are
independent of both the potential-barrier height Vd and
the resistivity of semiconductors. Irrespective of the
theory chosen for description of I–V characteristics, the

σ∆α
E

1 γ–
-----------∆α∆T ,=
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forward current Jdir increases exponentially with
increasing voltage Vb and follows the law Jdir ∝
exp(qVb/kT) – 1. The potential barrier Vd determined
from extrapolation of the linear portion of the charac-
teristic is equal to 0.5 V. In the case of Vd = Vb = 0.5 V,
the barrier disappears and further increase in current
with increasing Vb is governed by physical processes
that occur in the semiconductor bulk (thermal emission
and tunneling).

It is easy to recognize three specific portions in the
reverse I–V characteristic: (i) at the voltage range Vb =
0–0.3 V, (ii) at Vb = 0.3–1.25 V, and (iii) at Vb > 1.25 V.
In the region of low voltages (Vb < 0.3 V), the reverse
current increases only slightly with increasing voltage,

follows approximately the law J = B × , and is gov-
erned predominantly by tunneling current [10] (B is a
constant and n < 1). In the second voltage range (Vb =
0.3–1.25 V), a significant increase in the reverse current
is observed. At still higher voltages (Vb = 2.1 V), the
impact ionization sets in the bulk of the p–n heterojunc-
tion, which eventually leads to the soft breakdown.
Apparently, the increase in J in the voltage range Vb =
0.3–1.25 V is related to the development of impact-ion-
ization processes in the regions adjoining the p–n het-
erojunction rather than in the bulk. This circumstance is
caused by variation in the depletion-region width that is
governed by the charge of impurity atoms in the afore-
mentioned regions. Thus, the reverse current at Vb =
0.3–1.25 V is mainly governed by the onset of impact
ionization of impurity centers in the regions that adjoin
the p–n heterojunction.1

In Fig. 2b, we show a typical spectral dependence of
photocurrent in pSi–n(Si2)1 – x(GaP)x structures. The
heterojunctions were irradiated with light perpendicu-
larly to the plane of p–n junction; the graded-gap epi-
taxial layer was exposed to light. As can be seen, the
photosensitivity of the structures is observed in the pho-
ton-energy range Eph = 1.05–2.4 eV.

The short-wavelength edge of spectral sensitivity is
governed by the epitaxial layer of the graded-gap
(Si2)1 – x(GaP)x crystal. The crystal composition was
chosen such that the band gap increased from the side
of the Si substrate and was as wide as possible at the
crystal surface that served as the wide-gap entrance
window.

The n–p junction is deep in the structures under con-
sideration (recall that the thickness of the n-type
graded-gap layers d ≈ 15–30 µm); therefore, the effi-
ciency of collection of photogenerated charge carriers
is controlled by the graded-gap field EV in the
(Si2)1 − x(GaP)x crystal. The charge carriers generated
by the short-wavelength radiation near the surface of

1 In this paper, we do not intend to study in detail the physical
mechanisms responsible for the behavior of the I–V characteris-
tics. The results of corresponding studies will be reported in our
subsequent publication.

Vb
n
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the wide-gap entrance window are collected by the field
EV with an efficiency higher than that for the charge car-
riers photogenerated in the crystal bulk. This inference
is confirmed by the presence of a broad band in the
spectral dependence of photocurrent in the photon-
energy range Eph = 1.35–2.1 eV. A gradual increase in
the photoresponse intensity and its peak at Eph =
2.05 eV are caused by an increase in the value of EV

with approach to the surface of the (Si2)1 – x(GaP)x crys-
tal due the gradient in the band gap. The sharp short-
wavelength falloff of the spectral characteristic (λ <
0.5–0.6 µm) is a result of the surface recombination of
photogenerated charge carriers, whereas the long-
wavelength falloff (at λ = 0.918–1.180 µm) is caused by
recombination of charge carriers in the bulk of the
graded-gap (Si2)1 – x(GaP)x crystal.

To summarize, we fabricated new graded-gap
(Si2)1 – x(GaP)x solid solutions on Si substrates. These
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Fig. 2. (a) The dark I–V characteristic and (b) the spectral
dependence of photoresponse of the pSi–n(Si2)1 – x(GaP)x
heterostructure.
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solid solutions exhibit a wider range of spectral sensi-
tivity compared to the graded-gap AlxGa1 – xAs solid
solutions that are widely used for fabrication of solar
cells and are grown exclusively on expensive GaAs
substrates.

Thus, the above consideration suggests that new
solid solutions on silicon substrates could be used
widely in photoelectronics.
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Abstract—A basic scheme of “meters” involved in an optical accelerometer based on the effect of relativistic
frequency shift is presented. The point-spread function of the instrument is estimated in terms of both conven-
tional and advanced concepts of inertial navigation. © 2004 MAIK “Nauka/Interperiodica”.
1. It is known [1] that absolute linear acceleration
can be represented in the form w = g + f, where g is
termed gravitational acceleration, free-motion (free-
fall) acceleration, or gravitational field strength, and f is
the apparent acceleration or the (specific) resultant of
nongravitational forces.

In modern inertial navigational systems, linear
acceleration is measured by either mechanical meters
[1] or interferometers [2]. While being related to optical
devices, the latter are functionally similar to the former,
since interferometers, like mechanical meters, also
measure apparent acceleration (f). This follows from
the principle of their operation: the action of inertial
mass on the material of the optical channel.

In this study, which pursues our discussion of mea-
surement interpretation [3], we estimate the functional-
ity of an, in a sense, purely optical accelerometer built
around the following scheme. Let a source of optical
radiation with frequency ν be placed at end A of linear
segment AB, which has a given length L. Also, let
reflectors be positioned at both ends (A and B), so that
multiple reflections of the radiation emitted from
source A are possible. Generally speaking, the passage
of the radiation in the forward (AB) and reverse (BA)
directions takes place in various optical media with
refractive indices n1 and n2, respectively. After N
passes, which constitute one measuring cycle, the
observer sees the frequency νN measured.

We will deal with inertial coordinate system K and

device-related system  with origin o in the middle of
section AB. The latter system moves along a straight
line with absolute acceleration w, which is collinear to
section AB. The following events should be treated by

the observer, who is in system .

2. Since the accelerated motion of system  is of
additive character, it makes sense to consider first the
case f ≡ 0 and g = const. Taking into account that the

gravitational field is present in both systems K and 

K̃

K̃

K̃

K̃

1063-7842/04/4909- $26.00 © 21247
and also that inertial force Jg is present in the latter sys-
tem (so that Jg + g = 0, the well-known zero-gravity
phenomenon), we may argue that the radiation fre-

quency measured in  does not change. Otherwise, the
effect of gravitational (red) shift supported experimen-
tally [4, 5] comes into question.

In system , moving with acceleration w = g + f
(f ≠ 0, g = const), an inertial force Jf = –f arises, which
is not balanced by the external gravitational field. In
accordance with the equivalence principle [4], this
force can be identified with the strength of the gravita-

tional field that exists only in . This fact makes it pos-
sible to observe the corresponding “gravitational” fre-

quency shift directly in . Also, this fact (combined
with the above consideration) means that the direct
optical method considered in this study measures (in

) only apparent acceleration f (at g = const).

3. In the general case of the nonuniform gravita-
tional field (g ≠ const), we will determine the intrinsic

time in  in terms of the well-known interpretation of
the metric tensor (for weak fields, the tensor is consid-
ered in [4, 5]). At the ends of segment AB in an ith opti-
cal channel (i = 1, 2), the tensor component g00, which
corresponds to time in four-dimensional space, has the
following form:

(1)

where ci = c/ni, c is the velocity of light in free space,
and ϕj (j = A, B) are the force potentials at ends A and B.

Quantities ϕj (j = A, B) can be represented as the
sums of two components related to the gravitational
forces (ϕj, g) and inertial forces (ϕj, J), so that ϕj = ϕj, g +
ϕj, J (j = A, B). Denoting the axis of system K that is col-
linear to AB by 0x, we expand the partial potentials in

K̃

K̃

K̃

K̃

K̃

K̃

g00
j i, 1 2ϕ j/ci

2, i+ 1 2;,= =

j A, B or j 1 2,=( ),=
004 MAIK “Nauka/Interperiodica”
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the vicinity of the point o:

(2)

Here, ϕg is the gravitational potential and ϕ0 is its value
at point o. All partial derivatives are also taken at this
point.

If the relationship between the intrinsic time τ of the

points in  and time t in inertial system K upon com-
pletion of the measuring cycle is taken into account,

dτj, i = ( )1/2dt (j = A, B; j = 1, 2), the frequency mea-
sured takes the form

Here, the value of red (or, possibly, blue) shift δνN is the
information-bearing component, which, in view of (2),
can be expressed in the form

(3)

From Eq. (3), we get

(4)

The order of magnitude of the values involved in (3)
and (4) and the measurement accuracy required can be
estimated from the following example. If ϕg is identi-
fied with the exterior field of terrestrial gravitation,
which is assumed to be central, and the motion is con-
sidered along the central straight line, then ∆L ≈ gL2/8r2

(r is the distance to the center of the Earth). Setting L =
1 m, n1 = 1, n2 = 2, ν = 3 × 1014 Hz, N = 108, f ∈  [10–4;

ϕ j g, ϕ0 1–( ) j∂ϕg

∂x
--------- L

2
--- 1

2
---

∂2ϕg

∂x2
----------- L

2
--- 

 
2

+ +=

+ 1–( ) j1
6
---

∂3ϕg

∂x3
----------- L

2
--- 

 
3

…,+

ϕ j J, 1–( ) j f
L
2
--- 1–( ) j 1–( )∂ϕg

∂x
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2
---;+=

j 1 2 or j A= B,( ).,=

K̃

g00
j i,

νN ν g00
B 1, g00

A 2, / g00
A 1, g00

B 2,( )[ ] N /2 ν δνN .+≈=

δνN

νN n1
2 n2

2+( )
c2
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∆ 2
2n 1–( )!
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∂2n 1– ϕg

∂x2n 1–
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2
--- 

 
2n 1–

.
n 1=

∞

∑–=

f ∆/L+ c2 νN ν–( )/ νNL n1
2 n2

2–( )( ).=
10] m/s2, and r = 6.4 × 106 m, we arrive at δνN ∈  [1;
10] Hz and ∆/L ≈ 3 × 10–14 m/s2.

As is seen from the example, the fact that Eq. (4)
includes quantity ∆/L, which contains information on
the gravitational field, places more stringent require-
ments on the accuracy of measurement. Note that the
optical accelerometer under study can also be
employed as a gravimeter. In this case, the specific
bearing reaction of the device’s support, which is equal
to the local gravitational field strength, plays the role of
a specific nongravitational force (i.e., f).

4. Thus, it is shown that optical accelerometers,
which are based on the effect of relativistic frequency
shift, provide information on both the apparent acceler-
ation (f) and the gravitational field (∆). In the context of
existing measurement concepts and inertial navigation
practice, these devices can be viewed as meters of
apparent acceleration in the case of a slightly nonuni-
form field (such as the exterior field of terrestrial grav-
itation); in other words, they are functionally similar to
the mechanical and interferometric accelerometers cur-
rently available.

It is hoped that measurement techniques will
advance to a level allowing one to record microacceler-
ation on the order of (10–14–10–16) m/s2. This will sub-
stantially raise the information content of both mea-
surement components, which, in turn, will have a pro-
found effect on the further development of the inertial
navigation method [6].
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