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Magnetic, x-ray, and small-angle neutron scattering data obtained for the decomposed alloy
CussMngAl,; are used to show that the onset of long-range ferromagnetic order in a system of
small superparamagnetic grains dissolved in a nonmagnetic matrix is attributable to
cooperative ordering of their magnetic moments. 1€@98 American Institute of Physics.
[S1063-776(98)02211-2

1. INTRODUCTION X-ray examinations were performed by a photographic tech-
ique at room temperature in a rocking-sample x-ray cham-
i{;er using CWK , radiation. All the experiments were carried
out at the Institute of Magnetism in Kiev, Ukraine. Small-
angle neutron scattering investigations at temperatures 10—
300K in the interval of scattering vectors 0.00962Y

In a model with localized magnetic moments, the onse
of magnetically ordered states, an dferromagnetic states
particular, in metals and alloys ofd3transition metals is
customarily linked to spin ordering of the atomic magnetic
moments, whose magnitudes do not exceed a few Bohr mag- -

9 <0.07945 A were conducted on the PAXE facility at the

netons ug (Ref. 1. It would be interesting to determine Al .
whether the onset of long-range ferromagnetic order is poslfeon Brillouin Laboratory in Saclay, France.

sible in systems of magnetic moments ranging from several

hundred to several thousapg in magnitude. To date, how- 5 EypERIMENTAL RESULTS AND ANALYSIS

ever, we have not had an altogether clear picture of this

problem. For example, in a dense system of very small su3-1. Magnetic and Structural Characteristics of the alloy

perparamagnetic iron grains of diametbr30—50A dis-  CUesMnoAlz

solved in an aluminum matrix, it is impossible to detect the e first analyze the magnetic and structural characteris-

onset of long-range ferromagnetic order at any temperaturgcs of the investigated alloy under various heat-treatment

by neutron techniquésOn the other hand, drawing upon schedules. According to x-ray data obtained in the present

magnetic investigations, Kokoriret al® have submitted study, the alloy CgMngAl,;, heated to 1050K and

qualitative arguments to suggest that such ordering is pogjuenched in ice water, is a homogeneous solid solution with

sible in decomposing alloys, in which a dense system of crystal structure of the GAl type (lattice parameter

small ferromagnetic grains of diameteér100A is formed  a=2.986 A). The manganese atoms were distributed in a dis-

with magnetic momentg~(10°~ 10%) g . ordered pattern in the matrix of the alloy. Consequently, the
In this paper, based on an investigation of critical neupresence of indirect Ruderman—Kittel-Kasuya—Yosida

tron scattering in conjunction with magnetic and structuralRKKY) exchange between manganese atoms in the alloy

studies, the stated problem is solved for the decomposingan be expected to induce a spin-glass state of the kind

alloy CussMngAl 5. found, for example, in classical spin glasées.
2. EXPERIMENTAL PROCEDURE Dynamic Susceptibility
The alloy Cy,MngAl,; was melted out in an induction It follows from Fig. la, which shows the temperature

furnace in a purified nitrogen atmosphere from raw compo-dependence of the real part of the dynamic susceptibility
nents of at least 99.9% purity. X-ray fluorescence analysi®f the alloy in the annealed state, a characteristic maximum
showed that the chemical composition of the alloy did notis discerned at the freezing temperatiigg=40.2 K, indicat-
deviate more than 0.3 at. % from the nominal for each coming that the alloy does in fact undergo transition from the
ponent. A mutual inductance bridge was used to measure tharamagnetic to the spin-glass state as it cools. We note in
real party’ and imaginary parg” of the dynamic suscepti- passing that the paramagnetic Curie temperatijre4.5 K
bility at temperatures 4.2—-300K, and a vibrating-samplein the Curie—Weiss law for the given alloy is very ldWwig.
magnetometer was used to measure the static magnetizatidrg), implying that the contributions of ferromagnetic and an-
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FIG. 1. Temperature dependence of the rgédl) (and imaginary ") parts
of the dynamic susceptibility of the alloy gMngAl,, in the quenched state
(a) and after annealing ak,,=373 K for 2 h(b) and 5 h(c). As a visual
aid, the much smaller variablg’ is plotted on a scale 10 times larger than
x' in each casgb, 0. In Fig. 1a the paramagnetic Curie temperatgégen

Takzel et al.

tiferromagnetic exchange interactions to the total exchange
energy of the alloy are approximately equal. This property is
very typical of dilute classical spin glasses.

It should be emphasized that the magnetic characteristics
of the investigated alloy are altered considerably by isother-
mal annealing at a temperatufg,= 373 K for various dura-
tionst,,. After a 20-min anneal the alloy is still a spin glass
with a freezing poiniT =52 K. After a longer anneal, how-
ever, decomposition causes the alloy to acquire the proper-
ties of ferromagnets at the Curie temperatlirgeand then at
lower temperature§ g to undergo transition to a reentrant
spin-glass statérigs. 1b and 1c We note thafl ¢ increases
considerably as the anneal time is increased. The temperature
T remains essentially constant in this case.

The experiments reported here show that long-range fer-
romagnetic order sets in after the alloy is annealed with iso-
thermal keeping time3 ,,=1.4 h. All the experimental re-
sults described below refer to the alloy £MngAl,,
annealed for five hours.

Diffuse X-Ray Scattering

We have used a diffuse x-ray scattering technique to
investigate the processes involved in anneal-induced decom-
position of the investigated alloy. The corresponding results
are shown in Fig. 2, in which clearly two pairs of satellites
are observed near the Bragfyl0 reflection (Fig. 23, and
one pair is observed near tk@00) reflection(Fig. 2b. This
diffuse scattering pattern is typical of isomorphically decom-
posing solid solutions, whose matrix acquires an ensemble of
coherent, equiaxed grains of the precipitated phase. Func-
tioning as dilatation centers, these grains are disposed uni-
formly throughout the anisotropic elastic matrix. The number
of satellites as a function of the Miller indices of the Bragg
reflections indicates that the precipitated grains are distrib-
uted in the matrix of the alloy more or less regularly along
the crystallographi¢100 direction?

Using, for example, the diffuse reflection pattern near
the Bragg(200 reflection (Fig. 2b), we can estimate the
average distancdd between the centers of the anneal-
precipitated grains. According to Ref. B, corresponds to a
periodic variation of the lattice constant of the matrix and
can be estimated from the expression

htané
(h?+Kk*+12) 66,
wherea is the lattice constant of the matrik, k, | are the
Miller indices, 6 is the Bragg angléhkl) of the reflection,
and d6, is the angular separation of the satellite centers. We
can also estimate the average diameterf the precipitated
grains. According to Ref. 5,
_ A
"~ 256,c0s0’

where \ is the x-ray wavelength, andé, is the angular
width of the pair of satellites in reciprocal space. Calcula-

D=a (]

d 2

the Curie—Weiss law is obtained by extrapolating the temperature curve a80ns of D and d are summarized in Table I, in which the

() '=o0.

volume fraction and concentratidd of precipitated grains
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FIG. 2. Diffuse x-ray scattering pattern for the decomposing alloy,/@nAl ,; (T,.=373 K, t,,=5 h) near the Bragd110 (a) and (200 (b) reflections.

are also calculated. Assuming that the grains formed in de- The field dependence of the static magnetizakibaf an
composition of the alloy are of stoichiometric composition ensemble of noninteracting superparamagnetic grains must
Cu,MnAl (Heusler alloy and knowing the lattice constant satisfy the Langevin equation whétn<H, whereH , is the
a=5.971A, the number of Mn atoms per unit cel=4, and  anisotropy field of an isolated grain; in the weak and strong

the magnetic moment of the manganese atormdug (Ref.  magnetic field limits this equation can be written in the form
7) for the newly formed phase from x-ray data, we can

readily find the average magnetic moment of a precipitated
grain (see Table)l

T=293K

Static magnetization

Investigations of the magnetizatidvi at room tempera- 60F
ture in magnetic fields up to 20 kOe reveal typical superpara-
magnetic behavior of the investigated alldkig. 3). The
anisotropy constant of the bulk @MnAl alloy at room tem-
perature is indeed =10 erg/cn? (Ref. 8. Hence, for the

magnetic energy of an isolated grain of average diameter 40
d=30A we obtainKV/kg=0.16 K<300K, so that the con- o
dition for superparamagnetic behaviry <kgT (Ref. 1), is =
easily satisfied in the given situation. In the above estimates 601
V is the grain volume. s
501
20
TABLE |I. Structural and Magnetic Characteristics of the Decomposed 40
Alloy Cug,MngAl,7 (T=373 K, t4=5 h. 20
Parameter X-ray data Magnetic data 0 005 0.0 0:11 5 020
1/H, kOe
Average grain diameted, A 30+3 32+3 . " .
Average distance between grain centBrsA 47+3 51 0 5 10 15 20
Average magnetic moment of grain, ug 1100320 114G:150 H, kOe
Concentration of grainl, 108 cm™2 8.84 7.34
Volume fraction of grains 0.136 0.126 FIG. 3. Static magnetizatiodM of the decomposed alloy GMngAl,;

(Tan=373 K, t,=5 h) at T=293 K.
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Assuming that the magnetic moment of the Mn atom in the
grains is equal to the magnetic moment of the Mn atom in
the bulk CyMnAl compound, corresponding to the sponta-
neous magnetizatiod ;=500 G(Ref. 7), we can readily cal-
culate the magnetic momept, diameterd, and concentra-
tion N of the grains. The resultésee Table )l are in very
good agreement with the values determined from x-ray data.
Summarizing this section, we conclude that the alloy
aged at the temperatuiie,,= 373K for the timet,,=5h is
characterized by the onset of ferromagnetic ordering at

=160K and transition to the reentrant spin-glass state at 0 50 100 150 200 250 380

[
[~
T

I(T) - 1(300 K), arb. units
I
=3

—
(=

temperaturesST<Tg;=51K, as is clearly evident from the T K
dynamic susceptibility datéFig. 109. At room temperature
T=300K>T, the alloy is a typical superparamagnet, where Sf b g (10724t
the magnetic moments, diameters, concentration, and spac-
ing of the precipitated grains, calculated from magnetic and & 2447
X-ray data, are in good agreement. * 2661

We have conducted small-angle neutron scattering in- 67 A 2830
vestigations to analyze the nature of the transition from the 5 v 3106
superparamagnetic to the ferromagnetic state. This work is < T ¢ 3317
discussed in detail below. g : g=4-10241
3.2. Small-Angle Neutron Scattering §4

Figure 4 shows the temperature dependence of the inten- h
sity of small-angle neutron scattering for the alloy §

CugsMngAl ,; after annealing fot,,=5 h and various neu- 2r
tron scattering vectoréthe neutron wavelength is=8 A).

The data reveal that for small scattering vectors a critical
neutron scattering peak is distinctly visible Bt=160K.
Below T the intensity decreases and then begins to increase

0 50 100 150 200 250 300

again; a second, low-temperature peak is observed for ex- T, K
tremely small scattering vectors, which is very typical of
reentrant spin glassésee, e.g., the small-angle neutron scat- c q 107251
tering data for Fe_,Al, in Ref. 9 or for (FgNi;_,) P20 iN 201
Ref. 10. The intensityl of this scattering at temperatures " 4214
below T exhibits a rather complex dependenceToandq. o 4429
In the present study, however, we are mainly interested in g 4 4645
the processes by which long-range ferromagnetic order is 2 L3r v 5.097
established in the decomposed alloys@ngAl ,; in the vi- s ¢ 5535 .
cinity of T S s 4=5975-107A
Since long-range ferromagnetic order is established in 20t
the investigated alloy only in the decomposed state, as <
shown above, it is reasonable to assume that the carriers of [:L
magnetism in the given situation are not the magnetic mo- =
0.5

ments of individual Mn atoms, but the magnetic moments of
precipitated grains of the GMnAI phase with effective
magnetic moment~1Cug .

In this regard we discuss certain aspects of the critical g S .
neutron scattering pattern. According to Ref. 2, the neutron 0 50 100 150 200 250 300
scattering cross sectid®(q) for interacting magnetic grains, LERS
being proportional to the small-angle neutron scattering iNf|G. 4. Temperature dependence of the small-angle neutron scattering in-
tensity, can be written as the product of two functions, cor-tensityl for the alloy CygMngAl,7 (To=373 K,t,,=5 h) at various values
responding to the in-grain and intergranular correlations: ~of the scattering vectay (A™%).
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S(q)oc/-LZFZ(ql Rl)l(q! RZ)! RZ»A

whereu is the magnetic moment of the graf(q, R,) is its ; 2 0.1 1
magnetic form factor, antl(q, R,) is a function associated 70t A
with intergranular cooperative fluctuations of the magnetic

moment. Here we have neglected critical in-grain magneti-

zation fluctuations, because they occur only at much higher 60
temperatures aroun@ig¢~700K, as in the bulk CJMnAl
alloy, well above the observeti-= 160 K.

The magnetic form factoF(q, R;), which usually dif-
fers very little from the chemical form factor obtained from
x-ray studies(see, e.g., Ref.)2 includes the characteristic
correlation lengthR;. At a lower temperatur®, should in-
crease slightly to a value close to the grain diameteB0 A 40f
without acquiring anomalies &tc. On the other hand, the
intergranular functiori(q, R,) can be expressed in terms of
the Ornstein-Zernike functiofsee below and depends on K11} N S T T W S
the intergranular correlation leng®,, which diverges a3 160 180 200 220 240
—T¢, according to Ref. 11 and on the assumption that long- LK
range ferromagnetic order is established in the system afiG. 5. Temperature dependence of the correlation leRgtbf ferromag-
superparamagnetic grains. We discuss this issue a little fanetic critical fluctuations, determined from neutron data in the paramagnetic
ther along in the article, turning our attention for now to thefemperature range for the decomposed alloyMngAly; (Tan=373 K,

. t..=5 h). Inset:R, vs. the normalized temperatuse=T/T-.—1 on a log—
temperature dependence of small-angle neutron scatterir ) 2 P ¢ 9

(Fig. 4.
Obviously, when the magnetic moments of the ensemble

of precipitated grains in the alloy are ferromagnetically or- the superparamaanetic arains. The second term represents
dered, but the distribution of the intergranular distances an y perp 9 9 ' P

o e ) e well-known Ornstein—Zernike functidh.Here A is the
the size distribution of the grains are unknown, the correla- . .
. o : amplitude, which depends weakly on the temperature. Least-
tion lengthR, of ferromagnetic critical fluctuations nedg

must satisfy the conditioR,=£=D — d, where£~20 A is squares processing of the small-angle neutron scattering data

the distance between the surfaces of the precipitated grairﬂisC cording to Eq(5) shows that the backgrourig is all but

along the line joining their centers. In other words, the Criti_mdependent of the temperature and, hence, is mainly attrib-

- . table to nuclear scattering. The foregoing procedure has
cal neutron scattering peak in the temperature curves g .
. . . - also been used to determine the temperature dependence of
small-angle neutron scattering intensity nebg=160K

should be observed only for neutrons with wave vector the correlation lengtiR, (Fig. 5). It follows from the figure
R 21 y . L s[hatRz(T) does in fact decrease with the temperature, begin-
q=¢"1<0.05A"1. It is evident from Fig. 4 that this in in-

M I ning at R,~34 A (comparable tot=20A) and 240K, to
?Oeed the situation. Fay>0.04214 A1, which corresponds R,~71A>D=50A nearT..

£<23.7 A, the sharp anomaly in critical neutron scattering in We have z_ittempted tq describe the temperature depen-
L : : : . dence ofR, using the relation

the vicinity of T¢ will essentially vanish. The most likely

occurrence will be a diffuse anomaly, which occurs because, R,xg™?, (6)

in reality, the decomposition of the alloy results in the for- wheree = (T/Te—1) is the normalized temperature ands

Lnai'r? nofa system' of dpreu?;dztdedt grains dcharactenzet(:] n%e critical index of the correlation length. It is evident from
y the average grain diame etermined above, or i€ .0 inset to Fig. 5, which shows the corresponding results,

intergranular distance®, but by certain distributions of that relation (6) is satisfied over a narrow range e

these quantities. In our opinion, this consideration accoumiccordingly, the critical index of the correlation leng is
for the very weak anomalies in the temperature curves of the

L . v=0.35+0.1, or half the valuez=0.7 for Heisenberg ferro-
small—qngle neutron scatte_rlng intensity n@@ifor neutron magnets and some reentrant spin glad3es.
scattering veptors 0.04429 A<q<0.7945 A *. . The discrepancy can occur for several reasons. The first
As mentioned ab_ove, the presence of t.he _cr|t|cal Sma"is purely methodological. For a more rigorous analysis of the
angle. neutron scattering peakng for smallq|s d'CtatEd. by experimental data, values of the background intensity
the dlvergence. of the correlation leng®y in the function measured at temperatures above 300 K must be used in Eq.
l(a, RZ)' EXpe””?e”‘ shows that f"‘t temperatufies Tc the (5). However, such measurements are difficult, because the
function(g, Rp) is very closely given by structural and magnetic state of the alloy change very rapidly
A above room temperature. On the other hand, estimates show
I(d, R)=1lo+ T (1R,)?" (5)  that when the backgrouni, is included in Eq.(5) at tem-
2 peratures 160—300 KR, can be determined to within 10—
wherel g is the background intensity, which generally incor- 15%. This means that the values obtainedRgrin the vi-
porates the contributions of nuclear and magnetic scatteringinity of T are not far from the truth. Then again, relation

50r

T

scale.
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(6) follows from a similarity theory* developed for ordinary The above estimates show that n&gy, the ferromag-
ferromagnets, whereby the distanDebetween magnetism netic correlation length only slightly exceeds the intergranu-
carriers(sping must obey the inequalitl) <R,. In the given lar spacing. This suggests strong magnetic inhomogeneity of
situation, however, in the vicinity of - we haveR,~1.5D the alloy and the extraordinary character of the processes by
(Fig. 5), which casts doubt on the validity ¢6) for process- which long-range ferromagnetic order is established in it.
ing the experimental results in small-angle neutron scatterfThe dynamic susceptibility data indicate the same result. In-
ing. deed, it follows from Fig. 1c that” does not exhibit a sharp
Summarizing this section, a study of small-angle neutroranomaly at the Curie temperatufe=160K. In contrast, a
scattering shows that long-range ferromagnetic order is esharp anomaly ok” at T is very characteristic of the ma-
tablished in the decomposing alloy as a result of ferromagjority of ordinary ferromagnets and reentrant spin glasses, in
netic ordering in the system of macroscopic magnetic mowhich ferromagnetic order evolves in the spin systeme,
ments (w~110Qug) formed by grains of the stoichiometric e.g., Ref. 18 This suggests indirectly that in the given situ-
Cuw,MnAl phase with average diametels=30 A and an av-  ation, long-range ferromagnetic order is indeed established

erage spacing between the graihs-50 A. in the system of precipitated grains of the new phase and not
in the spin system.
4. DISCUSSION OF THE RESULTS The authors are grateful to L. Noirez and J. Teixeira for

Here we discuss the possible reasons for the emergeny@e" collaboration in the small-angle neutron scattering mea-
of long-range ferromagnetic order during the cooling of asurements at the PAXE spectrometer. One autiirebeay

system of superparamaanetic arains with aiant maanetic mov_\{ould like to thank M. Hennion_for_many profitable discus-
y uperp gnetc grains with gi ghetl jons. Another authoiTakzd) is indebted to the Len

ments. Estimates in the present study show that, given thg . ™" . g .
parameters found for the system of precipitated particles rillouin Labotatory for financial support at the time of the
Table | intergranular dipole interaction yields too low a Cu- neutron experiments.
rie temperaturel -~ (6—90) K in comparison with the ex-
perimental value. Owing to the quasiregular disposition of | y o
the precipitated grains in the matrix of the alloy, indirect = Mal: gtakz@guukr.frinet kiev.ua
RKKY exchange between grains can be expected to play a———
major role in the evolution of long-range ferromagnetic order s v v . fisrn Vols. 1 and 2, Nauka, Moscowds79
. . . . . . . . V. VONSOVSKI, agnetism Vols. an , Nauka, 0SCO
in the given situation, as encountered in multilayer magnetic [transl. of previous edition: Wiley, New Yorkl974].
structures of the Co/Cu/Co or Fe/Ag/Fe t)}ﬁdn the latter 2¢C. Bellouard, I. Mirebeau, and M. Hennion, Phys. Res35570(1996.
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approximately the same thicknesses as the quantitiesi ¢ 4Kokonn and I. A. Osipenko, Phys. Status Solidi74, K147 (1982.

. . . K. Binder and A. P. Young, Rev. Mod. Phys8, 801(1986.
found in our work. Once again we must emphasize that thesy, , “iokorin, Martensitic Transformations in Inhomogeneous Solid
quasiregular disposition of precipitated grains in the solutiongfin Russiad, Naukova Dumka, Kie1987).
CugsMngAl,; matrix is what makes the onset of long-range jV- Daniel and H. Lipson, Proc. R. Soc. London, Serl@2, 378(1943.
ferromagnetic order possible. This conclusion is co_rrobo—SE: Egigg{‘;ﬁrrﬂr‘gagierfzg*vfnpmgrggg' Tmeé’." 1\62%119956];
ratec_i l_)y the tra.nsmon frqm the quaslre_gulr_:lr distribution of o,y " child. J. Appl. Phys52, 1732(1981: K. Motoya, S. M. Shapiro,
precipitated grains to a disordered distribution as a result of and Y. Muraoka, Phys. Rev. B8, 6183(1983.
coalescence processes in the late stages of decompositionlEin-sBs- Ssa;anzogég- P. Murani, J. L. Tholence, and J. L. Walter, Phys. Rev.

- B 33, 7837(1986.

the aIon. ,The a”Oy then lpses thge properties of ferromagnetﬁH. E. Stanley|ntroduction to Phase Transitions and Critical Phenomena
and acquires those of spin glasses. Clarendon Press, Oxford.971).

It is important to note that only 35% of the manganese'?J. M. zZiman,Models of Disorder: The Theoretical Physics of Homoge-
atoms participate in the formation of the stoichiometric fer- jneously P'SOfdfged SYStE”Gamb”dge Univ. Press, Cambridge979.
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magnetic systems. Translated by James S. Wood
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The temperature dependences of the resistance and magnetic susceptibility are studied in gallium-
doped lead telluride, which is characterized by a delayed photoconductivity effect, under

various illumination conditions. After a sample is illuminated at low temperatures, the magnetic
susceptibility is diamagnetic in the region of metallic delayed conductifitly T<<50 K).

In the region of thermodynamic equilibriunT 70 K), where conductivity is activational, the
magnetic susceptibility is likewise diamagnetic and essentially equals the low-temperature

value. A paramagnetic susceptibility peak is observed in the transitional regiesd— 70 K),

where the conductivity is of a nonequilibrium character but the carriers are still
nondegenerate. This peak increases in magnitude with the rate of measurements in the indicated
temperature range. In addition, a paramagnetic variation of the susceptibility following the

Curie law is observed with uncontrollableveak illumination from the cryostat cap at low
temperaturesT<25 K). The interpretation of the observed dependences is based on

notions of variable valence of gallium in lead telluride, while the appearance of a paramagnetic
susceptibility peak is attributed to the presence of shallow localized levels of gallium in a
trivalent state. ©1998 American Institute of Physids$51063-776(198)02311-1

1. Lead telluride doped with group-Ill elemeniGa, In, action of Ga in IV-VI compounds is easily understood:
...) is one of the semiconductor materials that at low tem-rivalent Ga substituting for a divalent metal furnishes the
peratures exhibit unusual behavior reminiscent of the behawands with one extra electron.
ior of llI-V semiconductors wittD X centers. This analogy, The electrical activity of group-Ill impurities in IV=VI
in the sense of the physical picture of the phenomenon, wiltubic compoundsNaCl structurg¢ can be represented in
become clear from what follows, if one takes into accountband language as follows. It is well knofvinat in the tight-
the polyvalence of the impurities produciigX centers(for  binding approximation the electronic spectrum of these com-
example, carbon with a valence of 2 andhis includes the pounds is formed by the and p orbitals of the metal and
delayed monopolar photoconductivity and the variable elecehalcogen: thes orbitals form two deep completely filled
trical activity of the corresponding impurities. In the phe- bands, while the orbitals form the actual valence and con-
nomenon of delayed photoconductivity, the conductivity ofduction bands. There are six such bands, according to the
such semiconductors at low temperatures increases rapidhumber ofp electrons in the diatomic unit cell. The spx
under illumination, while the low-resistance state arising inelectrons(two from the metal and four from the chalcogen
the process remains for a long time after the illumination iscompletely fill the three bottom valence bands. The three top
switched off. The delayed photoconductivity effect in leadbands are empty and form the conduction band. The extrema
telluride is due to the specific properties of galliumnd of these bands are all located at theoints of the Brillouin
other group-Ill elemenjsas an impurity substituting for lead zone of a fcc lattice, where a narrow gap is formed between
in this material. The electrical activity of gallium impurity in the valence and conduction bands. It can be shown that at the
lead telluride is such that the group-Ill element Ga, replacingextrema of the valence bands the Bloch wave functions are
the group-1V element Pb, is a donor, if the chemical potentiatonstructed from thg orbitals of the chalcogen, while the
of the carriers is sufficiently low. The donor action of Ga canBloch functions at the extrema of the conduction band are
be understood simply by assuming that a gallium atom inconstructed from the orbitals of the metal. This is because
corporated in the crystal matrix is in a trivalent state. Such dhe p states of the chalcogen lie lower in energy than gthe
state corresponds tosip® configuration of the outer elec- states of the metal. In such a situation, substitution of a
tronic shells of the impurity. The polyvalent behavior of Ga group-IIl impurity in a trivalent state for the metal gives rise
(and group-lll elements in geneyalis well-known in  to an excess electron in the bands; this is what causes the
chemistry? In various compounds these elements possess valonor action of such an impurity. If this impurity were to
lences from 1 to 3, which corresponds to the electronic conreplace a metal in an univalent state, then it would be an
figurations of a free atonfor atom in a cubic environment acceptor.
s?pl,stp?, ands®p?, respectively. In this sense the donor It is obvious that what state arises is determined by the

1063-7761/98/87(11)/5/$15.00 1009 © 1998 American Institute of Physics
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difference of the total energies of the corresponding elec- R, kQ

tronic configurations of the impurity incorporated into the B

crystal matrix. Since the reacti@ip—sp? requires the ex- 30l

citation of twos electrons intgp states, it is obvious that it

can be energetically expedient only when the energy of the 25t

single-electronp states is sufficiently low. In a crystal the

chemical potential in the actual bands plays the role of the 20t

energy of thep states. It is obvious that the lower the chemi-

cal potential, the more easily a trivalent state is formed. For 15t

some value of the chemical potential the energies of the con-

figurationss?p! ands’p® can become equal to one another. 10t

This value of the chemical potential determines its pinning

energy, for which impurities in both the uni- and trivalent St

states are present simultaneously in the crystal. The specific

value of the pinning energy, or equivalently, the energy of 910 60 80 100 120 140
the mixed state is determined by the properties of the semi- T, K

conductor matrix(specifically, the work functionand the
( P y n FIG. 1. Temperature dependence of the resistance of (Hal ebtained

specific type of group-lll impurity(Ga, In, T). For Inin 46 Various regimes of ilumination by an incandescent lamp. Clirve
PbTe this level in the conduction band, while for Tl it lies in brief illumination at liquid-helium temperature, curv@s4 — constant il-

the valence band:® As follows from the analysis below, the lumination with variougincreasing intensities.
pinning level for Ga in PbTe lies in the gap.
Thus far we have not considered the possibility of Ga

being in a divalent state'p?. In nature such a state exists resistance was measured by a potentiometric method. The
only in metastable form. For example, Ga@ unstable with  magnetic susceptibility was measured by the Faraday method
respect to the reaction in the region where the magnetization depends linearly on
2GaCh— GaCH GaCk. the external _fi_el_d in the range 0.1—1_T. Both the_ resistance
and susceptibility were measured with heating in the tem-
There are no fundamental reasons for believing that such perature range 4-150 K. A miniature incandescent lamp
state cannot be realized in IV-VI compounds. To investigatelaced near the surface of the sample was used either for
this possibility it is necessary to measure the magnetic sudrief illumination of the crystal at liquid-helium temperature
ceptibility, or more precisely, thg factor of an electron in a or for constant illumination of the sample with varying tem-
partially filled s shell of an impurity. In thes'p? configura-  perature.
tion this g factor is 2, while theg factor of itinerant carriers The room-temperature resistivity offaBPbTeGa) single
is of the order of 50. More importantly, magnetic measure-crystal isp~10-1Q-cm, which corresponds to an electron
ments can elucidate the question of the existence of shallowensity of the order of 60— 10 cm™ 3. The resistivity in a
levels associated with the impurity Ga in the trivalent statecooled metal chamber screened from illumination increased
The possibility of the appearance of such levels in the case afpidly, reaching valuep=10°Q)-cm at low temperatures.
the present electronic mechanism leading to the electricalhe carrier activation energy was determined from the slope
activity of group-Ill impurities was shown in Ref. 10. The of the temperature dependence of the resistivity toEQe
point is that when twa electrons are transferred into a band, =66 meV, which differs considerably from the gap width
an additional attractive potential arises on the impurity be{Ey=220 meVj in PbTe. After brief illumination at liquid-
cause the screening of the atomic core by shelectrons helium temperatures the resistivity of the sample once again
vanishes. This potential has an atomic scale and acts only afecreased tgp~10"1Q)-cm, which is comparable to the
electrons located at the bottom of the conduction bafthe  high-temperature value. The low-temperature resistance did
latter is due to the fact that, as noted above, the wave funaiot change with time, except for very rapid restoration of a
tions of only these electrons are different from zero at thecertain portion of the resistance immediately after the illumi-
metal atoms. Single filling of the shallow levels should resultnation was switched off.
in an additional substantial contribution to the paramagnetic  Figure 1 shows the temperature dependence of the resis-
susceptibility, since, as already mentioned,dHeactor of the tance of the sample obtained with various illumination re-
electrons bound in these levels is extremely large-50)  gimes. Curvel corresponds to the following arrangement of
because of the smallness of the gap in the band spectrum.the experiment. The sample at liquid-helium temperature
2. The electronic properties of Pb{lea) were studied by was converted into a metallic state by means of illumination.
means of measurements of the resistance and magnetic sidext, the illumination was switched off and the sample was
ceptibility of bulk single crystals. The Ga concentration in heated for an hour up to room temperature in a dark cham-
the experimental samples was 0.3 at.%, which corresponds twer. Under these conditions the resistance at first changed
the region of greatest photosensitivity for this compoundlittle with increasing temperature. Then in the range-50
The electric spark method was used to cut out samples in the 60 K the resistivity increased sharplipy three orders of
shape of rectangular parallelepipeds. The samples wemagnitudée up to several hundreds 6f- cm, after which the
chemically etched to remove the damaged surface layer. Thesistance once again decreased in the standard activational
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FIG. 2. Temperature dependence of the susceptibility of Rdliwe1) and
PbTdGa) (curve2) under conditions of uncontrollable weak illumination by
the cryostat cap.

manner with activati.on energ¥,. The Iow-temperature 0 210 4'0 6'0 8’0 1(')0 1'20
(metastablgpart of this curve depended on the heating rate, T, K
especially strongly on the low-temperature shoulder of the _ o
resistance peak. The high-temperat(@etivational part of ~ ~'C: 3. Temperature dependence of the magnetic susceptibility ofBare
! ) obtained under various regimes of illumination by an incandescent lamp.

the curve did not depend on the heating rate. The CLZ¥és  cyrve1 — constant illumination by an incandescent larp— brief illu-
represent the results of measurements of the resistance of thnation at liquid-helium temperature.
sample with constant illumination of various intensities. One
can see that under these conditions the resistance peak de-
creases considerably and shifts to high temperatures as tlescent lamp. In the presence of constant illumination the
illumination intensity increases. diamagnetic susceptibility of Pb{®a) decreases slightly

As with the resistance measurements, the magnetic sug+th increasing temperature, though a small increase of the
ceptibility likewise was measured in two regimes, i.e., eitherdiamagnetic susceptibility is observed-ab0 K. The curve
with constant illumination at all temperatures or after brief2 shows the results of susceptibility measurements after brief
illumination at liquid-helium temperature. Moreover, the preliminary illumination of the sample at liquid-helium tem-
measurements of the susceptibility of PbGe) were per- perature. The next heating was conducted in the absence of
formed under conditions of uncontrollable illuminati@the  illumination (except for illumination from the capSimilarly
method used to perform the magnetic measurements did ntat measurements performed under conditions of uncontrol-
permit isolating the sample completely from illumination by lable illumination, here a paramagnetic peak, whose position
the cryostat cap The calibration measurements were per-and magnitude depend on the rate of heating, is likewise
formed on a sample of undoped PbTe. Figuréc@rve 1) observed aff~60 K. Comparing the measurements of the
shows the results of the calibration measurements. ThegesistancéFig. 1) and magnetic susceptbilitfFigs. 2 and 3
were completely independent of the illumination of the of the PbTeGa) sample shows that the paramagnetic peak at
sample and are identical to the tabulated values of th&~60 K lies on the low-temperature shoulder of the resis-
susceptibility!* Curve 2 in this figure describes measure- tance peak.
ments performed on the Pb{l&g sample under uncontrol- 3. The following conclusions can be drawn from the data
lable illumination conditions. One can see that under condiebtained.
tions when illumination comes only from the cryostat cap the @) In the region of thermodynamic equilibrium, where
temperature variation of the susceptibility at low tempera-the conductivity is of an activational charactand at higher
tures 25 K) is close to the Curie law=C/T). Note, temperaturesthe magnetic susceptibility is diamagnetic and
however, that the Curie constaitmeasured in these experi- decreases only slightly with increasing temperature. Its value
ments varies from one experiment to another. The paramags the same as that of the undoped sample.

netic peak af ~60 K observed in the PbT@a sample is of b) In the low-temperature regiorm& 50 K) with metal-
greatest interest. This peak grows as the temperature varitis delayed photoconductivity, where the photoexcited itiner-
more rapidly. ant electons satisfy quasi-Fermi statistittee itinerant carri-

Figure 3 shows the temperature dependences of the magrs are degeneraiethe magnetic susceptibility is likewise
netic susceptibility of PbT&a) that were obtained in vari- diamagnetic and essentially equal to the high-temperature
ous regimes of illumination by an incandescent lamp. Thevalue.
curvel represents the results of measurements of the suscep- c¢) A sharp paramagnetic peak is observed in samples in
tibility in a regime of continuous illumination by an incan- Ga only in the transitional regionf(~50— 70 K), where the
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conductivity is strongly nonequilibrium but the carriers arein the resistance by two to three orders of magnitude in the
still nondegenerate. This peak becomes more pronounced esgion of the transition from metallic to semiconductor be-
the measurements are performed more rapidly in this temhavior (Fig. 1). This result agrees completely with the ab-
perature range. sence of any paramagnetic anomalies on the high-

d) Moreover, additional growth of paramagnetism fol- temperature shoulder of the resistance peak.
lowing the Curie law is observed in the low-temperature re-  On this basis, no paramagnetic anomalies are to be ex-
gion T<25 K, but only if the illumination from the cap is pected on the low-temperature shoulder of the resistance
weak, when the system of photoexcited carriers is nondegempeak, where the temperature and density of the carriers do
erate. not differ much from their values on the high-temperature

The first and second assertions agree with the theory afhoulder. In reality, a sharp paramagnetic peak, comparable
magnetic susceptibility of IV=VI semiconductors with a qua-in magnitude to the absolute magnitude of the diamagnetic
sirelativistic band spectrum. The expression for the magnetigusceptibility of the sample, is observed on the low-
susceptibility calculated by the linear-response methtd is temperature shoulder of the resistance.

o b (A vdp To obtain from Eq.(3) the scale of the paramagnetic.
X=-— _J' (N~ 25, T)—N(gp,m,T—, (1) peak aptually obsgrved, it mgst be assurpged that the density
62 CJo €p n, of singly-occupied levels is not ¥dcm™2 but rather of

the order of 18’ cm 3. There could be several formal ex-
planations for such a density: first, the presence of a giant
peak of the density of states near the Fermi level; second,
strong Coulomb repulsion between electrons with opposite
spins, filling each level; and, finally, the existence of a
strongly nonequilibrium carrier distribution function in the
system.

where « is the fine-structure constant, is the matrix ele-
ment of the interband velocity; is the speed of lightg,
=JAZ+v?p? is the quasirelativistic electronic spectrur,

is the half-width of the forbidden band(e) andn(—e,)

are the Fermi distribution functions of the electrons in the
conduction and valence bands, respectivahgndT are the

chemical potential and temperature of the electrons, /il The first two hypotheses must be rejected because under

lthe leJtOﬁ pEararlr;etthertfpr ttr:]e momen]ELm“(lAv>$2[h It fol- . these conditions a paramagnetic anomaly would also be ob-
ni\évr?tarlg/mstl?di(e q pir;nmeteerrsangfe gtﬁf\l;)ue(T(T TE Aexzen- served on the high-temperature shoulder of the resistance
K ' k. Therefore only the third hypothesis n nsid-
~0.1 eV, Av~10 eV, v~ 10° cm/9 Ef:d erefore only the third hypothesis need be consid
@ v Av In order for a large number of singly-occupied levels to
X=—— Eln—~ —10°°. (2)  exist in the system, not only must the photoexcited carriers
have a long lifetimer, but the transition time of electrons

That is, in thermodynamic equilibrium as well as under quaetween these Ievel_s must a_Iso bg .Iong. The latter is ppssible
sichemical equilibrium conditionérovided the nonequilib-  Only for states localized on impurities and a low density of
rium carrier distribution function is of a Fermi charagténe ~ delocalized(itineran electrons. Otherwise, impurity—band
susceptibility is diamagnetic and dependsprand T only ~ transitions will rapidly establish quasnhermodynamlc equi-
through small corrections. It should be noted that an expredlorium in the system of photoexcited carriers. The tempera-
sion of the form(2) was obtained in Ref. 13 by direct sum- ture region where the paramagnetic peak is observed satisfies

mation over the Landau levels. these conditions. In this region the lifetimeof the nonequi-
Using Eq.(1) it is easy to calculate the correctidiy in Ii_brium carriers ig still long enougtcomparable to the dura-
the case of a Boltzmann gas of carriers with densiyand  tion of the experimentfor the number of photoexcited car-
effective massn* as riers at low temperatures to remain sufficiently large, but it is
already inadequate to maintain in the system of these carriers
2nf eh \? a quasi-Fermi distribution function with the chemical poten-
X=3 7 omtc (3 tial located in the conduction band.

The number of singly-occupied levels can be estimated
Herem* =A/v?, which is much smaller than the free elec- using the following simple kinetic scheme. At low tempera-
tron massm (m*/m~1/20). As a result, the effectivgfac-  tures, as a result of external excitation, photoexcited elec-
tor of the carriers is greater than tigefactor of a free elec- trons(two for each trivalent Ga atonappear in the conduc-
tron by the same factor. Physically, the correcti@®  tion band because of a change in the configuration of the Ga
describes the total susceptibility of doubly spin-degeneratémpurity from s?p? to s°p3. This excited state of the carriers
states singly occupied by electrons. is found to be metastable, since the revedrseombination
Direct calculations using Eq3) show that under qua- process should proceed via an intermediatptf) divalent
sithermodynamic equilibrium conditions wifi~60 K and  state of Ga(according to the schems’p®—s'p?—s?pl),
density of singly-occupied levels satisfyimg~ 10 cm™3,  which has a higher energy than tfp® ands?p? states, i.e.,
the paramagnetic correctiofiy~10" " is small compared it is separated from them by an energy bartie? In this
with the total diamagnetic susceptibility of the system. Themanner, electrons accumulate in sufficient number to form a
estimate presented for the dengitys an upper limit for the quasi-Fermi distribution. At low temperatures this distribu-
number of nondegenerate itinerant electrons at this tempersion is characterized by the presence of two carriers in each
ture and corresponds to the experimentally observed increasé almost all states occupied by the electrons.
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As temperaturd increases, the thermal energy of theseand lying below the conduction-band bottom.
carriers increases and finally becomes high enough for the In closing, we briefly discuss the nature of the Curie law
carriers to overcome the recombination energy bakjiem in the susceptibility observed at low temperatures under
this region the lifetime of a photoexcited carrier decreasesveak illumination conditions. In principle it can also be at-
according to an activation lawrécexp(U/T)). The dynamics tributed to the presence of a large number of shallow singly-
of the number of pair-filled states in the indicated tempera-occupied states under these conditions. However, it has not
ture range can thus be roughly described by the equation been ruled out that here an additional contribution arises

d from Ga in an unstable divalent state. Direct measurements

n, n, . .

R —— (4) (for example, by electron spin resonancé the effectiveg

dt T factor of magnetic centers could answer unequivocally the
where 7 is the lifetime andn, is the number of pair-filled question of the nature of the appearance of the Curie law at
states. Initially, the numbar,(0) of pairs equals essentially low temperatures.
half the carrier density because of the Fermi character of the B. A. Volkov is grateful to the Russian Fund for Funda-
carrier distribution. Hence initially the numbag, of singly- ~ mental Research for suppdfrants Nos. 96-02-16701, 96-
occupied levels can be set equal to zero and their tempor@2-19022, 96-15-96474and the international program

dynamics can be described by the equation INTAS-RFBR (Grant No. 95-113p
dn, o dn,
dt - 7 dt’ ®) *)E-mail: vasil@It.phys.msu.su

. . ) . YHere there is no need to consider the possibility of the formation of a
since a singly-occupied level arises as a result of the recom-hydrogen-like state associated with the long-range part of the Coulomb

bination of a single carrier from a pair. It should be noted potential of the impurity. In IV-VI semiconductors the permittivity satis-
. . . . . . . i ive i * 10 2 ti -
that the kinetic equatiofb) is valid only for localized single- fies£>100, the effective is mags* ~ 10 times the free-electron mass,

electron states. In the opposite case. a term of the tvpe and so the characteristic binding energy of such a stateli8 * eV.
; PP ! yP 2The widely used scheme for producing a bartieby means of deforma-

AT describin_g the reverse tranSformatiO_n Of_ Sing|Y'_ tional effects is not entirely satisfactory, although, of course, the change in
occupied states into pairs, must be added to it. This term isthe valence of impurities is accompanied by a deformation.
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The thermal expansion coefficieatand structure of g, films with thickness~3—-10 nm were
investigated in the temperature interval from room to liquid-nitrogen temperature by
electron-optical methods. The thermal expansion coefficient was determined from the temperature
shift of the diffraction maxima in the electron diffraction patterns. The objects of investigation

were epitaxial G films condensed in vacuum on(200 NaCl cleavage surface and

oriented in the(111) plane. A surface-induced size effect in the thermal expansion coefficient

was observed. It was established that decreases; increases and is described well

by the relationa;=17-10" *K 1+8.3-10 °nmK 1t~ 1. This relation was used to estimate the
linear expansion coefficient of the Gy, surface in thg111) plane asas=60-10 K1,

which is several times larger than the bulk value. The experimental results agree satisfactorily with
the theoretical calculations of the mean-square displacements of molecules located in a

region near the surface. @998 American Institute of Physids$S1063-776(98)02411-1]

1. INTRODUCTION especially important for studying films of thickness 1-10
nm. The study of the thermal expansion of such films is of
Fullerites — a new molecular form of condensed carbonintrinsic interest and in many cases yields helpful informa-
— have been the object of intensive investigations in the lasfion about surface properties.
few years. Many investigations have been devoted to various
aspects of fullerite synthesis, structure, properties, and
applications:—3 Investigations of fullerite in a film state are 2. EXPERIMENT
of interest in themselves because the structural and geometric The fullerite films were obtained by evaporating and
parameters can be varied over wide limits by altering thecondensing, in a vacuum 10~2 Pa, crystal particles with a
conditions of condensatichFor thicknesses<10nm the purity of at least 99.9%. & crystal particles of mass 16
surface layers should make a considerable contribution te-102 g were evaporated from a quartz crucible Joule-
film properties: As a result, the properties determined by theheated to~ 700 K. The substrate consisted of a NaCl single
anharmonicity of the forces acting betweeg, @olecules  crystal. Condensation was performed orf081) NaCl sur-
should differ. One such property is the thermal expansionface. The substrate temperature wa860 K. The conden-
characterized by the coefficient For the range of geomet- sation rate was~ 0.1nms?®. For subsequent electron-
ric sizes studied, the effect of the surface should be moreptical investigations the fullerite films were separated from
pronounced for bodies with a large lattice period. Fulleritethe substrate and secured on electron-microscope meshes. To
Ceo is such an object. It should be noted that because of theo this, a single crystal with a film was immersed at angle
van der Waals nature of the interaction betweeg @ol-  ~20° in distilled water. The fullerite film detached from the
ecules thin fullerite films are a convenient object for check-substrate in several seconds as a result of partial dissolution
ing theoretical models. of the NaCl. Next, the film was recovered from the water
The present work is devoted to investigations of the theronto copper meshes with cell-size0.05 mm.
mal expansion of vacuum-condensed thig, @lms in the The experimental scheme used to determine the thermal
temperature interval from room to liquid-nitrogen tempera-expansion coefficient of & films by transmission high-
ture. The thermal expansion was investigated experimentallgnergy electron diffraction is shown in Fig. 1. A sample was
by transmission high-energy electron diffraction, using thesecured in a cryostat and placed in an electron diffraction
shift of the diffraction peaks in the electron diffraction camera. In the electron diffraction camera the sample was
pattern$ The structure of the & films was also tested by surrounded by a screen cooled to liquid-nitrogen tempera-
electron microscopy methods. An important advantage of &ure. The sample temperature could be varied from room to
diffraction study of the properties is that it is possible toliquid-nitrogen temperature. The sample and a control were
follow the structure and state of the experimental object durplaced in the same plane, and the electron beam passed
ing the course of a thermophysical experiment. This becomethrough them simultaneously. The control consisted of a thin

1063-7761/98/87(11)/5/$15.00 1014 © 1998 American Institute of Physics
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ment and then refined on the section being studied using

— 1 electron diffraction by finding the size of a reciprocal-lattice
g site in the direction normal to the filfhEor this, the film was
| Rﬁ/____" tilted relative to the electron beam, and the angle within

' which the reflection sphere intersects a given reciprocal-
lattice site was determined with a goniometer. The film

thickness was found using tH220) and (422 reflections.
The error in measuring the thickness is estimated to be 10%.
Films of thickness 3—10 nm were investigated.

The thermal expansion coefficient was determined
from data on the variation of the interplanar distances as a
function of temperature:

FIG. 1. Experiment arrangemerit:— Electron beam?2 — cryostat,3 — a=Ad/dAT, (1)

control,4 — sample5 — cooled screer — diffracted beams from sample . . . . .

and control.7 — fluorescent screefphotographic plate WhergAd/d is the relative change occurring in thg interpla-
nar distances as a result of the thermal expansion due to a
temperature changAT. SinceAd/d=—A2r/2r, the ratio

annealed Al film. An electron diffraction pattern consisting 2d/d was measured experimentally according to the change

of a superposition of the patterns from the sample and thin the distances 2 between the diffraction reflections in the
control was recorded on a photographic plate. fErensmis- electron diffraction pattern. The values &fi/d were found
sion) electron diffraction patterns were obtained with an ac-USing the reflectiong422). The ratioA2r/2r was measured

. . . 74 .
celerating voltage of 40 kV and electron beam density lesd @n optical m|croscope7\éwth71a_n error of 0%, which
than 10°Acm™2 so as to reduce the effect of the electron!€2ds to an error of-3-10"" K™~ in the thermal expansion
beam on the experimental object to a minimum. The possibl&0€fficient. Note that the average valuefver the indi-
instrumental errors in the measurements of the interplandf@t€d temperature interval was determined. In addition, for
distances were taken into account by using the control. pugrormal incidence of the electron beam on the film the values
lished data on the temperature dependence of the lattice p8f Ad/d and thereforer are obtained in a direction parallel
riod of bulk aluminum were used to determine the temperal® the film surface.
ture dependence of the electron diffraction camera constant

7
2LA\. The. aFtachmept and screen temperatures were Med- LESULTS AND DISCUSSION
sured to within+ 3° with copper—constantan thermocouples.
The thickness of these thin condenseg f@ms was pre- According to electron-diffraction and electron-
set by the mass of the charge and the evaporation geometmicroscopy data the g films were continuous and pos-
It was monitored with a quartz resonator during the experisessed a face-centerédc) lattice. The electron diffraction

(422 —y

23 (42.2) ® e o [ o
(220) 224
/3 (422 ° _e o d
o) 422 202 022 242
) © ° ® o
270 000 2120
° e Q_ © ©
747 o7z 2 412
224
b

FIG. 2. Electron diffraction pattern of a fullerite film of thickness 4.5 tanand section of the reciprocal lattice of a fcc crystal witii1) orientation(b).



1016 JETP 87 (5), November 1998 Pugachev et al.

TABLE |. Results of precise measurement of the relative chadgts in

a,nm
the interplanar distances ofggfilms with thicknesst in the temperature
rangeT,;—T,.
1.4201 1/1/
t, nm T,-T,, K Ad/d-10° as-10°, K71
35 269 - 83 11.6 44Ref. 12
45 275 — 88 10.2 36 1.415F
6 273 - 80 8.2 25
10 274 - 80 8.4 27
o 273 - 80 7.1 19.5Ref. 10
o 273 - 80 6.8 19Ref. 19 1.410F
100 200 300 T.K

. . . FIG. 3. Lattice perioda of Cg, films of thickness 4.5 nm versus temperature
patterns(Fig. 2) contained the reflection220 and (422 .

typical of the(111) orientation, for which thé€111) plane of

Ceo is parallel to thg100) NaCl cleavage surface. However, ) ) o ) o
besides this, reflections with interplanar distances 0.86 angbt@ined from |nvest|g§téolq)slff this phase transition in bulk
0.43 nm, which can be identified as the reflectiong4zg ~ Ceo, WhereAa/a~3-10"°.""These data were used to cal-

and 2/3422) due to stacking faultwere present in the elec- qulate average Ii.near thermal expansion coefficientsf the
tron diffraction pattern. It should be noted that, while thefilms for the indicated temperature range. We note that the

lattice period of NaCl 4=0.564 nm) differed substantially €XPerimental temperature integ\slal lies above the Debye tem-
from that of G fullerite (a=1.42 nm) this film—substrate Perature of fullerite®,~70 K. This makes it possible to
system contains favorable orientation ratios for epitaxiaf€dlect the temperature dependence of the thermal expansion
growth of G, films. Thus, to within 1% two g, lattice pe- coe_fﬂment. Th_e linear tempera_turg dependence of the lattice
riods equal five NaCl lattice periods and to within 2% two Period of G films attests to thisFig. 3. The experimental

Ceo [110] diagonals equal seven lattice periods of NacCl.temperature interval included the regit80-260 K of the
However, the analysis performed showed that neither th@riented SC phase and part O,f the regﬁﬁﬁO—27§ K of the
parallel nor the 45-degree orientation is realized. The presiC Phase. It follows from Fig. 3 that the oriented phase

ence of 24 reflections of the typ@20) and (422) together makes an overwhelming contributic_m to the change. in the
with the six reflections expected for this orientation attest tdattice period due to thermal expansion and therefore its ther-

the fact that the structure of the films is the result of four-Mal €xpansion coefficient is measured. Thus, the average

position epitaxial nucleation and subsequent growth. Accorg¥@lues found for the thermal expansion coefficient corre-
ing to data from dark-field electron-microscope photographsSPONd to this phase. _ _

the average size of the crystal particles is 30—40 nm. Accord- 1 n€ experimental thickness range of,@ims oriented

ing to the perfection of the structure, the experimental epi the (111 plane corresponds to 412 interplanar spacings.

taxial Cy, films, oriented in the(111) plane fall between For such objects the contribution of surface and near-surface
textured and si,ngle-crystalline. layers to the properties becomes considerable, since the co-

The results of a precision measurement of the interplana‘?rdinaﬁon numbers of molecules in surface and near-surface

distances\d/d of Cg, fullerite films in the temperature range Iayers differ from those of molecules in the interior volume. '
T,—T, are collected in Table I. The quantiyd/d increases This has the effect that, for example, the mean-square ampli-

as film thickness decreases. Thus, the ratitid for a film tudeu§ of the vibrations of molecules on the surface and in
of thickness 3.5 nm is 1.6 times greater than for bulkthe first two layers near the surface is larger than the corre-
fullerite 11! The measured dilatometric effect of the lattice sponding valuess? in the interior volumé. According to
period of thin G films in the experimental temperature Ref. 14, the mean-square displacements and thermal expan-
range is due to both the changeAm/a on account of ther-  sion coefficients are related simply by
mal expansion and the change due to the phase transition of
fullerite from a fcc lattice into a simple cubi&O) lattice at
T~260 K. At temperature3 <260 K the Gy molecules re- Hence the values of the linear expansion coefficients for the
main in the same positions, but their three-fold axes becomsurface and near-surface layers should also be overestimated.
oriented along thé111) directions. Information on the tem- The relation(2) is extremely convenient for theoretical
perature dependence of the lattice period of thigfilms is  interpretation of the results of measurements of the linear
therefore required for quantitative interpretation of the ex-expansion coefficients, since it connects anharmonic quanti-
perimental data. ties (linear expansion coefficientand the mean-square dis-
Figure 3 shows the temperature dependence of the lattigelacements calculated in the harmonic approximation. The
perioda of Cg films of thickness 4.5 nm. According to this method of Jacobian matric&®also known in the literature
figure, a jump due to a phase transition of fullerite from a SCas the recursive methdd,is an effective method for calcu-
to a fcc lattice is observed at=260 K. The transition tem- lating the temperature dependences of the mean-square dis-
perature as well as the magnitude of the jump in the filmgplacements of both molecules at the surface and in the inte-
agree well with the dilatometric and x-ray diffraction data rior volume.

u_§/u_§~ asla, . 2
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FIG. 4. Temperature dependencesTﬁifu_f for a(110 surface planel, 2, 3
— for vibrations of molecules alon01], [110], and[110], respectively.

with a central interaction between nearest neighbors with
various orientations of the surface plane. It is easy to see that
. ] the largest differences in the mean-square displacements
The mean-square qlsplacergwents of molecules in an arb(—~2_2) are associated with thd10 plane, since for this
trary system can be written &s orientation a molecule on the surface possesses seven nearest
neighborginstead of 12 in the interiprand for the(100) and
2= if)\micotr(ﬂ (111 orientations it possesses eight and nine nearest neigh-
"amlo N 2kT bors, respectively. Moreover, for th#10) orientation of the
surface plane the vibrations in this plane are strongly aniso-
where \ is the squared vibrational frequency,, is the tropic.
maximum value of\, and p,(\) is the so-called spectral __ For (111 orientation, in the present model the ratio
density generated by the vector The generating vectdn uﬁ/uﬁ is 1.2 for displacements in the plariior displace-
corresponds to the displacement of a selected molecule iments in the normal direction the ratis2). However, it
one direction. The mean-square disp|acemeT§t$r u_lf of  should be noted that the results are presented for a model in
surface or interior molecules, respectively, are calculated advhich the surface distortion was neglected. Obviously, if this
cording to whether the chosen molecule is located on theircumstance is taken into account, then the rafiu’ can
surface or in the interior volume. change considerabh?:'° In real systems, as a rule, when a
Figures 4 and 5 display the computational results obsurface is formed, the interaction between surface and sub-
tained for the temperature dependencesu_gyl‘u_g by the surface Iayers is much weaker than between Iayers in the
method of Jacobian matrices using K8) for a fcc crystal  interior. As a result, the mean-square displacements of mol-
ecules located in the surface region increase appreciably.
To a first approximation the thermal expansion coeffi-
cient of a film with thickness and two free surfaces can be
?2(/)173 represented as

ai=a,+2(as— a,)At/t, (4)

L8 where At is the outer layer, whose lattice dynamics differs

from that of the interior layers, andg is the average value
of the thermal expansion coefficient for this layer.

The experimental data on the thickness dependence of
the thermal expansion coefficient of films are shown in Fig.
6. As follows from Fig. 6, the values ai; in the experimen-
tal thickness range are described quite well by expression
(4). The value found from Fig. 6 for the thermal expansion
coefficient of bulk Ggis 17-10" 6 K1, which is close to the
o published data®'' The quantity 2¢s—a,)At=8.3
0 02 04 06 08 T/6 -107°nmK™1. To determineas it is necessary to have in-
formation about the value aft. Theoretical estimates show

FIG. 5. Temperature dependencesu_@fu_f for surface planes of the type ; ;
(001) and(111): 1, 2— for vibrations of molecules in the direction perpen- that At CorreSponds to two mterplanar dlstanédéor the

dicular to the planeg001) and(111), respectivelyd, 4 — for vibrations of indicated film orientation anqj(lll)zo-82 nm it was as-
molecules in a direction parallel to the plar@91) and(111), respectively.  sumed that the surface layer is 1.64 nm thick. For these val-
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Magnetic resonance in pure single-crystal Cug@®frequencies 9—75 GHz in the temperature
range 1.2—25 K is investigated. Splitting of the magnetic-resonance line into several

spectral components is observed at temperatures below 5 K, where spin—Peierls dimerization
suppresses the magnetic susceptibility and the ESR signal intensity. Analysis of the

magnetic resonance spectra over a wide frequency range with different directions of the magnetic
field at different temperatures makes it possible to identify among these components the

ESR signals due to defects, having effective spinl/2 and spirfS=1, in the spin—Peierls phase.
The g factor corresponding to these ESR signals is the same and close to the value
characteristic for the ion Cii. Another magnetic-resonance line is characterized by a strongly
anisotropicg factor and an increas@t a threshold in the excitation powen the

susceptibility both at resonance and in the line wings. These signals are tentatively attributed to
two possible types of planar defects arising on the walls of domains of the spin—Peierls

state with different values of the dimerization phase. 1@98 American Institute of Physics.
[S1063-776(198)02511-9

1. INTRODUCTION that develops in the presence of an interaction between the
one-dimensional spin chains and the three-dimensional elas-
The inorganic compound CuGegOwhich possesses tic subsystem of the crystal. While the spin chains form a
magnetic and crystallographic properties typical of spin—quasi-one-dimensional magnet, the restructuring of the crys-
Peierls compounds, has been studied intensively in the laghl is three-dimensional and the dimers form an ordered sub-
few years by various methods. The magnetic structure of thifattice. The displacements of the copper atoms occur it the
crystal is based on one-dimensional chains of Ciens run-  direction, while rotations of the oxygen octahedra surround-
ning along thec axis of an orthorhombic crystal. ing the copper ions occur in theb plane? Investigations of
A sharp decrease of the magnetic susceptiBilitjth a  the structure show that the displacements of the copper ions
simultaneous displacement of the atoms accompanied by neighboring chains are correlated in antiphase, i.e.,, a
doubling of the lattice period in the directioasandc®3has  translation by the vectoa+c or b/2+c brings the dimers
been observed below the spin—Peierls transition temperaturito coincidence. Here, b, andc are the primitive transla-
The accompanying change in the magnetic properties is ations of the nondimerized phase. The period of the arrange-
tributed to the formation of dimers consisting of magneticment of the ions in the directioh in the high-temperature
atoms between which the distance became smaller and thghase is half the lattice period, since two copper ions we are
exchange integral larger than in the initial state at a temperaassociated with one another by a translatiorbt#/lie inside
ture above the transition. The ground state of a spin—Peierlg primitive cell. The displacements of the oxygen ions are
crystal is a singlet state, while the excited triplet states areorrelated similarly.
separated from the ground state by an energy gap. The mag- These translation bring the octahedra into coincidence. A
netic susceptibility should vanish at absolute zero temperarearrangement of the lattice is therefore accompanied by
ture. The gap width and the spin—Peierls transition temperadimerization of copper ions along tleeaxis and oxygen ions
ture are determined by varying the exchange integral from along thea andb axes. The displacemen#z,,,, of the cop-
state with the atoms moving closer to one in which they arger ions relative to their positions in the nondimerized lattice
moving aparf:®> We note for comparision that a nondimer- can be described by the relation
ized chain ofS=1/2 spins with antiferromagnetic exchange _
possesses a gapless IC(;xcitation spectrum, gnd the ground state 0Zam=¢& cog (Kt 1+ m)mty]. @
does not have fa order® Here ¢ is the amplitude of the displacemeit;l, andm are
The transition described above stems from an instabilitthe coordinates of the copper ions relative to a reference

1063-7761/98/87(11)/12/$15.00 1019 © 1998 American Institute of Physics
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copper ion, expressed in the unésb/2, andc in a coordi- is still unclear. In Ref. 13 it was observed that in this tem-
nate system with axes directed along the crystal axds perature range an electric field influences the magnetic sus-
andc. The quantity is called the dimerization phase and ceptibility, likewise indicating that the magnetic state of the
can assume one of two vakie— 0 or«.” The state of the crystal is unusual. It was surmised that the residual suscep-
crystal is doubly degenerate with respect to this parametertibility could be due to magnetic-lattice defects of the spin—

The main properties of the spin—Peierls phase inPeierls phase, which form at temperatdiig on the bound-
CuGeQ according to Ref. 3: are as follows: transition tem- aries of crystallites with different values of the dimerization
peratureTgp=14.2 K, in-chain exchange integrdl=10.6  phase. Then the residual magnetic susceptibility can corre-
meV, zero-temperature energy gap=2 meV, relative spond to the density of magnetic defects, which is higher
variation of the exchange integral in the dimerized chainthan that of the defects in the paramagnetic phase.
5=0.042. The ratios of the interchain to in-chain exchanges In the present investigation the magnetic resonance spec-
are J,/J.=0.11 and J,/J.=-0.011. The maximum tra in the region of the residual magnetic susceptibility in
dimerization-induced displacement of the copper ions ipure CuGe@ single crystals are studied in detail for the
0.007 A . purpose of identifying further the magnetic defects in the

The data from measurements of the magnetic susceptbpin—Peierls phase and the effect of the boundaries of the
bility, neutron diffraction investigations of the magnetic and spin—Peierls crystallites on the low-temperature magnetic
crystallographic structures, and the study of the excitatioProperties is discussed.
spectra show that the idea of a spin—Peierls transition leads
toa cor.rect gualitative description of the magnetic and Iattlcez' PROCEDURE AND SAMPLES
properties of CuGeQ(see, for example, Ref.)3

Freezing of the magnetic susceptibility is incomplete in  The CuGeQ samples were grown from highly purified
real samples. The susceptibility in typical samples decreasasagents by spontaneous crystallization from a melt with
approximately ten-fold. The susceptibility is a minimum at 5 slow cooling. The velocity ., of the crystallization front was
K and increases somewhat, approximately by the factor 1.5,0" 2 cm/h. The impurity content was monitored by activa-
as temperature decreases further. This residual susceptibilition analysis and atomic plasma spectroscopy. The data from
is ordinarily attributed to the presence of impurities or dan-these control experiments show that the content of the impu-
gling chain ends. Other conjectures, described below, haveties Fe, Ni, Mn, and Co in samples of the main series stud-
also been made. ied in this work did not exceed 10 per copper ion for each

When defects are introduced into the lattice or magnetiof the indicated types of impurities. The samples consisted of
subsystem, the spin—Peierls transition temperature decreaségnsparent blue plates oriented along ¢faxis and possess-
and three-dimensional antiferromagnetic order is observed atg well-expressedc planes. The crystals were 4 mm long,
sufficiently low temperatur&® For example, the introduction 2 mm wide, and 0.5 mm thick.
of 0.07% Si or 2% Zn makes the CuGg€rystal an antifer- The magnetic impurities and defects of a spin—Peierls
romagnet with Nel temperature of about 4 K. A character- crystal lead to the presence of a residual magnetic suscepti-
istic feature of the long-range antiferromagnetic order in-bility. Hence the quality of a spin—Peierls crystal can be
duced by introducing impurities is that the' ®lestate and characterized by the ratiQ of the magnetic susceptibility at
spin—Peierls dimerization coexist. The average spin at a site5 K to the minimum magnetic susceptibility measured at
is several tenths of the nominal value. Impurity-inducedT=5 K. The fewer defects in the crystal, the larger the qual-
transformation of a nonmagnetic ground state into an antiferity factor Q is. The samples of the main series yielded
romagnetic state occurs because dimerization is supprss€= 20.
near a lattice defect or a missing spitf. The absence of To compare samples containing a different number of
dimerization gives rise to antiferromagnetic correlations ofdefects of different nature, other crystals were also studied.
the spins near a defect both along a chain and in the tranddagnetic resonance spectra were obtained for the sample
verse directions due to exchange interactions. The averad¢o. 2, produced by the float-zone method, from Ref. 12. This
magnitude of the spin projection at a site decreases awagrystal contained 10° Fe impurity atoms per cell and its
from a defect. The correlated regions of neighboring defectguality factorQ=7.
overlap, producing long-range magnetic order. Order breaks To monitor the contribution of structural defects to the
down at finite temperature when the energy of the thermatesidual susceptibility another series of samples was pre-
fluctuations is sufficient to destroy the correlations betweempared using the same reagents as for the samples in the main
neighboring defects. batch withQ= 20 but with faster coolingthe velocity of the

In relatively pure samples, where the magnetic susceptierystallization front was 1 cmjh For these sample®=6.
bility below the transition temperature decreases by mordhe quality factor of the samples grown with a crystalliza-
than a factor of 10, long-range magnetic order has not beetion velocity of 6 cm/h wa€)=3. To monitor the influence
observed down to 1.2 K. Nonetheless, pure Cuge@stals  of nickel impurity crystals with the composition
exhibit unusual properties at low temperatures. InvestigaCuy gof\ig goGe0;, grown with crystallization velocity 1
tions of electron spin resonance in CuGe@rystald®*?>  cm/h, were prepared.
show that at low temperatures the spectrum of the signal in The magnetic resonance lines in the frequency range
the region of residual magnetic susceptibility becomes mord8—75 GHz were recorded as the magnetic-field-dependence
complicated, splitting into several components whose origirof the power of the microwave signal transmitted through the
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FIG. 1. Magnetic resonance line at 26.7 GHz at
various temperatures. Curves of the variation of the
power of the microwave signal transmitted through
the resonator are shown.
0.1 mv
) 0.1 mv 9K
12K
1 i I3 i 1 e i " i 3 1 n n "
8 10 12 14 75 9.5 115
H, kOe H, kOe

resonator with the sample. At 9 GHz an ESR spectrometédiabeled in Fig. 2 by letters and numbers. The triplet of close
with field modulation and tracing of the magnetic-field de-lines 1, 2, 3 exhibits frequency—field dependence in the form
rivative of the absorption line was used. The measurementsf parallel straight lines. The central straight line, corre-
were performed at temperatures 1.2—25 K in magnetic fieldsponding to line 2, passes through the origin. The magnetic-
up to 60 kOe. field-dependence of the resonance frequency for line 4 is a
straight line with a different slope and passes through the
origin. The resonance frequenciés, ; ,do not depend on
temperature in the range 1.3—4 K. The data in Fig. 3 and the
The ESR spectrum in CuGgQonsists of one line at results of measurements wikh| a andH | b show that the
temperatures above and ndayp. As described in Refs. 11 dependencesk, , 3 {H) in the frequency range 9—-75 GHz for
and 12, the line broadens as temperature decreases. Near Safional directions have the form
the spectrum splits and at lower temperatures contains four

3. MAGNETIC RESONANCE SPECTRUM OF CuGeO

MB

principal lines and several weak lines having different inten-  f,(H )= -—-g; H,+d;,. 2)
sities relative to the principal lines at different frequencies 2mh
and in different magnetic field orientations. The indexx denotes one of the directions of the mag-

The low-temperature ESR signals are relatively weaknetic field along thes, b, or ¢ axis. The valueg;, of theg

Using the known value of the molar susceptibility of factor and the constantd, are given in Table I. Nonzero
CuGeQ at T=15 K! and the value of the quality factor, it is

possible to find the effective density of paramagnetic defects
which are responsible for the observed magnetic-resonanct

. . . . X2~5\Ww
signal. Thus, for samples in the main series the total ESR 1 37.0GHz

signal intensity at the minimumt& K is 10 2 times the

. . . . . v b4
intensity of resonance absorption in a paramagnet with one
. . 18.04 GHz

S=1/2 spin per copper ion. €

The properties of magnetic resonance are shown in Figs.
1-6. The change in the lineshape with temperature and the 1 12 1, 4
transformation of one line into four lines are illustrated in | Z3 3 4
Fig. 1. It is evident here how a portion of the total intensity —-o—J

of the wide line splits off as temperature decreases and ai|x3 4
T=3.5 K forms a new line to the right of the main line, i 9.1 GHz
while the main line splits into three components. e
The magnetic-resonance lines recorded at different fre-
guencies at the lowest temperat(re 1.3 K with H | c are 3
shown in Fig. 2. The four main lines, labeled 1, 2, 3, and 4, j—— gt
and several weaker lines, labeled by the letiers, v, e, H, kOe
andv, are clearly S?en' The mag.netlc_fleld depeqde_nce of thl(—elG. 2. Magnetic resonance lines of CuGe®ith H || c. The lines were
resonance-absorption frequenciggH) for H ¢ is illus-  recorded at frequencies 37.0, 18.0, and 9.1 GHz at temperature 1.2 K. The
trated in Fig. 3. The indek corresponds to one of the lines derivative of the absorption line is shown for the frequency 9.1 GHz.
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values ofd,, andd;, correspond to zero-field splitting of the places as the field rotates from tbéo theb axis, so that the

magnetic energy levels. The zero-field splitting is largest forfrequency difference$; ;—f, change sign. As the field ro-

H || b and vanishes foH | a. tates from thee to thea axis, the lines 1, 2, and 3 merge into
Representing the spectrum in the region of the maira single line. Line 4 corresponds to a strongly anisotragpic

lines 1, 2, 3, and 4 as a superposition of four Lorentzian linegactor, varying from 1.43 to 1.86 depending on the angle

makes it necessary to introduce another, fifth, line witlh a between the magnetic field and the crystal axes.

factor of approximately 2.0 and linewidth greater than 600 It was found that the linexr can be recorded only at the

Oe. We shall designate this line by the number 0. The neeffequencies 9.1 and 9.4 GHz. The difference of the resonance

to introduce such a line can be understood, for examplefjelds for these frequencies shows that this line possesses

from Fig. 2, where one can see on the trace of the derivativeero frequency in zero field and corresponds tpfactor of

of the absorption that the points of this curve that correspon&.4 with the field oriented along theaxis. The line8 dem-

to the resonance fields of the spectral components 1, 2, anddhstrates a direction-independent resonance value of the field

do not lie on the horizontal axis but rather are shifted up-with g factor 4.21, which is typical of the Feion.*

wards or downwards relative to it. This shift corresponds to  Figure 5 shows the temperature dependence of the total

the presence of another wider line. The intensity of line 0 aintensity of the ESR spectrum and the lines 3 and 4 at 9.4

temperature 1.3 K is 0.07 times the total intensity of the linesGHz. The temperature dependence of the linewidths is

1, 2, 3, and 4 for the sample witQ=20. For samples with shown in Fig. 6. A peak having the width of all the lines is

Q=6 line 0 becomes dominant. observed at temperature near 5 K, where the general line
Curves of the values of the resonance field versus itsplits into four individual lines.

orientation are shown in Fig. 4. The lines 1 and 3 change For comparison, the properties of magnetic resonance in

res® koe
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samples of different quality are shown in Figs. 7 and 8 and irinitial materials the lower the crystallization velocity, the
Table Il. The intense line 0 is typical of samples with a low lower the intensity of line 4 is. This attests to the fact that
quality factorQ. In Table Il this is illustrated by the values line 4 is due to structural defects in the magnetic subsystem
of the ratio>,_, /1 of the total intensity of the lines 1, 2, 3, of the copper ions and not to the impurity ions of other
and 4 to the intensity of line 0 8t=1.3 K. Besides the data metals.

obtained in the present investigation, Table Il also gives the

values ofQ and X;_,/l, obtained from the Ref. 11. For
samples with smal) the intensity of line O increases and the
lines 1, 2, and 3 broaden and become indistinguishable in a The high-frequency resonance susceptibility is power-
crystal grown with a high cooling rate. Line 4 in samplesdependent for line 4. Figure 9 shows that the magnetic reso-
with defects broadens and becomes more intense. Moreovarance absorption lines at 20.2 GHz for different values of the
comparing the samples of the main series with sample No. thicrowave power. When the power increases above a certain
from Ref. 12 shows that line 2 is more intense in the IPw- threshold level, the additional high-frequency susceptibility
sample. The lines 1 and 3 have the same intensity and linéacreases. The intensity of line 4 becomes much greater than
width as the pure sample. The intensity of the linés close  the total intensity of lines 1, 2, and 3. Line 4 becomes
to that in purest sample, while the intensity of the lifgds  strongly asymmetric and the increase in the additional sus-
higher, in accordance with the iron concentration data. A<eptibility on the low-field wing of the line stretches out
one can see from Fig. 8, for samples grown from identicaimore.

4. NONLINEAR MAGNETIC RESONANCE IN CUGEO ;

dH, Oe
v
6001
400
FIG. 6. Width of the magnetic-resonance line versus tem-
perature at 9.4 GHz. The numbering of the lines follows the
designations of the lines in Fig. 2.
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TABLE I. TABLE II.
i Oia ib Gic dia, GHz  dy, GHz  di, GHz ~ No. v, cm/h  Cycomn Cre Q X;.4/lg Tsp Reference
1 2.17 2.26 2.10 0.0 -1.7 1.15 1 1073 <1074 <107* 20 15 14.5
2 2.17 2.26 2.10 0.0 0.0 0.0 2 1 <1074 <10* 6 0.1 14.0
3 2.17 2.26 2.10 0.0 2.05 —0.95 3 6 <1074 <104 3 0.01 13.0
4 1.82 1.86 1.43 0.0 0.0 0.0 4 0.1 <1074 51074 7 1 14.5 12
5 unknown unknown unknown 100 20 14.5 11
6 1 5x10°% (Ni) <1074 2 12.5

Figure 10 shows the power-dependence of the imaginary
part of the susceptibility for a resonance magnetic field of
line 4 and on the wing of this line. This dependence demonthermally-activated excitatiodS. When the characteristic
strates the threshold character of the additional susceptibilityexchange-interaction frequency is higher than the difference
The threshold power levels marked in the figure by arrowsof the transition frequencies corresponding to different spec-
correspond to microwave power of the order of 1 mW flow-tral lines, one resonance line is obsereschange narrow-
ing into the resonator and to less than AW absorption in  ing effec). As temperature decreases the concentration of
the sample. The intensity of the microwave magnetic field athermally-activated triplets decreases and the exchange nar-
the sample is approximately 0.1 Oe. rowing effect disappears, and as the exchange-interaction
The nonlinear increase in the imaginary part of the highfrequency passes through a value of the order of the differ-
frequency susceptibility is greatest at a frequency of about 2@nce of the transition frequencies individual lines appear
GHz. This effect is observed at 18 GHz and 23 GHz but theyhich become narrower with further freezing of
nonlinear growth of the susceptibility at comparable powersxcitationst®
is approximately three times smaller. At all other frequencies  This scenario of the evolution of the line shape has been
which we employedthe closest is 26 GHzthe nonlinear  observed in TCNQ organic crystdéwhich have a nonmag-
increase of the susceptibility did not exceed the noise levelnetic ground state and triplet excited states. Broadening of
the line and its splitting into two lines corresponding to trip-
5. DISCUSSION let excitations with effective spiB=1 in a crystal field have
been observed in pure crystals of these substances with de-
creasing temperature. A line corresponding to residual de-
The temperature evolution of a magnetic resonance linéects with effective spirt8=1/2 has also been seen in experi-
as temperature decreases, i.e., the transformation of the liments with irradiated TCNQ crystaté. The excitated
from a single narrow line first into a single wide line and doublet withS=1 decreases in intensity as the temperature
then into four individual lines, distinct from one wide line, decreases. In crystals with defects the lines corresponding to
can be explained by taking account of the exchange interacs=1/2 andS=1 do not disappear as temperature decreases,
tion of paramagnetic centers, which are defects in the spindemonstrating the temperature dependence of the intensity
Peierls phase, and thermally-activated triplet excitatidns. that is typical of paramagnetic impurities.
The characteristic exchange-interaction frequency is found as As shown in Ref. 11, the width of the ESR line in Cu
the product of the corresponding exchange integral, exGeQ; in regions of both “fast” (above 5 K and “slow”
pressed in frequency units, and the relative concentration dbelow 5 K) exchange follows the theoretical formulas cor-

5.1. Temperature evolution of the line shape

1 A e
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//1/ / ; I,‘l
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[ [ ,/ FIG. 7. Plots of the derivatives of the absorption at 9.1 GHz and
,’ | T=1.5 K for two CuGeQ samples withQ=20 andQ=6. The
| : " samples differ by the Fe impurity content and the growth method.
: [T The amplitudes of the signals are normalized to the same intensity
o atT=15 K.
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FIG. 8. ESR lines of samples prepared from the same batch with
different crystallization velocities. The lines were recorded at
T=1.8 K. The amplitudes of the signals are normalized to the
same intensity at =15 K.

s s L L " L N : L 1 "
8 12 16 20 H, kOe

responding to the above mechanism for the change in linean be inferred that this line is associated with impurities.

shape with temperature. However, analysis of the atomic composition gives for the
concentration of magnetic impurities limiting values that cor-
5.2. Effective spin and origin of defects respond to a magnetic resonance line intensity less than half

of that observed in our experiment. We studied the magnetic

At temperatures belw 4 K the magnetic susceptibility is : . .
suppressed by a transition into the spin—Peierls phase, whose o1 a"'¢€ spectrum in a £y4eNio ood3€Q; single crystal. In

ground state is a singlet and nonmagnetic, while the excite is crystal the impurity ESR line correspondsge=1.92,

states are separated from the ground state by a gap. In a pLﬂ@ZZ‘OO’ anag.=1.70, i.e., its ESR frequency differs sub-

defect-free crystal the magnetic susceptibility and the EsFetantially from that of line 4. Therefore the presence of im-
signal intensity should approach zero exponentially at lowPUrity nickel in the sample could not explain the appearance
temperatures. The nonzero susceptibility and the ESR sign&f this signal. Magnetic resonance in the presence of doping
are due to magnetic defects of the spin—Peierls phase. EWith nonmagnetic impurities reveals no change in gtfac-
dently, the observed ESR signals belong to different types dior of more than 3% Moreover, as indicated above, the
such defects. In what follows we shall endeavor to identifydifference in the intensity of line 4 for the samples grown
them. with different crystallization velocities indicates that it origi-
The g factors of the lines 1, 2, and 3 are close to the nhates from the copper ions. Therefore the results obtained
factor of divalent copper in the paramagnetic phase of Ciindicate that the magnetic resonance lines 1, 2, 3, and 4 are
GeQ,. This suggests that these lines are associated with cogssociated with copper ions.
per ions. Theg factor for line 4 differs strongly from the The relative intensities of line 2 in relation to lines 1 and
values typical of C&" ions, equal to approximately 2.2. It 3 in samples of different quality diffetFig. 7), while the

W P =10 FIG. 9. Magnetic field dependence of the power of the microwave
signal transmitted through the resonator for different power levels

at temperature 1.2 K-1.6 K] || c,f =20.2 GHz. The power levels
are in arbitrary units. The temperature variation within the indi-
P=40 cated limits is due to the microwave heating of the resonator.
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ratios of the intensities of the lines 1 and 3 are the sametion phase. During a transition it is possible for crystallites
Hence it can be concluded that the lines 1 and 3 are assodidomaing with different values of this parameter to form so
ated with defects of one type while line 2 is associated withthat on the domain wall, wherg=0 switches toy =, at
a defect of a different type. The absence of crystal-field splitieast one atomic layer is nondimerized. Crystallite bound-
ting for line 2 attests to an effective sp8w1/2 for defects  aries are usually pinned on defects which are present above
of this type(Ref. 19, Chap. I, § b the lattice rearrangement temperature, and therefore a single
The zero-field splitting and the characteristic angular depoint defect of the crystal can give rise to an entire plane of
pendences of the lines 1 and 3 together with a change in thefhagnetic defects. The boundaries of antiferromagnetic do-
relative position with respect to line 2 imply that these linesmains can serve as an example of the formation of such
are associated with defects with effective s@r1. For  pianar defect® Figure 11 shows schematically the arrange-
S=1 the magnetic resonance typically splits in a crystal fieldment of copper ions in a sample containing two domains.
into two lines with angular dependence similar to that whichthe grientation of the planar sections of the wall between the
we observed(Fig. 5 and with a line spacing that is gomains is chosen to be close to three rational directions. A
frequency-independent in the limg.gH>D, whereD is  type.| boundary, lying in the planac, contains nondimer-
the single-ion anisotropy constant of the spin Har_mltonlanized chains which run along theaxis and are coupled by
(Ref. 19, Chap. |, 8 b It is natural to infer that the lines 1\ ek ferromagnetic exchangde in the a direction. Crossing
anq 3 which we .obser\./ed coulq be associated with ex'changdz-lis boundary destroys the order of the oxygen atom dis-
pairs of copper ions with effective spi=1. The ESR line  13cements. In the similar type-Il boundariet shown in
of these pairs can be split by a dipole—dipole interaction Oie figurg lying in the bc plane, the nondimerized chains of
anisotropic exchangeRef. 19, Chap. 9, §)5 For example,  ¢,ins"are coupled by a weak antiferromagnetic exchdgge

such splitth:gt has beﬁn dobser;/efginct:e E§R§s§(|e_|ctrum 9h both cases there is a strong exchange interaction, charac-
copper acetate monony raRef. 9, ~hap. 3, 3 ) € terized by the exchange integrd}, within the chains lo-
there is no need to introduce the dipole—dipole interaction oL ted inside a domain wall. In type—IIl domain walls, lying

anisotropic exchange, since for Cuions W'th. S= 1/2 the .__in ab planes or in thg101}; family of planes, the order of the
spl.lttlng of _the spectrum of an exchange pair by SIngle_'Ondimerization of the copper ions breaks down. Walls of this
anisotropy s absent. type contain nondimerized spins from different chains. Weak

exchange interaction, andJ,, exist in the plane of such a
5.3. Intrinsic defects of the spin—Peierls phase wall.

In our experiments the line 2 of spin-1/2 defects and the A type-l wall contains disordered chains with strong in-
lines 1 and 3 of exchange-coupled defects have comparab@ain antiferromagnetic exchande. Weak ferromagnetic
intensities. For a random distribution of a small number oféxchange acts in a direction perpendicular to the chains. The
defects the resonance line of the exchange-coupled paimsagnetic susceptibility of these chains is suppressed by
should be much weaker than the line due to single defectstrong exchangd, and equals 1/200 of the susceptibility of
To resolve this discrepancy it is necessary to examine ththe same number of paramagnetic spins at temperature 1.5 K.
structure of the magnetic defects in a spin—Peierls crystabtructural defects in this wallvacancies, dangling chain
which arise at a transition into the spin—Peierls phase. ends, or stepsshould with probability of order 1 give rise to

As described in the Introduction, the low-temperatureexchange pairs of copper ions with effective sfis1 on
phase is characterized by one of two values of the dimerizaaccount of the ferromagnetic exchangiewith the spins in
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neighboring chains. Breaks in chains in type-l walls are apin size, with antiferromagnetically correlated spins in this
parently the sources of the exchange-coupled pairs giving thehain fragment. Such a regidgroliton can be estimated on
resonance lines 1 and 3. the basis of a theoretical calculation to contain approxi-
The angular and frequency dependences of thenately seven magnetic ions along thaxis. The total spin
magnetic-resonance fields corresponding to lines 1 and 3 caf the soliton is 1/2, while away from the nondimerized spin
be described by means of a spin Hamiltonian w1  the average spin at a site decreases because of dimerization

(Ref. 20, Chap. |, 8B (Fig. 12.
. a2 a2 These objects are unique magnetic clusters in a nonmag-
=9ttt GomeHo+ JarsHat DS+ DpSy netic spin—Peierls matrix. Magnetic resonance of these ob-
aa ae jects, which possess internal magnetic structure and corre-
FDen(SeSHt S @ sponding internal degrees of freedom, is an urgent problem.
with g.=2.10, g,=2.26, g,=2.17, D;=0.04 K, Dy,= Among the known related magnetic-resonance problems, we
—0.05 K, andD.,=—0.03 K. single out the problem of a three-spin cluster of identical

With overwhelming probability such defects in the main magnetic ions with spin 1/2 For a cluster in the form of an
spin—Peierls matrix and type-Il and -1l walls either remainisosceles triangle, differing very little from an equilateral tri-
unpaired or form pairs with spiB=0 because of the stron- angle, it has been shown that the energy levels have the form
ger antiferromagnetic exchanges along thendb axes.

It is natural to attribute the signal responsible for line 2 1l ———>5>—
to isolated breaks in chains far from domain walls or inEl,z,S,fig\/G +6°+9°ugH = 2gusH | 5°+ G* cos’ 6-
type-Il walls. Free spin&=1/2 result from these breaks. (4)

Splitting of the initial ESR line into three components as
temperature decreases has also been observed in orgailere ¢ is the angle between the symmetry axiof the
spin—Peierls crystal. In this case an analysis of the angular crystal and the magnetic fieldg , are the exchange integrals,
and frequency dependence that would permit triplet and dous=|J;—J,|, and G is the Dzyaloshinski-Moriya antisym-
blet states to be distinguished was not performed for thenetric exchange constant. The const@ris zero if a center
components of the signal. The authors interpreted the olef symmetry exists between the magnetic ions in a pair. The
served components as signals corresponding to differentansition energies between the levél$, which are small
types of magnetic ions with different values of théactor.  compared withs and G, satisfy

The typical behavior of the ESR line in a spin—Peierls

magnet with one line splitting into several lines, including a g
triplet, is confirmed by the observation of this scenario of the 0= ———===ugH. )
P y J1+G2coddis? B

evolution of the shape of the 36 GHz line in a second, re-

cently discovered, inorganic spin—Peierls crystal, hay?? . .
y 9 P Y Thus, the magnetic-resonance spectrum of a triangular

cluster at low frequencies looks like a paramagnetic reso-
nance spectrum with a strongly anisotropic effectiactor

We shall now consider type—Ill domain walls, where andg,<2. Experiments with crystals of organic complexes
nondimerized spins from different chains lie in the plane ofcontaining triads of copper ions show that the observed mag-
the wall. According to the ideas developed in Refs. 7 and 10netic resonancé$and the stati® properties correspond to
each such spin is a center of a region, several lattice periodhis scenario with nonzerG.

5.4. Magnetic clusters in a spin—Peierls matrix
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For solitons localized on a domain wall there is no centemhere G and h denote the vector&=(G;,+G,3)//3 and
of symmetry between the central and neighboring spinsh=gugH, whereg are the corresponding components of the
since the environment around the central ion is closer to thag tensor of a single copper ion.
existing in the nondimerized phase, while the environment For hl G the effectiveg factor is given by
around the neighboring ions is closer to that of ions in the
dimerized phase. Therefore the symmetry admits a nonzero
value of G.

To describe a linear magnetic cluster in a spin—Peierls
nonmagnetic matrix near a nondimerized spin, we shall ex-  Setting J,3=J;,=10 meV (Ref. 3 and J;3=3.6 meV
amine the three- and five-spin approximations. For the thredRef. 27, we find that to explain the observed value

spin linear cluster we write the Hamiltonian in the form ~ 9=1.43 it must be assumed that there exists a veGor
perpendicular to the plane of the fragment Ga@QuO,— Cu

G2+G2
1_X—y2 ) (9)
2(e,—€1)

Jeii~0

T=31251- S5+ 3055, S5+ 3155, - S5+ G 1,5, X S, with |G1,+ G, ~8 meV. We note thaG=0 in a cluster
A which is symmetric with respect to the central spin. How-
+Go3 $XSs, (6)  ever, as one can see from Fig. 11, because of the distortions

of dimerization on neighboring pairs of copper ions there is
no center of symmetry on nondimerized spins of a domain
ewaII lying in the {101} planes.

This estimate gives a value for the antisymmetric ex-
change constant on the order of the exchange interaction.

g1+e, Switching to a model with five spin€€u5—-Cu4—-Cul-Cu2-
Ei= 2 Cuj it is easy to see that the number of excited states of a
cluster with total spir5= 1/2, which are admixed to the main

where G;, and G,3; are vector parameters of the
Dzyaloshinski—Moriya interaction. The energies of the two
lowest states of the cluster for an arbitrary orientation of th
external magnetic field are given by

1 doublet by antisymmetric exchange, increases. In this con-
_ = — 2 2. 12 ,
2\/(81 £2)"+ G +h"£2 (¢, ~£,)°h?+(hG)* nection expressiof9) becomes
@) —al1— (G2t Gaat Gyt Gsg)?
Heree,; ande, are the energies of two possible states of a 9er =9 3E§l
cluster with total spirS=1/2 in the absence of an antisym-
metric exchange interaction and a magnetic field (Gt Ga3— Guy— Gsa)® (10
12E3, ’

1
= = S (It dggtd . -
#12= ~ 712t Jagt J2o) whereE3, andE3, are given by the expressions

1 /. 1 1> 3 ) ) 1 11> 3 )
5 323_5(312+313) +z(312—~]13), (8 E5 = J23_§(J12+J13)+ZJ24 +§(312_~313), (11
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1 mental results. In the first place, the value of th&actor in
J23 5 (312t J19) — 7 J24 other orientations does not approach 2.0, as follows from the
proposed model. In the second place, a strong decrease of the
3 L1M7 g factor should be observed for all directions of the field
+ E(‘]12_‘]13) which lie in a plane perpendicular 8 and not only in the

2 _
E31_

2

1 1
Joz— E(JIZ+ Jig)+ ZJ24

+
directionc. These discrepancies could be due to the presence
n § (I J13)? (12) of antisymmetric exchange for the interaction of the next-to-
212 V18 nearest neighbors and misalignment of the Dzyaloshinski

vectors of different pairs of ions.

We note that only the antisymmetric combinati@n, The ESR at 9.31 GHz in a CuGgQrystal of even
+ G,; of the parameters enters in E§), while in Eq.(10) a higher quality was studied in Ref. 11. From the data pre-
contribution from the symmetric combinatio®,,+G,;  Sented by the authorQ is estimated to approach 100. The
—Gy;—Gs, also appeared. This fundamental differencelines «, 1,2,3, and 4 were also observed, and the values of
arises because for a three-spin cluster the excited state witA€ir resonance field agree well with the data obtained in the
total spinS=1/2 is unique and antisymmetric. Among the present work(Fig. 2). This confirms that the observed spec-
excited states of a five-spin cluster with total si8r1/2  trum, consisting of a triplet line and a line due to clusters, is
there are both antisymmetric and symmetrielative to the typical of pure spin—Peierls crystals.
center of the clusterstates. Consequently, both combina-
tions contribute to the change in tigefactor: antisymmetric
Giot Gog+ Gy +Gs, and symmetric Gyp+ Gos— Gy 5.5. Tvyo-dimgnsional magnet on domain walls
—Gsy,. For a five-spin cluster there are only four excited®' @ SPin-Peerls phase
states withS=1/2. Only the two lowest of these states are A frozen soliton can be viewed as a magnetic quasiatom,
taken into account in Eq10), since otherwise the formula since its structure with antiferromagnetic correlation of
becomes very complicated. A calculation assumi@g, neighboring spins is fixed by the strong exchadgeThen a
=Gy3=Gg4= Gy gave G1,=2.9 meV, for whichg,=1.5.  wall of the latter type is a two-dimensional magnet consist-
The following numerical values were used hedg;=Jy,  ing of the described quasiatoms, coupled by ferromagnetic
=10 meV, J,3=J45=10.4 meV (dimerized pairs of spins  exchangeNJ, in the directiona and antiferromagnetic ex-
andJ;3=J5=3.6 meV. changeN J,, along theb axis. HereN is the effective number
Numerical calculations performed by exact diagonaliza-of spins in the quasiatom. Using the estimhte'5, we ob-
tion of the energy matrices in a magnetic field, taking ac-tain 50 K and—5 K for the values of the exchange of qua-
count of all excited states in a cluster of five spins, givesiatoms along the axis anda axis, respectively. Because of
G1,=3.0 meV. The average values of the projection of thethe presence of anisotropy with characteristic energy
spins of a cluster in a particular direction, obtained by meang,=0.5 K per quasiatom, it can be expected that such a
of the present calculation using the numerical values inditwo-dimensional magnet becomes ordered at a temperature
cated above, are shown in Fig. 12. The assumption that arF,~N/J,J,/IN(N},/E,)~3 K.
tisymmetric exchange is present in CuGe@ith the Dzy- Thus, at the temperature of our experiment, where
aloshinski vector perpendicular to the axis, was first T<NJ, holds, this flat object can be a disordered but
advanced in Ref. 27 on the basis of an analysis of the reasor&ongly correlated magnet. Its excitation spectrum in the
for the broadening of the ESR lines. As stressed in Ref. 27ong-wavelength region is similar to that of an antiferromag-
this assumption contradicts the data of Ref. 2 on the crystatet without anisotropy® One branch of this spectruna,y,,
structure of Cu@ chains. In this connection, it should be has no gap in a magnetic field. The second branch has a gap
stated that the symmetry is destroyed near nondimerizeg,,=g,ugH,. In this case, excitation of a uniform mode of
spins in a type—Ill domain wall and the existence of a non-oscillations with frequencw,q is possible in a homogeneous
zero Dzyaloshinski-Moriya interaction constant becomes high-frequency magnetic field. Since the precession of the
allowed, in any case below the temperatiikg. magnetic moment is elliptical because of the anisotropy,
Evidently, the line 4 must be attributed to defects of theparametric excitation of pairs of waves of the gapless mode,
latter type if we stay within the magnetic subsystem formedyhich satisfy the condition of paramagnetic resonance
by the copper ions. These considerations make it possible to
explain the marked departure of thdactor from the value
2.0 and the large anisotropy of tigefactor for the line 4 by  becomes possible. Hera,,,, is the frequency of the high-
analyzing a cluster of five spins, taking account of the antifrequency pump field. The absorption of energy in the pro-
symmetric exchange interaction in which the parameter is ofess of parametric excitation has a threshold with respect to
order 30% of the exchange integral. the pump power and the energy flowing from the pump to
Of course, these considerations concerning the magnettbe wave modes is resonant with respect to the pump fre-
resonance of a cluster whose internal structure is determinegliency (see, for example, Refs. 29 and)30he resonant
by the Dzyaloshinski-Moriya interaction give only a quali- character is due to energy transfer via oscillations of the
tative explanation of the pronounced departure ofgffeector =~ magnetization of one of the magnetic-resonance modes.
from its typical value exhibited by copper ions. The follow- Parametric excitation of spin waves belonging to the
ing discrepancies exist between this model and the experbranch that possesses a gap in the presence of a magnetic

Omw= 01T ©1 g, (13
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A class of models of autowaves in the form of nonlinear diffusion equations, which are closely
related to the Liouville equation and two-dimensionalized Toda chains, is investigated.

Exact solutions of these equations are constructed and analyzed. A simple method for constructing
diffusive Toda chain models from known basic models is proposed19@8 American

Institute of Physicg.S1063-776098)02611-0

Soliton models based on the inverse scattering problersion systems, and the principles which can be used to obtain
presently comprise one of the most important classes diffusive Toda chain models from known basic models are
models of nonlinear wave processes. However, despite thalso considered. As in Ref. 8, the method for constructing
broad applicability of this method in applied problems, theresolutions is based on a novel reformulation of the method for
are some areas of physics where the nature of the solutiom®nstructing exact solutions of two-dimensionalized Toda
obtained with its aidsolitons, kinks, breathers, etcannot  chains using quadratic fornis1'? Exact solutions of some
be considered consistent with the nature of the processdmsic reaction—diffusion models are constructed on the basis
studied. This applies, for example, to nonlinear diffusionof this approach.
processes, which have recently attracted special attention in
connection with the development of such areas of physics as GENERAL CONSTRUCTION OF SOLUTIONS OF TWO-
the theory of self-organizing systems, the theory of wavep|MENSIONALIZED TODA CHAINS IN A CLASS OF
processes in active media, étc.New approaches to con- QUADRATIC FORMS
structing basic models having fairly rich classes of exact so-
lutions are needed to describe these processes.

As a rule, autowave models are investigated by approxi
mate analytical metho#is’ or numerical simulatioR. How-
ever, the significance of the conclusions which can be drawn A®, =exg®,,_—2®,+®,,4}, n=1,... N-1,
using these methods depends largely on the possibility of @
;ecsttlZglmﬁ)rzi“%t;mttzeothe cglculated results against the ex}/vhereA=a2/azaz is the Laplacian operator in the case of

quations. Just such a test revea . . — .
whether the simplifications and approximations made remairtﬁe complgx coord|nate.z=x+|y and z=x—1iy [or the
within the original model. Therefore, the lack of well devel- D Alembert@ operator in the case of the real coordinates
oped methods for constructing exact solutions for modelg@=X+y andz=x-y (conical coordinate3. The system for
with diffusion should be regarded as an obstacle to a thorthe variabless,=®,—®,_; has a more familiar form:
ough understanding of the nonlinear wave processes which G =exp(G,.,— G} —expG,—G,_1},
take place in such systems and are associated with the ap-
pearance of regular or coherent structures in them. n=1,... N—-1 2

“An entire class of models of nonlinear wave processes ifhere is a definition for generalized diffusive Toda chains
active mec_jla with diffusion that can be solved exactly_ WaS(see, for example, Refs. 10 and)1But they will not be
proposed in Ref. 8. Such models represent a generalizatiqty,sidered in this paper.
of two-dimensionalized Toda chaffis* to the case of two- Let us briefly describe the basic principles for construct-

dimensional diffusion processes. The class of exact solutionizf1g the exact solutions of two-dimensionalized Toda chains

qbtamed n R?f' 8 IS @ new useful formulaﬂoq of the So.lu'using quadratic forms. Let us consider a funct}eb(lz,?) of
tions of two-dimensionalized Toda chains, which were f'rStthe following form

considered in Ref. 11 and 12, and the Liouville equdtiam

a Hermitian form of order 2. We also note that new inte- — N —

grable Toda chains belonging to a class of diffusion equa- H1(z.2)= 21 h*Pyo(2) Y5 (2),

tions in one-dimensional space were found in Ref. 14 via a “h=

symmetry approach. Where_haﬁ is an NXN Hermitian matrix. The function
The method proposed in Ref. 8 for constructing and anaH(z,z) is an Hermitian form of ordeN, which is defined in

lyzing models which can be termed diffusive Toda chains ishe complex spacE". The set of the functiong(z), which

developed in this paper. The properties of these modelglepend org, can be represented in the form of the vector

which lead to the appearance of regular structures in difful¥={y,¥,, ... 4} in the spaceFY, in which the length

Two-dimensionalized Toda chains comprise a physical
system, whose dynamics are described by a set of differential
equations in partial derivatives of the following form:

1063-7761/98/87(11)/9/$15.00 1031 © 1998 American Institute of Physics
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of the vector is assigned byl(z,?). For the sake of brevity,

it is useful to replace the complex-conjugate functid&}s{?)
by functions with superscripts according to the rule

E h*fy%(2).

Then for any nondegenerate fotmi? the functionHl(z,?)
can be represented as

<zz>—2 Va(2)*(2) =W,

whereW={y* y?, ... yN}.
For convenience, we introduce the notation

dg  di@_
[f(2).9(2)]=1(2) —5~—9(2) —g,~=fg'~qF’,

,_dfm dg@
"4 97 ®

for the two arbitrary function$(z) andg(z). Then, it can be
shown by direct calculations that for any fixét>1

H%(Z,?)A In Hl(zi;):H2(21?)1 (4)

where
N

Ho(2)= 2, Wep(@W™(2),
Waﬂz[l//a(z)awﬁ(z)]v a:'éﬂ
In fact,
H3(2,2)AINH 1(2,2)=H1(2,2)AH,(2,2)
~H1A22)H172,2)

(WW)A(UW) — (VW) (W),

N
; [¥a(2) W (2)Yp(2) ' F(2)

— YL (2P (2) (2P P(2)]

N
2, (@D - w2 (D)
X[p4(2) ' P(2)— p*(2) ' F(2)]}
N
= X Wu(2w¥(z), (5)
a<pB=1

which was to be proved. The functidﬂz(z,?) is also an
Hermitian form, but of dimensioN(N—1)/2. Thus, the
same transformatiofd) can be applied to it. As a result of

V. M. Zhuravlev

bility, are imposed on the functiong;(z). This result was
formulated and proved in a somewhat different form in Refs.
11 and 12. The lack of constraints on the functiah$z)
allows us to consider various reductions and to impose addi-
tional conditions on them in order to satisfy more general
equations. For example, such equations can be the equations
of reaction—diffusion models with nonlinear sources.

2. CLASSIFICATION OF DIFFUSIVE TODA CHAIN MODELS

The general form of the models investigated in the
present work is

U
— =F(U)+DAU, (6)
dt
whereU={uq,u,, ... ,uy} is the state vector of an element

in the medium, for example, the concentrations of the chemi-
cal substances participating in a reactiél)) is a certain
nonlinear vector function, anB is the matrix of diffusion
coefficients of the components of the medium. These equa-
tions are usually called reaction—diffusion equations. These
models are usually classified on the basis of the form of the
nonlinear source on the right-hand side, the so-called null
isocline®® The form of the null isocline and the classification
corresponding to it reflect the character of the equilibrium
state in the medium and the ways to achieve it for an as-
signed form of the nonlinear source. However, such a clas-
sification, which is useful from the standpoint of distinguish-
ing models with respect to some general features that
characterize the physical processes as a whole, is relatively
insensitive to the form of the permissible structures in such
models and their dynamics, which are determined by more
refined characteristics of the models.

The theory of two-dimensionalized Toda chains briefly
described in the preceding sections permits the general de-
scription of several different classes of diffusive Toda chain
models. The models will obviously differ with respect to the
order N of the quadratic forms and the number of compo-
nentsM in the unknown functiondd; describing physical
components of the model. For two-dimensionalized Toda
chains these numbers are rigidly related if no additional con-
straints are imposed on the functiogz). In this case we
haveN=M. In the reduction of two-dimensionalized Toda
chains, the number of independent components can decrease.
The relevant reducing conditions, which are important for
the discussion below, include, for example, the periodicity
conditions of two-dimensionalized Toda chains. Thus, in the
general case we hawd<N.

The order of the quadratic forms, which is equal to the
number of the linearly independent functiows(z) from
which they are constructed, determingomewhat condi-
tionally) the number of independent spatial structures
(modes$ evolving simultaneously in the system. Therefore,
this order is logically called the number of spatial modes or

the successive application of this transformation to the sesimply the number of modes in the system. The number of
quence of Hermitian forms appearing in each step, we obtaifhdependent quadratic forms determines the number of dif-

the chain of function$i,(z,z) (n=1,2, ... N) which is cut
off in the Nth step. These functions satisfy Eq4). No

ferent physical components evolving simultaneously in the
system. In the case of the interpretation of such models from

constraints, apart from sufficient smoothness and differentiathe standpoint of reaction—diffusion models, the nuniies
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essentially equal to the number of different components paring eigenvectors are also complex-conjugate. Then the solu-
ticipating in chemical reactions. This number will henceforthtions for the coefficients can be represented in the form
be called simply the number of components in the system. n n

In this paper we shall consider only systems of diffusive _ a _ a
Toda chains with two and three modes. This is because th%i(t)_;::l AaniexpAq1), bi(t)_az::l Bani®'exp(Nat),
structure of the nonlinear sources in diffusive Toda chains . (12)
depends significantly on the number of modes. Therefore, @
the closure conditions for the systems of equations for diffu-ci(t):zfl Cani™'exp(Aat).
sive Toda chains with different numbers of modes are differ-
ent, and a transition from quadratic forms of one order toThe constanté,,B,, andC, must be chosen such the(t)
another requires separate analyses of the corresponding syd b;(t) would be real andch relations of the form(10)
tems of equations. It is natural to begin these analyses frorwould hold. Generally speaking, the substitution of these re-
quadratic forms of low orders, i.e., numbers of modes in thdations into(12) leads to a set of? algebraic equations for

system. A,,B,, andC,. In the relations
n
3. MULTICOMPONENT TWO-MODE MODELS ab2:1 Din{®n{Pexd (\a+ Ap)t](AB,— C,Ci — CXCp) =1

Two-component two-mode models were previously con-
sidered in Ref. 8. These models do not have nonsingular
periodic solutions in the form of two-component quadratiCine coefficients accompanying exponential functions in
forms® However, nonsingular periodic solutions exist for yhich the exponents\,+\, are nonzero should vanish.
multicomponent two-mode systems. Such systems are djowever, in some cases the number of equations is less than

=const, i=1,...n,

scribed by equations of the fofm n?, and then there are solutions with constant values for the
IU: n model parameterk .
a—t'—DiAuize’zui [+ e E mike“k), (7) Let us consider the case of=3 as an example. We
k=1

require that the eigenvalues bf have the values (6,iQ},

— . . H 1 2 3)_n(2 H
where u;=In¥;(zzt), and the solutions for the functions +i€}). Let n®),n(,n®=n ):l)be the eigenvectors corre-
W¥.(z,z,t) are represented by quadratic formsyin and i: spondwgzt;) them. The vect.cn has rgal components. The
vectorsn®®), which are conjugate to eigenvectorsMf are

Vi(z.z0)=19@)|HaO] ¢+ bi(D] Yol +ei(D¥1¥3  simply equal to the complex-conjugate vectorst?
— n2:3 :
+ef (DYt} 1=1,...n, 8 N> Inthis case

3
whose coefficients satisfy the equations

fy g > n¥*n3=0, a=2,3.
i=1

n n n
ai=2 mijaj, bi:z mllbj, Ci:E mijCj,
=1 j=1 j=1

Therefore,
i=1,...hn, (9) my;=iQ(n?*n{®—n@*n{?), ij=123,
(aib;—|ci|?)f2Di=Il;=const, |W,j?|g|*=1. (100  and the functions(t), b;(t), andc;(t) can be represented in
Here Wix(2)=[¢1(2),¢¥,(2)]. The requirement that the the form
W,(z,2,t) be real implies thag;(t) andb;(t) must be real, a;(t)=aon!Y+ An{2e 2+ A* (n(2)* g 100

but ¢;(t) can be complex. ) ,
We describe the general construction of these solutions  bi(t)=bon{¥+Bn{?e!®+B* (n{?)* e~ ',
first in the general case. Let?, wherea=1, . .. n, be the
set of eigenvectors of the real matfk = (m;;) that corre-
spond to the eigenvalues, :
n
my; = z )\aﬁjmni(a)_ (11  The numbersy, and _bo are real, and\, 'B, Co, C,, andC, .
a=1 are complex. Substituting these solutions into the relations

¢i() =conY'+ Cynf2el Ot Cy(n@) e 0,

cr(H)=cinV+CinPe M+ Ck(n(?)*e 1N,

Here theﬁ(a) are the components of the conjugate eigenvec-(lo)’ we obtain the following system of algebraic equations

tors. The ei_genvectors and their conjugates satisfy the fol- 5 B+ boA=c,C%+ciC,, AB=C,C},

lowing relations:

n Di[ (agbo—[Col*)(n{")2+ (A* B+ AB* —|C4|?
n@n(P = 520, :

2, —[CPHNP(nP)*]=1;, i=1,23.

BecauseM is real, each of its complex eigenvalueshas a The complex constanta and B, for example, can be found

corresponding complex conjugatg=\} . The correspond- from the first two equations of this system:
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According to the general classification proposed in Sec.

B= g(coq +c5Cy) 2, the solutions for three-mode models have a representation
0 in the form of third-order quadratic forms,
1 b -
+ [ —(coC +CECp)2—CyCE =, Wi(z,2,t)=|w(2)|’[a;(t) 1]+ bj (1) 4]
402 277G P

o +¢;(0)] ], (17)
= CiC2 ) (13) in the linearly independent differentiable functioglg(z),
B ¥,(2), and ¢5(z) with the multiplier |w(z)|?, which was

After this there are still eight real constants, three of whichintroduced so that the solutions would be general. According
can be found for assigned valuesdf and|; from the last t0 the general relations considered in Sec. 1, these functions

three real algebraic conditions. In order for the correspondobey the following identities:
ing solutions of the systelfY) not to be singulata necessary ajb; |Wi,2+ bjcj|W23|2+ a;C; |Wigl?

condition, the functionsa, ,b;, andc; must not vanish si- Alnv;= > , (18)
multaneously. The requirements Wi

jadl>IAl 1> [Bl.  [col>5(ICy 2+ ]Cl? where

ag|>1A|, >|B|, |col>= +

° ° ° 2 ! ? Waﬁ(z):[lpa!wﬁ]l a#ﬁ, CY,B:].,Z,?J.

and the requirements placed ¢qy, that a these functions e additionally introduce functions of the form
not have poles and)kthey not vanish simultaneously are -
sufficient conditions. ®;(z,2,t) =a;bj| W1 *+bjcj|Wag*+ajci| Wiyl

Thus, it has been shown that three-component diffusive

P = Aj|Waq -+ B | Way| >+ Cj| Wy 2, (19

Toda chain models with two-mode excitation have exact pe-
riodic nonsingular solutions. where
Qj Qj
Bj(t)zajcjzb_jj’ Cl(t)zajbj:C_J]’
(20)

Q.
4. THREE-MODE MODELS: GENERAL STATEMENT OF THE Ai(t)=c;b; =a—_’,
]

PROBLEM

Let us consider models described by equations of pwdRi (D =2j(Hb;(1)¢;(1).

types as examples of multicomponent models with threeAccording to(5), for arbitrary y;(z), ¥,(z), and ¢s(z) the
mode excitation. The equations of one type have the form functions®; satisfy the identity

d 2 2 2
-1 - a, +b; +C;
E\I’J _DjAln\I’j—Fj(\P11q]21 ), (14) A|n(I)j:ajbjCj|W123|2 ]|¢l| l|qlfzz| J|w3| ,
and the equations of the other type have the more familiar (21
form where
(9 ! n
Elnwj_DjAlnq,j:Gj(lpl!\PZ! ) (15) lr//l l/’l lpl

W Z — de ¢ lﬂ/ l)bl’
For convenience, we shall call models of the fdrtd) mod- 1242) 2 T2 2

els with nonlinear diffusion, and we shall call models of the Y3 by Y3

second form models with linear diffusion. After a replace-is the Wronskian of the functiong; . General relations for
ment of variables according to the formulas=InV¥;, these the functionsa;(t), b;(t), andc;(t), under which the func-
equations acquire the form of the respective diffusive Todajons V; and®; satisfy equations of the forrti4) or (15),

chains: can be obtained on the basis of these identities.
P If no constraints are imposed on the forma{z), it is
Euj+Dje“JAuj=e”iFj(e”1,e”2, col), difficult to find conditions under which there will not be any

functions which depend explicitly on time on the right-hand
side of Eq.(14) or (15). In fact, in the general case the

ﬁuj_DjAuj:Gj(eulaeuza ) functions|y;|? and |W;;|? are linearly independent. There-

) ) ) fore, the derivatives of the functiong; with respect to time

We note that equations of the for(@4) can be written in &  can depend only of;, and the derivatives of the functions
somewnhat different form using the replaceméit~1/¥;: ¢, can depend only o, . This situation and the condition

J 1 1 of constancy of the coefficients in the original equations lead
5llfj+DjAln\Ifj:Fj<W—l,\P—2, ce ] (16)  to the equations

L L
The goal of this section is to calculate of the type of nonlin- : : ;
. ; a = ma,, b= m, b, ci= m; Cy,
earity and to construct classes of exact solutions for several ! kzl kK ! gl L ,;1 Jkk
models. (22
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wherem;, = const and_ is the number of components in the

original system. Now, the relations féy; ,B;, andC; follow a

automatically from(22). The form(linearity) and dimension

of the systems of equations & ,B;, andC; should be the . ) , ,

same as fof22). Therefore, the number of different eigen- b*=| Bo+2D4[ky| f exp(— 2 ) Q dt

values of the system of characteristic equationsApsB;,

and C; should not exceed.. SinceA;,B;, andC; are ex-

pressed in terms of pairwise productsafb;,andc;, the

number of different eigenvalues for them doubles in the gen- _

eral case. This imposes significant constraints on the matriynere Q) =a(b(t)c(t), and ao, Bo, and yo are con-

of the coefficients i) in (22), which are difficult to satisfy. stants. Mgltlplylng throggh these equations, we find that
Another way to construct a solvable system of equationsQ (t) satisfies the equation

of mode dynamics is to adopt some constraints on the form

of the functionsy;(z), which have the property of the peri- Q*= ( apt 2D1|k1|2f exp(—2\t")Q dt')

odicity conditions for two-dimensionalized Toda chains.
We require fulfillment of the relations

Wio=K30(2) 3, Wos=K19(2) b1, Wa1=Kkp0(2) ¥,
(23

wherek,, k,, andks; are complex constants, aggz) is an
arbitrary function. As a resulp will have the same form

2:

a0+2D1|k1|2J exp(—2At")Q dt’ |exp(2At),

exp(2At),

exp(2At),

c?= ( Yo+ 2D1|k3|2f exp(—2At")Q dt’

x(30+ 2D1|k2|2f exp(—2\t")Q dt’)

exp(6At).

X('y0+ 2Dl|k3|2J eXF(_Z)\t’)Q dt’

If we introduce the functiorP = [exp(—2\t’)Q dt', we ob-

(17) asV. . : ) e

The system of ordinary differential equatiof®8) in ¢, tain the following equation for it
5, and 3 has a general solution of the form dpP\?2 ) X

B B . at = (gt 2D4|kq|*P)(Bo+2D4|k,|P)
P1(2)=01f(2)cosé(z),  ¥a(2)=0q,f(2)siné(2),
3(2)=1(2) gé(z)=—qS X(ro* 2Dilkal" ),
: '+ odz 9(2)f(2)’ which reduces to the elliptic integral
where dp
k k J
g, =i \/k:: qQp=i \/k:‘: az= vKiko, V(ag+2D4]ky|*P)(Bo+ 2D 1|ko|*P) 7o+ 2D 4| ks|*P)
1

andf(z) is an arbitrary function. = Xe“+co_

HereC, is an integration constant.
5. THREE-MODE MODELS WITH NONLINEAR DIFFUSION Two particular solutions of these equations can be writ-
ten in elementary functions. One can be written in trigono-
We first consider a very simple one-component model ofnetric functions:
the form(14). The substitution of23) into (21) leads to the N N
following identity: ik b(t)= boe

a(t)y= - |
AN =|w(2)|g(2)]? cost

_ At
050’ c(t)=cqeM tand, (26)

where
ablks| || >+ belky|?[ ] >+ aclka|* ¢l
X > ' eM Ky
v o(t)= o= D100|k1||k2|Tv ao:icoma
(24 ’
; i in- k
In a one-component model the requirement that the nonlin bo=c Kol 27)

earity have the form of a function which depends only on the Okgl”
unknown function leads to the requiremegtz) =1w(2z)

and the following equations fa(t), b(t), andc(t): andc, is an arbitrary real constant. The other can be written

_ _ in hyperbolic functions:
a—D,bclk,|?>=Na, b—Djaclk,|?=\Db, At \t

: a)=22_ )= (t)=ceeMcotho
c—D,ab|ks|?=\c. (25) 0 :

sinhé’ sinh@’
. L . . (28
This system is similar to the equations encountered in three-
wave interaction problems and can be integrated in quadrawhere all the constants and the functié(t) satisfy the same
tures. Its general solution is constructed from the followingrelations(27). We note that both solutions can be rendered
relations, which are obtained directly frof®5): nonsingular in any time interval>t, by adjusting the con-
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stants, sinced(t), which plays the role of the phase of the In the case of the condition®3) multicomponent sys-
oscillations in the medium, can be made bounded function items of the form(14) have closure equations which reduce to
that time interval by adjusting the constants. a set of equations of a form similar {82):

Thus, exact solutions of a one-component diffusion L
model of the form aj+DjbjCj|k1|2=k21 1@

—%WlefZDlA INV+AT, (29 L

: e . by +D;aycjlkal®= 2, sujiby,
or, in the form of diffusive Toda chains, of the form k=1

1% _ L
— Sfu=Die"Au+x, (30) cj+Djajbj|k3|2=kZ1 MikCr

whereu=In¥, have been constructed. The same model cafor j=1,2, ... L, whereL is the number of components in

be represented in the following form: the system. The corresponding equations of the model have
the following form:

d 1
Ev:—D1V<;V0 +\v, (31 i
W
wherev =1/"P. The form of these equations accounts for the Ja k=1 HikFk ]
name of the corresponding models, viz., models with nonlin- E‘I’J —DjAIn¥;= w2 1=12,... L.
ear diffusion. J
For a two-component model of the forti4) with the
components 6. THREE-MODE MODELS WITH LINEAR DIFFUSION
\P(Z,Zt)z|W(Z)|2(a(t)|1//1|2+b(t)|1,//2|2+c(t)|1,b3|2), Let us now consider models of the for(h5). A one-

- component model of this form has trivial temporal dynamics.
D (z,2,t) = |W(2)|2(A() | 1|2+ B(1)| tha] 2+ C(1) | h5]?) Let ¥ have the form(17). Then the closure conditions for

. ... the model reduce to the equations
the closure conditions for the model reduce to the condition q

g(z)=1M(z) and to a system of ordinary differential equa-  a(t)=age', b(t)=bee, c(t)=cye",
tions for the coefficients of the quadratic forms of the fol-

; where a,, by, and ¢y are constants, and the model is de-
lowing form:

scribed by the equation

é—i— lec|k1|2:/.L1A+)\la, J e}\t

i —|n‘If—D1A|n\I’=)\+D1qO$
b+D,ac|ky|?= 1B+ \4b, (32) Jt

) with several additional conditions on the constdqtsk,, ks,
c+ Dlab|k3|2=,u1C+)\10, andqo.

Two-component models have more complicated dynam-

. .
A+ D2BClky|*=uoA+ 20, ics, which are similar to the dynamics of models of the form

B+ D,AC|Ky|2= B+ \5b, (33 (14 considered above. Let one component correspond to the
. guadratic form(17), and let the other t¢19). Then the clo-
C+ D,ABJK3|2= u,C+\,C. sure conditions for the system of equations of this model

. . . with allowance for(24) and (23) reduce to the redefined
This system is apparently not completely integrable and al- . . } .

: . . - “system of ordinary differential equations
lows complicated behavior for the solutions. The equations

of this model then have the following form: a=ra+puA(t), Dibcky|2=rva+rA(l),
J Vo+ N h= 2_
E\I,Il_DlA |n\p1:%, (34) b=Ab+uB(t), D;aclky|*=vb+«B(t), (39

! c=Ac+uC(t), Djablks|?=wvc+«C(t).

9 p-1_ _ Vot AWy This system should be supplemented by equations for the

=V, =D AINV,=————, (35 ) :

at w2 coefficientsA, B, andC, which follow from the closure con-
ditions for the model and should have the following form:

or
9 1 u A:)\1a+/.L1A, D28C|k1|2:)\2a+M2A,
—u+D,V|=Vu|=—=(uutAw), 36 .
gt ot (u ) 5 (Ut i) (36 B=X\;b+u1B, D,AC|ky|2=A,b+ u,B, (39
d 1 v o 2—
EU_’_DZV(;VU) — a(MzU"')\zv), (37) C }\1C+/.L1C, D2AB|k3| )\20+/.L2C.

However, the set of equatiori38) already completely speci-
whereu=¥;* andv=",". fies the form of the functiona, b, andc and the form of the
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functionsA, B, andC. Therefore, the explicit forms of the
coefficientsk , and uq », which are now already functions

of time, can also be calculated from this system. In fact, it

follows from (38) thata, b, andc satisfy the same system of

equationg25):
é=Aa+R1bC|k1|2, b:Ab+ Rlac|k2|2,

c=Ac+Rjablks|?, (40

where A=\A—vulk and Ri=uD,/k. This system yields
the relations

d
a(bc)=2Abc+Rla(|k2|202+|k3|2b2),
d 2,2 2.2
a(ac)=2Aac+ R;b(|ks|“a®+|k4|c?),

d
a(ab)=2Aab+Rlc(|kZ|2a2+|k1|2b2).
From the same equations we obtain

d

a(|k2|202+|k3|2b2)—2A(|k2|202+|k3|2b2)
=2R|kok3*Q,

d 2,2 2-2 2,2 2-2

a(|k3| a®+|ky|“c?) —2A(|ks|*a+ [kq|*c?)
=2Ry |k;ks|Q,

d 2,2 22 2,2 22

a(|k2| a?+|kq|%b%) —2A (|k,| %@+ |kq|%b?)

:2R1|k1k2|2Q1

whereQ(t) =a(t)b(t)c(t). The solutions of these equations
can be written

|kal2c?+ [K3| 2b?=[ g+ 2Ry [Koks| 2P(t) JeY,
|ksl%a?+ |k |%c?=[ Bo+ 2Ry |k ks|2P(t) e,
|kol?a®+ ke |?b2 = yo+ 2Ry |Kok |2P(t) JeA.

HereP(t) = fe 2MQ(t) dt. To close the system, the integra-
tion constantsyg, By, and vy, should be set equal to

(9J1)
e T0
k|2

Jo Jo
0= 20 YoT i 2
[ko|* |ksl?

Combining the relations obtained, we ultimately find

2

viv D

Hﬂ_)_+i
K |k K2

N()=

X[ oo+ 2Ry|kikoks| 2P (1) e,

nv
pq(t)=2N— 37 =const,
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3
14 D2 D1D2V
No(t)=——— ———[ 00+ 2Ry|kikoks|*P(t) J&**
kD, K
D?2D,
+ —— " kakoks|?Q(1),
K
. V2D2 .
Mmo(t)= <D, =const.

As a result the equations of the model take the form

VYAV +ud®)+ vV + kD
\1,2

1%
= INY-DAIn¥=

DN+ 1, D) + A p() W +
CI)2

J
EInCI)—DzA Ind=

(41
or

d —2u 2u u-+ u
Eu—DlAu=e (Ne Y+ ue' "+ vel'+ ke’)

iv—D Ap=e %
ot 2

XIN1(D)e" U+ uq()e® + Ny(t) e+ uoe’],
(42

whereu=In¥ andv=In®.

As can be seen from the examples presented, the closure
conditions for one-component and two-component models of
the form(15) lead to nonlinearities, which depend explicitly
on time in a special way. In all likelihood, this also applies to
multicomponent models of that type. Therefore, such models
can be less effective as basic models for wave propagation
processes in active media and the formation of regular struc-
tures in them than models of the for(h4) or models with
two-mode excitation. However, the coefficients in E@kL)
and (42), which are explicitly time-dependent, are of order
D,D, and DfDZ. Therefore, in situations where the dimen-
sionless diffusion coefficients are small quantities, the time
dependence of the coefficients can be neglected. Thus, these
models are no less effective than the moddl) in many
systems actually encountered.

7. GENERAL PRINCIPLES FOR CONSTRUCTING DIFFUSIVE
TODA CHAIN MODELS

As was demonstrated above and in Ref. 8, diffusive
Toda chain models, which allow exact solutions in quadratic
forms, comprise a fairly rich class of models. This class of
models can be expanded by considering multicomponent
systems and systems with multimode excitation using the
more general theory of exact periodic two-dimensionalized
Toda chains, which can also be formulated on the basis of
quadratic formgsee Refs. 11 and 12The solutions allowed
by the models considered form classes of exact solutions,
which depend on arbitrary functional parameters. Although
the stability of the solutions was not analyzed in the present
work, it can be expected that the classes of solutions con-
structed are fairly stable by virtue of the arbitrary nature of



1038 JETP 87 (5), November 1998 V. M. Zhuravlev

the functional parameters on which the solutions depend. Althis type from standard kinetic models. We can consider the
this points to the uniqueness of the models considered amorgtka—Volterra(predator-prey model without diffusion as
other basic models. Therefore, it would be of interest to findsuch a model. Its equations have the form

the general physical properties of diffusive Toda chains . )
which distinguish them from other basic models and would N1=#xiN3=aNiNz,  Na=BNiNo—xoN;.

account for the existence of special conditions in them thaHere «,, «,, , and3 are constants. Following the general
give rise to regular structures with simple temporal evolu-thinking behind diffusive Toda chains, the concentratibips
tion. This raises the question of the physical principles forandN, should be replaced by the apparent entropies of each

constructing them and employing them as basic models. component of the system according to the formula
The usual means for constructing autowave models are
S]_:_In Nl! Szz_ln Nz. (43)

kinetic equations or balance equations for physical param-
eters of the systems supplemented by terms that are respophen the equations of the model describe the production of
sible for the diffusion of individual components in these sys-entropy in each component of the system:
tems and by nonlinear sources, which take into account the .
mutual influence of the individual components on one an- Si=—ki1taexp—S,), S;=—pexp—S))+«;.
other. The type of nonlinearity is usually dictated by some (44)
simple physical arguments, for example, by the probabilisticThe constantsc; and «,, which describe the natural birth
nature of models of the Lotka—Volterra type, or by the formrate of the prey and the natural death rate of the predators,
of the law of mass action and the requirements that the norcorrespond in such a formulation to the natural constant in-
linearity vanish at equilibrium points of the medium for crease in entropy in Componen(me prey and the constant
reaction—diffusion models. decrease in entropy in componenitBe predators In this

One of the characteristic features of diffusive Toda chaincase the entropy should be regarded as a measure of the
models is that they have a nonlinearity of the type observedumber of available states of the system, rather than as a
in Toda chains, i.e., a sum of exponential functions withmeasure of its disorder. Under such an interpretation the re-
exponents that are multiples of the fields in the model. Thisnaining elements of the equations also describe the produc-
type of nonlinearity usually does not appear explicitly in antion of entropy components due to the interaction of the sub-
autowave theory, since, for example, the kinetic equationgystems with one another. Thus, the system of equatibhs
describing the variation of the concentrations of SUbStance§|ready has the form Corresponding to Toda chain models
contain power-law nonlinearities due to the form of the lawgnd has the meaning of equations of entropy component pro-
of mass action. If these arguments are followed in interpretguction. Obviously, in kinetic models without diffusion that

ing and analyzing diffusive Toda chain models, it is naturalhave rational nonlinearities replacements of the fa¢8)
to try to impart to them a form in which the nonlinearity has will always lead to Toda chain equations.

the form of rational functions of components of the model. It | et us now consider the transition from kinetic models
is not difficult to see that the equations of diffusive Todawithout diffusion to models with diffusion. Under such a
chains written in terms of the unknown functiofs; are  transition Eqs(43) are supplemented by a diffusion flux of

similar to kinetic equations with diffusion relative to the con- “matter.” As a result, we obtain equations of the following
centrations of substances with nonlinearities in the form oform:

rational functions like, for examplé34) and(41). However, )

although the diffusion operator transforms into a new diffu-  N1—D1AN;=x3N;— N3Ny,
sion operator in this formulation, additional terms appear. .
These terms describe physical processes which are not N2~ D2AN2= N3Ny~ «oN;. (45)

present in the other formulation corresponding to the generaiereD, andD, are the diffusion coefficients of each of the

form of diffusive Toda chains. For example, components in the system. The model does not contain any
) other mechanisms for the transport of “matter.”
(VW) If we now utilize the replacemer(#3), the equations for
‘PiAln\I’i:A‘Pi_ . .
W, the apparent entropies of the components of the system now

contain terms, which, according to their form, can be inter-
The last term on the right-hand side of this expression can bpreted as the advective transport of matter with the velocities
interpreted as the transport of a component with the conceref the mediumv,=—-D,VS; for component 1 and/,=
tration ¥; by a flow having the velocity field=VW¥; /¥;. —D,VS, for component 2:
Although there is, in fact, no advection in the model, the . )
additional source is such that it is completely equivalent to S~ D1AS, —Dy(VS) "= —r1+ aexp —S,), 5
advective transport. Thus, diffusive Toda chain models con- . 5
tain some additional physical mechanisms for the transport 527 D245~ DaVS)"= =~ Bexp( =Sy + rca.
of matter not included among the mechanisms usually conThe original model does not contain these terms; therefore,
sidered in basic modefs. to avoid their appearance in constructing a diffusive Toda

In order to demonstrate the role of these additionalchain model, Eqs(44) should be supplemented by a diffu-

mechanisms in the dynamics of diffusive Toda chain modelssive flux specifically of entropy. Then Eqgl4) take on the
let us examine the formal method for constructing models oform
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S —D,AS,=— ki +aexp—S,), (47) the principal methods for _constructing_ diffusiye Toda chain_
' models from standard basic models with nonlinear sources in
S,—DLAS,=—Bexp —S)) + «s. the form of unknown power-law functiongoncentrations

This system of equations already has the form of two-As has been shown, this transition can be accomplished for-

component diffusive Toda chains and is similar to the mod mally in many cases that are of interest from the standpoint
els considered here and in Ref. 8. of practical applications by replacing the concentrations in
What distinguishes Eq$46) from (47) is the presence of the equations by quantities having the meaning of entropies
additional entropy sources, whose values are always positivef the spatial distribution of the components in the system
in all space: and replacing the diffusive fluxes of matter by diffusive
3,=D(VS)2>0, J,=D(VS,)2>0. fluxes of entropy. .
_ In this paper we have not presented any comparisons of
The influence of these sources can be understood on the bgre models investigated with the already fairly standard clas-
sis of their analogy to the advective entropy transport causedification based on the form of the null isoclines of nonlinear
by flow of the medium with the rates sources® This was due, on the one hand, to the great variety
u;=—D4VS;, u,=-D,VS,. of types of sources in diffusive Toda chains and, on the other
As can be seen, the rates of advective transport correspond tPSmd' to the fact t.hat, 'as was shoyvn in Ref. 8, SQWC?S V\,"th
the transport of entropy in the direction opposite to its gra_d|fferent forms of isoclines according to the cla55|f|c§t|on in
dient, i.e., these sources accelerate obliteration of the entrogye- 3 @nd formal constancy of the form of the solutions in
differences. The absence of these sourced i means that the class of quadratic forms can be obtained by combining
the both the entropy and concentration differences are oblithe variables and equations of multicomponent systems.
erated more slowly in that model. This points to the reason
why regular structures appear “more easily” in diffusive
Toda chain models with entropy diffusion: the specific slow-
ing of the diffusive obliteration of these differences favors
the formation of regular structures. *)E-mail: zhuravi@themp.univ.simbirsk.su
This fact, in turn, points out a general way to construct
basic models of the diffusive Toda chain type that describe
the appearance of regular structures in active media with
diffusion. In fact, if there is a certain model of the form
1H. Haken, Synergetics: An Introduction: Nonequilibrium Phase Transi-

J ; tions and Self-Organization in Physics, Chemistry, and Bigl@py enl.
at Ni=DiAN;i=R(N, Nn), 1=1...n, ed., Springer-Verlag, Berlin—-New Yorkl978 [Russ. transl., Mir, Mos-
. . . cow (1980].
where R(Ny, ... ,N,) is a rational function of both argu- 2| prigogineFrom Being to Becoming, Time and Complexity in the Physi-
ments, then we can use the replaceniént:S;=—InN,; to cal SciencesW. H. Freeman, San Francis€b980 [Russ. transl., Nauka,
go over from it to the diffusive Toda chain equations Moscow (1985)].
P 3V. A. Vasil'ev, Yu. M. Romanovskj and V. G. Yakhno, inAutowave
Processesin Russian, D. S. Chernavski(ed), Nauka, Moscow(1987).
Esi —DiAS=R(exp(—Sy), ....exg—Sy)), 4V. A. Davydov and V. G. Morozov, Usp. Fiz. Naulk66(3), 327 (1996
[Phys. Usp39, 305(1996].
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We study the double ionization of the atonieshell by a single photon in the relativistic energy
domain. The differential and total cross sections of the process are calculated. It is shown

that the ratio of the cross sections of double and single ionization increases with the photon energy,
tending to the limit 0.3422, whereZ is the atomic number or the nuclear charge. The

formulas are found to be valid faf>1 andaZ<1, wherea=1/137 is the fine-structure constant.

© © 1998 American Institute of Physid$1063-776(98)00111-3

1. INTRODUCTION K-shell of the atom. At high photon energies the formula for
this ratio becomes very simple and the ratio tends to a con-

Double photoionization of atoms has been studied forstant limit 0.34Z2. All the formulas are valid for atoms with
more than 30 years. This reason for this extended interest in>1, since we use perturbation theory in the electron—
the problem is that the ejection of two electrons by a singleslectron interaction. At the same time, wherever it is possible
photon is determined solely by the electron—electron interacwe do expansions in powers of the Coulomb parameter
tion. In view of this, electron correlations manifest them-and é= aZE/p, whereE andp are the electron energy and
selves here most vividly. The main research, both theoreticahomentum, so thaZ must be much smaller than unity.
and experimental, has been focused on the nonrelativistic
domain of photon_ energies,<m (mis the electron m_aéé 2 AMPLITUDE AND CROSS SECTION OF THE
andt 2:1]_1?6 helium atom as the simplest multielectronse| ativiSTIC DOUBLE PHOTOEFFECT
systen.

The characteristic features of the nonrelativistic double ~ We examine double photoionization at photon energies
photoeffect are the constancy of the rafi@f the cross sec- ©@>n=maZ. Using the Furry representatiohwe can rep-
tions of double and single ionization in the high-frequencyresent the double-photoeffect amplitude to first order in the
region |<w<<m (I is the binding energy of &-electron electron—electron interaction by eight Feynman diagrams,
and the very nonuniform distribution of energy among thefour of which are depicted in Fig. 1. The other four diagrams
photoelectrons. The region of the electron energy spectrurdliffer from these in the sign and interchange of the final
that contributes the most to the cross section is the edg&atesy, andy, (or the initial statesy, andg). We will
region, where the energy of one electrén, is much higher always assume that; > p,.
than| and that of the other,, is of orderl. However, as Analysis of the diagrams shows that diagrams a and a
shown by Amusiat al® and DrukareVt? if we allow for the  contribute the most to the cross section in the edge region of
contribution of the centralmiddle) region of the spectrum, the electron energy spectrunp,&>p,~ 7, where % is the
where the photon energy is more evenly distributed amongverageK-electron momentui?) Here the denominators of
the two electronsiE;~E,), we can get a correctioR’ to R the photon and electron propagators of these diagrams are
that increases witlw but remains a small quantity of order small, whereas the denominator of the electron propagator of
(o/m)R in the nonrelativistic domain. This suggests that inthe diagrams b and’'lis not small(~w), and neither are the
the relativistic domainn~m the central part of the electron denominators of the photon and electron propagators of the
spectrum is as significant as the edge part. diagrams c, d, 'c and d. However, the momentum transfer

The relativistic double photoeffect has been studied onlyto the nucleus in the edge region is larges |k—p;—p,)
by Drukarev and Karpeshif,who derived a formula for the ~|k—p;|> 7, just as in the single photoeffect. The electron
differential (in the electron energycross section and found can transfer such momentum to the nucleus only over short
the dependence of the rati®on the photon energyw. We  distances, which reduces the cross section substantially. On
believe, however, that their expression for the cross sectiothe other hand, in the central part of the spectrum the photo-
in the central region of the spectrum contains errors. Bearinglectron momenta may add up and balance the photon mo-
in mind the ever growing interest in the problem of doublementum. As a result the momentum transferred to the
photoionization at higher and higher photon energies, waucleus is low ¢~ ») and the process takes place at great
have rederived the formulas for the relativistic double photo{atomig distances from the nucleus, where the probability of
effect. In this paper we establish the energy and angular digdetecting both electrons is the highest. Below we will also
tributions of photoelectrons and derive a formula for the ratioshow that the size of the central region ) is much larger
of the cross sections of double and single ionization of thehan that of the edge region-(). These two factors enhance

1063-7761/98/87(11)/9/$15.00 833 © 1998 American Institute of Physics
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/’ Ve the field differs little from the Coulomb field. Hence the use
'/;,‘ £ ¥, A / w, of Coulomb wave functions and the Coulomb Green’s func-
g + g tion is justified.
'/7:, % "fa, Y% Since in the edge region one of the photoelectrons has
a b low energy >~ %), the vector part of the electron current is
small compared to the scalar part:
l/;)' Y %' Ya P2
+ _ _
A - g v, * %, E _ " o, Vb~ HQDEZQDﬁ, U, Yolp™ 5,05 (6)
~ N
c ;‘ (<pp2 and ¢4 are the nonrelativistic analogs of the functions

by, and i), and in the sum ovep in (2) it is enough to

FIG. 1. Feynman diagrams for the double photoeffect. Solid lines denot¢egve the term withu=0. If we go over to the momentum
electrons in the Coulomb of the nucleus, dashed lines denote photons, ar}%presemaﬂon we obtain
wavy lines denote the electron—electron interaction. !

df
Mq= f (ZT)3F1(Dl,f)D(f)Fz(P2,f), Y

the contribution of the central region to the cross section,
making it comparable to the contribution of the edge region™’
The other parts of the spectrum have essentially no effect on

here

df’ df
the total cross section and are not considered in this paper. Fl(pl,f)=j 2 )61
a
2.1. Energy and angular distributions of electrons in the
edge region of the energy spectrum ><<¢pl|f' +kye('|GElf1) volf1+ ), (8)
The amplitude of the double photoeffect in the edge re- df
gion of the electron spectrum is represented by diagrams a = f :J' 2 f fo_f 9
and 4 2(p2.f) —(277)3<¢p2| 2)volfa— 1), 9
M gdgez Ma=My . 1 1
D(fyY= —=———, A=g,+lI. 10
In the coordinate representation the amplitudg can be ) f2—A2—i0 £2 (10
written

The regionf~f,~f,~ » provides the main contribution to

=, o the integrals in(7)—(9). Sincee,=p3/2m~1~aZz, in the
Ma_f Pp, (M) y"pa(r’) dr lowest order inaZ we can put
expiRA)— ' 1
< D gt @ o= 1
here and use nonrelativistic Coulomb wave functions for the wave

. B A functions of bound electrons and the low-energy photoelec-
<Dp1(r’):f Yo, (" eexp(ik-r)Ge(r",r')dr”,  (3)  tron. Then

J

R=[r—r'|, A=E,—Ejs=gp+l, FZ(vaf):WIZWBNl(_O-,_)<(Pp2|\/i77|f>1 (12

(4) 7
E=Ei—A=m—e,—2l, &=E,—m, whereN; = 5%/ 7, p=maZ, andw, is the Pauli spinor with
whereGE is the relativistic Coulomb Green's function for an the zth component of the spin equal o We denote the
electron with energ¥, i, andy, are the wave functions of Possible values ok by « and 8, with
K-electrons with different orientation of sp?h,«/fpl and p, 1 0
are the Dirac-conjugate wave functions of the electrons be- wa=(0), Wﬁ':(l)v
longing to the continuous spectrud; andp,; (E, andp,)
are the photoelectron energy and momentum, ghdre the  The matrix element of the operatdf;,, in the momentum
Dirac matriceg'summation oveg is implied. The notation representation is

A is used for the scalar produgtA= voPo— 7-A. For lin-

wiw, =1. (13
AN

early polarized photons with momentuknand polarization (fIVi, If")y= - (14)
vectore we have (f=f")+n
e=—ye ek=0. (5) Calculating F4(p4,f) is the most difficult thing here,

sinceF, contains the relativistic Coulomb Green’s function
The integrals in2) converge at ~r’~ 51, and the integral  with a low energye=E—m~1. For such a function the
in (3) converges at”~|k—p,;|"1~m~1. At such distance Coulomb parametef=«ZE/p is order unity and we cannot
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use it as an expansion parameter. Howei@rcan be sim-
plified if we allow for the fact that the wave function of the

high-energy electron can be expanded in powers of the Cou-

lomb parametersxZ and &,=aZE;/p;~aZ (we assume
that aZ<1):

<‘pp1| :Upl{<p1| — aZ(pq|VoGEL+ - - -1,

whereGF1 is the relativistic propagator of the electron with
energy E; in the absence of an external field, aug1
=u£lyo, with Up, the Dirac bispinor with momenturp;.
Below we will show that both terms are needed(ib) to
ensure that the expression oy in the lowest order ivZ is
correct.

Let us calculate the contributidm,, of the plane wave to
the integral in(8), the first term of the expansiailb):

(19

— . J
F10=Nyu, eU(f)uo, U(f)=—0—77<K|GEVi”|—f>,
(16)

wherex=p; —k, andug is the bispinor of an electron at rest,
YoUg= Ug. Although the relativistic Coulomb Green’s func-
tion in (16) corresponds to an electron with nonrelativistic

energy, this Green'’s function cannot be replaced by the non-
relativistic Green’s function, since one of the momenta on

which it depends is relativisticl(~m). Hence we transform
U(f) so that the Green’s operat@tg is sandwiched between
the nonrelativistic momenté~ f’ ~ . This can be done by

using the Lippmann—Schwinger equation for the relativistic

Coulomb Green’s functiof®

GE=GF- aZGFV,GE, (17)

where — aZV, is the operator of the interaction of an elec-

tron and the Coulomb field of the nucledﬁgz voVg. The
matrix element oV, is defined in(14) with »=0, and the
matrix element ofGF has the form

(f|GE|f"y=GE(f)(2m)38(f—f"),

E f+ (18
— . m
GE(f= YT g2 g2
p2—f2+i0
Substituting(17) in (16), we obtain
E J
U(f)=G (k) e (K]Vi,|—f)—aZ
| ’ ’ E
Xf (277)3<K|V0|f X (f |chin|_f>]- (19

The dominant contribution to the integral (h9) is provided

by the region wherd’ ~ 7. At such values off’ the factor
(K] Vol|f'Y=4m/ k? can be taken outside the integral sign, and
the relativistic functionGE reduces to the nonrelativistic
function G (Ref. 17. After we have taken the partial
derivative with respect ta; the second term if19) domi-
nates, with the result tHat

dral

U(f)UQ: > G
K

(k) J(m,f) 20
an v
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where
J 1f):J f/ Gnonre . —f
(77 (271_)3( | C |77| >
2ipm
= 2 1({[Vpysi,|0), (21)
| —fxd y+1\'¢  azZm 22
Yo y y-1, ' ° p
= - ® 8wy _
Flo—uple 1+ﬁ UoN]_T _% J(7]-f)y (23)

herek = a-k, and a= y,y is the Dirac matrix.
Inserting the second term on the right-hand side of Eg.
(15) into the integral(8) yields

_ R ~ d
Fu= aZN1Up1<"|V0|0>GE1(k)e%J( 7,f)uo

(24)

Comparing(23) and (24), we see that both terms in the ex-
pansion(15) of the wave functions yield contributions of the
same order ineZ to the amplitude of the process. The am-
plitude (8) becomes

Amral

(pi—w?)

17

—%)J(n,f).

:Upl(’R_ a))éUONl K2

Jd
Fi(p1.f)=FiotF11= T)\la( - 5})3( 7,5, (25
8mn—
’\1‘1:N1 4 Upng
xe|l 1+ ® +~k—_w—K2 26
€ % 2m p%—wz anv ( )

whereuy,, is the Dirac bispinor for an electron with momen-
tum p and polarizationh. HereT, , is the amplitude of the
single photoeffect, as a result of whichkaelectron with
polarizationa absorbs a photon and is ejected from the atom
having polarizatior\ ;. Inserting(11), (12), and(25) into (7),
using (21), and performing certain transformatiofdetails
can be found in Ref. 17 we obtain

M= —K(2)T, W] _c2_(Pe)f 2
a— (V) xlaW}\ZW[% V= | - 7 ' (7)
m 277/\/;
K(v)=N;N,. —J(v), N2 = ,
=N, ) N, = =27 v7)
(28
8z Iy I _ Y
J(V)_(1+§)3 ey e € (= (v+2)7 Y2,
(29
2 1t745(1-1)
I1=exp<—ﬁarctan/;) fo mdt, (30
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I ER IR 1-¢ 5o
|2—J0 Wq)l(t)q)z(t) dt, S_ngH (31) 200: 0.5
where 150:
- 2 Vr(1-1) 100k
<I>1(t)—exp< \/_arctan+—bt 50: o
[//.2.0
3%+1)(1-1)%+6L(1—1t%)+2(1+1)? .
Dy(t)= ( g2+ X t)2+ < t2)+ ( sz, 0 50° 100 150°
[(2°+1)(1-)°+4L(1—-t9)+(1+1)7] 6,

with a=v+2+2, andb=+v+2—2. The amplitude and FIG. 2. Angular distributions of high-energy electrons from the edge region,

cross section of the double photoeffect in the edge region 0¥61)=C 'do*/dQ;=2°B"'C 'do¢edd;, with C=r5a"Z® and the
the spectrum aFé value of B defined in Eq.(45). The numbers on the curves indicate the

values ofw/m, the photon energies in units of electron mass.

Medge —K@)[T, aW)\ZWB T\ BW)\Z ol (32
(4ma)’———dp,dp,
da;dge=T| ed942 25 S(E;+Ep,—2m—ow). )= 8J%(v) 39
(33 1—exp —27/\v)
The bar over the square of the amplitude indicates summa- do™* 45 @
tion over the polarizationa, and\, of the final electrons TN =1oa”2°S(61),  To=ro, (39
and averaging over the photon polarizations
O L L R g (40)
——+——=si ,
edgel2 2 edgel2 S(61)= K2 ® !
1A

1 with k2= (p;—k)2. The right-hand side of Eq37) is inde-
=K¥( V)E > {|TMa|2+|TMﬁ|2} pendent of the angle of the outgoing low-energy electron.
N1k Thus, in the edge region of the spectrum the low-energy

1 electrons are distributed isotropically in solid angle. The an-

=2K?( V)Z 2 |T}‘1}‘0|2 gular distribution of the high-energy electrons is determined
Mrork by the functionS(6,), which also gives the angular distribu-

=2K( v)||\/l—+|2. (34) tion of the electrons in the single photoeffect. Figure 2 de-

picts this function for different photon energies. We see that
Here|M*|? is the square of the simplgingle) photoeffect as the photon energy rises, the angular distributions narrow
amplitude summed over the photoelectron polarizatiops — and shift toward smaller angles, but no high-energy electrons
and averaged over the polarizations of the photeg) @nd  are ejected in the forward directiord{=0). Formula(40)
the bound electronXp). The differential cross sectiolo ™ implies that there are no high-energy electrons emitted in the
of the photoeffect on th&-shell (on two electronscan be  backward direction §;= ) either. Nonzero fluxes of such

expressed in terms of this quantity: electrons ford;=0 and §,= = can be obtained only if we

allow for higher-order corrections ieZ to the amplitude

dot :4ﬂ IYRIE dps —m-w). (35)  andcross sectiol?. Integrating(37) over the ejection angles,
(2m)? we arrive at the following expression for the energy distri-

Since in the edge region we hattlg—m=¢,~1, EQs.(33) bution of low-energy electrons>g<m):

and(35) yield dort
, e QZ(V) o (0), v<(aZ)2, (41)
dagdge=;a2K2( v) dp,do™. (36)
_ _ ot ()= 00Z%(w), oo=mr5a, (42)
We direct thez axis along the photon momentuknand
denote the solid angles into which the high- and low-energy am?p3 (4 E;—2m(E; m_ E;+p;
glectrons are ejected HY1(0,,91) andQ,(6,,¢,), respec- e(w)= 5 §+ E,+m m- E m '
tively. Substitutingdp, = (7%/2) v dv dQ,, K?(v) from Eq. (43

(28), anddo* from Ref. 19 in(36), we obtain
with E;= o+ m. If we use the definitiori38) and Eqs(29)—

doegge  Q(v) do” @7 (31), we find that
dvdQ,dQ; 4,72dQ,’

Q(0)=0.168, Q( >1)*i Tl (449
where ' ' v 7
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Q Q
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1073
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. FIG. 3. Energy spectrum of low-energy electrons
from the edge regionQ(v)=2?dogyido" dv,
with v=¢,/I.
107 3
0.051 10°8F
1 10_7 aaaal .
0 0.5 1.0 1 10 100
v v

The values ofQ for other values o can be found from the o
diagram in Fig. 3. Bearing in mind th& rapidly decreases MazupléGa(K)y“f
with increasingy, in calculating the total contribution of the
edge region of the spectrum we can replace the upper limit of
integration with respect te by infinity:

(2m)®

X (q—f| 1) D (P2 ) Up, ¥,u(Fl5),

B & k=p1—K, gq=px+p;—Kk, (46)
02d5e=§o*(w), B=f Q(v)dv=0.090. (45
0
=U. y* _ PP
A very close numerical resultB(=0.093) was obtained by Mp=Up, ¥ f (Zw)ng(q frk)e(a—fly,
Amusiaet al® and Drukarev and Karpeshifibut a consis- -
tent QED derivation of Eq(41) is done only in the present XD (pa—Hup, v,u(fl¥g), (47)

paper. Equation$41) and (45) are valid for both relativistic o
and nonrelativistic double photoeffects only if the high-WhereG, and G, are relativistic electron propagatofs8)
energy electron momentugy is much higher thany. This ~ With energiesE;=m—¢, and E,=m+ w, respectively. Al-

requirement is needed if we want the expanimﬁ) to be IOWing for the fact that aq"" n the Ieading contribution to
meaningful. the integrals in46) and(47) is provided byf ~ 7, we have,

to lowest order inwZ,

2.2. Distribution of photoelectrons in the central region of

the spectrum D(pz—f)z—s, Gp(q—f+k)=G(k). (48
2

The double ionization process may place with low mo- . ]
mentum transfer to the nucleus~ ». In this case the pho- T0 the same order imZ, the wave function of the bound

toelectron energies occupy an interval in the central part optate is the product of the spatial nonrelativistic functibs)
the energy spectrumgg~E,). The limits of this interval, and the Dirac bispinouy:

called the central regiohare established below. In the cen- W

tral region we must take into account all four diagrams of |y} =|1s)uq;, um:( '), i=a,B,

Fig. 1 (diagrams a—x as well as the diagrams with the initial 0

states interchangediagrams &-d'). However, it is enough P

to calculate only the diagrams a and b, since the other dia- (f |1s)=N1( — —)<f |Vin|0>- (49
grams can be obtained by interchanging the initial or final a7

states or both states.g., diagrams ¢ and d are obtained fromThe normalization constait,, the Pauli spinorsy;, and the
a and b by the interchanges, — ¢z and ¢, < ¢y ). Since  matrix elementgf|V;,|0) have been defined if12)—(14).
both final electrons are relativistic, for their wave functions  Inserting(48) and(49) into (46) and (47), we obtain
we can take plane waves. The energy of the intermediate

electron is also high. For this reason, we can expand the _wj e (1) y*u U v u (50)
relativistic Coulomb Green’s function in powers of the Cou- S 2me, P e Y T0aTp, Vit

lomb parameterg and «Z and keep only the first term, i.e.,

the free-particle relativistic Green’s function. As a result the  \, — ®(q)—

=——u, y*Gy(k)eu QU Uog, (51
amplitudes for diagrams a and b are b 2me; P, Y o 0alp, Yu=0



838 JETP 87 (5), November 1998 A. I. Mikhailov and I. A. Mikhailov

472 \? E,+E;=w+2m, py+p=k+q. (59

q2+47]2

()=

(2m) In the second equation i%9) we can pug=0, since the

. . . . e are dealing with small values gf As a result we find
The amplitudes for the other diagrams can easily be derlve\él ing wi values q utwe

from (50) and(51). The total amplitude of the process in the E,=VEI+ w?—2wp;ty,

central region is (60)
JE, E;

JE; E,

M central_ Ma+ M bt Mc+ Md

~Ma =My =Me=Mq - 53 and the functionE,(t,), which can easily be found by the

Calculating the square of its absolute value, summing ovetormulas written below.

the polarizations of the final electrons, and averaging over According to(58), the phase volume i(67) can be writ-
the polarizations of the initial electrons and photon, we arten

rive at the formula

p1Eq
dp,dp; 8(e1+eo—w)=dqdQl——, 61
—2 (DZ(q)W(El) p2 pl (81 €2 (,U) q 1X(t1) ( )
| M centra| 4 ! (54)
(2m)°E4E, where
where JE Egp;— wE t
9E2 oP1—wE
) ) x(ty)=[1+ =, (62
2|l 2 Mw IE; E2py
W(El): +E1E2—P1nPont . . . .
€182 €183 with Eg=2m+ w. Since the dependence qgrin (57) is con-
tained only in the factof?(q), integration overn is easy:
X (2mo+m?—E E,+ plnp2n)]a (59

| @%@ da=np. 63
with e1=E;—m, e,=E,—m, p;p=p1-N, pon=p,-n, and

n=k/|k|. Equation(55) clearly shows thaV depends oft;,  As a result,

E,, and the angles of the ejected electrons. However, using

the laws of energy conservatior (+&,=w) and momen- . A mp, W(E,) 2 493 3
. _ ntral” 1 &— dQl, A= 7Tr0a’ Z =0'Oz .

tum conservationd=0), we can expresk,, p;,, andp,, Tce 16 sz x(ty)
in terms of E4: (64)

E,=2m+w—E,, The formula become more compact if we pot=1 and in-

(56)  troduce a new variable in terms of which the kinetic ener-
Ef—ES+w’ gies of the electrons can be expressed:
pln:Ta P2n=P1n(1<2).
w w
=— =—(1— <x<

Substituting(54) for |M++ 2 in Eq. (33), we arrive at an 1 2(1+X)’ g275 (1-x), O=x<l. (65)

expression for the dlfferentlal cross section of the double
photoeffect in the central region: Then

2 16
arg p, dp; W(E;)=—F(x) (66)
doll =——®? Oer,te—w). V7w ’
central— 16772 (Q) ( 1) wE2E1 ( 2 1 )
(57  where

This cross sectiof57) is proportional tod?(q), which is of x |2 x\2 2 (a4 21—x2/x§
order unity in the central part of the spectrum and rapidly F(x):( 2) 1+(—| + —+(—) —

. : 1-x Xo o o (1-x?)
decreases outside the central part, reaching values of order
(«Z)® atg~m. In (57) we go from the variable, to the (67)

variableg. _ _ with xo=+vw/(w+1), and the angular distribution of the
As in Sec. 2.1, we direct theaxis alongk and denote  high-energy electronéwhen the kinetic exceeds/2) from
the solid angles into which the electrons are ejected)ldy  the central region assumes the form

and(),. For g and(}, fixed, E, depends orkE,, so that the
removal of the delta function by integration with respect to dtféeﬁm_ A pp F(x)
E, gives rise to the factor dQ; w2 E; x(ty)’

(68)

-1
(58) where

JE,

JIE,
J dE; 8(E;+Ey—2m—w)= ‘1+ -

—Egw(1—t?)+2t; V4w + 302+ 0?t?

where the derivativeE, /JE, is taken at a value dE; that X=X(ty)= 5 , (69
satisfies the equations Eo— o]
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for t;=+w/(w+4) . The restriction ort; follows from the

requirement thak be positive. Att;=Jw/(w+4) we have
x=0. Ast, increasesx reaches its maximum value=x, at

t;=1. Thus, the range of values af consistent with the
equalityg=0 extends fromx=0 to X=X,

The angular distribution of the low-energy electrons
(when the kinetic energy is less than2) can be obtained
from (57) if we replacedp, with dg. Then, reasoning along
the same lines as we did in deriviri§8), we obtain

do—ge:tralz A & F(X)
dQ, mw? E1 x(1)’
70
X(t )=—E0p2_wE2t2 t,=cos# 7o
2 E1p> b2 2
where
Eow(1—t3)—2t,\4w+ 3w+ w’ts

X=X(t,)= o .

for t,<ow/(w+4).
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FIG. 4. Angular distributions of high-energy electrons from the central re-
gion. The numbers on the curves indicate the values/af, and the value
of A is defined in Eq(64).

In the central region, the angle of an ejected electron and

the electron energy are linked by a rigorous relationship:

E2-E3+ 0’ Egx+o

t,= 72
! 2wp; 2p; (72
Using the formula that follows fron(72),
7TE2
dQl:p_X(tl) dx, (73
1

we can easily go from the angular distributiod8) to the
energy distribution:

++
do'central
= <
dx

=

<

=

A
—2F(x), 0=<x=<Xg. (74
w

3. RESULTS AND DISCUSSION

The angular distributions of the high- and low-energy
electrons(Egs. (68) and (70), respectively belonging to the
central region are depicted in Figs. 4 and 5 for three photon
energiesw=0.5, 1.0, and 2.Qin units of electron magsA
characteristic feature of the double photoeffect is the nonzero
forward (,=0) and backward §,= ) electron emission.
The differential cross section #&=0 for the single photo-
effect is finite only if we allow for higher-order Coulomb
corrections and is of orden%a627 (see Ref. 19 At moder-
ate values o¥ the contribution of the double photoeffect to
the forward electron emission%r§a4z3) may become
much larger than the contribution of the single photoeffect.

The contribution of the central region to the total crossTo separate the contribution of the single photoeffect at

section of the double photoeffect is given by the formula

O—(-:*—e-r:tn:-ﬂ: Af(w), (75
where
Xo
wzf(w)Zf F(x) dx
0
1 4\? 1
:|1+5|2+ 6 |3_Z|4 y (76)
with
1+Xg
|1:X0(w+2)_|_, LZInl—XO’

Xo 5
|2=E(3w+ 5)— ZL,

Xo
|3=Z

1 1
2_ 7 -
(w+1) 2((0-0-1) a%g

3
+ L

7 3
3_ 1 2, °
(w+1) 4(w+1) +8((u+1) 16%,

=2
476

|

small angles, the electron energy must be fixeHatw+ 1.

A_lwzda“/: Q 2
0.8
0.6/
0.4f
0.2
L . v‘:/’ ' 1 1o
0 60 90’ 1200 150° 8

FIG. 5. Angular distributions of low-energy electrons from the central re-
gion. The notation is the same as in Fig. 4.
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FIG. 6. Energy distribution of high-energy photons from the central region, _2.
x=2¢e,/w—1. The rest of the notation is the same as in Fig. 4. 10 . "“'o EEE— "l e,
10~ 10 10 10

@

FIG. 7. Dependence on the photon eneagpf the total contribution to the
The energy distribution(74) for three values ofw is double photoeffect of the electrons from the central regibfw)
depicted in Fig. 6. The vanishing of the cross sections at = %cenusl 90Z°, Of the total cross section of the single photoeffeciv)

; = o /002% and of their ratioB(w) =220 .o . The values ofv are i
=0 means that two electrons with the same energy cannot be’._/ 0% 3nd of their ratio(w) =Z"ccenys . The values of are in

. ) g - 4 " “Units of m, and = mr3e”.
ejected simultaneously. This is not a trivial fact, since ejec-

tion is not forbidden by the energy and momentum conser-
vation laws(Eq. (59)) atq=0. A special study of this prob-
lem done in the Appendix shows that the contributions to the Blw)= ——. (78)
amplitude of all the Feynman diagrams describing the double ¢(w)

effect in the present approximatidfig. 1 depicts only half o the ratio of the cross sections of double and single ion-
the number of such diagrameancel out ak=0 andq=0.  i,4tion we obtain a simple formula:
Note that in Ref. 14 the cross section of the process reaches

its minimum atE;=E, but does not vaniskand in fact is o't B+pB(w)

(79

not smal), which points to an error. Drukarev and ot 72

Karpeshift* may not have accounted for all the Feynman

diagrams describing the process in the present approximdhe functionse(w), f(w), andB(w) are depicted in Fig. 7.

tion, since the formula for the cross section simplifies only if While ¢(w) andf(w) decrease with increasing, their ratio

all the diagrams are taken into accouint Ref. 14 the for- B(w) increases, with the rapid increasesat: 1 changing to

mula is much more complicatgdand the amplitude of the the slow increase ab>1. Already atw>0.7 the ratioB(w)

process vanishes when the electrons have equal energies.exceedsB, i.e., the contribution of the central region to the
Figure 6 shows that in the central region, as in the edg€ross section becomes larger than the contribution of the

region, the photon energy is not evenly distributed amongdge section.

the electrons: the maximum of the cross section appears at At low and high photon energies we can derive simple

values ofx close toxo(w)_ All the curves end ax:xo(w)_ formulas for the fUnCtion&?, f, and [‘3 For instance, in the

We do not consider the behavior of the cross sectiorxfor nonrelativistic domain’Z’<w<1 we have

>Xo(w), since here the cross section drops by two to three 322 32 ©
orders of magnitude when we move away fragfw) only pw)=—0 "7 flw)—0 2 Bw)=—r,

by Ax~aZ (see Ref. 1¥. However, in the narrow edge re- 3 15 5\/5
gion 1—x~ «?Z? studied in Sec. 2 the cross section rapidly (80)
increases withx, reaching its maximum value at=1 (see  and the ratioR (Eq. (79)) differs little from the constant
Eq. (41) and Fig. 2. B/Z2. Drukarev?® used Coulomb functions for his calcula-

The total cross section of the relativistic double photo-tions and a value oB(w) that was larger by a factor of two
effect is determined by the sum of the contributions of thethan the one in80). The explanation lies in the fact the in

edge(Eq. (45) and centralEq. (75)) regions: removing the delta function DrukarEvdid not account for
the factory ! (Eq. (58)), which arises when one replaces the
0" = 0gaget Ocenna AMB(w) + (o)} phase volumedp, with dg. In the nonrelativistic domain
(@) x_1=1/2, which follows from(62).
= UZ:’ {B+B(w)}, (77 At high photon energiese{>1) we have
_ 4 1 7
where (@)= ol 1730
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1 3-Indw

f(a))=$(1+—w ), (81
1 2/3—In4w

1, 20

Theo™ *-to-o* ratio (79) tends to a constant limR(«) as

w—0:8)

 B+0.25 034
oz 2

This valué’ is almost four times larger than the correspond-
ing nonrelativistic limitB/Z?.

R() (82
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APPENDIX

We wish to prove that in the approximation adopted in
this paperthe first order inz ! and the lowest order inZ)

the double-photoeffect amplitude vanishes when the ejecte;gg

electrons have the same energy.

As shown in Sec. 2.2ZEgs. (50) and (51)), each Feyn-
man diagram in Fig. 1 in the central region of the electron
spectrum can be written

M;=®(q)L;(g=0), i=a,b,...,d. (A1)

Introducing the four-vectors
e=(0g), k=(wk), p1=(E1,p1), p2=(Ez,p2),
(A2)

jlaz (upl’)/OUOa ' up1w0a)!

jZB:(upz'YOUOB! UpZYUog)-

setting E;=E, and g=0 in (59), and performing simple
transformations, frongs50), (51), and(Al) we obtain

LatLp=(mw) 2{(ej1a)(Kj2p)
—(€j2p)(Kj1a) = (€P)(j1ai2p)}- (A3)

A. I. Mikhailov and I. A. Mikhailov 841

with p;+p,=k atq=0.

The contribution of the diagrams-ad’ can be obtained
from (A5) by the interchangex< B8 and therefore is also
zero. Thus, the sums of the primed and unprimed diagrams
in Fig. 1 are equal to zero separately. Note thd gt E, the
sum 3;L;(q) is of orderq, but allowing for such terms
would lead to a correction- «?Z? to the total cross section
of the process.

*)E-mail: Mikhailo@thd.pnpi.spb.ru

YIn this paper we use the relativistic system of units, in wHichc=1.

2pPrimed letters indicate diagrams obtained from the corresponding diagrams
in Fig. 1 by an interchange of the initial states{a’, etc).

3The subscriptz on the wave function should not be confused with the
fine-structure constant.

Yntegrals of type (21) have been considered by Gorshkov and
Polikanov!6-18

5The normalization constants\ﬂZ_Ei from the electron wave functions are
incorporated into the respective bispinmr@l.

9The same value as in E(B2) was obtained in Ref. 17 for the ratio of the
cross sections of double and single ionization of an atom in one-photon

nnihilation of an ultrarelativistic positron arkdelectron.

rukarev and Karpeshtharrived at the following values fo8 andR in

the ultrarelativistic limit: 8()=0.5 andR(c)=0.59Z2. Their value of

B() is almost twice as large as ours, probably for reasons related to the

loss of the factor 1/2 in averaging over photon polarizations. We cannot

indicate the reason more exactly since Ref. 14 does not contain the inter-

mediate calculations.
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This paper solves the problem of the interaction, via the field of virtual photon field with the
emission or absorption of a real photon, of two atomic electrons located at arbitrary

distances from one another. The interaction is interpreted as a third-order QED effect in the
coordinate representation. The role of intermediate states with positive and negative frequencies is
studied. A general expression is derived for the matrix elements of the operator of the

effective electron—electron interaction energy for different types of quantum transitions. The
expression makes it possible to calculate the probabilities of the corresponding transitions and to
examine various patterns of induction of polarizing fields by one atom at the point occupied

by the other atom. The exchange of virtual photons between the atoms located at arbitrary
distances from one another is shown to lead to additional terms in the operators of spin—orbit

and spin—spin coupling of the atomic electrons, over and above those in the corresponding Breit
operators. It is shown that there is an important difference between the induction of

polarizing fields and the transfer of optical photons. In particular, it is found that when polarizing
fields are induced, a situation may arise in which the disappearfanoguction of a

photon takes place at the point occupied by one atom, while absofjetioission of the same

photon occurs at the place occupied by the other atom. A block diagram of an experimental
device that could be used to study this property of polarizing fields is presented. Finally, a method
of deriving integral field equations is proposed. The method is based on allowing for

polarizing fields, and its effectiveness is demonstrated by the example of electric dipole and spin
transitions in the spectrum of interacting atomic electrons.1998 American Institute of
Physics[S1063-776098)00211-X

1. INTRODUCTION tion method. An operator describing the interaction of two
electrons via the field of virtual photons was derived as a

In classical electrodynamics, a system of interactingsecond-order perturbative effect. However, the use of the
charges in motion can be examined by introducing retardeg@eijt operator is limited to moderate distances between the
potentials. Following Darwih(see also Ref.)2 one can in-  glectrons. Hence research into the problem of two electrons
troduce a Lagrangian function for this system to within termsye|onging to two atoms located at arbitrary distances from
of order (/c)? wherev is the velocity of the moving ,ne another was revived in the early 1970s in connection

charges, and is the speed of light in vacuum. Itis in this i intensive studies of the behavior of multiatomic systems

approximatiop that thg sys_tem of charges can be examlneiﬂ a light field. For instance, Chang and Stétdgamined the
without allowing for a light field. The passage to a system Ofresonant interaction of two neutral atoms separated by dis-

interacting neutral atoms followed by the passage to Rances greater thanit/ vy, Wherewyg is the resonance fre-

Hamiltonian operator was carried out in Refs. 3 and 4. The nev in th trum of the interacting atoms. This effect
effect of a light field was taken into account in such asystemque cy € spectrium ot Ihe Interacting atoms. 1hIs efiec

phenomenoalogically by simply replacing the momeptaf was consu_llered a second-orde_r QED effec_t W|_thout emission
the atomic electrons with,— (e/c)A, , wherei is the particle or a_bsorpt|on of real p_hotons_ln the electric dlpolg approxi-
number e is the electron chargd, is the vector potential of mation. The resonant interaction of two hydrogenlike atoms
the light field at the point occupied by thi¢gh atom. An located at arbitrary distances from one another was examined
interaction Hamiltonian for ai-atom system including the N Ref. 10 as a second-order QED effect with allowance for
light field was derived and then successfully used in explain©rbital and spin degrees of freedom. There a relativistic op-
ing the anomalous density dependence of the intensity gtrator describing the interaction of two electrons to within
light echd by the presence in the intensity of light echo of terms of order 1 was derived, but in the passage to the
terms proportional td\® and N* (in addition to terms pro- nhonrelativistic limit the focus was also only on electric di-
portional toN?). pole transitions.

After Darwin, the theoretical study of the two-electron  Lifshitz,'* Fedyushir? and Akhiezer and Berestetski
problem was continued by BréitL.andau’ and Bethe and studied the interaction of two electrons as a third-order QED
Fermi® who used the Dirac equation and the QED perturbaeffect with emission or absorption of a real photon under the

1063-7761/98/87(11)/13/$15.00 842 © 1998 American Institute of Physics
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very stringent condition that the interacting particles have  As shown in Ref. 10, an electron polarizing field, inter-
well-defined momenta before and after collision. This is thepreted as a third-order QED effect, is the field of the sur-
case of the interaction of two free particles. However, therounding dipoles in theN-atom system. By summing the
situation is inappropriate for studying quantum transitionspolarization fields in such a system we are able to derive an
between states of atomic electrons, where the constants oftegral equation describing the propagation of light in a di-
motion are the square of the total angular momentum and thelectric mediunf. We have successfully used this equation
projection of the total angular momentum on the quantiza{as have other researchets solve various boundary-value
tion axis. In the present paper we examine an entirely nevproblems of classicdf nonlinear? and quantum optic¥’
problem: the interaction of two atomic electrons located afThe near-field effect was studied in Ref. 16.
arbitrary distances from one another, with emisgiansorp- The present paper is a step in the theoretical studies of
tion) of a real photon in the coordinate representation andhe problem of two electrons belonging to two hydrogenlike
with allowance for various quantum transitions and interme-atoms located at arbitrary distances from one another. We
diate states. derive an expression for the operator of the electron—electron
Drake" examined the interaction of two atomic elec- interaction via the exchange of virtual photons. The expres-
trons in a heliumlike atom as a QED third-order effect andsion allows for additional retardation in the spin—orbit and
allowed for intermediate states with positive and negativespin—spin interactions of the two electrons. In our research
energies. The role of intermediate positron states in the prolinto the problem we examine the various properties of polar-
ability of quantum transitions accompanied by emiss@in-  izing fields in the two-electron system.
sorption of a real photon was estimated. A detailed investigation of the two-electron problem is
The next step in studying the problem of two electronsimportant if we want to derive new integral equations that
was taken in Refs. 5, 3, and 10 for the case of two hydrodescribe the propagation of photons in a medium in accor-
genlike atoms located at arbitrary distances from one andance with the different types of quantum transitions in the
other. There formulas for electron and positron polarizingspectrum of the interacting atoms. In the present paper we
fields were derived in the electric dipole approximation.  use a specific example to derive integral equations for the

I :
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FIG. 1. Feynman diagrams for the electron—electron inter-
action of two atoms with emission or absorption of a

5 g 6 é photon.
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electric and magnetic fields in dipole and spin media.

2. THE EFFECTIVE INTERACTION ENERGY MATRIX
FOR TWO HYDROGENLIKE ATOMS LOCATED
AT ARBITRARY DISTANCES FROM ONE ANOTHER

The Feynman diagrams for the electron—electron inter-
action are depicted in Fig. 1. Integrating in tBenatrix with
respect to time, frequencies, and wave vectors of the virtual
photons, we arrive at an expression for the matrix of the
effective interaction energy of two atomic electrotigere
h=c=1):

O. N. Gadomsky and K. K. Altunin

il (B ()| — e
ex|i||wp (OFN ||l' r|)@(+)(r’)y’\1’<m+)
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r
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wherew|" andw,”) are the frequencies of the initial states
of the electronsw!|,"”) and w{*) are the frequencies of the
final electron statesW () are the solutions of the Dirac

equation for a positive-frequency electrob(f} =W {)* y,,
\I’f)?r))* is the conjugate wave function,,= B, y;j= —iBq;
(i=123),
0 o 1 0
o o) Plo 1)

and o are the Pauli matrices. The primes on the radius vec-
torsr and they matrices correspond to different wave func-
tions of the interacting particles, and the matrices with
different numbers of primes commute. Summation2ri) is

over all intermediate statds. with positive and negative
frequencies. Electron states with negative frequencies are in-
terpreted as positron states, and we do not introduce the pos-
itron wave function, which contains the charge conjugation
transformation. The reason is that a linear combination of
states with opposite signs of charge cannot be a general so-
lution of the Dirac equatiof® In this paper we use the solu-
tion

\If=2 arw£“+2 blyl ),

v=> alyi+ 2 by, (2.19

r r
wherea, ,a;r, b, ,brT are operators of second quantization of
the electron—positron field. The passage fr&fY; to the
matrix of the effective interaction enerd®.1) is done using
the relation
Si@f=—ZWiUi(ﬁf5(a)(r+)—w(+)—w+w§)+)—w$1+)), (2.2

m

where the sign of the frequenay of the optical photon
indicates that in the vector potential operator >y, A, we
have specified the negative-frequency part, which is propor-
tional to the annihilation operator for a photon of the given
mode.

2.1 Exchange of virtual photons

Let us start with the first term on the right-hand side of
Eg. (2.1), in which we identify the factor responsible for the
exchange of virtual photons between the electrons. We write
the expression for the distance between the electrons as fol-
lows:
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contains all higher-order corrections. This can easily be veri-
, (2.39) fied by substituting the expansid.3) in (2.6) and compar-

ing (2.5 with (2.3"). Thus, in our study we allow for the
here a=|a’—a"| is the distance between the atoms¢ interaction of two atomic electrons of arbitrary multipole
=g~ ¢, where& and &” are the displacements of elec- order.
trons in the atoms with respect to their nuclei, ai The Hamiltonian operators for separate atoms with fixed
=M,(a,A§ are corrections terms incorporating higher nuclei have the form
powers of the ratid\ &/a.

[r"—r"|~a| 1+

a-A M
§+ 1
2 a

2
We introduce a system of units in whiah#* 1 and as- H"=ca/-p"+ y,mc— Zl_e,
sume that &
1 a-A& Z,€?
— (+)_ () _ < "m " " " 2
C|wn wp | a <1. (2.9 H”"=cd"-p +’y4mC2—?, 2.7

Here the distance between the nuclei may vary within broa

g ) %herep” andp” are the electron momentum operators, and
limits: |A¢|<asc. We then find that

Z, and Z, are the charges of the point nuclei. Obviously,

other terms can be introduced into the operat@rg), e.g.,

terms determined by the finite size of the nudlmi core of

an atom and by nuclear spin. We calculate the commutators
-1 in (2.5 assuming that the nuclei are immobile. Then with

1

|r//_rm|

i
eXF{E|wE1+)_ wé+)| |r./r_rm|

Lo ot - o) 1+ aas My n#1 we have
a c' " p a2
[f Hm] h 2 a//.n
i a-A LRTI=—incar s,
x[1+—|w§f>—w§3“| —§+M1 r"—r"|?
c a ,
[HH,[HHI’ fz]]:ac [d/.p”,[d!/.pﬂl,h,//_r//!|]:|
aAé M,]?
__2(w§1+)_wg+))2 +_ (23,) 3 2 U " " n 1
2c a a +a°c a/-p,a/-p,|” ali
r"—r

We remove the frequencies froff2.3') by using the 28
equation (2.8
H g () = w0l gl (1. Thus, the operator describing the exchange of virtual photons

in the matrix(2.1) takes the form
Then we find that the following transformation holds:

1 ex I_|w(+)_w(+)||ru_r///
|r//_r///| c'n p

1 i
Zoxt — ) — P
—>aexp(c|wn w, '|a

X‘

1 " " w'(:r)_w(f;r) @
+ [ ) —— P (2.5

2C |~ Wny

i
Bll(r,,! rm):eZeXF<6|wg+)_w§)+)|a

|1—a/'.a/" a'n

|r//_r//r +a|r//_r/rr|2

A§ My

+_
a? a

1 d-a"—(a'-n)(a"-n)
2 1l

+-R
1+a |rrr_rm|

1 .
|
+ ol H"]

zd"a’”—B(d’-n)(d"'n))], 2.9

|r//_r///|3

where Ry =(o}”-o{)/(0-0{’), and n=(r"
where we have introduced the notation —r")/|r"—r"|. In the particular case of a resonant exchange

, of photons we hav®;;=1, and the operatai2.8) becomes

_ a the respective operator of Ref. 4. In the limit->0 andRy
f;=a- =’ =1, the operatof2.9) coincides with the Breit operatd?.
Let us examine the physical meaning of the expansion
as (2.5). In deriving the Lagrangian function to within terms of
fo=alr"—r"|+ e —2a’. (260 order /c)? for a system of charges with a continuous

spectrunt. we use a universal time scaRéc, whereR is the
Equation(2.3) shows that, in addition to a series expansiondistance between the charges. This is the time the interaction
in powers of 1¢, we have a series expansion in powers of thetakes to propagate from charge to charge, and an expansion
small parameteA ¢/a. Here in the 1¢-expansion we restrict of the retarded potentials in powers Rfc is possible if we
ourselves to terms quadratic in cl/ while in the assume that the distribution of the charges does not change
A éla-expansion there are no limits, since the functdn  appreciably during tim&/c. Obviously, this is an extremely
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stringent condition if one is examining extended systems. Irirst) to an intermediate stat®, and then back to the initial
deriving the Breit operatdf for a system of two electrons stateE("), i.e., E{")=E("). The second atom changes its
with a discrete energy spectrum, one can uge/c<1 as  quantum stateEg+)—>E§,+), so that a photon is emitted or
the expansion parameter, whewg is the characteristic fre- absorbed in the two-atom system. The retardation factor for
quency in the spectrum of the interacting electrons, @isd  this type of interaction is exfi/c)|w{"”—w!"|a}. The point

the distance between electrons. Thus, in addition to the timghere a real photon is emitted or absorbed may not coincide
Te=r/c it takes the interaction to propagate, we have thewith the point occupied by the atom undergoing the quantum
characteristic timeT,=2m/wo. Here 2rT.<T,, ie., the transitionE(")—E("). This pattern of quantum transitions
time it takes the electron density in the system of two intercorresponds to diagrams 1, 2, 7, and 8 in Fig. 1.

acting (and moving electrons to change appreciably is B, For diagrams 1-8 there can be transitions in which a
roughly the time it takes the interaction to propagate fromphoton of double energy is emitted or absorbed. The two

charge to charge. Obviously, this is true only if the electronsatoms change their quantum states, i.e., in this case we have
are not too far apart, i.e., for interatomic distance in helium£(*)g(*) and EE)+)¢E§1+)_

like atoms. The expansic(ri.S) is valid for two atomic elec- C. For EE"'): E§n+)! when 0n|y one atom Changes its

trons located at arbitrary distances from one another, sinc§uantum state and a real photon with the enefgy
we have chosef2.4) as the expansion parameter. Here the:|E§)+)_E§1+)| is either emitted or absorbed, interaction

time it takes the interaction to propagale=a/c, is much  yjth a retardation factor equal to unity is possible. Diagrams
longer than the characteristic interatomic time sdgle This  3_¢ possess such properties.
leads to additional retardation in the electron—electron inter-  The pature of the quantum transitions in patterns A, B,

action, with the retardation described by the additional termgnq C is determined by the properties of the operaBajs

in the operatox2.9). o _ ~andA and of the wave functions and energy values of the
As is known, the characteristic frequencies of atomicatomic electrons.

electrons range from several megahertz t8 NBiz, if one
allows for fine and hyperfine structure of atomic levels and
for optical transitions. This poses the problem of selecting
the characteristic interatomic time scalg. Obviously, to ~ 3- CONVERSION TO TWO-COMPONENT WAVE FUNCTIONS
fully account for the retardation effect in the electron—3.1. Exchange of virtual photons

electron interaction we must take the highest frequencies in
the spectrum of the interacting electrons, i.e., optical fre-
guencies, as the characteristic frequencies. Below we shot®
that the operaton2.9) corresponds to different types of §1+)

The conversion to two-component wave functich§”
done by the following transformation3:

; . ) . ¢
electron—electron interaction, and the fact that there is a uni- | (+) p? (+)
. . . . = a.p y (P = _——— (I) . (3.1)

versal time scalel, explains why, for instance, the spin— *n (+) n 8m2c2/ "
spin coupling of electrons contains additional retardation 2mc ™"
terms (additional W'th. respec_t_to the terms obtained in REf' Let us use these transformations to calculate the matrix ele-
13), although the spin transitions correspond to the MiCroL ant
wave range.

Let us now consider the other terms in the matéx), (WFWE* () [By W (1w (), (3.2

which correspond to the other Feynman diagrams in Fig. 1. , . .
Using the same procedure of replacing frequencies with op!n the first term on the right-hand side of E@.1). ,
erators, we arrive at the operat@g (s=2,3, . . . ,8) which We consider the matrix element of the operatdr”l/

are similar to the operatds,, . Here the operatorB,, con- —r”"|' in (2.9). For the intermediate ;tates i8.2 we select
tain various coefficients determining the difference in initial, POSitive-energy states. Then, applyit®l), we arrive at the
final, and intermediate frequencies and different retardatio¥XPression

factors in accordance with the positions of the wave func- i
tions in (2.1). ezexy{—|w§1*)— oy"la

Third-order effects for the Feynman diagrams in Fig. 1
take place provided that the conservation (@) is obeyed. f
X

For emission of a real photon the sign of the frequeacyn
(2.2) must be changed. Thus, for the electron—electron inter-
action energies we have

(I)l(+)*(r//)q);+)*(r///)(I)STIJr)(rN)q)(nJr)(rm)

_ (+)x/pm (+)* /pmm ()
EV)_E%T)"‘EEJH_EE]Hiﬁw:O (21() 8m2C2(I)I (I’ )(Dp (r )CDm (r )

Several patterns of quantum transitions follow from this 1
conservation law. To estimate them, we take two states, say x[p"2b{"(r")]— ———=®{V* (") D* (1))

. . . n 8 22 p n

p andn, in the spectrum of the interacting atoms and assume m-c
that the initial states of these atormsandm, coincide.

A. The exchange of virtual photons with a frequency X(r"M[p' @ (r") ]+
0"=w{"— ol results in a transition of one atofe.g., the "

(+)*/pr m2F(t)
et DI
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1 After the necessary transformations have been done, the
X(r" 71 e (e ) + p—" Lo %L (r)]* operator proportional to f./becomes
m-c
" ” " dr”dr” V(+>:ezexr<i— (+) _ (+>a
XL 5 CE clon = laf o
where we have discarded terms of orders higher than the % (&—1)3 " _ﬁ} n-(n-p")p”
second in 1d. We transform(3.3) so that it takes the form 2 r 2 r
" " ” m R a2
f (I)|(+)*(|’ )q);)‘*')*(l’ )Vg+)@£n+)(r )q)g‘*')(r ) _73“_3[p;/_p///_3n_(n.p//)p///]]
r
:(V(lﬂ)lp,mnv (3.4 . "
: . . 20d L1 (o, 2P
and find the explicit form of the operatM(1 ). Transform- +teex Elwn —wp la m_cr_Z 3.7

ing (3.3 into (3.4) requires integrating by parts. We place

the origin of the coordinate system at the paiftand as- | the limit a—0 and Ry =1, this operator becomes the
. " !

sume that the radius vectorS andr” refer to the first atom  reiarded interaction operator for the two electrons in a heli-

and the radius vectar”, to the second. We also allow for the |, jike atomt® Hence we call3.7) the operator of the re-

fact that the atomic wave functions do not overlap and vani,geq interaction of two electrons located at arbitrary dis-

ish at infinity. This means that, in contrast to the case disignces from one another. MRy =1 (resonant electron—

cussed in Ref. 13, the powers of therl/~r"| do not be-  gjectron interaction the operatoX3.7) can be derived from
come infinite whenr” and r" vary within the regions he classical Hamiltonian function for a system of atoms by
_occumed by the interacting atoms. Taking all these remark?eplacing the electron momenta with the corresponding mo-
Into account, we obtain the operator mentum operator.The terms proportional to 47 in the
matrix elements oB,, are

==, (35

[ 1
V(1+)=ezex%e|wﬁ+)—wé,+)|a o

e’f,
4Am?c?

i
L . . (+) — (), ()
which is analogous to the Coulomb interaction of electrons4 ex;{c | @Wp la
located at arbitrary distances from one another.aAs1,

this term becomes the ordinary Coulomb interaction of elec- [ ( Ry

trons. 2

Let us now examine the matrix element of the other
terms in the operatd®,; by employing two-component wave Ry 1
functionsd)ﬁf) . Substituting the wave function8.1) in the + 71 —2[20”-(n>< p")+20"-(nXp")
matrix (2.1) and multiplying the matrices in the integrand, r
we find that it is enough to replagewith @ in all the terms, 24" -(nXp")—20"-(nXp")]
since they already contain the factocd/We perform trans-
formations similar to those that were used in deriving the a’
operator(3.5. Here we can separate operators containing +3R1,r—40/’-(n><p”)].
different powers of /.

The operator proportional to ¥ has the form

1
1)—2[20”-(n>< p")—20"-(nXp")]
r

(3.8

In the limit a— 0 andR;, -4, this operator becomes the cor-
responding operator of spin—orbit coupling of two electrons
in the Breit operatot® Hence we call3.8) the operator of
4m?c? spin—orbit retardation of two atomic electrons located at ar-
bitrary distances from one another.

e?#?

i
+ + +
V(2I )—eX[Z<E|w$1 )—wij )|a

x[ %[0-0’”—3(0‘”-n)(0’”-n)]
r

a2 3.2. Electric dipole—dipole interaction of atoms located
+ Rllr_5[15( ' -n)(d”"-n)—9¢"-¢"]. (3.6 at arbitrary distances from one another

We turn to the electron—electron interaction via the field
As a—0, (3.6) becomes the operator of the spin—orbit cou-of virtual photons and allow only for the orbital degrees of
pling of two electrong? According to (2.4), for electrons freedom. The corresponding operator\i’éir)ﬁtvgf). As
located at arbitrary distances from one another there is addiroted earlier, in deriving the operator of the interaction of
tion retardation, determined by the retardation factontwo atoms we allow for transitions of arbitrary multipole
expi(i/0)|wi ¥ —w{"|a} and the additional terms if8.6). In  order in the atomic spectrum. Taking into account only the
the particular case of resonant electron—electron interactioterms in the expansions ofrland 1f2 that are linear in the
without photon emission or absorption we hdrg=1. displacementg” and &”, we arrive at the operator
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The operatoR; containing 1¢ squared has the form

i
+ + + +
Vi + VY )—exr<6|w§1 )—w(p |a

R+_ ehz A/A! Ihe V/AI !
X{ d"-d’”—3(n-d")(n-d’”) 3 8m2C2 4 4m2C2 4p
3
a + e ( ! /)A/( ! /) (4 4)
e d//r.p//_3(n.dm)(n_p//) . eZ 4m2C2 p 4 p
mc a? m*c? The terms proportional to & in the transition operator have
" n " " the form
o [Ru_ | PP" Ry (n-p)(n-p™)
2 a 2 a L s,
R, :W i(a’-A")(a"-p")p —=ip “(o’'-A")(d"-p")
Rll plr.pm_3(n.p/r)(n.pm) C
"7 a @9 :

p'2+io’ (¢ -A)phY o

oA
+ ﬁE 0'&( o —
a ox!

a

wheren=al/a, andd"=e¢&" andd”=e&” are the operators

of the electric dipole moments of individual atoms. Here

(3.9 is the operator of the electric dipole—dipole interaction

of two neutral atoms located at arbitrary distances from one
another in the transition of one of the atoms to an interme-
diate state, where the interactig®.9) is the integral part of Wherea=x,y,z.

the process of emission or absorption of a real photon. In the Each of the above operators can initiate a quantum tran-
particular case of the interaction of two atoms without emis-Sition of an atomic electron from an intermediate stafé’

sion or absorption of a real photon, tt&9) corresponds to tO the final state(I)ﬁ*) if the atomic electron reached the

a second-order QED effect, for which the following energy-intermediate state because of an exchange of virtual photons

: (4.5

2 IO"A' [ "2¢ 1 A YN
Pr o —io’-[p“(a’-A")p']

a

conservation law holds: with an electron of another atom. Here the quantized external
E(H) B4 EC)_E(H— g light field .has a potentiah, .eC]l.Ja:| to zero. For. a constant
r m p n : external field the term4.2) is finite, and in this case the

In this case we must s&;; to unity in (3.9), with the result  interaction of electrons belonging to two different atoms via

that (3.9 becomes the corresponding operator of Ref. 13. the field of virtual photons takes place in accordance with the
following conservation law:

4. THE ROLE OF AN EXTERNAL FIELD IN THE ECV-EG+E(Y-E(P=0.

INTERACTION OF TWO ATOMIC ELECTRONS
] 4.1. Allowing for intermediate state with negative energies
We use the transformatigi.1) for the passage from the

wave functions¥ to the two-component wave functiods
in the matrix elements of type

The matrix(2.1) of the effective interaction energy con-
tains summation over the intermediate states of the interact-
o R ing electrons with negative energies. This means that a part
(T (r)|eA’ (r) W (r")), (4.2  of the energy of the interaction of two electrons is due to the

. . . . effect of positron states in the spectrum of the interacting
which enter into the matrix2.1). The matrix elementés. 1) electrons. The effect enters indirectly via the intermediate

ggtt:r?n%%e;ﬁteorinc:;r?cetic\)/rfcct?rtvf/)gt(zl?ct)lrilico;Iaer;treoxrfgrcv?tlhﬁterlg\/irtual states of the electrons. Note that the initial and final
states are electron states with positive energies.

field of real photons. We start with the matrix elemef@sl) The intermediate positron states can be taken into ac-

for the transitions of the atomic electrons through intermedi- . :
o count as we go over to two-component wave functions in

ate positive-energy states. After the necessary transform?é 1) with wave functions of the form

tions have been carried out, we identify the following tran-"""

sition operator in the matrix elemef.1) for the transition o-p

=) 2
of the atom from state(™)(r") to stated{*)(r’): y()= 2mcX! X|(—>:(1_ P )q,f—)
L 2 2 .
RF=eA(r’). 4.2 e 8m-c
The terms proportional to &/are (4.6
ie ie ihe Here, as in Ref. 17, we do not need to go over to the positron
Ri=——(p-A")— =—(A"-p')— — (0o’ -H"), wave function, which contains the charge conjugation
2mc 2mc 2mc transformatiort>
(4.3 However, we will choose another method for allowing

where A’ (r") is the operator of the vector potential of the for intermediate positron states, a method based on the fol-
external field at the point occupied by an electron and specilowing obvious conditions. First, the photon energy is much
fied by the radius vectar’, andH’(r’) is the corresponding lower than the energy of the electron field, and the electron
magnetic field operator[ ' XA']=H"). energy differs little from the electron rest energy. Hence in
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(2.1) we put

Al (1-i0)+w—w!]~-2md, 4.7
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where the operators’ and ¢’ act on the spin wave func-

tions of the electron of the first atom and the operat8r on

the spin wave functions of the electron of the second atom.
Next we use the identities

etc. Second, we introduce the projection operators

" //. " — //. " //+ "
, mc—H’ A7 mc&—H" s o"(o"-p")=~(a"-p") 0" +p",
=, = . l n "
2mc2 2mc2 OJ”'pmr _ 0_/// p/// i% .
with the properties ' 4.12
()=, A=), @4 (OAD e pT)=ATp R 0T (ATXPT) T

Then, applying the transformation of Sec. 2, we separate the
following operator in the first and second term on the right-
hand side 0f2.1):

e
P :W( YaysASA By + By A" yiv5AY),  (4.10

—i p///(AHX 0_//)
+E 0_// " gpg

—20

" H/ AH /N

(4.12

where 6=1,2,3,4, andaé is the four-operator of the vector Suppose that the interaction of the two atomic electrons takes
potential of the external field at the point occupied by theplace in a variable external field and that the vector potential
electron with the radius vectar'. The other terms of the A satisfies the Lorentz conditiohA ,/9x,=0 (n=1,2,3,4).

matrix (2.1) can also be combined into pairs.

Now, using the wave function&.1) for the initial and
final electron states, we transform the operdthi0. Both
R, andR, already have the factor 12, so that the op-

In this case we can ptit

A,

eratorsB,; andB, have a truncated form. We multiply the Then the operatof4.11) takes the form

operators in(4.10 in matrix form and the two-component
wave functions of the interacting electrons and keep only th
terms proportional to &/ Integrating by parts where neces-
sary, we arrive at the following formula for the operator in

(4.10:

e’ i ih a
+_ gy (H) () T
Py 2mc2ex C|mn o |a){ mc 2 o’ -n)
JOA; 1 A ih
XX T, ame TP A
1
X(a"A’)(o‘”'p”)F(o”'A’)a‘”'z o_/a//o_[//
o 1 9 +na o Ao a i
foxy 2] AN G e
>< ! AI 0_// (r//l 0_/// n 1+ ! AI
(o"-A") (0" 0") (0" -p") -+ 5 (0" -A")
>< 1 (r[/ " aA/I 1 a

n&’

! ’ " ”n ﬁ ! " !
X(o" (0" AL 5D (0 Ao =

1
chr(d p)(0"-A )+——0' {(0-A")

a
X" (0" -p") =i (o' n)(0"-A") (4.13)
r

A4=0, EZO. (4.13
3
e I
— (+) (+)
=——7exXp - |w, '— a
2mc clon |
2IAT-0 2+ 20 (A7) >+ AT
| 'nr—z -( n)r—z R °nr—2
+ iﬁ 0_// ANX 1 + i 1 " A”
mc? ¢ n)— 2mer "
1 0_// //XA" + . A” n l
omer & (P et AP T 2mer
% Z apmA/rp'rBN ; apmAn ”’) (414)

The other terms in the matrig2.1) and the corresponding
operators for the intermediate state with negative energies
can be transformed similarly; we denote these operators by
P;, P5, andP, . The physical meaning of these operators
is discussed below.

4.2. Intermediate states with positive energies

We will now discuss the problem of summing over the
intermediate states with positive energies in the matrix of the
effective interaction energy, i.e., over the electron sthtes
We apply the same transformations of matrix elements that
were carried out in Secs. 3 and 4 that involve the approxi-
mate wave function$3.1). Then the first two terms of the
matrix (2.1), corresponding to the diagrams 1 and 2 in Fig. 1
with the same retardation factor €gifc)|w(”—w("a}, take
the form
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Ai@f the formation of the polarizing field in this pattern. Indeed,
- whenr=m, each of these terms contains zero matrix ele-
+ '
S (ORI PN RISV | L7)  ment of type(W ]y, | W (D).
= . S We now use4.14 and(4.15 to write down the vector
7 —i0)+ow— ; L : ) .
ssT Alen(1=10)+0=a; ] potentials of the polarizing fields. To this end we first specify
(@D DD DN DH|RE D) a certain type of quantum transitions between the states of
n p V2 ' 5 , (4.15 the interacting atoms, e.g., orbital quantum transitions. Then,
filo(1-i0)—w—wy '] in accordance with4.3), for first-order effects we arrive at

where the operatorv(;,)l and Vg+|)2 are derived from the the formula for the Hamiltonian operator of each atom:

corresponding operatoB,;;, andB,, . In multiplying the dif- e
ferent matrix elements it.15), we discard terms containing HY =~ Rp”’-A”’, (5.1
1/c raised to a power higher than the third.

The other terms irf2.1) take a similar form. We denote \yhereA” is the operator of the vector potential of the exter-

3 3 3 . . .
these terms bB(*), C{*;, andD(®); . Below we show that ng field at the point occupied by the second atom. We use

the various terms distinguished (.1) have different physi-  (4.14) to write the following Hamiltonian operator:
cal meaning.

r//__i m A (p)
H2_ p 'Ap,

mc
5. POLARIZING FIELDS IN A SYSTEM OF HYDROGENLIKE
ATOMS EMITTING AND ABSORBING PHOTONS e? 1 i
. AP = _ —ex%—woa A", (5.2
The operator$4.3), (4.4), and(4.5), which correspond to 2mc2 n c

first-order effects, contaifas factory atomic and field op-
erators that give rise to the transitions between atoms and@herewo=w\"” —w{*) is the frequency of the—n transi-
photon states at the same point under observation. The sittion. We callA® the positron polarizing field. The polariz-
ation is different for the interaction of two atoms located ating field in (5.2 is due to the disappearance of a photon at
arbitrary distance from one another, with the operatérs4) the point occupied by the second atom, while the absorption
or the matrix element&t.15. In the different terms of4.14)  Oof the photon occurs at the point occupied by the first atom.
we can identify an operator that “acts” at a certain point The other terms in the operatt4.14 corresponding to or-
under observation and an operator that “acts” at the poinfital quantum transitions differ fron6.2) in their physical
occupied by the other atom, which generates the polarizin§roperties. For instance, a term of the fop#-A” corre-
field. Here the polarizing field is a field of virtual photons SPonds to a positron polarizing field, but here the disappear-
rather than a field of real photons. Similarly, matrix elementsance of a photon and its absorption occurs at the same point.
of type (4.15 contain a dependence on the coordinates of the ~ Thus, allowing for intermediate positron states in the
two atoms, one of which occupies the point under observalhteraction of two atomic electrons gives rise to an additional
tion. Hamiltonian for the interaction of the atomic electron with
Let us examine the polarizing fields that form accordingthe external field. As a result, in examining the interaction of
to pattern C of Sec. 2, when as a result of exchange of virtua® System of atomic electrons and an external field we must
photons and emission or absorption of one real photon thadd to the external field” the positron polarizing fiele().
guantum state of only one of the atoms changes. We assume Let us examine the role of the interactioh 19 via in-
that the point occupied by the first atom is specified by theermediate states with positive energies, allowing only for
radius vector, (coordinates’ andr”) and that occupied by orbital quantum transitions. Substituting the operatdrs)
the other, by the radius vectos (coordinates”). The initial ~ and (3.9) in (4.15, we arrive at the following interaction

state of the first atom is labeled and has the energg!”),  Hamiltonian:
while the initial state of the second atom is labeteaind has e
the energyE"). As a result of an exchange of virtual pho- ~ HZ=— Rpﬂ/.,/_\(e), (5.3

tons the first atom arrives at an intermediate s&{&’ or
Ef ) and then goes back to the initial state, i.&(" \hereA® is the vector potential of the electron polarizing
=E{;). One real photon is absorbed at point occupied byjg|q

the first atom, while the second atom changes its quantum

state and reaches the led]")>E{") . This pattern of quan- i

tum transitions corresponds to the first term of the matrixﬁ\(e):eXD(—woa
(2.1) and the diagram 1 in Fig. 1. A similar situation occurs

2 ( pr-A’

h[w|(1—i0)+w—w§+)]

i

2

for the second term irf2.1) with the Feynman diagram 2 e d —3(d"--n)n e

(Fig. 1), where the absorption of a photon takes place not at [ : Im Im _

the point occupied by the atom undergoing &g’ —E{") IMwo a’® im?cag
transition but at the point occupied by the other atom, the " " 5 .
one that forms the polarizing field. The other termg2n) Xp|m—3(p|m-n)n L& J(Ru_ | Pm
with the corresponding diagrams 3-8 do not participate in a® m2c?|\ 2 a
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Ry (NPl Ry Pl—3(N-p)n Ir_1 (_5.2) _and(5.3) we go from the_ vector p(_)tent|als of the_

5 > polarizing fields to the corresponding electric and magnetic
a a fields via the Lorentz conditiodA ,/dx,=0 (Ref. 13. For
1 e d,—3(d;-n)n the a field proportional to exp(iwt) we have

+ . ] im 3 i iw

ilo(1-i10)—w—wy '] wo a E@®=_— al® 7 EP=_—_ aAP , (5.7)

c c
e py—3(py-mn e |[R pr i s(©) ®) ;

+ rl rl (_2'_1 o where the vector potentials' andA'™ are proportional to

im?caw, a® m2c?|\ 2 a the operatocy, of annihilation of a photon with wave vector

k and polarizationn = 1,2 at the point occupied by the atom
that generates the polarizing figfthe polarizer atom Here
the quantum transitiop— n takes place at point occupied by
the other atom(the observer atojnlocated at an arbitrary
(5.4 distance from the polarizer atom.
with Consider the case where the frequeacyf the external
field is close to one of the frequencieg,,>0. The average
wgﬂ_wg) wgﬂ_w;;r) value of the momentum igp’]=(im/e)wg[d’], according
(1 RzFﬁ- to (5.6), and the operator of the electron polarizing field is
®~ o W)~ W
o o . (&)_ [d]
The electron polarizing field5.4) is written in the electric B =VXVX—, (5.8
dipole approximation, which uses the operatdr9) to ac-
count for the exchange of virtual photons_(ﬁ’]4) the opera- where differentiation is carried out with respect to the coor-
torsA’ andA” have been taken outside the matrix-elementdinatesa” of the point under observation. We define the
sign in this approximation. magnetic fieldH® andH® in similar way using the com-
The electron polarizing field5.4) is formed by two at- mon relationship between the vector potential and the mag-
oms, and one of these atoms reach the initial quantum stafeetic field*®
asa result. of the sequence of quantum traqsitions considergd Integral equations for photon propagation
above. This means that #3.4) we can identify the average , an electric-dipole optical medium
value of the electric dipole moment of that atom in a state ) )
r=m. We write the expression for the average value of the e introduce the dipoledy) and momentumd) po-
dipole momentd;, calculated in first-order perturbation 'arizabilities of an atom by the following relations:

Ry (n'prrl)n_ Ra Py —3(n-py)n
2 a 2 a

p;/| . AI!

Ry =

theory:® d'=agA’, p'=a,A’, (5.9
,e _ d(Plm-AS) whered’ andp’ are the average values of the dipole moment
dm=mexq—|wt)2 {w —o+ti(T,+T, )2 and the momentum in a certain state values calculated in
: " e first-order perturbation theory. We can determine the dipole
(Pr- AL polarizability of an isotropic atom in accordance w{th5).
w|m+w—i(1"|+l"m)/2}’ (5.9 To determine the momentum polarizability,, we must re-

place the matrix elementdf,, with the matrix elementg,,
wherew), is the transition frequencjﬂ&r}n is the lifetime of  of the momentum operator i5.5). Then the vector potential
the statd (m), andA’ = Agexp(—iwt). In (5.5 we have kept of the electron polarizing field takes the form
only the negative-frequency part, corresponding to the pho-
ton absorption process, in which the polarizing fiéstd) is e — ad.i e-3(e-nn L 3(e-mn
formed. Using(5.5), instead of(5.4) we arrive at the formula lwg as Pimaw, a’
(the labelm has been dropped

iwg (een)n e e

A(e)_i [d"]=3([d"]-n)n _adT a m_ca'pa [A']=Kg(a',a")[A'],
lwg a3 (510
e [p']=3([p']-nn wheree is the unit vector along the direction of fiell .
iMwg a2 The transition to am-atom system can be carried out by
summing the vector potentia(§.10 and(5.2) of the polar-
lwg ([d']-mn e [p’] izing fields generated b} —1 atoms at the point occupied
¢ a mc a’ (5.6) by the atom with the radius vectaf. We can estimate the

role of the electron and positron polarizing fields in such a
where[ - - -] indicates that the average value of the quantitysystem of atoms by comparing the terms($210 propor-
is taken at time’ =t — wga/ wc. Here we have used the fact tional to 1A with the vector potential5.2). A fact worth
that atoms are isotropic, according to the quantitiemoting in this connection is that the electron polarizing field
(p;i-A")d, andp;,(d/,-A") are equal. contains the polarizabilitiesy anda,,, which depend on the
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random distribution of the natural frequencies due to inho-atomic states separated by the optical frequetgy Such
mogeneous broadening, while the positron polarizing field igransitions may occur independently of electric dipole tran-
independent of this broadening. This leads to a situation irsition, which were examined in Sec. 5.1.

which under certain conditions the electron and positron po- We use the operatdB.6) and then the operator

larizing fields in anN-atom system may be comparable in
absolute value.

Now let us turn to the case of an optical medium, which
we assume to be continuous. To this end we introduce the
density N/V of the distribution of atoms in the medium. to describe the polarizing fields in the system of electron
More than that, we assume that the polarizing figlld0  spins. Here we consider the same pattern of quantum transi-
and (5.2) are proportional to the field inside the medium tions as in Sec. 5.1.
rather than to external field. This makes it possible to write ~ We insert the operatok8.6) and(5.13 into (4.15. This
the following integral equation for the operator the electricleads us to the interaction operator
field strength:

(5.13

|
“2mc? 1

—~~
%Y
N~

+
-
q

Il

Hm: _ he OJ//_H(e)
8 2mc ’

5.1
E(r,t)=E,(r,t)+fgKe(r,r’)E(r’,t—g) dav’ (619

where the magnetic field

+ f ng(R)E(r’,t— E) dv’, (5.11)

e’h? o -H'
. . . . H®=exp —wpa r
Wh_erer is th_e radius vector 01_‘ th_e point under qbservaﬂo_n, ¢ %) amzc2tT Alw(1-i0)+w— ']
r' is the radius vector of a point inside the medium or at its
surface,E,(r,t) is the operator of the external electric field o~ 3(of,-n)n a? ,
represented in the form of a linear combination of plane X - 3 +15-5Ry (o )N
waves with amplitudesy, (Ref. 13 that are coordinate-
independentR=|r—r’|, and 9a2 - 1
_ _ 0_// +
2 1 5 w0 (1-10)— w— 0]
Ky(R)=— —e. (5.12
P
2mc R o, —3(o)-n)n a2 )
. . o x| —————+ 15— Ry (o};-n)n
An integral equation for the operator of the magnetic field r r

can be derived in a similar manner by applying the curl op-
erator to the vector potentia(5.10 and(5.2).

If the point under observatiom, lies outside the me-
dium, the integral in5.11) is over the entire medium. If this

a2
—95Ry ot | (5.19

point is inside the medium, we must first exclude a smallThis is an electron polarizing field, i.e., it is realized via only
region occupied by the atom and surrounded by a sphere ofiatermediate electron states. Equatidril4) implies that can
small radius. . Equation(5.11) in the particular case of zero be no positron polarizing field in this pattern of quantum
positron polarization of the medium and only one naturaltransitions.

frequency in the spectrum of the atoms coincides with the

In (5.195 we distinguish the average values of the spin

integro-differential equation of classical opfits the opera-  magnetic moments of the polarizer atom by a formula similar
tors in (5.10 are replaced by the corresponding classicako (5.5) in first-order perturbation theory. We introduce the

fields. following notation for the average values of the spin vari-
We intend to use Eq(5.11) to solve boundary-value aples in staten:

problems of quantum optics, since this equation incorporates

the boundary conditions. o=(az)mH’,

U= (ag)mH’, (5.16
where (@), is the spin polarizability of the state in state
0, is the average value in stateof the operatog’ with the
matrix elementsq,,= o{/o,, and (g is the corre-

) . . sponding polarizability. Theexpression for the polarizing
Here is another example of an integral equation that cafie|d (5.15 becomes

be derived by the proposed method. In contrast to the previ-
ous case, we consider only the spin degrees of freedom of h—3(h-n)n a2
interacting electrons belonging to different one-electron atH(e):,uB{ a, - 15woaqr—5(h-n)n
oms located at arbitrary distances from one another. Such a

situations is of interest, say, in magneto-optics, in the design 22

of inversionless lasers, and in processes of laser cooling of + 9woaq—5J [H']=K(a’,a")[H'],
atoms. Let us assume that spin transitions take place between r

5.2. Integral equations of propagation of photons
in a system of electron spins

r3

(5.17
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where ug is the Bohr magneton, anld is the unit vector sion takes place at the point occupied by the emitter atom,
directed long the magnetic field vectbr . which is at an arbitrary distance from the polarizer atom,
The passage to the integral equation of photon propagawhere the photon was created.
tion in a continuous optical medium can be achieved in the  The results of studies of the processes of interaction of
same way as in Sec. 5.1, i.e., by replacing the external fieldvo atom in a light field can be used to derive new integral
in (5.17) with the field inside the medium. Then, for spin equations that describe the propagation of photons in a con-
quantum transitions, the operator of the magnetic field at @inuous optical medium. To demonstrate the effectiveness of
certain pointr under observation at timeinside or outside the method of integral equations, we have derived to integral
the medium becomes equations corresponding to electric and spin transitions in the
N R spectrum of the interacting atoms. We have found that in the
H(r,t)=H(r,t)+ f VKU(r,r’)H( r't— E) dv’, (5.18 particular case where the atomic spectrum has only one tran-
sition with frequencyw,,,=0, the integral equation of pho-
whereH,(r,t) is the operator of the external magnetic field. ton propagation in an electric-dipole medium coincides with
the corresponding integral equations of classical optics.
Let us examine the feasibility of replacing differential
equations by integral equations in this problem. Actually, the
Our results can by divided into two main categories. Theintegral equations for the electric and magnetic fields of clas-
first deals with the problem of solving an important QED sical optics are equivalent to the Maxwell equations. How-
problem, the problem of two interacting electrons. The secever, by using integral equations one can derive in a rigorous
ond is devoted to using the solution in deriving integral fieldmanner the Lorenz—Lorentz formula and the extinction theo-
equations in optics. rem and solve a number of important optical problems. And
The interaction of two atomic electrons belonging to twoyet this powerful method has rarely been used. This is be-
immobile atoms located at arbitrary distances from one aneause the integral equations known from classical optics
other is a considered a third-order QED effect, where arhave meaning only for isotropic nhonmagnetic dielectric me-
integral part is the exchange of virtual photons involvingdia. Hence it would be interesting to derive integral equa-
various intermediate states with positive and negative enetions that would describe a much broader class of phenom-
gies. It appears that here the various patterns of quantumna. The present paper is an attempt to do this by studying
transitions leading to emission or absorption of a single phothe two-electron problem in the QED setting.
ton in the system of two interacting hydrogenlike atoms can By studying the interaction of two electron in a light
be classified. In the present paper we discuss in detail thigeld we can distinguish the various type of quantum transi-
pattern of quantum transitions in which one atom is a polartion. In particular, as shown in this paper, we can separate
izer atom and the other, an emitter or absorber atom. the positron polarizing field, which in some cases is not neg-
In contrast to the earlier papers to the two-electron probligible in comparison to the electron polarizing field. Allow-
lem, here for the first time we account for all the intermediateing for the correspondence between Ef}11) and the clas-
states in the spectrum of the interacting atoms rather thasical integral equation, we state that the positron polarizing
only for the w,-states, in which the transition frequeney,, field can be interpreted by introducing an additional current
is close to the frequency of a real photon. Our allowance into the Maxwell equations. Indeed, the derivation of the
for these states is related to the role that the fadRarplay  integral equation of classical optidss based in Ref. 4 on
in the operatorsBg, which describe virtual photon ex- the expansion of the retarded potentials. Here the external
change. field can be accounted for by two methods. The first is based
The earlier papers focused on the interaction of two hy-on the idea of polarizability of atoms, which make it possible
drogenlike atoms in the electric dipole approximation. In thisto allow for what is known in optics as the dipole field. The
paper we also allow for other types of quantum transitionsecond method is based on the idea of replacing the electron
We show that the spin—orbit and spin—spin coupling operamomentap by p—(e/c)A. In the present we have shown
tors acquire additional terms in comparison to the Breit opthat, from the viewpoint of quantum electrodynamics, these
erator. These terms arise because of additional retardation two methods correspond to electric and positron polarizing
the interaction of two atoms located at arbitrary distancedields. The electron polarizing field in the electric-dipole ap-
from one another. Here we introduce a universal time scalegroximation is the dipole field known from optics, a field
the period of optical oscillations, for different types of quan-generated only by electron states in the spectrum of the in-
tum transition. teracting atoms. The positron polarizing field is generated
In the present paper we have shown that three types ainly by positron states. Here we are dealing not with real
field act on each atom: an external fie(thcluding the positron states but with virtual states, and the creation of
vacuum field, an electron polarizing field, and a positron such states is not guided by the law of energy conservation.
polarizing field. We have established that the disappearancehus, the study of the two-electron problem in the QED
of a photon may occur at the point occupied by one of thesetting makes it possible not only to develop the method of
atoms of the system, while the absorption of that same phdntegral equations but also to establish the new mechanism of
ton takes place at the point occupied by the other atomemission and absorption of real photons in a system of inter-
which is at an arbitrary distances from the polarizer atom. Aacting atoms.
similar situation occurs for the emission of a photon: emis-  Two types of atom-—field interaction can be identified

6. DISCUSSION



854 JETP 87 (5), November 1998 O. N. Gadomsky and K. K. Altunin

(e.g., the wavelength of the emission line in a hydrogen la-
sen, which would substantially reduce the effect of retarda-
‘——I——J 1 tion. The experimental device consists of two types of atom-
—Gx 3 ray tubes. Tubel is used for the atom beam in which the
atoms are in their ground state. This beam is irradiated by
light (photons. Spectrophotometed registers the evvents in
which photons disappear, events that are due either to induc-
tion of polarizing fields or to direct absorption by resonant
atoms. In the latter case the atoms become excited and can be
& X sorted in the atomic beam by separadotn tube2 synchro-
I \ nized with tubel by synchronize# there is a beam of atoms
in their ground state. The polarizer atoms in behmct on
the atoms in bearl in such a way that resonant photons are
absorbed, the absorber atoms become excited, and are sorted
FIG. 2. Block diagram of an experimental devices for studying the polariz—by device5. The absorption probability can be calculated to

ing fields of atoms in an external light field=—beam of atoms in ground - - : _
state, 2—beam of atoms in excited stat8—spectrophotometer4 and the first order via the operatajB.B) with the electron polar

5—devices for sorting the atoms in the ground and excited statesizing field (5.10. This_ _mak_es _it possible t'_:) calculate the
6—synchronizer, and—reading device. number of atoms participating in the formation of the polar-

izing field. However, in addition to this process, atoms in
tube 2 become excited due to re-emission of photons by the

here. The first corresponds to the transfer of real photongtoms in tubel, which is located at a distantefrom tune2.
from excited atoms to unexcited. Here the time of radiationThis process has a time lag equaLt@ and can be separated
transfer from one atom to another is determined by thdrom the process of formation of polarizing field by using the
atomic separation. This type of interaction can serve as eading device.

base for deriving the corresponding integral equations for ~ The present work was supported by grants from the Rus-
radiation transfer, which are used, e.g., in the optics of tursian Fund for Fundamental Researbrant 98-02-16036
bulent medig® The other type based on the idea of polariz-and the Federal “Integration” PrograiGrant KO179.
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A theory of coherent interaction between a sequence of ultrashort laser pulses and planar, thin-
film microcavities in the form of Fabry—Perot resonators containing resonating atoms has

been developed. The dynamics of transmission of single laser pulses has been analyzed
numerically. Analytic solutions of the problem of four-wave mixing of optical fields

separated in time have been obtained in the small-area approximation. The dynamic efficiency of
conversion of incident waves to the coherent response (jdddton echpgenerated in a

microcavity can be higher than in the case of a bulk resonant structure. Specific features of photon
echo generation in a microcavity for arbitrary “areas” of laser pump pulses are discussed.

© 1998 American Institute of Physids$1063-776(98)00311-4

1. INTRODUCTION conditions at the boundaries of a resonant medium and for-
mation of standing waves.

Interest in studies of nonlinear optical properties of thin-  The first investigation of photon echo generation by op-
film microcavities has been aroused receftff.In the con-  tical pulses in the form of standing waves was undertaken by
text of basic research, planar microcavities present an eX-e Gouet and Bermafand tackled gaseous resonant media.
ample of a model physical system for studying variousThe main feature of the two-pulse photon echo generated in
physical processes, such as optical bi- and multistabilities; resonant gaseous medium was the presence of multiple
self-pulsations of light, solitonic transmission regime of ul- signals, which was, in the long run, a specific manifestation
trashort optical pulses, generation of coherent light, and dyg¢ inhomogeneous broadening. It is widely known that the
namical chaos. On the other hand, there is a pragmatic i“tefﬁhomogeneous broadening in gases is caused by the Dop-
est in developing such structures since they can be used g% effect, since a moving atom “sees” an optical field at a
components of electronic optical devices. frequency shifted bk- v, wherek is the optical wave vector

Previously interaction between isolated ultrashort Iase%mdv is the thermal velocity of the ato:!% As a result of
pulses and thin_—film_ microc_avities filled with resonant a_ltoms his atomic motion in space, atoms offset from resonance by
has been studied in detail, and it trned out that bi- an £ go to regions with different phase relations in the standing

multistable regimes of transmission of ultrashort pulses can ~ve field. Similar effects oceur in spatially separated light

occur in a nonstationary regime when the pulse duration i%eamsl.e It is also important that in Doppler-induced inho-

less than the irreversible polarization tirteansverse relax- mogeneous broadening. a particular asvmmetry emeraes in
ation) and the lifetime of resonating atoms in an excited state 9 9.ap y y g

(longitudinal relaxation’™2 An important parameter de- averaging over the detuning parametersince atoms with

scribing multivalued nonlinear optical characteristics of mi- détuning parameters of opposite sign travel in opposite

crocavities was the laser pulse “area.” At the same time, itdlrec'uons. This is the fundamental difference between gas-

was shown that the anomalous transmission of “soliton-£0US media and solids, where inhomogeneous broadening is

like” pulses through a thin layer is due to the existence of arusually due to irregularities in the crystal field and is local _in
integral of the motion determined by the form of the under-Nature. As a result, such features of the photon echo typical
lying equations of motioA* _of gaseous media as _the mult|p_le photo_n echo can take place
Effects of bistability in states of such systems occur atn Solids only at considerably high nonlinearity parameters.
sufficiently high atom densities inside their cavities or suffi- I this paper, we theoretically investigate features of in-
cient reflectivities of their mirrors. Otherwise a peculiar teraction between the sequence of ultrashort laser pulses and
mechanism of field energy loss inside the Cavity or due tdhln-fllm microcavities of finite widths and Containing reso-
reflection from its boundaries is active. These properties ofiant atoms inside Fabry—Perot resonators. Computer simula-
the systemsthe existence of bistable states and peculiar distions of dynamic processes indicate that the following effects
sipative property of the mediunare notably different from can be observed in thin microcavitie9: self-induced trans-
those of long, bulk resonant media. Therefore, it seemgarency, which leads to splitting of ampulse into a set of
worthwhile to investigate various coherent processes typicdWwo 2w-pulses with differing temporal dynamics and delay
of bulk active media in the context of resonant cavity exci-times(this splitting is controlled by optical cavity parameters
tation, including photon echo phenomena. An importantand duration of input pulsgsb) population inversion in the
component of this investigation is a consistent account oensemble of atoms at frequencies close to the atomic reso-

1063-7761/98/87(11)/9/$15.00 855 © 1998 American Institute of Physics
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nance; ¢ generation of a multiple photon echo with an ex- imaginary parts of the slowly changing dipole moment am-
cess delay close to the photon lifetime in the cavity. Dy-plitude P, , n, is the population inversion of resonant atoms,
namic properties of photon echo signals are also determinedith
by transient processes associated with formation of the opti-

+_ + vt :
cal field configuration inside the cavity and finite photon P, =(U, +iV,)exdlie),

lifetime in the cavity. Moreover, the dynamic efficiency dur- B JI-R,
ing holographic shaping of nonstationary patterns created in .= (1+yJR,R,)?7,, Ej(t)= L Eo(t), (3
microcavities at the instant that photon echos emerge can be 1-VRR;

substantially greater than in the case of bulk excitation of RR,
resonant media. We discuss a number of feasible practical /- 27mwLNo(1+ VRyR;)
applications of these features. cng(1—VR.Ry)

d,, is the reduced matrix element of the resonant transition
dipole momentN, is the density of resonant atoms inside
2. BASIC EQUATIONS AND SOLUTION TECHNIQUES the cavity,ng is the nonresonant refraction index,is the
) ) L 12 , speed of light, and angular brackets denote averaging over
As in our previous publications;?we define ultrashort the offset parametek=w,—w with a weight function

laser pulses interacting with planar, thin-film microcavitiesG(s), which is the shape of the inhomogeneously broadened
as optical pulses whose duratiorsatisfies line:

T} <2Lnglc<d<To~y, *<Ti~y b, 1)

|7 +
whereT% andT, are the times of reversible and irreversible (Ve)= f_mds G(e)V, -

polarization relaxation in the resonant medium, respectively,
T, is the population relaxation time, and_8y/c is the
round-trip time of an optical pulse in the cavity.

Note also that the relation betweehand the photon
lifetime in the cavity,

Certain features of solutions describing isolated ul-
trashort pulses were discussed previod$fi? In general,
Egs. (2) describe an interaction problem between an ul-
trashort pulse and a microcavity that is nonstationary and
nonlinear in the field, and that can probably only be solved
_ 2Lng - 2Lng numerically.

cIn(R{R,) c(1—RRy)’ Now let us transform Eg92) to a form convenient for
numerical integration. To this end, we introduce dimension-
less variable’$ that are functions of the dimensionless time

Te=

can be arbitrary by virtue of the inequality B,/c<6 [Eq.
(1)] and the condition

T=t/T5 :
1-R;R,<1,

o - | . dudT5 VTR, E.
whereR; , are mirror reflectivities. Another important point e(r)= 7 ,
is that the inequalityT3 <2Ln, [Eq. (1)] means that an ar-
bitrary number of longitudinal cavity modes can be con- |d12|T§\/1+—R2E6
tained within the spectral width of an inhomogeneously ey(7)= 7 ,

broadened spectral line.
The basic equations describing interaction between ul- \/1+—R2V+ 4

trashort laser pulses and microcavities containing two-level v(7,x)= _

resonant atoms were derived in a previous sttidin the i

approximation defined above, in the absence of phase modu- \/1+—R2U*

lation of the external field, and given a “tuned” cavity, these u(r,x)= d—s

equations have the form 2]

~ n(r,x)=n,, x=&T;3, 7o=1/T5.

T 2 —C{VI)=E!
5> g+ TE+ —CU(V)=Eq(1), Then the basic system of equatiof® take the form
K .
d:ts revi—0, Toe+e(7)=e;—CY(7),
@ v—xu(r,x)=n(7,x)e(7),
dv, L dgg? : 5
TR S—TngE+, u+xv(r,x)=0,
an_ 1(R +1)E, V] "= vlret)
dt h 2 Tren where the parametet is defined by the expressions
whereE , is the slowly changing electric field amplitude of ol (1+ R.R)

the optical wave traveling through the cavity in the same C

- (63)
direction as the incident wavél; andV; are the real and 2(1-VR(Ry)
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_ 47%w[d15*NoG(0) Te. ,
= Fong , (6b) - E++(1+0)E. =E, (10

ag

ag is the absorption factor in the low-intensity limit, function where the parameteg is still defined by Eq(6).
Y(t) describes inhomogeneous broadening of energy levels: Calculation of the solution to E10) is straightforward:

2 (= @
Y(7)=;J g(X)v(7,x)dx, (7 E+(t)=~£f dTEg(t—T)exp{—@. (12)
0 Te 0 Te

and the dot over variables denotes differentiation with re- |t 557 12(1+C), the solution(11) simplifies consider-
spect to time. ably:

Note that the spectral line profile plotted against the off-
set in our numerical model is chosen to be symmetrical—in ~ E+(t)=Eg(t)/(1+C). (12
particular, g(x) =g(0)exp(-x’)—and the electromagnetic In this case, the field inside the cavity “tracks” the ex-
field frequency is set at the spectral line peak. ternal field in a quasistationary manner, since the latter con-

Equations(5) and (7) with initial conditions &(—=)  gition allows us to neglect the dependence of the electric
=v(==,X)=u(—*,x)=0, n(—,x)=—1 describe evolu- fied amplitude onr in Eq. (11).
tion of the electromagnetic field of the optical wave interact-  Note that Eq.(12) yields the steady-state electric field
ing with a microcavity, given an incident wave form defined amplitude of the forward wave in the cavity,
by functioneg(7). Note that in the absence of reflection at
the cavity boundariesR;—0, R,—0), 7,—0 and Eqgs(5) V1-REg
describe transmission of an ultrashort pulse through a thin E+:(1_ \/@)(1+C)'
film of resonant atoms.

The choice of the specific technique used in numericafnNd for Ri~R,~1 that amplitude can be considerably
integration of Egs(5) and the algorithm based on this tech- greater than the incident wave amplitueven whenC
nique are discussed in the Appendix. >1). In this case, even thoughL <1,

An important method used in solving the problem of E anl
photon echo generated in a microcavity by a sequence of E,~—F2>  Cc~-—2_,
several ultrashort laser pulses is the so-called “small-areas” V1-R(1+C) 1-R

approximation. In this case, the resonant medium inside the Tpis result depends exclusively on cavity parameters,

cavity can act as a dynamic hologram, and at the momen{nq can be of great significance in solving the problem of
when the photon echo is generated, it can produce patterifioton echo generation by such structures.

that are functions of the original configuration of the exciting
fields.

We now consider solutions of Eg&) under these con- 3. SPLITTING OF SINGLE ULTRASHORT PULSES IN A
ditions. The basic tenet of this approximation is that themICROCAVITY
change in the population inversion of the resonant medium
due to a pulse with an “area’9<1,

(13

Now let us consider the dynamics of interaction between
a single ultrashort pulse and a microcavity taking as an ex-

dip (= ample transmission of optical pulses through a thin planar
o= 7ﬁwE(t)dt ' layer of resonant atoms. The splitting of an optical pulse with
aread which is a multiple of 2r (§=2m7m, m=1,2, )
is negligible. into isolated 2r-pulses in a large volume containing reso-
One can derive from Eq2) a general solution for the nant atoms is a familiar phenomenbtnThe shapes of such
active component of the dipole moment: pulses do not change when they are transmitted through a

|d12|2 - resonant medium, as in a transparent material, and their de-
Vi(t)= 7 f E. (t")n,(t")code(t—t')]dt’. (8) lay At over distance is proportional to their widths (At
e = gl 6/2), wherea is the absorption coefficient. Under the
At n (t')~—1 and under the conditio@>T?%, one can conditions of the problem under discussion, observation of
substitute in Eq(8) this effect is questionable for two reasons: first, becduise
small [by virtue of the condition Rny/c<6 (Eq. (1)], and

* L= : _ second, because of transformation of an isolateep2ise to
JO cogs7)dr= EJ,xeXp('ST)dT_ m(e). a pair of subpulses of approximately equal areas with delay
A7 determined by cavity parametefthe photon lifetime or
Then film parametel®9).
|d, 2 Figure 1 shows as an example the shapes of a soliton-
(VI(t)=— - 7G(0)E . (1), (9) like pulse, e(7r), whose initial profile is eq(7)

=(2/8)sech¢/8), with an area 2 and$=0.5 transmitted
and the equation for the field inside the cavity takes thehrough a resonant medium at different values of the nonlin-
simple linear form earity paramete€ of the microcavity andry=0.1.
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FIG. 1. Time dependencies of the microcavity re-
sponse amplitude(7) to a single-soliton zr-pulse
eo(7) (dashed ling of durationd=0.5 with cavity
parameters,=0.1, C=1.0, 2.0, 2.8, 3.0, and 4.0
(solid lines labeled byl, 2, 3, 4, and 5, respec-

tively).
18 1
Figures 2 and 3 show calculations &ffr) at differentC The parameterry is introduced because the delayed
and 7y for a pulse with are@y=41. pulse is additionally shifted and broadened in the cavity by

These calculations show that as the cavity parameters comparison with the soliton-like response of the film. Note
and C increase, the incident #-pulse splits first into two that an unshifted, inhomogeneously broadened spectral line
sequential pulses, of which the second has a smaller areshape was used in deriving EQ.4). However, no logarith-
then the leading pulse is also split. By comparing the amplimic divergence like that in Eq14) asC—4 *+1 can be
tudes and delays of these subpulses with those of pulses rgeen in our calculations. The divergence in B is elimi-
sulting from transformation of a singles2pulse, we con- nated when the optical frequency is offset from the peak of
clude that at smaller, andC, a delayedr-pulse produced the inhomogeneously broadened line. Therefore, it is prob-
by splitting one of the zr-pulses separates out. Ag in-  aple that a cavity, unlike a thin film, leads to a distinctive
creases, this delayed pulse moves toward “larger” times anghift of an inhomogeneously broadened atomic spectral line.
is no longer visible in the range of delays under considerThis feature can occur because of coupling between two
ation. In the case of a#-pulse, its separation into two sub- resonant systemshe atoms and cavijyia the optical pulse

pulses becomes appreciable on the leading section of theld, and it shows up in the population functiofr,x) of
curve of the field amplitude versus time. The total area ofgtomic

these pulses is approximatelyr3 The second subpulse at |evels.
higher C runs ahead of a negative “half-wave” typical of Calculations of this characteristics of the system for vari-
m-pulses. ous cases are shown in the insets to Figs. 2 and 3. The curves
We can derive the delays of separate subpulses fromglearly indicate that inversion population spectra in this
calculations of time dependencies of the microcavity “re-problem have effective minima at~1. This feature, with
sponse.” For comparison, we can take estimates of delayue account of the symmetry of atomic levels with respect to
timesA 7 obtained by generalizing to the cagg#0 an ana-  variablex, is a manifestation of the “hole burning” effect in
lytic expression forA7 in a thin film for an optical pulse spectra of inhomogeneously broadened resonant levels. The
tuned to the spectral line peak: typical spectral hole amplitude depends on both the photon
Ar= 1t (ro+ BIN[(F 14 1+C)(F3 1+1-C)]. (14) Iife.timg To_in the cavity(Fig. 2 an~d_t1he incident pulse du-
ration § (Fig. 3), and is of order of5™~.

n(x, 7= 25)
ir
4t
FIG. 2. Time dependencies of the microcavity re-
3} sponse amplitudee(7) to an incident 4r-pulse
(dashed curveof duration’d=0.5 with cavity pa-
rameters<C=2, =1, 2, 4, and population distribu-
2t tions n(x, 7=25) of resonant atomgolid lines la-

beled by1, 2, and3).
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a n(x,7 = 20)

3 x
FIG. 3. Time dependencies of the microcavity re-
T sponse amplitudee(7) to 4m-pulses of various
lengths $=1.0, 0.5, and 0.33curves1, 2, and3)
with cavity parameters,=1.0 and(a) C=2, (b)
b n_(x,r: 20) C=3, and population distributiona(x,7=20) of
1 resonant atoms.
2 3
¢ C=3
6 0
3 1
-1
4 2 0 1 2 3 x
1
2
3
2
1

At certain values of the cavity and incident pulse param-characteristic times through variation of the photon lifetime
eters, positive population inversiomg 7,x) of order unity in the cavity.
takes placdsee curves fo€=3, 7,=1, and5=0.5, 0.33 in
Fig. 3), which indicate atomic transitions to~a new excited4_ PHOTON ECHO GENERATED BY A SEQUENCE OF
state. However, at Iarger optical pulse duratié#(l in Flg ULTRASHORT LASER PULSES IN A MICROCAVITY
3) a de-excitation occurs, but the peak on the initial section
of the outgoing signal is sharpened. These features of tem- In analyzing the interaction between sequences of sev-
poral and spectral characteristics of the microcavity indicatéral ultrashort laser pulses and microcavities with a view to
the presence of the superradiation effect in the cavity. retaining arbitrary phase relations for incident waves, it is
Another example of nonlinear optical effects in the cay-more convenient to use, instead of the representation of the
ity is self-induced transparency accompanied by splitting of€sonant dipole moment of an isolated atom in the form of
the leading part of a transmitted pulse intarpulses. The the real and imaginary parts, the complex representation
characteristic splitting of pulses takes place with significantly Pr=(U+iV)explio),
augmented photon lifetimes in the cavifyig. 2).
This effect is somewhat nebulous, because the shift anheree= ¢ in the absence of phase modulation anglis
broadening of the pulse with time are small. Nonetheless, o€ incident wave phase.
calculations allow us to identify the linear part of the delay ~ Note that in calculating the dipole moment of resonant
time A+ as a function ofr, in the cavity and the incident atoms averaged over frequencies within the inhomoge-
pulse durations, which is similar toAt in an extended me- heously broadened line, sind¢ is the shortest of all char-
dium. acteristic times of the problefisee Eq(1)], we can bring the
Thus, the splitting of soliton-like pulses with arga ~ function G(g) outside the integrand:
=am, m=23,...,into a sequence of 2- and 7-pulses o o
after transmission through a thin-film microcavity is caused (Ps(t)>=f de G(e)ps(t)~G(0)f de p(t). (19
by two effects of self-induced transparency typical of thin - o
films and extended media. The main specific feature of thesNote also that for simplicity of notation, the superscript
processes in microcavities is the possibility of changing theiwill be omitted in all subsequent formulas.
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The symmetry of the spectral functions with respect towhereC is still determined by Eq(6) andF(t) is the tem-

the offset leads to the identity poral behavior of the response sign@wo-pulse photon
. echo:
fﬁwUs(t)thO, (16) E = |d12|2 i s d_8E|:2
(=" (Rt D) | 5 E(e)

and, finally, to the formula
. XEY (s)exdis(t—27)]. (24)
<Ps(t)>=iG(0)J de V(1). 17
- 5. COMPARISON WITH A BULK RESONANT MEDIUM
The latter property allows us t_o neglgct the_ phase modulation It follows from the expression foF(t), which describes
even when th_e spectral functid®(s) IS arbitrary. . the temporal behavior of a signal generated in a microcavity,
The solution for the resonant dipole moment of an iSO+ 4t he shapes of photon echo signals in the approximation
lated atom has the form 6>7./2(1+C) are very similar to those generated in bulk
dgg)? it resonant media. Depending on the ratio of the durations of
P.(t)=1— f E.(t)n.(t")coge(t—t")]dt’, (18  incident laser pulses in Eq24), function F(t) is, in the
- general case, either a convolution of the original laser pump
and in the small-area approximation for the first ultrashorffields (6,~ J,) or a time-reversed image of the first pump

pulse of durationd; we obtain pulse (6:<<6,).
5 We now define the dynamic efficiency to be the ratio of
P,(8)=—I |d1 Eil(g)v (19) the intensity of the resonant response at t_he m(_)ment it is
fi generatedt~27,, to the pump laser pulse intensity. From

whereE" ,(&) is the Fourier transform of the function de- Egs.(13) and(24) in the approximations>7¢/2(1+C) we

scribing the slow envelope of the first incident optical pulse °Ptain the following expressions for the dynamic efficiency
The subsequent procedure for calculating the polarizaQ_f microcavities operating in the transmissial) @nd reflec-

tion in the microcavity is similar to that in the case of vol- tion (r) modes:

ume excitation of a resonant medidfhAt the onset, of the (1-R)3(1-Ry)(1+R,)?

second pulse, one can in fact derive from E4®) and(19) Ng= 21— JRR)S(17C)° 2g°, (25

in the approximatiord<1 (Ref. 19 1

d..2 _ (1-Ry*Ry(1+Ry)?
P (ty)=—i %Eil(s)exp(iml), (20) "= 4(1_m)e(1+c)ecz94’ (26

which takes into account the fact that the optical pulse duraWhere the characteristic parameteis, to order of magni-

tion &, is much less than the separatiopbetween incident tude, the “area” of the second pump laser pulse.
laser pulses. It is interesting to compare these results with calcula-

Similarly, the expression for the dipole moment of a fions _for a bulk resonant medium. The photon echo ampli-
resonant atom upon termination of the second incident pulsi/de in that case is given B

has the form - ~% dy))? (= d—sEz({-;)
4 © 4 p2 )_.2m 2
P (ty+ 8= 12L (Re+1)ERS(e)ES (e)expt —iey),
4t 21 XE¥(e)ex —is(t—27)]. (27

) ) Then the conversion efficiency in the bulk medium is, to
and we obtain the dipole moment of the resonant atom avegyrder of magnitude

aged over the inhomogeneously broadened spectral line:

(Cfol—)2
|dyql* w=—15 0" (28)
(P,(1))=i —5-(Rp+1)-27G(0)
ah where 6 also characterizes the “area” of the second pump

de pulse. The relative excitation efficiency is then given by

* _ EF2 Fx ; _
XL 5 Eia(e)ENi(e)exdie(t—2m)]. s 4(1-Ry¥(1-Ry)(1+RyC?
(22) 7 (1 VRiRy)®(1+C)%(apl)?

Then the following equation applies to the photon echo 4(1-R))*Ry(1+R,)?C?
field amplitude at the corresponding time of onset: N (1— VR.R,)5(1+ C)%(argl )2

Note that Eq.(28) can be derived from Eq$25) and
(26) by takingR; ,<1. Obviously, the microcavity then in no

(29

Tc

5 E.+E,=CF(t), (23
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¢ n(x,7)
delV(r) i 2
2 -
2 —
}le((, )(r - ’1) 0 ]
1 3
-1 A
0 1 2 3 x FIG. 4. Response of a microcavigf7) and population distri-
butionsn(x,7;) at various timesr;=14, 7,=28, andr;=90
1+ (solid curvesl, 2, and3, respectively generated by two inci-
) dent pulsey(7)=e{(7) +e{?)(r— r;) (dashed lingin a mi-
crocavity with parameter€=2.0 andr,=0.5.
‘.
0 VA S/ ‘\.\V .~/\VA/\V. : b
M 10 7 r, Y 50 T, 100 7

way differs from a bulk resonant medium of lendthless
than the inverse absorption factag in the limit of low
intensity (@oL<<1).

Evaluating the conversion efficiencies f&=R,~1,
we have

N 16C2
T (1-R?)(1+C)%agL)?’

Remarkably, the relative efficiency f@<1 is

Ja_
v Mv

= 7o

16

~—>1,
7o (1—R)4

mechanism of inhomogeneous broadening of atomic levels
in the cavity when the total area of the incident laser pulses is
relatively large @5+ 682> 6,). The first pulse perturbs the
resonant medium and produces a population inversion,
n(r,x)>0, at offsets comparable to the inverse time of in-
homogeneous broadening=eT5<1). This perturbation
can enhance the system response to the second laser pulse.
Solutions of Eq(5) illustrating these features of the pho-
ton echo generated in resonant structureséps 1.4, 6,
=0.97, pulse duration5=0.57, and delay-, =15.0 at reso-
nant structure parameterg=0.5 andC=2.0 are plotted in
Fig. 4. The lower part of the graph shows the input intensity
eo(7) and response signal as functions of time, and the upper

and thus a microcavity is a much more efficient device forpart shows spectral distributions of population inversion,
generating photon echos than the usual bulk resonant Mex(7,x), at timesr; , 5= 14, 28, and 90 after the onset of the

dium. Similarly, forC>1, the relative efficiency is
16(1—R)? 16
7T (a)® CO(1-R)*

which can also exceed unity.

6. PHOTON ECHO SIGNALS GENERATED BY A SEQUENCE
OF ULTRASHORT PULSES WITH ARBITRARY AREAS

first pulse.

These curves clearly show that the first transmitted pulse
perturbs atoms in the cavity over a broad spectral range
about the resonant frequency. After the second pulse, distinc-
tive oscillations in the spectrum of the population inversion
with period Ax equal to the reciprocal time intervaj be-
tween the pulsesAx~ 7~ 1) are observed. This effect is due
to a distinctive “spectral grating,” and is important in pho-
ton echo generation by three incident optical pulses. In the

For arbitrary areas of pump laser pulses, the basic equdresent case, the first and strongest photon echo pulse elimi-

tions can be solved only by numerical integration. Previ-nates most of the population inversion created by the first
ously, the interaction of isolated ultrashort laser pulses anéncident pulse. The subsequent damped pulses of the photon
thin microcavities was analyzed under conditions that permiecho continue the relaxation of the perturbed resonant
the observation of bistable transmission of optical pulses o$tructure.
aread, close to the critical valu@}.'? The difference be-
tween the temporal behavior of S|gn§1I§ ggnerated on d|ffer?. CONCLUSION
ent branches of the output characteristic is the preséoce
60> 6¢) or absencéfor 6,< () of a delayed pulse, whose The reported results suggest that dynamic characteristics
delay A 7 depends on both the photon lifetimg in the cav-  of photon echo signals generated in microcavities can be
ity and the nonlinearity paramet€r. Under these conditions, similar to those of bulk resonant media. The temporal behav-
it would be interesting to consider two ultrashort pulsesior of generated optical signals can be direct replictisnu-
transmitted through a microcavity when the photon echo siglated photon echoor time-reversed versiongommon two-
nal is affected by the difference in the resonant medium statpulse photon echmf one of the pump pulses, or they can be
before and after the transmission of the first laser pulsedescribed by convolutions of slow envelope functions of in-
which has some areéy. cident pulses. The effect of multiple photon echo, which is
An important feature of the two-pulse photon echo gendinherent to gaseous media under excitation by small-area
erated in a microcavity is, in our opinion, the distinctive pulses in the form of standing waves, does not occur in mi-
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crocavities containing resonant solid-state materials. This efuncertainties in the explicit and implicit parts are commen-
fect is typical of microcavities excited by laser pulses with surate[proportional to {b/7o)?], but have opposite signs.
arbitrary area#~ 1. On the other hand, resonant microcavi- Therefore the errors of this scheme fox 7y, C;~C, can
ties can be more efficient than bulk media. This property ibe smaller than those of the Runge—Kutta method with a
especially important for holographic systems that produceimilar approximation scheme. The equations relating
and transform two-dimensional images. It thus becomes pogv,u,n); , to (v,u,n);_;, (for the mth spectral component
sible to increase the dynamic range of dynamic holographyx=mh,, wherem=1,2,... M andh, is the frequency in-
which can be used in both analog and digital image processrement can be derived from the last three equationgsn
ing. . After integrating piece-wise interpolated functions and solv-

We are grateful to EA. Manykin and V. N. Beloboro- ing the system of algebraic equations analytically, one has
dov for useful discussions of some topics discussed here. We

hx n;(x)h 1
also th_ank V. P.. Zagonov, who suggested the approach to the Vi1 (X) =1 0;(X) = = U (X) — I (2e+6.1) =,
numerical solution of the problem. 2 6 z

X
APPENDIX A: DETAILS OF THE NUMERICAL INTEGRATION Vi+1(X) =041+ S [vir () Foix) ],
TECHNIQUE

In selecting the technique for numerical integration of  n;,1(X)=n;(x)+ g[vi+1(x)(2ei+1+ e)
Eq. (5) with given initial conditions and an arbitrary source
function ey(7), two significant conditions were immediately +vi(X)(2e+e.q)],
imposed on the numerical algorithms, stemming essentially
from the physical model under investigation. On the one
hand, the existence of regions where solutions of the original
nonlinear equations are unstable requires a stable difference ) ]
scheme for solving these equations over a wide time interval.  The integral Y(r), based on the resuling values of
On the other, the integral nature of the calculated responsé,.m=0(7i ,Xm) (see Eq(7)), can be calculated using simple
signal e(7) and parameter® (6,) requires that solutions methods like the _trapezmdal rule, since oscillations in the
e(7), v(r,X), u(z,x), andn(r,x) be highly accurate. More- spegtrum of functiorv (7,x) are effectively “damped” in
over, application of numerical techniques to the investigatiorfh® integral by the exponential factg(x).
of physical characteristics of the system imposed significant 1N Solving the resulting difference problem, we must cal-
constraints on the computational complexity and CPU timeculateY;=Y(r;) at the uppefth level of each layer. To this

A preliminary analysis of available numerical techniques€nd, the algorithm iteratively improves the calculated value
led us to select the quasianalytic interpolation metffod, OfOYi (||:1’2' -+ L), which was initialized with the vallue
which results in a simple mixed scheme for development offi = Yi—1- Convergence of subsequent calculations bf
a computational procedure with guaranteed accuracy. Thigased onY; is determined by the smaliness of the mesh
method allowed us to take into account specific features ofvidth hin comparison with the dimensionless parametger
the equations due to the integral nature of its nonlinearityAS follows from computer simulations, given a mesh width
The original set of equations is, in a sense, quasilinear. Thithat ensures acceptable accuracy of calculated functions over
property of the problem, which could be solved by the qua& several-decade range of the dimensionless variable
sianalytic interpolation technique, enabled us to carry ouf=2 Or 3 iterations typically suffice.
analytic calculations to the greatest possible extent, and The technique for calculating the resporge) of a mi-
thereby to reduce the number of operations typical of stancrocavity to external field was tested by analyzing several
dard algorithms for solving systems of nonlinear differentialc@se€s when analytic solutions could also be found. In par-
equations. ticular, calculations were performed for an empty Fabry—

The essence of the present technique is that we seekRgrot cavity C=0), a small area of the input pulse, and
solution of the Cauchy problem by linearly interpolating the transmission of a “soliton” through a thin film when the
functions that enter into the set of equations on the mesRhoton lifetime is vanishingly small7—0).** Numerical
width. Solving Eq.(5) in this way, the equation derived from calculations on embedded uniform meshes demonstrated uni-
the first line of Eq.(5) to recalculate the fiel& ; at the ~ form convergence of the numerical errorsei(r) with de-
(i—1)th level in terms of the values at tith level has the ~Creasing step size, and stability of calculations against er-

2

Z=1+ +€(2ei+ei+1)2.

2

form rors in the initial values due to a finite shift in the initial time
from which the equations were integrated.
ei=€-1p+(h/7)(C,Fi 1+ CoFy), Note that in a typical calculation for a “soliton-like”
where i=1,2,3,...,l; h is the time incrementF;=ey; 2m-pulseey(7) (5=0.5) in a cavity with7y=0.1 and non-

—CY;, eg=e(79) =0, p=exptV/n); Ci=(A—p)7y/h, C, linearity paramete€=1 over time intervalr=[ — 3,10], the
=A—-C;, and A=(1—-p)7o/h are the constants of the absolute error of calculateg( 7) with step sizeh=0.05 and
problem. h,=0.1 forL=3 is estimated to be below 0.@&ss than 3%

It follows from the above description that the numerical of the peak function valye The CPU time required by the
scheme is Euler's combined scheme. The absolute values obde developed for the PC AT-286 was several tens of sec-
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We study theoretically the phenomenon of self-induced transparency for ultrashort pulses
(videopulses propagating in a multilevel quantum medium under conditions in which the method
of slowly varying amplitudes and phases breaks down and the pulse spectrum substantially
overlaps the quantum transitions. A special class of transitions with one common level is
considered. We find that the dynamics of the videopulses in such a medium is described

by a double sine-Gordon equation. We establish the conditions under which steady-state traveling
O7r-, 27r-, and 4r-videosolitons are formed. It is found thatrdvideosolitons can propagate

both in equilibrium media and in some nonequilibrium media, while-Wldeosolitons can
propagate only in nonequilibrium media. We study amplification processes in highly
nonequilibrium systems and show that, depending on the initial state of the meditinan?
gm-pulses (6<q<1) with increasing amplitudes may be formed. We conclude that the
amplification of an ultrashort pulse occurs due to an increase in the photon number density and
to an increase in the frequency of each photon. Finally, we study the possibility of an
electromagnetic autosoliton being formed in a nonequilibrium dissipative medium.

© 1998 American Institute of Physids$1063-776(98)00411-9

1. INTRODUCTION i.e. solitons with no high-frequency component, can form in
such media.

The phenomenon of self-induced transparency, discov- In particular, when the spectrum of an ultrashort pulse
ered by McCall and HaHnin 1967, served as a powerful substantially overlaps the quantum transition under consider-
impetus to develop nonlinear resonance optics for nano- angtion, the electric field of the pulgand not of the envelope
picosecond pulses. In view of the resonant nature of the inebeys the sine-Gordon equatith®1t is a well-known fact
teraction, the approximation of a two-level medium is com-that in the case of resonant self-induced transparency the
monly used in theoretical studies of self-induced transparenvelope of the electric field of a monochromatic pulse also
ency. Moreover, in solving the wave and material equationgbeys this equation. In view of this it can be said that the
the approximation of slowly varying amplitudes and phasessoliton modes of propagation of broadband ultrashort pulses
became very populdrin all fairness it should be said that in in highly excited absorbing media belong to the phenomenon
the 1970s several theoretical papers appeared that did not useself-induced transparency by analogy with the correspond-
this approximatiort~’ But at the time such papers were more ing effect for monochromatic signals. The spectrum of an
of a purely theoretical nature, since the femtosecond barriailtrashort pulse is extremely broad, so that more than often
for pulse lengths had yet to be overcome. The possibility okeveral quantum transitions interact with it simultaneously.
actually generating ultrashottemtoseconglpulses in labo- The present paper is devoted to a theoretical study of
ratories, each pulse “holding” about one period of optical self-induced transparency when an ultrashort pulse propa-
oscillations? % stimulated further theoretical studies of self- gates in multilevel quantum media and the pulse spectrum
induced transparency that did not use the approximation dbverlaps all allowed transitions.
slowly varying amplitudes and phasés®®

Since an ultrashort pulse is not a monochromatic signal,
we cannot use the idea of a pulse envelope, so that there is no
way in which the approximation of slowly varying ampli-
t_udes and phases can _be u_sed: In some cases the app_ro_xima- We write the system of material equations for the ele-
tion of a t\_No-IeveI_med|um is still val_ld. Fo_r m;tan_ce, this is mentsL . (M,k=1,2, ... N) of the density matrixi. of an
the case if the pair of levels under investigation is far fro_mN-IeveI system in the form
the other quantum levels of the medium. Theoretical studies
of the propagation of ultrashort pulses in two-level quantum L mk

. o . : — =i omdkmti[L,A 1
media have shown that electromagnetic videosolitons, i.e., ot - mk-mk [L Al @

SOLUTION OF THE SYSTEM OF MATERIAL EQUATIONS

1063-7761/98/87(11)/11/$15.00 864 © 1998 American Institute of Physics
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where o, = — wyn 1S the frequency of the transition be- =1,... N). Assuming that in the zeroth approximation
tween themth andkth levels. om=0 for all mandk, we write the systenil) as follows:
The transition matriA is given by the formula PR
=if[ @ A
0 dlZ'E d13.E o .. le.E at I[L ’A] (6)
dy'E 0 dyE e don-E The upper index in parentheses corresponds to the order of
A= : : approximation in the parametes,r, .

h Generally speaking, the analysis ) is extremely
complicated-® However, under the conditions adopted in this

dvi'E dy2'E oo dyn-1'E 0 paper (time independence and the fact that the matrix ele-
2 mentsd,, are real, the matrixA, obviously, commutes with
Here # is PlancKs constantE is the electric field of the the integral ofA with respect to time, i.e.,
ultrashort pulsedy, (k,m=1,... N) are the matrix ele-
ments of the dipole moments of the allowed quantum transi-
tions. In(1) there is no summation over the repeated indices

0 dn-1,n°E

~ t ~
A(t),JixA(t’)dt’ =0. (7)

mandk. . , In fact, we can writg(7) as

We will now assume that the initial pulse applied to the
medium is linearly polarized. Obviously, in the course of the S 39mk0 _ 90y -0
propagation of the pulse in the medium, the pulse’s polariza- 4 gt kno Umkge T

tion plane does not change orientation. In this case the vector
of the induced dipole moment is collinear with the electric Where
field of the ultrashort pulse. Then the matrix elemetitg t 2dk [t
and their projections on the direction oE are 0mk:2f Amdt’ = — f Edt’.
time—independent. ~ This  situation  corresponds to - o
ar—transitions, in which the magnetic quantum number doed his clearly shows that each term in the above sum is zero.
not change, the matrix elemerds,, are real, and due to its Since condition(7) is sure to be meftsee Ref. 19 the
hermiticity the transition matrixA is symmetric @,  solution of(6) can be written in symbolic form:
=A,n. Bearing all this in mind, we can go from the vector L~ A
- o N o\ . 16

guantitiesE andd,,, to the scalar quantitie§ andd,y. L(t)=exp( — _) L(—=)exp=, (8

To solve the self-consistent problem of the interaction of 2 2
an uItra;hort puls_e and the medium we combirje the ?’ySte'\W/herebzzﬁwA(t’) dt’ andﬁ(—oo) is the density matrix
of material equationgl) with the Maxwell equation, which ot the medium before the ultrashort pulse was applied,
in view of the collinearity of the electric field of this pulse
and the induced dipole moment can be written in scalar pn O -+ O

form: R 0 px

L(—<)=| . i . 9
AE 1 #E vy JE 4w &P 2 : E
ERPCC T R ® 0

PNN

. : . : To make our reasoning more specific and simple, we
HereA is the Laplacian operatoc,is the speed of light, and o
. T . o assume that the only allowed transitions are those that pass
P is the polarization of the medium consisting Nflevel ;
through a common leveFig. 1). Suppose that the number of

atoms interacting with the ultrashort pulse and is given by . . . :
the formula 9 P 9 ythls level isj. Then the only elements in the symmetric ma-

tricesA and @ that are finite are those of thj¢h row andjth

P=S d.L @ column, with the exception of the diagonal elemehtsand
& mk=mk- 0;; - This model is realized in many physical problems. At
N=3 andN=4 (N is the overall number of quantum levels

The phenomenological constaptallows for dissipation re- jnyolved in the probler) the model describes the optical
lated to losses due to the effective conductivity of the meproperties of wide-gap insulatorg£2 andj=1 for N=3,

dium and scattering by quantum levels located far from thosgnd j=3 for N=4) (Refs. 20—22 For instance, foN=4

considered her¥*® the first level corresponds to the electron states of the valence
The condition that the spectrum of the ultrashort pulsepand, the second level corresponds to the same electron

overlaps all the allowed transitions can formally be writtenstates and the excited states of optical oscillations of the
as an inequality;'~*° crystal lattice, and the third and fourth levels correspond to

the subbands of the conduction band, the subbands being
©)

strongly and weakly coupled to the valence band,
valid for all mandk. Here 7, is the characteristic time scale respectively’? For j=1 the model describes indirect band-
associated with the ultrashort pul$®) by the method of to-band transitions in multivalley semiconductdrand elec-
successive approximations in the parameters, (m,k  tric dipole transitions between the Zeeman sublevels in the

OmTp< 1,
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andi is the identity matrix.

The structure of the matrik? is as follows(no summa-
tion overj):

(8%)mn= Omjfjn for mn#j,

(8%)mj=(6%);m=0 for m#j,

N
j (62)“221 0]2k

Substituting(11) into (8), we find the following elements
of the matrixL(t):

d; D? D 0
Li I2Dj((p“ Djz)sme 2( Djz pkk)sm2 ,
k#], (12
9 Df, 0
FIG. 1. Diagram of allowed quantum transitions have one common Jevel L}]Q): Pjj cos’-z + —]:sinzg, (13

(the heavy horizontal line The overall number of levels is arbitrary.

imdi 0 0
L?r?l)(: Pmkt ]mzlk'( Pjj Sinzz —2(pmmt pkk)sinzz
Voigt geometry, where the polarization plane of the pulse Dj
and the direction of pulse propagation are perpendicular the 2
external magnetic fielé® Another well-known example is
the Cy0 crystal, whose excitonic spectrum corresponds to a
distinct series of transitions with=1 (Ref. 25. If j=N . ) N a2
holds we have, e.g., models of media capable ofVheremk=j, andDj,=2_,djpux. _
phosphorescing In this case the ground state is thermody-  Settingm=Kk in (14), we arrive at an expression for the
namically stable, while all intermediate states are metastapl@oPulation of themth quantum level. As expected, Eq$3)

SN 10
Phosphorescence is observed at frequencies corresponding®dd (14 obey the conditiorE p_;L =1
the transitondN—1—1 N—2—1, ..., 2>1. In the first approximation in the parametey,.m,, Eq.

Moreover, anN-level quantum system with transitions (1) becomes
involving a common level is of interest by itself as one of the (9|_<1&

: (14

ip .4
+4—= -
4Dj25|n4

simplest generalizations of a two-level system under condi- a;“ =i omL Q+i[L© Al (15
tions of spectral overlap of the quantum levels by the field of
the ultrashort pulse. In the case at hand the polarizati®ncan be written as
Clearly, the matrixg, in which only the elements of the follows:
jth row and thejth column, with the exception of;;, are N
nonzero, obeys the following relation: P=n2 (L Ly, (16)
N n—1 N n—1 I=1
0> = 6’2( > Gﬁ) . 6= 0( > 05) , (10 wheren is the density oN-level atoms.
i=1 i=1 . .
Using (15), we write
wheren=1,23 ... . P
Expanding exp£i#/2) in a Maclaurin series in powers E(L}&)Jr L%)):iwjkaE)Jriwkij(?)
of (+i#6) and using(10) to sum the series, we find
N
i6) . & o\ 6 o IS {An(LO-LO)
+_— | =] - — _ | +j—cin— — jmit=km mk
exp( * 2) I 02(1 cosz>_|93|n2, (11 m=1
(0) _y (0)
where +Amk(Lmj ij)}' (17)

112 In view of the hermiticity of the density matrix|{")
9=2<2 gﬁ) | Edr, =LO* for all m and k. According to(12) and (14), the
Ao elementsL () are purely imaginary, while the elemeritg,
12 for k,n#j are real. Moreover, due to the structure of the
D :(2 dz) ’ transitions, A,,=0 for m,k#j. Hence the expression in
braces in(17) vanishes and we have
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of the medium, there are three different cases that allow for

E(LE&ML%)):ZWK;L}E)- the propagation of an ultrashort pulse in steady-state modes
o o _ in the absence of dissipationy€0).
Combining this with(16) and (12), we find that 1. >0 andB>0. The solution of Eq(20) has the form
N
P 6=4 arctariy1+ x2csché), 22
H:2|nk21 dkjwkij((])) m g) ( )
2h  ksec
n _ E=5- Z—hérﬁ (23
:D_j DJw(p”—RJ)SmG p1+KseC g
where
0
+2(D;,R;—Dj,,)sin5 |, (18) t—2z/v 2a |12
2 §= T y K= F .
where P
N N Here the relationship between the veloaitpf the pulse
ropagation and the pulse length is given by the formula
Djw:gl digjoi Djwp:kzl AP » propag P gthis g y
1 1
D2 —2=—2+E(1+K2)T§. (24)
i D2

j Combining(13) and (14), we find an expression for the
Substituting(18) into (3), we arrive at a double sine- population of the medium:
Gordon equation with damping for the electric field of the

2_ . 2 2 .
ultrashort pulse: Lizp L+ - sintfg 1+ P)sintre 25
=PI\ T2 T > (25
5 K>+ costté (k%+cosltté)
no-=T0_ Y0 ino+psi 20
2 g2 2ot @M psing, (20 4dy;  1+«?
Linm= Pmm| 1— 2 2. o,
where D? «*+costé
_8m_ P _167Tn(D R-D ) (D +4d?m- ((1+ k?)R; + pj; SinkPE) (1+ k2) e
TR R A fc2 e e D? (k%+costté)? ’ g
Equations(19) and(21) clearly show that in the case of (26)

a two-level system with =1 we have In accordance witt{23), the profile of the electric field

167N d2,00,W., of a traveling uItr:ishort pulse is double-humgédy. 2). The
_h—cz' hump separatiom =2&* is determined by the condition
seché* =1/k, k>1. The relative depth of the dip,
where W..=(p,,— p17)/2 is the initial population inversion Emay/Emin, IS €qual to (3 «?)/2«.
of the medium. Then ay=0 Eg. (20) becomes the sine- Note that in contrast to classical self-induced transpar-
Gordon equation found for this case in Refs. 14-16. We alsency, the expressio3) is written for the electric field of
note thatg=0 also for the case of aN-level medium, pro- the pulse rather than for the pulseenvelope. In accordance
vided thatj =1 and that before the light pulse was applied towith this, here and in what follows we sometimes call an
the medium only the ground level was populated,ultrashort pulse a videopulse, and solitonlike solutions of
(p11=1). self-induced transparency for an ultrashort pulse,
If in (21) we setN=3 for j=2 andj=3, andN=4 at 2wn—videopulsesii=0,1,2). From(23) it follows that the
j=3, we arrive at the expressions farand 8 derived in  area of the signal23) is
Ref. 27. We also note that the double sine-Gordon equation oD (=
appears in the theory of self-induced transparency for a two- @E_f E dt=4,
level medium with a fivefold degenerate second level when a ho)-e
resonant monochromatic pulse propagates in that mediu@o that we call this signal avideopulse.
(here g/ a=1/2) (Ref. 2. Below we use Eq(20) to study The conditionsa>0 andB8>0 are met, say, for a ther-

the various modes of p_ropagatlon of ultrashort pulses in %odynamically equilibrium medium in transitions between
multilevel quantum medium. the levels considered here, which form a series vyithl.
Let us analyze this case in detail. Before the pulse is applied
to the medium, the quantum levels of the medium are popu-
3. PROPAGATION IN THE STEADY-STATE PULSE MODE lated according to the Boltzmann distribution

=0, a=

Let us suppose that a pulse is propagating alongzthe F<— wk1>1 k=12, ...N. 27

L ; X J ==ex
axis with a constant velocity. Depending on the initial state Pk Ze
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dz;  t—zlv
—_m =

wherer, is the length of the ultrashort pulgthis quantity is
a free parameter of the solutipn

As the pulsg30) propagates, the atoms first go from the
ground state to excited states and then return to the ground
state(see Egs(31) and (32)). In this case the dynamics of
the ultrashort pulse is the simplest and differs little from that
for a two-level systemi**6 The main difference is that in our
case the ultrashort pulse acts on the medium in such a way
that many excited states become populateek Eq.(32)),
while in a two-level system only one excited state becomes
populated.

When the upper levels are initially populated+0),
B+#+0. This, as EQq.(30) implies, reduces the velocity of
propagation of the ultrashort pulse. Our analysis has shown
that the thermodynamically equilibrium population of the ex-
cited states couples the twow2videopulses into one
44r-videopulse, which in view of its high “inertia” propa-
gates slower than a72videopulse(see Eq.(19)), which is
capable of forming in a medium at ultralow temperatures,
whenkgR<7% w,q holds.

Figure 2 depicts the dynamics of the populations of
quantum levels in an equilibrium medium &t-0 that ac-
companies the propagation of an ultrashort pulse in such a
medium. The distance between the dynamical minima,ef
_/\/\ exceeds the distance between the humps of the ultrashort

— 0 — pulse. The coordinates’ of the minima ofL,; can be found
from the condition that sinf =+ (1+«%)2. Combining this
FIG. 2. Dynamics of the electric field of ultrashort pulses when they propa—With (25 yields the minimum value of the ground-level
gate in a medium in thermodynamic equilibrium #r0 andg>0 () and  population,L 11in= R;. Thus, in the process of propagation
the corresponding population dynamics in the quantum Ievet, and d of the 4m-videopulse the ground state does not become com-
with j=1. pletely depleted. The dynamical maximum bf, corre-
sponds to the dip in the electric-field profile of the ultrashort
pulse €=0). Equation(25) clearly shows that at this point
whereZ=3] _,exp(—#wm /kgT) is the partition functionkg Lis=p11- Thus, in the process of propagation of the
is Boltzmann’s constant, anflis the absolute temperature. 4m-videopulse(23), the medium undergoes excitation and
Here we have the obvious inequalitipg;> py,>paz> - - - de-excitation twice. The transition of atoms from the ground
>pun- As T drops to absolute zerac—. The humps in  State as a result of the interaction of the medium and the
the pulse in this case move infinitely far from one anotherpulse (23) is accompanied by a rise in the populations of
and the field in the dip vanishes. Thus, the-¢ideopulse excited states. The positions of the corresponding maxima
splits into two 2r-videopulses infinitely distant from each &y (m=23,...N) are determined by the equations
other, with each corresponding to the case wigred. Then  sinh &= = (f(1+%)"2 where
Eq. (200 becomes a sine-Gordon equation whose
2m-videopulse and the corresponding expressions for the f

_putpmm— 2Ry

medium populations are P117 Pmm
t—zlv SinceR; =D2/D?< p, holds, we have
0=4 arctan exp——, (28
Tp P22~ Pmm
fr>1l-2———, m>2,
1 1 P11~ Pmm
5= atan (29 . _
v?2 ¢ whencef,>1. At the same time, the maxima a&f,,, (m
>2) are closer to each other and to the center of the dip in
h II—Z/U the electric-field profile of the ultrashort pulse. Allowing for
E= D7y sec T (30 the fact that=}_,Lnm=1—L4;, we conclude that as num-
/ ber of the level increases, the maxima of the corresponding
Ly= tanh’-t_z v (31) populations move closer to one another monotonicelbe

Tp Fig. 2. As the absolute temperature rises, the humps in the
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ultrashort puls€23) move closer and the dip becomes more E
shallow. If the temperature of the medium is so high that the
initial populations of all the levels become essentially equal,
xk?>—1. Then the humps of the ultrashort pulse merge anc 4
and the central dip disappears. In this case, as &s.and
(29) imply, the dynamics of the populations of all the levels
ceases and we arrive at the hole-burning effect well knowr
from optics? 0 z
The conditionsae>0, >0, andj=1 can be realized b L
not only in the case of a thermodynamically equilibrium me-
dium satisfyingk>1 (k— at T=0 andk—1 asT—o). P

11
The case withc<1 and yeta>0 andB>0 corresponds to a ——————M\/——‘—
1

weakly nonequilibrium medium. In this situation the central

dip in the electric-field profile disappeatas it does when L 0 P §

T—o), and the ultrashort pulse is a bell-shaped videopulse _ ¢ 22

with its peak at the middle. \/\/’\
2. <0 andB>0. In this case the solutions for the field

and populations can be found from E¢&3)—(26) by replac- —

ing «x? with — k3= —2|a|/B, while the parametek is re- LO §

stricted by the conditions<<1. The electric field of the ul- 3

trashort pulse is a #-videopulse with a tapered credtig. d

3). From the inequalitiex<<0, 8>0, andx;<1 and from /\

(21) we find the conditions that the medium parameters mus

meet before the ultrashort pulse is applied to the medium: 0 E
Dja)p EIG. 3. 47_r-videopulse with a steepgned crest i_n a three-level nonequilib-
D. <pjj <Rj . (33 rium medium(a) and' the correspondmg population dynamibsc, and d

Jo for <0, 8>0, andj=1. Hereps; is assumed zero angh,>p,; -

Analysis of (33) is the simplest and the most graphic if
we are dealing with a three-level system. We also assume

thatj=1. Then the conditio®;,,/D;,<R; is equivalent to N
the inequalityp22_> pa3- Assuming for the sake of simplicity E dijkl
that p33=0, we find that k=1 -1
W1+
2
5,021 - d3, 1 kgl dicj@x;
P11 P)
2d3,+d%0 2d3,+d3 . . :
21 el 2 el At the same time, we have<0 if =;_,df wy;<0. Since
Sincep,,=1—pq; at p33=0, we have wy;<0 holds fork<j, the conditione<<0 is sure to be met
in an equilibrium medium withj #1. Figure 3 depicts the
1 d3+d3, 3,001+ d3,041 population dynamics in the quantum levels in a three-level
5< P . nonequilibrium medium withj=1 when a steady-state
2 2d5+d5, “ 205,001+ d5y03; d ) y

47r-videopulse with a tapered crest propagates in the me-
Thus, p,,> p11 holds and the medium is nonequilibrium. dium- _ _

If, in addition, we havedZ>d2,, then the nonequilibrium 3. a>0 and 5<0. The corresponding solution of Eq.

condition becomes stronger,;> py,. Hence, a steady-state (20) for the electrlg—fleld .prof|le of an ultrashort pulse is a

47-videopulse can form in a highly nonequilibrium medium Steéady-state travelingsb-videopulse:

with populations of the first and second levels inverted. Not- oh tanhé seché

withstanding this fact, the medium remains absorbing, since E=— Vrg—1 5 , (34
according to the conditiod3,>d3, transitions from the first Dj7p 1+(xg—1)secti¢
level to the third are more intensive than from the second Qvhere
the first. This is the reason why, in the given situation, for-
mation is possible of steady-stater4/ideopulses with a t—z/v , 2a
steepened crest that travel with speeds smaller thésee &= L Ko:m>1-
Eq. (24) with «? replaced by— k?, k;<1 anda<0). P
A steady-state #-videopulse can also form in an equi- The velocityv of propagation of the @-videopulse is

librium medium if the level common to all quantum transi- given by the formula

tions is not the ground state, i.¢# 1. Indeed, in this case at 1 1

T=0 (p11=1) the condition;<f>1 can be written as fol- —==+ @(Kg_l)q.g, (35)
lows: v2 ¢ 2
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and the population dynamics is given by expression of the E
type
_pjj[cosﬁg—(KS—1)]2+4R1(K§—1)cosﬁ§
i 2 2 ' (36) a
(k§+sinitg)
dz.
me:pmm+4D_2J(Kg_1) 0 ;
j
(k2—1)R: +p;;cosifé—p _ b
x—2 Jz J.] 2 mm, m#]. (37) fu A
(k§+sInkPE) —f—~
With allowance forn21), the conditionsx>0, 8<0, and - 0 :
K(2):2a/|,8|>1 can be represented in the following manner: L,,
[+
R <Dion_ (38)
j Dj Pjj -
With j=1 in a three-level system, E§38) implies, in 70 p
particular,p33> po,. If we then assume,,=0, we get p 3
2 2 2
e G did J\/g
11775 o BT 5 o
2d3,+d3, 2d3,+d3,
In the limit d3,>d3,, these inequalities become 0 £
- d_31 2 _ d_31 2 FIG. 4. Dynamics of the electric field of ultrashort pulses in their propaga-
P11 le v Ps3 le : tion in a three-level nonequilibrium mediufa) and the population dynam-

ics (b, c, and d for >0, 8<0, andj=1. Herep,, is assumed zero and
These conditions are also met fe§3>p4;. P> P11
Note that when the pulse propagates in such a medium,
the leading edge of thes-videopulse lowers the population
of only the ground statéFig. 4). Thus, being nonequilib-

_ o 3 . . . .
rium, the medium remains remain absorbing i«ﬁpl. On whereH =f#d", and the Hamiltonian density is

the other hand, the middle section of the pul&e=Q) re- c? =5 ) 0
stores the initial population of the ground state and lowers 7= % P“+5(V )"~ acosd—2p cos;. (39)
the population of the third level, moving some of the atoms ) o
to the middle level. Combinin{21) with (27), we find that in The “vacuum” values of¢ (6= const), which minimize
the case of thermodynamic equilibrium, 7, can be found from the condition that the function
16mn hwm; —| acosf+2 cosf
 hoiniz 2 S exp( - kBT) e

be at its minimum. The possible areas of the propagating
pulses are equal to these “vacuum” valugs For instance,

in the steady-state propagation modes studied in Sec. 3,
0,=4mn (n=0,1,2 ...) for B#0. Obviously, in the ampli-
fication modes the area of the ultrashort pulse is also deter-
mined by the value®, . For instance, for a two-level me-
dium (B8=0) with <0 we have#,=m (see(39)), which
coincides with the results of Refs. 14 and 16. In our case,
amplification occurs when any one of the following three

Now suppose that the restrictions imposed on the coefconditions is met.
ficients and 8 in Sec. 3 are not met. Then, in the absence 1. @<0 and 8<0. Here for k=(2a/B)"*>1 the
of dissipation, a nonequilibrium medium will irreversibly Hamiltonian density.7 has its minimum at the valué,,
transfer part of its energy to the optical pulse, amplifying thespecified by the condition
latter. Below we study the specific features of such amplifi- P 1
cation. cosfv =——,
At y=0 Eq.(20) has a Hamiltonian representation: K

=0

= VU.

fkaj
TR T G

The condition8<0 is not met, so that B-videopulses
may form only in a nonequilibrium medium.

4. AMPLIFICATION

B 4 s But for k<1 the value of 7 is minimal at ,=2#n (n
‘?_: 7 ‘9_0: - =0,1,2...). Suppose than an ultrashort pulse with a small
at 00" .  Sp’ area
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2D (= where for a 2r-pulse
o=—"1 f E dt’
o) -w a B
m= —( 1— —) >0,
is incident on the medium. In the first casexX 1), the pulse 4 2a

is amplified with the are increasing simultaneously to the and for aq-pulse (0<q<1)
valuesd,=2arccosk 1). Clearly, the given area may vary 5

from ®=0 (k=1) to ¢=7 (k=) and may equabm, :_E(l_(ﬁ> )>0

where generally is an irrational number satisfying the con- # 4 2 '
dition 0<g<1. Hence we call this amplified signal an irra-

tional signal. Whenk<<1 holds, in the process of being am- .

plified the ultrashort pulse becomes a non-steady-state

The solution of Eq(42) in terms of the variablez andt

2mr-videopulse with an increasing amplitude. After the- e~Jo(2pu(ct?—2%)), ct>|z,
and 2m-videopulses have traveled in the medium, we can
find the population levels byl3) and(14) at =g and 6 e~Ko(2Vu(z?—c’t?)), ct<|z|.

=21, respectively.

e L For the electric field of an ultrashort pulse we have
2. <0 andB>0. Amplification is possible if

t
2|l 1/2 IO 77 2 ~
KlE(—|B |) >1, E m‘ll(z\lﬂ(c t z )): ct |Z|, (43)
since for k<1 4m-videopulses with a steepened crest are t >
formed(see Sec. B The Hamiltonian density” is minimal E~ mKl(z Vu(ZP=c*t%)),  ct<lz], (44)

at 6,=q, whereq=w*1arccos(<1’1). The valuef,=27 _

corresponds to the maximum o¥, and therefore is not in- Where J;(x) and K4(x) are, respectively, the Bessel and

cluded in our discussion. Settirg=q in (13) and(14), we  Modified Hankel functions of the order 1. Combining this

find the level populations after the passage of the amplifiedvith (13) and (14), we see that as the trailing edge of the

q-videopulse. amplified signal passes, the values of the populations of the
3. a>0 andB<0. Reasoning along the same lines as inquantum levels of atoms oscillate about the quasiequilibrium

the first two cases, we conclude that the initial signal is amvaluesL;(6,) andL(6,) (m#j). Here the amplitude of

plified if these oscillations decays according to the asymptotic behav-
o ior of the Bessel function. On the other hand, the electric
« E(Z_“) <1 field of the pulse varies according to the damped oscillations
Y] mode forct>|z| and decreases very rapidigxponentially,

for all practical purposeso zero forct<|z|.

Let us study the two limitg,a|>| 8| and|«a|<|B|. Then
Eq. (20) at y=0 becomes an ordinary sine-Gordon equation.
Equation(40) corresponding to these case has solution&for

cation of an ultrashort pulse in a spatially one-dimensiona hat are nonzero primaril)_/ azt7.=0.(Refs. 1.4' 16, and 28.
case. Following Refs. 14 and 16, we introduce the self- ence in the VICII’I!ty of this prlnc_|pal maximum we can ig-
similér variable nzzz;cztz Then ‘atyzo Eq. (20 be- nore the term.ne”'ln (40 a_nd write the approximate solu-
comes ' ) tions for the field in the neighborhood af=ct:

e el ]
na”+0’zgsin0+§sin—, (40 —A D; sechw(2) t_E ' 49

4 272
i o o ) where w(z)=|a|cz/2 and \=1/2 for |a|>|B|, and w(2)
where the prime org indicates a derivative with respect to =|B|cz/4 and\=1 for | B>«
7- Setting 22— c?t?~2z(z—ct) in (43), we establish the

Suppose that a functiodl(7) is a solution of Eq(40).  penavior of the electric field outside the principal maximum:
Then the electric field of the ultrashort pulse is

The largest area of the videopulse igr.2 Accordingly,
the final populations can be found froth3) and (14) with
0=21.

Now let us study the dynamical features of the amplifi-

o ENZJl(Z\/w(z)(t—z/c)) 48
E=—5-t0'(n), (41) 2Jo(z)(t—2zc)

i
Figure 5 depicts the electric-field profiles of an ultrashort

i.e., the amplitude of the signal increases in proportioh. to ,
P g prop ulse two subsequent values of the coordinaigs z; and

Since in the limit the area of the ultrashort pulse reaches it§ . ~7 of the brincipal :
maximum value and ceases to increase, the amplification dm™ 22~ 21 OT Ih€ principal maximum.

this pulse is accompanied by self-squeezing. Here the signal Equa_tions(45) and (.46) clear_ly ShOW. that the function
length prt_l_ Following Ref. 29, we set)=6,+s (s (z), which increases linearly with the distance covered, can

<1) in Eq. (40). As a result the equation reduces to be interpreteq as thg frgquency of the photons of the giyen
pulse. Equatior(45) implies that the frequency and ampli-
ne"+e' = pue, (42)  tude of the electric field increase in proportion 20 The
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E .

/ =4 o= —sin, (48)
Tp 2
240 T T Whenceb=(4/7-,2))sin 6. Substituting this inta47) and (48)
and equating the corresponding coefficients of &R)( and
m=2,>7 sin g, we find that
4y 1 1 2y
/\ . Tp__ﬁy ;:E 1t % . (49
0 \/ NS -

Integrating(48), we arrive at an expression for the elec-
FIG. 5. Electric-field profiles of ultrashort pulses in a nonequilibrium am- tric field E= (%/2D;)d6/t of the autosoliton:

plifying medium, described by Eq&15) and(46), for two subsequent values

of the coordinatez,,, of the principal maximum(at the extreme left z, h t—z/v

=z, and z,,=z,>2,. Amplification is accompanied by an increase in the E= D sech——. (50)
frequency of the pulse photons and the photon number density. iTp Tp

The autosolitor(50) is a unipolar videopulse. It is stable
if E>0 holds, since otherwise the vectdEsand d,,; (m
pulse intensityl can be expressed by the formula-E2 ~ #]) pointin opposite directions, which contradicts the prin-
~npfiw, whereny, is photon number density in the pulse. Ciple of stability of a state with minimal energy. Frof&0)
SinceE~z and w~z, we conclude thah,,~z. Hence, the ~We c_onclude thavp>(_), which y_|eld_s,8<0. Moreover, the
amplification of an ultrashort pulse with>|wy;| occurs — solution(50) has physical meaning if<c. Hence(see(49))
due to the increase in the frequency of each photon and dug> 0. Thus, an autosoliton of the for(B0) can develop only
to the increase in the photon number density. Both paramin such a nonequilibrium medium for whickk>0 and
eters increase in proportion to the distance Covered by th§<o It W|” be reca”ed that in thIS case, il’l the absence Of
pulse. This result refines the conclusion drawn by Belenow@issipation, either a f-videopulse is formed £,
et al,218who stated that the amplification of an ultrashort =(2a/|B])">>1) or the process of amplification and self-
pulse is due solely to the increase in photon frequency.  squeezing of a pulse with maximum area equal to (&,
The last statement is entirely true when an ultrashort<1) takes place. The area of the autosolit@®) is ®
pulse interacts with BKP transitions, which are induced by=2m. However, as Eqs(49) show, no restriction on the

the square of the field rather than by the field profer. parametelk is needed for such an autosoliton to form. Nev-
ertheless, there is one important restriction on the parameter

v, for which the inequality5) is responsible. Equatior{21)

imply | 8| ~16mnd?w,/#%c?, whered and w, are the charac-

teristic values of the dipole moment and the transition fre-
Suppose that an ultrashort pulse is propagating in a norfiuency, Then fron(5) and (49) we find thaty<4md®n/f.

equilibrium medium with dissipationy0). Then the en- Substitutingd~5x 10" *®abs.u. anch~10**cm™? into this

ergy transferred by the excitated atoms to the pulse field duequality yieldsy>10"s™*,

to stimulated transitions can dissipate irreversibly in the me-  Let us consider one of the possible autosoliton formation

dium due to extraneous losses determined by the paramet@focesses. Suppose thagt<1. Then the amplification of the

v. When these two opposing processes balance each otherPéncipal peak in the z-videopulse of type(45) and the

stable structure of in the form of an autosoliton mayself-squeezing slow down due to dissipation until stabiliza-

develop®®! After the autosoliton has traveled through the tion accompanied by a reduction in the propagation velocity

medium, the medium does not return to its initial state, a$ets In.

would be the case if the medium were conservative. In a  Now we study the processes that take place at the lead-

dissipative medium the law of energy conservation does nofig and trailing edges of the pulse. Linearizing E20) via

hold for a system consisting df-level atoms and an elec- the substitution 6=27+¢ (e<1) and defininge as

tromagnetic field of the pulse. Hence the atoms do not havé/(r,t)exp(=/2), we reduce Eq(20) to

enough time to go back to the initial quantum states and

5. AN AUTOSOLITON IN A NONEQUILIBRIUM MEDIUM

2
irreversibly release part of their energy to the other compo- Ag— i ‘9_‘/’:4~
i 2 2 ,ulﬂ,
nents of the medium. c- at
We seek the solution of Eq20) in the form of a wave _ A
traveling along the axis, 8= 6(t—z/v). This yields where u= pu— y?/16c?, with u=(a/4)(1+|B|/2a)>0.
Introducing the self-similar variabley=z>—c?t? (see
1 1. . 0 i i i -di i
(_2_ _2> 0_12 9= o sin9+Bsin§, 47) Sec. 4, we find that in the spatially one-dimensional case
v ¢ c

t
J1(2V0),

Y
where the dot org stand for the derivative with respect to ~ E*! exp{ )
the variablet—z/v. ~

We choose the ansdiz where = u(c?t?>—2%).
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When{>0 holds, the oscillations in the “wings” at first ultrashort pulse, the atoms are returned to their initial state
grow in amplitude in proportion to, but are then quenched by the trailing edge, returning all the absorbed energy to the
by the damping exponential and finally completely disappeafield. Notwithstanding the similarity to the mechanism of
in the limit t—o. For (<0 the Bessel functiod;(2¢) excitation—deexcitation of a medium, there are certain im-
becomes the modified Hankel function, which decays expoportant differences in the case of self-induced transparency
nentially with increasing¢|. Here, too, initial amplification for monochromatic resonant pulses. Probably, the most im-
(ect) is replaced by damping. Thus, as a result of smoothingportant one is the difference between the velocities of the
out of the “tails” and stabilization of the principal peak, an soliton of an ultrashort pulse and of the soliton of the enve-
autosoliton of the form{50) develops. lope of a monochromatic signal. Equatio(®4), (35), and

When an autosoliton travels in the medium, the popula{21) yield an estimate for the velocities of ultrashort pulses:
tion dynamics in the quantum levels can easily be established
by substituting(50) into (13) and (14). However, we will o~ c
determine only the final populations, by settidg-27 in \/1+(8Wd2n/ﬁw0)(w07p)2'

(13) and(14). Then

For a broad class of substances not undergoing a superradi-

Lij=pij » ant transition, 8rd’n/Awy<1 (Refs. 33 and 34 Then in

2 view of the inequality(5) we havev=<c. Thus, the velocity
Pmm+4d_mszj . m#j. of a broadband ultrashort pulse propagating in an absorbing

- medium is only slightly smaller than the speed of light in
vacuum, while the velocity of resonant solitons of the enve-
lope is smaller thar by two to three orders of magnitude.
§ince in the above sense all the transitions are resonant,

d,.
Lnm= ( 1-4—
Dj j

Thus, the population of thé¢th level common for all
transitions returns to its initial value. The populations of all

the other levels change irreversibly. As a result we find tha
: ) obably there can be no area theorem Heueh a theorem
when the autosoliton passes through the medium, the state : o
o - enables analyzing the variation in the area of an ultrashort
the latter changes. This is the main difference between our . :
ulse as the pulse propagates in an absorbing médfum

case and that of an autosoliton, apart from the case of nstead of this we can use the method of minimizing the

soliton traveling in a conservative medium, since suchame;,” "~ . .
Hamiltonian, which was proposed in Sec. 4.

dium returns to its initial state after the soliton has passed In the present paper we have examinedransitions, for

through it (see Sec. B Another important difference be- ) o . )
tween the solutioit50) and the videopulses examined in Sec.Which the matrixA (see Eq.(2)) is real. At the same time,

3 that the autosoliton has no free parameters: according {&/29netic rotation of the polarization plane of the light wave
(49) and(50), its amplitude, speed of propagation, and lengthis explained by o-transitions, for whichA is complex-
are rigidly determined by the parameters of the medium. Thealued. Such transitions start at the ground Zeeman sublevels
reason is that a pulse in a dissipative medium loses the ir2f the s state and end at the higher Zeeman sublevels of the
formation about its initial state, and in the lintit>o “for- P state {=1). Thus it would interesting to generalize our
gets” everything about the initial conditions. This is not the approach to the case of-transitions. In this way we could
case for solitons propagating in a conservative mediumstudy the Faraday rotation of the polarization plane of ul-
where the information about the initiédoundary conditions ~ trashort pulses for arbitrary initial populations of the excited
is retained, so that the solutions contain at least one fredeeman sublevels. In Ref. 35 this effect was studied for zero
parameter each. initial pOpUlation.

Note that for pulses with a rotating polarization plane
condition (7) is not met. Hence the solutio(8) becomes
invalid, and we must use other methods to solve the material

In this paper we have studied the various modes ofquations(6). Even when there is spectral overlap, finding
propagation of ultrashort pulses in multilevel quantum systhe general solution of the material equatid for a matrix
tem in conditions where the spectra of the pulses overlap thA with an arbitrary structure is extremely difficult math-
guantum transitions under investigation. We have considereematically. Hence the study of the interaction of an ultrashort
a special, and yet fairly broad, class of transitions with ongoulse and multilevel quantum systems with arbitrary transi-
common quantum level. Due to the spectral overlap of all theion is not simple. The approximatiai®) has meaning pro-
guantum transitions by the field of an ultrashort pulse, thevided that the overlapped quantum levels are far from the
interaction in this case can formally be considered resonantther levels of the discrete spectrum, since otherwise we
Indeed, since the spectrum of the ultrashort pulse substamvould have to account for transitions into the continuous
tially overlaps the frequencies of the transition, it alwaysspectrum, or ionization, and this would complicate matters
contains spectral components that are resonant to all the trasubstantially. Hence there arises the problem of correctly ac-
sitions. For the same reason, here inhomogeneous broadeseunting for the effect of these distant levels of the discrete
ing does not play a decisive role since the overlap exists evespectrum, which not overlapped by the spectrum of ul-
with such broadenind As a result we conclude that for trashort pulses. To do this, all quantum transitions are di-
ultrashort pulses satisfying conditidh), an equilibrium ab- vided into two groups, with one incorporating the transitions
sorbing medium becomes nonlinearly transparent in thehat overlapped by the spectrum of ultrashort pulses, and the
sense that, after being excited by the leading edge of aather incorporating the transitions that are not overlapped by

6. CONCLUSION
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The ionization of a simple two-electron model system, viz., the one-dimensional negative
hydrogen ion, is investigated using direct numerical integration of the time-dependeitii@giero
equation. The one- and two-electron ionization probabilities as functions of frequency and
radiation intensity are obtained. It is shown that two-electron ionization is mediated by both direct
and sequential mechanisms. The stabilization of the two-electron system against the

ionization process is investigated. The data obtained are compared with calculations performed
within the one-dimensional single-particle model of HThe photoelectron spectrum is

analyzed in the region of parameters corresponding to the single-electron ionization regime.

© 1998 American Institute of Physids$$1063-776(98)00511-3

1. INTRODUCTION tem on the radiation intensity were obtained, and the photo-
electron spectra were analyzed in those studies. However, the
The investigation of the dynamics of atomic systems inkey questions which arise in describing the dynamics of two-
high-intensity laser fields is presently of great intefddbw-  electron systems in an electromagnetic field, in our opinion,
ever, the theoretical description of the interaction of electroremain unanswered. In particular, the conditions under which
magnetic radiation with atoms has generally been confined tthe dynamics of the system can be described in the one-
the one-electron approximation. Within this approximationelectron approximation and the way in which the presence of
the quantum system is represented in the form of a singléhe second electron influences the stabilization regime pre-
electron moving in a certain effective static potential, whichdicted within the one-electron model must be ascertained.
takes into account the Coulomb interaction with the nucleusFinally, in the case of two-electron ionization, which mecha-
as well as the partial screening of the nucleus by the remaimism, the direct or sequential, more faithfully describes the
ing electrons. The one-electron approximation can clearly behysical essence of the process?
used successfully to describe hydrogenic systems character- In the present work we obtain an exact numerical solu-
ized by the presence of a single weakly bound valence eledion of the two-particle Schdinger equation for the one-
tron moving in the field of an atomic core. However, even indimensional negative hydrogen ion in an electromagnetic
this case a strong external field can significantly distort thdield. The wave function obtained is then used to calculate
electrostatic potential created by the atomic core, in whiclthe one- and two-electron ionization probabilities as func-
the outer electron moves, and can thereby exert an additiontibns of the radiation intensity and frequency. It is shown that
influence on it. As for negative ions, they are usually chartwo-electron ionization is a result of competition between the
acterized by the presence of severdlleast two electrons in  direct and sequential processes. The photoelectron energy
the outer shell, which raises some question as to the poss$pectra are obtained in the region for one-electron ionization.
bility of describing their ionization process in the one- The region for the existence of a stabilization regime is de-
electron approximation. The only exception is probably thetermined. The possibility of describing the dynamics of H
negative hydrogen ion H which consists of a weakly bound within the one-electron model is investigated.
electron revolving around a core, i.e., a hydrogen atom.
Therefore, it can be stated that the construction of physically
correct modelg of the. _phqtmomzatmn of many-electron, 1\ pPARTICLE ONE-DIMENSIONAL MODEL OF THE
atomic system is of definite interest. NEGATIVE HYDROGEN ION
Direct numerical integration of the time-dependent
Schralinger equation for a quantum system in an electro- It is assumed within the one-dimensional model that the
magnetic field has permitted the investigation of the ionizadinteraction of the electrons with the nucleus and with one
tion of one-dimensional two-electron systems without anyanother can be described by a smoothed Coulomb poténtial.
simplifying assumptions. For example, the ionization of the  Therefore, the Hamiltonian of the system can be written
model one-dimensional He atom was investigated in Refs. & the form

and 3, and the negative hydrogen ion was investigated in 2
Refs. 4-6.
H= Ti+ V(X)) +ViAX1,X2). 1
The dependence of the ionization probability of the sys- izl (THVO)+ Vi Xo) @

1063-7761/98/87(11)/10/$15.00 875 © 1998 American Institute of Physics
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Xy A bound states remained unclear: Grobe and Ebaggumed
the appearance of a second state in the discrete spectrum near

the continuum edge. Our calculations fer=a, show that
such a state probably exists, but the accuracy of the calcula-
tions must be improved to determine its energy.

We note that the single bound state in the madsl in
the real three-dimensionahegative hydrogen ion is charac-
terized by a wave function which is symmetric under inter-
change of the electrons. This means that the total Spim
this state equals zero. Since intercombination transitions are

¥

&

-5t 1 forbidden in the electric dipole approximation, the state of
the two-electron system always has a singlet character during
a laser pulse.

_10 s 0 5 . A The data in Fig. 1 attest to the relative “weakening” of

1 the binding of one of the electrons in the system: states in
FIG. 1. Distribution of the probability densify(x, ,x,) for the ground state  Which one of the electrons is near the attractive center, while
of the one-dimensional negative hydrogen ion. The lines of equal probabilitthe other is at a considerably greater distance from it are
density correspond to 16 (1), 10~° (2), 0.01(3), 0.1(4). more probable. The observed weakening of the binding of
one of the electrons, of course, differs significantly from the
classical models of a weakly bound electron moving in an
orbit with a radius larger than that of the inner electron.
From the standpoint of our one-dimensional quantum-
mechanical model, such a classical picture should corre-
spond to a distribution of the electron densitfx, ,x,) with
local maxima in regions near the points;~0 and
| X2= FXm OF Xp~0 andx; = =Xy (X is the distance from

provides a qualitatively correct description of the structure oil_he cefntre1 reo thelweakly dbour_1d er:ect}ofﬁhe real r?'smg,lf'
the energy spectrum of the hydrogen atom, particularly thdlon of the twoje eCtFO”_ ensny_ as a - cross-shaped- ap-
presence of an infinitely large number of Rydberg States[’Jearance, and it attains its maximum at the origin of cqordl—
which condense toward the continuum edge. As for thd1ates x1=.x2=0. H_owevgr,b i t?e tv_vo—electron fu(;](?Uorr]]
ground state, its energy is very sensitive to the choice of th (X1, %) s appro>l<|mate y a function constructe |n.t €
value of @. Therefore, it can be expected in a two-electron orm of a symr_netnzed product of two one-electron orbitals
system that the energy of the bound states and their numbé'l(x) andv(x), i.e.,
will depend strongly on the choice of the value of the  p(x; x,)~(u(x;)v(Xy)+U(Xp)v(X1)),
smoothing parameter.

We obtained stationary states corresponding to théhen for the two-electron density shown in Fig. 1 be ob-
Hamiltonian (1) by solving the two-particle time- tained, these orbitals must be characterized by different dis-

Here T, is the kinetic energy of théth electron,V(x;)=
—e2/\/a2+x2i is the energy of its interaction with the
nucleusV,,=e?/\Ja?+ (x;—x,)? is the energy of the inter-
action of the electrons with one another, anis a smooth-
ing parameter.

It has been reportédhat a smoothed Coulomb potentia

independent Schainger equation persions of the coordinates, i.e., by regions of spatial local-
Y _E 5 ization of the electrons of different sizes. For this reason, we
¢(X1,X2) =Ep(x1,Xp) (@ shall henceforth refer to an outer and an inner electron. As an
on a rectangular grid. In this process we used the symmetrgxample of a wave function with such a structure we can cite
of the Hamiltonian under spatial inversion, the Chandrasekhar wave functfon
H(X11X2)= H(_Xlr_XZ)! ‘I’(rl,rz)mexq_rllal_ rz/az)
and interchange of the electrons, +exp—ryla,—rq/a,)

H(X1,%2) =H (X2, Xy). (a;~0.97a,, a,~3.53, a, is the Bohr radius which de-

The solution method is described in the Appendix. scribes the bound state of the three-dimensional negative hy-
The ground-state wave function of Hor «=0.92 Ais  drogen ion.
presented in Fig. 1. The energy of this state equals The wave function obtained for the ground state of the
Eo=—12.56 eV. If the binding energy of the electron in the negative hydrogen ion attests to strong electron—electron
hydrogen atom for this value af, E;=—11.45 eV, is taken correlations in the system. In particular, as can be seen from
into account, we find that the energy for detaching an elecFig. 1, such states are more probable when the electrons are
tron from H  (the ionization potentialamounts tol~1.1 located on opposite sides of the attractive center. The
eV, which is fairly close to the experimental value:0.75  electron—electron correlations lead to a loss of symmetry for
eV. We note that the bound state found for the parametethe wave function¥ (x;,x,) under inversion with respect to
value chosen is the only such state. one of the coordinate axes;— — X Or X,— — X,. This fea-
In Refs. 4 and 5¢= a, (the Bohr radiuswas chosen. In  ture of ¥(x;,X,) cannot be described in terms of one-
this case it turned out thdt=1.7 eV, and the number of electron orbitals.
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TABLE I.

n 1 2 3 4 5 6 7 8 9

E,, eV —1145 -6.05 —-3.85 —2.52 -174 -126 -096 -060 —0.41

The degree of correlation of the motion of the electrons ot
can be characterized quantitatively by the correlation coeffi- sosmzz_tf’ t<ty,
cientK, which was introduced in Ref. 9. The valuekiwvas

calculated in Ref. 10 for the ground state of the one- &(t)=q €o. tist<ti+tp,

dimensional H and He systems, which were treated within m[t—(2t;+1,)]

- goSiP——— =ttt <t<<2t;+t,,
the exact two-particular model. It was found that there are 0 2t ' p p
stronger correlations in the Hsystem. This is because the 7)

electron—electron interaction energy in this system, unlike . . .
the helium atom, can no longer be considered small in com\f;l]hereltf[ andtpfz?[:]e tTe rse alnd ds\?aystlmg? ano(ljtthe_vgn_?th of
parison to the interaction energy of each of the electrons withhe plateau o ne 1aser puise. vve pE andt,=>s1,
the nucleus. whereT=2m/w is the optical period. The frequency values
Unlike the bound state, all the excited states of bk- corrEspc:Eded tdiw_=2| anldt5 eVE. 6 itten in th
long to the continuous spectrum. They include one-electron dc_)r te numerical solution Eq6) was rewritten in the
continuum states, in which one of the electrons is in the"0CTdINAES
discrete spectrum, while the other is in the continuous spec-  ¢=(x,+ x2)/\/§, 77=(X1—Xz)/\/§-

trum, and two-electron continuum states, which correspond . o
to infinite motion of both electrons. Since an electromagnetic field destroys the symmetry of the

The one-electron continuum states are “hydrogen atonfiamiltonian with respect to spatial inversion, the integration
+free electron” systems. If the interactions of the electrond©dion of(6) was chosen in the form
vv_|t_h one another are dlgregarded for such states and, m_ad— Ee(—Emap fmady 7€ (0,7mad
dition, if the wave function of the free electron is approxi-
mated by a de Broglie plane wave with the wave vektand Ema=100A,  7pa=150A

— ¥ 21,2 H — H
the energyE=7k*/2m, then in the case =0 with con-  1he nymber of points on the spatial grid was B340, and

sideration of the identity principle, the one-electron con-yq integration step with respect to time was a hundredth of
tinuum states will be described by a spatial wave function of, . period corresponding fow=5 eV. The method used to

the form integrate the time-dependent Satlimger equation was simi-
1 explikx,) lar to the one in Ref. 11. _
Onk(X1,X0)= —=13 P (X)) ——— The functionW¥ (x,,X,,t) obtained as a result of the cal-
V2 V2 culations was used to calculate the probabilities of the popu-
exp(ikx,) lating of various states and to calculate the photoelectron
+ q)n(Xz)—l} , (5)  energy spectrum.
V2w For example, the probability of finding the system in the

where®,(x) is the wave function describing the hydrogen unionized(original) state was calculated from the formula

atom in thenth stationary state, which satisfies the one-

electron time-independent Sckiinger equation for an elec- Wi(t)=|Cq(t)|?= J W (X1,X2,1) @o(X1,X2) dXg dX;
tron in a smoothed Coulomb potenti#the energie&,, of the (8)
nine lowest states in the hydrogen atom are listed in Tgble | ) ) )
This approximation is apparently permissible, at least for not'N€ré¢o(X1,x,) is determined from the solution ).

very smallk, because the potential created in space by the The one—el_ectron ionization probability was calculated
neutral hydrogen atom is short-range. using the function

2

~ i
W (X1,Xp,t) =W (Xq,X,t) —Co(t X1,Xo)exp — —Eqtt,
3. INTERACTION WITH AN ELECTROMAGNETIC FIELD (X1.:X0,1) =W (X1, X2,1) = Col) @o( X1, %2) W’ h 0]

9
The dynamics of the system in an external laser field are ) . ©
described by the equation whereE, is the energy of the stationary stapg(x;,X»).
As can be seen} is formed as a result of the superpo-
aq’(xllXZIt) Y i
hh————C =[H—e(x;+X;)e(t)cod wt) ¥ (Xq, X5, 1), sition of one- and two-electron continuum states and does
at not include the single bound state of the two-electron system.

(6) This situation does not diminish the errors in calculating the
wherew is the frequency of the electric field of the wave and one-electron ionization probability associated with the com-
g(t) is the pulse envelope. The envelopé) used in the pleteness of the basis set of plane waves that we used to
calculations had the form describe the one-electron continuum states.
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%, A % A
a
50}
FIG. 2. Distribution of the probability density
p(X4,X,) at the end of a laser pulse fétw=>5
0r eV and P=10" (a) and 8< 10" W/cn?. The
] contour levels correspond to the same values as
in Fig. 1.
=50t
-100  -50 0 SO x. A
The coefficients in the expansion of the functi@) in exp{ —ikx} 2
. 3 2
the one-electron continuum statés were defined as w(k)=> [Col?=2> |an(x) ——=——dx| . (15
n n N2
an:f q’(xl1X2at)(P:k(Xer2)dxldX2 Here the values ofC,/? specify the photoelectron spectra
provided the hydrogen atom is in theh stationary state
5 expl — ikx,) when H™ undergoes photoionization. In free space the mo-
= \/Ef \If(xl,xz,t)CDH(xl)—z mentum expansion is identical to the energy expansion.
V2 Therefore, the expressidib), in effect, specifies the photo-
i electron energy spectrum(k=2mE/#). In this casg15)
xexp{%(EnJr E)t{ dx; dx, (1)  is normalized according to the condition
(here E,, and E are the energies of the exciteth one- f w(k=\2mE/#)(dE/dk) "tdE=1.

electron bound state of hydrogen and of the free electron,
E=%2k?/2m), and the probability of one-electron ionization As for two-electron ionization, it is impossible to calcu-

with passage of the bound electron into tite state is late the energy spectrum without knowledge of the functions
in the two-electron continuum. In our opinion, the double

momentum expansion performed for this purpose in Ref. 5 is

wnzf |cnk|2dk:2f |an(%)]2 dx, 1y ! EXP b purp
incorrect, since the basis set of plane waves is complete and
where includes bound states of the electron, precluding separation

of the one- and two-electron continuum states. Moreover, it
- should also be borne in mind that for a long-range potential,

an(X,t)= j W(Xq,X,1)Dp(Xq) dXy . (120  such as a one-dimensional smoothed Coulomb potential, mo-
mentum expansion is not identical to energy expansion and,

The total one-electron ionization probability was determinedherefore, does not permit calculation of the energy spec-

by summing thew,, : trum.
nmaX
W<1>=n§=‘,1 W, (13 4 SIMULATION RESULTS

. . 4.1. Space—time picture of the process
In our calculations we set,,,,=18. This value was selected

on the basis of the condition that the populations of states ~Figure 2 presents typical plots of the spatial distribution
with n=n,,,, are negligibly small in the range of radiation Of the probability densityp=|W (xy,x)|*, which were ob-

intensities investigated. tained at the time of completion of the laser pulse for the
The two-electron ionization probability was determined intensity values?= 10" W/cn? and 8x 104 W/cn¥. Figure
as 2a corresponds to one-electron ionization when one of the
electrons(the identity principle does not allow us to say
2)_ Mmax which ong is in a bound state, while the other is distant from
W —1_W0_n§::1 Wh . (14 the nucleus. Such a situation leads to the formation of the

characteristic “cross” on the plot op(x;,x,). Figure 2b
If the two-electron ionization probability is small, the corresponds to an intensity at which both one- and two-
expansion coefficient€,, permit determination of the pho- electron ionization take place. In this case the electron den-
toelectron spectrum in wave-vector space: sity p(xq,X,) localized in the region{x;>0,x,<0UXx;
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FIG. 3. Time dependence of the pOPU"atif” of the ground state aliting [ 4. Dependence of the onék) and two-electror(2) ionization prob-
a laser pulse fofiw=5 eV andP=8x 10" W/cn?. The broken line is the  apjlities at the end of a laser pulse on the width of the plateau of the laser
laser pulse envelope. pulse forhw=5 eV andP=8x 10" W/cn?.

in temporal evolution of the two-electron densjiyx;,x;) in

<0,x,>0} corresponds to two-electron ionization, i.e., . - 4 .
two-electron ionization the electrons escape in opposite dith€ case of the direct mechanism of the process, in which
both electrons, the outer and inner, pass into the continuum

rections for the most part as a result of Coulomb repulsion: - ‘ ! g -
We note that such correlated electron motion, which is ob@t €ssentially the same time and escape in opposite direc-

tained in exact calculations, is not observed in the Hartree ofOnS: the electron density should be localized in a region
Hartree—Fock self-consistent-field approximations. roughly equidistant from both coordinate axig=0 and
Spatial distributions ofo(x,,x,) obtained at different x_2=Q. Ip the case of the sequennlal. ionization process, the
times enable us to distinguish between two mechanisms dfistribution of p(xy,xz) should exhibit the “cross” corre-
two-electron ionization: a direct process, i.e., passage fromiPonding to the single-electron ionization regime of the sys-

the initial state to two-electron continuum states, and a sel€M: Which gradually expands as the inner electron moves

quential process. Sequential two-electron ionization involve@Way from the system. The data presented in Fig. SHor

> 4 ; b
passage from one-electron continuum states to two-electron 8% 10" W/(_:mz’ which correspond to the distribution of
,Xo) at different times=2T, 5T, and 7T, attest to the

continuum states under the condition that the saturation o?_(xl -
single-electron ionization is observed as a result of esserpimultaneous presence of both mechanisms and, therefore, to

tially total “depletion” of the ground state. In fact, when competition between the direct and sequential ionization pro-

fiw=5 eV andP=8x 10" W/cn?, the population dynamics C¢©SS€s: _ , , , .
of the ground state during a pulse attest to the essentially !t would also be interesting to investigate the possibility
complete emptying of this state already at the beginning off ré@lizing the two-electron ionization meghani‘@rbased
the plateau of the laser pulésee Fig. 3 on the rescattering modl. According to this model, the

Since the absorption of at least three photons is neede?Hter: weakly bound electron leaves the atom, and then it
for a transition to the two-electron continuum whiem =5 returns after half of an optical cycle and knocks out the inner

eV, while a transition to the one-electron continuum is pos_electron with a certain probability. The data presented in Fig.
sible as a one-photon process, the probability of direct two?® attest to delocalization of the electron density over a region
photon ionization is low, and the sequential process is domiwith a radius many times greater than the atomic radius even

nant. In this case it can be expected that increasing the widt@t the beginning of the laser pulse. This applies to both one-
of the plateau of the laser pulse will reduce the one-electro@Nd two-electron continuum states. In such a situation there
ionization probability at the end of the pulse and increase th& scarcely any Jyst|f|cat|on to speak about the penodlcally
two-electron ionization probability via the sequential ioniza-"ePeated scattering of one of the electrons on the atomic
tion mechanism. The data presented in Fig. 4 completelfOre- We note in this context that calculations of the ioniza-

corroborate the major role of the sequential mechanism: a4on dynamics of the one-dimensional He atom in Ref. 14,
the width of the plateau is increaséat a fixed value of; which were performed in the Hartree—Fock approximation
=2T), there is a monotonic rise in the two-electron ioniza-a”d revealed a contribution of the rescattering effect to the

tion probability from 7.6 to 47% mainly due a decrease intwo-electron ionization process, are in need of further inter-

the percentage of one-electron ionization. Such a descriptioR€tation.

of the process is qualitatively consistent with the data ob- _ o

tained in Ref. 4: a time-resolved analysis of the photoioniza#-2: Single- and two-electron ionization probabilities and

tion spectra forhw=27.2 eV andP~ 10 W/cn? also pro-  Stapiization

vides evidence in support of the sequential mechanism of Let us move on to a study of the dependence of the one-

two-electron ionization. and two-electron ionization probabilities on radiation inten-
Although the rate of direct two-electron ionization is sity. The data foliw=5 eV in the intensity rang® = 102

small under these conditions, the probability of this process-2x 10 W/cn? are presented in Fig. 6. This figure also

is nonzero at the end of the pulse. From the standpoint of thehows the nonionization probability, i.e., the probability of



880 JETP 87 (5), November 1998 Volkova et al.
Xy A wi
a
0
157 3
0.5t
or o
—15} 2
1
0 . " :
. ‘ . 1012 10" 10" P, wiem?
-30 -15 0 15 Xp A FIG. 6. Probability of remaining in the ground std® and one-(1) and
two-electron(2) ionization probabilities at the end of a pulse as a function of
%, A radiation intensity fohw="5 eV.
A comparison of the nonionization probabilities for the
25¢ one-dimensional one- and two-electron modekee Fig. 7
shows that under our conditions the effect of the field on the
inner electron is already significant a 10" W/cn? and
or leads to a significant increase in the probability of detach-
ment of the outer, weakly bound electron. In addition, an
25l increase in the nonionization probabilitstabilization is ob-
served at (4 8)x 10" W/cn?, but a rapid decrease in the
value of 1-W, is observed forP=10" W/cn?. It was
shown in Ref. 15 in the one-electron approximation that the
-50 appearance of stabilization under the conditions considered
is due to the formation of a Kramers—Henneberger potential
X A and the populating of stationary states, which are stable to-
ward ionization, in it. Our calculations performed using a
two-particle model allow us to state that the effect of the
sob field on the inner electron significantly distorts the Kramers—
Henneberger potential and eliminates stabilization.
We also note a tendency for saturation of the two-
of electron ionization probability in the regidd= 10> W/cn?
(see Fig. 6. This saturation also appears to be a result of
2 stabilization, but in the one-electron system, i.e., the hydro-
_sof gen atom.
In the case under consideratioh4=5 eV) three pho-
tons are needed to eject the inner electron, and two photons
-100  -50 ] 50 x.A
FIG. 5. Distributi = = 4 I-%
. 5. Distribution ofp(x;,X,) for Zw=5 eV andP=8x 10" W/cn? at
the timest=2T (&), 5T (b), and 7T (c). The contour levels correspond to
the same values as in Fig. 1.
10—1 L
remaining in a single bound state at the end of the laser
pulse. As can be seen, double ionization begins at intensities 2t
equal to~10* W/cn?, and the maximum for one-electron 10
ionization is at < 10 W/cn?. This value of the intensity is
less than the stabilization threshold obtained in the
one-dimensionaf and three-dimensiondl one-electron 107 ; RS
models of H', which amounts to (4 5)X 10" W/cn?. This 1012 10" 10 P, Wicm?

m?ans t_hat the ,StUdy,Of t.he phenomenon of Stablllz,atlon IIFﬁEIG. 7. Probability of remaining in the unionized state at the end of a laser
H™ requires an investigation of the effect of a laser field ONpulse for the one-electrofl) and two-electror{2) models of H as a func-

the inner electron.

tion of intensity forhw="5 eV.
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1-W, various intensities. It is seen from the figure that the maxi-
mum probability is attained fon=1 and 2, which corre-
spond to photodetachment of the outer electron. At the same
time, there is also a maximum fer=5 and 6 for all the
intensity values. This maximum may appear as a result of
ejection of the inner electron by the field upon the absorption
of three photons by the system. Furthermore, as can be seen
from Fig. 9, when the radiation intensity is high, the prob-
abilities of both ionization channels are close in value.

These arguments are qualitatively confirmed by the fact
that the energies of the fifth and sixth stationary states of the
one-dimensional hydrogen atom are fairly close to the bind-
ing energy of the outer electron in"H The possibility of
FIG. 8. Same as in Fig. 7, but fdro=2 eV. photodetachment of both the outer and inner electrons’in H

was also considered in Ref. 4 in an analysis of high-energy

o _ photoelectrons, but no correlations between the position of

are needed to excite it. The low multiphoton order of theye peak in the spectrum and the populations of different
process is also manifested in the effective action of the fieldyomic states were obtained. Therefore,in addition to the to-

at once on the two electrons of the system and its unsatisfags|s e calculated the partial photoelectron energy spectra
tory description within the one-electron model. Therefore, 'tcorresponding to residence of the bound electron inntihe
can be expected that a decrease in the photon eriesgand stationary state.

a simultaneous increase in the multiphoton order of the pro-  The gpectra foP=2x 101 W/cn? are shown in Fig.

cesses for the inner electroiprovided they remain one- 19 as is seen from the figure, the photoelectron spectrum

photon processes for the outer eleciramll yield better 55 54 complicated structure because the electron remaining
agreement between the calculations performed using the ongang following the laser pulse can be in different states. For
and two-electron models. The calculations of the nonioniza;

! ~ ’ o example, the series of peaks 1, 2, 3. is theresult of the
tion probability foriw=2 eV support this hypothesifig.

4 oo% ionization of H with the formation of a hydrogen atom in
8). Up to P~10" W/cn? the plots of 1-W, qualitatively e ground state, and peaks 2, 3', ... appear as a result

mimic one another, although stabilization is manifested eveRy the ionization and simultaneous excitation of the hydrogen

more c_I(.aar.Iy in the two-electron model: the nonionizat_ionatom formed to then=2 state. The atomic system absorbs
probability increases by more than three orders of magnitudgne additional photon in the latter case. The same number of

. . . 3 3 P
in the intensity range 2 10*~8x 10" wicn?. Raising the  photons are also absorbed in the case of ionization with ex-
intensity above 18 W/cn? leads to two-electron ionization citation of the hydrogen atom to the=3 state. The absorp-
and a loss of the stabilization regime of the system. tion of one more additional photon occurs fo« 6, leading

to an increase in the photoelectron energy in comparison to

1071

1073}

107 . .
1011 10" 10 P, wWiem?

n

4.3. Analysis of the photoelectron spectrum and populating the case oh=3 (Fig. 10b. Thus, it is apparently convenient
of various bound states in the single-electron ionization to interpret the case af=6 as removal of the inner electron
regime

from H™. We note that the position of the energy peaks in

Figure 9 shows the populations of states of the hydrogethis case is not described exactly by the expression
atom with various values of the quantum numineduring _
the one-electron ionization of the negative hydrogen ion, E=lfiot(Eo—En) (16
which were calculated using1) and(12) foriw=5 eV and (I is the number of photons absorbed, dhgandE,, are the
energies of the ground state of Hand thenth excited state
of the hydrogen atojnas a consequence of the Stark effect
for the lower states of the hydrogen atom and the pondero-
motive shift of the continuum edge.

At low intensities P~ 10" W/cn?) the shift of the lev-
els due to the Stark effect is small, and the positions of the
peaks are consistent with the calculations using (E6). In
this case photodetachment of the outer electron takes place,
and the inner electron remains in the ground state for the
most part. As a result, the photoelectron energy spectrum
acquires the structure typical of the ionization of one-
electron system@Fig. 11, and the excitation probabilities of
) . all the states witm>2 are negligibly small.

4 8 12 n To conclude this section we note that the investigation of

FIG. 9. Populationsb,(x) of various states of a one-dimensional hydrogen the spec_tral of.phqtoelectrons Tormed .as a result of two-
atom formed as a result of the one-electron photoionization ofdét two  €l€Ctron ionization is of unquestionable interest. Such calcu-
values of the intensityl — 4x 10*3 W/en?, 2 — 10" Wicn?. lations were not performed because of the need to isolate the
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FIG. 10. Energy spectrum of photoelectrons formed in the

one-electron photoionization of Hfor P=2x 10" W/cn?.

The numbers of the curves correspond to the states of the
electron in the hydrogen atom formed. Solid curve — overall

spectrum.

part of the wave function that corresponds to the two-served: a stabilization regime and agreement between the
electron continuum, which is a separate complicated probthreshold intensity values for this regime in the two cases are
lem. We note only that the general form of the wave functionobserved.
at the end of the laser pulgsee Fig. 2bis evidence that the The features of the structure of the photoelectron spec-
mean value of the kinetic energy of the photoelectrons protrum in the region for one-electron ionization due to the su-
duced by two-electron ionization is greater than the value foperposition of the contributions of different channels of the
one-electron ionization. process, viz., the photodetachment of one of the electrons
and excitation of the remaining atom, have been explained.
In our opinion, it would be of interest to carry out similar
5. CONCLUSION investigations for a model neutral atom characterized by a
_ . L large number of states in the discrete spectrum, including
~ Exact two-particle calculations of the ionization dynam-y, i, singlet and triplet states, as well as autoionizing states.
ics of the one-dimensional negative hydrogen ion in an elecy, \o1q also be of interest to study the possibilities of using

tromagnetic field have been performed in the present worky o imate Hartree—Fock methods to describe the features
The data obtained attest to strong electron—electron correlqﬁ the ionization dynamics of atomic systems in intense light

tions in the system. The latter are manifested in the structurgg|qs

of the wave function of the ground state, which is character- Tﬁis work was performed with financial support from
ized by weak binding of one of the electrons, as well as ino Ryssian Fund for Eundamental Resed@tant Nos. 96-
the correlated two-electron ionization dynamics, which resulbz_19286 and 96-15-96447
in escape of the photoelectrons in opposite directions.

It has been concluded from the data obtained on two-
electron ionization dynamics that the rescattering modelAPPENDIX A:
which involves the photodetachment of one electron and We write the time-independent Séklinger equation2)
ejection of the second electron by it when it is scattered b

: . e .g/n the form

the mother atom, is not feasible under the conditions consid-
ered. ( 2 52 e? e?

It has been shown that the action of a strong field on the St > >
inner electron destroys the validity of the one-electron ap- X o Nattxp et
proximation. A comparison of the two-particle calculations

2

e
carried out and calculations performed in the one-electron T — o(X1,X)=E@(X1,X5). (Al)
approximation has revealed the values of the parameters of va“+(X1—Xz)

the laser radiatiortintensity and frequengyat which good  Taking into account the symmetry of the Hamiltonian under
correspondence between the two approaches compared is @fyatial inversion and interchange of the electrons, we intro-

duce the new variables
X1t Xp X1 Xp
which correspond to a coordinate system turned 45° relative

to x4 andx,. In the ¢, » coordinate system the problefl)
can be written in the following form:

2 9 e? e?
(0_52+ o NaP+2(E+9)?  JaP+2(é- )’

e2

(A2)

t === e(&,n)=Ee(& 7). (A3)
FIG. 11. Same as in Fig. 10, but fér= 10" W/cn?. Va?+ 2772> 7 7
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The functione(¢, ) is symmetric or antisymmetric in the
coordinate axes and can be defined in the first quadrant:

0=¢,

nSOC.

(Ad)

To obtain the entire set of stationary states(#t), we must
consider the problenA3) in the region(A4) for four cases

with different boundary conditions on the coordinate axes:
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4
mgzj.“*NTng
€k

k_

J‘ékﬂdNT dN
K=

__d ,
o e de%
where N={N,N,,N3,N,} is the vector of form functions
for a cubic element.

1 ¢ P 0 The matrix P is defined by the interaction potential of
T 0€ £20, 0 p<oo " dny 0, 0 to ' the particles and was calculated using the following approxi-
o (e mate formula
1% Le K
2. — =0, ¢,-0,0c¢===0, SR
IE | ¢_o, 0= = ! P=> > ml§®ml7lvk,|1
I=1 k=1
(A5)
Je
3. ©ro00=y=x=0, — =0, where
' (97} 7=0,0<¢{s%»
v e? e?
4. @i=0,0c9<x=0, @,-00<¢=2=0. kI= ™ = =~ = =
0= " Va?+2(F+7)°  Na?+2(E—7)?
The discrete analog of the probletA3)—(A5) was ob-
tained using the finite element method with a cubic approxi- e?

mation of the function in an elemehtThe two-dimensional

region 0<¢,7<30 A was considered. The condition of

+

Val+ 277,2

equality of the derivative to zero was imposed on the distanis the value of the interaction potential in the element with

boundary(the eigenfunctions for the states of the discretethe indicesk andl, and€, and7, are the mean values of the
spectrum of interest to us vanish on the distant boundary, anghordinates at the element.

the actual assignment of the boundary condition is of no

Thus, the problem of finding stationary states has been

importance. The use of rectangular Lagrangian elements irreduced to the eigenvalue problde). The boundary con-
a two-dimensional region enables us to write the followinggitions 2—4 in(A5) are taken into account in the following

finite-element form of the probled?:
Le=EMg¢, (AB)

whereo={¢4, ...
the eigenfunctionsN=KL is the number of nodes in the

manner: zero values of the function are assigned on the
boundary. The off-diagonal elements lofin rows with the
indices of nodes having zero assigned values are set equal to

,ont is the vector of the nodal values of zero, and the diagonal elements in those rows are set equal to

unity. The zero values of the derivatives are natural bound-

two-dimensional region, which is equal in the case of La-ary conditions and do not require alteration of the matrix.

grangian elements to the product of the number of nodes

along each of the coordinates,

L=M,®D,+D;&M,+P

The eigenvalue problem was solved by iterating within a
subspacé® The main goal of the iterative subspace approach
is to find thep smallest eigenvalues and eigenvectors of the
original problem. These eigenvectors formpaimensional

is the matrix of the Hamiltonian of the two-particle system, orthogonal subspace. The effectiveness of the method is due

and

M=M,M,

is the weighting matrix formed by the direct matrix product
of the weighting matrices of the one-particle systems. Th

one-particle weighting matrigor one-dimensional weighting
matrix corresponding to one of the coordinatesspecified
by a sum of element matrices:

e'-e
_ k
M¢ = gl Mg

whereK, andL, are the number of elements along each of

the coordinates. For cubic elements we h#ve 3K +1,
andL=3L.+1.

The single-particle matrices of the derivativbg , are
defined in a similar manner.

to the fact that the entire subspace is iterated as a whole,

rather than each eigenvector individually.
The matrix L must be positive definite to apply this
method. In order to satisfy this condition, a displacement of

éhe matrix must be introduced. We introduce the new matrix

L=L+sM,

choosings so as to ensure the positive definitenessLof
Then the new eigenvalue problem is written in the form

Le=EMbop. (A7)

It is easy to show that the solutions G46) and (A7) are

related by the expressions

¢=¢, E=E+s.

Subtracting the shifs from the modified values, we obtain

The matrix elements are specified by the form functionghe eigenvalues of the original matrix equation. In the prob-

in an element’

lem under consideration a shift equale® \/a? was chosen.



884 JETP 87 (5), November 1998 Volkova et al.

The eigenvalue problerA6) has a solution consisting °A. I. Artemiev, R. Grobe, and J. H. Eberly, Buper-Intense Laser-Atom
of N eigenvalues and eigenvectors. However, we are inter- Physics IV H. G. Muller and M. V. FedoroVEds), Kluwer Academic,
ested only in a few low eigenvalues that correspond to the,Dordrecht—Bostori1996, p. 285,

. . . h . J. Javanainen, J. H. Eberly, and Q. Su, Phys. Re88A3430(1988.
discrete spectrum of the Hamiltonian under consideration. Ine,; "» " gathe and E. SalpeteQuantum Mechanics of One- and Two-

the formulation of the problentA6) presented above these Electron Atoms Springer, Berlin; Academic Press, New Yot&957)
eigenvalue€ =E—s should be negative. Positive eigenval- [Russ. transl., Fizmatgiz, Mosco@960]; B. M. Smirnov,Negative lons
ues correspond to free motion of the electrons. and their McGraw-Hill, New York—London (1982 [Russ. original, Atomizdat,
. .. e oy . . Moscow(1978].
d_|screte structgre and flnlte number are s_pecmed by the finite), Rzazewski, inSuper-Intense Laser-Atom Physics . G. Muller and
size of the region considered and the discrete nature of them. v. Fedorov (eds), Kluwer Academic, Dordrecht—Bostofl996),
representation of the problem. p. 213.
. . 10
Therefore, the use of the proposed algorithm, which per- S- L. Haan, R. Grobe, and J. H. Eberly, Phys. Re60A378 (1994).
: C 1E. A Volkova, A. M. Popov, and O. V. Tikhonova, Zhk&p. Teor. Fiz.
mits the determination of only the necessary number of ei- i ' :
L 108 436(1995 [JETP81, 235(1995].
genyglues, rather .than all of them, seems very 'eff|C|ent'. IM2 ¢ Kulander, J. Cooper, and K. J. Schafer, Phys. Rev51A 561
addition, the algorithm under consideration permits working (1995.
with a banded matrix. and makes it possible to use external *P. B. Corkum, Phys. Rev. Letf1, 1994(1993.
memory. 143, B. Watson, A. Sanpera, D. G. Lappetsal, in 7th International Con-
ference on Multiphoton Processes (ICOMP), Book of Abstracts
Garmisch-Partenkirchen, Germa(i996.

*)E-mail: popov@mics.msu.su 15A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Ph§s1029,
1184(1995.
IN. B. Delone and V. P. KrainovMultiphoton Processes in Atoms '°C.A.J. FletcherComputational Galerkin MethodSpringer-Verlag, New
Springer-Verlag1994. York (1984 [Russ. transl., Mir, Moscow1988)].

2M. S. Pindzola, D. C. Griffin, and C. Bottcher, Phys. Rev. L&6, 2305 171, J. SegerlindApplied Finite Element AnalysigViley, New York (1976
(1992); M. S. Pindzola, P. Gavras, and T. W. Gorczyca, Phys. Rev1,A [Russ. transl., Mir, MoscowW1979].
3999(1995. 18H. Rutishauser, “Computational aspects of F. L. Baner's simultaneous
3D. G. Lappas, A. Sanpera, J. B. Watszinal,, J. Phys. B29, L619(1996. iteration method,” Numer. Mathl3, 4 (1969.
4R. Grobe and J. H. Eberly, Phys. Rev. L&8, 2905(1992.
5R. Grobe and J. H. Eberly, Phys. Rev.48, 4664(1993. Translated by P. Shelnitz



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 5 NOVEMBER 1998

Using effective operators in calculating the hyperfine structure of atoms
V. A. Dzuba and V. V. Flambaum

University of New South Wales, 2052 Sydney, Australia
M. G. Kozlov*) and S. G. Porsev"

St. Petersburg Nuclear Physics Institute, 188350 Gatchina, Leningrad Region, Russia
(Submitted 16 April 1998
Zh. Eksp. Teor. Fiz114, 1636—1645November 1998

We propose a method for calculating the hyperfine struatui® of multielectron atoms based

on a combination of configuration superposition and many-body perturbation theory. The

latter is used to construct an effective Hamiltonian and an effective hfs operator in configurational
space. The method can be applied in calculations of the matrix elements of any one-electron
operators. By way of an example we calculate the magnetic hfs comsfanseveral lowest levels

of neutral thallium. We show that the method achieves a calculation accuracy of about 1%,
which earlier was possible only for atoms with a single valence electron1988 American
Institute of Physicg.S1063-776(098)00611-§

1. INTRODUCTION All this suggests a combination of the configuration-
superposition method and many-body perturbation theory.

Recently we proposed a method for calculating the low-The latter is used to set up an effective Hamiltonian for the

est energy levels of multielectron atomhe calculations valence electrons. After that the Schinger equation with

done for TI(Ref. ) and Ca, Sr, Ba, and YfRefs. 2and B the effective Hamiltonian can be solved by the

demonstrated its effectiveness. In this paper we wish to showonfiguration-superposition method. At this stage only va-

that the method can be used to calculate not only energidence electrons are accounted for explicitly. In Ref. 1 we

but also other observables, such as the hyperfine structushowed that the Brillouin—Wigner perturbation theory and

(hfs) constants and transition amplitudes. For the sake ofhe ordinary diagrammatic technique are sufficient for con-

definiteness we focus on calculations of the magnetic dipolatructing the effective Hamiltonian. In the present paper we

hfs constant. Generalization to other one-electron operatomiscuss the setting-up of effective Hamiltonians for other ob-

is obvious. Not that hfs calculations are one of the main testservables.

in calculating amplitudes that do not conserve spatial parity. In Sec. 2 we define the valence subspace and give the
At present several methods for calculating multielectronmain formulas for the effective Hamiltonian. Section 3 is

atoms are available. For atoms with one electron in additiomlevoted to a discussion of other effective operators. In Sec. 4

to the electrons in filled shells there is the many-body perwe calculate the hyperfine structure in thallium.

turbation theory in the residual Coulomb interacti(see,

e.g., Ref. 4. For atoms with several valence electrons there

is the configuration-superposition method and the multiconé- EFFECTIVE HAMILTONIAN FOR VALENCE ELECTRONS

figuration Hartre_e—Fock methdd.ately the coupled-cluster Here we are interested in low-energy atomic states with
method has gained wide acceptaficéThe hfs constants energiesE,— E,<&, whereE, is the ground-state energy of
have been repeatedly calculated by all these methi&els,  the atom. Then to a first approximation we can assume that

e.g., Refs. 9-14 the inner electrons, whose Hartree—Fock energigsare

The most complicated problem encountered in atomiGych higher(in absolute valugthane, form a core, which is
calculations is the need to correctly account for the correlagescriped by the wave function

tions between valence electrons and the correlations incorpo-

rating core electrons. Correlations of the first type are too  Yeore= (Ne!) "2 det(¢1, 45, ... by ), (1)
strong to be accounted for by ordinary many-body perturba- oo — @
tion theory. However, if the number of the valence electrons HFD= Enn.

is not too large, these correlations are taken into accounwhere h, - is the Hartree—Fock—Dirac operator. Although
fairly well by the configuration-superposition method or thethis operator is used to define the atomic core, it may incor-
multiconfiguration Hartree—Fock method. Correlations of theporate the field of all the valence electrons or of several such
second type are accounted for more simply by many-bodglectrons. For instance, below we examine thallium as an
perturbation theory, since the number of configurationsatom with three valence electrons and the core
needed to describe these correlations by the configuratiofi1s? . .. 5d*%, while the hyep operator is set up for the
superposition method or the multiconfiguration Hartree—1s?. ..5d%s? configuration (the VN~ approximation,
Fock method is too large. whereN is the number of electrons in the athm

1063-7761/98/87(11)/6/$15.00 885 © 1998 American Institute of Physics
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We call the subspace of the multielectron stafedor  techniquet? To this end we use the representation of the
which the core electrons are in staig the valence subspace exact Green'’s function in terms of the Green’s function in
and introduce the projectd® on this subspace. The comple- the Hartree—Fock—Dirac representation:
mentary subspace, with a corresponding projecfor 1

_no 0 ’
— P, is characterized by the fact that at least one of the core Ro(B)=Ro(E) + Ro(R)V'Ro(E), (12)
electrons is excited to states lying higher thag . o 1
The Schrdinger equation Ra(B)=Q mQ- (13

HY=EV¥ 3
] ) 3. EFFECTIVE OPERATORS FOR VALENCE ELECTRONS
can be showhto be equivalent to the following equation in

the P space for the functio® = P We assume that we know the solutions of E4), which
we will use to find an observabla corresponding to the
[PHP+X(E)]P=E®, (4)  one-electron operatdX:
E(E)=PV’RQ(E)V’P, (5) a=(V|A|T). (14
whereV' is the operator of the residual Coulomb interaction,We define an effective operatév; such that
andRg(E) is the Green’s function in th@ space, i.e., a={(®| A D). (15)
V'=H-Hy, (6)  combining(10), (14), and (15), we arrive at an expression
1 for Agg:
Ro(B)=QE—gHa @ @) Aet=PAP+PV'Ro(E)AP+PARG(E)V'P
The operatoiH, can be expressed in terms of the operator in +PV'Ro(E)ARG(E)V'P. (16)
Eq. (2) as follows: Equations(12) and (16) allow the operatorA.4 to be ex-
N panded in a power series . Unfortunately, in most cases
Ho= 2, (1)) —W. (8)  this series converges very slowly, so that usually instead of
i=1

the consistent perturbation-theory approach one uses ap-

The constanW appears on the right-hand side of this equa-Proximations that partially allow for all orders M'. The
tion because the sum of single-particle energieallows for ~ fandom-phase approximatidiRPA) is the one most often
the electrostatic interaction of the electrons between eachsed in this casesee, e.g., Ref. 35Let us see how this
other twice and cannot serve as a good approximation for th@PProximation agrees with EQL6).

total energyE of the atom. This constant can be found from  ©On the right-hand side of Eq16), the operatorA is
the conditior always combined with the exact Green’s function. We intro-

duce a new operatdk such that
<\PCOI’4H0|\I}C0r6>:<\I,COTJH|\PCOI’QEECOI’G' (9)

or {@g|Ho| @) =(Do|H|P,), whered, is the ground-state Ap ArqRa ):
wave function of the atom. Finally, this constant can be used | RoAgr RoAgoRo
as an adjustable parameter, selected by the best match be- ~
tween theory and experiment. Note that in the lowest perturVheréApp=PAP, etc. If we were able to construgt, we
bation order for the operatct (E), the redefinition of this would easily derive the operatéiy, since by substituting\
constant asW— W+ & is equivalent to a shift in energy: into Eq. (16) we arrive at a situation in which all exact

App ApoRY

- - , (17)
0 0 0
RoAqr RQAQQRQ>

S(E)—3(E+4). Green’s functions are replaced by Hartree—Fock Green’s

The solutions of Eqs(3) and (4) are related by functions. Equatior(17) is equivalent to the following sys-

tem of operator equations:
VY =[P+Rg(E)V'P]D, (10 _
App=App, 18

which implies® =PV, PP PP (18

Thg orthonormalization condit.ig(‘rlfi_lllfk)= i x can be ’APQ:APQJFAPQROQ\/'Q, 'AQP:”A;Q, (19
approximately reduced to a condition imposed on the func- 5 B
tions ®, Aoo=Ago+AgoRQV'Q+QV'RA

(®i|1- 32 (B)| D)~ 5, (11) —QV'RYALRIV'Q. (20)
Wheregw(EiJrEk)/Z. Note that of the equations {#)—(11) ~ The RPA equations for the core electrdifsg. 1) resemble
only the last is an approximation. Egs.(19) and(20). The main difference between the operator

It is natural to call the operator in the square brackets imA and the RPA operatakgp, is that the former is not single-
Eq. (4) the effective HamiltoniarH . for the valence elec- particle. Moreover, the random-phase approximation does
trons. Equation$4)—(7) make it possible to use this Hamil- not incorporate a number of single-particle corrections al-
tonian for implementing the usual methods of many-bodylowed by Eqs.(19) and (20). However, the most important
perturbation theory and, in particular, the diagrammaticterms of Eqs(19) and(20) are taken into account b§gpa.
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.4/_ 4 + + ./{ + / + é . . .
g FIG. 1. Diagrammatic representation of the

random-phase approximation method for the core.
A small filled circle stands for the bare matrix ele-
ment of the one-electron operatér, and a large
filled circle corresponds to a similar matrix element

\ é in the random-phase approximation. The wavy line
+ + + + stands for the Coulomb interaction.

e

All this implies that we can write an approximate equa-but their contribution is extremely large, while similar dia-
tion for the effective operatofl6), grams in which thé\gp, Vertex is connected to the other part
_ =0 of the diagram by a patrticle line rather than by a hole line are
Aei~PAP+PV'Ro(E)AreaP taken into account whef21) is substituted in(15).
+ PARPAR%(E)V' P. (2D Combining all these corrections, we arrive at an approxi-

. . . mate expression for the effective operator:
The equation does not contain a term similar to the fourth

term on the right-hand side of E(L6). This term is partially

included in the second and third terms. The remaining part A i~ P(Agppt+ Asgr+Arp+A,)P, (22)
corresponds to what is known as structural radiation, which

in most cases is very weak.

Equation(21) also resembles the RPA equation for va- where the four terms on the right-hand side correspond to the
lence electrons. However, in addition to the RPA diagramdour types of diagram in Figs. 2a—2d. Below, in calculating
(Fig. 24, this equation contains two additional types of dia-the hfs constants, we use Eq5) and(22). We note once
gram (Figs. 2b and 2c The diagrams of Fig. 2b can be more that this approximation allows only for the first order
called subtractionalSBT) by analogy with similar diagrams of many-body perturbation theory. Even in second order
for the operatorX, (Ref. 1). They appear only when the there are corrections of the structural-radiation type, which
Hartree—Fock operator, which incorporates the fieldsefr- are not included in22). On the other hand, Eq22) takes
eral) valence electrons, is used to solve the RPA equations. Ihto account some of the most important higher-order correc-
should be recalled that such an operator is used in setting umns.
the core wave functioril). The diagrams in Fig. 2c corre- To conclude this section we note that the operaigris
spond to the two-particle corrections;p to the effective  used to solve Eq4). This means that excitations of valence
operator. There is also an important type of diagrdfiy.  electrons are taken into account in all orders, which guaran-
2d) not included in the approximatio(21). Such diagrams tees an accuracy higher than that achieved by many-body
refer to a higher order in the many-body perturbation theoryperturbation theory.

. > > 4)
o =3 S
a
FIG. 2. Diagrammatic representation of the effec-

b
tive operatorAg; for the valence electronga) the

s random-phase approximatiép,, (b) the subtrac-
g tional correctionAggy, (C) the two-particle correc-
\. li tion Arp, and(d) the self-energy correctioA,, . A
> filled square stands for the self-energy bldek
c
d
.- 2T Y T
e
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TABLE I. Valence energies of several lowest levels of Tl. The next step involved constructing the effective opera-
tor (22). All corrections excepftp are determined by single-

AE, cm ! . . .
particle operators and can be reduced to calculating effective
Level Evai» @.U. Calculation Experimetit one-electron integrals. Calculating the expectation vél&e
6p112 —2.072084 0 0 for such operators is easy. However, allowing for th(_a two-
6Pap —2.036 471 7808 7793 electron correctiorp required more involved calculations.
7S12 —1.951435 26472 26478 Hence in calculating these corrections we discarded the con-
;plfz _i-gﬁ ggi g;‘ i‘;g gg ig(l’ tributions of configurations whose weight in the wave func-
P32 -1 ;

6y _1907 348 36 148 36 118 tion was no Iarger than 10. _ _ _
6ds) ~1.907011 36222 36 200 To determine the error associated with the incomplete-

ness of the configuration-superposition method, we estimated

Note The effective Hamiltonian was set up for the ener@.  the contribution of virtual orbitals not included in the super-
=—1.64 a.u., which was chosen on the grounds of best agreement betwe

that the calculated energy intervals between the levels and the experiment“fiajrpsr[lor| of conflguratlon_s in the |OYV€SI perturbatlon order.
values of these intervals. We call the corresponding corrections the valence correc-

tions. These corrections are important only for they,6and
7pa, levels, where the other corrections are small or cancel
each other almost perfectly.
4. CALCULATIONS OF THE HYPERFINE STRUCTURE Finally, the last correction arises if we allow for the
In the point-nucleus approximation, the operator of theconditions(ll). Fo_r the lowest Ie_yels Wi_th fixed angu_lar mo-
magnetic hyperfine structure has the form mentumJ and parityP t_he gondmons smply determine the
corrections to normalization. For excited states, strictly
o |-(@Xr) speaking, we must allow for violation of orthogonality with
hfs:|—r—3. (23)  the lowest states, but here we took into account only the
normalization condition. The results of calculating the hyper-
where u,, is the magnetic moment of the nucleus, is the fine structure of thallium are listed in Table II.
Bohr magneton, andv is the Dirac matrix. For a finite
nucleus, _thls expression can be used 9n|y:1>frn holds, 5. CONCLUSION
wherer , is the radius of the nucleus. Inside the nucleus the
hfs operator depends on the nuclear structure rather than on A comparison of the results listed in Table | and those of
the magnetic moment of the nucleus. The exact formulas caRef. 1 shows that even approximate allowance for the energy
be found in Ref. 13. There it is also shown that the corredependence of the operatdr combined with an optimum
sponding corrections are extremely small, so that here we usshoice of the constariV, which determines the staring ap-
an approximation in which inside the nucleus the depenproximation(8) of the Hamiltonian, make it possible to en-
dence of the operatd®3) on the radius, 7, is replaced by hance the accuracy of calculations of the atomic spectrum.
r/ry. Such an approximation is quite sufficient if we need anThe largest deviation from the experimental data in such
accuracy of about 1%. calculations amounts only to 0.2%, while in the previous
We begin our calculations of the hyperfine structure ofcalculations it amounted to about 1%. This refinement of the
the thallium atom by constructing an effective Hamiltonianspectrum was found to have an effect on the results of hfs
and solving Eq.(4). This part of our calculations differs calculations.
somewhat from the procedure adopted in Ref. 1. We en- The results listed in Table Il show that the Hartree—
larged the basis set of the radial functions, which now in-Fock—Dirac approximation for the magnetic hfs constant
cludes orbitals up to &l 21p, 21d, 18f, 18g, and 14 (the  agrees very poorly with the experiment. In some cases it
procedure of constructing orbitals is similar to the one de-even yields an incorrect sign or an incorrect order of magni-
scribed in Refs. 1, 16, and 17We also significantly in- tude of the constant. Allowing only for configuration super-
creased the number of configurations. Moreover, in calculatposition does not improve the results significantly.
ing the diagrams for the operata@r(E) we also calculated Only when many-body perturbation theory and the
their first energy derivatives. This made it possible to allowconfiguration-superposition method are combined does the
in the first approximation for the energy dependence of theccuracy improve substantially. Many-body perturbation
matrix elements of the effective Hamiltonian. The thallium theory yields three types of correction, resulting framre-
spectrum calculations employed an effective Hamiltonian fopplacing the valence Hamiltonian by the effective Hamil-
different valence electrons, which, as noted earlier, corretonian (allowance forZ (E)), (ii) using the effective hfs op-
sponds to different constant/ in (8). We found that the erator Aggr,Arp, and A,), and (iii) the normalization
agreement with the experimental spectrum is best whenondition(11). The last correction is less than 1%, while the
3(E) is taken at an energl,;=E—E .= —1.64a.u(see other two are much larger.
Table .Y What is important is that the low-energy part of Note that the various many-body perturbation-theory
the spectrum of neutral thallium was well reproduced bycorrections often cancel one another because summation
these calculations and the valence energy of the ground stateer intermediate states leads to contributions that violate the
was found to coincide perfectly with the experimental valuePauli exclusion principle. Such contributions, obviously,
of 2.0722 a.u?® cancel each other, so that their net effect is zero. For in-
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TABLE II. Magnetic hfs constants for several lowest level$ST| (MHz).

6p1s2 6P 7Sy P12 P32 6ds, 6ds,,
HFD 17 554 1302 7612 1957 188 21 9
CS +195 —-1369 +3655 —88 +114 —149 +307
3(E) +3197 +48 +421 +290 —-41 +90 -135
RPA +1359 + 327 +1043 +134 +71 +6 +14
Aset —1225 —-120 —-72 —116 —-17 —16 —-11
Atp +1130 +44 —-10 +105 +6 +12 +8
A, —1090 —-19 —303 —105 —-10 +2 -6
Valence -13 +53 +43 -6 +6 -1 -1
Normalization —-214 -2 —82 —-14 -2 0 -1
Theory of Ref. 14 21760 —1919 12470 2070 195
Theory of Ref. 13 21300 339 12760
Present work 21623 264 12 307 2157 315 -35 184
Experiment 21311 265 12 297 2155 309 —43 229

Note We list the values of the hfs constants in the Hartree—Fock—Di&®) approximation and the correc-
tion yielded by configuration superpositi¢@S and the correctior®, to the Hamiltonian. We allow for the
corrections to the hfs operator arising from the use of the random-phase approxi(Raidn the subtractional

correctionAggr, the two-particle correctioArp, the self-energy correctiof,,, the valence correction reflect-
ing the incompleteness of configuration substitution, and the normalization correction.

stance, the sumgrpa+ Asgr+ Arp Obeys the Pauli exclusion tions to the operatok. The leading corrections of this type
principle, while each term in it does not. For this reason thecorrespond to the inclusion of a polarization operator in pho-
separate contributions to this sum have no physical meaningon lines. To first order these corrections can be taken into
Moreover, in most cases there is partial balance between thgccount by introducing screening coefficietdése, e.g., Ref.
correction due to the use of an effective Hamiltonian and théd). One must also allow for the correction to the effective hfs
correctionA,, . In our case this balance results from the factoperator related to structural radiation.

that the contributions of the intermediate electron and hole  This work was made possible by a grant from the Rus-
state have different signs but comparable values. As a resuBiian Fund for Fundamental Reseaf@rant 98-02-17663

the net many-body perturbation-theory correction is much

smaller than the separate contributions.

The data in Table Il suggest that for all the levels except;)E-ma_iI: mgk@mfl309.spb.edu
the d levels the agreement with experiment is extremely, Email porsev@thdpnpispb.ru . .

d. The largest manv-bodyv perturbation-theor CorrectionsThe problem of selecting the energy is discussed in greater detail in a paper
990 : € larg y y P y submitted to the journal Optika i Spektroskopifeanslated as Optics and
arise for the §,,, level, where they amount to more than Spectroscopy
3000 MHz. This explains the lower accuracy achieved in cal-
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accuracy ten times higher, which corresponds to appreciably (1996 Ph){S- Re‘g A54, 3948(199@-h,k _
smaller values of the many-body perturbation-theory correc- ['\gi;l'js'(‘loig‘{ (‘igg?)s]' G. Porsev, Zh.k&p. Teor. Fiz111, 838 (1997
tions. For the @3,,6ds;,, and &5, levels we have an eX- 3y, A Dzuba and W. R. Johnson, Phys. Rev5A 2459 (1998.
tremely poor starting approximation. Hence the perfect®l. Lindgren and J. Morrisonitomic Many-Body TheonBpringer, Berlin
agreement between our results for thes6 level and the 55128% t and H. M. Quiney, Adv. At. Mol. Phy83, 37 (1983

. . . . P. Grant and H. M. Quiney, Adv. At. Mol. Phy&3, .
ex_per_lmental data can to a (_:ertaln extent be considered 33, A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Re¢33407
coincidence. Note that to obtain a correct result we needed to(1997.
allow for all the corrections here. ’E. llyabaev and U. Kaldor, Phys. Rev.4¥, 137 (1993.

On the whole we can say that the adopted methOdSE' Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev.48, 1724(1994; 50,

dtob Hoctive i lculating th ; g, 1121(1994; 51, 225(1995.
proved to be very effective in calculating the spectrum ands, " jnyqren, Rep. Prog. Phya7, 345 (1984,
the hfs constants. Note that in a somewhat simplified form°t. oisson, A. Rosen, B. B. Fricke, and G. Torbohm, Phys. S&r.730
this method has recently been used to calculate the hfs corl11{198&

n nP.T- matrix elements for the BaF mol i D.R. Beck and D. Datta, Phys. Rev.48, 182(1993.

Stghtsha ®, T-odd ?t hi ele eh tz OI t € baF mo eca. e’.f. 12p_ Jmsson and C. Froese Fisher, Phys. Revi8A4113(1993.
with the accuracy of this met _0 .aso mcreasmg SIgNIN-134 M. Martensson-Pendrill, Phys. Rev. Lef4, 2184(1995.
cantly. Further refinements require increasing the number ofv. A. Dzuba, V. V. Flambaum, O. P. Silvestrov, and O. P. Sushkov, J.
higher-order corrections taken into account. This can be dongPhys. B0, 1399(1987)-d | Hods of en

: P : A.-M. Martensson-Pendrill, inMethods of Computational Chemistry
by resqrtmg to the r.nethOdS used earlier in Calcu'_atlons for Vol. 5: Atomic and Molecular PropertiesS. Wilson(ed), Plenum Press,
the cesium and thallium atoms by a pure perturbation-theory new vork (1992.

approach®?! First one must allow for higher-order correc- 15p. Bogdanovich and G.ukauskas, Sov. Phys. Colle@3, 13 (1983.



890 JETP 87 (5), November 1998 Dzuba et al.

17p. Bogdanovich, G. dkauskas, and §.aﬁd’z’uviené Sov. Phys. Collect.  2°M. G. Kozlov, A. V. Titov, N. S. Mosyagin, and P. V. Souchko, Phys.

24, 20(19849. Rev. A56, R3326(1997).
18C. E. Moore,Atomic Energy Leve)<Circ. No. 467 Nat. Bureau Standards 21V, A, Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys. Lett44, 147
USA, Washington, D.C(1958. (1989.

%A, A. Radtsig and B. M. SmirnoviReference Data on Atoms, Molecules,
and lons Springer, Berlin(1985. Translated by Eugene Yankovsky



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 5 NOVEMBER 1998

Inelastic processes in collisions of multicharged fast ions with atoms
V. I. Matveev*) and Kh. Yu. Rakhimov

Department of Thermal Physics, Uzbek Academy of Sciences, 700135 Tashkent, Uzbekistan
(Submitted 16 May 1998
Zh. Eksp. Teor. Fiz114, 1646-166QNovember 1998

We use the eikonal approximation to develop a general formula for the cross sections of inelastic
collisions of multicharged fast iongncluding relativistic iong with atoms that is applicable

within a broad range of collision energies, has the standard nonrelativistic limit, and becomes, in
the ultrarelativistic case, the well-known result that follows from the exact solution of the

Dirac equation. As an example we study the excitation and ionization of a hydrogenlike atom, the
single and double excitation and ionization of a heliumlike atom, and multigdeo the

eighth ordey ionization of the neon atom andp to eighteenth ordgionization of the argon atom.

We derive simple analytical expressions for the inelastic cross sections and establish

recurrence relations linking the cross sections of ionization of different orders. Finally, we
compare our results with the experimental data.l1@98 American Institute of Physics.
[S1063-776098)00711-3

1. INTRODUCTION tions, calculations of Beckest al® based on the numerical
solution of the time-dependent Dirac equation, and the re-
The primary reason for the considerable interest in incently found exact solutidfi of the Dirac equation in the
elastic processes accompanying the collisions of atoms withltrarelativistic limit.
multicharged ions is that the effective strengths of the fields  The most general basis for studying the cross sections of
generated by the ions over atomic distances can exceed thogelastic processes involving collisions of multicharged fast
of the characteristic internal fields by several orders of magions with atoms is the Glauber approximatiGnwhich is
nitude. Such fields are very difficult to generate by othewalid for Z/v<1, whereZ is the ion’s charge and is the
means. Thus, collision experiments involving multichargedcollision velocity(atomic unit$. This approximation is based
ions are actually the only way to study the behavior of atomsn the eikonal approximatiotf;*” which is close to the semi-
and molecules in ultrahigh electromagnetic fields. From theclassical domain, and is closely related to the sudden-
fundamental viewpoint, research into the behavior of matteperturbation approximatioh®!? The use of perturbation
in ultrahigh electromagnetic fields constitutes one of thetheory in describing collisions of multicharged ions with at-
most important problems of modern physics. oms whenZ/v~1 violates the range of applicability of the
Moreover, a number of problems of applied science,Born approximation and, due to its nonunitary nature, to val-
such as measurements of the energy spectra of nuclear fises of probability greater than unityWe also note that for
sion fragments, synthesis of superheavy elements, interpretens with very large charges the applicability rang&'y
tion of data on ultrahard cosmic rays, pumping active media<1) of the Born approximation is never reached, no matter
of high-power lasers, ion diagnostics and spectroscopy dfiow high the collision energies are.
plasma, implantation and sputtering of solids by ion bom-  According to Ref. 15, the eikonal approximattror
bardment, and design and application of high-energy heavy-€lativistic potential scattering can be generalitsee, e.g.,
ion accelerators, have stimulated research in the field of coRef. 12 to the case of an inelastic collision of a Iavatom
lisions involving multicharged fast ions. Studies in inelastic (nonrelativistic before and after the collisjoand an ion
collisions of fast(including relativisti¢ multicharged ions moving with a relativistic velocity. Then, in the Glauber
with atoms have lately attracted a lot of attentisee, e.g., approximation, the general expression for the amplitude of
Refs. 1 and 2, recent reviews in Refs. 3—5, and the literaturthe inelastic collision accompanied by the transition of the
cited thereif. The cross sections of inelastic processes iratom from statdV;) to state|¥) has the forn? (cf. Ref.
collisions of this type are very large, and for this reason thesé5)
studies are of interest from the practical viewpoint. The . i
strong field of an ion with a large charge makes it impossiblefif(q):_'f e‘q'b<wf|{1—exp{ — _f U dx] |¥,) d?b,
(even when the velocities of the colliding particles are rela- 2m v
tivistic) to use perturbation-theory techniques, which compli- @
cates calculations substantially, since nonperturbative apwhere the momentum transfgek;—Kk; . The scattering po-
proaches are required. tentialU=U(x,b;{r,}) depends not only on the ion position
Examples abound. We would like to mention Refs. 6—9,R=(x,b) but also on the instantaneous positions of the
which use the sudden-perturbation approximation, Refs. 10atomic electrons, whose sets of coordinates we denote by
12, which use the eikonal approximation and its modifica{r,}, a=1,2, ... N, with N the number of electrons.

1063-7761/98/87(11)/8/$15.00 891 © 1998 American Institute of Physics
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In this paper we use the eikonal approximation to derive
a general formula for the cross sections of inelastic collisions )
of multicharged fast iongincluding relativistic iong witn ~ Where y=1/J1—-v?/c”, and$, is the Lorentz transforma-
atoms that is applicable within a broad range of collisiontion matrix for the wave function, acting on the bispinor
energies, has the standard nonrelativistic limit, and becomet}dices that refer to the atomic electron with the numaer
in the ultrarelativistic case, the well-known result that fol- (the respective Dirac matrices arg,), with S, *=y(1
lows from the exact solutidfi of the Dirac equation. As an —V@a/C) (see Ref. 2 Hence in the Glauber approximation
example we study the excitation and ionization of a hydrothe general expression for the probability amplitude of an
genlike atom, the single and double excitation and ionizationnelastic collision of a relativistic ion and a high+elativis-
of a heliumlike atom, multiplgup to the eighth ordgrion-  tic atom accompanied by the transition of the atom from
ization of the neon atom arf@p to eighteenth ordgioniza-  Statel#;) with energyE; to statefy) with energyE has the
tion of the argon atom. We derive simple analytical expresform
sions for the inelastic cross sections and establish recurrence ik
relations linking the cross sections of ionization of differentf,.(q)= —'f (¢l
orders. We also compare our results with the experimental 2m
data.

d3r,=dx, dy,dz,= ydx, dy,dz,=yd3},

,y—Ns—Z

N
1—exp[—i21 Xa(b,sﬁ)}

|iyexp(—iq-b) d®b,

UX
xex;{iE —(E—E))
a C

2. GENERAL CONSIDERATIONS 2

. . . . _ 1N -2 : H . :

To generalize the eikonal approximation to the case of avhere S*=I13_,S,*. This is the final expression corre-
collision of a relativistic ion and a higBrelativistic atom sponding to the generalization of E€}) to the case of a
one must allow for the f0||owing(a) the behavior of the collision of a relativistic ion and a hng— relativistic atom
atomic electrons are described by the Dirac equation(and ©beying the same applicability conditions: the collision time
by definition the Glauber approximation to the scattering po-mnust be much shorter than the characteristic atomic time. If
tential U=U(x,b;{r}) is the static Coulomb potential gen- W€ are not interested in the scattering angles of the ion, then,
erated by the atomic nucleus and atomic electrons in fixed accordance with the expression for the cross section in the
(and simultaneous, from the viewpoint of the incident)ion Small-angle approximatiotes in Ref. 15, we can integrate

positionsr, =X, ,Y4,Z4:

2.z z

\/x2+b2_a§=:1 Jx—x)2+ (b—g)2’

whereZ, is the charge of the atomic nucleus, with=N,
and

U(x,bi{rih=

N

over them: for small scattering angles we have

d’q d?
do~_-1~°0
kike K2
Then, representingf¢|? in (2) by a double integral irdb
andd?b’, we integrate ird?q using the integral representa-
tion of the delta function, which is then removed by integrat-

2Z |b—sg

/ ing in d?b’. As a result we arrive at a formula for the cross
b,s))=—In
Xa(b,sy) v b

section of the atomic transition from stdtg) to state|¢;)
in the collision of the atom and the relativistic ion:

N
1—exp|—i2 xa<b,sa)H
a=1

1 0
[ vax=3 s,
UVJ)-w a=1

with the x axis directed along the initial momentukn of the
ion, and the two-dimensional vectsf is (y,,z;). Let us
assume, for the sake of definiteness, that we are dealing with 0= j d’b
simultaneous positions of electrons at titde=0 in the ref-
erence frame co-moving with the ion; the corresponding in-
stantaneous positions of the atomic electronsrgrand the
electron wave function i#'(r/,t’). Then instead ofl) we

have
ik; ) i
fir(a) = 2—7;f e 19w/ l—exp[ - ;f u dx]

In the reference frame in which the atom is at ré¢at

(]

2

i) 3

vX
X yNSZex;{iza: C—;(Ef—Ei)

Accordingly, the integrand can be interpreted as the prob-
ability of the atom going from stathy;) to state|;) in a
collision with the impact parametds. In this form, for a
one-electron atom this probability, obviously, coincides with
the exact probabilit§# for the amplitude of the transition in

|¥!) d2b.

t'=0), the ultrarelativistic case and has a standard nonrelativistic
limit. > Generally speaking, for long-range potentials, the in-
, , v . . .
Xa= X, S=S., t=- Xa?- tegral with respect to the impact parametet3hdiverges at

large impact parameters. However, this divergence is
unimportant'® at large impact parameters the ion field is

weak and the Born approximation can be employed, with the
applicability ranges of the Born and eikonal approximations
overlapping, which makes a meaningful match with respect
to the impact parameter possible.

W(ry,t)=y(ry)exp —iEt)= zp(ra)exp( iExa%>
c

=S, "W/ (r},t'=0),
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The above formulas are of a general nature and can bMote that the dependence on the cutoff paramiegedisap-
applied to collisions of atoms with ions of arbitrary charge.pears after matching.
What makes collisions of atoms with highly charged ions so  But if the collision changes the states of more than one
special is that the cross sections of inelastic processes aedectron or if the transitions are dipole-forbidden, the inte-
usually very large and exceed the atomic dimensions signifigration with respect to the impact parameter(® can be
cantly. Bearing all this in mind, we examine the matchingextended to the entire impact-parameter plésiace the in-
procedure using the example of one-electron transitions itegrand ensures convergehand there is no need for a
collisions of relativistic ions with nonrelativistitbefore and  matching with perturbation theory.
after the collisio® atoms, when the); and ¢ in (3) are
two-component spinors and we can assume $1&t=1; in
addition, expiZ x,(Es—E;)/c]=1. For this case simple ana-
lytical expressions for cross sections can be derived in the Below we give the formulas for the cross section of the
matching process. Suppose that an atomic electron goes fromansition of a hydrogenlike atofwith a nuclear charggz )
a ground statgi) into a state|k) of the one-electron con- from its ground state to states with the principal quantum
tinuum with electron momenturk. We denote the upper numbern as a result of a collision with a multicharged ion.
limit of integration with respect to the parametein Eq.(3)  These were obtained in the approximation of large impact
by bg. For large values db (i.e.,b>s) and orthogonal states parameter$Eq. (4)) by the matching method:
|k) and|i), the generalized inelastic form factor is

3. COLLISIONS WITH HYDROGENLIKE ATOMS

2%7r 22 n’ n—l)Z” 1
J— Un: — —_—
<f|1—exp[—iZv—zln|bb54}|i>~<f|exp[iq.s}|i>, (4 3 v?2(n?-1)%\n+l1) 72
. . . . yav3Z B?
with q=2Zb/vb?; this form factor tends taq-(f|gi) for n —2 2 _] (9)
smallg. Hence the integral i3) depends ot logarithmi- z0\1-52 2
cally, so that the contribution of the regibr< b, to the cross whereQ, = e,— €;, and the first few numbers,, are
section can be written as
, v,=0.30, vy3=0.44, v,=0.49, vy;=0.53,
0'(b<bo)=871'z—)\i|n ﬁ, qOZZ_Z' (5) v6=0.54, y;=0.55, v3=0.56, 7y4=0.57,
v2 do vbg
Y10™ 057, Y11= 0.57.
where\ anda depend solely on the atomic characteristics; .. . o o
- : Similarly, the total ionization cross section is
they do not depend on the collision parameters, i.e., the
charge of the incident ion and the ion velocity: 72 0.283 5.082 B?
o=8m— —; In - (10
v2 722 | zz,\1-p7 2

d3k )
n= [ S . .
3 Next, summing(9) over all values ofn, we arrive at an

expression for the total cross section of excitation of the
. %exp{ )\i fxd—g f d3k|<k|exp(—iq-r)|i>|2]- discrete states of the hydrogen atom,
qo—0 i qu .
. . . . Oexc™ E On
In the region of large values &> b, the ion field is a weak n=2
perturbation, and we can use what is known as the Bethe

asymptotic formula: _ WZ_Z 0-717{ n 0.84° 3_2] 11)
) 5 v? 72 ZzJ1-p82 2]’
V4 2v B
oi(b> bo)ISWEM |nm— > (6)  and the total inelastic cross section,
B . 0= Oexct O

here n=€=1.781B=0.5772 is the Euler constantand

the “average” ionization frequency; is defined as z2 1 1.40° B?
=87 il == (12)

v2 72| zZ\1—-p2

d3k [(k|r|i}]?In Q;
f [Kkrli)] K Equations(9) and (10) can be used to estimate the cross

f d3k | (k|r]i)|2 ’ ™ sections of e>_<c_ita_tion and ionization of tlf(eshell; Qf com-
plex nonrelativistic atoms as a result of a collision of the
atom and a relativistic ion when thié-shell electrons are
where(),; = e~ € is the transition frequency. SUmmit§)  gescribed by hydrogenlike functions with an effective
and(6), we arrive at expression for the total cross section: pyclear charg&,. To obtain estimates of the cross sections
of ionization or excitation ofL.-shells one can use the cross
)\i( In

In wi=

ZZ
=87 —

2a;v? B2 : o o .

(8) sections of ionization or excitations of hydrogenlike atoms
2
v

ZoN1-g2 2] from 2s- and 2p-states.
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FIG. 1. Cross sections for ionization of the hydrogen atom by iofis C
obtained in the Born approximatidicurve 1), by the matching method of
Eq. (10) (curve 2), in the Glauber approximatioh (curve 3), and in the

sudden-perturbation approximatfofturve4).

For hydrogenlike atoms that initially were instates

we have
o 2208 | 17. w2 B2
g;=om — V. n———-————=1,
' v2 zz.\J1-82 2
ZZ 217 (n_2)2n76
—q- -2 7 2 2
on 87702 3 n (n+2)2n+6(n 1)
IBnUZZa ﬁz
X In—z—— ,
zQ.1-p% 2

wheren=3, (),= €,— €,, and the numberg,, are
B3=0.18, B,=0.28, Bs=0.34,
Be=0.39, B;=0.41, Bg=0.42,
Byo=0.44, B1;=0.45, B1;=0.46.

For hydrogen atoms that initially were in th@-Ztate we

13

(14

V. |. Matveev and Kh. Yu. Rakhimov

the matching method with the ionization cross sections for
the hydrogen atom obtained in the Born representation
(curve l), by the matching method of E¢10) (curve2), in

the Glauber approximatidf (curve 3), and in the sudden-
perturbation approximatidricurve4). We see that the cross
section values obtained by E@L0) within its applicability
range are close to those obtained in the Glauber approxima-
tion, and with increasing velocity tend to the values of the
Born approximation. We also note that although it v

<1 the expressions derived in this section do not transform
directly into the Born approximationg, which is a general
property of the approximatio(B). Instead, their relative dif-
ference tends to zero as the velocity increases, i@g, (
—0)lo—0 asv—c. But whenZ~v~1, our results, which
are based on the unitary approximati(8), as well as the
Glauber approximation, agree much better with the experi-
mental results as compared to the Born approximation,
which is known to be nonunitary and in this region overes-
timates inelastic cross sections substantighly a factor of
1.5). Here, in contrast to direct application of the Glauber
approximation in the form(2), which requires significant
computer times even in the nonrelativistic c&%& our for-
mulas are analytic.

4. EXCITATION AND IONIZATION OF A HELIUMLIKE ATOM

If one uses perturbation theory in calculating the cross
sections of inelastic collisions of fast charged particles with
complex atoms, one-electron excitation or ionization is a
first-order effect in the interaction of the incident particle and
the atomic electrons. A two-electron transition corresponds
to the second order of perturbation theory, whence the inter-
action of the incident particle and an atomic electron is taken
into account once and the electron—electron interaction, also
once. Multielectron transitions are calculated in a similar
way'° i.e., the interaction of the incident particle and
atomic electrons is always taken into account once, while all
the rest amounts to taking into account the electron—electron
interaction the necessary number of times.

The situation changes, however, when the interaction of

have(after averaging over the projections of angular momenthe atomic electrons and the incident particle is much stron-

tum in this statg
g 2205 | 27Ww? B2
gi—om—VU. n——=— =1,
' v2 zz.J1-p% 2
z22® (n=2)*"""([11 4
P e il EE A

U2 3 (n+2)2n+7 3 n2

><[In—'8nvZZa —&]
zo\1-52 2’
wheren#2, and the numberg,, are
B1=0.27, B3=0.13, B,=0.30, B5=0.46
Bs=0.58, B;=0.67, Bg=0.73, B¢=0.79

B10=0.82, (,,=0.85.

(19

(16)

ger than the electron—electron interaction. In this case a mul-
tielectron transition should be considered the result of the
direct actio®° of the strong field of the incident particle,
and it is to this mechanism of direct excitation that formulas
(2) and(3) correspondsee Ref. 4 Below we give the cross
sections of one- and two-electron transitions from the ground
state of a nonrelativistic heliumlike atom in collisions with a
multicharged relativistic ion. The formulas were derived in
the approximation of large impact parametégs). (4)). For

all cases, in deriving these formulas we described the two-
electron states of the heliumlike atom by symmetrized prod-
ucts of hydrogenlike one-electron wave functions.

To avoid the normalization procedutehich is usually
ambiguous because, strictly speaking, one must orthogonal-
ize all the states belonging to the continuous and discrete
spectra, we selected one-electron hydrogenlike wave func-
tions in the field of a nucleus with the same effective nuclear

Figure 1 illustrates the nature of the results obtained byharge, which was equal 8, for one-electron transitions
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and Z, for two-electron. In this connection we denote arbi- TABLE I. Sum of cross sections(10'cnv) of excitation of the autoion-
. . i ati 1p. 2 1M :

trary two-electron statel;,n,) of the heliumlike atom by 1zation 2p°P- and 2* D-states of the helium atom.

two sets of one-electron hydrogenlike quantum numbers  gnqq, lon Experiment,  Theory,  Calculatiéh,

andn,. Then, according t¢3), the cross section of the tran- mev/nucleon  charge 10°%cn? 10~ ¥cn? 10 ¥cn?

sition from the ground statf,0) to a state/n,,n,) in the

— ) L 1.84 6 8.3051.744  18.45 25.6
approximation(4) (large impact parameterss given by the 15 6 20.1-7.20 22 61 318
formula 15 9 48991766  50.79 1116
azf d?b [(ny,n,lexp{—iq-(r,+r5)}0,02 (17
We see that the cross section is expressed in terms of an - Z20.283 z?
impact-parameter integral of the product of well-kndwn o 216775 2 In1.15= 2'031)222' (21)
2 2

hydrogenlike form factors. The cross section of two-electron
transitions(in which the two electrons were sure to changeThe total cross sections are linked by the following obvious
state¢ were obtained directly from Eq17) by integrating general relationship:

over the entirg impaqt—para_meter plane. On Fhe other hand, P I T 22)

the cross sections of inelastic processes that incorporate one-

electron transitionge.g., single excitations of ionizations and Where the total inelastic cross sectiop, corresponding to
total inelastic cross sectionare obtained via matching with the possibility of any excitation of the heliumlike atom, is

perturbation theory, so that the corresponding formulas con- 72 0.717 1.0%2 2

tain the characteristic logarithmic dependence on the velocity 4 =167 — — [ In—— - '8_] , (23

of the multicharged ion and the relativistic parameter v? Zg Z2Z,J1-B> 2

y=1N1-v7c”. whereZ, is the effective charge of the nucleus of the heli-

The cross section of single ionization, corresponding 9, mlike atom in the ground state ), equal to the charge of
one atomic electron arriving in any state of the continuumthe bare atom minus 5/16

and tht? Iother + In an)é state Ofl the d|scr(fet(; sp(;a_ct(rmnm an()j/ As another example of two-electron transitions into dis-
state belonging to the complete set of the discrete an CONsete states we examine the cross section of excitation of

“’.“‘095 spectrum, bl_Jt in this case we must.sub.tract the COutoionization states with the principal quantum number
tribution corresponding to two electrons being in states '[haﬁ:2 (the L-shel) of a heliumlike atom. Since in the colli-

_bel_ong_ to the t_WO-eIectron continuum, i.e., in double-gjons considered here the electron spins do not change, ex-
ionization states is citation of the following autoionization states is possible:

22 2s?1S, 2s2p P, 2p? 1S, and 22D, with the correspond-
o't =16m—0.283 ing cross sections being
1%
a(2p?D)=20(2p?19)= 1—00(252p1P)
X ! | 5,087 Gl In 3.72 (18) 3
—|In———-—=|——= In3.72.
72| zz;J1-p? 2| Z3 22 931

=300(2s*1S)=m

. . 0272 31911
The total cross section for one-electron excitations of the 2
discrete spectrum, when only one atomic electrons is excited In Table | we compare the experimental data of Refs. 21
to a one-electron state belonging to the discrete spectrum ar@hd 22 with the results of our calculations and with the re-
the other remains in the ground stdile an unexcited state, sults of numerical calculations done by Fritsch and’t.for

to be precisg has the form the total cross sections of excitation to the autoionization
states 82p+ 2p? of the helium atom. The first column gives

e . 220375 0.252 B2 the incident-ion energies reduced to the atomic unit of mass,

o _1677§ Zi In ZZl\/l——,Bz_ 2 (19 the second column gives the ion charge, the third gives the

experimental results taken from Refs. 21 and 22, the fourth
The total double-ionization cross section can be obtained bgives our results4,=1.97), and the fifth the results of nu-
summing (17) over all n; and n, belonging to the two- merical calculation done in Ref. 22.

electron continuum. The result is Figure 2 shows the results of experiments conducted by
, , Berget al?® and the results of calculatioriby formulas(20)
Z<0.283 VA and (18)) of the cross sections of doubl€4{=1.97) and
24+ _ = _
o _167702 2 In3.72= 9'36251}2' (20 single (Z,=1.37) ionizations of the helium atoms in colli-

sions with relativistic uranium ions U* at 60, 120, and
The expression for the total cross section of the transition 020 MeV/nucleon and their ratiar?*/o'". The proper

a heliumlike atom to all doubly excited states of the discretechoice of the values of the effective chargés=1.37 and
spectrum(including all possible autoionization statesan be  Z,=1.97 is confirmed by the adequate agreement of our re-
found after the respective summation owgrandn, is done:  sults listed in Table Il with the experimental data of Refs. 24
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o, cm? 5. EXCITATION AND IONIZATION OF A MULTIELECTRON
10714 ATOM
1 Although the strong field of a multicharged ion results in
o't ] very high probabilities of electronic transitions, for calcula-
tions of cross sections of excitation or ionization of a high
10713 ¥ order the large-impact-parameter approximatinmay be-

come invalid, with the result that the corresponding cross
) sections may become comparable to the characteristic atomic
o2t dimensions. Hence we must consider the more general for-
mula (3). We assume that the atomic electrons of a multi-

—16L
10 ); electron(before the collision and nonrelativistio(after the
collision) atom are not identical and assign to each electron a
one-electron hydrogenlike wave function. Then the initial
wave function is
10717F No
Wolry, ... 'rNO):iljl &i(ri),
107 e _ o
o T ’f x and the final wave function is
! 0
Wiy, i) =11 wa(r).
10_2 | i=1
10 100 1000 Hence the total probability ofNo— N)th-orderionization of

T, MeV/nucleon a nonrelativisticN,-electron atom corresponding td,— N
FIG. 2. The results of experiments conducted by Ber@l?? and the re-  €lectrons reaching the continuum and the remaimnglec-

sults of calculationgby formulas(20) and (18)) of the cross sections of trons in any of the states of the discrete spectrum is, accord-
double and single ionizations of the helium atoms in collisions with relativ- |ng to (3) and with allowance for unitarity,
istic uranium ions &* at 60, 120, and 420 MeV/nucleon, and their ratio

2 1+. : :
a?*/o: @—experiment, andk —calculation. WNo~N+ () = No!
(No—N)!' N!
Ng—N No
and 20 on double and single ionization of a helium atom as a X H pi(b) H (1-pj(b)), (29
i=1 j=Ng=N+1

result of a collision with a multicharged fast nonrelativistic 0

ion. Note that here we list the results of calculations of cross N .
sections of direct single ionizationst*) and of cross sec- Wherell;2y —,,(---)=1 for N=0, and the generalized
tions (o1 + o®*), which may serve as estimates for the totalone-electron inelastic form factor is,

cross sections of formation of singly charged helium ions as

a result of direct ionization and Auger decay of all types Ofpi(b)=f d®k; [dr; g (ri)exp{—ixi(b,r)}i(r)[?,  (29)
doubly excited states of the helium atom. The reason is that '

in low-Z atoms the Auger decay is the dominating channel ofwith k; the momentum of théth electron in the continuum.
decay of the doubly excited states of the discrete spectrunmWe see that this probability depends on the vettoHow-
with the exception of a relatively small number of statesever, after being averaged over the projection of the total
(compared to the total number of all types of such sjdtes  orbital angular momentum of the initial state, the probability
which Auger decay is forbidden by selection rufés?’ becomes a function of only|. Let us introduce the average

TABLE II. Cross sections X 10'®cn?) of double and single ionization of the helium atom.

Energy, lon o2t a2t ot ot ot + o

MeV/nucleon charge expt. theory expt. theory theory
0.64 8 1.32 1.687 7.9 10.231 10.597
1.00 8 1.06 1.08 6.7 8.11 8.344
1.44 8 0.45 0.75 5.9 6.518 6.68

1.4 15 2.91 2.712 17.9 17.798 18.385
1.4 18 4.50 3.905 22.4 23.322 24.168
1.4 20 541 4.821 26.0 27.146 28.191
1.4 36 16.0 15.621 57.2 58.206 61.59

1.4 37 16.8 16.501 59.5 60.02 63.594

1.4 44 23.0 23.335 72.1 71.779 76.833
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over the orbital angular momentulmand the projection of o"*x10'8 cm?

this momentunm of the value of the one-electron inelastic 8
form factor for each electron of the shélhich is then av- 10*'F a e Ar
eraged over all the shells of the atbm °3
]
1 No 1 103 6 6
pb)=—2> ——> d3kfd3r e (n) B34
Ng n=1 Mp T'm F
10 84
2 8 -]
X exp~ix(b,1)} (1) | (26) , 2g
10 @
where the inner sum is over all possible values afidm for 0 5 10 15 -

a givennth shell,M,, is the number of such values,is the

principal quantum number ami) is the number of shells. FIG. 3. Cross section of multiple ionization of the argon atom by multi-

. . R charged uranium ions 8" with an energy of 15 MeV/nucleon as a function
ObV'OUSIy’p(b) - p(|b|) IS mdependent of the angles deter- of the order of ionizatiom: [0—the results of the experiment of Ullrich

mining the direction o, with the result thap(b) has the ¢t al,28 and A—our resuits.

meaning of the average one-electron ionization probability.

Then, replacing each one-electron form facto(2d) by the

averagg26), we arrive at an expression for the probability of ) ) ) )

(No— N)th-order ionization common for the independent- Here and in what followsb, is the point of maximum of
electron approximatio® However, the effective charggr  P(P), andp”(bo) is the value of the seconatderivative of
of the atomic nucleus depends on the order of ionization. T®(P) at pointbg. In the case of {lo—1)st-order ionization,

allow for this, we make the following substitutions (26): the ionization probability is_simply the difference of two
terms. The first term contains the product l§—1 one-

electron form factors and corresponds to a situation in which
No—1 electrons are in the continuugtne effective charge is
Zﬁo_l), and the second term contains the produdigbne-

which means that we are introducing Coulomb ufitfhen  electron form factors and corresponds to a situation in which
the right-hand side of Eq26) can be calculated by using the Ny electrons are in the continuufthe effective charge is
wave functions of the hydrogen atom with a unit charge, andZﬁO). Integrating each term separately by the Laplace
the dependence afi* amounts to the substitution=bZ*.  method, we arrive at a formula for the cross sectionNy (
Hence, if from now on we interprgi(b) as the form factor —1) st-orderionization:

of the hydrogen atom averaged in accordance (@é), such

a substitution makes it possible to calculate the ionization x \2

cross section under assumptions that are more general th%r@NolezN oNo+
those used in the independent-electron model. Below we 0
consider high-order ionization, i.elNyg>1 and Ng—N>1.
We start with the cross section of total ionization of the atom
(when the atom is stripped of all of it$, electron$. Then in
(24) we haveN,, andW is simply the product ofN, one-
electron form factors. We introduce an effective nuclear
charge corresponding to total ionization of the atczﬁb.

Replacing each one-electron form factor by the avefagg
we arrive at an expression for the probability of total ioniza-

k
k=—, b=bz*, r=rz*,
Z*

No ( No )1’2 1 .
Z¥ -1) \No=1/ p(bo) |
(28)

Reasoning along similar lines in the general case N§ (
—N) th-order ionization, we obtain

tion: -
WNot = p(b)]Ne, : o . U™ Ar

WherebzbZ’,t,o. The integral(3) of this probability can be 1k 8 "

evaluated asymptoticallyNp>1) by the Laplace method 3 ¢,

under the assumption tha(b) has its maximum at the left [ s

limit b=by=0 of the integration interval. The fact that such 0.1k e P

a maximum exists can easily be verified by studying the E ]

results of calculations in Refs. 8 and 14. All this leads to a - . . . e )

formula for the cross section dfy-order ionization of the 0 4 8 12 n

shell FIG. 4. Results of the experiments described in Refs. 28 and 29 and of the

1/2 calculations(by formulas(27)—(29)) of the cross sections of multiple ion-
No+ — 1 - by.) N+ 112 2 ization of neon atoms in collisions with relativistic uranium ion¥ Uwith
o =7 (Z* )2 u(b )N [p( 0)] ’ ( 7) an energy of 120 MeV/nucleon as functions of the order of ionization
No P~(Do)No O—experiment, and\—our results.
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Foa Ystrictly speaking, as a result of ionization by an ion moving with a rela-
tivistic velocity, the atomic electrons arriving in the continuum may ac-

° 91 quire relativistic velocities. However, as shown in Ref. 9, such processes
10;‘ a U” + Ne occur at small impact parameters, so that the corresponding contribution to
t o the total cross sections of ionization by the impact of a multicharged ion
a can be ignored.
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An exact solution of the problem of the reaction of the field generated by a relativistic classical
electron is derived. It is found that the solution differs dramatically from the known

formulas by the presence of a component that is even under time reversal. It is also shown that
the component of the generalized radiative damping force that is odd under time reversal
coincides with the well-known relativistic damping force obtained from the approximate
nonrelativistic formula via a Lorentz transformation. 198 American Institute of
Physics[S1063-776198)00811-7

1. INTRODUCTION has a component that is even under time reversal and one
that is odd. A procedure based on the integral representation

To use V. L. Ginzburg's clever comment, physics hasof the Green’s function is proposed that makes it possible to
several literally eternal problems, which have been debatetkmove the divergences and renormalize the mass. It will be
for decades in the scientific community. One such problem ishown that in the relativistic theor§in contrast to the non-
radiative damping. relativistic Abragam—Lorentz mode) there is no factor of

The classical expression for the radiative damping force4/3 in the expression for the electromagnetic mass. An exact
(see formula(75.8 of Ref. 2 leads, as is well known, to analytic formula is derived for the generalized radiative
instability in the electron’s motion, or what is known as the damping force, and the similarities and discrepancies be-
self-accelerating paradox. Actually this means that not onlyyween this formula and the well-known relativistic
the law of energy conservation but also the causality prinexpressioh? are established. It is found that the odd compo-
ciple breaks down.These paradoxes, which arose at the benent (under time reversalcoincides with the well-known
ginning of the 20th century, continue to draw attentfotf  relativistic formula. What is new here is that the radiative
Nevertheless, the unflagging interest yielded no solution iffiorce has an even componefunder time reversal absent
terms of classical electrodynamics. Physically speaking, thérom earlier formulas. In the reference frame co-moving with
problem of radiative damping must be solved with allowancethe electron, this force can be interpreted as a new effect of
for quantum effects. the dependence of mass on acceleration.

The above paradoxes can be resolved if one allows for Thus, the exact solution of the physical problem, which
laws that are essentially quantum mechanical, which deis important in itself, makes it possible in the present case to
scribe the interaction of the electron and the radiation fleld. establish the essentially new laws governing the radiative
Such an approach also leads to a rigorous justification for thdamping of a classical electron both in the relativistic do-
conditions under which the common classical formulas ofmain and in the nonrelativistic domain.
radiative damping can be uséd.

In this connection it becomes essential to close the gaps
that exist in classical radiative damping theory. 2. REACTION OF THE RADIATION FIELD GENERATED BY A

1. The classical theory has no consistent relativistic apRELATIVISTIC ELECTRON
proach to the derivation of the formula for the radiative . ) ) . .
damping force. The common transition to the relativistic do-. V& Wish to derive, in a rigorous manner, an expression
main is accomplished via Lorentz transformations from thefor the reaction of the field of a relativistically moving clas-

approximate nonrelativistic formul&s.8) of Ref. 2, which sical point electron without resorting to the common nonrel-
is insufficient for a physical theory ' ativistic approximation. From the standpoint of the corre-

2. There is no procedure for removing divergences in-SPondence principle of consistent quantum théoiy,is
herent in classical electrodynamics. natural to use the Hamiltonian method of solving the classi-

3. In the nonrelativistic model, the electromagnetic mas<@! problem. o ,
enters into the formulas with an incorrect factor of 4/3, The relativistic Hamiltonian of an electron placed in a

which was first obtained by Thomson and then by AbraganPOtemi"’lI field with potential energy/(r) and interacting
and Lorent2l with its own field has the form

The present paper provides an exact expression for the e 2
reaction of the radiation field emitted by the electron. The H=C\/ p— EA(f,t) +(mo)?
essentially relativistic nature of this formula is determined by
the Green'’s function of the field. Hence the damping force +eAy(r,t)+V(r)+F, D

1063-7761/98/87(11)/6/$15.00 899 © 1998 American Institute of Physics
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whereAq(r,t) andA(r,t) are the potentials of the field, and o _
F is the Hamiltonian of the radiation field. When analyzing  Dji(k,0)= J_wdTemeT) Dji(k,7)
the problems of radiative damping it is convenient to use the

gauge symmetry, selecting the transvef@eulomb gauge kiki
for the potentials of the field: = 4m(k?+ )"t 85— rak (8)
divA(r,t)=0. (2) o
iw
The scalar potentiaghy(r,t), which is responsible in this case k=|k|, %= (? (1+iesgnw).
for the Coulomb interactiof?, leads to no observable effects

in the single-particle problem and can be dropped from therhe presence ofe sgnw (¢>0) ensures the correct tra-

system Hamiltoniarg1). versal of the pole in the retarded Green’s function. In classi-
To derive an expression for the radiative damping forcecal electrodynamics there is no such concept as electromag-

we must write the exact equations of motion for the dynami-netic vacuum, so thaf) contains no solution for an E¢6)

cal variables of the electron. The system Hamiltonidh  with a zero right-hand side.

gives rise to the well-known Lorentz equation: As a result, the reaction of the radiation field generated
. by the electron is found to depend exclusively on the elec-
d| mr(t) Y V(R(D).0) tron variables. Substituting the exact solutié® in (4)
dt| J1—v%c?] ’ yields
ed e. e dk )
=7c EAj(r(t)rt)'i' Era(t)(vjAa(r(t)at) Aj(r(t),t)= EJ dtlj WDjl(kat_tl)rl(tl)
—VAA|(r(H),1), ©) xexplik-Ar), ©)

whereij(t)=aH/aijuj(t) are the components of the elec- where Ar=r(t)—r(t;). Finally, by inserting(9) into the

tron velocity. Lorentz equatior(3) we arrive at a rigorous relativistic ex-
We write the field potentials in the Lorentz equati@, pression for the radiative damping force acting on a classical

which are functions of the electron’s radius veat(t) at the  electron:

same timet, in the form of Fourier expansions:

dk ey L LI RV
A,—(r(t),t)=f (zw)SeXp[ik-r(t)]Aj(k,t), (4) V1—v?(t)/c
e\? 4 dw
where the Fourier transforn#§ (k,t) do not contain the elec- ZFj(t)E—(E> Ef dtlf >

tron variables explicitly. The components of the current den-

sity, which are the canonical conjugates of tgk,t), can . . e\2.
be found from the system Hamiltonidf) via the relation- xXex —iw(t—t)] Dy (Ar,0)r(t) +| o) ra(t)
ship
dw )
oH e ” . xfdtlj Eexp{—m(t—tl)]
—m—grj(t)eXFil -r(t)]. (5) |

o . . X[V:D,(Ar, )~ VD (A, @) (ty), 10
The Hamiltonian leads to equations for the Fourier trans- [ViDu(Ar,0) j(Ar, @) ]ri(ty) (10
forms A;(k,t) of the field potentials: where

, 1 d? 47 . _ dk _
k +?F Aj(k, )= —er(texdik-r(t], (6) D,—,(Ar,w):f (ZW)Sexmk-Ar) Dj(k, o) (11

which are the Maxwell equations for the radiation field gen-determines the spatial dependence of the Green’s function of
erated by an electron with a current density the field. By passing from the partial time derivative to the

total time derivative we can transform the expression for the

ja(r,t)zebe’(r—r(t))'ra(t). radiative damping forc&(t) in (10) into

Equation(6) yields an exact solution for the radiation field

2d dw
generated by the electron: (=—|% _f f_
Fi( c/ dt dty 27
e : _ .
Aj(k,t)= Ef dty Dj(k,t=ty)r(ty)exd —ik-r(ty)], Xexf —io(t—t)]Dj(Ar,w)r(ty)
@) e\ do
whereD;;(k,t—t;) is known as the retarded Green’s func- *le ra(t)vjf dtlf pym

tion of the field. In the adopted gauge, the Fourier spectrum _
of the Green’s function has the fotth Xexd —iw(t—t;)]D 4 (Ar,w)r(ty). (12
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The same result can be obtained by passing to the fimit AriAr, (1
—0 in the quantum mechanical formul(@4) obtained in  Dj(Ar,w)=8;G(Ar,w)— J 5 J dB B2 exp( xAr B)
Ref. 3 at absolute zero Ar® Jo

The above rigorous definition of the radiative damping
of a classical electron, which does not involve the nonrela-
tivistic limit, is of special interest since it shows directly that
the paradox of a seffaccelerating electron cannot be re-

ArjAr, 1d A 1
_ 5”—? fo BBGXF(% rﬂ)E

20
solved in classical electrodynamics. i (20
Integrating by parts,
Jld(l ) A 1
=B ex rB)—
3. THE RETARDED GREEN’S FUNCTION; 0 2’8 G ’G)Ar
RENORMALIZATION OF MASS IN CLASSICAL 11
x (1
ELECTRODYNAMICS :EEEXWA”_EJ dB exp xAT B), 21)
0

To obtain an explicit analytical formula for the radiative
force F;(t), we must first find the Fourier transfor(al) of
the Greens function(8). The features of the Gre&nfunc-
tion (8) as a tensor are determined by the fact that in th
adopted Coulomb gauge) the fields vector potential is
transverse. For convenience we separate the principal scalar

and using the integral representatid®), we can reduce the
eexpressior(16) for Green’s function(16) to

Dji(Ar,@)=DJ(Ar)+Dj(Ar,w). (22)

part in tensor(8), which we denote by

iw

Gkw)= —T Iy (13)
( ,w)—k2+ x= C( ie sgnw),

)
%2

and write(8) as

1
(14)

Using the analytic properties of the functiéh3) in the up-
per halfw-plane, we can write the Fourier transform(@8),

dk _ 4
G(Ar,w)= f (Zw)anﬁlk'Ar)m
1
= Eexp(xAr), (15

Ar=|r(t)—r(ty)|,

x=lwlC,

and the Fourier transform of the Green’s functidn),
1 ~
DJ|(Ar,w)=6j|G(Ar,w)— _ZVJV|G(A|',(1)) (16)
V4

For the function

G(Ar,w)=G(Ar,w)—G(Ar,0). (17)

we introduce an integral representation, which will be ex-

tremely useful in further calculations:
- 1
G(Ar,w)ij dB exp(xAr B), (18
0
and correspondingly,
1 1
G(Ar,w)=xf dg exp xAr B)+ AP (19
0

Substituting(18) in (16) and calculating the derivatives;

In (22) we have separated the terms that are frequency-
independent and have a singularity in the lidit— O:
1 / ArjAr|
- 85— .
ZAr\ il Arz

1
Dji(r)= 51 9 (23)

Accordingly, the regular paﬁ“(Ar,w) of the Green'’s func-
tion has no singularities fohr—0:

~ 1 x (1
Dji(Ar,w)= 5,-|%f0 dBexp xArB)— S5 fo dg(1-p2?)

AI’J-AI’|
Xexp(xArB)+

x (1 a2
EL dB(1-3p°)
X exp( xAr B). (24

Bearing in mind that

Jldﬁ(l—s,{az)exp(mrﬁ)
0

:_ArJld,B(l—,Bz)z,Bexq;cArB), (25)

0

we can write the regular paf24) of the Green’s function as

"D“(Ar,w)=5j,xfoldﬂexp(xmﬁ)
x (1
— 85 JO dB (1— B2 exp(»Ar B)

A led 1- 5228 M expxa
—ANg B(1=p%)xp - exp(xAr ).
(26)
By writing the Green’s function as the sum of the singu-

lar and regular parts we can analyze the divergences inherent
in classical electrodynamics and discuss the problem of elec-

andV,, we arrive at an expression for the Green’s function,tromagnetic mass. Since the singular gag) of the Green’s
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function is frequency-independent, if we substitute it into The integral representation of the Green’s function
(10) and allow for the radiative damping force in the form makes it possible to obtain an explicit analytical formula for

(12), we find the generalized radiative damping force without using ap-
: proximation schemes. What is especially important here is
i mr(t) LV V(1) =—smTi(t) 27) the procedure of mass renormalization proposed in Sec. 3.
j jAt)s ; ; , ;
dt| \J1—p?/c? First we use the representati¢h6) of the Green’s function

and substitute it in the expression for the radiative damping
force Fj(t) defined in Eq(10). Bearing in mind the obvious
fact that the derivative¥;,V,,, andV, commute and allow-
4wk~ 2, (28)  ing for mass renormalization, we find that

where the additional electromagnetic mass

e2
om= SNt @angte |

(2m)?
2
is fo_rmglly divergent._ The common procedpre of mass renoer t=— € if dt, f d—wexp:— iw(t—ty)]
malization consists in including the additional electromag- c2 dt 2w
netic massdm in the total renormalized mass )
~ e
m* =m-+ ém, (29 XDji(Ar,w)v,(ty) + —v,(t)
c
a value assumed by the experimentally measured mass. After
the renormalization procedure has been completed, the regu- < [ gt d_w (-t
lar part(26) of the Green'’s function remaining in the equa- 1 277qu to(t=ty)]
tions of motion leads to a finite value for the radiative damp- _
ing force determined by10). Note, however, that this fact X[8aVi=6;V]G(Ar, w)v(ty), (32

does not resolve the self-accelerating paradox. whereu,(t,)=(t,), andv (t) =1 ,(t). In accordance with

C_:oncludlng t.h's sect|_0n, we note that the physmal réasolhe mass renormalization procedure, i(82) we keep only
for divergences in classical electrodynamics is that by inte-

grating in (28) over the entirek-space we step outside the (e regular parts of the Gre&nfunction, Pi'(Ar'“’) and
limits of of classical electrodynamics. The restriction on in- G(Ar,®), defined by(26) and(18), respectively. Below we
tegration ink-space may be associated only with one chardiscuss the main stages in calculating the radiative damping

acteristic length in classical electrodynamics, the classicderce (32).

electron radius, i.e., After inserting th_e intggral representatiof2s) and_(18)
) of the Green’s functions i32), we use the expression for
e . .
Z eme (30) the differential,
gl Ar| .
Because of this we can assume that —d{exp(xATB)} =% 1~ expxAr B) r(ty) dty,
AL = 1 mc? 31 and integrate by parts, taking into account the causality prin-
(AN == ay e (3D) ciple and the resulting properties of the Green’s function.

. . Next, using obvious transformations we can write the
If we assume that\r in (28) corresponds to the classical ragiative damping force as

electron radiusay (Eqg. (31)), the additional mas$m coin-
cides with the electron mass. From this viewpoint the elec- e’ (1 dw .
tron mass is of a purely electromagnetic nature and is relatelc:JJ'(t): B @fo dﬂf dtlJ Zexp(l Z)
to the radiative damping force acting on the charge. The
allowance for the fact that the field is transverse in calcula-
tions of the singular part23) of the Green’s function re-
solves the problem of the factor of 4/3, which initiallyarose
in Thomson’s work and then in the nonrelativistic Abragam— e’ 1 dw
+gva(t)f0 dﬂﬁf dtlj Z

(iw)%v(ty)
1 2v(i.0\3
- 5(1—3 )(iw) Ar;

Lorentz modef!

1
4. A RELATIVISTIC FORMULA FOR THE RADIATIVE : L2
Xexpiowz) (i Ariv (t)—Ar v (t])]—, (33
DAMPING FORCE OF A CLASSICAL ELECTRON Hiwz) (i) TAru,(t) = Arv(t)] zr. (39

As is well known, the retarded Green’s function of the where we have introduced the notation
field (Egs.(8) and(11)) is a complex-valued function of the Ar
frequencyw. Due to this, the radiative damping forég(t) z=t;—t+—8, Arj=r;(t)—rj(ty).
in (10) contains a component that is even under time reversal ¢
and one that is odd. Hence the generalized radiative dampiribhe calculations that follow are quite obvious. As result of
force F;(t) differs dramatically from the well-known radia- integrating by parts with respect towe arrive at derivatives
tive damping force, which is odd under time revertsge of the delta functions with respect to the argumenthis is
formula(3.12 in Ref. 1. Thus, it is important to rigorously followed by integration with respect tg. Finally, integra-
determine the time dependence of radiative damping. tion with respect to the auxiliary paramejgintroduced into
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the integral representatidi8) yields the final expression for

the generalized radiative damping forég(t) in the relativ-
istic equation(10):

where we have introduced the notatien=dr(t)/dt, u
=vlc,

vjor| - v
©=| g = =0 —p. =
aj —(5“ UZ)UI_UJ vJU (35)
is the centripetal acceleration, and
vjv; -
= (39

v

is the longitudinal acceleration. By analogy witB5) and

(36) we define the normal and longitudinal components of

the second derivative of velocity:
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study of new effects associated with this difference is of
special interest and requires a separate investigation.

To directly verify the approximate nature of the nonrel-
ativistic formula(75.8 of Ref. 2, we write the exact formula
(34) in a reference frame co-moving with the electron. What
is remarkable in this transition is that the centripetal accel-
eration tends to zero as—0, while the longitudinal accel-
eration coincides with the ordinary acceleration. Then from
(34) we obtain the nonrelativistic formula for the radiative
damping force:

1
—F()=1

e (41

+9 2 e?
u 8uu To_gE,

and the corresponding Lorentz equation for the electron in
the co-moving reference frame is

. e
Uj:_Ej(t)+To

mc (42)

8

where E;(t) is the strength of the external electric field.

What setg41) apart from the well-known formulé&75.8 of

Ref. 2 is the presence of an additional nonlinear dependence
on acceleration. Equatiof81) can be written as follows:

. 9.
ujt+zuul,

9 .. e .
- viv] | . vjuy - l__Tou)Uj:_Ej+70Uj,
v}°)=(5j|—1—2)v|, (”_ > [ (37) 8 mc
v v
or
Interestingly, the ultrarelativisticu—1) expression for the 15 7
radiative damping force is (1_ T ?Ov)v =eEj(t)+mrgu; . (43)
2 2 U]
Fi(t)= 1e v l ¢’ ua (39) Then the given effect can be interpreted as the dependence of
! 3cd(1- u)2 23 cd(1—-u)? the effective massn* on acceleration:

This force is directed parallel to the velocity of the ultrarela- *—ml1 9 7g. an
tivistic particle. mi=mil=gcv/| (44)

Let us see how formuléB4) for the generalized radiative
damping force is related to the well-known relativistic for-
mula (3.12 of Ref. 1, which is obtained, via Lorentz trans-
formations, from the approximate nonrelativistic formula
(75.8 of Ref. 2,

The common approach to solving problems that involve ra-
diative damping is to formally use the fact that the radiative
damping force is weakSuch a procedure yields a physically
meaningful result. However, the weakness of the radiative
damping force can be rigorously proved only if quantum
2 2. effects are taken into accouhfThe physical reason for this
Fi(H= 3 3V (39 lies is that classical electrodynamics has no small parameter.
¢ The exact solution of the equations of motion for an electron
Since this formula39) and its relativistic generalization are with allowance for the relativistic forcé4) also leads to the
odd under time reversal, we must isolate in the generalizedelf-acceleration paradox. Here the velocity reaches the
radiative damping forcé34) its odd component. Then speed of light in a timer, for.
In conclusion we note one more important feature of the

odd)( t)=2 2¢* 1 “ (o) | UJ“) classical theory of radiative damping. As is known, both in
3c31-u2 Yi (1-u)? classical and quantum systems the processes of relaxation

(dissipation and fluctuation phenomena are of the same

3uu [ © al physical nature. This fact is reflected, in particular, in the

+ 1_uz{ai + 1- 12 (40 fundamental theorems of statistical physics: the Nyquist—

Kallén—Welton fluctuation—dissipation theorem and the non-
linear fluctuation—dissipation theoreffs’® At the same
time, the classical radiative damping problem does not dem-
What sets the expressid84) for the generalized radia- onstrate such a relation. The physical explanation for this is
tive damping force apart from formul8.12 of Ref. 1 is the that in classical electrodynamics there is no such concept as
presence of a component that is even under time reversatlectromagnetic vacuum. For this reason an electron in free
This is seen most clearly in the ultrarelativistic limit. The space is not subjected to fluctuations. At finite temperatures

If we use the appropriate notation, E40) coincides with
the relativistic formula(3.12 of Ref. 1.
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The development of instability, heating, and melting of a two-layer crystal of dust particles in

the sheath of a radio-frequency discharge has been studied by the method of Langevin

molecular dynamics. The interaction forces between particles are determined in terms of a model
developed earlier, in which the ion clouds under the upper particles are replaced by

effective point charges. Both a pure Coulomb interaction and a screened interaction are considered.
Various regimes of particle motion in the crystal are discussed. The experimental and

calculated results for the mean energy of particles and the number of defects in the crystals are
compared. ©1998 American Institute of PhysidsS1063-776(98)00911-1

1. INTRODUCTION plasma! and in the strata of the positive column of a dc glow
discharge in ga¥ A dust crystal in a radio-frequency dis-
Interest in the study of the behavior of microscopic par-charge, which has been most thoroughly studied experimen-
ticles in a plasma has traditionally been due to their importally, is considered below.
tant role in plasma technologies, particularly in plasma- In a radio-frequency discharge, the crystal is located in
enhanced etching and deposition processes in micrahe sheath of the lower electrode, where the force of gravity
electronics. The essentially simultaneous discovery by sevs balanced in the vertical direction by the electric field act-
eral experimental groups® in 1994 of the formation of a ing on the negatively charged particles. Silicararbon' or
crystal of dust particles in a gas discharge showed that mipolymer'® particles form an extended crystal lattice in the
croparticles in a plasma are also a new, unique object thailane of the electrode, constrained by specially designed pro-
makes it possible to study phenomena lying at the junction ofections on the electrodes and consisting of over>X000
the physics of a nonideal plasma, solid-state theory, and thenit cells. The crystal consists of several layers in the longi-
physics of phase transitions. In a low-temperature plasmaudinal direction.
micron-size particles acquire a significant charge of Even the first observations of dust crystals showed two
eZ=(10°-10"e. Therefore, by altering the density of the features of its behavior that did not fit into the classical
microparticles, it is possible to experimentally vary the de-theory of Coulomb systems. First, along with various types
gree of nonidealnes&=e?z?/a.T, of the plasma over a of close packingface-centeretdand body-centeréd®*9 of
wide range, whereT, is the temperature of the particles multilayer crystals, alignment of the crystals into columns
(a,=V1l/@wn in the two-dimensional (2D) case and was also observed, in which particles of the lower layer are
a.=(3/47n)*? in the three-dimensiondBD) casé andnis located directly under the upper particles®1%3|n this
the particle density. According to the theory of a one-case, the particles form a hexagonal lattice in the transverse
component plasma, a system of microparticles must undergolane, which is typical of 2D systems. Recent experiments
a transition into the crystalline state whe&h, =130-140 show that just such packing usually occurs in multilayer
(Ref. 4 and G, ~170 (Ref. 5 for the 2D and 3D cases, crystals for the most thoroughly studied range of particle
respectively. The possibility that a crystal of dust particlesradius,R=3-5um. According to experimental observations
would appear in a plasma was predicted by IRézi1986, of a crystal of growing carbon particles in a methane
but it was the experimental discovery of such crystals inplasmat® the transition from a cubic body-centered lattice to
magnetroi”® and high-frequend&?°1° discharges that at- one aligned in columns occurs whBr-1 um. Note that the
tracted attention to the problem of highly nonideal systemsheory of Coulomb systers'’ or Yukawa systent§ gives
of charged microparticles. Structural ordering of an en-only close packings as stable states of multilayer crystals, the
semble of microparticles has also been observed in a thermglpe of which varies, depending on the distance between

1063-7761/98/87(11)/11/$15.00 905 © 1998 American Institute of Physics
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layers. As shown in Refs. 19-22, the reason that particles Conforming to the experimental conditions, we also con-
align into columns is that the particle fields focus the trajecsider a two-layer crystal of particles with a hexagonal lattice
tories of the ions, whose flux is directed from the quasi-in the plane of the electrodesy) and a columnar structure
neutral plasma toward the electrode. Regions of enhancesktending toward the electrode)( According to experimen-
ion concentration—ion clouds—are formed downstream ofal data from Refs. 21, 22, and 25, the vibrational amplitude
the particles. These ion clouds attract the particles of thef the particles in the plane of the electrodes significantly
lower layer and thereby ensure vertical alignment of the parexceeds the amplitude of the longitudinal oscillations. We
ticles. therefore consider particle motion only in the transverse
Another unexpected feature of the behavior of the crystaplane p;,= (Xix ,Yix) for fixed longitudinal coordinateg,,
is observed as the pressure is decreased or the dischangbere subscript labels the particle in the layer, ahkd=1,2
power is increased: the multilayer crystal begins to meltcorresponds to the uppek€1) or lower k=2) layer. The
even thoughG=10000-20000 according to estimates of motion of a particle in the dust crystal is governed by colli-
the particles at room temperature, and the crystalline statsions with the atoms of the gas, as well as by electrostatic
must set irf. According to the calculations of Ref. 23, screen- interaction with the other particles of the crystal and the spa-
ing of the charge of the particles in the sheath is too smaltially inhomogeneous ionic charge distribution in the sheath.
and cannot cause the melting, as was assumed in Ref. 24. As The effect of the electrons is described by introducing a
was explained as a result of experimental observations of thecreened interaction potential. Monte Carlo calculations of
motion of particle$>?® a multilayer crystal becomes un- the motion of ions in the sheath through a two-layer dust
stable below a certain critical gas pressure, and the particlesystaf'2 show that the ion flux screens the charged par-
begin to oscillate about their equilibrium positions. As theticles nonsymmetrically, and ion clouds form downstream of
pressure decreases, the mean kinetic energy of the particldse particles. On the basis of calculations of the restoring
reaches some tens of electron volts, and this causes the cryferce on the particles of the lower layer when it is displaced
tal to melt. from the equilibrium position, Ref. 22 proposes the analytic
Note that a single-layer crystal remains stable for themodel of the crystal used below, in which the actual spatially
same discharge parameters. As shown by Refs. 21 and 2bhomogeneous ionic charge distribution is replaced by an
instability is induced in multilayer crystals by the formation effective point charge rigidly bound to the particle that gen-
of ion clouds. A dust crystal in the sheath is under the influ-erates it. The magnitude and position of the effective charge
ence of the ion flux and is an open system, in which theare determined from a calculation of the restoring force. The
energy of directed motion of the ions is transformed intomodel thus includes the interaction of particles with gas at-
vibrational energy of the particles. On the basis of a lineaoms, the electrostatic repulsion of particles, and the attrac-
analysis, Refs. 21 and 22 found that the main characteristidson between particles in the lower layer and point ion clouds
of the instability of a two-layer crystal—the critical gas pres- located under the upper particles.
sure, the vibrational frequency, the ratio of the vibrational =~ The Langevin equations for our system can be written in
amplitudes, and the phase shift between the particles of thiae fornf’
upper and lower layers—qualitatively agree with the experi-
mental data. dzpik_i o %Jri': 1)
Below, a nonlinear analysis of the instability of a dust dt? MK P ar Tm
crystal is carried out by means of Langevin molecular dy- . . . . .
namics. The behavior of the mean particle energy, the distri?n€ré » is the coefficient of friction of the particles in the
bution functions of the particles over velocities, and the au92S: and- is the random Langevin force that describes par-
tocorrelation functions of the velocities at various pressuredicle heating(bearing in mind the translational degrees of
are considered for purely Coulomb and screened interag_reedon) as a result of collisions with neutral atoms. The

tions. The crystal—liquid phase transition is studied, and &'€ctrostatic forces
comparison is made with the experimental data. Fik=Fik.ppt Fik.pi

include the repulsiorf; ,, between the particles and the
2. MODEL OF A DUST CRYSTAL attraction of the particles of the lower layer toward the ion

In this experiment we study a two-layer crystal of par- clouds,F;y ,i . The interparticle forces can be written as

ticles with hexagonal symmetry in each layer. The crystal — Fy ,=—dU,,/dpi,
levitates in the sheath of a radio-frequency discharge in he-
lium. The discharge power is 12 W. The dust crystal consistd/"€€
of spherical monodisperse particles with a radiuskef4.7 2
um and a mass ol =6.73x< 10" 13kg. The mean distance Upp=2> 2 U(lpic—pil)+ 2 U(lpii—pj2+ed))
between particles in the layesi~450um, and the distance =] k=1 g

2
between layers of the two-layer crystal=~380um, show
little variation as the gas pressure varies in the rangés the potential energy of the interparticle interactiep,s
P=30-100Pa. A more detailed description of the experi-the unit vector in the longitudinal direction, ardlis the
mental apparatus and the measurement procedure can Oistance between layers. The first term in E2). describes
found in Refs. 21, 22, and 25. the interaction of the particles in the same layer, while the
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second term describes the interaction of particles in differenforces with the images were found by linear interpolation of
layers. The interaction forces between particles in the lowethe forces calculated previously by Ewald’s metfiBdhe
layer and the effective positive point chargeg located a approach of Ref. 31 was used to solve the Langevin equa-
distanced—d; under the particles of the upper layer aretions. By gradually reducing the gas pressure, we considered
given by the equilibrium states of the system for different values of
the coefficient of friction. For each gas pressure, we modeled

Fik pi= ~ SkadUpi/ Ipic. the motion of particles until the characteristics of the system
where reached their steady-state values, and then averaged over
time. The resulting state was used as the initial data for the
subsequent gas pressure.

To analyze particle motion apart from trajectories, we
considered the behavior of the autocorrelation function of

upi=—e; U(|pin—pjatedl]), €=2/Z,

and the Kronecker delté,, reflects the fact that the attrac-

. . velocity v,
tive force acts only on the lower particles. The Debye—
Huckel potential 7 ()= Zi(Vik(DVi(t—1))
252 ok Zi(Vik(Dvig(t))
Ulpi—p))= o~ py] exp(—Mp—py) where( .. .) denotes an average over time, the spectrum of

the autocorrelation function,
is used for the interaction of two point charges in the plasma,

where)\.is the scregning length by t_he eIectron;. Note that 5 k(w)=2f cod w7)Zy(7)dT, 3)
the particle-interaction model described above is based on 0

non-self-consistent calculations of the spatial distribution of
22 and the velocity distribution functions of particles in each
the ion concentratid?2and, for that reason, can only give
o - : . layer. To determine the percentage of defects in the hexago-
a qualitative description of the heating and melting of an . . ) .
nal lattice—particles with other than six nearest
actual dust crystal. To explain the role of the screening, we :
heighbors—we used Vorohadiagrams. In analyzing the
considered both a strongly screened interaction2/a, and .
crystal-liquid phase transition, we considered the behavior

a purely Coulomb interactiorN=0.
of the pairwise correlation functiog(r) and the relative
The behavior of a dust crystal is governed by the pres-
deviationu;, of particles from their equilibrium positions in

sureP and temperatur& of the gas, the Iattlge pa.rameter,s. the crystal, which was characterized by the modified Linde-
d, d;, and the charge& andZ;. By measuring distances in
mann paramet&?

terms of lattice constanta of the crystal and the time in
periods 1k, of the plasma oscillations of the crystal, where o [ N2
wpz\/47-re"lZZ/Ma3 is the plasma frequency, the number of Y= <2 N 2 [ui— U,kl >
variables can be reduced. We are interested in the behavior Nag | =1 No j
of the crystal at various gas pressures or, in other wordsyhere the inner summation is carried out over nearest neigh-
various dimensionless coefficients of frictiofiw,. The gas  bors. The displacement of particles in the lower layer relative
temperature i =300 K, which determines the amplitude of to the nearest particles in the upper layer was characterized
the Langevin random force; the charges of the particles angly the parameter
the lattice parameters are assumed to be invariant with gas N2
pressure. Under the conditions of the experiment of Refs. 21, 2 < 2 Ui~ 2|2>

I 1

22, and 25,2~1300@, the distance between particles is Y= NaZ\ist
a~450um, the distance between layersds- 360,um and
the plasma frequency of the crystal dig,~90 secl. The The statistical error of the calculations, which is related
coefficient of friction linearly increases with gas preséﬁlre to the finite observation time of the system, is indicated on
and varies in the range 12-40sécfor gas pressures the dependences on the gas pressure of the average energy of
P=30-100Pa. The other parametels=0.5Z and d; the particles in different layers,
=0.4a are taken from Monte Carlo calculations of the mo-
tion of the ions?? Ex=M < > |vik|2>/N :

Using periodic boundary conditions, we model only a !
fragment of the Crystal, assumed to be infinite in the horizonand of the Lindemann parameters_ To compare the behavior
tal plane, including\ =448 particles—224 particles in each of a multilayer dust crystal and ordinary Wigner 2D classical
layer. The calculation region is a rectangkexXY=14  crystals, and to check the validity of the algorithm, we mod-
X 8/3a?, in which a fragment of the hexagonal lattice is eled a single-layer crystal with the same number of particles
inscribed with no distortion. Sinck,Y>a, to determine the in the |ayer_224_for Coulomb and screened interactions.
forces on particles in a screened potential we took into acThe single-layer crystal is a Hamiltonian system with a total
count only the interaction between particles and their nearegotential energy
images. For a Coulomb potentiak €0), the interpolation
method® was used. The interaction between the nearest par- U :Z U(lp—pi)
ticles was taken into account directly, while the interaction i= P P;
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03T To for complex values ofy the crystal becomes unstable when
\ the coefficient of friction drops below a certain critical value
> 1
0ok 3 v,=Imylo, ,
§f‘ 1 where o,=+—Ren is the frequency of unstable
= A=2a . 2 oscillations?? For the parameters of the dust crystal consid-
o1f ] 3 ered below, the dependencesiQf andw, on the amplitude

of the wave vector are given in Fig. 1 for various directions
of g. The most dangerous perturbation, with the maximum
a coefficient of frictionv;, corresponds ta,/q,= 1/y/3 both
o/—————— e for a Coulomb potential #;~0.29Qw, ,w, ~0.8%w,), and

for a screened potentiab(~0.163v,,w, ~0.88w,).

Four characteristic regimes of particle motion can be
identified, depending on the value of the coefficient of fric-
tion in the dust crystal{l) v>w; corresponds to chaotic
motion in the crystal phase, with a mean particle energy
several times as large as the gas temperdteigs. 2a and
2b); (2) v.<wv<w; corresponds to almost harmonic oscilla-
tions of the particle$Fig. 20; (3) v, < v<v, corresponds to
chaotic motion about the equilibrium positions in the crystal,
with a mean energy several orders of magnitude higher than
. . . the gas temperatuk&igs. 2d and 2g (4) v<v,, corresponds

0 ! 2 3 @ to Brownian particle motion after the crystal—liquid phase
FIG. 1. Critical value of the coefficient of frictiote) and the frequency of ~ transition (Fig. 2f). The critical valuesy; and vy, corre-
the corresponding unstable oscillatiofi® vs. the wave vector in various sponding to the threshold of development of instability and
directions:q, /g, =cos(/6) (1), q,/q,=cos(/12) (2), 4,=0 (3) for Cou-  the boundary of the crystal-liquid phase transition, are
lomb (A =0) and screened\(= 2/a) interaction potentials. The dashed hori- shown in Fig. 3 by vertical lines. The transition from har-

zontal lines show the value of the coefficient of friction corresponding to . o . .
melting of the crystal. monic oscillations to chaotic motion has no sharp boundary.

3.1. Chaotic motion of particles at high gas pressure

3. RESULTS AND DISCUSSION Special calculations at zero gas temperature showed that,

: . . whenv>v;, a dust crystal is stable against the development
The main feature of a dust crystal of particles is asym- . : )

) . . . of perturbations and, with the passage of time, the mean
metry in the interaction of the particles of the lower and

kinetic energy of the particles tends to zero. It is well known

. °0 hat in the heat bath comprised of the neutral gas surrounding
the ion clouds that extend downstream of the upper part|cle§he particles, any Hamiltonian system tends to equilibrium

but there is no attraction of the upper particles toward the s . . X
o and the mean kinetic energy of the particles equalizes with
lower ones. For such an open non-Hamiltonian system, th

. ) ) L ’ mperature of th . In particular, for ingle-layer
dynamical matrix of the first derivatives of forc€s is not fhe te pe atu €0 the gas pa tcu.a » 10F @ singie-iaye

o . . crystal, this point was used as one validation of the solution
Hermitian and in general has complex eigenvalgesThe

eigenvalues. and eigenvectors of the system of Eqs(l) of the Langevin equations. In this regard, note that the pres-

for different wave vectorsg were found in Ref. 22 for small ence of Brownian particle motion was used in Ref. 24 to
deviations S ' explain the experimentally measured low critical values of

G, , corresponding to melting of the crystal. In our opinion,
Xik=&q)exp\t+ig- py) such an explanation is incorrect, since the presence of a ther-
mostat need not affect the equilibrium characteristics of a
Hamiltonian system. In particular, our calculations yield
AN=(—v=* \/V7+477 )2, (4 G, ~ 135 for the Coulomb interaction in a single-layer crys-

of the particles from their positiong, in the crystal. Since

yla

a(%D b. e
B,

x70

FIG. 2. Particle trajectories in a fragment of the upper layer
of the crystal for a screened interaction potential with various
coefficients of friction»/w,=0.21 (a), 0.1625(b), 0.1575
(c), 0.15(d), 0.12(e), and 0.115f).

c df\ 6;$
7~ | #| |

x15 x10 f
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E, eV tal, consistent with the data of other authors obtained using
10° the Monte Carlo method or the method of molecular dynam-
ics.

10'F Energy is also transferred from the ion flux to the

multilayer dust crystal fow>»;, when the crystal is stable
(oo against the development of perturbations. The presence of
complex eigenvalues of the dynamical matrix reduces the
[ effective coefficient of friction, and the mean kinetic energy
107"k of the particles exceeds the gas temperature evem o,
(Fig. 3). The experimentally measured energy of the particles
1072 . L also exceeds the gas temperature, but this difference lies

022 024 026 028 030 032 034 viw,  ithin the measurement error. The particle speed distribution
function is essentially MaxwelliafFig. 4a, and the velocity

lf)'zev distribution is isotropic. The mean particle energy in the
““‘Mﬂ, b lower layer is higher than in the upper layer, both for the
- o 4 screened and for the Coulomb interaction potentials, and this
10'f A=2a agrees with the experimental d&and linear analysié The
° motion of particles with a comparatively small amplitude of
10°k i the deviation from the equilibrium position produces negli-

. gible broadening of the peaks of the pairwise correlation

i &"‘&*\Nﬂ function, which correspond to the positions of the particles in
10°F 2 an ideal hexagonal latticd-ig. 53. The presence of modes

! with complex eigenfunctions is most notable in the spectrum

' of the velocity autocorrelation function, where the height of

010 0.12 0.14 0.16 0.18 0.20 viw i S .
L4 the peak corresponding to plasma oscillations increases as

FIG. 3. Particle energies in the uppé: circles and lower(2) layers for ~ the coefficient of f.riCtion decreasd§igs. 6 and_ 7n The
Coulomb(a) and screene(b) interaction potentials. The circles correspond presence of a continuous spectrum of the velocity autocorre-

to experimental data, and the triangles and squares to calculations. Thation function and its exponential decrease over several Vi-
vertical dashed lines show the instability limits obtained in a linear analysis

and the melting thresholds of the crystal.

0 0.01 0.02 0 0.04 0.08 0.12
T T ™ T T T T
60t
115
401
110
201
15
FIG. 4. Distribution function of particles with ve-
a b locitiesv, ,vy in the lower layer of a crystal with
a screened interaction potential and various coef-
0 0 ficients of friction v/w,=0.165(a), 0.16125(b),

0.155(c) and 0.145(d). The dashed curves corre-
spond to a Maxwellian distributiofa and d and
the velocity distribution accompanying harmonic
46 oscillations(b).

aw,)
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201

101

51 l
r J H { FIG. 5. Two-point correlation function for screened

0 N T T interaction potential witih various coefficients of
friction »/w,=0.21(a), 0.1575(b), 0.125(c), 0.115

(d). The solid and dashed curves correspond to the
upper and lower layers.
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brational periodgFig. 83 indicates that the particle motion analysis of the fragment of the crystal considered here. For a
is chaotic. Note that the velocity autocorrelation functions ofscreened potential witr=0.1575w,,, allowing for degen-
particles in the upper and lower layers are qualitatively simi-eracy, there are 26 unstable modes, whose frequencies are

lar for all the regimes of motion. distributed over the range 0.847-0.882. The peak width in
the spectrum of the velocity autocorrelation function in the
3.2. Coherent oscillations in the crystal phase coherent regime is clearly smaller and is determined by the

Whenv<v;, friction between particles in the gas can noflnlte Integration time (400"‘9). n Eq. (3). . .
longer stabilize the development of instability, and this leads Thus, as a resylt Of nqnlmear interaction of the. various
to a sharp increase in the mean kinetic energy of the partic:le@oOles whe_n no_nlln_earlty IS weal_<, on_ly one mode is don_1|-
(Fig. 3). The most interesting feature of the particle motion jshant. The situation is analogous in this respect to the lasing

the existence of the coherent oscillations, which occur over %{13 rguIt'mgiﬁéaS:i?JQ?rgr:;i?% es (:str;iggr:l?arﬁnthfr%rgr?'c
narrow range of the coefficient of friction,.<<v<w;. For WS up | part J : 1afly !

the screened potentiat,~0.1550, . During coherent oscil- %S:I.lr?]t;otnosf'g'ei?'nlgffﬁeozc"l?g?.n?ncag:iévxg %dt(i:gonslr_
lations, all particles move with identical phase and frequenC)(Ni X el ?ipn function(Fi qUSItI))' "tJh i[r) rlil - il itp :
w. For harmonic particle motiony; = v ,sin(wt), the particle s€ correfation function(ig. » (Neir ongn 15 quite.
L L analogous to the appearance of maxima in the velocity dis-
velocity distribution function is L . . . .
tribution function. The velocity autocorrelation function os-

dt 1 cillates harmonically in time with essentially constant ampli-
)=~ T (5 tude(Fig. 8b), and this also indicates that only one mode is
Um™V dominant. A coherent regime of particle motion also exists
wherev ,, is the maximum particle velocity. A comparison of for Coulomb interaction, but it is less pronounced.
Eq. (5) with the calculations is given in Fig. 4b. The pres- The available experimental data have yet to confirm the
ence of the coherent regime indicates that only one vibraexistence of a coherent regime. Experimentally observed
tional mode is excited in the crystal. crystals differ from our model in two respects. First, the typi-

We consider a finite fragment of the crystal, in which thecal number of particles in an actual crystal10*, is much
phonon spectrum is discrete. Therefore, just after the transgreater than the number of particles whose motion we are
tion through the critical value of the coefficient of friction, modeling(448. The spectrum of elementary excitations of
only one mode is excited, with a frequency of 0.881  an actual crystal is accordingly closer to continuous than is
However, as the coefficient of friction decreases further, thehe spectrum of the crystal fragment that we are considering.
number of unstable modes increases. Figure 9 shows the frelowever, using the analogy with a multimode laser, it stands
guency distribution of the unstable modes obtained by lineato reason that the presence of a continuous spectrum should
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not radically affect the existence of the coherent regime. Théion of unstable modes and can substantially reduce inter-
second problem is more important—there are a large numbemodal interaction, and this in turn leads to suppression of the
of defects in an experimentally produced crystaig. 10 coherent regime.

even for low particle energies, wh&s G, , and there must

be no defects in the ideal situation. The origin of the defects _ o _

in the actual crystal is not completely clear. Since the crysta?'?" Chaotic oscillations in the crystalline phase

is limited in the plane of the electrodes, hexagonal symmetry  As the coefficient of friction decreases, the maxima in
must break down in the peripheral regions, and this inevitathe particle velocity distribution function gradually broaden
bly causes defects to appear. However, calculations of largd-ig. 40 and a smooth transition occurs to an almost Max-
2D Coulomb clusters confined by a parabolic potential indi-wellian distribution (Fig. 4d, which remains anisotropic
cate a significantly smaller percentage of deféttsis pos-  over the directions of the velocities right up to the point at
sible that defects in an actual crystal are associated with thehich the crystal melts. The velocity distribution function
spread in particle size. The influence of defects on the parscarcely differs at all from a Maxwellian just before melting,
ticle heating mechanism and the crystal melting has yet to band becomes isotropic in velocity in the liquid phase. The
studied. The experimental daflaig. 3) show that as the gas velocity autocorrelation function decreases with tiffég.
pressure decreases, the mean particle energy increases in 8w, and its spectrum broadefBig. 79, which further sug-
actual crystal more smoothly than in the calculations. In thiggests that the particle motion becomes chaotic. The peak in
case, the number of defects also incred§és. 10, even at  the spectrum of the velocity autocorrelation function corre-
particle energies for which the calculations predict no desponding to the frequencies of the unstable modes shifts to-
fects. Note that using krypton as a carrier gas makes it posward lower frequencies as the coefficient of friction de-
sible to reduce the defect level of the crystal and to observereases, and this agrees with a linear analyBig. 9b).

a more abrupt rise in particle energy with decreasing ga8ecause the modes interact, two additional broadened peaks
pressure® The presence of defects can result in the localizaappear when\ =2/a; their position approximately corre-
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sponds to the subharmonies’3 and 2»/3 of the unstable 3.4. Melting of the crystal
modes(Fig. 79. For.Coulomb mter_acnon W!m< Ve thg The melting of the crystal, which was identified in the
spectra of the velocity autocorrelation function qualitatively . . .

differ from those described above. As the coefficient of fric-C"’“CUI_‘E‘“OHS from thg sharp jump in b_0th the number of de-
tion decreases, a second narrow peak appears, whose ampifcts in the systeniFig. 10 and the Lindemann parameter
tude gradually grows and becomes larger than that of the firdfig. 11, occurs when'~0.12w,, for the screened potential
peak. One of the reasons for the difference in the behavior cindv~0.267w, for the Coulomb potential. The calculations
the spectra is probably the difference in the density of statesf Ref. 32 show that the critical value of the Lindemann
of the unstable mode@-ig. 9. The distance between adja- parameter, corresponding to the melting of 2D crystals, re-
cent modes is less for=2/a than forA =0, and this must mains approximately the same for different interaction po-
make it easier for the modes to overlap as a result of theifgntials, y, ~0.1. For the screened potential, the energy of

interaction. the particles and, accordingly, the Lindemann parameter is

The mean kinetic energy of the particles continues togreater in the lower layer than in the upper. However, the

grow as the coefficient of friction decreases, with particles . .
having higher energyH,) in the upper layer than in the crystal melts only when the Lindemann parameter reaches its
1

lower (E,) for the Coulomb potential. The opposite is true critical value of about 0.09-0.11 in the upper layer, which is

for the screened potentidk, < E,, which has been observed @PProximately the same far=0 and\=2/a. Unlike the
in experiment222just before the crystal melts, the peaks Coulomb potential, melting of the crystal when=2/a is

in the two-point correlation function, although they broaden,accompanied by a jump in mean particle energy. After the
remain fairly distinct(Fig. 50, especially for the upper layer, crystal-liquid phase transition, the peak amplitudes of the
where the mean particle energy is lower when 2/a. pairwise correlation function decrease with distance, and
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g(r) reaches its asymptotic valug(r—«)=1 whenr correlation function and particle self-diffusion after melting

reaches a small multiple of the interparticle distance. ThdS substantially less fox=0 than fork =2/a.

spectrum of the velocity autocorrelation function at0 The limited size of the crystal fragment that we consid-
becomes nonzero, and suggesting particle self-diffusion igred leads to no conclusions concerning the order of the
the liquid phaséFig. 7d. Since there is no sharp change in phase transition, the presence of an intermediate hexatic
particle kinetic energy after melting for the Coulomb inter- phase, or other crucial questions in the theory of the melting
action, the broadening of the spectrum of the velocity autoof 2D crystals. To judge by recent numerical experiméhts,
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FIG. 9. Unstable modes of the 448-particle crystal fragment under

v/w T consideration for Coulomke) and screenecb) interaction poten-
tials. The upper horizontal dashed lines correspond to the instabil-
0.171 b ity threshold, and the lower to melting of the crystal.
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N, % . part of the energy in dust crystals is carried by short-
70 ! v wavelength oscillations, whereas the melting mechanism of
[ § ordinary 2D crystals is dictated by long-wavelength

60 l A=2a ph0n0n53.9_42

50f i .

‘ [ ]
40
A l- 4. CONCLUSION

30. " A comparison of the experimental data with numerical

20t Ng ®E @n modeling of the heating and melting of a crystal shows that
the assumed mathematical model yields the correct order of

10F magnitude for particle energies and critical gas pressures cor-
responding to instability and melting of the crystal. At the

0 eateass 1 . same time, certain theoretically predicted results—a sharp

010 o012 o014 02 04 Ve 0.6 increase in particle energy as a result of the development of

4 instability, and a coherent vibrational regime—have yet to be

FIG. 10. Dependence on the coefficient of friction of the percentage ofcONfirmed experimentally. This is probably associated with
defects in the lowefcircles and uppeitriangles layers of the crystal fora  the large defect content of the crystal, which is observable
screened interaction potential. Squares correspond to experimental resultayen at low particle energies. For a more detailed compari-
son of theory with experiment, it is necessary in the experi-
ment to reduce the defect content of the crystal and in the
this would require the number of particles to be at least arnheoretical calculations to numerically model finite systems
order of magnitude greater. To validate the predicted locain which defects exist when the particles have zero kinetic
tion of the phase transition itself, we modeled the melting ofenergy.
a single-layer Coulomb crystal and obtainésl, ~135, The present calculations show that a dust crystal is more
which is close to calculations of other authors and the exstable against melting than ordinary Coulomb crystals. The
perimental data of Ref. 37. For a screened potential in &orm of the interaction potential of the particles qualitatively
single-layer crystalG,~189. A dust crystal melts when affects the behavior of the autocorrelation functions of the
G, ~19 andG, ~52 for Coulomb and screened potentials, velocity and particle motion after melting. Unlike a Coulomb
respectively. Thus, multilayer dust crystals are substantiallynteraction, the melting of a crystal with screened interaction
more stable against melting than ordinary Coulomb crystalsis accompanied by an abrupt increase in the kinetic energy of
Note that 3D or two-layer close-packed Coulomb crystalshe particles.
melt at higherG values than do single-layer on&The This work was carried out with financial support from
difference in theG, values for dust crystals and ordinary the Russian Fund for Fundamental ResedRFBR) (Grant
crystals is probably associated with differing energy distri-No. 96-02-19134-a the RFBR—-DFG(Grant No. 96-02-
butions over the vibrational mod¢Bigs. 6 and Y. The main  00241-G, and INTAS(Grant No. 94-740

Y
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+ ] FIG. 11. Root-mean-square relative displacement of
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0.2t N layers of the crystal for Coulomta) and screenecb)
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I ment of upper and lower particles relative to one an-
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A system of electron-transport equations for small perturbations in a plasma, which is suitable
for an arbitrary relation between the electron mean free path and the density gradient

length, is formulated. Electron—electron collisions are treated on the basis of the exact Landau
collision integral, making it possible to obtain expressions for the potential elements of

the Fourier components of electron fluxes, generalized forces, and all the transport coefficients in
a plasma with an arbitrary ion charge for the first time. The transport coefficients found,

viz., the electrical conductivity, the thermal diffusivity, the thermoelectric coefficient, and the ion
convection coefficients, permit the quantitative description of an extensive list of small-

scale processes in a completely ionized plasma. The suppression of heat transport and the damping
of ion-sound waves in a current-free plasma over the entire range of spatial scales of the
perturbations from the high-collisionality limit to the collisionless limit are examined as
applications of the theory developed. ®98 American Institute of Physics.
[S1063-776(198)01011-1

1. INTRODUCTION guently contain empirical parameters. A new method for de-
riving nonlocal hydrodynamic equations, which, although
Hydrodynamic equations provide an effective tool for they contain only low moments of the electron distribution
investigating an extensive list of phenomena in the physicsunction, are completely equivalent to the kinetic theory for
of continuous media. They are considerably simpler than themall-amplitude perturbations in a plasma, was proposed and
kinetic equations and faithfully describe processes on scalegeveloped in Refs. 11 and 12. This was accomplished via a
considerably larger than the mean free path of the particlegyeneral solution of the kinetic equation for the electron dis-
The familiar derivation of hydrodynamic equations from thetribution function with a Landau collision integral for colli-
kinetic theory by the Chapman—Enskog method involves exsions with ions and electrons. The method in Ref. 11 permits
pansion of the deviation of the distribution function from the systematic derivation of exact expressions for electron
thermodynamic equilibrium to first order in the gradients oftransport coefficients in the Fourier representation, but is re-
the hydrodynamic momerits® and leads to local relations stricted to the approximation of a large ion charge;1,
between the fluxes and generalized forces. However, thisince electron—electron collisions were taken into account
method is confined to the region of very weak spatial gradi-only in the equation for the isotropic part of the distribution
ents, where the density gradient length of the hydrodynamifunction. From the practical standpoint, this constraint is
variables is hundreds of times greater than mean free paths highly significant, since the quantitative description of the
the particles. Considerably smaller-scale inhomogeneities ateansport properties of a plasma is possible only when
of direct interest for numerous important applied problems inZ= 10, while in most practical applications it is necessary to
plasma physics; therefore, the development of a transpodeal with ions having lower extents of ionization.
theory that is free of such a constraint is needed. Such a In this paper we take an important step in perfecting the
theory leads to nonlocal relations between fluxes and genetheory of nonlocal transport, i.e., we find expressions for the
alized forces and is thus called a nonlocal transport theoryelectron transport coefficients for a plasma with ions of any
Its development is a pressing problem for numerous areas @harge. This is achieved by systematically taking into ac-
plasma physics, such as laser fustahermonuclear research count the exact electron—electron collision integral in the
in magnetically confined plasmasastrophysical plasm&s, Landau form, as was done in the classical theory of transport
and weakly ionized, low-temperature plasmas. in a plasm&:® The significant difference from the classical
The general approach to deriving generalized hydrodytheory is that the ratio between the density gradient length of
namic equations involves writing a hierarchy of equationsthe perturbations and the electron mean free path can have an
for the moments of the distribution function of the particles, arbitrary value. Allowing for electron—electron collisions is a
truncating it at a certain level, and expressing the highecomplicated problem not only for an analytical theory, but
moments in terms of lower moments. The last step is indefialso for numerical simulation. There are only a few numeri-
nite, since it presumes knowledge of the complete distribueal programs for solving a kinetic equation in which
tion function, while it can be found only in an approxima- electron—electron collisions are taken into account in some
tion. For this reason, all the known nonlocal transportapproximation:>~*®while there has hitherto been no theoret-
theorie§*°have very limited ranges of applicability and fre- ical description of nonlocal transport over the entire range of

1063-7761/98/87(11)/10/$15.00 916 © 1998 American Institute of Physics
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variation of the collisionality parameter with systematic al-tions of the density, temperature, electric field, and ion ve-

lowance for electron—electron collisions. The closest thing tdocity associated with the wave vectkr We linearize the

our approach in formulation is the work in Ref. 14 on thekinetic equation for the electron distribution functibn, tak-

numerical simulation of the damping of small-amplitude ion-ing into account the electron—electron collisions in the form

sound perturbations in a homogeneous plasma. This special the Landau collision integralC.d f.,fe], and the

case is a representative test for our general transport theorglectron—ion collisions in a representation which describes
The method used in this paper to solve the kinetic equaenly scattering with respect to the angldetween the wave

tion for electrons is valid for an arbitrary ratio between thevector k and the electron relative velocity vectar=v,

perturbation scale lenglh~k ™! and the mean free pai;, —u;:

since it enables us to take into account the contributions of

all the anisotropic components of the electron distribution 1 J df o

function and to quantitatively describe the transition from  Ceilfel= Evei(v)ﬁ(l_ﬂz)ﬂ- 29

ordinary collisional hydrodynamics to the collisionless limit.

A previously proposeld procedure for solving the initial- Here vei(v)=47an0e4A/m§v is the velocity-dependent

value problem is used to find the general solution for thefrequency of electron—ion collisions—e is the electron

perturbed electron distribution function for the case of pOten'charge,A is the Coulomb logarithm, ang=cosi. As a

tial perturbations and to det_ermlne the relathns between .thFesuIt of plugging the expressions just presented into the ki-
electron fluxes and generalized hydrodynamic forces, Whlcfﬁetic equation for electrons and going over to a reference

include the e_Iectric field, the plasma .ﬂOW velocity, an_d theframe moving with the local ion velocity, we obtain the fol-
plasma-density and temperature gradients. In the spatial Fonwing equation for the spatial Fourier component of the

ner representatlpn these traqsport relations have a form SMYeviation of the electron distribution functiofif (t,k, 8,v)
lar to the classical expressiofid,but the transport coeffi- from the equilibrium functiorEq(v,):
cients are found to depend on the wave numigigre 0Avel:
collisionality parameterk\;). Such an approach allows us

. ; ST - dof . ) oFg . e dFq
to unequivocally specify the nonlocal kinetic coefficients for — —— iy, 4 5f —ikou; u?2 — + ik — ppu —
a completely ionized plasma with an arbitrary ion charge for v Mg v
the first time. To illustrate the application of the nonlocal —C.[Sf1+C.l 8f Eal+C.IE~. of 29
hydrodynamic equations obtained, nonlocal heat transport ell o]+ Ced OF.Fol+Ced Fo F]. 22
and the damping of ion-sound waves in a current-free plasm

in the region of parameters of interest for modern experi-ﬁereu‘(t) and ¢(t) are the Fourier components of the ion

) . . L - velocity and the electric potential. We next expand the per-
ments on the interaction of high-power laser radiation with . o L
. S turbationsf of the distribution function in Legendre polyno-
plasmas are considered in this paper.

mials which are eigenfunctions of the electron—ion collision
operator(2.1) in the local reference frame moving with the

3

2. KINETIC DESCRIPTION OF NONLOCAL ELECTRON

ion velocity u; :
TRANSPORT
Let us consider a homogeneous plasma with a Maxwell- *
ian electron velocity distribution functioRy(ve), an elec- sf=2 i'fi(tk,v)Pi(w),

tron densityn,, and an electron temperatuie, as the =0

ground state. We assume that the plasma is completely ion- .
ized and contains ions with the charge numBeBeing in- )
terested in phenomena associated with electron transport, for Cee{éf'FO]+Cee[F0’5f]:;o 'ICLGP'('“)' 2.3
simplicity we shall assume that the ions are cold and neglect
the ion—ion collisions. We shall also neglect the transfer o
energy in electron—ion collisions.

Let the initial perturbation of the Maxwellian electron
distribution be given at=0:

fand we perform the Laplace transformation in time. As a
result of the operations just described, the electron kinetic
equation(2.2) is reduced to an infinite system of equations
for the angular harmonidg of the electron distribution func-

ong [ v2  3\6T, tion:
of(t=0r,vy)= n—+ 2 2T Fo(ve),
e \20Te e | I+1
wherevte=\T./m, andm, are the electron thermal veloc- pfi+ku 21-1 fi-a—ko 21+3 fies
ity and mass. We shall examine the linear response of the
plasma to this perturbation, as well as to small-amplitude __Hd+D vei(0)f+CL+S (2.4)
irrotational perturbations of the electric fiel=—V ¢ and 2 e ' ee ' '

the ion velocityy; . In addition,ény and 6T, can be arbitrary

functions of the coordinates and¢ andu; can be arbitrary Here the first term on the right-hand side corresponds to
functions of the coordinates and tinggrovided curlu;=0).  electron—ion collisions, and the second term describes
Owing to the linearity of the response, it is sufficient to con-electron—electron collisions in the form of Rosenbluth
fine ourselves to consideration of spatially periodic perturbapotentials'®
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Cee 10I+D) o o Il [ £ N
Vee(v)=Tf|(|2—3|0—2J_1)+u% filg ko| S 79117 5739141
v (9f| 4’771}3 |(|+1) A 1~| A
+§5(|2+Jg1) + N fiFo =—v,i(v) 2 P +F_0Cee+sl ) (2.8

v? PRI+ 1)(1+2)

Y 3Gt 253 L, where Sy=1, S{=v2/3v2,—1, and S§=—S}/2=0%3v2,
are unitary sources corresponding to perturbations of the
| [(I-1) | density (\), temperature T), and ion velocity R) of unit
+OI )T S (oL NI amplitude, and the electron—electron collision contributions
C., are specified by Eq2.5) after the replacement df by
v dFg[1?+31-2 Foo?
+ — 3l oF -
2(21+1) ov| 21—-1 7!
(-1 (I+11+2)
oot P Ty e
12_|_a 3. INITIAL-VALUE PROBLEM FOR PERTURBATION OF THE
_ 53" . (2.5)  ELECTRON DISTRIBUTION FUNCTION
21+3 T
Here ve((v) = voi(v)/Z is the velocity-dependent frequency The perturbation of the electron distribution function de-
of electron—electron collisions scribed by the angular harmoni¢x7) is created by inducing

forces proportional t&e= —ik ¢ andu; and also depends on
the perturbations of the initial densityify) and the tem-
perature 6Ty). Therefore, at first glance, the expression
(2.7) does not permit consideration of the hydrodynamic mo-
ments 6n and 6T of the electron distribution function as
independent variables, which is necessary for a general for-

) . mulation of a theory of electron transport. In particulan,
are Rosenbluth potentials, and the source functinare 5y sT appear in the classical high-collisionality theory.

specified byu; and ¢, as well as by the Fourier components o yever, as was shown in Ref. 11, obtaining a general so-
dny and 6Ty, and are nonzero only fdr=2: lution for the perturbation of the electron distribution func-

4 (v
%5010 o | TFoifalo? M,

A (=
(95091~ [ TFoi 107
e v

sno 3 6Ty v2 i 02 tion allows a procedure for introducing the hydrodynamic

So=—Fot+ 3 —( >~ 1) Fo— zkui—Fo, momentson, and 6T, as independent variables owing to the
Ne 2 Te 3vTe 3 UTe linearity of the kinetic equation foéf. The solution of Egs.

5 2 (2.6 (2.4) and (2.8) in general form specifies the perturbation of
Slzﬁkao Szz—iku-v—Fo the electron distribution function at an arbitrary tirnas a
Te ’ 372, function of the four quantitie€, u;,dn,, and 5T,. There-

. . .. fore, for any time the hydrodynamic moments of the pertur-
The system of equatior(@.4) differs from the one studied in bation of the distribution function can be calculated:

Refs. 11 and 12 through the inclusion of the electron—
electron collision term$2.5) in the equations with=1.

Below we shall confine ourselves to a study of fairly sn :47Tf°°dv v2f
slow (quasistationanyprocesses taking place over character- € 0 0
istic times that are short compared with the electron—electron
collision time, for which the first terms on the left-hand sides Amm. (=
of (2.4) can be neglected. Bearing in mind the linearity of the 5T = eJ dv v?(v?—3v2)f,, (3.9
kinetic problem being solved and following Refs. 11 and 12, 3ne Jo
we introduce the basis distribution functiogs, which do
not depend on the amplitudes of the sour¢2$) in Eqs.  which can be represented as linear combinations of the initial
(2.4), but reflect specific dependences on velocity, i.e., Weperturbationsén, and 6T,. Accordingly, the initial density
seek a general solution for the angular harmonics of the peand temperature perturbations can be eliminated by express-
turbation of the electron distribution function in the form  ing them in terms of the instantaneous perturbations and then

solving the system of two linear algebraic equations. Thus,
e¢ éng N, 39T T R R . .

fl:T_F06|’0+ n_Fo‘P| + 5 —Foo| —ikuiFoer*. the_ el_ectron distribution functlon_can be expressed in terms
e e e of its instantaneous hydrodynamic momeats, and 6T, as
2.7 independent variables.
Here 6, , is the Kronecker delta, and the three sets of inde-  In the language of the Laplace—Fourier transforms of the
pendent basis function,s,A (A=N,T,R) satisfy three similar angular harmonics of the electron distribution function, the
systems of equations with different sources: latter statement corresponds to the following relation:
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2 k21)2

eE* _ I~ Jig _1 .
V|,1(U)—2|(|+1)V (v)+ﬂz—_lv|(v)' (43)

oy

Since the conditiory,= v, holds for large values df, we

N Ny T T Ty N
&F (Jr+Ine —(Urtdne i %F S5 obtain the following approximate expression for the effective
Te ° DNT T, 0010 collision frequencyw, :
DRI DRN 1 kv 1 1 2
+ikuiFo(—m¢|”+ e e, (3.2 m)=Z v M| ] Hi=2+\ 7+ 77
Dnr Dnr (4.4
which was written using the moment matrix of the isotropic . _ . o . '
components of the basis functiopd Th_us, to find the baS|§ functions it is suﬁ|C|gnt to solve a
4 finite number of equations of the forr2.8) with 1<,
ar [ . . A —_ A .
A=—"| v2dv ohF,S8. 3.3 after subsntutmggo,max+1 (kv/2v,m)<,o,max into the last of
Ne Jo them.
Here we have introduced the effective electric field We shall seek the solution of the system of equations
(2.8), expanding the basis l‘unctlom;A in Sonine—Laguerre
E* = |k¢+ |kTe( 5n/ne+ 5T/Te)/e polynomia's:
and used the notation % v2
A_ Ay 172
D0 =S5 - 3035 @) —go Cinkn (E) (4.9

The expression3.2) was written in terms of the hydrody- Substituting the expansiof#.5) into the original equations

be Used o fnd the anisotiopie comteaton t the disoutior29: W 0Dtai & system of inear equations or the coeff-
function . and to close theps stem of hvdrodvnamic e ua_cientsc,‘;. This system was solved by the matrix-inversion
1 y y y q method, which was adapted to tteATHEMATICAsoftware

tions. applications packag¥.The calculations were performed for
Il max=10, at which the error associated with closure of the

4. SOLUTION OF THE KINETIC EQUATIONS FOR THE infinite system of equations was less than 1-2%.

BASIS FUNCTIONS AND NONLOCAL In practice, the use of 55—60 Sonine—Laguerre polyno-

QUASIHYDRODYNAMIC TRANSPORT EQUATIONS mials is sufficient for describing electron transport over the

o . . ) entire range of values of the collisionality parameter up to
The kinetic equations for the basis functio2ss) must Nei=10°, where the results already coincide with the results

be solved in order to determine the electron dlStI’IbUtIOhin the collisionless limit, which correspond Bindependent

function. They generally form an infinite system, and it iS . ansnort coefficients. Such a calculation of the coefficients
useful to have a definite procedurt_a for its trur_lcatlon_a_ndclAn is possible using any up-to-date personal computer. We
closure. Such a procedure can easily be established, if it ISIso note that. as was shown in Ref. 18. the results of the
taken il_1to account fok>1l that the first term on the r_ight— theory of classical high-collisionality transportke;
hand side in the expression for thién angular harmonic of <107?) are reproduced to within 1—2% when four or five

the electron—electron collision integré.5) is considerably Sonine—Laguerre polynomials are used,£=4) in the first

greater than all the other terms. For this reason, beginning o equations for the symmetrid{) and first anisotropic
a certain numbelr,,,,21, all the equations for the harmonics (f,) additions (,.=2)
max .

of the basis functions take on the following simple form: The description of nonlocal transport is based on the use

I A +1 L+, of the solutions found for the basis functiog§ in the ex-
kv 2—191-17 5 gP+1| TV (v) > P pression(3.2) for the first (=1) anisotropic component of
the electron distribution function. In this case the expressions
1> maxs (4.1)  for the electric currenj and the electron heat flug, have

where we have used the following notation for the renormaln€ form

ized collision frequency:

LI
=—ie— ,
V= vt v 19423° 13— 1913). : 3

Using (4.1) to rewrite the formal relations

A 35 v?
I ko A C{:—ITe?f dvv E__Z fq. (4.6)

A UTe

LI T V|(v)('0'_1' ) . . .
Since, according t63.2), the functionf, is already expressed
[+1 (,D|A+1 in terms of hydrodynamic variables, closure of the hydrody-
2113 A ) (4.2 namic equations, which is the main problem of transport
' theory, is solved in the method under consideration in a natu-
we arrive at the recurrence formula ral manner.

y(v)= ;l(l-f—l)v*(v)—kv
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TABLE |. Values of the transport coefficients/ o, a/aq, x/xo, Bj, and B (from top to botton.

Bychenkov et al.

Z\KN g 0.01 0.03 0.1 0.3 1 3 10
0.999 0.994 0.950 0.770 0.394 0.153 0.0516
0.996 0.975 0.827 0.454 0.0700 -0.0179 —0.0129

1 0.995 0.964 0.775 0.432 0.165 0.0686 0.0257
0.000303 0.00268 0.0260 0.147 0.469 0.738 0.890
0.000549 0.00471 0.0386 0.148 0.266 0.233 0.142
0.998 0.986 0.905 0.672 0.320 0.148 0.0363
0.991 0.940 0.703 0.322 0.0465 0.00597 —0.0100

2 0.987 0.904 0.604 0.279 0.0972 0.0414 0.0144
0.000571 0.0049 0.0418 0.194 0.512 0.734 0.899
0.00131 0.0104 0.0670 0.196 0.285 0.227 0.145
0.995 0.970 0.853 0.595 0.272 0.105 0.0334
0.979 0.879 0.580 0.238 0.0351 —0.00466 —0.00557

4 0.961 0.799 0.443 0.180 0.0592 0.0233 0.00866
0.000923 0.00745 0.0563 0.227 0.538 0.764 0.899
0.00251 0.0175 0.0895 0.219 0.285 0.231 0.142
0.990 0.949 0.805 0.541 0.243 0.0945 0.0304
0.955 0.801 0.481 0.188 0.0301 —0.00146 —0.00352

8 0.913 0.671 0.321 0.121 0.0385 0.0150 0.00565
0.00127 0.00952 0.0658 0.246 0.552 0.770 0.901
0.00379 0.0226 0.0980 0.218 0.271 0.218 0.135
0.983 0.926 0.768 0.508 0.227 0.0881 0.0284
0.915 0.717 0.406 0.157 0.0275 0.000386 —0.00234

16 0.840 0.546 0.236 0.0852 0.0266 0.0104 0.00398
0.00150 0.0106 0.0700 0.255 0.560 0.775 0.903
0.00460 0.0238 0.0939 0.202 0.248 0.200 0.126
0.971 0.900 0.737 0.486 0.217 0.0844 0.0273
0.863 0.637 0.348 0.136 0.0258 0.00154 —0.00160

32 0.747 0.436 0.177 0.0625 0.0194 0.00756 0.00298
0.00159 0.0108 0.0703 0.256 0.563 0.779 0.905
0.00471 0.0219 0.0828 0.178 0.221 0.180 0.115

Substitutingf; from (3.2) into the relationg4.6), we can
express the Fourier components of the electric curjremid
the heat fluxg, in terms of generalized hydrodynamic forces:
the Fourier components of the effective electric fiEld, the
temperature gradienk 6T, and the plasma flow velocity; .
We can thus write

j=0E* +ai 6T+ Bjeny;,
Qe=—aTE* — xi 6Te— BgneTeli, 4.7

whereo is the electrical conductivityy is the thermoelectric
coefficient,y is the thermal diffusivity, and thg; , are the
ion convective transport coefficients. We note that these ¢
efficients are functions of the wave numberand so the

transport relations have the form of convolution integrals in
coordinate space. The transport coefficients are defined by

the expressions

en, Jf en, 38+ JF il
g= —, = — , L= - =,
oy T R op BT o
(4.8

RT_, RN
~ DNt Dyr

NT
DNT

Ne 23Y+ 37+ I\
| T

At first glance, along with the momen#$ of the isotropic
parts of the basis function$§, the relations(4.8) should

also contain similar moments of the first anisotropic compo-
nentse? as a result of the integration i#.6). However, the
latter can be eliminated by employing the direct integration
of Eq. (2.8 for | =0, taking into account the conservation of
particle number and energy in electron—electron collisions:

fo d% C2.=0, fo d% v2CY.=0.

The transport equation@.?) reflect the Onsager symmetry

0F_)roperties: the coefficient is the same in the expressions

for the electric current and the heat flux, in agreement with
the equalities"'? J8=J4 for an arbitrary collisionality pa-
rameterkh ;.

5. NONLOCAL TRANSPORT COEFFICIENTS

Let us now consider the dependence of the nonlocal
transport coefficients on the collisionality parameter. For this
purpose, we plug the solutions of the kinetic equations for
the basis functionsspﬁ into the relation93.3) and (4.8) and
calculate the transport coefficients a, x, 8;, andg,. The
results of these calculations for various values®f; andZ
are presented in Table I.
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FIG. 1. Dependence of the coefficientg; andy4, , which characterize ion  FIG. 2. Dependence of the electrical conductivitir, on the collisionality
convective transport in the long-wavelength limit, on ion charge. The solidparametery, (Z)k\,; for plasmas withZz=1 (solid curve, Z=4 (dot-
curves correspond to the approximate formutas) for yg; (upper curvé  dashed curvye andZ=64 (dashed curve The dotted lines correspond to the
and ygq (lower curve. classical high-collisionality asymptote and the collisionless limit.

In the high-collisionality Iimit\/Zk)\ei<1 the longitudi-
nal electrical conductivityr, the thermoelectric coefficient
a, and the thermal diffusivityy are given by the classical
expressions®1®

of the electron distribution function are taken into account,
and they do not appear in the classical high-collisionality
theory??® In the long-wavelength limit they are proportional

to k2:
326%N i 16e N\ ¢ 2 2
= —_— == = —— = =2 (Z)kN\gj)?, =87 Z)khe),  khgi<<1.
00="7Y4(2) Zamwr,’ YO0 Yo(Z) pergp— Bj =22 yg( ei Ba=87(pq( ei el(5.4)
20U TN g In the collisionless limitg; tends to unity, whileg, falls off
Xo=7x(Z) ' 5D as (Ink)/k. We established the dependencesygf and y
3 9 B9

on ion charge. They are shown in Fig. 1 and are described

whereas in the short-wavelength limikNe>1) they all \yey (1o within a few percentby the approximate formulas
have similar asymptotes, which are inversely proportional to

the wave number and do not depend on the ion chHrfe: (2)= —0.19+2Z (2)= 2
Yei 49rz @ YA 7+Z

(5.9
Se s “TelTe VTe (52 which are also shown in Fig. 1. W hat goi
0= —f=—_—", a=~— XT - . which are also shown in Fig. 1. We note that going over to
‘/nge \/ZkTe \/Zk the limit Z>1 in formulas (5.4), which corresponds to
The functionsy,(Z), v.(Z), and y,(Z) in the relations g gq=1, gives the result of Ref. 11 in the long-wavelength
(5.1), which are equal to unity at>1, take into account the approximation.
difference between the exact values of the classical transport The transport coefficients listed in Table I, obtained here
coefficients and the corresponding values in the model of #or the first time, quantitatively determine the nonlocal trans-
Lorentz plasma, which corresponds to the complete neglegtort properties of a plasma in the case of an arbitrary value
of electron—electron collisions. These functions were calcuef Z, in analogy to the classical transport coefficients in the
lated and tabulated in Refs. 2 and 18. It is convenient t@ase of local hydrodynamics, which are specified by the
interpolate them using the following simple expressfons  functions y,(Z), y.(Z), and ¥,(Z). The almost universal
08747 0.95+7 0.13+ 7 character of thg dependenc_:e_ of the normaligedhe cla§S|-
yo(Z)= D VD=, = cal valug electrical conductivitys/ o on y,(Z)k\i, which
2.2+ 7 3.6+2 X 4.7+2Z is illustrated by the curves in Fig. 2, is noteworthy. Similar
(5.3 plots for the thermoelectric coefficieat oy and for the ther-
which reproduce the exact values to within an error of nomal diffusivity x/xo are shown in Figs. 3 and 4, respectively.
moe than a few percent. The corresponding plots for the ion convective transport co-
The ion convective transport coefficients and B, in efficients are presented in Fig. 5. In the regiog K\ ; the
Eqgs.(4.7) are related if the highed 1) angular harmonics thermoelectric coefficientr changes sign at a value &f

a/ao al %
! TR
O.SF \ 1\ ‘\\ 5 10 50100 500 FIG 3. Dependence of th‘e‘thermoelectric coef-
Y S ficient a/ay on the collisionality parameter
0.1 \ Yu kA v (Z)k\g; for plasmas withiz=1 (solid curve,
oost AR TLUUbr Y W Z=4 (dot-dashed curye and Z=64 (dashed
curve. The dotted lines correspond to the clas-
0.01 sical high-collisionality asymptote and the colli-
0.005 sionless limit.

0.001
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;(/;(0 TABLE IlI. Values of transport coefficients/x, and 8 and the ion-sound
damping ratd"/kcg (from top to bottom.

o Z\khg;  0.01 003 01 03 1 3 10
0.995 0.965 0.791 0.482 0.211 0.0889 0.0325
0.01 1 0.000337 0.00287 0.0227 0.0874 0.207 0.294 0.299
0.265 0.0904 0.0323 0.0169 0.0119 0.0109 0.0108
0.001
0.987 0.906 0.626 0.327 0.132 0.0574 0.0187
0.0001 2 0.000800 0.00622 0.0376 0.112 0.218 0.200 0.369
0.181 0.0632 0.0262 0.0161 0.0125 0.0116 0.0119
0.01 1 100 7 kA,
0.961 0.801 0.465 0.218 0.0841 0.0339 0.0122
FIG. 4. Dependence of the thermal diffusivigy/ xo on the collisionality 4 0.00152 0.0102 0.0477 0.119 0.210 0.268 0.306
parametery,(Z)k\¢; for plasmas withZ=1 (solid curve, Z=4 (dot- 0.132 0.0497 0.0244 0.0169 0.0139 0.0130 0.0126
dashed curye andZ=64 (dashed curve The dotted lines correspond to the
classical high-collisionality asymptote and the collisionless limit. 0.910 0.669 0.338 0.149 0.0559 0.0226 0.00828
8 0.00227 0.0126 0.0492 0.112 0.186 0.233 0.265
0.105 0.0454 0.0260 0.0192 0.0161 0.0148 0.0140
which depends o. For examplepz vanishes ak)\eiz 1.8 0.832 0.540 0.247 0.105 0.0389 0.0159 0.00599

16 0.00271 0.0127 0.0439 0.0953 0.156 0.196 0.227

and 4.6 forZ=1 and 64, respectively. The positip,,y Of 00905 00471 00296 0.0229 00196 0.0173 0.0159

the maximum ofg,, which can be as large as 0.2-0.3 and
corresponds tée;~1, scarcely depends on the ion charge %-23(;5270 %‘821810 00-1083357 0600775:5 060122863 060116107 %01%4156
numberZ. Figures 2—4 _re_veal the monotpmc approach of the 00872 00501 00354 0.0294 0.0239 00210 0.0185
electron transport coefficients to the collisionless asymptotes,

which are plotted as dashed lines in them.

6. TRANSPORT IN A CURRENTLESS PLASMA AND ficients depend sensitively on ion charge. When the inhomo-
DAMPING OF ION-SOUND WAVES geneity is weakkA,;—0, « transforms into the Spitzer—

Harm thermal conductivity?
As in the classical high-collisionality case, one of the _ _
important applications of the quasihydrodynamic equations Ko= Y Z2) 128U Tek 3.
is the case of no electric current=0, which describes This coefficient is determined by the functign(Z), which
quasineutral plasma motions. The generalized Ohm’s lawvas tabulated in Ref. 18 and is interpolated well by the ana-

then permits elimination of the ambipolar electric field Iytic expressiof'14

E*=—ikdéTealoc—enu;B;/o (6.2 v(Z)=(0.24+2)/(4.2+ 2).
from the expression for the electron heat flux, which is de-The ion convective coefficieng is negligibly small under
termined in this case by two transport coefficients: the conditions of classical transport theory:

Qo= — kikdTe— Bn.Tou;, Wherek=y—a’Telo, Bxk\Z,.

B=PBq—eaB;lo. (6.2  The dependence ofz, which determines the magnitude of

the ion convective contribution to the heat flux, Ampracti-
cally (to within several perceptcoincides with ygq(Z),
given by (5.9, i.e., yg(Z2)=1vpq(Z). In the collisionless
limit, kAgj— o, the thermal conductivity has an asymptote
similar to (5.2), and 8 reaches a constant value:

The values of the thermal diffusivity and the ion convec-
tive transport coefficienB are given in Table Il. Both coef-

ﬂj.q
1 18ne07e B=0.4 6.3
K= ——, =0.4. .
10_1 5\/2’77'(

The dependence of the thermal conductivityand the ion
convective transport coefficiegt on the wavelength in plas-
mas with various values of is presented in Fig. 6. The
figure also displays straight lines corresponding to the high-
collisionality and collisionless asymptotes.
0.01 1 100 Another application of the theory developed above,
Yg.p*Aei which is of practical importance, is the description of the
) ) o damping of ion-sound waves in the region of intermediate
FIG. 5. Dependence of the ion convective transport coefficiBand 8y | 565 of the collisionality parameter, where neither the for-
on the collisionality parametergs k\; andygqK\ ¢, respectively, for plas-

mas withZ=1 (solid curve, Z=4 (dot-dashed curyeandZ=64 (dashed ~Mula from the high-collisionality approximation for the
curve). The dotted lines are the high-collisionality asymptaigd). damping ratd’

1072
1073
107
107
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hep u'ti

FIG. 6. Dependence of the thermal conductivitii, and the ion convec-  FIG. 7. Wave-number dependence of the damping rate of ion-sound waves
tive transport coefficien on the perturbation wavelength for current-free for a plasma withA/Z=2 (A is the atomic numbgrwhen Z=1 (solid
plasmas withZ=1 (solid curvg, Z=4 (dot-dashed curye and Z=64  curve andZ=8 (dashed curvein comparison to results from numerical
(dashed curve The dotted lines are the high-collisionality and collisionless simulatior* (large points —Z=1, small points —Z=28).

asymptotes.

If Z>1, the relationspy=1—B; and pr= B, hold, andpg

I's/kcg=3mCcy/256y, (Z)v 1K\ g transforms into the coefficie®, from Ref. 11.
(Ce= VZT.Im; is the speed of ion soupahor the collision- Considering perturbations that ar@xp(—iwt), from the
Ieés formiulal system of equationés.4), (6.5), and(6.7) supplemented by

the expression for the heat flg.2) we obtain a dispersion

I's/keg=\ml8cs/ve, equation, whose weakly damped solutien-kc,—il'g de-
which corresponds to Landau damping by electrons, is appli§cr'bes an ion-sound wave with a damping rate specified by
cable. the formula

- In order to descr?be the damping'of ion-sound waves, we T B necs[(l—ﬁ)(l—p) ez,Bl-(l—pN) PR

utilize the conservation laws fpr particle number and energy E— 2Kk [ P + Teo NeUrehei|’

to write the relations for the spatial Fourier components of
the first two moments of the kinetic equati@2) under the
assumption of a quasineutral plasnjaQ)

(6.8
where p=pr—ea(l—py\)/o is an analog ofB given by
(6.2), in the case of a plasma with finigand coincides with
the latter wherZ>1. The values of the ion-sound damping
rate are given in Table Il, and its wave-number dependence
(6.4 is shown in Fig. 7. This figure also presents the results ob-
as well as the equation of motion for the ions taineq by direct numericgl solution of the Fokker—PIapck
equation for electron¥, which, as can be seen from the fig-
%Jr ﬂ;) L+ Z R 6.5 ure, agree very closely with ours. Even the small deviation
Nne Te/ mng ¢ ' from the nonmonotonic decreaselig/kc, with increasingk
at 100sk\g; seen in Fig. 2 in Ref. 14 foz=1 is fully
reproduced by(6.8) (see Fig. 7. Similar variation in the
monotonicity of the decreases of the electrical conductivity
o Aa (> 3 and g, which determine the ion-sound damping rate, can also
Rie:'me? fo dv v vei(v)fy. (6.6 pe seen at largk)\ ; in Figs. 2 and 6.
Thus, comparind6.8) with the results of direct numeri-
Like the electron ﬂuxe$4.7), the friction force can be ex- Ca' So|ution Of the Fokker_P|anck equaﬁéand bearing in

aéne+,k 0 96T,
gt KUNe=0, T

2
+ S—ne(lkqe+ neTeui) =0,

o'?éui_z e E* ik
ot N m; 1KCs

in which the effective electric fielE* is defined by(6.1)
andR;. is the force of friction of the ions against electrons:

pressed using moments of the basis functions: mind the single-valued relatiof6.8) betweenI' and the
Rie=— pNENE* + prNik 8To— prMaNelivre/Nei nonlocal transport coefficients, we obtain convincing evi-
dence that the theory developed above quantitatively de-
\/E 1 WLg—JiLR scribes nonlocal transport in a plasma. Form(8z8) de-
PN= Ek)\ei DNT ) scribes the smooth transition from the high-collisionality
NT hydrodynamic expression for the ion-sound damping rate to
\/; 1 (J$+JN)LE—(J¥+JL)LR collisionless Landau damping, demgnstrating thg complgte
=N 7 oo DT , (6.7 analogy bgtween the proposed quasihydrodynamic equations
el NT and the kinetic model.
T DRT DRN
PR= \/; kvte D—ngJr %LE— LR |, 7. DISCUSSION OF RESULTS
NT NT

The investigations performed above have shown that
LA:4_7Tvz dev ©"Fo. there is a broad region of values of the collisionality param-
Rone T Jo ! eter\qi/L andZ in which the familiar results in the high-
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collisionality and collisionless limits cannot be used to de-and collisionless regimes. The relaxation of hot spots and the
scribe transport processes in plasmas, this region beingeneration of nonthermal fluctuations in such a plasma
broader, the larger is the charge number. The deviations frorshould have a highly nonlocal charactér.
the familiar limiting cases are manifested to a lesser extentin  Finally, nonlocal effects should also be taken into ac-
the electrical conductivity, and they are displayed morecount in the parametric processes accompanying the interac-
strongly in the thermal diffusivity and the thermal conduc-tion of laser radiation with a plasma. They are highly signifi-
tivity. We can write the following approximate condition for cant for filamentation and stimulated Mandelstam—Brillouin
the collisionality parameter, which specifies the region inscattering. For example, it was shown in Ref. 25 in reference
which the thermal conductivity deviates significantly from to filamentation instability that the use of the classical ther-
the values predicted by the classical collisional and collisionimal conductivity lowers the filamentation level unacceptably
less theories: and leads to underestimates of its aftereffects for controlled
laser fusion. For this reason, a quantitative description of the

- nonlocal thermal conductivity of a laser plasma is needed.
——=<-%<20/Z. (7.0

. . L 8. CONCLUSION
The region for the electrical conductivity is somewhat

smaller: 1/5/Z<\.;/L=<5Z. We also note that because the Summarizing the foregoing material, we note that, just
thermoelectric coefficient has different signs in the high-as a systematic quantitative theory of electron transport in
collisionality and collisionless limits, it is impossible to ob- high-collisionality plasmas was formulated more than 30
tain even a rough estimate in the transition region by interyears ago, a similar theory, which enables us to quantita-
polating the known results for these limiting cases. tively describe nonlocal transport under the conditions of an
For modern thermonuclear research the intermediatearbitrary ratio between the mean free path of the particles
collisionality regime, for which the classical transport theo-and the characteristic spatial scale of potential perturbations,
ries are inapplicable, is typical in practice. It is easy to'See has been developed in this paper. The generalization to the
that the condition(7.1) generally holds in a near-wall Toka- case of rotational perturbations is obvious and can be accom-
mak plasma. plished in accordance with the method described in Ref. 12.
More examples can be cited for the case of thermo- The “price” for the quantitative description of all the
nuclear investigations based on lasers in plasmas with elecionlocal transport coefficients is the approximation of small
tron temperatures from one to several kiloelectron volts. Foperturbations. However, it can be expected that the region of
example, the typical electron mean free path in the criticabhpplicability of the theory will be broader than that implied
density region for a neodymium laser irradiating a solid-statéy the constraints imposed. In particular, Viaalal}° com-
target is~ 10~ cm, while the characteristic spatial scale for pared the results of the direct numerical solution of the ki-
the decrease in the electron temperature inside a target mgtic equation and the results previously obtained by numeri-
essentially always less than 1Dcm. Even in experiments cal methods using quasihydrodynamic equations with
with ultrashort laser pulses, during which the plasma doesonlocal thermal conductivity in Ref. 25. It was discovered
not manage to expand and its typical density remains close tm solving the problem of the inverse bremsstrahlung heating
the density of the solid, the conditidid.1) can, nevertheless, of a plasma by laser radiation that the results of the kinetic
hold, since the strong skin effect of the laser field createsnd quasihydrodynamic approaches are also in good agree-
very large gradientsl(~10"° cm). One more interesting ment for real(not smal) density and temperature fluctua-
example of the appearance of nonlocal heat transport is ations.
sociated with highz plasmas. As was noted above, although ~ We also note that a comparison of the nonlocal theory of
the electron mean free path falls off with increasiigthe  heat transport for small perturbations with the results of the
onset of the deviation of the thermal conductivity from theexperiment in Ref. 21(where the perturbations were not
Spitzer valué® is earlier specifically for plasmas with a high smal) also exhibited good agreement. This allows us to hope
extent of ionization of the ions. For this reason, even in thehat the nonlocal transport equations obtained above will be
case of fairly smooth irregularitids>10"2 cm a hot plasma of practical use in simulating small-scale processes in plas-
(Te~3-5 keV) of hohlraum targetsr(;~ 107 cm™3) should  mas. We stress once again that the quasihydrodynamic equa-
be regarded as a significantly nonlocal medium, as wasions of nonlocal hydrodynamics obtained are completely
pointed out in Ref. 22. equivalent to the kinetic description and are suitable for
The solution of the problem of controlled laser fusion studying transport over a broad range of values of the colli-
has been associated with the use of various techniques feionality parameter from the high-collisionality region of
smoothing the laser beafflts structure is characterized by classical transport to the collisionless limit.
fluctuating irregularities in the intensity of the laser field. The theory presented has been compared with the nu-
The corresponding typical correlation lendthe radius of merical kinetic calculations in Ref. 14, and it displays good
the hot spotsamounts to several wavelengths of the laserguantitative agreement with the latter. This demonstrates the
radiation and is comparable in order of magnitude to theadvantages of the new model of nonlocal transport devel-
electron mean free path. Thus, a plasma interacting with suahbped here, which, unlike kinetic calculations, does not re-
a speckled laser beam has an intermediate-collisionality reguire large numerical resources.
gime, which differs significantly from the high-collisionality The nonlocal quasihydrodynamic equations derived can
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The drift of a binary gas mixture in capillaries induced by resonant light is studied theoretically.
The surface and bulk mechanisms of flow of the mixture components are analyzed for
arbitrary values of the Knudsen number and the rate parartteieratio of the radiative decay

rate of an excited molecular level to the intermolecular collision)rd&mally, the

theoretical results are compared with the experimental datal9@8 American Institute of
Physics[S1063-776098)01111-1

1. INTRODUCTION periments the rate parametey,, varied from approximately
0.3 at high pressures to roughly 150 at low pressure. There-
The phenomenon of light-induced drift in bulk, predicted fore it is not possible to compare the theoretical results of
by Gel'mukhanov and Shalagtinvolves the occurrence of Ref. 4 with the experimental data of Ref. 5 over a broad
a directed flow of a gas that is in a mixture with a buffer gasrange of Knudsen numbers. Such a comparison would be of
and absorbs light selectively with respect to the velocities ofnterest, on the one hand, for verifying theoretical models
the molecules. Since the interaction of excited particles ofind, on the other, for establishing the numerical values of
the absorbing gas and the particles of the buffer gas differgansport and accommodation characteristics of excited mol-
from that of unexcited particles and buffer-gas particles, thescules.
components of the mixture flow in opposite directions. The  In the present paper we develop a theoretical model for
kinetic theory of this phenomenon in the approximation ofthe bulk and surface mechanisms of light-induced drift of a
unrestricted, spatially uniform gas was developed by Dykhnéinary gas mixture in a capillary for arbitrary values of the
and Starostif. Knudsen number and the rate paramétgy,.
The wall of the vessel containing the gas mixture may
also play the r_oIe of the b_uffer gas. In view of the_dn‘ferencez STATEMENT OF THE PROBLEM
in the interactions of excited and unexcited particles of the
absorbing gas and the boundary between the phases, a sur- Let us consider a binary gas mixture that fills a capillary
face light-induced drift develops. whose lengthL is much greater than its radil®, (Fig. 1).
The momentum conservation law implies that in the caséhe flow profiles depend solely on the radial coordinate, and
of unrestricted gas the hydrodynantaerage-magdlow of  end effects can be ignored.
the mixture is zero. But when there is an interface between A traveling light wave propagating along the axof
the phases, the total momentum of the gas mixture changethe capillary is absorbed by the particles of the active com-
stimulating its macroscopic flow. In particular, in the Knud- ponent of the mixture in an electronifor atomsg or
sen regime, where the mean free path of the molecules igbrational—rotational(for moleculeg transition from the
much longer than the capillary radius, the buffer gas is at regground staten to an excited staten. The frequencyw of the
and the drift of the absorbing gas is responsible for themonochromatic light is offset fromp,,, the center of the
average-mass flow of the gas mixture. Hence in the theory adbsorption line, byQ=0w— o< w,wn,. Because of the
gas-mixture drift in a capillary it is advisable to determine Doppler effect, the only particles that interact with the light
the flows of the absorbing and buffer gases. are those of the absorbing component whose projections of
The kinetic theory of bulk and surface light-induced drift the velocityv on the wave vectdk are close to the resonance
of a binary gas mixture for arbitrary Knudsen numb@¢s)  value, for whichk-v=Q. The excited and unexcited par-
was developed in Ref. 4. The main limitation of this theory isticles of the absorbing component have the same nmgss,
the assumption that the radiative decay conskgptfor an  =m,=m,, but different effective diameterd,,# d,,. Hence
excited level of a molecule of the absorbing gas is mucha binary gas mixture in which one component interacts with
smaller than the intermolecular collision ragg. The results resonant light can be considered a three-component mixture.
of Ref. 4 were obtained in the linear approximation in the  The velocity distribution function$,, andf,, of the ex-
small parametef’,,,=1",/7y,. This approximation usually cited and unexcited particles of the absorbing ga$) &0
works for a molecular gadl{,,~10* Hz). For an atomic gas become asymmetric about=0 because of the occurrence
(T~ 10"—10° Hz) the approximation is valid only at high of a Bennett peak and dfprespectively, near the resonant
pressures, TPa and higher. velocity v,=Q/k. Hence along the capillary oppositely di-
Atutov et al® experimentally studied light-induced drift rected macroscopic fluxes of excited,{) and unexcited
of sodium vapor in a mixture with inert gases. In their ex-(J,) particles develop, which give rise to a total flux of the

1063-7761/98/87(11)/8/$15.00 926 © 1998 American Institute of Physics
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L diffusely emitted by the surface, and the particles incident on
Lk the surface, and; stands for the number density of diffusely
= Ry z scattered particles of theh species.
Z Consider the case where the saturation parameter is

small, x(v) <1, which usually corresponds to moderate light
intensitied . Then the density of the excited particles is much
FIG. 1. Geometry of the problem. lower than that of the unexcited ones,<n,, and the dis-
tribution functions differ only slightly from equilibrium
Maxwellian distributions:

absorbing componeni, = J,,+J,, (light-induced drif} if the fi=fio[1+hi(T,v)],

interactions of the excited and unexcited with the capillary 2o 5

surface and the buffer gas are different. Here and in what . _ i oxd — i—nm2 3)
follows the label 1 refers to the characteristics of the absorb- 0 "0\ 27kgT ;IZ ' T

ing gas and the label 2, to the characteristics of the buffer

gas. wheren, is the eguilibrium number density of the particles

The distribution functions of the excited and unexcited©f the ith speciesy is the radius vector in a plane perpen-
particles of the gasf(, and f,, respectively and of the dicular to the capillary axig, andh;(F,v) are unknown per-
buffer gas ) satisfy the following system of kinetic equa- turbation functions.

tions: For an optically thin medium, the dependence of the
. perturbation functions on the longitudinal coordinatean
V- V= 2k (V) m(fn = T) =i Tt S, be ignored. We also assume that the light intensity is uniform
V-VE = — (V) (Fo—fr) + T frt S s over the capillary cross section. In this way we exclude the
possibility of light-induced striction or expulsion of particles
v.-Vi,=S,, (1) by light.
here We limit ourselves to the case where the density of the
absorbing particles is much less than that of the buffer par-
4|Gpp 2T Eodmn ticles, ny<<n,. Here we can ignore collisions between par-
k(V)= 24 (0—ko2]’ mn= "o ticles of the absorbing gas and can assume that the effect of
m T+ (Q=k-v)7] light-induced drift is due solely to the bullbuffer) and sur-
Sn=SmmT Smnt Sm2, Sh=Samt Sant Snz, face (accommodationmechanisms. Then the system of ki-
netic equationg1), reduced to dimensionless form and lin-
$2=Somt Sont Sz, earized with respect to the perturbations of the distribution

functions and with respect to the small parameters

wherel’, is the radiative decay constart,is the homoge-
Ny, /N, Ny, /Ny, andn, /n,, takes the form

neous halfwidth of the absorption Iing;; is the Boltzmann

collision integrals for the particles of thi¢h andjth species, oh, N, (V)
Ey is the electric field amplitude],,, is the dipole moment Crmit = n_RmmeT+ Rl mmhm=Lm,
of the n—m transition,% is Planck’s constant, and(v) the m
saturation parameter, which characterizes the probability of o, k(V) N,
induced transitions and is proportional to the light intenkity Chl ar + R”Fm”T . Rl =L,
For the boundary conditions we take the specular— "
diffuse reflection model. When the interaction is elastic, a oh,
fraction &, of the particles of thdéth species are diffusely Cor - =La, (4)

scattered at each point of the capillary surface with a Max-
wellian velocity distribution, while the remaining particles where
1—g; are specularly reflected. Then the distribution func-

tions satisfy the boundary conditions v 2 PR r

G==, CL=CiTC,, =g

f (V) =& f3(v)+(1-&)f (v=2(v-n)n), Vi 0

m: 32 v? Rovi2 I'n .
. S_ns ! — R=——, TI',=—, i=n,m.2,

v-n>0, f; n'<27rkBT) ex ;.2 , [ n mi=o

_ [2kgT\ M2 G, is the vector component of the dimensionless velocity of

viz(T) , i=n,m,2, 2 the particles of théth species in the cross section of the

|

capillary, ;; is the effective rate of elastic collisions of the
wheren is the inner normal to the capillary walty, is the  particles of theth species with the particles of théh spe-
mass of the particles of tHe¢h speciesT is the gas tempera- cies, andR; is the rarefaction parameter for thién compo-
ture, kg is the Boltzmann constant, the superscriptss, and  nent, which is inversely proportional to the Knudsen number
— denote, respectively, the reflected particles, the particleésee Eq(7)).
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We use the second approximations for the linearized col-  Let us select the effective collision ratg, in the form
lision integralsL; (Ref. 7), retaining the terms that are odd in y;,= v}%), j=m,n, and the ratey,,, by analogy with the
Ci,, wWhich contribute to longitudinal gas flow. Ignoring Bhatnagar—Gross—Krook model for a single-component gas,
subtle effects like isothermal heat transfer, we obtain in the form y,,= v5)— »§3) . Then for molecules in the hard-
sphere model the rarefaction parameReeR,, is linked to

Li=Ri[—hi+2¢i,(1— o3 u;+ 4c; Ci(1— 03 i1, ], the Knudsen number as follows:

=n.m o 8 m 1
= — — n: —
my/n 2. /7 my+m, Kn’ Ry’
Lo= Rz( —hy+2C5, U+ m_z(n_r: YU V7
| = 1 / my Rm _ ( dm2) 2
n n_ 1 = S [}
+ U ||+ dcaCoy (1= i3+ ufE) mhalyy ¥ MMz R dn:
R, 3[dy\? [2(my+m,) di+d,
Moy M R 5\, Voom, + %7 O
+ n_2 Y2 Tmezt n_2 Un2 Tarz| [ ) n2 2
with i=n,m, wherel , is the mean free path of the unexcited
where particles of the absorbing gas in the gas mixture.
U The boundary conditions for the perturbation functions
ui::':f c,Ehdc, h; follow from Egs.(2) and(3):
Uj ns— Nig
P, hif(re,0=(1=e)h; (10,0)+&——,
T :ﬂ:f ci.Ci.E h: dC| Nio
Irz 2p| Ir~z=th 1 _
Mo ~ .
ro . [To|=Rg, i=m,n2. (8
E;=m %%exp—c?), i=n,m,2, Ro
®) (K) The second term on the right-hand side of E8). can be
QD(k)zvﬁ (ﬂ(k)zvﬁ i=m.n (6) dropped, since it contributes nothing to the macroscopic ve-
j2 o i2 v N, ; .
Yj2 Y22 locity and stress tensor if®).

with U; ,P,,,, andp; the partial velocity, stress tensor, and We consider the case of almost diffuse scattering of par-

pressure of théth component, respectively. The expressiongticles by the capillary surface, i.e.,
for the ratesy{s) in terms of particle masses and Chapman—  1—¢ <1, i=m,n,2. 9)
Cowling integrals are given in the Appendix.

The productC=R;,I",,; in the system of equationd) is
a parameter that is independent of the gas pressure and
determined solely by the microscopic characteristics of th
absorbing gas, its temperature, and the capillary radius:
=Ry /v1. This parameter characterizes the ratio of the
time for an excited particle to traverse the capillary cross
section to the lifetime of this particle in the excited state.
Estimates ofC for atomic gasesI{,,~ 10’ —10° Hz) in the SI
system of units yieldC~10°R,. For molecular gasesl'{,
~10*Hz) estimates yieldC~10R,, with R, measured in
meters. Assuming that the range of possible values of th

The resulting flows of the absorbing and buffer gases
eraged over the capillary cross section are given by the
éollowing formulas:

Y i §
J1=Jm+Jn=2v1j (nyup+ngurdr,
0

_ (1
J>=2v,| nyu,rdr. (10
0

For numerical calculations it is convenient to use the dimen-
ionless quantitie&; andG,, which are related to the flows

capillary radiusR, is (0.1-2)<10 3m, we can say that “1! andJ, by
C~10-250 for light-induced drift for atomic gases and R
NiRol mk .
C~0.001-0.1 for molecular gases. Then the rate parameter Ji:TGi , 1=1.2,
I',n=C/R for molecular gases witliR>0.1 can be consid- ™
ered small. Hence the theory of light-induced drift of single- % )
component gas developed in Ref. 8, in which, was as- k=] Ciz€Xp(—Cq,) k(V)dCy,. (11)

sumed to be much smaller than unity, is in satisfactory

agreement with the experimental data on light-induced drifiThe quantityx can be calculated numerically for all values
of CHgF in a capillary for all values of the Knudsen number. of the parameterk/(kv,) andQ/(kv,). A discussion of the
However, for atomic gases the rate paramdtgy, over a  main aspect of this problem can be found in Ref. 9.

broad range of pressures cannot be assumed small, so that for

an<1. the model _proposed in Ref. 4 qf Iight—indqceq drift 3. SOLUTION OF THE KINETIC EQUATIONS

of a binary gas mixture does not provide a qualitative de-
scription of the experimental data on the drift of sodium  We will use the integral-moment method to solve the
vapor in helium of Ref. 5. system of equation&4). The method is based on the trans-
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distribution function into a system of integral equations forZ;=|ux(r’)+ e n—tﬂmgum(f )+ o Uz un(r’)

the moments of this function. 2172 2

Allowing for the boundary condition$8), we formally ( T; Ki2
2
|

integrate the inhomogeneous linear equati¢hsalong the
direction of the vectorc;;, of the dimensionless particle
velocity* Then, using the above expressions for the pertur-

Ny, )
- Y Tmdr)
I’—I"l |I‘N—I"| n, m2 ‘Y mrz

n
bation functionsh; and the definitiong6) for the macro- +n_n‘//(n%)77nrz(r’)}
scopic quantities, we arrive at three systems of integral equa- 2
tions for the dimer_lsio_nless velocities and stress tensors T Kiiigo| 1 .
m;,, Of the absorbing i(=m,n) and buffer {(=2) compo- ] - ret’| o j=0,1. (20
_ N—

nents of the gas mixture. We allow for the fact that the frac-
tion of specularly reflected particles is small. Then to first|, (12—(20) we used the notation
order in the small parameter-1¢; we have

(1) for the excited particles of the absorbing gas, r—r’ ry—r’
Tl T
Ry N
um(r)=—f Dodr’, (12)
i =S Ri(1+T )
= —, T — ,
R er (7m=Rn) Ny " " "
erz(r):_f D;—dr’, (13
mJs r w t
Tp(t)zf xpex;{—xz— —) dx,
where 0 X
CK nn T] K]m .
D= — - +2(1— @) T et .
. ZRm\/; nm(|r—r’| |rN—r’| (1= ¢m2) Tne 1) Kpl_ (2 (1 sl)Tp[Q(y1+y2)]v i=m,n,z2,
Tiiie K &)\ r’
j+1 j+1,m .
+ —, =0,1; (14 vl
r—r rN—r r PT T 5 —&p)lplnlY1TY2
' ' ) ] Pp=" (L= en Ty Ro(y1+y2)]

(2) for the particles of the absorbing gas in the ground
state, +(en—em) Tp(Tmy1t RaY2)},

1 ) yi=lrn=r'l, yo=Irm—rl.
Un(r) = —=SuUn(r)+ — [ Qqdr’, (15 _ _ _
I3 The argument of the functionsT, in Egs.(12)—(14) is
t=7yr—r’|, in Egs. (159—(17) t=R,|r—r’|, and in Egs.

1 e-r .
Tnrz(1) = = St A1) + —f Q,—dr’, (16 (18-(20t= Rzlr_— r'|. The argument of the functionsK,
I3 r in Eqgs.(12—(14) isq= 7, in Eqs.(15—-(17) g=R,, and in
where Egs. (18—(20) q=R,. Integration in(12)—(20) is over the

cross-sectional area of the capillary.

Ck | n, T; P T Kin To solve Eqs(12)—(20), which are linear Fredholm in-
Qj:ﬁ o r—r'] - ra—r| - | + ry—r| tegral equations of the second kind, we employ the Bubnov—
mLm N N Galerkin method? since this method allows us the deter-
\ R @ , (Tj+1e Kj+1,neo) r mine the coordinatg-averaged flonly 'and J, without
n(I—@n3) mar(r’) —= —|— calculating the velocity and stress profiles. The method re-
[r=r'[ Ary=rf)or quires specifying the approximating expressions for the un-
T.e P&t known quantities.
+25Rn(1—€0(r§'2))77mrz(r')( jriv it )._, The values ofu; and 7, in the Knudsen regime (Kn
Ir=r' fry=r'|) 1’ >1) are determined by the absolute terms of Efjg)—(20).
|=0.1; 17 Hence we can expect rapid convergence of the Bubnov—

Galerkin method if the trial functions are chosen on the basis
(3) for the buffer gas, of the form of the macroparameters in the hydrodynamic
regime (Kn<1l):

R, ,
Ua(1) = ?L Zodr”, {8 Ui=ag+ayr?, mp=agr, i=mn2, (21)

R, er wherea,; are unknown constants that depend on the Knud-
Tory(1) = ?Jz Zy——dr’, (19 sen number, the accommodation coefficientsand the mo-

lecular parameters. It has been fofifitthat approximations
where of the form (21) produce sufficiently accurate resultsith
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an error less than about 3%or fluxes averaged over the
cross section of the capillary at all values of the Knudsen

V. G. Chernyak and E. A. Vilisova

1. An almost free-molecule regime (Kl or R<1):

1

number. G(ll)ZE(l_l'SOERH . (27)

Substituting(21) in Egs.(12)—(20) and requiring that the
resulting expressions be orthogonal to each basis fun¢tion R
andr? for (12), (15), and(18), andr for (13), (16), and(19)), GP=— 15055+ -+, (28)
we obtain a system of linear algebraic equations for the un-
knownsay; ,a,;, andas;. Here the orthogonality condition (1) R R2
for two arbitrary functiongd andg has the form Gz =®y| 1.5055 +3.394>,~InR | +..., (29

' R

Since there is very little difference between effective di- R2
ameters of excited and unexcited particles of the absorbing +3.394I>1<I>2€In R+, (30
gas, we have

Ad where

d—nz<1, Ad=d,—dp,. (22) o mo 1+(my/m,) my

1: —, 2:—2 , 3: + .

After linearizing the expression§ll) in the parameters M2 (1+dn/dy) My My

1-¢; andAd/d,, for the flow of the absorbing gasight-

2. A hydrodynamic regime with slipping (KRl or

induced drify we find that R>1):
anormK Ad 1
=————— GAe+GP—]|, Ae=g,—en, (23 Gl=r—e————+- -, 31
Yooyr VT b dn noom ' J#R(R+C)
whereG{? andG{? are the kinetic coefficients characteriz- 1 24T,
ing, respectively, the surface and bulk mechanism of light- G'=— ™ N St (32)
induced drift. The solution of the system of integral-moment m(R+C)
equations(12)—(20) by the Bubnov—Galerkin method with 1
the trial functions(21) yields G(zl)Z[(Pl §+3\/E tOsip et (33
) C,®
M_p, _ ! 1 d-2
Crh w(w/2+<I>D>(Bl w/2+<bW)' ®ep=lo 3 ezt o)
mn
D ® 5 G0 1
mn
-2 M __, 25 h
_§m1+m2 ) (250  where

B (1+m;/m,)%?
*(3+5my/my)(1+d,/d,)?’

o omy/my
5 3+5my/m,”

The quantitiesA,, A,, B4, B,, C4, C,, D, and W depend
solely on the rarefaction paramefrand the rate parameter
'y The dependence of the kinetic coefficie®§"” and  Analytic expressions for the kinetic coefficient in the case
G(zz) on the molecular masses of the components of the gaghereC<1 are given in Ref. 4.

mixture is totally determined by the factdr.

For the buffer gas we have 4. DISCUSSION OF THE RESULTS AND COMPARISON

WITH EXPERIMENTAL DATA
_anormK G(l)A G(Z)Ad 26 ) )
Z_W 2 AetG; d—n2 : (26) The directions of the surface components of the flows of
the absorbing and buffer gasek @ndJ,) are determined by

Here the kinetic coefficients$" andG$?, which character-  the signs of the difference of the accommodation coefficients
ize, respectively, the surface and bulk mechanisms of thef the unexcited and excited particles of the absorbing gas,
buffer-gas flow, depend on the rarefaction paramBtethe  Ae=¢,—¢,,, and the offset between the light frequency and
rate parametefl,,,, the mass ratian;/m, and effective- the center of the absorption lin€=w— w.,. If we have
diameter ratiod, /d, of the particles of the absorbing and Ae>0, the directions of the surface components of the ab-
buffer gases. sorbing and buffer gases @t>0 coincide with the direction

It is possible to obtain analytic expressions for the ki-of light propagation, but af)<0 they are opposite to the
netic coefficients only for large or small Knudsen numbersdirection of light propagation. The fact that the surface com-
For atomic gases @>1) these expressions are written ponents of]J; andJ, have the same directions is consistent

below. with momentum conservation in the gas—wall interaction.
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FIG. 2. Kinetic coefficientsG{") (a) and G{?
(b) as functions of the rarefaction parameker
(my/my,=1): curvesl, I';,,=0.01; curves2,
I'nn=0.1; curves3, I',,=1; and curves4,
T'n=10.
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The directions of the bulk components df andJ, are  rarefaction parameteR. As R increasesG{?) grows in ab-

determined by the signs of the difference of the effectiveg)te value in the Knudsen reginigq. (28)), reaches its
diameters of the excited and unexcited particles of the abs,aximum value in the intermediate regimeRat 1, and de-

sorbing gasAd, and the offsef). If Ad>0 holds, the di- ¢ e55e5 aR~! (Eq. (32)) in the hydrodynamic regime. At a
rection of the bulk component .Of the _absorbmg gas flow f.orfixed value ofR the absolute value o&{? decreases with
(<0 is the same as the direction of light propagation, while. 1

. . ._increasin : asI' - in the free-molecule regime, and as
the direction of the bulk component of the buffer gas flow is 9 mn g

. . . ! . . T',,»+1)" 1 in the slip regime. The explanation lies in the
opposite to the direction of light propagation, in accordance}(acrﬂc‘”that) withR fixedpthegfraction of tk?e excited particles

with momentum conservation in intermolecular collisions.” " . . o . .
colliding with buffer-gas particles diminishes with increasing

For >0 the two gas flows reverse directions. . . -
Figures 2a and 2b depict the kinetic coefficie@ﬁ%) and Tmn. WhenT'y>1 holds, ?” the excited pa_rtlcles within
one mean free path have time to go to their ground state,

G{? as functions of the rarefaction paramefefor different hich there i bulk light-induced drift
values of the rate paramet€r,,. We see that as the free- which means there IS no bulk fight-induced dritt.
Numerical calculations have shown that 1of,,<1 the

molecule regime R<1) is replaced by the hydrodynamic = - (1) 2)
regime R>1), the kinetic coefficienG{?), which charac- kinetic coefficientsG;~’ and G}“’ are weakly dependent on

terizes surface light-induced drift, monotonically decreased mn- Hence forl'n,<1 we can use the results of Ref. 4.
from a fixed value(Eq. (27)) to zero(Eq. (31). Figures 3a and 3b depict the kinetic coefficieG{s’ as
Equations (31)—(34) imply that in the slip regime functions of the rarefaction parameter for a mixture of so-

(R>1) the surface light-induced drift is an effect of seconddium vapor and helium & =RI',,~60, a value used in the
order in the Knudsen numbe@ﬁl)NKnZ) and hence cannot €xperiment described in Ref. 5. The method used in that
be described by the theory of a flat Knudsen layer. The curexperiment(see Ref. 5 consisted in the following. Sodium
vature of the boundary surface must be taken into accountvapor mixed with helium was placed in a narrow capillary
For a fixed value oR, the value OfG(ll) decreases with and the effect of 50-mW laser light on tie-line of sodium
increasingl aSFrEﬁ in the free-molecule regime, and as Was studied. The capillary length was 40cm and the inner
(T ant 1)1 in the hydrodynamic regime. The reason is thediameter was 1 mm, which agrees with the adopted theoret-
decrease in the relative number of excited particles collidingcal model. The gas pressure in the capillary was varied from
with the capillary wall. In thel',,,— limit all the mol-  20Pa to 13 kPa, which increased the rarefaction pararReter
ecules have time to go over to their ground state before thefrom 0.4 to 240 and decreased the rate paramigtgrfrom
reach the capillary wall, so that there is no surface light-150 to 0.25.
induced drift. The components of the gas mixture began to flow when
The kinetic coefficientG(lz), which characterizes the laser light was applied, and the light frequency was selected
bulk light-induced drift, is a nonmonotonic function of the to maximize the drift velocity of the fluorescing sodium va-

0.021 FIG. 3. Kinetic coefficients{" and GV’ (a),
and G{? and G (b) as functions of the rar-
efaction parameteR for the Na—He gas mix-
ok ture.
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logR FIG. 5. Comparison of theoretical resulslid curve$ with the experimen-

. . . . . tal data of Ref. 12A—the Na—Xe gas mixture®@—the Na—Ar gas mix-
FIG. 4. Drift velocity of Na vapor in He as a function of the rarefaction ture.

parameteR; comparison of theoretical resulgsolid curve and the experi-
mental data of Ref. 5.

amounted to half the inner diameter of the capiljaBossi-

por. The variation in sodium vapor density along the capil-Ply, allowing for these factors would change the resulting
lary was measured with a differential photodetector. Thervalues ofAs andAd/dp,.

the shift in sodium vapor density was transformed into the ~ The results of experiments in light-induced drift of so-
veloCity Uexy OF light-induced drift via the theoretical rela- dium vapor in the inert gases Xe and Ar can be found in Ref.
tionships derived in Ref. 5. 12. The researchers used the same experimental method as in

What was found was tha‘expt depends on pressure non- Ref 5. Figure.5 ShOWS the I’eSU|tS Of the theory'Compal’ed
monotonica”y: as the pressure grOWS the Va'u&j(g(tjt in_ W|th the e-Xpe“mental data Of Ref 12 on the SOd”Jm'Vapor
creases from zero to its maximum value, reaches a platedJift velocity. Below we list the values of the parameters
and remains constant in the 110—670 Parange, and then debtained from the condition of best agreement between
creases to zero. Probably, the plateau develops because in fh€ory and experiment.
theoretical model of Ref. 5 the diffuse flow of the absorbing (1) for the Na—Ar mixture,
gas is calculated by Fick’s lawg=—DVn (D is the diffu- Ad
sion coefficient, valid only in the hydrodynamic regime Ae=—-7.33x102% —=-1.36x10"%

(R>0). But the plateau region corresponds to intermediate dnz

values _of the Knudsen_ number. In Ref. 11 Fick’s law was (2) for the Na—Xe mixture,

generalized to the entire range of Knudsen numbéys:
—SDVn.

Calculations for the Na—He mixture have shown that the
correction factorS increases from 0.4 aR~0.4 to 1 at
R>1. TheR-dependence of experimental values of the ve-We see that the theory provides a satisfactory description of
locity of light-induced drift corrected for the facto® is  the experiment at all pressures in the capillary.
shown in Fig. 4. The same figure also depicts the theoretical
curve corresponding to the derived formula

Ad
Ae=—179x10"2, —=-1.48x102
an

Rk Ad APPENDIX
=2 GMAs+GR—]. (35) © _ ,
2 m dn2 The ratesys) obey the following expressions:
The experimental values ake and Ad/d,, reconstituted 16 my,

from the condition of best agreement between the theory and 7}

3 m
the experiment of Ref. 5 for the Na—He mixture are !
2
Ad (3) 16 mi, 10 @y, M2 @22
_ -3 _ — 3 (3)__~ 20 (2,
Ae==3.07%10°%  —=-4.05¢10 *, V2 =5 mm, "2l 3 iz Q127
The minus in the numerical values At andAd/d,,, results 16 m3, 10
from the drift of sodium vapor is opposite to the direction of V}‘z‘)=§ m 2(395%’1)_91%’2)) , J=mn,

light propagation. The theoretical curve describes fairly ac-

curately the behavior of the experimental data of Ref. 5 inwherem,;,=m;m,/(m;+m,) is the reduced mass of the col-

the entire range of gas pressures. liding molecules, and2{;" are the Chapman-Cowling inte-
The discrepancy between the theoretical results and exrals, which for the hard-sphere model have the form

perimental data can be explained by the fact thét) ~1

and that the light intensity is nonuniform for the cross sec- (m_( kgT )1/2(f+1)!

tion of the capillary (the diameter of the light beam 27\ 27my, 2

1+(-1)
- 2(1+1)

2
7TdJ2
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Dispersion of the speed of sound and absorption in the vicinity of the liquid—gas
critical point: renormalization-group calculation in the two-loop approximation

L. Ts. Adzhemyan,*) A. N. Vasil'ev,” and A. V. Serdyukov®

St. Petersburg State University, 199034 St. Petersburg, Russia
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The renormalization group method to second order instlexpansion is used to calculate the
singular parts of the absorption and dispersion of the speed of sound on the critical

isochor aboveT .. We express the investigated quantities in terms of the response function to
temperature variations in theé model of Halperin, Hohenberg, and Siggia. Results are
compared with the experimental data. 1®98 American Institute of Physics.
[S1063-776(98)01211-9

1. INTRODUCTION enological theories. A basis for this mechanism within the
framework of the statistical approach, itself based on a con-
The liquid—gas critical point belongs to the class of sideration of the complete set of equations of stochastic hy-
phase transitions which conserve the order parameter. Dytrodynamics, was worked out in Refs. 4 anth& analogous
namic critical effects are manifested for such systemsroblem was considered in Ref. 6 in application to the dy-
through the anomalous behavior of the hydrodynamimamics of liquid crystals
modes. The general physical picture is well known. The ki-  According to Refs. 4 and 5, the dispersion relation for
netics of the order parameter are determined by the diffusiothe acoustic mode on the critical isochor has the form
mode, whose relaxation time grows without limit as the criti- 5 o 2
cal point is approacheftritical slowing down. For the dy- k*=wc."+AR(w, 7], 7=(T-To)/Te, 1)

namics of this mode only its interaction with the transverseynere  is frequency andr is the reduced temperature,
components of the velocity fluctuation field is important; the gnda are frequency- and temperature-independent constants,

remaining hydrodynamic modes have no appreciable effect,q T. is the critical temperature. The functidR(w,) is
on the kinetics of the order parameter, but are themselve&iven by the relations

substantially affected by the critical fluctuations. This leads,

in particular, to a vigorous growth of the attenuation of R(w,7)=D%(7)+iwD"*(w,7),

sound, and also to the appearance of low-frequency disper- _ _ ret/e ern , ,

sion of the speed of sound and the attenuation factor. D¥=D(t,y=C, DZ(LI)=6(t=t")D(LL), @)

A consistent statistical theory of dynamic critical phe- where
nomena in liquids can be based on the equations of nonlinear
stochastic hydrodynamids. Dropping the unimportant D(t,t’)=f dx'(F(x,DF(x',t")), 3)
modes from these equations leads to the so-caﬂleéx%odel,
which describes the kinetics of the order parametethe 2 2
renormalization-grouRG) method in conjunction with the FOGO =L = (7 (x D) )12, @

& expansion has proven to be an effective method for studyand is the order parameter field. The averaging in &jis
ing this model, as is has been in studying phase-transitiowithin the framework of theH model, i.e., with account of
thermodynamics. The dynamic similarity hypothesis and thesound waves. Functions of the ty(® depend only on the
calculation of the corresponding critical index were bothdifferencet—t’, and in transforming to the representation,
based on this approach. Fourier transforms are always taken with respedt-td’.

Use of the RG method to describe sound waves in the The quantityC=D(t,t) in Egs.(2) is the singular part of
critical region requires that we identify the main mechanismthe specific heat at constant volume, and the expression in
of interaction of sound waves with fluctuations of the orderbrackets in Eq(1) can be interpreteo within a multipli-
parameter in the nonlinear equations of hydrodynamics. Uneative factoy as the dynamic generalization of the specific
der conditions in which the sound wavelength substan- heat. This quantity plays a fundamental role in the phenom-
tially exceeds the correlation radius of the order parameter enological theory of sound propagation in critical systems
(such conditions are always satisfied for experimentally atproposed in Refs. 7 and 8 and developed by a number of
tainable values of ), this interaction is realized via adia- other authorgsee, e.g., Refs. 9 and Jl(Relations(1)—(4)
batic temperature oscillations in the sound wave, which incan be considered a statistical generalization of the concept
fluence the most sensitive parameter of the statisticabf the dynamic specific heat.
distribution of fluctuations of the order parameter—the de-  For a given frequencw, we seek a solution of the dis-
viation of the temperature from critical. This mechanism hagersion relatior{1) in the formk= wc™+ia, hence we seek
long been known, and is reflected in a number of phenomthe positive parameterd w) (the speed of soundnd a(w)

1063-7761/98/87(11)/10/$15.00 934 © 1998 American Institute of Physics
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(the attenuation factprinstead ofe, one frequently finds the
dimensionless quantity, =a\s=2mCalw, the attenuation
per unit wavelength. Usuallg, <1, so it follows from Eq.

(1) that

¢ 3(w)=c;’+AReR(w),
a(w)c % (w)=7TAIMR(w). (5)

The quantityR(w) tends to zero ae— «; therefore in rela-
tions (5)

R(*)=0, ay(»)=0. (6)

Thus, ther and w-independent constant, is in essence the
limiting speed of sound as—o°.

c(®)=C.,

Adzhemyan et al. 935
(Green'’s functionscan be defined as the functional averages
of the fields of theH model with weight ex(5), and the
unrenormalized action functional has the form

szfdxf dt{— Aot V2§’ + ' [ — dpp— (VW)
+NoV2(— V2y+ oyt 9100°16) 1= N g 'g56 V' VAV
+V'[—adv+hg g5 Vav+ ¢V V24 ), (8)

where s is the order parameter field; is the transverse
velocity field, andy’ andv’ are auxiliary fields. The quan-
tities Ao and vo=(akog,o) " are the unrenormalized ther-
mal conductivity and kinematic viscosityyg is the unrenor-

According to the dynamic scaling hypothesis themalized charge of the intermode interactign, is the static

asymptotic limit of the functiolR(w, 7) in the critical region
has the following form:

o=t %,

R(w,7)=Cy7 *®(Cow), 7)

charge, 7o T—T, is the deviation of the temperature from
critical, anda=p./kgT.. The propagators of the mode)
in the momentum—timek(;t) representation have the form

() =K+ 7o) texp{—elt—t'[}, (¢'y)=0,

where C, , are nonuniversal constants that depend on the

material, is the reduced frequendy multiple of the ratio
of the speed of souna to the characteristic fluctuation fre-

guencyws~ 1), and(D(;) is the universal scaling func-

tion. The well-known static indices in the expression on the(viv|)=Pi;(K) vohoG200(t —t")exp — vok?(t—t")},

right-hand side of Eq(7), vanda=2—dv (d is the dimen-
sionality of the spage have been studied in detail within the
framework of the renormalization group, all the way out to
the five-loop approximation. The Borel sum of theiexpan-
sions coincides with the experimental values=0.11,
v=0.63 (Ref. 11). The accuracy to which the dynamic char-
acteristics in Eq(7) have so far been calculated is signifi-
cantly lower. The dynamic index(critical dimension of the
frequency in the H model was calculated in the two-loop
approximation in Ref. 3. Its experimental valuezs-3.07
(Ref. 12.
The experimental datésee, e.g., Refs. 13-1L&onfirm

the validity of the scaling law7) for the quantitieg5) in the

critical region, and enable one to assess the behavior of ﬂ]?

universal functiorn®P (w) over a wide range of frequencies
On the theoretical plane, the scaling functidnwas calcu-
lated in the one-loop approximation in Ref. (fwever, the
derivation of the full dispersion relation in Ref. 16 is incor-

(g’ y=0(t—t")exp{ — e (t—t")},

(viv})=Pyj(K) voX oG20eXP[ — vkt —t'[}, vivj)=0,

9

where g, =\ok?(k?+ 70) and Py (k)= &; —kik;/k? is the
transverse projector.

The H model (8) is logarithmic in the dimensionality
d=4 (Refs. 3 and 1B and we will consider it in the dimen-
sional regularizatioml=4— ¢ using the minimal subtraction
scheme in the renormalization. UltraviolgtV) divergences
in the dimensional regularization show up as poles,iand
renormalization in the minimal subtraction scheme reduces
to removing these poles without altering any of the other
(non-pole contributions.

In studying the critical behavior of the Green’s functions
in the H model, we are interested in their infrarétR)
asymptotic limit7o—O0 in the regimew~k*~ 73. It is well
hown (see, e.g., Refs. 3 and Jléhat in such a regime the
contributionav’d,v in Eq. (8) is IR-negligible, and can be
discarded. For brevity, we call thel model in the limit
a—0 the Hy model. Perturbation-theory diagrams with
propagatorg9) admit the limita—0 (i.e., vo—). Using

rec, and an effort was made in Ref. 17 to extend the ON€he inequality

loop approximation to a wider neighborhood of the critical
point by taking corrections to scaling into account.

In the present paper, we present a detailed derivation of

lim VOeXF( - Vokzt) = 25(t)

1/0*)30

representatiofi7) within the framework of the RG technique, one could take the limit in the propagators themselves, but
together with a calculation in the two-loop approximation of certain diagrams in this case would require redefinition, due
its constituent scaling functio®, and compare our results to the presence of functions in the propagatoks/v’) and
with the experimental data. A brief preliminary report on this(y'). Therefore, to avoid confusion in the calculation of
work was given at the conference “Renormalization Group-the H, model diagrams, they must be understood toHbe
96" (Dubna, 199§ the proceedings of which were pub- model diagrams in which one subsequently takes the limit
lished in the International Journal of Modern Physics B.  a—0.

Following the authors of Refs. 3 and 18 and all subse-
quent work along these lines, we assume that the renormal-
ization of theH, model is multiplicative and agrees with the
statics of the problem, i.e., the dynamic and static renormal-

TheH model can be renormalized in the standard way inization constants for the objects figuring in both the dynam-
the language of field theofy. Thus, the correlation functions ics and statics of the problem in the minimal subtraction

2. RENORMALIZATION OF THE R FUNCTION IN THE H
MODEL
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scheme coincide(Strictly speaking, none of the published multiplicatively (it is not mixed with anything i.e.,

work known to us contains a formal proof of this statement.F’=Z¢,F[. From relation(2) for the response functiofi2)

But it is plausible, and all calculations carried out in tHe with t#t’ rewritten in thet representation, it follows that

model are consistent with t. Zg=Zg. Thus renormalization of the component operators
Thus, we assume that the renormalized action othe F andF’ is given by the relations

model can be derived from the unrenormalized act{®n L , o -1

with a=0 by the standard multiplicative renormalization of F=2¢Fr, F'=ZpFgr, Zp=2p=2,7, (14)

the fields and unrenormalized parameteys{7y,\g,00}: whereZ . is the well-known renormalization constant of the

_ o , , parameterr in the staticy* model. Note that the constant

Srib.eu)=S(Zyb.e0),  d={ihih' vV, Ze. for operator(13) is the product o, from Eqgs.(10) and
10=72,, No=AZy, Gio=0inZg, =12, (10 the renormalization congtaqt of the monomjdlA .

In general, renormalization of correlators of the tyf®@s
wheree=7,\,g are the renormalized parameters, andhe  and (12) with two component operators requires, besides
renormalized mass, is an additional parameter of the renokhe substitutionF—Fg of the operators themselves, the
malized theory. Agreement with the statics means that in théntroduction of an additive, locamultiple of 5(t—t') in the
minimal subtraction scheme the dynamic renormalizationt representation‘‘counterterm per operator pair.” It is not
constants of the f|eld/ and parameters, g, are the same as hard to show from dimensional arguments that for the cor-
in the simple statioy* model, andz,=1, since the fields  relator (3) in the dynamics such a counterterm is not re-
enters into the static action correspondlng to expres@dn quired; therefore Dg(w)=Z7°D(w) and similarly for
in the form of an additive term-v? and is not renormalized. D"Y(w) in (3). But for the static objecbs'=C a “counter-

In the minimal subtraction scheme all renormalization conterm per pair” is neededf It follows from (2) and(14) that
stants have the form a counterterm per pair is also needed in that situation for the
_ 1 2 2 response functiolR(w), and that it is exactly the same one
Z=1+Z0(Q)le+2%()e™+ ..., (D as for the specific hea. The foregoing can be summarized
and the expansion aZ("(g) begins with contributions of in the following way:

orderg". _ -2 /
Let us turn now to the functiolR(w) defined by rela- Cr=Zg"C+AC, Rg=R'+AC,
tions (2) and (3). Invoking the fluctuation—dissipation R’EZEZR, D{qet:ZEZDret_ (15)

theoren® for the component operators in themodel, it can . ) .
be shown thaR(w) coincides with the Fourier transform of HereZg=Z_~ according ta(14), andAC, the “counterterm

the correlator per pair” in the specific heat, is am-and =~independent
constant containing poles it
R(t,t'):f dx{(F(x,t)F'(x',t")), (120  AC=u®b(gy), b(gy)=bP(gy)/e+bP(g)/e?+ ... .
(16)

where the component operatéis defined in Eq(4) and the

The functionb(g,) is known from an analysis of the renor-
second operator

malization of the specific heat in the stati¢ model!!
F'(t,X)=—Noi/' Adp. (13 In an approximation linear in the charggs which is

) ) ) , sufficient for the development that is to follow, the quantities
Representatioil2) reveals the physical meaning B{t,t') 7 jn Eq. (11) for the independent renormalization con-

to be the response function of the quantif(x,t)) to the  ¢ioie andb® in Eq. (16) are given bj*18
strictly time-dependent temperature variatién(t’) in the

model(8), and the first of equalitie®) with R from Eq.(12)
is a consequence of the fluctuation—dissipation theorem. In
the calculation of the functioR in the two-loop approxima-

3u, 19u,
Z=0Ve, Zy'= 4 2= o,

tion, we start out with representati¢h2), calculating within 7= _Z<F1> _u Z§\1)= _ &
the framework of theH, model, since we are interested in 7 2 4
IR-negligible corrections. 1
Let us discuss briefly the renormalization of the response  p(V= — 62t 0(g3), (17)

function and its constituent operators. Operaidy in the

staticy* model is renormalized multiplicativelfoy subtract-  in which u,=g;/82 for both chargeg; ,.
ing out the quantity %) in Eq. (4)), i.e.,F=ZgFg with the
constanZz=Z* (Ref. 11. From general principles of cor-
respondence between the dynamics and statics it follows th
the operatofF can be renormalized in exactly the same way
in the dynamicH, model, and with the same constant In this section, on the basis of the renormalization-group
Z,:=Z;l in the minimal subtraction scheme. Operat®8) equations we obtain the RG representation of the response
has meaning only in a dynamic context. By analyzing thefunction, which makes it possible to justify the scaling law
diagrams of théd, model with insertion of the single opera- (7) in the IR asymptotic limit and obtain working formulas
tor F’, it is not hard to show that it too can be renormalizedwith which to calculate the scaling functich Eq. (7).

RENORMALIZATION-GROUP EQUATIONS: RG
PRESENTATION OF THE RESPONSE FUNCTION
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The RG equation for the renormalized response function

Adzhemyan et al. 937

We turn now to the RG equatiofi8) for R’ and make

Rg is somewhat peculiar, due to the additive counterternthe substitutions

AC in its renormalization(15). In what follows it will be
convenient to use the RG equations Ry and the “incom-
pletely renormalized” functiorR’" in Eq. (15). These equa-

=1l u?,
(24)

R'(7,0,u,\,Q)= /.LEQ(‘;',W,g), w= w2\ u*,

tions can be obtained by requiring that the unrenormalizegvhere Q is a dimensionless function of the dimensionless

function R be independent of the renormalized masg&his

argumentsw and 7. Equation(18) for R’, allowing for the

parameter is absent from the unrenormalized theory and akquality ye=—v,, can be rewritten in the form &,
T

pears only in the renormalization formulék0), and through
them in the renormalized Green'’s functign&cting on both
sides of the second and third of E¢&5) with the operator
7, (here and below/,=ad,, andZ,, is the operationd,,

for fixed values of the unrenormalized parametevee ob-
tain the desired RG equations:

(Zret2¥p)Rr=1" Y0, (ZRet2ye)R'=0. (18
Here
DR= Dyt BIg— v L= N 19

is the operato@ﬂ in renormalized variables with summation
over the two chargeg=g, , in the termBdg=2;B;dg,. The

relations(18) and (19) contain the RG functions
Yo=u*Ze 27, (ZEAC),

Bi=7,0i=—gi(s+ 7).

The RG functionsy, with a=g,7,\,F are the anomalous
dimensionalities of the quantities 7y, is the “vacuum RG
function,” B; are the beta functions of the charggs and
all of them are UV-finite, i.e., they have no poleszinin the
minimal subtraction scheme all of the functionsare in
general independent efand can be calculated with the help
of the relationsy,=—(1+ Z»)b® and y,=—7,z{Y, in
which 7g= 7 + 7 , andZ{" andb™® are the coefficients
of 1/e in Egs.(11) and(16). Expressions for these quantities
with the accuracy needed for further analysis are given i
Egs.(17). It follows from Egs.(17) and(20) that

Ya=7,InZ, Va#0,

(20

3u, 190,
B1=01 —et -/, B2=0> —et =) (21)
B U _3u2 B 1 )
YIS TYET T 5 NS 3’0—@"‘0(91) (22

with u;=g;/87% for the charges 01,. The equality
v,= — vye is exact; it follows from the definition of, in Eq.

=ad,)

[Bdg— (2= y,) Z7= (4= y\) Zw—(e+v,)]Q=0. (25
The solution of Eq(25) has the form

f; dry e+2y,(01(m1)

W,0)=0Q(1w,g)e P‘ ,
Q(7,w g) (1w g) X 2+ }/T(gl(Tl))
(26

17

wherea andw are invariants corresponding ® and w,
given by

Z:0i=Bi(Q)/[2+v(9)], gil-1=0i, 27
Tw=—w4=n(Q)V[2+7,(9)], who=w. (28

Since the fixed point23) is IR-stable, we have for the in-
variant charges defined by relatiof7) the IR-asymptotic

limit a—>gi* as7—0. Therefore, the IR-asymptotic limit of
the iﬂvariantw defined by Eq(28) can be obtained by set-
ting g=g, in this equation. This yields
\ER:CW’;’_ZV, (29)
whereC is a critical-dimensionless nonuniversal factor, and
(30)

Uv=A=2+y%, and z=A,=4—-}

are the critical dimensionalities of the variableand w (1/v

,fndz are the standard notation for thewtt =y(g,)). The

asymptotic limit of the exponential in E426) as7—0 has
the form C'7~ ¢, wherea=(e+2y*)/(2+y*)=2—dv is

the critical index of the specific heat. Substituting the result-
ing asymptotic limits into Eq(26) yields the IR-asymptotic
limit of the functionQ:

Qr(7,W,g)=C"7 *Q(1.Cwr %,9,).

This proves the validity of representatidid) for the IR-
asymptotic limit of the unrenormalized functid® since it

(31)

(20) and relation(14) between the renormalization constantsdiffers from Q only by an w- and r~independent factor:

Zr andZ.. The RG functiong3,, v., andy, depend only
on the static chargg,, while the functionsg, and y, de-
pend on both chargesheir lack of a dependence ap in
Egs.(21) and(22) is a consequence of the approximajion
The beta functiong21) have an IR-stable fixed point

with coordinates
U, =2e/3+0(€?), Uy, =24e/19+0(&?), (23

in which B;(g,)=0, and the eigenvalues of the matrix
wikEaIBi/agk|g:g* are positive (the latter implies IR-

R=,u‘SZ,§2Q according to Eqgs(15) and (24).

Sinceg, ~ ¢, relation(31) could also serve to obtain the
e expansion of the scaling functich in Eq. (7). This, how-
ever, is hindered by the remaining uneliminated polesim
the functionR’ =~ ?Q. These poles are absent from the
renormalized functiorRg=R’+AC, in terms of which the
function Q(1,w,g,) on the right-hand side of Eq31) can
be expressed in the form

Q(1w,0,)=pu’Re(r=p?,w=2awu*,g=g,)—b,, (32

stability). The existence of an IR-stable fixed point is a nec-with Egs. (15), (24), and (31) taken into account, where

essary condition for critical scaling.

b, =b(g,). This constant can be extracted from the right-
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hand side of Eq(32) as a common factor. This leads only to dence with the propagators of the basic theory obtained from

a change in the nonuniversal amplitu@é in Eq. (31). Eqg. (8) by replacing all of the unrenormalized parameters
The e expansion of the functioRg in Eq. (32) starts off ~ with renormalized onesty— 7, Ag— A\, Qip—giun®(i=1,2).

with contributions of order unity, while the quantitids, The diagrams fol"5 andI", are a symbolic notation for the

start off with contributions of order &/ To calculate the sum of diagrams with all possible arrangements of slashes at

coefficients of thes expansion ob,, directly from Eq.(16), the ends of the linegthree diagrams fof';, ten forI',; a

infinite sums are requirek.g., in the coefficient of /all  detailed breakdown is given in the Appendix

terms of the typegrl"lls” contribute forg;=g;, ~¢). Itis The diagrams can be calculated for a given external fre-

possible to avoid this difficulty, as the functidrig,) inthe quency w and zero external momentum. After integrating

countertermAC can be expressed in terms of the vacuumover times for the diagrams in Eq87) in theH, model(the

RG functiony, defined in Eq(20), which is independent of limit vo~a 1— in Egs.(9)) we obtain the following ex-

e. Indeed, it follows from Eqs(18) that the counterterm plicit expressions:

AC=Rg—R’ satisfies exactly the same RG equation as the

2
function Rg in Egs.(18). Hence, taking the explicit form of .= | ok L To=— er?
D S PN P R
the countertermrAC= u~°b(g;) and the operatoZg¢ (19 (28—l
into account, we obtain 1 1
(B1dg,—&—2y,)b(91) = y0(91). (33 I3=017(7)d,I'y, »7(7)=—§m*’f @qqza ,
g
Settingg,=94, here, we find
be=—7v5(e+2y5)=—vy}la, (34) F4=—2>\92M’3f S/kf q
where v and « are the static indices defined above, and (K262~ (kq)2]i (g — £g)?
¥5="70(91,). Taking Egs.(27), (31, (32, and (34) into X e )
account, we obtain representatioh for the unrenormalized [k+ 0o (2e—i w)zaq(qu— iw)?

functionR in Eq. (17) with scaling function in which

dw)=1+ L Ro(r=p2o=2wutg=g,) (@5 a=K+r e=ANEK+7), ok=dk/(2m) (39

*

Y7o Expressions(38) correspond to the ‘“basic theory,”
and some nonuniversal consta@g,. Equation(35) is fun-  while the functionRg in Eq. (35) is the sum of the corre-
damental to a calculation of the expansion of the scaling sponding renormalized guantities. The one-loop diagfam
function. can be renormalized, according (b5), by adding the one-
loop counterterm{which is known from Eqs(16) and (17))
per operator pair, F?=F1+Acl, where AC;=
— u " ®/167%e. To renormalize the two-loop diagram$ 3 4,

We want to calculate the scaling functi¢8s) to accu- it iS necessary to take into account, first, the contributions of
racy 2, which corresponds to the two-loop approximationthe counterterms of all of the divergent one-loop subgraphs
for Rg. The coefficienta/vyg in Eq. (35 is a quantity of and, secpnd, the two-loop counterterm per operato'rzx'ﬁg
ordere (a=e/6—292/324+O(e3), v=1/2+¢/12+0(e?)  for the diagraml’; (for I'; 4 the counterterm per pair is not
(Ref. 11, and y} can be found from Eqs(22) to the re-  réquired since they contain no overall “surface divergence,”
quired accuracy hence the dimensional factors in I'; and w in T, having been

separated ouit The ‘“counterterms per subgraph” for the

a_ & 1 19 O(&3 . 1 O(&2 36 sum of all two-loop diagrams can be found by analyzing the

5 =317 57870, v =15210(7). (36

corrections issuing from renormalization of all quantities in
The functionRyg is given to two-loop accuracy by the fol- the one-loop grapl';. To do so, it is necessary to make the
lowing diagrams of thed; model:

4. CALCULATION OF THE SCALING FUNCTION

substitutionsr— 7Z .,A —\Z, (to our level of accuracy, cor-

rections due to field renormalization are not required, since

in Egs.(17) Z{”=0V ¢), multiply I'; by Z¢?=Z2 (which

r =<> T = <><> T % . corresponds to taking account of renormalization of the com-
ponent operatojs and then extract all correction terms of

first order in the charge from the resulting expresiéﬂl.

The sum of these corrections has the form

= .
- - D e 2z + 2o T+ 2V T ] (40)

(37 with the quantitieszgl) known from Eqs(17).
The solid lines depict propagators of the fieldand ¢, The first term in expressio@0) corresponds to one-loop
the dashed lines depict propagators of the fieldsndv’'. renormalization of the component operators; the second, to

The slashes through three of the lines correspond to the aurne-loop renormalization of the parameteand the third, to
iliary fields ¢’ andv’. The lines can be put into correspon- one-loop renormalization of the parameterIn our case,
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these terms can be uniquely “distributed” among the dia-Indeed, by virtue of the uncertainty in the amplitude factors
gramsI’, 3 4, thereby determining the renormalized value of C, ,in Eq.(7), the scaling functiorP (w) can be replaced by
each of them individually. Indeed, from the form of the dia- any other functiorf (w)=b;®(b,w) with arbitrary positive
grams it is clear that one-loop renormalization of the com-constantsb, ,. This arbitrariness can be used to replace
ponent operators is possible only in the graphg, butis  ®(w) by the normalized functiofi(w), for which two of the
obviously lacking inl"5. The first term in expressio@0), in  three coefficientsA, B, and C can be determined in the
which Z(Tl) depends only omy,, is responsible for it. asymptotic limit analogous t@}1). The normalization proce-
Hence it is clear that in the grapig,, which depend dure is useful because in contrast®gw), the normalized
only on the chargg,, the one-loop subdivergences from the function f(w) does not depend on the subtraction scheme
renormalization of the component operators should canceljsed in the renormalization. Moreover, an appropriate choice
so that the first term i1¢40) takes part only in the renormal- of the normalization substantially simplifies the form of
ization of I',. The second term, corresponding to renormal-f(w). We employ the normalization for whictB=1,
ization of 7, takes part only in the renormalization b, @ C=a/zv=«, and the third coefficienA remains unknown
since divergences of both subgraphs obviously corre- and remains to be calculated. Thus, for the normalized scal-
spond to renormalization of the component operators,Jand ing functionf(w) we have
does not depend on the charge Finally, the third term in

(40), corresponding to renormalization af in which Z(Kl’ F(w) =D, @ (bzw), (42)
depends only oy, (see Eqs(17)), takes part only in the f(w)=, ol+ikw+ ..., F(W)= L A(—iw) “+ ...
renormalization ofl"4, since the graph¥', andI'; depend (43

only ong;. Thus,l"ff is the sum ofl"’, and the third term of
(40), F?Ff is the sum ofl'; and the second term @#0), and
FZR is the sum ofl", and first term of(40) plus the two-loop
contributionAC,, the counterterm per operator pair. 1 1 B  ®(0)

In conclusion, we may add that the quantitigs, can be bi=—=-—, b=k =ik—r"7. (44)

) _ : ; , B" (0 C ®'(0)

found very simply: the expressions fby, ; in (38) are ex-
pressions of the typA- B, and renormalization of the prod- The amplitudeA=A’(B’) 1(xB’'/C’) “ in relation(43), in
uct reduces to renormalization of the facté&xsand B. Ex-  contrast toA’, B’, C’ in relations(41), is universal: it is
plicit expressions for the renormalized quantities are given irthe same for all materials from an experimental standpoint,

The first of relationg43), for ®(w) known, determines the
coefficientsb, , in Eq. (42):

the Appendix. and from a theoretical standpoint it does not depend on the
choice of renormalization scheme in the calculations.

5. GENERAL PROPERTIES OF THE SCALING FUNCTION If we use some approximate eXpreSSion for the scaling

R(w); TRANSFORMATION TO THE NORMALIZED function f(w) over a wide range of frequencies, it is impor-

FUNCTION tant that this approximate function faithfully reproduce the

asymptotic limit(43) at least qualitatively. We cannot simply

Analyzing the diagrams of the unrenormalized response .. forf(w) the initial terms in itse expansion

function R(w) (their contributions differ from expressions
(38) only in the values of the parametgré is not hard to f(w)=1+ef(w)+e?f,(w)+ ..., (45)
convince oneself thaR(w) is analytic in the upper half of
the complexw plane(as is any response functidhand real
for purely imaginary values ob on the upper half-axis, and
also that InfR(w) >0 for ©>0. In addition it is easy to verify
that for 7>0 the first two terms of its Taylor series expansion
about zero inw (i.e., the contributions of order unity ang
exist, and that fow>0 the limit 7— 0 is finite (higher terms
of the expansions under discussion do not exist, due to |
divergences in the coefficientsRegarding the relatioi(7)
betweenR(w) and the scaling functiorb(w), it follows f(w)=(1—iw) “h(w), «k=alzv. (46)
from what has been said that fér(w) the first two terms of
the expansion about zero im exist, and in the limitw— oo
this function has an asymptotic limitw~ /2", which en-
sures the existence of a finite limit f®(w) ast—0. Also, h(w)=,,_01+0-iw+ ..., h(w)=,_ A+ .... 47
taking into account the aforementioned real-valuedness a
positivity, we conclude that for this function

because this fails to accurately reproduce the asymptotic
limit as w—oo: the fractional powew™ “ with k=0(¢) is
replaced by itse expansionw™ “=1-—klnw+ .... This
problem can be avoided if, for example, we factor out of
f(w) some function with qualitatively correct asymptotic
limits and regular behavior in the intermediate range. Fol-
H\,‘owing Kroll and Ruhland® we use the simple representa-
tion

For the asymptotic limits of the functioh(w), from rela-
tions (46) and (43) we have

nPhe notation Qiw in relation (47) emphasizes the lack of a
linear contribution inw to h(w) asw—0.
d(w)=,,_oB'+iC'w+ ..., A series expansion oh(w) in ¢ does not share this
D(W)= A'(—iw)~~+ (41) failing. It can be obtained by successively finding thex-
W T pansion of the renormalized response functiy, then on
wherek=al/zv andA’, B’, C’ are positive coefficients. the basis of definition$35), (42), and (43) the coefficients
Knowledge of the asymptotic limitst1) can be used to f,,in (45), and finally thes expansion of the functioh(w)
determine the normalization of the scaling functidrw). itself in (46). To obtain the latter it is necessary to know the
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€ expansion of the exponertin (46); for a/v it is given by
(36), z=4(1-9¢/38)+ ... (Ref. 3; hence k=¢(1
—47%/1026)/12+ ... . The two-loops expansions of the
functions®, f, andh are given in the Appendix. As can be
seen from the asymptotic limits of the functiohg(w) as
w—o derived in the Appendix, they contain powers ofvjn
which cancel in the asymptotic limit di(w) according to
relation (47). This enables us to find the expansion of the

universal amplitudé in (43):
A—1 e €2(897% 726 O(s?
=ltgTame 4 27 TOE

or numericallyA=1+0.166% —0.1086:>+ . . .

(48)

6. DISCUSSION OF RESULTS; COMPARISON WITH
EXPERIMENT

Adzhemyan et al.

alm f(@)/Ref (D)

Tian{ K/ 2)

107k 2

10° @

10?

FIG. 1. The dependence of the ratidmf(w)/Ref(w) on the reduced fre-
guencyw is compared with the experimental data of Roe and M¢ReB.
Roe and H. Meyer, J. Low Temp. Phy&0, 91 (1978) on the absorption in
one wavelengthr, () for *He. Curvel corresponds to the first order of the
e-expansion for the functioh(w), curve?2 corresponds to the second order.
The dotted curve was constructed using the Kroll-Ruhland function.

10°

1072

In the comparison with experiment the nonuniversal ad-
ditive constant can be dropped by subtracting the quantity

c.2=c?(x) from the first of equalities(5). Thus, from
relations(5), (7), and(42) we obtain

Fi(w,7)=[c ¥ w,7)—c 2(»)]r*=Ref(w),

Fz(w,T)Ea)\(w,T)C_Z(w,T) =1 Imf_(;),

o=t 7,

f(0)=C1f(Cyw), r=(T-T)/T., (49

with the universal functiorf (w) from Eg. (42) and nonuni-
versal factorsC, ,. It follows from the representatio49)
that the experimentally measured quantitfesyw,7) de-
pend in fact not on the two variables and 7, but only on

their combinationw= w7~ %" to within IR-negligible correc-

nonuniversal constan€,, and the uncertainty i€, corre-
sponds to the possibility of a horizontal shift of the theoret-
ical or experimental curve. It follows from43) that
7Imf(C,w)/Ref (Cow) — wtan(km/2) as w— (note that
this limit is a universal constant; numericallytan««/2)
=(.28 for k=0.057. From the graph in Fig. 1 it can be seen
that the experimental data agree with this prediction of the
theory (in fact, based solely on the dynamic scaling hypoth-
esis and the general propertigsl) of the scaling functiop
and this asymptotic limit of,/F; is actually reached. Tak-
ing advantage of the possibility of horizontal translation, the
theoretical curve for,/F; can also be aligned with the
experimental curve in the low-frequency region; then the dif-

tions. This is the fundamental assertion of dynamic scalinggrence between experiment and theory shows up only at
theory in regard to the problem under consideration, and it iytermediate frequencies. The points in Fig. 1 plot the experi-

confirmed by the experimental ddtaln experiments with
different w and 7 for one material the constan®, , in Egs.
(49) are fixed, but they can changia contrast to the func-

mental dat& for assorted values ab and = (note that for
3He, which was the material used in the experiment in Ref.
13, it turns out that_ >=0; for a detailed discussion see Ref.

tion f(w)) if one goes to another material, and in this €ON-21). Curvel was constructed with the functidifw), calcu-

sists their nonuniversality.

In comparing Eqs(49) with experiment we used the
experimental data of Ref. 13, and fbfw) we used expres-
sion (46) with experimental values of the exponentinclud-
ing the first term(in the one-loop approximatigror the first
two terms(in the two-loop approximatignof the & expan-

sion of the functiorh(w). The experimental data are conve-

nie_ntly represented on a log—log scale, plotting bgainst
Inw. The uncertainty in the coefficien®, , in Egs.(49) thus

lated in the one-loop approximation, curevas constructed
with the added two-loop contribution, and the dotted curve
was calculated in Ref. 16. It is clear from the figure that for
the one-loop approximation there is appreciable divergence
from experiment at intermediate frequencies, but taking the
two-loop approximation into account improves the situation
significantly. The difference between the theoretical curve
calculated in Ref. 16 in the one-loop approximation and
curvel can be explained by the fact that in their calculation

reduces to the possibility of translating the theoretical curvesf the scaling function using a relation similar @6), Kroll

along the axes, with this translation being the sameHpr
andF,. The “shape” of these curves for both; andF,,

which is not altered by parallel translation along the axes—2q)"1=¢+ ...

depends only on the scaling functidw). In constructing
the curves in Figs. 1-3, the “theoretical curve&t9) were
plotted asy on a logarithmic scale witie;=C,=1, and the

and Ruhlantf replaced the coefficient in the one-loop ex-
pressionh=1+¢h; in (All) with the quantity 12&(zv
and substituted the experimental value
0.77 fore=1 in the three-dimensional problem. As can be
seen from the figure, this substitution yields qualitatively the
same effect as the two-loop correction, improving the agree-

arbitrariness inC, , was used to advantage for the corre-ment with experiment. But from a theoretical standpoint,

sponding “parallel translation” of the experimental curves.

such a substitution is invalid within the framework of the

Figure 1 compares the experimental data with the deperexpansion, as it “oversteps theaccuracy” of the one-loop

dence of the raticc,/F,= wImf(C,w)/Ref (C,w) on the
reduced frequency. The ratiB,/F; depends on just one

scaling function(Helpful remark: “numerical experiments”
show that the two-loop approximatigAll) for h with e=1
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xIm f(@) was possible in this way to align both asymptotic limits, but
10% for the velocity dispersiorfFig. 3) an appreciable discrep-

. ancy with experiment remains in the low-frequency region
(for the reason see belgwit can be seen from the graphs in
Figs. 2 and 3 that in all cases taking the two-loop correction
into account substantially improves the agreement with ex-
periment.

We now discuss in more detail the low-frequency behav-
ior of the velocity dispersiori50). As can be seen from the
graph in Fig. 3, there is a considerable discrepancy here be-
tween the theoretical curve of the two-loop approximation
B and the experimental data, which shows up in particular as a
FIG. 2. Dependence of the reduced absorpiigiw)c™*(w)7* on w ac-  difference in slope. This is not a random result. The point is
cording to the dat_a of Roe and Meyer fﬁ_irle. The dashed curve corre-  that in general the first two tern{sf order unity andw) of
sponds to calculation to ordet and the solid curve to order’. - .

the low-frequency asymptotic limft{w) (43) do not contrib-

ute to expression(50) due to the subtraction at zero fre-
is almost exactly reproduced by the one-loop expressiofiuency made there. The low-frequency asymptotic (50
h=1+¢h, if the coefficiente=1 is replaced by 0.42. This is thus not determined by the correction terms show(48).
can be used to construct graphs of the two-loop approxima@s can be seen from Eq$Al4), the e expansion yields

1073

sl oy . wy aud sk oy

1072 10° 16? 10*

&

tion.) corrections of the form
The foregoing discussion of overstepping the accuracy
of the problem does not pertain to the exponentmdzy in Wi (a;e+aed)Inw+(bye?+ .. .)InPw+ ...]. (51

Egs. (49), since calculating these exponents and the scaling

function involves two independently soIvapIe_ problems.It is clear that higher powers of wiwill appear in higher
Therefore, for the exponents we are not prOh'.b'tEd from usiprders of thes expansion, so that for a correct determination
ing the experimental data for the three-dimensional problemOf the low-frequency asymptotic limit of the dispersits0),
@=0.11, =063, 2=3.07, zv=1.93, k=a/zv=0.057. In i 0 c0ssary to sum the “leading logarithms*(sInw)" in
fact, just these data were us@s in Ref. 16to construct the all orders of thes expansion
theoretical curves in Figs. 1-3. '

ind dentl . locitv di . dab The solution of this problem does not pertain just to the
ndepencently comparing the velocity dispersion and a competency of the RG method. Analogous problems arise in
sorption coefficient of sound i49) with experiment, the

L X the theory of critical behavior, for example, in the study of
subtraction is usually carried out at zero frequency, becau

th tant(0 v b racted f th She asymptotic limit7—0 of the static correlator in the
e constant(0) can more easily be extracted from the ex- simple * model, and can be solved with the help of the

perimental data than the constai¥). This yields Wilson operator expansiort,where logarithms of the type
[c™%(0,5)—¢c X w,7)]™*=C,;Rd1—f(Cow)]. (50 (51) are summed, as a rule, into some fractional exponents.

. ] By analogy, it is natural to assume that the result of summing

The experimental datdare compared with curves of the over the leading logarithms in expressitstl) will be some

dispersion(50) and the absorptiofthe second of Eqg49)) fractional powerw?+3(®) with a(e)=0(¢). An analysis of

in Figs. 2 and 3. The arbitrariness@ , was used to achieve he giagrams confirms this assumption. The asymptotic limit

the most accurate fit possible between the asymptotic limit§s o one-loop graplﬁ? (A3), calculated beyond the scope

of the experimental data and the theoretical curves congs ihe ¢ expansionwith finite 0<e<2), yieldsa=—s/2 for
structed forC,;=C,= 1. For the sound absorptidfig. 2) it ’

the exponent. It is important that in the given case, as an

analysis of the two-loop diagranﬁzgy4 (A3) shows, higher

Re[l - f(& orders of perturbation theory lead to the same power-law
e[l - f(@)] B 2ol

10°F asymptotic limit~w<~*“, It therefore stands to reason that

""""""""" an improved low-frequency asymptotic lim{@3) of the

function f(w) has the form

12k f(w)=1+ixw+D(—iw)2 ¢+ 0(w?) (52
with a real coefficienD=D(¢). It is not hard to show that
expanding théD term in Eq.(52) in a series ire leads to an
/ asymptotic limit that agrees with that obtained in E413)
107 10° 107 100 @ via the ¢ expansion. The initial slope 3/2 of the velocity
FIG. 3. Dependence of the reduced dispersion of the speed of sounglsperSI_or(SO) predlct_ed by(52) (for 8:].') IS 1n gOOd agree- .
- A . — : ment with the experimental data. A rigorous proof of this
[c7?(0)—c~?(w)]7* on w according to the data of Roe and Meyer tbfe. . . .
The dashed curve corresponds to calculation to asdand the solid curve ~ F€lation can be obtained with the help of “infrared perturba-
to ordere?. tion theory.”?223
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sian Fund for Fundamental Researl&@rant No. 96-02-17-
033 and the Goskomvuz Concourse Center for Basic Scicalculated according to formulda3) with two terms of the
ence(Grant No. 97-0-14.1-30 ¢ expansion forl'; and one term fol', 5, taken into ac-
count, have the following form:

[i(w)=32r2u°TR(r=p? w=22wp*,g=g,) (A4)

APPENDIX A: RESULTS OF CALCULATIONS — .
['1=B+e(B%+ 7%6)/4+iw{qy[ 1+ (B+1)e/2]— £q,/2},

We expand the terms in diagrarhs 4 of Egs.(37):

I,=—e(B+iwq)6, Ts=(B8+1)e(1+2iwqs)/6,

T4=9eiw[ Qs+ 20s— ( B+ 4/3)q3]/19. (A5)

Here B=In47—C, C is the Euler constant);=q;(w) are
functions defined by the relations

X=x(x+1), z=-—iw,

= ocd —_—,
h Jo 12t 2)
o xInx
= [ dX ———=1,
b2 fo X (x+1)%(x+2)
(7, x+(x*~1)In(x+1)
4= fo dx (x+1)(X+2)2

o0 X
q5=J dxf dy
0 0

2

Q3= az(qu)l

00 6 (c
08 6 0
0 00 0o

y2

(x+1)(X+2)(y+1)(y+2)

3z o
) 2+J dx
0

(A1)
Only diagrams contributing in thel; model are shown.
The renormalized analogs® of the quantities’; (38),
defining the renormalized response function

3 In(x+1)—In(x+2)
(x+1)(x+2)

=q6Inz+( Js

dx

(A2) :f“—
%=, (x+1)(x+2)

4
Rr(w,7)=2, TR(w,7),
R(@,1)=2 (e, (A8)
are given by the expressioriere use the notation of Egs.

(39) throughout The integralsy; , 3 sCan be expressed, if desired, in terms of

elementary functions: in particular,

1 1—zI 1—32I 1+A
z N 275228 "M 1-4A
whereA=(1—4z)2 The logarithms of complex arguments
are defined in the above relations in the usual way:
In z=In|Z+iargg, —w<arge< with argz=0 for z>0. In-

voking relations(35), (36), (A2), and(A4) we find the scal-
ing function®(w) out to terms~&? inclusive:

4 —
)21 Ti(w).

Substituting the above expressionsI_Qr(AS) into Eq.(A.8)

)\k2 M*S
a(2e—iw)  167%

rf- | ok PB= — gyt (T,

|

; (A7)

z 2z

qi1=

M° 1
q2aq 8me

1
I'§=g.7R9,I'%, ,¢R=—§T(f@q

f @kf o

k?q®—(kq)?

k+ gl aaq(28— i 0)2(284— i w)?

If=—\gopfi w{
19
2—78

cp(w):1+% 1- (A8)

19

k2 2_ k 2 g
_f gk ;ZJ’ 7q zq—(:‘) yields
(28 —iw) a?lk+q|*aq . | 22 n2 29 1
K2 k2q%— (kq)? @(W)=1+g(ﬁ+lwa)+€{1—6+ﬂ—a 5
N e | 7 G -
a(2e—iw) k*g?|k+q " s 11 Iwqy d Q3(88+17)
3u~® W | s/~ 5~ —
B : A3
= @ )

The quantityl“f is given in a form suitable for calculation—
each term in braces in its definition remains finitesas 0.
The functions

From (42), (44), and(A9) we obtain thes expansion for the
normalized functiorf (w):
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W) =14 &f (W) +e2f,(W)+ ... , f,=iwq,/6,
iw 11 )

f2:1_2 A Ziwgi- [(241—3077 )03
+18(Q4+2CI5)]]- (A10)

From the definition46) of the functionh(w) in terms of the
known & expansion of the functiori(w) and of the index
k= alzv in (46), we find thes expansion oh(w):

h(w)=1+gh;(w)+e%h,(W)+ ...,

1 .
h1=f1+1—2In(1—|W),
h,=f 1fI 1-i —479
2= ot T3hIn(1=1W) = 75215
In(1—i lI i All
X In( —|W)+ﬁ3n( —iw) (Al11)

with f4 , from (A10).

We now give the asymptotic limits of the resulting func-
tions. The functiong); given by Eqs(A6), which enter into
expressiongA9) and (A10), have the following asymptotic
limits (everywherez=—iw): for w—0

11
—5+52 In? z+0(z),

a1

1
§+z In z+0(2), 0Q,=

2

2

1 T
O3= +22 Inz+0(2), qu= +zIn z+0(2),

2

95=—5 +0(2), (A12)
and forw—oo
nz 1 1 I’z  =? 1

h=%y 77707 9T Te Oz

1 1 Inz 1 _w? 1
=220 z) WT ez TOlz) BTz O0z)

(A13)

From expression§A12) and (A13) we obtain the following
asymptotic limits for the functions, , (A.10): for w—0
fi= t, 1 2| o(z?

1=~ 52 52 n z+0(z9),
; 479 1 2 3 25 11 2|
zl—zmz+22nz+—(7r— )+ nz

+0(2?), (A14)

Adzhemyan et al. 943
and forw— oo
. 1I 1 o 1
1—_1_2 n Z+g+ E ,
f_1| +77| 1/ 8972 726+01
2= 588" 2" 357" 2* 5| 228 ~ 1539 z)
(A15)

Substituting the asymptotic limitg\14) into formulas(Al1l)
yields

h=1 L 2| !
—682 nZ+1—282

1
—In z+

which agrees with the first of relation@?7). Substituting
(A15) into (Al1l) leads to the second of relatioks7) with
the constantA given in Eq.(48). All occurrences of lain
(A15) cancel out in the analogous asymptotic lifAtl1).

(A16)

—(377 —25)+ 5(inz +0(29),
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This paper presents the results of a nonempirical calculation of the static and dynamic properties
of K,NaAlFg, K;AIFg, and NaAlFg crystals with the elpasolite structure. The calculation

is based on a microscopic model of an ionic crystal that allows for the deformability and
polarizability of the ions. The deformability parameters of the ions are determined by

minimizing the total energy of the crystal. The total energy is regarded as a functional of the
electron density, using the local Thomas—Fermi approximation and taking into account
exchangdcorrelation effects. The results of the calculations of the equilibrium lattice parameters
and of the permittivities are in good agreement with the experimental data. Unstable

vibrational modes are found in the spectrum of the lattice vibrations, with these modes occupying
the phase space in the entire Brillouin zone. 1@98 American Institute of Physics.
[S1063-776(98)01311-7

1. INTRODUCTION have been virtually no calculations of the frequency spec-
trum of the lattice vibrations in crystals of the elpasolite fam-
The family of crystals with the elpasolite structure ily. Such a calculation of the incomplete vibrational spec-
A,BB3* X, can be classified as perovskite-like compounds, arum of the CsNaTmBr; crystal in the rigid-ion model is
typical structural feature of which is the presence of octahegiven in Ref. 1. Since the unit cell of elpasolite contains ten
dral groups. Most crystals of this family, like the representa-atoms, a large number of unknown parameters are needed in
tives of the perovskite family, experience diverse structurathe rigid-ion model to take into account short-range forces
phase transitions associated with instability of the crystal lat{Ref. 1 used nine parametgr&or this reason, it is difficult
tice against various vibrational lattice modes. to use the rigid-ion model to study the crystal lattice’s insta-
Crystals of the elpasolite family in the high-symmetry bility against one vibrational mode or another as a function
phase belong to the cubic space grcn')ﬁ, with a face- of the chemical composition of the compounds.
centered lattice. The unit cell contains one molecule. De-
pending on the chemical composition, various distorted low-
symmetry phases are observed, with sequences of structural
phase transitions being detected in many crystals of this
family. z
Compounds with the elpasolite structure have been in-
tensively studied by various methods, and by now there is
much experimental information for many crystals of the
given family concerning the structures, the physical proper-
ties, and their changes during phase transformations. In par
ticular, Raman scattering and inelastic neutron scattering in
certain crystals have been used to determine the soft vibra
tional modes of the crystal latticeThe experimental data on
the structures of the low-symmetry phases and the soft
modes of the lattice vibrations are evidence that, in most of
the compounds of the elpasolite family that have been stud-
ied, the phase transitions are associated with small rotation: e ’
of the B** X¢ octahedra. However, it is also experimentally V’*f o
known that the structures of the distorted phases in certair © /Q
elpasolites correspond not only to rotations of the octahedra, a x
but also to substantial displacements of the A and B iong G 1. structure of the elpasolite,KaAlF;. One molecule and the face-
from the equilibrium positions of the cubic phase. Therecentered Na lattice are shown.

-

1063-7761/98/87(11)/8/$15.00 944 © 1998 American Institute of Physics
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The goal of this paper is to calculate from first principles =~ The characters of the various symmetry elements in the
the equilibrium volume, the total spectrum of the lattice vi- vibrational representation are as followmly the symmetry
brations, and the radio-frequencyrf) permittivity in  elements associated with tlzedirection are shown below,
K,NaAlFg, K3;AIFg, and NaAlFg crystals in terms of the 7=ay/2, anda, is the lattice parametgr
generalized Gordon—Kim model proposed by Ivanov and the identity element
Maksimqv.2 ' Y(E)=30,

Section 2 presents the results of a group-theoretical
analysis of the normal modes of the lattice vibrations of the
elpasolite structure for all symmetry points and directions of  x(C4,)=1+3exgiq-(27,0,0)),
the Brillouin zone. The results of such an analysis appear in  rotation about a twofold axis
the literature for only two symmetry point§ and X) of the _ .

Brillouin zonel® The model and the method of computing X(C22)=(= D1+ 3expliq-(27.27,0)
the frequencies of the lattice normal modes and the rf per- +expiq-(7,7,0))+expiq- (37,37,0))],
mittivity are presented in Sec. 3. The results of the calcula- rotation about a twofold axis along a face diagonal
tions and a discussion of the results are presented in ,
Sec. 4, X(Cax)=(—D)[1+exniq-(27,27,27)],

reflection in a plane perpendicular to a twofold axis

X(C“z): 1+5expiqg-(0,0,27)),

rotation about a fourfold axis

2. SYMMETRY ANALYSIS OF THE NORMAL MODES
reflection in a plane perpendicular to a face diagonal

The crystal structure of elpasolite in the high-symmetry } )
X(C(,Xy)z1+3exp(|q-(27,27,0))+exp(|q-(7-,7-,0))

phase is cubic with space gro@ﬁ(Fm3m). The ions oc-

cupy ten interpenetrating fcc lattices, as shown in Fig. 1. +exp(iq- (37,31,0)),

TABLE I. Displacements of ions of an elpasolite in the normal modes of the center and of boundan¥ pbint
the Brillouin zone.

Irreducible Normal mode Number of modes
representation

Zone center
Alg _Flz= F22=_F3y=F4y=F5x=_F6x 1

g _Flz:_FZZ:F3y:F4y:_F5x:FGx 1
- Flz= F22= F3x= - F4x= F5y= F6y

- Fly= F2y= Fs;=—Fe,
Tlg —F1=Fox=—F3,=Fy4 1
- F3y= F4y= —Fsx=Fex

T29 le:Kly:Klz:7K2x:7K2y:7K22;
—Fu=- Fly= Fox= I:2y= F3y= Fa,=— I:4y= —Fy,
=—F5x=—Fs5,=Fex=Fe;
le=_KZX;_KlyzKZy;KlZZKZZ; 2
Fix= —Fo=—F3,=Fy4;;
- I:ly= F2y= Fs;=Fez ;FBy= - I:4y= —Fsx=Fex
K= =Koy Ky = =Koy i =K1, =Ky,
- Fly: F2y7 Fs;=Fez;
- Fly= F2y= - F5Z= FGZ VT F3y= F4y= F5x= - FGx

Fiy=Fsy=—F5=—Fe¢
Tou F1x=Fox=—F3=—Fux 1
F3,=F4;= —Fs,= —Fg;

T all ions are displaced 4
point X
3 Fay=—Fay=Fs=—Fe 1
Ts Fax=—Fax=Fsy=—Fg 1
7 Fay=—Fay=—F5=Fe 1
T8 Fs,=F4,= —Fs,= —Fg, 1
Te K= =Kz, 1
T all ions are displaced 3
Ty all ions are displaced 3

T10 all ions are displaced 6




946 JETP 87 (5), November 1998 Zinenko et al.

inversion 100

x(D=(—3)[1+expiq-(27,27,27))],

inverted rotation by 60°

x(Sg)=0,

inverted rotation by 90°

x(Sg7)=(=1D)[1+expiq-(0,2r,27))
+expiq-(0,7,7)) +exp(iq- (0,3r,37))]. 40 20 120 160 200

The expansion of the modal representatibinto irre- Volume , &’
ducible representations can be found by the standard
proceduré:

Energy, eV

Ci=n"1S x(@ax'(@9). ) “

wheren is the order of the group of wave vectqr and
x"(q,9) is the character of the small representation of the

Energy, eV
£
(=)

group of vectorq. This decomposition has the following 20f

form for the symmetry points and directions of the Brillouin

zones of the fcc lattic&he symbols for the wave vectors and 0

irreducible representations are from Kovalev's taSlder 40 80 120 160 200

e3

the zone center, the standard symbols for the representations Volume, A

of the space groups are shown in parentheses
(a) Center of the Brillouin zoneg=(0,0,0)

T=71(A1g) + 73(Eg) + 75(T1g) + 274(T2g) + 79(T2y)

>
(M)
+ STlO(TlU) . ?;
()
Here the splitting of the longitudinal and transverse optical &G
frequencies of symmetnyi;, by the macroscopic electric
field is neglected.
(b) q=(0,0,2um/7)
T:7’Tl+ 7'2+2T3+27'4+975. 40 80 120 23 160 200
Volume, A
The mode with symmetry is doubly degenerate. At the
zone boundary oint X) FIG. 2. Dependence of the total energy of the crystal on the voldae:
P ! K3AIFg; (b) K;NaAlFg; () NagAlFg. The origin of the energy readings in
T= 37'1"‘ T3+ AT+ T+ 1o To+ 1o+ 37_9+ 67’10 (a), (b), and(c) corresponds to 72 784 eV, 60 751 eV, and 36 683 eV.
79 and 7, correspond to doubly degenerate modes.
(¢ q=Qum/ 1, 2uw/7,0) (point K corresponds ta
= (37/47,3m147,0)) 3. MODEL. METHOD OF CALCULATION
T=10r,+47,+873+874. The model of the ionic crystal proposed by Ivanov and

Maximov? which takes into account the polarizability of the
ions, is used to compute the frequency spectrum of the lattice
T=8r+27,+ 1073, vibrations of crystals of the elpasolite family. In this model,
the ionic crystal is represented as consisting of individual
73 corresponds to doubly degenerate modes. At the zongersecting spherically symmetric ions. The total electron

boundary(point L), density of the crystal in this case can be written

d) g=(unm/r,uml 7,7l 7)

T:4Tl+ T2+ T3+47'4+ 57'5+ 57'6,

75 and 74 correspond to doubly degenerate modes. p(r):Ei pi(r—Ri),
(e) q=(0,7/ 7,7/27) (point W)
T=5r 427y 4 5yt 2744 87, where symmetrization is carried out over all the ions of the
crystal.
75 corresponds to doubly degenerate modes. The total energy of the crystal in terms of the density-
The displacements of the ions in certain normal modesunctional method, taking into account only pairwise interac-

are given in Table I. tion, has the form
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FIG. 3. Calculated dispersion curves for cubigN@AIF;. (Imaginary frequencies are indicated by negative vajues.

1 Z.Z:

] selfr i
ECF 2 IE#J |R|_RJ| EI E| (RW)

1S % (RORR-R >
+2. .(I)ll(RW’RW!lRI R]|), ()
i#]j

whereZ; is the charge of théh

®;;(R, R, |Ri—R;)=E{pi(r—

ion,
Ri)+pj(r—R)}

_E{P(V—Ri)}_E{P(r_Rj)} )

)

using the local approximation for the kinetic and exchange
(correlation energies, an& (R ) is the self-energy of the
ion. The electron density of an individual ion and its self-
energy are calculated taking into account the crystal poten-
tial, approximated by a charged sphétiee Watson Spheje

ZOR,, <Ry,

r)= . y
YO zowe, 1R,

whereR,, is the radius of the Watson sphere. The rﬁlﬂviiof
the spheres at individual ions are found by minimizing the

energyE{p} is calculated by the density-functional mettfod, total energy of the crystal.

o
—
400
=
300-___’——4;%___(:
\—
2001 ——
= ——
wol_— L~ | ]
_/<
T I fa
— s A -
-100
X W K T L

FIG. 4. Calculated dispersion curves for cubigMF¢. (Imaginary frequencies are indicated by negative values.
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100+ ——
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FIG. 5. Calculated dispersion curves for cubic;Nirg. (Imaginary frequencies are indicated by negative vajues.

To calculate the lattice dynamics in the expression for i )
the energy of the crystal, EQ), it is necessary to add terms Whereé N is the number of atoms per unit ce; are the
that describe the energy changes caused by displacing tif@ordinates of atorminside the unit cell, an@*%(q;jj") is
ions from their equilibrium positions. When the frequenciesth® contribution to the dynamic matrix from long-range Cou-
of the lattice vibrations of the ionic crystals were calculated,/0mP interactions. The matrices entering into E4) have
the electronic polarizability of the ions and the “breathing” the form
of the ion in the crystal environment were taken into account
both in terms of the phenomenological models of Ref. 6 and ,_ 2 -1~ Aa_12 _qp
the microscopic approach of Ref. 7. In the model considered V==0,/Pir;  W=RyyPyiSur:
here, the expression for the dynamic matrix has the form

ap_ ORI X)) [ L,

N

D

Q*A(a;jjHZ)
N IE)UR:(I’\)UR—’_(’I\)UWIQVTN]\-/&);W]\-IAS\NR'
+ D] '>+k§1 [P (q:]k)VA(gkj")

. ) The matrix® is defined as
+V* (K] PIR(aikj )]

N

10
+ 2 VE(gikj) D, (a;kk ) VA(giK'j ) azd)(jj,)
et PR =2 o e —ial),
S ! aR(.>aRB(.,
2 2 Wk PR k) J J
~ e
3 N 10
FORUGOW A (k)] + X X wre az@(,-,-,)
7y =Lk =1 ®,,(q;jj") =2 ————exp(—iql),
. ! , ’ﬁ’ . I Uj(?l)jl
X(Q:kDPyy (q:kk )W P(g;k'j")
3 N S5
T2 2 Wk, (kKO VA K ) q>3ﬁv(q;jj')=Qaﬁ(q;jj')+raﬁ(q;jj')+%, (5)
y=lkk'=1 j
+V*(a; kDY, (KK )WY (q;k’ )] ¢, (4)  T*P(q) is the matrix of the short-range part of the dipole—

dipole interactiong; is the polarizability of thgth ion,
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TABLE II. Equilibrium values of the lattice parameters, the polarizabilities of the ions, and the rf permittivities.
ag, A Polarizability, A3 £,
Crystal Model Calc. Exp. ag: ag ana ap ap  Calc. Exp.
K,NaAlFg | 812 8.11Ref. 9
I 8.12 0.696 0.122 0.034 1.123 227 1Ref. 9
n  7.94
v 7.94 0.836 0.122 0.034 0.720 1.80
K3AIF, | 820 8.38Ref. 9
I 8.20 0.696 0.696 0.034 1123 223 1Bef. 9
n 812
vV 812 0.726 0.836 0.034 0.749 1.86
NagAlF g | 8.09 7.95Ref. 10
I 8.09 0.122 0.034 1.123 205 1(R%f. 9
n 786
vV 7.86 0.122 0.034 0720 1.61
,. (10 and(6), entering into the dynamic matrix of E¢4). Cheby-
J CI)(J-J- r) shev polynomials were used for the approximations.
Ro(Gh]) =2 —p——exp(—ial),
ﬁRa( )(91)]-,
] 4. RESULTS AND DISCUSSION
(92(D( I?) This section presents the results of calculations of the
@ijn=3 ) exp(—iql), total energy, the equilibrium volume, and the lattice vibra-
[ tion spectra for three crystals and four models. The calcula-
avi&RB(j ’) tions in Model | use the electron density of free spherically
symmetrical iongthe rigid-ion model. Model 1l takes into
aEsh( I?) account the polarizability of the ions. In Model 111, the effect
Bl-iil)— “\ _ of the crystal environment is taken into account by using the
ZCHINEDY exp(—idl), . |
JR ( _ poter_mal of the Watson sph_ere _W_hen calculating the electron
Bl j density of the ions. For simplicity, we used the Watson-
| sphere potential for only two types of ions in the crystals
(;ES*‘( 0) under discussion: for the Kion and the F ion. As shown
@ (qjj)= E i — = exg—iql), by our estimate_s fqr Al" and N4 ions, the electron densi_ty
;s of the free ions is virtually the same as the electron density of
these ions in the Watson sphere. Finally, Model IV takes into
3Esf( I 0) account the deformability and polarizability of the ions.
ACIIREDY 'J’ exp(—iql),
TABLE Ill. Limiting frequencies of the §=0) vibrations of K;NaAlIF.
Dry=D i, (6)
Models
andE"is the short-range crystal field created at jtfeion.
The expression for the rf permittivity,, can be written @i Type of
N cm -) Degeneracy vibration | Il 1] \%
e 479, o} 1 To 537.9 4357 5585 4786
2= Oap™ 92 yzl kkz 1 qv[quw]ﬂ(o kK’). wi 2 Tiu 399.3 3802 4275 4032
wg 1 Asg 3949 2689 4564 386.6
The Coulomb contribution to the dynamic matrix o} 1 Tau 299.5 1949 3594 2705
Q*A(q;jj') was calculated by the Ewald method. The cal- @5 2 Tu 279.1 1948 3566 265.5
culation for the ion was carried out according to Liberman's s 2 B, 2275 2268 2680 2614
s SR ) b 1 To 1979 176.0 2135 2025
program? and the er?ergylof the pairwise interaction from w0y 3 To, 2647 1480 3086 2021
Eq. (3) and the polarizability of the ion were calculated ac- o) 2 T, 150.3 146.0 178.8 173.6
cording to Ivanov and Maksimov's programusing the w1o 3 Tou 117.8  96.3 166.0 146.8
Thomas—Fermi approximation for the kinetic energy and the % 1 Tau 1240 1029 120.8 108.3
Hedin—Lundquist approximation for the exchange energy. ®:2 3 Tag sr.7i  3r7i 302 251
: L w13 3 Ti 0.0 0.0 0.0 0.0
The technique of approximating the dependences of the en- . .
. X w1 3 Tag 88.8 735 707  12.1i
ergy on the distanc® and the potentials of the Watson ol 2 To, 87.8 4671 6L1  47.0i

sphere was used to compute the partial derivatives in (Bys.
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TABLE IV. Limiting frequencies of the §=0) vibrations of KAIFg. TABLE V. Limiting frequencies of the §=0) vibrations of NgAIFg.
Models Models

w; Type of w; Type of

(cm™)  Degeneracy vibration | 1l ] v (cm™)  Degeneracy vibration | 1] 11l v
o} 1 Tiu 4899 3850 517.8 43238 o} 1 Tau 4879 380.1 5793 5135
wy 2 Ty 297.8 381.3 3294 3495 wy 2 Ty 3495 3053 454.1 4359
w3 1 Agq 3775 2686 4329 3614 w3 1 Agg 3356 2156 480.6  400.8
w'; 1 Ty 314.8 247.9 352.2 269.8 wk 1 Ty 257.7 191.9 372.9 280.2
wy 2 Ti 3054 2415 3501 269.7 ws 2 T 2484 190.0 366.0 274.0
wg 2 Eqg 229.4 229.1 260.6 257.7 wg 2 Eqy 151.0 149.0 294.1 291.0
w5 1 Ti 1755 1438 1889 1723 w5 1 T 1715 1545 2216 210.4
wg 3 Tog 249.0 150.6 287.6 193.8 wg 3 Tag 258.3 170.3 314.5 227.9
a)g 2 Ty 166.6 143.8 171.3 162.4 wg 2 Ty 123.2 1144 188.7 184.3
w1 3 Tou 109.9 93.1 1484 1328 w1 3 Tou 98.8 85.2 1474 1356
ol 1 T 1172 748 1125 942 o4, 1 T 703 340 1167 1019
1o 3 Tig 31.6i 31.6i 24.7i 26.6i w1 3 Tig 57.6i 58.5i 81.9i 82.1i
w13 3 Tiu 0.0 0.0 0.0 0.0 w13 3 Tau 0.0 0.0 0.0 0.0
w14 3 Tog 66.2 85.1i 53.5 42.3i w14 3 Tog 81.6i 95.3i 80.9i 64.4i
wls 2 Ti 58.8 69.6i  38.8 58.2i wls 2 T 90.7i 96.4i 581  86.4i

The results of the calculations are shown in Figs. 2—5rom Tables Il1-V, taking the polarizability of the ions into
and in Tables 1I-V. The equilibrium values of the lattice account in all the compounds under consideration reduces
parameters were determined by minimizing the total energwalmost all the frequencies of the lattice vibrations, increases
of the crystal as a function of volumiig. 2). The lattice the number of unstable modes, and appreciably reduces the
parameters are shown in Table Il along with the experimensplitting of the longitudinal and transverse vibrational fre-
tal values. For all three materials, the calculated lattice paguencies of the polar modes.
rameters agree with the experimental data to within 2%. The It can be seen from Figs. 3—-5 and Tables IlI-V that the
radii of the Watson spheres for the'kand F ions, found by  cubic phase in the compounds under consideration is most
minimizing the total energy, are 2.0 au and 2.2-2.3 au, reunstable in the NglF; crystal and most stable in
spectively. K,NaAlFg. This conclusion qualitatively agrees with the re-

Table Il shows the calculated polarizabilities of the ionssults of experimental studies of structural phase transitions in
and the rf permittivities of the materials under considerationthese crystalS. It has been established that the phase-
This table also shows the experimental values.of As can  transition temperature in NAlFg significantly exceeds the
be seen from the table, the calculated polarizabilities of theransition temperature in JAlFg, while no phase transitions
fluorine ions are substantially different in the free-ion ap-are detected in the #fNaAlFg crystal up to liquid-nitrogen
proximation(and taking into account the crystal environmenttemperatures.

within the Watson spheyeand this in turn results in a dif- There are three types of instability of the cubic structure
ference in the calculated rf permittivities for all three mate-at the center of the Brillouin zone. One is the ferroelectric
rials. instability associated with transverse vibrations of the polar

The calculated dispersion curves of the frequencies ofmode T,,. In this mode, all the atoms in a unit cell are
the lattice vibrations for the three compounds are shown imisplaced from the equilibrium positions of the cubic phase.
Figs. 3-5. In order not to clutter the figures, we show inFerroelectric phase transitions, as far as we know, have not
them the calculated results only for Model IV, since thebeen experimentally observed in halide crystals with the el-
w(q) dependences are qualitatively the same for all foupasolite structure. Another instability is associated with the
models, while the quantitative differences in the frequenciesriply degeneratd’;; mode.
of the lattice vibrations calculated in Models -1V are shown Only the four fluorine atoms are displaced from the equi-
in Tables 1lI-V, which display the limiting frequencies of librium positions in this mode, and these displacements
the (Q=0) vibrations. As can be seen from Figs. 3—5 andcause the Alf octahedron to rotate as a whakee Table)l
Tables lI-1V, there are imaginary frequencies of the latticeFinally, a third type of instability is associated with the triply
vibrations in all compounds under discussion; this is evi-degeneratelT,; mode. In one of the eigenvectors of this
dence of structural instability of the cubic phase in thesenode, the displacements of the atoms cause thg Atfa-
materials. It should be emphasized that the unstable modégedron to rotate about the body diagonal while the potassium
occupy all the phase space in the Brillouin zone. In the(sodiun) atoms located on that diagonal are simultaneously
K;AIFg and NaAlFg crystals, there is instability of the displaced toward each other. Note that there is another,
structure in all four models. In the JNaAlFs crystal, the stable mode with the sang,y symmetry in the vibrational
cubic phase is stable at zero temperature only in the model agfpectrum of the crystals under considerati@®e Tables
the deformed ion that neglects polarizability. As can be seefll-V).
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5. CONCLUSION *)E-mail: zinenko@ph.krasnoyarsk.su

The static and dynamic properties of three crystals with——
the elpasolite structure have thus been calculated in this pa-
per in terms of a simple nonempirical model of an ionic
crystal. The calculated_e_q_uilibrium values of the Iattic_e pa-lW Bilver and H. U. Gdel, 3. Phys. (20, 3808(1687
ramet_ers and the permittivity are in good agreement with the?o_' V. Ivanov and E. G. Ma’ksimO\X .Zh'.kE:p. Teor. Fizioa 1841(1995
experimental data. Unfortunately, we cannot compare theDETPSL 1008(1995] .
calculated frequencies of the lattice vibrations with measurety. couzi, s. Khairoun, and A. Tressand, Phys. Status Soli@igA423
results, since such measurements have apparently not beer9ss.
made for the crystals considered here. Our results concerning?- A. Maradudin and V. Vosko, Rev. Mod. Phy40, 1 (1968.
the instability of the cubic structure and the presence of un- g-B\iézsr:’a:\fgx’fgr‘;(cgga'?epresemations of the Space Groupsrdon
stable modes in a large phase space of thle Brillouin zone are, \iisslein and U. Sch'mer., Phys. Status SolidiL, 309 (1967.
apparently common to crystals with the given structure. "A. Chizmeshya, F. M. Zimmermann, R. A. LaViolette, and G. H. Wolf,
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lvanov and E. G. Maksimov for allowing us to use their ,Minerals. A Collectionvol. 2, Akad. Nauk SSSR, Mosco@963.
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programs to calculate the total energy and polarizability of

the ions. Translated by W. J. Manthey
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Experimental data on the thermal conductiityT) of crystals of natural and highly enriched
germanium(99.99% "°Ge with lapped and polished surfaces are analyzed in the

temperature range- 1.5—8 K. In all the samples in the temperature rangé.5—4 K the

standard boundary mechanism of scattering dominates. As the temperature is raised, an isotopic
scattering mechanism is observed in the natural samples. In the highly enriched samples

the theoretical values d{(T) turn out to be much smaller than the experimental ones. It is
conjectured that a Poiseuille viscous flow regime of the phonon gas emerges in this

case. ©1998 American Institute of Physid$S1063-776(98)01411-5

1. INTRODUCTION 1
. . — T4 —x@?TS

Chemically pure, perfect crystals of théGe isotope of T;p ' T<h'l>

germanium with 99.99% enrichment have recently been syn- .
thesized by the group led by V. I. Ozhogin. A study of vari- (S€&; €., Refs. 4 and.5Therefore, for the corresponding
ous of their properties has commenced. An experimentdf€Clive mean free paths a temperature range can exist in
study of their thermal conductiviti (T) over a wide tem- whlchIN<d<IU, whered is the characteristic Imegr dlmen.-
perature range has already been carried out on samples $Pn Of the sample. In that range, for extremely high-quality
varied composition, including both highly enrich&Ge and S{nglg-|sotope crystals, the effect of static dgfec_ts and isoto-
natural germaniurh? The corresponding data were obtained PiC disorder on the structure of the nonequilibrium phonon
for crystals with a finely polished surface and with a surfacedistribution function is obscured by processes. Only scat-
processed relatively more crudely by lappifigr details, see terl'ng. processes involving the walls of the sample are then
Ref. 2. As a result, we possess a unique body of experimenr-eS'St'Ve' However, due to the more frequent nonresistive
tal data for more detailed examination of kinetic processes ifffocesses the transport mean free path grows-aé/l

regular systems, and of their role in the kinetics of isotopic(Ref- 3, see aIso_Rgf_s. 4%6 o
disorder. Mezhov-Deglid*® investigated the thermal conductivity

In the present paper we analyze experimental'data- of. very perfect, single-isotope samp_les of sdliide an.d ex-
tained for a range of helium temperatures from 1.5 to 8 K Plicitly observed the features predicted by Gurzhi the
First we consider the effect of the degree of surface procesd€mperature behavior of the thermal conductikT) in the
ing and the possible role of strong dispersion of the acoustif€gion to the left of the maximurtsee also Ref. 9 More-
phonon spectrum of germanium in the natural samples. SeQVer, manifestations of the hydrodynamic regime have been
ond, for the case of highly enriched perfect crystals, we dis@nalyzed in NaF and Bi crystals, which lacks the isotopic

cuss the possible emergence of an effect predicted b§cattering mechanism. The manifestation of the cited regime
Gurzhi® In essence, the migration of quasiparticles takingn NaF and Bi is less pronounced in comparison with solid

place in the phonon flux can under certain conditions bg'€lium. The corresponding results are discussed, for ex-

considered a random walk, analogous to Poiseuille viscoudMPle, in Ref. 5.
flow of a liquid3* At very low temperatures, the relaxation

rate for the acoustic phonon mode with frequenecyand

polarization;j is then exponentially small, due to anharmonic 2. BASIC RELATIONS
Umklapp (U) processes in which short-wavelength phonons
with large momental(comparable to the reciprocal lattice
vectop invariably participate; specifically,

We restrict the discussion to extremely low tempera-
tures. In this situation the relaxation time of the phonon
mode with polarization indekand group velocity; is due
1 ) B, mainly to boundary scattering. ch)r diffuse boundary scatter-
T(—Uj)“w Texr{ - ?)- ing and an infinitely long sample®® =1 /v;, wherel ¢ is

the mean free path of the phonon mo@e the Casimir
At the same time, the relaxation rates for the longitudihpl ( length®). For samples with rectangular cross sect®the
and transverset] modes due to normalN) processes in Casimir length id¢ = 1.12)/S.
which any phonons can participate, including only long-  We consider the effect of fine surface polishing, and also
wavelength ones, are described by power-law temperaturef lapping (somewhat cruder processingn the temperature
dependences of the form dependence of the thermal conductivity in the context of the

1063-7761/98/87(11)/4/$15.00 952 © 1998 American Institute of Physics
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50F 60F
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401
FIG. 1. Temperature dependence of the
~ ~ 40 thermal conductivity for natural@ and
§30' g highly enriched samplegb). Theoretical
= = curvesl and 2 correspond to samples with
-~ -2 polished and lapped surfaces, respectively.
220 3 % The specularity parametey=36 (curvel),
20¢ 65 (curve 2). The experimental points are
1 taken from Ref. 2(for the lapped surface
10 they are joined by a dotted line in Fig.)la
0 0

Ziman—Soffer theory'? which takes account of both dif- 3. RESULTS AND DISCUSSION
fuse and specular phonon scattering at the sample bound-

aries. The relaxation time In the present work we usé€l)—(3) to analyze low-

temperature experimental data in the temperature range
(b) _ lc 1+P(kj, o) B ) T~1.5-8 K on the thermal conductivity of natural and iso-
T 1Pk, ) P(kj,¢)=exd—(2kjn cos#)°]  topically enriched sample@vith enrichment of 99.99% As
(1) noted above, these were prepared both with a finely polished

surface and with a more crudely lapped surfagelhus,
figures in this theory. HerP is the specularity factor, which there are four sets of experimental curves.
for the jth mode depends on the magnitude of the phonon  The sole fitting parameter of the theoryss The isoto-
wave VeCtOI’kj and its Orientation, i.e., the angl¢. The p|C disorder parameter
roughness facton characterizes the degree of surface polish.
Note thatk;=w/v; and ¢=m/2— 6, where 6 is the angle

2
formed by the phonon wave vector and the unit vector in the > ciM?— ( > CiMi>
direction of the temperature gradient. g= , ,
It can be shown that the lattice thermal conductivity (2 c-M-)
can be written(see Ref. 18 e
° Kplc [kgT)3 . .
K(T) = > B_ZCZ (L) wherec; andM; are the concentration and mass of the iso-
=127\ h tope of typei, is 5.87x 104 and 8.18 108, respectively,

4.7 for the natural and highly enriched crystals. For the group
Zpj e e . . i
X f dzﬁf dy y? cothz(y). (2 velocities of the transverse and longitudinal acoustic phonon
o (&=1)%Jo modes we adopted standard valugss 3.16x 10° cm/s and
v,=5.21X 10° cm/s. To determine the Casimir lendthand

Herezp;=0;/T s the reduced Debye temperature. The fac'the parameter, we used the actual geometrical dimensions

tor Z; is of the sampleqsee Refs. 1 and)2 Note that their cross
K2 sections were rectangular. The corresponding data are listed
S Z?TH (1 - y?), cothzi(y) <r, in Table I.
Zi(y) =\ 2vjt () Calculated theoretical curves for two values of the pa-
ry2, cothZ;(y)>r. rameteryn, which characterizes the degree of surface polish,

are plotted in Fig. 1 along with experimental data in the form
Herey=cod, and the parametaer=|,,,/lc, wherel . is  of points for all four samples.

the linear extent of the samplés length. In what follows, Some comments on the figure are in order. It can be seen
the Boltzmann constadz and Planck constarit are set to  at once that the factoy decreases substantially as the degree
unity. of surface polish rises. In fine polishing, both the natural and

Note that the value oZ; is sensitive not only to the the highly enriched samples correspond 4e~36. For
degree of surface polish, i.e., tg but also depends on the samples with lapped surfaces, the valuesyaire also simi-
temperaturdl. Note also that ify~1, i.e., the phonons “mi- lar, but »~65—75 (see Table)l
grate” parallel to the axis of the sample, then the integral  Note that for the natural samples there is reasonable
over y diverges. In actuality, the length of the sample isagreement between theory and experiment in the temperature
finite. This is taken into account by the Ziman—Soffer theory.range~1.5—4 K. ForT=4 K the theoretical curvel(T) lie
WhenF(y) =cothz(y) exceeds, F(y) can be replaced by substantially higher than the experimental poifatso see
ry2. Refs. 13—1%h For the highly enriched samples the agreement
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TABLE I. Geometrical dimensionk,,l,,I, and values of the parametegr
of the Ziman—Soffer theory.

Sample Ixily,l,, mm 7 A
n(s) 2.33x2.3x40.7 65
n(p) 2.4%2.35x< 40.8 36
h(s) 2.2X 2.5 40.4 65-75
h(p) 2.44x2.13¢40.4 36

RemarkThe isotopic disorder parametgrfor natural i) and highly en-
riched (h) samples is 5.8210"* and 8.18 108, respectively. The nota-
tion s andp denote lapped and polished samples, respectively.

with theory is also reasonable in the range 1.5—-4 K. But
for T=4 K the calculated values d{(T) are considerably
lower than the experimental values.

A. P. Zhernov and D. A. Zhernov

lo = 0.1d%/l. In this situation, according to experiment
and simple theoretical estimatés(T)«C, 1= T8 to the left
of the maximum.

Note also that Ref. 18 established criteria under which
the motion of a phonon gas subject to an applied temperature
gradient can be considered Poiseuille viscous flow:

Ir/IN=10°,  d/1=30. (6)

Thus, it should be possible qualitatively to explain the
distinctive “positive” deviation of the experimental values
of K(T) from the theoretical values faF>4 K in "°Ge as a
manifestation of viscous Poiseuille flow in perfect, highly
enriched samples. Note that the degree of surface polish has
a significant influence on the thermal conductivity. Numeri-
cal estimates require a knowledge of the mean free paths due
to the anharmonic processes. Moreover, it is necessary to

We now comment on these results. In the simplest apg,e into account effects associated with phonon focuing.

proximation

K(T) = %CL(T)virs, =2 () @

Here C_ is the phonon thermal conductivity ang, is the
mean phonon velocity. The symbel denotes the total re-

To find the mean free paths, we adduce results of
Callaway’s theory of the thermal conductivity of a crystal
lattice (see, e.g., Ref.)5 This theory takes account of the
contribution ofN andU processes to the thermal conductiv-
ity. Since the phonon spectrum of germanium is substantially
anisotropic, we consider contributions to the thermal conduc-

laxation time, whose reciprocal is the sum of the reciprocativity in the form of a sum of contributions fronh and |

relaxation times of the various processes.
According to(4), for the natural samples

1 ) 700
K(T) ~ §CL(T)UaT(b’C) 1- rENa

where 7% is the relaxation time due to isotopic disorder.
Numerical estimates show that the “negative” deviation of
K(T) for T=4 K is due to neglect of isotopic phonon scat-

modes. We have chosen, and 7 in the standard form

1 1
— Al 4 _ | 2713
(t) _AE\I)wT , T(l) —Aﬁ\l)w T s
N

™N
1 Bt
_Alth 2 _
_7'(Ut’|) Ay w Tex;{ T )

tering under conditions in which soft transverse modes aré\s a result of estimates and a comparison of theoretical and

present(see also Refs. 5 and.6
For the highly enriched sampleg= r(>©). At the same
time, for germanium the effective Debye temperatorer)

(due to softt modes has a pronounced minimum at 25K

(see, e.g., Refs. 16 and)1Bince

CL(T)=O® (), ©)

by taking relationg4) and (5) into account it is possible to
explain qualitatively the specific behavior &f(T)—the

experimental results, the authors of Ref. 2 find that

AD=2 %1078k 4 Al=2x102%s.K3,
AP=1x10"K*, A{})=5x101s.K?,
BYV=55K, B!'=180K. (7)

It is noteworthy that in the model under consideration,
the thermal conductivity of germanium is a superposition of

“positive” deviation for T>4 K as a result of a manifesta- two peaks corresponding tb and | modes. Interestingly
tion of softt modes. However, specific estimates using theenough, for a highly enriched samp(69.99% the main
results of Refs. 16 and 17 do not afford even a crude descrigpeak inK(T), right at the maximum af,,~16.5K, turns
tion of the observed deviation. out to be associated withmodes. For a sample with 96%
As noted in the Introduction, the hydrodynamic viscousenrichment, on the other hand, the dominant contribution to
flow regime for phonons is treated in the literature. If thisK(T) at the maximum is due tbmodes. The influence df
regime is in fact realized, it leads to substantial growth of themodes is partly veiled due to isotopic scattering. This ex-
thermal conductivity on the left side of the temperatureplains the shift of the maximum by a few degrees4 K)
maximum. At present, evidence for this regime has been exoward lower temperatures for the sample with 96% enrich-
plicitly observed in crystals of solid heliutisee Refs. 7 and ment in comparison with the curves for the highly enriched
8, and also Ref. 9 Specifically, at the lowest temperatures (99.99% sample. For the natural sample, under conditions of
T<0.6K the phonon mean free path fhle due to anhar- strong isotopic scattering, the role binodes is somewnhat
monic collisions turns out to be less than the diameter of thenhanced relative tomodes, and the maximum is raised by
sample. In the temperature range 0.6—1K we higy€d, a few fractions of a degree.
Irl>d?, wherely andlg are the mean free paths corre- We now determine the mean free patrcorresponding
sponding to normal and resistive processes. This then yield® the phonon mode aftype (i=1,t). We have



JETP 87 (5), November 1998 A. P. Zhernov and D. A. Zhernov 955

(8) emerges alT=4 K in a substantial way.

Note that under conditions of Poiseuille flow, the exis-
HereC, is the partial contribution to the lattice specific heatt€nce of second sound becomes possible, that is to say, 0s-
from theq modes, and, is their group velocity. cillations of the density of thermal excitations. A similar ef-

In the temperature range under consideration with théect is observed in heliuhand probably in NaF and Bi as
parameters7) and using(8), it turns out not to be the case well.® It would be interesting to investigate second sound in
that ly<d<I, for transverse modes. For longitudinal Perfect germanium crystals. _ _
modes, the situation is the following. It can be shown that ~ This work was suggested by V. I. Ozhogin and carried
1<I1{)), whereupon the mean free paths differ substantially©ut with the support of N. A. Chernoplekov.

At the same time we have

1 C C Knudsen flow. In natural samples of Ge, isotopic scattering
|i Uq

(i)
vqlg

*)E-mail: zhernov@kurm.polyn.kiae.su
lc 5-108T°
IN T5D| V. I. Ozhogin, A. V. Inyushkin, A. N. Toldenkov, G:.EPopov, E. E.
. . . Haller, and K. M. Ito, JETP Lett63, 490(1996.
whereTp,=330K is the Debye temperature for longitudinal 2p. asen-Paimer, K. Bartkowsky, E. Gmelin, M. Cardona, A. P. Zhemnov,
modes. Thus, aT>4 K, |; is greater thary, but of the A. V. Inyushkin, A. V. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E.

same order. Generally speaking, conditi6is not satisfied. ~ ,Haller, Phys. Rev; 86, 9431(1997.
Thus. in the present case. there is no developed h dI’O-R' N. Gurzhi, Zh. Kksp. Teor. Fiz46, 719 (1965 [Sov. Phys. JETRY,
; p ' p YAr0-490 (19647]; Usp. Fiz. Nauk94, 689 (1968 [Sov. Phys. Uspll, 255

dynamic regime, but effects associated with it should be ob- (1969].
served to a certain extent in Iongitudinal modes. 4E. M. Lifshitz and L. P. Pitaevski Physical Kinetics Pergamon Press,
We emphasize that when the surface of the samples igOxford (198

. . R. Berman, Thermal Conduction in SoligsClarendon Press, Oxford
polished,l - grows. In the simplest case the resultant change (1976.

in the relaxation time can be writt¢h 8V. L. Gurevich,Kinetics of Phonon Systerfis Russiaf, Nauka, Moscow
(1980. .
1 va1-P 7L. P. Mezhov-Deglin, Zh. Esp. Teor. Fiz49, 66 (1965 [Sov. Phys. JETP
T_b - E 1+P° 22, 47(1966]; Zh. Eksp. Teor. Fiz71, 1453(1976 [Sov. Phys. JETR4,
761(1976)].

P, which characterizes the fraction of quasiparticles specu-~L. P. Mezhov-Deglin, Fiz. Tverd. Tela2, 1748(1980 [Sov. Phys. Solid
larly.reﬂeCted from the boundaries, ranges from 0 t.o 1. Ac- ggfalt\le.zési?igr(llg\/?ol%. Grigor'ev, V. G. Ivantsov, .EYa. Rudakovski
cording to Ref. _2' as one goes from “lapped” to “polished” G sanikidze, and I. A. Serbiolutions of Quantum Liquidén Rus-
Ge samplesP rises from 0.2 to~0.4. sian] Nauka, Moscow(1973.

We emphasize that as the specularity of the surfacé‘;H- B. Casimir, PhysicdAmsterdam 5, 495(1938.
(Characterized by the paramet%)’ and consequently the dif- J. M. Ziman, Electrons and Phonon<larendon Press, Oxford 960,
ferenqe betweety and | decreases, the deyiation of the 122'. B. Soffer, J. Appl. Phys38, 1710(1967).
experimental values oK(T) from the theoretically calcu- 2D. P. Singh and Y. P. Foshi, Phys. Rev.1B, 3133(1979.
lated values increasdsee Fig. 1h 4D, R. Frankl and G. J. Campisi, Proceedings of the International Con-

To summarize, in the temperature range 1.5-4K, the ference on Ehonon Spatterlng in Solifaris, 1972, H. J. Albanfed), La
change in the behavior of the thermal conductivity of germa-ls\?vc_)csu_mﬁgggm Erf‘?s,f;af,ﬁ[";fy?f’Rpégg' 801(1969.

nium as a function of the degree of specularity can be de®A. D. Zdetsis and C. S. Wang, Phys. Rev1B 2999(1979.

scribed qualitatively by the Ziman—Soffer theory. In perfect,, Resul Eryidt and Irving P. Herman, Phys. Rev. &8, 7775(1996.
highly enriched samples at=4 K, when most collisions are K- McCurdy, H. J. Maris, and C. Elbaum, Phys. Rev281077(1970.

with the walls, the phonon flux is observed to deviate fromTranslated by Paul F. Schippnick



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 5 NOVEMBER 1998

Spin fluctuations and the superconducting state in doped insulators
A. I. Agafonov and E. A. Manykin*)

Institute of Superconductivity and Solid State Physics, Kurchatov Institute, 123182 Moscow, Russia
(Submitted 23 July 1998
Zh. Eksp. Teor. Fiz114, 1765-1784November 1998

We propose a model of electron pairing via spin fluctuations in doped insulators. The bare states
for the superconducting condensate correspond to impurity bands in the original band gap

of the undoped material. We obtain a complete set of equations for the superconducting state. We
show that fermion pairing in impurity bands of extended states is possible, and thus so is
superconductivity, if localized spin-0 bosons are produced. The latter are necessarily accompanied
by localized spin-1 bosons, which are responsible for the relationship between singlet and

triplet pairing channels of quasiparticles. ®98 American Institute of Physics.
[S1063-776(198)01511-X

1. INTRODUCTION the Fermi level, and can contribute to the formation of a
superconducting gap.

Ever since the discovery of high-temperature supercon-  Starting with the notion that the Fermi level is pinned in
ductivity, it has been the subject of an enormous amount ofmpurity states of doped cuprates, the superconducting gap
experimental and theoretical research. Nevertheless, neithehould open inside the insulating gap. In this case, the zero-
the pairing mechanism in the superconducting state nor theias tunneling conductance pe&8CP)'® and absence of a
origin of charge carriers in the normal state of doped cu-superconducting gap in very low enregy optical spéétfia
prates have been elucidated. It has also remained uncleapntrast to BCS superconductprewust be considered a
whether the mechanism of superconductivity in 3D manifestation of these states. Assuming that the nature of
bismuth-based oxideBa; _,K,BiO;_, and othersis iden-  these states is determined by polar&i®, impurity
tical to that in layered copper-based oxidgsdoped mate- complexes or bistable impurity trapping centefStheories
rials like La,_,Sr,CuQ,, YBa,Cu;O;_,, etc., andn-doped interpreting properties of high-temperature superconductors
Nd,_,CeO,_,). in terms of the Fermi-liquid theory, BCS theofyot neces-

The parent cuprates usually have an antiferromagnetigarily with phonon-mediated pairing between quasiparticles
insulating state. The magnetic phase disappéaas low and quantum percolation theory have been devgloped.
doping levels. When the doping level is increased, the mate- ©On the other hand, many researchers, doubting that these
rial goes to a relatively low-conductivity metallic phase with CONCEPLS apply to properties of the cuprates, associate high-

a high T.. Previous research shows that HTSC materiald€mperature superconductivity with strong electron correla-

; : ,22-27 H H
belong to the class of doped insulators, and impurities exert Ro> N these materials’ This second ap_proach IS
dominant influence on phase transitidis ased on the most commonly adopted assumption that high-

. . L emperature superconductivity derives from processes occur-
The cuprates have unusual anisotropic properties in thE P P Y P

insulating, metallic, and superconducting phasésTheir fing in CuG; planes. This assumption may turn out to be

) . . . true, as long as the Fermi level in the doped cuprates is
experimental behavior stimulated the development of various .. that part of the electron spectrum whose density of
theoretical approaches to describing the properties of the

terials. Th hes fall into t Hates is governed by a Cu@®lane! Since the available
ma erflta S esehappro?]c es talin Ob\.ll\.’(.) grpuphs. experimental data indicate the importance of spin fluctua-
After it was shown that carrier mobilities in the cuprates ;. in doped systeni£328we consider it important to di-

are comparable to the Mott-loffe—Regel .I|mme(2/ﬁ),. It rect the reader’s attention to an investigatfol of the pair-
became clear that localization effects are important in thesg]g mechanism due to spin—spin interactions between charge
systems. The first group of approaches is based on the factriers in CuQ planes.

that, as follows from experimental data, the Fermi level is  Note that, although electronic states can appear in the
located among the electron states produced by doping in thgitial insulating gap under doping, the motion of the Fermi
charge transfer gap of the material, for instance in the gapvel across the insulating gap @sdoping transforms to
due to charge transfer between ®2and Cu3i-bands in  n-doping is inherent in models of strongly correlated elec-
cuprates:*®~! These impurity states, known &®-gap trons(see Ref. 1 and references thejeiat the same time,
states form in all doped compoundsTypical spectral fea- experimental data indicate that Fermi levels pp and
tures have been observed both in the optical conductiify  n-doped compounds are close, notwithstanding the wide in-
and in electron spectroscopy‘™** Measurements obtained sulating gap(1.5-2 e\.*

by angle-resolved photoelectron spectrosc@dPES have We are confident that apart from detailed investigations
established that both localized and extended states coexist @t the mechanism of superconductivity in CuPlanes, the

1063-7761/98/87(11)/11/$15.00 956 © 1998 American Institute of Physics
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feasibility of different ways of producing superconducting replaced by K* ions. The valence electron of K goes to
states must be studied. At this point, we focus primarily onsatisfy the bonding requirements, so a singly occupied accep-
the search for superconductivity in semiconductoasid in-  tor level arises.
vestigations of electronic mechanisms of superconductivity =~ Taking into account the Coulomb correlations in the
in alloys® A long time ago, Pine§ did not rule out the original impurity orbitals, we represent the Hamiltonian of
existence of superconductivity in degenerate doped semicofihe doped system in the form
ductors. Presently, it seems worthwhile to analyze this pos-
sibility, and in particular to study superconductivity in impu-
rity bands in the absence of translational symmetry. This  H="% ¢ a' a, +>, €08, ,+ EE Unj,nj
study is also important if we are to search for new supercon- ko io 275 ’
ductors whose conductivity is not necessarily determined by
planes of their lattices. + E {ijaﬁrajﬁ H.c}, (1)
In this paper, we present a theory of superconductivity in Ike
doped insulators. We assume that the Fermi level can be
pinned to the impurity bands that are deep inside the insulayhere a,,, and a;,, are the usual annihilation operators of
tor gap of the undoped material. Then the superconductingriginal band states and impurity states labeled bgespec-
gap should open within the initial gap. States that feed theively; o= +(1/2)(1,]) is the spin indexk is the three-
creation of a condensate in the superconducting state shoulfimensional electron wave vector in the band state with en-
correspond to impurity bands. This approach, probably, cagrgy ¢,;s, is the impurity state energyV,; is the
be also applied to HTSC materials. hybridization matrix element; and is the on-site electron
Previously we considered formation of impurity bandscorrelation for impurity levels.
of both extended and localized states in the model of doped  Hamiltonian(1) can be applied to doped cuprates for the
insulators with electron correlations on bare impurity orbitalsfollowing reason. When substitutional impurities are intro-
and hybridization between the orbitals and initial insulatorduced, for example, into La,Sr,CuQ,, La®" ions in LaO
band stated*** These narrow impurity bands of extended |ayers are replaced randomly by2Srions. Both valence
states are generated in the initial gap due to hybridizationglectrons of Sr are involved in valence bonds, so formation
which leads to virtual single-electron transitions over theof a singly occupied acceptor impurity orbital might be ex-
impurity ensemble: initial impurity site> band state~ an-  pected. The Cu@layer of the cuprate is between two inter-
other site— band state, and so on. We proved using themediate La_,,M,,,0 layers. Since the centers of impurity
self-consistent Hartree—Fock approximation that anpritals are located off the CyQplane, the interaction be-
insulator—metal quantum transition occurs in such a systemween impurity orbitals and band states of the Guglane
as the impurity concentration increases. This approximationeads to their hybridization. Our analysis is limited for sim-
however, does not take account of spin fluctuations in a syslicity to the single-band approximation for the density of
tem of correlated electrons. states of the Cu@plane. When the strong anisotropy of
We suppose that a superconducting state can be due prates is taken into account, the Hamiltonian for a single
spin fluctuations in a doped material. In this study we utilize|attice cell not coupled to other cells by charge transfer along
a model Hamiltonian for the normal and superconductingthe c(z) axis can be expressed in the form of Ef) in a
states. We derive a complete set of equations for normal angyo-dimensional space with corresponding wave vectors.
anomalous Green’s functions and show that the system has The Nd,CuQ, structure is similar to that of L&uUOQ,,
several order parameters that determine the state of th@ie only difference being the location of oxygen atoms
doped material. Two different types of these parameters colpff the CuQ, planes. Under substitutional doping in
respond to spin fluctuations. One, associated with norma\d,_,Ce Cu0Q,, Nd** is randomly replaced by ¢& and a
Green's functions for localized states, initially shows up insingly occupied donor level can arise in the original gap. In
properties of the insulating and metallic states of the dopeda,CuQ,,, additional oxygen atoms can occupy interstitial
material. At the same time, the order parameters of the othgjositions near CuQplanes. Then all valence electrons of
type associated with anomalous Green’s functions, which argxygen atoms can take part in formation of impurity bands.
nondiagonal in the spin variables and diagonal in the impu-  Note that the impurity centers that preserve the Fermi
rity sites, can lead to a new nonphonon channel of quasipafevel and are located between cuprate plafres in these
ticle pairing deep inside the initial insulator gap of an un-planes in doped cuprates were investigated by Philfips.
doped material. Solution of the problem with Hamiltoniaiil) in the
Hartree—Fock approximation yields a rather complex pattern
of impurity bands with localized and delocalizésktended
states in the insulator gap. Changes in this pattern of impu-
2. MODEL rity bands with the impurity concentrations near the Fermi
level determine the insulator—metal phase transition. In insu-
The formation of impurity states due to substitutional lators with narrower bands of the Bloch states, this transition
impurities is quite common in doped insulators. For ex-occurs at lower impurity concentrations. In what follows, we
ample, when a substitutional impurity is introduced intogive a solution of the problem with Hamiltonigd) corre-
Ba;_,K,BiO3, B&™" ions in the host lattice are randomly sponding to the superconducting state of the system. We will
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show that a superconducting phase in the doped material cgn 4 (+)oc (+)o0
emerge owing to nothing but spin fluctuations. The calculaq ! 7r T o= 24 |Fj, Yt—ty)= —; ViiFy, =ty
tions will be performed at zero temperature.

_ og,—0,—0,01
H (t,t). )
Here we use the following notation for two-particle Green’s

3. EQUATIONS FOR THE GREEN'S FUNCTIONS functions emerging in our calculations:

Let us introduce the normal Green’s functions KO0 o0

iii 7 (tltl):_iU<N(J'l—0'|-|—‘-éja(t)pa‘~'+

j,—o
GZlfT]i(t,tl):_i<l\lo'lfo'|-I-"éno'(t)"%iJr (t1)|NO>

Moy

X (1)aj,-o(t)ay, (t)INg),  (6)

and anomalous Green’s functions . )
N H 77 () =Uexpt = 2 ut)((N+2) -,
Fom H(tt2) = exXp(= 21 ut)((N+2) 4 et
" ' X|Ta/,(Da] (D3 —,(Da,,

X (t1)[No). (7)

F‘;‘;l(t,tl) =eXP(ZiMt)<No|T3n,g(t)5nlal(t1)| Wg now transform to the ir_lteracti_on pictqre on the right-
! hand side of Eqs(6) and (7), with the interaction operator

X|Ta,,(H)a, . (t1)[No),

X(N+2)gs0.),

' l> Hint(T):H?nt( T)+Hi%t( 7),

where we have used operators in the Heisenberg picture Wit qre HE () and HS
n

R . : . 2i(7) are determined by the last two
Hamiltonian(1); » denotesk or j; u is the chemical poten-  orms of Eq.(1), respectively, with operatoss, , anda’. in
ial i ing i ! ! no 7o
tial in the system. Averaging is performed over the syste

Mhe Schrdinger picture replaced t) anda’ (t) in the
ground states with total particle numbétsandN+ 2.3 The ger p P B3,(1) 7o (V)

. interaction picture. The unperturbed Hamiltonian is ex-
subscripts at the ground Statm01—0> and |(N+2)U+‘Tl> pressed by the first two terms on the right of Ef). As a

indicate the existence of additional spins for a given totakesylt, we have
number of particles, as compared to the spin stdtgs and

|(N+2)0). K, 7t =—1U(N, | T[S(=)aj,(Da] .,
At this point, note the following circumstance. Among N
the Green’s functions introduced previously, there is, for ex- X (t)ay - o(t)a,, (t)1INo)e, (8

ample, the anomalous Green’s functidd;”'". Given
Hamiltonian (1), the emergence of this function does not
confl?ct vyith the Pauli principle. '_rhe poinF is that we are H;f"’f""”(t,tl):Uexp(—2i,ut)<(N+2)(,+,,1
considering a system of interacting fermions, so operator K

and

aj’/(t) acting on|N) does not change the population of a X|T[S(=)a,(Da]_,(t)aj
specific localized(site) state by 1. The average occupation wat (t)IN 9
number of any localizedsite) state can be assumed to be ( )an( ]INo)e, ©)

much smaller than. 1. Th|§ is the fundgmenta! dlfference b?\'/vhere only connected diagrams are taken into account,
tween systems of interacting and noninteracting particles, iQhich is indicated by subscrift

which pccupatlon ngmbers can be elther.O or 1. All connected diagrams in Eq¢8) and (9) can be di-
Using the e'quajuon of motion .for He'Se”b?rg operatorsijeq into two groups. One of them contains diagrams cor-
based’on Hamiltoniaril), we obtain the equations for the responding to all possible pairing among the four operators
Green's functions introduced previously: in the Heisenberg picture on the right of E¢8) and (7).
P Going to the interaction picture, the right-hand side of Eq.
(i E_8k> ngl(t,tl)z SknOaa,O(t—11) (6) becomes

—iuU <N(Tl—U|T[S(oo)aja(t)a:—a(t)]| N0'1+0'>C<N0'l+o'
X |T[S(w)aj,f(r(t)a;(rl(tl)ﬂ N0>C 1

+HIU(Ng, | T[S(®)aj,(1)a) - o(DI(N+2),, - )c

@ VigGri(t—ty), 2)

. d oo oo
(IE'FSk_ZM)F(k;) l(t_tl)_—— Ej Vl-kFJ(;) 1(t_t1),
(3) X<(N 2)(r1—(r| I[S( )a;r,frr(t)a;(rl(tl)”NO)C1

—iU(Ny, - | T[S()a (1)@, (t1)1[No)e(Ng

X[T[S(=)a] _,(t)aj - o(1)][No)c,

which is, by definition, equivalent to

H a oo oo
(| E—so)Gjnl(t—t1)= 5j,l50015(t—t1)+; VikGiey!

X (t=ty) +K 7T t), (4)
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FIG. 1.
iUGﬁ""(O*)G;”"’l(t,tl)JriUFﬁ""(O*)F}“f”’”l the Smatrix in Eq§.(8) and(?) is cqupled only to the opera-
K K tors of thisSmatrix expansion. Since the operator of reso-
X(t,t) —iUG; " ( —0+)G;T7’7"1(t,t1). (100 nant scatteringhybridization HZ,(7) contains only a pair of

operators, the diagrams corresponding to the first-order terms
in the Smatrix expansion in terms dfi},(7) have been al-
iUF}f)”’_"(0+)Gj_”"'”1(t,tl)+iUGJ-_]-‘T"’ ready taken into account in Eq&L0) and (11). In the first
order inH(7) we have for Eqs(8) and (9) twenty-four
simple diagrams of the second group. After partial summa-
tion of more complex diagrams, the bare Green’s functions
are replaced by full functions. As a result, we obtain dia-
The diagrams for Eq410) and(11) are shown in Figs. grams shown in Fig. 2 foK[;" "~ "“!(t,t;). Each wavy
15(10)and 1b, respectively. Here thin lines correspond (Gine corresponds téU. The summation is performed oviy
Gji’”", wavy lines toiU. The first two diagrams for Eqs. ang ,, and integration over. In front of the resulting

(10) and(11) are related to the on-site interaction with spin- expression, the factor{1)?~“2 must be added. Here we do
flip processes, whereas the last loop diagrams, which are the

H . , T O0,— 0,01
Hartree—Fock contribution, result in the impurity level renor- not show the corresponding diagrams H)EJ 7 (t.ty).
malization.

Similarly, we transform the right-hand side of E@) to

(+)—0o,0 : —0,—0
X(0+)FJ77 1(t,t1)_|UG”

X(=0)F[ 7L, ty). (1)

They are similar to those of the diagrams in Fig. 2, but the

H H : L. O)oo
Another group contains all diagrams in which, after thethin line entering tf(]g;solte,G}j) (1), must be replaced by
expansion of th&matrix in terms ofH,(7) and application the outgoing lineGj”“?(—t), and the solid liness;; (t,7)
of Wick’s theorem, any of the four operators to the right of and F”l(t,r) associated wittG(®77(—t) must be replaced
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by the full Green’s functions5; ;(7,t) and Fj(fl)(t,T)- The N, is the concentration of substitutional impurities. Here we
calculation rules for these diagrams are the same. have assumed that the impurity level is singly populated.

In the second order of ti®@matrix expansion in terms of Now let us discuss order parameters in the studied
Hi(7), we obtain for Eqs(8) and(9) T-averages of opera- model. The loop diagrams in Fig. 1 represent renormaliza-
tors containing terms of the second order Hi§,(7), the tion of the bare impurity levek, due to on-site Coulomb
product ofHY(7,) andH,(7,), and a term of the second correlations in the Hartree—Fock approximation. This renor-
order in H{ (7). Note that theT-average containing the malization is determined by the average population numbers
terms of the second order in hybridization yields diagramsf the localized orbitals, which can be expressed in the form
that have already been taken into account in Ef6) and
(11). Further, the T-average containing the product of ngj(r(_OJr): lim f d—wG""(w)exp(iwt)

HY(71) and H{(7,) yields diagrams some of which are o) 2T I

taken into account in Eqg10) and (11) or are among the L

diagrams of Fig. 1; others are taken into account in the par- s f“ cop N

. . . L . =l— | o =iA; 5. 1
tial summation for the diagrams shown in Fig. 2. The situa- ! T %dw MG}’ (@) =14 o (19

tion is similar in higher orders of perturbation theory. Only

the T-average, containing terms of the second order inSince impurity atoms randomly occupy equivalent sites of
HS(7) generates new connected and topologically distinthe crystal lattice, there are only the following options:
guishable diagrams with three wavy lines. After partial sum- 1) Aj , is independent of ando. As was showr;’ this
mation of more complex diagrams, one can replace the bargase always corresponds to a paramagnetic metallic state in
Green’s functions with full Green’s functions. The diagramsthe Hartree—Fock approximation.

are not shown here. 2) A, is independent of andA; ,# A, _,. This situa-

It is clear that in Eq(4), which is written, for example, tion corresponds to either a magnetic insulating state or a
for GJ| , the two-particle Green’s functiok(;;}'(t,t;) cor- ~ magnetic metallic state in the Hartree—Fock approxi-
responds to a set of diagrams starting with a thin linemation:*

G{P'(t) and ending with full Green’s functior8|(,ty), 3) At a specificjo, we haveA; ,=A;, Aj —,=Az,
Gj”k(ﬂtl). F,(+km(7.t1), and F](+k)”(7'vtl) (integration is andA;#A,. But for an ensemble of impuritiey; , as a
! ! ! function ofj at a giveno randomly assumes the valugs

erformed overr and summation ovejr;). This allows one L
b 4 &) nd A,. For example, forjlvﬁjoAjl’U:Az and A,

to introduce vertex parts to express two-particle Green'$

, T O

functions in the form =A;. This case always corresponds to a paramagnetic state.
Note that it is of interest to investigate the phonon-
o,—0,—0,0 0.0 oy.0 diated pairing mechanism in narrow impurity bands in the
K (t,t,) = drA%72(t, 7)G 2 7Y 1t me : . . :
iiim (t.t) jgz i (t,7) Iy (7ty) paramagnetic state).3ln a magnetic metal, we did so previ-
ously, assuming triplet pairing. In the paramagnetic phase,
+ E dTBJf’j'v"'Z(t,T)F}Jr;"Zv”l( .ty the impurity bgnds are _degenerate in _the_ spin variable.
1,02 1 Therefore the singlet pairing channel, which is important for

(12) cuprates, is also active in this phase.
Moreover, the system has order parameters of two dif-

and ferent types associated with spin fluctuations. One is deter-
o mined by thec-off-diagonal matrix element of the normal

Hiy Tt ty) = D dTC]ij‘l‘Tz(t,r)fofl(r,tl) Green’s functions for the localized states:

J1.02

) G77(0%) = li jdwe”"( Jexp( —iwt)=ix
g,0p gp,01 b = |IIm —00. w)exp —lwt)=I Y
+j1202 dTD“l (t,T)Fjl” (7,t). ii . 2 i j
(16)
(13

The functionsA, B, C, andD can be calculated by summing hence

diagrams. Examples of such diagrams are given in Figs. 1
and 2, where hybridization effects are taken into account by
full Green’s functions, which directly follows from Eq&)—

Gj’j‘"’(o*): —(Gﬁ"’(O*))* =iAj .
It is clear that for the normal state, spin fluctuations in the
(5. . system are described just by
Equations(2)—(5), (10~(13) must be supplemented by The feasibility of a superconducting state in a system is
the equation for the chemical potentjalof the system: determined by anomalous Green'’s functions. An important
1 (& factor is the order parameter, which is determined by the
N+ Nim:;J' do ImTrG(w), (14 o-off-diagonal Green's functions F{;)*~7(w) and
o Fﬁ""(w). These functions describe correlated creation or
where N, is the total number of electrons in the original annihilation of a pair of quasiparticles localized at one site,
energy band of the insulatdfor definiteness, in the valence which can be considered a localized zero-spin boson. We
band of the insulator or Cu{plane in the case gi-doping; introduce the notation
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_ (do_ o -
Fio(0%)= nmjﬁlzjj (w)exp—iwt)=iB;. F};”T:—F,.(% vklngkW—ﬁ*UGin—AUF};W).
t—0
17 (25)
Then we have Similarly, we obtain for localized states

—0,0 _ (+)o,—0o o -
F77(0%)=—i8;, FLI7 7(0%)=ip* o =&,

5JJ1+2 V]kGLTl—)\UGJlITl—IBUFJ(J‘:-)lT), (26)
k

(+)—o,0/A+\— _;

FLO-o0(0 )= ~igF.

The integrodifferential equation$2)—(5), (10—(17), GH=G§£> z Vi GJ.TTJ., (27)
which take the diagrams for the vertex parts into account, is i1 vt

complete from a mathematical standpoint. This is a compli-

cated set of equations. In the final analysis, it is important thjlelzé”<2 Vi Gij —\UG]] +BU F}ﬂ”T), (28)
show that solutions describing superconductivity in impurity K

bands are feasible. A specific precursor of this is formation

of localized bosons, and accordingly the existence of a nonG/ =Gig’ >, ijlGjllTj , (29)
zero solution of Eq.(17). The on-site interaction between It

bare particles, however, is repulsive. Therefore it is impor- -

tant to analyze the renormalization of the on-site interactiorFJ(fl)”: - Fn(E kafq?”*‘ﬂ*UG,-TJTI—)\UFJ(J-?”),
due to hybridization and spin fluctuations. This renormaliza- “ (30)
tion is determined by vertex pars B, C, andD introduced
previously. This analysis will be performed below in an ap-
proximation in which for the two-particle Green'’s function
one takes into account only the diagrams in Fig. 1 and in

case ], whenA; , is independent of bothando. FHTT =
11

F(kjf)“:_':l((ok) IE lekF](Irj)H’ (31)
1

_'ﬁ”(; ijF(k}*'l)TT_B* UGjlel_)\UFJ(j‘*'l)lT),

4. SOLUTION OF THE EQUATIONS IN THE PARAMAGNETIC (32
PHASE (H)TT (0) (H)TT
FT=—F vV, FUOTT 33
Note that either the parametar [Eq. (16)] or 8 [Eq. ki Kk 121 ELREY 33
(17)] can be chosen to_ be real becaqse Elq.does not " Here we have used the notation
change after the following transformation in the two spin
subspaces: G(w)=(w—g,)
a,—~a,expi¢), a, —a, exp—i¢), FiO(w)=(w+e—2um) "%,
where the phasé is constant. For definiteness, we assimne ~ . s N
to be real. Gu(w)=(w=eo+iUG;" “(=07)) 7,
Using Egs.(16) and (17), andF{'1(0%)=—ig*, we ~ 3 i iemomor 1
transform equation&)—(9) for extended states to Fi(w)=(o+eg—2u—iUG;;” “(-07)) "~
o © " SinceA; , is independent of and o, functionséﬁ" and
Gy (@) =Gy (w)< 5kkl+; ijijl(w))1 (18)  Fo are independent gf, which can be replaced Hy and of
o, which can be omitted. We next solve E@§8)—(33).
G}Q:éu(; ijlGlIk_)\UGijT_IBU FJ(;)”), (199 4.1 Localized states
1

Consider Egs.(26) and (27). Substituting the off-

diagonal matrix elemer®; . given by Eq.(26) into Eq.(27),
17 (V) Gl Ik
G, (@)=Gig (w); ViiGli, (@), 20 i !
~ -1 ~ ~
G}Q:G,,<k2 ijlG&Ik—)\UGkaTvL,BUF}:m), 1) Gl (G —NimIlezGu)=ijG}jT_AUG.|i§j Vi, Gili
1 1

F ! 1=—F( 2 Vi (22) —,BUGuleﬂ Vi, Fi

(D= _F (£)11 1m_ (511 G V. I
ij = F||(kzl Vklijlk +B*UGJK )\UF]k ), +G”kl;&k2’jl#:j Vlevllleklj "

23 (34)

F(szmz —Ff&) ; ijF};lm, (24) For the impurity ensemble, the hybridization matrix element

Vy; has the form
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1 The solution of Eqs(35)—(38) yields expressions for the
——=VexpikR)), off-diagonal Green'’s functions expressed in terms of the di-
Vo agonal Green’s functions. Substitution of these expressions

where R; is the three-dimensional radius vector of fite  into Egs.(26), (28), (30), and(32) atj =, makes possible a

impurity atom andQ is the sample volume. In cuprates one transformation to a system of four linear algebraic equations

must replace) by S, the area of the CuOplane, and take for thej-diagonal Green’s functions. The latter functions de-

into account thaR; is the impurity two-dimensional radius termine the three desired parameters and spectra of localized

vector in an |ntermed|ate plane, for example, insSstates.

Lay _ ;M0 planes in La_,Sr,CuQ,. There is, however, a more convenient option: calculate
Summing ovelj; in the last term on the right-hand side the sum and difference of the paired equati@®®, (36) and

of Eq. (34), one must average the result over random distri{37), (38). We have

butions of impurity atoms. In calculating these configuration

averages, we have utilized the technique developed by Yor‘?‘l()‘)(

ij:

0 = (+ +
[+ G = caF O (FELT=FT

ezawa and Matsu_ba?éAs a res_ult we hqve found that the — kj(cl()\)(GjTjT_'—Gjle)+C3(Fj(j+)”_ FJ(J-“”)), (39)
last term on the right of Eq.34) is proportional to
-1

, ay(—\)(Gl] —Gi)) — caF G (FUG T+ R

< E expli(k=kpRj ) ) =Nin Z d(k;—k)=0, . .
ki#Kj1#] av =Vy(ca(— )\)(GTT—GLT)+C3(F51 T4 |:J(j )TT))’

where( . . .),, denotes averaging over all possible configu- (40)
rations of the impurity ensemble. Similar expressions are ob- 1
tained in dealing with the pairs of equatiof®8) and (29),  ax(—M(FUT+FETH —ci G (Gl -Gi))

(30) and (31), and(32) and (33). In view of this result, in

=—V, - (O L e * gl gl
what follows we neglect terms with such double sums. Vig(Co( =N (Fj +F i) +¢3 (G =Gy,

Substituting (41
_ -1

> Vi, Gli=GHGW v, Gl a,(\)(FOT=FOIM —ci Gl (G +Gy))

iZ] 11 Ja kk ki I ] ] ]

= — Vi (C(N)(FEVT —FOTh L ex (Gl +GL).
according to Eq(29) and i (C2(N) (F; i )G +Gy)
(42)

(D1 = — FCATFO) e ot ~
jg‘j Vi, Py Foi F- ViiFj Here we use the notationl( N)=1-AUGj ,co(N\)=1

+ \UFy (N = (MG~ NV By ax(— \) = ¢,
(= NFQ_—NimVZFy c3= BUG ¢} = g* UF,,.

Now, using Eqs(39) and (42), we can derive, for ex-
ample, expressions fo6|/ +Gi and FGT—FCTT in

according to(31) into (34), we obtain an expression relating

the off-diagonal Green’s function§,| , G/, andF{; ),

to thej-diagonal Green’s function§ ;' , G’ andF(J+)“
Applying this approach to the paired equatloils) and

(29), (30) and(31), and(32) and(33), we obtain terms of thej—diagqnal Green’s functions. Substitute the
N N B » former expression into the sum of Eq®6) and (28) for
(G "— NimV§|G”)GH+)\UG”Gf<ﬁ) Gi/ diagonal functionsj(=j,), and the latter into the difference
_ between Eqs(30) and(32). As a result, we obtain
— BUBIF QL F U = Vi (G +3 UGy Gy
(Gl +G} ) (w—eo—S)+BUZ(F| ' T=F|)THh=1 (43
+ +m
,BUGH ) (39 and
(0)~ (0)~ 2 & LT
NUG G Gl +(Gig NikaIGII)ij (FLOY —FOT (w0t e0— 20— Sy)
+BUBIFCOFCT = V(G +)UB, G +B*UZ(G]| +Gl)=0. (44)
—,BUé”F--“”), (36)  Here we have introduced the self-energies, which are func-
tions of A, u, A\, andg:
-p*UF G G +<F<°> ~NimVidFi) U

Si(w;N)=U(A—N\)
' s VZ[(C1(\)ag(N) — cacs FYy]
) 1 (45)

+B*U~|i||GTT—}\UT:'”F(+)TT), (37) + K 3-1()\)3-2()\) CgC4G(0) lF(O
B*UF G G”*‘(F(O) —NimVigFinF&g' Z(0\)=1+N, G,y

—NUF RO RO = — v (RGO Ve

x> ——
— B*UE, Gl -\UF, F(). (39) < ay(N)a(\)— et G FO,
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The solution 0f(43) and (44) has the form

V2[(ca(Ma;(\) —csci G ] “n Gl + Gl =Gl @i, AN, B), (49)
k 31()\)320\)—CscﬁGﬁg)ilF@ﬁ:t. where
Gioc= s Y 2112 2! (49)
(w+eo—2u—SH(N))(@—e9—S1(N))—|B|*U?Z(N)
and
FiO T =FiP T = — Fod @i w, AN, B), (50)
where
*UZ(w; A, 1, \;
From B*UZ(w;A, u,\;B) — 51
(wteo—2u—S(N))(w—eg9—S1(N))—|BIU?Z*(N).

One can easily verify that the procedure applied to Egs.

(40) and (41), which yields definitions ofG/' G/ and

FGYTHR(DTT, results in expressions for these quantmes in

a form similar to Eqs(48), (49) and (50), (51) when\—
—\. As a result, we have

:Gloc(w;ﬂyAa_)\’ﬁ) (52

M_gl

Gjj —Gjj
and

Fj(j+)lT+Fj(j+)TT:_FIOC(w;M'A’_)\’ﬁ)' (53

Finally, we derive from Eqs(48)—(53) the j-diagonal
Green'’s functions

1 1
GjTjTZEGIoc(w;,UMAiAv,B)"_ EGIOC(‘U;M'A!_N,B)-

(59
1= 1 1
ij Gloc(w w,AN,B)— Gloc(w WA —N\,B),
(59)
1
Fjr)lT:_§F|OC(wYIU“lAI)\!B)
1
_§F|Oc(w;lu’!A1_)\|B)v (56)

FiHT= —Floc(w wAN,B)— ch(w A =N, B).

(57)

4.2. Extended states

Consider, for example, Eq$18) and (19). Substituting
the off-diagonalk matrix eIementGkkl given by Eq.(18)

into Eq. (19), we have

G}Q(w)(égl—klzk ‘vkll Gk, | FAUGH+ UM

=ViGli+ >, G/} (58)

kik 1] U1

(0)
Vik, Gk, Vigi, Gk -
In accordance with Eq$35)—(38), the Green’s function
G Vji. Taking into account the above reasoning, we ne-
glect terms like the last on the right-hand side of E§). As
a result, we derive from Eq$18)—(25)

Gl G- 3, VE6i%,

+ANUGH + BUFIT =V, Gyl (59
lito)| G- 3, Ve 6%,

+ANUG)] - BUFIITT =V, Gyl (60)
Fi () (,: 1_ Z Vk|F<0> )

+B*UGH —NUFI T == v, FELT, (61)
<+W(w(F - E VigF &OL)

—B*UGH —\UF{ = -V, FOITT. (62)

Equations(59)—(62) make it possible to obtain expres-
sions for functions that are off-diagonal in the lower indices
in terms of diagonal functions. We take the paired equations
(59), (60) and(61), (62) and calculate their sums and differ-

ences. As a result, we obtain
by(M(Gj+Gji)+BU(F) M —Fi™h

=V (Gl +Giy), (63)
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bo(M(Fi M =Fi T+ g* U (G + G} NimV&
2(M) (Fji )+ B*U(Gj +Gjy) (| g imVi, |
__ T EIT The T ok KTk by(N)
= -V (F% ), (64) 2
* *
bl(_’\)(Gik_ij”ﬂU(F}kﬂlukaﬂ”) f()\)G“” (Gl +Gl)= f()\) (68)
2
= V(G — G, (65
and the second pair of equations
bao( =N (Fji T +FRIT + BXU (G~ G) i
NV
- (+) lT ()11 1 imVk,l
Vik(Fi P 66 (Gli—Gﬁul)(G(kﬁ) —r_)\l))
Here we have introduced the notation !
pY (0) (+) lT (+)TT
by(A\) =G - 2 V2,6 +AU, e )\)F WFCUT T = (69)
Fit 2 FO) (11 L (1| g2 NimVi
b (=N)=Fy _kl;_k Vi Figk, =AU, (Flwe ' +Fod | Foiok— by(—N)
Using Eqgs.(63)—(66), (18), (20), (22), and(24), we ob- B*U ©L 11 it B*U
i i i i : —— G (G Gy)=—7——. 70
tain the first pair of equations: T (=N (G — G by (—N) (70
Gll+Gi (G(O) ! Nimvil') The solution of Eqs(67)—(70) has the form
4 _
( kk kk bl()\)
G+ Gig=Gex(k,w; 1, AN, B), (71)
,BU
_ = (,:<+m FCih=1 67)
bl()\) K F ik ' where
-1
F = bM)W
ext (0) (0)*1 20 12\ 2 ’ (72)
(G _bz()\)W()\))(F—k—k_bl()\)W()\))_|B| U W=(N)
and
FUd T = FOk T =Fex(k 01 ,A N, B), (73
where
*UW N
B () (74)

<G<°> —ba(N)W(N))(FQ

Here we have used the notation

NimVe
by(\)by(N)—|B|2U?’

W(\)= (79

The expressions forG))—G}} and FUT+FIT
equal the right-hand sides of EJ31) and(73) after substi-
tuting A— —\ in Egs.(72) and (74).

Finally we have the&-diagonal Green’s functions

Gexd K, w5, AN, ﬂ)+1Gext(kwMA —-\.06),
(76)
1
Gll< Gexd K, ,AN, B) — 5 Gyl K, 05 0, A, — N\, B),
(77

—b;(MW(N))—| BI2UPWA(N) |

+
FCh

)T 1 : ! ;
K :EFext(k,a),/-L,A,)\,ﬁ)_'—EFext(k!w!/*L!AY_)\’ﬁ)’
(78)

FU)i—_tp (k,; A)\B)+EF (k,0; ,A,— X\, B)
—kk o ext s VAN o Mexttf VM A, P
(79)

5. DISCUSSION AND CONCLUSIONS

We have derived the solution of E{{.) corresponding to
a superconducting state of a doped dielectric due to spin
fluctuations. In the approximation applied to vertex parts
(10) and(11), we have taken into account spin-flip electron
scattering. This process has generated the last two terms on
the right-hand side of Eq%19), (21), (23), (25), (26), (29),
(30) and (32). The amplitudes of these scattering processes
are determined by two spin-fluctuation order parameters.
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ReZ ImZ
12] 25
8 20¢
isk FIG. 3. Curves ofa) ReZ(w) and(b) Im Z(w) cal-
4 culated by Eqs(80)—(83) atN,=0.1 A ¢ (d=2, 3,
D,=15¢€V, Ny=0.IN,,e,=Dy+05¢eV, U
0 10 =0.5eV,u=25¢eV, andu—ey—UA=0.2eV: 1)
Vp=1.0 eV;2) 1.2 eV;3) 1.35 eV;4) 1.45 eV;5) 1.6
ev.
_4 St
-8 0
-04 -02 00 02 04 -02 -0l 0.0 0.1 0.2
w-u, ev w—u, ev
One of these parameters, is derived from Eq.16) and 1 1 1
expressed in terms of the normal Green's funct®p“” R(w)=— Z — — |
[Eq. (55)], off-diagonal in the spin index. It is clear that LK f(w)—e—i07 K §(—w)—e—i0
nonzero solutions fox can be obtained in both norm@he- (81)
tallic or insulating and superconducting states of the systemgngd
On the other hand, a nonzero solution for the second 5
paramete, which can be expressed using Efj7) in terms NimVi
, (1) o0 : dw)=otp————F"—. (82
of the anomalous Green’s funcucﬁfj [Eq. (56)], sig- w—gg—UA+pu

nifies the creation of localized bosons with spin 0 in the )

system. Besides these, the system should contain localized 't follows from Egs.(80)—(82) that the effective correla-
bosons with spin 1, as follows from Eq&1) and(57). It is tion enefrgyUZ IS a complex, even functlon 0b. '”_ our

the parameteid that determines functioii74), which de- calculations, we approximate the density of states in the va-
scribes a superconducting condensate in both sifglgt  €nce band by

(78)] and triplet[Eqg. (79)] quasiparticle pairing channels.

The possibility of a nontrivial solution of Eq17) is Ntz[Dg—gz]l’z, le|<Dy,
dictated by the contribution of poles or their neighborhoods pQ(e)=91 ™b (83
in the anomalous Green'’s functigb6), which are located 0, le|>Dy.

near the Fermi level on the semiaxis &2 w in the lower

half of the complex plane (I®<<0). This Green’s function Figure 3 shows RE and ImZ as functions ofe for

is a function ofZ, which is the renormalized energy of elec- _ . o - 12 :
tron correlations due to spin fluctuations and hybridizationvarlous hybridization parametew,=ViyNi ~. The function

. : . Z(w) is very sensitive to the relation betwegn and g
(46). If the second term on the right hand_ side of Ep) is LUA, but in any caseu=eo+UA, as follows from Eq.
less than the 1 due to the bare correlation energy, one c

easily find that Eq(17) has only the trivial solutior3=0, a(r‘JLS)' For the glven,u—so—UA=O.2l eV and at relatively .

N . . : small V,, there are only narrow regions far from the Fermi
hence the system is in a normal stéeéther metallic or in- level where RZ<0 (curvel in Fig. 33. The function InZ
sulating. A solution 8+ 0 exists if there is at least a region 9. °9.

near the Fermi level where Re<0. This would mean that 'S also relatively small and nonzero at a considerable dis-

. S tance from the Fermi levelcurve 1 in Fig. 3b. As V,, in-
the correlation energy Z in this spectral range has changed creases, the regions where Re 0 widen and overlap at the

sign from plus in the bare state to minus, and corresponds tlgermi level, as shown by curvés 3, 4, and5 in Fig. 3a. A
attractive interaction between quasiparticles. similar behavior is demonstrated by En(curves2, 3, 4, and

seIf-:-:r(])er:]sfil;rt-]ecr?tonir:rizfggsaz?ager)r\ﬁir?g(? 5 ’ EWhI;C?l%re 5in Fig. 3b. At the hybridization parameter corresponding
P y ) i to curves5 in Fig. 3 but a larger detuning parametgr

:2 ?r:gelzgortfég\ﬁ:f)hcek p:ssr”gi:xaotfio?(i 8 :aer: du;gs(,)t;mz:i —go—UA=0.3 eV, the curves of(w) are similar to curves
bp i 1in Fig. 3. At a higher hybridization parameter gf=1.9

suming that/, is independent ok and considering for defi- eV, however, the curves of Rw) and ImZ(w) are again

niteness the valence band of the undoped insulator, we de- . N
. Similar to curvess in Fig. 3.
rive from Eq.(46)

In conclusion note the following circumstance. We have
4 shown that in the Hartree—Fock approximation, the correla-
71+ 0.MNimVii R(w), (80) t@on energy renormglized by the_ hyb_ridization _can_be nega-
w?—(pu—e9—UA)2— N VZ tive near the Fermi level. But in this approximation only
single-particle states are generated, hence the system state is
wherew is measured with respect o, a normal one. In order to obtain a superconducting state in a
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Reversible softening of the intramoleculdg(2) pentagonal pincliPP) mode of a G, single

crystal in the face centered cubic phase has been studied as a function of laser power

density by means of Raman scattering. The average temperature rise in the laser excitation spot
has been determined using the Stokes to anti-Stokes integrated peak intensity ratio for the
Hgy(1) phonon mode. Softening of the PP-mode was found to be due to heating of the sample
resulting from laser irradiation, in good quantitative agreement with experimental results
obtained for uniformly heated samples. These findings are in excellent agreement with results
obtained by numerical calculations of the local temperature distribution and average

temperature in the laser spot based on calculated integrated intensities of the Stokes and anti-
Stokes bands of the PP-mode. These calculations were based on experimental data for

the temperature dependence of phonon frequency and width, absorbance, and thermal conductivity
in solid G © 1998 American Institute of Physids$1063-776(98)01611-4

1. INTRODUCTION resistant to laser irradiation and need considerably higher
laser power densities to initiate the photodimerization

Raman scattering has been, since the initial discovery ofeaction®® The softening of the PP-mode associated with
the fullerene family of compounds, a very useful tool for the photodimerization of & is irreversible. The phototrans-
their characterization. In particular, the response of the€ormed material is stable at room temperature and can be
Aq4(2) PP-mode to a variety of perturbations has been userkcovered only upon heating to temperature greater than 420
to probe many diverse properties of solid fullerene andK. When the laser illumination level is below the photo-
fullerene-based materials. These include temperature- ardimerization threshold, the PP-mode exhibits reversible soft-
pressure-induced orientation-ordering phase transitions anghing down to 1461 cm'.%~!
effects due to intercalation of solidggwith alkali metals:— Reversible softening of the PP-mode caused by laser il-
Raman scattering has also been used to study photodimerizi@mination has attracted special interest in Raman scattering
tion observed in solid & under conditions of intense laser studies of solid G, especially concerning its origitf. Ra-
ilumination, and dimerization caused by high pressure andnan experiments performed at 40 K have divulged the exis-
temperature treatmeft. The latter effects are clearly mani- tence of a second wide band downshifted-b§ cm™* from
fested by the considerable softening of #hg2) PP-mode. the 1469-cm® peak at a laser power density50 W/cn?.*2

The frequency of thé\y(2) mode initially reported by Increasing the laser power density leads to gradual softening
Bethuneet al® for the room-temperature Raman spectrum ofand enhancement of the intensity of this band. At the same
air-exposed g, films is 1469 cm®. It was also reported that time, the intensity of the 1469-ci peak goes down, and
the room-temperature Raman spectrum of oxygen-frge C disappears at a laser power density~800 W/cnt without
contains a broad peak at 1459 chywhich is more intense any detectable change in peak position. A softening of the
than the 1469-cm'® peak. Exposure of the sample to oxygen new band continues as the power density increases, and be-
leads to recovery of the 1469-crh peak® The 1459-cm* comes irreversible at laser power densities exceeding 500
peak in the Raman spectrum offvas explained by Rao Wi/cn?. Splitting and softening of the PP-mode is related to
et al® as a manifestation of the photoassisted dimerization ofhe high concentration of molecules in the lowest excited
oxygen-free G films under intense laser illumination. It has triplet state resulting from the high absorbance of laser ra-
also been shown that oxygen-exposeg ims are more diation, high singlet-triplet intersystem crossing, and the

1063-7761/98/87(11)/6/$15.00 967 © 1998 American Institute of Physics
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relatively high lifetime of the triplet statt" 231t is assumed experimental data for the absorbance and thermal conductiv-
under these conditions that each intramolecular phonoity of solid Cg, and are in good agreement with the experi-
mode will split into two Raman components that correspondmental results.

to the PP-mode frequencies in the ground and excited elec-

tronic states of the & molecule'? 2. EXPERIMENTS

This assumption, in our opinion, must be examined in Sinal tals of fullerit ¢ luti ¢
light of the photophysics of large molecular systems. It is Ing'e crysta's ot fullerite were grown Irom a solution o
Ceo In toluene. The primary £ material, with purity better

well established that the frequency of any intramolecular : N "
phonon mode of a large molecule, for example an aromatiI:han 99%, was obtained by the Ksahmer method! Data

hydrocarbon, is higher in the electronic ground state than ifere recorded on crystals in the form of thin platelets with

the excited state¥ The frequency difference determined via well-developed specular surfaces and dimension800

3 ; _
vibrational analysis of the electron-phonon bands in the lu 300X 50 um®. The uniform-temperature data were taken

minescence and absorption spectra varies from 5 to 10% (H;sing a nitrogen gas flow cryostat, for bath temperatures up
to 470 K. In this case the samples were glued to the finger tip

h i f .M he fre=
the corresponding ground state frequency. Moreover, the fre sing a high-temperature and high thermal conductivity glue.

guencies of the corresponding modes in the ground and ex- )
cited states of a molecule have fixed values and do not dd~0°M-temperature data were taken on freely located air-
pend on the populations of the various states, which are, iﬁxposed samples. . .

turn, related to the laser power density. Ig,Qhe frequency Raman spectra were reporded using a triple monoghro-
difference of the split Raman pedkss very small in com- Mator (DILOR XY-500) equipped with a CCD cryogenic

parison to the PP-mode frequency, and the change in frdletector system. The spectral width of the system was

N 1 - i
guency can be attributed to population of the excited triplet 5 cm*. The 514.5-nm line of an Arlaser was used for

statel? excitation. The laser beam was focused to a spot either

From another point of view, laser illumination heats the~1'25'u“rn in diameter using an Olympus 180objective, or

sample, which, as a rule, is the main reason for phonon modﬁl5 p#m in diameter using a Nikon 20 objective with a

softening. The heating of solidggunder laser irradiation, X adapter. The laser spot diameter and half-width are criti-
even at low laser power densities, is due to the relatively Iov\?al parqmeters, a!ong wiih the laser POWET, In asSessing and
thermal conductivity of this materid. This has been pro- comparing experimental results on laser-induced effects.

posed as an alternative mechanism for PF,_modghroughout this paper, we have adopted as the laser spot

softening® diameter and half-width the values measured at the 10% and

The experimental study of sample heating due to Iasei’L
irradiation involves a rather straightforward procedure, and i

/e intensity values relative to the peak, respectively. The
pectra were recorded in back-scattering geometry using a

based on analysis of Raman peak intensities in the Stok 4 plate as a scrambler and an Olympus microscope system

and anti-Stokes regions of the spectrum. We have performef(?r image processing. The laser power at the sample varied

. - - 0.06 to 0.3 mW for a laser spot diameted.25 um,
a detailed study of the softening of the PP-mode of solig C rom .
as a function of the laser power. Our motivation was to ex-and from 0.4 to 1.5 mW for a laser spot diameter.5 um.

amine the relationship between sample heating in the las 'I;he data for temperature dependence were recorded at. the
west laser power necessary for recording spectra to mini-

spot and PP-mode softening using the relationship betweef ; "
the total intensities of the Stokeg{w) to anti-Stokes Ao w) mize the effects of laser irradiation, and the temperature was
A stabilized for a long time to ensure uniformity over the entire

bands,
sample volume.
Is(w) o +o]® hw ! Peak positions and total intensities were determined by
Ias(@) |0 —w| x kgT)’ @ fitting Lorentzians to the experimental data. The accuracy of

the peak positions was about 0.25 ¢ To eliminate sys-
tematic errors in the peak positions, the experimental setup
was calibrated before every measurement using the 17976.7-
cm ! plasma line of a Ne lamp, which is located near the
%P-mode spectral position. The accuracy of the total peak
Rtensities was limited by the scatter in the background val-
s, and the error was therefore estimated to be no more than
10% of the intensity of the weakest anti-Stokes band. The

anti-Stokes regions, as well as in the high-energy r(_:'g'orfemperature stabilization accuracy during uniform tempera-
where the PP-mode is located, at room temperature, and flre measurements wasl K

various laser power densities. The results clearly indicate
considerable over_heatlng of the san_1p|e in the laser spo'%. RESULTS AND DISCUSSION
They agree well with results on the uniform bath temperature
dependence of the PP-mode frequency. We have also per- The Raman spectrum of ¢g single crystals, taken at
formed numerical calculations of the local temperature distoom temperature and normal pressure, contains ten main
tribution and the mean temperature in the laser spot from thstramolecular modesHg(1)-Hgy(8) and Ag(1), Aq(2).
calculated integrated intensities of the Stokes and anti-StokeEheir frequencies are very close to those previously deter-
bands of the PP-mode. These calculations were based enined: the differences do not exceed 2—3 ¢mh® In addi-

whereT is the mean temperature in the laser spgt,is the
laser frequency, and is the phonon frequency, appropri-
ately corrected for the® scattering efficiency factdf Ef-
fects related to the frequency dependence of the optical ¢

resonance conditions. We have measured detailed Ram
spectra of G single crystals in the low-energy Stokes and
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) regions at room temperature, for various laser power le¥éls) 0.3 mW,
FIG. 1. Dependence of the PP-mode frequency of soligo@ laser power b) 0.15 mW, ¢ 0.06 mW. Laser spot diameter1.25 um, Tpu=300 K,

density at room temperature, laser spot diamet@5 um (open symbols Tepotis the mean temperature inside the laser spot determined frorfLEq.

Solid symbols show the dependence of the PP-mode frequency of gglid Ca TOP_509 K: b T*P=401 K- exp _

= : = ;0 ToP=340K.
on the uniform temperature of the sampl,, for a fixed laser power ) Topot ) Topot ) Topot
density ~200 Wi/cnt. Solid lines are linear least-square fits to the experi-

mental data. . . .. .
perimental accuracy in the peak position and estimated tem-

perature in the laser spot. At room temperature, the fre-

tion to these bands there are some very weak Raman peafjsency of the PP-mode i81467.3 cn!, and it decreases to
that may originate in second-order scattertfigthe most 1463.7 cm! at 470 K. The temperature dependence of the
intenseA,(2) PP-mode, located under normal conditions atPP-mode frequency is very similar to its dependence on laser
=1467.3 cm !, corresponds to the out-of-phase stretching ofpower density. This is a clear indication that softening of the
pentagonal and hexagonal carbon rings. PP-mode under laser illumination may be related to local

The frequency of all Raman peaks is sensitive to theoverheating of the sample in the laser spot.
laser power density: the majority of the modes soften when  Figure 2 shows Raman spectra of thg €rystal taken in
the laser power increases. The dependence of the PP-mothe Stokes and anti-Stokes regions at three different laser
frequency on laser power density is shown in Fig. 1 by opempower levels. The spectrum in the Stokes region contains
symbols. The initial value of the PP-mode frequencythree intramolecular phonon model4(1), Hg(2), and
=1465.8 cm? at laser power density=600 W/cnt de- Aq4(1), with frequencies 273, 435, and 495 tm respec-
creases linearly te=1461.8 cm ! as the laser power density tively. In the anti-Stokes region, all three spectra contain the
increases te=2700 W/cnt. The extrapolation of this depen- prominentH (1) Raman peak. The other two peaks are not
dence to vanishing laser power density yields a frequency fodetectable at laser powers 0.06 and 0.15 mW; they only be-
the PP-mode 0f1467.5 cm . This is close to the highest come visible if the spectrum is recorded at laser pow8r3
experimental value of 1467.3 crh observed at minimal la- mW. The peak intensities of the Raman bands in the Stokes
ser power density=200 W/cnf. region are essentially the same in all three spectra, whereas

The softening of the PP-mode under laser illumination isin the anti-Stokes region the intensity &fy(1) peak in-
reversible when the laser power density increases2000 creases noticeably as the laser power increases. This is a
Wi/cn? (for an exposure time 0600 seg. At higher laser clear indication that the temperature of the sample within the
power densities it becomes irreversible, which case visibldaser illumination spot gradually increases with laser power.
damage of the crystal surface at the illumination spot region A comparison of the total intensities of théy(1) Ra-
is observed. The solid symbols in Fig. 1 show the depenman peak in the Stokes and anti-Stokes regions on the basis
dence of the PP-mode frequency on the bath temperaturef Eg. (1), using temperatur& as a fitting parameter, yields
Tpah, fOr the uniformly heated samples. The laser powerthe average temperatuf’if;jf;t in the spot. The data reveal
density for this measurement was kept constant at the lowesbnsiderable overheating of the sample within the laser illu-
level, =200 W/cnt, which corresponds, as will be shown, to mination spot. The temperatuife ,’;gtreaches:SBO K at laser
a local temperature rise 10 K and a shift in phonon power 0.3 mW and spot diameterl.25 um, which is about
frequency of=0.2 cm ®. These values are close to the ex- 270 K lower than the heater temperature for the sublimation
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T.K [oWwA(1—-R)
600 AT(R,Z)= ——
Ko
- e M_)\e AZ
X fo d)\JO()\R)F(R) W’ (2)
5001
O wherefR is the reflectivity K is the thermal conductivity at

room temperature, ard=r/w, Z=z/w, A= aw are dimen-
sionless parameters for the radigsthe depthz, and the
absorption coefficient.. In the above equationly(AR) is
4001 the zeroth-order Bessel function aR¢\) is the correspond-
O~ ing Bessel transform of the laser beam profile, which is as-
sumed to be Gaussian, ah@) =1, exp(—r?w?), wherew is
the beam half-width at &/ of the maximum intensity,. In
300+ + this axial symmetry, the temperature profile depends only on
the radiusr and deptiz.
1 . In the above solution, the material is considered semi-
1462 1464 1466 1468 infinite, an approximation which is clearly not valid in our
PP-mode frequency, cm ! case, as the crystallites are of small dimensions. But due to
the very low thermal conductivity, the calculations prove that
heating is localized, and that it very closely follows the laser
beam profile.

The temperature dependence of the thermal
conductivit® and absorption coefficieft has also been
considered in the literature. In the present case, the thermal
conductivity can be considered constant at 0.4W!. K1
of Cgo powder during vapor growth of fullerite single crys- above room temperatufe, although more recently even
tals. These data are compatible with visually observed darower values have been reported for the room-temperature
age of the crystal surface at high laser powers, when sublthermal conductivity’> The optical coefIil%ients can also be
mation of material and crater creation takes place due t§onsidered constariabsorption 2.7um " and reflectivity
extreme overheating of the material. As discussed below, th@ 199 in the temperature range under consideration. Those
strong temperature rise is due to very low thermal conductwo assumpt_lons simplify the calculations conS|der§1ny. The
tivity, which strongly localizes the effect of the laser irra- beam half-widthw was cal_culated from .the. value given b.y

o the manufacturer of the microscope objective for the excita-
diation. . . .
) tion wavelength at optimum focusing and for 90% of the

F|gurg 3 shows the dependence of PP-made frequen%tal intensity. As all measurements were obtained with the
on the uniform temperature of the samflg,, (open sym-

o microscope very carefully focused, we can assume that the
bols), and on the mean temperaturgyt, in the laser spot at ¢y al values are very close to optimal, iw=0.4 xm for

various laser powers, determined from E#j) (solid sym-  100x magnification and 2.5:m for 20x magnification. In
bols). The agreement between these data is within the experfig. 4 we present the temperature distribution obtained from
mental errors for thd g5, determination, which varies from Eq. (2) for several laser beam powers and spot diameters
20 to 50 K in the various measurements. The results indicatd=1.25um (a) and 7.5um (b).

that the temperature of the excited crystal region inside the The Raman spectra are given by the convolution of the
laser spot,T¢y,, determined as described above, is signifi-scattering from volumes (2rdrdz) of circular rings of
cantly higher than room temperature, and increases with l&8qual temperature at the laser spot. Based on the temperature
ser power. They also mean that the dominant effect of lasefistribution along the andz-axis obtained from Eq2), the

illumination is to overheat the sample inside the laser spot>!CKeS spectra can be calculated from the cross settion,
and there is no need to turn to the excited triplet stategf C neglectl_ng_the frequency_ dependence of the second-order
to explain softening of the PP-mode. The relatively highsusceptlblllty and the optical constants, as we are far from

overheating of fullerite with respect to other solids is related © o0 ances 1€
primarily to the relatively low thermal conductivity of this o o
> j dzf dr(2r)
0 0

FIG. 3. Dependence of PP-mode frequency of solig €h the uniform
temperature of the sampl&, ., (open symbols and the local temperature
inside the laser excitation spdt;p, (solid symbols.

material® Ju
It can be shown that the resulting laser overheating is
compatible with experimental data on light absorbance and (0, — )3 r/2 ,
P . 5’19 X + —a
thermal conductivity of fullerité>!° As a check, we have (1+m) oo (0— w2+ T7/4 I(re"*, 3

calculated the overheating temperature distribuidi{R, Z)

inside the laser spot from the steady-state solution givewhere the phonon full FWHM I'~5.1+0.003(T
originally by Lax?° for constant thermal conductivity: —300) cm? and the phonon frequencywyn~ 1467
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T,K T,K

FIG. 4. Temperature distribution as a function
of radius inside the laser spot calculated from
Eq. (2) and assuming ambient sample tempera-
ture To=300 K and zero depthz&0). @ Laser
spot diameted=1.25um and laser power is
(1) 0.4;(2) 0.15, and3) 0.06 mW; b laser spot
diameterd=7.5 um and laser power i§4) 1.6;

(5) 1.15, and(6) 0.38 mW.

0.5 1.0
Radius, um Radius, gm

—0.02(T—300) cm ! both depend on the temperatdién a  fact that no adjustable parameters were used in the calcula-

way defined by the uniform heatin@ig. 1). The statistical ~tions. This is a strong indication that the modifications in-

factor 5 is defined in Ref. 16 duced by laser irradiation in the spectra are due to local
heating, which can raise the temperature to 600 K at the

n(T)= _ (4) center of the laser spdkzero depth and a power of&=1.6
exp(hw/ksT)—1 mW, as our calculations indicate for the value B(0,0)
For the anti-Stokes component, the factor{(#)(w, —w)®  (Shown by the dashed line in Fig. 5 and calculated from Eq.
in Eq. (3) must be replaced by(w, + w)®. (2) for r=z=0).

Based on these calculations, the peak position, width To compare results obtained under various experimental
average temperature, and ratio of the Stokes to anti-Stok&@nditions, namely the excitation spot diameteand laser
total intensities for theAy(2) PP-mode can be obtained for POWer densityP, we found that the results for the average

every temperature distribution. The calculated average tenf€mperature over the spot can be described by the approxi-

perature in the spofT & as obtained from the calculated Mate expression
ratio of the Stokes to anti-Stokes total intensities for the PP- W
mode(corrected for thas® dependendeare shown in Fig. 5 (MFRs=To+ 11165,
for d=7.5um. In the same figure, the data points indicate
the experimental results for the average temperaliffl, ~Wwhere the temperature is given in Kq is ambient tempera-
obtained from the ratio of the Stokes to anti-Stokes compoture, the laser poweW is in mW, andd is in um. Taking
nents of theHg(]_) phonon mode, also corrected for thé into account thaw= Pxd?/4, expressior{5) can be written
d_ependence. The a_greement betw_een the theoretical _predu:- (T)BPL T+ 876Pd. 6)
tions and the experimental values is remarkable, despite the
Equation(6) implies that at larger spot diameters, one needs
lower laser power densities to achieve the same average tem-
T, K perature rise. This result is consistent with our experimental
, data obtained for sample overheating at two different spot
6001 diameters, and is a very important consideration in trying to
., compare results obtained under different experimental
; conditions®®-12 Equation(6) makes it clear that the power
. density is not sufficient to compare results on laser-induced
sook overheating of materials with low thermal conductivity.
The calculated temperature profiles inside the laser spot
. show a considerable difference between the temperature at
s the center and periphery of the spot. The difference, starting
s with =30 K at W=0.2 mW, reaches=220 K at W
4001 . =1.6 mW (see Fig. 4 The highly nonuniform temperature
distribution inside the spot results from the low thermal con-
. ductivity of the material. This may be the reason for the
splitting of the PP-mode in the Raman spectra taken at tem-
300 L . . ) peratures lower than 250 K, the temperature of the
0 04 08 12 16 20 orientational-ordering phase transition from fcc to sc
Laser power W, mW 5 . 1
structure?® According to van Loosdrectet al. the tempera-
FIG. 5. Temperature in the laser excitation spot as a function of laser poweiure dependence of the PP-mode frequency exhibits a jump
for laser spot diamete7.5 um. Solid symbols are experimental data for of about 4 cmi! at 250 K. We remark that in this case the
Tepordetermined from the .Sto.kes.to anti-Stokes total intenfity ratio for thegransition temperature of 250 K might be located between the
Hy(1) phonon mode. Solid line is the mean temperalgf; calculated 1 iaim and minimum temperatures within the excitation
using Eq.(2) and Eq.(3). Dashed line is the temperatufé0,0) at the center . .
of the laser excitation spot and zero deth-0, z=0), calculated using  SPOL. This means that for a range of laser power densities
Eq. (2). within the excitation spot, one can have both the low and

®)
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high temperature phases. The Raman spectra taken undeg-mail: mele@issp.ac.ru
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The structure of the electron spectrum is investigated and selection rules are found for transitions
between magnetic subbands in a surface 2D superlattice of quantum dots in a perpendicular
magnetic field. The photon absorption probabilities are calculated, and the profiles of the
absorption lines are determined for allowed and forbidden direct dipole transitions between
subbands split off from different Landau levels. 98 American Institute of Physics.
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1. INTRODUCTION B(%, Y) = dh(x-+ga, y+a)expl — ik,qa)

The quantum states of Bloch electrons in a magnetic X exp(—ikya)exp(—2wipy/a), 2
field have intrigued theoreticiah® and experimentalists® g
for several decades now. So far, however., no one has Ol%_'an be written as a series in oscillatory functiopg(x)
served phenomena to corroborate the existence of a Spléﬁong thex direction and plane waves in tlyedirectiort~12
structure of Landau levels. This deficit is attributable to the
fact that the observation of such phenomena in real crystals © p Foo
calls for as yet unattainable magnetic fields of the order szpt'o'”o(x, V= > Cm%(k) > e

N=0 n=1 j=—w

jga

explikyy). 3)

1000 T. On the other hand, the magnetic subbands of Bloch

electrons might be observed in artificial crystals, i.e., surface X %o i0a—naal

two-dimensional2D) superlattices situated in a perpendicu- x( o Jd q p) eXF{ ik,

lar magnetic field. The last decade has witnessed progress in I

the creation of such semiconductor structéneith a mean nga ip+n

free path significantly exceeding the period of the potential. +— exp( 2y

More recently, first attempts have been undertaken to ob- P a

serve spectra of the type known as Hofstadter’s “butterfly” ! )

(Ref. 4 in 2D superlattices by means of magnetoresistanc he quantum number, andng defme. the magnetic sub-

measurement®. Another possibility for observing the struc- and:ny=1,p labels the subband spI|t2 off from thioth

ture of the spectrum experimentally is to investigate the magl:anQau Ievell. The paramet@rq=|e|Ha/2mfic (p andq ,

netooptics of such structures. In this paper we report a nudré integersis equal_to the _number of quantgl of magnetic

merical study of the absorption of electromagnetic radiatior{qu through_ a lattice L_m't cell of areaa”, ??S I

in arrays of quantum dotilot lattices in a magnetic field.  — VC//|e|H is the magnetic length. We previou$ty™*pro-
posed a numerical method for calculating these functions. To
find the spectrum and wave functions, we write the Hamil-

2. BASIC EQUATIONS AND COMPUTATIONAL METHOD tonianH, in the representationNof symmetrized functions as-

In the proposed model the Hamiltonian of an electron inSociated with the CQfo'ClentQN?{no(k) in Eq. (3). In this

a periodic 2D potential in a static magnetic field and in an'®Presentation the. elgenv.aI.LE§p,no(k) ?f the Hamiltonian

electromagnetic field has the forf=Ho+ H,. The unper- (1) are found by diagonalizing its matrix. _

turbed Hamiltonian is interpreted here as the Hamiltonian of ~ 1he effect on the system of an electromagnetic wave

the electron in a perpendicular magnetic field and in the field®"oPagating along the vectét and polarized linearly along

of a periodic potential: the x axis is taken_ |nt<_) ac_count by perturbation theory. The
perturbation Hamiltonian is

S P L 2 Vv 1
Hinn=—1 = Aexp(—iwt) —. 4
where the functio’/(x, y) = Vycog(mx/a)cog(my/a) models nt ¢ AR Tl 7 @

the periodic potential of a square lattice of quantum dots,

Ao=H(0,x, 0) is the vector potential of the static magnetic In Eq. (4) A, is the vector potential of the electromagnetic
field, andm* is the effective mass of the electron. The eigen-field.

function of the Hamiltonian(1), subject to the generalized The number of photons absorbed per unit time per unit
Bloch conditions in a magnetic field, surface area is

1063-7761/98/87(11)/5/$15.00 973 © 1998 American Institute of Physics
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2 iLf12 2, plq
T ho j [Plac a1 (k) ~ (k) = ﬁ"’]Wd N 208 Y P
where® is the photon flux density. We assume here that the U
wave vectors of the electron in the initial and final states 141 AR S

coincide, i.e., we are concerned with direct interband transi-
tions. The integration in E(5) is carried out over all occu-

pied initial states. sl
It follows from Egs.(3) and (4) that the direct dipole il
transition matrix element has the form bl
| -10
e
|—>f
Pl = AL ganFon E 2 Cie(K)Chyn(K) i
qa2 X—Xo—jga—nqa/ Pla
XEI o 0”9 9 p} 160 - - e
T J-qan In ) o
. X—Xg—jga—nga/p L. - - - ..
X Pun - }d 6) 153
In strong magnetic fields, whega> VN 1yM Iy andVo (0| ) o
<hw, the oscillatory functions for all effectivid andM in ' . ) )
(6) are highly localized in the magnetic unit cell. Conse- -5 0 5 E, meV
quently, the contribution of terms with largeo the integral FIG. 1. 3 Energy spectrum of a quantum dot lattical, GalAs (a

(6) are exponentlally small. Restricting the equation to terms_go nm, v,= —20 meV) in a magnetic field fok=0. a The positions of

with j=0 and extending the limits of integration overto the Landau levels are indicated by heavy dojsStucture of the magnetic
infinity, we obtain Landau subbands (@) for p/q=15/1; 61/4; 31/2; 63/4; 61/1.

=  |e[hAy - >
Ph'=—i 2 X [Cy . (KC, o o N
anc'H\/_ N=0 n,s=1 netic field. Each subband existing for integpdty splits into
i a series of subbands so that their total number under each
X (k) VN - CN+1s(k)CNn(k)VN+1]' @) Landau level is equal t@. The narrow subbands fqu/q

Herei andf are specified by the set of two quantum numbers= 61/4; 31/2; 63/4 are indistinguishable in Fig. 1b.
characterizing the magnetic Landau subband. Figure 2 illustrates the distribution of widths of the Lan-
dau subbands fqu/g=15/1. Clearly, the widths of subbands
situated under one Landau level can differ by several orders
3. RESULTS AND DISCUSSION of magnitude. The maximum width occurs for subbands near
Of primary concern here is the calculated structure of thdhe middle of the split Landau levésee also Fig. 1b The
electron spectrum. All the parameters of the periodic potenedges of these subbands should be experimentally resolvable

tial and the magnetic fields are given in the figure captionsin the absorption spectra. The widths of subbands situated at

Figure 1la shows the energy levels kor 0, corresponding to

the edges of the magnetic subbands. The number of magnetic
flux quanta through unit cell fop/q=2 labels the vertical Width of Landau subband
axis. Clearly, the levels tend to bunch up toward the unper-
turbed Landau levels in this magnetic field range. In the

range p/q<2 (not shown in the figuremagnetic Landau 1071
subbands are not formed, and Hofstadter butterfly spectra
emerge® We can see that the total width of the split Landau 1072k

levels decreases as the numbkincreases. The spectrum of
magnetic subbands split off from the zeroth£0) Landau

level is shown in magnified scale in Fig. 1b, where the num- 10

ber of magnetic flux quanta is now incremented by one: a,m @.n)

p/q=15/1; 61/4; 31/2; 63/4; 16/1. The electron wave vector 1074

in each subband falls within the limits of the first magnetic

Brillouin zone: — m/qask,<m/qa; —w/a<k,<w/a. Itis 107 . : . A .
0 10 20 30 0 50

evident thap nonoverlapping magnetic subbands are formed
for p/q=15/1 and 16/1. The same subbands are formed un-
der each Landau level. In the interval between integral valuegg. 2. width of the Landau subbandsi( n) for N=0, 1, 2 (1=1, p)
of p/g the number of subbands varies sharply with the mag#or p/q=15/1, a=80 nm; Vo= —20 meV.

Order of Landau subband
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FIG. 3. Spatial distribution of the real and imaginary parts of ghieinction and the electron density|? for k=0 in states: a(1, 1); b) (1, 2; ©) (1, 1.
The magnetic field corresponds to the number of magnetic flux qualiata 15/1. Parameters of the superlattiee= 80 nm; Vo= —20 meV. The wave
functions of state¢1, 1) and(1, 11) are transformed under representatifirand those fof1, 2) are transformed under representat®of groupC,. The
distribution of the electron density h&,, group symmetry.

the edges of the region of the split Landau level are expotisymmetric(B), are allowed in the dipole approximation. If
nentially small, and they will be observed as discrete levelsthe initial statd is transformed under representatBiiA), a
Figure 3 illustrates the spatial distributions of the realtransition is allowed to all final statés=i+[2j+1] (j is an
and imaginary parts of the electron wave functions and théntegey transformed under representatiBr{A). This rule is
electron density for statedNg, ng)=(1,1);(1,2);(1,11), confirmed by numerical calculations of the matrix elements.
k=0. The calculations are carried out for a magnetic fieldAll transitions are allowed at low-symmetry points of the
corresponding tgp/q=15/1. The dark areas represent theBrillouin zone.
regions of maximum values of the function. Only positive The transition probabilities 0 from different subbands
values of the real and imaginary parts of thdunctions are  split off from the same Landau level can differ substantially.
plotted. For example, the probability is high for transitions from
Our band structure determined here and the wave funcstates in the middle of subbandk=0) that are split off
tions can be used to draw conclusions as to the nature dfom a Landau level with evefodd) N and are transformed
optical absorption in the investigated system. A group-under representatioA (B). But if the initial state fork=0
theoretic analysis establishes the selection rules for transbelongs to a subband split off from an evédd) Landau
tions at an arbitrary point of the magnetic Brillouin zone. Inlevel and is transformed under representaBoi@), the tran-
particular, fork=0 transitions between states transformedsition probability becomes relatively low. This result stems
under different irreducible representations of the Hamil-from the fact that the wave function in the subbaitg (ng)
tonian symmetry grouC,, one symmetridA) and one an- is constructed mainly fronlNyth-level oscillatory functions.
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FIG. 4. Photon absorption probability for a superlattice of quantum dots -2 g
Ve , S

with parametersa=80 nm andV,=—20 meV in a magnetic field corre-
sponding top/gq=15/1 vs. electromagnetic wave frequency. The lowest
Landau subban@, 1) is partially filled. Transitions to states of subbands of
the zeroth N=0) and first N=1) Landau levels are visible. Insets: fine
structure of the absorption lines of allowed(v) and forbiddena;y(v)
transitions, indicated by arrows in the main figure.

FIG. 5. Probability of absorption of a photon by a superlattice of quantum
dots with parametera=80 nm andV,= —20 meV in a magnetic field cor-
responding top/q=15/1 vs. electromagnetic wave frequency. The eight
lowest Landau subbands (0) 1.. (0, 8) arecompletely filled, and the
ninth subband0, 9) is partially filled. The arrows indicate transitions from
the nine filled subbands to subbafid 1). The plus signs indicate transi-
tions between subbands (0, %Y1, n) (n=1, p).

It can be shown that the mixing of neighboring unperturbed
No*=1 Landau states in the subband wave functions of the

Noth split level is proportional to the small parameter tions are visible. This pattern corresponds to our established
Vo 27y selection rules. The insets to Fig. 4 show the fine structure of
= ; the absorption lines of allowed and forbidden transitions near
the middle of the magnetic subbands indicated by the arrows
which is defined as the ratio of matrix elements of the off-in the main figure. The allowed transition@L(jfa&O) near
diagonal block of the matrix of the Hamiltonidf, to ele- k=0 correspond to characteristic plateaus of the absorption
ments of the diagonal blockThe structure of the matrix of lines (see the left ins¢t whereas in the case of forbidden
the Hamiltonian is described in detail in Refs. 11 angl 12  transitions P'k;fZO) the absorption coefficient increases
the parameteB~ 1, the mixing of neighboring Landau states linearly with frequency(right insej. This result is attribut-
is high, and the probabilities of transitions from any initial able to the fact that the matrix element of a forbidden tran-
state will be of the same order. This same paramgtés  sition is proportional tgk|. The width of the absorption lines
responsible for the weakness of transitions between statés A'~"=|AE;— AE|/%, where AE; (=|E; {(0)—E; ¢(kg)]
within a single split Landau level relative to transitions to (kg is the Fermi quasimomentym
neighboring split sublevels. For typical densities of 2D electrons of the order of

The probability of absorption by magnetic subbands is10'*cm™2, several subbands of the zeroth Landau level are
calculated according to Ed5). In a magnetic field corre- filled (for H~10° Oe), adding to the complexity of the ab-
sponding to the number of magnetic flux quapfg=15/1  sorption spectrum. Figure 5 shows the photon absorption
we havea=9.71 for the indicated parameters of the super- probability in transitions between Landau subbands when the
lattice, so that Eq(7) can be used to calculate the transition eight lowest magnetic subbands (§,1.(0,8) arecom-
matrix element. pletely filled and the ninth subbar(@, 9) is partially filled.

To visualize the structure of the absorption spectrum inThis situation corresponds to a carrier density of the order of
an instructive way, we calculate(») when only states of 1.5x10"cm 2. In Fig. 5 absorption lines associated with
the lowest Landau subband (0,1) néar0 are occupied. transitions between magnetic subbands split off from the
The corresponding absorption spectrum is shown in Fig. 4Landau leveN=0 are visible at lower frequencies. The first
The figure shows the absorption lines associated with translew-frequency absorption line shown in the figure is attrib-
tions to subband states (), (low-frequency regionand utable to transitions between subba(@ 9 and subband
(1,n) (high-frequency region Transitions to subband states (0, 10. The frequencies of this and the next-nearest transi-
(1,n) are strongest; the transition probability to statesj0, tions are in the millimeter microwave range. Such transitions
is on the order of32=0.5 times lower. The probability of a between magnetic subbands of one Landau level can be de-
photon being absorbed nekr=0 varies significantly as a tected by observing ordinary cyclotron resonance. The con-
function of the order number of the magnetic subband of theept of cyclotron resonance is customarily identified with
final state; alternating lines of allowed and forbidden transi-electron transitions between Landau levels. As shown above,

Cho, a
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the presence of the periodic potential causes the Landau lelevels is much greater than unity. Moreover, special calcula-
els to split into magnetic subbands. It is significant here thations of our own have shown that the magnetic subbands of
the electronys functions in the subbands are mixed with all individual Landau levels overlap considerably under the ex-
unperturbed Landau statesee Eq(3)]. The contribution of  perimental conditions of Ref. 8. We note that the commen-
different Landau levels to the states of subbands of\Nfjth  surability of orbits with a periodic potential cannot be ob-
unperturbed level in the linear approximation with respect toserved for the parameters used in our work, because only one
the number of Landau levels included in the expang®ns  Landau level is partially occupied, and the situation is far
proportional to the paramete®. In general, therefore, we removed from semiclassical status. In addition, the magnetic
encounter a nonzero transition probability between subbandsubbands of different Landau levels do not overlap.
contiguous with the same Landau level. This result follows In summary, we have established that the investigation
from an analysis of Eq.7) for the transition matrix element. of cyclotron resonance and optical absorption in the infrared
For example, if several subbands of the zeroth level arean yield very valuable information about the structure of
filled, transitions to all other subbands of the given LandawBloch states in a 2D lattice in a magnetic field.

level are characterized mainly by the second term in the This work was carried out with financial support from
bracketed expression of E(). It provides the largest con- the Russian Fund for Fundamental ResedFuinject 98-02-
tribution (of the order off) to the transition matrix element. 16412.

We can therefore speak of resonan@&lotron resonances

associated with transitions between subbands rather than beg-mail: demi@phys.unn.runnet.ru

tween Landau levels. The experimental investigation of sucfiE-mail: perov@phys.unn.runnet.ru

absorption spectra in the magnetic subbands affords a useful )

tool for studying the quantum states of Bloch electrons in a*M. Ya. Azbel’, Zh. Esp. Teor. Fiz46, 929(1964 [Sov. Phys. JETRS,
magnetic field. ,634(1964)]. _

Figure 5 also shows transitions from filled subbands ofsJ' Zak, Phys. Rev. A34 1602(1964; Phys. Rev. AL34 1607(1964.

A. Rauh, Phys. Status Solidi 85, K131 (1974).
the zeroth Landau level to magnetic subbands contiguousp. R. Hofstadter, Phys. Rev. B4, 2239(1976.
with the first Landau level. Here we have omitted the ZH~ Silberbauer, J. Phys.: Condens. Mate7355(1992.
enlarged-scale profiles of the absorption lines. We merely (Dl-ggg)e'ss' M. L. Roukes, A. Menschigt al, Phys. Rev. Lett66, 27
note that the line describing transitions from completely 75" \yeiss, K. Richter, A. Menschigt al, Phys. Rev. Lett.70, 4118
filled bands to an empty band has a logarithmic singularity in (1993.
the middle(pagoda profilg owing to van Hove singularities 8]. V. Kukushkin, D. Weiss, G. Ltjering et al, Phys. Rev. Lett79, 1722
in the density of states. Th?. maximum absorption intenSityg(Dl.g\?\l?t)eliss, D. Grambow, K. von Klitzingt al., Appl. Phys. Lett58, 2960
corresponds to the transition between subbands (0O, 1) ;99
—(1,1). 10T, Schisser, K. Ensslin, J. P. Kotthaes al, Semicond. Sci. Technall,

The authors of an innovative stutigf luminescence in a 11\1/5%2(139@% dand A AP Fi Tverd. TeléSt. Petorsh
quantum antidot latticea= 200 nm) in a magnetic fieldH a0 113 4‘(3;23580["%}/:”50" y s'tatgg,wioslé(lggé]: eléSt. Petersburg
<2x10'Oe) have observed oscillations of the lumines-12a A perov, Preprint No. SMR.998d-1nternational Centre for Theo-
cence intensity in connection with the existence of commen- retical Physics, Trieste, 1987
surate orbits with cyclotron radiiR,=(S—1/4)a (Sis an 13v. Ya. Demikhovski and A. A. Perov, inMegagauss and Megampere
intege). It is readily verified that the commensurability con- ©|IS¢ Technology and Applicatiofis Russia, Sarov(1997).
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Penetration by Abrikosov flux lines of an isotropic hard superconductor in the critical state
induced by changes in the orientation of external magnetic field has been theoretically investigated.
The analysis has been based on the microscopic nonlocal model taking into account forces

of bulk and surface pinning, alongside magnetic forces of interaction of the row of penetrating
vortices with existing flux lines, Meissner currents, and vortex images. New vortices

penetrate a superconductor only when the angle through which the field is rotated is larger than a
certain critical value. It has been determined that the alignment of entering vortices is

essentially different from that of the applied magnetic field. The feasibility of detecting
noncollinearity effects is discussed. €998 American Institute of Physics.
[S1063-776(98)01811-3

1. INTRODUCTION phenomena demands information concerning alignment of
vortices penetrating a sample when the external magnetic

The problem of Abrikosov flux lines penetrating bulk field H is rotated. It might seem that vortices penetrating an
superconductors has a long history. This issue was first digsotropic hard superconductor should always be aligned with
cussed in the well-known paper by Bean and Livingston, H. This conclusion is often derived from the continuity of
who predicted on the basis of the thermodynamic approacthe tangential component of the magnetic induction at the
the existence of a surface barrier which should impede persample surface. The continuity condition, however, does not
etration of flux lines into a sample. Effects related to thisyield the direction of vortices penetrating the sample. In fact,
barrier in soft superconductors were studied by Terndvskithe magnetic induction in a superconductor is a sum of two
and Shekhaté Later, surface barriers of various types, their components, one of whiclB, , is due to the system of flux
properties and manifestations in all types of superconductorines inside the superconductor, while the ott®y,, is re-
were investigated by many researchésse the review by lated to the Meissner current flowing near the sample sur-
Brandf and references thergin face:

Although the number of publications on this topic has
been quite considerable, some aspects of vortex penetration B=B,+Bn. @

q ; p p

have not attracted researchers’ attention. In particular, they It is well knowrf° that the solenoidal component of mag-
usually considered a situation when only the magnitude of ametic inductionB, vanishes at the superconductor boundary,
external magnetic field varied, and all flux lines entering andso the necessary boundary condition contains only the
leaving a sample were aligned with the external magnetidMeissner componerB,,,. Hence, the orientation of vortices
field H. At the same time, an electrodynamic description ofnear the surface is undefined. Their orientation should be
hard superconductors in a magnetic field of variable amplidetermined using other considerations. These might be the
tude and orientation has remained a topical issue for manalance of forces on a penetrating vortex or a minimum of
years. For example, after the first studié=of the effect of the Gibbs free energy. One can infer from energy consider-
crossing between vortices with differing orientations, a set ofations that magnetic flux lines both entering and leaving a
publications concerning this phenomenon were issued by difsuperconductor are aligned with the external magnetic field
ferent groups recentBf~1® A change of the magnetic field only when the applied magnetic field direction has remained
orientation leads to several interesting effects, among whickinchanged throughout the prior magnetic history of a
we direct the reader’s attention to the collapse of a transpogample. When the magnetic field orientation varies, the ques-
current caused by an alternating magnetic field parallel tdion about the orientation of vortices entering a supercon-
this current’'® and suppression of the static magnetic mo-ductor is not so simple. This paper is dedicated to the theo-
ment of a sample by a transverse alternating magneticetical analysis of this problem.
field 1119 We have analyzed the simplest case, when an external

It is clear that a proper description of these and similarmagnetic field is rotated in the plane parallel to the boundary

1063-7761/98/87(11)/7/$15.00 978 © 1998 American Institute of Physics



JETP 87 (5), November 1998 Savel'ev et al. 979

plied magnetic field. The numbers of these rows run from
unit toN. As was stated above, all vortices in these rows are
aligned with thez-axis.

Let us focus on the possible reaction of the system to the
magnetic field rotation. In principle, the system of vortices
would lower its energy by turning through the same argjle
with the magnetic field. This process takes place in soft su-
perconductors. The situation is radically different in hard su-

! / perconductors, since pinning forces prevent changes in the
o flux line alignment. The magnetic torque on each vortex is
\ ' , P actually proportional to its length, whereas the torque due

) (, to pinning forces is proportional to its length squared. Com-
( zgo parison between these two torques implies that, when
)

L>cHo/2mJd,, )

FIG. 1. Problem geometry. i.e., the sample is sufficiently long and has a sufficient criti-
cal current densityl;, realignment of the vortex system is

. . impossible. In principle, vortices can be bent in a certain
of a superconducting half-space. In our analysis, we have

used a microscopic model of the critical st&e?® In this 'c9'on hear the sample boundary, where gmponent of
. , . . magnetic field penetrates the sample, i.e., the vortex vector
model, a system of flux lines is described in terms of coor-

dinates of isolated flux line rows. It is assumed that, irrespech.as a nonzero projection on tiyeaxis. A simple estimaté

tive of its position, a pinning forcé;, acts on each vortex. yields a dimension of this region of order oFig/2mJ; and,

. . in accordance with Eg2), this is a small fraction of. In
This force ranges between py, and p,i,, wherepy, is a . - o
X what follows, we assume that this condition, which is con-

constant phenomenological parameter. In the problem under L ) o

) . . . Sidered a definition of bulk hard superconductors, is satisfied.
discussion, an important role is played by nonlocal
effect$*?°due to the nonlocal relation between the magnetic2.1. Gibbs free energy
induction and flux line density. The importance of nonlocal-
ity in problems concerning a magnetic field changing its ori-
entation was first indicated by D’Anral® His analysis,
however, was based on a macroscopic approach to penet

tion of vortices into a superconductor and neglected somg

forces of a microscopic nature that act on rows of penetratingmo shorter segments, whose alignment can be chalfgéd

vortices. . o .

. . . To determine the conditions for penetration of these new
. The main result of thg reported wo'rk IS th_at the Qr'ema'vortices when the applied field is rotated, and to calculate the
tions of vectorH and flux lines penetrating an isotropic bulk

. tilt angle ¢ of these vortices with respect to tlzeaxis, one
superconductor can be notably different. The onset of vortex. st use force or energy approaches. In this procedure, one

penetration into a hard superconductor takes place when tqﬁust take account of the magnetic interaction between a pen-

angle of the external field exceeds a certain threshold anglgtrating vortex, and its imadethe existing flux line lattice,

fin<<1. The angle between the row of penetrating flux IInesMeissner currents, and bulk and surface pinning centers.

and external magnetic field turns out considerably larger tharJrhiS problem has been solved on the basis of a microscopic
0,,. Moreover, at certain parameter values, this angle can b

Spproact?2®since it becomes necessary to investigate the
close tow/2. We have analyzed the dependencedgfand bp ' y g

- ) ) X : . entry of successive vortices into a sample. This approach
relative orientation of penetrating vortices on the magnitud y P bp

f external maanetic field and other parameters of the or gakes accurate account of nonlocality effects due to the long-
ot external magnetic hield and other parameters ot the pro range interaction between vortices, whose range is of order
lem. The threshold angle diminishes whhas 1H, whereas

the tilt angle of penetrating vorti tends t nstant of the London penetration depth
€ tit angie of penetrating vortices tends 1o a constant. In order to calculate the magnetic forces on each row of

vortices, we have determined the electromagnetic component

Gem Of the Gibbs free energy. The cumbersome calculations

needed for solving the problem are described in Appendix.
Consider penetration of the Abrikosov flux lines into a Here the final result is given:

hard superconductor which occupies half-space0. The

magnetic field is assumed first to be aligned with zraxis ~ Cen(X1:X2, - XX )

and increased monotonically from zero ky>H.,, then

Thus, the only possibility of changing the orientation of
vortices in a bulk hard superconductor is associated with
Ipgnetration of new magnetic flux lines tilted with respect to

e z-axis and crossing between vortices with different ori-
ntations. As a result of this crossing, long flux lines are cut

2. STATEMENT OF THE PROBLEM. MICROSCOPIC
EQUATIONS

2 N
rotated in thezy-plane through anglé (its vector is denoted = cos¢ SinhXN“ o > ex;{ _5 +cog¢—0)
by H). HereH,, is the low critical field of the supercon- N 4wb\ 31 A
ductor. The analyzed configuration is depicted by Fig. 1. )
is fi i i Ho® X d
This figure also shows schematically rows of magnetic flux «20P0 o N2 4 x. )+ 0
lines that penetrated the sample prior to the rotation of ap- 4 A SSUn+1’  16mbA
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1_ [{ _ 2XN+1)
ex N
N
X > [ex;{ — —|Xi_xi|> —exp{ _ XX
=1 A A strongly affected by the sample surface quality, and it is
natural to treat this quantity as a second phenomenological
, 3 parameter of the theory. In the limit of a perfect surface, this
parameter, to order of magnitude, can be as gregpigls
where @, is the magnetic flux quantun is the distance ~®§/16m2EN2, where¢ is the coherence length. This sur-
between vortices in a row,, X,, ... Xy are coordinates of face force dictates the peak height of the Bean—Livingston
vortex rows that penetrated the sample before the externdarrier. In real superconductors, this force is considerably
field was rotated, andy, , is the coordinate of the vortex reduced by surface roughness, thermal activation effects,
row whose tilt angle¢ with respect to thez-axis is to be etc?
calculated. In Fig. 1 the penetrating vortex row is labeled by  In addition to the short-range forgel,’, Eq. (5) also
the numbeiN+ 1. The first four terms on the right-hand side contains the long-range force obtained by differentiating the
of Eg. (3) describe the interaction of the penetrating row with fourth term on the right-hand side of E) with respect to
all other vortices, the Meissner current, and their images. Th&y.1. This force corresponds to the 1 in the brackets on the
third termGy(xy- 1) is associated with the short-range com- right-hand side of Eq5). Both surface forces are constant in
ponent of the energy of interaction between a vortex and it¥ and ¢, so they can be conveniently combined into the
image, which is responsible for the Bean—-Livingston barriersingle termps¥=pS¥'+ ®3/87b\2. Using this notation, we
and the fourth term describes the long-range component afan rewrite Eq(5), which expresses the condition for pen-
this energy. The rest of the terms describe interactionstration of a new vortex row into the sample, in the form
among vortex rows labeled by numbers from 1N with

their images, and also with the Meissner current. P2

®? wherepg' is the sum of the surface pinning force, which is

+ 167bX no less than the bulk pinning forgg,,, and the short-range
component of the force between the penetrating vortex row
and its image obtained by differentiating the te@y(Xy 1)

in the expression for the Gibbs ener(g). The forcepg' is

P"=F pnad @,0)= — CoS¢
ma %
2.2. Force balance equation for vortices in the bulk of the N
sample x> exd - 3|+ Ho%0 cog 0— &) (6)
=1 A 4o\ '

Given Eg. (3), one can easily derive a force balance
equation for each vortex row. To this end, one must equate
the pinning force to the negative of the derivative @,
with respect to the row coordinate. For vortices numbered
to N we have

An analysis of Egs(4) and(6), which describe the bal-

pnce of forces, is quite complicated. We therefore first take a
microscopic approach to vortex penetration of a sample in a
fixed-orientation increasing magnetic field, and only then re-

fom=— Pem_ i EN: ex XJ_Xn) turn to the problem of a rotated magnetic field.
pin MXn  8wbA?|i<Tr1 A

3. VORTEX PENETRATION OF A HARD SUPERCONDUCTOR

= = N IN AN INCREASING MAGNETIC FIELD
Ho®o Xn We use Egs(4) and (6) to analyze vortex-row penetra-
o costexg — =/, 1=n=<N, (4)  tion of a hard superconductor in an increasing external mag-

netic field. It is convenient to use the following dimension-
where the pinning forcd(}) can take any value between |ess variables:
—Ppin @nd pyin. The quantityp,, is @ phenomenological
parameter of the theory. This parameter will be assumed 87b) 2 8rb\2

position-independent throughout the volumxe 0. P=—%Ppin: Ps= 5
D3 D5

psur> 1+ P,

2.3. Force balance equation for the penetrating vortex row 2

The force balance equation for the penetrating vortex fmad ¢,0) = o2 Finad 6. 6),
row has the form 0

2 N
X 2bAH X
p§ﬁ’z—8 bo)\z 2 cosp >, ex _Tl +1 h= o, 3 gn:%- 7
T =1
Ho®o Setting=0 and §=0 in Egs.(4) and (6), we rewrite the
* 4\ cos 0= ¢), ©) equations in the new variables
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N n—-1 fmag
p= 2 exXp{— L)~ 2 expén—{)) 124
j=n+1 j=1
N N =987 N =988
2, e =g L) Hhexp— o), ] |
N 1.20 &
ps:fmag:_zjz1 exp(—¢j)+h. (8
This system oN+ 1 equations determines tlxecoordinates
of the N vortex rows in the sample, and the fiekl
=h(N*1) at which the lasf(N+1)th] row penetrates the L.16¢ -
superconductor. AN=0 these equations yield the fielhd®) 10.000 10005 10.010

at which the first vortex row enters the sample.
The second equation of the system immediately implieé:'G- 2. Magnetic force on a penetrating vortex row as a function of dimen-
(1)— ; ; ; ; sionless magnetic fieltd calculated ap=0.025, ps=1,2. The arrows point
h Ps. or in dimensional units, to fieldsh at which the next vortex row penetrates the sample.
1)_ 2
HEY=pZHc>Hey.

It is just as easy to find the field(®: such that force balance again holds, and tNe-(L)th row
h@=/pZ+4p enters the sample. Figure 2 shows a segment of the curve of
VPs .

magnetic force .4 plotted against dimensionless fidictal-
In the general case, when the sample contbiinsrtex rows,  culated by Eqs(8), (10), and (11) at fixedp and ps. The
a complicated nonlinear problem must be analyzed. SurpriSumps in the curve correspond to penetration of the next
ingly, this problem admits of an exact analytic solutfdn. yortex row whenf ., reaches.

The field at which the N+ 1)th row penetrates the sample  The distance between jumps in the magnetic force along

was calculated in Ref. 23: the horizontal axis is given by E¢9). In dimensional vari-
hN+D— 0?5 AN, 9 gbles, the magnetic field intervdlH between neighboring
Ps P © jumps can be expressed as
In the same paper, the magnetic forficéh) on an enterin
Pap 9 fegh) 9« AH=2HyyHu/Ho. (12

vortex row generated by vortices already present was also
calculated(first term on the right-hand side of the second ofHere J.=cp,,/®, is the critical current density, anH,,

Eqgs.(8)): =47J.Nc is the amplitude of the so-called nonlocal
N barrier?*% In the usual local theory of the critical state of
f(h)=—2>, exp— £ = JhZ=4pN—h. (10)  hard superconductors, where the London penetration depth is
j=1 the smallest characteristic length, this small barrier is ig-

nored, whereas in the nonlocal theory this barrier determines

the range of external magnetic fields over which the vortex

lattice in a superconductor remains immobilized. In E®)

the field H, is multiplied by the small parameter of the

. . . theory VH.;/Hy. The discrete nature of vortex penetration

where the notation denotes the_lnteggr part of its grgumentof a hard superconductor can therefore scarcely be detected
It follows from the aboye o!lscu55|on that vortices pen-, perimentally, even in perfectly prepared samples. This

etrate t_he _sample at certain dlscret_e values of the extern eans that the macroscopic local theory neglecting the char-

magnetic field. The_ next vortex (rg)w in trn, numbsey €N acteristic lengti and magnetic field incremeH is quite

ters the sample at field valubs=h™™ such that the magnetic adequate for describing vortex penetration of a supercon-

force f mag 0N that row(Ea. (8)) exceeds the forcps due to ductor in an increasing magnetic field. At the same time,

mFeradcttl)onthwnh th?msurface. t'l't;ebmagr;_etlc fortche IS detler'vortex penetration of a sample in a rotating magnetic field
mined by Ihe currend, generated by VOrlces In e Sample .5, pe described only in terms of the microscopic theory.

(first term on the right-hand-side of E@®)) and the Meissner The point, as will be shown in the next section, is that the

currentqm (second terf” Here J, aT‘dJm are the currents orientation of flux lines in a rotated fielt is extremely
generat]ng the .sole'n0|dal and Mel§sner components .Of thgensitive to the location dfi; within the intervalAH defined
magnetic induction in Eql). Immediately after penetration by Eq.(12).

of the Nth vortex row, the force balance conditidB) no

longer holds, since the force generated by each newly arrived

row adds to the magnetic force and “impedes” entry of the®- VORTEX PENETRATION OF A HARD SUPERCONDUCTOR
next[ (N+1)th] row. Circumstances governing the entry of gl'\E"igR ROTATION OF AN EXTERNAL MAGNETIC

new vortices gradually improve dscontinues to rise, since

the force due to the Meissner current increases. When the Using the microscopic approach described above, we ex-

field reachesi=h(N*"1) the magnetic force reaches a value amine the penetration of vortices into a superconductor when

Here the numbeN of vortex rows already present is
h*—p

N= ap

+1, (11
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the external magnetic field can be rotated. The analysis will O, ¢

be based on the general equation systém(6). A rotation 25

of field H can, generally speaking, induce in the vortex sys- | M=% N =988

tem changes of two types. First, a decrease in the magnetic 207 1

force due to the factor caskin the last term of Eq(4) can N .

destroy the balance of forces and eject vortices from the 15t \\ \\ )

superconductor. Second, penetration of vortices with a dif- ™. ™

ferent orientation can be induced. 10°k \\ ™
We now determine which of these two processes begins \\\ N\

first, i.e., at smallef. Supposing that the ejection of vortices sk ‘\ \‘

from the sample begins first, one can calculate from (&y. A A

the threshold anglé,,; at which theNth vortex row, which 0 : -

is most sensitive to changes in the external field, begins to 10.000 10.005 A 10.010

depart. Recall that the pinning forcE{:,ﬁ‘,Z in Eq. (4) can take

an arbitrary value in the range ppin<fgi‘%< Ppin, cancelling ~ FIG. 3. Threshold angle, (solid lines and tilt angleg of penetrating
changes in the magnetic force on the right-hand side of thuortices (dashed linesvs. dimensionless magnetic fieldcalculated aip
same equation. Therefore, the balance of forces is destroye:cl0 025 andps=1, 2.

only when the magnetic force decreases Ipy;2 As a re-
sult, we obtain an equation for the threshold anglg: in  glignment of penetrating vortices are extremely sensitive to

dimensionless variables defined by E@): the exact value within the intervah{™), h(N* 1)) at which the
2p exp(x. /\) external magnetic field stopped increasing prior to reorienta-
1—cog o) = N (13)  tion. Characteristic values of the angle are substantially
h greater than the rotation anglg,. The angles¢ and 6,

Hence, 8, 2(p/h) Y2 This means that all flux lines in the Nave their largest valuesya, and fay at the leftmost limits
bulk of the sample remain immobilized at rotation angges ©f the intervaish®™<h<h®™*%, ‘and then monotonically
<2(p/h)Y2. As will be shown below, penetration of new drop to zerd(this can _be easily found by analyzing f(_)rm_ulas
vortices begins at angle, that are significantly less than (16)). The peak amplitudegmay, and .y decrease with in-
0, Therefore the penetration of new vortices will be ana-creasingh (as the number of vortex rows introduced into the

lyzed assuming that all vortices already in place are immoS@mple before rotating the field increase€urves of
bile. d max{h) and 6,,,(h) are plotted in Fig. 4. It is clear that

Let us rewrite the force balance equati@ for vortices ~ #ma{h) monotonically drops to zero, wheregg.,(h) tends
penetrating the sample in dimensionless variables with duf® @ certain constant. As a result, the radig,,(h)/ 0ma{h)

account of Eq(10): increases without bound.
This behavior of¢(h) and 6,,,,(h) at all admissible
ps="f, cos¢+hcog¢—6;), f,=\h*~4pN-h<0. values of the phenomenological paramefeesnd p; follows

(14 directly from Egs.(9)—(11) and (16). It can be shown that

This equation contains two unknown angksand 6,,. An When(tlr/‘g fieldh is slightly greater tham™), f, equals o2
additional equation is needed to determine these angles. T4P)"" ~'—h. Thus, we derive from Eq(16)

can be easily obtained by noting that the first vortex row to hy/p2—4p—p2+2
enter the sample must be oriented at an argléhat maxi- COSPmax= Ps— 7P zps P (17)
mizes the driving magnetic force. By requiring that the de- ps(h—ps—4p)

rivative of the second of Eq$14) with respect tog vanish,
we obtain the required second equation:

f, sin() +h sin(¢— 6,,) =0. (15)

This equation alone shows that the orientatibiof the pen- AN
etrating vortices is different from that of the external field: ~——

S ‘
Equations(14) and (15) can be rewritten in terms ap
and ¢— 6;,. Some simple algebra yields

h?—f0—p3 h?—f+pg
20=tps cog b— Oi,) = T (16)

In the general case[arbitrary h in the interval o ) . .
(h™N) h(N*1))] " the expressions forp and 6, are quite 2 4 6 8 10

messy. For this reason, Fig. 3 shows numerical calculations h

of these angles as functions of the dimensionless field FiG. 4. Angless, ., and ey (dashed lingvs. dimensionless magnetic field
Clearly, the threshold rotation angle of the fi¢fdand the h calculated ap=0.025 andp,=1,2.

CoS¢p=
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h\/ﬁ +2p vortices of an arbitrary orientation can penetrate a supercon-
BT — (18  ductor when the applied field is rotated through a relatively
s small angle. This means that the equations obtained
Asymptotically, in the limit of strong magnetic fields  previously® 2 describe the vortex lattice only in those re-
> s, gions of the sample where the angular jitter is inessential
. owing to multiple crossings among vortices, i.e., far from the
Sl ) =arcsin2\p/p),  Imah)=21p/h, h>ps(.19) superconductor boundaries. The reported results can be con-
sidered a first step toward formulation of correct boundary
Note thatﬁmw(h) is smaller by a factor Oﬂ'() 1/2> 1 than the conditions for the kinetic theorkp‘_lz
threshold angled,,, defined by Eq.(13), at which vortices Finally, let us discuss the feasibility of experimental de-
are ejected by rotation of the external magnetic field. tection of a strong misalignment of vortices penetrating a
superconductor at small rotation angles of applied magnetic
field. If a sample(parallelepiped is placed in a magnetic
field aligned with its long axis and then the fididis rotated
The most important result of this work is that we havein the plane of the largest face through a small angle
established an interesting feature of vortex penetration into & i, One can attempt to observe, using the decoration tech-
superconductor induced by rotation of an external magnetigique, vortex cores ending on the side surface at large dis-
field. The vortices generated in the sample are aligned norfances from the end faces of the parallelepiped. This obser-
collinearly with the magnetic field. The angle between themvation would provide direct confirmation of the theory
depends on external parameters and can be quite considéleveloped here.
able. For example, this angle reache£ in the limit of This work was financially supported by the Russian
strong magnetic fieldh at p~ps. The continuity of the Fund for Fundamental Resear@roject 97-02-16399and
tangential magnetic field component is preserved here, sind® the State Superconductivity ProgrdRroject 96046
the field generated by vortices is always zero on the inter-
face, while continuity is ensured by the field component due
to the Meissner current. APPENDIX A: GIBBS ENERGY OF CROSSING VORTEX
The physical reason for this noncollinearity between thegrows
generated vortices and applied magnetic field is related to the
interaction between the vortex system and superconductor Consider the Gibbs free energy of vortices in the London
surface. Therefore, it may seem surprising that the misalignapproximation
ment angle does not increase with the parampierwhich
characterizes this interaction, put, on the contrgry,_decreases Gem:if dx dy[B2+\2(curlB)2— 2H-B].
notably. The asymptotic behavior given by Etj9) indicates 8w
that in fact both angleg.{(h) and 6,,5(h) decrease with ) .
p. and approach one another. This result can be naturally® MeissnerBy, and vortexB, components of magnetic
explained in terms of the nonlocal microscopic model of thelhduction B satisty the following equations and boundary
critical state. At largeps>p, the vortices that have pen- conditions:
etrated the sample and overcome all su_rface barriers are B, +\2curlcurlB, =0, B (x=0)=H,
acted upon by a uncompensated magnetic force due to the
Meissner currentsthe motion of these vortices is impeded
by the small bulk pinning force instead ofps). As a result, B,+\2curl curIsztboz € o(X—X;)
the vortices “drop” deep into the bulk through a distance of '
about\, and the so-called vortex-free region is credtett. * i
In the long run, the role of the teri),, which is associated X 2 a[y—(k— E)b}z(bon,
with the magnetic force on entering vortices due to already- k==
present vortices, is not very important in the force balance
equation(14), and consequently in Eq15). Therefore the
problem of vortex penetration becomes similar to that Ofyere ¢ is the unit vector aligned with the vortex, indéx
vortex penetration in a fixed-orientation fieftin this situa- |abels vortex rows, ané is the vortex number in a given
tion, i.e., the entering vortices are essentially collinear withyoy, The equations take into account the fact that vortices
the applied field. form a triangular lattice. After simple transformations and

The results of the reported work are interesting not onlygmission of terms independent of vortex row coordinates, we
from the standpoint of the physical model of vortex penetray,5ye

tion, but can also be instrumental in developing a kinetic

model of the vortex system of a superconductor in a mag-

netic field with variable orientation. Such models were de- Gemzﬁf dx dy(®oB, n—2H-B,). (A1)
scribed in our previous publicatiod®:12We suggested that

vortices at each point could have a small angular jitter. ItWe write the vortex component of the magnetic field as a
follows from the results of the present work, however, thatsum of fields generated by vortex rows and their images:

COS Drmax— Omax) =

5. DISCUSSION

B,(x=0)=0.
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B,= 2 eB;, (A2)
where

Bie +\2curlcurlB;e)

=<Doe,5(x—xi)k=2m S . (A3)

o

The field B;(x,X;) generated by théh vortex row is deter-

Savel'ev et al.

HereH, and 6 are the magnitude of vectdd and its tilt
angle with respect to theaxis, andg; is the vortex tilt angle

in theith row. Assuming that all vortices are oriented along
the z axis and only the N+ 1)th row deviates by the angle
¢, Eq. (A5) yields (3).
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The structure and conditions for the onset of a new type of domain wall in multilayer systems
comprising a ferromagnet and a layered antiferromagnet is investigated by numerical

simulation. Domain walls occur as the result of frustrations produced by interface roughness, i.e.,
by the existence of atomic steps on them. The domain walls are investigated both in a
ferromagnetic film on a layered antiferromagnetic substrate and in multilayer structures. It is
shown that a domain wall broadens with increasing distance from the interface; this trend is
attributed to the nontrivial dependence of the wall energy on the thickness of the layer. The
structure of the domain walls in multilayer ferromagnet—layered antiferromagnet systems varies
dramatically as a function of the energies of interlayer and in-layer exchange interactions
between adjacent layers. @998 American Institute of Physid$1063-776(98)01911-§

1. INTRODUCTION magnetic spacer layer ds 2, we haveJ;>J, , and the char-

acteristic values of5 are equal to hundreds of angstroms,

The discovery of giant magnetoresistance has Stimulateareatly exceeding the layer thicknesses. In this case the
interest in multilayer structures consisting of alternating fer-

romagnetic(Fe or C§ and nonmagnetiéCr, Cu, or Ad yarlatlon .of the_vwdth of the wall with distance from the
interface is negligible.
metal layers.

The interaction between the magnetic layers is described I chromlum IS chpsen for the nonmagnetic spacer lay-
by the Ruderman—Kittel—Kasuya—Yosid®KKY) poten- ers, which have a thickness greater than 32 A, then as the

tial, which oscillates as a function of position. The oscilla- ©€MPerature is lowered in the chromium layers, antiferro-
tory character of the interaction for a certain thickness of thdn@gnetic ordering sets in with the generation of a plane spin-
nonmagnetic spacer layer imparts antiferromagnetic oriente€nSity wavé. When d<50 A, the wave is commensurate
tion to the magnetizations of the adjacent layers. When afFo structurg. A similar commensurate layered antiferro-
external magnetic field is applied, the orientation changes t§agnetic structure occurs when iron atoms2%) are in-
ferromagnetic, and this process is accompanied by a drop éfoduced into the chromiurhAccording to some data, a lay-
up to tens of percent in the electrical resistaficence the ered antiferromagnetic structure can occur in manganese
appellation “giant”). layers?

However, the interfaces are not perfectly smooth, and The onset of long-range order in the chromium layers
atomic steps exist on them. Under certain conditions, &as the effect that the interaction between the ferromagnetic
change in the thickness of the spacer layer by one moriayers no longer diminishes abs 2, but is essentially inde-
atomic layer causes the exchange interaction between thgendent ofd.
layers to change sign. If the characteristic spacing of the  The roughness of the interfaces, i.e., the existence of
steps on the interface is greater than a certain critical valugtomic steps on them, can render a uniform distribution of
the situation becomes energetically favorable to partitioninghe ferromagnetic and antiferromagnetic order parameters in
of the magnetic layers into domains such that the magnetie layers energetically unfavorable, because the relative ori-

zations of the adjacent magnetic layers exhibit parallel angintations of adjacent spins separated by an interface are op-
antiparallel orientations.The width & of the resulting do- posite on opposite sides of a stéfig. 1a.

ma'in Wall§ i; dictated by the competition of exphange inter- ¢ the distance between the steps is large enough, the
actions within the layer3, and between magnetic layefs: formation of a domain wall is energetically favorakieig.
5~by313,b, ) 1b .5'6' Owing to the increase id, , the width &, of the
domain wall near an interface can be of the order of the
whereb is the interatomic distance ands the thickness of interatomic distance. In that event the variation of the width
the magnetic layer. The widtld can be substantially less of the domain wall with increasing distance from the inter-
than the width of ordinary domain walls in a ferromagnet,face can become significant. The objective of the present
but becausel, decreases with the thicknedsof the non-  study is to investigate the structure of the domain walls pro-

1063-7761/98/87(11)/6/$15.00 985 © 1998 American Institute of Physics
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duced by interface roughness and to determine the conditions Since we are investigating the spin distribution in the
underlying their onset. exchange approximation, their orientation in space and the
plane of rotation in the domain wall are immaterial. In thin
films the spins are oriented parallel to the layers. Conse-
2. FERROMAGNETIC THIN FILM ON A LAYERED quently, we assume for definiteness that the spins to the right
ANTIFERROMAGNET and left of the domain wall are parallel and antiparallel to the

We consider a ferromagnetic thin film on a layered an-y axis, and the spin vectors rotate in thg plane. Accord-
tiferromagnetic substrate. We investigate a solitary atomidngly, in the substrate layer nearest the interféice O for
step on the film—substrate interface. Let the step be parall&™>0 and ;= for x<<0 (Fig. 1).
to they axis of a Cartesian coordinate system, and letzhe Replacing the spin operators in E@) by their mean
axis be perpendicular to the layer. This arrangement sets up\@lues, assuming that the moduli of the latter are fixed, we
two-dimensional problem. obtain an expression for the energy in the mean-field ap-
We investigate the exchange interaction between localProximation. After variation with respect to the quantitigs
ized spins in the film—substrate system in the approximatiotve go from a discrete to a continuous representation, assum-
of nearest-neighbor interaction. The Hamiltonian of the sysing that the film thickness is much greater than the inter-

tem has the form atomic distancé (d>Db). As a result, we obtain the follow-
1 ing equation for the volume of the film:
7/:_525 Tii+5SS+ 5 2 g/ + 6! =0. @)

where§ is theith localized spin operator, the indékenu- ~ On the free boundary of the film with the vacuumzata
merates all nearest neighbors, and the exchange integraid/b, we have

Zii+ols
s _ , Ox 6, =0. )
2 if i, i+ 6 refer to the film, _ _
Jiies=1{ 7a(8) i, i+ 8 refertothe substrate,(3) At the film—substrate interface€ 0) we have

71, otherwise, it 0= a sgnxsing, (6)

where 7,>0, 7,(8)<0 if i andi+ § are associated with where a= 714S,) 71(S,), all derivatives in Eqs(4)—(6)
different layers, and7,(6)>0 if i andi+ & are associated are evaluated with respect to dimensionless coordirates
with the same layer. For definiteness we Jéf,>0. malized by the interatomic distanbg and(S;) and(S,) are
By replacing 7, and the spin vectors associated with the moduli of the mean spins of the film and substrate, re-
one of the sublattices of the antiferromagnet with their op-spectively.
posites, we can reduce the problem to the interaction of two  The boundary conditiong5) and (6) differ from those
ferromagnetic layers with frustrated interaction between thjiven in Ref. 7 by the tern#),. This means, for example,
layers (71,=_71,S9nx). The problem of a layered antifer- that we can make a smooth transition fr@¢f) to (4) when
romagnetic thin film on a ferromagnetic substrate is reducthe substrate and film are made of the same material.
ible to exactly the same problem. The solution of Eq.(4) subject to the boundary condi-
When the thicknes$ of the substrate is much greater tions (5) and (6) determines the distribution of the magneti-
than the thicknessl of the film (or, more precisely, when zation in the roughness-generated domain wall. It depends on
Po|I> 7,d), a domain wall forms only in the bulk of the the two dimensionless parametersand a, wherea is the
film, and the order parameter in the substrate remains homalimensionless thickness of the film. In contrast, the width of
geneous. We can therefore investigate the distribution obrdinary domain walls is determined by the ratio of the ex-
spins in the film for a given boundary condition at the inter-change energy to the anisotropy energy, which we can dis-
face. regard.
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3. COMPUTATIONAL METHOD g

The system of equatior(@)—(6) is the Laplace equation
for a function of two coordinate8(x, z) with the nonlinear
boundary conditiong6). We require in addition that the
function # be continuous in the rangesz<a and satisfy
the conditionsf(x— +»)—0 and #(x— — ) — 7.

To obtain a suitable equation for numerical solution, we
first use a method analogous to the method of integral 1
transform$. We transform the original set of differential
equations to a single integral equation for a one-dimensional
grid function ¥(x;). To do so, augmenting the definition of 0
the functiond(x+ 2L, z) = w— 6(X, z) in a sufficiently large
regionxe[—L, L], we take the discrete Fourier expansionfgig. 2. Plots of6(x) in a domain wall in various cross sections far
of (4)—(6) along thex axis and then solve the decoupled =1/16 anda=64. 1) z=0; 2) z=16; 3) z=64.
equations for the Fourier harmonics analytically. We obtain

2100 50 0 50 100 x

P(x) =2 K(k, O)COS(%kXi > COS(%ka) a SgNX; We have used the foregoing method to perform a series
k ! of calculations for various combinations of the parameters
X sing(X;)=S(1, Xi), (7) a=4,8,16, 32,64 andr=1/64,1/16,1/4,1, 4.
A similar method has been used in modeling the spin
where vortex described in Sec. 4, as well as multilayer structures
L \2 zkar akm (Sec. 5.
K (K, Z)__4(G) ex;{ —I)(Z exp{T
zkw || L akm zkar 4. DISCUSSION
+ex T }G‘F E‘X%T —exr{T)H - - - - -
A typical plot of the functiond(x) is shown in Fig. 2.
akm L \2 Note that the second derivativg, suffers a discontinuity at
X[4 exp{T) _1}(G) x=z=0, while the first derivatived, remains continuous
there. The width of the domain wai(x) is interpreted as the
4 ex;{ﬂ 1 L+ exp(ﬁ H_l distance between the points with coordinates, ) and
L k L (X5, 2), which correspond to9,=m/4 and 0,=3w/4, re-
spectively.

® The main distinguishing feature of the investigated do-
To solve this equation numerically, we write the simple it- main walls is the fact that they increase with increasing dis-
erative scheme tance from the interface. A graph af(z) for ca>1 is
me1 m m m shown in Fig. 3. Clearly, the function is linear near the sub-
Pra) =0+ CeO)ISYPT X) =91, (9 girate and becomes essentially constant near the free surface.

where For ea<1 the variation of the width of the domain wall is
negligible.
Cr(X)=Co+exf — (X /x7)%], (10
with the initial condition 4/°(x;) = 7/2—tanh(1&;/L). The
free parameters, and x; are chosen experimentally in the é
course of the calculations in such a way as to maximize the 80
rate of convergence of the iterative procedure without sacri- 701
ficing its stability. We iterate until the residual attains a 6of
value such that
501
n=max ™ () — h™(x;)| > 790=10"°. (13) 40

X

30
201
10,

We obtain a solution over the entire region from the expres-
sion

0 10 20 30 40 50 60 z

0(x;,2)= Ek K(k, z)cos(gkxi

FIG. 3. Width of a domain wall vs. distance from the interface da= 1
a sgnx; siny(X;). (12) in the case of one free surface fd) a=1, a=64; 2) a=1, a=32;
3) a=1/4, a=64, and in a three-layer structure #ér «=3 anda=16.

v
X cos{rkxj
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ad(al2)
100¢
,e/

1.
i 10 100 aa

0.1
FIG. 4. Graph ofr5(a/2) vs. the parametexra (doty and its approximation

for 1) aa<1, ad(al2)=2aa ; 2) aa>1, ad(al2)=aal2.

The dimensionless width of the domain waly= 5(z

=0) and a certain thickness-averag&d denoted from now

ations. We approximaté(x, z) as follows:
0 for x=8(2),
for —8(z)<x<é6(2)

aa
0(x,z)= E[l—x/a‘(x)]
for x<—6(2),

™

where
8(z)= 69+ Bz, O=z=a.
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=2 aa for aa<1; 2) \7V=2In(aa) for ae>1.

B~1,
So~1/min(1, @).

we obtain
a

(13

14

50"’ \/a/a

HEN
These estimates are in good agreement with the results of the
calculations(Fig. 4). One exception is the expression &y
whenaa>1. Fore>1 the results of the calculations differ
appreciably from the estimat@l). In this case the neighbor-

FIG. 5. Domain wall energﬁv vs. aa (dot9 and its approximationi) W

For the characteristic width of the domain walla/2)

on by B, can be estimated from simple energy consider-The continuous approximation is valid &> a/(1+ ).

For the energy of the domain wall we obtain

(20
21

for aa<€1,
(22

for aa>1.

hood of the singularity at=z=0 specifically plays a major

for aa<<1,
(23

b

for aa>1.

order parameter in the domain wall, calculated per meter of
W~

its length along the axis, is

Ti(S)? (2, (=
Wf%fo dszw dx[(6)%+ ()]

+6
B350 ° (15)

energy to increase by

_ 2 714S1(S2) f“’
b 0

2

dx[1—cosé(x, 0)]
(16)

2SN

b
We evaluate the parametefs and &, by minimizing the

energyW,; with respect to the former and then minimizing
the total energy of the domain wall
17

W=W, +W,
with respect to the latter.
Foraa<1 we have
(18)
(19

B~+Jaa,
So~ala,

and foraa>1

/l( Sl> 2

The calculated dependence W on aa is shown in

The energy contribution from the inhomogeneity of therole, and the simple approximati¢a3) is invalid.
G S 2
]2< 1> \/a

_ 772/}’71<51>2 i E
4b B 3
The existence of a step causes the film—substrate interactidnid: 5-
thickness is increased.

b In(aa)

The broadening of the domain wall has the effect that for
aa>1 its energy increases only logarithmically as the film

0.7 0.6 0.9 0.8

FIG. 6. Spin vortex generated f&t<a in the casea=4, a=64, R=16.
The value of@ in units of 7 is indicated alongside each constanline.
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Vo2 e

0 -

60 -4 N - 7 20 40 60 x

. i i |
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FIG. 7. Domain wall in a three-layer structure fo=3,a=16, R=64(a) anda=0.1, a= 16, R=64 (b). The step positions are indicated by arrows, and the
constantd lines are drawn at intervals af/10.

We now estimate the step spacing for which the uniform5. MULTILAYER STRUCTURES
distribution of the order parameter in the film becomes ener-
getically unfavorable. LeR be the dimensionless distance Multilayer structures can be modeled when exchange in-
between two parallel steps, where the orientation of the spinteraction in the ferromagnetic layefison) is much stronger
in the film in the zone between steps corresponds to théhan in the antiferromagnetic layef€rFe. Distortions of
maximum rather than to the minimum energy of interactionthe uniform distribution of the order parameter occur only in
with the substrate. As a result, the energy of the system inthe antiferromagnetic layers, where the distortions in one
creases by 214 S;){S,)R/b per meter of step length. If this layer do not affect those in the other.
energy is greater than the energy of two domain walls, itis  The behavior of a domain wall in an antiferromagnetic
more favorable for the film to acquire a domain with the layer is determined entirely by the boundary conditions on its
opposite value of the order parameter. Bar<1 this con- surface. As mentioned, the simultaneous sign reversal of
dition is equivalent to the constrai®> &,. both the exchange interaction between the antiferromagnetic
Two possibilities exist in the casw>1. ForR>a two  sublattices and the direction of the spins of one of the sub-
domain walls form, penetrating the entire thickness of thdattices reduces the problem of finding the distribution of the
film. For §,<R<a, on the other hand, a kind of spin vortex antiferromagnetic order parameter to finding the magnetiza-
appears near the substrdkgg. 6), penetrating the film to a tion distribution in a ferromagnetic layer with frustrated in-
depth of the order oR. Throughout the rest of the film the teraction at the boundary.
uniform distribution of the order parameter is undisturbed. The domain walls interconnect the nearest atomic steps,
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which can be associated either with one boundary of thevidth R at which domain walls appear and its dependence on
layer or with the opposite boundary. In contrast with thethe film thickness can be found by investigating films of
investigated case of one free boundary, the thickness of thearious thicknesses and with various widtRs Moreover,
domain wall is a maximum in the middle of the layer and notthe dependence of the width of a domain wall at the surface
at the boundaryFig. 3, curved). on the film thickness can be determined. To within a factor

Modeling shows that the quantity plays a major role. of order unity, the theoretical dependence agrees with the
For a>1 the spins closest to the boundaries of a layer argraph in Fig. 4.
oriented parallel or antiparallel to the spins of the adjacent
layers, depending on t_he_ sign qf the exchange_ interactiop ~oNCLUSIONS
between layers, to minimize the interlayer coupling energy.

When the distanc® between closest steps is much greater 1. The existence of atomic steps on the interface between
than the layer thicknes$t>a), a domain wall formed on an @ layered antiferromagnet and a ferromagnetic film induces
atomic step rotates at a distance of the ordes ahd simul-  domain structure in the film if the distangebetween steps is
taneously broadens in such a way as to occupy the entirgreater than the widtl, of the domain wall at the interface.
width of the layer and then run parallel to its boundaries 2. The width of the domain wall increases with increas-
(Fig. 7a. In this region,d varies linearly with increasing, ing distance from the substrate. For thicker films, therefore,
from zero at one boundary of the layer toat the other. the energy of the wall increases logarithmically as the thick-

On the other hand, ifr<1 andR>a, the structure of ness of the film increases.
the domain wall is more complex, because now the situation 3. Instead of a domain structure, static spin vortices hav-
is energetically favorable for the spin vectors to rotate at théng a characteristic scale occur near the substrate in thick
boundary of the layer through a certain angle relative to thdilms with j,<R<a.
direction corresponding to minimum surface energyg. 4. In multilayer ferromagnet—layered antiferromagnet
7b). Forae<1 we do not observe the zones, so conspicuoustructures, the domain walls interconnect adjacent steps on
for aa>1, where the domain wall rotates, and all distortionsthe layer boundaries, occupying the entire space of the layer
take place within a characteristic scale of the ordeRoAs ~ between the steps. The structure of such domain walls de-
in the caseaa> 1, the domain wall fills essentially the entire pends significantly on the relation between in-layer and in-
volume of the layer in the space between steps. terlayer exchange.

In Ref. 9 the distribution of spins in a two-layer This work has received partial financial support from the
ferromagnet—layered antiferromagnet system is modeled niRussian Fund for Fundamental Reseaf@nant No. 97-02-
merically on the basis of the Ising model. However, the Isingl 7627.
model corresponds to very strong anisotropy of the easy-axis
type and is invalid for the description of multilayer structures 1 | morozov and A. S. Sigov, JETP Le1, 911 (1995.
of the Fe/Cr type, for which the anisotropy energy in the 2. E. Fullerton, S. D. Bader, and J. L. Robertson, Phys. Rev. L@t
plane of the layers is much lower than the exchange interac; 1382(1997.
tion energy. The domain walls formed within the framework E: ';awce“ H. L. Albert, V. Yu. Galkiret al, Rev. Mod. Phys66, 25
of the Ising model have atomic widths, so that the uniquess gouarab, H. Nalt-Lazis, M. A. Khast al, Phys. Rev. B52, 10127
properties of the domain walls in the layers of a (1995.
ferromagnet—layered antiferromagnet were not observed iriA- Berger and H. Hopster, Phys. Rev. L&t8, 193(1994.
the cited paper. E. E. Fullerton, C. H. Sowers, and S. D. Bader, Phys. Re%6B5469

(1997.

The conditions for the emergence of the investigated do-7;. c. sjonczewski, Phys. Rev. Le&7, 3172(1991).
main walls can be tested experimentally and their structuré’R. Courant and D. Hilbertylethods of Mathematical Physicgols. 1 and
analyzed by using a microscope to examine the magnetig2: Interscience, New York1953, 1962
forces of ferromagnetic films deposited on an antiferromag- A. Berger and E. E. Fullerton, J. Magn. Magn. Mateé5, 471 (1997.
netic substrate. The critical value of the characteristic stepranslated by James S. Wood
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The effect of the temperature on the kinetic coefficients of a mesoscopic sample in contact with
two electron reservoirs is considered for the case in which the electron transmission

coefficient of the sample undergoes oscillations near the Fermi energyL998 American

Institute of Physicg.S1063-776(198)02011-3

1. INTRODUCTION We apply the results of Refs. 13 and 14 to the case in
which the electron transmission coefficiag(ts) of the me-

One of the important properties of mesoscopic SySJ‘emssoscopic sample oscillates avaries near the Fermi energy.

at low temperatures is the preservation of phase coherengg gac 2 we obtain an expression for the curieand heat

during propagation of electrons. Therefore, in such systemg,,,  at nonzero reservoir temperatures, with allowance for
it is possible to observe effects that are sensitive to the phasg, oscillating nature of the dependemyte). Section 3 con-

of the electron wave function. As an example, we considegjgers the linear response regime. Section 4 derives expres-
the Aharonov—Bohm effeétwhich leads to oscillations with sions forl andQ for a large temperature difference between
period ®o=h/e of the physical characteristics of nonsuper-he reservoirs. Section 5 considers a one-dimensional ring
cor!ductlng doubly-connected.samples. immersed Ina rnagé’nclosing magnetic flu in terms of an interference ballis-
netic fluxd (Refs. 3 and 4 This effect is observed in both jc sirycture, and shows that the presence of this flux can

the kinetic and thermodynam?cprope.rties of the samples. g pstantially alter the temperature dependence of the trans-
The creation of structures in which electrons propagat%ort coefficients.

ballistically has made it possible to imagine a number of
devices based on the phenomenon of interferént%eA pe-
culiarity of such interference ballistic structures is the fact

that the electron transmission coefficigrit) of these struc- 2. STATEMENT OF THE PROBLEM AND BASIC RELATIONS

tures varies sgbstantiallx&g:g, in response to an insignifi- Let a ballistic mesoscopic sample be connected by bal-
cant change in the energye/s=N/L (\ is the electron |istic leads to two electron reservoirsL” and “R”, The
wavelengthL is the characteristic length of the device size of the sample is assumed to be small in comparison with

This fact is important in any consideration of electron ¢ phase coherence lendth(T). We denote the tempera-
and heat transport in an interference ballistic structure ifyres and chemical potentials of the reservoirs respectively
contact with electron reservoirs. On the one hand, in thq)y T_.m. andTg,ug. In the present paper, we consider a
given case the range of temperatdr@and voltageV over  gne-dimensional sample and one-dimensional leads. Gener-
which the linear-response approximation is valid is substanyjization to the case of several conducting subzones in the
tially narrowed: AT, V<ephg/L, whereeg is the Fermi  gpsence of channel mixing is trivial. With channel mixing
energy and\r is the wavelength of a Fermi electron. On the taken into account such a generalization can be made accord-
other hand, in such a system the electron thermal voltaggq to the results of Refs. 13 and 15.
coefficient should be significaft. This leads, in particular, Expressions for the currentand dissipative heat lo€3

to a violation of the Wiedemann—Franz law despite the fachetween electron reservoirs in the single-channel approxima-
that an interference ballistic structure is a purely elastic scatjon have the form

terer.

Transport phenomena in mesoscopic samples in contagt. Ef de g(e)| f (s—ML+ecp ¢ (S—MR+ e@) e
with electron reservoirs af #0 are examined in Refs. 13 h 9 0 T, 0 Tr '
and 14, which consider both particle transport between elec- e Lo
tron reservoirs and electron transport only through a mesosy — _f de g(e) (S_MLJFe(P)fo(L(P)
copic structure. In the first case, the calculation of the current T
(heat flux takes into account both the resistance of the me- e— upteo
soscopic sample itself and the additional contact resistance —(g—pur+ ecp)fO(T—R . 2

(spreading resistangebetween the leads and the electron
reservoirs>1°In the present paper, we consider only the firstHereg(¢) is the electron transmission coefficient of the me-
case (transport between electron reservpiras it more soscopic sample as a function of electron energy
closely corresponds to the standard experimental situatiofy(x)=(1+¢e*) ! is the Fermi distribution functiony is the
(two-probe measurementsThe feasibility of measuring the potential of the sample relative to the electron reservoirs.
transport coefficients associated with the mesoscopic samplene quantitye should be determined self-consistently from
itself is discussed in Refs. 13 and 14. the Poisson equatiofi-*®

1063-7761/98/87(11)/5/$15.00 991 © 1998 American Institute of Physics
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Below we assume that the energy dependence of thethereAr is the distance between electron energy levels near
transmission coefficientg(e), derives from interference the Fermi level, the expressions for the currérgnd heat
processes. Therefore, the transmission coefficient is an oscilux Q can be represented in matrix forth:
lating function of electron wavelength=2#/k. We write

9(s)=g+ 2 gn, 3 Q Ly Lo/T/\ AT |
n
_ In the present paper, we consider kinetic coefficients describ-
gn=A, cognkL) + By sin(nkL). ing charge and energy transport between the electron reser-

voirs. For this case, as emphasized in Ref. 13, the Onsager
relations are satisfied, as reflected in E).

Expressions for the kinetic coefficients can be ob-
L>Ng, (4)  tained from expression&) and (7). The temperaturd™*
divides the low-temperature from the high-temperature
range; in the former, the effect of the temperature can be
neglected, while in the latter, averaging over energy leads to
compensation of the interference contributions to the trans-

mission coefficient, as a result of whig(g)zE

Hereg is the mean transmission coefficient= (7k)?/
2m*, andm* is the effective mass of the electron. If

then near the Fermi energy the quanti§e) can accurately
be assumed to be an oscillating function of the electron en
ergy. Substituting the expansi@8) into expression¢l) and

(2) in this case and assuming that

Tusp, Tr<pr,  BAR=URT HUSBL MR, ®) We now write out asymptotic expressions for the coef-
we obtain ficientsL;.
1) Low temperaturesT<T*,
2e| — 2% 2 1

== QA Rt T2 (n(TU)3.Gnl, e 26?

Lo=—-9(er), (109
- ‘ﬂn(TR)asgn|;¢R—e¢)] ' (6) 26772

Li=—35 1709l (10b)

2m2[_T2-T3 Au
ZT{Q L6 RyT*23 T(wn(TL)asgnthap 27%
" Lo=—5, T 0(er). (109

+ Yn(TR)9eGnl uy—ep)
Un(TR)9eGnl - 2) High temperaturesTsT*,

nTL 2
+T*2 cosh— yA(T —e 2e?_ 2T T
; ( T YH(TL)Gnie~ €0) Lo=7797 el Ry g1(ep) |, (119
—coshn—TRzpz(T )In(r—€9) (7) dem? T
T PRERERTES Ly=— Tzexp<—T—*) X (11b)
Here o (T)=(T/T*)[sinh@T/T*)]L,  T*=Ap272,
Ar=2epAg/L, and we use the notatioA,=d/de. The 2e2 o — 6T T
Fermi energyer=pu—eg, is defined in equilibrium: u Lo=3, T Q—T—*ex k3 g1(&F) |- (119
=u . =ugr,T=T =Tg. The quantity Au is determined
both by the difference of electrostatic potentigllapplied to We also write out expressions for the electron thermal

the electron reservoirs and the difference of chemical potenyoltage coefficientv=—Au/eAT and the thermal conduc-
tials of the electron reservoirs due to their temperature detivity x=—Q/AT, which are measured &t=0:

pendence. Note that the dependendd) is absent for a 1) T<T*,

two-dimensional reservoir.

2
Expressiong6) and (7) are central to the present work

T

=—Td,In , 12
and will be used below to determine the temperature depen- 47 3e % (g)|sF (123
dence of the kinetic coefficients. We assume that inelastic , )
processes are absent in the sampleL ,(T), and that the B ZLT () 1- 3(ea) (12b)
effect of the temperature reduces merely to energy averaging = 3n 9ler 72
of the transmission coefficienty ) (3).
2) T>T*,
2
rs —

3. KINETIC COEFFICIENTS IN THE LINEAR REGIME a= ?T*(g)flﬁsgﬂw (133

For small differences of the reservoir chemical potentials
Ap and temperatureAT=Tg— T, 2m> | — 6T T

. k=—7=TIg— ——exp — —|9i(eF) |. (13b)
Au<Ap, AT<min(T,T*), (8 3h T* T*
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Expressiong10), obtained in Ref. 13, and expressions Ln
(12) have the usual form for the theory of metésee, e.g.,

Ref. 19. However, in contrast to normal metals, for which “ %
eay=T/eg (without allowance for phonon entrainmgnin T T

. . . L R
the case under consideration the electron thermal voltage is
not small: a/ ag=¢eg/T*>1. This leads, in particular, to a Ln
breakdown of the Wiedemann—Franz law:

FIG. 1. Model of a one-dimensional ballistic ring of lendthenclosing a
1- 3(ea)2/772, T<T*, magnetic fluxd®. The ring is connected by one-dimensional wires to two
3e® « 8T T () electron reservoirs at temperaturgs and Ty and chemical potentialg,
D e 14 dug.
26T | 1- 2 exd — | 91er CT>T. (14) andug
T* T* g

Here G=L, is the conductance of the system. The greatest
deviation should be observed for=T*; it decreases at both
lower and higher temperatures. We emphasize that in the 2e (eF _
present work we derive the deviation from the Aharonov— IT:FJ de[g(e)—g], (173
Bohm law for the transport coefficients between the electron ‘o
reservoirs, whereas in Refs. 13 and 14 such a deviation was 2 (eg _
derived for the coefficients associated with the mesoscopic Q= ﬁf de(e—ep)[g9(e)—g]. (17
sample itself. °0

Comparing expressionl2a and (138, we see that Hereeo=Ag[er/Ag] ([x] is the integer part ok). In this
a(T) has a maximun(in absolute valugat T=T*. To order  regime, the thermoelectric current and the interference term
of magnitude, the maximum i®a(T*)|=1. Note also that in the heat flux are independent of the temperatures of the

1T, <T*,

the sign ofa can be different foT<T* and T>T*. electron reservoird andTg.
The conductanc& of the system and the thermal con- 2 T >T*, Te>Ty,
ductivity « for T<T* depend on the Fermi energye, dem? T
which in turn depends on the chemical potentials of the elec- | - _ 7 T, T* exp( — _L> 9,01, (189
tron reservoirs. FOF>T* the small interference terms in the h T F
conductance and the thermal conductivity exhibit such a de- 42 -
o
pendencdésee(11g and(13b)). 5Q= TTEGXI{ _ T_:) g(ep). (18b)
Thus, the difference between the regime with a large
4. CURRENT AND HEAT FLUX FOR A LARGE temperature difference and the linear response regime
;E'\S"EESSIT;SRE DIFFERENCE BETWEEN THE ELECTRON (AT<T) is that the thermoelectric current and the interfer-

ence term in the heat flux are independent of the temperature

We fix the temperature of one of the reservoirs, &g., of the hotter reservoirTg), and fail to vanisih in the limit

and consider the dependence of the current and heat flux ih.—0.
the system on the temperature of the second reservgjr. (
As follows from Eq.(6), in the limit
5. TEMPERATURE DEPENDENCE OF THE KINETIC

*
Te>T (19 COEFFICIENTS OF A ONE-DIMENSIONAL BALLISTIC RING
the current is independent o z. Moreover, if we write WITH MAGNETIC FLUX
w2 , o Consider a one-dimensional ballistic ring connected by
Q=Qo+Q, Qo=@9(TL—TR), (160 one-dimensional leads to two electron reservdFay. 1).

The ring encloses a magnetic fldx. The length of the ring
then it follows from Eq.(7) that the interference terdQ in L is assumed to be small in comparison with the phase co-
the heat flux under conditiof15) is also independent afy. herence lengtht <L ,. Within the framework of quantum

Inasmuch as inelastic processes take place only in theaveguide theor in the approximation of noninteracting
reservoirs and not in the sample, temperature averaging @lectrons, the transmission coefficigrfor such a system for
the contributions to the curreriand heat fluxQ) due to  symmetrically located contacts®?s?
electrons propagating from the left reservoir to the right res- B
ervoir (with temperatureT ) and in the reverse direction g= (1~ coskl))(1+cos2m P/ Do) .
(with temperatureTg) takes place independently, as is im-  (cog27®/d,)—1.25c0$kL) +0.25)+ sinf(kL)
mediately clear from(6) and (7). (19

In what follows we sejt = ug. If condition (15) is met, The first two terms in expansia8) have the form
the dependence oh, of the thermoelectric currert and

2(1+coq27d/dy))

the interference term@Q in the heat flux have the following Pl
form: 3+2cog27d/ D) ’

(20
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FIG. 2. Dependence of the thermoelectric coefficient of a one-
dimensional ring on the temperature in the linear response regime
(AT<T) for ®=0 (1), ®* (2), and 0.1% (3). {L/A}=0.75.

FIG. 3. Dependence of the thermoelectric coefficiant of a one-
dimensional ring on the temperatufe in the linear response regime
(AT<T) for {L/\g}=0.05(1), 0.1(2), 0.2(3), and 0.4(4). ®=0.3D,.

2 27d
91=§g 4 co T -3 COSkL) (21)
0 value(at low temperaturgslt can be seen from Fig. 3 that as

The kinetic coefficients of the system depend on thethe ratioL/\ approaches an integer, the peak in the depen-
magnetic flux®, and this dependence can be manifested in @lencea(T) becomes sharper and shifts toward lower tem-
nontrivial way. We show this in the case of the thermoelecperatures. Note that when we make the substitution
tric coefficienta. {L/Ng}—1—{L/\g} the thermoelectric coefficient changes

Figure 2 plots the dependene£T) for three values of sign.
® and{L/\¢}=0.75, where{x} is the fractional part ok.

The quantityx is governed by the transmission coefficignt 6. CONCLUSION

for T<T* (see Eq.123), and by its first harmonig; for
T>T* (see Eq(13a). The signs of the derivative,g and
3,91 depend on the magnetic fluk (and on the product
keL). For some values ob these quantities have the same
sign (Fig. 2, curvel) while for others their signs are differ-

In the present paper we have considered the effect of the
temperature on the kinetic coefficients of a mesoscopic
sample in contact with two electron reservoirs. Charge and
energy transport are described by the electron transmission
) . . coefficientg(e) of the sample. It is assumed that inelastic
ent(Fig. 2, curve3). Therefore, by varying the magnetic flux processes are absent in the sample and that the effect of

® it is possible to go from a fixed-sign dependencex¢T) : .
) o . temperatureT reduces simply to energy averaging of the
to a dependence that changes sign with increasing or de- - .- ) .
. électron transmission coefficieny in a neighborhood
creasing temperature.

Furthermore,  for &= +@* (where  ®*/d, Ae=T abouteg. Expressions have been obtained for the

— (27)Larccos(3/4)-0.115) the quantitg, (see Eq(21)) currentl (6) and dissipative heat fluQ (7) which take ac-

. . * L count of oscillations irg nearsg . Such oscillations are char-
governing the high-temperaturé ¥ T*) asymptotic limit of L - . . L
the thermoelectric coefficient vanishes. Therefore. in ex- acteristic of ballistic mesoscopic systems in which interfer-

. o . _ ence has a substantial influence on the transmission of an
pansion(6) it is necessary to retain the=2 term. As a d-12 Note that i trast 1o the S fold
result, ford=+®* andT>T* we obtain electror) Wave. ote that In contrast o the sommerte

expansion customarily used in the theory of normal metals,
2T\ 2 which takes account of variations of physical quantities of
ea:exp( - T_*) T_*Sin(ZkFL)- (22)  the system on a scale: (or more precisely, on a scalee
>T), the expansion proposed here takes account of variation
In the given casex falls off more rapidly with temperature of physical characteristics of the system nearin the en-
(than ford+# +®*) (Fig. 2, curve2). Moreover, the tem- ergy rangeAs<T,eg.
perature separating the low-temperature and high- We have shown that the thermoelectric coefficiersig-
temperature regions is reduced by a factor of two. nificantly exceeds the value, characteristic of ordinary
The interference terms in the conductar@e-L, (see  metals(without allowance for phonon entrainment and in the
Eqg. (11@) and the thermal conductivity (see Eq.(13b)  absence of magnetic impuritlesy=a e /T*, which is due
have an analogous dependencedoandT for T>T*. Spe- to oscillations in the electron transmission coefficient near
cifically, they change sign with varyind; moreover, their e¢ (Ref. 13. We have calculated the dependergd). In
magnitude falls off exponentially with increasing tempera-the linear regime AT<T*,T) the dependence(T) has a
ture, with a characteristic temperature of*/2 for  maximum(in absolute valugeat T=T*. Note that the sign of
®=+d* andT* for other values of magnetic flus. a can be different foT<T* and forT>T*. At high tem-

For & +# 0 the conductance of the rir{@9) vanishes near peratures T>T%*) the thermoelectric coefficient falls expo-
integer values of the ratikzL/2m=L/\g. Therefore, near nentially with temperatureg=exp(—27°T/Ag), and this de-
these values the thermoelectric coefficierthas a significant pendence can be used to determine. It should be noted
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An investigation based on the coupled Maxwell-Bloch equations for a system of equivalent
exchange-coupled spins is performed in order to explain a humber of features of NMR spectra
obtained in metals by Fourier-transforming of the free-induction decay at ultralow

temperatures. Small angles of tilting of the nuclear magnetization by the exciting rf field are
considered. It is shown that the free precession inherits the nonuniformity in the distribution of the
rf field and the magnetization produced at the excitation stage inside the sample on account

of the skin effect. As a result, the NMR spectrum is found to consist of a set of peaks—signals due
to standing spin waves. However, such a spectrum can be observed only when the detuning

of the exciting rf field is sufficiently large relative to the Larmor frequency of the spins. Otherwise,
the rf field does not penetrate into the sample because of strong absorption by the spins. If

the detuning is large, the dispersion signal and part of the NMR absorption signal are proportional
to the equilibrium magnetization to the power 3/2. Such behavior is expected at low
temperatures so that the coupling of the magnetization with the rf field is strong. The results
obtained qualitatively explain the experimentally observed characteristics of the NMR spectra: the
presence of kinks and structure of the NMR lines, the dependence of the shape and intensity

of the spectrum on the detuning of the exciting rf field, and the nonlinear dependence of the nuclear
susceptibility on the reciprocal of the sample temperature. 1998 American Institute of
Physics[S1063-776098)02111-9

1. INTRODUCTION of such an energy a uniform rf field can excite in the metal
only a uniform precession of the magnetic moments, i.e., a

A series of experiments on the detection of NMR from spatial mode with wave vectdt =0 (we emphasize that in
nuclear spins in metals at ultralow temperatures was pemRef. 4 a time-independent rf field was studie@n the other
formed recently.® The NMR spectra were obtained by hand, Kittef established that if surface anisotropy is present
Fourier-transforming of the free induction decay and had an the sample, then a stationary uniform field can excite ob-
number of distinctive features: the dependence of the spegervable standing spin waves with wave vectors
trum shape and intensity on the amplitude of the exciting rfik =0 as well a # 0. The mathematical formulation of this
field and the detuning of the field from the Larmor frequencyproblem is based on the fact that under the surface anisot-
of the nuclear spins, nonlinear dependence of the nucleabpy conditions the magnetization satisfies different equa-
susceptibility on the reciprocal of the sample temperaturetions of motion at the surface and in the interior of the
and presence of kinks and structure in the NMR lines. Thesgample, and this gives rise to the distortion of the spin waves
features have still not been explained. In Ref. 2 it was indirequired for their observation. Therefore, in samples into
cated that the metallic properties of the samp® skin  which a uniform rf field penetrating unhindered and is uni-
effech play a decisive role in the appearance of the characform, the only reason that spin waves can be observed under
teristics of the NMR spectra obtained in such experimentsconditions of stationary irradiation is that the equations of
Specifically, the opinion was stated that the above-noted feanotion of the magnetization vector at the surface and in the
tures of the NMR spectra are due to standing spin waves, oimterior of the sample have a different form.
account of the skin effect, excited as the free induction de- In contrast to stationary NMR, free induction decay is a
cays. two-step process consisting of a preparatory stageitation

The existence of spin waves is possible because wheof transverse magnetizatiprand free precession. In our
the rf field penetrates nonuniformly into a conducttiie  opinion an external uniform rf field and the transverse mag-
skin effec} the spatial distribution of the magnetization is netization excited by it propagate into the sample during the
also nonuniform. The Ruderman—Kittel interaction betweerpreparation stage in the form of two wavéepresented in
nuclear spins, which is of an exchange character, can ther¢ghe form of “field-like” and “spin-like” branches that pen-
fore be written in the form of a nonuniform exchange etrate into the sample nonuniformly because of the skin ef-
energy* However, as shown in Ref. 4, even in the presencdect. The subsequent free precession inherits the nonunifor-

1063-7761/98/87(11)/7/$15.00 996 © 1998 American Institute of Physics
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mity produced, since free oscillations of the magnetizatiordirected along the surface of the sample in the direction of
and of the magnetic field due to its motion occur with spa-the x axis, which is parallel to the long side of the plate
tially nonuniform initial conditions. This could be respon- Then all variables will depend only on the coordinate
sible for the fact that the amplitudes of the standing spin It should be noted that in the experimental situation of
waves of magnetization, which are present during free preRefs. 1-3, which we shall have in mind in what follows, the
cession, with “quantized” values oK in the sample are sample is a normal metal with no localized electronic spins.
different from zero forK #0 also. Since according to the The constant magnetic fiel®.4 T for NMR of thalium at a
corresponding dispersion law different resonance frequencidsequency of about 10 MHzis weak in the sense of the
correspond to different values Kf, the Fourier-transforming curvature of the conduction-electron trajectories: The
of the free induction decay should give a set of resonanceonduction-electron mean-free path=~10"° m, in the re-
peaks referring to different modes of the excited spin wavesgion of residual resistance is smaller than the Larmor radius
Moreover, the penetration of the spin-like branch of coupledR, ~6x 10™° m, so that in such a field the conditions for the
waves into the sample in the preparation stage depends @ppearance of weakly damped helicoidal waves are not sat-
which part of the exciting field is absorbed by the spins. Thesfied. A constant magnetic field could possibly alter the con-
indicated spatial nonuniformities of the initial conditions for ductivity of the sample by a very small amount. But since,
free induction decay thus depend on the detuning of the exanfortunately, the conductivity is unknown, taking account
citing field, which causes the spectrum obtained to dependf this small change is not feasible. Therefore the effects due
on the detuning. to the curvature of the electron trajectories by a constant

The experiments which we are examining, on obtainingmagnetic field in the present problem are unimportant and
NMR spectra by Fourier-transforming of the free inductionwill be neglected.
decay, were performed on metals with two isotopes possess- We shall treaM " =M*+iMY andH*=H*+iHY as dy-
ing magnetic moments{Cu and®®Cu in copper and®®TI  namical variables. The equation fod ™ can be obtained
and?°°Tl in thallium). The study of these systems gives risefrom
to very complicated equations.

To determine the main features of the predicted phenom- d_M — M XB )
ena we would therefore like to study a system of equivalent ~ dt 4 eff:
exchange-coupled nuclear magnetic moments and to calcu- _ . . . .
late the Fourier-transforming of the free induction decay,Wherfy s the gyromagnehc,ratlo of Fhe spins. The equation
taking into consideration the nonzero conductivity of thefor H™ follows from Maxwell's equations
sample in the light of the above arguments.

9B _
VXE=——, VxH=j. 3)

2. GENERAL EXPRESSIONS FOR THE FREE INDUCTION . . L
DECAY SIGNAL IN METALS To clarify the dependencgE) it is necessary to start from

. . o the relation between the electron mean-free path length and
We shall consider the behavior of the magnetizafibn  the conventional skin-depth. In the region of residual resis-
of a sample in an effective field tance, NMR frequency of about 10 MHz, and thallium con-
N — -1 -1 ] ~ S/ —5
Beri=Bo+ B+ aAM, (1)  ductivity 0—63_1080 -m %, we find lg~8~10"" m.
Thus the condition for the normal skin effet{< 6, is not
where By is the constant magnetic field,AM is the field  gatisfied.

due to nonuniform eXChaI’lge Whose minOSCOpiC Origin iS the However, even the extreme|y anomalous skin effect,

Ruderman—Kittel interaction | > 8, likewise does not occur. To demonstrate the possibili-
ties that taking account of the conductivity of the sample
-2 3l opens up in the standard picture of the free induction decay
1]

of nuclear spins we shall assume that skin-effect is a normal
between nuclear-spin operatathe indicesi andj denote type, i.e., we shall write Ohm’s lay=cE for the current
lattice siteg or the same thing in the form of the macroscopicdensity, wheres is the conductivity of the sample and is

exchange energy assumed to be independent of the wave vector. We note that
the anomalous skin effect would lead to more uniform pen-
_‘]OJ drj dr'M(r,t)-M(r',t) etration of an ac magnetic field into the sample, which would

strongly decrease the influence of the nonuniformity of the
(below, following the arguments presented on p. 22 of Refpenetration on the free induction decay, and the NMR spec-
4, we arrive at a local fieldt)AM; the constantsd; and«  tra obtained by Fourier transforming of the free induction
will be given below; B= uq(H+ M) is the residual part of decay would be identical to the spectra in dielectrics. Since
the ac magnetic inductionu(=47x10"" H/m, H is the  the NMR spectra are unusual, it remains to assume that there
intensity of the magnetic fie)d We shall consider a sample exists a pronounced surface, i.e., the normal skin effect oc-
in the form of a plate of thickneds, bounded by the planes curs(compare with the Kittel casg
z=0 andz=L and arranged perpendicular to thaxis.(The We shall confine our attention in the present paper to
axes are chosen so that the constant magnetic field is paraliekeak excitation of transverse magnetization by an external rf
to thez axis, while the time-varying one during excitation is field (small tipping angle We therefore takeM,=M,,
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where M is the equilibrium nuclear magnetization. Elimi- 27 2
nating E from Eq. (3), we find forH™ an equation which is Ke=Kg| 1+i— |, K=i—(1-7), (11)
related to the equation favi * from Eq. (2): 5k o
PV M M where
— + _ - H +_
i Il wgM yaMg > +iyugMoH T 0w
Jz 2 2_ 0
(4) S — (12
¥JoMol

GHT 1 #PHTY oM” . -1
= e (5) S S PR S S
THo gz T es—i (KRs22—i)2 |

wherewy= yBy is the Larmor frequency of the spins ahgd 5
is the spin—spin relaxation time introduced phenomenologi- = o9 _ ZyJ (13)
cally following Bloch. 32 7% ngy2a?

We note first that all interesting effects described below , . . .
arise because of the interaction of the magnetization with thE|ere ‘]0, is the most important quantity _characterlzmg the
field (the term proportional ta/uoM in Eq. (4)). Therefore interaction of the nuclefthe Ruderman—Kittel interaction of
M, must be large enough to make these effects observabl@, 9\Ven nucleus only witiz, nearest neighbors is taken into
In the experiments described in Refs. 13 this is achieved bgccount,J is the constant characterizing this interaction, and
using ultralow temperaturesanging from values of the or- s IS the spin densityand| is an effective length inx. It
der of tenths of a millikelvin up to 10 mK which are, how- should be noted that an estimate @fin ferromagnetic di-

. . _ 2 - .
ever, much greater than the nuclear magnetic ordering tenf/Ctrics yield$ a=J5a%/2, wherea is the lattice constant,
perature. However, the Ruderman—Kittel interaction length in prin-

First we shall study the effect on the sample of an exterCiPle can be assumed to extend over the elec.tro_n mean-free
nal ac field with intensity path lengtH ., so that there are grounds for takihgnstead
of a in the estimate ofv. But, since this assumption has not
H*(z=0;)=2hg cosQt. (6) been confirmed experimentally,must be treatedjust like

. . . . @) as an adjustable parameter. For convenience we shall
at the sample surface. Since the pulse length in free induction

q ) s h less hall lect th write « in the forma=Jyl?. It follows from Eq.(8) that the
ecay experments IS much 1ess Tagyves al negiect the partial characteristic frequency of the spin-like branch is
last term in Eq.4) during the time-action of the pulse acts. 0o+ yaMok?. Since we havely>0, only a rf field with
We seek t.he solution of the s.,yste(n:).and(S) in the form of frequencyQl=w, can excite precession of the magnetiza-
two traveling waves: neglecting their “entanglement,” an aCton and therefored is positive

magnetic field would penetrate in the form of one of them, ,Thus the rf fielod and the transverse magnetization pro-
while a transverse magnetization, produced by the penetra; o : .

. ' . uced by it propagate into the plate in the form of two
tion of the field, would penetrate in the form of the otligre y 1t propag P

f ) £ th @b i lati waves, one of whichwith wave numbelk,) is due to the
requencies ot Inese waves eq ecause the osclliations  qyin effect in metals while the othéwith wave numbek;)
of the field and magnetization are forged

is due to the nonuniform exchange between nuclear spins.

H;ulse: h* exp( —iQt+ikz), Since the relation
o () 8%k?
M puise=M" exp(—iQt+ikz). m*=— 1+iT)h+ (14)

Substituting the expressioiig) into Eqgs.(4) and(5) we find .
between the amplitudes of the two waves follows from Eg.

(wo— QO+ yaMok®)m* — yuoMoh™ =0, (8)  (9), coupled traveling waves of the field and the magnetiza-
) tion can be written as a superposition of the two branches in
amt+|i0— k_) ht=0. (9)  the following form:
T Mo

Hpusd 2,t) = hy exp( —kjz)exp(ik z—iQt)
Note that these equations are suitable for the case where the N , L
spins approach ferromagnetic orderindy%0). If Jo is +h; expl —kyz)explikz—iQt), (15
negative, two magnetic sublattices must be considéfids S22
problem falls outside the scope of the present paper. M;msézi): —| 1+i _1) h; exp(—K!z)
The dispersion equation obtained from the requirement 2
that the systent8) and(9) possess a nontrivial solution is

. \/EQ_“)O_')’/-LOMOZ

X expik;z—iQt) —

52K
1+i—2)h2+
Q_wo X 2 2

4_ 1,2
Kok yaMq 82

0, (10
3 yaMq X exp( — Ksz)exp(ik,z—iQt). (16)

where 5= 2/louyQ) is the standard skin-depth in the metal. Waves of this form are solutions of the coupled equations for
The solutions of Eq(10) are H* and the electronic magnetization in metals taking ac-
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count of electron diffusiofi. Equations(15) and (16) take  Thereforem®(t)=Ae*'. Since the coupling between the
into account the inequality.> & in the experimental situa- magnetization and the field is assumed to be small
tions mentioned above. In this case neither the shape nor teg/uoMy/wg<<1), we find the following approximate ex-
dimensions of the sample are important, and we have perpressions for the characteristic roots:

etration ofH™ and M ™ through the boundary into a metal

- 2
filling a half-spacé’. Then, only the solutionk; , satisfying M~ (0ot yaMoK™+ yuoMo)

Imk, >0, i.e., the solutions which give the spatial damping 1 K2 yioMo
in Egs.(15) and(16), should be chosen. +i Tt 5| (22)
The amplitudesh;, can be found from the boundary 2 THo wot yaMoK
conditions, of which one is the relatidf), while the other is iKz/ M
the condition that there be no magnetization flux through the ) ,~ 1— — YHoTo 5| (23)
sample surfac8: oo\ wet yaMK
+ On the other hand, the time-dependent parts of the expres-
7z (z=0,t=0)=0. (17)  sions(20) are related as
wo+ yaMoK?—i/T,+\
The expressions found for the amplitudes are h*= m'=g¢m". (24)

YroMo

P2 Thus, the time-dependent parts of the expressi@0s can

¢
hy =2hg ©o— @1’ hy = —2h (pz—lcpl’ (18 pe written in the form of oscillations of two coupled linear
oscillators. Therefort* andH™ during free precession can
where be written in the form
0%k, °°
(,01’2: k1’2 1+| T) . (19) M;r(z,t):ngo [Aln eXF(i)\lt)

We shall now examine the free precession of the mag- i mNnz
netization after the rf pulse. We start from E@4) and (5) +A2neXp('7‘2t)]C°5T*
taking account ofT, 1 In contrast to the preparatory stage (25)
(excitation by an external rf fiejdnowH™ andM* are not N = .

known in advance as functions of time and are to be deter- Hpr(z’t):nzO [#1:A1n €XRIALD)
mined. On the other hand, the spatial dependence of the vari-
ables considered is obvious: The nonuniform precession of
the transverse magnetization occurring inside the sample
produces a nonuniform magnetic field. Combining the corre- .
sponding waves, moving from one surface of the sample te‘vhere Y12 denoteyy from Eq. (24) with the values ofx,

the other and back, with anti-node boundary conditions gnd 7_\2’ respecnyely, substituted. Note_ that, Sm.E g IS
imaginary, there is actually only one oscillaithe spin sys-

M tem) possessing a set of characteristic frequencies
9z (z=0,L)=0,

mnz

+ a1 Agn eXPiNt) Jcos 3

wred N) = wo+ yaMo(mn/L)2+ yuoMg (26)

form cosine standing waves with wave numbkrs 7n/L,  and decay rates

n=0,1,2, ....

2
Thus we shall seek the solution of E¢4) and(5) dur- 1 - 1. 1 (W_n) Y#oMo (27)
ing free precession in the form T,n) T2 omol L | wg+yaMy(arn/L)?
o which are, respectively, the usual spin-wave spectrum of a

mnZz
M:.(z,t)= > m*(t)cos—,
P n=0 L

B (20)
mhnz

H(z,t)= > h*(t)cos
P n=0 L

Substituting the expressiorf20) into Egs.(4) and (5) we
find the following expression fom™(t):

d’m* M K2 " i K?\dm*'
e Tl 0ot yaMoK"+ yuoMy T, IU_/LO dt
+ LS + yaMK? | ) t=0 (21)
—l w o ——|m =0.
g Mo oY 0 T,

ferromagnet wy+ yaMy(7n/L)? and the usual spin—spin
decay with corrections due to the coupling of the magnetiza-
tion with the magnetic field. The other “oscillator(the field
produced by the motion of the spindecays monotonically
with the decay constant, as a result of the resistance of the
metal.

The amplitudes of free precession can be found, as
usual, by matching the values of the components of the field
and the magnetization at the initial moment of free preces-
sion (=0 in Eq.(25)) with the same components at the end
of the evolution process under the action of the exciting
pulse. Recall that under the action of a pulse the boundary
condition propagation into the sample took plédale will
study this wave-like propagating coordinate system rotating
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with frequency() around thez axis with the spatial phase It is interesting to note that the distortion of the standing
varying with distancez as expik]2) for the spin-like wave spin waves that is due to the spatial nonuni_formity inherited
and as expk}2) for the field-like wave(mathematically this ~ from the preparatory stage made the quantity
means that in Eq915) and (16) we must sek;z—Qt=0 2 (L Nz
andkyz— Qt=0). fi=1 fo exp(— k’l’,ZZ)cossz
In such a coordinate systefwe will call it the wave
coordinate systemunder the action of the exciting rf pulse, (and consequenthy}) different from zero: With no spatial
an observer will see static spatial distributions of the magdamping due to the spin effect, i.e., wikf ,=0, we would
netic field and magnetization similar to the static distributionhavef; ,=0.
of the deviations from equilibrium of two types of hypotheti- In summary, we have shown that the NMR spectrum
cal pendulums at various angles inside the sample. It is agound by Fourier-transforming of the free inducation decay
sumed that such a pattern is produced rapidly compared witin metals at sufficiently low temperatures consists of a set of
the length of the rf pulse and then persists while the externatontributions of standing spin waves. If the Fourier trans-
field acts. form is performed so that the free induction decay at the start
The matching conditions can therefore be written of the Fourier-transform process passes through a maximum,
M* HE(t=0) =M~ H2 (2) (28) then the Fourier cosine transforrir () gives an absorption
vpr ' Tpulse </ signal, while the sine transforn() gives a dispersion sig-
We take the left-hand side of expressi@®) from Eq.(25, hal. In_practice, the resulting Fourier transform
and we expand the right-hand side, which is given by expresF,= VF¢+Fg is usually calculated:
sions (15) and (16) with k3 z—Qt=0, in a Fourier cosine TRV v 2 iV V)
series. A simple system of equations #f » is found by  F (@ \,n)= 1AL H AW TTAD (@40 )7]
comparing the expressions obtained. According to the above N (ND?+(w+N\p)?
mentioned, the terms of E¢25) corresponding to the char- (33

acteristic rootk, cannot be expected to exhibit resonant beyherew is the traveling frequency of the Fourier transform.
havior, so we present only the computational resultAQf’  Expression(33) together with Eqs(29)—(31) describes the

3

=Re(Im)Ay,: experimental results on recording NMR in metals at ultralow
ASY = PIYRYE + YV hSYE,, (29) ;eenggeratures by Fourier-transforming of the free induction
y.
wherehl” can be calculated from E¢18) and
52 52 N 3. RESULTS
« 5°(k1n)"\  6°(kiy’ hi3 . . .
IT//l"yz%i 1- 2' — 2' Ty (30 We analyze the results obtained. First, a collection of
hiz peaks should be expected near the frequebglw~ wg) in
5 K the Fourier-transforming of the free induction decay. Ac-
1,2

[1—exp(—K{ L)cosmn]. cording to Eq.(26) these peaks are due to spin waves. Con-
' sequently, in experiments studying free induction decay in

(31 metals, in contrast to dielectrics, when the rf field outside the

metal is spatially uniform, standing spin waves can be de-
tected because of the skin-effect-induced nonuniform distri-
bution of the external field and the transverse magnetization

S R
Y2UL (K )2+ (7l L)

Finally, we have for the part of thecomponent of the mag-
netization that is resonant during the free induction decay

produced by it inside the metal during the preparatiexci-
M’B(resn)zexp( - [A%,coq wed N)L) tation) stage.
T2(n) We shall now examine the dependence of the output of
Nz the free induction decay signal on the detuning of the exter-
—A{nSin(wres(n)t)]COST- (32)  nal rf field from the Larmor frequency. First we shall discuss

the results for exact tuning{X=wg). Then the quantities
The expression in front of cosfzL) in Eq.(32) is similarto  (11) are
the stationary nonuniform NMR signal in ferromagnets ob- , )
tained by Kittel® It yields the contribution of theth mode of kzza kzza(l— )
standing spin waves to the free induction decay. As USual, bog G 52 e
the part of expressiof82) that precesses in phase with the

linearly polarized applied field yields a dispersion signal inWhere

the response of the spin system to a one-pulse excitation —i¢ o2
A’ /2hy, while the part shifted in phase b2 relative to the n= Tm = ‘107,

exciting field yields the absorption signalA,/2h,. Fourier
transforming expression(32) gives the corresponding and do not depend oM,. Moreover, all quantities in the
Lorentzian line of thenth mode of the spin waves with the final results are independent ™, with the exception of
resonance frequency and decay rate given by E2@8.and  those~ yuoMq/wy, which can be neglected. Therefore, in
(27). metals at the exciting rf pulse tuned precisely to the Larmor
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frequency there is no magnetic resonance signal that could 1 2yuM RYRE
be detected as a change in the complex impedéactve  y"(w,Q,2n)~ oo 00 ;
(Q=wg)d

resistance and inductanaef the coil of the NMR spectrom- V27 = wo

eter by placing the sample inside the coil compared with an 200 8(Ky8)3) 2]~

empty coil. This behavior is explained by the fact that the rf [ (— 0 )

field simply does not penetrate into the sample because of L ¢

zglcéng absorption by the spins: the sample is opaque for this y [Th(2n)] ! a9
. - - 5"
We now proceed to the case of large detunin@s; wg [T2(2m)] "+ [0~ wed2n)]

> yJoMyl?/ 8%, or in other wordsky8>1. (However, there
must be a limit on the detuning, given by the condition for a

continuous medium: The expression$37) and (38) depend on the equilibrium

magnetization. They therefore indeed represent the NMR
YIoMol?1(Q — wo)>a2. signals detected by the rf coil. Thus, the second basic result
,» Of this work is that the signals corresponding to standing spin
waves can be detected only if the rf field exciting free induc-
tion decay is applied at a frequency sufficiently removed
éreom wg- Then the spin-like branch of the coupled waves is
excited over the entire thickness of the sample and makes
NMR observable. Specifically, in a phase-sensitive Fourier
transform, Lorentzian-shaped peaks of widi§(2n) !
should appear in the NMR absorption signal at the frequen-
cies w,{2n). Such peaks are observable if the frequency
Ki~6"1 (kgd)3< s L. (34)  spacing between then¢t1)st and neighboring n(—1)st

peaks =1, 3, ...) exceeds their width, i.e.,

Note that this condition is easily satisfied even for “large
detunings. Then, during the excitation stage the field-like
branch of the coupleffield + magnetizationsystem propa-
gates and decays, to a good approximation, over a distan
on the order of the skin-depi(k,=k5~ 5~1). In contradis-
tinction to this, the wavelength of the spin-like branch is
much less thad(k;~ko), while the penetration depth of this
wave into the sample is much greater than

Let
Ospi>L> 05 (35

(6Spm=(5/§)(k05)3 is the depth of the “spin” skin layer
The first inequality means that the static pattern of the dis-
tribution of the magnetization deviations, which was diS'Substituting the data fof®Tl (relative content 70%with
cussed prior to expressi@@8), is nonuniform over the entire gyromagnetic ratioy=2.5x 10/ Hz/T, equivalent to the

thickness of the plate, while the second inequality PresupmagnetizatiorM ,=202p A/m, wherep is the polarization of
poses(as is the case in an experimpthat the skin-depth is  he " nyclear spins, using the experimental result of Ref. 9

much less than this thickness. _ , _ |Jo|=28ug h/m, and substitutingT, *~27-4x10* s,
Calculations lead to the conclusion that since the N aasured in Ref. 3 with=0.5(T=1 mK), we find that the

yIoMo(4mnl/L)2>T, 1.

L (n+1)st and (—1)st peaks of the spin waves can be re-
E¢ <1 (36) solved if n satisfies the inequalityn(/L)?>10"2, which
7 (kod)® holds forn>1, if the sample thicknesls=10"* m and| is

. . interpreted as the electron mean-free path length in the
follows from Eq.(35), the intensity of the even modes of the residual-resistance regioh,~10~° m. In Ref. 3 the sample

standing spin waves which exist in a plate at free induction, ¢ cylindrical with diameter 8103 m, so that it is not

decay(i.e., with evem: an even number of half-waves of the g, ising that there was no “comb” of spin-wave peaks, but

standing spin waves fit within the thickness of the plase ks and hints of structure were observed in the spectra

much higher than the intensity of the odd modes. __ obtained with the exciting rf field applied at a frequency
The corresponding NMR signals in a phase-sensitivey oy higher than the Larmor frequency of the isotopes. Un-

Fourier—transforming of the free induction decay is describeqortunately, it is impossible to make a direct comparison with
by the expressions the observed spectra, since our calculations were performed

1 2yuoMg / yJoM |2 for nuclear spins of one kind, while the experimentslof R'efs.
x' (0,Q,2n)~ 1-3 were performed on samples with the two thallium iso-
\/E -9 (- )8 topes in the natural abundance, strongly coupled with one
27 8(ky6)%\2] L another by the Ruderman—Kittel interaction.
[ (T 3 ) } The third basic result is the nonlinear dependence of the

NMR signals on the equilibrium magnetization, or in other
s1L-1 ] words, on the reciprocal of the sample temperature: The ab-
T sorption signal and part of the dispersion sigi@) and(38)
872+ (2mn/L)? are proportional td132. The reason for this behavior is that,
[0—wed2N)] as one can see from Eq84) and (35), for large detunings
, (37 only the spin-like branch of the coupled waves penetrates
[T5(2n)] ?+[w— wed2n)]? into the entire thickness of the sample, and the amplitude of
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this branch in the expression for the field, calculated accord- This work was supported in part by the program Deut-
ing to Egs.(18), is a nonlinear function oM. The trans- sche Forschungsgemeinschaft.
verse magnetization with free induction decay inherits this
nonlinearity. The corresponding dependence of the intensity
of the NMR lines on the reciprocal of the sample temperature
has been observed experimentdlly. *E-mail: faculty@tsu.ge
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sorption and dispersion signals in the present paper for
“large” detunings are applicable fof°°TI described above
for Q—we=10° s 1 For Bg=0.4 T (wo~2mwXx10"s—1)
and residual resistivityp !~6x10fQ"1-m ! we have 1G. Eska inProceedings of the Conference on Quantum Fluids and Solids
5~10"°%m, Koo~ 101/2, and 5spin% 10-32m. In this case the edited by G. Ihas and Y. Takano, Gainesville, Florida, USA, 1989, AIP
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duction decay are satisfied for sufficiently thin samples phys.101, 253(1995.

(|_~10—4 m), but the nonlinear dependence of the NMR 4A. I. Akhiezer, V. G. Bar'yakhtar, and S. V. PeletmingkSpin Waves

signals on the reciprocal of the temperature undoubtedly alsomrstz(')':vo"f‘;g? Pub. Co., Amsterdam, 19§&ussian original, Nauka,

exi_sts under_conditions which are less favorable for manifessc itel, phys. Rev110, 1295(1958.

tations of spin waves. 6J. Winter,Magnetic Resonance in MetalSlarendon Press, Oxford, 1971.
In summary, in the present work we have shown that the’A. |. Tikhonov and A. A. Samarski Equations of Mathematical Physics

skin effect in metals at ultralow temperatures qualitatively Zgirt?oanmiggess’ New York, 198ussian original, Nauka, Moscow, 4th

changes the NMR picture observed as the Fourier-sa abragam The Principles of Nuclear Magnetisi@larendon Press, Ox-

transforming of the free induction decay, even for small tip- ford, 1961[Russian translation, Inostr. Lit., Moscow, 1963
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