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Onset of long-range ferromagnetic order in a system of ferromagnetic particles with
giant magnetic moments
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Magnetic, x-ray, and small-angle neutron scattering data obtained for the decomposed alloy
Cu64Mn9Al27 are used to show that the onset of long-range ferromagnetic order in a system of
small superparamagnetic grains dissolved in a nonmagnetic matrix is attributable to
cooperative ordering of their magnetic moments. ©1998 American Institute of Physics.
@S1063-7761~98!02211-2#
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1. INTRODUCTION

In a model with localized magnetic moments, the on
of magnetically ordered states, an dferromagnetic state
particular, in metals and alloys of 3d transition metals is
customarily linked to spin ordering of the atomic magne
moments, whose magnitudes do not exceed a few Bohr m
netonsmB ~Ref. 1!. It would be interesting to determin
whether the onset of long-range ferromagnetic order is p
sible in systems of magnetic moments ranging from sev
hundred to several thousandmB in magnitude. To date, how
ever, we have not had an altogether clear picture of
problem. For example, in a dense system of very small
perparamagnetic iron grains of diameterd'30250 Å dis-
solved in an aluminum matrix, it is impossible to detect t
onset of long-range ferromagnetic order at any tempera
by neutron techniques.2 On the other hand, drawing upo
magnetic investigations, Kokorinet al.3 have submitted
qualitative arguments to suggest that such ordering is p
sible in decomposing alloys, in which a dense system
small ferromagnetic grains of diameterd'100 Å is formed
with magnetic momentsm'(1032104)mB .

In this paper, based on an investigation of critical ne
tron scattering in conjunction with magnetic and structu
studies, the stated problem is solved for the decompo
alloy Cu64Mn9Al27.

2. EXPERIMENTAL PROCEDURE

The alloy Cu64Mn9Al27 was melted out in an induction
furnace in a purified nitrogen atmosphere from raw com
nents of at least 99.9% purity. X-ray fluorescence analy
showed that the chemical composition of the alloy did n
deviate more than 0.3 at. % from the nominal for each co
ponent. A mutual inductance bridge was used to measure
real partx8 and imaginary partx9 of the dynamic suscepti
bility at temperatures 4.2–300 K, and a vibrating-sam
magnetometer was used to measure the static magnetiza
1001063-7761/98/87(11)/6/$15.00
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X-ray examinations were performed by a photographic te
nique at room temperature in a rocking-sample x-ray cha
ber using CuKa radiation. All the experiments were carrie
out at the Institute of Magnetism in Kiev, Ukraine. Sma
angle neutron scattering investigations at temperatures
300 K in the interval of scattering vectors 0.009027<q
<0.07945 Å were conducted on the PAXE facility at th
Leon Brillouin Laboratory in Saclay, France.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Magnetic and Structural Characteristics of the alloy
Cu64Mn9Al27

We first analyze the magnetic and structural characte
tics of the investigated alloy under various heat-treatm
schedules. According to x-ray data obtained in the pres
study, the alloy Cu64Mn9Al27, heated to 1050 K and
quenched in ice water, is a homogeneous solid solution w
a crystal structure of the Cu3Al type ~lattice parameter
a52.986 Å!. The manganese atoms were distributed in a d
ordered pattern in the matrix of the alloy. Consequently,
presence of indirect Ruderman–Kittel–Kasuya–Yos
~RKKY ! exchange between manganese atoms in the a
can be expected to induce a spin-glass state of the
found, for example, in classical spin glasses.4

Dynamic Susceptibility

It follows from Fig. 1a, which shows the temperatu
dependence of the real partx8 of the dynamic susceptibility
of the alloy in the annealed state, a characteristic maxim
is discerned at the freezing temperatureTG540.2 K, indicat-
ing that the alloy does in fact undergo transition from t
paramagnetic to the spin-glass state as it cools. We not
passing that the paramagnetic Curie temperatureup54.5 K
in the Curie–Weiss law for the given alloy is very low~Fig.
1a!, implying that the contributions of ferromagnetic and a
3 © 1998 American Institute of Physics
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FIG. 1. Temperature dependence of the real (x8) and imaginary (x9) parts
of the dynamic susceptibility of the alloy Cu64Mn9Al27 in the quenched state
~a! and after annealing atTan5373 K for 2 h ~b! and 5 h~c!. As a visual
aid, the much smaller variablex9 is plotted on a scale 10 times larger tha
x8 in each case~b, c!. In Fig. 1a the paramagnetic Curie temperatureup in
the Curie–Weiss law is obtained by extrapolating the temperature curv
(x8)21→0.
tiferromagnetic exchange interactions to the total excha
energy of the alloy are approximately equal. This property
very typical of dilute classical spin glasses.4

It should be emphasized that the magnetic characteris
of the investigated alloy are altered considerably by isoth
mal annealing at a temperatureTan5373 K for various dura-
tions tan. After a 20-min anneal the alloy is still a spin glas
with a freezing pointTG552 K. After a longer anneal, how
ever, decomposition causes the alloy to acquire the pro
ties of ferromagnets at the Curie temperatureTC and then at
lower temperaturesTG to undergo transition to a reentran
spin-glass state~Figs. 1b and 1c!. We note thatTC increases
considerably as the anneal time is increased. The tempera
TG remains essentially constant in this case.

The experiments reported here show that long-range
romagnetic order sets in after the alloy is annealed with i
thermal keeping timesTan>1.4 h. All the experimental re-
sults described below refer to the alloy Cu64Mn9Al27

annealed for five hours.

Diffuse X-Ray Scattering

We have used a diffuse x-ray scattering technique
investigate the processes involved in anneal-induced dec
position of the investigated alloy. The corresponding resu
are shown in Fig. 2, in which clearly two pairs of satellit
are observed near the Bragg~110! reflection ~Fig. 2a!, and
one pair is observed near the~200! reflection~Fig. 2b!. This
diffuse scattering pattern is typical of isomorphically deco
posing solid solutions, whose matrix acquires an ensembl
coherent, equiaxed grains of the precipitated phase. F
tioning as dilatation centers, these grains are disposed
formly throughout the anisotropic elastic matrix. The numb
of satellites as a function of the Miller indices of the Brag
reflections indicates that the precipitated grains are dist
uted in the matrix of the alloy more or less regularly alo
the crystallographiĉ100& direction.5

Using, for example, the diffuse reflection pattern ne
the Bragg~200! reflection ~Fig. 2b!, we can estimate the
average distanceD between the centers of the annea
precipitated grains. According to Ref. 6,D corresponds to a
periodic variation of the lattice constant of the matrix a
can be estimated from the expression

D5a
h tanu

~h21k21 l 2!du1
, ~1!

wherea is the lattice constant of the matrix,h, k, l are the
Miller indices, u is the Bragg angle~hkl! of the reflection,
anddu1 is the angular separation of the satellite centers.
can also estimate the average diameterd of the precipitated
grains. According to Ref. 5,

d5
l

2du2 cosu
, ~2!

where l is the x-ray wavelength, anddu2 is the angular
width of the pair of satellites in reciprocal space. Calcu
tions of D and d are summarized in Table I, in which th
volume fraction and concentrationN of precipitated grains

as
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FIG. 2. Diffuse x-ray scattering pattern for the decomposing alloy Cu64Mn9Al27 (Tan5373 K, tan55 h! near the Bragg~110! ~a! and ~200! ~b! reflections.
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are also calculated. Assuming that the grains formed in
composition of the alloy are of stoichiometric compositi
Cu2MnAl ~Heusler alloy! and knowing the lattice constan
a55.971 Å, the number of Mn atoms per unit celln54, and
the magnetic moment of the manganese atomm54mB ~Ref.
7! for the newly formed phase from x-ray data, we c
readily find the average magnetic moment of a precipita
grain ~see Table I!.

Static magnetization

Investigations of the magnetizationM at room tempera-
ture in magnetic fields up to 20 kOe reveal typical superpa
magnetic behavior of the investigated alloy~Fig. 3!. The
anisotropy constant of the bulk Cu2MnAl alloy at room tem-
perature is indeedK5103 erg/cm3 ~Ref. 8!. Hence, for the
magnetic energy of an isolated grain of average diam
d530 Å we obtainKV/kB50.16 K!300 K, so that the con-
dition for superparamagnetic behavior,KV!kBT ~Ref. 1!, is
easily satisfied in the given situation. In the above estima
V is the grain volume.

TABLE I. Structural and Magnetic Characteristics of the Decompo
Alloy Cu64Mn9Al27 (Tan5373 K, tan55 h!.

Parameter X-ray data Magnetic dat

Average grain diameterd, Å 3063 3263
Average distance between grain centersD, Å 4763 51
Average magnetic moment of grainm, mB 11006320 11406150
Concentration of grainsN, 1028 cm23 8.84 7.34
Volume fraction of grains 0.136 0.126
e-

d

a-

er

s

The field dependence of the static magnetizationM of an
ensemble of noninteracting superparamagnetic grains m
satisfy the Langevin equation whenHA!H, whereHA is the
anisotropy field of an isolated grain; in the weak and stro
magnetic field limits this equation can be written in the form1

d

FIG. 3. Static magnetizationM of the decomposed alloy Cu64Mn9Al27

(Tan5373 K, tan55 h! at T5293 K.
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M5
Nm2H

2kBT
for

mH

kBT
!1, ~3!

M5NmS 12
kBT

mH D for
mH

kBT
@1. ~4!

Assuming that the magnetic moment of the Mn atom in
grains is equal to the magnetic moment of the Mn atom
the bulk Cu2MnAl compound, corresponding to the spont
neous magnetizationMs5500 G~Ref. 7!, we can readily cal-
culate the magnetic momentm, diameterd, and concentra-
tion N of the grains. The results~see Table I! are in very
good agreement with the values determined from x-ray d

Summarizing this section, we conclude that the al
aged at the temperatureTan5373 K for the timetan55 h is
characterized by the onset of ferromagnetic ordering atTC

5160 K and transition to the reentrant spin-glass state
temperaturesT<TG551 K, as is clearly evident from the
dynamic susceptibility data~Fig. 1c!. At room temperature
T5300 K.TC the alloy is a typical superparamagnet, whe
the magnetic moments, diameters, concentration, and s
ing of the precipitated grains, calculated from magnetic a
x-ray data, are in good agreement.

We have conducted small-angle neutron scattering
vestigations to analyze the nature of the transition from
superparamagnetic to the ferromagnetic state. This wor
discussed in detail below.

3.2. Small-Angle Neutron Scattering

Figure 4 shows the temperature dependence of the in
sity of small-angle neutron scattering for the allo
Cu64Mn9Al27 after annealing fortan55 h and various neu
tron scattering vectors~the neutron wavelength isl58 Å!.
The data reveal that for small scattering vectors a crit
neutron scattering peak is distinctly visible atTC5160 K.
Below TC the intensity decreases and then begins to incre
again; a second, low-temperature peak is observed for
tremely small scattering vectors, which is very typical
reentrant spin glasses~see, e.g., the small-angle neutron sc
tering data for Fe12xAl x in Ref. 9 or for (FexNi12x)80P20 in
Ref. 10!. The intensityI of this scattering at temperature
below TC exhibits a rather complex dependence onT andq.
In the present study, however, we are mainly interested
the processes by which long-range ferromagnetic orde
established in the decomposed alloy Cu64Mn9Al27 in the vi-
cinity of TC .

Since long-range ferromagnetic order is established
the investigated alloy only in the decomposed state,
shown above, it is reasonable to assume that the carrie
magnetism in the given situation are not the magnetic m
ments of individual Mn atoms, but the magnetic moments
precipitated grains of the Cu2MnAl phase with effective
magnetic momentm'103mB .

In this regard we discuss certain aspects of the crit
neutron scattering pattern. According to Ref. 2, the neut
scattering cross sectionS(q) for interacting magnetic grains
being proportional to the small-angle neutron scattering
tensity, can be written as the product of two functions, c
responding to the in-grain and intergranular correlations:
e
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FIG. 4. Temperature dependence of the small-angle neutron scatterin
tensityI for the alloy Cu64Mn9Al27 (Tan5373 K, tan55 h! at various values
of the scattering vectorq (Å 21).
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S~q!}m2F2~q, R1!I ~q, R2!,

wherem is the magnetic moment of the grain,F(q, R1) is its
magnetic form factor, andI (q, R2) is a function associated
with intergranular cooperative fluctuations of the magne
moment. Here we have neglected critical in-grain magn
zation fluctuations, because they occur only at much hig
temperatures aroundTC* '700 K, as in the bulk Cu2MnAl
alloy, well above the observedTC5160 K.

The magnetic form factorF(q, R1), which usually dif-
fers very little from the chemical form factor obtained fro
x-ray studies~see, e.g., Ref. 2!, includes the characteristi
correlation lengthR1. At a lower temperatureR1 should in-
crease slightly to a value close to the grain diameterd530 Å
without acquiring anomalies atTC . On the other hand, the
intergranular functionI (q, R2) can be expressed in terms
the Ornstein-Zernike function~see below! and depends on
the intergranular correlation lengthR2, which diverges asT
→TC

1 , according to Ref. 11 and on the assumption that lo
range ferromagnetic order is established in the system
superparamagnetic grains. We discuss this issue a little
ther along in the article, turning our attention for now to t
temperature dependence of small-angle neutron scatte
~Fig. 4!.

Obviously, when the magnetic moments of the ensem
of precipitated grains in the alloy are ferromagnetically
dered, but the distribution of the intergranular distances
the size distribution of the grains are unknown, the corre
tion lengthR2 of ferromagnetic critical fluctuations nearTC

must satisfy the conditionR2>j5D2d, wherej'20 Å is
the distance between the surfaces of the precipitated gr
along the line joining their centers. In other words, the cr
cal neutron scattering peak in the temperature curves
small-angle neutron scattering intensity nearTC5160 K
should be observed only for neutrons with wave vect
q5j21,0.05 Å21. It is evident from Fig. 4 that this in in-
deed the situation. Forq.0.04214 Å21, which corresponds
to
j,23.7 Å, the sharp anomaly in critical neutron scattering
the vicinity of TC will essentially vanish. The most likely
occurrence will be a diffuse anomaly, which occurs becau
in reality, the decomposition of the alloy results in the fo
mation of a system of precipitated grains characterized
by the average grain diametersd determined above, or th
intergranular distancesD, but by certain distributions o
these quantities. In our opinion, this consideration accou
for the very weak anomalies in the temperature curves of
small-angle neutron scattering intensity nearTC for neutron
scattering vectors 0.04429 Å21,q,0.7945 Å21.

As mentioned above, the presence of the critical sm
angle neutron scattering peak atTC for smallq is dictated by
the divergence of the correlation lengthR2 in the function
I (q, R2). Experiment shows that at temperaturesT.TC the
function I (q, R2) is very closely given by

I ~q, R2!5I 01
A

q21~1/R2!2 , ~5!

whereI 0 is the background intensity, which generally inco
porates the contributions of nuclear and magnetic scatte
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by the superparamagnetic grains. The second term repre
the well-known Ornstein–Zernike function.12 Here A is the
amplitude, which depends weakly on the temperature. Le
squares processing of the small-angle neutron scattering
according to Eq.~5! shows that the backgroundI 0 is all but
independent of the temperature and, hence, is mainly at
utable to nuclear scattering. The foregoing procedure
also been used to determine the temperature dependen
the correlation lengthR2 ~Fig. 5!. It follows from the figure
thatR2(T) does in fact decrease with the temperature, beg
ning at R2'34 Å ~comparable toj520 Å! and 240 K, to
R2'71 Å.D550 Å nearTC .

We have attempted to describe the temperature de
dence ofR2 using the relation

R2}«2n, ~6!

where«5(T/TC21) is the normalized temperature andn is
the critical index of the correlation length. It is evident fro
the inset to Fig. 5, which shows the corresponding resu
that relation ~6! is satisfied over a narrow range of«.
Accordingly, the critical index of the correlation lengthR2 is
n50.3560.1, or half the valuen50.7 for Heisenberg ferro-
magnets and some reentrant spin glasses.13

The discrepancy can occur for several reasons. The
is purely methodological. For a more rigorous analysis of
experimental data, values of the background intensityI 0

measured at temperatures above 300 K must be used in
~5!. However, such measurements are difficult, because
structural and magnetic state of the alloy change very rap
above room temperature. On the other hand, estimates s
that when the backgroundI 0 is included in Eq.~5! at tem-
peratures 160–300 K,R2 can be determined to within 10–
15%. This means that the values obtained forR2 in the vi-
cinity of TC are not far from the truth. Then again, relatio

FIG. 5. Temperature dependence of the correlation lengthR2 of ferromag-
netic critical fluctuations, determined from neutron data in the paramagn
temperature range for the decomposed alloy Cu64Mn9Al27 (Tan5373 K,
tan55 h!. Inset:R2 vs. the normalized temperature«5T/TC21 on a log–
log scale.
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~6! follows from a similarity theory11 developed for ordinary
ferromagnets, whereby the distanceD between magnetism
carriers~spins! must obey the inequalityD!R2. In the given
situation, however, in the vicinity ofTC we haveR2'1.5D
~Fig. 5!, which casts doubt on the validity of~6! for process-
ing the experimental results in small-angle neutron scat
ing.

Summarizing this section, a study of small-angle neut
scattering shows that long-range ferromagnetic order is
tablished in the decomposing alloy as a result of ferrom
netic ordering in the system of macroscopic magnetic m
ments (m'1100mB) formed by grains of the stoichiometri
Cu2MnAl phase with average diametersd530 Å and an av-
erage spacing between the grainsD550 Å.

4. DISCUSSION OF THE RESULTS

Here we discuss the possible reasons for the emerg
of long-range ferromagnetic order during the cooling o
system of superparamagnetic grains with giant magnetic
ments. Estimates in the present study show that, given
parameters found for the system of precipitated particles~see
Table I! intergranular dipole interaction yields too low a C
rie temperatureTC'(6290) K in comparison with the ex
perimental value. Owing to the quasiregular disposition
the precipitated grains in the matrix of the alloy, indire
RKKY exchange between grains can be expected to pla
major role in the evolution of long-range ferromagnetic ord
in the given situation, as encountered in multilayer magn
structures of the Co/Cu/Co or Fe/Ag/Fe type.14 In the latter
case the alternating magnetic and nonmagnetic layers
approximately the same thicknesses as the quantitiesd andj
found in our work. Once again we must emphasize that
quasiregular disposition of precipitated grains in t
Cu64Mn9Al27 matrix is what makes the onset of long-ran
ferromagnetic order possible. This conclusion is corro
rated by the transition from the quasiregular distribution
precipitated grains to a disordered distribution as a resu
coalescence processes in the late stages of decompositi
the alloy. The alloy then loses the properties of ferromagn
and acquires those of spin glasses.5

It is important to note that only 35% of the mangane
atoms participate in the formation of the stoichiometric f
romagnetic Cu2MnAl phase as a result of decomposition
the alloy investigated here. All other Mn atoms are still d
solved in the nonmagnetic matrix. As emphasized in Ref.
the ‘‘lost spins’’ can also play a significant part in the fo
mation of long-range ferromagnetic order in heterogene
magnetic systems.
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The above estimates show that nearTC , the ferromag-
netic correlation length only slightly exceeds the intergran
lar spacing. This suggests strong magnetic inhomogeneit
the alloy and the extraordinary character of the processe
which long-range ferromagnetic order is established in
The dynamic susceptibility data indicate the same result.
deed, it follows from Fig. 1c thatx9 does not exhibit a sharp
anomaly at the Curie temperatureTC5160 K. In contrast, a
sharp anomaly ofx9 at TC is very characteristic of the ma
jority of ordinary ferromagnets and reentrant spin glasses
which ferromagnetic order evolves in the spin system~see,
e.g., Ref. 16!. This suggests indirectly that in the given sit
ation, long-range ferromagnetic order is indeed establis
in the system of precipitated grains of the new phase and
in the spin system.
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Nonequilibrium paramagnetic susceptibility of gallium impurity centers in lead telluride
A. N. Vasil’ev,* ) T. N. Voloshok, and S. V. Kuvshinnikov

M. V. Lomonosov Moscow State University 119899 Moscow, Russia

B. A. Volkov
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The temperature dependences of the resistance and magnetic susceptibility are studied in gallium-
doped lead telluride, which is characterized by a delayed photoconductivity effect, under
various illumination conditions. After a sample is illuminated at low temperatures, the magnetic
susceptibility is diamagnetic in the region of metallic delayed conductivity~for T,50 K!.
In the region of thermodynamic equilibrium (T.70 K!, where conductivity is activational, the
magnetic susceptibility is likewise diamagnetic and essentially equals the low-temperature
value. A paramagnetic susceptibility peak is observed in the transitional region (T;50270 K!,
where the conductivity is of a nonequilibrium character but the carriers are still
nondegenerate. This peak increases in magnitude with the rate of measurements in the indicated
temperature range. In addition, a paramagnetic variation of the susceptibility following the
Curie law is observed with uncontrollable~weak! illumination from the cryostat cap at low
temperatures (T,25 K!. The interpretation of the observed dependences is based on
notions of variable valence of gallium in lead telluride, while the appearance of a paramagnetic
susceptibility peak is attributed to the presence of shallow localized levels of gallium in a
trivalent state. ©1998 American Institute of Physics.@S1063-7761~98!02311-7#
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1. Lead telluride doped with group-III elements~Ga, In,
. . .! is one of the semiconductor materials that at low te
peratures exhibit unusual behavior reminiscent of the beh
ior of III–V semiconductors withDX centers. This analogy
in the sense of the physical picture of the phenomenon,
become clear from what follows, if one takes into accou
the polyvalence of the impurities producingDX centers~for
example, carbon with a valence of 2 and 4!. This includes the
delayed monopolar photoconductivity and the variable e
trical activity of the corresponding impurities. In the ph
nomenon of delayed photoconductivity, the conductivity
such semiconductors at low temperatures increases ra
under illumination, while the low-resistance state arising
the process remains for a long time after the illumination
switched off. The delayed photoconductivity effect in le
telluride is due to the specific properties of gallium~and
other group-III elements! as an impurity substituting for lea
in this material. The electrical activity of gallium impurity i
lead telluride is such that the group-III element Ga, replac
the group-IV element Pb, is a donor, if the chemical poten
of the carriers is sufficiently low. The donor action of Ga c
be understood simply by assuming that a gallium atom
corporated in the crystal matrix is in a trivalent state. Suc
state corresponds to as0p3 configuration of the outer elec
tronic shells of the impurity. The polyvalent behavior of G
~and group-III elements in general! is well-known in
chemistry.2 In various compounds these elements possess
lences from 1 to 3, which corresponds to the electronic c
figurations of a free atom~or atom in a cubic environment!
s2p1,s1p2, and s0p3, respectively. In this sense the don
1001063-7761/98/87(11)/5/$15.00
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action of Ga in IV–VI compounds is easily understoo
trivalent Ga substituting for a divalent metal furnishes t
bands with one extra electron.

The electrical activity of group-III impurities in IV–VI
cubic compounds~NaCl structure! can be represented i
band language as follows. It is well known2 that in the tight-
binding approximation the electronic spectrum of these co
pounds is formed by thes and p orbitals of the metal and
chalcogen: thes orbitals form two deep completely filled
bands, while thep orbitals form the actual valence and co
duction bands. There are six such bands, according to
number ofp electrons in the diatomic unit cell. The sixp
electrons~two from the metal and four from the chalcoge!
completely fill the three bottom valence bands. The three
bands are empty and form the conduction band. The extr
of these bands are all located at theL points of the Brillouin
zone of a fcc lattice, where a narrow gap is formed betwe
the valence and conduction bands. It can be shown that a
extrema of the valence bands the Bloch wave functions
constructed from thep orbitals of the chalcogen, while th
Bloch functions at the extrema of the conduction band
constructed from thep orbitals of the metal. This is becaus
the p states of the chalcogen lie lower in energy than thep
states of the metal. In such a situation, substitution o
group-III impurity in a trivalent state for the metal gives ris
to an excess electron in the bands; this is what causes
donor action of such an impurity. If this impurity were t
replace a metal in an univalent state, then it would be
acceptor.

It is obvious that what state arises is determined by
9 © 1998 American Institute of Physics
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difference of the total energies of the corresponding e
tronic configurations of the impurity incorporated into th
crystal matrix. Since the reactions2p1–s0p3 requires the ex-
citation of twos electrons intop states, it is obvious that i
can be energetically expedient only when the energy of
single-electronp states is sufficiently low. In a crystal th
chemical potential in the actual bands plays the role of
energy of thep states. It is obvious that the lower the chem
cal potential, the more easily a trivalent state is formed.
some value of the chemical potential the energies of the c
figurationss2p1 ands0p3 can become equal to one anothe
This value of the chemical potential determines its pinn
energy, for which impurities in both the uni- and trivale
states are present simultaneously in the crystal. The spe
value of the pinning energy, or equivalently, the energy
the mixed state is determined by the properties of the se
conductor matrix~specifically, the work function! and the
specific type of group-III impurity~Ga, In, Tl!. For In in
PbTe this level in the conduction band, while for Tl it lies
the valence band.5–9 As follows from the analysis below, th
pinning level for Ga in PbTe lies in the gap.

Thus far we have not considered the possibility of
being in a divalent states1p2. In nature such a state exis
only in metastable form. For example, GaCl2 is unstable with
respect to the reaction

2GaCl2→GaCl1GaCl3 .

There are no fundamental reasons for believing that suc
state cannot be realized in IV–VI compounds. To investig
this possibility it is necessary to measure the magnetic
ceptibility, or more precisely, theg factor of an electron in a
partially filled s shell of an impurity. In thes1p2 configura-
tion this g factor is 2, while theg factor of itinerant carriers
is of the order of 50. More importantly, magnetic measu
ments can elucidate the question of the existence of sha
levels associated with the impurity Ga in the trivalent sta
The possibility of the appearance of such levels in the cas
the present electronic mechanism leading to the electr
activity of group-III impurities was shown in Ref. 10. Th
point is that when twos electrons are transferred into a ban
an additional attractive potential arises on the impurity
cause the screening of the atomic core by thes electrons
vanishes. This potential has an atomic scale and acts onl
electrons located at the bottom of the conduction band.1! The
latter is due to the fact that, as noted above, the wave fu
tions of only these electrons are different from zero at
metal atoms. Single filling of the shallow levels should res
in an additional substantial contribution to the paramagn
susceptibility, since, as already mentioned, theg factor of the
electrons bound in these levels is extremely large (g;50)
because of the smallness of the gap in the band spectru

2. The electronic properties of PbTe~Ga! were studied by
means of measurements of the resistance and magnetic
ceptibility of bulk single crystals. The Ga concentration
the experimental samples was 0.3 at.%, which correspond
the region of greatest photosensitivity for this compou
The electric spark method was used to cut out samples in
shape of rectangular parallelepipeds. The samples w
chemically etched to remove the damaged surface layer.
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resistance was measured by a potentiometric method.
magnetic susceptibility was measured by the Faraday me
in the region where the magnetization depends linearly
the external field in the range 0.1–1 T. Both the resista
and susceptibility were measured with heating in the te
perature range 4–150 K. A miniature incandescent la
placed near the surface of the sample was used eithe
brief illumination of the crystal at liquid-helium temperatu
or for constant illumination of the sample with varying tem
perature.

The room-temperature resistivity of an-PbTe~Ga! single
crystal isr;1021V•cm, which corresponds to an electro
density of the order of 101721018 cm23. The resistivity in a
cooled metal chamber screened from illumination increa
rapidly, reaching valuesr>105V•cm at low temperatures
The carrier activation energy was determined from the sl
of the temperature dependence of the resistivity to beEa

566 meV, which differs considerably from the gap wid
(Eg5220 meV! in PbTe. After brief illumination at liquid-
helium temperatures the resistivity of the sample once ag
decreased tor;1021V•cm, which is comparable to the
high-temperature value. The low-temperature resistance
not change with time, except for very rapid restoration o
certain portion of the resistance immediately after the illum
nation was switched off.

Figure 1 shows the temperature dependence of the re
tance of the sample obtained with various illumination
gimes. Curve1 corresponds to the following arrangement
the experiment. The sample at liquid-helium temperat
was converted into a metallic state by means of illuminati
Next, the illumination was switched off and the sample w
heated for an hour up to room temperature in a dark ch
ber. Under these conditions the resistance at first chan
little with increasing temperature. Then in the rangeT ;50
260 K the resistivity increased sharply~by three orders of
magnitude! up to several hundreds ofV•cm, after which the
resistance once again decreased in the standard activat

FIG. 1. Temperature dependence of the resistance of PbTe~Ga! obtained
under various regimes of illumination by an incandescent lamp. Curve1 —
brief illumination at liquid-helium temperature, curves2–4 — constant il-
lumination with various~increasing! intensities.
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manner with activation energyEa . The low-temperature
~metastable! part of this curve depended on the heating ra
especially strongly on the low-temperature shoulder of
resistance peak. The high-temperature~activational! part of
the curve did not depend on the heating rate. The curves2–4
represent the results of measurements of the resistance o
sample with constant illumination of various intensities. O
can see that under these conditions the resistance pea
creases considerably and shifts to high temperatures a
illumination intensity increases.

As with the resistance measurements, the magnetic
ceptibility likewise was measured in two regimes, i.e., eith
with constant illumination at all temperatures or after br
illumination at liquid-helium temperature. Moreover, th
measurements of the susceptibility of PbTe~Ga! were per-
formed under conditions of uncontrollable illumination~the
method used to perform the magnetic measurements did
permit isolating the sample completely from illumination b
the cryostat cap!. The calibration measurements were p
formed on a sample of undoped PbTe. Figure 2~curve 1!
shows the results of the calibration measurements. T
were completely independent of the illumination of t
sample and are identical to the tabulated values of
susceptibility.11 Curve 2 in this figure describes measur
ments performed on the PbTe~Ga! sample under uncontrol
lable illumination conditions. One can see that under con
tions when illumination comes only from the cryostat cap
temperature variation of the susceptibility at low tempe
tures (,25 K! is close to the Curie law (x5C/T). Note,
however, that the Curie constantC measured in these exper
ments varies from one experiment to another. The param
netic peak atT;60 K observed in the PbTe~Ga! sample is of
greatest interest. This peak grows as the temperature v
more rapidly.

Figure 3 shows the temperature dependences of the m
netic susceptibility of PbTe~Ga! that were obtained in vari
ous regimes of illumination by an incandescent lamp. T
curve1 represents the results of measurements of the sus
tibility in a regime of continuous illumination by an incan

FIG. 2. Temperature dependence of the susceptibility of PdTe~curve1! and
PbTe~Ga! ~curve2! under conditions of uncontrollable weak illumination b
the cryostat cap.
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descent lamp. In the presence of constant illumination
diamagnetic susceptibility of PbTe~Ga! decreases slightly
with increasing temperature, though a small increase of
diamagnetic susceptibility is observed at;50 K. The curve
2 shows the results of susceptibility measurements after b
preliminary illumination of the sample at liquid-helium tem
perature. The next heating was conducted in the absenc
illumination ~except for illumination from the cap!. Similarly
to measurements performed under conditions of uncont
lable illumination, here a paramagnetic peak, whose posi
and magnitude depend on the rate of heating, is likew
observed atT;60 K. Comparing the measurements of t
resistance~Fig. 1! and magnetic susceptbility~Figs. 2 and 3!
of the PbTe~Ga! sample shows that the paramagnetic peak
T;60 K lies on the low-temperature shoulder of the res
tance peak.

3. The following conclusions can be drawn from the da
obtained.

a! In the region of thermodynamic equilibrium, wher
the conductivity is of an activational character~and at higher
temperatures!, the magnetic susceptibility is diamagnetic a
decreases only slightly with increasing temperature. Its va
is the same as that of the undoped sample.

b! In the low-temperature region (T,50 K! with metal-
lic delayed photoconductivity, where the photoexcited itin
ant electons satisfy quasi-Fermi statistics~the itinerant carri-
ers are degenerate!, the magnetic susceptibility is likewis
diamagnetic and essentially equal to the high-tempera
value.

c! A sharp paramagnetic peak is observed in sample
Ga only in the transitional region (T;50270 K!, where the

FIG. 3. Temperature dependence of the magnetic susceptibility of PbTe~Ga!
obtained under various regimes of illumination by an incandescent la
Curve1 — constant illumination by an incandescent lamp,2 — brief illu-
mination at liquid-helium temperature.
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conductivity is strongly nonequilibrium but the carriers a
still nondegenerate. This peak becomes more pronounce
the measurements are performed more rapidly in this t
perature range.

d! Moreover, additional growth of paramagnetism fo
lowing the Curie law is observed in the low-temperature
gion T,25 K, but only if the illumination from the cap is
weak, when the system of photoexcited carriers is nondeg
erate.

The first and second assertions agree with the theor
magnetic susceptibility of IV–VI semiconductors with a qu
sirelativistic band spectrum. The expression for the magn
susceptibility calculated by the linear-response method is12

x52
a

6p2

v
c E0

L

$n~2«p ,m,T!2n~«p ,m,T!%
vdp

«p
, ~1!

wherea is the fine-structure constant,v is the matrix ele-
ment of the interband velocity,c is the speed of light,«p

5AD21v2p2 is the quasirelativistic electronic spectrum,D
is the half-width of the forbidden band,n(«p) andn(2«p)
are the Fermi distribution functions of the electrons in t
conduction and valence bands, respectively,m andT are the
chemical potential and temperature of the electrons, andL is
the cutoff parameter for the momentump (Lv@D). It fol-
lows from Eq.~1! that in the range of values of the expe
mentally studied parameters of PbTe~Ga! (umu, T,D, D
;0.1 eV,Lv;10 eV,v;108 cm/s!

x52
a

6p2

v
c

ln
Lv
D

'21025. ~2!

That is, in thermodynamic equilibrium as well as under qu
sichemical equilibrium conditions~provided the nonequilib-
rium carrier distribution function is of a Fermi character! the
susceptibility is diamagnetic and depends onm and T only
through small corrections. It should be noted that an exp
sion of the form~2! was obtained in Ref. 13 by direct sum
mation over the Landau levels.

Using Eq.~1! it is easy to calculate the correctiondx in
the case of a Boltzmann gas of carriers with densityn1 and
effective massm* as

dx5
2

3

n

TS eh

2m* c
D 2

. ~3!

Here m* 5D/v2, which is much smaller than the free ele
tron massm (m* /m;1/20). As a result, the effectiveg fac-
tor of the carriers is greater than theg factor of a free elec-
tron by the same factor. Physically, the correction~3!
describes the total susceptibility of doubly spin-degene
states singly occupied by electrons.

Direct calculations using Eq.~3! show that under qua
sithermodynamic equilibrium conditions withT;60 K and
density of singly-occupied levels satisfyingn1;1015 cm23,
the paramagnetic correctiondx;1027 is small compared
with the total diamagnetic susceptibility of the system. T
estimate presented for the densityn is an upper limit for the
number of nondegenerate itinerant electrons at this temp
ture and corresponds to the experimentally observed incr
as
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-

n-
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in the resistance by two to three orders of magnitude in
region of the transition from metallic to semiconductor b
havior ~Fig. 1!. This result agrees completely with the a
sence of any paramagnetic anomalies on the hi
temperature shoulder of the resistance peak.

On this basis, no paramagnetic anomalies are to be
pected on the low-temperature shoulder of the resista
peak, where the temperature and density of the carriers
not differ much from their values on the high-temperatu
shoulder. In reality, a sharp paramagnetic peak, compar
in magnitude to the absolute magnitude of the diamagn
susceptibility of the sample, is observed on the lo
temperature shoulder of the resistance.

To obtain from Eq.~3! the scale of the paramagnet
peak actually observed, it must be assumed that the den
n1 of singly-occupied levels is not 1015 cm23 but rather of
the order of 1017 cm23. There could be several formal ex
planations for such a densityn1: first, the presence of a gian
peak of the density of states near the Fermi level; seco
strong Coulomb repulsion between electrons with oppo
spins, filling each level; and, finally, the existence of
strongly nonequilibrium carrier distribution function in th
system.

The first two hypotheses must be rejected because u
these conditions a paramagnetic anomaly would also be
served on the high-temperature shoulder of the resista
peak. Therefore only the third hypothesis need be con
ered.

In order for a large number of singly-occupied levels
exist in the system, not only must the photoexcited carri
have a long lifetimet, but the transition time of electron
between these levels must also be long. The latter is poss
only for states localized on impurities and a low density
delocalized~itinerant! electrons. Otherwise, impurity–ban
transitions will rapidly establish quasithermodynamic eq
librium in the system of photoexcited carriers. The tempe
ture region where the paramagnetic peak is observed sati
these conditions. In this region the lifetimet of the nonequi-
librium carriers is still long enough~comparable to the dura
tion of the experiment! for the number of photoexcited car
riers at low temperatures to remain sufficiently large, but i
already inadequate to maintain in the system of these car
a quasi-Fermi distribution function with the chemical pote
tial located in the conduction band.

The number of singly-occupied levels can be estima
using the following simple kinetic scheme. At low temper
tures, as a result of external excitation, photoexcited e
trons~two for each trivalent Ga atom! appear in the conduc
tion band because of a change in the configuration of the
impurity from s2p1 to s0p3. This excited state of the carrier
is found to be metastable, since the reverse~recombination!
process should proceed via an intermediate (s1p2) divalent
state of Ga~according to the schemes0p3→s1p2–s2p1),
which has a higher energy than thes0p3 ands2p1 states, i.e.,
it is separated from them by an energy barrierU.2! In this
manner, electrons accumulate in sufficient number to form
quasi-Fermi distribution. At low temperatures this distrib
tion is characterized by the presence of two carriers in e
of almost all states occupied by the electrons.
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As temperatureT increases, the thermal energy of the
carriers increases and finally becomes high enough for
carriers to overcome the recombination energy barrierU. In
this region the lifetime of a photoexcited carrier decrea
according to an activation law (t}exp(U/T)). The dynamics
of the number of pair-filled states in the indicated tempe
ture range can thus be roughly described by the equatio

dn2

dt
52

n2

t
, ~4!

wheret is the lifetime andn2 is the number of pair-filled
states. Initially, the numbern2(0) of pairs equals essentiall
half the carrier density because of the Fermi character of
carrier distribution. Hence initially the numbern1 of singly-
occupied levels can be set equal to zero and their temp
dynamics can be described by the equation

dn1

dt
52

n1

t
2

dn2

dt
, ~5!

since a singly-occupied level arises as a result of the rec
bination of a single carrier from a pair. It should be not
that the kinetic equation~5! is valid only for localized single-
electron states. In the opposite case, a term of the ty
2gn1, describing the reverse transformation of sing
occupied states into pairs, must be added to it. This term
certainly not small for delocalized states~or strongly over-
lapping states!. It is obvious that the existence of such a te
would sharply decrease the values ofn1 allowed by Eqs.~4!
and ~5!, while the paramagnetic peak would be unobse
able. Solving Eqs.~4! and ~5! simultaneously yields the fol
lowing time dependence of the number of singly-occup
states:

n1~ t !5
t

t
n2~0!expS 2

t

t D . ~6!

This equation implies that the maximum number of sing
occupied levels that can be attained as a result of temp
evolution is onlye times smaller than the initial number o
pairs.

Thus, the appearance of a sharp paramagnetic peak
high intensity on the low-temperature shoulder of the re
tance is described completely naturally in this scheme
attests to the presence in lead telluride of shallow locali
states associated with Ga impurity atoms in a trivalent s
e
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and lying below the conduction-band bottom.
In closing, we briefly discuss the nature of the Curie la

in the susceptibility observed at low temperatures un
weak illumination conditions. In principle it can also be a
tributed to the presence of a large number of shallow sing
occupied states under these conditions. However, it has
been ruled out that here an additional contribution ari
from Ga in an unstable divalent state. Direct measureme
~for example, by electron spin resonance! of the effectiveg
factor of magnetic centers could answer unequivocally
question of the nature of the appearance of the Curie law
low temperatures.

B. A. Volkov is grateful to the Russian Fund for Fund
mental Research for support~Grants Nos. 96-02-16701, 96
02-19022, 96-15-96474! and the international program
INTAS–RFBR ~Grant No. 95-1136!.

* !E-mail: vasil@lt.phys.msu.su
1!Here there is no need to consider the possibility of the formation o

hydrogen-like state associated with the long-range part of the Coulo
potential of the impurity. In IV–VI semiconductors the permittivity sati
fies «.100, the effective is massm* ;1022 times the free-electron mass
and so the characteristic binding energy of such a state is<1024 eV.

2!The widely used scheme for producing a barrierU by means of deforma-
tional effects is not entirely satisfactory, although, of course, the chang
the valence of impurities is accompanied by a deformation.
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Thermal expansion of thin C 60 films
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The thermal expansion coefficienta and structure of C60 films with thicknesst;3–10 nm were
investigated in the temperature interval from room to liquid-nitrogen temperature by
electron-optical methods. The thermal expansion coefficient was determined from the temperature
shift of the diffraction maxima in the electron diffraction patterns. The objects of investigation
were epitaxial C60 films condensed in vacuum on a~100! NaCl cleavage surface and
oriented in the~111! plane. A surface-induced size effect in the thermal expansion coefficient
was observed. It was established that ast decreasesa f increases and is described well
by the relationa f517•1026 K2118.3•1025 nm K21 t21. This relation was used to estimate the
linear expansion coefficientas of the C60 surface in the~111! plane asas560•1026 K21,
which is several times larger than the bulk value. The experimental results agree satisfactorily with
the theoretical calculations of the mean-square displacements of molecules located in a
region near the surface. ©1998 American Institute of Physics.@S1063-7761~98!02411-1#
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1. INTRODUCTION

Fullerites — a new molecular form of condensed carb
— have been the object of intensive investigations in the
few years. Many investigations have been devoted to var
aspects of fullerite synthesis, structure, properties,
applications.1–3 Investigations of fullerite in a film state ar
of interest in themselves because the structural and geom
parameters can be varied over wide limits by altering
conditions of condensation.4 For thicknessest<10 nm the
surface layers should make a considerable contribution
film properties.5 As a result, the properties determined by t
anharmonicity of the forces acting between C60 molecules
should differ. One such property is the thermal expans
characterized by the coefficienta. For the range of geomet
ric sizes studied, the effect of the surface should be m
pronounced for bodies with a large lattice period. Fuller
C60 is such an object. It should be noted that because of
van der Waals nature of the interaction between C60 mol-
ecules thin fullerite films are a convenient object for che
ing theoretical models.

The present work is devoted to investigations of the th
mal expansion of vacuum-condensed thin C60 films in the
temperature interval from room to liquid-nitrogen tempe
ture. The thermal expansion was investigated experimen
by transmission high-energy electron diffraction, using
shift of the diffraction peaks in the electron diffractio
patterns.6 The structure of the C60 films was also tested by
electron microscopy methods. An important advantage o
diffraction study of the properties is that it is possible
follow the structure and state of the experimental object d
ing the course of a thermophysical experiment. This beco
1011063-7761/98/87(11)/5/$15.00
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especially important for studying films of thickness 1–
nm. The study of the thermal expansion of such films is
intrinsic interest and in many cases yields helpful inform
tion about surface properties.

2. EXPERIMENT

The fullerite films were obtained by evaporating a
condensing, in a vacuum;1023 Pa, crystal particles with a
purity of at least 99.9%. C60 crystal particles of mass 1024

21023 g were evaporated from a quartz crucible Jou
heated to;700 K. The substrate consisted of a NaCl sing
crystal. Condensation was performed on a~001! NaCl sur-
face. The substrate temperature was;360 K. The conden-
sation rate was; 0.1 nm s21. For subsequent electron
optical investigations the fullerite films were separated fro
the substrate and secured on electron-microscope meshe
do this, a single crystal with a film was immersed at an
;20° in distilled water. The fullerite film detached from th
substrate in several seconds as a result of partial dissolu
of the NaCl. Next, the film was recovered from the wa
onto copper meshes with cell-size;0.05 mm.

The experimental scheme used to determine the ther
expansion coefficient of C60 films by transmission high-
energy electron diffraction is shown in Fig. 1. A sample w
secured in a cryostat and placed in an electron diffract
camera. In the electron diffraction camera the sample w
surrounded by a screen cooled to liquid-nitrogen tempe
ture. The sample temperature could be varied from room
liquid-nitrogen temperature. The sample and a control w
placed in the same plane, and the electron beam pa
through them simultaneously. The control consisted of a t
4 © 1998 American Institute of Physics
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annealed Al film. An electron diffraction pattern consistin
of a superposition of the patterns from the sample and
control was recorded on a photographic plate. The~transmis-
sion! electron diffraction patterns were obtained with an a
celerating voltage of 40 kV and electron beam density l
than 1026 A cm22 so as to reduce the effect of the electr
beam on the experimental object to a minimum. The poss
instrumental errors in the measurements of the interpla
distances were taken into account by using the control. P
lished data on the temperature dependence of the lattice
riod of bulk aluminum were used to determine the tempe
ture dependence of the electron diffraction camera cons
2Ll.7 The attachment and screen temperatures were m
sured to within63° with copper–constantan thermocouple

The thickness of these thin condensed C60 films was pre-
set by the mass of the charge and the evaporation geom
It was monitored with a quartz resonator during the exp

FIG. 1. Experiment arrangement:1 — Electron beam,2 — cryostat,3 —
control,4 — sample,5 — cooled screen,6 — diffracted beams from sample
and control,7 — fluorescent screen~photographic plate!.
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ment and then refined on the section being studied us
electron diffraction by finding the size of a reciprocal-latti
site in the direction normal to the film.8 For this, the film was
tilted relative to the electron beam, and the angle with
which the reflection sphere intersects a given reciproc
lattice site was determined with a goniometer. The fi
thickness was found using the~220! and ~422! reflections.
The error in measuring the thickness is estimated to be 1
Films of thickness 3–10 nm were investigated.

The thermal expansion coefficienta was determined
from data on the variation of the interplanar distances a
function of temperature:

a5Dd/dDT, ~1!

whereDd/d is the relative change occurring in the interpl
nar distances as a result of the thermal expansion due
temperature changeDT. SinceDd/d52D2r /2r , the ratio
Dd/d was measured experimentally according to the cha
in the distances 2r between the diffraction reflections in th
electron diffraction pattern. The values ofDd/d were found
using the reflections~422!. The ratioD2r /2r was measured
in an optical microscope with an error of 5•1024, which
leads to an error of63•1026 K21 in the thermal expansion
coefficient. Note that the average value ofa over the indi-
cated temperature interval was determined. In addition,
normal incidence of the electron beam on the film the val
of Dd/d and thereforea are obtained in a direction paralle
to the film surface.

3. RESULTS AND DISCUSSION

According to electron-diffraction and electron
microscopy data the C60 films were continuous and pos
sessed a face-centered~fcc! lattice. The electron diffraction
FIG. 2. Electron diffraction pattern of a fullerite film of thickness 4.5 nm~a! and section of the reciprocal lattice of a fcc crystal with~111! orientation~b!.
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patterns~Fig. 2! contained the reflections~220! and ~422!
typical of the~111! orientation, for which the~111! plane of
C60 is parallel to the~100! NaCl cleavage surface. Howeve
besides this, reflections with interplanar distances 0.86
0.43 nm, which can be identified as the reflections 1/3~422!
and 2/3~422! due to stacking faults,9 were present in the elec
tron diffraction pattern. It should be noted that, while t
lattice period of NaCl (a50.564 nm) differed substantially
from that of C60 fullerite (a51.42 nm) this film–substrate
system contains favorable orientation ratios for epitax
growth of C60 films. Thus, to within 1% two C60 lattice pe-
riods equal five NaCl lattice periods and to within 2% tw
C60 @110# diagonals equal seven lattice periods of Na
However, the analysis performed showed that neither
parallel nor the 45-degree orientation is realized. The p
ence of 24 reflections of the type~220! and ~422! together
with the six reflections expected for this orientation attes
the fact that the structure of the films is the result of fo
position epitaxial nucleation and subsequent growth. Acco
ing to data from dark-field electron-microscope photograp
the average size of the crystal particles is 30–40 nm. Acco
ing to the perfection of the structure, the experimental e
taxial C60 films, oriented in the~111! plane fall between
textured and single-crystalline.

The results of a precision measurement of the interpla
distancesDd/d of C60 fullerite films in the temperature rang
T12T2 are collected in Table I. The quantityDd/d increases
as film thickness decreases. Thus, the ratioDd/d for a film
of thickness 3.5 nm is 1.6 times greater than for b
fullerite.10,11 The measured dilatometric effect of the latti
period of thin C60 films in the experimental temperatur
range is due to both the change inDa/a on account of ther-
mal expansion and the change due to the phase transitio
fullerite from a fcc lattice into a simple cubic~SC! lattice at
T'260 K. At temperaturesT,260 K the C60 molecules re-
main in the same positions, but their three-fold axes beco
oriented along thê111& directions. Information on the tem
perature dependence of the lattice period of thin C60 films is
therefore required for quantitative interpretation of the e
perimental data.

Figure 3 shows the temperature dependence of the la
perioda of C60 films of thickness 4.5 nm. According to thi
figure, a jump due to a phase transition of fullerite from a
to a fcc lattice is observed atT'260 K. The transition tem-
perature as well as the magnitude of the jump in the fil
agree well with the dilatometric and x-ray diffraction da

TABLE I. Results of precise measurement of the relative changesDd/d in
the interplanar distances of C60 films with thicknesst in the temperature
rangeT12T2 .

t, nm T12T2 , K Dd/d•103 a f•106, K21

3.5 269 – 83 11.6 44~Ref. 12!
4.5 275 – 88 10.2 36
6 273 – 80 8.2 25
10 274 – 80 8.4 27
` 273 – 80 7.1 19.5~Ref. 10!
` 273 – 80 6.8 19~Ref. 11!
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obtained from investigations of this phase transition in b
C60, whereDa/a;3•1023.10,11These data were used to ca
culate average linear thermal expansion coefficientsas of the
films for the indicated temperature range. We note that
experimental temperature interval lies above the Debye t
perature of fulleritesQD'70 K.13 This makes it possible to
neglect the temperature dependence of the thermal expan
coefficient. The linear temperature dependence of the lat
period of C60 films attests to this~Fig. 3!. The experimental
temperature interval included the region~80–260! K of the
oriented SC phase and part of the region~260–275! K of the
fcc phase. It follows from Fig. 3 that the oriented pha
makes an overwhelming contribution to the change in
lattice period due to thermal expansion and therefore its th
mal expansion coefficient is measured. Thus, the aver
values found for the thermal expansion coefficient cor
spond to this phase.

The experimental thickness range of C60 films oriented
in the ~111! plane corresponds to 4–12 interplanar spacin
For such objects the contribution of surface and near-sur
layers to the properties becomes considerable, since the
ordination numbers of molecules in surface and near-sur
layers differ from those of molecules in the interior volum
This has the effect that, for example, the mean-square am
tudeus

2 of the vibrations of molecules on the surface and
the first two layers near the surface is larger than the co
sponding valuesuv

2 in the interior volume.5 According to
Ref. 14, the mean-square displacements and thermal ex
sion coefficients are related simply by

us
2/uv

2'as /av . ~2!

Hence the values of the linear expansion coefficients for
surface and near-surface layers should also be overestim

The relation~2! is extremely convenient for theoretica
interpretation of the results of measurements of the lin
expansion coefficients, since it connects anharmonic qua
ties ~linear expansion coefficients! and the mean-square dis
placements calculated in the harmonic approximation. T
method of Jacobian matrices,15,16also known in the literature
as the recursive method,17 is an effective method for calcu
lating the temperature dependences of the mean-square
placements of both molecules at the surface and in the i
rior volume.

FIG. 3. Lattice perioda of C60 films of thickness 4.5 nm versus temperatu
T.
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The mean-square displacements of molecules in an a
trary system can be written as15,16

uh
25

\

2mE
0

lm 1

Al
cothS \Al

2kT D rh~l!dl, ~3!

where l is the squared vibrational frequency,lm is the
maximum value ofl, and rh(l) is the so-called spectra
density generated by the vectorh. The generating vectorh
corresponds to the displacement of a selected molecul
one direction. The mean-square displacementsus

2 or uv
2 of

surface or interior molecules, respectively, are calculated
cording to whether the chosen molecule is located on
surface or in the interior volume.

Figures 4 and 5 display the computational results
tained for the temperature dependences ofus

2/uv
2 by the

method of Jacobian matrices using Eq.~3! for a fcc crystal

FIG. 4. Temperature dependences ofus
2/uv

2 for a ~110! surface plane:1, 2, 3
— for vibrations of molecules along@001#, @110#, and@11̄0#, respectively.

FIG. 5. Temperature dependences ofus
2/uv

2 for surface planes of the type
~001! and~111!: 1, 2 — for vibrations of molecules in the direction perpe
dicular to the planes~001! and~111!, respectively;3, 4 — for vibrations of
molecules in a direction parallel to the planes~001! and~111!, respectively.
i-

in

c-
e

-

with a central interaction between nearest neighbors w
various orientations of the surface plane. It is easy to see
the largest differences in the mean-square displaceme
(;2.2) are associated with the~110! plane, since for this
orientation a molecule on the surface possesses seven ne
neighbors~instead of 12 in the interior! and for the~100! and
~111! orientations it possesses eight and nine nearest ne
bors, respectively. Moreover, for the~110! orientation of the
surface plane the vibrations in this plane are strongly an
tropic.

For ~111! orientation, in the present model the rat
us

2/uv
2 is 1.2 for displacements in the plane~for displace-

ments in the normal direction the ratio'2). However, it
should be noted that the results are presented for a mod
which the surface distortion was neglected. Obviously, if t
circumstance is taken into account, then the ratious

2/uv
2 can

change considerably.18,19 In real systems, as a rule, when
surface is formed, the interaction between surface and s
surface layers is much weaker than between layers in
interior. As a result, the mean-square displacements of m
ecules located in the surface region increase appreciably

To a first approximation the thermal expansion coe
cient of a film with thicknesst and two free surfaces can b
represented as

a f5av12~as2av!Dt/t, ~4!

whereDt is the outer layer, whose lattice dynamics diffe
from that of the interior layers, andās is the average value
of the thermal expansion coefficient for this layer.

The experimental data on the thickness dependenc
the thermal expansion coefficient of films are shown in F
6. As follows from Fig. 6, the values ofa f in the experimen-
tal thickness range are described quite well by express
~4!. The value found from Fig. 6 for the thermal expansi
coefficient of bulk C60 is 17•1026 K21, which is close to the
published data.10,11 The quantity 2(ās2av)Dt58.3
• 1025 nm K21. To determineas it is necessary to have in
formation about the value ofDt. Theoretical estimates show
that Dt corresponds to two interplanar distances.5 For the
indicated film orientation andd(111)50.82 nm it was as-
sumed that the surface layer is 1.64 nm thick. For these

FIG. 6. Thermal expansion coefficient of C60 films versus thickness.
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1018 JETP 87 (5), November 1998 Pugachev et al.
ues ofDt the quantityās540•1026 K21. Information about

ās makes it possible to estimate the linear expansion co

cient as of a surface atomic layer, using the expressionās

5(as1av)/2. Hence it follows that for the outer atomi
layer with ~111! orientation the linear expansion coefficie
as in a direction parallel to the film surface is 60•1026 K21.
This is 3.5 times greater than the bulk value.

In closing, we note that the value ofas found in this
manner is somewhat too high. Treating the film as a v
thin, perfect, plane-parallel plate is a simplification. A re
film surface is well known to be several times larger than
geometric surface because of natural roughness. Co
quently, not only the thermal expansion component para
to the surface but also the component perpendicular to
surface contribute to the experimentally measured dilatom
ric effect Dd/d. Regions adjoining defects in the film, pr
marily the boundaries of crystal particles, contribute to
measured effectDd/d. However, simple estimates show th
this contribution can be neglected for 30–40 nm crystal p
ticles. Hence it follows that the experimental and calcula
thermal expansion coefficient of an atomic surface layer
C60 fullerite agree well with one another, considering t
approximation of the model and the real structure and ge
etry of the experimental objects.

This work was supported by the Ukrainian Ministry
Education and the Ukrainian Fund for Fundamental Rese
~project USKO-97!.
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Magnetic resonance of intrinsic defects in the spin–Peierls magnet CuGeO 3
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Magnetic resonance in pure single-crystal CuGeO3 at frequencies 9–75 GHz in the temperature
range 1.2–25 K is investigated. Splitting of the magnetic-resonance line into several
spectral components is observed at temperatures below 5 K, where spin–Peierls dimerization
suppresses the magnetic susceptibility and the ESR signal intensity. Analysis of the
magnetic resonance spectra over a wide frequency range with different directions of the magnetic
field at different temperatures makes it possible to identify among these components the
ESR signals due to defects, having effective spinS51/2 and spinS51, in the spin–Peierls phase.
The g factor corresponding to these ESR signals is the same and close to the value
characteristic for the ion Cu21. Another magnetic-resonance line is characterized by a strongly
anisotropicg factor and an increase~at a threshold in the excitation power! in the
susceptibility both at resonance and in the line wings. These signals are tentatively attributed to
two possible types of planar defects arising on the walls of domains of the spin–Peierls
state with different values of the dimerization phase. ©1998 American Institute of Physics.
@S1063-7761~98!02511-6#
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1. INTRODUCTION

The inorganic compound CuGeO3, which possesse
magnetic and crystallographic properties typical of spi
Peierls compounds, has been studied intensively in the
few years by various methods. The magnetic structure of
crystal is based on one-dimensional chains of Cu21 ions run-
ning along thec axis of an orthorhombic crystal.

A sharp decrease of the magnetic susceptibility1 with a
simultaneous displacement of the atoms accompanied
doubling of the lattice period in the directionsa andc2,3 has
been observed below the spin–Peierls transition tempera
The accompanying change in the magnetic properties is
tributed to the formation of dimers consisting of magne
atoms between which the distance became smaller and
exchange integral larger than in the initial state at a temp
ture above the transition. The ground state of a spin–Pe
crystal is a singlet state, while the excited triplet states
separated from the ground state by an energy gap. The m
netic susceptibility should vanish at absolute zero temp
ture. The gap width and the spin–Peierls transition temp
ture are determined by varying the exchange integral fro
state with the atoms moving closer to one in which they
moving apart.4,5 We note for comparision that a nondime
ized chain ofS51/2 spins with antiferromagnetic exchang
possesses a gapless excitation spectrum, and the ground
does not have Ne´el order.6

The transition described above stems from an instab
1011063-7761/98/87(11)/12/$15.00
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that develops in the presence of an interaction between
one-dimensional spin chains and the three-dimensional e
tic subsystem of the crystal. While the spin chains form
quasi-one-dimensional magnet, the restructuring of the c
tal is three-dimensional and the dimers form an ordered s
lattice. The displacements of the copper atoms occur in thc
direction, while rotations of the oxygen octahedra surrou
ing the copper ions occur in theab plane.2 Investigations of
the structure show that the displacements of the copper
in neighboring chains are correlated in antiphase, i.e.
translation by the vectora1c or b/21c brings the dimers
into coincidence. Herea, b, andc are the primitive transla-
tions of the nondimerized phase. The period of the arran
ment of the ions in the directionb in the high-temperature
phase is half the lattice period, since two copper ions we
associated with one another by a translation byb/2 lie inside
a primitive cell. The displacements of the oxygen ions a
correlated similarly.

These translation bring the octahedra into coincidence
rearrangement of the lattice is therefore accompanied
dimerization of copper ions along thec axis and oxygen ions
along thea andb axes. The displacementsdzklm of the cop-
per ions relative to their positions in the nondimerized latt
can be described by the relation

dzklm5j cos@~k1 l 1m!p1c#. ~1!

Herej is the amplitude of the displacement;k, l, andm are
the coordinates of the copper ions relative to a refere
9 © 1998 American Institute of Physics
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copper ion, expressed in the unitsa, b/2, andc in a coordi-
nate system with axes directed along the crystal axesa, b,
and c. The quantityc is called the dimerization phase an
can assume one of two values — 0 or p.7 The state of the
crystal is doubly degenerate with respect to this parame

The main properties of the spin–Peierls phase
CuGeO3 according to Ref. 3: are as follows: transition tem
peratureTSP514.2 K, in-chain exchange integralJc510.6
meV, zero-temperature energy gapD52 meV, relative
variation of the exchange integral in the dimerized ch
d50.042. The ratios of the interchain to in-chain exchan
are Jb /Jc50.11 and Ja /Jc520.011. The maximum
dimerization-induced displacement of the copper ions
0.007 Å .

The data from measurements of the magnetic susce
bility, neutron diffraction investigations of the magnetic a
crystallographic structures, and the study of the excitat
spectra show that the idea of a spin–Peierls transition le
to a correct qualitative description of the magnetic and lat
properties of CuGeO3 ~see, for example, Ref. 3!.

Freezing of the magnetic susceptibility is incomplete
real samples. The susceptibility in typical samples decrea
approximately ten-fold. The susceptibility is a minimum a
K and increases somewhat, approximately by the factor
as temperature decreases further. This residual suscepti
is ordinarily attributed to the presence of impurities or da
gling chain ends. Other conjectures, described below, h
also been made.

When defects are introduced into the lattice or magn
subsystem, the spin–Peierls transition temperature decre
and three-dimensional antiferromagnetic order is observe
sufficiently low temperature.8,9 For example, the introduction
of 0.07% Si or 2% Zn makes the CuGeO3 crystal an antifer-
romagnet with Ne´el temperature of about 4 K. A characte
istic feature of the long-range antiferromagnetic order
duced by introducing impurities is that the Ne´el state and
spin–Peierls dimerization coexist. The average spin at a
is several tenths of the nominal value. Impurity-induc
transformation of a nonmagnetic ground state into an anti
romagnetic state occurs because dimerization is suppr
near a lattice defect or a missing spin.7,10 The absence o
dimerization gives rise to antiferromagnetic correlations
the spins near a defect both along a chain and in the tr
verse directions due to exchange interactions. The ave
magnitude of the spin projection at a site decreases a
from a defect. The correlated regions of neighboring defe
overlap, producing long-range magnetic order. Order bre
down at finite temperature when the energy of the ther
fluctuations is sufficient to destroy the correlations betwe
neighboring defects.

In relatively pure samples, where the magnetic susce
bility below the transition temperature decreases by m
than a factor of 10, long-range magnetic order has not b
observed down to 1.2 K. Nonetheless, pure CuGeO3 crystals
exhibit unusual properties at low temperatures. Investi
tions of electron spin resonance in CuGeO3 crystals11,12

show that at low temperatures the spectrum of the signa
the region of residual magnetic susceptibility becomes m
complicated, splitting into several components whose ori
r.
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is still unclear. In Ref. 13 it was observed that in this te
perature range an electric field influences the magnetic
ceptibility, likewise indicating that the magnetic state of t
crystal is unusual. It was surmised that the residual susc
tibility could be due to magnetic-lattice defects of the spin
Peierls phase, which form at temperatureTSP on the bound-
aries of crystallites with different values of the dimerizatio
phase. Then the residual magnetic susceptibility can co
spond to the density of magnetic defects, which is hig
than that of the defects in the paramagnetic phase.

In the present investigation the magnetic resonance s
tra in the region of the residual magnetic susceptibility
pure CuGeO3 single crystals are studied in detail for th
purpose of identifying further the magnetic defects in t
spin–Peierls phase and the effect of the boundaries of
spin–Peierls crystallites on the low-temperature magn
properties is discussed.

2. PROCEDURE AND SAMPLES

The CuGeO3 samples were grown from highly purifie
reagents by spontaneous crystallization from a melt w
slow cooling. The velocityvcr of the crystallization front was
1023 cm/h. The impurity content was monitored by activ
tion analysis and atomic plasma spectroscopy. The data f
these control experiments show that the content of the im
rities Fe, Ni, Mn, and Co in samples of the main series st
ied in this work did not exceed 1024 per copper ion for each
of the indicated types of impurities. The samples consiste
transparent blue plates oriented along thec axis and possess
ing well-expressedbc planes. The crystals were 4 mm lon
2 mm wide, and 0.5 mm thick.

The magnetic impurities and defects of a spin–Peie
crystal lead to the presence of a residual magnetic susc
bility. Hence the quality of a spin–Peierls crystal can
characterized by the ratioQ of the magnetic susceptibility a
15 K to the minimum magnetic susceptibility measured
T55 K. The fewer defects in the crystal, the larger the qu
ity factor Q is. The samples of the main series yield
Q520.

To compare samples containing a different number
defects of different nature, other crystals were also stud
Magnetic resonance spectra were obtained for the sam
No. 2, produced by the float-zone method, from Ref. 12. T
crystal contained 1023 Fe impurity atoms per cell and it
quality factorQ57.

To monitor the contribution of structural defects to th
residual susceptibility another series of samples was
pared using the same reagents as for the samples in the
batch withQ520 but with faster cooling~the velocity of the
crystallization front was 1 cm/h!. For these samplesQ56.
The quality factor of the samples grown with a crystalliz
tion velocity of 6 cm/h wasQ53. To monitor the influence
of nickel impurity crystals with the composition
Cu0.995Ni0.005GeO3, grown with crystallization velocity 1
cm/h, were prepared.

The magnetic resonance lines in the frequency ra
18–75 GHz were recorded as the magnetic-field-depende
of the power of the microwave signal transmitted through
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FIG. 1. Magnetic resonance line at 26.7 GHz
various temperatures. Curves of the variation of t
power of the microwave signal transmitted throug
the resonator are shown.
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resonator with the sample. At 9 GHz an ESR spectrom
with field modulation and tracing of the magnetic-field d
rivative of the absorption line was used. The measurem
were performed at temperatures 1.2–25 K in magnetic fie
up to 60 kOe.

3. MAGNETIC RESONANCE SPECTRUM OF CuGeO 3

The ESR spectrum in CuGeO3 consists of one line a
temperatures above and nearTSP. As described in Refs. 11
and 12, the line broadens as temperature decreases. Nea
the spectrum splits and at lower temperatures contains
principal lines and several weak lines having different inte
sities relative to the principal lines at different frequenc
and in different magnetic field orientations.

The low-temperature ESR signals are relatively we
Using the known value of the molar susceptibility
CuGeO3 at T515 K1 and the value of the quality factor, it i
possible to find the effective density of paramagnetic defe
which are responsible for the observed magnetic-resona
signal. Thus, for samples in the main series the total E
signal intensity at the minimum at 5 K is 1023 times the
intensity of resonance absorption in a paramagnet with
S51/2 spin per copper ion.

The properties of magnetic resonance are shown in F
1–6. The change in the lineshape with temperature and
transformation of one line into four lines are illustrated
Fig. 1. It is evident here how a portion of the total intens
of the wide line splits off as temperature decreases an
T53.5 K forms a new line to the right of the main line
while the main line splits into three components.

The magnetic-resonance lines recorded at different
quencies at the lowest temperatureT51.3 K with H i c are
shown in Fig. 2. The four main lines, labeled 1, 2, 3, and
and several weaker lines, labeled by the lettersa,b, g, e,
andn, are clearly seen. The magnetic-field dependence of
resonance-absorption frequenciesf i(H) for H i c is illus-
trated in Fig. 3. The indexi corresponds to one of the line
er
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labeled in Fig. 2 by letters and numbers. The triplet of clo
lines 1, 2, 3 exhibits frequency–field dependence in the fo
of parallel straight lines. The central straight line, corr
sponding to line 2, passes through the origin. The magne
field-dependence of the resonance frequency for line 4
straight line with a different slope and passes through
origin. The resonance frequenciesf 1,2,3,4 do not depend on
temperature in the range 1.3–4 K. The data in Fig. 3 and
results of measurements withH i a andH i b show that the
dependencesf 1,2,3,4(H) in the frequency range 9–75 GHz fo
rational directions have the form

f i~Hk!5
mB

2p\
gikHk1dik . ~2!

The indexk denotes one of the directions of the ma
netic field along thea, b, or c axis. The valuesgik of the g
factor and the constantsdik are given in Table I. Nonzero

FIG. 2. Magnetic resonance lines of CuGeO3 with H i c. The lines were
recorded at frequencies 37.0, 18.0, and 9.1 GHz at temperature 1.2 K
derivative of the absorption line is shown for the frequency 9.1 GHz.
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FIG. 3. ESR spectrum withH i c, T51.3 K. The deviations of the
resonance frequency fromf 52.88H, corresponding to the reso
nance frequency of line 2, are shown.
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values ofd1k andd3k correspond to zero-field splitting of th
magnetic energy levels. The zero-field splitting is largest
H i b and vanishes forH i a.

Representing the spectrum in the region of the m
lines 1, 2, 3, and 4 as a superposition of four Lorentzian li
makes it necessary to introduce another, fifth, line withg
factor of approximately 2.0 and linewidth greater than 6
Oe. We shall designate this line by the number 0. The n
to introduce such a line can be understood, for exam
from Fig. 2, where one can see on the trace of the deriva
of the absorption that the points of this curve that corresp
to the resonance fields of the spectral components 1, 2, a
do not lie on the horizontal axis but rather are shifted u
wards or downwards relative to it. This shift corresponds
the presence of another wider line. The intensity of line 0
temperature 1.3 K is 0.07 times the total intensity of the lin
1, 2, 3, and 4 for the sample withQ520. For samples with
Q56 line 0 becomes dominant.

Curves of the values of the resonance field versus
orientation are shown in Fig. 4. The lines 1 and 3 chan
r
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places as the field rotates from thec to theb axis, so that the
frequency differencesf 1,32 f 2 change sign. As the field ro
tates from thec to thea axis, the lines 1, 2, and 3 merge int
a single line. Line 4 corresponds to a strongly anisotropig
factor, varying from 1.43 to 1.86 depending on the an
between the magnetic field and the crystal axes.

It was found that the linea can be recorded only at th
frequencies 9.1 and 9.4 GHz. The difference of the resona
fields for these frequencies shows that this line posse
zero frequency in zero field and corresponds to ag factor of
5.4 with the field oriented along thec axis. The lineb dem-
onstrates a direction-independent resonance value of the
with g factor 4.21, which is typical of the Fe1 ion.14

Figure 5 shows the temperature dependence of the
intensity of the ESR spectrum and the lines 3 and 4 at
GHz. The temperature dependence of the linewidths
shown in Fig. 6. A peak having the width of all the lines
observed at temperature near 5 K, where the general
splits into four individual lines.

For comparison, the properties of magnetic resonanc
ld
FIG. 4. Angular dependence of the ESR magnetic fie
at 9.4 GHz andT51.5 K for the field rotating in theac
andbc planes.



in-
3,
e
ig.

1023JETP 87 (5), November 1998 Smirnov et al.
FIG. 5. Temperature dependence of the total
tensity of ESR and the intensity of the lines 2,
4 for frequency 9.4 GHz. The numbering of th
resonance lines follows the designations in F
2; the total intensity is denoted by the letterS.
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samples of different quality are shown in Figs. 7 and 8 and
Table II. The intense line 0 is typical of samples with a lo
quality factorQ. In Table II this is illustrated by the value
of the ratioS124 /I 0 of the total intensity of the lines 1, 2, 3
and 4 to the intensity of line 0 atT51.3 K. Besides the data
obtained in the present investigation, Table II also gives
values ofQ and S124 /I 0 obtained from the Ref. 11. Fo
samples with smallQ the intensity of line 0 increases and th
lines 1, 2, and 3 broaden and become indistinguishable
crystal grown with a high cooling rate. Line 4 in sampl
with defects broadens and becomes more intense. Moreo
comparing the samples of the main series with sample N
from Ref. 12 shows that line 2 is more intense in the lowQ
sample. The lines 1 and 3 have the same intensity and
width as the pure sample. The intensity of the linea is close
to that in purest sample, while the intensity of the lineb is
higher, in accordance with the iron concentration data.
one can see from Fig. 8, for samples grown from identi
n

e

a

er,
2

e-
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initial materials the lower the crystallization velocity, th
lower the intensity of line 4 is. This attests to the fact th
line 4 is due to structural defects in the magnetic subsys
of the copper ions and not to the impurity ions of oth
metals.

4. NONLINEAR MAGNETIC RESONANCE IN CUGEO 3

The high-frequency resonance susceptibility is pow
dependent for line 4. Figure 9 shows that the magnetic re
nance absorption lines at 20.2 GHz for different values of
microwave power. When the power increases above a ce
threshold level, the additional high-frequency susceptibi
increases. The intensity of line 4 becomes much greater
the total intensity of lines 1, 2, and 3. Line 4 becom
strongly asymmetric and the increase in the additional s
ceptibility on the low-field wing of the line stretches ou
more.
m-
he
FIG. 6. Width of the magnetic-resonance line versus te
perature at 9.4 GHz. The numbering of the lines follows t
designations of the lines in Fig. 2.
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Figure 10 shows the power-dependence of the imagin
part of the susceptibility for a resonance magnetic field
line 4 and on the wing of this line. This dependence dem
strates the threshold character of the additional susceptib
The threshold power levels marked in the figure by arro
correspond to microwave power of the order of 1 mW flo
ing into the resonator and to less than 10mW absorption in
the sample. The intensity of the microwave magnetic field
the sample is approximately 0.1 Oe.

The nonlinear increase in the imaginary part of the hig
frequency susceptibility is greatest at a frequency of abou
GHz. This effect is observed at 18 GHz and 23 GHz but
nonlinear growth of the susceptibility at comparable pow
is approximately three times smaller. At all other frequenc
which we employed~the closest is 26 GHz! the nonlinear
increase of the susceptibility did not exceed the noise le

5. DISCUSSION

5.1. Temperature evolution of the line shape

The temperature evolution of a magnetic resonance
as temperature decreases, i.e., the transformation of the
from a single narrow line first into a single wide line an
then into four individual lines, distinct from one wide line
can be explained by taking account of the exchange inte
tion of paramagnetic centers, which are defects in the sp
Peierls phase, and thermally-activated triplet excitation11

The characteristic exchange-interaction frequency is foun
the product of the corresponding exchange integral,
pressed in frequency units, and the relative concentratio

TABLE I.

i gia gib gic dia , GHz dib , GHz di , GHz

1 2.17 2.26 2.10 0.0 21.7 1.15
2 2.17 2.26 2.10 0.0 0.0 0.0
3 2.17 2.26 2.10 0.0 2.05 20.95
4 1.82 1.86 1.43 0.0 0.0 0.0
ry
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thermally-activated excitations.15 When the characteristic
exchange-interaction frequency is higher than the differe
of the transition frequencies corresponding to different sp
tral lines, one resonance line is observed~exchange narrow-
ing effect!. As temperature decreases the concentration
thermally-activated triplets decreases and the exchange
rowing effect disappears, and as the exchange-interac
frequency passes through a value of the order of the dif
ence of the transition frequencies individual lines app
which become narrower with further freezing o
excitations.16

This scenario of the evolution of the line shape has b
observed in TCNQ organic crystals,16 which have a nonmag
netic ground state and triplet excited states. Broadening
the line and its splitting into two lines corresponding to tri
let excitations with effective spinS51 in a crystal field have
been observed in pure crystals of these substances with
creasing temperature. A line corresponding to residual
fects with effective spinS51/2 has also been seen in expe
ments with irradiated TCNQ crystals.17 The excitated
doublet withS51 decreases in intensity as the temperat
decreases. In crystals with defects the lines correspondin
S51/2 andS51 do not disappear as temperature decrea
demonstrating the temperature dependence of the inten
that is typical of paramagnetic impurities.

As shown in Ref. 11, the width of the ESR line in C
GeO3 in regions of both ‘‘fast’’ ~above 5 K! and ‘‘slow’’
~below 5 K! exchange follows the theoretical formulas co

TABLE II.

No. vcr , cm/h CNi,Co,Mn CFe Q S124 /I 0 TSP Reference

1 1023 ,1024 ,1024 20 15 14.5
2 1 ,1024 ,1024 6 0.1 14.0
3 6 ,1024 ,1024 3 0.01 13.0
4 0.1 ,1024 531024 7 1 14.5 12
5 unknown unknown unknown 100 20 14.5 11
6 1 531023 ~Ni! ,1024 2 12.5
nd

od.
sity
FIG. 7. Plots of the derivatives of the absorption at 9.1 GHz a
T51.5 K for two CuGeO3 samples withQ520 andQ56. The
samples differ by the Fe impurity content and the growth meth
The amplitudes of the signals are normalized to the same inten
at T515 K.
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FIG. 8. ESR lines of samples prepared from the same batch w
different crystallization velocities. The lines were recorded
T51.8 K. The amplitudes of the signals are normalized to t
same intensity atT515 K.
lin

ho
ite
p
S
ow
gn
E
s
tif

C
co

It

es.
he
r-
half
etic

-
m-
nce
ing

e
n

i-
ned
are

d

responding to the above mechanism for the change in
shape with temperature.

5.2. Effective spin and origin of defects

At temperatures below 4 K the magnetic susceptibility is
suppressed by a transition into the spin–Peierls phase, w
ground state is a singlet and nonmagnetic, while the exc
states are separated from the ground state by a gap. In a
defect-free crystal the magnetic susceptibility and the E
signal intensity should approach zero exponentially at l
temperatures. The nonzero susceptibility and the ESR si
are due to magnetic defects of the spin–Peierls phase.
dently, the observed ESR signals belong to different type
such defects. In what follows we shall endeavor to iden
them.

The g factors of the lines 1, 2, and 3 are close to theg
factor of divalent copper in the paramagnetic phase of
GeO3. This suggests that these lines are associated with
per ions. Theg factor for line 4 differs strongly from the
values typical of Cu21 ions, equal to approximately 2.2.
e
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can be inferred that this line is associated with impuriti
However, analysis of the atomic composition gives for t
concentration of magnetic impurities limiting values that co
respond to a magnetic resonance line intensity less than
of that observed in our experiment. We studied the magn
resonance spectrum in a Cu0.995Ni0.005GeO3 single crystal. In
this crystal the impurity ESR line corresponds toga51.92,
gb52.00, andgc51.70, i.e., its ESR frequency differs sub
stantially from that of line 4. Therefore the presence of i
purity nickel in the sample could not explain the appeara
of this signal. Magnetic resonance in the presence of dop
with nonmagnetic impurities reveals no change in theg fac-
tor of more than 3%.18 Moreover, as indicated above, th
difference in the intensity of line 4 for the samples grow
with different crystallization velocities indicates that it orig
nates from the copper ions. Therefore the results obtai
indicate that the magnetic resonance lines 1, 2, 3, and 4
associated with copper ions.

The relative intensities of line 2 in relation to lines 1 an
3 in samples of different quality differ~Fig. 7!, while the
ve
els

di-
FIG. 9. Magnetic field dependence of the power of the microwa
signal transmitted through the resonator for different power lev
at temperature 1.2 K–1.6 K,H i c, f 520.2 GHz. The power levels
are in arbitrary units. The temperature variation within the in
cated limits is due to the microwave heating of the resonator.
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FIG. 10. Imaginary part of the susceptibility versus the m
crowave pump power for line 4 with a resonant field~tri-
angles! and on the left wing of the line~squares!; Pcr andPcw

are threshold powers at resonance and on the line wing,
spectively;T51.5 K, H i c, and f 520.2 GHz.
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.5 K.
ratios of the intensities of the lines 1 and 3 are the sa
Hence it can be concluded that the lines 1 and 3 are ass
ated with defects of one type while line 2 is associated w
a defect of a different type. The absence of crystal-field sp
ting for line 2 attests to an effective spinS51/2 for defects
of this type~Ref. 19, Chap. I, § 5!.

The zero-field splitting and the characteristic angular
pendences of the lines 1 and 3 together with a change in
relative position with respect to line 2 imply that these lin
are associated with defects with effective spinS51. For
S51 the magnetic resonance typically splits in a crystal fi
into two lines with angular dependence similar to that wh
we observed~Fig. 5! and with a line spacing that i
frequency-independent in the limitgmBH@D, whereD is
the single-ion anisotropy constant of the spin Hamilton
~Ref. 19, Chap. I, § 5!. It is natural to infer that the lines 1
and 3 which we observed could be associated with excha
pairs of copper ions with effective spinS51. The ESR line
of these pairs can be split by a dipole–dipole interaction
anisotropic exchange~Ref. 19, Chap. 9, § 5!. For example,
such splitting has been observed in the ESR spectrum
copper acetate monohydrate~Ref. 19, Chap. 9, § 5!. Here
there is no need to introduce the dipole–dipole interaction
anisotropic exchange, since for Cu21 ions with S51/2 the
splitting of the spectrum of an exchange pair by single-
anisotropy is absent.

5.3. Intrinsic defects of the spin–Peierls phase

In our experiments the line 2 of spin-1/2 defects and
lines 1 and 3 of exchange-coupled defects have compar
intensities. For a random distribution of a small number
defects the resonance line of the exchange-coupled p
should be much weaker than the line due to single defe
To resolve this discrepancy it is necessary to examine
structure of the magnetic defects in a spin–Peierls cry
which arise at a transition into the spin–Peierls phase.

As described in the Introduction, the low-temperatu
phase is characterized by one of two values of the dimer
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tion phase. During a transition it is possible for crystallit
~domains! with different values of this parameter to form s
that on the domain wall, wherec50 switches toc5p, at
least one atomic layer is nondimerized. Crystallite boun
aries are usually pinned on defects which are present ab
the lattice rearrangement temperature, and therefore a s
point defect of the crystal can give rise to an entire plane
magnetic defects. The boundaries of antiferromagnetic
mains can serve as an example of the formation of s
planar defects.20 Figure 11 shows schematically the arrang
ment of copper ions in a sample containing two domai
The orientation of the planar sections of the wall between
domains is chosen to be close to three rational directions
type-I boundary, lying in the planeac, contains nondimer-
ized chains which run along thec axis and are coupled by
weak ferromagnetic exchangeJa in thea direction. Crossing
this boundary destroys the order of the oxygen atom d
placements. In the similar type-II boundaries~not shown in
the figure! lying in thebc plane, the nondimerized chains o
spins are coupled by a weak antiferromagnetic exchangeJb .
In both cases there is a strong exchange interaction, cha
terized by the exchange integralJc , within the chains lo-
cated inside a domain wall. In type–III domain walls, lyin
in ab planes or in the$101% family of planes, the order of the
dimerization of the copper ions breaks down. Walls of th
type contain nondimerized spins from different chains. We
exchange interactionsJa andJb exist in the plane of such a
wall.

A type-I wall contains disordered chains with strong i
chain antiferromagnetic exchangeJc . Weak ferromagnetic
exchange acts in a direction perpendicular to the chains.
magnetic susceptibility of these chains is suppressed
strong exchangeJc and equals 1/200 of the susceptibility o
the same number of paramagnetic spins at temperature 1
Structural defects in this wall~vacancies, dangling chain
ends, or steps! should with probability of order 1 give rise to
exchange pairs of copper ions with effective spinS51 on
account of the ferromagnetic exchangeJa with the spins in
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FIG. 11. Schematic diagram of dimerization domains and typ
and -III domain walls. The filled circles represent nondimeriz
copper ions.
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neighboring chains. Breaks in chains in type-I walls are
parently the sources of the exchange-coupled pairs giving
resonance lines 1 and 3.

The angular and frequency dependences of
magnetic-resonance fields corresponding to lines 1 and 3
be described by means of a spin Hamiltonian withS51
~Ref. 20, Chap. I, § 5!:

H5gcmBHc1gbmBHb1gamBHa1DcŜc
21DbŜb

2

1Dcb~ŜcŜb1ŜbŜc! ~3!

with gc52.10, gb52.26, ga52.17, Dc50.04 K, Db5
20.05 K, andDcb520.03 K.

With overwhelming probability such defects in the ma
spin–Peierls matrix and type-II and -III walls either rema
unpaired or form pairs with spinS50 because of the stron
ger antiferromagnetic exchanges along thec andb axes.

It is natural to attribute the signal responsible for line
to isolated breaks in chains far from domain walls or
type-II walls. Free spinsS51/2 result from these breaks.

Splitting of the initial ESR line into three components
temperature decreases has also been observed in or
spin–Peierls crystals.21 In this case an analysis of the angul
and frequency dependence that would permit triplet and d
blet states to be distinguished was not performed for
components of the signal. The authors interpreted the
served components as signals corresponding to diffe
types of magnetic ions with different values of theg factor.

The typical behavior of the ESR line in a spin–Peie
magnet with one line splitting into several lines, including
triplet, is confirmed by the observation of this scenario of
evolution of the shape of the 36 GHz line in a second,
cently discovered, inorganic spin–Peierls crystal, NaV2O5.22

5.4. Magnetic clusters in a spin–Peierls matrix

We shall now consider type–III domain walls, whe
nondimerized spins from different chains lie in the plane
the wall. According to the ideas developed in Refs. 7 and
each such spin is a center of a region, several lattice per
-
he
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ds

in size, with antiferromagnetically correlated spins in th
chain fragment. Such a region~soliton! can be estimated on
the basis of a theoretical calculation to contain appro
mately seven magnetic ions along thec axis. The total spin
of the soliton is 1/2, while away from the nondimerized sp
the average spin at a site decreases because of dimeriz
~Fig. 12!.

These objects are unique magnetic clusters in a nonm
netic spin–Peierls matrix. Magnetic resonance of these
jects, which possess internal magnetic structure and co
sponding internal degrees of freedom, is an urgent probl
Among the known related magnetic-resonance problems
single out the problem of a three-spin cluster of identi
magnetic ions with spin 1/2.24 For a cluster in the form of an
isosceles triangle, differing very little from an equilateral t
angle, it has been shown that the energy levels have the f

E1,2,3,456
1

2
AG21d21g2mB

2H262gmBHAd21G2 cos2 u.

~4!

Here u is the angle between the symmetry axisz of the
crystal and the magnetic field,J0,1 are the exchange integrals
d5uJ12J0u, andG is the Dzyaloshinski�–Moriya antisym-
metric exchange constant. The constantG is zero if a center
of symmetry exists between the magnetic ions in a pair. T
transition energies between the levels~2!, which are small
compared withd andG, satisfy

\v5
g

A11G2cos2u/d2
mBH. ~5!

Thus, the magnetic-resonance spectrum of a triang
cluster at low frequencies looks like a paramagnetic re
nance spectrum with a strongly anisotropic effectiveg factor
andgz,2. Experiments with crystals of organic complex
containing triads of copper ions show that the observed m
netic resonances24 and the static25 properties correspond to
this scenario with nonzeroG.
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FIG. 12. Inferred distribution of the average values of t
spin projection near a dimerization defect~a! and the result
of a calculation of the average values of the projecti
for a five-spin cluster with symmetric and antisymmetr
exchange~b!.
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For solitons localized on a domain wall there is no cen
of symmetry between the central and neighboring sp
since the environment around the central ion is closer to
existing in the nondimerized phase, while the environm
around the neighboring ions is closer to that of ions in
dimerized phase. Therefore the symmetry admits a non
value ofG.

To describe a linear magnetic cluster in a spin–Pei
nonmagnetic matrix near a nondimerized spin, we shall
amine the three- and five-spin approximations. For the th
spin linear cluster we write the Hamiltonian in the form

H5J12Ŝ1•Ŝ21J23Ŝ2•Ŝ31J13Ŝ1•Ŝ31G12Ŝ13Ŝ2

1G23•Ŝ23Ŝ3 , ~6!

where G12 and G23 are vector parameters of th
Dzyaloshinski�–Moriya interaction. The energies of the tw
lowest states of the cluster for an arbitrary orientation of
external magnetic field are given by

E1,25
«11«2

2

2
1

2
A~«12«2!21G21h262A~«12«2!2h21~hG!2.

~7!

Here«1 and«2 are the energies of two possible states o
cluster with total spinS51/2 in the absence of an antisym
metric exchange interaction and a magnetic field

«1,252
1

4
~J121J131J23!

6
1

2
AFJ232

1

2
~J121J13!G2

1
3

4
~J122J13!

2, ~8!
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whereG and h denote the vectorsG5„G121G23)/A3 and
h5gmBH, whereg are the corresponding components of t
g tensor of a single copper ion.

For h'G the effectiveg factor is given by

geff'gF12
Gx

21Gy
2

2~«22«1!2G . ~9!

Setting J235J12510 meV ~Ref. 3! and J1353.6 meV
~Ref. 27, we find that to explain the observed val
g51.43 it must be assumed that there exists a vectoG
perpendicular to the plane of the fragment CuO2– CuO2– Cu
with uG121G23u'8 meV. We note thatG50 in a cluster
which is symmetric with respect to the central spin. Ho
ever, as one can see from Fig. 11, because of the distort
of dimerization on neighboring pairs of copper ions there
no center of symmetry on nondimerized spins of a dom
wall lying in the $101% planes.

This estimate gives a value for the antisymmetric e
change constant on the order of the exchange interac
Switching to a model with five spins~Cu5–Cu4–Cu1–Cu2–
Cu3! it is easy to see that the number of excited states o
cluster with total spinS51/2, which are admixed to the mai
doublet by antisymmetric exchange, increases. In this c
nection expression~9! becomes

geff5gF12
~G121G231G411G54!

2

3E31
2

2
~G121G232G412G54!

2

12E21
2 G , ~10!

whereE31
2 andE21

2 are given by the expressions

E21
2 5FJ232

1

2
~J121J13!1

1

4
J24G2

1
3

2
~J122J13!

2, ~11!
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E31
2 5H J232

1

2
~J121J13!2

3

4
J24

1F S J232
1

2
~J121J13!1

1

4
J24D 2

1
3

2
~J122J13!

2G1/2J 2

1
3

2
~J122J13!

2. ~12!

We note that only the antisymmetric combinationG12

1G23 of the parameters enters in Eq.~9!, while in Eq.~10! a
contribution from the symmetric combinationG121G23

2G412G54 also appeared. This fundamental differen
arises because for a three-spin cluster the excited state
total spin S51/2 is unique and antisymmetric. Among th
excited states of a five-spin cluster with total spinS51/2
there are both antisymmetric and symmetric~relative to the
center of the cluster! states. Consequently, both combin
tions contribute to the change in theg factor: antisymmetric
G121G231G411G54 and symmetric G121G232G41

2G54. For a five-spin cluster there are only four excit
states withS51/2. Only the two lowest of these states a
taken into account in Eq.~10!, since otherwise the formula
becomes very complicated. A calculation assumingG12

5G235G545G41 gave G1252.9 meV, for whichgc51.5.
The following numerical values were used here:J125J14

510 meV, J235J45510.4 meV~dimerized pairs of spins!,
andJ135J1553.6 meV.

Numerical calculations performed by exact diagonali
tion of the energy matrices in a magnetic field, taking a
count of all excited states in a cluster of five spins, g
G1253.0 meV. The average values of the projection of
spins of a cluster in a particular direction, obtained by me
of the present calculation using the numerical values in
cated above, are shown in Fig. 12. The assumption that
tisymmetric exchange is present in CuGeO3 with the Dzy-
aloshinski� vector perpendicular to thec axis, was first
advanced in Ref. 27 on the basis of an analysis of the rea
for the broadening of the ESR lines. As stressed in Ref.
this assumption contradicts the data of Ref. 2 on the cry
structure of CuO2 chains. In this connection, it should b
stated that the symmetry is destroyed near nondimer
spins in a type–III domain wall and the existence of a no
zero Dzyaloshinski�–Moriya interaction constant become
allowed, in any case below the temperatureTSP.

Evidently, the line 4 must be attributed to defects of t
latter type if we stay within the magnetic subsystem form
by the copper ions. These considerations make it possib
explain the marked departure of theg factor from the value
2.0 and the large anisotropy of theg factor for the line 4 by
analyzing a cluster of five spins, taking account of the a
symmetric exchange interaction in which the parameter is
order 30% of the exchange integral.

Of course, these considerations concerning the magn
resonance of a cluster whose internal structure is determ
by the Dzyaloshinski�–Moriya interaction give only a quali
tative explanation of the pronounced departure of theg factor
from its typical value exhibited by copper ions. The follow
ing discrepancies exist between this model and the exp
ith

-
-

e
s
i-
n-

ns
7,
al

d
-

d
to

i-
f

tic
ed

ri-

mental results. In the first place, the value of theg factor in
other orientations does not approach 2.0, as follows from
proposed model. In the second place, a strong decrease o
g factor should be observed for all directions of the fie
which lie in a plane perpendicular toG and not only in the
directionc. These discrepancies could be due to the prese
of antisymmetric exchange for the interaction of the next-
nearest neighbors and misalignment of the Dzyaloshin�
vectors of different pairs of ions.

The ESR at 9.31 GHz in a CuGeO3 crystal of even
higher quality was studied in Ref. 11. From the data p
sented by the authors,Q is estimated to approach 100. Th
lines a, 1, 2, 3, and 4 were also observed, and the value
their resonance field agree well with the data obtained in
present work~Fig. 2!. This confirms that the observed spe
trum, consisting of a triplet line and a line due to clusters
typical of pure spin–Peierls crystals.

5.5. Two-dimensional magnet on domain walls
of a spin–Peierls phase

A frozen soliton can be viewed as a magnetic quasiato
since its structure with antiferromagnetic correlation
neighboring spins is fixed by the strong exchangeJc . Then a
wall of the latter type is a two-dimensional magnet cons
ing of the described quasiatoms, coupled by ferromagn
exchangeNJa in the directiona and antiferromagnetic ex
changeNJb along theb axis. HereN is the effective number
of spins in the quasiatom. Using the estimateN'5, we ob-
tain 50 K and25 K for the values of the exchange of qu
siatoms along theb axis anda axis, respectively. Because o
the presence of anisotropy with characteristic ene
Ea50.5 K per quasiatom, it can be expected that suc
two-dimensional magnet becomes ordered at a tempera
Tc'NAJbJa/ ln(NJb /Ea)'3 K.

Thus, at the temperature of our experiment, wh
T!NJb holds, this flat object can be a disordered b
strongly correlated magnet. Its excitation spectrum in
long-wavelength region is similar to that of an antiferroma
net without anisotropy.28 One branch of this spectrum,v1k ,
has no gap in a magnetic field. The second branch has a
v205gamBHa . In this case, excitation of a uniform mode o
oscillations with frequencyv20 is possible in a homogeneou
high-frequency magnetic field. Since the precession of
magnetic moment is elliptical because of the anisotro
parametric excitation of pairs of waves of the gapless mo
which satisfy the condition of paramagnetic resonance

vmw5v1,k1v1,2k , ~13!

becomes possible. Herevmw is the frequency of the high
frequency pump field. The absorption of energy in the p
cess of parametric excitation has a threshold with respec
the pump power and the energy flowing from the pump
the wave modes is resonant with respect to the pump
quency ~see, for example, Refs. 29 and 30!. The resonant
character is due to energy transfer via oscillations of
magnetization of one of the magnetic-resonance modes.

Parametric excitation of spin waves belonging to t
branch that possesses a gap in the presence of a mag
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field, according to the parametric resonance conditi
should give rise to the absorption of energy of the hig
frequency pump in fields below the magnetic resonance fi
at half the frequency. Absorption bands such as, for exam
in Figs. 2 and 3~line n), were observed in our experiment

The observed nonlinear threshold increase in the sus
tibility for line 4 allows one to conclude that two
dimensional flat magnetic defects are present in a sp
Peierls matrix. Point defects could not produce a nonlin
effect with a threshold switching-on of the susceptibility.
is well-known that magnetic resonance saturates for th
the imaginary part of the susceptibility decreasing as
power increases. The existence of three-dimensionally co
lated regions is unlikely, since in this case the ordering te
perature should be higher, of orderAJc Jb>10 K, which will
give rise to appreciable gaps for both branches of the s
trum. This is incompatible with the linear and gapless dep
dencef 4(H).

6. CONCLUSIONS

Spin-1/2 and -1 defects of a spin–Peierls phase, wh
are formed by breaks in chains of copper ions in dom
walls of the spin–Peierls phase and by exchange-cou
pairs of these defects, were identified by analyzing the m
netic resonance spectra of pure crystal of a spin–Pe
magnet at temperatures substantially below the transi
temperature.

An additional magnetic-resonance signal confirming
presence of two-dimensional magnetic domains with lo
range correlation of the spins was observed. Such region
a spin–Peierls phase are presumed to be the walls of
mains with a different value of the dimerization phase.
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Soliton models based on the inverse scattering prob
presently comprise one of the most important classes
models of nonlinear wave processes. However, despite
broad applicability of this method in applied problems, the
are some areas of physics where the nature of the solu
obtained with its aid~solitons, kinks, breathers, etc.! cannot
be considered consistent with the nature of the proce
studied. This applies, for example, to nonlinear diffusi
processes, which have recently attracted special attentio
connection with the development of such areas of physic
the theory of self-organizing systems, the theory of wa
processes in active media, etc.1–5 New approaches to con
structing basic models having fairly rich classes of exact
lutions are needed to describe these processes.

As a rule, autowave models are investigated by appro
mate analytical methods4–7 or numerical simulation.5 How-
ever, the significance of the conclusions which can be dra
using these methods depends largely on the possibility
testing the reliability of the calculated results against the
act solutions of the equations. Just such a test rev
whether the simplifications and approximations made rem
within the original model. Therefore, the lack of well deve
oped methods for constructing exact solutions for mod
with diffusion should be regarded as an obstacle to a th
ough understanding of the nonlinear wave processes w
take place in such systems and are associated with the
pearance of regular or coherent structures in them.

An entire class of models of nonlinear wave processe
active media with diffusion that can be solved exactly w
proposed in Ref. 8. Such models represent a generaliza
of two-dimensionalized Toda chains9–11 to the case of two-
dimensional diffusion processes. The class of exact solut
obtained in Ref. 8 is a new useful formulation of the so
tions of two-dimensionalized Toda chains, which were fi
considered in Ref. 11 and 12, and the Liouville equation13 in
a Hermitian form of order 2. We also note that new in
grable Toda chains belonging to a class of diffusion eq
tions in one-dimensional space were found in Ref. 14 vi
symmetry approach.

The method proposed in Ref. 8 for constructing and a
lyzing models which can be termed diffusive Toda chains
developed in this paper. The properties of these mod
which lead to the appearance of regular structures in di
1031063-7761/98/87(11)/9/$15.00
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sion systems, and the principles which can be used to ob
diffusive Toda chain models from known basic models a
also considered. As in Ref. 8, the method for construct
solutions is based on a novel reformulation of the method
constructing exact solutions of two-dimensionalized To
chains using quadratic forms.8,11,12 Exact solutions of some
basic reaction–diffusion models are constructed on the b
of this approach.

1. GENERAL CONSTRUCTION OF SOLUTIONS OF TWO-
DIMENSIONALIZED TODA CHAINS IN A CLASS OF
QUADRATIC FORMS

Two-dimensionalized Toda chains comprise a physi
system, whose dynamics are described by a set of differe
equations in partial derivatives of the following form:

DFn5exp$Fn2122Fn1Fn11%, n51, . . . ,N21,
~1!

whereD5]2/]z] z̄ is the Laplacian operator in the case
the complex coordinatesz5x1 iy and z̄5x2 iy @or the
D’Alembertian operator in the case of the real coordina
z5x1y and z̄5x2y ~conical coordinates!#. The system for
the variablesGn5Fn2Fn21 has a more familiar form:

DGn5exp$Gn112Gn%2exp$Gn2Gn21%,

n51, . . . ,N21. ~2!

There is a definition for generalized diffusive Toda cha
~see, for example, Refs. 10 and 15!, but they will not be
considered in this paper.

Let us briefly describe the basic principles for constru
ing the exact solutions of two-dimensionalized Toda cha
using quadratic forms. Let us consider a functionH(z,z̄) of
the following form

H1~z,z̄!5 (
a,b51

N

habca~z!cb* ~ z̄!,

where hab is an N3N Hermitian matrix. The function
H1(z,z̄) is an Hermitian form of orderN, which is defined in
the complex spaceFN. The set of the functionsca(z), which
depend onz, can be represented in the form of the vec
C5$c1 ,c2 , . . . ,cN% in the spaceFN, in which the length
1 © 1998 American Institute of Physics
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of the vector is assigned byH1(z,z̄). For the sake of brevity
it is useful to replace the complex-conjugate functionscb* ( z̄)
by functions with superscripts according to the rule

ca~ z̄!5 (
b51

N

habcb* ~ z̄!.

Then for any nondegenerate formhab the functionH1(z,z̄)
can be represented as

H1~z,z̄!5 (
a51

N

ca~z!ca~ z̄!5CC̄,

whereC̄5$c1,c2, . . . ,cN%.
For convenience, we introduce the notation

@ f ~z!,g~z!#[ f ~z!
dg~z!

dz
2g~z!

d f~z!

dz
5 f g82g f8,

f 85
d f~z!

dz
, g85

dg~z!

dz
~3!

for the two arbitrary functionsf (z) andg(z). Then, it can be
shown by direct calculations that for any fixedN.1

H1
2~z,z̄!D ln H1~z,z̄!5H2~z,z̄!, ~4!

where

H2~z,z̄!5 (
a,b51

N

wab~z!wab~ z̄!,

wab5@ca~z!,cb~z!#, a5” b.

In fact,

H1
2~z,z̄!D lnH1~z,z̄!5H1~z,z̄!DH1~z,z̄!

2H1,z~z,z̄!H1,z̄~z,z̄!

5~CC̄!D~CC̄!2~CC̄!z~CC̄! z̄

5 (
a,b51

N

@ca~z!ca~ z̄!cb8 ~z!c8b~ z̄!

2ca8 ~z!ca~ z̄!cb~z!c8b~ z̄!#

5 (
a,b51

N

$@ca~z!cb8 ~z!2ca8 ~z!cb~z!#

3@ca~ z̄!c8b~ z̄!2ca~ z̄!c8b~ z̄!#%

5 (
a,b51

N

wab~z!wab~ z̄!, ~5!

which was to be proved. The functionH2(z,z̄) is also an
Hermitian form, but of dimensionN(N21)/2. Thus, the
same transformation~4! can be applied to it. As a result o
the successive application of this transformation to the
quence of Hermitian forms appearing in each step, we ob
the chain of functionsHn(z,z̄) (n51,2, . . . ,N) which is cut
off in the Nth step. These functions satisfy Eqs.~1!. No
constraints, apart from sufficient smoothness and differen
e-
in

a-

bility, are imposed on the functionsc i(z). This result was
formulated and proved in a somewhat different form in Re
11 and 12. The lack of constraints on the functionsc i(z)
allows us to consider various reductions and to impose a
tional conditions on them in order to satisfy more gene
equations. For example, such equations can be the equa
of reaction–diffusion models with nonlinear sources.

2. CLASSIFICATION OF DIFFUSIVE TODA CHAIN MODELS

The general form of the models investigated in t
present work is

dU

dt
5F~U!1DDU, ~6!

whereU5$u1 ,u2 , . . . ,uM% is the state vector of an elemen
in the medium, for example, the concentrations of the che
cal substances participating in a reaction,F(U) is a certain
nonlinear vector function, andD is the matrix of diffusion
coefficients of the components of the medium. These eq
tions are usually called reaction–diffusion equations. Th
models are usually classified on the basis of the form of
nonlinear source on the right-hand side, the so-called
isocline.3,5 The form of the null isocline and the classificatio
corresponding to it reflect the character of the equilibriu
state in the medium and the ways to achieve it for an
signed form of the nonlinear source. However, such a c
sification, which is useful from the standpoint of distinguis
ing models with respect to some general features
characterize the physical processes as a whole, is relati
insensitive to the form of the permissible structures in su
models and their dynamics, which are determined by m
refined characteristics of the models.

The theory of two-dimensionalized Toda chains brie
described in the preceding sections permits the general
scription of several different classes of diffusive Toda ch
models. The models will obviously differ with respect to th
order N of the quadratic forms and the number of comp
nentsM in the unknown functionsHi describing physical
components of the model. For two-dimensionalized To
chains these numbers are rigidly related if no additional c
straints are imposed on the functionsc i(z). In this case we
haveN5M . In the reduction of two-dimensionalized Tod
chains, the number of independent components can decr
The relevant reducing conditions, which are important
the discussion below, include, for example, the periodic
conditions of two-dimensionalized Toda chains. Thus, in
general case we haveM<N.

The order of the quadratic forms, which is equal to t
number of the linearly independent functionsc i(z) from
which they are constructed, determines~somewhat condi-
tionally! the number of independent spatial structur
~modes! evolving simultaneously in the system. Therefo
this order is logically called the number of spatial modes
simply the number of modes in the system. The numbe
independent quadratic forms determines the number of
ferent physical components evolving simultaneously in
system. In the case of the interpretation of such models fr
the standpoint of reaction–diffusion models, the numberM is
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essentially equal to the number of different components p
ticipating in chemical reactions. This number will hencefo
be called simply the number of components in the syste

In this paper we shall consider only systems of diffus
Toda chains with two and three modes. This is because
structure of the nonlinear sources in diffusive Toda cha
depends significantly on the number of modes. Theref
the closure conditions for the systems of equations for di
sive Toda chains with different numbers of modes are diff
ent, and a transition from quadratic forms of one order
another requires separate analyses of the corresponding
tems of equations. It is natural to begin these analyses f
quadratic forms of low orders, i.e., numbers of modes in
system.

3. MULTICOMPONENT TWO-MODE MODELS

Two-component two-mode models were previously co
sidered in Ref. 8. These models do not have nonsing
periodic solutions in the form of two-component quadra
forms.8 However, nonsingular periodic solutions exist f
multicomponent two-mode systems. Such systems are
scribed by equations of the form8

]ui

]t
2DiDui5e22uiS l i1eui (

k51

n

mikeukD , ~7!

where ui5 lnCi(z,z̄,t), and the solutions for the function
C i(z,z̄,t) are represented by quadratic forms inc1 andc2:

C i~z,z̄,t !5ug~z!u2$ai~ t !uc1u21bi~ t !uc2u21ci~ t !c1c2*

1ci* ~ t !c2c1* %, i 51, . . . ,n, ~8!

whose coefficients satisfy the equations

ȧi5(
j 51

n

mi j aj , ḃi5(
j 51

n

mi j bj , ċi5(
j 51

n

mi j cj ,

i 51, . . . ,n, ~9!

~aibi2uci u2! f i
2Di5 l i5const, uW12u2ugu451. ~10!

Here W12(z)5@c1(z),c2(z)#. The requirement that the
C i(z,z̄,t) be real implies thatai(t) and bi(t) must be real,
but ci(t) can be complex.

We describe the general construction of these soluti
first in the general case. Letn(a), wherea51, . . . ,n, be the
set of eigenvectors of the real matrixM5(mi j ) that corre-
spond to the eigenvaluesla :

mi j 5 (
a51

n

lan̄j
~a!ni

~a! . ~11!

Here then̄i
(a) are the components of the conjugate eigenv

tors. The eigenvectors and their conjugates satisfy the
lowing relations:

(
i 51

n

n̄i
~a!ni

~b!5dab.

BecauseM is real, each of its complex eigenvaluesla has a
corresponding complex conjugatelb5la* . The correspond-
r-

.

he
s
e,
-

r-
o
ys-
m
e

-
ar

e-

s

-
l-

ing eigenvectors are also complex-conjugate. Then the s
tions for the coefficients can be represented in the form

ai~ t !5 (
a51

n

Aani
~a!exp~lat !, bi~ t !5 (

a51

n

Bani
~a!exp~lat !,

~12!

ci~ t !5 (
a51

n

Cani
~a!exp~lat !.

The constantsAa ,Ba , andCa must be chosen such thatai(t)
and bi(t) would be real andn relations of the form~10!
would hold. Generally speaking, the substitution of these
lations into~12! leads to a set ofn2 algebraic equations fo
Aa ,Ba , andCa . In the relations

(
a,b51

n

Dini
~a!ni

~b!exp@~la1lb!t#~AaBb2CaCb* 2Ca* Cb!5 l i

5const, i 51, . . . ,n,

the coefficients accompanying exponential functions
which the exponentsla1lb are nonzero should vanish
However, in some cases the number of equations is less
n2, and then there are solutions with constant values for
model parametersl i .

Let us consider the case ofn53 as an example. We
require that the eigenvalues ofM have the values (0,2 iV,
1 iV). Let n(1),n(2),n(3)5n(2)* be the eigenvectors corre
sponding to them. The vectorn(1) has real components. Th
vectorsn̄(2,3), which are conjugate to eigenvectors ofM , are
simply equal to the complex-conjugate vectors:n̄(2,3)

5n2,3* . In this case

(
i 51

3

ni
a* ni

a50, a52,3.

Therefore,

mi j 5 iV~nj
~2!* ni

~2!2ni
~2!* nj

~2!!, i , j 51,2,3,

and the functionsai(t), bi(t), andci(t) can be represented i
the form

ai~ t !5a0ni
~1!1Ani

~2!eiVt1A* ~ni
~2!!* e2 iVt,

bi~ t !5b0ni
~1!1Bni

~2!eiVt1B* ~ni
~2!!* e2 iVt,

ci~ t !5c0ni
~1!1C1ni

~2!eiVt1C2~ni
~2!!* e2 iVt,

ci* ~ t !5c0* ni
~1!1C2* ni

~2!eiVt1C1* ~ni
~2!!* e2 iVt.

The numbersa0 andb0 are real, andA, B, c0, C1, andC2

are complex. Substituting these solutions into the relati
~10!, we obtain the following system of algebraic equatio

a0B1b0A5c0C2* 1c0* C1 , AB5C1C2* ,

Di@~a0b02uc0u* !~ni
~1!!21~A* B1AB* 2uC1u2

2uC2u2!ni
~2!~ni

~2!!* #5 l i , i 51,2,3.

The complex constantsA andB, for example, can be found
from the first two equations of this system:
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B5
1

2a0
~c0C2* 1c0* C1!

6A 1

4a0
2 ~c0C2* 1c0* C1!22C1C2*

b0

a0
,

A5
C1C2*

B
. ~13!

After this there are still eight real constants, three of wh
can be found for assigned values ofDi and l i from the last
three real algebraic conditions. In order for the correspo
ing solutions of the system~7! not to be singular~a necessary
condition!, the functionsai ,bi , and ci must not vanish si-
multaneously. The requirements

ua0u.uAu, ub0u.uBu, uc0u2.
1

2
~ uC1u21uC2u2!

and the requirements placed onc1c2 that a! these functions
not have poles and b! they not vanish simultaneously ar
sufficient conditions.

Thus, it has been shown that three-component diffus
Toda chain models with two-mode excitation have exact
riodic nonsingular solutions.

4. THREE-MODE MODELS: GENERAL STATEMENT OF THE
PROBLEM

Let us consider models described by equations of
types as examples of multicomponent models with thr
mode excitation. The equations of one type have the for

]

]t
C j

212D jD ln C j5F j~C1 ,C2 , . . . !, ~14!

and the equations of the other type have the more fam
form

]

]t
ln C j2D jD ln C j5Gj~C1 ,C2 , . . . !. ~15!

For convenience, we shall call models of the form~14! mod-
els with nonlinear diffusion, and we shall call models of t
second form models with linear diffusion. After a replac
ment of variables according to the formulasuj5 lnCj , these
equations acquire the form of the respective diffusive To
chains:

]

]t
uj1D je

ujDuj5eujF j~eu1,eu2, . . . !,

]

]t
uj2D jDuj5Gj~eu1,eu2, . . . !.

We note that equations of the form~14! can be written in a
somewhat different form using the replacementC j→1/C j :

]

]t
C j1D jD ln C j5F j S 1

C1
,

1

C2
, . . . D . ~16!

The goal of this section is to calculate of the type of nonl
earity and to construct classes of exact solutions for sev
models.
h

-

e
-

o
-

r

-

a

-
al

According to the general classification proposed in S
2, the solutions for three-mode models have a representa
in the form of third-order quadratic forms,

C j~z,z̄,t !5uw~z!u2@aj~ t !uc1u21bj~ t !uc2u2

1cj~ t !uc3u2#, ~17!

in the linearly independent differentiable functionsc1(z),
c2(z), and c3(z) with the multiplier uw(z)u2, which was
introduced so that the solutions would be general. Accord
to the general relations considered in Sec. 1, these funct
obey the following identities:

D ln C j5
ajbj uW12u21bjcj uW23u21ajcj uW13u2

C j
2

, ~18!

where

Wab~z!5@ca ,cb#, a5” b, a,b51,2,3.

We additionally introduce functions of the form

F j~z,z̄,t !5ajbj uW12u21bjcj uW23u21ajcj uW13u2

5Aj uW23u21Bj uW31u21Cj uW12u2, ~19!

where

Aj~ t !5cjbj5
Qj

aj
, Bj~ t !5ajcj5

Qj

bj
, Cj~ t !5ajbj5

Qj

cj
,

~20!
Qj~ t !5aj~ t !bj~ t !cj~ t !.

According to~5!, for arbitraryc1(z), c2(z), andc3(z) the
functionsF j satisfy the identity

D ln F j5ajbjcj uW123u2
aj uc1u21bj uc2u21cj uc3u2

F2
,

~21!

where

W123~z!5detS c1 c18 c19

c2 c28 c29

c3 c38 c39
D

is the Wronskian of the functionsc i . General relations for
the functionsaj (t), bj (t), andcj (t), under which the func-
tions C j andF j satisfy equations of the form~14! or ~15!,
can be obtained on the basis of these identities.

If no constraints are imposed on the form ofc i(z), it is
difficult to find conditions under which there will not be an
functions which depend explicitly on time on the right-ha
side of Eq. ~14! or ~15!. In fact, in the general case th
functions uc i u2 and uWi j u2 are linearly independent. There
fore, the derivatives of the functionsC j with respect to time
can depend only onC j , and the derivatives of the function
F j can depend only onF j . This situation and the condition
of constancy of the coefficients in the original equations le
to the equations

ȧ j5 (
k51

L

mjkak , ḃ j5 (
k51

mjkbk ċj5 (
k51

L

mjkck ,

~22!
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wheremik5const andL is the number of components in th
original system. Now, the relations forAj ,Bj , andCj follow
automatically from~22!. The form~linearity! and dimension
of the systems of equations forAj ,Bj , andCj should be the
same as for~22!. Therefore, the number of different eige
values of the system of characteristic equations forAj ,Bj ,
and Cj should not exceedL. SinceAj ,Bj , and Cj are ex-
pressed in terms of pairwise products ofaj ,bj ,andcj , the
number of different eigenvalues for them doubles in the g
eral case. This imposes significant constraints on the ma
of the coefficients (mik) in ~22!, which are difficult to satisfy.

Another way to construct a solvable system of equati
of mode dynamics is to adopt some constraints on the f
of the functionsc i(z), which have the property of the per
odicity conditions for two-dimensionalized Toda chains.

We require fulfillment of the relations

W125k3g~z!c3 , W235k1g~z!c1 , W315k2g~z!c2 ,
~23!

wherek1, k2, andk3 are complex constants, andg(z) is an
arbitrary function. As a result,F will have the same form
~17! asC.

The system of ordinary differential equations~23! in c1,
c2, andc3 has a general solution of the form

c1~z!5q1f ~z!cosj~z!, c2~z!5q2f ~z!sinj~z!,

c3~z!5 f ~z!,
d

dz
j~z!5

q3

g~z! f ~z!
,

where

q15 iAk3

k1
, q25 iAk3

k2
, q35Ak1k2,

and f (z) is an arbitrary function.

5. THREE-MODE MODELS WITH NONLINEAR DIFFUSION

We first consider a very simple one-component mode
the form~14!. The substitution of~23! into ~21! leads to the
following identity:

D ln C5uw~z!u4ug~z!u2

3
abuk3u2uc3u21bcuk1u2uc1u21acuk2u2uc2u2

C2
.

~24!

In a one-component model the requirement that the non
earity have the form of a function which depends only on
unknown function leads to the requirementg(z)51/w(z)
and the following equations fora(t), b(t), andc(t):

ȧ2D1bcuk1u25la, ḃ2D1acuk2u25lb,

ċ2D1abuk3u25lc. ~25!

This system is similar to the equations encountered in th
wave interaction problems and can be integrated in qua
tures. Its general solution is constructed from the followi
relations, which are obtained directly from~25!:
-
ix

s
m

f

-
e

e-
a-

a25S a012D1uk1u2E exp~22lt8!Q dt8 Dexp~2lt !,

b25S b012D1uk2u2E exp~22lt8!Q dt8 Dexp~2lt !,

c25S g012D1uk3u2E exp~22lt8!Q dt8 Dexp~2lt !,

where Q(t)5a(t)b(t)c(t), and a0, b0, and g0 are con-
stants. Multiplying through these equations, we find th
Q(t) satisfies the equation

Q25S a012D1uk1u2E exp~22lt8!Q dt8 D
3S b012D1uk2u2E exp~22lt8!Q dt8 D
3S g012D1uk3u2E exp~22lt8!Q dt8 Dexp~6lt !.

If we introduce the functionP5*exp(22lt8)Q dt8, we ob-
tain the following equation for it:

S dP

dt D
2

5~a012D1uk1u2P!~b012D1uk2u2P!

3~g012D1uk3u2P!e2lt,

which reduces to the elliptic integral

E dP

A~a012D1uk1u2P!~b012D1uk2u2P!~g012D1uk3u2P!

5
1

l
elt1C0 .

HereC0 is an integration constant.
Two particular solutions of these equations can be w

ten in elementary functions. One can be written in trigon
metric functions:

a~ t !5
a0elt

cosu
, b~ t !5

b0elt

cosu
, c~ t !5c0elt tanu, ~26!

where

u~ t !5u06D1c0uk1uuk2u
elt

l
, a056c0

uk1u
uk3u

,

b056c0

uk2u
uk3u

, ~27!

andc0 is an arbitrary real constant. The other can be writ
in hyperbolic functions:

a~ t !5
a0elt

sinhu
, b~ t !5

b0elt

sinhu
, c~ t !5c0eltcothu,

~28!

where all the constants and the functionu(t) satisfy the same
relations~27!. We note that both solutions can be render
nonsingular in any time intervalt.t0 by adjusting the con-
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stants, sinceu(t), which plays the role of the phase of th
oscillations in the medium, can be made bounded functio
that time interval by adjusting the constants.

Thus, exact solutions of a one-component diffusi
model of the form

2
]

]t
C5C2D1D ln C1lC, ~29!

or, in the form of diffusive Toda chains, of the form

2
]

]t
u5D1euDu1l, ~30!

whereu5 ln C, have been constructed. The same model
be represented in the following form:

]

]t
v52D1¹S 1

v
¹v D1lv, ~31!

wherev51/C. The form of these equations accounts for t
name of the corresponding models, viz., models with non
ear diffusion.

For a two-component model of the form~14! with the
components

C~z,z̄,t !5uw~z!u2~a~ t !uc1u21b~ t !uc2u21c~ t !uc3u2!,

F~z,z̄,t !5uw~z!u2~A~ t !uc1u21B~ t !uc2u21C~ t !uc3u2!

the closure conditions for the model reduce to the condit
g(z)51/w(z) and to a system of ordinary differential equ
tions for the coefficients of the quadratic forms of the fo
lowing form:

ȧ1D1bcuk1u25m1A1l1a,

ḃ1D1acuk2u25m1B1l1b, ~32!

ċ1D1abuk3u25m1C1l1c,

Ȧ1D2BCuk1u25m2A1l2a,

Ḃ1D2ACuk2u25m2B1l2b, ~33!

Ċ1D2ABuk3u25m2C1l2c.

This system is apparently not completely integrable and
lows complicated behavior for the solutions. The equatio
of this model then have the following form:

]

]t
C1

212D1D ln C15
m1C21l1C1

C1
2

, ~34!

]

]t
C2

212D2D ln C25
m2C21l2C1

C2
2

, ~35!

or

]

]t
u1D1¹S 1

u
¹uD5

u

v
~m1u1l1v !, ~36!

]

]t
v1D2¹S 1

v
¹v D5

v
u

~m2u1l2v !, ~37!

whereu5C1
21 andv5C2

21.
in

n

-

n

l-
s

In the case of the conditions~23! multicomponent sys-
tems of the form~14! have closure equations which reduce
a set of equations of a form similar to~32!:

ȧ j1D jbjcj uk1u25 (
k51

L

m jkak ,

ḃ j1D jajcj uk2u25 (
k51

L

m jkbk ,

ċ j1D jajbj uk3u25 (
k51

L

m jkck ,

for j 51,2, . . . ,L, whereL is the number of components i
the system. The corresponding equations of the model h
the following form:

]

]t
C j

212D jD ln C j5

(
k51

L

m jkCk

C j
2

, j 51,2, . . . ,L.

6. THREE-MODE MODELS WITH LINEAR DIFFUSION

Let us now consider models of the form~15!. A one-
component model of this form has trivial temporal dynami
Let C have the form~17!. Then the closure conditions fo
the model reduce to the equations

a~ t !5a0elt, b~ t !5b0elt, c~ t !5c0elt,

where a0, b0, and c0 are constants, and the model is d
scribed by the equation

]

]t
ln C2D1D ln C5l1D1q0

elt

C

with several additional conditions on the constantsk1, k2, k3,
andq0.

Two-component models have more complicated dyna
ics, which are similar to the dynamics of models of the fo
~14! considered above. Let one component correspond to
quadratic form~17!, and let the other to~19!. Then the clo-
sure conditions for the system of equations of this mo
with allowance for~24! and ~23! reduce to the redefined
system of ordinary differential equations

ȧ5la1mA~ t !, D1bcuk1u25na1kA~ t !,

ḃ5lb1mB~ t !, D1acuk2u25nb1kB~ t !, ~38!

ċ5lc1mC~ t !, D1abuk3u25nc1kC~ t !.

This system should be supplemented by equations for
coefficientsA, B, andC, which follow from the closure con-
ditions for the model and should have the following form

Ȧ5l1a1m1A, D2BCuk1u25l2a1m2A,

Ḃ5l1b1m1B, D2ACuk2u25l2b1m2B, ~39!

Ċ5l1c1m1C, D2ABuk3u25l2c1m2C.

However, the set of equations~38! already completely speci
fies the form of the functionsa, b, andc and the form of the
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functionsA, B, andC. Therefore, the explicit forms of the
coefficientsl1,2 andm1,2, which are now already function
of time, can also be calculated from this system. In fact
follows from ~38! thata, b, andc satisfy the same system o
equations~25!:

ȧ5La1R1bcuk1u2, ḃ5Lb1R1acuk2u2,

ċ5Lc1R1abuk3u2, ~40!

where L5l2nm/k and R15mD1 /k. This system yields
the relations

d

dt
~bc!52Lbc1R1a~ uk2u2c21uk3u2b2!,

d

dt
~ac!52Lac1R1b~ uk3u2a21uk1u2c2!,

d

dt
~ab!52Lab1R1c~ uk2u2a21uk1u2b2!.

From the same equations we obtain

d

dt
~ uk2u2c21uk3u2b2!22L~ uk2u2c21uk3u2b2!

52R1uk2k3u2Q,

d

dt
~ uk3u2a21uk1u2c2!22L~ uk3u2a21uk1u2c2!

52R1uk1k3u2Q,

d

dt
~ uk2u2a21uk1u2b2!22L~ uk2u2a21uk1u2b2!

52R1uk1k2u2Q,

whereQ(t)5a(t)b(t)c(t). The solutions of these equation
can be written

uk2u2c21uk3u2b25@a012R1uk2k3u2P~ t !#e2Lt,

uk3u2a21uk1u2c25@b012R1uk1k3u2P~ t !#e2Lt,

uk2u2a21uk1u2b25@g012R1uk2k1u2P~ t !#e2Lt.

HereP(t)5*e22LtQ(t) dt. To close the system, the integr
tion constantsa0, b0, andg0 should be set equal to

a05
s0

uk1u2
, b05

s0

uk2u2
, g05

s0

uk3u2
.

Combining the relations obtained, we ultimately find

l1~ t !5S l22
mn

k D n

k
1

D1
2m

k2

3@s012R1uk1k2k3u2P~ t !#e2Lt,

m1~ t !52l23
mn

k
5const,
it
l2~ t !5

n3D2

k2D1

2
D1D2n

k2
@s012R1uk1k2k3u2P~ t !#e2Lt

1
D1

2D2

k2
uk1k2k3u2Q~ t !,

m2~ t !5
n2D2

kD1
5const.

As a result the equations of the model take the form

]

]t
ln C2D1D ln C5

C~lC1mF!1nC1kF

C2
,

]

]t
ln F2D2D ln F5

F~l1~ t !C1m1F!1l2~ t !C1m2F

F2
,

~41!

or

]

]t
u2D1Du5e22u~le2u1meu1v1neu1kev!

]

]t
v2D2Dv5e22v

3@l1~ t !eu1v1m1~ t !e2v1l2~ t !eu1m2ev#,

~42!

whereu5 ln C andv5 ln F.
As can be seen from the examples presented, the clo

conditions for one-component and two-component model
the form~15! lead to nonlinearities, which depend explicit
on time in a special way. In all likelihood, this also applies
multicomponent models of that type. Therefore, such mod
can be less effective as basic models for wave propaga
processes in active media and the formation of regular st
tures in them than models of the form~14! or models with
two-mode excitation. However, the coefficients in Eqs.~41!
and ~42!, which are explicitly time-dependent, are of ord
D1D2 andD1

2D2. Therefore, in situations where the dime
sionless diffusion coefficients are small quantities, the ti
dependence of the coefficients can be neglected. Thus, t
models are no less effective than the models~14! in many
systems actually encountered.

7. GENERAL PRINCIPLES FOR CONSTRUCTING DIFFUSIVE
TODA CHAIN MODELS

As was demonstrated above and in Ref. 8, diffus
Toda chain models, which allow exact solutions in quadra
forms, comprise a fairly rich class of models. This class
models can be expanded by considering multicompon
systems and systems with multimode excitation using
more general theory of exact periodic two-dimensionaliz
Toda chains, which can also be formulated on the basis
quadratic forms~see Refs. 11 and 12!. The solutions allowed
by the models considered form classes of exact solutio
which depend on arbitrary functional parameters. Althou
the stability of the solutions was not analyzed in the pres
work, it can be expected that the classes of solutions c
structed are fairly stable by virtue of the arbitrary nature
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the functional parameters on which the solutions depend.
this points to the uniqueness of the models considered am
other basic models. Therefore, it would be of interest to fi
the general physical properties of diffusive Toda cha
which distinguish them from other basic models and wo
account for the existence of special conditions in them t
give rise to regular structures with simple temporal evo
tion. This raises the question of the physical principles
constructing them and employing them as basic models.

The usual means for constructing autowave models
kinetic equations or balance equations for physical par
eters of the systems supplemented by terms that are res
sible for the diffusion of individual components in these sy
tems and by nonlinear sources, which take into account
mutual influence of the individual components on one
other. The type of nonlinearity is usually dictated by som
simple physical arguments, for example, by the probabili
nature of models of the Lotka–Volterra type, or by the fo
of the law of mass action and the requirements that the n
linearity vanish at equilibrium points of the medium fo
reaction–diffusion models.

One of the characteristic features of diffusive Toda ch
models is that they have a nonlinearity of the type obser
in Toda chains, i.e., a sum of exponential functions w
exponents that are multiples of the fields in the model. T
type of nonlinearity usually does not appear explicitly in
autowave theory, since, for example, the kinetic equati
describing the variation of the concentrations of substan
contain power-law nonlinearities due to the form of the la
of mass action. If these arguments are followed in interp
ing and analyzing diffusive Toda chain models, it is natu
to try to impart to them a form in which the nonlinearity h
the form of rational functions of components of the model
is not difficult to see that the equations of diffusive To
chains written in terms of the unknown functionsC i are
similar to kinetic equations with diffusion relative to the co
centrations of substances with nonlinearities in the form
rational functions like, for example,~34! and~41!. However,
although the diffusion operator transforms into a new dif
sion operator in this formulation, additional terms appe
These terms describe physical processes which are
present in the other formulation corresponding to the gen
form of diffusive Toda chains. For example,

C iD ln C i5DC i2
~¹C i !

2

C i
.

The last term on the right-hand side of this expression can
interpreted as the transport of a component with the conc
tration C i by a flow having the velocity fieldv5¹C i /C i .
Although there is, in fact, no advection in the model, t
additional source is such that it is completely equivalent
advective transport. Thus, diffusive Toda chain models c
tain some additional physical mechanisms for the trans
of matter not included among the mechanisms usually c
sidered in basic models.3

In order to demonstrate the role of these additio
mechanisms in the dynamics of diffusive Toda chain mod
let us examine the formal method for constructing models
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this type from standard kinetic models. We can consider
Lotka–Volterra ~predator-prey! model without diffusion as
such a model. Its equations have the form

Ṅ15k1N12aN1N2 , Ṅ25bN1N22k2N2 .

Herek1, k2, a, andb are constants. Following the gener
thinking behind diffusive Toda chains, the concentrationsN1

andN2 should be replaced by the apparent entropies of e
component of the system according to the formula

S152 ln N1 , S252 ln N2 . ~43!

Then the equations of the model describe the production
entropy in each component of the system:

Ṡ152k11a exp~2S2!, Ṡ252b exp~2S1!1k2 .
~44!

The constantsk1 and k2, which describe the natural birth
rate of the prey and the natural death rate of the predat
correspond in such a formulation to the natural constant
crease in entropy in component 1~the prey! and the constan
decrease in entropy in component 2~the predators!. In this
case the entropy should be regarded as a measure o
number of available states of the system, rather than a
measure of its disorder. Under such an interpretation the
maining elements of the equations also describe the pro
tion of entropy components due to the interaction of the s
systems with one another. Thus, the system of equations~44!
already has the form corresponding to Toda chain mod
and has the meaning of equations of entropy component
duction. Obviously, in kinetic models without diffusion tha
have rational nonlinearities replacements of the form~43!
will always lead to Toda chain equations.

Let us now consider the transition from kinetic mode
without diffusion to models with diffusion. Under such
transition Eqs.~43! are supplemented by a diffusion flux o
‘‘matter.’’ As a result, we obtain equations of the followin
form:

Ṅ12D1DN15k1N12aN1N2 ,

Ṅ22D2DN25bN1N22k2N2 . ~45!

HereD1 andD2 are the diffusion coefficients of each of th
components in the system. The model does not contain
other mechanisms for the transport of ‘‘matter.’’

If we now utilize the replacement~43!, the equations for
the apparent entropies of the components of the system
contain terms, which, according to their form, can be int
preted as the advective transport of matter with the veloci
of the mediumv152D1¹S1 for component 1 andv25
2D2¹S2 for component 2:

Ṡ12D1DS12D1~¹S1!252k11a exp~2S2!,
~46!

Ṡ22D2DS22D2~¹S2!252b exp~2S1!1k2 .

The original model does not contain these terms; theref
to avoid their appearance in constructing a diffusive To
chain model, Eqs.~44! should be supplemented by a diffu
sive flux specifically of entropy. Then Eqs.~44! take on the
form
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Ṡ12D1DS152k11a exp~2S2!, ~47!

Ṡ22D2DS252b exp~2S1!1k2 .

This system of equations already has the form of tw
component diffusive Toda chains and is similar to the m
els considered here and in Ref. 8.

What distinguishes Eqs.~46! from ~47! is the presence o
additional entropy sources, whose values are always pos
in all space:

J15D1~¹S1!2.0, J25D1~¹S2!2.0.

The influence of these sources can be understood on the
sis of their analogy to the advective entropy transport cau
by flow of the medium with the rates

u152D1¹S1 , u252D2¹S2 .

As can be seen, the rates of advective transport correspo
the transport of entropy in the direction opposite to its g
dient, i.e., these sources accelerate obliteration of the ent
differences. The absence of these sources in~47! means that
the both the entropy and concentration differences are o
erated more slowly in that model. This points to the reas
why regular structures appear ‘‘more easily’’ in diffusiv
Toda chain models with entropy diffusion: the specific slo
ing of the diffusive obliteration of these differences favo
the formation of regular structures.

This fact, in turn, points out a general way to constru
basic models of the diffusive Toda chain type that descr
the appearance of regular structures in active media w
diffusion. In fact, if there is a certain model of the form

]

]t
Ni2DiDNi5R~N1 , . . . ,Nn!, i 51, . . . ,n,

where R(N1 , . . . ,Nn) is a rational function of both argu
ments, then we can use the replacementNi→Si52 ln Ni to
go over from it to the diffusive Toda chain equations

]

]t
Si2DiDSi5R~exp~2S1!, . . . ,exp~2Sn!!,

i 51, . . . ,n,

in which the transition from the diffusion of concentratio
to the diffusion of entropies has also been made.

8. CONCLUSION

As has been shown above, there is a rich class of mo
that describe waves in active media with diffusion~reaction–
diffusion models! and, according to the form of their equa
tions, are diffusive Toda chain models. The main dist
guishing feature of these models is the fact that they al
fairly representative classes of exact solutions. This perm
the use of these models as basic models for investiga
diverse phenomena and types of waves in active media.
of the principal results of the present work is the furth
development of the method for constructing exact soluti
of the equations of these models, which was begun in Re
for several principal types of diffusive Toda chain mode
Another important result of the present work is an analysis
-
-

ve

ba-
ed

to
-
py

it-
n

-

t
e
th

ls

-
w
ts
g

ne
r
s
8
.
f

the principal methods for constructing diffusive Toda cha
models from standard basic models with nonlinear source
the form of unknown power-law functions~concentrations!.
As has been shown, this transition can be accomplished
mally in many cases that are of interest from the standp
of practical applications by replacing the concentrations
the equations by quantities having the meaning of entrop
of the spatial distribution of the components in the syst
and replacing the diffusive fluxes of matter by diffusiv
fluxes of entropy.

In this paper we have not presented any comparison
the models investigated with the already fairly standard c
sification based on the form of the null isoclines of nonline
sources.3,5 This was due, on the one hand, to the great vari
of types of sources in diffusive Toda chains and, on the ot
hand, to the fact that, as was shown in Ref. 8, sources w
different forms of isoclines according to the classification
Ref. 3 and formal constancy of the form of the solutions
the class of quadratic forms can be obtained by combin
the variables and equations of multicomponent systems.
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Double atomic photoeffect in the relativistic domain: angular and energy distributions
of photoelectrons
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We study the double ionization of the atomicK-shell by a single photon in the relativistic energy
domain. The differential and total cross sections of the process are calculated. It is shown
that the ratio of the cross sections of double and single ionization increases with the photon energy,
tending to the limit 0.34/Z2, whereZ is the atomic number or the nuclear charge. The
formulas are found to be valid forZ@1 andaZ!1, wherea51/137 is the fine-structure constant.
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1. INTRODUCTION

Double photoionization of atoms has been studied
more than 30 years. This reason for this extended intere
the problem is that the ejection of two electrons by a sin
photon is determined solely by the electron–electron inte
tion. In view of this, electron correlations manifest them
selves here most vividly. The main research, both theore
and experimental, has been focused on the nonrelativ
domain of photon energies,v!m (m is the electron mass1))
and on the helium atom as the simplest multielect
system.1–13

The characteristic features of the nonrelativistic dou
photoeffect are the constancy of the ratioR of the cross sec-
tions of double and single ionization in the high-frequen
region I !v!m (I is the binding energy of aK-electron!
and the very nonuniform distribution of energy among t
photoelectrons. The region of the electron energy spect
that contributes the most to the cross section is the e
region, where the energy of one electron,E1, is much higher
than I and that of the other,E2, is of orderI . However, as
shown by Amusiaet al.5 and Drukarev,13 if we allow for the
contribution of the central~middle! region of the spectrum
where the photon energy is more evenly distributed am
the two electrons (E1;E2), we can get a correctionR8 to R
that increases withv but remains a small quantity of orde
(v/m)R in the nonrelativistic domain. This suggests that
the relativistic domainv;m the central part of the electro
spectrum is as significant as the edge part.

The relativistic double photoeffect has been studied o
by Drukarev and Karpeshin,14 who derived a formula for the
differential ~in the electron energy! cross section and foun
the dependence of the ratioR on the photon energyv. We
believe, however, that their expression for the cross sec
in the central region of the spectrum contains errors. Bea
in mind the ever growing interest in the problem of doub
photoionization at higher and higher photon energies,
have rederived the formulas for the relativistic double pho
effect. In this paper we establish the energy and angular
tributions of photoelectrons and derive a formula for the ra
of the cross sections of double and single ionization of
8331063-7761/98/87(11)/9/$15.00
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K-shell of the atom. At high photon energies the formula
this ratio becomes very simple and the ratio tends to a c
stant limit 0.34/Z2. All the formulas are valid for atoms with
Z@1, since we use perturbation theory in the electro
electron interaction. At the same time, wherever it is poss
we do expansions in powers of the Coulomb parameteraZ
and j5aZE/p, whereE and p are the electron energy an
momentum, so thataZ must be much smaller than unity.

2. AMPLITUDE AND CROSS SECTION OF THE
RELATIVISTIC DOUBLE PHOTOEFFECT

We examine double photoionization at photon energ
v@h5maZ. Using the Furry representation,15 we can rep-
resent the double-photoeffect amplitude to first order in
electron–electron interaction by eight Feynman diagra
four of which are depicted in Fig. 1. The other four diagram
differ from these in the sign and interchange of the fin
statescp1

andcp2
~or the initial statesca andcb). We will

always assume thatp1.p2.
Analysis of the diagrams shows that diagrams a and8

contribute the most to the cross section in the edge regio
the electron energy spectrum (p1@p2;h, whereh is the
averageK-electron momentum!.2) Here the denominators o
the photon and electron propagators of these diagrams
small, whereas the denominator of the electron propagato
the diagrams b and b8 is not small~;v!, and neither are the
denominators of the photon and electron propagators of
diagrams c, d, c8, and d8. However, the momentum transfe
to the nucleus in the edge region is large,q5uk2p12p2u
'uk2p1u@h, just as in the single photoeffect. The electr
can transfer such momentum to the nucleus only over s
distances, which reduces the cross section substantially
the other hand, in the central part of the spectrum the ph
electron momenta may add up and balance the photon
mentum. As a result the momentum transferred to
nucleus is low (q;h) and the process takes place at gre
~atomic! distances from the nucleus, where the probability
detecting both electrons is the highest. Below we will a
show that the size of the central region (;v) is much larger
than that of the edge region (;I ). These two factors enhanc
© 1998 American Institute of Physics
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the contribution of the central region to the cross secti
making it comparable to the contribution of the edge regi
The other parts of the spectrum have essentially no effec
the total cross section and are not considered in this pap

2.1. Energy and angular distributions of electrons in the
edge region of the energy spectrum

The amplitude of the double photoeffect in the edge
gion of the electron spectrum is represented by diagram
and a8:

Medge
115Ma2Ma8 . ~1!

In the coordinate representation the amplitudeMa can be
written

Ma5E F̄p1
~r 8!gmca~r 8! dr 8

3E exp~ iRD!

4pR
c̄p2

~r !gmcb~r ! dr ; ~2!

here

F̄p1
~r 8!5E c̄p1

~r 9!ê exp~ ik–r 9!GC
E~r 9,r 8! dr 9, ~3!

R5ur2r 8u, D5E22E1s5«21I ,
~4!

E5E1s2D5m2«222I , «25E22m,

whereGC
E is the relativistic Coulomb Green’s function for a

electron with energyE, ca andcb are the wave functions o
K-electrons with different orientation of spin,3) c̄p1

and c̄p2

are the Dirac-conjugate wave functions of the electrons
longing to the continuous spectrum,E1 andp1 (E2 andp2)
are the photoelectron energy and momentum, andgm are the
Dirac matrices~summation overm is implied!. The notation
Â is used for the scalar productgA5g0A02g–A. For lin-
early polarized photons with momentumk and polarization
vectore we have

ê52g–e, e–k50. ~5!

The integrals in~2! converge atr;r 8;h21, and the integral
in ~3! converges atr 9;uk2p1u21;m21. At such distance

FIG. 1. Feynman diagrams for the double photoeffect. Solid lines de
electrons in the Coulomb of the nucleus, dashed lines denote photons
wavy lines denote the electron–electron interaction.
,
.
n

r.

-
a

e-

the field differs little from the Coulomb field. Hence the u
of Coulomb wave functions and the Coulomb Green’s fun
tion is justified.

Since in the edge region one of the photoelectrons
low energy (p2;h), the vector part of the electron current
small compared to the scalar part:

c̄p2
gcb;

p2

m
wp2

* wb , c̄p2
g0cb;wp2

* wb ~6!

(wp2
andwb are the nonrelativistic analogs of the functio

cp2
and cb), and in the sum overm in ~2! it is enough to

leave the term withm50. If we go over to the momentum
representation, we obtain

Ma5E df

~2p!3
F1~p1 ,f!D~ f!F2~p2 ,f!, ~7!

where

F1~p1 ,f!5E df8 df1

~2p!6

3^cp1
uf81k&ê^f8uGC

Euf1&g0^f11fuca&, ~8!

F2~p2 ,f!5E df2

~2p!3
^cp2

uf2&g0^f22fucb&, ~9!

D~ f!5
1

f 22D22 i0
, D5«21I . ~10!

The regionf ; f 1; f 2;h provides the main contribution to
the integrals in~7!–~9!. Since«25p2

2/2m;I;aZh, in the
lowest order inaZ we can put

D~ f!5
1

f 2
, ~11!

and use nonrelativistic Coulomb wave functions for the wa
functions of bound electrons and the low-energy photoe
tron. Then

F2~p2 ,f!5wl2

† wbN1S 2
]

]h D ^wp2
uVihuf&, ~12!

whereN15h3/p, h5maZ, andwl is the Pauli spinor with
the zth component of the spin equal tol. We denote the
possible values ofl by a andb, with

wa5S 1

0D , wb5S 0

1D , wl
†wl51. ~13!

The matrix element of the operatorVih in the momentum
representation is

^fuVihuf8&5
4p

~ f2f8!21h2
. ~14!

Calculating F1(p1 ,f) is the most difficult thing here,
sinceF1 contains the relativistic Coulomb Green’s functio
with a low energy«5E2m;I . For such a function the
Coulomb parameterj5aZE/p is order unity and we canno

te
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use it as an expansion parameter. However,~8! can be sim-
plified if we allow for the fact that the wave function of th
high-energy electron can be expanded in powers of the C
lomb parametersaZ and j15aZE1 /p1;aZ ~we assume
that aZ!1):

^cp1
u5ūp1

$^p1u2aZ^p1uV̂0GE11•••%, ~15!

whereGE1 is the relativistic propagator of the electron wi
energy E1 in the absence of an external field, andūp1

5up1

† g0, with up1
the Dirac bispinor with momentump1.

Below we will show that both terms are needed in~15! to
ensure that the expression forF1 in the lowest order inaZ is
correct.

Let us calculate the contributionF10 of the plane wave to
the integral in~8!, the first term of the expansion~15!:

F105N1ūp1
êU~ f!u0 , U~ f!52

]

]h
^kuGC

EVihu2f&,

~16!

wherek5p12k, andu0 is the bispinor of an electron at res
g0u05u0. Although the relativistic Coulomb Green’s func
tion in ~16! corresponds to an electron with nonrelativis
energy, this Green’s function cannot be replaced by the n
relativistic Green’s function, since one of the momenta
which it depends is relativistic (k;m). Hence we transform
U(f) so that the Green’s operatorGC

E is sandwiched betwee
the nonrelativistic momentaf ; f 8;h. This can be done by
using the Lippmann–Schwinger equation for the relativis
Coulomb Green’s function:16

GC
E5GE2aZGEV̂0GC

E , ~17!

where2aZV0 is the operator of the interaction of an ele
tron and the Coulomb field of the nucleus,V̂05g0V0. The
matrix element ofV0 is defined in~14! with h50, and the
matrix element ofGE has the form

^fuGEuf8&5GE~ f!~2p!3d~ f2f8!,
~18!

GE~ f!5
Eg02g–f1m

p22 f 21 i0
, p25E22m2.

Substituting~17! in ~16!, we obtain

U~ f!5GE~k!S 2
]

]h D H ^kuVihu2f&2aZ

3E df8

~2p!3
^kuV̂0uf8&^f8uGC

EVihu2f&J . ~19!

The dominant contribution to the integral in~19! is provided
by the region wheref 8;h. At such values off 8 the factor
^kuV0uf8&'4p/k2 can be taken outside the integral sign, a
the relativistic functionGC

E reduces to the nonrelativisti
function GC

nonrel ~Ref. 17!. After we have taken the partia
derivative with respect toh the second term in~19! domi-
nates, with the result that4)

U~ f!u05
4paZ

k2
GE~k!

]

]h
J~h,f!, ~20!
u-

n-
n

c

where

J~h,f!5E df8

~2p!3
^f8uGC

nonrelVihu2f&

5
2ipm

4p
I y^fuVpy1 ihu0&, ~21!

I y5E
1

`

dy S y11

y21D i j

, j5
aZm

p
, ~22!

F105ūp1
êS 11

k̃

2m
D u0N1

8ph

k4 S 2
]

]h D J~h,f!; ~23!

herek̃5a–k, anda5g0g is the Dirac matrix.
Inserting the second term on the right-hand side of E

~15! into the integral~8! yields

F115aZN1ūp1
^kuV̂0u0&GE1~k!ê

]

]h
J~h,f!u0

5ūp1
~ k̃2v!êu0N1

4paZ

k2~p1
22v2!

S 2
]

]h D J~h,f!.

~24!

Comparing~23! and ~24!, we see that both terms in the ex
pansion~15! of the wave functions yield contributions of th
same order inaZ to the amplitude of the process. The am
plitude ~8! becomes

F1~p1 ,f!5F101F115Tl1 aS 2
]

]h D J~h,f!, ~25!

Tl1 a5N1

8ph

k4
ūp1l1

3êS 11
k̃

2m
1

k̃2v

2m

k2

p1
22v2

D u0a , ~26!

whereupl is the Dirac bispinor for an electron with momen
tum p and polarizationl. HereTl1a is the amplitude of the
single photoeffect, as a result of which aK-electron with
polarizationa absorbs a photon and is ejected from the at
having polarizationl1. Inserting~11!, ~12!, and~25! into ~7!,
using ~21!, and performing certain transformations~details
can be found in Ref. 17!, we obtain

Ma52K~n!Tl1awl2

† wb , n5
«2

I
5S p2

h D 2

, ~27!

K~n!5N1Np2

m

h4
J~n!, Np2

2 5
2p/An

12exp~22p/An !
,

~28!

J~n!5
8z2

~11z!3 H I 1

n11
2

I 2

n12 J , z5 ~n12!21/2 ,

~29!

I 15expS 2
2

An
arctanAn D E

0

1 t2z~12t !

~11st!3
dt, ~30!
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I 25E
0

1 t2z~12t !3

~11st!3
F1~ t !F2~ t ! dt, s5

12z

11z
, ~31!

where

F1~ t !5expS 2
2

An
arctan

An~12t !

a1bt D ,

F2~ t !5
~3z211!~12t !216z~12t2!12~11t !2

@~2z211!~12t !214z~12t2!1~11t !2#2
,

with a5An1212, andb5An1222. The amplitude and
cross section of the double photoeffect in the edge regio
the spectrum are5)

Medge
1152K~n!@Tl1awl2

† wb2Tl1bwl2

† wa#, ~32!

dsedge
115

~4pa!3

2v
uMedge

11 u2
dp2 dp1

~2p!5
d~E11E222m2v!.

~33!

The bar over the square of the amplitude indicates sum
tion over the polarizationsl1 and l2 of the final electrons
and averaging over the photon polarizationslk :

uMedge
11 u25

1

2 (
l2l1lk

uMedge
11 u2

5K2~n!
1

2 (
l1lk

$uTl1au21uTl1bu2%

52K2~n!
1

4 (
l1l0lk

uTl1l0
u2

52K2~n!uM 1u2. ~34!

Here uM 1u2 is the square of the simple~single! photoeffect
amplitude summed over the photoelectron polarizationsl1

and averaged over the polarizations of the photon (lk) and
the bound electron (l0). The differential cross sectionds1

of the photoeffect on theK-shell ~on two electrons! can be
expressed in terms of this quantity:

ds15
4pa

v
uM 1u2

dp1

~2p!2
d~E12m2v!. ~35!

Since in the edge region we haveE22m5«2;I , Eqs.~33!
and ~35! yield

dsedge
115

2

p
a2K2~n! dp2 ds1. ~36!

We direct thez axis along the photon momentumk and
denote the solid angles into which the high- and low-ene
electrons are ejected byV1(u1 ,w1) andV2(u2 ,w2), respec-
tively. Substitutingdp25(h3/2)An dn dV2, K2(n) from Eq.
~28!, andds1 from Ref. 19 in~36!, we obtain

dsedge
11

dn dV2 dV1
5

Q~n!

4pZ2

ds1

dV1
, ~37!

where
of

a-

y

Q~n!5
8J2~n!

12exp~22p/An !
, ~38!

ds1

dV1
5r 0

2a4Z5S~u1!, r 05
a

m
, ~39!

S~u1!5S 2mp1

k2 D 3H 12
m

v
1

4m3

vk2 J sin2u1 , ~40!

with k25(p12k)2. The right-hand side of Eq.~37! is inde-
pendent of the angle of the outgoing low-energy electr
Thus, in the edge region of the spectrum the low-ene
electrons are distributed isotropically in solid angle. The a
gular distribution of the high-energy electrons is determin
by the functionS(u1), which also gives the angular distribu
tion of the electrons in the single photoeffect. Figure 2 d
picts this function for different photon energies. We see t
as the photon energy rises, the angular distributions nar
and shift toward smaller angles, but no high-energy electr
are ejected in the forward direction (u150). Formula~40!
implies that there are no high-energy electrons emitted in
backward direction (u15p) either. Nonzero fluxes of such
electrons foru150 andu15p can be obtained only if we
allow for higher-order corrections inaZ to the amplitude
and cross section.19 Integrating~37! over the ejection angles
we arrive at the following expression for the energy dist
bution of low-energy electrons («2!m):

dsedge
11

dn
5

Q~n!

Z2
s1~v!, n! ~aZ!22 , ~41!

s1~v!5s0Z5w~v!, s05pr 0
2a4, ~42!

w~v!5
4m2p1

3

v5 H 4

3
1

E122m

E11m S E1

m
2

m

p1
ln

E11p1

m D J ,

~43!

with E15v1m. If we use the definition~38! and Eqs.~29!–
~31!, we find that

Q~0!50.168, Q~n@1!'
4

p
n27/2. ~44!

FIG. 2. Angular distributions of high-energy electrons from the edge reg
S(u1)5C21ds1/dV15Z2B21C21dsedge

11 /dV1, with C5r 0
2a4Z5, and the

value of B defined in Eq.~45!. The numbers on the curves indicate th
values ofv/m, the photon energies in units of electron mass.
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FIG. 3. Energy spectrum of low-energy electron
from the edge region,Q(n)5Z2 dsedge

11 /s1 dn,
with n5«2 /I .
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The values ofQ for other values ofn can be found from the
diagram in Fig. 3. Bearing in mind thatQ rapidly decreases
with increasingn, in calculating the total contribution of th
edge region of the spectrum we can replace the upper lim
integration with respect ton by infinity:

sedge
115

B

Z2
s1~v!, B5E

0

`

Q~n! dn50.090. ~45!

A very close numerical result (B50.093) was obtained by
Amusiaet al.5 and Drukarev and Karpeshin,14 but a consis-
tent QED derivation of Eq.~41! is done only in the presen
paper. Equations~41! and ~45! are valid for both relativistic
and nonrelativistic double photoeffects only if the hig
energy electron momentump1 is much higher thanh. This
requirement is needed if we want the expansion~15! to be
meaningful.

2.2. Distribution of photoelectrons in the central region of
the spectrum

The double ionization process may place with low m
mentum transfer to the nucleus,q;h. In this case the pho
toelectron energies occupy an interval in the central par
the energy spectrum (E1;E2). The limits of this interval,
called the central region,5 are established below. In the ce
tral region we must take into account all four diagrams
Fig. 1 ~diagrams a–d!, as well as the diagrams with the initia
states interchanged~diagrams a8–d8). However, it is enough
to calculate only the diagrams a and b, since the other
grams can be obtained by interchanging the initial or fi
states or both states~e.g., diagrams c and d are obtained fro
a and b by the interchangesca↔cb andcp1

↔cp2
). Since

both final electrons are relativistic, for their wave functio
we can take plane waves. The energy of the intermed
electron is also high. For this reason, we can expand
relativistic Coulomb Green’s function in powers of the Co
lomb parametersj andaZ and keep only the first term, i.e
the free-particle relativistic Green’s function. As a result t
amplitudes for diagrams a and b are
of

-

of

f

a-
l

te
e

Ma5ūp1
êGa~k!gmE df

~2p!3

3^q2fuca&D~p22f!ūp2
gm^fucb&,

k5p12k, q5p21p12k, ~46!

Mb5ūp1
gmE df

~2p!3
Gb~q2f1k!ê^q2fuca

3D~p22f!ūp2
gm^fucb&, ~47!

where Ga and Gb are relativistic electron propagators~18!
with energiesEa5m2«2 and Eb5m1v, respectively. Al-
lowing for the fact that atq;h the leading contribution to
the integrals in~46! and~47! is provided byf ;h, we have,
to lowest order inaZ,

D~p22f!.
1

2m«2
, Gb~q2f1k!.G~k!. ~48!

To the same order inaZ, the wave function of the bound
state is the product of the spatial nonrelativistic functionu1s&
and the Dirac bispinoru0:

uc i&5u1s&u0i , u0i5S wi

0 D , i 5a,b,

^f u1s&5N1S 2
]

]h D ^f uVihu0&. ~49!

The normalization constantN1, the Pauli spinorswi , and the
matrix elementŝ fuVihu0& have been defined in~12!–~14!.

Inserting~48! and ~49! into ~46! and ~47!, we obtain

Ma5
F~q!

2m«2
ūp1

êGa~k!gmu0aūp2
gmu0b , ~50!

Mb5
F~q!

2m«2
ūp1

gmGb~k!êu0aūp2
gmu0b , ~51!
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F~q!5E df

~2p!3
^q2f u1s&^f u1s&5S 4h2

q214h2D 2

. ~52!

The amplitudes for the other diagrams can easily be der
from ~50! and~51!. The total amplitude of the process in th
central region is

M central
11 5Ma1Mb1M c1Md

2Ma82Mb82M c82Md8 . ~53!

Calculating the square of its absolute value, summing o
the polarizations of the final electrons, and averaging o
the polarizations of the initial electrons and photon, we
rive at the formula

uM central
11 u25

F2~q!W~E1!

~2m!4E1E2

, ~54!

where

W~E1!5S «12«2

«1«2
D 2H m21E1E22p1np2n1S mv

«1«2
D 2

3~2mv1m22E1E21p1np2n!J , ~55!

with «15E12m, «25E22m, p1n5p1–n, p2n5p2–n, and
n5k/uku. Equation~55! clearly shows thatW depends onE1,
E2, and the angles of the ejected electrons. However, u
the laws of energy conservation («11«25v) and momen-
tum conservation (q50), we can expressE2, p1n , andp2n

in terms ofE1:

E252m1v2E1 ,
~56!

p1n5
E1

22E2
21v2

2v
, p2n5p1n~1↔2!.

Substituting~54! for uMedge
11 u2 in Eq. ~33!, we arrive at an

expression for the differential cross section of the dou
photoeffect in the central region:

dscentral
11 5

ar 0
2

16p2
F2~q!W~E1!

dp2 dp1

m2vE2E1

d~«21«12v!.

~57!

This cross section~57! is proportional toF2(q), which is of
order unity in the central part of the spectrum and rapi
decreases outside the central part, reaching values of o
(aZ)8 at q;m. In ~57! we go from the variablep2 to the
variableq.

As in Sec. 2.1, we direct thez axis alongk and denote
the solid angles into which the electrons are ejected byV1

andV2. For q andV1 fixed, E2 depends onE1, so that the
removal of the delta function by integration with respect
E1 gives rise to the factor

E dE1 d~E11E222m2v!5U11
]E2

]E1
U21

, ~58!

where the derivative]E2 /]E1 is taken at a value ofE1 that
satisfies the equations
d

er
r
-

g

e

y
er

E21E15v12m, p21p15k1q. ~59!

In the second equation in~59! we can putq50, since the
we are dealing with small values ofq. As a result we find

E25AE1
21v222vp1t1 ,

~60!
]E2

]E1
5

E1

E2
S 12

vt1

p1
D , t15cosu1,

and the functionE1(t1), which can easily be found by th
formulas written below.

According to~58!, the phase volume in~57! can be writ-
ten

dp2 dp1 d~«11«22v!5dq dV1

p1E1

x~ t1!
, ~61!

where

x~ t1!5U11
]E2

]E1
U5 E0p12vE1t1

E2p1
, ~62!

with E052m1v. Since the dependence onq in ~57! is con-
tained only in the factorF2(q), integration overq is easy:

E F2~q! dq5p2h3. ~63!

As a result,

dscentral
11 5

A

16p

mp1

vE2

W~E1!

x~ t1!
dV1 , A5pr 0

2a4Z35s0Z3.

~64!

The formula become more compact if we putm51 and in-
troduce a new variablex in terms of which the kinetic ener
gies of the electrons can be expressed:

«15
v

2
~11x!, «25

v

2
~12x!, 0<x<1. ~65!

Then

W~E1!5
16

v
F~x!, ~66!

where

F~x!5S x

12x2D 2H 11S x

x0
D 2

1
2

v
1S 4

v D 2 12x2/x0
2

~12x2!2J ,

~67!

with x05Av/(v11) , and the angular distribution of th
high-energy electrons~when the kinetic exceedsv/2) from
the central region assumes the form

dscentral
11

dV1
5

A

pv2

p1

E2

F~x!

x~ t1!
, ~68!

where

x5x~ t1!5
2E0v~12t1

2!12t1A4v13v21v2t1
2

E0
22v2t1

2
, ~69!



ns

an

ss

gy

ton

ero

b

o

ct.
at

re-

re-

839JETP 87 (5), November 1998 A. I. Mikha lov and I. A. Mikha lov
for t1>Av/(v14) . The restriction ont1 follows from the
requirement thatx be positive. Att15Av/(v14) we have
x50. As t1 increases,x reaches its maximum valuex5x0 at
t151. Thus, the range of values ofx consistent with the
equalityq50 extends fromx50 to x5x0.

The angular distribution of the low-energy electro
~when the kinetic energy is less thanv/2) can be obtained
from ~57! if we replacedp1 with dq. Then, reasoning along
the same lines as we did in deriving~68!, we obtain

dscentral
11

dV2
5

A

pv2

p2

E1

F~x!

x~ t2!
,

~70!

x~ t2!5
E0p22vE2t2

E1p2
, t25cosu2 ,

where

x5x~ t2!5
E0v~12t2

2!22t2A4v13v21v2t2
2

E0
22v2t2

2
, ~71!

for t2<Av/(v14) .
In the central region, the angle of an ejected electron

the electron energy are linked by a rigorous relationship:

t15
E1

22E2
21v2

2vp1
5

E0x1v

2p1
. ~72!

Using the formula that follows from~72!,

dV15
pE2

p1
x~ t1! dx, ~73!

we can easily go from the angular distribution~68! to the
energy distribution:

dscentral
11

dx
5

A

v2
F~x!, 0<x<x0 . ~74!

The contribution of the central region to the total cro
section of the double photoeffect is given by the formula

scentral
11 5A f~v!, ~75!

where

v2f ~v!5E
0

x0
F~x! dx

5I 11
1

v
I 21S 4

v D 2S I 32
1

v
I 4D , ~76!

with

I 15x0~v12!2L, L5 ln
11x0

12x0
,

I 25
x0

2
~3v15!2

5

4
L,

I 35
x0

4 F ~v11!22
1

2
~v11!2

1

4x0
LG ,

I 45
x0

6 F ~v11!32
7

4
~v11!21

3

8
~v11!1

3

16x0
LG .
d
3. RESULTS AND DISCUSSION

The angular distributions of the high- and low-ener
electrons~Eqs.~68! and ~70!, respectively! belonging to the
central region are depicted in Figs. 4 and 5 for three pho
energies:v50.5, 1.0, and 2.0~in units of electron mass!. A
characteristic feature of the double photoeffect is the nonz
forward (u150) and backward (u25p) electron emission.
The differential cross section atu50 for the single photo-
effect is finite only if we allow for higher-order Coulom
corrections and is of orderr 0

2a6Z7 ~see Ref. 19!. At moder-
ate values ofZ the contribution of the double photoeffect t
the forward electron emission (;r 0

2a4Z3) may become
much larger than the contribution of the single photoeffe
To separate the contribution of the single photoeffect
small angles, the electron energy must be fixed atE5v11.

FIG. 4. Angular distributions of high-energy electrons from the central
gion. The numbers on the curves indicate the values ofv/m, and the value
of A is defined in Eq.~64!.

FIG. 5. Angular distributions of low-energy electrons from the central
gion. The notation is the same as in Fig. 4.
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The energy distribution~74! for three values ofv is
depicted in Fig. 6. The vanishing of the cross sections ax
50 means that two electrons with the same energy canno
ejected simultaneously. This is not a trivial fact, since ej
tion is not forbidden by the energy and momentum cons
vation laws~Eq. ~59!! at q50. A special study of this prob
lem done in the Appendix shows that the contributions to
amplitude of all the Feynman diagrams describing the dou
effect in the present approximation~Fig. 1 depicts only half
the number of such diagrams! cancel out atx50 andq50.
Note that in Ref. 14 the cross section of the process rea
its minimum atE15E2 but does not vanish~and in fact is
not small!, which points to an error. Drukarev an
Karpeshin14 may not have accounted for all the Feynm
diagrams describing the process in the present approx
tion, since the formula for the cross section simplifies only
all the diagrams are taken into account~in Ref. 14 the for-
mula is much more complicated!, and the amplitude of the
process vanishes when the electrons have equal energie

Figure 6 shows that in the central region, as in the e
region, the photon energy is not evenly distributed amo
the electrons: the maximum of the cross section appea
values ofx close tox0(v). All the curves end atx5x0(v).
We do not consider the behavior of the cross section fox
.x0(v), since here the cross section drops by two to th
orders of magnitude when we move away fromx0(v) only
by Dx;aZ ~see Ref. 17!. However, in the narrow edge re
gion 12x;a2Z2 studied in Sec. 2 the cross section rapid
increases withx, reaching its maximum value atx51 ~see
Eq. ~41! and Fig. 2!.

The total cross section of the relativistic double pho
effect is determined by the sum of the contributions of
edge~Eq. ~45!! and central~Eq. ~75!! regions:

s115sedge
111scentral

11 5A$Bw~v!1 f ~v!%

5
s1~v!

Z2
$B1b~v!%, ~77!

where

FIG. 6. Energy distribution of high-energy photons from the central reg
x52«1 /v21. The rest of the notation is the same as in Fig. 4.
be
-
r-

e
le

es

a-
f

.
e
g
at

e

-
e

b~v!5
f ~v!

w~v!
. ~78!

For the ratio of the cross sections of double and single i
ization we obtain a simple formula:

R5
s11

s1
5

B1b~v!

Z2
. ~79!

The functionsw(v), f (v), andb(v) are depicted in Fig. 7.
While w(v) and f (v) decrease with increasingv, their ratio
b(v) increases, with the rapid increase atv,1 changing to
the slow increase atv.1. Already atv.0.7 the ratiob(v)
exceedsB, i.e., the contribution of the central region to th
cross section becomes larger than the contribution of
edge section.

At low and high photon energies we can derive simp
formulas for the functionsw, f , andb. For instance, in the
nonrelativistic domaina2Z2!v!1 we have

w~v!5
32A2

3
v27/2, f ~v!

32

15
v25/2, b~v!5

v

5A2
,

~80!

and the ratioR ~Eq. ~79!! differs little from the constant
B/Z2. Drukarev13 used Coulomb functions for his calcula
tions and a value ofb(v) that was larger by a factor of two
than the one in~80!. The explanation lies in the fact the i
removing the delta function Drukarev13 did not account for
the factorx21 ~Eq. ~58!!, which arises when one replaces th
phase volumedp2 with dq. In the nonrelativistic domain
x2151/2, which follows from~62!.

At high photon energies (v@1) we have

w~v!5
4

v S 11
7

3v D ,

,

FIG. 7. Dependence on the photon energyv of the total contribution to the
double photoeffect of the electrons from the central regionf (v)
5scentral

11 /s0Z3, of the total cross section of the single photoeffectw(v)
5s1/s0Z5, and of their ratiob(v)5Z2scentral

11 /s1. The values ofv are in
units of m, ands05pr 0

2a4.
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f ~v!5
1

v S 11
32 ln 4v

v D , ~81!

b~v!5
1

4 S 11
2/32 ln 4v

v D .

The s11-to-s1 ratio ~79! tends to a constant limitR(`) as
v→`:6)

R~`!5
B10.25

Z2
5

0.34

Z2
. ~82!

This value7) is almost four times larger than the correspon
ing nonrelativistic limitB/Z2.
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APPENDIX

We wish to prove that in the approximation adopted
this paper~the first order inZ21 and the lowest order inaZ)
the double-photoeffect amplitude vanishes when the eje
electrons have the same energy.

As shown in Sec. 2.2~Eqs. ~50! and ~51!!, each Feyn-
man diagram in Fig. 1 in the central region of the electr
spectrum can be written

Mi5F~q!Li~q50!, i 5a,b, . . . ,d8. ~A1!

Introducing the four-vectors

e5~0,e!, k5~v,k!, p15~E1 ,p1!, p25~E2 ,p2!,

~A2!
j 1a5~ ūp1

g0u0a , ūp1
gu0a!,

j 2b5~ ūp2
g0u0b , ūp2

gu0b!,

setting E15E2 and q50 in ~59!, and performing simple
transformations, from~50!, ~51!, and~A1! we obtain

La1Lb5~mv!22 $~e j1a!~k j2b!

2~e j2b!~k j1a!2~ep1!~ j 1a j 2b!%. ~A3!

Doing the interchanges 1↔2 anda↔b, we find the contri-
bution of the diagrams c and d of Fig. 1:

Lc1Ld5~mv!22 $~e j2b!~k j1a!

2~e j1a!~k j2b!2~ep2!~ j 2b j 1a!%. ~A4!

The expressionab stands for the scalar product of two fou
vectors:ab5a0b02a–b.

Adding ~A3! to ~A4! and allowing for~5!, we arrive at

(
i 5a

d

Li5~mv!22 $2e~p11p2!~ j 1a j 2b!%

5 ~mv!22 ~e–k!~ j 1a j 2b!50, ~A5!
-

ed

n

with p11p25k at q50.
The contribution of the diagrams a8–d8 can be obtained

from ~A5! by the interchangea↔b and therefore is also
zero. Thus, the sums of the primed and unprimed diagra
in Fig. 1 are equal to zero separately. Note that atE15E2 the
sum ( iL i(q) is of order q, but allowing for such terms
would lead to a correction;a2Z2 to the total cross section
of the process.

* !E-mail: Mikhailo@thd.pnpi.spb.ru
1!In this paper we use the relativistic system of units, in which\5c51.
2!Primed letters indicate diagrams obtained from the corresponding diag

in Fig. 1 by an interchange of the initial states (a→a8, etc.!.
3!The subscripta on the wave function should not be confused with t

fine-structure constanta.
4!Integrals of type ~21! have been considered by Gorshkov an

Polikanov.16,18

5!The normalization constants 1/A2Ei from the electron wave functions ar
incorporated into the respective bispinorsupi

.
6!The same value as in Eq.~82! was obtained in Ref. 17 for the ratio of th

cross sections of double and single ionization of an atom in one-pho
annihilation of an ultrarelativistic positron andK-electron.

7!Drukarev and Karpeshin14 arrived at the following values forb andR in
the ultrarelativistic limit:b(`)50.5 andR(`)50.59/Z2. Their value of
b(`) is almost twice as large as ours, probably for reasons related to
loss of the factor 1/2 in averaging over photon polarizations. We can
indicate the reason more exactly since Ref. 14 does not contain the i
mediate calculations.
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The problem of two electrons in an external field and the method of integral equations
in optics
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This paper solves the problem of the interaction, via the field of virtual photon field with the
emission or absorption of a real photon, of two atomic electrons located at arbitrary
distances from one another. The interaction is interpreted as a third-order QED effect in the
coordinate representation. The role of intermediate states with positive and negative frequencies is
studied. A general expression is derived for the matrix elements of the operator of the
effective electron–electron interaction energy for different types of quantum transitions. The
expression makes it possible to calculate the probabilities of the corresponding transitions and to
examine various patterns of induction of polarizing fields by one atom at the point occupied
by the other atom. The exchange of virtual photons between the atoms located at arbitrary
distances from one another is shown to lead to additional terms in the operators of spin–orbit
and spin–spin coupling of the atomic electrons, over and above those in the corresponding Breit
operators. It is shown that there is an important difference between the induction of
polarizing fields and the transfer of optical photons. In particular, it is found that when polarizing
fields are induced, a situation may arise in which the disappearance~production! of a
photon takes place at the point occupied by one atom, while absorption~emission! of the same
photon occurs at the place occupied by the other atom. A block diagram of an experimental
device that could be used to study this property of polarizing fields is presented. Finally, a method
of deriving integral field equations is proposed. The method is based on allowing for
polarizing fields, and its effectiveness is demonstrated by the example of electric dipole and spin
transitions in the spectrum of interacting atomic electrons. ©1998 American Institute of
Physics.@S1063-7761~98!00211-X#
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1. INTRODUCTION

In classical electrodynamics, a system of interact
charges in motion can be examined by introducing retar
potentials. Following Darwin1 ~see also Ref. 2!, one can in-
troduce a Lagrangian function for this system to within ter
of order (v/c)2, where v is the velocity of the moving
charges, andc is the speed of light in vacuum. It is in thi
approximation that the system of charges can be exam
without allowing for a light field. The passage to a system
interacting neutral atoms followed by the passage to
Hamiltonian operator was carried out in Refs. 3 and 4. T
effect of a light field was taken into account in such a syst
phenomenologically by simply replacing the momentapi of
the atomic electrons withpi2(e/c)A i , wherei is the particle
number,e is the electron charge,A i is the vector potential of
the light field at the point occupied by thei th atom. An
interaction Hamiltonian for anN-atom system including the
light field was derived and then successfully used in expla
ing the anomalous density dependence of the intensity
light echo5 by the presence in the intensity of light echo
terms proportional toN3 and N4 ~in addition to terms pro-
portional toN2).

After Darwin, the theoretical study of the two-electro
problem was continued by Breit,6 Landau,7 and Bethe and
Fermi,8 who used the Dirac equation and the QED pertur
8421063-7761/98/87(11)/13/$15.00
g
d

s

ed
f
a
e

-
of

-

tion method. An operator describing the interaction of tw
electrons via the field of virtual photons was derived as
second-order perturbative effect. However, the use of
Breit operator is limited to moderate distances between
electrons. Hence research into the problem of two electr
belonging to two atoms located at arbitrary distances fr
one another was revived in the early 1970s in connec
with intensive studies of the behavior of multiatomic syste
in a light field. For instance, Chang and Stehle9 examined the
resonant interaction of two neutral atoms separated by
tances greater than 2pc/v0, wherev0 is the resonance fre
quency in the spectrum of the interacting atoms. This eff
was considered a second-order QED effect without emiss
or absorption of real photons in the electric dipole appro
mation. The resonant interaction of two hydrogenlike ato
located at arbitrary distances from one another was exam
in Ref. 10 as a second-order QED effect with allowance
orbital and spin degrees of freedom. There a relativistic
erator describing the interaction of two electrons to with
terms of order 1/c2 was derived, but in the passage to t
nonrelativistic limit the focus was also only on electric d
pole transitions.

Lifshitz,11 Fedyushin,12 and Akhiezer and Berestetski�

13

studied the interaction of two electrons as a third-order Q
effect with emission or absorption of a real photon under
© 1998 American Institute of Physics
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very stringent condition that the interacting particles ha
well-defined momenta before and after collision. This is
case of the interaction of two free particles. However,
situation is inappropriate for studying quantum transitio
between states of atomic electrons, where the constan
motion are the square of the total angular momentum and
projection of the total angular momentum on the quanti
tion axis. In the present paper we examine an entirely n
problem: the interaction of two atomic electrons located
arbitrary distances from one another, with emission~absorp-
tion! of a real photon in the coordinate representation a
with allowance for various quantum transitions and interm
diate states.

Drake14 examined the interaction of two atomic ele
trons in a heliumlike atom as a QED third-order effect a
allowed for intermediate states with positive and negat
energies. The role of intermediate positron states in the p
ability of quantum transitions accompanied by emission~ab-
sorption! of a real photon was estimated.

The next step in studying the problem of two electro
was taken in Refs. 5, 3, and 10 for the case of two hyd
genlike atoms located at arbitrary distances from one
other. There formulas for electron and positron polariz
fields were derived in the electric dipole approximation.
e
e
e
s
of

he
-
w
t

d
-

e
b-

s
-

n-
g

As shown in Ref. 10, an electron polarizing field, inte
preted as a third-order QED effect, is the field of the s
rounding dipoles in theN-atom system. By summing th
polarization fields in such a system we are able to derive
integral equation describing the propagation of light in a
electric medium.4 We have successfully used this equati
~as have other researchers! to solve various boundary-valu
problems of classical,15 nonlinear,4 and quantum optics.16,17

The near-field effect was studied in Ref. 16.
The present paper is a step in the theoretical studie

the problem of two electrons belonging to two hydrogenli
atoms located at arbitrary distances from one another.
derive an expression for the operator of the electron–elec
interaction via the exchange of virtual photons. The expr
sion allows for additional retardation in the spin–orbit a
spin–spin interactions of the two electrons. In our resea
into the problem we examine the various properties of po
izing fields in the two-electron system.

A detailed investigation of the two-electron problem
important if we want to derive new integral equations th
describe the propagation of photons in a medium in acc
dance with the different types of quantum transitions in
spectrum of the interacting atoms. In the present paper
use a specific example to derive integral equations for
er-
a

FIG. 1. Feynman diagrams for the electron–electron int
action of two atoms with emission or absorption of
photon.
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electric and magnetic fields in dipole and spin media.

2. THE EFFECTIVE INTERACTION ENERGY MATRIX
FOR TWO HYDROGENLIKE ATOMS LOCATED
AT ARBITRARY DISTANCES FROM ONE ANOTHER

The Feynman diagrams for the electron–electron in
action are depicted in Fig. 1. Integrating in theS-matrix with
respect to time, frequencies, and wave vectors of the vir
photons, we arrive at an expression for the matrix of
effective interaction energy of two atomic electrons~here
\5c51):

Ui→ f
~3! 5e3E S dr 8 dr 9 dr- H 2

1

ur 92r-u

3(
l 6

exp~ i uvn
~1 !2vp

~1 !uur 92r-u!

v l~12 i0!1v2v r
~1 !

C̄ r
~1 !~r 8!Â~r 8!C l

3~r 8!C̄ l~r 9!gm9 Cm
~1 !~r 9!C̄p

~1 !~r-!gm-Cn
~1 !~r-!

2
1

ur 82r-u
(
l 6

exp~ i uvn
~1 !2vp

~1 !uur 82r-u!

v l~12 i0!2v2vm
~1 !

C̄ r
~1 !

3~r 8!gm8 C l~r 8!C̄ l~r 9!Â~r 9!Cm
~1 !~r 9!C̄m

~1 !

3~r-!gm-Cn
~1 !~r-!2

1

ur 82r-u

3(
l 6

exp~ i uv r
~1 !2vm

~1 !uur 82r-u!

v l~12 i0!1v2vp
~1 !

3C̄ r
~1 !~r 8!gm8 Cm

~1 !~r 8!C̄p
~1 !

3~r 9!Â~r 9!C l~r 9!C̄ l~r-!

3gm-Cn
~1 !~r-!2

1

ur 82r 9u

3(
l 6

exp~ i uv r
~1 !2vm

~1 !uur 82r 9u!

v l~12 i0!2v2vn
~1 !

C̄ r
~1 !~r 8!gm8 Cm

~1 !

3 ~r 8!C̄p~r 9!gm9 C l~r 9!C̄ l~r-!Â~r-!Cn
~1 !~r-!

1
1

ur 92r-u
(
l 6

exp~ i uv r
~1 !2vn

~1 !uur 92r-u!

v l~11 i0!1v2vp
~1 !

C̄p
~1 !~r 8!

3Â~r 8!C l~r 8!C̄ l~r 9!gm9 Cm
~1 !~r 9!C̄ r

~1 !~r-!gm-Cn
~1 !

3~r-!1
1

ur 82r-u
(
l 6

exp~ i uvn
~1 !2v r

~1 !uur 82r-u!

v l~12 i0!2v2vm
~1 !

3C̄p
~1 !~r 8!gm8 C l~r 8!C̄ l~r 9!Â~r 9!Cm

~1 !~r 9!C̄ r
~1 !~r-!

3gm-Cn
~1 !~r-!1

1

ur 82r-u
r-

al
e

3(
l 6

exp~ i uvp
~1 !2vm

~1 !uur 82r-u!

v l~12 i0!1v2v r
~1 !

C̄p
~1 !~r 8!gm8 Cm

~1 !

3~r 8!C̄ r
~1 !~r 9!Â~r 9!C l~r 9!C̄ l~r-!gm-Cn

~1 !~r-!

1
1

ur 82r 9u
(
l 6

exp~ i uvp
~1 !2vm

~1 !uur 82r 9u!

v l~12 i0!1v2v r
~1 !

3C̄p
~1 !~r 8!gm8 Cm

~1 !~r 8!C̄ r
~1 !

3~r 9!gm9 C l~r 9!C̄ l~r-!Â~r-!Cn
~1 !~r-!J D , ~2.1!

wherevn
(1) andvm

(1) are the frequencies of the initial state
of the electrons,vp

(1) and v r
(1) are the frequencies of th

final electron states,Cm(n)
(1) are the solutions of the Dirac

equation for a positive-frequency electron,Cp(r )
(1) 5Cp(r )

(1)* g4,
Cp(r )

(1)* is the conjugate wave function,g45b, g j52 i ba j

( j 51,2,3),

a5S 0 s

s 0 D , b5S 1 0

0 1D ,

ands are the Pauli matrices. The primes on the radius v
tors r and theg matrices correspond to different wave fun
tions of the interacting particles, and theg matrices with
different numbers of primes commute. Summation in~2.1! is
over all intermediate statesl 6 with positive and negative
frequencies. Electron states with negative frequencies are
terpreted as positron states, and we do not introduce the
itron wave function, which contains the charge conjugat
transformation. The reason is that a linear combination
states with opposite signs of charge cannot be a genera
lution of the Dirac equation.13 In this paper we use the solu
tion

C5(
r

arc r
~1 !1(

r
br

†c r
~2 ! ,

C̄5(
r

ar
†c̄ r

~1 !1(
r

br c̄ r
~2 ! , ~2.1a!

wherear ,ar
† , br ,br

† are operators of second quantization
the electron–positron field. The passage fromSi→ f

(3) to the
matrix of the effective interaction energy~2.1! is done using
the relation

Si→ f
~3! 522p iU i→ f

~3! d~v r
~1 !2vm

~1 !2v1vp
~1 !2vn

~1 !!, ~2.2!

where the sign of the frequencyv of the optical photon
indicates that in the vector potential operatorÂ5(gmAm we
have specified the negative-frequency part, which is prop
tional to the annihilation operator for a photon of the giv
mode.

2.1 Exchange of virtual photons

Let us start with the first term on the right-hand side
Eq. ~2.1!, in which we identify the factor responsible for th
exchange of virtual photons between the electrons. We w
the expression for the distance between the electrons as
lows:
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ur 92r-u'aS 11
a–Dj

a2
1

M1

a D , ~2.3!

here a5ua92a-u is the distance between the atoms,Dj
5j92j-, wherej9 and j- are the displacements of ele
trons in the atoms with respect to their nuclei, andM1

5M1(a,Dj) are corrections terms incorporating high
powers of the ratioDj/a.

We introduce a system of units in whichcÞ1 and as-
sume that

1

c
uvn

~1 !2vp
~1 !u

a–Dj

a
!1. ~2.4!

Here the distance between the nuclei may vary within br
limits: uDju<a<`. We then find that

1

ur 92r-u
expS i

c
uvn

~1 !2vp
~1 !u ur 92r-u D

5
1

a
expS i

c
uvn

~1 !2vp
~1 !uaD F11

a–Dj

a2
1

M1

a G21

3H 11
i

c
uvn

~1 !2vp
~1 !uFa–Dj

a
1M1G

2
1

2c2
~vn

~1 !2vp
~1 !!2Fa–Dj

a
1

M1

a G2J . ~2.38!

We remove the frequencies from~2.38! by using the
equation

H-cn
~1 !~r-!5vn

~1 !cn
~1 !~r-!.

Then we find that the following transformation holds:

1

ur 92r-u
expS i

c
uvn

~1 !2vp
~1 !u ur 92r-u D

→
1

a
expS i

c
uvn

~1 !2vp
~1 !uaD

3H F11
a–Dj

a2
1

M1

a G21

1
i

c
@ f 1 ,H-#

1
1

2c2
@H9,@H-, f 2##

vn
~1 !2vp

~1 !

v l2vm
~1 ! J , ~2.5!

where we have introduced the notation

f 1[a2
a2

ur 92r-u
,

f 2[aur 92r-u1
a3

ur 92r-u
22a2. ~2.6!

Equation~2.38! shows that, in addition to a series expansi
in powers of 1/c, we have a series expansion in powers of
small parameterDj/a. Here in the 1/c-expansion we restric
ourselves to terms quadratic in 1/c, while in the
Dj/a-expansion there are no limits, since the functionM1
d

e

contains all higher-order corrections. This can easily be v
fied by substituting the expansion~2.3! in ~2.6! and compar-
ing ~2.5! with ~2.38!. Thus, in our study we allow for the
interaction of two atomic electrons of arbitrary multipo
order.

The Hamiltonian operators for separate atoms with fix
nuclei have the form

H95ca9–p91g49mc22
Z1e2

j9
,

H-5ca-–p-1g4-mc22
Z2e2

j-
, ~2.7!

wherep9 andp- are the electron momentum operators, a
Z1 and Z2 are the charges of the point nuclei. Obvious
other terms can be introduced into the operators~2.7!, e.g.,
terms determined by the finite size of the nuclei~or core! of
an atom and by nuclear spin. We calculate the commuta
in ~2.5! assuming that the nuclei are immobile. Then w
\Þ1 we have

@ f 1 ,H-#52 i\ca2
a9–n

ur 92r-u2
,

@H9,@H-, f 2##5ac2@a9–p9,@a-–p-,ur 92r-u##

1a3c2Fa9–p9,Fa-–p-,
1

ur 92r-u
G G .

~2.8!

Thus, the operator describing the exchange of virtual phot
in the matrix~2.1! takes the form

B1l~r 9, r-!5e2expS i

c
uvn

~1 !2vp
~1 !uaD

3H 12a9–a-

ur 92r-u
1a

a9–n

ur 92r-u2

1
1

2
R1l S a9–a-2~a9–n!~a-–n!

ur 92r-u

2a2
a9–a-23~a9–n!~a-–n!

ur 92r-u3 D J , ~2.9!

where R1l5(vn
(1)2vp

(1))/(v l2vm
(1)), and n5(r 9

2r-)/ur 92r-u. In the particular case of a resonant exchan
of photons we haveR1l51, and the operator~2.8! becomes
the respective operator of Ref. 4. In the limita→0 andR1l

51, the operator~2.9! coincides with the Breit operator.13

Let us examine the physical meaning of the expans
~2.5!. In deriving the Lagrangian function to within terms o
order (v/c)2 for a system of charges with a continuou
spectrum,2 we use a universal time scaleR/c, whereR is the
distance between the charges. This is the time the interac
takes to propagate from charge to charge, and an expan
of the retarded potentials in powers ofR/c is possible if we
assume that the distribution of the charges does not cha
appreciably during timeR/c. Obviously, this is an extremely
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stringent condition if one is examining extended systems
deriving the Breit operator13 for a system of two electron
with a discrete energy spectrum, one can usev0r /c!1 as
the expansion parameter, wherev0 is the characteristic fre
quency in the spectrum of the interacting electrons, andr is
the distance between electrons. Thus, in addition to the t
Te5r /c it takes the interaction to propagate, we have
characteristic timeTa52p/v0. Here 2pTe!Ta , i.e., the
time it takes the electron density in the system of two int
acting ~and moving! electrons to change appreciably
roughly the time it takes the interaction to propagate fr
charge to charge. Obviously, this is true only if the electro
are not too far apart, i.e., for interatomic distance in heliu
like atoms. The expansion~2.5! is valid for two atomic elec-
trons located at arbitrary distances from one another, s
we have chosen~2.4! as the expansion parameter. Here t
time it takes the interaction to propagate,Te5a/c, is much
longer than the characteristic interatomic time scaleTa . This
leads to additional retardation in the electron–electron in
action, with the retardation described by the additional ter
in the operator~2.9!.

As is known, the characteristic frequencies of atom
electrons range from several megahertz to 109 MHz, if one
allows for fine and hyperfine structure of atomic levels a
for optical transitions. This poses the problem of select
the characteristic interatomic time scaleTa . Obviously, to
fully account for the retardation effect in the electron
electron interaction we must take the highest frequencie
the spectrum of the interacting electrons, i.e., optical f
quencies, as the characteristic frequencies. Below we s
that the operator~2.9! corresponds to different types o
electron–electron interaction, and the fact that there is a
versal time scaleTa explains why, for instance, the spin
spin coupling of electrons contains additional retardat
terms~additional with respect to the terms obtained in R
13!, although the spin transitions correspond to the mic
wave range.

Let us now consider the other terms in the matrix~2.1!,
which correspond to the other Feynman diagrams in Fig
Using the same procedure of replacing frequencies with
erators, we arrive at the operatorsBsl (s52,3, . . . ,8),which
are similar to the operatorB1l . Here the operatorsBsl con-
tain various coefficients determining the difference in initi
final, and intermediate frequencies and different retarda
factors in accordance with the positions of the wave fu
tions in ~2.1!.

Third-order effects for the Feynman diagrams in Fig
take place provided that the conservation law~2.2! is obeyed.
For emission of a real photon the sign of the frequencyv in
~2.2! must be changed. Thus, for the electron–electron in
action energies we have

Er
~1 !2Em

~1 !1Ep
~1 !2En

~1 !6\v50. ~2.10!

Several patterns of quantum transitions follow from th
conservation law. To estimate them, we take two states,
p andn, in the spectrum of the interacting atoms and assu
that the initial states of these atoms,n andm, coincide.

A. The exchange of virtual photons with a frequen
v95vn

(1)2vp
(1) results in a transition of one atom~e.g., the
n

e
e

-

s
-

ce
e

r-
s

c

d
g

in
-
w

i-

n
.
-

1.
p-

,
n
-

r-

ay
e

first! to an intermediate statev l and then back to the initia
stateEm

(1) , i.e., Er
(1)5Em

(1) . The second atom changes i
quantum state,En

(1)→Ep
(1) , so that a photon is emitted o

absorbed in the two-atom system. The retardation factor
this type of interaction is exp$(i/c)uvn

(1)2vp
(1)ua%. The point

where a real photon is emitted or absorbed may not coinc
with the point occupied by the atom undergoing the quant
transitionEn

(1)→Ep
(1) . This pattern of quantum transition

corresponds to diagrams 1, 2, 7, and 8 in Fig. 1.
B. For diagrams 1–8 there can be transitions in whic

photon of double energy is emitted or absorbed. The t
atoms change their quantum states, i.e., in this case we
Er

(1)ÞEm
(1) andEp

(1)ÞEn
(1) .

C. For Er
(1)5Em

(1) , when only one atom changes i
quantum state and a real photon with the energy\v
5uEp

(1)2En
(1)u is either emitted or absorbed, interactio

with a retardation factor equal to unity is possible. Diagra
3–6 possess such properties.

The nature of the quantum transitions in patterns A,
and C is determined by the properties of the operatorsBsl

and Â and of the wave functions and energy values of
atomic electrons.

3. CONVERSION TO TWO-COMPONENT WAVE FUNCTIONS

3.1. Exchange of virtual photons

The conversion to two-component wave functionsFn
(1)

is done by the following transformations:13

Cn
~1 !5S wn

~1 !

s–p

2mc
wn

~1 !D , wn
~1 !5S 12

p2

8m2c2D Fn
~1 ! . ~3.1!

Let us use these transformations to calculate the matrix
ment

^C l* ~r 9!Cp
~1 !* ~r-!uB1l uCm

~1 !~r 9!Cn
~1 !~r-!&, ~3.2!

in the first term on the right-hand side of Eq.~2.1!.
We consider the matrix element of the operator 1/ur 9

2r-u in ~2.9!. For the intermediate states in~3.2! we select
positive-energy states. Then, applying~3.1!, we arrive at the
expression

e2expS i

c
uvn

~1 !2vp
~1 !uaD

3E H F l
~1 !* ~r 9!Fp

~1 !* ~r-!Fm
~1 !~r 9!Fn

~1 !~r-!

2
1

8m2c2
F l

~1 !* ~r 9!Fp
~1 !* ~r-!Fm

~1 !~r 9!

3@p-2Fn
~1 !~r-!#2

1

8m2c2
F l

~1 !* ~r 9!Fp
~1 !* ~r-!Fn

~1 !

3~r 9!@p92Fm
~1 !~r 9!#1

1

8m2c2
F l

~1 !* ~r 9!@p- 2Fp
~1 !
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3~r-!#* Fm
~1 !~r 9!Fn

~1 !~r-!1
1

8m2c2
@p92Fn

~1 !~r 9!#*

3Fp
~1 !~r-!Fm

~1 !~r 9!Fn
~1 !~r-!J dr 9 dr-

ur 92r-u
, ~3.3!

where we have discarded terms of orders higher than
second in 1/c. We transform~3.3! so that it takes the form

E F l
~1 !* ~r 9!Fp

~1 !* ~r-!V1
~1 !Fm

~1 !~r 9!Fn
~1 !~r-!

5~V1
~1 !! lp,mn , ~3.4!

and find the explicit form of the operatorV1
(1) . Transform-

ing ~3.3! into ~3.4! requires integrating by parts. We plac
the origin of the coordinate system at the pointa9 and as-
sume that the radius vectorsr 8 andr 9 refer to the first atom
and the radius vectorr-, to the second. We also allow for th
fact that the atomic wave functions do not overlap and v
ish at infinity. This means that, in contrast to the case d
cussed in Ref. 13, the powers of the 1/ur 92r-u do not be-
come infinite whenr 9 and r- vary within the regions
occupied by the interacting atoms. Taking all these rema
into account, we obtain the operator

V1
~1 !5e2expS i

c
uvn

~1 !2vp
~1 !uaD1

r
, r 5ur 92r-u, ~3.5!

which is analogous to the Coulomb interaction of electro
located at arbitrary distances from one another. Asa→1,
this term becomes the ordinary Coulomb interaction of el
trons.

Let us now examine the matrix element of the oth
terms in the operatorB1l by employing two-component wav
functionsFn

(1) . Substituting the wave functions~3.1! in the
matrix ~2.1! and multiplying the matrices in the integran
we find that it is enough to replacew with F in all the terms,
since they already contain the factor 1/c2. We perform trans-
formations similar to those that were used in deriving
operator~3.5!. Here we can separate operators contain
different powers of 1/r .

The operator proportional to 1/r 3 has the form

V2l
~1 !5expS i

c
uvn

~1 !2vp
~1 !uaD e2\2

4m2c2

3H 1

r 3
@s–s-23~s9–n!~s-–n!#

1R1l

a2

r 5
@15~s9–n!~s-–n!29s9–s-#J . ~3.6!

As a→0, ~3.6! becomes the operator of the spin–orbit co
pling of two electrons.13 According to ~2.4!, for electrons
located at arbitrary distances from one another there is a
tion retardation, determined by the retardation fac
exp$(i/c)uvn

(1)2vp
(1)ua% and the additional terms in~3.6!. In

the particular case of resonant electron–electron interac
without photon emission or absorption we haveR1l51.
e

-
-

s

s

-

r

e
g

-

i-
r

n

After the necessary transformations have been done
operator proportional to 1/r becomes

V3l
~1 !5e2expS i

c
uvn

~1 !2vp
~1 !uaD 1

m2c2

3H S R1l

2
21D1

r
p9–p- 2

R1l

2

1

r
n–~n–p9!p-

2
R1l

2

a2

r 3
@p9–p-23n–~n–p9!p-#J

1e2expS i

c
uvn

~1 !2vp
~1 !uaD a

mc

n–p9

r 2
. ~3.7!

In the limit a→0 and R1l51, this operator becomes th
retarded interaction operator for the two electrons in a h
umlike atom.13 Hence we call~3.7! the operator of the re-
tarded interaction of two electrons located at arbitrary d
tances from one another. AtR1l51 ~resonant electron–
electron interaction!, the operator~3.7! can be derived from
the classical Hamiltonian function for a system of atoms
replacing the electron momenta with the corresponding m
mentum operators.4 The terms proportional to 1/r 2 in the
matrix elements ofB1l are

V4l
~1 !5expS i

c
uvn

~1 !2vp
~1 !uaD e2\

4m2c2

3H S R1l

2
21D 1

r 2
@2s9–~n3p-!22s-–~n3p9!#

1
R1l

2

1

r 2
@2s9–~n3p9!12s-–~n3p-!

22s-–~n3p9!22s-–~n3p-!#

13R1l

a2

r 4
s9–~n3p9!J . ~3.8!

In the limit a→0 andR1l 51, this operator becomes the co
responding operator of spin–orbit coupling of two electro
in the Breit operator.13 Hence we call~3.8! the operator of
spin–orbit retardation of two atomic electrons located at
bitrary distances from one another.

3.2. Electric dipole–dipole interaction of atoms located
at arbitrary distances from one another

We turn to the electron–electron interaction via the fie
of virtual photons and allow only for the orbital degrees
freedom. The corresponding operator isV1l

(1)1V3l
(1) . As

noted earlier, in deriving the operator of the interaction
two atoms we allow for transitions of arbitrary multipo
order in the atomic spectrum. Taking into account only t
terms in the expansions of 1/r and 1/r 2 that are linear in the
displacementsj9 andj-, we arrive at the operator
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V1l
~1 !1V3l

~1 !5expS i

c
uvn

~1 !2vp
~1 !uaD

3H d9–d-23~n–d9!~n–d-!

a3

1
e

mc

d-–p923~n–d-!~n–p9!

a2
1

e2

m2c2

3F S R1l

2
21D p9–p-

a
2

R1l

2

~n–p9!~n–p-!

a

2
R1l

2

p9–p-23~n–p9!~n–p-!

a G J , ~3.9!

wheren5a/a, andd95ej9 and d-5ej- are the operators
of the electric dipole moments of individual atoms. He
~3.9! is the operator of the electric dipole–dipole interacti
of two neutral atoms located at arbitrary distances from
another in the transition of one of the atoms to an interm
diate state, where the interaction~3.9! is the integral part of
the process of emission or absorption of a real photon. In
particular case of the interaction of two atoms without em
sion or absorption of a real photon, the~3.9! corresponds to
a second-order QED effect, for which the following energ
conservation law holds:

Er
~1 !2Em

~1 !1Ep
~1 !2En

~1 !50.

In this case we must setR1l to unity in ~3.9!, with the result
that ~3.9! becomes the corresponding operator of Ref. 13

4. THE ROLE OF AN EXTERNAL FIELD IN THE
INTERACTION OF TWO ATOMIC ELECTRONS

We use the transformation~3.1! for the passage from th
wave functionsC to the two-component wave functionsF
in the matrix elements of type

^C̄ r
~1 !~r 8!ueÂ8~r 8!uC l~r 8!&, ~4.1!

which enter into the matrix~2.1!. The matrix elements~4.1!
of the operator of the vector potential of an external fie
determine the interaction of two atomic electrons with t
field of real photons. We start with the matrix elements~4.1!
for the transitions of the atomic electrons through interme
ate positive-energy states. After the necessary transfor
tions have been carried out, we identify the following tra
sition operator in the matrix element~4.1! for the transition
of the atom from stateF l

(1)(r 8) to stateF r
(1)(r 8):

R1
15eA48~r 8!. ~4.2!

The terms proportional to 1/c are

R2
152

ie

2mc
~p8–A8!2

ie

2mc
~A8–p8!2

i\e

2mc
~s8–H8!,

~4.3!

whereA8(r 8) is the operator of the vector potential of th
external field at the point occupied by an electron and sp
fied by the radius vectorr 8, andH8(r 8) is the corresponding
magnetic field operator, (@¹83A8#5H8).
e
-

e
-

-

i-
a-
-

i-

The operatorR3
1 containing 1/c squared has the form

R3
152

e\2

8m2c2
D8A482

i\e

4m2c2
¹8A48p8

1
e

4m2c2
~s8–p8!A48~s8–p8!. ~4.4!

The terms proportional to 1/c3 in the transition operator hav
the form

R4
15

e

16m3c3 H i ~s8–A8!~s8–p8!p822 ip82~s8–A8!~s8–p8!

1\(
a

sa8 S s8–
]A8

]xa8
D p82 1 i s8–~s8–A8!p832\(

a
sa8

3p82S s8–
]A8

]xa8
D 2 i s8–@p82~s8–A8!p8#J , ~4.5!

wherea5x,y,z.
Each of the above operators can initiate a quantum tr

sition of an atomic electron from an intermediate stateF l
(1)

to the final stateF r
(1) if the atomic electron reached th

intermediate state because of an exchange of virtual pho
with an electron of another atom. Here the quantized exte
light field has a potentialA48 equal to zero. For a constan
external field the term~4.2! is finite, and in this case the
interaction of electrons belonging to two different atoms v
the field of virtual photons takes place in accordance with
following conservation law:

Er
~1 !2Em

~1 !1Ep
~1 !2En

~1 !50.

4.1. Allowing for intermediate state with negative energies

The matrix~2.1! of the effective interaction energy con
tains summation over the intermediate states of the inter
ing electrons with negative energies. This means that a
of the energy of the interaction of two electrons is due to
effect of positron states in the spectrum of the interact
electrons. The effect enters indirectly via the intermedi
virtual states of the electrons. Note that the initial and fin
states are electron states with positive energies.

The intermediate positron states can be taken into
count as we go over to two-component wave functions
~2.1! with wave functions of the form

C l
~2 !5S 2

s–p

2mc
x l

~2 !

x l
~2 !

D , x l
~2 !5S 12

p2

8m2c2D F l
~2 ! .

~4.6!

Here, as in Ref. 17, we do not need to go over to the posit
wave function, which contains the charge conjugati
transformation.13

However, we will choose another method for allowin
for intermediate positron states, a method based on the
lowing obvious conditions. First, the photon energy is mu
lower than the energy of the electron field, and the elect
energy differs little from the electron rest energy. Hence
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~2.1! we put

\@v l~12 i0!1v2v r
~1 !#'22mc2, ~4.7!

etc. Second, we introduce the projection operators

L28 5
mc22H8

2mc2
, L29 5

mc22H9

2mc2
~4.8!

with the properties

L28 C l~r 8!5C l
~2 !~r 8!, L29 C l~r 9!5C l

~2 !~r 9!. ~4.9!

Then, applying the transformation of Sec. 2, we separate
following operator in the first and second term on the rig
hand side of~2.1!:

P1l
15

e

2mc2
~g48gd8Ad8L28 B1l1B2lL29 g49gd9Ad9!, ~4.10!

whered51,2,3,4, andag8 is the four-operator of the vecto
potential of the external field at the point occupied by t
electron with the radius vectorr 8. The other terms of the
matrix ~2.1! can also be combined into pairs.

Now, using the wave functions~3.1! for the initial and
final electron states, we transform the operator~4.10!. Both
R1l andR2l already have the factor 1/2mc2, so that the op-
eratorsB1l andB2l have a truncated form. We multiply th
operators in~4.10! in matrix form and the two-componen
wave functions of the interacting electrons and keep only
terms proportional to 1/c. Integrating by parts where nece
sary, we arrive at the following formula for the operator
~4.10!:

P1
15

e3

2mc2
expS i

c
uvn

~1 !2vp
~1 !uaD H 2

i\

2mc

a

r 2
~s9–n!

3(
a

sa8
]A48

]xa8
2

1

2mc
~s8–p8!~s9–n!

a

r 2
A481

i\

4m2c2

3~s8–A8!~s9–p9!
1

r
~s8–A8!s9–(

a
sa-s-

3S 1

r

]

]xa-
1

na

r 2 D 2 i ~s8–A8!~s9–n!
a

r 2
1

i

2mc

3~s8–A8!~s9–s-!~s-–p-!
1

r
1

i

2mc
~s8–A8!

3~s8–p8!
1

r
1

1

2mc
~s8–n!~s9–p9!

a

r 2
A492

1

2mc

a

r 2

3~s8–n!~s9–p9!A491
\

2mc(a ~s9–A9!sa8
na

r 2

1
i

2mc

1

r
~s9–p9!~s9–A9!1

i

2mc

1

r
s8–~s9–A9!

3s-~s-–p-!2 i
a

r 2
~s8–n!~s9–A9!J , ~4.11!
he
-

e

e

where the operatorss8 and s9 act on the spin wave func
tions of the electron of the first atom and the operators-, on
the spin wave functions of the electron of the second ato

Next we use the identities

s-~s-–p-!52~s-–p-!s-1p-,

s-–p-
1

r
5

1

r
s-–p-2 i\

n–s-

r 2
,

~4.12!
~s9–A9!~s9–s-!~s-–p-!5A9–p-1 i s-–~A93p-!

2 i p-~A93s9!

1 (
aÞb

sa9sa-Ab9pb-

2 (
aÞb

sa9pa-Ab9sb- . ~4.12!

Suppose that the interaction of the two atomic electrons ta
place in a variable external field and that the vector poten
A satisfies the Lorentz condition]Am /]xm50 (m51,2,3,4).
In this case we can put13

A4850,
]A48

]xa
50. ~4.13!

Then the operator~4.11! takes the form

P1
15

e3

2mc2
expS i

c
uvn

~1 !2vp
~1 !uaD

3H 22iA9–n
a

r 2
12s9–~A93n!

a

r 2
1

\

mc
A9–n

1

r 2

1
i\

mc
s9–~A93n!

1

r 2
1

i

2mc

1

r
p9–A9

2
1

2mc

1

r
s9–~p93A9!1

i

mc

1

r
A9–p-2

i

2mc

1

r

3S (
aÞb

sa9pa-Ab9pb-2 (
aÞb

sa9pa-Ab9sb
-D J . ~4.14!

The other terms in the matrix~2.1! and the corresponding
operators for the intermediate state with negative ener
can be transformed similarly; we denote these operators
P2

1 , P3
1 , andP4

1 . The physical meaning of these operato
is discussed below.

4.2. Intermediate states with positive energies

We will now discuss the problem of summing over th
intermediate states with positive energies in the matrix of
effective interaction energy, i.e., over the electron statesl 1 .
We apply the same transformations of matrix elements
were carried out in Secs. 3 and 4 that involve the appro
mate wave functions~3.1!. Then the first two terms of the
matrix ~2.1!, corresponding to the diagrams 1 and 2 in Fig
with the same retardation factor exp$(i/c)uvn

(1)2vp
(1)ua%, take

the form
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Ai→ f
~3!

5(
s,s8

(
l 1

H ^F r
~1 !uRs

1uF l
~1 !&^F l

~1 !Fp
~1 !uVs8 l1

~1 ! uFm
~1 !Fn

~1 !&

\@v l~12 i0!1v2v r
~1 !#

1
^F r

~1 !Fp
~1 !uVs8 l2

~1 ! uF l
~1 !Fn

~1 !&^F l
~1 !uRs

1uFm
~1 !&

\@v l~12 i0!2v2vm
~1 !#

J , ~4.15!

where the operatorsVs8 l1
(1) and Vs8 l2

(1) are derived from the
corresponding operatorsB1l andB2l . In multiplying the dif-
ferent matrix elements in~4.15!, we discard terms containin
1/c raised to a power higher than the third.

The other terms in~2.1! take a similar form. We denote
these terms byBi→ f

(3) , Ci→ f
(3) , andDi→ f

(3) . Below we show that
the various terms distinguished in~2.1! have different physi-
cal meaning.

5. POLARIZING FIELDS IN A SYSTEM OF HYDROGENLIKE
ATOMS EMITTING AND ABSORBING PHOTONS

The operators~4.3!, ~4.4!, and~4.5!, which correspond to
first-order effects, contain~as factors! atomic and field op-
erators that give rise to the transitions between atoms
photon states at the same point under observation. The
ation is different for the interaction of two atoms located
arbitrary distance from one another, with the operators~4.14!
or the matrix elements~4.15!. In the different terms of~4.14!
we can identify an operator that ‘‘acts’’ at a certain po
under observation and an operator that ‘‘acts’’ at the po
occupied by the other atom, which generates the polariz
field. Here the polarizing field is a field of virtual photon
rather than a field of real photons. Similarly, matrix eleme
of type~4.15! contain a dependence on the coordinates of
two atoms, one of which occupies the point under obser
tion.

Let us examine the polarizing fields that form accordi
to pattern C of Sec. 2, when as a result of exchange of vir
photons and emission or absorption of one real photon
quantum state of only one of the atoms changes. We ass
that the point occupied by the first atom is specified by
radius vectorr1 ~coordinatesr 8 andr 9) and that occupied by
the other, by the radius vectorr2 ~coordinatesr-). The initial
state of the first atom is labeledm and has the energyEm

(1) ,
while the initial state of the second atom is labeledn and has
the energyEn

(1) . As a result of an exchange of virtual pho
tons the first atom arrives at an intermediate stateEl

(1) or
El

(2) and then goes back to the initial state, i.e.,Er
(1)

5Em
(1) . One real photon is absorbed at point occupied

the first atom, while the second atom changes its quan
state and reaches the levelEp

(1).En
(1) . This pattern of quan-

tum transitions corresponds to the first term of the ma
~2.1! and the diagram 1 in Fig. 1. A similar situation occu
for the second term in~2.1! with the Feynman diagram 2
~Fig. 1!, where the absorption of a photon takes place no
the point occupied by the atom undergoing theEn

(1)→Ep
(1)

transition but at the point occupied by the other atom,
one that forms the polarizing field. The other terms in~2.1!
with the corresponding diagrams 3–8 do not participate
nd
tu-
t

t
t
g

s
e

a-

al
e

me
e

y
m

x

at

e

n

the formation of the polarizing field in this pattern. Indee
when r 5m, each of these terms contains zero matrix e
ment of type^C r

(1)ugm8 uCm
(1)&.

We now use~4.14! and ~4.15! to write down the vector
potentials of the polarizing fields. To this end we first spec
a certain type of quantum transitions between the state
the interacting atoms, e.g., orbital quantum transitions. Th
in accordance with~4.3!, for first-order effects we arrive a
the formula for the Hamiltonian operator of each atom:

H1-52
e

mc
p-–A-, ~5.1!

whereA- is the operator of the vector potential of the exte
nal field at the point occupied by the second atom. We
~4.14! to write the following Hamiltonian operator:

H2-52
e

mc
p-–A~p!,

A~p!52
e2

2mc2

1

n
expS i

c
v0aD A9, ~5.2!

wherev05vp
(1)2vn

(1) is the frequency of thep→n transi-
tion. We callA(p) the positron polarizing field. The polariz
ing field in ~5.2! is due to the disappearance of a photon
the point occupied by the second atom, while the absorp
of the photon occurs at the point occupied by the first ato
The other terms in the operator~4.14! corresponding to or-
bital quantum transitions differ from~5.2! in their physical
properties. For instance, a term of the formp9–A9 corre-
sponds to a positron polarizing field, but here the disappe
ance of a photon and its absorption occurs at the same p

Thus, allowing for intermediate positron states in t
interaction of two atomic electrons gives rise to an additio
Hamiltonian for the interaction of the atomic electron wi
the external field. As a result, in examining the interaction
a system of atomic electrons and an external field we m
add to the external fieldA- the positron polarizing fieldA(p).

Let us examine the role of the interaction~4.15! via in-
termediate states with positive energies, allowing only
orbital quantum transitions. Substituting the operators~4.3!
and ~3.9! in ~4.15!, we arrive at the following interaction
Hamiltonian:

H3-52
e

mc
p-–A~e!, ~5.3!

whereA(e) is the vector potential of the electron polarizin
field,

A~e!5expS i

c
v0aD(

l 6
S prl8 –A8

\@v l~12 i0!1v2v r
~1 !#

3H e

imv0

dlm
9 23~dlm9 –n!n

a3
1

e2

im2cv0

3
plm9 23~plm9 –n!n

a2
1

e2

m2c2 F S R1l

2
21D plm9

a
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2
R1l

2

~n–plm9 !n

a
2

R1l

2

plm9 23~n–plm9 !n

a G J
1

1

\@v l~12 i0!2v2vm
~1 !#

H e

imv0

drl8 23~drl8 –n!n

a3

1
e2

im2cv0

prl8 23~prl8 –n!n

a2
1

e2

m2c2 F S R2l

2
21D prl8

a

2
R2l

2

~n–prl8 !n

a
2

R2l

2

prl8 23~n–prl8 !n

a G J prl9 –A9D ,

~5.4!

with

R1l5
vn

~1 !2vp
~1 !

v l2vm
~1 !

, R2l5
vn

~1 !2vp
~1 !

v l2v r
~1 !

.

The electron polarizing field~5.4! is written in the electric
dipole approximation, which uses the operator~3.9! to ac-
count for the exchange of virtual photons. In~5.4! the opera-
tors A8 andA9 have been taken outside the matrix-elem
sign in this approximation.

The electron polarizing field~5.4! is formed by two at-
oms, and one of these atoms reach the initial quantum s
as a result of the sequence of quantum transitions consid
above. This means that in~5.4! we can identify the averag
value of the electric dipole moment of that atom in a st
r 5m. We write the expression for the average value of
dipole moment dm8 calculated in first-order perturbatio
theory:18

dm8 5
e

mc\
exp~2 ivt !(

l 1

H dml8 ~plm8 –A08!

v lm2v1 i ~G l1Gm!/2

1
~pml8 –A08!dlm8

v lm1v2 i ~G l1Gm!/2J , ~5.5!

wherev lm is the transition frequency,G l (m)
21 is the lifetime of

the statel (m), andA85A0exp(2ivt). In ~5.5! we have kept
only the negative-frequency part, corresponding to the p
ton absorption process, in which the polarizing field~5.4! is
formed. Using~5.5!, instead of~5.4! we arrive at the formula
~the labelm has been dropped!

A~e!5
c

iv0

@d8#23~@d8#–n!n

a3

1
e

imv0

@p8#23~@p8#–n!n

a2

2
iv0

c

~@d8#–n!n

a
2

e

mc

@p8#

a
, ~5.6!

where@•••# indicates that the average value of the quan
is taken at timet85t2v0a/vc. Here we have used the fac
that atoms are isotropic, according to the quantit
(prl8 –A8)dlm8 andprl8 (dlm8 –A8) are equal.
t

te
red

e
e

o-

y

s

In ~5.2! and~5.3! we go from the vector potentials of th
polarizing fields to the corresponding electric and magne
fields via the Lorentz condition]Am /]xm50 ~Ref. 13!. For
the a field proportional to exp(2ivt) we have

E2
~e!5

iv

c
A2

~e! , E2
~p!5

iv

c
A2

~p! , ~5.7!

where the vector potentialsA2
(e) andA2

(p) are proportional to
the operatorckl

v of annihilation of a photon with wave vecto
k and polarizationl51,2 at the point occupied by the atom
that generates the polarizing field~the polarizer atom!. Here
the quantum transitionp→n takes place at point occupied b
the other atom~the observer atom! located at an arbitrary
distance from the polarizer atom.

Consider the case where the frequencyv of the external
field is close to one of the frequenciesv lm.0. The average
value of the momentum is@p8#5( im/e)v0@d8#, according
to ~5.6!, and the operator of the electron polarizing field i

E2
~e!5¹3¹3

@d#

a
, ~5.8!

where differentiation is carried out with respect to the co
dinatesa- of the point under observation. We define th
magnetic fieldsH2

(e) andH2
(p) in similar way using the com-

mon relationship between the vector potential and the m
netic field.13

5.1. Integral equations for photon propagation
in an electric-dipole optical medium

We introduce the dipole (ad) and momentum (ap) po-
larizabilities of an atom by the following relations:

d85adA8, p85apA8, ~5.9!

whered8 andp8 are the average values of the dipole mome
and the momentum in a certain statem, values calculated in
first-order perturbation theory. We can determine the dip
polarizability of an isotropic atom in accordance with~5.5!.
To determine the momentum polarizabilityap , we must re-
place the matrix elementsdlm8 with the matrix elementsplm8
of the momentum operator in~5.5!. Then the vector potentia
of the electron polarizing field takes the form

A~e!5H ad

c

iv0

e23~e–n!n

a3
1ap

c

imv0

e23~e–n!n

a2

2ad

iv0

c

~e–n!n

a
2

e

mc
ap

e

aJ @A8#[Ke~a8,a-!@A8#,

~5.10!

wheree is the unit vector along the direction of fieldA8.
The transition to anN-atom system can be carried out b

summing the vector potentials~5.10! and ~5.2! of the polar-
izing fields generated byN21 atoms at the point occupie
by the atom with the radius vectora9. We can estimate the
role of the electron and positron polarizing fields in such
system of atoms by comparing the terms in~5.10! propor-
tional to 1/a with the vector potential~5.2!. A fact worth
noting in this connection is that the electron polarizing fie
contains the polarizabilitiesad andap , which depend on the
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random distribution of the natural frequencies due to in
mogeneous broadening, while the positron polarizing field
independent of this broadening. This leads to a situation
which under certain conditions the electron and positron
larizing fields in anN-atom system may be comparable
absolute value.

Now let us turn to the case of an optical medium, whi
we assume to be continuous. To this end we introduce
density N/V of the distribution of atoms in the medium
More than that, we assume that the polarizing fields~5.10!
and ~5.2! are proportional to the field inside the mediu
rather than to external field. This makes it possible to w
the following integral equation for the operator the elect
field strength:

E~r ,t !5EI~r ,t !1E N

V
Ke~r ,r 8!ES r 8,t2

R

c D dV8

1E N

V
Kp~R!ES r 8,t2

R

c D dV8, ~5.11!

wherer is the radius vector of the point under observatio
r 8 is the radius vector of a point inside the medium or at
surface,EI(r ,t) is the operator of the external electric fie
represented in the form of a linear combination of pla
waves with amplitudesckl

v ~Ref. 13! that are coordinate
independent,R5ur2r 8u, and

Kp~R!52
e2

2mc2

1

R
e. ~5.12!

An integral equation for the operator of the magnetic fie
can be derived in a similar manner by applying the curl o
erator to the vector potentials~5.10! and ~5.2!.

If the point under observation,r , lies outside the me-
dium, the integral in~5.11! is over the entire medium. If this
point is inside the medium, we must first exclude a sm
region occupied by the atom and surrounded by a sphere
small radiusL0. Equation~5.11! in the particular case of zer
positron polarization of the medium and only one natu
frequency in the spectrum of the atoms coincides with
integro-differential equation of classical optics19 if the opera-
tors in ~5.10! are replaced by the corresponding classi
fields.

We intend to use Eq.~5.11! to solve boundary-value
problems of quantum optics, since this equation incorpora
the boundary conditions.

5.2. Integral equations of propagation of photons
in a system of electron spins

Here is another example of an integral equation that
be derived by the proposed method. In contrast to the pr
ous case, we consider only the spin degrees of freedom
interacting electrons belonging to different one-electron
oms located at arbitrary distances from one another. Su
situations is of interest, say, in magneto-optics, in the des
of inversionless lasers, and in processes of laser coolin
atoms. Let us assume that spin transitions take place betw
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atomic states separated by the optical frequencyv0. Such
transitions may occur independently of electric dipole tra
sition, which were examined in Sec. 5.1.

We use the operator~3.6! and then the operator

~R2
~1 !!s52

i\e

2mc
s8–H8 ~5.13!

to describe the polarizing fields in the system of electr
spins. Here we consider the same pattern of quantum tra
tions as in Sec. 5.1.

We insert the operators~3.6! and~5.13! into ~4.15!. This
leads us to the interaction operator

H3-52
\e

2mc
s-–H~e!, ~5.14!

where the magnetic field

H~e!5expS i

c
v0aD e2\2

4m2c2(l 1
S srl8 –H8

\@v l~12 i0!1v2v r
~1 !#

3H slm9 23~slm9 –n!n

r 3
1 15

a2

r 5 R1l ~slm9 –n!n

2 9
a2

r 5
R1l slm9 J 1

1

\@v l~12 i0!2v2vm
~1 !#

3H srl8 23~srl8 –n!n

r 3
1 15

a2

r 5
R2l ~srl8 –n!n

2 9
a2

r 5
R2l srl8 J D . ~5.15!

This is an electron polarizing field, i.e., it is realized via on
intermediate electron states. Equation~4.14! implies that can
be no positron polarizing field in this pattern of quantu
transitions.

In ~5.15! we distinguish the average values of the sp
magnetic moments of the polarizer atom by a formula sim
to ~5.5! in first-order perturbation theory. We introduce th
following notation for the average values of the spin va
ables in statem:

sm8 5~as!mH8, qm8 5~aq!mH8, ~5.16!

where (as)m is the spin polarizability of the state in statem,
qm8 is the average value in statem of the operatorq8 with the
matrix elementsqlm8 5slm8 /v lm , and (aq)m is the corre-
sponding polarizability. Theexpression for the polarizi
field ~5.15! becomes

H~e!5mBH as

h23~h–n!n

r 3
2 15v0aq

a2

r 5 ~h–n!n

1 9v0aq

a2

r 5 J @H8#[Ks~a8,a-!@H8#, ~5.17!
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where mB is the Bohr magneton, andh is the unit vector
directed long the magnetic field vectorH8.

The passage to the integral equation of photon propa
tion in a continuous optical medium can be achieved in
same way as in Sec. 5.1, i.e., by replacing the external fi
in ~5.17! with the field inside the medium. Then, for sp
quantum transitions, the operator of the magnetic field a
certain pointr under observation at timet inside or outside
the medium becomes

H~r ,t !5HI~r ,t !1E N

V
Ks~r ,r 8!HS r 8,t2

R

c D dV8, ~5.18!

whereHI(r ,t) is the operator of the external magnetic fie

6. DISCUSSION

Our results can by divided into two main categories. T
first deals with the problem of solving an important QE
problem, the problem of two interacting electrons. The s
ond is devoted to using the solution in deriving integral fie
equations in optics.

The interaction of two atomic electrons belonging to tw
immobile atoms located at arbitrary distances from one
other is a considered a third-order QED effect, where
integral part is the exchange of virtual photons involvi
various intermediate states with positive and negative e
gies. It appears that here the various patterns of quan
transitions leading to emission or absorption of a single p
ton in the system of two interacting hydrogenlike atoms c
be classified. In the present paper we discuss in detail
pattern of quantum transitions in which one atom is a po
izer atom and the other, an emitter or absorber atom.

In contrast to the earlier papers to the two-electron pr
lem, here for the first time we account for all the intermedi
states in the spectrum of the interacting atoms rather t
only for thev l-states, in which the transition frequencyv lm

is close to the frequencyv of a real photon. Our allowanc
for these states is related to the role that the factorsRsl play
in the operatorsBsl , which describe virtual photon ex
change.

The earlier papers focused on the interaction of two
drogenlike atoms in the electric dipole approximation. In t
paper we also allow for other types of quantum transiti
We show that the spin–orbit and spin–spin coupling ope
tors acquire additional terms in comparison to the Breit
erator. These terms arise because of additional retardatio
the interaction of two atoms located at arbitrary distan
from one another. Here we introduce a universal time sc
the period of optical oscillations, for different types of qua
tum transition.

In the present paper we have shown that three type
field act on each atom: an external field~including the
vacuum field!, an electron polarizing field, and a positro
polarizing field. We have established that the disappeara
of a photon may occur at the point occupied by one of
atoms of the system, while the absorption of that same p
ton takes place at the point occupied by the other at
which is at an arbitrary distances from the polarizer atom
similar situation occurs for the emission of a photon: em
a-
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sion takes place at the point occupied by the emitter at
which is at an arbitrary distance from the polarizer ato
where the photon was created.

The results of studies of the processes of interaction
two atom in a light field can be used to derive new integ
equations that describe the propagation of photons in a c
tinuous optical medium. To demonstrate the effectivenes
the method of integral equations, we have derived to integ
equations corresponding to electric and spin transitions in
spectrum of the interacting atoms. We have found that in
particular case where the atomic spectrum has only one t
sition with frequencyv lm50, the integral equation of pho
ton propagation in an electric-dipole medium coincides w
the corresponding integral equations of classical optics.

Let us examine the feasibility of replacing differenti
equations by integral equations in this problem. Actually,
integral equations for the electric and magnetic fields of cl
sical optics are equivalent to the Maxwell equations. Ho
ever, by using integral equations one can derive in a rigor
manner the Lorenz–Lorentz formula and the extinction th
rem and solve a number of important optical problems. A
yet this powerful method has rarely been used. This is
cause the integral equations known from classical op
have meaning only for isotropic nonmagnetic dielectric m
dia. Hence it would be interesting to derive integral equ
tions that would describe a much broader class of phen
ena. The present paper is an attempt to do this by stud
the two-electron problem in the QED setting.

By studying the interaction of two electron in a ligh
field we can distinguish the various type of quantum tran
tion. In particular, as shown in this paper, we can sepa
the positron polarizing field, which in some cases is not n
ligible in comparison to the electron polarizing field. Allow
ing for the correspondence between Eq.~5.11! and the clas-
sical integral equation, we state that the positron polariz
field can be interpreted by introducing an additional curr
into the Maxwell equations. Indeed, the derivation of t
integral equation of classical optics19 is based in Ref. 4 on
the expansion of the retarded potentials. Here the exte
field can be accounted for by two methods. The first is ba
on the idea of polarizability of atoms, which make it possib
to allow for what is known in optics as the dipole field. Th
second method is based on the idea of replacing the elec
momentap by p2(e/c)A. In the present we have show
that, from the viewpoint of quantum electrodynamics, the
two methods correspond to electric and positron polariz
fields. The electron polarizing field in the electric-dipole a
proximation is the dipole field known from optics, a fie
generated only by electron states in the spectrum of the
teracting atoms. The positron polarizing field is genera
only by positron states. Here we are dealing not with r
positron states but with virtual states, and the creation
such states is not guided by the law of energy conservat
Thus, the study of the two-electron problem in the QE
setting makes it possible not only to develop the method
integral equations but also to establish the new mechanism
emission and absorption of real photons in a system of in
acting atoms.

Two types of atom–field interaction can be identifie
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here. The first corresponds to the transfer of real phot
from excited atoms to unexcited. Here the time of radiat
transfer from one atom to another is determined by
atomic separation. This type of interaction can serve a
base for deriving the corresponding integral equations
radiation transfer, which are used, e.g., in the optics of
bulent media.20 The other type based on the idea of polar
ing fields, interpreted in the present paper as third-or
QED effects. In this paper we have shown that a pho
disappears at the point occupied by one of the interac
atoms, while the absorption of that photon takes place at
point occupied by the other atom. And, according to
meaning of the expansion in Sec. 2, the distance between
atoms may be arbitrary. Obviously, a similar situation occ
for the process of emission of a photon in a system of t
interacting atoms.

We note an important feature of this type of interactio
Specifically, the disappearance of a photon and its absorp
occur at the same moment in time, i.e., we can speak
instantaneous formation of a polarizing field due to contin
ous exchange of virtual photons between the atomic e
trons. If this was not so, the law of energy conservation~Eq.
~2.10!! would be violated. The retardation facto
exp@(i/c)v0a# in the various terms of the matrix~2.1! points
only to a periodic dependence of the effective interact
energy on the interatomic distance. In other words, we
speak of instantaneous energy transfer between differen
oms located at arbitrary distances from one another prov
that there is continuous exchange of virtual photons.

Figure 2 depicts the block diagram of an experimen
device that could be used to confirm or reject this property
polarizing fields. For the experiment we select hydrogenl
atoms, say Cs and Rb85, or hydrogen atoms, whose spectru
has been thoroughly studied. In this paper we examine
larizing fields generated by electric dipole or spin transitio
However, by using the above method, polarizing fields
other types of quantum transition can also be conside
Hence it is advisable in our experiment to select quant
transitions in the spectrum of atoms with large waveleng

FIG. 2. Block diagram of an experimental devices for studying the pola
ing fields of atoms in an external light field:1—beam of atoms in ground
state, 2—beam of atoms in excited state,3—spectrophotometer,4 and
5—devices for sorting the atoms in the ground and excited sta
6—synchronizer, and7—reading device.
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~e.g., the wavelength of the emission line in a hydrogen
ser!, which would substantially reduce the effect of retard
tion. The experimental device consists of two types of ato
ray tubes. Tube1 is used for the atom beam in which th
atoms are in their ground state. This beam is irradiated
light ~photons!. Spectrophotometer3 registers the evvents in
which photons disappear, events that are due either to in
tion of polarizing fields or to direct absorption by resona
atoms. In the latter case the atoms become excited and ca
sorted in the atomic beam by separator4. In tube2 synchro-
nized with tube1 by synchronizer6 there is a beam of atom
in their ground state. The polarizer atoms in beam1 act on
the atoms in beam2 in such a way that resonant photons a
absorbed, the absorber atoms become excited, and are s
by device5. The absorption probability can be calculated
the first order via the operator~5.3! with the electron polar-
izing field ~5.10!. This makes it possible to calculate th
number of atoms participating in the formation of the pola
izing field. However, in addition to this process, atoms
tube2 become excited due to re-emission of photons by
atoms in tube1, which is located at a distanceL from tune2.
This process has a time lag equal toL/c and can be separate
from the process of formation of polarizing field by using t
reading device7.
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Dynamic features of interaction between a sequence of ultrashort laser pulses and
planar, thin-film microcavities

V. A. Goryachev* ) and S. M. Zakharov
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A theory of coherent interaction between a sequence of ultrashort laser pulses and planar, thin-
film microcavities in the form of Fabry–Perot resonators containing resonating atoms has
been developed. The dynamics of transmission of single laser pulses has been analyzed
numerically. Analytic solutions of the problem of four-wave mixing of optical fields
separated in time have been obtained in the small-area approximation. The dynamic efficiency of
conversion of incident waves to the coherent response field~photon echo! generated in a
microcavity can be higher than in the case of a bulk resonant structure. Specific features of photon
echo generation in a microcavity for arbitrary ‘‘areas’’ of laser pump pulses are discussed.
© 1998 American Institute of Physics.@S1063-7761~98!00311-4#
in

e
u
ie
l-
d
te
d

se
m
n

ca
n

at
-
i

,
n
a
er

a
ffi
ar
t
o
is

m
ic
ci
an
t o

for-

p-
by

ia.
d in
ltiple
ion
he
op-

t a

by
ing
ht
-
s in

e
as-
g is
in
ical
lace

rs.
in-
and

o-
ula-
cts

ay
rs

eso-
1. INTRODUCTION

Interest in studies of nonlinear optical properties of th
film microcavities has been aroused recently.1–10 In the con-
text of basic research, planar microcavities present an
ample of a model physical system for studying vario
physical processes, such as optical bi- and multistabilit
self-pulsations of light, solitonic transmission regime of u
trashort optical pulses, generation of coherent light, and
namical chaos. On the other hand, there is a pragmatic in
est in developing such structures since they can be use
components of electronic optical devices.

Previously interaction between isolated ultrashort la
pulses and thin-film microcavities filled with resonant ato
has been studied in detail, and it turned out that bi- a
multistable regimes of transmission of ultrashort pulses
occur in a nonstationary regime when the pulse duratio
less than the irreversible polarization time~transverse relax-
ation! and the lifetime of resonating atoms in an excited st
~longitudinal relaxation!.11,12 An important parameter de
scribing multivalued nonlinear optical characteristics of m
crocavities was the laser pulse ‘‘area.’’ At the same time
was shown that the anomalous transmission of ‘‘solito
like’’ pulses through a thin layer is due to the existence of
integral of the motion determined by the form of the und
lying equations of motion.11

Effects of bistability in states of such systems occur
sufficiently high atom densities inside their cavities or su
cient reflectivities of their mirrors. Otherwise a peculi
mechanism of field energy loss inside the cavity or due
reflection from its boundaries is active. These properties
the systems~the existence of bistable states and peculiar d
sipative property of the medium! are notably different from
those of long, bulk resonant media. Therefore, it see
worthwhile to investigate various coherent processes typ
of bulk active media in the context of resonant cavity ex
tation, including photon echo phenomena. An import
component of this investigation is a consistent accoun
8551063-7761/98/87(11)/9/$15.00
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conditions at the boundaries of a resonant medium and
mation of standing waves.

The first investigation of photon echo generation by o
tical pulses in the form of standing waves was undertaken
Le Gouet and Berman13 and tackled gaseous resonant med
The main feature of the two-pulse photon echo generate
a resonant gaseous medium was the presence of mu
signals, which was, in the long run, a specific manifestat
of inhomogeneous broadening. It is widely known that t
inhomogeneous broadening in gases is caused by the D
pler effect, since a moving atom ‘‘sees’’ an optical field a
frequency shifted byk– v, wherek is the optical wave vector
andv is the thermal velocity of the atom.14,15 As a result of
this atomic motion in space, atoms offset from resonance
« go to regions with different phase relations in the stand
wave field. Similar effects occur in spatially separated lig
beams.16 It is also important that in Doppler-induced inho
mogeneous broadening, a particular asymmetry emerge
averaging over the detuning parameter«, since atoms with
detuning parameters« of opposite sign travel in opposit
directions. This is the fundamental difference between g
eous media and solids, where inhomogeneous broadenin
usually due to irregularities in the crystal field and is local
nature. As a result, such features of the photon echo typ
of gaseous media as the multiple photon echo can take p
in solids only at considerably high nonlinearity paramete

In this paper, we theoretically investigate features of
teraction between the sequence of ultrashort laser pulses
thin-film microcavities of finite widths and containing res
nant atoms inside Fabry–Perot resonators. Computer sim
tions of dynamic processes indicate that the following effe
can be observed in thin microcavities: a! self-induced trans-
parency, which leads to splitting of a 4p-pulse into a set of
two 2p-pulses with differing temporal dynamics and del
times~this splitting is controlled by optical cavity paramete
and duration of input pulses!; b! population inversion in the
ensemble of atoms at frequencies close to the atomic r
© 1998 American Institute of Physics
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nance; c! generation of a multiple photon echo with an e
cess delay close to the photon lifetime in the cavity. D
namic properties of photon echo signals are also determ
by transient processes associated with formation of the o
cal field configuration inside the cavity and finite phot
lifetime in the cavity. Moreover, the dynamic efficiency du
ing holographic shaping of nonstationary patterns create
microcavities at the instant that photon echos emerge ca
substantially greater than in the case of bulk excitation
resonant media. We discuss a number of feasible prac
applications of these features.

2. BASIC EQUATIONS AND SOLUTION TECHNIQUES

As in our previous publications,11,12 we define ultrashort
laser pulses interacting with planar, thin-film microcaviti
as optical pulses whose durationd satisfies

T2* !2Ln0 /c!d!T2'g'
21!T1'g i

21 , ~1!

whereT2* andT2 are the times of reversible and irreversib
polarization relaxation in the resonant medium, respectiv
T1 is the population relaxation time, and 2Ln0 /c is the
round-trip time of an optical pulse in the cavity.

Note also that the relation betweend and the photon
lifetime in the cavity,

tc52
2Ln0

c ln~R1R2!
'

2Ln0

c~12R1R2!
,

can be arbitrary by virtue of the inequality 2Ln0 /c!d @Eq.
~1!# and the condition

12R1R2!1,

whereR1,2 are mirror reflectivities. Another important poin
is that the inequalityT2* !2Ln0 @Eq. ~1!# means that an ar
bitrary number of longitudinal cavity modes can be co
tained within the spectral width of an inhomogeneou
broadened spectral line.

The basic equations describing interaction between
trashort laser pulses and microcavities containing two-le
resonant atoms were derived in a previous study.11 In the
approximation defined above, in the absence of phase m
lation of the external field, and given a ‘‘tuned’’ cavity, the
equations have the form

t̃c

2

d

dt
E11E12C8^V«

1&5E08~ t !,

dU«
1

dt
1«V«

150,

~2!
dV«

1

dt
2«U«

15
ud12u2

\
n«E1 ,

dn«

dt
52

1

\
~R211!E1V«

1 ,

whereE1 is the slowly changing electric field amplitude o
the optical wave traveling through the cavity in the sa
direction as the incident wave,U«

1 andV«
1 are the real and
-
ed
ti-

in
be
f
al

y,

-

l-
el

u-

e

imaginary parts of the slowly changing dipole moment a
plitudeP«

1 , n« is the population inversion of resonant atom
with

P«
15~U«

11 iV«
1!exp~ iw!,

t̃c5~11AR1R2!2tc , E08~ t !5
A12R1

12AR1R2

E0~ t !, ~3!

C85
2pvLN0~11AR1R2!

cn0~12AR1R2!
,

d12 is the reduced matrix element of the resonant transit
dipole moment,N0 is the density of resonant atoms insid
the cavity,n0 is the nonresonant refraction index,c is the
speed of light, and angular brackets denote averaging o
the offset parameter«5v212v with a weight function
G(«), which is the shape of the inhomogeneously broade
line:

^V«
1&5E

2`

`

d« G~«!V«
1 .

Certain features of solutions describing isolated
trashort pulses were discussed previously.11,12 In general,
Eqs. ~2! describe an interaction problem between an
trashort pulse and a microcavity that is nonstationary a
nonlinear in the field, and that can probably only be solv
numerically.

Now let us transform Eqs.~2! to a form convenient for
numerical integration. To this end, we introduce dimensio
less variables12 that are functions of the dimensionless tim
t5t/T2* :

e~t!5
ud12uT2* A11R2 E1

\
,

e0~t!5
ud12uT2* A11R2 E08

\
,

~4!

v~t,x!5
A11R2 V«

1

ud12u
,

u~t,x!5
A11R2 U«

1

ud12u
,

n~t,x!5n« , x5«T2* , t05tc /T2* .

Then the basic system of equations~2! take the form

t0ė1e~t!5e02CY~t!,

v̇2xu~t,x!5n~t,x!e~t!,
~5!

u̇1xv~t,x!50,

ṅ52v~t,x!e~t!,

where the parameterC is defined by the expressions

C5
a0L~11AR1R2!

2~12AR1R2!
, ~6a!
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a05
4p2vud12u2N0G~0!

\cn0
, ~6b!

a0 is the absorption factor in the low-intensity limit, functio
Y(t) describes inhomogeneous broadening of energy lev

Y~t!5
2

pE0

`

g~x!v~t,x!dx, ~7!

and the dot over variables denotes differentiation with
spect to time.

Note that the spectral line profile plotted against the o
set in our numerical model is chosen to be symmetrical—
particular, g(x)5g(0)exp(2x2)—and the electromagneti
field frequency is set at the spectral line peak.

Equations ~5! and ~7! with initial conditions e(2`)
5v(2`,x)5u(2`,x)50, n(2`,x)521 describe evolu-
tion of the electromagnetic field of the optical wave intera
ing with a microcavity, given an incident wave form define
by function e0(t). Note that in the absence of reflection
the cavity boundaries (R1→0, R2→0), t0→0 and Eqs.~5!
describe transmission of an ultrashort pulse through a
film of resonant atoms.

The choice of the specific technique used in numer
integration of Eqs.~5! and the algorithm based on this tec
nique are discussed in the Appendix.

An important method used in solving the problem
photon echo generated in a microcavity by a sequenc
several ultrashort laser pulses is the so-called ‘‘small-are
approximation. In this case, the resonant medium inside
cavity can act as a dynamic hologram, and at the mom
when the photon echo is generated, it can produce patt
that are functions of the original configuration of the exciti
fields.

We now consider solutions of Eqs.~2! under these con
ditions. The basic tenet of this approximation is that t
change in the population inversion of the resonant med
due to a pulse with an ‘‘area’’u,1,

u5Ud12

\ E
2`

`

E~ t !dtU,
is negligible.

One can derive from Eq.~2! a general solution for the
active component of the dipole moment:

V«
1~ t !5

ud12u2

\ E
2`

`

E1~ t8!n«~ t8!cos@«~ t2t8!#dt8. ~8!

At n«(t8)'21 and under the conditiond@T2* , one can
substitute in Eq.~8!

E
0

`

cos~«t!dt5
1

2E2`

`

exp~ i«t!dt5pd~«!.

Then

^V«
1~ t !&52

ud12u2

\
pG~0!E1~ t !, ~9!

and the equation for the field inside the cavity takes
simple linear form
ls:
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-
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t̃c

2
Ė11~11C!E15E08 , ~10!

where the parameterC is still defined by Eq.~6!.
Calculation of the solution to Eq.~10! is straightforward:

E1~ t !5
2

t̃c
E

0

`

dt E08~ t2t!expF2
2~11C!t

t̃c
G . ~11!

If d@ t̃c/2(11C), the solution~11! simplifies consider-
ably:

E1~ t !5E08~ t !/~11C!. ~12!

In this case, the field inside the cavity ‘‘tracks’’ the ex
ternal field in a quasistationary manner, since the latter c
dition allows us to neglect the dependence of the elec
field amplitude ont in Eq. ~11!.

Note that Eq.~12! yields the steady-state electric fie
amplitude of the forward wave in the cavity,

E15
A12R1 E0

~12AR1R2!~11C!
,

and for R1;R2;1 that amplitude can be considerab
greater than the incident wave amplitude~even whenC
.1). In this case, even thougha0L,1,

E1;
E0

A12R ~11C!
, C;

a0L

12R
. ~13!

This result depends exclusively on cavity paramete
and can be of great significance in solving the problem
photon echo generation by such structures.

3. SPLITTING OF SINGLE ULTRASHORT PULSES IN A
MICROCAVITY

Now let us consider the dynamics of interaction betwe
a single ultrashort pulse and a microcavity taking as an
ample transmission of optical pulses through a thin pla
layer of resonant atoms. The splitting of an optical pulse w
areau which is a multiple of 2p (u52pm, m51,2,•••)
into isolated 2p-pulses in a large volume containing res
nant atoms is a familiar phenomenon.17 The shapes of such
pulses do not change when they are transmitted throug
resonant medium, as in a transparent material, and their
lay Dt over distanceL is proportional to their widthsd (Dt
5a0Ld/2), wherea0 is the absorption coefficient. Under th
conditions of the problem under discussion, observation
this effect is questionable for two reasons: first, becauseL is
small @by virtue of the condition 2Ln0 /c!d ~Eq. ~1!#, and
second, because of transformation of an isolated 2p-pulse to
a pair of subpulses of approximately equal areas with de
Dt determined by cavity parameters~the photon lifetime or
film parameter12,18!.

Figure 1 shows as an example the shapes of a soli
like pulse, e(t), whose initial profile is e0(t)
5(2/d̃)sech(t/ d̃), with an area 2p and d̃50.5 transmitted
through a resonant medium at different values of the non
earity parameterC of the microcavity andt050.1.
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FIG. 1. Time dependencies of the microcavity r
sponse amplitudee(t) to a single-soliton 2p-pulse

e0(t) ~dashed line! of duration d̃50.5 with cavity
parameterst050.1, C51.0, 2.0, 2.8, 3.0, and 4.0
~solid lines labeled by1, 2, 3, 4, and 5, respec-
tively!.
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Figures 2 and 3 show calculations ofe(t) at differentC
andt0 for a pulse with areau054p.

These calculations show that as the cavity parametert0

and C increase, the incident 4p-pulse splits first into two
sequential pulses, of which the second has a smaller a
then the leading pulse is also split. By comparing the am
tudes and delays of these subpulses with those of pulse
sulting from transformation of a single 2p-pulse, we con-
clude that at smallert0 andC, a delayedp-pulse produced
by splitting one of the 2p-pulses separates out. Ast0 in-
creases, this delayed pulse moves toward ‘‘larger’’ times
is no longer visible in the range of delays under consid
ation. In the case of a 4p-pulse, its separation into two sub
pulses becomes appreciable on the leading section of
curve of the field amplitude versus time. The total area
these pulses is approximately 3p. The second subpulse a
higher C runs ahead of a negative ‘‘half-wave’’ typical o
p-pulses.

We can derive the delays of separate subpulses f
calculations of time dependencies of the microcavity ‘‘r
sponse.’’ For comparison, we can take estimates of de
timesDt obtained by generalizing to the caset0Þ0 an ana-
lytic expression forDt in a thin film for an optical pulse
tuned to the spectral line peak:18

Dt5t01~t01 d̃ !ln@~ d̃21111C!/~ d̃21112C!#. ~14!
ea,
i-
re-

d
r-

he
f

m
-
y

The parametert0 is introduced because the delaye
pulse is additionally shifted and broadened in the cavity
comparison with the soliton-like response of the film. No
that an unshifted, inhomogeneously broadened spectral
shape was used in deriving Eq.~14!. However, no logarith-
mic divergence like that in Eq.~14! as C→ d̃2111 can be
seen in our calculations. The divergence in Eq.~14! is elimi-
nated when the optical frequency is offset from the peak
the inhomogeneously broadened line. Therefore, it is pr
able that a cavity, unlike a thin film, leads to a distincti
shift of an inhomogeneously broadened atomic spectral l
This feature can occur because of coupling between
resonant systems~the atoms and cavity! via the optical pulse
field, and it shows up in the population functionn(t,x) of
atomic
levels.

Calculations of this characteristics of the system for va
ous cases are shown in the insets to Figs. 2 and 3. The cu
clearly indicate that inversion population spectra in th
problem have effective minima atx;1. This feature, with
due account of the symmetry of atomic levels with respec
variablex, is a manifestation of the ‘‘hole burning’’ effect in
spectra of inhomogeneously broadened resonant levels.
typical spectral hole amplitude depends on both the pho
lifetime t0 in the cavity~Fig. 2! and the incident pulse du
ration d̃ ~Fig. 3!, and is of order ofd̃21.
e-
FIG. 2. Time dependencies of the microcavity r
sponse amplitudee(t) to an incident 4p-pulse

~dashed curve! of duration d̃50.5 with cavity pa-
rametersC52, t051, 2, 4, and population distribu-
tions n(x,t525) of resonant atoms~solid lines la-
beled by1, 2, and3!.
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FIG. 3. Time dependencies of the microcavity r
sponse amplitudee(t) to 4p-pulses of various

lengthsd̃51.0, 0.5, and 0.33~curves1, 2, and 3!
with cavity parameterst051.0 and~a! C52, ~b!
C53, and population distributionsn(x,t520) of
resonant atoms.
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At certain values of the cavity and incident pulse para
eters, positive population inversionsn(t,x) of order unity
takes place~see curves forC53, t051, andd̃50.5, 0.33 in
Fig. 3!, which indicate atomic transitions to a new excit
state. However, at larger optical pulse duration (d̃51 in Fig.
3! a de-excitation occurs, but the peak on the initial sect
of the outgoing signal is sharpened. These features of t
poral and spectral characteristics of the microcavity indic
the presence of the superradiation effect in the cavity.

Another example of nonlinear optical effects in the ca
ity is self-induced transparency accompanied by splitting
the leading part of a transmitted pulse into 4p-pulses. The
characteristic splitting of pulses takes place with significan
augmented photon lifetimes in the cavity~Fig. 2!.

This effect is somewhat nebulous, because the shift
broadening of the pulse with time are small. Nonetheless,
calculations allow us to identify the linear part of the del
time Dt as a function oft0 in the cavity and the inciden
pulse durationd, which is similar toDt in an extended me
dium.

Thus, the splitting of soliton-like pulses with areau
5pm, m52,3, . . . , into a sequence of 2p- and p-pulses
after transmission through a thin-film microcavity is caus
by two effects of self-induced transparency typical of th
films and extended media. The main specific feature of th
processes in microcavities is the possibility of changing th
-

n
-

e

-
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characteristic times through variation of the photon lifetim
in the cavity.

4. PHOTON ECHO GENERATED BY A SEQUENCE OF
ULTRASHORT LASER PULSES IN A MICROCAVITY

In analyzing the interaction between sequences of s
eral ultrashort laser pulses and microcavities with a view
retaining arbitrary phase relations for incident waves, it
more convenient to use, instead of the representation of
resonant dipole moment of an isolated atom in the form
the real and imaginary parts, the complex representation

P«
15~U«

11 iV«
1!exp~ iw!,

wherew5w0 in the absence of phase modulation andw0 is
the incident wave phase.

Note that in calculating the dipole moment of resona
atoms averaged over frequencies within the inhomo
neously broadened line, sinceT2* is the shortest of all char
acteristic times of the problem@see Eq.~1!#, we can bring the
function G(«) outside the integrand:

^P«~ t !&5E
2`

`

d« G~«!p«~ t !'G~0!E
2`

`

d« p«~ t !. ~15!

Note also that for simplicity of notation, the superscript1
will be omitted in all subsequent formulas.
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The symmetry of the spectral functions with respect
the offset leads to the identity

E
2`

`

U«~ t !dt[0, ~16!

and, finally, to the formula

^P«~ t !&5 iG~0!E
2`

`

d« V«~ t !. ~17!

The latter property allows us to neglect the phase modula
even when the spectral functionG(«) is arbitrary.

The solution for the resonant dipole moment of an is
lated atom has the form

P«~ t !5 i
ud12u2

\ E
2`

t

E1~ t8!n«~ t8!cos@«~ t2t8!#dt8, ~18!

and in the small-area approximation for the first ultrash
pulse of durationd1 we obtain

P«~d1!52 i
ud12u2

\
E11

F ~«!, ~19!

whereE11
F («) is the Fourier transform of the function de

scribing the slow envelope of the first incident optical pul
The subsequent procedure for calculating the polar

tion in the microcavity is similar to that in the case of vo
ume excitation of a resonant medium.19 At the onsett2 of the
second pulse, one can in fact derive from Eqs.~18! and~19!
in the approximationu,1 ~Ref. 19!

P«~ t2!52 i
ud12u2

\
E11

F ~«!exp~ i«t1!, ~20!

which takes into account the fact that the optical pulse du
tion d1 is much less than the separationt1 between incident
laser pulses.

Similarly, the expression for the dipole moment of
resonant atom upon termination of the second incident p
has the form

P«~ t21d2!5 i
ud12u4

4\3
~R211!E12

F2 ~«!E11
F* ~«!exp~2 i«t1!,

~21!

and we obtain the dipole moment of the resonant atom a
aged over the inhomogeneously broadened spectral line

^P«~ t !&5 i
ud12u4

4\3
~R211!•2pG~0!

3E
2`

` d«

2p
E12

F2 ~«!E11
F* ~«!exp@ i«~ t22t1!#.

~22!

Then the following equation applies to the photon ec
field amplitude at the corresponding time of onset:

t̃c

2
Ė11E15CF~ t !, ~23!
n

-

t

.
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-
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whereC is still determined by Eq.~6! andF(t) is the tem-
poral behavior of the response signal~two-pulse photon
echo!:

F~ t !5
ud12u2

2\3
~R211!E

2`

` d«

2p
E12

F2 ~«!

3E11
F* ~«!exp@ i«~ t22t1!#. ~24!

5. COMPARISON WITH A BULK RESONANT MEDIUM

It follows from the expression forF(t), which describes
the temporal behavior of a signal generated in a microcav
that the shapes of photon echo signals in the approxima
d@ t̃c/2(11C) are very similar to those generated in bu
resonant media. Depending on the ratio of the durations
incident laser pulses in Eq.~24!, function F(t) is, in the
general case, either a convolution of the original laser pu
fields (d1;d2) or a time-reversed image of the first pum
pulse (d1!d2).

We now define the dynamic efficiency to be the ratio
the intensity of the resonant response at the moment
generated,t;2t1 , to the pump laser pulse intensity. Fro
Eqs. ~13! and ~24! in the approximationd@ t̃c/2(11C) we
obtain the following expressions for the dynamic efficien
of microcavities operating in the transmission (d) and reflec-
tion (r ) modes:

hd>
~12R1!3~12R2!~11R2!2

4~12AR1R2!6~11C!6
C2u4, ~25!

h r>
~12R1!4R2~11R2!2

4~12AR1R2!6~11C!6
C2u4, ~26!

where the characteristic parameteru is, to order of magni-
tude, the ‘‘area’’ of the second pump laser pulse.

It is interesting to compare these results with calcu
tions for a bulk resonant medium. The photon echo am
tude in that case is given by19

Ee.
a0L

4

ud12u2

\2 E
2`

` d«

2p
E2

2~«!

3E1* ~«!exp@2 i«~ t22t1!#. ~27!

Then the conversion efficiency in the bulk medium is,
order of magnitude,

hV.
~a0L !2

16
u4, ~28!

whereu also characterizes the ‘‘area’’ of the second pum
pulse. The relative excitation efficiency is then given by

hd

hV
.

4~12R1!3~12R2!~11R2!2C2

~12AR1R2!6~11C!6~a0L !2
,

~29!
h r

hV
.

4~12R1!4R2~11R2!2C2

~12AR1R2!6~11C!6~a0L !2
.

Note that Eq.~28! can be derived from Eqs.~25! and
~26! by takingR1,2!1. Obviously, the microcavity then in no
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FIG. 4. Response of a microcavitye(t) and population distri-
butionsn(x,t i) at various timest1514, t2528, andt3590
~solid curves1, 2, and3, respectively! generated by two inci-
dent pulsese0(t)5e0

(1)(t)1e0
(2)(t2t1) ~dashed line! in a mi-

crocavity with parametersC52.0 andt050.5.
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way differs from a bulk resonant medium of lengthL less
than the inverse absorption factora0 in the limit of low
intensity (a0L!1).

Evaluating the conversion efficiencies forR15R2'1,
we have

hd

hV
5

h r

hV
5h0'

16C2

~12R2!~11C!6~a0L !2
.

Remarkably, the relative efficiency forC,1 is

h0'
16

~12R!4
@1,

and thus a microcavity is a much more efficient device
generating photon echos than the usual bulk resonant
dium. Similarly, forC.1, the relative efficiency is

h0'
16~12R!2

~a0L !6
'

16

C6~12R!4

which can also exceed unity.

6. PHOTON ECHO SIGNALS GENERATED BY A SEQUENCE
OF ULTRASHORT PULSES WITH ARBITRARY AREAS

For arbitrary areas of pump laser pulses, the basic eq
tions can be solved only by numerical integration. Pre
ously, the interaction of isolated ultrashort laser pulses
thin microcavities was analyzed under conditions that per
the observation of bistable transmission of optical pulses
areau0 close to the critical valueu08 .12 The difference be-
tween the temporal behavior of signals generated on dif
ent branches of the output characteristic is the presence~for
u0.u08) or absence~for u0,u08) of a delayed pulse, whos
delayDt depends on both the photon lifetimet0 in the cav-
ity and the nonlinearity parameterC. Under these conditions
it would be interesting to consider two ultrashort puls
transmitted through a microcavity when the photon echo
nal is affected by the difference in the resonant medium s
before and after the transmission of the first laser pu
which has some areau0 .

An important feature of the two-pulse photon echo ge
erated in a microcavity is, in our opinion, the distinctiv
r
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-
d
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s
-
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mechanism of inhomogeneous broadening of atomic lev
in the cavity when the total area of the incident laser pulse
relatively large (u0

(1)1u0
(2).u0). The first pulse perturbs the

resonant medium and produces a population invers
n(t,x).0, at offsets comparable to the inverse time of
homogeneous broadening (x5«T2* <1). This perturbation
can enhance the system response to the second laser p

Solutions of Eq.~5! illustrating these features of the pho
ton echo generated in resonant structures foru051.4p, u0

50.9p, pulse durationd̃50.57, and delayt1515.0 at reso-
nant structure parameterst050.5 andC52.0 are plotted in
Fig. 4. The lower part of the graph shows the input intens
e0(t) and response signal as functions of time, and the up
part shows spectral distributions of population inversio
n(t,x), at timest1,2,3514, 28, and 90 after the onset of th
first pulse.

These curves clearly show that the first transmitted pu
perturbs atoms in the cavity over a broad spectral ra
about the resonant frequency. After the second pulse, dis
tive oscillations in the spectrum of the population inversi
with period Dx equal to the reciprocal time intervalt1 be-
tween the pulses (Dx;t21) are observed. This effect is du
to a distinctive ‘‘spectral grating,’’ and is important in pho
ton echo generation by three incident optical pulses. In
present case, the first and strongest photon echo pulse e
nates most of the population inversion created by the fi
incident pulse. The subsequent damped pulses of the ph
echo continue the relaxation of the perturbed reson
structure.

7. CONCLUSION

The reported results suggest that dynamic characteris
of photon echo signals generated in microcavities can
similar to those of bulk resonant media. The temporal beh
ior of generated optical signals can be direct replicas~stimu-
lated photon echo! or time-reversed versions~common two-
pulse photon echo! of one of the pump pulses, or they can b
described by convolutions of slow envelope functions of
cident pulses. The effect of multiple photon echo, which
inherent to gaseous media under excitation by small-a
pulses in the form of standing waves, does not occur in
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crocavities containing resonant solid-state materials. This
fect is typical of microcavities excited by laser pulses w
arbitrary areau;1. On the other hand, resonant microca
ties can be more efficient than bulk media. This property
especially important for holographic systems that prod
and transform two-dimensional images. It thus becomes p
sible to increase the dynamic range of dynamic holograp
which can be used in both analog and digital image proc
ing.

We are grateful to E´ . A. Manykin and V. N. Beloboro-
dov for useful discussions of some topics discussed here
also thank V. P. Zagonov, who suggested the approach to
numerical solution of the problem.

APPENDIX A: DETAILS OF THE NUMERICAL INTEGRATION
TECHNIQUE

In selecting the technique for numerical integration
Eq. ~5! with given initial conditions and an arbitrary sourc
function e0(t), two significant conditions were immediate
imposed on the numerical algorithms, stemming essenti
from the physical model under investigation. On the o
hand, the existence of regions where solutions of the orig
nonlinear equations are unstable requires a stable differ
scheme for solving these equations over a wide time inter
On the other, the integral nature of the calculated respo
signal e(t) and parametersu (u0) requires that solutions
e(t), v(t,x), u(t,x), andn(t,x) be highly accurate. More
over, application of numerical techniques to the investigat
of physical characteristics of the system imposed signific
constraints on the computational complexity and CPU tim

A preliminary analysis of available numerical techniqu
led us to select the quasianalytic interpolation metho20

which results in a simple mixed scheme for developmen
a computational procedure with guaranteed accuracy. T
method allowed us to take into account specific features
the equations due to the integral nature of its nonlinear
The original set of equations is, in a sense, quasilinear. T
property of the problem, which could be solved by the qu
sianalytic interpolation technique, enabled us to carry
analytic calculations to the greatest possible extent,
thereby to reduce the number of operations typical of st
dard algorithms for solving systems of nonlinear different
equations.

The essence of the present technique is that we se
solution of the Cauchy problem by linearly interpolating t
functions that enter into the set of equations on the m
width. Solving Eq.~5! in this way, the equation derived from
the first line of Eq.~5! to recalculate the fieldei 21 at the
( i 21)th level in terms of the values at thei th level has the
form

ei5ei 21p1~h/t0!~C1Fi 211C2Fi !,

where i 51,2,3,. . . ,I ; h is the time increment,Fi5e0i

2CYi , e05e(t0)50, p5exp(h/t0); C15(D2p)t0 /h, C2

5D2C1 , and D5(12p)t0 /h are the constants of th
problem.

It follows from the above description that the numeric
scheme is Euler’s combined scheme. The absolute value
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uncertainties in the explicit and implicit parts are comme
surate @proportional to (h/t0)2], but have opposite signs
Therefore the errors of this scheme forh,t0 , C1;C2 can
be smaller than those of the Runge–Kutta method with
similar approximation scheme. The equations relat
(v,u,n) i ,m to (v,u,n) i 21,m ~for the mth spectral componen
x5mhx , wherem51,2, . . . ,M andhx is the frequency in-
crement! can be derived from the last three equations in~5!.
After integrating piece-wise interpolated functions and so
ing the system of algebraic equations analytically, one h

v i 11~x!5H v i~x!2
hx

2
ui~x!2

ni~x!h

6
~2ei1ei 11!J 1

Z
,

v i 11~x!5v i 11~x!1
hx

2
@v i 11~x!1v i~x!#,

ni 11~x!5ni~x!1
h

6
@v i 11~x!~2ei 111ei !

1v i~x!~2ei1ei 11!#,

Z511S hx

2 D 2

1
h

6
~2ei1ei 11!2.

The integral Y(t), based on the resulting values o
v i ,m5v(t i ,xm) ~see Eq.~7!!, can be calculated using simpl
methods like the trapezoidal rule, since oscillations in
spectrum of functionv(t,x) are effectively ‘‘damped’’ in
the integral by the exponential factorg(x).

In solving the resulting difference problem, we must c
culateYi5Y(t i) at the upperi th level of each layer. To this
end, the algorithm iteratively improves the calculated va
of Yi

l ( l 51,2, . . . ,L), which was initialized with the value
Yi

05Yi 21
l . Convergence of subsequent calculations ofYi

l 11

based onYi
l is determined by the smallness of the me

width h in comparison with the dimensionless parametert0 .
As follows from computer simulations, given a mesh wid
that ensures acceptable accuracy of calculated functions
a several-decade range of the dimensionless variablet, L
52 or 3 iterations typically suffice.

The technique for calculating the responsee(t) of a mi-
crocavity to external field was tested by analyzing seve
cases when analytic solutions could also be found. In p
ticular, calculations were performed for an empty Fabr
Perot cavity (C50), a small area of the input pulse, an
transmission of a ‘‘soliton’’ through a thin film when th
photon lifetime is vanishingly small (t0→0).18 Numerical
calculations on embedded uniform meshes demonstrated
form convergence of the numerical errors ine(t) with de-
creasing step sizeh, and stability of calculations against e
rors in the initial values due to a finite shift in the initial tim
from which the equations were integrated.

Note that in a typical calculation for a ‘‘soliton-like’’
2p-pulsee0(t) ( d̃50.5) in a cavity witht050.1 and non-
linearity parameterC51 over time intervalt5@23,10#, the
absolute error of calculatede(t) with step sizeh50.05 and
hx50.1 forL53 is estimated to be below 0.03~less than 3%
of the peak function value!. The CPU time required by the
code developed for the PC AT-286 was several tens of s
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onds. The accuracy of a similar technique developed
solving differential equations is described in det
elsewhere.21
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Self-induced transparency for ultrashort pulses propagating in a multilevel quantum
medium

A. Yu. Parkhomenko
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We study theoretically the phenomenon of self-induced transparency for ultrashort pulses
~videopulses! propagating in a multilevel quantum medium under conditions in which the method
of slowly varying amplitudes and phases breaks down and the pulse spectrum substantially
overlaps the quantum transitions. A special class of transitions with one common level is
considered. We find that the dynamics of the videopulses in such a medium is described
by a double sine-Gordon equation. We establish the conditions under which steady-state traveling
0p-, 2p-, and 4p-videosolitons are formed. It is found that 4p-videosolitons can propagate
both in equilibrium media and in some nonequilibrium media, while 0p-videosolitons can
propagate only in nonequilibrium media. We study amplification processes in highly
nonequilibrium systems and show that, depending on the initial state of the medium, 2p- and
qp-pulses (0,q,1) with increasing amplitudes may be formed. We conclude that the
amplification of an ultrashort pulse occurs due to an increase in the photon number density and
to an increase in the frequency of each photon. Finally, we study the possibility of an
electromagnetic autosoliton being formed in a nonequilibrium dissipative medium.
© 1998 American Institute of Physics.@S1063-7761~98!00411-9#
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1. INTRODUCTION

The phenomenon of self-induced transparency, disc
ered by McCall and Hahn1 in 1967, served as a powerfu
impetus to develop nonlinear resonance optics for nano-
picosecond pulses. In view of the resonant nature of the
teraction, the approximation of a two-level medium is co
monly used in theoretical studies of self-induced transp
ency. Moreover, in solving the wave and material equati
the approximation of slowly varying amplitudes and pha
became very popular.2 In all fairness it should be said that i
the 1970s several theoretical papers appeared that did no
this approximation.3–7 But at the time such papers were mo
of a purely theoretical nature, since the femtosecond ba
for pulse lengths had yet to be overcome. The possibility
actually generating ultrashort~femtosecond! pulses in labo-
ratories, each pulse ‘‘holding’’ about one period of optic
oscillations,8–10 stimulated further theoretical studies of se
induced transparency that did not use the approximation
slowly varying amplitudes and phases.11–13

Since an ultrashort pulse is not a monochromatic sig
we cannot use the idea of a pulse envelope, so that there
way in which the approximation of slowly varying ampl
tudes and phases can be used. In some cases the appro
tion of a two-level medium is still valid. For instance, this
the case if the pair of levels under investigation is far fro
the other quantum levels of the medium. Theoretical stud
of the propagation of ultrashort pulses in two-level quant
media have shown that electromagnetic videosolitons,
8641063-7761/98/87(11)/11/$15.00
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i.e. solitons with no high-frequency component, can form
such media.

In particular, when the spectrum of an ultrashort pu
substantially overlaps the quantum transition under consi
ation, the electric field of the pulse~and not of the envelope!
obeys the sine-Gordon equation.14–16 It is a well-known fact
that in the case of resonant self-induced transparency
envelope of the electric field of a monochromatic pulse a
obeys this equation. In view of this it can be said that t
soliton modes of propagation of broadband ultrashort pu
in highly excited absorbing media belong to the phenome
of self-induced transparency by analogy with the correspo
ing effect for monochromatic signals. The spectrum of
ultrashort pulse is extremely broad, so that more than o
several quantum transitions interact with it simultaneousl

The present paper is devoted to a theoretical study
self-induced transparency when an ultrashort pulse pro
gates in multilevel quantum media and the pulse spect
overlaps all allowed transitions.

2. SOLUTION OF THE SYSTEM OF MATERIAL EQUATIONS

We write the system of material equations for the e
mentsLmk (m,k51,2, . . . ,N) of the density matrixL̂ of an
N-level system in the form

]Lmk

]t
5 ivmkLmk1 i @ L̂,Â#mk , ~1!
© 1998 American Institute of Physics
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where vmk52vkm is the frequency of the transition be
tween themth andkth levels.

The transition matrixÂ is given by the formula

Â5
1

\ S 0 d12–E d13–E ••• d1N–E

d21–E 0 d23–E ••• d2N–E

A � A

A 0 dN21, N–E

dN1–E dN2–E ••• dN,N21–E 0

D .

~2!

Here \ is Planck8s constant,E is the electric field of the
ultrashort pulse,dmk (k,m51, . . . ,N) are the matrix ele-
ments of the dipole moments of the allowed quantum tra
tions. In ~1! there is no summation over the repeated indi
m andk.

We will now assume that the initial pulse applied to t
medium is linearly polarized. Obviously, in the course of t
propagation of the pulse in the medium, the pulse’s polar
tion plane does not change orientation. In this case the ve
of the induced dipole moment is collinear with the elect
field of the ultrashort pulse. Then the matrix elementsdmk

and their projections on the direction ofE are
time2independent. This situation corresponds
p2transitions, in which the magnetic quantum number d
not change, the matrix elementsdmk are real, and due to its
hermiticity the transition matrixÂ is symmetric (Amk

5Akm). Bearing all this in mind, we can go from the vect
quantitiesE anddmk to the scalar quantitiesE anddmk .

To solve the self-consistent problem of the interaction
an ultrashort pulse and the medium we combine the sys
of material equations~1! with the Maxwell equation, which
in view of the collinearity of the electric field of this puls
and the induced dipole moment can be written in sca
form:

DE2
1

c2

]2E

]t2
2

g

c2

]E

]t
5

4p

c2

]2P

]t2
. ~3!

HereD is the Laplacian operator,c is the speed of light, and
P is the polarization of the medium consisting ofN-level
atoms interacting with the ultrashort pulse and is given
the formula

P5 (
mÞk

dmkLmk . ~4!

The phenomenological constantg allows for dissipation re-
lated to losses due to the effective conductivity of the m
dium and scattering by quantum levels located far from th
considered here.17,18

The condition that the spectrum of the ultrashort pu
overlaps all the allowed transitions can formally be writt
as an inequality,14–16

vmktp!1, ~5!

valid for all m andk. Heretp is the characteristic time scal
associated with the ultrashort pulse~1! by the method of
successive approximations in the parametersvmk (m,k
i-
s

-
tor

s

f
m

r

y

-
e

e

51, . . . ,N). Assuming that in the zeroth approximatio
vmk50 for all m andk, we write the system~1! as follows:

]L̂ ~0!

]t
5 i @ L̂ ~0!,Â#. ~6!

The upper index in parentheses corresponds to the orde
approximation in the parametervmktp .

Generally speaking, the analysis of~6! is extremely
complicated.19 However, under the conditions adopted in th
paper~time independence and the fact that the matrix e
mentsdmk are real!, the matrixÂ, obviously, commutes with
the integral ofÂ with respect to time, i.e.,

F Â~ t !,E
2`

t

Â~ t8! dt8G50. ~7!

In fact, we can write~7! as

(
k

S ]umk

]t
ukn2umk

]ukn

]t D50,

where

umk52E
2`

t

Amk dt85
2dmk

\ E
2`

t

E dt8.

This clearly shows that each term in the above sum is ze
Since condition~7! is sure to be met~see Ref. 19!, the

solution of ~6! can be written in symbolic form:

L̂~ t !5expS 2
i û

2
D L̂~2`!exp

i û

2
, ~8!

whereû52*2`
t Â(t8) dt8, andL̂(2`) is the density matrix

of the medium before the ultrashort pulse was applied,

L̂~2`!5S r11 0 ••• 0

0 r22

A �

0 rNN

D . ~9!

To make our reasoning more specific and simple,
assume that the only allowed transitions are those that
through a common level~Fig. 1!. Suppose that the number o
this level is j . Then the only elements in the symmetric m
tricesÂ andû that are finite are those of thej th row andj th
column, with the exception of the diagonal elementsAj j and
u j j . This model is realized in many physical problems.
N53 andN54 (N is the overall number of quantum leve
involved in the problem!, the model describes the optica
properties of wide-gap insulators (j 52 and j 51 for N53,
and j 53 for N54) ~Refs. 20–22!. For instance, forN54
the first level corresponds to the electron states of the vale
band, the second level corresponds to the same elec
states and the excited states of optical oscillations of
crystal lattice, and the third and fourth levels correspond
the subbands of the conduction band, the subbands b
strongly and weakly coupled to the valence ban
respectively.22 For j 51 the model describes indirect ban
to-band transitions in multivalley semiconductors23 and elec-
tric dipole transitions between the Zeeman sublevels in
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Voigt geometry, where the polarization plane of the pu
and the direction of pulse propagation are perpendicular
external magnetic field.24 Another well-known example is
the Cu2O crystal, whose excitonic spectrum corresponds t
distinct series of transitions withj 51 ~Ref. 25!. If j 5N
holds we have, e.g., models of media capable
phosphorescing.26 In this case the ground state is thermod
namically stable, while all intermediate states are metasta
Phosphorescence is observed at frequencies correspond
the transitionsN21→1, N22→1, . . . , 2→1.

Moreover, anN-level quantum system with transition
involving a common level is of interest by itself as one of t
simplest generalizations of a two-level system under con
tions of spectral overlap of the quantum levels by the field
the ultrashort pulse.

Clearly, the matrixû, in which only the elements of the
j th row and thej th column, with the exception ofu j j , are
nonzero, obeys the following relation:

û2n5 û2S (
i 51

N

u i j
2 D n21

, û2n215 ûS (
i 51

N

u i j
2 D n21

, ~10!

wheren51,2,3, . . . .
Expanding exp(6iû/2) in a Maclaurin series in power

of (6 i û) and using~10! to sum the series, we find

expS 6
i û

2
D 5 Î 2

û2

u2S 12cos
u

2D6 i
û

u
sin

u

2
, ~11!

where

u52S (
i 51

N

u i j
2 D 1/2

5
2D j

\ E
2`

t

E dt8,

D j5S (
i 51

N

di j
2 D 1/2

,

FIG. 1. Diagram of allowed quantum transitions have one common levj
~the heavy horizontal line!. The overall number of levels is arbitrary.
e
e

a

f
-
le.
g to

i-
f

and Î is the identity matrix.
The structure of the matrixû2 is as follows~no summa-

tion over j ):

~ û2!mn5um ju jn for m,nÞ j ,

~ û2!m j5~ û2! jm50 for mÞ j ,

~ û2! j j 5 (
k51

N

u jk
2 .

Substituting~11! into ~8!, we find the following elements
of the matrixL(t):

L jk
~0!5 i

djk

2D j
S S r j j 2

D j r
2

D j
2 D sinu12S D j r

2

D j
2

2rkkD sin
u

2D ,

kÞ j , ~12!

L j j
~0!5r j j cos2

u

2
1

D j r
2

D j
2

sin2
u

2
, ~13!

Lmk
~0!5rmk1

djmdjk

D j
2 S r j j sin2

u

2
22~rmm1rkk!sin2

u

4

14
D j r

2

D j
2

sin4
u

4D , ~14!

wherem,kÞ j , andD j r
2 5(k51

N djk
2 rkk .

Settingm5k in ~14!, we arrive at an expression for th
population of themth quantum level. As expected, Eqs.~13!
and ~14! obey the condition(m51

N Lmm
0 51.

In the first approximation in the parametervmktp , Eq.
~1! becomes

]Lmk
~1!

]t
5 ivmkLmk

~0!1 i @ L̂ ~0!,Â#mk . ~15!

In the case at hand the polarizationP can be written as
follows:

P5n(
j 51

N

djk~L jk1Lk j!, ~16!

wheren is the density ofN-level atoms.
Using ~15!, we write

]

]t
~L jk

~1!1Lk j
~1!!5 iv jkL jk

~0!1 ivk jLk j
~0!

1 i (
m51

N

$Ajm~Lkm
~0!2Lmk

~0!!

1Amk~Lm j
~0!2L jm

~0!!%. ~17!

In view of the hermiticity of the density matrix,Lkm
(0)

5Lmk
(0)* for all m and k. According to ~12! and ~14!, the

elementsL jm
(0) are purely imaginary, while the elementsLkm

for k,nÞ j are real. Moreover, due to the structure of t
transitions,Amk50 for m,kÞ j . Hence the expression in
braces in~17! vanishes and we have
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]

]t
~L jk

~1!1Lk j
~1!!52ivk jL jk

~0! .

Combining this with~16! and ~12!, we find that

]P

]t
52in (

k51

N

dk jvk jLk j
~0!

5
n

D j
S D j v~r j j 2Rj !sinu

12~D j vRj2D j vr!sin
u

2D , ~18!

where

D j v5 (
k51

N

dk j
2 vk j , D j vr5 (

k51

N

dk j
2 rkkvk j ,

Rj5
D j r

2

D j
2

. ~19!

Substituting~18! into ~3!, we arrive at a double sine
Gordon equation with damping for the electric field of t
ultrashort pulse:

Du2
1

c2

]2u

]t2
2

g

c2

]u

]t
5a sinu1b sin

u

2
, ~20!

where

a5
8pn

\c2
D j v~r j j 2Rj !, b5

16pn

\c2
~D j vRj2D j vr!. ~21!

Equations~19! and~21! clearly show that in the case o
a two-level system withj 51 we have

b50, a52
16pnd21

2 v21W`

\c2
,

whereW`5(r222r11)/2 is the initial population inversion
of the medium. Then atg50 Eq. ~20! becomes the sine
Gordon equation found for this case in Refs. 14–16. We a
note thatb50 also for the case of anN-level medium, pro-
vided thatj 51 and that before the light pulse was applied
the medium only the ground level was populate
(r1151).

If in ~21! we setN53 for j 52 and j 53, andN54 at
j 53, we arrive at the expressions fora and b derived in
Ref. 27. We also note that the double sine-Gordon equa
appears in the theory of self-induced transparency for a t
level medium with a fivefold degenerate second level whe
resonant monochromatic pulse propagates in that med
~hereb/a51/2) ~Ref. 28!. Below we use Eq.~20! to study
the various modes of propagation of ultrashort pulses i
multilevel quantum medium.

3. PROPAGATION IN THE STEADY-STATE PULSE MODE

Let us suppose that a pulse is propagating along thz
axis with a constant velocityv. Depending on the initial state
o

,

n
o-
a
m

a

of the medium, there are three different cases that allow
the propagation of an ultrashort pulse in steady-state mo
in the absence of dissipation (g50).

1. a.0 andb.0. The solution of Eq.~20! has the form

u54 arctan~A11k2cschj!, ~22!

E5
2\

Dtp

k sechj

11k2sech2j
, ~23!

where

j5
t2z/v

tp
, k5S 2a

b D 1/2

.

Here the relationship between the velocityv of the pulse
propagation and the pulse lengthtp is given by the formula

1

v2
5

1

c2
1

b

2
~11k2!tp

2 . ~24!

Combining~13! and ~14!, we find an expression for the
population of the medium:

L j j 5r j j S 11k22sinh2j

k21cosh2j
D 2

14Rj

~11k2!sinh2j

~k21cosh2j!2
, ~25!

Lmm5rmmS 12
4dm j

2

D j
2

11k2

k21cosh2j
D

1
4dm j

2

D j
2

~~11k2!Rj1r j j sinh2j!~11k2!

~k21cosh2j!2
, mÞ j .

~26!

In accordance with~23!, the profile of the electric field
of a traveling ultrashort pulse is double-humped~Fig. 2!. The
hump separationD̃52j* is determined by the condition
sechj* 51/k, k.1. The relative depth of the dip
Emax/Emin , is equal to (11k2)/2k.

Note that in contrast to classical self-induced transp
ency, the expression~23! is written for the electric field of
the pulse rather than for the pulse8s envelope. In accordanc
with this, here and in what follows we sometimes call
ultrashort pulse a videopulse, and solitonlike solutions
self-induced transparency for an ultrashort pul
2pn2videopulses (n50,1,2). From~23! it follows that the
area of the signal~23! is

F[
2D

\ E
2`

`

E dt54p,

so that we call this signal a 4p-videopulse.
The conditionsa.0 andb.0 are met, say, for a ther

modynamically equilibrium medium in transitions betwe
the levels considered here, which form a series withj 51.
Let us analyze this case in detail. Before the pulse is app
to the medium, the quantum levels of the medium are po
lated according to the Boltzmann distribution

rkk5
1

Z
expS 2

\vk1

kBT D , k51,2, . . . ,N, ~27!
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whereZ5(m51
N exp(2\vm1 /kBT) is the partition function,kB

is Boltzmann’s constant, andT is the absolute temperature
Here we have the obvious inequalitiesr11.r22.r33.•••

.rNN . As T drops to absolute zero,k→`. The humps in
the pulse in this case move infinitely far from one anoth
and the field in the dip vanishes. Thus, the 4p-videopulse
splits into two 2p-videopulses infinitely distant from eac
other, with each corresponding to the case whereb50. Then
Eq. ~20! becomes a sine-Gordon equation who
2p-videopulse and the corresponding expressions for
medium populations are

u54 arctan exp
t2z/v

tp
, ~28!

1

v2
5

1

c2
1atp

2 , ~29!

E5
\

Dtp
sech

t2z/v
tp

, ~30!

L115tanh2
t2z/v

tp
, ~31!

FIG. 2. Dynamics of the electric field of ultrashort pulses when they pro
gate in a medium in thermodynamic equilibrium fora.0 andb.0 ~a! and
the corresponding population dynamics in the quantum level~b, c, and d!
with j 51.
r,

e
e

Lmm5
dm j

2

D j
2
sech2

t2z/v
tp

, m52,3, . . . ,N, ~32!

wheretp is the length of the ultrashort pulse~this quantity is
a free parameter of the solution!.

As the pulse~30! propagates, the atoms first go from th
ground state to excited states and then return to the gro
state~see Eqs.~31! and ~32!!. In this case the dynamics o
the ultrashort pulse is the simplest and differs little from th
for a two-level system.14,16The main difference is that in ou
case the ultrashort pulse acts on the medium in such a
that many excited states become populated~see Eq.~32!!,
while in a two-level system only one excited state becom
populated.

When the upper levels are initially populated (TÞ0),
bÞ0. This, as Eq.~30! implies, reduces the velocity o
propagation of the ultrashort pulse. Our analysis has sho
that the thermodynamically equilibrium population of the e
cited states couples the two 2p-videopulses into one
4p-videopulse, which in view of its high ‘‘inertia’’ propa-
gates slower than a 2p-videopulse~see Eq.~19!!, which is
capable of forming in a medium at ultralow temperatur
whenkBR!\v21 holds.

Figure 2 depicts the dynamics of the populations
quantum levels in an equilibrium medium atTÞ0 that ac-
companies the propagation of an ultrashort pulse in suc
medium. The distance between the dynamical minima ofL11

exceeds the distance between the humps of the ultras
pulse. The coordinatesj1* of the minima ofL11 can be found
from the condition that sinhj1*56(11k2)1/2. Combining this
with ~25! yields the minimum value of the ground-leve
population,L11min5R1. Thus, in the process of propagatio
of the 4p-videopulse the ground state does not become c
pletely depleted. The dynamical maximum ofL11 corre-
sponds to the dip in the electric-field profile of the ultrash
pulse (j50). Equation~25! clearly shows that at this poin
L115r11. Thus, in the process of propagation of th
4p-videopulse~23!, the medium undergoes excitation an
de-excitation twice. The transition of atoms from the grou
state as a result of the interaction of the medium and
pulse ~23! is accompanied by a rise in the populations
excited states. The positions of the corresponding max
jm* (m52,3, . . . ,N) are determined by the equation
sinhjm*56(fm(11k2))1/2, where

f m5
r111rmm22R1

r112rmm
.

SinceR15Dr
2/D2,r22 holds, we have

f m.122
r222rmm

r112rmm
, m.2,

whence f 2.1. At the same time, the maxima ofLmm (m
.2) are closer to each other and to the center of the dip
the electric-field profile of the ultrashort pulse. Allowing fo
the fact that(m52

N Lmm512L11, we conclude that as num
ber of the level increases, the maxima of the correspond
populations move closer to one another monotonically~see
Fig. 2!. As the absolute temperature rises, the humps in

-
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ultrashort pulse~23! move closer and the dip becomes mo
shallow. If the temperature of the medium is so high that
initial populations of all the levels become essentially equ
k2→1. Then the humps of the ultrashort pulse merge a
and the central dip disappears. In this case, as Eqs.~28! and
~29! imply, the dynamics of the populations of all the leve
ceases and we arrive at the hole-burning effect well kno
from optics.2

The conditionsa.0, b.0, and j 51 can be realized
not only in the case of a thermodynamically equilibrium m
dium satisfyingk.1 (k→` at T50 andk→1 asT→`).
The case withk,1 and yeta.0 andb.0 corresponds to a
weakly nonequilibrium medium. In this situation the cent
dip in the electric-field profile disappears~as it does when
T→`), and the ultrashort pulse is a bell-shaped videopu
with its peak at the middle.

2. a,0 andb.0. In this case the solutions for the fie
and populations can be found from Eqs.~23!–~26! by replac-
ing k2 with 2k1

2522uau/b, while the parameterk1 is re-
stricted by the conditionk1

2,1. The electric field of the ul-
trashort pulse is a 4p-videopulse with a tapered crest~Fig.
3!. From the inequalitiesa,0, b.0, andk1,1 and from
~21! we find the conditions that the medium parameters m
meet before the ultrashort pulse is applied to the medium

D j vr

D j v
,r j j ,Rj . ~33!

Analysis of ~33! is the simplest and the most graphic
we are dealing with a three-level system. We also assu
that j 51. Then the conditionD j vr /D j v,R1 is equivalent to
the inequalityr22.r33. Assuming for the sake of simplicity
that r3350, we find that

d21
2 v21

2d21
2 1d31

2 v31

,r11,
d21

2

2d21
2 1d31

2
,

1

2
.

Sincer22512r11 at r3350, we have

1

2
,

d21
2 1d31

2

2d21
2 1d31

2
,r22,

d21
2 v211d31

2 v31

2d21
2 v211d31

2 v31

.

Thus,r22.r11 holds and the medium is nonequilibrium
If, in addition, we haved31

2 @d21
2 , then the nonequilibrium

condition becomes stronger:r22@r11. Hence, a steady-stat
4p-videopulse can form in a highly nonequilibrium mediu
with populations of the first and second levels inverted. N
withstanding this fact, the medium remains absorbing, si
according to the conditiond31

2 @d21
2 transitions from the first

level to the third are more intensive than from the second
the first. This is the reason why, in the given situation, f
mation is possible of steady-state 4p-videopulses with a
steepened crest that travel with speeds smaller thanc ~see
Eq. ~24! with k2 replaced by2k1

2, k1,1 anda,0).
A steady-state 4p-videopulse can also form in an equ

librium medium if the level common to all quantum trans
tions is not the ground state, i.e.,j Þ1. Indeed, in this case a
T50 (r1151) the conditionk1

2.1 can be written as fol-
lows:
e
l,
d

n

-

l

e

st

e

t-
e

o
-

(
k51

N

dk j
2 vk1

U(
k51

N

dk j
2 vk jU.1.

At the same time, we havea,0 if (k51
N dk j

2 vk j,0. Since
vk j,0 holds fork, j , the conditiona,0 is sure to be met
in an equilibrium medium withj Þ1. Figure 3 depicts the
population dynamics in the quantum levels in a three-le
nonequilibrium medium with j 51 when a steady-stat
4p-videopulse with a tapered crest propagates in the
dium.

3. a.0 and b,0. The corresponding solution of Eq
~20! for the electric-field profile of an ultrashort pulse is
steady-state traveling 0p-videopulse:

E52
2\

D jtp
Ak0

221
tanhj sechj

11~k0
221!sech2j

, ~34!

where

j5
t2z/v

tp
, k0

25
2a

ubu
.1.

The velocityv of propagation of the 0p-videopulse is
given by the formula

1

v2
5

1

c2
1

ubu
2

~k0
221!tp

2 , ~35!

FIG. 3. 4p-videopulse with a steepened crest in a three-level nonequ
rium medium~a! and the corresponding population dynamics~b, c, and d!
for a,0, b.0, and j 51. Herer33 is assumed zero andr22.r11 .
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and the population dynamics is given by expression of
type

L j j 5
r j j @cosh2j2~k0

221!#214Rj~k0
221!cosh2j

~k0
21sinh2j!2

, ~36!

Lmm5rmm14
dm j

2

D j
2 ~k0

221!

3
~k0

221!Rj1r j j cosh2j2rmm

~k0
21sinh2j!2

, mÞ j . ~37!

With allowance for~21!, the conditionsa.0, b,0, and
k0

252a/ubu.1 can be represented in the following mann

Rj,
D j vr

D j v
,r j j . ~38!

With j 51 in a three-level system, Eq.~38! implies, in
particular,r33.r22. If we then assumer2250, we get

r11.
d31

2

2d31
2 1d21

2
, r33,

d31
2 1d21

2

2d31
2 1d21

2
.

In the limit d21
2 @d31

2 , these inequalities become

r11.S d31

d21
D 2

, r33,12S d31

d21
D 2

.

These conditions are also met forr33.r11.
Note that when the pulse propagates in such a medi

the leading edge of the 0p-videopulse lowers the populatio
of only the ground state~Fig. 4!. Thus, being nonequilib-
rium, the medium remains remain absorbing fork0

2.1. On
the other hand, the middle section of the pulse (E50) re-
stores the initial population of the ground state and low
the population of the third level, moving some of the ato
to the middle level. Combining~21! with ~27!, we find that in
the case of thermodynamic equilibrium,

b5
16pn

\c2D j
2Z

(
k.m

dk j
2 dm j

2 vkmFexpS 2
\vm j

kBT D
2expS 2

\vk j

kBT D G>0.

The conditionb,0 is not met, so that 0p-videopulses
may form only in a nonequilibrium medium.

4. AMPLIFICATION

Now suppose that the restrictions imposed on the co
ficientsa andb in Sec. 3 are not met. Then, in the absen
of dissipation, a nonequilibrium medium will irreversibl
transfer part of its energy to the optical pulse, amplifying t
latter. Below we study the specific features of such amp
cation.

At g50 Eq. ~20! has a Hamiltonian representation:

] P̃

]t
52

dH

du
,

]u

]t
5

dH

d P̃
,

e

:

,

s
s

f-
e

e
-

whereH5*H d3r , and the Hamiltonian density is

H5
c2

2
P̃21

1

2
~¹u!22a cosu22b cos

u

2
. ~39!

The ‘‘vacuum’’ values ofu (u5const), which minimize
H, can be found from the condition that the function

2S a cosu12b cos
u

2D
be at its minimum. The possible areas of the propaga
pulses are equal to these ‘‘vacuum’’ valuesuv . For instance,
in the steady-state propagation modes studied in Sec
uv54pn (n50,1,2, . . . ) for bÞ0. Obviously, in the ampli-
fication modes the area of the ultrashort pulse is also de
mined by the valuesuv . For instance, for a two-level me
dium (b50) with a,0 we haveuv5p ~see~39!!, which
coincides with the results of Refs. 14 and 16. In our ca
amplification occurs when any one of the following thr
conditions is met.

1. a,0 and b,0. Here for k[(2a/b)1/2.1 the
Hamiltonian densityH has its minimum at the valueum

specified by the condition

cos
uv

2
52

1

k
.

But for k,1 the value ofH is minimal at uv52pn (n
50,1,2, . . . ). Suppose than an ultrashort pulse with a sm
area

FIG. 4. Dynamics of the electric field of ultrashort pulses in their propa
tion in a three-level nonequilibrium medium~a! and the population dynam-
ics ~b, c, and d! for a.0, b,0, and j 51. Herer22 is assumed zero and
r33.r11 .
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F[
2D j

\ E
2`

`

E dt8

is incident on the medium. In the first case (k.1), the pulse
is amplified with the areaF increasing simultaneously to th
valuesuv52arccos(k21). Clearly, the given area may var
from F50 (k51) to f5p (k5`) and may equalqp,
where generallyq is an irrational number satisfying the con
dition 0,q,1. Hence we call this amplified signal an irra
tional signal. Whenk,1 holds, in the process of being am
plified the ultrashort pulse becomes a non-steady-s
2p-videopulse with an increasing amplitude. After theqp-
and 2p-videopulses have traveled in the medium, we c
find the population levels by~13! and ~14! at u5qp andu
52p, respectively.

2. a,0 andb.0. Amplification is possible if

k1[S 2uau
b D 1/2

.1,

since for k1,1 4p-videopulses with a steepened crest a
formed~see Sec. 3!. The Hamiltonian densityH is minimal
at uv5qp, whereq5p21arccos(k1

21). The valueuv52p
corresponds to the maximum ofH, and therefore is not in-
cluded in our discussion. Settingu5qp in ~13! and~14!, we
find the level populations after the passage of the ampli
qp-videopulse.

3. a.0 andb,0. Reasoning along the same lines as
the first two cases, we conclude that the initial signal is a
plified if

k0[S 2a

ubu D
1/2

,1.

The largest area of the videopulse is 2p. Accordingly,
the final populations can be found from~13! and ~14! with
u52p.

Now let us study the dynamical features of the ampl
cation of an ultrashort pulse in a spatially one-dimensio
case. Following Refs. 14 and 16, we introduce the s
similar variableh5z22c2t2. Then at g50 Eq. ~20! be-
comes

hu91u85
a

4
sinu1

b

2
sin

u

2
, ~40!

where the prime onu indicates a derivative with respect t
h.

Suppose that a functionu(h) is a solution of Eq.~40!.
Then the electric field of the ultrashort pulse is

E52
\c2

D j
tu8~h!, ~41!

i.e., the amplitude of the signal increases in proportion tot.
Since in the limit the area of the ultrashort pulse reaches
maximum value and ceases to increase, the amplificatio
this pulse is accompanied by self-squeezing. Here the si
length tp;t21. Following Ref. 29, we setu5uv1« («
!1) in Eq. ~40!. As a result the equation reduces to

h«91«85m«, ~42!
te

n

e

d

-

-
l

f-

ts
of
al

where for a 2p-pulse

m5
a

4S 12
b

2a D.0,

and for aqp-pulse (0,q,1)

m52
a

4S 12S b

2a D 2D.0.

The solution of Eq.~42! in terms of the variablesz andt
is

«;J0~2Am~c2t22z2! !, ct.uzu,

«;K0~2Am~z22c2t2! !, ct,uzu.

For the electric field of an ultrashort pulse we have

E;
t

Ac2t22z2
J1~2Am~c2t22z2! !, ct.uzu, ~43!

E;
t

Az22c2t2
K1~2Am~z22c2t2! !, ct,uzu, ~44!

where J1(x) and K1(x) are, respectively, the Bessel an
modified Hankel functions of the order 1. Combining th
with ~13! and ~14!, we see that as the trailing edge of th
amplified signal passes, the values of the populations of
quantum levels of atoms oscillate about the quasiequilibri
valuesL j j (uv) andLmm(uv) (mÞ j ). Here the amplitude of
these oscillations decays according to the asymptotic be
ior of the Bessel function. On the other hand, the elec
field of the pulse varies according to the damped oscillati
mode forct.uzu and decreases very rapidly~exponentially,
for all practical purposes! to zero forct,uzu.

Let us study the two limits,uau@ubu anduau!ubu. Then
Eq. ~20! at g50 becomes an ordinary sine-Gordon equatio
Equation~40! corresponding to these case has solutions foE
that are nonzero primarily ath50 ~Refs. 14, 16, and 28!.
Hence in the vicinity of this principal maximum we can ig
nore the termhu9 in ~40! and write the approximate solu
tions for the field in the neighborhood ofz5ct:

E5l
\v~z!

D j
sechFv~z!S t2

z

cD G , ~45!

where v(z)5uaucz/2 and l51/2 for uau@ubu, and v(z)
5ubucz/4 andl51 for ubu@uau.

Setting z22c2t2'2z(z2ct) in ~43!, we establish the
behavior of the electric field outside the principal maximu

E;z
J1~2Av~z!~ t2z/c! !

2Av~z!~ t2z/c!
. ~46!

Figure 5 depicts the electric-field profiles of an ultrash
pulse two subsequent values of the coordinateszm5z1 and
zm5z2.z1 of the principal maximum.

Equations~45! and ~46! clearly show that the function
v(z), which increases linearly with the distance covered, c
be interpreted as the frequency of the photons of the gi
pulse. Equation~45! implies that the frequency and ampl
tude of the electric field increase in proportion toz. The
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pulse intensityI can be expressed by the formulaI;E2

;nph\v, wherenph is photon number density in the puls
SinceE;z andv;z, we conclude thatnph;z. Hence, the
amplification of an ultrashort pulse withv@uvm ju occurs
due to the increase in the frequency of each photon and
to the increase in the photon number density. Both par
eters increase in proportion to the distance covered by
pulse. This result refines the conclusion drawn by Belen
et al.,14,16 who stated that the amplification of an ultrasho
pulse is due solely to the increase in photon frequency.

The last statement is entirely true when an ultrash
pulse interacts with BKP transitions, which are induced
the square of the field rather than by the field proper.30

5. AN AUTOSOLITON IN A NONEQUILIBRIUM MEDIUM

Suppose that an ultrashort pulse is propagating in a n
equilibrium medium with dissipation (gÞ0). Then the en-
ergy transferred by the excitated atoms to the pulse field
to stimulated transitions can dissipate irreversibly in the m
dium due to extraneous losses determined by the param
g. When these two opposing processes balance each oth
stable structure of in the form of an autosoliton m
develop.18,31 After the autosoliton has traveled through t
medium, the medium does not return to its initial state,
would be the case if the medium were conservative. I
dissipative medium the law of energy conservation does
hold for a system consisting ofN-level atoms and an elec
tromagnetic field of the pulse. Hence the atoms do not h
enough time to go back to the initial quantum states a
irreversibly release part of their energy to the other com
nents of the medium.

We seek the solution of Eq.~20! in the form of a wave
traveling along thez axis,u5u(t2z/v). This yields

S 1

v2
2

1

c2D ü2
g

c2
u̇5a sinu1b sin

u

2
, ~47!

where the dot onu stand for the derivative with respect t
the variablet2z/v.

We choose the ansatz31

FIG. 5. Electric-field profiles of ultrashort pulses in a nonequilibrium a
plifying medium, described by Eqs.~45! and~46!, for two subsequent value
of the coordinatezm of the principal maximum~at the extreme left!, zm

5z1 and zm5z2.z1. Amplification is accompanied by an increase in t
frequency of the pulse photons and the photon number density.
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u̇5
4

tp
sin

u

2
, ~48!

whenceü5(4/tp
2)sinu. Substituting this into~47! and ~48!

and equating the corresponding coefficients of sin(u/2) and
sinu, we find that

tp52
4g

bc2
,

1

v
5

1

c
A11aS 2g

bcD 2

. ~49!

Integrating~48!, we arrive at an expression for the ele
tric field E5(\/2D j )]u/]t of the autosoliton:

E5
\

D jtp
sech

t2z/v
tp

. ~50!

The autosoliton~50! is a unipolar videopulse. It is stabl
if E.0 holds, since otherwise the vectorsE and dm j (m
Þ j ) point in opposite directions, which contradicts the pri
ciple of stability of a state with minimal energy. From~50!
we conclude thattp.0, which yieldsb,0. Moreover, the
solution~50! has physical meaning ifv,c. Hence~see~49!!
a.0. Thus, an autosoliton of the form~50! can develop only
in such a nonequilibrium medium for whicha.0 and
b,0. It will be recalled that in this case, in the absence
dissipation, either a 0p-videopulse is formed (k0

5(2a/ubu)1/2.1) or the process of amplification and se
squeezing of a pulse with maximum area equal to 2p (k0

,1) takes place. The area of the autosoliton~50! is F
52p. However, as Eqs.~49! show, no restriction on the
parameterk0 is needed for such an autosoliton to form. Ne
ertheless, there is one important restriction on the param
g, for which the inequality~5! is responsible. Equations~21!
imply ubu;16pnd2v0 /\c2, whered andv0 are the charac-
teristic values of the dipole moment and the transition f
quency, Then from~5! and ~49! we find thatg!4pd2n/\.
Substitutingd;5310218abs.u. andn;1021cm23 into this
inequality yieldsg@1014s21.

Let us consider one of the possible autosoliton format
processes. Suppose thatk0,1. Then the amplification of the
principal peak in the 2p-videopulse of type~45! and the
self-squeezing slow down due to dissipation until stabiliz
tion accompanied by a reduction in the propagation veloc
sets in.

Now we study the processes that take place at the le
ing and trailing edges of the pulse. Linearizing Eq.~20! via
the substitution u52p1« («!1) and defining « as
c(r ,t)exp(2gt/2), we reduce Eq.~20! to

Dc2
1

c2

]2c

]t2
54m̃c,

wherem̃5m2g2/16c2, with m5(a/4)(11ubu/2a).0.
Introducing the self-similar variableh5z22c2t2 ~see

Sec. 4!, we find that in the spatially one-dimensional case

E}t expS 2
gt

2 D J1~2Az !,

wherez5m̃(c2t22z2).
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Whenz.0 holds, the oscillations in the ‘‘wings’’ at firs
grow in amplitude in proportion tot, but are then quenche
by the damping exponential and finally completely disapp
in the limit t→`. For z,0 the Bessel functionJ1(2Az )
becomes the modified Hankel function, which decays ex
nentially with increasinguzu. Here, too, initial amplification
(}t) is replaced by damping. Thus, as a result of smooth
out of the ‘‘tails’’ and stabilization of the principal peak, a
autosoliton of the form~50! develops.

When an autosoliton travels in the medium, the popu
tion dynamics in the quantum levels can easily be establis
by substituting~50! into ~13! and ~14!. However, we will
determine only the final populations, by settingu52p in
~13! and ~14!. Then

L j j 5r j j ,

Lmm5S 124
dm j

2

D j
2 D rmm14

dm j
2

D j
2

Rj , mÞ j .

Thus, the population of thej th level common for all
transitions returns to its initial value. The populations of
the other levels change irreversibly. As a result we find t
when the autosoliton passes through the medium, the sta
the latter changes. This is the main difference between
case and that of an autosoliton, apart from the case
soliton traveling in a conservative medium, since such a m
dium returns to its initial state after the soliton has pas
through it ~see Sec. 3!. Another important difference be
tween the solution~50! and the videopulses examined in Se
3 that the autosoliton has no free parameters: accordin
~49! and~50!, its amplitude, speed of propagation, and leng
are rigidly determined by the parameters of the medium. T
reason is that a pulse in a dissipative medium loses the
formation about its initial state, and in the limitt→` ‘‘for-
gets’’ everything about the initial conditions. This is not th
case for solitons propagating in a conservative mediu
where the information about the initial~boundary! conditions
is retained, so that the solutions contain at least one
parameter each.

6. CONCLUSION

In this paper we have studied the various modes
propagation of ultrashort pulses in multilevel quantum s
tem in conditions where the spectra of the pulses overlap
quantum transitions under investigation. We have conside
a special, and yet fairly broad, class of transitions with o
common quantum level. Due to the spectral overlap of all
quantum transitions by the field of an ultrashort pulse,
interaction in this case can formally be considered reson
Indeed, since the spectrum of the ultrashort pulse subs
tially overlaps the frequencies of the transition, it alwa
contains spectral components that are resonant to all the
sitions. For the same reason, here inhomogeneous broa
ing does not play a decisive role since the overlap exists e
with such broadening.32 As a result we conclude that fo
ultrashort pulses satisfying condition~5!, an equilibrium ab-
sorbing medium becomes nonlinearly transparent in
sense that, after being excited by the leading edge o
r
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ultrashort pulse, the atoms are returned to their initial st
by the trailing edge, returning all the absorbed energy to
field. Notwithstanding the similarity to the mechanism
excitation–deexcitation of a medium, there are certain
portant differences in the case of self-induced transpare
for monochromatic resonant pulses. Probably, the most
portant one is the difference between the velocities of
soliton of an ultrashort pulse and of the soliton of the en
lope of a monochromatic signal. Equations~24!, ~35!, and
~21! yield an estimate for the velocities of ultrashort pulse

v;
c

A11~8pd2n/\v0!~v0tp!2
.

For a broad class of substances not undergoing a super
ant transition, 8pd2n/\v0,1 ~Refs. 33 and 34!. Then in
view of the inequality~5! we havev<c. Thus, the velocity
of a broadband ultrashort pulse propagating in an absorb
medium is only slightly smaller than the speed of light
vacuum, while the velocity of resonant solitons of the env
lope is smaller thanc by two to three orders of magnitude2

Since in the above sense all the transitions are reson
probably there can be no area theorem here~such a theorem
enables analyzing the variation in the area of an ultrash
pulse as the pulse propagates in an absorbing medium2,28!.
Instead of this we can use the method of minimizing t
Hamiltonian, which was proposed in Sec. 4.

In the present paper we have examinedp-transitions, for
which the matrixÂ ~see Eq.~2!! is real. At the same time
magnetic rotation of the polarization plane of the light wa
is explained bys-transitions, for whichÂ is complex-
valued. Such transitions start at the ground Zeeman suble
of the s state and end at the higher Zeeman sublevels of
p state (j 51). Thus it would interesting to generalize ou
approach to the case ofs-transitions. In this way we could
study the Faraday rotation of the polarization plane of
trashort pulses for arbitrary initial populations of the excit
Zeeman sublevels. In Ref. 35 this effect was studied for z
initial population.

Note that for pulses with a rotating polarization pla
condition ~7! is not met. Hence the solution~8! becomes
invalid, and we must use other methods to solve the mate
equations~6!. Even when there is spectral overlap, findin
the general solution of the material equation~1! for a matrix
Â with an arbitrary structure is extremely difficult math
ematically. Hence the study of the interaction of an ultrash
pulse and multilevel quantum systems with arbitrary tran
tion is not simple. The approximation~5! has meaning pro-
vided that the overlapped quantum levels are far from
other levels of the discrete spectrum, since otherwise
would have to account for transitions into the continuo
spectrum, or ionization, and this would complicate matt
substantially. Hence there arises the problem of correctly
counting for the effect of these distant levels of the discr
spectrum, which not overlapped by the spectrum of
trashort pulses. To do this, all quantum transitions are
vided into two groups, with one incorporating the transitio
that overlapped by the spectrum of ultrashort pulses, and
other incorporating the transitions that are not overlapped
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this spectrum. The latter group form the region of line
transparency. In Ref. 36 these two groups were interprete
independent subsystems~vibrational and electronic!. The so-
lution of the problem when quantum transitions between
two groups of levels are possible would result would me
an important generalization and progress in this area of
search.
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Numerical simulation of the ionization dynamics of a two-electron quantum system in a
femtosecond pulse

E. A. Volkova, A. M. Popov,* ) and O. V. Tikhonova
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The ionization of a simple two-electron model system, viz., the one-dimensional negative
hydrogen ion, is investigated using direct numerical integration of the time-dependent Schro¨dinger
equation. The one- and two-electron ionization probabilities as functions of frequency and
radiation intensity are obtained. It is shown that two-electron ionization is mediated by both direct
and sequential mechanisms. The stabilization of the two-electron system against the
ionization process is investigated. The data obtained are compared with calculations performed
within the one-dimensional single-particle model of H2. The photoelectron spectrum is
analyzed in the region of parameters corresponding to the single-electron ionization regime.
© 1998 American Institute of Physics.@S1063-7761~98!00511-3#
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1. INTRODUCTION

The investigation of the dynamics of atomic systems
high-intensity laser fields is presently of great interest.1 How-
ever, the theoretical description of the interaction of elect
magnetic radiation with atoms has generally been confine
the one-electron approximation. Within this approximati
the quantum system is represented in the form of a sin
electron moving in a certain effective static potential, whi
takes into account the Coulomb interaction with the nucle
as well as the partial screening of the nucleus by the rem
ing electrons. The one-electron approximation can clearly
used successfully to describe hydrogenic systems chara
ized by the presence of a single weakly bound valence e
tron moving in the field of an atomic core. However, even
this case a strong external field can significantly distort
electrostatic potential created by the atomic core, in wh
the outer electron moves, and can thereby exert an additi
influence on it. As for negative ions, they are usually ch
acterized by the presence of several~at least two! electrons in
the outer shell, which raises some question as to the po
bility of describing their ionization process in the on
electron approximation. The only exception is probably
negative hydrogen ion H2, which consists of a weakly boun
electron revolving around a core, i.e., a hydrogen ato
Therefore, it can be stated that the construction of physic
correct models of the photoionization of many-electr
atomic system is of definite interest.

Direct numerical integration of the time-depende
Schrödinger equation for a quantum system in an elect
magnetic field has permitted the investigation of the ioni
tion of one-dimensional two-electron systems without a
simplifying assumptions. For example, the ionization of t
model one-dimensional He atom was investigated in Ref
and 3, and the negative hydrogen ion was investigated
Refs. 4–6.

The dependence of the ionization probability of the s
8751063-7761/98/87(11)/10/$15.00
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tem on the radiation intensity were obtained, and the pho
electron spectra were analyzed in those studies. However
key questions which arise in describing the dynamics of tw
electron systems in an electromagnetic field, in our opini
remain unanswered. In particular, the conditions under wh
the dynamics of the system can be described in the o
electron approximation and the way in which the presence
the second electron influences the stabilization regime
dicted within the one-electron model must be ascertain
Finally, in the case of two-electron ionization, which mech
nism, the direct or sequential, more faithfully describes
physical essence of the process?

In the present work we obtain an exact numerical so
tion of the two-particle Schro¨dinger equation for the one
dimensional negative hydrogen ion in an electromagn
field. The wave function obtained is then used to calcul
the one- and two-electron ionization probabilities as fun
tions of the radiation intensity and frequency. It is shown th
two-electron ionization is a result of competition between
direct and sequential processes. The photoelectron en
spectra are obtained in the region for one-electron ionizat
The region for the existence of a stabilization regime is
termined. The possibility of describing the dynamics of H2

within the one-electron model is investigated.

2. TWO-PARTICLE ONE-DIMENSIONAL MODEL OF THE
NEGATIVE HYDROGEN ION

It is assumed within the one-dimensional model that
interaction of the electrons with the nucleus and with o
another can be described by a smoothed Coulomb poten7

Therefore, the Hamiltonian of the system can be writt
in the form

H5(
i 51

2

~Ti1V~xi !!1V12~x1 ,x2!. ~1!
© 1998 American Institute of Physics
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Here Ti is the kinetic energy of thei th electron,V(xi)5

2e2/Aa21xi
2 is the energy of its interaction with th

nucleus,V125e2/Aa21(x12x2)2 is the energy of the inter
action of the electrons with one another, anda is a smooth-
ing parameter.

It has been reported7 that a smoothed Coulomb potenti
provides a qualitatively correct description of the structure
the energy spectrum of the hydrogen atom, particularly
presence of an infinitely large number of Rydberg sta
which condense toward the continuum edge. As for
ground state, its energy is very sensitive to the choice of
value of a. Therefore, it can be expected in a two-electr
system that the energy of the bound states and their num
will depend strongly on the choice of the value of t
smoothing parameter.

We obtained stationary states corresponding to
Hamiltonian ~1! by solving the two-particle time-
independent Schro¨dinger equation

Hw~x1 ,x2!5Ew~x1 ,x2! ~2!

on a rectangular grid. In this process we used the symm
of the Hamiltonian under spatial inversion,

H~x1 ,x2!5H~2x1 ,2x2!,

and interchange of the electrons,

H~x1 ,x2!5H~x2 ,x1!.

The solution method is described in the Appendix.
The ground-state wave function of H2 for a50.92 Å is

presented in Fig. 1. The energy of this state equ
E05212.56 eV. If the binding energy of the electron in th
hydrogen atom for this value ofa, E15211.45 eV, is taken
into account, we find that the energy for detaching an e
tron from H2 ~the ionization potential! amounts toI;1.1
eV, which is fairly close to the experimental valueI'0.75
eV. We note that the bound state found for the param
value chosen is the only such state.

In Refs. 4 and 5,a5a0 ~the Bohr radius! was chosen. In
this case it turned out thatI'1.7 eV, and the number o

FIG. 1. Distribution of the probability densityr(x1 ,x2) for the ground state
of the one-dimensional negative hydrogen ion. The lines of equal probab
density correspond to 1024 ~1!, 1023 ~2!, 0.01 ~3!, 0.1 ~4!.
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bound states remained unclear: Grobe and Eberly5 assumed
the appearance of a second state in the discrete spectrum
the continuum edge. Our calculations fora5a0 show that
such a state probably exists, but the accuracy of the calc
tions must be improved to determine its energy.

We note that the single bound state in the model~as in
the real three-dimensional! negative hydrogen ion is charac
terized by a wave function which is symmetric under inte
change of the electrons. This means that the total spinS in
this state equals zero. Since intercombination transitions
forbidden in the electric dipole approximation, the state
the two-electron system always has a singlet character du
a laser pulse.

The data in Fig. 1 attest to the relative ‘‘weakening’’ o
the binding of one of the electrons in the system: states
which one of the electrons is near the attractive center, w
the other is at a considerably greater distance from it
more probable. The observed weakening of the binding
one of the electrons, of course, differs significantly from t
classical models of a weakly bound electron moving in
orbit with a radius larger than that of the inner electro
From the standpoint of our one-dimensional quantu
mechanical model, such a classical picture should co
spond to a distribution of the electron densityr(x1 ,x2) with
local maxima in regions near the pointsx1'0 and
x256xm or x2'0 andx156xm (xm is the distance from
the center to the weakly bound electron!. The real distribu-
tion of the two-electron density has a ‘‘cross-shaped’’ a
pearance, and it attains its maximum at the origin of coor
nates x15x250. However, if the two-electron function
C(x1 ,x2) is approximated by a function constructed in t
form of a symmetrized product of two one-electron orbita
u(x) andv(x), i.e.,

C~x1 ,x2!;~u~x1!v~x2!1u~x2!v~x1!!,

then for the two-electron density shown in Fig. 1 be o
tained, these orbitals must be characterized by different
persions of the coordinates, i.e., by regions of spatial loc
ization of the electrons of different sizes. For this reason,
shall henceforth refer to an outer and an inner electron. As
example of a wave function with such a structure we can
the Chandrasekhar wave function8

C~r 1 ,r 2!}exp~2r 1 /a12r 2 /a2!

1exp~2r 2 /a12r 1 /a2!

(a1'0.97a0, a2'3.53a0, a0 is the Bohr radius!, which de-
scribes the bound state of the three-dimensional negative
drogen ion.

The wave function obtained for the ground state of t
negative hydrogen ion attests to strong electron–elec
correlations in the system. In particular, as can be seen f
Fig. 1, such states are more probable when the electrons
located on opposite sides of the attractive center. T
electron–electron correlations lead to a loss of symmetry
the wave functionC(x1 ,x2) under inversion with respect to
one of the coordinate axes:x1→2x1 or x2→2x2. This fea-
ture of C(x1 ,x2) cannot be described in terms of on
electron orbitals.

ty
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TABLE I.

n 1 2 3 4 5 6 7 8 9

En , eV 211.45 26.05 23.85 22.52 21.74 21.26 20.96 20.60 20.41
n
ffi

e
in
ar
e
lik
m
i

ro
th
e

on

om
n
a
i-

n
o

n
e
-

e
no
th

ar

nd

of

s

the
on

of

-

l-
pu-
ron

he

ed

o-
oes
em.
the
m-
d to
The degree of correlation of the motion of the electro
can be characterized quantitatively by the correlation coe
cientK, which was introduced in Ref. 9. The value ofK was
calculated in Ref. 10 for the ground state of the on
dimensional H2 and He systems, which were treated with
the exact two-particular model. It was found that there
stronger correlations in the H2 system. This is because th
electron–electron interaction energy in this system, un
the helium atom, can no longer be considered small in co
parison to the interaction energy of each of the electrons w
the nucleus.

Unlike the bound state, all the excited states of H2 be-
long to the continuous spectrum. They include one-elect
continuum states, in which one of the electrons is in
discrete spectrum, while the other is in the continuous sp
trum, and two-electron continuum states, which corresp
to infinite motion of both electrons.

The one-electron continuum states are ‘‘hydrogen at
1free electron’’ systems. If the interactions of the electro
with one another are disregarded for such states and, in
dition, if the wave function of the free electron is approx
mated by a de Broglie plane wave with the wave vectork and
the energyE5\2k2/2m, then in the case ofS50 with con-
sideration of the identity principle, the one-electron co
tinuum states will be described by a spatial wave function
the form

wnk~x1 ,x2!5
1

A2
H Fn~x1!

exp~ ikx2!

A2p

1Fn~x2!
exp~ ikx1!

A2p
J , ~5!

whereFn(x) is the wave function describing the hydroge
atom in thenth stationary state, which satisfies the on
electron time-independent Schro¨dinger equation for an elec
tron in a smoothed Coulomb potential~the energiesEn of the
nine lowest states in the hydrogen atom are listed in Tabl!.
This approximation is apparently permissible, at least for
very smallk, because the potential created in space by
neutral hydrogen atom is short-range.

3. INTERACTION WITH AN ELECTROMAGNETIC FIELD

The dynamics of the system in an external laser field
described by the equation

i\
]C~x1 ,x2 ,t !

]t
5@H2e~x11x2!«~ t !cos~vt !#C~x1 ,x2 ,t !,

~6!

wherev is the frequency of the electric field of the wave a
«(t) is the pulse envelope. The envelope«(t) used in the
calculations had the form
s
-

-

e

e
-

th

n
e
c-
d

s
d-

-
f

-

I
t
e

e

«~ t !55
«0sin2

pt

2t f
, t<t f ,

«0 , t f<t<t f1tp ,

«0sin2
p@ t2~2t f1tp!#

2t f
, t f1tp<t<2t f1tp ,

~7!

wheret f andtp are the rise and decay times and the width
the plateau of the laser pulse. We sett f52T and tp55T,
whereT52p/v is the optical period. The frequency value
corresponded to\v52 and 5 eV.

For the numerical solution Eq.~6! was rewritten in the
coordinates

j5~x11x2!/A2, h5~x12x2!/A2.

Since an electromagnetic field destroys the symmetry of
Hamiltonian with respect to spatial inversion, the integrati
region of ~6! was chosen in the form

jP~2jmax,jmax!, hP~0,hmax!,

jmax5100 Å, hmax5150 Å.

The number of points on the spatial grid was 8103540, and
the integration step with respect to time was a hundredth
the period corresponding to\v55 eV. The method used to
integrate the time-dependent Schro¨dinger equation was simi
lar to the one in Ref. 11.

The functionC(x1 ,x2 ,t) obtained as a result of the ca
culations was used to calculate the probabilities of the po
lating of various states and to calculate the photoelect
energy spectrum.

For example, the probability of finding the system in t
unionized~original! state was calculated from the formula

W0~ t !5uC0~ t !u25U E C~x1 ,x2 ,t !w0~x1 ,x2! dx1 dx2U2

,

~8!

wherew0(x1 ,x2) is determined from the solution of~2!.
The one-electron ionization probability was calculat

using the function

C̃~x1 ,x2 ,t !5C~x1 ,x2 ,t !2C0~ t !w0~x1 ,x2!expH 2
i

\
E0tJ ,

~9!

whereE0 is the energy of the stationary statew0(x1 ,x2).

As can be seen,C̃ is formed as a result of the superp
sition of one- and two-electron continuum states and d
not include the single bound state of the two-electron syst
This situation does not diminish the errors in calculating
one-electron ionization probability associated with the co
pleteness of the basis set of plane waves that we use
describe the one-electron continuum states.
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FIG. 2. Distribution of the probability density
r(x1 ,x2) at the end of a laser pulse for\v55
eV and P51013 ~a! and 831014 W/cm2. The
contour levels correspond to the same values
in Fig. 1.
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The coefficients in the expansion of the function~9! in
the one-electron continuum states~5! were defined as

Cnk5E C̃~x1 ,x2 ,t !wnk* ~x1 ,x2!dx1dx2

5A2E C̃~x1 ,x2 ,t !Fn~x1!
exp$2 ikx2%

A2p

3expH i

\
~En1E!tJ dx1 dx2 ~1!

~here En and E are the energies of the excitednth one-
electron bound state of hydrogen and of the free elect
E5\2k2/2m), and the probability of one-electron ionizatio
with passage of the bound electron into thenth state is

Wn5E uCnku2 dk52E uan~x!u2 dx, ~11!

where

an~x,t !5E C̃~x1 ,x,t !Fn~x1! dx1 . ~12!

The total one-electron ionization probability was determin
by summing theWn :

W~1!5 (
n51

nmax

Wn . ~13!

In our calculations we setnmax518. This value was selecte
on the basis of the condition that the populations of sta
with n>nmax are negligibly small in the range of radiatio
intensities investigated.

The two-electron ionization probability was determin
as

W~2!512W02 (
n51

nmax

Wn . ~14!

If the two-electron ionization probability is small, th
expansion coefficientsCnk permit determination of the pho
toelectron spectrum in wave-vector space:
n,

d

s

w~k!5(
n

uCnku252(
n
Uan~x!

exp$2 ikx%

A2p
dxU2

. ~15!

Here the values ofuCnku2 specify the photoelectron spectr
provided the hydrogen atom is in thenth stationary state
when H2 undergoes photoionization. In free space the m
mentum expansion is identical to the energy expans
Therefore, the expression~15!, in effect, specifies the photo
electron energy spectrumw(k5A2mE/\). In this case~15!
is normalized according to the condition

E w~k5A2mE/\!~dE/dk!21 dE51.

As for two-electron ionization, it is impossible to calcu
late the energy spectrum without knowledge of the functio
in the two-electron continuum. In our opinion, the doub
momentum expansion performed for this purpose in Ref.
incorrect, since the basis set of plane waves is complete
includes bound states of the electron, precluding separa
of the one- and two-electron continuum states. Moreove
should also be borne in mind that for a long-range potent
such as a one-dimensional smoothed Coulomb potential,
mentum expansion is not identical to energy expansion a
therefore, does not permit calculation of the energy sp
trum.

4. SIMULATION RESULTS

4.1. Space–time picture of the process

Figure 2 presents typical plots of the spatial distributi
of the probability densityr5uC(x1 ,x2)u2, which were ob-
tained at the time of completion of the laser pulse for t
intensity valuesP51013 W/cm2 and 831014 W/cm2. Figure
2a corresponds to one-electron ionization when one of
electrons~the identity principle does not allow us to sa
which one! is in a bound state, while the other is distant fro
the nucleus. Such a situation leads to the formation of
characteristic ‘‘cross’’ on the plot ofr(x1 ,x2). Figure 2b
corresponds to an intensity at which both one- and tw
electron ionization take place. In this case the electron d
sity r(x1 ,x2) localized in the region$x1.0, x2,0øx1
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,0, x2.0% corresponds to two-electron ionization, i.e.,
two-electron ionization the electrons escape in opposite
rections for the most part as a result of Coulomb repulsi
We note that such correlated electron motion, which is
tained in exact calculations, is not observed in the Hartre
Hartree–Fock self-consistent-field approximations.

Spatial distributions ofr(x1 ,x2) obtained at different
times enable us to distinguish between two mechanism
two-electron ionization: a direct process, i.e., passage f
the initial state to two-electron continuum states, and a
quential process. Sequential two-electron ionization invol
passage from one-electron continuum states to two-elec
continuum states under the condition that the saturation
single-electron ionization is observed as a result of ess
tially total ‘‘depletion’’ of the ground state. In fact, whe
\v55 eV andP5831014 W/cm2, the population dynamics
of the ground state during a pulse attest to the essent
complete emptying of this state already at the beginning
the plateau of the laser pulse~see Fig. 3!.

Since the absorption of at least three photons is nee
for a transition to the two-electron continuum when\v55
eV, while a transition to the one-electron continuum is p
sible as a one-photon process, the probability of direct tw
photon ionization is low, and the sequential process is do
nant. In this case it can be expected that increasing the w
of the plateau of the laser pulse will reduce the one-elec
ionization probability at the end of the pulse and increase
two-electron ionization probability via the sequential ioniz
tion mechanism. The data presented in Fig. 4 comple
corroborate the major role of the sequential mechanism
the width of the plateau is increased~at a fixed value oft f

52T), there is a monotonic rise in the two-electron ioniz
tion probability from 7.6 to 47% mainly due a decrease
the percentage of one-electron ionization. Such a descrip
of the process is qualitatively consistent with the data
tained in Ref. 4: a time-resolved analysis of the photoioni
tion spectra for\v527.2 eV andP;1016 W/cm2 also pro-
vides evidence in support of the sequential mechanism
two-electron ionization.

Although the rate of direct two-electron ionization
small under these conditions, the probability of this proc
is nonzero at the end of the pulse. From the standpoint of

FIG. 3. Time dependence of the population of the ground state of H2 during
a laser pulse for\v55 eV andP5831014 W/cm2. The broken line is the
laser pulse envelope.
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temporal evolution of the two-electron densityr(x1 ,x2) in
the case of the direct mechanism of the process, in wh
both electrons, the outer and inner, pass into the continu
at essentially the same time and escape in opposite d
tions, the electron density should be localized in a reg
roughly equidistant from both coordinate axisx150 and
x250. In the case of the sequential ionization process,
distribution of r(x1 ,x2) should exhibit the ‘‘cross’’ corre-
sponding to the single-electron ionization regime of the s
tem, which gradually expands as the inner electron mo
away from the system. The data presented in Fig. 5 foP
5831014 W/cm2, which correspond to the distribution o
r(x1 ,x2) at different timest52T, 5T, and 7T, attest to the
simultaneous presence of both mechanisms and, therefor
competition between the direct and sequential ionization p
cesses.

It would also be interesting to investigate the possibil
of realizing the two-electron ionization mechanism12 based
on the rescattering model.13 According to this model, the
outer, weakly bound electron leaves the atom, and the
returns after half of an optical cycle and knocks out the in
electron with a certain probability. The data presented in F
5 attest to delocalization of the electron density over a reg
with a radius many times greater than the atomic radius e
at the beginning of the laser pulse. This applies to both o
and two-electron continuum states. In such a situation th
is scarcely any justification to speak about the periodica
repeated scattering of one of the electrons on the ato
core. We note in this context that calculations of the ioniz
tion dynamics of the one-dimensional He atom in Ref. 1
which were performed in the Hartree–Fock approximat
and revealed a contribution of the rescattering effect to
two-electron ionization process, are in need of further int
pretation.

4.2. Single- and two-electron ionization probabilities and
stabilization

Let us move on to a study of the dependence of the o
and two-electron ionization probabilities on radiation inte
sity. The data for\v55 eV in the intensity rangeP51012

2231015 W/cm2 are presented in Fig. 6. This figure als
shows the nonionization probability, i.e., the probability

FIG. 4. Dependence of the one-~1! and two-electron~2! ionization prob-
abilities at the end of a laser pulse on the width of the plateau of the l
pulse for\v55 eV andP5831014 W/cm2.
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880 JETP 87 (5), November 1998 Volkova et al.
remaining in a single bound state at the end of the la
pulse. As can be seen, double ionization begins at intens
equal to;1014 W/cm2, and the maximum for one-electro
ionization is at 231014 W/cm2. This value of the intensity is
less than the stabilization threshold obtained in
one-dimensional15 and three-dimensional11 one-electron
models of H2, which amounts to (425)31014 W/cm2. This
means that the study of the phenomenon of stabilization
H2 requires an investigation of the effect of a laser field
the inner electron.

FIG. 5. Distribution ofr(x1 ,x2) for \v55 eV andP5831014 W/cm2 at
the timest52T ~a!, 5T ~b!, and 7T ~c!. The contour levels correspond t
the same values as in Fig. 1.
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A comparison of the nonionization probabilities for th
one-dimensional one- and two-electron models~see Fig. 7!
shows that under our conditions the effect of the field on
inner electron is already significant at>1013 W/cm2 and
leads to a significant increase in the probability of deta
ment of the outer, weakly bound electron. In addition,
increase in the nonionization probability~stabilization! is ob-
served at (428)31014 W/cm2, but a rapid decrease in th
value of 12W0 is observed forP>1015 W/cm2. It was
shown in Ref. 15 in the one-electron approximation that
appearance of stabilization under the conditions conside
is due to the formation of a Kramers–Henneberger poten
and the populating of stationary states, which are stable
ward ionization, in it. Our calculations performed using
two-particle model allow us to state that the effect of t
field on the inner electron significantly distorts the Kramer
Henneberger potential and eliminates stabilization.

We also note a tendency for saturation of the tw
electron ionization probability in the regionP>1015 W/cm2

~see Fig. 6!. This saturation also appears to be a result
stabilization, but in the one-electron system, i.e., the hyd
gen atom.

In the case under consideration (\v55 eV! three pho-
tons are needed to eject the inner electron, and two pho

FIG. 6. Probability of remaining in the ground state~0! and one-~1! and
two-electron~2! ionization probabilities at the end of a pulse as a function
radiation intensity for\v55 eV.

FIG. 7. Probability of remaining in the unionized state at the end of a la
pulse for the one-electron~1! and two-electron~2! models of H2 as a func-
tion of intensity for\v55 eV.



he
e
fa
, i

ro
-

on
za

ve
on
ud

ge

on

xi-

me

t of
ion
seen
b-

act
the
nd-

H
rgy

of
ent
to-

ctra

um
ining
For

n
lt
en

bs
r of
ex-
-

n to
t
n
in

ct
ro-

the

lace,
the
rum
e-
f

of
o-

lcu-
the

en

881JETP 87 (5), November 1998 Volkova et al.
are needed to excite it. The low multiphoton order of t
process is also manifested in the effective action of the fi
at once on the two electrons of the system and its unsatis
tory description within the one-electron model. Therefore
can be expected that a decrease in the photon energy\v and
a simultaneous increase in the multiphoton order of the p
cesses for the inner electron~provided they remain one
photon processes for the outer electron! will yield better
agreement between the calculations performed using the
and two-electron models. The calculations of the nonioni
tion probability for\v52 eV support this hypothesis~Fig.
8!. Up to P;1014 W/cm2 the plots of 12W0 qualitatively
mimic one another, although stabilization is manifested e
more clearly in the two-electron model: the nonionizati
probability increases by more than three orders of magnit
in the intensity range 2310132831013 W/cm2. Raising the
intensity above 1014 W/cm2 leads to two-electron ionization
and a loss of the stabilization regime of the system.

4.3. Analysis of the photoelectron spectrum and populating
of various bound states in the single-electron ionization
regime

Figure 9 shows the populations of states of the hydro
atom with various values of the quantum numbern during
the one-electron ionization of the negative hydrogen i
which were calculated using~11! and~12! for \v55 eV and

FIG. 8. Same as in Fig. 7, but for\v52 eV.

FIG. 9. PopulationsFn(x) of various states of a one-dimensional hydrog
atom formed as a result of the one-electron photoionization of H2 for two
values of the intensity:1 — 431013 W/cm2, 2 — 1015 W/cm2.
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various intensities. It is seen from the figure that the ma
mum probability is attained forn51 and 2, which corre-
spond to photodetachment of the outer electron. At the sa
time, there is also a maximum forn55 and 6 for all the
intensity values. This maximum may appear as a resul
ejection of the inner electron by the field upon the absorpt
of three photons by the system. Furthermore, as can be
from Fig. 9, when the radiation intensity is high, the pro
abilities of both ionization channels are close in value.

These arguments are qualitatively confirmed by the f
that the energies of the fifth and sixth stationary states of
one-dimensional hydrogen atom are fairly close to the bi
ing energy of the outer electron in H2. The possibility of
photodetachment of both the outer and inner electrons in2

was also considered in Ref. 4 in an analysis of high-ene
photoelectrons, but no correlations between the position
the peak in the spectrum and the populations of differ
atomic states were obtained. Therefore,in addition to the
tals we calculated the partial photoelectron energy spe
corresponding to residence of the bound electron in thenth
stationary state.

The spectra forP5231014 W/cm2 are shown in Fig.
10. As is seen from the figure, the photoelectron spectr
has a complicated structure because the electron rema
bound following the laser pulse can be in different states.
example, the series of peaks 1, 2, 3, . . . is theresult of the
ionization of H2 with the formation of a hydrogen atom i
the ground state, and peaks 18, 28, 38, . . . appear as a resu
of the ionization and simultaneous excitation of the hydrog
atom formed to then52 state. The atomic system absor
one additional photon in the latter case. The same numbe
photons are also absorbed in the case of ionization with
citation of the hydrogen atom to then53 state. The absorp
tion of one more additional photon occurs forn56, leading
to an increase in the photoelectron energy in compariso
the case ofn53 ~Fig. 10b!. Thus, it is apparently convenien
to interpret the case ofn56 as removal of the inner electro
from H2. We note that the position of the energy peaks
this case is not described exactly by the expression

E5 l\v1~E02En! ~16!

( l is the number of photons absorbed, andE0 andEn are the
energies of the ground state of H2 and thenth excited state
of the hydrogen atom! as a consequence of the Stark effe
for the lower states of the hydrogen atom and the ponde
motive shift of the continuum edge.

At low intensities (P;1013 W/cm2) the shift of the lev-
els due to the Stark effect is small, and the positions of
peaks are consistent with the calculations using Eq.~16!. In
this case photodetachment of the outer electron takes p
and the inner electron remains in the ground state for
most part. As a result, the photoelectron energy spect
acquires the structure typical of the ionization of on
electron systems~Fig. 11!, and the excitation probabilities o
all the states withn.2 are negligibly small.

To conclude this section we note that the investigation
the spectra of photoelectrons formed as a result of tw
electron ionization is of unquestionable interest. Such ca
lations were not performed because of the need to isolate
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FIG. 10. Energy spectrum of photoelectrons formed in t
one-electron photoionization of H2 for P5231014 W/cm2.
The numbers of the curves correspond to the states of
electron in the hydrogen atom formed. Solid curve — over
spectrum.
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part of the wave function that corresponds to the tw
electron continuum, which is a separate complicated pr
lem. We note only that the general form of the wave funct
at the end of the laser pulse~see Fig. 2b! is evidence that the
mean value of the kinetic energy of the photoelectrons p
duced by two-electron ionization is greater than the value
one-electron ionization.

5. CONCLUSION

Exact two-particle calculations of the ionization dynam
ics of the one-dimensional negative hydrogen ion in an e
tromagnetic field have been performed in the present w
The data obtained attest to strong electron–electron cor
tions in the system. The latter are manifested in the struc
of the wave function of the ground state, which is charac
ized by weak binding of one of the electrons, as well as
the correlated two-electron ionization dynamics, which res
in escape of the photoelectrons in opposite directions.

It has been concluded from the data obtained on tw
electron ionization dynamics that the rescattering mod
which involves the photodetachment of one electron a
ejection of the second electron by it when it is scattered
the mother atom, is not feasible under the conditions con
ered.

It has been shown that the action of a strong field on
inner electron destroys the validity of the one-electron
proximation. A comparison of the two-particle calculatio
carried out and calculations performed in the one-elect
approximation has revealed the values of the parameter
the laser radiation~intensity and frequency! at which good
correspondence between the two approaches compared

FIG. 11. Same as in Fig. 10, but forP51013 W/cm2.
-
b-
n

-
r

c-
k.
la-
re
r-
n
lt

-
l,
d
y
d-

e
-

n
of

ob-

served: a stabilization regime and agreement between
threshold intensity values for this regime in the two cases
observed.

The features of the structure of the photoelectron sp
trum in the region for one-electron ionization due to the s
perposition of the contributions of different channels of t
process, viz., the photodetachment of one of the electr
and excitation of the remaining atom, have been explain

In our opinion, it would be of interest to carry out simila
investigations for a model neutral atom characterized b
large number of states in the discrete spectrum, includ
both singlet and triplet states, as well as autoionizing sta
It would also be of interest to study the possibilities of usi
approximate Hartree–Fock methods to describe the feat
of the ionization dynamics of atomic systems in intense lig
fields.

This work was performed with financial support fro
the Russian Fund for Fundamental Research~Grant Nos. 96-
02-19286 and 96-15-96447!.

APPENDIX A:

We write the time-independent Schro¨dinger equation~2!
in the form

S ]2

]x1
2

1
]2

]x2
2

2
e2

Aa21x1
2

2
e2

Aa21x2
2

1
e2

Aa21~x12x2!2D w~x1 ,x2!5Ew~x1 ,x2!. ~A1!

Taking into account the symmetry of the Hamiltonian und
spatial inversion and interchange of the electrons, we in
duce the new variables

j5
x11x2

A2
, h5

x12x2

A2
, ~A2!

which correspond to a coordinate system turned 45° rela
to x1 andx2. In thej,h coordinate system the problem~A1!
can be written in the following form:

S ]2

]j2
1

]2

]h2
2

e2

Aa212~j1h!2
2

e2

Aa212~j2h!2

1
e2

Aa212h2D w~j,h!5Ew~j,h!. ~A3!
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The functionw(j,h) is symmetric or antisymmetric in th
coordinate axes and can be defined in the first quadrant

0<j, h<`. ~A4!

To obtain the entire set of stationary states for~A1!, we must
consider the problem~A3! in the region~A4! for four cases
with different boundary conditions on the coordinate axe

1.
]w

]j U
j50, 0<h<`

50,
]w

]hU
h50, 0<j<`

50,

2.
]w

]j U
j50, 0<h<`

50, wh50, 0<j<`50,

~A5!

3. wj50, 0<h<`50,
]w

]h U
h50, 0<j<`

50,

4. wj50, 0<h<`50, wh50, 0<j<`50.

The discrete analog of the problem~A3!–~A5! was ob-
tained using the finite element method with a cubic appro
mation of the function in an element.11 The two-dimensional
region 0<j,h<30 Å was considered. The condition o
equality of the derivative to zero was imposed on the dist
boundary~the eigenfunctions for the states of the discr
spectrum of interest to us vanish on the distant boundary,
the actual assignment of the boundary condition is of
importance!. The use of rectangular Lagrangian elements
a two-dimensional region enables us to write the followi
finite-element form of the problem:16

Lw5EMw, ~A6!

wherew5$w1 , . . . ,wn% is the vector of the nodal values o
the eigenfunctions,N5KL is the number of nodes in th
two-dimensional region, which is equal in the case of L
grangian elements to the product of the number of no
along each of the coordinates,

L5M j ^ Dh1Dj ^ Mh1P

is the matrix of the Hamiltonian of the two-particle syste
and

M5M j ^ Mh

is the weighting matrix formed by the direct matrix produ
of the weighting matrices of the one-particle systems. T
one-particle weighting matrix~or one-dimensional weighting
matrix corresponding to one of the coordinates! is specified
by a sum of element matrices:

M j,h5 (
k51

Ke ,Le

mj,h
k ,

whereKe andLe are the number of elements along each
the coordinates. For cubic elements we haveK53Ke11,
andL53Le11.

The single-particle matrices of the derivativesDj,h are
defined in a similar manner.

The matrix elements are specified by the form functio
in an element:17
i-

t
e
nd
o
n

-
s

,

e

f

s

mj
k5E

jk

jk11
NTNdj,

dj
k5E

jk

jk11dNT

dj

dN

dj
dj,

whereN5$N1 ,N2 ,N3 ,N4% is the vector of form functions
for a cubic element.

The matrixP is defined by the interaction potential o
the particles and was calculated using the following appro
mate formula

P5(
l 51

Le

(
k51

Ke

mj
k

^ mlhVk,l ,

where

Vk,l52
e2

Aa212~ j̃k1h̃ l !
2

2
e2

Aa212~ j̃k2h̃ l !
2

1
e2

Aa212h̃ l
2

is the value of the interaction potential in the element w
the indicesk and l , andj̃k andh̃ l are the mean values of th
coordinates at the element.

Thus, the problem of finding stationary states has b
reduced to the eigenvalue problem~A6!. The boundary con-
ditions 2–4 in~A5! are taken into account in the followin
manner: zero values of the function are assigned on
boundary. The off-diagonal elements ofL in rows with the
indices of nodes having zero assigned values are set equ
zero, and the diagonal elements in those rows are set equ
unity. The zero values of the derivatives are natural bou
ary conditions and do not require alteration of the matrix

The eigenvalue problem was solved by iterating within
subspace.18 The main goal of the iterative subspace approa
is to find thep smallest eigenvalues and eigenvectors of
original problem. These eigenvectors form ap-dimensional
orthogonal subspace. The effectiveness of the method is
to the fact that the entire subspace is iterated as a wh
rather than each eigenvector individually.

The matrix L must be positive definite to apply thi
method. In order to satisfy this condition, a displacement
the matrix must be introduced. We introduce the new ma

L̃5L1sM ,

choosings so as to ensure the positive definiteness ofL̃ .
Then the new eigenvalue problem is written in the form

L̃ w̃5ẼM w̃. ~A7!

It is easy to show that the solutions of~A6! and ~A7! are
related by the expressions

w̃5w, Ẽ5E1s.

Subtracting the shifts from the modified values, we obtai
the eigenvalues of the original matrix equation. In the pro
lem under consideration a shift equal toe2/Aa2 was chosen.
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The eigenvalue problem~A6! has a solution consisting
of N eigenvalues and eigenvectors. However, we are in
ested only in a few low eigenvalues that correspond to
discrete spectrum of the Hamiltonian under consideration
the formulation of the problem~A6! presented above thes
eigenvaluesE5Ẽ2s should be negative. Positive eigenva
ues correspond to free motion of the electrons, and t
discrete structure and finite number are specified by the fi
size of the region considered and the discrete nature of
representation of the problem.

Therefore, the use of the proposed algorithm, which p
mits the determination of only the necessary number of
genvalues, rather than all of them, seems very efficient
addition, the algorithm under consideration permits work
with a banded matrixL and makes it possible to use extern
memory.

* !E-mail: popov@mics.msu.su
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Using effective operators in calculating the hyperfine structure of atoms
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We propose a method for calculating the hyperfine structure~hfs! of multielectron atoms based
on a combination of configuration superposition and many-body perturbation theory. The
latter is used to construct an effective Hamiltonian and an effective hfs operator in configurational
space. The method can be applied in calculations of the matrix elements of any one-electron
operators. By way of an example we calculate the magnetic hfs constantA for several lowest levels
of neutral thallium. We show that the method achieves a calculation accuracy of about 1%,
which earlier was possible only for atoms with a single valence electron. ©1998 American
Institute of Physics.@S1063-7761~98!00611-8#
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1. INTRODUCTION

Recently we proposed a method for calculating the lo
est energy levels of multielectron atoms.1 The calculations
done for Tl ~Ref. 1! and Ca, Sr, Ba, and Yb~Refs. 2 and 3!
demonstrated its effectiveness. In this paper we wish to s
that the method can be used to calculate not only ener
but also other observables, such as the hyperfine struc
~hfs! constants and transition amplitudes. For the sake
definiteness we focus on calculations of the magnetic dip
hfs constant. Generalization to other one-electron opera
is obvious. Not that hfs calculations are one of the main te
in calculating amplitudes that do not conserve spatial par

At present several methods for calculating multielectr
atoms are available. For atoms with one electron in addi
to the electrons in filled shells there is the many-body p
turbation theory in the residual Coulomb interaction~see,
e.g., Ref. 4!. For atoms with several valence electrons th
is the configuration-superposition method and the multic
figuration Hartree–Fock method.5 Lately the coupled-cluste
method has gained wide acceptance.6–8 The hfs constants
have been repeatedly calculated by all these methods~see,
e.g., Refs. 9–14!.

The most complicated problem encountered in atom
calculations is the need to correctly account for the corre
tions between valence electrons and the correlations inco
rating core electrons. Correlations of the first type are
strong to be accounted for by ordinary many-body pertur
tion theory. However, if the number of the valence electro
is not too large, these correlations are taken into acco
fairly well by the configuration-superposition method or t
multiconfiguration Hartree–Fock method. Correlations of
second type are accounted for more simply by many-b
perturbation theory, since the number of configuratio
needed to describe these correlations by the configura
superposition method or the multiconfiguration Hartre
Fock method is too large.
8851063-7761/98/87(11)/6/$15.00
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All this suggests a combination of the configuratio
superposition method and many-body perturbation theo
The latter is used to set up an effective Hamiltonian for
valence electrons. After that the Schro¨dinger equation with
the effective Hamiltonian can be solved by th
configuration-superposition method. At this stage only v
lence electrons are accounted for explicitly. In Ref. 1
showed that the Brillouin–Wigner perturbation theory a
the ordinary diagrammatic technique are sufficient for co
structing the effective Hamiltonian. In the present paper
discuss the setting-up of effective Hamiltonians for other o
servables.

In Sec. 2 we define the valence subspace and give
main formulas for the effective Hamiltonian. Section 3
devoted to a discussion of other effective operators. In Se
we calculate the hyperfine structure in thallium.

2. EFFECTIVE HAMILTONIAN FOR VALENCE ELECTRONS

Here we are interested in low-energy atomic states w
energiesEi2E0,«, whereE0 is the ground-state energy o
the atom. Then to a first approximation we can assume
the inner electrons, whose Hartree–Fock energies«n are
much higher~in absolute value! than«, form a core, which is
described by the wave function

Ccore5~Nc! !21/2 det~f1 ,f2 , . . . ,fNc
!, ~1!

hHFD5«nfn , ~2!

wherehHFD is the Hartree–Fock–Dirac operator. Althoug
this operator is used to define the atomic core, it may inc
porate the field of all the valence electrons or of several s
electrons. For instance, below we examine thallium as
atom with three valence electrons and the co
@1s2 . . . 5d10#, while the hHFD operator is set up for the
1s2 . . . 5d106s2 configuration ~the VN21 approximation,
whereN is the number of electrons in the atom!.
© 1998 American Institute of Physics
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We call the subspace of the multielectron statesC for
which the core electrons are in state~1! the valence subspac
and introduce the projectorP on this subspace. The comple
mentary subspace, with a corresponding projectorQ51
2P, is characterized by the fact that at least one of the c
electrons is excited to states lying higher thanfNc

.
The Schro¨dinger equation

HC5EC ~3!

can be shown1 to be equivalent to the following equation i
the P space for the functionF5PC:

@PHP1S~E!#F5EF, ~4!

S~E!5PV8RQ~E!V8P, ~5!

whereV8 is the operator of the residual Coulomb interactio
andRQ(E) is the Green’s function in theQ space, i.e.,

V8[H2H0 , ~6!

RQ~E!5Q
1

E2QHQ
Q. ~7!

The operatorH0 can be expressed in terms of the operato
Eq. ~2! as follows:

H05(
i 51

N

hHFD~r i !2W. ~8!

The constantW appears on the right-hand side of this equ
tion because the sum of single-particle energies«n allows for
the electrostatic interaction of the electrons between e
other twice and cannot serve as a good approximation for
total energyE of the atom. This constant can be found fro
the condition1

^CcoreuH0uCcore&5^CcoreuHuCcore&[Ecore, ~9!

or ^F0uH0uF0&5^F0uHuF0&, whereF0 is the ground-state
wave function of the atom. Finally, this constant can be u
as an adjustable parameter, selected by the best matc
tween theory and experiment. Note that in the lowest per
bation order for the operatorS(E), the redefinition of this
constant asW→W1d is equivalent to a shift in energy
S(E)→S(E1d).

The solutions of Eqs.~3! and ~4! are related by

C5@P1RQ~E!V8P#F, ~10!

which impliesF5PC.
The orthonormalization condition̂C i uCk&5d i ,k can be

approximately reduced to a condition imposed on the fu
tions F,

^F i u12]ES~Ē!uFk&'d i ,k , ~11!

whereĒ'(Ei1Ek)/2. Note that of the equations in~4!–~11!
only the last is an approximation.

It is natural to call the operator in the square brackets
Eq. ~4! the effective HamiltonianHeff for the valence elec-
trons. Equations~4!–~7! make it possible to use this Hami
tonian for implementing the usual methods of many-bo
perturbation theory and, in particular, the diagramma
re
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technique.1,2 To this end we use the representation of t
exact Green’s function in terms of the Green’s function
the Hartree–Fock–Dirac representation:

RQ~E!5RQ
0 ~E!1RQ

0 ~R!V8RQ~E!, ~12!

RQ
0 ~E!5Q

1

E2QH0Q
Q. ~13!

3. EFFECTIVE OPERATORS FOR VALENCE ELECTRONS

We assume that we know the solutions of Eq.~4!, which
we will use to find an observablea corresponding to the
one-electron operatorA:

a5^CuAuC&. ~14!

We define an effective operatorAeff such that

a5^FuAeffuF&. ~15!

Combining ~10!, ~14!, and ~15!, we arrive at an expressio
for Aeff :

Aeff5PAP1PV8RQ~E!AP1PARQ~E!V8P

1PV8RQ~E!ARQ~E!V8P. ~16!

Equations~12! and ~16! allow the operatorAeff to be ex-
panded in a power series inV8. Unfortunately, in most case
this series converges very slowly, so that usually instead
the consistent perturbation-theory approach one uses
proximations that partially allow for all orders inV8. The
random-phase approximation~RPA! is the one most often
used in this case~see, e.g., Ref. 15!. Let us see how this
approximation agrees with Eq.~16!.

On the right-hand side of Eq.~16!, the operatorA is
always combined with the exact Green’s function. We int
duce a new operatorÃ such that

S APP APQRQ

RQAQP RQAQQRQ
D 5S ÃPP ÃPQRQ

0

RQ
0 ÃQP RQ

0 ÃQQRQ
0 D , ~17!

whereAPP[PAP, etc. If we were able to constructÃ, we
would easily derive the operatorAeff , since by substitutingÃ
into Eq. ~16! we arrive at a situation in which all exac
Green’s functions are replaced by Hartree–Fock Gree
functions. Equation~17! is equivalent to the following sys
tem of operator equations:

ÃPP5APP , ~18!

ÃPQ5APQ1ÃPQRQ
0 V8Q, ÃQP5ÃPQ

† , ~19!

ÃQQ5AQQ1ÃQQRQ
0 V8Q1QV8RQ

0 ÃQQ

2QV8RQ
0 ÃQQRQ

0 V8Q. ~20!

The RPA equations for the core electrons~Fig. 1! resemble
Eqs.~19! and~20!. The main difference between the operat
Ã and the RPA operatorARPA is that the former is not single
particle. Moreover, the random-phase approximation d
not incorporate a number of single-particle corrections
lowed by Eqs.~19! and ~20!. However, the most importan
terms of Eqs.~19! and~20! are taken into account byARPA.
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FIG. 1. Diagrammatic representation of th
random-phase approximation method for the co
A small filled circle stands for the bare matrix ele
ment of the one-electron operatorA, and a large
filled circle corresponds to a similar matrix eleme
in the random-phase approximation. The wavy lin
stands for the Coulomb interaction.
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All this implies that we can write an approximate equ
tion for the effective operator~16!,

Aeff'PAP1PV8RQ
0 ~E!ARPAP

1PARPARQ
0 ~E!V8P. ~21!

The equation does not contain a term similar to the fou
term on the right-hand side of Eq.~16!. This term is partially
included in the second and third terms. The remaining p
corresponds to what is known as structural radiation, wh
in most cases is very weak.14

Equation~21! also resembles the RPA equation for v
lence electrons. However, in addition to the RPA diagra
~Fig. 2a!, this equation contains two additional types of d
gram ~Figs. 2b and 2c!. The diagrams of Fig. 2b can b
called subtractional~SBT! by analogy with similar diagrams
for the operatorS ~Ref. 1!. They appear only when th
Hartree–Fock operator, which incorporates the field of~sev-
eral! valence electrons, is used to solve the RPA equation
should be recalled that such an operator is used in settin
the core wave function~1!. The diagrams in Fig. 2c corre
spond to the two-particle correctionsATP to the effective
operator. There is also an important type of diagram~Fig.
2d! not included in the approximation~21!. Such diagrams
refer to a higher order in the many-body perturbation theo
-

h

rt
h

s
-

It
up

,

but their contribution is extremely large, while similar dia
grams in which theARPA vertex is connected to the other pa
of the diagram by a particle line rather than by a hole line
taken into account when~21! is substituted in~15!.

Combining all these corrections, we arrive at an appro
mate expression for the effective operator:

Aeff'P~ARPA1ASBT1ATP1As!P, ~22!

where the four terms on the right-hand side correspond to
four types of diagram in Figs. 2a–2d. Below, in calculati
the hfs constants, we use Eqs.~15! and ~22!. We note once
more that this approximation allows only for the first ord
of many-body perturbation theory. Even in second ord
there are corrections of the structural-radiation type, wh
are not included in~22!. On the other hand, Eq.~22! takes
into account some of the most important higher-order corr
tions.

To conclude this section we note that the operatorAeff is
used to solve Eq.~4!. This means that excitations of valenc
electrons are taken into account in all orders, which guar
tees an accuracy higher than that achieved by many-b
perturbation theory.
c-
FIG. 2. Diagrammatic representation of the effe
tive operatorAeff for the valence electrons:~a! the
random-phase approximationARPA, ~b! the subtrac-
tional correctionASBT , ~c! the two-particle correc-
tion ATP , and~d! the self-energy correctionAs . A
filled square stands for the self-energy block~e!.
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4. CALCULATIONS OF THE HYPERFINE STRUCTURE

In the point-nucleus approximation, the operator of t
magnetic hyperfine structure has the form

Hhfs5
mnm0

I

I–~a3r !

r 3
, ~23!

wheremn is the magnetic moment of the nucleus,m0 is the
Bohr magneton, anda is the Dirac matrix. For a finite
nucleus, this expression can be used only ifr .r n holds,
wherer n is the radius of the nucleus. Inside the nucleus
hfs operator depends on the nuclear structure rather tha
the magnetic moment of the nucleus. The exact formulas
be found in Ref. 13. There it is also shown that the cor
sponding corrections are extremely small, so that here we
an approximation in which inside the nucleus the dep
dence of the operator~23! on the radius, 1/r 3, is replaced by
r /r n

4 . Such an approximation is quite sufficient if we need
accuracy of about 1%.

We begin our calculations of the hyperfine structure
the thallium atom by constructing an effective Hamiltoni
and solving Eq.~4!. This part of our calculations differs
somewhat from the procedure adopted in Ref. 1. We
larged the basis set of the radial functions, which now
cludes orbitals up to 21s, 21p, 21d, 18f , 18g, and 14h ~the
procedure of constructing orbitals is similar to the one
scribed in Refs. 1, 16, and 17!. We also significantly in-
creased the number of configurations. Moreover, in calcu
ing the diagrams for the operatorS(E) we also calculated
their first energy derivatives. This made it possible to all
in the first approximation for the energy dependence of
matrix elements of the effective Hamiltonian. The thalliu
spectrum calculations employed an effective Hamiltonian
different valence electrons, which, as noted earlier, co
sponds to different constantsW in ~8!. We found that the
agreement with the experimental spectrum is best w
S(E) is taken at an energyEval5E2Ecore521.64 a.u.~see
Table I!.1) What is important is that the low-energy part
the spectrum of neutral thallium was well reproduced
these calculations and the valence energy of the ground
was found to coincide perfectly with the experimental va
of 2.0722 a.u.19

TABLE I. Valence energies of several lowest levels of Tl.

DE, cm21

Level Eval , a.u. Calculation Experiment18

6p1/2 22.072 084 0 0
6p3/2 22.036 471 7808 7793
7s1/2 21.951 435 26 472 26 478
7p1/2 21.916 363 34 169 34 160
7p3/2 21.911 804 35 170 35 161
6d3/2 21.907 348 36 148 36 118
6d5/2 21.907 011 36 222 36 200

Note: The effective Hamiltonian was set up for the energyEval

521.64 a.u., which was chosen on the grounds of best agreement bet
that the calculated energy intervals between the levels and the experim
values of these intervals.
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The next step involved constructing the effective ope
tor ~22!. All corrections exceptATP are determined by single
particle operators and can be reduced to calculating effec
one-electron integrals. Calculating the expectation value~15!
for such operators is easy. However, allowing for the tw
electron correctionATP required more involved calculations
Hence in calculating these corrections we discarded the c
tributions of configurations whose weight in the wave fun
tion was no larger than 1024.

To determine the error associated with the incomple
ness of the configuration-superposition method, we estima
the contribution of virtual orbitals not included in the supe
position of configurations in the lowest perturbation ord
We call the corresponding corrections the valence corr
tions. These corrections are important only for the 6p3/2 and
7p3/2 levels, where the other corrections are small or can
each other almost perfectly.

Finally, the last correction arises if we allow for th
conditions~11!. For the lowest levels with fixed angular mo
mentumJ and parityP the conditions simply determine th
corrections to normalization. For excited states, stric
speaking, we must allow for violation of orthogonality wit
the lowest states, but here we took into account only
normalization condition. The results of calculating the hyp
fine structure of thallium are listed in Table II.

5. CONCLUSION

A comparison of the results listed in Table I and those
Ref. 1 shows that even approximate allowance for the ene
dependence of the operatorS combined with an optimum
choice of the constantW, which determines the staring ap
proximation~8! of the Hamiltonian, make it possible to en
hance the accuracy of calculations of the atomic spectr
The largest deviation from the experimental data in su
calculations amounts only to 0.2%, while in the previo
calculations it amounted to about 1%. This refinement of
spectrum was found to have an effect on the results of
calculations.

The results listed in Table II show that the Hartree
Fock–Dirac approximation for the magnetic hfs consta
agrees very poorly with the experiment. In some case
even yields an incorrect sign or an incorrect order of mag
tude of the constant. Allowing only for configuration supe
position does not improve the results significantly.

Only when many-body perturbation theory and t
configuration-superposition method are combined does
accuracy improve substantially. Many-body perturbati
theory yields three types of correction, resulting from~i! re-
placing the valence Hamiltonian by the effective Ham
tonian ~allowance forS(E)), ~ii ! using the effective hfs op-
erator (ASBT,ATP, and As), and ~iii ! the normalization
condition~11!. The last correction is less than 1%, while th
other two are much larger.

Note that the various many-body perturbation-theo
corrections often cancel one another because summa
over intermediate states leads to contributions that violate
Pauli exclusion principle. Such contributions, obvious
cancel each other, so that their net effect is zero. For

en
tal
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TABLE II. Magnetic hfs constants for several lowest levels of205Tl ~MHz!.

6p1/2 6p3/2 7s1/2 7p1/2 7p3/2 6d3/2 6d5/2

HFD 17 554 1302 7612 1957 188 21 9
CS 1195 21369 13655 288 1114 2149 1307
S(E) 13197 148 1421 1290 241 190 2135
RPA 11359 1327 11043 1134 171 16 114
ASBT 21225 2120 272 2116 217 216 211
ATP 11130 144 210 1105 16 112 18
As 21090 219 2303 2105 210 12 26
Valence 213 153 143 26 16 21 21
Normalization 2214 22 282 214 22 0 21

Theory of Ref. 14 21 760 21919 12 470 2070 195

Theory of Ref. 13 21 300 339 12 760

Present work 21 623 264 12 307 2157 315 235 184

Experiment 21 311 265 12 297 2155 309 243 229

Note: We list the values of the hfs constants in the Hartree–Fock–Dirac~HFD! approximation and the correc
tion yielded by configuration superposition~CS! and the correctionS to the Hamiltonian. We allow for the
corrections to the hfs operator arising from the use of the random-phase approximation~RPA!, the subtractional
correctionASBT , the two-particle correctionATP , the self-energy correctionAs , the valence correction reflect
ing the incompleteness of configuration substitution, and the normalization correction.
th
in
t

th
c
o
su
c

ep
el
on
n
a

n
ab
ec
-
ec

d
d

o
n
rm
co
,
ifi
r
o
fo
o

c-

e
ho-
into

fs

us-

aper

, J.
stance, the sumARPA1ASBT1ATP obeys the Pauli exclusion
principle, while each term in it does not. For this reason
separate contributions to this sum have no physical mean
Moreover, in most cases there is partial balance between
correction due to the use of an effective Hamiltonian and
correctionAs . In our case this balance results from the fa
that the contributions of the intermediate electron and h
state have different signs but comparable values. As a re
the net many-body perturbation-theory correction is mu
smaller than the separate contributions.

The data in Table II suggest that for all the levels exc
the d levels the agreement with experiment is extrem
good. The largest many-body perturbation-theory correcti
arise for the 6p1/2 level, where they amount to more tha
3000 MHz. This explains the lower accuracy achieved in c
culating this constant~1.4%!. Two other large constants~for
the 7s and 7p1/2 levels! were found to be calculated with a
accuracy ten times higher, which corresponds to appreci
smaller values of the many-body perturbation-theory corr
tions. For the 6p3/2,6d3/2, and 6d5/2 levels we have an ex
tremely poor starting approximation. Hence the perf
agreement between our results for the 6p3/2 level and the
experimental data can to a certain extent be considere
coincidence. Note that to obtain a correct result we neede
allow for all the corrections here.

On the whole we can say that the adopted meth
proved to be very effective in calculating the spectrum a
the hfs constants. Note that in a somewhat simplified fo
this method has recently been used to calculate the hfs
stants andP,T-odd matrix elements for the BaF molecule20

with the accuracy of this method also increasing sign
cantly. Further refinements require increasing the numbe
higher-order corrections taken into account. This can be d
by resorting to the methods used earlier in calculations
the cesium and thallium atoms by a pure perturbation-the
approach.14,21 First one must allow for higher-order corre
e
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tions to the operatorS. The leading corrections of this typ
correspond to the inclusion of a polarization operator in p
non lines. To first order these corrections can be taken
account by introducing screening coefficients~see, e.g., Ref.
3!. One must also allow for the correction to the effective h
operator related to structural radiation.
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We use the eikonal approximation to develop a general formula for the cross sections of inelastic
collisions of multicharged fast ions~including relativistic ions! with atoms that is applicable
within a broad range of collision energies, has the standard nonrelativistic limit, and becomes, in
the ultrarelativistic case, the well-known result that follows from the exact solution of the
Dirac equation. As an example we study the excitation and ionization of a hydrogenlike atom, the
single and double excitation and ionization of a heliumlike atom, and multiple~up to the
eighth order! ionization of the neon atom and~up to eighteenth order! ionization of the argon atom.
We derive simple analytical expressions for the inelastic cross sections and establish
recurrence relations linking the cross sections of ionization of different orders. Finally, we
compare our results with the experimental data. ©1998 American Institute of Physics.
@S1063-7761~98!00711-2#
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1. INTRODUCTION

The primary reason for the considerable interest in
elastic processes accompanying the collisions of atoms
multicharged ions is that the effective strengths of the fie
generated by the ions over atomic distances can exceed
of the characteristic internal fields by several orders of m
nitude. Such fields are very difficult to generate by oth
means. Thus, collision experiments involving multicharg
ions are actually the only way to study the behavior of ato
and molecules in ultrahigh electromagnetic fields. From
fundamental viewpoint, research into the behavior of ma
in ultrahigh electromagnetic fields constitutes one of
most important problems of modern physics.

Moreover, a number of problems of applied scien
such as measurements of the energy spectra of nuclea
sion fragments, synthesis of superheavy elements, interp
tion of data on ultrahard cosmic rays, pumping active me
of high-power lasers, ion diagnostics and spectroscopy
plasma, implantation and sputtering of solids by ion bo
bardment, and design and application of high-energy hea
ion accelerators, have stimulated research in the field of
lisions involving multicharged fast ions. Studies in inelas
collisions of fast~including relativistic! multicharged ions
with atoms have lately attracted a lot of attention~see, e.g.,
Refs. 1 and 2, recent reviews in Refs. 3–5, and the litera
cited therein!. The cross sections of inelastic processes
collisions of this type are very large, and for this reason th
studies are of interest from the practical viewpoint. T
strong field of an ion with a large charge makes it impossi
~even when the velocities of the colliding particles are re
tivistic! to use perturbation-theory techniques, which comp
cates calculations substantially, since nonperturbative
proaches are required.

Examples abound. We would like to mention Refs. 6–
which use the sudden-perturbation approximation, Refs.
12, which use the eikonal approximation and its modific
8911063-7761/98/87(11)/8/$15.00
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tions, calculations of Beckeret al.13 based on the numerica
solution of the time-dependent Dirac equation, and the
cently found exact solution14 of the Dirac equation in the
ultrarelativistic limit.

The most general basis for studying the cross section
inelastic processes involving collisions of multicharged f
ions with atoms is the Glauber approximation,15 which is
valid for Z/v<1, whereZ is the ion’s charge andv is the
collision velocity~atomic units!. This approximation is based
on the eikonal approximation,16,17which is close to the semi
classical domain, and is closely related to the sudd
perturbation approximation.4,6,12 The use of perturbation
theory in describing collisions of multicharged ions with a
oms whenZ/v;1 violates the range of applicability of th
Born approximation and, due to its nonunitary nature, to v
ues of probability greater than unity.5 We also note that for
ions with very large charges the applicability range (Z/v
!1) of the Born approximation is never reached, no ma
how high the collision energies are.

According to Ref. 15, the eikonal approximation18 for
relativistic potential scattering can be generalized~see, e.g.,
Ref. 12! to the case of an inelastic collision of a low-Z atom
~nonrelativistic before and after the collision! and an ion
moving with a relativistic velocityv. Then, in the Glauber
approximation, the general expression for the amplitude
the inelastic collision accompanied by the transition of t
atom from stateuC i& to stateuC f& has the form12 ~cf. Ref.
15!

f i f ~q!5
ik i

2pE e2 iq–b^C f uF12expH 2
i

vE U dxJ G uC i& d2b,

~1!

where the momentum transferq5k f2k i . The scattering po-
tentialU5U(x,b;$ra%) depends not only on the ion positio
R5(x,b) but also on the instantaneous positions of t
atomic electrons, whose sets of coordinates we denote
$ra%, a51,2, . . . ,N, with N the number of electrons.
© 1998 American Institute of Physics
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In this paper we use the eikonal approximation to der
a general formula for the cross sections of inelastic collisi
of multicharged fast ions~including relativistic ions! with
atoms that is applicable within a broad range of collisi
energies, has the standard nonrelativistic limit, and becom
in the ultrarelativistic case, the well-known result that fo
lows from the exact solution14 of the Dirac equation. As an
example we study the excitation and ionization of a hyd
genlike atom, the single and double excitation and ionizat
of a heliumlike atom, multiple~up to the eighth order! ion-
ization of the neon atom and~up to eighteenth order! ioniza-
tion of the argon atom. We derive simple analytical expr
sions for the inelastic cross sections and establish recurr
relations linking the cross sections of ionization of differe
orders. We also compare our results with the experime
data.

2. GENERAL CONSIDERATIONS

To generalize the eikonal approximation to the case o
collision of a relativistic ion and a high-Zrelativistic atom
one must allow for the following:~a! the behavior of the
atomic electrons are described by the Dirac equation, and~b!
by definition the Glauber approximation to the scattering
tential U5U(x,b;$ra8%) is the static Coulomb potential gen
erated by the atomic nucleus and atomic electrons in fi
~and simultaneous, from the viewpoint of the incident io!
positionsra85xa8 ,ya8 ,za8 :

U~x,b;$ra8%!5
ZaZ

Ax21b2
2 (

a51

N
Z

A~x2xa8!21~b2sa8!2
,

whereZa is the charge of the atomic nucleus, withZa5N,
and

1

vE2`

`

U dx5 (
a51

N

xa~b,sa8!, xa~b,sa8!5
2Z

v
ln

ub2sa8u
b

,

with thex axis directed along the initial momentumk i of the
ion, and the two-dimensional vectorsa8 is (ya8 ,za8). Let us
assume, for the sake of definiteness, that we are dealing
simultaneous positions of electrons at timet850 in the ref-
erence frame co-moving with the ion; the corresponding
stantaneous positions of the atomic electrons arera8 and the
electron wave function isC8(ra8 ,t8). Then instead of~1! we
have

f i f ~q!5
ik i

2pE e2 iq–b^C f8uF12expH 2
i

vE U dxJ G uC i8& d2b.

In the reference frame in which the atom is at rest~at
t850),

xa5gxa8 , sa5sa8 , t52xa

v

c2
,

C~ra ,t !5c~ra!exp~2 iEt !5c~ra!expS iExa

v

c2D
5Sa

21C8~ra8 ,t850!,
e
s

s,

-
n

-
ce
t
al

a

-

d

ith

-

d3r a5dxa dya dza5g dxa8 dya8 dza85g d3r a8 ,

whereg51/A12v2/c2 , and Sa is the Lorentz transforma
tion matrix for the wave function, acting on the bispin
indices that refer to the atomic electron with the numbea
~the respective Dirac matrices areaa), with Sa

225g(1
2vaa /c) ~see Ref. 2!. Hence in the Glauber approximatio
the general expression for the probability amplitude of
inelastic collision of a relativistic ion and a high-Z relativis-
tic atom accompanied by the transition of the atom fro
stateuc i& with energyEi to stateuc f& with energyEf has the
form

f i f ~q!5
ik i

2pE ^c f uF12expH 2 i (
a51

N

xa~b,sa!J Gg2NS22

3expF i(
a

vxa

c2
~Ef2Ei !G uc i&exp~2 iq–b! d2b,

~2!

where S25)a51
N Sa

22 . This is the final expression corre
sponding to the generalization of Eq.~1! to the case of a
collision of a relativistic ion and a high-Z relativistic atom
obeying the same applicability conditions: the collision tim
must be much shorter than the characteristic atomic time
we are not interested in the scattering angles of the ion, th
in accordance with the expression for the cross section in
small-angle approximation~as in Ref. 15!, we can integrate
over them: for small scattering angles we have

dV'
d2q

kikf
'

d2q

k2
.

Then, representingu f i f u2 in ~2! by a double integral ind2b
andd2b8, we integrate ind2q using the integral representa
tion of the delta function, which is then removed by integr
ing in d2b8. As a result we arrive at a formula for the cro
section of the atomic transition from stateuc i& to stateuc f&
in the collision of the atom and the relativistic ion:

s5E d2bU^c f uF12expH 2 i (
a51

N

xa~b,sa!J G
3g2NS22expF i(

a

vxa

c2
~Ef2Ei !G uc i&U2

. ~3!

Accordingly, the integrand can be interpreted as the pr
ability of the atom going from stateuc i& to stateuc f& in a
collision with the impact parameterb. In this form, for a
one-electron atom this probability, obviously, coincides w
the exact probability14 for the amplitude of the transition in
the ultrarelativistic case and has a standard nonrelativ
limit.15 Generally speaking, for long-range potentials, the
tegral with respect to the impact parameter in~3! diverges at
large impact parameters. However, this divergence
unimportant:4,8 at large impact parameters the ion field
weak and the Born approximation can be employed, with
applicability ranges of the Born and eikonal approximatio
overlapping, which makes a meaningful match with resp
to the impact parameter possible.
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The above formulas are of a general nature and can
applied to collisions of atoms with ions of arbitrary charg
What makes collisions of atoms with highly charged ions
special is that the cross sections of inelastic processes
usually very large and exceed the atomic dimensions sig
cantly. Bearing all this in mind, we examine the matchi
procedure using the example of one-electron transition
collisions of relativistic ions with nonrelativistic~before and
after the collision1) atoms, when thec i and c f in ~3! are
two-component spinors and we can assume thatS2251; in
addition, exp@i(axa(Ef2Ei)/c#51. For this case simple ana
lytical expressions for cross sections can be derived in
matching process. Suppose that an atomic electron goes
a ground stateu i & into a stateuk& of the one-electron con
tinuum with electron momentumk. We denote the uppe
limit of integration with respect to the parameterb in Eq. ~3!
by b0. For large values ofb ~i.e.,b@s) and orthogonal state
uk& and u i &, the generalized inelastic form factor is

^ f u12expH 2 i
2Z

v
ln

ub2su
b J u i &'^ f uexp$ iq–s%u i &, ~4!

with q52Zb/vb2; this form factor tends toiq–^ f usu i & for
small q. Hence the integral in~3! depends onb0 logarithmi-
cally, so that the contribution of the regionb,b0 to the cross
section can be written as

s~b,b0!58p
Z2

v2
l i ln

2a i

q0
, q05

2Z

vb0
, ~5!

wherel and a depend solely on the atomic characteristi
they do not depend on the collision parameters, i.e.,
charge of the incident ion and the ion velocity:

l i5E d3k

3
u^kur u i &u2,

a i5 lim
q0→0

q0

2
expH 1

l i
E

q0

`dq

q3 E d3k u^kuexp~2 iq–r !u i &u2J .

In the region of large values ofb.b0, the ion field is a weak
perturbation, and we can use what is known as the Be
asymptotic formula:

s i~b.b0!58p
Z2

v2
l iS ln

2v

hb0v iA12b2
2

b2

2 D ; ~6!

here h5eB51.781(B50.5772 is the Euler constant!, and
the ‘‘average’’ ionization frequencyv i is defined as

ln v i5

E d3k u^kur u i &u2ln Vki

E d3k u^kur u i &u2

, ~7!

whereVki5ek2e i is the transition frequency. Summing~5!
and ~6!, we arrive at expression for the total cross sectio

s i58p
Z2

v2
l iS ln

2a iv
2

hZv iA12b2
2

b2

2 D . ~8!
be
.
o
re

fi-
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e
om

;
e

e

Note that the dependence on the cutoff parameterb0 disap-
pears after matching.

But if the collision changes the states of more than o
electron or if the transitions are dipole-forbidden, the in
gration with respect to the impact parameter in~3! can be
extended to the entire impact-parameter plane~since the in-
tegrand ensures convergence! and there is no need for
matching with perturbation theory.

3. COLLISIONS WITH HYDROGENLIKE ATOMS

Below we give the formulas for the cross section of t
transition of a hydrogenlike atom~with a nuclear chargeZa)
from its ground state to states with the principal quant
numbern as a result of a collision with a multicharged io
These were obtained in the approximation of large imp
parameters~Eq. ~4!! by the matching method:

sn5
211p

3

Z2

v2

n7

~n221!5 S n21

n11D 2n 1

Za
2

3H ln
gnv2Za

ZVnA12b2
2

b2

2 J , ~9!

whereVn5en2e1, and the first few numbersgn are

g250.30, g350.44, g450.49, g550.53,

g650.54, g750.55, g850.56, g950.57,

g1050.57, g1150.57.

Similarly, the total ionization cross section is

s i58p
Z2

v2

0.283

Za
2 H ln

5.08v2

ZZaA12b2
2

b2

2 J . ~10!

Next, summing~9! over all values ofn, we arrive at an
expression for the total cross section of excitation of
discrete states of the hydrogen atom,

sexc5 (
n52

`

sn

58p
Z2

v2

0.717

Za
2 H ln

0.84v2

ZZaA12b2
2

b2

2 J , ~11!

and the total inelastic cross section,

s r5sexc1s i

58p
Z2

v2

1

Za
2 H ln

1.4v2

ZZaA12b2
2

b2

2 J . ~12!

Equations~9! and ~10! can be used to estimate the cro
sections of excitation and ionization of theK-shells of com-
plex nonrelativistic atoms as a result of a collision of t
atom and a relativistic ion when theK-shell electrons are
described by hydrogenlike functions with an effecti
nuclear chargeZa . To obtain estimates of the cross sectio
of ionization or excitation ofL-shells one can use the cros
sections of ionization or excitations of hydrogenlike atom
from 2s- and 2p-states.
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For hydrogenlike atoms that initially were in 2s-states
we have

s i58p
Z2

v2
0.82H ln

17.1v2

ZZaA12b2
2

b2

2 J , ~13!

sn58p
Z2

v2

217

3
n7

~n22!2n26

~n12!2n16
~n221!

3H ln
bnv2Za

ZVnA12b2
2

b2

2 J , ~14!

wheren>3, Vn5en2e2, and the numbersbn are

b350.18, b450.28, b550.34,

b650.39, b750.41, b850.42,

b950.44, b1050.45, b1150.46.

For hydrogen atoms that initially were in the 2p-state we
have~after averaging over the projections of angular mom
tum in this state!

s i58p
Z2

v2
0.53H ln

271v2

ZZaA12b2
2

b2

2 J , ~15!

sn58p
Z2

v2

215

3
n11

~n22!2n27

~n12!2n17 S 11

3
2

4

n2D
3H ln

bnv2Za

ZVnA12b2
2

b2

2 J , ~16!

wherenÞ2, and the numbersbn are

b150.27, b350.13, b450.30, b550.46

b650.58, b750.67, b850.73, b950.79

b1050.82, b1150.85.

Figure 1 illustrates the nature of the results obtained

FIG. 1. Cross sections for ionization of the hydrogen atom by ions C61

obtained in the Born approximation~curve 1!, by the matching method o
Eq. ~10! ~curve 2!, in the Glauber approximation10 ~curve 3!, and in the
sudden-perturbation approximation8 ~curve4!.
-

y

the matching method with the ionization cross sections
the hydrogen atom obtained in the Born representa
~curve1!, by the matching method of Eq.~10! ~curve2!, in
the Glauber approximation10 ~curve 3!, and in the sudden-
perturbation approximation8 ~curve4!. We see that the cros
section values obtained by Eq.~10! within its applicability
range are close to those obtained in the Glauber approx
tion, and with increasing velocity tend to the values of t
Born approximation. We also note that although forZ;v
!1 the expressions derived in this section do not transfo
directly into the Born approximationsB , which is a general
property of the approximation~3!. Instead, their relative dif-
ference tends to zero as the velocity increases, i.e.,sB

2s)/s→0 asv→c. But whenZ;v;1, our results, which
are based on the unitary approximation~3!, as well as the
Glauber approximation, agree much better with the exp
mental results as compared to the Born approximati
which is known to be nonunitary and in this region overe
timates inelastic cross sections substantially~by a factor of
1.5!. Here, in contrast to direct application of the Glaub
approximation in the form~2!, which requires significant
computer times even in the nonrelativistic case,10,11 our for-
mulas are analytic.

4. EXCITATION AND IONIZATION OF A HELIUMLIKE ATOM

If one uses perturbation theory in calculating the cro
sections of inelastic collisions of fast charged particles w
complex atoms, one-electron excitation or ionization is
first-order effect in the interaction of the incident particle a
the atomic electrons. A two-electron transition correspon
to the second order of perturbation theory, whence the in
action of the incident particle and an atomic electron is tak
into account once and the electron–electron interaction,
once. Multielectron transitions are calculated in a simi
way,3,19 i.e., the interaction of the incident particle an
atomic electrons is always taken into account once, while
the rest amounts to taking into account the electron–elec
interaction the necessary number of times.

The situation changes, however, when the interaction
the atomic electrons and the incident particle is much str
ger than the electron–electron interaction. In this case a m
tielectron transition should be considered the result of
direct action3,20 of the strong field of the incident particle
and it is to this mechanism of direct excitation that formu
~2! and~3! correspond~see Ref. 4!. Below we give the cross
sections of one- and two-electron transitions from the grou
state of a nonrelativistic heliumlike atom in collisions with
multicharged relativistic ion. The formulas were derived
the approximation of large impact parameters~Eq. ~4!!. For
all cases, in deriving these formulas we described the t
electron states of the heliumlike atom by symmetrized pr
ucts of hydrogenlike one-electron wave functions.

To avoid the normalization procedure~which is usually
ambiguous because, strictly speaking, one must orthogo
ize all the states belonging to the continuous and disc
spectra!, we selected one-electron hydrogenlike wave fun
tions in the field of a nucleus with the same effective nucl
charge, which was equal toZ1 for one-electron transitions
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andZ2 for two-electron. In this connection we denote arb
trary two-electron statesun1 ,n2& of the heliumlike atom by
two sets of one-electron hydrogenlike quantum numbersn1

andn2. Then, according to~3!, the cross section of the tran
sition from the ground stateu0,0& to a stateun1 ,n2& in the
approximation~4! ~large impact parameters! is given by the
formula

s5E d2b u^n1 ,n2uexp$2 iq–~r11r2!%u0,0&u2. ~17!

We see that the cross section is expressed in terms o
impact-parameter integral of the product of well-known15

hydrogenlike form factors. The cross section of two-elect
transitions~in which the two electrons were sure to chan
state! were obtained directly from Eq.~17! by integrating
over the entire impact-parameter plane. On the other h
the cross sections of inelastic processes that incorporate
electron transitions~e.g., single excitations of ionizations an
total inelastic cross sections! are obtained via matching with
perturbation theory, so that the corresponding formulas c
tain the characteristic logarithmic dependence on the velo
of the multicharged ion and the relativistic parame
g51/A12v2/c2 .

The cross section of single ionization, corresponding
one atomic electron arriving in any state of the continu
and the other, in any state of the discrete spectrum~or in any
state belonging to the complete set of the discrete and
tinuous spectrum, but in this case we must subtract the c
tribution corresponding to two electrons being in states t
belong to the two-electron continuum, i.e., in doub
ionization states!, is

s11516p
Z2

v2
0.283

3H 1

Z1
2 F ln

5.08v2

ZZ1A12b2
2

b2

2 G2
1

Z2
2

ln 3.72J . ~18!

The total cross section for one-electron excitations of
discrete spectrum, when only one atomic electrons is exc
to a one-electron state belonging to the discrete spectrum
the other remains in the ground state~in an unexcited state
to be precise!, has the form

s1* 516p
Z2

v2

0.375

Z1
2 H ln

0.256v2

ZZ1A12b2
2

b2

2 J . ~19!

The total double-ionization cross section can be obtained
summing ~17! over all n1 and n2 belonging to the two-
electron continuum. The result is

s21516p
Z2

v2

0.283

Z2
2

ln 3.7259.36
Z2

Z2
2v2

. ~20!

The expression for the total cross section of the transition
a heliumlike atom to all doubly excited states of the discr
spectrum~including all possible autoionization states! can be
found after the respective summation overn1 andn2 is done:
an

n
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s2* 516p
Z2

v2

0.283

Z2
2

ln 1.1552.03
Z2

v2Z2
2

. ~21!

The total cross sections are linked by the following obvio
general relationship:

s r5s111s1* 1s211s2* , ~22!

where the total inelastic cross sections r , corresponding to
the possibility of any excitation of the heliumlike atom, is

s r516p
Z2

v2

0.717

Za
2 H ln

1.03v2

ZZaA12b2
2

b2

2 J , ~23!

whereZa is the effective charge of the nucleus of the he
umlike atom in the ground state (1s2), equal to the charge o
the bare atom minus 5/16.

As another example of two-electron transitions into d
crete states we examine the cross section of excitation
autoionization states with the principal quantum numb
n52 ~the L-shell! of a heliumlike atom. Since in the colli
sions considered here the electron spins do not change
citation of the following autoionization states is possib
2s2 1S, 2s2p 1P, 2p2 1S, and 2p2 1D, with the correspond-
ing cross sections being

s~2p2 1D !52s~2p2 1S!5
10

3
s~2s2p1P!

530s~2s2 1S!5p
Z2

v2Z2
2

231

319

1

11
.

In Table I we compare the experimental data of Refs.
and 22 with the results of our calculations and with the
sults of numerical calculations done by Fritsch and Lin22 for
the total cross sections of excitation to the autoionizat
states 2s2p12p2 of the helium atom. The first column give
the incident-ion energies reduced to the atomic unit of ma
the second column gives the ion charge, the third gives
experimental results taken from Refs. 21 and 22, the fou
gives our results (Z251.97), and the fifth the results of nu
merical calculation done in Ref. 22.

Figure 2 shows the results of experiments conducted
Berget al.23 and the results of calculations~by formulas~20!
and ~18!! of the cross sections of double (Z251.97) and
single (Z151.37) ionizations of the helium atoms in coll
sions with relativistic uranium ions U901 at 60, 120, and
420 MeV/nucleon and their ratios21/s11. The proper
choice of the values of the effective chargesZ151.37 and
Z251.97 is confirmed by the adequate agreement of our
sults listed in Table II with the experimental data of Refs.

TABLE I. Sum of cross sections (31019 cm2) of excitation of the autoion-
ization 2s2p1P- and 2p2 1D-states of the helium atom.

Energy, Ion Experiment, Theory, Calculation,22

MeV/nucleon charge 10219 cm2 10219cm2 10219 cm2

1.84 6 8.30561.744 18.45 25.6
1.5 6 20.167.20 22.61 31.8
1.5 9 48.99617.66 50.79 111.6
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and 20 on double and single ionization of a helium atom a
result of a collision with a multicharged fast nonrelativis
ion. Note that here we list the results of calculations of cr
sections of direct single ionization (s11) and of cross sec
tions (s111s2* ), which may serve as estimates for the to
cross sections of formation of singly charged helium ions
a result of direct ionization and Auger decay of all types
doubly excited states of the helium atom. The reason is
in low-Z atoms the Auger decay is the dominating channe
decay of the doubly excited states of the discrete spectr
with the exception of a relatively small number of stat
~compared to the total number of all types of such states! for
which Auger decay is forbidden by selection rules.25–27

FIG. 2. The results of experiments conducted by Berget al.23 and the re-
sults of calculations~by formulas~20! and ~18!! of the cross sections o
double and single ionizations of the helium atoms in collisions with rela
istic uranium ions U901 at 60, 120, and 420 MeV/nucleon, and their rat
s21/s11: d—experiment, and3—calculation.
a

s

l
s
f
at
f

m,

5. EXCITATION AND IONIZATION OF A MULTIELECTRON
ATOM

Although the strong field of a multicharged ion results
very high probabilities of electronic transitions, for calcul
tions of cross sections of excitation or ionization of a hi
order the large-impact-parameter approximation~4! may be-
come invalid, with the result that the corresponding cro
sections may become comparable to the characteristic ato
dimensions. Hence we must consider the more general
mula ~3!. We assume that the atomic electrons of a mu
electron~before the collision! and nonrelativistic~after the
collision! atom are not identical and assign to each electro
one-electron hydrogenlike wave function. Then the init
wave function is

C0~r1 , . . . ,rN0
!5)

i 51

N0

f i~r i !,

and the final wave function is

C f~r1 , . . . ,rN0
!5)

i 51

N0

c i~r i !.

Hence the total probability of (N02N)th-orderionization of
a nonrelativisticN0-electron atom corresponding toN02N
electrons reaching the continuum and the remainingN elec-
trons in any of the states of the discrete spectrum is, acc
ing to ~3! and with allowance for unitarity,

W~N02N!1~b!5
N0!

~N02N!! N!

3 )
i 51

N02N

pi~b! )
j 5N02N11

N0

~12pj~b!!, ~24!

where ) j 5N02N11
N0 (•••)51 for N50, and the generalized

one-electron inelastic form factor is,

pi~b!5E d3ki ud3r i cki
* ~r i !exp$2 ix i~b,r i !%f i~r i !u2, ~25!

with k i the momentum of thei th electron in the continuum
We see that this probability depends on the vectorb. How-
ever, after being averaged over the projection of the to
orbital angular momentum of the initial state, the probabil
becomes a function of onlyubu. Let us introduce the averag

-

TABLE II. Cross sections (31016 cm2) of double and single ionization of the helium atom.

Energy, Ion s21 s21 s11 s11 s111s2*
MeV/nucleon charge expt. theory expt. theory theory

0.64 8 1.32 1.687 7.9 10.231 10.597
1.00 8 1.06 1.08 6.7 8.11 8.344
1.44 8 0.45 0.75 5.9 6.518 6.68
1.4 15 2.91 2.712 17.9 17.798 18.385
1.4 18 4.50 3.905 22.4 23.322 24.168
1.4 20 5.41 4.821 26.0 27.146 28.191
1.4 36 16.0 15.621 57.2 58.206 61.59
1.4 37 16.8 16.501 59.5 60.02 63.594
1.4 44 23.0 23.335 72.1 71.779 76.833
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over the orbital angular momentuml and the projection of
this momentumm of the value of the one-electron inelast
form factor for each electron of the shell~which is then av-
eraged over all the shells of the atom!:

p~b!5
1

n0
(
n51

n0 1

Mn
(
l ,m

E d3k U E d3r ck* ~r !

3exp$2 ix~b,r !%fnlm~r !U2

, ~26!

where the inner sum is over all possible values ofl andm for
a givennth shell,Mn is the number of such values,n is the
principal quantum number, andn0 is the number of shells
Obviously,p(b)5p(ubu) is independent of the angles dete
mining the direction ofb, with the result thatp(b) has the
meaning of the average one-electron ionization probabi
Then, replacing each one-electron form factor in~24! by the
average~26!, we arrive at an expression for the probability
(N02N)th-order ionization common for the independen
electron approximation.3,9 However, the effective chargeZ*
of the atomic nucleus depends on the order of ionization.
allow for this, we make the following substitutions in~26!:

k5
k

Z*
, b5bZ* , r5rZ* ,

which means that we are introducing Coulomb units.15 Then
the right-hand side of Eq.~26! can be calculated by using th
wave functions of the hydrogen atom with a unit charge, a
the dependence onZ* amounts to the substitutionb5bZ* .
Hence, if from now on we interpretp(b) as the form factor
of the hydrogen atom averaged in accordance with~26!, such
a substitution makes it possible to calculate the ionizat
cross section under assumptions that are more general
those used in the independent-electron model. Below
consider high-order ionization, i.e.,N0@1 and N02N@1.
We start with the cross section of total ionization of the at
~when the atom is stripped of all of itsN0 electrons!. Then in
~24! we haveN0, and W is simply the product ofN0 one-
electron form factors. We introduce an effective nucle
charge corresponding to total ionization of the atom,ZN0

* .

Replacing each one-electron form factor by the average~26!,
we arrive at an expression for the probability of total ioniz
tion:

WN015@p~b!#N0,

whereb5bZN0
* . The integral~3! of this probability can be

evaluated asymptotically (N0@1) by the Laplace method
under the assumption thatp(b) has its maximum at the lef
limit b5b050 of the integration interval. The fact that suc
a maximum exists can easily be verified by studying
results of calculations in Refs. 8 and 14. All this leads to
formula for the cross section ofN0-order ionization of the
shell:

sN015p
1

~ZN0
* !2 F 22p

p9~b0!N0
G 1/2

@p~b0!#N011/2. ~27!
.

o

d

n
an
e

r

-

e
a

Here and in what follows,b0 is the point of maximum of
p(b), andp9(b0) is the value of the secondp-derivative of
p(b) at pointb0. In the case of (N021)st-order ionization,
the ionization probability is simply the difference of tw
terms. The first term contains the product ofN021 one-
electron form factors and corresponds to a situation in wh
N021 electrons are in the continuum~the effective charge is
ZN021* ), and the second term contains the product ofN0 one-

electron form factors and corresponds to a situation in wh
N0 electrons are in the continuum~the effective charge is
ZN0

* ). Integrating each term separately by the Lapla

method, we arrive at a formula for the cross section of (N0

21) st-orderionization:

s~N021!15N0sN01F S ZN0
*

ZN021* D 2

S N0

N021D 1/2 1

p~b0!
21G .

~28!

Reasoning along similar lines in the general case of (N0

2N) th-order ionization, we obtain

FIG. 3. Cross section of multiple ionization of the argon atom by mu
charged uranium ions U751 with an energy of 15 MeV/nucleon as a functio
of the order of ionizationn: h—the results of the experiment of Ullrich
et al.,28 andn—our results.

FIG. 4. Results of the experiments described in Refs. 28 and 29 and o
calculations~by formulas~27!–~29!! of the cross sections of multiple ion
ization of neon atoms in collisions with relativistic uranium ions U911 with
an energy of 120 MeV/nucleon as functions of the order of ionizationn:
h—experiment, andn—our results.
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s~N02N!15
N0! sN01

~N02N!! N! (
m50

N

~21!m

3S ZN0
*

ZN02N1m* D 2
N! AN0 /~N02N1m!

~N2m!! m!

3@p~b0!#2N1m, ~29!

whereZN02N1m* is the effective charge for the case of (N0

2N1m)th-order ionization.
Equations~27!–~29! make it possible, at least in prin

ciple, to calculate the cross sections for ionization of a
order~provided thatN0@1 andN02N@1) or, knowing any
two cross sections from experiments, to reproduce the
maining cross sections. The simplest approach here is to
sume that the known cross sections aresN01 ands (N021)1.
Then we can easily findp(b0) and insert it in~29!. As a
result, the cross section of arbitrary (N02N)th-order ioniza-
tion will be expressed in terms ofsN01 ands (N021)1. The
results of such calculations for multiple~up to the eighth
order! ionization of the neon atom and~up to eighteenth
order! ionization of the argon atom are displayed in Fig
3–5. Here the effective charge was assumed equal to
order of ionization, i.e.,ZN* 5N. The figures clearly show
that the agreement of the results of calculations with thos
the experiments described in Refs. 28 and 29 is good e
for low-order ionization, which formally lies outside the a
plicability range (N02N@1) of Eqs.~27!–~29!.

FIG. 5. Results of the experiments described in Refs. 28 and 29 and o
calculations~using formulas~27!–~29!! of the cross sections of multiple
ionization of argon atoms in collisions with relativistic uranium ions U911

with an energy of 120 MeV/nucleon as functions of the order of ionizat
n: h—experiment, andn—our results.
y

e-
s-

.
he

of
en

* !E-mail: matveev@otf.gimli.com
1!Strictly speaking, as a result of ionization by an ion moving with a re

tivistic velocity, the atomic electrons arriving in the continuum may a
quire relativistic velocities. However, as shown in Ref. 9, such proces
occur at small impact parameters, so that the corresponding contributio
the total cross sections of ionization by the impact of a multicharged
can be ignored.
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Radiative damping of a relativistic electron in classical electrodynamics
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Zh. Éksp. Teor. Fiz.114, 1661–1671~November 1998!

An exact solution of the problem of the reaction of the field generated by a relativistic classical
electron is derived. It is found that the solution differs dramatically from the known
formulas by the presence of a component that is even under time reversal. It is also shown that
the component of the generalized radiative damping force that is odd under time reversal
coincides with the well-known relativistic damping force obtained from the approximate
nonrelativistic formula via a Lorentz transformation. ©1998 American Institute of
Physics.@S1063-7761~98!00811-7#
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1. INTRODUCTION

To use V. L. Ginzburg’s clever comment, physics h
several literally eternal problems, which have been deba
for decades in the scientific community. One such problem
radiative damping.1

The classical expression for the radiative damping fo
~see formula~75.8! of Ref. 2! leads, as is well known, to
instability in the electron’s motion, or what is known as t
self-accelerating paradox. Actually this means that not o
the law of energy conservation but also the causality p
ciple breaks down.3 These paradoxes, which arose at the
ginning of the 20th century, continue to draw attention.4–10

Nevertheless, the unflagging interest yielded no solution
terms of classical electrodynamics. Physically speaking,
problem of radiative damping must be solved with allowan
for quantum effects.3

The above paradoxes can be resolved if one allows
laws that are essentially quantum mechanical, which
scribe the interaction of the electron and the radiation fie3

Such an approach also leads to a rigorous justification for
conditions under which the common classical formulas
radiative damping can be used.1

In this connection it becomes essential to close the g
that exist in classical radiative damping theory.

1. The classical theory has no consistent relativistic
proach to the derivation of the formula for the radiati
damping force. The common transition to the relativistic d
main is accomplished via Lorentz transformations from
approximate nonrelativistic formula~75.8! of Ref. 2, which
is insufficient for a physical theory.

2. There is no procedure for removing divergences
herent in classical electrodynamics.

3. In the nonrelativistic model, the electromagnetic m
enters into the formulas with an incorrect factor of 4
which was first obtained by Thomson and then by Abrag
and Lorentz.11

The present paper provides an exact expression for
reaction of the radiation field emitted by the electron. T
essentially relativistic nature of this formula is determined
the Green’s function of the field. Hence the damping fo
8991063-7761/98/87(11)/6/$15.00
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has a component that is even under time reversal and
that is odd. A procedure based on the integral representa
of the Green’s function is proposed that makes it possible
remove the divergences and renormalize the mass. It wil
shown that in the relativistic theory~in contrast to the non-
relativistic Abragam–Lorentz model11! there is no factor of
4/3 in the expression for the electromagnetic mass. An ex
analytic formula is derived for the generalized radiati
damping force, and the similarities and discrepancies
tween this formula and the well-known relativist
expression1,2 are established. It is found that the odd comp
nent ~under time reversal! coincides with the well-known
relativistic formula. What is new here is that the radiati
force has an even component~under time reversal!, absent
from earlier formulas. In the reference frame co-moving w
the electron, this force can be interpreted as a new effec
the dependence of mass on acceleration.

Thus, the exact solution of the physical problem, whi
is important in itself, makes it possible in the present case
establish the essentially new laws governing the radia
damping of a classical electron both in the relativistic d
main and in the nonrelativistic domain.

2. REACTION OF THE RADIATION FIELD GENERATED BY A
RELATIVISTIC ELECTRON

We wish to derive, in a rigorous manner, an express
for the reaction of the field of a relativistically moving cla
sical point electron without resorting to the common nonr
ativistic approximation. From the standpoint of the corr
spondence principle of consistent quantum theory,3 it is
natural to use the Hamiltonian method of solving the clas
cal problem.1

The relativistic Hamiltonian of an electron placed in
potential field with potential energyV(r ) and interacting
with its own field has the form

H5cAFp2
e

c
A~r ,t !G2

1~mc!2

1eA0~r ,t !1V~r !1F, ~1!
© 1998 American Institute of Physics
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whereA0(r ,t) andA(r ,t) are the potentials of the field, an
F is the Hamiltonian of the radiation field. When analyzin
the problems of radiative damping it is convenient to use
gauge symmetry, selecting the transverse~Coulomb! gauge
for the potentials of the field:

div A~r ,t !50. ~2!

The scalar potentialA0(r ,t), which is responsible in this cas
for the Coulomb interaction,12 leads to no observable effec
in the single-particle problem and can be dropped from
system Hamiltonian~1!.

To derive an expression for the radiative damping fo
we must write the exact equations of motion for the dyna
cal variables of the electron. The system Hamiltonian~1!
gives rise to the well-known Lorentz equation:

d

dt F mṙj~ t !

A12v2/c2G1¹ jV~r ~ t !,t !

52
e

c

]

]t
Aj~r ~ t !,t !1

e

c
ṙ a~ t !~¹ jAa~r ~ t !,t !

2¹aAj~r ~ t !,t !!, ~3!

whereṙ j (t)5]H/]pj[v j (t) are the components of the ele
tron velocity.

We write the field potentials in the Lorentz equation~3!,
which are functions of the electron’s radius vectorr (t) at the
same timet, in the form of Fourier expansions:

Aj~r ~ t !,t !5E dk

~2p!3
exp@ ik–r ~ t !# Aj~k,t !, ~4!

where the Fourier transformsAj (k,t) do not contain the elec
tron variables explicitly. The components of the current d
sity, which are the canonical conjugates of theAj (k,t), can
be found from the system Hamiltonian~1! via the relation-
ship

2
dH

dAj~k,t !
5

e

c
ṙ j~ t !exp@ ik–r ~ t !#. ~5!

The Hamiltonian leads to equations for the Fourier tra
forms Aj (k,t) of the field potentials:

S k21
1

c2

d2

dt2
D Aj~k,t !5

4p

c
eṙj~ t !exp@ ik–r ~ t !#, ~6!

which are the Maxwell equations for the radiation field ge
erated by an electron with a current density

j a~r ,t !5ed3~r2r ~ t !! ṙ a~ t !.

Equation~6! yields an exact solution for the radiation fie
generated by the electron:

Aj~k,t !5
e

cE dt1 D jl ~k,t2t1! ṙ l~ t1!exp@2 ik–r ~ t1!#,

~7!

whereD jl (k,t2t1) is known as the retarded Green’s fun
tion of the field. In the adopted gauge, the Fourier spectr
of the Green’s function has the form13
e

e

e
i-

-

-

-

m

D jl ~k,v!5E
2`

`

dt exp~ ivt! D jl ~k,t!

5 4p~k21¸2!21 S d j l 2
kjkl

k2 D , ~8!

k5uku, ¸25S iv

c D 2

~11 i« sgnv!.

The presence ofi« sgnv («.0) ensures the correct tra
versal of the pole in the retarded Green’s function. In clas
cal electrodynamics there is no such concept as electrom
netic vacuum, so that~7! contains no solution for an Eq.~6!
with a zero right-hand side.

As a result, the reaction of the radiation field genera
by the electron is found to depend exclusively on the el
tron variables. Substituting the exact solution~7! in ~4!
yields

Aj~r ~ t !,t !5
e

cE dt1E dk

~2p!3 D jl ~k,t2t1! ṙ l~ t1!

3exp~ ik–Dr !, ~9!

where Dr5r (t)2r (t1). Finally, by inserting~9! into the
Lorentz equation~3! we arrive at a rigorous relativistic ex
pression for the radiative damping force acting on a class
electron:

d

dt F mrj~ t !

A12v2~ t !/c2G1V~r ~ t !!

5F j~ t ![2S e

cD 2 ]

]tE dt1E dv

2p

3exp@2 iv~ t2t1!# D jl ~Dr ,v! ṙ l~ t1!1S e

cD 2

ṙ a~ t !

3E dt1E dv

2p
exp@2 iv~ t2t1!#

3@¹ jDa l~Dr ,v!2¹aD jl ~Dr ,v!# ṙ l~ t1!, ~10!

where

D jl ~Dr ,v!5E dk

~2p!3
exp~ ik–Dr ! D jl ~k,v! ~11!

determines the spatial dependence of the Green’s functio
the field. By passing from the partial time derivative to t
total time derivative we can transform the expression for
radiative damping forceF j (t) in ~10! into

F j~ t !52S e

cD 2 d

dtE dt1E dv

2p

3exp@2 iv~ t2t1!# D jl ~Dr ,v! ṙ l~ t1!

1S e

cD 2

ṙ a~ t !¹ jE dt1E dv

2p

3exp@2 iv~ t2t1!# Da l~Dr ,v! ṙ l~ t1!. ~12!
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The same result can be obtained by passing to the lim\
→0 in the quantum mechanical formula~24! obtained in
Ref. 3 at absolute zero

The above rigorous definition of the radiative dampi
of a classical electron, which does not involve the nonre
tivistic limit, is of special interest since it shows directly th
the paradox of a self2accelerating electron cannot be r
solved in classical electrodynamics.

3. THE RETARDED GREEN8S FUNCTION;
RENORMALIZATION OF MASS IN CLASSICAL
ELECTRODYNAMICS

To obtain an explicit analytical formula for the radiativ
force F j (t), we must first find the Fourier transform~11! of
the Green8s function~8!. The features of the Green8s func-
tion ~8! as a tensor are determined by the fact that in
adopted Coulomb gauge~2! the field8s vector potential is
transverse. For convenience we separate the principal s
part in tensor~8!, which we denote by

G~k,v!5
4p

k21¸2
, ¸5

iv

c
~11 i« sgnv!, ~13!

and write~8! as

D jl ~k,v!5d j l G~k,v!1
1

¸2 kjkl@G~k,v!2G~k,0!#.

~14!

Using the analytic properties of the function~13! in the up-
per halfv-plane, we can write the Fourier transform of~13!,

G~Dr ,v!5E dk

~2p!3
exp~ ik–Dr !

4p

k21¸2

5
1

Dr
exp~¸Dr !, ~15!

Dr 5ur ~ t !2r ~ t1!u, ¸5 iv/c ,

and the Fourier transform of the Green’s function~11!,

D jl ~Dr ,v!5d j l G~Dr ,v!2
1

¸2
¹ j¹ l G̃~Dr ,v!. ~16!

For the function

G̃~Dr ,v!5G~Dr ,v!2G~Dr ,0!. ~17!

we introduce an integral representation, which will be e
tremely useful in further calculations:

G̃~Dr ,v!5¸E
0

1

db exp~¸Drb!, ~18!

and correspondingly,

G~Dr ,v!5¸E
0

1

db exp~¸Drb!1
1

Dr
. ~19!

Substituting~18! in ~16! and calculating the derivatives¹ j

and¹ l , we arrive at an expression for the Green’s functio
-

e

lar

-

,

D jl ~Dr ,v!5d j l G~Dr ,v!2
Dr jDr l

Dr 2 E
0

1

db b2 exp~¸Drb!

2S d j l 2
Dr jDr l

Dr 2 D E
0

1

db b exp~¸Drb!
1

Dr
.

~20!

Integrating by parts,

E
0

1

dS 1

2
b2Dexp~¸Drb!

1

Dr

5
1

2

1

Dr
exp~¸Dr !2

¸

2E0

1

db exp~¸Drb!, ~21!

and using the integral representation~19!, we can reduce the
expression~16! for Green’s function~16! to

D jl ~Dr ,v!5D jl
0 ~Dr !1D̃ j l ~Dr ,v!. ~22!

In ~22! we have separated the terms that are frequen
independent and have a singularity in the limitDr→0:

D jl
0 ~r !5

1

Dr
d j l 2

1

2Dr S d j l 2
Dr jDr l

Dr 2 D . ~23!

Accordingly, the regular partD̃ j l (Dr ,v) of the Green’s func-
tion has no singularities forDr→0:

D̃ j l ~Dr ,v!5d j l ¸E
0

1

db exp~¸Drb!2d j l

¸

2 E
0

1

db ~12b2!

3exp~¸Drb!1
Dr jDr l

Dr 2

¸

2 E
0

1

db ~123b2!

3exp~¸Drb!. ~24!

Bearing in mind that

E
0

1

db ~123b2!exp~¸Drb!

52Dr E
0

1

db ~12b2!¸b exp~¸Drb!, ~25!

we can write the regular part~24! of the Green’s function as

D̃ j l ~Dr ,v!5d j l ¸E
0

1

db exp~¸Drb!

2d j l

¸

2 E
0

1

db ~12b2!exp~¸Drb!

2Dr j

¸

2 E
0

1

db ~12b2!¸b
Dr l

Dr
exp~¸Drb!.

~26!

By writing the Green’s function as the sum of the sing
lar and regular parts we can analyze the divergences inhe
in classical electrodynamics and discuss the problem of e
tromagnetic mass. Since the singular part~23! of the Green’s
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function is frequency-independent, if we substitute it in
~10! and allow for the radiative damping force in the for
~12!, we find

d

dtF mṙj~ t !

A12v2/c2G1¹ jV~r ~ t !!52dm r̈j~ t !, ~27!

where the additional electromagnetic mass

dm5
e2

c2
~Dr ! t15t

21 , ~Dr ! t15t
21 5E dk

~2p!2
4pk22 , ~28!

is formally divergent. The common procedure of mass ren
malization consists in including the additional electroma
netic massdm in the total renormalized mass

m* 5m1dm, ~29!

a value assumed by the experimentally measured mass.
the renormalization procedure has been completed, the r
lar part ~26! of the Green’s function remaining in the equ
tions of motion leads to a finite value for the radiative dam
ing force determined by~10!. Note, however, that this fac
does not resolve the self-accelerating paradox.

Concluding this section, we note that the physical rea
for divergences in classical electrodynamics is that by in
grating in ~28! over the entirek-space we step outside th
limits of of classical electrodynamics. The restriction on
tegration ink-space may be associated only with one ch
acteristic length in classical electrodynamics, the class
electron radiusacl , i.e.,

e2

acl
5mc2. ~30!

Because of this we can assume that

~Dr ! t15t
21 5

1

acl
5

mc2

e2
. ~31!

If we assume thatDr in ~28! corresponds to the classic
electron radiusacl ~Eq. ~31!!, the additional massdm coin-
cides with the electron mass. From this viewpoint the el
tron mass is of a purely electromagnetic nature and is rel
to the radiative damping force acting on the charge. T
allowance for the fact that the field is transverse in calcu
tions of the singular part~23! of the Green’s function re-
solves the problem of the factor of 4/3, which initiallyaro
in Thomson’s work and then in the nonrelativistic Abragam
Lorentz model.11

4. A RELATIVISTIC FORMULA FOR THE RADIATIVE
DAMPING FORCE OF A CLASSICAL ELECTRON

As is well known, the retarded Green’s function of th
field ~Eqs.~8! and~11!! is a complex-valued function of th
frequencyv. Due to this, the radiative damping forceF j (t)
in ~10! contains a component that is even under time reve
and one that is odd. Hence the generalized radiative dam
force F j (t) differs dramatically from the well-known radia
tive damping force, which is odd under time reversal~see
formula ~3.12! in Ref. 1!. Thus, it is important to rigorously
determine the time dependence of radiative damping.
r-
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The integral representation of the Green’s functi
makes it possible to obtain an explicit analytical formula f
the generalized radiative damping force without using
proximation schemes. What is especially important here
the procedure of mass renormalization proposed in Sec
First we use the representation~16! of the Green’s function
and substitute it in the expression for the radiative damp
forceF j (t) defined in Eq.~10!. Bearing in mind the obvious
fact that the derivatives¹ j ,¹a , and¹ l commute and allow-
ing for mass renormalization, we find that

F j~ t !52
e2

c2

]

]t E dt1 E dv

2p
exp@2 iv~ t2t1!#

3D̃ j l ~Dr ,v!v l~ t1!1
e2

c2
va~ t !

3E dt1E dv

2p
exp@2 iv~ t2t1!#

3@da l¹ j2d j l ¹a#G̃~Dr ,v!v l~ t1!, ~32!

wherev l(t1)5 ṙ l(t1), andva(t)5 ṙ a(t). In accordance with
the mass2renormalization procedure, in~32! we keep only
the regular parts of the Green8s function, D̃ j l (Dr ,v) and
G̃(Dr ,v), defined by~26! and ~18!, respectively. Below we
discuss the main stages in calculating the radiative damp
force ~32!.

After inserting the integral representations~26! and~18!
of the Green’s functions in~32!, we use the expression fo
the differential,

2d$exp~¸Drb!%5¸b
Dr l

Dr
exp~¸Drb! ṙ l~ t1! dt1 ,

and integrate by parts, taking into account the causality p
ciple and the resulting properties of the Green’s function

Next, using obvious transformations we can write t
radiative damping force as

F j~ t !52
e2

c3E0

1

dbE dt1E dv

2p
exp~ ivz! F ~ iv!2v j~ t1!

2
1

2
~12b2!~ iv!3Dr j G

1
e2

c4
va~ t !E

0

1

db bE dt1E dv

2p

3exp~ ivz! ~ iv!2@Dr jva~ t1!2Dr av j~ t1!#
1

Dr
, ~33!

where we have introduced the notation

z5t12t1
Dr

c
b, Dr j5r j~ t !2r j~ t1!.

The calculations that follow are quite obvious. As result
integrating by parts with respect tov we arrive at derivatives
of the delta functions with respect to the argumentz. This is
followed by integration with respect tot1. Finally, integra-
tion with respect to the auxiliary parameterb introduced into
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the integral representation~18! yields the final expression fo
the generalized radiative damping forceF j (t) in the relativ-
istic equation~10!:

F j~ t !5
2

3

e2

c3

1

12u S v̈ j1
1

2

u

12u
v̈ j

~ l !D
1

e2

c3

u̇

~12u!2 S aj
~c!1

1

4
aj

~ l !1
1

2

aj
~ l !

12uD , ~34!

where we have introduced the notationv5dr(t)/dt, u
5v/c,

aj
~c!5S d j l 2

v jv l

v2 D v̇ l5 v̇ j2v j

v̇
v

~35!

is the centripetal acceleration, and

aj
~ l !5

v jv l

v2
v̇ l ~36!

is the longitudinal acceleration. By analogy with~35! and
~36! we define the normal and longitudinal components
the second derivative of velocity:

v̈ j
~c!5S d j l 2

v jv l

v2 D v̈ l , v̈ j
~ l !5

v jv l

v2
v̈ l . ~37!

Interestingly, the ultrarelativistic (u→1) expression for the
radiative damping force is

F j~ t !.
1

3

e2

c3

v̈ j
~ l !

~12u!2
1

1

2

e2

c3

u̇aj
~ l !

~12u!3
. ~38!

This force is directed parallel to the velocity of the ultrare
tivistic particle.

Let us see how formula~34! for the generalized radiative
damping force is related to the well-known relativistic fo
mula ~3.12! of Ref. 1, which is obtained, via Lorentz tran
formations, from the approximate nonrelativistic formu
~75.8! of Ref. 2,

F j~ t !5
2

3

e2

c3
v̈ j . ~39!

Since this formula~39! and its relativistic generalization ar
odd under time reversal, we must isolate in the generali
radiative damping force~34! its odd component. Then

F j
~odd!~ t !5

2

3

e2

c3

1

12u2 H v̈ j
~c!1

v̈ j
~ l !

~12u!2

1
3uu̇

12u2Faj
~c!1

aj
~ l !

12u2G J . ~40!

If we use the appropriate notation, Eq.~40! coincides with
the relativistic formula~3.12! of Ref. 1.

What sets the expression~34! for the generalized radia
tive damping force apart from formula~3.12! of Ref. 1 is the
presence of a component that is even under time reve
This is seen most clearly in the ultrarelativistic limit. Th
f

-

d

al.

study of new effects associated with this difference is
special interest and requires a separate investigation.

To directly verify the approximate nature of the nonre
ativistic formula~75.8! of Ref. 2, we write the exact formula
~34! in a reference frame co-moving with the electron. Wh
is remarkable in this transition is that the centripetal acc
eration tends to zero asv→0, while the longitudinal accel-
eration coincides with the ordinary acceleration. Then fro
~34! we obtain the nonrelativistic formula for the radiativ
damping force:

1

mc
F j~ t !5t0S ü j1

9

8
u̇ j u̇D , t05

2

3

e2

mc3
, ~41!

and the corresponding Lorentz equation for the electron
the co-moving reference frame is

u̇ j5
e

mc
Ej~ t !1t0S ü j1

9

8
u̇ j u̇D , ~42!

where Ej (t) is the strength of the external electric fiel
What sets~41! apart from the well-known formula~75.8! of
Ref. 2 is the presence of an additional nonlinear depende
on acceleration. Equation~31! can be written as follows:

S 12
9

8
t0u̇D u̇ j5

e

mc
Ej1t0ü j ,

or

mS 12
15

8

t0

c
v̇ D v̇ j5eEj~ t !1mt0v̈ j . ~43!

Then the given effect can be interpreted as the dependen
the effective massm* on acceleration:

m* 5mS 12
9

8

t0

c
v̇ D . ~44!

The common approach to solving problems that involve
diative damping is to formally use the fact that the radiat
damping force is weak.1 Such a procedure yields a physical
meaningful result. However, the weakness of the radia
damping force can be rigorously proved only if quantu
effects are taken into account.3 The physical reason for this
lies is that classical electrodynamics has no small parame
The exact solution of the equations of motion for an elect
with allowance for the relativistic force~34! also leads to the
self-acceleration paradox. Here the velocity reaches
speed of light in a timet0 for.

In conclusion we note one more important feature of
classical theory of radiative damping. As is known, both
classical and quantum systems the processes of relax
~dissipation! and fluctuation phenomena are of the sa
physical nature. This fact is reflected, in particular, in t
fundamental theorems of statistical physics: the Nyqui
Källén–Welton fluctuation–dissipation theorem and the no
linear fluctuation–dissipation theorems.14,15 At the same
time, the classical radiative damping problem does not de
onstrate such a relation. The physical explanation for thi
that in classical electrodynamics there is no such concep
electromagnetic vacuum. For this reason an electron in
space is not subjected to fluctuations. At finite temperatu



na
a

ia

,

904 JETP 87 (5), November 1998 G. F. Efremov
there is thermal radiation, which gives rise to an additio
contribution to the radiative damping of the electron and
the same time is the reason why the electron fluctuates.
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The development of instability, heating, and melting of a two-layer crystal of dust particles in
the sheath of a radio-frequency discharge has been studied by the method of Langevin
molecular dynamics. The interaction forces between particles are determined in terms of a model
developed earlier, in which the ion clouds under the upper particles are replaced by
effective point charges. Both a pure Coulomb interaction and a screened interaction are considered.
Various regimes of particle motion in the crystal are discussed. The experimental and
calculated results for the mean energy of particles and the number of defects in the crystals are
compared. ©1998 American Institute of Physics.@S1063-7761~98!00911-1#
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1. INTRODUCTION

Interest in the study of the behavior of microscopic p
ticles in a plasma has traditionally been due to their imp
tant role in plasma technologies, particularly in plasm
enhanced etching and deposition processes in mi
electronics. The essentially simultaneous discovery by s
eral experimental groups1–3 in 1994 of the formation of a
crystal of dust particles in a gas discharge showed that
croparticles in a plasma are also a new, unique object
makes it possible to study phenomena lying at the junction
the physics of a nonideal plasma, solid-state theory, and
physics of phase transitions. In a low-temperature plas
micron-size particles acquire a significant charge
eZ5(103–104)e. Therefore, by altering the density of th
microparticles, it is possible to experimentally vary the d
gree of nonidealnessG5e2Z2/acTp of the plasma over a
wide range, whereTp is the temperature of the particle
(ac5A1/pn in the two-dimensional ~2D! case and
ac5(3/4pn)1/3 in the three-dimensional~3D! case! andn is
the particle density. According to the theory of a on
component plasma, a system of microparticles must unde
a transition into the crystalline state whenG* 5130–140
~Ref. 4! and G* '170 ~Ref. 5! for the 2D and 3D cases
respectively. The possibility that a crystal of dust partic
would appear in a plasma was predicted by Ikezi6 in 1986,
but it was the experimental discovery of such crystals
magnetron1,7,8 and high-frequency2,3,9,10 discharges that at
tracted attention to the problem of highly nonideal syste
of charged microparticles. Structural ordering of an e
semble of microparticles has also been observed in a the
9051063-7761/98/87(11)/11/$15.00
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plasma11 and in the strata of the positive column of a dc glo
discharge in gas.12 A dust crystal in a radio-frequency dis
charge, which has been most thoroughly studied experim
tally, is considered below.

In a radio-frequency discharge, the crystal is located
the sheath of the lower electrode, where the force of gra
is balanced in the vertical direction by the electric field a
ing on the negatively charged particles. Silicon,1 carbon,13 or
polymer10 particles form an extended crystal lattice in th
plane of the electrode, constrained by specially designed
jections on the electrodes and consisting of over 1003100
unit cells. The crystal consists of several layers in the lon
tudinal direction.

Even the first observations of dust crystals showed t
features of its behavior that did not fit into the classic
theory of Coulomb systems. First, along with various typ
of close packing~face-centered1 and body-centered1,13,14! of
multilayer crystals, alignment of the crystals into colum
was also observed, in which particles of the lower layer
located directly under the upper particles.1,2,9,10,13 In this
case, the particles form a hexagonal lattice in the transv
plane, which is typical of 2D systems. Recent experime
show that just such packing usually occurs in multilay
crystals for the most thoroughly studied range of parti
radius,R53 –5mm. According to experimental observation
of a crystal of growing carbon particles in a metha
plasma,13 the transition from a cubic body-centered lattice
one aligned in columns occurs whenR;1 mm. Note that the
theory of Coulomb systems15–17 or Yukawa systems18 gives
only close packings as stable states of multilayer crystals,
type of which varies, depending on the distance betw
© 1998 American Institute of Physics



cle
ec
si
c
o

th
a

sta
a

el
o
ta
n-
a
.

f t
-

icl
he
tic
cr

th

n
u

th
to

ea
ti
s-
a
t
r

s
y

str
au
re
ra
d

r-
ta
h
is

ng
r
n

n-
ice

de
tly
e

rse

lli-
atic
pa-
th.
a
of

ust
ar-
of
ing
ed
tic
lly
an
n-
rge
he
at-
rac-
ds

in

e
ar-
of
e

e
on

the
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layers. As shown in Refs. 19–22, the reason that parti
align into columns is that the particle fields focus the traj
tories of the ions, whose flux is directed from the qua
neutral plasma toward the electrode. Regions of enhan
ion concentration—ion clouds—are formed downstream
the particles. These ion clouds attract the particles of
lower layer and thereby ensure vertical alignment of the p
ticles.

Another unexpected feature of the behavior of the cry
is observed as the pressure is decreased or the disch
power is increased: the multilayer crystal begins to m
even thoughG510 000–20 000 according to estimates
the particles at room temperature, and the crystalline s
must set in.2 According to the calculations of Ref. 23, scree
ing of the charge of the particles in the sheath is too sm
and cannot cause the melting, as was assumed in Ref. 24
was explained as a result of experimental observations o
motion of particles,25,26 a multilayer crystal becomes un
stable below a certain critical gas pressure, and the part
begin to oscillate about their equilibrium positions. As t
pressure decreases, the mean kinetic energy of the par
reaches some tens of electron volts, and this causes the
tal to melt.

Note that a single-layer crystal remains stable for
same discharge parameters. As shown by Refs. 21 and
instability is induced in multilayer crystals by the formatio
of ion clouds. A dust crystal in the sheath is under the infl
ence of the ion flux and is an open system, in which
energy of directed motion of the ions is transformed in
vibrational energy of the particles. On the basis of a lin
analysis, Refs. 21 and 22 found that the main characteris
of the instability of a two-layer crystal—the critical gas pre
sure, the vibrational frequency, the ratio of the vibration
amplitudes, and the phase shift between the particles of
upper and lower layers—qualitatively agree with the expe
mental data.

Below, a nonlinear analysis of the instability of a du
crystal is carried out by means of Langevin molecular d
namics. The behavior of the mean particle energy, the di
bution functions of the particles over velocities, and the
tocorrelation functions of the velocities at various pressu
are considered for purely Coulomb and screened inte
tions. The crystal–liquid phase transition is studied, an
comparison is made with the experimental data.

2. MODEL OF A DUST CRYSTAL

In this experiment we study a two-layer crystal of pa
ticles with hexagonal symmetry in each layer. The crys
levitates in the sheath of a radio-frequency discharge in
lium. The discharge power is 12 W. The dust crystal cons
of spherical monodisperse particles with a radius ofR54.7
mm and a mass ofM56.73310213kg. The mean distance
between particles in the layer,a'450mm, and the distance
between layers of the two-layer crystal,d'380mm, show
little variation as the gas pressure varies in the ra
P530–100 Pa. A more detailed description of the expe
mental apparatus and the measurement procedure ca
found in Refs. 21, 22, and 25.
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Conforming to the experimental conditions, we also co
sider a two-layer crystal of particles with a hexagonal latt
in the plane of the electrodes (xy) and a columnar structure
extending toward the electrode (z). According to experimen-
tal data from Refs. 21, 22, and 25, the vibrational amplitu
of the particles in the plane of the electrodes significan
exceeds the amplitude of the longitudinal oscillations. W
therefore consider particle motion only in the transve
plane rik5(xik ,yik) for fixed longitudinal coordinateszk ,
where subscripti labels the particle in the layer, andk51,2
corresponds to the upper (k51) or lower (k52) layer. The
motion of a particle in the dust crystal is governed by co
sions with the atoms of the gas, as well as by electrost
interaction with the other particles of the crystal and the s
tially inhomogeneous ionic charge distribution in the shea

The effect of the electrons is described by introducing
screened interaction potential. Monte Carlo calculations
the motion of ions in the sheath through a two-layer d
crystal21,22 show that the ion flux screens the charged p
ticles nonsymmetrically, and ion clouds form downstream
the particles. On the basis of calculations of the restor
force on the particles of the lower layer when it is displac
from the equilibrium position, Ref. 22 proposes the analy
model of the crystal used below, in which the actual spatia
inhomogeneous ionic charge distribution is replaced by
effective point charge rigidly bound to the particle that ge
erates it. The magnitude and position of the effective cha
are determined from a calculation of the restoring force. T
model thus includes the interaction of particles with gas
oms, the electrostatic repulsion of particles, and the att
tion between particles in the lower layer and point ion clou
located under the upper particles.

The Langevin equations for our system can be written
the form27

d2rik

dt2
5

1

M
Fik2n

drik

dt
1

1

M
F, ~1!

wheren is the coefficient of friction of the particles in th
gas, andF is the random Langevin force that describes p
ticle heating~bearing in mind the translational degrees
freedom! as a result of collisions with neutral atoms. Th
electrostatic forces

Fik5Fik,pp1Fik,pi

include the repulsionFik,pp between the particles and th
attraction of the particles of the lower layer toward the i
clouds,Fik,pi . The interparticle forces can be written as

Fik,pp52]Upp /]rik ,

where

Upp5(
i . j

(
k51

2

U~ urik2rjku!1(
i j

U~ uri12rj 21ezdu!

~2!

is the potential energy of the interparticle interaction,ez is
the unit vector in the longitudinal direction, andd is the
distance between layers. The first term in Eq.~2! describes
the interaction of the particles in the same layer, while



e
we

re

-
e–

ha
o
o

e
an
w

es

n

re
of
v

rd

f
an
g
2
is

e

o-

a
on
h

is

a
re

pa
on

of

ua-
red
of
led

em
over
the

e
of

of

ch
go-
st

vior

e-

igh-
ive
ized

ed
on
rgy of

vior
al
d-
les
ns.
tal

907JETP 87 (5), November 1998 Schweigert et al.
second term describes the interaction of particles in differ
layers. The interaction forces between particles in the lo
layer and the effective positive point chargeseZi located a
distanced2di under the particles of the upper layer a
given by

Fik,pi52dk2]Upi /]rik ,

where

Upi52e(
i j

U~ uri12rj 21ezdi u!, e5Zi /Z,

and the Kronecker deltadk2 reflects the fact that the attrac
tive force acts only on the lower particles. The Deby
Hückel potential

U~ri2rj !5
e2Z2

uri2rj u
exp~2luri2rj u!

is used for the interaction of two point charges in the plasm
wherel is the screening length by the electrons. Note t
the particle-interaction model described above is based
non-self-consistent calculations of the spatial distribution
the ion concentration21,22 and, for that reason, can only giv
a qualitative description of the heating and melting of
actual dust crystal. To explain the role of the screening,
considered both a strongly screened interaction,l52/a, and
a purely Coulomb interaction,l50.

The behavior of a dust crystal is governed by the pr
sureP and temperatureT of the gas, the lattice parametersa,
d, di , and the chargesZ andZi . By measuring distances i
terms of lattice constantsa of the crystal and the time in
periods 1/vp of the plasma oscillations of the crystal, whe
vp5A4pe2Z2/Ma3 is the plasma frequency, the number
variables can be reduced. We are interested in the beha
of the crystal at various gas pressures or, in other wo
various dimensionless coefficients of frictionn/vp . The gas
temperature isT5300 K, which determines the amplitude o
the Langevin random force; the charges of the particles
the lattice parameters are assumed to be invariant with
pressure. Under the conditions of the experiment of Refs.
22, and 25,Z'13 000e, the distance between particles
a'450mm, the distance between layers isd'360mm, and
the plasma frequency of the crystal isvp'90 sec21. The
coefficient of friction linearly increases with gas pressur28

and varies in the range 12–40 sec21 for gas pressures
P530–100 Pa. The other parametersZi50.5Z and di

50.4a are taken from Monte Carlo calculations of the m
tion of the ions.22

Using periodic boundary conditions, we model only
fragment of the crystal, assumed to be infinite in the horiz
tal plane, includingN5448 particles—224 particles in eac
layer. The calculation region is a rectangleX3Y514
38A3a2, in which a fragment of the hexagonal lattice
inscribed with no distortion. SinceX,Y@a, to determine the
forces on particles in a screened potential we took into
count only the interaction between particles and their nea
images. For a Coulomb potential (l50), the interpolation
method29 was used. The interaction between the nearest
ticles was taken into account directly, while the interacti
nt
r
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n
f

e
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d
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1,
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forces with the images were found by linear interpolation
the forces calculated previously by Ewald’s method.30 The
approach of Ref. 31 was used to solve the Langevin eq
tions. By gradually reducing the gas pressure, we conside
the equilibrium states of the system for different values
the coefficient of friction. For each gas pressure, we mode
the motion of particles until the characteristics of the syst
reached their steady-state values, and then averaged
time. The resulting state was used as the initial data for
subsequent gas pressure.

To analyze particle motion apart from trajectories, w
considered the behavior of the autocorrelation function
velocity v,

Zvk~t!5
( i^vik~ t !vik~ t2t!&

( i^vik~ t !vik~ t !&
,

where^ . . . & denotes an average over time, the spectrum
the autocorrelation function,

Zvk~v!52E
0

`

cos~vt!Zvk~t!dt , ~3!

and the velocity distribution functions of particles in ea
layer. To determine the percentage of defects in the hexa
nal lattice—particles with other than six neare
neighbors—we used Vorono� diagrams. In analyzing the
crystal–liquid phase transition, we considered the beha
of the pairwise correlation functiong(r ) and the relative
deviationuik of particles from their equilibrium positions in
the crystal, which was characterized by the modified Lind
mann parameter32

gk5
2

Nac
2K (

i 51

N/2
1

Nb
(
j 51

Nb

uuik2ujku2L ,

where the inner summation is carried out over nearest ne
bors. The displacement of particles in the lower layer relat
to the nearest particles in the upper layer was character
by the parameter

g i5
2

Nac
2K (

i 51

N/2

uui12ui2u2L .

The statistical error of the calculations, which is relat
to the finite observation time of the system, is indicated
the dependences on the gas pressure of the average ene
the particles in different layers,

Ek5M K (
i

uviku2L /N ,

and of the Lindemann parameters. To compare the beha
of a multilayer dust crystal and ordinary Wigner 2D classic
crystals, and to check the validity of the algorithm, we mo
eled a single-layer crystal with the same number of partic
in the layer—224—for Coulomb and screened interactio
The single-layer crystal is a Hamiltonian system with a to
potential energy

Up5(
i . j

U~ uri2rj u!.
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3. RESULTS AND DISCUSSION

The main feature of a dust crystal of particles is asy
metry in the interaction of the particles of the lower a
upper layers. The particles of the lower layer are attracte
the ion clouds that extend downstream of the upper partic
but there is no attraction of the upper particles toward
lower ones. For such an open non-Hamiltonian system,
dynamical matrix of the first derivatives of forcesFik is not
Hermitian and in general has complex eigenvaluesh. The
eigenvaluesl and eigenvectorsj of the system of Eqs.~1!
for different wave vectorsq were found in Ref. 22 for smal
deviations

xik5j~q!exp~lt1 iq•rik!

of the particles from their positionsrik in the crystal. Since

l5~2n6An214h !/2, ~4!

FIG. 1. Critical value of the coefficient of friction~a! and the frequency of
the corresponding unstable oscillations~b! vs. the wave vector in various
directions:qy /qx5cos(p/6) ~1!, qy /qx5cos(p/12) ~2!, qy50 ~3! for Cou-
lomb (l50) and screened (l52/a) interaction potentials. The dashed hor
zontal lines show the value of the coefficient of friction corresponding
melting of the crystal.
-

to
s,
e
e

for complex values ofh the crystal becomes unstable whe
the coefficient of friction drops below a certain critical valu

n* 5Im h/v* ,

where v* 5A2Reh is the frequency of unstable
oscillations.22 For the parameters of the dust crystal cons
ered below, the dependences ofn* andv* on the amplitude
of the wave vector are given in Fig. 1 for various directio
of q. The most dangerous perturbation, with the maxim
coefficient of frictionn i , corresponds toqy /qx51/A3 both
for a Coulomb potential (n i'0.290vp ,v* '0.89vp), and
for a screened potential (n i'0.163vp ,v* '0.88vp).

Four characteristic regimes of particle motion can
identified, depending on the value of the coefficient of fr
tion in the dust crystal:~1! n.n i corresponds to chaotic
motion in the crystal phase, with a mean particle ene
several times as large as the gas temperature~Figs. 2a and
2b!; ~2! nc,n,n i corresponds to almost harmonic oscill
tions of the particles~Fig. 2c!; ~3! nm,n,nc corresponds to
chaotic motion about the equilibrium positions in the cryst
with a mean energy several orders of magnitude higher t
the gas temperature~Figs. 2d and 2e!; ~4! n,nm corresponds
to Brownian particle motion after the crystal–liquid pha
transition ~Fig. 2f!. The critical valuesn i and nm , corre-
sponding to the threshold of development of instability a
the boundary of the crystal–liquid phase transition, a
shown in Fig. 3 by vertical lines. The transition from ha
monic oscillations to chaotic motion has no sharp bounda

3.1. Chaotic motion of particles at high gas pressure

Special calculations at zero gas temperature showed
whenn.n i , a dust crystal is stable against the developm
of perturbations and, with the passage of time, the m
kinetic energy of the particles tends to zero. It is well know
that in the heat bath comprised of the neutral gas surroun
the particles, any Hamiltonian system tends to equilibriu
and the mean kinetic energy of the particles equalizes w
the temperature of the gas. In particular, for a single-la
crystal, this point was used as one validation of the solut
of the Langevin equations. In this regard, note that the p
ence of Brownian particle motion was used in Ref. 24
explain the experimentally measured low critical values
G* , corresponding to melting of the crystal. In our opinio
such an explanation is incorrect, since the presence of a t
mostat need not affect the equilibrium characteristics o
Hamiltonian system. In particular, our calculations yie
G* '135 for the Coulomb interaction in a single-layer cry
er
us
FIG. 2. Particle trajectories in a fragment of the upper lay
of the crystal for a screened interaction potential with vario
coefficients of frictionn/vp50.21 ~a!, 0.1625 ~b!, 0.1575
~c!, 0.15 ~d!, 0.12 ~e!, and 0.115~f!.
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FIG. 3. Particle energies in the upper~1, circles! and lower~2! layers for
Coulomb~a! and screened~b! interaction potentials. The circles correspon
to experimental data, and the triangles and squares to calculations.
vertical dashed lines show the instability limits obtained in a linear anal
and the melting thresholds of the crystal.
tal, consistent with the data of other authors obtained us
the Monte Carlo method or the method of molecular dyna
ics.

Energy is also transferred from the ion flux to th
multilayer dust crystal forn.n i , when the crystal is stable
against the development of perturbations. The presenc
complex eigenvalues of the dynamical matrix reduces
effective coefficient of friction, and the mean kinetic ener
of the particles exceeds the gas temperature even forn.n i

~Fig. 3!. The experimentally measured energy of the partic
also exceeds the gas temperature, but this difference
within the measurement error. The particle speed distribu
function is essentially Maxwellian~Fig. 4a!, and the velocity
distribution is isotropic. The mean particle energy in t
lower layer is higher than in the upper layer, both for t
screened and for the Coulomb interaction potentials, and
agrees with the experimental data25 and linear analysis.22 The
motion of particles with a comparatively small amplitude
the deviation from the equilibrium position produces neg
gible broadening of the peaks of the pairwise correlat
function, which correspond to the positions of the particles
an ideal hexagonal lattice~Fig. 5a!. The presence of mode
with complex eigenfunctions is most notable in the spectr
of the velocity autocorrelation function, where the height
the peak corresponding to plasma oscillations increase
the coefficient of friction decreases~Figs. 6 and 7a!. The
presence of a continuous spectrum of the velocity autoco
lation function and its exponential decrease over severahe

is
ef-

-

ic
FIG. 4. Distribution function of particles with ve-
locities vx ,vy in the lower layer of a crystal with
a screened interaction potential and various co
ficients of friction n/vp50.165 ~a!, 0.16125~b!,
0.155~c! and 0.145~d!. The dashed curves corre
spond to a Maxwellian distribution~a and d! and
the velocity distribution accompanying harmon
oscillations~b!.
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FIG. 5. Two-point correlation function for screene
interaction potential witih various coefficients o
friction n/vp50.21~a!, 0.1575~b!, 0.125~c!, 0.115
~d!. The solid and dashed curves correspond to
upper and lower layers.
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brational periods~Fig. 8a! indicates that the particle motio
is chaotic. Note that the velocity autocorrelation functions
particles in the upper and lower layers are qualitatively si
lar for all the regimes of motion.

3.2. Coherent oscillations in the crystal phase

Whenn,n i , friction between particles in the gas can n
longer stabilize the development of instability, and this lea
to a sharp increase in the mean kinetic energy of the parti
~Fig. 3!. The most interesting feature of the particle motion
the existence of the coherent oscillations, which occur ov
narrow range of the coefficient of friction,nc,n,n i . For
the screened potential,nc;0.155vp . During coherent oscil-
lations, all particles move with identical phase and freque
v. For harmonic particle motion,v i5vmsin(vt), the particle
velocity distribution function is

f ~v !5
dt

dv
5

1

Avm
2 2v2

, ~5!

wherevm is the maximum particle velocity. A comparison o
Eq. ~5! with the calculations is given in Fig. 4b. The pre
ence of the coherent regime indicates that only one vib
tional mode is excited in the crystal.

We consider a finite fragment of the crystal, in which t
phonon spectrum is discrete. Therefore, just after the tra
tion through the critical value of the coefficient of friction
only one mode is excited, with a frequency of 0.881vp .
However, as the coefficient of friction decreases further,
number of unstable modes increases. Figure 9 shows the
quency distribution of the unstable modes obtained by lin
f
i-

s
es

a

y

-

i-

e
re-
ar

analysis of the fragment of the crystal considered here. F
screened potential withn50.1575vp , allowing for degen-
eracy, there are 26 unstable modes, whose frequencies
distributed over the range 0.847–0.882. The peak width
the spectrum of the velocity autocorrelation function in t
coherent regime is clearly smaller and is determined by
finite integration time (400/vp) in Eq. ~3!.

Thus, as a result of nonlinear interaction of the vario
modes when nonlinearity is weak, only one mode is dom
nant. The situation is analogous in this respect to the las
of a multimode laser.33 The presence of the coherent regim
shows up in the particle trajectories as essentially harmo
oscillations~Fig. 2c!. These oscillations cause two addition
maxima to appear near the equilibrium positions in the p
wise correlation function~Fig. 5b!; their origin is quite
analogous to the appearance of maxima in the velocity
tribution function. The velocity autocorrelation function o
cillates harmonically in time with essentially constant amp
tude ~Fig. 8b!, and this also indicates that only one mode
dominant. A coherent regime of particle motion also exi
for Coulomb interaction, but it is less pronounced.

The available experimental data have yet to confirm
existence of a coherent regime. Experimentally obser
crystals differ from our model in two respects. First, the ty
cal number of particles in an actual crystal,;104, is much
greater than the number of particles whose motion we
modeling ~448!. The spectrum of elementary excitations
an actual crystal is accordingly closer to continuous than
the spectrum of the crystal fragment that we are consider
However, using the analogy with a multimode laser, it stan
to reason that the presence of a continuous spectrum sh
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FIG. 6. Spectrum of the particle velocity auto
correlation function of the upper layer for a
Coulomb interaction potential with various co
efficients of frictionn/vp50.32 ~a!, 0.285~b!,
0.27 ~c!, 0.23 ~d!. The dashed curve~a! corre-
sponds to the spectrum of the velocity autoco
relation function of a single-layer crystal with
G5400.
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not radically affect the existence of the coherent regime. T
second problem is more important—there are a large num
of defects in an experimentally produced crystal~Fig. 10!
even for low particle energies, whenG@G* , and there must
be no defects in the ideal situation. The origin of the defe
in the actual crystal is not completely clear. Since the cry
is limited in the plane of the electrodes, hexagonal symme
must break down in the peripheral regions, and this inev
bly causes defects to appear. However, calculations of la
2D Coulomb clusters confined by a parabolic potential in
cate a significantly smaller percentage of defects.34 It is pos-
sible that defects in an actual crystal are associated with
spread in particle size. The influence of defects on the p
ticle heating mechanism and the crystal melting has yet to
studied. The experimental data~Fig. 3! show that as the ga
pressure decreases, the mean particle energy increases
actual crystal more smoothly than in the calculations. In t
case, the number of defects also increases~Fig. 10!, even at
particle energies for which the calculations predict no
fects. Note that using krypton as a carrier gas makes it p
sible to reduce the defect level of the crystal and to obse
a more abrupt rise in particle energy with decreasing
pressure.35 The presence of defects can result in the locali
e
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tion of unstable modes and can substantially reduce in
modal interaction, and this in turn leads to suppression of
coherent regime.

3.3. Chaotic oscillations in the crystalline phase

As the coefficient of friction decreases, the maxima
the particle velocity distribution function gradually broade
~Fig. 4c! and a smooth transition occurs to an almost Ma
wellian distribution ~Fig. 4d!, which remains anisotropic
over the directions of the velocities right up to the point
which the crystal melts. The velocity distribution functio
scarcely differs at all from a Maxwellian just before meltin
and becomes isotropic in velocity in the liquid phase. T
velocity autocorrelation function decreases with time~Fig.
8d!, and its spectrum broadens~Fig. 7c!, which further sug-
gests that the particle motion becomes chaotic. The pea
the spectrum of the velocity autocorrelation function cor
sponding to the frequencies of the unstable modes shifts
ward lower frequencies as the coefficient of friction d
creases, and this agrees with a linear analysis~Fig. 9b!.
Because the modes interact, two additional broadened p
appear whenl52/a; their position approximately corre
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FIG. 7. Spectrum of the particle velocity autoco
relation function of the upper layer for a screene
interaction potential with various coefficients o
friction n/vp50.21 ~a!, 0.1575 ~b!, 0.125 ~c!,
0.115~d!. The dashed curve~a! corresponds to the
spectrum of the velocity autocorrelation functio
of a single-layer crystal withG5400.
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sponds to the subharmonicsv/3 and 2v/3 of the unstable
modes~Fig. 7c!. For Coulomb interaction withn,nc , the
spectra of the velocity autocorrelation function qualitative
differ from those described above. As the coefficient of fr
tion decreases, a second narrow peak appears, whose a
tude gradually grows and becomes larger than that of the
peak. One of the reasons for the difference in the behavio
the spectra is probably the difference in the density of sta
of the unstable modes~Fig. 9!. The distance between adja
cent modes is less forl52/a than forl50, and this must
make it easier for the modes to overlap as a result of t
interaction.

The mean kinetic energy of the particles continues
grow as the coefficient of friction decreases, with partic
having higher energy (E1) in the upper layer than in the
lower (E2) for the Coulomb potential. The opposite is tru
for the screened potential,E1,E2, which has been observe
in experiment.21,22,25just before the crystal melts, the pea
in the two-point correlation function, although they broade
remain fairly distinct~Fig. 5c!, especially for the upper layer
where the mean particle energy is lower whenl52/a.
-
pli-
st
of
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ir

o
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3.4. Melting of the crystal

The melting of the crystal, which was identified in th
calculations from the sharp jump in both the number of d
fects in the system~Fig. 10! and the Lindemann paramete
~Fig. 11!, occurs whenn'0.12vp for the screened potentia
andn'0.267vp for the Coulomb potential. The calculation
of Ref. 32 show that the critical value of the Lindeman
parameter, corresponding to the melting of 2D crystals,
mains approximately the same for different interaction p
tentials,g* '0.1. For the screened potential, the energy
the particles and, accordingly, the Lindemann paramete
greater in the lower layer than in the upper. However,
crystal melts only when the Lindemann parameter reache
critical value of about 0.09–0.11 in the upper layer, which
approximately the same forl50 and l52/a. Unlike the
Coulomb potential, melting of the crystal whenl52/a is
accompanied by a jump in mean particle energy. After
crystal–liquid phase transition, the peak amplitudes of
pairwise correlation function decrease with distance, a
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FIG. 8. Particle velocity autocorrelation function of the upper lay
for a screened interaction potential with various coefficients
friction n/vp50.21 ~a!, 0.1575~b!, 0.125~c!, 0.115~d!.
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g(r ) reaches its asymptotic valueg(r→`)51 when r
reaches a small multiple of the interparticle distance. T
spectrum of the velocity autocorrelation function atv50
becomes nonzero, and suggesting particle self-diffusion
the liquid phase~Fig. 7d!. Since there is no sharp change
particle kinetic energy after melting for the Coulomb inte
action, the broadening of the spectrum of the velocity au
e

in

-

correlation function and particle self-diffusion after meltin
is substantially less forl50 than forl52/a.

The limited size of the crystal fragment that we cons
ered leads to no conclusions concerning the order of
phase transition, the presence of an intermediate hex
phase, or other crucial questions in the theory of the melt
of 2D crystals. To judge by recent numerical experiments36
der

bil-
FIG. 9. Unstable modes of the 448-particle crystal fragment un
consideration for Coulomb~a! and screened~b! interaction poten-
tials. The upper horizontal dashed lines correspond to the insta
ity threshold, and the lower to melting of the crystal.
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this would require the number of particles to be at least
order of magnitude greater. To validate the predicted lo
tion of the phase transition itself, we modeled the melting
a single-layer Coulomb crystal and obtainedG* '135,
which is close to calculations of other authors and the
perimental data of Ref. 37. For a screened potential i
single-layer crystal,G* '189. A dust crystal melts when
G* '19 andG* '52 for Coulomb and screened potentia
respectively. Thus, multilayer dust crystals are substanti
more stable against melting than ordinary Coulomb cryst
Note that 3D or two-layer close-packed Coulomb cryst
melt at higherG values than do single-layer ones.38 The
difference in theG* values for dust crystals and ordina
crystals is probably associated with differing energy dis
butions over the vibrational modes~Figs. 6 and 7!. The main

FIG. 10. Dependence on the coefficient of friction of the percentage
defects in the lower~circles! and upper~triangles! layers of the crystal for a
screened interaction potential. Squares correspond to experimental res
n
-
f

-
a

,
ly
s.
s

-

part of the energy in dust crystals is carried by sho
wavelength oscillations, whereas the melting mechanism
ordinary 2D crystals is dictated by long-waveleng
phonons.39–42

4. CONCLUSION

A comparison of the experimental data with numeric
modeling of the heating and melting of a crystal shows t
the assumed mathematical model yields the correct orde
magnitude for particle energies and critical gas pressures
responding to instability and melting of the crystal. At th
same time, certain theoretically predicted results—a sh
increase in particle energy as a result of the developmen
instability, and a coherent vibrational regime—have yet to
confirmed experimentally. This is probably associated w
the large defect content of the crystal, which is observa
even at low particle energies. For a more detailed comp
son of theory with experiment, it is necessary in the expe
ment to reduce the defect content of the crystal and in
theoretical calculations to numerically model finite syste
in which defects exist when the particles have zero kine
energy.

The present calculations show that a dust crystal is m
stable against melting than ordinary Coulomb crystals. T
form of the interaction potential of the particles qualitative
affects the behavior of the autocorrelation functions of
velocity and particle motion after melting. Unlike a Coulom
interaction, the melting of a crystal with screened interact
is accompanied by an abrupt increase in the kinetic energ
the particles.

This work was carried out with financial support fro
the Russian Fund for Fundamental Research~RFBR! ~Grant
No. 96-02-19134-a!, the RFBR–DFG~Grant No. 96-02-
00241-G!, and INTAS~Grant No. 94-740!.
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FIG. 11. Root-mean-square relative displacement
particles in the upper~squares! and lower ~circles!
layers of the crystal for Coulomb~a! and screened~b!
interaction potential. Triangles correspond to the Li
demann parameterg i , which describes the displace
ment of upper and lower particles relative to one a
other.
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Theory of nonlocal transport for small perturbations in a plasma
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A system of electron-transport equations for small perturbations in a plasma, which is suitable
for an arbitrary relation between the electron mean free path and the density gradient
length, is formulated. Electron–electron collisions are treated on the basis of the exact Landau
collision integral, making it possible to obtain expressions for the potential elements of
the Fourier components of electron fluxes, generalized forces, and all the transport coefficients in
a plasma with an arbitrary ion charge for the first time. The transport coefficients found,
viz., the electrical conductivity, the thermal diffusivity, the thermoelectric coefficient, and the ion
convection coefficients, permit the quantitative description of an extensive list of small-
scale processes in a completely ionized plasma. The suppression of heat transport and the damping
of ion-sound waves in a current-free plasma over the entire range of spatial scales of the
perturbations from the high-collisionality limit to the collisionless limit are examined as
applications of the theory developed. ©1998 American Institute of Physics.
@S1063-7761~98!01011-7#
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1. INTRODUCTION

Hydrodynamic equations provide an effective tool f
investigating an extensive list of phenomena in the phys
of continuous media. They are considerably simpler than
kinetic equations and faithfully describe processes on sc
considerably larger than the mean free path of the partic
The familiar derivation of hydrodynamic equations from t
kinetic theory by the Chapman–Enskog method involves
pansion of the deviation of the distribution function fro
thermodynamic equilibrium to first order in the gradients
the hydrodynamic moments1–3 and leads to local relation
between the fluxes and generalized forces. However,
method is confined to the region of very weak spatial gra
ents, where the density gradient length of the hydrodyna
variables is hundreds of times greater than mean free path
the particles. Considerably smaller-scale inhomogeneities
of direct interest for numerous important applied problems
plasma physics; therefore, the development of a trans
theory that is free of such a constraint is needed. Suc
theory leads to nonlocal relations between fluxes and ge
alized forces and is thus called a nonlocal transport the
Its development is a pressing problem for numerous area
plasma physics, such as laser fusion,4 thermonuclear researc
in magnetically confined plasmas,5 astrophysical plasmas,6

and weakly ionized, low-temperature plasmas.7

The general approach to deriving generalized hydro
namic equations involves writing a hierarchy of equatio
for the moments of the distribution function of the particle
truncating it at a certain level, and expressing the hig
moments in terms of lower moments. The last step is ind
nite, since it presumes knowledge of the complete distri
tion function, while it can be found only in an approxim
tion. For this reason, all the known nonlocal transp
theories8–10have very limited ranges of applicability and fre
9161063-7761/98/87(11)/10/$15.00
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quently contain empirical parameters. A new method for
riving nonlocal hydrodynamic equations, which, althou
they contain only low moments of the electron distributi
function, are completely equivalent to the kinetic theory f
small-amplitude perturbations in a plasma, was proposed
developed in Refs. 11 and 12. This was accomplished v
general solution of the kinetic equation for the electron d
tribution function with a Landau collision integral for colli
sions with ions and electrons. The method in Ref. 11 perm
the systematic derivation of exact expressions for elect
transport coefficients in the Fourier representation, but is
stricted to the approximation of a large ion charge,Z@1,
since electron–electron collisions were taken into acco
only in the equation for the isotropic part of the distributio
function. From the practical standpoint, this constraint
highly significant, since the quantitative description of t
transport properties of a plasma is possible only wh
Z*10, while in most practical applications it is necessary
deal with ions having lower extents of ionization.

In this paper we take an important step in perfecting
theory of nonlocal transport, i.e., we find expressions for
electron transport coefficients for a plasma with ions of a
charge. This is achieved by systematically taking into
count the exact electron–electron collision integral in t
Landau form, as was done in the classical theory of trans
in a plasma.2,3 The significant difference from the classic
theory is that the ratio between the density gradient length
the perturbations and the electron mean free path can hav
arbitrary value. Allowing for electron–electron collisions is
complicated problem not only for an analytical theory, b
also for numerical simulation. There are only a few nume
cal programs for solving a kinetic equation in whic
electron–electron collisions are taken into account in so
approximation,13–15while there has hitherto been no theore
ical description of nonlocal transport over the entire range
© 1998 American Institute of Physics
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917JETP 87 (5), November 1998 Bychenkov et al.
variation of the collisionality parameter with systematic
lowance for electron–electron collisions. The closest thing
our approach in formulation is the work in Ref. 14 on t
numerical simulation of the damping of small-amplitude io
sound perturbations in a homogeneous plasma. This sp
case is a representative test for our general transport the

The method used in this paper to solve the kinetic eq
tion for electrons is valid for an arbitrary ratio between t
perturbation scale lengthL;k21 and the mean free pathlei ,
since it enables us to take into account the contributions
all the anisotropic components of the electron distribut
function and to quantitatively describe the transition fro
ordinary collisional hydrodynamics to the collisionless lim
A previously proposed11 procedure for solving the initial-
value problem is used to find the general solution for
perturbed electron distribution function for the case of pot
tial perturbations and to determine the relations between
electron fluxes and generalized hydrodynamic forces, wh
include the electric field, the plasma flow velocity, and t
plasma-density and temperature gradients. In the spatial
rier representation these transport relations have a form s
lar to the classical expressions,2,3 but the transport coeffi-
cients are found to depend on the wave number~the
collisionality parameter,klei). Such an approach allows u
to unequivocally specify the nonlocal kinetic coefficients f
a completely ionized plasma with an arbitrary ion charge
the first time. To illustrate the application of the nonloc
hydrodynamic equations obtained, nonlocal heat trans
and the damping of ion-sound waves in a current-free pla
in the region of parameters of interest for modern exp
ments on the interaction of high-power laser radiation w
plasmas are considered in this paper.

2. KINETIC DESCRIPTION OF NONLOCAL ELECTRON
TRANSPORT

Let us consider a homogeneous plasma with a Maxw
ian electron velocity distribution functionF0(ve), an elec-
tron density ne , and an electron temperatureTe as the
ground state. We assume that the plasma is completely
ized and contains ions with the charge numberZ. Being in-
terested in phenomena associated with electron transpor
simplicity we shall assume that the ions are cold and neg
the ion–ion collisions. We shall also neglect the transfer
energy in electron–ion collisions.

Let the initial perturbation of the Maxwellian electro
distribution be given att50:

d f ~ t50,r ,ve!5F dn0

ne
1S ve

2

2vTe
2

2
3

2D dT0

Te
GF0~ve!,

wherevTe5ATe /me andme are the electron thermal veloc
ity and mass. We shall examine the linear response of
plasma to this perturbation, as well as to small-amplitu
irrotational perturbations of the electric fieldE52¹f and
the ion velocityui . In addition,dn0 anddT0 can be arbitrary
functions of the coordinatesr , andf andui can be arbitrary
functions of the coordinates and time~provided curlui50).
Owing to the linearity of the response, it is sufficient to co
fine ourselves to consideration of spatially periodic pertur
o

-
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ry.
-

of
n

e
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h
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tions of the density, temperature, electric field, and ion
locity associated with the wave vectork. We linearize the
kinetic equation for the electron distribution functionf e , tak-
ing into account the electron–electron collisions in the fo
of the Landau collision integral,Cee@ f e , f e#, and the
electron–ion collisions in a representation which descri
only scattering with respect to the angleu between the wave
vector k and the electron relative velocity vectorv5ve

2ui :

Cei@ f e#5
1

2
nei~v !

]

]m
~12m2!

] f e

]m
. ~2.1!

Here nei(v)54pZn0e4L/me
2v3 is the velocity-dependen

frequency of electron–ion collisions,2e is the electron
charge,L is the Coulomb logarithm, andm5cosu. As a
result of plugging the expressions just presented into the
netic equation for electrons and going over to a refere
frame moving with the local ion velocity, we obtain the fo
lowing equation for the spatial Fourier component of t
deviation of the electron distribution functiond f (t,k,u,v)
from the equilibrium functionF0(ve):

]d f

]t
1 ikvmd f 2 ikvuim

2
]F0

]v
1 ik

e

me
fm

]F0

]v

5Cei@d f #1Cee@d f ,F0#1Cee@F0 ,d f #. ~2.2!

Here ui(t) and f(t) are the Fourier components of the io
velocity and the electric potential. We next expand the p
turbationd f of the distribution function in Legendre polyno
mials which are eigenfunctions of the electron–ion collisi
operator~2.1! in the local reference frame moving with th
ion velocity ui :

d f 5(
l 50

`

i l f l~ t,k,v !Pl~m!,

Cee@d f ,F0#1Cee@F0 ,d f #5(
l 50

`

i lCee
l Pl~m!, ~2.3!

and we perform the Laplace transformation in time. As
result of the operations just described, the electron kin
equation~2.2! is reduced to an infinite system of equatio
for the angular harmonicsf l of the electron distribution func-
tion:

p fl1kv
l

2l 21
f l 212kv

l 11

2l 13
f l 11

52
l ~ l 11!

2
nei~v ! f l1Cee

l 1Sl . ~2.4!

Here the first term on the right-hand side corresponds
electron–ion collisions, and the second term descri
electron–electron collisions in the form of Rosenblu
potentials:16
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Cee
l

nee~v !
5

l ~ l 11!

6
f l~ I 2

023I 0
022J21

0 !1v
]

]vF f l I 0
0

1
v
3

] f l

]v
~ I 2

01J21
0 !G1

4pv3

ne
f lF0

1
v2

2~2l 11!

]2F0

]v2 F ~ l 11!~ l 12!

2l 13
~dI l 12

l

1dJ212 l
l !2

l ~ l 21!

2l 21
~dI l

l1dJ12 l
l !G

1
v

2~2l 11!

]F0

]v F l 213l 22

2l 21
dI l

l

1
l ~ l 21!

2l 21
dJ12 l

l 2
~ l 11!~ l 12!

2l 13
dI l 12

l

2
l 22 l 24

2l 13
dJ212 l

l G . ~2.5!

Here nee(v)5nei(v)/Z is the velocity-dependent frequenc
of electron–electron collisions,

@ I m
0 ;dI m

n #5
4p

nev
m E

0

v
@F0 ; f n#v21m dv,

@Jm
0 ;dJm

n #5
4p

nev
m E

v

`

@F0 ; f n#v21m dv

are Rosenbluth potentials, and the source functionsSl are
specified byui andf, as well as by the Fourier componen
dn0 anddT0, and are nonzero only forl<2:

S05
dn0

ne
F01

3

2

dT0

Te
S v2

3vTe
2

21D F02
i

3
kui

v2

vTe
2

F0 ,

~2.6!

S15
ef

Te
kvF0 , S25

2

3
ikui

v2

vTe
2

F0 .

The system of equations~2.4! differs from the one studied in
Refs. 11 and 12 through the inclusion of the electro
electron collision terms~2.5! in the equations withl>1.

Below we shall confine ourselves to a study of fair
slow ~quasistationary! processes taking place over charact
istic times that are short compared with the electron–elec
collision time, for which the first terms on the left-hand sid
of ~2.4! can be neglected. Bearing in mind the linearity of t
kinetic problem being solved and following Refs. 11 and 1
we introduce the basis distribution functionsw l , which do
not depend on the amplitudes of the sources~2.6! in Eqs.
~2.4!, but reflect specific dependences on velocity, i.e.,
seek a general solution for the angular harmonics of the
turbation of the electron distribution function in the form

f l5
ef

Te
F0d l ,01

dn0

ne
F0w l

N1
3

2

dT0

Te
F0w l

T2 ikuiF0w l
R .

~2.7!

Heredn,m is the Kronecker delta, and the three sets of in
pendent basis functionsw l

A (A5N,T,R) satisfy three similar
systems of equations with different sources:
–

-
n

,

e
r-

-

kvS l

2l 21
w l 21

A 2
l 11

2l 13
w l 11

A D
52nei~v !

l ~ l 11!

2
w l

A1
1

F0
C̃ee

l 1Sl
A , ~2.8!

where S0
N51, S0

T5v2/3vTe
2 21, and S0

R52S2
R/25v2/3vTe

2

are unitary sources corresponding to perturbations of
density (N), temperature (T), and ion velocity (R) of unit
amplitude, and the electron–electron collision contributio
C̃ee

l are specified by Eq.~2.5! after the replacement off l by
F0w l

A .

3. INITIAL-VALUE PROBLEM FOR PERTURBATION OF THE
ELECTRON DISTRIBUTION FUNCTION

The perturbation of the electron distribution function d
scribed by the angular harmonics~2.7! is created by inducing
forces proportional toE52 ikf andui and also depends o
the perturbations of the initial density (dn0) and the tem-
perature (dT0). Therefore, at first glance, the expressi
~2.7! does not permit consideration of the hydrodynamic m
ments dn and dT of the electron distribution function a
independent variables, which is necessary for a general
mulation of a theory of electron transport. In particular,dn
and dT appear in the classical high-collisionality theor
However, as was shown in Ref. 11, obtaining a general
lution for the perturbation of the electron distribution fun
tion allows a procedure for introducing the hydrodynam
momentsdne anddTe as independent variables owing to th
linearity of the kinetic equation ford f . The solution of Eqs.
~2.4! and ~2.8! in general form specifies the perturbation
the electron distribution function at an arbitrary timet as a
function of the four quantitiesE, ui ,dn0, and dT0. There-
fore, for any time the hydrodynamic moments of the pert
bation of the distribution function can be calculated:

dne54pE
0

`

dv v2f 0 ,

dTe5
4pme

3ne
E

0

`

dv v2~v223vTe
2 ! f 0 , ~3.1!

which can be represented as linear combinations of the in
perturbationsdn0 and dT0. Accordingly, the initial density
and temperature perturbations can be eliminated by expr
ing them in terms of the instantaneous perturbations and
solving the system of two linear algebraic equations. Th
the electron distribution function can be expressed in te
of its instantaneous hydrodynamic momentsdne anddTe as
independent variables.

In the language of the Laplace–Fourier transforms of
angular harmonics of the electron distribution function, t
latter statement corresponds to the following relation:
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f l5 i
eE*

kTe
F0

JT
Nw l

T2JT
Tw l

N

DNT
NT

1
dTe

Te
F0

~JT
N1JN

N!w l
T2~JT

T1JN
T !w l

N

DNT
NT

1
ef

Te
F0d l ,0

1 ikuiF0S DNT
RT

DNT
NT

w l
N1

DTN
RN

DNT
NT

w l
T2w l

RD , ~3.2!

which was written using the moment matrix of the isotrop
components of the basis functionsw0

A

JB
A5

4p

ne
E

0

`

v2 dv w0
AF0S0

B . ~3.3!

Here we have introduced the effective electric field

E* 52 ikf1 ikTe~dn/ne1dT/Te!/e

and used the notation

DAB
CD5JA

CJB
D2JA

DJB
C .

The expression~3.2! was written in terms of the hydrody
namic moments and the basis solutions of Eq.~2.8! and can
be used to find the anisotropic correction to the distribut
function f 1 and to close the system of hydrodynamic equ
tions.

4. SOLUTION OF THE KINETIC EQUATIONS FOR THE
BASIS FUNCTIONS AND NONLOCAL
QUASIHYDRODYNAMIC TRANSPORT EQUATIONS

The kinetic equations for the basis functions~2.8! must
be solved in order to determine the electron distribut
function. They generally form an infinite system, and it
useful to have a definite procedure for its truncation a
closure. Such a procedure can easily be established, if
taken into account forl @1 that the first term on the right
hand side in the expression for thel th angular harmonic of
the electron–electron collision integral~2.5! is considerably
greater than all the other terms. For this reason, beginnin
a certain numberl max@1, all the equations for the harmonic
of the basis functions take on the following simple form:

kvS l

2l 21
w l 21

A 2
l 11

2l 13
w l 11

A D52n* ~v !
l ~ l 11!

2
w l

A ,

l . l max, ~4.1!

where we have used the following notation for the renorm
ized collision frequency:

n* 5nei1nee~ I 0
012J21

0 /32I 2
0/3!.

Using ~4.1! to rewrite the formal relations

w l
A52

l

2l 21

kv
n l~v !

w l 21
A ,

n l~v !5
1

2
l ~ l 11!n* ~v !2kv

l 11

2l 13

w l 11
A

w l
A

, ~4.2!

we arrive at the recurrence formula
n
-

n

d
is

at

l-

n l 21~v !5
1

2
l ~ l 11!n* ~v !1

l 2

4l 221

k2v2

n l~v !
. ~4.3!

Since the conditionn l.n l 11 holds for large values ofl , we
obtain the following approximate expression for the effect
collision frequencyn l :

n l~v !5
1

2
n* ~v !Hl S kv

n* ~v ! D , H1~x!5
1

2
1A1

4
1

y2

l 2
.

~4.4!

Thus, to find the basis functions it is sufficient to solve
finite number of equations of the form~2.8! with l< l max

after substitutingw l max11
A 52(kv/2n l max

)wlmax

A into the last of

them.
We shall seek the solution of the system of equatio

~2.8!, expanding the basis functionsw l
A in Sonine–Laguerre

polynomials:

w l
A5 (

n50

`

cln
A Ln

1/2S v2

2vTe
2 D . ~4.5!

Substituting the expansion~4.5! into the original equations
~2.8!, we obtain a system of linear equations for the coe
cientscln

A . This system was solved by the matrix-inversio
method, which was adapted to theMATHEMATICAsoftware
applications package.17 The calculations were performed fo
l max510, at which the error associated with closure of t
infinite system of equations was less than 1–2%.

In practice, the use of 55–60 Sonine–Laguerre poly
mials is sufficient for describing electron transport over t
entire range of values of the collisionality parameter up
lei&103, where the results already coincide with the resu
in the collisionless limit, which correspond toZ-independent
transport coefficients. Such a calculation of the coefficie
cln

A is possible using any up-to-date personal computer.
also note that, as was shown in Ref. 18, the results of
theory of classical high-collisionality transport (klei

,1022) are reproduced to within 1–2% when four or fiv
Sonine–Laguerre polynomials are used (nmax54) in the first
two equations for the symmetric (f 0) and first anisotropic
( f 1) additions (l max52).

The description of nonlocal transport is based on the
of the solutions found for the basis functionsw1

A in the ex-
pression~3.2! for the first (l 51) anisotropic component o
the electron distribution function. In this case the expressi
for the electric currentj and the electron heat fluxqe have
the form

j 52 ie
4p

3 E
0

`

dv v3f 1 ,

q52 iTe

4p

3 E dv v3S 5

2
2

v2

vTe
2 D f 1 . ~4.6!

Since, according to~3.2!, the functionf 1 is already expressed
in terms of hydrodynamic variables, closure of the hydrod
namic equations, which is the main problem of transp
theory, is solved in the method under consideration in a na
ral manner.
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TABLE I. Values of the transport coefficientss/s0, a/a0, x/x0, b j , andbq ~from top to bottom!.

Z\klei 0.01 0.03 0.1 0.3 1 3 10

0.999 0.994 0.950 0.770 0.394 0.153 0.0516
0.996 0.975 0.827 0.454 0.0700 20.0179 20.0129

1 0.995 0.964 0.775 0.432 0.165 0.0686 0.0257
0.000303 0.00268 0.0260 0.147 0.469 0.738 0.890
0.000549 0.00471 0.0386 0.148 0.266 0.233 0.142

0.998 0.986 0.905 0.672 0.320 0.148 0.0363
0.991 0.940 0.703 0.322 0.0465 0.00597 20.0100

2 0.987 0.904 0.604 0.279 0.0972 0.0414 0.0144
0.000571 0.0049 0.0418 0.194 0.512 0.734 0.899
0.00131 0.0104 0.0670 0.196 0.285 0.227 0.145

0.995 0.970 0.853 0.595 0.272 0.105 0.0334
0.979 0.879 0.580 0.238 0.0351 20.00466 20.00557

4 0.961 0.799 0.443 0.180 0.0592 0.0233 0.0086
0.000923 0.00745 0.0563 0.227 0.538 0.764 0.899
0.00251 0.0175 0.0895 0.219 0.285 0.231 0.142

0.990 0.949 0.805 0.541 0.243 0.0945 0.0304
0.955 0.801 0.481 0.188 0.0301 20.00146 20.00352

8 0.913 0.671 0.321 0.121 0.0385 0.0150 0.0056
0.00127 0.00952 0.0658 0.246 0.552 0.770 0.901
0.00379 0.0226 0.0980 0.218 0.271 0.218 0.135

0.983 0.926 0.768 0.508 0.227 0.0881 0.0284
0.915 0.717 0.406 0.157 0.0275 0.000386 20.00234

16 0.840 0.546 0.236 0.0852 0.0266 0.0104 0.0039
0.00150 0.0106 0.0700 0.255 0.560 0.775 0.903
0.00460 0.0238 0.0939 0.202 0.248 0.200 0.126

0.971 0.900 0.737 0.486 0.217 0.0844 0.0273
0.863 0.637 0.348 0.136 0.0258 0.00154 20.00160

32 0.747 0.436 0.177 0.0625 0.0194 0.00756 0.0029
0.00159 0.0108 0.0703 0.256 0.563 0.779 0.905
0.00471 0.0219 0.0828 0.178 0.221 0.180 0.115
s:

c

in

o-

ion
of
s:

y
s
ith

cal
his
for
Substitutingf 1 from ~3.2! into the relations~4.6!, we can
express the Fourier components of the electric currentj and
the heat fluxqe in terms of generalized hydrodynamic force
the Fourier components of the effective electric fieldE* , the
temperature gradientikdT, and the plasma flow velocityui .
We can thus write

j 5sE* 1a idTe1b jeneui ,

qe52aTeE* 2x idTe2bqneTeui , ~4.7!

wheres is the electrical conductivity,a is the thermoelectric
coefficient,x is the thermal diffusivity, and theb j ,q are the
ion convective transport coefficients. We note that these
efficients are functions of the wave numberk, and so the
transport relations have the form of convolution integrals
coordinate space. The transport coefficients are defined
the expressions

s5
e2ne

k2Te

JT
T

DNT
NT

, a52
ene

k2Te

JT
N1JT

T

DNT
NT

, b j512
DNT

RT

DNT
NT

,

~4.8!

bq5
DNT

RT1DNT
RN

DNT
NT

, x5
ne

k2

2JT
N1JT

T1JN
N

DNT
NT

.

At first glance, along with the momentsJA
B of the isotropic

parts of the basis functionsw0
A , the relations~4.8! should
o-

by

also contain similar moments of the first anisotropic comp
nentsw1

A as a result of the integration in~4.6!. However, the
latter can be eliminated by employing the direct integrat
of Eq. ~2.8! for l 50, taking into account the conservation
particle number and energy in electron–electron collision

E
0

`

d3v Cee
0 50, E

0

`

d3v v2Cee
0 50.

The transport equations~4.7! reflect the Onsager symmetr
properties: the coefficienta is the same in the expression
for the electric current and the heat flux, in agreement w
the equalities11,12 JA

B5JB
A for an arbitrary collisionality pa-

rameterklei .

5. NONLOCAL TRANSPORT COEFFICIENTS

Let us now consider the dependence of the nonlo
transport coefficients on the collisionality parameter. For t
purpose, we plug the solutions of the kinetic equations
the basis functionsw0

A into the relations~3.3! and ~4.8! and
calculate the transport coefficientss, a, x, b j , andbq . The
results of these calculations for various values ofklei andZ
are presented in Table I.
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In the high-collisionality limitAZklei!1 the longitudi-
nal electrical conductivitys, the thermoelectric coefficien
a, and the thermal diffusivityx are given by the classica
expressions2,3,18

s05gs~Z!
32e2nelei

3pmevTe
, a05ga~Z!

16enelei

pmevTe
,

x05gx~Z!
200nevTelei

3p
, ~5.1!

whereas in the short-wavelength limit (klei@1) they all
have similar asymptotes, which are inversely proportiona
the wave number and do not depend on the ion charge:11,12

s5
5e2nevTe

A8pkTe

, a52
enevTe

A2pkTe

, x5
4nevTe

A2pk
. ~5.2!

The functionsgs(Z), ga(Z), and gx(Z) in the relations
~5.1!, which are equal to unity atZ@1, take into account the
difference between the exact values of the classical trans
coefficients and the corresponding values in the model o
Lorentz plasma, which corresponds to the complete neg
of electron–electron collisions. These functions were cal
lated and tabulated in Refs. 2 and 18. It is convenien
interpolate them using the following simple expressions3

gs~Z!5
0.871Z

2.21Z
, ga~Z!5

0.251Z

3.61Z
, gx~Z!5

0.131Z

4.71Z
,

~5.3!

which reproduce the exact values to within an error of
moe than a few percent.

The ion convective transport coefficientsb j and bq in
Eqs.~4.7! are related if the higher (l .1) angular harmonics

FIG. 1. Dependence of the coefficientsgb j andgbq , which characterize ion
convective transport in the long-wavelength limit, on ion charge. The s
curves correspond to the approximate formulas~5.5! for gb j ~upper curve!
andgbq ~lower curve!.
o

ort
a
ct
-
o

o

of the electron distribution function are taken into accou
and they do not appear in the classical high-collisiona
theory.2,3 In the long-wavelength limit they are proportion
to k2:

b j522~gb j~Z!klei!
2, bq587~gbq~Z!klei!

2, klei!1.
~5.4!

In the collisionless limitb j tends to unity, whilebq falls off
as (lnk)/k. We established the dependences ofgb j andgbq

on ion charge. They are shown in Fig. 1 and are descri
well ~to within a few percent! by the approximate formulas

gb j~Z!5
20.191Z

4.91Z
, gbq~Z!5

20.51Z

71Z
, ~5.5!

which are also shown in Fig. 1. We note that going over
the limit Z@1 in formulas ~5.4!, which corresponds to
gb j ,bq51, gives the result of Ref. 11 in the long-waveleng
approximation.

The transport coefficients listed in Table I, obtained he
for the first time, quantitatively determine the nonlocal tran
port properties of a plasma in the case of an arbitrary va
of Z, in analogy to the classical transport coefficients in t
case of local hydrodynamics, which are specified by
functions gs(Z), ga(Z), and gx(Z). The almost universa
character of the dependence of the normalized~to the classi-
cal value! electrical conductivitys/s0 on gs(Z)klei , which
is illustrated by the curves in Fig. 2, is noteworthy. Simil
plots for the thermoelectric coefficienta/a0 and for the ther-
mal diffusivity x/x0 are shown in Figs. 3 and 4, respectivel
The corresponding plots for the ion convective transport
efficients are presented in Fig. 5. In the region 1&klei the
thermoelectric coefficienta changes sign at a value ofk

d
FIG. 2. Dependence of the electrical conductivitys/s0 on the collisionality
parametergs(Z)klei for plasmas withZ51 ~solid curve!, Z54 ~dot-
dashed curve!, andZ564 ~dashed curve!. The dotted lines correspond to th
classical high-collisionality asymptote and the collisionless limit.
f-

s-
-

FIG. 3. Dependence of the thermoelectric coe
ficient a/a0 on the collisionality parameter
ga(Z)klei for plasmas withZ51 ~solid curve!,
Z54 ~dot-dashed curve!, and Z564 ~dashed
curve!. The dotted lines correspond to the cla
sical high-collisionality asymptote and the colli
sionless limit.
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which depends onZ. For example,a vanishes atklei51.8
and 4.6 forZ51 and 64, respectively. The positionkmax of
the maximum ofbq , which can be as large as 0.2–0.3 a
corresponds toklei'1, scarcely depends on the ion char
numberZ. Figures 2–4 reveal the monotonic approach of
electron transport coefficients to the collisionless asympto
which are plotted as dashed lines in them.

6. TRANSPORT IN A CURRENTLESS PLASMA AND
DAMPING OF ION-SOUND WAVES

As in the classical high-collisionality case, one of t
important applications of the quasihydrodynamic equati
is the case of no electric current,j 50, which describes
quasineutral plasma motions. The generalized Ohm’s
then permits elimination of the ambipolar electric field

E* 52 ikdTea/s2eneuib j /s ~6.1!

from the expression for the electron heat flux, which is d
termined in this case by two transport coefficients:

qe52k ikdTe2bneTeui , wherek5x2a2Te /s,

b5bq2eab j /s. ~6.2!

The values of the thermal diffusivityk and the ion convec-
tive transport coefficientb are given in Table II. Both coef-

FIG. 4. Dependence of the thermal diffusivityx/x0 on the collisionality
parametergx(Z)klei for plasmas withZ51 ~solid curve!, Z54 ~dot-
dashed curve!, andZ564 ~dashed curve!. The dotted lines correspond to th
classical high-collisionality asymptote and the collisionless limit.

FIG. 5. Dependence of the ion convective transport coefficientsb j andbq

on the collisionality parametersgb j klei andgbqklei , respectively, for plas-
mas withZ51 ~solid curve!, Z54 ~dot-dashed curve!, andZ564 ~dashed
curve!. The dotted lines are the high-collisionality asymptotes~5.4!.
e
s,

s

w

-

ficients depend sensitively on ion charge. When the inhom
geneity is weakklei→0, k transforms into the Spitzer–
Härm thermal conductivity:18

k05gk~Z!128nevTelei/3p.

This coefficient is determined by the functiongk(Z), which
was tabulated in Ref. 18 and is interpolated well by the a
lytic expression14

gk~Z!5~0.241Z!/~4.21Z!.

The ion convective coefficientb is negligibly small under
the conditions of classical transport theory:

b}k2lei
2 .

The dependence ofgb , which determines the magnitude o
the ion convective contribution to the heat flux, onZ practi-
cally ~to within several percent! coincides with gbq(Z),
given by ~5.5!, i.e., gb(Z).gbq(Z). In the collisionless
limit, klei→`, the thermal conductivity has an asympto
similar to ~5.2!, andb reaches a constant value:

k5
18nevTe

5A2pk
, b50.4. ~6.3!

The dependence of the thermal conductivityk and the ion
convective transport coefficientb on the wavelength in plas
mas with various values ofZ is presented in Fig. 6. The
figure also displays straight lines corresponding to the hi
collisionality and collisionless asymptotes.

Another application of the theory developed abov
which is of practical importance, is the description of t
damping of ion-sound waves in the region of intermedi
values of the collisionality parameter, where neither the f
mula from the high-collisionality approximation for th
damping rateGs

TABLE II. Values of transport coefficientsk/k0 andb and the ion-sound
damping rateGs /kcs ~from top to bottom!.

Z\klei 0.01 0.03 0.1 0.3 1 3 10

0.995 0.965 0.791 0.482 0.211 0.0889 0.032
1 0.000337 0.00287 0.0227 0.0874 0.207 0.294 0.299

0.265 0.0904 0.0323 0.0169 0.0119 0.0109 0.010

0.987 0.906 0.626 0.327 0.132 0.0574 0.018
2 0.000800 0.00622 0.0376 0.112 0.218 0.200 0.369

0.181 0.0632 0.0262 0.0161 0.0125 0.0116 0.011

0.961 0.801 0.465 0.218 0.0841 0.0339 0.012
4 0.00152 0.0102 0.0477 0.119 0.210 0.268 0.306

0.132 0.0497 0.0244 0.0169 0.0139 0.0130 0.012

0.910 0.669 0.338 0.149 0.0559 0.0226 0.008
8 0.00227 0.0126 0.0492 0.112 0.186 0.233 0.265

0.105 0.0454 0.0260 0.0192 0.0161 0.0148 0.014

0.832 0.540 0.247 0.105 0.0389 0.0159 0.005
16 0.00271 0.0127 0.0439 0.0953 0.156 0.196 0.227

0.0905 0.0471 0.0296 0.0229 0.0196 0.0173 0.015

0.735 0.428 0.183 0.0759 0.0283 0.0117 0.004
32 0.00270 0.0110 0.0357 0.0765 0.126 0.160 0.191

0.0872 0.0501 0.0354 0.0294 0.0239 0.0210 0.018
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Gs /kcs53pcs/256gk~Z!vTeklei

(cs5AZTe /mi is the speed of ion sound! nor the collision-
less formula

Gs /kcs5Ap/8cs /vTe ,

which corresponds to Landau damping by electrons, is ap
cable.

In order to describe the damping of ion-sound waves,
utilize the conservation laws fpr particle number and ene
to write the relations for the spatial Fourier components
the first two moments of the kinetic equation~2.2! under the
assumption of a quasineutral plasma (j 50)

]dne

]t
1 ikuine50,

]dTe

]t
1

2

3ne
~ ikqe1neTeui !50,

~6.4!

as well as the equation of motion for the ions

]dui

]t
5Z

e

mi
E* 2 ikcs

2S dne

ne
1

dTe

Te
D1

Z

mine
Rie , ~6.5!

in which the effective electric fieldE* is defined by~6.1!
andRie is the force of friction of the ions against electron

Rie5 ime

4p

3 E
0

`

dv v3nei~v ! f 1 . ~6.6!

Like the electron fluxes~4.7!, the friction force can be ex
pressed using moments of the basis functions:

Rie52rNeneE* 1rTneikdTe2rRmeneuivTe /lei ,

rN5Ap

2

1

klei

JT
NLR

T2JT
TLR

N

DNT
NT

,

rT5Ap

2

1

klei

~JT
N1JN

N!LR
T2~JT

T1JN
T !LR

N

DNT
NT

, ~6.7!

rR5Ap

2
kvTeS DNT

RT

DNT
NT

LR
N1

DTN
RN

DNT
NT

LR
T2LR

RD ,

LR
A5

4p

ne
vTe

2 E
0

`

dv w1
AF0 .

FIG. 6. Dependence of the thermal conductivityk/k0 and the ion convec-
tive transport coefficientb on the perturbation wavelength for current-fre
plasmas withZ51 ~solid curve!, Z54 ~dot-dashed curve!, and Z564
~dashed curve!. The dotted lines are the high-collisionality and collisionle
asymptotes.
li-

e
y
f

If Z@1, the relationsrN512b j and rT5bq hold, andrR

transforms into the coefficientb r from Ref. 11.
Considering perturbations that are}exp(2ivt), from the

system of equations~6.4!, ~6.5!, and ~6.7! supplemented by
the expression for the heat flux~6.2! we obtain a dispersion
equation, whose weakly damped solutionv5kcs2 iGs de-
scribes an ion-sound wave with a damping rate specified
the formula

Gs

kcs
5

necs

2k F ~12b!~12r!

k
1

e2b j~12rN!

Tes
1

rR

nevTelei
G ,

~6.8!
where r5rT2ea(12rN)/s is an analog ofb given by
~6.2!, in the case of a plasma with finiteZ and coincides with
the latter whenZ@1. The values of the ion-sound dampin
rate are given in Table II, and its wave-number depende
is shown in Fig. 7. This figure also presents the results
tained by direct numerical solution of the Fokker–Plan
equation for electrons,14 which, as can be seen from the fig
ure, agree very closely with ours. Even the small deviat
from the nonmonotonic decrease inGs /kcs with increasingk
at 100&klei seen in Fig. 2 in Ref. 14 forZ51 is fully
reproduced by~6.8! ~see Fig. 7!. Similar variation in the
monotonicity of the decreases of the electrical conductiv
andb, which determine the ion-sound damping rate, can a
be seen at largeklei in Figs. 2 and 6.

Thus, comparing~6.8! with the results of direct numeri
cal solution of the Fokker–Planck equation14 and bearing in
mind the single-valued relation~6.8! betweenGs and the
nonlocal transport coefficients, we obtain convincing e
dence that the theory developed above quantitatively
scribes nonlocal transport in a plasma. Formula~6.8! de-
scribes the smooth transition from the high-collisional
hydrodynamic expression for the ion-sound damping rate
collisionless Landau damping, demonstrating the comp
analogy between the proposed quasihydrodynamic equa
and the kinetic model.

7. DISCUSSION OF RESULTS

The investigations performed above have shown t
there is a broad region of values of the collisionality para
eter lei /L and Z in which the familiar results in the high

FIG. 7. Wave-number dependence of the damping rate of ion-sound w
for a plasma withA/Z52 (A is the atomic number! when Z51 ~solid
curve! and Z58 ~dashed curve! in comparison to results from numerica
simulation14 ~large points —Z51, small points —Z58).
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collisionality and collisionless limits cannot be used to d
scribe transport processes in plasmas, this region b
broader, the larger is the charge number. The deviations f
the familiar limiting cases are manifested to a lesser exten
the electrical conductivity, and they are displayed mo
strongly in the thermal diffusivity and the thermal condu
tivity. We can write the following approximate condition fo
the collisionality parameter, which specifies the region
which the thermal conductivity deviates significantly fro
the values predicted by the classical collisional and collisi
less theories:

1

20AZ
&

lei

L
&20AZ. ~7.1!

The region for the electrical conductivity is somewh
smaller: 1/5AZ&lei /L&5AZ. We also note that because th
thermoelectric coefficient has different signs in the hig
collisionality and collisionless limits, it is impossible to ob
tain even a rough estimate in the transition region by in
polating the known results for these limiting cases.

For modern thermonuclear research the intermedi
collisionality regime, for which the classical transport the
ries are inapplicable, is typical in practice. It is easy to se15

that the condition~7.1! generally holds in a near-wall Toka
mak plasma.

More examples can be cited for the case of therm
nuclear investigations based on lasers in plasmas with e
tron temperatures from one to several kiloelectron volts.
example, the typical electron mean free path in the criti
density region for a neodymium laser irradiating a solid-st
target is;1023 cm, while the characteristic spatial scale f
the decrease in the electron temperature inside a targ
essentially always less than 1022 cm. Even in experiments
with ultrashort laser pulses, during which the plasma d
not manage to expand and its typical density remains clos
the density of the solid, the condition~7.1! can, nevertheless
hold, since the strong skin effect of the laser field crea
very large gradients (L;1025 cm!. One more interesting
example of the appearance of nonlocal heat transport is
sociated with high-Z plasmas. As was noted above, althou
the electron mean free path falls off with increasingZ, the
onset of the deviation of the thermal conductivity from t
Spitzer value18 is earlier specifically for plasmas with a hig
extent of ionization of the ions. For this reason, even in
case of fairly smooth irregularitiesL.1022 cm a hot plasma
(Te;3 – 5 keV! of hohlraum targets (ne;1021 cm23) should
be regarded as a significantly nonlocal medium, as w
pointed out in Ref. 22.

The solution of the problem of controlled laser fusio
has been associated with the use of various techniques
smoothing the laser beam.23 Its structure is characterized b
fluctuating irregularities in the intensity of the laser fiel
The corresponding typical correlation length~the radius of
the hot spots! amounts to several wavelengths of the la
radiation and is comparable in order of magnitude to
electron mean free path. Thus, a plasma interacting with s
a speckled laser beam has an intermediate-collisionality
gime, which differs significantly from the high-collisionalit
-
ng
m
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and collisionless regimes. The relaxation of hot spots and
generation of nonthermal fluctuations in such a plas
should have a highly nonlocal character.24

Finally, nonlocal effects should also be taken into a
count in the parametric processes accompanying the inte
tion of laser radiation with a plasma. They are highly sign
cant for filamentation and stimulated Mandelstam–Brillou
scattering. For example, it was shown in Ref. 25 in refere
to filamentation instability that the use of the classical th
mal conductivity lowers the filamentation level unaccepta
and leads to underestimates of its aftereffects for contro
laser fusion. For this reason, a quantitative description of
nonlocal thermal conductivity of a laser plasma is neede

8. CONCLUSION

Summarizing the foregoing material, we note that, ju
as a systematic quantitative theory of electron transpor
high-collisionality plasmas was formulated more than
years ago, a similar theory, which enables us to quan
tively describe nonlocal transport under the conditions of
arbitrary ratio between the mean free path of the partic
and the characteristic spatial scale of potential perturbatio
has been developed in this paper. The generalization to
case of rotational perturbations is obvious and can be acc
plished in accordance with the method described in Ref.

The ‘‘price’’ for the quantitative description of all the
nonlocal transport coefficients is the approximation of sm
perturbations. However, it can be expected that the regio
applicability of the theory will be broader than that implie
by the constraints imposed. In particular, Vidalet al.19 com-
pared the results of the direct numerical solution of the
netic equation and the results previously obtained by num
cal methods using quasihydrodynamic equations w
nonlocal thermal conductivity in Ref. 25. It was discover
in solving the problem of the inverse bremsstrahlung hea
of a plasma by laser radiation that the results of the kine
and quasihydrodynamic approaches are also in good ag
ment for real~not small! density and temperature fluctua
tions.

We also note that a comparison of the nonlocal theory
heat transport for small perturbations with the results of
experiment in Ref. 21~where the perturbations were no
small! also exhibited good agreement. This allows us to ho
that the nonlocal transport equations obtained above wil
of practical use in simulating small-scale processes in p
mas. We stress once again that the quasihydrodynamic e
tions of nonlocal hydrodynamics obtained are complet
equivalent to the kinetic description and are suitable
studying transport over a broad range of values of the co
sionality parameter from the high-collisionality region
classical transport to the collisionless limit.

The theory presented has been compared with the
merical kinetic calculations in Ref. 14, and it displays go
quantitative agreement with the latter. This demonstrates
advantages of the new model of nonlocal transport de
oped here, which, unlike kinetic calculations, does not
quire large numerical resources.

The nonlocal quasihydrodynamic equations derived
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be used to study plasma instabilities and fluctuations,
which transport effects are important. One significant res
of our theory is the expression found for the ion-sou
damping rate, which is suitable for use at arbitrary values
the charge number of the plasma and the collisionality
rameter.
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Theory of light-induced drift of a binary gas mixture in a capillary
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The drift of a binary gas mixture in capillaries induced by resonant light is studied theoretically.
The surface and bulk mechanisms of flow of the mixture components are analyzed for
arbitrary values of the Knudsen number and the rate parameter~the ratio of the radiative decay
rate of an excited molecular level to the intermolecular collision rate!. Finally, the
theoretical results are compared with the experimental data. ©1998 American Institute of
Physics.@S1063-7761~98!01111-1#
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1. INTRODUCTION

The phenomenon of light-induced drift in bulk, predicte
by Gel’mukhanov and Shalagin,1 involves the occurrence o
a directed flow of a gas that is in a mixture with a buffer g
and absorbs light selectively with respect to the velocities
the molecules. Since the interaction of excited particles
the absorbing gas and the particles of the buffer gas dif
from that of unexcited particles and buffer-gas particles,
components of the mixture flow in opposite directions. T
kinetic theory of this phenomenon in the approximation
unrestricted, spatially uniform gas was developed by Dykh
and Starostin.2

The wall of the vessel containing the gas mixture m
also play the role of the buffer gas. In view of the differen
in the interactions of excited and unexcited particles of
absorbing gas and the boundary between the phases, a
face light-induced drift develops.3

The momentum conservation law implies that in the c
of unrestricted gas the hydrodynamic~average-mass! flow of
the mixture is zero. But when there is an interface betw
the phases, the total momentum of the gas mixture chan
stimulating its macroscopic flow. In particular, in the Knu
sen regime, where the mean free path of the molecule
much longer than the capillary radius, the buffer gas is at
and the drift of the absorbing gas is responsible for
average-mass flow of the gas mixture. Hence in the theor
gas-mixture drift in a capillary it is advisable to determi
the flows of the absorbing and buffer gases.

The kinetic theory of bulk and surface light-induced dr
of a binary gas mixture for arbitrary Knudsen numbers~Kn!
was developed in Ref. 4. The main limitation of this theory
the assumption that the radiative decay constantGm for an
excited level of a molecule of the absorbing gas is mu
smaller than the intermolecular collision rategn . The results
of Ref. 4 were obtained in the linear approximation in t
small parameterGmn5Gm /gn . This approximation usually
works for a molecular gas (Gm;104 Hz). For an atomic gas
(Gm;107–108 Hz! the approximation is valid only at high
pressures, 104 Pa and higher.

Atutov et al.5 experimentally studied light-induced dri
of sodium vapor in a mixture with inert gases. In their e
9261063-7761/98/87(11)/8/$15.00
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periments the rate parameterGmn varied from approximately
0.3 at high pressures to roughly 150 at low pressure. Th
fore it is not possible to compare the theoretical results
Ref. 4 with the experimental data of Ref. 5 over a bro
range of Knudsen numbers. Such a comparison would b
interest, on the one hand, for verifying theoretical mod
and, on the other, for establishing the numerical values
transport and accommodation characteristics of excited m
ecules.

In the present paper we develop a theoretical model
the bulk and surface mechanisms of light-induced drift o
binary gas mixture in a capillary for arbitrary values of th
Knudsen number and the rate parameterGmn .

2. STATEMENT OF THE PROBLEM

Let us consider a binary gas mixture that fills a capilla
whose lengthL is much greater than its radiusR0 ~Fig. 1!.
The flow profiles depend solely on the radial coordinate, a
end effects can be ignored.

A traveling light wave propagating along the axisz of
the capillary is absorbed by the particles of the active co
ponent of the mixture in an electronic~for atoms! or
vibrational–rotational~for molecules! transition from the
ground staten to an excited statem. The frequencyv of the
monochromatic light is offset from,vmn , the center of the
absorption line, byV5v2vmn!v,vmn . Because of the
Doppler effect, the only particles that interact with the lig
are those of the absorbing component whose projection
the velocityv on the wave vectork are close to the resonanc
value, for whichk–v5V. The excited and unexcited pa
ticles of the absorbing component have the same mass,mm

5mn5m1, but different effective diameters,dmÞdn . Hence
a binary gas mixture in which one component interacts w
resonant light can be considered a three-component mixt

The velocity distribution functionsf m and f n of the ex-
cited and unexcited particles of the absorbing gas atVÞ0
become asymmetric aboutvz50 because of the occurrenc
of a Bennett peak and dip,6 respectively, near the resona
velocity vz5V/k. Hence along the capillary oppositely d
rected macroscopic fluxes of excited (Jm) and unexcited
(Jn) particles develop, which give rise to a total flux of th
© 1998 American Institute of Physics
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absorbing component,J15Jm1Jn ~light-induced drift! if the
interactions of the excited and unexcited with the capilla
surface and the buffer gas are different. Here and in w
follows the label 1 refers to the characteristics of the abso
ing gas and the label 2, to the characteristics of the bu
gas.

The distribution functions of the excited and unexcit
particles of the gas (f m and f n , respectively! and of the
buffer gas (f 2) satisfy the following system of kinetic equa
tions:

v–¹f m5 1
2k~v!Gm~ f n2 f m!2Gm f m1Sm ,

v–¹f n52 1
2k~v!Gm~ f n2 f m!1Gm f m1Sn ,

v–¹f 25S2 , ~1!

here

k~v!5
4uGmnu2G

Gm@G21~V2k–v!2#
, Gmn5

E0dmn

2\
,

Sm5Smm1Smn1Sm2 , Sn5Snm1Snn1Sn2 ,

S25S2m1S2n1S22,

whereGm is the radiative decay constant,G is the homoge-
neous halfwidth of the absorption line,Si j is the Boltzmann
collision integrals for the particles of thei th and j th species,
E0 is the electric field amplitude,dmn is the dipole moment
of the n–m transition,\ is Planck’s constant, andk(v) the
saturation parameter, which characterizes the probability
induced transitions and is proportional to the light intensityI .

For the boundary conditions we take the specula
diffuse reflection model. When the interaction is elastic
fraction « i of the particles of thei th species are diffusely
scattered at each point of the capillary surface with a M
wellian velocity distribution, while the remaining particle
12« i are specularly reflected. Then the distribution fun
tions satisfy the boundary conditions

f i
1~v!5« i f i

s~v!1~12« i ! f i
2~v22~v–n!n!,

v–n.0, f i
s5ni

sS mi

2pkBTD 3/2

expS 2
v2

v̄ i
2D ,

v̄ i5S 2kBT

mi
D 1/2

, i 5n,m,2, ~2!

wheren is the inner normal to the capillary wall,mi is the
mass of the particles of thei th species,T is the gas tempera
ture,kB is the Boltzmann constant, the superscripts1, s, and
2 denote, respectively, the reflected particles, the parti

FIG. 1. Geometry of the problem.
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diffusely emitted by the surface, and the particles incident
the surface, andni

s stands for the number density of diffuse
scattered particles of thei th species.

Consider the case where the saturation paramete
small,k(v)!1, which usually corresponds to moderate lig
intensitiesI . Then the density of the excited particles is mu
lower than that of the unexcited ones,nm!nn , and the dis-
tribution functions differ only slightly from equilibrium
Maxwellian distributions:

f i5 f i0@11hi~ r̃ ,v!#,

f i05ni0S mi

2pkBTD 3/2

expS 2
v2

v̄ i
2D , i 5n,m,2, ~3!

whereni0 is the equilibrium number density of the particle
of the i th species,r̃ is the radius vector in a plane perpe
dicular to the capillary axisz, andhi( r̃ ,v) are unknown per-
turbation functions.

For an optically thin medium, the dependence of t
perturbation functions on the longitudinal coordinatez can
be ignored. We also assume that the light intensity is unifo
over the capillary cross section. In this way we exclude
possibility of light-induced striction or expulsion of particle
by light.

We limit ourselves to the case where the density of
absorbing particles is much less than that of the buffer p
ticles, n1!n2. Here we can ignore collisions between pa
ticles of the absorbing gas and can assume that the effe
light-induced drift is due solely to the bulk~buffer! and sur-
face ~accommodation! mechanisms. Then the system of k
netic equations~1!, reduced to dimensionless form and lin
earized with respect to the perturbations of the distribut
functions and with respect to the small paramet
nm /nn ,nm /n2, andnn /n2, takes the form

cm'–

]hm

]r
2

nn

nm
RmGmm

k~v!

2
1RmGmmhm5Lm ,

cn'–

]hn

]r
1RnGmn

k~v!

2
2

nm

nn
RnGmnhm5Ln ,

c2'–

]h2

]r
5L2 , ~4!

where

ci5
v

v̄ i

, ci'
2 5cir

2 1ciw
2 , r5

r̃

R0
,

Ri5
R0g i2

v̄ i

, Gmi5
Gm

g i2
, i 5n,m,2,

ci' is the vector component of the dimensionless velocity
the particles of thei th species in the cross section of th
capillary, g i j is the effective rate of elastic collisions of th
particles of thei th species with the particles of thej th spe-
cies, andRi is the rarefaction parameter for thei th compo-
nent, which is inversely proportional to the Knudsen numb
~see Eq.~7!!.
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We use the second approximations for the linearized
lision integralsLi ~Ref. 7!, retaining the terms that are odd
ciz , which contribute to longitudinal gas flow. Ignorin
subtle effects like isothermal heat transfer, we obtain

Li5Ri@2hi12ciz~12w i2
~1!!ui14cir ciz~12w i2

~3!!p irz#,

i 5n,m,

L25R2H 2h212c2zFu21Am1

m2
S nm

n2
cm2

~1!um

1
nn

n2
cn2

~1!unD G14c2rc2zF ~12c22
~3!1c22

~4!!

1
nm

n2
cm2

~4!pmrz1
nn

n2
cn2

~4!pnrzG J , ~5!

where

ui5
Ui

v̄ i

5E cizEihidci ,

p irz5
Pirz

2pi
5E cir cizEihi dci ,

Ei5p23/2exp~2ci
2!, i 5n,m,2,

w j 2
~k!5

n j 2
~k!

g j 2
, c j 2

~k!5
n j 2

~k!

g22
, j 5m,n, ~6!

with Ui ,Pirz , andpi the partial velocity, stress tensor, an
pressure of thei th component, respectively. The expressio
for the ratesn j 2

(k) in terms of particle masses and Chapma
Cowling integrals are given in the Appendix.

The productC5RiGmi in the system of equations~4! is
a parameter that is independent of the gas pressure a
determined solely by the microscopic characteristics of
absorbing gas, its temperature, and the capillary radiusC

5R0Gm / v̄1. This parameter characterizes the ratio of t
time for an excited particle to traverse the capillary cro
section to the lifetime of this particle in the excited sta
Estimates ofC for atomic gases (Gm;1072108 Hz) in the SI
system of units yieldC'105R0. For molecular gases (GM

;104 Hz) estimates yieldC'10R0, with R0 measured in
meters. Assuming that the range of possible values of
capillary radiusR0 is (0.1–2)31023 m, we can say tha
C'102250 for light-induced drift for atomic gases an
C'0.00120.1 for molecular gases. Then the rate parame
Gmn5C/R for molecular gases withR.0.1 can be consid-
ered small. Hence the theory of light-induced drift of sing
component gas developed in Ref. 8, in whichGmn was as-
sumed to be much smaller than unity, is in satisfact
agreement with the experimental data on light-induced d
of CH3F in a capillary for all values of the Knudsen numbe
However, for atomic gases the rate parameterGmn over a
broad range of pressures cannot be assumed small, so th
Gmn!1 the model proposed in Ref. 4 of light-induced dr
of a binary gas mixture does not provide a qualitative
scription of the experimental data on the drift of sodiu
vapor in helium of Ref. 5.
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Let us select the effective collision rateg j 2 in the form
g j 25n j 2

(1) , j 5m,n, and the rateg22, by analogy with the
Bhatnagar–Gross–Krook model for a single-component g
in the formg225n22

(3)2n22
(4) . Then for molecules in the hard

sphere model the rarefaction parameterR[Rn is linked to
the Knudsen number as follows:

R5
8

2Ap

m2

m11m2

1

Kn
, Kn5

l n

R0
,

l n5
1

pn2dn2
2
A m2

m11m2
,

Rm

R
5S dm2

dn2
D 2

,

R2

R
5

3

5 S d2

dn2
D 2A2~m11m2!

m2
, di25

di1d2

2
, ~7!

with i 5n,m, wherel n is the mean free path of the unexcite
particles of the absorbing gas in the gas mixture.

The boundary conditions for the perturbation functio
hi follow from Eqs.~2! and ~3!:

hi
1~r0 ,c!5~12« i !hi

2~r0 ,c!1« i

ni
s2ni0

ni0
,

r05
r̃0

R0
, u r̃0u5R0 , i 5m,n,2. ~8!

The second term on the right-hand side of Eq.~8! can be
dropped, since it contributes nothing to the macroscopic
locity and stress tensor in~6!.

We consider the case of almost diffuse scattering of p
ticles by the capillary surface, i.e.,

12« i!1, i 5m,n,2. ~9!

The resulting flows of the absorbing and buffer gas
averaged over the capillary cross section are given by
following formulas:

J15Jm1Jn52v̄1E
0

1

~nnun1nmum!r dr ,

J252v̄2E
0

1

n2u2r dr . ~10!

For numerical calculations it is convenient to use the dim
sionless quantitiesG1 andG2, which are related to the flows
J1 andJ2 by

Ji5
n1R0Gmk

2Ap
Gi , i 51,2,

k5E
2`

`

c1z exp~2c1z
2 ! k~v! dc1z . ~11!

The quantityk can be calculated numerically for all value
of the parametersG/(kv̄1) andV/(kv̄1). A discussion of the
main aspect of this problem can be found in Ref. 9.

3. SOLUTION OF THE KINETIC EQUATIONS

We will use the integral–moment method to solve t
system of equations~4!. The method is based on the tran
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formation of the integro-differential kinetic equation for th
distribution function into a system of integral equations
the moments of this function.

Allowing for the boundary conditions~8!, we formally
integrate the inhomogeneous linear equations~4! along the
direction of the vectorci' of the dimensionless particl
velocity.4 Then, using the above expressions for the per
bation functionshi and the definitions~6! for the macro-
scopic quantities, we arrive at three systems of integral eq
tions for the dimensionless velocitiesui and stress tensor
p irz of the absorbing (i 5m,n) and buffer (i 52) compo-
nents of the gas mixture. We allow for the fact that the fra
tion of specularly reflected particles is small. Then to fi
order in the small parameter 12« i we have

~1! for the excited particles of the absorbing gas,

um~r !5
Rm

p E
S

D0 dr 8, ~12!

pmrz~r !5
Rm

p E
S

D1

e–r

r
dr 8, ~13!

where

D j5
Ck

2RmAp

nn

nm
S Tj

ur2r 8u
2

K jm

urN2r 8u
D 12~12wm2

~3!!pmrz~r 8!

3S Tj 11e

ur2r 8u
1

K j 11, me0

urN2r 8u
D –r 8

r 8
, j 50,1; ~14!

~2! for the particles of the absorbing gas in the grou
state,

un~r !52Sum~r !1
1

pES
Q0 dr 8, ~15!

pnrz~r !52Spmrz~r !1
1

pES
Q1

e–r

r
dr 8, ~16!

where

Qj5
Ck

2Ap
F nn

nm
SS Tj

ur2r 8u
2

Pj

urN2r 8u
D 2

Tj

ur2r 8u
1

K jn

urN2r 8u
G

12Rn~12wn2
~3!!pnrz~r 8!S Tj 11e

ur2r 8u
2

K j 11, ne0

urN2r 8u
D –r 8

r 8

12SRm~12wm2
~3!!pmrz~r 8!S Tj 11e

ur2r 8u
2

Pj 11e0

urN2r 8u
D –r 8

r 8
,

j 50,1; ~17!

~3! for the buffer gas,

u2~r !5
R2

p E
S

Z0 dr 8, ~18!

p2rz~r !5
R2

p E
S

Z1

e–r

r
dr 8, ~19!

where
r

r-

a-

-
t

d

Zj5Fu2~r 8!1Am1

m2
S nm

n2
cm2

~1!um~r 8!1
nn

n2
cn2

~1!un~r 8! D G
3S Tj

ur2r 8u
2

K j 2

urN2r 8u
D 12Fnm

n2
cm2

~4!pmrz~r 8!

1
nn

n2
cn2

~4!pnrz~r 8!G
3S Tj 11e

ur2r 8u
2

K j 11,2e0

urN2r 8u
D –r 8

r 8
, j 50,1. ~20!

In ~12!–~20! we used the notation

e5
r2r 8

ur2r 8u
, e05

rN2r 8
urN2r 8u

,

S5
C

~tm2Rn!

nn

nm
, tm5Rm~11Gmm!,

Tp~ t !5E
0

`

xpexpS 2x22
t

xD dx,

Kpi5
r M–r

r 2
~12« i !Tp@q~y11y2!#, i 5m,n,2,

Pp5
r M–r

r 2
$~12«n!Tp@Rn~y11y2!#

1~«n2«m!Tp~tmy11Rny2!%,

y15urN2r 8u, y25ur M2r u.

The argumentt of the functionsTp in Eqs.~12!–~14! is
t5tmur2r 8u, in Eqs. ~15!–~17! t5Rnur2r 8u, and in Eqs.
~18!–~20! t5R2ur2r 8u. The argumentq of the functionsKpi

in Eqs.~12!–~14! is q5tm , in Eqs.~15!–~17! q5Rn , and in
Eqs. ~18!–~20! q5R2. Integration in~12!–~20! is over the
cross-sectional areaS of the capillary.

To solve Eqs~12!–~20!, which are linear Fredholm in-
tegral equations of the second kind, we employ the Bubno
Galerkin method,10 since this method allows us the dete
mine the coordinate-averaged flowsJ1 and J2 without
calculating the velocity and stress profiles. The method
quires specifying the approximating expressions for the
known quantities.

The values ofui and p irz in the Knudsen regime (Kn
@1) are determined by the absolute terms of Eqs.~12!–~20!.
Hence we can expect rapid convergence of the Bubn
Galerkin method if the trial functions are chosen on the ba
of the form of the macroparameters in the hydrodynam
regime (Kn!1):

ũi5a1i1a2i r
2, p̃ irz5a3i r , i 5m,n,2, ~21!

whereaki are unknown constants that depend on the Kn
sen number, the accommodation coefficients« i , and the mo-
lecular parameters. It has been found4,11 that approximations
of the form ~21! produce sufficiently accurate results~with
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an error less than about 3%! for fluxes averaged over th
cross section of the capillary at all values of the Knuds
number.

Substituting~21! in Eqs.~12!–~20! and requiring that the
resulting expressions be orthogonal to each basis functio~1
andr 2 for ~12!, ~15!, and~18!, andr for ~13!, ~16!, and~19!!,
we obtain a system of linear algebraic equations for the
knownsa1i ,a2i , anda3i . Here the orthogonality condition
for two arbitrary functionsf andg has the form

2pE
0

1

f ~r !g~r !r dr 50.

Since there is very little difference between effective
ameters of excited and unexcited particles of the absorb
gas, we have

Dd

dn2
!1, Dd5dm22dn2 . ~22!

After linearizing the expressions~11! in the parameters
12« i and Dd/dn2 for the flow of the absorbing gas~light-
induced drift! we find that

J15
n1R0Gmk

2Ap
S G1

~1!D«1G1
~2!

Dd

dn2
D , D«5«n2«m , ~23!

whereG1
(1) andG1

(2) are the kinetic coefficients characteri
ing, respectively, the surface and bulk mechanism of lig
induced drift. The solution of the system of integral–mome
equations~12!–~20! by the Bubnov–Galerkin method wit
the trial functions~21! yields

G1
~1!5A12

F

p~p/21FD ! S B12
C1F

p/21FWD , ~24!

G1
~2!5A22

F

p~p/21FD ! S B22
C2F

p/21FWD ,

F5
4

5

m2

m11m2
21. ~25!

The quantitiesA1, A2, B1, B2, C1, C2, D, and W depend
solely on the rarefaction parameterR and the rate paramete
Gmn . The dependence of the kinetic coefficientsG1

(1) and
G2

(2) on the molecular masses of the components of the
mixture is totally determined by the factorF.

For the buffer gas we have

J25
n1R0Gmk

2Ap
S G2

~1!D«1G2
~2!

Dd

dn2
D . ~26!

Here the kinetic coefficientsG2
(1) andG2

(2) , which character-
ize, respectively, the surface and bulk mechanisms of
buffer-gas flow, depend on the rarefaction parameterR, the
rate parameterGmn , the mass ratiom1 /m2 and effective-
diameter ratiodn /d2 of the particles of the absorbing an
buffer gases.

It is possible to obtain analytic expressions for the
netic coefficients only for large or small Knudsen numbe
For atomic gases (C@1) these expressions are writte
below.
n

-

-
g

t-
t

as

e

-
.

1. An almost free-molecule regime (Kn@1 or R!1):

G1
~1!5

1

C
~121.505R!1•••, ~27!

G1
~2!521.505

R

C
1•••, ~28!

G2
~1!5F1S 1.505

R

C
13.394F2

R2

C
ln RD1..., ~29!

G2
~2!5~1.505F120.113F3!

R

C

13.394F1F2

R2

C
ln R1•••, ~30!

where

F15Am1

m2
, F25

A11~m1 /m2!

~11dn /d2!2
, F35

m1

m11m2
.

2. A hydrodynamic regime with slipping (Kn!1 or
R@1):

G1
~1!5

1

Ap R~R1C!
1•••, ~31!

G1
~2!52

1

R1C
1

21Gmn

Ap~R1C!2
1•••, ~32!

G2
~1!5FF1S 1

2
13A2D1F5G 1

R1C
1•••, ~33!

G2
~2!5H F1S 1

2
13A2 F4F11

F22

~F21!~11Gmn!
G D

1F5S 12
1

~F21!~11Gmn!
D J 1

R1C
1•••, ~34!

where

F45
~11m1 /m2!3/2

~315m1 /m2!~11dn /d2!2
, F55

m1 /m2

315m1 /m2
.

Analytic expressions for the kinetic coefficient in the ca
whereC!1 are given in Ref. 4.

4. DISCUSSION OF THE RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

The directions of the surface components of the flows
the absorbing and buffer gases (J1 andJ2) are determined by
the signs of the difference of the accommodation coefficie
of the unexcited and excited particles of the absorbing g
D«5«n2«m , and the offset between the light frequency a
the center of the absorption line,V5v2vmn . If we have
D«.0, the directions of the surface components of the
sorbing and buffer gases atV.0 coincide with the direction
of light propagation, but atV,0 they are opposite to the
direction of light propagation. The fact that the surface co
ponents ofJ1 andJ2 have the same directions is consiste
with momentum conservation in the gas–wall interaction



931JETP 87 (5), November 1998 V. G. Chernyak and E. A. Vilisova
FIG. 2. Kinetic coefficientsG1
(1) ~a! and G1

(2)

~b! as functions of the rarefaction parameterR
(m1 /m251): curves 1, Gmn50.01; curves2,
Gmn50.1; curves 3, Gmn51; and curves4,
Gmn510.
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The directions of the bulk components ofJ1 andJ2 are
determined by the signs of the difference of the effect
diameters of the excited and unexcited particles of the
sorbing gas,Dd, and the offsetV. If Dd.0 holds, the di-
rection of the bulk component of the absorbing gas flow
V,0 is the same as the direction of light propagation, wh
the direction of the bulk component of the buffer gas flow
opposite to the direction of light propagation, in accordan
with momentum conservation in intermolecular collision
For V.0 the two gas flows reverse directions.

Figures 2a and 2b depict the kinetic coefficientsG1
(1) and

G1
(2) as functions of the rarefaction parameterR for different

values of the rate parameterGmn . We see that as the free
molecule regime (R!1) is replaced by the hydrodynam
regime (R@1), the kinetic coefficientG1

(1) , which charac-
terizes surface light-induced drift, monotonically decrea
from a fixed value~Eq. ~27!! to zero~Eq. ~31!!.

Equations ~31!–~34! imply that in the slip regime
(R@1) the surface light-induced drift is an effect of seco
order in the Knudsen number (G1

(1);Kn2) and hence canno
be described by the theory of a flat Knudsen layer. The c
vature of the boundary surface must be taken into accou

For a fixed value ofR, the value ofG1
(1) decreases with

increasingGmn : asGmn
21 in the free-molecule regime, and a

(Gmn11)21 in the hydrodynamic regime. The reason is t
decrease in the relative number of excited particles collid
with the capillary wall. In theGmn→` limit all the mol-
ecules have time to go over to their ground state before t
reach the capillary wall, so that there is no surface lig
induced drift.

The kinetic coefficientG1
(2) , which characterizes the

bulk light-induced drift, is a nonmonotonic function of th
e
b-

r
e

e
.

s

r-
t.

g

ey
-

rarefaction parameterR. As R increases,G1
(2) grows in ab-

solute value in the Knudsen regime~Eq. ~28!!, reaches its
maximum value in the intermediate regime atR;1, and de-
creases asR21 ~Eq. ~32!! in the hydrodynamic regime. At a
fixed value ofR the absolute value ofG1

(2) decreases with
increasingGmn : asGmn

21 in the free-molecule regime, and a
(Gmn11)21 in the slip regime. The explanation lies in th
fact that with R fixed the fraction of the excited particle
colliding with buffer-gas particles diminishes with increasin
Gmn . When Gmn@1 holds, all the excited particles within
one mean free path have time to go to their ground st
which means there is no bulk light-induced drift.

Numerical calculations have shown that forGmn<1 the
kinetic coefficientsG1

(1) and G1
(2) are weakly dependent o

Gmn . Hence forGmn<1 we can use the results of Ref. 4.
Figures 3a and 3b depict the kinetic coefficientsGi

(k) as
functions of the rarefaction parameter for a mixture of s
dium vapor and helium atC5RGmn'60, a value used in the
experiment described in Ref. 5. The method used in t
experiment~see Ref. 5! consisted in the following. Sodium
vapor mixed with helium was placed in a narrow capilla
and the effect of 50-mW laser light on theD2-line of sodium
was studied. The capillary length was 40 cm and the in
diameter was 1 mm, which agrees with the adopted theo
ical model. The gas pressure in the capillary was varied fr
20 Pa to 13 kPa, which increased the rarefaction parametR
from 0.4 to 240 and decreased the rate parameterGmn from
150 to 0.25.

The components of the gas mixture began to flow wh
laser light was applied, and the light frequency was selec
to maximize the drift velocity of the fluorescing sodium v
FIG. 3. Kinetic coefficientsG1
(1) and G2

(1) ~a!,
and G1

(2) and G2
(2) ~b! as functions of the rar-

efaction parameterR for the Na–He gas mix-
ture.
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por. The variation in sodium vapor density along the cap
lary was measured with a differential photodetector. Th
the shift in sodium vapor density was transformed into
velocity uexpt of light-induced drift via the theoretical rela
tionships derived in Ref. 5.

What was found was thatuexpt depends on pressure no
monotonically: as the pressure grows the value ofuexpt in-
creases from zero to its maximum value, reaches a pla
and remains constant in the 110–670 Parange, and then
creases to zero. Probably, the plateau develops because
theoretical model of Ref. 5 the diffuse flow of the absorbi
gas is calculated by Fick’s law,Jd52D¹n (D is the diffu-
sion coefficient!, valid only in the hydrodynamic regime
(R.0). But the plateau region corresponds to intermed
values of the Knudsen number. In Ref. 11 Fick’s law w
generalized to the entire range of Knudsen numbers:Jd5
2SD¹n.

Calculations for the Na–He mixture have shown that
correction factorS increases from 0.4 atR;0.4 to 1 at
R@1. TheR-dependence of experimental values of the
locity of light-induced drift corrected for the factorS is
shown in Fig. 4. The same figure also depicts the theore
curve corresponding to the derived formula

u5
R0Gmk

2Ap
S G1

~1!D«1G1
~2!

Dd

dn2
D . ~35!

The experimental values ofD« and Dd/dn2 reconstituted
from the condition of best agreement between the theory
the experiment of Ref. 5 for the Na–He mixture are

D«523.0731023,
Dd

dn2
524.0531023.

The minus in the numerical values ofD« andDd/dn2 results
from the drift of sodium vapor is opposite to the direction
light propagation. The theoretical curve describes fairly
curately the behavior of the experimental data of Ref. 5
the entire range of gas pressures.

The discrepancy between the theoretical results and
perimental data can be explained by the fact thatk(v);1
and that the light intensity is nonuniform for the cross s
tion of the capillary ~the diameter of the light beam

FIG. 4. Drift velocity of Na vapor in He as a function of the rarefactio
parameterR; comparison of theoretical results~solid curve! and the experi-
mental data of Ref. 5.
-
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e
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amounted to half the inner diameter of the capillary!. Possi-
bly, allowing for these factors would change the resulti
values ofD« andDd/dn2.

The results of experiments in light-induced drift of s
dium vapor in the inert gases Xe and Ar can be found in R
12. The researchers used the same experimental method
Ref. 5. Figure 5 shows the results of the theory compa
with the experimental data of Ref. 12 on the sodium-vap
drift velocity. Below we list the values of the paramete
obtained from the condition of best agreement betwe
theory and experiment.

~1! for the Na–Ar mixture,

D«527.3331022,
Dd

dn2
521.3631022;

~2! for the Na–Xe mixture,

D«521.7931022,
Dd

dn2
521.4831022.

We see that the theory provides a satisfactory descriptio
the experiment at all pressures in the capillary.

APPENDIX

The ratesn j 2
(k) obey the following expressions:

n j 2
~1!5

16

3

m12

m1
n2V j 2

~1,1! ,

n j 2
~3!5

16

5

m12
2

m1m2
n2S 10

3
V j 2

~1,1!1
m2

m1
V j 2

~2,2!D ,

n j 2
~4!5

16

5

m12
2

m1m2
n2S 10

3
V j 2

~1,1!2V j 2
~2,2!D , j 5m,n,

wherem125m1m2 /(m11m2) is the reduced mass of the co
liding molecules, andV j 2

( l ,r ) are the Chapman–Cowling inte
grals, which for the hard-sphere model have the form

V j 2
~ l ,r !5S kBT

2pm12
D 1/2~r 11!!

2 F12
11~21! l

2~ l 11! Gpdj 2
2 .

FIG. 5. Comparison of theoretical results~solid curves! with the experimen-
tal data of Ref. 12:m—the Na–Xe gas mixture;d—the Na–Ar gas mix-
ture.
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Dispersion of the speed of sound and absorption in the vicinity of the liquid–gas
critical point: renormalization-group calculation in the two-loop approximation
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The renormalization group method to second order in the« expansion is used to calculate the
singular parts of the absorption and dispersion of the speed of sound on the critical
isochor aboveTc . We express the investigated quantities in terms of the response function to
temperature variations in theH model of Halperin, Hohenberg, and Siggia. Results are
compared with the experimental data. ©1998 American Institute of Physics.
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1. INTRODUCTION

The liquid–gas critical point belongs to the class
phase transitions which conserve the order parameter.
namic critical effects are manifested for such syste
through the anomalous behavior of the hydrodynam
modes. The general physical picture is well known. The
netics of the order parameter are determined by the diffus
mode, whose relaxation time grows without limit as the cr
cal point is approached~critical slowing down!. For the dy-
namics of this mode only its interaction with the transve
components of the velocity fluctuation field is important; t
remaining hydrodynamic modes have no appreciable ef
on the kinetics of the order parameter, but are themse
substantially affected by the critical fluctuations. This lea
in particular, to a vigorous growth of the attenuation
sound, and also to the appearance of low-frequency dis
sion of the speed of sound and the attenuation factor.

A consistent statistical theory of dynamic critical ph
nomena in liquids can be based on the equations of nonli
stochastic hydrodynamics.1,2 Dropping the unimportan
modes from these equations leads to the so-calledH model,
which describes the kinetics of the order parameter.1,3 The
renormalization-group~RG! method in conjunction with the
« expansion has proven to be an effective method for stu
ing this model, as is has been in studying phase-transi
thermodynamics. The dynamic similarity hypothesis and
calculation of the corresponding critical index were bo
based on this approach.3

Use of the RG method to describe sound waves in
critical region requires that we identify the main mechani
of interaction of sound waves with fluctuations of the ord
parameter in the nonlinear equations of hydrodynamics.
der conditions in which the sound wavelengthls substan-
tially exceeds the correlation radius of the order parameter c

~such conditions are always satisfied for experimentally
tainable values ofr c), this interaction is realized via adia
batic temperature oscillations in the sound wave, which
fluence the most sensitive parameter of the statist
distribution of fluctuations of the order parameter—the d
viation of the temperature from critical. This mechanism h
long been known, and is reflected in a number of pheno
9341063-7761/98/87(11)/10/$15.00
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enological theories. A basis for this mechanism within t
framework of the statistical approach, itself based on a c
sideration of the complete set of equations of stochastic
drodynamics, was worked out in Refs. 4 and 5~an analogous
problem was considered in Ref. 6 in application to the d
namics of liquid crystals!.

According to Refs. 4 and 5, the dispersion relation
the acoustic mode on the critical isochor has the form

k25v2@c`
221AR~v,t!#, t5~T2Tc!/Tc , ~1!

wherev is frequency andt is the reduced temperature,c`

andA are frequency- and temperature-independent consta
and Tc is the critical temperature. The functionR(v,t) is
given by the relations

R~v,t!5Dst~t!1 ivDret~v,t!,

Dst[D~ t,t !5C, Dret~ t,t8!5u~ t2t8!D~ t,t8!, ~2!

where

D~ t,t8!5E dx8^F~x,t !F~x8,t8!&, ~3!

F~x,t !5@c2~x,t !2^c2~x,t !&#/2, ~4!

andc is the order parameter field. The averaging in Eq.~3! is
within the framework of theH model, i.e., with account of
sound waves. Functions of the type~3! depend only on the
differencet2t8, and in transforming to thev representation,
Fourier transforms are always taken with respect tot2t8.

The quantityC[D(t,t) in Eqs.~2! is the singular part of
the specific heat at constant volume, and the expressio
brackets in Eq.~1! can be interpreted~to within a multipli-
cative factor! as the dynamic generalization of the speci
heat. This quantity plays a fundamental role in the pheno
enological theory of sound propagation in critical syste
proposed in Refs. 7 and 8 and developed by a numbe
other authors~see, e.g., Refs. 9 and 10!. Relations~1!–~4!
can be considered a statistical generalization of the con
of the dynamic specific heat.

For a given frequencyv, we seek a solution of the dis
persion relation~1! in the formk5vc211 ia, hence we seek
the positive parametersc(v) ~the speed of sound! anda(v)
© 1998 American Institute of Physics
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935JETP 87 (5), November 1998 Adzhemyan et al.
~the attenuation factor!. Instead ofa, one frequently finds the
dimensionless quantityal[als52pca/v, the attenuation
per unit wavelength. Usuallyal!1, so it follows from Eq.
~1! that

c22~v!5c`
221AReR~v!,

al~v!c22~v!5pA Im R~v!. ~5!

The quantityR(v) tends to zero asv→`; therefore in rela-
tions ~5!

R~`!50, c~`!5c` , al~`!50. ~6!

Thus, thet- andv-independent constantc` is in essence the
limiting speed of sound asv→`.

According to the dynamic scaling hypothesis t
asymptotic limit of the functionR(v,t) in the critical region
has the following form:

R~v,t!5C1t2aF~C2v̄ !, v̄[vt2zn, ~7!

where C1,2 are nonuniversal constants that depend on
material,v̄ is the reduced frequency~a multiple of the ratio
of the speed of soundv to the characteristic fluctuation fre
quencyv f l;tzn), and F(v̄) is the universal scaling func
tion. The well-known static indices in the expression on
right-hand side of Eq.~7!, n anda522dn ~d is the dimen-
sionality of the space!, have been studied in detail within th
framework of the renormalization group, all the way out
the five-loop approximation. The Borel sum of their« expan-
sions coincides with the experimental valuesa.0.11,
n.0.63 ~Ref. 11!. The accuracy to which the dynamic cha
acteristics in Eq.~7! have so far been calculated is signi
cantly lower. The dynamic indexz ~critical dimension of the
frequency! in the H model was calculated in the two-loo
approximation in Ref. 3. Its experimental value isz.3.07
~Ref. 12!.

The experimental data~see, e.g., Refs. 13–15! confirm
the validity of the scaling law~7! for the quantities~5! in the
critical region, and enable one to assess the behavior o
universal functionF(v̄) over a wide range of frequenciesv̄.
On the theoretical plane, the scaling functionF was calcu-
lated in the one-loop approximation in Ref. 16~however, the
derivation of the full dispersion relation in Ref. 16 is inco
rect!, and an effort was made in Ref. 17 to extend the o
loop approximation to a wider neighborhood of the critic
point by taking corrections to scaling into account.

In the present paper, we present a detailed derivatio
representation~7! within the framework of the RG technique
together with a calculation in the two-loop approximation
its constituent scaling functionF, and compare our result
with the experimental data. A brief preliminary report on th
work was given at the conference ‘‘Renormalization Grou
96’’ ~Dubna, 1996!, the proceedings of which were pub
lished in the International Journal of Modern Physics B.

2. RENORMALIZATION OF THE R FUNCTION IN THE H
MODEL

TheH model can be renormalized in the standard way
the language of field theory.18 Thus, the correlation function
e

e

he

-
l

of

f

-

n

~Green’s functions! can be defined as the functional averag
of the fields of theH model with weight exp~S!, and the
unrenormalized action functional has the form

S5E dxE dt$2l0c8¹2c81c8@2] tc2~v¹!c

1l0¹2~2¹2c1t0c1g10c
3/6!#2l0

21g20
21v8¹2v8

1v8@2a] tv1l0
21g20

21¹2v1c¹¹2c#%, ~8!

where c is the order parameter field,v is the transverse
velocity field, andc8 andv8 are auxiliary fields. The quan
tities l0 and n05(al0g20)

21 are the unrenormalized ther
mal conductivity and kinematic viscosity,g20 is the unrenor-
malized charge of the intermode interaction,g10 is the static
charge,t0}T2Tc is the deviation of the temperature from
critical, anda5rc /kBTc . The propagators of the model~8!
in the momentum–time (k,t) representation have the form

^cc&5~k21t0!21exp$2«kut2t8u%, ^c8c8&50,

^cc8&5u~ t2t8!exp$2«k~ t2t8!%,

^v iv j&5Pi j ~k!n0l0g20exp$2n0k2ut2t8u%, ^v i8v j8&50,

^v iv j8&5Pi j ~k!n0l0g20u~ t2t8!exp$2n0k2~ t2t8!%, ~9!

where «k[l0k2(k21t0) and Pi j (k)5d i j 2kikj /k2 is the
transverse projector.

The H model ~8! is logarithmic in the dimensionality
d54 ~Refs. 3 and 18!, and we will consider it in the dimen
sional regularizationd542« using the minimal subtraction
scheme in the renormalization. Ultraviolet~UV! divergences
in the dimensional regularization show up as poles in«, and
renormalization in the minimal subtraction scheme redu
to removing these poles without altering any of the oth
~non-pole! contributions.

In studying the critical behavior of the Green’s functio
in the H model, we are interested in their infrared~IR!
asymptotic limitt0→0 in the regimev;k4;t0

2. It is well
known ~see, e.g., Refs. 3 and 18! that in such a regime the
contributionav8] tv in Eq. ~8! is IR-negligible, and can be
discarded. For brevity, we call theH model in the limit
a→0 the H0 model. Perturbation-theory diagrams wi
propagators~9! admit the limit a→0 ~i.e., n0→`). Using
the inequality

lim
n0→`

n0exp~2n0k2t !52d~ t !

one could take the limit in the propagators themselves,
certain diagrams in this case would require redefinition, d
to the presence ofu functions in the propagatorŝvv8& and
^cc8&. Therefore, to avoid confusion in the calculation
the H0 model diagrams, they must be understood to beH
model diagrams in which one subsequently takes the li
a→0.

Following the authors of Refs. 3 and 18 and all sub
quent work along these lines, we assume that the renorm
ization of theH0 model is multiplicative and agrees with th
statics of the problem, i.e., the dynamic and static renorm
ization constants for the objects figuring in both the dyna
ics and statics of the problem in the minimal subtracti
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scheme coincide.~Strictly speaking, none of the publishe
work known to us contains a formal proof of this stateme
But it is plausible, and all calculations carried out in theH
model are consistent with it.!

Thus, we assume that the renormalized action of theH0

model can be derived from the unrenormalized action~8!
with a50 by the standard multiplicative renormalization
the fields and unrenormalized parameterse05$t0 ,l0 ,g0%:

SR~f,e,m!5S~Zff,e0!, f[$c,c8,v,v8%,

t05tZt , l05lZl , gi05gim
«Zgi

, i 51,2, ~10!

wheree[t,l,g are the renormalized parameters, andm, the
renormalized mass, is an additional parameter of the re
malized theory. Agreement with the statics means that in
minimal subtraction scheme the dynamic renormalizat
constants of the fieldc and parameterst, g1 are the same a
in the simple staticc4 model, andZv51, since the fieldv
enters into the static action corresponding to expression~8!
in the form of an additive term;v2 and is not renormalized
In the minimal subtraction scheme all renormalization co
stants have the form

Z511Z~1!~g!/«1Z~2!~g!/«21 . . . , ~11!

and the expansion ofZ(n)(g) begins with contributions of
ordergn.

Let us turn now to the functionR(v) defined by rela-
tions ~2! and ~3!. Invoking the fluctuation–dissipation
theorem19 for the component operators in theH model, it can
be shown thatR(v) coincides with the Fourier transform o
the correlator

R~ t,t8!5E dx^F~x,t !F8~x8,t8!&, ~12!

where the component operatorF is defined in Eq.~4! and the
second operator

F8~ t,x!52l0c8Dc. ~13!

Representation~12! reveals the physical meaning ofR(t,t8)
to be the response function of the quantity^F(x,t)& to the
strictly time-dependent temperature variationdt(t8) in the
model~8!, and the first of equalities~2! with R from Eq.~12!
is a consequence of the fluctuation–dissipation theorem
the calculation of the functionR in the two-loop approxima-
tion, we start out with representation~12!, calculating within
the framework of theH0 model, since we are interested
IR-negligible corrections.

Let us discuss briefly the renormalization of the respo
function and its constituent operators. Operator~4! in the
staticc4 model is renormalized multiplicatively~by subtract-
ing out the quantitŷ c2& in Eq. ~4!!, i.e.,F5ZFFR with the
constantZF5Zt

21 ~Ref. 11!. From general principles of cor
respondence between the dynamics and statics it follows
the operatorF can be renormalized in exactly the same w
in the dynamic H0 model, and with the same consta
ZF5Zt

21 in the minimal subtraction scheme. Operator~13!
has meaning only in a dynamic context. By analyzing
diagrams of theH0 model with insertion of the single opera
tor F8, it is not hard to show that it too can be renormaliz
t.
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multiplicatively ~it is not mixed with anything!, i.e.,
F85ZF8FR8 . From relation~2! for the response function~12!
with t5” t8 rewritten in thet representation, it follows tha
ZF85ZF . Thus renormalization of the component operato
F andF8 is given by the relations

F5ZFFR , F85ZF8FR8 , ZF5ZF85Zt
21 , ~14!

whereZt is the well-known renormalization constant of th
parametert in the staticc4 model. Note that the constan
ZF8 for operator~13! is the product ofZl from Eqs.~10! and
the renormalization constant of the monomialc8Dc.

In general, renormalization of correlators of the types~3!
and ~12! with two component operators requires, besid
the substitutionF→FR of the operators themselves, th
introduction of an additive, local~multiple of d(t2t8) in the
t representation! ‘‘counterterm per operator pair.’’ It is no
hard to show from dimensional arguments that for the c
relator ~3! in the dynamics such a counterterm is not r
quired; therefore DR(v)5ZF

22D(v) and similarly for
Dret(v) in ~3!. But for the static objectDst5C a ‘‘counter-
term per pair’’ is needed.11 It follows from ~2! and~14! that
a counterterm per pair is also needed in that situation for
response functionR(v), and that it is exactly the same on
as for the specific heatC. The foregoing can be summarize
in the following way:

CR5ZF
22C1DC, RR5R81DC,

R8[ZF
22R, DR

ret5ZF
22Dret. ~15!

HereZF5Zt
21 according to~14!, andDC, the ‘‘counterterm

per pair’’ in the specific heat, is anv-and t-independent
constant containing poles in«:

DC5m«b~g1!, b~g1!5b~1!~g1!/«1b~2!~g1!/«21 . . . .
~16!

The functionb(g1) is known from an analysis of the reno
malization of the specific heat in the staticc4 model.11

In an approximation linear in the chargesg, which is
sufficient for the development that is to follow, the quantiti
Z(1) in Eq. ~11! for the independent renormalization co
stants andb(1) in Eq. ~16! are given by11,18

Zf
~1!50;f, Zg1

~1!5
3u1

2
, Zg2

~2!5
19u2

24
,

Zt
~1!52ZF

~1! 5
u1

2
, Zl

~1!52
3u2

4
,

b~1!52
1

16p2 1O~g1
2!, ~17!

in which ui[gi /8p2 for both chargesg1,2.

3. RENORMALIZATION-GROUP EQUATIONS: RG
REPRESENTATION OF THE RESPONSE FUNCTION

In this section, on the basis of the renormalization-gro
equations we obtain the RG representation of the respo
function, which makes it possible to justify the scaling la
~7! in the IR asymptotic limit and obtain working formula
with which to calculate the scaling functionF Eq. ~7!.
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The RG equation for the renormalized response func
RR is somewhat peculiar, due to the additive counterte
DC in its renormalization~15!. In what follows it will be
convenient to use the RG equations forRR and the ‘‘incom-
pletely renormalized’’ functionR8 in Eq. ~15!. These equa-
tions can be obtained by requiring that the unrenormali
function R be independent of the renormalized massm ~this
parameter is absent from the unrenormalized theory and
pears only in the renormalization formulas~10!, and through
them in the renormalized Green’s functions!. Acting on both
sides of the second and third of Eqs.~15! with the operator
D̃m ~here and belowDa[a]a , andD̃m is the operationm]m

for fixed values of the unrenormalized parameters!, we ob-
tain the desired RG equations:

~DRG12gF!RR5m2«g0 , ~DRG12gF!R850. ~18!

Here

DRG5Dm1b]g2gtDt2glDl ~19!

is the operatorD̃m in renormalized variables with summatio
over the two chargesg5g1,2 in the termb]g[( ib i]gi

. The
relations~18! and ~19! contain the RG functions

g0[m«ZF
22

D̃m~ZF
2DC!, ga[D̃mln Za ;a5” 0,

b i[D̃mgi52gi~«1ggi
!. ~20!

The RG functionsga with a5g,t,l,F are the anomalous
dimensionalities of the quantitiesa, g0 is the ‘‘vacuum RG
function,’’ b i are the beta functions of the chargesgi , and
all of them are UV-finite, i.e., they have no poles in«. In the
minimal subtraction scheme all of the functionsg are in
general independent of« and can be calculated with the he
of the relationsg052(11Dg)b(1) and ga52DgZa

(1) , in
which Dg5Dg1

1Dg2
, andZa

(1) andb(1) are the coefficients
of 1/« in Eqs.~11! and~16!. Expressions for these quantitie
with the accuracy needed for further analysis are given
Eqs.~17!. It follows from Eqs.~17! and ~20! that

b15g1S 2«1
3u1

2 D , b25g2S 2«1
19u2

24 D , ~21!

gt52gF52
u1

2
, gl5

3u2

4
, g05

1

16p2
1O~g1

2! ~22!

with ui[gi /8p2 for the charges g1,2. The equality
gt52gF is exact; it follows from the definition ofga in Eq.
~20! and relation~14! between the renormalization constan
ZF andZt . The RG functionsb1, gt , andg0 depend only
on the static chargeg1, while the functionsb2 and gl de-
pend on both charges~their lack of a dependence ong1 in
Eqs.~21! and ~22! is a consequence of the approximation!.

The beta functions~21! have an IR-stable fixed poin
with coordinates

u1* 52«/31O~«2!, u2* 524«/191O~«2!, ~23!

in which b i(g* )50, and the eigenvalues of the matr
v ik[]b i /]gkug5g

*
are positive ~the latter implies IR-

stability!. The existence of an IR-stable fixed point is a ne
essary condition for critical scaling.
n

d

p-

n

-

We turn now to the RG equation~18! for R8 and make
the substitutions

R8~t,v,m,l,g!5m«Q~ t̃,w,g!, w[v/2lm4, t̃[t/m2,
~24!

where Q is a dimensionless function of the dimensionle
argumentsw and t̃. Equation~18! for R8, allowing for the
equality gF52gt , can be rewritten in the form (Da

[a]a)

@b]g2~22gt!D t̃2~42gl!Dw2~«1gt!#Q50. ~25!

The solution of Eq.~25! has the form

Q~ t̃,w,g!5Q~1,w̄,ḡ!expH 2E
1

t̃ dt1

t1

«12gt~ ḡ1~t1!!

21gt~ ḡ1~t1!!
J ,

~26!

where ḡ and w̄ are invariants corresponding tog and w,
given by

D t̃ḡi5b i~ ḡ!/@21gt~ ḡ!#, ḡi u t̃515gi , ~27!

D t̃w̄52w̄@42gl~ ḡ!#/@21gt~ ḡ!#, w̄u t̃515w. ~28!

Since the fixed point~23! is IR-stable, we have for the in
variant charges defined by relations~27! the IR-asymptotic
limit ḡi→gi* ast̃→0. Therefore, the IR-asymptotic limit o
the invariantw̄ defined by Eq.~28! can be obtained by set
ting ḡ5g* in this equation. This yields

w̄IR5Cwt̃2zn, ~29!

whereC is a critical-dimensionless nonuniversal factor, a

1/n[Dt[21gt* , and z[Dv[42gl* ~30!

are the critical dimensionalities of the variablest andv ~1/n
and z are the standard notation for them,g* [g(g* )). The
asymptotic limit of the exponential in Eq.~26! as t̃→0 has
the form C8t̃2a, wherea[(«12gt* )/(21gt* )522dn is
the critical index of the specific heat. Substituting the resu
ing asymptotic limits into Eq.~26! yields the IR-asymptotic
limit of the functionQ:

QIR~ t̃,w,g!5C8t̃2aQ~1,Cwt̃2zn,g* !. ~31!

This proves the validity of representation~7! for the IR-
asymptotic limit of the unrenormalized functionR, since it
differs from Q only by an v- and t-independent factor:
R5m2«ZF

22Q according to Eqs.~15! and ~24!.
Sinceg* ;«, relation~31! could also serve to obtain th

« expansion of the scaling functionF in Eq. ~7!. This, how-
ever, is hindered by the remaining uneliminated poles in« in
the functionR85m2«Q. These poles are absent from th
renormalized functionRR5R81DC, in terms of which the
function Q(1,w,g* ) on the right-hand side of Eq.~31! can
be expressed in the form

Q~1,w,g* !5m«RR~t5m2,v52lwm4,g5g* !2b* , ~32!

with Eqs. ~15!, ~24!, and ~31! taken into account, where
b* [b(g* ). This constant can be extracted from the righ
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hand side of Eq.~32! as a common factor. This leads only
a change in the nonuniversal amplitudeC8 in Eq. ~31!.

The« expansion of the functionRR in Eq. ~32! starts off
with contributions of order unity, while the quantitiesb*
start off with contributions of order 1/«. To calculate the
coefficients of the« expansion ofb* directly from Eq.~16!,
infinite sums are required~e.g., in the coefficient of 1/« all
terms of the typeg1

n21/«n contribute forg15g1* ;«). It is
possible to avoid this difficulty, as the functionb(g1) in the
countertermDC can be expressed in terms of the vacuu
RG functiong0 defined in Eq.~20!, which is independent o
«. Indeed, it follows from Eqs.~18! that the counterterm
DC5RR2R8 satisfies exactly the same RG equation as
function RR in Eqs.~18!. Hence, taking the explicit form o
the countertermDC5m2«b(g1) and the operatorDRG ~19!
into account, we obtain

~b1]g1
2«22gt!b~g1!5g0~g1!. ~33!

Settingg15g1* here, we find

b* 52g0* /~«12gt* !52ng0* /a, ~34!

where n and a are the static indices defined above, a
g0* [g0(g1* ). Taking Eqs.~27!, ~31!, ~32!, and ~34! into
account, we obtain representation~7! for the unrenormalized
function R in Eq. ~17! with scaling function

F~w!511
am«

ng0*
RR~t5m2,v52lwm4,g5g* ! ~35!

and some nonuniversal constantsC1,2. Equation~35! is fun-
damental to a calculation of the« expansion of the scaling
function.

4. CALCULATION OF THE SCALING FUNCTION

We want to calculate the scaling function~35! to accu-
racy «2, which corresponds to the two-loop approximati
for RR . The coefficienta/ng0* in Eq. ~35! is a quantity of
order « (a5«/6229«2/3241O(«3), n51/21«/121O(«2)
~Ref. 11!, and g0* can be found from Eqs.~22! to the re-
quired accuracy!; hence

a

n
5

«

3S 12
19

27
« D1O~«3!, g0* 5

1

16p2 1O~«2!. ~36!

The functionRR is given to two-loop accuracy by the fo
lowing diagrams of theH0 model:

~37!

The solid lines depict propagators of the fieldsc andc8,
the dashed lines depict propagators of the fieldsv and v8.
The slashes through three of the lines correspond to the
iliary fields c8 andv8. The lines can be put into correspo
e

x-

dence with the propagators of the basic theory obtained f
Eq. ~8! by replacing all of the unrenormalized paramete
with renormalized ones:t0→t, l0→l, gi0→gim

«( i 51,2).
The diagrams forG3 andG4 are a symbolic notation for the
sum of diagrams with all possible arrangements of slashe
the ends of the lines~three diagrams forG3, ten for G4; a
detailed breakdown is given in the Appendix!.

The diagrams can be calculated for a given external
quency v and zero external momentum. After integratin
over times for the diagrams in Eqs.~37! in theH0 model~the
limit n0;a21→` in Eqs. ~9!! we obtain the following ex-
plicit expressions:

G15E Dk
lk2

ak~2«k2 iv!
, G252g1m«G1

2 ,

G35g1F ~t!]tG1 , F ~t!52
1

2
tm«E Dq

1

q2aq

,

G4522lg2m«E DkE Dq

3
@k2q22~kq!2# iv~«k2«q!2

uk1qu4ak~2«k2 iv!2aq~2«q2 iv!2
, ~38!

in which

ak[k21t, «k[lk2~k21t!, Dk[ddk/~2p!d. ~39!

Expressions~38! correspond to the ‘‘basic theory,’
while the functionRR in Eq. ~35! is the sum of the corre-
sponding renormalized quantities. The one-loop diagramG1

can be renormalized, according to~15!, by adding the one-
loop counterterm~which is known from Eqs.~16! and ~17!!
per operator pair, : G1

R5G11DC1, where DC15
2m2«/16p2«. To renormalize the two-loop diagramsG2,3,4,
it is necessary to take into account, first, the contributions
the counterterms of all of the divergent one-loop subgra
and, second, the two-loop counterterm per operator pairDC2

for the diagramG2 ~for G3,4 the counterterm per pair is no
required since they contain no overall ‘‘surface divergence
the dimensional factorst in G3 and v in G4 having been
separated out!. The ‘‘counterterms per subgraph’’ for th
sum of all two-loop diagrams can be found by analyzing
corrections issuing from renormalization of all quantities
the one-loop graphG1. To do so, it is necessary to make th
substitutionst→tZt ,l→lZl ~to our level of accuracy, cor-
rections due to field renormalization are not required, sin
in Eqs.~17! Zf

(1)50; f), multiply G1 by ZF
225Zt

2 ~which
corresponds to taking account of renormalization of the co
ponent operators!, and then extract all correction terms o
first order in the charge from the resulting expressionZt

2G1.
The sum of these corrections has the form

«21@2Zt
~1!G11Zt

~1!
DtG11Zl

~1!
DlG1# ~40!

with the quantitiesZa
(1) known from Eqs.~17!.

The first term in expression~40! corresponds to one-loop
renormalization of the component operators; the second
one-loop renormalization of the parametert; and the third, to
one-loop renormalization of the parameterl. In our case,
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these terms can be uniquely ‘‘distributed’’ among the d
gramsG2,3,4, thereby determining the renormalized value
each of them individually. Indeed, from the form of the di
grams it is clear that one-loop renormalization of the co
ponent operators is possible only in the graphsG2,4, but is
obviously lacking inG3. The first term in expression~40!, in
which Zt

(1) depends only ong1, is responsible for it.
Hence it is clear that in the graphsG4, which depend

only on the chargeg2, the one-loop subdivergences from th
renormalization of the component operators should can
so that the first term in~40! takes part only in the renorma
ization of G2. The second term, corresponding to renorm
ization of t, takes part only in the renormalization ofG3,
since divergences of both subgraphsG2 obviously corre-
spond to renormalization of the component operators, andG4

does not depend on the chargeg1. Finally, the third term in
~40!, corresponding to renormalization ofl, in which Zl

(1)

depends only ong2 ~see Eqs.~17!!, takes part only in the
renormalization ofG4, since the graphsG2 and G3 depend
only on g1. Thus,G4

R is the sum ofG4 and the third term of
~40!, G3

R is the sum ofG3 and the second term of~40!, and
G2

R is the sum ofG2 and first term of~40! plus the two-loop
contributionDC2, the counterterm per operator pair.

In conclusion, we may add that the quantitiesG2,3
R can be

found very simply: the expressions forG2,3 in ~38! are ex-
pressions of the typeA•B, and renormalization of the prod
uct reduces to renormalization of the factorsA and B. Ex-
plicit expressions for the renormalized quantities are given
the Appendix.

5. GENERAL PROPERTIES OF THE SCALING FUNCTION
R„v…; TRANSFORMATION TO THE NORMALIZED
FUNCTION

Analyzing the diagrams of the unrenormalized respo
function R(v) ~their contributions differ from expression
~38! only in the values of the parameters!, it is not hard to
convince oneself thatR(v) is analytic in the upper half o
the complexv plane~as is any response function20! and real
for purely imaginary values ofv on the upper half-axis, and
also that ImR(v).0 for v.0. In addition it is easy to verify
that fort.0 the first two terms of its Taylor series expansi
about zero inv ~i.e., the contributions of order unity andv!
exist, and that forv.0 the limit t→0 is finite ~higher terms
of the expansions under discussion do not exist, due to
divergences in the coefficients!. Regarding the relation~7!
betweenR(v) and the scaling functionF(w), it follows
from what has been said that forF(w) the first two terms of
the expansion about zero inw exist, and in the limitw→`
this function has an asymptotic limit;w2a/zn, which en-
sures the existence of a finite limit forR(v) ast→0. Also,
taking into account the aforementioned real-valuedness
positivity, we conclude that for this function

F~w!5w→0B81 iC8w1 . . . ,

F~w!5w→`A8~2 iw !2k1 . . . , ~41!

wherek[a/zn andA8, B8, C8 are positive coefficients.
Knowledge of the asymptotic limits~41! can be used to

determine the normalization of the scaling functionF(w).
-
f

-

l,

-

n

e

R

nd

Indeed, by virtue of the uncertainty in the amplitude facto
C1,2 in Eq. ~7!, the scaling functionF(w) can be replaced by
any other functionf (w)5b1F(b2w) with arbitrary positive
constantsb1,2. This arbitrariness can be used to repla
F(w) by the normalized functionf (w), for which two of the
three coefficientsA, B, and C can be determined in the
asymptotic limit analogous to~41!. The normalization proce-
dure is useful because in contrast toF(w), the normalized
function f (w) does not depend on the subtraction sche
used in the renormalization. Moreover, an appropriate cho
of the normalization substantially simplifies the form
f (w). We employ the normalization for whichB51,
C5a/zn[k, and the third coefficientA remains unknown
and remains to be calculated. Thus, for the normalized s
ing function f (w) we have

f ~w!5b1F~b2w!, ~42!

f ~w!5w→011 ikw1 . . . , f ~w!5w→`A~2 iw !2k1 . . .
~43!

The first of relations~43!, for F(w) known, determines the
coefficientsb1,2 in Eq. ~42!:

b15
1

B8
5

1

F~0!
, b25k

B8

C8
5 ik

F~0!

F8~0!
. ~44!

The amplitudeA5A8(B8)21(kB8/C8)2k in relation~43!, in
contrast toA8, B8, C8 in relations~41!, is universal: it is
the same for all materials from an experimental standpo
and from a theoretical standpoint it does not depend on
choice of renormalization scheme in the calculations.

If we use some approximate expression for the sca
function f (w) over a wide range of frequencies, it is impo
tant that this approximate function faithfully reproduce t
asymptotic limit~43! at least qualitatively. We cannot simpl
use for f (w) the initial terms in its« expansion

f ~w!511« f 1~w!1«2f 2~w!1 . . . , ~45!

because this fails to accurately reproduce the asympt
limit as w→`: the fractional powerw2k with k5O(«) is
replaced by its« expansionw2k512k lnw1 . . . . This
problem can be avoided if, for example, we factor out
f (w) some function with qualitatively correct asymptot
limits and regular behavior in the intermediate range. F
lowing Kroll and Ruhland,16 we use the simple represent
tion

f ~w!5~12 iw !2kh~w!, k[a/zn. ~46!

For the asymptotic limits of the functionh(w), from rela-
tions ~46! and ~43! we have

h~w!5w→0110• iw1 . . . , h~w!5w→`A1 . . . . ~47!

The notation 0• iw in relation ~47! emphasizes the lack of
linear contribution inw to h(w) asw→0.

A series expansion ofh(w) in « does not share this
failing. It can be obtained by successively finding the« ex-
pansion of the renormalized response functionRR , then on
the basis of definitions~35!, ~42!, and ~43! the coefficients
f 1,2 in ~45!, and finally the« expansion of the functionh(w)
itself in ~46!. To obtain the latter it is necessary to know th
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« expansion of the exponentk in ~46!; for a/n it is given by
~36!, z54(129«/38)1 . . . ~Ref. 3!; hence k5«(1
2479«/1026)/121 . . . . The two-loop« expansions of the
functionsF, f, andh are given in the Appendix. As can b
seen from the asymptotic limits of the functionsf 1,2(w) as
w→` derived in the Appendix, they contain powers of lnw,
which cancel in the asymptotic limit ofh(w) according to
relation ~47!. This enables us to find the« expansion of the
universal amplitudeA in ~43!:

A511
«

6
1

«2

456S 89p2

4
2

7267

27 D1O~«3!, ~48!

or numericallyA5110.1667«20.1086«21 . . .

6. DISCUSSION OF RESULTS; COMPARISON WITH
EXPERIMENT

In the comparison with experiment the nonuniversal
ditive constant can be dropped by subtracting the quan
c`

225c22(`) from the first of equalities~5!. Thus, from
relations~5!, ~7!, and~42! we obtain

F1~v,t![@c22~v,t!2c22~`!#ta5Re f̄ ~v̄ !,

F2~v,t![al~v,t!c22~v,t!ta5p Im f̄ ~v̄ !,

f̄ ~v̄ ![C1f ~C2v̄ !, v̄[vt2zn, t[~T2Tc!/Tc , ~49!

with the universal functionf (w) from Eq. ~42! and nonuni-
versal factorsC1,2. It follows from the representation~49!
that the experimentally measured quantitiesF1,2(v,t) de-
pend in fact not on the two variablesv and t, but only on
their combinationv̄5vt2zn to within IR-negligible correc-
tions. This is the fundamental assertion of dynamic sca
theory in regard to the problem under consideration, and
confirmed by the experimental data.13 In experiments with
different v andt for one material the constantsC1,2 in Eqs.
~49! are fixed, but they can change~in contrast to the func-
tion f (w)) if one goes to another material, and in this co
sists their nonuniversality.

In comparing Eqs.~49! with experiment we used th
experimental data of Ref. 13, and forf (w) we used expres
sion~46! with experimental values of the exponentk, includ-
ing the first term~in the one-loop approximation! or the first
two terms~in the two-loop approximation! of the « expan-
sion of the functionh(w). The experimental data are conv
niently represented on a log–log scale, plotting lnF against
lnv̄. The uncertainty in the coefficientsC1,2 in Eqs.~49! thus
reduces to the possibility of translating the theoretical cur
along the axes, with this translation being the same forF1

and F2. The ‘‘shape’’ of these curves for bothF1 and F2,
which is not altered by parallel translation along the ax
depends only on the scaling functionf (w). In constructing
the curves in Figs. 1–3, the ‘‘theoretical curves’’~49! were
plotted asy on a logarithmic scale withC15C251, and the
arbitrariness inC1,2 was used to advantage for the corr
sponding ‘‘parallel translation’’ of the experimental curve

Figure 1 compares the experimental data with the dep
dence of the ratioF2 /F15pImf (C2v̄)/Ref (C2v̄) on the
reduced frequency. The ratioF2 /F1 depends on just one
-
ty

g
is

-

s

,

n-

nonuniversal constant,C2, and the uncertainty inC2 corre-
sponds to the possibility of a horizontal shift of the theor
ical or experimental curve. It follows from~43! that
pImf (C2v̄)/Ref (C2v̄)→ptan(kp/2) as v̄→` ~note that
this limit is a universal constant; numericallyptan~kp/2!
.0.28 fork.0.057!. From the graph in Fig. 1 it can be see
that the experimental data agree with this prediction of
theory~in fact, based solely on the dynamic scaling hypo
esis and the general properties~41! of the scaling function!,
and this asymptotic limit ofF2 /F1 is actually reached. Tak
ing advantage of the possibility of horizontal translation, t
theoretical curve forF2 /F1 can also be aligned with the
experimental curve in the low-frequency region; then the d
ference between experiment and theory shows up only
intermediate frequencies. The points in Fig. 1 plot the exp
mental data13 for assorted values ofv and t ~note that for
3He, which was the material used in the experiment in R
13, it turns out thatc`

22.0; for a detailed discussion see Re
21!. Curve1 was constructed with the functionf (w), calcu-
lated in the one-loop approximation, curve2 was constructed
with the added two-loop contribution, and the dotted cur
was calculated in Ref. 16. It is clear from the figure that
the one-loop approximation there is appreciable diverge
from experiment at intermediate frequencies, but taking
two-loop approximation into account improves the situati
significantly. The difference between the theoretical cu
calculated in Ref. 16 in the one-loop approximation a
curve1 can be explained by the fact that in their calculati
of the scaling function using a relation similar to~46!, Kroll
and Ruhland16 replaced the coefficient« in the one-loop ex-
pression h511«h1 in ~A11! with the quantity 12a(zn
22a)215«1 . . . and substituted the experimental val
0.77 for «51 in the three-dimensional problem. As can
seen from the figure, this substitution yields qualitatively t
same effect as the two-loop correction, improving the agr
ment with experiment. But from a theoretical standpoi
such a substitution is invalid within the framework of the«
expansion, as it ‘‘oversteps the«-accuracy’’ of the one-loop
scaling function.~Helpful remark: ‘‘numerical experiments’
show that the two-loop approximation~A11! for h with «51

FIG. 1. The dependence of the ratiopImf (v̄)/Ref (v̄) on the reduced fre-

quencyv̄ is compared with the experimental data of Roe and Meyer~D. B.
Roe and H. Meyer, J. Low Temp. Phys.30, 91 ~1978!! on the absorption in
one wavelengthal(v) for 3He. Curve1 corresponds to the first order of th
«-expansion for the functionh(w), curve2 corresponds to the second orde
The dotted curve was constructed using the Kroll–Ruhland function.
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is almost exactly reproduced by the one-loop express
h511«h1 if the coefficient«51 is replaced by 0.42. This
can be used to construct graphs of the two-loop approxi
tion.!

The foregoing discussion of overstepping the accur
of the problem does not pertain to the exponentsa andzn in
Eqs. ~49!, since calculating these exponents and the sca
function involves two independently solvable problem
Therefore, for the exponents we are not prohibited from
ing the experimental data for the three-dimensional probl
a50.11, n50.63, z53.07, zn51.93, k5a/zn50.057. In
fact, just these data were used~as in Ref. 16! to construct the
theoretical curves in Figs. 1–3.

Independently comparing the velocity dispersion and
sorption coefficient of sound in~49! with experiment, the
subtraction is usually carried out at zero frequency, beca
the constantc~0! can more easily be extracted from the e
perimental data than the constantc~`!. This yields

@c22~0,t!2c22~v,t!#ta5C1Re@12 f ~C2v̄ !#. ~50!

The experimental data13 are compared with curves of th
dispersion~50! and the absorption~the second of Eqs.~49!!
in Figs. 2 and 3. The arbitrariness inC1,2 was used to achieve
the most accurate fit possible between the asymptotic lim
of the experimental data and the theoretical curves c
structed forC15C251. For the sound absorption~Fig. 2! it

FIG. 2. Dependence of the reduced absorptional(v)c22(v)ta on v̄ ac-
cording to the data of Roe and Meyer for3He. The dashed curve corre
sponds to calculation to order«, and the solid curve to order«2.

FIG. 3. Dependence of the reduced dispersion of the speed of s

@c22(0)2c22(v)#ta on v̄ according to the data of Roe and Meyer for3He.
The dashed curve corresponds to calculation to order«, and the solid curve
to order«2.
n

a-

y

g
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se

ts
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was possible in this way to align both asymptotic limits, b
for the velocity dispersion~Fig. 3! an appreciable discrep
ancy with experiment remains in the low-frequency regi
~for the reason see below!. It can be seen from the graphs
Figs. 2 and 3 that in all cases taking the two-loop correct
into account substantially improves the agreement with
periment.

We now discuss in more detail the low-frequency beh
ior of the velocity dispersion~50!. As can be seen from the
graph in Fig. 3, there is a considerable discrepancy here
tween the theoretical curve of the two-loop approximati
and the experimental data, which shows up in particular a
difference in slope. This is not a random result. The poin
that in general the first two terms~of order unity andiv! of
the low-frequency asymptotic limitf (w) ~43! do not contrib-
ute to expression~50! due to the subtraction at zero fre
quency made there. The low-frequency asymptotic limit~50!
is thus not determined by the correction terms shown in~43!.
As can be seen from Eqs.~A14!, the « expansion yields
corrections of the form

w2@~a1«1a2«2!ln w1~b2«21 . . . !ln2w1 . . . #. ~51!

It is clear that higher powers of lnw will appear in higher
orders of the« expansion, so that for a correct determinati
of the low-frequency asymptotic limit of the dispersion~50!,
it is necessary to sum the ‘‘leading logarithms’’;(« lnw)n in
all orders of the« expansion.

The solution of this problem does not pertain just to t
competency of the RG method. Analogous problems aris
the theory of critical behavior, for example, in the study
the asymptotic limitt→0 of the static correlator in the
simple c4 model, and can be solved with the help of th
Wilson operator expansion,11 where logarithms of the type
~51! are summed, as a rule, into some fractional expone
By analogy, it is natural to assume that the result of summ
over the leading logarithms in expression~51! will be some
fractional powerw21a(«) with a(«)5O(«). An analysis of
the diagrams confirms this assumption. The asymptotic li
of the one-loop graphG1

R ~A3!, calculated beyond the scop
of the « expansion~with finite 0,«,2!, yields a52«/2 for
the exponenta. It is important that in the given case, as a
analysis of the two-loop diagramsG2,3,4

R ~A3! shows, higher
orders of perturbation theory lead to the same power-
asymptotic limit;w22«/2. It therefore stands to reason th
an improved low-frequency asymptotic limit~43! of the
function f (w) has the form

f ~w!511 ikw1D~2 iw !22«/21O~w2! ~52!

with a real coefficientD5D(«). It is not hard to show that
expanding theD term in Eq.~52! in a series in« leads to an
asymptotic limit that agrees with that obtained in Eq.~A13!
via the « expansion. The initial slope 3/2 of the velocit
dispersion~50! predicted by~52! ~for «51! is in good agree-
ment with the experimental data. A rigorous proof of th
relation can be obtained with the help of ‘‘infrared perturb
tion theory.’’22,23

nd
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APPENDIX A: RESULTS OF CALCULATIONS

We expand the terms in diagramsG3,4 of Eqs.~37!:

~A1!
Only diagrams contributing in theH0 model are shown.

The renormalized analogsG i
R of the quantitiesG i ~38!,

defining the renormalized response function

RR~v,t!5(
i 51

4

G i
R~v,t!, ~A2!

are given by the expressions~we use the notation of Eqs
~39! throughout!

G1
R5E Dk

lk2

ak~2«k2 iv!
2

m2«

16p2«
, G2

R52g1m«~G1
R!2,

G3
R5g1F R]tG1

R, F R52
1

2
tS E Dq

m«

q2aq

2
1

8p2« D ,

G4
R52lg2m«ivH E DkE Dq

3
k2q22~kq!2

uk1qu4akaq~2«k2 iv!2~2«q2 iv!2

2E Dk
t

ak~2«k2 iv!2E Dq
k2q22~kq!2

q2uk1qu4aq

2E Dk
k2

ak~2«k2 iv!2F E Dq
k2q22~kq!2

k2q2uk1qu4

2
3m2«

32p2«
G J . ~A3!

The quantityG4
R is given in a form suitable for calculation—

each term in braces in its definition remains finite as«→0.
The functions
-

i-

Ḡ i~w![32p2m«G i
R~t5m2,v52lwm4,g5g* ! ~A4!

calculated according to formulas~A3! with two terms of the

« expansion forḠ1 and one term forḠ2,3,4 taken into ac-
count, have the following form:

Ḡ15b1«~b21p2/6!/41 iw$q1@11~b11!«/2#2«q2/2%,

Ḡ252«~b1 iwq1!2/6, Ḡ35~b11!«~112iwq3!/6,

Ḡ459« iw@q412q52~b14/3!q3#/19. ~A5!

Here b[ ln 4p2C, C is the Euler constant,qi[qi(w) are
functions defined by the relations

q15E
0

`

dx
x

~x11!2~ x̃1z!
, x̃[x~x11!, z[2 iw,

q25E
0

`

dx
x ln x

~x11!2~ x̃1z!
, q35]z~zq1!,

q45E
0

`

dx
x1~x221! ln ~x11!

~x11!~ x̃1z!2
,

q55E
0

`

dxE
0

x

dy
y2

~x11!~ x̃1z!~y11!~ ỹ1z!

5q6 ln z1
~123z!

2
q6

21E
0

`

dx
3 ln~x11!2 ln~ x̃1z!

~x11!~ x̃1z!
,

q65E
0

` dx

~x11!~ x̃1z!
. ~A6!

The integralsq1,2,3,6can be expressed, if desired, in terms
elementary functions: in particular,

q152
1

z
2

12z

2z2 ln z2
123z

2z2D
lnF11D

12D G , ~A7!

whereD[(124z)1/2. The logarithms of complex argumen
are defined in the above relations in the usual w
ln z5lnuzu1iargz, 2p,argz,p with argz50 for z.0. In-
voking relations~35!, ~36!, ~A2!, and~A4! we find the scal-
ing functionF(w) out to terms;«2 inclusive:

F~w!511
«

6S 12
19

27
« D(

i 51

4

Ḡ i~w!. ~A8!

Substituting the above expressions forḠ i ~A5! into Eq.~A.8!
yields

F~w!511
«

6
~b1 iwq1!1

«2

6 H b2

16
1

p2

24
2

29b

54
1

1

6

1 iwF S b

6
2

11

54Dq12
iwq1

2

6
2

q2

2
2

q3~8b117!

57

1
9~q412q5!

19 G J . ~A9!

From ~42!, ~44!, and~A9! we obtain the« expansion for the
normalized functionf (w):
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f ~w!511« f 1~w!1«2f 2~w!1 . . . , f 15 iwq1/6,

f 25
iw

12H 2
11

27
q12

1

3
iwq1

22q21
1

19
@~241230p2!q3

118~q412q5!#J . ~A10!

From the definition~46! of the functionh(w) in terms of the
known « expansion of the functionf (w) and of the index
k5a/zn in ~46!, we find the« expansion ofh(w):

h~w!511«h1~w!1«2h2~w!1 . . . ,

h15 f 11
1

12
ln~12 iw !,

h25 f 21
1

12
f 1ln~12 iw !2

479

12312

3 ln~12 iw !1
1

288
ln2~12 iw ! ~A11!

with f 1,2 from ~A10!.
We now give the asymptotic limits of the resulting fun

tions. The functionsqi given by Eqs.~A6!, which enter into
expressions~A9! and ~A10!, have the following asymptotic
limits ~everywherez[2 iv): for w→0

q15
1

2
1z ln z1O~z!, q252

1

2
1

1

2
z ln2 z1O~z!,

q35
1

2
12z ln z1O~z!, q45

p229

2
1z ln z1O~z!,

q55
p229

6
1O~z!, ~A12!

and forw→`

q15
ln z

2z
2

1

z
1oS 1

zD , q25
ln2z

8z
2

p2

8z
1oS 1

zD ,

q35
1

2z
1oS 1

zD , q45
ln z

4z
1oS 1

zD , q55
p2

24z
1oS 1

zD .

~A13!

From expressions~A12! and ~A13! we obtain the following
asymptotic limits for the functionsf 1,2 ~A.10!: for w→0

f 152
1

12
z2

1

6
z2ln z1O~z2!,

f 25
1

12H 479

1026
z1

1

2
z2ln2z1F20

19
~3p2225!1

11

27Gz2ln zJ
1O~z2!, ~A14!
and forw→`

f 152
1

12
ln z1

1

6
1OS 1

zD ,

f 25
1

288
ln2 z1

77

3078
ln z1

1

8S 89p2

228
2

7267

1539D1OS 1

zD .

~A15!

Substituting the asymptotic limits~A14! into formulas~A11!
yields

h512
1

6
«z2ln z1

1

12
«2z2

3H 1

2
ln2 z1F20

19
~3p2225!1

11

27G ln zJ 1O~z2!, ~A16!

which agrees with the first of relations~47!. Substituting
~A15! into ~A11! leads to the second of relations~47! with
the constantA given in Eq.~48!. All occurrences of lnz in
~A15! cancel out in the analogous asymptotic limit~A11!.

* !E-mail: adjemyan@snoopy.niif.spb.su
†!E-mail: Alexander.Vasiljev@pobox.spbu.ru
‡!E-mail: saha@snoopy.niif.spb.su

1P. Hohenberg and B. Halperin, Rev. Mod. Phys.49, 435 ~1977!.
2A. Z. Patashinski� and V. L. Pokrovski�, Fluctuation Theory of Phase
Transitions, Pergamon Press, Oxford~1979!.

3E. Siggia, B. Halperin, and P. Hohenberg, Phys. Rev. B13, 2110~1976!.
4R. Dengler and F. Schwable, Europhys. Lett.4, 1233~1987!.
5E. V. Gurovich, E. I. Kats, V. V. Lebedev, and A. R. Muratov, JETP Le
55, 57 ~1992!.

6E. V. Gurovich, E. I. Kats, and V. V. Lebedev, Zh. E´ ksp. Teor. Fiz.100,
855 ~1991! @Sov. Phys. JETP73, 473 ~1991!#.

7M. Fixman, J. Chem. Phys.36, 1961~1962!.
8W. Botch and M. Fixman, J. Chem. Phys.42, 199 ~1965!.
9R. A. Ferrel and J. K. Bhattacharjee, Phys. Lett. A86, 109 ~1981!.

10R. A. Ferrel and J. K. Bhattacharjee, Phys. Rev. A31, 1788~1985!.
11J. Zinn-Justin,Quantum Field Theory and Critical Phenomena, Oxford

Univ. Press, Oxford~1989!.
12H. C. Burstyn, J. V. Sengers, J. K. Bhattacharjee, and R. A. Ferrel, P

Rev. A 28, 1567~1983!.
13D. B. Roe and H. Meyer, J. Low Temp. Phys.30, 91 ~1978!.
14D. B. Roe, B. A. Wallace, and H. Meyer, J. Low Temp. Phys.16, 51

~1974!.
15D. Sarid and D. S. Cannel, Phys. Rev. A15, 735 ~1977!.
16D. M. Kroll and J. M. Ruhland, Phys. Lett. A80, 45 ~1980!.
17R. Folk and G. Moser, Phys. Rev. Lett.75, 2706~1995!.
18C. de Dominicis and L. Peliti, Phys. Rev. B18, 353 ~1978!.
19R. Baush, H. K. Janssen, and H. Z. Wagner, Z. Phys. B24, 113 ~1976!.
20L. D. Landau and E. M. Lifshitz,Statistical Physics, Pt. 1, 3rd ed., Per-

gamon Press, Oxford~1980!.
21J. K. Bhattacharjee and R. A. Ferrel, Phys. Lett. A88, 77 ~1982!.
22L. Ts. Adzhemyan, A. N. Vasil’ev, and Yu. M. Pis’mak, Teor. Mat. Fi

74, 360 ~1988!.
23M. Yu. Nalimov, Teor. Mat. Fiz.80, 212 ~1989!.

Translated by Paul F. Schippnick



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 5 NOVEMBER 1998
Lattice dynamics of K 2NaAlF6, K3AlF6, and Na3AlF6 crystals with the elpasolite structure
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This paper presents the results of a nonempirical calculation of the static and dynamic properties
of K2NaAlF6, K3AlF6, and Na3AlF6 crystals with the elpasolite structure. The calculation
is based on a microscopic model of an ionic crystal that allows for the deformability and
polarizability of the ions. The deformability parameters of the ions are determined by
minimizing the total energy of the crystal. The total energy is regarded as a functional of the
electron density, using the local Thomas–Fermi approximation and taking into account
exchange~correlation! effects. The results of the calculations of the equilibrium lattice parameters
and of the permittivities are in good agreement with the experimental data. Unstable
vibrational modes are found in the spectrum of the lattice vibrations, with these modes occupying
the phase space in the entire Brillouin zone. ©1998 American Institute of Physics.
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1. INTRODUCTION

The family of crystals with the elpasolite structu
A2BB31X6 can be classified as perovskite-like compound
typical structural feature of which is the presence of octa
dral groups. Most crystals of this family, like the represen
tives of the perovskite family, experience diverse structu
phase transitions associated with instability of the crystal
tice against various vibrational lattice modes.

Crystals of the elpasolite family in the high-symmet
phase belong to the cubic space groupOh

5 , with a face-
centered lattice. The unit cell contains one molecule. D
pending on the chemical composition, various distorted lo
symmetry phases are observed, with sequences of struc
phase transitions being detected in many crystals of
family.

Compounds with the elpasolite structure have been
tensively studied by various methods, and by now there
much experimental information for many crystals of t
given family concerning the structures, the physical prop
ties, and their changes during phase transformations. In
ticular, Raman scattering and inelastic neutron scatterin
certain crystals have been used to determine the soft vi
tional modes of the crystal lattice.1 The experimental data o
the structures of the low-symmetry phases and the
modes of the lattice vibrations are evidence that, in mos
the compounds of the elpasolite family that have been s
ied, the phase transitions are associated with small rotat
of the B31X6 octahedra. However, it is also experimenta
known that the structures of the distorted phases in cer
elpasolites correspond not only to rotations of the octahe
but also to substantial displacements of the A and B i
from the equilibrium positions of the cubic phase. The
9441063-7761/98/87(11)/8/$15.00
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have been virtually no calculations of the frequency sp
trum of the lattice vibrations in crystals of the elpasolite fa
ily. Such a calculation of the incomplete vibrational spe
trum of the Cs2NaTmBr6 crystal in the rigid-ion model is
given in Ref. 1. Since the unit cell of elpasolite contains t
atoms, a large number of unknown parameters are neede
the rigid-ion model to take into account short-range forc
~Ref. 1 used nine parameters!. For this reason, it is difficult
to use the rigid-ion model to study the crystal lattice’s ins
bility against one vibrational mode or another as a funct
of the chemical composition of the compound

FIG. 1. Structure of the elpasolite K2NaAlF6. One molecule and the face
centered Na lattice are shown.
© 1998 American Institute of Physics
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The goal of this paper is to calculate from first principl
the equilibrium volume, the total spectrum of the lattice
brations, and the radio-frequency~rf! permittivity in
K2NaAlF6, K3AlF6, and Na3AlF6 crystals in terms of the
generalized Gordon–Kim model proposed by Ivanov a
Maksimov.2

Section 2 presents the results of a group-theoret
analysis of the normal modes of the lattice vibrations of
elpasolite structure for all symmetry points and directions
the Brillouin zone. The results of such an analysis appea
the literature for only two symmetry points~G andX! of the
Brillouin zone.1,3 The model and the method of computin
the frequencies of the lattice normal modes and the rf p
mittivity are presented in Sec. 3. The results of the calcu
tions and a discussion of the results are presented
Sec. 4.

2. SYMMETRY ANALYSIS OF THE NORMAL MODES

The crystal structure of elpasolite in the high-symme
phase is cubic with space groupOh

5(Fm3m). The ions oc-
cupy ten interpenetrating fcc lattices, as shown in Fig. 1.
d

al
e
f
in

r-
-
in

The characters of the various symmetry elements in
vibrational representation are as follows~only the symmetry
elements associated with thez direction are shown below
t5a0/2, anda0 is the lattice parameter!:

the identity element

x~E!530,

rotation about a fourfold axis

x~C4z!5113exp~ iq•~2t,0,0!!,

rotation about a twofold axis

x~C2z!5~21!@113exp~ iq•~2t,2t,0!!

1exp~ iq•~t,t,0!!1exp~ iq•~3t,3t,0!!#,

rotation about a twofold axis along a face diagonal

x~C2xy!5~21!@11exp~ iq•~2t,2t,2t!!#,

reflection in a plane perpendicular to a twofold axis

x~Csz
!5115exp~ iq•~0,0,2t!!,

reflection in a plane perpendicular to a face diagonal

x~Csxy
!5113exp~ iq•~2t,2t,0!!1exp~ iq•~t,t,0!!

1exp~ iq•~3t,3t,0!!,
t
TABLE I. Displacements of ions of an elpasolite in the normal modes of the center and of boundary poinX of
the Brillouin zone.

Irreducible
representation

Normal mode Number of modes

Zone center
A1g 2F1z5F2z52F3y5F4y5F5x52F6x 1

Eg 2F1z52F2z5F3y5F4y52F5x5F6x 1
2F1z5F2z5F3x52F4x5F5y5F6y

2F1y5F2y5F5z52F6z

T1g 2F1x5F2x52F3z5F4z 1
2F3y5F4y52F5x5F6x

T2g K1x5K1y5K1z52K2x52K2y52K2z ;
2F1x52F1y5F2x5F2y5F3y5F3z52F4y52F4z

52F5x52F5z5F6x5F6z

K1x52K2x ;2K1y5K2y ;K1z5K2z ;
F1x52F2x52F3z5F4z ;

2

2F1y5F2y5F5z5F6z ;F3y52F4y52F5x5F6x

K1x52K2x ;K1y52K2y ;2K1z5K2z ;
2F1y5F2y2F5z5F6z ;
2F1y5F2y52F5z5F6z ;2F3y5F4y5F5x52F6x

F1y5F2y52F5y52F6y

T2u F1x5F2x52F3x52F4x 1
F3z5F4z52F5z52F6z

T1u all ions are displaced 4

point X
t3 F3y52F4y5F5x52F6x 1
t5 F3x52F4x5F5y52F6y 1
t7 F3y52F4y52F5x5F6x 1
t8 F3z5F4z52F5z52F6z 1
t6 K1z52K2z 1
t1 all ions are displaced 3
t9 all ions are displaced 3
t10 all ions are displaced 6
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inversion

x~J!5~23!@11exp~ iq•~2t,2t,2t!!#,

inverted rotation by 60°

x~S6!50,

inverted rotation by 90°

x~S4z!5~21!@11exp~ iq•~0,2t,2t!!

1exp~ iq•~0,t,t!!1exp~ iq•~0,3t,3t!!#.

The expansion of the modal representationT into irre-
ducible representations can be found by the stand
procedure:4

Cl5n21(
g

x~q,g!xl~q,g!, ~1!

where n is the order of the group of wave vectorq, and
xl(q,g) is the character of the small representation of
group of vectorq. This decomposition has the followin
form for the symmetry points and directions of the Brillou
zones of the fcc lattice~the symbols for the wave vectors an
irreducible representations are from Kovalev’s tables;5 for
the zone center, the standard symbols for the representa
of the space groups are shown in parentheses!:

~a! Center of the Brillouin zone,q5(0,0,0)

T5t1~A1g!1t3~Eg!1t5~T1g!12t4~T2g!1t9~T2u!

15t10~T1u!.

Here the splitting of the longitudinal and transverse opti
frequencies of symmetryT1u by the macroscopic electri
field is neglected.

~b! q5(0,0,2mp/t)

T57t11t212t312t419t5 .

The mode with symmetryt5 is doubly degenerate. At th
zone boundary~point X!,

T53t11t314t41t51t61t71t813t916t10,

t9 andt10 correspond to doubly degenerate modes.
~c! q5(2mp/t, 2mp/t,0! ~point K corresponds toq

5(3p/4t,3p/4t,0))

T510t214t218t318t4 .

~d! q5(mp/t,mp/t,mp/t)

T58t112t2110t3 ,

t3 corresponds to doubly degenerate modes. At the z
boundary~point L!,

T54t11t21t314t415t515t6 ,

t5 andt6 correspond to doubly degenerate modes.
~e! q5(0,p/t,p/2t) ~point W!

T55t112t215t312t418t5 ,

t5 corresponds to doubly degenerate modes.
The displacements of the ions in certain normal mo

are given in Table I.
rd

e

ns

l

ne

s

3. MODEL. METHOD OF CALCULATION

The model of the ionic crystal proposed by Ivanov a
Maximov,2 which takes into account the polarizability of th
ions, is used to compute the frequency spectrum of the lat
vibrations of crystals of the elpasolite family. In this mode
the ionic crystal is represented as consisting of individ
intersecting spherically symmetric ions. The total electr
density of the crystal in this case can be written

r~r !5(
i

r i~r2Ri !,

where symmetrization is carried out over all the ions of t
crystal.

The total energy of the crystal in terms of the densi
functional method, taking into account only pairwise intera
tion, has the form

FIG. 2. Dependence of the total energy of the crystal on the volume:~a!
K3AlF6; ~b! K2NaAlF6; ~c! Na3AlF6. The origin of the energy readings in
~a!, ~b!, and~c! corresponds to 72 784 eV, 60 751 eV, and 36 683 eV.
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FIG. 3. Calculated dispersion curves for cubic K2NaAlF6. ~Imaginary frequencies are indicated by negative values.!
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Ecr5
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2 (
iÞ j

ZiZj

uRi2Rj u
1(

i
Ei

self~Rw
i !

1
1

2 (
iÞ j

F i j ~Rw
i ,Rw

j ,uRi2Rj u!, ~2!

whereZi is the charge of theith ion,

F i j ~Rw
i ,Rw

j ,uRi2Rj u!5E$r i~r2Ri !1r j~r2Rj !%

2E$r~r2Ri !%2E$r~r2Rj !% ,

~3!

energyE$r% is calculated by the density-functional method2
using the local approximation for the kinetic and exchan
~correlation! energies, andEi

self(Rw
i ) is the self-energy of the

ion. The electron density of an individual ion and its se
energy are calculated taking into account the crystal po
tial, approximated by a charged sphere~the Watson Sphere!

v~r !5H Zi
ion/Rw , r ,Rw

Zi
ion/r , r .Rw

,

whereRw is the radius of the Watson sphere. The radiiRw
i of

the spheres at individual ions are found by minimizing t
total energy of the crystal.
FIG. 4. Calculated dispersion curves for cubic K3AlF6. ~Imaginary frequencies are indicated by negative values.!
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FIG. 5. Calculated dispersion curves for cubic Na3AlF6. ~Imaginary frequencies are indicated by negative values.!
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To calculate the lattice dynamics in the expression
the energy of the crystal, Eq.~2!, it is necessary to add term
that describe the energy changes caused by displacing
ions from their equilibrium positions. When the frequenc
of the lattice vibrations of the ionic crystals were calculate
the electronic polarizability of the ions and the ‘‘breathing
of the ion in the crystal environment were taken into acco
both in terms of the phenomenological models of Ref. 6 a
the microscopic approach of Ref. 7. In the model conside
here, the expression for the dynamic matrix has the form

D j j 8
ab

5
exp~2 iq~xj2xj 8!!

AM jM j 8
H 1

2
Zj

ionQab~q; j j 8!Zj 8
ion

1FRR
ab~q; j j 8!1 (

k51

N

@FRv
a ~q; jk !Vb~q;k j8!

1V* a~q;k j !FvR
b ~q;k j8!#

1 (
k,k851

N

V* a~q;k j !Fvv~q;kk8!Vb~q;k8 j 8!

1 (
g51

3

(
k51

N

@W* ga~q;k j !FwR
gb ~q; jk !

1FRw
ag ~q; jk !Wgb~q;k j8!#1 (

g,g851

3

(
k,k851

N

W* ga

3~q;k j !Fww
g,g8~q;kk8!Wg8b~q;k8 j 8!

1 (
g51

3

(
k,k851

N

@W* ga~q;k j !Fwv
g ~q;kk8!Vb~q;k8 j 8!

1V* a~q;k j !Fwv
g ~q;kk8!Wgb~q;k8 j 8!#J , ~4!
r

the
s
,

t
d
d

where N is the number of atoms per unit cell,xj are the
coordinates of atomj inside the unit cell, andQab(q; j j 8) is
the contribution to the dynamic matrix from long-range Co
lomb interactions. The matrices entering into Eq.~4! have
the form

V̂52F̂vv
21P̂vR , Ŵ5R̂ww

21F̂ww
21ŜwR ,

R̂ww512F̂ww
21F̂wvF̂vv

21 , ŜwR5F̂wvF̂vv
21F̂vR2F̂wR ,

P̂vR5F̂vR1F̂vwR̂ww
21F̂ww

21ŜwR .

The matrixF̂ is defined as

FRR
ab~q; j j 8!5(

l

]2FS l 0
j j 8 D

]RaS l
j D ]RbS 0

j 8 D
exp~2 iql!,

Fvv~q; j j 8!5(
l

]2FS l 0
j j 8 D

]v j]v j 8

exp~2 iql!,

Fww
ab ~q; j j 8!5Qab~q; j j 8!1Gab~q; j j 8!1

d j j 8dab

a j
, ~5!

Gab(q) is the matrix of the short-range part of the dipole
dipole interaction,a j is the polarizability of thej th ion,
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TABLE II. Equilibrium values of the lattice parameters, the polarizabilities of the ions, and the rf permittiv

a0, Å Polarizability, Å3 «`

Crystal Model Calc. Exp. aK8 aK aNa aAl aF Calc. Exp.

K2NaAlF6 I 8.12 8.11~Ref. 9!
II 8.12 0.696 0.122 0.034 1.123 2.27 1.79~Ref. 9!
III 7.94
IV 7.94 0.836 0.122 0.034 0.720 1.80

K3AlF6 I 8.20 8.38~Ref. 9!
II 8.20 0.696 0.696 0.034 1.123 2.23 1.80~Ref. 9!
III 8.12
IV 8.12 0.726 0.836 0.034 0.749 1.86

Na3AlF6 I 8.09 7.95~Ref. 10!
II 8.09 0.122 0.034 1.123 2.05 1.78~Ref. 9!
III 7.86
IV 7.86 0.122 0.034 0.720 1.61
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FRv
a ~q; j j 8!5(

l

]2FS l 0
j j 8 D

]RaS l
j D ]v j 8

exp~2 iql!,

FvR
b ~q; j j 8!5(

l

]2FS l 0
j j 8 D

]v j]RbS 0
j 8 D

exp~2 iql!,

FwR
ab~q; j j 8!5(

l

]Ea
shS l 0

j j 8 D
]RbS 0

j 8 D
exp~2 iql!,

Fwv
a ~q; j j 8!5(

l

]Ea
shS l 0

j j 8 D
]v j 8

exp~2 iql!,

Fvw
b ~q; j j 8!5(

l

]Eb
shS l 0

j j 8 D
]v j

exp~2 iql!,

F̂Rw5F̂wR
1 , ~6!

andEsh is the short-range crystal field created at thejth ion.
The expression for the rf permittivity«` can be written

«`
ab5dab1

4pqa

q2 (
g51

3

(
k,k851

N

qg@Fww
21#gb~0;kk8!.

The Coulomb contribution to the dynamic matr
Qab(q; j j 8) was calculated by the Ewald method. The c
culation for the ion was carried out according to Liberma
program,8 and the energy of the pairwise interaction fro
Eq. ~3! and the polarizability of the ion were calculated a
cording to Ivanov and Maksimov’s program,2 using the
Thomas–Fermi approximation for the kinetic energy and
Hedin–Lundquist approximation for the exchange ener
The technique of approximating the dependences of the
ergy on the distanceR and the potentialsv of the Watson
sphere was used to compute the partial derivatives in Eqs~5!
-

e
.
n-

and~6!, entering into the dynamic matrix of Eq.~4!. Cheby-
shev polynomials were used for the approximations.2

4. RESULTS AND DISCUSSION

This section presents the results of calculations of
total energy, the equilibrium volume, and the lattice vibr
tion spectra for three crystals and four models. The calcu
tions in Model I use the electron density of free spherica
symmetrical ions~the rigid-ion model!. Model II takes into
account the polarizability of the ions. In Model III, the effe
of the crystal environment is taken into account by using
potential of the Watson sphere when calculating the elec
density of the ions. For simplicity, we used the Watso
sphere potential for only two types of ions in the crysta
under discussion: for the K1 ion and the F2 ion. As shown
by our estimates for Al31 and Na1 ions, the electron density
of the free ions is virtually the same as the electron density
these ions in the Watson sphere. Finally, Model IV takes i
account the deformability and polarizability of the ions.

TABLE III. Limiting frequencies of the (q50) vibrations of K2NaAlF6.

Models

v i

(cm21) Degeneracy
Type of
vibration I II III IV

v1
L 1 T1u 537.9 435.7 558.5 478.6

v2
T 2 T1u 399.3 380.2 427.5 403.2

v3 1 A1g 394.9 268.9 456.4 386.6
v4

L 1 T1u 299.5 194.9 359.4 270.5
v5

T 2 T1u 279.1 194.8 356.6 265.5
v6 2 Eg 227.5 226.8 268.0 261.4
v7

L 1 T1u 197.9 176.0 213.5 202.5
v8 3 T2g 264.7 148.0 308.6 202.1
v9

T 2 T1u 150.3 146.0 178.8 173.6
v10 3 T2u 117.8 96.3 166.0 146.8
v11

L 1 T1u 124.0 102.9 120.8 108.3
v12 3 T1g 37.7i 37.7i 30.2 25.1
v13 3 T1u 0.0 0.0 0.0 0.0
v14 3 T2g 88.8 73.5i 70.7 12.1i
v15

T 2 T1u 87.8 46.7i 61.1 47.0i
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The results of the calculations are shown in Figs. 2
and in Tables II–V. The equilibrium values of the lattic
parameters were determined by minimizing the total ene
of the crystal as a function of volume~Fig. 2!. The lattice
parameters are shown in Table II along with the experim
tal values. For all three materials, the calculated lattice
rameters agree with the experimental data to within 2%. T
radii of the Watson spheres for the K1 and F2 ions, found by
minimizing the total energy, are 2.0 au and 2.2–2.3 au,
spectively.

Table II shows the calculated polarizabilities of the io
and the rf permittivities of the materials under considerati
This table also shows the experimental values of«` . As can
be seen from the table, the calculated polarizabilities of
fluorine ions are substantially different in the free-ion a
proximation~and taking into account the crystal environme
within the Watson sphere!, and this in turn results in a dif
ference in the calculated rf permittivities for all three ma
rials.

The calculated dispersion curves of the frequencies
the lattice vibrations for the three compounds are shown
Figs. 3–5. In order not to clutter the figures, we show
them the calculated results only for Model IV, since t
v(q) dependences are qualitatively the same for all f
models, while the quantitative differences in the frequenc
of the lattice vibrations calculated in Models I–IV are show
in Tables III–V, which display the limiting frequencies o
the (q50) vibrations. As can be seen from Figs. 3–5 a
Tables II–IV, there are imaginary frequencies of the latt
vibrations in all compounds under discussion; this is e
dence of structural instability of the cubic phase in the
materials. It should be emphasized that the unstable mo
occupy all the phase space in the Brillouin zone. In
K3AlF6 and Na3AlF6 crystals, there is instability of the
structure in all four models. In the K2NaAlF6 crystal, the
cubic phase is stable at zero temperature only in the mod
the deformed ion that neglects polarizability. As can be s

TABLE IV. Limiting frequencies of the (q50) vibrations of K3AlF6.

Models

v i

(cm21! Degeneracy
Type of
vibration I II III IV

v1
L 1 T1u 489.9 385.0 517.8 432.8

v2
T 2 T1u 297.8 381.3 329.4 349.5

v3 1 A1g 377.5 268.6 432.9 361.4
v4

L 1 T1u 314.8 247.9 352.2 269.8
v5

T 2 T1u 305.4 241.5 350.1 269.7
v6 2 Eg 229.4 229.1 260.6 257.7
v7

L 1 T1u 175.5 143.8 188.9 172.3
v8 3 T2g 249.0 150.6 287.6 193.8
v9

T 2 T1u 166.6 143.8 171.3 162.4
v10 3 T2u 109.9 93.1 148.4 132.8
v11

L 1 T1u 117.2 74.8 112.5 94.2
v12 3 T1g 31.6i 31.6i 24.7i 26.6i
v13 3 T1u 0.0 0.0 0.0 0.0
v14 3 T2g 66.2 85.1i 53.5 42.3i
v15

T 2 T1u 58.8 69.6i 38.8 58.2i
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from Tables III–V, taking the polarizability of the ions int
account in all the compounds under consideration redu
almost all the frequencies of the lattice vibrations, increa
the number of unstable modes, and appreciably reduces
splitting of the longitudinal and transverse vibrational fr
quencies of the polar modes.

It can be seen from Figs. 3–5 and Tables III–V that t
cubic phase in the compounds under consideration is m
unstable in the Na3AlF6 crystal and most stable in
K2NaAlF6. This conclusion qualitatively agrees with the r
sults of experimental studies of structural phase transition
these crystals.9 It has been established that the pha
transition temperature in Na3AlF6 significantly exceeds the
transition temperature in K3AlF6, while no phase transitions
are detected in the K2NaAlF6 crystal up to liquid-nitrogen
temperatures.

There are three types of instability of the cubic structu
at the center of the Brillouin zone. One is the ferroelect
instability associated with transverse vibrations of the po
mode T1u . In this mode, all the atoms in a unit cell ar
displaced from the equilibrium positions of the cubic pha
Ferroelectric phase transitions, as far as we know, have
been experimentally observed in halide crystals with the
pasolite structure. Another instability is associated with
triply degenerateT1g mode.

Only the four fluorine atoms are displaced from the eq
librium positions in this mode, and these displaceme
cause the AlF6 octahedron to rotate as a whole~see Table I!.
Finally, a third type of instability is associated with the trip
degenerateT2g mode. In one of the eigenvectors of th
mode, the displacements of the atoms cause the AlF6 octa-
hedron to rotate about the body diagonal while the potass
~sodium! atoms located on that diagonal are simultaneou
displaced toward each other. Note that there is anot
stable mode with the sameT2g symmetry in the vibrational
spectrum of the crystals under consideration~see Tables
III–V !.

TABLE V. Limiting frequencies of the (q50) vibrations of Na3AlF6.

Models

v i

(cm21! Degeneracy
Type of
vibration I II III IV

v1
L 1 T1u 487.9 380.1 579.3 513.5

v2
T 2 T1u 349.5 305.3 454.1 435.9

v3 1 A1g 335.6 215.6 480.6 400.8
v4

L 1 T1u 257.7 191.9 372.9 280.2
v5

T 2 T1u 248.4 190.0 366.0 274.0
v6 2 Eg 151.0 149.0 294.1 291.0
v7

L 1 T1u 171.5 154.5 221.6 210.4
v8 3 T2g 258.3 170.3 314.5 227.9
v9

T 2 T1u 123.2 114.4 188.7 184.3
v10 3 T2u 98.8 85.2 147.4 135.6
v11

L 1 T1u 70.3 34.0 116.7 101.9
v12 3 T1g 57.6i 58.5i 81.9i 82.1i
v13 3 T1u 0.0 0.0 0.0 0.0
v14 3 T2g 81.6i 95.3i 80.9i 64.4i
v15

T 2 T1u 90.7i 96.4i 58.1i 86.4i
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5. CONCLUSION

The static and dynamic properties of three crystals w
the elpasolite structure have thus been calculated in this
per in terms of a simple nonempirical model of an ion
crystal. The calculated equilibrium values of the lattice p
rameters and the permittivity are in good agreement with
experimental data. Unfortunately, we cannot compare
calculated frequencies of the lattice vibrations with measu
results, since such measurements have apparently not
made for the crystals considered here. Our results concer
the instability of the cubic structure and the presence of
stable modes in a large phase space of the Brillouin zone
apparently common to crystals with the given structure.

The authors are grateful to the Russian Fund for Fun
mental Research~Projects 97-02-16277 and 96-15-9670!
for financial support of this work. We are grateful to O. V
Ivanov and E. G. Maksimov for allowing us to use the
programs to calculate the total energy and polarizability
the ions.
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Low-temperature thermal conductivity of highly enriched and natural germanium
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Experimental data on the thermal conductivityK(T) of crystals of natural and highly enriched
germanium~99.99%! 70Ge with lapped and polished surfaces are analyzed in the
temperature range;1.528 K. In all the samples in the temperature range;1.5– 4 K the
standard boundary mechanism of scattering dominates. As the temperature is raised, an isotopic
scattering mechanism is observed in the natural samples. In the highly enriched samples
the theoretical values ofK(T) turn out to be much smaller than the experimental ones. It is
conjectured that a Poiseuille viscous flow regime of the phonon gas emerges in this
case. ©1998 American Institute of Physics.@S1063-7761~98!01411-5#
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1. INTRODUCTION

Chemically pure, perfect crystals of the70Ge isotope of
germanium with 99.99% enrichment have recently been s
thesized by the group led by V. I. Ozhogin. A study of va
ous of their properties has commenced. An experime
study of their thermal conductivityK(T) over a wide tem-
perature range has already been carried out on sample
varied composition, including both highly enriched70Ge and
natural germanium.1,2 The corresponding data were obtain
for crystals with a finely polished surface and with a surfa
processed relatively more crudely by lapping~for details, see
Ref. 2!. As a result, we possess a unique body of experim
tal data for more detailed examination of kinetic processe
regular systems, and of their role in the kinetics of isoto
disorder.

In the present paper we analyze experimental data1,2 ob-
tained for a range of helium temperatures from 1.5 to 8
First we consider the effect of the degree of surface proc
ing and the possible role of strong dispersion of the acou
phonon spectrum of germanium in the natural samples. S
ond, for the case of highly enriched perfect crystals, we d
cuss the possible emergence of an effect predicted
Gurzhi.3 In essence, the migration of quasiparticles tak
place in the phonon flux can under certain conditions
considered a random walk, analogous to Poiseuille visc
flow of a liquid.3,4 At very low temperatures, the relaxatio
rate for the acoustic phonon mode with frequencyv and
polarizationj is then exponentially small, due to anharmon
Umklapp (U) processes in which short-wavelength phono
with large momenta~comparable to the reciprocal lattic
vector! invariably participate; specifically,

1

tU
~ j !

}v2 T expS 2
Bj

T D .

At the same time, the relaxation rates for the longitudinall )
and transverse (t) modes due to normal (N) processes in
which any phonons can participate, including only lon
wavelength ones, are described by power-law tempera
dependences of the form
9521063-7761/98/87(11)/4/$15.00
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1

tN
~ t !

}v T4,
1

tN
~ l !

}v2 T3

~see, e.g., Refs. 4 and 5!. Therefore, for the correspondin
effective mean free paths a temperature range can exis
which l N!d! l U , whered is the characteristic linear dimen
sion of the sample. In that range, for extremely high-qua
single-isotope crystals, the effect of static defects and iso
pic disorder on the structure of the nonequilibrium phon
distribution function is obscured byN processes. Only scat
tering processes involving the walls of the sample are t
resistive. However, due to the more frequent nonresistivN
processes the transport mean free path grows as;d2/ l N

~Ref. 3, see also Refs. 4–6!.
Mezhov-Deglin7,8 investigated the thermal conductivit

of very perfect, single-isotope samples of solid4He and ex-
plicitly observed the features predicted by Gurzhi3 in the
temperature behavior of the thermal conductivityK(T) in the
region to the left of the maximum~see also Ref. 9!. More-
over, manifestations of the hydrodynamic regime have b
analyzed in NaF and Bi crystals, which lacks the isoto
scattering mechanism. The manifestation of the cited reg
in NaF and Bi is less pronounced in comparison with so
helium. The corresponding results are discussed, for
ample, in Ref. 5.

2. BASIC RELATIONS

We restrict the discussion to extremely low tempe
tures. In this situation the relaxation timet j of the phonon
mode with polarization indexj and group velocityv j is due
mainly to boundary scattering. For diffuse boundary scat
ing and an infinitely long sample,t j

(b,c) 5 l C /v j , wherel C is
the mean free path of the phonon mode~or the Casimir
length10!. For samples with rectangular cross sectionS the
Casimir length isl C 5 1.12AS.

We consider the effect of fine surface polishing, and a
of lapping~somewhat cruder processing! on the temperature
dependence of the thermal conductivity in the context of
© 1998 American Institute of Physics
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FIG. 1. Temperature dependence of th
thermal conductivity for natural~a! and
highly enriched samples~b!. Theoretical
curves1 and 2 correspond to samples with
polished and lapped surfaces, respective
The specularity parameterh536 ~curve1 !,
65 ~curve 2 !. The experimental points are
taken from Ref. 2~for the lapped surface
they are joined by a dotted line in Fig. 1a!.
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Ziman–Soffer theory,11,12 which takes account of both dif
fuse and specular phonon scattering at the sample bo
aries. The relaxation time

t j
~b! 5

l C

v j

11P~kj ,f!

12P~kj ,f!
, P~kj ,f!5exp@2~2kjh cosf!2#

~1!

figures in this theory. HereP is the specularity factor, which
for the j th mode depends on the magnitude of the phon
wave vectorkj and its orientation, i.e., the anglef. The
roughness factorh characterizes the degree of surface poli
Note thatkj5v/v j and f5p/22u, whereu is the angle
formed by the phonon wave vector and the unit vector in
direction of the temperature gradient.

It can be shown that the lattice thermal conductivityK
can be written~see Ref. 13!

K~T! 5 (
j 51

3
kBl C

2p2v j
2 S kBT

\ D 3

3E
0

zD j
dz

z4ez

~ez 2 1!2E
0

1

dy y2 cothZj~y!. ~2!

HerezD j5Q j /T is the reduced Debye temperature. The fa
tor Zj is

Zj~y! 5 H 4kB
2

2v j
2\2

h2z2T2~1 2 y2!, coth Zj~y! <r ,

ry2, cothZj~y!.r .

~3!

Herey5cosu, and the parameterr 5 l max/ l C , wherel max is
the linear extent of the sample~its length!. In what follows,
the Boltzmann constantkB and Planck constant\ are set to
unity.

Note that the value ofZj is sensitive not only to the
degree of surface polish, i.e., toh, but also depends on th
temperatureT. Note also that ify'1, i.e., the phonons ‘‘mi-
grate’’ parallel to the axis of the sample, then the integ
over y diverges. In actuality, the length of the sample
finite. This is taken into account by the Ziman–Soffer theo
WhenF(y)5cothZj(y) exceedsr , F(y) can be replaced by
ry2.
d-

n

.

e

-

l

.

3. RESULTS AND DISCUSSION

In the present work we use~1!–~3! to analyze low-
temperature experimental data in the temperature ra
T'1.5– 8 K on the thermal conductivity of natural and is
topically enriched samples~with enrichment of 99.99%!. As
noted above, these were prepared both with a finely polis
surface and with a more crudely lapped surface.1,2 Thus,
there are four sets of experimental curves.

The sole fitting parameter of the theory ish. The isoto-
pic disorder parameter

g5
( ciM i

22S ( ciM i D 2

S ( ciM i D 2 ,

whereci and Mi are the concentration and mass of the is
tope of typei , is 5.8731024 and 8.1831028, respectively,
for the natural and highly enriched crystals. For the gro
velocities of the transverse and longitudinal acoustic pho
modes we adopted standard values,v t53.163105 cm/s and
v l55.213105 cm/s. To determine the Casimir lengthl C and
the parameterr , we used the actual geometrical dimensio
of the samples~see Refs. 1 and 2!. Note that their cross
sections were rectangular. The corresponding data are li
in Table I.

Calculated theoretical curves for two values of the p
rameterh, which characterizes the degree of surface poli
are plotted in Fig. 1 along with experimental data in the fo
of points for all four samples.

Some comments on the figure are in order. It can be s
at once that the factorh decreases substantially as the deg
of surface polish rises. In fine polishing, both the natural a
the highly enriched samples correspond toh'36. For
samples with lapped surfaces, the values ofh are also simi-
lar, buth'65275 ~see Table I!.

Note that for the natural samples there is reasona
agreement between theory and experiment in the tempera
range;1.5– 4 K. ForT>4 K the theoretical curvesK(T) lie
substantially higher than the experimental points~also see
Refs. 13–15!. For the highly enriched samples the agreem
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with theory is also reasonable in the rangeT'1.524 K. But
for T>4 K the calculated values ofK(T) are considerably
lower than the experimental values.

We now comment on these results. In the simplest
proximation

K~T! 5
1

3
CL~T!va

2ts , ts
215(

i
~t~ i !!21. ~4!

Here CL is the phonon thermal conductivity andva is the
mean phonon velocity. The symbolts denotes the total re
laxation time, whose reciprocal is the sum of the recipro
relaxation times of the various processes.

According to~4!, for the natural samples

K~T! '
1

3
CL~T!va

2t~b,c!S 1 2
t~b,c!

t~ is! D ,

where t ( is) is the relaxation time due to isotopic disorde
Numerical estimates show that the ‘‘negative’’ deviation
K(T) for T>4 K is due to neglect of isotopic phonon sca
tering under conditions in which soft transverse modes
present~see also Refs. 5 and 6!.

For the highly enriched samplests5t (b,c). At the same
time, for germanium the effective Debye temperatureQ(T)
~due to softt modes! has a pronounced minimum at 25
~see, e.g., Refs. 16 and 17!. Since

CL~T!}Q23~T!, ~5!

by taking relations~4! and ~5! into account it is possible to
explain qualitatively the specific behavior ofK(T)—the
‘‘positive’’ deviation for T.4 K as a result of a manifesta
tion of soft t modes. However, specific estimates using
results of Refs. 16 and 17 do not afford even a crude desc
tion of the observed deviation.

As noted in the Introduction, the hydrodynamic visco
flow regime for phonons is treated in the literature. If th
regime is in fact realized, it leads to substantial growth of
thermal conductivity on the left side of the temperatu
maximum. At present, evidence for this regime has been
plicitly observed in crystals of solid helium~see Refs. 7 and
8, and also Ref. 9!. Specifically, at the lowest temperatur
T,0.6 K the phonon mean free path in4He due to anhar-
monic collisions turns out to be less than the diameter of
sample. In the temperature range 0.6–1 K we havel N!d,
l Rl N@d2, where l N and l R are the mean free paths corr
sponding to normal and resistive processes. This then yi

TABLE I. Geometrical dimensionsl x ,l y ,l z and values of the parameterh
of the Ziman–Soffer theory.

Sample l x ,l y ,l z , mm h, Å

n(s) 2.3332.3340.7 65
n(p) 2.432.35340.8 36
h(s) 2.232.5340.4 65–75
h(p) 2.4432.13340.4 36

Remark.The isotopic disorder parameterg for natural (n) and highly en-
riched (h) samples is 5.8731024 and 8.1831028, respectively. The nota-
tion s andp denote lapped and polished samples, respectively.
-

l

f

re

e
p-

e

x-

e

ds

l eff 5 0.1d2/ l N . In this situation, according to experimen
and simple theoretical estimates,K(T)}CLl N}T8 to the left
of the maximum.

Note also that Ref. 18 established criteria under wh
the motion of a phonon gas subject to an applied tempera
gradient can be considered Poiseuille viscous flow:

l R / l N>103, d/ l N>30. ~6!

Thus, it should be possible qualitatively to explain t
distinctive ‘‘positive’’ deviation of the experimental value
of K(T) from the theoretical values forT.4 K in 70Ge as a
manifestation of viscous Poiseuille flow in perfect, high
enriched samples. Note that the degree of surface polish
a significant influence on the thermal conductivity. Nume
cal estimates require a knowledge of the mean free paths
to the anharmonic processes. Moreover, it is necessar
take into account effects associated with phonon focusin18

To find the mean free paths, we adduce results
Callaway’s theory of the thermal conductivity of a cryst
lattice ~see, e.g., Ref. 5!. This theory takes account of th
contribution ofN andU processes to the thermal conducti
ity. Since the phonon spectrum of germanium is substanti
anisotropic, we consider contributions to the thermal cond
tivity in the form of a sum of contributions fromt and l
modes. We have chosentN andtU in the standard form

1

tN
~ t !

5AN
~ t !vT4,

1

tN
~ l !

5AN
~ l !v2T3,

1

tU
~ t,l !

5AU
~ t,l ! v2 T expS 2

B~ t,l !

T D .

As a result of estimates and a comparison of theoretical
experimental results, the authors of Ref. 2 find that

AN
~ t !52 310213K24, AN

~ l !52 310221s•K23,

AU
~ t !51 310219K24, AU

~ l !55 310219s•K23,

B~ t !555 K, B~ l !5180 K. ~7!

It is noteworthy that in the model under consideratio
the thermal conductivity of germanium is a superposition
two peaks corresponding tot and l modes. Interestingly
enough, for a highly enriched sample~99.99%! the main
peak inK(T), right at the maximum atTm'16.5 K, turns
out to be associated withl modes. For a sample with 96%
enrichment, on the other hand, the dominant contribution
K(T) at the maximum is due tot modes. The influence ofl
modes is partly veiled due to isotopic scattering. This e
plains the shift of the maximum by a few degrees (;4 K)
toward lower temperatures for the sample with 96% enri
ment in comparison with the curves for the highly enrich
~99.99%! sample. For the natural sample, under conditions
strong isotopic scattering, the role ofl modes is somewha
enhanced relative tot modes, and the maximum is raised b
a few fractions of a degree.

We now determine the mean free pathl i corresponding
to the phonon mode ofi type (i 5 l ,t). We have
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1

l i
5E dq

Cq

vq l q
~ i ! E dq

Cq

vq
. ~8!

HereCq is the partial contribution to the lattice specific he
from theq modes, andvq is their group velocity.

In the temperature range under consideration with
parameters~7! and using~8!, it turns out not to be the cas
that l N!d! l U for transverse modes. For longitudin
modes, the situation is the following. It can be shown t
l N
( l )! l U

( l ) , whereupon the mean free paths differ substantia
At the same time we have

l C

l N
'

5 • 108 T5

TDl
5

,

whereTDl5330 K is the Debye temperature for longitudin
modes. Thus, atT.4 K, l C is greater thanl N , but of the
same order. Generally speaking, condition~6! is not satisfied.

Thus, in the present case, there is no developed hy
dynamic regime, but effects associated with it should be
served to a certain extent in longitudinal modes.

We emphasize that when the surface of the sample
polished,l C grows. In the simplest case the resultant chan
in the relaxation time can be written10

1

tb
5

va

l C

12P

11P
.

P, which characterizes the fraction of quasiparticles spe
larly reflected from the boundaries, ranges from 0 to 1. A
cording to Ref. 2, as one goes from ‘‘lapped’’ to ‘‘polished
Ge samples,P rises from 0.2 to;0.4.

We emphasize that as the specularity of the surf
~characterized by the parameterP) and consequently the dif
ference betweenl N and l C decreases, the deviation of th
experimental values ofK(T) from the theoretically calcu-
lated values increases~see Fig. 1b!.

To summarize, in the temperature range 1.5–4 K,
change in the behavior of the thermal conductivity of germ
nium as a function of the degree of specularity can be
scribed qualitatively by the Ziman–Soffer theory. In perfe
highly enriched samples atT>4 K, when most collisions are
with the walls, the phonon flux is observed to deviate fro
t

e

t
.

o-
-

is
e

u-
-

e

e
-

e-
,

Knudsen flow. In natural samples of Ge, isotopic scatter
emerges atT>4 K in a substantial way.

Note that under conditions of Poiseuille flow, the ex
tence of second sound becomes possible, that is to say
cillations of the density of thermal excitations. A similar e
fect is observed in helium,9 and probably in NaF and Bi a
well.5 It would be interesting to investigate second sound
perfect germanium crystals.

This work was suggested by V. I. Ozhogin and carri
out with the support of N. A. Chernoplekov.
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Spin fluctuations and the superconducting state in doped insulators
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We propose a model of electron pairing via spin fluctuations in doped insulators. The bare states
for the superconducting condensate correspond to impurity bands in the original band gap
of the undoped material. We obtain a complete set of equations for the superconducting state. We
show that fermion pairing in impurity bands of extended states is possible, and thus so is
superconductivity, if localized spin-0 bosons are produced. The latter are necessarily accompanied
by localized spin-1 bosons, which are responsible for the relationship between singlet and
triplet pairing channels of quasiparticles. ©1998 American Institute of Physics.
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1. INTRODUCTION

Ever since the discovery of high-temperature superc
ductivity, it has been the subject of an enormous amoun
experimental and theoretical research. Nevertheless, ne
the pairing mechanism in the superconducting state nor
origin of charge carriers in the normal state of doped
prates have been elucidated. It has also remained un
whether the mechanism of superconductivity in 3
bismuth-based oxides~Ba12xKxBiO32y and others! is iden-
tical to that in layered copper-based oxides (p-doped mate-
rials like La22xSrxCuO4, YBa2Cu3O72x , etc., andn-doped
Nd22xCexO42x).

The parent cuprates usually have an antiferromagn
insulating state. The magnetic phase disappears1,2 at low
doping levels. When the doping level is increased, the m
rial goes to a relatively low-conductivity metallic phase wi
a high Tc . Previous research shows that HTSC mater
belong to the class of doped insulators, and impurities exe
dominant influence on phase transitions.2,3

The cuprates have unusual anisotropic properties in
insulating, metallic, and superconducting phases.1–4 Their
experimental behavior stimulated the development of vari
theoretical approaches to describing the properties of th
materials. These approaches fall into two groups.

After it was shown that carrier mobilities in the cuprat
are comparable to the Mott–Ioffe–Regel limit (ea2/\), it
became clear that localization effects are important in th
systems.5 The first group of approaches is based on the f
that, as follows from experimental data, the Fermi level
located among the electron states produced by doping in
charge transfer gap of the material, for instance in the
due to charge transfer between O2p- and Cu 3d-bands in
cuprates.1,4,6–11 These impurity states, known asin-gap
states, form in all doped compounds.1 Typical spectral fea-
tures have been observed both in the optical conductivity12,13

and in electron spectroscopy.8–11,14 Measurements obtaine
by angle-resolved photoelectron spectroscopy~ARPES! have
established that both localized and extended states coex
9561063-7761/98/87(11)/11/$15.00
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the Fermi level, and can contribute to the formation of
superconducting gap.15

Starting with the notion that the Fermi level is pinned
impurity states of doped cuprates, the superconducting
should open inside the insulating gap. In this case, the z
bias tunneling conductance peak~ZBCP!16 and absence of a
superconducting gap in very low enregy optical spectra17 ~in
contrast to BCS superconductors! must be considered a
manifestation of these states. Assuming that the nature
these states is determined by polarons,18,19 impurity
complexes,20 or bistable impurity trapping centers,21 theories
interpreting properties of high-temperature superconduc
in terms of the Fermi-liquid theory, BCS theory~not neces-
sarily with phonon-mediated pairing between quasiparticle!,
and quantum percolation theory have been developed.

On the other hand, many researchers, doubting that th
concepts apply to properties of the cuprates, associate h
temperature superconductivity with strong electron corre
tions in these materials.1,3,22–27 This second approach i
based on the most commonly adopted assumption that h
temperature superconductivity derives from processes oc
ring in CuO2 planes. This assumption may turn out to
true, as long as the Fermi level in the doped cuprate
located that part of the electron spectrum whose density
states is governed by a CuO2 plane.1 Since the available
experimental data indicate the importance of spin fluct
tions in doped systems,1,23,28we consider it important to di-
rect the reader’s attention to an investigation29,30 of the pair-
ing mechanism due to spin–spin interactions between ch
carriers in CuO2 planes.

Note that, although electronic states can appear in
initial insulating gap under doping, the motion of the Fer
level across the insulating gap asp-doping transforms to
n-doping is inherent in models of strongly correlated ele
trons ~see Ref. 1 and references therein!. At the same time,
experimental data indicate that Fermi levels inp- and
n-doped compounds are close, notwithstanding the wide
sulating gap~1.5–2 eV!.4

We are confident that apart from detailed investigatio
of the mechanism of superconductivity in CuO2 planes, the
© 1998 American Institute of Physics
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feasibility of different ways of producing superconductin
states must be studied. At this point, we focus primarily
the search for superconductivity in semiconductors31 and in-
vestigations of electronic mechanisms of superconducti
in alloys.32 A long time ago, Pines33 did not rule out the
existence of superconductivity in degenerate doped semi
ductors. Presently, it seems worthwhile to analyze this p
sibility, and in particular to study superconductivity in imp
rity bands in the absence of translational symmetry. T
study is also important if we are to search for new superc
ductors whose conductivity is not necessarily determined
planes of their lattices.

In this paper, we present a theory of superconductivity
doped insulators. We assume that the Fermi level can
pinned to the impurity bands that are deep inside the ins
tor gap of the undoped material. Then the superconduc
gap should open within the initial gap. States that feed
creation of a condensate in the superconducting state sh
correspond to impurity bands. This approach, probably,
be also applied to HTSC materials.

Previously we considered formation of impurity ban
of both extended and localized states in the model of do
insulators with electron correlations on bare impurity orbit
and hybridization between the orbitals and initial insula
band states.34,35 These narrow impurity bands of extende
states are generated in the initial gap due to hybridizat
which leads to virtual single-electron transitions over t
impurity ensemble: initial impurity site→ band state→ an-
other site→ band state, and so on. We proved using
self-consistent Hartree–Fock approximation that
insulator–metal quantum transition occurs in such a sys
as the impurity concentration increases. This approximat
however, does not take account of spin fluctuations in a s
tem of correlated electrons.

We suppose that a superconducting state can be du
spin fluctuations in a doped material. In this study we util
a model Hamiltonian for the normal and superconduct
states. We derive a complete set of equations for normal
anomalous Green’s functions and show that the system
several order parameters that determine the state of
doped material. Two different types of these parameters
respond to spin fluctuations. One, associated with nor
Green’s functions for localized states, initially shows up
properties of the insulating and metallic states of the do
material. At the same time, the order parameters of the o
type associated with anomalous Green’s functions, which
nondiagonal in the spin variables and diagonal in the im
rity sites, can lead to a new nonphonon channel of quasi
ticle pairing deep inside the initial insulator gap of an u
doped material.

2. MODEL

The formation of impurity states due to substitution
impurities is quite common in doped insulators. For e
ample, when a substitutional impurity is introduced in
Ba12xKxBiO3, Ba21 ions in the host lattice are random
n
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replaced by K11 ions. The valence electron of K goes
satisfy the bonding requirements, so a singly occupied acc
tor level arises.

Taking into account the Coulomb correlations in t
original impurity orbitals, we represent the Hamiltonian
the doped system in the form

H5(
ks

«kaks
1 aks1(

j s
«0aj s

1 aj s1
1

2(j s Unj snj ,2s

1 (
j ,ks

$Vk jaks
1 aj s1H.c.%, ~1!

where aks and aj s are the usual annihilation operators
original band states and impurity states labeled byj , respec-
tively; s56(1/2)(↑,↓) is the spin index;k is the three-
dimensional electron wave vector in the band state with
ergy «k ;«0 is the impurity state energy;Vk j is the
hybridization matrix element; andU is the on-site electron
correlation for impurity levels.

Hamiltonian~1! can be applied to doped cuprates for t
following reason. When substitutional impurities are intr
duced, for example, into La22xSrxCuO4, La31 ions in LaO
layers are replaced randomly by Sr21 ions. Both valence
electrons of Sr are involved in valence bonds, so format
of a singly occupied acceptor impurity orbital might be e
pected. The CuO2 layer of the cuprate is between two inte
mediate La12x/2Mx/2O layers. Since the centers of impurit
orbitals are located off the CuO2 plane, the interaction be
tween impurity orbitals and band states of the CuO2 plane
leads to their hybridization. Our analysis is limited for sim
plicity to the single-band approximation for the density
states of the CuO2 plane. When the strong anisotropy o
cuprates is taken into account, the Hamiltonian for a sin
lattice cell not coupled to other cells by charge transfer alo
the c(z) axis can be expressed in the form of Eq.~1! in a
two-dimensional space with corresponding wave vectors

The Nd2CuO4 structure is similar to that of La2CuO4,
the only difference being the location of oxygen atom
off the CuO2 planes. Under substitutional doping i
Nd22xCexCuO4, Nd31 is randomly replaced by Ce41 and a
singly occupied donor level can arise in the original gap.
La2CuO41y additional oxygen atoms can occupy interstit
positions near CuO2 planes. Then all valence electrons
oxygen atoms can take part in formation of impurity band

Note that the impurity centers that preserve the Fe
level and are located between cuprate planes~not in these
planes! in doped cuprates were investigated by Phillips.21

Solution of the problem with Hamiltonian~1! in the
Hartree–Fock approximation yields a rather complex patt
of impurity bands with localized and delocalized~extended!
states in the insulator gap. Changes in this pattern of im
rity bands with the impurity concentrations near the Fer
level determine the insulator–metal phase transition. In in
lators with narrower bands of the Bloch states, this transit
occurs at lower impurity concentrations. In what follows, w
give a solution of the problem with Hamiltonian~1! corre-
sponding to the superconducting state of the system. We
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show that a superconducting phase in the doped materia
emerge owing to nothing but spin fluctuations. The calcu
tions will be performed at zero temperature.

3. EQUATIONS FOR THE GREEN’S FUNCTIONS

Let us introduce the normal Green’s functions

Ghh1

ss1~ t,t1!52 i ^Ns12suTãhs~ t !ãh1s1

1 ~ t1!uN0&

and anomalous Green’s functions

Fhh1

~1 !ss1~ t,t1!5exp~22imt !^~N12!s1s1

3uTãhs
1 ~ t !ãh1s1

1 ~ t1!uN0&,

Fhh1

ss1~ t,t1!5exp~2imt !^N0uTãh,s~ t !ãh1s1
~ t1!u

3~N12!s1s1
&,

where we have used operators in the Heisenberg picture
Hamiltonian~1!; h denotesk or j ; m is the chemical poten
tial in the system. Averaging is performed over the syst
ground states with total particle numbersN andN12.36 The
subscripts at the ground statesuNs12s& and u(N12)s1s1

&
indicate the existence of additional spins for a given to
number of particles, as compared to the spin statesuN0& and
u(N12)0&.

At this point, note the following circumstance. Amon
the Green’s functions introduced previously, there is, for
ample, the anomalous Green’s functionF j j

(1)↑↑ . Given
Hamiltonian ~1!, the emergence of this function does n
conflict with the Pauli principle. The point is that we a
considering a system of interacting fermions, so opera
ã j↑

1 (t) acting on uN& does not change the population of
specific localized~site! state by 1. The average occupatio
number of any localized~site! state can be assumed to b
much smaller than 1. This is the fundamental difference
tween systems of interacting and noninteracting particles
which occupation numbers can be either 0 or 1.

Using the equation of motion for Heisenberg operat
based on Hamiltonian~1!, we obtain the equations for th
Green’s functions introduced previously:

S i
]

]t
2«kDGkh

ss1~ t,t1!5dkhdss1
d~ t2t1!

1(
j

Vk jGj h
ss1~ t2t1!, ~2!

S i
]

]t
1«k22m DFkh

~1 !ss1~ t2t1!52(
j

Vj kF j h
~1 !ss1~ t2t1!,

~3!

S i
]

]t
2«0DGj h

ss1~ t2t1!5d j hdss1
d~ t2t1!1(

k
Vj kGkh

ss1

3~ t2t1!1K j j j h
s,2s,2s,s1~ t,t1!, ~4!
an
-

ith

l

-

t

r

-
in

s

S i
]

]t
1«022m DF j h

~1 !ss1~ t2t1!52(
k

Vk jFkh
~1 !ss1~ t2t1!

2H j j j h
s,2s,2s,s1~ t,t1!. ~5!

Here we use the following notation for two-particle Green
functions emerging in our calculations:

K j j j h
s,2s,2s,s1~ t,t1!52 iU ^Ns12suTãj s~ t !ã j ,2s

1

3~ t !ã j ,2s~ t !ãhs1

1 ~ t1!uN0&, ~6!

H j j j h
s,2s,2s,s1~ t,t1!5Uexp~22imt !^~N12!s1s1

3uTãj s
1 ~ t !ã j ,2s

1 ~ t !ã j ,2s~ t !ãhs1

1

3~ t1!uN0&. ~7!

We now transform to the interaction picture on the righ
hand side of Eqs.~6! and ~7!, with the interaction operator

H int~t!5H int
c ~t!1H int

g ~t!,

where H int
c (t) and H int

g (t) are determined by the last tw
terms of Eq.~1!, respectively, with operatorsahs andahs

1 in
the Schro¨dinger picture replaced byahs(t) andahs

1 (t) in the
interaction picture. The unperturbed Hamiltonian is e
pressed by the first two terms on the right of Eq.~1!. As a
result, we have

K j j j h
s,2s,2s,s1~ t,t1!52 iU ^Ns12suT@S~`!aj s~ t !aj ,2s

1

3~ t !aj ,2s~ t !ahs1

1 ~ t1!#uN0&c , ~8!

and

H j j j h
s,2s,2s,s1~ t,t1!5Uexp~22imt !^~N12!s1s1

3uT@S~`!aj s
1 ~ t !aj ,2s

1 ~ t !aj ,2s

3~ t !ahs1

1 ~ t1!#uN0&c , ~9!

where only connected diagrams are taken into acco
which is indicated by subscriptc.

All connected diagrams in Eqs.~8! and ~9! can be di-
vided into two groups. One of them contains diagrams c
responding to all possible pairing among the four operat
in the Heisenberg picture on the right of Eqs.~6! and ~7!.
Going to the interaction picture, the right-hand side of E
~6! becomes

2 iU ^Ns12suT@S~`!aj s~ t !aj ,2s
1 ~ t !#uNs11s&c^Ns11s

3uT@S~`!aj ,2s~ t !ahs1

1 ~ t1!#uN0&c ,

1 iU ^Ns12suT@S~`!aj s~ t !aj ,2s~ t !#u~N12!s12s&c

3^~N12!s12suT@S~`!aj ,2s
1 ~ t !ahs1

1 ~ t1!#uN0&c ,

2 iU ^Ns12suT@S~`!aj s~ t !ahs1

1 ~ t1!#uN0&c^N0

3uT@S~`!aj ,2s
1 ~ t !aj ,2s~ t !#uN0&c ,

which is, by definition, equivalent to
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FIG. 1.
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iUG j j
s,2s~01!Gj h

2s,s1~ t,t1!1 iUF j j
s,2s~01!F j h

~1 !2s,s1

3~ t,t1!2 iUG j j
2s,2s~201!Gj h

s,s1~ t,t1!. ~10!

Similarly, we transform the right-hand side of Eq.~7! to

iUF j j
~1 !s,2s~01!Gj h

2s,s1~ t,t1!1 iUG j j
2s,s

3~01!F j h
~1 !2s,s1~ t,t1!2 iUG j j

2s,2s

3~201!F j h
~1 !s,s1~ t,t1!. ~11!

The diagrams for Eqs.~10! and ~11! are shown in Figs.
1a and 1b, respectively. Here thin lines correspond
Gj j

(0)ss , wavy lines toiU . The first two diagrams for Eqs
~10! and~11! are related to the on-site interaction with spi
flip processes, whereas the last loop diagrams, which are
Hartree–Fock contribution, result in the impurity level reno
malization.

Another group contains all diagrams in which, after t
expansion of theS-matrix in terms ofH int(t) and application
of Wick’s theorem, any of the four operators to the right
o

he
-

f

theS-matrix in Eqs.~8! and~9! is coupled only to the opera
tors of thisS-matrix expansion. Since the operator of res
nant scattering~hybridization! H int

g (t) contains only a pair of
operators, the diagrams corresponding to the first-order te
in the S-matrix expansion in terms ofH int

g (t) have been al-
ready taken into account in Eqs.~10! and ~11!. In the first
order in H int

c (t) we have for Eqs.~8! and ~9! twenty-four
simple diagrams of the second group. After partial summ
tion of more complex diagrams, the bare Green’s functio
are replaced by full functions. As a result, we obtain d
grams shown in Fig. 2 forK j j j h

s,2s,2s,s1(t,t1). Each wavy
line corresponds toiU . The summation is performed overj 1

and s2 , and integration overt. In front of the resulting
expression, the factor (21)s2s2 must be added. Here we d
not show the corresponding diagrams forH j j j h

s,2s,2s,s1(t,t1).
They are similar to those of the diagrams in Fig. 2, but
thin line entering thej-site, Gj j

(0)ss(t), must be replaced by
the outgoing line,Gj j

(0)ss(2t), and the solid linesGj j 1
(t,t)

andF j j 1
(t,t) associated withG(0)ss(2t) must be replaced
FIG. 2.
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by the full Green’s functionsGj 1 j (t,t) and F j j 1

(1)(t,t). The

calculation rules for these diagrams are the same.
In the second order of theS-matrix expansion in terms o

H int(t), we obtain for Eqs.~8! and ~9! T-averages of opera
tors containing terms of the second order inH int

g (t), the
product ofH int

g (t1) and H int
c (t2), and a term of the secon

order in H int
c (t). Note that theT-average containing the

terms of the second order in hybridization yields diagra
that have already been taken into account in Eqs.~10! and
~11!. Further, the T-average containing the product o
H int

g (t1) and H int
c (t2) yields diagrams some of which ar

taken into account in Eqs.~10! and ~11! or are among the
diagrams of Fig. 1; others are taken into account in the p
tial summation for the diagrams shown in Fig. 2. The situ
tion is similar in higher orders of perturbation theory. On
the T-average, containing terms of the second order
H int

c (t) generates new connected and topologically dis
guishable diagrams with three wavy lines. After partial su
mation of more complex diagrams, one can replace the b
Green’s functions with full Green’s functions. The diagram
are not shown here.

It is clear that in Eq.~4!, which is written, for example,
for Gj k

↑↑ , the two-particle Green’s functionK j j j k
↑↓↑↓(t,t1) cor-

responds to a set of diagrams starting with a thin l
Gj j

(0)↑↑(t) and ending with full Green’s functionsGj 1k
↑↑ (t,t1),

Gj 1k
↓↑ (t,t1), F j 1k

(1)↑↑(t,t1), and F j 1k
(1)↓↑(t,t1) ~integration is

performed overt and summation overj 1). This allows one
to introduce vertex parts to express two-particle Gree
functions in the form

K j j j h
s,2s,2s,s1~ t,t1!5 (

j 1 ,s2

E dtAj j 1

s,s2~ t,t!Gj 1h
s2 ,s1~t,t1!

1 (
j 1 ,s2

E dtBj j 1

s,s2~ t,t!F j 1h
~1 !s2 ,s1~t,t1!

~12!

and

H j j j h
s,2s,2s,s1~ t,t1!5 (

j 1 ,s2

E dtCj j 1

s,s2~ t,t!Gj 1h
s2 ,s1~t,t1!

1 (
j 1 ,s2

E dtD j j 1

s,s2~ t,t!F j 1h
~1 !s2 ,s1~t,t1!.

~13!

The functionsA, B, C, andD can be calculated by summin
diagrams. Examples of such diagrams are given in Fig
and 2, where hybridization effects are taken into accoun
full Green’s functions, which directly follows from Eqs.~2!–
~5!.

Equations~2!–~5!, ~10!–~13! must be supplemented b
the equation for the chemical potentialm of the system:

Nt1Nim5
1

pE2`

m

dv Im Tr G~v!, ~14!

where Nt is the total number of electrons in the origin
energy band of the insulator~for definiteness, in the valenc
band of the insulator or CuO2 plane in the case ofp-doping!;
s

r-
-

n
-
-
re

e

’s

1
y

Nim is the concentration of substitutional impurities. Here w
have assumed that the impurity level is singly populated

Now let us discuss order parameters in the stud
model. The loop diagrams in Fig. 1 represent renormali
tion of the bare impurity level«0 due to on-site Coulomb
correlations in the Hartree–Fock approximation. This ren
malization is determined by the average population numb
of the localized orbitals, which can be expressed in the fo

Gj j
ss~201!5 lim

t→01

E dv

2p
Gj j

ss~v!exp~ ivt !

5 i
1

pE2`

m

dv Im Gj j
ss~v!5 iA j ,s . ~15!

Since impurity atoms randomly occupy equivalent sites
the crystal lattice, there are only the following options:

1! Aj ,s is independent ofj ands. As was shown,14 this
case always corresponds to a paramagnetic metallic sta
the Hartree–Fock approximation.

2! Aj ,s is independent ofj andAj ,sÞAj ,2s . This situa-
tion corresponds to either a magnetic insulating state o
magnetic metallic state in the Hartree–Fock appro
mation.14

3! At a specific j 0 , we haveAj 0 ,s5A1 , Aj 0 ,2s5A2 ,
and A1ÞA2 . But for an ensemble of impurities,Aj ,s as a
function of j at a givens randomly assumes the valuesA1

and A2 . For example, for j 1Þ j 0Aj 1 ,s5A2 and Aj 1 ,2s

5A1 . This case always corresponds to a paramagnetic s
Note that it is of interest to investigate the phono

mediated pairing mechanism in narrow impurity bands in
paramagnetic state 3!. In a magnetic metal, we did so prev
ously, assuming triplet pairing.35 In the paramagnetic phase
the impurity bands are degenerate in the spin varia
Therefore the singlet pairing channel, which is important
cuprates, is also active in this phase.

Moreover, the system has order parameters of two
ferent types associated with spin fluctuations. One is de
mined by thes-off-diagonal matrix element of the norma
Green’s functions for the localized states:

Gj j
s2s~01!5 lim

t→01

E dv

2p
Gj j

s2s~v!exp~2 ivt !5 il j ,

~16!

hence

Gj j
2ss~01!52~Gj j

s2s~01!!* 5 il j* .

It is clear that for the normal state, spin fluctuations in t
system are described just byl.

The feasibility of a superconducting state in a system
determined by anomalous Green’s functions. An import
factor is the order parameter, which is determined by
s-off-diagonal Green’s functions F j j

(1)s,2s(v) and
F j j

s,2s(v). These functions describe correlated creation
annihilation of a pair of quasiparticles localized at one s
which can be considered a localized zero-spin boson.
introduce the notation
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F j j
s,2s~01!5 lim

t→01

E dv

2p
F j j

s2s~v!exp~2 ivt !5 ib j .

~17!

Then we have

F j j
2s,s~01!52 ib j , F j j

~1 !s,2s~01!5 ib j* ,

F j j
~1 !2s,s~01!52 ib j* .

The integrodifferential equations~2!–~5!, ~10!–~17!,
which take the diagrams for the vertex parts into accoun
complete from a mathematical standpoint. This is a com
cated set of equations. In the final analysis, it is importan
show that solutions describing superconductivity in impur
bands are feasible. A specific precursor of this is format
of localized bosons, and accordingly the existence of a n
zero solution of Eq.~17!. The on-site interaction betwee
bare particles, however, is repulsive. Therefore it is imp
tant to analyze the renormalization of the on-site interact
due to hybridization and spin fluctuations. This renormali
tion is determined by vertex partsA, B, C, andD introduced
previously. This analysis will be performed below in an a
proximation in which for the two-particle Green’s functio
one takes into account only the diagrams in Fig. 1 and
case 1!, whenAj ,s is independent of bothj ands.

4. SOLUTION OF THE EQUATIONS IN THE PARAMAGNETIC
PHASE

Note that either the parameterl @Eq. ~16!# or b @Eq.
~17!# can be chosen to be real because Eq.~1! does not
change after the following transformation in the two sp
subspaces:

ah,↑→ah,↑exp~ if!, ah,↓→ah,↓exp~2 if!,

where the phasef is constant. For definiteness, we assuml
to be real.

Using Eqs.~16! and ~17!, andF j j
(1)↓↑(01)52 ib* , we

transform equations~2!–~9! for extended states to

Gkk1

↑↑ ~v!5Gkk
~0!~v!S dkk1

1(
j

Vk jGj k1

↑↑ ~v! D , ~18!

Gj k
↑↑5G̃ll S (

k1

Vj k1
Gk1k
↑↑ 2lUGj k

↓↑2bUF j k
~1 !↓↑D , ~19!

Gkk1

↓↑ ~v!5Gkk
~0!~v!(

j
Vk jGj k1

↓↑ ~v!, ~20!

Gj k
↓↑5G̃ll S (

k1

Vj k1
Gk1k
↓↑ 2lUGj k

↑↑1bUF j k
~1 !↑↑D , ~21!

Fkk1

~1 !↓↑52Fkk
~0! (

j
Vj kF j k1

~1 !↓↑ , ~22!

F j k
~1 !↓↑52F̃ ll S (

k1

Vk1 jFk1k
~1 !↓↑1b* UGj k

↑↑2lUF j k
~1 !↑↑D ,

~23!

Fkk1

~1 !↑↑52Fkk
~0! (

j
Vj kF j k1

~1 !↑↑ , ~24!
is
i-
o

n
n-

-
n
-

-

n

F j k
~1 !↑↑52F̃ ll S (

k1

Vk1 jFk1k
~1 !↑↑2b* UGj k

↓↑2lUF j k
~1 !↓↑D .

~25!

Similarly, we obtain for localized states

Gj j 1

↑↑5G̃ll S d j j 1
1(

k
Vj kGk j 1

↑↑ 2lUGj j 1

↓↑2bUF j j 1

~1 !↓↑D , ~26!

Gk j
↑↑5Gkk

~0! (
j 1

Vk j 1
Gj 1 j
↑↑ , ~27!

Gj j 1

↓↑5G̃ll S (
k

Vj kGk j 1

↓↑ 2lUGj j 1

↑↑1bUF j j 1

~1 !↑↑D , ~28!

Gk j
↓↑5Gkk

~0! (
j 1

Vk j 1
Gj 1 j
↓↑ , ~29!

F j j 1

~1 !↓↑52F̃ ll S (
k

Vk jFk j 1

~1 !↓↑1b* UGj j 1

↑↑2lUF j j 1

~1 !↑↑D ,

~30!

Fk j
~1 !↓↑52Fkk

~0! (
j 1

Vj 1kF j 1 j
~1 !↓↑ , ~31!

F j j 1

~1 !↑↑52F̃ ll S (
k

Vk jFk j 1

~1 !↑↑2b* UGj j 1

↓↑2lUF j j 1

~1 !↓↑D ,

~32!

Fk j
~1 !↑↑52Fkk

~0! (
j 1

Vj 1kF j 1 j
~1 !↑↑ . ~33!

Here we have used the notation

Gkk
~0!~v!5~v2«k!21,

Fkk
~0!~v!5~v1«k22m!21,

G̃ll ~v!5~v2«01 iUG j j
2s2s~201!!21,

F̃ ll ~v!5~v1«022m2 iUG j j
2s2s~201!!21.

SinceAj ,s is independent ofj ands, functionsG̃j j
ss and

F̃ j j
ss are independent ofj , which can be replaced byl , and of

s, which can be omitted. We next solve Eqs.~18!–~33!.

4.1. Localized states

Consider Eqs.~26! and ~27!. Substituting the off-
diagonal matrix elementGj 1 j given by Eq.~26! into Eq.~27!,
we obtain

Gk j
↑↑~Gkk

~0!21
2NimuVkl u2G̃ll !5Vk jGj j

↑↑2lUG̃ll (
j 1Þ j

Vk j 1
Gj 1 j
↓↑

2bUG̃ll (
j 1Þ j

Vk j 1
F j 1 j

~1 !↓↑

1G̃ll (
k1Þk, j 1Þ j

Vk j 1
Vj 1k1

Gk1 j
↑↑ .

~34!

For the impurity ensemble, the hybridization matrix eleme
Vk j has the form
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Vk j5
1

AV
Vklexp~ ikR j !,

where Rj is the three-dimensional radius vector of thejth
impurity atom andV is the sample volume. In cuprates on
must replaceV by S, the area of the CuO2 plane, and take
into account thatRj is the impurity two-dimensional radiu
vector in an intermediate plane, for example,
La12x/2Mx/2O planes in La22xSrxCuO4.

Summing overj 1 in the last term on the right-hand sid
of Eq. ~34!, one must average the result over random dis
butions of impurity atoms. In calculating these configurati
averages, we have utilized the technique developed by Y
ezawa and Matsubara.37 As a result, we have found that th
last term on the right of Eq.~34! is proportional to

K (
k1Þk, j 1Þ j

exp~ i ~k2k1!Rj 1
!L

av

5Nim (
k1Þk

d~k12k!50,

where^ . . . &av denotes averaging over all possible config
rations of the impurity ensemble. Similar expressions are
tained in dealing with the pairs of equations~28! and ~29!,
~30! and ~31!, and ~32! and ~33!. In view of this result, in
what follows we neglect terms with such double sums.

Substituting

(
j 1Þ j

Vk j 1
Gj 1 j
↓↑5Gk j

↓↑Gkk
~0!21

2Vk jGj j
↓↑

according to Eq.~29! and

(
j 1Þ j

Vk j 1
F j 1 j

~1 !↓↑52F2k j
~1 !↓↑F2k2k

~0!21
2Vk jF j j

~1 !↓↑ ,

according to~31! into ~34!, we obtain an expression relatin
the off-diagonal Green’s functions,Gk j

↑↑ , Gk j
↓↑ , andFk j

(1)↓↑ ,
to the j-diagonal Green’s functions,Gj j

↑↑ , Gj j
↓↑ , andF j j

(1)↓↑ .
Applying this approach to the paired equations~28! and

~29!, ~30! and ~31!, and~32! and ~33!, we obtain

~Gkk
~0!21

2NimVkl
2 G̃ll !Gk j

↑↑1lUG̃ll Gkk
~0!21

Gk j
↓↑

2bUG̃ll F2k2k
~0!21

F2k j
~1 !↓↑5Vk j~Gj j

↑↑1lUG̃ll Gj j
↓↑

1bUG̃ll F j j
~1 !↓↑!, ~35!

lUG̃ll Gkk
~0!21

Gk j
↑↑1~Gkk

~0!21
2NimVkl

2 G̃ll !Gk j
↓↑

1bUG̃ll F2k2k
~0!21

F2k j
~1 !↑↑5Vk j~Gj j

↓↑1lUG̃ll Gj j
↑↑

2bUG̃ll F j j
~1 !↑↑!, ~36!

2b* UF̃ll Gkk
~0!21

Gk j
↑↑1~F2k2k

~0!21
2NimVkl

2 F̃ ll !F2k j
~1 !↓↑

2lUF̃ll F2k2k
~0!21

F2k j
~1 !↑↑52Vk j~F j j

~1 !↓↑

1b* UF̃ll Gj j
↑↑2lUF̃ll F j j

~1 !↑↑!, ~37!

b* UF̃ll Gkk
~0!21

Gk j
↓↑1~F2k2k

~0!21
2NimVkl

2 F̃ ll !F2k j
~1 !↑↑

2lUF̃ll F2k2k
~0!21

F2k j
~1 !↓↑52Vk j~F j j

~1 !↑↑

2b* UF̃ll Gj j
↓↑2lUF̃ll F j j

~1 !↓↑!. ~38!
i-

n-

-
b-

The solution of Eqs.~35!–~38! yields expressions for the
off-diagonal Green’s functions expressed in terms of the
agonal Green’s functions. Substitution of these express
into Eqs.~26!, ~28!, ~30!, and~32! at j 5 j 1 makes possible a
transformation to a system of four linear algebraic equati
for the j-diagonal Green’s functions. The latter functions d
termine the three desired parameters and spectra of loca
states.

There is, however, a more convenient option: calcul
the sum and difference of the paired equations~35!, ~36! and
~37!, ~38!. We have

a1~l!~Gk j
↑↑1Gk j

↓↑!2c3F2k2k
~0!21

~F2k j
~1 !↓↑2F2k j

~1 !↑↑!

5Vk j~c1~l!~Gj j
↑↑1Gj j

↓↑!1c3~F j j
~1 !↓↑2F j j

~1 !↑↑!!, ~39!

a1~2l!~Gk j
↑↑2Gk j

↓↑!2c3F2k2k
~0!21

~F2k j
~1 !↓↑1F2k j

~1 !↑↑!

5Vk j~c1~2l!~Gj j
↑↑2Gj j

↓↑!1c3~F j j
~1 !↓↑1F j j

~1 !↑↑!!,

~40!

a2~2l!~F2k j
~1 !↓↑1F2k j

~1 !↑↑!2c4* Gkk
~0!21

~Gk j
↑↑2Gk j

↓↑!

52Vk j~c2~2l!~F j j
~1 !↓↑1F j j

~1 !↑↑!1c4* ~Gj j
↑↑2Gj j

↓↑!!,

~41!

a2~l!~F2k j
~1 !↓↑2F2k j

~1 !↑↑!2c4* Gkk
~0!21

~Gk j
↑↑1Gk j

↓↑!

52Vk j~c2~l!~F j j
~1 !↓↑2F j j

~1 !↑↑!1c4* ~Gj j
↑↑1Gj j

↓↑!!.

~42!

Here we use the notationc1(2l)512lUG̃ll ,c2(l)51

1 lUF̃ll ,a1(l) 5 c1(l)Gkk
(0)21

2 NimVkl
2 G̃ll ,a2(2 l) 5 c2

(2l)F2k2k
(0)21

2NimVkl
2 F̃ ll ,c35bUG̃ll ,c4* 5b* UF̃ll .

Now, using Eqs.~39! and ~42!, we can derive, for ex-
ample, expressions forGk j

↑↑1Gk j
↓↑ and F2k j

(1)↓↑2F2k j
(1)↑↑ in

terms of the j-diagonal Green’s functions. Substitute th
former expression into the sum of Eqs.~26! and ~28! for
diagonal functions (j 5 j 1), and the latter into the differenc
between Eqs.~30! and ~32!. As a result, we obtain

~Gj j
↑↑1Gj j

↓↑!~v2«02S1!1bUZ~F j j
~1 !↓↑2F j j

~1 !↑↑!51 ~43!

and

~F j j
~1 !↓↑2F j j

~1 !↑↑!~v1«022m2S2!

1b* UZ~Gj j
↑↑1Gj j

↓↑!50. ~44!

Here we have introduced the self-energies, which are fu
tions of A, m, l, andb:

S1~v;l!5U~A2l!

1(
k

Vkl
2 @~c1~l!a2~l!2c3c4* F2k2k

~0!21
#

a1~l!a2~l!2c3c4* Gkk
~0!21

F2k2k
~0!21 , ~45!

Z~v;l!511NimG̃ll F̃ l l

3(
k

Vkl
4

a1~l!a2~l!2c3c4* Gkk
~0!21

F2k2k
~0!21 , ~46!
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S2~v;l!52U~A1l!

1(
k

Vkl
2 @~c2~l!a1~l!2c3c4* Gkk

~0!21
#

a1~l!a2~l!2c3c4* Gkk
~0!21

F2k2k
~0!21 . ~47!
q

in
The solution of~43! and ~44! has the form

Gj j
↑↑1Gj j

↓↑5Gloc~v;m,A,l,b!, ~48!

where
Gloc5
v1«022m2S2~l!

~v1«022m2S2~l!!~v2«02S1~l!!2ubu2U2Z~l!2
, ~49!

and

F j j
~1 !↓↑2F j j

~1 !↑↑52F loc~v;m,A,l,b!, ~50!

where

F loc5
b* UZ~v;A,m,l;b!

~v1«022m2S2~l!!~v2«02S1~l!!2ubu2U2Z2~l!.
~51!
e-

-
es
ons
r-
One can easily verify that the procedure applied to E
~40! and ~41!, which yields definitions ofGj j

↑↑2Gj j
↓↑ and

F j j
(1)↓↑1F j j

(1)↑↑ , results in expressions for these quantities
a form similar to Eqs.~48!, ~49! and ~50!, ~51! when l→
2l. As a result, we have

Gj j
↑↑2Gj j

↓↑5Gloc~v;m,A,2l,b! ~52!

and

F j j
~1 !↓↑1F j j

~1 !↑↑52F loc~v;m,A,2l,b!. ~53!

Finally, we derive from Eqs.~48!–~53! the j-diagonal
Green’s functions

Gj j
↑↑5

1

2
Gloc~v;m,A,l,b!1

1

2
Gloc~v;m,A,2l,b!,

~54!

Gj j
↓↑5

1

2
Gloc~v;m,A,l,b!2

1

2
Gloc~v;m,A,2l,b!,

~55!

F j j
~1 !↓↑52

1

2
F loc~v;m,A,l,b!

2
1

2
F loc~v;m,A,2l,b!, ~56!

F j j
~1 !↑↑5

1

2
F loc~v;m,A,l,b!2

1

2
F loc~v;m,A,2l,b!.

~57!

4.2. Extended states

Consider, for example, Eqs.~18! and ~19!. Substituting
the off-diagonalk matrix elementGkk1

given by Eq.~18!

into Eq. ~19!, we have
s.
Gj k
↑↑~v!S G̃ll

212 (
k1Þk

UVk1lU2Gk1k1

~0! D 1lUGj k
↓↑1bUF j k

~1 !↓↑

5Vj kGkk
↑↑1 (

k1Þk, j 1Þ j
Vj k1

Gk1k1

~0! Vk1 j 1
Gj 1k
↑↑ . ~58!

In accordance with Eqs.~35!–~38!, the Green’s function
Gj k
↑↑}Vj k . Taking into account the above reasoning, we n

glect terms like the last on the right-hand side of Eq.~58!. As
a result, we derive from Eqs.~18!–~25!

Gj k
↑↑~v!S G̃ll

212 (
k1Þk

Vk1l
2 Gk1k1

~0! D
1lUGj k

↓↑1bUF j k
~1 !↓↑5Vj kGkk

↑↑ , ~59!

Gj k
↓↑~v!S G̃ll

212 (
k1Þk

Vk1l
2 Gk1k1

~0! D
1lUGj k

↑↑2bUF j k
~1 !↑↑5Vj kGkk

↓↑ , ~60!

F j k
~1 !↓↑~v!S F̃ ll

212 (
k1Þ2k

Vk1l
2 Fk1k1

~0! D
1b* UGj k

↑↑2lUF j k
~1 !↑↑52Vj kF2kk

~1 !↓↑ , ~61!

F j k
~1 !↑↑~v!S F̃ ll

212 (
k1Þ2k

Vk1l
2 Fk1k1

~0! D
2b* UGj k

↓↑2lUF j k
~1 !↓↑52Vj kF2kk

~1 !↑↑ . ~62!

Equations~59!–~62! make it possible to obtain expres
sions for functions that are off-diagonal in the lower indic
in terms of diagonal functions. We take the paired equati
~59!, ~60! and~61!, ~62! and calculate their sums and diffe
ences. As a result, we obtain

b1~l!~Gj k
↑↑1Gj k

↓↑!1bU~F j k
~1 !↓↑2F j k

~1 !↑↑!

5Vj k~Gkk
↑↑1Gkk

↓↑!, ~63!
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b2~l!~F j k
~1 !↓↑2F j k

~1 !↑↑!1b* U~Gj k
↑↑1Gj k

↓↑!

52Vj k~F2kk
~1 !↓↑2F2kk

~1 !↑↑!, ~64!

b1~2l!~Gj k
↑↑2Gj k

↓↑!1bU~F j k
~1 !↓↑1F j k

~1 !↑↑!

5Vj k~Gkk
↑↑2Gkk

↓↑!, ~65!

b2~2l!~F j k
~1 !↓↑1F j k

~1 !↑↑!1b* U~Gj k
↑↑2Gj k

↓↑!

52Vj k~F2kk
~1 !↓↑1F2kk

~1 !↑↑!. ~66!

Here we have introduced the notation

b1~l!5G̃ll
212 (

k1Þk
Vk1l

2 Gk1k1

~0! 1lU,

b2~2l!5F̃ ll
212 (

k1Þ2k
Vk1l

2 Fk1k1

~0! 2lU.

Using Eqs.~63!–~66!, ~18!, ~20!, ~22!, and~24!, we ob-
tain the first pair of equations:

~Gkk
↑↑1Gkk

↓↑!S Gkk
~0!21

2
NimVk1l

2

b1~l!
D

2
bU

b1~l!
F2k2k

~0!21
~F2kk

~1 !↓↑2F2kk
~1 !↑↑!51, ~67!
~F2kk
~1 !↓↑2F2kk

~1 !↑↑!S F2k2k
~0!21

2
NimVk1l

2

b2~l!
D

2
b* U

b2~l!
Gkk

~0!21
~Gkk
↑↑1Gkk

↓↑!52
b* U

b2~l!
, ~68!

and the second pair of equations

~Gkk
↑↑2Gkk

↓↑!S Gkk
~0!21

2
NimVk1l

2

b1~2l!
D

2
bU

b1~2l!
F2k2k

~0!21
~F2kk

~1 !↓↑1F2kk
~1 !↑↑!51, ~69!

~F2kk
~1 !↓↑1F2kk

~1 !↑↑!S F2k2k
~0!21

2
NimVk1l

2

b2~2l!
D

2
b* U

b2~2l!
Gkk

~0!21
~Gkk
↑↑2Gkk

↓↑!52
b* U

b2~2l!
. ~70!

The solution of Eqs.~67!–~70! has the form

Gkk
↑↑1Gkk

↓↑5Gext~k,v;m,A,l,b!, ~71!

where
Gext5
F2k2k

~0!21
2b1~l!W~l!

~Gkk
~0!21

2b2~l!W~l!!~F2k2k
~0!21

2b1~l!W~l!!2ubu2U2W2~l!
, ~72!

and

F2kk
~1 !↓↑2F2kk

~1 !↑↑5Fext~k,v;m,A,l,b!, ~73!

where

Fext5
b* UW~l!

~Gkk
~0!21

2b2~l!W~l!!~F2k2k
~0!21

2b1~l!W~l!!2ubu2U2W2~l!
. ~74!
pin
rts
n
s on

ses
rs.
Here we have used the notation

W~l!5
NimVkl

2

b1~l!b2~l!2ubu2U2
. ~75!

The expressions forGkk
↑↑2Gkk

↓↑ and F2kk
(1)↓↑1F2kk

(1)↑↑

equal the right-hand sides of Eqs.~71! and~73! after substi-
tuting l→2l in Eqs.~72! and ~74!.

Finally we have thek-diagonal Green’s functions

Gkk
↑↑5

1

2
Gext~k,v;m,A,l,b!1

1

2
Gext~k,v;m,A,2l,b!,

~76!

Gkk
↓↑5

1

2
Gext~k,v;m,A,l,b!2

1

2
Gext~k,v;m,A,2l,b!,

~77!
F2kk
~1 !↓↑5

1

2
Fext~k,v;m,A,l,b!1

1

2
Fext~k,v;m,A,2l,b!,

~78!

F2kk
~1 !↑↑52

1

2
Fext~k,v;m,A,l,b!1

1

2
Fext~k,v;m,A,2l,b!.

~79!

5. DISCUSSION AND CONCLUSIONS

We have derived the solution of Eq.~1! corresponding to
a superconducting state of a doped dielectric due to s
fluctuations. In the approximation applied to vertex pa
~10! and ~11!, we have taken into account spin-flip electro
scattering. This process has generated the last two term
the right-hand side of Eqs.~19!, ~21!, ~23!, ~25!, ~26!, ~28!,
~30! and ~32!. The amplitudes of these scattering proces
are determined by two spin-fluctuation order paramete
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FIG. 3. Curves of~a! ReZ(v) and~b! Im Z(v) cal-
culated by Eqs.~80!–~83! at Nt50.1 Å2d (d52, 3!,
Db51.5 eV, Nim50.1Nt ,«05Db10.5 eV, U
50.5 eV, m52.5 eV, andm2«02UA50.2 eV: 1!
Vh51.0 eV; 2! 1.2 eV;3! 1.35 eV;4! 1.45 eV;5! 1.6
eV.
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One of these parameters,l, is derived from Eq.~16! and
expressed in terms of the normal Green’s functionGj j

2ss

@Eq. ~55!#, off-diagonal in the spin index. It is clear tha
nonzero solutions forl can be obtained in both normal~me-
tallic or insulating! and superconducting states of the syste

On the other hand, a nonzero solution for the seco
parameterb, which can be expressed using Eq.~17! in terms
of the anomalous Green’s functionF j j

(1)2ss @Eq. ~56!#, sig-
nifies the creation of localized bosons with spin 0 in t
system. Besides these, the system should contain loca
bosons with spin 1, as follows from Eqs.~51! and~57!. It is
the parameterb that determines function~74!, which de-
scribes a superconducting condensate in both singlet@Eq.
~78!# and triplet@Eq. ~79!# quasiparticle pairing channels.

The possibility of a nontrivial solution of Eq.~17! is
dictated by the contribution of poles or their neighborhoo
in the anomalous Green’s function~56!, which are located
near the Fermi level on the semiaxis Rev>m in the lower
half of the complex plane (Imv,0). This Green’s function
is a function ofZ, which is the renormalized energy of ele
tron correlations due to spin fluctuations and hybridizat
~46!. If the second term on the right-hand side of Eq.~46! is
less than the 1 due to the bare correlation energy, one
easily find that Eq.~17! has only the trivial solutionb50,
hence the system is in a normal state~either metallic or in-
sulating!. A solutionbÞ0 exists if there is at least a regio
near the Fermi level where ReZ,0. This would mean tha
the correlation energyUZ in this spectral range has chang
sign from plus in the bare state to minus, and correspond
attractive interaction between quasiparticles.

The functionZ depends onm, A, l, andb, which are
self-consistent parameters and determined by Eqs.~14!–~17!.
In order to prove the possibility of ReZ,0, let us estimateZ
in the Hartree–Fock approximation (l50 andb50). As-
suming thatVkl is independent ofk and considering for defi-
niteness the valence band of the undoped insulator, we
rive from Eq.~46!

Z511
0.5NimVkl

4

v22~m2«02UA!22NimVkl
2

R~v!, ~80!

wherev is measured with respect tom,
.
d

ed

s

n

an

to

e-

R~v!5
1

vF(
k

1

j~v!2«k2 i01
2(

k

1

j~2v!2«k2 i01G ,

~81!

and

j~v!5v1m2
NimVkl

2

v2«02UA1m
. ~82!

It follows from Eqs.~80!–~82! that the effective correla-
tion energyUZ is a complex, even function ofv. In our
calculations, we approximate the density of states in the
lence band by

r~0!~«!5H Nt

pDb
2 @Db

22«2#1/2, u«u<Db ,

0, u«u.Db .
~83!

Figure 3 shows ReZ and ImZ as functions ofv for
various hybridization parametersVh5VklNt

1/2. The function
Z(v) is very sensitive to the relation betweenm and «0

1UA, but in any case,m>«01UA, as follows from Eq.
~15!. For the givenm2«02UA50.2 eV and at relatively
small Vh , there are only narrow regions far from the Ferm
level where ReZ,0 ~curve1 in Fig. 3a!. The function ImZ
is also relatively small and nonzero at a considerable
tance from the Fermi level~curve 1 in Fig. 3b!. As Vh in-
creases, the regions where ReZ,0 widen and overlap at the
Fermi level, as shown by curves2, 3, 4, and5 in Fig. 3a. A
similar behavior is demonstrated by ImZ ~curves2, 3, 4, and
5 in Fig. 3b!. At the hybridization parameter correspondin
to curves5 in Fig. 3 but a larger detuning parameterm
2«02UA50.3 eV, the curves ofZ(v) are similar to curves
1 in Fig. 3. At a higher hybridization parameter ofVh51.9
eV, however, the curves of ReZ(v) and ImZ(v) are again
similar to curves5 in Fig. 3.

In conclusion note the following circumstance. We ha
shown that in the Hartree–Fock approximation, the corre
tion energy renormalized by the hybridization can be ne
tive near the Fermi level. But in this approximation on
single-particle states are generated, hence the system st
a normal one. In order to obtain a superconducting state
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doped insulator due to the negative correlation energy,
must take into consideration spin fluctuations in the syst
In this case, we obtain an equation system including ano
lous Green’s functions for localized bosons and a superc
ducting condensate, so the effective correlation energy
becomes a function of spin-fluctuation order parameters.

In this theory of the spin-fluctuation-induced superco
ductivity in impurity bands of doped insulators, the sup
conducting gap cannot be described by a BCS-like equat
It is replaced by the key equation~17!, which describes for-
mation of localized zero-spin bosons. The mechanism of
mation of a superconducting condensate near the Fermi l
in the insulator gap is determined by virtual tw
quasiparticle transitions over the impurity ensemble: a bo
localized at an impurity site→ a pair of quasiparticles in the
(2kk ) extended states of the impurity band→ a localized
boson at another impurity site, etc. In this case, the sin
and triplet quasiparticle pairing channels are mutually
lated.
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Softening of phonon modes in C 60 crystals induced by laser irradiation: Thermal effects
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Reversible softening of the intramolecularAg(2) pentagonal pinch~PP! mode of a C60 single
crystal in the face centered cubic phase has been studied as a function of laser power
density by means of Raman scattering. The average temperature rise in the laser excitation spot
has been determined using the Stokes to anti-Stokes integrated peak intensity ratio for the
Hg(1) phonon mode. Softening of the PP-mode was found to be due to heating of the sample
resulting from laser irradiation, in good quantitative agreement with experimental results
obtained for uniformly heated samples. These findings are in excellent agreement with results
obtained by numerical calculations of the local temperature distribution and average
temperature in the laser spot based on calculated integrated intensities of the Stokes and anti-
Stokes bands of the PP-mode. These calculations were based on experimental data for
the temperature dependence of phonon frequency and width, absorbance, and thermal conductivity
in solid C60. © 1998 American Institute of Physics.@S1063-7761~98!01611-4#
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1. INTRODUCTION

Raman scattering has been, since the initial discover
the fullerene family of compounds, a very useful tool f
their characterization. In particular, the response of
Ag(2) PP-mode to a variety of perturbations has been u
to probe many diverse properties of solid fullerene a
fullerene-based materials. These include temperature-
pressure-induced orientation-ordering phase transitions
effects due to intercalation of solid C60 with alkali metals.1–5

Raman scattering has also been used to study photodime
tion observed in solid C60 under conditions of intense lase
illumination, and dimerization caused by high pressure a
temperature treatment.6,7 The latter effects are clearly man
fested by the considerable softening of theAg(2) PP-mode.

The frequency of theAg(2) mode initially reported by
Bethuneet al.8 for the room-temperature Raman spectrum
air-exposed C60 films is 1469 cm21. It was also reported tha
the room-temperature Raman spectrum of oxygen-free60

contains a broad peak at 1459 cm21, which is more intense
than the 1469-cm21 peak. Exposure of the sample to oxyg
leads to recovery of the 1469-cm21 peak.9 The 1459-cm21

peak in the Raman spectrum of C60 was explained by Rao
et al.6 as a manifestation of the photoassisted dimerization
oxygen-free C60 films under intense laser illumination. It ha
also been shown that oxygen-exposed C60 films are more
9671063-7761/98/87(11)/6/$15.00
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resistant to laser irradiation and need considerably hig
laser power densities to initiate the photodimerizati
reaction.6,10 The softening of the PP-mode associated w
the photodimerization of C60 is irreversible. The phototrans
formed material is stable at room temperature and can
recovered only upon heating to temperature greater than
K. When the laser illumination level is below the phot
dimerization threshold, the PP-mode exhibits reversible s
ening down to 1461 cm21.9–11

Reversible softening of the PP-mode caused by lase
lumination has attracted special interest in Raman scatte
studies of solid C60, especially concerning its origin.12 Ra-
man experiments performed at 40 K have divulged the e
tence of a second wide band downshifted by;3 cm21 from
the 1469-cm21 peak at a laser power density;50 W/cm2.12

Increasing the laser power density leads to gradual softe
and enhancement of the intensity of this band. At the sa
time, the intensity of the 1469-cm21 peak goes down, and
disappears at a laser power density of;300 W/cm2 without
any detectable change in peak position. A softening of
new band continues as the power density increases, and
comes irreversible at laser power densities exceeding
W/cm2. Splitting and softening of the PP-mode is related
the high concentration of molecules in the lowest exci
triplet state resulting from the high absorbance of laser
diation, high singlet-triplet intersystem crossing, and t
© 1998 American Institute of Physics
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relatively high lifetime of the triplet state.11–13 It is assumed
under these conditions that each intramolecular pho
mode will split into two Raman components that correspo
to the PP-mode frequencies in the ground and excited e
tronic states of the C60 molecule.12

This assumption, in our opinion, must be examined
light of the photophysics of large molecular systems. It
well established that the frequency of any intramolecu
phonon mode of a large molecule, for example an arom
hydrocarbon, is higher in the electronic ground state tha
the excited states.14 The frequency difference determined v
vibrational analysis of the electron-phonon bands in the
minescence and absorption spectra varies from 5 to 10%
the corresponding ground state frequency. Moreover, the
quencies of the corresponding modes in the ground and
cited states of a molecule have fixed values and do not
pend on the populations of the various states, which are
turn, related to the laser power density. In C60, the frequency
difference of the split Raman peaks12 is very small in com-
parison to the PP-mode frequency, and the change in
quency can be attributed to population of the excited trip
state.12

From another point of view, laser illumination heats t
sample, which, as a rule, is the main reason for phonon m
softening. The heating of solid C60 under laser irradiation
even at low laser power densities, is due to the relatively
thermal conductivity of this material.15 This has been pro
posed as an alternative mechanism for PP-m
softening.9,10

The experimental study of sample heating due to la
irradiation involves a rather straightforward procedure, an
based on analysis of Raman peak intensities in the Sto
and anti-Stokes regions of the spectrum. We have perfor
a detailed study of the softening of the PP-mode of solid60

as a function of the laser power. Our motivation was to
amine the relationship between sample heating in the l
spot and PP-mode softening using the relationship betw
the total intensities of the StokesI S(v) to anti-StokesI AS(v)
bands,

I S~v!

I AS~v! FvL1v

vL2v G3

5expS \v

kBTD , ~1!

whereT is the mean temperature in the laser spot,vL is the
laser frequency, andv is the phonon frequency, appropr
ately corrected for thev3 scattering efficiency factor.16 Ef-
fects related to the frequency dependence of the optical
efficients have been neglected, as we are far enough f
resonance conditions. We have measured detailed Ra
spectra of C60 single crystals in the low-energy Stokes a
anti-Stokes regions, as well as in the high-energy reg
where the PP-mode is located, at room temperature, an
various laser power densities. The results clearly indic
considerable overheating of the sample in the laser s
They agree well with results on the uniform bath temperat
dependence of the PP-mode frequency. We have also
formed numerical calculations of the local temperature d
tribution and the mean temperature in the laser spot from
calculated integrated intensities of the Stokes and anti-Sto
bands of the PP-mode. These calculations were base
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experimental data for the absorbance and thermal condu
ity of solid C60, and are in good agreement with the expe
mental results.

2. EXPERIMENTS

Single crystals of fullerite were grown from a solution
C60 in toluene. The primary C60 material, with purity better
than 99%, was obtained by the Kra¨tschmer method.17 Data
were recorded on crystals in the form of thin platelets w
well-developed specular surfaces and dimensions;300
3300350mm3. The uniform-temperature data were tak
using a nitrogen gas flow cryostat, for bath temperatures
to 470 K. In this case the samples were glued to the finge
using a high-temperature and high thermal conductivity gl
Room-temperature data were taken on freely located
exposed samples.

Raman spectra were recorded using a triple monoch
mator ~DILOR XY-500! equipped with a CCD cryogenic
detector system. The spectral width of the system w
;5 cm21. The 514.5-nm line of an Ar1 laser was used for
excitation. The laser beam was focused to a spot ei
;1.25mm in diameter using an Olympus 1003 objective, or
;7.5 mm in diameter using a Nikon 203 objective with a
flux adapter. The laser spot diameter and half-width are c
cal parameters, along with the laser power, in assessing
comparing experimental results on laser-induced effe
Throughout this paper, we have adopted as the laser
diameter and half-width the values measured at the 10%
1/e intensity values relative to the peak, respectively. T
spectra were recorded in back-scattering geometry usin
l/4 plate as a scrambler and an Olympus microscope sys
for image processing. The laser power at the sample va
from 0.06 to 0.3 mW for a laser spot diameter.1.25 mm,
and from 0.4 to 1.5 mW for a laser spot diameter.7.5 mm.
The data for temperature dependence were recorded a
lowest laser power necessary for recording spectra to m
mize the effects of laser irradiation, and the temperature
stabilized for a long time to ensure uniformity over the ent
sample volume.

Peak positions and total intensities were determined
fitting Lorentzians to the experimental data. The accuracy
the peak positions was about 0.25 cm21. To eliminate sys-
tematic errors in the peak positions, the experimental se
was calibrated before every measurement using the 1797
cm21 plasma line of a Ne lamp, which is located near t
PP-mode spectral position. The accuracy of the total p
intensities was limited by the scatter in the background v
ues, and the error was therefore estimated to be no more
10% of the intensity of the weakest anti-Stokes band. T
temperature stabilization accuracy during uniform tempe
ture measurements was;1 K.

3. RESULTS AND DISCUSSION

The Raman spectrum of C60 single crystals, taken a
room temperature and normal pressure, contains ten m
intramolecular modes:Hg(1)-Hg(8) and Ag(1), Ag(2).
Their frequencies are very close to those previously de
mined: the differences do not exceed 2–3 cm21.1,8 In addi-
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tion to these bands there are some very weak Raman p
that may originate in second-order scattering.18 The most
intenseAg(2) PP-mode, located under normal conditions
.1467.3 cm21, corresponds to the out-of-phase stretching
pentagonal and hexagonal carbon rings.

The frequency of all Raman peaks is sensitive to
laser power density: the majority of the modes soften wh
the laser power increases. The dependence of the PP-m
frequency on laser power density is shown in Fig. 1 by op
symbols. The initial value of the PP-mode frequen
.1465.8 cm21 at laser power density.600 W/cm2 de-
creases linearly to.1461.8 cm21 as the laser power densit
increases to.2700 W/cm2. The extrapolation of this depen
dence to vanishing laser power density yields a frequency
the PP-mode of.1467.5 cm21. This is close to the highes
experimental value of 1467.3 cm21 observed at minimal la-
ser power density.200 W/cm2.

The softening of the PP-mode under laser illumination
reversible when the laser power density increases to.3000
W/cm2 ~for an exposure time of.600 sec!. At higher laser
power densities it becomes irreversible, which case vis
damage of the crystal surface at the illumination spot reg
is observed. The solid symbols in Fig. 1 show the dep
dence of the PP-mode frequency on the bath tempera
Tbath, for the uniformly heated samples. The laser pow
density for this measurement was kept constant at the low
level,.200 W/cm2, which corresponds, as will be shown,
a local temperature rise of.10 K and a shift in phonon
frequency of.0.2 cm21. These values are close to the e

FIG. 1. Dependence of the PP-mode frequency of solid C60 on laser power
density at room temperature, laser spot diameter;7.5 mm ~open symbols!.
Solid symbols show the dependence of the PP-mode frequency of solid60

on the uniform temperature of the sample,Tbath for a fixed laser power
density;200 W/cm2. Solid lines are linear least-square fits to the expe
mental data.
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perimental accuracy in the peak position and estimated t
perature in the laser spot. At room temperature, the
quency of the PP-mode is.1467.3 cm21, and it decreases to
1463.7 cm21 at 470 K. The temperature dependence of
PP-mode frequency is very similar to its dependence on la
power density. This is a clear indication that softening of t
PP-mode under laser illumination may be related to lo
overheating of the sample in the laser spot.

Figure 2 shows Raman spectra of the C60 crystal taken in
the Stokes and anti-Stokes regions at three different la
power levels. The spectrum in the Stokes region conta
three intramolecular phonon modes,Hg(1), Hg(2), and
Ag(1), with frequencies 273, 435, and 495 cm21, respec-
tively. In the anti-Stokes region, all three spectra contain
prominentHg(1) Raman peak. The other two peaks are n
detectable at laser powers 0.06 and 0.15 mW; they only
come visible if the spectrum is recorded at laser power.0.3
mW. The peak intensities of the Raman bands in the Sto
region are essentially the same in all three spectra, whe
in the anti-Stokes region the intensity ofHg(1) peak in-
creases noticeably as the laser power increases. This
clear indication that the temperature of the sample within
laser illumination spot gradually increases with laser pow

A comparison of the total intensities of theHg(1) Ra-
man peak in the Stokes and anti-Stokes regions on the b
of Eq. ~1!, using temperatureT as a fitting parameter, yield
the average temperatureTspot

exp in the spot. The data revea
considerable overheating of the sample within the laser i
mination spot. The temperatureTspot

exp reaches.530 K at laser
power 0.3 mW and spot diameter.1.25mm, which is about
270 K lower than the heater temperature for the sublimat

FIG. 2. Raman spectra of solid C60 in the low-energy Stokes and anti-Stoke
regions at room temperature, for various laser power levelsW: a! 0.3 mW,
b! 0.15 mW, c! 0.06 mW. Laser spot diameter.1.25 mm, Tbath5300 K,
Tspot

exp is the mean temperature inside the laser spot determined from Eq~1!:
a! Tspot

exp5529 K; b! Tspot
exp5401 K; c! Tspot

exp5340 K.
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of C60 powder during vapor growth of fullerite single crys
tals. These data are compatible with visually observed d
age of the crystal surface at high laser powers, when su
mation of material and crater creation takes place due
extreme overheating of the material. As discussed below,
strong temperature rise is due to very low thermal cond
tivity, which strongly localizes the effect of the laser irr
diation.

Figure 3 shows the dependence of PP-mode freque
on the uniform temperature of the sampleTbath ~open sym-
bols!, and on the mean temperatureTspot

exp in the laser spot a
various laser powers, determined from Eq.~1! ~solid sym-
bols!. The agreement between these data is within the exp
mental errors for theTspot

exp determination, which varies from
20 to 50 K in the various measurements. The results indic
that the temperature of the excited crystal region inside
laser spot,Tspot

exp , determined as described above, is sign
cantly higher than room temperature, and increases with
ser power. They also mean that the dominant effect of la
illumination is to overheat the sample inside the laser sp
and there is no need to turn to the excited triplet state of60

to explain softening of the PP-mode. The relatively hi
overheating of fullerite with respect to other solids is rela
primarily to the relatively low thermal conductivity of thi
material.15

It can be shown that the resulting laser overheating
compatible with experimental data on light absorbance
thermal conductivity of fullerite.15,19 As a check, we have
calculated the overheating temperature distributionDT(R,Z)
inside the laser spot from the steady-state solution gi
originally by Lax20 for constant thermal conductivity:

FIG. 3. Dependence of PP-mode frequency of solid C60 on the uniform
temperature of the sample,Tbath ~open symbols!, and the local temperature
inside the laser excitation spotTspot

exp ~solid symbols!.
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DT~R,Z!5
I 0wA~12R!

K0

3E
0

`

dlJ0~lR!F~l!
Ae2lZ2le2AZ

A22l2 , ~2!

whereR is the reflectivity,K0 is the thermal conductivity a
room temperature, andR5r /w, Z5z/w, A5aw are dimen-
sionless parameters for the radiust, the depthz, and the
absorption coefficienta. In the above equation,J0(lR) is
the zeroth-order Bessel function andF(l) is the correspond-
ing Bessel transform of the laser beam profile, which is
sumed to be Gaussian, andI (r )5I 0 exp(2r2/w2), wherew is
the beam half-width at 1/e of the maximum intensityI 0 . In
this axial symmetry, the temperature profile depends only
the radiusr and depthz.

In the above solution, the material is considered se
infinite, an approximation which is clearly not valid in ou
case, as the crystallites are of small dimensions. But du
the very low thermal conductivity, the calculations prove th
heating is localized, and that it very closely follows the las
beam profile.

The temperature dependence of the therm
conductivity21 and absorption coefficient22 has also been
considered in the literature. In the present case, the the
conductivity can be considered constant at 0.4 W•m21

•K21

above room temperature,15 although more recently eve
lower values have been reported for the room-tempera
thermal conductivity.23 The optical coefficients can also b
considered constant~absorption 2.7mm2119 and reflectivity
0.1924! in the temperature range under consideration. Th
two assumptions simplify the calculations considerably. T
beam half-widthw was calculated from the value given b
the manufacturer of the microscope objective for the exc
tion wavelength at optimum focusing and for 90% of t
total intensity. As all measurements were obtained with
microscope very carefully focused, we can assume that
actual values are very close to optimal, i.e.,w50.4mm for
1003 magnification and 2.5mm for 203 magnification. In
Fig. 4 we present the temperature distribution obtained fr
Eq. ~2! for several laser beam powers and spot diame
d51.25mm ~a! and 7.5mm ~b!.

The Raman spectra are given by the convolution of
scattering from volumes (2prdrdz) of circular rings of
equal temperature at the laser spot. Based on the temper
distribution along ther andz-axis obtained from Eq.~2!, the
Stokes spectra can be calculated from the cross sectio16

neglecting the frequency dependence of the second-o
susceptibility and the optical constants, as we are far fr
resonance, i.e.,

dIs

dv
}E

0

`

dzE
0

`

dr~2pr !

3~11h!
~vL2v!3

vph

G/2

~v2vph!
21G2/4

I ~r !e2az, ~3!

where the phonon full FWHM G'5.110.003(T
2300) cm21 and the phonon frequencyvph'1467
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FIG. 4. Temperature distribution as a functio
of radius inside the laser spot calculated fro
Eq. ~2! and assuming ambient sample temper
tureT05300 K and zero depth (z50). a! Laser
spot diameterd51.25mm and laser power is
~1! 0.4; ~2! 0.15, and~3! 0.06 mW; b! laser spot
diameterd57.5mm and laser power is~4! 1.6;
~5! 1.15, and~6! 0.38 mW.
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20.02(T2300) cm21 both depend on the temperatureT in a
way defined by the uniform heating~Fig. 1!. The statistical
factor h is defined in Ref. 16

h~T!5
1

exp~\v/kBT!21
. ~4!

For the anti-Stokes component, the factor (11h)(vL2v)3

in Eq. ~3! must be replaced byh(vL1v)3.
Based on these calculations, the peak position, wid

average temperature, and ratio of the Stokes to anti-Sto
total intensities for theAg(2) PP-mode can be obtained fo
every temperature distribution. The calculated average t
perature in the spot,Tspot

calc as obtained from the calculate
ratio of the Stokes to anti-Stokes total intensities for the P
mode~corrected for thev3 dependence! are shown in Fig. 5
for d57.5mm. In the same figure, the data points indica
the experimental results for the average temperatureTspot

exp

obtained from the ratio of the Stokes to anti-Stokes com
nents of theHg(1) phonon mode, also corrected for thev3

dependence. The agreement between the theoretical pr
tions and the experimental values is remarkable, despite

FIG. 5. Temperature in the laser excitation spot as a function of laser po
for laser spot diameter.7.5 mm. Solid symbols are experimental data f
Tspot

exp determined from the Stokes to anti-Stokes total intensity ratio for
Hg(1) phonon mode. Solid line is the mean temperatureTspot

calc calculated
using Eq.~2! and Eq.~3!. Dashed line is the temperatureT(0,0) at the center
of the laser excitation spot and zero depth~r 50, z50!, calculated using
Eq. ~2!.
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fact that no adjustable parameters were used in the calc
tions. This is a strong indication that the modifications
duced by laser irradiation in the spectra are due to lo
heating, which can raise the temperature to 600 K at
center of the laser spot~zero depth!, and a power of.1.6
mW, as our calculations indicate for the value ofT(0,0)
~shown by the dashed line in Fig. 5 and calculated from
~2! for r 5z50!.

To compare results obtained under various experime
conditions, namely the excitation spot diameterd and laser
power densityP, we found that the results for the averag
temperature over the spot can be described by the app
mate expression

^T&S/AS
appr .T011116

W

d
, ~5!

where the temperature is given in K,T0 is ambient tempera-
ture, the laser powerW is in mW, andd is in mm. Taking
into account thatW5Ppd2/4, expression~5! can be written

^T&S/AS
appr .T01876Pd. ~6!

Equation~6! implies that at larger spot diameters, one nee
lower laser power densities to achieve the same average
perature rise. This result is consistent with our experimen
data obtained for sample overheating at two different s
diameters, and is a very important consideration in trying
compare results obtained under different experimen
conditions.6,8–12 Equation~6! makes it clear that the powe
density is not sufficient to compare results on laser-indu
overheating of materials with low thermal conductivity.

The calculated temperature profiles inside the laser s
show a considerable difference between the temperatur
the center and periphery of the spot. The difference, star
with .30 K at W50.2 mW, reaches.220 K at W
51.6 mW ~see Fig. 4!. The highly nonuniform temperatur
distribution inside the spot results from the low thermal co
ductivity of the material. This may be the reason for t
splitting of the PP-mode in the Raman spectra taken at t
peratures lower than 250 K, the temperature of
orientational-ordering phase transition from fcc to
structure.25 According to van Loosdrechtet al.,1 the tempera-
ture dependence of the PP-mode frequency exhibits a ju
of about 4 cm21 at 250 K. We remark that in this case th
transition temperature of 250 K might be located between
maximum and minimum temperatures within the excitati
spot. This means that for a range of laser power dens
within the excitation spot, one can have both the low a

er
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high temperature phases. The Raman spectra taken u
these conditions are expected to show peaks of the PP-m
coming from the two phases, with intensities proportiona
the scattering volume corresponding to each phase. At lo
and higher laser power densities, the area inside the ex
tion spot will correspond to a single phase of the materia
the low or high temperature phase, respectively. It must
said that this is not exactly the case in Ref. 12, because
laser power densities used are not sufficient to produce
considerable temperature rise within the laser excitation s
We also think that it might be interesting to extend the m
surements of local overheating within the laser spot to
low-temperature region, taking special precautions in the
cusing of the laser beam and measuring its power.

4. CONCLUSIONS

Reversible softening of the PP-mode in the Raman sp
tra of fullerite C60 under laser illumination is related to ove
heating of the material inside the laser spot. Estimates of
mean temperature inside the laser spot on the basis of ex
mental Raman spectra in the Stokes and anti-Stokes reg
show that it can reach as high as 530 K at laser power.0.3
mW and laser spot diameter.1.25 mm. The experimenta
dependence of PP-mode frequency on the uniform temp
ture of the sample agrees well with the dependence of
PP-mode position on the mean temperature in the laser s
Numerical calculations of the local temperature in the la
spot, based on experimental measurements of laser p
density, optical absorption, and thermal conductivity of so
C60, are in good quantitative agreement with the experim
tal results.
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Optical transitions and cyclotron resonance at Landau levels split by a periodic
potential
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Zh. Éksp. Teor. Fiz.114, 1795–1803~November 1998!

The structure of the electron spectrum is investigated and selection rules are found for transitions
between magnetic subbands in a surface 2D superlattice of quantum dots in a perpendicular
magnetic field. The photon absorption probabilities are calculated, and the profiles of the
absorption lines are determined for allowed and forbidden direct dipole transitions between
subbands split off from different Landau levels. ©1998 American Institute of Physics.
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1. INTRODUCTION

The quantum states of Bloch electrons in a magn
field have intrigued theoreticians1–5 and experimentalists6–8

for several decades now. So far, however, no one has
served phenomena to corroborate the existence of a
structure of Landau levels. This deficit is attributable to t
fact that the observation of such phenomena in real crys
calls for as yet unattainable magnetic fields of the order
1000 T. On the other hand, the magnetic subbands of B
electrons might be observed in artificial crystals, i.e., surf
two-dimensional~2D! superlattices situated in a perpendic
lar magnetic field. The last decade has witnessed progre
the creation of such semiconductor structures9 with a mean
free path significantly exceeding the period of the potent
More recently, first attempts have been undertaken to
serve spectra of the type known as Hofstadter’s ‘‘butterfl
~Ref. 4! in 2D superlattices by means of magnetoresista
measurements.10 Another possibility for observing the struc
ture of the spectrum experimentally is to investigate the m
netooptics of such structures. In this paper we report a
merical study of the absorption of electromagnetic radiat
in arrays of quantum dots~dot lattices! in a magnetic field.

2. BASIC EQUATIONS AND COMPUTATIONAL METHOD

In the proposed model the Hamiltonian of an electron
a periodic 2D potential in a static magnetic field and in
electromagnetic field has the formĤ5Ĥ01Ĥ int . The unper-
turbed Hamiltonian is interpreted here as the Hamiltonian
the electron in a perpendicular magnetic field and in the fi
of a periodic potential:

Ĥ05
1

2m* S p̂1
ueuA0

c D 2

1V~x, y!, ~1!

where the functionV(x, y)5V0cos2(px/a)cos2(py/a) models
the periodic potential of a square lattice of quantum do
A05H(0,x, 0) is the vector potential of the static magne
field, andm* is the effective mass of the electron. The eige
function of the Hamiltonian~1!, subject to the generalize
Bloch conditions in a magnetic field,
9731063-7761/98/87(11)/5/$15.00
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ck~x, y!5ck~x1qa, y1a!exp~2 ikxqa!

3exp~2 ikya!exp~22p ipy/a!, ~2!

can be written as a series in oscillatory functionswN(x)
along thex direction and plane waves in they direction11–13:

ck
N0 ,n0~x, y!5 (

N50

`

(
n51

p

CNn
N0 ,n0~k! (

j 52`

1`

wN

3S x2x02 jqa2nqa/p

l H
D expS ikxF jqa

1
nqa

p G DexpS 2p iy
jp1n

a Dexp~ ikyy!. ~3!

The quantum numbersN0 and n0 define the magnetic sub
band: n051,p labels the subband split off from theN0th
Landau level. The parameterp/q5ueuHa2/2p\c ~p and q
are integers! is equal to the number of quanta of magne
flux through a lattice unit cell of areaa2, and l H

5Ac\/ueuH is the magnetic length. We previously11–13pro-
posed a numerical method for calculating these functions
find the spectrum and wave functions, we write the Ham
tonianH0 in the representation of symmetrized functions a
sociated with the coefficientsCNn

N0 ,n0(k) in Eq. ~3!. In this
representation the eigenvaluesEN0 ,n0

(k) of the Hamiltonian
~1! are found by diagonalizing its matrix.

The effect on the system of an electromagnetic wa
propagating along the vectorH and polarized linearly along
the x axis is taken into account by perturbation theory. T
perturbation Hamiltonian is

Ĥ int52 i
ueu\
m* c

A1exp~2 ivt !
]

]x
. ~4!

In Eq. ~4! A1 is the vector potential of the electromagne
field.

The number of photons absorbed per unit time per u
surface area is
© 1998 American Institute of Physics
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a5
2p

\F E uPkk
i→ f u2d@Ef~k!2Ei~k!2\v#

2

~2p!2 d2k,

~5!

whereF is the photon flux density. We assume here that
wave vectors of the electron in the initial and final sta
coincide, i.e., we are concerned with direct interband tra
tions. The integration in Eq.~5! is carried out over all occu
pied initial states.

It follows from Eqs. ~3! and ~4! that the direct dipole
transition matrix element has the form

Pkk
i→ f5A1

ueu
qam* c (

N,M50

`

(
n,s51

p

CMs
f
* ~k!CNn

i ~k!

3(
j
E

2qa/2

qa/2

wMFx2x02 jqa2nqa/p

l H
G

3 p̂xwNFx2x02 jqa2nqa/p

l H
Gdx. ~6!

In strong magnetic fields, whereqa@AN lHAM l H and V0

!\vc , the oscillatory functions for all effectiveN andM in
~6! are highly localized in the magnetic unit cell. Cons
quently, the contribution of terms with largej to the integral
~6! are exponentially small. Restricting the equation to ter
with j 50 and extending the limits of integration overx to
infinity, we obtain

Pkk
i→ f52 i

ueu\A1

qam* clHA2
(
N50

`

(
n,s51

p

@CN21,s
f
* ~k!CNn

i

3~k!AN2CN11,s
f
* ~k!CNn

i ~k!AN11 #. ~7!

Herei andf are specified by the set of two quantum numb
characterizing the magnetic Landau subband.

3. RESULTS AND DISCUSSION

Of primary concern here is the calculated structure of
electron spectrum. All the parameters of the periodic pot
tial and the magnetic fields are given in the figure captio
Figure 1a shows the energy levels fork50, corresponding to
the edges of the magnetic subbands. The number of mag
flux quanta through unit cell forp/q>2 labels the vertical
axis. Clearly, the levels tend to bunch up toward the unp
turbed Landau levels in this magnetic field range. In
range p/q,2 ~not shown in the figure! magnetic Landau
subbands are not formed, and Hofstadter butterfly spe
emerge.4 We can see that the total width of the split Land
levels decreases as the numberN increases. The spectrum o
magnetic subbands split off from the zeroth (N50) Landau
level is shown in magnified scale in Fig. 1b, where the nu
ber of magnetic flux quanta is now incremented by o
p/q515/1; 61/4; 31/2; 63/4; 16/1. The electron wave vec
in each subband falls within the limits of the first magne
Brillouin zone:2p/qa<kx<p/qa; 2p/a,ky,p/a. It is
evident thatp nonoverlapping magnetic subbands are form
for p/q515/1 and 16/1. The same subbands are formed
der each Landau level. In the interval between integral val
of p/q the number of subbands varies sharply with the m
e
s
i-

-

s

s

e
-

s.

tic

r-
e

ra

-
:
r

d
n-
s
-

netic field. Each subband existing for integralp/q splits into
a series of subbands so that their total number under e
Landau level is equal top. The narrow subbands forp/q
561/4; 31/2; 63/4 are indistinguishable in Fig. 1b.

Figure 2 illustrates the distribution of widths of the La
dau subbands forp/q515/1. Clearly, the widths of subband
situated under one Landau level can differ by several ord
of magnitude. The maximum width occurs for subbands n
the middle of the split Landau level~see also Fig. 1b!. The
edges of these subbands should be experimentally resolv
in the absorption spectra. The widths of subbands situate

FIG. 1. a! Energy spectrum of a quantum dot lattice~Al, Ga!As (a
580 nm, V05220 meV) in a magnetic field fork50. a! The positions of
the Landau levels are indicated by heavy dots. b! Structure of the magnetic
Landau subbands (0,n) for p/q515/1; 61/4; 31/2; 63/4; 61/1.

FIG. 2. Width of the Landau subbands (N, n) for N50, 1, 2 (n51, p)
for p/q515/1, a580 nm; V05220 meV.
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FIG. 3. Spatial distribution of the real and imaginary parts of thec function and the electron densityucu2 for k50 in states: a! ~1, 1!; b! ~1, 2!; c! ~1, 11!.
The magnetic field corresponds to the number of magnetic flux quantap/q515/1. Parameters of the superlattice:a580 nm; V05220 meV. The wave
functions of states~1, 1! and~1, 11! are transformed under representationB, and those for~1, 2! are transformed under representationA of groupC2 . The
distribution of the electron density hasC4V group symmetry.
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the edges of the region of the split Landau level are ex
nentially small, and they will be observed as discrete lev

Figure 3 illustrates the spatial distributions of the re
and imaginary parts of the electron wave functions and
electron density for states (N0 , n0)5(1, 1); (1, 2); (1,11),
k50. The calculations are carried out for a magnetic fi
corresponding top/q515/1. The dark areas represent t
regions of maximum values of the function. Only positi
values of the real and imaginary parts of thec functions are
plotted.

Our band structure determined here and the wave fu
tions can be used to draw conclusions as to the natur
optical absorption in the investigated system. A grou
theoretic analysis establishes the selection rules for tra
tions at an arbitrary point of the magnetic Brillouin zone.
particular, for k50 transitions between states transform
under different irreducible representations of the Ham
tonian symmetry groupC2 , one symmetric~A! and one an-
-
s.
l
e

d

c-
of
-
si-

-

tisymmetric~B!, are allowed in the dipole approximation.
the initial statei is transformed under representationB ~A!, a
transition is allowed to all final statesf 5 i 1@2 j 11# ~j is an
integer! transformed under representationB ~A!. This rule is
confirmed by numerical calculations of the matrix elemen
All transitions are allowed at low-symmetry points of th
Brillouin zone.

The transition probabilities 0 from different subban
split off from the same Landau level can differ substantial
For example, the probability is high for transitions fro
states in the middle of subbands (k50) that are split off
from a Landau level with even~odd! N and are transformed
under representationA ~B!. But if the initial state fork50
belongs to a subband split off from an even~odd! Landau
level and is transformed under representationB ~A!, the tran-
sition probability becomes relatively low. This result stem
from the fact that the wave function in the subband (N0 , n0)
is constructed mainly fromN0th-level oscillatory functions.
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It can be shown that the mixing of neighboring unperturb
N061 Landau states in the subband wave functions of
N0th split level is proportional to the small parameter

b5
V0

\vc

2p l H

a
,

which is defined as the ratio of matrix elements of the o
diagonal block of the matrix of the HamiltonianĤ0 to ele-
ments of the diagonal block.~The structure of the matrix o
the Hamiltonian is described in detail in Refs. 11 and 12!. If
the parameterb'1, the mixing of neighboring Landau state
is high, and the probabilities of transitions from any initi
state will be of the same order. This same parameterb is
responsible for the weakness of transitions between st
within a single split Landau level relative to transitions
neighboring split sublevels.

The probability of absorption by magnetic subbands
calculated according to Eq.~5!. In a magnetic field corre-
sponding to the number of magnetic flux quantap/q515/1
we havea59.71l H for the indicated parameters of the supe
lattice, so that Eq.~7! can be used to calculate the transiti
matrix element.

To visualize the structure of the absorption spectrum
an instructive way, we calculatea(n) when only states of
the lowest Landau subband (0, 1) neark50 are occupied.
The corresponding absorption spectrum is shown in Fig
The figure shows the absorption lines associated with tra
tions to subband states (0,n) ~low-frequency region! and
(1,n) ~high-frequency region!. Transitions to subband state
(1,n) are strongest; the transition probability to states (0,n)
is on the order ofb250.5 times lower. The probability of a
photon being absorbed neark50 varies significantly as a
function of the order number of the magnetic subband of
final state; alternating lines of allowed and forbidden tran

FIG. 4. Photon absorption probability for a superlattice of quantum d
with parametersa580 nm andV05220 meV in a magnetic field corre
sponding top/q515/1 vs. electromagnetic wave frequency. The low
Landau subband~0, 1! is partially filled. Transitions to states of subbands
the zeroth (N50) and first (N51) Landau levels are visible. Insets: fin
structure of the absorption lines of allowedaal(n) and forbiddena forb(n)
transitions, indicated by arrows in the main figure.
d
e

-

tes

s

-

n

4.
i-

e
i-

tions are visible. This pattern corresponds to our establis
selection rules. The insets to Fig. 4 show the fine structur
the absorption lines of allowed and forbidden transitions n
the middle of the magnetic subbands indicated by the arr
in the main figure. The allowed transitions (Pkk

i→ fÞ0) near
k50 correspond to characteristic plateaus of the absorp
lines ~see the left inset!, whereas in the case of forbidde
transitions (Pkk

i→ f50) the absorption coefficient increase
linearly with frequency~right inset!. This result is attribut-
able to the fact that the matrix element of a forbidden tra
sition is proportional touku. The width of the absorption lines
is D i→ f5uDEi2DEf u/\, whereDEi , f5uEi , f(0)2Ei , f(kF)u
(kF is the Fermi quasimomentum!.

For typical densities of 2D electrons of the order
1011cm22, several subbands of the zeroth Landau level
filled ~for H'105 Oe), adding to the complexity of the ab
sorption spectrum. Figure 5 shows the photon absorp
probability in transitions between Landau subbands when
eight lowest magnetic subbands (0, 1) . . . (0, 8) arecom-
pletely filled and the ninth subband~0, 9! is partially filled.
This situation corresponds to a carrier density of the orde
1.531011cm22. In Fig. 5 absorption lines associated wi
transitions between magnetic subbands split off from
Landau levelN50 are visible at lower frequencies. The fir
low-frequency absorption line shown in the figure is attr
utable to transitions between subband~0, 9! and subband
~0, 10!. The frequencies of this and the next-nearest tran
tions are in the millimeter microwave range. Such transitio
between magnetic subbands of one Landau level can be
tected by observing ordinary cyclotron resonance. The c
cept of cyclotron resonance is customarily identified w
electron transitions between Landau levels. As shown ab

s

t
FIG. 5. Probability of absorption of a photon by a superlattice of quant
dots with parametersa580 nm andV05220 meV in a magnetic field cor-
responding top/q515/1 vs. electromagnetic wave frequency. The eig
lowest Landau subbands (0, 1) . . . (0, 8) arecompletely filled, and the
ninth subband~0, 9! is partially filled. The arrows indicate transitions from
the nine filled subbands to subband~1, 1!. The plus signs indicate transi
tions between subbands (0, 1)→(1, n) (n51, p).
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the presence of the periodic potential causes the Landau
els to split into magnetic subbands. It is significant here t
the electronc functions in the subbands are mixed with a
unperturbed Landau states@see Eq.~3!#. The contribution of
different Landau levels to the states of subbands of theN0th
unperturbed level in the linear approximation with respec
the number of Landau levels included in the expansion~3! is
proportional to the parameterb. In general, therefore, we
encounter a nonzero transition probability between subba
contiguous with the same Landau level. This result follo
from an analysis of Eq.~7! for the transition matrix element
For example, if several subbands of the zeroth level
filled, transitions to all other subbands of the given Land
level are characterized mainly by the second term in
bracketed expression of Eq.~7!. It provides the largest con
tribution ~of the order ofb) to the transition matrix element
We can therefore speak of resonances~cyclotron resonances!
associated with transitions between subbands rather than
tween Landau levels. The experimental investigation of s
absorption spectra in the magnetic subbands affords a u
tool for studying the quantum states of Bloch electrons i
magnetic field.

Figure 5 also shows transitions from filled subbands
the zeroth Landau level to magnetic subbands contigu
with the first Landau level. Here we have omitted t
enlarged-scale profiles of the absorption lines. We me
note that the line describing transitions from complet
filled bands to an empty band has a logarithmic singularity
the middle~pagoda profile!, owing to van Hove singularities
in the density of states. The maximum absorption inten
corresponds to the transition between subbands (0
→(1, 1).

The authors of an innovative study8 of luminescence in a
quantum antidot lattice (a5200 nm) in a magnetic field (H
<23104 Oe) have observed oscillations of the lumine
cence intensity in connection with the existence of comm
surate orbits with cyclotron radii 2Rc5(S21/4)a ~S is an
integer!. It is readily verified that the commensurability co
dition can be satisfied when the number of occupied Lan
v-
t

o

ds
s

re
u
e

be-
h
ful
a

f
us

ly

n

y
1)

-
-

u

levels is much greater than unity. Moreover, special calcu
tions of our own have shown that the magnetic subband
individual Landau levels overlap considerably under the
perimental conditions of Ref. 8. We note that the comm
surability of orbits with a periodic potential cannot be o
served for the parameters used in our work, because only
Landau level is partially occupied, and the situation is
removed from semiclassical status. In addition, the magn
subbands of different Landau levels do not overlap.

In summary, we have established that the investigat
of cyclotron resonance and optical absorption in the infra
can yield very valuable information about the structure
Bloch states in a 2D lattice in a magnetic field.

This work was carried out with financial support fro
the Russian Fund for Fundamental Research~Project 98-02-
16412!.
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Noncollinear orientation of external magnetic field and flux lines penetrating an
isotropic hard superconductor

S. E. Savel’ev and L. M. Fisher
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Penetration by Abrikosov flux lines of an isotropic hard superconductor in the critical state
induced by changes in the orientation of external magnetic field has been theoretically investigated.
The analysis has been based on the microscopic nonlocal model taking into account forces
of bulk and surface pinning, alongside magnetic forces of interaction of the row of penetrating
vortices with existing flux lines, Meissner currents, and vortex images. New vortices
penetrate a superconductor only when the angle through which the field is rotated is larger than a
certain critical value. It has been determined that the alignment of entering vortices is
essentially different from that of the applied magnetic field. The feasibility of detecting
noncollinearity effects is discussed. ©1998 American Institute of Physics.
@S1063-7761~98!01811-3#
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1. INTRODUCTION

The problem of Abrikosov flux lines penetrating bu
superconductors has a long history. This issue was first
cussed in the well-known paper by Bean and Livingsto1

who predicted on the basis of the thermodynamic appro
the existence of a surface barrier which should impede p
etration of flux lines into a sample. Effects related to th
barrier in soft superconductors were studied by Ternov�
and Shekhata.2 Later, surface barriers of various types, th
properties and manifestations in all types of superconduc
were investigated by many researchers~see the review by
Brandt3 and references therein!.

Although the number of publications on this topic h
been quite considerable, some aspects of vortex penetr
have not attracted researchers’ attention. In particular, t
usually considered a situation when only the magnitude o
external magnetic field varied, and all flux lines entering a
leaving a sample were aligned with the external magn
field H. At the same time, an electrodynamic description
hard superconductors in a magnetic field of variable am
tude and orientation has remained a topical issue for m
years. For example, after the first studies4–9 of the effect of
crossing between vortices with differing orientations, a se
publications concerning this phenomenon were issued by
ferent groups recently.10–16 A change of the magnetic field
orientation leads to several interesting effects, among wh
we direct the reader’s attention to the collapse of a trans
current caused by an alternating magnetic field paralle
this current17,18 and suppression of the static magnetic m
ment of a sample by a transverse alternating magn
field.11,19

It is clear that a proper description of these and sim
9781063-7761/98/87(11)/7/$15.00
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phenomena demands information concerning alignmen
vortices penetrating a sample when the external magn
field H is rotated. It might seem that vortices penetrating
isotropic hard superconductor should always be aligned w
H. This conclusion is often derived from the continuity
the tangential component of the magnetic induction at
sample surface. The continuity condition, however, does
yield the direction of vortices penetrating the sample. In fa
the magnetic induction in a superconductor is a sum of t
components, one of which,Bv , is due to the system of flux
lines inside the superconductor, while the other,Bm , is re-
lated to the Meissner current flowing near the sample s
face:

B5Bv1Bm . ~1!

It is well known20 that the solenoidal component of ma
netic inductionBv vanishes at the superconductor bounda
so the necessary boundary condition contains only
Meissner componentBm . Hence, the orientation of vortice
near the surface is undefined. Their orientation should
determined using other considerations. These might be
balance of forces on a penetrating vortex or a minimum
the Gibbs free energy. One can infer from energy consid
ations that magnetic flux lines both entering and leaving
superconductor are aligned with the external magnetic fi
only when the applied magnetic field direction has remain
unchanged throughout the prior magnetic history of
sample. When the magnetic field orientation varies, the qu
tion about the orientation of vortices entering a superc
ductor is not so simple. This paper is dedicated to the th
retical analysis of this problem.

We have analyzed the simplest case, when an exte
magnetic field is rotated in the plane parallel to the bound
© 1998 American Institute of Physics



av

or
e
.

d
a
ti

al
ri

e
m

tin

ta
lk
rte

t
ng
e
ha

d
o

a

-
1
u
ap

m
are

the
es

su-
u-
the
is

e
m-

iti-
s
ain

ctor

n-
ed.

of
ith
to
ri-
cut
.
ew
the

one
en-

ers.
opic
the
ach
ng-
rder

of
nent
ons
ix.

979JETP 87 (5), November 1998 Savel’ev et al.
of a superconducting half-space. In our analysis, we h
used a microscopic model of the critical state.21–23 In this
model, a system of flux lines is described in terms of co
dinates of isolated flux line rows. It is assumed that, irresp
tive of its position, a pinning forcef pin acts on each vortex
This force ranges between2ppin and ppin , whereppin is a
constant phenomenological parameter. In the problem un
discussion, an important role is played by nonloc
effects24,25due to the nonlocal relation between the magne
induction and flux line density. The importance of nonloc
ity in problems concerning a magnetic field changing its o
entation was first indicated by D’Anna.15,16 His analysis,
however, was based on a macroscopic approach to pen
tion of vortices into a superconductor and neglected so
forces of a microscopic nature that act on rows of penetra
vortices.

The main result of the reported work is that the orien
tions of vectorH and flux lines penetrating an isotropic bu
superconductor can be notably different. The onset of vo
penetration into a hard superconductor takes place when
angle of the external field exceeds a certain threshold a
u in!1. The angle between the row of penetrating flux lin
and external magnetic field turns out considerably larger t
u in . Moreover, at certain parameter values, this angle can
close top/2. We have analyzed the dependence ofu in and
relative orientation of penetrating vortices on the magnitu
of external magnetic field and other parameters of the pr
lem. The threshold angle diminishes withH as 1/H, whereas
the tilt angle of penetrating vortices tends to a constant.

2. STATEMENT OF THE PROBLEM. MICROSCOPIC
EQUATIONS

Consider penetration of the Abrikosov flux lines into
hard superconductor which occupies half-spacex.0. The
magnetic field is assumed first to be aligned with thez-axis
and increased monotonically from zero toH0@Hc1 , then
rotated in thezy-plane through angleu ~its vector is denoted
by H). Here Hc1 is the low critical field of the supercon
ductor. The analyzed configuration is depicted by Fig.
This figure also shows schematically rows of magnetic fl
lines that penetrated the sample prior to the rotation of

FIG. 1. Problem geometry.
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plied magnetic field. The numbers of these rows run fro
unit to N. As was stated above, all vortices in these rows
aligned with thez-axis.

Let us focus on the possible reaction of the system to
magnetic field rotation. In principle, the system of vortic
would lower its energy by turning through the same angleu
with the magnetic field. This process takes place in soft
perconductors. The situation is radically different in hard s
perconductors, since pinning forces prevent changes in
flux line alignment. The magnetic torque on each vortex
actually proportional to its lengthL, whereas the torque du
to pinning forces is proportional to its length squared. Co
parison between these two torques implies that, when

L@cH0/2pJc , ~2!

i.e., the sample is sufficiently long and has a sufficient cr
cal current densityJc , realignment of the vortex system i
impossible. In principle, vortices can be bent in a cert
region near the sample boundary, where they-component of
magnetic field penetrates the sample, i.e., the vortex ve
has a nonzero projection on they-axis. A simple estimate26

yields a dimension of this region of order ofcH0/2pJc and,
in accordance with Eq.~2!, this is a small fraction ofL. In
what follows, we assume that this condition, which is co
sidered a definition of bulk hard superconductors, is satisfi

2.1. Gibbs free energy

Thus, the only possibility of changing the orientation
vortices in a bulk hard superconductor is associated w
penetration of new magnetic flux lines tilted with respect
the z-axis and crossing between vortices with different o
entations. As a result of this crossing, long flux lines are
into shorter segments, whose alignment can be changed10,27

To determine the conditions for penetration of these n
vortices when the applied field is rotated, and to calculate
tilt angle f of these vortices with respect to thez-axis, one
must use force or energy approaches. In this procedure,
must take account of the magnetic interaction between a p
etrating vortex, and its image,1 the existing flux line lattice,
Meissner currents, and bulk and surface pinning cent
This problem has been solved on the basis of a microsc
approach,22–25 since it becomes necessary to investigate
entry of successive vortices into a sample. This appro
takes accurate account of nonlocality effects due to the lo
range interaction between vortices, whose range is of o
of the London penetration depthl.

In order to calculate the magnetic forces on each row
vortices, we have determined the electromagnetic compo
Gem of the Gibbs free energy. The cumbersome calculati
needed for solving the problem are described in Append
Here the final result is given:

Gem~x1 ,x2 , . . . ,x
N
,x

N11
!

5cosf sinh
x

N11

l

F0
2

4pbl (
j 51

N

expS 2
xj

l D1cos~f2u!

3
H0F0

4p
FexpS 2

x
N11

l
D 21G1Gs~x

N11
!1

F0
2

16pbl
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3F12expS 2
2x

N11

l
D G1

F0
2

16pbl

3 (
i , j 51

N FexpS 2
uxi2xj u

l D2expS 2
xi1xj

l D G
1

H0F0

4p
cosu (

i 51

N FexpS 2
xi

l D21G , ~3!

where F0 is the magnetic flux quantum,b is the distance
between vortices in a row,x1 , x2 , . . . ,xN are coordinates o
vortex rows that penetrated the sample before the exte
field was rotated, andxN11 is the coordinate of the vorte
row whose tilt anglef with respect to thez-axis is to be
calculated. In Fig. 1 the penetrating vortex row is labeled
the numberN11. The first four terms on the right-hand sid
of Eq. ~3! describe the interaction of the penetrating row w
all other vortices, the Meissner current, and their images.
third termGs(xN11) is associated with the short-range com
ponent of the energy of interaction between a vortex and
image, which is responsible for the Bean–Livingston barr
and the fourth term describes the long-range componen
this energy. The rest of the terms describe interacti
among vortex rows labeled by numbers from 1 toN, with
their images, and also with the Meissner current.

2.2. Force balance equation for vortices in the bulk of the
sample

Given Eq. ~3!, one can easily derive a force balan
equation for each vortex row. To this end, one must equ
the pinning force to the negative of the derivative ofGem

with respect to the row coordinate. For vortices numbere
to N we have

f pin
~n!52

]Gem

]xn
5

F0
2

8pbl2F (
j 5n11

N

expS xj2xn

l D
2 (

j 51

n21

expS xn2xj

l D2(
j 51

N

expS 2
xj1xn

l D G
1

H0F0

4pl
cosu expS 2

xn

l D , 1<n<N, ~4!

where the pinning forcef pin
(n) can take any value between

2ppin and ppin . The quantityppin is a phenomenologica
parameter of the theory. This parameter will be assum
position-independent throughout the volumex.0.

2.3. Force balance equation for the penetrating vortex row

The force balance equation for the penetrating vor
row has the form

psh
sur52

F0
2

8pbl2F2 cosf(
j 51

N

expS 2
xj

l D11G
1

H0F0

4pl
cos~u2f!, ~5!
al

y

e

ts
r,
of
s

te

1

d

x

wherepsh
sur is the sum of the surface pinning force, which

no less than the bulk pinning forceppin , and the short-range
component of the force between the penetrating vortex
and its image obtained by differentiating the termGs(xN11)
in the expression for the Gibbs energy~3!. The forcepsh

sur is
strongly affected by the sample surface quality, and it
natural to treat this quantity as a second phenomenolog
parameter of the theory. In the limit of a perfect surface, t
parameter, to order of magnitude, can be as great aspsh

sur

;F0
2/16p2jl2, wherej is the coherence length. This su

face force dictates the peak height of the Bean–Livings
barrier. In real superconductors, this force is considera
reduced by surface roughness, thermal activation effe
etc.3

In addition to the short-range forcepsh
sur, Eq. ~5! also

contains the long-range force obtained by differentiating
fourth term on the right-hand side of Eq.~3! with respect to
xN11 . This force corresponds to the 1 in the brackets on
right-hand side of Eq.~5!. Both surface forces are constant
u and f, so they can be conveniently combined into t
single termpsur5psh

sur1F0
2/8pbl2. Using this notation, we

can rewrite Eq.~5!, which expresses the condition for pe
etration of a new vortex row into the sample, in the form

psur5Fmag~f,u!52
F0

2

4pbl2
cosf

3(
j 51

N

expS 2
xj

l D1
H0F0

4pl
cos~u2f!. ~6!

An analysis of Eqs.~4! and ~6!, which describe the bal-
ance of forces, is quite complicated. We therefore first tak
microscopic approach to vortex penetration of a sample
fixed-orientation increasing magnetic field, and only then
turn to the problem of a rotated magnetic field.

3. VORTEX PENETRATION OF A HARD SUPERCONDUCTOR
IN AN INCREASING MAGNETIC FIELD

We use Eqs.~4! and ~6! to analyze vortex-row penetra
tion of a hard superconductor in an increasing external m
netic field. It is convenient to use the following dimensio
less variables:

p5
8pbl2

F0
2

ppin , ps5
8pbl2

F0
2

psur.11p,

f mag~f,u!5
8pbl2

F0
2

Fmag~f,u!,

h5
2blH0

F0
, zn5

xn

l
. ~7!

Settingf50 andu50 in Eqs.~4! and ~6!, we rewrite the
equations in the new variables
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p5 (
j 5n11

N

exp~z j2zn!2 (
j 51

n21

exp~zn2z j !

2(
j 51

N

exp~2z j2zn!1h exp~2zn!,

ps5 f mag522(
j 51

N

exp~2z j !1h. ~8!

This system ofN11 equations determines thex coordinates
of the N vortex rows in the sample, and the fieldh
5h(N11) at which the last@(N11)th# row penetrates the
superconductor. AtN50 these equations yield the fieldh(1)

at which the first vortex row enters the sample.
The second equation of the system immediately imp

h(1)5ps , or in dimensional units,

H0
~1!5ps

2Hc1.Hc1.

It is just as easy to find the fieldh(2):

h~2!5Aps
214p.

In the general case, when the sample containsN vortex rows,
a complicated nonlinear problem must be analyzed. Surp
ingly, this problem admits of an exact analytic solution21

The field at which the (N11)th row penetrates the samp
was calculated in Ref. 23:

h~N11!5Aps
214Np. ~9!

In the same paper, the magnetic forcef v(h) on an entering
vortex row generated by vortices already present was
calculated~first term on the right-hand side of the second
Eqs.~8!!:

f v~h!522(
j 51

N

exp~2z j !5Ah224pN2h. ~10!

Here the numberN of vortex rows already present is

N5Fh22ps
2

4p G11, ~11!

where the notation denotes the integer part of its argume
It follows from the above discussion that vortices pe

etrate the sample at certain discrete values of the exte
magnetic field. The next vortex row in turn, numberN, en-
ters the sample at field valuesh5h(N) such that the magneti
force f mag on that row~Eq. ~8!! exceeds the forceps due to
interaction with the surface. The magnetic force is det
mined by the currentJv generated by vortices in the samp
~first term on the right-hand-side of Eq.~8!! and the Meissner
currentJm ~second term!. Here Jv and Jm are the currents
generating the solenoidal and Meissner components of
magnetic induction in Eq.~1!. Immediately after penetration
of the Nth vortex row, the force balance condition~8! no
longer holds, since the force generated by each newly arr
row adds to the magnetic force and ‘‘impedes’’ entry of t
next @(N11)th# row. Circumstances governing the entry
new vortices gradually improve ash continues to rise, since
the force due to the Meissner current increases. When
field reachesh5h(N11), the magnetic force reaches a val
s

s-

so
f

t.
-
al

r-

he

ed

he

such that force balance again holds, and the (N11)th row
enters the sample. Figure 2 shows a segment of the curv
magnetic forcef magplotted against dimensionless fieldh cal-
culated by Eqs.~8!, ~10!, and ~11! at fixed p and ps . The
jumps in the curve correspond to penetration of the n
vortex row whenf mag reachesps .

The distance between jumps in the magnetic force al
the horizontal axis is given by Eq.~9!. In dimensional vari-
ables, the magnetic field intervalDH between neighboring
jumps can be expressed as

DH.2HbAHc1/H0. ~12!

Here Jc5cppin /F0 is the critical current density, andHb

54pJcl/c is the amplitude of the so-called nonloc
barrier.24,25 In the usual local theory of the critical state o
hard superconductors, where the London penetration dep
the smallest characteristic length, this small barrier is
nored, whereas in the nonlocal theory this barrier determi
the range of external magnetic fields over which the vor
lattice in a superconductor remains immobilized. In Eq.~12!
the field Hb is multiplied by the small parameter of th
theory AHc1 /H0. The discrete nature of vortex penetratio
of a hard superconductor can therefore scarcely be dete
experimentally, even in perfectly prepared samples. T
means that the macroscopic local theory neglecting the c
acteristic lengthl and magnetic field incrementDH is quite
adequate for describing vortex penetration of a superc
ductor in an increasing magnetic field. At the same tim
vortex penetration of a sample in a rotating magnetic fi
can be described only in terms of the microscopic theo
The point, as will be shown in the next section, is that t
orientation of flux lines in a rotated fieldH is extremely
sensitive to the location ofH0 within the intervalDH defined
by Eq. ~12!.

4. VORTEX PENETRATION OF A HARD SUPERCONDUCTOR
UNDER ROTATION OF AN EXTERNAL MAGNETIC
FIELD

Using the microscopic approach described above, we
amine the penetration of vortices into a superconductor w

FIG. 2. Magnetic force on a penetrating vortex row as a function of dim
sionless magnetic fieldh calculated atp50.025,ps51,2. The arrows point
to fieldsh at which the next vortex row penetrates the sample.
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the external magnetic field can be rotated. The analysis
be based on the general equation system~4!, ~6!. A rotation
of field H can, generally speaking, induce in the vortex s
tem changes of two types. First, a decrease in the magn
force due to the factor cosu in the last term of Eq.~4! can
destroy the balance of forces and eject vortices from
superconductor. Second, penetration of vortices with a
ferent orientation can be induced.

We now determine which of these two processes beg
first, i.e., at smalleru. Supposing that the ejection of vortice
from the sample begins first, one can calculate from Eq.~4!
the threshold angleuout at which theNth vortex row, which
is most sensitive to changes in the external field, begin
depart. Recall that the pinning forcef pin

(n) in Eq. ~4! can take
an arbitrary value in the range2ppin, f pin

(n),ppin , cancelling
changes in the magnetic force on the right-hand side of
same equation. Therefore, the balance of forces is destr
only when the magnetic force decreases by 2ppin . As a re-
sult, we obtain an equation for the threshold angleuout in
dimensionless variables defined by Eq.~7!:

12cos~uout!5
2p exp~x

N
/l!

h
. ~13!

Hence,uout.2(p/h)1/2. This means that all flux lines in th
bulk of the sample remain immobilized at rotation anglesu
,2(p/h)1/2. As will be shown below, penetration of ne
vortices begins at anglesu in that are significantly less tha
uout. Therefore the penetration of new vortices will be an
lyzed assuming that all vortices already in place are imm
bile.

Let us rewrite the force balance equation~6! for vortices
penetrating the sample in dimensionless variables with
account of Eq.~10!:

ps5 f v cosf1h cos~f2u in!, f v5Ah224pN2h,0.
~14!

This equation contains two unknown anglesf andu in . An
additional equation is needed to determine these angle
can be easily obtained by noting that the first vortex row
enter the sample must be oriented at an anglef that maxi-
mizes the driving magnetic force. By requiring that the d
rivative of the second of Eqs.~14! with respect tof vanish,
we obtain the required second equation:

f v sin~f!1h sin~f2u in!50. ~15!

This equation alone shows that the orientationf of the pen-
etrating vortices is different from that of the external fie
f.u in .

Equations~14! and ~15! can be rewritten in terms off
andf2u in . Some simple algebra yields

cosf5
h22 f v

22ps
2

2~2 f v!ps
, cos~f2u in!5

h22 f v
21ps

2

2hps
. ~16!

In the general case @arbitrary h in the interval
(h(N),h(N11))], the expressions forf and u in are quite
messy. For this reason, Fig. 3 shows numerical calculat
of these angles as functions of the dimensionless fieldh.
Clearly, the threshold rotation angle of the fieldH and the
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alignment of penetrating vortices are extremely sensitive
the exact value within the interval (h(N),h(N11)) at which the
external magnetic field stopped increasing prior to reorien
tion. Characteristic values of the anglef are substantially
greater than the rotation angleu in . The anglesf and u in

have their largest valuesfmax andumax at the leftmost limits
of the intervalsh(N),h,h(N11), and then monotonically
drop to zero~this can be easily found by analyzing formula
~16!!. The peak amplitudesfmax andumax decrease with in-
creasingh ~as the number of vortex rows introduced into t
sample before rotating the field increases!. Curves of
f max(h) and umax(h) are plotted in Fig. 4. It is clear tha
umax(h) monotonically drops to zero, whereasfmax(h) tends
to a certain constant. As a result, the ratiofmax(h)/umax(h)
increases without bound.

This behavior offmax(h) andumax(h) at all admissible
values of the phenomenological parametersp andps follows
directly from Eqs.~9!–~11! and ~16!. It can be shown that
when the fieldh is slightly greater thanh(N), f v equals (ps

2

24p)(1/2)2h. Thus, we derive from Eq.~16!

cosfmax5
hAps

224p2ps
212p

ps~h2Aps
224p!

, ~17!

FIG. 3. Threshold angleu in ~solid lines! and tilt anglef of penetrating
vortices ~dashed lines! vs. dimensionless magnetic fieldh calculated atp
50.025 andps51, 2.

FIG. 4. Anglesumax andfmax ~dashed line! vs. dimensionless magnetic fiel
h calculated atp50.025 andps51,2.
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cos~fmax2umax!5
hAps

224p12p

hps
. ~18!

Asymptotically, in the limit of strong magnetic fieldsh
@ps ,

fmax~h!.arcsin~2Ap/ps!, umax~h!.2Ap/h, h@ps .
~19!

Note thatumax(h) is smaller by a factor of (h)1/2@1 than the
threshold angleuout defined by Eq.~13!, at which vortices
are ejected by rotation of the external magnetic field.

5. DISCUSSION

The most important result of this work is that we ha
established an interesting feature of vortex penetration in
superconductor induced by rotation of an external magn
field. The vortices generated in the sample are aligned n
collinearly with the magnetic field. The angle between th
depends on external parameters and can be quite cons
able. For example, this angle reachesp/2 in the limit of
strong magnetic fieldsh at p;ps . The continuity of the
tangential magnetic field component is preserved here, s
the field generated by vortices is always zero on the in
face, while continuity is ensured by the field component d
to the Meissner current.

The physical reason for this noncollinearity between
generated vortices and applied magnetic field is related to
interaction between the vortex system and supercondu
surface. Therefore, it may seem surprising that the misal
ment angle does not increase with the parameterps , which
characterizes this interaction, but, on the contrary, decre
notably. The asymptotic behavior given by Eq.~19! indicates
that in fact both anglesfmax(h) and umax(h) decrease with
ps and approach one another. This result can be natur
explained in terms of the nonlocal microscopic model of
critical state. At largeps@p, the vortices that have pen
etrated the sample and overcome all surface barriers
acted upon by a uncompensated magnetic force due to
Meissner currents~the motion of these vortices is impede
by the small bulk pinning forcep instead ofps). As a result,
the vortices ‘‘drop’’ deep into the bulk through a distance
aboutl, and the so-called vortex-free region is created.22,23

In the long run, the role of the termf v , which is associated
with the magnetic force on entering vortices due to alrea
present vortices, is not very important in the force balan
equation~14!, and consequently in Eq.~15!. Therefore the
problem of vortex penetration becomes similar to that
vortex penetration in a fixed-orientation field1,2 in this situa-
tion, i.e., the entering vortices are essentially collinear w
the applied field.

The results of the reported work are interesting not o
from the standpoint of the physical model of vortex penet
tion, but can also be instrumental in developing a kine
model of the vortex system of a superconductor in a m
netic field with variable orientation. Such models were d
scribed in our previous publications.10–12 We suggested tha
vortices at each point could have a small angular jitter
follows from the results of the present work, however, th
a
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vortices of an arbitrary orientation can penetrate a superc
ductor when the applied field is rotated through a relativ
small angle. This means that the equations obtai
previously10–12 describe the vortex lattice only in those r
gions of the sample where the angular jitter is inessen
owing to multiple crossings among vortices, i.e., far from t
superconductor boundaries. The reported results can be
sidered a first step toward formulation of correct bound
conditions for the kinetic theory.10–12

Finally, let us discuss the feasibility of experimental d
tection of a strong misalignment of vortices penetrating
superconductor at small rotation angles of applied magn
field. If a sample~parallelepiped! is placed in a magnetic
field aligned with its long axis and then the fieldH is rotated
in the plane of the largest face through a small angleu
.u in , one can attempt to observe, using the decoration te
nique, vortex cores ending on the side surface at large
tances from the end faces of the parallelepiped. This ob
vation would provide direct confirmation of the theo
developed here.

This work was financially supported by the Russi
Fund for Fundamental Research~Project 97-02-16399! and
by the State Superconductivity Program~Project 96046!.

APPENDIX A: GIBBS ENERGY OF CROSSING VORTEX
ROWS

Consider the Gibbs free energy of vortices in the Lond
approximation

Gem5
1

8pE dx dy@B21l2~curlB!222H–B#.

The MeissnerBm and vortexBv components of magnetic
induction B satisfy the following equations and bounda
conditions:

Bm1l2 curl curlBm50, Bm~x50!5H,

Bv1l2 curl curlBv5F0(
i

eid~x2xi !

3 (
k52`

`

dFy2S k2
i

2DbG[F0n,

Bv~x50!50.

Here ei is the unit vector aligned with the vortex, indexi
labels vortex rows, andk is the vortex number in a given
row. The equations take into account the fact that vorti
form a triangular lattice. After simple transformations a
omission of terms independent of vortex row coordinates,
have

Gem5
1

8pE dx dy~F0Bv•n22H–Bv!. ~A1!

We write the vortex component of the magnetic field as
sum of fields generated by vortex rows and their images
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Bv5(
i

eiBi , ~A2!

where

Biei1l2 curl curl~Biei !

5F0eid~x2xi ! (
k52`

`

dFy2S k2
i

2DbG . ~A3!

The fieldBi(x,xi) generated by thei th vortex row is deter-
mined by a sum of modified Bessel functions of the seco
kind. It can be shown28 that Bi has a component decayin
rapidly over a distance smaller thanb and a component drop
ping exponentially over the lengthl@b:

Bi5
F0

2blFexpS 2
ux2xi u

l D2expS 2
x1xi

l D G2
F0

4pl2

3 lnF122 expS 2
2pux2xi u

b D cos
2p~y2yi !

b

1expS 2
4pux2xi u

b D G1
F0

4pl2
lnF122

3expS 2
2p~x1xi !

b D cos
2p~y2yi !

b

1expS 2
4p~x1xi !

b D G , ~A4!

whereyi50 for eveni andyi5b/2 for odd i .
The rapidly decaying component can always be

glected, unless the penetrating row interacts with its ima
This interaction generates an additional contributionGs to
the Gibbs free energy, which determines the surface bar
Substituting Eqs.~A2!–~A4! into Eq. ~A1!, we obtain an
expression for the Gibbs free energy:

Gem~x1 ,x2 , . . . ,x
N
,x

N11
!

5
F0

2

16pbl (
i , j 51

N11

cos~f i2f j !FexpS 2
uxi2xj u

l D
2expS 2

xi1xj

l D G1
H0F0

4p (
i 51

N11

cos~f i2u!

3FexpS 2
xi

l D21G1Gs~x
N11

!. ~A5!
d

-
e.

r.

Here H0 and u are the magnitude of vectorH and its tilt
angle with respect to thez axis, andf i is the vortex tilt angle
in the i th row. Assuming that all vortices are oriented alo
the z axis and only the (N11)th row deviates by the angl
f, Eq. ~A5! yields ~3!.
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‘‘Unusual’’ domain walls in multilayer systems: ferromagnet 1 layered antiferromagnet
V. D. Levchenko and Yu. S. Sigov

M. V. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047 Moscow, Russia

A. I. Morozov and A. S. Sigov

Moscow State Institute of Radio Engineering, Electronics, and Automation (Technical University), 117454
Moscow, Russia
~Submitted 6 April 1998!
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The structure and conditions for the onset of a new type of domain wall in multilayer systems
comprising a ferromagnet and a layered antiferromagnet is investigated by numerical
simulation. Domain walls occur as the result of frustrations produced by interface roughness, i.e.,
by the existence of atomic steps on them. The domain walls are investigated both in a
ferromagnetic film on a layered antiferromagnetic substrate and in multilayer structures. It is
shown that a domain wall broadens with increasing distance from the interface; this trend is
attributed to the nontrivial dependence of the wall energy on the thickness of the layer. The
structure of the domain walls in multilayer ferromagnet–layered antiferromagnet systems varies
dramatically as a function of the energies of interlayer and in-layer exchange interactions
between adjacent layers. ©1998 American Institute of Physics.@S1063-7761~98!01911-8#
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1. INTRODUCTION

The discovery of giant magnetoresistance has stimula
interest in multilayer structures consisting of alternating f
romagnetic~Fe or Co! and nonmagnetic~Cr, Cu, or Ag!
metal layers.

The interaction between the magnetic layers is descri
by the Ruderman–Kittel–Kasuya–Yosida~RKKY ! poten-
tial, which oscillates as a function of position. The oscil
tory character of the interaction for a certain thickness of
nonmagnetic spacer layer imparts antiferromagnetic orie
tion to the magnetizations of the adjacent layers. When
external magnetic field is applied, the orientation change
ferromagnetic, and this process is accompanied by a dro
up to tens of percent in the electrical resistance~hence the
appellation ‘‘giant’’!.

However, the interfaces are not perfectly smooth, a
atomic steps exist on them. Under certain conditions
change in the thickness of the spacer layer by one m
atomic layer causes the exchange interaction between
layers to change sign. If the characteristic spacing of
steps on the interface is greater than a certain critical va
the situation becomes energetically favorable to partition
of the magnetic layers into domains such that the magn
zations of the adjacent magnetic layers exhibit parallel
antiparallel orientations.1 The width d of the resulting do-
main walls is dictated by the competition of exchange int
actions within the layersJi and between magnetic layersJ' :

d;bAJil /J'b , ~1!

whereb is the interatomic distance andl is the thickness of
the magnetic layer. The widthd can be substantially les
than the width of ordinary domain walls in a ferromagn
but becauseJ' decreases with the thicknessd of the non-
9851063-7761/98/87(11)/6/$15.00
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magnetic spacer layer asd22, we haveJi@J' , and the char-
acteristic values ofd are equal to hundreds of angstrom
greatly exceeding the layer thicknesses. In this case
variation of the width of the wall with distance from th
interface is negligible.

If chromium is chosen for the nonmagnetic spacer la
ers, which have a thickness greater than 32 Å, then as
temperature is lowered in the chromium layers, antifer
magnetic ordering sets in with the generation of a plane s
density wave.2 When d,50 Å, the wave is commensurat
~AF0 structure!. A similar commensurate layered antiferro
magnetic structure occurs when iron atoms (.2%) are in-
troduced into the chromium.3 According to some data, a lay
ered antiferromagnetic structure can occur in mangan
layers.4

The onset of long-range order in the chromium laye
has the effect that the interaction between the ferromagn
layers no longer diminishes asd22, but is essentially inde-
pendent ofd.

The roughness of the interfaces, i.e., the existence
atomic steps on them, can render a uniform distribution
the ferromagnetic and antiferromagnetic order parameter
the layers energetically unfavorable, because the relative
entations of adjacent spins separated by an interface are
posite on opposite sides of a step~Fig. 1a!.

If the distance between the steps is large enough,
formation of a domain wall is energetically favorable~Fig.
1b!.5,6 Owing to the increase inJ' , the width d0 of the
domain wall near an interface can be of the order of
interatomic distance. In that event the variation of the wid
of the domain wall with increasing distance from the inte
face can become significant. The objective of the pres
study is to investigate the structure of the domain walls p
© 1998 American Institute of Physics
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FIG. 1. Orientation of spins near the ferromagne
layered antiferromagnet interface. a! Homogeneous dis-
tribution of the order parameters; b! in the presence of a
domain wall.
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duced by interface roughness and to determine the condit
underlying their onset.

2. FERROMAGNETIC THIN FILM ON A LAYERED
ANTIFERROMAGNET

We consider a ferromagnetic thin film on a layered a
tiferromagnetic substrate. We investigate a solitary ato
step on the film–substrate interface. Let the step be par
to they axis of a Cartesian coordinate system, and let thz
axis be perpendicular to the layer. This arrangement sets
two-dimensional problem.

We investigate the exchange interaction between lo
ized spins in the film–substrate system in the approxima
of nearest-neighbor interaction. The Hamiltonian of the s
tem has the form

Ĥ52
1

2 (
i ,d

J i ,i 1d ŜiŜi 1d , ~2!

whereŜi is the ith localized spin operator, the indexd enu-
merates all nearest neighbors, and the exchange inte
J i ,i 1d is

J i ,i 1d5H J 1 if i , i 1d refer to the film,

J 2~d! if i , i 1d refer to the substrate,

J 12 otherwise,

~3!

where J 1.0, J 2(d),0 if i and i 1d are associated with
different layers, andJ 2(d).0 if i and i 1d are associated
with the same layer. For definiteness we letJ 12.0.

By replacingJ 2 and the spin vectors associated w
one of the sublattices of the antiferromagnet with their o
posites, we can reduce the problem to the interaction of
ferromagnetic layers with frustrated interaction between
layers (J̄ 125J 12sgnx). The problem of a layered antifer
romagnetic thin film on a ferromagnetic substrate is red
ible to exactly the same problem.

When the thicknessl of the substrate is much great
than the thicknessd of the film ~or, more precisely, when
uJ 2u l @J 1d), a domain wall forms only in the bulk of the
film, and the order parameter in the substrate remains ho
geneous. We can therefore investigate the distribution
spins in the film for a given boundary condition at the inte
face.
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Since we are investigating the spin distribution in t
exchange approximation, their orientation in space and
plane of rotation in the domain wall are immaterial. In th
films the spins are oriented parallel to the layers. Con
quently, we assume for definiteness that the spins to the r
and left of the domain wall are parallel and antiparallel to t
y axis, and the spin vectors rotate in thexy plane. Accord-
ingly, in the substrate layer nearest the interfaceu i50 for
x.0 andu i5p for x,0 ~Fig. 1!.

Replacing the spin operators in Eq.~2! by their mean
values, assuming that the moduli of the latter are fixed,
obtain an expression for the energy in the mean-field
proximation. After variation with respect to the quantitiesu i

we go from a discrete to a continuous representation, ass
ing that the film thickness is much greater than the int
atomic distanceb (d@b). As a result, we obtain the follow
ing equation for the volume of the film:

uxx9 1uzz9 50. ~4!

On the free boundary of the film with the vacuum atz5a
5d/b, we have

uxx9 2uz850. ~5!

At the film–substrate interface (z50) we have

uxx9 1uz85a sgnx sinu, ~6!

wherea5J 12̂ S2&/J 1^S1&, all derivatives in Eqs.~4!–~6!
are evaluated with respect to dimensionless coordinates~nor-
malized by the interatomic distanceb!, and^S1& and^S2& are
the moduli of the mean spins of the film and substrate,
spectively.

The boundary conditions~5! and ~6! differ from those
given in Ref. 7 by the termuxx9 . This means, for example
that we can make a smooth transition from~6! to ~4! when
the substrate and film are made of the same material.

The solution of Eq.~4! subject to the boundary cond
tions ~5! and ~6! determines the distribution of the magne
zation in the roughness-generated domain wall. It depend
the two dimensionless parametersa and a, wherea is the
dimensionless thickness of the film. In contrast, the width
ordinary domain walls is determined by the ratio of the e
change energy to the anisotropy energy, which we can
regard.
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3. COMPUTATIONAL METHOD

The system of equations~4!–~6! is the Laplace equation
for a function of two coordinatesu(x, z) with the nonlinear
boundary conditions~6!. We require in addition that the
function u be continuous in the range 0<z<a and satisfy
the conditionsu(x→1`)→0 andu(x→2`)→p.

To obtain a suitable equation for numerical solution,
first use a method analogous to the method of integ
transforms.8. We transform the original set of differentia
equations to a single integral equation for a one-dimensio
grid functionc(xi). To do so, augmenting the definition o
the functionu(x12L, z)5p2u(x, z) in a sufficiently large
region xP@2L, L#, we take the discrete Fourier expansi
of ~4!–~6! along thex axis and then solve the decouple
equations for the Fourier harmonics analytically. We obta

c~xi !5(
k

K~k, 0!cosS p

L
kxi D(

j
cosS p

L
kxj Da sgnxj

3sinc~xj ![S~c, xi !, ~7!

where

K~k, z!524S L

kp D 2

expS 2
zkp

2L D H 2FexpS akp

L D
1expS zkp

L D G L

kp
1FexpS akp

L D2expS zkp

L D G J
3H 4FexpS akp

L D21G S L

kp D 2

14FexpS akp

L D11G L

kp
1FexpS akp

L D21G J 21

.

~8!

To solve this equation numerically, we write the simple
erative scheme

cm11~xi !5cm~xi !1CF~xi !@S~cm, xi !2cm~xi !#, ~9!

where

CF~xi !5c01exp@2~xi /xT!2#, ~10!

with the initial conditionc0(xi)5p/22tanh(10xi /L). The
free parametersc0 and xT are chosen experimentally in th
course of the calculations in such a way as to maximize
rate of convergence of the iterative procedure without sa
ficing its stability. We iterate until the residualh attains a
value such that

h5max
xi

ucm11~xi !2cm~xi !u.h051025. ~11!

We obtain a solution over the entire region from the expr
sion

u~xi , z!5(
k

K~k, z!cosS p

L
kxi D

3(
j

cosS p

L
kxj Da sgnxj sinc~xj !. ~12!
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We have used the foregoing method to perform a se
of calculations for various combinations of the paramet
a54, 8, 16, 32, 64 anda51/64, 1/16, 1/4, 1, 4.

A similar method has been used in modeling the s
vortex described in Sec. 4, as well as multilayer structu
~Sec. 5!.

4. DISCUSSION

A typical plot of the functionu(x) is shown in Fig. 2.
Note that the second derivativeuxx9 suffers a discontinuity at
x5z50, while the first derivativeuz8 remains continuous
there. The width of the domain walld(x) is interpreted as the
distance between the points with coordinates (x1 , z) and
(x2 , z), which correspond tou15p/4 and u253p/4, re-
spectively.

The main distinguishing feature of the investigated d
main walls is the fact that they increase with increasing d
tance from the interface. A graph ofd(z) for aa@1 is
shown in Fig. 3. Clearly, the function is linear near the su
strate and becomes essentially constant near the free sur
For aa!1 the variation of the width of the domain wall i
negligible.

FIG. 2. Plots ofu(x) in a domain wall in various cross sections fora
51/16 anda564. 1! z50; 2! z516; 3! z564.

FIG. 3. Width of a domain wall vs. distance from the interface foraa@1
in the case of one free surface for1! a51, a564; 2! a51, a532;
3! a51/4, a564, and in a three-layer structure for4! a53 anda516.
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The dimensionless width of the domain walld05d(z
50) and a certain thickness-averageddz8 , denoted from now
on by b, can be estimated from simple energy consid
ations. We approximateu(x, z) as follows:

u~x, z!5H 0 for x>d~z!,

p

2
@12x/d~x!# for 2d~z!,x,d~z!,

p for x<2d~z!,
~13!

where

d~z!5d01bz, 0<z<a. ~14!

The energy contribution from the inhomogeneity of t
order parameter in the domain wall, calculated per mete
its length along they axis, is

W15
J 1^S1&

2

2b E
0

a

dzE
2`

`

dx@~ux8!21~uz8!2#

;
p2J 1^S1&

2

4b S 1

b
1

b

3 D ln
ba1d0

d0
. ~15!

The existence of a step causes the film–substrate intera
energy to increase by

W25
2J 12̂ S1&^S2&

b E
0

`

dx@12cosu~x, 0!#

;
2J 12̂ S1&^S2&

b
d0 . ~16!

We evaluate the parametersb and d0 by minimizing the
energyW1 with respect to the former and then minimizin
the total energy of the domain wall

W̃5W11W2 ~17!

with respect to the latter.
For aa!1 we have

b;Aaa , ~18!

d0;Aa/a , ~19!

and foraa@1

FIG. 4. Graph ofad(a/2) vs. the parameteraa ~dots! and its approximation
for 1! aa!1, ad(a/2).2Aaa ; 2! aa@1, ad(a/2).aa/2.
-

of
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b;1, ~20!

d0;1/min~1,a!. ~21!

The continuous approximation is valid ifd0@a/(11a).
For the characteristic width of the domain walld(a/2)

we obtain

dS a

2 D;H d0;Aa/a for aa!1,

a for aa@1.
~22!

These estimates are in good agreement with the results o
calculations~Fig. 4!. One exception is the expression ford0

whenaa@1. For a.1 the results of the calculations diffe
appreciably from the estimate~21!. In this case the neighbor
hood of the singularity atx5z50 specifically plays a major
role, and the simple approximation~13! is invalid.

For the energy of the domain wall we obtain

W̄;H J 2^S1&
2

b
Aaa for aa!1,

J 1^S1&
2

b
ln~aa! for aa@1.

~23!

The calculated dependence ofW̃ on aa is shown in
Fig. 5.

The broadening of the domain wall has the effect that
aa@1 its energy increases only logarithmically as the fi
thickness is increased.

FIG. 5. Domain wall energyW̃ vs. aa ~dots! and its approximation:1! W̃

.2Aaa for aa!1; 2! W̃.2ln(aa) for aa@1.

FIG. 6. Spin vortex generated forR!a in the casea54, a564, R516.
The value ofu in units of p is indicated alongside each constant-u line.
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FIG. 7. Domain wall in a three-layer structure fora53, a516, R564 ~a! anda50.1, a516, R564 ~b!. The step positions are indicated by arrows, and
constant-u lines are drawn at intervals ofp/10.
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We now estimate the step spacing for which the unifo
distribution of the order parameter in the film becomes en
getically unfavorable. LetR be the dimensionless distanc
between two parallel steps, where the orientation of the s
in the film in the zone between steps corresponds to
maximum rather than to the minimum energy of interact
with the substrate. As a result, the energy of the system
creases by 2J 12̂ S1&^S2&R/b per meter of step length. If this
energy is greater than the energy of two domain walls, i
more favorable for the film to acquire a domain with t
opposite value of the order parameter. Foraa!1 this con-
dition is equivalent to the constraintR.d0 .

Two possibilities exist in the caseaa@1. ForR@a two
domain walls form, penetrating the entire thickness of
film. For d0!R!a, on the other hand, a kind of spin vorte
appears near the substrate~Fig. 6!, penetrating the film to a
depth of the order ofR. Throughout the rest of the film th
uniform distribution of the order parameter is undisturbed
r-
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s

e

5. MULTILAYER STRUCTURES

Multilayer structures can be modeled when exchange
teraction in the ferromagnetic layers~iron! is much stronger
than in the antiferromagnetic layers~CrFe!. Distortions of
the uniform distribution of the order parameter occur only
the antiferromagnetic layers, where the distortions in o
layer do not affect those in the other.

The behavior of a domain wall in an antiferromagne
layer is determined entirely by the boundary conditions on
surface. As mentioned, the simultaneous sign reversa
both the exchange interaction between the antiferromagn
sublattices and the direction of the spins of one of the s
lattices reduces the problem of finding the distribution of t
antiferromagnetic order parameter to finding the magnet
tion distribution in a ferromagnetic layer with frustrated i
teraction at the boundary.

The domain walls interconnect the nearest atomic ste
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which can be associated either with one boundary of
layer or with the opposite boundary. In contrast with t
investigated case of one free boundary, the thickness of
domain wall is a maximum in the middle of the layer and n
at the boundary~Fig. 3, curve4!.

Modeling shows that the quantitya plays a major role.
For a.1 the spins closest to the boundaries of a layer
oriented parallel or antiparallel to the spins of the adjac
layers, depending on the sign of the exchange interac
between layers, to minimize the interlayer coupling ener
When the distanceR between closest steps is much grea
than the layer thickness (R@a), a domain wall formed on an
atomic step rotates at a distance of the order ofa and simul-
taneously broadens in such a way as to occupy the e
width of the layer and then run parallel to its boundar
~Fig. 7a!. In this region,u varies linearly with increasingz,
from zero at one boundary of the layer top at the other.

On the other hand, ifa,1 andR@a, the structure of
the domain wall is more complex, because now the situa
is energetically favorable for the spin vectors to rotate at
boundary of the layer through a certain angle relative to
direction corresponding to minimum surface energy~Fig.
7b!. Foraa,1 we do not observe the zones, so conspicu
for aa.1, where the domain wall rotates, and all distortio
take place within a characteristic scale of the order ofR. As
in the caseaa.1, the domain wall fills essentially the entir
volume of the layer in the space between steps.

In Ref. 9 the distribution of spins in a two-laye
ferromagnet–layered antiferromagnet system is modeled
merically on the basis of the Ising model. However, the Is
model corresponds to very strong anisotropy of the easy-
type and is invalid for the description of multilayer structur
of the Fe/Cr type, for which the anisotropy energy in t
plane of the layers is much lower than the exchange inte
tion energy. The domain walls formed within the framewo
of the Ising model have atomic widths, so that the uniq
properties of the domain walls in the layers of
ferromagnet–layered antiferromagnet were not observe
the cited paper.

The conditions for the emergence of the investigated
main walls can be tested experimentally and their struc
analyzed by using a microscope to examine the magn
forces of ferromagnetic films deposited on an antiferrom
netic substrate. The critical value of the characteristic s
e

he
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width R at which domain walls appear and its dependence
the film thickness can be found by investigating films
various thicknesses and with various widthsR. Moreover,
the dependence of the width of a domain wall at the surf
on the film thickness can be determined. To within a fac
of order unity, the theoretical dependence agrees with
graph in Fig. 4.

6. CONCLUSIONS

1. The existence of atomic steps on the interface betw
a layered antiferromagnet and a ferromagnetic film indu
domain structure in the film if the distanceR between steps is
greater than the widthd0 of the domain wall at the interface

2. The width of the domain wall increases with increa
ing distance from the substrate. For thicker films, therefo
the energy of the wall increases logarithmically as the thi
ness of the film increases.

3. Instead of a domain structure, static spin vortices h
ing a characteristic scaleR occur near the substrate in thic
films with d0!R!a.

4. In multilayer ferromagnet–layered antiferromagn
structures, the domain walls interconnect adjacent steps
the layer boundaries, occupying the entire space of the la
between the steps. The structure of such domain walls
pends significantly on the relation between in-layer and
terlayer exchange.
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Temperature dependence of the kinetic coefficients of interference ballistic structures
M. V. Moskalets
~Submitted 25 November 1997!
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The effect of the temperature on the kinetic coefficients of a mesoscopic sample in contact with
two electron reservoirs is considered for the case in which the electron transmission
coefficient of the sample undergoes oscillations near the Fermi energy. ©1998 American
Institute of Physics.@S1063-7761~98!02011-3#
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1. INTRODUCTION

One of the important properties of mesoscopic syste1

at low temperatures is the preservation of phase coher
during propagation of electrons. Therefore, in such syste
it is possible to observe effects that are sensitive to the ph
of the electron wave function. As an example, we consi
the Aharonov–Bohm effect,2 which leads to oscillations with
periodF05h/e of the physical characteristics of nonsupe
conducting doubly-connected samples immersed in a m
netic flux F ~Refs. 3 and 4!. This effect is observed in both
the kinetic5 and thermodynamic6 properties of the samples.

The creation of structures in which electrons propag
ballistically has made it possible to imagine a number
devices based on the phenomenon of interference.7–12 A pe-
culiarity of such interference ballistic structures is the fa
that the electron transmission coefficientg(«) of these struc-
tures varies substantially,Dg.g, in response to an insignifi
cant change in the energyD«/«.l/L (l is the electron
wavelength,L is the characteristic length of the device!.

This fact is important in any consideration of electr
and heat transport in an interference ballistic structure
contact with electron reservoirs. On the one hand, in
given case the range of temperatureT and voltageV over
which the linear-response approximation is valid is subst
tially narrowed: DT, V!«FlF /L, where «F is the Fermi
energy andlF is the wavelength of a Fermi electron. On th
other hand, in such a system the electron thermal volt
coefficient should be significant.13 This leads, in particular
to a violation of the Wiedemann–Franz law despite the f
that an interference ballistic structure is a purely elastic s
terer.

Transport phenomena in mesoscopic samples in con
with electron reservoirs atTÞ0 are examined in Refs. 1
and 14, which consider both particle transport between e
tron reservoirs and electron transport only through a me
copic structure. In the first case, the calculation of the curr
~heat flux! takes into account both the resistance of the m
soscopic sample itself and the additional contact resista
~spreading resistance! between the leads and the electr
reservoirs.13,15In the present paper, we consider only the fi
case ~transport between electron reservoirs! as it more
closely corresponds to the standard experimental situa
~two-probe measurements!. The feasibility of measuring the
transport coefficients associated with the mesoscopic sam
itself is discussed in Refs. 13 and 14.
9911063-7761/98/87(11)/5/$15.00
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We apply the results of Refs. 13 and 14 to the case
which the electron transmission coefficientg(«) of the me-
soscopic sample oscillates as« varies near the Fermi energy
In Sec. 2 we obtain an expression for the currentI and heat
flux Q at nonzero reservoir temperatures, with allowance
the oscillating nature of the dependenceg(«). Section 3 con-
siders the linear response regime. Section 4 derives exp
sions forI andQ for a large temperature difference betwe
the reservoirs. Section 5 considers a one-dimensional
enclosing magnetic fluxF in terms of an interference ballis
tic structure, and shows that the presence of this flux
substantially alter the temperature dependence of the tr
port coefficients.

2. STATEMENT OF THE PROBLEM AND BASIC RELATIONS

Let a ballistic mesoscopic sample be connected by b
listic leads to two electron reservoirs, ‘‘L ’’ and ‘‘ R’’, The
size of the sample is assumed to be small in comparison
the phase coherence lengthLw(T). We denote the tempera
tures and chemical potentials of the reservoirs respectiv
by TL ,mL and TR ,mR . In the present paper, we consider
one-dimensional sample and one-dimensional leads. Ge
alization to the case of several conducting subzones in
absence of channel mixing is trivial. With channel mixin
taken into account such a generalization can be made acc
ing to the results of Refs. 13 and 15.

Expressions for the currentI and dissipative heat lossQ
between electron reservoirs in the single-channel approxi
tion have the form

I 5
2e

h E d« g~«!F f 0S «2mL1ew

TL
D2 f 0S «2mR1ew

TR
D G , ~1!

Q5
2

hE d« g~«!F ~«2mL1ew! f 0S «2mL1ew

TL
D

2~«2mR1ew! f 0S «2mR1ew

TR
D G . ~2!

Hereg(«) is the electron transmission coefficient of the m
soscopic sample as a function of electron energy«,
f 0(x)5(11ex)21 is the Fermi distribution function,w is the
potential of the sample relative to the electron reservo
The quantityw should be determined self-consistently fro
the Poisson equation.16–18
© 1998 American Institute of Physics
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Below we assume that the energy dependence of
transmission coefficient,g(«), derives from interference
processes. Therefore, the transmission coefficient is an o
lating function of electron wavelengthl52p/k. We write

g~«!5ḡ1(
n

gn , ~3!

gn5An cos~nkL!1Bn sin~nkL!.

Here ḡ is the mean transmission coefficient,«5(\k)2/
2m* , andm* is the effective mass of the electron. If

L@lF , ~4!

then near the Fermi energy the quantityg(«) can accurately
be assumed to be an oscillating function of the electron
ergy. Substituting the expansion~3! into expressions~1! and
~2! in this case and assuming that

TL!mL , TR!mR , Dm5mR2mL!mL ,mR , ~5!

we obtain

I 52
2e

h H ḡDm1p2T* 2(
n

1

n
~cn~TL!]«gnumL2ew

2cn~TR!]«gnumR2ew!J , ~6!

Q5
2p2

h H ḡ
TL

22TR
2

6
1T* 2(

n

Dm

n
~cn~TL!]«gnumL2ew

1cn~TR!]«gnumR2ew!

1T* 2(
n

S cosh
nTL

T*
cn

2~TL!gn~mL2ew!

2cosh
nTR

T*
cn

2~TR!gn~mR2ew!D J . ~7!

Here cn(T)5(T/T* )@sinh(nT/T* )#21, T* 5DF/2p2,
DF52«FlF /L, and we use the notation]«[]/]«. The
Fermi energy«F5m2ew0 is defined in equilibrium:m
5mL5mR ,T5TL5TR . The quantity Dm is determined
both by the difference of electrostatic potentialsV applied to
the electron reservoirs and the difference of chemical po
tials of the electron reservoirs due to their temperature
pendence. Note that the dependencem(T) is absent for a
two-dimensional reservoir.

Expressions~6! and ~7! are central to the present wor
and will be used below to determine the temperature dep
dence of the kinetic coefficients. We assume that inela
processes are absent in the sample,L!Lw(T), and that the
effect of the temperature reduces merely to energy avera
of the transmission coefficientsg(«) ~3!.

3. KINETIC COEFFICIENTS IN THE LINEAR REGIME

For small differences of the reservoir chemical potenti
Dm and temperaturesDT5TR2TL

Dm!DF , DT!min~T,T* !, ~8!
e

il-

n-

n-
e-

n-
ic

ng

s

whereDF is the distance between electron energy levels n
the Fermi level, the expressions for the currentI and heat
flux Q can be represented in matrix form:13

S I

QD 52S L0 L1 /T

L1 L2 /TD S Dm/e

DT D . ~9!

In the present paper, we consider kinetic coefficients desc
ing charge and energy transport between the electron re
voirs. For this case, as emphasized in Ref. 13, the Ons
relations are satisfied, as reflected in Eq.~9!.

Expressions for the kinetic coefficientsLi can be ob-
tained from expressions~6! and ~7!. The temperatureT*
divides the low-temperature from the high-temperatu
range; in the former, the effect of the temperature can
neglected, while in the latter, averaging over energy lead
compensation of the interference contributions to the tra
mission coefficient, as a result of whichg(«).ḡ.

We now write out asymptotic expressions for the co
ficientsLi .

1! Low temperatures:T!T* ,

L05
2e2

h
g~«F!, ~10a!

L15
2ep2

3h
T2]«gu«F

, ~10b!

L25
2p2

3h
T2g~«F!. ~10c!

2! High temperatures:T@T* ,

L05
2e2

h F ḡ1
2T

T*
expS 2

T

T*
D g1~«F!G , ~11a!

L15
4ep2

h
T2expS 2

T

T*
D ]«g1u«F

, ~11b!

L25
2e2

3h
T2F ḡ2

6T

T*
expS 2

T

T*
D g1~«F!G . ~11c!

We also write out expressions for the electron therm
voltage coefficienta52Dm/eDT and the thermal conduc
tivity k52Q/DT, which are measured atI 50:

1! T!T* ,

a5
p2

3e
T]«ln~g!u«F

, ~12a!

k5
2p2

3h
Tg~«F!F12

3~ea!2

p2 G . ~12b!

2! T@T* ,

a5
p2

e
T* ~ ḡ!21]«g1u«F

, ~13a!

k5
2p2

3h
TF ḡ2

6T

T*
expS 2

T

T*
D g1~«F!G . ~13b!
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Expressions~10!, obtained in Ref. 13, and expressio
~12! have the usual form for the theory of metals~see, e.g.,
Ref. 19!. However, in contrast to normal metals, for whic
ea0.T/«F ~without allowance for phonon entrainment!, in
the case under consideration the electron thermal voltag
not small:a/a0.«F /T* @1. This leads, in particular, to a
breakdown of the Wiedemann–Franz law:

3e3

p2

k

GT
5H 123~ea!2/p2, T!T* ,

12
8T

T*
expS 2

T

T*
D g1~«F!

ḡ
, T@T* .

~14!

HereG5L0 is the conductance of the system. The grea
deviation should be observed forT.T* ; it decreases at both
lower and higher temperatures. We emphasize that in
present work we derive the deviation from the Aharono
Bohm law for the transport coefficients between the elect
reservoirs, whereas in Refs. 13 and 14 such a deviation
derived for the coefficients associated with the mesosco
sample itself.

Comparing expressions~12a! and ~13a!, we see that
a(T) has a maximum~in absolute value! at T.T* . To order
of magnitude, the maximum isuea(T* )u.1. Note also that
the sign ofa can be different forT!T* andT@T* .

The conductanceG of the system and the thermal co
ductivity k for T!T* depend on the Fermi energy«F ,
which in turn depends on the chemical potentials of the e
tron reservoirs. ForT@T* the small interference terms in th
conductance and the thermal conductivity exhibit such a
pendence~see~11a! and ~13b!!.

4. CURRENT AND HEAT FLUX FOR A LARGE
TEMPERATURE DIFFERENCE BETWEEN THE ELECTRON
RESERVOIRS

We fix the temperature of one of the reservoirs, e.g.,TL ,
and consider the dependence of the current and heat flu
the system on the temperature of the second reservoir (TR).
As follows from Eq.~6!, in the limit

TR@T* ~15!

the currentI is independent ofTR . Moreover, if we write

Q5Q01dQ, Q05
p2

6e2
ḡ~TL

22TR
2 !, ~16!

then it follows from Eq.~7! that the interference termdQ in
the heat flux under condition~15! is also independent ofTR .

Inasmuch as inelastic processes take place only in
reservoirs and not in the sample, temperature averagin
the contributions to the current~and heat fluxQ) due to
electrons propagating from the left reservoir to the right r
ervoir ~with temperatureTL) and in the reverse directio
~with temperatureTR) takes place independently, as is im
mediately clear from~6! and ~7!.

In what follows we setmL5mR . If condition ~15! is met,
the dependence onTL of the thermoelectric currentI T and
the interference termdQ in the heat flux have the following
form:
is

st

e

n
as
ic

c-

e-

in

e
of

-

1! TL!T* ,

I T5
2e

h E
«0

«F
d«@g~«!2ḡ#, ~17a!

dQ5
2

hE«0

«F
d«~«2«F!@g~«!2ḡ#. ~17b!

Here«05DF@«F /DF# (@x# is the integer part ofx). In this
regime, the thermoelectric current and the interference t
in the heat flux are independent of the temperatures of
electron reservoirsTL andTR .

2! TL@T* , TR.TL ,

I T52
4ep2

h
TLT* expS 2

TL

T*
D ]«g1u«F

, ~18a!

dQ5
4p2

h
TL

2expS 2
TL

T*
D g1~«F!. ~18b!

Thus, the difference between the regime with a lar
temperature difference and the linear response reg
(DT!T) is that the thermoelectric current and the interfe
ence term in the heat flux are independent of the tempera
of the hotter reservoir (TR), and fail to vanisih in the limit
TL→0.

5. TEMPERATURE DEPENDENCE OF THE KINETIC
COEFFICIENTS OF A ONE-DIMENSIONAL BALLISTIC RING
WITH MAGNETIC FLUX

Consider a one-dimensional ballistic ring connected
one-dimensional leads to two electron reservoirs~Fig. 1!.
The ring encloses a magnetic fluxF. The length of the ring
L is assumed to be small in comparison with the phase
herence length:L!Lw . Within the framework of quantum
waveguide theory20 in the approximation of noninteractin
electrons, the transmission coefficientg for such a system for
symmetrically located contacts is20,21

g5
~12cos~kL!!~11cos~2pF/F0!!

~cos~2pF/F0!21.25cos~kL!10.25!21sin2~kL!
.

~19!

The first two terms in expansion~3! have the form

ḡ5
2~11cos~2pF/F0!!

312cos~2pF/F0!
, ~20!

FIG. 1. Model of a one-dimensional ballistic ring of lengthL enclosing a
magnetic fluxF. The ring is connected by one-dimensional wires to tw
electron reservoirs at temperaturesTL and TR and chemical potentialsmL

andmR .
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g15
2

9
ḡS 4 cosS 2pF

F0
D23D cos~kL!. ~21!

The kinetic coefficients of the system depend on
magnetic fluxF, and this dependence can be manifested
nontrivial way. We show this in the case of the thermoel
tric coefficienta.

Figure 2 plots the dependencea(T) for three values of
F and $L/lF%50.75, where$x% is the fractional part ofx.
The quantitya is governed by the transmission coefficientg
for T,T* ~see Eq.~12a!!, and by its first harmonicg1 for
T.T* ~see Eq.~13a!!. The signs of the derivatives]«g and
]«g1 depend on the magnetic fluxF ~and on the produc
kFL). For some values ofF these quantities have the sam
sign ~Fig. 2, curve1 ! while for others their signs are differ
ent~Fig. 2, curve3 !. Therefore, by varying the magnetic flu
F it is possible to go from a fixed-sign dependence ofa(T)
to a dependence that changes sign with increasing or
creasing temperature.

Furthermore, for F56F* ~where F* /F0

5(2p)21arccos(3/4).0.115) the quantityg1 ~see Eq.~21!!
governing the high-temperature (T.T* ) asymptotic limit of
the thermoelectric coefficienta vanishes. Therefore, in ex
pansion~6! it is necessary to retain then52 term. As a
result, forF56F* andT.T* we obtain

ea.expS 2
2T

T*
D 2T

T*
sin~2kFL !. ~22!

In the given casea falls off more rapidly with temperature
~than for FÞ6F* ) ~Fig. 2, curve2 !. Moreover, the tem-
perature separating the low-temperature and hi
temperature regions is reduced by a factor of two.

The interference terms in the conductanceG5L0 ~see
Eq. ~11a!! and the thermal conductivityk ~see Eq.~13b!!
have an analogous dependence onF andT for T.T* . Spe-
cifically, they change sign with varyingF; moreover, their
magnitude falls off exponentially with increasing tempe
ture, with a characteristic temperature ofT* /2 for
F56F* andT* for other values of magnetic fluxF.

For FÞ0 the conductance of the ring~19! vanishes near
integer values of the ratiokFL/2p5L/lF . Therefore, near
these values the thermoelectric coefficienta has a significant

FIG. 2. Dependence of the thermoelectric coefficienta of a one-
dimensional ring on the temperatureT in the linear response regim
(DT!T) for F50 ~1 !, F* ~2 !, and 0.15F0 ~3 !. $L/lF%50.75.
e
a
-

e-

-

-

value~at low temperatures!. It can be seen from Fig. 3 that a
the ratioL/lF approaches an integer, the peak in the dep
dencea(T) becomes sharper and shifts toward lower te
peratures. Note that when we make the substitut
$L/lF%→12$L/lF% the thermoelectric coefficient change
sign.

6. CONCLUSION

In the present paper we have considered the effect of
temperature on the kinetic coefficients of a mesosco
sample in contact with two electron reservoirs. Charge a
energy transport are described by the electron transmis
coefficientg(«) of the sample. It is assumed that inelas
processes are absent in the sample and that the effe
temperatureT reduces simply to energy averaging of th
electron transmission coefficientg in a neighborhood
D«.T about «F . Expressions have been obtained for t
current I ~6! and dissipative heat fluxQ ~7! which take ac-
count of oscillations ing near«F . Such oscillations are char
acteristic of ballistic mesoscopic systems in which interf
ence has a substantial influence on the transmission o
electron wave.7–12 Note that in contrast to the Sommerfe
expansion customarily used in the theory of normal met
which takes account of variations of physical quantities
the system on a scale«F ~or more precisely, on a scaleD«
@T), the expansion proposed here takes account of varia
of physical characteristics of the system near«F in the en-
ergy rangeD«!T,«F .

We have shown that the thermoelectric coefficienta sig-
nificantly exceeds the valuea0 characteristic of ordinary
metals~without allowance for phonon entrainment and in t
absence of magnetic impurities!, a.a0«F /T* , which is due
to oscillations in the electron transmission coefficient n
«F ~Ref. 13!. We have calculated the dependencea(T). In
the linear regime (DT!T* ,T) the dependencea(T) has a
maximum~in absolute value! at T.T* . Note that the sign of
a can be different forT,T* and forT.T* . At high tem-
peratures (T.T* ) the thermoelectric coefficient falls expo
nentially with temperature,a}exp(22p2T/DF), and this de-
pendence can be used to determineDF . It should be noted

FIG. 3. Dependence of the thermoelectric coefficienta of a one-
dimensional ring on the temperatureT in the linear response regime
(DT!T) for $L/lF%50.05 ~1 !, 0.1 ~2 !, 0.2 ~3 !, and 0.4~4 !. F50.3F0 .
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that the present work treats the one-channel approxima
For a multichannel sample without channel mixing, t
high-temperature asymptotic limit of the dependencea(T)
has a form analogous to that of the depende
DF5max(DF(n)), wheren is the channel number.

In the case of the Aharonov–Bohm effect for doub
connected, one-dimensional samples, we predict a nontr
dependence of the thermoelectric coefficient and the inter
ence terms in the conductance and the thermal conduct
at high temperatures (T.T* ) on the temperature and mag
netic flux.
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NMR spectra under skin-effect conditions at ultralow temperatures
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An investigation based on the coupled Maxwell–Bloch equations for a system of equivalent
exchange-coupled spins is performed in order to explain a number of features of NMR spectra
obtained in metals by Fourier-transforming of the free-induction decay at ultralow
temperatures. Small angles of tilting of the nuclear magnetization by the exciting rf field are
considered. It is shown that the free precession inherits the nonuniformity in the distribution of the
rf field and the magnetization produced at the excitation stage inside the sample on account
of the skin effect. As a result, the NMR spectrum is found to consist of a set of peaks—signals due
to standing spin waves. However, such a spectrum can be observed only when the detuning
of the exciting rf field is sufficiently large relative to the Larmor frequency of the spins. Otherwise,
the rf field does not penetrate into the sample because of strong absorption by the spins. If
the detuning is large, the dispersion signal and part of the NMR absorption signal are proportional
to the equilibrium magnetization to the power 3/2. Such behavior is expected at low
temperatures so that the coupling of the magnetization with the rf field is strong. The results
obtained qualitatively explain the experimentally observed characteristics of the NMR spectra: the
presence of kinks and structure of the NMR lines, the dependence of the shape and intensity
of the spectrum on the detuning of the exciting rf field, and the nonlinear dependence of the nuclear
susceptibility on the reciprocal of the sample temperature. ©1998 American Institute of
Physics.@S1063-7761~98!02111-8#
m
pe
y
d
pe

r
cy
le
r

es
d

a
nt
fe
,
de

h

is
e
e
e
c

tal
., a

ent
ob-
rs

s
isot-
ua-
he
ves
nto
ni-
nder
of
the

a

r
ag-
the

ef-
ifor-
1. INTRODUCTION

A series of experiments on the detection of NMR fro
nuclear spins in metals at ultralow temperatures was
formed recently.1–3 The NMR spectra were obtained b
Fourier-transforming of the free induction decay and ha
number of distinctive features: the dependence of the s
trum shape and intensity on the amplitude of the exciting
field and the detuning of the field from the Larmor frequen
of the nuclear spins, nonlinear dependence of the nuc
susceptibility on the reciprocal of the sample temperatu
and presence of kinks and structure in the NMR lines. Th
features have still not been explained. In Ref. 2 it was in
cated that the metallic properties of the samples~the skin
effect! play a decisive role in the appearance of the char
teristics of the NMR spectra obtained in such experime
Specifically, the opinion was stated that the above-noted
tures of the NMR spectra are due to standing spin waves
account of the skin effect, excited as the free induction
cays.

The existence of spin waves is possible because w
the rf field penetrates nonuniformly into a conductor~the
skin effect! the spatial distribution of the magnetization
also nonuniform. The Ruderman–Kittel interaction betwe
nuclear spins, which is of an exchange character, can th
fore be written in the form of a nonuniform exchang
energy.4 However, as shown in Ref. 4, even in the presen
9961063-7761/98/87(11)/7/$15.00
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of such an energy a uniform rf field can excite in the me
only a uniform precession of the magnetic moments, i.e
spatial mode with wave vectorK50 ~we emphasize that in
Ref. 4 a time-independent rf field was studied!. On the other
hand, Kittel5 established that if surface anisotropy is pres
in the sample, then a stationary uniform field can excite
servable standing spin waves with wave vecto
K50 as well asKÞ0. The mathematical formulation of thi
problem is based on the fact that under the surface an
ropy conditions the magnetization satisfies different eq
tions of motion at the surface and in the interior of t
sample, and this gives rise to the distortion of the spin wa
required for their observation. Therefore, in samples i
which a uniform rf field penetrating unhindered and is u
form, the only reason that spin waves can be observed u
conditions of stationary irradiation is that the equations
motion of the magnetization vector at the surface and in
interior of the sample have a different form.

In contrast to stationary NMR, free induction decay is
two-step process consisting of a preparatory stage~excitation
of transverse magnetization! and free precession. In ou
opinion an external uniform rf field and the transverse m
netization excited by it propagate into the sample during
preparation stage in the form of two waves~represented in
the form of ‘‘field-like’’ and ‘‘spin-like’’ branches! that pen-
etrate into the sample nonuniformly because of the skin
fect. The subsequent free precession inherits the nonun
© 1998 American Institute of Physics
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mity produced, since free oscillations of the magnetizat
and of the magnetic field due to its motion occur with sp
tially nonuniform initial conditions. This could be respon
sible for the fact that the amplitudes of the standing s
waves of magnetization, which are present during free p
cession, with ‘‘quantized’’ values ofK in the sample are
different from zero forKÞ0 also. Since according to th
corresponding dispersion law different resonance frequen
correspond to different values ofK , the Fourier-transforming
of the free induction decay should give a set of resona
peaks referring to different modes of the excited spin wav
Moreover, the penetration of the spin-like branch of coup
waves into the sample in the preparation stage depend
which part of the exciting field is absorbed by the spins. T
indicated spatial nonuniformities of the initial conditions f
free induction decay thus depend on the detuning of the
citing field, which causes the spectrum obtained to dep
on the detuning.

The experiments which we are examining, on obtain
NMR spectra by Fourier-transforming of the free inducti
decay, were performed on metals with two isotopes poss
ing magnetic moments, (63Cu and65Cu in copper and203Tl
and205Tl in thallium!. The study of these systems gives ri
to very complicated equations.

To determine the main features of the predicted phen
ena we would therefore like to study a system of equival
exchange-coupled nuclear magnetic moments and to ca
late the Fourier-transforming of the free induction dec
taking into consideration the nonzero conductivity of t
sample in the light of the above arguments.

2. GENERAL EXPRESSIONS FOR THE FREE INDUCTION
DECAY SIGNAL IN METALS

We shall consider the behavior of the magnetizationM
of a sample in an effective field

Be f f5B01B1aDM , ~1!

whereB0 is the constant magnetic field,aDM is the field
due to nonuniform exchange whose microscopic origin is
Ruderman–Kittel interaction

2(
i , j

Ji , j I i•I j

between nuclear-spin operators~the indicesi and j denote
lattice sites! or the same thing in the form of the macroscop
exchange energy

2J0E drE dr 8M ~r ,t !•M ~r 8,t !

~below, following the arguments presented on p. 22 of R
4, we arrive at a local fieldaDM ; the constantsJ0 and a
will be given below!; B5m0(H1M ) is the residual part of
the ac magnetic induction (m054p31027 H/m, H is the
intensity of the magnetic field!. We shall consider a sampl
in the form of a plate of thicknessL, bounded by the plane
z50 andz5L and arranged perpendicular to thez axis.~The
axes are chosen so that the constant magnetic field is pa
to thez axis, while the time-varying one during excitation
n
-

n
e-

es

e
s.
d
on
e

x-
d

g

s-

-
t
u-
,

e

f.

llel

directed along the surface of the sample in the direction
the x axis, which is parallel to the long side of the plate!.
Then all variables will depend only on the coordinatez.

It should be noted that in the experimental situation
Refs. 1–3, which we shall have in mind in what follows, th
sample is a normal metal with no localized electronic spi
The constant magnetic field~0.4 T for NMR of thalium at a
frequency of about 10 MHz! is weak in the sense of th
curvature of the conduction-electron trajectories: T
conduction-electron mean-free path,l e'1025 m, in the re-
gion of residual resistance is smaller than the Larmor rad
RL'631025 m, so that in such a field the conditions for th
appearance of weakly damped helicoidal waves are not
isfied. A constant magnetic field could possibly alter the co
ductivity of the sample by a very small amount. But sinc
unfortunately, the conductivity is unknown, taking accou
of this small change is not feasible. Therefore the effects
to the curvature of the electron trajectories by a const
magnetic field in the present problem are unimportant a
will be neglected.

We shall treatM 15Mx1 iM y andHx5Hx1 iH y as dy-
namical variables. The equation forM 1 can be obtained
from

dM

dt
5gM3Be f f , ~2!

whereg is the gyromagnetic ratio of the spins. The equati
for H1 follows from Maxwell’s equations

¹3E52
]B

]t
, ¹3H5 j . ~3!

To clarify the dependencej (E) it is necessary to start from
the relation between the electron mean-free path length
the conventional skin-depth. In the region of residual res
tance, NMR frequency of about 10 MHz, and thallium co
ductivity s563108V21

•m21, we find l e'd'1025 m.
Thus the condition for the normal skin effect,l e!d, is not
satisfied.

However, even the extremely anomalous skin effe
l e@d, likewise does not occur. To demonstrate the possib
ties that taking account of the conductivity of the samp
opens up in the standard picture of the free induction de
of nuclear spins we shall assume that skin-effect is a nor
type, i.e., we shall write Ohm’s lawj5sE for the current
density, wheres is the conductivity of the sample and
assumed to be independent of the wave vector. We note
the anomalous skin effect would lead to more uniform pe
etration of an ac magnetic field into the sample, which wo
strongly decrease the influence of the nonuniformity of
penetration on the free induction decay, and the NMR sp
tra obtained by Fourier transforming of the free inducti
decay would be identical to the spectra in dielectrics. Sin
the NMR spectra are unusual, it remains to assume that t
exists a pronounced surface, i.e., the normal skin effect
curs ~compare with the Kittel case5!.

We shall confine our attention in the present paper
weak excitation of transverse magnetization by an externa
field ~small tipping angle!. We therefore takeMz5M0,
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whereM0 is the equilibrium nuclear magnetization. Elim
natingE from Eq. ~3!, we find forH1 an equation which is
related to the equation forM 1 from Eq. ~2!:

]M 1

]t
52 i S v0M 12gaM0

]2M 1

]z2 D 1 igm0M0H12
M 1

T2
,

~4!

]H1

]t
5

1

sm0

]2H1

]z2
2

]M 1

]t
, ~5!

wherev05gB0 is the Larmor frequency of the spins andT2

is the spin–spin relaxation time introduced phenomenolo
cally following Bloch.

We note first that all interesting effects described bel
arise because of the interaction of the magnetization with
field ~the term proportional togm0M0 in Eq. ~4!!. Therefore
M0 must be large enough to make these effects observa
In the experiments described in Refs. 1–3 this is achieved
using ultralow temperatures~ranging from values of the or
der of tenths of a millikelvin up to 10 mK!, which are, how-
ever, much greater than the nuclear magnetic ordering t
perature.

First we shall study the effect on the sample of an ex
nal ac field with intensity

Hx~z50,t !52h0 cosVt. ~6!

at the sample surface. Since the pulse length in free induc
decay experiments is much less thanT2, we shall neglect the
last term in Eq.~4! during the time-action of the pulse act
We seek the solution of the system~4! and~5! in the form of
two traveling waves: neglecting their ‘‘entanglement,’’ an
magnetic field would penetrate in the form of one of the
while a transverse magnetization, produced by the pene
tion of the field, would penetrate in the form of the other~the
frequencies of these waves equalV because the oscillation
of the field and magnetization are forced!:

Hpulse
1 5h1 exp~2 iVt1 ikz!,

~7!
Mpulse

1 5m1 exp~2 iVt1 ikz!.

Substituting the expressions~7! into Eqs.~4! and~5! we find

~v02V1gaM0k2!m12gm0M0h150, ~8!

iVm11S iV2
k2

sm0
Dh150. ~9!

Note that these equations are suitable for the case wher
spins approach ferromagnetic ordering (J0.0). If J0 is
negative, two magnetic sublattices must be considered.4 This
problem falls outside the scope of the present paper.

The dispersion equation obtained from the requirem
that the system~8! and ~9! possess a nontrivial solution is

k42k2S V2v0

gaM0
1 i

2

d2 D 1 i
A2

d

V2v02gm0M0

gaM0
50, ~10!

whered5A2/sm0V is the standard skin-depth in the meta
The solutions of Eq.~10! are
i-

e

le.
y

-

r-

on

,
a-

the

t

k1
25k0

2S 11 i
2h

d2k0
2D , k2

25 i
2

d2
~12h!, ~11!

where

k0
25

V2v0

gJ0M0l 2
, ~12!

h5
z

k0
2d2/22 i

S 11A11
i2z

~k0
2d2/22 i !2 D 21

,

z5
m0d2

J0l 2
, J05

znJ

nsg
2\2

. ~13!

Here J0 is the most important quantity characterizing t
interaction of the nuclei~the Ruderman–Kittel interaction o
a given nucleus only withzn nearest neighbors is taken int
account,J is the constant characterizing this interaction, a
ns is the spin density! and l is an effective length ina. It
should be noted that an estimate ofa in ferromagnetic di-
electrics yields4 a5J0a2/2, wherea is the lattice constant
However, the Ruderman–Kittel interaction length in pri
ciple can be assumed to extend over the electron mean
path lengthl e , so that there are grounds for takingl e instead
of a in the estimate ofa. But, since this assumption has n
been confirmed experimentally,l must be treated~just like
a) as an adjustable parameter. For convenience we s
write a in the forma5J0l 2. It follows from Eq.~8! that the
partial characteristic frequency of the spin-like branch
v01gaM0k2. Since we haveJ0.0, only a rf field with
frequencyV>v0 can excite precession of the magnetiz
tion, and thereforek0

2 is positive.
Thus, the rf field and the transverse magnetization p

duced by it propagate into the plate in the form of tw
waves, one of which~with wave numberk2) is due to the
skin effect in metals while the other~with wave numberk1)
is due to the nonuniform exchange between nuclear sp
Since the relation

m152S 11 i
d2k2

2 Dh1 ~14!

between the amplitudes of the two waves follows from E
~9!, coupled traveling waves of the field and the magneti
tion can be written as a superposition of the two branche
the following form:

Hpulse
1 ~z,t !5h1

1exp~2k19z!exp~ ik18z2 iVt !

1h2
1exp~2k29z!exp~ ik28z2 iVt !, ~15!

Mpulse
1 ~z,t !52S 11 i

d2k1
2

2 Dh1
1exp~2k19z!

3exp~ ik18z2 iVt !2S 11 i
d2k2

2

2 Dh2
1

3exp~2k29z!exp~ ik28z2 iVt !. ~16!

Waves of this form are solutions of the coupled equations
H1 and the electronic magnetization in metals taking
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count of electron diffusion.6 Equations~15! and ~16! take
into account the inequalityL@d in the experimental situa
tions mentioned above. In this case neither the shape no
dimensions of the sample are important, and we have p
etration ofH1 and M 1 through the boundary into a meta
filling a half-space.4 Then, only the solutionsk1,2 satisfying
Im k1,2.0, i.e., the solutions which give the spatial dampi
in Eqs.~15! and ~16!, should be chosen.

The amplitudesh1,2
1 can be found from the boundar

conditions, of which one is the relation~6!, while the other is
the condition that there be no magnetization flux through
sample surface:6

]M 1

]z
~z50, t50!50. ~17!

The expressions found for the amplitudes are

h1
152h0

w2

w22w1
, h2

1522h0

w1

w22w1
, ~18!

where

w1,25k1,2S 11 i
d2k1,2

2

2 D . ~19!

We shall now examine the free precession of the m
netization after the rf pulse. We start from Eqs.~4! and ~5!
taking account ofT2

21. In contrast to the preparatory stag
~excitation by an external rf field!, now H1 andM 1 are not
known in advance as functions of time and are to be de
mined. On the other hand, the spatial dependence of the
ables considered is obvious: The nonuniform precessio
the transverse magnetization occurring inside the sam
produces a nonuniform magnetic field. Combining the cor
sponding waves, moving from one surface of the sample
the other and back, with anti-node boundary conditions

]M 1

]z
~z50,L !50,

form cosine standing waves with wave numbersK5pn/L,
n50, 1, 2, . . . .

Thus we shall seek the solution of Eqs.~4! and ~5! dur-
ing free precession in the form

M pr
1 ~z,t !5 (

n50

`

m1~ t !cos
pnz

L
,

~20!

Hpr
1 ~z,t !5 (

n50

`

h1~ t !cos
pnz

L
.

Substituting the expressions~20! into Eqs. ~4! and ~5! we
find the following expression form1(t):

d2m1

dt2
1 i S v01gaM0K21gm0M02

i

T2
2 i

K2

sm0
Ddm1

dt

1
iK 2

sm0
S v01gaM0K22

i

T2
Dm150. ~21!
he
n-

e

-

r-
ri-
of
le
-

to

Therefore m1(t)5Aeilt. Since the coupling between th
magnetization and the field is assumed to be sm
(gm0M0 /v0!1), we find the following approximate ex
pressions for the characteristic roots:

l1'2~v01gaM0K21gm0M0!

1 i S 1

T2
1

K2

sm0

gm0M0

v01gaM0K2D , ~22!

l2'
iK 2

sm0
S 12

gm0M0

v01gaM0K2D . ~23!

On the other hand, the time-dependent parts of the exp
sions~20! are related as

h15
v01gaM0K22 i /T21l

gm0M0
m1[c tm

1. ~24!

Thus, the time-dependent parts of the expressions~20! can
be written in the form of oscillations of two coupled linea
oscillators. ThereforeM 1 andH1 during free precession ca
be written in the form

M pr
1 ~z,t !5 (

n50

`

@A1n exp~ il1t !

1A2nexp~ il2t !#cos
pnz

L
,

~25!

Hpr
1 ~z,t !5 (

n50

`

@c1tA1n exp~ il1t !

1c2tA2n exp~ il2t !#cos
pnz

L
,

wherec1,2t denotec t from Eq. ~24! with the values ofl1

and l2, respectively, substituted. Note that, sincel2 is
imaginary, there is actually only one oscillator~the spin sys-
tem! possessing a set of characteristic frequencies

v res~n!5v01gaM0~pn/L !21gm0M0 ~26!

and decay rates

1

T28~n!
5

1

T2
1

1

sm0
S pn

L D 2 gm0M0

v01gaM0~pn/L !2
, ~27!

which are, respectively, the usual spin-wave spectrum o
ferromagnet4 v01gaM0(pn/L)2 and the usual spin–spin
decay with corrections due to the coupling of the magneti
tion with the magnetic field. The other ‘‘oscillator’’~the field
produced by the motion of the spins! decays monotonically
with the decay constantl2 as a result of the resistance of th
metal.

The amplitudes of free precession can be found,
usual, by matching the values of the components of the fi
and the magnetization at the initial moment of free prec
sion (t50 in Eq.~25!! with the same components at the e
of the evolution process under the action of the excit
pulse. Recall that under the action of a pulse the bound
condition propagation into the sample took place.7 We will
study this wave-like propagating coordinate system rotat
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with frequencyV around thez axis with the spatial phas
varying with distancez as exp(ik18z) for the spin-like wave
and as exp(ik28z) for the field-like wave~mathematically this
means that in Eqs.~15! and ~16! we must setk18z2Vt50
andk28z2Vt50).

In such a coordinate system~we will call it the wave
coordinate system!, under the action of the exciting rf pulse
an observer will see static spatial distributions of the m
netic field and magnetization similar to the static distributi
of the deviations from equilibrium of two types of hypothe
cal pendulums at various angles inside the sample. It is
sumed that such a pattern is produced rapidly compared
the length of the rf pulse and then persists while the exte
field acts.

The matching conditions can therefore be written

M 1,Hpr
1 ~ t50!5M 1,Hpulse

1 ~z!. ~28!

We take the left-hand side of expression~28! from Eq. ~25!,
and we expand the right-hand side, which is given by exp
sions ~15! and ~16! with k1,28 z2Vt50, in a Fourier cosine
series. A simple system of equations forA1,2n is found by
comparing the expressions obtained. According to the ab
mentioned, the terms of Eq.~25! corresponding to the char
acteristic rootl2 cannot be expected to exhibit resonant b
havior, so we present only the computational result forA1n

x,y

[Re(Im)A1n :

A1n
x,y5c1z

x,yh1
x,yf 11c2z

x,yh2
x,yf 2 , ~29!

whereh1
x,y can be calculated from Eq.~18! and

c1,2z
x,y '6S 12

d2~k1,2
2 !9

2 D 2
d2~k1,2

2 !8

2

h1,2
y,x

h1,2
x,y

, ~30!

f 1,25
2

L

k1,29

~k1,29 !21~pn/L !2
@12exp~2k1,29 L !cospn#.

~31!

Finally, we have for the part of thex component of the mag
netization that is resonant during the free induction deca

M pr
x ~res,n!5expS 2

t

T28~n!
D @A1n

x cos~v res~n!t !

2A1n
y sin~v res~n!t !#cos

pnz

L
. ~32!

The expression in front of cos(pnz/L) in Eq. ~32! is similar to
the stationary nonuniform NMR signal in ferromagnets o
tained by Kittel.5 It yields the contribution of thenth mode of
standing spin waves to the free induction decay. As usu8

the part of expression~32! that precesses in phase with th
linearly polarized applied field yields a dispersion signal
the response of the spin system to a one-pulse excita
A1n

x /2h0, while the part shifted in phase byp/2 relative to the
exciting field yields the absorption signal2A1n

y /2h0. Fourier
transforming expression~32! gives the corresponding
Lorentzian line of thenth mode of the spin waves with th
resonance frequency and decay rate given by Eqs.~26! and
~27!.
-
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-

-
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It is interesting to note that the distortion of the standi
spin waves that is due to the spatial nonuniformity inheri
from the preparatory stage made the quantity

f 1,2[
2

L E
0

L

exp~2k1,29 z!cos
pnz

L
dz

~and consequentlyA1n
x,y) different from zero: With no spatia

damping due to the spin effect, i.e., withk1,29 50, we would
have f 1,250.

In summary, we have shown that the NMR spectru
found by Fourier-transforming of the free inducation dec
in metals at sufficiently low temperatures consists of a se
contributions of standing spin waves. If the Fourier tran
form is performed so that the free induction decay at the s
of the Fourier-transform process passes through a maxim
then the Fourier cosine transform (Fc) gives an absorption
signal, while the sine transform (Fs) gives a dispersion sig
nal. In practice, the resulting Fourier transfor
Fr5AFc

21Fs
2 is usually calculated:

Fr~v,l,n!5
1

A2p

A@~A1n
x !21~A1n

y !2#@~l19!21~v1l18!2#

~l19!21~v1l18!2
,

~33!

wherev is the traveling frequency of the Fourier transform
Expression~33! together with Eqs.~29!–~31! describes the
experimental results on recording NMR in metals at ultral
temperatures by Fourier-transforming of the free induct
decay.

3. RESULTS

We analyze the results obtained. First, a collection
peaks should be expected near the frequencyv0(v'v0) in
the Fourier-transforming of the free induction decay. A
cording to Eq.~26! these peaks are due to spin waves. Co
sequently, in experiments studying free induction decay
metals, in contrast to dielectrics, when the rf field outside
metal is spatially uniform, standing spin waves can be
tected because of the skin-effect-induced nonuniform dis
bution of the external field and the transverse magnetiza
produced by it inside the metal during the preparation~exci-
tation! stage.

We shall now examine the dependence of the outpu
the free induction decay signal on the detuning of the ex
nal rf field from the Larmor frequency. First we shall discu
the results for exact tuning (V5v0). Then the quantities
~11! are

k1
25

2i

d2
h, k2

25
2i

d2
~12h!,

where

h5
2 i z

11A112i z
, z5

m0d2

J0l 2
,

and do not depend onM0. Moreover, all quantities in the
final results are independent ofM0 with the exception of
those;gm0M0 /v0, which can be neglected. Therefore,
metals at the exciting rf pulse tuned precisely to the Larm
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frequency there is no magnetic resonance signal that c
be detected as a change in the complex impedance~active
resistance and inductance! of the coil of the NMR spectrom-
eter by placing the sample inside the coil compared with
empty coil. This behavior is explained by the fact that the
field simply does not penetrate into the sample becaus
strong absorption by the spins: the sample is opaque for
field.

We now proceed to the case of large detunings,V2v0

@gJ0M0l 2/d2, or in other words,k0d@1. ~However, there
must be a limit on the detuning, given by the condition fo
continuous medium:

gJ0M0l 2/~V2v0!@a2.

Note that this condition is easily satisfied even for ‘‘large
detunings.! Then, during the excitation stage the field-lik
branch of the coupled~field 1 magnetization! system propa-
gates and decays, to a good approximation, over a dist
on the order of the skin-depthd(k285k29'd21). In contradis-
tinction to this, the wavelength of the spin-like branch
much less thand(k18'k0), while the penetration depth of thi
wave into the sample is much greater thand:

k19'd21z/~k0d!3!d21. ~34!

Let

dspin@L@d ~35!

(dspin5(d/z)(k0d)3 is the depth of the ‘‘spin’’ skin layer!.
The first inequality means that the static pattern of the d
tribution of the magnetization deviations, which was d
cussed prior to expression~28!, is nonuniform over the entire
thickness of the plate, while the second inequality pres
poses~as is the case in an experiment! that the skin-depth is
much less than this thickness.

Calculations lead to the conclusion that since the
equality

L

s

z

~k0d!3
!1 ~36!

follows from Eq.~35!, the intensity of the even modes of th
standing spin waves which exist in a plate at free induct
decay~i.e., with evenn: an even number of half-waves of th
standing spin waves fit within the thickness of the plate! is
much higher than the intensity of the odd modes.

The corresponding NMR signals in a phase-sensi
Fourier-transforming of the free induction decay is describ
by the expressions

x8~v,V,2n!'
1

A2p

2gm0M0

V2v0
HA gJ0M0l 2

~V2v0!d2

3F11S 2pn

L

d~k0d!3

z D 2G21

1
d21L21

d221~2pn/L !2J
3

@v2v res~2n!#

@T28~2n!#221@v2v res~2n!#2
, ~37!
ld

n
f
of
is

ce

-
-

-

-

n

e
d

x9~v,V,2n!'
1

A2p

2gm0M0

V2v0
A gJ0M0l 2

~V2v0!d2

3F11S 2pn

L

d~k0d!3

z D 2G21

3
@T28~2n!#21

@T28~2n!#221@v2v res~2n!#2
. ~38!

The expressions~37! and ~38! depend on the equilibrium
magnetization. They therefore indeed represent the N
signals detected by the rf coil. Thus, the second basic re
of this work is that the signals corresponding to standing s
waves can be detected only if the rf field exciting free indu
tion decay is applied at a frequency sufficiently remov
from v0. Then the spin-like branch of the coupled waves
excited over the entire thickness of the sample and ma
NMR observable. Specifically, in a phase-sensitive Fou
transform, Lorentzian-shaped peaks of widthT28(2n)21

should appear in the NMR absorption signal at the frequ
cies v res(2n). Such peaks are observable if the frequen
spacing between the (n11)st and neighboring (n21)st
peaks (n51, 3, . . .! exceeds their width, i.e.,

gJ0M0~4pnl/L !2.T2
21 .

Substituting the data for205Tl ~relative content 70%! with
gyromagnetic ratiog52.53107 Hz/T, equivalent to the
magnetizationM05202p A/m, wherep is the polarization of
the nuclear spins, using the experimental result of Ref
uJ0u528m0 h/m, and substitutingT2

21'2p•43104 s21,
measured in Ref. 3 withp.0.5(T.1 mK), we find that the
(n11)st and (n21)st peaks of the spin waves can be r
solved if n satisfies the inequality (nl/L)2.1022, which
holds for n.1, if the sample thicknessl 51024 m and l is
interpreted as the electron mean-free path length in
residual-resistance region,l e'1025 m. In Ref. 3 the sample
was cylindrical with diameter 331023 m, so that it is not
surprising that there was no ‘‘comb’’ of spin-wave peaks, b
kinks and hints of structure were observed in the spe
obtained with the exciting rf field applied at a frequen
much higher than the Larmor frequency of the isotopes. U
fortunately, it is impossible to make a direct comparison w
the observed spectra, since our calculations were perfor
for nuclear spins of one kind, while the experiments of Re
1–3 were performed on samples with the two thallium is
topes in the natural abundance, strongly coupled with
another by the Ruderman–Kittel interaction.

The third basic result is the nonlinear dependence of
NMR signals on the equilibrium magnetization, or in oth
words, on the reciprocal of the sample temperature: The
sorption signal and part of the dispersion signal~37! and~38!
are proportional toM0

3/2. The reason for this behavior is tha
as one can see from Eqs.~34! and ~35!, for large detunings
only the spin-like branch of the coupled waves penetra
into the entire thickness of the sample, and the amplitude
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this branch in the expression for the field, calculated acco
ing to Eqs.~18!, is a nonlinear function ofM0. The trans-
verse magnetization with free induction decay inherits t
nonlinearity. The corresponding dependence of the inten
of the NMR lines on the reciprocal of the sample temperat
has been observed experimentally.3

We note that analytical expressions derived for the
sorption and dispersion signals in the present paper
‘‘large’’ detunings are applicable for205Tl described above
for V2v0'106 s21: For B050.4 T (v0'2p3107 s21!
and residual resistivityr21'63108V21

•m21 we have
d'1025 m, k0d'101/2, anddspin'1023/2m. In this case the
inequalities~35!, expressing the optimal conditions for th
appearance of standing spin waves accompanying at fre
duction decay are satisfied for sufficiently thin samp
(L'1024 m), but the nonlinear dependence of the NM
signals on the reciprocal of the temperature undoubtedly
exists under conditions which are less favorable for mani
tations of spin waves.

In summary, in the present work we have shown that
skin effect in metals at ultralow temperatures qualitativ
changes the NMR picture observed as the Four
transforming of the free induction decay, even for small t
ping angles of the magnetization@linear coupling of the~field
1 magnetization! system#. The results obtained are in qual
tative agreement with experiments.
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