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Abstract—Nuclear clustering based on α particles and strongly bound substructures with N = Z has
been studied for many decades. Of particular interest are excited states close to the decay thresholds into
substructures, as described by the Ikeda diagram. This diagram can be extended to neutron-rich nuclei;
in these cases strongly deformed isomeric states consisting of clusters and loosely bound neutrons will
appear. A possible approach to describe these states is to use explicitly molecular concepts, with neutrons
in covalent binding orbits. Examples for molecular structure in beryllium isotopes and in other neutron-rich
light nuclei (carbon and neon) are discussed. c© 2003 MAIK “Nauka/Interperiodica”.
1. α CLUSTERS, POTENTIALS,
AND DIAGRAMS FOR EXOTIC SHAPES

In heavy-ion reactions, resonances have been
observed in the excitation functions in various com-
binations of light α-cluster nuclei in the energy
regime from the barrier up to regions where the
excitation energy in the compound nucleus reaches
30 to 50MeV. In particular in cases like 12C + 12C [1]
and 24Mg + 24Mg [2], the structure of highly excited
states can be related to strongly deformed shapes
(to super- and hyperdeformation) in the compound
nucleus and to the clustering phenomena predicted
from cranked α-cluster models [3, 4], Hartree–Fock
calculations [5], Nilsson–Strutinsky calculations [6],
and others [7]. The spectroscopy of strongly deformed
shapes inN = Z nuclei has so far been the domain of
charged particle spectroscopy. Various decay studies
with the emission of α particles, 8Be, and heavier
fragments are known [2, 8–11]; however, new de-
tector setups with a combined particle–γ detection
are expected to give new insight into exotic shapes in
nuclei related to clustering.

A. The Local α-Nucleus Potentials

The formation of molecular structures relies on
special properties of the nuclear potential between
the two cores (clusters), namely, the occurrence of
a “molecular” potential, with attraction at large dis-
tances and repulsion at small distances. Thus, in the
research on nucleus–nucleus collisions in the last
decades, shallowmolecular potentials have been used
to describe these resonances. For our discussion, we
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have two quite conspicuous cases with α particles,
where the local potentials have a small attractive part
and a strong repulsion at small distances. These two
cases are shown in Fig. 1, which shows the cases
of α particles interacting with α particles and with
16O. The curves are actually the result of a reduc-
tion (using a supersymmetric transformation [14])
of the “true” potential to a phase equivalent shal-
low potential, which does not exhibit any unphysical
bound states. For the case of the α+ α potential, the
molecular potential created by Ali and Bodmer [12]
for 8Be (dashed curves) is seen to coincide well with
the supersymmetric local potential. For a more de-
tailed discussion of this point, I refer to the survey by
Ohkubo et al. [13]. The repulsion at small distances
can be interpreted as the effect of Pauli blocking;
in the case of the α+ α potential, the nucleons of
the second cluster have to move up into the next
major shell. These potentials, which are repulsive at
small distances, are needed for nuclei with additional
neutrons in order to build covalently bound nuclear
cluster structures discussed in the next section.

B. Threshold Diagrams

It has recently been noted that neutron-rich and
weakly bound nuclei show a strong tendency to clus-
tering [15–18]. This appears to be a mean field effect,
where the residual interaction can saturate better the
nuclear forces in a way that a maximum of protons
can be shared by the neutrons. But additional quantal
effects to be described below lead to the formation
of shape isomers as covalent molecular structures for
weakly bound nuclei.

As far back as 1968, it was realized by Ikeda [19]
that clustering in nuclei will become relevant for
states in nuclei close to their thresholds for their
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Two examples of shallow local potentials for the interaction of α particles with α particles (the case of 8Be) and with
16O (the case of 20Ne).
decomposition into clusters. This concept is depicted
as the Ikeda diagram in Fig. 2, where the threshold
energies for the decay into substructures are given in
MeV. We observe a systematic change in structure
related to α clustering and heavier clusters. Reviews
of the work on these clustering phenomena have been
published regularly [8–10]; also, for heavier nuclei,
like the rotational band structure in 20Ne and 44Ti,
see [13] for a recent review. Adding neutrons and
considering loosely bound threshold states, we will
observe molecular structures based on these clusters
and covalently bound neutrons.

Using the cluster plus valence neutrons model,
we can now discuss the extension of this concept
formulated by the author in [17]. The covalent binding
of neutrons produces a new diagram as also shown
in Fig. 2 (the covalent molecular binding diagram):
“covalently bound molecular structures will appear in
neutron-rich nuclei close to the thresholds for decom-
position into neutrons,α clusters, and other clusters.”
For reasons of simplicity, only the 16O cluster is con-
sidered in the following, because the structure of 12C
with its large deformation leads to some complica-
tions.

2. MOLECULAR ORBITALS FOR NEUTRON
CONFIGURATIONS

Over the last decades, the molecular orbital model
[20–25] for neutrons has been applied to nuclear col-
lisions, in which single nucleons, mostly neutrons, are
exchanged between two nuclear cores. This has been
done for low-energy reactions and for cases where
strongly bound cores (typically α-cluster nuclei) and
valence nucleons can be defined in a clear way [24].
In a collision process, this approach corresponds to
P

a choice of basis states, which takes the two-center
structure of the nuclear reaction into account, and the
couplings appear as radial and Coriolis couplings [21,
23]. It can be seen as an equivalent approach to
the coupled reaction channel calculations based on
the asymptotic basis states of the separated nuclei.
A comparison of the two approaches can be found
in [25].

The original studies based on the LCNO model
of the 12C + 13C system and others [20–22] were
limited to scattering states, because the core–core
potential between two heavier nuclei usually becomes
attractive and strongly absorptive once the Coulomb
barrier is reached. In this molecular orbital model
and in the two-center shell model (in this case, not
only valence nucleons, but all nucleons are consid-
ered), a correlation diagram has to be drawn, as is
well known from the correlation diagrams of atomic
physics (see also [26], p. 328). The diagram merges
at small distances with the Nilsson diagram of the
deformed compound nucleus. The molecular orbitals
are classified according to the well-known quantum
numbers of molecular valence states: theK-quantum
number for the projection of the spin, the σ and π
orbitals for the M = 0 and M = 1 projections of the
orbital angular momenta l, the parity, and the gerade
and ungerade symmetry due to the identity of the two
molecular cores. With this correlation diagram, we
are able to discuss the structure of the isotopes 9Be,
10Be, and 11Be, if we consider [17] the population of
the molecular orbits for a distance corresponding to
the potential minimum, or in the Nilsson model to a
deformation of β2 = 0.6–0.7.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 2. Upper part: the Ikeda diagram for light α-cluster
nuclei; lower part: the extended threshold diagram of co-
valently bound nuclear molecules with covalent neutrons.
The threshold energies are indicated.

3. BERYLLIUM ISOTOPES, DIMERS

The 8Be nucleus can be regarded as the first su-
perdeformed nucleus with an axis ratio of 2 : 1. The
situation is quite special for α particles—the 8Be
is unbound. It has been known for more than two
decades that the 9Be nucleus is an example of molec-
ular binding in nuclear physics, where two α particles
are bound by the covalent neutron. We note (see
Fig. 3) that, at the distance where the α+ α po-
tential has its minimum, the K = 3/2− orbit crosses
the K = 1/2+ orbit and becomes the lowest state at
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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Fig. 3.Correlation diagram ofmolecular orbitals in a two-
center shell model picture; the molecular orbitals are la-
beled by their quantum numbers (see text). The distance
between the two centers is denoted by r, and Rmin is
the distance (3.7 fm) where the minimum of the α+ α
potential occurs, and the states in 9–11Be are determined
by distances of r = 3.5–4.5 fm.

smaller distances. The first levels of 9Be are com-
pletely reproduced by this scheme. In a systematic
survey of the structure of the beryllium isotopes [17],
all(!) known states of the isotopes 9Be, 10Be, and 11Be
can be grouped into rotational bands with molecular
configurations by using the diagram of Fig. 3.

The structure of the states in the Be isotopes is
thus determined by the “driving forces” of the evolu-
tion of the π and σ orbitals as a function of distance.
The ground state of 10Be can be interpreted as a
(π)2 configuration with smaller deformation, whereas
the excited 0+

2 at 6.179 MeV in 10Be is interpreted
as the (σ)2 configuration, which attains its lowest
energy at much larger distances with a corresponding
much larger moment of inertia. The information on
excited states in the isotopes of 9Be, 10Be, and 11Be
is compiled in Fig. 4, where the low-lying states of
these isotopes are grouped together to form rotational
bands. The moments of inertia and thus the defor-
mation of the intrinsic configurations can be deduced
from these graphs. For the K = 1/2+, the typical
Coriolis decoupling pattern expected for such cases
is observed in 9Be and also in 11Be.

Very remarkable is the K = 3/2− band in 11Be,
with states [27] established to high excitation energy,
and which starts at 3.95 MeV, more than 3 MeV
3
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above the particle threshold (see Figs. 4–6). Inspect-
ing the correlation diagram, we recognize that this
band must have the covalent neutron configuration
(π) × (σ)2, which results in a particular stability and
a large deformation due to the properties of the (σ)2
bond. The moment of inertia of this band is thus
similar to that of the excitedK = 0+ band in 10Be.

These molecular states must be considered as
true superdeformed shape isomers. This aspect is
observed in a dramatic way through the selectivity
for the population of states in 11Be. We have studied
the population of states in 11Be by (i) single nucleon
transfer on 10Be and (ii) two-neutron transfer on 9Be,
shown in Fig. 5 from [27]. Whereas for the reaction
on 10Be only three low-lying single particle states
(with the configurations p1/2, p3/2, and d5/2) are ob-
served, the two-neutron transfer populates strongly
the higher spin members of the K = 3/2− rotational
P
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band, which are completely absent in the one-neutron
transfer spectrum.

The two-neutron transfer spectrum shown in
Fig. 5 shows a resonant structure, which extends up
to a projected spin value of 19/2. We may ponder
if this value can still be obtained in a deformed
oscillator-shell model by counting the spins of the in-
dividual three valence nucleons: in fact the maximum
spin of the valence neutrons would be [(3/2(p3/2) +
8/2(for 2× 5/2)] = 11/2; the total spin can then only
be reached by adding the maximum spin of the 8Be
system, which is known to be 4, giving the total sum
of 19/2!

The proposed molecular properties of the states
in Be isotopes have found striking confirmation
from model-independent calculations (computer ex-
periments) using the method of antisymmetrized
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 7. Chain states of carbon isotopes with up to four extra covalent valence neutrons. The thresholds for the decay into α
particles and neutrons are aligned to the same level.
molecular dynamics (AMD) of Horiuchi and Kanada-
En’yo [15, 16]. Particularly impressive are the density
distributions obtained for the ground state 0+ and
second 0+ state of 10Be, which have been obtained by
projection on spin and parity [16]. The formation of
covalent bonds with the (σ)2 and (π)2 configurations
according to the correlation diagram in Fig. 3 is
very conspicuous in the density distributions obtained
from these calculations [16].

The molecular structure is still visible in heav-
ier isotopes of Be, like 12Be, where the persistence
of the strong clustering of the α particles prevents
the formation of a closed shell with N = 8, and at
higher excitation energies, experiments suggest the
formation of a rotating dimer decaying into two 6He
fragments [28]. The properties of these strongly de-
formed configurations can be traced to excited states
of heavier isotopes of Be and, by using the concept of
isospin, also to structures in boron isotopes.

4. POLYMERS, CHAIN STATES IN CARBON
ISOTOPES

Based on the covalently bound structures of the
system of two α particles, we can continue the dis-
cussion of extreme deformations with three α parti-
cles by showing the schematic diagrams for the shape
isomers of the carbon isotopes in Fig. 7. The three-
α-particle threshold state correspondingly is taken to
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
be the second 0+
2 in 12C (a more detailed discussion is

given in [17]). The trimers are built with the covalent
binding of two times two neutrons by using the well-
established knowledge of the covalent bonds in 10Be.
Actually, we may expect that covalently bound shape
isomers in 16C are indeed rather stable configurations
(as is the case in atomic molecules). Two bonds in
the covalent configuration between theα particles will
influence each other so as to increase the total binding
energy of the chain, which is expected to be more than
5 MeV. More recent calculations for 14C and 16C are
discussed in [29, 30]. A detailed discussion of the ex-
perimental evidence has recently been published [31].

There are many other nuclear molecules and poly-
mers that can be built on the repulsive α-nucleus po-
tentials and additional covalent neutrons. A particular
conspicuous example is discussed in the next section
(see also [32]).

5. MOLECULAR STRUCTURE BASED
ON THE α+ 16O POTENTIAL, STRUCTURE

OF NEON 20,21Ne

The structure of α-cluster nuclei, in particular, of
20Ne, has been discussed in the α + 16O cluster
model over the last decades [8, 33]. It is connected
to an octupole degree of freedoms [33]; two bands
with K = 0+,− are observed. The particular feature
of the inversion doublet with two bands of K = 0+
3
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Fig. 9.

and K = 0− (actuallyK = 1−) is also well described
by an angular-momentum-dependent α + 16O local
potential; this point has been summarized recently
by Ohkubo [13]. This peculiar feature of inversion
doublets in nuclear structure arises for the case of an
intrinsic asymmetric shape, which has no good par-
ity. For K-quantum number zero, K = 0, we would
have a band with states of alternating parity Jπ =
(0+, 1−, 2+, 3−, etc.). The fact that this band is
split into two bands of definite parity is due to a
large probability to change between the two reflection
asymmetric shapes by some tunneling process. This
case is discussed in volume II of the book by Bohr and
Mottelson [34] and also, for example, for molecules
in the book by Herzberg [26] (p. 129). A particular
case occurs for odd nuclei and for the case of K �= 0,
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Fig. 9. Schematic illustration of the structure of molec-
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topes based on the (α+ 16O) cluster model plus some
neutrons. For the odd mass isotopes, each K-quantum
number gives rise to a doublet of bands due to the two
signs of the signature. The splitting of the bands will be
proportional to the overlap ∆.

where two parallel bands with equal spin but opposite
parity (parity doublets) will occur, a phenomenon also
known as signature splitting [26, 34]. This will be the
case of 21Ne. In Fig. 8, rotational bands are plotted
in such a manner that the doublets, which may occur
due to signature splitting, become visible [32].

In order to study the structure of 21Ne in a model
that consists of one neutron bound in a two-center
system with two unequal cores, namely, α and 16O,
we have to look into the structure of an asymmetric
top with K �= 0, with an intrinsic violation of parity,
as illustrated in Fig. 9. For these structures, a parity
projection is obtained with the superposition of two
reflection asymmetric states, as shown in Fig. 9. The
model resembles in its main structure that of Descou-
vement [35]; however, the molecular orbital (LCNO)
model mentioned in the previous sections is used
directly. For this purpose, a correlation diagram must
be constructed; however, some of the most important
features can be deduced from a threshold diagram, as
shown in Fig. 10. This diagram shows the positions
(binding energies) of the single-particle orbits of the
neutron at the two centers, namely, for α and 16O.
For this system, a remarkable coincidence occurs:
the p3/2 resonance of 5He (at 890 keV) is almost
degenerate with the d3/2 state, also a resonance at
941 keV in 17O.We note that this particular situation
is known as the quasi-resonance condition for the
sharing of valence particles in covalent structures in
molecular science.

For the molecular two-center states in 21Ne, we
take these two degenerate j = 3/2 orbits at the α and
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 10. Illustration of the thresholds (aligned to the same level) for the neon isotopes for the (α+ xn+ 16O) cluster model.
The Jπ values of band heads in 21Ne with theirK-quantum numbers are indicated.
16Oclusters and construct theK = 1/2 and 3/2 two-
center states. These configurations are schematically
shown in Fig. 9. There is no reflection symmetry in
these intrinsic states; therefore, states with definite
parity are constructed by using superpositions, which
produce a definite signature. The outcome of these
considerations is [32] that there must be in the cluster
model, with (α+ 16O + neutron) two parity doublets
of bands with K = 1/2 and 3/2, i.e., for each spin,
the two parities (+ and −). This situation of a finite
K value is also well known in asymmetric atomic
molecules as cited by Herzberg [26]. The interesting
question of the size of the energy (signature) splitting
and of the purity of these configurations can possibly
answered experimentally.

Gamma spectroscopy of the neon/magnesium
isotopes has been reported over the last 10–20 years
[36, 37]. The experimental systematics suggests two
K = 1/2 bands with opposite parity and very small
splitting. This result could be interpreted as due to a
rather stable molecular structure based on the σ bond
between the α particle and the 16O clusters (see [32]).
For K = 3/2 bands, we also have two candidates;
however, a definite answer for these states is more
difficult; they most likely will exhibit strong mixing
with other configurations. The splitting is very similar
to that in the case of 20Ne. I mention an interesting
finding [37] about the extreme retardation by four
orders of magnitude of the E1 transition from the
excited 1/2− state to the 3/2+ ground state, a fact
which supports that theK = 1/2− state has indeed a
very different structure.

To conclude the above considerations, we can
state that there is in light nuclei strong evidence
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
for dimers, trimers based on α particles, and asym-
metric molecules based on α + 16O clustering. In
accordance with the Ikeda diagram (Fig. 2), I can
construct more extended molecules, whose band
heads can be estimated by using the information
from the neon isotopes. The existence of an intrinsic
symmetric stable molecule, which I call “nuclear
water,” (He)2O, can be predicted. The wave functions
are schematically shown in Fig 9. These shapes are
true shape isomers, with complicated deformations,
which cannot be easily described by a few terms in
the Legendre function expansions for nuclear shapes.
A search for γ transitions from such configurations
is an interesting challenge for nuclear spectroscopy.
Radioactive beam facilities will give access to the
more neutron-rich nuclei. With these considerations,
it is possible to predict that, in light neutron-rich
nuclei, many shape isomers must be observed, which
are strongly related to clustering, i.e., with structures
which go well beyond usual shell model approaches.
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Abstract—The status of the problem of describing the dissipative phenomena in nuclear reactions is
discussed from experimental and theoretical points of view. Dynamical effects in the initial phase of a
fusion reaction are presented showing the evolution of two colliding 100Mo ions. The role of elastic forces
associated with the Fermi surface deformation is shown by comparing the results obtained with and
without taking into account the memory effects. The evolution of the unified nuclear system formed after
establishing contact between ions is shown to be also strongly influenced by elastic forces associated
with the Fermi surface deformations and with related memory effects. Examples are given in which the
Fermi surface deformations lead to phenomena usually attributed to the excitation energy and deformation
dependence of the friction parameter. c© 2003 MAIK “Nauka/Interperiodica”.
1. INFORMATION ON FRICTION

The sources of information on nuclear friction are
numerous. They are related to the following aspects
of friction:

Friction regulates the time scales of collective
processes: the larger the friction, the stronger the
force slowing down the collective motion. The time
scales in nuclear fusion are known from the following:

The rate of collective energy decrease. It was
found at the very beginning of studies of heavy-ion
reactions that the bulk of excitation energy in the
composite system formed in heavy-ion collisions is
transformed fast into the energy of statistical excita-
tion [1]. The friction estimated from this information
is large.

Neutron and γ-ray multiplicities in fusion [2,
3]. When the fusion is followed by a fission of a
compound nucleus, the multiplicities of emitted par-
ticles and γ rays prior to fission provide information
on the time scales of intermediate processes. From
this information, one concludes that the formation of
compound state takesmuch time. Thus, friction, esti-
mated from this observation turns out to be also large
(with an important exclusion of cold fusion events
where the friction is found to be negligible).

Anisotropy of γ radiation from the fission in
low L states. An analysis of shape and temperature

∗This article was submitted by the authors in English.
**e-mail: tmikh@cv.jinr.ru
1063-7788/03/6609-1599$24.00 c©
evolution of the composite system formed in the col-
lision of identical ions [4] shows that the equilibration
of shape is a slow process. The approach used in this
analysis does not include the friction parameter, but
the results may be interpreted as the action of a large
friction during the bulk of compound nucleus forma-
tion time. Unfortunately, this possibility of studying
the dissipation in nuclear motion has not been prop-
erly used yet in experimental studies.

Friction regulates fluctuations of collective ob-
servables: from the fluctuation–dissipation theorem
of statistical mechanics [5], it follows that the greater
the friction, the larger the amplitude of fluctuation of
collective observables. Among the different sources of
information on the friction coming from this side are
the dispersion in mass and charge distribution of
fission fragments and the dispersion in their total
kinetic energy [6].

Numerical values for the friction parameter de-
duced from different sources differ very strongly and
the conciliation of experimental information on the
friction turns out to be a very delicate problem. It
pushes some experts to introduce an unexpected
shape dependence of the friction parameter [6] and/or
a strong temperature dependence of it [7]. But all
attempts to establish the experimental value of the
friction parameter with some reasonable accuracy fail
when one adds to the sources of information on it also
the cross section of fusion. The dependence of the
latter on friction also follows from the dissipation–
fluctuation theorem: the greater the friction, the larger
2003 MAIK “Nauka/Interperiodica”
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the probability of a shape fluctuation leading to the
reseparation of ions after the collision.
A very interesting piece of information on the fric-

tion provides for collisions at energies just below
the value needed for fusion. Analyzing the data
of [2] on the neutron multiplicity in such events, the
authors of [8] conclude that the friction changes dur-
ing the collision: it is moderately weak at the begin-
ning and increases by about a factor of 10 toward the
end of the collision.
The difficulties in describing the fusion probability

and the neutron multiplicity in collisions at small
energies seem to be symptomatic. They are most
probably related to the breakdown of conditions al-
lowing one to consider the changes of nuclear state
during the collision as being adiabatically slow. The
fast variations of the state cannot be described with-
in theoretical approaches operating with the friction
understood in a usual way.
Of various theoretical estimations of friction we

mention two:
The classical wall formula by Blocki [9] giving

the rate of kinetic energy decrease of Fermi gas con-
fined by the wall and moving with respect to it. Note
that the wall estimate for friction is often used as
a standard indicating its force. In particular, saying
that friction is strong or weak, we mean that it is
stronger or weaker than predicted by this estimate
(see Section 2).
The study of nuclear linear response to a pertur-

bation periodic in time [10, 11] and matching it to the
response of a dampened linear oscillator.
In both approaches (as in almost all the others) the

theory involves an hypothesis of adiabaticity of col-
lective motion: in the Blocki model, the motion of gas
is assumed to be much slower than typical velocities
of particles; in the linear response theory, the friction
is deduced from calculation of energy dissipated in
nuclei in the zero-frequency limit.
Among theoretical approaches of fusion free from

the adiabaticity hypothesis, we mention our stud-
ies based on the virial theorems method [4, 12, 13].
Instead of making assumptions on the friction, we
introduce a hypothesis on the collision term in the
kinetic equation underlying our studies: we use for it
the mean-relaxation-time approximation improved in
order to fulfill the invariance properties of the collision
integral of macroscopic statistical mechanics [5].
In this approach, the most important part of re-

tardation or memory effects in the collective energy
dissipation is taken into account. Their role in the
fusion of heavy ions was shown in [4] within rather
simplified assumptions on the process. The memory
effects turn out to be the most pronounced at the
instant of collision of heavy ions. The following long
PH
phase of the fusion process leading to the compound
nucleus formation and to its fission fulfills the adia-
baticity conditions and may be well described using
the notion of friction forces.
The value of the friction parameter and the condi-

tions under which its application is justified may, in
fact, be estimated from the approach based on the
virial theorems method. It is shown, in particular,
in [14], where the preparatory steps for systematic
studies of the fusion process in realistic conditions are
reported and an analysis is made of the fusion dynam-
ics prior to the moment when the contact between the
colliding ions is established. Spectacular manifesta-
tions of memory effects in heavy-ion collisions have
been shown in this way.

2. MEMORY EFFECTS PRIOR
TO HEAVY-ION COLLISION

2.1. Elastoplastic Model of Fusion

A physical picture of processes taking place just
before a unification of heavy ions has been obtained
in [14], analyzing the head-on collision of two 100Mo
ions. The matter distribution is described by two
collective coordinates: the elongation parameter L(t)
defined as the distance between the centers of mass of
colliding ions and by the intrinsic quadrupole moment
of each of them:

q(t) = m

∫
V1

drn(r)
[
2z2 − x2 − y2

]
.

In this expression, V1 is the volume of one of ions
and r is the coordinate in the reference frame with the
origin at the center of mass of the ion.
One more variable enters into the model: the

(λ, µ) = (2, 0) component of the pressure tensor
integrated over the volume of one ion:

π(t) =
∫
V1

dr(2Pz(r, t) − Px(r, t) − Py(r, t)) (1)

(here Pi(r, t), i = x, y, z, are diagonal components
of pressure tensor). The quantity π(t) appears in the
equations of motion under the guise of a generalized
velocity in the direction of the cyclic collective coordi-
nate Z: π = Ż [15].
The introduction of the Z variable [15] allows one

to cast the theory into the Lagrange–Rayleigh form
with the Lagrangian function given by

Lc = Lad + Ldyn =
µ

2
L̇2 +M(q)q̇2 (2)

− U(L, q) +
2M(0)

F
(0)
fs

Ż2 + 4Ż

q∫
dq′M(q′).
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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The Lagrange–Rayleigh equations

d

dt

∂Lc
∂Q̇i

− ∂Lc
∂Qi

= − ∂R
∂Q̇i

(Qi = L, q, Z) involve the dissipation Rayleigh
function, which is taken as

R =
2M(0)π2

τF
(0)
fs

. (3)

In Eq. (2), µ = mA1/2 is the reduced mass for
two Mo ions, and the mass parameterM(q) is found
assuming the ellipsoidal deformation of ions and ve-
locity field linear in coordinates within them:

M(q) =
5

8mR2
1A1

1
f2(1 + 2/f6)

with the deformation parameter f(q) defined by

q =
2
5
mR2

1A1

(
1
f4

− f2

)
.

The Coulomb potential and the generalized surface
potential of [16, 17] are used to calculate the potential
energy

U(L, q) =
1
2

∫
V

∫
V

drdr′n(r)n(r′)V (|r − r′|). (4)

In Eq. (4), the integration goes over the volume of
both ions, V = V1 + V2.

The quantity F (0)
fs measuring the dependence of

intrinsic kinetic energy on π and the value of relax-
ation time parameter τ are fixed using the arguments
of [18], where the giant multipole resonances were
studied on the same basis as in our approach to
nuclear reactions. In the quoted paper, it is found that
the centroids and the widths of the first two isoscalar
resonances with λ = 2 and λ = 4 are correctly repro-
duced when

F
(0)
fs =

[
vF

r0A
1/3
1

]2

and

τ =
(

4
3

)2 r0A
1/3
1

vF

(
�/τ = 24.9A−1/3

1 MeV
)
.

Our calculations show that the deformation of ions
remains very small up to the moment of collision
and their heating is quite moderate. This choice of τ
and the stability of parameters describing giant res-
onances exclude any noticeable influence of possible
shape and temperature dependences of the relaxation
time parameter. Consequently, τ is considered to be
constant.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
The collective energy [19] Ec =
∑

i Q̇i∂Lc/∂Q̇i −
Lc is equal to

Ec =
µ

2
L̇2 +M(q)q̇2 + U(L, q) (5)

+
2M(0)

F
(0)
fs

π2 ≡ Ead + Edia,

where

Edia =
2M(0)

F
(0)
fs

π2.

It contains the kinetic energy of translational motion
of ions µL̇2/2, the sum of kinetic energies origi-
nated by the collective flow in two ions M(q)q̇2, and
the potential energy U(L, q). In adiabatically slow
processes, nucleons have sufficient time to reach
an equilibrium distribution over momenta. Then the
quantity π vanishes together with the last term in
the expression for Ec. For this reason, the sum of the
first three terms in Eq. (5) may be called an adiabatic
collective energy and the last term may be named a
diabatic contribution to the collective energy.
The Rayleigh dissipation function determines the

work produced by the friction on the heat bath. The
rate of heating is given by

dEc/dt = −2R. (6)

From Eqs. (3) and (6), it follows that Estat(t) ≡
Ec(t = −∞) − Ec(t) is a monotonically rising func-
tion of time, as it should be.
The dissipation of collective energy is small when

the motion is fast in the time scale given by τ . It
may be ignored altogether in the limit of τ → ∞. In
this case, the motion is quasi-elastic. In the opposite
case of slow motion, the shape of ions changes with
time as if they were plastic. This double-faced nature
of the system puts it among elastoplastic systems
introduced in the nuclear theory by Nörenberg [20].
The extension of collective space for the coordinate Z
marks the difference between our approach and the
other well-known approaches of fusion dynamics: the
currently used adiabatic approach with the inclusion
of dissipation via the friction force and the diabatic
dynamics model originated by Nörenberg [20, 21].

2.2. Adiabatic Limit

When the motion is slow, the quantity π becomes

π = −τ(vF /r0A1/3)2(M(q)/M(0))q̇. (7)

The corresponding dynamics, which we call viscous is
described by the adiabatic Lagrangian (Ead in Eq. (2))
and by the viscous Rayleigh function

Rvisc = M(q)βviscq̇2. (8)
3
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Fig. 1. Trajectories of the two-molybdenum system in
α–L plane. Here and in Fig. 2, solid curves are ob-
tained with the use of the elastoplastic model, dash-
dotted curves correspond to the viscous approximation.
Curves 1 and 2 correspond, respectively, to Ein = 4 and
4.4MeV/nucl.Arrows beside the curves indicate the time
evolution.

In Eq. (8), there appears a friction parameter

βvisc = τ

(
vF

r0A1/3

)2 M(q)
M(0)

. (9)

Our parametrization of relaxation time parameter τ
makes the friction parameter βvisc close to the friction
parameter βwall estimated using the wall formula [9]
applied to a spherical nucleus of radius R1:

βvisc/βwall = (4/3)3 (βwall = (3/4)vF /R1).

The expression for adiabatic collective energy Ead
is given in Eq. (5). In the case of motion with an
arbitrary speed, one has

dEad/dt = 4M(q)πq̇. (10)

In the general case, the time derivative of Ead is not
a positively defined function of time (as is the total
collective energy Ec). Then, the variations of Ead are
not related in a simple way to the transformation of
collective energy in the energy of statistical excitation.
Only in the adiabatic case, when Eq. (7) is valid, are
the properties of total collective energy shared byEad.

2.3. Elastoplastic versus Viscous Scenarios of
Collision

Description of fusion and fission reactions using
the friction forces is typical of theoretical studies,
although the conditions for the application of the
adiabatic approach are not always fulfilled. Having
this in mind, we present the discussion of differences
between the viscous and the elastoplastic scenarios of
two 100Mo ions colliding. The following illustrations
allow one to see the memory effects in the collision.
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Fig. 2. Statistical excitation energy as a function of Ein
(see text, Subsection 2.3).

In Figs. 1 and 2, the trajectories drawn in solid lines
correspond to the elastoplastic dynamics; the dash-
dotted curves give the results of calculations in the
viscous approximation. The value of L is given in
units of 2R1, R1 being the radius of the Mo nucleus.
In the following illustrations, we use the parameter
α = 1 − f instead of the quadrupole moment q.
A comment is due on the potential energy sur-

faces corresponding to the model. When the dis-
tance between the surfaces of two ions is large in
comparison with the range of nucleon–nucleon in-
teraction, the potential energy U(L,α) has a val-
ley with a bottom in the region of oblate deforma-
tions (∂qU = 0 when α < 0). The valley disappears
at L/(2R1) = 1.2, giving way to a surface sloping
towards the prolate shapes. For small values of |α|,
the potential energy ridge (Lr(α)), where ∂UL = 0,
is situated at L > 2R1. At α = 0, Lr(0) = 2R1 · 1.07
and U(Lr, 0) = 199.16MeV.
In Fig. 1, the trajectories of colliding ions are

shown in the L–α plot for two different values of
incident energy Ein. Curves 1 and 2 correspond to
Ein equal to 4 and 4.4 MeV/nucl., respectively; the
arrows beside the curves indicate the evolution of L
in time. Calculations show that the trajectories do
not follow the valley in the potential energy landscape
and that the shape of approaching nuclei remains
very close to spherical: |α| never exceeds 0.04 in all
considered cases. The small spheroidal deformation
is, however, important, because it engenders the col-
lective energy dissipation.

Figure 2 shows the statistical excitation energy
accumulated in the system as a function of incident
energy. The results given for energies smaller than
4.013 MeV/nucl. correspond to cases when no con-
tact between the nuclei is established. The statistical
energy shown for these trajectories is calculated by
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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integrating Eq. (6) in the whole time interval of scat-
tering. Calculations made for greater energies corre-
spond to events at which the contact is established.
Here, the data are given for the statistical energy
accumulated up to themoment of contact. The lowest
energy at which the contact is established is equal to
Eminin = 4.013 MeV/nucl. According to calculations,
Estat at this point is equal to 7 MeV. The sum of
Eminin and Estat determines an effective potential en-
ergy ridge met by the system during its evolution.
This potential energy ridge is found to be equal to
193.16 MeV, which is in remarkable agreement with
the estimates of the Bass barrier for 100Mo + 100Mo
fusion given in [22] (Eb = 194MeV).
The decrease in dissipated energy with increasing

Ein at energies greater than 4MeV/nucl. follows from
the relation

Estat(L) ∼ 1
4β




L∫
∞

dL′

dL′/dt
F (L′)




2

, (11)

which is known from the adiabatic theory [23]. The
relative motion velocity dL′/dt increases with the
incident energy, causing the integral to decrease.
The maximal value of statistical excitation energy

accumulated before the contact is not much different
for two lines: the bulk of it is generated when the
nuclei slow down and the motion becomes adiabatic.
Important differences between the two types of calcu-
lations are seen at energies greater than critical for the
contact: under these conditions, the memory effects
reduce the dissipation of collective energy as com-
pared with the frictional mechanism of the viscous
approximation. In fact, the retardation effects in the
considered model with the energy independent relax-
ation time parameter produce phenomena explained
elsewhere as coming from the energy dependence of
friction. Note that the temperature dependence of the
friction parameter is claimed to be an important factor
determining the fusion dynamics [24].
Consider the differences in the calculations of

Estat corresponding to the elastoplastic and viscous
dynamics. Let us suppose that the statistical energy
estimates made within the elastoplastic model are
exact, and let us reproduce the same estimates
within the viscous approximation using a renormal-
ized excitation-energy-dependent friction parameter
βeff(Ein). The calculation presented in Fig. 2 shows
that the difference in the two estimates of Estat
(Ein) is small at Ein = 4 MeV/nucl. and increases
up to a factor of 3 when Ein = 7 MeV/nucl. From
Eq. (11), it follows that Estat (Ein), as found in the
viscous approximation, is, roughly speaking, in an
inverse proportion to the friction parameter β. Then,
to reconcile the viscous and elastoplastic pictures,
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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Fig. 3. An effective shape-dependent friction parame-
ter βeff(L) = −π/q̇ calculated for the case of scattering
at Ein = 4 MeV/nucl. The corresponding trajectory is
shown in the upper right corner. The arrows indicate the
time evolution. βeff(L) is given in units of (3/4)vF /R1.

one must gradually increase βeff(Ein) with increasing
Ein by the same factor of 3 in this energy interval.

For any arbitrarily chosen trajectory the reconci-
liation of elasoplastic and viscous dynamics can be
done by playing with the shape dependence of the
friction parameter. Consider, e.g., the L-dependent
effective friction parameter

βeff(L) = −π(L)/(dq/dt)L,

where π(L(t)), (dq/dt)L(t), and L(t) are parametri-
cally defined by their dependence on the time follow-
ing from the elastoplastic model. As argued before
[see Eq. (9)], this quantity represents the action of
friction force in the adiabatic regime.

Such an effective friction parameter for the tra-
jectory corresponding to the scattering of two 100Mo
nuclei at 4 MeV/nucl. incident energy is shown in
Fig. 3. One sees that βeff(L) experiences variations
of about two orders of magnitude showing that the
dynamics at the moment of collision is not at all
adiabatic. At some values ofL, it reaches much larger
values than predicted by the wall formula and be-
comes negative at some other values of L passing
through zero. It is different for the incoming and out-
going parts of the trajectory, reflecting the findings of
Wilczinski [8]. The strange behavior of βeff(L) shown
in this figure could be made in parallel with the very
strange shape dependence of the friction parameter
suggested in [6] as an optimal fit to a large amount
of experimental data on fusion.

The dynamical effects in the collective energy dis-
sipation are discussed in this paper within the model
3
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Fig. 4. Time dependence of mass quadrupole mo-
ment Q(t) for two 58Ni nuclei after central collision at
6-MeV/nucl. incident energy. Solid curve corresponds to
the test particle method; dashed curve corresponds to the
elastoplastic model (see [4] for more details).

that formally belongs to the transport theory ap-
proaches of nuclear dynamics. For casting them into
the transport theory approach, an extension of collec-
tive space for the collective coordinate (Z) is crucial.
The conjugated momentum (the quadrupole moment
π(t) in the distribution of nucleons over momenta)
represents the Fermi surface deformation. One of the
advantages of our theory is that it does not con-
tain any ambiguity in the estimation of statistical
excitation energy. Comparing the calculations done
considering π as a kinematically independent variable
(elastoplastic regime) with calculations made in an
approximation in which π is considered as a function
of state (viscous regime), we have found the following:
Only for slow collective motion is the viscous ap-

proximation good.
In this case, one arrives at the description of fusion

in terms of a friction force whose strength is compa-
rable with the wall-formula estimation.
In different cases, the viscous approximation be-

comes deficient.
It is a commonly used practice to treat the dy-

namical effects associated with the retardation in the
action of dissipative forces on the nuclear shape by
introducing the excitation energy and/or shape de-
pendence of the friction force. In the examples given
here, this technique turns out to be nothing but the
simulation of more involved collective dynamics. We
show that the name retarded friction is in a way mis-
leading, standing behind a phenomenon combining
the effects of elastic and dissipative forces.
Our model is very economic in the choice of pa-

rameters. Still, without any fitting procedure, we re-
produce the Bass barrier in 100Mo + 100Mo colli-
P
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Fig. 5. Time dependence of the function T2,0 for two 58Ni
nuclei after central collision at 6-MeV/nucl. incident en-
ergy. Solid curve corresponds to the test particle method;
dashed curve corresponds to the elastoplastic model.

sions. The estimated lower bound of extra push en-
ergy (the energy excess needed to put the nuclei into
contact) is equal to about half of its experimental
value.

3. MEMORY EFFECTS IN THE COMPOSITE
SYSTEM

The “history” of two 100Mo ions experiencing a
head-on collision and forming a composite system is
being studied within the model compatible with the
one used to describe their approach and presented
in the previous section. Although the end of this
study is still far away, some important issues could
tentatively be anticipated by recollecting the results
of a somewhat more schematic description within
the elastoplastic model of fusion of another pair of
identical ions: that of two 58Ni nuclei [4, 13].

The description of two 58Ni fusion (following a
head-on collision) starts in the quoted papers from
the moment of their coming to contact. Their shape
at this moment is supposed to be spherical. In view
of findings reported in the previous section, this ap-
proximation does not seem to introduce large errors in
our reasoning concerning the memory effects in dis-
sipation. The shape of the composite system formed
in the collision is restricted to a one-parametric fam-
ily of lemniscatoids of rotation. Dynamical equations
involve the quadrupole moment Q and the λ, µ = 2, 0
component of the pressure tensor integrated over the
volume (Π). The Coulomb and surface potentials (ig-
noring the proximity contribution of nuclear forces)
are used. The quality of such a description of fusion
was controlled by comparing results with the results
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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of large-scale numerical calculations using the test-
particle method for resolution of the kinetic equa-
tion [25].
Figure 4 shows the time dependence of Q found

in [4] by two methods: the solid line corresponds to
the test-particle method, and the dashed line follows
from the elastoplastic model. In Fig. 5, we show
the function T2,0 = (Π2,0 +K2,0)/2, where K2,0 is
the component of the intrinsic kinetic energy tensor,
again calculated with the two methods. The corre-
spondence is good enough to give a confidence to the
latter model.
What interests us here is the oscillatory pattern

of curves at the beginning of unification of two ions
giving way to a smooth decrease at larger time. Im-
portant also is the fact that the oscillations of Q
and Π are out of phase: the peaks in one variable
correspond to the valleys in the other. From our stud-
ies, it follows that this behavior does not change
after varying the collision energy, the potential, ef-
fective mass, and other elements of the model (see,
for example, [13]). The oscillatory time dependence
of collective variables Q and Π means that the adi-
abatic collective energy contains an important con-
tribution from the elastic forces associated with the
Fermi surface deformation caused by the collision
(see Eq. (10)). This contribution is nonnegative: from
the out-of-phase oscillation pattern of Q and Π, it
follows that Q̇ · Π > 0.
One may try to interpret this type of evolution in

terms of effective friction as we did at the end of the
previous section. The friction measuring the decrease
in adiabatic collective energy within the adiabatic ap-
proach and reproducing the results of the elastoplas-
tic model must contain a strong reduction of friction
at the beginning of fusion. The reconciliation of two
dynamics demands admission of negative values of
“effective” friction (which is not physical). The re-
duction of friction is no longer needed to describe
the following phase of fusion where no oscillation of
collective observables is present and relation (7) is
satisfied.
The foregoing discussion concerned one aspect of

friction force, that of damping the collective motion.
The friction can be discussed from the point of view
of fluctuations also. In the introduction to this paper,
we mentioned that accounting for fluctuations in adi-
abatic approaches meets a serious difficulty: for rea-
sonably strong friction, they lead to an overestimation
of the quasifission probability. A very important re-
duction of the fluctuation amplitude at the beginning
of fusion is needed to overcome the difficulty.
The description of fluctuations in the elastoplastic

approach does not present any formal difficulty but
demands quite a lot of calculations. The method of
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
treating fluctuations in the elastoplastic models and
the results of its application are presented in [13].
From the quoted paper, one learns that the mem-
ory effects play an important role in the installa-
tion of the shape fluctuations: it turns out to be a
long process. The shape fluctuations acquire their full
strength corresponding to the dissipation-fluctuation
theorem only when the shape of the composite sys-
tem becomes spherical. Before this, the amplitude of
shape fluctuations is smaller than that given by the
equilibrium statistical mechanics prediction and their
role in leading to quasifission is reduced. The first
estimates of quasifission probability made within the
elastoplastic approach without changing the relax-
ation time parameter led us to a satisfactory descrip-
tion of experimental results.

4. CONCLUDING REMARKS

It seems that much of the uncertainty in the un-
derstanding of nuclear dissipation lies in the fact that
the friction, often discussed in the literature, is not
a universally well-defined physical quantity. It is a
commonly used practice to treat the dynamical effects
associated with the retardation in the action on the
nuclear shape of dissipative forces by introducing the
excitation energy and/or shape dependence of the
friction force. In the examples given here, this tech-
nique turns out to be nothing but a simulation of more
involved collective dynamics. We show that the name
retarded friction is in a way misleading, standing
behind a phenomenon combining the effects of elas-
tic and dissipative forces. The calculations presented
before hint strongly that these uncertainties may be
eliminated or at least largely reduced by including in
the collective space the coordinates representing the
distribution of nucleons in themomentum space. This
allows one to account for the retardation effects in
friction produced by the coupling between the geo-
metrical and Fermi surfaces. Our paper shows that
this can be done keeping intact the general structure
and methods of currently used approaches to the nu-
clear reactions.
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Abstract—The reaction cross section (σR) for a deformed target nucleus and spherical projectile is
calculated using the optical-limit approximation of the Glauber–Sitenko theory. A method is presented to
include both the density-dependentNN interaction and the higher order deformations of the target nucleus
in the collision process. We studied both the orientation and the deformation dependence of σR within the
energy range 30–900 MeV/A. We found that the orientation of the heavy target nucleus (A ≥ 120) can
produce a difference in the calculated σR up to 30%. The averaged σR over all directions of the symmetry
axis of the deformed nucleus differs by less than 1% compared with σR calculated for a spherical target
with the same rms matter radius as the deformed nucleus. For certain orientation, it was found that
σR is highly dependent on the hexadecapole deformation. The orientation-averaged cross sections show
almost no variation with either the sign or the value of the hexadecapole deformation. We compared the
average cross section with the experimental data for several mass numbers; fair agreement is obtained.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The total reaction cross section σR is one of the
most important physical quantities that character-
izes a nuclear reaction; also it has a wide range of
fundamental and practical applications. It is useful
for gaining information about the nuclear size [1, 2]
and the neutron and proton density distribution in
nuclei [3]. The large increase in σR for exotic nuclei
poses a question as to its reasons [4]. There are also
applications to the radiation effects in biology and
designs of radiation shielding.

Neutron halo nuclei have also been studied by
measuring the total reaction cross section induced
by radioactive nuclear beams [5, 6]. The optical-limit
approximation to the Glauber theory has been used
to extract the rms matter radii of nuclei from the
reaction cross section measurement [7]. For a de-
formed target or projectile nucleus, the reaction cross
section is usually calculated using spherical density
distributions, and the effects of deformation are then
discussed, using a mean square radius formula for the
deformed nucleus.

The first trial to take explicit account of the effects
of target (or projectile) deformation in calculating the
reaction cross section was done in [8]. The authors
considered a projectile nucleus with the quadrupole

∗This article was submitted by the authors in English.
**e-mail: ali@mailer.eun.eg
1063-7788/03/6609-1607$24.00 c©
deformation parameter δ2. They used the multipole
expansion for the deformed nucleus density distribu-
tion together with the optical limit to Glauber the-
ory to calculate the reaction cross section for the
12C+ 17N reaction. They found that the explicit treat-
ment of the deformed structure leads to a reduction of
0.8% in the calculated cross section compared to the
optical-limit (OL) calculations for a spherical projec-
tile with the same rms matter radius. Variations cor-
responding to the largest and smallest cross section
values are +7.2% and −5.6% of the corresponding
spherical results, respectively, while their orientation
angles for the largest one are θ = π/2, φ = 0 and for
the smallest one are θ = π/2, φ = π/2.

This means that the reaction cross section calcu-
lated using the OL approximation is not sensitive to
the quadrupole deformation except for the case when
the projectile (or target) has a significant degree of
alignment.

The aim of the present paper is to study the re-
action cross section for different pairs of interacting
nuclei where one of the two colliding nuclei is de-
formed. We study the orientation, deformation, en-
ergy, and mass number dependence of the reaction
cross section. For this purpose, we developed the
method considered in [8] for the calculation of reaction
cross section when one of the two interacting nuclei
is deformed. This development is done by introducing
both density and energy dependence in theNN cross
section. The density will be considered a constant
2003 MAIK “Nauka/Interperiodica”
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Fig. 1.The coordinate system, the centers of the projectile
and target exist at x–z plane.

value of 0.16 fm−3, which is the normal nuclear mat-
ter density. We describe a method for calculating σR
for the deformed target (or projectile) nucleus.

2. THEORY

The reaction cross section σR in the framework
of the optical-limit approximation to the Glauber–
Sitenko theory is written as

σR(δ, Ω̂s) = 2π

∞∫
0

dbb[1 − T (b, Ω̂s)], (1)

where δ is the set of deformation parameters of the
target nucleus and Ω̂s denotes the direction of its
symmetry axis with respect to coordinate system,
shown in Fig. 1. T is the transparency of the collision
at impact parameter b, and it is given by

T (b, Ω̂s) = exp[−χ′(b, Ω̂s)], (2)

where

χ′(b, Ω̂s) =

+∞∫
−∞

dz (3)

×
∫
drρT (r, Ω̂s)ρP (|r− R|)σNN

(
ρT + ρP ,

EL
AP

)
;

ρT and ρP are the density distributions of the de-
formed target and the spherical projectile, respec-
tively; R is the c.m. separation vector; and EL/AP
is the incident energy per projectile nucleon in the
laboratory system. If the NN cross section σNN is
density independent, or if it is evaluated at a constant
value of ρ = ρP + ρT , then χ′ could be factorized as

χ′(b, Ω̂s) = σNN (EL/AP )χ(b, Ω̂s), (4)
PH
where the integration over r in χ(b, Ω̂s) is exactly the
overlap integral of the two density distributions. To
calculate χ(b, Ω̂s), we consider first the integral over r

O(R, β) =
∫
drρT (r, Ω̂s)ρP (|r− R|), (5)

where β is the angle between the c.m. separation
vector R and the direction of the symmetry axis Ω̂s.
We assume the following Fermi shape (for ρT ):

ρT (r, Ω̂s) =
ρ0

1 + exp
[
r −R(θ1)

a

] , (6)

R(θ1) = R0[1 + δ2Y20(θ1) + δ4Y40(θ1)], (7)

where a is the diffuseness parameter of the den-
sity, R0 is the radius parameter, δ2 and δ4 are the
quadrupole and hexadecapole deformation parame-
ters, and cos θ1 = r · Ω̂s; then, we substitute

|r −R| =
√
r2 +R2 − 2rR cos θrR (8)

for the spherical projectile. One can easily calculate
O(R, β) for every separation distance R and every
orientation angle β of the deformed nucleus. It should
be noted that the calculation of O(R, β) is similar to
the calculation of the interaction potential between
deformed nuclei, by using the multipole expansion
method for ρT [9]. Assuming the approximation of
Eq. (4), one can write

χ′(b, Ω̂s) = σNN

(
EL
AP

, ρ

) ∞∫
−∞

dzO(R, β). (9)

Thus, the method of evaluating O(R, β) is well
known and has been used several times. By making
the transformations

β = cos−1[(b sin θs cosφs + z cos θs)/R], (10)

R =
√
b2 + z2,

one can perform integration with respect to z in
Eq. (9) to get χ′(b, Ω̂s). Introducing χ′ into Eq. (2)
and then Eq. (1) and performing the integration over
the impact parameter b, one obtains the total reaction
cross section σR(δ, Ω̂s) for specific orientation angles
Ω̂s ≡ (θs, φs) and for given deformation parameters
δ2, δ4. The reaction cross section averaged over all
orientations of the symmetry axis of the deformed
target is given by

σav
R (δ) =

1
4π

∫
σR(δ, θs, φs)dΩ. (11)

In the present work, we consider the deformed
target nuclei 238U, 154Sm, and 120Sn, which inter-
act with spherical projectile nuclei 12C, 16O, 28Si,
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 2. The reaction cross section vs. the squared sum (A
1/3
P +A

1/3
T )2 for 238U target at projectile energy (a) 30, (b) 44, and

(c) 77 MeV.
40Ca, 60Ni, 90Zr, and 208Pb. For 238U, we take the
density and deformation parameters as those in [9],
namely, the quadrupole deformation parameter δ2 =
0.261; for 154Sm, δ2 = 0.331; and for 120Sn, δ2 =
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
0.15; and the hexadecapole deformation parameter
δ4 = 0.0,±0.087 for all targets.

For spherical nuclei, we assume the Fermi shape
density distribution with parameters taken from [10].
3
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The in-mediumNN cross section used in the present
work is that derived recently in [11], where the density
was assumed to have a constant value ρ = ρP + ρT =
0.16 fm−3.
P

3. RESULTS

We calculate the reaction cross section σR for each
projectile with certain energy and a target with spe-
cific deformation and different sets of orientations. We
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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find the maximum value of the reaction cross section
σmax
R and the minimum value σmin

R for each case. It
was found in all cases that σmax

R occurs at the ori-
entation angles θs = π/2, φs = 0, and the minimum
value σmin

R occurs at θs = π/2 and around φ = π/2.
The variation of σR with the square of the sum

(A1/3
P +A

1/3
T )2 for different spherical projectile nuclei

with each target nucleus is studied. The extreme val-
ues σmin

R , σmax
R and the average value σav

R are shown in
Figs. 2a, 2b, and 2c for 238U target at projectile ener-
gies per nucleon of 30, 44, and 77 MeV. In Fig. 2a,
the calculations are performed at a value of energy
per projectile nucleon EL/AP = 30 MeV and the
values of hexadecapole deformation parameter δ4 =
0.0, ±0.087. The difference between the maximum
PH
(which depends on the target orientation) and aver-
age cross sections may vary up to 22% (=1000 mb)
of the average value for the lightest projectile, 12C,
and decreases to 12% for the heaviest one, 208Pb,
this for deformation parameter δ4 = 0.087. This dif-
ference decreases for δ4 = 0.0 and even more for δ4 =
−0.087.

The difference between the minimum (which
again depends on the target orientation) and the
average values may decrease to 16 and 9% of the
average value for the lightest and heaviest projec-
tiles, respectively. The square dots represent the
values of the reaction cross section calculated with
the form parametrized by Kox et al. [12] with the
neutron thickness correction, within the domain of
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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different values of the hexadecapole deformation parameter and the equivalent spherical target.
(A1/3
P +A

1/3
T )2 < 100, to indicate how close our cal-

culations are to the experimental value. Considering
the error in the experimental or parametrized form
within 10%, our calculations stay within such an
error range. Figures 2b and 2c are the same as Fig. 2a,
but for projectile energies of 44 and 77 MeV/A,
respectively. The minimum (or maximum) difference
decreases as the projectile energy per nucleon in-
creases. Figures 3a–3c are the same as Figs. 2a–2c,
but for 154Sm; and Figs. 4a–4c, for 120Sn. Clearly,
the orientation significantly influences the value of the
reaction cross section at different projectile masses
and target deformations, the maximum or mini-
mum values of the reaction cross section depending
strongly on the value and sign of δ4.

The common feature of the set of curves in each
figure (Figs. 2–4) is that they are approximately par-
allel lines, i.e., they have almost the same slope and
almost the same behavior. This indicates that the
differences between σmax

R or σmin
R and σav

R at all values

of (A1/3
P +A

1/3
T )2 with a specific target remain almost

constant over all the mass numbers of the projectiles
considered. This constant difference depends mainly
on the orientation of the target and does not depend
on the projectile mass number. The calculations for
the cases of δ4 = ±0.087 and the case of δ4 = 0.0
indicate that the percentage difference produced in σR
is slightly affected by switching on the hexadecapole
deformation in all of Figs. 2–4. Moreover, the calcu-
lations show that the reaction cross section averaged
over all orientations σav

R is not sensitive to the value of
δ4 or its sign (less than 1%), so their representative
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
curves are expected to coincide and the curves for the
average values are limited to that of δ4 = 0.0 for all of
Figs. 2–4.

Figure 5a shows the energy variation of σmax
R ,

σmin
R , and σav

R with the laboratory projectile energy
per nucleon for 12C + 17N pair. It covers wide range
of energies (30–900 MeV/A). The average value
at 700 MeV/A is compared with that of Christley
et al. [8], and the difference is less than 1%. The
curves show that the difference between extreme
values σmax

R , σmin
R increases with energy and the

reaction cross section monotonically decreases until
300 MeV/A; then, the difference remains almost
constant for higher energies. Figure 5b shows the
reaction cross section variation with the same pro-
jectile but reacting with the heavier 238U target. The
three values of δ4 for the 238U nucleus are considered.
As Fig. 5b indicates, the cross section variation with
energy is nearly the same for the three cases of
δ4 = ±0.087, 0.0. The curves show that all the values
of the cross section decrease according to the same
trend as the energy per projectile nucleon increases.
As the target mass increases for the case for 238U, the
cross section values also increase.

To test the sensitivity of σav
R , which is averaged

over all orientations of the deformed target nucleus,
to its deformation parameters, we introduced the re-
action cross section of the equivalent spherical tar-

get, σsph
R , whose mean square radius is equal to the

mean square radius of the deformed target. The mean
3
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square radius is 〈
R2
〉

=
∫
ρ(r)r2dr∫
ρ(r)dr

.

The equivalent spherical target nucleus is as-
sumed to have a density distribution of the form

ρs =
ρ0

1 + exp
r −Rs0
a

,

where ρ0 can be obtained from∫
ρs(r)dr = AT .

We assume that the spherical nucleus has the
same diffuseness parameter a as the deformed one,
and we get Rs0 from the condition

〈
R2
〉
sph =

∫
ρs(r)r2dr
AT

=
〈
R2
〉
def .

Figure 6 shows the average cross sections σav
R

at EL/AP = 44 MeV for δ4 = +0.087, 0.0, −0.087
and σsph

R calculated for the equivalent spherical target
nucleus for a limited range of projectile mass numbers
(to enhance the small differences in the values of the
cross sections). The figure indicates that the differ-
ence between σav

R and σsph
R is small for all AP values.
P

The difference between σav
R and σsph

R is found to be
from 0.3% to less than 1.1% in our calculations. This
difference depends on the projectile and on the value
of δ4, but it is weakly dependent on EL/AP .
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1. INTRODUCTION

The elastic scattering of 4He ions at bombarding
energies Eα ≤ 50 MeV on target nuclei with A ≤ 50
has a characteristic feature—an unusually large value
of the cross section for scattering at large angles [1].
A consistent description of the experimental data in
the considered energy and target-mass regions using
the standard optical model with a Woods–Saxon type
of potential, as is well known, is not possible. It has
been shown in [2] that, using a potential of molecular
type or a “quadratic” Woods–Saxon one, it is possible
to describe the experimental data in the low-energy
region.

It is supposed that of great help in choosing one
or another potential might be the experimental results
on inelastic reactions, in particular, the data on to-
tal reaction cross sections. The total reaction cross
section (σR) is one of the fundamental observables
characterizing a nuclear collision since it determines
the imaginary part of the potential. The measure-
ment of σR can help in resolving some uncertain-
ties in the parameters of the interaction potential, for
which reason it is also considered complimentary to
elastic-scattering experiments. However, direct mea-
surements of σR for 4He in the energy range Eα ≤
50 MeV are rather scarce [3–5]. Moreover, it is quite
difficult to find experiments in which both elastic scat-
tering and σR have been measured on the same target
at the same energy.

In the present work, we report on measurements
of σR in the 4He + 28Si reaction in the energy region

∗This article was submitted by the authors in English.
**e-mail: kuzn@nrsun.jinr.ru
1063-7788/03/6609-1615$24.00 c©
Eα ≤ 30 MeV. The reason for this is that data on
elastic scattering are available [6, 7] and it is com-
paratively easy to perform total reaction cross section
measurements on a 28Si target.

2. EXPERIMENTAL METHOD

The experiments were performed at the isochro-
nous cyclotron U-150M (INP, Almaty) at energy
Eα = 29.3 MeV and intensity of 10 nA. The total re-
action cross section was measured using a multilayer
semiconductor telescope as described in [8]. The de-
tectors of the telescope, in addition to registration of
the reaction products, simultaneously played the role
of active targets and energy degraders. The counting
rate due to the 4He ions should not exceed about
(3–5) × 103 pps. For this reason, 4He ions elastically
scattered at 40◦ on a 208Pb target (2.3 mg/cm2 thick)
were used in the experiments. The telescope dE1–
dE2–E, consisting of 63-, 115-, and 450-µm-thick
Si detectors, was mounted on a rotatable platform,
the angle of which with respect to the beam direction
was remotely controlled. In front of the telescope, a
collimator (∅ = 4 mm and l = 15 mm) with addi-
tional aluminium foils to lower the initial beam energy
was installed.

A schematic view of the setup and data acquisition
system is presented in Fig. 1. The first dE1 detector
gives the start signal for the data acquisition. The
signals from the charge-sensitive preamplifier (PA)
are divided between the energy and the time section
of the electronic system and are then amplified by
a spectrometric amplifier (AFA) and by a fast am-
plifier (TFA), respectively. The signal formed by the
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. A schematic view of the setup and the data acquisition system.
TFA then enters the discriminator (FD), whose time-
reference logical signal is sent to the input of the
master trigger (MT) of the acquisition system. As
soon as a signal from the FD comes to the open input
of the MT (i.e., when the previous event has been
completely analyzed), the latter closes and provides
the necessary signals defined in a duration and time-
delay gate allowing the analog-to-digital convertors
(ADCs) to open and also start signals for the time-to-
amplitude converter (TAC). The output signal from
the MT produces a LAM signal on the CAMAC bus
with a time delay equal to the digitization time of the
ADCs. After the LAM signal, all information from the
CAMAC system is read out, after which the MT input
is opened to take the signal created by the next event.

An example of the measured two-dimentional
plots is shown in Fig. 2, from where one can see
that it is mainly the 4He ions that enter the telescope.
The cross section was deduced in the following way.
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separate the number of reaction products from elastic
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P

Narrow gates were drawn on the energy spectra dE1

and dE2 to include only those events that correspond
to the energy loss of 4He ions which have not under-
gone nuclear interactions in these two detectors. In
this case, in the third detector, only events of lower
energy are observed. The ratio of these events and
the total number of events defines the probability of
the nuclear reaction induced by the 4He ions in the
third detector. Knowing the energy of the 4He ions
enteringE (thereby, their range), it is easy to estimate
the average total energy in the third detector.

Another approach in determining σR consists in
defining very narrow energy and timing gates on the
first dE1 detector; hence, the two-dimensional plot
dE2–E allowed separating the events due to reac-
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Fig. 3. Total reaction cross sections, σR, for the 4He +
28Si reaction: (�) present work; (�,�) at higher energies
[9, 10]; (•) deduced from 4He elastic scattering on 28Si
[6]. The solid curve shows the calculations of σR based
on the double-folding model [11].
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tions in the second and third detectors. The thickness
of the second detector is well known, the total number
of 4He ions entering the telescope is measured, and
σR in the second detector is thus easily determined.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The σR values for the 4He + 28Si reaction obtained
in the present work at three values of the bombarding
energy are presented in Fig. 3 as triangles. The results
of direct measurements of σR carried out at higher
energies [9, 10] are shown by open and solid squares.
The values of σR denoted by solid dots have been
deduced in [6] in the analysis of 4He elastic scattering
differential cross sections on 28Si. The solid curve
shows the calculations of σR based on the double-
folding model [11] on the condition of best fit of the σR
data at high energies. As is seen from Fig. 3, in the
studied energy range 10–30 MeV, the experimental
values of σR differ noticeably from the theoretical pre-
dictions. One possible explanation is that scattering
via a compound nucleus formation contributes at low
energies and this leads to a decrease in σR.

Obviously, new measurements simultaneously of
σel and σR and their theoretical analysis are necessary
in the energy range 10–80 MeV.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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The term “cluster radioactivity” (CR) is applied
to spontaneous emission of light fragments (clusters)
heavier than an α particle. Up to now, 19 nuclides
from 221Fr to 242Cm emitting light nuclei from 14C
to 34Si have been discovered. The heavy counterparts
are grouped in the vicinity of the double magic 208Pb
nucleus, which allows one to consider the known
domain of CR as lead radioactivity.

There remain many open problems in the study of
this phenomenon, among which the most important
are the following ones:

Which domains of CR different from the lead one
can exist?

What is the connection between CR and cold fis-
sion?

Which nuclear properties (shell effects, deforma-
tions, etc.) define the probabilities of cold processes?

What is the mechanism of cluster emission: is it
α-decay-like (sudden, nonadiabatic) or fission-like
(adiabatic)?

In order to get a general view of the problem, we
calculated complete mass distributions of a number of
cold decays (ground to ground transitions) of nuclei
with A > 112 using the model [1]. As an example,
the calculated mass spectrum of 234U is shown in
Fig. 1. Besides emission of nuclei 24,25Ne and 28Mg
observed experimentally, a broad group at A ∼ 80–
110 is present in the theoretical mass distribution
with comparable intensity. One part of it is connected
with the formation of fragments withZ andN close to
the double magic numbers Z = 50 and N = 82 (e.g.,

∗This article was submitted by the authors in English.
1063-7788/03/6609-1618$24.00 c©
the decay to 100Zr + 134Te) and could be identified as
tin CR. In the other part of the spectrum, strongly
deformed fragments are seen (say, 82Ge + 152Nd).
The 48Ca peak and symmetric decays also exist. To
check the model in the region of heavy fragments, we
constructed quasiexperimental 234U cold fission data.
This was done by the normalization of the induced
cold fission mass spectrum [2] to T1/2 of spontaneous
fission. The agreement is strikingly good.

The conclusion of our study is that the phe-
nomenon called CR today is not distinguished from
the other modes either by nature of its origin or by
its probability. One can speak about lead, tin, and
calcium CRs depending on the vicinity of Z and N
values to the corresponding magic numbers. The
most widespread CR (but practically undetectable) is
the tin one due to the fact that the ratio 82/50 is close
to the average N/Z ratio of decaying parent nuclei
(this provides on average the maximumQ values).

Another source of enhancement of the decay prob-
ability is the formation of fragments having prolate
static deformations. Orientation of the big axis along
the direction of movement results in lowering of the
Coulomb barrier and diminishing the path under it.
The part of mass spectra attributed to cold fission
usually is a combination of tin and deformation ac-
tivities.

Although there is no fundamental difference be-
tween cold fission and diverse types of CR, the
dynamics of fragment formation in various parts of
mass distributions can be not the same. Two extreme
mechanisms are known: (i) adiabatic (fission-like)
2003 MAIK “Nauka/Interperiodica”
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and (ii) nonadiabatic or cluster (α-decay-like). Ob-
viously, each of them can contribute to the lead CR
under study.

During the last few years, the following decays
were observed: 230U→ 22Ne+ 208Pb [3, 4], 242Cm→
34Si + 208Pb [5], and cold fission of 252Cf [6]; the
search for the new domain of cluster emitters near the
double magic 100Sn was undertaken, and the upper
limit of 114Ba → 12C + 102Sn decay was established
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
[7]. The solid-state track detector method was used in
all experiments except for [6] due to its unprecedented
sensitivity and high background rejection capability.

The current experimental data are summarized
in Fig. 2. The probabilities of all known decays are
shown as a function of the emitted fragment masses.
Comparison of the data with the predictions of three
models (phenomenological fission-like [8], semimi-
croscopic fission-like [1], and microscopic α-decay-
3
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like [9]) is presented. Although the physical grounds
of all three models differ very strongly, their predic-
tions are very similar, and they reproduce the data
with accuracy of 1–2 orders of magnitude in the
domain of lead CR. However, in the region of tin (Z ∼=
N ∼= 50) CR, the model [9] predicts 114Ba → 12C +
102Sn decay probability to be∼7 orders of magnitude
larger than [1]. On the other hand, the nonadiabatic
models (e.g., [10]) predict probabilities several tens
of orders of magnitude lower than the adiabatic ones
in the region of cold fission. The fission-like models
reproduce the existing cold fission data (252Cf [6])
very well (see also Fig. 1 for 234U). The very fact of
experimental observation of cold fission means that
the α-decay-like mechanism is not valid in the cor-
responding part of the mass distribution.

As to the emission of the lightest fragments,
there are serious arguments in favor of a sud-
den, nonadiabatic mechanism. The first one comes
from the fact that the ground-state transition in
223Ra→ 14C + 209Pb decay is strongly hindered [11]
by the nuclear structure factors, which are not taken
into account by fission-like models. Another argu-
ment is connected with the validity of the Geiger–
Nuttol law for cluster decays [12]. Its correctness
means that the decay probability can be factorized
into the penetrability of the Coulomb (external) part of
the barrier and the preformation (spectroscopic) fac-
tor determined by the distances between the straight
lines of the different fragment masses.

The first significant deviation from Geiger–Nuttol
law was observed for 242Cm → 34Si + 208Pb decay
[5]. The preformation probability turned out to be
P

 

0
6 10 14 182

20

40

60

80

Imaginary part

Real part

 

12

 

C + 

 

208

 

Pb
75.7 MeV

 

R

 

(

 

220

 

Ra)

 

R

 

(

 

12

 

C) + 

 

R

 

(

 

208

 

Pb)

 

220

 

Ra 

 

→

 

 

 

12

 

C + 

 

208

 

Pb

 

r

 

, fm

 
V

 

Coul + nucl

 
, MeV

Fig. 4. Optical model potentials obtained from
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[15].

much larger than one could expect from the system-
atics. The conclusion was made [12] that the transi-
tion between the sudden and adiabatic mechanisms
really exists and begins for fragments with A ∼ 35.
The change in the decay mechanism can also be
explained in the framework of fission-like models.
Using [1], we calculated the action for passing the
internal and external parts of the barrier by fragments
of different masses (Fig. 3). For the light emitting
fragments, the main contribution to the action comes
from the external part of the barrier, and this explains
the validity of the Geiger–Nuttol law for this mass
region. The contribution of the internal part becomes
equal atA ∼ 40 and dominates atA > 60. This result
is in agreement with [13], where penetrabilities of both
parts of the barrier were calculated.

As both products of cluster decay are formed in
their ground states, the interaction between them
(elastic scattering or fusion) can be considered as
some kind of inverse processes, which could give in
favorable circumstances some independent informa-
tion about the shape of the barrier [14]. If so, some
selection among the theoretical models giving similar
penetrabilities and different barriers could be done.

It was shown in the study of 12C + 208Pb scat-
tering at 75.7 MeV [15] that the experimental data
are sensitive to the internal part of the barrier if some
deviation from the exponential falloff of the Fresnel
diffraction cross section is observed at extremely large
angles. A similar sensitivity was demonstrated in the
study of deep subbarrier fusion–fission 12C + 208Pb
and 16O + 208Pb [16]. At the present time, there
are only two cases for which the barriers extracted
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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from the inverse processes can be directly com-
pared with the measured cluster decay probabilities:
222Ra→ 14C + 208Pb and 230U→ 22Ne + 208Pb.

An especially interesting finding [14] was that the
sum of nuclear and Coulomb potentials in both sys-
tems form a pocket at a distance close to the sum
of the 12C, 16O + 208Pb radii (Fig. 4). The decay
energy of 220Ra → 12C + 208Pb slightly exceeds the
minimum of the pocket. Thus, the conditions required
for the formation of the exotic quasimolecular state
are fulfilled (see [14] for details). The possibility for the
actinide nuclei to have quasimolecular states based
on a 208Pb core was discussed in the literature (e.g.,
[17]).

A few new experiments are being carried out or are
under discussion and preparation:

Search for the decay 241Am → 34Si (Kurchatov
Inst.–JINR);

Search for the decay 238U→ 34Si (Milano Univ.–
JINR);

Search for the decays 223Ac→ 14C, 15N (Kurcha-
tov Inst.–JINR);

Search for the decay 112Ba → 12C (Kurchatov
Inst.–JINR);

Study of elastic scattering and fusion–fission in
the systems 14C, 15N + 208Pb and 22Ne + 208Pb
(Kurchatov Inst.–JINR–Jyväskylä Univ.–Florida
State Univ.).
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Abstract—A dynamical model of fission fragment angular distributions is developed. The experimental
data on the angular anisotropy of fission fragments is analyzed for the 16O+ 208Pb, 232Th, 238U, and 248Cm
reactions at energies of the incident 16O ions ranging from 90 to 160МeV. This analysis allows us to extract
the relaxation time for the tilting mode. It was also demonstrated that the angular distributions are sensitive
to the deformation dependence of the nuclear friction. c© 2003 MAIK “Nauka/Interperiodica”.
One of the most interesting problems of nuclear
physics is the time scale of equilibrating various de-
grees of freedom in excited nuclei. This work focuses
on the angular momentum degrees of freedom and
specifically on the tilting mode associated with the
orientation of the symmetry axis of a fissioning nu-
cleus relative to the total angular momentum (J).
This mode controls the angular distributions (AD)
[1] and spins of fission fragments [2]. Usually these
observables are described within the statistical model
of the transition states [1, 2]. There exist two ver-
sions of the model, which identify the transition states
with either the saddle point or the scission point of
the fission barrier. Correspondingly, these models are
based on the different assumptions about the relax-
ation time of the tilting mode (τK). In the saddle
point model (SPM), τK is assumed to be larger than
the saddle-scission time and shorter than the time
spent by the nucleus near the saddle. This model had
great success in description of the experimental data
for the light-particle-induced reactions [1]. It should
be noted that the SPM model loses its validity for
very high J and heavy fissioning nuclei, namely, when
the angular momentum reduces the fission barrier
to a value similar or smaller than the nuclear tem-
perature. For the last case, the scission point model
was developed. The scission point model [3] is based
on the assumption of very quick equilibration of the
tilting mode with the small τK (relative to the saddle-
scission time). However, in the case of heavy-ion-
induced reactions, experimental anisotropies of AD
are spread in between the predictions of these models

∗This article was submitted by the authors in English.
**e-mail: eremenko@p6-lnr.npi.msu.su
1063-7788/03/6609-1622$24.00 c©
[4]. In this work, we suggest a dynamical model of
AD, which takes into account the stochastic aspects
of nuclear fission.
In the framework of our model, the dynamics of

induced nuclear fission is considered in the stochastic
approach [5] by the one-dimensional Langevin equa-
tions for the collective coordinate r (distance between
the centers of mass of the forming fission fragments)
and the corresponding momentum p:

dr

dt
=

p

m(r)
, (1)

dp

dt
= −1

2

(
p

m(r)

)2 dm(r)
dr

(2)

− dV (r)
dr

− β(r)p+ f(t).

Here, f(t) is a random force with the following prop-
erties: 〈f(t)〉 = 0, 〈f(t1), f(t2)〉 = 2Dδ(t1 − t2);D is
expressed, through the Einstein relation, in terms of
the nuclear temperature T and the nuclear viscosity
coefficient γ as D = Tγ; β = γ/m is the damping
coefficient in the fission mode and m is the inertial
parameter, which is calculated in the framework of
the Werner–Wheeler approach. The nuclear temper-
ature is defined as T = (Eint/a)1/2 with Eint = E∗ −
p2/(2m) − V (r) − Erot(J), where E∗ is the total ex-
citation energy andErot(J) is the rotational energy. In
this work, the level-density parameter is chosen in the
form a(r) = a1A+ a2A

2/3Bs(r), where Bs(r) is the
surface energy of the deformed nucleus, and a1 and a2

are taken from [6]. The initial p values are generated
for each Langevin sample under assumption of the
normal distribution at r corresponding to the equi-
librium deformation. The potential energy V (r) (and
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Transition point distributions over deformation for different nuclei. The calculations are performed with β = 4 ×
1021 s−1 at E∗ = 100MeV and J = 30�. The corresponding fission barriers are also presented.
accordingly Bs(r)) is calculated within the liquid-
drop model with the Myers–Swiatecki parameters
by using the procedure proposed in [7]. The initial J
distributions are calculated using the parameteriza-
tion based on the surface friction model [8]. Light-
particle emission is simulated by means of the Monte
Carlo method [9]. In the model, the fission time of
every Langevin sample is subdivided by intervals that
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
are equal to τK . The average deformation for every
interval is calculated. The last such point is treated
as an effective transition one. The stochastic nature
of fission results in an ensemble of such points. The
temperature and the moments of inertia at the effec-
tive point are determined. Then AD is calculated by
the relations
W (θ) =
1
Nf

Nf∑
i=1

Ji∑
M=−Ji

Ji∑
K=−Ji

0.5 exp(−M2/2M2
0i)(2Ji + 1)|dJiM,K(θ)|2 exp(−K2/2K2

0i)
Ji∑

M=−Ji
exp(−M2/2M2

0i)
Ji∑

K=−Ji
exp(−K2/2K2

0i)
. (3)
Here, Nf is the number of Langevin samples that

have fissioned, dJiM,K(θ) is the symmetric top wave

function, andK0i = (T/�2)(�−1
|| −�−1

⊥ )−1 andM0i =

�||T/�
2 are the variances of the distributions over

projections of J onto the symmetry axis (K) and the
space fixed axis (M). The moments of inertia �|| and
�⊥ are calculated in the rigid-body approximation.
As an illustration of this method, the distributions
of the transition points on the deformation axis are
presented in Fig. 1 for different nuclei and τK atE∗ =
100 MeV and J = 30�. As one can see, these dis-
tributions have substantial variances. The averaged
deformations for the transition points are between
the saddle and scission deformations. Distribution
broadening is also observed with increasing τK . It
is seen that the lighter the nucleus, the closer the
averaged position of the transition point to the saddle
deformation.

In the present work, we analyzed the experimental
data on the anisotropy of AD and the prescission neu-
3
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tron multiplicity (Mpre) for the 16O + 208Pb, 232Th,
238U, and 248Cm reactions first assuming deforma-
tion independences of β. SinceMpre does not depend
on the τK value, we obtained β = 4 × 1021 s−1 fitting
the experimental Mpre for the 16O + 208Pb, 232Th
reactions [10, 11] (see Fig. 2). Such data is absent for
the 16O+ 238U, 248Cm reactions. Then, we varied τK
to describe the experimental anisotropy of AD as ac-
curately as possible. In Fig. 3, the calculation results
are presented in comparison with the experimental
data [12]. The best description of the experimental
data is achieved with τK = 6 × 10−21 s. It is seen
that, for the 16O + 208Pb, 232Th, 238U, and 248Cm
reactions, our model allows a good description of the
experimental data in the energy range under consid-
eration. In addition, Fig. 3 presents the prediction of
SPM. It is seen that, for the 16O + 208Pb reaction,
the experimental data are between two calculations
within SPM. It means that SPM in principle can
describe the experimental AD for this reaction in this
energy range. However, it seems that our calculation
reproduces the slope of this energy dependence better
than SPM. On the other hand, in the 16O + 232Th,
238U, and 248Cm reactions, the anisotropy of AD
cannot be reproduced in the framework of SPM. It
is connected with the formation of compound nuclei
having angular-momentum-dependent fission barri-
ers smaller than the temperatures for a considerable
part of the initial distributions over angular momen-
tum.
In the framework of the present model, AD is con-

nected with the distribution of the transition points
over deformation, which depends on the times spent
by the nucleus on different stages of fission. The
last means that the AD has to be sensitive to the
deformation dependence of nuclear viscosity. In the
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present work, we used the one-body (only wall con-
tribution) and two-body models of nuclear dissipation
to illustrate this sensitivity. Here, we also adjusted
β to fit Mpre as well as possible. In this case, we
varied the parameters of the two-body viscosity µ
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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[13] and the reduction coefficient under the wall for-
mula ks [14]. Then, to estimate τK , we fitted the AD
anisotropies. Finally, we obtained τK = 7 × 10−21 s
and µ = 1.3 × 10−22 MeV s fm−3 for the two-body
model and τK = 9 × 10−21 s and ks = 0.26 for the
one-body model. Figure 4 presents the distributions
of the transition point positions over deformation for
these two models of nuclear dissipation. As is seen,
the probability of realization of the effective point for
small deformations is higher for the two-body model.
This is a result of the fact that the two-body β value is
larger than the one obtained by the one-body model
for the presaddle deformations, but for the saddle-
scission deformations, the situation is opposite (see
Fig. 4). This behavior of β explains the difference in
τK obtained in our calculations. All of the preceding
allows us to conclude that the AD are sensitive to the
deformation dependence of β.
We conclude that the dynamical model may be

useful in the analysis of AD for cases when validity of
the transition state models is questionable. Analysis
of the experimental data allowed us to obtain τK .
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Abstract—The influence of the damping shell corrections with increasing excitation energy on the fission
fragment angular anisotropies is considered. In the framework of the statistical approach to nuclear
fission, experimental data on fission fragment angular anisotropies obtained in the 4He + 238U reaction is
analyzed. Information about the energy dependence of the shell corrections is obtained from this analysis.
c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Shell corrections to the potential energy play an
important role in the decay of heavy nuclei at low-
excitation energies [1]. Usually information about
them was obtained from analysis of experimental data
on evaporation residue cross sections, mass distribu-
tions of fission fragments, fission probabilities, etc.

The modulation of the nuclear energy surface by
the shell corrections leads to the double-humped
structure of the fission barrier. However, an increase
in excitation energy results in damping of the shell
corrections (if the excitation energy is more than
60 MeV, the fission barrier becomes the pure liquid-
drop one) [2]. Information about the energy depen-
dence of the shell corrections is very important for de-
scription of the fission process and synthesis of super-
heavy elements [3]. To obtain such a dependence, it is
necessary to investigate the energy range where a de-
crease in the effect with increasing excitation energy
is observed. In the present paper, we analyzed fission
fragment angular distributions with this purpose.

ANALYSIS OF EXPERIMENTAL DATA
ON FISSION FRAGMENT ANISOTROPIES

The influence of the double-humped structure of
the fission barrier on fragment angular distribution
was considered in [4]. However, in this work, the
case of excitation energies less than 50 MeV was
studied and the shell effect damping with increase
in the nuclear temperature was neglected. To take
into account the decrease in the shell corrections at
the characteristic points of the fission barrier (the
inner and outer fission barriers and the second well),
we analyzed the fission fragment anisotropies in the

∗This article was submitted by the authors in English.
**e-mail: drozdov@p6-lnr.npi.msu.su
1063-7788/03/6609-1626$24.00 c©
α + 238U reaction in the energy range 23 ≤ Eα ≤
100 MeV.

In this work, we assumed that, in the Pu nuclei,
the second well coincides with the top of the liquid
barrier in the deformation space. Thereby, the fission
fragment angular distributions were calculated as a
superposition of the second barrier contribution and
the second well one:

W (θ) =

∑
i
PiσiWSBi(θ)∑

i
σi

+

∑
i

(1 − Pi)σiWSWi(θ)∑
i
σi

,
(1)

where σi is the partial fission cross section, Pi is the
probability of populating the second well of the ith
nucleus of the neutron-emission cascade, WSBi(θ)
is the contribution to the angular distribution of the
second barrier, and WSWi is the angular distribution
connected with the second well. WSBi(θ) and WSWi
are given as

Wi(θ) =
∞∑
J=0

σi,J
σi

(2)

×
J∑

K=−J

0.5(2J + 1)|dJM=0,K(θ)|2ρi(K)
J∑

K=−J
ρi(K)

,

where J is the total angular momentum of the nuclear
system;

ρi(K) = exp{−(�2K2/2Ti)[(1/�||) − (1/�⊥)]};
(3)

and Ti, �||, and �⊥ are the nuclear temperature and
the parallel and perpendicular inertia moments, re-
spectively. These values are calculated at the second
barrier and at the second well.
2003 MAIK “Nauka/Interperiodica”
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ism presented in this paper (solid).

 

1.0

0.8

0.6

0.4

0.2

 
F
 
(
 
T
 

)

0 1 2 3

 

T

 

, MeV

 

1 2
3

Fig. 2. Different types of the shell corrections damp-
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tion of the experimental data on the fission fragment
anisotropies.

The spin distributions of the initial compound nu-
cleus and the daughter nuclei were calculated using
the GFOT code [5].

The probability of populating the second well was
calculated as

Pi = 1 − exp
(
−Bf IIi
TIIi

)
, (4)

whereBf IIi = VSBi−VSWi+ (δWSBi− δWSWi)F (T )
is the height of the outer fission barrier relative to the
second well depth of the ith nucleus of the neutron-
emission cascade; TIIi is the nuclear temperature
at the second well; VSBi and VSWi are the liquid-
drop potential energies for the second barrier and
the second well, respectively; δWSBi and δWSWi are
the corresponding shell corrections; and F (T ) is a
function determining the shell-correction damping
with increase in the temperature.

Comparison of the calculation of fission fragment
angular anisotropies at the second barrier and at the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
liquid-drop saddle point with the experimental data is
presented in Fig. 1. It is seen that, at low energies,
the experimental data is reproduced by the calculation
with the double-humped barrier (Pi ≈ 1) and that, at
the highest energies, the data is reproduced by the
calculation with the liquid-drop barrier (Pi ≈ 0). For
description of the experimental data on the fission
fragment angular anisotropies, we used the damping
function of Fermi type in Eq. (1)

F (T ) =
1

1 + exp((T − T0)/d)
, (5)

where d = 0.2 MeV is the rate of washing out (dis-
appearance) of the shell corrections with temperature
and T0 was treated as an adjustment parameter. The
best description of the experimental data is achieved
with use of the value T0 = 1.15 MeV (see Fig. 1).

Figure 2 presents our temperature dependence of
the shell corrections in comparison with other tem-
perature dependences of the shell corrections.

CONCLUSION

It is shown that the damping of the shell correc-
tions with the nuclear temperature can explain the
behavior of the fission fragment angular anisotropies
in the cases of decay of heavy nuclei with excitation
energies ranging from 15 to 100 MeV. In the analy-
ses of the experimental data on the fission fragment
angular anisotropies for the α + 238U reaction in the
energy range 23 ≤ Eα ≤ 100 MeV, information about
the energy dependence of the shell corrections was
obtained.
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Abstract—The unified energy dependence of the induced fission times obtained by the crystal blocking
technique for heavy nuclei with Z = 91–94 in the range of initial excitation energy from 5 to 250 MeV
was analyzed. It was demonstrated that, for excitation energies of the investigated heavy fissionable
nuclei up to 60–70 MeV, the fission times can be described in the framework of the statistical theory of
nuclear reactions taking into account the double-humped structure of the fission barrier and the lifetimes
of both classes of excited nuclear states realized in the first and second potential wells. However, for
excitation energies above 70 MeV, there is a need to consider the dynamical effects in the fission channel.
c© 2003 MAIK “Nauka/Interperiodica”.
The nuclear reaction time is an important char-
acteristic directly associated with both the structural
features of the interacting nuclei and the mechanism
of decay of the excited nucleus. As it was shown in [1],
the double-humped structure of the fission barrier can
have a strong influence on the time characteristics of
decay of excited heavy nuclei. Moreover, one needs to
stress the unique sensitivity of such an observable as
the induced fission lifetime to the dynamical proper-
ties of the fissioning nuclear system, i.e., magnitude
of nuclear matter viscosity and so on.

Here, we present the results of analysis of the large
set of experimental data on the induced fission times
τf obtained by the crystal blocking technique [2, 3].
We analyze τf for the 232Th + p, d, α reactions [4]
obtained at the U-120 cyclotron of the Institute of
Nuclear Physics, Moscow State University, at beam
energies in the range from 4 to 7.8 MeV/nucleon.
The experimental decay times range from 10−17 to
10−14 s, depending on the projectile energy. Our τf
data for the 28Si + natPt reaction at the silicon beam
energies from 140 to 170 MeV [5] are also analyzed.
The last measurements were done with the Tandem-
XTU accelerator of the LNL Laboratories (Padova,
Italy) and provided experimental decay times ranging
from 10−18 to 10−17 s. Our own data have been
compared with τf for the U-like nuclei produced in
the 238U + 28Si reaction at the U-beam energy of
24 MeV/nucleon obtained at GANIL [6]. Due to the
very large value of the transferred momentum in the
last reaction, τf ranges from 10−17 to 3 × 10−19 s

∗This article was submitted by the authors in English.
**e-mail: platonov@p10-lnr.npi.msu.su
1063-7788/03/6609-1628$24.00 c©
for excitation energies in the 10–250 MeV interval.
Hence, we have the unified energy dependence of
τf for heavy nuclei with Z = 91–94 in the range of
the initial excitation energy from 5 to 250 MeV (see
Fig. 1).

As one can see from Fig. 1, the experimental fis-
sion times are much longer than that expected from
the standard statistical calculations of lifetimes of
initial compound nuclei formed in the investigated re-
actions. Calculations in the framework of the rotating
liquid-drop model, taking into account only lifetimes
of excited states under equilibrium deformation, un-
derestimate the experimental data by approximately
five orders of magnitude at excitation energies about
100 MeV.

The emission of neutrons from the fissioning nu-
clear system leads to the cooling of nuclei before
fission and, as a result, to increasing the mean decay
time in the fission channel. Considerations of all pos-
sible fission chances during the development of the
neutron-emission cascade (each one weighted with
its probabilities of occurrence—τf =

∑
τfiωi, where

ωi is the relative weight of the fission fragments from
the ith chance, and τfi is the corresponding decay
time in the fission channel) improve the fit of the
experimental data. But the large difference between
theory and experiment (approximately three orders of
magnitude) still remains.

Assuming the double-humped fission barrier mo-
del with allowance for the lifetimes of the both classes
of excited nuclear states in the first and second po-
tential wells [1] makes it possible to improve the fit of
τf substantially in the excitation energy region below
60–70 MeV. The reason is that the existence of an
additional time delay in the fission channel (connected
2003 MAIK “Nauka/Interperiodica”
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with the lifetime of the second well states) leads to a
noticeable increase in τf . But for higher initial exci-
tation energies, the influence of this additional time
delay diminishes and finally disappears at energies
above 70MeV due to the damping of shell effects with
increasing nuclear temperature [5]. In this energy re-
gion, the double-humped structure of the fission bar-
rier for heavy nuclei tends to transform into a single-
humped one and only one class of excited nuclear
states under equilibrium deformation survives.

For an initial excitation energy above 50 MeV, the
dynamical aspects of the nuclear fission process begin
to play an important role. In this connection, an anal-
ysis of the obtained energy dependence of the induced
fission times was performed in the framework of the
dynamical approach based on the set of stochastic
Langevin equations. In the one-dimensional case, it
can be represented as

dr

dτ
=

p

m
, (1)

dp

dτ
= −

p2

2
d

dr

(
1
m

)
− dV

dr
− βp+ f(τ), (2)

where r and p are the collective coordinate and the
corresponding momentum, respectively. For the r, we
used the distance between the centers of mass of the
formed fission fragments. In Eq. (2), f(τ) is a random
delta-correlated force

〈f(τ)〉 = 0, 〈f(τ1)f(τ2)〉 = 2Dδ(τ1 − τ2), (3)

where D is expressed, through the Einstein relation,
in terms of the nuclear temperature and the coefficient
of nuclear friction as D = tβm, being related to the
damping coefficient β. The inertial parameter m was
calculated in the incompressible fluid approximation
[7]. In the proposed approach, the damping coefficient
β was used as an adjustable parameter. The nuclear
temperature is defined as t = (Eint/a)1/2 with Eint =
E∗ − p2/(2m) − V (r, J), where E∗ is the total exci-
tation energy and a is the level-density parameter. In
our analysis, the level-density parameter was chosen
in the form of a = A/10. The potential energy V (r, J)
was calculated within the rotating liquid-drop model
with the Myers–Swiatecki parameters by using the
procedure proposed in [8]. The initial values of p were
generated for each trajectory under the assumption of
the normal momentum distribution at r correspond-
ing to the equilibrium deformation:

F (p) =
1√

2πmt
exp

(
− p2

2mt

)
. (4)

Equations (1), (2) were solved in the framework of the
Euler difference scheme. The emission of light parti-
cles (neutrons, protons, and α particles) was simu-
lated within the method that is usually used to cal-
culate the multiplicity of prescission light particles in
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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Fig. 1. The induced fission times of nuclei with Z =
91–94 vs. initial excitation energy. Points are exper-
imental data: open circle, triangle, and squares are
our data from the 232Th(p, xnf), 232Th(d, xnf), and
232Th(α, xnf) reactions [4]; black squares are our data
from the 28Si + natPt reaction [5]; black circles are data
from [6]. The dashed curves are the results of the statis-
tical calculations (1) with allowance for and (2) with ne-
glect of the contributions of the fissioning nuclei produced
in the neutron-evaporation cascade. The solid curves are
the results of the dynamical calculations obtained for β =

5 × 1021 s−1 and J = 20 (1), 30 (2), 40 (3), 60 (4), and
80� (5). The dash-dotted curve represents the time for the
fissioning system moving from the saddle to the scission
for β = 5 × 1021 s−1 and J = 40�.

the framework of an approach based on the Langevin
equations (see, for example, [9]). The induced fission
decay times were calculated by the following relation:

〈τf 〉 =
1
Nf

Nf∑
i=1

τfi, (5)

where Nf is the number of Langevin samples that
have fissioned and τfi is the fission time for the ith
Langevin sample. Other calculation details were de-
scribed in [9].

Because of lack of information on the angular
momentum J of the U-like fissioning nuclei formed
in the 238U + 28Si reaction, we treat this value as
a free parameter. Thus, in our calculations, we used
two adjustable parameters: β and J . The best de-
scription of the investigated energy dependence of τf
was achieved for β = 5× 1021 s−1 and J = (30–40)�
(see Fig. 1). These J values are consistent with the
peripheral mechanism of the reaction under study.
At higher values of J = (60–80)�, we obtained τf
values very close to the time spent by the fissioning
system between the saddle and scission points. This
is a result of the fission barrier disappearance at such
high J values. In addition, a decrease in J leads to
an increase in the τf values due to the cooling of the
3
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Fig. 2. The total neutron multiplicity vs. initial excitation
energy of the fissioning U-like nuclei produced in the
238U + 28Si reaction. Points are experimental data from
[6]. Curves are the calculation results obtained for β =

5 × 1021 s−1 and J = 20 (1), 30 (2), 40 (3), 60 (4), and
80� (5).

nucleus because of the light-particle emission before
the saddle.

In addition, we also tested the obtained β and
J values using the total neutron multiplicity for the
fissioning U-like nuclei formed in the 238U + 28Si
reaction (see Fig. 2). Our calculated values of the
prescission neutron multiplicity were summed with
the data on the postscission neutron multiplicity for
the fissioning nuclei with Z = 91–95 from systemat-
ics [10]. As one can see from Fig. 2, our calculation
results for J = (30–40)� slightly overestimate the
experimental data. One of the probable reasons for
this difference can be in the fact that, in the systemat-
ics [10], it was obtained for complete fusion–fission
reactions, while our calculations were done for the
concrete initial values of J . In any case, the obtained
value of the damping coefficient β = 5× 1021 s−1 falls
into the range of estimates of other authors [10] and
corresponds to the concept of “overdamped” collec-
tive nuclear motion.

In summary, we analyzed the unified energy de-
pendence of the induced fission decay times for heavy
P

nuclei with Z = 91–94 in the excitation energy range
from 5 to 250 MeV. The analysis allowed us to sep-
arate the excitation energy ranges in which the dif-
ferent mechanisms of the excited nucleus decay are
dominating. In conclusion, it is necessary to stress
the unique sensitivity of the induced fission lifetime
to the properties of the fissioning nuclear system, i.e.,
the magnitude of nuclear matter viscosity, the struc-
ture of the excited strongly deformed nuclear states,
and so on.
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Abstract—An attempt has been made to search for collinear tripartition in spontaneous fission of 252Cf
by using the FOBOS setup coupled with the neutron detector belt. A group of rare events were detected
characterized by reduced total kinetic energy and total nuclear charge gated by the large neutron multiplic-
ity measured. This fact is considered to be an experimental indication of collinear tripartition in 252Cf. The
theoretical indication of the possible existence of the collinear cluster tripartition valley was obtained for the
first time. c© 2003 MAIK “Nauka/Interperiodica”.
The present paper is devoted to the search for the
particular case of true ternary fission at the lowest
excitation, i.e., during spontaneous decay. In the early
experiments [1] at the FOBOS detector [2] aimed at
the study of rare fission modes in spontaneous decays
of 248Cm and 252Cf, a group of precisely collinear
pairs of heavy fragments with a large deficit both of
the total mass and of the total kinetic energy was
detected. This group lies rather far from the locus
connected to conventional binary fission in the cor-
relation plot of the fragment masses (selected area,
Fig. 1), and its yield in the lowest limit amounts
to ∼10−6–10−5 of the whole data body. The mass-
energy correlations for these rare events allow one to
assign them to fission of the system via an elongated
three-body chainlike configuration. In this case, two
outside fragments fly apart along the chain axis and
can be confused with ordinary fission fragments (FF),
while the central fragment can stay almost at rest
and, as a result, can hardly be registered. Such an
experiment especially suffers from the background of
false events due to the partial loss of the FF energy in
the construction elements of detector modules. The
results obtained have been treated as an indication of

∗This article was submitted by the authors in English.
**e-mail:kamanin@fobos.jinr.ru
1063-7788/03/6609-1631$24.00 c©
collinear cluster tripartition (CCT) of the heavy nuclei
under study.
The advanced experiment aimed specially at the

investigation of CCT of the 252Cf nucleus has been
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Fig. 1. Mass-yield matrix Y (Ma,Mb) of fission frag-
ments for 252Cf(sf) decay.
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performed at the modified 4π spectrometer FOBOS
at the Flerov Laboratory of the JINR [3]. In order to
overcome the above-mentioned methodological ob-
stacles and to improve the quality of the data, some
modifications have been introduced into the exper-
imental scheme. These modifications concerned the
configuration of the detectors, including the start de-
tector; the electronics; and also the data acquisition
system. Some preliminary results of the recent exper-
iment are discussed below.
The FF trigger consisted of two groups each con-

taining six FOBOSmodules used as a double-armed
spectrometer for measuring the FF velocities (V ) by
means of measuring their time-of-flight and energies
(E). Thus both the 2–V and the V –E methods are
accessible for the calculation of the FF masses. In
using the latter method, one does not need to use
any a priori assumptions considering the process to
be exclusively binary.
The double-armed configuration of the FOBOS

spectrometer consisted of the specially designed
wide-aperture start detector with an internal FF
source [3]. The full symmetrization of the spectrom-
eter arms achieved owing to such a start detector
improves the quality of the data substantially.
According to the model of the CCT process pro-

posed in [2], the central fragment of the three-body
prescission chain acquires almost the entire defor-
mation energy of the system. Being presumably at
rest, it would be an isotropic source of postscission
neutrons of a high multiplicity (∼10) in the labora-
tory system. On the contrary, the neutrons emitted
P
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Fig. 3. Amplitude distribution Y (Aa, Ab) of the comple-
mentary fragments under the condition that at least four
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from the moving fission fragments are focused along
the fission axis. In order to exploit this phenomenon
for revealing the CCT events, a “neutron belt” [4]
consisting of 140 separate hexagonal modules based
on 3He-filled proportional counters was assembled
in a plane perpendicular to the symmetry axis of the
spectrometer, which serves as the mean fission axis at
the same time. The center of this belt coincides with
the location of the FF source.
The typical spectrum of frequency vs. the number

of tripped neutron counters for the registered fission
events is presented in Fig. 2. The function obtained
agrees well with the theoretical calculations based on
the known probabilities for emitting a certain number
of neutrons per fission, meaning the total registration
efficiency of about 3.8% [4]. The overall registration
efficiency for an isotropic source and, hence, for the
neutrons from the CCT events amounts to ∼11%. A
simple calculation accounting for this difference in the
registration efficiencies and in the primary multiplicity
spectra ascribed to the processes considered (see [4])
reveals that the registration probability for more than
three neutrons from ordinary spontaneous fission in
this geometry is two orders of magnitude lower than
the same probability for the CCT events.
Our empirical model described in [4] reproduces

the shape of the multiplicity distribution from 0 to
3 precisely. In particular, the best fit presented in
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 2 gives the average multiplicity differing from
the experimental one only by the value of 0.001, and
such a good reproducibility of the distribution shape is
found to be stable against reasonable variations of the
parameters of the model. The latter fact is extremely
important for the tail of the distribution and, there-
fore, we checked the most important constants ad-
ditionally by using simulations with the well-known
MCNP code.

One should note that the lowest estimate of
∼10−6–10−5 of the yield of CCT with respect to
ordinary fission formally assumes the contribution of
at least 3–30CCT events to themultiplicity spectrum
in Fig. 2 and these events should contribute mainly
to high-multiplicity values. On the other hand, we
deliberately did not include the contribution of CCT in
our simulations. Although there are no experimental
data on multiplicity 6 and higher, the best fit misses
surprisingly ∼20 events for the measured values of
4 and 5. Based on the statistics of 3 million events
presented in Fig. 2, we would not insist on evidence of
some additional high-multiplicity process. However,
we treat the observed difference between the experi-
ment and simulations as an additional argument for
searching the CCT events under the condition of
νexp > 3.

In addition, according to our simulations, the con-
tribution of the true high-multiplicity events with
νemitted > 3 to the measured multiplicity greater than
3 amounts to ∼80% (Fig. 2), while the rest is mostly
due to random coincidences with νemitted = 3. This
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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means the reliability of the experimental data selected
by such a large number of fired neutron counters.
The first interesting result can already be dis-

cussed on the basis of a part of the whole data body
counted, 1.4 × 107 events. Figure 3 shows the ampli-
tude distribution Y (Aa, Ab) of the fragments detected
in coincidence in two arms of the spectrometer (la-
beled a and b) gated by the large neutron multiplicity
νexp > 3, as is discussed above. The set of points that
looks like a parabola (denoted as selected events in
Fig. 3) attracts one’s attention. For comparison, a
similar plot obtained for the events falling inside the
contour shown in Fig. 1 is given in Fig. 4, although
this plot is not gated by the number of fired neutron
detectors. The events forming an angle-like structure
in Fig. 1, i.e., linked with tripartition, are connected
by the parabolic curves.
A serious test of the reliability of the CCT events

is the low total charge of both detected fragments,
less than Zc/2, where Zc is the charge number of
the fissioning nucleus. Unfortunately Bragg spec-
troscopy is ruled out for the heavy ions, whose energy
is typically lower than 1 A MeV for the FF in spon-
taneous fission. In order to perform the test for the
total charge, an additional parameter was recorded
for each fission fragment registered. This alternative
method was proposed in [5]. It is based on measuring
the delay between the time the fragments enter the
Bragg ionization chamber (BIC) and the time the
anode pulse crosses a given level, i.e., the parameter
connected with the drift time of a charge in a BIC.
3
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The distribution of the FF amplitude Aa vs. drift
time ta obtained in our experiment for one of the
detectors is shown in Fig. 5. The FF fall to the light-
and the heavy-mass peaks, which are easily distin-
guished. An individual charge at a given mass should
look like a steep power function. Of course, numerical
simulations and a direct calibration are needed for an
accurate analysis of such a complicated parameter as
ta. Indeed, the drift time ta is a function of the nuclear
charge of the FF, its energy, and, less pronounced, its
mass simultaneously. However, a preliminary conclu-
sion can be drawn from the drift time vs. amplitude
plot shown in Fig. 6, which is accumulated under the
same condition of the neutron multiplicity νexp > 3 as
Fig. 3.

For a usual fission event, one should expect that
the measured total charge of the complementary FF
is, on the average, equal to the charge of the Cf nu-
cleus, i.e., 〈Za〉 + 〈Zb〉 = 98. This should mean that
the complementary FF has to be found, on the aver-
age, on different sides of the line of mean charge 〈ta〉
in Fig. 6. However, all the selected events are located
on the left and downward from 〈ta〉, thus revealing a
lower mean fragment charge, whereas no events are
found on the other side. Hence, despite a poor charge
resolution, the average total charge for the selected
events is at least notably lower than 98 with a high
probability. In order to make an ultimate conclusion
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Fig. 7. The shape of the nucleus at the bottom of
the “symmetric” valley (Q2 = 7.52 a.u., η = 0.074) (a);
the same system at the point Q2 = 7.52 a.u., η =
−0.208 (b).

about the total charge, one should consider the cor-
related FF pairs and trace down the lines of individual
charges.
In addition to the experimental work, we continue

the theoretical study of CCT. Significant support for
the CCT hypothesis was obtained recently in our
more detailed calculations of the potential energy sur-
face (PES) of the Cf nucleus carried out in the frame-
work of the procedure presented in [6, 7] based on the
Strutinsky method. Figure 7a depicts the shape of the
fissioning nucleus at the bottom of the “symmetry”
valley with the quadrupole moment Q2 = 7.52 a.u.
(see Fig. 8 in [7]). As was already pointed out in
our previous works [7–10], the system that fissions
in the vicinity of the bottom of the potential valley
constitutes two magic nuclei (clusters) connected by
a neck. In Fig. 7a, these clusters are the deformed
magic nuclei of 106Mo64 (β2 ∼ 0.58). In the calcula-
tions, the shape of the system was varied in such a
way that the value of Q2 remained constant while the
mass-asymmetry η changed starting from the value
corresponding to the valley’s bottom. By definition,

η = (M1 −M2)/Mc,

where M1,2 is the mass of the system concentrated,
respectively, on the left and on the right sides of
the varied boundary, which divides the nuclear body
into two parts (marked by vertical lines in Fig. 7),
and Mc is the mass of the fissioning nucleus. As a
result, the new shape of the system shown in Fig. 7b
was revealed for the first time. The energy of the
system is only slightly higher (by ∼2 MeV) than
the corresponding value at the bottom. The distin-
guishing feature of the shape observed is the double
waist which vividly divides the system into three parts
of comparable sizes. It would appear reasonable to
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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identify the double rupture of such a configuration
as the true ternary fission so long sought. The fact
that it was not discovered before may be due to the
special kinematics of the process being collinear in
nature. As mentioned above, two outside fragments
of the three-body chainlike configuration should fly
apart along the chain axis, while the central one could
stay almost at rest. In addition, one might expect that
the scission probability achieves its maximum value
when the length of the system is close to the sum of
large axes of the constituted clusters. The clusters of
Mo, Sr, and, presumably, 48Ar30 (according to [11],
there is a strong shell correctionminimum forN = 30
at β2 ∼ 0.52) could be the products of the CCT in
this case. For the moment, we have obtained only the
first theoretical indication of the possible existence of
the Mo–Ar–Sr CCT valley in the 252Cf nucleus. It
seems to us that the possible existence of akin valleys
(modes) built on other clusters is not ruled out.
To summarize, we conclude that we observe the

structure linked presumably with collinear triparti-
tion just in the raw neutron gated data presented in
Fig. 3. This conclusion is confirmed by the prelimi-
nary analysis of the FF charge and neutron multiplic-
ity measured as well as by the recent calculations of
the PES. That is the most promising result for the
moment while processing of the data obtained is still
in progress.
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Abstract—Applications of total absorption γ-ray spectroscopy (TAS) for measurements of the beta-decay
strength function, for completeness testing of decay schemes, and for determination of total beta-decay
energy are discussed. Applications of TAS in combination with high-resolution γ spectroscopy for studying
the fine structure of the beta-decay strength function are demonstrated. Results for 147gTb (T1/2 � 1.6 h)
and for 156Ho (T1/2 � 56 min) are presented. c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Total absorption γ-ray spectroscopy (TAS) is ap-
plied for measurements of the β-decay strength func-
tion Sβ(E) [1, 2] and for determination of total en-
ergies Qβ [1–3]. A combination of TAS with high-
resolution γ spectroscopy was also used for construc-
tion of decay schemes and its completeness testing,
and for Sβ(E) fine-structure study [4–7].

Total absorption spectroscopy is based on sum-
mation of cascade γ-ray energies in 4π geometry. The
population of the levels after β decay and the β-decay
strength function are determined from the shape of
the accompanying β-decay TAS γ spectra [1]. The
end point of the TAS γ spectrum is determined by the
total energy Qβ of the β decay [1, 3].

Our TAS γ spectrometer (TAGS) [3] consists of
two NaI(Tl) crystals 200 × 110 and 200 × 140 mm2 in
size. The larger crystal has a 70 × 80-mm2 well into
which the nuclei under study are supplied and where
the Si(Au) detector is installed. Its sensitive layer is
2 mm thick and allows β-particle detection. Because
the energy resolution of TAGS is not so high, we
used Z-separated (radiochemically) and A-separated
(mass separator) sources in our experiments. Con-
tamination from the decay products scarcely influ-
ences the results because of their longer half-life and
smaller total decay energies.

∗This article was submitted by the authors in English.
**e-mail: izosimov@atom.nw.ru
1063-7788/03/6609-1636$24.00 c©
STRENGTH FUNCTION STUDY

For β transitions of Gamow–Teller type, Sβ(E)
can be written as [1]

Sβ(E) =
B′

∓(GT, E)
D(g2

V /g
2
A)

, (1)

B
′
∓(GT, E) =

4π
g2
A

B∓(GT, E) (2)

=
1

2Ii + 1
|〈If ||

∑
k,µ

t∓(k)σµ(k)||Ii〉|2,

where Ii and If are the spins of the initial and final
nuclei states, gA and gV are the coupling constants
of the axial-vector and vector components of the β
decay, D = 6260 ± 60 s, and t∓σ is the product of
the isospin and spin operators giving the respective
operators of the Gamow–Teller β− or β+/EC decays.

The charge-changing elementary excitations with
isospin T = 1 and its z projection MT = +1 can
manifest themselves in Gamow–Teller β+/EC de-
cay. The Gamow–Teller MT = +1 resonance is a
coherent superposition of such elementary excita-
tions at high energy [1]. Using our TAGS, we de-
tected [3] Gamow–Teller MT = +1 resonance for
147gTb (T1/2 � 1.6 h) β+/EC decay as a strong peak
atE � 4 MeV. Using the combination of the TAS and
high-resolution, we studied its fine structure [4, 6].
Only qualitative agreement between experimental fine
structure and theoretical fine structure (Fig. 1) for the
Gamow–Teller MT = +1 resonance was obtained.
2003 MAIK “Nauka/Interperiodica”
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Fig. 2. TAS γ spectrum for 156Ho β+/EC decay.

Theory predicts more strength than was experimen-
tally observed. This is a typical situation for both
β+/EC and β− decays. For 147gTb β+/EC decay, not
all the strength is in theQEC window.

For a more detailed analysis of the β+/EC-decay
strength function in this region, it is necessary to have
experimental data on Sβ(E) in nuclei, where all the
β+/EC strength lies within the QEC window. Such a
possibility exists for 145,143,141Tb β+/EC decays.

MEASUREMENT OF THE TOTAL
ELECTRON-CAPTURE ENERGY QEC

We used our TAGS for 156Ho (T1/2 � 56 min)
total β+/EC-decay energy QEC measurements. The
QEC value is connected with the TAS γ-spectrum
end point. The most informative region for determi-
nation of the TAS spectrum end point, as a rule,
has low counting per channel, and it may be very
difficult to determine the end point of the TAS γ
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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spectrum directly. The part of the TAS spectrum with
enough high statistics is not so informative for end
point determination. Thus, there is some optimal TAS
spectrum interval for determination of the QEC value.
We use the χ2 criterion for hypothesis testing and for
optimal energy interval selection [3]. For estimation
of QEC and errors, we use the maximum-likelihood
method, which gives a result with minimum possible
errors [8]. Theoretical spectra are constructed as

N(E) =

QEC∫
0

Sβ(e)f(e,QEC)ε(e)φ(e,E)de, (3)

where Sβ(E) is the β+/EC-decay strength function,
f(e,QEC) is the Fermi function for β+/EC decay, ε(e)
is the spectrometer efficiency, and φ(e,E) is the re-
3
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sponse function of the spectrometer calculated using
the MCNP code.

The TAS γ spectrum for 156Ho β+/EC decay
is shown in Fig. 2. The optimal energy interval for
TAS γ-spectrum analysis was selected using the χ2

criterion [3] (Figs. 3, 4). From the χ2 minimum, we
estimated the QEC value and, after linearization, the
error δQEC. We obtained QEC = 5.05 ± 0.09 MeV.

As was recommended by Hudson [8] for hy-
pothesis testing, the χ2 criterion must be used and
the maximum-likelihood method must be used for
estimation of parameters. The likelihood function for
the selected energy interval was constructed using a
Poisson distribution and is shown in Fig. 3. Using
standard procedures for the maximum-likelihood
method, we obtained QEC = 5.05 ± 0.02 MeV. The
error δQEC consists of two approximately equal parts.
The first part is connected with the uncertainty in
determination of the likelihood function maximum
P

and the second one (Fig. 3) is connected with the
likelihood function width. Comparing results ob-
tained by the χ2 method with linearization and by
the maximum-likelihood method, we conclude that
the maximum-likelihood method is more effective
for analysis. Our result is in good agreement with
systematics [9].
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Abstract—The neutron drip line in the neon–magnesium region has been explored by the projectile
fragmentation of a 48Ca (59.8 A MeV) beam using the new fragment separator LISE-2000 at GANIL.
New neutron-rich isotopes, 34Ne and 37Na, have been observed together with some evidence for the particle
instability of 33Ne and 36Na. c© 2003 MAIK “Nauka/Interperiodica”.
The study of the properties of neutron-rich nuclei
far from stability is one of the most exciting areas of
modern research in nuclear physics. The progress in
our knowledge of the properties of these nuclei has
enormously broadened because of the new radioac-
tive ion beam facilities and the development of very
sophisticated fragment separators.

One interesting feature has been found in the re-
gion of the light neutron-rich nuclei. As was estab-
lished in 1975 by Thibault et al. [1], neutron-rich
nuclei with N ≈ 20 constitute a good example of
shape coexistence of spherical and deformed config-
urations (for example, 32Mg). In the frame of the shell
model, the deformed ground state in 32Mg is a con-
sequence of the strong correlation energy of 2p–2h
neutron excitations from the sd to the pf shell. It was
suggested that the extra binding energy was gained
by the deformation associated with the particle–hole
excitation across the N = 20 shell gap. If a nucleus
gains binding energy through deformation, the drip
line extends farther than expected for a closed shell.
Recent experiments at GANIL, MSU, and RIKEN
were dedicated to the study of the stability of the
neutron-rich nuclei with Z > 7 and around N = 20.

∗This article was submitted by the authors in English.
**e-mail: lukyanov@flnr.jinr.ru
1063-7788/03/6609-1639$24.00 c©
The variation of the shell gap and deformation as a
function ofN and Z could be a major challenge.

Among the recent experiments dedicated to ex-
plore the neutron drip line in the region of elements
fromO toMg, one couldmention those on the particle
instability of the neutron-rich oxygen isotopes 26,28O
[2–4] and on the discovery of the particle stability
of 31Ne [5] and 31F [6]. The appearance of a so-
called "island of inversion" with respect to the par-
ticle stability of isotopes has been claimed through
various theoretical predictions. A particular feature in
this region is the progressive development of prolate
deformation in spite of the expected effect of spherical
stability due to the magicity of the neutron number
N = 20 [7–10]. It was argued that the deformation
might lead to enhanced binding energies in some
as yet undiscovered neutron-rich nuclei. The particle
stability of 31F gives strong evidence on the onset of
deformation in the region. One may expect that the
drip line for the fluorine–magnesium elements could
move far beyond the presently known boundaries.

Therefore, there is great interest in studying nuclei
in the region of the neutron closure N = 28. Experi-
mentally, the properties of 44S have been studied and
it was concluded that the ground state of 44S is de-
formed. This result suggested a significant breaking
of theN = 28 closure for nuclei near 44S.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Energy loss dE vs. time-of-flight ToF (de–
HF) identificationmatrix. (b) Two-dimensionalA/Z ver-
sus Z plot obtained in the reaction of a 58.9AMeV 48Ca
beam on a 161-mg/cm2 tantalum target during a 2.5-d
run. The new isotopes 34Ne (two events) and 37Na (one
event) are clearly visible. No events associated with 33Ne,
36Na, and 40Mg were observed.

In this work, we present the results of our attempt
to determine the neutron drip line for the Ne–Mg iso-
topes in the region of the neutron numbers N = 20–
28. In particular, our experiment was dedicated to the
direct observation of the 31F, 34Ne, 37Na, and 40Mg
nuclei. These nuclei were searched for among the
fragmentation products of a 59.8 A MeV 48Ca beam
on a 160-µm tantalum target. The very neutron-rich
beam and target were chosen to optimize the produc-
tion rate of the drip-line nuclei in accordance with the
LISE code [11, 12] and the results of the previous
work [13]. The mean intensity of the 48Ca beam was
150 p nA. The experiment benefited from a recent up-
date of the LISE [14] spectrometer to the LISE-2000
[15] level. The upgrade includes an increase in the
maximum magnetic rigidity to 4.3 T m, an increase
by a factor of 2.5 in the angular acceptance, and a
new line with improved optics. As a consequence, a
total increase by a factor of 10 in the production rate
of the drip-line nuclei has been achieved with respect
to using the standard LISE spectrometer.

The reaction fragments were collected and ana-
lyzed by the LISE-2000 spectrometer operated in an
achromatic mode and at the maximum values of mo-
mentum acceptance (5%) and solid angle (1.9 msr).
The magnetic rigidity of the first and the second half
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Fig. 2. Isotopic production for nuclei with the neutron
number N = 2Z, N = 2Z + 2, and N = 2Z + 4. The
solid lines present the expected yields according to the
LISE code.

of the spectrometer was set at 3.48 and 3.391 T m,
respectively. To reduce the overall counting rate due to
light isotopes, a beryllium wedge with a mean thick-
ness of 563 mg/cm2 was placed at the momentum
dispersive focal plane.

In addition to the standard identification method
of the fragments via time-of-flight (ToF), energy loss
(dE) and total kinetic energy (TKE), a multiwire
proportional detector was placed in the dispersive
plane of the LISE-2000 spectrometer. This detec-
tor allowed measuring the magnetic rigidity of each
fragment via its position in the focal plane, improving
the mass-to-charge resolution (A/Q). The sensitive
area of this detector was 10 cm (H) × 5 cm (V),
covering the full momentum acceptance of the spec-
trometer. The cathode wires were individually read
out. A spatial resolution of 0.5 mm was achieved for a
counting rate of 104 particles/s. The typical efficiency
for this particle detector was about 80%. The mass-
to-charge ratio (A/Q) was obtained with an accuracy
of 0.8%. The selected fragments were implanted in a
telescope consisting of seven silicon detectors for the
identification of the fragments. In the data analysis,
the fully stripped fragments were selected by putting
gates on the total kinetic energy measured with the
silicon telescope.

The result of the particle identification based only
on the dE, ToF, and TKE is shown in Fig. 1a, where
the energy loss measured in the first detector of the
telescope is plotted vs. ToF between the dE silicon
telescope and the cyclotron radio frequency. This ma-
trix was obtained from the data accumulated over
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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2.5 d with a mean intensity of the primary beam of
150 p nA. The new isotopes 34Ne (two events) and
37Na (one event) are clearly visible. The discovery of
31F [6] is also confirmed. The 34Ne and 37Na isotopes
have also been unambiguously identified by using the
calculated value ofA/Z. This valuewas obtained from
the ToF and from Bρ, measured by means of the
multiwire detector. The two-dimensional A/Z vs. Z
plot is shown in Fig. 1b. The presence of the events
corresponding to 34Ne and 37Na confirms that these
nuclei are bound. The one event of 34Ne is absent
in Fig. 1b due to the fact that the efficiency of the
multiwire detector is only 80% for light fragments.
No events that could be attributed to 33Ne, 36Na, and
40Mg were observed.

Yields of N = 2Z, N = 2Z + 2, and N = 2Z + 4
nuclei vs. the Z value are shown in Fig. 2. The yield
estimates for the fragments were calculated accord-
ing to the LISE code [12]. An attempt to describe
the experimental distributions of the fragments was
undertaken by a convolution of Gaussian form of
the beam velocity and of an exponential tail at lower
energies.

The experimental data were fitted by the same
value of σ = 107 MeV/c (the parameter of the mo-
mentum distribution in the convolution [12]) for the
three different cases N = 2Z, N = 2Z + 2, and N =
2Z + 4. For nuclei with N = 2Z and N = 2Z + 2,
we found an agreement between the experimental and
calculated values. The calculated values for the nuclei
withN = 2Z + 4 is higher than the experimental ones
for Z greater than 6.

In this region, the most interesting nuclide is
40Mg, which is probably not bound since no counts
have been observed. We estimated the upper limit for
the production cross section of 40Mg to be less than
0.06 pb. However, the present results do not allow
drawing a definite conclusion on the instability of
40Mg; this is also supported by the trend of the calcu-
lated yield in Fig. 2. The production cross section for
34Ne and 37Na was estimated to be about 0.17 ± 0.12
and 0.06 ± 0.06 pb, respectively. The cross section for
31F is estimated to be about 0.7 pb. This value for
the production of 31F in the reaction 48Ca + natTa
at 59.8 A MeV is about 5 times higher than in the
reaction 40Ar + Ta at 94.1 AMeV [6].

From the theoretical point of view, the descrip-
tion of the light nuclei in the sd–pf shells is still a
problem. In particular, the calculation of the binding
energy for the very neutron-rich isotopes of O, F, Ne,
and Na is a real challenge. There are various theo-
retical calculations (viz., the finite-range liquid-drop
model (FRLD) [16], two versions of the shell model
(SM) [17–19], the relativistic mean-field theory [20],
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
and the Hartree–Fock model [21]) that predict the
position of the neutron drip line in this region. For
instance, the FRLDmodel gives a very strong binding
energy for 40Mg. In the framework of this model,
one- and two-neutron separation energies are even
above 3.4 MeV. One may note that the FRLD model
gives correct predictions for the stability of 31Ne and
31F, implying nuclear deformation effects for both the
macroscopic and the microscopic parts. According
to the shell-model predictions [18], the last bound
isotopes are 24O, 27F, 34Ne, 37Na, 38Mg, and 43Al.
However, slight changes of the drip line cannot be
excluded since 37Na was predicted to be bound only
by 250 keV, while 31F, 40Mg, and 43Al are unbound
by 145, 470, and 550 keV, respectively. According to
another shell-model calculation [17], 26O, 34Ne, and
40Mg are the last stable isotopes against two-neutron
emission, as indicated by their maximal binding en-
ergy. Both SM and HF calculations for even-mass O,
Ne, and Mg indicate a disappearance of shell magic
numbers and suggest an onset of deformation and a
shape coexistence in this region.

The stability/instability of the present nuclei can
be explained by taking into account various degrees
of mixing in the sd and fp shells, which are related
to the deformation effects. According to our results,
the neutron drip line is extended beyond N = 20 and
reachesN = 24 for neon and evenN = 26 for sodium
isotopes as a consequence of the mixing of the d3/2

and f7/2 states, while theN = 20 shell closure disap-
pears.

In summary, the neutron-rich isotopes 34Ne and
37Na were observed using the newly upgraded LISE-
2000 spectrometer and the reaction 48Ca + natTa at
59.8 A MeV. Thus, most probably, the neutron drip
line has been reached for the neon and sodium iso-
topes. However, it seems that, to conclude definitely
whether these isotopes do mark the drip line or do not,
one will need to pursue further experimental efforts.
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Abstract—The analytical solutions for the potentials and electrical fields are derived, assuming bunches of
spherical shape with homogeneous and parabolic particle distributions to estimate space charge effects of
intense particle beams. The trajectories of electrons created within bunches by residual gas ionization have
been calculated taking into account the typical parameters of the RF accelerators. c© 2003 MAIK “Nau-
ka/Interperiodica”.
INTRODUCTION

For precise nuclear measurements of beam pa-
rameters, it is important to know exact information
about the ion beam parameters. For a high ion cur-
rent, it is necessary to take into account the space
charge influence on the longitudinal emittance.

In this paper, the bunched beams that are typical
for RF accelerators [1] are described. The bunches
are approximated by a sphere with homogeneous and
parabolic charge density distribution.

In comparison with the numerical calculations,
the presented analytical solutions have some advan-
tages. The potentials and field strengths generated
by a bunch are known at any geometrical position.
Once the potentials and electromagnetic fields are
calculated for a single bunch at rest, the evaluation
of time-dependent potentials and fields generated by
a moving chain of bunches is straightforward.

1. THE ELECTRIC POTENTIAL

In general, in RF accelerators, the geometrical
dimensions of a bunch are very similar in the two
transverse directions. In the following, we assume a
spherical shape for a single bunch. Considering differ-
ent distributions of the particles within the bunches,
we have to find an analytical solution of the Poisson
equation.

1. Charge distribution of bunches. For spher-
ical bunches, we will consider two cases: homoge-
neous and parabolic charge distribution within the
bunch. In the first case, the spatial density distri-
bution is described by the well-known distribution

∗This article was submitted by the authors in English.
**e-mail: kinr@kinr.kiev.ua
1063-7788/03/6609-1643$24.00 c©
function of Kapchinskij–Vladimirskij; in the second
case, by the Waterberg distribution [2].
2. The potential of bunches. The solution of

the Poisson equation in the case of a homogeneously
charged sphere is straightforward and the result is

φish(r) =
Nζe

4πε0

(
3

2R
− r2

2R3

)
, (1)

φosh(r) =
Nζe

4πε0
1
r
, (2)

where R is the radius of the beam sphere, N is
the number of particles within the bunch, ζ is their
charge, ε0 is the electric constant, and e is the elec-
tron charge.

Equation (1) describes the potential inside the
spherical bunch and (2) gives the potential outside the
bunch.

For a parabolic distribution, the potential inside
the sphere becomes

φisp(r) =
Nζe

4πε0

(
15
8R

− 5r2

4R3
+

3R4

8R5

)
. (3)

Of course, the potential outside the sphere is the same
as given by Eq. (2).

2. THE ELECTRIC FIELDS
OF THE BUNCHES

For the determination of the electric fields of the
bunches, we use the equation

E(r) = −∇φ(r).

Inside the spherical bunch, it is given by

Eish(r) =
Nζe

4πε0
r

R3
, (4)
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The trajectory and velocity of an electron inside a
moving homogeneous charged bunch.

and outside the field, it has to follow immediately from
Eq. (2),

Eosh(r) =
Nζe

4πε0
1
r2
. (5)

From Eq. (3), the field inside the parabolic charge
bunch is

Eisp(r) =
Nζe

4πε0

(
5
2
r

R3
− 3

2
r3

R5

)
, (6)

and outside the bunch the field is the same as given
by Eq. (5).

There is an important difference between the loca-
tion of the maximum field strength in the two cases,
which has some consequences concerning themotion
of the particles in the phase space. From Eq. (6), it
follows that the maximum of the electric field strength
occurs at r = (

√
5/3)R in the case of the parabolic

intensity distribution instead of at r = R as in the
case of a homogeneous charge distribution.

3. THE MOTION OF ELECTRONS
IN THE FIELDS OF MOVING BUNCHES

1. Capture and oscillation of electrons within
the homogeneous charged bunch. Assuming the
movement of the bunch in the longitudinal direc-
tion, the differential equation for the homogeneously
charged sphere can be derived from Eq. (4) as

z̈ = −ω2(z − βct), (7)

with ω2 = Nζe2/(4πε0meR
3), whereme is the mass

of the electron and β is the relativistic factor.
P

The trajectory of an electron inside the moving
bunch is described by the solution to differential
Eq. (7):

z(t) =
vz(0) − βc

ω
sin(ωt) + z(0) cos(ωt) + βct,

(8)

where vz(0) and z(0) are the initial velocity and posi-
tion of the electron.

To derive the condition to catch the electron within
the bunch, we consider Eq. (7) for β = 0 and ż = y.
It leads to a simple differential equation. The solution
determines the motion of the electron in the phase
plane (z, ż):

ż = ±
√
C1 − ω2z2, (9)

where C1 is a free parameter. It means that the con-
dition for stable oscillation within the bunch can be
derived from the relation

(βc)2 = ω2R2, (10)

which leads immediately to the required number of
charges

Nh
min =

4πε0R(βc)2me

ζe2
. (11)

Figure 1 shows the velocity and trajectory of the
electron inside the moving bunch with the following
parameters: Nh

min = 2.687 × 109, ζ = 4, R = 10 mm,
and β = 0.055. This result confirms the assumption
of deriving the condition for stable oscillation within
the bunch by relation (11).
2. Capture and oscillation of electrons within

the parabolic charged bunch. In this case, Eq. (7)
is changed to

z̈ = −ω2

(
5
2
(z − βct) − 3(z − βct)3

2R2

)
. (12)

Then, the movement in the phase plane is

ż = ±
√
C2 + ω2

0(z2 − bz4/2), (13)

where C2 is a free parameter, ω0 =
√

5/2ω, and b =
3/(5R2). Obviously, we have to replace (10) by

(βc)2 = ω2
0(z

2
max − bz4

max/2), (14)

where
√

5R/3 < zmax < R.
The relation between Nh

min for the homogeneous
distribution and Np

min for the parabolic distribution
turns out to be

Np
min = (270/451)Nh

min ≈ 0.6Nh
min. (15)

The trajectories of electrons are described by
Eq. (12), which is solved by successive approxima-
tions of a Fourier series.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 2. The motion of the electron in the electric field of the moving homogeneous (left) and parabolic (right) charged bunch.
4. INFLUENCE OF THE FIELD OUTSIDE
THE BUNCH

Because the field outside the bunch is always at-
tracting, the electron moves in close orbits in the
phase plane taking into account also the external field
according to Eq. (5), which is the same for the homo-
geneously charged sphere and the parabolic one:

z̈ = −R
3ω2

z2
. (16)

The solution is in both cases straightforward and
the result for the homogeneous and parabolic charged
sphere is shown in Fig. 2, takingNh

min = 2.687 × 109

and Np
min ∼ 0.6Nh

min for U4+ ions. In both panels
of Fig. 2, the three inner curves correspond to the
motion within the bunch, while the two outer ones
correspond to electrons moving also in the external
field. Since such an electron moves with high speed
through the bunch andmay even be outside the bunch
most of the time, we keep to our argumentation that
those electrons will not contribute to neutralization.
In addition, these electrons may be lost by the influ-
ence of other fields and distortions in the symmetry.

CONCLUSION

The results presented may be useful for the beam
diagnostics and determination of the longitudinal
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
emittance. The partial neutralization within a bunch
by capture of electrons freed by the residual gas
ionization can reduce the signal of capacitive pickups
or can change the required settings for focusing
devices.

The estimation of the required number of ions
within a single bunch for the catching of electrons
gives the order of magnitude for the consideration
of the neutralization of bunched beams. The investi-
gation of the motion of the electrons and the space
charge effect can be of interest for calculating the
distortion of the beam profile measurements, which
are based on residual gas ionization.
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Abstract—A physical program of irradiation of emulsions in beams of relativistic nuclei named the
BECQUEREL Project is reviewed. It is destined to study in detail the processes of relativistic fragmen-
tation of light radioactive and stable nuclei. The expected results would make it possible to answer some
topical questions concerning the cluster structure of light nuclei. Owing to the best spatial resolution, the
nuclear emulsions would enable one to obtain unique and evident results. The most important irradiations
will be performed in the secondary beams of He, Be, B, C, and N radioactive nuclei formed on the basis
of JINR Nuclotron beams of stable nuclei. We present results on the charged state topology of relativistic
fragmentation of the 10B nucleus at low energy–momentum transfers as the first step of the research.
c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The investigations of light nuclei situated around
the boundary of neutron stability have recently de-
veloped a new direction of quest—physics of exotic
nuclei. New phenomena have been established in the
structure of light nuclei and in the course of nuclear
reactions (see Introduction in [1]). In this domain
of anomalously large radii of nuclei, the production
of nucleon clusters separated in space has been ob-
served (see Introduction in [2]). The low binding en-
ergy of nuclear clusters makes it possible to determine
the structure of such nuclei as a molecular-like one.

Great progress has been made towards studying
the structure of nuclei with excess and maximum
number of neutrons, while research into the structure
of proton-rich (or neutron-deficient) nuclei is merely
being planned. The major goal of the appropriate ex-
periments is to define the structural features of nuclei
near the boundary of proton stability. Such nuclei are
stable in the absence of electron shells. The structure

∗This article was submitted by the authors in English.
**e-mail: zarubin@lhe.jinr.ru
1063-7788/03/6609-1646$24.00 c©
of such nuclei can turn out to be another key in
understanding the processes of nucleosynthesis. For
instance, the presence of the proton halo (a proton
far removed from the nucleus core) may serve as a
“stringboard” for the isotope generation when ad-
vancing along the boundary of proton stability with
a subsequent decay into stable isotopes.
One of the candidates for the system of the proton

halo type is the 8B nucleus [3, 4]. We notice that
the alternative transition to the solar CNO cycle can
occur by the addition of a proton to the 7Be nucleus
and a consecutive addition of the 4He nucleus. The
produced 12N nucleus decays into a stable 12C iso-
tope by electron capture. As compared with the well-
known Hoyle version through 8Be, the advantage of
the above-mentioned case consists in that the lifetime
of the 8Bnucleus even for a state with bound electrons
is 16 orders of magnitude larger than that of the 8Be
nucleus. Another example is the fusion of one more
proton to the 8B nucleus resulting in the production
of a 9C nucleus, which is also stable in the absence
of bound electrons. The fusion of a 4He nucleus to
a 9C one does lead to the formation of an isotope
2003 MAIK “Nauka/Interperiodica”
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13N nucleus intermediating in the CNO cycle. An
unstable 6Be nucleus might play a mediator role like
a 8Be one. Such examples of cluster nuclear systems
may still be cited, including some nuclei in excited
states.
Clustering in the above-mentioned nuclei might

reflect possible paths of their synthesis. The proposed
series of investigations is mostly aimed at elucidat-
ing the applicability of the picture of clustering in
neutron-deficient nuclei. A program of further re-
search of the fragmentation of neutron-deficient Be,
B, C, and N isotopes by means of an emulsion tech-
nique is considered below.

RESEARCH CONCEPT
The production of relativistic beams of radioactive

light isotopes is currently under way at the JINR
Nuclotron. The approaches based on the use of a
charge exchange process or breakup of a lightest
possible nuclide are most adequate for an emulsion
technique. In this case, the mass number of an initial
nucleus is conserved, beam losses in acceleration are
lower, and a cluster nature of its intrinsic structure is
partially set up. A certain advantage in the production
of secondary beams toward increasing charge is a
relative background reduction of other fragments with
Z/A closer to the stability region.
In general, experiments with nuclear beams at an

energy of a few GeV are recognized to be one of
the most promising ways for understanding the basic
properties and the intrinsic structure of radioactive
and unbound nuclei. Such beams can be employed
to produce short-lived nuclear beams by means of
breakup, charge-exchange, or fission (splitting) reac-
tions. In the framework of such an approach, there is
almost no restriction due to the lifetime of relativistic
nuclei in question. A technical benefit in the analy-
sis of relativistic proton-rich nuclei with respect to
lower energy studies is a decrease in ionization to a
minimum and closest to complete observation of the
charge fragmentation process.
The limiting fragmentation of nuclei serves as a

basis of the study of the nuclear structure. The frag-
mentation picture, i.e., isotopic composition and en-
ergy spectra, for one of the colliding nuclei was found
to undergo a weaker dependence upon the properties
of fragmentation of the other. The study of the frag-
mentation of relativistic nuclei may effectively sup-
plement classical experiments on breakup of nuclei
used as a target. In such an approach, the detection
threshold is close to zero. It makes it possible to study
fragmentation processes at rather weak nuclear exci-
tations. The experimental approach based on the reg-
istration of the fragments of a projectile nucleus im-
poses a crucial requirement on the measuring tech-
nique on provision of themaximumangular resolution
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
and the identification of fragments in a narrow for-
ward cone (typically, a few degrees). In addition, the
fragmentation process leads to a noticeably smaller
ionization, which is due to the reaction products, as
compared with the primary nucleus signal. This fact
imposes a special requirement on the width of the
sensitivity range starting from the primary nucleus
down to particles with minimal ionization.
The emulsion technique can be implemented in the

above-listed circumstances. In relativistic fragmen-
tation, the nucleons produce with a large probability
charged clusters, which, when decaying, are detected
in emulsion as in a perfect 3D track detector. It should
be stressed that emulsions are utilized in this way
to register multiparticle decays of nuclei or multi-
fragmentation events. Known cases are observations
of coherent dissociation of relativistic 12C nuclei on
three α particles and 16O on four α particles. We
intend to extend coherent dissociation studies toward
heavier stable nuclei like F, Ne, and Mg isotopes.
The emulsion serves as a universal detector of the
full fragmentation keeping permanent track informa-
tion mostly in a single layer. This gradually reduces
analysis work. Using perfect angular measurements,
it is possible to get information about the excitation
energy of a fragmenting nucleus.
Our approach to the study of clustering in nuclei

is justified by the experience obtained when studying
the relativistic 6Li in emulsion [5–7] and pilot results
with a secondary beam of relativistic 6He and 3He
nuclei (“beam cocktail”) [8]. As development, we in-
vestigated the cluster structure of the stable isotope
10B, comparing probabilities of dissociation channels
10B→ (8Be) + d, α+ α+ d, 6Li+ α, 9Be+ p, etc.

DISSOCIATION OF RELATIVISTIC 10B
NUCLEI

We used a beam of 10B nuclei accelerated at the
JINR Nuclotron to perform irradiation of an emulsion
stack. The beam angular divergence was kept with-
in an angle of 3 mrad. The beam profile for emul-
sion irradiations was formed in such a way that its
horizontal size would correspond to irradiated emul-
sion width and the spatial beam density would be
uniform enough. An emulsion irradiation dose was
limited to 105 beam tracks. The emulsion chamber
was assembled as a stack of BR-2 type emulsion
layers having sensitivity up to relativistic particles.
Layers 550 µm thick had the dimensions 10× 20 cm2.
During irradiation, the beam was directed in parallel
to the emulsion plane. We present below pilot results
of visual scanning that are important for the project
major goal, i.e., determination of fragmentation prob-
abilities.
3
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Table 1. Charge-state distribution of the number of fragments in projectile fragmentation cone (<15◦) in events of
complete charge fragmentation (total number of events is 82)

Total charge (>4)
Fragment charge Z

Number of events
5 4 3 2 1

6 – – 1 4 4

6 – – 2 2 1

6 – – – 6 2

5 1 – – 1 2

5 – 1 1 – 3

5 – – 1 3 26

5 – – 2 1 36

5 1 – – – – 5

5 – – – 5 3

Table 2. Charge-state distribution of the number of fragments in projectile fragmentation cone (<15◦) in events of white
star formation [no accompanying tracks in wide cone (>15◦); total number of events is 35]

Total charge (>4)
Fragment charge Z

Number of events
4 3 2 1

6 – – 1 4 3

5 1 – – 1 2

5 – 1 1 – 1

5 – – 1 3 9

5 – – 2 1 18

5 – – – 5 2
All found charged tracks corresponding to rela-
tivistic boron ionization were followed to a nuclear
interaction point or to an exit from the emulsion
layer. In the first sample, 136 inelastic interactions
were found over the scanned length of about 20 m
of the initial particles. Within this sample, we defined
a mean free path λ = 14.7 ± 1.2 cm. This value is in
good agreement with the mass number dependence
established for uniform density nuclei like 4He, 12С,
16О, and 24Mg.
To clarify the general features, we concentrated

current analysis on events of transfer of a total boron
nucleus charge to relativistic fragments in a frag-
mentation cone of 15◦ (“complete charge fragmenta-
tion”). As correlation, such a selection gave dramatic
suppression of mean target nucleus multiplicity. We
have minimized the influence of interaction dynamic
details in this way.
We describe a topological structure of 82 events
P

having the total charge sum not less than five in a
fragmentation cone. Table 1 presents the numbers of
events with various fragment composition. The cases
with total charge 6 correspond to the appearance of
a relativistic meson in a fragmentation cone. As a
further step, we selected 35 events (Table 2) contain-
ing neither target fragments nor produced mesons
(“white stars,” example shown in the figure). The
obvious feature of both tables is a dominance of three-
body charge states with respect to two-body ones.
These data serve as a reference to explore features of
7Be, 8B, and 9C fragmentation.

A complete restoration of the charged fragmenta-
tion component in the rest of the events allowed us
to assign additional tracks with minimal ionization
to charged meson production. It is found that about
22% of complete charge fragmentation events con-
tain a single charged meson and just 2–3% a couple.
We plan to perform relativistic fragment identification
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Event of dissociation of 1 AGeV 10B nucleus into two double charged and one single charged tracks in sequential evaluation
(top to bottom) as an example of white star. A 3D image is reconstructed as a projection by means of the FIAN PAVICOM
automatic microscope.
and analyze the described statistics in the spirit of
paper [6].

FUTURE IRRADIATIONS IN SECONDARY
BEAMS OF RELATIVISTIC NUCLEI

The cluster structure of 7Be can manifest itself in
the fragmentation channels like 7Be → 3He + 4He,
3He + 3He+ n, 6Li+ p, α+ d+ p, and others. The
study of 7Be nuclei is interesting from the point of
view of its possible role of a core in 8B one. Using
charge exchange of 1.23 AGeV 7Li nucleus, the 7Be
beam was produced at one of the Nuclotron beam
lines. Emulsions irradiated by this beam are under
analysis now

Table 1 contains an indication that a 8B nucleus
beammay be produced in 10B nucleus fragmentation.
Such an opportunity needs to be explored for this case
and for 9C and 10C nuclei.
Being intended for investigations with the aid of

the emulsion technique, the 8B beam could make the
problem of proton-halo existence clearer. The partic-
ular feature of the 8B nucleus is the lowest binding
energy of one of the protons (135 keV). Therefore,
most probably, the 8B nucleus has a core in the form
of a 7Be nucleus and a proton weakly coupled with
the core. Their space distributions define the value of
the 8B radius, the transverse momentum distributions
for relativistic protons and 7Be, and the distribution
with respect to the relative transverse momentum of
the dissociation products. The probabilities of disso-
ciation channels are suggested to be measured for
8B → 7Bе+ p, α + 3He+ p, 3He + 3He+ d,
6Li+ p+ p, α+ d+ p+ p, and others.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
After that, the production of the 9C nucleus beam
becomes a next logical step. Of all the nuclei that
we have considered, this one has the largest ratio of
number of protons to that of neutrons. This nucleus
has an additional proton as compared with the 8B
nucleus. The binding energy of this additional proton
is far larger than that of the external proton in the
8B nucleus. Therefore, it appears that the 9C has no
external two-proton shell. This nucleus is particularly
interesting since the replacement of one of the protons
by a neutron leads to the unstable 9B isotope in spite
of the reduction of the Coulomb energy. One of the
possible explanations to be verified is a hidden 3He
clustering.
To do this, we suggest measuring the probabil-

ities of dissociation channels like 9С → 8B+ р,
3He + 3He + 3He, and others. An unavoidable fea-
ture of 9С beam formation is the presence of accom-
panying 3He nuclei having the samemagnetic rigidity
as in the case of our previous study with a triton
and 6He beam “cocktail.” The feasibility of emulsion
application needs to be justified by a dedicated study.
To conclude, in the performed and suggested in-

vestigations of the interactions of light radioactive
nuclei in emulsion, one and the same method is re-
viewed for systematic studies of the structure of sev-
eral proton-rich nuclei. Attention is paid to the search
for the manifestation of a structure like the proton
halo and structures with an unstable nucleus core.
Thus, the combination of new beams and the classical
techniquemay result in new intriguing and conclusive
finds. The results can be employed in planning further
studies on the Nuclotron’s beams, in particular, for
forming reaction triggers in the detection of particles
by electronic methods.
3
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Abstract—We study the production of neutron-rich hypernuclei 12
ΛBe,

16
ΛC, and

10
ΛLi by the (π

−, K+)
and (K−, π+) reactions in flight and treat two different mechanisms of production. The first mechanism is
a two-step process with meson charge exchange (e.g., π−p→ π0n, π0p→ K+Λ). The other mechanism
is one-step production (π−p→ K+Σ−) proceeding via a small Σ− component, arising in Λ hypernuclei
due to ΛN–ΣN coupling, as a doorway state. Typically, the two-step mechanism is more productive. The
forward differential cross section of the 10B(π−,K+)10ΛLi(2

−) reaction is about 70 nb/sr at an incident
momentum of 1.05 GeV/c. On the other hand, the one-step process can serve as a direct measurement of
the Σ admixture if the two-step contribution is suppressed by a suitable choice of the reaction kinematics.
c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Hypernuclei with neutron excess relate both to
physics of exotic nuclei and to strangeness nuclear
physics. On the one hand, neutron-rich hypernuclei
give information about the response of loosely bound
systems with neutron halo toΛ-induced perturbation.
Some unbound neutron-rich nuclei can be bound by
a Λ hyperon. Therefore, studying such systems can
enrich our knowledge on exotic, especially neutron-
halo, nuclei.

On the other hand, extension of the hypernuclear
chart is of considerable importance for physics of
hyperonic interactions. Properties of neutron-rich Λ
hypernuclei appear to be sensitive to subtle features of
ΛN interaction in a nuclear medium hardly deduced
from “usual” hypernuclei. We have studied theoret-
ically [1] several examples of neutron-rich Λ hyper-
nuclei (like 12

ΛBe,
16
ΛC,

11
ΛLi) and have shown that

the last neutron separation energies are affected by a
delicate interplay between the ΛN density-dependent
force, polarization of the nuclear core by a hyperon,
and spin–orbit neutron–nucleus potential. Another
interesting point related to structure of exotic hyper-
nuclei is associated with ΛN–ΣN coupling leading
to admixtures of virtual Σ hyperons in Λ hypernuclei.
In [2], the substantial contribution of the coupling,
which is probably enhanced with neutron excess, to

∗This article was submitted by the authors in English.
**e-mail: ttretyak@nf.jinr.ru
***e-mail: lanskoy@npi.msu.su
1063-7788/03/6609-1651$24.00 c©
binding energies of neutron-rich Λ hypernuclei has
been emphasized. Other aspects of neutron-rich Λ
hypernuclei have been considered in [3, 4].

Earlier, only helium neutron-rich hyperisotopes
(7ΛHe and

8
ΛHe) were detected in old emulsion ex-

periments [5] in a few events. Later, it was pointed
out that a wide variety of interesting species can be
produced by the (K−, π+) reaction [6] at rest as well
as in flight. Prospects of experimental studies of this
reaction and also a similar (π−,K+) reaction have
been proposed currently [7, 8].

We presented some estimates for reaction
(K−, π+) at rest (with kaon capture from atomic
levels) earlier [9]. Here, we report predictions for the
(π−,K+) and (K−, π+) reactions in flight, mostly
concerning in the first reaction in view of KEK
proposal [8].

The reactions considered can proceed by different
mechanisms. The evident mechanism is a two-
step one with meson charge exchange, for instance,
π−p→ π0n followed by π0p→ K+Λ, or π−p→
K0Λ and K0p→ K+n. This mechanism is similar
to the simplest way of pion double charge exchange.
The second possible process—one-step production
via a Σ− admixture state as a doorway state—was
the main point of concern in [9]. Here, we examine
both mechanisms.
2003 MAIK “Nauka/Interperiodica”
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Table 1. Σ− admixture probabilities pΣ

Hypernucleus Jπ pΣ

12
ΛBe 1− 5.1 × 10−4

0+ 4.0 × 10−5

16
ΛC 2+ 8.1 × 10−5

0+ 7.1 × 10−6

ONE-STEP PRODUCTION VIA
Σ− ADMIXTURE

We consider a hypernuclear state as a superpo-
sition of the main Λ component and the small Σ−

admixture appearing from the Λn–Σ−p coupling as
follows:

|AΛZ〉 = α|(A−1)Z ⊗ Λ〉 + β|(A−1)(Z + 1) ⊗ Σ−〉.

The first (main) state can be produced in the
(π−,K+) and (K−, π+) reactions only by the two-
step process with subsequent Λ production on one
proton and meson charge exchange on another
proton, whereas the second state is attainable in
one step by elementary reaction π−p→ K+Σ− or
K−p→ π+Σ−. Normally, one-step productions are,
of course, much more probable than two-step ones.
However, the one-step production considered is
strongly reduced by a small probability of the Σ−

admixture pΣ = |β|2.
We calculate the Σ− admixture component in a

simple two-channel approach as described in [9]. Due
to the large difference between Σ and Λ masses, the
Σ wave function possesses some unusual properties
(nonstandard asymptotic behavior and displacement
from the center region), which have some implica-
tions for production probabilities [9].

Two target nuclei, 12C and 16O, are considered
here, which give rise to hypernuclei 12

Λ Be and
16
ΛC,

respectively. The host nuclei (11Be and 15C) possess a
loosely bound external neutron moving in a compact
core field. Each nucleus has two bound states (1/2+

and 1/2− in 11Be and 1/2+ and 5/2+ in 15C). Adding
a Λ hyperon in the 1s1/2 state, one accordingly ob-
tains two natural-parity states in each hypernucleus
(0+ and 1− in 12

ΛBe and 0
+ and 2+ in 16

ΛC). Ad-
mixture probabilities pΣ in these states are displayed
in Table 1. The probabilities are rather small relative
to values obtained [10–13] in s-shell hypernuclei. It
appears that the ΛN–ΣN coupling involving p-shell
nucleons is considerably weaker.

For differential cross sections of the (π−,K+) and
(K−, π+) reactions within the one-step mechanism,
P

Table 2. Differential cross sections (in nb/sr) of the
(π−,K+) reaction at zero angle at pπ = 1.05GeV/c

Final
hypernucleus State One-step

mechanism
Two-step
mechanism

10
ΛLi 2− 66.8

1− 3.2
12
ΛBe 1− 1.4 6.5

0+ 0.1 2.1
16
ΛC 2+ 0.3 0.4

0+ 0.01 0.1

we adopt the usual DWIA approach, which is widely
applied to the similar (π+,K+) and (K−, π−) reac-
tions (e.g., [14]). In Fig. 1, the differential cross sec-
tions of the 12C(π−,K+) and 16O(π−,K+) reactions
at 1.05 GeV/c are shown. The cross sections are typ-
ically less than 1 nb/sr and are in accordance with pΣ

values listed in Table 1. Note that the cross sections
of the (π+,K+) reaction on the same targets are of
order of units or tens of µb/sr. The (π,K) reaction
is characterized by a fairly high momentum transfer
(about 350MeV/c) even at zero angle, so the angular
dependence of the cross sections is rather simple.
In Fig. 2, the differential cross sections of the

(K−, π+) reactions are depicted at two incident kaon
momenta. The momentum 500 MeV/c corresponds
to near-recoilless kinematics at zero angle (the mo-
mentum transfer is almost zero). Thus, the 0+ →
0+ transitions dominate at θ = 0 despite less pΣ.
Nonzero-spin states can be produced at larger an-
gles. At 900 MeV/c (zero-angle momentum transfer
is about 100 MeV/c), production of the 1− and 2+

states with larger Σ admixtures prevails in the whole
range of angles considered.
The cross sections of the (K−, π+) reaction reach

100 nb/sr. This does not mean that this reaction is
more feasible, since available kaonic beams are much
less intensive than pionic ones. However, compari-
son of Figs. 1 and 2 shows that the kinematics of
the (K−, π+) reaction is more selective due to wide
possibilities of varying the momentum transfer.

TWO-STEP MECHANISM
OF THE (π−,K+) REACTION

Treating the two-step mechanism (π−p→ π0n,
π0p→ K+Λ and π−p→ K0Λ, K0p→ K+n), we
utilize the Glauber approach. For one-step reactions,
it gives essentially the same description as the DWIA
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 1. Differential cross sections of the 12C (π−,K+)12ΛBe and
16O(π−,K+)16ΛC reactions at pπ = 1.05 GeV/c.
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Fig. 2. Differential cross sections of the 12C(K−, π+)12ΛBe (top) and
16O(K−, π+)16ΛC (bottom) reactions.
at energies about 1 GeV, whereas its extension to
two-step processes is straightforward.

The cross section of the N(π,K)Λ elementary
reaction is sharply peaked at the incident momen-
tum 1.05 GeV/c (whereas the cross section of the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
p(π−,K+)Σ− reaction varies smoothly with momen-
tum), so the largest cross sections might be expected
at this momentum value. As the momentum transfer
in the (π,K) reactions is high at zero angle and
increases further with angle, we present here only the
3
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results at θ = 0 (the cross sections of the two-step
mechanism also fall with angle). In Table 2, the cross
sections calculated within the two-step mechanism
are presented. The results for the one-step process
(from Fig. 1) are also shown for comparison.
It is seen that the two-step cross sections ex-

ceed considerably (excepting 16
ΛC (2+) production)

the one-step ones. Thus, it may be suggested that the
two-step mechanism is more effective, at least for the
hypernuclei considered.
Note that the cross sections exhibited in Table 2

are calculated for the two-step and one-step mecha-
nisms separately. Strictly speaking, one should sum
the amplitudes rather than the cross sections. How-
ever, the relative phase between the amplitudes of
the two mechanisms is unknown and hardly deduced.
While the contributions of the two mechanisms differ
substantially from each other, this problem may be
avoided.
In connection with the experiment recently pro-

posed at KEK [8], we also calculate the cross section
of the 10B(π−,K+)10ΛLi reaction within the two-step
mechanism (it is presumed to be dominant). We con-
sider two states (1− and 2−) built on the ground state
of 9Li (3/2−). It is seen from Table 2 that the cross
section for 10

ΛLi(2
−) production is much higher than

that for all the other cases.
In 12

ΛBe and
16
ΛC production, a nucleon having

undergone charge exchange is forced to change
this state drastically. Quantum numbers of the ex-
ternal neutron always differ from quantum num-
bers of the protons. Moreover, the spatial distribu-
tion of the external (halo) neutron overlaps poorly
with the distributions of the core protons. Such a
drastic change is not needed for the 10

ΛLi produc-
tion. Furthermore, in the two-step transition (e.g.,
10B(3+) → 10

ΛBe(2
−) → 10

ΛLi(2
−)), the charge-

exchange step can proceed without angular momen-
tum changing. That is why production of 10

ΛLi(2
−) is

greatly enhanced.
Hypernucleus 10

ΛLi is built on a relatively tightly
bound 9Li core and does not represent extremely
neutron-rich (halo) systems. However, this hyper-
nucleus possesses a considerable neutron excess
(N/Z = 2), and its detection might be of great inter-
est. So far, 10

ΛLi has not been observed. The reaction
10B(π−,K+)10ΛLi can be a reasonable first step in the
program studying neutron-rich Λ hypernuclei [8].

CONCLUSION

Investigations of production of neutron-rich Λ hy-
pernuclei are interesting from several viewpoints. Our
P

study indicates that, searching for the largest experi-
mental yields, one should mainly be concerned in the
two-step mechanism of the (π−,K+) and (K−, π+)
reactions with meson charge exchange. On the other
hand, an attractive feature of the one-stepmechanism
is that the corresponding cross sections are propor-
tional to the probabilities of the Σ admixture. Though
implications of the ΛN–ΣN coupling in Λ hypernu-
clei have been discussed intensively for a long time, no
direct measurement of Σ admixtures has been made
so far. The reactions considered can give, in principle,
such knowledge. But for this goal, otherwise, kine-
matical conditions should be chosen that suppress
the two-step contribution. Maybe, selectivity of the
(K−, π+) reaction is useful from this point. Also, it
is important to recognize Λ hypernuclei attainable in
the (π−,K+) and (K−, π+) reactions, in which Σ−

admixtures are higher than those found here. Finally,
we mention quite another way to produce neutron-
rich Λ hypernuclei—by heavy-ion beams [15, 16].
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Abstract—The 4π spectrometer FOBOS has been completed with the multidetector system for regis-
tration of neutrons aimed at experiments to search for collinear tripartition of heavy spontaneously fissile
nuclei. A simple empirical model developed for the description of the measured neutron multiplicity is tested
on the data block comprising 6 × 107 events. c© 2003 MAIK “Nauka/Interperiodica”.
The 4π spectrometer FOBOS [1] has been com-
pleted with the multidetector belt for registration of
neutrons. Of course, the application of neutron detec-
tors at the FOBOS setup is limited to some special
experiments due to methodological problems, e.g.,
thick metallic and hydric matter constructions of the
detectors, the large size of the spectrometer, an in-
tensive neutron background from the U-400M cy-
clotron during in-beam experiments, etc. Bearing in
mind these complications, we have found a suitable
solution for experiments to search for collinear clus-
ter tripartition (CCT) of heavy spontaneously fissile
nuclei [2]. According to the model [3], such process
should be accompanied by almost isotropic emission
of postscission neutrons in the laboratory system of
the multiplicity as high as ∼10. This agrees with the
previous results on spontaneous decay of 248Cm and
252Cf obtained at the FOBOS setup [3]. Therefore,
the CCT events could be separated by considering
those with a large number of fired neutron detectors,
which reflects a high multiplicity.

The neutrons emitted from the moving fission
fragments (FF) are focused along the fission axis.
Hence, the optimal configuration of neutron detectors
for the separation of the CCT events seems to be a
belt of high-efficiency counters assembled in a plane
perpendicular to the symmetry axis of the spectrome-
ter configuration, which is obviously the mean fission
axis under these conditions. The symmetry center
of this belt must coincide with the location of the

∗This article was submitted by the authors in English.
**e-mail: kamanin@fobos.jinr.ru
1063-7788/03/6609-1655$24.00 c©
FF source [4]. This general disposition is illustrated
in Fig. 1. Two groups containing five big and one
small FOBOS modules each are used as a double-
armed TOF-E spectrometer which covers ∼29% of
the hemisphere in each arm.

The neutron detector consists of 140 separate
hexagonal modules [5] comprising a 3He-filled pro-
portional counter, a moderator, a high-voltage input,
and a preamplifier. The counters operate under a gas
pressure of 7 bar, being 50 cm in length and 3.2 cm
in diameter. The moderator is made of polyethylene.
The spacing between the parallel planes of a module
is 5 cm. The neutron counters are composed into
eight arrangements of 16 counters each and one of 12
counters and they cover altogether effectively ∼19%
of the complete solid angle of 4π. The electronics
of the “neutron belt” is operated in the slave mode,
being triggered by the event selector of the gas part of
the FOBOS detector. The view of the spectrometer
surrounded by the neutron belt is represented in
Fig. 2.

In order to test the results obtained, in particular,
the neutron multiplicity distribution, the following
approach was used.

Three of a total of four different sources of neutrons
have been taken into account and the partial contri-
bution of each source to the experimental spectrum of
the number of fired neutron detectors (i.e., experimen-
tal or measured multiplicity distribution) has been
calculated. These sources are as follows:

(1) The moving FF originated from conventional
binary fission and detected in coincidence in the
opposite arms of the spectrometer. Note that the
time gate (128 µs) for the registration of neutrons
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The general layout of the modified FOBOS spec-
trometer. The spontaneous source inside the start detec-
tor is in the middle.

is opened just at the point of time when the FF fire the
“stop” detectors.

(2) The FF originated from the fission events co-
inciding randomly with the gate. This source will be
named below the “random source.”

(3) The neutron background.
(4) The central fragment of the chainlike prescis-

sion nuclear configuration in CCT [3], which is almost
at rest. This source has not been taken into consider-
ation at the present stage of simulations.

The probability Pk of registration of k neutrons
from the first source is given by the following expres-
sion [4]:

Pk =
∑
N≥k

PNC
k
Nε

k(1 − ε)N−k, (1)

where PN is the emission probability of N neutrons
known from the literature and ε is the detection effi-
ciency. In the first approximation, ε can be estimated
directly from the measured multiplicity distribution.

In order to take into account the influence of the
second (random) source, let us imagine that, at some
time point t0 (Fig. 3), the gate [0; T ] for detecting of
neutrons is already opened as a result of registering
the coincident FF. At any point of time τ , an inde-
pendent fission event can occur. This event is then
interpreted as a random coincidence and each neutron
emitted by the corresponding FF spends some time td
until it is detected. The latter is under the condition
that the neutron hits the detector belt covering η
part of the whole sphere. From the physical point of
view, the time td is spent both for moderation and
for secondary diffusion until absorption in one of the
3He counters. Time intervals td are distributed by
an exponential low with the timing constant λ. The
parameter λ was derived from the experimental spec-
trum of neutron detection times (Fig. 4). It should
be noted that the neutron registration efficiency is
PH
Fig. 2. The overall view of the spectrometer FOBOS
surrounded by the belt of neutron counters during the
February 2001 experimental session.
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Fig. 3. The temporal scheme illustrating the contribution
of the random source.

appreciably lower than the geometrical one due to the
leaking-out and absorption of neutrons in the mod-
erator. Using the well-known MCNP code, we have
estimated the registration efficiency f of the neutron
belt during infinite time for an isotropic source. The
obtained value of f for the neutron energy of 0.5 MeV
is about 60%. The value of f decreases slightly with
increasing neutron energy to 1 MeV.

Let us investigate how the experimental multi-
plicity is formed. Let k neutrons originated from the
fission event opening the gate be detected during the
gate [0; T ]. Let during the same gate r neutrons
emitted from the FF of the random fission event be
detected as well. Then, the number kΣ = k + r is
written by the data acquisition system. The distribu-
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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tion PΣ(kΣ) should be a convolution:

PΣ = Pk ∗ Pr, (2)

where the function Pk is calculated by the expres-
sion (1). The function Pr can be obtained by the serial
threefold application of the binomial transformation
(1) to the function PN (which is the probability of
emission of N neutrons in fission of a 252Cf nucleus)
using η, f , and ηr(t), respectively, as the parameters.
As the probability ηr(t) of registration of the neutron
hitting the detector at the time point τ (Fig. 3) de-
pends on time according the expression

ηr =

T−τ∫
0

λ exp(−λt)dt,

it is necessary to integrate functionPr with the weight
function n exp(−nt) within the limits [0; T ], where
n is the fission rate of the source. The function PΣ
obtained above deals with positive times only. At the
same time, those neutrons emitted earlier, i.e., at
negative times (Fig. 3), can also be detected in the
frame of the gate. One can obtain the distributionPΣ-
conditioned by such events in the same way as above.
The full contribution from the random source PΣΣ is
obtained as the sum

PΣΣ = PΣ + PΣ-. (3)

The third source of neutrons, namely, the back-
ground, was estimated experimentally. As can be
judged from Fig. 4, the count rate at a time later
than 80 µs looks like a plateau specified by the con-
tributions of both the background of the experimental
hall and the fission neutrons appearing formerly at
a negative time and roaming in the neutron belt
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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until the time gate under discussion. In our case, the
background is low enough to be omitted.

The proposed model still does not include a con-
tribution of the CCT as a source of neutrons. The
existence of such a source itself could be tested by a
comparison of the calculated and experimental multi-
plicity distribution with the calculated one.

Summarizing, the model multiplicity distribution
is calculated according the formula:

Pfin= (1 − c)P k + cPΣΣ, (4)

where c is the probability of the random coincident
fission events. In the framework of such a definition,
the function (n/2) exp(−n|t|) should be normalized
to unity and c is the integral of this function in the
limits [−∞;T ].

The calculated spectrum Pfin is compared with the
experimental one in Fig. 5. A good agreement for the
major contribution of low multiplicity observed can
appraise us of evidence of the model adequacy. The
discrepancy observed for high multiplicity seems to
be consistent with the idea of an isotropic neutron
source, which was not considered in the simulations.

The most critical point for the results of simu-
lations with the model discussed is the efficiency of
registration. Therefore, as was already mentioned, in
addition to its empirical estimate, numerical simula-
tions by the MCNP code have been performed. These
simulations are also aimed at the optimization of the
experimental conditions. The overall registration ef-
ficiency for neutrons from ordinary fission and from
CCT events amounted to 4.1 and 10.8%, respectively.
The latter is in good agreement with an empirical
3
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estimate, bearing in mind that the efficiency of the 16-
detector array is close to 60%.

The reliability of our MCNP simulations are
checked by reproducing the experimental values of
the timing constant λ of∼20µs (Fig. 4) and the count
ratio of 1.3 for the detectors from inner and outer lay-
ers of the 16-detector array. The simulation delivers
1.25, 1.35, and 1.3 for detector arrays positioned at
angles of 79

◦
and 101

◦
with respect to the direction of

the FF motion and on the average, respectively.
Such good agreement of MCNP simulations with

the experimental data already at the preliminary phase
together with success of our empirical modeling en-
sures the reliability of the measured distribution of the
neutron multiplicity for the analysis. Although further
simulations are in progress, the multiplicity filter is
already being successfully applied for the analysis of
the FF data [2].
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Abstract—A setup for studying reactions induced by secondary radioactive beams has been constructed.
It allows simultaneous measurement of α-particle and fission fragment energy spectra. By measuring
the α particles, identification of evaporation residues is achieved. A set of three targets can be used so
as to ensure sufficient statistics. Two silicon detectors, located at 90◦ to the secondary beam direction,
face each target, thus covering 30% of the solid angle. This experimental setup is to be used to obtain
excitation functions of fusion–fission reactions and of reactions leading to evaporation residue production.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The presence in a nucleus of a neutron skin or halo
is expected to have strong influence on the cross sec-
tion of reactions induced by such nuclei. This cross
section is enhanced due to the diffuse density distri-
bution of the valence neutrons. On the other hand,
reactions induced by nuclei with neutron excess may
have large Q values and, therefore, fusion can lead to
a highly excited compound nucleus. A question may
arise whether the valence neutrons can serve as a
bridge for nucleon transfer with the consequence of
enhancing the fusion cross section below the barrier
or whether they will be lost in a breakup process
before fusion takes place, by this decreasing the total
complete fusion cross section at and below the barrier.

One of the surprises in the physics of secondary
radioactive beams was the observation of enhanced
fusion–fission cross sections. Theoretical and ex-
perimental efforts have been devoted to study this
phenomenon. However, a full understanding remains
elusive since the various experiments had been per-
formed to study different interaction channels.

A few experiments have been carried out with a
6He beam [1–5]. The increased interest in the 6He

∗This article was submitted by the authors in English.
**e-mail: asmr1711@lnr.jinr.ru
1063-7788/03/6609-1659$24.00 c©
nucleus lies in the fact that it has a neutron skin. If the
structure of this nucleus influences the reaction pa-
rameters, one should, comparing the results to similar
results obtained with a 4He beam, find a difference.
One way to look for any such effect is to measure the
characteristics of the evaporation residues produced
after complete fusion in xn-evaporation channels.
Another way is to measure the fusion–fission exci-
tation function in a wide energy range.

Formerly, we studied 6He-induced fission using a
stack of thin 209Bi targets (0.5–0.7 mg/cm2) sep-
arated by solid-state Mylar track detectors [4], al-
lowing the detection of fission fragments with high
efficiency (about 80%). The excitation function for
the fission of 209Bi and the cross section for the
209Bi(6He, 4n)215At reaction weremeasured in a wide
energy range.

Later, a similar experiment [5] was carried out at
two values of the excitation energy equal to 32 and
34 MeV. Despite the conclusion of the authors of [5]
that there was disagreement between their experi-
mental fission data and ours, we should point out
that, taking into account the large experimental errors
characteristic of experimental data at low values of the
cross sections, the difference between the data is not
large. Moreover, their conclusion was qualitatively
consistent with the statistical-model calculations [6]
2003 MAIK “Nauka/Interperiodica”
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in that the 6He-induced fission yield is smaller than
that for 4He. However, this type of calculation has
not been able to reproduce some experimental data,
for instance, the experimental data on 4He + 209Bi
fission [7]. We have found out that the behavior of
the fission excitation function for the 6He + 209Bi
reaction is the same as for the 4He + 209Bi reac-
tion, but the fission cross section for the 6He isotope
is significantly higher than that for 4He nuclei. In
[2], it was suggested that this enhancement depends
mainly on the entrance channel and is connected with
the neutron skin of 6He nuclei. In order to get a
clearer idea of the interaction, one should in princi-
ple measure all channels of the interaction: complete
fusion, few-nucleon transfers, fission after complete
and incomplete fusion, etc.

In the present paper, we describe a new exper-
imental setup designed for simultaneous measure-
ment of fission and neutron-evaporation cross sec-
tions in reactions induced by secondary beams.

2. THE EXPERIMENTAL SETUP

A schematic view of the experimental setup is
presented in Fig. 1. The setup has been built for
detecting both evaporation residues and fission frag-
ments in parallel. The setup can hold up to three
targets. The targets are placed at 45◦ with respect to
the secondary beam direction. Two silicon detectors
(diameter 5 cm), located at 90◦ to the beam direction,
face each target from either side. This makes it pos-
sible to increase the effective solid angle up to 30%
and thus get sufficient statistics in a shorter period of
irradiation. The 209Bi targets were about 330 µg/cm2

thick on a 2.5-µm-thick Mylar backing. This array
of three targets allows increasing the statistics by a
factor of three, as the maximum energy loss of the
beam particles between the three targets is less than
1 MeV. If energy degraders are inserted between the
targets, it would be possible to get measurements at
three different energies of the beam in one run.

The silicon detectors measure the energy of the
α particles emitted by various evaporation residues
and also the energy of the fission fragments. The
P

signals from the silicon detectors are divided for the
fission fragments and for the decay of the evaporation
residues. For this purpose, for each detector chan-
nel, two spectroscopic amplifiers (operating at various
gains) are used.

Because of the quite large solid angle, this setup
is suitable for use in studies of secondary-beam-
induced reactions as it makes possible the inves-
tigation of reactions with cross sections less than
10−26 cm2 at a mean beam intensity of about 104 pps.

2.1. Secondary Beam Production

The bombardment of a thick 9Be primary (pro-
duction) target with an intense 7Li beam at about
35A MeV has led to the production of relatively
intense (104–106 pps) secondary beams of 6He with
energies of 10–30AMeV at the U400M cyclotron of
the Flerov Laboratory of Nuclear Reactions [8]. The
separation of the products produced in the target to
form the secondary beam is achieved using the main
beam-transport line of the accelerator. It has been
specially modernized and supplemented with some
new elements according to the ion optical calcula-
tions for the transport of the aforementioned light
ions. Slits, a beam profiler (a multiwire proportional
chamber), and a polypropylene degrader are used
to control and improve the quality of the secondary
beam. Its energy dispersion and angular convergence
are thus minimized with only a small loss of intensity.
The purity of the beam usually obtained is not worse
than 98%. Using two profilers for diagnostics makes
it possible to focus the beam on the physical target,
located in the reaction chamber, as well as to control
the size of the beam spot.

The secondary beam is monitored by means of
position-sensitive Si detectors installed downstream
of the targets.

2.2. Registration of α Particles and Fission
Fragments

This experimental setup has been tested using a
Pu–Am–Cm source. The energy spectrum of the
emitted α particles, measured with one of the detec-
tors, is shown in Fig. 2 (left panel) as an example. We
observe three peaks, corresponding to the strongest α
transitions of 5.12, 5.42, and 5.84MeV in the decay of
239Pu, 241Am, and 244Cm, respectively. On the basis
of this measurement, we have been able to determine
the energy resolution for α particles equal to FWHM
≈280 keV. The spectrum of the fission fragments is
also shown in Fig. 2 (right panel). We can see that the
energy distribution for the fission fragments allows
distinguishing the two mass groups characteristic for
the spontaneous fission of 244Сm.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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3. EXPERIMENTAL RESULTS

3.1. Fission Fragments in the 7Li + 209Bi Reaction

We have tested the setup at the U400M accel-
erator using a 7Li beam with an energy E = 80 ±
1 MeV. The 7Li-beam energy was chosen by tuning
the magnetic rigidity of the beam line. Two correlated
fission fragments were registered in coincidence by
each couple of silicon detectors, located at 90◦ to the
direction of the beam line (see Fig. 1). These detectors
were calibrated with fission fragments from a thin
244Cm source and α particles from a 226Ra source.
The two-dimensional plot of the energies of the frag-
ments corresponding to the fission of the compound
nucleus 216Rn is presented in Fig. 3.

3.2. Alpha Particles of Evaporation Recoil
in the 6He+ 209Bi Reaction

The described setup was also used to study the
interaction of the secondary 6He beam with the 209Bi
target nuclei. The energy of the beam was 50 ±
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3 MeV. At this bombarding energy, the excitation
energy of the formed compound nucleus 215At is
E∗ ≈ 49± 3MeV. Thus, we can expect the formation
of evaporation residues with the emission of up to six
neutrons.

Most of the residual nuclei produced in He-
induced reactions on 209Bi, due to their closeness
to the N = 126 and Z = 82 closed shells, are short-
lived α-particle emitters. The characteristics [9] of
the main α-decay modes of the nuclei, which can be
formed in our case in the 6He-induced reaction, are
shown in the table. It is seen that the α-decay half-
lives of these nuclei are generally short and the α-
decay energy is reasonably well spaced in the energy
region 6–10 MeV.

In Fig. 4, the α-particle energy spectrum mea-
sured in the reaction 6He + 209Bi is shown. The 4n-
evaporation channel, with the formation of 211At, can
be identified in two ways. The isotope 211At (T1/2 =
3
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Alpha-decay characteristics of the nuclei formed in the
6He+ 209Bi→ 215 − xnAt reaction

xn Evaporation residue T1/2 Eα, MeV

1n 214At 558 ns 8.82

2n 213At 125 ns 9.08

3n 212At 314 ms 7.68

4n 211At 7.21 h 5.87

7.28 (211Po, 516 ms)

5n 210At 8.1 h 5.36–5.52

5.3 (210Po, 138.4 d)

7.21 h) undergoes α decay with Eα = 5.87 MeV
with a probability of 41.8%. In 58.2% of the cases,
it decays by electron capture into short-lived 211Po
(T1/2 = 0.516 s), which in turn undergoes α decay
with Eα = 7.28 MeV. In fact, two lines are observed
in the energy spectrum of the α particles, which
can be attributed to the decay of 211At: the first one
(Eα ≈ 5.74 MeV) is located in the energy region
where other nuclei contribute, whereas the second
peak (Eα ≈ 7.53 MeV), corresponding to the decay
of 211Po, allows good identification.

The evaporation of five neutrons leads to the pro-
duction of the isotope 210At (T1/2 = 8.1 h). With
about 99.8% probability, it decays by electron capture
to 210Po (T1/2 = 138.4 d), and only in 0.18% of the
cases does it undergo α decay with an average energy
Eα ≈ 5.4MeV. The 210Po isotope is an α emitter with
Eα = 5.3MeV.Aswe can see in Fig. 4, there is a third
peak in the spectrum at Eα ≈ 5.28 MeV, which can
be explained by the decay of 210At and its daughter
isotope 210Po.

4. CONCLUSIONS AND PERSPECTIVES

We have reported here on a set of measurements
of prompt 7Li-induced fission of 209Bi and various
P

evaporation residues produced in the 6He + 209Bi
reaction, performed by detection of fission fragments
and α particles emitted from the produced nuclei. The
described setup is to be used in excitation function
measurements. We plan to measure the excitation
functions of fission and fusion reactions. The fusion
cross sections are determined from the sum of the
xn-evaporation cross sections and the fission cross
sections.

For better performance, we plan to improve the
described setup by introducing CsI detectors and
position-sensitive parallel-plate avalanche counters
for the control of the spot size and the quality of the
secondary beam, and for the identification of the re-
action products. Also, some experiments of this type
using other secondary beams are to be carried out at
the DRIBs facility at JINR.
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Abstract—Magnetic spectrometers of charged nuclear reaction products, properly matched with an
accelerator beam line, have become a very effective setup for the performance of precise nuclear experiments
involving ultrasensitive accelerator-based mass spectrometry and investigation of rare events, as well as
experiments with radioactive nuclear beams. The procedure for increasing the efficiency and resolution of
the available magnetic spectrometer at the Flerov Laboratory of Nuclear Reactions by a few orders of mag-
nitude bymeans of its matching with the beam line is described. c© 2003MAIK “Nauka/Interperiodica”.
INTRODUCTION

During the last years, the main interest in ra-
dioactive ion beam (RIB) experiments has shifted to
the intermediate- and high-energy region, since in
these experiments RIBs are produced mainly using
projectile fragmentation reactions. Thus, traditional
nuclear reaction studies in the vicinity of the Coulomb
barrier are scarce with regard to the use of RIBs.

The realization of the DRIBS project [1] will give
rise to a rather unique possibility of precise experi-
ments with RIBs that can be performed in the same
manner as with accelerated beams of stable nuclei.
According to this project, the U-400 cyclotron serves
as a postaccelerator of RIBs produced at theU-400M
cyclotron and at the MT-25 microtron.

An energy-loss spectrometer—a very effective
setup for precise nuclear reaction studies based on
magnetic analysis of the primary beam and charged
nuclear reaction products—can be built on the basis
of the existing magnetic analyzer at the U-400
cyclotron beam switchyard at the Flerov Laboratory
of Nuclear Reactions (FLNR), namely, the broad-
range magnetic spectrometer MSP-144 [2].

The solid angle acceptance of theMSP-144 spec-
trometer is about 5 msr and the momentum ac-
ceptance is ≈250% with the focal plane length of
1.5 m. The energy dispersion of the spectrometer is
about 1 cm/%. It is installed on the first floor of
the U-400 beam switchyard. The cyclotron beam is
transported from the second floor to the spectrometer

∗This article was submitted by the authors in English.
**e-mail: maidikov@flnr.jinr.ru
1063-7788/03/6609-1663$24.00 c©
target through the beam downing and commutation
setup (DCS) [3]. The DCS consists of two 90◦ bend-
ing magnets; the lower one is rotatable around the
vertical beam axis to direct the beam either to the
spectrometer or to other setups located on the first
floor. The DCS could serve as a monochromator of
the accelerated beam directed onto the spectrometer
target.

Due to the orthogonality of the dispersive planes
of the monochromator and spectrometer, the beam
passing through the DCS is further focused onto
the MSP-144 spectrometer target with a beam in-
tensity loss of about 90%. To avoid this loss, it is
necessary to realize the energy loss operation mode
of the spectrometer by means of dispersion matching
between the monochromator and the spectrometer
[4]. The dispersion matching [5–7] permits one to in-
crease the overall efficiency by a few orders of magni-
tude, preserving the main advantage of the magnetic
spectrometer—the very high energy resolution.

DISPERSION MATCHING

The dispersion matching conditions of the beam
line with the magnetic spectrometer in the first-order
approximation using the TRANSPORT computing
code [8] notation for the ion optics matrix elements
are given by

b16 = −s16/s11 for the lateral dispersion,

b26 = s21s16 − s11s26 for the angular dispersion,

where b16 and b26 are the primary beam lateral and
angular dispersion coefficients created by the beam
2003 MAIK “Nauka/Interperiodica”
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line at the spectrometer target position with respect
to the lateral s16 dispersion and angular s26 disper-
sion, and the lateral s11 magnification coefficients of
the spectrometer. Under these conditions, the energy
resolution of the magnetic spectrometer becomes in-
dependent of the energy spread of the primary beam
and its spot size at the target (in a first-order approx-
imation).

At the U-400 cyclotron beam switchyard, such
conditions can be achieved by means of a beam ro-
tator [9] introduced into the beam line between the
DCS and the spectrometer (see figure). The beam
path length of about 15 m between the DCS and
MSP-144 is long enough for the beam rotator and
the necessary focusing elements to be installed. Such
a rotator consists of five standard quadrupole lenses
capable of turning the vertically oriented DCS disper-
sion plane to the horizontal plane, where the disper-
sion plane of the spectrometer is situated.

In this way, it is possible to use practically the
total RIB energy and angular spread (even in the case
of extracting the beam from a few cyclotron orbits
simultaneously) for precise nuclear reaction exper-
iments using the magnetic spectrometer, including
precise nuclear structure studies, because, for the
spectrometer, properly matched with the beam line,
the energy loss of the particle in the target strongly
corresponds to the nuclear excitation energy. In this
case, all particles leading to the population of a spe-
cific state in a nuclear reaction are brought to the
same point in the focal plane of the spectrometer.
The position of this point along the focal plane is
independent of the energy of the particle that initiated
the reaction.

KINEMATIC COMPENSATION

The accomplishment of the dispersion matching
gives an additional opportunity for the compensa-
tion of the kinematic broadening of the spectrograph
spectral line arising from the angular dependence
dE/dΘ of the energy of the reaction products in the
P

spectrometer acceptance solid angle [10–19]. At the
first step, such compensation is performed by means
of primary beam spot defocusing at the target through
proper beam line tuning for obtaining better resolu-
tion in the focal plane of the spectrometer at the max-
imum counting rate. This defocusing procedure in-
cludes the matching of the spectrometer acceptance
with the cyclotron emmitance so as to obtain optimal
conditions for the relation between the counting rate
and the energy resolution. The kinematic defocusing
changes the above-mentioned matching conditions
together with the focusing conditions by the following
kinematic factors:

K = (1/P )(dP/dΘ) and C = (Pb/P )(dP/dPb),

where Pb and P are the moments of the beam
and nuclear reaction product under consideration,
respectively. The final beam focusing conditions on
the spectrometer target in the dispersive plane in
the first-order approximation for the beam particle
coordinate shift x and its trajectory deviation angle θ
from the central reference trajectory in the horizontal
plane in the target position together with the target
effect taken into account are
x = x0(s11b11T + s12b21) + θ0(s11b12T + s12b22)
+ δ0(s11b16T + s12b26 + s16C) + Θ(s12 + s16K),

θ = x0(s21b11T + s22b21),

where T = xout/xin and Θ = θout − θin are target
functions [9] giving the change in particle trajectories
due to the scattering or reaction at the target, and
x0, θ0, and δ0 are arbitrary beam particle initial
coordinate, angle, and momentum divergence from
the central reference trajectory at the accelerator
exit, respectively. They determine the geometrical and
momentum emmitance of the accelerator. Similar
expressions are valid for the particle trajectory co-
ordinate y and its angle φ at the vertical plane.

The realization of all these conditions by means of
proper beam line tuning brings the net experimental
resolution of such a system to the first-order resolv-
ing power of the spectrometer with a simultaneous
increase in its efficiency by a factor of about 100.
In addition, such matching strongly eliminates (to a
few orders of magnitude) the parasitic background of
scattered particles due to the absence of collimators
in the vicinity of the target. For compensation of the
higher order effects, it is necessary to make a higher
order aberration correction of the beam line, particu-
larly for the DCS.

An additional increase in spectrometer efficiency
can be made by means of the detector array around
the spectrometer target solid angle increasing partic-
ularly for the correlation experiments with the mag-
netic spectrometer.
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CONCLUSION

The proper matching of existing facilities at the
FLNR U-400 cyclotron beam switchyard gives them
a new quality: the energy loss mode of operation for
precise nuclear reaction experiments.

The resulting gain in their efficiency of about two
orders of magnitude together with the net resolution
increasing is very important for registering rare events
in nuclear reaction studies, for precise ultrasensitive
accelerator-based mass spectrometry (AMS), and in
experiments with radioactive nuclear beams having
low intensity and rather large energy spread.
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Abstract—Experiments in both high- and low-energy physics are planned so that physically interesting
effects mathematically are rare (or small probability) events, compared to others, whose probabilities
are not small. Correspondingly, the purpose of the paper was the development of the formalism for the
treatment of rare events, which could be an inevitable alternative to methods requiring too much a
priori information about the studied effect, in a situation when such information is absent, but, instead,
background information is available, e.g., from calibration measurements. The main topics of the paper
were as follows: (1) To what extent are the methods of Poisson time-event streams suitable for the goal
declared? (2) What information can be extracted from the calibration measurement that detected zero
interesting events? The method described is illustrated by the analysis of data registered in the experiment
on the synthesis of element 114. c© 2003 MAIK “Nauka/Interperiodica”.
The outcome of the most advanced exploratory
physical experiments is the observation of single
events, which, on one hand, promise an exhilarating
and innovative scientific interpretation, but, on the
other hand, suffer from the lack of objective argu-
ments for its justification. The low data statistics and
absence of reliable theoretical forecasts necessitate a
very cautious strategy, trying, first, to get answers to
the basic questions such as: Is the observed event a
random signal combination, or does it represent an
interesting physical phenomenon?

Both signals of interest and those of the back-
ground normally are results of some radioactive de-
cays, statistically independent of each other, and the
only feature identifying the interesting event is that its
constituent decays are genetically (not statistically)
linked according to a certain pattern.

One can build two approaches to tackle the prob-
lem of signal identification:

(1) Formalize the concept of a background signal
combination (BSC) and test whether the signal se-
quence analyzed does fit in this concept or not.

(2) Formalize the concept of a linked decay signal
combination and test whether the signal sequence
analyzed does fit in this concept or not.

In cases of extremely indefinite and poor experi-
mental outcomes, we do not know the structure of
the decay chain a priori; neither is reliable information
about the half-lives of members of this chain avail-
able. In this situation, the first approach is inevitable

∗This article was submitted by the author in English.
**e-mail: zlokazov@nf.jinr.ru
1063-7788/03/6609-1666$24.00 c©
and the most natural: to see whether the signal group
analyzed corresponds to the BSC pattern or not, and
thereby get the answer to the basic question men-
tioned above.

The most important advantage of this approach is
the fact that, for building a BSC pattern, we can use
objective sources of information—data of the back-
ground calibration measurement, which, in addition,
are not affected by poor statistics [1].

Philosophy of rare events. Mathematically, we
face here the following problems:

What is formally a static small probability event? It
is not an impossible event; it is one occurring with a
(negligibly) small probability compared to alternative
events that could occur in the situation considered.
Such a definition is not related to the absolute value
of this probability. “Small” in mathematics is always
used in a comparative context. If the distribution of
signals is uniform, then we can observe situations
paradoxical to the common sense of the majority of
people. Namely, the probabilities of arbitrary event
combinations are equal however exotic these combi-
nations might be. For example, molecules of ideal gas
under no gravity conditions with the same probability
can form a completely chaotic figure, say, a human-
body-like one. The basis for distinguishing patterns
is a deterministic constituent of the Universe and
specific features of certain random distributions.

What is formally a dynamic (proceeding in time)
small probability event? All the aforesaid applies here
too, but, in addition, we have here an effect of oc-
currence of ever greater deviation from the mean,
while the observation goes on. A widespread error is
connected with this effect—many people observing,
2003 MAIK “Nauka/Interperiodica”
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e.g., a hurricane that has never been registered before
conclude that “the climate has changed.” In fact, this
event itself is not yet a reason for such a conclusion.
In the observation of outcomes of a random num-
ber generator in the case of even such an “almost-
deterministic” distribution as the normal one, ever
larger deviations from the mean will be encountered
(though with ever smaller probability), but, certainly,
this is not evidence that “the generator has changed.”

However cumbersome a signal combination shape
might be and small probability it might have, it can
occur in both static and dynamic situations. Cer-
tainly, conclusions made on such a weak basis do not
have the convincibility of classical statistics, and the
correct scientific decision becomes a matter of clever
will and lucky chance. We build up not the “true”
world image, but a “probable” one. The science based
on small statistics is no longer knowledge of actual
reality, but rather that of a virtual one.

Mathematics of random event time processes.
Stochastic Poisson time processes, which proved to
be perfect in many scientific and technical application
fields as models of random event streams while the
necessary a priori information about their origin is
absent, seem to be the best means for the description
of the background decays.

These processes are the time functions k(t1, t2)—
numbers of random events occurring during a time
interval (t1, t2) with a probability Qk(t1, t2) and hav-
ing the following properties:

(i) stationarity: Qk(t1, t2) = Qk(t2 − t1) for arbi-
trary t1, t2;

(ii) Qk(t1, t2) independence of the event pre-
history: Qk(t1, t2|C) = Qk(t1, t2), where C means
events that happened before t1;

(iii) rareness of events: Qk>1(δt) = o(δt).
These properties allow us to write simply k(t) and

Qk(t) bearing in mind that t means the duration of
(0, t) = the time interval considered.

Incidental radioactive decays, as a rule, satisfy
the above-numbered requirements; therefore, we can
indeed use the Poisson processes for modeling both
static and dynamic backgrounds. Further on, we shall
use the term “signal” instead of “event,” and event
will mean a signal combination.

The function of probability distribution of k(t) is

Qk(t) =
(lt)k

k!
exp(−lt), t ∈ (0,∞), (1)

where l is parameter of the Poisson distribution and
t is time. Note that l = ln(2)/T1/2, where T1/2 is the
half-life. The quantity lt is the expectation and at the
same time the variance of k(t) at a moment t.
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If the signals are of different type, formula (1) de-
scribes only probabilities of their sums irrespective of
their order and configuration. If the event is made up
of time-independent signal combinations of m kinds,
the probability distribution of the definite configura-
tion is

Qsk(t) = ps

m∏
i=1

Qki(t), t ∈ (0,∞), (2)

where ps is the probability of combination of the sth
kind. An independent characteristic of the random
signal sequence is τ—the time between the two sub-
sequent signals. It is subject to the exponential distri-
bution

P (τ < t) = 1 − exp(−lt), t ∈ (0,∞),

where l is the same parameter as above. The expecta-
tion Tm and the variance Tv are

Tm =
1
l
, Tv =

1
l2
.

The estimates of l obtained from the data on the basis
of (1) and of Tm from the differences of these data on
the basis of (2) are almost uncorrelated and can serve
as independent statistical characteristics of the data
analyzed.

In the case of a chain of genetically linked decays,
the average distances between the times are prede-
termined, but they can be seen only if the statistics
are large. For the case of rare signals, these distances
do not play any role, whereas average minimax time
distance estimates are rather informative quantities
for distinguishing the background from the interest-
ing phenomenon,

Tmax =

∞∫
0

tnl(1 − exp(−lt))n−1 exp(−lt)dt,

Tmin =

∞∫
0

tnl exp(−lnt)dt,

where n is the number of items in the signal sequence.
Thus, an event is set ofn signals of a specified con-

figuration having occurred within a time interval (0, t)
with the probability Qsn(t) (2). If the measurement
is dynamic and occupies the (0, T ) time span, T �
t, then N—the number of event occurrences during
(0, T )—will have a multinomial distribution PN with
the mean Nm and the variance Nv, where

Nm = Qsn(t)
T

t
, Nv = Qsn(t)(1 −Qsn(t))

T

t
.

(3)

These quantities are very important for deciding
whether the observation trajectory is rare or not.
3
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The signals can be falsely identified or detected
with probability (efficiency) less than 1. This makes
the calculation of frequencies and probabilities like (2)
and (3) more complicated; also, the estimation of
quantities l, Nm, and Nv from the calibration data
becomes less reliable.

Spatial characteristics are another important
means for background/phenomenon distingishabil-
ity: if the places of a decay chain are significantly the
same, it is a serious objection against the background
hypothesis. The following test can be used for check-
ing place coincidence.

Let xi, i = 1, 2, . . . , n, be signal locations and
var(xi) their variances. Bearing in mind that co-
ordinates xi are in fact differences between zero
(which is also a random quantity) and the registered
coordinates, one can check whether the quadratic
form

Sn =
n∑
i=1

y2
i ,

yi = (xi − xi+1)/
√

var(xi) + var(xi+1),

has a distribution relevant for this case. Here, yi have
zero expectation and unit variance, and the pairs yi,
yi+1 are correlated with the coefficient −0.5. The
probability distribution function of Sn is not a usu-
ally assumed χ2 one even in the case of the normal
distribution of x: one can show that the expectation of
Sn = n; the variance = 3n− 1.

Similar tests can be elaborated for other quantities
(energy of the decay products, etc.) if their means and
variances are available.

What information does detecting zero events
contain? This is a very important problem for both
high- and low-energy physics. Within the framework
considered here, we can say the following. The proba-
bilitiesP0 to detect within the time interval (0, T ) zero
events, each characterized by n signals defined at the
time interval (0, t), is

P0 = (1 − ps(lt)n exp(−lt)/n!)T/t, t ∈ (0,∞).
(4)

Unfortunately, from this, it is impossible to estimate l.
One can only solve a couple of problems of planning
an experiment: for given P0, ps, and l (or T ), calculate
T (or l). Still, the most interesting problem is how to
extract the information from “zero event” calibration,
at least, about the lower limits of the quantities T or
T1/2.

If during a long time period T no event was regis-
tered, one can use a heuristic rule of “equal chances
for the event to occur or not to occur,” which corre-
sponds to our complete absence of a priori information
about the event and mathematically is a consequence
PH
of the principle of maximum entropy applied to this
case:

P0 = P�=0. (5)

From this, we get the estimate of l: l̂ = ln(2)/T.
Treating a physical effect as a rare event. The

event is rare if the probability of its constituent signal
combination is small compared with the probability
of other combinations that we call typical. Here, the
comparison is stressed: the widespread habit to deal
with absolute probabilities has no mathematical sub-
stantiation; probabilities of “typical” events can also
be however small.

A typical event does not always mean background,
just as a rare event should not necessarily be an inter-
esting phenomenon. However, physical experiments
are normally planned so that an event is a physical
effect if it is rare.

In the static case—if a set of patterns is registered,
each of which is characterized by n signals, and we
should decide which of them are rare and which are
typical—comparison of l, n(lt), Tmax, Tmin, and Sn−1

derived from background calibration and those calcu-
lated for the checked event is enough to make such
decision: if the latters significantly (in the sense of
mathematical statistics) differ from the formers, the
event is rare and, thereby, not a background one.

In the dynamic case—if the measurement contin-
ues for a long time—the situation is more compli-
cated. As stated above, rare signal combinations can
occur, at least once, however small their probability
might be, assuming that the observation time lasts
sufficiently long, the only restriction being that the
combination should not contradict physical or math-
ematical laws.

Here, one should define what a rare trajectory of a
time process is.

Summarizing all the aforesaid, we state that, if
Ne—the number of event occurrences in the experi-
ment data—is much greater than Nb—the number of
event occurrences in the background calibration data
of the same registration period—then the trajectory
is rare and, thus, the event is not a background one
(in the physical sense). Statistical definition means by
“much greater” no intersection of confidence intervals
forNe and Nb.

Within the framework of such an approach under
conditions of absence of qualitative and quantitative
information about the decay time, there is not an
appropriate characteristic for testing the event for
randomness; as such, the number of occurrences of
events of known types (in the case of element 114
the combination of recoil implantation and alpha-
decay imitators, followed by final spontaneous fission)
within a definite time interval should be used.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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The selection of the time interval has to be optimal;
it should be large enough so that the events occurring
in it make up a combination suitable for physical
interpretation if this combination turns out not to look
random. And it should not be too large, since other-
wise even numbers of actually linked decays referred
to too large an interval make the statistical criteria to
consider them random.

Analysis of data from experiments on the syn-
thesis of element 114. The recorded locations of the
decaying nucleus from the 48Ca + 244Pu reaction
are [2]

xevr = 16.5 mm (position of the implantation sig-
nal);

xα1 = 15.6 mm, xα2 = 16.5 mm, xα3 = 17.0 mm
(positions of alpha signals);

xsf = 17.1 mm (position of spontaneous fission
signal);

evr–alpha resolution = 1.4 mm, σevr–α =
0.59 mm;

alpha–alpha resolution = 1.0 mm, σα–α =
0.42 mm;

evr–sf resolution = 1.2 mm, σevr–sf = 0.51 mm.
Times:
t of implantation signal = 0;
t of alpha signals = 0.5, 15.9, 17.5 min;
t of spontaneous fission signal = 34.0 min.
The experiment and calibration duration was

about 48 800 min [3]. Thus, our pattern of the in-
teresting event is a time interval of 34 min, containing
the recoil implantation signal, three alpha signals, and
that of spontaneous fission; this event was observed
in the time period of 48 800 min.

To illustrate the method described above in opera-
tion, we will proceed as follows.

The reliability of alpha-particle identification (by
energy of 8.5–10 MeV in a detector strip for a
position-correlation window of 1.6 mm) and that of
spontaneous fission (by large energies) is justified
only qualitatively, so we cannot involve it in quanti-
tative calculations. The detection efficiency is known
(about 0.87), but at this stage of analysis it is not
appropriate to use it.

Calibration measurement of chance signals of
recoil implantation and alpha particles with en-
ergy of 8.5–10 MeV gave the following: implanta-
tion = 1.3 per hour; alpha particle = 1 per hour; the
fact that no spontaneous fissions were detected in
the total calibration measurement is one of the most
important facts for our analysis.

From this data, we can derive the probability of the
events: one imitator of the implantation signal 34 min
before the spontaneous fission and three imitators of
alpha particles between them.
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The time interval of 34 min was the minimum pos-
sible, but, certainly, it is not optimal. The real event
pattern should be longer, at least, by one-quarter of
this time—(n+ 1)/n = normal maximum likelihood
estimate of the interval size; neglecting the first signal
as the interval starting point, we have n = 4, so that
the interval can be taken to be 42.5 min long. These
events represent a typical time process of the Poisson
type. We can estimate its parameters for implantation
and alpha-particle imitators on the basis of calibra-
tion data as follows:

li · 60 = 1.3; la · 60 = 1,

which gives us li = 1.3/60 and la = 1/60.
On the basis of (5), we can set lsf = ln(2)/48800

for the spontaneous fission. Then, we get the follow-
ing probabilities:

Q1i(42.5) =
(42.5 · 1.3/60)1

1!
exp(−42.5/60)

(implantation),

Q3α(42.5) =
(42.5 · 1/60)3

3!
exp(−42.5/60) (alpha),

Q1sf(42.5) =
(42.5 ln(2)/48 800)1

1!
× exp(−42.5 ln(2)/48 800) (spont. fission).

Using the probability of the signal order ps = 0.05, we
have the total probability

Ptotal = psQ1iQ3αQ1sf ∼ 0.3226 × 10−6.

To make a statistically correct decision, it is necessary
to compare it with the probabilities of other random
signal combinations. We have the following:

Implantation Alpha Spont. fission Probability

0 0 0 0.19597461

0 1 0 0.13881535

0 2 0 0.04916377

1 1 0 0.12782580

1 2 0 0.04527164

It is seen that the largest is the probability to ob-
serve the combinations 0 + 0 + 0, 0 + 1 + 0, 1 + 2 + 0,
but the probability of the combination 1 + 3 + 1 is
really small as compared with them and belongs to
the region of small probabilities, and that our event is
a very little probable random static event.

Other calculations confirm this statement. Name-
ly, let us compare the minimax time differences Tm for
the background and the event of interest:

background: Tm = 26.09 min,
3
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tested event: Tm = 8.5 ± 3.7 min;

background: Tmax =
25
12
Tm = 54.4 min,

Tmin =
1
4
Tm = 6.5 min;

tested event: Tmax =
25
12
Tm = 17.7 min,

Tmin =
1
4
Tm = 2.1 min.

Then, let us calculate spatial test quantity Sn: S4 =
9.56. Let us build the table of values of S4 probabili-
ties:

P 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

S4 0.6 0.9 1.1 1.4 1.6 1.9 2.2 2.5 2.8 3.1

P 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

S4 3.4 3.8 4.2 4.7 5.3 6.0 6.9 8.2 10.3

Here, P are probabilities with the step 0.05 for
the corresponding values of S4. We can construct the
67% confidence interval of S4 as n± σ; corrected
for the asymmetry, it is 1.8–10.8. Thus, we see that
PH
our value of 9.56 is covered by the 67% confidence
interval 1.8–10.8, which means the validity of the
hypothesis that decays took place at the same place
of the detector.

Next, we can estimate the dynamic characteristics
Nm and Nv:

Nm = (48 800/42.5)Ptotal ∼ 0.0004; Nv ∼ Nm.

In other words, during the interval (0, 48 800), the
expectation of the number of such events is equal
to zero, the implication being that the event consid-
ered is a really rare event in both static and dynamic
senses; therefore, these four signals, followed by the
spontaneous fission, do not contradict the hypothesis
that they are not background.

This implication does not change even if we sup-
pose that some alpha particle was falsely identified.
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Abstract—The process of nuclear multifragmentation has been implemented, together with evaporation
and fission channels of the disintegration of excited remnants, in nucleus–nucleus collisions using percola-
tion theory and the intranuclear cascade model. Colliding nuclei are treated as face-centered-cubic lattices
with nucleons occupying the nodes of the lattice. The site-bond percolation model is used. The code can
be applied for calculation of the fragmentation of nuclei in spallation and multifragmentation reactions.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The intranuclear cascade model is one of the
basic tools for analyzing spallation and multifrag-
mentation processes in nuclear collisions. In the
traditional cascade model of hadron–nucleus and
nucleus–nucleus interactions, particle production is
treated in two stages. In the first, fast, stage, an
intranuclear cascade occurs inside the target and
(or) the projectile nuclei and some nucleons from
the target and projectile nuclei are knocked out,
together with mesons. In the second stage, residual
nuclei (generally, in an excited state) divide into two
remnants in the fission channel or evaporate protons,
neutrons, and (or) light nuclei, including helium
isotopes. However, experimental data indicate that,
at intermediate energies, a third competing process,
multifragmentation, comes into play, in which excited
remnants break up into intermediate mass fragments
(IMFs). There are two approaches to theoretical
description of multifragmentation: dynamical and
statistical. In statistical multifragmentation models,
an excited remnant achieves a thermal equilibrium
state and then expands, eventually reaching the
freeze-out volume. At this point, it disintegrates
into neutrons, light charged particles, and IMFs. In
dynamical models, IMFs are formed at the fast stage
of nuclear collision via dynamical forces between
nucleons during the evolution of the total system
of interacting projectile and target. In this case, the
whole system and its parts (projectile and target
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remnants) never pass through states of thermal
equilibrium.
There is one more approach to describing the pro-

cess of multifragmentation: percolation theory. Per-
colation models treat the nucleus as a lattice with
nucleons located at nodes of the lattice. It has been
found that results of percolation calculations depend
significantly upon the details of the lattice structure.
For reasons of computational convenience, the simple
cubic lattice has been most frequently used in mul-
tifragmentation simulations [1], but several studies
have found [2, 3] that the face-centered-cubic (FCC)
lattice more accurately reproduces the experimental
distributions of fragment masses and their energy
spectra.
Although lattice simulations have been found to

reproduce multifragmentation data surprisingly well,
there has been little examination of the role of the
lattice arrangement of nucleons inside nuclei. That is,
lattices were employed more as computational tech-
niques, rather than as formal nuclear models. The
appearance of solid-state models of nuclear struc-
ture [4–6] can be dated from the paper of L. Paul-
ing in 1965. The most attractive lattice model is the
FCC model proposed by Cook and Dallacasa [6] be-
cause it brings together shell, liquid-drop, and cluster
characteristics, as found in the conventional models,
within a single theoretical framework. Unique among
the lattice models, the FCC reproduces the entire
sequence of allowed nucleon states as found in the
shell model.
In the present paper, we further develop the modi-

fied intranuclear cascade-evaporation code (MCAS),
elaborated by one of the authors [7], with the aim of
inclusion of multifragmentation channels. The word
2003 MAIK “Nauka/Interperiodica”
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“modified” relates to the implementation of the con-
cept of “formation time” into traditional cascade cal-
culations, as described in Section 3. The goodness
of fit of the MCAS to experimental data has been
reported in previous papers [7, 8] concerning mul-
tiparticle production in nucleus–nucleus collisions
at intermediate and moderately high energies (up
to 10–20 GeV/nucleon). Since traditional cascade
models consider nuclear structure as a dilute Fermi
gas, we reconstructed the model in the framework of
the lattice nuclear model. For this purpose, we im-
plemented the FCC lattice arrangement of nucleons
for the colliding nuclei according to the algorithm
proposed in [9] (Section 2). Calculations of multi-
fragmentation channels are performed on the basis of
the site-bond model of percolation theory (Section 4).
Comparisons with experimental data are given in
Section 5.

2. FCC LATTICE MODEL OF NUCLEAR
STRUCTURE

The FCC packing of nucleons, with protons and
neutrons occupying lattice sites in alternating lay-
ers, can be seen as consisting of four interpene-
trating cubes. A nearest-neighbor distance of about
2.0262 fm reproduces the known core density of nu-
clei (0.17 nucleon/fm3). The essence of the geometry
of the FCC model can be shown using the quantum
numbers that are assigned to each nucleon in the
conventional shell model [9]. It is known that a nu-
cleon’s distance from the center of the nucleus deter-
mines its principal quantum number n. The distance
of the nucleon from the “nuclear spin axis” deter-
mines its total angular momentum (quantum number
j). Finally, the distance of each nucleon from the y–z
plane determines its magnetic quantum number m.
The inherent simplicity of the FCC model is evident
in the FCC definitions of the eigenvalues:

n = (|x| + |y| + |z| − 3)/2, (1)

j = (|x| + |y| − 1)/2, (2)

|m| = |x| /2, (3)

where the sign of the m value is determined by the
intrinsic spin orientation of the nucleon in the antifer-
romagnetic lattice (spin up = 1/2 and spin down =
−1/2). Conversely, the coordinate values can be de-
termined solely from the nucleon eigenvalues:

x = |2m| (−1)m+1/2, (4)

y = (2j + 1 − |x|)(−1)i+j+m+1/2, (5)

z = (2n + 3 − |x| − |y|)(−1)i+n−j−1, (6)

where i is the isospin quantum number. Therefore,
knowing the full set of eigenvalues for a given set of
P

nucleons, the configuration of those nucleons in 3D
space relative to the nuclear center can be determined
unambiguously. Using the Fermi coordinates of each
nucleon, the mean radius of the nucleus with A nu-
cleons is defined as

R [A] = Rnucl +
1
A

A∑
rj, (7)

where r is the Euclidean distance of each nucleon,√
x2
j + y2

j + z2
j , from the origin, and Rnucl is the nu-

cleon radius. The calculated charged radii for various
nuclei are in good agreement with experiment.

3. INTRANUCLEAR CASCADE
WITH THE NUCLEAR LATTICE MODEL

Nucleon coordinates (4)–(6) for the target (pro-
jectile) nucleus are generated in accordance with the
algorithm [9, 10]. For each nuclear collision, lattices
of target and projectile nuclei are oriented randomly
in relation to the collision axes. This random ori-
entation of the nuclear lattice in 3D space mimics
the Woods–Saxon distribution of nuclear density for
medium and heavy nuclei. Nucleon momenta inside
the nucleus, p, are generated uniformly in the space
0 ≤ |p| ≤ pF. The bound Fermi momentum pF re-
lates to the local nucleon density as

pF = (3π2)1/3hρ1/3(r). (8)

An inelastic collision of two nuclei is an incoher-
ent superposition of baryon–baryon, meson–baryon,
and meson–meson elastic and inelastic interactions.
Elastic and inelastic cross sections and kinematical
features of the elastic scattering are taken from ex-
periments.
All interactions are arranged into four groups.
Group C: interactions of the nucleons of the pro-

jectile nucleus with those from the target nucleus; all
secondary particles produced in any group of interac-
tions are considered as cascade particles.
Group A: interactions of the cascade particles with

the nucleons of the target nucleus.
Group B: interactions of the cascade particles with

the nucleons of the incident nucleus.
Group D: so called “cascade–cascade” interac-

tions—interactions of cascade particles with each
other.
The probability of interaction of particles i and j is

defined by a black disk approximation:

P (b2ij) = Θ(b2ij − σtot/π), (9)

where bij is the impact parameter between hadrons
i and j, and σtot is their total cross section. Cross
sections of resonances in subsequent interactions are
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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taken to be the same as for stable particles. The evolu-
tion of the interacting system is considered as follows.
At some instant of time t, all possible interacting
pairs in each group (A, B, C, and D) are determined.
Among all possible interactions, that one is chosen
to be the first if it occurs before others, i.e., ∆t =
min{ti}; then, the positions of both nuclei and all
cascade particles are moved to new positions corre-
sponding to a new instant of time ti → ti + ∆t. Since
the formation of hadronic states of secondary particles
takes some time, we apply the concept of formation
time (zone) for consideration of their subsequent in-
teractions. The formation time relates to the devel-
opment of the cross section of the produced particle
during its propagation inside the nuclear medium.
We use the exponential form of the evolution of cross
sections until the subsequent collision occurs,

σl2 = σI1(1 − (1 − xl)e−τ/(γτ0)) (10)

for the leading particle,

σm2 = σm1 − (σm1 − xmσI1)e
−τ1/(γτ0) (11)

for the mth produced particle, where σI1 is the nor-
mal cross section of the incident particle in the first
collision, σl2 is the cross section of the remnant of
the projectile (leading particle) in the second collision,
σm2 is the cross section of the mth produced particle,
σm1 is the cross section for this type of particle in
the normal state, γ is the Lorentz factor, and τ0 is
an adjustable parameter corresponding to the mean
value of the formation time in the rest frame of the
particle. For (r + 1)th inelastic rescattering of the
incident particle, the cross section is defined as

σlr+1 = σI1

r∏
i=1

(1 − (1 − xli)e
−τi/(γiτ0)). (12)

Among secondaries, s-wave resonances (deltas,
rho and omega mesons) can be produced. The
hadronic event generator is briefly described in the
Appendix. During the evolution of the system, the
produced resonances may decay before their subse-
quent interactions. A check is made whether the Pauli
principle is satisfied both for all interactions and for
the decay of resonances. The cascade stage of particle
generation is completed when all cascade particles
have left both nuclei or have been partly absorbed
by them. In this way, the first, fast, stage of multi-
particle production of the nuclear collision has been
completed. After replacing the Fermi gas nuclear
model by the FCC lattice, we compared the results
of simulations using both models on multiparticle
production in intermediate- and high-energy nuclear
collisions and have found that they are identical. The
first measurable characteristic of nucleus–nucleus
collisions is the reaction cross section. In intranuclear
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
cascade models, the cross section is defined by the
ratio of the number of realized inelastic collisionsN in

to the total number of trials N trial:

σreac =
N in

N trial
π(RA +RB + ∆)2, (13)

where RA and RB are the radii of the colliding nuclei
and ∆ is the radius of the strong interaction. The
Fermi gas and FCC lattice models are in agreement
to within an accuracy of 5%.

4. FRAGMENTATION OF EXCITED
REMNANTS

The number and total charge of the remaining
nucleons in each remnant specify the mass and
charge numbers of the residual nuclei. In general,
remnants are in excited states and possess angular
momentum. The excitation energy of each remnant
nucleus is determined by the energy of the absorbed
particles and the “holes” remaining after nucleons
have been knocked out during the intranuclear cas-
cade process. The momentum and angular momen-
tum of the residual nucleus are evaluated in light
of the conservation of momentum and sequentially
followed for each intranuclear interaction. Thus, there
are three competing processes for the disintegration
of the excited remnant nucleus: evaporation, fission,
and multifragmentation. In the standard intranuclear
cascade model, only the first two processes are taken
into account [11]. The purpose of the present study
was to implement multifragmentation on the basis
of percolation theory and to determine the relative
weights of the above three competing processes. We
have done this by applying the site-bond percolation
model. We assume that nucleons occupying lattice
sites are connected with their neighbors via bonds
which schematically represent two-body nuclear
forces. In the fast stage, during the development of
an intranuclear cascade, some nucleons occupying
the sites of the FCC lattice of the target (projectile)
nucleus are knocked out, leaving holes at those sites.
We say that these sites are broken. The ratio of
the number of broken sites to the total number of
sites (the mass number of the target or projectile)
characterizes the degree of destruction of the target
(projectile) nucleus after the cascade stage. This ratio
depends on the collision energy, on the mass numbers
of colliding nuclei, and, particularly, on the impact
parameter of the collision. In peripheral collisions,
mainly peripheral nucleons are knocked out, meaning
that, with high probability, the remaining nucleons
form one cluster in which all sites are occupied.
In collisions with more centrality, corresponding to
intermediate or small impact parameters, nucleons
are knocked out mainly from the nuclear interior
3
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Fig. 1. Mass distribution of residues produced in a 0.5-
GeV proton-induced reaction on 197Au; pbond = 0.5.
Data are from [13].

and the target (projectile) remnant represents the
lattice with some sites broken. As mentioned above,
remnants, in general, are in excited states. The larger
the impact parameter, the smaller the number of
broken sites and the less the excitation energy of
the remnant. This initial condition is preferable for
equilibration and thermalization of excited nuclear
media and allows one to use evaporation and fission
mechanisms for subsequent disintegration of the
excited remnant. With increasing centrality of the
collision, the number of broken sites increases (large
destruction), leading to increasing excitation energy
of the remnant nucleus. For this case, there is no
conventional understanding of the mechanism of
disintegration of an excited remnant (thermal breakup
with statistical multifragmentation, liquid–gas phase
transition, sequential evaporation, cold shattering
breakup, etc.). However, it is obvious that, when there
is considerable destruction of the remnant, there is no
possibility for equilibration and thermalization over
the whole volume of the remnant.
For excited remnant disintegration, we specify

the bond-breaking probability, as an input parameter
pbond, in the form of an impact parameter dependence:

pbond(b) = pbond(0)

√
1 − b2

(RA +RB)2
, (14)

where RA and RB are the radii of the colliding nuclei.
This ansatz can be derived from considerations of the
collision geometry. The cluster counting algorithm
developed by the authors looks for clusters (frag-
ments): whether neighboring nucleons are connected
via bonds or not. Only first nearest and second nearest
neighbors are taken into account in the counting
algorithm. In the initial FCC lattice, each nucleon has
PH
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Fig. 2. Mass distribution of residues in the reaction
197Au+ p at 800 AMeV; pbond = 0.57. Dashed curve is
the outcome of calculations without the contribution of
multifragmentation channels. Data are taken from [14].

12 first nearest neighbors at a distance of 2.0262 fm
and 6 second nearest neighbors at 2.8655 fm. As a
result of this counting algorithm, we obtain the mass
and charge distribution of the fragments. Although
this approach is statistical and the probability of any
bond being broken does not depend on its position,
the probability of disintegration of the remnant on
multiple clusters (fragments) will be higher in the
vicinity of regions with many broken sites. From this,
it follows that the process of multifragmentation is
influenced by the dynamics of the collision; i.e., ac-
cording to our scenario, it is not purely a statistical
process.
Next, we specify the energetic characteristics of

the radiated fragments. In general, in its proper frame,
the remnant possesses rotational energy Erot and
excitation energy E∗, which are used in the summa-
tion of the rotational Erot

fr and kinetic Ekin
fr energies

of fragments, their excitation energies E∗
fr, and the

energy of the Coulomb interactions of the fragments
ECoul

fr :

Erot + E∗ = Erot
fr + Ekin

fr + E∗
fr + ECoul

fr (15)

=
∑

Erot
i +

∑
Ekin(Ai, Zi) +

∑
E∗(Ai, Zi)

+
1
2

∑ ZiZj
rij

.

In the standard intranuclear cascade model, the con-
tribution of rotational energy Erot

fr is small compared
with other terms, at least for light nuclei as projectiles.
Whether or not this is the case in reality is unknown.
Large rotational energies could be realized in this
approach if we included nuclear viscosity. In the cur-
rent calculations, we neglect the first term. Moreover,
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 3. Mass distribution of residues in the reaction
208Pb+ p at 1 A GeV; pbond = 0.6. Data are taken
from [15].

for computational convenience, we make additional
simplifications in Eq. (15). Since the Coulomb repul-
sion of the charged fragments increases their kinetic
energies, we define the resulting kinetic energies of
the fragments as follows:

Ekin
fr +ECoul

fr =
∑

Ekin(Ai, Zi) (16)

+
1
2

∑ ZiZj
rij

=
∑

εi(Ai, Zi).

Another simplification concerns the excitation of the
fragments: we assume that only one fragment among
others is excited, the mass number of which is max-
imal. It is justified, particularly, when the model is
compared with data obtained through inverse kine-
matics because the experimental setup registers a
majority of radioactive fragments as well. Therefore,
the excitation energy of the remnant E∗ is converted
into the kinetic energies of the fragments and the
excitation energy of the fragment with maximal mass:

E∗ =
∑

εi(Ai, Zi) + E∗(Amax, Zmax). (17)

With these simplifications, we generate the en-
ergy distribution of fragments applying considera-
tions proposed in [12]. Before the collision, the nu-
cleons have a momentum distribution that is uni-
form inside the Fermi sphere of radius pF. After the
collision, the distribution in the vicinity of the beam
propagation is wider because of intranuclear interac-
tions accompanied by local excitation of the nuclear
medium. This can be written in the form

n(ε) ∝
(

1 + exp
[
ε− εF
Teff

])−1

, (18)
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Fig. 4. Mass distribution of residues in the reaction
208Pb+ d at 2 A GeV; pbond = 0.62. Data are taken
from [16].

where ε = p2/2m and εF is the boundary Fermi en-
ergy. The effective temperature is given by

Teff = cE∗/Nbr, (19)

where c is an adjustable parameter and Nbr is the
number of broken sites. Kinetic energies of nucleons
composing the fragment are generated according to
distribution (18), and, summing up all vector momen-
ta directed randomly in 3D space, we obtain the mo-
mentum of the fragment. In such a way, we generate
momenta of all produced fragments. The remaining
part of the remnant excitation energy (17) is assigned
to the fragment with maximal mass number. And,
of course, we take into account the conservation of
energy and momentum for the whole reaction.

5. COMPARISON WITH EXPERIMENT

Observation of residues emerging from spallation
reactions in direct kinematics still remains a diffi-
cult task. Collisions of protons and light nuclei with
heavy ions performed at GSI in inverse kinematics
allows one to determine the production of residues
prior to β decay. This provides a good opportunity to
compare the available data with theoretical models to
achieve a better understanding of the mechanisms of
reactions, which is today far from satisfactory. Until
now, calculations have been performed by different
versions of intranuclear cascade followed by the evap-
oration model. As seen from the previous section,
our model also includes multifragmentation chan-
nels in the framework of the percolation approach.
Here, we define the values of the input parameters,
which are the bond-breaking probability pbond(0) in
Eq. (14) and the constant c in Eq. (19). The proba-
bility pbond(0) depends on the energy of the collision
3



1676 MUSULMANBEKOV, AL-HAIDARY

 

80 100
Neutron number

120
10

 

–2

 

10

 

0

 

10

 

2

 

76

 

Os

 

80 100 120

 

71

 

Lu

 

80 100

 

66

 

Dy

 

80 100

 

61

 

Pm

 

10

 

0

 

10

 

2

 

77

 

Ir

 

72

 

Hf

 

67

 

Ho

 

62

 

Sm

 

10

 

0

 

10

 

2

 

78

 

Pt

 

10

 

0

 

10

 

2

 

79

 

Au

 

10

 

0

 

10

 

2

 

80

 

Hg

 

10

 

–2

 
Cross section, mb

 

75

 

Re

 

70

 

Yb

 

65

 

Tb

 

74

 

W

 

69

 

Tm

 

64

 

Gd

 

73

 

Ta

 

68

 

Er

 

63

 

En

 

120 120

Fig. 5. Isotopic distribution of spallation residues in the reaction 197Au+ p at 800 A MeV; pbond = 0.57. Data are taken
from [14].
and the type of reaction. For a specific reaction, it is
obvious that site and bond-breaking probabilities are
small at low energies and start growing with increas-
ing energy, reaching constant values at the regime
called “limiting fragmentation.” Limiting fragmen-
tation is reached at different energies for different
reactions. Therefore, at low energies, the dominating
mechanisms of disintegration of excited remnants are
evaporation and fission. As the energy of the collision
grows, the contribution of multifragmentation pro-
cesses increases, depending on the site and bond-
breaking probabilities. Since the number of broken
sites is defined automatically during the development
of the intranuclear cascade, only the bond-breaking
probability remains to be input as a parameter. For
proton-induced reactions, pbond(0) changes from 0
at an incident proton energy of a few tens of MeV
to 0.77 at the limiting fragmentation energy of 3–
4 GeV. With regard to the parameter c in Eq. (19),
its value is chosen to be 0.7, energy independent,
for all types of reactions. Comparison of the model
calculations for mass distributions in spallation re-
actions pAu at 0.5 and 0.8 GeV, pPb at 1 GeV, and
dPb at 2 GeV are shown in Figs. 1–4. As seen from
P

the figures, at energies lower than those correspond-
ing to the limiting fragmentation regime, mass yield
distributions of residues in proton-induced reactions
have well-pronounced bell-shaped curves in the cen-
tral part, corresponding to the contribution of fission
channels. Evaporation channels give a dominating
contribution in the right peak of the distribution with
a plateau at high-mass residues. The values of the
level density parameters for evaporation and fission
are taken to be 0.1A MeV−1, the same for both and
independent of the type of reaction and collision en-
ergy. Figures 5–7 show the isotopic distributions of
residues produced in the following reactions: pAu at
0.8 GeV, pPb at 1 GeV, and dPb at 2 GeV. Cal-
culated distributions are shifted toward neutron-rich
isotopes for lighter residues. We think that underesti-
mation of the proton-rich isotopes and overestimation
of the neutron-rich isotopes could be corrected by
better description of proton–neutron competition in
fission–evaporation channels.

As the bombarding energy increases, so does
the contribution of multifragmentation channels and,
correspondingly, the contribution of evaporation and
fission channels decreases. This leads to filling of
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 6. Isotopic distribution of spallation residues in the reaction 208Pb+ p at 1 AGeV; pbond = 0.6. Data are from [15].

 

100 120
10

 

–2

 

10

 

0

 

10

 

2

 

78

 

Pt

 

10

 

0

 

10

 

2

 

79

 

Au

 

10

 

0

 

10

 

2

 

80

 

Hg

 

10

 

–2

 

10

 

0

 

10

 

2

 

81

 

Tl

 

10

 

0

 

10

 

2

 

82

 

Pb

 

10

 

–2

 

77

 

Ir

 

72

 

Hf

 

67

 

Ho

 

76

 

Os

 

71

 

Lu

 

66

 

Dy

 

75

 

Re

 

70

 

Yb

 

65

 

Tb

 

74

 

W

 

69

 

Tm

 

64

 

Gd

 

80 120

 

73

 

Ta

 

80 100

 

68

 

Er

 

80 100

 

63

 

En

 

Neutron number

Cross section, mb

100

Fig. 7. Isotopic distribution of spallation residues in the reaction 208Pb+ d at 2 AGeV; pbond = 0.62. Data are from [16].
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003



1678 MUSULMANBEKOV, AL-HAIDARY

 

0

10

Mass number

Cross section, mb

40 80 120 160 200

100

Fig. 8. Mass distribution of fragments in the reaction
p + 197Au at 11.5 GeV; pbond = 0.77. Data are taken
from [17].

the dips on both sides of the central bell-shaped
curve and a decrease in the height of the right peak.
As mentioned above, rising collision energy leads
to an increasing number of broken sites and bonds
in the nuclear lattices. This, in turn, results in an
increasing yield in multifragmentation channels. This
tendency is already evident in the reaction Au+ p
at 0.8 A GeV (Fig. 2). The mass distribution of
fragments in proton-induced reaction on Au at en-
ergies of 11.5 GeV corresponding to the limiting
fragmentation regime is shown in Fig. 8.

6. CONCLUSIONS

A new version of the modified cascade model
for intermediate- and high-energy nucleus–nucleus
collisions including multifragmentation channels has
been developed. Colliding nuclei are represented as
face-centered-cubic lattices. Multifragmentation is
calculated in the framework of percolation theory with
usage of a site-bond percolation model. This version
is able to reproduce reasonably well both spallation
and multifragmentation processes.
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APPENDIX

Hadronic Event Generator

Monte Carlo simulation of inelastic events is per-
formed in several steps. The first step in the gener-
ation of an exclusive event is the evaluation of the
P

initial c.m. energy portion available for production of
secondaries,

W =
∑

Ei = k
√
s, (A.1)

where Ei is the energy of the ith particle (excluding
leading particles) and k is inelasticity. Fluctuation of
the inelasticity from event to event leads to the dis-
tribution P (k). There are no comparable theoretical
methods for calculation of P (k). It has been shown
in [18] that one may fit the inelasticity distribution
with a beta distribution

P (k, s) = ka−1(1 − k)b−1/B(a, b), (A.2)

B(a, b) = Γ(a)Γ(b)/Γ(a, b), (A.3)

〈k(s)〉 = a/(a + b), (A.4)

where Γ(a), Γ(b), and Γ(a, b) are gamma functions; s
is the dependence of P (k, s); and 〈k(s)〉 is enclosed
in parameters a and b. Up to 20–30 GeV/nucleon
energies, one can neglect this s dependence. In the
second step, the energy W is distributed between
secondary particles whose kinematical characteris-
tics are generated in correspondence to a cylindri-
cal phase-space model. Parameters of the cylindri-
cal phase-space model are adjusted by comparing
the results of simulation of pion–nucleon and nu-
cleon–nucleon interactions with experimental data.
The remaining part of c.m. energy (1 − k)

√
s is dis-

tributed between remnants of the interacting particles
(so-called leading particles) according to the conser-
vation of energy and momentum:

P I + P II =
∑

P i, (A.5)

EI + EII = (1 − k)
√
s, (A.6)

where P i is the momentum of the ith produced parti-
cle, and P I, P II andEI, EII are momenta and energies
of leading particles. Interacting nucleons (mesons)
can transform into nucleons (mesons) and s-wave
resonances (∆ isobars and ρ, ω mesons). Transition
probabilities are calculated with the use of a one-
pion-exchange model.
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Abstract—In the experiment, where the atomic electron cloud serves as an indicator of nuclear isomeric
transitions, measurements of the perturbation of the ionic charge-state distribution from the known
isomeric transition of the 173Hf nucleus obtained in a heavy-ion-induced reaction, were carried out. As a
result, a definite experimental confirmation has been obtained for the effect of nuclear forbidden transitions
on their atomic electron cloud. The importance and possibilities of this effect for the study of the interplay
of nuclear and atomic excitations are discussed. c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The effect of nuclear transitions on the ionization
of heavy atoms that undergo nuclear transforma-
tions (the perturbation in their electron clouds by the
shake-off of many electrons caused by the decay of
nuclear excited states via internal conversion) was
widely studied among the heavy products of radioac-
tive decay [1, 2], the fission isomers obtained in α-
induced reactions [3, 4], and among light [5, 6] and
heavy fractions of fission fragments [7] from thermal
neutron fission and heavy-ion fusion recoils [8–13].

The overwhelming majority of investigated re-
coils reveal a significant divergence of their charge-
state distributions from the equilibrium value. The
ionic charge-state distributions of the investigated
nuclear reaction products strongly depend on the
atomic number Z and the mass number A of the
investigated nuclei (see, for example, the isotopic
dependence of the ionization time of Dy isotopes [9]),
which indicates that the nuclear structure influences
the electron clouds. Similar results were obtained
in other groups for Er isotopes [12] and Ni + Sn
evaporation residues [13]. But until recently, only in
the radioactive decay [1, 2] was it possible to establish
the correlation of the electron shell ionization with a
certain nuclear transition.

In this work, measurements of the perturbation of
the ionic charge-state distribution from the known
isomeric transition of the 173Hf nucleus obtained in
a heavy-ion-induced reaction were carried out. As a
result, a definite experimental confirmation has been

∗This article was submitted by the author in English.
**e-mail: maidikov@flnr.jinr.ru
1063-7788/03/6609-1680$24.00 c©
obtained for the effect of nuclear forbidden transitions
on their atomic electron cloud.

EXPERIMENT

Some years ago, we supposed [10] that the equi-
libration of the disturbed electron structure of heavy
nuclear reaction products by an additional charge-
resetting foil at some distance downstream of the
target [8, 14, 15] may be ineffective if the recoil nuclei
have isomeric states with lifetime of the same order
of magnitude as the time of flight of recoils in the
electromagnetic separator, or spectrometer, or even
in its part. In this case, the ionic charge-state distri-
bution of recoils disturbed by the continuous inter-
nal conversion and the following Auger and Coster–
Kronig transitions in their electron cloud will still be
very broad and shifted to higher charge states.

The experimental procedure for measuring the
atomic electron cloud ionization by nuclear transi-
tions of heavy-ion fusion recoils with the broad-range
magnetic spectrograph MSP-144 [16] was described
elsewhere [8–11]. In this experiment, heavy-ion fu-
sion 173Hf evaporation residues from the
164Dy (12C, 3n) reaction emitted from the target (the
enriched 164Dy isotope with 270 µg/cm2 thickness
deposited on a 50-µm Al backing) at Θ = 0◦ with
recoil energy of about 3 MeV were analyzed by
an MSP-144 broad-range magnetic spectrograph
according to their momentum P/q and collected by
an Al catcher at the spectrograph focal plane whose
length was 1.5 m.

The ionic charge-state distributions of evapora-
tion residues were analyzed by scanning piece-by-
piece the 1.5-m catcher at a γ spectrometer taking
2003 MAIK “Nauka/Interperiodica”
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into account the spectrograph dispersion and the en-
ergy spread of evaporation residues. The lifetime of
173Hf is about 24 h and it has a γ line with E =
123.6 keV (81.4%), allowing good identification of
the isotope embedded into the catcher. The authen-
tic identification of the 173Hf isotope ensures reliable
study of the behavior of its charge-state distributions.

The experiment was performed in two runs—
without and with charge resetting of recoil ions. In the
second run, a carbon foil with thickness of 10 µg/cm
was installed 20 cm downstream of the target at
the spectrograph gap entrance. The resulting ionic
charge-state distributions of 173Hf ions (a) without
and (b) with charge resetting are shown in the Fig. 1.
For the recoil energy of Hf Eres = 3.3 MeV, the
expected mean equilibrium charge state has to be 5+,
as estimated by the formulas of Nikolaev–Dmitriev
[17] and Shima [18]. However, in the experiment,
we did not see any activity of 173Hf gammas at
the place (and nearby) of this charge state at the
catcher and may conclude that a very small part
of the evaporation residues leave the target with
the equilibrium ionic charge-state distribution. The
experimental distribution is so broad that we could
not collect it completely at the 1.5-m catcher in a
single spectrograph magnetic field setting. Thus, we
could estimate neither the mean charge nor the width
of the charge-state distribution.

As can be seen from Fig. 1b, the charge resetting
is truly ineffective in this case because the 173Hf decay
to the ground state is delayed by 180 and 160 ns
by two isomeric states at 69.73 keV (3/2−) and
107.16 keV (5/2−) [19]. The total internal conversion
coefficient of transitions from these and nearest levels
is so great that almost all recoil ions suffer from
continuous “nuclear-induced autoionization.” The
time of flight of 110 ns between the target and
carbon foil is too short for the disturbed electron
cloud equilibration. The charge-resetting foil may
only clarify the charge-state distribution: to cut off
the stochastic charge exchange of recoil ions at the
exit boundary of the target (including the low-charge
part of the distribution) and effects from the shorter
converted nuclear transitions. A lot of investigated
recoil atoms still ionize in flight by the continuous
delayed nuclear-induced ionization in a much longer
time interval according to the lifetime of the nuclear
isomeric states. As is seen from the figure, in both
experiments (with charge resetting and without it),
the abundance of the equilibrium charge state qeq =
5+ is very low.
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Fig. 1. Ionic charge-state distribution of 173Hf recoils (a)
without any charge resetting and (b) with an additional
charge resetting at the distance d = 20 cm (time of flight
τ = 110 ns) downstream of the target: measured dis-
tribution (histogram) and equilibrium distribution simu-
lated by the formulas of [17] (solid curve). Arrows indicate
the mean equilibrium charge state qeq.

DISCUSSION AND CONCLUSION
In heavy-ion reactions as well as in any nuclear

perturbation, the atomic cloud formation strongly de-
pends on the structure of the final nucleus, espe-
cially on the forbidden nuclear transitions via internal
conversion at the inner electron shells. The filling
of inner-shell vacancies by electrons from the outer
shells causes a drastic rearrangement in the atomic
cloud surrounding the nucleus, with the emission of a
large number of outer electrons—so-called nuclear-
induced autoionization.

Although this effect is of interest from the view-
point of fundamental research and for solving a num-
ber of applied problems, experimental data obtained
thus far are scanty. And so far there is no quantitative
theory of this effect.

The study of this effect inmany laboratories [1–13]
shows that it is very common in nature and has very
large probability. It determines the atomic physical
and chemical properties of radioactive atoms all the
time throughout the existence of nuclear excited
states until the moment when the nuclear ground
state is populated and the processes of filling its
atomic electron shells is completed. This effect can
play a dominant role in the excitation and ionization of
radioactive atoms in stellar plasmas and in interstellar
space.

The high probability and large effects of nuclear-
induced ionization may serve as a good experimental
tool for the study of both nuclear and atomic structure
and for investigations of the interplay between the nu-
clear and atomic phenomena in atoms with an excited
nucleus and an excited (and ionized) electron cloud.
3
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The electron cloud of radioactive atoms affected by
nuclear-induced autoionization, in turn, may cause
the excitation of nuclei by inverse internal conversion
[20] or by electron transitions (NEET) [21–23] and
may change the nuclear lifetime by ionic charge state
blocking of the nuclear decay [24–28] or change the
nuclear decay properties of highly ionized atoms [29,
30], as well as change the nuclear reaction conditions
due to electron screening corrections [31–33].

In the experimental practice of separation, trans-
port, acceleration, or storing of radioactive ions, this
effect may cause some problems due to the uncon-
trolled change of their ionic charge.
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Abstract—This paper is devoted to measurement of the astrophysical S factor and cross sections of the
d+ d → 3He + n reaction at ultralow deuteron-collision energies. Formation of the flow of the accelerated
deuterons incident on the CD2 solid-state target was made within the scheme of the inverse Z pinch. The
liner in the initial state was a hollow supersonic deuterium jet of radius of 15 mm and length of 20 mm.
The experiment was carried out at the pulsed high-current accelerator (I = 950 kA, τ = 80 ns) of the
Institute of High-Current Electronics (Tomsk, Russia). Measurement of the deuteron energy distribution
was performed through an analysis of the time distributions of the intensity of the liner radiation (Hα and
Hβ lines) generated during the liner radial movement from the axis. Recording of this radiation was carried
out by optical detectors placed along the direction of the liner moving from its axis. The measured value
of the astrophysical S factor for the dd reaction at the average deuteron collision energy Ecoll = 3.69 keV
was equal to S(Ecoll = 3.69 keV) = 58.2 ± 18.1 keV b. The dd-reaction cross section calculated using
the found value of the S factor and known representation of the reaction cross section as the product of
the barrier factor and the astrophysical S factor was σn

dd(Ecoll = 3.69 keV) = (1.33 ± 0.41)× 10−30 cm2.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The importance of studying reactions between

light nuclei in the ultralow-energy range is empha-
sized in many papers [1–7], for this may allow a pos-
sibility of verifying fundamental symmetries in strong
interactions [1–4] and solving some astrophysical
problems [5–7]. However, it is very difficult to carry
out such research at classical accelerators because
cross sections for nuclear reactions in the ultralow-
energy range are extremely small.

A new method for investigation of nuclear reac-
tions by using radially converging powerful fluxes of
ions generated in the course of liner plasma implo-
sion (formation of a direct Z pinch) was proposed
in [7–10].

This method allowed the effective cross sections
for the dd reaction

d+ d → 3He + n(2.5 MeV) (1)

∗This article was submitted by the authors in English.
1063-7788/03/6609-1683$24.00 c©
and the astrophysical S factor to be estimated for
the first time in the deuteron-collision energy range
1.8–2.3 keV [10–16] (see Fig. 1).

It is of interest to study nuclear reactions be-
tween light nuclei at higher deuteron collision ener-
gies (3–7 keV) because these studies will make it
possible not only to measure the dd-reaction cross
sections in the above energy range for the first time
but also to compare them correctly with the calcula-
tions and the experimental results at collision ener-
gies of 6–7 keV [17, 18].

For these investigations, we proposed a method
based on inverse Z-pinch formation [19].

The inverse Z-pinch scheme has a few advantages
over the direct Z-pinch configuration:

(i) The density of the incident plasma flux de-
creases.

(ii) The processes of the electrodynamic liner ac-
celeration and liner–target interaction are better dis-
criminated in time.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Astrophysical S factor for dd reactions as a
function of the deuteron-collision energy. Closed cir-
cles, closed triangles, and closed squares are the data
from [16], [17], and [18], respectively; the open circle is
the result of the present paper.

(iii) The method of measuring the energy distri-
bution of accelerated liner ions with optical detectors,
which detect radiation from the liner in the course of
its acceleration, becomes technically much simpler.

Characteristics of the deuterium liner accelerated
to (2.8–7.2) × 107 cm/s were first experimentally in-
vestigated within the inverse Z-pinch scheme in [19].

The results of investigating the inverse Z-pinch
formation [19–21] indicate that the proposed method
can be used to study nuclear reactions in the ultralow-
energy range.

Another point is worth mentioning. To use a liner
plasma for precise investigation of nuclear reactions
(measurement of cross sections, astrophysical S fac-
tors), one should know the energy distribution of ac-
celerated liner ions and the liner–target interaction
model because the cross sections of the reactions
in question are sharply dependent on the particle-
collision energy in the entrance channel.

In this connection, an investigation [21] was car-
ried out to develop a method for measuring the energy
distribution of accelerated deuterons in experiments
on the study of the dd reaction by using the inverse
Z-pinch scheme.

That methodological investigation was carried out
with a deuterium liner and a deuterated polyethylene
target and involved a few shots (by a shot is meant
a single operation of the high-current accelerator).
The present paper reports the results of analyzing
the experimental information gained in these shots (S
factor and dd-reaction cross sections).

2. MEASUREMENT METHOD

Experimental determination of the astrophysical
S factor is based on measurement of the neutron
yield from reaction (1) and parametrization of the
PH
dependence of the dd-reaction cross section on the
deuteron collision energy

σ(E) =
S(E)
E

e−2πη, (2)

2πη = 2π
(Ze)2

�V
= 31.29

(
1
E

)1/2

,

where η is the Sommerfeld parameter, Ze is the
deuteron charge, E is the c.m. deuteron collision
energy (in keV), and V is the velocity of the relative
deuteron motion.

As was found in [22], the total yield of detected
neutrons N exp

n from reaction (1) can be represented
as

N exp
n = NdntεnS(E)

∞∫
0

e−2πηD(E)dE

∞∫
E

f(E′)dE′,

(3)

where the average S factor value is given by the
expression

S(E) =
∫
E

S(E)P (E)dE (4)

corresponding to the distribution function

P (E) =
e−2πηD(E)

∞∫
E

f(E′)dE′

∞∫
0

e−2πηD(E)dE
∞∫
E

f(E′)dE′
, (5)

D(E) = − 1
E

dx

dE
.

In addition, energies averaged over the distribution
functions f(E) and P (E),

E =
∫
E

Ef(E)dE, (6)

Ecoll =
∫
E

EP (E)dE, (7)

will be used below. Here, f(E) is the energy dis-
tribution function of the liner deuterons incident on
the target; P (E) is the differential deuteron-collision
energy distribution function of the probability for yield
of neutrons from reaction (1) normalized to unity; εn
is the detection efficiency for 2.5-MeV neutrons; E is
the average deuteron-collision energy corresponding
to the distribution function f(E);Nd is the number of
deuterons incident on the target; nt is the deuteron
density in the target; dE/dx = −(πnte4)L/(2E) is
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Table 1. Experimental conditions

Shot
Ep, E, m, l, Nd, nt, din

l , dex
l , rt, t,

N cal
nkeV keV µg/cm cm 1018 1022 cm−3 mm mm mm mm

1 2.24 2.52 6.2 2 3.72 8.0 30 32 185 0.25 15.5

2 1.20 1.42 5.3 2 3.18 8.0 30 32 185 0.25 0.077

Note: E and Ep are the average and the most probable c.m. deuteron energies corresponding to the distribution function f(E), m
is the liner mass per unit length, l is the liner length, nt is the density of target atoms, din

l is the internal diameter of the liner, dex
l is

the external diameter of the liner, rt is the target arrangement radius, t is target thickness, and N cal
n is the yield of detected neutrons

calculated by (3) with the S factor equal to 53.8 keV b [18].
the specific Coulomb energy loss of liner deuterons
because of their collisions with target deuterons [23];
e is the elementary electric charge; L is the Coulomb
logarithm for the deuterium plasma conforming to
the experimental conditions [23]; Ecoll is the average
deuteron collision energy determined by the function
P (E).

Reaction-cross-section parametrization (2) as-
sumes that the Coulomb potential corresponds to
interaction of bare deuterons.

In addition, the following is worth mentioning:
(i) Expression (3) was derived with allowance

made for the energy spread of incident deuterons and
Coulomb energy loss at their interaction with the
target.

(ii) Further replacement S(E) → S(Ecoll) is
assumed in the energy interval determined by the
deuteron energy spread and Coulomb energy loss.

This is because the S factor is a slightly varying
function in the given deuteron collision energy inter-
val.

Thus, measuring the neutron yield from the dd
fusion reaction and the energy distribution of incident
deuterons in a particular shot, one can find by (3)
the average value of the S factor for the dd reac-
tion. This value corresponds to the average deuteron-
collision energy Ecoll determined by the distribution
function P (E). Note that, for finding S(E) from (3),
one should also know the total number of incident
deuterons Nd and the neutron-detection efficiency εn
of the experimental setup.

The quantity Nd can be found by calculation
within the zero-dimensional model of the inverse
Z-pinch-formation dynamics with use of the data
obtained with magnetic dB/dt probes. The detection
efficiency for 2.5-MeV neutrons can be found both
experimentally with use of standard 252Cf, Po–Be
sources of neutrons and by Monte Carlo calculation.
As to nt, its values fully depend on the procedure
used to apply deuterated polyethylene on the target
backing.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
3. EXPERIMENT

The experiment was carried out with the pulsed
high-current accelerator SGM (generator current
I = 950 kA, high-voltage pulse duration τ = 80 ns
[24]) at the Institute of High-Current Electronics.
The experimental setup consisting of a high-current
generator, a load module, and detecting and diagnos-
tic equipment is schematically shown in Fig. 2.

The initial deuterium liner was formed with a fast
electromagnetic valve and a supersonic Laval nozzle.
The average liner radius was 15 mm. A current-
intercepting structure (CIS) in the form of a squirrel
cage of 45-mm radius made of rods 1 mm in diameter
was installed on the way of the radially diverging
plasma shell. The CIS installation radius determines
the liner acceleration path. The current through the
liner was measured with the Rogovsky coils.

Three light detectors LD1, LD2, and LD3 were
installed behind the CIS along the radius in the di-
rection of the liner’s motion away from the axis. The
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Fig. 2. Experimental setup: (1) high-current genera-
tor, (2) accelerator load module, (3) measuring chamber,
(4) grid cathode, (5) return conductor, (6) supersonic
Laval nozzle, (7) liner, (8) current-intercepting structure,
(9) scintillator detector D1, (10) thermal-neutron detec-
tor D2, (11) Pb shielding, (12) light-protecting cone,
(13) collimators, (14) light guides, (15) magnetic dB/dt
probes, (16) CD2 target; the electromagnetic valve is not
shown.
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Fig. 3. Oscillogram of signals from the light detectors
LD2 and LD3 in shot 1.

distance between the CIS and LD1, LD1 and LD2,
and LD2 and LD3 was 50 mm. Each light detector
consisted of a collimator, a quartz light guide, and fast
photomultiplier.

The target was placed around the liner. It was a
cylindrical copper shell with a radius of 185 mm and a
length of 40 mm. The inner surface of the target was
coated with a CD2 layer 0.25 mm thick.

Fast neutrons were detected by a time-of-flight
method with using the plastic scintillator detector D1
(d = 10 cm, l = 20 cm).

The total flux of neutrons emitted upon interaction
of the deuterium liner with the target was measured
by thermal-neutron detector D2. It consisted of ten
proportional BF3 counters enclosed in polyethylene
moderator. The detectors D1 and D2 were installed
at the respective distances of 410 and 277 cm from
the liner axis. They were shielded with 5 cm of Pb
to suppress the effect of powerful x-ray radiation and
bremsstrahlung on them. The neutron detection effi-
ciency was 4.5 × 10−6 for D1 and 4.0 × 10−6 for D2.

Pulses from the three light detectors and the neu-
tron scintillator spectrometer arrived at the inputs
of the TEKTRONIX oscilloscopes. The high-voltage
generator current pulse was a trigger signal.

The experimental setup is described in more detail
in [19–21].

Table 1 presents the CD2 target and deuterium
liner parameters in shots 1 and 2.

The liner mass was found by using the zero-
dimensional model of liner motion and the information
on the current through the liner and the instants
of appearance of signals from the magnetic dB/dt
probes detecting passage of the liner current shell
through them. Liner acceleration was monitored with
two dB/dt probes placed at the radii of 23 and 34 mm.
P

The mass of the liner and its velocity over the
radius at which the CIS was placed were taken to be
such that the calculated times of arrival of the liner at
the positions of the magnetic dB/dt probes coincided
with their real readings within the measurement error.

4. ANALYSIS OF THE RESULTS

The energy distribution of liner ions incident on the
target was measured by means of recording optical
radiation of the liner (Hα and Hβ lines) moving radi-
ally away from the axis.

The times of appearance of signals from the light
detectors (placed at certain distances from the CIS)
and the durations of these signals (dictated by the
duration of the light pulse) are related to the distance
from the CIS by the equation

∆t = 16.15
Ld√

(Ep)lab

(∆E)lab

(Ep)lab
, (8)

where ∆t (in ns) is the full width at half-maximum of
the light pulse from the detector placed at the distance
Ld (in cm) from the CIS (it is assumed that, after
the liner reaches the CIS, its further motion is free
motion of the currentless shell); (Ep)lab is the most
probable energy of liner ions in the laboratory system
(in keV); and (∆E)lab is the total width of deuteron
energy distribution in the laboratory system (in keV)
at the distance Ld from the CIS.

Thus, broadening of light signals with increasing
distance between the liner and the CIS characterizes
the corresponding liner ion-energy spread.

Note that changing over from the time dependence
of the liner light intensity measured by the detectors
LD1–LD3 to the energy distribution of liner ions
is based on some assumptions concerning motion
dynamics of an expanding liner plasma (deuterium
liner).

One of the major assumptions is that thermody-
namic equilibrium is established between ions and
excited neutrals in the expanding plasma and its sta-
ble acceleration takes place.1)

By way of example, Fig. 3 displays oscillograms
of signals from the light detectors LD2 and LD3 in a
shot with the deuterium target (shot 1).

Table 2 presents results of processing oscillograms
of LD2 and LD3 pulses in shots 1 and 2.

Figure 4 displays deuteron energy distributions
f(E) and P (E) measured in shot 1 and correspond-
ing to the time distributions in Fig. 3.

1)As shown in [21], the assumptions mentioned hold if the liner
is accelerated in the inverse Z-pinch scheme at distances
larger than 10 cm from the CIS. Therefore, oscillograms of
pulses from the detectors LD2 and LD3 are dealt with in what
follows.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Table 2. Results of analyzing LD2 and LD3 oscillograms

Shot
T3 − T2, (FWHM)t (FWHM)t Vd, Ep, (FWHM)E (FWHM)E

ns LD2, ns LD3, ns 107 cm/s keV LD2, keV LD3, keV

1 69 49.2 84.4 7.1 2.24 1.62 1.86

2 98.6 55.2 139 5.07 1.20 0.90 1.39

Note: T2 and T3 are the times of signals appearing at the output of the detectors LD2 and LD3, respectively; (FWHM)t LD2 and
(FWHM)t LD3 are the full widths at half-maximum of the LD2 and LD3 pulses, respectively; Vd is the deuteron velocity in the
laboratory system found from the time shift of the positions of the LD2 and LD3 pulse vertices;Ep is the most probable c.m. deuteron
energy corresponding to the velocity Vd; (FWHM)E LD2 and (FWHM)E LD3 are the full widths at half-maximum of the deuteron
energy distributions derived for the LD2 and LD3 through changing over from time distributions to energy distributions by formula (8).

Table 3. Experimental data analysis results

Experiment

Shot
Ep, E, Ecoll, Ep

P (E), σP (E),
N

exp
n

S(Ecoll), ∆S(Ecoll),
keV keV keV keV keV keV b keV b

1 2.24 2.52 3.69 3.56 0.57 18.2 ± 3.6 58.2 18.1

2 1.20 1.42 2.45 2.33 0.34 – – –

Calculations

Shot N cal
n

σn
dd(Ecoll), σn

dd(Ecoll + σP (E)), σn
dd(Ecoll − σP (E)),

cm2 cm2 cm2

1 15.5 1.33 × 10−30 3.55 × 10−30 3.84 × 10−31

2 0.077 4.24 × 10−32 1.31 × 10−31 1.04 × 10−32

Note: EpP (E) is the most probable c.m. deuteron energy corresponding to the energy distribution P (E); ∆S(Ecoll) is the root-mean-
square deviation of the astrophysical S factor; σndd is the dd-reaction cross section with neutron production.
For finish processing of the experimental data, the
energy distributions f(E) and P (E) (see Figs. 3 and
4) found by averaging the corresponding distributions
obtained with the detectors LD2 and LD3 were used
for shots 1 and 2.

In Fig. 5, deuteron energy distributions f(E) and
P (E) measured in shot 2 are displayed for illustration
and comparison with results of the analysis of the data
from shot 1 with the CD2 target.

The astrophysical S factor was found by for-
mula (3) with the deuteron energy distribution f(E)
averaged over the LD2 and LD3 data and the mea-
sured yield of detected neutronsN exp

n substituted into
it.

The yield of detected neutrons was found as fol-
lows.

Figure 6 displays the oscillogram of the neutron
spectrometer signals in shot 1. The right and left
arrows indicate the limits of the time interval with-
in which detection of neutrons from the dd reaction
is possible. These limits are dictated by the energy
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
distribution f(E) of accelerated deuterons incident
on the target: the right limit corresponds to liner
deuteron energy Ep − 2σE and the left limit to Ep +
2σE , where σE is the root-mean-square deviation
of the deuteron collision energy over the distribution
f(E).

The middle arrow corresponds to the most prob-
able initial deuteron energy Ep for the distribution
f(E).

As is evident from Fig. 6, in this time interval, there
are two distinct neutron peaks caused by detection of
neutrons from reaction (1) in shot 1. Note that these
peaks result from time overlap of individual events
of neutron detection by the scintillation spectrometer
D1.

Therefore, there arises a problem of finding the
average number of detected dd fusion neutrons from
the shape of the spectrometer D1 signal resulting
from pileup of a few pulses from individual neutron
detection events.
3
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Fig. 4. Liner deuteron energy distributions f(E) and
P (E) measured in shot 1 with the light detectors LD2
and LD3.
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Fig. 5. Liner deuteron energy distributions f(E) and
P (E) measured in shot 2 with the light detectors LD2
and LD3.

To solve the problem, we analyzed the shape of the
signals from the neutron spectrometer exposed to γ
quanta and neutrons from standard sources (137Cs,
60Co, Po–Be, 252Cf, Pu–Be) with varying intensity.
The plastic scintillator light output due to γ quanta
and recoil protons2) coupling in the energy range
corresponding to the maximum recoil proton energy
of 2.5 MeV was used. Using the Monte Carlo method
and taking into account the shape of the neutron
spectrometer scintillation pulse and the time distri-
bution of the neutron radiation intensity, we found
the average number of detected neutrons in the time
interval shown in Fig. 6: N exp

n = 18.2 ± 3.6 (see Ta-

2)Fast neutrons are detected by the plastic scintillator through
detecting recoil protons arising from elastic np scattering.
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Fig. 6. Oscillogram of the pulses from the scintillation
neutron detector D1 in shot 1.
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values found in [16] and [17], respectively; the open circle
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ble 3). The astrophysical S-factor value was derived
by substituting the experimental neutron yield N exp

n

of reaction (1) into (3). It came out to S(Ecoll =
3.69 keV) = 58.2 ± 18.1 keV b (see Table 3).

As to dd reaction cross sections, we calculated
them by (2) with the above S factor for the deuteron-
collision energies

Ecoll + σP (E), Ecoll, Ecoll − σP (E)

(σP (E) is the root-mean-square deviation of the
deuteron-collision energy corresponding to the P (E)
distribution).

Table 3 presents basic characteristics of the energy
distributions f(E) and P (E) for shots 1 and 2, mea-
sured yields of neutrons from reaction (1), astrophys-
ical S factors, and dd-reaction cross sections.

The value of the astrophysical S factor found by
us (see Fig. 1) in shot 1 is its average corresponding
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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to the average deuteron-collision energy determined
by the function P (E). As is evident from Fig. 1,
the measured value of the S factor agrees within the
statistical error with its expected value derived by
extrapolation from the region of “higher” deuteron-
collision energies (7–45 keV) to the region under
consideration.

Figure 7 displays cross sections for the neutron-
yielding dd reaction at deuteron-collision energies
Ecoll, Ecoll + σP (E), Ecoll − σP (E) calculated by for-
mula (2) with the S-factor value from [18].

As is evident from the figure, the results are quite
well described by dependence (2).

As to analysis of shot-2 data, we did not observe
any excess of the neutron yield over the background
level. This agrees with the measured liner deuteron
energy distribution in shot 2 (see Fig. 5). The ex-
pected yield of detected neutrons in shot 2 (Nn ≈
2 × 104 into the solid angle of 4π), calculated by
formula (3) with the function f(E) found for this shot,
turned out to be well below the neutron detection
system sensitivity threshold Nthresh = 5 × 105.

Some of the most significant factors giving rise
to uncertainties of the measured S factor and dd-
reaction-cross-section values should be pointed out:

(i) uncertainty of the position of the light de-
tectors LD2 and LD3 in space with respect to the
CIS: 0.5 mm;

(ii) inaccuracy in determination of the liner mass
(and thus the number of incident deuterons) within
the zero-dimensional model by analysis of the data
from the magnetic dB/dt probes: 15%;

(iii) inaccuracy in the neutron detection efficiency
of the scintillation spectrometer found by measure-
ments with standard 252Cf and Pu–Be sources and
by Monte Carlo calculations: 10%;

(iv) inaccuracy in the number of incident liner
deuterons caused by angular divergence of the radi-
ally expanding plasma flux on the way between the
CIS and the CD2 target (on the basis of bolomet-
ric investigations of the liner acceleration dynam-
ics [2]): 5%;

(v) errors in determination of the parameters of
liner deuteron energy distributions arising from trans-
formation of time distributions of signals from optical
detectors LD2 and LD3 into energy distributions, the
average errors in determination of Ep, E, Ecoll, and
EpP (E) and the dispersions of the deuteron energy

distribution functions f(E) and P (E) amounting to
about 10%;

(vi) inaccurate knowledge of the ion–ion collision
temperature in the determination of the liner deuteron
path in a solid target, this error amounting to about
7%.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
Considering all the above causes of uncertainties,
we found the resulting errors in the quantities of in-
terest (see Table 3).

Finally, the following should be mentioned. The
results of the present experiment indicate that the use
of the liner plasma in the inverse Z-pinch scheme and
the proposed method for measuring the energy dis-
tribution of accelerated deuterons allow reactions be-
tween light nuclei to be investigated in the ultralow-
energy region, which is practically inaccessible with
use of classical accelerators.

With a higher generator current (and thus a larger
number of accelerated liner ions) and a larger number
of light detectors and magnetic dB/dt probes, it will
undoubtedly be possible to obtain more precise infor-
mation on characteristics of nuclear reactions in such
a poorly studied region of ultralow-energy collisions
of strongly interacting particles.
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Abstract—Within the quantum-mechanical theory of the nuclear-fission process, the conditions of the
emergence of coherent effects in the angular distributions of fragments originating from the binary and
ternary fission of polarized nuclei are analyzed with allowance for the properties of transition fission
states. In the case of ternary fission, the coefficients of P-odd asymmetry in the angular distributions of
a light particle and a third particle, which is taken here to be an alpha particle, are calculated under the
assumption that the third particle and two fragments are produced through a one-step mechanism. In
order to confirm the ideas developed here, it is proposed to repeat, at a higher level of statistical accuracy,
experiments devoted to seeking P-odd asymmetries for alpha particles in the ternary fission of nuclei.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Parity violation in binary nuclear fission (we label

relevant quantities with the index b) induced by po-
larized thermal neutrons was discovered by Danilyan
et al. [1] in analyzing the P-odd-asymmetry coeffi-
cient αbLF defined in a standard way. This asymmetry
is associated with the emergence of the P-odd corre-
lation (σσσn · kLF) in the normalized (to unity) angular
distributions of fission fragments, σσσn and kLF being,
respectively, the neutron spin and the light-fission-
fragment wave vector. For 233U target nuclei, this
coefficient proved to be [2]

αbLF = (4 ± 0.17) × 10−4. (1)

Investigation of similar correlations in the ternary
fission of 233U nuclei (here, the index t is used to label
quantities associated with this fission channel) that is
induced by polarized thermal neutrons was performed
in [3, 4]. For the relevant asymmetry coefficient αtLF,
this yielded a value close to that of the coefficient αbLF
for the binary fission of the same nucleus; that is,

αtLF = αbLF(1.05 ± 0.10). (2)

Petrov et al. [5] and Goennenwein et al. [6] inves-
tigated P-odd correlations of the form (σσσn · k3) in the
angular distributions of a third particle emerging in
ternary nuclear fission induced by polarized thermal
neutrons, k3 being the wave vector of the third parti-
cle, an alpha particle here. For 233U target nuclei, the
asymmetry coefficient αt3 defined in a standard way
proved to be

αt3 = (0.60 ± 0.40) × 10−4; (3)
1063-7788/03/6609-1691$24.00 c©
αt3 = (0.9 ± 1.3) × 10−4.

Thus, we see that the coefficient αt3 (3) is much
less in magnitude than the coefficient αtLF (2), the
value of αt3 remaining uncertain at the level of pre-
cision achieved in the experiments reported in [5, 6].

Parity-nonconservation effects in binary nuclear
fission induced by polarized resonance neutrons were
theoretically investigated by Sushkov and Flam-
baum [7] and by Bunakov and Gudkov [8], the
effect of dynamical enhancement in the mixing of
opposite-parity states because of the influence of
weak nucleon–nucleon forces being taken into ac-
count at the stage of compound-nucleus formation in
both of these studies.

The asymmetry coefficient αbLF was estimated
in [7] under some assumptions, and the result proved
to be in agreement with its experimental value in (1).

A qualitative analysis of P-odd effects in the
ternary fission of nuclei revealed [9] that the co-
efficients αbLF and αtLF are expected to have close
values. At the same time, it follows from the analysis
in [9] that, depending on the mechanism of ternary
nuclear fission, two versions of values are possible
for the coefficient αt3. For the one-step mechanism
consisting in the simultaneous rupture of the fissile-
nucleus neck in two sections, with the result that
two fragments and a third particle emerge at the
same instant, it was concluded that the asymmetry
coefficients αtLF and αt3 take similar values. For the
two-step (sequential) mechanism of ternary fission,
in which case a single rupture of the fissile-nucleus
2003 MAIK “Nauka/Interperiodica”
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neck at the first step, with the formation of two fission
fragments, is followed by the emission of a third
particle from one of the fragments at the second stage,
the conclusion drawn in [9] is that the coefficient
αt3 must be close to zero because there are a great
number of statistically independent channels of the
emission of the third particle.

In [10], it was argued that the experimental values
of the coefficient αt3 in (3) are indicative of its prox-
imity to zero, whence it was deduced, in accordance
with the ideas developed in [9], that the ternary fission
of nuclei proceeds through the two-step mechanism.

On the basis of the theory of open Fermi sys-
tems [11], methods developed in analyzing the an-
gular distributions of protons emitted by polarized
nuclei [12, 13], and A. Bohr’s concept of transition
fission states [14], a quantum-mechanical approach
was developed in [15, 16] that made it possible to
describe the binary fission of nuclei. This approach,
supplemented with the adiabatic approximation for
the asymptotic region of the fissile system, permitted
obtaining the explicit dependence of the amplitudes
of partial fission widths and of potential fission phase
shifts on spins, relative orbital angular momenta, and
the orientation of the symmetry axes of fission frag-
ments. In [17], this approach was generalized to the
case of ternary nuclear fission.

The objective of the present study is to analyze
parity-nonconservation effects in binary and ternary
nuclear fission by using the results obtained in [15–
17] and to explore, on this basis, the mechanism of
ternary nuclear fission.

2. CONDITIONS OF THE EMERGENCE
OF COHERENT INTERFERENCE EFFECTS

IN BINARY NUCLEAR FISSION

Binary nuclear fission is characterized by a great
number of open fission channels (about 1010) where
fission fragments may differ in atomic weight, charge,
and structure. In order to explain coherent interfer-
ence effects in the energy dependence of cross sec-
tions for nuclear-fission processes induced by reso-
nance and thermal neutrons, as well as in the an-
gular distributions of fragments originating from the
fission of polarized nuclei, in P-even- and P-odd-
asymmetry coefficients, and in other features of the
fission process, A. Bohr [14] proposed a quantum-
mechanical concept according to which a moder-
ately small number of transition fission states that
are formed at the saddle point of the deformation
potential of a fissile nucleus play a dominant role
in the fission process, controlling basic properties of
nuclear fission, including the scission of the nucleus
undergoing fission into fragments and the structure
PH
of its states in the asymptotic region of large rela-
tive distances R = R1 − R2 between the centers of
mass, Ri, of a light (i = 1) and the complementary
heavy (i = 2) fission fragment. However, a consistent
application of this concept brings about questions
concerning the properties of the amplitudes of partial
fission widths and of potential fission phase shifts for
various fission channels since these are the quantities
that determine the character of interference effects
in fission. No solution to relevant problems can be
obtained without describing the fission process within
a quantum-mechanical approach that would explic-
itly employ the concepts of fission phase shifts and
widths. A version of such a theory for binary nuclear
fission was developed in [15, 16].

Our further consideration will deal with the ex-
ample of binary nuclear fission induced by resonance
neutrons. In this case, the initial stage of the fission
process involves the formation of compound-nucleus
states that are characterized by a spin J ; its projection
M onto the z axis in the laboratory frame; a parity π;
and other quantum numbers σ, including the atomic
weight A and the charge of the nucleus, and which
are described by the wave functions ΨJMπ

σ . Since the
effect of Coriolis interaction on the structure of states
of the axisymmetric deformed compound nucleus is
dynamically enhanced, there occurs the mixing of
compound-nucleus states having a fixed value of the
projectionK of the nuclear spin J onto the symmetry
axis (the corresponding wave functions are denoted
by ΨJMπ

σK ) [18], which is taken to be coincident with
the z′ axis of the intrinsic coordinate system of the
nucleus. In view of this, it is convenient to represent
the fissile-nucleus wave function ΨJMπ

σ in the form
[18, 19]

ΨJMπ
σ =

∑
K

αJσKΨJMπ
σK , (4)

where the signs of the coefficients αJσK are distributed
at random, while their absolute values are equal to
(2J + 1)−1/2.

Using A. Bohr’s concept of transition fission
states [14], we single out, in the wave function
ΨJMπ
σK , the component associated with thewave func-

tions ΨJMπ
rKK

describing the aforementioned transition
states [7]; that is, we write it as

ΨJMπ
σK =

∑
νK

γJπσKνKϕ
JMπ
νKK +

∑
rK

γJπσKrKΨJMπ
rKK , (5)

where Nσ wave functions ϕJMπ
νKK

that are associated
with particle–hole nucleon excitations of nucleus A
form a nucleon basis ofWigner randommatrices [14].

The wave functions ΨJMπ
rKK

(βλ) for transition fis-
sion states describe the evolution of an axisymmetric
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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fissile nucleus in its collective deformation variables
βλ (λ = 2, 3, . . .) from the saddle point of the defor-
mation potential V (βλ) of the nucleus, where βλ has
a single value βλ = βsad

λ , to the scission point of the
nucleus (R = Rsc), where it disintegrates into fission
fragments. Since a path from the point βλ = βsad

λ to
the scission point may lie in n different valleys of the
deformation potential, which lead to different values
of βsc

λn, the wave function for the JπrKK transition
fission state at R = Rsc can be represented as the
superposition

ΨJMπ
rKK (βsc

λ ) =
∑
n

SJπrKKnΨ
JMπ
nK , (6)

where the coefficients SJπrKKn have a dynamical char-
acter and the wave function ΨJMπ

nK for the JπnK
fission state corresponds to a specific shape of the
fissile nucleus at its scission point, this shape being
determined by the deformation parameters βsc

λn.

The coefficients γJπσKνK and γJπσKrK in (5) have a
random character, the mean values of their squares
being approximately given by [7]

〈(γJπσKνK )2〉 ≈ 〈(γJπσKrK )2〉 ≈ 1
Nσ

.

In the asymptotic region of the fissile system—that
is, at large distances between fission fragments—the
behavior of the wave function for the transition fission
state in question is [15, 16]

ΨJMπ
rKK →

∑
cJ1J2jL

UJMπ
cJ1J2jL

eikcJ1J2R

R
(7)

× e
iδJπcJ1J2jL

√
ΓJπrKKcJ1J2jL

�vcJ1J2

,

where the index c comprises spin projectionsKi; par-
ities πi; and other quantum numbers σi, including the
atomic weights Ai, charges Zi, and deformations βλi
of primary fission fragments, while kcJ1J2 and vcJ1J2

are, respectively, the wave vector and the velocity of
the relative motion of fragments in the cJ1J2 chan-
nel. The term “primary fission fragments” reflects
the fact that, upon the scission of a fissile nucleus,
these fragments are produced in states characterized
by strongly nonequilibrium values of the deformation
parameters βλi. In the course of the subsequent evo-
lution of these fragments, they appear to be in highly
excited states and then deexcite through the emission
of prompt neutrons and photons, transforming into
final fission fragments that occur in ground or long-
lived isomeric states, which are usually recorded by
detectors. In the following, we restrict our consider-
ation to the first stage of the fission process—that is,
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a stage that results in the formation of primary fission
fragments.

Expression (7) involves the channel function
UJMπ
cJ1J2jL

, which possesses correct transformation
properties under time inversion [20],

UJMπ
cJ1J2jL (8)

=
{

ΨJ1M1π1
σ1K1

{ΨJ2M2π2
σ2K2

iLYLML
(Ω)}jmj

}
JM

,

where Ω ≡ (θ, ϕ) is a solid angle that is associated
with the direction of the radius vector R in the lab-
oratory frame, the braces denote the vector coupling
of angular momenta, L is the relative orbital an-
gular momentum of primary fission fragments, the
parity π is found from the parity-conservation law
π = π1π2(−1)L, and the index c is defined as c ≡
σ1K1π1σ2K2π2.

Expression (7) also involves the amplitude√
ΓJπrKKcJ1J2jL

of the partial fission width of a transi-

tion fission state. This amplitude is defined as [15, 16]√
ΓJπrKKcJ1J2jL

=
√

2π (9)

×
〈
UJMπ
cJ1J2jL

ϕJπcJ1J2jL
(R)

R
|HA| (ΨJMπ

rKK )sh

〉
.

Here, HA is the total Hamiltonian of the fissile
nucleus in question and the function (ΨJMπ

rKK
)sh

describes the transition fission state in the internal
(shell) region of the fissile nucleus (from the saddle
point to the point at which nucleus A undergoes
scission into fragments), where nucleus A has a
simply connected shape and where the ideas of a
generalized model of a nucleus are valid with al-
lowance for the shell properties of the nucleon modes
of motion. In (9), ϕJπcJ1J2jL

(R) is a regular radial wave
function that describes the relative motion of fission
fragments in the region of a continuous spectrum and
which is normalized to a delta function of energy, its
asymptotic behavior for R → ∞ being

ϕJπcJ1J2jL(R) →
√

2
π�vcJ1J2

(10)

× sin
(
kcJ1J2R− Lπ

2
| + δJπcJ1J2jL

)
.

This asymptotic behavior determines the fission
phase δJπcJ1J2jL

, which appears in (7) and which
coincides with the phase shift for the potential scat-
tering of fragments on each other, since, by con-
struction [15,16], the function ϕJπcJ1J2jL

(R) does not
involve resonances associated with the formation of a
compound nucleus.
3
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From the structure of the integral formula (9),
where the function (ΨJMπ

rKK
)sh decreases exponen-

tially beyond the shell region, while the function
ϕJπcJ1J2jL

(R) decreases exponentially toward the inte-
rior of this region, it follows that themain contribution
to the partial-width amplitude (9) comes from the
region of R values that is adjacent to the point R =
Rsc, at which the parent nucleus undergoes breakup
into fission fragments.

Considering primary fission fragments as ax-
isymmetric nuclei, we can represent, in the strong-
coupling approximation, their wave functions
ΨJiMiπi
σiKi

, which appear in the definition (8) of the
channel function, in the form [14]

ΨJiMiπi
σiKi

=

√
2Ji + 1
16π2

[
1 + δKi,0

(
1√
2
− 1
)]

(11)

×
{
DJi
MiKi

(ωi)χ
πi
σiKi

(qi(ωi))

+ (−1)Ji+KiDJi
Mi−Ki(ωi)χ

πi
σiKi

(qi(ωi))

}
,

where DJ
MK(ωi) is a generalized spherical harmonic

depending on the Euler angles (αi, βi, γi) ≡ ωi that
determine the orientation of the axes of the intrinsic
coordinate frame of the ith fragment with respect to
the axes of the laboratory frame, χπiσiKi is the intrinsic
wave function describing this fragment and depend-
ing on the set of its internal coordinates qi(ωi), and
χπi
σiKi

is its time-reversed counterpart.

The asymptotic behavior (7) of transition fission
states makes it possible to conclude that, because
of the orthogonality of the intrinsic wave functions
χπiσiKi describing fission fragments and corresponding
to different values of the indices πiσiKi, it is necessary
for the emergence of coherent interference effects in
the angular distributions of fission fragments that,
for a fixed transition fission state characterized by
the quantum numbers JπrKK, the reduced-width
amplitudes (9) be dependent on the indices J1J2jL
dynamically rather than statistically in a chaotic way.
But for coherent interference effects to emerge in the
coefficients of P-odd asymmetries, it is also neces-
sary that the JπrKK transition fission states that are
characterized by opposite parities, π and π = −π, and
which are involved in the formation of these asym-
metries have the same structure of intrinsic wave
functions.

Sushkov and Flambaum [7] relied on the assump-
tion that, even at the saddle point βλ = βsad

λ of the
deformation potential, the JπrKK transition fission
states correspond to a pearlike axisymmetric shape
PH
of the fissile nucleus, in which case the octupole-
deformation parameter βsad

3 has a static character and
differs from zero significantly. In this case, the wave
functions for transition fission states can be repre-
sented in the form [20]

ΨJMπ
rKK =

√
2J + 1
16π2

[
1 + δK,0

(
1√
2
− 1
)]

(12)

×
{
DJ
MK(ω)χrKK(q(ω))

+ (−1)J+KπDJ
M−K(ω)χrKK(q(ω))

}
i
1−π

2 ,

where ω ≡ (α, β, γ) are the Euler angles for the fissile
nucleus and the functions χrKK(q(ω)), which are
determined by the total set of internal coordinates
q(ω) of nucleus A, correspond to values of βsad

3 > 0
and are independent of the parity π. This assumption
was severely criticized by Bunakov and Gudkov [8],
who indicated that it is in conflict with the results de-
duced from an analysis of experiments devoted to the
low-energy photofission of nuclei [14]: according to
this analysis, the static octupole deformations at the
saddle point of the deformation potential are βsad

3 = 0,
as a rule. It follows that, at the saddle point βsad

λ , a
fissile nucleus may have only dynamical values of the
parameter βsad

3 that correspond to octupole vibrations
of the nucleus.

It is physically clear, however, that, for the case of
strongly asymmetric fission, the fission states ΨJMπ

nK
(6) in the vicinity of the scission pointR = Rsc (where
the fissile nucleus being considered disintegrates
into fragments) correspond to pearlike shapes of
the fissile nucleus at nonzero static values of the
octupole-deformation parameters βsc

3n. In this case,
formula (12), with the subscript nK being substituted
for the subscript rKK, can be used to describe
the fission states ΨJMπ

nK . Considering that, in the
fission of a nucleus from JπnK prescission states
characterized by different values of n, there arise
fission fragments in states where the indices c differ
significantly, we can then represent the fission width
of the Jπσ compound state in the form

ΓJπσ =
∑
rKK

(αJσK)2(γJπσKrK )2ΓJπrKK , (13)

where the fission width ΓJπrKK of the JπnK transition
fission state is

ΓJπrKK =
∑
n

(sJπrKKn)
2ΓJπnK ; (14)

ΓJπnK =
∑
c

ΓJπnKc =
∑

cJ1J2jL

ΓJπnKcJ1J2jL.
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Here, the amplitude
√

ΓJπnKcJ1J2jL
of the width with

respect to fission from the fission state ΨJMπ
nK is given

by (9), with the corresponding component of the
function (ΨJMπ

nK )sh being substituted for (ΨJMπ
rKK

)sh.
For s- and p-wave neutron resonances, the coeffi-

cients αJσsK and αJσpK coincide in magnitude, while

the coefficients γJπσsKrK and γJπσpKrK have close ab-
solute values and variances owing to the proxim-
ity of the numbers Nσs and Nσp of basis nucleon
states. If the differences ∆EJ

rKK
of the energies of

the JπrKK transition fission states characterized by
opposite parities, π and π = −π, are so small at the
saddle point that they affect only slightly factors that
describe the penetrability of the potential fission bar-
rier, the mean values of the coefficients sJπrKKn (they
control the transition from the above fission states to
the JπnK states) will be weakly dependent on the
parities π and π and on the spins J . In this case,
it follows from (13) that the total fission widths ΓJπσs
and ΓJπσp of the s- and p-wave neutron resonances
are rather close, and so are the variances of these
widths. It would be of interest to verify this conclu-
sion in analyzing P-even and P-odd correlations in
the binary fission of nuclei, since the idea that the
fission widths of s- and p-wave neutron resonances
are close is used in estimating the coefficients of the
corresponding asymmetries in [7–9].

In order to obtain the dynamical dependence of the

partial-fission-width amplitudes
√

ΓJπncJ1J2jL
on the

indices J1J2jL, one can use the adiabatic approxima-
tion for the asymptotic region of the fissile nucleus,
where primary fission fragments have already been
formed. This approximation is based on fulfillment
of two conditions whose validity was analyzed in
[15, 16]:

(i) The first requires that the centrifugal potential
�

2(L + 1)L
2µcR2

, where µc is the reduced mass of fission

fragments, be much smaller than the kinetic energy
Ekin(Rsc) of the fragments at the scission point R =
Rsc, where the nucleus disintegrates into fragments.

(ii) The second requires that the excitation en-
ergies Eπi

σiJiKi
of the rotational bands built in the

fission fragments on the basis of the fixed intrinsic
states χπiσiKi of these fragments be much smaller than
Ekin(Rsc).

If these conditions are satisfied, the potential fis-
sion phase shifts δJπcJ1J2jL

are independent of the in-
dices JπJ1J2jL, while the partial-fission-width am-

plitudes
√

ΓJπncJ1J2jL
are independent of the index
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π and are dependent on the indices JJ1J2jL only
through Clebsch–Gordan coefficients and through
simple dynamical factors [15, 16].

In order to describe the normalized (to unity) an-
gular distributions dP J

MK(Ω)/dΩ of fragments origi-
nating from the binary fission of nuclei and having a
spin J and its projections M and K, use is tradition-
ally made of the A. Bohr formula [14]

dP J
MK(Ω)
dΩ

(15)

=
2J + 1

4π
[|DJ

MK(ω)|2 + |DJ
M−K(ω)|2]β=θ.

This formula corresponds to the simple physical as-
sumption that, in the intrinsic coordinate frame, frag-
ments emerging from the fission of an arbitrary JπnK
fission state through any physical channel c are emit-
ted in a direction that is parallel or antiparallel to
the symmetry axis of the fissile nucleus. Since the
solid-angle element dΩ′ specifying the direction of
the radius vector R in the intrinsic coordinate frame
can be represented in the form dΩ′ = sin θ′dθdϕ′ =
−dξ′dϕ′, where ξ′ = cos θ′, the amplitudes of the an-
gular distributions of fragments in the intrinsic coor-
dinate frame of the fissile nucleus are then described
by delta functions of the form δ(ξ′ ± 1). These delta
functions can be represented as

δ(ξ′ ± 1) =
Lm∑
L=0

2πYL0(ξ′)YL0(±1) (16)

=
Lm∑
L=0

√
(2L + 1)πYL0(ξ′)PL(±1),

where the spherical harmonic YL0(Ω′) = YL0(θ′) is
written in the form YL0(ξ′), which is related to the
Legendre polynomial PL(ξ′) [recall that PL(+1) = 1
and PL(−1) = (−1)L], and where the quantity Lm
must be considered in the limit Lm → ∞. For-
mula (16) reflects the quantum-mechanical uncer-
tainty principle relating the operator (L̂)2 and the
square of the angle θ′.

As was shown in [15, 16], formula (15) is approx-
imately valid if the adiabaticity conditions considered
above and twomore conditions are satisfied. First, the
symmetry axes of primary fission fragments must be
approximately parallel at the first stage of fission to
the symmetry axis of the fissile nucleus—that is, ω1 ≈
ω2 ≈ ω. Second, the amplitude of the angular distri-
bution of fission fragments in the intrinsic coordinate
frame of the fissile nucleus must have the form (16) at
finite but large values of Lm—that is, the angular part
of the wave function describing the relative motion of
3
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fission fragments must be a coherent superposition of
the form

FLm(θ′) = b(Lm) (17)

×
{
Lm∑
L=0

√
(2L + 1)πYL0(ξ′)[1 + (−1)Lππ1π2]

}
,

where the constant b(Lm) is determined from the
condition requiring that the function |FLm(θ′)|2 be
normalized to unity. For finite values of Lm, angu-
lar distributions of fission fragments deviate from
those that are predicted by formula (15). The anal-
ysis performed in [21], where the angular distribu-
tions of fragments originating from the subthreshold
photofission of nuclei were investigated with al-
lowance for the mean values obtained for the spins of
primary fission fragments from the examination of the
multiplicities and multipolarities of prompt photons
emitted by these fragments, revealed, however, that
Lm values are quite large (20 < Lm < 25). Owing
to this, the A. Bohr (15) formula proves to be quite
accurate in many cases.

Using the approximation specified by the A. Bohr
formula (15) and following the methods developed
in [15,16], we can represent the asymptotic expres-
sion for the fission-state wave function ΨJMπ

nK in the
form

ΨJMπ
nK (18)

∼
∑
c

{DJ
MK(ω)fc + (−1)J+KπDJ

M−K(ω)fc}θ=β

×

√
ΓJnKc
�vc

eikcR

R
,

where the width ΓJπnKc, which is given by Eq. (14), is
denoted by ΓJnKc since it is independent of parity and
where the function fc is written as

fc = χπ1
σ1K1

χπ2
σ2K2

+ (−1)J1+K1χπ1

σ1K1
χπ2
σ2K2

(19)

+ (−1)J2+K2χπ1
σ1K1

χπ2

σ2K2

+ (−1)J1+J2+K1+K2χπ1

σ1K1
χπ2

σ2K2

and is nonzero under the condition that the indicesKi
on the functions χπiσiKi and χπi

σiKi
satisfy the equality∑

iKi = K. The function fc is the time-conjugate
counterpart of fc.

3. PARITY-NONCONSERVATION EFFECTS
IN THE BINARY-FISSION OF NUCLEI

It was shown in [7, 8] that, in the case where the
fission of unpolarized target nuclei having a spin I
and a parity π is induced by polarized neutrons whose
PH
polarization vector σσσn is aligned with the z axis of the
laboratory coordinate frame, P-odd asymmetries in
the angular distributions of fission fragments are the
most pronounced if the fission process is initiated by
s-wave neutrons of orbital angular momentum ln =
0 and total spin jn = 1/2 that are captured by the
target nucleus with the formation of s-wave neutron
resonance states of spin J = J± = I ± 1/2 and parity
π that are described by the wave functions ΨJMπ

σs of
the form (4). Owing to weak nucleon–nucleon forces,
the wave functions ΨJMπ

σp of neighboring p-wave res-
onances of spin J and parity π = −π are admixed to
the wave function for the s-wave resonance formed,
with the result that the wave function ΨJMπ

σs assumes
the form

ΨJMπ
σs → ΨJMπ

σs + βJσsσpΨ
JMπ
σp , (20)

where

βJσsσp =
〈ΨJMπ

σp |HW |ΨJMπ
σs 〉

E − EσpJ + iΓσpJ/2
. (21)

Here, EσpJ and ΓσpJ are, respectively, the energy and
the total width of a p-wave resonance; E is the energy
of the incident neutron; andHW is the Hamiltonian of
weak nucleon–nucleon interaction.

In the wave functions of s- and p-wave neutron
resonances, we isolate fission states (which are spec-
ified by the index n) by using Eqs. (5) and (6). In order
to obtain P-odd coherent interference effects in the
angular distributions of fission fragments, we restrict
our consideration, for the sake of simplicity, to the
case where the fission process involves only one s-
and one p-wave resonance of fixed spin J , disregard-
ing the interference between resonance states of spin
J = J+ and J = J−. To take into account a greater
number of s- and p-wave neutron resonances and
the interference between the J = J+ and J = J− spin
states, one can make use of the methods developed
in [7]. Following the same line of reasoning as in [7],
we can represent the cross section for binary nuclear
fission induced by polarized s-wave neutrons in the
form

dσb(Ω)
dΩ

≡ σb(θ) (22)

∼
∑
rKnK

ΓJbnK{AJ0rKKn + P1(ξ)AJ1rKKn},

where

AJ0rKKn = (γJπσsKrk α
J
σsK sJπrKKn)

2; (23)

AJ1rKKn = 2Re(βJσsσp)
K(−1)J−I−1/2

I + 1/2
(24)

× γJπσsKrKγ
Jπ
σpKrK

αJKσsα
J
Kσps

Jπ
rKKn

sJπrKKn.
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Defining the coefficient of P-odd asymmetry in the
angular distribution of binary-fission fragments, αbLF,
as

αbLF =
σb+ − σb−
σb+ + σb−

,

where σb+ =
dσb(0◦)

dΩ
and σb− =

dσb(180◦)
dΩ

, and using

Eq. (22), we then obtain

αbLF =

∑
rKnK

ΓJbnKAJ1rKKn∑
rKnK

ΓJbnKAJ0rKKn
. (25)

Retaining, in (25), only one state characterized by
fixed values of rK , n, and K, one can go over to the
analogous formula obtained in [7] for αbLF.

4. P-ODD ASYMMETRIES IN THE TERNARY
FISSION OF NUCLEI

By employing the concept of the one-step ternary-
fission mechanism and the results presented in [17],
we can write the double-differential cross section for
ternary nuclear fission induced by polarized reso-
nance neutrons in the form

d2σt

dΩdΩ3
=

dσt(Ω)
dΩ

(M(θ̃3))2, (26)

where Ω3 ≡ (θ3, ϕ3) is the solid angle specifying the
direction of third-particle emission in the laboratory

frame and the differential cross section
dσt(Ω)
dΩ

is

given by expression (22) in which the amplitude√
ΓJbnK of the width with respect to binary fission from

the JπnK fission state is replaced by the amplitude√
ΓJtnK of the width with respect to ternary fission

occurring from the same state and leading to the
emission of a third particle. The function M(θ̃3) is
defined as

M(θ̃3) =
∑
l

blYl0(θ̃3), (27)

where l is the orbital angular momentum of the third
particle with respect to the center of mass of the
light and heavy fission fragments and θ̃3 is the angle
between the momenta of the third particle and the
heavy fragment. The spherical harmonic Yl0(θ̃3) can
be represented in the form

Yl0(θ̃3) =
∑
m

Y ∗
lm(Ω3)Ylm(Ω)

√
4π

2l + 1
(28)

= (−1)l{Ylm(Ω)Yl−m(Ω3)}00

√
4π,
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where the braces denote the vector composition of
the angular momenta of the spherical harmonics in-
volved, the total angular momentum formed in this
way being zero. It follows that the function M(θ̃3) is
a scalar function, so that the inclusion of this function
does not change the total spin of the fissile system.

If we disregard parity-nonconservation effects in
(22), in which case βJσsσp = 0, the angular distribu-
tion (26) assumes the form

d2σt

dΩdΩ)3
=

dσt0(Ω)
dΩ3λ

(M(θ̃3))2, (29)

where
dσt0(Ω)
dΩ

is given by (22) with AJ1rKKn = 0 and

is independent of either the solid angle Ω or the polar-
ization vector σσσn of incident neutrons. Choosing the
z axis in the laboratory frame to be aligned with the
direction of light-fragment emission, we then obtain
the normalized (to unity) angular distribution of the
third particle in the form

dW3(θ3)
dΩ3

=

(∑
l

blYl0(θ3)

)2

, (30)

where, by virtue of the orthonormality of the spherical
harmonics Yl0(θ3), the coefficients bl satisfy the nor-
malization condition∑

l

b2l = 1. (31)

For the resonance-neutron-induced ternary fis-
sion of 235U target nuclei, the coefficients bl from
formula (27) were calculated in [17] with the aid of
representation (30) for the normalized (to unity) ex-

perimental angular distribution
dW expt(θ3)

dΩ3
of a third

particle, which was taken to be an alpha particle. The
results of that calculation were presented in the table
of [17]. Since the experimental angular distributions

of alpha particles,
dW expt(θα)

dΩα
, for the ternary fission

of 235U target nuclei are close to the analogous an-
gular distributions for ternary fission of 235U nuclei,
those results can also be used for 235U target nuclei.
As can be seen from the table of [17], the coefficients
bl for the even values of l = 0, 2, and 4 are much
greater in magnitude than those for odd values of l
because the angle of θmα ≈ 82.4◦, which corresponds

to a maximum in the angular distribution
dW (θα)
dΩα

,

is close to the angle of 90◦, for which the values of the
spherical harmonics Yl0(θα) for odd l are strictly equal
to zero.
3
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In order to describe P-odd asymmetry that is as-
sociated with a correlation of the form (σσσn · kLF) in
the angular distribution of fragments originating from
ternary nuclear fission induced by polarized reso-
nance neutrons, it is convenient to fix the direction of
light-fragment emission along or against the z axis of
the laboratory frame, this axis being aligned with the
direction of the neutron-polarization vectorσσσn, and to
record an alpha particle at an angle of 90◦ with respect
to the z axis. In this case, we have θ3 = 90◦, and none
of the odd harmonics in l contributes to the angu-

lar distribution
dW3(90◦)

dΩ3
= (
∑

l blYl0(90
◦))2 of the

third fragment. Since this distribution is identical for
the directions of light-fragment emission along and
against the z axis, the angular-asymmetry coefficient
αtLF assumes the form

αtLF =

∑
rKnK

ΓJtnKAJ1rKKn∑
rKnK

ΓJtnKAJ0rKKn
. (32)

The expression obtained for αtLF differs from ex-
pression (25) for the analogous asymmetry coefficient
αbLF in the case of binary nuclear fission only by the

replacement of the amplitudes
√

ΓJbnK of the widths

with respect to binary fission from the JπnK fission

states by the analogous amplitudes
√

ΓJtnK of widths

with respect to ternary fission proceeding from the
same fission states and leading to the emission of an

alpha particle. It follows that, if the ratios qα =
ΓJαnK
ΓJbnK

are identical for all fission states characterized by fixed
values of J and different values of πnK, then the P-
odd-asymmetry coefficient αtLF (32) for the ternary
fission of nuclei is coincident with the asymmetry
coefficient αbLF (25) for the binary fission of nuclei.
Since the experimental values of the coefficients αtLF
and αbLF are close, as can be seen from (1) and (2), the
above implies that qα depends only slightly on the type
of JπnK state. This result indicates that the angular
distributions of a third particle in ternary fission are
determined primarily by the character of its nuclear
and Coulomb interactions with fission fragments and
are universal for all vJ1J2βjL channels [17] of ternary
nuclear fission that possess close values of the mass-

asymmetry coefficient R0 =
AH
AL

, where AH and AL

are the masses of, respectively, a heavy and the com-
plementary light fission fragment. With the aim of
examining the dependence of the ratio qα on the prop-
erties of JπnK fission states, it would be of interest
PH
to continue experimentally studying the coefficients
αtLF for the case of those target nuclei for which the
coefficients αbLF have already been determined.

For the ternary fission of nuclei that is induced by
polarized resonance neutrons, we will now consider
the asymmetry coefficient αt3 associated with corre-
lations of the form (k3 · σσσn) in the angular distribu-
tions of a third particle. The most convenient way to
explore this asymmetry is to detect the emission of
alpha particles along or against the vector σσσn with-
out recording the first and second fission fragments,
which corresponds to integrating the angular distri-
bution in (26) with respect to all emission angles of
the light fragment. Upon employing formulas of the
type

Ylm(Ω)Yl′−m(Ω) =
∑
λ

[
(2l + 1)(2l′ + 1)

(2λ + 1)4π

]1/2

× Yλ0(Ω)Cλ0
ll′m−mCλ0

ll′00

and taking into account the orthonormality condition
for Clebsch–Gordan coefficients,∑

m

C10
ll′m−mCλ0

ll′m−m = δλ,1,

the angular distribution (26) then reduces to a distri-
bution of the form

dW (Ωα)
dΩα

∼
∑
rKnK

ΓJαnK{AJ0rKKn (33)

+ P1(ξα)ηαAJ1rKKn},
where the factor ηα is given by

ηα =
∑
ll′

blbl′(C10
ll′00)

2

[
(2l + 1)(2l′ + 1)

9

]1/2

. (34)

Under the condition that the third particle is an alpha
particle, the coefficient αt3 then takes the form

αt3 = ηαα
t
LF, (35)

where the coefficient αtLF is given by (32).

A calculation of the coefficient ηα for 233U and
235U target nuclei with the values of the coefficients bl
from the table of [17] yields a value of ηα = 0.116. We
note that, if only the l, l′ = 0, 1 terms are retained in
expression (34), the result becomes ηα = 0.11. If, for
233U, the value in (2) is used for the coefficient αtLF,
the result for the coefficient αt3 is

αt3 = (0.44 ± 0.02) × 10−4. (36)

A comparison of the coefficient in (36) with its
experimental values obtained in [5, 6] and presented
in (3) makes it possible to conclude that, for the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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nonzero value of the coefficient αt3 in (36) to be de-
tected experimentally, it is sufficient to improve the
statistical accuracy of the experiment by a factor of 4.

Since, with increasing mass-asymmetry coeffi-
cient R0, the angle θ̃mα at which the angular distri-
bution of alpha particles with respect to the direction
of light-fragment emission has a maximum is shifted
toward angles smaller than 90◦ [22], it would be of
interest to discover experimentally a change in the
P-odd-asymmetry coefficient αt3 from zero value at
R0 = 1 to maximum values at R0 = 2.

In our theoretical investigation of the coefficient
αt3, we used the concept of the one-step ternary-
nuclear-fissionmechanism according to which a third
particle and two fission fragments emerge simulta-
neously upon the scission of the fissile-nucleus neck
in two sections; therefore, an experimental corrob-
oration of the value in (36), which was calculated
theoretically for the coefficient αt3, would validate the
one-step mechanism of ternary nuclear fission.

5. CONCLUSION

The present analysis of the nature of coherent
interference effects in the nuclear-fission process and
the investigation of the P-odd-asymmetry coeffi-
cients in binary and ternary nuclear fission induced by
polarized resonance neutrons confirm the potential of
the proposed quantum-mechanical theory of nuclear
fission.

It is of interest to study, within this approach, P-
even and T -odd asymmetries in binary and ternary
nuclear fission induced by polarized resonance neu-
trons, since this may furnish additional information
about the mechanisms of ternary nuclear fission.
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Abstract—For the nuclear-fission process induced by photons of energy in the range 150 < Eγ <
600 MeV and accompanied by pion emission, the total cross section; the angular and differential distri-
butions of pions; the excitation-energy, mass, and charge distributions of compound nuclei; and the mass
distribution of the fission fragments are predicted on the basis of the cascade–evaporation–fission model.
These features are compared for the cases of nuclear fission induced by photons and protons of initial energy
in the same range. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the fission of nuclei into
two fragments is accompanied by the emission of
neutrons, photons, protons, and extremely light nu-
clei (d, t, α, . . .) [1]. Since a rather large amount
of energy (about 200 MeV) is released in the fission
of a heavy nucleus, the emission of a pion is also
possible, however. The emission of a pion upon the
spontaneous fission of heavy transuranium nuclei was
predicted in [2]. Only an upper bound on the ratio of
the π-channel probability1) to the total spontaneous-
fission probability was established in the experiments
reported in [3], wπf/wSF < 10−11.

In [4], it was shown that the probability of the
π channel is many orders of magnitude higher in
induced fission than in spontaneous fission, and basic
features of π fission induced by protons of energy
in the range 150 < Ep < 600 MeV were predicted
there. Thus, it is reasonable, both from the exper-
imental and the theoretical point of view, to begin
studying π fission at projectile energies in the vicinity
of the pion-production threshold, where the pion-
production mechanism is well known.

In the present study, which is a continuation of
that in [4], we predict the features of the π channel
of photofission in the energy range 150 < Eγ <
600 MeV. This is done on the basis of the cascade–
evaporation–fission model, which was previously
found to reproduce faithfully a broad variety of ex-
perimental data on fission cross sections, mass–
energy distributions of fission fragments, spectra of

1)Hereafter, we will refer to nuclear fission accompanied by
pion emission as π fission and to the corresponding fission
channel as the π channel.
1063-7788/03/6609-1700$24.00 c©
secondary particles, and isotope yields from experi-
ments in the beams of intermediate-energy protons
[5], neutrons [6], antiprotons [7], and photons [8].

2. CASCADE–EVAPORATION–FISSION
MODEL

The inelastic interaction of an intermediate-ener-
gy photon with a nucleus proceeds in a few stages.
At the first stage, a photon of energy in excess of the
pion-production threshold, Eγ> 140 MeV, interacts
with an individual intranuclear nucleon, producing
one or a few pions, γN → iπN (i ≥ 1). The products
of this γN interaction generate a cascade of succes-
sive πN andNN collisions in the target nucleus. This
stage, within which continuous-spectrum particles
produced in such collisions escape from the target
nucleus, is rather short: τcas ∼ τ0, where τ0 ∼ 10−22 s
is the time it takes for a fast particle to traverse the
nucleus. The first stage will be described on the basis
of the intranuclear-cascade model [9, 10], which is
a numerical method for solving the kinetic equation
for a multiparticle distribution function [10, 11]. The
calculations were performed within the model version
described in [12].
Upon the completion of the intranuclear cascade,

the residual nucleus reaches thermodynamic equilib-
rium within a relatively short time of τeq ∼ (5–10)τ0
[10, 11]. At the next, slow, stage (τev � τ0), the com-
pound nucleus evaporates particles sequentially or
undergoes fission. This stage will be described with-
in the evaporation model [9, 10], which takes into
account, at each step of the evaporation cascade,
the competition between the evaporation of different
particles (n, p, d, t, 3He, α) and fission. The calcula-
tions were performed within themodel modified in [13]
by correctly including collective and pairing effects
2003 MAIK “Nauka/Interperiodica”



PHOTOFISSION ACCOMPANIED BY PION EMISSION 1701

 

10

 

1

 

10

 

0

 

10

 

–1

 

10

 

–2

 

10

 

–3

 

200 400 600
Photon energy, MeV

Cross section, mb

Fig. 1. Cross section for 238U photofission accompanied
by the emission of a pion in a given charge state as a
function of the initial photon energy. The solid, dashed,
and dotted curves correspond to the π0, π+, and π−

channels, respectively.
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Fig. 2. Angular distribution dσ/dΩπ of π0, π+, and π−

mesons emitted in the reaction 238U(γ, πf) at an energy
ofEγ = 200MeV.

and the thermal damping of shell effects in the level
density of the compound nucleus.

The evaporation cascade terminates either when
the evaporated particles carry away the entire exci-
tation energy E∗ of the compound nucleus or when
this nucleus undergoes fission. At high excitation
energies ofE∗ > 50MeV, the damping of shell effects
results in that the nuclear-potential-energy surface
assumes the shape of that in the liquid-drop model,
exhibiting only one valley, that of symmetric fission.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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In this case, we use a diffusion model based on the
Fokker–Planсk equation [14] to describe the dynam-
ics of the descent of a fissile nucleus from the saddle
to the scission point.
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Fig. 5. Excitation-energy distributions (normalized to
unity) of compound nuclei produced upon the exposure of
238U nuclei to photons of energy Eγ = 200 MeV (solid-
line histogram) in the π channel and (dotted-line his-
togram) in other fission channels.

In the fission of low-excited (E∗ < 50 MeV) nu-
clei, shell effects play a significant role, leading, in
particular, to the existence of two or more fission
valleys on the nuclear-potential-energy surface. As
a result, the symmetric-fission mode coexists with
one or a few modes of asymmetric fission [15]. We
will perform our calculations for low-energy fission,
relying on the empirical approximation from [5] for the
mass–energy distribution of fission fragments, where
the coexistence of symmetric fission with two modes
of asymmetric fission is taken into account.
Given a fission event in one of the links of the

evaporation chain, we calculate the mass and charge
numbers (Af and Zf ), the kinetic (Ef ) and excitation
(Uf ) energies, and the evaporation cascade for each
fission fragment.
Thus, the cascade–evaporation–fission model de-

scribes the evolution of a nuclear system over a broad
time interval from 10−23 to 10−13 s, correctly taking
into account all stages of the nuclear reaction (the in-
tranuclear cascade, the evaporation of particles from
the excited residual nucleus, its subsequent fission,
and the evaporation of particles from fission frag-
ments), and provides an exclusive description of the
nuclear reaction, making it possible to calculate the
features of all emitted particles (including pions) and
the fission fragments. Within this model, the events of
pion emission and nuclear fission are clearly separated
in time, occurring at the opposite extreme edges of the
time scale (τπ ∼ 10−23–10−22 s versus τf ∼ 10−18–
10−13 s).

3. BASIC FEATURES OF THE π CHANNEL
OF PHOTOFISSION

The cascade–evaporation–fission model was used
to calculate the photofission of 238U nuclei at the
P
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Fig. 6.Mass distributions (normalized to unity) of fission
fragments produced in the reaction 238U(γ, πf) at an
energy of Eγ = 200 MeV (solid-line histogram) in the
π channel and (dotted-line histogram) in other fission
channels.

photon energyEγ ranging between 150 and 600MeV.
For the π channel of photofission, we have calcu-
lated the total cross section σ(γ, πf); the angular
distribution dσ/dΩπ and the differential distribution
d2σ/dΩπdEπ for pions of different charges; the dis-
tributions of compound nuclei with respect to the
excitation energy E∗, the mass number A, and the
charge number Z; and the distribution of fission frag-
ments with respect to the mass numberAf . In [4], the
analogous features were calculated for 238U fission
induced by protons of energy in the same range. This
allows us to compare the features of the π channel in
nuclear fission induced by photons and protons.

Figure 1 displays the total cross section for the
reaction 238U(γ, πf ) as a function of energy. The
cross section for π fission grows fast as the energy Eγ
increases from the pion-production threshold EthrγN ≈
140 MeV to a value of Eγ ≈ 300 MeV, whereupon
this growth becomes slow. For the (p, πf ) reaction
in question, the energy dependence of the cross sec-
tion near the threshold of pion production on a free
nucleon, EthrpN ≈ 290MeV, is considerably weaker [4].
This can be explained by a stronger effect of the Fermi
motion of intranuclear nucleons on pion production in
nuclear fission induced by protons.

Thus, it is reasonable to begin experimental
searches for the π channel of photofission at a photon
energy ofEγ ≈ 300MeV, where the cross sections for
the π0 and π− channels amount to about 10mb, while
the cross section for the π+ channel is about 2 mb
(see Fig. 1). Concurrently, it should be noted that,
at Eγ values close to the pion-production threshold,
150 < Eγ < 250 MeV, the cross section takes the
largest (smallest) value for the π− (π+) channel, the
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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cross section for the π0 channel having an interme-
diate value (see Fig. 1). In nuclear fission induced
by protons, the hierarchy of the cross sections is
different: the largest cross-section value corresponds
to the π0 channel, while the smallest corresponds
to the π− channel [4]. This distinction is due to the
excitation of different isospin states of the ∆(1232)
isobar in the elementary interactions γN → ∆ → πN
and pN → ∆N → πNN .

Figure 2 presents the angular distributions
dσ/dΩπ of pions emitted in the reaction 238U(γ, πf)
at an energy of Eγ = 200 MeV. It can be seen that
π0 and π+ mesons are emitted predominantly into
the backward hemisphere, but that π− mesons are
emitted into the forward hemisphere.

Figure 3 shows the double differential distributions
of pions emitted in the reaction 238U(γ, πf) at an
energy of Eγ = 200 MeV. Naturally, the spectrum is
harder for pions emitted into the forward than for
pions emitted into the backward hemisphere.

At a photon energy of Eγ = 200 MeV, compound
nuclei formed in the π channel have a very narrow
nucleon-composition distribution (see Fig. 4). In π
fission, the product pion is emitted from the target nu-
cleus, while cascade nucleons are predominantly ab-
sorbed in it after rescattering. Only in approximately
10% of the cases does one of the cascade neutrons
escape from the nucleus. Thus, the π+ channel most
often produces 238Pa compound nuclei, while the π0

and π− channels result in the production of 238U and
238Np nuclei, respectively.

Compound nuclei produced in the π channel are
cold (see Fig. 5): the excitation-energy distribution of
compound nuclei is narrow, peaking atE∗ = 20MeV.
Therefore, shell effects are very important in π fis-
sion, and the contribution of asymmetric fission to the
mass distribution of fission fragments is decisive (see
Fig. 6).

Owing to the smallness of the cross section for γN
interaction, photon absorption is of a volume charac-
ter. In this case, the product pion and cascade nucle-
ons are efficiently captured by a heavy nucleus, with
themain part of the initial energyEγ being transferred
to this nucleus. Therefore, the excitation-energy (E∗)
distribution of compound nuclei in the π channel is
drastically different from those in other channels (see
Fig. 5). Highly excited compound nuclei produced in
these channels undergo symmetric fission and exhibit
the corresponding mass distribution of fission frag-
ments (see Fig. 6).
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
4. CONCLUSION

The investigation of the π channel in the proton-
induced fission of nuclei in [4] has been generalized to
the photofission case. As in [4], we have considered
the simplest π-fission mechanism, which is dominant
at energies close to the pion-production threshold
and above. It is reasonable to begin seeking π fis-
sion in this energy region, where its cross section
is rather large [about 10 to 100 mb in (p, πf) re-
actions and about 1 to 10 mb in (γ, πf ) reactions]
and where theoretical predictions are quite reliable.
Despite smaller values of relevant cross sections and
lower intensities of quasimonochromatic beams, ex-
periments with photons may be more advantageous
than experiments with proton beams owing to more
clear-cut distinctions between the features of the π
channel and other photofission channels and better
background conditions for detecting pions and other
charged particles.
In the future, attention will be given primarily

to advancements toward the region of initial ener-
gies below 140 MeV, where the above mechanism is
not operative. The existence of other pion-production
mechanisms that could be dominant in this region is
suggested by data from experiments devoted to pion
production in nuclear fission induced by heavy ions of
energy in the range 20–30 MeV/nucleon [16].
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Abstract—For the 156Gd and 170Yb nuclei, where the inversion of levels in theKπ = 1− bands is observed,
the energies of rotational levels are calculated on the basis of the Coriolis interaction model for the states of
two bands whose quantum numbers areKπ = 1− and 0−. New JπK = 3−0 and 3−3 levels are introduced
in 170Yb, and the structure of 170Er is refined. The interaction parameters calculated for six nuclei are
considered within the structure predicted by the quasiparticle–phonon model. c© 2003 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Among even–even rare-earth nuclides, the 156Gd
and 170Yb nuclei possess unique properties. In the
Kπ = 1− rotational bands, the signature splitting—
that is, the shift of even-spin levels in a rotational
band with respect to the sequence of odd-spin le-
vels—proved to be so great that it resulted in the
inversion of levels. For either nuclide, it was found
that the Jπ = 2− states lie higher than the Jπ =
3− states, that the 4− states lie higher than the 5−

states, and so on. In the present study, we attempt
to explain this effect as a particular case of signature
splitting within the Coriolis interaction model. Our
calculations have demonstrated the applicability of
this model, the reason behind the shift of levels in
the Jπ = 1− bands being the effect of the Kπ = 0−
bands, which contain only odd-spin levels.

Preceding calculations on the basis of the model
in question [1] revealed that this model is applicable
to the 162Dy and 172Yb nuclei and that, for 168Er, it
is applicable to taking into account the interaction of
the Kπ = 1− and 0− bands, as in the present study.
In taking into account the mixing of theK = 1 and 0
bands, it is possible here to use a simplified version of
the relevant formula; that is,

EK,K+1 = X/2 +AJ(J + 1) (1)

± 1/2[Y 2 + 4b2J(J + 1)]1/2,

where four parameters of the model, X, A, Y , and b,
are determined from a fit to the experimental values of
the energies of the JπK = 1−0, 1−1, 3−0, and 3−1
levels. The plus (minus) sign in front of the square
root in Eq. (1) refers to levels of the band that lies
higher (lower) on the energy scale. This corresponds
1063-7788/03/6609-1705$24.00 c©
to a repulsion rather than an attraction of levels hav-
ing equal spins. By using the parameter values found
in this way, we can calculate, by formula (1), the
energies EK=0 and EK=1 of the levels in both bands.

Rotational states of deformed nuclei can be traced
in heavy-ion (HI) reactions up to states characterized
by very high spins J (J = 40� or higher). Such states
are generated in (HI, xn, yp) nuclear reactions. It
is not always possible, however, to observe, in such
processes, a bandhead and two to three levels close to
it. This is because intraband transitions are dominant
in the deexcitation of high-spin states, while inter-
band transitions deexcite low-spin states; as a result,
the population of low-lying levels of a band proves to
be very small, so that such levels are not observed
in the aforementioned processes. However, they can
manifest themselves in beta decay.

A second feature peculiar to heavy-ion reactions
is that, in the same band, states of one signature are
often populated to a greater extent than states of the
other signature; that is, the sequence of only even-
spin states or the sequence of only odd-spin states is
seen in relevant experiments.

2. BANDS IN 170Yb

2.1.Kπ = 1− Band

Features mentioned in the Introduction mani-
fested themselves in the 170Yb nucleus, where a band
having a bandhead at 1364.41 keV with spin–parity
1− and including odd-spin levels up to the 17− level at
4017.5 keV is known at present [1–5] (see Fig. 1). For
this band, there was an uncertainty in the value of the
quantum number K: 0 versus 1. Although Baglin [2]
assigned the sequence of odd-spin levels K = 1, he
did not indicate the sequence of even-spin levels.
2003 MAIK “Nauka/Interperiodica”
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Fig. 3.Kπ = 0− and 1− rotational bands in 156Gd.

In 1998 (see [5]), there appeared information about
a new band that includes even-spin levels (Jπ = 4−–
16−). The lowest of the levels observed in this band
P

has an energy of 1573.3 keV and a spin–parity of
Jπ = 4−. The value ofK was not established.

The Kπ = 1− band is identified in the present
study. One branch of this band is formed by the known
half-band containing odd-spin levels and having the
signature of a = 1. The other branch involves even-
spin levels and has the signature of a = 0 (Fig. 1).
These statements are based on a few experimental
facts.

(i) In the spectrum of 170Yb, there is the 2− state at
1425.09 keV. This state, known from data on the beta
decay of 170Lu [4], supplements that branch of the
band which is formed by even-spin levels and which
was observed in [5].

(ii) In general, the inertia parameters A+ deter-
mined for even-spin states show a rather smooth
behavior over a band. The inertia parameters A− refer
to odd-spin levels. The values of A+ and A− were
calculated for each pair of levels on the basis of the
formula
A+(J → J − 2) = [E(J) − E(J − 2)]/2(2J − 1)

and are shown in Fig. 2. Here, one can see that the
point for A+ (J = 4) lies higher than what would
be expected from a smooth dependence of A+ on
J : A+(4) = 10.59 keV, but A+(6) = 10.02 keV. This
feature has a simple explanation if one takes into
account the repulsion of levels in the K = 1 and 3
bands. In the K = 3 band, there is no J = 2 state,
and it has no effect on the position of the JπK = 2−1
state. At the same time, the J = 4 levels proved to
be closely lying. The experimental value of E(4−1) =
1573.3 keV is known. A 4−3 level has not yet been
discovered in the K = 3 band. The corresponding
calculated energy value of E(4−3) = 1559(5) keV
was obtained by extrapolating the values of A in the
K = 3 band [2]. The repulsion of two closely spaced
J = 4 levels leads to a shift of the 4−1 state toward
higher energy values and, hence, to an increase in
A+(4). An estimation reveals that this shift is about
10 keV.

(iii) There is a clear analogy (see below) between
the behavior of the Kπ = 1− band in the 170Yb nu-
cleus, which is considered here, and the behavior of
the well-knownKπ = 1− band in the 156Gd nucleus.
Both nuclei exhibit the following feature: in theKπ =
1− bands, there is an inversion of levels—that is,
the 2− states lie higher than the 3− states, the 4−

states lie higher than the 5− states, and so on (see
Figs. 1, 3). These features of the bands in question
can be explained by the Coriolis interaction between
theKπ = 1− and 0− bands. In the 156Gd nucleus, the
Kπ = 0− band has beenwell established, while, in the
170Yb nucleus, only the 1− level at 1512.35 keV has
been associated with the analogous band.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Table 1. Levels and gamma transitions from [4] that determine the 3−0 state at 1687.51(31) keV in 170Yb

JπKf JπKi Ef , keV Ei, keV Eγ , keV E(∆E), keV IK , arb. units Iγ , arb. units

2+0 3−0 84.3 – 1603.8 1688.1(5) 0.33(10) 5.9 (calc.)

4+0 3−0 277.4 – 1410.4 1687.8(4) 0.40(20) 2.8(3)

3−0 1− – 2939.56 1252.1 1687.5(4) 0.53(14) 2.7 (calc.)

3−0 1− – 3179.7 1492.1 1687.6(6) 0.5(3) 3.5 (calc.)

3−0 1− – 3195.30 1507.80 1687.50(20) < 0.3 1.00(15)

3−0 1− – 3273.2 1585.8 1687.4(4) 0.16(10) 0.20(2)

Note: A parenthetical label “calc.” indicates calculated values; it was assumed that αK(E1; 1603.53) = 5.6 × 10−4; for the 1− → 3−

transitions, use was made of the theoretical values of the conversion coefficients αK(E2); and IK is the intensity of the conversionK
line.
2.2.Kπ = 0− Band: Determination of the Position
of the 3−0 Level at 1687.5 keV,

In order to perform correct calculations, it is nec-
essary to know at least the position of the 3−0 level
in the K = 0 band, but there has been no informa-
tion about this so far. The first step in calculating
the energies of the levels in question with allowance
for Coriolis interaction was the assumption that the
inertia parameter is identical in the two bands, taking
the value ofA = 10.2 keV, which was obtained for the
half-band containing even-spin levels in the K = 1
band (see Fig. 2). For states of spin values up to
J = 8, the calculated energies proved to be close to
their experimental counterparts, the maximum dis-
crepancy being 19 keV for the J = 7 level. The energy
of the 3−0 level was 1684 keV. It served as a guideline
in searches for this level in the spectrum of states that
are formed upon the decay of the Jπ = 0+ state of
170Lu [4]. An observation of a state at E = 1690 keV
in the relevant (d, t) reaction is a piece of evidence
for the existence of a level at a close energy: its cross
section is very small, and no JπK assignment was
made. The 3−0 level is expected to decay via gamma
transitions to the 2+ and 4+ levels of the ground-state
band, and it can be populated via transitions from the
1−, 2−, or 2+ levels. An analysis of the spectrum of
gamma radiation from 170Lu revealed that the level at
1687.51(32) keV satisfies such conditions.

The energies of two gamma transitions from this
level and four gamma transitions populating it are
quoted in Table 1, along with the respective relative
intensities in terms of the scale adopted in [4]. From
Table 1, it can be seen that the possible gamma tran-
sitions give close values of its energy. However, con-
sistency in energy in the very complicated spectrum of
170Lu does not prove conclusively that the transitions
in question are disposed precisely in this segment
of the diagram of excited levels. That this is indeed
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
the case was experimentally shown in [6] by means
of the method of gamma–gamma coincidences that
was combined with summation of the amplitudes of
pulses. Unfortunately, the review article of 1996 given
in [2] ignored the earlier studies of Dzhelepov et al. [4]
and Vasi’eva et al. [6], whereas the present аnalysis
employs, for the energies and the intensities of the
transitions, the values averaged in [4].

That the energy of the level was established on
the basis of six gamma transitions gives sufficient
grounds to believe that this result is quite reliable,
especially if one considers that the level in question
manifested itself in the relevant (d, t) reaction at en-
ergies where the level density is not very high. The
existence of a level at 1687.51 keV is also supported
by the balance of gamma-transition intensities. The
intensity of deexcitation of the level is 8.7 arb. units
according to [4], and the intensity of its population
is in agreement with this value within the errors,
7.4 arb. units. For the 3−1 level at 1396.6 keV, which
is somewhat lower—this level is also known from data
on the decay of 170Lu—the intensity of deexcitation is
11 arb. units, while the intensity of its population is
9 arb. units, which is compatible with that within the
errors. It should be recalled that, because of a large
difference in spin, the J = 3 levels cannot be directly
populated in the beta decay of the Jπ = 0+ state of
170Lu.

2.3. Determination of the Position of the 3−3 Level
at 1494.7 keV

States of J ≥ 5 have been traced in the K = 3
band. It can be expected that an as-yet-undiscovered
J = 3 state will manifest itself in the decay of 170Lu.
At the same time, the calculation that has been per-
formed with allowance for Coriolis interaction yields
a value of 1492 keV for the 3−3 level. A level at
3
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Table 2.Experimental (Eexpt) and theoretical (Etheor) energies of levels in the 170Yb nucleus; their differenceEexpt −Etheor

in theKπ = 1− and 0− bands; inertia parametersA; and contribution ∆ to the energy of a level from Coriolis interaction

J Aexpt, keV Eexpt, keV Etheor, keV
Eexpt − Etheor, keV ∆, keV

а b c

Kπ = 1−

1 – 1364.41 ≡ 1364.41 ≡ 0 −0.01 26

2 15.17 1425.09 1431.4 −6.3 −6.3

3 −4.70 1396.91 ≡ 1396.91 ≡ 0 −0.5 97

4 22.05 1573.3 1576.8 −3.5 −2.6

5 −6.31 1510.4 1507.2 3.2 −0.3 174

6 23.63 1793.8 1805.2 −11.8 −7

7 −5.79 1712.7 1699.4 13 −1 252

8 24.03 2097.1 2116.7 −20 −6

9 −5.04 2005.3 1974.1 31 1 330

10 23.59 2478.1 2512 −33 −1

11 −4.06 2387.9 2331.6 56 −8 409

12 22.45 2927.5 2989 −61 4

13 −2.73 2855.4 2772.0 83 39 488

14 20.78 3438.1 3550 −112 6

15 −1.29 3401.3 3295.5 106 108 557

16 19.19 4013.7 4193 −180 19

17 0.11 4017.5 3902.0 115 231 646

Kπ = 0−

1 – 1512.35 ≡ 1512.35 ≡ 0 – – 26

3 17.53 1687.51 ≡ 1687.51 ≡ 0 – – 97

5 – – 1951 – – – 174

7 – – 2299 – – – 252

Note: The model parameters were set to the following values: X = 2835.2 keV, A = 10.38 keV, Y = 96.94 keV, and b = 39.51 keV;
(а) B = 0, (b) B = −2.7 eV, and (c) B = +3.7 eV.
1494.7 keV can be revealed by examining the spec-
trum of gamma rays emitted by 170Lu [4, 6]. This level
is deexcited via transitions to the 2+ and 4+ levels of
the ground-state band and is populated by a number
of gamma transitions from higher lying levels. Con-
clusions on whether levels in 170Yb at E ≥ 2.35 MeV
are reliable or questionable were drawn in [6].

2.4. Calculation with Allowance for Coriolis
Interaction

The position of the 3−0 level has been established,
and the calculated energies Etheor of the levels have
P

been determined with allowance for the Coriolis in-
teraction of levels belonging to the Kπ = 0− and 1−

bands (see Table 2). It is necessary to indicate the
limitations of the model.

(i) The calculations have been performed under the
assumption of the interplay of only two bands.

(ii) The inertia parameter A was taken to have
identical values for the two bands in question and for
all levels of a band.

The second assumption contradicts the well-
known statement that the moment of inertia of band
states increases with increasing spin, reaching the
rigid-body limit [7]. In all probability, this is the
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Table 3.Experimental (Eexpt) and calculated (Etheor) energies of levels in the 156Gd nucleus; their differenceEexpt −Etheor

in theKπ = 1− and 0− bands; inertia parametersA; and contribution ∆ to the energy of a level from Coriolis interaction

J Aexpt, keV Eexpt, keV Etheor, keV Eexpt − Etheor, keV ∆, keV

Kπ = 1−

1 – 1242.50 ≡ 1242.50 ≡ 0 28

2 19.31 1319.74 1312 8 –

3 −7.27 1276.11 ≡ 1276.11 ≡ 0 103

4 24.05 1468.51 1456 12 –

5 −6.04 1408.13 1390 18 175

6 24.79 1705.61 1683 23 –

7 −4.83 1637.96 1585 53 248

8 24.34 2027.42 1992 35 –

9 −3.83 1958.46 1862 96 321

10 23.44 2427.24 2383 44 –

11 −3.04 2360.37 2221 139 394

12 22.35 2896.8 2857 40 –

13 −2.58 2829.6 2663 167 467

14 21.32 3427 3413 14 –

15 −2.57 3350 3188 162 540

16 20.41 4003 4052 −49 –

17 −2.62 3914 3794 120 614

18 19.11 4602 4772 −170 –

19 −2.08 4523 4483 40 687

20 – – 5576 – –

21 – 5182 5254 −72 760

Kπ = 0−

1 – 1366.5 ≡ 1366.5 ≡ 0 28

3 17.24 1538.9 ≡ 1538.9 ≡ 0 103

5 14.43 1798.7 1796.5 2.2 175

7 – – 2133 – 248

9 – – 2561 – 321

Note: The model parameters were set to the following values:X = 2567.8 keV,A = 10.30 keV, Y = 68.1 keV, and b = 36.6 keV.
reason why the difference Eexpt − Etheor grows with
increasing spin in the case where the interaction is
disregarded and where the calculation is performed by
the formulaEtheor = E0 +AJ(J + 1) with a constant
value of A; in fact, this parameter must decrease,
leading to an increase in Etheor, and this does indeed
occur, as can be seen from Table 2. An increase in
the difference Eexpt − Etheor for odd-spin levels can
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 20
be understood if one assumes that the interaction is
in fact weaker than what is predicted by the Coriolis
model for high-spin levels. It should be borne in mind
that the K = 1 band lies lower than the K = 0 band
and that it is necessary to use formula (1) with a
minus sign in front of the square root. The influence of
other bands may underlie an alternative explanation
of the observed effect.
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Table 4. Experimental (Eexpt) and calculated (Etheor) energies of levels in the nucleus 170Er; their differenceEexpt −Etheor

in theKπ = 1− and 0− bands; inertia parametersA; and contribution ∆ to the energy of a level from Coriolis interaction

J Aexpt, keV Eexpt, keV Etheor, keV Eexpt − Etheor, keV ∆, keV

Kπ = 1−

1 – 1266.64 ≡ 1266.64 ≡ 0 7

2 9.64 1305.23 1307.4 −2.2 –

3 5.83 1340.20 ≡ 1340.20 ≡ 0 22

4 11.59 1432.95 1436.5 −3.5 –

5 5.77 1483.72 1476.3 7 52

6 12.29 1631.2 1639.3 −8.1 –

7 5.26 1704.8 1676 29 92

8 – – 1916 – –

Kπ= 0−

1 – 1824.60 ≡ 1824.60 ≡ 0 7

3 11.08 1935.44 ≡ 1935.44 ≡ 0 22

5 11.97 2150.9 2133.3 18 52

7 – – 2413 – 92

Note: The model parameters were set to the following values:X = 3054.4 keV,A = 9.22 keV, Y = 550.2 keV, and b = 32.78 keV.
Given in the last column of Table 2 are values of ∆
that represent the contributions to the energies of the
levels belonging to the K = 0 and 1 bands from the
interaction of these bands. These contributions are
defined as the differences of the energies obtained for
the levels in question with b = 0 and with the value of
b derived from the calculations. For the 170Yb nucleus,
it turned out that b = 39.51 keV. The values of ∆ for
the 156Gd and 170Er nuclei in Tables 3 and 4 were
determined in the same way. For the J = 13 level
in the 170Yb nucleus, the contribution ∆ from the
interaction of the bands is 488 keV and is five times
as great as the discrepancy Eexpt − Etheor = 83 keV
(see Table 2). The results for the J = 15 and 17 levels
are similar. From this comparison, it follows that, for
deformed-nucleus states in which the spin values are
not very high (up to J ≈ 10�), the model employing
Coriolis interaction can be considered as quite an
acceptable model within the resulting limits.

2.5. Refinement of the Calculation

In order to attain better agreement between the
results of the calculations and experimental data and
to take into account, to some extent, the reduction of
pair forces with increasing spin, formula (1), which
involves the rotational term AJ(J + 1), was supple-
mented with the termBJ2(J + 1)2. Here, the value of
PH
the parameter B is usually less in magnitude than the
value ofA by a factor of 102 to 103 and is negative. The
traditional formula extended in this way was used to
calculate the energies Etheor of even-spin levels, and
the resulting values of the differenceEexpt −Etheor are
given in Table 2. The new-parameter value of B =
−2.7 eV was obtained upon averaging over the J =
10–16 levels. Astonishingly good agreement with ex-
perimental data was achieved over the range between
−7 and +6 keV for all levels with the exception of
the J = 16 one, which is the last in this series. A
moderate deviation for the J = 2 level was explained
above (see Subsection 2.1) in terms of the effect of
the J = 3 band. It should be emphasized that only one
free parameter,B, has been used here—the remaining
four parameters were determined from a fit to data on
odd-spin levels.

A similar procedure was applied to the half-band
containing odd-spin levels and having a signature of
a = 0. The parameter value of B = +3.7 keV was
determined on the basis of data on the J = 5–11
levels. As one can see, it proved to be positive, and
excellent agreement with experimental data on the
J = 1–11 levels was obtained with this parameter
value (see Table 2). However, the positive sign of
the parameter B contradicts both the idea that pair
correlations must decrease and results that concern
the half-band containing even-spin levels. As was
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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indicated above, the effect of band interaction is ex-
aggerated for some reason, and the positive sign of B
additionally supports this conjecture.

A more complicated pattern is observed for other
nuclei (see Tables 3, 4). In what is concerned with the
effect of the correction term, no definitive conclusion,
such as that for the 170Yb nucleus, could be drawn for
the 156Gd and 170Er nuclei.

3. BANDS IN 156Gd

3.1.Kπ = 1− Band

The 156Gd nucleus provides a second example
where there are a signature splitting and an inversion
of levels in the Kπ = 1− band. There, this band was
observed up to the Jπ = 21− state [3, 8] (see Figs. 3,
4; Table 3). In a recent study, Sugawara et al. [9]
observed high-spin states that manifested themselves
in the reaction 150Nd(13C, α3n) induced by a 65-
MeV beam of 13С ions. Gamma rays and gamma–
gamma coincidences were recorded in that study by
the GEMINI facility including 12 detectors from pure
germanium that were equipped with anti-Compton
shielding.

The use of modern techniques for accelerating
heavy ions of 13С and, what is more important, of a
facility that, in addition to performing a highly effi-
cient detection of gamma rays, is capable of perform-
ing computer-based analysis of the recorded multiple
gamma–gamma coincidences permitted advancing
toward previously unknown high-spin states. New
data were obtained not only for positive-parity bands,
including the ground-state band, but also for both
branches of the Kπ = 1− band. Data from [9] were
used in Table 3.

3.2. Calculation with Allowance for Coriolis
Interaction

The J = 1, 3, and 5 levels are known in the Kπ =
0− band (see Table 3). With these data, one can
compute theoretical values for the energies of levels
with allowance for mixing due to Coriolis interaction,
employing a procedure that is similar to that applied
to the 170Yb nucleus. The same assumptions of two-
band mixing and of the invariability of the inertia pa-
rameter A were made here. The greatest discrepancy
between the experimental and the theoretical values
of the energies of odd-spin levels is observed at J =
9–19. The greatest values of A− correspond to the
same odd-spin values (see Fig. 4).
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4. GENERALIZATION TO A WIDER CLASS
OF OCTUPOLE BANDS

In the two nuclei considered here, 156Gd and
170Yb, the Kπ = 0− and 1− bands were identified as
vibrational octupole excitations. Their structure was
calculated on the basis of the quasiparticle–phonon
model and was presented in [10]. It is of interest to
generalize information obtained for the interaction of
bands to other nuclei and to compare this information
with model concepts.

4.1.Kπ = 0− and 1− Bands in the 170Er Nucleus

The 170Er nucleus, whose structure was recently
established in [11] on the basis of an analysis of the
gamma-ray spectra measured in the beta decay of
170Ho isomers and in various nuclear reactions, pre-
dominantly those of the (n, n′γ) type, is one of the nu-
clides close to 170Yb. The calculation with allowance
for Coriolis interaction is motivated by the following
two factors. First, it can be seen from Tables 2 and 3
that the calculation for the J = 1–7 states reproduces
their energies fairly well. Second, a conclusion on the
structure of bands can be drawn from a simultaneous
analysis of the mixing parameters b for a number of
nuclei. For these reasons, a calculation has been per-
formed for themixing of theKπ = 0− and 1− bands in
the 170Er nucleus. The results of this calculation are
given in Table 4. It can be seen that the energies of the
states in 170Er and in 170Yb and even the differences
of the experimental and calculated values of these
energies are close; even for the level of spin as high
as J = 7, the differences in question are only 29 and
13 keV, respectively. This similarity can be considered
as a strong argument in support of the conclusions
on the structure of the 170Er nucleus that were drawn
in [11].
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4.2. Interaction Parameters in the 158Gd, 168Er,
and 162Dy Nuclei

By examining the interaction of the 1− and 0−

bands in a number of nuclei simultaneously, one can
reveal special features of the signature shift and of the
inversion of levels in the 1− bands. For the sake of
generality, data on the 158Gd, 168Er, and 162Dy nuclei
were included in the analysis. The Kπ = 0− and 1−

bands are also known in these nuclei, and there is
a Coriolis interaction between them, which leads to
the signature splitting of the Kπ = 1− band; for one
reason or another, however, this splitting is not as
great as that in the 156Gd or in the 170Yb nucleus. No
inversion of levels occurs here.

An analysis has been performed for all additional
nuclei, and the calculated energies of levels have been
obtained on the basis of the same model as that used
above. It turned out that the model leads to approxi-
mately the same deviation from experimental data for
the different nuclei: for states of the same spin, the
differences of the experimental and theoretical values
of the energies of levels fall within the same range
for the 156Gd, 170Er, and 170Yb nuclei (see Tables 2–
4). For the 168Er nucleus, relevant data can be found
in [1]. The values of the model parametersA and b and
basic experimental data are given in Table 5.

4.3. Analysis of the Results

Listed immediately below are similar features of
the bands considered above and distinctions between
them.

(i) The K = 1 bands lie lower than the K = 0
bands in all nuclei, with the exception of 162Dy. The
excitation energy E(1−1) is 1.0–1.4 MeV, while the
differences of the energies of the bandheads of the
K = 0 and 1 bands are below 0.4 MeV.

(ii) The inertia parameters A obtained from the
present calculations lie in the narrow range 10.0–
10.4 keV, but, for the 162Dy and 170Er nuclei, they are
noticeably lower:A = 9.185 and 9.22 keV, repectively.

(iii) The correction to the energy of a spin-J level
due to band interaction takes close values for the
156Gd and the 170Yb nucleus (see Tables 2, 3).

(iv) The interaction parameter b proved to be close
for five nuclei: b = 35–40 keV; for the 162Dy nu-
cleus, it is sizably less, b = 19.41 keV. This distinc-
tion can be explained by using the results obtained
on the basis of the quasiparticle–phonon model due
to V.G. Soloviev [10]. The intense two-quasiparticle
neutron components of the wave functions for the
Kπ = 0− and 1− collective quadrupole states are
quoted in Table 5, along with the weights of these
PH
components, which vary between 19 and 93%; how-
ever, the actual values of the weights may be different
for a more correct choice of values for the model
parameters. Other components of two-quasiparticle
wave functions differ by the quantum numbers of both
nucleons and do not contribute to the interaction
parameter b. The distinctions between the structures
of the bands are associated with the difference in the
quantum numbers of one of the unpaired neutrons:
642↑ versus 651↑ in 156Gd and 158Gd and 633↑ versus
642↑ in 168Er and 170Yb. The second unpaired neu-
tron, 521↑, 512↑, or 523↓, is the same in both bands.
It follows that values in the range b = 35–40 keV
are due to the interaction of neutrons whose principal
quantum number is N = 6. No significant effect of
the fraction of the two-quasiparticle component on
the content of the wave function has been found.
The situation in the 162Dy nucleus is different. The
quantum numbers of the identical unpaired nucleon
are 642↑; the distinction between the bands is due
here to the 523↓ and 521↑ neutrons. A reduction of
the interaction parameter b by a factor of 2 is observed
in this case.

Of particular interest is the 170Er nucleus. The
interaction-parameter value of b = 32.78 keV for this
nucleus is less than those for the other nuclei consid-
ered here, but it is much greater than that in 162Dy.
From the general point of view, this result can be
understood if one considers the structure of the 1−
and 0− states in this nucleus, following the ideas
developed in [10]. In the 1− band, the weight of the
nn633 ↑ 512 ↑ two-quasiparticle state is 93%. In the
0− state, the contribution of the structure that would
lead to a greater value of b, nn642 ↑ 512 ↑, is as
small as 10%, which is one-half as great as that in
the nuclei considered above. The weight of the other
component of the wave function for theK = 0 states,
nn633 ↑ 514 ↓, is 67%, but its interaction with the
wave function for the K = 1 state is due to neutrons
occurring in the n512 ↑ and n514 ↓ states—that is,
neutrons whose principal quantum number is N = 5
rather than 6. One can conjecture that it is precisely
this structural feature that reduces the interaction
parameter in 170Er.

In order to verify these conclusions, it is neces-
sary to study different nuclides, but the two bands
in question—that is, the K = 1 and 0 ones—are not
known in all of them. Data on the energies in these
bands are necessary for calculating the values of the
mixing parameter. The list of nuclides for which the
content of the wave functions for collective octupole
states was calculated in [10] is not very large.

Additional investigations were performed for four
more nuclides: 154Gd, 154Sm, 160Dy, and 162Er. The
results proved to be similar to those that are quoted
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Table 5. Properties of theKπ = 1− and 0− bands in some deformed nuclei

Nucleus, keV E(1−1), keV E(1−0), keV A, keV b, keV

156Gd 1242.50 1366.5 10.30 36.6

158Gd 977.08 1263.46 10.195 34.82

168Er 1358.90 1786.11 10.018 35.44

170Yb 1364.41 1512.35 10.38 39.51

170Er 1266.64 1824.60 9.22 32.78

162Dy 1637.1 1276.1 9.185 19.41

Nucleus
nn structure [10]

Kπ = 1− Kπ = 0−

156Gd 642 ↑–521 ↑ 19% 651 ↑–521 ↑ 50%

158Gd 642 ↑–521 ↑ 55% 651 ↑–521 ↑ 21%

168Er 633 ↑–523 ↓ 93% 642 ↑–523 ↓ 26%

170Yb 512 ↑–523 ↓ 93% 642 ↑–512 ↑ 25%

170Er 633 ↑–512 ↑ 93% 642 ↑–512 ↑ 10%

633 ↑–514 ↓ 67%

162Dy 521 ↑–642 ↑ 50% 523 ↓–642 ↑ 74%
in Tables 2–5, but, among features that were revealed
in these investigations, there are those that remained
unexplained.

In the 154Gd nucleus, an inversion of even- and
odd-spin levels is observed in theK = 1 band. How-
ever, the spacing between the J = 1 and 3 levels in the
K = 0 band proved to be very small: 10 keV instead
of the expected spacing of 100 keV. The calculation
led to a very large value of b = 51 keV for the in-
teraction parameter and to much poorer agreement
between the calculated and the experimental values
of the energies of levels.

In the 162Er nucleus, the 1− and 3− levels proved
to be even more closely spaced: the gap between them
is 4.6 keV. The parameter A there, 6.07 keV, is much
less than in the other nuclei, this value also leading to
a large distinction between the calculated and the ex-
perimental values of the energies of levels. The reason
behind the effects observed in these two nuclei has not
been established conclusively, but one can conjecture
that these effects stem from different deformations of
octupole-band levels and from the proximity of these
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
nuclei to the boundary of deformations. This idea is
suggested by the systematics of the K = 0 bands in
theN = 88 isotones (see [3]). In the majority of them,
the 3− levels lie lower than the 1− levels, and these
nuclei also occur in the vicinity of the boundary of
deformations, but they lie on the other side of it and
do not belong to the class of deformed nuclei.

For the 154Sm and 160Dy nuclei, the experimental
values of the energies of levels are reproduced fairly
well, but, there, other bands lie quite closely and may
have a nontrivial effect. Of course, this must be taken
into account in further calculations.

5. CONCLUSION

An analysis of the effect of inversion of levels in the
Kπ = 1− octupole vibrational bands in the 156Gd and
170Yb nuclei has revealed that the inclusion of Coriolis
interaction makes it possible to explain, in a natural
way, the observed features of these nuclei. The model
parameters have been calculated, and it appears that
the interaction parameter b has close values not only
3
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in the bands featuring the inversion of levels but also
in the neighboring nuclides of 158Gd and 168Er, where
there is no inversion, but where a significant signature
splitting is observed.

A comparison with the bands in the 162Dy nucleus
has made it possible to relate the numerical value of
b with the structure of octupole bands that is deter-
mined within the quasiparticle–phonon model.

The present calculations of the energies of rota-
tional levels have demonstrated the scale of the dis-
crepancy between the theoretical and experimental
results. The well-known effect of the reduction of
pair correlations, which is not included in the Coriolis
interaction model and which is not taken into account
in the calculations, is a natural reason for the growth
of discrepancies with increasing spin J . This is not so
only for the 170Yb nucleus (see Table 2). However, the
effect in question can be traced as the experimental
values of the inertia parameter A+, which are given in
Figs. 2 and 4 and in Tables 2–4, become smaller.
PH
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Abstract—The status of our investigation of low-energy K+Xe collisions in the xenon bubble chamber
DIANA is reported. In the charge-exchange reaction K+Xe→ K0pXe′, the spectrum of K0p effective
mass shows a resonant enhancement with M = 1539 ± 2 MeV/c2 and Γ ≤ 9 MeV/c2. The statistical
significance of the enhancement is near 4.4σ. The mass and width of the observed resonance are consistent
with expectations for the lightest member of the antidecuplet of exotic pentaquark baryons, as predicted in
the framework of the chiral soliton model. c© 2003 MAIK “Nauka/Interperiodica”.
This paper reports an investigation of low-energy
K+–nucleus collisions aimed at testing the hypoth-
esis of an antidecuplet of exotic pentaquark baryons,
as proposed by Diakonov, Petrov, and Polyakov [1]
in the framework of the chiral soliton model. Under
the assumption that the known nucleon resonance
P11(1710) belongs to the hypothesized antidecuplet,
predictions for the masses and decay widths of its
other members have been obtained [1]. Of these,
the lightest is the exotic pentaquark state uudds̄
with mass near 1530 MeV/c2 and decay width Γ <

15 MeV/c2. This spin-1/2 isospin-zero state with
positive strangeness, referred to as the Z+ baryon, is
expected to decay toK0p andK+n.

Two different methods may be employed in the
search for formation of the Z+ baryon in K+Xe
collisions. The first and straightforward approach is
to analyze the effective mass of the K0p system in
the reaction K+Xe→ K0pXe′ for the Z+ peak near
1530MeV/c2. The second approach is to measure the
cross sections for formation of the final states K0p
and K+n as functions of K+ momentum. Given a
target nucleon bound in the Xe nucleus, formation of

∗This article was submitted by the authors in English.
∗∗Based on a talk at Session of Nuclear Division of Russian
Academy of Sciences, Dec. 3, 2002.

∗∗∗e-mail: dolgolenko@vitep1.itep.ru
1063-7788/03/6609-1715$24.00 c©
the Z+ baryon should manifest itself as an enhance-
ment of partial cross sections of elementary processes
K+n→ K+n and K+n→ K0p at K+ momentum
near 480MeV/c. Measurements of these partial cross
sections in the interval 400 < PK+ < 700 MeV/c
are in progress and should finally reach a statistical
accuracy of 3–6% with K+ momentum pitch of
30–40 MeV/c. The latter measurements are also
important for clarifying some problems arising in the
analysis of low-energyK+–nucleus collisions [2–4].
The bubble chamber DIANA filled with liquid

xenon has been exposed to a separated K+ beam
with momentum of 850MeV/c from the ITEP proton
synchrotron. The density and radiation length of the
fill are 2.2 g/cm3 and 3.7 cm, respectively. The cham-
ber has a total volume of 70 × 70 × 140 cm3 viewed
by photographic cameras and operates without a
magnetic field [5]. Charged particles are identified
by ionization and momentum-analyzed by range in
xenon. In total, some 106 tracks of incident K+

mesons are recorded on film. Half of the collected
film has been scanned, and nearly 25 000 events with
visible K0 decays, K0

S → π+π− and K0
S → π0π0,

have been found.
In the fiducial volume of the bubble chamber, K+

momentum is a function of longitudinal coordinate
and varies from 750 MeV/c for entering kaons to
zero for those that range out through ionization. (A
150-mm-thick layer of xenon downstream of the front
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Range and equivalent momentum (top scale) of
the incident K+ for different event categories: (a) for
all K+ decays and interactions; (b) only for K+ de-
cays; (c) only for the charge-exchange reactionK+Xe→
K0X.

wall is beyond the selected fiducial volume and is only
used for detecting the secondaries that travel in the
backward hemisphere.) Throughout this interval of
K+ momentum, partial cross sections for formation
of various final states ofK+Xe collisions can be mea-
sured thanks to efficient detection of the decays and
interactions of incident kaons in the xenon bubble
chamber. The momentum of an interacting K+ is
determined from the longitudinal coordinate of the in-
teraction vertex with respect to the central position of
the observed maximum due to decays of stoppingK+

mesons. The uncertainty on K+ momentum is near
20 MeV/c for PK+ in the range of 500 ± 50MeV/c.
The methodology of this work is illustrated by

Fig. 1, where the measured K+ range before inter-
P

action or decay is plotted for different event cate-
gories (the upper scale shows the corresponding K+

momentum). These data are based on a throughput
measurement of 41 000 tracks of incident kaons. The
distribution of all incidentK+ mesons in track length
is shown in Fig. 1a, and the distribution of those K+

mesons that have decayed either in flight or at rest is
shown in Fig. 1b. The enhancement near 945 mm is
due to decays of stopping kaons. AllK+ decays have
been uniquely identified in the bubble chamber, and
observed branching fractions are in agreement with
tabulated values. The distribution of selected events
of the charge-exchange reaction K+Xe→ K0X is
illustrated in Fig. 1c. This includes events with a K0

S

detected by decay to π0π0 or π+π− and a K0
L whose

presence is inferred from nonobservation of strange
particles in the final state.1) Apart from K+ decays
and the charge-exchange reaction K+Xe→ K0X,
the inclusive distribution of Fig. 1a picks contribu-
tions from elementary scattering processes K+n→
K+n and K+p→ K+p and from electromagnetic
interactions with the Coulomb field of the Xe nucleus.
The extraction of corresponding partial cross sections
is in progress. As indicated above, comparing the
partial cross sections of elementary reactionsK+n→
K+n, K+n→ K0p, and K+p→ K+p as functions
of K+ momentum may provide a clue to formation of
the hypothesized Z+ baryon inK+Xe collisions.
In this paper, we adopt an alternative approach

that consists in analyzing the K0p effective mass
in the charge-exchange reaction K+n→ K0p on a
bound nucleon. The events of this reaction are fully
measured and reconstructed in space using specially
designed stereoprojectors similar to those proposed
in [6]. Of the 25 000 events with visible K0

S decays,
selected for complete reconstruction are those with
a single proton and a K0

S → π+π− candidate in the
final state. The distance between the primary and K0

vertices is required to exceed 2.5 mm. In a selected
event, wemeasure theK0

S and proton emission angles
with respect to theK+ direction, π+ and π− emission
angles with respect to the parent K0

S direction, and
proton and pion paths in xenon. The momentum is
estimated by range for the proton and by pion ranges
and emission angles for the K0

S . Proton and K
0
S mo-

menta are required to exceed 180 and 170 MeV/c,
respectively. Further details on the experimental pro-
cedure can be found in [7, 8].

1)Note that, of some 6300 events in the latter distribution,3100
are part of the aforementioned subsample of 25 000 events
with detectedK0

S decays. Measuring theK
+ track length in

all such events will significantly increase the statistics of the
charge-exchange reaction.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 2. Incident K+ momentum for measured events of
the reactionK+Xe→ K0pXe′.

In order to reduce the total volume of measure-
ments, the K+ range before interaction is required
to exceed 550 mm. On average, this corresponds to
the selection PK+ < 530 MeV/c.2) The distribution
of measured events of the reaction K+Xe→ K0pXe′

in PK+ is shown in Fig. 2. Themean value ofK+mo-
mentum is close to 470 MeV/c. At present, we have
fully measured 1112 events of the charge-exchange
reaction K+Xe→ K0pXe′; measuring all selected
events will nearly double the available statistics of this
reaction.
In order to estimate the uncertainty on effective

mass of the K0p system, we invoke our earlier
measurements [9] of two-prong secondary vertices
(or Vees) formed by a proton and a charged pion,
which relied on same techniques. The distribution
of effective mass of such Vees, illustrated in Fig. 3,
shows a prominent Λ0 peak at the expected mass
of M(pπ−) = 1116 ± 1 MeV/c2 with instrumental
width of σ = 3.3 ± 1.0 MeV/c2. Note that distribu-
tions of the total momentum and the proton mo-
mentum are very similar for the pπ− system from Λ0

decay and for the K0p system formed in the reaction
K+Xe→ K0pXe′. At the same time, theK0 and π−
momenta are measured with very similar precision.
We may conclude that effective mass of the K0p
system, like that of the pπ− system, is measured to
a precision of a few MeV/c2.

Effective mass of the K0p system formed in the
charge-exchange reaction is plotted in Fig. 4a for all
measured events. Qualitatively, a narrow enhance-
ment is seen at the expected mass of the Z+ baryon

2)Mean momentum of incident K+ beam varied by some
±15MeV/c in different exposures.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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(M � 1530 MeV/c2). To estimate the level of back-
ground, the mass spectrum of Fig. 4a has been fitted
to a linear combination of two regular distributions:
(i) the K0p mass spectrum expected for the non-

resonant charge-exchange reaction K+n→ K0p,
obtained through a simulation that takes into ac-
count the momentum distribution of interacting K+

mesons, the Fermi motion and binding energy of the
target nucleon, the differential cross section for K0

emission in the charge-exchange reaction [10], and
actual conditions of the discussed experiment; and
(ii) a distribution obtained by the method of ran-

dom stars.
The results of the fit are illustrated by the dashed

line in Fig. 4a. In the mass interval of 1535–
1545MeV/c2, populated by 107 events, the estimated
background amounts to 83 events, resulting in a
statistical significance of 2.6σ.
It is interesting to see whether the observed

enhancement is affected by rescattering of reaction
products in nuclear matter. In order to remove the
events worst affected by rescatterings, additional
topological selections3) are applied:
(i) θp < 100◦ and θK < 100◦ for the proton andK0

emission angles with respect to the K+ direction in
the laboratory frame;
(ii) cos ΦpK < 0 for the azimuthal angle between

the proton and K0 directions (that is, the proton
and K0 are required to be back-to-back in the plane
transverse to the beam direction).
According to a simulation that accounts for Fermi

motion of the target neutron, these selections keep

3)At this stage of the analysis, no kinematic selections based
on constrainingmeasured events toK+n→ K0p are used.
3
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the bulk of events of the charge-exchange reaction
that are not affected by proton and K0 rescattering
in nuclear matter. Of the 1112 measured events of the
reaction K+Xe→ K0pXe′, nearly half (541 events)
survive the additional selections. In the K0p mass
spectrum for these events shown in Fig. 4b, the en-
hancement near 1540 MeV/c2 becomes more promi-
nent. In the mass interval of 1535–1545 MeV/c2, the
4)The existence of a baryon resonance with positive
strangeness looks even more reliable in connection with the
recent paper by Y. Nakano et al. (hep-ex/0301020) which
reports the observation of a baryon resonance in the K+n
system with M = 1.54 ± 0.01 GeV/c2, Γ < 25 MeV/c2,
and significance of 4.6σ in the reaction γn→ K+K−n

on 12C.

P

total number of events is 73 with an estimated back-
ground of 44 events, resulting in a statistical signifi-
cance of 4.4σ. In order to estimate the mass and width
of the observed resonance, a Gaussian with floating
position and rms is added to the fitting function. The
latter fit yields the valuesM = 1539 ± 2MeV/c2 and
σ = 3MeV/c2.
To summarize, a baryon resonance with mass

M = 1539± 2MeV/c2 and width Γ ≤ 9MeV/c2 has
been observed in the K0p effective-mass spectrum
for the reaction K+Xe→ K0pXe′. The statistical
significance of the signal is estimated at 4.4σ. The
resonance is a strong indication for formation of the
exotic pentaquark Z+ baryon.4) Our work is still in
progress.
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Abstract—Corrections of orders (Zα)6m1/m2 and (Zα)7 from one-loop two-photon amplitudes to the
energy spectra of hydrogen-like atoms are calculated by expanding the relevant integrand in a Taylor
series. A method for averaging the resulting quasipotential in the d-dimensional coordinate representation
is formulated. Numerical values are obtained for the corresponding contributions to the fine structure of the
muonium, hydrogen, and positronium atoms. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of high-order perturbative effects in
α (where α is the fine-structure constant) in the en-
ergy spectra of the positronium and muonium atoms
is of paramount importance for testing the theory of
bound states in QED. In recent years, considerable
advances have been made in these realms [1]. First
of all, this was due to the improvement of accuracy
in measuring the fine and the hyperfine structure in
the energy spectra of these lepton systems. For exam-
ple, the experimental error in measuring the hyperfine
structure of the muonium atom was reduced by a
factor of 3 [2]:

∆νexpt
HFS(Mu) = 4 463 302 765(53) Hz. (1)

An even more significant improvement of accuracy
was achieved in measuring the 1S–2S interval in the
muonium atom on the basis of Doppler-free two-
photon spectroscopy [3]:

∆νexpt
Mu (23S1–13S1) = 2 455 528 941.0(9.8) MHz.

(2)

For the analogous interval in the positronium
atom, measurements performed a decade ago yielded
[4]

∆νexpt
Ps (23S1–13S1) = 1 233 607 216.4(3.2) MHz.

(3)

In the spectroscopy of extremely simple atomic
systems, one of the most precise experimental re-
sults was obtained by measuring the frequency of the

*e-mail: mart@info.ssu.samara.ru
**e-mail: faustov@theory.sinp.msu.ru
1063-7788/03/6609-1719$24.00 c©
1S–2S transition in the hydrogen atom [5]:

∆νexpt
H (2S–1S) = 2 466 061 413 187.34(84) kHz.

(4)

On the other hand, the aforementioned advances
were associated with the refinement of computer
methods for calculating Feynman amplitudes and
with the advent of nonrelativistic QED formulated as
an effective theory of electromagnetic particle interac-
tion for calculating the energy spectra of bound states
in the nonrelativistic region [6–8]. Calculations on
this basis yielded contributions of order (Zα)6m2

1/m2

[m1 andm2 are themasses of bound particles;Z is the
charge of the second particle (nucleus); the parameter
Zα specifies the order of relativistic corrections and of
binding effects] to the fine structure of the muonium
atom [9–14], corrections of order mα6 to the fine
and the hyperfine structure of the positronium atom
[15–19], the first logarithmic contributions of the
form O(mα7 ln2 α) to the spectrum of the positro-
nium atom [20, 21], and O(mα7 lnα) logarithmic
corrections to the hyperfine structure of the muonium
and positronium atoms [22, 23]. It is more difficult
to calculate loop integrals specifying corrections to
the Coulomb potential in perturbation theory since a
few significantly different energy regions control the
behavior of the relevant integrand. In terms of the loop
energy p0 and the loop momentum p, these regions
can be characterized as follows [24, 25]:

hard-momentum region, p0 ∼ µ, |p| ∼ µ; (5)

potential region, p0 ∼ µα2, |p| ∼ µα; (6)

soft region, p0 ∼ µα, |p| ∼ µα; (7)
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Two-photon exchange Feynman diagrams, where P = p1 + p2 is the total momentum of the bound state of two
particles, while p and q are the 4-momenta of the relative motion of, respectively, the initial- and the final-state particles.
ultrasoft region, p0 ∼ µα2, |p| ∼ µα2. (8)

Here, the mass parameter µ is determined by the par-
ticle masses m1 and m2. There are two possibilities
for calculating contributions of a specific order in α.
The first possibility consists in explicitly specifying a
small parameter and constructing, in one of the re-
gions in (5)–(8), a series expansion of relevant QED
Feynman amplitudes [14, 26–28]. The second pos-
sibility implemented within nonrelativistic QED is to
formulate this procedure at the stage as early as that
of the Lagrangian [6–8]. In the present study, which
is a continuation of that reported in [14], we examine
contributions of orders (Zα)6 and (Zα)7 to the spec-
tra of the muonium and positronium atoms, relying
on the first method, which, if it is used along with
the dimensional-regularization procedure, enables us
to construct the particle-interaction operator both
in the momentum and in the coordinate represen-
tation. Since we have (Zα)6m2

e/mµ = 0.0902 MHz
andmeα

7 = 0.136 MHz, it is of crucial importance to
calculate such contributions, especially for the quan-
tities in (1) and (4).

2. CONTRIBUTIONS OF ORDER (Zα)6m1/m2

TO THE FINE STRUCTURE
OF THE MUONIUM ATOM

By merely counting the powers of Zα in the two-
photon exchange diagrams shown in Fig. 1, it can
be shown that these diagrams can make contribu-
tions of order (Zα)2 × (Zα)3 = (Zα)5. Here, the first
factor owes its existence to exchange photons, while
the second stems from the wave functions for the
bound system. At the same time, the fact that the
momenta of the relative motion of the initial- and
final-state particles (p, |p| ∼ µα, and q, |q| ∼ µα,
respectively) are present in these 2γ amplitudes leads
to the emergence of contributions whose order in α
is still higher. Here, we formulate the computational
procedure to be employed in the ensuing analysis and
calculate corrections involving an additional power of
PH
Zα and the electron-to-muon mass ratio m1/m2 =
0.004836. We note that the approach in question is
applicable to the positronium atom as well if some
simplifications associated with the smallness of the
ratiom1/m2 are not used in the two-photonFeynman
amplitudes. The general structure of integrals that
determine the quasipotential remains unchanged.

Our calculations are based on a local quasipoten-
tial equation of the Schrödinger type [14],(

b2

2µR
− p2

2µR

)
ψM (p) (9)

=
∫

dq
(2π)3

V (p,q,M)ψM (q).

Here, b2 = E2
1 −m2

1 = E2
2 − m2

2, µR = E1E2/M is
the relativistic reduced mass, M = E1 + E2 is the
bound-state mass, and ψM (p) is the quasipoten-
tial wave function for the bound state. As an input
approximation to the quasipotential V (p,q,M) for
the bound system, we choose an ordinary Coulomb
potential.

In constructing the particle-interaction operator
corresponding to the 2γ amplitudes being considered,
we also use the operators P̂S=0 and P̂S=1 of projection
onto the states in which the total spin of the S-wave
(e−µ+) bound state is equal to 0 and 1, respectively,

P̂S=0 =
P̂ + M

2
√

2M
γ5, P̂S=1 =

P̂ + M

2
√

2M
ε̂, (10)

where ε̂ = εµγµ, εµ being the polarization vector of the
3S1 state, and P = p1 + p2 is the total 4-momentum
of the bound state of the two particles in question.

The contribution of the diagram in Fig. 1a to the
quasipotential is determined with the aid of formu-
las (10) and is given by (only the 3S1 triplet states are
considered below)

V
(a)
2γ (p,q) =

i(Zα)2

π2
(11)
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×
∫

f1(k,m1,m2)d4k

(k − p)2(k − q)2D1(k)D2(−k)
,

f1(k,m1,m2) = m2(4m1 + 2k0) + 2m1k0

− 2k0
2 +

2
3
k2.

The denominator of the electron propagator is
D1(k) = k2 + 2m1k0 + b2, while the corresponding
muon denominator can be simplified by taking into
account the smallness of the ratio m1/m2, in which
case one can disregard the kinetic energy of the
muon atom in the intermediate state: D2(−k) ≈
2m2(−k0 + i0). The crossed two-photon diagram in
Fig. 1b makes a similar contribution to the quasipo-
tential; that is,

V
(b)
2γ (p,q) =

i(Zα)2

π2
(12)

×
∫

f2(k,m1,m2)d4k

(k − p)2(k − q)2D1(k)D2(−k + p + q)
,

f2(k,m1,m2) = m2(4m1 + 2k0) + 2m1k0
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
+ 6k0
2 +

10
3

(p · k + q · k− k2).

The direct two-photon amplitude corresponding to
Fig. 1a involves a lower order contribution (α3),
which is canceled by the iteration term of the quasipo-
tential V1γ × Gf × V1γ [14] (Gf = (p2 − b2)/2µR is
the free two-particle Green’s function). In order to
isolate this contribution, we transform the product
of the electron and the muon denominator as fol-
lows [25]:

1
D1(k)D2(−k)

=
−2πiδ(k0)

−2E(k2 − b2)
(13)

− 1
2E

[
1

(k0 + i0)D1(k)
+

1
(−k0 + i0)D2(−k)

]
.

Omitting the first term on the right-hand side of
Eq. (13)—it corresponds to the free two-particle
propagator—we can represent the sum of the poten-

tials, V (a)
2γ + V

(b)
2γ , in the form
V2γ(p,q) = V
(a)
2γ (p,q) + V

(b)
2γ (p,q) =

i(Zα)2

6m2π2

∫
d4k

(k − p)2(k − q)2
(14)

×
[
12m2

1 + 18m1k0 + 24k0
2 − 12k2 + 10k(p + q)

(k0 + i0)D1(k)
− 6m1 + 3k0

(−k0 + i0)2

]
.

In the operator in (14), we will first consider the
contribution of order (Zα)6m1/m2 arising in the po-
tential region (6). Here, the integral with respect to k0

is determined by the residue at the pole of the electron
propagator, which can be written in the form

1
k0

2 − k2 + 2m1k0 + b2
(15)

=
∞∑
n=0

(−k0
2)n

(−k2 + 2m1k0 + b2)n+1
.

The corresponding expansions of the photon propa-
gators in series are given by

1
k0

2 − (k − p)2
=

∞∑
n=0

(−k0
2)n

[−(k− p)2]n+1
. (16)

Multiplying the expansions in (15) and (16), we can
see that expression (14) assumes the form

V pot
2γ (p,q) ∼

∫
d4k

[
1

−(k − p)2
(17)

− k0
2

(k− p)4
− k0

4

(k − p)6
− . . .

][
1

−(k− q)2
3

− k0
2

(k − q)4
− k0

4

(k− q)6
− . . .

]
1

(k0 + i0)

×
[

1
−k2 + 2m1k0 + b2

− k0
2

(−k2 + 2m1k0 + b2)2

− k0
4

(−k2 + 2m1k0 + b2)3
− . . .

]
.

The integral in (17) involves corrections of different
orders in Zα. The order of individual terms in (17) is
determined by counting the powers of this parameter
after taking the residue at the pole in the variable k0.
Contributions of order (Zα)6 are present in expres-
sion (17) and are determined by integrals of the type

J(p,q) (18)

=
∫

dk
(2π)3

(k2)α

(k2 − 2kp + p2)β(k2 − 2k · q + q2)γ
,

where the exponents α, β, and γ can take different
values that satisfy the relation 2α + 3 − 2β − 2γ = 1.
The contribution to the spectrum of a hydrogen-like
system is obtained upon averaging J(p,q) with the
Coulomb wave functions. Integrals of the type in (18)
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Table 1. Results obtained by calculating some integrals in (18) [t = (p− q)]

α 0 1 2

β = 1, γ = 1
1
8t

p2 + q2 − t2

16t
–

β = 1, γ = 2 –
p2 − q2 + t2

16t3
p4 − 3(q2 − t2)2 + 2p2(q2 + t2)

32t3

β = 1, γ = 3 – –
3p4 + 3(q2 − t2)2 + p2(−6q2 + 2t2)

64t5

β = 2, γ = 2 – –
t4 + 2t2(p2 + q2) − 3(p2 − q2)2

32t5
are divergent both in the ultraviolet and in the infrared
region. These divergences are caused by that reduc-
tion of the integrand in (14) which was performed in
order to isolate the contribution of the required order
in α. The original integral in (14) is finite; therefore,
all divergences arising in intermediate expressions of
the type in (18) must cancel in the final total expres-
sion. The quantity 〈J(p,q)〉 can be calculated by the
following two methods:

(i) The integral in (18) with respect to k is calcu-
lated by using the dimensional-regularization proce-
dure. Upon isolating a finite part, one constructs its
Fourier transform, which is then averaged with the
Coulomb wave functions in coordinate space.

(ii) One performs the Fourier transformation of
expression (18), whereupon the result is averaged in
coordinate space.

We used both methods to calculate contributions
of order (Zα)6m1/m2 to the energy spectrum of
the muonium atom. A transition to d-dimensional
space enables one to regularize the expression for
the quasipotential both in the relativistic and in the
nonrelativistic region of intermediate momenta. The
results obtained by calculating some integrals of the
type in (18) are presented in Table 1.

Corrections of the required order to the spectrum
of S-wave states of the muonium atom also come
from the soft-momentum region (7). There, the inte-
gral in (14) is determined by the residues at the pho-
ton poles. The expansion of the electron propagator in
the soft-momentum region (7) has the form

1
k0

2 − k2 + 2m1k0 + b2
=

∞∑
n=0

(k0
2 − k2 + b2)n

(2m1k0)n+1
.

(19)

As a result, integrals of the following type arise
in (14):

Isoft(p,q) ∼
∞∑
n=0

∫
d4k

(k − p)2(k − q)2
(20)
PH
× 1
(k0 + i0)

(k0
2 − k2 + b2)n

(2m1k0)n+1
.

Since the function appearing in the numerator on the
right-hand of (14) involves terms of orders 1, α, and
α2, it turns out that, in the sum in (20), an O(α6)
contribution comes from the n = 1, 2, and 3 terms,
which are further calculated in just the same way as
in the potential region.

3. CALCULATING MATRIX ELEMENTS
OF THE OPERATOR r−ν

IN d-DIMENSIONAL COORDINATE SPACE

In many cases, it is convenient to perform aver-
aging of the two-photon-interaction quasipotential
with Coulombwave functions in the coordinate repre-
sentation. Indeed, the results obtained by calculating
the integrals J(p,q) and given in Table 1 show
that their averaging in three-dimensional momentum
space leads to divergent expressions. Naturally, these
divergences appeared for the same reason as above—
namely, because of resort to expanding the integrand
in a Taylor series. In just the same way as in perform-
ing integration with respect to the loop momentum k,
we can again use here the dimensional-regularization
procedure—that is, a transition to d-dimensional
momentum space. In order to do this, it is neces-
sary to know the form of the wave functions in the
d-dimensional momentum representation [29, 30].
A different approach to calculating the expectation
value 〈V2γ〉 involves determining the Fourier trans-
form of the potential (14) in d-dimensional coor-
dinate space and subsequently evaluating relevant
expectation values for the Coulomb wave functions
in this space. The Fourier transform of the power-law
potential V (p) = 1/pm is given by [31]

V (r) =
1

(2π)d−1

d−3∏
k=1

Γ
(

k + 1
2

)
Γ(1/2)

Γ
(

k + 2
2

) (21)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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×
π∫

0

∞∫
0

sind−2 θeipr cos θdθpd−1−mdp

=
Γ
(

d − m

2

)

2mπd/2rd−mΓ
(m

2

) .

It follows that, in d = 3 coordinate space, there arise
potentials whose matrix elements are divergent for S-
wave states. In order to isolate these singular terms,
which are proportional to 1/ε (d = 3 + 2ε), we formu-
late an auxiliary Coulomb problem in d-dimensional
coordinate space—namely, we formally consider a
Coulomb potential in d-dimensional space, repre-
senting the Hamiltonian in the form [29, 30]

H =
p2

2
+ VC(r) =

p2
r

2
+

1
2r2

(22)

×
[
L2 +

(d − 1)(d − 3)
4

]
− a

r
, a = µZα,

r =

√√√√ d∑
i=1

x2
i ,

where pr is the radial-momentum operator and L2

is the angular component of the Laplace operator
∆ in d-dimensional space; the eigenfunctions of
the operator L2, which are homogeneous harmonic
polynomials of degree l on a sphere Sd−1, correspond
to the eigenvalues λ = l(l + d − 2) [32]. For the case
of a discrete spectrum, an exact solution to the d-
dimensional Coulomb problem was first obtained
in [30]. In particular, it was shown that the Coulomb
energy levels are given by

εn = − 1

2
(

n +
d − 3

2

)2 , (23)

where n = 1, 2, 3, . . . is the principal quantum num-
ber (see Appendix). The Coulomb Green’s function
for the d-dimensional problem—this function is nec-
essary for calculating corrections in higher orders of
perturbation theory—was derived in [33]. Recursion
equations that relate the matrix elements of the oper-
ators r−ν for different values of the exponent ν play an
important role in calculating the expectation values
of the quasipotential V2γ . In order to derive these
equations in d-dimensional space, we consider the
operator

pr =
1
2

{ri
r

, pi

}
=

ri
r

pi −
i(d − 1)

2r
(24)

= −i

(
∂

∂r
+

d − 1
2r

)
,
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where the braces {. . . , . . .} denote the anticommu-
tator of the operators enclosed by these braces. The
radial-momentum operator satisfies the commutation
relations

[r, pr] = i · I,
[

1
rν

, pr

]
=

−iν

rν+1
. (25)

After a direct calculation, we find from relations (24)
and (25) that[

H,
1

rν−1

]
=

ν − 1
2

(
− ν

rν+1
+

2i
rν

pr

)
, (26)

[H, ipr] =
∆0

r3
− a

r2
, ∆0 = L2 +

(d − 1)(d − 3)
4

.

From relations (24)–(26), it also follows that [34][
1
rν

[r,H] ,H
]

+
ν

2

[
1

rν+1
,H

]
=

2ν
rν+1

H (27)

− ν + 1
rν+3

[
L2 +

(d − 1)(d − 3)
4

]
+

(2ν + 1)a
rν+2

+
ν(ν + 1)(ν + 2)

4
1

rν+3
.

The recursion relation for the matrix elements of 1/rν
arises upon averaging (27) with the wave functions
ψnlm, for which we have

Hψnlm = Enψnlm, (28)

En = a2εn = − a2

2
(

n +
d − 3

2

)2 ,

L2ψnlm = l(l + d − 2)ψnlm.

The matrix element of the left-hand side of Eq. (27)
between ψnlm is equal to zero; therefore, we arrive at
the recursion relation

0 = 2νEn

〈
1

rν+1

〉
− (ν + 1) (29)

×
[
l(l + d − 2) +

(d − 1)(d − 3)
4

]〈
1

rν+3

〉

+ a(2ν + 1)
〈

1
rν+2

〉
+

ν(ν + 1)(ν + 2)
4

〈
1

rν+3

〉
.

In the case of S-wave states, l = 0, and it follows
from (29) that 〈

1
rν+3

〉
(30)

= − 8Enν

(ν + 1)[ν(ν + 2) − (d − 1)(d − 3)]

〈
1

rν+1

〉

− 4a(2ν + 1)
(ν + 1)[ν(ν + 2) − (d − 1)(d − 3)]

〈
1

rν+2

〉
.

3
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With the aid of relation (30), we can go over from cal-
culating the matrix elements of 1/rν at high negative
values of the exponent—in d = 3 space, these matrix
elements are singular—to calculating the matrix el-
ements of lower negative powers of r, explicitly iso-
lating the singular factors 1/ε (d = 3 + 2ε). In order
to illustrate the use of the recursion relation (30), we
consider a typical integral in (14),

I(p,q) =
∫

dk
(2π)d

(4πα)2(k2 − b2)
(k− p)2(k − q)2 · 2µ, (31)

where we have introduced the factors (4πα)2 and
1/2µ to simplify the ensuing transformations, and
calculate this integral by two independent methods.
In the momentum representation, the Coulomb wave
function satisfies Eq. (9) [35]. With the aid of this
equation, the expectation value of the integral in (31)
can then be reduced to the form

〈I(p,q)〉 =

〈(
k2 − b2

2µ

)3
〉

(32)

=
〈

(k6 + 3k4W 2 + 3k2W 4 + W 6)
1

8µ3

〉
,

W 2 = −b2.

The expectation values of the individual terms in (32)
can be immediately found in d = 3 space. We have

〈k2〉 = 〈2µ(En − VC)〉 =
(µα)2

n2
, (33)

〈W 6〉 =
(µα)6

n6
,

〈k4〉 = 〈(En − VC)(En − VC)4µ2〉 (34)

= (µα)4
[
− 3

n4
+

8
n3

]
.

In averaging k6, there arises a different situation; that
is, 〈

k6

8µ3

〉
=
〈

(En − VC)
k2

2µ
(En − VC)

〉
(35)

= 〈E2
n(En − VC)〉 − 2〈En(En − VC)VC〉

−
〈

W 2

2µ
V 2
C

〉
− 〈V 3

C 〉 +
〈

α2

2r4

〉
.

It follows that, in (35), we have two matrix elements
that are divergent in 3-dimensional space, those pro-
portional to 〈1/r3〉 and 〈1/r4〉. By using the recursion
relation (30), we can show that, in the d = 3 case, the
singular terms in (35) cancel. As a result, we arrive at
the following finite result:〈

k6

8µ3

〉
= µ3α6

[
5

8n6
− 7

3n5
− 8

3n3

]
. (36)
PH
Upon the substitution of (33), (34), and (36) into ex-
pression (32) and subsequent summation, we obtain
the sought integral

〈I(p,q)〉 = µ3α6

[
2

3n5
− 8

3n3

]
. (37)

Let us consider an alternative method for evaluating
the integral in (31). We perform integration in (31)
by using the dimensional-regularization procedure.
Going over to the limit d → 3, we find the follow-
ing contribution to the quasipotential in momentum
space:

I(p,q) =
(4πα)2

2µ

[
p2 − b2

8t
− t

16

]
, t = (p − q).

(38)

As in deriving expression (21), we further calculate
the Fourier transform of (38) in d-dimensional space.
The result is

I(r) =
α2

2µ

[
(p2 − b2)

1
r2

+
1
r4

]
. (39)

The expectation values of the individual terms in this
expression can be simplified by using the equation for
the wave function and the recursion relation (30). As
a result, we obtain〈

(p2 − b2)
2µ

α2

r2

〉
=
〈

α3

r3

〉
= µ3α6 (40)

×
[

2
εn3

− 6
n4

− 6
n3

]
,

〈
α2

2µr4

〉
=

µ3α6

2

[
− 4

εn3
+

20
3n3

+
12
n4

+
4

3n5

]
,

(41)

where the contributions of order 1/ε in the last two
divergent matrix elements differ only in sign. As a
result, the sum of expressions (40) and (41) appears
to be finite and coincident with (37). Both methods
for calculating integrals belonging to the same type
as I(p,q) were used in this study to determine the
(Zα)6m1/m2 contributions to the spectrum of the
muonium atom. Upon averaging (14), the sum of all
contributions of this order in the potential and soft
regions assumes the form

〈V2γ〉 =
m1(Zα)6

m2

[
− 37

9n3
− 1

6n4
+

7
9n5

]
. (42)

4. CORRECTIONS OF ORDER (Zα)7
TO S-WAVE ENERGY LEVEL

As was mentioned above, the main contribu-
tion of two-photon amplitudes to the energy spec-
trum is of order α5. In the hard-momentum region,
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Table 2. Results obtained by calculating basic integrals of the type in (48):
∫ d4k

16iπ2

S(k)
(k2)α(k2 + 2k0E1)β(k2 − 2k0E2)γ

S(k) 1 k0 k2 k2
0

α = 2, β = 1, γ = 1
E1E2 − E2

1 − E2
2

96E3
1E

3
2

E1 − E2

32E2
1E

2
2

1
32E1E2

–

α = 2, β = 2, γ = 1
2E2

1E2 − 3E1E
2
2 − E3

1 + 4E3
2

960E5
1E

4
2

2E1E2 − E2
1 − 3E2

2

192E4
1E

3
2

–
E2

1 − E2
2 − E1E2

128E3
1E

2
2(E1 + E2)

α = 3, β = 1, γ = 1 –
(E2

1 + E2
2)(E1 − E2)

192E4
1E

4
2

E2
1 − E1E2 + E2

2

144E3
1E

3
2

E2
1 − E1E2 + E2

2

64E3
1E

3
2

the diagrams in Fig. 1 also make higher order
contributions—those of order (Zα)7. In order to
calculate these corrections to the S-wave levels of the
bound state, we average the two-photon amplitudes
over the particle spins. As a result, the quasipotentials
corresponding to the amplitudes associated with the
diagrams in Figs. 1a and 1b assume the form

V
(a)
2γ (p,q) =

i(Zα)2

π2
(43)

×
∫

g1(k,m1,m2)d4k

(k − p)2(k − q)2D1(k)D2(−k)
,

g1(k,m1,m2) = 16m1m2 − 8m1k0 + 8m2k0

− 4W 2

(
m1

m2
+

m2

m1

)
+ 8k0W

2

(
1

m1
− 1

m2

)
− 16k0

2 + 8k2,

V
(b)
2γ (p,q) =

i(Zα)2

π2
(44)

×
∫

g2(k,m1,m2)d4k

(k − p)2(k − q)2D1(k)D2(−k + p + q)
,

g2(k,m1,m2) = 16m1m2 + 8m1k0 + 8m2k0

− 4W 2

(
m1

m2
+

m2

m1

)
− 8k0W

2

(
1

m1
− 1

m2

)
+ 16k0

2 − 8k2 + 8k · p + 8k · q,

D1,2(k) = k2 + 2E1,2k0 − W 2. (45)

If k0 ∼ µ and |k| ∼ µ, the expansions of the electron
(muon) and photon propagators are given by

1
D1,2(k)

=
∞∑
n=0

(W 2)n

(k2 + 2E1,2k0)n+1
, (46)

1
(k − p)2

≈ 1
k2

+
p2 − 2p · k

(k2)2
+

4(k · p)2

(k2)3
, (47)
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where, in the last expression, we have retained only
terms of the required order. Substituting expres-
sions (46) and (47) into (43) and (44), we can see
that the hard component of the quasipotential V2γ is
determined by the sum of integrals of the form

K(p,q) (48)

=
∫

d4k

16iπ2

S(k)
(k2)α(k2 + 2k0E1)β(k2 ± 2k0E2)γ

,

where S(k) is a power-law function of k0 or k2. In
calculating integrals of the form (48), we have em-
ployed the dimensional-regularization procedure. The
results of the calculation are quoted in Table 2 (only
the finite parts of the final expressions are given there).

In the two-photon quasipotential, the spin-inde-
pendent component obtained by summing all terms in
(43) and (44) upon integration in (48) involves a term
of the form (Zα)2p2F (m1,m2). The contribution of
this term to the energy spectrum can be obtained by
using the dimensional-regularization procedure and
Eq. (9) [15, 31]. This yields

〈p2〉 = ψM (0)
∫

dp
(2π)d

p2ψM (p) = b2|ψM (0)|2.
(49)

As a result, the exchange two-photon diagrams lead,
in the hard-momentum region, to the following cor-
rection of order (Zα)7 to the positronium spectrum:

∆Bn(Ps) = −(Zα)7

πn5
m1

1129
720

. (50)

In the case of the muonium atom, one can perform an
additional expansion in powers of m1/m2. Retaining
linear corrections inm1/m2, we obtain

∆Bn(Mu) = −(Zα)7

πn5
m1

(
16
5

+ 20
m1

m2

)
. (51)
3
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Here, we have calculated only power-law correc-
tions of order (Zα)7. Logarithmic terms of order
ln(m1,2/λ) (where λ is the mass parameter of dimen-
sional regularization) were systematically discarded,
although they are present in the intermediate expres-
sions (48).

In the soft-momentum region, the general struc-
ture of the quasipotential that makes a contribution
of order (Zα)7 is similar to that in (20). In the case of
the muonium atom, we can, by using the additional
expansion in m1/m2, represent the corresponding
quasipotential in the form

V soft
2γ (p,q) =

i(Zα)2

4π2m3
1m2

(52)

×
∫

d4k

(k − p)2(k − q)2k2
0

{
(k2 − W 2)4

k4
0

+
(k2 − W 2)3(k2 + 2k(p + q) − t2 − W 2)

k4
0

P

− 3(k2 − W 2)3

k2
0

+ 8W 2(k2 − W 2)

− (k2 − W 2)2(k2 + 2k(p + q) − t2 − W 2)
k2
0

− W 2(k2 − W 2)(k2 + 2k(p + q) − t2 − W 2)
k2
0

− W 2(k2 − W 2)2

k2
0

+
4(2k2

0 − k2)(k2 − W 2)2

k2
0

+
2k(p + q)(k2 − W 2)2

k2
0

}
.

The residues at the photon poles determine the inte-
gral with respect to k0. Integration with respect to
k can be performed by means of the dimensional-
regularization procedure. As a result, the quasipoten-
tial (52) in the momentum representation takes the
form
V soft
2γ (p,q) =

(Zα)2

2m3
1m2

{
13
4

p2 − W 2

6
− (17p4 − 9W 4)

2t2
(53)

+
8p6 − 4W 6 + 3p4(2q2 + 3W 2) + 3p2W 2(q2 − 2W 2)

3t4

+
16W 8 − 29p8 + 16p6(q2 − 2W 2) + 3p4(12W 4 − q4) + 4W 4p2(8W 2 − 9q2)

12t6

+
(44p2 − 5W 2)

8
ln(t/W ) +

14W 4 − 45p4 + 38p2q2 + 26W 2p2

4t2
ln(t/W )

+
28W 6 − 8p6 − 53W 2p4 + W 2p2q2 − 16W 4p2

4t4
ln(t/W )

+
23p8 − 16W 8 + 16p6(2W 2 − q2) + p4(9q4 − 12W 4) + 4W 4p2(3q2 − 8W 2)

4t6
ln(t/W )

}
.

The singularity of the individual terms in the quasipo-
tential (53) becomes stronger. In calculating the
energy spectrum in the coordinate representation,
there arise expectation values of higher negative
powers of 1/r than in the case of (Zα)6 contributions:
〈1/r3〉, 〈1/r4〉, and 〈1/r5〉. These matrix elements
were transformed with the aid of relations (24)–(26),
(30), and (A.4)–(A.7) within the FeynCalc package
for the Mathematica system [36, 37]. As a result,
the (Zα)7 corrections to the S-wave levels of the
muonium (hydrogen) atom reduce to the form

∆Bsoft
n =

(Zα)7µ5

m3
1m2πn3

{
63565
288

− 8675
72

C (54)

− 38
3

π2 − 2521
72

ψ(n) + 38ψ′(n)
H

+
1
n

[
605147
9216

− 148257
1024

C − 360673
6144

ψ(n)
]

+
1
n2

[
3698203
36864

+
7157
6144

C +
10757
12288

ψ(n)
]

+
1
n3

[
−81

64
+

47
16

C +
47
16

ψ(n)
]}

,

where ψ(z) = d ln Γ(z)/dz and C =
0.5772156649 . . . is the Euler constant.

5. DISCUSSION OF THE RESULTS

The calculation of high-order perturbative cor-
rections in α to the energy spectra of hydrogen-
like atoms is presently a very important problem in
view of the improvement of accuracy in measuring
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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the energy levels of extremely simple atomic sys-
tems. Even for one-loop Feynman amplitudes, such
calculations become more involved with increasing
power of α. The majority of computer methods for
calculating Feynman diagrams were developed for
on-shell particles. In the case of bound states, one
has to expand the relevant amplitudes in a Taylor
series in order to isolate contributions of the required
order in α and m1/m2. In this study, the applica-
tion of such expansions was illustrated in calculating
corrections of orders (Zα)6m1/m2 and (Zα)7. The
dimensional-regularization procedure is themost im-
portant tool that makes it possible to use Taylor ex-
pansions. This procedure enables one to deal with
ultraviolet and infrared divergences simultaneously.
Apart from this, the dimensional-regularization pro-
cedure permits calculating the Fourier transforms of
quasipotentials obtained in momentum space that
have a high degree of singularity. Individual terms
of the quasipotential in the coordinate representation
that were obtained in this study also lead to expres-
sions in the energy spectrum that are divergent for S-
wave states [see (39), (53)]. In view of this, we for-
mulated the recursion relations (30) in d-dimensional
coordinate space that make it possible to take cor-
rectly into account all coefficients in divergent terms.
By using expression (42) and the results obtained
in [14], we can represent the total contribution of order
(Zα)6m2

1/m2 for an arbitrary value of n as follows
(in our calculations, we took into account the spin-
dependent part of the quasipotential):

∆Btot
n =

{
5
2

ln 2 − 151
36

− 3
n

+
1

2n2
(55)

+
547
72n3

− 7
2
(−1)n(C + ψ(n) − 1)

}
m2

1(Zα)6

m2n3
.

It should be emphasized that our recoil correction
of order (Zα)6m1/m2 in (55) differs from the con-
tributions of the same order to the Lamb shift in the
hydrogen atom that were obtained in [10–13]. The
quasipotential for the S-wave states of the hydrogen-
like atom has the form

V (r) = V1(r) + (s1 · s2)V2(r); (56)

that is, it involves a component dependent on the
particle spins s1 and s2 and a spin-independent term.
The contribution to the Lamb shift is determined by
the first term on the right-hand side of (56). But
in our calculations, we took into account both the
contribution induced by the first term V1(r) and the
contribution of the second, spin-dependent, compo-
nent for triplet energy levels. Therefore, the results
that were obtained here supplement the results of
the calculations performed by other authors for the
recoil effects of order (Zα)6m1/m2 in the Lamb shift
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of extremely simple atomic systems. The numerical
values of the contribution in (55) to the 23S1–13S1

fine-structure intervals in the muonium and hydrogen
atoms are 0.045 MHz and 5.116 kHz, respectively.
The methods used in the present study to calculate
relevant Feynman amplitudes enable one to calculate
power-law corrections of higher order in α. The nu-
merical values of the (Zα)7 contributions (50), (51),
and (54), which were obtained in the hard- and soft-
momentum regions for the “large”-structure interval
(2S–1S) in themuonium, hydrogen, and positronium
atoms, are 0.092, 0.130, and 0.066MHz, respectively.
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APPENDIX

Matrix Elements of Potentials in the Coordinate
Representation

In order to calculate matrix elements of the form〈
1
rm

〉
or
〈

ln r

rm

〉
, it is necessary to know radial

wave functions in d-dimensional space and to use
the recursion relation (30). The radial wave function
satisfies the equation

R′′ +
d − 1

ρ
R′ +

(
−1

4
+

B√
A

1
ρ

(A.1)

− l(l + d − 2)
ρ2

)
R = 0,

where the dimensionless variable is given by ρ =
2r
√

A, B = µZα, and A = −2µE. In the case of S-
wave states, the normalized solution to this equa-
tion—it is sought by a standard method—can be rep-
resented in the form [this solution leads to spectrum
in (23)]

Rn,l=0(r) (A.2)

=

√
2dW dΓ(n)

(2n + d − 3)Γ(n + d − 2)
e−WrLd−2

n−1(2Wr),

W =
µZα

n +
d − 3

2

,

3
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where

Lλn(z) =
1
n!

z−λez
dn

dzn

(
e−zzλ+n

)
(A.3)

are Laguerre polynomials.
Apart from the matrix elements of power-law po-

tentials, there arise the expectation values of opera-

tors involving ln ρ:
〈

ln ρ

ρm

〉
. By using (30), we can

obtain the following recursion relations for matrix
elements of this type in d-dimensional space:〈

ln ρ

ρ3

〉
= − 8εn

(d − 1)(d − 3)

〈
1
ρ

〉
(A.4)

− 4(d2 − 4d + 5)
(d − 3)2(d − 1)2

〈
1
ρ2

〉
+

4
(d − 1)(d − 3)

〈
ln ρ

ρ2

〉
,

〈
ln ρ

ρ4

〉
= −d2 − 4d + 24

d2(d − 4)2

〈
1
ρ3

〉
(A.5)

+
6

d(d − 4)

〈
ln ρ

ρ3

〉
− 2εn(d2 − 4d + 8)

(d − 4)2d2

〈
1
ρ2

〉

+
4εn

d(d − 4)

〈
ln ρ

ρ2

〉
.

The expectation values
〈

ln ρ

ρ2

〉
and

〈
ln ρ

ρ

〉
are finite

in d = 3 space; nevertheless, we must calculate them
with the aid of the wave functions (A.2), retaining

terms proportional to ε =
d − 3

2
in the limit d → 3.

The results are〈
ln ρ

ρ

〉
=

ψ(n + d − 2)
(2n + d − 3)

, (A.6)

〈
ln ρ

ρ2

〉
=

1
(d − 2)(2n + d − 3)

(A.7)

× [ψ(d − 1) + ψ(d − 2) − ψ(n + d − 3)] .

We also note that, in d-dimensional space, the
expectation values of 1/r2 and 1/r can be obtained
by representing the Hamiltonian in the form

H = −1
2

[
∂2

∂r2
+

(d − 1)
r

∂

∂r

]
(A.8)

+
1

2r2
l(l + d − 2) − a

r
.

By using relation (23) and formula (А.8), we arrive at〈
1
r2

〉d
=

2
2l + d − 2

〈
∂H

∂l

〉
(A.9)

=
2

(2l + d − 2)
a2(

n +
d − 3

2

)3 ,
P

〈
1
r

〉d
=

a(
n +

d − 3
2

)2 . (A.10)
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Abstract—The total and differential cross sections for the production of Ωscb baryons in electron–positron
collisions are calculated at the Z-boson pole. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Baryons involving two or three heavy quarks (c, b)
have not yet been observed experimentally. Theoret-
ical investigations into the mass spectra of hadrons
that contain two or more heavy quarks, the cross
sections for their production in various processes, and
their lifetimes and decay modes form a rather new
line of research in particle physics. For an overview of
these investigations, the interested reader is referred
to [1]. Calculations presented in the literature that are
aimed at determining the production cross sections
for baryons featuring two heavy quarks either rely on
the fragmentation approach [2], or treat the produc-
tion of unbound four-quark states in a bounded phase
space [3], or consider (as is done in the majority of the
most recent studies on this subject) the production
of the relevant heavy diquark [4–9]. In particular,
the production of doubly heavy baryons in electron–
positron collisions was analyzed in [3, 9]. No attention
has so far been given to the production of triply heavy
baryons.

Investigation of the mechanisms responsible for
the production of multiply heavy hadrons is of interest
from the theoretical point of view since this provides
the possibility of further verifying QCD (more pre-
cisely, of obtaining deeper insight into this theory).
This involves testing both its perturbative aspect,
which is used to describe the simultaneous produc-
tion of a few quark pairs, and QCD-inspired non-
perturbative models of bound states. We recall that,
even in apparently obvious cases, the results of QCD
calculations often unexpectedly prove to be at odds
with experimental data, as was, for example, in the
hadronic production of J/ψ particles. On the other
hand, a derivation of theoretical cross-section es-
timates is of importance from the point of view of
applications to searches for such particles and inves-
tigation into their properties. The presence of two or

*e-mail: baranov@sci.lebedev.ru
**e-mail: vslad@sci.lebedev.ru
1063-7788/03/6609-1730$24.00 c©
more heavy quarks in a hadron substantially affects
the properties of its weak decays. At the same time,
the reliability of theoretical predictions is higher for
such hadrons, and this makes it possible to test model
concepts more thoroughly.

In the present study, we reveal some features of
Ωscb-baryon production in electron–positron anni-
hilation. The choice of a process where the initial
state is purely leptonic was motivated, on one hand,
by the fact that the relevant calculations are simpler
here than in the case of hadronic production and, on
the other hand, by the fact that the case of leptonic
production offers a number of advantages in what is
concerned with a possible experimental observation,
which include favorable background conditions and a
precisely known initial energy.

At the quark level, the subprocess e−e+ → ss̄cc̄bb̄,
which is of order α2α4

s in conventional perturbation
theory, is associated with the process being consid-
ered. In evaluating the square of the relevant matrix
element, use is made of the method that was proposed
in [10] and which is referred to as the method of
orthogonal amplitudes (previously, this method was
employed, for example, in [7, 8]). The fusion of the
product s, c, and b quarks into a Ωscb baryon is de-
scribed within the standard nonrelativistic approxi-
mation [11–13]. A detailed account of the technical
facet of our calculations is given in Section 2. The
numerical results obtained on the basis of these cal-
culations are discussed in Section 3.

2. COMPUTATIONAL PROCEDURE

Our calculations are based on considering the par-
tonic process

e−(pe−) + e+(pe+) → s(p1, ξ) + c(p2, ζ) (1)

+ b(p3, χ) + s̄(p4, ξ′) + c̄(p5, ζ ′) + b̄(p6, χ′),

where the parentheses referring to the colliding parti-
cles enclose their 4-momenta, while the parentheses
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Basic Feynman diagrams for the process e− + e+ → s+ c+ b+ s̄+ c̄+ b̄.
referring to the product quarks and antiquarks en-
close their 4-momenta and color indices. As usual,
we disregard Feynman diagrams featuring the elec-
troweak interaction of the quarks involved. In other
words, we consider only those diagrams where the
interaction between the quarks is mediated by gluons.
For this class of diagrams, Fig. 1 shows nine basic di-
agrams in which quark and gluon lines are connected
in different ways. Here, six (three) nonequivalent dis-
positions of the ss̄, cc̄, and bb̄ lines correspond to each
of the first seven (last two) diagrams in Fig. 1—that
is, diagrams 1–7 (diagrams 8 and 9). Considering
that the annihilation channel may involve either a
photon or a Z boson, we conclude that the total
number of diagrams in question is 96.

The matrix element for the process in (1) can be
represented in the form

M =
g4
sg2

24 cos2 θW(s − M2
Z + iMZΓZ)

εξζχεξ
′ζ′χ′

(2)

× AZ
ξξ′ζζ′χχ′ −

g4
se2

6s
εξζχεξ

′ζ′χ′
Aγ
ξξ′ζζ′χχ′ ,
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where

AZ
ξξ′ζζ′χχ′ = Bss̄cc̄bb̄

ξξ′ζζ′χχ′ + Bss̄bb̄cc̄
ξξ′χχ′ζζ′ (3)

+ Bcc̄ss̄bb̄
ζζ′ξξ′χχ′ + Bcc̄bb̄ss̄

ζζ′χχ′ξξ′ + Bbb̄ss̄cc̄
χχ′ξξ′ζζ′ + Bbb̄cc̄ss̄

χχ′ζζ′ξξ′,

Bss̄cc̄bb̄
ξξ′ζζ′χχ′ =

{
[(p2 + p1 + p4)2 − m2

c ]
−1 (4)

× [(pe+ + pe− − p6)2 − m2
b ]
−1(p1 + p4)−2

× (p1 + p2 + p4 + p5)−2ū(p2)T a
ζlT

b
lζ′γ

ν(p̂2 + p̂1

+ p̂4 + mc)γδv(−p5)ū(p3)T b
χχ′γδ(p̂e+ + p̂e−

− p̂6 + mb)γε(gbV − gbAγ5)v(−p6) + [(p5

+ p1 + p4)2 − m2
c ]
−1[(pe+ + pe− − p3)2 − m2

b ]
−1

× (p1 + p4)−2(p1 + p2 + p4 + p5)−2

× ū(p2)T b
ζlT

a
lζ′γδ(−p̂5 − p̂1 − p̂4 + mc)γν

× v(−p5)ū(p3)T b
χχ′γε(−p̂e+ − p̂e−

+ p̂3 + mb)γδ(gbV − gbAγ5)v(−p6) + [(p5

+ p1 + p4)2 − m2
c ]
−1[(pe+ + pe− − p6)2 − m2

b ]
−1

× (p1 + p4)−2(p1 + p2 + p4 + p5)−2
3
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× ū(p2)T b
ζlT

a
lζ′γδ(−p̂5 − p̂1 − p̂4 + mc)γν

× v(−p5)ū(p3)T b
χχ′γδ(p̂e+ + p̂e−

− p̂6 + mb)γε(gbV − gbAγ5)v(−p6) + [(p2

+ p1 + p4)2 − m2
c ]
−1[(pe+ + pe− − p3)2 − m2

b ]
−1

× (p1 + p4)−2(p1 + p2 + p4 + p5)−2

× ū(p2)T a
ζlT

b
lζ′γ

ν(p̂2 + p̂1 + p̂4 + mc)γδ

× v(−p5)ū(p3)T b
χχ′γε(−p̂e+ − p̂e−

+ p̂3 + mb)γδ(gbV − gbAγ5)v(−p6) + [(p2

+ p5 + p3)2 − m2
b ]
−1[(pe+ + pe− − p6)2 − m2

b ]
−1

× (p1 + p4)−2(p2 + p5)−2ū(p2)T b
ζζ′γδ

× v(−p5)ū(p3)T b
χlT

a
lχ′γδ(p̂2 + p̂5

+ p̂3 + mb)γν(p̂e+ + p̂e− − p̂6 + mb)

× γε(gbV − gbAγ5)v(−p6) + [(p2 + p5 + p3)2

− m2
b ]
−1[(p1 + p4 + p6)2 − m2

b ]
−1(p1 + p4)−2

× (p2 + p5)−2ū(p2)T b
ζζ′γδv(−p5)

× ū(p3)T b
χlT

a
lχ′γδ(p̂2 + p̂5 + p̂3 + mb)γε(−p̂1

− p̂4 − p̂6 + mb)γν(gbV − gbAγ5)v(−p6) + [(p1

+ p4 + p6)2 − m2
b ]
−1[(pe+ + pe− − p3)2 − m2

b ]
−1

× (p1 + p4)−2(p2 + p5)−2ū(p2)T b
ζζ′γδ

× v(−p5)ū(p3)T b
χlT

a
lχ′γε(−p̂e+ − p̂e−

+ p̂3 + mb)γδ(−p̂1 − p̂4 − p̂6 + mb)γν(gbV
− gbAγ5)v(−p6) − (i/2)[(pe+ + pe− − p6)2

− m2
b ]
−1(p1 + p4)−2(p2 + p5)−2(p1 + p2

+ p4 + p5)−2fabd[(−pδ1 − pδ4 + pδ2 + pδ5)g
µν

+ (−2pν2 − 2pν5)g
µδ + (2pµ1 + 2pµ4 )gνδ ]ū(p2)

× T b
ζζ′γµv(−p5)ū(p3)T d

χχ′γδ(p̂e+ + p̂e−

− p̂6 + mb)γε(gbV − gbAγ5)v(−p6) − (i/2)

× [(pe+ + pe− − p3)2 − m2
b ]
−1(p1 + p4)−2

× (p2 + p5)−2(p1 + p2 + p4 + p5)−2fabd[(−pδ1

− pδ4 + pδ2 + pδ5)g
µν + (−2pν2 − 2pν5)g

µδ

+ (2pµ1 + 2pµ4 )gνδ]ū(p2)T b
ζζ′γµv(−p5)ū(p3)T d

χχ′

× γε(−p̂e+ − p̂e− + p̂3 + mb)γδ(gbV − gbAγ5)

× v(−p6)
}

ū(p1)T a
ξξ′γνv(−p4)v̄(−pe+)

× γε(geV − geAγ5)u(pe−),

and where the expression for Aγ
ξξ′ζζ′χχ′ is obtained

from the expression for AZ
ξξ′ζζ′χχ′ by setting in it

geV = 1, geA = 0, gqV = Qq, and gqA = 0, with Qq being
PH
the electric charge of the quark q (q = s, c, b) in
units of the electron charge e. Since the number of
nonequivalent Feynman diagrams belonging to type 8
or 9 (Fig. 1) and differing from one another only by
a permutation of the ss̄, cc̄, and bb̄ lines is equal to
three and since the quantity AZ

ξξ′ζζ′χχ′ from Eq. (3)
involves six terms that are obtained from one another
by permuting the quantum numbers of ss̄, cc̄, and bb̄
quark–antiquark pairs, we introduce, in the eighth
and the ninth term in expression (4), an additional (in
relation to the Feynman formulation) factor of 1/2,
whereupon we arrive at the correct results for this
quantity and for the matrix element in (2).

Let us consider in more detail the color structure
of the matrix element given by Eqs. (2)–(4). Since
any baryon is a color-singlet object, the scb state
that is produced in process (1) must be an SU(3)c
singlet that is contained in the tensor product of
three SU(3)c triplets. It follows that the scb state
must be fully antisymmetric in the color indices of the
quarks; to take this into account, it is necessary to
introduce, in the amplitude of the process, the anti-
symmetric tensor εξ

′ζ′χ′
/
√

6, which is normalized to
unity. Since the initial electron–positron state is also
a color singlet, the state of three unbound s̄, c̄, and
b̄ antiquarks accompanying the product baryon must
also be a singlet. We note in passing that the tensor
εξζχT a

ξξ′T
a
ζlT

b
lζ′T

b
χχ′ is already fully antisymmetric in

its indices ξ′, ζ ′, and χ′; therefore, it is not necessary
that the projection operator εξ

′ζ′χ′
/
√

6 be explicitly
present there. The presence of this operator is tech-
nically useful, however, since this makes it possible to
perform summation over color indices at the ampli-
tude level—that is, prior to squaring the amplitude.

Further, it is straightforward to prove the identity1)

εξζχεξ
′ζ′χ′

fabdT a
ξξ′T

b
ζζ′T

d
χχ′ = 0, (5)

from which it follows that the contributions of di-
agrams involving a three-gluon vertex [eighth and
ninth term in Eq. (4)] vanish. At the same time, all

1)Of three indices a, b, and d corresponding to nonzero values
of the structure constant fabd, two are always the numbers
of Gell-Mann matrices such that they undergo no changes
upon transposition, while the remaining index is associated
with a Gell-Mann matrix that changes sign upon transpo-
sition. By simultaneously replacing the primed indices by
unprimed ones and transposing the matrices T a, T b, and T d,
we arrive at

εξζχεξ
′ζ′χ′

T aξξ′T
b
ζζ′T

d
χχ′ = −εξζχεξ

′ζ′χ′
T aξ′ξT

b
ζ′ζT

d
χ′χ

= −εξ
′ζ′χ′

εξζχT aξξ′T
b
ζζ′T

d
χχ′ ,

whence we immediately obtain relation (5).
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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of the remaining terms in Eqs. (2)–(4) have the same
color structure. Summation over color indices yields

1
6

εξζχεξ
′ζ′χ′

T a
ξξ′T

a
ζlT

b
lζ′T

b
χχ′ =

4
9

. (6)

In performing summation over fermion polariza-
tions (with the aid of the REDUCE system [14]
for analytic calculations), we employed the method
of orthogonal amplitudes. Briefly, the essence of
the method is as follows. Suppose that we have
the quantity ū(p′)Ru(p′′), where u(p′) and u(p′′)
are spinors that obey the Dirac equation, while R
is an operator that is expressed in terms of the γ
matrices and their contractions with 4-vectors. In
general, this quantity then admits a linear decom-
position in terms of four orthogonal amplitudes w1 =
ū(p′)u(p′′), w2 = ū(p′)K̂u(p′′), w3 = ū(p′)Q̂u(p′′),
and w4 = ū(p′)K̂Q̂u(p′′). That two different am-
plitudes are orthogonal implies the vanishing of the
quantity obtained by summing, over the polarizations
of the two spinors, the product of one of these ampli-
tudes and the complex conjugate of the other. This is
so if the 4-vectors Kµ and Qµ are orthogonal to the
4-momenta p′µ and p′′µ and to each other—that is,
Kµp′µ = 0, Kµp′′µ = 0, Qµp′µ = 0, Qµp′′µ = 0, and
KµQµ = 0; otherwise, the 4-vectors Kµ and Qµ are
arbitrary.

Let us apply the method of orthogonal amplitudes
to the specific problem at hand. For this purpose, we
introduce the quantities

ws1 = ū(p1)v(−p4), ws2 = ū(p1)K̂sv(−p4), (7)

ws3 = ū(p1)Q̂sv(−p4), ws4 = ū(p1)K̂sQ̂sv(−p4),

wc1 = ū(p2)v(−p5), wc2 = ū(p2)K̂cv(−p5),

wc3 = ū(p2)Q̂cv(−p5), wc4 = ū(p2)K̂cQ̂cv(−p5),

wb1 = ū(p3)v(−p6), wb2 = ū(p3)K̂bv(−p6),

wb3 = ū(p3)Q̂bv(−p6), wb4 = ū(p3)K̂bQ̂bv(−p6),

we1 = v̄(−pe+)K̂eu(pe−),

we2 = v̄(−pe+)Q̂eu(pe−),

where

Kµ
s = εµνρσp1νp4ρasσ, Qµ

s = εµνρσp1νp4ρKsσ, (8)

Kµ
c = εµνρσp2νp5ρacσ, Qµ

c = εµνρσp2νp5ρKcσ,

Kµ
b = εµνρσp3νp6ρabσ, Qµ

b = εµνρσp3νp6ρKbσ,

Kµ
e = εµνρσpe+νpe−ρaeσ,

Qµ
e = εµνρσpe+νpe−ρKeσ,
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
the 4-vectors asσ, acσ, abσ, and aeσ being arbitrary.
Our problem is then described in terms of 128 orthog-
onal amplitudes of the form

wijkl = wsiwcjwbkwel, i, j, k = 1, 2, 3, 4, (9)

l = 1, 2.

In order to find the coefficients cijkl in the ex-
pansion of the matrix element (2) in the amplitudes
specified by Eq. (9),

M =
4∑

i,j,k=1

2∑
l=1

cijklwijkl, (10)

we multiply both sides of this equality by the quantity
w∗
i′j′k′l′ , sum the result over the polarizations of all

fermions, and make use of the orthogonality of the
different amplitudes wijkl. Denoting by |wijkl|2 the
quantity obtained by summing, over the polarizations
of all fermions, the squared modulus of the amplitude
wijkl, we have

cijkl =
{∑

polar

Mw∗
ijkl

}/
|wijkl|2. (11)

For the squared modulus of the relevant matrix el-
ement, summation over the polarizations of product
particles and averaging over the polarizations of col-
liding particles is performed by the formula

|M|2 =
1
4

4∑
i,j,k=1

2∑
l=1

|cijkl|2|wijkl|2. (12)

We note that we did not include the quantities
v̄(−pe+)u(pe−) and v̄(−pe+)K̂eQ̂eu(pe−) in the list
of basic orthogonal amplitudes in (7), since the cor-
responding coefficients in the expansion of the ma-
trix element [Eqs. (2)–(4)] vanish (this is because
the traces that arise in performing summation over
the polarizations of massless electrons and positrons
involve an odd number of Dirac γ matrices).

The question of why it is profitable to employ the
method of orthogonal amplitudes is in order here.
Upon directly squaring the matrix element specified
by Eqs. (2)–(4), we would obtain, with allowance
for the equality in (5), 3570 terms, and an individual
operation of summation over particle polarizations
would correspond to each of these terms. Within the
method of orthogonal amplitudes, we compose one
REDUCE code for evaluating traces and tensor con-
tractions that corresponds to 84 terms in the quan-
tity Mw∗

1111, whereupon we apply text editors (for
example, joe or gedit) to perform obvious substitu-
tions in this code, thereby obtaining REDUCE codes
for evaluating all 128 coefficients cijkl. We note that
analytic expressions for 128 coefficients cijkl occupy
370 Mb.
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Features of Ωscb-baryon production in electron–positron
collisions at the Z-boson pole

ms, MeV σtot, fb AFB

300 0.0534 ± 0.0014 0.162 ± 0.024

500 0.0153 ± 0.0004 0.158 ± 0.016

3. NUMERICAL RESULTS

In order to describe a bound state of heavy
quarks, we make use of the nonrelativistic approxi-
mation [11–13], according to which the relative ve-
locities of the quarks in a heavy hadron are assumed to
be low. In the case of S-wave states, these velocities
can be set to zero. Accordingly, the velocities of all
three quarks in the final state of process (1) are taken
to be identical, while the momenta of the quarks are
assumed to be proportional to their masses; that is,

p1 = (ms/M)p, p2 = (mc/M)p, (13)

p3 = (mb/M)p, M = ms + mc + mb.

Concurrently, the six-particle phase space of the final
state of process (1) reduces to the four-particle phase
space of the process

e−(pe−) + e+(pe+) → Ωscb(p) + s̄(p4) (14)

+ c̄(p5) + b̄(p6),

while the probability of bound-state formation is con-
trolled by the value of the baryon wave function at the
origin of coordinates, the only model parameter in this
approach. Eventually, the differential cross section for
process (14) assumes the form

dσ =
(2π)4|M|2

2s

|ψ(0)|2
M2

δ4(pe− + pe+ (15)

− p4 − p5 − p6 − p)
d3p4

(2π)32E4

d3p5

(2π)32E5

× d3p6

(2π)32E6

d3p

(2π)32E
.

In evaluating the cross sections in question, we
employed codes for integration that enter as ingredi-
ents into the CompHEP package [15]. As a necessary
test, we first of all made sure that numerical values of
the cross sections are identical for different choices
of the 4-vectors asσ, acσ, abσ, and aeσ, which are
involved in the construction of the basic amplitudes.
Having proven this, we prescribed ten iterations for
the cross sections, each involving 100 000 steps of
a Monte Carlo sampling of the integrand. The error
in evaluating the total cross sections was 2.0–2.5%,
while the error in the differential cross sections was
about 10%, on average.
P

Among theoretical uncertainties that affect cross-
section values, the choice of renormalization scale in
the running coupling constant for strong interaction,
the values of the baryon wave function at the origin,
and numerical values of the quark masses are of
greatest importance. In what is concerned with the
quark masses, the results of the calculations are
the most sensitive to the choice of value for the
lightest quark (strange one), because, for some gluon
propagators, the minimal values of the denominators
are 4m2

s . To illustrate this dependence, we everywhere
present the results obtained at two values of the
strange-quark mass, ms = 300 and 500 MeV. The re-
maining parameters were set to the following values:
mc = 1500 MeV, mb = 4800 MeV, α = α(MZ) =
1/128.0, αs = αs(MZ/2) = 0.134, and sin2 θW =
sin2 θW(MZ) = 0.2240; the numerical value of the
wave function for the spin-3/2 Ωscb baryon at zero
relative coordinates of its quarks was borrowed
from [16]:

|ψ(0)|2 = 0.90 × 10−3 GeV6. (16)

We note that the change in the characteristic en-
ergy scale µ in the running coupling constant αs(µ)
from µ = MZ/2 to µ = MZ leads to a change in
the calculated cross sections by a common factor of
[αs(MZ)/αs(MZ/2)]4 = 0.665.

For electron–positron collisions at
√

s =
91.2 GeV, the table presents the values of the total
cross sections σtot and of the forward–backward
asymmetry at the Z-boson pole. This asymmetry is
defined as

AFB = (σF − σB)/(σF + σB), (17)

where σF (σB) is the cross section for the production
of Ωscb baryons traveling in the forward (backward)
direction with respect to the direction of the electron
momentum.

Figure 2 displays the transverse-momentum (pT )
and rapidity (Y ) distributions of Ωscb baryons at
the strange-quark-mass values of ms = 300 and
500 MeV. For both values of the mass ms, the
differential cross sections dσ/dpT peak at pT values
approximately equal to one-fourth of the total energy
of colliding particles, while the quantities dσ/dY peak
at small positive values of the rapidity Y .

By using the concept of a fragmentation function,
we can represent our numerical results in a simpler
analytic form that is convenient for phenomenological
applications. It is natural to break down the entire
set of diagrams considered here into three groups
that correspond to the fragmentation of b, c, and s
quarks (in accordance with the flavor of quarks that
are produced at the γ/Z vertex). Here, the fragmen-
tation of b quarks plays a dominant role, whence it
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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follows that, to a high precision, we can approximate
the differential cross section as (see, for example, [4]
and the discussion on the treatment of experimental
data on electron–positron annihilation in [17, 18])

dσ/dz = σbb̄Db→Ωscb(z), (18)

where σbb̄ is the total cross section for the process
e−e+ → bb̄, Db→Ωscb(z) is the function that describes
the fragmentation of a b quark into an Ωscb baryon,
and the variable z is expressed in terms of the energy
E of the final hadron and its longitudinal momentum
p|| as

z = (E + p||)/(E + p||)max. (19)

For reasons of practical convenience, the variable z is
often replaced by the variable xp = p/pmax [17–20],
which is close to it, or by xE = E/Emax [21]. The
distinction between these definitions vanishes in the
limit of ultrahigh energies, but it can be sizable under
actual conditions.

Experimental results obtained for electron–posi-
tron annihilation are usually contrasted against the
Peterson fragmentation function [22]

D(z) ∼ 1
z[1 − (1/z) − ε/(1 − z)]2

, (20)

where ε is a phenomenological parameter.
If one disregards the aforementioned small asym-

metry in the angular distribution of Ωscb baryons
and sets z 
 xE , the relation between the differential
distribution of the cross section with respect to the
transverse momentum of the product baryon and the
fragmentation function assumes the form

dσ

dpT
=

4σbb̄pT
s

1∫
2
√

(p2
T+M2)/s

dz (21)

× Db→Ωscb(z)√
[z2 − 4M2/s][z2 − 4(M2 + p2

T )/s]
.

But if the variable xp is used instead of z, it is neces-
sary to set M = 0 in relation (21).

The conclusions drawn from a comparison of re-
lation (21) with our numerical results are as follows:
if z 
 xE , the parameter values of ε = 0.098 ± 0.012
and 0.132 ± 0.018 correspond to the strange-quark
masses of ms = 300 and 500 MeV, respectively; if
z 
 xp, the corresponding parameter values are ε =
0.108 ± 0.016 and 0.147 ± 0.022.

For the sake of comparison, we present values of
the parameter ε in the Peterson fragmentation func-
tion (20) that were obtained in experiments where
electron–positron annihilation was explored at

√
s =

10 GeV: ε = 0.236+0.068
−0.048 for c-quark fragmentation
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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Fig. 2. Differential distributions of the cross section for
Ωscb-baryon production in electron–positron collisions
at the Z-boson pole with respect to (a, c) the trans-
verse momentum pT and (b, d) the rapidity Y at the
strange-quark-mass values of ms = (a, b) 300 and (c,
d) 500 MeV. Points represent the results of our Monte
Carlo calculations. The solid curves correspond to the
calculations by formula (21) with the Peterson frag-
mentation function whose parameter takes the value of
ε = 0.098 for ms = 300 MeV and the value of ε = 0.132
forms = 500 MeV.

into Λc [17]; ε = 0.29 ± 0.06 for c-quark fragmenta-
tion into Σc [19]; and ε = 0.24 ± 0.08 and 0.23+0.09

−0.06

for c-quark fragmentation into Ξc according to the
results obtained in [18] and [20], respectively.
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Abstract—The structure of divergences in effective vertices that generate flavor-changing neutral currents
is considered. For extremely simple examples, it is shown that divergences are completely canceled in rare
processes governed by such vertices.Methodological facets of the cancellation and renormalization process
are discussed. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, much attention has been given to
so-called rare processes occurring at the loop level
that are caused by flavor-changing neutral currents
(FCNC). Interest in rare processes is associated with
performing precision tests of the StandardModel with
allowance for radiative corrections. This resulted in
the appearance of a considerable number of studies
devoted to calculating and analyzing effective FCNC
vertices [1–10].

A basic feature peculiar to effective vertices of
the qαqβX form, where X = γ, Z0, g (penguin di-
agrams), and of the qαqβ q̄αq̄β and the ll̄qαq̄β form
(box diagrams) is that they vanish at the tree level
in the Standard Model. This fact is of fundamental
importance for the renormalization procedure and is
associated with the problem of introducing counter-
terms. In the available literature [8, 9, 11, 12], qαqβX
and ll̄qαq̄β vertices are usually renormalized by in-
troducing counterterms in the divergent amplitudes
corresponding to the transitions in question, where-
upon the renormalized vertices are intended for use
as elements of more general diagrams in calculating
specific processes. It should be emphasized here that,
in FCNC amplitudes, the divergences cancel on the
mass shell—that is, there is no need for introduc-
ing counterterms in this case [7–12]. In the general
case, however, where an FCNC vertex appears to be
a fragment of a more complicated diagram (that is,
where some of its lines are off the mass shell, so that
there is no cancellation of divergences inherent in this
vertex), it is necessary to introduce a renormalization
procedure. Thus, a traditional renormalization pro-
cedure developed for processes occurring at the tree
level (bare terms) is mechanically extended to the
special case where there are no bare terms—FCNC
vertices are absent at the tree level. There then arises
the question of whether such an extension is legiti-
mate or reasonable. Since no detailed investigation of
1063-7788/03/6609-1737$24.00 c©
this question has been performed so far, the proposed
methodological analysis is of importance and interest.

The objective of the present study is to show, by
considering some specific examples, that, in FCNC
vertices, counterterms are not needed even in the
general case, where some external legs of these ver-
tices are off the mass shell. Further, we will demon-
strate that unrenormalized expressions in divergent
FCNC amplitudes can be used as blocks in a more
general expression for the amplitude of the total pro-
cess. This results in that the divergences of various
FCNC vertices appearing as elements of diagrams
describing a physical process cancel each other in the
total expression. All calculations are performed in the
physical gauge, where, on one hand, the spectrum of
divergences is the most diversified and, on the other
hand, the analysis of the cancellation of divergences
in terms of subdiagrams is the most convenient since
there are no diagrams, in this case, involving unphys-
ical degrees of freedom.

2. STRUCTURE OF DIVERGENCES IN FCNC
VERTICES

In order to illustrate and to test the process of
cancellation of divergences in physical FCNC ampli-
tudes, we present the expressions for the coefficients
of divergences appearing in input effective vertices.
The total expressions for qαqβX amplitudes in the
physical gauge—that is, the gauge coinciding with
the unitary gauge for massive vector bosons and with
the Feynman gauge for massless bosons—were ob-
tained in [10].

The set of diagrams describing dαdβZ vertices
in the one-loop approximation is shown in Fig. 1.
(Obviously, uαuβZ vertices are described by the set
of diagrams that is obtained from the preceding one
upon the substitution of u for d.)

In the expression for the total amplitude describing
the dαdβZ transition in the case where all external
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Structure of dαdβZ vertices (dα = d, s, b; uk = u, c, t).
legs of the vertex are off the mass shell, the coefficient
DZ of the (γ − 1/ε) divergence in the dimensional-
P

regularization procedure, where ε = 2 − d/2, has the
form
DZ(Γµαβ(p, k)) = aZαβ

[
−2 cos2 θWγ

µL− cos2 θW
m2
W

(k2γµ − kµk̂)L (1)

+
3
2
γµ
c+mβ p̂+ c−p2

p2 −m2
β

L+
3
2
R
c+mα(p̂− k̂) + c−(p− k)2

(p− k)2 −m2
α

γµ

]
,

where

aZαβ =
g3U∗

βkUαkαk

27π2 cos θW
, αk =

m2
k

m2
W

,

c+ = −4 sin2 θW/3, c− = 2 − 4 sin2 θW/3.

Here, Uαk are elements of the Cabibbo–Kobayashi–
Maskawa matrix, and summation is performed over
the subscript k (flavor of an internal quark). Terms
that do not depend on αk are not presented here,
since their total contribution vanishes by virtue of
the unitarity of the matrix U [Glashow–Iliopoulos–
Maiani (GIM) cancellation mechanism]. The first two
terms in expression (1) arise from the diagrams in
Figs. 1a and 1b, while the last two terms stem from
the diagrams in Figs. 1c and 1d.

If dα or dβ is on the mass shell, the third or the
fourth term becomes, respectively,

3
2
γµ
c+mαmβR+ c−m2

αL

m2
α −m2

β

; (2)

3
2
c+mαmβL+ c−m2

βR

m2
β −m2

α

γµ.

In the case where dα and dβ are both on the mass
shell, we have

DZ(Γµαβ(k)) = aZαβ

[
γµ − cos2 θW

m2
W

(k2γµ − kµk̂)
]
L.

(3)
If the Z boson is on the mass shell, the first two terms
in (1) are given by

−(1 + 2 cos2 θW)γµL+ (cos2 θW/m
2
W )kµk̂L, (4)

where the second term can be discarded by virtue of
the transverseness condition. If dα, dβ , and Z are on
the mass shell simultaneously, we obtain

DZ(Γµαβ(k)) = aZαβ k̂L
kµ

m2
Z

(5)

= aZαβ(mαR−mβL)
kµ

m2
Z

.

Since the quantity in (5) is proportional to kµ, it does
not contribute to the amplitude of a physical process
either.

The structure of the divergence in the dαdβγ vertex
is also determined by the diagrams in Figs. 1a–1d,
where the substitution Z → γ is made; the coefficient
Dγ of the divergence has the form

Dγ(Γ
µ
αβ(p, k)) = aγαβ

[
− γµL− k2γµ − kµk̂

2m2
W

L (6)

+ γµ
mβ p̂+ p2

p2 −m2
β

L+R
mα(p̂− k̂) + (p− k)2

(p− k)2 −m2
α

γµ

]
,

where aγαβ = eg2U∗
βkUαkαk/(2

6π2). If dα or dβ is on
the mass shell, the third or the fourth term in (6)
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 2.Quark box diagrams (dαd̄β → d̄αdβ).

reduces to, respectively,

γµ
mαmβR+m2

αL

m2
α −m2

β

;
mαmβL+m2

βR

m2
β −m2

α

γµ. (7)

In the case where dα and dβ are both on the mass
shell, we have

Dγ

(
Γµαβ(k)

)
= −

aγαβ
m2
W

(k2γµ − kµk̂)L. (8)

If dα, dβ , and γ are on the mass shell, then Dγ is
proportional to kµk̂L and does not contribute to the
amplitude.

The structure of the divergences in the gluon ver-
tex dαdβG is analogous to that specified by Eqs. (6)
and (7), but, in the present case, expression (6) fea-
tures no second term corresponding to the diagram
in Fig. 1b. The coefficient DG is obtained from the
expression for Dγ (without the second term) upon
substituting into (6) the quantity

aG
a

αβ = − 3
27π2

g2gsU
∗
βkUαkαkλ

a.

If dα or dβ is on the mass shell, the last two terms in
the expression for DG are equal to the corresponding
sign-reversed terms in (7), but, if dα and dβ are both
on the mass shell, a complete cancellation of diver-
gences occurs, irrespective of the gluon state; that is,
DG = 0.

We note that, on the mass shell, the coefficients
Dγ and DG satisfy the transverseness condition
kµD(Γµ) = 0. As an additional test, we also verified
fulfillment of the Ward–Slavnov–Taylor identity for
these coefficients.

Let us consider the structure of divergences aris-
ing in box diagrams of two types corresponding to the
transitions qαq̄β → q̄αqβ and ll̄ → qαq̄β . The quark
box diagrams in Fig. 2 lead to the mixing effect in
neutral meson systems, M0

αβ −M0
αβ , where Mαβ =

M(qαq̄β).
In the unitary gauge, the amplitudes correspond-

ing to the diagrams in Figs. 2a and 2b involve di-
vergences arising in Feynman integrals with respect
to the momenta of order from the fourth to the sixth
inclusive. However, the coefficients of divergences
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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Fig. 3.Quark–lepton box diagrams (ll̄ → d̄αdβ, d̄βdα).

associated with the fourth and the fifth order are free
from the quantity αk and are canceled by the GIM
mechanism. The coefficients appearing upon integra-
tion of the six-order term with respect to momenta
feature αk and αi in the form

Dbox ∼
∑
i,k

U∗
kβUkαU

∗
iβUiα(αi + αk) (9)

= 2
∑
k

U∗
kβUkα

(∑
i

U∗
iβUiααi

)
.

The parenthetical expression on the right-hand side
of (9) is independent of the flavor index k; that is, the
coefficientDbox is eventually equal to zero by virtue of
the double GIM mechanism of cancellation.

Transitions of the ll̄ → dαd̄β , dβ d̄α types are de-
scribed by the quark–lepton box diagrams in Fig. 3.
In contrast to what occurs in the case of a purely
quark transition, there is no complete cancellation of
divergences here.

The operator structure of the coefficient of diver-
gence in the ll̄ → dαd̄β amplitude has the form

Dbox
αβ = −bαβ d̄+

β γ
µLd+

α l̄
−γµLl−, (10)

bαβ =
ig4

210π4m2
W

U∗
βkUαkαk.

In the following, we will need this expression to il-
lustrate the process of cancellation of divergences in
physical amplitudes.

3. CANCELLATION OF DIVERGENCES
IN AMPLITUDES FOR PHYSICAL

PROCESSES

The simplest example of cancellation of diver-
gences in physical amplitudes is provided by pro-
cesses that can be completely described by the ef-
fective qαqβX vertex, such as the decays Z → qαq̄β ,
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Fig. 4. Self-energy nondiagonal diagram for Σαβ(p).
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qα → qβγ(G), and t→ cZ, uZ. It was indicated in
Section 2 that, in this case, the coefficient of the
divergence is D ∼ kµ; since, for the amplitude F , we
have F ∼ eµk

µ (eµ is the boson polarization vector),
FD then vanishes by virtue of the transverseness con-
dition eµkµ = 0. The mixing in the systems of neutral
mesons, M0

αβ −M0
αβ , which is described by the di-

agrams in Fig. 2, presents a similar trivial example,
but, in this case, the external quarks are not bound to
be on the mass shell.

The case of the qαqβX vertex also provides an
extremely simple illustration of the “structural” can-
cellation of divergences. The divergent third-order
diagrams in Fig. 1 include the divergent second-order
self-energy subdiagram Σαβ(p) presented in Fig. 4.

At α �= β, the dα and dβ external legs cannot
be on the mass shell simultaneously, in which case
the self-energy Σαβ(p) involves an noncompensated
divergence. Within the traditional method, one first
renormalizes the self-energy Σαβ(p) by introducing
the corresponding counterterms and then substitutes
it into the vertex Γµαβ(p, p− k), where Σαβ(p) enters
into the diagrams in Figs. 1c and 1d [8, 9, 11, 12]. As
was shown above, however, there is no need for renor-
malizing Σαβ(p) since, in the physical amplitudes
associated with the vertex Γµαβ(p, p − k), the diver-
gences that stem from the diagrams in Figs. 1а and
1b are canceled by the divergences in the self-energy
Σαβ(p) that appear in the diagrams in Figs. 1c and
PH
1d. The next task is to demonstrate that divergences
in FCNC vertices are canceled in processes described
by fourth-order diagrams. In this case, some of the
external legs of the qαqβX vertex must be off themass
shell, the divergences in question being exactly can-
celed by the divergences that arise in other diagrams
involving higher order loops.

The nondiagonal production of quarks in the pro-
cess e+e− → d̄αdβ , which is described by the dia-
grams in Figs. 5a–5c, where the shaded circle de-
notes the effective dαdβγ and dαdβZ vertices in the
one-loop approximation, is the simplest example of
this kind.

In the diagrams in Figs. 5a–5c, photons and Z
bosons are off the mass shell; with the aid of expres-
sions (3), (8), and (10), the operator coefficients of the
divergences in the amplitudes corresponding to the
diagrams in Figs. 5a–5c are then found to have the
form

(a) Da = A sin2 θWē
−γµe− (11)

·d̄+
β (q2γµ − qµq̂)Ld+

α /q
2,

(b) Db =
1
4
Aē−γµ(1 − 4 sin2 θW − γ5)e−

· d̄+
β γ

µLd+
α ,

(c) Dc = −1
2
Aē−γµLe− · d̄+

β γ
µLd+

α ,

where A = ig4U∗
βkUαkαk/(2

9π4m2
W ). The sum of all
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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contributions,D = Da +Db +Dc, is

D = −A sin2 θWē
−q̂e− · d̄+

β q̂Ld
+
α /q

2. (12)

This summakes zero contribution by virtue of lepton-
current conservation. This can easily be verified with
the aid of the relation q = p+ + p−, where p+ and p−
are, respectively, the electron and positron momen-
tum:

ē−q̂e− = ē−(p̂+ + p̂−)e− = 0. (13)

In (13), use was made of the Dirac equation for
negative-frequency components of the field operators.
The simple example considered above illustrates the
cancellation of the divergences arising in vertices of
the qαqβX type (third-order loop) by the divergences
in the quark–lepton box diagram (fourth-order loop).
Here, it is not necessary to invoke renormalized effec-
tive vertices.

Let us consider nondiagonal gluon scattering in
the process G1dα → G2dβ , which is represented by
the diagrams in Figs. 6a–6e. In this figure, we omit-
ted the crossed diagrams because the cancellation of
divergences in these diagrams occurs independently
of direct diagrams.

We note that the contribution of the diagram in
Fig. 6d is subtracted from the total expression since
it was twice taken into account in the diagrams in
Figs. 6a and 6b. Thus, the shaded circles in Figs. 6a
and 6b symbolize effectiveGdαdβ vertices by conven-
tion, and one must take into account the structure
of these vertices in constructing more complicated
diagrams. It can easily be shown, by means of a
direct calculation, that all divergences in the diagram
in Fig. 6c are independent of αk and are therefore
canceled by the GIM mechanism. According to the
results presented in Section 2, the diagram in Fig. 6e
also makes a finite contribution, and there remain the
contributions of the diagrams in Figs. 6a, 6b, and 6d.
The amplitudes for the direct and crossed diagrams
are given by

(1) Fa + Fb = aαβ d̄
+
β ê

i
2Ôq ê

k
1λiλkd

−
α , (14)

(2) (Fa + Fb)cross = aαβ d̄
+
β ê

i
1Ôq ê

k
2λiλkd

−
α ,

where

aαβ = −3ig2
s g

2 U∗
βkUαkαk/(2

11π4√p1p2).

The divergent part of the amplitude for the direct
diagrams,D(Ôq), has the form

D(Ôq) = −mαmβ q̂L+ (mαL+mβR)q2 + q2q̂R

(q2 −m2
α)(q2 −m2

β)
.

(15)

The analogous expression for the coefficient D(Ôk)
is obtained from (15) upon the substitution q → k. It
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
can easily be proven, by means of a direct calculation,
that the divergence in (15) is exactly cancelled by
the divergence appearing in the diagram in Fig. 6d.
The same occurs for the crossed diagrams. Thus, we
see that, in the process being considered, all diver-
gences cancel one another in the total expression, so
that there is no need for renormalizing the divergent
Gdαdβ vertex. It is natural to expect a similar cancel-
lation mechanism in more complicated cases.

4. CONCLUSION

The description of rare processes requires invoking
a broad range of means, both of a conceptual and of a
computational and a technical character. In particu-
lar, special features of FCNCbring about the question
of the status of counterterms—more specifically, the
question of whether it is necessary to introduce them
in divergent input effective vertices of the penguin and
the box type. In the present study, the statement that
divergences cancel automatically in physical ampli-
tudes is illustrated by considering a rather narrow
range of extremely simple examples. In this case, a
finite part is isolated unambiguously and an arbitrary
mass parameter µ is fixed at a scale that is convenient
for calculations (for example, µ = mW ), the result
being independent of the choice of this scale.

The cancellation of divergences in FCNC-induced
processes, which has been demonstrated here for the
simplest one-loop diagrams, must be of a general
character. A rigorous proof of this statement would
make it possible to simplify the renormalization
procedure and to establish the relationship between
the symmetry properties of the Standard Model
Lagrangian at the tree level and the cancellation
mechanism. The problem considered here is of im-
portance in the case where the application of different
renormalization schemes yields different results [13,
14].

It is planned that the present simplified method
for calculating rare processes without renormal-
ization will be applied in the future to more com-
plicated cases—for example, the case of e+e− →
dαd̄βγ1γ2(G1G2) or γ1dα → γ2dβ—with a simul-
taneous determination of finite contributions to the
amplitude. A comparison of cross sections obtained
by different methods with one another (and, if pos-
sible, with experimental values) would be of great
importance for analyzing the methodological facet of
computational techniques that was considered above.
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ELEMENTARY PARTICLES AND FIELDS
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Abstract—For elastic pion–nucleon scattering at a collision energy below the threshold for the production
of two pions, dynamical effects are studied that are induced by the presence of a ππ component in the
structure of the σ(400–1200) and ρ(770) resonances. These effects manifest themselves both in the Green’s
functions for the sigma and rho mesons and in the form factors for the interaction of these mesons with
nucleons. The scattering amplitude is calculated on the basis of the K-matrix formalism, the mechanism
of dressing being taken into account in the πNN and πN∆ form factors and in the nucleon and delta-
isobar Green’s functions. The method of dispersion relations is used to calculate the real parts of the form
factors and functions that parametrize self-energy operators. It is shown that, if strong interaction is taken
explicitly into account in the ππ system, elastic pion–nucleon scattering can be described satisfactorily
without introducing a sigma meson as an elementary particle. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Pion–nucleon interaction plays a significant role
in low- and intermediate-energy nuclear physics. On
one hand, it is of interest in and of itself, appearing to
be one of the vivid examples of strong hadron–hadron
interactions. On the other hand, it is an important
ingredient in many other hadronic processes—for in-
stance, in pion photoproduction on nucleons, in pion
scattering on nuclei, and in the formation of three-
body nucleon–nucleon–nucleon (NNN ) forces.

The problem of revealing dominant interaction
mechanisms that control specific properties of ob-
servables is one of the main problems in constructing
a phenomenological description of processes involv-
ing hadrons. Concurrently, a theory to be developed
must rely on a sound microscopic basis for the
resulting free parameters to have specific physical
meaning and, in an ideal case, must serve for testing
more microscopic models. The first dynamical models
of pion–nucleon interaction isolated, in the scattering
amplitude, a resonance component associated with
the exchange of one nucleon and a delta isobar in the s
channel and a nonresonance background, which was
simulated, in the majority of cases, by an arbitrary
separable function [1, 2]. Although such models
reproduced experimental phase shifts fairly well, the
free-parameter values obtained as the result of fitting
did not have a clear physical meaning and could be
used only within a given model.

*e-mail: shehalev@phys.vsu.ru
1063-7788/03/6609-1743$24.00 c©
Presently, QCD is a fundamental microscopic
theory that makes it possible, in principle, to describe,
within a unified conceptual framework, the major-
ity of hadronic processes, including pion–nucleon
scattering. In performing specific investigations into
the physics of low-energy processes, one has to
invoke, however, because of a nonperturbative origin
of confinement, various effective means for describing
hadron interactions. In choosing such a description,
it is desirable that the effective model used be as close
to a fundamental model as possible and that it obey
the same symmetries—in particular, chiral symmetry.
In view of this, strong-interaction models where the
quark–gluon Lagrangian is replaced by an effective
chiral Lagrangian featuring mesons and baryons
for degrees of freedom became especially popular.
In this approach, the physics of all subhadronic
processes not included explicitly in the Lagrangian
is taken into account either by introducing terms
that involve higher powers of meson fields and their
derivatives (chiral perturbation theory) or by using
phenomenological form factors in hadron-interaction
potentials (so-called meson-exchange models). This
makes it possible to study dynamical features (such
as a dynamical mass or a magnetic moment) that
hadrons develop upon being dressed with a meson
cloud. The approach in question was successfully
used in describing nucleon–nucleon (NN ) interac-
tions [3], meson–meson and meson–nucleon scat-
tering (see [4] and [5–9], respectively), and some
other processes involving mesons and baryons.

The effects of correlation in the exchange of two
2003 MAIK “Nauka/Interperiodica”
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or more mesons also play a significant role in hadron
physics. Frequently, such effects lead to the emer-
gence of various resonances. In pion–nucleon scat-
tering, correlated two-pion exchange is of greatest
importance. Very often, it is simulated as the ex-
change of a scalar–isoscalar sigma meson and a
vector–isovector rho meson. While the rho meson is a
distinct resonance of the two-pion system, the sigma
meson has not yet been observed as a resonance in
data on pion–pion scattering, so that its existence has
not been proven definitively [10]. From the majority
of the latest analyses of experimental data on pion–
pion scattering, as well as on some other processes
(see, for example, data of the recent experiment de-
voted to studying the decay process D+ → π−π+π+

and reported in [11]), it follows that, in the complex
plane of mass, the amplitude of pion–pion scatter-
ing has a pole that can be associated with a sigma
meson. However, there is presently no consensus on
the parameters of this pole, values found for its real
and imaginary parts varying, respectively, within the
range Re

√
s = 400–600 MeV and within the range

Im
√
s = 150–350 MeV (as to the effective mass mσ

and the effective width Γ, they range between 500
and 850 MeV, being approximately equal to each
other). At the moment, a physical interpretation of
the pole in question is an unresolved problem that
is closely related to the problem of describing the
properties of the entire nonet of scalar mesons [12]. It
is well known that mesons having vacuum quantum
numbers are of crucial importance for understanding
mechanisms behind the violation of QCD symme-
tries. However, the question of which of these mesons
are quark–antiquark states and which are meson–
meson molecules and the question of whether there
is a glueball admixture among the lightest of them
have been the subject of much controversy. In the-
ories that are based on a linear realization of chi-
ral SU(2)L × SU(2)R symmetry [13]—for example,
in the Nambu–Jona-Lasinio model—the sigma me-
son of mass approximately equal to the mass of two
constituent quarks (mσ ≈ 700 MeV) is assumed to
be a chiral partner of the pion. Its nonzero vacuum
expectation value is responsible for the breakdown of
chiral symmetry; for the formation of a sigma conden-
sate; and, as a consequence, for the mass difference
between the constituent and current quarks. From
this point of view, the sigma meson is analogous
to the Higgs particle in the theory of electroweak
interaction. However, the situation is complicated in
the present case by the fact that, because of strong
coupling to the pion–pion channel, the decay width
of the sigma meson is very large, which hinders the
investigation of the quark–antiquark component.

An alternative point of view on the nature of the
sigma resonance relies on results that were obtained
PH
on the basis of nonrelativistic QCD. According to this
theory, S-wave quark–antiquark states correspond
to vector and pseudoscalar states, while P-wave
states correspond to scalar mesons, f0(1370) being
the lightest of them. Moreover, the bosonization of
the Nambu–Jona-Lasinio model with allowance for
confinement may lead, as was shown in [14], to a
shift of the lightest scalar meson to a mass region
around 1 GeV. It follows that, if there are no low-
lying 0++ quark–antiquark states, a nonlinear sigma
model may be a theory that describes the dynamics of
low-energy processes. In the case of a nonlinear real-
ization of (spontaneously broken) local chiral symme-
try [15, 16], the rho meson plays the role of a vector
gauge boson, but there is no need for introducing a
scalar sigma meson (if, in the πN vertex, use is made
of a pseudovector-type interaction). In that case, the
pole in the amplitude of pion–pion scattering has a
dynamical origin associated with a strong attraction
in the pion–pion channel. Indeed, it follows from [17,
18] that the required behavior of the scalar spectral
function for the amplitude of pion–pion scattering
can be obtained if the exchange of a vector (rho) and
a scalar [f0(980)] meson in the t and u channels is
taken into account along with the unitarity condition.
However, the need for explicitly taking into account
the exchange of a sigma meson was highlighted in a
number of other studies (see, for example, [19, 20]),
where it was treated as a 0++ quark–antiquark state.
Thus, the question of whether there is an admixture
of quark–antiquark states at the pole that is present
in the amplitude for pion–pion scattering and which
is associated with the sigma resonance remains open
(for a discussion on the problem of revealing a sigma
resonance in analyzing experimental data, see also
the review article of Vereshchagin et al. [21]).

Irrespective of whether there exists (or there
does not exist) a sigma meson as a fundamental
particle, models of two-nucleon interaction that are
based on the dispersion-relation approach [22–24]
and investigations of the central component of the
nucleon–nucleon potential within chiral perturbation
theory [25] revealed that σ can be treated as an
effective degree of freedom that parametrizes the
exchange of two pions. Within chiral perturbation
theory, it was also noticed [26] that the values of the
constants appearing in the effective pion–nucleon
Lagrangian to order p2 in the pion momentum can
be obtained on the basis of the resonance-exchange
mechanism; that is, they can be expressed in terms
of the rho- and sigma-meson masses and coupling
constants.

In the majority of meson-exchange models con-
structed to describe pion–nucleon scattering, the rho
and the sigma meson are considered as particles of
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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fixed mass [5–8]. For the rho meson, this approxi-
mation may prove to be justified because of a small
width of its spectral function, but, for the sigma me-
son, it may appear to be overly crude. Moreover,
phenomenological form factors are used in relevant
interaction vertices, and the parameters of these form
factors may be arbitrarily varied with the aim of ob-
taining the best agreement between theoretical and
experimental results. Meson-exchange theories en-
able one to take into account, at least partly, those
processes that make a dominant contribution to the
long-range part of the form factors.

In the present study, we explore the effects of
pion–pion correlations in the exchange of sigma and
rho mesons. These effects may manifest themselves
both in the Green’s functions for the sigma and the
rho meson (if one goes beyond the fixed-mass approx-
imation) and in the form factors for the interaction of
these mesons with nucleons. The last circumstance
makes it possible to examine mesons for the pres-
ence of a quark–antiquark component in them. By
way of example, we indicate that, if the sigma meson
is only an effective reflection of a strong interaction
in the pion–pion channel, its coupling to nucleons
must occur via a two-pion state. If this mechanism
is taken explicitly into account, there arises no need
for introducing an effective Lagrangian that would
describe the interaction of scalar and nucleon fields.
One of the main goals pursued in this study is to
obtain an answer to the question of whether it is pos-
sible to describe satisfactorily experimental data on
pion–nucleon scattering without introducing a direct
sigma–nucleon–nucleon interaction.

The proposed approach is based on the use of ana-
lytic properties of the Green’s functions for all partic-
ipant particles and analytic properties of the vertices
for sigma- and rho-meson interaction with nucleons.
Form factors and functions that parametrize self-
energy parts are complex-valued. Their imaginary
parts are associated with open multiparticle channels
and are determined by the discontinuities of these
quantities at the unitary cut in the complex plane of
energy. In order to calculate the relevant real parts, we
employ the dispersion-relation method [27, 28]. Di-
rect and exchange diagrams involving a nucleon and
a delta isobar are also included in the consideration.
The delta isobar is described in terms of the Rarita–
Schwinger vector–spinor representation. The ampli-
tude for pion–nucleon scattering is calculated on the
basis of theK-matrix formalism, which makes it pos-
sible to take into account the unitarity requirement
in the most straightforward way. However, this ap-
proach is applicable only in the region of low collision
energies, at which there are no effects associated with
the production of two or more pions.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
2. EQUATION OF SCATTERING

In meson-exchange models, emphasis is placed on
taking into account multiple-scattering effects and
ensuring exact fulfillment of the unitarity condition
for the S matrix. Within this conceptual framework,
a solution to the problem of pion–nucleon scat-
tering is constructed in three steps that involve (i)
specifying an effective interaction Lagrangian, (ii)
finding a pion–nucleon potential with the aid of this
Lagrangian, and (iii) solving the relevant Bethe–
Salpeter equation and determining the T matrix for
the scattering process in question.

In principle, the pion–nucleon potential must be
an infinite sum of terms corresponding to all possi-
ble irreducible Feynman diagrams constructed on the
basis of a given Lagrangian. In practice, however,
one naturally has to take into account only a finite
number of diagrams. In the collision-energy region
where effects associated with the possible production
of two or more pions are absent or small, only the
requirement of two-particle unitarity is imposed on
the S matrix. In this case, the potential is usually
represented as the sum of terms corresponding to
diagrams of the lowest nonvanishing order. The con-
dition of two-particle unitarity then makes it possible
to write the Bethe–Salpeter equation in the form

T (q2, q1;P ) = V (q2, q1;P ) (1)

+
∫

d4q

(2π)4
V (q2, q;P )GπN (q|P )T (q, q1;P ),

where q1 = (p1 − k1)/2 and q2 = (p2 − k2)/2 are, re-
spectively, the initial and the final relative 4-momen-
tum in the system being considered; p1 (k1) and
p2 (k2) are, respectively, the initial and the final 4-
momentum of the nucleon (pion) involved; P = p1 +
k1 = p2 + k2 is the c.m. 4-momentum;

GπN (q|P ) =
i

(P/2 − q)2 −m2
π + iε

× /P/2 + /q +mN

(P/2 + q)2 −m2
N + iε

is the two-particle relativistic pion–nucleon Green’s
function (here and below, we use the notation adopted
in [27]); T is the scattering matrix; and V is the pion–
nucleon potential. For the sake of completeness, we
also introduce the Mandelstam variables

s = P 2, t = (p2 − p1)2, u = (p2 − k1)2,

which we will need below.
Any integral involving GπN can be broken down

into a pole part and a part that contains its principal
values. For this, we represent the Green’s function in
the form

GπN = GR + iGi, (2)
3
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where GR is its real part, which determines virtual
(off-shell) states. The imaginary partGi, which corre-
sponds to the propagation of a real nucleon and a real
pion, is determined by the discontinuity of the Green’s
function at the cut (mN +mπ)2 ≤ s <∞ along the
real axis in the complex plane of energy; that is,

Gi(q|P ) = −2π2

(
/P

2
+ /q +mN

)
(3)

× δ

([
P

2
− q

]2
−m2

π

)
δ

([
P

2
+ q

]2
−m2

N

)

× θ

(
P0

2
− q0

)
θ

(
P0

2
+ q0

)
,

where θ(x) is a Heaviside step function.
Substituting (2) into (1) and introducing the real

K matrix as
K(q2, q1;P ) = V (q2, q1;P ) (4)

+
∫

d4q

(2π)4
V (q2, q;P )GR(q|P )K(q, q1;P ),

we obtain an equation for the T matrix in the operator
form

T = K + iKGiT.

The simplest way to solve this equation is to employ
the partial-wave expansions of the T andK matrices.
Taking into account relation (3), we find for the rele-
vant components in the c.m. frame that

T JLI(W ) =
KJLI(W )

1 + iαsKJLI(W )
,

where W =
√
s;

αs =
mN

2s
([s− (mN +mπ)2][s− (mN −mπ)2])1/2;

and the superscripts J , L, and I represent, respec-
tively, the total angular momentum, the orbital angu-
lar momentum, and the isospin of the pion–nucleon
system. The form of the imaginary part of the Green’s
function, Gi, is unambiguously determined by the
requirement that the S matrix be unitary. Indeed, it
can be proven that the S matrix

SJLI(W ) = 1 − 2iαsT JLI(W )

satisfies this requirement. However, no stringent con-
straints are imposed on the form of the real part GR.
In principle, it must be arbitrary (what is of crucial im-
portance is that no additional unphysical poles arise in
the Green’s function—that is,GR must be analytic in
the complex plane of energy), and this circumstance
is frequently employed in approaches based on ap-
plying, as an equation of scattering, various three-
dimensional quasipotential reductions of the Bethe–
Salpeter equation.
P

As a matter of fact, mathematical difficulties as-
sociated with integration with respect to the variable
q0 arise in solving Eq. (4). Moreover, the equation
itself has a number of significant flaws: in partic-
ular, the single-particle limit corresponding to the
case where the mass of one of the particles tends to
infinity is incorrect [29]; in addition, some symme-
tries present in the pion–nucleon potential—such as
crossing and chiral symmetries—may be violated in
solving this equation.1) As applied to pion–nucleon
scattering, Eq. (4) has so far been solved directly
only in [7, 32]. In other cases, use was made of vari-
ous approximations based on either a delta-function-
like behavior of GR as a function of q0 [5, 6] or
on the disregard of the dependence of the K matrix
(and, often, the pion–nucleon potential) on this vari-
able [8]. As a result, integration with respect to q0 was
performed straightforwardly, and the resulting equa-
tions proved to be formally similar to the Lippmann–
Schwinger equation. Because of available freedom in
choosing GR, there are an infinite number of such
three-dimensional reductions, and there are no strong
reasons, in principle, for giving preference to any of
them. Moreover, it turned out that the behavior of
the pion–nucleon–nucleon and pion–nucleon–delta
form factors, as well as the behavior of the off-shell T
matrix, depends greatly on the choice of equation of
scattering [6].

In view of the uncertainty in choosing an equa-
tion of scattering, one sometimes sets GR = 0 (so-
called K-matrix approximation) in order to simplify
ensuing calculations. In this approximation, the K
matrix is equivalent to the pion–nucleon potential. At
low collision energies, the approach in question was
used in a number of studies [33–35], and a fairly good
description of experimental data was obtained on this
basis for pion–nucleon scattering and for γN → πN
reactions. This was because the main contribution
to the K matrix came from the first Born term at
such energies, rescattering effects being expected to
be relatively small in this case.

In the present study, we will also rely on the
K-matrix approximation, but we will employ it in a
somewhat modified form. In accordance with the re-
quirement of two-particle unitarity, the pion–nucleon
potential is represented as the sum of second-order
diagrams featuring the exchanges of a nucleon and
a delta isobar in the s and the u channel and the
t-channel exchanges of a sigma and a rho meson (see

1)This concerns the majority of meson-exchange models. A
rigorous inclusion of crossing symmetry and exact consis-
tency with low-energy theorems for the amplitude of pion–
nucleon scattering are achieved in models based on chiral
perturbation theory [30, 31].
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003



CONTRIBUTION OF THE ππ COMPONENTS 1747
Fig. 1). In the s channel, the interaction has a reso-
nance structure that is associated with the possibility
for an intermediate nucleon and an intermediate delta
isobar to approach the respective mass shell. Taking
this circumstance into account, we can represent the
pion–nucleon potential in the form

V (q2, q1;P )

=
∑

B=N,∆

Γ†
B0(q2;P )GB0(P )ΓB0(q1;P )

+ VNP(q2, q1;P ),

where ΓB0 and GB0 are, respectively, the bare vertex
and the bare propagator for the baryon B and VNP
stands for the entire remaining nonpole part of the po-
tential (diagrams in Figs. 1b, 1c). Instead of Eq. (4),
we then obtain

K(q2, q1;P ) =
∑

B=N,∆

Γ†
B(q2;P )GB(P )ΓB(q1;P )

(5)

+KNP(q2, q1;P ).

Here,

KNP(q2, q1;P ) = VNP(q2, q1;P ) (6)

+
∫

d4q

(2π)4
VNP(q2, q;P )GR(q|P )KNP(q, q1;P ),

while ΓB and GB are the dressed vertex and the
dressed propagator for the baryon B; for these two
quantities, we have

ΓB(q1;P ) = ΓB0(q1;P )

+
∫

d4q

(2π)4
ΓB0(q;P )GR(q|P )KNP(q, q1;P ),

G−1
B (P ) = G−1

B0(P ) − ΣB(P ),

where

ΣB(P ) =
∫

d4q

(2π)4
ΓB0(q;P )GR(q|P )Γ†

B(q;P ) (7)

is the mass operator. The main distinction between
our approach and the standard K-matrix approxima-
tion is that we set GR = 0 only in Eq. (6) and take
explicitly into account both the effects of dressing in
the pion–nucleon–nucleon and pion–nucleon–delta
form factors and the dynamical components in the
nucleon and delta-isobar masses.

3. INTERACTION LAGRANGIANS

3.1. Chiral Lagrangian for the System Formed
by a Nucleon, a Pion, and a Rho Meson

For the system consisting of a nucleon, a pion,
and a rho meson, we took an effective Lagrangian
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
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Fig. 1. Diagrams representing the pion–nucleon poten-
tial: (a) s-channel exchange of a nucleon and a delta
isobar, (b) u-channel exchange of a nucleon and a delta
isobar, and (c) t-channel exchange of a sigma and a rho
meson. The double wavy line represents the renormal-
ized Green’s function. The point at the ρ(σ)NN vertex
denotes that the contribution of two-pion states is taken
into account.

that, to second-order terms in the pion field inclusive,
coincides with the Wess–Zumino Lagrangian [16]
and which involves a nonlinear realization of chiral
symmetry and determined the respective interaction
potential from this Lagrangian. The specific form of
the Lagrangian is

LWZ =
gπNN
2mN

N̄γµγ5τ · ∂µπN (8)

− gρNN N̄

{
γµ − κρ

2mN
σµν∂ν

}
τ

2
· ρµN

− gρππρµ · [π × ∂µπ]

− gρππ
4m2

ρ

(δ − 1)ρµν · [∂µπ × ∂νπ],

where N , π, and ρµ (ρµν = ∂µρν − ∂νρµ) are, re-
spectively, the nucleon-, the pion-, and the rho-
meson-field operator; τ are the Pauli matrices; and
σµν = i[γµ, γν ]/2. Of all of the parameters appearing
in the Lagrangian LWZ, the particle masses and the
pion–nucleon–nucleon coupling constant are known
to the highest degree of precision (the coupling
constant is set here to g2

πNN/4π = 13.6 [36]). As to
terms in the Lagrangian that describe the interaction
of the rho meson, there are presently no reliable direct
experimental data (maybe, with the exception of data
on the ρ→ ππ decay width) that would make it pos-
sible to determine the respective coupling constants
to a fairly high degree of precision. In performing
calculations, one therefore has either to fit these
parameters to available experimental information or
to employ values that were obtained on the basis of
different theoretical models.

At first glance, the Lagrangian in (8) is not an ap-
propriate choice. First, preference has recently been
given to the tensor coupling of the rho meson to
the pion field [δ term in (8)]. This is based on the
assumption that vector mesons must be associated
with the divergences of tensor quark currents [37].
Second, this Lagrangian does not involve a contact
interaction with four pion legs. It is well known that
the behavior of the amplitude for pion–pion scattering
3
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in the soft-pion approximation [38] is determined by
precisely this interaction, which is contained in the
Lagrangian [39]

Lππ =
F 2
π

4
tr(∂µU †∂µU) +

F 2
π

4
m2
πtr(U † + U − 2),

(9)

where U(x) = ξξ = exp(2iπ(x)/Fπ), π ≡ (π · τ )/2,
Fπ = 92.4 MeV is the pion decay constant, and the
trace tr is taken over the SU(2) isospin indices. But
if we assume that the amplitude for pion–pion scat-
tering receives a dominant contribution from the rho-
meson-exchange mechanism, as follows from Eq. (8),
we will arrive at the relation (in the fixed-mass ap-
proximation)

3g2
ρππ

m2
ρ

=
1
F 2
π

, (10)

which leads to a rho-meson decay width that is much
less than the experimentally observed value.

We will show, however, that, in the case of a renor-
malized rho-meson field, the Lagrangian in Eq. (8)
is not worse than any other effective Lagrangian that
satisfies the requirements of chiral symmetry, Lorentz
invariance, and parity conservation. Our argument is
based on the statement (known as the theorem of
equivalence) that physical observables are indepen-
dent of the specific choice of interacting fields [40].
In other words, any combinations of fields (but not of
their derivatives) characterized by the same quantum
numbers and taken at the same point may themselves
be considered as physical particles; that is, they can
generate the corresponding in- and out-states and
satisfy the required commutation relations.

According to the general rules for constructing
an effective Lagrangian [41], the Lagrangian for the
system consisting of a nucleon, a rho meson, and a
pion can be represented in the form

L(x) = L0 + Lint + Lππ + Lc + L4, (11)

where

L0 = N̄ [iγµ∂µ −mN ]N − 1
2

tr(ρµνρµν)

+m2
ρtr(ρµρ

µ)

is the Lagrangian for the free nucleon and rho-meson
fields;

Lint = N̄ [
gπNN
mN

γµγ5∂µπ − γµvµ − gρNNγ
µρµ]N

− gρNN
κρ

4mN
N̄ρµνσ

µνN − κπ
4mN

N̄vµνσ
µνN

− g′ρππ
2F 2

π

m2
ρ

tr(ρµνvµν)
PH
is the component that describes the interaction be-
tween the nucleon, the rho meson, and the pion in-
volved; Lππ is given by (9); and

Lc = (1 − Zρ)
(

1
2

tr(ρµνρµν) −m2
ρtr(ρµρ

µ)
)

− δm2
ρZρtr(ρµρ

µ)

corresponds to counterterms of the renormalized rho-
meson field (we have not written here the counter-
terms of the renormalized nucleon field since they do
not affect the ensuing consideration). In L4, we have
collected terms involving fourth-order and higher or-
der derivatives of the pion field. We have also used the
following notation: ρµ ≡ (ρµ · τ )/2, Zρ is the renor-
malization constant for the rho-meson wave function,
and δm2

ρ is the renormalization constant for the rho-
meson mass. The vector field vµ(x) is defined as vµ =
−(i/2)(ξ†∂µξ + ξ∂µξ

†); in the leading order, we have

vµ = − i

2F 2
π

[π, ∂µπ] + . . . , (12)

vµν = ∂µvν − ∂νvµ + i[vµ, vν ]

= − i

F 2
π

[∂µπ, ∂νπ] + . . .

We now redefine the rho-meson field in (11), mak-
ing the substitution ρµ → ρµ − vµ/gρNN and, ac-
cordingly, the substitution ρµν → ρµν − vµν/gρNN ;
in view of the theorem of equivalence [40], this will
not change the values of physical observables. As a
result, the structure of the Lagrangians Lint and L4

will change: Lint → L′
int and L4 → L′

4. For L′
int, we

obtain

L′
int = N̄

[
gπNN
mN

γµγ5∂µπ − gρNNγ
µρµ

]
N (13)

− gρNN
κρ

4mN
N̄ρµνσ

µνN − κπ − κρ
4mN

N̄vµνσ
µνN

− 2Zρ
gρNN

(m2
ρ − δm2

ρ)tr(ρµv
µ)

+ (
Zρ
gρNN

− g′ρππ
2F 2

π

m2
ρ

)tr(ρµνvµν)

+
Zρ
g2
ρNN

(m2
ρ − δm2

ρ)tr(vµv
µ).

Assuming vector-meson dominance, setting κπ = κρ
in (13), and taking into account (12), we then arrive
at

L′
int = LWZ +

Zρ
g2
ρNN

(m2
ρ − δm2

ρ)tr(vµv
µ). (14)
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Concurrently, the following relations hold for the rho-
meson coupling constants:

gρNN =
Zρ(m2

ρ − δm2
ρ)

2F 2
πgρππ

, (15)

gρππ
4m2

ρ

(1 − δ) = (
Zρ

2F 2
πgρNN

−
g′ρππ
m2
ρ

). (16)

We note that relation (15) is the analog of the
well-known Kawarabayashi–Suzuki–Riazuddin–
Fayazuddin relation [42] for the case of the renormal-
ized rho-meson field. For the Lagrangians in Eqs. (8)
and (11) to lead to the same rho-meson decay width,
the following relation must also be valid:

g′ρππ =
5 − δ

4
gρππ.

Taking into account relations (15) and (16), we then
find for the parameter δ that

δ = 1 −
2δm2

ρ

m2
ρ − δm2

ρ

. (17)

For small values of δm2
ρ, this parameter is obviously

close to unity.
It can now be proven that, if the relation

3Zρ(m2
ρ − δm2

ρ)
4g2
ρNNF

2
π

= 1

or the relation
3g2
ρππF

2
π

Zρ(m2
ρ − δm2

ρ)
= 1, (18)

which is equivalent to it with allowance for (15),
holds, the last term in (14) and the analogous term
in the Lagrangian Lππ cancel each other completely.
The π4(x) interaction remaining in Lππ and violating
chiral symmetry can further be taken into account by
introducing an effective scalar field associated with
the sigma meson.

Let us compare expressions (18) and (10). Since
δm2

ρ is always negative, the equality in (18) may
now be in agreement with the experimental value
of the rho-meson decay width. This circumstance
highlights the importance of renormalization in field
theory.

3.2. Lagrangian for a Scalar Field

For the Lagrangian describing the interaction of a
scalar field, we took

Lσ = −gσππ
2mπ

σ(∂µπ · ∂µπ) +
gσππ

2
cσmπσ(π · π),

(19)
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with σ being the scalar-field operator. We emphasize
that, in (19), there is no term corresponding to the
direct interaction of a scalar and a nucleon field.2)

The value of the coupling constant gσππ is determined
from the presumed decay width of the sigma meson.
The second term in (19) introduces a breakdown of
chiral symmetry. The value of cσ = 1 corresponds to
the absence of the contributions to the pion–pion and
pion–nucleon S-wave scattering lengths from the
mechanism of sigma-meson exchange. According to
the low-energy theorem for pion–nucleon scatter-
ing [38], the main contribution to the S-wave am-
plitude must come from the exchange of a vector rho
meson. However, the value of the parameter cσ may
slightly differ from unity in our study, since sigma-
meson exchange also parametrizes here π4(x) inter-
action, which contributes to the pion–pion scattering
amplitude in the soft-pion approximation.

3.3. Lagrangian for the Interaction of a Pion,
a Nucleon, and a Delta Isobar

Because of available freedom in the choice of inter-
acting fields, various forms of delta-isobar coupling to
a nucleon and a pion are possible. As a matter of fact,
all of them differ only in the strength of nucleon and
pion coupling to the component of the delta-isobar
spin equal to 1/2 [43]. It was shown in [44] that, apart
from the contact pion–pion–nucleon–nucleon inter-
action, which may be absorbed in the mechanism of
sigma-meson exchange, the respective Lagrangians
are equivalent to one another. Thus, there inevitably
arises an uncertainty in the scalar-field parameters
that depends on the form of the pion–nucleon–delta
interaction used. Since the contribution of the sigma-
meson-exchange mechanism to the pion–nucleon
scattering length is small in the proposed model, the
delta-isobar contribution must also be insignificant.
This condition is satisfied in the case of the gauge-
invariant Lagrangian that was proposed in [45]. It has
the form

LπN∆ =
gπN∆

mπm∆
εµναβ(∂µ∆̄ν)γ5γαT · ∂βπN + h.c.,

(20)

where m∆ is the delta-isobar mass, ∆µ is a vector–
spinor field, T is a 4 × 2 matrix that determines tran-
sitions between isospin-1/2 and isospin-3/2 states,
εµναβ is an antisymmetric tensor, and h.c. stands for
the Hermitian conjugate term. The coupling constant

2)We recall that a scalar-type contact ππNN interaction,
which could be taken into account by introducing a direct
σNN interaction, is absent if use is made of a pseudovector
pion–nucleon coupling, as in (8).
3
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gπN∆ is determined on the basis of the known delta-
isobar decay width. This Lagrangian is invariant un-
der the Rarita–Schwinger gauge transformation

∆µ(x) → ∆µ(x) + ∂µu(x),

where u(x) is a bispinor; therefore, it rules out the
possible appearance of spin-1/2 states in the delta-
isobar Green’s function.

4. FORM FACTORS

In order to specify the pion–nucleon potential
definitively, the vertices constructed on the basis of
the Lagrangians in Eqs. (8), (19), and (20) must be
supplemented with phenomenological form factors
that reflect the dynamics of processes not included
in the consideration explicitly. These form factors
are also necessary for regularizing the renormalized
Green’s functions and vertex operators for hadrons.
For the rho–pion–pion and sigma–pion–pion ver-
tices, we used the parametrization

Fx(t) =
Λ4
x

Λ4
x + (t−m2

x)2
,

where x stands for a sigma or a rho meson. For the
exchange of a baryonB in the u channel (see Fig. 1b),
the form factor corresponding to the bare vertex ΓB0

is given by

FB0(u) =
(

Λ4
B0

Λ4
B0 + (u−m2

B)2

)2

.

The invariant structure of the renormalized vertices
ΓB is assumed to be identical to that of the bare ver-
tices ΓB0. However, the effects of dressing are taken
into account by using different form factors; that is,

FN (s) =
(

Λ4
N

Λ4
N + (s−m2

N )2

)2

in the pion–nucleon–nucleon vertex and

F∆(s) =
(

Λ4
∆

Λ4
∆ + (s− m̃2

∆)2 − (m∆ − m̃∆)2

)2

in the pion–nucleon–delta vertex. The last form fac-
tor is somewhat asymmetric with respect to the delta-
isobar mass, but this was necessary for reproducing
the P33-wave phase shift [34, 46]. The cutoff param-
eters Λi and m̃∆ are free parameters of the model
and are determined from a fit to experimental data.
We have also performed calculations with different
parametrizations of the form factors, but they have
not provided a better description of the phase shifts.

The form of the vertex functions and the depen-
dence of the form factor on the kinematical variables
are dictated by Lorentz invariance. In the case where
PH
both nucleons are on the mass shell, the sigma–
nucleon–nucleon and the rho–nucleon–nucleon ver-
tex are given by

ΓσNN = igσNNFσNN (t),

ΓµaρNN = −igρNN
τa

2

(
γµFρNN1(t)

− i
κρ

2mN
σµνkνFρNN2(t)

)
,

where kν is the sigma- or the rho-meson momentum,
t = k2, a is the isotopic index, and the form fac-
tors Fi(t) for the sigma- and rho-meson interaction
with a nucleon (here, i stands for ρNN1, ρNN2,
or σNN ) are normalized by the condition Fi(0) = 1.
The dispersion-relation method is used to calculate
Fi(t).

In practice, dispersion-relation calculations al-
ways rely on an approximation where one takes into
account only the contributions from the simplest
intermediate states. We will assume that the main
contribution to the long-range part of the form factors
Fi(t) comes from sigma- and rho-meson coupling
to a dipion state. The corresponding diagrams are
shown in Fig. 2. For the form factors Fi(t) where
one or a few arguments are analytically continued
from their physical values, the region of analyticity
can be found on the basis of the microcausality
condition. If t is chosen for a dispersion variable,
then, for a singularity to emerge in Fi(t), there must
exist a reduced graph in which a virtual sigma or rho
meson is coupled to a real intermediate dipion state.
However, this graph is meaningful in the unphysical
region, for t ≥ 4m2

π, whereas the annihilation pro-
cess π+ + π− → N̄ +N is allowed only above the
threshold of 4m2

N . As a result, it becomes necessary
to perform an analytic continuation of the annihilation
amplitude and of the unitarity condition as well, which
is used in calculating the absorptive parts of the form
factors. In order to avoid invoking such assumptions,
we use here a somewhat different approach.

Let us consider a more general case where, in the
sigma–nucleon–nucleon and rho–nucleon–nucleon
vertices, only one line corresponds to a real nucleon,
which, for example, has a momentum p′, the variable
p2 being analytically continued from its physical value
of p2 = m2

N . It was rigorously proven in [47] that, in
this case, the dispersion relation

F̃i(t) =
1
π

∞∫
p2thr

ImF̃i(p2, t)dp2

p2 −m2
N

,

where the notation F̃ means that the form factor
in question has yet to be normalized, holds for any
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 2. Contribution of dipion states to the vertices for sigma- and rho-meson interaction with nucleons. The single solid,
double solid, dashed, and wavy lines represent, respectively, a nucleon, a delta isobar, a pion, and a sigma or a rho meson. The
dotted line denotes a unitary cut in calculating the imaginary parts of the respective form factors.
spacelike vector kν . In this formulation, the imaginary
part of the form factor is due to the existence of
real pion–nucleon and pion–delta states, the lower
boundary of the region where a singularity may occur
intersecting the real axis at p2

thr = (mπ +mN )2. The

procedure for deriving the imaginary parts ImF̃i(p2, t)
is described in the Appendix.

Under the assumption that a sigma meson is
coupled to a nucleon via a dipion state exclusively, the
respective form factor is normalized by the condition
FσNN (t) = F̃σNN (t)/F̃σNN (0), and the coupling
constant is given by gσNN = F̃σNN (0). The coupling
of a rho meson to a nucleon is determined by the
Lagrangian in Eq. (8), where gρNN and κρ are
parameters that characterize the interaction of the
renormalized rho-meson field. Therefore, the normal-
ization of the rho-meson form factors is performed by
means of one subtraction:

FρNN1(t) = 1 +
F̃ρNN1(t) − F̃ρNN1(0)

gρNN
,

FρNN2(t) = 1 +
F̃ρNN2(t) − F̃ρNN2(0)

κρgρNN
.

5. MESON AND BARYON GREEN’S
FUNCTIONS

Effects of pion–pion correlations are also taken
into account by using the renormalized sigma- and
rho-meson Green’s functions in the pion–nucleon
potential, which satisfy the Dyson equation and
which have the form

Gσ(t) =
1

t−m2
σ − Πσ,R(t)

,

Gρ,µν(t) = −
P 1
µν

t−m2
ρ − Πρ,R(t)

+
P 0
µν

m2
ρ

,

where P 1
µν = gµν − kµkν/t and P 0

µν = kµkν/t are
the operators of projection onto, respectively, spin-
1 states and states of spin zero, while Πx,R(t) is
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
the renormalized polarization operator. The polar-
ization operator is renormalized via the subtraction
of counterterms that are contained in the free-field
Lagrangian; that is,

Πx,R(t) = Πx(t) − (t−m2
x)(Zx − 1) − Zxδm

2
x,

where

Zx = 1 +
d

dt
ReΠx(t)

∣∣∣
t=m2

x

, δm2
x =

1
Zx

ReΠx(m2
x)

are the renormalization constants for, respectively, the
wave function and the mass of the meson x.

The polarization operator Πx is represented by the
diagram having the shape of a two-pion loop (see
Fig. 3). Its imaginary part, which corresponds to
sigma- or rho-meson decay into two real photons,
which is followed by their annihilation, can be found
from the condition requiring that the S matrix be
unitary [48]. As a result, we obtain

ImΠσ(t) = −3g2
σππ

128π
(t− 2m2

π(1 − cσ))2

m2
π

×
√

1 − 4m2
π

t
F 2
σ (t),

ImΠρ(t) = −
g2
ρππ

48π
(t− 4m2

π)

√
1 − 4m2

π

t
F 2
ρ (t)

for t ≥ 4m2
π and ImΠx(t) = 0 for t < 4m2

π.
At collision energies below the threshold for the

production of two pions, the K matrix is real, and
the effects of pion–pion correlations are taken into
account through the real part of the polarization op-
erator exclusively. By using the analytic properties

 

σ

 

, 

 

ρ

π

π

Fig. 3. Diagram corresponding to the sigma- and rho-
meson polarization operators.
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Table 1. Model parameters

Particle Coupling constant Particle mass
and cutoff parameter, GeV

N
g2

πNN

4π
= 13.6 mN = 0.939, ΛN0 = 1.75

ΛN = 1.15

π mπ = 0.138

∆
g2

πN∆

4π
= 0.35 m∆ = 1.231, m̃∆ = 1.02

Λ∆0 = 1.4, Λ∆ = 1.2

ρ
g2

ρππ

4π
= 2.86,

g2
ρNN

4π
= 4.84 mρ = 0.77, Λρ = 1.5

κρ = 1.2, δ = 1

σ
g2

σππ

4π
= 0.54 mσ = 0.65, Λσ = 1.1

cσ = 1.14
of the operator Πx, we obtain for it the dispersion
relation

ReΠx(t) =
1
π
P

∞∫
4m2

π

ImΠx(t′)dt′

t′ − t
,

where the symbol P means the principal-value pre-
scription for the integral involved.

The baryon propagator GB in (5) is calculated by
a method similar to that used to calculate the sigma-
and rho-meson propagators. The problem here con-
sists in calculating the mass operator ΣB (7), which
takes into account the dressing of the baryon with a
meson cloud.

We define the operator

Σ̃B(P ) =
∫

d4q

(2π)4
ΓB0(q;P )GπN (q|P )Γ†

B(q;P ),

which, in contrast to ΣB , includes an intermediate
state featuring two real particles. We have ΣB =
ReΣ̃B. By virtue of Lorentz invariance, the following
relation also holds:

Σ̃N = aN (s)/P + bN (s)mN .

If delta-isobar interaction with a pion and a nucleon is
specified by the Lagrangian in Eq. (20), then, in order
to determine the Green’s function G∆, it is sufficient
to find only that part of the mass operator which
corresponds to a spin-3/2 state [46]; that is,

Σ̃∆µν = (a∆(s)/P + b∆(s)m∆)P 3/2
µν ,

where

P 3/2
µν = gµν −

1
3
γµγν −

1
3P 2

(/PγµPν + Pµγν/P )
P

is the operator of projection onto the spin-3/2 state of
the delta isobar.

By using the unitarity condition, we obtain

ImΣ̃B(P ) = − αs
2(4π)2mN

×
∫

ΓB0(q;P )(/q +mN )Γ†
B(q;P )dΩq,

whence it follows that

ImaN (s) = CN (2m2
N − βs(s+m2

N )),

ImbN (s) = CNm
2
π;

Ima∆(s) = −C∆
m∆

mN
βs, Imb∆(s) = −C∆,

where

CN =
(
gπNN
2mN

)2 3αs
8πmN

FN0(s)FN (s),

C∆ =
(
gπN∆

mπm∆

)2 s2α3
s

24πm∆m2
N

F∆0(s)F∆(s),

and

βs =
s+m2

N −m2
π

2s
.

Further, we reduce the real parts to the form

ReaB(s) =
1
π
P

∞∫
(mN+mπ)2

ImaB(s′)ds′

s′ − s

and derive a similar relation for the coefficient bB(s).
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 4. Pion–nucleon phase shifts (theoretical curves and experimental points): (solid curve) results of the calculation taking
into account the effects of pion–pion correlations, (dashed curve) results of the calculation disregarding pion–pion correlations
in rho-meson exchange, (dash-dotted curve) results of the calculation not including sigma-meson exchange, (open diamonds)
SM95 data from [50], and (closed triangles) KH80 data from [51].
Renormalization is performed as

ΣB,R(P ) = ΣB(P ) + (1 − ZB)(/P −mB) − ZBδmB ,

where the renormalization constants for the wave
function and mass are

ZB = 1 + ReaB(m2
B)

+ 2m2
B

d

dp2
(ReaB(p2) + RebB(p2))

∣∣∣
p2=m2

B

,

δmB =
mB

ZB
(ReaB(m2

B) + RebB(m2
B)).

6. RESULTS OF THE CALCULATIONS
AND DISCUSSION

Values of all of the parameters used in the present
model are quoted in Table 1. Some of them are not
free. In addition to the known value of the pion–
nucleon coupling constant gπNN , the parameters
gπN∆ and gρππ were determined from the experi-
mental decay widths of the delta isobar and the rho
meson [10]. In doing this, we used the value of δ = 1,
which is in accord with formula (17); that is, we
completely disregarded the tensor coupling of the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
rho meson to the pion field. We have also performed
calculations with a value of δ differing slightly from
unity, but we have not found any noticeable dis-
tinctions between the two cases in the behavior of
the phase shifts. The sigma-meson mass and the
coupling constant gσππ were determined from the
analysis of the scalar spectral amplitude for pion–

Table 2. Scattering lengths and volumes in units of
m−2L−1

π as obtained within the present model, along with
the SM95 experimental data from [50] and the KH80 ex-
perimental data from [51]

L2I2J Present model SM95 KH80

S11 0.173 0.175 0.173

S31 −0.087 −0.087 −0.101

P11 −0.076 −0.068 −0.081

P13 −0.021 −0.022 −0.030

P31 −0.040 −0.039 −0.045

P33 0.205 0.209 0.214
3



1754 ALMALIEV et al.

 

0 10 20
–

 

t

 

, 

 

m

 

π

 

2

 

0.6

1.0

0.8

 

F

 

ρ

 

NN

 

2

 

F

 

ρ

 

NN

 

1

 

0.2

1.0

0.6

 

F

 

σ

 

NN

Fig. 5. Form factors for (upper panel) the sigma and
(lower panel) the rho meson versus the momentum trans-
fer squared in m2

π units: (solid curves) results obtained
with allowance for the contributions that arise, at the
unitary cut, from pion–nucleonand pion–delta states and
(dashed curves) results obtained with allowance for only
pion–nucleon states.

nucleon scattering, this amplitude being calculated
on the basis of pseudoempirical data on the reaction
NN̄ → ππ, which, in turn, were obtained as an
analytic continuation of experimental data on pion–
pion and pion–nucleon scattering [49]. The value
of g2

σππ/4π = 0.54 corresponds to the sigma-meson
decay width of Γσ � 680 MeV. There are also some
constraints on the cutoff parameters Λi—namely, an
upper bound on the possible values that is determined
by the convergence of the respective polarization or
mass operator exists for each of them. For example,
the value of the parameter Λσ lies in the vicinity of its
upper bound.

Free-parameter values are usually determined
from a fit to experimental data. In the case of elastic
pion–nucleon scattering, this means that the present
model must reproduce phase shifts fairly well, along
with low-energy features, such as scattering lengths
and volumes. In the channel characterized by the
orbital angular momentum L, the total angular mo-
mentum J , and the isospin I, the phase shifts are
expressed in terms of the partial-wave K matrix as

tanδJLI = −αsKJLI .

At very low collision energies, the momentum de-
pendence of KJLI has the form p2L, where p =√
sαs/mN . In this case, it is more convenient to
P
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Fig. 6. Effective masses of (solid curve) the sigma and
(dashed curve) the rho meson versus the momentum
transfer squared inm2

π units.

explore the scattering length (L = 0) or the scattering
volume (L = 1) rather than the phase shifts; that is,

aJLI = p−2L−1tanδJLI .

The calculated scattering lengths and volumes are
quoted in Table 2, while the phase shifts are displayed
in Fig. 4 versus the pion kinetic energy in the labora-
tory frame; also given there for the sake of compari-
son are the corresponding results of the partial-wave
analysis of the SM95 data from [50] and the KH80
data from [51]. It can be seen that the present model
reproduces the experimental data fairly well, at least
up to a collision energy of Elab ≈ 250 MeV.

In order to investigate effects due to pion–pion
correlations, the results of the calculations in which
the contribution of dipion states are disregarded both
in the vertices of sigma- and rho-meson interaction
with nucleons and in the sigma- and rho-meson
Green’s functions are also shown in Fig. 4. Two cases
are considered individually: that in which virtual di-
pion states are disregarded in rho-meson exchange
and that in which the mechanism of sigma-meson
exchange is switched off, the latter being singled out
because, in the present study, the sigma meson is
considered as a dynamical effect in the dipion system.
On the basis of the data in Fig. 4, it can be con-
cluded that the sigma-meson-exchange mechanism,
which parametrizes the strong pion–pion interaction
in the S wave, plays a significant role in pion–nucleon
scattering. This is not so only for the resonance P33

wave, which receives the main contribution from the
s-channel exchange of a delta isobar and a somewhat
smaller contribution from the u-channel exchange of
a nucleon. The effect of pion–pion correlations is siz-
able in rho-meson exchange as well—it is especially
pronounced in the S11 wave.

For the interaction of the scalar and the nucleon
field, the coupling constant is found to be gσNN = 12.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Thus, we see that, with allowance for the signs in
the Lagrangian specified by Eq. (19), the potential
corresponding to sigma-meson exchange is repulsive
in the S wave and is attractive in the P wave. The
same result was obtained in [52] from an analysis of
pion–pion correlations. It is interesting to note that
the value of mσ/

√
gσNN = 187 is in good agreement

with the value of mσ/
√
gσNN = 180, which was de-

rived within chiral perturbation theory [26]. In calcu-
lating the sigma–nucleon–nucleon form factor, the
much smaller value of gσNN = 4.5 is obtained for
the coupling constant without taking into account
an intermediate pion–delta state. The effect of pion–
delta states on the behavior of the form factors in the
vertices of sigma- and rho-meson interaction with
nucleons is illustrated in Fig. 5. For the case of a
sigma meson, its inclusion leads to a considerable
increase in the contribution of states characterized
by a high momentum transfer, whereas, for the rho-
meson form factors, the effect is qualitatively inverse
and is much weaker quantitatively. This indicates that
the mechanism of delta-isobar excitation plays an
important role in studying nucleon interaction with
a dipion system in the S-wave state. Here, one can
trace an analogy with the nucleon–nucleon interac-
tion, where the isoscalar central component of the
potential—this component is often parametrized in
terms of sigma-meson exchange—is determined pri-
marily by the excitation of a virtual delta isobar in
two-pion exchange [53].

That the dynamical components of the masses
of the sigma and the rho meson are significant is
suggested by the values of the renormalization con-
stants for the wave functions and masses of these
mesons. The calculated values of these features are
compiled in Table 3. It can be concluded that the
effects of pion–pion correlations play a crucial role for
the sigma meson. For example, a value of a few GeV
units is obtained for the bare sigma-meson mass.
This means that the physical mass ofmσ = 0.65 GeV
is of an almost completely dynamical origin that is
associated with correlation effects in the exchange of
two pions. The effective masses of the sigma and the
rho meson behave differently. The behavior of the ef-
fective masses of the sigma and the rho meson, m∗

x =√
m2
x + Πx,R(t), versus energy transfer is shown in

Fig. 6 for values of the variable t that are of impor-
tance for elastic pion–nucleon scattering. While the
effective mass m∗

ρ increases with increasing energy
transfer, m∗

σ decreases quite fast. It is worth noting
here that neither the form factors nor the effective
masses are observable; therefore, they may depend
on the representation of interacting fields. By way of
example, we indicate that, in the Lagrangians spec-
ified by Eqs. (8) and (11), the rho mesons feature
different weights of dipion states; these are different
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
Table 3. Renormalization constants obtained in the model
used in the present study

Particle Zx δm2
x, GeV2 Particle ZB δmB , MeV

ρ 1.02 −0.2 N 0.87 −50.3

σ 0.09 −17.3 ∆ 0.93 −121.8

rho mesons—their form factors will behave differently,
and their normalization constants will take different
values. In the present study, we employ a specific rep-
resentation where dynamics in the pion–pion system
is entirely absorbed in the properties of the rho and
sigma mesons.

The value found for the parameter κρ, which char-
acterizes the strength of the tensor coupling of a
nucleon to a rho meson, is much less than the value of
κρ ≈ 6, which is used in nucleon–nucleon potentials,
and is even less than the value of κρ = 3.7, which is
dictated by the model of vector-meson dominance in
nucleon electromagnetic form factors. However, the
smallness of this parameter is peculiar to the majority
of models for describing pion–nucleon scattering, its
specific value being greatly dependent, as was shown
in [7], on the form of the equation of scattering used.

With allowance for the values found for the con-
stants of renormalization of the rho-meson field and
the value found for the parameter gρNN by means of
fitting, one can assess the accuracy to which rela-
tions (15) and (18) hold. By using values from Ta-
bles 1 and 3, we obtain

Zρ(m2
ρ − δm2

ρ)
2F 2

πgρππgρNN
= 1.01,

3g2
ρππF

2
π

Zρ(m2
ρ − δm2

ρ)
= 1.13.

Thus, the present model complies well with the re-
quirements of chiral theory and has quite a sound
microscopic basis.

7. CONCLUSION

While the rho meson can be represented as a
superposition of quark–antiquark and dipion states,
no definitive and noncontradictory conclusions on
the structure of the sigma resonance, which mani-
fests itself in the dipion system in the S wave, have
been drawn so far. In the present study, the effect
of the pion–pion component of the sigma and rho
resonances on the features of elastic pion–nucleon
scattering at collision energies below the threshold for
the production of two pions has been examined within
a dynamical resonance model. In doing this, it has
3
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been assumed that the sigma resonance involves no
quark–antiquark component and that it completely
parametrizes the scalar part of strong interaction in
the pion–pion system. It has been shown that a
satisfactory description of experimental data can be
obtained without introducing a sigma meson as a
fundamental particle.

APPENDIX

Let us now proceed to describe a specific cal-
culation of the imaginary parts of the form factors
P

F̃i(p2, t). In doing this, we make use of the condition

requiring that the S matrix that corresponds to the

sigma–nucleon–nucleon vertex involving two two-

particle intermediate states, πN and π∆, be unitary.

In the reference frame where p = 0, we then obtain
ImF̃σNN = − |qN |
2(4π)2p0

∫
ΓabσππΓ

b
πNN

i(/pN +mN )
q′2N −m2

π

ΓaπNNdΩqN (A.1)

+
|q∆|

2(4π)2p0

∫
ΓabσππΓ

αb
∆Nπ

i(/p∆ +m∆)
q
′2
∆ −m2

π

P
3/2
αβ ΓβaN∆πdΩq∆

.

Here,

|qB |2 =
(p2 +m2

B −m2
π)

2 − 4p2m2
B

4p2
,

q
′2
B = m2

N +m2
B (A.2)

− (p2 +m2
N − t)(p2 +m2

B −m2
π)

2p2

+ 2|qB ||k| cos(θqB ),

|k|2 =
(p2 +m2

N − t)2 − 4p2m2
N

4p2
,

where B = N,∆ and θqB is the angle between the
vectors qB and k. The first term in (A.1) differs from
zero for p2 > (mπ +mN )2, while the second does
not vanish in the region p2 > (mπ +m∆)2. The ver-
tex functions appearing in (A.1) have the following
meaning:

Γabσππ = i
gσππ
2mπ

(t− q
′2
B −m2

π(1 − 2cσ))Fσ(t)δab

is the vertex of sigma-meson interaction with a pion
pair (ππ → σ);

ΓaπNN =
gπNN
2mN

/qNγ5τ
aFN0(p2)

is the vertex of pion–nucleon interaction (N → πN);
and

ΓβaN∆π =
gπN∆

mπm∆
/p∆(P 3/2)βαq∆αT aFN0(p2)

corresponds to the vertex for the decay process N →
π∆ and satisfies to the transverseness condition
p∆βΓ
β
N∆π = 0. In the above expressions, a and b are

isotopic indices, and the following relation holds:

T †aT b =
2
3
δab − 1

3
iεabcτ c.

With the aid of relation (A.2), integration over the
solid angles in (A.1) can be replaced by integration
with respect to q

′2
B . Each of the integrals in (A.1) can

be broken down into two parts; that is,

IB = γµI
µ
1B + I2B ,

where the integral Iµ1B involving the timelike 4-vector
pµB must be expressed in terms of the 4-vector Pµ =
pµ + p′µ, because we have only two independent 4-
vectors at our disposal, Pµ and kµ, only one of these,
Pµ, being timelike. Therefore, we have Iµ1B = ABP

µ.
Multiplying this equality by Pµ, we can obtain AB .
Further, we transfer, in the integrals IB , the factors /p
to the right and the factors /p′ to the left and [imply-
ing that, eventually, expression (A.1) is sandwiched
between u(p′) and u(p)] make the substitutions
/p, /p′ → mN . As a result, we find that ImF̃σNN (p2, t)
takes the form

ImF̃σNN (p2, t) =
gσNN
2mπ

× Fσππ(t)FN0(p2)
8π((p2 +m2

N − t)2 − 4p2m2
N )1/2

×
(

3g2
πNN

4mN
K

(σ)
N +

(
gπN∆

mπm∆

)2

K
(σ)
∆

)
,
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where

K
(σ)
N =

q2N+∫
q2N−

t−m2
π(1 − 2cσ) − q′2N
q′2N −m2

π

× (2m2
N − CN1(p2 + 3m2

N ))dq′2N ,

K
(σ)
∆ =

q2∆+∫
q2∆−

t−m2
π(1 − 2cσ) − q

′2
∆

q
′2
∆ −m2

π

×
[
m2

∆

2
(2C∆1mN +m∆)(p2 +m2

N − t)

+
mNm∆

6
(2C∆1mN −m∆)(p2 +m2

∆ −m2
π)

+
m∆

6
(C∆1(p2 +m2

N ) −mNm∆)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 20
× ((mN +m∆)2 − q
′2
∆) − 1

3
(C∆1mN +m∆)

× (p2 +m2
∆ −m2

π)(m
2
N +m2

∆ − q
′2
∆

]
dq

′2
∆,

CB1 =
pBP

P 2
,

with the limits of integration being given by

q2
B± = m2

N +m2
B

− (p2 +m2
N − t)(p2 +m2

B −m2
π)

2p2
± 2|k||qB |.

The procedure for determining the imaginary parts
of the form factors for the rho–nucleon–nucleon ver-
tex is analogous, in many respects, to that in the
preceding case. We have
Im(−iΓµcρNN ) = − |qN |
2(4π)2p0

∫
Γµcbaρππ ΓbπNN

i(/pN +mN )
q′2N −m2

π

ΓaπNNdΩqN (A.3)

+
|q∆|

2(4π)2p0

∫
Γµcbaρππ Γαb∆Nπ

i(/p∆ +m∆)
q
′2
∆ −m2

π

P
3/2
αβ ΓβaN∆πdΩq∆

,

where

Γµcbaρππ = gρππε
cba(q′B − qB)µFρ(t)

is the vertex for rho-meson interaction with a pion
pair (ππ → ρ). Here, we have used the coupling-
constant value of δ = 1.

Each of the two integrals in (A.3) can be repre-
sented as the sum of a few terms; that is,

IµB = Pµ(Iν1Bγν + I2B) + Iµ3B + Iµν4Bγν ,

where the integrals Iµ1B and Iµ3B involving the 4-
momentum pµB in the integrands can be expressed
in terms of the 4-vector Pµ, while the integral Iµν4B

involving the combination pµBp
ν
B can be represented

in the form

Iµν4B = A1BP
2δµν +A2BP

µP ν .

In order to determine the coefficients A1B and A2B ,
it is sufficient to calculate the integrals (I4B)µµ and
Iµν4BPµPν .

Considering that the rho–nucleon–nucleon ver-
tex has the form

ΓµcρNN = −iF̃ρNN1(p2, t)γµτ c
− F̃ρNN2(p2, t)
2mN

σµνkντ
c

and replacing Pµ by a term that becomes equivalent
to it upon sandwiching the respective expression be-
tween relevant state vectors,

Pµ → 2mNγ
µ + iσµνkν ,

we eventually reduce the imaginary parts of the form

factors F̃ρNN1(2)(p2, t) to

ImF̃ρNN1(2)(p
2, t)

=
gρNNFρ(t)FN0(p2)mN

2π((p2 +m2
N − t)2 − 4p2m2

N )1/2

×
(
g2
πNN

4mN
K

(ρ)
N1(2) −

(
gπN∆

mπm∆

)2 K
(ρ)
∆1(2)

6

)
.

Here,
03
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K
(ρ)
Ni = λi

q2N+∫
q2N−

(p2 + 3m2
N )(2CN3 −CN1) + 2m2

N (1 − 2CN1) + 2CN2P
2δ1i

q′2N −m2
π

dq′2N ,
K
(ρ)
∆i = λi

×
q2∆+∫
q2∆−

[(
1 − 2C∆1

)(
m3

∆(p′p) − 1
3
mNm

2
∆(p∆P )

− 1
3
m3

∆m
2
N − 4

3
m∆(p∆p

′)(p∆p)
)

+
(
C∆1 − 2C∆3

)(
2mNm

2
∆(p′p) +

1
3
mNm

2
∆p

2

+
1
3
m3
Nm

2
∆ − 4

3
mN (p∆p

′)(p∆p)

+
2
3
m∆m

2
N (p∆p) +

1
3
m∆p

2(p∆p
′)

+
1
3
m2
Nm∆(p∆p

′)
)
− C∆2

P 2

mN

×
(
m2

∆(p′p) +
1
3
m2
Nm

2
∆ − 2

3
(p∆p

′)(p∆p)

+
1
3
m∆mN (p∆P )

)
δ1i

][
q
′2
∆ −m2

π

]−1
dq

′2
∆,

where i = 1, 2; λ1(2) = 1(−1); δ1i is a Kronecker delta
symbol;

CB2 =
m2
BP

2 − (pBP )2

3P 4
,

CB3 =
4(pBP )2 −m2

BP
2

3P 4
;

and

pBp
′ =

1
2
(m2

N +m2
B − q′B

2),

pBp =
1
2
(p2 +m2

B −m2
π),

p′p =
1
2
(p2 +m2

N − t), P 2 = 2p2 + 2m2
N − t.
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Abstract—The deep-inelastic production of J/ψ mesons in electron–proton interactions at the HERA
collidеr is considered within the semihard (kT -factorization) QCD approach and within the color-singlet
model. The dependence of the Q2, p2

T , z, y∗, and W distributions of J/ψ mesons on various sets of
unintegrated gluon distributions and the dependence of the spin parameterα onp2

T andQ2 are investigated.
The results of the calculations are compared with the latest experimental data obtained by the H1 and
ZEUS Collaborations at the HERA collider. It is shown that experimental investigations of the polarization
properties of J/ψ mesons over the kinematical region Q2 < 1 GeV2 may provide an additional test of the
statement that the dynamics of gluon distributions is governed by the Balitsky–Fadin–Kuraev–Lipatov
equations. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of processes involving the pro-
duction and photoproduction of heavy quarks and
quarkonia is a rich source of information both about
the dynamics of parton interaction and about the
distribution of gluons in the proton [1–4]. Strong
interest in the distribution of gluons is motivated,
in particular, by the fact that they play a key role in
determining cross sections for many processes that
will be examined at next-generation colliders (such
as LHC).

In the energy region of present-day colliders, pro-
cesses involving the production and photoproduc-
tion of heavy quarks and quarkonia are classified
among so-called semihard processes [5]. With such
processes, one usually associates reactions whose
characteristic scale µ ∼ mQ (where mQ is the heavy-
quark mass) of the hard parton-scattering subprocess
is much less than the total energy of colliding parti-
cles in the c.m. frame,

√
s, but is much greater than

the parameter ΛQCD—that is, ΛQCD � µ � √
s—in

which case the running QCD coupling constant re-
mains small: αQCD(µ2) � 1. The condition µ � √

s
means that the cross sections for such processes are
determined by the behavior of the gluon structure
functions in the proton at low values of the variable x,
x � mQ/

√
s � 1. In view of a high density of gluon

distributions at such values of x, the assumption of

*e-mail: zotov@theory.sinp.msu.ru
**e-mail: artem_lipatov@mail.ru
1063-7788/03/6609-1760$24.00 c©
the parton model that the cross sections for the rel-
evant subprocesses and hadron structure functions
factorize is violated, so that it is necessary to take into
account the dependence of the amplitude for a hard
subprocess on the virtuality, transverse momentum,
and longitudinal polarization of gluons, whose con-
tribution to the cross section is dominant [6–8].

The distributions of gluons in the proton,
xG(x, µ2), can be derived from the Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolu-
tion equations [9] in the leading-logarithm approx-
imation [in which case contributions of the form
αnS lnn(µ2/Λ2

QCD) are taken into account] or in the
double logarithmic approximation [in which case
contributions of the form αnS lnn(1/x) lnn(µ2/Λ2

QCD)
are included]. As the c.m. energy of colliding par-
ticles,

√
s, increases, however, contributions of or-

der αnS lnn(s/Λ2
QCD) ∼ αnS lnn(1/x), which are dis-

regarded in the DGLAP equations, begin to play
an ever more pronounced role. Summation of dia-
grams involving terms of orders αnS lnn(µ2/Λ2

QCD),
αnS lnn(1/x) lnn(µ2/Λ2

QCD), and αnS lnn(1/x) leads
to unintegrated gluon distributions (that is, distri-
butions that are dependent on the transverse mo-
mentum qT ) Φ(x,q2

T , µ
2) satisfying the Balitsky–

Fadin–Kuraev–Lipatov (BFKL) evolution equa-
tions [10]. These distributions are related to conven-
tional (collinear) gluon distributions xG(x, µ2) by the
2003 MAIK “Nauka/Interperiodica”
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equation

xG(x, µ2) = xG(x,Q2
0) +

µ2∫
Q2

0

Φ(x,q2
T , µ

2)dq2
T . (1)

Cross sections for physical processes are determined
by a convolution of unintegrated gluon distributions
with the off-shell matrix element for the relevant
hard subprocess [6–8]. In addition, the semihard
approach [5] prescribes, for virtual gluons, the choice
of the polarization tensor Lµν in the matrix element
for the subprocess of gluon–gluon fusion in the form

Lµν(q) =
qµT q

ν
T

q2
T

. (2)

The semihard approach was previously used to
describe a number of processes [6, 11–25]—in par-
ticular, processes involving the production and pho-
toproduction of heavy quarks [6, 11, 14, 16, 20–23]
and quarkonia [13, 15, 19, 24, 25]. We note that
calculations within the theory of semihard processes
lead to some observable effects that do not emerge in
other approaches—namely, a faster growth of cross
sections in relation to what is obtained from calcu-
lations within the usual parton model [13, 15] and a
broadening of transverse-momentum spectra in rela-
tion to the results produced by the parton model, this
flattening becoming more significant as the energy
increases [6, 11, 13–21].

We emphasize that calculations of cross sections
for the production of heavy quarks and quarkonia
within the usual parton model to a fixed order of
perturbative QCD prove to be unable to reproduce
experimental data as they become vaster and more
precise. For example, it was found that, for the pro-
duction of J/ψ and Υ mesons in proton–antiproton
interactions, the cross sections calculated within the
usual parton model fall short of experimental da-
ta by more than one order of magnitude [26, 27].
This circumstance gave impetus to intensive theoret-
ical investigations into such processes—in particular,
it was required to introduce additional mechanisms
through which cc̄ states undergo transitions into J/ψ
mesons. The so-called color-octet model [28], which
was proposed to include such mechanisms, claimed
to provide a complete description of quarkonium-
production processes both in proton–antiproton and
in electron–proton interactions, but it immediately
ran into the problem of describing the photoproduc-
tion of J/ψ mesons [29, 30] at the HERA collider
energies, where the contribution of the color-octet
mechanism is insignificant or is even at odds with
experimental data [31, 32]. Another feature pecu-
liar to the color-octet model is associated with the
polarization properties of J/ψ mesons produced in
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
proton–antiproton interactions at the Tevatron. If, as
is expected, a leading contribution to the production
of J/ψ mesons comes from gluon fragmentation into
octet cc̄ pairs, then J/ψ mesons must predominantly
have a transverse polarization at high transverse mo-
menta, but this contradicts experimental data, which
are indicative of the absence of polarization of product
J/ψ mesons or of their longitudinal polarization.

The color-octet model was also used in [33, 34] to
describe the deep-inelastic electroproduction of J/ψ
mesons at theHERA collider, but the results obtained
in those two studies contradict each other [34]. The
results of the calculations performed in [35–38] with-
in the usual parton model to a fixed order of perturba-
tion theory and within the color-singlet model differ
from experimental results by a factor greater than 2.

First attempts at solving the problem of J/ψ-
meson polarization in proton–antiproton interactions
within the kT -factorization approach were made
in [24, 39, 40]. The theoretical predictions obtained
in [19] within the semihard approach stimulated an
experimental analysis of the polarization properties of
J/ψ mesons at the HERA collider energies. How-
ever, this problem calls for a further theoretical and
experimental examination.

The present study is devoted to a continuation
of investigations into the deep-inelastic electropro-
duction of J/ψ mesons at the HERA collider within
the semihard QCD approach. Relying on the color-
singlet model and employing the formalism of pro-
jection operators [41], we will calculate the Q2, p2

T ,
z, y∗, and W distributions of J/ψ mesons within the
semihard QCD approach and compare the results of
our calculations with the latest experimental data ob-
tained by the H1 and ZEUS Collaborations (see [42]
and [43], respectively), as well as with the results of
calculations performed within the usual parton model
in the leading order of perturbation theory. With the
aim of seeking a universal distribution of gluons, we
also analyze the sensitivity of the calculated quan-
tities to the choice of various sets of unintegrated
distributions of gluons and to variations in the param-
eters of the semihard approach. Particular attention
will be given to unintegrated gluon distributions that
are obtained by solving the BFKL evolution equations
and which were previously used in [15–18]. In ad-
dition, we will explore the polarization properties of
the final J/ψ meson versus its transverse momentum
squared, p2

J/ψT , and versus the virtuality of the pri-

mary photon, Q2.
The ensuing exposition is organized as follows.

In Section 2, we derive simple analytic expressions
describing the differential cross section for the deep-
inelastic electroproduction of J/ψ mesons within the
3
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Fig. 1. Diagram for deep-inelastic production of J/ψ
mesons in electron–proton interactions.

kT -factorization approach and within the usual par-
ton model. In Section 3, we discuss some features of
the parametrizations used for unintegrated distribu-
tions of gluons in the proton. In Section 4, we calcu-
late matrix elements for the relevant hard subprocess
on the basis of the color-singlet model within the
semihard QCD approach and on the basis of the usual
parton model without recourse to previous studies. In
Section 5, we present the results of our numerical
calculations and compare them with the latest ex-
perimental data of the H1 and ZEUS Collaborations
(see [42] and [43], respectively). In Section 6, we
briefly summarize the basic results and conclusions
obtained in the present study.

2. CROSS SECTION
FOR THE DEEP-INELASTIC

ELECTROPRODUCTION OF J/ψ MESONS
IN THE SEMIHARD QCD APPROACH

Relying on the semihard QCD approach, we will
calculate here the differential cross section for the
process involving the deep-inelastic electroproduc-
tion of J/ψ mesons and proceeding through the sub-
process of photon–gluon fusion (Fig. 1). In these cal-
culations, we will use expression (2) for the polariza-
tion tensor Lµν of initial virtual gluons. The Sudakov
decomposition for the process ep → e′J/ψX (Fig. 1)
has the form

pJ/ψ = α1pe + β1pp + pJ/ψT , (3)

pg = α2pe + β2pp + pgT ,

q1 = x1pe + q1T ,

q2 = x2pp + q2T ,

where

p2
J/ψ = m2

J/ψ, p2
g = 0, (4)

q2
1 = q2

1T = −Q2, q2
2 = q2

2T .
P

Here, pJ/ψ and pg are the 4-momenta of the J/ψ
meson and the final gluon, respectively; q1 and q2 are
the 4-momenta of the initial virtual photon and the
initial gluon, respectively; and pJ/ψT , pgT , q1T , and
q2T are the transverse 4-momenta of the correspond-
ing particles. In the c.m. frame of colliding particles,
we have

pe = (E, 0, 0, E), pp = (E, 0, 0,−E), (5)

where

E =
√
s

2
, p2

e = p2
p = 0, (pe · pp) =

s

2
. (6)

The Sudakov variables have the form

α1 =
mJ/ψT√

s
exp(yJ/ψ), α2 =

|pgT |√
s

exp(yg), (7)

β1 =
mJ/ψT√

s
exp(−yJ/ψ), β2 =

|pgT |√
s

exp(−yg),

wherem2
J/ψT = m2

J/ψ + p2
J/ψT ,mJ/ψ being the J/ψ-

meson mass, and yJ/ψ and yg are the rapidities of,
repectively, the J/ψ meson and the final gluon in
the c.m. frame of colliding particles. The differential
cross section for the process ep → e′J/ψX can be
represented in the form

dσ(ep → e′J/ψX) =
dx2

x2
(8)

× Φ(x2,q2
2T , µ

2)
dφ2

2π
dq2

2Tdσ̂(eg∗ → e′J/ψg′),

where φ2 is the azimuthal angle of the initial virtual
gluon; Φ(x2,q2

2T , µ
2) is the unintegrated distribution

of gluons; and

dσ̂(eg∗ → e′J/ψg′) (9)

=
(2π)4

2x2s

∑
|M |2SHA(eg∗ → e′J/ψg′)

× d3p′e
(2π)32p′0e

d3pJ/ψ

(2π)32p0
J/ψ

d3pg
(2π)32p0

g

× δ(4)(pe + q2 − p′e − pJ/ψ − pg),

with
∑

|M |2SHA(eg∗ → e′J/ψg′) being the matrix el-
ement calculated for the hard scattering subprocess
eg∗ → e′J/ψg′ within the semihard QCD approach.
In (9), the summation sign means averaging over
the polarizations of initial particles and summation
over the polarizations of final particles. From expres-
sions (8) and (9), one can easily obtain the differential
cross section for the process ep → e′J/ψX within the
semihard QCD approach. The eventual result has the
form

dσ(ep → e′J/ψX) (10)
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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=
1

128π3

Φ(x2,q2
2T , µ

2)
(x2s)2(1 − x1)

dz

z(1 − z)
dyJ/ψ

×
∑

|M |2SHA(eg∗ → e′J/ψg′)dp2
J/ψT

× dQ2dq2
2T

dφ1

2π
dφ2

2π
dφJ/ψ

2π
,

where

x1 = α1 + α2, x2 = β1 + β2, (11)

q1T + q2T = pJ/ψT + pgT ;

φ1 and φJ/ψ are the azimuthal angles of the initial
virtual photon and the J/ψ meson, respectively; and
z = (pJ/ψ · pp)/(q1 · pp). Considering the limit q2

2T →
0 and averaging expression (10) over transverse di-
rections, which are specified by the vector q2T , we
obtain the differential cross section for the process
ep → e′J/ψX within the usual parton model; that is,

dσ(ep → e′J/ψX) (12)

=
1

128π3

1
(x2s)2(1 − x1)

dz

z(1 − z)
x2G(x2, µ

2)

×
∑

|M |2PM(eg → e′J/ψg′)dyJ/ψ

× dp2
J/ψT dQ

2dφ1

2π
dφJ/ψ

2π
,

where
∑

|M |2PM(eg → e′J/ψg′) is the matrix element
calculated for the hard subprocess eg → e′J/ψg′

within the usual parton model and the summation
sign means, as before, averaging over the polariza-
tions of initial particles and summation over the po-
larizations of final particles. In performing averaging
over the azimuthal angle φ2 and integration with
respect to q2

2T , we have used the relation∫
dq2

2T

∫
dφ2

2π
Φ(x2,q2

2T , µ
2) (13)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
×
∑

|M |2SHA(eg∗ → e′J/ψg′)

= x2G(x2, µ
2)
∑

|M |2PM(eg → e′J/ψg′),

where
2π∫
0

dφ2

2π
qµ2T q

ν
2T

q2
2T

=
1
2
gµν . (14)

3. UNINTEGRATED DISTRIBUTIONS
OF GLUONS

In performing the ensuing calculations, we will
employ various parametrizations of unintegrated
gluon distributions. In this section, we consider some
special features of the parametrizations used.

The first is the so-called JB parametrization,
which was obtained by solving the BFKL equations
on the basis of the method proposed in [44]. This
method for deriving unintegrated gluon distributions
relies on directly solving the BFKL equations in the
leading approximation, with the collinear gluon den-
sity xG(x, µ2) from the Glück–Reya–Vogt set [45]
being taken for the initial condition. Technically, the
unintegrated gluon distributions are calculated in this
case as the convolution of the collinear gluon distri-
bution xG(x, µ2) with a universal weight factor [44];
that is,

Φ(x,q2
T , µ

2) =

1∫
x

ϕ(η,q2
T , µ

2)
x

η
G

(
x

η
, µ2

)
dη,

(15)

where
ϕ(η,q2
T , µ

2) =




ᾱS
ηq2

T

J0

(
2
√

ᾱS ln(1/η) ln(µ2/q2
T )
)

for q2
T ≤ µ2

ᾱS
ηq2

T

I0

(
2
√

ᾱS ln(1/η) ln(q2
T /µ

2)
)

for q2
T > µ2.

(16)
Here, J0 and I0 are Bessel functions of, respectively,
a real and an imaginary argument. The parameter
ᾱS = 3αS/π, which appears in (16), is related to the
Pomeron intercept ∆: in the leading order of per-
turbation theory, we have ∆ = 4ᾱS ln 2 � 0.53, but,
in the next-to-leading order, the expression for the
Pomeron intercept in terms of the parameter ᾱS as-
sumes the form ∆ = 4ᾱS ln 2 −Nᾱ2

S and takes neg-
ative values since N ∼ 18 [46, 47]. However, vari-
ous summation procedures proposed in recent years
(see [47, 48]) lead to positive values of ∆ ∼ 0.2–0.3.
In our calculations, we will use the value of ∆ = 0.35
from [20].

A different parametrization of unintegrated gluon
distributions (here, it will be referred to as the KMS
parametrization) was obtained in [49] by solving the
generalized BFKL–DGLAP equation with allowance
for additional kinematical constraints in the evolution
of the gluon cascade [50]. As was shown in [51], this
approach makes it possible to take effectively into
3
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Fig. 2. Diagrams representing the subprocess
γg∗ → J/ψg′ in the leading order of perturbation
theory.

account about 70% of next-to-leading-order correc-
tions to the Pomeron intercept ∆.

In our calculations, we will also employ the phe-
nomenological gluon distribution that was proposed
by the authors of the model where the gluon distribu-
tion is assumed to be saturated at low values of the
variable x [52, 53]. This model was successfully used
to describe the processes of inclusive and diffractive
deep-inelastic scattering (see [52] and [53], respec-
tively) at the HERA collider energies. The expression
for Φ(x,q2

T , µ
2) has the form

Φ(x,q2
T , µ

2) =
3σ0

4π2

1
αS

R2
0(x)q2

T exp(−R2
0(x)q2

T ),

(17)

where

R2
0(x) =

1
GeV2

(
x

x0

)λ/2
. (18)

The parameter values of σ0 = 23.03 mb, λ = 0.288,
and x0 = 3.04× 10−4 were obtained in describing the
behavior of the proton structure function F2 in the re-
gion x < 0.01 [52]. In the present article, we will refer
to this parametrization as the GBW parametrization
of unintegrated gluon distributions.

The effective gluon distribution xG(x, µ2) is re-
lated to the unintegrated distribution functions
Φ(x,q2

T , µ
2) by Eq. (1). In (1), the contribution of the

low-q2
T region (0 < q2

T < Q2
0) is taken into account
PH
with the aid of the collinear gluon density xG(x,Q2
0),

where Q2
0 = 1 GeV2 for all parametrizations.

4. MATRIX ELEMENTS
FOR THE SUBPROCESS eg∗ → e′J/ψg′

In this section, we will calculate the squared ma-
trix element

∑
|M |2SHA(eg∗ → e′J/ψg′) for the rele-

vant hard scattering subprocess within the theory of
semihard processes and also obtain the expression
for
∑

|M |2PM(eg → e′J/ψg′) in the leading order of
perturbative QCD; we will employ this expression in
the calculations based on the usual parton model. As
was indicated above, expression (10), which describes
the differential cross section for the electroproduction
of J/ψ mesons within the semihard QCD approach,
presumes the dependence of the matrix element for
the relevant hard subprocess on the initial-gluon vir-
tuality q2

2 = −q2
2T �= 0.

Within the color-singlet model, which is consid-
ered in the present study, J/ψ mesons are described
by nonrelativistic wave functions representing the cc̄
quark system in the color-singlet state characterized
by the orbital angular momentum L = 0; the spin
S = 1; and the mass mJ/ψ = 2mc, where mc is the
c-quark mass. The amplitude of the subprocess of
photon–gluon fusion, γg∗ → J/ψg′, is described by
the set of six diagrams in Fig. 2 and can be obtained,
within the formalism of projection operators [41], from
the amplitude of the subprocess γg∗ → cc̄g′ by means
of the substitution

v(pc̄)ū(pc) → Ĵ(pJ/ψ) (19)

=
ψ(0)

2√mJ/ψ
ε̂(pJ/ψ)(p̂J/ψ + mJ/ψ)

1√
3
,

where ε̂(pJ/ψ) = εµ(pJ/ψ), γµε(pJ/ψ) is the polariza-

tion 4-vector of the product J/ψ meson, 1/
√

3 is a
color factor, and ψ(0) is the value of the nonrela-
tivistic J/ψ-meson wave function at the origin. By
using standard Feynman rules for QCD, we represent
the amplitude for the subprocess γg∗ → J/ψg′ in the
form
M = ecg
2εµ(q1)εσ(q2)ερ(pg)Sp

[
Ĵ(pJ/ψ)γµ

p̂c − q̂1 + mc

(pc − q1)2 −m2
c

γσ
−p̂c − p̂g + mc

(−pc − pg)2 −m2
c

γρ
]

(20)
plus five permutations of all gauge bosons. Here,
εµ(q1) and εµ(q2) are the polarization 4-vectors of,
respectively, the initial photon and the initial gluon;
εµ(pg) is the polarization 4-vector of the final gluon;
and pc = pJ/ψ/2. Summation over the polarizations
of the J/ψ meson and the final real gluon is performed
in a conventional way:

∑
εµ(pJ/ψ)ε∗ν(pJ/ψ) = −gµν +

pµJ/ψp
ν
J/ψ

m2
J/ψ

, (21)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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∑
εµ(pg)ε∗ν(pg) = −gµν . (22)

For the sum over the polarizations of the initial
virtual photon,

∑
εµ(q1)ε∗ν(q1), we employ the total

lepton tensor (which also includes the photon propa-
gator and the relevant vertex factor) in the form∑

εµ(q1)ε∗ν(q1) = 2
e2

Q2

(
−gµν +

4pµe pνe
Q2

)
. (23)

In calculating
∑

|M |2PM(eg → e′J/ψg′) within the
parton model, we will make use of a conventional
gluon polarization tensor of the form∑

εµ(q2)ε∗ν(q2) = −gµν . (24)

In order to investigate the polarization properties of
J/ψ mesons, we take the longitudinal-polarization 4-
vector εµL(pJ/ψ) in the form [54]

εµL(pJ/ψ) =
(pJ/ψ · pp)√

(pJ/ψ · pp)2 −m2
J/ψs

(25)

×
(

pµJ/ψ

mJ/ψ
−

mJ/ψp
µ
p

(pJ/ψ · pp)

)
.

In the limiting case of s  m2
J/ψ, this 4-vector satis-

fies conventional conditions: (εL · εL) = −1 and (εL ·
pJ/ψ) = 0.

The calculations of
∑

|M |2SHA(eg∗ → e′J/ψg′)
and

∑
|M |2PM(eg → e′J/ψg′) within the parton mo-

del were performed with the aid of the REDUCE
system for analytic calculations.

5. RESULTS OF THE CALCULATIONS

In this section, we present our results obtained
both within the theory of semihard processes and
within the usual parton model in the leading order of
perturbative QCD; we also compare our theoretical
results with the latest experimental data of the H1
and ZEUS Collaborations (see [42] and [43], respec-
tively).

We note that the absolute normalization of the
cross sections calculated by formulas (10) and (12)
depends on the choice of values for the J/ψ-meson
wave function at the origin, ψ(0); the c-quark mass,
mc; and the factorization scale, µ. The wave-function
value at the origin, ψ(0), can be calculated within the
potential model or can be obtained from the exper-
imentally measured leptonic-decay width Γ(J/ψ →
µ+µ−). Following [55], we will use the value of
|ψ(0)|2 = 0.0876 GeV3 in our calculations.

At present, the problem of choosing values for
the c-quark mass remains open. On one hand, we
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
have mc = mJ/ψ/2 = 1.55 GeV in the nonrelativis-
tic QCD approximation, which is used for the J/ψ
wave function in the color-singlet model. On the
other hand, however, there exist grounds to take a
somewhat lower value of mc—for example, mc =
1.4 GeV [33, 56]. In our study, we will use both of
these values for the c-quark mass.

Following [57], we will set the factorization scale
to µ2 = q2

2T in the ensuing calculations.1)

As was indicated above, the calculations within
the theory of semihard processes were performed
by formula (10), while the calculations within the
usual parton model were based on formula (12).
The limits of integration with respect to p2

J/ψT

were derived from the requirement that the re-
action in question be of a deep-inelastic charac-
ter: 1 GeV2 ≤ p2

J/ψT ≤ s/4 −m2
J/ψ. In accordance

with (1), the domain of integration with respect to
q2

2T was broken down into two parts. For q2
2T ≥ Q2

0,
we performed calculations by formula (10), while,
for q2

2T < Q2
0, we set q2

2T = 0 in the scattering am-
plitude and replaced

∑
|M |2SHA(eg∗ → e′J/ψg′) by∑

|M |2PM(eg → e′J/ψg′). The choice of the critical
value Q2

0 was based on the requirement that the
coupling constant αS(q2

2T ) be small in the region
q2

2T ≥ Q2
0. In our calculations, we used the value

of Q2
0 = 1 GeV2, in which case αS(q2

2T ) ≤ 0.26.
The limits of integration with respect to Q2, the
rapidity yJ/ψ, and the variable z are related to the
boundaries of two kinematical regions in which the
H1 Collaboration obtained experimental data on the
inelastic electroproduction of J/ψ mesons [42]: 2 ≤
Q2 ≤ 80 GeV2, 40 ≤ W ≤ 180 GeV, z > 0.2, and
MX ≥ 10 GeV (first region) and p2

J/ψT ≥ 4 GeV2,

4 ≤ Q2 ≤ 80 GeV2, 40 ≤ W ≤ 180 GeV, z > 0.2,
and MX ≥ 10 GeV (second region).

The results of our calculations are displayed in
Figs. 3–8. The distributions of J/ψ mesons with
respect to the variables Q2, p2

J/ψT , z, y∗J/ψ (rapidity
of J/ψ mesons in the c.m. frame of the γ∗p system),
and W in the kinematical region specified by the in-
equalities 2 ≤ Q2 ≤ 80 GeV2, 40 ≤ W ≤ 180 GeV,
z > 0.2, and MX ≥ 10 GeV are displayed in Fig. 3
for

√
s = 314 GeV, mc = 1.55 GeV, and ΛQCD =

250 MeV. Curve 1 corresponds to the calculations
on the basis of the usual parton model with the gluon
distribution xG(x, µ2) from the Glück–Reya–Vogt
set, while curves 2, 3, and 4 represent the results

1)We note that our preliminary results in [58] correspond to
µ2 = m2

J/ψ + p2
J/ψT .
3
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Fig. 3. Distributions of J/ψ mesons with respect to Q2, p2
J/ψT , z, y∗J/ψ and W in the kinematical region specified by the

inequalities 2 ≤ Q2 ≤ 80 GeV2, 40 ≤W ≤ 180 GeV, z > 0.2, and MX ≥ 10 GeV at
√
s = 314 GeV, mc = 1.55 GeV, and

ΛQCD = 250 MeV. Curve 1 corresponds to the calculations within the usual parton model that employ the gluon distribution
xG(x,µ2) from the Glück–Reya–Vogt set, while curves 2, 3, and 4 represent the results of the calculations performed
within the theory of semihard processes by using, respectively, the JB, KMS, and GBW unintegrated gluon distributions at
Q2

0 = 1 GeV2. Points show experimental data of the H1 Collaboration [42].
obtained within the theory of semihard processes
by using, respectively, the JB, KMS, and GBW
unintegrated gluon distributions at Q2

0 = 1 GeV2. It
can easily be seen that, for all distributions calculated
within the semihard QCD approach (curves 2, 3, 4),
their shapes comply well with experimental data of
the H1 Collaboration. It should be noted that the
calculations on the basis of the parton model in the
P

leading order of perturbative QCD (curves 1) disagree
with experimental data of the H1 Collaboration (the
discrepancy is about a factor of 2 in absolute value).

In Fig. 4, the distributions of J/ψ mesons with
respect to the variables z, y∗J/ψ, and W at

√
s =

314 GeV, mc = 1.55 GeV, and ΛQCD = 250 MeV are
shown for a different kinematical region, that which
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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Fig. 4. Distributions of J/ψ mesons with respect to z, y∗J/ψ, and W in the kinematical region specified by the inequalities

p2
J/ψT ≥ 4 GeV2, 4 ≤ Q2 ≤ 80 GeV2, 40 ≤W ≤ 180 GeV, z > 0.2, andMX ≥ 10 GeV at

√
s = 314 GeV,mc = 1.55 GeV,

and ΛQCD = 250 MeV. The notation is identical to that in Fig. 3.
is specified by the inequalities p2
J/ψT ≥ 4 GeV2, 4 ≤

Q2 ≤ 80 GeV2, 40 ≤ W ≤ 180 GeV, z > 0.2, and
MX ≥ 10 GeV; here, the notation for the curves is
identical to that in Fig. 3. It can easily be seen that
agreement between experimental data from [42] and
the results of the calculations performed within the
theory of semihard processes is better in the second
than in first kinematical region (where, for example,
the constraint p2

J/ψT ≥ 4 GeV2 is not imposed).

The Q2, p2
J/ψT , z, y∗J/ψ, and W distributions

of J/ψ mesons at
√
s = 314 GeV, mc = 1.4 GeV,

and ΛQCD = 250 MeV are shown in Fig. 5 for the
kinematical region specified by the inequalities 2 ≤
Q2 ≤ 80 GeV2, 40 ≤ W ≤ 180 GeV, z > 0.2, and
MX ≥ 10 GeV and in Fig. 6 for the kinematical
region specified by the inequalities p2

J/ψT ≥ 4 GeV2,

4 ≤ Q2 ≤ 80 GeV2, 40 ≤ W ≤ 180 GeV, z > 0.2,
and MX ≥ 10 GeV; as before, the notation here for
the curves is identical to that in Fig. 3. As can be
seen from these graphs, the change in the c-quark
mass from mc = 1.55 GeV to mc = 1.4 GeV leads to
an approximately 1.5-fold increase in the magnitude
of the calculated distributions.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
If only the color-singet state of J/ψ mesons is
taken into account, their distributions with respect to
the variable z at mc = 1.4 GeV are reproduced in the
region z ≥ 0.4 but not beyond it, because, in the re-
gion z < 0.4, the contribution of other mechanisms—
such as those that are associated with the QCD
structure of the photon and with the production of
J/ψ mesons in the octet state [59]—becomes signifi-
cant.

We have investigated the mc dependence of the
results of our calculations in greater detail and found
that the 1.5-fold change in the magnitude of the cal-
culated distributions in response to the shift of the c-
quark mass from mc = 1.55 GeV to mc = 1.4 GeV is
due to the change in the phase space corresponding
to the final J/ψ meson, a variation of mc in the am-
plitude of the subprocess eg → e′J/ψg′ affecting the
results of the calculations only slightly. However, the
value of mc = 1.4 GeV in the phase space of the final
state corresponds to an unphysical value of the J/ψ-
meson mass.2)

2)We are grateful to S.P. Baranov, who proposed that we ex-
amine this issue in greater detail.
3
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Fig. 5. Distributions of J/ψ mesons with respect to Q2, p2
J/ψT , z, y∗J/ψ , and W in the kinematical region specified by the

inequalities 2 ≤ Q2 ≤ 80 GeV2, 40 ≤W ≤ 180 GeV, z > 0.2, and MX ≥ 10 GeV at
√
s = 314 GeV, mc = 1.4 GeV, and

ΛQCD = 250 MeV. The notation is identical to that in Fig. 3.
As can be seen from Figs. 5 and 6, the inclusion of
effects associated with the saturation of gluon distri-
butions in the low-x region (GBW parametrization)
does not disturb the agreement with experimental
data.

Our calculations reveal that, within the semihard
QCD approach to describing the inelastic electro-
production of J/ψ mesons at the HERA collider,
agreement with experimental data is reached at a
rather low value of the с-quark mass, mc = 1.4 GeV.
At the more realistic value of mc = 1.55 GeV, the
PH
predictions of the kT -factorization approach differ in
magnitude from experimental data of the H1 Collab-
oration [42] by a factor of about 1.5.

In order to investigate the polarization proper-
ties of final J/ψ mesons, we will calculate, within
the semihard approach and within the usual parton
model, the spin parameter α [19, 60],

α(ω) =
dσ/dω − 3dσL/dω
dσ/dω + dσL/dω

, (26)

where σL is the cross section for the electropro-
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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semihard processes and performed with the KMS unintegrated gluon distribution (Q2

0 = 1 GeV2), and (points) experimental
data of the ZEUS Collaboration [43].
duction of longitudinally polarized J/ψ mesons and

ω = p2
J/ψT , Q

2, considering it as a function of p2
J/ψT

and Q2. The parameter α is related to the angu-

lar distribution of leptons from the decay process
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 200
J/ψ → µ+µ− by the equation

dΓ(J/ψ → µ+µ−)
d cos θ

∼ 1 + α cos2 θ, (27)

where θ is the polar angle of emission of the final muon
µ+ in the J/ψ rest frame.
3
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√
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and ΛQCD = 250 MeV at fixed values ofQ2. The notation for the curves is identical to that in Fig. 7.
In Fig. 7, the parameter α as a function of |pJ/ψT |
at

√
s = 314 GeV, mc = 1.4 GeV, and ΛQCD =

250 MeV is presented for the kinematical regions (a)
0.4 < z < 0.9 and (b) 0.4 < z < 1; the experimental
data displayed there (points) were obtained by the
ZEUS Collaboration [43]. In that figure, curve 1 cor-
responds to the calculation on the basis of the usual
parton model with the gluon distribution xG(x, µ2)
from the Glück–Reya–Vogt set, while curve 3 rep-
resents the results obtained within the theory of
semihard processes by using the KMS unintegrated
gluon distribution (Q2

0 = 1 GeV2). We note that, in
view of large experimental uncertainties and in view
of the additional contribution to the cross section
for the production of J/ψ mesons of helicity λ = 0
from longitudinally polarized initial virtual photons,
it is very difficult to draw definitive conclusions on
the degree to which the virtuality of the initial gluon
affects the cross section for the production of longi-
tudinally polarized J/ψ mesons. At photon-virtuality
values in the region Q2 < 1 GeV2, the contribution
of longitudinally polarized photons is insignificant,
however, which must lead to qualitative distinctions
between the polarization properties of product J/ψ
mesons within the usual parton model and those
within the semihard QCD approach [19, 58]. By way
of example, Fig. 8 displays the parameter α as a
function of p2

J/ψT for 40 ≤ W ≤ 180 GeV, z > 0.2,
MX ≥ 10 GeV,

√
s = 314 GeV, mc = 1.4 GeV, and

ΛQCD = 250 MeV at various fixed values of Q2: Q2 =
(a) 0.1, (b) 1, (c) 5, and (d) 10 GeV2; the notation
for the curves here is identical to that in Fig. 7.
P

From Fig. 8, it can be seen that, for Q2 < 1.0 GeV2,
the dependence αSHA(p2

J/ψT ) calculated within the
semihard approach differs significantly, both in shape
and in magnitude, from the dependence αPM(p2

J/ψT )
found on the basis of the parton model in the leading
order of perturbative QCD. Thus, we conclude that, if
next-to-leading-order corrections to the predictions
of the parton model for the cross section describing
the production of longitudinally polarized J/ψ parti-
cles (these corrections have yet to be calculated) do
not introduce significant changes in the behavior of
the parameter αPM(p2

J/ψT ) for Q2 < 1 GeV2, experi-
mental investigations of the polarization properties of
J/ψ mesons in this region would provide yet another
test of the BFKL dynamics of gluon distributions.

6. CONCLUSION

Within the semihard QCD approach, we have
considered the inelastic electroproduction of J/ψ
mesons at the HERA collider. We have investi-
gated the sensitivity of the Q2, p2

T , z, y∗, and
W distributions of J/ψ mesons to the choice of
unintegrated gluon distributions and analyzed the
behavior of the spin parameter α as a function of
p2
T and Q2. Particular attention has been given to

gluon distributions obtained by solving the BFKL
evolution equations. It has been shown that, at the
values of mc = 1.4 GeV and |ψ(0)|2 = 0.0876 GeV3

for, respectively, the c-quark mass and the squared
modulus of the J/ψ-meson wave function at the
origin (ΛQCD = 250 MeV, ∆ = 0.35), the results
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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of the calculations performed within the semihard
QCD approach and within the color-singlet model
by using the JB, KMS, and GBW gluon distributions
agree fairly well with experimental data obtained by
the H1 Collaboration at the HERA collider. At the
more realistic value of mc = 1.55 GeV, however, the
predictions of the kT -factorization approach differ
in magnitude from experimental data by a factor of
about 1.5.3) The inclusion of effects associated with
the saturation of gluon distributions in the low-x
region (GBW parametrization) does not contradict
the existing experimental data. It has been shown
that experimental investigations into the polarization
properties of J/ψ mesons in the kinematical region
Q2 < 1 GeV2 may provide an additional test of the
BFKL dynamics of gluon distributions.
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Éksp. Teor. Fiz. 71, 840 (1976) [Sov. Phys. JETP
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22. Ph. Hägler, R. Kirschner, A. Schäfer, et al., Phys.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Uncertainty of the Two-Loop RG Upper Bound on the Higgs Mass*
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Abstract—Amodified criterion of the SM perturbative consistency is proposed. It is based on the analytic
properties of the two-loop SM running couplings. Under the criterion adopted, the Higgs mass up to
380 GeV might not give rise to strong coupling prior to the Planck scale. This means that the light Higgs
boson is possibly preferred for reasons other than the SM perturbative consistency, i.e., for reasons beyond
the SM. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The current experimental data restrict the Higgs
mass in the Standard Model (SM) within the range
114.1 < MH < 194 GeV. The lower bound on MH
comes from the absence of the Higgs production
signal at LEP II at the 95% C.L. [1]. The upper
bound is derived at the same C.L. from the fit to the
precision electroweak data [2]. On the other hand,
the upper bound on the Higgs mass can be obtained
from the requirement of the SM perturbative consis-
tency up to a cutoff energy scale Λ at which the SM
might get into the strong coupling regime. The two-
loop renormalization group (RG) gives typical upper
bounds MH < 200 GeV at Λ = MGUT = 1014 GeV
and MH < 180 GeV at Λ = MPl = 1019 GeV (see,
e.g., [3]). Thus, both the electroweak precision data
and the SM perturbative consistency up to the GUT
scale exclude the Higgs mass MH ≥ 200 GeV. This
could be interpreted as though the Higgs should be
light due to the self-suppression of the strong cou-
pling in the SM. But the question is to what extent
the Higgs upper bound from the SM perturbative
consistency is reliable.

A clear-cut criterion of the strong coupling in the
Higgs sector of the SM exists only in one loop. In
this case, the one-loop quartic coupling λ develops
the Landau pole at a finite energy scale Λ. In two
loops, the pole is compensated, but λ becomes large,
λ/4π2 � 1, nearly at the same energy scale Λ. Taken
alone, this does not give an unambiguous criterion
of the nonperturbative regime anymore. In the con-
ventional assumption that the higher loops become
comparable with the first and second ones at the

∗This article was submitted by the authors in English.
**e-mail: pirogov@mx.ihep.su

***e-mail: zenin_o@mx.ihep.su
1063-7788/03/6609-1773$24.00 c©
same scale Λ, the results of [3, 4] follow (see also [5]
for a review). On the other hand, the contributions
of the higher loops might be either small or large
but mutually compensated. This would not change
drastically the two-loop running of λ and may relax
the conventional upper bound on the Higgs mass.

Presently, the full set of the SM β functions is
known only up to two loops. This forces one to study
the reliability of the self-consistency criterion of the
two-loop RG approximation in the SM. This is the
purpose of the present paper. The method proposed in
the paper relies on the subtracted RG and the analytic
properties of the running couplings. It is similar in
spirit to methods applied to resolve the Landau sin-
gularity problem in QED [6] and, later, to improve
the infrared behavior of the QCD running coupling
αS(µ2) [7, 8].

2. SUBTRACTED FINITE-LOOP RG

Let us consider the system of the SM two-loop
RG equations (RGE)

µ2 dai(µ
2)

dµ2
= βi({aj(µ2)}). (1)

Here and in what follows, ai(µ2) are the SM running
couplings vs. the energy squared scale µ2, and βi
are the respective β functions calculated at the given
number of loops. We disregard the mass effects here.
Conventionally, the system (1) is integrated numeri-
cally along the real axis Reµ2 < 0:

ai(µ2) = ai(µ2
0) +

µ2∫
µ2

0

dµ′2

µ′2
βi({aj(µ′2)}), (2)
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The integration contour C and the generic
complex-conjugate singularity pointsµ2
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with |µ2

s| =
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s. C+ is the part of the contour C that goes along the

real positive semiaxis from above, C∗
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circleC0 stays invariable. The real point−Λ2

Y corresponds
to the U(1)Y singularity. All the complex singularities
are assumed to reside within the shadowed area at Λ2

s ≤
|µ2| < Λ2

Y. The hatched line designates the physical cut.

where µ2
0 < 0 is a reference point, |µ0| ∼MZ . The β

functions can now be defined as functions of the real
negative µ2:

βi(µ2) ≡ βi
({
aj(µ2)

})
. (3)

Equations (1)–(3) preserve their meaning for
the complex µ2 as well. But the numerical solution
obtained says nothing about the analytic properties
of the running couplings with respect to µ2. In two
loops, despite the absence of real singularities of the
Higgs quartic coupling λ, there could be complex
ones. They influence the strong coupling regime
λ/4π2 ≥ 1 at large enough real µ2. The extension of
the two-loop RG analysis onto the complex µ2 plane
allows one to find the position of the singularities
implicitly.

To this end, let us continue analytically the β
functions and running couplings onto the complex
µ2 plane with the cut along the real axis Re µ2 > 0
(Fig. 1). The cut is chosen so that −π <
Im ln(−µ2) < π. All the running couplings are as-
sumed to satisfy the hermiticity condition ai(µ2∗) =
a∗i (µ

2). Let us first choose the closed contour C =
C0 ∪ C+ ∪ C̃ ∪C∗

+ (Fig. 1) so that C encircles the
PH
given point µ2 and all the singularities of the running
couplings ai(µ2) reside outside C. Then, βi(µ2)
satisfy the identity

βi(µ2) ≡ 1
2πi

∫
C

βi(s) ds
s− µ2

, (4)

where βi(s) ≡ βi({aj(s)}). Substituting Eq. (4) into
Eq. (2), one gets

ai(µ2) = ai(µ2
0) +

1
2πi

µ2∫
µ2

0

dµ′2

µ′2

∫
C

βi(s)ds
s− µ′2

, (5)

where the integration path between points µ2
0 and µ2

should lie inside C. In what follows, the square root Λ̃
of the radius of the outer contour C̃ is referred to as
the modification radius.

Now let us spread the outer contour C̃ so that at
least some of the implicit singularities of ai(µ2) be-
come located inside C. In general, identity (5) ceases
to be valid. Moreover, the integration of the RG sys-
tem (1) from the reference point µ2

0 to the real point
(−Λ̃2), Λ̃ > Λs, along the real axis and the upper
half of the contour C (shown in solid in Fig. 1) does
not give the same results. Remarkably, in the latter
case, the couplings ai(−Λ̃2) acquire nonzero complex
parts, while in the former case they are real by con-
struction. This discrepancy reflects the contribution
of the implicit complex singularities. The minimal
radius Λ2

s of the external contour C̃ at which all these
irregularities take place gives an estimate of the upper
range of the reliability of the RG in the given loops.
The value of Λs corresponds to crossing the nearest
singularities of ai(µ2). At scales larger than Λs, the
original finite-loop approximation is definitely unre-
liable. It is at |µ2| ≥ Λ2

s , where the contributions of
higher loops are needed to improve the analytic prop-
erties of the conventional running couplings ai(µ2).

The above procedure suffices to give the clear-
cut numerical criterion of the self-consistency of
the finite-loop RG. But to visualize it, let us modify

Eq. (5) and define the new running couplings a(Λ̃)
i (µ2)

as follows:

a
(Λ̃)
i (µ2) = ai(µ2

0) +

µ2∫
µ2

0

dµ′2

µ′2
β

(Λ̃)
i (µ′2),

with the once subtracted β functions

β
(Λ̃)
i (µ2) ≡ βi(µ2

0) +
1

2πi
(6)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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×
∫
C

ds βi(s)
(

1
s− µ2

− 1
s− µ0

2

)
.

Here, the point µ2
0 is shifted infinitesimally inside C,

and βi(s), restricted to contour C, are obtained by
integrating the RG system (1) along the contour C
itself. By their very construction, the modified cou-

plings a(Λ̃)
i (µ2) exactly coincide with ai(µ2) at |µ| <

Λ̃ if the integration contour does not encompass the
complex singularities, i.e., Λ̃ < Λs. Due to hermitic-
ity, the couplings are real at the real negative µ2. If the
complex singularities get inside the contour, the pro-

cedure is not uniquely defined. In particular, a(Λ̃)
i (µ2)

cease generally to be Hermitian. To improve this, we
redefine the integral in Eq. (6) as the contribution
of the upper half of the contour C minus the con-
tribution of the symmetric lower half of the contour
calculated in a similar manner. This does not change

the results at Λ̃ < Λs. So defined a(Λ̃)
i (µ2) are regular

and Hermitian and differ from ai(µ2) by the contribu-
tion of singularities and normalization constants. The

constants are chosen so that β(Λ̃)
i (µ2

0) ≡ βi(µ2
0) and,

hence, a(Λ̃)
i (µ2) = ai(µ2) +O((µ2 − µ2

0)
2) in a vicin-

ity of µ2
0, where the finite-loop RG is believed to be

reliable. The large difference between the couplings
arises as soon as the singular parts of ai(µ2) become
large.

3. MODIFICATION OF THE SM TWO-LOOP
COUPLINGS

The SM ultraviolet behavior has been extensively
studied by the conventional RG method up to two
loops [3–5]. An important outcome of this study is
the range of the Higgs mass for which the SM re-
mains perturbatively consistent up to the given cutoff
scale Λ. The consistency can be broken either by a
sufficiently heavy Higgs, whose quartic coupling λ
“blows up” at the scale Λ, or by a light Higgs, whose
coupling λ dumps below zero at the scale Λ.1) Thus,
quite a narrow corridor is retained for the Higgs mass
(see, e.g., Fig. 4 in [3]). These bounds are of special
interest because the Higgs mass remains the last
undetermined SM parameter.

In two loops, the Higgs quartic coupling λ, as well
as the other SM couplings, develops no singularities
prior to the Landau singularity of the U(1)Y gauge

1)The upper and lower bounds on the Higgs mass are also
known in the literature as the triviality bound and the vacuum
stability bound, respectively.
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Fig. 2. The conventional (RG) and subtracted (SRG)
two-loop running of the SM Higgs quartic coupling λ at
MH = 180–380 GeV. The SRG lines correspond to the
proper RG ones from which they deviate minimally. For
comparison, the one-loop RG running of λ is shown by
dots.

coupling at Λ ≥ 0.2 × 1041 GeV, the latter corre-
sponding to the Higgs mass MH ≥ 114.1 GeV [3].
The situation is obscured by the fact that the SM
two-loop RG equations can be solved only numeri-
cally. The numerical solution vs. real µ2 provides no
information about the analytic properties of the SM
two-loop running couplings.

The method of analytic modification studies the
evolution of the running couplings vs. complex µ2.
The variation of the modification radius Λ̃ (Fig. 1)
allows one to determine the two-loop singularity
scale Λs without finding the unphysical singularities
explicitly. Thus, one can judge the self-consistency
of the two-loop RG at the given energy scale µ.
It is sufficient to calculate the modified couplings

a
(Λ̃)
i (µ2) and compare them to the conventional

ones Eq. (2). This enables one to determine the
radius Λs at which the singularity is located, making
the numerical analysis rather productive. If Λ̃ < Λs,
then the conventional and the modified SM running
couplings are identical within the routine accuracy,

ai(µ2) ≡ a
(Λ̃)
i (µ2), |µ| < Λ̃. As soon as Λ̃ exceeds

Λs, the modified couplings depart from the respective
conventional ones.

To illustrate, consider the two-loop RG evolu-
tion of the SM with the maximally heavy Higgs,
MH = 200 GeV, nearly allowed by the electroweak
precision data [2]. Varying the modification radius Λ̃
in the range 1019 < Λ̃ < 1042 GeV,2) we find nu-
merically the scale of the two-loop hidden singu-

2)That is, well below the Landau singularity of theU(1)Y gauge
coupling at Λs � 5 × 1050 GeV for thisMH.
3
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larity to be Λs � 1031 GeV. This can be seen from
Fig. 2, showing the conventional (RG) and sub-
tracted (SRG) two-loop running of the Higgs quar-
tic coupling λ. Note that λ gets in fact a rather
large decrement, of 10% or so, when the integra-
tion contour encompasses the implicit singularities.
For the lighter Higgs (not shown), λ actually stays
unmodified.3) Figure 3 shows the conventional and
modified two-loop evolution of the SM gauge cou-
plings. In these figures, the modification radius is
Λ̃ = 1042 GeV and |µ0| is equal to the Higgs VEV,
v = 246.2 GeV. The extension of Λ̃ even beyond the
position of the Landau singularity results in the rela-
tive variation of the modified running couplings at the
level of 10−3. The case MH = 380 GeV corresponds
to Λs = MPl = 1019 GeV. Also shown in Fig. 3 is the
evolution of α1(µ2) at MH � 1.2 TeV, which corre-
sponds to Λs = MGUT = 1014 GeV.

The upper Higgs bound. An important conclu-
sion follows hereof. For the 200-GeV Higgs, all the
SM couplings demonstrate very close conventional
and modified two-loop running up to the two-loop
singularity scaleΛs. TheHiggsmassMH = 200GeV
spoils the analytic properties of the SM two-loop

3)For the 380-GeV Higgs, the modification of the t, b, and τ
Yukawa couplings (not shown) cancels the unification of the
latter ones [3] above the singularity scale Λs.
P

running couplings only at the scale Λs � 1031 GeV,
i.e., well above the Planck scale. This can imply that,
to improve the analytic properties of the SM two-
loop couplings, the contributions of the third and
higher loops are needed only at scales µ > MPl. To
break down the perturbativity of the SM prior to
the Planck scale MPl = 1019 GeV, the Higgs mass
MH > 380 GeV is required. This raises the com-
monly accepted upper bound on the Higgs mass
MH ≤ 180 GeV derived in the conventional manner
from the same requirement. Moreover, to guarantee
the SM perturbativity up to the GUT scale,MGUT =
1014 GeV, it is not actually necessary to impose any
upper bound onMH. Thus, theHiggs is light probably
for reasons other than the absence of strong cou-
pling in the SM. These reasons might lie beyond the
SM. For example, the Higgs could be the composite
pseudo-Goldstone boson having the natural mass
∼MZ [9].

To resolve the uncertainty of the Higgs upper
bound, the third and fourth loops in the SM are
urgently needed. Two extreme possibilities can be
envisaged. First, the higher loops are large and do
not compensate each other. In this case, the conser-
vative conventional upper bound MH < 180 GeV at
Λ = MPl would follow. Second, the higher loops are
either small or large but mutually compensated. In
this case, the more liberal modified upper bound is
appropriate, andMH up to 380 GeVwould be allowed
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 9 2003
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at the same Λ. More realistically, an intermediate
case may be realized, so that the upper bound onMH
should lie somewhere in between 180 and 380 GeV.

The lower Higgs bound. The low Higgs masses,
MH ≤ 138.1 GeV,4) give rise to the electroweak vac-
uum instability prior to the Planck scale. However, at
the vacuum instability scale, the SM running cou-
plings develop no singularities and hence require no
subtractions. Thus, the analytic modification method
taken as it is cannot clarify the electroweak vacuum
instability problem.

4. CONCLUSION

The subtracted RG is applied to study the two-
loop self-consistency of the SM. It is found that,
at the Higgs mass MH < 380 GeV, the two-loop
singularity scale isΛs > MPl. This implies thatMH <
380 GeV does not necessarily give rise to strong cou-
pling prior to the Planck scale. Even allowing Λs as
low asMGUT, the SM self-consistency may actually
impose no upper bound on MH. In other words, the
light Higgs might be preferred for reasons other than
the SM perturbativity, i.e., for reasons beyond the
SM. To clarify the issue, the third and fourth loops
in the SM RG are needed. On the other hand, the
method cannot resolve the SM vacuum instability
problem arising, in two loops, at MH < 138.1 GeV.
Thus, out of the entire experimentally allowed range
for the Higgs mass 114.1 < MH < 194 GeV, only
the lowest Higgs masses 114.1 < MH < 138.1 GeV
could definitely give rise to the SM inconsistency
prior to the Planck scale and would require new
physics.
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